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Introduction

“Lasciate ogne speranza, voi ch’intrate”.

Dante Alighieri, Divina Commedia, Inferno, canto 3.

The presence of strange baryons, i.e., hyperons (A, ¥, =), in finite and infinite nuclear
systems has received a lot of attention in the last decades, both from the theoretical and
experimental points of view [Ga77, Po78, Ba85, D089, 0s90, Co90, Ba90, Gid5, Ak97,
Os98]. Strangeness adds a new dimension to the evolving picture of nuclear physics,
and gives us an opportunity to study the fundamental baryon-baryon interactions from

an enlarged perspective.

Hypernuclei are bound systems composed of neutrons, protons and one or more
hyperons. They were first observed in 1952 with the discovery of a hyperfragment by
Danysz and Pniewsli in a balloon—flown emulsion stack [Da53]. The initial cosmic-
ray observations of hypernuclei were followed by pion and proton beam production

in emulsions and then “*He bubble chambers. The weak decay of the A particle into
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a m~ plus a proton was used to identify the A-hypernuclei and to determine binding
energies, spins, and lifetimes for masses up to A = 15 [Ju73, Da91]. Average properties
of heavier systems were estimated from spallation experiments, and two double-A hy-
pernuclei were reported from =~ capture [Da63, Pr66]. More systematic investigations
of hypernuclei began with the advent of separated K~ beams, which permitted the

realization of counter experiments [Pa73].

Although major achievements in hypernuclear physics have been taken at very slow
pace due to the limited statistics, the in-flight (K, 7~) counter experiments carried
out at CERN [Br75, Be79] and Brookhaven (BNL) [Ch79] have revealed a consider-
able amount of hypernuclear features such as that the A particle essentially retains
its identity in a nucleus, the small spin-orbit strength, or the, nowadays discarded,
narrow widths of X-hypernuclei, injecting a renewed interest in the field. Since then,
the experimental facilities have been upgraded and experiments using the (71, K1)
and (K, . 7°) reactions are being conducted at the Brookhaven AGS and KEK

accelerators with higher intensities and improved energy resolution of the beams.

The electromagnetic production of hypernuclei at the Thomas Jefferson National
Laboratory (TJNL), through the reaction (e, e’ K), promises to provide a new high-
precision tool to study A-hypernuclear spectroscopy, with resolutions of several hun-
dred keV [Hu94]. In addition, the study of electromagnetic decays of hypernuclear
levels using large solid-angle Ge-detectors, should help to define the spectra of lighter
hypernuclei. It is also possible that more intense beams of kaons and heavy-ions, cou-
pled with new detection technologies, may provide the means to detect multi-hyperon

hypernuclei [Gr88|.

In connection with this latter aspect, much less is known about =-hypernuclei or
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multi-hyperon hypernuclei [Do83]. A few emulsion events [Wi59, Ba63, Bh63, Be68,
Ca69, Mo79] have been interpreted as multi-strange hypernuclei, but accelerator-based
counter experiments have not been successful in observing the creation of such systems.
From the point of view of the conventional many-body problem, a study of the hyperon-
hyperon (YY) interaction is very important, and it can be done within a multi-strange
hypernucleus. One is reminded here of the recent attempts to find the H-dibaryon
[Ba92], whose absence in the experimental data must be telling us something about the
hyperon-hyperon interaction. Of course, a direct study of hyperon-hyperon scattering
would be extremely valuable, but because these particles have very short lifetimes, this
is not possible. Still, there are emulsion events which have been interpreted as either
=- or double-A hypernuclei. These events, if interpreted correctly, would give the well
depth for the AA potential [Do91], but the interpretations are open to debate. Clearly,

much more experimental information must be obtained on this subject.

From the theoretical side, one of the goals of hypernuclear research is to relate
the hypernuclear observables to the bare hyperon-nucleon (YN) and hyperon-hyperon
interactions. The experimental difficulties associated with the short lifetime of hyper-
ons and low intensity beam fluxes have limited the number of AN and XN scattering
events to less than one thousand [En66, Al68, Se68, Ka7l, Ei71], not being enough
to fully constrain the YN interaction. At present, there are two meson-exchange YN
potentials: that of the Nijmegen group [Na77, Ma89], where the corresponding baryon-
baryon-meson vertices are subject to strict SU(3) symmetry, and that of the Jiilich
group [Ho89], which assumes a stronger SU(6) symmetry and, therefore, all the cou-
pling constants at strange vertices can be related to those of the nucleon-nucleon (NN)
interaction. Recently, the group of Nijmegen has built an extension of its NN and YN

interactions to account for the complete octet of baryons, including the YY interac-
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tion [Ri99, St99]. Although the Nijmegen and Jiilich models are able to describe the
scattering data, their spin-isospin structure is very different. Therefore, more data on

scattering, especially the measurement of spin observables, are highly desirable.

In the lack of such data, alternative information can be obtained from the study of
hypernuclei. One possibility is to focus on light hypernuclei, such as 3H, 3 He and % He,
which can be treated “exactly” by solving the 3-body Faddeev [Mi93, Mi95] and 4-body
Yakubovsky [Gi88] equations. However, the power of these techniques is limited by the
scarce amount of spectroscopic data. Only the ground state energies and a particle
stable excited state for each A = 4 species can be used to put further constraints on

the interaction. Another possibility is the study of hypernuclei with larger masses.

Attempts to derive the hyperon properties in a finite nucleus have followed several
approaches. Traditionally, they have been reasonably well described by a shell-model
picture using A-nucleus potentials of the Woods-Saxon type that reproduce quite well
the measured hypernuclear states of medium to heavy hypernuclei [Bo76, Do80, Mo88|.
Non-localities and density dependent effects, included in non-relativistic Hartree-Fock
calculations using Skyrme hyperon-nucleon interactions [Mi88, Ya88, Fe89, La97, Vi01],
improve the overall fit to the single-particle binding energies. The properties of hyper-
nuclei have also been studied in a relativistic framework, such as Dirac phenomenology,
where the hyperon-nucleus potential has been derived from the nucleon-nucleus one
[Br81, Ch91], or relativistic mean field theory [Ma89b, Ma94, Lo95, G193, In96, Su94,
Ma96, Ts97].

Microscopic hypernuclear structure calculations, which provide the desired link of
the hypernuclear observables to the bare hyperon-nucleon interaction, are also avail-

able. They are based on the construction of an effective hyperon-nucleon interac-
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tion (G-matrix), which is obtained from the bare hyperon-nucleon potential through a
Bethe-Goldstone equation. In earlier microscopic calculations, Gaussian parametriza-
tions of the G-matrix calculated in nuclear matter at an average density [Ya85, Ya90,
Ya92, Ya94] were employed. A G-matrix obtained directly in finite nuclei was used to
study the single-particle energy levels of various hypernuclei [Ha93|. Nuclear matter
G-matrix elements were also used as an effective interaction in a calculation of the
170 spectrum [Ha93b]. In this thesis we will derive microscopically, along the similar
lines of Ref. [Hj96], the s- and p-wave A single-particle properties for a variety of A-
hypernuclei, from 3He to 3°Pb, constructing a finite nucleus YN G-matrix obtained

from a nuclear matter G-matrix. This method was first employed to study the nucleon

and A properties in nuclei [Bo92, Hj94].

In addition to hypernuclei, nuclear physicists have also been interested in hyperonic
matter (nuclear matter with nucleonic and hyperonic degrees of freedom), especially
in connection with the physics of neutron star interiors. These objects are an excellent
observatory to test our understanding of the theory of strong interacting matter at
extreme densities. The interior of neutron stars is dense enough to allow for the ap-
pearance of new particles with strangeness content besides the conventional nucleons
and leptons by virtue of weak equilibrium. There is a growing evidence that hyperons
appear as the first strange hadrons in neutron star matter at around twice normal
nuclear density [GI85], as has been recently confirmed within effective non-relativistic
potential models [Ba97], the Quark-Meson Coupling Model [Pa99], extended relativistic
mean field approaches [Kn95, Sc96], relativistic Hartree-Fock [Hu98] and Brueckner—
Hartree-Fock theory [Ba00, Vi0Ob).

Properties of neutron stars are closely related to the underlying Equation of State
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(EoS) of matter at high densities. These properties are affected by the presence of
strangeness [G197, Pr97]. A strong deleptonization of the neutron star matter occurs
when hyperons appear, since it is energetically more convenient to maintain charge
neutrality through hyperon formation than from [-decay. In addition, it is clear that
the main effect of the presence of hyperons in dense matter is to soften the EoS, which
translates into a lower maximum mass of the neutron star [Gl97]. Other properties,
such as thermal and structural evolution of neutron stars, are also very sensitive to
the composition and, therefore, to the strangeness content of neutron star interiors.
From the observational point of view, measurements of the surface temperature of
neutron stars, possible with satellite-based X-ray observatories, could tell us whether
these exotic components of nuclear matter are playing a role in the cooling processes.
Furthermore, one of the major goals of the Laser Interferometer Gravitational-wave
Observatory (LIGO) is to measure gravity waves emitted in the coalescence of two
neutron stars. The pattern of the emitted waves just prior to the merging is sensitive

to the structure of the stars and to the Equation of State.

Despite hyperonic matter is obviously an idealized physical system, the theoretical
determination of the corresponding EoS is an essential step towards the understanding
of the physical properties of neutron stars. In addition, the comparison of the theoret-
ical predictions for the properties of these objects with the observations can provide
strong constraints on the interactions among their constituents. Therefore, a detailed
knowledge of the EoS over a wide range of densities is required [Sh83]. This is a very
hard task from the theoretical point of view. Traditionally, two approaches have been
followed to describe the baryon-baryon interaction in the nuclear medium and, to con-
struct from it the EoS: the so-called phenomenological approach and the microscopic

approach.
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In the phenomenological approach the input is a density-dependent effective interac-
tion which contains a certain number of parameters adjusted to reproduce experimental
data, such as the properties of nuclei or the empirical saturation properties of nuclear
matter. There exists an enormous number of different phenomenological interactions,
such as the Migdal [Mi67] and Gogny [Go75| forces. But the most popular of them
is the Skyrme interaction [Sk56, Va72]. This force has gained so much importance
because it reproduces the nuclear binding energies and the nuclear radii over the whole
periodic table with a reasonable set of parameters [Va72]; there is a connection [Ne72]
between this force and the more fundamental G-matrix commented below, and its
mathematical form is extremely simple. Balberg and Gal [Ba97, Ba99] have recently
derived an analytic effective EoS using density-dependent baryon-baryon potentials
based on Skyrme-type forces including hyperonic degrees of freedom. The features of
this Equation of State rely on the properties of nuclei for the nucleon-nucleon interac-
tion, and mainly on experimental data from hypernuclei for the hyperon-nucleon and
hyperon-hyperon interactions. It reproduces typical properties of high density matter

found in theoretical microscopic models.

An alternative phenomenological approach involves the formulation of an effective
relativistic mean field (RMF) theory of interacting hadrons [Se86, Se97]. This approach
treats the baryonic and mesonic degrees of freedom explicitly, is fully relativistic, and is,
in general, easier to handle because it only involves local densities and fields. The EoS of
dense matter with hyperons was first described within the RMF model by Glendenning
[G182, G185, GI87]. Among other shortcomings the standard RMF approach is not
suited to reproduce the strong attractive hyperon-hyperon interaction seen in double-
A hypernuclei. Nevertheless, Schaffner et al. [Sc93, Sc94]| have solved the problem

by incorporating additional strange meson fields into the standard lagrangian of the
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model. The set of parameters of this model is fixed by the properties of nuclei and
nuclear bulk matter for the nucleonic sector, whereas the coupling constants of the

hyperons are fixed by SU(6)-symmetry relations and hypernuclear observables.

In a microscopic approach, on the other hand, the input is a two-body baryon-
baryon interaction that describes the scattering observables in free space, such as the
Bonn-Jiilich [Ma87, Ho89] or Nijmegen [Na73, Na77, Na78, Ma89, St94, Ri99, St99]
potentials. These realistic interactions are constructed within the framework of a meson
exchange theory. In order to obtain the EoS one has to solve the complicated many-
body problem. The main great difficulty of this problem lies in the treatment of the
strong repulsive core, which dominates the short-range behaviour of the interaction.
Various methods have been considered to solve the many-body problem, the most
employed ones being the variational approach and the Brueckner-Bethe—Goldstone

theory.

The variational approach suggested by Jastrow [Ja55] makes use of trial wave func-
tions to treat the two-nucleon correlations. The EoS of asymmetric nuclear matter
has been considered by several authors [Wi88, Ak97b, Bo98] within this approach
and, in fact, the calculation of Akmal et al. [Ak98|, using the Argonne Vig NN in-
teraction [Wi95] with relativistic boost corrections and a fitted three-body interaction
model, may be viewed as the currently most realistic approach to the nucleonic sector.

Nevertheless, hyperons have not been considered within this approach yet.

An alternative way to the variational approach for treating the many-body prob-
lem is provided by the Brueckner—Bethe-Goldstone (BBG) theory. Brueckner and
co-workers [Br54| developed a method to sum to infinite order the so-called particle-

particle ladder diagrams, which take into account the short-range two-particle corre-
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lations. A step forward towards the application to nuclear systems was established
by Bethe [Beb6] through the development of the hole-line expansion. A formal basis
for this approach was provided by Goldstone [Go57] who, using perturbation methods,
established the so-called linked-cluster expansion. The BBG theory has been exten-
sively applied to the study of normal nuclear matter, and recently to hyperonic matter.
Schulze et al. [Sc98] performed a many-body calculation of the Brueckner-type in order
to study the onset of hyperon formation in neutron star matter. Recently, these au-
thors have extended their study to neutron stars with hyperons [Ba00], paying special
attention to the role played by three-body nucleon forces. Nevertheless, these studies
do not include the hyperon-hyperon interaction, which is, however, essential as soon
as the first hyperon, the X7, appears in matter. In this sense, one of the goals of
this thesis is to include the hyperon-hyperon interaction in a microscopic many-body
calculation of the Brueckner-type and to study the properties of S-stable neutron star

matter with hyperonic degrees of freedom.

In order to make things easier to the reader we give here an outlook of the way this

thesis is organized:

A brief summary of the meson exchange theory and the Brueckner-Bethe-Goldstone

theory is given in Chapter 1.

Following the theoretical framework presented in Chapter 1, in Chapter 2 we show
results from microscopic Brueckner-type calculations of dense matter that include all
types of baryon-baryon interactions and allow one to treat any asymmetry in the frac-
tions of the different species (n,p, A, ¥7, %% %+ E~ and Z°). We also present results
for the single-particle potentials and the binding energy per baryon, focusing on bary-

onic densities and hyperonic fractions that can be relevant in neutron star matter with
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strangeness in [-equilibrium, a problem that will be discussed in Chapter 4.

With regard to the hyperon properties in finite nuclei, in Chapter 3 we determine
the single-particle energy and wave function of the A hyperon in several nuclei ob-
tained from the relevant self-energy. The latter is constructed within the framework
of a perturbative many-body approach employing present realistic hyperon-nucleon
interactions such as the models of the Jiilich and Nijmegen groups. The effects of non-
locality and energy dependence of the self-energy on the bound states are investigated.
It is shown that, although the single-particle hyperon energies are well reproduced by
local Woods-Saxon potentials, the wave functions from the non-local self-energy are

more extended.

As mentioned before, in Chapter 4 we present results from Brueckner—Hartree—Fock
calculations for -stable neutron star matter with nucleonic and hyperonic degrees of
freedom, employing the most recent parametrization of the baryon-baryon interaction
of the Nijmegen group. It is found that the only strange baryons emerging in S-stable
matter up to total baryonic densities of 1.2 fm~2 are the ¥~ and A. We compute the
corresponding EoS and determine properties of neutron stars such as the mass, radius

and moment of inertia.

The main conclusions of this work are summarized and exposed at the end of the

manuscript.



Chapter 1

The baryon-baryon interaction and

the nuclear many-body problem

“How empty is theory in the presence of fact”.

Mark Twain, A Connecticut Yankee in King Arthur’s Court.

We devote this chapter to present the theoretical background in which this thesis
is seated. Due to the fact that the starting point of our theoretical scheme is the
baryon-baryon interaction, section 1.1 reviews briefly the basic ideas of the meson
exchange theory, the Bethe-Salpeter equation and its non-relativistic reductions, and
some of the main features of the Jiilich [Ho89] hyperon-nucleon and Nijmegen Soft-Core
[Ma89, Ri99, St99] baryon-baryon interactions. A little tour through the Goldstone

expansion, the Brueckner reaction matrix, the Bethe-Golstone equation and the hole-

11



12 The baryon-baryon interaction and the nuclear many-body problem

line expansion is performed in section 1.2. Finally, all the technicalities required in

solving the Bethe-Goldstone equation are given in section 1.3.

1.1 The baryon-baryon interaction

Quantum chromodynamics (QCD) is commonly recognized as the fundamental theory
of the strong interaction, and therefore, in principle, the baryon-baryon interaction
V' can be completely determined by the underlying quark-gluon dynamics in QCD.
Nevertheless, due to the mathematical problems raised by the non-perturbative char-
acter of QCD at low and intermediate energies (at this range of energies the coupling
constants become too large for perturbative approaches), one is still far from a quan-
titative understanding of the baryon-baryon interaction from the QCD point of view.
This problem is, however, usually circumvented by introducing a simplified model in
which only hadronic degrees of freedom are assumed to be relevant. Quarks are con-
fined inside the hadrons by the strong interaction and the baryon-baryon force arises
from meson exchange [Na73, Ma87]. Such an effective description is presently the most
quantitative representation of the fundamental theory in the energy regime of nuclear
physics, although a big effort is being invested recently in understanding the baryon-
baryon interaction from an Effective Field Theory perspective [K099]. Quark degrees
of freedom are expected to become important only at very short distances and high en-
ergies. Short-range parts of the interaction are treated, in all meson exchange models,
by including form factors which take into account, in an effective way, the extended

structure of the hadrons.

In the next section we briefly present the phenomenological lagrangians which de-
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fine the interactions among the various baryons and mesons, and review the general
properties of the meson-exchange theory. To avoid unnecessary overlaps with already
existing review articles and books on the subject, only a brief account of the under-
lying theory is given. In section 1.1.2 we discuss the three-dimensional reduction of
the Bethe-Salpeter equation, which defines the scattering matrix. Finally, we devote
section 1.1.3 to show some of the characteristics of the Jiilich [Ho89] hyperon-nucleon
and Nijmegen Soft-Core [Ma89, Ri99, St99] baryon-baryon interaction models, which

are the ones employed in all the calculations of the present thesis.

1.1.1 The one-boson-exchange interaction

The three relevant meson field types that mediate the interaction among the different

baryons are:

e the scalar (s) field: o, §
e the pseudoscalar (ps) field: =, n, ', K

e the vector (v) field: p, w, K*

Guided by symmetry principles, simplicity and physical intuition the most com-
monly employed interaction lagrangians that couple these meson fields to the baryon
ones are

Es == gs@\p(b“) 3 (11)
Lps = gps Vi TpPe) | (1.2)

L, = g, 97" Uo") + g U™ T (9,6 — 0,0) | (1.3)
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1 2
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Figure 1.1: Diagrammatic representation of the one-boson-exchange contribution to
baryon-baryon scattering. The solid lines denote the baryons, the dashed line the
meson with mass m, and four-momentum &k = p; — p}. At the vertices, the coupling

constants are denoted by g,1 and g,2, while Fg) and F&Z) denote the corresponding
Dirac structures.

for scalar, pseudoscalar and vector coupling, respectively. Alternatively, for the pseu-
doscalar field there is also the so-called pseudovector (pv) or gradient coupling, which

is suggested as an effective coupling by chiral symmetry [We67, Br79]

Ly = oo U 709, 0P?) . (1.4)

In the above expressions ¥ denotes the baryon field for spin 1/2 baryons, while
#®), ¢®) and ¢*) are the corresponding scalar, pseudoscalar and vector meson fields.
The factor g, is the phenomenological coupling constant coefficient for scalar mesons,
while g, and g, are the corresponding pseudoscalar and pseudovector coupling con-
stants for pseudoscalar meson exchange. Similarly, g, and g; are the vector and tensor
coupling constants, respectively. These coupling constants may be constrained by e.g.
scattering data. Note that the above lagrangians are for isoscalar mesons, however,

for isovector mesons, the fields ¢ trivially modify to 7 - ¢ with 7 being the familiar
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isospin Pauli matrices.

Employing the above lagrangians, it is possible to construct a one-boson-exchange
(OBE) potential model. A typical contribution to the baryon-baryon scattering ampli-
tude arising from the exchange of a certain meson « is depicted in Fig. 1.1. Applying

the corresponding Feynman diagram rules this contribution is given by

1(P}) goa T8 (1) Pati(Ph) gaa TS u(ps)
(p1 — p))? —m2

<p'1p’2 | VaOBE |P1p2> = ) (1-5)

where m,, is the mass of the exchanged meson, P,/((p1 — p|)? — m2) represents the

meson propagator, v is the familiar Dirac spinor

Ek)+ M X
u(k,o) = % , (1.6)
ok
BEk)+M X

and u its adjoint (uu = 1, 4 = u'y®). The symbols g, and g.o are the coupling
constants at the vertices, and Fg) and F,(f) denote the corresponding Dirac structures,
ie.,

i) 1) _ ;A0
I =1, I =iy°, (1.7)

Fz(;z) =, ng) =", F](ng = 75(,)/# ) 8#) ) (18)
the label 7 referring to the interacting baryon 1 or 2.

In general, when all types of mesons are included, the one-boson-exchange interac-

tion is given by the sum of all the partial contributions

(P VOPE Ipipa) = Y (0 ph| Vi PP papa) - (1.9)

07
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Expanding the free Dirac spinor in terms of 1/M (M is here the mass of the relevant
baryon) to lowest order leads to the familiar non-relativistic expressions for the baryon-
baryon potentials, which through Fourier transformation give the configuration space
version of the interaction. The general expression for the local approximation of the

baryon-baryon interaction in configuration space is

3 3
V(T)ZZ{CCa+CgaO'1'O'2+CTa (1+ + )Slg(f)

mar  (mgr)?
1 1 e Mal
+Clps, ( + 2) L- S} )
mar  (Mqr) maT

where C¢,, C,,,, Cr, and Cpg, are numerical factors, and S, is the familiar tensor term

a

(1.10)

in configuration space

(01-1)(02 1)

ShalF) = 3270

—(0'1'0'2) . (111)

Finally, we have to remember that in the meson exchange theory all meson-baryon
vertices must be necessarily modified by the introduction of the so-called form factors.
Each vertex is multiplied by a form factor of the type

2 . 2\™
F(k)z(H) , (1.12)
ot

as is done in the Jiilich models [Ho89], or by

2

Fo (k) = e 242

(1.13)

as is preferred in the Nijmegen models [Ma89, Ri99, St99].
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In the above expressions the quantity n, is usually taken equal to 1 (monopole
form factor) or 2 (dipole form factor). The vector k denotes the three-momentum
transfer, whereas m,, is the mass of the corresponding exchanged meson, and A, are

the so-called cut-off masses, typically of the order 1.2 — 2 GeV.

Originally the form factors were introduced for purely mathematical reasons, namely,
to avoid divergences in the scattering equation. Nevertheless, our present knowledge
of the (quark) substructure of baryons and mesons provides a physical reason for their
presence. Obviously, it does not make sense to take meson exchange seriously in a

region in which modifications due to the extended structure of hadrons come into play.

1.1.2 The Bethe—Salpeter equation

In order to fix the parameters which define the baryon-baryon potential derived from
OBE models, the Bethe-Salpeter equation is used as the starting point for most cal-
culations. In an arbitrary frame, the full covariant Bethe—Salpeter equation reads

(suppressing spin and isospin labels for simplicity)

i
(D105| T |p1p2) = (P05 |VIp1p2) + 27 / d*k{p\ps|V|P + k, P — k)

xSy (P + k)S) (P — k){(P + k, P — k|T |pipa) (1.14)

where we have defined P to be half the total four-momentum, i.e., P = %(pl + p2),
and k£ to be the relative four-momentum. The term S is the relativistic fermion

propagator, which for spin 1/2 baryons reads

Siy=—F—7—"", (1.15)
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T represents the invariant amplitude for the two-particle scattering process, commonly

called T-matrix, and V is the sum of all linked two-particle irreducible diagrams.

As this four-dimensional integral equation is rather tedious to solve, it is commonly
replaced by three-dimensional reductions, which are more practical for numerical so-
lution. Nevertheless, the three-dimensional reduction is not unique, and in principle
infinitely many choices exist. It is common to the derivation of all three-dimensional
reductions to fix the time component of the relative four-momentum in some way, so

that it no longer appears as a separate variable in the propagator.

Based on a suggestion by Blankenbecler and Sugar [BI66], one possible three-
dimensional approach to the Bethe—Salpeter equation in the centre-of-mass frame
(omitting angular momentum, spin and isospin assignments, and assuming M; = M, =
M for simplicity) reads

o (3 M?2 1
1 v(k,q)

ﬂhM=ka+/

o T(q,X).  (L.16)

_E#H—W¥+k(

Within the OBE model, the quasi-potential V' is a sum of OBE amplitudes (see
Eq. (1.9)). The Bethe—Salpeter equation is also denoted as the ladder approximation

when the quasi-potential V' is iterated in it. If we define

ﬂkﬁzJ%ﬂkMJZl (1.17)
me=¢%ﬂhmﬁg, (1.18)

and
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which has become known as “minimal relativity”, we can rewrite Eq. (1.16) as

M
2% — QP + i€

00 3
Tm¢3:mhm+/‘dq

.y

T(q, X', (1.19)

which has the same form as the non-relativistic Lippmann-Schwinger equation, and
can therefore be applied to conventional non-relativistic nuclear structure calculations

in the usual way.

