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7 Autoenergia en l’aproximació d’escala . . . . . . . . . . . . . . . . . 270
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d’assistents particulars, sempre amb savis consells que m’han ajudat a moure’m a
través d’aquesta jungla d’asfalt que és la recerca. A la Muntsa haig d’agrair-li que
s’hagi preocupat per mi i m’hagi aconsellat per on tirar, sense esperar mai res a
canvi. Com l’Assum, de qui admiro el seu contrapunt realista, molt necessari en
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i són, per tant, responsables de la meva felicitat posterior. Y Cari, gracias por
aquel viaje a Madrid y por comprender, a tu manera, que yo no era un chico de
letras!
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Chapter 1

The Nuclear Many-Body Problem

The essential aim of quantum many-body physics is the description of the ob-
servable properties emerging from the underlying quantum behavior of systems
formed by a large number of particles. The tools that many-body physics provides
are general enough as to describe a large variety of these systems. From large
astrophysical objects composed by degenerate gases of hadrons, to the innermost
structure of the nucleon, along with the description of ultracold gases, the atom
and its shells or the electronic structure of molecules, many-body physics is a dis-
cipline that englobes a vast amount of different problems in a common framework.
This global view of the physics of very distinct systems is precisely what makes
many-body theory very appealing. Among the problems that this discipline has
faced, the nuclear many-body problem is of special relevance because of its long
history. Although first proposed in the fifties, the nuclear many-body problem is
still a source of all kind of theoretical challenges for physicists. As a matter of
fact, it requires a lot of effort to get acquainted with the large number of different
techniques that have been used in the treatment of this problem. This wide variety
of approaches has been a major source of developments in many-body physics and
it is perhaps the reason why nuclear physics is still one of the more relevant fields
of research within many-body quantum mechanics.

And, yet, the definition of this problem is extremely simple. In the first place,
one chooses the suitable degrees of freedom which, for standard nuclear physics,
are the neutron and the proton, i.e. the nucleons. Secondly, the interaction among
these constituent degrees of freedom has to be introduced. In contrast to other
physical systems, where the interaction is given a priori (the Coulomb interaction
in electronic systems, for instance), the nucleon-nucleon (NN) interaction is not
completely known. A lot of its properties, however, can be derived from the
analysis of NN scattering experiments and from the phenomenology of nuclear
physics, and several parameterizations which describe accurately the properties
of two- and three-body nuclear systems are presently available. These are the
so-called microscopic interactions, which will be briefly described in the following
section.
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1.1. Nucleon-nucleon interaction

Once the constituents and their interactions are chosen, one should in principle
solve the Schrödinger equation. In the nuclear many-body problem, one usually
assumes a non-relativistic treatment because of the relatively low energies involved
in conventional nuclear physics. Moreover, and to simplify the problem, one usually
considers an infinite system of nucleons with the same fraction of protons and
neutrons. This corresponds to symmetric nuclear matter, a fictitious homogeneous
system in which the electromagnetic interaction among the protons is disregarded.
In a sense, nuclear matter can be thought as a very large nucleus and, even though
nuclear matter itself is not present in the universe, one expects it to describe
qualitatively the interior of heavy nuclei and neutron stars. Indeed, there are
some “experimental” properties of nuclear matter which are well-known from the
nuclear physics phenomenology. These will be discussed in Section 1.2.

In spite of the apparent simplicity of the problem, the complicated structure of
the bare NN interaction complicates the treatment of nuclear matter quite a lot.
Actually, a sophisticated many-body machinery is needed to treat the problem
in a sensible way and, even after decades of theoretical effort, one finds that the
most simple properties of nuclear matter are only roughly described in terms of its
basic constituents. In contrast to these ab initio approaches, in which one tries to
find the properties of nuclear systems from its fundamental building blocks, some
phenomenological approaches have also been devised. These are usually simpler
treatments, which fit empirical properties of nuclear systems in a given region of
isospin and density and then wisely extrapolate the results to different conditions.
In Section 1.3, a general overview of the available many-body techniques which
are presently used as well as some of its respective advantages and disadvantages
will be given.

Finally, once the theoretical framework is settled, one has to study the prop-
erties of nuclear matter as a function of some external conditions, like its density
or, eventually, its temperature. Many-body physics is studied at finite tempera-
ture for a bunch of systems in which thermal effects are unavoidably important.
These include electron systems, quantum liquids (such as 3He) or ultracold gases
(which, despite their name, show important thermal effects). The thermal compo-
nent in the nuclear many-body problem, however, is usually disregarded because
nuclear systems are assumed to be cold, i.e. the relevant energy scales of nuclear
systems correspond to extremely large temperatures which are difficult to achieve
experimentally. Nevertheless, there are a few physical situations in which finite
temperature effects need to be taken into account. The interest of these “hot”
nuclear matter calculations will be discussed in the closing section of this chapter.

1.1 Nucleon-nucleon interaction

In the nuclear many-body problem, one chooses the neutron and the proton as the
fundamental constituents (or degrees of freedom) of the problem. These are the two
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1. The Nuclear Many-Body Problem

baryons with lowest masses, mp = 938.27 MeV and mn = 939.56 MeV respectively
[Yao06]. Note that these masses are very close to each other. The neutron and
the proton differ in their total charge (0 and +1 respectively) as well as in the
combination of their constituent quarks (uud for the proton, udd for the neutron).
Besides these differences, however, they are quite similar. Up to the point that,
if one neglects the electromagnetic interaction among protons, one can treat the
neutron and the proton as two degenerate states of the same particle, the nucleon.
This fact introduces a new symmetry in the system, the so-called isospin symmetry,
which states that the strength of the interaction between any pair of nucleons is the
same, independently of whether they are protons or neutrons. Isospin symmetry
is quite well fulfilled in nature, and it is translated in the charge independence of
NN scattering as well as in the spectroscopic properties of light mirror nuclei, like
3He and 3H [Rin80]. In addition, any microscopic interaction should fulfill some
other general properties [Eis72]. The force should respect the conditions imposed
by basic quantum mechanics (hermiticity, invariance under coordinate exchange)
as well as the invariances imposed by the non-relativistic treatment of a bare force
in the vacuum (translational, Galilean, time reversal, rotational invariances).

Most of the information available on two-nucleon systems is obtained from NN
collisions in a certain range of nucleon kinetic energies, which goes roughly from
0 to 300 MeV in the laboratory frame. A complete compilation of the available
experimental data for these processes is given, for instance, in the websites [nnoa;
nnob]. The analysis in terms of phase shifts of this information, together with
the previous symmetry requirements, constrains the physical properties of the
different microscopic NN interactions in free space. As a consequence, all the
realistic potentials share some common properties. NN forces must be of a short-
range nature, as seen by the fact that nuclei are very compact objects, a few fermis
(1 fm = 10−15 m) wide, and by the fact that the binding energies of finite nuclei
tend to saturate [Rin80]. Moreover, if finite nuclei have to be bound, the NN
interaction has to be attractive in a certain range of distances. Furthermore, the
central density of heavy nuclei is fairly constant due to the strongly repulsive short-
range core of the NN force, which prevents one nucleon to penetrate the hard core
created by another nucleon. A sketch of these ideas can be found in Fig. 1.1, where
the phase shifts of the NN interaction obtained from the compilation of [nnoa] are
shown. On the one hand, S-wave phase shifts are positive for low (Elab < 250
MeV) energies, which is an indication of an overall attractive potential for large
distances [Eis72]. On the other hand, most partial waves yield negative results for
large energies, which indicates the presence of a repulsive core. Note however that
the details of this short-range hard core cannot be resolved from the phase shift
analysis due to the lack of data above 350 MeV.

A very important property of two-nucleon phenomenology is the existence of
a proton-neutron bound state with a binding energy of −2.22 MeV. This bound
state, the deuteron, is an important source of information on the NN interaction.
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1.1. Nucleon-nucleon interaction
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Figure 1.1: NN interaction phase shifts as a function of the nucleon ki-
netic energy in the laboratory system. The partial wave analysis has been
performed by the Nijmegen group [nnoa].

Its strength is mostly concentrated in the 3S1 partial wave, as seen by the fact
that the phase shift of this partial wave approaches π for very low energies. Still,
the deuteron has a certain quadrupole moment, which cannot be caused by a
spherically symmetric S-wave wave function. Instead, the wave function is an
admixture of a S- and a D-wave states, with the deuteron staying about 4% of the
time in the second state. One can explain this mixture from a theoretical point of
view by including a tensor component in the NN interaction that admixes partial
waves with different angular momenta. Indeed, this is one of the main sources of
correlations in the nuclear many-body wave function, because it determines to a
large extent the off-shell structure of the in-medium interaction [Müt00]. Among
the several outstanding properties of finite nuclei, there is one which is especially
relevant for the underlying NN interactions. To reproduce the observed nuclear
magic numbers, a spin-orbit component in the mean-field is needed. In contrast
to the remaining terms of the force, however, the spin-orbit NN interaction is
of a non-local nature. The degree of non-locality of each potential has also an
important influence on the structure of the nuclear wave function.

The large amount of existing NN scattering data, together with the restrictions
imposed by symmetries, allow for the construction of accurate microscopic NN
interactions. There are however several ways in which one can build phase-shift
equivalent potentials. One can, for instance, expand the NN potential in terms of
all the operators which, in configuration as well as in spin-isospin spaces, respect
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1. The Nuclear Many-Body Problem

the underlying symmetries of the NN force. Each operator is usually assumed to
have a certain spatial dependence, with some free parameters which can be fitted
to NN scattering data. A large amount of microscopic NN potentials are based
on this philosophy, but probably the Argonne “family” are the most accurate of
them. The Argonne V18 interaction, for instance, contains 18 of these operatorial
structures in spin-isospin space and can be used as a starting point for realistic
many-body calculations [Wir95].

This kind of empirically restricted interactions are extremely accurate, despite
the fact that they do not try to describe the underlying physics phenomena that
generate the NN force. The description of the strong interaction should be carried
out in terms of quantum chromodynamics (QCD), which governs the properties of
the particles forming the nucleons, i.e. the quarks. The strong non-perturbative
character of QCD at low energies makes the problem almost intractable, and since
the very old days of nuclear physics the interaction between nucleons has been
described in terms of some other effective degrees of freedom, the mesons. The
first to propose such a model was Yukawa, who supposed that the NN interaction
was mediated by pions [Yuk35]. These are the lightest mesons in nature and would
be responsible for the long-range behavior of the force. One can however extend
the number of mesons which is incorporated to this boson exchange potential and
take profit of the different properties of these mesons (their scalar, pseudoscalar
or vector nature) to reproduce the various terms of the NN force. The one-pion
exchange potential, for instance, includes a term of a tensorial nature which can
account for the tensor component of the NN interaction. It is important to note
that the mesons included in this kind of potentials should be taken as effective
degrees of freedom and thus their properties might not coincide with those of the
existing mesons. This is the case of the well-known σ meson, which is supposed
to mimic the effects of two correlated pions. In addition, the scalar-isoscalar η,
the vector-isovector ρ and the isoscalar-vector ω mesons are usually incorporated
in these potentials. Each of them accounts for some characteristics of the NN
force (the ω is responsible for the short-range core, etc.). Since the coupling
constants (as well as some other properties) of these mesons are not well-known,
the existent amount of NN scattering data is used to fit these parameters. Choosing
a correct set of degrees of freedom and of mesonic couplings, these fits can achieve
a high degree of accuracy. The calculations of this Thesis have been performed
with the CDBONN potential [Mac96; Mac01], a boson exchange potential with
a particularly strong non-local nature. The matrix elements in momentum space
for different partial waves of this interaction are shown in Fig. 1.2. The strong
dominance of the 1S0 partial wave at low momenta is clearly observed, as well as
the attractive regions of the 3P0 and the 3S1 −3 S1 waves.

Recently, a new kind of NN potentials have achieved the same degree of accu-
racy in the fitting procedure of NN scattering data [Ent03]. The Idaho-Salamanca
potential is based on chiral perturbation theory, an effective field theory which
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Figure 1.2: CDBONN potential in different partial waves as a function of the
relative momenta q and q′.
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uses the fact that the chiral symmetry is only slightly broken in the QCD La-
grangian. The Goldstone bosons associated to this symmetry breaking are the
low-lying nonet of mesons. The interactions among these mesons as well as their
interactions with the octet of baryons are strongly restricted by the underlying
chiral symmetry. As a result, the Lagrangian can be expanded in a power series
in terms of the momentum of the particles. When this series is expanded to N3LO
and its free parameters are fitted to data, the interaction that is obtained repro-
duces the NN phase shifts with an accuracy comparable to any other realistic NN
interaction. This effective field theory approach to the NN interaction includes
aspects of the previous approaches, in the sense that it is formulated in terms
of effective degrees of freedom (pions and nucleons) with an interaction that is
strongly restricted by symmetry requirements. Furthermore, an interesting out-
come of this chiral perturbation theory approach are the three- and four-nucleon
forces which arise naturally as counterterms in the chiral expansion.

The need of three-body interactions in nuclear physics is a well-known feature.
The effects of three-body forces in nuclear physics are important, either for the
correct description of very light systems, like the ground and excited states of
light nuclei [Pie01], or for an accurate treatment of the many-body nuclear prob-
lem [Day81]. Unfortunately, the introduction of three-body forces in many-body
formalisms is usually very complicated. This is precisely the case for the Green’s
function approach presented in this Thesis and in the following no three-body
forces will be considered.

The NN forces that have been mentioned so far are supposed to describe NN
interactions in free space, i.e. they are fitted to the data of two-body scattering
processes. In order to describe the in-medium properties of nucleons in an effective
way, one can build phenomenological forces which include density dependences
to mimic the effects of many-body correlations. This kind of interactions are
essentially devoted to describe dense systems as well as finite nuclei and, instead
of reproducing the data of NN scattering, they are fitted to the empirical saturation
properties of nuclear matter as well as to some properties of medium and heavy
spherical nuclei. The success of these forces is explained by their simple functional
and operatorial structure as well as by the fact that they are conceived to work
within a mean-field quasi-particle approach. They are thus easy to handle and
they can predict the properties of most nuclei close to the stability valley with
a good degree of accuracy. Note, however, that their spirit is different to that
of the many-body nuclear problem for, even if they are more practical, they do
not predict the properties of nuclei from their very basic building blocks. Among
these phenomenological in-medium NN interactions, the Skyrme force [Vau72] is
probably the more popular one: it is a zero-range force with a simple spin-isospin
structure. Nowadays, there are more than a hundred parameterizations of this
force [Sto03], most of them devoted to study a particular region of the nuclear
chart. Another widespread NN many-body phenomenological interaction is the
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Gogny force [Dec80], which mimics the short and long-range effects of the NN
interactions by means of gaussians. Although there are less parameterizations of
this interaction [Far99], the results obtained with it can be considered to be more
realistic. The fact that these phenomenological forces fit the properties of matter
in a certain region of density and isospin asymmetries limits their applicability to
other regions of the density-isospin parameter space [Rio05b; LV06].

1.2 Nuclear matter

Nuclear matter is an ideal system. Therefore, one might very reasonably wonder
why it has so much interest for nuclear many-body theorists. There are several
answers to this question. To begin with, nuclear matter is an infinite system and
thus it is translationally invariant. As a consequence, the single-particle states
are well-known: they are given by simple plane waves. Note that this does not
happen in finite systems, where the choice of an appropriate single-particle basis
can already be problematic. This supposes a great advantage for theoreticians,
which can use nuclear matter as a test bench for their many-body approximations
before applying them to treat the more involved finite systems.

In the studies of nuclear matter, one tries to reproduce the empirical informa-
tion which is known for this system. It is actually quite surprising that one can
have access to the empirical properties of an ideal system. These properties are
extracted from the extrapolation of the experimental knowledge of finite nuclei to
infinite matter. Consider, for instance, the binding energy per particle, B(Z,N)/A,
of finite nuclei. For sufficiently large nuclei (with more than, say, 15 nucleons) this
is a fairly constant magnitude, which is around 8.5 MeV/nucleon [Rin80]. This
constant energy per particle can be explained in terms of the saturation mecha-
nism of nuclear forces. The short-range nature of the NN interaction modifies the
total energy per particle of the A-particle system in such a way that, instead of it
being proportional to A(A − 1) (as it should be for a two-body interaction), it is
approximately proportional to A. Actually, the binding energy per particle has a
certain soft dependence on A for finite nuclei. For low-A systems, the energy per
particle increases with A due to the fact that the nucleons inside the nuclear core
get more bound. Above A = 56 (i.e. above the iron mass number), the number
of protons is large enough for the Coulomb interaction among them to become
relevant and the repulsive effect is such that, for heavy nuclei, B/A decreases with
A. One can fit this behavior by means of the semi-empirical (or Bethe-Wieszäcker)
mass formula [Rin80]:

B(N, Z) = aV A + aSA2/3 + aC
Z2

A1/3
+ aI

(N − Z)2

A
− δ(A) . (1.1)

Each term of this formula represents a different physical effect which is impor-
tant for finite nuclei. The first contribution corresponds to the volume term and
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1. The Nuclear Many-Body Problem

accounts for the binding in the interior of the nucleus. The second contribution
is associated to surface effects, while the Coulomb repulsion among nucleons is
taken into account by means of the third term. The fourth term corrects the mass
formula to consider the loss of binding in isospin asymmetric systems. The last
term, δ(A), is a associated to pairing effects and varies according to the even or
odd character of the number of nucleons.

Traditionally, electron scattering experiments have been an essential tool to
obtain information on the interior of nuclei. These experiments provide us with
the charge distribution of heavy nuclei, which is basically proportional to the total
density inside the nucleus. It is a well-known experimental evidence that the
charge density inside medium and heavy nuclei is fairly constant. Correcting for
the difference in the number of neutron and protons, one can derive a corresponding
total central density for nuclei with different A. When these data are extrapolated
to very large A, one finds that the central density converges to the value ρ0 ∼ 0.16
fm−3. This is the so-called empirical saturation density of nuclear matter and
coincides with the density at which it would be stable. From the semi-empirical
mass formula, one can find the corresponding binding energy per particle:

lim
A→∞

B

A
= aV ∼ 16 MeV. (1.2)

Note that the only contribution considered here is the volume term, because the
remaining contributions are not active in infinite isospin symmetric mater. Any ab
initio many-body calculation of nuclear matter which tries to be realistic should
reproduce the empirical saturation point of nuclear matter, i.e. it should have a
minimum of energy E/A = −16 MeV at the density ρ0 = 0.16 fm−3.

The semi-empirical mass formula supplies more information on nuclear matter.
For an isospin asymmetric system (with a different number of neutrons and pro-
tons), characterized by the isospin asymmetry parameter α = (N−Z)/A, one finds
that the extrapolation of the mass formula, once Coulomb effects are disregarded
(aC = 0), yields:

lim
A→∞

B

A
= aV + aIα

2 . (1.3)

The quadratic dependence on α is explained both in terms of Pauli blocking effects
and of the charge symmetry of the nuclear interactions. Most fits yield values of aI

around −24 MeV. This is usually called the symmetry energy and its negative sign
accounts for the loss of binding energy when a proton is exchanged by a neutron
in the system (or viceversa). The extrapolation of this fitted parameter to infinite
matter is somehow controversial [Ste05]. However, if a many-body approach can
give the energy per particle in terms of the total density and the asymmetry
parameter, one customarily computes the symmetry energy from the formula:

as =
1

2

∂2

∂2α

E(ρ, α)

A

∣∣∣∣
ρ0

. (1.4)
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1.3. Correlations in nuclear physics

This quantity is usually around 30 MeV for realistic many-body approaches and
it is especially relevant for very asymmetric systems, like neutron stars, where
it determines the composition in the interior of the star. The symmetry energy
also sets to a large extent the neutron skin thickness of heavy nuclei and, from
the experimental point of view, its density dependence close to saturation can
be explored with the help of intermediate heavy-ion collisions [Ste05]. Another
empirical property of nuclear matter which should be reproduced by ab initio
calculations is the so-called compressibility modulus of nuclear matter. This is
normally defined as:

K = 9ρ2
0

∂2

∂2ρ

E(ρ, α)

A

∣∣∣∣
ρ=ρ0,α=0

, (1.5)

and it is proportional to the second derivative of the energy per particle of sym-
metric matter with respect to the density close to the saturation density. In a
way, it characterizes the density dependence of the energy per particle of nuclear
matter close to saturation. The values accepted for this quantity are in the range
K ∼ 200− 250 MeV and they are mainly determined from the energy of monopo-
lar resonances in the nuclear spectra [Bla95]. The lack of three-body forces in the
treatments of this Thesis as well as the restriction to symmetric nuclear matter
will prevent us to give explicit values for these two quantities.

1.3 Correlations in nuclear physics

The word “correlations” is used in several fields of physics with a lot of different
meanings. Even within the many-body community, one uses it in many contexts
and, as a matter of fact, in some fields the adjective “correlated” is given to approx-
imations which, in other fields, might not be considered as such. The correlation
effects of main concern in this Thesis are those which go beyond the mean-field
and the quasi-particle pictures. These effects are related to the energy dependence
of the self-energy and induce a non-vanishing imaginary part for this quantity.
Let us now briefly review the different kind of many-body approaches in order to
pin down more specifically which are the correlations that our approach tries to
describe.

Mean-field approaches are based on the Hartree-Fock approximation. A com-
mon idea underlying these approaches is the concept of quasi-particle. In a mean-
field scheme, a nucleon in nuclear matter is described in terms of its single-particle
energy:

ε(k) =
k2

2m
+ U(k) , (1.6)

which is formed by a kinetic term plus a single-particle potential, U(k), which
accounts for its interaction with the remaining nucleons of the system. In the
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1. The Nuclear Many-Body Problem

Hartree-Fock approximation, the single-particle potential is given by the sum of
the interaction of a nucleon with momentum k with the remaining nucleons in the
system in terms of the bare interaction. This is generally known as the “mean-
field” and defines a one-to-one correspondence between a momentum state k and a
unique quasi-particle energy ε(k). As matter of fact, the mean-field approximation
gives very bad results for the saturation properties of nuclear matter (see Chapter
4) when it is computed from realistic NN interactions. This is caused by the
fact that, in the Hartree-Fock approximation, the strongly repulsive short-range
interactions are overestimated, leading generally to unbound systems. Therefore,
one needs to use phenomenological parameterizations of many-body interactions,
like the Skyrme or the Gogny interactions, which describe in an effective way the
many-body effects that influence the mean-field. These parameterizations usually
have a simple functional form and do not include tensor components. Strictly
speaking, these are not ab initio calculations, but they are among the few which
can reproduce fairly well the properties of finite nuclei among the whole nuclear
chart. In addition, simple mean-field theories can be recast easily as functionals
for the energy that can the be used in a Kohn-Sham density functional scheme
which, in principle, can be improved in a systematic way [Ben03].

Realistic NN interactions, however, do have a strong short-range repulsion and
present tensor components, which induce important changes in the many-body
wave function of the system. These are not taken into account in a pure mean-
field approach, where the single-particle potential is computed assuming that the
system can be described in terms of a simple Slater determinant. One can proceed
in different ways to introduce these short-range and tensor correlations in the
nuclear many-body problem. One might, for instance, try to account for the
correlations directly in the wave function, by means of a Jastrow-type trial wave
function:

Φ(1, · · · , A) =
A∏

i>j=1

f(rij)Φ0(1, · · · , A) . (1.7)

The Jastrow factors f(rij) act on the free many-body wave function, Φ0, and give
the correlated wave function of the system, Φ. They suppress the short-range
components of the wave function and their operatorial structure, which includes
tensor components, accounts for the complicated spin-isospin dependence of the
wave function. Moreover, they need to be properly normalized according to the
fermionic nature of the many-body wave function. The functional dependence
of the Jastrow factors in the inter-particle distance rij is free to some extent,
and it can be adjusted with the help of a variational minimization of the ground
state energy of the system. One can use different techniques to compute this
energy from the Jastrow trial wave functions. In the Fermi Hypernetted-Chain
approximation, the correlations induced to the energy can be studied in terms
of graphs and lead to a set of coupled integral equations that need to be solved
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within certain approximations (like the Single Operator Chain) [Fan75; Cla79].
One can also compute the ground state energy in an exact way by means of a
Variational Monte Carlo calculation, which however needs of an efficient sampling
in the spin-isospin configuration space in order to obtain sensible results. The
strong spin-isospin structure of the nuclear wave function complicates a lot this
kind of calculations. Alternatively, one might try to guess directly the many-
body wave function and improve it systematically by minimizing the ground state
energy. If the correlated basis is close enough to the exact basis, one can compute
the energy from perturbation theory, which improves the results with respect to
the naive Jastrow approach. This leads to the Correlated Basis Functions method
[Cla66; Fan97], which has been successfully applied to liquid 3He as well as to
nuclear matter [Ben92].

The Coupled Cluster (or exp(S)) method is similar in spirit to the Jastrow
trial wave function, in the sense that the correlations of the full many-body wave
function are generated by applying an exp(S) operator on a Slater determinant of
model states. The S operator is formed by sets of n creation-destruction opera-
tors that produce excitations of n particles and holes on top of the non-correlated
Fermi sea [Müt00]. The exponential form of the operator guarantees that the ex-
citations at different orders are not overcounted. The application of the coupled
cluster method to the nuclear many-body problem seems to have a promising fu-
ture, especially in the domain of finite nuclei where it allows for a quantitative
description of the shell structure [Bis91]. Somewhat similar to this approach, the
Unitary Correlated Operator Method renormalizes the short-range and tensor cor-
relations of the many-body wave function by means of a unitary transformation
with an exponential structure. This transformation is cut at the second order in
the n-body irreducible operator expansion, in such a way that only two-body corre-
lations are taken into account [Fel98; Nef02]. So far, this method has been applied
to the calculation of the shell structure of finite nuclei as well as to the spectro-
scopic properties of heavier systems. One can also determine very accurately the
structure in shells of light nuclei by means of the Green’s Function Monte Carlo
method, a technique which has been mainly pushed forward in nuclear systems by
the Urbana group and which yields the more exact ab initio results available in
the nuclear field [Pud97].

In the last five years, new many-body techniques have been derived to treat
the nuclear many-body problem. These have been inspired by different formalisms
which so far had been used in other fields of physics. Renormalization group tech-
niques, for instance, have recently been applied to realistic NN potentials [Bog03].
Starting from these potentials at a very high cutoff, one can build a scattering
amplitude which is evolved to lower cutoff values requiring that the observables
(such as the phase shifts) are preserved up to the cutoff external momenta. In
this way, one obtains an interaction, the so-called low momentum interaction or
Vlowk, which is the same independently of the initial NN potential. The differ-
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ences in the original NN potentials at the numerical level are essentially due to the
different way in which they treat the non experimentally observable short-range
components and the Vlowk potential has integrated out this high energy modes in
a consistent way. Thanks to the fact that the short-range components have been
“extracted” from the interaction, the Vlowk potential is less correlated in a way and
thus it can be used as the starting point of perturbative calculations for nuclear
matter [Bog05].

Effective field theory techniques have also been applied to the nuclear many-
body problem [Lut00; Kai02]. In these approaches, a chiral perturbation theory
interaction is used to describe the NN interaction, although finite density effects
involve a different power counting than the one used in free space. Note, more-
over, that since the Fermi momentum at saturation density (kF ∼ 260 MeV) is
comparable to the pion mass, pions need to be explicitly taken into account in
the calculations. Within this finite density chiral effective field theory, one can
obtain the energy per particle in an expansion of kF /mN (or kF /Λ, with Λ a large
cut off). The results thus obtained turn out to be quite reasonable, even though
some of the unknown constants in the approach have to be fitted to reproduce the
empirical saturation point.

There is a common assumption in all the previous treatments, namely that
nuclear matter is a non-relativistic system. Such an assumption seems sensible,
since the energies involved in nuclear matter (of the order of some MeVs) involve
Fermi velocities of the order of vF /c ∼ kF /Mn ∼ 0.3, much smaller than the
speed of light, c. Still, in a Lagrangian picture the one boson exchange model
is much more easy to treat and one can indeed try to reproduce the properties
of nuclear matter directly from it. In the Relativistic Mean Field approach (also
known as Quantum Hadrodynamics or Walecka model), one approximates the
expectation values of the mesonic degrees of freedom by means of mean classical
values [Ser86]. The couplings of the phenomenological mesons are then adjusted to
reproduce the empirical saturation point. An attractive feature of this approach is
the fact that it predicts the experimental spin-orbit splitting observed in nuclear
single-particle levels in a straightforward fashion. In addition, and even though it
is a phenomenological model, the Relativistic Mean Field approach can be derived
in an effective field theory spirit from the chiral properties of the underlying QCD
lagrangian [Fur97]. Furthermore, it is also possible to understand it in terms of a
density functional which includes relativistic effects [lal04].

None of the previous approaches has enjoyed the same success or has been stud-
ied in such detail as the Brueckner-Hartree-Fock (BHF) approach to the nuclear
many-body problem [Bru54; Day67]. This is based on the Goldstone expansion for
the total energy of a many-body system at zero temperature and its diagrammatic
interpretation [Gol57]. Actually, in contrast to the previous approaches, the BHF
approximation is entirely based on a diagrammatic expansion for the energy per
particle. In the BHF case, the diagrams which are considered are dictated by the

13



1.3. Correlations in nuclear physics

hole-line expansion. An infinite series of these diagrams can be summed in terms
of an in-medium interaction (or G-matrix) which includes the correlations induced
by the original bare NN force as well as the Pauli blocking effects in the inter-
mediate propagation of particles. Note that in this approach, one renormalizes
the in-medium interaction and not its wave function, although it can be obtained
from the renormalized interaction [Müt00]. In principle, the BHF approach can
be improved by including higher order terms in the hole-line expansion. So far,
only the three hole-line contribution has been computed [Son98], and the conver-
gence of the series seems to be at least qualitatively proven. Note also that there
exists a relativistic version of the BHF approach, in which the relativistic scatter-
ing amplitude is corrected by medium effects [Bro90; vD04]. Since these studies
are unavoidably carried out with the help of Dirac spinors, the approach is called
Dirac-Brueckner-Hartree-Fock. Starting from realistic boson exchange potentials
that describe the phase shifts of the free space interaction, one obtains good sat-
uration properties of nuclear matter, although some doubts exist on the exact
formulation of the approach (especially in what concerns the Lorentz structure of
the self-energy).

In terms of correlations, the non-relativistic BHF accounts, in its renormal-
ization process, for the simultaneous particle-particle propagation of in-medium
nucleons. Still, in a certain sense, the BHF is a quasi-particle approach, since each
single-particle momentum has an associated quasi-particle energy, given by an ex-
pression equivalent to Eq. (1.6). In this case, however, the single-particle potential
U(k) is computed from the renormalized interaction, whose energy dependence is
restricted to the quasi-particle energies. One says that the particle is on its mass
shell (on-shell). The BHF approximation is however not completely on-shell, be-
cause the in-medium interaction has a certain energy dependence associated to the
off-shell behavior of the self-energy. To distinguish this approach from the usual
mean-field or Hartree-Fock approximation (which is also on-shell), any approach
in which there is a one-to-one correspondence between a single momentum and a
single energy will be referred to as a quasi-particle approach in the following. Yet,
experimental information coming from proton (e, e′p) knockout reactions contra-
dicts this assertion [Kel96; Dic04]. One finds that there is a certain probability
to find knocked out protons of a certain momentum within an extended range of
energies [Roh04]. This so-called fragmentation of the quasi-particle strength is
described in terms of the spectral function, which gives the probability of finding a
nucleon with momentum k and energy ω in the many-body nuclear system. This
cannot be directly computed from the BHF approximation, but it is an outcome
of other approaches, like the Fermi Hypernetted Chain or the Correlated Basis
Function approximations [Fan84; Ben89].

The fully correlated one and two-body Green’s function have an infinite dia-
grammatic expansion in terms of non-interacting one-body propagators and two-
body potentials. In the ladder approximation, one sums an infinite subset of the
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diagrams for the two-body propagator. In doing so, an in-medium interaction
(the so-called T -matrix) has to be introduced. In contrast to the G-matrix of the
BHF approach, this interaction accounts consistently for the correlations induced
by the in-medium propagation of pairs of particles and pairs of holes. The final
result is expressed in terms of a self-energy and a spectral function which are fully
momentum and energy dependent. The process of finding the Green’s function for
such a many-body system is unavoidably self-consistent, since the propagation of
a nucleon is affected by the interactions with the surrounding nucleons, which in
turn are also described in terms of the Green’s function. When the procedure is
iterated in a self-consistent way (in the sense that, at each iteration, the spectral
function of the previous iteration is used), the diagrammatic expansion is modified
by the inclusion of self-energy insertions that dress the one-body propagator. This
allows for an extension of the approach to higher densities. Moreover, the self-
consistency of the approach is essential for the fulfillment of the Hugenholtz-van
Hove theorem and the sum rules for the spectral function, which are known to
hold from basic principles and which are not well reproduced in other many-body
approximations.

The set of equations which defines the Self-Consistent Green’s Function (SCGF)
scheme can be written down in a more or less straightforward way. A full numer-
ical treatment with all the off-shell dependence of this approximation is however
quite involved in the nuclear case, due to the short-range components of the force,
which induce non-negligible strengths to the region of high and low energies. At
the same time, one has to deal with very abrupt structures close to the quasi-
particle energy as well as with delta-like peaks close to the Fermi surface. All in
all, the numerical treatment of the problem is quite difficult and only a few groups
have achieved a partial solution of the problem. Very soon after the Green’s
function theory for many-body systems was formulated [Mar59], Puff and collab-
orators carried out the first schematic attempts to study nuclear matter from a
Green’s function point of view with the very simple potentials available at the
time [Puf61; Rey63]. In the eighties, with the new computational tools available,
Green’s function theory and its application to nuclear matter were pushed for-
ward [Web85], mostly with simple separable potentials within the quasi-particle
approximation. The first attempts to solve the problem with more realistic poten-
tials were carried out in a quasi-particle approximation of the formalism, in which
the self-consistency is demanded at the on-shell level, by the Barcelona and the
Saint Louis groups [Ram88; Ram89; Von93]. Within their approach, the off-shell
dependence can be computed at the end of the procedure and a non-trivial spectral
function is found. An improved approach can be obtained by parameterizing the
off-shell dependence of the spectral function by means of a set of Gaussian functions
[Dic99]. The Gent group achieved similar results by approximating the off-shell
dependence by a small discrete number of Dirac peaks [Dew02; Dew03]. Complete
off-shell results have been obtained for simple separable NN interactions by Bozek
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[Boz99; Boz01; Boz02], who has also solved the problem at zero temperature for a
separable version of realistic NN potentials [Boz03b]. A full solution of the SCGF
scheme with realistic microscopic potentials is however difficult to obtain at zero
temperature, and the extension of the formalism to the finite temperature case
simplifies the treatment to a large extent [Fri03].

1.4 Many-body physics at finite temperature

Many of the systems studied with quantum many-body techniques are influenced
by thermal effects. The properties of electronic systems, for instance, have a strong
temperature dependence, and probably the phenomenon of superconductivity is
the most spectacular of them. This is also the reason why the electron gas has been
used in several textbooks as the starting point for the description of many-body
physics at finite temperature [Abr65; Fet71; Mah90]. In ultracold atomic gases,
the phenomenon of Bose-Einstein condensation as well as the so-called BEC-BSC
crossover have recently renewed the interest on the study of strongly interacting
quantum many-body systems at finite temperature.

This is however not a new subject. Finite temperature many-body physics has
a long tradition. Among the problems treated with this theory, maybe correlated
Fermi liquids and, in particular, 3He are the most interesting from the theoretical
point of view. Due to the strong dynamical correlations induced by the two-body
interaction, the thermodynamical properties (and, in particular, the entropy) of
3He deviates strongly from the free Fermi gas behavior. As a matter of fact, the
study of the entropy in correlated Fermi liquids was triggered by the experimental
and theoretical studies of 3He [Ber66; Don66; Ami68a; Ami68b; Bre67; Pet73;
Car75]. The specific heat of this system is known to have a non-trivial empiri-
cal temperature dependence of the type T 3 ln T [Gre83]. Such a non-analytical
behavior can be seen to arise, within Fermi liquid theory, from the coupling be-
tween quasi-particles and quasi-holes in the triplet state, which gives rise to non-
analytical energy dependences in the self-energy [Chu06]. These non-analyticities
are in fact a general feature of all normal Fermi liquids and their existence is not re-
lated to the particular details of 3He systems, although the strong spin-dependent
correlations of this system enhance this behavior.

Traditionally, nuclear matter has been considered as a cold system, i.e. it
has been studied with the tools provided by zero temperature quantum many-
body physics. There is a good reason for this. The energy scales of nuclear
systems are of the order of some MeV. This corresponds to temperatures of the
order of T = 1 MeV ∼ 1.2 · 1010 K, which are of course much higher than the
room temperatures at which nuclear physics experiments are carried out. In other
words, temperature does not play any role in nuclear structure for earthly systems.
Still, in some situations, temperatures of the order of tenths of MeV are reached
in nature. These are somewhat small temperatures if compared with the typical
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energy scales of nuclear matter (the free Fermi energy at empirical saturation
density is about εF ∼ 40 MeV, thus T/εF ∼ 0.5 for T = 20 MeV, the highest
temperatures considered here), but one expects that a finite temperature approach
to nuclear matter can fairly describe the properties of the hot environments that
exist either inside the cores of supernovae at the latest stage of their evolution
[Bet90] or in the collisions of heavy nuclei at intermediate energies [Cho04]. The
thermodynamical properties of this high density matter and, in particular, the
entropy are important quantities for the understanding of astrophysical and heavy
ion physics phenomena. In core-collapse supernovae, for instance, the evolution
and dynamics occur at a fixed entropy per baryon [Pra97]. On the other hand,
the entropy production in multi-fragmentation events in heavy ion collisions is
considered to be a crucial quantity to determine the mass fragment distribution
[Cse86].

Traditionally, hot nuclear matter has been studied in a mean-field (Hartree-
Fock) approximation with effective phenomenological NN forces, such as the non-
relativistic Skyrme or Gogny interactions [Sil04; Hey88] or the Relativistic Mean
Field approximation [Mül95]. Other many-body approaches that have been used in
the study of this system include lattice models [Mül00] or three-loop calculations
within chiral perturbation theory at finite temperature [Fri02]. However, when
dealing with realistic NN potentials, more sophisticated many-body techniques are
needed. Once again, the strong short-range repulsion and the tensor components
of these potentials modify substantially the many-body density matrix, which is
not anymore well described in terms of a free Fermi gas density matrix. The BHF
approximation arises from a well-defined expansion for the energy of a fermionic
system at zero temperature, the so-called Brueckner-Bethe-Goldstone expansion
[Day67]. At finite temperature, a similar summation can be achieved in the so-
called Bloch-de Dominicis approach [Blo58a; Blo58b; Blo59a; Blo59b]. However,
this approach is not devised to reproduce the energy of the system. Instead, it aims
to compute the grand-potential and, from it, all the thermodynamical properties
of the system. Traditionally, however, the BHF approach has been extended to
finite temperatures in a more naive way: the energy of the system is computed
from a simple generalization of the T = 0 formalism to finite temperature and the
entropy of the system is computed from a mean-field expression [Lej86; Bom94].
Finally, let us also note that relativistic Dirac-Brueckner-Hartree-Fock calculations
at finite temperature can also be found in the literature [tH86; Hub98].

A consistent treatment of correlations in quantum many-body systems requires
the inclusion of particle-particle and hole-hole scattering terms. A major well-
known problem of the SCGF approach is related to the so-called pairing instability
that appears in the zero temperature formalism when the propagation of holes
is considered [Von93; Alm96; Boz99; Dew03]. One of the great advantages of
working at finite temperature is the fact that the pairing instability is washed out
already at low temperatures. This feature has triggered the theoretical research
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on finite temperature many-body propagators and a few modern calculations exist
of hot nuclear matter within the Green’s function approach. The Rostock group,
for instance, have carried out quasi-particle Green’s function calculations with
separable potentials [Alm93; Alm96; Sch96]. Also the Krakow group has computed
the full off-shell spectral function for simple separable [Boz03a] or fully microscopic
potentials [Som06]. As a matter of fact, the treatment at non-zero temperature
has been the keystone for obtaining a complete numerical solution from a realistic
NN potential, as achieved by the Tübingen group [Fri03; Fri04a; Fri05; Rio06b].

Once the self-consistent propagator is found in this method, one can easily
obtain information on the microscopic properties (such as the momentum distri-
butions, self-energies or spectral functions of the nucleon) as well as on the bulk
properties of the system (the energy per particle via Koltun’s sum rule, for instance
[Fet71; Kad62]). For a complete thermodynamical description of the system, how-
ever, one should compute the relevant thermodynamical potential of a statistical
quantum mechanical system, i.e. the free energy. A suitable calculation of the en-
tropy is thus required if this formalism is to be used in any practical description of
hot nuclear matter. In this Thesis, the Luttinger-Ward approach [Lut60; Car75],
in which the grand-potential is computed from the full single-particle propagator,
will be discussed and used in the computation of the entropy of the system. An
analysis of the properties of nuclear matter within this formalism has been recently
published by Soma et al. [Som06]. In the following, it shall be shown that one does
not need to compute thermodynamical quantities within a full Luttinger-Ward ap-
proach as done in [Som06], provided that some approximations for the entropy are
valid. Finally, let us notice that the Luttinger-Ward formalism has been widely
used in other fields of many-body finite temperature physics, ranging from many-
body systems of mesons at finite density [Rap96], to relativistic plasmas [Van98]
or to resonances in heavy ion collisions [Wei98b].

1.5 Program of the Thesis

Once the many-body nuclear problem has been introduced and after the Green’s
function description of nuclear matter has been motivated, a brief summary of
the remaining chapters of this Thesis will be given here. In the following chapter,
the many-body Green’s function formalism at finite temperature will be described.
The derivations will try to be as detailed as possible, because the techniques un-
derlying finite temperature physics are quite involved and they are often not very
well explained in the literature. Most of the ideas have been taken from the book
of Kadanoff and Baym [Kad62], although the books by Mahan [Mah90] and Kraeft
et al. [Kra86] are also very useful in this context. The self-consistent renormal-
ization procedure will be introduced in the final part of the chapter, following an
example by Mattuck [Mat92].

In Chapter 3, the Luttinger-Ward formalism to study the thermodynamical
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properties of fermionic systems will be introduced. Within this scheme, the parti-
tion function of an interacting system can be computed from the one-body Green’s
function. Although a full derivation of this formalism goes beyond the scope of this
Thesis, the Luttinger-Ward expression for the partition function will be seen to
be equivalent to that arising from the more widespread coupling constant method.
Following Carneiro and Pethick [Car75], several expressions for the partition func-
tion and the entropy per particle of a correlated system of fermions will be derived.
The influence of the width induced by dynamical correlations on both quantities
will also be briefly discussed.

The first numerical calculations concerning nuclear matter will be presented in
Chapter 4, where the Hartree-Fock approximation at finite temperature is studied
in detail. Although it is well-known that the results for nuclear matter starting
from microscopic NN potentials are not realistic (in the sense that they do not
reproduce the empirical saturation point and that might even give rise to un-
bound systems), the Hartree-Fock approximation is a good benchmark where one
can study in detail the self-consistent renormalization procedure. Moreover, the
Luttinger-Ward formalism can be used to obtain the well-known expressions for the
thermodynamical properties of nuclear matter with a mean-field approximation.

The ladder approximation is discussed in Chapter 5. Its numerical solution
by means of the SCGF scheme is also sketched in this chapter, where the first
microscopic results are given. These concern the density and temperature depen-
dences of the in-medium interaction, the self-energy, the spectral function and the
momentum distribution. These dependences give us a hint on the importance of
dynamical correlations in the different temperature and density regimes.

Finally, in Chapter 6 the thermodynamical properties of nuclear matter will
be studied within the Luttinger-Ward formalism, starting from the Green’s func-
tion obtained in the SCGF scheme. The importance of dynamical correlations
on the entropy will be studied by comparing different many-body approximations
to this quantity. The thermodynamical consistency of the approach will also be
discussed in terms of the Hughenholtz-van Hove theorem at the saturation point
and compared with the non-consistent BHF approach. The density and tempera-
ture dependences of the total energy, the free energy and the pressure will also be
given. These results will often be compared with those of the mean-field approach
of Chapter 4, which can help us in determining the importance of dynamical cor-
relations on the thermodynamics of the system. A brief summary of some of the
future perspectives that this formalism offers is presented at the end of the chapter.

The foundations of the Green’s function approach to the nuclear many-body
problem are very formal. The same can be said of the Luttinger-Ward formalism.
Yet, for the sake of clarity most of the derivations have been kept in the main
body of this Thesis. Some of the formal developments which are not essential in
the treatment of the problem are given in the Appendices. The first Appendix
is concerned with the derivation of the perturbation expansion of the Green’s
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function at finite temperature, which is the starting point for the diagrammatic
approach extensively used in the other sections of this Thesis. The Feynman rules
which relate each term in the expansion with a Feynman diagram are given in
Appendix B. Appendix C is devoted to the sums of Matsubara frequencies, which
rely on different tools of complex analysis. The expansion of some thermodynam-
ical properties of Fermi liquids in two different density and temperature regimes
(the degenerate and the classic limit) are studied in Appendix D. These are use-
ful in the interpretation of the density and temperature dependences of both the
non-correlated approach of Chapter 4 and the fully correlated one of Chapter 6.
Finally, in Appendix E the details of the numerical calculations involved in the
SCGF scheme are presented.
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Chapter 2

Many-Body Green’s Functions at
Finite Temperature

The Green’s function formalism is a widespread technique in theoretical quantum
many-body physics [Mar59; Kad62; Mat92]. It provides a wealth of very interest-
ing results already at the one-particle level [Fey65], and it allows for even more
outstanding results when a many-body system is considered. The computation
of one-body as well as some of the many-body properties of the system can be
achieved from the one-body propagator and thus several approaches have been
devised in order to compute this quantity in dense correlated systems. In the fol-
lowing, the general properties of the Green’s function will be presented within a
finite temperature framework. Starting from the usual aspects of quantum statis-
tical mechanics, the propagator will be defined and a (hopefully) comprehensive
review of the imaginary time formalism will be presented. In addition, some ana-
lytical results that will be used throughout the rest of this Thesis will be carefully
deduced. The properties of the two-body propagator, which shall be useful in the
discussion of the ladder approximation, will also be outlined here. In the context
of interacting systems, the self-energy will be introduced both from the equation
of motion approach and from the diagrammatic point of view. Among the prop-
erties of the single-particle propagator in interacting systems, the self-consistency
renormalization procedure will be discussed here in order to clarify its importance
in the treatment of many-body approaches as well as its fundamental role in the
developments of the following chapters.

2.1 Quantum statistical mechanics

The properties of a quantum system composed by many identical particles can be
studied conveniently in the framework of the second quantization formalism. The
basic cornerstones of this formalism are the creation and annihilation operators
in the Heisenberg representation. When a creation operator â†(rt) acts to the
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2.1. Quantum statistical mechanics

right on a state of the system, it adds a particle at position r at time t (for
simplicity, in this chapter the presence of any other quantum number such as spin
or isospin will be neglected). When its adjoint, the annihilation operator â(rt),
acts to the right it destroys a particle at position r and time t. Most of the
micro- and macroscopic operators of physical relevance can be expressed in terms
of products of these two operators. In addition, for fermionic systems the second
quantization formalism implements in a very convenient way the antisymmetry of
the many-body wave function. This is automatically contained in the equal time
anticommutation relations: {

â(rt), â(r′t)
}

= 0 , (2.1){
â†(rt), â†(r′t)

}
= 0 , (2.2){

â†(rt), â(r′t)
}

= δ(r− r′) . (2.3)

Indeed, with the help of these relations, it is easy to see that
[
â†(rt)

]2
= 0. This is

nothing but the Pauli exclusion principle, which states that two identical fermions
cannot be created at the same point of space and time. Notice that here, and in
the following, ~ = 1.

Consider any operator X̂S in the (time-independent) Schrödinger picture. The
time evolution of this operator in the Heisenberg representation, X̂H = X̂(t), is set
by the following equation of motion (also known as the von Neumann equation):

i
∂X̂(t)

∂t
=

[
X̂(t) , Ĥ

]
, (2.4)

where Ĥ is the Hamiltonian of the system in the Schrödinger representation. In
the case of a system of fermions interacting via a two-body potential V (r, r′), the
Hamiltonian is the sum of a kinetic plus a potential term:

Ĥ(t) =

∫
d3r â†(rt)T (r)â(rt) +

1

2

∫
d3r

∫
d3r′ â†(rt)â†(r′t)V (r, r′)â(r′t)â(rt) ,

(2.5)

where T = −∇2/2m is the kinetic energy operator in position space. In fact,
the time independence of the Hamiltonian, Ĥ(t) = Ĥ, allows for the following
integration of the von Neumann equation:

X̂(t) = eiĤtX̂(0)e−iĤt . (2.6)

This solution provides the operator X̂ at any time t in terms of an initial condition,
X̂(0). Let us also note that the Hamiltonian does not change the number of

particles N̂(t),
[
Ĥ(t) , N̂(t)

]
= 0, and thus N̂ is also a time independent operator.
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2. Many-Body Green’s Functions at Finite Temperature

Up to this point only the microscopic properties of a quantum many-body sys-
tem have been considered. Quantum statistical mechanics is the bridge that links
the macroscopic thermodynamical observables of a system with its fundamental
microscopic properties. In the grand-canonical ensemble, the thermodynamical
state of the system is described by the chemical potential µ and the inverse tem-
perature β = 1/T . Here and in the following the Boltzmann constant will be taken
equal to unity, kB = 1. The partition function Z is then defined as the sum over
all possible energy and particle number eigenstates of the system (weighted with
the corresponding Boltzmann factor):

Z =
∑

n

e−β(En−µNn) , (2.7)

where En and Nn denote the energy and number of particles eigenstates of the
many-body system. If one introduces the full many-body states |n〉, which are
exact normalized eigenvectors of the system with energies En:

Ĥ|n〉 = En|n〉 , (2.8)

and number of particles Nn:

N̂ |n〉 = Nn|n〉 , (2.9)

the partition function can be rewritten in the following compact form:

Z =
∑

n

〈n|e−β(Ĥ−µN̂)|n〉 = Tr e−β(Ĥ−µN̂) , (2.10)

where the trace has to be taken as a sum over all the energy and particle number
eigenstates of the system. Note that these are eigenvalues and eigenvectors of the
Hamiltonian and the number of particles operators and, formally, they have to be
computed at zero temperature. From the partition function, one can compute the
thermodynamical grand-potential Ω by means of the relation:

Ω(µ, T ) = −T ln Z . (2.11)

In quantum statistical mechanics, the expected value of any operator X̂ is
computed by using the grand-canonical average:

〈X̂〉 =

∑
n e−β(En−µNn)〈n|X̂|n〉∑

n e−β(En−µNn)
=

Tr
{

e−β(Ĥ−µN̂)X̂
}

Tr
{

e−β(Ĥ−µN̂)
} . (2.12)

This expression can be further simplified if one introduces the finite-temperature
density matrix operator,

ρ̂ =
1

Z
e−β(Ĥ−µN̂) , (2.13)

23



2.2. Green’s functions at finite temperature

and one finds:

〈X̂〉 = Tr
{

ρ̂X̂
}

. (2.14)

This equation relates the microscopic properties of the operator X̂ with its mean
value in an statistical ensemble. If the operator is an observable, the physical
quantity that one might be able to measure would be equal to the left-hand side
value, 〈X̂〉. The thermal average is thus a major source of information in the study
of quantum systems at finite temperature.

2.2 Green’s functions at finite temperature

2.2.1 Definitions

The one-body propagator (or Green’s function) will be the main tool in our discus-
sion of the properties of many-body systems. This function is of capital importance
in quantum systems since one can easily prove that, once it is known, all the one-
body (and even some two-body) properties of the system can be computed (see
Section 2.2.5) [Fet71]. Hence, in the Green’s function approach to the many-body
problem, one aims at computing the propagator which, in the grand-canonical en-
semble, is defined by the following statistical average of creation and annihilation
operators:

iG(rt, r′t′) = Tr
{

ρ̂ T
[
â(rt)â†(r′t′)

]}
, (2.15)

where T is the usual Wick time-ordering operator that arranges the operators in a
chronological order so that the earliest times appear in the right side. In addition,
this operator yields a factor +1 (−1) depending on whether the chronological
product is an even (odd) permutation of the original one. Writing explicitly the
two possibilities, one finds:

T
[
â(rt)â†(r′t′)

]
=


â(rt)â†(r′t′), t > t′

−â†(r′t′)â(rt), t′ > t .
(2.16)

The one-body propagator, Eq. (2.15), describes the in-medium propagation of
“disturbances” in which one particle is added or removed from the many-body
system at thermal equilibrium. When t > t′, for instance, an excitation is produced
in the system by creating a particle at the position r′ at time t′, that subsequently
propagates until the time t, when it is destroyed at r leaving the system in its
original equilibrium state. In the inverse situation, when t < t′, the disturbance is
produced by the destruction of a particle at position r and it does not end up until
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2. Many-Body Green’s Functions at Finite Temperature

time t′, where a particle is created at r′. One can define the so-called correlation
functions:

iG>(rt, r′t′) = Tr
{

ρ̂ â(rt)â†(r′t′)
}

(2.17)

iG<(rt, r′t′) =−Tr
{

ρ̂ â†(r′t′)â(rt)
}

, (2.18)

which, for each of the two time domains, reduce to the single-particle propagator.
Actually, the notation > and < should be taken as a reminder that, for times
t > t′, the correlation function G> equals the propagator G, while for t < t′,
G = G<. Note, however, that the correlation functions are not limited by any time
ordering and thus span to the entire time domain.

In addition to the single-particle Green’s functions, it is also customary to
define the retarded propagator:

iGR(rt, r′t′) = Θ(t− t′)Tr
{

ρ̂
{
â(rt), â†(r′t′)

}}
, (2.19)

which can be rewritten in terms of the correlation functions:

GR(rt, r′t′) = Θ(t− t′)
[
G>(rt, r′t′)− G<(rt, r′t′)

]
. (2.20)

In physical terms, the retarded Green’s function describes the propagation of a
perturbation (caused either by the creation or the destruction of a particle) forward
in time. It is thus associated to the causal propagation of events in the system.

Consider an infinite system of fermions, such as nuclear matter. It will be
invariant under translations and rotations in space. In addition, if the system is
in equilibrium, it will be invariant under time translations. As a consequence, the
propagator can only depend on the relative distances in space and time:

G(rt, r′t′) =G(x = |r− r′|, τ = t− t′) . (2.21)

This translational invariance for both space and time can be suitably treated in
the momentum-frequency space by means of a Fourier transform. As a first step,
one can transform the space dependence of the propagator:

G(k, τ) =

∫
d3x e−ik·xG(x, τ) . (2.22)

The inverse Fourier transform (which goes from the momentum-space Green’s
function to the real space one) is then defined as:

G(x, τ) =

∫
d3k

(2π)3
eik·xG(k, τ) . (2.23)

To take profit of the time invariance of the system, one should also Fourier trans-
form the relative time variable to energy space. In the following, however, it will
be more convenient to consider an extension of the time variable to the complex
plane in order to treat the problem at finite temperatures. This allows for the
extraction of some fundamental properties of the Green’s function for a system in
thermal equilibrium.
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2.2. Green’s functions at finite temperature

2.2.2 Imaginary time formalism

The reader might already have noticed the strong resemblance between the time
evolution operator e−iĤt of Eq. (2.6) and the statistical weighting factor e−βĤ of
Eq. (2.10). In fact, this resemblance can be exploited to obtain useful relations for
the Green’s function of a system in thermal equilibrium. As it has already been
pointed out, the time evolution of any operator is given by Eq. (2.6). More specifi-
cally, the time evolution of a creation (or annihilation) operator in the Heisenberg
picture is given by:

â(rt) = eiĤtâ(r0)e−iĤt . (2.24)

Suppose now that t is a complex argument. In principle, one can safely use the
previous equation to define a complex time evolution for â(rt) . Besides, one can
write the following expression for the correlation function G<:

G<(rt, r′t′) = −1

i

Tr
{

e−β(Ĥ−µN̂)eiĤt′ â†(r′0)e−iĤt′eiĤtâ(r0)e−iĤt
}

Tr
{

e−β(Ĥ−µN̂)
} , (2.25)

and use the cyclic invariance of the trace, as well as the fact that Ĥ and N̂
commute, to rewrite the numerator of the previous expression in the following
form:

Tr
{

e−([iτ+β]Ĥ−βµN̂)â†(r′0)eiτĤ â(r0)
}

. (2.26)

For real τ ’s, one assumes that this trace converges thanks to the presence of the
statistical weighting factor e−β(Ĥ−µN̂). Provided that this holds for real values of τ ,
the previous definitions for the correlation functions can be generalized to complex
relative times. Yet, from Eq. (2.26) one can see that the trace only converges for
complex τ ’s in the interval 0 < Im τ < β. Similarly, one can show that for G>

the trace only converges in the region −β < Im τ < 0. These two regions of
convergence are shown in Fig. 2.1. In addition, from the previous considerations it
is easy to prove that the two correlation functions are analytic and bound in their
respective open regions of convergence of the complex relative time variable.

Consider now the G< correlation function at t = 0:

G<(r, t = 0; r′, t′) = −1

i

Tr
{

e−β(Ĥ−µN̂)â†(r′t′)â(r0)
}

Tr
{

e−β(Ĥ−µN̂)
} , (2.27)

and use again the cyclic invariance of the trace to get:

G<(r, 0; r′, t′) = −1

i

Tr
{

e−β(Ĥ−µN̂)
[
eβ(Ĥ−µN̂)â(r0)e−β(Ĥ−µN̂)

]
â†(r′t′)

}
Tr

{
e−β(Ĥ−µN̂)

} . (2.28)
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Figure 2.1: Regions in the complex τ plane where G< (red)
and G> (blue) converge.

The sandwich of statistical operators eβĤ provides the time evolution of â(r0) to a

complex time t = −iβ. In addition, using the relation â(rt)eβµN̂ = eβµ(N̂+1)â(rt),
the following useful link between G< and G> can be established:

G<(r, t = 0; r′, t′) =−1

i
eβµ

Tr
{

e−β(Ĥ−µN̂)â(r,−iβ)â†(r′t′)
}

Tr
{

e−β(Ĥ−µN̂)
}

=−eβµG>(r, t = −iβ; r′, t′) . (2.29)

This is the so-called Kubo-Martin-Schwinger (KMS) relation. It relates one corre-
lation function at one boundary of its convergence region (t = 0) with the opposite
correlation function in the corresponding opposite boundary (t = −iβ) in complex
times. It is interesting to point out that this is a very general property of the
Green’s function for any system in thermal equilibrium [Kad62].

As a consequence of the introduction of the complex time evolution of opera-
tors, the KMS relation, which links the correlation functions at different complex
times, has been obtained. Yet, one would like to know whether a similar relation
exists for the propagator. To this end, a certain time ordering in the complex
time plane should be defined to link the propagator in a complex time with a
certain correlation function. For real times, for instance, this relation is given by
Eq. (2.16). In the complex time plane, a natural prescription is to take G equal to
G> in the lower half plane of relative complex times (where this function converges,

27



2.2. Green’s functions at finite temperature

see Fig. 2.1). The complex time ordering is therefore implemented as follows:

G(rt, r′t′) =


G>(rt, r′t′), for − β < Im τ < 0

or Re τ > 0 for Im τ = 0

G<(rt, r′t′), for 0 < Im τ < β
or Re τ < 0 for Im τ = 0 .

(2.30)

This is a quite general choice that allows one to relate the one-body propagator G
with the correlation functions G< and G> both in real and complex times.

In practice, however, only two concrete regions of the complex time plane will
be of major interest: namely, the real axis (corresponding to physical times) and
the imaginary axis (corresponding to what will be called imaginary times). The
time ordering for physical times is clear, and the ordering for imaginary times arises
naturally in accordance with Eq. (2.30): one defines t earlier than t′ if Im t > Im t′.
In other words, the further down the imaginary axis, the later an imaginary time
is. In order to ensure that the correlation functions stay within the region where
they are convergent, −β < Im τ < β, one can restrict the two imaginary time
variables t and t′ to the interval:

−β < Im t < 0 . (2.31)

Note that this can also be written as 0 < it < β. The KMS relation guarantees
that one does not loose any information by constraining the imaginary times to
this interval. Yet, thanks to this constraint, the earliest time will always be t = 0
and the latest one t = −iβ. This provides a useful link between the single-particle
propagator and the correlation functions. For t = 0, for instance, the Green’s
function equals G<:

G(r, t = 0; r′, t′) =G<(r, 0; r′, t′), (2.32)

while for the largest time, t = −iβ, it is equal to G>:

G(r, t = −iβ; r′, t′) =G>(r, t = −iβ; r′, t′) . (2.33)

Now, applying the KMS relation, it is clear that the one-body propagator fulfills
the following KMS equality:

G(r, 0; r′, t′) =−eβµG(r,−iβ; r′, t′) , (2.34)

which connects the Green’s functions at a boundary (say t = 0) with its value at
the other imaginary time boundary (t = −iβ).

The usefulness of this relation can be clearly seen if one considers the Fourier
coefficients of Eq. (2.22). The KMS relation, rewritten for relative times, states
that:

G(k, τ) =−eβµG(k, τ − iβ) , (2.35)

28



2. Many-Body Green’s Functions at Finite Temperature

which is a quasi-periodicity condition for the propagator in the imaginary time
variable. This suggests a discrete Fourier representation of the type:

G(k, τ) =
1

−iβ

∑
ν

e−izντG(k, zν) , (2.36)

where zν = νπ
−iβ

+ µ are the so-called Matsubara frequencies. The ν indices in the

previous expression have to be odd for the quasi-periodicity condition of Eq. (2.35)
to hold with the minus sign in front of the exponential1. The Fourier coefficients
corresponding to the Fourier representation can be obtained from the inverse trans-
form:

G(k, zν) =

∫ −iβ

0

dτ eizντG(k, τ) . (2.37)

Note that the coefficients G(k, zν) are evaluated at a set of infinite frequencies
in the complex plane. Still, the physical propagator should be evaluated for real
frequencies (corresponding to real times). Further on, the analytical continuation
of G from this set of complex values to the region close to the real axis will be
discussed.

2.2.3 Lehmann representation

Before exploiting the properties of the propagator in the complex time and fre-
quency domain, it is useful to understand the properties of the Green’s function
in physical times and frequencies. Among these, the Lehmann representation and
the spectral decomposition are of capital importance. They allow for a physi-
cal interpretation of the correlation functions and they are a useful tool in the
understanding of the analytical properties of the Green’s functions.

Let us go back to the equations that define the G< and the G> correlation
functions, Eq. (2.17) and Eq. (2.18). Consider the time evolution of Eq. (2.6) and
introduce a complete set of eigenstates:

1 =
∑

n

|n〉〈n| (2.38)

to obtain the following expressions:

G>(rt, r′t′) =
1

i

∑
n,m

e−β(En−µNn)

Z
〈n|â(r0)|m〉〈m|â†(r′0)|n〉ei(En−Em)(t−t′) , (2.39)

and

G<(rt, r′t′) = −1

i

∑
n,m

e−β(En−µNn)

Z
〈n|â†(r′0)|m〉〈m|â(r0)|n〉ei(Em−En)(t−t′) . (2.40)

1 For bosons, this condition does not present a minus sign and the ν indices are even.
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2.2. Green’s functions at finite temperature

Now take the Fourier transforms of the relative space and time variables for the
previous expressions:

G>(k, ω) = i

∫
d3x

∫ ∞

−∞
dτ e−ik·x+iωτG>(x = r− r′, τ = t− t′) , (2.41)

G<(k, ω) =−i

∫
d3x

∫ ∞

−∞
dτ e−ik·x+iωτG<(x = r− r′, τ = t− t′) . (2.42)

The i factors have been conveniently chosen so that both G> and G< become real
and positive functions. In order to obtain a sensible result, one shall in addition
consider the relation between real- and momentum-space creation and destruction
operators:

â†(r0) =

∫
d3k

(2π)3
e−ik·râ†k and â(r0) =

∫
d3k

(2π)3
eik·râk . (2.43)

Plugging these into the previous equations and taking into account that both
correlation functions are diagonal in momentum (i.e. they depend on a single k),
one finds the following Fourier transform of the correlation functions:

G>(k, ω) = 2π
∑
n,m

e−β(En−µNn)

Z
|〈m|â†k|n〉|

2 δ[ω − (Em − En)] (2.44)

and

G<(k, ω) = 2π
∑
n,m

e−β(En−µNn)

Z
|〈m|âk|n〉|2 δ[ω − (En − Em)] . (2.45)

These equations correspond to the Lehmann representation of the correlation func-
tions. A major advantage of this representation is that it can be restated in terms
of physical probabilities. Take a closer look at Eq. (2.44), for instance. It in-
cludes the square of an amplitude, 〈m|â†k|n〉, which gives the probability of adding
a particle with momentum k to an initial thermal state n and bringing it to a
final state m. The delta function for the energies ensures that this process only
includes a real transition from an initial energy eigenstate En to a final eigenstate
Em. Furthermore, one sums over all the possible n and m states. Since the initial
state belongs to the thermal bath, one should weight it with the corresponding
e−β(En−µNn)/Z factor. The sum over final m states is an average over the possible
final configurations. All in all, G>(k, ω)dω/2π is a real and positive quantity that
gives the probability of exciting the system with an energy between ω and ω + dω
when a particle of momentum k is added to the thermal average. Conversely,
G<(k, ω)dω/2π is the probability of exciting the system with an energy between ω
and ω + dω when a particle of momentum k is removed from its thermal average.
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2. Many-Body Green’s Functions at Finite Temperature

Consider now the quantity that arises from summing up both correlation func-
tions:

A(k, ω) = G>(k, ω) + G<(k, ω) . (2.46)

This is the so-called single-particle spectral function. Using the Lehmann repre-
sentation for G> and G<, Eqs. (2.44) and (2.45), the Lehmann representation of
the spectral function is found:

A(k, ω) = 2π
∑
n,m

e−β(En−µNn) + e−β(Em−µNm)

Z
|〈m|â†k|n〉|

2 δ[ω − (Em − En)] . (2.47)

From the positive character of all the quantities inside the previous expression, it
becomes clear that the spectral function is a positive definite function, A(k, ω) ≥ 0.
In physical terms, the spectral function can be regarded as the probability of
adding or removing a particle with momentum k with a change in excitation energy
between ω and ω + dω.

An important property of the spectral function is the fulfillment of the sum
rule: ∫ ∞

−∞

dω

2π
A(k, ω) = 1 , (2.48)

which is intimately related to the Pauli principle, as can be seen from the deriva-
tion: ∫ ∞

−∞

dω

2π
A(k, ω) =

∑
n,m

e−β(En−µNn)

Z
〈n|â†k|m〉〈m|âk|n〉

+
∑
n,m

e−β(En−µNn)

Z
〈n|âk|m〉〈m|â

†
k|n〉 =

= 〈â†kâk + âkâ
†
k〉 = 1 . (2.49)

This property can also be understood in terms of probabilities and, in a way, the
sum rule sets the normalization of the probability to unity. In other words, the
sum rule guarantees that the probability of adding or removing a particle with a
given momentum at any accessible energy equals unity.

It is instructive to compare the previous finite temperature definitions with
their zero temperature counterparts. Consider, for instance, the hole spectral
function at T = 0:

Gh(k, ω) = 2π
∑
m

|〈mA−1|âk|0A〉|2 δ[ω − (EA
0 − EA−1

m )] . (2.50)

Here, the notation |0A〉 is meant to denote the ground-state of an A-body system,
while |mA−1〉 corresponds to the mth excited eigenstate of the (A−1)-body system.
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2.2. Green’s functions at finite temperature

Note that in the context of T = 0 Green’s function theory the hole spectral function
is also denoted by Sh or Ah. This hole spectral function represents the probability
of removing a particle from the ground state of the A-body system, such that the
residual system is left with an excitation energy EA−1

m = EA
0 − ω. In terms of

energy, this hole spectral function is bound by above: the lowest excited state of
the A − 1 system is obviously its ground state. Thus, if Gh has to be non-zero,
ω < EA

0 − EA−1
0 = µ. The particle spectral function is defined in similar terms,

and it gives the probability of adding one particle on top of the A-body ground
state. In that case, one needs to consider the excited states of the A + 1 system.
A similar reasoning leads to the conclusion that the particle spectral function, Gp,
is only different from zero for ω > µ. This is quite a reasonable result, since it is
easy to convince oneself that the minimum amount of energy that one has to give
to the system in order to create a particle is precisely the chemical potential, µ.
Nevertheless, at finite temperature there is not such a clean separation of both the
particle and the hole contributions to the total spectral function. Since thermally
excited states are always included in the correlation functions, one can in principle
remove a particle from a thermally excited state and put it in a state close to the
ground state of the final system. This leads to a non-vanishing contribution of G<

for ω > µ, in contrast to its T = 0 counterpart.

2.2.4 Analytical continuation of the propagator

At this point, one can exploit the results of the imaginary time formalism to see
that both the correlation functions and the one-body propagator can be found once
the spectral function is determined. Let us start by making use of Eqs. (2.44) and
(2.45). After some manipulations, one can find the KMS relation in momentum
and frequency space:

G<(k, ω) = e−β(ω−µ)G>(k, ω) . (2.51)

This is actually a detailed balance relation between the two correlation functions,
and it is also a basic equation for systems in thermal equilibrium [Kad62]. One
can now introduce the definition of the spectral function, Eq. (2.46), to express
the correlation functions in terms of it:

G<(k, ω) = f(ω)A(k, ω) (2.52)

and

G>(k, ω) = [1− f(ω)]A(k, ω) , (2.53)

with the help of the well-known Fermi-Dirac distribution function:

f(ω) =
1

eβ[ω−µ] + 1
. (2.54)
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2. Many-Body Green’s Functions at Finite Temperature

Equations (2.52) and (2.53) make it possible to obtain the correlation functions
once A is known.

A similar procedure can be applied for the single-particle propagator. Consider
its Fourier coefficients, given by Eq. (2.37). These are computed in an interval
where Im τ < 0, which thus corresponds to G(k, τ) = G>(k, τ). Introducing now
the inverse Fourier transform for the time variable [see Eq. (2.41)]:

G>(k, τ) =−i

∫ ∞

−∞

dω

2π
e−iωτG>(k, ω) , (2.55)

the Green’s function becomes:

G(k, zν) =−i

∫ −iβ

0

dτ

∫ ∞

−∞

dω

2π
ei(zν−ω)τ [1− f(ω)]A(k, ω) =

=

∫ ∞

−∞

dω

2π

A(k, ω)

zν − ω
. (2.56)

As it has already been mentioned, this Green’s function is computed only at a
given (infinite) set of Matsubara frequencies. Yet, this is a somewhat limited
region of the whole complex plane. One would like to generalize this expression to
the full complex plane, in particular to the real axis, which corresponds to physical
frequencies. This generalization can be dangerous and must be done with extreme
care. In the first place, let us consider the following function of a continuous
complex variable:

G(k, z) =

∫ ∞

−∞

dω

2π

A(k, ω)

z − ω
. (2.57)

It is clear that, when computed at the Matsubara frequencies z = zν , this func-
tion yields the same result as Eq. (2.56). In this sense, it is a good candidate
to become an analytic continuation of G(k, zν) to the full complex plane. Still,
such a continuation is not necessarily unique. One can find other functions of
complex frequencies that reproduce the values of the propagator at the Matsubara
frequencies. Fortunately, the candidate of Eq. (2.57) satisfies two extra conditions
which indeed fix this “uniqueness problem”. Namely, G(k, z) is analytic off the
real axis and goes to zero as z approaches to infinity along any straight line in
the upper and lower half-planes. One can actually show that, due to these two
extra properties, G(k, z) is the unique analytical continuation of G(k, zν) and thus
determines completely the single-particle propagator in the whole complex plane.
The details of this proof can be found in Ref. [Bay61]. Eq. (2.57), which relates
the Green’s function in the complex plane with the spectral function, is called the
spectral decomposition of the single-particle propagator.

Up to here, the expressions that have been obtained relate the correlation
functions and the single-particle propagator with the spectral function. One can
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2.2. Green’s functions at finite temperature

try to find similar relations for the retarded propagator of Eq. (2.20). Using the
representation of the step function in frequency space,

Θ(τ) =

∫ ∞

−∞

dω

2πi

eiωτ

ω−
, (2.58)

one can take the Fourier transform for real times of the retarded propagator to
get:

GR(k, ω) =

∫ ∞

−∞

dω′

2π

A(k, ω′)

ω+ − ω′ (2.59)

(hereafter the notation ω± = ω± iη will be used). This is of course the same quan-
tity that would be obtained by computing the single-particle propagator slightly
above the real axis,

GR(k, ω) = G(k, ω+) . (2.60)

The importance of this result arises when it is carefully restated. By means of the
spectral decomposition, one finds a unique Green’s function, G(k, z), which coin-
cides both with the Matsubara propagator at the Matsubara frequencies, z = zν ,
and with the retarded propagator when it is computed slightly above the real axis,
z = ω+iη. The knowledge of this function, which is indeed fully determined by the
spectral function via Eq. (2.57), is enough for building the one-body propagators
(retarded, advanced, etc.) of the system. This result will be important in the fol-
lowing, especially in the computation of Matsubara sums. When performing these
sums (see Appendix C), one shall make the assumption that there exists a function
G(k, z), analytical except for the real axis, which can be integrated by means of a
Cauchy theorem. The main thing to notice is that this function carries the same
information as the coefficients G(k, zν), but it can be analytically continued to a
region close to the real axis, where it becomes a physical propagator.

In addition, the spectral decomposition of the retarded propagator, Eq. (2.59),
is especially useful because, by means of the Plemejl identity:

1

ω±
=
P
ω
∓ iπδ(ω) , (2.61)

one can easily obtain the real and imaginary parts of GR. Using the delta function
one can compute the imaginary part and check that, indeed, it coincides (up to a
factor) with the spectral function:

A(k, ω) = −2 ImG(k, ω+) . (2.62)

In addition, because of the reality of everything except for z inside Eq. (2.57), the
following interesting equality holds:

G(k, z∗) = [G(k, z)]∗ , (2.63)
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2. Many-Body Green’s Functions at Finite Temperature

which relates the complex conjugate of the Green’s function to the Green’s function
with a complex conjugate argument. With the help of this result, one sees that
the spectral function is related to the discontinuity of the propagator at its cut in
the real axis:

A(k, ω) = i {G(k, ω+)− G(k, ω−)} . (2.64)

In addition, for future purposes, it will be useful to consider the following decom-
position of the propagator. Consider a given complex energy, z = x + iy. The
propagator can be easily split into two terms:

G(k, x + iy) =

∫ ∞

−∞

dω

2π

A(k, ω)(x− ω)

(x− ω)2 + y2
− iy

∫ ∞

−∞

dω

2π

A(k, ω)

(x− ω)2 + y2
, (2.65)

corresponding to its real part,

ReG(k, x + iy) =

∫ ∞

−∞

dω

2π

A(k, ω)(x− ω)

(x− ω)2 + y2
, (2.66)

and its imaginary part,

ImG(k, x + iy) =−y

∫ ∞

−∞

dω

2π

A(k, ω)

(x− ω)2 + y2
. (2.67)

This imaginary part is a negative (positive) quantity for y > 0 (y < 0). This
property is extremely important: it indicates that the imaginary part of the single-
particle propagator never vanishes, except for the real axis. That is to say that
the single-particle propagator does not have complex zeros [Lut61]. This result is
relevant for the inverse propagator and implies that it cannot have complex poles.

2.2.5 One-body properties of a many-body system

In this subsection, it shall be shown that the knowledge of the one-body propagator
is enough to compute the thermal averages of any one-body operator. Consider
the second quantized version of a generic one-body operator F̂ :

F̂ =
∑
ij

〈i|f |j〉â†i âj =

∫
d3r

∑
ij

φ∗i (r)f(r)φj(r)â
†
i âj =

∫
d3r â†(r)f(r)â(r) , (2.68)

where the matrix elements 〈i|f |j〉 are given by the one-body matrix elements of
two single-particle states, φi, on the first-quantized (local) operator f(r)2. The

2Sometimes (see, for instance, [Fet71]) the âi operators (which appear in the first equality of
Eq. (2.68) and which depend only on the single-particle state i and not on any space variable) are
called creation and annihilation operators, while, in contrast, the â operators (which appear in the
last equality and do not depend on the state but on the point in space) are called field operators.
This nomenclature is not used in this Thesis, and the creation and destruction operators employed
here have a space-time dependence and no state indices.
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2.2. Green’s functions at finite temperature

thermal average of F̂ is given by Eq. (2.14):

〈F̂ 〉= Tr
{

ρ̂F̂
}

=

∫
d3r lim

r′→r
f(r)Tr

{
ρ̂ â†(r)â(r′)

}
=−i

∫
d3r lim

r′→r
t′→t+

f(r)G(rt, r′t′) . (2.69)

Note that in this expression the operator f must operate on the Green’s function
before taking the limit r′ → r. Note also that the limit t′ → t+ is taken to
guarantee that the ordering of the operators in the Green’s function is the same
as in the definition of the operator, Eq. (2.68). Finally, let us also mention that,
if any other quantum number such as spin was present, a trace over this quantum
number should be taken in order to ensure that the thermal average is a scalar.

A one-body quantity of special interest is the momentum distribution, i.e. the
number of fermions in a momentum state k:

n(k) = 〈â†kâk〉 =
1

Z
Tr

{
e−β(Ĥ−µN̂)â†kâk

}
. (2.70)

One can derive a useful expression for this quantity without using the techniques
described above. Instead, let us rewrite its definition in the following way:

n(k) =
∑
n,m

e−β(Em−µNm)

Z
|〈m|â†k|n〉|

2 . (2.71)

The terms inside the previous sum are very close to those in the spectral function
of Eq. (2.47):

(2π)
(
e−β(En−µNn) + e−β(Em−µNm)

)
δ(ω + En − Em) =

(2π)e−β(Em−µNm)
(
1 + eβ(ω−µ)

)
δ(ω + En − Em) .

The momentum distribution is thus given by the integral:

n(k) =

∫ ∞

−∞

dω

2π
A(k, ω)f(ω) , (2.72)

which is a very reasonable expression. The number of fermions in a momentum
state k is given by the sum over all energies of the spectral function (the probability
of finding a fermion of momentum k in a state of given energy) times the thermal
occupation of each energy state, f(ω).

2.2.6 Two-body propagator

The single-particle propagator describes the excitations of a one-body nature inside
the system. Yet, a many-body system presents excitations that affect simultane-
ously more particles of the system, the so-called collective excitations. Of a capital
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2. Many-Body Green’s Functions at Finite Temperature

importance are the two-body excitations because, as it shall be shown soon, they
are unavoidably coupled to the one-body excitations. As a matter of fact, a com-
plete description of the system at the one-body level goes necessarily through a
treatment of the two-body correlations. It is thus useful to define the two-particle
propagator:

i2GII(r1t1, r2t2; r
′
1t
′
1, r

′
2t
′
2) =

〈
T

[
â(r1t1)â(r2t2)â

†(r′2t
′
2)â

†(r′1t
′
1)

]〉
, (2.73)

which describes excitations produced by the creation or destruction of two par-
ticles. For instance, when t1 > t′1 and t2 > t′2, the two-body Green’s function is
related to the propagation of two particles and their subsequent annihilation at
latter times. In analogy to the one-body case, one can define 4! = 24 different
correlation functions, according to the different time orderings of the four times,
t1, . . . , t

′
2. Furthermore, one can define the N -body propagator:

iNGN(r1t1, . . . , rNtN ; r′1t
′
1, . . . , r

′
Nt′N) =〈

T
[
â(r1t1) . . . â(rNtN)â†(r′Nt′N) · · · â†(r′1t′1)

]〉
, (2.74)

related to the excitations produced by the creation and destruction of N particles of
the system. These are usually complicated quantities (at least much more difficult
to treat than the single-particle propagator), for they involve several (in general,
(2N)!) time orderings which make their analysis quite difficult.

Still, at the two-body level one can try to handle the Green’s function with some
chances of success. In the first place, let us notice that the two-body propagator
fulfills a KMS condition. The equality holds for any of the tj time variables and
reads:

GII |tj=0 =−eβµ GII |tj=−iβ . (2.75)

In analogy to the single-particle propagator, one can profit from the quasi-perio-
dicity in the time variables to expand the two-body propagator in a Fourier series.
Taking profit of the homogeneity in time, one can write (the space variables are
omitted for brevity):

GII(t1, t2; t3, t4) =
1

(−iβ)3

∑
ν1,ν2,ν3

GII(zν1 , zν2 , zν3)e
−izν1 (t1−t4)e−izν2 (t2−t4)e−izν3 (t3−t4) ,

(2.76)

where zνi
are three odd Matsubara frequencies associated to the three possible time

differences. Fortunately, in some cases this expressions can be simplified. Imagine,
for instance, that two of the time arguments were identical. The two-body Green’s
function could then be obtained from only two frequencies:

GII(t1 = t, t2 = t; t3, t4) =
1

(−iβ)2

∑
ν12,ν3

GII(Zν12 , zν3)e
−iZν12 (t−t4)e−izν3 (t3−t4),

(2.77)
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where the two-frequency function GII(Zν12 , zν3) would then be related to the three-
frequency one by the summation:

GII(Zν12 , zν3) =
1

−iβ

∑
ν2

GII(Zν12 − zν2 , zν2 , zν3) . (2.78)

The Matsubara frequency Zν12 is of a bosonic nature, since the index ν12 is even.
This comes from the summation of two odd integers, ν1 and ν2:

Zν12 = zν1 + zν2 =
π

−iβ
(ν1 + ν2) + µ1 + µ2 . (2.79)

Moreover, this results is physically intuitive. The two-body Green’s function de-
scribes the propagation of a pair of fermions. Whenever one does not resolve this
couple of fermions, they will behave as a single boson and thus it is logical that
GII behaves somehow as a bosonic propagator. Following the previous steps, the
two-body Green’s function of two independent times can be obtained by taking
t3 = t4 = t′. A single Matsubara frequency is then needed:

GII(t1 = t, t2 = t; t3 = t′, t4 = t′) =
1

−iβ

∑
ν12

GII(Zν12)e
−iZν12 (t−t′) , (2.80)

and once again the one-frequency coefficient GII(Zν12) is related to the two-frequency
one by the sum:

GII(Zν12) =
1

−iβ

∑
ν3

GII(Zν12 , zν3) . (2.81)

Note that Zν12 keeps its bosonic nature. Indeed, G(Zν12) describes the “simulta-
neous” propagation of two particles in an interacting many-body system and thus
can be used to determine the two-body properties of the system.

The two-time two-body Green’s function can be decomposed in terms of two
correlation functions:

GII(t1 = t, t2 = t; t3 = t′, t4 = t′) = Θ(t− t′)G<
II(t− t′) + Θ(t′ − t)G>

II(t− t′) ,
(2.82)

given by:

i2G>
II(t− t′) =

〈
â(r1t)â(r2t)â

†(r′2t
′)â†(r′1t

′)
〉

, (2.83)

i2G<
II(t− t′) =

〈
â†(r′1t

′)â†(r′2t
′)â(r2t)â(r1t)

〉
. (2.84)

The Lehmann representation of these two expressions is obtained by following the
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2. Many-Body Green’s Functions at Finite Temperature

same steps described above for the one-particle Green’s function and yields:

G>
II(t− t′) = −

∑
n,m

e−β(En−µNn)

Z
〈n|â(r1)â(r2)|m〉〈m|â†(r′2)â†(r′1)|n〉ei(En−Em)(t−t′),

(2.85)

G<
II(t− t′) = −

∑
n,m

e−β(En−µNn)

Z
〈n|â†(r′2)â†(r′1)|m〉〈m|â(r1)â(r2)|n〉e−i(En−Em)(t−t′).

(2.86)

A Fourier transform of the relative time variable yields the frequency space corre-
lation functions, which can be seen to fulfill the following detailed balance relation:

G>
II(Ω) = eβ(Ω−2µ)G<

II(Ω) . (2.87)

A two-body spectral function can then be defined in a similar way as it was done for
the one-particle case. In this case, however, it is given by a difference of correlation
functions:

AII(Ω) = G>
II(Ω)− G<

II(Ω) , (2.88)

and therefore the following expressions hold:

G<
II(Ω) = b(Ω)AII(Ω) , (2.89)

G>
II(Ω) = [1 + b(Ω)]AII(Ω) , (2.90)

where the Bose-Einstein distribution function:

b(Ω) =
1

eβ(Ω−2µ) − 1
, (2.91)

has been introduced. Note that in this expression there is a factor of 2 in front of the
chemical potential, in agreement with the fact that GII describes the propagation
of a pair of fermions. This decomposition will be of great help in the treatment
of the ladder approximation, where an approximation for GII which fulfills these
analytical properties is carried out.

2.2.7 Equation of motion for the propagator

The time evolution of any operator is dictated in quantum mechanics by Von
Neumann’s equation, Eq. (2.4). The creation and annihilation operators are not
an exception. Taking into account the value of the following commutators:[

â(rt), Ĥ
]
=−∇

2

2m
â(rt) +

∫
d3r′ V (|r− r′|)â†(r′t)â(r′t)â(rt) (2.92)[

â†(rt), Ĥ
]
=
∇2

2m
â†(rt)− â†(rt)

∫
d3r′ V (|r− r′|)â†(r′t)â(r′t) , (2.93)

39



2.2. Green’s functions at finite temperature

it is easy to write down the equations of motion for the creation and destruction
operators: {

i
∂

∂t
+
∇2

2m

}
â(rt) =

∫
d3r′ V (|r− r′|)â†(r′t)â(r′t)â(rt) (2.94){

−i
∂

∂t
+
∇2

2m

}
â†(rt) = â†(rt)

∫
d3r′ V (|r− r′|)â†(r′t)â(r′t) . (2.95)

These equations are important because they form the starting point for the com-
putation of the equation of motion for the physical propagators of the system.
Consider the following expression for the one-body propagator:

iG(r1t1, r
′
1t
′
1) = Θ(t1 − t′1)

〈
â(r1t1)â

†(r′1t
′
1)

〉
−Θ(t′1 − t1)

〈
â†(r′1t

′
1)â(r1t1)

〉
, (2.96)

and take a time derivative to get:

i
∂

∂t1
G(r1t1, r

′
1t
′
1) = δ(t1 − t′1)δ(r1 − r′1) +

〈
T

[ ∂

∂t1
a(r1t1)a

†(r′1t
′
1)

]〉
. (2.97)

Using the equation of motion for the destruction operator, Eq. (2.94), and the
definition of the two-body propagator, Eq. (2.73), one obtains the equation of
motion for the one-particle propagator:{

i
∂

∂t1
+
∇2

1

2m

}
G(r1t1,r

′
1t
′
1) = δ(t1 − t′1)δ(r1 − r′1)

− i

∫
d3r1̄ V (|r1 − r1̄|)GII(r1t1, r1̄t1; r

′
1t
′
1, r1̄t

+
1 ) . (2.98)

Introducing the notation, r1t1 → 1 and V (|r1 − r2|)δ(t1 − t2) → V (1 − 2), the
previous expression can be rewritten in an easier form:{

i
∂

∂t1
+
∇2

1

2m

}
G(1,1′) = δ(1− 1′)− i

∫
d1̄V (1− 1̄)GII(11̄;1′1̄+) . (2.99)

The one-particle propagator fulfills another similar equation of motion for the
primed variables which can be obtained in the same fashion. Note also that the
zero temperature one-body propagator fulfills the same equations of motion. Any-
way, what becomes clear from inspecting Eq. (2.98) is that, to solve the equation
exactly, one should previously know the two-body propagator, GII . Using the same
techniques sketched above, one can obtain an equation of motion for GII which
can be seen to depend on both the one- and the three-body propagator. Indeed,
this represents a general result: the equation of motion of the N -body Green’s
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2. Many-Body Green’s Functions at Finite Temperature

function is coupled to the N − 1 and to the N + 1 propagators [Mar59]:{
i

∂

∂tj
+
∇2

j

2m

}
GN(1 · · ·N;1′ · · ·N′) =

N∑
l=1

(−1)j+lδ(j− l)GN−1(1 · · · j− 1, j + 1 · · ·N;1′ · · · l− 1, l + 1 · · ·N)

−i

∫
d1̄V (j− 1̄)GN+1(1̄1 · · · j · · ·N; 1̄+1′ · · ·N′) . (2.100)

This introduces the so-called hierarchy of the equations of motion, which needs
to be solved by a suitable truncation. Needless to say, this truncation should be
sensible if one wants to find realistic results and it will thus depend on the physical
problem under study. In the following, some of these truncations for the equations
of motion will be sketched. In addition, a special effort will be made in order
to outline the relation of these truncation with the diagrammatic approaches (see
[Mat71] for more details on the relations of truncations of the equations of motion
and diagrammatic approaches).

Before doing so, however, it is important to outline a consequence of Eq. (2.94).
Multiply this equation by a destruction operator at a time r′′, t′′; take the limits
r′′ → r and t′′ → t; integrate over the r space variables and take the thermal
average. The following equality concerning the potential energy of the system
holds:

〈V 〉=
〈

1

2

∫
d3r

∫
d3r′ â†(rt)â†(r′t)V (r, r′)â(r′t)â(rt)

〉
=

=
1

2

∫
d3r lim

r′′→r
t′′→t

{
i
∂

∂t
+
∇2

2m

} 〈
â†(r′′t′′)â(rt)

〉
. (2.101)

The term with the gradient on the previous equation is simply minus half of the
kinetic energy of the system, which allows one to obtain the total energy of the
system by taking into account that the average 〈a†a〉 corresponds to G<:

〈H〉= −i

2

∫
d3r lim

r′′→r
t′′→t

{
i
∂

∂t
+
∇2

2m

}
G<(rt, r′′t′′) =

=
V
2

∫
d3k

(2π)3

∫ ∞

−∞

dω

2π

{
k2

2m
+ ω

}
G<(k, ω) , (2.102)

where V denotes the total volume of the system. One should note the importance
of this results, which relates a two-body property of the system (the total energy)
with a one-body property (the propagator). This is usually called the Galitski-
Migdal-Koltun (GMK) sum rule [Gal58b; Kol74]. In the following, it will be
extensively used, especially in the form:

E

V
=

∫
d3k

(2π)3

∫ ∞

−∞

dω

2π

1

2

{
k2

2m
+ ω

}
f(ω)A(k, ω) , (2.103)
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2.3. Free case

which gives the total energy per unit volume (or energy density) of the system in
terms of the spectral function A(k, ω). It is important to note that the GMK sum
rule is only valid for a system with two-body interactions. This can be a strong
handicap for ab initio many-body calculations, where three-body forces are needed
to reproduce, for instance, the saturation properties of nuclear matter.

2.3 Free case

In this section, the case of a free Fermi sea of neutrons and protons will be stud-
ied with the techniques sketched above. The properties of an infinite system of
non-interacting fermions will be thus described in terms of the single-particle prop-
agator. A series of useful results, that will be used later on in our description of
interacting nuclear matter, will be derived. Let us start with the equation of
motion for the free Green’s function, G0:{

i
∂

∂t
+
∇2

2m

}
G0(rt; r

′t′) = δ(t− t′)δ(r− r′) . (2.104)

Multiplying both sides of the previous equation by the factor e−ik·x+izντ , integrating
over the space and time variables, x and τ , and using the Fourier transform of the
propagator, Eq. (2.36), the following equation is obtained:

G0(k, zν) =
1

zν − k2

2m

. (2.105)

This is the frequency-momentum representation of the Green’s function of an infi-
nite system of non-interacting fermions. As explained previously, this expression,
which is only valid for z = zν , can be analytically extended to all the complex
plane in a non-ambiguous way. The propagator has single poles at the real fre-
quencies z = k2/2m, corresponding to the kinetic energies of the quasi-particles
of the system. The retarded propagator is obtained by letting z → ω+. Fourier
transforming the real frequency variable in this propagator, one can then see that
in the free system this is given by an undamped plane wave:

GR
0 (k, τ) = −iΘ(τ)e−i k2

2m
τ , (2.106)

with frequencies corresponding to the kinetic quasi-particle energies. This expres-
sion is interesting, for it clarifies the physical meaning of the retarded one-body
propagator. In a non-interacting system, it corresponds to the probability ampli-
tude of propagating through the system a quasi-particle excitation of momentum
k and energy k2/2m during a given time, τ > 0.

With the help of Eq. (2.64), the spectral function for the non-interacting case
can be obtained:

A(k, ω) = i {G(k, ω+)− G(k, ω−)} = (2π)δ

(
ω − k2

2m

)
. (2.107)
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2. Many-Body Green’s Functions at Finite Temperature

This is simply a delta function at the quasi-particle energy. A delta-like form
of the spectral function is a generic feature of both the free and the mean-field
approaches. The following expressions for the correlation functions are obtained
from Eqs. (2.53) and (2.52):

G<(k, ω) = (2π)f(ω)δ

(
ω − k2

2m

)
(2.108)

G>(k, ω) = (2π)[1− f(ω)]δ

(
ω − k2

2m

)
. (2.109)

These are delta-like functions with variable strength. At low temperatures, one
expects the chemical potential to be close to the zero temperature Fermi energy,
µ ∼ k2

F /2m > 0. Therefore, at low temperatures one finds that, for k2/2m � µ,
G> is negligible in front of G<, while for k2/2m � µ, the situation is the opposite
one. This is in accordance with the fact that, in the zero temperature limit, G<

becomes a hole spectral function (a hole being a quasi-particle with energy below
the Fermi energy µ), while G> is associated to the particle spectral function. The
momentum distribution can also be easily computed from Eq. (2.72):

n(k) =

∫ ∞

−∞

dω

2π
f(ω)(2π)δ

(
ω − k2

2m

)
= f

[
k2

2m

]
. (2.110)

For the non-interacting case, the momentum distribution is given by the Fermi-
Dirac distribution computed at the quasi-particle kinetic energies. The usefulness
of Koltun’s sum rule can now be tested, since the knowledge of the spectral function
for the free system allows one to compute the total energy density:

E

V
=

∫
d3k

(2π)3

k2

2m
n(k) , (2.111)

which is just the sum of all the quasi-particle kinetic energies, k2/2m, weighted by
the population of each quasi-particle states, n(k).

Finally, a formal expression for the free one-body propagator can be obtained
from the equation of motion. Rewriting this equation with the help of the notation
r1t1 → 1, one obtains:{

i
∂

∂t1
+
∇2

1

2m

}
G0(1,1′) = δ(1− 1′) . (2.112)

G0(1,1′) can be considered as an operator linking 1 and 1′. It is then natural to
define the inverse operator of G0, [G0]

−1, as the one fulfilling the following equation:∫
d1̄ [G0]

−1(1, 1̄)G0(1̄,1′) = δ(1− 1′) . (2.113)
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2.4. Self-energy

Now, using the equation of motion of the single-particle propagator, one sees that
this inverse operator is given by the formal operatorial expression:

[G0]
−1(1,1′) =

{
i

∂

∂t1
+
∇2

1

2m

}
δ(1− 1′) . (2.114)

This result, which gives a formal expression for the free one-body propagator,
is particularly useful in the derivation of the integral equation of motion for the
propagator.

2.4 Self-energy

Let us now abandon the somewhat naive free case and enter the much more in-
volved interacting case. For a system interacting with a two-body interaction,
the one-body propagator is coupled to the two-body propagator by means of its
equation of motion, Eq. (2.99). Yet, formally one can obtain a closed equation of
motion by removing the two-body Green’s function from the equation. This can
be done by means of a new operator, the so-called self-energy Σ(rt; r′t′), which
satisfies the equation:∫

d1̄Σ(1, 1̄)G(1̄,1′) = −i

∫
d1̄V (1− 1̄)GII(11̄;1′1̄+) . (2.115)

The inclusion of the self-energy, of course, does not really solve the problem. There
is still a relation between the two-body propagator and the self-energy that has to
be worked out. Nevertheless, the self-energy turns out to have interesting prop-
erties that are fundamental in several many-body studies. In particular, the ap-
proximations in quantum many-body theory are usually defined in terms of the
self-energy operator. It is clear that, once introduced into Eq. (2.115), any approx-
imation to the self-energy can be recast into an approximation for the two-body
propagator. This might also shed a light on the nature of the approximations un-
der study. Finally, let us also notice that, as it will be seen shortly, the self-energy
has a clear diagrammatic interpretation. This is extremely helpful for a proper
understanding of the many-body approximations at use.

The “closed” equation of motion for the propagator is easily obtained by re-
placing the second term of the equation of motion for the one-body propagator,
Eq. (2.99), with the left hand side of Eq. (2.115):{

i
∂

∂t1
+
∇2

1

2m

}
G(1,1′) = δ(1− 1′) +

∫
d1̄Σ(1, 1̄)G(1̄,1′) . (2.116)

This is the so-called Dyson’s equation in its differential form. For future conve-
nience, it is interesting to obtain an equivalent integral equation. Consider the
left hand-side of the previous equation. Let us formally introduce a unit factor
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2. Many-Body Green’s Functions at Finite Temperature

(formed by an integral and a delta function) in between the differential operators
and the Green’s function and use Eq. (2.114) to get:∫

d2

{
i

∂

∂t1
+
∇2

1

2m

}
δ(1− 2)G(2,1′) =

∫
d2 [G0]

−1(1,2)G(2,1′) = δ(1− 1′) .

(2.117)

One can now multiply the previous result by G0(3,1) and integrate over the variable
1: ∫

d1G0(3,1)δ(1− 1′) = G(3,1′) . (2.118)

After this integration, one obtains, on the left hand side of Eq. (2.116), the one-
body propagator between 1′ and 3. The same product and integral can be carried
out easily for the right hand side of the equation. After taking 3 → 1, the integral
form of Dyson’s equation is obtained:

G(1,1′) = G0(1,1′) +

∫
d2

∫
d2̄G0(1,2)Σ(2, 2̄)G(2̄,1′) . (2.119)

The full one-body propagator is given by the sum of a free contribution, G0, plus
an integral term. This can be interpreted in the following form: a perturbation
propagates freely from 1′ to 2̄, where it is scattered by the self-energy operator
(this also includes multi-scattering processes) to the point 2. Finally, the particle
propagates from 2 to 1. Since the propagator gives a probability amplitude, one
should integrate over the points 2 and 2̄ (that can be anywhere in space and time)
to obtain the final result.

Still, the discussion is not complete. Dyson’s equation, as any differential
equation, needs of some boundary condition to be completely solved. For real
times, it can be hard to find boundaries in which one exactly knows the value for
the propagator or the self-energy. In imaginary time, however, one can use the
KMS relation as a boundary condition for Dyson’s equation. This establishes the
value of the one-body propagator at a given time in terms of the value at another
time. Formally, Dyson’s equation in imaginary times is the same as for real times
(the time variable t simply becomes complex), but in the imaginary axis the only
region of physical interest is the (0,−iβ) line. Thus, one may take into account
the equation in the imaginary axis and consider that the time integrals run from
0 to −iβ:

G(1,1′) = G0(1,1′) +

∫ −iβ

0

d2

∫ −iβ

0

d2̄G0(1,2)Σ(2, 2̄)G(2̄,1′) . (2.120)

If one is able to obtain an expression for the self-energy in a given approximation,
the solution of Dyson’s equation gives access to the full single-particle propagator
of the system.
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2.4. Self-energy

In addition, from Dyson’s equation one can find the analytic structure of the
self-energy. This is most easily done by considering the differential form of Dyson’s
equation in the momentum-frequency representation. Let us first Fourier transform
the position variable of Dyson’s equation:{

i
∂

∂t1
− ε0(k)

}
G(k, t1 − t′1)−

∫ −iβ

0

dt1̄ Σ(k, t1 − t1̄)G(k, t1̄ − t1) = δ(t1 − t1′) ,

(2.121)

where ε0(k) = k2

2m
is the kinetic energy of a quasi-particle in the system. One can

now take the Fourier transform of the relative complex time. Since the propagator
in imaginary times is involved in this transform, the transformation involves the
Matsubara frequencies:

[zν − ε0(k)− Σ(k, zν)]G(k, zν) = 1 . (2.122)

One sees now the utility of Fourier transforming Dyson’s equation. From a com-
plicated integral equation in real space, Dyson’s equation has been simplified to
an algebraic equation in momentum-frequency space. This has an easy solution
that, after the usual analytical continuation to continuous complex values, reads:

G(k, z) =
1

z − ε0(k)− Σ(k, z)
. (2.123)

It is this equality that can be exploited to extract the analytical properties of the
self-energy [Lut61]. Consider the following expression for the self-energy:

Σ(k, z) = z − ε0(k)− G−1(k, z) . (2.124)

First of all, it is clear, from Eq. (2.63), that:

Σ(k, z∗) = [Σ(k, z)]∗ . (2.125)

Since the propagator has no complex zeros [see Eq. (2.67)], the quantity G−1 can
have no complex poles and thus the self-energy is analytical everywhere in the
complex plane (except possibly in the real axis). For the sake of convenience,
let us decompose the self-energy on an instantaneous (energy-independent) part,
ΣHF , and a non-instantaneous (energy-dependent) term, ΣC :

Σ(k, z) = ΣHF (k) + ΣC(k, z) . (2.126)

The quantity ΣC , indeed, is analytic in the upper and lower-half planes [Lut61].
One can see that this contribution to the self-energy has a spectral representation:

ΣC(k, z) =

∫ ∞

−∞

dω

2π

Γ(k, ω)

z − ω
. (2.127)
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2. Many-Body Green’s Functions at Finite Temperature

This equation defines the width Γ(k, ω) for the self-energy, in analogy with the
spectral function for the propagator. Furthermore, one can define the retarded
self-energy by taking z = w+. It is then easy to check that the width can be
obtained from the imaginary part of the retarded self-energy:

Γ(k, ω) = −2 Im ΣR(k, ω) . (2.128)

Finally, the width is positive definite, as shown by the following equalities:

Γ(k, ω) = −2 Im Σ(k, ω+) = 2 ImG−1(k, ω+) =

=
A(k, ω+)

[ReG(k, ω+)]2 + [ImG(k, ω+)]2
≥ 0 . (2.129)

The function Γ(k, ω) is called the width because it is somehow related to the
mean life-time of the particles in the system (and thus to a width in frequency
space). An easy way to clarify this concept can be obtained by using Eqs. (2.62)
and (2.123) to find the spectral function in terms of the self-energy:

A(k, ω) =
Γ(k, ω)[

ω − k2

2m
− Re Σ(k, ω)

]2
+

[Γ(k,ω)
2

]2 . (2.130)

A vanishing width would result in a delta-like spectral function, similar to the one
of the free case, Eq. (2.107). A finite width, on the other hand, involves single-
particle states that are spread in a band of energy values for each momentum.
This is not surprising: a scattered fermion, when propagating across the system,
will have a given life-time and mean-free path. This will yield uncertainties on its
momentum and its energy, and thus both k and ω have to be treated as independent
variables. This image is in contrast with the one arising from the free and the mean-
field pictures, where a single energy state (the quasi-particle energy) is associated
to each given momentum.

Finally, it is important to know that the real and the imaginary parts of the
self-energy are not independent. Instead, they are related by a dispersion relation,
which can be obtained by using the Plemejl identity, Eq. (2.61), on Eqs. (2.126)
and (2.127):

Re Σ(k, ω) = ΣHF (k) + P
∫ ∞

−∞

dω′

2π

Γ(k, ω)

ω − ω′ . (2.131)

In the following, this relation will be very important. The imaginary part of
the self-energy will be computed within the ladder approximation. The previous
dispersion relation will allow us to obtain the real part

2.5 Quasi-particle approximation

At this point, an approximation that has been used in several applications and
that might be helpful in understanding the behavior of fermionic systems will be
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2.5. Quasi-particle approximation

introduced. Consider Eq. (2.130) for the spectral function. For a given momentum
and for relatively small widths, the spectral function will have a peak at the so-
called quasi-particle energy, given by the solution of the following equation:

εqp(k) =
k2

2m
+ Re Σ(k, εqp(k)) (2.132)

(note that the width is positive definite and thus the spectral function cannot be
singular at this point). In the so-called quasi-particle approximation, Eq. (2.132)
establishes the link between a momentum k and a unique quasi-particle energy,
εqp(k). Close to this energy, one might expand the energy dependence of the real
part of the self-energy to first order:

Re Σ(k, ω) ∼ U(k) +
∂Re Σ(k, ω)

∂ω

∣∣∣∣
ω=εqp(k)

(ω − εqp(k)) , (2.133)

where the single-particle potential U(k) = Re Σ(k, εqp(k)) has been introduced.
Note that the introduction of this approximation simplifies the energy dependence
of the real part of the self-energy. The imaginary part of the self-energy is, on
the other hand, also smooth close to the quasi-particle energy, and thus its energy
dependence might be neglected:

Im Σ(k, ω) ∼ Im Σ(k, εqp(k)) = W (k) . (2.134)

With these approximations, the single-particle Green’s function reads:

Gqp(k, ω) =
Z(k)

ω − εqp(k)− iZ(k)W (k)
, (2.135)

where Z(k) is the so-called renormalization factor (or simply Z-factor) of the
quasi-particle pole:

Z(k) =

[
1− ∂Re Σ(k, ω)

∂ω

∣∣∣∣
ω=εqp(k)

]−1

. (2.136)

Within this approximation, the simplified energy dependence of the propagator
is reflected in the spectral function, which becomes a Breit-Wigner (also called
Lorentzian) distribution:

Aqp(k, ω) =
2Z2(k)|W (k)|[

ω − εqp(k)
]2

+
[
Z(k)W (k)

]2 , (2.137)

centered at the quasi-particle energy, εqp(k). The width at half maximum of this
distribution, Γqp = 2Z(k)|W (k)|, is directly proportional to W and therefore the
imaginary part of the self-energy sets the spread in energies of the quasi-particle
states.
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Figure 2.2: Schematic illustration of the energy dependence of the
spectral function in the quasi-particle approximation for a momen-
tum above the Fermi surface. The quasi-particle contribution to the
spectral function is given by a strong symmetric peak centered around
the quasi-particle energy. The area that this peak covers in energies is
given by the Z-factor. The soft background contribution is also shown.

At zero temperature, one can show that:

Γ(k = kF , εqp(kF )) = 0 , (2.138)

due to phase space restrictions [Lut61]. In these conditions, i.e. at the Fermi
surface, the spectral function becomes a delta peak at the quasi-particle energy of
Eq. (2.132). The previous definition of the Z-factor, Eq. (2.136), accounts then for
the factor in front of the quasi-particle delta function of the T = 0 propagator when
computed at the Fermi surface. At finite temperature, the quasi-particle propaga-
tor does not have a delta peak for real ω’s and the Z-factor cannot be interpreted
anymore as such a factor. However, within this quasi-particle approximation the
sum rule of the spectral function can be computed analytically:∫ ∞

−∞

dω

2π
Aqp(k, ω) = Z(k) , (2.139)

and therefore one finds that the Z-factor corresponds to the fraction of single-
particle states contained in the quasi-particle peak. This result is valid both at zero
and at finite temperatures. In a way, one can say that the Z-factor measures the
strength of the correlations that go beyond the mean-field approximation because,
within a mean-field approximation, Z(k) = 1 and therefore the eigenstates of the
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2.5. Quasi-particle approximation

system are of a single-particle nature. Whenever correlations beyond the quasi-
particle picture are included in the formalism, single-particle states are fragmented
in a wide range of energies and the single-particle nature of the energy eigenstates is
lost. In those cases, the further away the Z-factor from unity, the more fragmented
the states are. As a consequence, large Z’s are associated to large fragmentations
or, in other words, to important correlations.

It is clear that the Lorentzian-like expression for the spectral function violates
the sum rule of Eq. (2.48). To recover the correct normalization, one custom-
arily defines the background contribution of the single-particle propagator as the
difference:

Gbg(k, ω) = G(k, ω)− Gqp(k, ω) . (2.140)

For the global sum rule to yield unity, the spectral function associated to this
propagator, Abg, must satisfy the sum rule:∫ ∞

−∞

dω

2π
Abg(k, ω) = 1−Z(k) . (2.141)

The background contribution to the the spectral function is originated by exci-
tations in the system which do not have a single-particle nature. Instead, it is
caused by multi-particle or collective excitations in the system, which are usually
much more involved to compute. The background contribution to the spectral
function is normally considered to be a smooth function of energy and momen-
tum. A sketch of the spectral function within this quasi-particle approximation is
given in Fig. 2.2. Note that around the quasi-particle peak, a symmetric Breit-
Wigner distribution arises and the area below the peak is given by the Z-factor.
For energies which are far away from the quasi-particle peak, only the small and
soft background contribution is found.

Finally, one should also be aware of the fact that, in the literature, the quasi-
particle approximation often implies an additional assumption. Namely, that
quasi-particles have an infinite life-time and thus their spectral function is given
by the limit:

lim
Γqp
2
→0

Aqp(k, ω) = (2π)Z(k)δ[ω − εqp(k)] , (2.142)

which is simply a delta function at the quasi-particle peak. The strength of
the peak is given by the Z-factor, and it will be lower than 1 whenever energy-
dependent correlations are taken into account. In this Thesis, this type of approxi-
mations will be called no-width approximations (in order to differentiate them from
the usual Lorentzian quasi-particle approximation of Eq. (2.137)). This type of
approaches are very convenient for numerical reasons, because they automatically
eliminate the explicite energy integrations of the Green’s function. In other words,
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2. Many-Body Green’s Functions at Finite Temperature

(a) (b)

Figure 2.3: First order diagrams that contribute to the Green’s func-
tion.

the off-shell components of the propagator are not taken into account. Note, how-
ever, that they do not neglect completely the energy dependence of the self-energy,
because this is still included in the calculation of the Z-factor. In highly corre-
lated systems, where the width of the quasi-particles cannot be taken to be small,
a no-width approximation is clearly too simplistic and thus leads to unrealistic
results.

2.6 Diagrammatic expansion of the propagator

As explained in detail in Appendix A, the single-particle propagator can be ex-
panded in terms of free single-particle propagators and two-body interactions. At
any order n in the number of interaction lines, this expansion is most suitably
carried out by using diagrammatic techniques. In Appendix B the rules to con-
struct the diagrams that correspond to any order in the perturbative expansion of
the propagator are given. These rules also specify the corresponding value of each
diagram. The explicit expressions for the two first-order diagrams of Fig. 2.3 are
worked out in detail Appendix B. In Fig. 2.4, all the diagrams that contribute to
the one-body Green’s function at second order in the interaction are shown.

Let us focus on the structure of these diagrams. In general grounds, all of
them share a common structure: an incoming fermion line with momentum k and
frequency zν enters the diagram, scatters a given number of times, depending on
the sophistication of the diagram, and finally becomes an outgoing line with the
same initial momentum and frequency. Schematically, one can express this idea
in terms of the diagram in Fig. 2.5. The full propagator (represented by a double
fermion line) equals the free propagator plus a non-interacting fermion line that
enters a “complicated structure” and then goes out of it. For reasons that will
become clearer later on, this “structure” is called the reducible self-energy. This
is formed by all the crooked diagrams that compose the single-particle propagator
when one amputates the ingoing and outgoing fermion lines. In itself, it is still an
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2.6. Diagrammatic expansion of the propagator

(b) (c)

(g)(f)

(a)

(e) (h)

(d)

(j)(i)

Figure 2.4: All second order diagrams that contribute to the Green’s function.
The first row [diagrams (a)-(d)] is composed by reducible diagrams, i.e. sequential
repetitions of first order diagrams. The second row [diagrams (e)-(h)] is formed
by nested diagrams, i.e. a repetition of two first order diagrams in which a one
diagram is inserted in an intermediate line of another. The third row [diagrams
(i)-(j)] is formed by the second order diagrams which are entirely new.
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2. Many-Body Green’s Functions at Finite Temperature

= + RΣ  

Figure 2.5: Diagrammatic expression of the reducible self-energy.

infinite sum of diagrams which needs to be evaluated either perturbatively, i.e. as
a sum of a finite number of terms obtained from truncating the expansion at some
order, or non-perturbatively, i.e. by means of an infinite summation of physically
suitable diagrams.

One can however simplify these sums by considering in more depth the struc-
ture of the diagrams forming the single-particle propagator. Take, for instance,
diagrams (a) to (d) of Fig. 2.4. They are second-order diagrams that have been
obtained by iterating the first-order diagrams of Fig. 2.3. In other words, if one
cuts the intermediate fermion line in diagram (a), one recovers two first-order di-
agrams (a) of Fig. 2.3. In the jargon of many-body physics, this is called a 1
Particle Reducible (1PR) diagram, because by cutting one of its fermion (particle)
lines, it reduces to a lower-order diagram. In contrast, 1 Particle Irreducible (1PI)
diagrams, like (i) and (j) of Fig. 2.4, cannot be cut at any fermion line to yield
two separate pieces of lower order. Since reducible diagrams are obtained from the
iteration of irreducible diagrams, it is quite clear that one only needs 1PI diagrams
to compute the full single-particle propagator. If a suitable iterative process is then
applied, the 1PR diagrams will be automatically generated. The sum of all the
1PI self-energy diagrams is the so-called irreducible self-energy. Diagrammatically,
these ideas are depicted in Fig. 2.6, where the expansion of the self-energy in terms
of iterated irreducible self-energies is shown.

These ideas can also be cast in terms of mathematical expressions. The full
single-particle propagator, for instance, is given by the reducible self-energy ΣR by
means of the equation:

G = G0 + G0Σ
RG0 . (2.143)

Yet, as it has been explained above, the reducible self-energy is formed by the
iteration of irreducible self-energy pieces. Once this irreducible self-energy is in-
troduced, the propagator is given by the infinite series:

G=G0 + G0Σ
IG0 + G0Σ

IG0Σ
IG0 + . . . . (2.144)

Consider, however, the following trick, in which one factors out a irreducible self-
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= =R + I +++ + ...
I

I

I

I

I

Figure 2.6: Reducible self-energy as an iterated series of irreducible
self-energy pieces.

= + IΣ  

Figure 2.7: Diagrammatic representation of Dyson’s equation.

energy from the total result:

G = G0 + G0Σ
I
{
G0 + G0Σ

IG0 + . . .
}︸ ︷︷ ︸

G

. (2.145)

The term that factors out is actually the full propagator. This factorization can
be cast in terms of diagrams, as in Fig. 2.6, where dashed lines have been used to
separate the factored-out part from the full propagator. The final result turns out
to be the integral form of Dyson’s equation:

G(k, ω) = G0(k, ω) + G0(k, ω)ΣI(k, ω)G(k, ω) , (2.146)

which, in contrast to the formal derivation of Eq. (2.123), has been obtained from
diagrammatic considerations. Since Dyson’s equation can be obtained either from
the equation of motion or from a diagrammatic approach, the approximations to
the self-energy can be cast in both terms. In the following, when considering
approximations to the self-energy and the propagator, it will be very useful to
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2. Many-Body Green’s Functions at Finite Temperature

= −ΣI

−1 −1

Figure 2.8: Diagrammatic representation of the self-energy in terms
of the free and the fully dressed one-body propagators.

have an insight on both methods, each of them providing a different physical point
of view on the approximations which are being made. Finally, let us note that the
diagrammatic representation of Dyson’s equation is shown in Fig. 2.7. In the rest
of this Thesis, and unless differently stated, the word “self-energy” will refer to
the irreducible self-energy.

2.7 Self-consistent renormalization

In the previous section, the Dyson’s equation for the self-energy and the propagator
have been introduced. It has been shown that, with the help of this equation, one
sums an infinite series of diagrams by means of an iteration of 1PI diagrams. This
is already true at lowest order. Take, for instance, diagrams (a) and (b) of Fig. 2.3
and compute the corresponding irreducible self-energy. Inserting this into Dyson’s
equation (see Fig. 2.6), one obtains a propagator which already includes an infinite
sum of iterated irreducible self-energy diagrams. This corresponds to the Hartree-
Fock approximation that will be studied in Chapter 4. Yet, one can do a better
job even at this first-order level and sum a larger subset of diagrams by means
of a (somewhat simple) procedure known as self-consistent renormalization. The
main idea underlying this method is to self-consistently iterate Dyson’s equation
for the propagator, given by Fig. 2.7, and the equation defining the self-energy,
given by Fig. 2.8. Treating both equations in the same footing and iterating them,
one sums extra sets of diagrams with peculiar properties which shall be important
for the following discussions.

To put an example of this method, consider the second-order diagram (a) of
Fig. 2.9. This diagram, even though of second order, allows for a very graphical dis-
cussion on self-consistent renormalization [Mat92]. Take, then, the direct diagram
(a), as well as the remaining diagrams, (b)-(g) of Fig. 2.9. Diagrams (b) and (c) are
generated by inserting the first order (direct and exchange) self-energy diagrams
in the left propagator line of diagram (a). Diagrams (d) and (e) include second
order renormalizations to this line, while diagrams (f) and (g) include more com-
plicated third order terms. Yet, all of these diagrams share a common structure:
self-energy diagrams are inserted on top of the left fermion line of the (a) diagram,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.9: Self-consistent renormalization on a fermion line of a sec-
ond order diagram.

leaving the rest of the diagram untouched. In the diagrammatic language, a self-
energy diagram inserted on top of a fermion line is called a self-energy insertion
and one usually says that the fermion line has been dressed by these insertions.
In the ideal case where one could include all the self-energy insertions on the left
fermion line of the (a) diagram, this line would eventually become a full propaga-
tor and the lowest order second-order diagram would become diagram (h). Note
that this diagram is much richer than the initial one, for it sums automatically an
infinite series of diagrams for the left leg. This is of course very satisfying from
the diagrammatic point of view, because it allows one to write an infinite series
of diagrams... in a single diagram! One can, for instance, dress the remaining
fermion lines of the (a) diagram, thus obtaining diagram (f) of Fig. 2.10. In this
case, a much more complicated series, including diagrams (a)-(e) of Fig. 2.10, is
automatically summed up.

Yet, such a procedure must be done with care. When dressing all the fermion
lines on a diagram, one should know which diagrams are being included and which
are not. Take, for instance, diagram (g) of Fig. 2.10. This is formed by a second-
order self-energy insertion on top of the left leg of diagram (f). However, the dress-
ing of this leg already contains contributions of diagrams with the same structure
as (g). Thus, these diagrams are already included in diagram (f) and should not be
considered as independent contributions to the irreducible self-energy. To distin-
guish this redundant contribution, a new type of diagrams is defined. A diagram
such as a diagram (f) of Fig. 2.10, which does not include any explicit self-energy
insertion, is called a skeleton diagram. It is then clear that all the diagrams for the
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2.10: Self-consistent renormalization of a whole second order
diagram.

self-energy can be obtained by drawing all the skeleton diagrams and then dressing
its fermion lines with all the possible self-energy insertions. This can be expressed
in the following way:

ΣI =
∑

n

{
skeleton diagrams with G0 replaced by G

}
,

where n is the order (number of interaction lines) in the expansion of the propa-
gator. Note that this is indeed an implicit equation for ΣI , because G contains ΣI

via Dyson’s equation.
One should of course find how to dress all the lines of skeleton diagrams in

a more or less simple way. This is indeed done by means of the self-consistent
renormalization procedure. From an numerical point of view, this procedure is
of course not as easy as a simple substitution of a single line for a double one.
Instead, a procedure for dressing fermion lines in a consistent way can be derived by
considering subsequent iterations of Dyson’s equation and the self-energy, defined
via Fig. 2.8, in a given approximation. First of all, one uses an approximation to
the self-energy which must be both 1PI and of the skeleton type. Next, this self-
energy is inserted into Dyson’s equation to obtain a first iteration of the dressed
propagator. From this propagator, one builds a new self-energy which is richer
in diagrammatic content via Fig. 2.8. This can then be included into Dyson’s
equation, and a new propagator will be obtained. The iteration of this procedure
indeed sums a larger set of diagrams than the one included in the initial (1PI,
skeleton-type) self-energy and includes, in particular, all the self-energy insertions
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with the same structure as the initial self-energy as well as new nested diagrams.
A particular example of this procedure and its diagrammatic content is studied in
Chapter 4.
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Chapter 3

Luttinger-Ward Formalism

From a statistical mechanics point of view, the macroscopic information of the
system is fully contained in the partition function. If this function is known, its
derivatives with respect to different quantities give access to all the thermodynam-
ical properties of the system. On the other hand, it has already been argued that,
from a microscopic point of view, it is the one-body propagator which provides all
the one-body properties of the system. Now one may ask if there is a connection
between both functions and, in particular, if the one-body propagator is enough for
building the partition function. The answer, given by Luttinger and Ward [Lut60]
more than forty years ago, is positive. The Luttinger-Ward expression for the
partition function turns out to have some interesting properties that were later on
exploited by Baym [Bay62] in his discussion of the thermodynamical consistency
of many-body approaches. In the following, the Luttinger-Ward formalism for the
computation of the partition function will be described. It will be applied to the
free case and to a general interacting case where the width effects of quasi-particles
are not disregarded. The explicit numerical results obtained with this formalism
for the thermodynamical properties of nuclear matter within different many-body
approaches will be discussed in the following chapters.

3.1 Linked cluster expansion

The partition function of a system at finite temperature can be expressed in terms
of Feynman diagrams, like the Green’s functions. The expansion in terms of di-
agrams for the grand-potential is, in fact, very close to that of the energy of a
zero temperature system and it is well established [Mat92]. Its starting point is
Eq. (A.13), which can be rewritten as:

e−β(Ω−Ω0) =
∞∑

n=0

(−i)n

n!

∫ −iβ

0

dt1 · · ·
∫ −iβ

0

dtn Tr
{

ρ̂0T
[
Ĥ1(t1) · · · Ĥ1(tn)

] }
, (3.1)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

 

Figure 3.1: All of the first and some of the second order Feynman diagrams that
contribute to e−β(Ω−Ω0).

where Ω0 represents the grand-potential of a free system of fermions evaluated at
the chemical potential µ of the interacting system. By using the Wick theorem in
the previous expression, one obtains a well-defined expansion of the grand-potential
in terms of interactions and free single-particle propagators. The expansion can
indeed be treated order by order in the number of interacting lines and can be
expressed in terms of diagrams by applying a given set of Feynman rules. Yet,
there is a fundamental difference between the diagrams of the one-body Green’s
function and those of the grand-potential. While the one-body propagator depends
on two external points, r1t1 and r′1t

′
1, the expression in Eq. (3.1) has no external

dependence. In terms of diagrams, this is translated into the fact that all the
diagrams in the expansion of Ω are made of closed loops.

In Fig. 3.1, the first order, as well as some of the second order diagrams in
the expansion of e−β(Ω−Ω0), are shown. Interestingly enough, one finds that there
are two different kinds of diagrams contributing to e−β(Ω−Ω0). The first type is
formed by closed connected loops, like diagrams (a), (b) or (e) of Fig. 3.1. The
second type is formed by separate pieces, like diagrams (c) and (d). These are the
disconnected diagrams. Needless to say, this supposes a great disadvantage. The
number of diagrams which are required at each order can become very large if one
has to study all the different combinations of connected diagrams that form all the
disconnected diagrams at that given order. Fortunately, the linked cluster theorem
comes to our help in this case. Loosely speaking (see [Abr65; Bla86; Neg88] or
[Mah90] for a more complete discussion), the linked cluster theorem states that
the diagrammatic expansion of the quantity ln e−β(Ω−Ω0) = −β(Ω − Ω0) is only
formed by connected diagrams. Or, expressed differently:

eall connected diagrams = all connected + all disconnected diagrams .
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This important theorem leads to the following result:

Ω− Ω0 =
∑

n

{
connected diagrams

}
.

This is of course a very satisfying expression, because it reduces enormously the
number of diagrams needed at each order in the expansion of Ω. One should now
relate each diagram to a contribution in the perturbation expansion of Ω by means
of a suitable set of Feynman rules. To this end, one should follow a similar path
as the one discussed for the one-body propagator in Appendix A. Unfortunately,
an extra difficulty arises when dealing with closed diagrams. When the Feynman
rules for the one-body Green’s function were introduced in Appendix A, one could
argue that a factor 1

n!2n in front of each term in the expansion of the propagator
was canceled. On the one hand, a factor 2n came out from the permutations of
the variables inside the potentials, which left the value of a diagram unchanged.
On the other hand, one could perform n! permutations in the integration variables
that lead to the same result for a given diagram. This result is, however, specific
for the one-body propagator and it is not anymore valid for closed diagrams. While
for one of these diagrams, the 2n permutations of the variables in the interaction
are still possible, there are only (n − 1)! permutations which leave an n-th order
term invariant. This happens because, with one of the Ĥ1 fixed, one can only
choose among the n − 1 remaining operators to perform the change of variables.
For the Green’s function, in contrast, since the external lines are already fixed, one
obtains a n! factor. As a consequence, each topologically non-equivalent diagram
in the expansion of Ω carries a factor 1/n in front of its value when the Feynman
rules are defined. This factor complicates substantially any infinite partial sum of
diagrams in the grand-potential and thus sophisticated diagrammatic approaches
cannot be directly applied to compute this quantity. This is probably the reason
why the diagrammatic approach for the thermodynamical potential of interacting
systems has only been used a few times [Mah90].

3.2 Coupling constant method

In this subsection, a more widely used method to compute the partition function
will be discussed. The coupling constant approach is particularly suited for its
simple mathematical structure and it is discussed in length, for instance, in Ref.
[Fet71]. This method relies on the integration of a coupling variable which is
related to the strength of the interaction potential. A great advantage of this
approach is that it yields exact results once the propagator is computed. Its
great disadvantage, as it will be seen in the following, is the coupling constant
integration, which requires the computation of the propagator for several different
values of the coupling.
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3.2. Coupling constant method

Consider a system with a Hamiltonian given by:

Ĥ(λ) = Ĥ0 + λĤ1 , (3.2)

where λ is the so-called coupling constant. The Hamiltonian Ĥ(λ) at λ = 1
describes the full physical system, while at λ = 0 it describes a simpler system
(not necessarily the free one), which one is able to handle easily. One can also
define the operators:

K̂0 = Ĥ0 − µN̂ (3.3)

and

K̂(λ) = K̂0 + λĤ1. (3.4)

The partition function is then defined by:

Zλ = e−βΩλ = Tr e−βK̂(λ) . (3.5)

Note that this partition function as well as the associated grand-potential,

Ωλ = −T ln Zλ , (3.6)

are functions of the coupling constant λ. One can obtain a generic expression for
Zλ by expanding the exponential operator on the right hand side of Eq. (3.5):

Zλ =
∞∑

n=0

1

n!
(−β)n Tr

{[
K̂0 + λĤ1

]n}
. (3.7)

Let us now compute the derivative of Zλ with respect to λ. With the help of the
previous expression this yields:

∂Zλ

∂λ
=

∞∑
n=1

1

n!
(−β)n ∂

∂λ
Tr

{[
K̂0 + λĤ1

]n}
. (3.8)

The derivative inside the sum is applied to the n terms in the trace, yielding a

factor Ĥ1 in all the possible positions in between the n− 1 remaining
[
K̂0 + λĤ1

]
operators. Using the cyclic property of the trace, these n terms can be seen to
give the same result. The derivative can thus be rewritten as:

∂Zλ

∂λ
=

∞∑
n=1

1

n!
(−β)nnTr

{[
K̂0 + λĤ1

]n−1

Ĥ1

}
= −β

∞∑
n=1

1

(n− 1)!
(−β)(n−1)Tr

{[
K̂0 + λĤ1

]n−1

Ĥ1

}
= −βTr

{
e−βK̂(λ)Ĥ1

}
, (3.9)
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where the Taylor expansion of the exponential of the −βK̂(λ) operator has been
used. The previous trace looks very much like a thermal ensemble average of Ĥ1.
One can indeed rewrite this in terms of a thermal average by multiplying and
dividing by a factor e−βΩλ :

∂Zλ

∂λ
= −β

λ
e−βΩλ

〈
λĤ1

〉
λ

. (3.10)

Note that the average 〈· · · 〉λ denotes the thermal ensemble average with the λ-
dependent operator K̂(λ). It is also interesting to stress that the average for
λ = 0 is done with the K̂0 operator and thus requires the knowledge of the real
chemical potential of the interacting system, µ. By using the relation that links
the grand-canonical potential and the partition function, Eq. (3.6), one finds that
the derivative of the grand-canonical potential with respect to λ is given by:

∂Ωλ

∂λ
=

1

λ

〈
λĤ1

〉
λ

. (3.11)

Integrating the previous expression from λ = 0 to λ = 1, one gets the fully
interacting partition function in terms of the easy-to-compute Ωλ=0 and an integral
over the coupling constant:

Ω = Ω0 +

∫ 1

0

dλ

λ

〈
λĤ1

〉
λ

. (3.12)

The integrand of this coupling constant integrations can be related to the inter-
action energy of a system with a coupling constant λ. Indeed, if one chooses Ĥ0

as the kinetic energy operator, then
〈
λĤ1

〉
λ

immediately becomes the interaction

energy with a damped interaction. In principle, it is not necessary to make this
choice but, as it will be seen in the following, this turns out to be very convenient.

Up to this point, the equations have been quite generic and unrelated to the
Green’s function approach discussed in the previous chapter. It would thus be
useful to obtain an expression of Ω in terms of the Green’s function. This is also
achieved by taking Ĥ1 = V̂ . Consider the equation of motion of the one-body
propagator, Eq. (2.98). The last term of that equation (the one involving the
interaction potential) can be brought to a more familiar form by taking the limits
t′1 → t+1 and r′1 → r1 and integrating over r1. After these operations, this term
becomes basically the mean potential energy of the system:

2〈V 〉 =

∫
d3r1 lim

r′1→r1

t′1→t+1

∫
d3r1̄V (|r1 − r′1|)

〈
T

{
â(r1t1)â(r1̄t1)â

†(r1̄t
+
1 )â†(r′1t

′
1)

}〉
.

(3.13)

The same limits and integral can be applied to the remaining terms in the equation
of motion. The time derivative, for instance, can be computed using the Fourier

63



3.2. Coupling constant method

transform of the propagator:∫
d3r1 lim

r′1→r1

t′1→t+1

i
∂

∂t1
G(r1t1, r

′
1t
′
1) =

∫
d3r1 lim

r′1→r1

t′1→t+1

i
∂

∂t1

1

−iβ

∑
k,ν

eik·(r1−r′1)−izν(t1−t′1)G(k, zν)

V

=
i

β

∑
k,ν

eizνηzνG(k, zν) . (3.14)

Note that the derivative operator is applied before taking the limits. In addition,
an infinitesimal η, such that t1− t+1 = −η and such that limRe z→∞ ηRe z = ∞, has
been introduced. This condition is also necessary if the contributions of the arches
in the Cauchy integrals appearing in the Matsubara summations have to vanish
(see Appendix C). Applying the same procedure to the kinetic term, one finds:∫

d3r lim
r′1→r1

t′1→t+1

∇2

2m
G(r1t1, r

′
1t
′
1) =

−i

β

∑
k,ν

eizνη k2

2m
G(k, zν) . (3.15)

The term with the two delta functions can be easily rewritten using the Fourier
representation of the delta functions in the momentum and Matsubara frequency
space: ∫

d3r lim
r′1→r1

t′1→t+1

δ(t1 − t′1)δ(r1 − r′1) =
−i

β

∑
k,ν

eizνη . (3.16)

Collecting everything together, one obtains the following identity between the
potential energy of the system and the one-body propagator:

2〈V 〉= 1

β

∑
k,ν

eizνη

[{
zν −

k2

2m

}
G(k, zν)− 1

]
. (3.17)

This can be cast in a nicer form by using Dyson’s equation in Fourier space,
Eq. (2.122), to yield:

〈V 〉= 1

2β

∑
k,ν

eizνη Σ(k, zν)G(k, zν) . (3.18)

The previous expression gives directly the mean potential energy of the system in
terms of the self-energy and the one-body propagator. In a system with λH1 = λV ,
this expression will be naturally translated into:

〈λV 〉λ =
1

2β

∑
k,ν

eizνη Σλ(k, zν)Gλ(k, zν) , (3.19)

where the subscript λ denotes that the self-energy and the one-body propagator of
the system are computed with an interaction potential λV and that the thermal
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averages are taken with respect to λK̂. Finally, introducing this expression in
Eq. (3.12), one finds the following expression for the grand-potential of the fully
interacting system:

Ω = Ω0 +
1

2β

∫ 1

0

dλ

λ
T̃r ΣλGλ , (3.20)

where Ω0 now denotes the grand-partition function of the free system (computed at
the interacting chemical potential µ) and where the dependence on momentum and
Matsubara frequency of the self-energy and the propagator have been simplified
using the notation: ∑

k,ν

eizνη → T̃r , (3.21)

with η = 0+ small and positive and such that limRe z→∞ ηRe z = ∞. This shall not
be confused with the trace introduced in Chapter 2, which denotes a diagonal sum
over all the (energy and particle number) eigenstates of the system. Note that an
additional sum over the internal spin-isospin quantum number should be included
in T̃r whenever these quantum numbers are taken into account.

One can work with the previous expressions to write them in terms of the
spectral function. This can be done in two different but equivalent means. On
the one hand, one can consider the fact that the potential energy of the system
is already contained in the GMK sum rule. It can be obtained by extracting the
kinetic energy,

K=
∑

k

∫ ∞

−∞

dω

2π

k2

2m
f(ω)A(k, ω) , (3.22)

from the total energy of the system, Eq. (2.103). This yields the following expres-
sion for the potential energy:

U = 〈V 〉=
∑

k

∫ ∞

−∞

dω

2π

1

2

{
ω − k2

2m

}
f(ω)A(k, ω) . (3.23)

Introducing this into Eq. (3.12), one finds that the grand-partition function is
given by the triple integral:

Ω = Ω0 +
∑

k

∫ 1

0

dλ

λ

∫ ∞

−∞

dω

2π

1

2

{
ω − k2

2m

}
fλ(ω)Aλ(k, ω) . (3.24)

Note that, for a given chemical potential µ and inverse temperature β, the coupling
constant method involves the calculation of several spectral functions Aλ in order
to compute the integral on the coupling constant. On the other hand, one can
compute the previous expression in a complete equivalent way by performing the
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implicit Matsubara sum in Eq. (3.20). The result of this sum is easily obtained
from the general formula Eq. (C.15), yielding:

〈V 〉= 1

2

∑
k

∫ ∞

−∞

dω

2π
f(ω) [Γ(k, ω)ReG(k, ω) +A(k, ω)Re Σ(k, ω)] . (3.25)

This gives an alternative expression for the grand-partition function. Nevertheless,
it is easy to prove that Eq. (3.23) and Eq. (3.25) give the same result, because:{

ω − k2

2m
− Re Σ(k, ω)

}
︸ ︷︷ ︸

ReG−1(k,ω)

A(k, ω) = Γ(k, ω)ReG(k, ω) , (3.26)

which is easily deduced from the identity Im {G(k, ω)G−1(k, ω)} = 0.
The coupling constant method presented here is essentially exact. In other

words, if one is able to compute the propagator and the self-energy within a
certain many-body approximation, a grand-partition function containing all the
correlations associated to that many-body approach is given by Eq. (3.20). Yet,
this method has a clear disadvantage, namely that it requires a coupling constant
integration. This means that, for a single chemical potential and temperature,
the results have to be generated for several different coupling constants in order
to compute accurately the integral over λ. Moreover, the coupling constant inte-
gration has to be performed for a fixed external chemical potential µ. This is a
problem whenever one tries to work at a constant density, which can be preferable
if one wants to deal with more intuitive results. In that case, the implementation
of the coupling constant approach requires calculations for a certain number of
chemical potentials in order to match the external density. And for each chemical
potential one has to use a certain number of coupling constant integrations. Such
a proliferation of results makes this method unsuited for sophisticated or time-
demanding many-body approaches. It is clear that a closed equation in which the
partition function could be expressed directly in terms of the one-body propaga-
tor would be much more convenient. One could then skip the coupling constant
integration and work at constant density without further inconveniences.

3.3 Luttinger-Ward partition function

3.3.1 Introduction

An explicit formula of the grand-potential in terms of the one-body Green’s func-
tion is in fact what the Luttinger-Ward formalism achieves and it is the main
reason why this approach has been chosen for this Thesis. The Luttinger-Ward
expression for the partition function of an interacting system of fermions was first
introduced in [Lut60]. This is the second reference of a series in which Luttinger
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and his collaborators studied carefully the zero temperature limit of finite temper-
ature many-body approaches. In the first article [Koh60], special attention is paid
to the different limiting procedures (T → 0,V → ∞ or its inverse, V → ∞, T → 0)
in which one can obtain the zero temperature BHF approximation from its finite
temperature extension. This involved a study of the so-called “anomalous” dia-
grams (such as diagrams (g) and (h) of Fig. 3.1) which only appear within a T 6= 0
formalism. In the second reference of the series, the same problem was addressed by
introducing the self-consistent renormalization procedure for the single-particle po-
tential (see Section 2.7). From this self-consistently renormalized Green’s function,
the authors build a functional (the Luttinger-Ward functional) which reproduces
the partition function of the system. Note that such an expression is very differ-
ent from the one that can be obtained from any diagrammatic expansion. While
with diagrams one would express the partition function in terms of partial sums of
terms including free propagators, the Luttinger-Ward partition function includes
somehow an infinite summation of diagrams by means of the self-consistent propa-
gator. Finally, in this reference Luttinger and Ward also discussed the interesting
variational properties of this functional.

Some of these properties were soon exploited in more involved studies of many-
body systems. Among them, it is probably the pioneering work of Baym [Bay62]
which deserves most attention. This is also the second paper of a series (the first
one being [Bay61]) in which the fulfillment of the microscopic and macroscopic con-
servation laws of momentum, angular momentum and energy in quantum transport
theories were thoroughly studied. In their first article, Kadanoff and Baym were
able to find some conditions that any quantum many-body approximation should
accomplish if these conservation laws had to be obeyed at a microscopic level.
Among the approximations that do conserve momentum, energy, etc., one finds
the Hartree-Fock, the ladder or the RPA approximations. These are also called
conserving approximations. The second reference, [Bay62], includes a refinement
of these results. Baym was actually able to establish a more general condition
for the different procedures to be of a conserving type. When applying these
ideas to the equilibrium case, Baym showed that any conserving approximation is,
at the same time, thermodynamically consistent, which essentially means that a
quantity, computed either from microscopic grounds or from a thermodynamical
(macroscopic) basis, yields the same result. The fulfillment of thermodynamical
consistency, trivial as it might look like, is not intuitive at all. If one uses an
approximation to describe the microphysics, for instance, it is by no means evi-
dent that the procedures involved in the method should also correctly describe the
macrophysics.

Another interesting set of two articles is the couple of references [dD64a] and
[dD64b]. In these articles, de Dominicis and Martin show how one can derive the
Luttinger-Ward functional from basic principles, within either an algebraic [dD64a]
or a diagrammatic approach [dD64b]. In the first case, the Luttinger-Ward func-
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tional is derived from a Legendre transform of the partition function. In general,
the partition function is a functional of the one- and two-body interactions. By
means of an integral transform, however, the explicit functional dependence on the
interaction can be replaced by a functional dependence on the Green’s functions.
Once the many-body approximation has been renormalized self-consistently, this
leads exactly to the Luttinger-Ward expression. On the other hand, the formalism
can also be derived diagrammatically. In that case, each term of the Luttinger-
Ward functional can be seen to have a counterpart in terms of infinite sums of
diagrams. These sums can be performed by distinguishing some particular ele-
ments of the diagrammatic expansion of the partition function. In this way, one
can overcome the problem related to the 1/n factor and obtain explicit analytical
expressions for each infinite sum of diagrams. It is also interesting to mention
that this approach can be pushed beyond the single-particle Green’s function and
one can also obtain expressions of the partition function in terms of the two-body
propagator [dD64b; Bla86].

In the following, the Luttinger-Ward expression for the partition function will
be introduced. By means of some simple arguments (that follow [Bay62]), the
expression of the grand-potential will be seen to be equivalent to that obtained
within the coupling constant method. This shows that the partition function is
exact (up to the approximations introduced by the many-body approach within
which one computes the one-body propagator) and thus validates the application
of this expression. The usefulness of the Luttinger-Ward approach relies on the fact
that it is deduced from a self-consistently renormalized theory or, in other words,
instead of using free G0 propagators, as it is done in the perturbative expansion,
it is expressed in terms of dressed Green’s functions, G. In this sense, one can
say that the Luttinger-Ward method is a non-perturbative approach. In addition,
within the Luttinger-Ward formalism all the microscopic quantities are considered
functionals of the dressed propagator. The expression for the partition function
(that in this section will be denoted W = ln Z) is given by:

W{G}= T̃r ln
[
− G−1

]
+ T̃r Σ{G}G − Φ{G} . (3.27)

Here, the notation X {G} denotes that a quantity X that has to be considered

a functional of the full propagator. The trace T̃r defined in Eq. (3.21) is also
used, and thus a sum over momenta and Matsubara frequencies is included in the
previous formula. Note that the self-energy is given in terms of the propagator via
the following equation:

Σ {G}=G−1
0 − G−1 , (3.28)

which is just a manipulation of Dyson’s equation, Eq. (2.122), to obtain the self-
energy in terms of the free and interacting one-body propagators.

It seems natural to demand that the partition function of a system in equilib-
rium is stationary under variations of the one-particle propagator. This guarantees
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that the Green’s function which is used in the formalism minimizes the thermody-
namical potential. Mathematically, this can be cast in the following equation:

δ W{G}
δG

∣∣∣∣
G0

= 0 , (3.29)

where the variation with respect to G is taken at constant G0, because the free
propagator of the theory is supposed to be already known and thus can be taken
as a parameter. The variation of W with respect to G yields:

δW =−T̃rG−1δG + T̃r δΣG + T̃r ΣδG − δΦ . (3.30)

Noting that δΣ = G−2δG, it is clear that, if Eq. (3.29) must hold, then δΦ =

T̃r ΣδG must also hold. This can be restated formally by saying that the functional
derivative of the Φ functional with respect to the one-body propagator,

δ Φ{G}
δG

∣∣∣∣
G0

= Σ{G} , (3.31)

is the self-energy. This equation sets the functional dependence of the Φ-functional
in the one-body Green’s function. The properties of this functional will now be
briefly discussed.

3.3.2 The Φ functional

The definition of the functional dependence of Φ on G is given by Eq. (3.31).
This has to be taken as a definition in the same sense that Eq. (3.28) is taken as
the definition of the self-energy in the Luttinger-Ward approach. Indeed, Dyson’s
equation together with Eq. (3.31) form a self-consistent set of equations. Within a
many-body approach, for instance, one shall define a given approximation to the Φ
functional (the way to do this will be discussed below) and derive the corresponding
self-energy from it. This self-energy, once iterated via Dyson’s equation, defines a
propagator with which one can compute the functional again. This self-consistent
iterative process can be shown to preserve the symmetries of the system and, in
particular, the conservation laws of transport theories out of equilibrium [Bay62].
Actually, the generalization of this procedure to relativistic many-body systems
with the help of quantum field theoretical tools has enjoyed a certain success
[Cor74; Nor75; Lee75]. It has been applied to study dense interacting systems
of pions [Rap96], the transport properties of resonances [Wei98b; Iva99] or the
thermodynamics of quark gluon plasma [Bla04]. Moreover, the application of this
procedure in the field of non-equilibrium quantum theories is of special relevance
[Iva00; Ber04]. In those cases, the feature that makes this formalism especially
attractive is the instantaneous sum of diagrams achieved by the use of a self-
consistently renormalized propagator as well as the automatic preservation of the
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Nf

1

...

1
42

1
Φ

Σ= δ Φ
δ G

 

Figure 3.2: First, second and n-th order diagrams for the Φ func-
tional within the ladder approximation. The corresponding self-energy
at each order is shown below. Note that only direct terms have been
considered.

conservation laws. Furthermore, it has been recently shown that the Φ-functional is
invariant under renormalization group transformation and thus it is, in a certain
sense, “universal” [Bla04; Dup05]. This might open a new interesting field of
applications of the formalism to condensed matter systems in a non-perturbative
approach [Pot06].

The Φ functional, like G and Ω, has a diagrammatic interpretation [Bay62;
dD64b; Bla86]. Take, for instance, any given closed diagram like those shown in
the first row of Fig. 3.2. The functional derivative of one of these diagrams with
respect to the propagator is achieved by cutting any fermion line in the diagram and
assigning to the remaining extremes the space-time variables of the propagator with
respect to which one is taking the derivative. Now, the Φ-functional is such that,
whenever it is functionally derived, it should give the self-energy of the system. It
is clear that it must then have the form of the closed diagrams of the first row of
Fig. 3.2, with a factor 1/Nf in front of each diagram denoting the inverse of the
number of equivalent fermion lines. In the Hartree case of Fig. 3.2, for instance,
a factor 1/2 in front of the expression is needed to cancel the two propagators
that one cuts. Note in addition that, since the self-energy is formed by a sum of
1PI diagrams, the Φ-functional is necessarily formed by 2PI irreducible diagrams.
Otherwise, it might have some term of the form ÃGGB̃, where GG denote two
propagator lines connecting two irreducible parts of a diagram, Ã and B̃. After
taking a functional derivative with respect to G, the corresponding self.energy
would have a term of the type ÃGB̃, which is 1PR and thus should not occur in
the self-energy. This allows for a precise definition of the Φ functional in terms of
diagrams: it corresponds to the (infinite) sum of all closed 2PI skeleton diagrams
in which the free propagators are dressed with self-consistent propagators.
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Figure 3.3: Example of an ambiguous self-energy in-
sertion in a closed Feynman diagram for the grand-
potential.