Another choice that has frequently been applied is the version suggested by Thomp-
son [Th70] which reads

® d3q M? 1
k -
v ’q)Eg2£4-25g4—k

T&kU:Whm+/‘ T(q, k'), (1.20)

o (2m)?

and defining
M M

T(kX)=—T(kk 1.21
(1) = P T K) 7, (121

. M M
k. k)=—V(kXk 1.22
Vlk) = LV K) 2 (1.22)

we can rewrite Eq. (1.18) as
ka3:V&kmﬁfnﬁqV&q) ! T(q, k') (1.23)
’ ’ o @rp U YVeg ToE, e T '

which has also the form of the Lippmann-Schwinger equation, but with relativistic
energies. The Thompson choice is therefore useful for relativistic nuclear structure

calculations.

Many more choices have been suggested in the literature. A thorough discussion

of the Bethe—Salpeter equation and/or a systematic study of a large family of possible
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three-dimensional reductions can be found in [Na69, Wo73, Ho75, Br76].

1.1.3 The Jiilich and Nijmegen Soft-Core models

Until now all we have said is general and nothing has been commented about the
specific baryon-baryon interactions employed in our calculations. These interactions
are in particular the Jillich B [Ho89], the Nijmegen Soft-Core 89 [Mag89] hyperon-
nucleon interactions, and the recent Nijmegen Soft-Core 97 [Ri99, St99] baryon-baryon
interaction for the complete octet of baryons. We present briefly in the following some
of the main features of these models and refer the interested reader to the original

works for detailed information.

To begin with, we must say that these three models are meson-exchange potentials,

and therefore they are constructed following the basic ideas exposed in section 1.1.1.

The Jiilich B hyperon-nucleon interaction is constructed in complete analogy to
the Bonn nucleon-nucleon interaction [Ma87]. It is defined in momentum space and
contains the full energy-dependence and non-locality structure. Besides single-meson
exchange processes, it includes higher-order processes involving 7- and p-exchange pro-
cesses (correlated 2m-exchange are conveniently parametrized in terms of an effective o-
exchange) and, in addition, KK, KK*, K*K* processes with N, A, A, ¥ and ¥*(1385)
intermediate states. Therefore, the model not only includes the couplings between the
AN and XN channels, but also couplings to the AA, AY and NX* ones. The exchange
of pseudoscalar mesons 1 and 7' is not considered. Parameters (coupling constants
and cut-off masses) at NN and NA vertices are taken from the Bonn model. Coupling

constants at the vertices involving strange particles are fixed by relating them, under
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the assumption of SU(6) symmetry, to the NN and NA values. Thus, the only free
parameters are the cut-off masses at the strange vertices which are adjusted to the
existing hyperon-nucleon data. The form factors at the vertices are parametrized in
the conventional monopole form or dipole form when the vertex involves both a spin—%

and a vector meson.

The Nijmegen Soft-Core 89 hyperon-nucleon interaction (hereafter and in the next
Chapters referred to as NSC89) is obtained by a straightforward extension of the
Nijmegen nucleon-nucleon model [Na78| through the application of SU(3) symmetry.
It is defined both in momentum space and in configuration space. The model is gener-
ated by the exchange of nonets of pseudoscalar and vector mesons, and scalar mesons.
Assuming SU(3) symmetry all the coupling constants at the vertices with strange par-
ticles are related to the NN ones. Gaussian form factors are taken at the vertices to

guarantee a soft behaviour of the potentials in configuration space at small distances.

Finally, the recent Nijmegen Soft-Core 97 (NSC97a-f) baryon-baryon interaction for
the complete octet of baryons is based on SU(3) extensions of the Nijmegen potential
models for the nucleon-nucleon [Na78] and the hyperon-nucleon [Ma89] interactions. It
describes not only the sectors of strangeness 0 (NN) and —1 (AN, XN), but also the ones
of strangeness —2 (AA,AX, XX, EN), —3 (AE,XE) and —4 (EE). It is parametrized
in terms of one-boson exchanges, and all coupling constants are determined by a fit
to the NN and YN scattering data and using SU(3) relations. However, the fit to the
NN and YN data still allows for some freedom in the parameters and so there are
six different models (from NSC97a to NSC97f). These models are characterized by
different choices for the magnetic vector F//(F + D) ratio, o, which serves to produce

different scattering lengths in the AN and XN channels, but at the same time allows
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to describe the available YN and NN scattering data equally well. Within each model,
there are no free parameters left, and so each parameter set defines a baryon-baryon
potential that models all possible two-baryon interactions. Gaussian form factors are

taken as in the case of the NSC89 model.

1.2 The nuclear many-body problem

One of the main difficulties with nuclear many-body systems such as finite nuclei or
nuclear matter arises from the fact that, generally, the baryon-baryon interaction V is
repulsive at short distances and thus any perturbation expansion in terms of V' becomes
meaningless: all the terms of the perturbation series are very large for a “soft core”
potential, or infinite in the case of a “hard core” potential (i.e., infinitely repulsive
core). The first step towards the solution of this problem was proposed by Brueckner
[Brb4], who remarked that the situation was similar to that encountered in the single-
particle scattering by a hard sphere: although all the terms of the Born series for
the T-matrix diverge, the T-matrix itself is a well-defined finite object which can be
obtained by solving the Lippmann-Schwinger integral equation. Hence for hard sphere
scattering the solution of the problem is obtained by working with 7" instead of V. For
the nuclear many-body problem, the idea was thus to replace the bare interaction by a
generalized T-matrix in order to take into account the presence of the other particles.
Using diagram techniques Goldstone [Go57] showed how this generalization of the 7-
matrix, usually referred to as Brueckner’s reaction matrix, could be obtained from

perturbation theory.

The Goldstone expansion is presented, although not derived, in section 1.2.1. The
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Brueckner reaction matrix is introduced in section 1.2.2. Section 1.2.3 is devoted to
the convergence of the Brueckner-Goldstone expansion and 1.2.4 to the choice of the

auxiliary potential U, introduced in section 1.2.1.

1.2.1 The Goldstone expansion

The Goldstone expansion [Go57] is a linked-cluster perturbation series for the ground-
state energy of a fermionic many-body system. We will not derive the Goldstone

expansion, but we will try to present it in a simple way.

The Goldstone expansion works for any number of particles as long as the unper-
turbed ground state is non-degenerate. Let us consider a system of a certain number

A of identical fermions in a volume €2 whose dynamics is described by the hamiltonian
A A

H=> T+ Vy, (1.24)
i=1 i<j

where T; is the kinetic energy of particle 4, and V;; denotes the two-body interaction

between particles ¢ and j.

If an appropriate single-particle potential U; is added and subtracted, then, the

hamiltonian can be rewritten as an unperturbed part

Hy= (T + Uy, (1.25)

i=1

and a perturbation

A A
=1

i<j
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This single-particle potential U; is introduced in order to make numerical calcu-
lations easier. Obviously, the final result should in principle be independent of U;,
since the total hamiltonian does not involve it. However, as we will see below, the
energy is calculated as an expansion in powers of H;, and the expansion will converge
more rapidly for some choices of U; than for others. Thus, we must choose U; in such
a way that the energy expansion converges rapidly enough to be useful for practical

calculations.

The unperturbed ground state satisfies the Schrodinger equation

Hy|®o) = Eo| Do) - (1.27)

Since Hy contains only one-body operators, to solve the unperturbed part we only
need to find the one-particle eigenstates |a;) of the operator T; + U; which satisfy the

one-particle Schrodinger equation

(Ti + Us)| i} = e]cu) - (1.28)

The one-particle states ;) are assumed to form a complete orthonormal set, which
in the particular case of an infinite many-body system (i.e., A — 0o, Q2 — oo but keep-
ing p = A/Q = constant), such as nuclear matter, are plane waves. The unperturbed
and uncorrelated ground state |®g) is then represented by a Slater determinant con-
structed by putting the particles into the A one-particle states of lowest energy, making
up in this way the so-called Fermi sea, which corresponds to the particle-hole vacuum

field defined in Goldstone theory. All states of higher energy are above the Fermi sea.
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It is this state which is assumed to be non-degenerate. The eigenvalue Ej is the

sum of the one-particle energies of the occupied states,

Eo=Y &= (T +Ula) . (1.29)

i<A i<A
The exact correlated ground state |¥) satisfies
H[T) = E|T) , (1.30)

being E the true energy of the system. It can be written as the sum of the unperturbed

energy FEjy plus the so-called ground state energy shift AFE,

E=Ey+AE . (1.31)

Perturbation theory gives the formal expression for the energy shift, which up to

third order in H; is

P
AE - <(I)0|H1|@0> + <(I)0|H17H1|(I)0> +

Ey, — H,
+(®o|H, By fH0H1 By fH0H1|(I)0> -
—<¢0|H1|¢0><¢0\H1ﬁm|¢0> , (1.32)
where
P =1— [2g){®o] (1.33)

projects off |®g) ensuring that |®g) does not occur as an intermediate state in any
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of the matrix elements, i.e., in the intermediate states at least one particle has to be

excited.

Taking into account that the correlated wave function |¥) and the uncorrelated one

|®y) satisfy the integral equation [Mag0]

P

v)=|® 5
) = 190) + 55

H,|¥) , (1.34)

it is possible to write the perturbation expansion in the form

o H, W)

_ (
E=Fy+ By 1) (1.35)

Using diagram techniques Goldstone showed [Go57] that the quantity (®o|H:|V)
can be factorized into the product of a quantity which is equal to (®y|¥) (and which
thus cancels the denominator in Eq. (1.35)) multiplied by a quantity which only con-
tains linked diagrams (i.e. those diagrams which cannot be separated into two pieces
by a vertical cut which would not cross any line). The perturbation expansion then

reads
1 — [®g) (Do

H d 1.36
EO — H() 1:| | 0>l ) ( )

E = Eo+ (Qo|H: Y [
n=0

which is the so-called Goldstone expansion. The lower index [ refers to the fact that

one should only retain those contributions which are represented by /linked diagrams.

The first-order diagrams which contribute to AE are shown in Fig. 1.2 (a), (b)

and (c). Diagram (a) is the direct term, (b) the exchange term and (c) involves the
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(b)
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Figure 1.2: First-order ((a), (b), (c)), second-order ((d), (e), (f), (g)) and third-order
((h), (i), (j), (k), (1)) diagrams appearing in the linked-cluster Goldstone expansion.

single-particle potential U. Their contributions are, respectively

1 1
3 Z (0| Vi), b Z (i |V]ejau),

i,j<A ij<A
= (e|Ule)

i<A

Therefore we can write

s 1
AEY = (| Hy| o) = = Z (i V]aia)a — Z(O‘i|U|ai> )
2

i,j<A i<A

where we have defined

(i V]iay)a = (aioy|V]ioy) — (qaoy|V]eyas)

(1.37)

(1.38)

(1.39)

Note that the last term in (1.38) cancels the potential energy contribution from

Eq. (1.29). This cancellation is automatic and does not depend on a particular choice
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for U.

Diagrams (d), (e), (f) and (g) of Fig. 1.2 contribute to the second-order of the
Goldstone expansion. Nevertheless, in the case of nuclear matter diagrams (f) and (g)
do not contribute. This is because the intermediate states of these two diagrams do not
conserve the total momentum. Therefore, in nuclear matter, only diagrams (d) and the
corresponding exchange diagram (e) of Fig. 1.2 would contribute to the second-order,

being this contribution

n P 1 (o0 |V o) (agoy | V] o) 4
AE? = (B|H)———— H,|®y) = = 17 DA (1.40
< 0‘ 1f?()—flo 1| 0> 21%:/119%:14 €i+6j_flc_€l ( )

The Goldstone expansion (1.36) gets more complicated in third-order. Among the
diagrams that contribute to this order are the ones shown in Fig. 1.2 (h), (i), (j), (k)
and (1).

The Goldstone expansion provides a simple and explicit prescription for calculating
every order of perturbation theory. Nevertheless, it cannot be used in its present
form for nuclear matter calculations because the short-range repulsion in the baryon-
baryon potentials makes all the matrix elements very large, and the perturbation series
cannot converge. The solution to this problem is provided by the well-known Brueckner
theory, in which the perturbation expansion in terms of the bare potential is replaced
by another one in terms of the so-called Brueckner reaction matrix. All terms in this
new perturbation series, the so-called Brueckner-Goldstone expansion, are finite and

of reasonable size.
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Figure 1.3: Illustration of the summation of ladder diagrams to obtain the G-matrix.
The sum of the infinite sequence of ladder diagrams is depicted by the diagram on the
right-hand side, in which the wiggly line represents the G-matrix.

1.2.2 The Brueckner—Goldstone expansion and the Brueckner

reaction matrix

In order to introduce the Brueckner reaction matrix, commonly called G-matrix, let us
consider the series of Goldstone diagrams shown in Fig. 1.3. These diagrams provide
the simplest of ladder series. They are obtained from the first one by allowing the
interaction V' to act any number of times between the particles ejected from the Fermi

sea. The sum of this series is given by

1 |akal)(akal|
52523%%%V+v§: V+

€; €; — € — €
jj<A poa G T €6 & T

(1.41)

vy ety g Jomtn)(encal v+...}\aiaj>,4.

oA +€ —€—¢€ m,n>A€i+€j_€m_€n

Note that the value of the sum depends on the quantity w = €; + €; usually referred

to as “starting energy”. Let us define the summation of the ladder series by the quantity

Q Q Q
V+V V
w—HO * (JJ—HO CL)—H()

Gw)=V+V Vg, (1.42)
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where

Q _ Z |ap0rg) (2| (1.43)
w— Hy B Rl

is the propagator of the intermediate state |, ), being @) the so-called Pauli operator
which restricts the summation to the states above the Fermi level, and w — Hy the
energy difference between the initial state and the intermediate state. The right-hand

side of Eq. (1.42) can be resumed to yield the integral equation

Q

G(w):V-I—Vw_HO

Gw) , (1.44)

which is the familiar Bethe-Goldstone equation. The quantity G(w) is the Brueckner
reaction matrix. For values of w larger than the sum of the Fermi energies of the
intermediate states |o,) and |o,), the kernel of the Bethe-Goldstone equation may
become singular, and then it is necessary to add a quantity 7 in the energy denominator
to properly treat the intermediate propagator. The G-matrix becomes then a complex

quantity.

We have seen that the summation of the sequence of ladder diagrams has led to a
single diagram (last diagram in Fig. 1.3) in which one V interaction line has been re-
placed by the reaction matrix G(w). This is very desirable because the matrix elements
of G(w) turn out to be well-behaved even when the short-range repulsion causes the
matrix elements of V' to become very large or infinite. This suggests that the next step
is therefore to try to convert each V' interaction line into a G-matrix line by summing
the proper sequences of ladder diagrams avoiding double counting. In doing this, one
obtains a new expansion, the so-called Brueckner—Goldstone expansion, in which every

term is finite and well behaved. Some of the diagrams appearing in this new expansion
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) (h) @

Figure 1.4: First-order ((a), (b), (c)) and some third-order ((d), (e), (f), (g), (h), (i))
diagrams appearing in the Brueckner-Goldstone expansion.

are shown in Fig. 1.4.

This attempt of converting the V' interaction lines into G-matrix lines was, nev-
ertheless, not the original motivation of Brueckner when he introduced the reaction
matrix G(w). He was interested in the problem of finding a way of describing the
scattering between two particles which are immersed in a Fermi sea of other particles
and which can interact strongly. Brueckner found that the G-matrix could be inter-
preted as describing the collision of two particles in the presence of a medium, as can
be seen by direct comparison of Eq. (1.44) with the Lippmann-Schwinger satisfied by
the 7T-matrix

Tw)y=V+V T(w), (1.45)

w—K+1in
where K is the kinetic energy operator.

The medium effects in the case of the G-matrix appear through the Pauli operator
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@, the actual value taken by the starting energy, and the auxiliary potential U as far

as it is chosen on physical grounds.

1.2.3 Convergence of the Brueckner—Goldstone expansion

We have just seen that the Goldstone expansion may be rewritten in terms of the
reaction matrix, leading in this way to the Brueckner—Goldstone expansion. However,

we have said nothing about its convergence yet.

At first, it was believed that a converging expansion could be obtained by regrouping
the diagrams according to their number of G-matrices: the largest contribution would
be given by those diagrams with a single G-matrix, while those diagrams with 2,3, - - -
G-matrices would give smaller and smaller contributions. Nevertheless, this is not the
case. Rajaraman and Bethe [Ra63] showed that one can find diagrams which have the
same order of magnitude although they contain different number of G-matrices. They
showed that, in fact, the diagrams should be grouped according to their number of hole
lines: the diagrams with h hole lines being more important than those with (h + 1)
hole lines for any h. The end product of all this is now called the Brueckner-Bethe—

Goldstone expansion, or simply the hole-line expansion.

The grouping of diagrams according to the number of hole lines corresponds to
the following very simple physical idea. Two particles are strongly correlated, in the
sense that |¥) differs appreciably from |®g), only when the distance between them
is less than some “correlation length” which is of the order of the core radius, ¢, of
the interaction. Within a sphere of radius ro (where ry is related with the density p

through the relation 4773/3 = 1/p) centered on any particular particle, there will be
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on average one other particle. The probability that this other particle is close enough
to the first one to be strongly correlated with it, is of the order (¢/rp)3. Thus, the
probability of strong two-body correlations is proportional to (c/r¢)3. Similarly, the
probability of three-body correlations is of the order (¢/79)®, and so on. Therefore, an
expansion in which the first term is the energy due to two-body correlations, the next is
from three-body correlations, etc., is characterized by an expansion parameter (c/rq)?
and should converge well. This is just the type of expansion obtained by grouping the
diagrams according to the number of hole lines. The diagrams with A independent hole

lines represent the energy arising from h-body correlations.

The leading term of the hole-line expansion, i.e., the one containing two independent,
hole lines, is given by the sum of diagrams (a), (b) and (c) of Fig. 1.4, and its calculation
only requires the knowledge of the G-matrix. The total energy in the two-hole line

approximation reads then

1
EBHF = Z<a1|T|OZZ> + §Re Z <O!iO!j|G(U) =€ + €j)|0!z'0!j>A y (146)

i<A 1,j<A
where the contribution from diagram (c) of 1.4 cancels with the one from Eq. (1.29).

This approximation is also usually called the Brueckner-Hartree-Fock (BHF) ap-
proximation due to its analogy with the Hartree-Fock approximation. The only dif-
ference is that the interaction V' has been replaced by the Brueckner reaction matrix
G(w), which thus plays the role of an effective interaction between two particles in

states |o;) and |oy).

The next term appearing in the hole-line expansion will be given by the sum of all

those diagrams with three hole-lines. Its numerical evaluation implies the knowledge
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of a three-body effective interaction T(® which is formally given by the solution of the

so-called Bethe—Faddeev equation

T =G+ GX%T@ : (1.47)
where G is the reaction matrix, J3/FE is the appropriate three-body propagator and
X is an operator which avoids that two successive G-matrices can be present in the
same pair of particle lines, since the G-matrix already sums up all the two-body ladder
processes. Bethe gave an approximate solution to this equation and concluded that the
contribution to the energy from three-body correlations is smaller than the one from

two-body correlations by a factor of the order (c/rq)3, where c is the hard core radius

of the interaction and ry the interparticle distance.

There are many classes of four, five, ... hole-line diagrams which represent the
contributions from higher order correlations to the hole-line expansion, but they are

presumably negligible, and are out of the scope of the present work.

1.2.4 Choice of the auxiliary potential U

The basic idea behind the choice of the auxiliary potential U is to minimize the con-
tributions from higher order correlations, i.e., the contributions of diagrams with three
or more hole-lines, reducing the number of diagrams to be explicitly calculated. As the
leading contribution to the hole-line expansion is given by the Brueckner-Hartree-Fock

approximation, it seems quite natural to make the following choice for the occupied
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states (i.e., those with k < kp)

UBHE — Re Z(aiozj\G(w =€ +€)|oa)a, (1.48)
j<A

which is usually referred to as the Brueckner—Hartree—Fock single-particle potential, in
analogy with the Hartree-Fock potential. This choice is particularly interesting because
it leads to a cancellation of diagrams carrying UBH¥ insertions in the hole lines with the
corresponding ones having a bubble insertion, where the G-matrix is calculated on the
energy shell, as for instance diagrams (e) and (d) of Fig. 1.4. Note that by virtue of the
Bethe-Brandow—Petschek theorem [Be63] the bubble insertion of diagram 1.4(d) with
the G-matrix taken on shell corresponds to the sum of all possible diagrams having

crossed insertions in the hole line labelled j.

The definition of a single-particle potential for the excited states is a little bit more
complicated since a cancellation similar to the one for hole states is not achieved. In
the original Brueckner theory the potential U was assumed to be zero above kg. This is

PO N4

called the “standard choice”, “gap choice” or “discontinuous choice”, since it necessarily

UBHFE is discontinuous at the Fermi surface.

implies that the single-particle potential
This is illustrated in Fig. 1.5 in the case of the NSC97f nucleon-nucleon interaction,

where there is a gap in the potential of around 60 MeV.

The standard Brueckner—Hartree-Fock approximation usually underestimates the
binding energy of nuclear matter and in consequence it does not reproduce the sat-
uration point as can be seen in Fig. 1.6. Therefore, it is necessary to either modify

the corresponding choice of the auxiliary potential and/or to include “higher order”
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Figure 1.5: Nucleon single-particle potential at kr = 1.36 fm~'. The solid line
corresponds to the case obtained with the continuous choice, while the dashed one
shows the result for the standard choice. The dotted vertical line denotes the position
of the Fermi momentum.

corrections. Mahaux and his collaborators [Je76] considered the following choice

U, = UPHE (1.49)

for all the states |a;) under or above the Fermi surface. This prescription is usually

referred to as the “continuous choice”, and implies the partial cancellation of other

higher order diagrams.

As can be seen in Fig. 1.5, there is a structure in the single-particle potential near

the Fermi surface whose origin is due to the opening of two-nucleon excitations since
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Figure 1.6: Binding energy per particle for symmetric nuclear matter with the Ar-
gonne Vi, force. The dashed line represents the two-hole line contribution obtained
with the standard prescription for the single-particle potential. The solid line shows
the corresponding result with the continuous option. Triangles and squares include
the three-hole line contribution. The shaded region corresponds to the empirical value.
These results have been taken from Ref. [En99.

the starting energy of the G-matrix can achieve values larger than twice the Fermi
energy of each nucleon. This prescription is not able either to reproduce the saturation
point, although more binding is obtained. This additional binding is an indication that
the hole-line expansion is very sensitive to the choice of the single-particle potential at

this level of approximation.

With regard to the inclusion of higher-order correlations, Day [Da78] performed

a calculation with the standard choice employing the Reid soft core nucleon-nucleon
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interaction finding that the three-hole line correction was of the order ~ 5 MeV at
kp = 1.36 fm~!. Recently, Song et al. [So98] have done the same calculation for the
standard and the continuous choices using the Argonne V7, force, and have shown that
when the three-hole line contribution is included both approaches essentially give the
same result, which may be an indication of the convergence of the hole-line expansion.

This interesting result can be seen in Fig. 1.6.

1.3 Solution of the Bethe—Goldstone equation

The Bethe—Goldstone equation is usually solved in the partial wave basis. In this basis,
the two-baryon states |(B;Bs)KkLSJMTMr) are characterized by the total centre-
of-mass momentum K , the modulus k£ of the relative momentum, the total orbital
angular momentum L, the total spin S, the total angular momentum .J, the third
component M of the angular momentum, the total isospin 7', and the third component
of isospin Mp. Alternatively, one can choose the total charge ¢ of the baryon pair
(B1B,) instead of T" and My to describe the state. In this case the basis is characterized

by |(ByBy)KkLSJMqg).

The matrix elements of the baryon-baryon interaction V are commonly given in the
partial wave basis, and this is in fact one of the reasons for its use in solving the Bethe—
Goldstone equation. Invariance properties of the baryon-baryon interaction allow us

to write directly

((BsBy)K'K'L'S'J'M'T' M4|V|(ByBa) KkLS IMT Mz = 8 20106 psa (150

X677 g, ((BsBa) KK'L'S' TMT Mr|V|(ByBy) KkLSIMT M) .
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Let us now consider how the propagator @)/ E(w) (where F(w) = w— Hy+1n) is ex-
pressed in the partial wave basis. In the decoupled basis | (B Bz) :slaltlﬁ, k;swgtgﬁ),
where I;i, si, 04, t; and 7; (i = 1,2) denote respectively, the linear momentum, the spin,

the third component of the spin, the isospin and the third component of isospin of the

baryon labelled i, this operator is diagonal and reads

<(B1B2)k_i$10-1t17_1; @52027527—2‘i‘(BlBZ)k_;SlaltlTla /;28202t272> = ABle(k_i: k;) )

E(w)
(1.51)
being the expected value Ap, g, (k1, k2)
. 0(k1| = krp, )O(K2| = kr,)
Ap, B, (k1, k2) = T f;kQ o 2 (1.52)

W= ~ an — Ui (k1)) = Us,(|k2]) +n

To express the propagator in the partial wave basis we need to write this basis in
terms of the decoupled one. To this end, we first decouple the total angular momentum

J so that we can write

(BiB2) KKLSIMTMyz) = Y (LSMpMs|JM)|(ByBy) KkLMpSMsT M) . (1.53)

Mg Mg

Now, taking into account that

L M) = / AV, (B)|FY | (1.54)
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we have

|(B1Bo) KkLSIMTMy) = Y (LSM,Ms|JM) / kY, (k)|(B1By) KESMsT Mr) .
M1 Mg

(1.55)

Finally, decoupling the the total spin S and isospin 7', and writing centre-of-mass K

and the relative £ momenta in terms of the single-particle momenta k: and k; according

to the transformation

K=k + ky b= Kik=aK+k

s Mita : (1.56)
—;_Mk"_Mk:" —»_ M — —»_ — —
k=0 ke = s K —k=BK —k

we obtain

|(BIBQ)I_{‘IZLSJMTMT) = Z (81820'10'2|SMS)(t1t2T1T2‘TMT)
MiMs (1.57)
X(LSMLMS|JM)/d];'YLML(l%)l(BlBQ)k—ile'ltlTl,]C—;SQO'QtQT2> .