It is in fact very important to note that, in all the diagrams contributing to
the Φ-functional, a double fermion line meaning the dressed one-body propagator
is used. It has already been mentioned that in the Luttinger-Ward formalism one
always works with self-consistently renormalized propagators. This is essential for
the theory to be thermodynamically consistent. Unfortunately, this introduces
ambiguities in the case of closed diagrams. As explained in Section 2.7, the self-
energy can be formally obtained by first summing all the 1PI skeleton diagrams
and then dressing all the free fermion lines with self-energy insertions. For closed
diagrams, however, a similar procedure is not possible because the reduction to
skeleton diagrams is not unique. To see this, take a look at Fig. 3.3. It is easy to
convince oneself that, in a closed diagram, one cannot easily distinguish which part
of the diagram is a self-energy insertion of another part. In other words, the full
thermodynamical potential cannot be naively computed by means of an expansion
of closed skeleton diagrams which are subsequently dressed. This procedure could
lead to a double-counting of diagrams. One can instead consider the sum of all
2PI skeleton diagrams. Dressing the free propagators in this diagrammatic sum,
one would obtain the Φ-functional. The other terms in Eq. (3.27) (i.e. the trace of
the logarithm and of the product of the self-energy and the propagator) generate
the remaining 2PR diagrams that contribute to Ω, with the appropriate factors to
avoid any possible double-counting [dD64b; Bla86].

One cannot, however, compute the full exact Φ-functional in the same way
that one cannot calculate the exact self-energy of a many-body system. Instead,
one has to use approximate Φ-functionals (and their corresponding self-energies)
which should describe correctly the essential correlations of the many-body system
under study. Some simple examples of these approximations are given in Fig. 3.2.
The first diagram in the second row corresponds, for instance, to the Hartree self-
energy and thus this defines the Hartree approximation (see the next chapter for
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details on this approximation). A typical diagram of a ladder self-energy is given
by the last diagram of the second row. An n-th order contribution of this self-
energy includes the repeated scattering of a particle with another particle of the
system. By closing this diagram in its free vertices with a dressed propagator, one
obtains the corresponding n-th order contribution to the Φ-functional, which is
the top right diagram of Fig. 3.2. Note that the value of the Nf factor equals 2n in
this case, because there are 2n possible places where one can cut each propagator
to obtain the self-energy contribution at n-th order. Moreover, since the ladder
self-energy is given by the sum to all orders of these diagrams, its corresponding
Φ functional is also an infinite sum of diagrams.

As already explained, the equation for the Φ-functional, Eq. (3.31), and Dyson’s
equation, Eq. (3.28), define a self-consistent set of equations if one is able to find a
good approximate Φ-functional. Nevertheless, one can proceed in a somewhat dif-
ferent way and profit from the Luttinger-Ward formalism to directly compute the
partition function in a self-consistent many-body approach. Suppose, for instance,
that one is able to compute a self-consistent Green’s function in a given approxi-
mation. Through Dyson’s equation, one immediately has access to the self-energy
and to the Φ-functional if Eq. (3.31) can be inverted. Using these quantities, one
will be able to compute the corresponding partition function of the interacting
system using the Luttinger-Ward expression. This philosophy is the one that will
be followed in this Thesis. The Green’s function will be computed within a self-
consistent ladder approximation and will then be used to calculate the entropy,
from which one can derive most of the thermodynamical properties of the system.
Fortunately, the Luttinger-Ward approach can be implemented in a very direct
manner in the calculation of the entropy and, in particular, one can compute this
quantity without explicitly computing the Φ-functional.

3.3.3 Relation to the coupling constant method

Up to here the variational properties of the Luttinger-Ward formula have been
discussed. Yet there has been no justification based on first principles of the
Luttinger-Ward expression. In fact, one can obtain this expression from basic
principles by using algebraic as well as diagrammatic approaches [dD64a; dD64b].
Nevertheless, these justifications involve rather cumbersome procedures and will
not be used here. Instead, the Luttinger-Ward formula will be shown to yield the
same results than the coupling constant method for the partition function. Since
this second method is essentially exact, one can indeed take this equivalence as a
proof that Eq. (3.27) yields the correct expression for the partition function.

To build the bridge between both approaches, one shall start by letting the
interaction potential V become λV , where λ once again is a coupling constant.
The Luttinger-Ward expression then becomes:

W{Gλ}= T̃r ln
[
− G−1

λ

]
+ T̃r Σ{Gλ} Gλ − Φ{Gλ} . (3.32)
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Let us now differentiate this equation with respect to λ. For the logarithmic term,
one obtains:

d

dλ
T̃r ln

[
− G−1

λ

]
= −T̃rG−1

λ

dGλ

dλ
. (3.33)

The second term yields the following derivative:

d

dλ
T̃r ΣλGλ = T̃rG−1

λ

dGλ

dλ
+ T̃r Σλ

dGλ

dλ
. (3.34)

Note that the first term of the previous equation cancels the derivative of the
logarithmic term, Eq. (3.33). Finally, in order to compute the derivative of the
Φ functional, one should take into account that Φ depends on λ both through its
explicit dependence on V and its dependence on G:

dΦλ

dλ
=

∂Φλ

∂λ

∣∣∣∣
Gλ

+ T̃r Σλ
dGλ

dλ
. (3.35)

The second term in the previous equation cancels the last term of Eq. (3.34). The
total derivative of the partition function with respect to the coupling constant is
therefore given by the partial derivative of the Φ-functional with respect to λ,

dWλ

dλ
= − ∂Φλ

∂λ

∣∣∣∣
Gλ

. (3.36)

This partial derivative at constant Gλ can be computed in a very nice way by
considering an invariance of the Φ-functional. Let each explicit interaction V in
Φ become αV and let each single-particle propagator G become α−1/2G. Taking
into account that each G in Φ connects two interaction vertices and that each
potential line connects four G’s, it is easy to see that this α-transformation leaves
the Φ-functional invariant, so that:

dΦλ

dα
=

∂Φλ

∂α

∣∣∣∣
Gλ

+ T̃r
δΦλ

δGλ

d

dα

[
α−1/2Gλ

]
= λ

∂Φλ

∂αλ

∣∣∣∣
Gλ

− 1

2
α−3/2T̃r ΣλGλ = 0 . (3.37)

Taking the previous equality at α = 1, one finds the derivative of the Φ-functional
with respect to λ:

∂Φλ

∂λ

∣∣∣∣
Gλ

=
1

2λ
T̃r ΣλGλ . (3.38)

Using Eq. (3.36), this immediately gives the derivative of the partition function
with respect to the coupling constant. By using the thermodynamical relation
Eq. (3.6), one finds:

∂Ωλ

∂λ
=

1

2λβ
T̃r ΣλGλ . (3.39)

73



3.3. Luttinger-Ward partition function

Note that this is the result that one obtains within the coupling constant method
when combining Eqs. (3.11) and (3.19). By taking the integral from λ = 0 to
λ = 1, this gives the coupling constant integration of Eq. (3.20), which yields the
exact thermodynamical potential.

The grand-potential of the coupling constant method has thus been obtained
from the Luttinger-Ward functional for the partition function. This proves that
the Luttinger-Ward formalism yields exact results, within the error of the many-
body approximation for the Green’s function. In addition to that, the Luttinger-
Ward approach has some more useful properties. Among them, the preservation of
thermodynamical consistency which will be discussed in the following subsection.

3.3.4 Thermodynamical consistency

One of the main conclusions of Ref. [Bay62] is that, if the microscopic conservation
laws of non-equilibrium systems have to be respected within a many-body approxi-
mation, a Φ-functional for the approximation must exist. This can be proved from
a vanishing curl relation for the self-energy and is indeed the basis for defining
Φ as in Eq. (3.31). Furthermore, one can check that this condition involves that
thermodynamical consistency is automatically fulfilled. In the following, a simple
example of thermodynamical consistency, concerning the total number of particles
of a many-body system, will be considered. Other examples involving the energy
or the pressure are studied in more detail in Ref. [Bay62].

Let us consider the evaluation of the total number of particles of a system
as a function of β and µ. This is equivalent to the computation of its density.
From the partition function, the number of particles can be evaluated through the
derivative:

〈N〉 = − ∂Ω

∂µ

∣∣∣∣
β

=
1

β

∂ ln Z

∂µ

∣∣∣∣
β

. (3.40)

From a Green’s function point of view, on the other hand, the mean number of
particles is obtained by summing the momentum distribution over all momentum
states:

〈N〉 =
∑

k

n(k) . (3.41)

To see that both expressions coincide within the Luttinger-Ward formalism, let us
consider Eq. (3.27) and take its derivative with respect to the chemical potential:

∂W

∂µ
= −T̃rG−1∂G

∂µ
+ T̃r

∂Σ

∂µ
G + T̃r Σ

∂G
∂µ

− δΦ

δG

∂G
∂µ

. (3.42)

Using the definition of the Φ-functional, Eq. (3.31), this reduces to:

∂W

∂µ
= T̃r

∂Σ

∂µ
G − T̃rG−1∂G

∂µ
. (3.43)
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To compute the derivative of the self-energy, one must consider its definition in
terms of G, Eq. (3.28), which gives:

∂Σ

∂µ
=

∂G−1
0

∂µ
− ∂G−1

∂µ
= 1 + G−2∂G

∂µ
, (3.44)

where the fact that the inverse of the free propagator depends linearly on the
chemical potential (note that this is hidden inside the Matsubara frequencies) has
been used. Plugging this into Eq. (3.43), one finds:

∂W

∂µ
= T̃rG =

∑
k,ν

ezνηG(k, zν) = β
∑

k

∫ ∞

−∞

dω

2π
f(ω)A(k, ω) , (3.45)

where the Matsubara summation has been performed according to the techniques
described in Appendix C. Using the thermodynamical relation between ln Z and
Ω, Eq. (2.11), as well as the definition of the momentum distribution, Eq. (2.72),
one obtains the result:

∂Ω

∂µ
= −

∑
k

n(k) . (3.46)

This equation might seem trivial at first sight, because it arises from the combina-
tion of Eqs. (3.40) and (3.41). Yet, one should notice that each side of the equation
has a very different origin. While on the left hand side one finds information related
to the macroscopic properties of the system through the grand-canonical potential
Ω, the right hand side contains information on the microscopic properties of the
system through the Green’s function and the momentum distribution arising from
it. The connection between both sides is possible thanks to the Luttinger-Ward
formalism.

In practice, all our calculations will be done at fixed density (or, equivalently,
at a fixed total number of particles). In that case, the counterparts to Eqs. (3.40)
and (3.41) are inverted to yield the chemical potential of the system. Doing this
in each equation, one obtains two different chemical potentials. The microscopic
chemical potential, µ̃, is obtained from the inversion of the following equation:

ρ =
∑

k

∫ ∞

−∞

dω

2π
A(k, ω, µ̃)f(ω, µ̃) , (3.47)

which comes directly from Green’s function theory and where the dependence
of both the spectral function and the Fermi-Dirac distribution on µ̃ have been
considered explicitly. On the other hand, the macroscopic chemical potential, µ,
comes from the thermodynamical expression:

µ(ρ, T ) =
∂

∂ρ

F (ρ, T )

V

∣∣∣∣
T

, (3.48)
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3.3. Luttinger-Ward partition function

where F is the free-energy and T is the temperature of the system. Note that the
free energy can be obtained from the total energy, E, and the entropy, S, using
the relation:

F (ρ, T ) = E(ρ, T )− TS(ρ, T ) . (3.49)

In the following, the Luttinger-Ward formalism will be used to compute the entropy
of the system, while the total energy will be obtained using the GMK sum rule.
The derivative as a function of the density of the free energy, obtained from this
means, µ, should yield the same result as the microscopic µ̃ in any conserving
approach. Yet, some approximations (like the BHF approach) do not fulfill this
condition and large differences between µ and µ̃ can appear due to the lack of
consistency between the microscopic and the macroscopic approaches.

In the context of nuclear matter, the issue of thermodynamical consistency
is often discussed in terms of the Hugenholtz-van Hove theorem [Hug58]. This
is a local condition for thermodynamical consistency, which is restricted to the
surroundings of the saturation density at T = 0. Consider the derivative of the
energy per unit volume rewritten in terms of the energy per particle, E/A:

µ =
∂

∂ρ

E

V
=

∂

∂ρ
ρ
E

A
= e + ρ

∂

∂ρ

E

A
. (3.50)

Since the saturation density, ρ0, is the point where the energy per particle has a
minimum, the previous equation states that:

µ(ρ = ρ0) =
E(ρ = ρ0)

A
. (3.51)

From a microscopic point of view, the chemical potential at zero temperature is
given by the Fermi energy:

µ̃(ρ) = εF , (3.52)

which is usually defined as the quasi-particle energy at the Fermi surface:

εF = εqp(k = kF ) , (3.53)

with kF =
(

6π2ρ
ν

)1/3

, the Fermi momentum and ν the degeneracy of the system.

The Hugenholtz-van Hove theorem then states that the microscopic chemical po-
tential should equal the energy per particle at saturation:

µ̃(ρ0) =
E(ρ0)

A
. (3.54)

This theorem is, for instance, violated by several MeVs within the BHF approach,
although the inclusion of higher order correlations within the Goldstone expansion
might lead to more consistent results [Bal90; Cze02].
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3. Luttinger-Ward Formalism

The reason for the lack of thermodynamical consistency of the BHF approach
lies in the so-called rearrangement terms. These appear when one takes the deriva-
tive of Eq. (3.50) on the expression of the total energy of the system given by BHF
approach. This yields two terms corresponding to the Fermi energy of Eq. (3.53),
plus a derivative of the in-medium interaction (the so-called G-matrix) with respect
to the density, which takes into account the effect that a change in the density has
in the in-medium interaction. A rigorous calculation of this rearrangement terms
is quite complicated [Bru60]. However, it is necessary if one wants to understand
the relation between the BHF approach and the Landau theory of Fermi liquids
[Bro71].

3.4 Free partition function

As a first application of the Luttinger-Ward formalism, the partition function
of a non-interacting non-relativistic fermionic system will be computed. This is
useful because it helps in setting all the sign conventions as well as in revising the
contour integral techniques that shall be needed in the following chapters. For a
non-interacting system, both Σ and Φ vanish and thus the partition function is
given by:

ln Z0 = T̃r ln
[
−G−1

0

]
. (3.55)

Using the expression for the single-particle propagator in momentum and Matsub-
ara frequency space, Eq. (2.105), and writing explicitly the trace, this becomes:

ln Z0 =
∑
k,ν

ezνη ln [ε0(k)− zν ] , (3.56)

where the free quasi-particle energy is given by ε0(k) = k2

2m
. This sum over Mat-

subara frequencies is explicitly computed in Appendix C [see Eq. (C.13)]. Note
that it is especially delicate because of the cut of the logarithm function in the
real axis. Once this is taken into account, one obtains:

ln Z0 = −β
∑

k

∫ ∞

−∞

dω

2π
2 Im

{
ln [ε0(k)− ω+]

}
. (3.57)

Now one faces the problem of computing the imaginary part of the logarithm.
Yet, this imaginary part is essentially the phase of the complex number inside the
logarithm. The imaginary part of the logarithm depends only on the sign of the
real part of its argument and gives1:

Im
{

ln [ε0(k)− ω+]
}

=


0, ε0(k)− ω > 0

−π, ε0(k)− ω < 0 .
(3.58)

1To obtain this result one has to work in the Riemann sheet where the logarithm has a cut
along the negative axis and it is such that ln 1 = 0.

77



3.4. Free partition function

This is due to the fact that, when taking the limit of η → 0 and whenever the
real part of the argument is negative, one approaches the cut in the real axis from
below, giving a phase of −π. On the other hand, when the real part inside the
logarithm is positive, the associated phase is simply zero. The previous expression
for the imaginary part sets a restriction in the integration limits of Eq. (3.57).
This is now rewritten as:

ln Z0 = β
∑

k

∫ ∞

ε0(k)

dω f(ω) =
∑

k

ln
[
1 + e−β[ε0(k)−µ]

]
. (3.59)

The last step in the previous equation is obtained by integrating explicitly the
Fermi-Dirac distribution with respect to the energy. Finally, one finds the following
expression for the grand-canonical potential:

Ω0 = − 1

β

∑
k

ln
[
1 + e−β[ε0(k)−µ]

]
. (3.60)

From this expression, the remaining thermodynamical observables of a free fermion
system at finite temperature can be obtained. The total number of particles is for
instance given by:

N0 = 〈N〉0 = −∂Ω0

∂µ
=

∑
k

1

1 + eβ[ε0(k)−µ]
=

∑
k

f [ε0(k)] . (3.61)

This is the same quantity that one would get from Green’s function theory and
thus the results are thermodynamically consistent. One can also easily compute
the entropy of a free system of fermions:

S = −∂Ω0

∂T
=−

∑
k

{
f [ε0(k)] ln

[
f [ε0(k)]

]
+

[
1− f [ε0(k)]

]
ln

[
1− f [ε0(k)]

]}
=

∑
k

σ [ε0(k)] . (3.62)

In the last line, the statistical weighting function:

σ(ω) = −
{

f (ω) ln
[
f (ω)

]
+

[
1− f (ω)

]
ln

[
1− f (ω)

]}
, (3.63)

has been introduced for further convenience. Finally, let us notice that the total
energy of a non-interacting system of fermions can also be obtained by means of
the thermodynamical relation:

E − µN0 =
∂βΩ0

∂β
=

∑
k

k2

2m
f [ε0(k)]− µ

∑
k

f [ε0(k)] . (3.64)

Note that the first term in the previous expression corresponds to Eq. (2.111),
which was obtained directly from the microscopic GMK sum rule.
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3. Luttinger-Ward Formalism

Eq. (3.60) corresponds to the grand-canonical potential of a non-interacting
system of fermions. It can, of course, be obtained by other means not involving
the Luttinger-Ward formalism. In [Neg88], for instance, it is obtained from a
path integral formulation of quantum statistical mechanics, while in [Mat92] it is
computed from a sum over all the allowed thermal averaged states of the system.
All of these methods have their corresponding expressions for interacting systems,
but they lack a property that makes the Luttinger-Ward particularly attractive,
i.e. its direct connection to the Green’s function. In the following section, this
advantage will be exploited to obtain expressions for the partition function of a
correlated system of fermions in terms of the single-particle propagator.

3.5 Partition function of a correlated system of

fermions

For conceptual as well as for computational purposes, it is interesting to express
the Luttinger-Ward functional in terms of magnitudes that can be computed from
the Green’s function approach such as, for instance, the spectral function A(k, ω).
This will be done in this section, where the expressions will be kept as generic as
possible so that they can be easily reduced to the non-interacting or the quasi-
particle cases. Let us start with the Luttinger-Ward functional for the partition
function:

W = T̃r ln
[
− G−1

]
+ T̃r ΣG − Φ . (3.65)

Each trace corresponds to a Matsubara summation that has to be explicitly com-
puted. Let us start with the first term:

W1 =
∑
k,ν

ezνη ln
[
−G−1(k, zν)

]
. (3.66)

As it has been previously explained, the logarithm function has a cut in the real
axis of its arguments, which needs to be taken care of when performing the sum.
Yet, both the logarithm and the one-body Green’s function fulfill the condition of
Eq. (C.14) and thus the general formula of Eq. (C.15) can be used to perform the
sum:

W1 =−β
∑

k

∫ ∞

−∞

dω

2π
f(ω) 2 Im

{
ln

[
−G−1(k, ω+)

] }
, (3.67)

where now the inverse propagator is computed slightly above the real axis. Note
that, in order to carry out the sum, one has to take into account that the inverse
propagator does not have any complex pole for complex z, as shown in Section
2.2.4. The imaginary part of the logarithm is related to the phase of its argument.
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3.5. Partition function of a correlated system of fermions

In the correlated case, when the inverse propagator has a non-zero imaginary part,
this can be rewritten as follows:

Im
{

ln
[
−G−1(k, ω+)

] }
= Im

{
ln

[
−ReG−1(k, ω)− iImG−1(k, ω+)

] }
=

= Im
{

ln
[
−ReG−1(k, ω) + iIm Σ(k, ω+)

] }
=

= arg

[
−ReG−1(k, ω)− i

1

2
Γ(k, ω)

]
. (3.68)

The width Γ has been introduced according to Eq. (2.128). The function arg[z]
gives the phase of the complex number z (also called its argument, which should
not be confused with the argument of the logarithm!). The computation of this
phase is a little tricky and needs to be performed with care. First of all, note
that since Γ(k, ω) is positive definite [see Eq. (2.129)], the complex number z =
−ReG−1(k, ω)− i1

2
Γ(k, ω), whose argument one is trying to find, lies always in the

quadrants III and IV of the complex plane. More precisely, for ReG−1 < 0, z is in
quadrant IV. The argument of z is thus simply given by the arctangent function
according to:

arg

[
−ReG−1 − i

1

2
Γ

]
= arctan

(
Γ

2ReG−1

)
, for ReG−1 < 0. (3.69)

The situation is somewhat different for ReG−1 > 0. In that case, z is a complex
quantity in quadrant III. This corresponds to phases in the interval

(
−π

2
,−π

)
.

Yet, since the arctan(z) function yields values in the interval
(
−π

2
, π

2

)
, it cannot

reproduce the angles in this quadrant. It is easy to check that, in this case, an extra
factor of π is needed so that the argument and the value given by the arctangent
match:

arg

[
−ReG−1 − i

1

2
Γ

]
= arctan

(
Γ

2ReG−1

)
− π , for ReG−1 > 0. (3.70)

Eqs. (3.69) and (3.70) can be collected together in the following compact expres-
sion:

Im
{

ln
[
−G−1(k, ω+)

] }
= arctan

[
λ(k, ω)

]
− πΘ

[
ReG−1(k, ω)

]
, (3.71)

where the function λ is defined as:

λ(k, ω) =
Γ(k, ω)

2ReG−1(k, ω)
, (3.72)

and corresponds to the ratio between the imaginary and the real parts of the
inverse propagator. Considering this final expression for the imaginary part of the
logarithm and inserting it into Eq. (3.67), one gets:

W1 = β
∑

k

∫ ∞

−∞

dω

2π
f(ω)

{
2πΘ

[
ReG−1(k, ω)

]
− 2 arctan

[
λ(k, ω)

]}
. (3.73)
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3. Luttinger-Ward Formalism

Let us now pay attention to the second term of Eq. (3.27). This is again given
by a trace, which can be rewritten as:

W2 =
∑
k,ν

ezνηΣ(k, zν)G(k, zν) . (3.74)

From Eqs. (2.63) and (2.125), it is clear that the object that is being summed in
the previous equation fulfills Eq. (C.14). Thus, the general formula Eq. (C.15) can
be applied once again to give:

W2 =−β
∑

k

∫ ∞

−∞

dω

2π
f(ω) 2 Im

{
Σ(k, ω+)G(k, ω+)

}
. (3.75)

This imaginary part can be rewritten in terms of the spectral function and the
width:

Im
{

Σ(k, ω+)G(k, ω+)
}

= Re Σ(k, ω+)ImG(k, ω+) + Im Σ(k, ω+)ReG(k, ω+)

=−1

2
Re Σ(k, ω)A(k, ω)− 1

2
Γ(k, ω)ReG(k, ω) , (3.76)

so that the second contribution to the partition function can be rewritten as:

W2 = β
∑

k

∫ ∞

−∞

dω

2π
f(ω)

[
A(k, ω)Re Σ(k, ω) + Γ(k, ω)ReG(k, ω)

]
. (3.77)

With W1 and W2 one obtains the following closed expression for the total
partition function of the system:

ln Z = β
∑

k

∫ ∞

−∞

dω

2π
f(ω)

[
2πΘ

[
ReG−1(k, ω)

]
− 2 arctan

[
λ(k, ω)

]
+A(k, ω)Re Σ(k, ω) + Γ(k, ω)ReG(k, ω)

]
− Φ .

(3.78)

This equation gives directly the thermodynamical observables of the system as a
function of the one-body Green’s function (note that all the quantities inside the
brackets can be derived from it). If one were able to compute exactly this Green’s
function as well as its corresponding Φ-functional, then the partition function
would be automatically given by the previous expression.

Eq. (3.78) has an extra nice feature, i.e. one can easily decouple the contri-
bution of (zero width) quasi-particles from the remaining terms. This is useful if
one is interested on the effects that correlations induce to the partition function,
because it allows to separate the contributions of the quasi-particle pole from the
rest of correlations. Take the first term in Eq. (3.78). For a fixed momentum, the
function:

ReG−1(k, ω) = ω − k2

2m
− Re Σ(k, ω) (3.79)
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3.5. Partition function of a correlated system of fermions

is, in nuclear matter, a monotonously increasing function of ω due to the soft
energy dependence of Re Σ. In this case, there is only one value in which ReG−1

becomes zero, given by the condition:

εqp(k) =
k2

2m
+ Re Σ(k, εqp(k)) . (3.80)

Note that this coincides with the quasi-particle energy of Eq. (2.132). One can
thus rewrite the step function as:

Θ
[
ReG−1(k, ω)

]
= Θ

[
ω − k2

2m
− Re Σ(k, ω)

]
= Θ

[
ω − εqp(k)

]
. (3.81)

One thus finds the following expression for the first term in ln Z:

WQP ≡ β
∑

k

∫ ∞

−∞
dωf(ω) Θ [ω − εqp(k)] =

∑
k

ln
[
1 + e−β[εqp(k)−µ]

]
, (3.82)

which is very close to the partition function of the free case, but with the free quasi-
particle energies, ε0(k), replaced by the full interacting quasi-particle energies,
εqp(k). The previous expression amounts for the following contribution to the
grand-canonical potential:

ΩQP = − 1

β

∑
k

ln
[
1 + e−β[εqp(k)−µ]

]
. (3.83)

This is one of the contributions to the total grand-canonical potential of a gas of
undamped (i.e. infinitely long-lived) quasi-particles. In a no-width approximation
(such as the Hartree-Fock approximation), however, this is not the only term in
the total partition function. Indeed, from Eq. (3.78) it is easy to see that, in the
limit where Γ → 0, both the ARe Σ term as well as the Φ-functional do yield a
non-vanishing contribution. As it will be seen in the following chapter, these give
sizeable and similar contributions in a mean-field approach.

One can obtain an alternative expression for the grand-canonical potential
within the Luttinger-Ward formalism by going back to Eqs. (3.67) and (3.75) and
using the following identity:

βf(ω) = − ∂

∂ω
ln

[
1 + e−β(ω−µ)

]
. (3.84)

Integrating by parts, one easily obtains:

ln Z =
∑

k

∫ ∞

−∞

dω

2π
ln

[
1 + e−β(ω−µ)

]
B(k, ω)− Φ , (3.85)

where the following B function has been introduced:

B(k, ω) =− ∂

∂ω
2Im

{
ln

[
− G−1(k, ω+)

]
+ Σ(k, ω+)G(k, ω+)

}
. (3.86)
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Different expressions for B can be obtained depending on whether the derivative
or the imaginary part is taken first. In this section, the derivative shall be taken
prior to the imaginary part. For the first term, the following result is obtained:

B1(k, ω) =−2Im

{
∂

∂ω
ln

[
− G−1(k, ω+)

]}
=−2Im

{
G(k, ω+)

[
1− ∂Σ(k, ω+)

∂ω

]}
=

=A(k, ω)

[
1− ∂Re Σ(k, ω)

∂ω

]
− ReG(k, ω)

∂Γ(k, ω)

∂ω
. (3.87)

The derivative of the second term is easily computed and can be split in two parts:

B2(k, ω) =
∂ReG(k, ω)

∂ω
Γ(k, ω) + ReG(k, ω)

∂Γ(k, ω)

∂ω
, (3.88)

and

B3(k, ω) =
∂Re Σ(k, ω)

∂ω
A(k, ω) + Re Σ(k, ω)

∂A(k, ω)

∂ω
. (3.89)

Now one can write a compact expression for the B function:

B(k, ω) =A(k, ω) +
∂A(k, ω)

∂ω
Re Σ(k, ω) +

∂ReG(k, ω)

∂ω
Γ(k, ω) . (3.90)

Note that this result arises from the cancellation of the last two terms in Eq. (3.87)
with the two first terms of both Eqs. (3.88) and (3.89). This result was previously
obtained in Refs. [Wei98a; Wei98b].

The expression for the partition function of Eq. (3.85) has some interesting
properties. On the one hand, it has a very intuitive form. Its first term is a con-
volution in energies of the factor ln

{
1 + e−β[ω−µ]

}
, which is basically the thermal

factor appearing in the free partition function, times the B function. This is the
same kind of generalization that one obtains, for instance, when going from the
free momentum distribution, Eq. (2.110), to the correlated one, Eq. (2.72). In that

case, the convolution is between the Fermi-Dirac distribution,
[
1 + eβ[ω−µ]

]−1
, and

the A spectral function. In the same way that A(k, ω) accounts for the effect of
correlations in the momentum distribution, one can say that the function B(k, ω)
incorporates the effects of the interaction to the partition function. Among these
effects, one finds the finite width of the quasi-particles in the medium as well as
the rest of correlations induced by the interaction. Note, however, that this is
not the only contribution to the partition function: the Φ-functional also plays
an important role in the thermodynamical properties of the system! It is also
interesting to note that, in contrast to Eq. (3.78), Eq. (3.85) cannot be easily split
in terms of the contributions of quasi-particles plus other correlation effects. It is
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3.6. Entropy of a correlated system of fermions

only when one takes a no-width approximation for B(k, ω) that a part of Eq. (3.85)
becomes the quasi-particle contribution of Eq. (3.83). In this sense, this is differ-
ent to Eq. (3.78), where this contribution comes out automatically (with the only
restriction that the real part of the inverse propagator has a single zero).

3.6 Entropy of a correlated system of fermions

Once the partition function is known, one can readily compute the grand-canonical
potential Ω. The entropy of the system then follows from the thermodynamical
relation:

S =− ∂Ω

∂T

∣∣∣∣
µ

. (3.91)

Using the expressions that have been obtained for ln Z, Eqs. (3.67) and (3.75),
different results for the entropy can be found. In the following, these results will
be discussed.

Consider first Eq. (3.78). The stationarity of Ω with respect to changes in G is
very useful, because it implies that, when taking the temperature derivative, only
the explicit dependence of the Fermi functions is needed. This stationarity is a very
attractive feature of the Luttinger-Ward approach, because it allows to skip the
(usually involved) thermal dependences of the dynamical quantities and therefore
defines a way to compute analytical expressions that relate the thermodynamical
observables to the microscopic properties. In the case of the correlated entropy,
this yields:

S =
∑

k

∫ ∞

−∞

dω

2π

∂f(ω)

∂T

{
2πΘ

[
ReG−1(k, ω)

]
− 2 arctan

[
λ(k, ω)

]
+A(k, ω)Re Σ(k, ω) + Γ(k, ω)ReG(k, ω)

}
− ∂TΦ

∂T
.

(3.92)

This expression gives the entropy of a correlated system of fermions as a function of
G, Σ and Φ and it is the fundamental equation from which most of our results will
be derived. The usefulness and applications of this formula in the context of Fermi-
liquids were extensively discussed in the pioneering work of Carneiro and Pethick
[Car75]. Most of what is discussed below can be found in this reference, which has
been the main guideline in our discussions of the many-body approximations to
the entropy.

One can divide the expression of Eq. (3.92) in two terms:

S = SDQ + S ′ , (3.93)
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given by:

SDQ =
∑

k

∫ ∞

−∞

dω

2π

∂f(ω)

∂T
Ξ(k, ω) (3.94)

and

S ′ =− ∂

∂T
TΦ[G] +

∑
k

∫ ∞

−∞

dω

2π

∂f(ω)

∂T
A(k, ω)Re Σ(k, ω) , (3.95)

where the function Ξ(k, ω):

Ξ(k, ω) = 2πΘ
[
ReG−1(k, ω)

]
− 2 arctan λ(k, ω) + Γ(k, ω)ReG(k, ω) (3.96)

has been introduced. Notice that this gathers together the term yielding the quasi-
particle approximation to the partition function and two terms which depend on
the width of the quasi-particle. In this sense, SDQ is a dynamical quasi-particle
entropy which partially takes into account the correlations of the dressed particles
in the medium, including the finite width effects, as seen by the fact that it is com-
puted with a non-zero Γ. The dynamical quasi-particle entropy can be rewritten
in a more intuitive way by using the following useful relation:

∂f(ω)

∂T
=−∂σ(ω)

∂ω
, (3.97)

between the Fermi-Dirac distribution and the statistical weighting function of
Eq. (3.63). After a partial integration, one finds that the following expression
for the dynamical quasi-particle entropy holds:

SDQ =
∑

k

∫ ∞

−∞

dω

2π
σ(ω)B(k, ω) , (3.98)

provided that the B spectral function is defined as:

B(k, ω) =
∂Ξ(k, ω)

∂ω
. (3.99)

The expression Eq. (3.98) has several interesting properties. In the first place, it
includes correlations in a very intuitive form, by means of the convolution of the B
spectral function, which takes into account the finite-width (or energy-dependent)
effects induced by correlations, and a weighting factor, σ(ω), which carries the
thermodynamical information of the system. In addition, in the free and the
Hartree-Fock cases the B function reduces to a delta peak and SDQ becomes the
expected expression for the entropy of a system of interacting quasi-particles. This
does not mean, however, that in more complete approximations SDQ neglects the
finite width of quasi-particles, as has already been discussed. Furthermore, B(k, ω)
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3.6. Entropy of a correlated system of fermions

shares some properties with the usual spectral function, A(k, ω). Their relationship
will be explored in Chapter 6. Before that, however, it will be interesting to study
the properties of the Ξ function and its dependence in energy. This will allow for a
better understanding on the microscopic effects into the dynamical quasi-particle
entropy.

Let us thus analyze the properties of the function Ξ(k, ω). The first term of Ξ
in Eq. (3.96) is a step function with the argument ReG−1. For a fixed momentum,
Ξ1 equals zero at energies below the quasi-particle energy and 2π for larger values.
Using Eq. (3.97), one can see that the contribution of Ξ1 to the entropy is given
by:

SDQ
1 =

∑
k

∫ ∞

−∞

dω

2π

∂σ(ω)

∂ω
2πΘ

[
ω − εqp(k)

]
=

∑
k

∫ εqp(k)

−∞
dω

∂σ(ω)

∂ω
=

=
∑

k

σ
[
εqp(k)

]
≡ SQP . (3.100)

This expression could have been obtained alternatively by taking the temperature
derivative of Eq. (3.83). It corresponds to the entropy of a system of undamped
quasi-particles with real quasi-particle energies given by Eq. (3.80). Whenever
quasi-particles have long life-times, this should be a good approximation to the
entropy. Indeed, for any many-body approximation where the quasi-particle en-
ergies are real (such as the Hartree-Fock case, for instance) the full dynamical
quasi-particle entropy is simply given by Eq. (3.100).

The remaining terms in Ξ can be rewritten as a function of λ(k, ω):

Ξ2(k, ω) =−2 arctan
[
λ(k, ω)

]
, (3.101)

for the second term and:

Ξ3(k, ω) =
2λ(k, ω)

1 + λ2(k, ω)
, (3.102)

for the third one. Their total contribution to the entropy is therefore given by:

SDQ
2 =

∑
k

∫ ∞

−∞

dω

2π

∂f(ω)

∂T

{
2λ(k, ω)

1 + λ2(k, ω)
− 2 arctan

[
λ(k, ω)

]}
. (3.103)

This expression involves a non-vanishing width Γ and it can thus be thought as
a life-time correction to the dynamical quasi-particle entropy. It is clear that for
infinitely long lived quasi-particles (Γ=0), this contribution will be zero, but for
large widths it can have a non-negligible effect on the total entropy.

In order to understand qualitatively the behavior of Ξ(k, ω) as a function of
the energy, in Fig. 3.4 the different contributions Ξ1, Ξ2 and Ξ3 as well as the
total Ξ are shown for a fixed momentum, k = kF . These have been obtained
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Figure 3.4: Ξ1 (dotted line), Ξ2 (dashed line) and Ξ3 (dot-dashed line)
contributions to the total Ξ function (full line) as a function of the energy
for a fixed momentum k = kF . This has been computed at ρ0 for T = 10
MeV. The arrow signals the position of the quasi-particle energy at this
momentum, εqp(k = kF ) = −23.2 MeV.

for nuclear matter at the experimental saturation density, ρ0 = 0.16 fm−3, and a
temperature of T = 10 MeV within the SCGF approach that will be discussed in
Chapter 5. The quasi-particle contribution Ξ1 is shown in a dotted line. For a fixed
momentum, this is just a step function which goes from 0 to 2π once the energy
ω is above the corresponding quasi-particle energy (in this case, εqp(kF ) = −23.2
MeV). Note that for quasi-particles without width, this step function is the only
contribution to SDQ.

The remaining contributions, Ξ2 (dashed lines) and Ξ3 (dot-dashed lines), mod-
ulate the step-like behavior of Ξ around the quasi-particle energy and soften its
energy dependence. This effect is however subtle and has to be studied with care.
Consider first the λ variable around the quasi-particle energy, which is shown in
Fig. 3.5 for the same conditions as in Fig. 3.4. There is a pronounced structure
around the quasi-particle energy which denotes a singularity of λ. Its appearance
is related to the fact that the denominator of Eq. (3.72) goes to zero close to εqp(k),
while the width Γ is a positive definite quantity and cannot cancel the singular-
ity. Moreover, the value of λ close to εqp(k) has a different sign according to the
direction in which the limit ω → εqp(k) is taken:

lim
ω→εqp(k)±

λ(k, ω) = lim
ω→εqp(k)±

Γ(k, ω)

2[ω − εqp(k)]
∼ Γ(k, εqp(k))

0±
= ±∞ . (3.104)
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Figure 3.5: λ(k, ω) at the Fermi surface k = kF as a function of the energy.
The conditions are the same as in the previous figure.

Thus λ becomes minus (plus) infinity if one takes the limit to the quasi-particle
energy from the left (right). As a consequence of this behavior, the Ξ2 contribution
is discontinuous at ω = εqp(k). When coming from the left to the quasi-particle
energy, λ becomes infinity, the arctan function yields a factor −π

2
and Ξ2 tends

to π. When the limit is taken from the other side, Ξ2 becomes −π. Yet, this
discontinuity is exactly canceled by the step function in Ξ1 which, above the pole,
yields the needful 2π value to obtain a continuous Ξ function around εqp(k). On
the other hand, close to the quasi-particle pole, the Ξ3 contribution has a node [see
Eq. (3.102)]. But it is also close to this pole that λ is maximal, as seen in Fig. 3.5,
and thus it is around this value that one finds the larger non-zero contributions of
Ξ3 to Ξ. As a consequence of these interplays, the total Ξ function, as seen in the
full line of Fig. 3.4, is continuous around the quasi-particle energy.

Les us take a look at the regions which are far away from the quasi-particle
energy. For these energies, λ tends to become very small. As a consequence, Ξ2

and Ξ3 are almost negligible. In addition, both contributions have opposite signs
in the whole energy range and thus they cancel each other to some extent in the
high (very positive) and low (very negative) energy regions. The total Ξ functions
is thus a continuous step-like function which yields zero for energies below εqp(k)
and 2π for energies far above the quasi-particle pole. When the energies are close
to this value, the different contributions to Ξ become active and this increases
rapidly from 0 to 2π in a continuous way.

Now that the energy dependence of the Ξ function has been explored, one
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3. Luttinger-Ward Formalism

can easily infer some properties of the B(k, ω) function, which is defined as its
derivative with respect to the energy, Eq. (3.99). It is quite clear that, since Ξ is
almost constant far away from the quasi-particle energy, the B spectral function
will be very small for energies which are not close to this energy. The non-zero
contributions of this function will be concentrated around εqp(k) where, in addition,
since Ξ is a monotonously increasing function of ω, it will be positive. More
interestingly, from the limiting values of the Ξ function at high and low energies,
one can derive the following sum rule:∫ ∞

−∞

dω

2π
B(k, ω) =

1

2π
Ξ(k, ω)

∣∣∞
−∞ = 1 , (3.105)

which is exactly the same sum rule that the usual spectral function fulfills. Fur-
thermore, B(k, ω) is also peaked around the quasi-particle energy and they describe
somehow the effects of the energy-dependent correlations in two different observ-
ables (the entropy for B, the momentum distribution for A). All in all, both
functions share some common properties, which will be studied in more detail in
Chapter 6.

In the previous section the partition function has been rewritten in terms of
the convolution of a statistical factor and a B function that accounts for the
correlations in the formalism [see Eq. (3.85)]. One can find an expression for the
entropy of the correlated system starting from this expression. Considering once
again that the temperature derivative only affects the explicit temperature factors
and using the fact that:

σ(ω) =
∂

∂T
T ln

[
1 + e−β(ω−µ)

]
, (3.106)

one obtains the following equation for the entropy:

S =
∑

k

∫ ∞

−∞

dω

2π
σ(ω) B(k, ω)− ∂

∂T
TΦ . (3.107)

In this case, the entropy should be calculated from the B spectral function and
the Φ functional. The B function has been already computed by taking the en-
ergy derivative of Eq. (3.86) before the imaginary part is computed. Here, the
inverse procedure will be followed and the imaginary part will be taken prior to
the derivative. One obtains the following relation between Ξ and B:

B(k, ω) =
∂

∂ω
Ξ(k, ω) +

∂Re Σ(k, ω)

∂ω
A(k, ω) + Re Σ(k, ω)

∂A(k, ω)

∂ω
. (3.108)

This can be used to find a relation between B and B. Note, in particular, that
the B3 contribution to B in Eq. (3.89) equals the last two terms of the previous
equation. It is then clear that, since B is defined as the partial derivative of Ξ with
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3.6. Entropy of a correlated system of fermions

respect to the energy, the following relation between the B and the B spectral
functions holds:

B(k, ω) = B1(k, ω) + B2(k, ω)

= A(k, ω)

[
1− ∂Re Σ(k, ω)

∂ω

]
+

∂ReG(k, ω)

∂ω
Γ(k, ω) . (3.109)

The previous equation is also important because it gives B as a function of A
and the real and imaginary parts of the propagator explicitly. Note, in addition,
that the first term in the previous expression equals the spectral function times
something that is very close to the Z-factor defined in Eq. (2.136). Actually, in a
no-width approximation as that of Eq. (2.142), the Z-factor appearing in front of
the delta function would be exactly canceled. As a consequence of this cancellation,
the effects of correlations in the Z-factor (such as the depletion of the population
of states due to re-scattering) do not appear in the entropy of the system. In such
an approximation, the third term of Eq. (3.109) would become zero and the B
function would become a delta function at the quasi-particle energy:

B(k, ω) = (2π)δ[ω − εqp(k)] , (3.110)

which would immediately imply that the entropy is given by the usual quasi-
particle expression,

SQP =
∑

k

σ[εqp(k)] . (3.111)

The following decomposition of the dynamical quasi-particle:

SDQ = SA
1 + SA

2 , (3.112)

in the two terms:

SA
1 =

∑
k

∫ ∞

−∞

dω

2π
σ(ω)A(k, ω) (3.113)

and

SA
2 =

∑
k

∫ ∞

−∞

dω

2π
σ(ω)

{
∂ReG(k, ω)

∂ω
Γ(k, ω)−A(k, ω)

∂Re Σ(k, ω)

∂ω

}
, (3.114)

is also illustrative. This justifies somehow a naive generalization to the expression
of the entropy that has been used in the literature [Coh60; Sed07] and which
consists in approximating the entropy by Eq. (3.113). This is, of course, not based
on basic principles, but it would be a natural extension of Eq. (2.72) to the case
of the entropy. The dynamical quasi-particle entropy, however, goes beyond the
naive quasi-particle approach. It introduces the corrections of Eq. (3.114) which,
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3. Luttinger-Ward Formalism

as shall be seen later on, are non-negligible. Moreover, the contribution of each
of the two terms can be very different depending on the density and temperature
regimes considered.

The discussion, up to this point, has been limited to the SDQ term of Eq. (3.94).
Nothing has been said so far about the S ′ contribution of Eq. (3.95). This factor
is supposed to account for high order correlations and, as it was shown in Ref.
[Car75], it arises from the cancellation between two very similar terms, i.e. the
temperature derivative of TΦ and the second term of Eq. (3.95). The only non-zero
contributions that survive this cancellation come from terms in the perturbation
expansion of Ω that have an even number of vanishing energy denominators. These
were extensively analyzed in Ref. [Car75] and they were indeed identified as the
terms that lead to the T 3 ln T dependence of the specific heat of He3. The dia-
grammatic analysis of this quantity is however quite complicated and shall not be
discussed here. The most important conclusion that will be borrowed from Ref.
[Car75] is that the terms with vanishing energy denominators yield δ functions in
the diagrammatic contributions to the entropy. These correspond to real transi-
tions in the system which, however, become negligible at low temperatures, due to
phase space restrictions. All in all, S ′ is small as long as the calculations are done
in the low temperature regime. For the case of nuclear matter, temperatures up
to T = 20 MeV will be taken into account, which can be considered sufficiently
small in the nuclear physics context.

The S ′ contribution will only be computed exactly within the Hartree-Fock
theory in the following chapter. It will yield exactly zero, as expected for a quasi-
particle approximation without vanishing energy denominators. For the more so-
phisticated computations of the SCGF method, S ′ will be considered to be negli-
gible. In this way, the formalism will be simplified because there will be no need
to evaluate the Φ functional. This assumption, of course, needs to be validated,
and that will be done in the final part of this Thesis. Neglecting S ′ will lead to
thermodynamical consistent results, and this will be taken as a confirmation of the
fact that this contribution is small in the density and temperature range explored.
The fact that S ′ is so small within the ladder approximation might also be taken
as a justification of the idea that short-range correlations are not so important in
the calculation of the Φ functional (and the S ′ contribution), which might be more
affected by long-range correlations as well as by finite size effects. In addition,
since it is precisely from the S ′ contribution that all the anomalous temperature
dependences (of the type T 3 ln T ) of the entropy arise, restricting the calculations
to the dynamical quasi-particle entropy SDQ will only give analytical (S ∼ T, T 3)
temperature dependences.

Finally, as it has been previously noted, the Φ-functional approach can be
used in the description of non-equilibrium systems. Within those approaches, it is
important to find quantities that behave somehow like an entropy in equilibrium
systems. These quantities must satisfy some kind of H-theorem that guarantees
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3.6. Entropy of a correlated system of fermions

that their time evolution is such that they always increase with time. In Ref.
[Iva00], it was shown that, within certain Φ-derivable approaches out of equilib-
rium, an H-theorem could indeed be proved for a non-equilibrium kinetic entropy
expressed in terms of the full Green’s function and the self-energy. When consid-
ering systems in thermal equilibrium, this kinetic entropy reduces to the sum of
SDQ, the local or Markovian part of the kinetic entropy (Sloc in the language of
Ref. [Iva00]), plus S ′, the memory or non-Markovian part of the entropy (Smem).
This expression, thus, coincides with the entropy of Eq. (3.93) and justifies the
different physical origin of the SDQ and S ′ contributions.
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Chapter 4

Hartree-Fock Approximation

The first approximation to the nuclear many-body problem that will be treated
in this Thesis is the Hartree-Fock (HF) approach. Although the results obtained
within this approximation from microscopic NN potentials are not realistic, it will
be instructive to consider this method from first grounds. This will serve as an
introduction to some interesting concepts (such as self-consistent renormalization)
that will be used in the following chapters. In addition, this more or less easy-
to-treat approximation is a testing ground for the more sophisticated many-body
methods that will be used in the following chapters and allows for more transparent
conclusions. Furthermore, in some fields of physics, especially in atomic physics,
where correlations are not as relevant as in strongly interacting matter, the HF
approximation is extensively used [Fis77]. In nuclear physics, the HF approxima-
tion is employed whenever one works with phenomenological density-dependent
potentials, such as the Skyrme or the Gogny interactions, which mimic some of
the many-body correlations that are lacking in the approach. In this chapter, the
extension to finite temperature of the HF approach will be thoroughly described.
The microscopic as well as the thermodynamical properties obtained within this
approximation will provide us with a first look to the different aspects of the
nuclear matter problem at finite temperatures.

4.1 Formulation in terms of Σ

In terms of the self-energy, the HF approximation arises from the two lowest order
diagrams of Fig. 4.1. An analytical expression for these diagrams can be de-
rived using the Feynman rules for the one-body propagator of Appendix B. From
Eq. (B.3), the self-energy is found by eliminating the two free propagators in the
extremes. This yields the following energy-independent expression:

ΣHF (k) =
−i

−iβ

∑
ν1

ezν1η

∫
d3k1

(2π)3
〈kk1|V |kk1〉A G0(k1, zν1) . (4.1)

93



4.1. Formulation in terms of Σ

= +ΣHF

Figure 4.1: Diagrammatic representation of the Hartree-Fock self-
energy.

The sum over Matsubara frequencies can be performed analytically with the help
of the techniques discussed in Appendix C. To compute it, the sum is transformed
into an integral by applying Cauchy’s theorem to a complex function formed by
the propagator times −βf(z). This last function has poles of unit residue at the
Matsubara frequencies, which is the reason why one can transform the sum into
an integral. The circuit C (see Fig. C.1) over which one integrates encircles the
Matsubara frequencies in the positive sense. One can then deform this circuit
to another one in which only the pole of the free single-particle propagator at
z = ε0(k) is encircled in the negative sense. Applying the Cauchy theorem to this
pole, one obtains the result:

1

β

∑
ν1

ezν1ηG0(k1, zν1) = f [ε0(k1)] , (4.2)

which inserted in the expression for the self-energy yields:

ΣHF (k) =

∫
d3k1

(2π)3
〈kk1|V |kk1〉A f [ε0(k1)] . (4.3)

This term has a well-known intuitive explanation. The direct self-energy (which
would arise from considering only the direct term of the matrix element of the
two-body interaction) is the “strength” that a fermion of momentum k feels when
it interacts (via the bare interaction) with the rest of occupied states of momentum
k1 (note the occupation factor f [ε0(k1)]). There is also a physical interpretation
for the exchange contribution: an initial nucleon of momentum k scatters with
the medium and ends up in a momentum state k1. In its turn, a nucleon from
the medium with initial momentum k1 scatters to a momentum k and, since both
nucleons are indistinguishable, this process has to be considered in the calculation
of the self-energy. This also justifies the name of the term, since the initial nucleon
has been exchanged for the final one. In terms of the single-particle propagator,
these two processes are shown in Fig. 2.3.

The HF approximation, however, goes beyond such a simple intuition. Com-
puting the self-energy is only the first step to obtain the full HF propagator, which
should be obtained from Dyson’s equation:

GHF (k, z) =
1

z − k2

2m
− ΣHF (k)

. (4.4)
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+ + + + +

+ + + + + ...

Figure 4.2: Complete single-particle propagator in the Hartree-Fock
approximation.

Diagrammatically speaking, Dyson’s equation sums the expansion of the Green’s
function obtained from the iteration of irreducible self-energy pieces. Thus, in the
propagator of the HF approximation, not only diagrams (a) and (b) of Fig. 2.3,
but also those of Fig. 4.2 are included. Note that by means of Dyson’s equation
a formal sum over an infinite series of diagrams, which includes terms to all or-
ders in the perturbation expansion, has been performed. Among these diagrams
one finds the iterated second order diagrams (a)-(d) of Fig. 2.4 as well as some
other contributions to higher orders. Therefore, the HF propagator does not only
account for the effect of a single (direct and exchange) scattering due to the bare
potential, but it also includes a whole subset of infinite possible iterated scatter-
ings (with mixed direct and exchange contributions) between the initial and the
final nucleonic states.

4.2 Self-Consistent Hartree-Fock

The HF approximation sums an infinite series of diagrams when the one-body
propagator is computed by means of Dyson’s equation. Nevertheless, as already
explained in Chapter 2, one can sum a whole new bunch of diagrams in a relatively
simple way by means of the self-consistent renormalization procedure. In terms
of diagrams, this amounts to replacing all the free propagators in the self-energy
diagrams by dressed propagators. For the HF approach, this is shown in detail in
Fig. 4.3.

As commented in Section 2.7, self-consistent renormalization is implemented
formally by means of an iterative procedure. Let us consider this procedure for
the HF case. In a first step, one would compute a self-energy Σ(1) according to the
diagrams of Fig. 4.1. Then, using Dyson’s equation, the single-particle propagator
of Fig. 4.2 would be obtained. Now, if one intends to be truly self-consistent, this
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= +ΣSCHF

Figure 4.3: Diagrammatic representation of the Self-Consistent
Hartree-Fock self-energy.

propagator (instead of the free one) should be used to compute the self-energy
in a second iteration. The self-energy Σ(2) would then be used to compute the
propagator by means of Dyson’s equation. This could be inserted in the definition
of the self-energy and a new Σ(3) is obtained, and so on.

In principle, as it has been already mentioned, the main difference between the
SCHF and the usual HF method should come from the substitution of the bare
propagator in the self-energy, Fig. 4.1, for a dressed propagator, like in Fig. 4.3.
Yet, when one considers iteration by iteration the diagrams that come out in the
self-consistent procedure, as it is done in Fig. 4.4, one finds new diagrams that are
not contained in the original HF self-energy. Let us start with the Σ(1) contribution
of Fig. 4.4, which contains the two lowest-order diagrams. A new propagator is
computed from Dyson’s equation and, by closing a dressed line and attaching an
interaction to it, one generates the second iteration self-energy, Σ(2). It is easy
to see that, in this procedure, new self-energy diagrams (with respect to the HF
approach) appear. These are produced by nesting two first order diagrams, for
instance. Among these, one finds diagrams (e)-(h) of Fig. 2.4. Thus, with the
help of the self-consistent procedure one can generate eight of the ten second order
diagrams... Already at the SCHF level! In addition to these, a whole bunch of
higher order diagrams (including self-energy insertions as well as nested diagrams)
are formed. When generating these contributions, however, one should always
take into account that the irreducible self-energy is formed by 1PI diagrams. Any
attempt to include reducible diagrams should be avoided, for all the 1PR diagrams
are already generated through the iteration of Dyson’s equation.

If this procedure could be carried out infinitely, the final Green’s function would
be a self-consistent one, in the sense that the skeleton diagrams of the self-energy
would be expressed in terms of propagators which would be equivalent to the
fully dressed propagator within that given approximation. In the case sketched in
Fig. 4.4, for instance, if the full infinite self-consistent procedure could be carried
out, the final result would be that of the diagram in Fig. 4.3 and the self-energy
would be given in terms of the full propagator, instead of the bare one. The
dressing of these lines involves necessarily a self-consistent procedure and this is
why one calls this the Self-Consistent Hartree-Fock (SCHF) approach.

In addition to summing a more complete series of diagrams, the SCHF approx-

96



4. Hartree-Fock Approximation

imation also solves a “conceptual” inconsistency of the HF approach. Consider
once again diagram (a) of Fig. 2.3. The fermion in the propagator line interacts
with another fermion from inside the system. Yet, this second particle is described
in terms of a free propagator. It is clear that, to be fully consistent, one should
use a full single-particle propagator instead of a bare one or, in other words, one
should dress the internal propagator in all the self-energy diagrams. And this
is precisely what the SCHF method achieves. Moreover, one expects this self-
consistent method to be especially required at larger densities, where in-medium
particles need to be necessarily dressed. The need of self-consistency can be in-
tuitively understood from the following reasoning. The propagation of a fermion
inside a many-body system is given in terms of the one-body Green’s function.
Yet, this propagation modifies the properties of the surrounding fermions, which
are also described by Green’s functions. Thus a determination of the full Green’s
function needs of a self-consistent procedure where both the propagated particle
and its effects on the surroundings are taken into account at the same level.

It has already been mentioned that to find the exact SCHF self-energy one
should perform, in principle, an infinite number of iterations. In terms of the
analytical equations, however, one can write down easily the final result for the
self-energy in the SCHF approximation. Once convergence is reached, the only
difference between the SCHF self-energy and the HF self-energy comes from the
substitution, in Eq. (4.1), of the free propagator G0 for a dressed propagator G.
This corresponds of course to the analytical expression of the diagrams of Fig. 4.3.
One can then perform the Matsubara summation to find the result:

ΣSCHF (k) =

∫
d3k1

(2π)3
〈kk1|V |kk1〉A f [εSCHF (k1)] . (4.5)

The main difference between the previous equation and Eq. (4.1) comes from the
single-particle spectrum, ε(k), in the Fermi-Dirac distribution. While in the HF
method the kinetic spectrum ε0(k) = k2

2m
is used, in the SCHF approach one uses a

medium-modified spectrum, εSCHF (k) = k2

2m
+ΣSCHF (k). The SCHF self-energy is

a part of this spectrum and thus can be thought of as a kind of interaction single-
particle energy. This is the so-called mean-field, already introduced in Chapter 1,
which represents the mean interaction energy that a fermion feels because of the
presence of the remaining fermions in the system.

4.3 Formulation in terms of GII

There is an equivalent formulation of the SCHF approximation which is not based
on applying diagrammatic “intuition” to the self-energy. Instead, a decoupling of
the equation of motion for the one-body propagator is performed at the two-body
level. Moreover, this procedure includes self-consistent effects from the beginning.
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First Iteration
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Figure 4.4: First, second and third iterations in the Self-Consistent Hartree-Fock
approach. The super-indices (1), (2) and (3) denote the iteration in which the
self-energy and the one-body propagator have been computed.
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Figure 4.5: Diagrammatic representation of the two-body propagator. All the first
order and some second and third order diagrams are shown.

One can however see that the two formulations (diagrammatic and decoupling ap-
proach) are equivalent. Indeed, for the HF approach one can draw the decoupling
in terms of diagrams, which allows for an easy comparison between this and the
purely diagrammatic method. As explained thoroughly in Refs. [Mat71; Mat92],
some decouplings of the hierarchy of the equations of motion for the propagators
can lead to equivalent diagrammatic methods, where partial sums of infinite dia-
grams are performed. Note, however, that not all the decouplings lead to suitable
diagrammatic sums.

Consider the equation of motion for the one-body propagator, Eq. (2.99). Using
the free propagator, one can recast the differential equation into an equivalent
integral equation:

G(1,1′) = G0(1,1′)− i

∫
d2̄

∫
d3̄G0(1, 2̄)V (2̄− 3̄)GII(3̄2̄; 3̄+1̄′) . (4.6)

To solve the equation for the one-body propagator one needs as an input the two-
body Green’s function. This is sometimes also called a four-point function, because
it has two “input” space-time points as well as two “outputs”. The two-body
Green’s function is shown in terms of diagrams in Fig. 4.5. In general, the two-body
propagator will include all kinds of complex processes involving a couple of one-
body excitations. These two individual propagators can either be disconnected or
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=GII +

Figure 4.6: Diagrammatic representation of the decoupling of the two-
body propagator in terms of free one-body propagators in the Hartree-
Fock approximation.

connected. In the first case, the excitations propagate independently of each other
but interacting with the medium. In the case of connected contributions, the two
one-body propagators can either be connected by single or multiple interactions or,
in more complex processes, by more complicated medium polarizations. Fig. 4.5
gives an insight on the variety of diagrams that contribute to the two-body Green’s
function. The multiple topologies and structures that appear already at second
and third order give a hint on the difficulty of computing all the contributions to
the two-body propagator in any many-body approach.

The lowest order approximation to GII that one can think of, is the truncation
of the diagrammatic expansion in its two first terms. The two-body propagator
is then given by the direct and exchange propagation of two particles that do
not interact among each other neither with the medium, as depicted in Fig. 4.6.
By considering these two contributions, the propagation of the two particles in the
medium is taken to be independent, in the sense that the two one-body propagators
are disconnected. Such an approach might be useful for physical systems where
the densities are low and the interactions are relatively weak. In this case, particles
will not “feel” the presence of the rest of the system and thus a pair can be treated
as propagating independently. For systems at higher densities, however, it would
be more sensible to decouple the two-body propagator in terms of two independent
propagators which are dressed, as shown in Fig. 4.7. In this way, the equations
are kept at a manageable level and the single-particle propagators include already
the infinite sum carried out for the self-consistent procedure. Note that this is
more sophisticated than the guess of Fig. 4.6, but is still quite simplistic because
it neglects all the interaction effects between the pair of particles that propagate
in the medium. This justifies somehow why this approximation does not work
for nuclear matter, where the densities are relatively high and in addition the
interactions are qualitatively strong.

Consider thus that one does not take into account any correlation at the two-
particle level for the two-body propagator. The two-body Green’s function is then
simply given by the product of two (dressed) single-particle propagators:

GII(12;1′2′) = G(1,2)G(1′,2′)− G(1,2′)G(1′,2) , (4.7)
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=GII +

Figure 4.7: Diagrammatic representation of the decoupling of the two-
body propagator in terms of dressed one-body propagators in the Self-
Consistent Hartree-Fock approximation.

where the symmetry GII(12;1′2′) = −GII(21;1′2′) has been used to find the rela-
tive sign of the exchange term. Using the definition of the self-energy, Eq. (2.115),
one can find a generic expression for the HF self-energy:

Σ(1,1′) = −iδ(1− 1′)

∫
d2V (1− 2)G(2,2+) + iV (1− 1′)G(1,1′) . (4.8)

The delta function signals the fact that the self-energy is an instantaneous func-
tion of time in the HF approximation. Fourier transforming the space and time
variables of the previous expression, one finds precisely Eq. (4.5). Thus, the self-
energy of the SCHF case can be recovered from the “lowest-order” decoupling of
the hierarchy of the equations of motion (lowest in the sense that the propagation
of the particles is treated as independent). Note also that, although this approach
has been presented as a diagrammatic expansion for GII , it is indeed not of a true
diagrammatic nature. Instead, one could have stated the same ideas by simply
making the ansatz of Eq. (4.7). This ansatz is a truncation of the equation of
motion for the one-body propagator and thus its origin is different to the dia-
grammatic approach of the previous section. In the following chapter, the ladder
approximation will also be derived from a decoupling approximation.

4.4 Partial wave expansion

Up to this point, the discussions about many-body approaches, diagrammatic tech-
niques and Green’s functions have been quite generic. In this section, in contrast,
a first application to the nuclear matter case will be discussed. Starting from a mi-
croscopic NN interaction, which will be decomposed into partial waves, the SCHF
approximation is explicitly calculated for the nuclear matter case. As explained
before, this is an infinite homogeneous system of nucleons at fixed density and
temperature. If not mentioned otherwise, the system is supposed to be saturated
in spin (the densities of the spin up nucleons is the same as that of the spin down
nucleons), as well as in isospin (the system is composed by the same number of pro-
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tons and neutrons). In this case, one speaks of symmetric nuclear matter, whereas
asymmetric nuclear matter contains a certain degree of isospin asymmetry.

A nucleon immersed in nuclear matter is characterized by a series of quantum
numbers. Since nuclear matter is an infinite system, the single-particle momentum
k is an appropriate quantum number. In addition, one has to specify a given spin
s as well as its third component, that will be denoted with the Greek equivalent
character, σ. For the isospin degree of freedom, one has to specify the total isospin t
and the third component τ . A nucleon has a total spin s = 1/2 and a total isospin
t = 1/2, and thus sometimes these will not be specified. The third component
of isospin, however, describes which nucleonic component is studied: τ = −1/2
corresponds to a neutron, while τ = 1/2 corresponds to a proton. Thus, the third
component needs to be considered explicitly in the calculations.

All of these quantum numbers are associated to single-particle nucleonic states
of the system. Yet, it turns out that, in the nuclear many-body case, a coupled
two-nucleon basis that takes advantage of the symmetries of the NN potential
is much more convenient. The quantum numbers in this two-nucleon basis will
be denoted by capital letters. For instance, the total angular momentum will be
written J and its third component mJ . At some point, a change from the uncoupled
(single-particle) basis, in which Feynman diagrams are formulated, to the coupled
(two-particle) basis, in which the NN potential is given, will have to be introduced.
Once an expression for the self-energy in terms of the NN potential in the coupled
basis is available, a partial wave decomposition of the NN interaction will also be
performed. In that way, one can handle easily the NN potential because, for a
given partial wave, it will only depend on one diagonal relative momentum.

Consider the SCHF self-energy for a nucleon with third spin-isospin components
σ and τ . It consists of a sum over all the allowed internal momenta, spin and isospin
diagonal states, k′, σ′ and τ ′:

Σστ (k) =
∑
σ′τ ′

∫
d3k′

(2π)3
〈kστ,k′σ′τ ′|V |kστ,k′σ′τ ′〉A n(k′) . (4.9)

Note that the label “SCHF” has been dropped for convenience and that in the
previous expression the momentum distribution n(k) is given by the Fermi-Dirac
distribution computed at the quasi-particle energies, f [εSCHF (k)]. For symmet-
ric nuclear matter, it is useful to take an average over the external spin-isospin
quantum numbers σ and τ , with their corresponding degeneracy factors:

Σ(k) =
1

(2s + 1)(2t + 1)

∑
στ

Σστ (k) (4.10)

=
1

(2s + 1)(2t + 1)

∑
στ

∑
σ′τ ′

∫
d3k′

(2π)3
〈kστ,k′σ′τ ′|V |kστ,k′σ′τ ′〉A n(k′) .

Let us now transform the matrix elements, given in terms of the single-particle
momenta, k and k′, to states expressed in terms of the relative momentum, q =
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1
2
(k− k′):

|kστ,k′σ′τ ′〉A = |q; στ, σ′τ ′〉 − | − q; σ′τ ′, στ〉 . (4.11)

Note that the direct and exchange components of the ket have been expressed
separately. Furthermore, the kets on the right-hand-side of the previous equation
should include an explicit dependence on the center-of-mass momentum which,
however, has been omitted because the NN potential does not depend on this
quantity. This is the first step in the transformation from the single-particle to
the two-nucleon coupled basis mentioned above. The next one is the introduction
of the total spin, ~S = ~σ +~σ′, and total isospin, ~T = ~τ +~τ ′, of the pair of nucleons.
This is done with the help of the Clebsch-Gordan coefficients,

(
jj′mjmj′

∣∣JmJ

)
,

which connect the uncoupled basis, described in terms of the “single-particle”
angular momenta j and j′, to the coupled basis, given in terms of the total angular
momentum ~J = ~j +~j′:

|kστ,k′σ′τ ′〉A =
∑
SmS

∑
TmT

(
ss′σσ′

∣∣SmS

)(
tt′ττ ′

∣∣TmT

)
|qSmSTmT 〉

−
∑
SmS

∑
TmT

(
s′sσ′σ

∣∣SmS

)(
t′tτ ′τ

∣∣TmT

)
| − qSmSTmT 〉 . (4.12)

The kets in the previous equation still depend on the relative wave vector q. One
can decouple the ket’s dependence in the modulus q and the direction êq of this
vector by means of the partial wave expansion:

|q〉 =
∞∑

L=0

L∑
mL=−L

|qLmL〉Y ∗
LmL

(êq) , (4.13)

where YLmL
denotes the spherical harmonic of order L [Rin80]. The ket can then

be rewritten as follows:

|kστ,k′σ′τ ′〉A =
∑
LmL

∑
SmS

∑
TmT

|qLmLSmSTmT 〉

×
[(

ss′σσ′
∣∣SmS

)(
tt′ττ ′

∣∣TmT

)
Y ∗

LmL
(êq)

−
(
s′sσ′σ

∣∣SmS

)(
t′tτ ′τ

∣∣TmT

)
Y ∗

LmL
(−êq)

]
. (4.14)

This expression can be further simplified by using the following property of the
spherical harmonics:

YLmL
(ê) = (−1)LYLmL

(−ê) , (4.15)

as well as the following relation for the Clebsch-Gordan coefficients:(
jj′mjmj′

∣∣JmJ

)
= (−1)J−j−j′

(
j′jmj′mj

∣∣JmJ

)
. (4.16)
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Note that when one applies this last equation to the case of the spin and isospin
of the nucleon, one can profit from the fact that s + s′ = t + t′ = 1. With all this
in mind, the ket can be expressed as:

|kστ,k′σ′τ ′〉A =
∑
LmL

∑
SmS

∑
TmT

[
1− (−1)L+S+T

]
|qLmLSmSTmT 〉

×
(
ss′σσ′

∣∣SmS

)(
tt′ττ ′

∣∣TmT

)
Y ∗

LmL
(êq) . (4.17)

The factor
[
1 − (−1)L+S+T

]
is now carrying all the restrictions imposed by the

antisymmetrization of the ket state. This factor, which yields either zero or two,
corresponds to a selection rule for the partial waves with

L + S + T = odd . (4.18)

In other words, in the NN interaction all of those partial waves with an even
L + S + T sum will not need to be considered.

In Chapter 1, the properties of the NN interaction have been briefly sketched.
Among these, the importance of the tensor component is remarkable. This com-
ponent is characterized by the fact that it couples bras and kets with different
angular momenta, L and L′. Thus the angular momentum L is not a good quan-
tum number of the nuclear interaction. Instead, one introduces the total angular
momentum, ~J = ~L + ~S, which is indeed conserved by the NN force. A new
recoupling is necessary to express the ket in terms of states with total angular
momentum J :

|kστ,k′σ′τ ′〉A =
∑
JmJ
LmL

∑
SmS
TmT

[
1− (−1)L+S+T

]
|qLSJmJTmT 〉

(
LSmLmS

∣∣JmJ

)
×

(
ss′σσ′

∣∣SmS

)(
tt′ττ ′

∣∣TmT

)
Y ∗

LmL
(êq) . (4.19)

The quantum numbers S, T and J as well as the third components mJ and mT are
conserved by the NN interaction. Yet the strong force can couple different partial
waves, L and L′. It is thus clear that a NN matrix element can be written as:

〈qLSJmJTmT |V |q′L′S ′J ′mJ ′T
′mT ′〉 = δSS′δTT ′δJJ ′δmT mT ′

δmJmJ′
〈q|V JST

LL′ |q′〉 .
(4.20)

In the HF case, only matrix elements of the force which are diagonal in momentum
are needed. Introducing the previous expressions for the bra and the ket in the
coupled basis at both sides of the matrix elements of the interaction and using
the delta functions to perform some trivial sums, the expression for the SCHF
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self-energy reads:

Σ(k) =
1

(2s + 1)(2t + 1)

∑
JST
LL′

[1− (−1)L+S+T
] ∫

d3k′

(2π)3
〈q|V JST

LL′ |q〉n(k′) (4.21)

×
∑

mSmS′

∑
σσ′

(
ss′σσ′

∣∣SmS

)(
ss′σσ′

∣∣SmS′
) ∑

mT

∑
ττ ′

(
tt′ττ ′

∣∣TmT

)(
tt′ττ ′

∣∣TmT

)
×

∑
mJ

∑
mLmL′

(
LSmLmS

∣∣JmJ

)(
L′SmL′mS′

∣∣JmJ

)
YLmL

(êq)Y
∗
L′mL′

(êq) .

Most of the sums in the previous expressions can be easily carried out by exploiting
the orthonormality condition for the Clebsch-Gordan coefficients:∑

mjmj′

(
jj′mjmj′

∣∣JmJ

)(
jj′mjmj′

∣∣J ′mJ ′
)

= δJJ ′δmJmJ′
. (4.22)

Consider, for instance, the sum over third spin components. This yields:∑
σσ′

(
ss′σσ′

∣∣SmS

)(
ss′σσ′

∣∣S ′mS′
)

= δSS′δmSmS′
. (4.23)

The same can be done for the sum over third isospin components, yielding a factor
(2T + 1). All in all, the self-energy reads:

Σ(k) =
1

(2s + 1)(2t + 1)

∑
JST
LL′

[1− (−1)L+S+T
]
(2T + 1)

∫
d3k′

(2π)3
〈q|V JST

LL′ |q〉n(k′)

×
∑

mSmJ
mLmL′

(
LSmLmS

∣∣JmJ

)(
L′SmL′mS

∣∣JmJ

)
YLmL

(êq)Y
∗
L′mL′

(êq) . (4.24)

Additionally, one can use the symmetry property of the Clebsch-Gordan coeffi-
cients:

(
jj′mjmj′

∣∣JmJ

)
= (−1)j−J+mj′

√
2J + 1

2j + 1

(
Jj′mJ −mj′

∣∣jmj

)
, (4.25)

to exchange the L and J indices in the coefficients of the previous equation and
find: ∑

mSmJ
mLmL′

(
LSmLmS

∣∣JmJ

)(
L′SmL′mS

∣∣JmJ

)
= δLL′

2J + 1

2L + 1

∑
mL

δmLmL′
. (4.26)

The final step comes out from the addition theorem for spherical harmonics,∑
mL

YLmL
(ê)Y ∗

LmL
(ê′) =

2L + 1

4π
PL(ê · ê′) , (4.27)
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as well as from the fact that the Legendre polynomials fulfill the condition PL(x =
1) = 1. The sum over mL can thus be carried out straightforwardly and the final
result for the SCHF self-energy reads:

ΣSCHF (k) =
1

16π

∑
JLST

[1− (−1)L+S+T
]
(2T + 1)(2J + 1)

×
∫

d3k′

(2π)3
〈q[k,k′]|V JST

LL |q[k,k′]〉n(k′) . (4.28)

The notation q[k,k′] has been introduced to remind the reader that the relative
momentum q depends on the single-particle momenta k and k′. From the numerical
point of view, a suitable technique is needed to perform the previous integral.
One usually discretizes the momenta inside the integrand in such a way that the
integral can be numerically performed in an optimal way. In this case, since the
potential and the momentum distributions are well-behaved functions, one can
use a simple set of Nk′ = 50 equally spaced internal momenta, k′n. The external
momentum k is also discretized and placed on the z-axis. Thus, for each pair
of km and k′n, a set of Nθ = 10 values of the angle θmn of k′ with respect to
the z-axis is chosen. Note that the matrix elements need to be computed, for
each km, k′n and θmn (and for each partial wave), at the values of the relative

momentum q = 1
2

√
k2

m + k′2n − 2kmk′n cos θmn. With these quantities at hand, one
can then sum over partial waves and compute the remaining integral by means of,
for instance, a trapezoidal rule.

4.5 Microscopic results

In this section the results for the microscopic quantities concerning symmetric
nuclear matter for the HF and SCHF approaches will be given. In this way, the
effects of self-consistency as well as the effects induced by interactions treated at
the lowest order will be highlighted. All the results presented here have been
obtained with the CDBONN potential [Mac96], with all the partial waves up to
J = 8.

The discussion will start with the self-energy (or mean-field) of a nucleon in nu-
clear matter. This quantity is given in the HF approximation by Eq. (4.3), whereas
in the SCHF approach it is given by Eq. (4.5). Note once again that the only differ-
ence between these two quantities comes from the momentum distribution. While
in the HF case this is given by the free distribution, n(k) = f [ k2

2m
], in the SCHF

case the momentum distribution is given by the self-consistent mean-field spec-
trum, n(k) = f [ k2

2m
+ ΣSCHF (k)]. However, if one works at fixed density, this will

not be the only difference between both expressions. The Fermi-Dirac distribution
appearing in the two momentum distributions carries two extra parameters: the
temperature T and the chemical potential µ. In principle, one should work in the
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grand-canonical ensemble, i.e. giving the thermodynamical state of the system
in terms of its temperature and chemical potential. In practice, however, it is
more intuitive to work with a system at fixed temperature and density. The latter
quantity is fixed by means of the following relation:

ρ = ν

∫
d3k

(2π)3
n(k, µ̃) , (4.29)

where the dependence on the microscopic chemical potential has been explicitly
taken into account. It is clear that if, for a given density, two different momentum
distributions are used (in this case, the HF and SCHF momentum distributions),
two different chemical potentials will be obtained. Thus, in the comparison of the
microscopic quantities derived within the HF and the SCHF approach one should
always be aware of the fact that not only the effects of self-consistency but also
those coming from the differences in chemical potentials are being highlighted.

The HF and SCHF approximations are studied in the following iterative self-
consistent method. In the first step, a temperature and a density are specified.
One solves then Eq. (4.29) to find the chemical potential µ(0), by using the free
quasi-particle spectrum ε(0)(k) = k2

2m
. Once the chemical potential is set, the

first iteration momentum distribution, n(0)(k) is defined. This is actually the
momentum distribution in the HF approximation, which also corresponds to the
free momentum distribution at that density and temperature. n(0)(k) can then be
used to compute the first iteration of the self-energy, Σ(0), via Eq. (4.28). This first
iteration of the self-energy corresponds, once again, to the HF self-energy. The
self-energy Σ(0) defines the quasi-particle spectrum, ε(1)(k) = k2

2m
+ Σ(0)(k), which

is then used in Eq. (4.29) to find a new chemical potential, µ̃(1). With the new
momentum distribution, Σ(1) is computed and from it the quasi-particle spectrum
can be obtained. Typically 5 iterations are enough to achieve self-consistency
at an accurate level, i.e. the quantities µ̃(i), n(i)(k), Σ(i) and ε(i) do not change
appreciably for i > 5.

Some of the results shown in this section correspond to the zero temperature
case. They help us in understanding how relevant temperature effects are in the HF
case. It is thus interesting to note the fact that, at zero temperature, the philosophy
of the HF approximation is somewhat different to the one at finite temperature.
Strictly speaking, at zero temperature no self-consistency is needed because the HF
and the SCHF methods coincide. This is not difficult to understand considering
the fact that, at zero temperature, there is a single momentum distribution, n(k) =
Θ(kF − k), for both cases. Thus there is no effective difference between the HF
and SCHF self-energies and a single iteration is needed to achieve full convergence
at zero temperature. This can also be seen in terms of diagrams. Consider the
self-energy diagrams obtained in the second iteration in Fig. 4.4. The self-energy is
the sum of the two first order diagrams plus higher order terms. In all these higher
order diagrams, however, there is a particle and a hole in the same momentum
state. At zero temperature, however, a particle and a hole cannot have equal
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Figure 4.8: SCHF (dashed line) and HF (dotted line) results for the self-
energy of a nucleon in nuclear matter at densities ρ0/2, ρ0 and 2ρ0 at T =
20 MeV. The T = 0 result is also shown (full line).

momenta and thus each of these diagrams vanishes exactly. An example of this is
the third diagram in the second iteration of Fig. 4.4 (note that this corresponds to
diagram (e) in Fig. 2.4). Since this contribution is zero, the rest of contributions
involving insertions on this diagram will also be zero. At the end of the calculation,
one is thus left with the HF propagator at zero temperature, which is already self-
consistent.

In Fig. 4.8, the HF self-energy at zero temperature is shown at three differ-
ent densities, ρ0/2, ρ0 and 2ρ0, with ρ0 = 0.16 fm−3 the experimental saturation
density of nuclear matter, in full lines. In addition, the SCHF self-energy at the
corresponding densities and a temperature of T = 20 MeV is shown in dashed
lines. The HF results at this temperature (once again these correspond to the first
iteration of the SCHF procedure, in which a free momentum distribution is used)
are displayed in dotted lines. In the three cases the density dependence is very
similar. At higher densities, the self-energy at k = 0 becomes more attractive,
while the momentum dependence becomes stiffer. Note that the attractive or re-
pulsive nature of the SCHF self-energy depends on the bare NN interaction which
is used [Fri04b]. In addition, there is a clear separation between the results at dif-
ferent temperatures. The HF results at zero temperature are the most attractive
for all momenta. This might be due to the fact that, in the finite temperature
self-energy, the integration over momentum is carried to higher momenta due to
the thermal occupation factors. Therefore, the repulsive short-range core of the
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Figure 4.9: SCHF (dashed line) and HF (dotted line) results for the
momentum distributions of a nucleon in nuclear matter at densities
ρ0/2, ρ0 and 2ρ0 at T = 20 MeV. The T = 0 result is also shown (full
line).

NN interaction is explored and the results at T 6= 0 are more repulsive than in the
totally degenerate case. The differences between the two curves at finite tempera-
ture are caused by the self-consistency effects that appear through the momentum
distributions. In particular, the HF self-energy is more repulsive than the SCHF
one in the whole momentum range. This can be explained in the same terms as
above for, as it can be seen in Fig. 4.9, the HF momentum distribution tends to
populate more high-momentum states than the SCGF one. It is also interesting
to note that the differences between the three approaches disappear as the mo-
mentum increases. This can be understood from the fact that high momentum
states do not feel the Pauli blocking so much. Thus the modifications induced by a
change in the momentum distributions are less important in the high momentum
regions. Still, the effect of self-consistency is to shift the spectra to more attractive
values, which yields a more realistic description. Finally, let us note that while the
differences in Σ(k = 0) between the SCHF and the T = 0 case are always similar,
of about 5− 6 MeV, the difference between the HF and the SCHF case at T = 20
go from 2 MeV at ρ = ρ0/2 to around 10 MeV for the highest density, 2ρ0. This
agrees with the general idea that self-consistency effects become more important
with increasing densities.

Fig. 4.9 shows in full lines the momentum distributions of the HF approach
at zero temperature for the three densities, ρ0/2, ρ0 and 2ρ0. The momentum
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distribution for the SCHF approximation at these densities and a temperature of
T = 20 MeV are given in dashed lines. Finally, the HF momentum distribution
at the same densities and temperature are displayed in dashed lines. At zero
temperature the momentum distribution is given by a step function: for momenta
below the Fermi momentum the states are fully occupied, while above the Fermi
surface the states are completely empty. For the finite temperature case, this
structure is somewhat different, and all the states above and below the Fermi
surface are thermally occupied according to the Fermi-Dirac distribution at the
corresponding quasi-particle energies (free spectra for HF, self-consistent spectra
for SCHF).

The depletion, d(k), is defined as the value d(k) = 1 − n(k). For the HF
case at zero temperature, it is clear that d(k) = 0 for k < kF . When higher-
order correlations are included, however, the depletion of the lowest momentum
state can yield non-zero results [Dic05a]. Thus, d(k) is somehow a measure of
the importance of correlations that go beyond the mean-field approach. For the
thermal case, the situation is again different. For k = 0 in the finite temperature
HF approximation, for instance, it is clear from Fig. 4.9 that the momentum
distribution (corresponding essentially to that of the free case) is already depleted.
Note that when the correlated case is studied at finite temperature, the depletion
given by thermal effects will need to be somehow disentangled from that coming
from dynamical higher order correlations.

Moreover, already for correlations at the lowest order, the depletion of the HF
and the SCHF cases is somewhat different. In the particular case of Fig. 4.9,
for the three densities considered, the values of the HF depletion at k = 0 are
d(k = 0) = 0.43, 0.22 and 0.07 respectively. Again, this depletion is purely due to
the thermal distribution of the states, since the HF distribution function essentially
corresponds to the free case. In the case of SCHF, however, the depletions become
d(0) = 0.31, 0.07 and 0.004. The difference between the two cases is related to
the interplay between the chemical potential and the self-energy. Consider the
expression for the zero-momentum occupation of the HF case:

nHF (k = 0) =
1

1 + e−βµHF
, (4.30)

and of the SCHF case:

nSCHF (k = 0) =
1

1 + e−β∆µ
, (4.31)

where ∆µ = µSCHF −ΣSCHF (0). For a given temperature and density, it is easy to
see that, if nSCHF (0) has to be higher than nHF (0), then the relation µHF < ∆µ
must hold. This is indeed the case, as it can be seen in Table 4.1. It is also
interesting to note that although the HF and the SCHF momentum distributions
are normalized to the same density, the HF approximation yields a larger depletion
than the SCHF one. Thus, if both of them have to be equally normalized, this
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4. Hartree-Fock Approximation

ρ µHF [MeV] µSCHF [MeV] ∆µ [MeV]
ρ0

2
5.341 −6.941 16.19

ρ0 25.60 6.569 50.34
2ρ0 51.84 36.18 110.8

Table 4.1: HF and SCHF chemical potentials at fixed temperature and three dif-
ferent densities. The fourth column shows the difference between µSCHF and the
k = 0 self-energy in this approximation.

necessarily implies that the HF momentum distribution leads to larger occupancies
for high momentum states, as observed in Fig. 4.9.

The density dependence of n(k) is also interesting. With increasing density,
the thermal momentum distributions get closer to the zero temperature one. At
constant temperature and increasing density, the ratio between the temperature
and the free Fermi energy, x = T/εF , gets closer to zero. The free Fermi energy

εF =
k2

F

2m
is the energy scale associated to the density in (free) fermionic systems.

Thus, the ratio between the temperature and εF sets the relative importance of
temperature and density effects in the system. Indeed, this dimensionless quantity
defines two very different physical regimes when considered in two opposite limits.
For x � 1, the system is said to be in the degenerate limit, characterized by low
temperatures relative to the energy scale associated to the density. The properties
of the degenerate system are essentially those of the zero temperature system,
and any thermal effect can be studied from an expansion at low x of the finite
temperature equations (see Appendix D). On the other hand, for x � 1 the
system lies in the classical limit, at relatively large temperatures with respect to
the density. In this case, the physical properties of the system are essentially those
of the classical interacting gas and there is also a well-defined expansion on 1/x
which takes into account quantal effects at lowest order (see Appendix D). This
helps in understanding why the momentum distributions of the ρ = 2ρ0 case in
Fig. 4.9 are close to the zero temperature case. For that case x ∼ 0.35 and thus
the system lies close to the degenerate limit, where the thermal effects are to be
small. For the lowest density case, on the other hand, although the system is not
yet lying in its classical regime, the thermal effects are much more important, as
it can be seen from the very different momentum distribution as compared to the
zero temperature case.

Another important microscopic quantity is the effective mass. This is obtained
from the single-particle spectrum by means of the following derivative:

m∗

m
=

1

2m

(
dε(k)

dk2

)−1

=
1

1 + 2mdΣ(k)
dk2

. (4.32)

From a purely kinetic spectrum, one would readily obtain m∗ = m. When in-
teractions are introduced in the system, however, the in-medium quasi-particle
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Figure 4.10: SCHF effective mass at the Fermi surface as a function of the
density and for two different temperatures, T = 0 (solid line) and T = 20
(dashed line).

energies change and in that case the effective mass measures the stiffness of the
spectrum. Usually, the effective mass is quoted at the Fermi surface (i.e. it is
computed at k = kF ) and for a generic interaction it may depend on both density
and temperature. For the SCHF approach, the effective mass at the Fermi surface
for several densities is shown in Fig. 4.10. To pin down the temperature effects on
this quantity, the zero temperature effective mass (solid line) is compared to the
T = 20 MeV one (dashed line). The effective mass is a clearly decreasing function
of the density, which corresponds to the intuitive idea that at lower densities the
quasi-particles hardly interact with each other and thus their spectrum is closer to
the kinetic one. This explains also why, for the lowest densities m∗/m → 1. This
can be understood more rigorously from Fig. 4.8, where the spectra are clearly
seen to be more stiff with increasing density and therefore the effective masses
become lower with increasing density. The temperature has a small influence on
the effective mass and changing from 0 to 20 MeV makes the effective mass slightly
higher, always within a 10% from the T = 0 case. Once again, the idea that the
effective mass is closer to the free one when temperature increases agrees with the
fact that once the thermal effects are taken into account, the spectra become less
stiff. Finally, at saturation density and T = 0 for the SCHF approach the effective
mass m∗/m ∼ 0.64. This is a somewhat low value, that changes substantially once
correlations are included in the system. These calculations do not have to be taken
as realistic, but they are useful in grasping roughly the density and temperature
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4. Hartree-Fock Approximation

dependences of these quantities. This will allow us to disentangle in an easier way
the thermal and density effects induced by correlations in the following chapters.

4.6 Macroscopic results

In this subsection, the thermodynamical macroscopic properties of nuclear matter
studied within the SCHF method at finite temperature will be discussed. Of
course, the results are not realistic because the SCHF lacks most of the correlations
needed to correctly describe nuclear matter from realistic NN potentials. Yet, the
density and temperature dependences of the thermodynamical quantities obtained
in this method are quite generic and their understanding may allow us for a better
comprehension of the results of the correlated case.

In the first place, the energy per particle will be considered. One can obtain
a direct formula of the energy in terms of the temperature and density dependent
SCHF self-energy from very general grounds [Fet71]. However, to keep the con-
sistency in the presentation of the results, the energy per particle will be derived
from the GMK sum rule, Eq. (2.103). From Dyson’s equation, one knows that the
propagator has the form of Eq. (4.4). Then, from Eq. (2.64) and the Plemejl rela-
tion, Eq. (2.61), it is easy to see that the spectral function is just a delta function
(the “SCHF” subscript is dropped in the following for convenience):

A(k, ω) = (2π)δ [ω − ε(k)] , (4.33)

centered at the quasi-particle energy:

ε(k) =
k2

2m
+ Σ(k) . (4.34)

Introducing that into the GMK sum rule, the following result is obtained for the
total energy per particle of an interacting gas of nucleons:

E

A
=

ν

ρ

∫
d3k

(2π)3

k2

2m
n(k) +

ν

2ρ

∫
d3k

(2π)3
Σ(k)n(k) , (4.35)

where the factor ν takes into account the spin-isospin degeneracy of the system.
The first term is just the kinetic energy of the interacting system (note that the in-
teraction has a certain effect on this quantity through the self-consistent spectrum
ε(k) as well as through the chemical potential µ inside the momentum distribu-
tions). The second term, on the other hand, yields the potential energy of the
system caused by the mean-field generated by the particles in the system. Note
the 1/2 factor in front of this term, which corrects the double-counting.

The results for the different terms of the previous formula are considered in
Fig. 4.11. In the three panels of this figure, the total, kinetic and potential energy
per particle in the SCHF approximation are given as a function of the density for
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Figure 4.11: Density dependence of the total (left panel), kinetic (central
panel) and potential (right panel) energy per particle within the SCHF
approach. Five temperatures are considered: 0 (empty circles), 5 (full
circles), 10 (squares), 15 (diamonds) and 20 (triangles) MeV.

five different temperatures, from 0 to 20 MeV in equidistant steps of 5 MeV. As
expected, due to the lack of correlations in the HF approach, the total energy per
particle yields a positive result at all densities. At zero temperature there is no
sign of saturation and the total energy per particle increases steadily with density.
The potential energy is indeed negative, but not negative enough as to create any
binding in the total energy per particle. As it will be seen in the following chapter,
the inclusion of higher order correlations is essential to obtain more attraction in
the potential energy per particle.

As for thermal effects, one can say that temperature seems to have a repulsive
effect on the energy per particle. At all densities and for the three panels, the
energy per particle becomes more repulsive when temperature increases. This
effect is more important in the kinetic energy. This is the quantity that varies
the most from T = 0 to T = 20 MeV, with differences as large as 30 MeV.
In particular, it is interesting to note that, for the lowest density displayed, the
kinetic energy at finite temperature is always very close to the classical value,
Ekin = 3

2
T . On the other hand, the repulsive effect of temperature in the potential

energy is less important, not larger than 5 MeV for the largest temperature of
20 MeV in the whole density range. Indeed, the strong influence of temperature
in the low density region of the total energy per particle is the cause of the kind
of “saturation” behavior observed for this quantity. The high density zone, on
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SCHF= 2
1 )( +

Figure 4.12: Diagrams contributing to the Φ-functional for the SCHF
approach.

the other hand, is closer to the degenerate limit and thus is less affected by the
temperature increase. This yields a curve with a minimum (still too repulsive)
energy per particle at finite densities.

In any case, a minimum of the energy per particle would not give the thermo-
dynamically preferred state of the system, which is instead given by a minimum
of the free energy. One should thus try to compute the free energy of the sys-
tem within the SCHF approach. From thermodynamical grounds, one knows that
the free energy is given in terms of the energy and the entropy by the following
equality:

F = E − TS . (4.36)

Therefore, one should face the problem of computing the entropy of the system
(since the energy per particle is known from the GMK sum rule). The entropy of
the system can be obtained from the expressions obtained in the previous chapter.
First of all, since the Hartree-Fock self-energy is real and has no energy dependence,
one can easily compute the B spectral function from Eq. (3.109) to obtain:

B(k, ω) = A(k, ω) = (2π)δ [ω − ε(k)] . (4.37)

The dynamical quasi-particle entropy per particle within the SCHF approach is
readily seen to be:

S

A
=

ν

ρ

∫
d3k

(2π)3
σ[ε(k)] . (4.38)

This coincides with the entropy of an interacting gas of quasi-particles and can
be obtained from other methods [Fet71]. As explained in the previous chapter,
this is not the only contribution to the total entropy of the system. Instead, the
S ′ contribution of Eq. (3.95) should be considered. This involves, in particular,
the calculation of the Φ-functional within the SCHF approach, which is given in
terms of diagrams in Fig. 4.12. Note the factor 1/2, which takes into account
the two equivalent dressed propagators in which one can cut the diagrams to
obtain the SCHF self-energy of Fig. 4.3. These propagators are dressed within
the approximation that one is using and thus should be computed with the self-
consistent spectrum. Using a slightly modified version of the Feynman rules of
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Appendix B, one obtains the following expression:

Φ =
βν

2

∫
d3k

(2π)3

∫
d3k′

(2π)3
n(k)n(k′)〈kk′|V |kk′〉A =

βν

2

∫
d3k

(2π)3
n(k)Σ(k) . (4.39)

The first contribution to S ′ is given by the expression [see Eq. (3.95)]:

∂TΦ

∂T
= ν

∫
d3k

(2π)3

∂n(k)

∂T
Σ(k) . (4.40)

The second term in S ′ is an integral of the spectral function and the self-energy.
Replacing the values obtained for these objects within the SCHF approximation,
one finds:

ν

∫
d3k

(2π)3

∫ ∞

−∞

dω

2π

∂f(ω)

∂T
A(k, ω)Re Σ(k, ω) = ν

∫
d3k

(2π)3

∂n(k)

∂T
Σ(k) , (4.41)

which is the same as the equation above. Noticing the minus sign in Eq. (3.95),
one sees that within the SCHF approximation, the two terms of S ′ cancel each
other exactly and thus their total contribution to the entropy is zero. This could
have been expected from the Carneiro and Pethick statement that S ′ only receives
contributions of diagrams with two or a larger number of even vanishing energy de-
nominators. In the SCHF approach, no contribution has a vanishing denominator
and thus S ′ = 0.

The total entropy per particle within the SCHF approach is then given by the
quasi-particle expression of Eq. (4.38). The results obtained with such a formula
are shown in the two panels of Fig. 4.13. The left panel displays the entropy per
particle for four different temperatures (from 5 to 20 MeV in steps of 5 MeV) as
a function of the density. The expected behavior is found for all temperatures:
the entropy per particle decreases as density increases. The highest values are of
the order of 3 − 4, while the lowest ones lie in the range 0.5 − 1.5. In addition,
for all the densities the highest values correspond to the largest temperatures, as
one would expect. One may wonder why the entropy has a such strong density
dependence at low densities. As explained before, one can in this case compute
analytical formulas for the entropy within the classical limit (see Appendix D).
Note, however, that to derive this formula one must also rely on the fact that
the quasi-particle spectrum is almost quadratic and that it can be well described
by the effective mass, which is the case for the SCHF approach. Within these
assumptions, one obtains the following expression for the entropy per particle in
the classical regime:

S

A
=

5

2
− ln

ρλ3
dB

ν
+

3

2
ln

m∗

m
, (4.42)

with λdB the de Broglie wavelength of Eq. (D.36). The results obtained with this
formula are shown by the dotted lines of the left panel of Fig. 4.13. As expected,
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Figure 4.13: Density dependence (left panel) and temperature dependence
(right panel) of the entropy per particle within the SCHF approach. The
dotted lines in the left (right) panel correspond to the classical (degenerate)
approximation of Eq. (4.42) (Eq. (4.43)). Note the difference in the scale
between the right and the left panel.

they describe quite well the low density region and they are more accurate at
higher temperatures. In the classical regime, the entropy depends logarithmically
on the density and this accounts for the strong density dependence of the results.

The right panel of Fig. 4.13 shows the temperature dependence of the entropy
at three fixed densities, ρ = ρ0/2, ρ0 and 2ρ0. As one would naively expect, the
entropy is close to 0 for low temperatures and then increases steadily. Moreover,
at all temperatures it is the lowest density which has a larger entropy. This is in
accordance with the naive idea that thermal disorder is more important for systems
with low densities. In the low temperature regime, the entropy depends linearly
on temperature. This is what one expects from the low temperature expansion of
the entropy (see Appendix D):

S

A
=

π2

3ρ
N(0)T , (4.43)

where N(0) is the density of states at T = 0 on the Fermi surface. Within a quasi-
particle approximation, this quantity is essentially proportional to the effective
mass (computed at T = 0):

N(0) =
νkF m∗(kF )

2π2
. (4.44)
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The dotted lines shown in the right panel of Fig. 4.13 have been obtained from
the previous approximation, with the results for the T = 0 effective mass of the
previous subsection. The agreement with the data computed from the quasi-
particle expression is especially good for high densities, where the system is closer
to the degenerate limit. For the lowest density, the approximation only gives
correct results up to about 5− 6 MeV. At this density and for high temperatures,
one cannot say that the system is in the degenerate limit anymore and thus the
thermal effects become more important in a computation of the entropy.

The previous figures have shown the density and temperature dependences of
the entropy of an interacting system of nucleons within the SCHF approximation.
One might wonder which is the effect of the interaction in the entropy of the
system. In the case of the energy per particle, for instance, the introduction of
the interaction has a double influence. On the one hand, the total energy of an
interacting system acquires an extra term, the potential energy, which is entirely
due to interactions and which is the most important modification to the energy. On
the other hand, there is also a smaller effect due to the use of self-consistent spectra
in the interacting case (which modifies already the kinetic energy of an interacting
system) as well as the modification introduced by the chemical potential when
working at fixed densities. For the entropy, it is this combined second effect which
is present. Stated differently, the difference between the entropy of the free Fermi
gas, Eq. (3.62), and that of the SCHF case, Eq. (4.38), comes from the different
chemical potentials and quasi-particle spectra that are used. Yet, it is not all the
spectra that matters: the effective mass is what actually governs the entropy, as
it is clearly seen in the classical and the degenerate approximations of Eq. (4.42)
and Eq. (4.43). In the degenerate limit of high densities and low temperatures, for
instance, it is easy to see that the entropy of the interacting gas can be obtained
from the entropy of the non interacting gas by multiplying by a factor m∗

m
(where

the effective mass is computed at the Fermi surface at zero temperature), S
S0
∼ m∗

m
.

In the classical limit, the relation is different and the entropy of the interacting
system is given by the free Fermi entropy plus a factor 3

2
ln m∗

m
which accounts for

the interaction and which is computed with the corresponding effective mass of
the finite temperature case. As a matter of fact, and as it is more extensively
commented in Appendix D, the effective mass which is used in the degenerate
limit and in the classical one have somewhat different origins. In a degenerate
approximation, the expression of Eq. (4.32) appears explicitly, but it has to be
computed at zero temperature and at the Fermi surface. On the other hand, the
effective mass in the classical approximation just parametrizes the stiffness of the
quasi-particle spectrum in the whole momentum range. Therefore, and as a general
rough conclusion, one can say that the effect of the interaction in the entropy is
almost exclusively caused by the effective mass.

Once the entropy is computed, one has direct access to the free energy of the
system. This is shown, as a function of the density for five temperatures distributed

118



4. Hartree-Fock Approximation

0 0.1 0.2 0.3
ρ [fm-3]

-60

-40

-20

0

20
Fr

ee
 e

ne
rg

y 
pe

r p
ar

tic
le

, F
/A

 [M
eV

]

T=0 MeV
T=5 MeV
T=10 MeV
T=15 MeV
T=20 MeV

0 0.1 0.2 0.3
ρ [fm-3]

-40

-20

0

20

40

C
he

m
ic

al
 p

ot
en

tia
l [

M
eV

]

T=0 MeV
T=5 MeV
T=10 MeV
T=15 MeV
T=20 MeV

Figure 4.14: Free energy per particle (left panel) and chemical potential
(right panel) as a function of the density for five temperatures within the
SCHF approach. The results for the chemical potentials correspond to
the microscopic chemical potential, µ̃ (symbols) and to the macroscopic µ
(lines).

in equidistant steps from 0 to 20 MeV, in the left panel of Fig. 4.14. In general
terms, one can say that the free energy is an increasing function of density. At
low densities, the free energy tends to very low values due to the strong density
dependence of the entropy. This is thus a pure entropic effect. On the other
hand, for all densities one observes that the higher the temperature, the lower
the free energy. This behavior is the opposite to what was found for the energy
per particle and it is a direct consequence of the −TS term in the free energy.
Let us also note that the free energy per particle does not have any minimum in
the density and temperature regime explored, apart from that at zero densities.
This in turn implies that nuclear matter within the SCHF would be unstable,
because the minimum of F/A is at ρ = 0 and thus the system would prefer to
disintegrate. However, one does observe finite nuclei in nature, which confirms
that this conclusion is wrong. This incorrect behavior can be traced back to the
lack of correlations in the SCHF approach.

As mentioned in Section 3.3.4, the problem of thermodynamical consistency
is most suitably studied in terms of the chemical potential. On the one hand,
the microscopic chemical potential, µ̃, is obtained within the SCHF from the nor-
malization condition of Eq. (4.29). On the other hand, the macroscopic chemical
potential is obtained from the thermodynamical derivative,

µ =
∂

∂ρ

ρF (ρ, T )

A
. (4.45)
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Figure 4.15: Pressure as a function of the density for five tempera-
tures within the SCHF approach. The symbols have been obtained with
Eq. (4.46), while the lines are the results of Eq. (4.47).

These two chemical potentials are shown in the right panel of Fig. 4.14. While the
symbols represent µ̃, the lines joining them have been obtained by performing the
previous density derivative at each temperature. The agreement is almost perfect.
This shows both the importance of the self-consistent renormalization procedure
as well as the degree of accuracy that is achieved in the thermodynamical consis-
tent results. Note that the free energy has been obtained through the sum of the
GMK sum rule total energy per particle and the DQ expression for the entropy per
particle. These two expressions link the micro- and the macrophysics of the sys-
tem and can lead to non-consistent results if the many-body approximation under
consideration is of a non-conserving nature. The Hugenholtz-van Hove theorem
cannot be studied in this case because the free energy does not present any local
minimum at finite density.

As for the thermal and density dependences, the chemical potential follows
closely the dependence of the free energy per particle. It is an increasing function
of the density, with a strong dependence at low densities, where it goes to the
classical limit µ → −∞. Moreover, for a given density it is a decreasing function
of the temperature. This behavior is clear in the low and intermediate density
regime, but it is less clear for high densities, where all the lines seem to converge
at temperature independent values. Note that once again this is a degeneracy
effect and that, for very high densities, one expects that the results do not depend
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so much on temperature.
Finally, for the SCHF approach one can compute the pressure in two different

but equivalent ways. On the one hand, one can take profit of the fact that, within
this approach, one can compute the Φ functional explicitly, as shown in Eq. (4.39).
Therefore, using Eq. (3.78) or Eq. (3.85) and taking into account the properties of
the SCHF approach (zero width, energy independent self-energy), one can find an
analytic expression for the grand-canonical potential within this approximation.
From this expression, one can readily compute the pressure of the system by means
of the thermodynamical relation p = −VΩ, which yields:

p = −Ω

V
=

ν

β

∫
d3k

(2π)3
ln

[
1 + e−β(ε(k)−µ)

]
+

ν

2

∫
d3k

(2π)3
n(k)Σ(k) . (4.46)

This provides the pressure of nuclear matter directly from the self-energy. It is
important to remark the fact that this expression, obtained from the Luttinger-
Ward approach, coincides with the expression of the mean-field pressure computed
in other methods [Abr65]. The same can be said about the other thermodynamical
quantities obtained from the Luttinger-Ward approach in the mean-field case, i.e.
that they reduce to well established expressions obtained within other formalisms.
On the other hand, the pressure can be computed from the thermodynamical
relation Ω = E − TS − µN . This is indeed given by the expression:

p = ρµ− ρ
E

A
+ ρT

S

A
= ρ

(
µ− F

A

)
. (4.47)

If the approximation has to be consistent, the previous equation should give the
same results as the pressure computed from the Φ-functional, Eq. (4.46). The con-
sistency of our results is shown in Fig. 4.15. In this figure, the symbols have been
obtained from Eq. (4.46), while the lines joining them represent Eq. (4.47). The
agreement of the two results is very good and there is almost no visible difference
between the two expressions. As for the temperature and density dependence,
they are quite intuitive. The pressure increases with temperature for any density,
as expected from the naive idea that thermal motion contributes to the pressure.
In addition, the pressure is an increasing quantity with density. This is due to
both the repulsive effect of the bare interaction, which is more important for high
densities (where particles are in average closer to each other) and to the effect of
degeneracy, which also becomes more relevant at high densities. Finally, let us note
that there is no trace of saturation in the SCHF pressure, i.e. there is no finite
density for which the pressure becomes zero. This is in contrast with the usual
knowledge of nuclear physics. In the following chapter, it will be shown how, by
including higher order correlations, one can obtain a more realistic description of
nuclear matter at finite temperature, which reproduces qualitatively the properties
of dense matter which are expected from experimental data.
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Chapter 5

Ladder Approximation

The NN interaction presents a very repulsive core at short distances. Intuitively,
one might think that, if it is energetically costly to put two particles together,
the probability of finding them close to each other should be small. In dense
nuclear systems, this mechanism would allow the particles to avoid the strong
short-range repulsive core and to explore the attractive part of the interaction, so
that enough binding is produced to form finite nuclei. In this sense, there is an
interplay between the repulsive interaction at close relative distances, the attrac-
tion at intermediate distances and the “correlation” probability in both of these
ranges. Yet, in the Hartree-Fock approximation introduced in the previous chap-
ter, this kind of correlations have been totally neglected. The two-body Green’s
function, as a matter of fact, was simply given by the propagation of two inde-
pendent fermions. This lack of correlations overweights the repulsive short-range
components of the interaction and it is the ultimate responsible for the poor bind-
ing in the Hartree-Fock approach. In the following, a more complete many-body
approach will be studied, the so-called ladder approximation, in which two-body
correlations as well as strong interactions are treated in a more consistent and
sophisticated way. The numerical implementation of the approach (through the
Self-Consistent Green’s Function method) as well as the results for the microscopic
properties will also be discussed. In Chapter 6, the Luttinger-Ward formalism will
be applied to obtain the thermodynamical properties of nuclear matter within this
many-body approach.

5.1 Two-body propagator

The NN potential has a strong short-range core of a repulsive nature. Therefore,
one expects that the Hartree-Fock approximation for the two-body propagator,
shown in Fig. 4.6, will be quite poor. After all, if the interaction is very strong,
two propagating particles will necessarily interact with each other (one or two or
more times) and thus it will not be a good approximation to suppose that they
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5.1. Two-body propagator

=GII +

...+ ++

+ +

+ +

Figure 5.1: Diagrammatic expansion of the two-body propagator in the
ladder approximation.

propagate independently. Consider, in contrast, the approximation of Fig. 5.1, in
which the propagation of the two particles is given by the independent terms of
the Hartree-Fock approximation plus all the possible processes in which the two
particles interact successively with each other. This approximation for the two-
body propagator is the so-called ladder approximation. In principle, this should
be a reasonable approximation in systems driven by strong interactions where
particles unavoidably interact with each other repeatedly. However, when the
density increases particles might interact with each other via an excitation of the
medium surrounding them. This kind of contributions are not treated in this
approach and so the ladder approximation is suitable for low density systems
with strong two-body interactions. Actually, this approximation is appropriate to
compute the total energy of a system in the limit a/r0 � 1, where a is the range of
the potential and r0 is the mean interparticle distance. This condition is fairly well
fulfilled in nuclear matter: the range of the short-range component of the strong
interaction is (in a boson exchange picture) given by the mass of the ω meson, a ∼
1/mω ∼ 0.25 fm, and the mean interparticle distance at saturation can be taken as
r0 ∼ 3

√
1/ρ0 ∼ 1.8 fm, so that for nuclear matter at saturation a/r0 ∼ 0.15. In the

original derivation of the ladder expansion by Galistkii [Gal58a], the diagrams in
Fig. 5.1 did not have dressed propagators, but free single-particle Green’s functions.
This would of course only be valid in low density systems, in which the individual
quasi-particles might behave similarly to the free ones. Whenever the densities are
higher (or, in other words, if the ratio a/r0 becomes larger, as it happens in nuclear
matter), the intermediate quasi-particles should be dressed [Ram88; Dew02]. This
justifies physically the inclusion of dressed propagators in Fig. 5.1, which describes
more accurately the propagation of one-body disturbances in a dense system. One
expects that this will also yield a better approximation to GII which will however
necessarily involve a self-consistent approach. Furthermore, the sum of diagrams
of Fig. 5.1 with dressed propagators includes a large amount of the diagrams in
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= +GII +
GII

Figure 5.2: Diagrammatic representation of the two-body propagator
in the ladder approximation.

Fig. 4.5 and, hopefully, it will describe more accurately the properties of strongly
interacting systems. Actually, the infinite diagram series of Fig. 5.1 can be written
down analytically by noticing that GII is already included in the right hand side
of Fig. 5.1 (see Fig. 5.2). Since the intermediate space-time variables have to be
integrated (the imaginary time is integrated in the whole range, from 0 to −iβ),
this gives rise to the following integral equation:

GII(12;1′2′) = G(1,1′)G(2,2′)− G(1,2′)G(2,1′)

+ i

∫ −iβ

0

d1̄

∫ −iβ

0

d2̄G(1, 1̄)G(2, 2̄)V (1̄− 2̄)GII(1̄2̄;1′2′) . (5.1)

Note that, in a sense, the Hartree-Fock approximation is already included in the
previous equation, because the two first terms in the previous expression corre-
spond to Eq. (4.7).

It is interesting to derive the ladder approximation to GII , Eq. (5.1), directly
from the hierarchy of the equation of motion for the two-body propagator. This
gives a new insight into the physical basis of the approximation. To begin with,
consider the differential equation of motion for the two-body Green’s function [see
Eq. (2.100)]:{

i
∂

∂t1
+
∇2

1

2m

}
GII(12;1′2′) = δ(1− 1′)G(2,2′)− δ(1− 2′)G(2,1′)

− i

∫ −iβ

0

d3̄V (1− 3̄)GIII(123̄;1′2′3̄+) . (5.2)

As expected, the previous equation couples the two-body Green’s function with
the dressed one-body propagator as well as with the three-body one. In order to
find solvable solutions, one has to truncate this hierarchy. This is usually done by
expressing the N -body Green’s functions in terms of the (N − 1)-, (N − 2)-, · · ·
propagators and possibly some interaction among them. These are approximations
in the sense that the genuine N -body (and higher order) excitations of the system
are lacking and thus poorly described. The Hartree-Fock approximation, for in-
stance, lacks any two-body correlations because the two-body Green’s function is
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= +GII +
GII

Figure 5.3: Diagrammatic representation of the two-body propagator
from the decoupling of the three-body propagator.

defined as a product of two independent one-body propagators. Following these
ideas, one can indeed approximate GIII in different ways, which originates different
decouplings. Some of these decouplings lead to well-known schemes that sum up
infinite series of diagrams [Mat71]. Among the well-known many-body approxi-
mations that come out from expressing GIII in terms of G and GII in Eq. (5.2), one
finds the random phase as well as the ladder approximations. In doing this, the
full one-body and two-body correlations are taken into account. Note that genuine
three-body correlations, which in the nuclear phenomenology play an important
role, are only approximate in the sense that they are taken as independent excita-
tions of couples plus individual nucleons [Day81]. The collective motion of a full
indistinguishable triplet of fermions is thus not treated accurately, even though
one expects these three-body correlations to be less important than those of a
two-body nature for a system interacting through two-body interactions.

The ladder approximation is obtained from the decoupling:

GIII(123;1′2′3′) ∼GII(13;1′3′)G(2,2′) + GII(13;3′2′)G(2,1′)

+ GII(13;2′1′)G(2,3′) . (5.3)

The ordering of the time and space variables of the previous equation is very
important, although it is intuitive at first sight. In fact, a different ordering might
lead to an approximation that is not expressible in terms of diagrams. Plugging the
previous decoupling in Eq. (5.2), one obtains the following differential equation:{

i
∂

∂t1
+
∇2

1

2m

}{
GII(12;1′2′)− G(1,1′)G(2,2′) + G(1,2′)G(2,1′)

}
=

i

∫ −iβ

0

d3̄V (1− 3̄)G(2, 3̄+)GII(13̄;1′2′) . (5.4)

By means of the same technique that was used in Section 2.4 to obtain the integral
form of Dyson’s equation, one can write down the integral counterpart of the
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= +T
T

Figure 5.4: Diagrammatic expression of the T -matrix.

previous equation:

GII(12;1′2′) = G(1,1′)G(2,2′)− G(1,2′)G(2,1′)

+ i

∫ −iβ

0

d1̄

∫ −iβ

0

d2̄G0(1, 1̄)G(2, 2̄)V (1̄− 2̄)GII(1̄2̄;1′2′) . (5.5)

In terms of diagrams, this is shown in Fig. 5.3. This equation resembles Eq. (5.1)
quite a lot. Actually, the only difference comes from the propagator in the left hand
side of the integral term, which is free in the previous expression and dressed in
Eq. (5.1). In terms of diagrams, this differs from Fig. 5.2 in the free single-particle
propagator appearing in the top left vertex of GII . In the following, this free
propagator will be considered to be dressed. This is a more consistent treatment,
as already explained, that arises anyway when the self-consistent procedure is
introduced into the approach.

5.2 In-medium interaction

Now that the fundamental equation for the two-body propagator within the ladder
approximation has been obtained, one should start to devise methods to solve it. In
the first place, and following Kadanoff and Baym [Kad62], the analytical properties
of this scheme will be studied in detail. One usually starts by defining the so-called
in-medium interaction or T -matrix:

T (12;1′2′) = δ(1− 1′)δ(2− 2′)V (1− 2)

+ i

∫ −iβ

0

d1̄

∫ −iβ

0

d2̄T (1̄2̄;1′2′)G(1̄,1′)G(2̄,2′)V (1′ − 2′) . (5.6)

The object defined by this equation can be expressed in terms of diagrams, as in
Fig. 5.4. This quantity accounts for the interaction of two dressed particles in the
medium by describing their repeated scattering to all orders, as seen by iterating
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5.2. In-medium interaction

= +T + + ...

Figure 5.5: Diagrammatic expansion of the T -matrix.

the left hand side of the previous equation:

T (12;1′2′) = δ(1− 1′)δ(2− 2′)V (1− 2) + i V (1− 2)G(1,1′)G(2,2′) V (1′ − 2′)

+ i2
∫ −iβ

0

d1̄

∫ −iβ

0

d2̄V (1− 2)G(1, 1̄)G(2, 2̄) V (1̄− 2̄)G(1̄,1′)G(2̄,2′) V (1′ − 2′)

+ · · · (5.7)

This is sketched diagrammatically in Fig. 5.5. In this way one clearly sees that
the T -matrix accounts for the repeated scattering of two nucleons in the medium.
Iterating also the left hand side of Eq. (5.1), one finds the following identity between
GII and the T -matrix:

V (1− 2)GII(12;1′2′) =∫ −iβ

0

d1̄

∫ −iβ

0

d2̄
{
G(1, 1̄)G(2, 2̄)− G(1, 2̄)G(2, 1̄)

}
T (1̄2̄;1′2′) . (5.8)

This equation is extremely interesting, because it relates the in-medium interaction
and the two-body propagator. From this equation, for instance, one sees that
even in the case where the two-body potential is a hard-core, the T -matrix might
remain finite if correlations induce a vanishing GII at small relative distances.
In other words, even if the two-body interaction is of a singular type (and thus
the perturbation expansion order by order in V fails), its corresponding T -matrix
remains finite and well defined.

Let us now turn to the analytical structure of the T -matrix. Consider its
definition, Eq. (5.6). Because of the notation V (1 − 2) = δ(t1 − t2)V (r1 − r2),
one can easily see that the T -matrix is instantaneous in the time difference of its
initial and final states:

T (12;1′2′) = δ(t1 − t2)δ(t1′ − t2′)〈r1r2|T (t1 − t1′)|r′1r′2〉 , (5.9)

and thus it only depends on a single time difference, τ = t1− t1′ . The dependence
in this variable is quite interesting. The first term of Eq. (5.7), for instance, is
proportional to δ(τ), while the second term has two single-particle propagators
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5. Ladder Approximation

that do explicitly depend on τ . In the complex time domain, thus, and following
the same procedure that was used for the single-particle propagator, one splits the
time dependence accordingly to the three time regions of interest:

〈r1r2|T (τ)|r1r2〉 =


〈r1r2|T>(τ)|r1r2〉, Im τ < 0
〈r1r2|T 0(τ)|r1r2〉, Im τ = 0
〈r1r2|T<(τ)|r1r2〉, Im τ > 0 ,

(5.10)

where T> and T< are analytic functions in the time argument τ and where T 0

accounts for a possible singular term at τ = 0. Actually, this corresponds to the
two-body potential, T 0 = V .

Consider the second (and remaining) terms in the expansion of Eq. (5.7). When
one takes t1 = 0, the propagators depending on 1 and 2 inside the expansion will
become G<’s. On the other hand, for t1 = −iβ they will be equal to G>. At all
orders in the expansion, there are only two propagators which depend on t1. One
can thus derive the following set of identities:

〈r1r2|T (t1 = 0, t1′)|r1r2〉 = 〈r1r2|T<(t1 = 0, t1′)|r1r2〉 =

= · · · G<(t1 = 0, t1′)G<(t1 = 0, t1′) · · · =
= · · · eβµG>(t1 = −iβ, t1′)e

βµG>(t1 = −iβ, t1′) · · · =
= e2βµ〈r1r2|T>(t1 = −iβ, t1′)|r1r2〉 =

= e2βµ〈r1r2|T (t1 = −iβ, t1′)|r1r2〉 ,

where the · · · are supposed to include the remaining quantities and integrals in
the expansion of Eq. (5.7). From that chain of equations, the KMS relation for
the T -matrix is found:

〈r1r2|T (t1 = 0, t1′)|r1r2〉 = e2βµ〈r1r2|T (t1 = −iβ, t1′)|r1r2〉 . (5.11)

This relation is again of a quasi-periodical type in the imaginary time variable
but, instead of carrying a minus sign as in Eq. (2.34), it carries a plus sign. This
suggests the following Fourier decomposition for T (the space variables are omitted
for convenience in the following):

T (τ) =
1

−iβ

∑
ν

e−iZντT (Zν) , (5.12)

where the Matsubara frequencies are now given by Zν = νπ
−iβ

+2µ and the indices ν
are even integers. This is in contrast to the fermionic one-body propagator, where
the ν’s are odd, but it is in agreement with the Fourier transform of the equal-time
two-body Green’s function, Eq. (2.80). Moreover, this is logical in a sense, because
the T -matrix accounts for the coherent scattering of a couple of fermions, which
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5.2. In-medium interaction

behaves like a single boson. One can also define the Fourier transforms of the T>

and T< functions along the real time axis:

T≶(Ω) = i

∫ ∞

−∞
dτ eiΩτT≶(τ) . (5.13)

The two previous functions are related by the KMS relation for the T -matrix in
Fourier space:

T>(Ω) = eβ(Ω−2µ)T<(Ω) . (5.14)

This is completely equivalent to the KMS relation in frequency space for the two-
body propagator, Eq. (2.87), and thus suggests the following definition of a T -
matrix “spectral function”:

T(Ω) = T>(Ω)− T<(Ω) . (5.15)

T> and T< might be obtained from T by means of the relations:

T<(Ω) = b(Ω)T(Ω) (5.16)

T>(Ω) = [1 + b(Ω)]T(Ω) , (5.17)

where b(ω) is the Bose-Einstein distribution defined in Eq. (2.91). The spectral
decomposition is then readily obtained:

T (Zν) =

∫ −iβ

0

dτ eiZντT (τ) =

∫ −iβ

0

dτ eiZντ

{
δ(τ)V + T>(τ)

}
= V − i

∫ −iβ

0

dτ

∫ ∞

−∞

dΩ′

2π
e(iZν−iΩ′)τ [1 + b(Ω′)]T(Ω′)

= V +

∫ ∞

−∞

dΩ′

2π

T(Ω′)

Zν − Ω′ . (5.18)

This function can be analytically continued to the whole complex plane with the
possible exception of the real axis. Once again the procedure is unique due to the
convergence properties at infinity of the previous expression. In particular, one
might chose Z = Ω+. For that specific value one obtains the relation:

T(Ω) = −2Im T (Ω+) . (5.19)

All in all, the spectral decomposition of the T -matrix can be rewritten as:

T (Z) = V −
∫ ∞

−∞

dΩ′

π

Im T (Ω′
+)

Z − Ω′ . (5.20)
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=GII
0

Figure 5.6: Diagrammatic representation of G0
II .

Taking the previous expression slightly above the real axis, one finds the following
expression for the real part of the T -matrix:

Re T (Ω) = V − P
∫ ∞

−∞

dΩ′

π

Im T (Ω′
+)

Ω− Ω′ . (5.21)

One thus sees that, in the limit of very high or very low energies, Ω → ±∞, the
real part of the T -matrix reduces essentially to the bare interaction. This is also
the case in the regions of momentum space where Im T ∼ 0, independently of the
energy.

To solve the equations for the GII propagator or the T -matrix, it is convenient to
work in Fourier space. One thus needs to consider the remaining time dependences
of Eq. (5.7). As already explained, this is given by the product of two (dressed)
independent Green’s function:

〈r1r2|G0
II(t1, t1′)|r′1r′2〉 = iG(r1 − r′1, t1 − t1′)G(r2 − r′2, t1 − t1′) , (5.22)

which is depicted in terms of diagrams in Fig. 5.6. This defines naturally the two
correlation functions:

G0
II(τ) =


G0>

II (τ) = iG>(τ)G>(τ), Im τ < 0

G0<
II (τ) = iG<(τ)G<(τ), Im τ > 0 .

(5.23)

The function G0
II being a product of two single-particle propagators, it fulfills a

KMS relation of the bosonic type:

G0
II(t1 = 0, t1′) = e2βµG0

II(t1 = −iβ, t1′) . (5.24)

The spectral decomposition of G0
II follows the same steps as that of the two-body

propagator, Eq. (2.76) to Eq. (2.88), and one finds:

G0
II(Z) =

∫ ∞

−∞

dΩ

2π

G0>
II (Ω)− G0<

II (Ω)

Z − Ω
. (5.25)
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5.3. Lippman-Schwinger equation

This equation can be expressed in terms of single-particle correlation functions by
using the Fourier transform of Eqs. (2.41) and (2.42):

G0≶
II (Ω) = −

∫ ∞

−∞
dτ eiΩτG≶(τ)G≶(τ) =

∫ ∞

−∞

dω′

2π
G≶(ω′)G≶(Ω− ω′) , (5.26)

yielding:

G0
II(Z) =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π

G>(ω)G>(ω′)− G<(ω)G<(ω′)

Z − ω − ω′

=

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
A(ω)A(ω′)

1− f(ω)− f(ω′)

Z − ω − ω′ . (5.27)

By taking this quantity close to the real axis, Z = Ω+, it is easily to split it in an
imaginary part:

ImG0
II(Ω+) = −1

2

∫ ∞

−∞

dω

2π
A(ω)A(Ω− ω) [1− f(ω)− f(Ω− ω)] , (5.28)

and a real part:

ReG0
II(Ω+) = −P

∫ ∞

−∞

dΩ′

π

ImG0
II(Ω

′
+)

Ω− Ω′ . (5.29)

Note that this last dispersion relation allows to calculate the real part of G0
II directly

from the imaginary part. Finally, it is also interesting to note the following sum
rule for the imaginary part of G0

II :∫ ∞

−∞

dΩ

π
ImG0

II(Ω+) = − [1− n(k)− n(k′)] . (5.30)

This will be used further on as a test of the numerical accuracy of the many-body
scheme within which the ladder approximation is solved (see Appendix E).

5.3 Lippman-Schwinger equation

All of the analytical properties for T and G0
II that have just been derived are useful

in the numerical resolution of the ladder approximation. An important point in this
approach is to obtain the in-medium interaction by means of the integral equation
Eq. (5.6). As a first step towards this solution, one should Fourier transform the
equation. First of all, the time variable in Eq. (5.6) can be Fourier transformed
using the previous definitions, to yield:

〈r1r2|T (Zν)|r′1r′2〉 = δ(r1 − r′1)δ(r2 − r′2)V (r′1 − r′2)

+

∫
d3r1̄

∫
d3r2̄ V (r1 − r2) 〈r1r2|G0

II(Zν)|r1̄r2̄〉 〈r1̄r2̄|T (Zν)|r′1r′2〉 . (5.31)
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5. Ladder Approximation

One can now transform the position variables in the previous equation to momen-
tum space and find:

〈k1k2|T (Zν)|k3k4〉 = 〈k1k2|V |k3k4〉

+ V
∫

d3k5

(2π)3
V

∫
d3k6

(2π)3
〈k1k2|V |k5k6〉 G0

II(Zν ; k5k6) 〈k5k6|T (Zν)|k3k4〉 .

(5.32)

This integral equation is a Lippman-Schwinger-type equation that defines the T -
matrix in terms of the bare NN potential and the intermediate two-body propa-
gator, G0

II . The Lippman-Schwinger equation is, as a matter of fact, well-known
in the field of nuclear physics, where it has been extensively used in several con-
texts [Day67]. In the particular case of the ladder approximation, the intermediate
two-particle propagator can be rewritten as:

G0
II(Zν ; k, k′) =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
A(k, ω)A(k′, ω′)

× [1− f(ω)][1− f(ω′)]− f(ω)f(ω′)

Zν − ω − ω′ . (5.33)

In this way, one finds that the zero-temperature limit of the previous propagator
accounts, at the same time, for the propagation of a pair of particles (by means
of the term proportional to [1 − f(ω)][1 − f(ω′)]) and a pair of holes (through
f(ω)f(ω′)). In this sense, one says that G0

II accounts for the in-medium particle-
particle and hole-hole propagation. Note, however, that G0

II is not the full two-body
propagator, GII , but only its lowest order approximation.

In the solution of the Lippman-Schwinger equation for the T -matrix, it is im-
portant to exploit the invariance properties of the NN bare interaction. A practical
solution of the equation for the T -matrix is found by means of the partial wave
expansion introduced in Section 4.4. As a first step, one has to recast the Lippman-
Schwinger equation in terms of the center-of-mass momentum, K = k+k′, and the
relative momentum, kr = (k − k′)/2. Introducing the matrix element in relative
space:

V
(2π)3

〈kk′|V |pp′〉 = δ(K−P)〈kr|V |pr〉 , (5.34)

the Lippman-Schwinger equation for the scattering amplitude in the medium reads:

〈kr|T (Zν ,K)|pr〉 = 〈kr|V |pr〉

+

∫
d3qr 〈kr|V |qr〉 G0

II

(
Zν ; |K/2 + qr| , |K/2− qr|

)
〈qr|T (Zν ,K)|pr〉 .

(5.35)
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5.3. Lippman-Schwinger equation

An attempt to perform a partial wave expansion on the previous expansion will
soon meet an additional problem. The G0

II function depends explicitly on the lab
frame momenta k = |K/2 + qr| and k′ = |K/2− qr|. In particular, it carries a
dependence on the angle θ between K and qr. This leads to a coupling of the
partial waves with different total angular momentum J in G0

II [Sar96]. Or, in
other words, the in-medium propagation of two nucleons does not conserve the
total angular momentum of the pair. This coupling, of course, complicates the
solution of the Lippman-Schwinger equation.

Fortunately, this problem can be circumvented by means of the so-called angle-
average procedure. Within this procedure, the full G0

II in Eq. (5.35) is replaced by
the angle average:

G0
II(Zν ; K, qr) =

1

2

∫ 1

−1

d(cos θ)G0
II

(
Zν ; |K/2 + qr| , |K/2− qr|

)
, (5.36)

which does only depend on the modulus of K and qr, and not on the angle between
them. As a consequence of this replacement, the intermediate coupling between
partial waves disappears and the Lippman-Schwinger equation becomes a one-
dimensional integral equation. One can therefore use the partial wave expansion
of Section 4.4 to expand the bras and kets in Eq. (5.35). The angular integral in θ

is then easily carried out thanks to the introduction of the angle-independent G0
II ,

and one finds:

〈kr|T JST
LL′ (Zν , K)|pr〉 = 〈kr|V JST

LL′ |pr〉

+
∑
L′′

∫
dqr q2

r 〈kr|V JST
LL′′ |qr〉 G0

II

(
Zν ; K, qr

)
〈qr|T JST

L′′L′(Zν , K)|pr〉 .

(5.37)

This gives the Lippman-Schwinger equation in terms of the partials waves in the
NN interaction and in terms of an angle averaged independent two-body prop-
agator, G0

II . There have been estimates on the effects that the angle-averaging
procedure involves in the self-energy as well as in the total energy for Brueckner-
type calculations, and only small deviations from the exact results, of less than 1
MeV for both quantities around saturation, have been found [Sar96; Suz00]. To
our knowledge, there are no available calculations that go beyond the quasi-particle
approximation and that treat the angle-average exactly. The numerical solution
of this equation is presented in Appendix E.

The in-medium interaction of Eq. (5.37) depends explicitly on the center-of-
mass momentum. This is in contrast to the bare NN interaction, which only
depends on the relative momenta. The explicit dependence in K of the T -matrix
is a consequence of the presence of the medium, which sets a preferred frame of
reference; namely, the frame in which the medium is at rest. This immediately
implies the breaking of the velocity independence of the effective interaction and
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5. Ladder Approximation

sets its dependence on the total momentum of the particles interacting in the
medium.

The T -matrix approximation breaks down at low temperatures for attractive
interactions [Kad62; Mat92]. The ultimate reason of this breakdown is the appear-
ance of a pole in the zero center-of-mass momentum T -matrix at an energy Ω = 2µ.
This pole corresponds to a bound state of two nucleons, one with momentum k and
the another one with momentum −k. In a BCS approach, one would say that these
two nucleons, which are essentially at the Fermi surface due to the fact that their
quasi-particle energies are equal to µ, form a Cooper pair. Thus the appearance of
this pole signals an effect which is somehow related to superconductivity in metals.
Actually, this complex pole in the effective interaction is associated to a pole in
the single-particle propagator. But the fact that G presents a pole goes against
its analyticity conditions and thus signals the fact that, not only the T -matrix
approximation, but perturbation theory itself breaks down. The appearance of
such a pole is generic in fermionic systems with attractive interactions and it is
known as the pairing instability. Actually, one can show that the problem lies in
the description in terms of usual propagators of the superfluid phase. Due to the
fact that paired states have different symmetry properties than single nucleons,
perturbation theory cannot be described anymore within the usual Green’s func-
tion approach. Instead, the theory has to be extended to include (Nambu-Gorkov)
anomalous propagators [Abr65; Fet71; Mat92]. Yet, inside the normal phase one
can try to quantify the critical temperature at which pairing appears by means of
the Thouless criterion [Tho60]. In nuclear matter, this gives a critical temperature
of about 5 MeV for the 3S1−3 D1 pairing transition [Alm93; Alm96], although this
is probably overestimated in quasi-particle approaches [Fri04a].

The T -matrix has other very interesting properties that will not be discussed
here, but can be found in Refs. [Kad62] or [Kra86]. Among them, it is interesting to
note that the in-medium T -matrix preserves unitarity, in the sense that it fulfills
an optical theorem at finite temperature and densities. Furthermore, one can
prove that, in the low-density limit, the T -matrix reduces to the usual free space
scattering amplitude (which is also sometimes called the T -matrix). This of course
differs from the in-medium T -matrix in the propagators (the Fermi distributions
account for medium effects that are not present in free space) and in the absence of
center-of-mass dependence (which is only present at finite density). One can thus
fairly say that the T -matrix accounts for the scattering amplitude of two particles
in the dense and hot medium.

5.4 Ladder self-energy

The ladder approximation can also be cast in terms of the self-energy. This is
achieved by noticing that Eq. (5.8) gives V × GII in terms of the T -matrix and
that the self-energy is defined in Eq. (2.115) precisely in terms of V × GII . This
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SCGF
Σ T

T
= = +
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Figure 5.7: Diagrammatic representation of the ladder self-energy.

provides for the connection between the self-energy and the T -matrix, which is
given by the equation:

ΣL(1,1′) = −i

∫ −iβ

0

d2̄

∫ −iβ

0

d3̄ 〈12̄|T |1′3̄〉A G(2̄, 3̄) . (5.38)

The counterpart in terms of diagrams of this equation is given in Fig. 5.7. Note
that the diagrammatic expansion of the ladder self-energy is given in terms of 2PI
skeleton diagrams. The dressing of the intermediate lines is achieved by means of
the iterative self-consistent procedure, as already discussed.

With this expression at hand, one can now try to study the analytical structure
of the self-energy within the ladder approximation. This will follow closely the
results obtained in Section 2.4. As a function of time, the ladder self-energy is
decomposed in an instantaneous contribution (due to the instantaneous term in
T ) and two correlation functions:

Σ≶
L(r1 − r′1, τ) = −i

∫
dr2̄

∫
dr3̄ 〈r1r2̄|T≶(τ)|r′1r3̄〉A G≷(r2̄ − r3̄, τ) . (5.39)

The self-energy in the imaginary time domain can be easily Fourier transformed
to the Matsubara and momentum space, yielding:

ΣL(k, zν) =
−i

−iβ

∑
ν′

∫
d3k′

(2π)3
〈kk′|T (zν + zν′)|kk′〉A G(k′, zν′) . (5.40)

One can plug the spectral decomposition of the T -matrix, Eq. (5.18), into the
previous equation, which then decomposes into the two contributions:

ΣL(k, zν) = ΣHF (k) + ΣC(k, zν) . (5.41)
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SCHF

+ ++

+ +
SCHF

SCGF

+ ...
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Figure 5.8: Diagrammatic representation of the SCHF self-energy and the
generalized HF contribution to the ladder self-energy.

Note that this is the same kind of decomposition that was obtained in Section 2.4
[see Eq. (2.126)], where the properties of both terms were already discussed. The
particular structure of these two contributions within the ladder approximation is
explained in the following.

The first term corresponds to an instantaneous (energy-independent) contribu-
tion that comes from the bare potential:

ΣHF (k) =
−i

−iβ

∫
d3k′

(2π)3
〈kk′|V |kk′〉A

∑
ν′

G(k′, zν′) =

=

∫
d3k′

(2π)3
〈kk′|V |kk′〉A n(k′) , (5.42)

where the Matsubara sum of Eq. (C.13) has been used. This has exactly the
same aspect as the SCHF self-energy of Eq. (4.3). Note, however, that the previ-
ous expression is a generalized HF contribution, in the sense that the momentum
distribution n(k) is computed with the spectral function of the ladder approxima-
tion (which has a certain width, in contrast to the no-width spectral function of
the SCHF scheme). In terms of diagrams, the difference between the SCHF self-
energy and the generalized HF contribution to the SCGF self-energy come from
the insertions of the internal line. While for the SCHF case these insertions are
iterations of HF self-energies, in the generalized HF contribution these include all
types of ladder correlations. This difference is shown schematically in Fig. 5.8.
Note that, among the insertions included in the generalized HF contribution of
the ladder approximation, the rearrangement term that accounts for the depletion
in the Brueckner-Bethe-Goldstone theory (the second diagram in the SCGF row)
is included [Jeu76; Zuo99].

The remaining term in the Fourier transform of the self-energy in Eq. (5.41) is
proportional to the imaginary part of the T -matrix. Using the spectral decompo-
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5.4. Ladder self-energy

sition of the propagator, Eq. (2.57), this can be rewritten as:

ΣC(k, zν) = − −i

−iβ

∑
ν′

∫
d3k′

(2π)3

∫ ∞

−∞

dΩ

π

〈kk′|Im T (Ω+)|kk′〉A
zν + zν′ − Ω

∫ ∞

−∞

dω′

2π

A(k′, ω′)

zν′ − ω′ =

= − 1

β

∫
d3k′

(2π)3

∫ ∞

−∞

dΩ

π

∫ ∞

−∞

dω′

2π
〈kk′|Im T (Ω+)|kk′〉AA(k′, ω′)F (zν , Ω, ω′),

(5.43)

where F (zν , Ω, ω′) is given by the Matsubara sum:

F (zν , Ω, ω′) =
∑
ν′

1

zν′ + zν − Ω

1

zν′ − ω′ . (5.44)

This sum involves a function with two poles. The procedure to compute it is
sketched in Appendix C. First of all, the sum is converted into an integral of
the summed function times −βf(z), which is a function with unit poles at the
Matsubara frequencies. One can deform the original contour C, which encircled
each of the Matsubara frequencies in the positive sense, to a contour C ′ that only
includes the poles of the integrand at z1 = Ω−zν and z2 = ω′ in the negative sense.
Applying Cauchy’s theorem to those poles (and noting that the contributions of
the arcs at infinity vanish), one gets:

F (zν , Ω, ω′) = β
f(ω′)− f(Ω− zν)

zν + ω′ − Ω
. (5.45)

One can now use the relation f(Ω − zν) = −b(Ω), valid for odd integers ν, to
rewrite the ΣC term as follows:

ΣC(k, zν) = −
∫

d3k′

(2π)3

∫ ∞

−∞

dΩ

π

∫ ∞

−∞

dω′

2π
〈kk′|Im T (Ω+)|kk′〉AA(k′, ω′)

f(ω′) + b(Ω)

zν + ω′ − Ω
.

(5.46)

All the dependence in zν is now in the denominator of the last term in the previous
expression. This allows to find the imaginary part of the self-energy within the
ladder approximation:

Im ΣL(k, ω+) =

∫
d3k′

(2π)3

∫ ∞

−∞

dω′

2π
〈kk′|Im T (ω + ω′

+)|kk′〉AA(k′, ω′)

×[f(ω′) + b(ω + ω′)] . (5.47)

It has already been shown (see Section 2.4) that the real part of the self-energy
can be obtained from this imaginary part by means of the dispersion relation:

Re ΣL(k, ω) = ΣHF (k)− P
∫ ∞

−∞

dλ

π

Im ΣL(k, λ+)

ω − λ
. (5.48)
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5. Ladder Approximation

The (purely real) generalized HF contribution within the ladder approximation
has to be included in this expression. The remaining term is a principial value
integral of the width, Γ, and involves a dispersive contribution that vanishes for
large ω’s.

Several interesting properties arise from the previous expressions. In the first
place, the correlated part of the self-energy in Eq. (5.47) has a surprising bosonic
term. This appears due to the symmetric treatment of particle-particle and hole-
hole propagation in the T -matrix. It is, for instance, absent in a BHF-type calcula-
tion, where only particle-particle correlations are taken into account. Furthermore,
it is very important to note that the self-energy is the result of a very subtle can-
cellation. On the one hand, the bosonic function b(Ω) has a pole at Ω = 2µ. On
the other hand, the imaginary part of the T -matrix has a node at this precise
energy. This is easily seen from the fact that the imaginary part of the in-medium
interaction is essentially proportional to ImG0

II . Rewriting the phase space factor
of Eq. (5.28) as:

1− f(ω)− f(Ω− µ) = b−1(Ω)f(ω)f(Ω− µ) , (5.49)

one finds that ImG0
II(Ω = 2µ) = 0 and thus Im T (Ω = 2µ) = 0. As long as this is

true, the integrand in Eq. (5.47) will be a smooth function of ω′ and the integral
will yield finite results.

To complete this section, let us note that, in any calculation in nuclear matter,
the T -matrix will be given in partial waves. It is thus reasonable to give an
expression of the self-energy in terms of the partial wave decomposed T -matrix.
This can be done following the same steps that were used for the SCHF self-energy
in Section 4.4. The final result yields:

Im ΣL(k, ω+) =
1

16π

∑
JLST

[
1− (−1)L+S+T

]
(2T + 1)(2J + 1)∫

d3k′

(2π)3

∫ ∞

−∞

dω′

2π
〈q[k,k′]|Im T JST

LL (P [k,k′], ω + ω′
+)|q[k,k′]〉

× A(k′, ω′)[f(ω′) + b(ω + ω′)] . (5.50)

The notation q[k,k′] and P [k,k′] once again denotes that both the relative and
the total momentum depend on the single-particle momenta, k and k′.

5.5 Self-Consistent Green’s Functions scheme

The SCGF method is a particular scheme devised to obtain the spectral function
within the ladder approximation in an iterative way. The equations involved in
this process are sketched in Table 5.1. The self-consistency of the method refers,
in this case, to the fact that the three relevant quantities (the T -matrix, the self-
energy and the spectral function) are computed from each other at each step of
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5.5. Self-Consistent Green’s Functions scheme

Step Eq. Self-Consistent Green’s Function Scheme

1 (3.47) ρ = ν

∫
d3k

(2π)3

∫ ∞

−∞

dω

2π
A(k, ω)f(ω, µ̃)

2 (5.28)
ImG0

II(Ω+; k, k′) = −1

2

∫ ∞

−∞

dω

2π
A(k, ω)A(k′, Ω− ω)

×[1− f(ω)− f(Ω− ω)]

3 (5.29) ReG0
II(Ω; k, k′) = −P

∫ ∞

−∞

dΩ′

π

ImG0
II(Ω

′
+; k, k′)

Ω− Ω′

4 (5.36) G0
II(Ω; K, qr) =

1

2

∫ 1

−1

d(cos θ)G0
II

(
Ω; |K/2 + qr| , |K/2− qr|

)

5 (5.35)
〈kr|T (Ω+, K)|pr〉 = 〈kr|V |pr〉

+

∫
d3qr 〈kr|V |qr〉 G0

II

(
Ω; K, qr

)
〈qr|T (Ω+, K)|pr〉

6 (5.47)
Im ΣL(k, ω+) =

∫
d3k′

(2π)3

∫ ∞

−∞

dω′

2π
〈kk′|Im T (ω + ω′

+, K)|kk′〉A

×A(k′, ω′)[f(ω′) + b(ω + ω′)]

7 (5.42) ΣHF (k) =

∫
d3k′

(2π)3
〈kk′|V |kk′〉A n(k′)

8 (2.131) Re ΣL(k, ω+) = ΣHF (k)− P
∫ ∞

−∞

dλ

π

Im ΣL(k, λ+)

ω − λ

9 (2.130) A(k, ω) =
−2Im ΣL(k, ω+)[

ω − k2

2m
− Re ΣL(k, ω)

]2
+

[
Im ΣL(k, ω+)

]2

Table 5.1: Set of equations iterated in the SCGF method.
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the iterative process. Note that for every iteration these are calculated in both
its energy and momentum dependence, i.e. they are off-shell. In this sense, when
the results are converged, the spectral function that enters in, say, Eq. (5.47)
to determine ΣL, is the same one that is obtained from this self-energy through
Eq. (2.130) in the whole energy-momentum range.

The iterative process starts usually with a given approximation to the spectral
function. For a fixed temperature and density, one can then invert Eq. (3.47) to
find the chemical potential µ̃, which is used in the remaining thermal distribution
functions that appear in this iteration. With A and µ̃, one can readily compute
the imaginary part of the non-correlated two-body propagator, ImG0

II . By means
of the dispersion relation of Eq. (5.29), the real part of this quantity can be deter-
mined. The dependence of G0

II on the angle between the center-of-mass momentum
and the relative momentum is then averaged out. With this result, one now solves
the Lippman-Schwinger integral equation, Eq. (5.35), with the help of standard
matrix inversion techniques. Once this is achieved, one has access to the imaginary
part of the in-medium scattering amplitude which, via Eq. (5.47), yields the width
Γ in the ladder approximation. At this point one can compute the real part of
the self-energy. To this end, one needs both the generalized HF contribution of
Eq. (5.42) and the dispersive contribution of Eq. (2.131). With the real and the
imaginary parts of the self-energy, the spectral function is readily computed from
Eq. (2.130). This spectral function can now be used to obtain a new chemical
potential by means of Eq. (3.47), which starts a new iteration in the scheme.

It is also interesting to note that, in each iteration of the SCGF scheme, the
spectral function is computed from the corresponding self-energy. The one-body
propagator for an iteration is thus obtained from the self-energy of the previous
iteration via Dyson’s equation, which corresponds to a self-consistent renormal-
ization procedure, as explained in Section 2.7. The renormalization process is
however slightly different than the one introduced in the Hartree-Fock case (see
Section 4.2), because in this case the initial guess is not the free one-body propaga-
tor, but a dressed propagator at a different temperature and density (see Appendix
E). The analysis in terms of diagrams of this process is thus not as clean as in the
SCHF case, where each iteration step could be seen to correspond to a given set of
self-energy insertions (see Fig. 4.4). The convergence in the iterative process, how-
ever, guarantees that the final result corresponds to the self-consistent one-body
propagator (self-consistent in the sense that it has gone through a self-consistent
renormalization process).