In a similar way, the inverse change (see appendix D) reads

|(B1B2)k—1510-1t17—1,k_;SQO-QtQT2> = Z (81820’10'2|SM5)(t1t2T1T2|TMT)
SMgTMp
LMpJM (158)

x (LS My, Ms|TM)Y}y,, (k)|(BiBs) KkLSTMT My)

where we have employed the partial wave decomposition of a plane wave

By = Y7, (k)| kLMy) . (1.59)

LMy,
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We can now use Eqgs. (1.51) and (1.57) to write

((BlBQ)I?kL’S’J’M’T'M’T\%\(BlBQ)I_('kLSJMTMT) =
w

Z (81820'10'2‘SMS)($1820'10'2|SIMQ)(tthTlTQ‘TMT)(tthTlTQ‘TIMr}) (160)

My, Ms M)}, M}

x (LS My Ms|JM)(L'S' M} My|J'M") [ dl%YL*,M,L(fc)PBIBQ (K, k)Y, (k)

where we have taken into account that the propagator is diagonal in the decoupled
basis, and we have defined Pp, p,(K,k) = Ap,p,(k1, k») with k; and ky written in

terms of K and k according to Eq. (1.56).

Employing the orthogonality property

> (rjemamaljm) (jijamimalj'm') = 65 6mm (1.61)

mi1ms2

we can perform the sum over o,0, obtaining

((BIBZ)K'kL'SJ'M'T'Mﬂi\(BlBQ)KkLSJMTMﬂ =

E(w)
D (titamima| T My) (t1t5my 7| T' Mr)

T1T2

x Y (LSMpMs|JM)(L'SM;Ms|J'M') / dkY 7o, (k) Po, 5, (K, K)Yia, (k) |
My MsM?,
(1.62)

where, in addition, we have My = M} = 7 + 7. Finally, taking K along the z-axis,
it can be shown that Pg, g, (K, k) is independent of the angle ¢, and the integral will
yield a factor o7, 5. At this point we can already consider this factor and perform
the summation over M;. In addition one has M = M' = M, + Mg because of the

Clebsch-Gordan coefficients in Eq. (1.62).
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To summarize, the general matrix element of Q)/F(w) is given by

((B1By)KkL'SJ' MT' M| |(B1By)KkLSJIMT My) =

Q@
E(w)
Z(t1t27—17—2 |TMT) (tthTlTQ |TIMT)

T1T2

x Y (LSMMs|JM)(L'SMMg|.J'M) / dkY g, (k) Pa, gy (K, k) Ypar, () -
M Mg

(1.63)

Therefore, using Eqgs. (1.50) and (1.63) the general expression for the Bethe-Goldstone

equation in the partial wave basis is given by

((BsBy)KK'L'S'J' MT' My|G(w)|(B1By) KkLSJMT My) =
((BsBy)KK'L'S'J'MT' My|V|(ByBy) KkLSJMTMr)

dk,llkIIQ
+> ) / ((BsBy)KK'L'S'J'MT' M|V |(BsBg) K k" L"S" J" MT" M)

BSBG L'gt g
L gm

> <(BSBG)Rv’k//LnSnJ//MT//MT| Q

E(w)
x((BsBg) KK"L" S" J" MT" Myp|G(w)| KkLSJMT Mr) .

| (B5B6)K"kIILIII SII JIIIMTIII MT>

(1.64)

1.3.1 Angle—averaged Bethe—-Goldstone equation

In order to simplify the numerical calculation of the G-matrix, it has become a standard
practice since the early work of Brueckner and Gammel [Br58] to replace the propagator
Q/E(w) by some angle-averaged one. This means to replace the function Pg, g, (K, k)
by some function Pg, 5,(K, k) = Qp, p,/FE(w) independent of the solid angle k. Before

discussing the exact form of Pp p,(K, k), let us examine the simplifications which
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derive from this replacement.

As we have seen in the previous section, the propagator, which is by definition
diagonal in the particle basis, becomes non-diagonal when transformed to the isospin
basis. Nevertheless, the non-diagonal pieces are built from differences which tend to
cancel each other. In particular, in the strangeness S = 0 sector the cancellation is
exact when the angle average is performed. For these reasons, in our calculations done
in the isospin basis we retain only the diagonal pieces of the propagator. In addition,
when Pg, s, (K, k) is replaced by Py, p,(K, k) in Eq. (1.63), the integral over the solid
angle k can be performed explicitly, yielding a factor d;r,. Then the sum over M} and

Mg can be done using Eq. (1.61) giving 67;.. Hence Eq. (1.63) reduces to

<(BlBQ)I?kLSJMTMT|%|(BIBQ)K1<:LSJMTMT) =Py, (K k),  (1.65)

and the G-matrix can therefore be replaced by an angle-averaged G-matrix which

satisfies the equation

((BsBy)KK'L'S' JMT My |G(w)|(By By) KkLSTMTMy) =
((BsBy)KK'L'S' JMT My |V |(ByBy) KkLSJMT M)

ni.n2
2D / %«&B@KWDS’JMTMﬂW(B5BG) EK'L"S"JMTMy)

BsBg L S"
X Pp,p, (K, k")((BsBs)Kk"L"S" JMT Mr|G(w)|(B,By) KkLSJMTMy) .
(1.66)

Let us now describe in certain detail the angle average of the propagator. It has
become customary to perform the angle average of the Pauli operator, and the one of

the energy denominator separately [Br58, Je74].
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The expected value of the Pauli operator is given in the laboratory system by
Qpy, (k1 ko) = 0(|k1| — ki )0(R2| = k) (1.67)
which in terms of the centre-of-mass momentum K and the relative momentum & reads
Qp,5, (K, k) = 0(|aK + k| — kpy )0 SE — k| — k) | (1.68)
where « and f are given in Eq. (1.56) and

laK + k| = (02K? + k2 + 2aKk cos §) /2

5

, (1.69)

— k| = (B2K? + k* — 28Kk cos §)'/2

=

being 6 the angle between the vectors K and k.

Following the suggestion of Ref. [Br58| the angle-averaged expected value of the

Pauli operator is defined by

_ 1 [t -
Qi F) = 5 /_ Qo (R F)d(cos) (1.70)

The Pauli operator is 1 only if the modulus of the two single-particle momenta
oK + k and ﬁff — k lie outside their corresponding Fermi spheres, which imposes the
following restriction over cos 6

2 2 72 2 2 2 2 2
kFBl—OdK—k /BK +k _kF32

< cosf < . 1.71
20Kk < cosf < 26Kk (171)
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k > max(aK + kg, , BK + kry,,) for any value of oK, BK, kpy , kry,
k< BK — ki, for @K < kip, and BK > kpy,
kE<aK — kFBl for aK > kFBl and K < kFB2

k < min(aK + kr, , BK + kFBQ) for aK > kp, and BK > kp,

Table 1.1: Relative momenta k for which Qg g, (K, k) = 1.

Therefore, we have

o 1 cos 82 1
Qp,p, (K, k) = —/ d(cosf) = §(cos 0y — cos ) =

2 os 61
(1.72)
afK® + k* — aky, — Bk,
4afKk ’
together with the constraint 0 < Qg p,(K, k) < 1, where we have defined
K2 — K% — k? B2K? + k2 — k2
0, = —2 = b 1.

cos 0 S iR , cosby SAKE (1.73)

The condition Qp, g, (K, k) > 0 implies that for values of the relative momentum

k< \/ak%32 + Bk}, — 0K (1.74)

the angle-averaged expected value of the Pauli operator is taken strictly zero.

In addition, for those values of the relative momentum which give cosf; < —1
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kF(Bz> \

(B1)

(@) (b)

Figure 1.7: Expected value of the Pauli operator in the laboratory system (figure
(a)), and its angle average in terms of the centre-of-mass and relative momenta (figure
(b)). Regions in figure (a) are defined by Eq. (1.67), whereas in figure (b) are given by
Egs. (1.72), (1.74) and Table 1.1. The vertical dashed lines in figure (b) denote two
fixed centre-of-mass momenta, K, and Kj,, for which the angle average is depicted in
Fig. 1.8 as function of the relative momentum.

or cosfly > 1 there is no restriction on the phase-space of cosf, being therefore the
angle-averaged expected value of the Pauli operator equal to 1. These momenta, which

depend on the values of oK, 5K, kr, and kp, , are given in Table 1.1.

In Fig. 1.7 we show for comparison the expected value of the Pauli operator in the
laboratory system (a) and its angle average in terms of the centre-of-mass and relative
momenta (b). For completeness we show in Fig. 1.8 the angle-averaged expected value
of the Pauli operator as function of the relative momentum for two different values of

the centre-of-mass momentum.

The energy denominator F(w) is given by

Bk R
2Mp,  2Mpg,

Ew)=w — U, (|k1]) = Up, (ka]) +im (1.75)
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Figure 1.8: Angle-averaged expected value of the Pauli operator as function of the
relative momentum for the two values K, and K, of the centre-of-mass momentum
denoted by dashed lines in Fig. 1.7 (b).

or introducing the centre-of-mass and the relative momenta by
Blw)=w = =5~ Us, (|aK + k|) — Ug, (IBK — k|) +in (1.76)

being M = Mp, + Mp, and yu = Mg Mp,/(Mp, + Mp,) the total and the reduced

masses of the baryon pair (B;Bs), respectively.

The angle-independent energy denominator E(w) is constructed from Eq. (1.76) by

replacing |aK + k| and BK—E by their angle-averages |«K + k| and BK— k| defined
placing | y g 8

as
laK + k| = (02K? + k2 4 2aK kcos §)1/2
, (1.77)

|BK — k| = (°K” + k* — 26Kkcos §)'/?

where

cosf = /(cos?0) , (1.78)
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being
1 ! S o
{cos? ) = 5/ cos? 0Q(K , k)d(cos ) . (1.79)
-1

As we have seen above, the Pauli operator restricts the integration over a certain

range of angles. Therefore, we have

1 cos 02 1
(cos® ) = — / cos® fd(cos ) = 6((:053 0y — cos® 6;) . (1.80)
C:

0s 01

This average is exactly equal to zero for the values of the relative momenta defined
in Eq. (1.74), and is equal to 1 for those given in Table 1.1, as in the case of the Pauli

operator.

1.3.2 Treatment of the singular kernel

In this section we discuss how to treat properly the poles which may appear in the
kernel of the Bethe-Goldstone equation when the starting energy w is larger than the

minimum energy of the intermediate states.

The angle-averaged Bethe-Goldstone equation involves the calculation of an integral

of the type

o0 N(k,li)
I = n__ 7 1.81
/0 N Dy i (1.81)

where in order to simplify notations we have defined:

N(E") = kK" {((B,B)KK L'S' IMT M|V |(B,B.)KK"L"S" JMT Mr) (L52)
1.82

xQp,p (K, k"){((B.Bl)Kk"L"S" IMT Mr|G(w)|(BB,) KkLSJMT Mr)
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and

h2K2 h2k112 _— _—
D(K") = w =37 = 5~ Us.(laK =) = Ug, (18K - &) . (1.83)

The position of a pole kq (let us assume it to be simple) is given by the root of the

equation
D(ky) =0 . (1.84)
We can use the Plemelj formula
1 1
=P— —ind 1.85
x +1in P:c imd(z) (1.85)
and the identity
1
(S(D(k”)) = Wé(k” — kO) s (186)
=T ko
to write
* o aNKE") . N(k)
I = P/O dk”D(kJI) — zﬂw . (187)
dk ko

The calculation of the principal part can be performed following a suggestion by

Haftel and Tabakin [Ha70], consisting in the subtraction of the following zero quantity

) kliQ _ k(% 00 dk”
N (ko) k,lll_r)rllco{ D) }7’/0 W2 0, (1.88)

where by the L’Hopital rule the limit gives

kll2 _ k? 2k0
li 0% — . . 1.89
kull)rllm { D(kll) } (d?ﬂ(cl:;’ ))ko ( )
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Therefore, we can write

dk” _ N(ko)
I P/ k” 2k0 dD k" P/ ]{;”2 — 1T dD(k”) . (190)
dk” k" |ko

Let us now try to write the same denominator in both integrals. We define the

quantity
N(kll)
H mn _— n2 1.2 1.91
(K) = (6" = ) B - (191)
whose value at kg, applying again the L’Hopital rule, is given by
N (ko)
H(k()) = 2k0 (dD(k:”) (192)
k'’ ko
Thus, using Egs. (1.91) and (1.92), Eq. (1.90) can be rewritten as
o H(K")— H(ky) . N(ko)
I= 'p/ AR = — T — - (1.93)
0 0 | k" |k0

Note that the integral is now not singular at kg, therefore the principal part symbol

can be dropped. Finally, we have

* o H(E") = H(ko) . N(ko)
I :/ dk oz 2 T (1.94)
0 0 dk)” |k0

1.3.3 Numerical solution of the Bethe—Goldstone equation

In this section we outline how the Bethe-Goldstone equation can be numerically solved.

In order to present the general ideas of the method let us consider that the conservation
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of isospin and strangeness, or charge and strangeness depending if one has chosen 7" and
My or g to describe the two-baryon states, allows the bare interaction V' to describe

the transitions between three channels, (B;B]), (B2Bj) and (B3 Bj), denoted by

VBlBll—)BlBll VBlBII—)BgBé VBlBll—)BgBé
VBQB%—)BlBll VB2B’2_>B2B§ VBQB%—)BgBé
VBgBé—)BlBll VBgBé—)BzBé VBgBé—)BgBé

For a given starting energy w and centre-of-mass momentum K, the matrix element
((BuB.)KK'L'S'JMT M7|G(w)|(BmB.,)KKLSJMTMy) (with m,n = 1,2,3) of the
reaction matrix describing the transition B, B, (LS) — B,B, (L'S") is given by the

solution of the Bethe-Goldstone equation which, introducing the compact notation
GMES (K k) = (BuBL) KK L'S' JMT My |G(w)|(BnB. ) KELSJMTMz) ,  (1.95)

can be written as

rQr ! n rqQr ! ° dk”k‘”z n rQr ! " r nQn 17
Gris (K k) = Viis (W k) + > > / "y Ertrs K KNGS (k) L (1.96)
0

LII SII r

where

SR L L
w— PPK> Rk Up, (JaK + k|) — U, (|BE — k"))

(1.97)
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Making a discretization of the relative momenta, Eq. (1.96) can be written as

Grr§ (kg k) = Vinrd (kyo ko) + D ) ZFSLLJSL )Grins (kp, ki)wy - (1.98)

L"s" r —

The points of the mesh and their corresponding weights are usually defined by a

tangent

k, = Ctan (W; ) w, = Cgcos_2 <%) Up, (1.99)

or by a logarithmic mapping

kpzpln(izz), wpzplfx%u,,, (1.100)
where ), are Gaussian points chosen from 0 to 1 and v, are their corresponding weights.
Note that formally the range of the mesh points goes from 0 to infinity. The value
of the arbitrary constants C' and D is chosen to optimize the numerical integration.
In practice, we fit a maximum momentum value ¢, dictated by the range in mo-

mentum space of the baryon-baryon interaction and define C' = gyq,/tan(*3*) and

D = gaz/In (1+’”N) being xx the last point of the Gaussian mesh.

We will see now that Eq. (1.98) can be easily interpreted as a 6N x 6N matrix
equation in k-space (being N the number of mesh points). To make things simple, let us
first imagine that there exists only one possible transition, B,, B}, (LS) — B,,B,,(LS),
between baryons and that there are no couplings with other partial waves. In this case

Eq. (1.98) takes the simpler form

Gt & (kjs ki) = Vs (k; ZF::LLSS )Gmtd (ks kiJw, | (1.101)
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which can be viewed as a matrix equation, if we consider G™E%(k;, k;), VRS (ky, ki)

and F/'LE (k;, k;) as N x N matrices in k-space.

Now, if we want to take into account at the same time all the possible couplings
between partial waves with the same total angular momentum J, we can define a 2 x 2

matrix equation of the type

nLS nL'S’ nLS y/nL'S’ nLS pwnlL'S’' nLS nL'S’
GmLS C"YmLS VmLS VmLS FmLS FmLS GmLS C"VmLS'
= + X
GnLS nL'S’ VnLS nL'S’ FnLS nL'S' GnLS nL'S’
mL'S’ mL'S’ mL'S" YmL'S' mL'S" - mL'S’ mlL'S’ mL'S’

where each matrix element of this 2 X 2 matrix structure in (L, S)-space is in fact a

N x N matrix of the type (1.101) in k-space, being, therefore, the total dimension of
this bigger structure 2N x 2N.

Finally, we can treat simultaneously all the possible transitions between the baryons

by defining a 3 X 3 matrix equation

GBlBll—)BlBll GBlBi—)BzBIZ GBlBi%BgBé VBlB'l—)BlBII ‘/BlBll—)lng’l2 VBlBa—)BgBé

GBQB%—)BlBII GBQBIZ—)BgBé GBQB&—)BSB:’; = VBQB.IZ—)BlBII ‘/ngBlz—)BgBl2 VBgBé—)BgBé

GB3B§—)BlB’1 GB3B’3—)B2B12 GBgBé—)Bng VB3B§—)BlB’1 VB3B:’3—>BQB$ VBng—)B;ng
FBlBII—)BlBi FBlBll—>Bng FBlB'l—)Bng GBlBll—)BlBll GBlBi—)B’QB’2 GBlBll—>B'3Bg3

+ FBQBQ—)BlBi FBQB&—)Bng FBgBé—)Bng X GBQB%—)BlBII GBQBIZ—)BQBIZ GBQB&—)BSB\%
FBng—)BlBi FBng—)BgBé -FWB;;B'IS—)B;;B:’3 GBgBé—)BlBII GBgBé—)BgBé GBng—)BgBé

in which each matrix element of this matrix structure is actually a 2N x 2N matrix in

the combined (L, S) and k-space of the type described above. The total dimension of
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this matrix equation is therefore 6N x 6/N.

Then all the numerical problems of solving the Bethe-Goldstone equation have
been reduced to one of solving a 6N x 6 N matrix equation. This can be done by the

inversion method described as follows

G=V+FG,
1-F)G=V, (1.102)

G=(1-F)'V,

where we have adopted a more compact notation to describe the matrix equation.

So, the G-matrix can be obtained by inverting the matrix (1 — F), and then by

multiplying the result of the inversion by the matrix V which contains the potential.

The extension of the method to the case in which the system is composed of any
number of baryon-baryon (B,Bj) channels is straightforward. There will be a different
matrix equation for each total isospin (or charge) and strangeness, and the dimension
of the matrices will be in general 2NN x 2N_.N, being N, the number of different

(B;B)) channels for a fixed isospin (or charge) and strangeness.

Let us finally note that, in fact, the numerical implementation of the treatment
of the pole in the kernel is achieved by working with a large matrix that contains
additional columns and rows associated with the position of the poles. This can easily

be understood by looking at the following equation in which the kernel of the equation
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has been treated as described in section 1.3.2

GrLS (ky, ki) = Vb (ki) +ZF:;%19’ kj, k)G d (ky, ki)w,

nL'S' nL'S' N nL'S' nL'S'
OREBES Uy RGBS o k) Sy PR Uy RIGBS (k)
(%](ck))ko p=1 k dD k) |k0

(1.103)

The last two terms can be interpreted as the additional columns and rows which
must be added taking ko as the (N + 1) momentum of the mesh. Columns and
rows containing zeros may be also added in order to keep a square structure of the
matrix equation which, although it is not necessary, makes things simpler. Therefore,
in general the total dimension of the matrix equation will be 2N, (N +1) x 2N (N +1).

The method just described is rather simple and efficient to implement numerically.

Let us finish this section and the chapter by saying a few words about the self-
consistency required in the calculation of the G-matrix and of the single-particle po-

tential U.

In the standard choice (U(k > kr) = 0) the single-particle potential does not ap-
pear in the Bethe—Goldstone equation because the Pauli operator makes the integral
start from kr. This means that the single-particle potential does not play a role in
the solution of the Bethe—Goldstone equation, which then can be solved for a suitably
chosen series of given values of the starting energy. The G matrix elements for the pre-
cise starting energy values required by the self-consistent scheme are then obtained by
interpolation. Nevertheless, this is not the case when the continuous choice is adopted
since U # 0 for values of k£ > kp. In this case the solution of the equation requires a

self-consistency process which makes the calculation much more time consuming.



Chapter 2

Hyperonic matter

“Le monde, chére Agnes, est une étrange chose”.

Moliére, L’ Ecole des Femmes, Act IL. Sc. 5.

In this chapter we study the single-particle properties of neutrons, protons, A,
¥, X% ¥t =~ and Z° embedded in an infinite many body system composed of
different concentrations of such baryons. Following the theoretical scheme described in
Chapter 1, we present results from microscopic Brueckner-type calculations of dense
matter that include all types of baryon-baryon interactions and allow one to treat any
asymmetry on the fractions of the different species. The chapter is organized according
to the following scheme: first, some generalities are reviewed in section 2.1. Then, the
baryon-baryon G-matrices for all the different strangeness channels and single-particle

potentials obtained in the Brueckner-Hartree-Fock approximation are given in section

96
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2.2. Finally, the single-particle properties of the different baryons at several densities
and fractions of the baryons, are discussed in section 2.3, with special attention focused
on those situations that will be relevant in our microscopic study of S-stable neutron

star matter with strangeness presented in Chapter 4.

2.1 Generalities

The properties and composition of dense matter at supranuclear densities determine the
static and dynamical behaviour of stellar matter [G192, La91, Co94, Kn95, Pr97|. The
study of dense matter at extreme densities and temperatures has received a renewed

interest due to the possibility of attaining such conditions in relativistic heavy-ion

collisions at GSI, Brookhaven (BNL) and CERN.

It is believed that at extremely high densities deconfinement will take place re-
sulting in a transition from hadronic to quark matter. The transition point and its
characteristics will depend crucially on the Equation of State of matter in both the
hadronic and the quark phase. It is well known that the presence of strangeness, in
the form of hyperons (A, ¥, Z) or mesons (K ) will soften the Equation of State and
will delay the transition. Most investigations up to date are made in the framework of
the mean field approach, either relativistic [E195, Sc96] or non-relativistic with effective
Skyrme interactions [Ba97]. Microscopic theories, on the other hand, aim at obtaining
the properties of hadrons in dense matter from the bare free space interaction. In
this sense, Brueckner theory, reviewed in the previous chapter, was developed long
time ago and successfully allowed one to understand the properties of (non-strange)

nuclear matter starting from realistic interactions that reproduce a huge amount of NN
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scattering observables.

A first attempt to incorporate strangeness in the form of hyperons within Brueckner
theory was made in Refs. [Sc95, Sc98], and latter extended to investigations of 3-stable
nuclear matter [Ba98]. A missing ingredient in these works was the hyperon-hyperon
(YY) interaction and the results of single-particle potentials or binding energy per

baryon with a finite amount of hyperons were simply orientative.

The recent availability of a baryon-baryon potential [St99] covering the complete
SU(3) x SU(3) sector has allowed the incorporation of the YY potential in a micro-
scopic calculation of dense matter with non-zero hyperon fraction [St99b]. Accounting
for all possible baryon-baryon interactions required the solution of the G-matrix equa-
tion in coupled channels for different strangeness sectors: nucleon-nucleon NN (S = 0),
hyperon-nucleon YN (S = —1,—2), and hyperon-hyperon YY (S = —2,—3 and —4).
The work of Ref. [St99b] concentrated mainly on isospin saturated systems, i.e., sys-
tems with the same fraction of particles within the same isospin and strangeness mul-
tiplet: T'= 1/2,S5 = 0 (neutrons and protons), 7'=0,S = -1 (A), T =1,5 = -1
(27,20 ) and T =1/2,5 = —2 (27, =%). In this way, the complications associated
to different Fermi seas for each species of the same isospin-strangeness multiplet were
avoided and the G matrix in each sector was independent of the third component of

isospin.

It is well known, however, that the presence of electrons makes neutron star matter,
to be equilibrated against the weak [-decay reactions, containing neutron fractions
much larger (a factor of 10 or more) than that of protons [Bo91, En94, En96]. Also,
the increase of negatively charged leptons with the baryonic density will turn into a

decrease when the appearance of negatively charged baryons becomes energetically
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more favourable. This is the case of the X~ hyperon, since neutralizing the proton
charge with ¥~ instead of e~ will remove two energetic neutrons (pX~ <> nn) instead
of one (pe~ <> n). It is therefore clear, that a microscopic study of S-stable neutron
star matter with hyperons requires the treatment of highly asymmetric matter, both
in the non-strange sector (proton vs. neutrons) and the hyperonic one (X~ vs. X% and

¥, and 27 vs. 20).

In the present chapter we extend the study of Ref. [St99b] to allow for different
fractions of each species [Vi00]. We will also explore the effect of the recently available
YY interaction on the single-particle potential of the hyperons, a crucial ingredient to
determine the baryonic density at which the different hyperons appear. Our aim is to
present a thorough analysis of the properties of the different baryons in dense matter,
taking into account their mutual interactions. We will explore different baryonic den-
sities and compositions that are relevant in the study of neutron stars. The influence
of the hyperons on the properties and structure of neutron stars will be studied in

Chapter 4.

2.2 (G-matrix and BHF approximation

Although the Brueckner reaction matrix, or G-matrix, was already introduced and
described in Chapter 1, in section 2.2.1 we construct the baryon-baryon G-matrices
for all the different strangeness channels starting from the new realistic bare baryon-
baryon interactions of the Nijmegen group (NSC97a-f) [St99]. A general expression
for the Brueckner-Hartree-Fock approximation to the single-particle potential felt by

a baryon B; embedded in the Fermi sea of baryons B, in terms of the partial wave
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basis is given in section 2.2.2, together with expressions for the non-relativistic energy

density and total energy per baryon.

2.2.1 The baryon-baryon G-matrix

The G-matrix which describes the transition B;By, — BsB, is obtained, for a total
isospin 7" and third component M7 (or, alternatively, charge ¢) and strangeness S, from
the bare baryon-baryon interaction V' by solving the corresponding Bethe-Goldstone

equation.

In section 1.3.1 we showed that after performing an angle-average over the Pauli

operator and the energy denominator this equation reads

((BsB) KK L'S' IMT Mz |G(w)|(B,Bo)KkLSJMT My =
((BsB)KK'L'S' IMT My |V|(B1By) KkLSJMT Mr)

+Y Y / dk"k" ((BsBy)KK'L'S' JMT My |V|(BsBs) Kk"L"S" JMT Mr)

2.1
BsBg L"S" ( )

63536 (K, k”; T’ MT)
w— B~ B8 _ Uy (aF — 1) — Up,(5K = F1) - Mg, = Mg, +

x((BsBs)Kk"L"S" JMT Myr|G(w)|(B1By) KkLSJMTMr) .

The starting energy w corresponds to the sum of non-relativistic single-particle en-
ergies of the interacting baryons, including in this case their rest masses. The variables
k,k' k" and L, L', L" denote relative linear momenta and orbital momenta, respectively,
and K is an angular-averaged centre-of-mass momentum (see appendix B for details

on this average). The total angular momentum, spin, isospin and isospin projections
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are denoted by J, S, T and Mrp, respectively.

Note that we show explicitly the dependence of the angle-averaged Pauli operator
@Bs e (], K"; T, Mr) on the total isospin 7" and third component My of the intermediate
two-baryon state (BsBg). In appendix A we show the expressions that define the Pauli
operator in a particular (7', Mr) channel in terms of the basis of physical states. Note
also that although we keep the index Mr in the bare potential matrix elements, they
do not really have a dependence on the third component of isospin since we consider
charge-symmetric and charge-independent interactions. The dependence of the G-
matrix on the third component of isospin comes exclusively from the Pauli operator,
since, as can be clearly seen in Appendix A, it acquires a dependence on M7 when
different, concentrations of particles belonging to the same isomultiplet (i.e., different

values for the corresponding kp’s) are considered.

In comparison with the pure nucleonic calculation, this problem is a little bit more
complicated, because of its coupled-channel structure. Whereas for the strangeness
sectors 0 and —4 there is only one particle channel (NN—NN and = — =E, respec-
tively) and two possible isospin states ("= 0, 1), in the strangeness —1(—3) sector we

are dealing with the AN(AZ) and XN(X=) channels, coupled to 7' = 1/2,

Ganosan Gansswn Grzosaz Grzsy=

GEN—)AN GEN—>EN GEE—>AE GZE—)EE

and the XN (XZ) channel in isospin T' = 3/2

() (6 ).
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In the strangeness —2 sector we must consider the channels AA;, AY, =N and ¥¥ in

isospin states T' = 0

Garsan Garsen Gaasss
Gznoan Gznszn Ganoes |0

GEE*)AA GZE%EN GEE%EE

T=1
éEN—)EN @EN%AE aEN—)EZ
Gasszny  Gassas Gasoss )
622—)EN aEZ—)AE 522—)22

and T =2

( aEZ—)EZ ) .

In addition, each box @Bl By—BsB, Nas a 2 X 2 matrix sub-structure to incorporate
the couplings between (L, S) states having the same total angular momentum J, as we

showed in section 1.3.3. This sub-matrix reads

(L=J,S=0|G|L=J,S=0) (L=J,S=0/G|L=J,S=1)

(L=J,S=1|G|L=J,S=0) (L=J,S=1/G|L=J,S=1)
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for spin singlet-spin triplet coupling (L =J,S =0+« L =J,5 =1) and

(L=J-1,S=1G|L=J-1,S=1) (L=J-1,S=1G|L=J+1,S=1)

(L=J+1,S=1|G|L=J-1,5=1) (L=J+1,S=1|G|L=J+1,S=1)

for tensor coupling (L=J—-1,S=1+<L=J+1,5=1).

The reader can find in appendix C the corresponding particle channels in the
physical basis |(BlB2)I?kLSJMq> (i.e., in which the total charge g of the baryon pair
(B;B,) is used to describe the states instead of the total isospin 7" and third component
My).

2.2.2 Single—particle potential in the BHF approximation

In the Brueckner-Hartree-Fock approximation the single-particle potential of a baryon
B; which is embedded in the Fermi sea of baryons B, is given by Eq. (1.48), which

using the partial wave decomposition of the G-matrix can be written as

(1 + 631)3

B
Uél )(kBl) = 2SB + 1

Z a(2J + 1)

JaL=S7T=MT

% (3, 5,7, 75,/ T M)’ /0 T R f ()
xRe((B1By)KkLSJMTMry|G(Ep, (kp,) + E,(ks,))|(B1Bs) KkLSJMTMz) |
(2.2)
where a = [1 — (—1)LT5+T=sB1=s8,7t5,~!5;] if both baryons belong to the same iso-
multiplet, or a = 1 if they belong to different isomultiplets. The imaginary part of
the single-particle potential can be easily obtained by taking the imaginary part of the

G-matrix elements instead of the real one in the above expression. For the derivation
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of this expression see appendix D.

In the actual calculations, we consider all partial waves up to J = 4. The labels
$By,SB, (tB,,tn,) denote the spin (isospin) of baryons B; and B,, respectively, and
(tB,tB, B, TB,|T M7) is the Clebsch-Gordan coefficient coupling to total isospin 7. The

variable k£ denotes the relative momentum of the B; B, pair, which is constrained by

_ kF32 + fBlkBl

kmaw - ) 2.3
T+ &, (2.3)
with £, = Mp,/Mp,. Finally, the weight function f(k,kp,), given by
( kp. —fp k
1 for k < %
f(ka kBl) = 4 0 for |§BlkBl - (1 + §Bl)k| > kFBQ’
k%BZ - [gBlkBl - (1 + é-Bl)k]2 th .
otherwise,
\ 4531(1 + gBl)kBlk
(2.4)

results from the analytical angular integration once the angular dependence of the
G-matrix elements is eliminated (see appendix E for the derivation of this weight
function). This is done by choosing appropriate angular averages for the centre-of-
mass, K, of the B, B, pair and for the value of the hole momentum, kp,, which enters
in the determination of the starting energy. Details on these angular averages are given

in appendix B.

If the baryon B; is embedded in the Fermi seas of several baryons By, Bs, ..., By,
including its own Fermi sea, then its single—particle potential is given by the sum of all

partial contributions

Us, (k) =Y U7 (k) (2.5)
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where U l(fj )(k) is the potential of the baryon B; due to the Fermi sea of baryons B;.
In this expression k denotes the single-particle momentum of particle B;. The non-
relativistic single—particle energy of baryon B is then given by

R2k2
= oM,

Ey(k) + Ug(k) + Mp . (2.6)

This is precisely the single-particle energy that determines the value of the starting
energy w at which the Gp, p,«,B,B,-matrix in Eq. (2.2) should be evaluated. This
implies a self-consistent solution of Eqs. (2.1), (2.2) and (2.6). The Fermi energy of
each species is determined by setting k£ to the corresponding Fermi momentum in the

above expression.

The total non-relativistic energy density, €, and the total binding energy per baryon,

E/A, can be evaluated from the baryon single—particle potentials in the following way:

B 3 272
r A’k ([ Wk 1
e=2 EB /0 2r)? <2MB + §UB(/§)) , (2.7)

—=—, (2.8)
where p is the total baryonic density. The density of a given baryon species is given by

k3
PB =55 =8P, (2.9)

where x5 = pp/p is the fraction of baryons B, which is of course constrained by the

condition

Y zp=1. (2.10)
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2.3 Nuclear matter results

In this section we present the results for the single-particle properties of each baryon
species (n,p, A, X7, X% ¥ =7 and =°) obtained within the many-body scheme pre-
sented in the previous section and Chapter 1. We start showing in section 2.3.1 results
for pure nucleonic matter, i.e, nuclear matter with only nucleonic degrees of freedom.
Nuclear matter with strangeness content is analyzed in section 2.3.2, focusing our at-
tention on the role of the hyperon-hyperon interaction in the single-particle potential
of the hyperons, a crucial ingredient for the §-stable matter calculations presented in
Chapter 4. We show results mainly for the NSC97e baryon-baryon model interaction
of the recent Nijmegen parametrization [St99], although for comparison some results

for models NSC97a and NSCIT7f are also given.

2.3.1 Pure nucleonic matter

Before considering the role of hyperons in nuclear matter, we devote this section to
review some of the properties of pure nucleonic matter in connection with section 4.5.1
of Chapter 4, in which we will analyze the properties of S-stable neutron star matter

with only nucleonic and leptonic degrees of freedom.

In Fig. 2.1 we show the single-particle potential of neutrons and protons as function
of the linear momentum % at a nucleonic density py = p, + p, = 0.17 fm™3 for
three values of the proton fraction, =, = p,/pn, going from symmetric nuclear matter
(z, = 0.5) to pure neutron matter (z, = 0). The real part is shown on the left panels,
while the imaginary part is given on the right ones. The results have been obtained

for the NSC97e nucleon-nucleon interaction model of Ref. [St99], using the continuous
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Figure 2.1: Single-particle potential of neutrons (upper panels) and protons (lower
panels) at py = pp = 0.17 fm™ for three values of the proton fraction z, = 0, 0.25 and
0.5. The real part is shown on the left panels, whereas the imaginary part is given on
the right ones. The results have been obtained for the NSC97e NN interaction using
the continuous prescription in the solution of the Bethe—Goldstone equation.

prescription when solving the Bethe—Goldstone equation. A comparison between the
results obtained using the continuous or the discontinuous option was reported in Fig.
1.5 of Chapter 1. We see that neutrons and protons have the same single-particle
potential in symmetric nuclear matter, of the order of —86 MeV (—79 MeV for the
discontinuous choice) at zero momentum. As the fraction of protons decreases, the
protons gain binding while the neutrons lose attraction. This is a consequence of the
different behaviour of the nucleon-nucleon interaction in the 77 = 0 and 7" = 1 channels,

the T'= 0 channels being substantially more attractive. Being the minority species in
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Figure 2.2: Single-particle spectrum of neutrons (left panel) and protons (right panel)
as defined by Eq. (2.6) obtained from a BHF calculation (solid lines) in comparison
with the parabolic approximation defined by Eq. (2.11) (dashed lines) for py = 0.3
fm % and z, = 0.25. The NSC97e NN interaction model and continuous prescription
have been considered in the calculation.

the asymmetric situation considered in Fig. 2.1, the proton builds up its potential from

more T'= 0 than 7" = 1 pairs and hence becomes more attractive.

The single-particle spectrum of neutrons and protons can be well parametrized by
a parabolic spectrum of the type

h?k?

E, (k) = YR + Unp(0) + My (2.11)
n!p

as can be seen in Fig. 2.2 where we show the spectra of neutrons and protons at

pnx = 0.3 fm 2 and z,, = 0.25, obtained from the Brueckner-Hartree-Fock calculation
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Figure 2.3: Neutron (left panel) and proton (right panel) effective masses as functions
of the nucleonic density for symmetric, asymmetric (z, = 0.25) and pure neutron
matter calculated from Eq. (2.12).

(solid lines) and with the parabolic parametrization of Eq. (2.11) (dashed lines). In the
M*

»p Stands for the neutron, proton effective mass constructed from

above equation
the value of the single-particle potential taken at £ = 0 and at a second momentum ks

(in our case ko = 7 fm™! as can be seen in Fig. 2.2), according to

M* . —1
e ] 4 U"’p(2k22) Unp(0) . (2.12)
M, n2k2/2M,,

In Fig. 2.3 we show the neutron and proton effective masses as function of nucleonic

density for symmetric, asymmetric (z, = 0.25) and pure neutron matter calculated
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Figure 2.4: Total energy per nucleon as a function of the nucleonic density for sym-
metric matter (z, = 0.5), asymmetric matter with x, = 0.25 and pure neutron matter
(z, = 0). The results have been obtained for the NSC97e NN interaction using the
continuous prescription.

according to Eq. (2.12).

The total energy per nucleon as a function of the nucleonic density for symmetric,
asymmetric (with z, = 0.25) and pure neutron matter is reported in Fig. 2.4. As before,
the results have been obtained for the NSC97e nucleon-nucleon interaction model using
the continuous prescription. The calculated energy per nucleon for symmetric matter
has a minimum for py ~ 0.3 fm™? (kp, = kg, = 1.64 fm '), being its value E/A ~
—17.3 MeV. As expected (see Chapter 1) the Brueckner—Hartree—Fock calculation does
not reproduce the empirical saturation point, being necessary to include three-body

forces to get the empirical values py = po = 0.17 £ 0.01 fm 3, F/A = —16 + 1 MeV,
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Figure 2.5: Energy difference between asymmetric and symmetric matter as function
of the asymmetry parameter squared for four values of the density. Symbols show the
results from the BHF calculation, while straight lines correspond to the parabolic fit
of Eq. (2.13).

as well as other properties of nuclear matter at saturation. As the proton fraction
decreases, the total energy per nucleon shows, as expected, less and less attraction due
to the larger number of neutron pairs (coupled to isospin 7' = 1) and to an increase of

the kinetic energy.

There is empirical information on asymmetric nuclear matter that indicates that
the energy difference between the energy per nucleon in asymmetric matter and the
energy per nucleon in symmetric matter, £/A(py, 5) — E/A(pn, 0), is proportional to

B2, being f = 1 — 2z, the asymmetry parameter. As can be seen in Fig. 2.5, where
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Figure 2.6: Symmetry energy as function of the nucleonic density.

this energy difference going from symmetric to pure neutron nuclear matter is plotted

as a function of 32 for four different values of the nucleonic density, our Brueckner—

Hartree-Fock calculation fulfils this law to a very good accuracy.

These results indicate that the energy per nucleon in asymmetric nuclear matter

can be well approximated by the parabolic form

S (0w 8) = S (0. 0) + Bumlpw) 7

(2.13)
where the symmetry energy s, (pn), defined as
1*E/A(pw, B)
Esym(pN) = §a—ﬂ2|’820 , (214)

can be now expressed in terms of the difference between the energy per nucleon of
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functions of the nucleonic density for symmetric, asymmetric (z, = 0.25) and neutron
matter obtained using the parabolic approximation of Eq. (2.16).

neutron and symmetric matter

E

E
Esym(pn) & A(pN’ 1) — Z(PN:O) .

(2.15)

We show in Fig. 2.6 the symmetry energy as a function of the nucleonic density ob-

tained from our Brueckner-Hartree-Fock calculations employing the NSC97e nucleon-
nucleon interaction model.

Within this parabolic approximation one can obtain the neutron and proton chem-
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ical potentials in asymmetric matter in the following way

_ ag(pN’ B)

0
,unap(pNa ﬁ) — 8,0 ~ ,Ufn,p(pNa 0) - (ﬁQ + 2B - ﬁsz—> Esym(pN) 3 (216)
n,p

Opn

where the minus sign is for neutrons and the plus sign for protons. We end this section
by showing in Fig. 2.7 the neutron and proton chemical potentials as functions of the
nucleonic density for symmetric (right panel), asymmetric (central panel) and pure
neutron matter (left panel) obtained from Eq. (2.16) and our BHF calculation with
the continuous choice. When the proton fraction decreases, the difference between
the neutron and proton chemical potentials becomes more evident because, as we have

already said, neutrons become less attractive, whereas protons turn out more attractive.

2.3.2 Nuclear matter with strangeness content

After having reviewed some of the properties of pure nucleonic matter (py = 0), in this
section we consider nuclear matter with strangeness content, focusing our analysis on

the role of the hyperon-hyperon interaction.

To begin with, we show in Fig. 2.8 the complete set of nucleon and hyperon single-
particle potentials in pure nucleonic symmetric matter at total density pg = py = 0.17
fm 3. Results for the NSC97a, NSC97e and NSC97f baryon-baryon interaction models
are shown in the left, central and right panels, respectively. These results have been
obtained using the continuous prescription. As can be seen from the figure, there are
slight differences between the employed models, giving NSC97e and NSC97f the most
similar results. The hyperon single-particle potentials are much less attractive than

the nucleonic ones, reflecting the weaker strength of the hyperon-nucleon interaction
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Figure 2.8: Single-particle potentials of the different baryons in pure nucleonic sym-
metric matter at total baryonic density pg = py = 0.17 fm™3 for three different
parametrizations, NSC97a, NSC97e and NSC97f, of the Stoks and Rijken baryon-
baryon interaction model [St99]. All results have been obtained using the continuous

prescription.

compared with the nucleon-nucleon potentials. The most interesting feature that can
be extracted from Fig. 2.8 are the hyperon “well depths” Uy (k = 0). The corresponding
results are displayed in Fig. 2.9 as functions of the nucleonic density. One notes that

these new Nijmegen models predict relatively strong attraction for all types of hyperons.

The A single-particle potential in symmetric nuclear matter at py = 0.17 fm=3 turns
out to be around —40 MeV at £ = 0 and has a smooth parabolic behaviour as a function

of k. This result is larger than the value of —30 MeV obtained when one extrapolates
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Figure 2.9: Well depths of the different hyperons as functions of the nucleonic density
in pure nucleonic symmetric matter (py = 0). Results obtained with models NSC97a,
NSC97e and NSC97f are shown in the left, central and right panel, respectively.

to large A the s-wave A single-particle energy of several hypernuclei [Ba90]. It is also
much larger in magnitude than the value of around —24 MeV [Ya94, Hj96, Vi98] which
is obtained using the NSC89 YN potential [Ma89] with the standard choice for the
spectrum of the intermediate YN states in the Bethe-Goldstone equation, or even with

the Jiilich B model from which a value of ~ —30 MeV is obtained (see Fig. 3.2).

The value of the ¥ single-particle potential at & = 0 for py = 0.17 fm~2 lies
between —20 or —25 MeV (depending on the type of ¥ and interaction model) which is

somewhat more attractive than that obtained with the NSC89 potential of around —17
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MeV, and might not be supported by the present experimental information. Although
data on X~ atoms seemed to be compatible with attractive potentials of around —25
MeV at po [Ba78, Os90], more recent fits including data of heavier atoms suggested a
repulsive potential in the nuclear interior [Ba94, Ma95, Ba97b]. A recent comparison
of (K—, %) spectra calculated in plane wave impulse approximation [Da99] with data
taken at BNL [Sa98] also seems to favour a repulsive Y-nucleus interaction, although
more sophisticated treatments including the distortions of the incoming and outgoing
mesons would be convenient before drawing definite conclusions. The differences in
binding between the three X-hyperons are in the case of the NSC97a-f potentials solely

generated by the different masses.

In the case of Z-hyperons, early analysis of old emulsion data [Do83] indicated an
attractive Z-nucleus well potential of around —24 MeV, while recent (K, K™) spectra
on }2C, obtained at KEK [Fu98] and BNL [Kh00] and analyzed within the distorted

wave Born approximation, favour a shallower potential of around —14 MeV.

Having analyzed the hyperon single-particle potentials in pure nucleonic symmetric
matter, we consider now the effect of nucleon asymmetry (i.e., different neutron and
proton densities) on these quantities. In Fig. 2.10 we show the baryon single-particle
potentials at normal density, py = 0.17 fm™3, for three different proton fractions (z, =
0.5zx,0.252y and 0), where xy = pn/pp is the fraction of non-strange baryons, which
in this case is 1. According to our results for S-stable matter shown latter in Chapter 4,
we restrict our calculations to the NSC97e baryon-baryon interaction model and use the
discontinuous prescription when solving the Bethe-Goldstone equation. In addition, we
also show the hyperon single-particle potentials (for A and ¥.7), denoted with the label

89, obtained with the Nijmegen Soft-Core 89 version of the YN interaction [Mag89].
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Figure 2.10: Momentum dependence of the single-particle potentials for the different
species at p = pg = 0.17 fm™3, hyperon fraction z, = 0 and several nucleon asymme-

tries.

By comparing the right panel (symmetric matter) with Fig. 2.8 (central panel) one

sees that less attraction is obtained for all the baryons when the discontinuous choice

is adopted in solving the G-matrix equation. This loss of attraction is of the order of

10 MeV in the case of nucleons and around 5 MeV in the case of hyperons.

As the proton fraction decreases, the three ¥’s become more bound and the differ-

ences between their potentials become more pronounced due to the different behaviour

of the ¥N G-matrix in the T = 1/2 (repulsive) and 7" = 3/2 (attractive) channels.

Whereas ¥Tn and X°n pairs receive contribution from both isospin channels, ¥ n

pairs receive only contributions from the attractive isospin 3/2 channel, hence the ¥~
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shows more attraction (see Fig. 2.16 and the corresponding discussion).

Let us consider the differences between the results obtained from the NSC97e model
and the NSC89 one. Apart from the different size, the new single-particle hyperon
potentials also show a totally different behaviour with increasing asymmetry than that
observed for the potentials obtained with the NSC89 YN interaction. While the NSC89
A single-particle potential turns out to be slightly more attractive with increasing
neutron fraction (i.e., going from the right panel to the left one), the new one becomes
slightly more repulsive. The changes for the ¥~ single-particle potential are more
drastic. While the NSC89 interaction gives a ¥~ potential which shows little change
with increasing neutron fraction, the NSC97e X~ potential becomes strongly attractive.
The value at k¥ = 0 for the X~ potential changes from about —20 MeV in symmetric
nuclear matter to —37 MeV in neutron matter. This has important consequences in
the composition of dense matter: if hyperons feel substantially more attraction, their

appearance in dense matter will happen at lower density.

Having established how the nucleons affect the single-particle potential of hyperons
it is necessary to investigate the influence of a finite fraction of hyperons on the hyperons
themselves and on the nucleons. From now on, we restrict our calculations to matter
composed of neutrons, protons, A’s and X7 s, since these last two hyperon species are
the first ones to appear as the density of S-stable neutron star matter increases [Sc98|.
This is confirmed in our study of Chapter 4 (see also [Vi00b]) where, up to the density

1.2 fm~3 considered there, the hyperons X°, 37, 2~ and =Z° are absent.

In Figs. 2.11 and 2.12 we show the single-particle potentials of the different baryons
as functions of the momentum. Figure 2.11 shows results at p = 0.3 fm~3 and a hyperon

fraction zy = 0.1, which is assumed to come only from ¥~ (top panels) or split into
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Figure 2.11: Momentum dependence of the single-particle potentials for the different
species at p = 0.3 fm~2 and hyperon fraction zy = 0.1. The right panels correspond
to symmetric nuclear matter, x, = z, = 0.5zy, while the left ones are for asymmetric
nuclear matter with z,, = 3z, = 0.752y. In the top panels the hyperon fraction is built
exclusively from ¥~ (zx- = zy), while in the bottom ones there is a fraction of A’s
(xA = zy/3) and X7’s (zg- = 22y /3).

¥~ and A hyperons in a proportion 2 : 1, hence zx- = 2zy/3 and z, = xy /3 (bottom
panels). The panels on the right correspond to symmetric proton-neutron composition
(z, = xp, = 0.5zy, where zy = 0.9) and the ones on the left correspond to a higher
proportion of neutrons (z, = 0.25zy,z, = 0.75xy). Starting at the upper-right panel
we observe that the presence of ¥~ hyperons already breaks the symmetry between the
proton and the neutron single-particle potentials in a symmetric nucleonic composition,
the neutrons feeling around —10 MeV more attraction. This is due to a different

behaviour of the ¥ n interaction, which only happens via the attractive T = 3/2
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isospin channel, with respect to the ¥~ p interaction, that also receives contributions
from the very repulsive 7 = 1/2 XN component. In fact the difference between the
neutron and proton potentials is not as pronounced as we move to the lower panel on
the right, where some ¥~ hyperons are replaced by A hyperons which act identically
on protons and neutrons. In the upper left panel, where we have increased the neutron
fraction in the non-strange sector, we observe the typical pattern for the nucleon single-
particle potentials commented in Fig. 2.1: the particle with the smallest fraction (i.e.,
the proton) shows more binding. However, this behavior is partially compensated
by the presence of a sea of ¥~ which provides attraction (repulsion) to the neutron
(proton) single-particle potential. We also observe that the ¥~ feels more attraction, as
a consequence of having replaced some repulsive X~ p pairs by attractive >~n ones. The
A loses binding because the Fermi sea of neutrons is larger and their contribution to the
A single-particle energy explores higher relative momentum components of the effective
An interaction, which are less attractive than the small momentum ones. Finally, since
the Fermi sea of hyperons is small, the differences observed on the potentials by going
from the top panels to the corresponding lower ones (which amounts to replacing ¥~

hyperons by A ones) are also small.

Similar effects are found in the results reported in Fig. 2.12, obtained for a baryonic
density p = 0.6 fm~3, at which it is expected that nuclear matter in 3 equilibrium
already contains hyperons [Sc98, Vi00b]. The single-particle potential of the A hyperon
is less attractive than that for p = 0.3 fm 3, while that of the ¥~ is very similar. It
just gains more attraction when the number of neutrons increases relative to that of
protons in going from the right panels to the left ones. As for the nucleon single-particle
potentials, we observe, also on the left panels, that the attractive ¥~ n interaction is

enhanced at these high densities and makes the neutron spectrum more attractive than
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Figure 2.12: The same as Fig. 2.11 for a baryon density p = 0.6 fm=3.

the proton one, even in the asymmetric situation when one would expect the protons

to be more bound.

To assess the influence of the YY interaction, we present the separate contributions
building the A single-particle potential in Fig. 2.13 and those for the ¥~ one in Fig.
2.14, for a baryonic density of 0.6 fm3. The hyperon fraction of zy = 0.1 is split
into fractions zx- = 2xy/3 and xp = zy/3 for ¥~ and A hyperons, respectively.
The results on the right hand side of Figs. 2.13 and 2.14 correspond to the symmetric
nuclear case and those on the left to a neutron fraction three times larger than that of
protons. We see that the contribution to the A potential from A hyperons, represented
by the dash-dotted line, is attractive and almost negligible, due to a weak attractive

AA effective interaction [St99b] and to the small amount of A particles present. On
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Figure 2.13: Separate contributions of each species to the A single-particle potential
at p = 0.6 fm 3 and hyperon fraction zy = 0.1 split into z5;- = 2xy /3 and z, = zy/3.
The right panel is for symmetric nuclear matter (z, = z, = 0.5xy) and the left one
for asymmetric nuclear matter (z, = 3z, = 0.75zy).

the contrary, the contribution from the ¥~ hyperons is larger, of the order of —10 MeV
in nuclear-symmetric matter and slightly less in nuclear-asymmetric matter, which is
comparable in size with the contribution from protons and neutrons. This example
clearly shows the important role of the YY interaction in modifying the properties of
the A hyperon. The A acquires more attraction and its appearance in dense matter
becomes more favourable with respect to the situation in which the YY interaction
was neglected. The fact that the neutron (thin solid line) and proton (dotted line)
contributions to the A single-particle potential are not the same in nuclear-symmetric

matter is due to the ¥~ hyperons, which make the neutrons feel more attraction and,



84 Hyperonic matter

150 T T T T T T T T T T T T T
o) p=0.6 fm°, p,=0.1p
U,-
,,,,,,,,,,,,,,, u,®
100 + - T |
o U{
oy ®
—— Total | e |
l;! 50 7777777 T
[ I
=3
<
[
:)V\I [ s ——————— . - ]
50 L .
I
X,=0.25X,, X,=0.33%, x,=0.5x,, X,=0.33X,
_100 n 1 n 1 n 1 n n 1 n 1 n 1 n
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0
k [fm™] k [fm™]

Figure 2.14: The same as Fig. 2.13 for the ¥~ single-particle potential.

consequently, the An pairs explore the effective AN interaction at smaller energies,

where it is less attractive.