About 5 to 10 iterations are enough to achieve full numerical consistency. The
starting point for this iterative process (for a given density and temperature) is
the spectral function of a different density and temperature. The exact number
of iterations however depends strongly on how close the initial guess is from the
final result and also on the level of degeneracy. At very high densities or low
temperatures, for instance, where the system is very degenerate and thus close to
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the T = 0 result, one needs a large number of mesh points in both momentum
and energy to sample the sharp structures that arise in most of the quantities,
especially close to the Fermi surface. This complicates the calculations and makes
them very time-consuming. Note that this is also one of the reasons why the finite
temperature calculations are more suitable than the zero-temperature ones. The
softening of the peak-like structures in the spectral functions with temperature, for
instance, is extremely useful in the numerical treatment. Still, the SCGF scheme
at finite temperature, starting from a realistic NN interaction, is a very demanding
task. The main difficulty lies precisely in correctly sampling these momentum and
energy dependences for all the quantities, which usually implies the construction
of accurate meshes which have to consider at the same time sharp structures at
the Fermi surface as well as very wide tails in the low and high energy regions.

The full numerical resolution of the SCGF approach in nuclear matter was
achieved in Refs. [Fri03; Fri04a]. Part of the results presented in this Thesis are
based on this original work of the Tübingen group. The SCGF method is imple-
mented numerically with the help of the MATLAB software, which is especially
suited for the treatment of the large multi-dimensional arrays that appear in these
calculations. A full iteration takes about 3 hours on a desktop computer and thus
a full calculation takes about a day of computing time to achieve consistency. In
Appendix E the numerical details entering the resolution of the SCGF scheme
are presented. The reader might also find detailed explanations in Tobias Frick’s
Thesis [Fri04a].

5.6 Connection to other approaches

The SCGF scheme results from the requirement that the single-particle propagator,
the self-energy and the in-medium interaction in the ladder approximation are
obtained from one another at each iteration in a self-consistent manner. Both
the energy and the momentum dependences are iterated self-consistently. Other
many-body approximations soften these self-consistency requirements to a certain
extent. Two of these approximations, which are close in spirit to the SCGF but
which lack its full off-shell self-consistency, will now be discussed.

A somewhat intuitive approach that can be derived from the SCGF equations
appears, for instance, from a no-width quasi-particle approximation to the spectral
function, Eq. (2.137). Using this approximation, one can solve the equation for
the T -matrix with the following non-correlated two-body propagator:

G0
IIQP (Ω+; k, k′) =

〈
Z(k)Z(k′)

1− f [εQP (k)]− f [εQP (k′)]

Ω+ − εQP (k)− εQP (k′)

〉
θ

, (5.51)

where the notation 〈·〉θ is meant to represent the angle average procedure. In this
approximation, a pole in the denominator shows up and thus needs to be extracted
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with a suitable technique [Haf70]. From the in-medium interaction, one computes
the self-energy from the equation:

Im ΣQP (k, ω+) =

∫
d3k′

(2π)3
Z(k′)〈kk′|T (ω+ + εQP (k′), K)|kk′〉A

×
[
f [εQP (k′)] + b [ω + εQP (k′)]

]
. (5.52)

This can be computed for different energies ω and then, by means of the dispersion
relation of Eq. (5.48), one obtains an energy-dependent Re Σ. For each momentum,
this can be used to find a new quasi-particle spectrum:

εQP (k) =
k2

2m
+ Re ΣQP (k, εQP (k)) , (5.53)

which is then introduced in Eq. (5.51) to compute a new T -matrix and a new
self-energy. The procedure can be iterated, until consistency in the quasi-particle
spectrum, εQP (k), is reached. The real and imaginary parts of the self-energy
thus obtained can be used to build a spectral function A, which contains a non-
trivial energy dependence. These equations (usually defined with Z = 1) form the
so-called Quasi-Particle Green’s Function (QPGF) approach [Ram88; Ram89].
Note that the main difference between this and the SCGF approach is the self-
consistency in the off-shell behavior of A(k, ω). While in the SCGF method the
spectral function is treated at every step in both its momentum and energy vari-
ables, the QPGF works with a no-width spectral function until the last iteration.
In this sense, the QPGF method does not treat off-shell effects consistently.

The QPGF method describes the intermediate particle-particle and hole-hole
propagation at the quasi-particle level. This is already one step beyond the usual
BHF approach, in which only particle-particle correlations are considered. Both
methods, however, differ in their foundations. While the QPGF approach is de-
rived from the diagrammatic expansion of the Green’s function, the BHF approach
relies on the Goldstone expansion for the total energy of a many-body system
[Gol57]. This is somewhat equivalent to the linked cluster expansion for Ω, but
at zero temperature and expressed in terms of the so-called Goldstone diagrams.
One can sum up an infinite series of these diagrams by introducing the G-matrix,
an in-medium interaction that is corrected with the Pauli blocking effects that
act on the scattering process of two intermediate particles. This is related to the
T -matrix introduced above and also fulfills a Lippman-Schwinger equation. The
total energy of the system can then be expanded in terms of diagrams containing
G-matrices and a given number of hole lines. Actually, Bethe showed that the
correct expansion parameter is given by the number of hole lines which, roughly
speaking, is proportional to the density [Bet65]. This is the so-called Brueckner-
Bethe-Goldstone (or hole-line) expansion for the total energy of an interacting
many-body system. Taking the lowest order term in this expansion gives the BHF
approximation, which was the first successful theory in describing qualitatively the
properties of nuclear matter from microscopical interactions [Day67].
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One can derive a certain extension of the BHF theory at finite temperatures
from the SCGF approach. This is achieved by keeping in the G0

II of Eq. (5.27)
only the contribution of the G> correlation functions which correspond, in the
zero-temperature limit, to the particle propagators. With this prescription, G0

II

becomes the particle-particle propagator:

G0
II,BHF (Ω+; k, k′) =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π

G>(k, ω)G>(k′, ω′)

Ω+ − ω − ω′

=

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
A(k, ω)A(k′, ω′)

[1− f(ω)][1− f(ω′)]

Ω+ − ω − ω′ .

(5.54)

Now one might take also the no-width quasi-particle approximation with Z = 1
and angle-average this quantity to get:

G0
IIBHF (Ω+; k, k′) =

〈[
1− f [εBHF (k)]

][
1− f [εBHF (k′)]

]
Ω+ − εBHF (k)− εBHF (k′)

〉
θ

. (5.55)

This reduces to the in-medium propagator of two-particles in the zero temperature
limit, where the phase space factors of the numerator become the Pauli blocking
factors Θ[k − kF ]Θ[k′ − kF ]. The denominator in the previous expression is given
by the quasi-particle spectrum εBHF (k), both below and above the Fermi sur-
face. Within a zero temperature BHF framework, the quasi-particle energies are
determined from:

εBHF (k) =
k2

2m
+ ΣBHF (k, εBHF (k)) , (5.56)

only for hole (k < kF ) states, according to the Bethe-Brandow-Petschek theorem
[Bet63]. Above the Fermi surface, one is free to chose the particle spectrum. The
traditional choice is to use a free spectrum, which introduces an energy gap in
the spectrum at the Fermi surface and is accordingly called the gap choice. Yet,
the continuous choice arises more naturally in Green’s function theory and it has
been proposed as an alternative [Jeu76]. In addition, the continuous choice at
the two-hole line level yields results which are closer to the full three-hole line
expansion, which is a sign of its better convergence properties in the hole-line
expansion [Son98]. The in-medium interaction associated to this BHF approach
at finite temperature reads:

〈kr|G(Ω+, K)|pr〉 = 〈kr|V |pr〉

+

∫
d3qr 〈kr|V |qr〉 G0

IIBHF

(
Ω+; K, qr

)
〈qr|G(Ω+, K)|pr〉 , (5.57)

which defines the so-called G-matrix. Now one can determine the corresponding
BHF self-energy from this interaction. Nevertheless, an extra approximation has
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to be carried out before one can strictly say that the BHF approach is derived
from the SCGF method. It has already been commented that the bosonic factor
appearing in Eq. (5.47) is due to the consistent propagation of both particle-
particle and hole-hole pairs. Within the BHF approximation at zero temperature,
only particle-particle pairs propagate and thus no bosonic factor should appear.
Indeed, both the real and imaginary part of the on-shell self-energy are obtained
from the following expression:

ΣBHF (k) =

∫
d3k′

(2π)3
〈kk′|G([εBHF (k) + εBHF (k′)]+ , K)|kk′〉f [εBHF (k′)] . (5.58)

The set of equations Eq. (5.56), Eq. (5.57) and Eq. (5.58) are to be solved self-
consistently. Note that, in contrast to the SCGF method, in the BHF approach
one only needs to compute the on-shell self-energy at each step of the iterative
process.

The equations presented above give, in the zero temperature limit, the cor-
responding expressions of the G-matrix and the self-energy of the usual zero-
temperature BHF approach. Yet, this does not necessarily mean that this is
the correct generalization of the BHF method at finite temperature. As a mat-
ter of fact, there is no such direct generalization and one cannot associate the
scheme presented above to a partial summation of diagrams for the energy per
particle at finite temperature. Instead, a partial sum can be achieved for the
grand-canonical potential in the so-called Bloch-de Dominicis (BdD) approach
[Blo58a; Blo58b; Blo59a; Blo59b]. This correspond to a different many-body
method than the one presented in this Thesis. Its diagrammatic expansion, for
instance, is written in terms of cylindrical diagrams (see [Nic05], for a complete dis-
cussion about this scheme). Within this theory, a similar expression to Eq. (5.57)
for the in-medium temperature-dependent interaction can be obtained, but in prin-
ciple there is not a straightforward expression for the energy per particle of the
finite temperature system. The grand-potential, on the other hand, can be ex-
pressed in terms of the in-medium interaction and, from it, the remaining ther-
modynamical properties of the system can be derived. Traditionally, however, the
BHF approach has been extended to finite temperatures in a more naive way,
closer to the scheme introduced above. One simply replaces the zero tempera-
ture momentum distribution, n(k) = Θ(kF −k), with the Fermi-Dirac distribution
f [εBHF (k)] in all the equations of the zero temperature BHF approximation. In
this way, Eq. (5.57) for the G-matrix is reproduced and the total energy of the
system is given by:

EBHF

A
=

ν

ρ

∫
d3k

(2π)3
f [εBHF (k)]

k2

2m

+
ν

2ρ

∫
d3k

(2π)3

∫
d3k′

(2π)3
f [εBHF (k)] f [εBHF (k′)]

× 〈kk′|G([εBHF (k) + εBHF (k′)]+, K)|kk′〉 . (5.59)

145



5.7. Microscopic results

The free energy is then computed from this generalization of the energy per particle
plus a mean-field expression for the entropy of the system [Lej86; Bom94; Zuo03;
Rio05a]. The BHF calculations presented in this Thesis have been obtained within
this scheme. Even though this approximation is not based on first principles, it
yields reasonable results, because the dominant diagrams of the BdD expansion
reduce to this naive finite temperature BHF approach for low temperatures [Bal99].
The BdD approach has been applied to hot nuclear matter from realistic NN
potentials by the Catania group [Bal99; Bal04; Nic05]. To our knowledge, there is
no detailed study in which the BdD theory and the Green’s function approach at
finite temperatures are thoroughly compared.

5.7 Microscopic results

All the results quoted in this and the following sections have been obtained with
the finite temperature SCGF scheme described in detail in Appendix E using the
CDBONN potential [Mac96]. In the numerical treatment, partial waves up to
J = 8 have been included in the generalized Hartree-Fock term and up to J = 2
in the inversion procedure for the T -matrix. On the other hand, the quoted BHF
results have been computed with the same NN potential with partial waves up to
J = 4. None of these calculations include three-body forces. The saturation point
of nuclear matter is thus not reproduced and, in this sense, the results presented
in this Thesis should be taken as a first study of the properties of nuclear matter
within SCGF theory.

5.7.1 In-medium interaction

Once the sum over partial waves of Eq. (5.37) is performed, the resulting diago-
nal T -matrix depends on three quantities: the total energy of the two scattering
particles, Ω; the center-of-mass momentum, P , and the relative momentum, q. In
the figures here presented, the relative momentum has been set to zero, q = 0, and
thus the single-particle momenta of the two scattering particles are equal. In the
left panel of Fig. 5.9, a density plot of the imaginary part of the T -matrix is shown
at ρ0 and T = 10 MeV. On top of the density plot, the dashed line corresponds
to the relation Ω = 2εqp(P ). This curve defines two very different regions for the
imaginary part of the in-medium interaction at this momentum. The region of the
P −Ω plane where Im T is different from zero corresponds roughly to Ω > 2εqp(P ).
Actually, in a quasi-particle picture at zero temperature one can show that, be-
low this value, the imaginary part of the in-medium interaction cancels exactly
[Ram88; Dew02]. As seen in the figure, this is also approximately true in the
SCGF scheme at finite temperature.

Moreover, the Fermi momentum also defines two different regions of interest for
the T -matrix. Above P = kF , for instance, Im T is restricted to the region Ω > 2µ,
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5. Ladder Approximation

Figure 5.9: Left panel: Density plot of the imaginary part of the T -matrix (the
units are MeV fm3) as a function of the total energy Ω − 2µ (in units of the
chemical potential, µ = −24.8 MeV) and the center-of-mass momentum P (in
units of the Fermi momentum, kF = 263 MeV) for a relative momentum of q = 0.
The black dashed line is given by the relation Ω = 2εqp(P ). The density is ρ = ρ0

and the temperature is 10 MeV. Right panel: real part of the T -matrix in the same
conditions.

it is negative and it presents a valley-like structure that follows closely Ω = 2εqp(P )
relation energies (see also Fig. 5.10). Below the Fermi surface, on the other hand,
the structure of the imaginary part is quite different. While for energies below 2µ it
is basically positive, at energies above the chemical potential the imaginary part of
the in-medium interaction becomes negative. This corresponds to the wiggle-like
structure that is most easily seen in Fig. 5.10. Note that, both above and below
the Fermi momentum, the imaginary part of the T -matrix has a node at Ω = 2µ.
As commented previously, this condition is necessary in order to cancel the pole
of the bosonic contribution in Eq. (5.47).

The imaginary part of the T -matrix is shown in a three-dimensional plot in
Fig. 5.10. This allows for a clear overall view of its properties as a function of
the two-particle energy, Ω, and the center-of-mass momentum, P , at q = 0. The
two effective interactions of the figure have been computed for the same density,
but the left and right panels correspond to two different temperatures, chosen to
illustrate its temperature dependence. While the left panel is obtained from a low
temperature, T = 5 MeV, the right one is computed for a high temperature of T =
20 MeV. In the first place, let us note that from the figure it is clear that the region
with finite contributions of Im T is mostly independent of temperature. This region
is given by the condition Ω > 2εqp(P ) and its temperature independence signals
the fact that the quasi-particle energies are almost independent of temperature.
This will be seen more clearly in the following (see Fig. 5.16). In addition, in both
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Figure 5.10: Imaginary part of the T -matrix as a function of the total energy Ω−2µ
and the center-of-mass momentum P for q = 0. The density is ρ = ρ0 and the
temperature is 5 MeV for the left panel and 20 MeV for the right panel.

panels one can see the valley-like structure above P = kF , which corresponds to
the energies set by the quasi-particle relation Ω = 2εqp(P ). The figures in both
panels, however, display a relevant difference: the wiggle structure close to P = 0
and Ω = 2µ is much more pronounced in the low temperature T -matrix than in
the high-temperature one. As explained above, this is the region where pairing
is mostly favored and the appearance of this strength can be related to this low-
temperature phenomenon. This also explains why at higher temperatures, where
pairing is less important, the structure is softened.

The precursor effects of the pairing transition are most clearly seen in the
real part of the T -matrix, shown in Fig. 5.11 for the same conditions. The real
and the imaginary part of the T -matrix are related by the dispersion relation
of Eq. (5.21). In general terms, one expects that, whenever the imaginary part
presents a structure, this is translated into the real part by means of this dispersive
integral. This explains the fact that the pairing structure is seen in Fig. 5.11
in the same region as commented above. For the low temperature, however, the
structure is particularly strong. As mentioned previously, at very low temperatures
the presence of a pole at q = 0, Ω = 2µ signals the onset of a phase in which
nucleons tend to form Cooper pairs. Actually, the dip in Re T is related to the
strong attraction that nucleons feel in this kinematical conditions and thus can be
taken as a precursor effect of the pairing instability. For a temperature lower than
T = 5 MeV, this structure will eventually become a pole, signaling the breakdown
of the T -matrix approximation. Apart from this low momentum structure, the
general aspect of the two panels in Fig. 5.11 is quite similar. At very low energies
and high momenta, for instance, the real part of the T -matrix becomes constant
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Figure 5.11: Real part of the T -matrix as a function of the total energy Ω − 2µ
and the center-of-mass momentum P for q = 0. The density is ρ = ρ0 and the
temperature is 5 MeV for the left panel and 20 MeV for the right panel.

at the two temperatures. From Eq. (5.21), it is easy to see that this energy
and momentum independent contribution comes from the bare NN interaction.
In fact, the zones where Re T becomes a constant are essentially those where
the dispersive contribution of Eq. (5.21) gives no contribution to the in-medium
interaction. Moreover, the real part of the effective interaction presents a valley-
like structure above P = kF which follows closely the relation Ω = 2εqp(P ). This
is clearly seen in the right panel of Fig. 5.9, where the dashed line coincides, above
kF and 2µ, with the minima of Re T . Finally, it is interesting to note that, in the
region P ∼ kF and Ω ∼ 2µ, the real part of the in-medium interaction presents
a neck, where its total contribution is smaller in absolute value than both the
low momentum and low energy pairing region and the high momentum and high
energy valley structure.

5.7.2 Self-energy

As explained above, once the in-medium interaction is known, the self-energy can
be readily computed. In particular, the imaginary part of the ladder self-energy is
given by the integral of Eq. (5.47), in which the spectral function, the imaginary
part of the in-medium interaction and the phase space factor play an important
role. In the numerical evaluation of Im Σ there is an interplay between the signs of
these functions above and below 2µ, so that the final convolution yields a negative
Im Σ in the whole energy and momentum domain, as it should be according to
Eq. (2.129). Once this is known, the dispersion relation of Eq. (2.131) can be used
to obtain the real part of the ladder self-energy.
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Figure 5.12: Real (left panel) and imaginary (right panel) part of the self-energy
as a function of the momentum k and energy ω. This has been computed at ρ0 and
T = 10 MeV.

The real part of the self-energy is shown in the left panel of Fig. 5.12 for nuclear
matter at ρ0 and T = 10 MeV as a function of the single-particle momentum k
and the energy ω. In the zone close to k ∼ 0 and ω = µ, a wiggle is neatly seen.
Apart from that small structure at intermediate energies, the real part of the self-
energy appears to be almost energy independent. This is a consequence of the
fact that the generalized HF contribution yields large values that easily overcome
the dispersive contribution of Eq. (5.48). The important momentum dependence
is also essentially given by the HF contribution, which becomes very repulsive
at large momenta. At low momentum, the presence of the (overall) attractive
dispersive contribution helps in getting a more attractive real self-energy.

The right panel of Fig. 5.12 displays the imaginary part of the self-energy
for the same density and temperatures. Around ω ∼ µ and for low momenta,
the imaginary part of Σ presents a cusp. This can be understood from a careful
analysis of the convolution of the different factors in Eq. (5.47) [Fri04a]. At energies
close to the chemical potential, the available phase space is reduced and Im Σ tends
to be negligible. Actually, for a zero temperature calculation, Luttinger [Lut60]
showed that, due to phase space restrictions, the imaginary part of the self-energy
must have a parabolic shape:

Im Σ(k, ω) ∼ a(ω − µ)2 . (5.60)

One can see that this parabolic shape is kept at finite temperature, although the
width does not vanish anymore once thermal effects are included in the system.
As a matter of fact, for low temperatures the previous relation is modified to:

Im Σ(k, ω) ∼ a
[
(ω − µ)2 + π2T 2

]
, (5.61)
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Figure 5.13: High energy tails of Im Σ(k = 0, ω). The three curves are
given at three different densities: ρ0/2 (full line), ρ0 (dotted line) and 2ρ0

(dashed line).

which yields a width that, for ω = µ, increases quadratically with temperature
[Abr65]. For energies slightly below µ, the phase space is still small, but the
convolution of the bosonic and fermionic term with the spectral function of particle
(k > kF ) states is relevant and gives large results. For energies above (but close to)
µ, the hole states of the spectral function convolute with the phase space factors to
give a non-zero Im Σ [Fri04a]. This explains the large values for energies somewhat
lower and larger than µ, which are translated into a strong cusp in the imaginary
part of Σ. This cusp is softened at high momentum, where the imaginary part
of the self-energy becomes essentially flat and close to zero below ω = µ. For
zero momentum states, there is an intermediate minimum between the ω ∼ µ
cusp and the zero at very negative energies. This dip disappears with increasing
momentum. There is also a minimum between ω = µ and the high energy region
where Im Σ → 0. This is however not resolved in the figure due to the small energy
range shown. Let us note that this minimum, in contrast to the one appearing in
the hole (ω < µ) region, does not disappear at large momenta.

The tails for very negative (low) and very positive (high) energies of the imag-
inary part of the self-energy at k = 0 are shown in a large range of energies in
Fig. 5.13. The density dependence of these tails is explored by showing the results
obtained at ρ0/2, ρ0 and 2ρ0. The first thing to note is the strong asymmetry in
the energy regions. While, at negative energies of around ω ∼ µ− 1000 MeV the
imaginary part of the self-energy is already negligible at all densities, for positive
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energies at ω ∼ µ + 4000 MeV it still yields large values. This strength of the
self-energy at very high energies is closely related to the short-range core of the
NN interaction. When iterated in the formalism, this short-range core excites low-
energy and low-momentum states to higher energy and momentum states. The
exact details of this excitation depend on the short-range behavior of the bare
potential, which nonetheless might not be well resolved by experimental NN scat-
tering data. One can however analyze the density dependence of these queues.
The low energy damping of the imaginary-part, on the one hand, is strongly den-
sity dependent and is mainly due to the attenuation of the Im T matrix elements
at very negative energies. On the other hand, the high energy queues decrease
almost linearly with density. This behavior can be traced back to the density
independence of the T -matrix at high energies. Since this factor is independent
of ρ, the density dependence must come from the remaining integral of the phase
space factors, which indeed gives a contribution almost proportional to the density
[Fri04a].

The density and temperature dependences of the imaginary part of the self-
energy are studied, for energies close to µ, in Fig. 5.14. The left column of panels
displays the energy dependence for five different densities, distributed in equidis-
tant steps from 0.1 to 0.5 fm−3, while the right column shows Im Σ at four tem-
peratures, from T = 5 to 20 MeV. The momentum dependence is explored by
showing three panels corresponding to the momenta k = 0 (upper), kF (middle)
and 2kF (lower panels). A striking difference can be observed when comparing
the two columns. While the imaginary part of the self-energy is strongly density
dependent (with changes of up to 60 MeV for all momenta in the high energy re-
gion), this quantity does not change appreciably with temperature. For the panel
on the right column corresponding to k = 2kF , for instance, there is no appre-
ciable difference among the Im Σ’s at the four displayed temperatures. At the
Fermi surface (k = kF ), differences start to appear, mainly in the region close to
ω = µ, where the absolute value of Im Σ increases with temperature. As explained
before, in the zero temperature limit, Im Σ(k, ω = µ) should cancel exactly. At
low temperatures, one is close to this cancellation, but with a quadratic tempera-
ture dependence [Boz02]. The same behavior is obtained for the zero momentum
self-energy, where the effect of temperature is however larger. Moreover, for this
momentum some appreciable differences appear both above and below the chem-
ical potential. In these regions, one finds that the imaginary part decreases in
absolute value with temperature. These variations with temperature are easily
smeared out with energy, and for ω < µ− 200 MeV or ω > µ + 400 MeV they are
not anymore observable.

Concerning the momentum dependence of the results, it is interesting to note
that in all cases one observes a local minimum below ω = µ, although this dip
becomes shallower and wider with higher momenta. It is hardly appreciated at
k = 2kF , for instance. Furthermore, the position of this low-energy dip is strongly
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Figure 5.14: Im Σ(k, ω) as a function of the energy ω − µ for three momenta:
k = 0 (upper panel), kF (middle panel) and 2kF (lower panel). In the left pan-
els, the different lines correspond to five different densities (from 0.1 to 0.5 fm−3

in equidistant steps). In the right panels, the different lines correspond to four
different temperatures (from 5 to 20 MeV in equidistant steps).

density dependent. For k = 0 and ρ = 0.1 fm−3, it lies at ω ∼ µ − 50 MeV,
while for ρ = 0.5 fm−3 it is located at ω ∼ µ − 250 MeV. Both at k = kF and
at k = 2kF , the dip becomes shallower and the structure in the imaginary part of
the self-energy below µ is wider. Thus the minimum becomes less pronounced. It
is also interesting to note that, far below µ, the higher the density, the higher in
absolute value the imaginary part of the self-energy becomes. The same behavior
is observed, in a much more enhanced scale, at energies far above µ where, as
already commented, the imaginary part of the self-energy increases linearly with
density. For energies close to the chemical potential, the opposite behavior is found
and with higher densities the imaginary part of the self-energy becomes closer to
zero. This result can be attributed to the increasing degeneracy of the system.
At a fixed temperature and increasing the density, the system is closer to the
degenerate limit and thus to the T = 0 result which, as already commented, yields

153



5.7. Microscopic results

-200 0 200
ω [MeV]

-100

-50

0

50

100

150

k2 /2
m

 +
 R

eΣ
(k

,ω
) [

M
eV

]

k=0
k=kF

k=2kF

ρ=0.16 fm-3, T=10 MeV

Figure 5.15: Graphical solution of Eq. (5.62) for the real part of the SCGF
self-energy at ρ0 and T = 10 MeV for three different momenta: k = 0
(full line), kF (dashed line) and 2kF (dot-dashed line). The dotted line
corresponds to ω = ω.

a vanishing width at ω = µ.
A useful quantity which is of interest in the comparison with other many-body

approaches as well as in the treatment of dynamical quasi-particles in the entropy
is the quasi-particle energy (or single-particle spectrum). This is obtained from
the self-consistent equation:

εqp(k) =
k2

2m
+ Re Σ(k, εqp(k)) . (5.62)

The solution of this equation, which corresponds to a vanishing real part of the
inverse propagator, describes, whenever the width Γ is small enough, the quasi-
particle peak of the spectral function. In highly correlated systems, the self-
consistent spectrum might be hard to find due to the strong energy dependence
of Re Σ(k, ω). This is not the case for nuclear matter within the ladder approxi-
mated, as shown by Fig. 5.15. The graphical solution of the previous equation is
shown for the empirical saturation density at T = 10 MeV for three different mo-
menta, k = 0, kF and 2kF . The point where the dotted ω = ω function crosses the
lines corresponding to the k2

2m
+Re Σ(k, ω) function gives the solution of Eq. (5.62)

and therefore yields the corresponding quasi-particle energy at a fixed momentum.
Note that the wiggle of the real self-energy close to the quasi-particle energy does
not affect the final result, in the sense that the solution of Eq. (5.62) for a given
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Figure 5.16: SCHF (upper), SCGF (middle) and BHF (lower) results for
the real on-shell self-energy of a nucleon in nuclear matter at densities
ρ0/2, ρ0 and 2ρ0. The full lines correspond to T = 5 MeV and the dashed
lines to T = 20 MeV. The arrows signal the position of the corresponding
Fermi momentum.

momentum is unique. This allows for a clean definition of quasi-particle states in
the ladder approximation.

A brief sketch of the momentum, density and temperature dependence of these
self-consistent quasi-particle energies is given in Fig. 5.16. The three panels display
Re Σ(k, εqp(k)) as a function of momenta for two different temperatures (T = 5
MeV and T = 20 MeV). The three panels correspond to three different densities
(ρ0/2, ρ0 and 2ρ0). Moreover, the corresponding SCHF [see Fig. 4.8] and BHF
results are also shown for comparison. Let us start by discussing the differences
between the SCHF and the SCGF spectra. The T = 20 MeV results at k = 0 for
the SCGF approximation are about 25 MeV more attractive than the SCHF results
at the three densities. The binding of the lowest momentum state in the SCGF
scheme increases considerably from half saturation, where it gives about −45 MeV,
to twice saturation density, where it is almost −100 MeV. Although the magnitude
of this increase is close to that of the SCHF scheme, the SCGF spectra are much
more attractive than the mean-field ones at large momenta. Therefore, the effect
of correlations (which keeps nucleons from penetrating the repulsive core of the
interaction) is essential to obtain attractive spectra at all momenta. As a result
of this fact, the SCGF spectra are less stiff than the SCHF ones. Moreover, the
inclusion of correlations induces a flattening close to the Fermi momentum for
T = 5 MeV. This flattening, which is also characteristic of the BHF spectra, is
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related to the deuteron structure in the 3S1 partial wave of the T -matrix elements.
The temperature dependence of the SCGF spectra is also different than the one
of the SCHF approach. While in the latter temperature makes the spectra more
repulsive at all momenta, in the SCGF the increase of temperature results in a
more attractive spectrum below the Fermi surface and a more repulsive one at
higher momenta. Note also that the temperature effects become less important
for very high momenta, due to the softening of phase space blocking effects.

The single-particle spectra of the BHF approach yield more attractive results
at low momenta than the SCGF spectra. Thus, in general, one can say that in-
termediate hole-hole scattering produces a repulsive effect in the spectra that, in
consequence, become shallower. This may affect in turn other quantities, such
as the internal energy which, in the BHF approach, is computed directly from
Re ΣBHF . The size of these differences is however density dependent. At half sat-
uration, the zero-momentum spectra of the BHF approach are about 10 MeV more
attractive, while at twice saturation the BHF spectra are 40 MeV more bound than
the SCGF ones. These differences are smeared out for higher momentum, where
the effects of dressing hole states are less important. It is also interesting to take
into account the different temperature dependence of the single-particle spectra
in the BHF scheme and in the SCGF method. In the finite-temperature calcula-
tions within a BHF approach, the single-particle potential becomes more repulsive
with temperature at all momenta [Zuo03; Rio05a]. This is intuitively expected
from the fact that the thermal factors affecting the self-energy allow for an explo-
ration of larger relative momenta with increasing temperature. The high relative
momentum states of the effective interaction are repulsive and thus give rise to
an overall repulsive contribution in the spectrum. This picture changes, however,
when hole-hole correlations are taken into account. In an extended BHF calcu-
lation, one can introduce a certain amount of these correlations by means of the
so-called M2 contribution to the self-energy, which corresponds to the lowest-order
rearrangement term in the single-particle spectrum. When this term is included
in the approach, it gives a repulsive contribution to the spectrum at momenta
below kF for low temperatures [Zuo06]. With increasing temperature, however,
this rearrangement potential looses importance and the spectra become more at-
tractive below the Fermi surface. This is exactly what happens when hole-hole
correlations are included at all orders, as seen in Fig. 5.16. Intuitively, one can as-
sociate this repulsive effect at low momenta and low temperatures to the idea that
hole-hole correlations renormalize the long-range part of the interaction, which is
of an attractive nature. Thus, their effect (which is limited to the hole part of the
spectrum, k < kF ) is to soften the attractive contributions to the single-particle
spectra, which is translated into a repulsive effect for momenta below the Fermi
surface. Once temperature is introduced, this repulsive contribution disappears
due to the softening of Pauli blocking factors, thus explaining the temperature
dependence of the self-consistent spectra at low momenta.
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5.7.3 Spectral function

In Chapter 2 the main properties of fermionic systems at finite temperature were
derived from the one-body Green’s function and, in particular, from the spectral
function associated to its spectral decomposition. Once the self-energy is com-
puted within the SCGF method, the spectral function is easily computed from the
following formula [see Eq. (2.130)]:

A(k, ω) =
Γ(k, ω)[

ω − k2

2m
− Re Σ(k, ω)

]2

+
[

Γ(k,ω)
2

]2 . (5.63)

The general properties of this function can be grasped in a simple way. In the
first place, since the width is positive definite, it is clear that this function cannot
present a pole. Secondly, for a fixed momentum, the spectral function usually has
a maximum close to the quasi-particle energy, ω ∼ εqp(k), because at this value
the first term of the denominator vanishes. In addition, and since Γ goes to zero
with decreasing temperatures for ω ∼ µ, the spectral function is small at this
value. When the momentum is such that εqp(k) ∼ µ (for low temperatures this
condition is fulfilled at k = kF ) the two terms in the denominator as well as the
numerator will become simultaneously small. The numerical solution of the SCGF
scheme will show that this competition is resolved in favor of a narrow and high
quasi-particle peak at k = kF .

The study of the energy, momentum, density and temperature dependences
of the spectral function A(k, ω) is carried out in Fig. 5.17. This is equivalent to
Fig. 5.14 and the left (right) column shows the calculations at a fixed temperature
(density) for different densities (temperatures). The three panels (upper, central,
lower) show the spectral function at three different momenta (k = 0, kF and 2kF ,
respectively) as a function of the energy ω − µ. Note that in all the figures a
logarithmic scale is used, which allows for a more careful study of the low (very
negative) and high (very positive) energy tails of the spectral function. In addition,
the dotted line that is depicted on top of the spectral functions in the left panels
represents the Fermi-Dirac distribution, whose convolution in energies with the
spectral function gives the momentum distribution. This will be useful in the
analysis of the momentum distribution, in the following subsection.

The top left panel of Fig. 5.17 shows the evolution of A(k = 0, ω) with den-
sity. The spectral function presents a clear peak, whose position is dictated by the
quasi-particle energy. This quasi-particle peak moves to lower (more attractive)
energies with higher densities, reflecting the fact that zero momentum states get
more bound with density (see the discussion in the previous subsection). Moreover,
the width associated to the quasi-particle peak becomes larger when the density is
increased. This matches with the naive intuition that higher densities correspond
to larger correlations and thus to broader quasi-particle peaks. In this sense,
the quasi-particle picture (which is associated to narrow quasi-particle peaks) be-
comes worse with increasing densities at this momentum. It is also interesting
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Figure 5.17: Spectral function as a function of the energy ω−µ for three momenta:
k = 0 (upper panel), kF (middle panel) and 2kF (lower panel). In the left panels,
the different lines correspond to five different densities (from 0.1 to 0.5 fm−3 in
equidistant steps). The dotted line shows the thermal distribution f(ω) for this
temperature. In the right panels, the different lines correspond to four different
temperatures (from 5 to 20 MeV in equidistant steps).

to analyze the low and high energy tails of the spectral function, which are quite
different. While at high energies the spectral function becomes almost flat and its
value is more or less independent of the density (in contrast to what happened
to the imaginary part of the self-energy, see Fig. 5.14), in the low energy zone
the spectral function yields density dependent results. In this region, the higher
densities correspond to higher spectral functions. The high and low energy tails
of A are caused by short-range and tensor correlations, which are responsible for
the fragmentation of the quasi-particle peak. These correspond to non-vanishing
probabilities of finding a nucleon at energies which are far above or far below the
quasi-particle peak. Thus, the increase in the strength of the low energy tails with
density is in agreement with the idea that higher densities involve higher correla-
tions. At this momentum, since the low and high energy tails are larger at high
densities and since the spectral functions at all densities fulfill the same sum rule
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[see Eq. (2.48)], it is natural to find that the height of the quasi-particle peak de-
creases with density. Note that this could also have been expected from Fig. 5.14,
where the minimum of the self-energy at the quasi-particle peak becomes deeper
with density. This enters the denominator of the spectral function quadratically
and thus reduces its value at the peak. It is also clear that the small absolute value
of Im Σ at ω ∼ µ is translated into low values of A close to these energies. Indeed,
the spectral function presents a dip at this energy that is more pronounced with
higher densities, as expected from the increasing degeneracy of the system.

The spectral function at k = 2kF has a somewhat similar structure. The quasi-
particle peak is however above the chemical potential and thus should be associated
to “particle” states. This peak is shifted to higher energy values with increasing
density, in agreement with the fact that the quasi-particle energies become stiffer
with increasing densities. The width associated to the quasi-particle peak also
increases with density, as expected from the behavior of Im Σ (see Fig. 5.14 at this
momentum) and consequently the height of the peak decreases with increasing
density. The dip of the spectral function at ω = µ is very well resolved at this
momentum, especially at high densities. The presence of this dip allows for a
clean separation between a quasi-particle peak at “particle” energies (ω > µ) and
a background “hole” (ω < µ) contribution.

At the Fermi surface, k = kF , the spectral function behaves differently to what
has been described until now. The quasi-particle peak at this momentum is lo-
cated very close to ω = µ. At low temperatures, this is the expected behavior
for, at that momentum, the quasi-particle energy at the Fermi surface defines the
chemical potential, µ = εqp(kF ). Although with increasing temperatures this is not
necessarily true anymore, the relation holds approximately and the quasi-particle
peak is still very close to the chemical potential. In contrast to what is observed for
other momenta, the quasi-particle peak becomes increasingly narrow with increas-
ing density. Once again, this can be explained in terms of the degeneracy of the
system. At a constant temperature and with higher densities the system is closer
to its degenerate limit. Now, at zero temperature the correlated spectral function
becomes a delta-peak for ω = εqp(kF ) and thus the increase of degeneracy leads
to a decrease of the width at the Fermi surface. The quasi-particle peak becomes
higher with increasing density. Yet, this effect is softer than the narrowing of the
peak and, to keep the sum rule constant, the spectral function develops larger
high energy tails with increasing density. Therefore, the height of these tails can
be taken as a measure of the increasing correlations acting on the system with
increasing densities at all momenta.

In accordance to what was observed for the imaginary part of Σ in Fig. 5.14,
the effect of temperature in the spectral function is much weaker than that of
density. For all momenta, for instance, the quasi-particle peak hardly changes
its position with temperature. For the three momenta shown in the figure, the
effects of temperature are concentrated in a region of energies close to the chemical
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potential. The spectral function becomes smaller with decreasing temperature
and its dip at ω = µ becomes deeper at k = 0 and k = 2kF (once again due
to phase space restrictions). On the other hand, the effect of temperature at
k = kF is essentially that of a widening and lowering of the quasi-particle peak with
temperature, in accordance with the reasoning in terms of degeneracy introduced
in the previous paragraph. Let us finally remark the fact that, since the spectral
function is weakly temperature dependent, any strong temperature dependence
in the quantities derived from it should be attributed to its convolution with the
remaining thermal factors.

An accurate description of the properties of asymmetric nuclear matter is be-
yond the scope of this Thesis. The dependence of some microscopical properties
of matter in the isospin asymmetry has been studied in Ref. [Fri05], where it has
been found that the spectral functions depend strongly on the asymmetry due to
the fact that, for high asymmetries, the tensor correlations (which act mainly in
isospin zero states) decrease considerably. In addition, the fact that the Fermi
momentum of the less abundant species goes to zero with increasing asymmetry
has an important effect on the structure of the spectral function at low momenta.
Furthermore, it is interesting to note that the spectral function fulfills, apart from
the m0 sum rule of Eq. (2.48), higher order energy weighted sum rules, such as the
m1 sum rule: ∫ ∞

−∞

dω

2π
A(k, ω) ω =

k2

2m
+ ΣHF (k) , (5.64)

where the self-energy on the right hand side of the previous equation corresponds
to the generalized Hartree-Fock term of Eq. (5.42). These sum rules are auto-
matically preserved by any self-consistent calculation, but they might serve as a
numerical check for the different momentum and energy integration meshes in the
numerical computations of spectral functions. Moreover, the running integrals of
these spectral functions provide information on the detailed structure of the quasi-
particle peak [Pol94]. They can thus be used in outlining differences arising from
the use of different bare interactions [Fri04b] or from the changes in the isospin
asymmetry of the system [Rio06a].

5.7.4 Momentum distribution and depletion

A relevant quantity that can be derived from the spectral function is the mo-
mentum distribution. This quantity is important because it can be extracted
experimentally from (e, e′p) experiments on finite nuclei [Kel96; Dic04; Roh04].
As explained in Chapter 1, n(k) is given, for each momentum, by the convolution
in energies of the spectral function and the Fermi-Dirac distribution:

n(k) =

∫ ∞

−∞

dω

2π
A(k, ω)f(ω) . (5.65)

160



5. Ladder Approximation

0 200 400 600
k [fm-3]

0

0.2

0.4

0.6

0.8

1

n(
k)

SCGF
SCHF

ρ=0.32 fm-3, T=5 MeV

0 200 400 600
k [fm-3]

10-3

10-2

10-1

100

n(
k)

ρ=0.32 fm-3, T=5 MeV

Figure 5.18: Momentum distribution for the SCGF (full line) and the
SCHF (dashed line) approaches at 2ρ0 and T = 5 MeV. The arrow denotes
the Fermi momentum.

The difference between a correlated and a mean-field quasi-particle momentum
distribution can be seen in Fig. 5.18. For the same density (2ρ0) and temperature
(T = 5 MeV), the momentum distribution in the SCGF (full line) and in the
SCHF (dashed line) are shown. The left and the right panel only differ in the
use of a linear and a logarithmic scale, respectively. Let us start with the left
panel. The hole states of the correlated case (that is, the states with k < kF ) have
a lower occupancy than those of the mean-field case. Physically, this depletion
is due to the short-range correlations that scatter off low momentum states to
higher momenta. The tensor component of the force has also an important role for
the depletion, which is substantially larger for bare interactions with large tensor
components [Fan84]. Correspondingly, this leads to a higher occupancy of the
states above the Fermi surface, which is more clearly seen in the right panel of
Fig. 5.18. The population of the high momentum states in the correlated case
decreases much slower than that of the mean-field distribution, as a consequence
of the non-vanishing spectral function for low energies at high momenta. Another
important feature of both the SCGF and the SCHF momentum distributions is the
presence of a strong fall-off close to k ∼ kF . At zero temperature, this strong fall-
off is actually a discontinuity. Within a quasi-particle approach, the momentum
distribution becomes a step function at zero temperature, n(k) = Θ(kF − k), and
thus the height of this discontinuity is 1, which can be reexpressed in terms of the
condition:

lim
δ→0

{
n(kF − δ)− n(kF + δ)

}
= 1 . (5.66)
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Figure 5.19: Momentum distribution within the SCGF approach. The
three panels correspond to the densities ρ0/2 (left panel), ρ0 (central panel)
and 2ρ0 (right panel). Four different temperatures have been chosen, from
T = 5 MeV to T = 20 MeV in equidistant steps.

In a correlated approach, however, the hole states are depleted and the particle
states have large occupancies. One can indeed show that the zero-temperature
discontinuity is given by the Z-factor:

lim
δ→0

{
n(kF − δ)− n(kF + δ)

}
= Z(kF ) . (5.67)

For the temperature and density of Fig. 5.18, Z(kF ) can be computed from the real
part of the self-energy using Eq. (2.136), which yields the value ZF ∼ 0.75. This is,
for instance, in accordance with the discontinuity in the momentum distribution
at kF found in Ref. [Boz02]. Note that this is also close to the experimental values
[Kel96; Dic04].

A detailed analysis of the temperature and density dependence of the momen-
tum distribution can be extracted from Fig. 5.19. The three panels show the
momentum distribution for four different temperatures (from 5 to 20 in equidis-
tant steps) at three densities: ρ0/2 for the left panel; ρ0 for the central panel and
2ρ0 for the right panel. The overall picture is quite similar for the three cases.
The momentum distribution are depleted at k < kF , although the magnitude of
this depletion depends considerably on the density and the temperature under
consideration (see Fig. 5.21). Close to the Fermi momentum (for the three densi-
ties displayed, this corresponds to kF ∼ 208, 260 and 330 MeV respectively), the
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momentum distribution has a strong decrease and for higher momenta it bends
to some extent. The occupancies at large momenta depend on the temperature
under consideration. The higher temperatures, which have lower zero momentum
populations, have a large population for high momentum states. Due to these dif-
ferences, there is an intermediate momentum, close to kF , at which the momentum
distributions of the different temperatures (for a fixed density) meet.

Each of the three different regimes (flat behavior at low momenta, fall off close
to kF and bending at large momenta) can be explained in terms of the convolution
of the spectral function and the Fermi-Dirac distribution. Consider, for instance,
the case of k = 0. The corresponding spectral function are those of the upper
panels of Fig. 5.17 and the Fermi-Dirac distribution is given by the dotted line
in the figure. For a fixed temperature and increasing the density, the occupation
is larger due to the fact that, although the quasi-particle peak is lower in height,
it is much more wide in the region ω − µ < 0, where the Fermi-Dirac factor
is maximal. This behavior is surprising, because one would naively expect the
depletion to increase with the amount of correlations and thus with density. A full
explanation of this phenomenon is still lacking, although it is clear that it is caused
by the increasing low-energy tails of the zero-momentum spectral function with
density. The fall-off of the momentum distribution close to k = kF is intuitively
explained by the fact that, with increasing momentum, the quasi-particle peak
moves to higher energies. At the Fermi surface, as commented above, it leaves
the “hole” region (ω < µ) and enters the “particle” region (ω > µ). At the
same time, the Fermi-Dirac distribution decreases close to ω ∼ µ (note that it
gives 1/2 for ω = µ). Therefore, the importance of the quasi-particle peak in the
convolution integral is lower once the peak enters the particle region. For higher
momenta, the quasi-particle peak becomes more and more repulsive and thus its
contribution dies out due to the convolution with f(ω). Still, the spectral function
at high momentum shows a non-negligible hole background in the region where the
thermal distribution is maximal. This gives rise to a visible amount of population
at high momenta, which accounts for the bending of n(k) at large momenta.

As for the temperature dependence at a fixed density, it has already been
mentioned that the spectral function is almost temperature independent. Thus,
the sizeable differences observed for different temperatures in Fig. 5.19 can be
attributed to the corresponding Fermi-Dirac distributions. To understand this
thermal behavior, in Fig. 5.20 the spectral functions at the empirical saturation
density for two momenta (k = 0 and k = 2kF ) and different temperatures are
shown. On top of these, the corresponding thermal factor f(ω) are also displayed.
Consider the lowest temperature, T = 5 MeV. On the one hand, the spectral
function at k = 0 corresponds to the full line, and has most of its strength con-
centrated around the quasi-particle peak. On the other hand, the thermal factor
at this temperature is very sharp close to ω = µ and thus its convolution with
A(k, ω) includes the full contribution of the quasi-particle peak. At the largest
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proportional to the spectral functions of the k = 0 and k = 2kF momentum
states.

temperature of T = 20 MeV, however, the thermal factor is softer and indeed it
has already decreased a 10% factor at the quasi-particle peak. As a consequence
of this lowering, the convolution of the Fermi-Dirac factor with the spectral func-
tion decreases in magnitude with temperature, in agreement with the increase of
the depletion with temperature. This is however a pure thermal effect, because
the small differences in the spectral functions at the different temperatures cannot
explain the large differences observed in the momentum distribution. At large mo-
menta, a similar reasoning can be applied, although the results are precisely the
opposite. Once again, neither the position nor the structure of the quasi-particle
peak change substantially with temperature, but the thermal factor at high tem-
peratures is larger in the quasi-particle peak region, and thus its convolution with
A(k, ω) yields larger values. This is in accordance to the findings of Fig. 5.19,
where, for a given density, the larger population in the high momentum region
corresponds to the larger temperature. Nevertheless, it is also interesting to note
that, already at ρ0, the T = 10 and the T = 5 MeV depletions are very close
to each other, up to the point that the change in temperature is almost not ap-
preciable for the highest density. One can thus say that, to a certain extent, in
the low temperature and high density regime, the depletion caused by correlations
overcomes the depletion caused by thermal effects, which is the result of a subtle
interplay between the structure of A and the temperature and density dependences
of f(ω).
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pletion of the lowest momentum state (circles). The depletion of the cor-
responding free Fermi gas is shown in stars.

To explore in a more effective way these interplays, the left (right) panel of
Fig. 5.21 shows the depletion of the lowest momentum state, d(k = 0) = 1−n(k =
0), as a function of the temperature (density) at saturation (at a temperature of
T = 10 MeV). The corresponding depletion of the free Fermi sea in the same
conditions is also shown. This is simply given by:

d(0) = 1− f(0) = [1 + eβµ]−1 . (5.68)

At a fixed density and for decreasing temperatures (which corresponds to the
left panel of Fig. 5.21), the chemical potential in the free case tends to a constant,
µ → k2

F /2m, and the decrease of the depletion is due to the decrease in temperature
inside the thermal factor. In the correlated case, on the other hand, and by virtue
of the sum rule of Eq. (2.48), the depletion can be rewritten as:

d(0) =

∫ ∞

−∞

dω

2π
A(0, ω)

[
1− f(ω)

]
. (5.69)

As temperature decreases, the spectral function does not change considerably (see
the top right panel of Fig. 5.17). The thermal factor gets closer to a sharp step func-
tion, which yields zero below µ and one above this value. The non-zero depletion
for very low temperatures is thus explained by the fact that the spectral function
presents high energy tails (the “particle” background) which yield a non-zero con-
volution with the thermal factor1. The increase of the depletion with temperature

1In this reasoning, one assumes that the description in terms of Green’s function is still valid
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(from 0.1 at low temperatures to 0.25 at T = 20 MeV) can be understood in terms
of the convolution of spectral function with the thermal factor [1 − f(ω)]. When
temperature increases, this factor is softer close to ω = µ, and thus the convolu-
tion with the quasi-particle peak of A(k, ω) becomes more important. Since the
detailed structure of this peak hardly changes with temperature, the temperature
dependence of the depletion can be attributed to the thermal factor and thus it is
similar to the dependence of the free Fermi gas. In other words, the fact that the
depletion increases with temperatures does not mean that dynamical correlations
become more important at large temperatures.

The increase of depletion at low densities observed in the right panel of Fig. 5.21
has a somewhat different origin. Since the temperature in this case is fixed, the
chemical potential of the thermal factor has a more important role in this case.
For a fixed temperature, the free Fermi gas depletion increases due to the fact that
µ → −∞ (the classical limit) when the density decreases. In the correlated case,
the factor [1− f(ω)] for a fixed temperature is only a function of ω−µ. In the top
left panel of Fig. 5.17, the dotted line represents the factor f(ω). The [1 − f(ω)]
factor would be given by a line with the opposite slope, increasing from 0 to 1
with increasing energy. Thus, at large densities, where the quasi-particle peak is
far below the chemical potential, the depletion is essentially due to the particle
background which, for large energies, is qualitatively density independent. The
increase of depletion with lower densities can be explained in terms of the relative
position of the quasi-particle peak with respect to the chemical potential. With
decreasing density, this peak concentrates more strength and it approaches from
below the region of ω ∼ µ. The convolution of this peak with the thermal factor
is thus larger, which leads to higher depletions for lower densities. Note that this
explanation relies on both the presence of the high energy tails and the position
of the quasi-particle peak relative to µ and thus it depends to a certain extent
on the details of the dynamical correlations. Note also that at very low densities
(say, below 0.05 fm−3), the spectral function is very close to a free quasi-particle
peak, which explains why the correlated depletion is very close to the free one.
In contrast to this low density behavior, for densities above 2ρ0 the depletion is
almost density independent and yields a value of d(0) = 0.1. In this region, one
can say that the depletion is caused entirely by the high energy tails of the spectral
function and thus it is essentially caused by dynamical correlation effects.

Assuming that an extrapolation to zero temperature is safe at saturation den-
sity, one could say that the depletion in the degenerate limit is close to the value
d(0) = 0.1. One can compare this to the value obtained in other approaches which,
in general terms, is about d(0) ∼ 0.15 [Ben89; Bal90; Von93; Dew02; Dic04]. Al-
though this is 0.05 units larger than our value (which supposes a large relative
correction), one has to say that the depletion depends strongly on the many-body

at low temperatures, which is only true in the density and temperature regime where no pairing
transition is present.
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approach as well as on the bare interaction which is used in its computation. As
a matter of fact, using the Argonne V18 potential within the SCGF one obtains
a somewhat larger depletion (due mainly to the differences in the tensor compo-
nent) [Fri04a]. Note also that all these values for the depletion are still below the
experimental values [Kel96].

5.8 Beyond the ladder approximation

So far the microscopic properties of the ladder approximation obtained by means
of the SCGF method have been described. In the following chapter, the thermo-
dynamical properties of nuclear matter within this approach will be presented.
There are however a lot of questions that arise before applying this formalism to
realistic calculations. Among them, maybe the most important one is the assess-
ment of the error which is being made. In any theoretical prediction (especially
in the many-body field), several approximations have to be introduced in order
to obtain sensible results. Therefore, one should be aware of the reliability of the
approximations that are being made and hopefully have a certain control on these
errors, trying to minimize them within a given computational scheme.

This question is however difficult to answer for the SCGF case. This scheme is
not based in a perturbative expansion and one is not expanding, say, the Green’s
function in terms of some parameter. One cannot therefore improve its accuracy
by taking into account higher order terms. Instead, a full resummation of certain
classes of diagrams is carried out in the SCGF scheme. The choice of the diagrams
is not arbitrary, however, and one usually chooses those which are more impor-
tant for the physical problem under consideration. In the ladder approximation,
as already explained, one takes the diagrams which are relevant for low density
and strongly interacting systems. The renormalization process induced by self-
consistency accounts for the extension of the formalism to higher densities. Due
to the fact that one is dealing with strongly repulsive hard-cores that are soft-
ened by the renormalization process, one also says that the ladder approximation
accounts for the short-range correlations induced by the NN potential. An error
estimate of the ladder approximation would thus require the calculation of some
of the diagrams not included in the formalism. This could help in having a flavor
of the magnitude of the terms that are disregarded by the ladder approximation.
Note that this is an important difference with respect to the BHF approach, in
which the energy per particle is expanded systematically in terms of the number
of hole lines. In this scheme, by taking into account two, three and more hole
lines one can in principle find better estimates for the total binding energy of the
system.

To be more specific, let us consider the two different derivations of the ladder
approximation introduced previously in this chapter (see Section 5.1). On the one
hand, the ladder approximation arises from assuming that the two-body Green’s
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Figure 5.22: Diagrams appearing and lacking in the ladder approximation.

function is formed by the iterated scattering of two particles in the medium due
to the bare interaction (see Fig. 5.1). This approximation neglects to a certain ex-
tent the medium-mediated interactions (through polarization effects, for instance)
which involve correlations that go beyond the two-body level. These would include
processes like the first diagram on the second row of Fig. 5.22. The intermediate
bubble represents a particle-hole excitation of the medium that interacts with the
external couple of particles. This is a kind of three-body process that does not
appear explicitly in the approximation. On the other hand, the decoupling of the
two-body propagator given by Eq. (5.3) corresponds to the propagation of two
particles that interact strongly with each other, but not with any other third par-
ticle in the medium. The self-consistency of the approach, however, is helpful and
allows for the inclusion of many-particle (three-, four-, five-body...) processes, like
those appearing on the top right section of Fig. 5.22. However, the ladder approx-
imation does not include genuine three-body processes and thus one expects it to
fail whenever the densities are high enough for the overlapping of three nucleons
to be non-negligible.

This fact points towards one of the main disadvantages of the SCGF scheme,
namely the lack of this kind of three-body correlations as well as of three-body
forces. It is a very well-known issue that, already at the BHF level, the inclusion
of three-body forces is necessary to reproduce the saturation properties of nuclear
matter [Day81]. The inclusion of three-body effects within a Green’s function
approach presents however quite a lot of complications. On the one hand, one
can try to describe better the three-body correlations that arise from two-body
NN interactions. This would probably need for a decoupling of GIII different from
the one presented here, including explicitly the effect of three-body correlations.
On the other hand, one could try to work with three-body forces from the very
beginning, already at the level of the Hamiltonian. Unfortunately, this would also
complicate the formalism. The GMK sum rule, for instance, would not be valid
anymore, because its derivation relies on the two-body nature of the force. New
means of deriving the total energy of the system should thus be devised [Som06].
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Moreover, the inclusion of a three-body force would also lead to a modification of
the equation of motion for the propagator. In the case of the one-body Green’s
function, this would imply a coupling not only to the two-body propagator, GII ,
but also to the three-body propagator, GIII .

Furthermore, it is also interesting to note that, already at the two-body level
there is some room for improvement. As explained previously, the ladder approx-
imation accounts for the short-range correlations of the system. These are not,
however, the only relevant correlations in nuclear systems. Modifications due to
the long-range effects, for instance, play an important role in the study of the
response properties of infinite systems. Their treatment needs of different tools
than the ones exploited here, like the random phase approximation or the Fermi
liquid theory. Both of these approaches can be translated into a Green’s function
language [Mat92; Pin89] and, as a matter of fact, a method has been devised that
allows to sum diagrams which include both short and long-range correlations (i.e.
a self-consistent sum of both the ladder and bubble diagrams at all orders). This
is the so-called parquet diagram technique, that leads to a set of self-consistent
equations which so far has not been applied to realistic nuclear matter calculations
[Jac82].

Yet, even if the SCGF lacks some specific kind of correlations and does not in-
clude three-body forces, it still does a good job in the treatment of the microscopic
and bulk properties of infinite nuclear matter at low and intermediate densities.
The results obtained in the following chapter shall show that the SCGF has the
same degree of “accuracy” than the BHF approach for nuclear matter described
with two-body forces. In other words, neither one nor the other approach are
capable of reproducing the empirical saturation point of nuclear matter (which in
the case of the CDBONN potential lies at too high densities), but still they give
a qualitatively correct and similar description of the properties of nuclear matter
from a microscopic many-body approach. In addition, the SCGF is thermodynam-
ically consistent, which is a great advantage in the application of this method to
finite temperature systems. Furthermore, the ladder approximation includes hole-
hole correlations and thus it takes into account a larger amount of correlations
than the BHF scheme. At least in this sense, it should be taken as a more reliable
description of infinite matter at finite temperatures.
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Chapter 6

Thermodynamical properties of
nuclear matter

In Chapter 3, the Luttinger-Ward approach has been introduced. Within this for-
malism, the entropy of a correlated many-fermion system can be computed directly
from the one-body propagator. In the previous chapter, the ladder approximation
to nuclear matter and the numerical results obtained from the SCGF scheme have
been discussed. It is thus natural to use these results as the starting point for the
Luttinger-Ward calculations. In this manner, the thermodynamical properties of
nuclear matter will be obtained from a fully correlated approach. The quantities
obtained within this scheme will be compared with those arising from other ap-
proaches. Special attention will be paid to the comparison with the BHF result.
The importance of thermodynamical consistency will be revealed in this way. Fi-
nally, the perspectives which this approach opens in the many-body nuclear field
will be briefly outlined.

6.1 Microscopic results

Within the Luttinger-Ward approach, the entropy of a system of interacting fer-
mions is split in a dynamical quasi-particle contribution, the SDQ of Eq. (3.94),
and a contribution which includes higher order correlations, the S ′ of Eq. (3.95).
This second term can be neglected safely at low temperatures, while still keeping
the thermodynamical consistency of the approach [Car75]. In Chapter 3, the
dynamical quasi-particle contribution to the entropy was shown to arise from the
B spectral function. The properties of this function are very close to those of the
usual spectral function, A(k, ω). It fulfills, for instance, the same sum rule [see
Eqs. (2.48) and (3.105)] and it also accounts for the effect of correlations in the
width of quasi-particles. It is thus natural to compare the two functions. Before
that, however, one can get a rough idea of the differences between both functions
following an argument first proposed by Carneiro and Pethick [Car75]. On the one
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6.1. Microscopic results

hand, let us express the spectral function A as a function of the real and imaginary
parts of the self-energy. One obtains the well-known Lorentzian-like function of
Eq. (2.130). For a given momentum, the spectral function has a peak around the
quasi-particle energy, ω ∼ εqp(k), of height A ∼ 4/Γ(k, εqp(k)). On the other hand,
the B spectral function can also be rewritten in terms of the self-energy. Starting
from Eq. (3.96) and taking the derivative with respect to the energy according to
Eq. (3.99), one gets:

B(k,ω) =
1

2

Γ3(k, ω)[[
ω − k2

2m
− Re Σ(k, ω)

]2
+

[
Γ(k,ω)

2

]2
]2

{
1− ∂Re Σ(k, ω)

∂ω

}

−1

2

Γ2(k, ω)[[
ω − k2

2m
− Re Σ(k, ω)

]2
+

[
Γ(k,ω)

2

]2
]2

{
ω − k2

2m
− Re Σ(k, ω)

}
∂Γ(k, ω)

∂ω
.

(6.1)

If one assumes that the frequency dependence of Γ and Re Σ are smooth close to
the quasi-particle energy, one finds:

B(k, ω)∼ 1

2

Γ3(k, ω)[[
ω − k2

2m
− Re Σ(k, ω)

]2
+

[
Γ(k,ω)

2

]2
]2 , (6.2)

which corresponds to a function which decays faster than a Lorentzian close to
εqp(k), but which has a stronger peak at the quasi-particle energy, B ∼ 8/Γ(k, εqp(k)).

One can check that this schematic scenario is indeed true in Fig. 6.1, where the
B (full lines) and the A (dashed lines) spectral functions are shown as a function
of the energy for three different momenta: k = 0, k = kF and k = 2kF . The
two functions have been computed at the empirical saturation density ρ0 and at
a temperature of T = 10 MeV. In the three panels, corresponding to the three
different momenta, one observes that both functions are peaked around the quasi-
particle energies. The peak shifts from negative values of the energy with respect
to the chemical potential (“hole” states) to positive values (“particle” states) when
going from zero-momentum to higher momentum states, just following the position
of the quasi-particle peak. However, while the A spectral function has high-energy
tails that contribute in a non-negligible way to the total strength of the nucleon,
the tails of the B spectral function are lower and less extended in energy. This is
easily understood if one considers that both functions fulfill the same sum rule.
Since the B function has a higher quasi-particle peak, the strength of the peak is
contributing substantially to the total sum rule and there is no need to generate
high-energy tails. The presence of these high-energy tails in the A function is
an indication of the importance of the correlations that go beyond the mean-
field approach [Fri03]. Thus, the lack of such tails in the B function is signaling
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Figure 6.1: B (solid lines) and A (dashed lines) spectral functions at ρ0 and T = 10
MeV for three different momenta: k = 0, kF and 2kF .

somehow that these correlations will have a small influence in the total entropy of
the system.

This idea is also in accordance with the behavior of the width of both spectral
functions. Far away from the Fermi momenta, the two functions are relatively
broad around the peak. Again, in the case of the A function this is a consequence
of the correlations that redistribute the nucleon single-particle strength within
a wide range of energies. The B function has a smaller width, which indicates
that it is less affected by correlations. Close to the Fermi momentum, however,
both functions approach a delta-peak behavior, reminiscent of the fact that at
zero temperature, even when correlations are included, the spectral function has
a delta-like contribution. At this momentum and for the temperature considered,
the B function is narrower and much more peaked than the usual spectral function
A. Thus, at all momenta, B seems to be less affected by dynamical correlations
or, in other words, the width of the quasi-particles associated to B appears to be
smaller. It is also interesting to note that the values for the B function are positive
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Figure 6.2: B spectral function as a function of the energy ω − µ for three mo-
menta: k = 0 (upper panel), kF (middle panel) and 2kF (lower panel). In the
left panels, the different lines correspond to five different densities (from 0.1 to
0.5 fm−3 in equidistant steps). The dotted line shows the statistical factor σ(ω) for
this temperature. In the right panels, the different lines correspond to four different
temperatures (from 5 to 20 MeV in equidistant steps).

(except for a very small region at k = 0) for all the energies and momenta here
considered. This is in contrast to the weighting function B, which is defined in
Eq. (3.90) and is used in Ref. [Som06]. The fact that the evaluation of the entropy
using the weighting function B exhibits strong cancellation effects (see Fig. 4 of
Ref. [Som06]) may be taken as an indication that the splitting of the entropy into
the two contributions according to Eq. (3.107) is not optimal.

In order to understand the density dependence of the dynamical quasi-particle
entropy, in the left panels of Fig. 6.2 the B spectral function is shown as a function
of the energy for different densities (ρ = 0.1, 0.2, 0.3, 0.4, 0.5 fm−3) at the same
three momenta previously introduced and at a fixed temperature of T = 10 MeV.
In addition, the dotted line represents the statistical weighting function σ(ω). It is
precisely the product of these two functions (B and σ), integrated over energies and
momenta, that gives rise to the dynamical quasi-particle entropy, and thus it will be
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6. Thermodynamical properties of nuclear matter

interesting to study their overlap. The general features of the B spectral function
as a function of density are very close to those of the usual spectral function A (see
Fig. 5.17). In the case of k = 0, the quasi-particle peak moves to more and more
attractive energies as density increases, reflecting the fact that the binding energy
of a zero-momentum nucleon increases with density. Above the Fermi surface (at
k = 2kF ), the situation is the opposite and the peak of the B function moves to
higher energies with increasing density. The width of these peaks, both at zero
momentum and at twice the Fermi momentum, is broadened with density. This
is in accordance with the naive idea that correlation effects increase with density.
In addition, as a consequence of this broadening, the strength of the high energy
tails (visible at high positive energies for the k = 0 state) decreases with density,
allowing the sum rule Eq. (3.105) to be fulfilled. Note that this behavior does
not coincide with the one observed for the A spectral function, in which the same
lowering and widening of the quasi-particle peak is found, but the strength of the
tails grows with density.

The situation is different at the Fermi surface: when the density is increased,
the peak remains at ω = µ, while its width becomes narrower and concentrates
more strength. This can be understood if one takes into account that, as already
commented, at zero temperature, i.e. for the fully degenerate system, the corre-
lated A spectral function shows a delta peak which would also be present in the
B spectral function. At a fixed non-zero temperature, however, the system moves
towards the degenerate limit (the ratio T/εF decreases) with increasing density
and thus the B spectral function becomes closer to the delta-like behavior. This
is actually what can be seen in the central panel of Fig. 6.2. At high densities
(ρ ≥ 0.2 fm−3), a clear separation between the quasi-particle peak and the back-
ground contribution to the B spectral function is observed. This separation is
enhanced in the logarithmic scale due to the (very small) negative values of the B
spectral function between these two regions. Since a positive-definiteness condi-
tion for B seems difficult to prove, one cannot say whether these negative values
are physical or caused by small inaccuracies in the numerical derivatives of the
spectral function [see Eq. (3.109)].

From the left panels of Fig. 6.2, it is clear that the quasi-particle peak and
the peak of the σ function only coincide for momenta close to kF and energies
around ω = µ. Therefore, the more important contributions to the dynamical
quasi-particle entropy of the system will be those of momenta close to the Fermi
surface and energies close to the chemical potential. It is precisely the interplay
between σ and B that gives rise to the density dependence of the entropy. Since
the value of B at k = kF and ω = µ increases with density, one may expect that
the entropy would increase with density. However, it is also true that, for lower
densities, the quasi-particle peak is closer to µ at all momenta and thus there are
contributions of the quasi-particle peak for momenta not necessarily close to kF .
In fact, when these contributions are summed, one finds that the entropy density
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6.2. Comparison among different approximations

increases with density, but the entropy per particle is a decreasing function of
density.

To gain insight into the temperature dependence of the dynamical quasi-particle
entropy, the B spectral function as a function of energy for the same three differ-
ent momenta considered previously at a fixed density ρ = 0.16 fm−3 and at four
different temperatures T = 5, 10, 15 and 20 MeV is shown in the right panels of
Fig. 6.2. It is clear that, for all momenta, the variations of temperature mainly
result in changes of the width of the quasi-particle peak, while the position in
energy of this peak relative to the chemical potential is nearly unchanged. In
addition, the momentum states far above the Fermi surface are not affected by
temperature, as it is seen in the lowest panel, corresponding to k = 2kF . Note
that the same behavior was found for Im Σ(k, ω) in Fig. 5.14 and for A(k, ω) in
Fig. 5.17. At the Fermi surface, on the other hand, the effects are more important.
As temperature increases, the height of the quasi-particle peak decreases, while
its width increases. Moreover, at the lowest temperature (T = 5 MeV) a clean
separation is observed between a quasi-particle peak and a “particle” (ω > µ) and
“hole” (ω < µ) background. This is again enhanced by the fact that the B spectral
function acquires negative (but very small) values in this region. This separation
is softened at T = 10 MeV and disappears completely above this temperature.
Such a behavior is again understood in terms of the degeneracy of the system.
The lower the temperature, the higher the degeneracy and the smaller the width
of the B spectral function at the Fermi surface. For the k = 0 state, a similar
situation is found. The peak lies below the chemical potential, and it is clearly
split from the particle background at T = 5 MeV. For temperatures above T = 10
MeV this separation disappears and a smooth transition from “particle” to “hole”
states is found in the B function. It is also interesting to notice that the width of
the peak remains more or less constant, thus indicating that temperature-induced
effects on the width of the quasi-particle peak are only relevant around k = kF .

As for the total contribution to the dynamical quasi-particle entropy, the con-
volution between σ(ω) and B(k, ω) is again crucial. At low temperatures, σ(ω) is
very peaked around ω ∼ µ. The convolution will thus only be different from zero
whenever the quasi-particle peak is close to µ, i.e., at k ∼ kF . On the other hand,
at higher temperatures σ(ω) is different from zero in a wider region of energies,
which results in a non-zero convolution at all momenta. When one integrates over
momenta, the final dynamical quasi-particle entropy is higher for the higher tem-
perature. Thus, in accordance with intuition, the entropy of this correlated system
grows with temperature.

6.2 Comparison among different approximations

When presenting the different ways of computing the entropy of a correlated sys-
tem of fermions in Chapter 3, various approximations and expressions for this
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6. Thermodynamical properties of nuclear matter

quantity have been deduced. These will now be studied separately in order to
establish more clearly the differences and similarities among them. In addition,
some examples will be given of the temperature and density dependences of the
different approaches presented.

Dynamical quasi-particle entropy

The full dynamical quasi-particle entropy SDQ can be computed either from Eq.
(3.94) or from Eq. (3.98):

SDQ

V
= ν

∫
d3k

(2π)3

∫ ∞

−∞

dω

2π
σ(ω)B(k, ω) = ν

∫
d3k

(2π)3

∫ ∞

−∞

dω

2π

∂f(ω)

∂T
Ξ(k, ω) .

(6.3)

While the first of the previous expressions is more intuitive, because it gives the
entropy in terms of the convolution of a B spectral function and a statistical factor,
it is less convenient from the numerical point of view. Consider the expression of
the B spectral function [see Eq. (3.109)]:

B(k, ω) = A(k, ω)

[
1− ∂Re Σ(k, ω)

∂ω

]
+

∂ReG(k, ω)

∂ω
Γ(k, ω) . (6.4)

The spectral function, the real part of the self-energy and the width are all outputs
of the SCGF scheme. The real part of the propagator can also be computed from
these quantities:

ReG(k, ω) =
ω − k2

2m
− Re Σ(k, ω)[

ω − k2

2m
− Re Σ(k, ω)

]2
+

[Γ(k,ω)
2

]2 . (6.5)

Thus, within the SCGF method, one has access to all the functions forming the
B spectral function. However, there are numerical derivatives which have to be
performed on Re Σ and on ReG. These derivatives require an accurate sampling
of the quasi-particle region, where both functions have strong energy dependences,
and thus should be done with extreme care.

Instead of this approach, our results will rely on Eq. (3.94) [the second term
in Eq. (6.3)]. The only derivative appearing in this expression is the temperature
derivative of the Fermi-Dirac distribution, which can be computed analytically.
The remaining term is formed by the Ξ(k, ω) function:

Ξ(k, ω) = 2πΘ
[
ReG−1(k, ω)

]
− 2 arctan λ(k, ω) +

2λ(k, ω)

1 + λ2(k, ω)
, (6.6)

which was already analyzed in Chapter 3. This is formed by a step-like (quasi-
particle) contribution plus two terms which depend on λ(k, ω) [see Eq. (3.72)]. The
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Figure 6.3: Momentum dependence of the ζ function [see Eq. (6.7)] for
five different densities (from ρ = 0.1 to 0.5 fm−3 in equidistant steps) at
a fixed temperature of T = 10 MeV. The lines with dots correspond to
the quasi-particle approximation ζQP for the same conditions. The arrows
signal the position of the Fermi momentum at each density.

final Ξ function is smooth in energies, but has a strong variation close to the quasi-
particle pole (see Fig. 3.4). On the other hand, the ∂f

∂T
function is negative below

µ and positive above it, which might induce large cancellations in the integral.
Therefore, one has to sample both energy regions (the quasi-particle peak and the
regions above and below µ) accurately in order to obtain SDQ.