The different contributions to the X~ are shown in Fig. 2.14. The A hyperons (dot-
dashed line) contribute very little due to the reduced value of their Fermi momentum.
The contribution of the ¥~ X~ pairs (long-dashed line) is very important, of the order
of —25 MeV in symmetric nuclear matter, and becomes crucial due to the fact that
the neutron (thin solid line) and the proton (dotted line) contributions, which amount
each one to about 50 MeV in magnitude, almost cancel each other. In the left panel,
the replacement of some protons by neutrons lowers the >~ single-particle potential
considerably, by about 25 MeV. Again, neglecting the YY interactions here would have

made the ¥~ potential around 20 — 25 MeV less attractive.
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Figure 2.15: Chemical potentials of the different species as functions of total baryonic
density, for different nucleonic asymmetries and strangeness fractions. The top panels
correspond to the asymmetric nuclear matter case (z, = 3z, = 0.75zy), while the
bottom ones correspond to symmetric nuclear matter (z,, = xz, = 0.5zy).

The analysis of the structure of [-stable matter requires the knowledge of the
chemical potential yp of each baryon, defined at zero temperature as the single-particle
energy of the Fermi momentum. In Fig. 2.15 we show the chemical potentials as
functions of density for different nucleon asymmetries and hyperon fractions. Note that
the curves are measured with respect to the nucleon mass and contain, in addition to
the non-relativistic Fermi energy, the baryon mass of each species. The top panels show
the results for asymmetric nuclear matter (x, = 3z, = 0.75xy), whereas the bottom
panels stand for the symmetric case. On the left panels we show results for purely

nucleonic matter (zy = 0), on the central panels we have zx- = zy = 0.1, while on
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the right panels zy is distributed into 25 = xy /3 and zg- = 2zy /3. The behaviour
of the chemical potentials when increasing the nucleonic asymmetry as well as the
hyperon fraction follows closely the trends observed in Figs. 2.10, 2.11 and 2.12 for the
single-particle potentials at densities p = 0.17,0.3 and 0.6 fm~3, respectively. We just
have to consider here that the curves in Fig. 2.15 also contain the kinetic energy of
the corresponding Fermi momentum. It is interesting to comment on the high density
behaviour of the chemical potentials, since this will determine the feasibility of having
hyperons in [-stable neutron star matter. In asymmetric nuclear matter, both the
A and the ¥~ chemical potentials show, from a certain density on, an increase with
increasing density which is very mild as compared to that assumed by phenomenological
YN interactions [Mi88]. When the number of neutrons over that of protons is increased
(top panels), the A chemical potential barely changes because of the similarity between
the An and Ap interaction. However, the ¥~ hyperon acquires more binding due to
the dominant X~ n attractive pairs over the ¥~ p repulsive ones. This will favor the
appearance of ¥~ in dense neutron matter, through the nn — p¥~ conversion, when
the equilibrium between chemical potentials is achieved at both sides. Once a Fermi
sea of ¥~ hyperons starts to build up, however, the neutrons become more attractive,
moderating, in turn, the appearance of >~ hyperons. As we can see, the composition of
dense neutron star matter in S-equilibrium will result from a delicate interplay between
the mutual influence among the different species. In fact, one needs to find, at each
baryonic density, the particle fractions which balance the chemical potentials in the
weak and strong reactions that transform the species among themselves. This study

will be presented in Chapter 4.

One of the novelties of this work with respect to that of [St99b] is that we allow

for different concentrations of the baryon species. Therefore, we explicitly treat the
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dependence of the G-matrix on the third component of isospin, which comes from the
Pauli operator of species B; and Bg that may have, even when belonging to the same
isospin-strangeness multiplet, different Fermi momenta. See Appendix A for more

details.

In Fig. 2.16 we report the diagonal XN — YN G-matrix elements in the 1Sy channel,
as a function of the relative momentum for a density p = 0.6 fm—3, taking x5 = 0 and
zg- = xy = 0.1. The top panels correspond to the isospin 7" = 1/2 channel and the
lower ones to the 7" = 3/2 one. The panels on the right are for symmetric nuclear
matter, r, = x, = 0.52y, while those on the left correspond to z, = 0.25zx. The
starting energy and centre-of-mass momentum is the same for all the curves shown in
the same plot; thus the dependence on My comes exclusively from the Pauli operator.
Note that different pairs of particles contribute to each (T, My) combination. The
case (T, Mr) = (1/2,+1/2) receives contributions from Y*n and X% pairs, while
¥7p and X°n contribute to (T, Mr) = (1/2,—1/2). In the case of isospin T = 3/2
one has contributions from ¥ n (My = —3/2), X%, X p (Mr = —1/2), ¥*n, X%
(Mr = +1/2), and ¥Tp (My = +3/2). We observe that the curve corresponding to
the third component My less affected by Pauli blocking is always more attractive. This
is due to the fact that the phase space for intermediate states, which induce attractive
corrections to the potential matrix elements, is larger. This is clearly seen in the top

panel on the right, since the dotted line contains a channel with the >~ hyperon.

When the nucleonic asymmetry is increased by going to the panel on the left, the
effects of Pauli blocking on the neutrons are more important than those on the >~
hyperons. This is the reason for the solid curve to appear above the dotted one,

since the (T, My) = (1/2,+1/2) case receives contributions from %% and ¥*n in a
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Figure 2.16: Diagonal ¥N G matrix in the 'Sy partial wave as a function of the relative
momentum at a density p = 0.6 fm 3, for the different (7', My) isospin channels. The
right panels are for symmetric nuclear matter, x, = z, = 0.5z, while the left ones
correspond to x, = 3z, = 0.75zx. In all cases x5~ = 0.1 and x5 = 0.

proportion 1 : 2 and it contains relatively more neutrons than the case (T, Mr) =
(1/2,—1/2) with £™p and X%n pairs in a proportion 2 : 1. In the case of T = 3/2
we observe that the asymmetry on the ¥ multiplet barely induces any dependence on
My in the G-matrix, as can be seen from the bottom panel on the right. However,
one can observe differences when going to asymmetric nuclear matter on the left panel,
since the Pauli blocking on ¥ n pairs (Mp = —3/2) is enhanced over that on X*p
pairs (Mp = +3/2). As we can see, in all cases considered here the dependence of
the G-matrix on the third component of the isospin is very weak and can almost be

neglected. We have also encountered this weak dependence in the other G, p, 5,5,
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Figure 2.17: Binding energy per baryon as a function of the baryon density. In the
top panels we set rx- = 0 and show results for several values of z,, while the bottom
panels correspond to x5, = 0 and different fractions of ¥~ ’s. The panels on the right
are for symmetric nuclear matter, while the left ones correspond to asymmetric nuclear
matter (z, = 3z, = 0.75zy). In the case of nuclear symmetric matter with 10 % of
hyperons we also show a curve (dash-dotted line) where the YY interaction has been
turned off.

matrices. Therefore, a presumably good strategy and less time consuming would be
to obtain the GG-matrices in isospin-saturated systems and, afterwards, calculate the
single-particle potentials by folding the “approximate” effective interactions with the

different baryon Fermi seas.

We finish this section and the chapter by reporting in Fig. 2.17 the binding energy
per baryon as a function of density. The right and left figures describe symmetric and

asymmetric (z, = 3z, = 0.75zy) nuclear matter, respectively. In the top panels, we
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show the binding energy with zx- = 0 for several values of x,, while in the bottom
panels we consider x5, = 0 and vary the concentration of >~ hyperons. The binding
energy per baryon is the result of a balance between the average kinetic energy of
each baryon Fermi sea and the contribution from the mutual interactions, given by
the average of the single-particle potential of each species. In order to identify the
effects of the YY interaction on the binding energy per baryon we have also included
a curve corresponding to a calculation with a 10% of hyperons (either A’s or X7’s)
where the YY interaction is turned off (dash-dotted line). In both cases, turning the
YY interaction on, results in a gain of binding energy which is larger in the case of ¥~.
The binding energy per baryon shows a saturation density, i.e., a density for which the
thermodynamic pressure is zero, which is too high when we consider the composition
with only nucleons. The location of this saturation density is little affected when the
percentage of hyperons is increased. When a small amount of nucleons is substituted by
hyperons, there is automatically a decrease of the kinetic energy contribution because
the hyperons can be accommodated in lower momentum states and in addition have
a larger bare mass. The analysis of the influence of the effective interaction on the
binding energy must be made separately for A’s and X7’s. Although the effective
AN and AA interactions are clearly less attractive than the NN one, the reduction of
kinetic energy is clearly enough to compensate for the loss of binding energy when a
10% of nucleons is substituted by A’s. Notice, however, that we have to consider the
AA interaction in order to obtain this increase of binding with respect to the pure
nucleonic case. At z, = 30% the loss of kinetic energy is not enough to compensate for
the loss of attraction from the effective interactions and less binding energy than the
case with only nucleonic degrees of freedom is obtained. Looking at the lower panels for

the X~ hyperons we observe that the binding energy per baryon gains more attraction
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as compared to the case for A’s. This is, essentially, due to the larger loss of kinetic
energy due to the larger mass of the X~. In general, the replacement of nucleons by
hyperons produces a gain in binding energy and a softening of the Equation of State.
The appearance of hyperons in S-stable matter, the softening of the Equation of State

and its implications on the properties of neutron stars are deferred to Chapter 4.



Chapter 3

Hyperon properties in finite nuclei

“Though this be madness, yet there is method in it”.
William Shakespeare, Hamlet, Act. II, Sc 2.

The aim of this chapter is to present a method to obtain an effective hyperon-
nucleon interaction in finite nuclei based on an expansion over a G-matrix calculated
in nuclear matter. Our purpose is to set up a reliable frame for hypernuclear structure
calculations with the aim of obtaining information about the hyperon-nucleon interac-
tion, complementary to that provided by hyperon-nucleon scattering experiments. The
chapter is organized in the following way: section 3.1 is devoted to the derivation of
the effective hyperon-nucleon interaction in finite nuclei and of the finite nucleus hy-
peron self-energy. The convergence of the method is examined in section 3.2. Finally,

results for the properties of single-particle states of the A hyperon in several nuclei are

92
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presented in section 3.3.

3.1 Hyperon single-particle properties in finite nu-

clei

Several features of the A single-particle properties in the nucleus, being essentially
different from those of the nucleon, have clearly emerged from the efforts performed
on hypernuclear physics during the last decades. It is well accepted nowadays that the
depth of the A-nucleus potential is around —30 MeV, which is 20 MeV less attractive
than the corresponding nucleon-nucleus one. The spin-orbit splittings of single particle
levels in A hypernuclei were found to be much smaller than their nucleonic counterparts
[Br78], typically more than one order of magnitude. Moreover, the A, contrary to the
nucleon, maintains its single-particle character even for states well below the Fermi
surface [Pi91, Ha96] indicating a weaker interaction with other nucleons. On the other
hand, studies of the mesonic weak decay of light A hypernuclei [Mo091, St93, Ku95]
have shown that the data [Sz91] favour A-nucleus potentials which show a repulsion at
short distances. This seems also to be a characteristic of the ¥-nucleus potential for
light ¥-hypernuclei [Ha90], which reproduces the recently measured bound X7 state in
s.He with the in-flight “He(K~,7~) reaction [Na98|, confirming with new and better

statistics the earlier results from the *He(K_ ., 7 ) reaction [Ha89].

stopped?

The purpose of this chapter is to study the self-energy of hyperons in several nu-
clei using a microscopic many-body approach. Our starting point is a nuclear matter
G-matrix at a fixed energy and density, which is used to calculate the G-matrix for

a finite nucleus including the two-particle-one hole second-order correction. This cor-
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rection incorporates the correct energy and density dependence of the G-matrix. The
hypernuclear structure calculations of Refs. [Ya92, Ya94] take the nuclear matter G-
matrix at the Fermi momentum kr (density) that reproduces the binding energy of
the A in the hypernucleus under study. Our finite nucleus calculation eliminates the
need of choosing such an effective Fermi momentum for each single-particle state and
hypernucleus. In this sense it is comparable with the finite nucleus calculations of Refs.

[Ha93, Ha93b|.

In this section we show how to obtain the hyperon single-particle properties in finite
nuclei using an effective interaction derived microscopically from realistic hyperon-
nucleon interactions. We first present in section 3.1.1 how a finite nucleus hyperon-
nucleon G-matrix is obtained from an expansion over a G-matrix calculated in nuclear
matter at fixed density and starting energy. Then, in section 3.1.2, we construct the
hyperon self-energy in the nucleus in the Brueckner-Hartree-Fock approximation. The
single-particle binding energies and the corresponding wave functions for the different
orbits can then be obtained by using this self-energy as a single-particle potential in

the Schrodinger equation, as it is explained in section 3.1.3.

3.1.1 Hyperon-nucleon G-matrix in finite nuclei

One possible way to construct a finite nucleus hyperon-nucleon G gy-matrix is to solve
directly its corresponding Bethe-Goldstone equation, which in a compact notation

reads

E FN

However, we can take profit from the fact that we have already obtained the
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hyperon-nucleon G-matrix in nuclear matter (see Chapter 2), and try to find the ap-

propriate finite nucleus Gry-matrix by relating it to the nuclear matter one.

Recalling that the corresponding Bethe-Goldstone equation for the nuclear matter
G-matrix is just

G:V—i—V(%)NMG, (3.2)

we can eliminate the bare interaction V' in Egs. (3.1) and (3.2) to obtain Gpy through

the following integral equation

- (@)l G+ 33

which involves the nuclear matter G-matrix and the difference between the finite nu-
cleus and nuclear matter propagators, which account for the relevant intermediate
states. The expansion (3.3) can be truncated up to the second-order because the dif-
ference between the finite nucleus and the nuclear matter propagator is in fact quite

small. Therefore, we have

am=a+6](2) ~(2) . »

3.1.2 Hyperon self-energy in finite nuclei

The self-energy of a A or ¥ hyperon in a finite hypernucleus can be obtained using a

finite nucleus G'gy-matrix, such as the one we have constructed in the previous section,



96 Hyperon properties in finite nuclei

Nz N\ 2 G

() = O |
CGen G

Az N\, 2

(a) (b) (c)

Figure 3.1: Brueckner-Hartree-Fock approximation to the finite nuclei hyperon self-
energy (diagram (a)), split into the sum of a first-order contribution (diagram (b)),
and a second-order 2plh correction (diagram (c)).

as an effective hyperon-nucleon interaction.

In the Brueckner—-Hartree—Fock approximation the finite nucleus hyperon self-energy
is given by diagram (a) of Fig. 3.1. According to Eq. (3.4) it can be split into the sum
of diagram (b), which represents the first-order term on the right-hand side of Eq.
(3.4), and diagram (c), which stands for the so-called second-order two-particle-one-
hole (2plh) correction, where the intermediate propagator has to be viewed as the

difference of propagators appearing in Eq. (3.4).

We can construct the expressions for the diagrams considered, taking the incoming
(outgoing) hyperon as a plane wave and the nucleon hole states as harmonic oscil-

lator ones. The first-order term of Fig. 3.1(b) yields a real and energy-independent
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contribution to the self-energy given by

. 1 7
Vlst (kykg/lY]Yth) = A2 Z Z jQ
Y T nnlnnt, (3.5)

X{(kyly Jytay ) (nnlnintz,) T |G| (kyly jytsy ) (nulnjnts,) T ),

where ky (k% )lyjyt,, and nplpjirt,, denote, respectively, the quantum numbers of the
incoming (outgoing) hyperon and the nucleon hole states, J = jy + jn is the total
angular momentum in the laboratory frame and & = v/2x + 1. Although not denoted
explicitly, it is understood, in Egs. 3.5 and the following lines, that the isospin value

of the nucleon, the A and the ¥ is 1/2,0 and 1, respectively.

The computation of the contribution coming from the two-particle-one-hole (2p1h)
diagram of Fig. 3.1(c) requires some more work. First, we evaluate the imaginary part
of the term G(Q/F)rnG in Eq. (3.4). This term has an explicit energy dependence

and reads

1 A
Wégl))lh(kykg/lY]Ythw) = — 3 Z Z Z /dek/KQdKJQ

JY  nplpjpts, LLSITT My Y'=AY

X ((kyly jytsy ) (nnlnint, ) T |G|(Y'N)K LkLSJ T T M) (3.6)

X ((Y’N)KEkLSJJTMT@\ (k‘ylyjytzy) (nhlhjhtzh)3>

K2 K2(My+M,,1)
X7 (w +ep — Win 3,) QMNM; — My + My) ,

where w is the energy of the hyperon measured with respect to the hyperon rest mass,
k, L are the relative and orbital angular momentum, K, £ are the corresponding quan-
tum numbers of the centre-of-mass motion, S is the total spin, My = t,, +t,, is the

total isospin third component, and J=L+8S.
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The single-hole energies €}, have been taken equal to the experimental single-particle
energies in most of the nuclei studied (e.g., *He, 12C, 10, 4°Ca) and have been calcu-
lated from a Woods-Saxon potential with Spin-Orbit and Coulomb terms appropriately
fitted in other cases (e.g., ?°Zr and ?®Pb). The contribution to the real part of the
self-energy from Eq. (3.6) can be obtained through the dispersion relation

(ky kY by jyvt,, w')
w —w

dw', (3.7)

Vézli)lh(kYkgflyjytzyw) = ;fp/ 2p1h

where P means a principal value integral.

Finally, we must evaluate the 2plh correction term coming from the nuclear matter

intermediate propagator (i.e., the term G(Q/FE)nuG in Eq. (3.4) ). It reads

) 1 .
VQ(;)lh(kY]ﬁgzlY]Ytzy) =2 Z Z Z /dek/KQdKJ2

JY  nplpjnte, LLSITT My Y'=A%
x (K lyjytsy ) (nalngnts, )T |G |(Y'N)K LELSJJT Mr)

X (Y'N)KLKLSJTTMz|G |(kylyjvts, ) (nplpintz, ) T)

- 2 k2(My+M_1) -1
XQY’N(Ka k) (wNM - Q(MNIi_My,) - QMII,Myf - MY’ + MY) )

where @y y is the nuclear matter angle-averaged Pauli operator and wyy, is the nuclear
matter starting energy. This term only contributes to the real part of the hyperon self-
energy and avoids the double counting over intermediate Y'N states contained already

in the nuclear matter G-matrix of the Brueckner—-Hartree-Fock contribution Vis:.

From Egs. (3.5), (3.6) and (3.8) we see that typical matrix elements in the calcu-

lation are

((kyly vty (alnint., ) T| Gl (Kyly vty ) (nulnint)T) (3.9)
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for the first-order diagram of Fig. 3.1b, or

appearing in the second-order diagram of Fig. 3.1c. The two-body mixed representation
states involving a plane wave and an harmonic oscillator can be expressed in terms of

momentum and angular variables in the laboratory frame using

|(nulngnts,) (Byly iyt )T ) = /kidthnhlh(akh) |(knlnjntz,) (Bylyjvt., )T ), (3.11)

where, as we said before, nplpjnt,, and kylyjyvt,, are the quantum numbers of the
nucleon hole state and the hyperon state, respectively. Further, a is the oscillator
parameter appropriate to describe the single-particle wave functions of the bound nu-

cleons in the nuclear core, defined as
0= — (3.12)
with fw chosen as the following function of the mass number:

hw = (45 -5 25,4—%) MeV . (3.13)

With appropriate transformation coefficients [Ku79, Wo72], one can express the

two-body states with laboratory coordinates in terms of the variables in the centre-of-
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mass system used in the solution of the G-matrix

4 \
la I A
|(alajatzn) (kologotz,)T) = D / k*dk / KK 1 1 g o
LALSJ

L ja jb ¢.7 )

Lo
X (=DM L5 JA25, 5,8 (KLELMkolokyly\) |K LELSTTT Mry) |

S JJ

(3.14)

where the curly brackets stand for the 9— j and 6 — j symbols, X = l: +l; =L+ E, and

(KLELM|kglokplyA) are the transformation coefficients from the centre-of-mass system

to the laboratory system,

47)26 (w)B(1 — 2?)

(
KLELA Ky, = A, 1
(K LELXkqlokplp) ke ok K (3.15)
where
w=k*+ afK?— Bk: — ak; , (3.16)
k2 — k? — o?K?
T = STk : (3.17)
with o = Ma/(Ma + Mb), 5 = Mb/(Ma + Mb) and
L L A lo Iy A
A=Y ’
mM \ m M —pu 0 pu —p ) (3.18)

X (=)t bt MYy (8, 0)Yen (6 0)Yi,0(0, 0) Y, (v, 0)
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being the parenthesis the so-called 3 — j symbols and

kg + k? — o’K?

cosd = ST : (3.19)
k2 + ?K? — k?
cos ¢ = Sk , (3.20)
B2 + o2 — K*
= a 21
cos 7y 2aBkb (3.21)

Thus, inserting the transformations (3.11) and (3.14) in Egs. (3.5), (3.6) and (3.8),
these equations can be expressed in terms of the nuclear matter G-matrix elements
evaluated in the centre-of-mass frame. Let us note that in Eq. (3.6) the delta function
is used to perform the K-integration, while the remaining integral over the relative
momentum k£ sums over the intermediate plane wave states. These states must be
distorted in order to make them orthogonal to the occupied bound states. We use the
orthogonalization method described in Ref. [Bo92]. The empty nucleon bound states
are lacking in our sum over intermediate states, but they represent a minor correction

due to the much larger phase space of the continuum.

In summary, the self-energy of the hyperon in the Brueckner-Hartree-Fock approx-

imation reads
SEHE (v b ly jyw) = V (ky ki ly jyw) + iW (ky by ly jyw), (3.22)
with the real part given by

V (kykyly jyw) = Viet (ky By ly iy ) + Vipr (by Ky by jyw) — Vio (ky Ky lyjy) — (3.23)
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and the imaginary part by
W (ky ki ly jyw) = Wi, (ky i ly jyw). (3.24)

Note that the self-energy obtained is non-local and energy-dependent.

3.1.3 Non-local single-particle hyperon-nucleus potential

The self-energy of Eq. (3.22) can be used as a single-particle potential in a Schrodinger
equation in order to investigate bound and scattering states of a hyperon in a finite nu-
cleus. The different approximations to the self-energy, i.e., whether we include the 2plh
contribution or not, result in different single-particle hamiltonians. The Schrodinger
equation is solved by diagonalizing the corresponding single-particle hamiltonian in a
complete basis within a spherical box of radius Ry,,. The radius of the box should
be larger than the radius of the nucleus considered. The calculated observables are
independent of the choice of Ry, if it is chosen to be around 20 fm or larger. This
method is especially suitable for non-local potentials defined either in coordinate or in

momentum space [Bo92, Hjo4|.

A complete and orthonormal set of regular basis functions within this box is given
by
(I)nljm(fj - <7?|knl.7m> = an jl(knr)d)ljm(ea ¢) ’ (325)

where 1, (0, ) represent the spherical harmonics including the spin degrees of freedom

and j;(k,r) denote the spherical Bessel functions for the discrete momenta &, which
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fulfil the condition

jl(kanom) =0. (326)

For the specific case of [ = 0 the normalization constant is

nmv/2
Nno = W .

box

(3.27)

In this way, the basis functions defined in Eq. (3.25) are orthogonal and normalized
within the box. The single-particle hamiltonian for the hyperons, consisting of the
kinetic energy and the real part of the self-energy, can be evaluated in this basis and

the resulting eigenvalue problem

Nmaz h2k2
D (kalggdep + V(w = Bk (hpl) = Eykal) (3.28)
p=1

restricted typically to 20 or 30 states, can easily be solved. Notice that a self-consistent
process is performed for each eigenvalue, i.e., the self-energy needs to be evaluated at
the energy of the resulting eigenvalue. As a first result, one obtains the negative energies
for the bound states and the corresponding wave functions, which are expressed in terms
of coefficients of the basis defined in Eq. (3.25). Furthermore, one also obtains discrete
positive energies that correspond to scattering states with radial functions which are
zero at r = Ry,,. Taking into account this fact it is possible to evaluate the phase

shifts for those energies.
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3.2 Convergence of the method

As described before, our method provides the binding energies of the different hyperon
orbits in finite hypernuclei starting from a G-matrix calculated in nuclear matter in

the YN centre-of-mass frame at fixed starting energy wy, and Fermi momentum kg.

By adding the 2p1h correction to the first-order term one incorporates, up to second-
order in the nuclear matter G-matrix, the correct energy dependence and Pauli blocking
in the finite nucleus. Therefore, the complete calculation (1% +2p1h) has to be viewed
as a Brueckner—Hartree-Fock approach which uses an effective interaction derived mi-
croscopically with the appropriate density and energy dependence of the hypernucleus
under study. This is in contrast to previous calculations [Ya85, Ya90, Ya92, Ya94|,
where the determination of the finite hypernucleus effective interaction from the nu-
clear matter G-matrix implied a sort of average over the nuclear density. In these
works several local and energy independent effective YN interactions of Gaussian form
(YNG) were derived by parametrizing the corresponding nuclear matter G-matrices
obtained from various YN potentials. The parametrization of the G-matrix into a lo-
cal effective interaction YNG to be used in finite hypernuclei calculations required the
use of an appropriate value of the Fermi momentum k. This value was determined,
for each nucleus, by averaging the corresponding nuclear density weighted by the mod-
ulus squared of the A single-particle wave function of the single-particle level under
study. The parameters of the effective YNG interaction were adjusted to reproduce
the A potential energy U, (0) in nuclear matter at the average value of kr. With these
parametrizations, A single-particle energies and excited hypernuclear levels in several A
hypernuclei were obtained through a shell-model calculation, with the aim of learning

about the bare YN interaction.



3.2 Convergence of the method 105

It seems therefore appropriate to explore, using our method, how much the hyperon
single-particle energy depends on the starting energy and density of the nuclear matter
G-matrix used in the calculation. This will allow us to assess how reliable energy

independent effective interactions obtained from local density averages might be.

Let us first show, in Fig. 3.2, the binding energy By (k = 0) of a A (curves on the

1 as a function

left) or a ¥ (curves on the right) in nuclear matter at kr = 1.36 fm~
of the starting energy parameter w = wyy + A = (By) + By(k = 0) + A, where
(By) = =50 MeV is an average of the nucleon binding energy over the Fermi sea at
kr, = 1.36 fm~* and A = My — M. The long-dashed (full) lines are for the Nijmegen
Soft Core 89 [Mag89] (Jiilich B [Ho89]) interaction. An estimate of the self-consistent
solution is obtained where the line w = wyy + A = (By) + By(k = 0) + A crosses
the calculated value of By (k = 0). This is indicated by the dotted lines in the figure.
In the case of the Nijmegen interaction we obtain w = —74.3 MeV (B (0) = —24.3
MeV) for the A and w = 15.8 MeV (By(0) = —11.7 MeV) for the X, whereas, in the
case of the Jiilich interaction, w = —80.2 MeV for the A (BA(0) = —30.2 MeV) and

w = —36.0 MeV (Bx(0) = —63.5 MeV) for the ¥.

Several features emerge from Fig. 3.2. First, the X hyperon is unrealistically over-
bound in nuclear matter by the Jiilich interaction. It is therefore necessary to readjust
the parameters of this interaction if one wants to use it in shell model calculations
of ¥ hypernuclei. Secondly, we observe that the energy dependence of Uy (k = 0) is
slightly stronger in the case of the Nijmegen interaction, especially for the 3 hyperon
which is more sensitive to the XN - AN coupling because the starting energy is closer
to the energies of the intermediate AN states (which propagate with the kinetic energy

spectrum). Finally, we observe that the A binding energy varies at most by 10 MeV
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Figure 3.2: Dependence of the hyperon energy By (k = 0) in nuclear matter on the
starting energy w. The curves on the left are for the A, whereas the ones on the right
are for the ¥. Long-dashed (full) lines correspond to Nijmegen Soft-Core 89 (Jiilich
B) interaction. The dotted lines show the positions of the self-consistent solutions for

in a starting energy range of 80 MeV, while the variation of the ¥ binding amounts
to twice as much. As we will see below, this has consequences in the results for fi-
nite hypernuclei. We note that our results are in agreement with other nuclear matter

calculations [Ya85, Ya90, Ya92, Ya94, Sc98|.

In Tables 3.1 and 3.2 we show the binding energy of the A and X°, respectively,
in 37O calculated for the Jillich B and NSC89 interactions. The columns denoted by
1%t correspond to our lowest-order calculation (see Eq. (3.5)), which uses, as effective

interaction, the nuclear matter G-matrix calculated in the YN centre-of-mass frame
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kp =1.36 fm™! Jiilich B NSC89
w (MeV) ¥t 1% 4+ 2plh 1%t 150+ 2plh
—100 —-9.25 —11.85 —3.83 —7.43
—80 —-10.15 —11.83 —4.76 —7.39
—50 —-11.73 —11.84 —5.59 —7.36

Table 3.1: Dependence of the A single-particle energy in }”O on the starting energy of
the nuclear matter G-matrix. Our notation is w = (By)+Ba(k = 0), with (By) = —50
MeV. Units are given in MeV.

kp = 1.36 fm Jiilich B NSC89
w (MeV) 15t 1504 9plh 150 150+ 2plh
0 —36.70  —50.70 —0.16  —22.79
20 —40.38  —50.94 —2.01  —23.35
50 —~51.34  —50.38 ~10.65 —24.62

Table 3.2: Dependence of the X° single-particle energy in 15,0 on the starting energy
of the nuclear matter G-matrix. Our notation is w = (By) + Bx(k = 0) + A, with
(By) = —50 MeV and A = My, — Mj. Units are given in MeV.

1 and at several values of the starting

at fixed Fermi momentum of kr = 1.36 fm~
energy (shown in the first column), w = wyy + A = (By) + By (k = 0) + A. Columns
labelled (15" + 2p1h) include the 2plh corrections (see Egs. (3.7) and (3.8)) to bring
the nuclear matter G-matrix to the finite nucleus one, with the proper energy and
density dependence. We see that the lowest order results depend quite strongly on the
starting energy used, especially in the case of the X hyperon. However, it is worth
noticing how, no matter what starting energy is used in solving the nuclear matter
G-matrix, the corrected calculation (1% + 2p1h) ends up giving practically the same
result for the hyperon binding energy. Particularly stable are the results for the A

hyperon. This weaker energy dependence is due to the fact that the energies involved

in the calculation lie further away from the threshold of intermediate YN states and
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w = —50 MeV Jiilich B NSC89
kp (fm™1) 1%t 15t 4+ 2plh 1%t 150 4 2plh
1.00 -13.71  —11.74 -9.33  -7.30
1.25 —12.56  —11.83 —7.66  —7.34
1.36 -11.73  —11.84 —559  —7.36

Table 3.3: Dependence of the A single-particle energy in O on the Fermi momentum
of the nuclear matter G-matrix. Our notation is w = (By) + Bx(k = 0), with (By) =

—50 MeV. Units are given in MeV.

w =0 MeV Julich B NSC89
kr (fm™) 158 1t +2plh 1t 1%t 4+ 2plh
1.00 —43.94 —51.74 —2.64 —25.03
1.25 —39.41 —51.16 —0.82 —23.37
1.36 —36.70 —50.70 —0.16  —22.79

Table 3.4: Dependence of the X° single-particle energy in 1,0 on the Fermi momentum
of the nuclear matter G-matrix. Our notation is w = (By) + Bx(k = 0) + A, with
(By) = =50 MeV and A = My, — M,. Units are given in MeV.

therefore the strong AN-XN coupling is less pronounced.

In Tables 3.3 and 3.4 we show the binding energy of the A and X°, respectively,
again in 17O using nuclear matter G-matrices calculated at several values of the Fermi
momentum and a fixed value of the starting energy (w = —50 MeV for the A and
w = 0 for the ). The lowest-order calculation for the hyperon-single particle energy
depends quite strongly on the value of kr. The results of Tables 3.3 and 3.4 should
not be interpreted as showing a dependence of the hyperon binding energy on the
nuclear density. The single-nucleon states are the same in all the calculations and
correspond to the harmonic oscillator wave functions appropriate for 0. The Fermi
momentum shown in the first column refers to the value used in the solution of the

nuclear matter G-matrix. The first-order result just shows the decrease of attraction as



3.2 Convergence of the method 109

kr increases due to the increasing number of Pauli blocked intermediate states in the
Bethe-Goldstone equation. However, one finds again that, when the 2plh correction is
included to incorporate the proper intermediate propagator of the finite nucleus, the
results nicely converge to practically the same value, no matter what was the density

used in the solution of the nuclear matter G-matrix.

For completeness, we have also examined the dependence of the A single-particle
energies in finite nuclei on the choice (standard or continuous) adopted for solving the
nuclear matter G-matrix. In order to illustrate this analysis, we show in Table 3.5
the results for two nuclei, 3He and }'O, calculated with the NSC97f baryon-baryon
interaction. As can be seen from the table, the first-order depends quite strongly on
the prescription chosen to solve the nuclear matter G-matrix. Nevertheless, also in this
case, for both nuclei, the inclusion of the 2plh correction brings both calculations, the
one performed with the standard prescription and the one with the continuous option,
to a similar final result. It is interesting to observe that the first-order, when using the
continuous choice, is closer to the final result including the 2plh correction than when
using the discontinuous prescription. This indicates that the symmetrical treatment of
the single-particle spectrum for particles (k > kp) and holes (k < kp) in the continuous
prescription gives rise to an intermediate nuclear matter propagator more similar to

the one in the finite nucleus.

All these results are interesting in the sense that they confirm that the finite nucleus
G'ry-matrix is already well approximated by the second-order term in the expansion
in terms of the nuclear matter G-matrix. The inclusion of the 2plh correction, whose
size depends on the starting energy, the Fermi momentum or the choice adopted in the

solution of the nuclear matter G-matrix, already leads to practically the same value for
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Nuclei | Orbit Standard Choice Continuous Choice | Exp.
1%t 15t + 2plh 1%t 15t + 2plh

2He (R He)

Isy2 | —1.98 —3.59 —3.60 —3.96 —3.12

KO (x’O)

1s1)y | —11.17 —14.02 ~15.69 —16.03 | —12.5

Table 3.5: Dependence of the A single-particle energy in finite nuclei on the choice
adopted for solving the nuclear matter G-matrix. The results have been derived from
the NSC97f baryon-baryon interaction.

the hyperon single-particle energy. Higher order terms could only help in bringing the
results closer than what they already are. Moreover, our results also show that in some
cases this correction is quite appreciable, not only for the ¥° binding energies shown in
Tables 3.2 and 3.4, but also for the A energies in the case of the Nijmegen interactions.
Therefore, if the effective interaction is taken directly as the nuclear matter G-matrix
at an averaged density [Ya85, Ya90, Ya92, Ya94] it may not lead to the proper effective

interaction in the finite nucleus one is studying.

We note that the A single-particle energy obtained in the case of the NSC89 inter-
action is in excellent agreement with that obtained by Halderson (see column 3 in Fig.
7 of Ref. [Ha93]), where the G-matrix was calculated directly in the finite nucleus for
various Nijmegen interactions. Hence, our method can also be viewed as an alternative
and cheaper way of building up a finite nucleus effective interaction. It was also shown
by Halderson that the Pauli corrections were very large for the NSC89 potential. This
again supports our belief that finite nucleus calculations based on nuclear matter G-
matrices at an average density will carry uncertainties tied to the chosen value of the

Fermi momentum.
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3.3 Finite nuclel results

Once the method has been well established and tested for the specific cases of ;'O and
150, it is the right moment to study the systematics of the A binding energies through
the periodic table. We will present results for calculations performed with the Jiilich B,
NSC89, NSC97a and NSCO7f interactions. Results for interactions NSC97b, NSC97c,
NSC97d and NSC97e are not presented because their differences with respect to the
results of NSC97a and NSC97f are smaller than 10%. So we will consider these two
last interactions as representative of the Nijmegen Soft Core 97 models. In the studies
of single-particle states below, we will refrain from studying the X single-particle ones,
since the results presented in Tables 3.2 and 3.4 for ;0 show binding energies which

are even more attractive than the binding energy of this hyperon in nuclear matter.

3.3.1 A single-particle states

The values of the A single-particle binding energies obtained in what has been called
15 and 1% + 2plh approximations are reported in Tables 3.6 and 3.7 together with
the available experimental data. These binding energies have been calculated using
the Jiilich B, NSC89, NSC97a and NSC97f interaction models, employing the standard
prescription in the calculation of the nuclear matter G-matrix, a Fermi momentum of

kr =1.36 fm ! and a starting energy of w = —80 MeV.

For convenience in the technicalities of the algorithm we have always considered
hypernuclei with a number of nucleons closing a subshell plus a A. Unfortunately,
experimental data for those nuclei do not always exist and, as indicated in Tables 3.6

and 3.7, we have taken the closest representative nucleus for which the experimental
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Nuclei | Orbit Jiilich B NSC89 Exp.
15t 15t + 2plh 1%t 15t + 2plh

3 He (3 He)
1810 | —1.43 —2.28 —0.04 —0.58 —3.12

KO (XC)
181/ | —7.93 —9.48 —3.42 —5.69 —11.69

A0 (xXO)
1s12 | —10.15 —11.83 —4.76 —7.39 —12.5
Ip12 | —0.08 —1.06

A Ca (YCa)
1512 | —16.85 —19.60 —-10.24  —15.04 —20.
Ip3e | —6.70 —9.64 —3.07 —6.92 —12. (1p)
Ipie | —6.92 —9.92 —2.33 —6.29

Zr (57)
1s10 | —22.24 —25.80 —16.35 —22.77 —23.
Ip3/p | —14.74 —18.19 —10.13 —17.08 | —16. (1p)
Ipi1p | —14.86 —18.30 —9.73 —16.68

209p}, (28Pp)
1s1/0 | —26.28 —31.36 —23.58 —29.52 —27.
Ip3/e | —21.22 —27.13 —21.42 —26.01 —22. (1p)
1pi2 | —21.30 —27.18 —21.18 —25.72

Table 3.6: A binding energies (in MeV) in the 1s;/5, 1p3/» and 1p;/, single-particle
orbits for different nuclei. The available experimental data, indicating the hypernu-
cleus for which they have been measured, are taken from the compilation of [Ba90]
supplemented by new measures reported in [Pi91] and [Ha96]. The results have been
derived from the Jiilich B and the Nijmegen Soft-Core 89 (NSC89) hyperon-nucleon
interaction.

information is available. Nevertheless, the differences between the calculated and the
experimental values should not be associated to this fact but to the approximations

used in the calculation or to the potential itself.

For the density and starting energy (kp = 1.36 fm !, w = —80 MeV) used to
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Nuclei | Orbit NSC97a NSCI7f Exp.
1%t 15t + 2plh 1%t 1%t + 2plh

{He ({He)
Is12 | —1.91 —-3.16 —1.98 —3.59 —3.12

KC (xXC)
Is1/0 | —9.54 —11.46 —8.77 —11.37 —11.69
1ps/o —0.24 —0.01 | —0.7 (1p)
1p1/2 —0.12

A0 (xXO)
Isiyp | —12.40 —14.31 —11.17 —14.02 —12.5
1psjz | —1.26 —2.57 —0.56  —2.17 | —2.5 (1p)
1pijs | —0.81 —2.16 —1.41

A Ca (¥ Ca)
1s1/2 | —20.86 —23.09 —18.19 —21.96 —20.
1psjo | —10.44 —12.37 —837  —11.09 | —12. (1p)
1p1s2 | —10.03 —12.10 —7.50 —10.45

AZr (X'Zr)
Is1/p | —28.51 —31.38 —25.08 —29.56 —23.
1psjo | —20.56 —23.92 ~17.41  —22.25 | —16. (1p)
1p1j2 | —20.47 —23.82 —17.03 —21.88

iOQPb (?\ngb)
Is1/2 | —39.60 —38.85 —34.52 —39.30 —27.
1py/s | —36.34 —33.49 —32.59  —31.03 | —22. (1p)
1p1j2 | —36.22 —33.38 —32.33 —30.72

Table 3.7: As in Table 3.6, but for NSC97a and NSC97f interactions.

calculate the A-nucleon G-matrix in nuclear matter, which has been used as effective

interaction in our finite nucleus calculation, it turns out that the 2plh correction is

almost always attractive (it is only repulsive in the case of 2°Pb for NSC97a (s- and p-

waves) and NSCO7f (p-waves)). This attraction can be understood from the following

argument: The total 2plh contribution is given by VQ(;)M, see Eq. (3.7), minus the

nuclear matter correction term V2(12))1h of Eq. (3.8). Thus, Eq. (3.7) introduces the finite
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Figure 3.3: Wave function of the 1sy/5, 1ps/s and 1p; s states of a A hyperon in ;'O
(upper panels) and }'Ca (lower panels) for four different interactions: Jiilich B, NSC89,
NSC97a and NSCITH.

nucleus Pauli operator which is less restrictive than the nuclear matter Pauli operator.
Therefore, by allowing for a larger phase space in the sum over the intermediate states,
the finite nucleus second-order contribution is more attractive than the corresponding

nuclear matter result, producing an overall attractive second-order correction.

In agreement with the experimental information, the difference between the ps/o
and p;/p A single-particle binding energies is very small. Note that in the case of the
Jiilich B interaction the p;/; energy is lower than the ps,. This is a characteristic

of the Jiilich interaction which yields too much attraction in the 3S; partial wave, as
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Nuclei | Jiilich B | NSC89 | NSC97a | NSC97f
3He 3.08 4.83 2.79 2.70
BC 2.43 2.79 2.34 2.40
1o 2.47 2.80 2.39 2.47
4Ca 2.71 2.99 2.66 2.83
YL Zr 3.11 3.31 3.01 3.20
209Ph | 3.49 3.96 3.65 3.96

Table 3.8: Root-mean-square radius (r.m.s.) of the 1s;/, A-orbit in different nuclei.
Units are given in fm.

noted already in [Ya92, Ya94] where the 07 and 17 states of 3 He were calculated and

shown to appear in reverse order with respect to the experimental values.

The calculated A single-particle energies for 3°°Pb appear clearly overbound with

respect to the experimental data, especially for the case of NSC97a-f models. This is
due first to the fact that the distortion of the plane wave associated with the nucleon
in the intermediate state of the 2plh diagram of Fig. 3.1c, necessary to ensure its
orthogonalization to the nucleon hole states, has been considered only approximately.
The orthogonalization procedure is described in Ref. [Bo92] and has been optimized
for the case of }’O. Actually, this feature is already sizable for {Zr and in the case of
39PD leads to the unrealistic result of a A that is more bound than in nuclear matter.
In addition, for the case of the NSC97a and NSC97f models this large overbinding of
the A in heavy nuclei is in fact not surprising if we recall (see previous chapter) that
the value of the A binding energy in nuclear matter obtained with these potentials is

already very large (~ —40 MeV).

For completeness we show in Fig. 3.3 the wave function of the 1s;/, 1p3/2 and 1py 5

states of a A in }’O (upper panels) and 4Ca (lower panels) for the four interactions
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Figure 3.4: Wave function of the 1s;/, state of a A hyperon in different nuclei from

2He to 2Pb determined from the Jiilich B interaction.

considered: Jiilich B, NSC89, NSC97a and NSC97f. We have explicitly excluded the
1p3/2 and 1py /5 states in the case of oxygen for the NSC89 interaction because it gives no
binding for these states. As can be seen from Tables 3.6 and 3.7, the NSC89 interaction
predicts the smallest binding energies, which results in a larger radius for the bound A
states and therefore in more extended wave functions. In a similar way, the NSC97a
model predicts the largest binding energies, which therefore results in more localized
wave functions. These features can be seen in Fig. 3.3 and in Table 3.8, where we show
the root-mean-square radius (r.m.s.) of the 1s;/, A-orbit for the different nuclei and

the four interactions considered.
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Finally, in Fig. 3.4 we show the 1s;/, A-wave function in different nuclei obtained
with the Jiilich B interaction. As we move from light to heavy nuclei the probability
of finding the A at r = 0 decreases and the wave function becomes more and more
extended due to the larger extension of the nuclear density over which the A particle
wants to be distributed. Only the lightest hypernucleus, 3 He, falls out of this pattern
due to the fact that the corresponding binding energy is also pretty small, resulting in

a very extended wave function.

3.3.2 Local parametrization of the hyperon self-energy

In this section we want to explore if our A single-particle energies, obtained from
a self-energy which is non-local both in k- and r-space, can be reproduced by local

potentials.

Hjorth-Jensen et al. [Hj96] have shown that one can generate a local representation
of the self-energy by performing an appropriate average of the non-local self-energy

Yo (r,7"), where « indicates the quantum numbers of the single-particle state, over the

coordinate 7/,

. /dr'r'Zf]a(r, rYU(r')q

Sboe(p TP , (3.29)

where

2
Salrr') = = / k2dk / k2dk' 5, (k') Sa (k, k') i (kr) . (3.30)

is the Fourier-Bessel transform of the non-local self-energy from momentum space to
r-space and ¥(r), is the radial wave function of the a-state. This procedure ensures

that the local potential 3-%¢(r), when inserted into the Schrédinger equation, will give
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rise to the same bound state U(r),.

This local representation might, in first approximation, be characterized by the

shape of a Woods-Saxon potential,

_ Vo
" l+expl(r—R)/d]’

Vivs(r) (3.31)

with a given diffusivity a and depth Vj, independent of the mass number, and a radius
R = ry(A)A'Y/3 determined by requiring the Woods-Saxon potential to reproduce the
same eigenvalue as the microscopic non-local energy-dependent self-energy. A reason-
able value for the depth Vj is the A binding energy in nuclear matter, which is taken to
be —30.2 MeV, and for the diffusivity one may take a = 0.6 fm. The resulting values of
R, when we apply this procedure to the deepest s state of *C, 17O and }!Ca are 2.25
fm, 2.53 fm and 3.82 fm respectively. Fitting these three values with a functional form
similar to the one used by Millener et al. in [Mi88] for the analysis of the experimental

data, one obtains

ro(A) = 1.229 — 1.3904 %3 . (3.32)

As an example we show in Fig. 3.5 the local single-particle potential for a A in the
1s1/9 state in 170 obtained from the localization of the self-energy, calculated with the
Jiilich B interaction, according to Eq. (3.29) and a Woods-Saxon parametrization (with
Vo = —30.2 MeV, a = 0.6 fm, R = 2.53 fm), which reproduces the binding energy of
the A. Let us note that in the following we will employ only the Jiilich B interaction to
illustrate the discussions. Similar results to the ones we will show have been obtained
for the other interactions, although they have not been included in order to make the

discussions more transparent.
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Figure 3.5: Local single-particle potentials for a A in the 1s;/, state in ;'O employing
the Jiilich B interaction. The solid line represents the result obtained from Eq. (3.29),
while the dotted line is the result obtained from a Woods-Saxon parametrization with
Vo = —30.2 MeV, a = 0.6 fm, R = 2.53 fm.

In order to visualize the quality of these fits, we show in Fig. 3.6 the binding energies
for the s- and p-waves of }2C, 'O, 3!Ca and 3'Zr calculated with our non-local self-
energies (triangles) using the Jilich B interaction together with the values obtained
with a Woods-Saxon potential with the parameters just defined above (solid lines).
As the spin-orbit splitting is so small we have reported the average value of the ps/;
and pi/p energies obtained from the non-local self-energies and have not considered
any spin-orbit term in the adjusted Woods-Saxon potential. The results of 3°Pb have
not been included in the plot because, as mentioned before, the s-wave binding energy

was larger than the binding energy in nuclear matter which we have taken as the
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Figure 3.6: Calculated A binding energies in 1s and 1p single-particle orbits for
different nuclei employing the Jiilich B interaction. The solid lines correspond to the
solutions obtained for a Woods-Saxon potential which fits the experimental s-wave
results and whose parameters are V; = —30.2 MeV, @ = 0.6 fm and R = ro(A4)A'/3
with ro(A) given in Eq. (3.32). Triangles show the results obtained from our non-local
self-energy.

depth of the Woods-Saxon potential. The s and p binding energies obtained from the
non-local self-energy are well reproduced by the Woods-Saxon shape and, as expected,
both partial waves extrapolate to the binding energy for nuclear matter because in this

system the single-particle wave functions become plane waves.

Of course the binding energies are not enough to characterize the single-particle
states since potentials giving rise to the same binding energies can generate substantial
differences in the corresponding wave functions. Therefore, in order to analyze the

microscopically calculated self-energy we should also study the single-particle wave
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Figure 3.7: The wave function in r-space for the 1s15 A in °C, J"O and }'Ca obtained
from the A self-energy (solid lines) is compared with the one obtained using a Woods-
Saxon potential of fixed (A-independent) depth (dashed lines) or with both radius
and depth adjusted (dot-dashed lines) to maximize the overlap with the wave function
provided by the self-energy (solid lines). Parameters of the Woods-Saxon potential are
given in the text. The Jiilich B interaction has been employed in all the calculations.

functions. To be specific we will consider in particular the 1s;/, state of a A in three

representative hypernuclei such as 3C, 17O and 4'Ca.
AU A A

To have a measure of the quality of the wave functions generated by the Woods-
Saxon potential, we calculate their overlap with the wave functions obtained by solving
the Schrodinger equation using the self-energy. The overlaps for 2C, 17O and {!Ca are
0.9917, 0.9869 and 0.9924 respectively, which are not close enough to 1 to guarantee the
equality of the wave functions. This is visualized in Fig. 3.7, where the wave function
for the s-wave in these nuclei obtained with the Woods-Saxon potential (dashed lines)

is compared with the one obtained directly from the non-local self-energy (solid lines).

In order to maximize the overlap with the eigenfunction provided by the self-energy,
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we will also allow the depth V to vary. The values of Vj by applying this procedure
to the s-wave of the three nuclei considered above are respectively —23.11, —23.56 and
—27.84 MeV whereas the values of the radius R are 2.92, 3.32 and 4.39 fm. With
these values of Vi and R the overlaps are 0.9999 for the three nuclei considered. The
eigenfunctions obtained by this procedure for these nuclei are also drawn in Fig. 3.7
(dot-dashed lines) and show a large overlap with the self-energy eigenfunction (solid

lines).

In conclusion, the single-particle energies of closed-shell nuclei with one A are well
reproduced by using both the microscopic self-energy or the simpler parametrization
of Woods-Saxon type in the Schrodinger equation. Nevertheless, the wave functions
provided by the microscopic self-energy differ from the ones originated by a Woods-
Saxon potential with a fixed depth and diffusivity and a A-dependent radius. It is
important to note that the mean square radius of the self-energy eigenfunction is
larger than that from the corresponding Woods-Saxon wave function. This can have
important consequences in the study of the mesonic decay of these A hypernuclei.
Indeed, it has been observed that the mesonic decay rates of light hypernuclei, such as
41H, $He and 3 He, could be better reproduced if the A wave function was pushed out
to the surface by the effect of a repulsive hyperon-nucleus potential at short distances.
This would favour the mesonic decay of these hypernuclei because the A would be
exploring smaller nuclear density regions and the Pauli blocking effects, which prevent
the mesonic decay from occurring, would be less pronounced. The mesonic decay rates
of light hypernuclei have been calculated using repulsive A-nucleus potentials at short
distances that have been obtained either phenomenologically [Ku95|, from a quark
based bare YN interaction [St93] or from a microscopic YNG effective interaction folded

with an extremely compact “He density [Mo91]. At present, no calculation exists that
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combines the use of an YN effective interaction with an appropriate density treatment
of the host nucleus. Our method provides such ingredients and has been shown to
produce A wave functions that are pushed out to the surface. This is a consequence
of the non-localities of the self-energy and is not necessarily related to a repulsive
character of the A-nucleus potential at short distances. The implications of our results
on the mesonic decay of A hypernuclei are out of the scope of this thesis, but they will

be explored in the future.