To illustrate the importance and the structure of these convolutions, let us
consider the first expression for the dynamical quasi-particle entropy density of
Eq. (6.3). From it, one finds that the contribution of each momentum state to the
dynamical quasi-particle entropy density is given by:

ζ(k) =
ν

2π2
k2

∫ ∞

−∞

dω

2π
σ(ω)B(k, ω) . (6.7)

The momentum dependence of this function is shown in Fig. 6.3. As the density
increases, this integrand becomes larger at the Fermi surface, but less extended
in momenta. This is in agreement with the previously discussed ideas, i.e., that
for less degenerate systems the contributions at all momenta are relevant, while
for degenerate systems the contribution of the k = kF state is the most important
one. It is also interesting to note that at all densities, ζ peaks slightly above the
Fermi momentum.
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6. Thermodynamical properties of nuclear matter

Quasi-particle approximation

The quasi-particle approximation to the dynamical quasi-particle entropy is ob-
tained from the no-width approximation for the B spectral function. When this is
included into the expression of the entropy density, one finds [see Eq. (3.111)]:

SQP

V
= ν

∫
d3k

(2π)3
σ[εqp(k)] . (6.8)

In other words, the quasi-particle entropy is obtained by evaluating the statisti-
cal factor σ(ω) at the quasi-particle energies given by the SCGF approach. The
difference between SDQ and SQP is given by the term SDQ

2 of Eq. (3.103), which
is computed from an integral of functions of the λ variable. Whenever Γ is small,
λ will become negligible and the SDQ

2 contribution will also be small in front of
SQP . Actually, the magnitude of λ is given by the ratio of Γ and ReG−1, and
it can happen that even when Γ is relatively large, the denominator cancels the
contribution of λ. In these cases, SDQ

2 can keep on being small even though the
dynamical correlations become large.

It is also instructive to consider the entropy density of each momentum state
in the quasi-particle approximation. This is given by:

ζQP (k) =
ν

2π2
k2σ[εqp(k)] , (6.9)

and it is shown in Fig. 6.3 in circles. The differences between this approximation
and the full ζ(k) of Eq. (6.7) are only relevant for the lowest densities and in a
range of momenta close to the Fermi momentum. This is again a signature of
the small role played by the correlations that fragment the quasi-particle states
on the entropy. Therefore, one expects that the quasi-particle approximation to
the entropy, Eq. (3.111), will describe correctly the full dynamical quasi-particle
entropy, SDQ.

Brueckner-Hartree-Fock entropy

The equivalent to the zero temperature BHF theory for finite temperatures is
the BdD approach. This involves the calculation of a grand-canonical potential,
whose temperature derivative would essentially yield an entropy which embeds
the particle-particle correlations inherent of the BHF approach. Still, in the finite
temperature BHF calculations performed in this Thesis, the entropy has been
computed from the mean-field-like expression:

SBHF

V
= ν

∫
d3k

(2π)3
σ[εBHF (k)] , (6.10)

where the quasi-particle energies are computed from the BHF self-energy [see
Eqs. (5.56) and (5.58)]. This differs from the quasi-particle entropy introduced
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Figure 6.4: Momentum dependence of the ζ function for five different
approximations at a fixed density ρ0 and a temperature of T = 10 MeV.

above in both the position of the single-particle peaks (given by εqp(k) in the first
case and by εBHF (k) in the second) and in the different values of the chemical
potentials in the statistical factor, σ(ω), within each approximation. In our BHF
calculations, this chemical potential is obtained by means of the normalization
condition:

ρ = ν

∫
d3k

(2π)3
f(εBHF (k), µ̃BHF ) . (6.11)

The quasi-particle spectra from the BHF and the SCGF differ especially in the
hole region, where the BHF approximation leads to more attractive values (about
20 MeV more attractive at saturation, see Fig. 5.16). This difference can be
compensated by the difference in microscopic chemical potentials, which in the
BHF is also around 20 MeV more attractive at saturation than for the SCGF
approach (see Fig. 6.7). All in all, the correction to the final entropy can be small
due to the cancellation of these differences in the argument of σ, where ε(k) and
µ are subtracted.

The size of these effects is explored by means of Fig. 6.4, where the different
approximations to ζ(k) are shown as a function of momentum at the empirical
saturation density at T = 10 MeV. As already explained, it is hard to distinguish
the full dynamical quasi-particle entropy from the quasi-particle approximation to
the entropy, except for the momenta close to kF . The BHF approximation is, on
the other hand, less extended in momentum, but it has a slightly stronger peak.
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The first effect is actually more important and the entropy per particle obtained
in the BHF yields smaller entropies.

Spectral function entropy

The spectral function entropy is given by the following “intuitive” expression:

SA
1

V
= ν

∫
d3k

(2π)3

∫ ∞

−∞

dω

2π
σ(ω)A(k, ω) , (6.12)

which is however not justified from thermodynamical grounds. This expression is
actually the first term of the dynamical quasi-particle entropy [see Eq. (3.113)].
Therefore, it should be taken as another contribution to the total value and not as
any kind of approximation to it. One can also guess easily its magnitude: the A
spectral function is lower than the B spectral function at the quasi-particle peak,
where it has its more relevant contribution. Consequently, and even though it
might have a larger width in energies, the A spectral function contribution to the
entropy is always lower than the dynamical quasi-particle entropy. This can also
be seen in Fig. 6.4, where the corresponding ζ function:

ζA(k) =
ν

2π2
k2

∫ ∞

−∞

dω

2π
σ(ω)A(k, ω) , (6.13)

is plotted as a function of momentum. One can indeed see that the peak of this
function is much lower than that of the other ζ functions.

Momentum distribution entropy

In addition to the previous approximations, a quantity which is computed from
the correlated momentum distribution of the system, n(k) [see Eq. (2.72)], will
also be displayed in Fig. 6.6. This is the entropy of the momentum distribution,
obtained from the expression:

SNK

V
=−ν

∫
d3k

(2π)3

{
n(k) ln n(k) +

[
1− n(k)

]
ln

[
1− n(k)

]}
. (6.14)

Note that the depleted momentum distribution is used here. Although this might
seem a reasonable guess at first sight, one should be careful with this expression in
two aspects. On the one hand, it is not derived from thermodynamical grounds and
thus one cannot guarantee that it reproduces the entropy of a correlated fermionic
system. On the other hand, one should take into account that the dynamical
correlations induced by interaction effects are included in the momentum distri-
bution, n(k). This carries also some thermal correlations, as seen by the fact that
it has a temperature dependence. Still, the entropy is a purely thermodynamical
quantity which (in the microcanonical ensemble) simply accounts for the number
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of thermally accessible states of the system. Therefore, it should not care so much
about the interaction or the dynamical correlations induced by it. Note that if
dynamical effects are present (as it is the case of SNK), one might be overcounting
correlations in the entropy.

This is also reflected in Fig. 6.4. The contribution of each momentum state to
the momentum distribution entropy density is given by:

ζNK(k) = − ν

2π2
k2

{
n(k) ln n(k) +

[
1− n(k)

]
ln

[
1− n(k)

]}
. (6.15)

Since the momentum distribution is depleted, ζNK gives large contributions in
the low momentum region, much larger than any other approximation. The peak
region is similar in height to the other ζ functions, but at high momenta SNK

yields again large contributions, due to the fact that momentum states are more
populated than in the thermal case. The fact that ζNK is larger in the low and
high momentum regions implies that SNK will be larger in the whole density and
temperature range here considered.

Density dependence

One can now try to quantify the effects introduced by each of the previous ap-
proximations by directly comparing the density and temperature dependences of
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6. Thermodynamical properties of nuclear matter

the entropy computed from the different schemes. To begin with, in Fig. 6.5 the
density dependence of the different approximations to the entropy per particle is
shown for a fixed temperature of T = 10 MeV. As a general feature, one can
say that all of these entropies decrease substantially with density, from values of
around 2.5 at densities around 0.02 fm−3, down to values of around 0.5 for the
highest density here considered, ρ = 0.3 fm−3. An important result that arises
from Fig. 6.5 is the fact that, at all densities, SDQ and SQP are very close. This
is somehow in agreement with the idea that the inclusion of the width of quasi-
particles has a small effect in the entropy. As discussed in relation with Fig. 6.3,
the effect is larger at lower densities, where both approximations differ more, but
it is never higher than a 5%. At high densities, the difference is so small that
cannot be appreciated in the figure. This result is not at all intuitive. It indicates
that SDQ

2 , which is nothing but the difference between SDQ and SQP , decreases
with density. But, since it has been argued that SDQ

2 represents somehow the
finite width effects on the entropy and since correlations grow with density, one
would also expect it to grow with density. However, the higher the density, the
smaller the width of the B spectral function at k = kF (which is the more relevant
contribution at high densities) and thus the lower the effects of correlations. This
is why at higher densities both approximations to the entropy tend to be similar.
The fact that SDQ

2 is negative at intermediate densities (say from ρ = 0.05 fm−3 to
0.20 fm−3) is quite interesting: in addition to stressing the fact that finite lifetime
effects to the entropy are small, one can say that it looks like correlations (i.e. the
width of the quasi-particle) tend to order the system.

The self-consistent propagation of holes is the cause of the difference between
SDQ and SBHF . Since the effect of the width on SDQ is small at this temperature,
the difference between both entropies arises from the different quasi-particle ener-
gies and chemical potentials of the two approaches. In the intermediate density
region, the BHF entropy has values that are about 10 % below the dynamical quasi-
particle one. The presence of hole-hole correlations, thus, increases the entropy,
i.e. the thermal disorder. This is related to the fact that hole-hole correlations
tend to increase the density of single-particle states close to the Fermi energy. If
one tries to parameterize the quasi-particle spectrum close to µ in terms of an
effective mass m∗, for instance, one obtains larger values for the parameterization
of the SCGF spectrum than for the BHF energies [Fri03].

Finally, the contribution of SA
1 to the dynamical quasi-particle entropy is also

shown. As already mentioned, this expression comes from a naive generalization
to incorporate width effects which, nevertheless, gives a reasonable first guess to
the entropy per particle. Intuitively, one would expect that, since the A spectral
function is wider than the B one, the overlap between A(k, ω) and σ(ω) at a given
momentum should be higher and thus the final SA

1 entropy could overestimate
SDQ. However, this is not the case, except for the lowest densities. This can
be understood from the height of the quasi-particle peak for A being, roughly
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Figure 6.6: Different approximations to the entropy as a function of tem-
perature at a density of ρ = 0.16 fm−3. The full lines correspond to SDQ;
the dotted lines to SQP ; the dashed lines to SBHF ; the dot-dashed lines to
SA

1 and the double dot-dashed lines to SNK.

speaking, a factor of 2 lower than that for B. Thus, although more extended
in momentum, the ζ(k) function for the A spectral function is smaller and gives
rise to a lower entropy (see Fig. 6.4). The difference of both entropies is between
20− 30% for the intermediate density region. The origin of such differences is the
SA

2 contribution of Eq. (3.114), which is the integral of two terms. Both terms
are of the same order at ρ ∼ 0.1 fm−3 but, while the contribution proportional to
A decreases with density, the one proportional to Γ increases, and above ρ = 0.3
fm−3 it carries more than 80% of the total correction.

Temperature dependence

In Fig. 6.6, the temperature dependence of the entropy at the empirical saturation
density computed within different approximations is shown. As a general trend,
one observes the same features previously discussed concerning the density depen-
dence. The quasi-particle approximation SQP using SCGF energies reproduces the
dynamical quasi-particle entropies at all temperatures very well, especially below
T = 10 MeV. The BHF entropy describes the entropy of the system with an error
of about 15 %. This difference is quite small, which is again a sign that both
the fragmentation of single-particle strength and the exact position of the quasi-
particle peak are not that crucial in the final result of the entropy per particle.
Since the quasi-particle approximation to the entropy is always larger than the
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6. Thermodynamical properties of nuclear matter

BHF one, one can generally say that the inclusion of hole-hole propagation tends
to increase the entropy. The A spectral function contribution to the entropy is
again correct respect to its temperature behavior, but it still gives a too small
value for the entropy per particle of the system, with errors as large as a 30 %. As
previously discussed, this is due to the lower quasi-particle peak of the A spectral
function, which makes the SA

1 contribution to the entropy lower than the SDQ

entropy. The difference between these two functions is given by the SA
2 contri-

bution. This is composed of the two terms in Eq. (3.114), which have different
relative weights as temperature changes. While the term proportional to the A
spectral function amounts to 90 % of the total correction at T = 4 MeV, its rel-
ative importance decreases linearly to a 30 % contribution for the T = 20 MeV
case. Finally, the entropy of Eq. (6.14) is given in terms of the fully correlated
momentum distributions. This momentum distribution includes both thermal and
correlation effects. In fact, in SNK both effects are taken on the same footing and
consequently dynamical correlations mimic extra thermal effects. This is why this
is the only approximation which tends to give a non-zero entropy at T = 0. In
the fully degenerate limit, the momentum distributions given by Eq. (2.72) are not
Fermi step functions and they are corrected by correlation effects. These correla-
tions are the responsible for a certain amount of entropy, when this is computed
with Eq. (6.14) at T = 0. Thus, at finite temperatures thermal effects are overes-
timated in SNK due to the presence of correlations, and SNK produces a far too
large entropy (almost a factor of three too large at T = 5 MeV).

One can say that all the approximations to the entropy in the figure increase
with temperature (as expected) and approach a linear dependence at low T . It is
a well-known feature of Fermi liquids that the slope coefficient for such a linear
behavior is proportional to the zero temperature density of states computed at the
Fermi surface, N(T = 0):

Slow

A
=

π2

3ρ
N(0) T . (6.16)

Each approximation goes to the T = 0 limit with different slopes, and one can
thus obtain different densities of states from a fit of the different slopes. As a
matter of fact, one can find analytical expressions for the density of states at zero
temperature for the SDQ (SA) approximation in terms of the B (A) spectral func-
tion [see Appendix D]. To calculate N(0) for these approximations, however, one
needs the spectral functions at zero temperature and one should thus extrapolate
the results to the T = 0 limit, which cannot be done within our approach reliably.
Instead of that, the expression of N(0) in terms of the B and A spectral functions
is extended to finite temperatures. In doing this, one gets the “density of states”
related to the B spectral function:

NB(T ) = ν

∫
d3k

(2π)4
B(k, ω = µ) , (6.17)
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6.2. Comparison among different approximations

and the usual one, related to the A spectral function:

NA(T ) = ν

∫
d3k

(2π)4
A(k, ω = µ) , (6.18)

where T denotes the fact that these have been calculated at the finite temperature
at which the spectral functions have been computed. Note that at low T and
ω = µ the functions A and B differ basically by a factor Z (where Z denotes the
renormalization of the quasi-particle pole):

A(k, ω = µ) ∼ Z(k, ω = µ)B(k, ω = µ) (6.19)

and thus the two densities of states differ approximately by such a factor. Note,
however, that the density of states that gives the correct linear fit to the dynamical
quasi-particle entropy is that of Eq. (6.17). In fact, one can numerically check
that it is this quantity that reduces to the well-known quasi-particle expression
(see Appendix D):

NQP (0) =
νkF m∗(kF )

2π2
(6.20)

at low enough temperatures, where the effective mass is obtained through the
derivative of Eq. (4.32) evaluated at the Fermi surface using the finite temperature
SCGF quasi-particle spectrum, εqp(k). This can be seen in Table 6.1, where the
densities of states computed with the A and the B spectral functions together
with that obtained from the QP expression, Eq. (6.20), at ρ = 0.16 fm−3 are
given for a set of low temperatures. The effective mass at kF is given in the
fifth column of Table 6.1 for completeness. The numerical values confirm that, at
low temperatures, the density of states from the B spectral function reduces to the
quasi-particle one, hence indicating that from a thermodynamical point of view this
is the correct density of states. In contrast, from a microscopic point of view, the A
density of states is the one which has been commonly used [Kel96; Müt95; Che01].
One should keep in mind that in a no-width approximation with Z = 1 both of
them would reduce to the same expression, Eq. (6.20). The linear approximation
of the entropy of Eq. (6.16) with the density of states coming from the B spectral
function at the lowest temperature (T = 4 MeV) reproduces the total entropy
per particle with a 20% accuracy up to T = 10 MeV. Yet, the density of states
has a certain temperature dependence, which is almost linear in the case of the
B “density of states”. If one takes into account this temperature dependence and
computes the entropy per particle with the B density of states evaluated at the
corresponding finite temperatures, the dynamical quasi-particle expression of the
entropy can be reproduced with less than a 10 % discrepancy for temperatures up
to T = 10 MeV .

In the context of nucleus-nucleus collisions at intermediate energies, there exists
a growing amount of experimental data [Poc95; Nat02] which should be useful to
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6. Thermodynamical properties of nuclear matter

T [MeV] NA(T ) [MeV−1fm−3] NB(T ) [MeV−1fm−3] NQP (T ) [MeV−1fm−3] m∗

m

4 0.00435 0.00608 0.00608 0.935
6 0.00430 0.00585 0.00586 0.901
8 0.00424 0.00566 0.00570 0.875
10 0.00416 0.00548 0.00557 0.855

Table 6.1: Densities of states related to the A (first column) and B (second column)
spectral functions at ρ = ρ0 for different temperatures. The quasi-particle approx-
imation to the density of states, Eq. (6.20), is displayed in the fourth column,
together with the effective mass at the Fermi surface in the fifth column.

constrain the thermal properties of nuclei and nuclear matter. In particular, the
liquid-gas phase transition and the caloric curve give a hint on the properties of
nuclei at low temperatures. In the study of the caloric curve, it is customary to
parameterize the excitation energy at low temperatures in terms of the so-called
inverse level density parameter K (see [De98] for a theoretical description), which is
inversely proportional to the density of states introduced here. The values obtained
here for K [defined as K−1 = π2

6ρ
NB(0)] are close to the Fermi gas value K ∼ 14.6

MeV at the empirical saturation density. This can be understood from the fact
that NB reduces to the quasi-particle value of Eq. (6.20) which, in addition, is
similar to the free Fermi gas value because, in the case of the CDBONN potential
at these densities, the effective mass is almost equal to the bare nucleon mass at
low temperatures. A word of caution must be raised, however. The value for K is
obtained here from a calculation in infinite isospin symmetric matter in which only
short-range correlations are treated. Nevertheless, it is clear that a study of the
inverse level parameter should include both the effects of finite size and long-range
correlations, which are very important in determining the low energy excitations
of nuclei.

6.3 Thermodynamical consistency

From first principles, the ladder approximation is known to be Φ-derivable [Bay62]
and thus if the dynamical quasi-particle approximation to the entropy is correct,
one would expect thermodynamical consistency to be fulfilled. In other words, the
preservation of thermodynamical consistency can be taken as a confirmation that
S ′ is negligible in our approach. The left panel of Fig. 6.7 shows the accuracy that
is reached with the SCGF results. For the sake of comparison, the corresponding
BHF results are shown in the right panel. The solid lines with full circles in the
left panel correspond to the free energies per particle computed within the SCGF
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6.3. Thermodynamical consistency

approach:

F SCGF = EGMK − TSDQ , (6.21)

with the energy computed with the GMK sum rule, Eq. (2.103) (shown with the
solid line with squares in the figure) and the entropy with the dynamical quasi-
particle expression, Eq. (3.94). The BHF free energy is displayed by a solid line
with circles in the right panel and it is given by:

FBHF = EBHF − TSBHF , (6.22)

with the energy computed from the generalization of the T = 0 BHF approach,
Eq. (5.59) and the entropy from Eq. (6.10). Note that the BHF energy is also
shown with a solid line with squares in the right panel of Fig. 6.7. Moreover, the
dotted lines with empty circles correspond to the microscopic chemical potentials,
µ̃, obtained from inverting Eq. (3.47) for the SCGF scheme and from inverting
Eq. (6.11) in the BHF approach, respectively. Both chemical potentials are com-
pared with the macroscopic chemical potentials, µ, obtained from the derivatives
of the free energy density with respect to density:

µ =
∂

∂ρ

F (ρ, T )

V
, (6.23)

shown with dashed lines in both panels. These derivatives have been performed nu-
merically after adjusting F to a third-order polynomial. Although the low density
region is not well reproduced in this rough approximation, the results of the inter-
mediate density region can be fully trusted and in addition they will be smooth
with density.

The fulfillment of thermodynamical consistency for the SCGF approach is thus
nicely illustrated in Fig. 6.7. The agreement between µ̃ and µ is very good above
0.05 fm−3, with discrepancies of less than 1 MeV up to ρ = 0.5 fm−3. As a
consequence, the Hugenholtz-van Hove theorem is also very well fulfilled, and the
minimum of F/A and µ̃ do nicely coincide at about ρ ∼ 0.27 fm−3. The situation
for the BHF approach, on the other hand, is much worse, as it is well-known
[Cze02]. The chemical potentials µ̃ and µ differ by about 10 MeV at ρ = 0.16
fm−3 and by almost 30 MeV at the highest density here considered. In addition,
the Hugenholtz-van Hove theorem is badly violated, and the value of F/A at
saturation differs from µ̃ by about 20 MeV.

Both panels of Fig. 6.7 also display the corresponding energies per particle of
the SCGF and the BHF approaches. It is well-known that the propagation of holes
has a repulsive effect on the total energy per particle [Fri03; Fri04a]. As a matter
of fact, the difference in both energies is quite density dependent. Below 0.03 fm−3,
for instance, the BHF method yields more repulsive energies per particle. Above
this density, the BHF results are more repulsive than those of the SCGF approach,

188



6. Thermodynamical properties of nuclear matter

0 0.1 0.2 0.3 0.4 0.5
ρ [fm-3]

-50

-40

-30

-20

-10

0

10
F/

A
, E

/A
, µ

  [
M

eV
]

FSCGF/A
ESCGF/A
µSCGF

µSCGF

T=10 MeV - SCGF

0 0.1 0.2 0.3 0.4 0.5
ρ [fm-3]

-50

-40

-30

-20

-10

0

10

F/
A

, E
/A

, µ
  [

M
eV

]

FBHF/A
EBHF/A
µBHF

µBHF

T=10 MeV - BHF

~ ~

Figure 6.7: Free energies per particle (solid circles), total energies per par-
ticle (solid squares) and µ̃ chemical potentials (dotted lines with empty
circles) for the SCGF (left panel) and BHF (right panel) approaches as
a function of density for a temperature of T = 10 MeV. The µ chem-
ical potential obtained through a numerical derivative are displayed with
dashed lines. The hatched areas represent the empirical saturation point
of symmetric nuclear matter.

about 3 MeV more repulsive at ρ0. The repulsive effect of hole-hole propagation
increases with density, and for ρ = 0.5 fm−3 it is already of the order of 5 MeV.
The same repulsive effect is observed in the free-energy per particle, which is less
attractive for the SCGF scheme in the whole density range. Once again this is
a density dependent effect, which involves about half an MeV difference at low
densities and about 5 MeV in the largest ones. It is interesting to note that the
differences in free energies between the BHF and the SCGF approaches are smaller
than the differences in energies, due to their different entropy contributions.

An important empirical quantity concerning infinite nuclear matter is the satu-
ration density and the binding energy at this density. It is a well-known feature of
zero temperature BHF calculations with two-body forces that this quantities are
not reproduced. Instead, the BHF results yield either a correct saturation den-
sity with too little attraction or a correct binding energy at a too high saturation
density. The saturation points for different bare interactions form a band in the
binding energy-saturation density plane, known as the Coester band [Coe70]. The
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Figure 6.8: Density dependence of the total (left panel), kinetic (central
panel) and potential (right panel) energy per particle within the SCGF
approach. Four temperatures are considered: 5 (full circles), 10 (squares),
15 (diamonds) and 20 (triangles) MeV.

inclusion of hole-hole propagation has a repulsive effect in the saturation energy,
which leads to more realistic results for this quantity, while the saturation den-
sities obtained from the SCGF scheme are still too large [Dew03]. The hatched
region in Fig. 6.7 represents the empirical saturation point of nuclear matter. At
finite temperature one should probably study the saturation properties of the cor-
responding thermodynamical potential, i.e. the free energy per particle. This can
be compared to the saturation properties of the total internal energy per particle.
Both quantities saturate at far too large densities (at almost twice the experimen-
tal value of saturation density), but while the free-energy gives about −21 MeV,
the energy per particle saturates at about −16 MeV. The fact that this value co-
incides with the empirical saturation energy is however just a coincidence, caused
by thermal effects. A calculation for lower temperatures shows that the saturation
at zero temperature leads to more attractive energies per particle (see Fig. 6.8).

6.4 Macroscopic results

Now that the thermodynamical consistency of our approach has been exposed, it
is time to study the density and temperature dependence of the thermodynamical
properties of nuclear matter. The energy per particle will be studied in the first
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Figure 6.9: Contribution of the momentum distribution to the kinetic en-
ergy within the SCGF approach. The three panels correspond to the den-
sities ρ0/2 (left panel), ρ0 (central panel) and 2ρ0 (right panel). Four
different temperatures have been chosen, from T = 5 MeV to T = 20 MeV
in equidistant steps.

place. To this end, the three different contributions to the energy per particle are
shown in the three panels of Fig. 6.8: total (left panel), kinetic (central panel) and
potential energy per particle (right panel). Within the SCGF method, the kinetic
energy is given by the expression [see Eq. (3.22)]:

K
A

=
ν

ρ

∫
d3k

(2π)3

k2

2m
n(k) , (6.24)

which is computed with the correlated momentum distribution of Eq. (2.72). At
first sight, the results show the naively expected dependence and the kinetic energy
increases with density. This is due to the fact that the momentum distributions
give sizeable contributions up to the Fermi momentum, which increases with den-
sity. Moreover, the integrand in Eq. (6.24) is proportional to k4n(k). Due to this
k4 factor, the high momentum components are enhanced, which also favors an
increasing density dependence of the kinetic energy per particle (see Fig. 5.19).
The increase with temperature at fixed densities can also be understood from the
k4n(k) factor. This is displayed in Fig. 6.9 for the same conditions at which the
momentum distribution of Fig. 5.19 where computed. In that figure, one could
already see that the high momentum states were more populated with higher tem-
peratures (for a fixed density). If these large momentum states are weighted with
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a k4 factor, their contribution will be larger, as seen in Fig. 6.9. It is interesting to
note that, although in Fig. 6.9 momenta as high as 600 MeV are shown, no sign of
attenuation of the k4n(k) factor is observed. Actually, one needs to go to momenta
of the order of 5−6kF to find that the integral for the kinetic energy saturates to a
constant value [Fri04a]. For a non-correlated momentum distribution, in contrast,
the exponential decay of the momentum distribution cuts out the k4 dependence
and, for small temperatures (far away from the classical limit), no sizeable con-
tributions are found above the Fermi surface. Note, on the other hand, that an
analysis in terms of momenta is somehow limited in perspective. Since the spec-
tral functions are a result of the SCGF scheme, one could study the contributions
of each momentum and energy state to the total kinetic energy per particle. In
this kind of studies, which are outside the scope of this Thesis, one usually finds
that about 50% of the total kinetic energy comes from the quasi-particle region
(i.e. from states with energies and momenta described by the relation ω = εqp(k)).
The very negative excitation energy and high-momentum regions, which are pop-
ulated due to the fragmentation of the quasi-particle peak, are responsible for the
remaining contribution [Ben89; Fri04a].

It is also instructive to compare the values of the kinetic energy from the
SCHF and the SCGF approaches. Since it is difficult to do this at naked eye,
in the left panel of Fig. 6.10 the ratio of the correlated to the mean-field kinetic
energies are plotted, for various temperatures, as a function of the density. At
low densities the SCGF results for the high temperatures are quite close to the
SCHF results. Actually, in Fig. 6.8 one can see that the kinetic energy per particle
tends to the classical limit, 3

2
T , for the higher temperatures. Moreover, except for

the T = 5 MeV case, the ratio grows with density at low densities. This is not
anymore true for higher densities, where the results tend to become constant and
the correlated results become about 1.5 times larger than the non-correlated ones.
Indeed, for densities above ρ0, the ratio becomes also independent of temperature,
which reflects the fact that the temperature dependence of both approaches is
very similar. Therefore, although the density and temperature dependences of the
mean-field and the correlated kinetic energies can be quite different in the low
density region, they become very similar for larger densities. It is important to
note that the correlated kinetic energy is a direct outcome of the Green’s function
treatment. In contrast, a BHF calculation does not give direct access to this
quantity, which has to be evaluated by means of the Hellman-Feynman theorem
[Müt00]. At zero temperature, the ratio of the correlated kinetic energy to the
free kinetic energy depends strongly on the NN interaction which is used [Müt99].
One would thus expect the results presented here to be potential-dependent to a
large extent.

The main effect of two-body correlations in the internal energy is reflected into
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Figure 6.10: Ratio of the SCGF to the SCHF kinetic (left panel) and
potential (right panel) energies as a function of density for four different
temperatures (distributed in equidistant steps from T = 5 to 20 MeV).

the potential energy. This is defined as the integral [see Eq. (3.23)]:

〈V 〉
ρ

=
ν

ρ

∫
d3k

(2π)3

∫ ∞

−∞

dω

2π

1

2

{
ω − k2

2m

}
f(ω)A(k, ω) . (6.25)

As already commented in the previous chapter, the modifications induced by the
renormalization of short-range correlations allow the nucleons to avoid the strongly
repulsive core of the bare NN interaction and thus lead to much more attractive
results. As seen by a direct comparison of the right panels of Fig. 4.11 and Fig. 6.8,
the effect is very large at high densities, where one goes from a value of about −20
MeV for the potential energy per particle in the SCHF approach to about−65 MeV
in the SCGF scheme. This makes more than a factor three of difference and thus
stresses once again the importance of the inclusion of short-range correlations in
this quantity. The size of these differences is explored in the right panel of Fig. 6.10,
where the ratio of the correlated to the mean-field potential energies is shown. The
strong effect of correlations can be seen from the fact that this ratio is, for all the
densities and temperatures explored, above 3. Except for the strong decrease with
density below ρ = 0.1 fm−3, which is a consequence of the low values that the mean-
field potential energy acquires in this region, the ratio is quite density independent
for each temperature. The density dependence of both potential energies is thus
comparable in the high density region, although the correlated case leads to much
more attractive results. In contrast to the case of the kinetic energy, however, the
correlated potential energy has a different temperature dependence than the mean-
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field approach. As a consequence, the ratios computed at different temperatures do
not fall on top of each other and the ratios become increasingly large with growing
temperature. Note that the temperature dependence of the ratio is caused by the
temperature dependence of the non-correlated case, as it is deduced from the fact
that the correlated potential energy has a very soft temperature dependence.

Compared to the SCHF results, the correlated kinetic energy is (for intermedi-
ate densities) about 1.5 times more repulsive, while the correlated potential energy
yields about 3 − 3.5 times more attractive results. All in all, the large potential
energy overcomes easily the repulsive contributions in the kinetic energy and the
total correlated energy per particle, for any temperature and density, is more at-
tractive than its mean-field counterpart. More specifically, the internal energy per
particle is attractive in the whole density range for the lowest temperature (T = 5
MeV), as seen in Fig. 6.8. For this particular temperature, the attraction increases
with density, until it saturates at about 0.3 fm−3 with a value of −20 MeV. This sit-
uation changes with temperature, mainly because of the temperature dependence
of the kinetic energy. Actually, the effect of temperature in the total energy per
particle is fairly density independent. The repulsive effect of temperature on K/A
induces a positive internal energy per particle at low densities. In particular, while
the saturation density associated to the total energy per particle remains almost
constant for the whole temperature range and stays close to a value of 0.3 fm−3, the
corresponding binding energy depends on temperature, and goes from about −19
MeV at 5 MeV to about −8 MeV at 20 MeV. Assuming a quadratical temperature
dependence (which would be approximately correct for mean-field approaches and
which is also quite approximate in the correlated case), one can extrapolate these
results to zero temperature. The binding energy at saturation would then be of
about −21 MeV. This is a too large value, if compared to the empirical saturation
binding energy, but it is however quite close to the corresponding BHF result for
zero temperature [Müt00]. Note however that this extrapolation should be taken
with extreme care for, as already explained before, pairing effects might affect the
zero temperature results.

The results for the entropy per particle have already been sketched in a previous
section. Here the SCGF results for SDQ in the Luttinger-Ward approach will
be presented for a wider range of densities and temperatures. The left panel of
Fig. 6.11 shows the density dependence of the entropy per particle for four different
temperatures. The results are quite similar to those obtained in the mean field
approach, where the entropy was found to be a decreasing function of density and
an increasing function of temperature. In general terms, however, one finds that
the entropies of the correlated approach are larger than those of the SCHF scheme.
This is in accordance with the idea that the correlations that go beyond the mean-
field tend to increase the entropy. This effect is less notorious at low densities,
where the correlated approach yields entropies which are actually smaller than
the mean-field approach by about half a unit. One can observe this in Fig. 6.12,

194



6. Thermodynamical properties of nuclear matter

0 0.1 0.2 0.3
ρ [fm-3]

0

1

2

3

4

5
E

nt
ro

py
 p

er
 p

ar
tic

le
, S

/A

T=5 MeV
T=10 MeV
T=15 MeV
T=20 MeV

Density dependence

0 5 10 15 20
T [MeV]

0

1

2

3

E
nt

ro
py

 p
er

 p
ar

tic
le

, S
/A

ρ=ρ0/2
ρ=ρ0
ρ=2ρ0

Temperature dependence

Figure 6.11: Density dependence (left panel) and temperature dependence
(right panel) of the entropy per particle within the DQ approximation. The
dotted lines in the right panel correspond to the degenerate approximation
of Eq. (D.30). Note the difference in the scale between the right and the
left panel.

where the density and temperature dependence of the ratio of the dynamical quasi-
particle to the mean-field entropy is shown. Below ρ = 0.05 fm−3, the dynamical
quasi-particle entropy is somewhat lower than the SCHF one, although this effect
is quite density and temperature dependent. For high densities and for the lowest
temperature, the dynamical quasi-particle entropy is about 1.5 times higher than
the mean field one. The influence of correlations in the entropy is however quite
temperature dependent, and the difference between the correlated and the non-
correlated entropy decreases when the temperature increases (for densities above
0.05 fm−3). The same effect is observed in the right panel of Fig. 6.12, where
the ratio is explored at three constant densities as a function of temperature. For
each temperature, the ratio decreases slightly with temperature. The fact that
the effect of correlations in S decreases with temperature is in accordance with
the intuitive idea that correlations have a smaller influence in systems at larger
temperatures, where thermal correlations may overcome the effects of dynamical
correlations.

The decrease in the ratio of SDQ to SMF shows that the dynamical quasi-
particle entropy does not exactly have the same temperature dependence as SMF .
In the right panel of Fig. 6.11 one actually sees that the behavior is qualitatively
linear only for the highest density. It has already been mentioned that, within
the low temperature limit of the DQ entropy, the coefficient in front of the linear
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Figure 6.12: Density dependence (left panel) and temperature dependence
(right panel) of the ratio of the DQ to the SCHF entropy.

temperature dependence should be essentially proportional to the density of states
associated to the B-spectral function. This quantity is also very close to the
quasi-particle density of states, Eq. (6.20), which has to be computed from the
zero temperature effective mass. Since this is not possible in our approach, the
effective mass at the lowest temperature (T = 4 MeV for ρ0/2 and 2ρ0; T = 3
MeV for ρ0) is used in order to compute the quasi-particle density of states. The
linear approximation to the entropy arising from this density of states is shown in
dotted lines in Fig. 6.11. Although the entropy decreases with temperature for a
constant density, it is also clear that the linear approximation only holds for the
higher density and at the lowest temperatures. Even though this is the expected
behavior (the linear behavior should only hold in very degenerate systems), it
is interesting to note that the linear approximation in the correlated case works
much worse than in the mean-field one. For the case of twice saturation density, for
instance, the points at high temperature were perfectly reproduced by the linear
law in Fig. 4.13, while they deviate by about 0.3 units in the largest temperature
of Fig. 6.11. At half saturation, the results are much worse and, while in the SCHF
entropy of Fig. 4.13 the linear behavior held up to temperatures of 6− 8 MeV, in
the correlated case it already deviates from the linear behavior at 5 MeV. All in all,
it looks like the correlated system has more difficulties in achieving the degenerate
limit. The cause of this difficulty can be attributed to the temperature dependence
of the B spectral function close to the Fermi surface. This introduces an additional
source of temperature dependence in the treatment of the degenerate limit, which
may account for the deviation of our results from the linear law of Eq. (6.16).
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at two densities, ρ = 0.04 and ρ = 0.06 fm−3.

A similar lack of agreement is found if one tries to describe the low density de-
pendence of the entropy at constant temperature in terms of the classical approx-
imation to the entropy, Eq. (4.42). The quasi-particle spectra in the SCGF have a
richer momentum dependence than the mean-field ones, due to the structures that
appear in the in-medium interaction (see Fig. 5.16). Therefore, it becomes diffi-
cult to parametrize correctly the spectrum with a constant effective mass for all
momenta. Consequently, from the theoretical point of view, it is difficult to derive
a closed expression for the classical approximation of the dynamical quasi-particle
entropy, at least within the scheme adopted in Appendix D. This can be taken
as an indication that the classical approximation may not be valid for correlated
systems.

One of the final aims of the study of heavy ion collisions at intermediate en-
ergies is the study of the properties of hot and dense hadronic matter. One can,
for instance, extract conclusions about the properties of the equation of state in a
given density range [Dan02]. Moreover, the matter created in the interior of these
collisions forms a dense fireball which might eventually reach thermal equilibrium
for very short times. One can then study the fragments that remain after the
collision and, assuming that they were emitted from a source in thermal equilib-
rium, deduce some properties of the initial fireball. Within these assumptions,
the isotopic yields of fragments can give information on the entropy per particle

197



6.4. Macroscopic results

0 0.1 0.2 0.3
ρ [fm-3]

-60

-50

-40

-30

-20

-10

0
Fr

ee
 e

ne
rg

y 
pe

r p
ar

tic
le

, F
/A

 [M
eV

]

T=5 MeV
T=10 MeV
T=15 MeV
T=20 MeV

0 0.1 0.2 0.3
ρ [fm-3]

-60

-50

-40

-30

-20

-10

0

C
he

m
ic

al
 p

ot
en

tia
l [

M
eV

]

T=5 MeV
T=10 MeV
T=15 MeV
T=20 MeV

Figure 6.14: Free energy per particle (left panel) and chemical potential
(right panel) as a function of the density for five temperatures within the
SCGF approach.

of the initial fireball [Jac83; Cse86; Wad87; Kuh93; Dze95]. There are a lot of
uncertainties in this analysis, however, mostly due to the statistical models used
in the extraction of data, which rely on the hypothesis that the initial fireball is
in thermal equilibrium. Even though an extensive comparison of our results with
those found in these experiments has to be taken with extreme care (because,
for instance, there are no finite size or fragmentation effects on our entropy), the
temperature dependence of the SCHF and the DQ approaches to the entropy per
particle for two low densities (0.04 and 0.06 fm−3) is compared in Fig. 6.13 to the
experimental points of Ref. [Dze95]. These correspond to the baryonic entropies
extracted from the total charge bound in fragments with Z between 2 and 15 for
Au+Au collisions at energies between 100A and 400A MeV assuming that the
freeze out density of the fireball is 0.3ρ0 = 0.05 fm−3. If the progenitor dense
system should be at this density and at the measured temperatures, its entropy
should correspond to the one plotted in the figure. The two theoretical curves
for each approach account for possible small deviations of this central density. It
is interesting to note that the results are in qualitative agreement, although the
higher mean-field entropy seems to account better for the experimental points.
The fact that both the non-correlated and the correlated entropy are so similar for
this temperature and density range does not allow for a clear disentanglement of
both approximations from the experimental data.

Once the total energy and the total entropy per particle of the system are
known, one can readily compute the free energy per particle. At finite tempera-
tures this is the relevant thermodynamical potential, whose minimization gives the
equilibrium state of the system. This quantity is shown as a function of density for
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6. Thermodynamical properties of nuclear matter

several temperatures in the left panel of Fig. 6.14. In contrast to the free energy
per particle of the SCHF case, the correlated free energy has a local minimum at
low temperatures in the high density region. This is the equivalent to the sat-
uration point of nuclear matter, but in the finite temperature regime. The fact
that this minimum disappears with increasing temperature is associated to a phase
transition of the liquid-gas type [Sur98; Poc97]. Above a certain temperature (the
so called flashing temperature, Tfl) the preferred state of this system would appear
to be in the very low density region. The pressure of the low density gas, however,
is still sizeable at this temperature, which prevents the system from decaying to
the low density phase. Instead, it keeps itself in the liquid-gas coexistence zone as
long as the critical temperature Tc of the phase transition is not reached. Above
this temperature, the thermodynamically preferred state of the system is at very
low densities and nuclear matter would tend to form a gas of dilute nucleons, most
plausibly formed by clusters or droplets of finite sizes.

Independently of the position of the minimum in F/A, it is interesting to study
the temperature and density dependence of the correlated free energy. As expected,
this is more attractive in the whole density-temperature range than the mean field
case. Moreover, it is a decreasing function of temperature. Once again this is a
pure entropic effect, because the energy per particle tends to be more repulsive
with temperature (see Fig. 6.8). The strong density dependence of the entropy
for low densities is also responsible for the bending and the large attractive values
of the free energy per particle in this region. Note, however, that this effect is
reduced with respect to the non-correlated case. For the T = 10 MeV case, for
instance, there is almost no bending at the lowest density, in contrast to the strong
density dependence in the mean-field case of Fig. 4.14.

The corresponding microscopic chemical potentials, µ̃, are shown by the sym-
bols in the right panel of Fig. 6.14. The lines that join these symbols at fixed
temperatures correspond to the chemical potentials obtained as the derivatives of
a polynomial fit to F/V . The agreement with the points is very good, with dis-
crepancies of less than 3 MeV for all temperatures and densities higher than 0.04
fm−3. The strong density dependence of µ̃ at low densities is hard to handle with
a polynomial fit and this is the reason why it has been skipped in this figure. Note
however that this is mainly a numerical problem and that one should not take it
as a failure of the thermodynamical consistency of the approach. A cross check
of this consistency is actually shown by the lines joining the symbols of the free
energies in the left panel of Fig. 6.14. These have been obtained from the following
integral:

F (ρ, T )

V
=

F (ρi, T )

V
+

∫ ρ

ρi

dρ µ̃(ρ, T ) , (6.26)

with ρi = 0.04 fm−3. The previous calculation needs of an initial baseline, F (ρi, T ),
which in this case has been set to be equal to the free energy density of our results
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at ρi. This is a somewhat arbitrary criterion, of course. Yet, here one should
not compare the absolute values of the two curves, but its density dependence.
The dependence of the free energy per particle is indeed very well reproduced
by the integral of the microscopic chemical potential, µ̃. If one tried to follow
this procedure with the microscopic chemical potential of the BHF approach, the
differences between the integrated free energy and the microscopic free energy
would increase with density, and at ρ0 they could be as large as 5 MeV. This
stresses once again the importance of the thermodynamical consistency of the
approach.

The density and temperature dependence of the chemical potential follows that
of the free energy per particle. The low density region of the chemical potential
shows some bending at high temperatures, which shifts to lower densities with
lower temperatures (this is the reason why it is not observed in the T = 5 MeV
case). Furthermore, for the intermediate density range the chemical potential has
a local minimum and then increases with density. As a matter of fact, the chemi-
cal potential for T = 10 and 15 MeV, reaches a minimum at about 0.15 fm−3 and
then increases steadily with density. At 20 MeV, in contrast, the chemical poten-
tial does not show any local minimum. This small change makes an important
difference in the thermodynamical properties of the system. The existence of this
local minimum is associated to the possibility of having two phases (a gas and a
liquid phase) with different densities but the same chemical potential. Therefore,
the temperature at which this local minimum disappears signals the critical tem-
perature for the liquid-gas phase coexistence. From the two panels of Fig. 6.14,
one can already deduce that the critical temperature is somewhere between T = 15
and T = 20 MeV.

With all the previous information, one is now ready to compute the pressure
of nuclear matter within a correlated approach. This is obtained from the ther-
modynamical relation [see Eq. (4.47)]:

p = ρ

(
µ̃− F

A

)
. (6.27)

The results are shown in Fig. 6.15. Let us in the first place compare these results
with the mean-field ones shown in Fig. 4.15. The pressure in the correlated case is
in general lower than the mean-field one. As a matter of fact, these pressures are
not only lower, but they also become negative in a certain range of densities. The
point of zero pressure actually corresponds to µ̃ = F

A
and thus sets the saturation

density for a given temperature. Actually, one can also see that this corresponds
to a minimum of the free energy per particle:

p = ρ2 ∂

∂ρ

F (ρ, T )

A
. (6.28)

As discussed previously, these minima correspond to around 0.3 fm−3 for T = 5
MeV and around 0.26 fm−3 for T = 10 MeV. At T = 15 MeV there is no point of
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Figure 6.15: Pressure as a function of the density for five temperatures
within the SCGF approach.

zero pressure and thus this is an upper bound to the flashing temperature of the
system. It is also interesting to take into account the following thermodynamical
relation:

∂p

∂ρ
= ρ

∂µ

∂ρ
, (6.29)

which shows that the stability points of the chemical potential and the pressure
coincide. This can also be checked visually by looking at the minima and maxima
of µ̃ in Fig. 6.14 and of p in Fig. 6.15.

In between the local maximum of the pressure at low density and its local min-
imum at a somewhat higher density, there is a region where the pressure decreases
with density:

∂p

∂ρ
< 0 . (6.30)

This is a thermodynamically forbidden zone: a system in this region would be
unstable against small density fluctuations and will thus suffer of a mechanical
instability. Such a zone is in correspondence with the region of chemical instability:

∂µ

∂ρ
< 0 , (6.31)
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Figure 6.16: Left panel: Maxwell construction for the pressure at T = 15
MeV. Right panel: Approximate determination of the critical temperature
with µ− p curves.

where the system might suffer of a chemical decomposition. The region of temper-
ature and densities in which the two previous equations are fulfilled is the so-called
spinodal region. In order to avoid this unphysical region, one usually introduces
the Maxwell construction for the coexistence of phases. In this construction, one
defines, for each fixed temperature, a low density, ρG, associated to the gas phase
and a large density, ρL, associated to the liquid phase, which fulfill the following
two equations simultaneously :

p(ρG, T ) = p(ρL, T ) (6.32)

µ(ρG, T ) = µ(ρL, T ) . (6.33)

In between these two densities, one supposes that the pressure and the chemical
potential are constant due to the equilibration of the two phases. The Maxwell
construction for the pressure at T = 15 MeV case is shown in the left panel of
Fig. 6.16. If one could have access to nuclear matter at that temperature and
one could slowly increase the density, the system would follow the continuous line.
At first, a pure gas of nucleons at low densities would be found. With increasing
densities, the gas would condensate from ρG to ρL at constant pressure, until the
liquid phase would be reached. Above ρL, the pressure would increase slowly. Note
that the spinodal region is enclosed by the liquid-gas coexistence zone.

In a one component system, there is a simple way to estimate the critical tem-
perature of the phase transition. Consider the plot in the right panel of Fig. 6.16,
where the chemical potential is displayed versus the pressure at each temperature.
Below the critical temperature, there are two different densities in which the chem-
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ical potential and the pressure coincide. In the µ − p plot, this is translated into
the point in which the branch which comes from the far right meets the descend-
ing branch of the chemical potential at each temperature. Since above Tc there
is only one pressure and chemical potential which are stable, this crossing point
disappears. The right panel of Fig. 6.16 offers the possibility to grasp the temper-
ature at which the liquid-gas coexistence disappears, which for this potential and
within the SCGF approach seems to be around Tc ∼ 17 MeV. The effect of the
lacking three-body forces in this quantity should be small, because the liquid-gas
phase transition takes place at relatively low densities. Thus one can take this a
fairly reliable value for the critical temperature of the liquid-gas phase transition
in infinite matter. This is in qualitative agreement with the critical temperature
obtained within other approaches [Bal99], but it is far too high to match the ex-
perimental value of around 5−10 MeV [Poc97; Nat02]. This discrepancy is caused
by finite size and Coulomb effects which, for finite systems, induce a broadening
of the phase transition and a reduction of the critical temperature.

The relation between the pressure and the density is mostly important for
astrophysical environments, where it defines the equation of state of the dense
hadronic matter forming the interiors of compact objects such as neutron stars.
At present, however, our calculations cannot be applied realistically to astrophys-
ical calculations. In the first place, to describe the dense interiors of neutron
stars, it is absolutely necessary to include some kind of three-body force in the
approach. Otherwise, the equation of state is too soft and the obtained final mass
of the neutron star, below the observable bounds. In the second place, in as-
trophysical environments one deals with very neutron rich systems and thus one
should unavoidably deal with isospin asymmetry. A first step towards this direc-
tion was taken in [Fri05], where the SCGF for nuclear matter was extended to
isospin asymmetric systems. The isospin asymmetry of the system is governed
by the β-stability conditions, which result in a series of equations for the chemi-
cal potential that have to be solved numerically. Note that since the microscopic
chemical potentials of the SCGF approach correspond directly to those obtained
macroscopically, one can use them directly in the solution of these equations. On a
BHF type calculation in dense matter, on the other hand, the macroscopic chem-
ical potential has to be derived numerically from the free energy density before
it can be applied in the calculation of the β-stability conditions, introducing a
certain amount of numerical errors in the results.

6.5 Future perspectives

The results presented here should be taken as a first step towards a full treatment of
the thermal properties of infinite nuclear matter within a formalism that includes
short-range correlations in a thermodynamical consistent way. From our point
of view, this formalism can find several applications within the many-body and
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nuclear physics community. At the thermodynamical level, a first outcome could be
the detailed study of the liquid-gas phase transition of symmetric nuclear matter
from a realistic NN potential. Since the formalism here presented is especially
suitable for low density and low temperature systems, the results are expected
to be fairly reliable. A critical study of the usually assumed low-temperature
dependences for the relevant thermodynamical properties of hot dense matter (of
the type T 2) could also be assessed. As mentioned previously, the correlated
system seems to have difficulties in achieving the classical and the degenerate
regimes and one should try to analyze more carefully why this is the case as well
as the magnitude of the observed deviations.

Other applications, such as the study of the finite temperature equation of state,
will probably demand for the inclusion of three-body forces in the formalism, in
order to reproduce the empirical saturation properties of nuclear matter. It has
already been commented that this complicates the formalism to a large extent.
The first attempts might however not include directly the effect of microscopic
three-body forces. Instead of that, one could try to use a phenomenological ρα

term. Another possibility could be the use of a reduced two-body version of a more
realistic three-body interaction. In this approach, one accounts for the repulsive
effect at high densities by means of an average of the coordinates of one of the
particles [Gra89]. This method has been used for BHF calculation with successful
results for the saturation properties of nuclear matter [Bal99].

The introduction of a realistic description of nuclear matter in astrophysical
environments can also be relevant for the dynamical properties of compact objects.
There is a growing amount of information on the properties of both isolated and
compound compact objects [Pag06]. A consistent treatment of these objects should
try to describe at once as many of these properties as possible, from, say, the
mass-radius relation to the cooling times at its surface [Kla06]. Even though
our approach might not be applicable to the whole density range achieved in
neutron stars, at least in the low density phase it might provide very valuable
information. A full treatment of the response of this density and temperature
region which includes the effects of the fragmentation of the quasi-particle peak is,
to our knowledge, lacking. This could have an effect in the neutrino propagation
through the dense matter [Sed07]. Moreover, the ladder approximation is devised
to correctly describe the properties of low-density homogeneous systems and thus
the SCGF results might shed some light into the properties of the outer crust of
neutron stars.

Furthermore, dense astrophysical systems are not formed only by nucleons and
leptons. In the high density interiors of neutron stars, the β-stability conditions
favor the presence of other species of hadrons. Among these, hyperons are likely
to appear at about twice saturation density [Vid00]. Their presence will naturally
affect the static and dynamical properties of the neutron star in several ways.
Thus, it would be interesting to have a many-body approach in which their in-
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medium properties could be treated in a consistent way. The off-shell propagation
of hyperons in dense matter is a difficult numerical task that, nonetheless, could
lead to interesting conclusions on the medium-induced effects on the properties of
baryons. These results could at the same time be tested in hypernuclear systems
[Rob03; Rob04].

As for the possible consequences of our results in the study of intermediate
energy heavy ion collisions [Dan02], there are also several aspects which could
be addressed within our formalism. On the one hand, as previously mentioned,
the thermal behavior of dense matter is explored with these experiments and one
should try to pin down whether correlations might have an important effect on
the experimentally measured properties. In addition, the use of spectral functions
in the description of correlated nucleons goes beyond the quasi-particle picture
customarily used in transport codes. Although some results point out the fact
that off-shell effects in the propagation of nucleons are small [Cas00], a treatment
of a kinetic equation including full spectral functions obtained from realistic NN
potentials (following, for instance, [Bot90] or [Köh95]) is, to our knowledge, still
lacking. Moreover, even within the usual quasi-particle description, some of the in-
medium modifications of nucleons (such as effective masses or NN cross-sections)
are usually taken as simple parameterizations [Dan00]. Our model permits the
calculation of these quantities from realistic NN potentials in a fully microscopic
and thermodynamical consistent basis which, properly parameterized, could be
used in this kind of studies.

In the description of both the micro- and the macroscopic properties of nuclear
matter, one should always try to analyze the model-dependence of the approach
which is being used. It would thus be very interesting to find the dependence of the
bulk properties of matter on the different microscopic approaches. In this Thesis, a
comparison has been established among the results of the SCHF, the BHF and the
SCGF approaches. A comparison with other many-body microscopic models at
finite temperature (such as the variational approach) would have a high theoretical
interest. Since hot nuclear matter is often studied with phenomenological mean-
field approaches, it could also be interesting to study the similarities and differences
between these and the correlated schemes.

Following this spirit, one should also try to find which are the allowed model-
dependences within a given formalism. In the SCGF approach, for instance, the
use of different bare interactions might yield very different results. Even though
they might reproduce the NN phase shift at the same level of accuracy, the different
microscopic interactions have different short-range cores and tensor components.
In the first case, this is due to the lack of experimental knowledge of these phase-
shifts above a certain collision energy. The difference in tensor components is
caused by the particular structure of each NN interaction as well as by the as-
sumptions that are made in the building process of these microscopic force. Since
the fragmentation of the quasi-particle peak is, to a great extent, a consequence of
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the short-range and tensor components of the interaction, one expects the struc-
ture of the spectral function to change with the NN force. Even though there
have been studies in which the results arising from several potentials have been
discussed [Dew02] as well as some partial comparisons [Fri04b], there is not, to our
knowledge, a detailed discussion of the NN interaction dependence of the spectral
functions in infinite nuclear matter. As a consequence of this study, one could also
tackle the effects of using different bare forces in the macroscopic properties of the
system. Within a given approximation, this could be a useful way of measuring
the error that our lack of knowledge on NN interactions is introducing.

In this Thesis, the problems associated to pairing correlations have only been
briefly discussed in Chapter 5. The fact that pairing effects are important in the
low-density and low-temperature region of the nuclear matter phase diagram has
been particularly stressed. Yet, the introduction of short-range correlations has
an important effect on pairing properties and one should try to acknowledge the
importance of this effect. A full many-body treatment of pairing correlations is
not yet available, although there have been attempts to study the influence of
self-consistent off-shell propagation in the pairing gap in approximate treatments
[Dic05b]. One could also carry out a study in the normal phase, where the influence
of the dressing effects of nucleons in the critical density and critical temperature
could be analyzed and compared to the mean-field or BCS predictions. The use of
the Thouless criterion for this kind of studies has already been discussed in Refs.
[Alm93; Alm96; Dew02].

Finally, let us mention once again that many-body quantum mechanics has a
wide range of applications, apart from the nuclear physics field. This is the reason
why an effort has been devoted to write the formal developments of this Thesis
in a very general form. In doing so, the application of the formalism to the study
of other many-body quantum systems at finite temperature will be, hopefully,
carried out more easily. The SCGF method for the description of the dynamical
properties together with the Luttinger-Ward approach for the treatment of the
thermodynamical properties offers a very useful theoretical tool in the description
of dilute and strongly interacting quantum many-body systems. This approach
unifies the Green’s function description for the microscopic and thermodynamical
properties of a system in a consistent framework. It is our wish that it becomes a
more widespread tool in the many-body community, where it will for sure find a
lot of applications.

206



Summary and conclusions

There is a large amount of data confirming the fragmentation of single-particle
states in finite nuclei. This fact claims for formal developments in the nuclear
many-body problem which go beyond the quasi-particle as well as the mean-field
pictures. Such approaches should also include the short-range and tensor correla-
tions which characterize microscopic NN interactions and which give rise to strong
deviations from a mean-field many-body wave function. In a first step, long-range
correlations can be skipped in the study of nuclear matter because their effects
concern mainly its dynamical response and do not modify substantially its bulk
properties.

The first chapter of this Thesis has been devoted to a general review of the
nuclear many-body problem. In the first place, the main characteristics of the free-
space NN interaction have been described. Since the final aim of the nuclear many-
body problem is to reproduce the properties of nuclear matter, these have been
introduced in the usual way, i.e. from an extrapolation to infinite matter of some
experimental data on heavy nuclei, which define essentially the saturation point of
nuclear matter. In this Thesis, the treatment of nuclear matter follows an ab initio
approach. In other words, one chooses the constituents of the system, which in this
case are the nucleons, and a realistic interaction among them. One applies then
a sophisticated many-body machinery, hoping to reproduce the saturation point
of nuclear matter. Several ab initio many-body approaches have been devised to
treat this problem, and a short description of them is given in Chapter 1.

Among these, the many-body Green’s functions formalism offers an interesting
framework for the study of nuclear matter. In this approach one has the possibility
of performing a diagrammatic analysis of the many-body propagators in terms of
free one-body Green’s functions and two-body interactions. This is the outcome
of a perturbative expansion which results in an infinite series of diagrams, among
which one has to choose those which are physically suitable for the description of
the problem under consideration. Depending on the approximation, one can either
choose a given number of diagrams or sum an infinite series of them, which usually
results in a more realistic description. In this Thesis, two of these diagrammatic
approaches have been studied, the Hartree-Fock and the ladder approximations.
While the first one results from the lowest-order approximation to the two-body
propagator, the second one is obtained from an infinite sum of diagrams which
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account for the effects of the repeated scattering of two nucleons in matter. In
diagrammatic approaches one can have an intuitive idea of the processes that are
included in the approximation. Within the Green’s function formalism, however,
one can also introduce the approximations by means of a truncation in the hi-
erarchy of the equations of motion, decoupling the N -body propagator from the
N − 1- and the N + 1-body Green’s functions. One can actually show that the di-
agrammatic approaches which are widely used in the nuclear many-body problem
arise from these decouplings. This is actually the case of the Hartree-Fock and the
ladder approximations, and the way to perform this truncation has been briefly
discussed in this Thesis.

The description of nuclear matter at zero temperature within the ladder ap-
proximation encompasses at once particle-particle and hole-hole propagation and
also includes a full off-shell treatment of the in-medium propagation of nucleons.
In this sense, this approach goes both beyond the mean-field and the quasi-particle
pictures. The extension of this formalism to finite temperature is useful in the de-
scription of dense matter in extreme conditions, which is found in the latest stages
of the evolution of supernovae or in the fireballs formed in intermediate energy
heavy ion collisions. In addition to these very interesting applications, the finite
temperature formalism presents an important advantage with respect to the zero
temperature one. In a certain regime of low densities and very low temperatures,
the strong correlations induced by the microscopic force favor the creation of nu-
cleonic Cooper pairs, which give rise to a superfluid behavior in nuclear matter.
The application of a finite temperature treatment above the critical temperature
for this pairing transition avoids the difficulties of having to treat the pairing phe-
nomenon explicitly from a microscopical point of view.

In order to treat hot nuclear matter from a Green’s function point of view,
one has to deal with many-body Green’s functions theory at finite temperature.
In Chapter 2, this theory has been introduced and extensively discussed. This
formalism is among the few which can provide a consistent treatment of the mi-
croscopic properties of dense matter from very first principles. The foundations of
this theory rely on the imaginary time formalism, which exploits the formal simi-
larity between the time evolution factor in quantum mechanics and the Boltzmann
factor appearing in statistical mechanics. The introduction of complex times, al-
though difficult to grasp in an intuitive way, is helpful in the analytical treatments
of the theory and provides a unified description of equilibrium quantum statistical
mechanics at finite temperatures. Therefore, the second chapter of this Thesis
has been mainly devoted to discuss in depth this well-known approach, trying to
clarify some of the misconceptions which often appear in its treatment. Among
the results found, it is interesting to mention that:

• The analytical properties of the one-body propagator are very general and
can be obtained from the Lehmann representation without any particular
assumption on the characteristics of fermionic systems.
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• The spectral decomposition of the propagator allows to obtain all of its prop-
erties from the spectral function, which in addition can be associated to a
probability distribution in the momentum and energy space.

• The effects of the interaction in the one-body propagator can be accounted
for by means of the self-energy operator, whose analytical properties are
also very general. This is achieved by means of Dyson’s equation, whose
diagrammatic counterpart expresses the one-body propagator in terms of
the iteration of irreducible self-energy pieces.

• The self-energy, in its turn, is usually expressed in terms of the one-body
propagator. Since the propagator is determined from Dyson’s equation, the
procedure of finding a self-energy and a propagator in dense matter should be
self-consistent. In terms of diagrams, the requirement of self-consistency is
equivalent to replacing all the free propagators in the perturbation expansion
by dressed propagators. This accounts for an infinite sum of diagrams in the
intermediate propagators of the self-energy diagrams, which become dressed
by self-energy insertions.

The many-body Green’s function formalism is devoted to the description of the
microscopic excitations of many-body systems and therefore gives an insight on
their microscopic properties. Yet, physical systems in equilibrium are driven by
thermodynamics, which concerns their macroscopical properties. Although quan-
tum statistical mechanics is the bridge between the micro- and the macrophysics
of many-body systems, it is difficult to derive expressions that relate both scales
directly. A connection between them can be achieved by means of the Luttinger-
Ward formalism, which gives the partition function of the system as a functional
of the dressed one-body Green’s function. These ideas have been explored in the
third chapter of this Thesis, and one can conclude that:

• The Luttinger-Ward formalism is a non-perturbative approach which sums
infinite sets of diagrams for the partition function of interacting many-body
systems. Its starting point is the dressed one-body propagator and thus
the Luttinger-Ward functional includes the correlations embedded in the
approximations to the one-body Green’s function.

• The partition function within this formalism is essentially the same that is
obtained from the more widespread coupling constant method. This second
method is also exact within the approximations to the one-body propaga-
tor, but it is however not practical for nuclear matter due to the need of
performing calculations for different coupling constants.

• The thermodynamical consistency of the approach, which establishes the
equivalence of the microscopically derived results to the macroscopically ob-
tained ones, is automatically preserved within the Luttinger-Ward formalism.
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This presents an advantage with respect to the BHF approach, which does
not preserve thermodynamical consistency.

• Analytical expressions can be derived for the partition function and the en-
tropy of interacting many-body systems in terms of the spectral function
and the self-energy. In particular, the Luttinger-Ward approach leads to
an entropy which can be decomposed in a dominant term, the dynamical
quasi-particle entropy, which includes the effects of the fragmentation of the
quasi-particle peak, plus a correction which is negligible at low temperatures
and which accounts for higher order correlations.

Before studying nuclear matter with a sophisticated many-body approxima-
tion, it is always useful to set some ideas by using simple models. The fourth
chapter of this Thesis is devoted to the Hartree-Fock approximation and its ap-
plication in nuclear matter with realistic NN potentials. Even though the results
obtained within this mean-field quasi-particle approach are not realistic, in the
sense that they cannot reproduce the empirical saturation point of nuclear matter,
the Hartree-Fock approximation offers an easy-to-treat scheme that provides an
excellent testing ground for some of the concepts which are needed in more sophis-
ticated approaches. Some ideas of this chapter that deserve to be outlined are the
following:

• The Hartree-Fock approximation at finite temperature can be derived either
from a diagrammatic approach or from the lowest-order decoupling of the
hierarchy of the equations of motion for the two-body propagator. The self-
consistent renormalization procedure arises however more naturally in the
second approach, and accounts for a larger sum of diagrams which allows for
the inclusion of nested second order self-energy insertions in the one-body
propagator.

• The effects of the self-consistent renormalization procedure can be studied by
comparing the SCHF approximation, which includes self-energy insertions to
all orders, and the HF approximation, which is computed from a self-energy
with a bare propagator. The numerical results differ both because of this
difference and because of the chemical potentials used in the two approaches.
In general terms, the effects of self-consistency are more important for larger
densities, where the differences in the SCHF and the HF single-particle po-
tentials can be as large as some tenths of MeV.

• The application of the Luttinger-Ward formalism to the SCHF approxima-
tion yields expressions for the thermodynamical properties which coincide
with those of other formalisms. The energy and the entropy, in particular,
are those of a gas of interacting quasi-particles.
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• In general terms, the SCHF results for the macroscopic properties are not
realistic. The total energy per particle is repulsive in the whole density-
temperature range explored, despite the fact that the potential energy with
the CDBONN potential yields attractive results. The free energy does not
show any minimum at intermediate densities and therefore the pressure of
the system is positive.

• The degenerate and the classical approximations describe correctly the tem-
perature and density dependences of the different thermodynamical quan-
tities in the relevant regimes. This is particularly true for the entropy per
particle, which is described by a linear temperature dependence at low tem-
peratures and high densities and by a logarithmic density dependence in the
high temperature-low density regime.

Chapter 5 is devoted to the application of the ladder approximation to nuclear
matter at finite temperature. The ladder approximation can be derived either
diagrammatically, expressing the two-body propagator as an infinite sum of iter-
ated two-particle scattering processes, or by means of a suitable truncation of the
equation of motion of the three-body propagator. In both cases, one obtains an
integral equation for the two-body propagator which can be reexpressed in terms
of the T -matrix. This effective in-medium interaction fulfills a Lippman-Schwinger
equation, which is easier to solve in the momentum-frequency space. This requires
the knowledge of the analytical properties of the T -matrix, which are closely re-
lated to those of the ladder self-energy. This last quantity defines the one-body
propagator, which in turn is needed to determine the intermediate particle-particle
and hole-hole propagator in the Lippman-Schwinger equation. The ladder approx-
imation thus defines a self-consistent approach and one needs to devise tools to
solve it numerically. One can point out the following set of conclusions for this
chapter:

• The ladder approximation for nuclear matter at finite temperatures can be
solved by means of the SCGF scheme, in which the full off-shell dependence
of the spectral function, the self-energy and the T -matrix are iterated self-
consistently. Once the numerical solution of this scheme is achieved, one has
access to the temperature and density dependences of different microscopic
quantities.

• Although a description of pairing phenomena is not possible in the ladder
approximation, a precursor effect can be observed in the in-medium effective
interaction in the form of a strong structure for the kinematical conditions
Ω = 2µ, P = kF and q = 0 at low temperatures.

• While the real part of the self-energy is essentially dominated by a generalized
Hartree-Fock contribution (which includes ladder self-energy insertions), the
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imaginary part has a strong energy dependence, with non-vanishing tails in
both the large positive and negative energy limits. The effect of temperature
on this quantity is rather small, but these tails exhibit a strong density
dependence.

• Within the ladder approximation for nuclear matter, one can introduce well-
defined quasi-particle energies. When compared to the corresponding SCHF
spectra, the SCGF quasi-particle energies are more attractive and less stiff.
The BHF single-particle spectra are however more attractive at low mo-
menta, and yield similar results for k > kF . The spectra become more
repulsive with increasing temperature within the SCHF and the BHF ap-
proaches, in contrast to the SCGF spectrum, which loose repulsion in the
hole region.

• The spectral function has a strong quasi-particle peak at all momenta, whose
properties are only mildly changed with temperature and strongly modified
with density. The variations induced with increasing density depend on
momentum. At k = kF the quasi-particle peak becomes narrower, a behavior
that can be understood in terms of the increasing degeneracy. At k = 0,
the peak becomes much wider and shifts to lower energies. The low and
high energy tails, on the other hand, have a common behavior and their
strength increases with density, which shows that one can take them as a
reliable measure of the importance of the correlations that fragment the
quasi-particle peak.

• At low momenta, the correlated momentum distributions are depleted with
respect to the mean-field ones, while at large momenta they yield larger
populations. The depletion of the lowest momentum state increases with
temperature, although this effect is similar to the one observed in the free
Fermi gas and is therefore caused by thermal correlations. Dynamical cor-
relations, on the other hand, are responsible for the almost constant k = 0
depletion at high densities. A steady decrease of this quantity with increasing
density is observed, which goes against intuition and thus deserves further
investigation.

Once the microscopic properties of nuclear matter have been determined from
the implementation of the SCGF scheme, the Luttinger-Ward approach described
in Chapter 3 can be applied to obtain the thermodynamical properties of the
system. This is actually done in Chapter 6 of this Thesis. The energy per particle
can be obtained directly from the GMK sum rule. Thus, to obtain the free energy of
the system one needs to compute the entropy of the correlated system of nucleons.
This has been one of the main objectives of this Thesis and, to our knowledge, it
is the first time that the effects that the correlations which go beyond the quasi-
particle and the mean-field pictures have on the entropy are thoroughly discussed
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for nuclear systems. The more important results obtained with the Luttinger-Ward
formalism can be summarized as follows:

• The B spectral function, which introduces the effect of dynamical correlations
into the dynamical quasi-particle entropy, has a strong quasi-particle peak,
which is narrower than the one of the usual spectral function. This fact
points towards the small influence of the correlations that fragment the quasi-
particle states into the entropy of the system. Moreover, the B spectral
function has a similar density and temperature dependence than the usual
A spectral function.

• One can use different approximations to compute the entropy per parti-
cle of nuclear matter. Even though the dynamical quasi-particle entropy
includes the effect of correlations by means of the B spectral function, a no-
width quasi-particle approximation to this quantity reproduces the entropy
extremely well. If one uses a BHF approximation, the differences in chemi-
cal potentials and in the position of the quasi-particle peak yield an entropy
which is about 10% lower than the dynamical quasi-particle entropy. The
contribution of the A spectral function to the entropy is in general about
20− 30% lower than the dynamical quasi-particle one.

• The temperature and density dependence of the dynamical quasi-particle en-
tropy is qualitatively similar to the mean-field one, although it yields some-
what larger results, up to 1.5 times larger. The low temperature behavior of
the entropy is quite linear and the corresponding density of states is the one
associated to a momentum integration of the B spectral function. This is
very close to the quasi-particle density of states at low temperatures. Still,
the linear behavior is worse than the one obtained in the mean-field case
and one can say that the degenerate limit is more difficult to achieve in the
correlated case. The same holds for the classical regime.

• The approximations introduced in the BHF scheme lead to a violation of
thermodynamical consistency which, in the case of the chemical potential,
can yield differences of up to 20 MeV. This is not the case for the SCGF
scheme that, together with the Luttinger-Ward formalism, yields thermo-
dynamically consistent results in the whole density and temperature range,
with a 2 MeV accuracy. The Hugenholtz-van Hove theorem is thus very well
fulfilled, although the detailed saturation properties do strongly depend on
temperature.

• The total energy per particle results to be attractive in a defined range of
densities and temperatures. While the kinetic energy is about 1.5 times
larger than the mean-field one, the effect of correlations is much larger for
the potential energy, which in a wide range of densities is about 3− 4 times
more attractive than the mean field one.
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• The results for the chemical potential and the free energy are consistent with
the presence of a phase transition of the liquid-gas type for nuclear matter.
A first guess for the critical temperature of this transition is about Tc = 17
MeV, while the flashing temperature is below T = 15 MeV.

The results presented in this Thesis are still far from being realistic. The
saturation point of nuclear matter, if extrapolated at zero temperature, corre-
sponds to a too large saturation density and a too attractive saturation energy.
Still, the Green’s function approach in the ladder approximation together with the
Luttinger-Ward formalism give rise to thermodynamical consistent results which
account, at the microscopic level, for correlations both beyond the mean-field and
the quasi-particle pictures. These can therefore be taken as the first qualitative
results of the approach, which should be further extended to include three-body
correlations. This would improve the description of nuclear matter and could yield
more accurate results for the equation of state. The treatment of isospin asymme-
try in the formalism should also be devised at some point, especially if the results
have to be applied either to finite nuclei or to the extremely asymmetric matter
found in the interior of astrophysical compact objects. Furthermore, the formal-
ism introduced in this Thesis could be applied to other hot, dilute and strongly
interacting many-body systems in order to understand the effect that microscopic
dynamical correlations produce on their macroscopical thermodynamical proper-
ties.
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Perturbation Expansion of the
Green’s Function

In complete analogy to the zero temperature case, the single-particle Green’s func-
tion of a finite temperature many-body system can be expanded in terms of free
single-particle Green’s functions. This expansion is most suitably depicted in terms
of Feynman diagrams, which allow for a more physical interpretation of the many-
body problem. In addition, diagrams are an optimal tool for understanding the
approximations in the many-body problem. In this appendix, the main steps that
lead to expressing the full propagator in terms of free Green’s functions and two-
body interactions will be reviewed. The connection of this expansion with Feynman
diagrams will be sketched in the following Appendix. Most of the discussions will
be rather qualitative, but further details can be found in Refs. [Abr65; Fet71].

For a system of interacting fermions, the full Hamiltonian Ĥ is given by a
kinetic term:

Ĥ0(t) =

∫
d3r â†(rt)T̂ (r)â(rt) , (A.1)

plus a term due to the two-body interaction:

Ĥ1(t) =
1

2

∫
d3r

∫
d3r′ â†(rt)â†(r′t)V (r, r′)â(r′t)â(rt) . (A.2)

In the previous expressions the field operators â(rt) are expressed in the Heisenberg
picture. The time evolution of any of these Heisenberg operators is given by the
full Hamiltonian:

ÔH(rt) = eiĤtÔS(r)e−iĤt , (A.3)

where, for the initial time t = 0, the operator is of the Schrödinger type. This is the
basic relation that links the Heisenberg and Schrödinger pictures in usual quantum
mechanics. Formally, this relation can be extended to complex times (although
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in practice, only purely imaginary times are needed). The same imaginary-time
extension can be carried out for the interaction picture, in which operators evolve
in time with the kinetic hamiltonian Ĥ0:

ÔI(rt) = eiĤ0tÔS(r)e−iĤ0t . (A.4)

From the two previous expressions one finds that the operators in the Heisenberg
and in the interaction pictures are related by the transformation:

ÔH(rt) = U(0, t)ÔI(rt)U(t, 0) , (A.5)

where U(t, t′) is the so-called time evolution operator:

U(t, t′) = eiĤ0te−iĤ(t−t′)e−iĤ0t′ . (A.6)

For imaginary times, in contrast to what happens with real times, U is not anymore
unitary. However, it still obeys the group property:

U(t, t′)U(t′, t′′) = U(t, t′′) , (A.7)

and fulfills the boundary condition:

U(t, t) = I . (A.8)

In addition, by taking a derivative with respect to a time variable, one finds that
its time dependence is governed by the differential equation:

i
∂

∂t
U(t, t′) = H1(t)U(t, t′) . (A.9)

Note that Ĥ1 evolves in time as an interaction picture operator, i.e. with Eq. (A.4).
The well-known formal solution of this equation is given in terms of time-ordered
products [Fet71]:

U(t, t′) =
∞∑

n=0

(−i)n

n!

∫ t′

t

dt1 · · ·
∫ t′

t

dtn T
[
Ĥ1(t1) · · · Ĥ1(tn)

]
, (A.10)

in which the time ordering operator T orders the operators in such a way that the
time arguments decrease from left to right. This time ordering is slightly different
from the one appearing, for instance, in the Green’s function, Eq. (2.15), because
it does not include any change of permutation sign when the operators are ordered.
Ultimately, this difference is irrelevant because the Ĥ1 operators are of a bosonic
nature and no phase needs to be added when the times are ordered with either
prescription.

The grand-partition function Ω is related to the statistical operator e−β(Ĥ−µN̂)

via the equation:

e−βΩ = Tr e−β(Ĥ−µN̂) . (A.11)
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If one expresses the statistical operator in terms of the time evolution operator at
complex times:

e−β(Ĥ−µN̂) = e−β(Ĥ0−µN̂)U(t = −iβ, 0) , (A.12)

the following expansion for the grand-partition function is found:

e−βΩ = e−βΩ0

∞∑
n=0

(−i)n

n!

∫ −iβ

0

dt1 · · ·
∫ −iβ

0

dtn Tr
{

ρ̂0T
[
Ĥ1(t1) · · · Ĥ1(tn)

] }
. (A.13)

Inside the trace, the density matrix of the non-interacting system has been intro-
duced:

ρ̂0 =
e−β(Ĥ0−µN̂)

Tr e−β(Ĥ0−µN̂)
=

e−β(Ĥ0−µN̂)

e−βΩ0
. (A.14)

Note, in addition, that in the previous expressions the quantities are all evaluated
with the chemical potential µ, corresponding to that of the fully interacting system
which is in principle an external fixed parameter in the grand-canonical picture.
Let us now turn our attention to the single-particle Green’s function:

iG(rt, r′t′) =
Tr

{
e−β(Ĥ−µN̂) T

[
â(rt)â†(r′t′)

]}
e−βΩ

, (A.15)

which can be rewritten in terms of the time evolution operators:

iG(rt, r′t′) = eβ(Ω−Ω0)Tr
{

ρ̂0T
[
U(−iβ, t) âI(rt)U(t, t′)â†I(r

′t′)U(t′, 0)
]}

, (A.16)

where âI (â†I) denotes a destruction (creation) operator in the interaction picture.
One can now expand the time evolution operators inside the trace. This will lead
to three different infinite sums of integrals of time-ordered terms. Making use of
the relation:

∞∑
ν=0

(−i)ν

ν!

∫ tc

ta

dt1 · · ·
∫ tc

ta

dtν T
[
Ĥ1(t1) · · · Ĥ1(tν)Ô(tb)

]
=

∞∑
n=0

(−i)n

n!

∫ tb

ta

dt1 · · ·
∫ tb

ta

dtn T
[
Ĥ1(t1) · · · Ĥ1(tn)

]
× Ô(tb)

×
∞∑

m=0

(−i)m

m!

∫ tc

tb

dt1 · · ·
∫ tc

tb

dtm T
[
Ĥ1(t1) · · · Ĥ1(tm)

]
, (A.17)

which is valid for ta < tb < tc, the three sums are converted into a single sum where
the integrated time variable runs from 0 to −iβ. The single-particle propagator
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can then be cast in the following form:

iG(rt, r′t′) = eβ(Ω−Ω0)

∞∑
n=0

(−i)n

n!
(A.18)

×
∫ −iβ

0

dt1 · · ·
∫ −iβ

0

dtn Tr
{

ρ̂0T
[
Ĥ1(t1) · · · Ĥ1(tn)âI(rt)â

†
I(r

′t′)
] }

.

The interacting part of the hamiltonian, Ĥ1, can be rewritten in terms of interac-
tion picture creation and destruction operators:

Ĥ1(t1) =
1

2

∫
d3r1

∫
d3r′1

∫ −iβ

0

dt′1 â†I(r1t1)â
†
I(r

′
1t
′
1)V (r1t1, r

′
1t
′
1)âI(r

′
1t
′
1)âI(r1t1) ,

(A.19)

where the notation:

V (r1t1, r2t2) = δ(t1 − t2)V (r1, r2) (A.20)

has been used in order to write expressions in a more symmetric way. If one intro-
duces the expansion of Ĥ1 in Eq. (A.19), the corresponding expansion of the full
Green’s function in terms of creation and destruction operators (in the interaction
picture) is obtained. Each term of order n in this expansion will have 4n opera-
tors coming from Ĥ1 plus 2 operators coming from the definition of the Green’s
function. Each contribution will thus contain 4n + 2 creation and destruction op-
erators. The first term in the expansion is of zero-th order and has the following
form:

iG(0)(rt, r′t′) = eβ(Ω−Ω0)

[
Tr

{
ρ̂0T

[
âI(rt)â

†
I(r

′t′)
] }]

. (A.21)

The first order term is already quite involved, but its appearance can be simplified
with the help of the notation:∫

d3r1

∫ −iβ

0

dt1→
∫

d1 and Tr
{

ρ̂0X̂
}

= 〈X̂〉0 . (A.22)

Note that the statistical average 〈· · · 〉0 is taken over the non-interacting states of
the system. With the help of these changes, the first order term is written:

iG(1)(rt, r′t′) = eβ(Ω−Ω0)

[
(−i)

2

∫
d1

∫
d1′ V (1,1′)× (A.23)〈

T
[
â†I(1)â†I(1

′)âI(1
′)âI(1)âI(rt)â

†
I(r

′t′)
] 〉

0

]
.
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One can also write down an expression for the nth-order term:

iG(n)(rt, r′t′) = eβ(Ω−Ω0)

[
(−i)n

n!2n

∫
d1

∫
d1′ · · ·

∫
dn

∫
dn′ V (1,1′) · · ·V (n,n′)

×
〈
T

[
â†I(1)â†I(1

′)âI(1
′)âI(1) · · · â†I(n)â†I(n

′)âI(n
′)âI(n)âI(rt)â

†
I(r

′t′)
]〉

0

]
.

(A.24)

It is clear that, at any order in the expansion, one has to evaluate an ensemble
average over non-interacting states of a time-ordered product of creation and de-
struction operators. In the same way as it is done for the zero temperature case,
one can prove a Wick theorem that relates these averages with contractions of
operators. These contractions, which are C-numbers with well-known properties,
are essential for the calculation of the traces and are the final step before one can
have a completed perturbation expansion of the propagator. Note, however, that
there is a fundamental difference with respect to the zero temperature case. While
the Wick theorem in that case is an exact operator identity, the finite temperature
Wick theorem is only valid for thermally averaged operators.

In a generic term in the perturbation expansion, one always finds a statistical
average of the type: 〈

T [AB · · ·F ]
〉

0
, (A.25)

where A, B.... denote creation and destruction operators in the interaction picture.
A contraction between two of these operators is defined as:

AB =
〈
T [AB]

〉
0
. (A.26)

In particular, the contraction of a destruction and a creation operator in the in-
teraction picture simply yields the Green’s function of the non-interacting system:

aI(rt)a
†
I(r

′t′) =
〈
T

[
aI(rt)a

†
I(r

′t′)
] 〉

0
= iG0(rt, r

′t′) . (A.27)

The generalized Wick theorem then states that:

The ensemble average of any time-ordered product of operators equals
the sum over all possible fully contracted terms.

Provided that this theorem holds and knowing that, in addition, the contraction
of two creation or annihilation operators vanishes, one can decompose the time-
ordered averages in terms of contractions. Let us do this for the product in the first
order term (for simplicity the creation operators are named C and the annihilation
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ones, A):

〈
T [C1C1′A1′A1AC ′]

〉
0

= C1C1′A1′A1AC ′ + C1C1′A1′A1AC ′

+ C1C1′A1′A1AC ′ + C1C1′A1′A1AC ′

+ C1C1′A1′A1AC ′ + C1C1′A1′A1AC ′ . (A.28)

The previous six terms can be divided in two groups. The first one would be formed
by the first and the third contributions. They involve a contraction between the
operators which carry the explicit external dependence on time and space, âI(rt)
and â†I(r

′t′) (A and C ′ in the previous notation), and contractions among the
remaining operators whose variables are integrated. The latter contraction is thus
independent from the other and can be factored out. This kind of contributions
are called disconnected, because they can be decomposed in an external (which
includes the dependence on the external time and space variables) and an internal
(with no explicit dependence) contribution. In the previous case, the disconnected
terms yield the result:

AC ′×
[
A1C1A1′C1′ −A1C1′A1′C1

]
, (A.29)

with AC ′ the external contribution.

The remaining four terms in the first order expansion are formed by contrac-
tions which join external as well as internal variables. They are called connected
contributions. It is not by chance that the external term in Eq. (A.29) corresponds
to the connected contribution of the zeroth order term. As a matter of fact, one
can show that the whole expansion series for the propagator factorizes in a term
composed of an infinite number of connected contributions, Scon, times a sum that
includes all the internal contributions, Sint:

iG(rt, r′t′) = eβ(Ω−Ω0)
[
Scon(rt, r′t′)× Sint

]
. (A.30)

To obtain this result, one can consider an ν-th order term in the expansion of the
propagator. In general, this term will be formed by n connected contributions and
m internal ones. There are ν!

n!m!
different ways to carry out this factorization that

yield the same result. Summing over all these possibilities with the restriction
that ν = m + n, one gets the ν-th order contribution. As a consequence of this
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factorization, the full propagator is given by the following sum to all orders in ν:

iG(rt, r′t′) = eβ(Ω−Ω0)

∞∑
ν=0

(−i)ν

ν!

{ ∞∑
n=0

∞∑
m=0

δν,n+m
ν!

n!m!∫ −iβ

0

dt1 · · ·
∫ −iβ

0

dtn

〈
T

[
Ĥ1(t1) · · · Ĥ1(tn)aI(rt)a

†
I(r

′t)
] 〉con

0

×
∫ −iβ

0

dt1 · · ·
∫ −iβ

0

dtm

〈
T

[
Ĥ1(t1) · · · Ĥ1(tm)

] 〉int

0

}
, (A.31)

where the 〈· · · 〉con subscript denotes the fact that in the Wick decomposition only
connected terms have to be considered and where the 〈· · · 〉int subscript denotes a
contribution formed only by internal lines. Using the δ-function to carry out the
sum over ν, the following factorization is obtained:

iG(rt,r′t′) = eβ(Ω−Ω0)

×
{ ∞∑

n=0

(−i)n

n!

∫ −iβ

0

dt1 · · ·
∫ −iβ

0

dtn

〈
T

[
Ĥ1(t1) · · · Ĥ1(tn)aI(rt)a

†
I(r

′t)
] 〉con

0

}
×

{ ∞∑
m=0

(−i)m

m!

∫ −iβ

0

dt1 · · ·
∫ −iβ

0

dtm

〈
T

[
Ĥ1(t1) · · · Ĥ1(tm)

] 〉int

0

}
. (A.32)

One can carry out a similar analysis for the expansion of the function eβ(Ω−Ω0),
Eq. (A.13). It is clear that, since it does not contain any external dependence,
the terms that contribute to this function are all of the internal type. Indeed, by
comparing the previous equation and Eq. (A.13) one finds that:

e−β(Ω−Ω0) = Sint . (A.33)

Using this and Eq. (A.30), one can see that the propagator is formed by the sum
of all connected diagrams:

iG(rt, r′t′) = Scon(rt, r′t′) , (A.34)

which leads to the expansion:

iG(rt, r′t′) =
∞∑

n=0

(−i)n

n!2n

∫
d1

∫
d1′ · · ·

∫
dn

∫
dn′ V (1,1′) · · ·V (n,n′)×〈

T
[
â†I(1)â†I(1

′)âI(1
′)âI(1) · · · â†I(n)â†I(n

′)âI(n
′)âI(n)âI(rt)â

†
I(r

′t′)
]〉con

0
.

(A.35)

Still, a further important simplification can be achieved by taking a closer look
to the contribution of the connected contributions at first order, Eq. (A.28). The
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fourth and the sixth (and also the second and the fifth) terms yield the same
result, since they just differ in a permutation of the integration variables. At
a given order n, one can make n! different permutations of integration variables
(without taking into account any additional phase, because inside the time-ordered
product one always has to do an even number of permutations). In addition, since
V (1,1′) = V (1′,1), at each order one can perform 2n permutations of the type
1 ↔ 1′ which leave the result unchanged. Therefore, each contribution to the sum
of contractions has n!2n terms which give the same result (these are topologically
equivalent contractions, because they lead to equivalent Feynman diagrams). Such
repeated contributions cancel the 1

n!2n factor in Eq. (A.35).

After all these considerations, one is left out with an expansion of the single-
particle Green’s function, G, in terms of the non-interacting Green’s function, G0,
and the interaction strength, V . Up to first order this expansion reads:

iG(rt, r′t′) = iG0(rt, r
′t′)

+ i2
∫

d3r1

∫ −iβ

0

dt1

∫
d3r′1

∫ −iβ

0

dt′1 V (r1t1, r
′
1t
′
1)

×
[
− G0(rt, r1t1)G0(r

′
1t
′
1, r

′
1t
′+
1 )G0(r1t1, r

′t′)

+G0(r1t, r
′
1t
′
1)G0(r

′
1t
′
1, r1t1)G0(r1t1, r

′
1t
′)
]
+ . . . (A.36)

Note that, in the third line, a prescription is needed to evaluate G0 at equal times.
This contribution arises from the contraction between two operators that come
from the same interaction hamiltonian, Ĥ1. Since in Ĥ1 the creation operators are
always to the left of the destruction ones, one takes this as a prescription and the
time argument of the creation operator is always slightly larger than the time in
the destruction operator:

G0(rt, r
′t+) = lim

t′→t+

〈
T

[
aI(rt)a

†
I(r

′t′)
] 〉

0
. (A.37)

By considering the previous expressions, one can see that a general contribution
of order n in the expansion of the single-particle propagator contains n interac-
tion terms convoluted with 2n + 1 non-interacting propagators. In addition, at a
given order, each topological distinct contribution should only be taken into ac-
count once. However, for each of these contributions one needs to compute 2n
spatial integrals plus 2n imaginary time integrals, i.e. 4n integrals. In a uniform
and isotropic system, it is very useful to Fourier transform these expressions to
momentum space, because the momentum conservation can be applied at each
vertex (each point in k-space where a propagator coincides with an interaction).
This allows to carry out many integrals in a straightforward way. Furthermore,
the quasi-periodicity of the Green’s function in the imaginary time variable (see
Chapter 2) allows for a discrete Fourier transform from imaginary time to the so-
called Matsubara frequencies, which are also conserved at the vertices. The final

222



Appendix A

expression for the Fourier transformed propagator is:

G(rt, r′t′) =

∫
d3k

(2π)3
eik(r−r′) 1

−iβ

∑
ν

e−izν(t−t′)G(k, zν) . (A.38)

The conservation of momentum and energy is actually implemented in terms of
the integral representations of the Dirac delta function in three-momentum:∫

d3x eikx = (2π)3δ(k) , (A.39)

and the relation of Matsubara frequencies:∫ −iβ

0

dt e−i(zν−zν′ ) = −iβδν,ν′ . (A.40)

The expansion that has just been derived for the propagator, although very
useful for theoretical considerations, is very hard to use in practice. Already at
second order one needs to carry out the contractions between several operators,
distinguish among those who are topologically equivalent, perform a lot of inte-
grals and Fourier transform complicated expressions. This is clearly a tedious task.
Fortunately, this task can be enormously simplified with the introduction of Feyn-
man diagrams. The diagrammatic interpretation of the propagator is based on a
one-to-one correspondence between each term in the perturbative expansion of the
propagator and a diagram. A set of rules (the so-called Feynman rules) relate in a
systematic way each term of a given order in the expansion of the Green’s function
to a diagram. With the help of those rules, the value of an n-th order contribution
can be determined more easily. The Feynman rules for the momentum-frequency
space representation of the one-body Green’s Function are given in the following
appendix.
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Feynman rules and diagrams

The Feynman rules provide a dictionary that translates each term in the pertur-
bation expansion of the Green’s function into diagrams. A term of order n in
the expansion of G is given by the Feynman rules for an homogeneous system of
identical particles interacting through a time independent two-body potential. In
the momentum-frequency representation, these are the following:

1. At a given n-th order in the interaction, draw all the topologically distinct
connected diagram with n interaction (wavy) lines and 2n + 1 (straight)
fermion lines. In these lines, an arrow indicates the direction of the momen-
tum flow.

2. Associate a momentum ki and a Matsubara frequency zνi
with each fermion

line (i = 1, 2, . . . , n). The external lines in the diagram carry a momentum
k and a frequency zν .

3. For each line write down a factor:

G0(ki, zνi
) =

1

zνi
− k2

i /2m
,

coming from the non-interacting propagator.

4. Each interaction line involves a factor:

i〈k1k2|V |k3k4〉 .

The labels of the propagator lines associated to the interaction vertices are
shown in Fig. B.1.

5. At each interaction vertex the total momentum and the total Matsubara
frequencies are conserved. The Dirac and Kronecker delta functions that
guarantee these conservation laws are given by:

(2π)3δ(3) (k1 + k2 − k3k4) (−iβ)δν1+ν2,ν3+ν4 ,

at each vertex.
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k4 ,k3 ,

k2 ,k1 , z
1

z
2

z
4

z
3

Figure B.1: Prescription for the in- and out-going fermion
lines in the interaction vertices.

6. Integrate over all the momenta associated with fermion lines, except for
the external one, labeled k. Sum over the Matsubara frequencies of all the
fermion lines, except for the external one, labeled zν . Associate a factor
(2π)−3 to each integration and a factor (−iβ)−1 to each Matsubara sum.

7. Sum over the spin and isospin quantum numbers of all the internal fermionic
lines.

8. Add a factor (−1)F to the final result, with F the number of closed fermion
loops in the diagram. This factor comes from the odd number of permuta-
tions that one has to perform in order to bring the external operators to the
left of all the internal operators.

9. The prescription for equal-time Green’s functions is acknowledged by adding
a factor ezνη to the expression whenever a propagator line closes on itself or
it is joined by the same interaction line. The factor η is small and positive,
such that:

lim
Re z→∞

ηRe z = ∞ ,

and is needed to prevent the divergent contributions from the arches in con-
tour integrations.

As an example of the application of these rules, the contributions of the dia-
grams (a), (b) and (c) of Fig. B.2 will be computed. Diagram (a), for instance,
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(a) (b) (c)

k,zν

k,zν

k,zν

k,zν

k ,zν1 1

k ,zν1 1 k,zν

k,zν

k ,zν1 1 k ,zν2 2
k + k − k1 2z  +z −zν1 ν2

,

Figure B.2: Examples of the application of Feynman rules to Feynman
diagrams for the one-body propagator. Diagrams (a) and (b) are the
two first order contributions, while diagram (c) corresponds to the first
non-trivial second order contribution.

yields:

G(a)(k, zν) = (−1)
1

−iβ

∑
ν1

ezν1η

∫
d3k1

(2π)3
G0(k, zν) i〈kk1|V |kk1〉

× G0(k1, zν1)G0(k, zν) = (B.1)

= G0(k, zν)

[
−i

−iβ

∑
ν1

ezν1η

∫
d3k1

(2π)3
〈kk1|V |kk1〉 G0(k1, zν1)

]
G0(k, zν) .

Diagram (b) is basically the exchange counterpart of diagram (a), in the sense
that, apart for a sign, the only difference is found in the permutation of the ket
vectors in the potential:

G(b)(k, zν) = G0(k, zν)

[
i

−iβ

∑
ν1

ezν1η

∫
d3k1

(2π)3
〈kk1|V |k1k〉 G0(k1, zν1)

]
G0(k, zν) .

(B.2)

Indeed, both of them can be written together by means of the antisymmetric
matrix element, |kk′〉A = |kk′〉 − |k′k〉:

G(a+b)(k, zν) = G0(k, zν)

[
−i

−iβ

∑
ν1

ezν1η

∫
d3k1

(2π)3
〈kk1|V |kk1〉A G0(k1, zν1)

]
G0(k, zν) .

(B.3)

The contribution of Diagram (c) is already more involved, since it is a second
order diagram. The momentum labels, once the total momentum and Matsubara
frequency conservation at the vertex has been applied, are shown in Fig. B.2. This
conservation cancels one of the momentum integrations (with its corresponding
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(2π)−3 factor) and a Matsubara sum (and its (−iβ)−1 factor), thus yielding:

G(c)(k, zν) = G0(k, zν)

[
−i2

(−iβ)2

∑
ν1,ν2

∫
d3k1

(2π)3

∫
d3k2

(2π)3
G0(k1, zν1)

× 〈k1, k2|V |k, k1 + k2 − k〉 G0(k2, zν2) 〈k, k1 + k2 − k|V |k1, k2〉

× G0(|k1 + k2 − k|, zν1 + zν2 − zν)

]
G0(k, zν) . (B.4)
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Sums over Matsubara frequencies

In the finite temperature formalism used throughout this Thesis, a few infinite
sums of Matsubara frequencies had to be performed. These sums are carried
out by means of complex variable calculus techniques, mainly Cauchy’s theorem
and integrations over closed contours in the complex plane. In this Appendix,
three examples of Matsubara sums that appear in this Thesis will be explicitly
performed. In all these three cases, the main ideas and mathematical tools are the
same and only minor mathematical considerations change from one to the other.
In the first place, one evaluates the sum of a function computed at an infinite set
of Matsubara frequencies as the result of a Cauchy integral of the original function
times a function which has poles of unit residue at these frequencies. The original
contour of this integral is then deformed to another contour that involves poles or
cuts for real frequencies (thus switching from imaginary to physical frequencies).
Finally, applying Cauchy’s theorem to these poles, one finds a final result in terms
of the poles (or cuts) of the original function in the real axis.

C.1 Functions with a single pole

As a first example, let us consider the sum over Matsubara frequencies appearing
in the Hartree-Fock contribution, Eq. (4.1). Consider the following function of a
complex variable:

− βf(z) =
−β

1 + eβ(z−µ)
. (C.1)

It has poles of order one and unit residue at the Matsubara frequencies. Thus the
infinite sum over the free propagator can be transformed to an integral by virtue
of Cauchy’s theorem:∑

ν

ezνηG0(k, zν) = −β

∫
C

dz

2πi
ezηf(z)G0(k, z) , (C.2)
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µ

(k)

Figure C.1: Integration contours C and C ′ in the complex plane.
Note the negative sense in C ′ around the pole at z = ε(k).

where C is a contour that surrounds the poles at the Matsubara frequencies in
the positive sense (see Fig. C.1). Since the integrated function is analytical in
the remaining regions of the complex plane, one can deform the contour C to a
contour C ′, as shown in Fig. C.1. This contour can be split in three different
regions. Firstly, the region of the arches at infinity. The integral in this region
vanishes with the help of the convergence factor ezη. Secondly, the contributions of
the two parallel paths above and below the real axis cancel because the integrand is
analytical above and below the real axis. Finally, one is left with the contribution
of the pole of the free propagator at z = ε(k). This is computed with the help of
Cauchy’s theorem:

∑
ν

ezνηG0(k, ω) = −β

∫
C′

dz

2πi
ezηf(z)

1

z − ε(k)
= βf [ε(k)] . (C.3)

Note the minus sign due to the clockwise orientation around the pole. This result
is independent of the relative position of ε(k) with respect to µ, as can be easily
shown by drawing a contour C ′ with ε(k) below µ. Let us also mention that the
previous sum over Matsubara frequencies involves the free one-body propagator.
The same sum over the dressed propagator can be performed with the help of the
spectral decomposition of G, Eq. (2.57).
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1
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Figure C.2: Integration contours C and C ′ in the complex plane.
Note the negative sense in C ′ around the poles at z = ω1 and
z = ZΛ − ω2.

C.2 Functions with double poles

The second example consists of a sum of a function of Matsubara functions which
has to poles on the real axis. This is not technically more involved than the
previous result. Consider the non-correlated two-body propagator:

G0
II(k1, k2, ZΛ) = − 1

β

∑
ν

G(k1, zν)G(k2, ZΛ − zν) , (C.4)

where ZΛ is a Matsubara frequency of a bosonic nature. Inserting the spectral
decomposition of the one-particle propagator, Eq. (2.57), one obtains:

G0
II(k1, k2, ZΛ) =

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π
A(k1, ω1)A(k2, ω2)

×−1

β

∑
ν

1

zν − ω1

1

ZΛ − zν − ω2

. (C.5)

Once again, the sum can be converted into an integral over the contour C with
the help of the Fermi-Dirac function:

−1

β

∑
ν

1

zν − ω1

1

ZΛ − zν − ω2

=

∫
C

dz

2πi
ezηf(z)

1

z − ω1

1

ZΛ − z − ω2

. (C.6)

The contour C is now deformed to the contour C ′ as depicted in Fig. C.2. The
contributions of the arches as well as those coming from the parallel paths above
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and below the real axis vanish. The only contribution thus left is that of the poles
at z = ω1 and z = ZΛ − ω2. The result of the integral is thus simply the sum of
residues of the integrated function at these poles:

−1

β

∑
ν

1

zν − ω1

1

ZΛ − zν − ω2

=

∫
C′

dz

2πi
ezηf(z)

1

z − ω1

1

ZΛ − z − ω2

=− f(ω1)

ZΛ − ω1 − ω2

+
f(ZΛ − ω2)

ZΛ − ω1 − ω2

. (C.7)

As explained above, ZΛ is a Matsubara frequency of the bosonic type and thus Λ
is an even number. Note that the picture in Fig. C.2 is only valid for Λ = 0, where
ZΛ is real. For a generic complex ZΛ, the position of the second pole would be
somewhere above or below the real axis, but the ideas exposed above would still
be valid as long as the contribution of the parallel paths coming from and going
to the pole at ZΛ − ω2 vanish. All in all, one finds the following expression:

G0
II(k1, k2, ZΛ) =

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π
A(k1, ω1)A(k2, ω2)

f(ZΛ − ω2)− f(ω1)

ZΛ − ω1 − ω2

.

(C.8)

In the numerator of the previous integrand, the function f(ZΛ − ω2) appears.
When trying to perform the analytical continuation of G0

II(ZΛ) to the whole com-
plex plane Z, one finds that the previous function does not go to zero as |Z| → ∞
in all directions. Actually, for ReZ < 0 one finds lim|Z|→∞ f(Z−ω) → 1. Yet, the
condition lim|Z|→∞ G0

II(Z) → 0 needs to be fulfilled for the analytical continuation
to be uniquely defined (see Section 2.2.4). Therefore, before performing the ana-
lytical continuation it is convenient to use the relation f(ZΛ−ω) = 1−f(ω), which
holds for even Λ, in the numerator. With this replacement in the numerator, the
uncorrelated two-body propagator becomes:

G0
II(k1, k2, ZΛ) =

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π
A(k1, ω1)A(k2, ω2)

1− f(ω1)− f(ω2)

ZΛ − ω1 − ω2

, (C.9)

which vanishes for |ZΛ| → ∞.

C.3 Functions with cuts in the real axis

The last section of this Appendix is devoted to the computation of the somewhat
more tricky case of a sum over a function of Matsubara frequencies which has a
cut in the real axis, as it is the case of the logarithm. Let us consider the case of
the free partition function, Eq. (4.1), which involves the sum:

ln Z0 =
∑
k,ν

ezνη ln [ε0(k)− zν ] . (C.10)
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Figure C.3: Integration contours C and C ′ in the complex plane.
Note that the contributions above and below the real axis can get
as close as needed to it.

The Matsubara sum is, as seen before, transformed to a Cauchy integral over the
contour C which, however, for this case, avoids the real axis in which the logarithm
has a cut: ∑

ν

ezνη ln [ε0(k)− zν ] = −β

∫
C

dz

2πi
ezηf(z) ln [ε0(k)− z] . (C.11)

The contour C is now deformed to C ′. The contributions of the arches vanish
thanks to the convergence factor and the only contribution left is that of the
circuit slightly above and below the real axis. Thus:∑

ν

ezνη ln [ε0(k)− zν ] = −β

∫
C′

dz

2πi
f(z) ln [ε0(k)− z] =

= −β

∫ ∞

−∞

dω

2πi
f(ω) ln [ε0(k)− ω − iη]

− β

∫ −∞

∞

dω

2πi
f(ω) ln [ε0(k)− ω + iη] =

= −β

∫ ∞

−∞

dω

2πi
f(ω)

{
ln [ε0(k)− ω+]− ln [ε0(k)− ω−]

}
.

(C.12)

Up to here the result is completely general. However, one can profit from the
property ln(z∗) = ln(z)∗ and of the definition of the imaginary part of a complex
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number, Im z = 1
2i

[z − z∗], to get:∑
ν

ezνη ln [ε0(k)− zν ] =−β

∫ ∞

−∞

dω

π
f(ω) Im

{
ln [ε0(k)− ω+]

}
. (C.13)

As a matter of fact, this result turns out to be quite general and is used thoroughly
in the developments of this Thesis. Take any function of a complex variable with
the property:

F (z∗) = [F (z)]∗ . (C.14)

Even if F does not have a cut in the real axis, one can take the sum over Matsubara
frequencies and deform the contour C to C ′ as long as F decays at infinity and
has no poles in the complex plane. Then, the previous results hold and the sum
over Matsubara frequencies equals an integral of the imaginary part of the function
slightly above the real axis:∑

ν

ezνηF (zν) =−β

∫ ∞

−∞

dω

2π
f(ω) 2Im

{
F (ω+)

}
. (C.15)

Since both the propagator and the self-energy are analytical everywhere in the
complex plane (with the possible exception of the real axis), decay at infinity and
satisfy Eq. (C.14) [see Eqs. (2.63) and (2.125)], this result can be directly applied
to the sums which involve G and Σ. As a consequence, Eq. (C.15) turns out to be
extremely useful in the field of finite temperature many-body quantum mechanics,
where it is extensively used.
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Degenerate and classical limits

In the field of many-body physics at finite temperature, the presence of Fermi-
Dirac (or Bose-Einstein) distribution functions makes it hard to obtain analytical
expressions for the density or temperature dependences of the thermodynamical
quantities. This is in contrast to the zero temperature mean-field case, where the
step-like momentum distribution allows to obtain analytical results in simple cases.
Yet, in a certain range of densities and temperatures, one can use approximations
which allow to handle these dependences in a more or less straightforward way.
These density-temperature regimes are defined by the ratio x = T

εF
. While the

temperature T defines a natural energy scale for thermal effects, the free Fermi

energy εF =
k2

F

2m
sets the energy scale associated to finite density effects in fermionic

systems. The limit x << 1 defines the degenerate limit, in which the degeneracy
of the system dominates its physics, while its opposite, x >> 1, corresponds to the
classical limit. In the following, the approximations that these two limits introduce
in the observables of many-body physics will be discussed. Note that the usual
derivation of these approximations relies often in a quasi-particle-like description.

D.1 Degenerate limit

The degenerate limit is achieved when the condition T/εF << 1 holds, i.e. when
temperature effects are small relative to the density ones. This limits holds when
the system is either at very low temperatures or very high densities. In both cases,
the system behaves essentially like in the zero temperature case and thus one can
obtain the temperature dependences for very degenerate systems by taking profit
of the step-like behavior of the momentum distribution close to the Fermi surface.
This is achieved in terms of the Sommerfeld expansion, which is introduced below.
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Chemical potential

At finite temperature, the microscopic chemical potential of an interacting system
of fermions is found from inverting:

ρ = ν

∫
d3k

(2π)3

∫ ∞

−∞

dω

2π
A(k, ω)f(ω) . (D.1)

Let us assume a no-width approximation for the spectral function. The quasi-
particle spectrum is defined by:

ε(k) =
k2

2m
+ Σ(k) , (D.2)

where Σ(k) is a real energy-independent self-energy. In a Hartree-Fock approx-
imation, this is given by the self-consistent self-energy of Eq. (4.5). When the
mean-field is derived from a realistic potential and contains many-body effects, it
is generally quite difficult (if not impossible) to find an analytic approximation
for the momentum dependence of the mean-field Σ. Still, in order to find man-
ageable expressions, one commonly assumes that the self-energy (or single-particle
potential, in a quasi-particle language) has a quadratic dependence in k. This
corresponds to the following spectrum:

ε(k) ' k2

2m
+ ak2 + Ū =

k2

2m∗ + Ū . (D.3)

The effective mass m∗ introduced above, which is given by:

m∗

m
=

1

1 + 2ma
, (D.4)

accounts for the (approximate) quadratic momentum dependence of the potential,
while the term Ū is just a constant that sets the value at k = 0 of the quasi-particle
spectrum. Within this quadratic approximation, the effective mass is momentum
independent. This is of course not true for a realistic case (see the self-energies
of Fig. 5.16), in which the parameter a would either be momentum-dependent or
should try to fit the momentum dependence for a given momentum regime. It
is important to note that, in general, the a and Ū parameters that describe the
spectrum can be density dependent.

Within the previous assumptions, one can find an analytical expression for the
chemical potential, because Eq. (D.1) reduces to the expression:

ρ = ν

∫
d3k

(2π)3

1

1 + eβ[ε(k)−µ]
=

ν

2π2

∫ ∞

0

dk
k2

1 + e
β

h
k2

2m∗+Ū−µ
i . (D.5)
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Let us now define µ̄ = µ− Ū and perform the change of variables x = β
[

k2

2m∗ − µ̄
]
.

The integral is now adimensional and becomes:

ρ =
ν

4π2
(2m∗)3/2 T

∫ ∞

− µ̄
T

dx
1

1 + ex

√
µ̄ + xT , (D.6)

which, after an integration by parts, becomes:

ρ =
ν

6π2
(2m∗µ̄)3/2

∫ ∞

− µ̄
T

dx
ex

(1 + ex)2

(
1 + x

T

µ̄

)3/2

. (D.7)

The Fermi-Dirac distribution, f(x) = 1
1+ex , changes rapidly close to x ∼ 0, while it

is almost constant for x << 0 and x >> 0. Its derivative, f ′(x) = − ex

(1+ex)2
, is thus

peaked for x ∼ 0, and close to zero elsewhere (see Fig. D.1). As a consequence of
this peak-like behavior, for low enough temperatures (with respect to µ̄), one can
safely expand the second term in the previous integrand. The exponential decay of
the first term kills the contributions to the integral for large x. This is exactly the
Sommerfeld expansion, in which one expands the integrand for very degenerate
systems. Moreover, as T goes to zero (or µ̄ increases), the lower limit goes to −∞,
which allows to perform the x-integral analytically.

Let us first consider the expansion to zero-th order:

ρ =
ν

6π2
(2m∗µ̄)3/2 , (D.8)

which can be inverted to obtain the well-known zero temperature result:

µ =
k2

F

2m∗ + Ū , (D.9)

so that the chemical potential is simply given by the quasi-particle energy at the
Fermi surface. Note that, to find the previous result, the integral:∫ ∞

−∞
dx

ex

(1 + ex)2
= 1 (D.10)

has been used.
To obtain the first temperature correction, one has to expand Eq. (D.7) to

second order (the first order result cancels exactly due to the symmetry properties
of the integrand):

ρ = (2m∗µ̄)3/2 ν

6π2

{
1 +

π2

8

T 2

µ̄2

}
, (D.11)

which is obtained with the help of the result:∫ ∞

−∞
dx

ex

(1 + ex)2
x2 =

π2

3
. (D.12)
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Figure D.1: Peak structure of the f ′(x) and σ(x) functions close to x = 0.

Up to T 2, one can take
(

T
µ̄

)2

=
(

T
ε∗F

)2

, with ε∗F =
k2

F

2m∗ . With this result at hand,

one finds:

µ = ε∗F

{
1− π2

12

(
T

ε∗F

)2
}

+ Ū , (D.13)

which shows that the first temperature correction to the chemical potential is
proportional to T 2 and tends to make it slightly more attractive. Note that the
expansion is performed in terms of the parameter T/ε∗F , which is modified from
the non-interacting case by the effective mass.

Expanding the right term in Eq. (D.7) to a higher order, one would find the
thermal corrections to the chemical potential at higher orders. Since the deriva-
tive of the Fermi-Dirac function is a symmetric function, this expansion is given
in terms of even powers of the temperature. Let us finally note that in a fully
correlated approach, the explicit temperature dependence of the spectral function
does not allow to obtain an analytical expansion for µ(T ) beyond the zeroth order.

Energy

The energy per particle, when treated within a (no-width) quasi-particle approach,
has a similar Sommerfeld expansion. Let us first consider the kinetic energy:

K
A

=
ν

ρ

∫
d3k

(2π)3

k2

2m

1

1 + eβ[ε(k)−µ]
=

ν

2π2ρ

1

2m

∫ ∞

0

dk
k4

1 + e
β

h
k2

2m∗−µ̄
i . (D.14)
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After performing the change to the adimensional x variable defined above and
integrating by parts, one obtains the following expression:

K
A

=
ν

10π2ρ

(2m∗µ̄)5/2

2m

∫ ∞

− µ̄
T

dx
ex

(1 + ex)2

(
1 + x

T

µ̄

)5/2

. (D.15)

Expanding it to zeroth order and using the results obtained previously for µ̄ at
this order, one finds the usual expression for the zero temperature kinetic energy
per particle:

K
A

=
3

5

k2
F

2m
. (D.16)

The calculation to second order is also carried straightforwardly and yields:

K
A

=
3

5

k2
F

2m

{
1 +

π2

12

(
T

ε∗F

)2
}

. (D.17)

Note that, as expected, thermal correlations are translated into a quadratic in-
crease of the kinetic energy with temperature. Once again, higher order terms in
the Sommerfeld expansion would involve even powers of the temperature. On the
other hand, the potential energy is obtained from the expression:

〈V 〉
A

=
ν

2ρ

∫
d3k

(2π)3
Σ(k)

1

1 + eβ[ε(k)−µ̄]
=

1

2
Ū +

ν

4π2ρ
a

∫ ∞

0

dk
k4

1 + e
β

h
k2

2m∗−µ̄
i .

(D.18)

The integral over momenta is essentially the same one that is computed for the
kinetic energy. Thus, it is easy to see that the expansion for low temperatures of
the potential energy of quasi-particles yields:

〈V 〉
A

=
1

2
Ū +

3

5
k2

F a

{
1 +

π2

12

(
T

ε∗F

)2
}

, (D.19)

which is once again a quadratic temperature correction with respect to the zero
temperature result. Finally, summing both contributions, one finds that the total
energy per particle reads:

E

A
=

3

5
ε∗F

1 + ma

1 + 2ma

{
1 +

π2

12

(
T

ε∗F

)2
}

+
1

2
Ū . (D.20)

The Sommerfeld expansion for the correlated energy per particle should be
derived from the GMK sum rule, Eq. (2.103). There are two difficulties which
prevent us for performing it. On the one hand, the integration by parts involves
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the knowledge of the m0 and m1 running integrals of the spectral function, which
are not known analytically. On the other hand, the temperature dependence of the
self-energy, Eq. (5.61), is non-negligible already at the first order in the Sommerfeld
expansion O(T 2). This automatically involves that the spectral function has a non-
trivial temperature dependence (see Fig. 5.17), which also spoils the Sommerfeld
expansion at the first non-trivial order.

Entropy

The expansion at low temperatures of the entropy, however, can be performed
in an approximation which considers the finite width of the quasi-particle peak.
Consider the expression for the dynamical quasi-particle Eq. (3.98):

S

A
=

ν

ρ

∫
d3k

(2π)3

∫ ∞

−∞

dω

2π
B(k, ω)σ[β(ω − µ)] , (D.21)

and perform the change of variables x = β(ω − µ). The entropy becomes:

S

A
= T

ν

ρ

∫
d3k

(2π)3

∫ ∞

−∞

dx

2π
B(k, µ + xT )σ(x) , (D.22)

where σ(x) is peaked around x ∼ 0 (see Fig. D.1). Therefore, it is safe to perform
a Sommerfeld expansion on the previous expression for low T ’s (high µ’s). To
lowest order, in which the temperature dependence of the B spectral function can
be neglected:

S

A
=

π2

3ρ
Tν

∫
d3k

(2π)4
B(k, µ) . (D.23)

The integral: ∫ ∞

−∞
dx σ(x) =

π2

3
(D.24)

has been used to obtain the previous result. Note that, in contrast to the chemical
potential or the energy per particle, one can use an expression that goes beyond the
quasi-particle picture in the Sommerfeld expansion of the entropy. It is however
important to stress that this value is valid at lowest order in the expansion of
T/µ and thus the B spectral function of Eq. (D.23) should be computed at zero
temperature.

To find the no-width counterpart of the previous expression, let us introduce
the no-width B-spectral function:

B(k, ω) = (2π)δ [ω − εqp(k)] , (D.25)
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so that the integral over momenta reads:∫
d3k

(2π)3
δ [µ− εqp(k)] =

1

2π2

∫ ∞

0

dk k2 δ

[
µ− k2

2m
− Σ(k)

]
. (D.26)

To perform the integration over the delta function, the relation:

δ [f(x)] =
∑
x0

δ(x− x0)

|f ′(x0)|
(D.27)

has to be used, where x0 denotes any zero of f(x) in the integration region. In the
quasi-particle case, this corresponds to:

µ =
k2

2m
+ Σ(k) , (D.28)

which, for T = 0 and in a thermodynamically consistent approach, defines the
Fermi momentum. The integral thus reads:

1

2π2

∫ ∞

0

dk k2 δ(k − kF )
1∣∣ k

m
+ d

dk
Σ(k)

∣∣ =

=
1

2π2

∫ ∞

0

dk k2 δ(k − kF )

∣∣∣∣m∗(k)

k

∣∣∣∣ =
kF m∗(kF )

2π2
, (D.29)

where the effective mass in this case is obtained from Eq. (4.32). Note that this
effective mass does not correspond to any generic parameterization of the spectrum,
but to its derivative with respect to the momentum at k = kF . Once again, since
this corresponds to the lowest order expansion, the effective mass m∗(kF ) should
be computed at zero temperature. All in all, the low temperature entropy depends
linearly on the temperature and reads:

S

A
=

π2

3ρ
N(0)T , (D.30)

where the quasi-particle density of states N(0) is computed at zero temperature
and equals:

N(0) =
νkF m∗(kF )

2π2
. (D.31)

The previous linear law for the entropy per particle can also be derived within
Fermi liquid theory [Abr65; Fet71]. As a matter of fact, Eq. (D.30) can be easily
translated into physical terms. The entropy is a measure of the total number of
states that a system can occupy due to thermal agitation. Since small thermal
fluctuations only modify the vicinity of the Fermi surface, the entropy of low
temperature systems must be related to the available states close to this surface.
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Actually, the density of states, N(0), gives the number of available states close
to the Fermi surface per energy unit. It is thus natural that the entropy of the
system is given by the number of available states times the temperature, which is
the available energy that one has to use in order to populate them.

In analogy with the previous subsections, one would be tempted to carry out
the previous expansion in terms of the temperature to higher orders. Nevertheless,
in the expansion of B(k, µ+xT ) for low temperatures, one should keep track of the
temperature dependence of B which, due to its implicit temperature dependence
on the functions Im Σ, Re Σ, etc. cannot be performed analytically.

D.2 Classical limit

When a system is at very low density, quantum effects tend to be less relevant, up
to a point that one cannot say that it is degenerate anymore. A similar behavior
is achieved if one increases the temperature to very high values. Therefore, quan-
tum effects tend to become irrelevant in the regime T/εF >> 1 and in this limit
one recovers the properties of a classical system. One can find analytical density
and temperature dependences by means of an expansion in terms of the fugacity
parameter, eβµ̄. This is a very small quantity in the classical limit, because the
chemical potential µ becomes very negative.

Chemical potential

Following the same steps introduced above, let us consider the normalization con-
dition for the density in a no-width quasi-particle approach, Eq. (D.5). Since
µ → −∞ in the classical regime, the fugacity γ = e−βµ̄ is very large and one can
approximate the Fermi-Dirac distribution by the expression:

1

1 + e
β

h
k2

2m∗+Ū−µ
i =

1

1 + γeβ k2

2m∗
∼ γ−1e−β k2

2m∗ . (D.32)

Within this approximation, the density is given by the expression:

ρ =
ν

2π2
γ−1

∫ ∞

0

dk k2e−β k2

2m∗ , (D.33)

which, introducing the adimensional variable y = β k2

2m∗ , can be computed analyt-
ically:

ρ =
ν

4π2
γ−1

(
2m∗

β

)3/2 ∫ ∞

0

dy
√

ye−y︸ ︷︷ ︸
Γ( 3

2)=
√

π
2

. (D.34)
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The previous density-chemical potential relation can be easily inverted and one
finds:

µ = T ln
ρλ3

dB

ν
− 3

2
T ln

m∗

m
+ Ū , (D.35)

which yields the chemical potential in terms of the density, the effective mass, the
potential Ū and the de Broglie wavelength:

λdB =

√
2π

Tm
. (D.36)

The density and temperature dependences of the chemical potential in the classical
limit are thus logarithmic. Note that the interaction affects the chemical potential
via the logarithmic dependence on the effective mass and the linear dependence
of the momentum-independent term, Ū . In the low density limit, where particles
hardly interact with each other, Ū will be negligible and m∗ = m. The following
term in the fugacity expansion of the Fermi-Dirac distribution, Eq. (D.32), would
give the first quantal correction to the chemical potential.

Energy

The kinetic energy can also be expressed in terms of the fugacity expansion. Using
Eq. (D.32), one can show that the kinetic energy is given by:

K
A

=
ν

ρ

∫
d3k

(2π)3

k2

2m

1

1 + eβ[ε(k)−µ]
∼ ν

2π2ρ

1

2m
γ−1

∫ ∞

0

dk k4e−β k2

2m∗ =

=
ν

4π2ρ

1

2m
γ−1

(
2m∗

β

)5/2 ∫ ∞

0

dy y3/2e−y︸ ︷︷ ︸
Γ( 5

2)= 3
√

π
4

=
3

2

m∗

m
T . (D.37)

Note that, except for the effective mass factor, this is just the expected result
from the equipartition theorem of classical statistical mechanics for a gas in three
dimensions. As a matter of fact, in the low density limit, where m∗

m
→ 1 the

kinetic energy per particle is essentially given by the temperature. Note that the
kinetic energy should be almost density independent and in fact the only density
dependence that enters the expression is the one coming from the effective mass.

The potential energy is once again given by a term proportional to Ū and the
contribution of the momentum dependent term, which is actually given by the
same integral over k4 of the previous result:

〈V 〉
A

=
3

2

m∗

m
Tma +

1

2
Ū . (D.38)
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The total energy per particle is thus given by the a term proportional to the tem-
perature and the momentum dependence of the mean field and a term proportional
to Ū :

E

A
=

3

2

1 + ma

1 + 2ma
T +

1

2
Ū . (D.39)

Once again, in the low density limit where both a and Ū tend to zero, the equipar-
tition theorem will be valid for the total energy per particle. Note, however, that
in an intermediate density regime (close to the classical limit, but not close to
the free gas) the energy per particle is modified and is given in terms of a virial
expansion in which the phase shifts determine in a model-independent way the
energy per particle [Hor06].

Entropy

Let us now consider the fugacity expansion to first order for the statistical weight-
ing function σ(ω):

σ(ω) = −
{
f(ω) ln f(ω) + [1− f(ω)] ln[1− f(ω)]

}
∼ −

{
β(ω − µ)γ−1e−βω + γ−1e−βω

}
. (D.40)

Introducing this expansion into the quasi-particle expression for the entropy, one
finds:

S

A
∼ −νγ−1

ρ

∫
d3k

(2π)3

{
β[ε(k)− µ]e−βε(k) + e−βε(k)

}
, (D.41)

which, using Eqs. (D.34) and (D.37), is given by:

S

A
=

5

2
− ln

ρλ3
dB

ν
+

3

2
ln

m∗

m
. (D.42)

The entropy per particle depends logarithmically on the density and the temper-
ature of the system. In addition, the interaction affects the entropy only via the
effective mass, m∗, which in this case has to be taken as a momentum independent
effective mass that parameterizes the quadratic dependence of the spectrum in k.
In the degenerate regime, on the other hand, the entropy is given by the derivative
of the quasi-particle spectrum close to the Fermi surface and, formally, there is
no need for this spectrum to be quadratic. In contrast, in this case the quadratic
dependence is necessary to obtain these analytical results.

244



Appendix E

Numerical implementation of the
SCGF scheme

The implementation of the SCGF scheme is quite demanding from the numerical
point of view. In this Appendix, the details associated to the numerical calculations
which have been used in this Thesis will be explained. Following the scheme
presented in Table 5.1, each of the different steps involved in the calculation will
be reviewed. Complementary information on this numerical treatment can be
found in Ref. [Fri04a].

Step 1

The starting point of the SCGF method is the initial guess of a spectral function.
The very first calculation in the SCGF involved a spectral function obtained from a
quasi-particle approach, which was extended to treat off-shell dependences [Fri04a].
Yet, once this first calculation was done, it was found that the results converged
faster if one used as an initial guess the converged spectral function of a different
density and temperature. With the knowledge of this spectral function, one can
compute a chemical potential that matches the density at which the calculation is
performed. To achieve this, one performs the momentum and energy integration of
Eq. (3.47) for Fermi-Dirac distributions with different chemical potentials, µ̃. Note
that this is approximate, in the sense that one should also consistently change the
chemical potential inside the spectral function. Since one does not a priory know
the chemical potential dependence of A, this is kept fixed. The iterative process
will lead to a converged result in which the chemical potential of the spectral
function matches the µ̃ in f(ω).

Steps 2-5

Steps 2-5 are devoted to compute the angle averaged non-correlated two-body
propagator, G0

II . This function has an imaginary and a real part. The optimal

245



Appendix E

starting point to compute this object is Eq. (5.28). This gives ImG0
II from a single

ω-integral over two spectral functions. For a given momentum, these two spectral
functions have very sharp peaks around their respective quasi-particle energies and
thus the numerical integral can be hard to handle. In order to evaluate Eq. (5.28)
conveniently, one can consider a change of variables in the integration variable,
ω̃ = ω − εqp(k):

ImG0
II(Ω; k, k′) = −1

2

∫ ∞

−∞

dω̃

2π
A(k, ω̃ + εqp(k))A(k′, Ω− ω̃ − εqp(k))

×[1− f(ω̃ + εqp(k))− f(Ω− ω̃ − εqp(k))] . (E.1)

Note that, with the help of this change of variables, the integrand is always peaked
around ω̃ = 0 independently of the external momentum k. This is very useful in
the construction of the integration meshes, which are easier to build thanks to the
fact that they are independent of k. Instead of sampling the quasi-particle peak
for each k, for instance, it is enough to sample in detail the region of ω̃ ∼ 0. The
same effect can indeed be obtained for the k′ variable if one considers the change
Ω̃ = Ω− εqp(k)− εqp(k

′). The integral then becomes:

ImG0
II(Ω̃; k, k′) = −1

2

∫ ∞

−∞

dω̃

2π
A(k, ω̃ + εqp(k))A(k′, Ω̃− ω̃ + εqp(k

′))

×[1− f(ω̃ + εqp(k))− f(Ω̃ + εqp(k
′)− ω̃)] , (E.2)

and the integrand is peaked around ω̃ = 0 and ω̃ = Ω̃, independently of k and
k′. The region of Ω̃ = 0 corresponds to the energies in which there is a maximum
overlap between the two spectral functions and thus yields the larger results for the
integral. To see this clearly, consider the quasi-particle approximation to ImGII :

ImG0
II(Ω; k, k′) =− πZ(k)Z(k′)[1− f(εqp(k))− f(εqp(k

′))]

× δ [Ω− εqp(k)− εqp(k
′)] , (E.3)

which is obtained by taking the no-width quasi-particle limit of Eq. (2.142) in the
spectral functions of Eq. (5.28). In terms of the Ω̃ variable, this function simplifies
to the expression:

ImG0
II(Ω̃; k, k′) =− πZ(k)Z(k′)[1− f(εqp(k))− f(εqp(k

′))]× δ[Ω̃] , (E.4)

which is different from zero only at the value Ω̃ = 0, independently of the momenta.
Thus, if one is able to build the function ImG0

II(Ω̃; k, k′) by means of Eq. (E.2), it
will be peaked around Ω̃ = 0. This is a useful property that can be used later on
in the angle average procedure.

The procedure to obtain numerically G0
II follows three steps. In the first one,

for each of the external k and k′, one interpolates the integrand from the ω, Ω to
the ω̃, Ω̃ variables, as already explained. The integrand being peaked around two
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very concrete regions (ω̃ ∼ 0 and ω̃ ∼ Ω̃), an accurately distributed mesh around
those values is enough to perform the integral. In order to check the numerical
accuracy, the sum rule of Eq. (5.30) can be used, since the right hand side is
easily computed from the single-particle propagator. The meshes are adjusted to
reproduce the sum rule within a 1% accuracy with k and k′ up to 2000 MeV. As
a final result, ImG0

II is computed for a given distribution of Ω̃’s and stored. The
stored data is then used to perform the dispersion integral of Eq. (5.29), which
allows one to obtain ReG0

II . This is a principal value integral and thus care must
be taken in the integration procedure in order to treat properly the possible large
cancellations. To this end, NΩ̃ = 120 mesh points are distributed symmetrically
around the pole Ω′ = Ω. Note that since the momentum mesh has 70 points, this
involves the calculation of NΩ̃ ×Nk ×Nk′ ∼ 6× 105 integrals.

Once the real and the imaginary parts of G0
II are obtained, one can proceed

to perform, for every energy Ω, the angle average procedure in the angle between
K = k + k′ and kr = (k− k′)/2. G0

II is indeed easily reexpressed in terms of this
angle:

G0
II(Ω̃; k, k′) = G0

II(Ω̃; |K/2 + kr| , |K/2− kr|)
= G0

II(Ω̃;
√

K2/4 + k2
r + Kkr cos θ,

√
K2/4 + k2

r −Kkr cos θ) . (E.5)

Interpolating the initial G0
II to the values given by the square roots above, one

obtains a set of values for G0
II(Ω̃; K, kr, θ). The angle average is then performed

for every K and kr by means of a simple trapezoidal rule in the θ variable. This
is the third and last step to obtain numerically the angle-averaged propagator of
two dressed independent particles, G0

II . This will now be a basic ingredient in the
solution of the Lippman-Schwinger equation.

Step 5

The Lippman-Schwinger equation for the T -matrix is a one dimensional integral
equation for each allowed combination of α = (J, S, T ). For a given α, there can
be at most Nc = 2 coupled L partial waves, due to the tensor component of the
NN interaction. To begin with, let us discretize the momentum qr in the integral
of Eq. (5.37), which then becomes the sum:

∫ ∞

0

dqr h(qr) →
NI∑
n=1

unh(qn) . (E.6)

The NI momenta qn at which the integrand of Eq. (5.37) is computed as well as
their corresponding integration weights un, are chosen to optimize the accuracy in
the integral. In addition, one usually discretizes the external momenta, kr → km.
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All in all, the Lippman-Schwinger equation in its discretized form reads:

〈km|Tα
LL′(Ω+, K)|pr〉 = 〈km|V α

LL′|pr〉

+
∑
L′′

NI∑
n=1

q2
nun 〈km|V α

LL′′|qn〉 G0
II

(
Ω+; K, qn

)
〈qn|Tα

L′′L′(Ω+, K)|pr〉 . (E.7)

If the discrete momenta km and qn are chosen to be the same, the previous dis-
cretized equation can be rewritten as:

〈km|V α
LL′|pr〉 =

∑
L′′

NI∑
n=1

[
δmnδLL′′ − unq

2
n〈km|V α

LL′′|qn〉 G0
II

(
Ω+; K, qn

)]
× 〈qn|Tα

L′′L′(Ω+, K)|pr〉 . (E.8)

To understand better the structure of this expression, let us consider a channel
α such that there is no transition between different angular momenta, L = L′.
Discretizing the remaining momentum pr in a mesh, ps, of Np points, one obtains
the following equation:

Vα
mL,sL =

NI∑
n=1

Mα
mL,nL(Ω+, K)Tα

nL,sL(Ω+, K) , (E.9)

where the NI ×Np matrices

Vα
mL,sL = 〈km|V α

LL|ps〉 , (E.10)

Tα
nL,sL(Ω+, K) = 〈qn|Tα

LL(Ω+, K)|ps〉 , (E.11)

as well as the NI ×NI matrix

Mα
mL,nL(Ω+, K) = δmn − 〈km|V α

LL|qn〉 G0
II

(
Ω+; K, qn

)
unq

2
n , (E.12)

have been introduced. It is clear that Eq. (E.9) defines the product of the M and
T matrices. Thus, by means of the discretization procedure, the one dimensional
Lippman-Schwinger equation for the T -matrix has been converted into a complex
matrix equation. This can be solved by means of standard numerical techniques,
simply inverting the M-matrix to yield:

Tα(Ω+, K) = [Mα(Ω+, K)]−1 · Vα . (E.13)

Up to here only diagonal terms in L have been treated. When the coupling between
different partial waves acts, the philosophy is essentially the same and the T -matrix
equation can also be treated in a matricial form:(

Vα
mL,sL Vα

mL,sL′

Vα
mL′,sL Vα

mL′,sL′

)
=

NI∑
n

(
Mα

mL,nL Mα
mL,nL′

Vα
mL′,nL Mα

mL′,nL′

)
·
(

Tα
nL,sL Tα

nL,sL′

Tα
nL′,sL Tα

nL′,sL′

)
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This suggests the introduction of the multi-indices M = (m, L), N = (n, L) and
S = (s, L), which characterize the NcNI ×NcNp matrices:

Vα
MS = 〈km|V α

LL′|ps〉 , (E.14)

Tα
NS(Ω+, K) = 〈qn|Tα

LL′(Ω+, K)|ps〉 , (E.15)

as well as the square NcNI ×NcNI matrix:

Mα
MN(Ω+, K) = δMN − 〈km|V α

LL′|qn〉 G0
II

(
Ω+; K, qn

)
unq

2
n . (E.16)

With these matrices in hand, Eq. (E.8) is easily rewritten as:

Vα
MS =

Nc×NI∑
N=1

Mα
MN(Ω+, K)Tα

NS(Ω+, K) , (E.17)

and the final solution for the T -matrix is again given by the inversion:

Tα(Ω+, K) = [Mα(Ω+, K)]−1 · Vα . (E.18)

Note, however, that the matrices are in this case Nc times larger than in the
non-coupled case.

The inversion of the complex square M matrix can be a time-consuming task
if its number of columns is very large. Therefore one should try to minimize the
number of integration mesh points, NI , without loosing physical information. In
the case of the non-correlated two-particle propagator, for a fixed external total
energy and center-of-mass momentum, one has to sample correctly both the region
around q0, where G0

II is maximal due to the overlap of spectral functions, as well
as the high (relative) momentum region, where G0

II might not be negligible due to
correlation effects. This is achieved by defining an intermediate momentum qX ,
below which one always finds q0 and above which one has the high-momentum
region. In the interval [0, qX ], different sets of Gauss-Legendre mesh points and
weights are defined to correctly sample the structures in G0

II . Around the quasi-
particle peak q0, the integrand varies rapidly. In this zone, a especially dense mesh
of points is applied, in a symmetric way above and below q0 in order to favor any
possible cancellation of contributions with opposite sign. For the interval [qX ,∞],
a tangential map is used. In this way, the interval [qX ,∞] is mapped into a finite
interval by means of the transformation:

qj = qX + c tan
(π

2
xj

)
, (E.19)

where xj are Gauss-Legendre mesh points in the [0, 1] interval and where c is
chosen to give an adequate sampling of the high momentum region, up to where
the potential is suppressed by its natural cut-off. The integration weights wj
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J S T Channel Nc

0 0 1 1S0 1
0 1 1 3P0 1
1 0 0 1P1 1
1 1 0 3S1 − 3D1 2
1 1 1 3P1 1
2 0 1 1D2 1
2 1 0 3D2 1
2 1 1 3P2 − 3F2 2

Table E.1: Quantum numbers of the NN interaction channels
up to J = 2. Only the values that fulfill the antisymmetry
constrain L + S + T = odd are considered.

of the original Gauss-Legendre mesh have to be transformed, accordingly to the
tangential map:

uj = c
π
2
wj

cos2
(

π
2
xj

) . (E.20)

With this transform, the [qX ,∞] region is well sampled and the integral yields
faithful results. The actual calculations are performed with NI = 50 mesh points,
14 of which are in the [qX ,∞] region. The T -matrix is computed on an external
three-dimensional mesh formed by the total pair energies Ω (sampled with NΩ = 80
points), the center-of-mass momenta P (NP = 30) and the relative momenta pr

(Np = 30). Since M does not depend explicitly on pr, this NcNI × NcNI matrix
is inverted NMI = NΩ × NP × Nα times, with Nα the number of (JST ) partial
waves that are chosen in the calculation. In this case, waves up to J = 2 have been
chosen for the inversion procedure, which yields a total of Nα = 10 (see Table E.1).
Thus, in the program, the complex 50× 50 (or 100 × 100, depending on whether
Nc = 1 or 2) M-matrix is inverted NMI = 12000 times. Not surprisingly, this is
the more time-consuming task in the SCGF program.

A nice property of the SCGF scheme is that there is no need to worry about
poles in the inversion of the T -matrix. In other descriptions of nuclear matter,
the equivalent equations for the in-medium interaction have integrands which may
contain poles. These have to be treated somehow, generally by means of the pole
substraction technique introduced in Ref. [Haf70]. In the SCGF scheme this is not
necessary, because the integrand remains finite for all energies and momenta in the
normal phase. There is however a pole in the bosonic function that is canceled
by a node of the T -matrix. The accurate treatment of this cancellation requires
a careful construction of the NΩ mesh points for the Ω variable in the inversion
procedure, especially around the values Ω ∼ 2µ.
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Moreover, it has already been mentioned that for low temperatures the T -
matrix acquires a pole in the P = 0 and Ω = 2µ region, where the pairing insta-
bility appears. In terms of the equations here presented, the pole in the T -matrix
would be directly reflected into the M-matrix [Alm93; Dew02]. The Thouless
criterion for the onset of superconductivity states that, for a given density and
decreasing the temperature, the critical temperature TC for the onset of pairing is
the one at which, for any channel α, the following condition is fulfilled:

det
[
Mα(Ω = 2µ, P = 0)

]
= 0 . (E.21)

In symmetric nuclear matter around saturation density, the largest gaps are usually
found for neutron-proton pairing in the channel 3S1−3D1 [Dea03]. Within a quasi-
particle approach, the corresonding critical temperatures depend strongly on the
many-body approach which is used to describe pairing correlations. It is however
believed that the critical temperature lies in the range Tc ∼ 5 MeV.

Steps 6-8

The remaining steps in SCGF approach have to do with the computation of the
self-energy from the T -matrix. The more difficult step from the numerical point
of view is the computation of the imaginary part of ΣL from Eq. (5.50). For
a fixed external momentum k and energy ω, one has to integrate over k′, thus
defining several center-of-mass, P , and relative momenta, q . The energy integral
is also somewhat tricky, because of the pole in the Bose function. Even though
this is canceled by the node in Im T , one has to take care of it numerically. Once
again, a symmetric mesh is defined around the pole to evaluate correctly the
possible cancellations. This mesh of Nω′ = 1000 points is used for the energy
integral, while the integration over momenta is performed with Nk′ = 80 points
linearly distributed between 0 and 4kF , as well as with Nθ = 40 points for the
angle integration over the internal momentum k′. With these meshes one can
carry out accurately the integration of Eq. (5.50) for a wide range of densities
and temperatures. The relative importance of each of the contributions to the
integrand (A, Im T and the phase space factor [f + b] ) is discussed in length in
[Fri04a].

The real part of the self-energy is easily computed from this imaginary part
via Eq. (5.29). The generalized Hartree-Fock contribution can be directly calcu-
lated by means of Eq. (5.42). The momentum distribution entering this equation,
however, is computed from the spectral function by means of the energy integral
of Eq. (2.72). The remaining momentum integral is easily performed by means
of, for instance, a trapezoidal rule. The principal part integral of Eq. (5.29) is
performed as already explained above, with a symmetric mesh around the pole at
λ = ω. Note that the high energy region, where Im Σ is non-negligible, must also
be treated. This is achieved by splitting the integration variable in two different
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regions, one of them sampling the quasi-particle structures and the remaining one
covering the high and low energy structures in Re Σ.

Once the self-consistent self-energy is obtained, it can be interpolated to the
momentum and energy meshes which are needed in order to build the correspond-
ing spectral function by means of Eq. (2.130). It is very important to interpolate
the smooth Im Σ and Re Σ functions. If the interpolation was performed on the
spectral function, one could sample incorrectly the strong peaks and structures of
the spectral function and thus introduce an important source of numerical inac-
curacies. Note that, once again, the energy mesh has to be accurate enough to
reproduce correctly at the same time the intermediate energy region, where the
quasi-particle peak lies, as well as the high and low-energy tails of A. This si-
multaneous sampling is vital for the resolution of the SCGF procedure and it is
probably the largest source of difficulties in its numerical implementation.
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El problema nuclear de molts cossos

La mecànica quàntica de molts cossos intenta descriure les propietats dels sistemes
quàntics formats per un gran nombre de part́ıcules. Des dels propis àtoms (que són
sistemes formats per molts electrons) fins als nuclis atòmics, molts dels sistemes
que ens envolten són sistemes de molts cossos que podem descriure mitjançant
aquesta teoria. El rang d’aplicacions de la mecànica quàntica de molts cossos és,
doncs, molt ampli. D’entre els problemes que la disciplina s’ha plantejat en la seva
història, el problema nuclear de molts cossos destaca tant per la seva dificultat
com pel seu interès pràctic. La descripció dels nuclis atòmics en termes dels seus
constituents bàsics (neutrons i protons) i de la interacció fonamental que els lliga és
clarament un problema interessant des del punt de vista teòric que, a més, gràcies
a l’ampli nombre d’aplicacions de la f́ısica nuclear, podria tenir un cert ressò en el
camp de la f́ısica aplicada. Malauradament, hi ha factors que dificulten la resolució
d’aquest problema. Entre ells, potser les complicacions que sorgeixen en estudiar
les correlacions indüıdes per la interacció en sistemes finits són les més importants.
És per això que el problema nuclear de molts cossos s’acostuma a formular en
termes de la matèria nuclear, un sistema infinit composat per nucleons en què
es negligeix la interacció electromagnètica entre els protons. Gràcies a aquesta
simplificació, podem estalviar-nos el tràngol d’haver de trobar les funcions d’ona
mono-particulars (que per un sistema infinit són simples ones planes) i estudiar
directament l’efecte de les correlacions que la interacció nucleó-nucleó (NN) indueix
sobre la funció d’ona de molts cossos d’un sistema infinit.

A diferència d’altres sistemes, en què la força que actua entre les part́ıcules
és coneguda a priori, la informació que es té sobre la interacció NN és relati-
vament limitada. L’estudi experimental de reaccions de dos nucleons (dispersió
protó-protó o neutró-protó) ens permet conèixer els desfasaments per un cert rang
d’energies (és a dir, per un cert rang de distàncies relatives) en diferents ones
parcials. Gràcies a aquestes dades, per exemple, podem arribar a deduir que la
interacció NN a curtes distàncies és fortament repulsiva. Els desfasaments també
ens informen de l’atracció a distàncies intermèdies que, en última instància, és
la responsable del lligam dels nuclis finits [Rin80]. D’altra banda, les propietats
del deuteró, l’únic estat lligat de dos nucleons, permeten obtenir informació sobre
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les caracteŕıstiques d’aquesta interacció. El seu moment quadrupolar no nul, per
exemple, només pot explicar-se en termes d’una component tensorial, que acobla
funcions d’ona amb diferents moment angulars [Eis72]. Hom pot aconseguir una
descripció molt acurada d’aquestes propietats mitjançant els anomenats potencials
NN microscòpics. De forces microscòpiques de caràcter teòric n’hi ha de diferents
tipus, des d’ajustos que intenten contenir tot el caràcter operatorial de la força
en l’espai d’esṕın-isosṕın fins a models basats en teories efectives. En aquesta tesi
s’ha emprat el potencial de CDBONN, que descriu la interacció NN mitjançant
un model de bescanvi de mesons. Aquests actuen com a portadors de la inter-
acció forta i, segons llurs propietats f́ısiques, descriuen una caracteŕıstica o altra
del potencial (el mesó ω és responsable de la repulsió a curtes distàncies, el pió
de les components de llarg abast, etc.). Les propietats d’aquests mesons aix́ı com
els seus acoblaments amb els nucleons s’ajusten generalment a les dades exper-
imentals (desfasaments, energia de lligam del deuteró, etc.) i d’aquesta manera
s’aconsegueixen interaccions que reprodueixen amb molta exactitud les propietats
f́ısiques dels sistemes de dos nucleons.

Un cop aconseguida aquesta descripció quantitativa, els potencials NN mi-
croscòpics es poden emprar com a punt de partida per a càlculs de molts cossos.
En particular, el problema nuclear de molts cossos permet posar a prova tant
les propietats d’aquestes interaccions com la qualitat de les aproximacions que
necessàriament cal introduir en el tractament de les correlacions a molts cossos.
Però, quines són exactament les propietats que volem reproduir si, com hem dit,
la matèria nuclear és un sistema fictici? Doncs bé, les propietats de la matèria
nuclear les podem deduir gràcies a l’extrapolació de les propietats dels nuclis finits
a la matèria infinita. La fórmula semiemṕırica de masses, per exemple, reprodueix
qualitativament l’energia de lligam d’un nucli amb N neutrons i Z protons prop
de la vall d’estabilitat [Rin80]:

B(N, Z) = aV A + aSA2/3 + aC
Z2

A1/3
+ aI

(N − Z)2

A
− δ(A) . (1)

Aquesta fórmula permet trobar l’energia per part́ıcula d’un sistema nuclear infinit
amb el mateix nombre de neutrons i protons (el que anomenem matèria nuclear
simètrica, per distingir-la de la matèria asimètrica, que pot tenir N 6= Z) en el
ĺımit:

lim
A→∞

B(N, Z)

A
= aV ∼ 16 MeV . (2)

A més d’aquesta energia de lligam, podem extrapolar altres propietats de nuclis
finits a la matèria nuclear. La densitat central dels nuclis pesats, per exemple,
és relativament constant i és fàcil extrapolar-la a A → ∞, on s’obté el valor
ρ0 = 0.16 fm−3. D’aquesta manera, qualsevol càlcul ab initio que vulgui descriure
les propietats de la matèria nuclear hauria de reproduir aquest punt emṕıric de
saturació o, en altres paraules, hauria de presentar un mı́nim de l’energia per
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part́ıcula amb una energia de lligam per part́ıcula de −16 MeV a una densitat de
0.16 fm−3.