Chapter 4

Neutron Star Matter

“I have crossed many mountains and many rivers, and trodden many plains,
even into the far countries of Rhiin and Harad where the stars are strange”
J.R.R. Tolkien, The Lord of the Rings, Part One: The Fellowship of the

Ring.

In this chapter we apply the formalism described in the previous chapters to study
[-stable neutron star matter including hyperonic degrees of freedom and the structure
of neutron stars. The chapter is organized in the following way: a historical overview
on neutron stars, first theoretical calculations and first observations are given in section
4.1. Section 4.2 is devoted to showing the basic properties and the structure of neutron

stars. Chemical equilibrium conditions in neutron star matter are discussed in section

124
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4.3. The Equation of State of S-stable neutron star matter is constructed in section 4.4
following the many-body scheme described in Chapters 1 and 2. Finally, in section 4.5
the results for the EoS and composition of 3-stable neutron star matter are presented,

and their implications on the structure of neutron stars are discussed in section 4.6

4.1 Historical overview

The possible existence of neutron stars was proposed by Baade and Zwicky [Ba34] in
1934 only two years after the discovery of the neutron by Chadwick. They pointed
out that a massive object consisting mainly of neutrons at very high density, would
be much more gravitationally bound than ordinary stars. Baade and Zwicky also
made the suggestion that such object could be formed in supernova explosions. In
1939 Oppenheimer and Volkoff [Op39], and Tolman [To39] did the first theoretical
calculation of the equilibrium conditions for neutron star properties assuming an ideal

gas of free neutrons at high density.

The idea that neutron cores in massive normal stars might be a source of stellar
energy focused the work on neutron stars at that time. However, when the details
of thermonuclear fusion became understood this motivation faded. As a consequence,
neutron stars were gradually being ignored by the astronomical community for the next
30 years. A reason often given for the neglect of the neutron star idea is that because
of their small area, their residual thermal radiation would be too faint to be observed
at astronomical distances with optical telescopes in comparison with ordinary stars.
Nevertheless, the situation changed in 1967 when the first radio pulsar was discovered

by Bell and Hewish [He68]. They identified a 81.5 MHz source with a pulsating period of
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1.377 s. The identification of pulsars with neutron stars was not immediately obvious
to most astrophysicists. The first argument that the observed pulsars were in fact
rotating neutron stars with strong surface magnetic fields of the order 10'? Gauss was
put forward by Gold [Go68]. He pointed out that such objects could explain many of the
observed features of pulsars, such as the remarkable stability of the pulse period. Gold
predicted a small increase in the period as rotational energy is lost due to radiation.
Shortly after, this was confirmed when a slowdown of the Crab pulsar was discovered.
Because of this success and the failure of other models, pulsars are generally believed

to be highly magnetized rotating neutron stars.

Since 1968, there has been much theoretical work on properties of neutron stars.
This was further stimulated by the discovery of pulsating, compact X-ray sources (“X-
ray pulsars”) by the UHURU satellite in 1971. These sources are believed to come
from a neutron star in a close binary system which is accreting gas from its normal

companion star.

The evidence for the formation of neutron stars in supernova explosions was pro-
vided by the simultaneous discoveries of the Crab and Vela pulsars in the late fall of
1968, both of which are situated in supernova remnants (the Crab nebula is in fact the

remnant of the supernova explosion observed by Chinese astronomers in 1054 A.D.)

The best determined neutron star masses are found in binary pulsars and all lie in
the range (1.35+£0.04) M, [Th99] except for the nonrelativistic pulsar PSR J1012+5307
of mass M = (2.14+0.8) M, [Pa99b]. Several X-ray binary masses have been measured
of which the heaviest are Vela X-1 with M = (1.9 4+ 0.2) M [Ba99b] and Cygnus X-2
with M = (1.78+0.2) M, [Or99]. The recent discovery of high-frequency brightness os-

cillations in low-mass X-ray binaries provides a promising new method for determining
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Figure 4.1: Observational determinations of neutron star masses. The first seven
masses are derived from observation of X-ray binary systems and the others are derived
from observation of radio pulsars and their companions. The results are from Kerkwijk
et al. [Ke95).

masses and radii of neutron stars, see Ref. [Mi98]. The kilohertz quasi-periodic oscil-
lations (QPO) occur in pairs and are most likely the orbital frequencies of accreting
matter in Keplerian orbits around neutron stars of mass M and their beat frequencies
with the neutron star spin. According to Zhang et al. [Zh98] and Kaaret et al. [Ka97]
the accretion can for a few QPO’s be tracked to its innermost stable orbit. For slowly
rotating stars the resulting mass is M ~ 2.2M(kHz/vgpo). For example, the max-
imum frequency of 1060 Hz upper QPO observed in 4U 1820-30 gives M =~ 2.25M,
after correcting for the neutron star rotation frequency. If the maximum QPO fre-
quencies of 4U 1608-52 (vgpo = 1125 Hz) and 4U 1636-536 (vgpo = 1228 Hz) also

correspond to innermost stable orbits the corresponding masses are 2.1M and 1.9M,,.
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These observations define a range of variation for the mass between M ~ 1.35M, and
M ~ 2.2Mg, which severely restricts the EoS for dense matter. In Fig. 4.1 we show
some of the observational determinations of neutron star masses. The results have

been taken from Kerkwijk et al. [Ke95].

The discoveries made in the past few decades will continue, as enormous earth-based
and satellite experiments are running at present and more will be launched. Probably

the future will be full of great surprises and discoveries in this field.

4.2 Basic properties and structure of neutron stars

A neutron star is the remnant of an ordinary star with a mass greater than ~ 5Mg,
where M ~ 2 x 1033 g is the solar mass, after it has undergone a supernova explosion.
A supernova explosion will occur when the star has exhausted its possibilities for energy
production by nuclear fusion. The pressure gradient provided by radiation will then
not be sufficient to balance the gravitational attraction, and then the star becomes
unstable. Eventually, it collapses. The inner dense regions of the star collapse first and
gravitational energy is released and transferred to the outer layers of the star, blowing
them away. After the supernova explosion only a fraction of the star is left, and this
final product might be a white dwarf, a neutron star or a black hole, depending on the

initial mass of the star.

Neutron stars are supported against gravitational collapse mainly by the neutron
degeneracy pressure and may have typically masses of order (1 — 2) M and radii ~ 10
km. Such masses and radii yield an averaged density for neutron stars of order 10

g/cm®. However, the expected densities in neutron stars span a rather wide range
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Figure 4.2: A schematic cross section of a neutron star illustrating the various regions
discussed in the text.

and in fact the internal structure of a neutron star can be described by an “onion”
model. In Fig. 4.2 a schematic cross section of a neutron star is shown. At the surface,

densities are typically p < 10% g/cm?

. The outer crust, with densities ranging from
10° g/cm?® to 4 x 10! g/cm3, is a solid region where heavy nuclei, mainly around the
iron mass number, in a Coulomb lattice coexist in S-equilibrium with an electron gas.
When density increases the electron chemical potential goes up and then the electronic

capture process

pt+e —wn+rv,, (4.1)

opens, the nuclei becoming more and more neutron-rich. The only available levels
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for the neutrons at ~ 4.3 x 10" g/cm? are in the continuum, and thus they start
to “drip out” of the nuclei. We have then reached the inner crust, consisting of a
Coulomb lattice of very neutron-rich nuclei together with a superfluid neutron gas and
an electron gas with densities going from 4 x 10 g/cm3 to 2 x 10'* g/cm®. At density
~ 10" g/cm?, nuclei start to dissolve and one enters the quantum fluid interior. In this
region matter is mainly composed of superfluid neutrons with a smaller concentration
of superconducting protons and normal electrons and muons [E196]. In the core of
the star, the density is of the order of 10" g/cm®. The composition of this region
is not well known, and thus is subject to much speculation. Suggestions range from
a mixed phase of quark and nuclear matter [G192, He93, He94|, kaon [Ka86] or pion
condensates [Ak97, Ak98|, and hyperonic matter [G192, Sc98, Vi00b], which is one of

the main subjects of this thesis.

A neutron star is one of the densest objects in the universe, therefore Einstein’s
General Relativity Theory is needed in order to determine its structure. Einstein’s
equations (see e.g. [We72, Mi73]) for a spherical static star take the form of the familiar

Tolman—Oppenheimer—Volkoff (hereafter referred to as TOV) equations [To39, Op39]:

dp(r) _ G (p(r) + e(r)c)(M(r)c* + 4mr’p(r))

- 4.2
dr c? r(re2 — 2GM(r)) (4.2)
dM
d;r) = 47r’e(r). (4.3)
By rewriting Eq. (4.2) in the form
T 7r3p(r
dp(r) _ _GM(r)e(r) 1+ £5) (1 + 5753 (4.4)

dr r2 (1— 2G1f\c42(r) )
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we can read explicitly the Newtonian part and arrive at an interpretation of the equa-
tions that is quite instructive. Think of a shell of matter in the star of radius r and
thickness dr. Eq. (4.3) gives the mass-energy in this shell. The pressure of matter
exterior to the shell is p(r) and interior to it p(r) + dp(r). The left side of Eq. (4.4) is
the net force acting outward on the surface of the shell by the pressure difference dp(r)
and the first factor on the right side is the attractive Newtonian force of gravity acting
on the shell by the mass interior to it. The remaining factor is the exact correction for
General Relativity. So these equations express the balance at each r between the inter-
nal pressure as it supports the overlying material against the gravitational attraction
of the mass-energy interior to 7. They are just the equations of hydrostatic equilibrium

in General Relativity.

The Equation of State (EoS) p = p(e) is the manner in which matter enters the
equations of stellar structure. For a given Equation of State, the TOV equations can
be integrated from the origin with the initial conditions that M(0) = 0 (since near
r = 0 we may write M (r) ~ 47r3¢(0)/3), and an arbitrary value for the central energy
density €(0), until the pressure becomes zero. Zero pressure can support no overlying
material against the gravitational attraction exerted on it from the mass within and so
marks the edge of the star. The point R where the pressure vanishes defines the radius

of the star and M (R) its gravitational mass,

Mg = M(R) =47 /OR re(r)dr. (4.5)

Neutron stars are, however, rotating objects. We expect the rotation to flatten

the star more or less depending on its angular velocity. Spherical symmetry is thereby
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broken, although the star maintains its axial symmetry. This symmetry breaking makes
the equations of structure much more complicated. In addition to Eqs. (4.2) and (4.3)
new coupled equations need to be solved. In this thesis we have followed the method
developed in [We91], which is a refined version of Hartle’s perturbation method [Ha67].

The reader is referred to the original work of Hartle for explicit details of the equations.

4.3 Chemical equilibrium in a neutron star

The equilibrium conditions in a neutron star are governed by the weak processes (nor-

mally referred to as processes for S-equilibrium)
bl—)b2+l+l7[, b2+l—)b1+l/l, (46)

where b; and b, refer to two different types of baryons, [ represents a lepton and v, and

vy its respective neutrino and anti-neutrino.

It is generally understood that the knowledge of the particular path that a body
or substance may follow in reaching its equilibrium state is not needed to determine
that state. One possible way to find it consists in minimizing the total energy density
of the system constrained by the subsidiary conditions that express the conservation
of some components or attributes (hereafter referred to as “charges”) on a timescale
longer than a characteristic time of the system. This can be done by the method of
Lagrange multipliers [Mo53]. In the case of a cold neutron star, there are only two
conserved charges: the total baryonic density and the total electric charge, which is

zero (charge neutrality). Strangeness is not conserved on the scale of a star because the
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timescale of the electro-weak interaction (7 ~ 107'% seconds) is short in comparison
to macroscopic scales. In addition, in a cold neutron star, neutrinos have diffuseed out

of the star, and therefore, there is no conservation of the leptonic numbers.

One can then construct a function, F(pp,, Poys > Poms Piys Plss -5 P1y, ), from the total
energy density €(op,, Pbys - Pogs Pirs Plas -5 P ) @nd the two constraint equations which

express conservation of the total baryonic density and charge neutrality:

F(pbupbm <ees Pop s Plys Plas =+ ,OlL) = 6(pb17pb2a ooy Pop s Plyy Play -+=s ,OlL)

+o (PB - Z Bz’%) + 8 (Z Qv; Po; + qujpzj) :
i i 7

(4.7)

Subscripts b; and [; stand for baryons and leptons respectively, running b; over all
types of baryons and [; over all types of leptons. The quantities o and [ are the
corresponding Lagrange multipliers. The products g, pp, and g, p;,, denote the charge
density of those charged particles, with g, and ¢, being the corresponding charge

numbers, and B; denotes the baryonic number.

The minimization condition requires

oF oF oF oF
— =0, .. =0, =0, ..., =—=0
0P, 0Py opy, opu,,
(4.8)
OF _ o OF _,
oa ' 03

[153))
7

Remembering that the chemical potential of a species is just p; = 0e/0p;, the
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above conditions on F' yield a set of equations of the type

o, — Bia+¢,8=0, i=1,...B, (4.9)

for the baryons. And a set of equations of the type

:U'lj + Qljﬂ = Oa .7 = 17 7L ) (410)

for the leptons.

Eliminating the Lagrange multipliers o and /3, one can obtain a set of relationships
among the chemical potentials. In general there are as many independent chemical
potentials as there are conserved charges, and all the others can be written in terms of
them. As it was said, in the case of a neutron star there are only two conserved charges,
and their corresponding chemical potentials are y, (associated with conservation of the
total baryonic density) and p. (associated with charge neutrality). Applying then Egs.

(4.9) and (4.10) to the neutron and the electron it is found

Q= pn, B = pe, (4-11)

and replacing (4.11) on those equations one has that in general the chemical potential
of any particle can be obtained as a linear combination of yu, and u., weighted by the

baryonic number and electric charge carried by the particle:

Hb; = Bz,un — Qb; He, 1= ]-a aB - ]-7
(4.12)

,u’lj = _qulu'ea .7 = ]-a aL —1.
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There is an alternative way of deriving this set of equations. It consists of writing
down all the possible reactions among the components of matter. One then rewrites
the reactions in terms of the different chemical potentials ;. If several reactions are
possible, there is an equation for each one and the resulting relationships between the
chemical potentials allow one to express the chemical potentials of all the components

of matter in terms of the independent ones.

The solution of this set of equations determines the composition of matter at its
ground state for a given density and types of particles. However, it is clear from these
equations that not only the weak interaction rules the composition of matter, but also

the strong interaction through the explicit value of the chemical potentials.

4.4 Neutron star matter Equation of State

As we already said in Section 4.2 the Equation of State is the manner in which matter
enters the equations of stellar structure. Following the many-body method described
in Chapters 1 and 2 we construct in this section the Equation of State for [-stable
neutron star matter including hyperonic degrees of freedom. In addition a causal
parametrization of the pure nucleonic Equation of State is described. The section is

finished with a brief comment on the Equation of State of the neutron star crust.

4.4.1 The EoS for the neutron star interior

Our many-body scheme starts with the most recent parametrization of the free baryon-

baryon potentials for the complete octet of baryons as defined by Stoks and Rijken in
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Ref. [St99]. Effects from the nuclear medium are introduced through the so-called G

matrix, which takes into account short-range correlations for all strangeness sectors,

(B By|G(w)|BsBy) = (B1By|V|B3By)

@y, B:B;|G(w)|B:B (4.13)
—EB5—EB6+i77< 5Bs|G(w)|BsBy)

B B5|V|BsB
+Z< 1B2|V|Bs 6>w

BsBs

where B; represents all possible baryons n, p, A, ¥, ¥% ¥t =~ and Z° and their

quantum numbers.

The single-particle energies are given by
EBq; :TBZ"{_UBZ"{_MBl , (414)

where Tp, is the kinetic energy and Mp, the mass of baryon B;. We note that the
G-matrix has been obtained using the discontinuous prescription (i.e. Eg = Tg+ Mp)

for the intermediate states BsBg. The single-particle potential Up, is defined by

Us, =Re Y (BiB;|G(w = Ep, + Ep,) |B;B;),, , (4.15)

B;<F;

where the linear momentum of the single-particle state B; is limited by the size of the
Fermi surface Fj for particle species B;. The matrix element in Eq. (4.15) is properly
antisymmetrized when the species B; and B; are the same. Detailed expressions for

the single-particle potentials and the G-matrices involved can be found in Chapter 2.

The total energy density, €, is obtained by

e=¢ep+e, (4.16)
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where the baryonic contribution ¢, is constructed from the baryon single-particle po-

tentials (from now on we use h=c=1)

kep, @3k k2 1
=) 2 — " (Mg + —— + =Ug .
£ ; /0 Gy ( B, + T + QUBZ(k)) , (4.17)

and the leptonic one ¢;, because the electromagnetic interaction plays a negligible role

due to charge neutrality, is given by

Frr dBk
— 2 2
51—-j£:2J( (2ﬂ)3,/k + M2 (4.18)

L;

The total energy per baryon E/A, measured with respect to the nucleon mass, is
then given by
E €

—=—-M 4.1
A b N » ( 9)

where pj is the total baryonic density.

The total pressure of the system is given by the sum of the baryonic and leptonic
contributions

P=P+P, (4.20)

where the partial pressure P; of baryons (¢ = b) and leptons (i = [) is obtained through
the thermodynamic relation

P=pi— —ei . (4.21)

In order to satisfy the set of balance equations (4.12), we need to know the chemical
potentials of the particles involved. In Brueckner-Hartree-Fock (BHF) theory, the

chemical potential is taken as the single particle energy at the Fermi momentum of the
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baryon, kg, , which at the lowest order reads

UB; = EBi(kFBi) = MBi + TBi(kFBi) + UJ{B\Z (kFBi) + Ug; (kFBi) : (4'22)

In the last equality, the baryon single-particle potential Ug has been split into a
contribution, UY, coming from the nucleonic Fermi seas (p,n) and a contribution, U,
coming from the hyperonic ones (A,X 7, %% ¥+ =7 =%. From calculations in pure

nucleonic matter, it is well known that the nucleon chemical potential obtained from

Eq. (4.22) differs considerably from its thermodynamic definition

Oe

= 4.23

UB;

Therefore, for the nucleons, we replace the nucleonic contribution to the chemi-
cal potential in Eq. (4.22), i.e. u), = Mny + T, p(ke,,,) + Uny(kr, ), by p, =

Oenn/0pnp, Where

"o dPk k1
= 2 — | Mg —yUN 4.24
ENN BZ /0 (27_‘_)3 < B; + ZMBZ + QUBz (k)) ( )

i=T,P

is the nucleonic contribution to the baryonic energy density including only the inter-
action between NN pairs. For the hyperons, we keep the prescription of Eq. (4.22).
As shown in Ref. [Ba00], these approximations amount to ignore the weak dependence
of UY, U} on the hyperon fractions and of U}, Uy on the nucleon ones, and are good

enough as long as the proton and hyperon fractions keep moderately small.
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4.4.2 Parametrization of the pure nucleonic EoS

The many-body approach developed in this thesis and reviewed above, is the lowest-
order Brueckner—Hartree-Fock method extended to the hyperon sector. This means
also that we consider only two-body interactions. However, it is well-known from stud-
ies of nuclear matter and neutron star matter with only nucleonic degrees of freedom
that three-body forces are important in order to reproduce the saturation properties
of nuclear matter, see e.g., the work of Akmal et al. [Ak98] for the most recent ap-
proach. The effect of nucleon three-body forces on the properties of S-stable matter
with hyperons has been studied in Refs. [Sc98, Ba00]. It is found that the repulsion
induced by the three-body force at high densities enhances substantially the hyperon

population which in turn induces a strong softening of the EoS.

In order to include such effects we will alternatively use, for the nucleonic sector, a
simple form for the total energy per nucleon developed by Heiselberg and Hjorth-Jensen
[He99]. This approach, hereafter referred to as parametrization HH99, parametrizes
the variational calculation with three-body forces and relativistic boost corrections of

Akmal et al. [Ak98|. It consists of a compressional term and a symmetry term

E —2—94
q1= Eomp(pn) + S(pn) (1 — 22,)° = Eouu + Spu (1 — 2z,)* . (4.25)

14 ud

Here u = pn/po is the ratio of the nucleonic density to nuclear saturation density
and the proton fraction is defined as =, = p,/pn. The compressional term reproduces
the saturation density, binding energy and incompressibility modulus K = 990P/0px
of nuclear matter at normal saturation density. The best fit of this simple functional is

obtained for Fy = 15.8 MeV, Sy = 32 MeV, v = 0.6, and § = 0.2. In order to examine
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Figure 4.3: Comparison of the total energy per baryon obtained from the parametriza-
tion HH99 [He99] and from the results of Akmal et al. [Ak98] with boost corrections
and three-body forces (Vig + dv + UIX*) for pure neutron matter (PNM), and for
symmetric nuclear matter (SNM) for the values of the parameters defined in the text.
Plot taken from Ref. [He99).

the quality of the fit we show for comparison in Fig. 4.3 the total energy per nucleon
obtained from parametrization HH99 and the results of Akmal et al. for pure neutron
matter (PNM) and symmetric nuclear matter (SNM). As can be seen in the figure, the
agreement between the parametrization and the microscopic calculation is rather good

except at the very high densities where the EoS of Akmal et al. becomes superluminal.
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Figure 4.4: Speed of sound (vs/c)? in symmetric matter for various values of the

parameter § in comparison with the microscopic result of Akmal et al. [Ak98] (solid
line). Plot taken from Ref. [He99].

It can be shown from the definition of the speed of sound

(E)Q_d_P_d_Pdﬂ_ K ) (4.26)
C - de N d,ON de N 9(MN+E/A+P/pN) ’ ’

and Eq. (4.25) that for

Ey
>4/ —~0.1 4.2
6> My 0.13, (4.27)

causality is guaranteed (i.e., (vs/c)? < 1) for all densities. This can be seen in Fig. 4.4
where we plot the speed of sound for various values of § and the one corresponding to

the microscopic calculation of Akmal et al. [Ak98|.
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4.4.3 The EoS for the neutron star crust

The crust of a neutron star is important for a number of observable properties, although
the bulk properties of the star (e.g., mass, radius) depend very weakly on the EoS in
this region. For instance, neutrino emission from the crust plays an important role in
the thermal evolution of the star. The moments of inertia of the various components

of matter in the crust play also a crucial role in models for pulsar glitches.

As we said in section 4.2, matter in the crust of a neutron star consists mainly of a
Coulomb lattice of nuclei immersed in a sea of neutrons and a roughly uniform sea of
electrons. When the density of matter approaches that of nuclear matter, nuclei merge

to form a uniform liquid of neutrons, protons and electrons.

Properties of matter at subnuclear densities (p < pg) are better known than at
supranuclear densities (p > pg). Many studies on the physics of matter at subnuclear
densities have been performed. To describe the crust of the star, in this thesis we have
employed the Equation of State of Lorenz, Ravenhall and Pethick [Lo93, Pe95]. We
will not enter into the details of the calculation of this Equation of State, because they
are out of the scope of this thesis, and the interested reader is referred to the original

work of Lorenz et al. for detailed information.

4.5 [B-stable neutron star matter

The composition of matter at high densities is poorly known. At densities near to the
saturation density of nuclear matter (py = 0.16 fm ) we expect matter to be mainly

composed of neutrons, protons, electrons and muons in S-equilibrium. However, as the
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density increases, new degrees of freedom, such as hyperons, pion or kaon condensates,
or even a possible deconfined phase of quarks and gluons (quark-gluon plasma) at

ultrahigh densities, become more and more important.

In this section we show the composition and Equation of State of matter in -
equilibrium considering, first, only nucleonic and leptonic degrees of freedom and sec-
ondly, including also hyperons. In our discussion below we employ the parametrization
HH99 and the NSC97e model of the recent baryon-baryon interaction of Stoks and
Rijken [St99]. Pion or kaon condensates and sub-hadronic degrees of freedom (i.e.,
quarks and gluons) are out of the scope of this thesis and therefore, nothing about

them is said here.

4.5.1 Nucleonic degrees of freedom

Most of the interior of a neutron star can be well represented by nucleonic and leptonic
degrees of freedom, namely from the inner part of the crust to the outer part of the
core, with densities ranging from 0.5 to 2 — 3 times normal nuclear matter saturation
density. To begin let us assume that matter is composed only of neutrons, protons and

electrons. In this case the equilibrium conditions (4.12) for the weak processes

n—p+e +v, pte —n+r,, (4.28)

reduce to

Hp = Un — Me , (4-29)
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and charge neutrality requires

Pp = Pe - (4.30)

The chemical potentials of the neutrons and protons are given by the familiar

thermodynamical relations

Oe ) ( Oe >
<ap T/ ppspe g 5p P/ pnype

where € is the energy density, py = py, + p, is the nucleonic density and z, = p,/pn is

the proton fraction.

The electrons can be considered as a free Fermi gas at zero temperature because the
role of the electromagnetic interaction is negligible. Therefore, their chemical potential

is chosen to be equal to their Fermi energy,

pte = Ep = [ k2, + M2, (4.32)

which in the ultrarelativistic limit (Er > M,) reduces to

pe = kp, = (37°pe)'"* . (4.33)

Using this last equation and the charge neutrality condition (4.30), Eq. (4.29) can

be rewritten as

37r2pN‘rP - [ﬂn(pN; xp) - up(pNa ',L‘;D)]3 =0, (434)

which defines in an implicit way the proton fraction z, at equilibrium for each given

value of the nucleonic density py. This equation can be solved numerically, yielding a
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Figure 4.5: Composition of [-stable neutron star matter with neutrons, protons
and electrons (left panel), and including muons (right panel), obtained with the
parametrization HH99.

composition of S-stable matter like the one shown in the left panel of Fig. 4.5.