Tot i que la formulació del problema nuclear de molts cossos és relativament
simple (emprar un potencial NN a dos cossos, aplicar-lo a un sistema infinit, trobar
la funció d’ona de molts cossos corresponent i reproduir el punt emṕıric de satu-
ració), podem dir que encara som lluny de resoldre’l. El problema és essencialment
degut al caràcter de la interacció NN, que té una estructura operatorial molt rica i
una forta repulsió a curtes distància. Ambdues propietats modifiquen substancial-
ment la funció d’ona de molts cossos, que ha de reflexar tant les diferències entre
les diferents components en ones parcials com el fet que és energèticament improb-
able trobar dos nucleons prop l’un de l’altre [Müt00]. El tractament del problema
és necessàriament molt sofisticat i és per això que, en la llarga evolució de la f́ısica
nuclear de molts cossos, s’han fet servir nombroses aproximacions, sovint molt
diferents entre elles, per intentar resoldre’l.

D’aquestes aproximacions, n’hi ha de relativament simples, com les de camp
mig, que tenen un caràcter fenomenològic i intenten reproduir les propietats de la
matèria nuclear en un ampli rang de densitats i isospins mitjançant un ajust de
les seves propietats a prop de la saturació. Tot i l’èxit de què gaudeixen, gràcies
sobretot a la seva simplicitat i a l’aplicabilitat en càlculs de nuclis finits, les aprox-
imacions de camp mig no són una solució al problema nuclear de molts cossos
perquè no poden considerar-se càlculs ab initio. Tanmateix, existeixen una gran
quantitat de mètodes i tècniques que intenten resoldre el problema nuclear des de
la seva base. Alguns d’ells proven de reproduir la funció d’ona de molts cossos de la
matèria nuclear, generalment mitjançant els anomenats factors de Jastrow que cod-
ifiquen l’efecte de les correlacions. En general, aquests factors tenen una certa de-
pendència funcional que s’intenta ajustar mitjançant una minimització de l’energia
per part́ıcula del sistema i, en aquest sentit, es pot dir que són càlculs variacionals.
Per calcular l’energia de l’estat fonamental, cal desenvolupar tècniques especials,
com ara les de Fermi hypernetted chain [Fan75] o càlculs Monte-Carlo en què es
mostreja tot l’espai d’esṕın-isosṕın.

D’altra banda, es poden formular aproximacions que no busquen reproduir la
funció d’ona, sinó altres quantitats microscòpiques del sistema. En una aproxi-
mació diagramàtica, per exemple, s’expandeix l’energia per part́ıcula o el propa-
gador en termes de diagrames de Feynman [Mat92]. Generalment es necessiten
infinits diagrames per obtenir resultat f́ısicament correctes. Aix́ı doncs, s’han de
trobar maneres per sumar sèries infinites dels diagrames f́ısicament més rellevants.
En general, aquestes sumes infinites poden calcular-se mitjançant la introducció
d’interaccions efectives, que tenen en compte la renormalització que el medi nu-
clear genera en la interacció NN de l’espai lliure. Entre aquestes aproximacions
diagramàtiques, potser la més important pel problema nuclear és l’anomenada
aproximació de Brueckner-Hartree-Fock (BHF) [Bru54; Day67], que es basa en
l’expansió de Goldstone de l’energia per part́ıcula d’un sistema de molts cossos
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en termes de diagrames de Feynman [Gol57]. Si en aquesta expansió es tenen en
compte un cert tipus de diagrames, es pot definir una interacció efectiva, la matriu
G, que inclou els efectes del medi nuclear. Un cop obtinguda, podem calcular
l’energia per part́ıcula en una expansió ben definida que té en compte el nombre
de forats (estats per sota del moment de Fermi) que apareixen en cada diagrama.
L’aproximació a ordre més baix d’aquesta expansió en el nombre de forats és pre-
cisament el que es coneix com a aproximació BHF. Tot i que a partir d’interaccions
NN microscòpiques l’aproximació de BHF no dóna resultats quantitativament cor-
rectes pel punt de saturació emṕıric de la matèria nuclear, el comportament que
se n’obté és qualitativament correcte [Müt00].

L’aproximació diagramàtica utilitzada en aquesta tesi, però, no es basa en una
expansió de l’energia per part́ıcula, sinó en l’expansió pertorbativa del propagador
(o funció de Green) a un cos. Mitjançant aquesta expansió, es pot representar el
propagador a un cos d’un sistema interactuant en termes de diagrames que només
inclouen propagadors lliures a un cos i interaccions a dos cossos (veieu Apèndix A).
En el mètode de les funcions de Green, doncs, s’aproxima el propagador mitjançant
una suma infinita de diagrames que inclouen les correlacions més adequades pel
sistema que s’estudia. Com que totes les part́ıcules del sistema vénen descrites
en termes de funcions de Green i la propagació d’una d’aquestes part́ıcules es veu
afectada i alhora afecta el medi circumdant, el mètode de les funcions de Green és
necessàriament autoconsistent. És precisament per això que s’anomena mètode de
les Funcions de Green Autoconsistents (Self-Consistent Green’s Function o SCGF
en el seu acrònim anglès). Una aproximació que reprodueix correctament les cor-
relacions a dos cossos del sistema nuclear és l’aproximació d’escala, que suma una
sèrie infinita de diagrames amb aspecte d’“escala” (d’aqúı el seu nom), en què es
té en compte la interacció successiva de dos nucleons dins del sistema [Dic05a].
Aquesta interacció successiva es pot tenir en compte mitjançant la definició d’una
interacció efectiva, la matriu T , que va una mica més enllà que la matriu G del
mètode de BHF perquè inclou, a més de les correlacions part́ıcula-part́ıcula, les
correlacions de tipus forat-forat.

Malauradament, la descripció de la matèria nuclear mitjançant el mètode de les
SCGF a temperatura nul·la comporta una complicació addicional. En qualsevol
sistema fermiònic amb una interacció atractiva es generen, a prou baixes tem-
peratures, parells de Cooper que estan fortament lligats. La descripció d’aquests
parells no es pot dur a terme en el marc l’expansió pertorbativa del propagador i
l’aproximació de SCGF, doncs, no pot descriure el sistema en el rang de densitats
en què l’aparellament és present. El fenomen d’aparellament depèn fortament de la
temperatura, de manera que per sobre d’una certa temperatura cŕıtica els fermions
deixen d’aparellar-se. Independentment d’aquest fet, hi ha sistemes formats per
nucleons a la natura en què les temperatures són prou altes com per ser compa-
rables amb les escales d’energia associades a la interacció forta. Els protoestels
de neutrons, per exemple, es poden trobar a les fases finals d’una supernova de
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tipus II i, en els seus primers instants de vida, tenen temperatures prou altes, que
poden arribar a la desena de MeV [Pra97]. De la mateixa manera, a l’interior de
les col·lisions d’ions pesats a energies intermèdies s’hi formen fragments de matèria
hadrònica a alta densitat i temperatura [Cse86]. Tant per descriure aquests sis-
temes com per evitar el problema de l’aparellament en matèria nuclear, la teoria
de les Funcions de Green Autoconsistents s’ha estès a temperatura finita [Kra86]
i s’ha aplicat amb èxit a l’estudi de la matèria nuclear [Fri04a].

La teoria de les funcions de Green té com a objectiu descriure les propietats
microscòpiques del sistema. En termes de propagadors podem estudiar, per ex-
emple, les excitacions del sistema nuclear, tant de natura mono-particular com de
natura col·lectiva, la seva distribució de moments o l’autoenergia (l’energia poten-
cial d’interacció associada a la presència de la resta de part́ıcules del sistema). De
fet, a partir de la funció de Green a un cos podem calcular qualsevol quantitat
de caràcter mono-particular del sistema [Fet71]. La regla de suma de Galitskii-
Migdal-Koltun (GMK), a més, ens permet conèixer l’energia per part́ıcula del
sistema a partir del propagador a un cos. Ara bé, un sistema a temperatura finita
es regeix per les lleis de la termodinàmica i el seu estat d’equilibri ve dictat per la
minimització del potencial termodinàmic corresponent. En el cas d’un sistema a
temperatura i densitat fixat, aquest potencial és l’energia lliure i és aquesta quan-
titat macroscòpica que caldria calcular per trobar l’estat d’equilibri del sistema.
Un dels objectius principals d’aquesta tesi ha estat precisament construir un pont
entre les propietats microscòpiques del sistema, descrites en termes de funcions de
Green, i les seves propietats termodinàmiques. L’enllaç entre les dues escales és
possible gràcies al formalisme de Luttinger-Ward. Abans d’introduir aquest for-
malisme, tanmateix, val la pena descriure succintament algunes de les propietats
de les funcions de Green a temperatura finita.

Funcions de Green de molts cossos a temperatura

finita

En la mecànica estad́ıstica quàntica, els observables són el resultat d’un promig
sobre estats propis amb diferents energies i nombre de part́ıcules, pesats pel seu
factor de Boltzmann corresponent, e−β(Ei−µNi), on β representa l’invers de la tem-
peratura i µ el potencial qúımic. La funció de Green a un cos a temperatura finita
ve donada precisament pel promig estad́ıstic d’un operació de creació â†(r, t) i
un operació de destrucció â(r, t) ordenats temporalment mitjançant l’operador de
Wick T (que introdueix un signe menys si la permutació que representa és senar):

iG(rt, r′t′) = Tr
{

ρ̂ T
[
â(rt)â†(r′t′)

]}
. (3)

De la mateixa manera, es poden definir les anomenades funcions de correlació,
que representen promitjos estad́ıstics d’operadors de creació i destrucció sense cap
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ordenació temporal espećıfica:

iG>(rt, r′t′) = Tr
{

ρ̂ â(rt)â†(r′t′)
}

(4)

iG<(rt, r′t′) =−Tr
{

ρ̂ â†(r′t′)â(rt)
}

. (5)

Cadascuna d’aquestes funcions és igual al propagador en l’interval t > t′ o t < t′,
segons el seu respectiu super-́ındex, > o <. L’evolució temporal dels operadors de
creació i destrucció ve donada, en imatge de Heisenberg, per la següent equació:

â(rt) = eiĤtâ(r0)e−iĤt . (6)

L’operador d’evolució temporal s’assembla precisament al factor de Boltzmann,
a què es redueix (excepte el terme amb potencial qúımic) en el temps imaginari
t = −iβ. La generalització a temps complexos, tot i que pugui semblar artificial
a primera vista, és especialment útil en el camp de la f́ısica de molts cossos a
temperatura finita, ja que permet obtenir una colla de resultats interessants de
manera relativament simple. D’entre aquests resultats, cal destacar la relació
de Kubo-Martin-Schwinger, que relaciona les funcions de correlació en espai de
freqüències d’un sistema en equilibri tèrmic:

G<(k, ω) = e−β(ω−µ)G>(k, ω) . (7)

Aquesta relació ve donada per freqüències f́ısiques (és a dir, freqüències reals), però
la introducció de temps complexos comporta igualment un tractament en termes de
freqüències complexes. En termes d’aquesta variable complexa, la descomposició
espectral del propagador s’expressa:

G(k, zν) =

∫ ∞

−∞

dω

2π

A(k, ω)

zν − ω
, (8)

on zν correspon a un conjunt infinit però discret de freqüències de Matsubara i on
A(k, ω) és la funció espectral associada al propagador a un cos. La continuació
anaĺıtica d’aquesta quantitat és ben definida i el propagador retardat s’obté, per
exemple, en el ĺımit zν → ω′ + iη. D’aquesta manera, es pot demostrar que
un cop determinada la funció espectral, totes les propietats del propagador a un
cos queden fixades a través de l’Eq. (8). La funció espectral és important, doncs,
perquè determina el propagador i, per tant, totes les propietats a un cos del sistema
[Fet71]. Una altra propietat interessant d’aquesta funció sorgeix de la representació
de Lehmann del propagador, que ens permet escriure-la de la següent manera:

A(k, ω) = 2π
∑
n,m

e−β(En−µNn) + e−β(Em−µNm)

Z
|〈m|â†k|n〉|

2 δ[ω − (Em − En)] . (9)

Escrita d’aquesta manera, veiem que la funció A(k,ω)
2π

dω dóna la probabilitat d’afegir
o extreure una part́ıcula de moment k del sistema a través de l’extracció o de
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= + IΣ  

Figura 1: Representació diagramàtica de l’equació de Dyson.

l’aportació d’una energia entre ω i ω + dω. El fet que la funció espectral com-
pleix una regla de suma, que en defineix la normalització, recolza aquesta visió
probabiĺıstica.

Els resultats que hem obtingut fins aqúı no depenen de detalls particulars
del sistema. No hem considerat en cap moment, per exemple, els efectes de la
interacció. A nivell del propagador, tota la informació sobre la interacció del
sistema queda redüıda a l’operador d’autoenergia, Σ, que està relacionat amb la
funció de Green a un cos mitjançant l’equació de Dyson en espai de moments i de
freqüències:

G(k, z) =
1

z − k2

2m
− Σ(k, ω)

. (10)

La representació diagramàtica d’aquesta expressió es reprodueix a la Fig. 1, on
la ĺınia doble representa un propagador vestit (interactuant) i la ĺınia simple en
representa un de simple. La iteració d’aquesta equació permet obtenir el propa-
gador vestit com una suma infinita de peces d’autoenergia i de propagadors lliures
intermedis. L’autoenergia que s’ha d’incloure en aquesta suma té, però, la partic-
ularitat de ser irredüıble a un cos, i.e. els diagrames que la representen no s’han
de poder dividir en dues parts quan es talla alguna de llurs ĺınies fermiòniques.
D’aquesta manera, podem trobar totes les propietats del propagador a un cos d’un
sistema interactuant a partir de l’autoenergia i, en particular, la funció espectral
s’obté de l’equació següent:

A(k, ω) =
−2Im Σ(k, ω)[

ω − k2

2m
− Re Σ(k, ω)

]2
+

[
Im Σ(k, ω)

]2 . (11)

En general, les aproximacions en mecànica quàntica de molts cossos es defineixen
a partir d’aproximacions a l’autoenergia, que s’expressa en termes de la inter-
acció i del propagador vestit. En conseqüència, les equacions que defineixen una
aproximació de molts cossos han de ser autoconsistents, ja que el propagador i
l’autoenergia es defineixen l’un a partir de l’altre. L’exigència d’autoconsistència
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en l’aproximació té, a més, certa importància a nivell diagramàtic, ja que per-
met sumar una nova sèrie de diagrames en què els propagadors intermedis de
l’aproximació queden vestits per insercions d’autoenergia. Aquesta suma ad-
dicional de diagrames permet, a més, obtenir resultats més realistes i justifica
d’alguna manera l’extensió del formalisme a densitats més altes.

Formalisme de Luttinger-Ward

Ja hem comentat que, a partir del propagador a un cos, podem obtenir totes
les propietats mono-particulars d’un sistema de fermions interactuants [Fet71].
Aquest teorema ben conegut és vàlid també a temperatura finita, però no ens
ajuda, per exemple, a entendre les propietats termodinàmiques del sistema. Per
un sistema a temperatura i potencial qúımic fix, el potencial termodinàmic cor-
responent és el gran-potencial. S’han formulat diferents tècniques destinades a
calcular el gran-potencial a partir de les propietats microscòpiques del sistema
[Abr65; Fet71; Neg88]. Potser la més coneguda d’elles és el mètode de la constant
d’acoblament, en què el hamiltonià es divideix en un terme senzill de tractar, Ĥ0,
més un terme, λĤ1, que generalment inclou la contribució de la interacció. Per
λ = 1, doncs, recuperem el hamiltonià complet del sistema. El gran-potencial
associat al sistema interactuant, Ω, es pot calcular a partir del gran-potencial del
sistema simple, Ω0, més una integral del propagador i l’autoenergia de sistemes
amb constants d’acoblament variables:

Ω = Ω0 +
1

2β

∫ 1

0

dλ

λ
T̃r ΣλGλ , (12)

on la traça T̃r representa una suma sobre tots els moments i energies de l’autoenergia
i el propagador. Aquesta aproximació és essencialment exacta, en el sentit que
totes les correlacions incloses en el propagador a un cos queden automàticament
incorporades al gran-potencial a través de la integral d’acoblament. Tanmateix,
aquesta fórmula no és útil per aquelles aproximacions en què calcular el propagador
(o equivalentment l’autoenergia) requereixin temps de càlcul llargs. Per calcular la
integral sobre la constant d’acoblament, cal trobar Σ i G per diferents valors de λ
i això pot allargar excessivament el temps de càlcul. La situació encara empitjora
més si els càlculs s’han de fer a densitat finita.

A diferència del mètode de la constant d’acoblament, el formalisme de Luttinger-
Ward permet obtenir la funció de partició d’un sistema de fermions interactuants
a partir del propagador vestit a un cos. És a dir, si mitjançant alguna aproxi-
mació de molts cossos (com el mètode de les SCGF) podem calcular la funció de
Green mono-particular vestida, el formalisme de Luttinger-Ward ens dóna accés
directe a la funció de partició del sistema. L’equació central d’aquest formalisme
és l’expressió de Luttinger-Ward per la funció de partició del sistema:

ln Z{G} = T̃r ln
[
− G−1

]
+ T̃r Σ{G}G − Φ{G} , (13)

260



Formalisme de Luttinger-Ward

en què totes les quantitats són funcionals del propagador a un cos, G. La de-
pendència funcional de l’autoenergia ve donada per l’equació de Dyson, mentre
que el funcional Φ queda fixat a través del principi variacional que garanteix que
el propagador vestit correspon a un estat estacionari de la funció de partició:

δ Φ{G}
δG

∣∣∣∣
G0

= Σ{G} . (14)

L’autoenergia defineix, mitjançant l’equació de Dyson, el propagador a un cos
que, alhora, es pot fer servir per calcular la funció de partició i, en conseqüència,
un nou Φ. Aquesta aproximació autoconsistent no s’ha emprat en aquesta tesi
(en què es determina el propagador vestit a banda, mitjançant l’aproximació dia-
gramàtica de les SCGF), però ha trobat nombroses aplicacions en el camp de la
f́ısica hadrònica [Rap96; Wei98a], en la teoria quàntica de camps fora de l’equilibri
[Iva99; Bla04] i en matèria condensada [Dup05; Pot06]. És dif́ıcil dur a terme una
anàlisi diagramàtica de la funció de partició en termes de propagadors vestits ja
que, en diagrames tancats i connectats com els que defineixen el gran-potencial, no
s’hi poden identificar les parts que corresponen a una inserció diagramàtica i les
que provenen del diagrama mare. Ara bé, el formalisme de Luttinger-Ward es pot
derivar diagramàticament [dD64b] i cada terme del funcional es pot identificar amb
una suma infinita de termes amb propietats topològiques pròpies. En particular,
el funcional Φ correspon a la suma de a tots els diagrames tancats, connectats,
irredüıbles a dues part́ıcules i amb les ĺınies fermiòniques vestides [Bla86].

L’expressió de Luttinger-Ward per la funció de partició és completament equiv-
alent a l’expressió obtinguda en termes de la integral de la constant d’acoblament,
Eq. (12) [Bay62]. A més, les propietats variacionals del funcional permeten de-
mostrar que els resultats obtinguts en les aproximacions de molts cossos que re-
spectin l’equació generadora del funcional Φ, Eq. (14), són termodinàmicament
consistents. En altres paraules, si una certa aproximació de molts cossos a l’auto-
energia té associat un funcional Φ a través de l’Eq. (14) i es pot calcular una
quantitat microscòpicament en termes dels propagadors i macroscòpicament en
termes de la funció de partició, els resultats obtinguts seran equivalents. Cal fer
notar que certes aproximacions de molts cossos (com la de BHF) no respecten
aquesta propietat perquè les aproximacions diagramàtiques a nivell microscòpic
són, en certa manera, inconsistents amb les introdüıdes a nivell macroscòpic.

A un nivell més pràctic, és útil tenir expressions que relacionin directament les
propietats termodinàmiques del sistema amb la funció espectral i l’autoenergia,
ja que en última instància són aquestes quantitats les que s’empren en l’estudi
de les propietats microscòpiques del sistema. Per trobar aquestes relacions, cal
calcular expĺıcitament les traces de l’Eq. (13) mitjançant la tècnica de les sumes
de freqüències de Matsubara (veieu Apèndix C). D’aquesta manera, per exemple,
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es troba la següent expressió per la funció de partició:

ln Z = β
∑

k

∫ ∞

−∞

dω

2π
f(ω)

[
2πΘ

[
ReG−1(k, ω)

]
− 2 arctan

[
λ(k, ω)

]
+A(k, ω)Re Σ(k, ω) + Γ(k, ω)ReG(k, ω)

]
− Φ , (15)

en termes de la funció espectral, la part real del propagador invers ReG−1(k, ω) =
ω− k2

2m
−Re Σ(k, ω), el funcional Φ, l’amplada Γ(k, ω) = −2Im Σ(k, ω+) i la funció

λ(k, ω), que correspon al quocient entre la part imaginària i la part real del propa-
gador invers. Integrant per parts l’equació anterior, es pot arribar a una expressió
potser més intüıtiva per la funció de partició:

ln Z =
∑

k

∫ ∞

−∞

dω

2π
ln

[
1 + e−β(ω−µ)

]
B(k, ω)− Φ , (16)

en què el factor tèrmic associat al logaritme és el mateix que es troba en el cas
lliure. En aquesta fórmula, els efectes de la interacció queden redüıts al funcional
Φ i a una espècie de funció espectral:

B(k, ω) =A(k, ω) +
∂A(k, ω)

∂ω
Re Σ(k, ω) +

∂ReG(k, ω)

∂ω
Γ(k, ω) , (17)

que inclou els efectes de la fragmentació del pic de la quasi-part́ıcula en la seva
dependència en energies i que es pot calcular a partir de magnituds conegudes,
com la funció espectral A(k, ω) o l’amplada Γ(k, ω).

Una caracteŕıstica atractiva del formalisme de Luttinger-Ward és que, gràcies
a les propietats variacionals del funcional, les derivades respecte a diferents quan-
titats termodinàmiques només afecten els factors tèrmics, mentre que no cal tenir
en compte les (en general complicades) dependències en temperatura dels factors
dinàmics, com el propagador o l’autoenergia. D’aquesta manera, el formalisme de
Luttinger-Ward permet trobar expressions anaĺıtiques per l’entropia del sistema:

S =− ∂Ω

∂T

∣∣∣∣
µ

. (18)

A partir de les expressions Eqs. (15) i (16) per la funció de partició, per exemple,
veiem que l’entropia d’un sistema correlacionat es divideix en dos termes:

S = SDQ + S ′ , (19)

l’entropia de quasi-part́ıcula dinàmica, SDQ, i un terme, S ′, que té en compte
correlacions d’ordre més alt en el formalisme i que es pot negligir a temperatures
prou baixes [Car75]. En el formalisme de Luttinger-Ward, es poden trobar diferents
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expressions per l’entropia de quasi-part́ıcula dinàmica. D’entre totes elles, potser
la més interessant és la següent:

SDQ =
∑

k

∫ ∞

−∞

dω

2π
σ(ω)B(k, ω) , (20)

que ve donada per la convolució en energies de la funció espectral B(k, ω):

B(k, ω) = A(k, ω)

[
1− ∂Re Σ(k, ω)

∂ω

]
+

∂ReG(k, ω)

∂ω
Γ(k, ω) , (21)

i un factor estad́ıstic associat a l’entropia:

σ(ω) = −
{

f (ω) ln
[
f (ω)

]
+

[
1− f (ω)

]
ln

[
1− f (ω)

]}
. (22)

Aquesta expressió és particularment important perquè els efectes tèrmics, que
estan representats bàsicament per aquest factor σ(ω), han quedat desacoblats
dels efectes de correlacions dinàmiques, que vénen descrits per la funció espectral
B(k, ω). Aquesta funció comparteix algunes propietats amb la funció espectral
usual, A(k, ω), entre elles la regla de suma que en garanteix la normalització.

És interessant fer notar que el terme S ′:

S ′ =− ∂

∂T
TΦ[G] +

∑
k

∫ ∞

−∞

dω

2π

∂f(ω)

∂T
A(k, ω)Re Σ(k, ω) , (23)

inclou la derivada del funcional Φ. D’ara endavant negligirem aquest terme i,
per tant, no es necessari calcular el funcional Φ per obtenir l’entropia del sistema
correlacionat. La contribució S ′ a l’entropia és fruit d’una cancel·lació entre la
derivada de Φ i la convolució de A i Re Σ. Aquestes cancel·lacions són tals que, a
baixes temperatures, les restriccions d’espai fàsic fan que S ′ sigui negligible. A niv-
ell diagramàtic, les úniques contribucions a S ′ sorgeixen de diagrames en què com
a mı́nim dos denominadors d’energia s’anul·len. En altres paraules, S ′ inclou ter-
mes deguts a correlacions que van més enllà del camp mig. És important destacar,
tanmateix, que aquest terme és important en sistemes molt correlacionats, com ho
demostra el fet que és el responsable de la dependència de tipus T 3 ln T en el calor
espećıfic de l’3He [Car75; Gre83].

L’aproximació de Hartree-Fock

L’aproximació de Hartree-Fock (HF) sorgeix de considerar l’aproximació diagra-
màtica a ordre més baix per l’autoenergia d’un sistema interactuant. En aquesta
aproximació, l’autoenergia ve donada per la suma dels diagrames directes i de
bescanvi de la primera ĺınia de la Fig. 2. Els propagadors interns d’aquesta figura
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= +ΣHF

= +ΣSCHF

Figura 2: Representació diagramàtica de l’autoenergia en les aproximacions de
Hartree-Fock (a dalt) i de Hartree-Fock autoconsistent (a baix).

estan representats per ĺınies simples i, en conseqüència, l’autoenergia s’ha calculat a
partir de propagadors a un cos lliures. Ara bé, ja hem dit que, mitjançant l’equació
de Dyson, els efectes de la interacció vesteixen el propagador. Aix́ı doncs, si
utilitzem l’autoenergia per generar un nou propagador de HF a un cos mitjançant
l’equació de Dyson de la Fig. 1, generarem un propagador vestit que podŕıem
incloure de nou en el càlcul de l’autoenergia. Iterant aquest procés podŕıem arribar
a un resultat autoconsistent, en què el propagador vestit i el que hi hagués a les
ĺınies fermiòniques en l’aproximació de l’autoenergia fossin equivalents. En tal
cas, sumaŕıem una sèrie infinita de diagrames indirectament. Aquesta suma va
més enllà de la suma introdüıda per l’equació de Dyson, en què es consideren
tan sols les iteracions de peces d’autoenergia irredüıbles. Aquest procediment
defineix l’aproximació de Hartree-Fock autoconsistent (Self-Consistent Hartree-
Fock o SCHF, en el seu acrònim anglès).

Una aproximació simple, com la de SCHF, ens permet tractar certs aspectes,
com ara l’autoconsistència, de manera relativament senzilla. L’autoenergia en
aquesta aproximació, per exemple, és purament real, no depèn de l’energia i per
tant n’hi ha prou amb representar-la en funció del moment, com a la Fig. 3. Per
calcular aquesta quantitat en un esquema autoconsistent cal seguir un procediment
iteratiu. La primera iteració de l’autoenergia s’obté de normalitzar la distribució
de moments a la densitat, tot ajustant el potencial qúımic corresponent:

ρ = ν

∫
d3k

(2π)3
n(k, µ̃) , (24)

on la distribució de moments que s’ha fet servir correspon a la del sistema no
interactuant. El potencial qúımic fixa la distribució de moments a aquesta densitat,
amb què podem calcular la primera iteració de l’autoenergia:

Σ(k) =

∫
d3k1

(2π)3
〈kk1|V |kk1〉A n(k) . (25)

En aquesta iteració, la distribució de moments correspon a la distribució lliure i
l’autoenergia que se n’obté és precisament la de HF (representada per la primera
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Figura 3: Resultats per l’autoenergia SCHF (ĺınia discont́ınua) i HF (ĺınia
puntejada) a les densitats ρ0/2, ρ0 i 2ρ0 per una temperatura de T = 20
MeV. Els resultats de temperatura T = 0 corresponents a la ĺınia cont́ınua.

ĺınia de la Fig. 2). Per implementar numèricament l’equació anterior cal dur a
terme una expansió en ones parcials. Ara bé, si un cop calculada aquesta autoener-
gia, definim un nou espectre mono-particular a partir de l’equació ε(k) = k2

2m
+Σ(k),

podrem introduir aquest espectre en la distribució de moments i obtenir un nou
potencial qúımic mitjançant la normalització de l’Eq. (24). Iterant aquest procés
successivament, obtindrem l’autoenergia en l’aproximació SCHF. A la Fig. 3 rep-
resentem l’autoenergia de SCHF a T = 0 (ĺınia cont́ınua) i a T = 20 MeV (ĺınia
discont́ınua), fet que ens permet entendre els efectes que la temperatura té sobre
aquesta quantitat. Els resultats de cadascun dels tres panells s’han calculat per
tres densitats diferents: ρ0/2 (panell esquerre), ρ0 (panell central) i 2ρ0 (panell
dret), i ens informen dels efectes de la densitat en l’autoenergia. Finalment, els
efectes d’autoconsistència són els responsables de les diferències entre la ĺınia pun-
tejada, que dóna l’autoenergia en l’aproximació de HF (sense autoconsistència)
a T = 20 MeV, i la ĺınia discont́ınua, que correspon a l’autoenergia SCHF en
les mateixes condicions. El fet que aquestes energies potencials mono-particulars
siguin atractives és un efecte particular del potencial de CDBONN; altres poten-
cials realistes donen autoenergies repulsives en les mateixes condicions. En general,
la temperatura té un efecte repulsiu per tots els moments, ja que els factors tèrmics
permeten explorar un rang de moments més ampli en la interacció lliure, que van
associats a elements de matriu generalment repulsius. A més, l’efecte tèrmic és
menor com major és la densitat, fet que es correspon amb la intüıció que un sis-
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Figura 4: Dependència en densitat i temperatura de l’entropia per part́ıcula
en l’aproximació de SCHF.

tema a alta densitat es veu menys afectat per les correlacions tèrmiques perquè es
troba en un estat més degenerat. Finalment, la diferència entre les autoenergies
de HF i de SCHF és una barreja de l’efecte d’autoconsistència i de la diferència en
els potencials qúımics de les dues aproximacions. Tot i això, els resultats són els
esperats. D’una banda, les diferències són majors com major és la densitat i, de
l’altra, els resultats autoconsistents són més atractius en tot el rang de moments,
en coincidència amb la idea que la influència dels propagadors vestits permet una
descripció més realista a altes densitats.

Quant a les propietats termodinàmiques del sistema, presentem aqúı els resul-
tats per l’entropia per part́ıcula en l’aproximació de SCHF. En aquesta aproximació
de quasi-part́ıcula, la funció espectral és una delta de Dirac centrada a l’energia
de quasi-part́ıcula. A més, l’autoenergia en l’aproximació de SCHF és real. Amb
aquesta informació podem utilitzar les Eqs. (20) i (21), corresponents a l’entropia
de quasi-part́ıcula dinàmica, i obtenir l’expressió:

S

A
=

ν

ρ

∫
d3k

(2π)3
σ [ε(k)] . (26)

És interessant destacar que aquesta equació, obtinguda a partir del formalisme
de Luttinger-Ward, es pot obtenir a través d’altres derivacions de l’entropia en
l’aproximació de camp mig [Fet71]. En aquesta aproximació, a més, és fàcil de-
mostrar que S ′ = 0. El panell esquerre (dret) de la Fig. 4 mostra l’entropia per
part́ıcula en funció de la densitat (temperatura) a temperatura (densitat) fixa.
Els resultats són força intüıtius i s’acosten al que esperaŕıem trobar. D’una banda,
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l’entropia per part́ıcula a temperatura fixa decreix amb la densitat. Aquest decreix-
ement és particularment important a baixes densitats. D’altra banda, l’entropia
per part́ıcula a densitat fixa augmenta amb la temperatura. A temperatures prou
baixes, però, l’entropia tendeix cap a zero i ho fa de manera lineal. Ambdós com-
portaments (dependència logaŕıtmica amb la densitat, dependència lineal amb la
temperatura) es corresponen als esperats en els règims clàssic i degenerat, en què
es poden obtenir expressions anaĺıtiques per l’entropia del sistema. Els dos règims

corresponen a un ĺımit diferent del quocient x = T
εF

(amb εF =
k2

F

2m
). D’una banda,

el règim clàssic correspon a densitats baixes o altes temperatures, i.e. kF << 1
o T >> 1 i, per tant, x >> 1. L’entropia per part́ıcula en aquest règim es pot
obtenir de la fórmula:

S

A
=

5

2
− ln

ρλ3
dB

ν
+

3

2
ln

m∗

m
, (27)

on λ correspon a la longitud de de Broglie, λdB =
√

2π/(Tm), i la massa efec-
tiva s’obté d’un ajust de la dependència quadràtica del potencial mono-particular
(veieu Apèndix D). El bon funcionament d’aquesta aproximació s’observa en les
ĺınies puntejades del panell dret, que representen el ĺımit clàssic de l’entropia a les
densitats i temperatures corresponents. És clar que en la zona de baixes densitats
reprodueixen de forma quantitativa els resultats de l’entropia per part́ıcula. El
ĺımit degenerat, d’altra banda, correspon a temperatures baixes i densitats altes,
això és x << 1. L’expressió anaĺıtica per l’entropia en aquest règim és la següent:

S

A
=

π2

3ρ
N(0)T , (28)

on N(0) és la densitat d’estats a la superf́ıcie de Fermi a temperatura zero. Aquesta
quantitat és essencialment proporcional a la massa efectiva:

N(0) =
νkF m∗(kF )

2π2
, (29)

que en aquest cas ve donada per la següent derivada del potencial mono-particular:

m∗

m
=

1

2m

(
dε(k)

dk2

)−1

=
1

1 + 2mdΣ(k)
dk2

(30)

(veieu Apèndix D). Les ĺınies puntejades del panell dret s’han obtingut amb aquesta
aproximació lineal que, com era d’esperar, funciona millor en el rang de baixes
temperatures i densitats altes.

La resta de propietats termodinàmiques obtingudes en l’aproximació de SCHF
no donen resultats realistes. L’energia lliure per part́ıcula, per exemple, no té cap
mı́nim i, en conseqüència, la pressió és positiva per totes les densitats i tempera-
tures. No hi ha, doncs, cap punt de saturació. El mateix podem dir de l’energia
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Figura 5: Expansió diagramàtica del propagador a dos cossos en
l’aproximació d’escala.

per part́ıcula que, tot i la component atractiva de l’energia potencial, també és
repulsiva. L’utilitat que té calcular aquestes quantitats en una aproximació poc
realista com la de SCHF és doble. D’una banda, es pot comprovar que les ex-
pressions que el formalisme de Luttinger-Ward dóna per les diferents quantitats
termodinàmiques es redueixen a les obtingudes mitjançant altres formalismes en
l’aproximació de camp mig. De l’altra, els efectes tèrmics són particularment
transparents en aquesta aproximació i és doncs fàcil estudiar les dependències en
densitat i temperatura en els règims clàssic i degenerat dels diferents potencials
termodinàmics del sistema.

L’aproximació d’escala

L’energia total que s’obté a l’aproximació de SCHF és, com acabem de dir, positiva
en un rang molt ampli de densitats i temperatures. És clar, doncs, que en aque-
sta aproximació no podem reproduir el punt de saturació emṕıric de la matèria
nuclear. La causa d’aquest comportament incorrecte rau en la pròpia base de
l’aproximació, que només és apropiada per sistemes dilüıts amb interaccions rela-
tivament febles. Per una interacció fortament repulsiva a curtes distàncies (com
és el cas de la força NN), tanmateix, hauria de ser energèticament poc probable
trobar dos nucleons relativament a prop els uns dels altres. Gràcies a això, els
nucleons, en terme mig, exploren una regió de distàncies intermèdies en què la
interacció és atractiva i l’energia total pot esdevenir atractiva en un cert rang de
densitats. És clar, però, que aquest és un efecte causat per les correlacions a dos
cossos. Com que l’aproximació de HF no inclou aquest tipus de correlacions, els
resultats que s’obtenen per l’energia per part́ıcula són repulsius. En termes di-
agramàtics, el propagador a dos cossos de l’aproximació de HF ve donat per la
suma dels dos primers diagrames de la Fig. 5. Ara bé, per un sistema relativa-
ment poc dens amb una interacció forta, és clar que l’aproximació donada per la
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= +T + + ...

Figura 6: Expansió diagramàtica de la matriu T .

suma infinita dels diagrames representats a la Fig. 5 donarà lloc a resultats més
realistes. Aquests diagrames tenen en compte la propagació de dues part́ıcules que
interaccionen successivament una, dues, tres, etc. vegades i, per la seva estructura,
s’anomenen diagrames d’escala. És per això que aquesta aproximació és coneguda
com l’aproximació d’escala al propagador de dos cossos. Naturalment, el fet que
representi una suma infinita de diagrames té com a conseqüència un tractament
més acurat de les propietats microscòpiques i macroscòpiques del sistema.

L’estructura diagramàtica en termes d’“escales” es pot absorbir de manera
natural en l’anomenada matriu T o interacció efectiva en el medi, la representació
diagramàtica de la qual presentem a la Fig. 6. Aquesta interacció efectiva està
formada per una suma infinita de diagrames. A ordre més baix, la matriu T equival
al potencial nuu. A ordres superiors, la suma inclou termes en què un parell de
part́ıcules es difon mitjançant interaccions successives. En el ĺımit a temperatura
zero d’aquestes expressions, es pot veure que, de fet, els dos estats intermedis que
es propaguen són estats de tipus part́ıcula-part́ıcula i forat-forat. En aquest sentit,
aquesta interacció és més rica que la matriu G de l’aproximació de BHF, en què
només es té en compte la propagació intermèdia de parells de part́ıcules. Tant la
matriu G com la matriu T satisfan una equació del tipus Lippman-Schwinger:

〈k1k2|T (Zν)|k3k4〉 = 〈k1k2|V |k3k4〉

+ V
∫

d3k5

(2π)3
V

∫
d3k6

(2π)3
〈k1k2|V |k5k6〉 G0

II(Zν ; k5k6) 〈k5k6|T (Zν)|k3k4〉 .

(31)

G0
II és un propagador intermedi, que difereix segons l’aproximació emprada. En

l’aproximació d’escala a temperatura finitat, correspon a un propagador d’estats
part́ıcula-part́ıcula i forat-forat, que es pot calcular ı́ntegrament a partir de la
funció espectral:

G0
II(Zν ; k, k′) =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
A(k, ω)A(k′, ω′)

1− f(ω)− f(ω′)

Zν − ω − ω′ . (32)

La dependència en k i k′ d’aquesta equació és particularment molesta a l’hora
de dur a terme l’expansió en ones parcials de l’Eq. (31), ja que comporta una
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Figura 7: Representació diagramàtica de l’autoenergia en l’aproximació
d’escala.

dependència angular que duu a un acoblament de diferents ones parcials. La
solució d’aquesta inconveniència passa per promitjar la dependència angular de
G0

II . En l’aproximació de BHF, aquest promig angular té un efecte de menys
d’un MeV a l’energia per part́ıcula [Sar96]. No hi ha raons per creure que l’error
introdüıt en l’aproximació d’escala sigui major.

Tota aproximació del propagador a dos cossos té una traducció directa en ter-
mes de l’autoenergia. L’aproximació d’escala no és una excepció i l’autoenergia
d’escala queda completament determinada per la matriu T . La relació diagramàtica
entre la interacció efectiva i l’autoenergia correspon al segon diagrama de la Fig. 7.
A través de les propietats anaĺıtiques del propagador i de la matriu T , a més, es
pot demostrar que l’autoenergia d’escala es descomposa en dos termes:

ΣL(k, zν) = ΣHF (k) + ΣC(k, zν) . (33)

La primera contribució correspon a una autoenergia del tipus HF, però és lleuger-
ament diferent a l’autoenergia de SCHF ja que inclou insercions de peces d’auto-
energia més riques. Ara bé, es calcula també a partir de la interacció NN nua. El
terme correlacionat, en canvi, correspon al diagrama superior de la Fig. 7 i conté
els efectes de la matriu T . Com que el terme de HF generalitzat de l’autoenergia
és purament real, la part imaginària de l’autoenergia d’escala correspon a la part
imàginaria de ΣC i ve donada per l’expressió:

Im ΣL(k, ω+) =

∫
d3k′

(2π)3

∫ ∞

−∞

dω′

2π
〈kk′|Im T (ω + ω′

+)|kk′〉AA(k′, ω′)

×[f(ω′) + b(ω + ω′)] , (34)

on la funció b(ω + ω′) és una distribució de Bose-Einstein que sorgeix en tractar
de forma simètrica la propagació de parells part́ıcula-part́ıcula i forat-forat. És
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important fer notar que, de la mateixa manera que la part real de la matriu T es
pot obtenir a partir de la seva part imaginària mitjançant una relació de dispersió,
la part real i imaginària de l’autoenergia estan relacionades a través d’una integral
de dispersió.

Les Eqs. (11), (24), (31) i (34), juntament amb les corresponents relacions de
dispersió, defineixen un conjunt d’equacions que, a una densitat i temperatura,
es poden resoldre de manera autoconsistent, tot i donant lloc a l’esquema de les
Funcions de Green Autoconsistents (SCGF). La resolució numèrica d’aquest es-
quema ve dificultada pel fet que s’iteren autoconsistentment les dependències en
moment i energia tant de la funció espectral com de l’autoenergia i de la matriu
T . A més, les correlacions de curt abast indueixen una població no negligible als
estats d’altes energies, de manera que a nivell numèric cal controlar tant les re-
gions d’energies molt positives i molt negatives com les estructures abruptes que
sorgeixen al voltant del pic de quasi-part́ıcula. Sortosament, aquestes estructures
són més senzilles de mostrejar numèricament a temperatura finita. De fet, és
gràcies a l’extensió d’aquest formalisme a sistemes de temperatura no nul·la que
s’ha pogut obtenir una solució numèrica completa del problema [Fri03].

La funció espectral A(k, ω) obtinguda en aquesta aproximació conté totes les
correlacions de l’aproximació d’escala, i està representada en un ampli rang de
densitats i temperatures als diferents panells de la Fig. 8. Mentre que la columna
dreta representa l’evolució d’aquesta quantitat amb la densitat, l’esquerra en dóna
l’evolució tèrmica. Els tres panells (superior, central i inferior) corresponen a difer-
ents moments (k = 0, kF i 2kF respectivament) i ens informen de la dependència en
moment d’aquesta quantitat. Una de les conclusions més interessants que podem
extreure d’aquesta figura és que, mentre els efectes tèrmics són relativament poc
importants i estan concentrats al voltant de la regió ω = µ, els efectes de densitat
afecten la funció espectral en tot el rang d’energies i moments. Una caracteŕıstica
comú de tots els panells és, a més, la presència d’un pic prominent en la funció
espectral, que és una reminiscència de l’estructura mono-particular dels sistemes
nuclears. Si ens fixem en l’evolució en densitat de l’estat amb k = 0, s’observa que
aquest pic es desplaça cap a energies cada cop més negatives respecte µ. Aquest
fet es correspon amb la idea que l’energia de quasi-part́ıcula de l’estat k = 0 és més
lligada quan augmenta la densitat. L’amplada d’aquest pic i les cues a energies
molt positives i molt negatives augmenten a mida que s’incrementa la densitat.
La funció espectral a k = 2kF presenta unes caracteŕıstiques semblants i, tot i que
el pic de quasi-part́ıcula tendeix a energies més repulsives a mida que la densitat
augmenta, tant la seva amplada com les cues a altes energies esdevénen més im-
portants amb la densitat. D’altra banda, el comportament de la funció espectral
a kF és qualitativament diferent. Aix́ı, la posició del pic de quasi-part́ıcula amb
prou feines varia, mentre que la seva amplada disminueix amb la densitat. Aquest
comportament és reminiscent del fet que, a temperatura zero i.e. pel sistema total-
ment degenerat, la funció espectral té una estructura de delta de Dirac a k = kF i
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Figura 8: Funció espectral en funció de l’energia ω − µ per tres moments: k =
0 (panell superior), kF (panell central) i 2kF (panell inferior). A la columna
esquerra, les diferents ĺınies corresponen a cinc densitats diferents (de 0.1 a 0.5
fm−3 en passos equidistants). La ĺınia puntejada correspon a la distribució tèrmica
f(ω) a aquesta temperatura. A la columna dreta, les diferents ĺınies corresponen
a quatre temperatures diferents (de 5 a 20 MeV en passos equidistants).

ω = µ. La funció espectral, doncs, tendeix a tenir una estructura de tipus delta per
sistemes més degenerats, i.e. per sistemes a altes densitats i temperatures baixes.
La dependència de les cues d’altes energies en densitat és, tanmateix, comú per
tots els moments i a k = kF també s’observa l’augment de la seva importància
amb la densitat. Aquest fet es correspon amb la idea intüıtiva que les correlacions
que fragmenten el pic de quasi-part́ıcula augmenten amb la densitat.

Acabem de comentar que la funció espectral presenta un pic de quasi-part́ıcula
per tots els moments i energies. La prominència d’aquest pic permet descriure
el sistema, com a mı́nim a nivell qualitatiu, en termes de quasi-part́ıcules. En
particular, a cada moment li podem associar una sola energia de quasi-part́ıcula
mitjançant la relació recurrent:

ε(k) =
k2

2m
+ Re Σ(k, ε(k)) , (35)
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Figura 9: Resultats per l’autoenergia on-shell de les aproximacions de
SCHF, SCGF i BHF a les densitats ρ0/2, ρ0 i 2ρ0. Les ĺınies cont́ınues
corresponen a una temperatura de T = 5 MeV i les ĺınies discont́ınues
a T = 20 MeV. Les fletxes assenyalen la posició del moment de Fermi
corresponent.

que defineix precisament l’energia a què es troba el pic de la quasi-part́ıcula en la
funció espectral. La relació de dispersió definida per aquesta relació es pot com-
parar amb els espectres mono-particulars de les aproximacions de SCHF o de BHF,
com fem a la Fig. 9, on es mostren els espectres per tres densitats diferents: ρ0/2
(panell esquerre), ρ0 (panell central) i 2ρ0 (panell dret). Dins de cada panell, les
ĺınies cont́ınues representen una temperatura baixa (T = 5 MeV) i les discont́ınues
una de relativament alta (T = 20 MeV). Els efectes de la densitat són qualita-
tivament semblants pels espectres en les tres aproximacions. La densitat fa que
les energies de quasi-part́ıcula esdevinguin més atractives i la seva dependència
en moment, més acusada. Quant a les diferències entre les aproximacions, els es-
pectres realistes de SCGF són en general uns 15 MeV més atractius que els de
SCHF a k = 0, però a mida que augmenta el moment aquestes diferències es fan
més significatives. Aquest efecte és diferent quan comparem les aproximacions de
BHF i de SCGF i, mentre que a baix moment la diferència entre ambdós espectres
depèn de la densitat, a moments per sobre de kF les variacions tendeixen a ser
menors. D’altra banda, l’efecte de la temperatura és diferent segons l’aproximació
que considerem. En les aproximacions de SCHF i de BHF, els espectres són més
repulsius a mida que augmenta T a tots els moments. Per l’aproximació de SCGF,
en canvi, l’espectre dels forats (estats amb k < kF ) esdevé més atractiu i el de les
part́ıcules més repulsiu. Aquest mateix efecte s’ha observat en càlculs BHF estesos
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Figura 10: Distribució de moments en l’aproximació de SCGF. Els tres
panells corresponen a les densitats ρ0/2 (panell esquerre), ρ0 (panell cen-
tral) i 2ρ0 (panell dret). S’hi mostren quatre temperatures diferents, de
T = 5 MeV a T = 20 MeV en passos equidistants.

que tracten de manera aproximada les correlacions de forats [Zuo06].
Pocs observables a nivell microscòpic reflexen tant bé la influència de les cor-

relacions com la distribució de moments. Mentre que en una aproximació de quasi-
part́ıcula, aquesta quantitat ve donada per la distribució de Fermi-Dirac calculada
a les corresponents energies de quasi-part́ıcula, n(k) = f [ε(k)], en una aproxi-
mació de molts cossos correlacionada la distribució de moments té en compte la
fragmentació del pic de quasi-part́ıcula mitjançant la funció espectral:

n(k) =

∫ ∞

−∞

dω

2π
A(k, ω)f(ω) . (36)

La convolució en energies d’A(k, ω) i f(ω) dóna lloc a una distribució de moments
que per sota de la superf́ıcie de Fermi està relativament despoblada respecte al cas
de quasi-part́ıcula (diem que presenta una certa depleció), mentre que per sobre de
kF presenta estats més poblats que la distribució de Fermi. La distribució de mo-
ments es pot determinar emṕıricament a partir dels experiments de difusió (e, e′p),
en què un electró expulsa un protó d’un nucli pesat [Kel96; Dic04; Roh04]. Aquests
resultats experimentals són la millor eina per discernir els efectes de les correla-
cions de curt abast en nuclis finits. Els nostres càlculs, malauradament, s’han fet
a temperatura finita, mentre que els experiments tenen lloc a temperatura zero.
Això impedeix, és clar, una comparació directa amb els resultats experimentals.
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La distribució de moments correlacionada en un cert rang de moments es pre-
senta a la Fig. 10. Els tres panells representen les mateixes densitats que la Fig.
9, però en cadascun d’ells hi apareixen els resultats per temperatures de T = 5
fins a T = 20 MeV en passos de 5 MeV. En general, l’efecte tèrmic es limita a fer
disminuir la població per sota de k = kF i a fer-la augmentar per sobre d’aquest
moment. Hem vist que els efectes de la temperatura sobre la funció espectral
són relativament petits i, per tant, aquesta dependència en temperatura la po-
dem atribuir bàsicament a les correlacions tèrmiques o, en altres paraules, a les
modificacions que la temperatura indueix sobre f(ω). A mida que la temperatura
augmenta, la dependència en energia d’aquesta funció es fa més suau i els estats
d’energia per sota (per sobre) de µ tendeixen a estar menys (més) poblats. La im-
portància relativa de la convolució amb el pic de quasi-part́ıcula, que per k < kF

es troba per sota de µ , disminueix a mida que augmenta la temperatura. Aquesta
disminució explica la dependència en temperatura de la depleció. D’altra banda,
per k > kF el pic de quasi-part́ıcula es troba per sobre de ω = µ i la seva convolució
amb f(ω) es fa més important a mida que la temperatura creix. La densitat té di-
versos efectes sobre la distribució de moments. D’una banda, el moment de Fermi
augmenta amb la densitat i per tant el moment en què la població comença a
disminuir augmenta. D’altra banda, la depleció de la distribució de moments per
estats de forat (k < kF ) es fa menys important i els efectes de temperatura sobre
ella són cada cop menors. Aquest segon comportament és relativament intüıtiu,
ja que en augmentar la densitat el sistema és més degenerat i els efectes tèrmics
es fan menys importants. La disminució de la depleció amb la densitat, en canvi,
va en contra del comportament que esperaŕıem trobar. La depleció dels estats de
forat és una conseqüència de les correlacions de curt abast, que difonen estats de
moment baix cap a estats d’alt moment i, com a efecte de molts cossos, caldria es-
perar que augmentés amb la densitat. La raó d’aquest comportament anti-intüıtiu
encara no està del tot compresa.

Propietats termodinàmiques de la matèria nuclear

Un cop coneguda la funció espectral a partir de la resolució numèrica del mètode de
les SCGF, podem calcular les propietats microscòpiques mono-particulars del sis-
tema aix́ı com algunes propietats macroscòpiques, com ara l’energia per part́ıcula a
través de la regla de suma de GMK. Per determinar les propietats termodinàmiques
del sistema, que en regiran l’evolució a nivell macroscòpic, podem fer servir el for-
malisme de Luttinger-Ward. Els punts d’equilibri d’un sistema a temperatura i
densitat fixes vénen determinats pels mı́nims de l’energia lliure:

F = E − TS . (37)
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Figura 11: Funció espectral B en funció de l’energia ω − µ per tres moments:
k = 0 (panell superior), kF (panell central) i 2kF (panell inferior). A la columna
esquerra, les diferents ĺınies corresponen a cinc densitats diferents (de 0.1 a 0.5
fm−3 en passos equidistants). La ĺınia puntejada correspon al factor estad́ıstic
σ(ω) a aquesta temperatura. A la columna dreta, les diferents ĺınies corresponen
a quatre temperatures diferents (de 5 a 20 MeV en passos equidistants).

Com que l’energia per part́ıcula ve determinada per la regla de suma de GMK,
és clar que necessitem determinar l’entropia del sistema correlacionat. Aquesta
entropia és ben descrita per l’aproximació de quasi-part́ıcula dinàmica, Eq. (20).
El càlcul d’aquesta quantitat ha estat un dels objectius fonamentals d’aquesta tesi.

Els efectes que la interacció i les correlacions dinàmiques generen en l’entropia
de quasi-part́ıcula dinàmica van essencialment associats a la funció espectral B,
definida a l’Eq. (21) i que es mostra en la Fig. 11 en les mateixes condicions en què
s’ha calculat la funció espectral a la Fig. 8. A nivell qualitatiu, la funció espectral B
presenta unes caracteŕıstiques força semblants a les de la funció espectral A. D’una
banda, en tot el rang de moments, densitats i temperatures explorat, presenta un
pic de quasi-part́ıcula molt pronunciat (noteu l’escala logaŕıtmica), encara més
marcat que el de la funció espectral A. A l’estat de moment zero, aquest pic
tendeix a desplaçar-se a energies més negatives a mida que augmenta la densitat,
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Figura 12: Dependència en densitat (panell esquerre) i en temperatura
(panell dret) de l’entropia per part́ıcula en l’aproximació de quasi-part́ıcula
dinàmica. Les ĺınies puntejades del panell dret corresponen a l’aproximació
degenerada de l’Eq. (28). Noteu la diferència en les escales del panell
esquerre i del panell dret.

mentre que per 2kF el pic es fa cada cop més repulsiu. Altra vegada, aquests pics
es fan més amples i més baixos a mida que augmenta la densitat. A diferència de
la funció espectral A, les cues a energies molt positives i molt negatives decreixen
amb la densitat. A la superf́ıcie de Fermi (k = kF ), la importància d’aquestes cues
decreix igualment amb la densitat, però el pic de quasi-part́ıcula esdevé més estret
i més alt amb la densitat, d’acord amb l’augment de la degeneració. Els efectes
tèrmics sobre B són, en canvi, molt limitats i es concentren al voltant de la regió
ω ∼ µ per moments baixos (k ≤ kF ). És important fer notar que l’estretesa del pic
de quasi-part́ıcula en la funció espectral B assenyala el fet que les correlacions que
fragmenten el pic de quasi-part́ıcula són poc importants en el càlcul de l’entropia.
De fet, una aproximació de quasi-part́ıcula sense amplada reprodueix l’entropia
de quasi-part́ıcula dinàmica amb menys d’un 5% de diferència en tot el rang de
densitats i temperatutes estudiat.

A la Fig. 12 hi mostrem l’entropia de quasi-part́ıcula dinàmica, en funció de la
densitat (a temperatura fixa) al panell esquerre i de la temperatura (a densitat fixa)
al panell dret. A primera vista no s’observen grans diferències respecte l’entropia
de camp mig de la Fig. 4 i, de fet, el quocient d’ambdues quantitats no és mai
superior a un factor 1.5. L’entropia de quasi-part́ıcula dinàmica és generalment
superior a la de camp mig, especialment a les densitats més altes. En certa man-
era, doncs, sembla que les correlacions que van més enllà del camp mig tendeixen
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a augmentar l’entropia. Quant a la dependència en densitat, s’observa novament
un decreixement acusat a baixes densitats. Aquest decreixement és, però, menys
important que en el cas no correlacionat. De fet, l’aproximació clàssica no re-
produeix bé la dependència en densitat de l’entropia per part́ıcula. En canvi, la
dependència en temperatura a densitat fixa és més o menys lineal a baixes temper-
atures, d’acord amb el ĺımit degenerat. Hi ha, però, diverses diferències respecte
al ĺımit degenerat del cas no correlacionat. En aquell cas, l’aproximació lineal
s’obtenia a partir de la densitat d’estats a temperatura zero. Malauradament,
l’aproximació SCGF no es pot extrapolar de manera fiable a aquesta temperatura
(on els efectes d’aparellament són necessàriament importants) i s’ha de fer servir la
densitat d’estats de la temperatura més baixa per calcular l’aproximació lineal. A
partir del ĺımit degenerat de l’entropia correlacionada de l’Eq. (20), es pot obtenir
una expressió per la densitat d’estats:

NB(T ) = ν

∫
d3k

(2π)4
B(k, ω = µ) , (38)

on T denota el fet que aquesta densitat d’estats ha estat calculada a una tem-
peratura T concreta no nul·la. L’estretesa de la funció espectral B fa que, a
baixes temperatures, aquesta quantitat sigui molt semblant a la densitat d’estats
en l’aproximació de quasi-part́ıcula, Eq. (29). En tot cas, l’entropia per part́ıcula
no presenta un comportament tan lineal com l’entropia a temperatures baixes en el
cas no correlacionat. Per exemple, l’entropia en l’aproximació de SCHF a ρ = 2ρ0

es reprodueix amb l’aproximació lineal fins a T = 20 MeV, mentre que en el cas
correlacionat comencen a apreciar-se desviacions del comportament lineal a partir
de T = 10 MeV. En certa manera, doncs, sembla que al sistema correlacionat li
costa més arribar als ĺımits clàssic i degenerat.

Per arribar al potencial termodinàmic, encara ens cal calcular l’energia per
part́ıcula. Aquesta quantitat s’ha de calcular, com hem repetit anteriorment, a
partir de la regla de suma de GMK i la presentem a la Fig. 13. Els tres pan-
ells mostren l’energia total (panell esquerre), l’energia cinètica (panell central) i
l’energia potencial (panell dret) per part́ıcula en un cert rang de densitats per cinc
temperatures diferents. A la temperatura més baixa (T = 5 MeV) els resultats
per l’energia total són atractius per totes les densitat explorades, en contra del que
passa al cas no correlacionat. Aquesta és una conseqüència clara de la introducció
de correlacions a dos cossos en el formalisme, que permeten assolir resultats més
realistes. A mida que la temperatura augmenta, l’energia total augmenta de man-
era uniforme a totes les densitats. Aquest efecte es deu essencialment a l’augment
en energia cinètica, ja que l’energia potencial amb prou feines canvia amb la tem-
peratura. El creixement de l’energia per part́ıcula és bàsicament quadràtic amb
la temperatura a totes les densitats, com s’espera en el ĺımit degenerat d’un sis-
tema fermiònic. Tanmateix, s’ha de fer notar que en el cas correlacionat és dif́ıcil
trobar una expressió anaĺıtica pel coeficient que acompanya aquesta dependència
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Figura 13: Dependència en densitat de l’energia per part́ıcula total (pan-
ell esquerre), l’energia cinètica (panell central) i l’energia potencial (panell
dret) en l’aproximació de SCGF. S’hi mostren quatre temperatures: 5 (cer-
cles), 10 (quadrats), 15 (diamants) i 20 (triangles) MeV.

quadràtica (veieu Apèndix D). És important esmentar que l’energia cinètica pre-
senta una dependència en densitat i temperatura relativament semblant a la del
cas no correlacionat, però és 1.5 vegades superior. Aquest increment es deu a la
introducció de les correlacions, que modifiquen la distribució de moments i fan
augmentar la població a alts moments. D’altra banda, l’energia potencial és entre
3 i 4 vegades més atractiva que en el cas de l’aproximació de SCHF, gràcies a la
inclusió de les correlacions a dos cossos. Tot plegat es tradueix en l’existència d’un
punt de saturació per l’energi total, que ocórre a un densitat força alta, ρ = 0.3
fm−3, pràcticament constant per totes les temperatures explorades. L’energia de
saturació associada a aquesta densitat, tanmateix, depèn substancialment de la
temperatura i va des dels −19 MeV a T = 5 MeV fins als −8 MeV a T = 20 MeV.

Un cop calculades l’energia i l’entropia del sistema correlacionat, podem util-
itzar els resultats per obtenir l’energia lliure del sistema. La ĺınia cont́ınua amb
cercles del panell esquerre de la Fig. 14 representa precisament l’energia lliure
per part́ıcula de la matèria nuclear en funció de la densitat a una temperatura
de T = 10 MeV. La ĺınia cont́ınua amb quadres dóna l’energia per part́ıcula
en el mateix rang de densitats i temperatures. Al panell dret hi mostrem les
mateixes quantitats obtingudes amb l’aproximació de BHF. A nivell qualitatiu,
podem dir que a densitats altes i intermèdies ambdues quantitats són més re-
pulsives en l’aproximació de SCGF que en la de BHF. A aquesta temperatura en
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Figura 14: Energia lliure per part́ıcula (ĺınia cont́ınua), energia total per
part́ıcula (ĺınia cont́ınua amb cercles) i potencial qúımic µ̃ (ĺınia puntejada
amb cercles) per les aproximacions de SCGF (panell esquerre) i BHF (pan-
ell dret) en funció de la densitat per una temperatura de T = 10 MeV. El
potencial qúımic µ obtingut mitjançant una derivada numèrica de F/A es
mostra en ĺınies discont́ınues. L’àrea ressaltada representa el punt emṕıric
de saturació de la matèria nuclear simètrica.

particular, l’efecte és tal que situa l’energia de saturació de SCGF a uns −16 MeV,
en coincidència amb l’energia de saturació emṕırica. Ara bé, com ja hem comentat,
aquesta quantitat depèn substancialment de la temperatura i una extrapolació a
T = 0 dóna una energia de saturació de −21 MeV.

Ja hem esmentat que la consistència termodinàmica en una aproximació de
molts cossos es tradueix en una equivalència entre els valors obtinguts per una
quantitat determinada, ja sigui de forma microscòpica o de manera termodinàmica.
Hi ha maneres de demostrar que una aproximació respecta la consistència ter-
modinàmica i és ben sabut que tant l’aproximació d’escala com la de HF són
consistents [Bay62]. Un observable que sovint s’utilitza per estudiar aquesta con-
sistència és el potencial qúımic. D’una banda, el potencial qúımic es pot determinar
mitjançant la normalització de la distribució de moments, Eq. (24). Aquest és el
potencial qúımic microscòpic, µ̃. D’altra banda, a nivell termodinàmic el potencial
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MeV. Panell dret: determinació aproximada de la temperatura cŕıtica amb
corbes µ− p.

qúımic s’obté de derivar la densitat d’energia lliure respecte de la densitat:

µ(ρ, T ) =
∂

∂ρ

F (ρ, T )

V
. (39)

Als panells esquerre i dret de la Fig. 14 hi presentem µ̃ amb una ĺınia puntejada
amb cercles buits i µ amb una ĺınia discont́ınua. S’observa que, per sobre de 0.03
fm−3, els potencials qúımics pràcticament coincideixen en l’aproximació de SCGF.
Els resultats de l’aproximació de BHF, en canvi, difereixen pràcticament en una
vintena de MeV a ρ0. L’absència de consistència termodinàmica és un dels prin-
cipals desavantatges de l’aproximació de BHF, i obliga, en gairebé totes les apli-
cacions pràctiques, a obtenir el potencial qúımic a partir de derivades numèriques
de l’energia lliure. L’aproximació de SCGF complementada amb el formalisme
de Luttinger-Ward permet, en canvi, obtenir resultats consistents a nivell mi-
croscòpic. Noteu que aquesta consistència es pot prendre com a la confirmació
que l’aproximació de l’entropia correlacionada en termes de l’entropia de quasi-
part́ıcula dinàmica és raonable.

Com a primera aplicació d’aquesta metodologia a la matèria nuclear, presentem
a la Fig. 15 dos panells associats a la transició de fase de tipus ĺıquid-gas que té
lloc a densitats baixes per aquest sistema. L’existència d’aquesta transició es pot
deduir de la dependència en densitat tant del potencial qúımic com de la pressió.
Aquesta última s’obté de la igualtat:

p = ρ

(
µ̃− F

A

)
, (40)
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i mostra un màxim a densitats intermèdies (veieu ĺınia discont́ınua en el panell
esquerre de la Fig. 15). La zona de pressions decreixents amb la densitat, que
es correspon també amb la zona de potencials qúımics decreixents, és inestable
mecànicament i determinada l’anomenada zona espinodal. La presència d’aquesta
zona és un signe de la descomposició de fases del sistema, ja que, a una temperatura
fixa, implica la presència de dues densitats amb pressions iguals. De fet, les dues
densitats que satisfan simultàniament les següents igualtats per una temperatura
donada:

p(ρG, T ) = p(ρL, T ) (41)

µ(ρG, T ) = p(ρL, T ) (42)

defineixen la densitat de dues fases qualitativament diferents: la fase de gas, a una
densitat baixa ρG, i la fase de ĺıquid, a una densitat ρL > ρG. Entre ambdues
densitats hi ha, a cada temperatura, una zona de coexistència de fases en què,
segons la construcció de Maxwell de les transicions de fase, tant el potencial qúımic
com la pressió haurien de constants. Al panell esquerre de la Fig. 15 mostrem
aquesta construcció per la pressió del cas correlacionat a T = 15 MeV. A l’interior
de la zona de pressió constant hi coexisteixen un fase gasosa i una de ĺıquida.
A partir d’una certa temperatura, però, tant la pressió com el potencial qúımic
passen a ser funcions monòtones de la densitat i ja no s’hi observa cap coexistència
de fases. Una manera relativament senzilla de trobar aquesta temperatura cŕıtica,
Tc, ens la dóna el panell de la dreta de la Fig. 15. En efecte, la coexistència de
fases implica que, en la gràfica de la pressió en funció del potencial qúımic, hi
ha d’haver un creuament de dues branques de la mateixa funció. Per sobre de la
temperatura cŕıtica, en canvi, el potencial qúımic és una funció monòtona de la
pressió. El canvi d’un comportament a l’altre s’observa, a la Fig. 15, entre T = 16
i T = 18 MeV i per tant la temperatura cŕıtica rau al voltant dels Tc ∼ 17 MeV.
És important fer notar que per dur a terme el mateix càlcul en una aproximació
que no fos termodinàmicament consistent, caldria obtenir el potencial qúımic a
cada densitat mitjançant una derivada numèrica.

Resum i conclusions

El principal objectiu d’aquesta tesi ha estat l’estudi del problema nuclear de molts
cossos a temperatura finita a partir d’un càlcul ab initio. Més concretament, en
aquesta tesi hem volgut descriure la connexió entre les propietats termodinàmiques
del sistema i les seves excitacions microscòpiques descrites en termes de funcions
de Green. La teoria de les funcions de Green és un dels pocs tractaments de molts
cossos que es pot generalitzar sense ambigüitats a temperatura finita. L’ús d’aquest
formalisme ens permet trobar les propietats espectrals de la funció de Green a un
cos i, a partir d’elles, tenim accés a totes les propietats mono-particulars del sistema
de molts cossos, a més de l’energia per part́ıcula.

282
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Ara bé, la connexió entre aquestes propietats microscòpiques i les propietats
termodinàmiques del sistema s’ha d’establir de manera consistent. Això és precisa-
ment el que fa el formalisme de Luttinger-Ward. En aquest formalisme, la funció
de partició s’expressa en termes de la funció de Green vestida i és en aquest sentit
que hom diu que es tracta d’una aproximació no pertorbativa. D’entre les propi-
etats termodinàmiques que podem estudiar, l’entropia és particularment senzilla
d’obtenir i permet, juntament amb l’energia per part́ıcula derivada a partir de la
regla de suma de GMK, trobar el potencial termodinàmic relevant del sistema, i.
e. l’energia lliure. En aquest formalisme l’entropia correlacionada es pot calcular
en l’aproximació de quasi-part́ıcula dinàmica, en què l’entropia ve donada per una
convolució en energies d’un factor estad́ıstic, σ(ω), i una funció espectral que conté
els efectes deguts a les correlacions dinàmiques.

Com a primer càlcul dins del mètode de les funcions de Green i del formalisme
de Luttinger-Ward, hem analitzat la matèria nuclear en l’aproximació de HF a
partir d’una interacció realista. Els efectes de l’autoconsistència, que poden ser
importants a densitats prou elevades, es poden estudiar a través de l’autoenergia.
La manca de correlacions a dos cossos en aquesta aproximació duu, però, a resultats
positius per l’energia per part́ıcula. L’aproximació de HF és, per tant, molt lluny
de ser realista. Tot i això, aquesta aproximació de camp mig ens permet entendre
qualitativament les propietats termodinàmiques del sistema, especialment les seves
dependències en densitat i temperatura, que es poden descriure en certs règims de
densitats i temperatures mitjançant els ĺımits clàssic i degenerat.

Un mètode més realista per tractar el problema de la matèria nuclear és
l’aproximació d’escala, que suma diagrames d’interaccions successives entre dues
part́ıcules a nivell del propagador a dos cossos. La resolució numèrica d’aquesta
aproximació tot i considerant tant la dependència en moment com en energies de
totes les quantitats es pot dur a terme mitjançant l’esquema de les Funcions de
Green Autoconsistents (SCGF). D’aquesta manera, podem tenir accés a la funció
espectral d’un nucleó en la matèria nuclear, que presenta alhora un pic de quasi-
part́ıcula molt accentuat i cues no negligibles a altes energies. Aquestes cues són
causades, en última instància, per les correlacions de curt abast i diem que el pic
de quasi-part́ıcula s’ha fragmentat com a conseqüència d’aquestes correlacions.

L’aplicació d’aquests resultats microscòpics a l’estudi de les propietats ter-
modinàmiques del sistema es pot dur a terme mitjançant el formalisme de Luttinger-
Ward. Aquest formalisme suggereix l’ús de l’entropia de quasi-part́ıcula dinàmica,
en què els efectes de les correlacions queden inclosos en una funció espectral B
més estreta i més alta que la funció espectral habitual. En aquesta aproximació,
els resultats obtinguts pel potencial qúımic són termodinàmicament consistents.
Tant l’energia per part́ıcula com l’energia lliure per part́ıcula que se n’obtenen són
més repulsives en l’aproximació d’escala que en la de BHF. Això permet obtenir
resultats més realistes per l’energia de saturació, tot i que la densitat de saturació
corresponent és encara massa alta. Una primera aplicació d’aquests resultats ha
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Resum en català

estat la determinació de la temperatura cŕıtica de la matèria nuclear simètrica,
que en el cas correlacionat es troba al voltant de Tc ∼ 17 MeV. La combinació
de la teoria de funcions de Green i el formalisme de Luttinger-Ward estableix un
marc comú, consistent i basat en primers principis en què es poden obtenir quali-
tativament les propietats termodinàmiques de la matèria nuclear. Aquest mètode
obre la porta a futures aplicacions de càlculs realistes en el camp de la matèria
densa, que ens poden permetre entendre millor des de l’estructura i caracteŕıstiques
d’objectes astrof́ısics compactes fins les propietats més genèriques de les col·lisions
d’ions pesats.
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Gibbs d’un système quantique composé d’un grand nombre de particules,
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Gibbs d’un système quantique composé d’un grand nombre de partic-
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[Dic05b] W. H. Dickhoff and H. Müther, Pairing properties of nucle-
onic matter employing dressed nucleons, Physical Review C 72, 054313
(2005).

[Don66] S. Doniach and S. Engelsberg, Low-temperature properties of
nearly ferromagnetic Fermi liquids, Physical Review Letters 17, 750
(1966).

[Dup05] N. Dupuis, Renormalization group approach to fermion systems in the
two-particle-irreducible formalism, European Physical Journal B 48, 319
(2005).

[Dze95] M. Dzelalija et al., Entropy in central Au+Au reactions between 100
and 400A MeV, Physical Review C 52, 346 (1995).

[Eis72] J. M. Eisenberg and W. Greiner, Microscopic Theory of the Nu-
cleus (North-Holland Publishing, Amsterdam, 1972), First Edition.

[Ent03] D. R. Entem and R. Machleidt, Accurate charge-dependent
nucleon-nucleon potential at fourth order of chiral perturbation theory,
Physical Review C 68, 041001 (2003).

[Fan75] S. Fantoni and S. Rosati, Hypernetted-chain approximation for a
fermion system, Nuovo Cimento della Società Italiana di Fisica A 25,
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[Rio06a] A. Rios, A. Polls and H. Müther, Sum rules and correlations in
asymmetric nuclear matter, Physical Review C 73, 024305 (2006).

[Rio06b] A. Rios, A. Polls, A. Ramos and H. Müther, Entropy of a cor-
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