The electron chemical potential of [-stable matter at the saturation density of
nuclear matter py ~ 0.16 fm=3, is of the order ~ 100 MeV. Once the rest mass of
the muon (M, = 105.7 MeV) is exceeded, it becomes energetically favourable for an

electron at the top of the e~ Fermi surface to decay into a = via the weak process

e U +v,+v.. (4.35)
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A Fermi sea of degenerate negative muons starts then to develop and, consequently,

the charge balance needs to be changed according to

Pp = Pe+ Pu (4.36)

and chemical equilibrium, assuming neutrino-free matter, with respect to the process

(4.35) requires

He = [y (437)

The muons are also considered a Fermi gas at zero temperature. Hence, the muon

density can be written in terms of the muon chemical potential as

1 3/2
= g = V10— ). (159

where the # function reminds that muons appear in matter as soon as the chemical po-
tential of the electron equals the mass of the muon. Using (4.38), the charge neutrality
condition (4.36) and the equilibrium condition (4.37), equation (4.29) can be written

as

37T2,0pr — (pn(pn, xp) - Np(PNa xp))?’

(4.39)
- [(:un(pNaxp) - ,up(pN,xp))Z - M,ﬂ 3/ e(lvbe - M“) =0

which defines the proton fraction z, in an implicit way. Note that this equation reduces
to Eq. (4.34) for those values of the electron chemical potential smaller than the muon

rest mass.

The composition of matter including electrons, muons and nucleonic degrees of

freedom obtained by solving Eq. (4.39) is shown in the right panel of Fig. 4.5.
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Figure 4.6: Total energy per baryon (left panel) and pressure (right panel) in 3-stable
matter with nucleonic and leptonic (e~ and p~) degrees of freedom as a function of the
total nucleonic density. Solid lines show the results obtained with the parametrization
HH99. Dotted lines correspond to the results of a Brueckner-Hartree—Fock calculation
employing the NSC97e model of Ref. [St99].

In Figure 4.6 we show the total energy per baryon (including both nucleonic and
leptonic degrees of freedom) (left panel) and the total pressure (right panel) of matter
in S-equilibrium obtained: from the parametrization HH99 (solid lines); and from a
Brueckner—Hartree-Fock calculation (dotted lines) performed using as bare interaction
the NSC97e model of Ref. [St99]. Differences between solid and dotted lines are
mainly due, apart from the different bare interaction employed in the calculation and
the method, to the fact that the parametrization HH99 includes the effect of three-
body forces. The inclusion of three-body forces, which is necessary to reproduce the

saturation properties of nuclear matter, induces a repulsion at high densities making
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the Equation of State stiffer, as can be seen in the figure.

4.5.2 Hyperonic degrees of freedom

As the density increases, new hadronic degrees of freedom may appear in addition
to neutrons and protons. One such degree of freedom is hyperons, baryons with
strangeness content. Contrary to terrestrial conditions where hyperons are unstable
and decay into nucleons through the weak interaction, the equilibrium conditions in
neutron stars can make the inverse process to happen, so that the formation of hy-
perons becomes energetically favourable. As soon as the chemical potential of the
neutron becomes sufficiently large, energetic neutrons can decay via weak strangeness
non-conserving interactions into A hyperons leading to a A Fermi sea with puy = p,.

However, one expects >~ to appear via

e +n—=X +v., (4.40)

at lower densities than that of the A, even though the X~ is more massive, the reason
being that the above process removes both an energetic neutron and an energetic
electron, whereas the decay to a A, being neutral, removes only an energetic neutron.
Stated differently, the negatively charged hyperons appear in the ground state of matter
when their masses equal i, + e, while the neutral hyperons appear when their masses
equal p,. Since the electron chemical potential in matter is larger than the mass

difference My- — M, = 81.76 MeV, ¥~ will appear at lower densities than A. For
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matter with hyperons, the chemical equilibrium conditions (4.12) become

Hz— = Px- = fn T e,
Jin = pi=0 = fix0 = in, (4.41)

Us+ = Mp = Up — Me ,

and charge neutrality imposes

Pp + P+ = pe+ pu+ ps- + p=- . (4.42)

Hyperonic degrees of freedom have been considered by several authors within the
framework of relativistic mean field models [Kn95, Sc96, Pr97] or parametrized effec-
tive interactions [Ba97], see also Balberg et al. [Ba99] for a recent update. Realistic
hyperon-nucleon interactions were employed recently by Schulze et al. [Sc98], in a
many-body calculation in order to study the onset of hyperon formation in neutron
star matter. In a recent paper Baldo et al. [Ba00] investigate the properties of neutron
stars with hyperons, paying special attention to the role played by three-body nucleon

forces. All these works show that hyperons appear at densities of the order ~ 2py.

In Refs. [Sc98, Ba00] the hyperon-hyperon interaction was not included. Never-
theless, it is clear that as soon as the X~ hyperon appears, one needs to consider the
interaction between hyperon pairs since it will influence the single-particle energy of the
hyperons, hence affecting the equilibrium conditions (4.41) for higher densities and the
onset of other hyperons (e.g. the A). The aim of this section is thus to present results
of many-body calculations for 5-stable neutron star matter with hyperonic degrees of

freedom, employing interactions which also account for strangeness S < —1. The main
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problem we have to face in our case is that the hyperon-nucleon interaction and espe-
cially the hyperon-hyperon interaction are less constrained by the experimental data

than the nucleon-nucleon one.

In this section we discuss two sets of results for [-stable matter, one where the
nucleonic contributions to the self-energy of nucleons are derived from a Brueckner—
Hartree-Fock calculation using the NSC97e baryon-baryon potential model of Ref.
[St99], and another where the pure nucleonic contribution to the neutron and proton
chemical potentials and the energy density are calculated from the parametrization
HH99. Hyperonic contributions are all calculated within the Brueckner—Hartree—Fock
scheme using the NSC97e baryon-baryon interaction of Ref. [St99]. We emphasize,
once more, that, in the present work, hyperon-nucleon (YN) as well as hyperon-hyperon

(YY) interactions are taken into account.

The above models for the pure nucleonic part (BHF and HH99 parametrization)
combined with the contribution of the strange sector (BHF), hereafter referred to as
pure BHF and HH99 + BHF respectively, yield the composition of S-stable matter up
to total baryonic density p = 1.2 fm—3, shown in Fig. 4.7, after solving the set of Egs.
(4.41). In the upper panel, results for the pure BHF calculation (NN, YN and YY
sectors) are presented. Results combining the parametrization HH99 for the nucleonic
sector with the BHF calculation for the YN and Y'Y interactions are shown in the lower
panel. In both panels, solid lines correspond to the case in which all the interactions

NN, YN and YY are considered.

As it can be seen by comparing the solid lines in both panels in Fig. 4.7, the
composition of S-stable neutron star matter has a strong dependence on the model

used to describe the non-strange sector. In both cases, due to its negative charge,



4.5 (B-stable neutron star matter 151

Relative Fractions
'_\
o

0 0.2 0.4 0.6 0.8 1 1.2
Baryonic density [fm ]

Figure 4.7: Composition of -stable neutron star matter. In the upper panel are
presented the results of a Brueckner-Hartree-Fock calculation using the NSC97e model
of Ref. [St99]. In the lower panel the nucleonic part of the self-energy of the nucleons
has been replaced by the parametrization HH99. Solid lines in upper and lower panel
correspond to the case in which all the interactions (nucleon-nucleon, hyperon-nucleon
and hyperon-hyperon) are considered. Dashed lines in the lower panel correspond to
the case where the hyperon-hyperon interaction has been switched off.

the X~ -hyperon is the first one to appear. Since the parametrization HH99 yields a

stiffer pure nucleonic matter EoS than the corresponding one obtained from a BHF
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calculation (see Fig. 4.6), the onset of ¥~, when the parametrization HH99 is used
to describe the nucleonic sector, occurs at a smaller density (p = 0.27 fm—3) than for
the pure BHF calculation (p = 0.34 fm~3). In both cases, as soon as the ¥~ hyperon
appears, leptons tend to disappear, completely in the HH99 + BHF calculation (the
electron chemical potential changes sign at p = 1.01 fm =3, indicating the appearance
of positrons), whereas in the pure BHF one only muons disappear. The onset of A
formation takes place at higher density. Recalling the condition for the appearance of
A, pn = pon, = pp+pe-, and that the parametrization HH99 is stiffer due to the inclusion
of three-body forces, this clearly enhances the possibility of creating A hyperons at lower
density with the HH99 + BHF model than with the pure BHF case. Indeed, the HH99
+ BHF calculation produces A hyperons from p = 0.67 fm™3 on, whereas the neutron
chemical potential from the pure BHF turns out to be too small to equal the A chemical
potential in the range of densities explored. The absence of A hyperons, in the pure
BHF results, can also, in addition to a softer EoS, be retraced to a delicate balance
between the nucleonic and hyperonic hole state contributions to the self-energy of the
baryons considered here (and thereby to features of the baryon-baryon interaction).
Stated differently, the contributions from ¥~ proton and neutron hole states to the A
chemical potential are not attractive enough to lower the chemical potential of the A so
that it equals that of the neutron. Furthermore, the increase of the chemical potential
of the neutron with density is slowed down with the NSC97e YN interaction model since
contributions from ¥~ hole states to the neutron self-energy are attractive. We note
that the isospin-dependent component (Lane term) of the ¥~ single-particle potential
for the new Nijmegen interactions (NSC97a-f) [St99] is strongly attractive, as opposed
to what is found [Vi98, Da99b] for other interactions, including the old Nijmegen one

(NSC89) [Ma89]. This in turn implies a strong attraction for ¥ n (T = 3/2) pairs,
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which is 10 times that obtained for the old Nijmegen potential at saturation density.
These differences become more noticeable as density increases: while the X" n pairs
become increasingly more attractive with the new Nijmegen potentials (see e.g. Fig.
2.14 in Chapter 2), they turn out to be strongly repulsive for the old one (see e.g. Figs.
1 and 2 in [Ba00]). This is why in Ref. [Ba00] the onset density for the appearance of
3.7 is larger than that for free hyperons, whereas the reverse situation is found here

(compare the ¥~ onset point in Fig. 4.7 with what would be extracted from Fig. 4.8).

Within our many-body approach, no other hyperons appear at densities below
p = 1.2 fm™3. These results differ from present relativistic mean field calculations
[Kn95, Sc96, Pr97], where all kinds of hyperons can appear at the densities considered
here. Although the variational calculation of Akmal et al. [Ak98] may be viewed
as the currently most realistic approach to the nucleonic EoS, our results have to be
gauged with uncertainties in the hyperon-hyperon and hyperon-nucleon interactions.
Especially, if the hyperon-hyperon interactions tend to be more attractive, this may
lead to the formation of hyperons such as the A, X%, ¥, =~ and =° at lower densities.
The stiffness of the nucleonic contribution, together with the hyperon-nucleon and
hyperon-hyperon interactions play crucial roles in the appearance of various hyperons

beyond the onset point of 7.

In order to examine the role of the hyperon-hyperon interaction on the composition
of B-stable neutron star matter, we have included in the lower panel of Fig. 4.7 dashed
lines that show the results of a calculation in which only the NN and YN interactions are
taken into account. When the Y'Y interactions are switched off, the scenario described
above changes only quantitatively. The onset point of ¥~ does not change, because

>~ is the first hyperon to appear and therefore the YY interaction plays no role for
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Figure 4.8: Chemical equilibrium condition for the appearance of ¥~ and A hyperons
for the case of free hyperons and three different nucleon-nucleon interactions. Dotted
straight lines denote the rest masses of the hyperons.

densities below this point. We note that the reduction of the ¥~ fraction, compared
with the case which includes the YY interaction, is a consequence of neglecting the
strongly attractive ¥~ X~ interaction [St99], which allows the energy balance of the
reaction nn <> X" p to be fulfilled with a smaller >~ Fermi sea. In turn, the reduction
of the X~ fraction yields a moderate increase of the leptonic content in order to keep
charge neutrality (in fact only muons disappear now). On the other hand, a smaller
amount of X7 ’s implies less X7 n pairs. Recalling that the ¥7n interaction is attractive
in this model (see e.g. Fig. 2.16 of Chapter 2), this means that the chemical potential
of the neutrons becomes now less attractive. As a consequence, the A hyperons appear

at a smaller density (p = 0.65 fm ) and have a larger relative fraction.
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As has been mentioned, the composition of S-stable matter depends on the model
used to describe the nucleonic sector. In order to study this dependence, Fig. 4.8
shows the chemical potential of the neutron pu, and the sum pu, + p.- for S-stable
matter composed of nucleons and free hyperons for three different NN interaction
models. The solid lines correspond to the parametrization HH99. The dashed and dot-
dashed lines correspond to lowest-order Brueckner—Hartree—Fock calculations using,
respectively, the NSC97e and the Argonne Vg potentials, the latter extracted from the
results of Ref. [Ba00]. Dotted lines denote the A and ¥~ masses. In this case, the
onset conditions for A and ¥~ are, respectively, u, = Mj and p, + pte- = Mx-. As can
be seen from the figure, the onset points of both hyperons are different depending on
the NN interaction model employed. With the parametrization HH99 both the ¥~ and
A hyperons appear at lower densities than in the lowest-order Brueckner-Hartree-Fock
models using the Argonne Vig or the NSC97e interactions. This is a consequence of
the different stiffness of the EoS of each NN interaction model. In fact, the softest EoS
corresponds to the NSC97e interaction which is not even able to produce A hyperons
in the range of densities explored. Note that the hyperon onset points determined from
Fig. 4.8 differ slightly from those observed in Fig. 4.7 as a consequence of the effect of
the YN and YY interactions. Since the differences are not so large, one concludes that
the main features of the composition of -stable matter are dominated by the pure

nucleonic contribution to the EoS.

In Fig. 4.9 we show the chemical potentials in S-stable neutron star matter for differ-
ent baryons, solution of the set of equations (4.41). Results combining the parametriza-
tion HH99 and a BHF calculation for the strangeness sector are shown in the left panel,
whereas in the right panel are given the ones corresponding to the pure Brueckner—

Hartree—Fock calculation. We note that in both cases neither the ¥° nor the ¥t do
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Figure 4.9: Chemical potentials in S-stable neutron star matter as functions of the
total baryonic density p. Results for the HH99 + BHF are shown in the left panel,

whereas in the right panel are given the results for the pure BHF calculation using the
NSC97e model.

appear since, as seen from the figure, the respective stability criteria of Eq. (4.41)
are not fulfilled. This is, partly, due to the fact that none of the X%baryon and the
Y *-baryon self-energies are attractive enough. A similar argument applies to Z° and
=~. In the latter case the mass of the particle is ~ 1315 MeV and an attraction of
around 200 MeV would be needed to fulfil the condition p=zo = s = p, at the highest
density explored in this work. From the figure we see, however, that the X° hyperon

could appear at densities close to 1.3 fm~2 in the HH99 + BHF calculation.

Fig. 4.10 shows the energy per baryon (left panel) and pressure (right panel) as a
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Figure 4.10: Energy per baryon (left panel) and pressure (right panel) in S-stable
neutron star matter, obtained combining the HH99 parametrization for the nucleonic
sector and a BHF (NSC97e) calculation for the hyperonic one, as function of the
total baryonic density p, for four scenarios: pure nucleonic matter (solid lines); matter
with nucleons and non-interacting hyperons (dotted line); matter with nucleons and
hyperons interacting only with nucleons (dashed line); and matter with nucleons and
hyperons interacting both with nucleons and hyperons (long-dashed line). The leptonic
contribution to the energy per baryon and pressure is included in all cases.

function of the baryonic density obtained from the HH99 + BHF calculation for four
different scenarios: pure nucleonic matter (solid line); matter with nucleons and free
hyperons (dotted line); matter with nucleons and hyperons interacting only with nu-
cleons (dashed line) and, finally, matter with nucleons and hyperons interacting both
with nucleons and hyperons (long-dashed line). Each curve corresponds to a differ-
ent composition of S-stable neutron star matter, obtained by solving the equilibrium

conditions of Eq. (4.41), with the appropriate chemical potentials for each of the four
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Figure 4.11: Asin Fig. 4.10 obtained from a pure Brueckner-Hartree-Fock calculation
in all sectors.

cases. The leptonic contribution is also included in all the cases. As can be seen com-
paring the solid and dotted lines (see both panels) the appearance of hyperons leads to
a considerable softening of the EoS (energy and pressure). This softening is essentially
due to a decrease of the kinetic energy because the hyperons can be accommodated in
lower momentum states and in addition have a large bare mass. The hyperon-nucleon
interaction (dashed line) has two effects (see left panel). On the one hand, for den-
sities up to p ~ 0.72 fm~3, the YN interaction reduces the total energy per baryon,
therefore making the EoS even softer. On the other hand, for densities higher than
p = 0.72 fm~3, it becomes repulsive and the EoS becomes slightly stiffer than that
for non-interacting hyperons. The contribution from the hyperon-hyperon interaction

(long-dashed line) is always attractive, producing a softening of the EoS over the whole
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range of densities explored.

In a similar way, we show in Fig. 4.11, for the same four scenarios discussed above,
the corresponding energy per baryon (left panel) and pressure (right panel) obtained
from a pure BHF calculation using the NSC97e interaction model. The pattern ob-
served is exactly the same. The presence of hyperons in matter makes the EoS softer
and the role of the YN and YY interactions is the one just described above. The only
difference, coming from the treatment of the pure nucleonic part, is that the EoS ob-
tained from the pure BHF calculation is softer than the one obtained with the HH99

+ BHF one because it does not include the effect of three body forces.

4.6 Implications on neutron star structure

We end this chapter with a discussion on neutron star properties obtained with the
Equations of State described in the previous section. We restrict our results in this sec-
tion to the parametrization HH99 for the nucleon-nucleon part supplemented with the
Brueckner—Hartree—Fock calculation using the NSC97e interaction for the hyperonic

sector.

In order to obtain the radius and mass of a neutron star, we have solved the Tolman-
Oppenheimer-Volkov (TOV) equations (4.2) and (4.3) with and without rotational
corrections. The latter corrections imply an increase of mass to balance the rotational
energy. Accounting for rotations leads to corrections to the TOV equation and the
total mass that include also deformations from spherical symmetry. Assuming that
such contributions from deformations are negligible for a slowly rotating star, one

arrives at the modified equations for the pressure and the mass shown in the work of
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Figure 4.12: Total mass M for various Equations of State with (right panel) and
without (left panel) rotational corrections as function of the central density. The solid
line corresponds to the case of S-stable matter with nucleonic degrees of freedom only,
the short-dashed line includes also the effects of the hyperon-nucleon interaction, while
the long-dashed line includes the three types of baryon-baryon interactions.

Hartle [Ha67].

Following the discussion of Figs. 4.8, 4.9 and 4.10, we present results for three
different scenarios. The first one only takes into account nucleonic and leptonic degrees
of freedom. In the second one, in addition we allow for the presence of hyperons and
consider the hyperon-nucleon interaction, but explicitly exclude the hyperon-hyperon
one, as done in e.g., Ref. [Ba00]. Finally, the third one includes both the hyperon-

nucleon and the hyperon-hyperon interactions.
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Figure 4.13: Radius as function of the central density. Notations as in Fig. 4.12.

In Fig. 4.12 we show the resulting mass, as function of the central density, for these
three scenarios with (right panel) and without (left panel) rotational corrections. The
resulting radius of the star for the same scenarios is plotted in Fig. 4.13. The corre-
sponding mass-radius relations with (right panel) and without (left panel) rotational

corrections, constructed from Figs. 4.12 and 4.13, are shown in Fig. 4.14.

The EoS for the pure nucleonic scenario is rather stiff compared with the EoS
obtained when hyperons are allowed to be present, as we have seen in Fig. 4.10. This
produces, as can be seen in Figs. 4.12 and 4.14 (solid lines), the larger maximum mass
with a value of M = 1.89 M, without rotational corrections and M = 2.11M, when

rotational corrections are included.
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Figure 4.14: Mass-radius relation with (right panel) and without (left panel) rota-
tional corrections. Notations as in Fig. 4.12.

The corresponding results for the second scenario are shown by the short-dashed
lines in Figs. 4.12, 4.13 and 4.14. Without rotational corrections we obtain a maximum
mass M = 1.47M. whereas the rotational correction increases the mass to M =
1.60M. Thus, the inclusion of the YN interaction with the corresponding formation
of ¥~ - and A-hyperons leads to a reduction of the mass by ~ (0.4 — 0.5)My. This
large reduction is mainly a consequence of the strong softening of the EoS due to the

appearance of hyperons.

The last scenario combines the nucleonic part with the computed hyperon contribu-

tion including both the hyperon-nucleon and the hyperon-hyperon interactions. These
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Figure 4.15: Moment of Inertia I in units of Mykm? as function of the mass (including
rotational corrections) of the star. Notations as in Fig. 4.12.

results are shown by the long-dashed lines in Figs. 4.12, 4.13 and 4.14. The inclusion
of the hyperon-hyperon interaction leads to a further softening of the EoS in Fig. 4.10,
and, as can be seen from Fig. 4.12, this leads to an additional reduction of the to-
tal mass. Without rotational corrections we obtain a maximum mass M ~ 1.34M),
while the rotational correction increases the mass to M ~ 1.44M;. The size of the
reduction due to the presence of hyperons including the Y'Y interaction goes up to
AM ~ (0.6 — 0.7) M, and the obtained neutron star masses are comparable to those

reported by Balberg et al. [Ba99].

For completeness we show in Fig. 4.15 the moment of inertia as function of the

stellar mass (calculated with rotational corrections) for the three scenarios considered.
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Scenario Maximum Mass Radius | 7,4
No Rot. Correc. | With Rot. Correc.

NN 1.89 2.11 10.3 | 101.1

NN YN 1.47 1.60 10.2 65.2

NN YN YY 1.34 1.44 10.0 55.4

Table 4.1: Maximum mass, radius and maximum moment of inertia for three scenarios
considered: only nucleonic degrees of freedom (NN), nucleons and hyperons including
only nucleon-nucleon and hyperon-nucleon interactions (NN,YN), and nucleons and
hyperons including all the interactions among them (NN, YN, YY). Units of mass,
radius and moment of inertia in Mg, km and Mgkm?, respectively.

The moment of inertia increases with the mass of the star almost linearly indicating a
small variation in the radius compatible with the results shown in Fig. 4.13. It reaches
its maximum value at the maximum value of the mass. Results for the maximum mass,
radius and maximum moment of inertia for the three scenarios are summarized in Table
4.1. There are other features as well to be noted from Figs. 4.12 and 4.14. The EoS
with hyperons reaches a maximum mass at a central density p. ~ (1.3 —1.4) fm~3. In
Fig. 4.7 we showed that the only hyperons which can appear at these densities are A
and X7. If other hyperons were to appear at higher densities, this would most likely

lead to a further softening of the EoS, and thereby smaller neutron star masses.

The reader should however note that our calculation of hyperon degrees of free-
dom is based on a non-relativistic Brueckner—-Hartree-Fock approach. Although the
parametrization HH99 of the nucleonic part, including three-body forces is considered
as a benchmark calculation for nucleonic degrees of freedom, relativistic effects in the
hyperonic calculation could result in a stiffer EoS and thereby larger mass. Never-
theless, relativistic mean field calculations with parameters which lead to a similar

composition of matter as shown in Fig. 4.7, result in masses close to those reported in
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Fig. 4.12. In this sense, our results with and without hyperons may provide a lower and
upper bound for the maximum mass. This leaves two natural options when compared
to the observed neutron star masses. If the heavy neutron star masses determined
from high frequency oscillations prove erroneous by more detailed observations and
only masses like those of binary pulsars are found, this may indicate that heavier neu-
tron stars simply are not stable, which in turn implies a soft EoS, or that a significant
phase transition must occur already at a few times nuclear saturation densities. Our
EoS with hyperons would fit into this case, although the mass without rotational cor-
rections is on the lower side. Else, if the large masses from QPQO’s are confirmed, then
the EoS for baryonic matter needs to be stiffer. This would then pose a severe problem
to present hadronic models since, when the nucleonic part of the EoS is sufficiently
stiff to support large masses, one cannot avoid the appearance of hyperons which, in

turn, produce a softening of the EoS.

Although we have only considered the formation of hyperons in neutron stars, tran-
sitions to other degrees of freedom such as quark matter, kaon condensation and pion
condensation may or may not take place in neutron star matter. We would however like
to emphasize that the hyperon formation mechanism is perhaps the most robust one
and is likely to occur in the interior of a neutron star, unless the hyperon self-energies
are strongly repulsive due to repulsive hyperon-nucleon and hyperon-hyperon interac-
tions, a repulsion which would contradict present data on hypernuclei [Ba90]. The EoS
with hyperons yields however neutron star masses without rotational corrections which
are even below 1.4M,. This means that our EoS with hyperons needs to be stiffer, a
fact which may in turn imply that more complicated many-body terms not included
in our calculations, such as three-body forces between nucleons and hyperons and/or

relativistic effects, are needed.



Conclusions

“A conclusion is the place where one arrives tired of thinking”.

Anonymous

The purpose of this thesis has been to study, within the framework of Brueckner—
Hartree-Fock theory, properties of finite (hypernuclei) and infinite (hyperonic matter)
nuclear many-body systems with hyperonic degrees of freedom, and to investigate, in
the latter case, the implications which the presence of strangeness has in neutron star
properties. The starting point of our Brueckner-type calculations has been the Jiilich
B [Ho89] and the Nijmegen Soft-Core 89 (NSC89) [Mag89] hyperon-nucleon potentials,
together with the most recent parametrization of the bare baryon-baryon interaction for
the complete octet of baryons constructed by Stoks and Rijken (NSC97a-f) [Ri99, St99].
These three interaction models are meson-exchange potentials. The basic ideas of the
meson-exchange model and a revision of the so-called nuclear many-body problem were

briefly given in Chapter 1.

166
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In Chapter 2 we have developed the formalism for microscopic Brueckner-type cal-
culations of dense nuclear matter with strangeness, allowing for any concentration of
the different baryon species. The main conclusions of this chapter can be summarized

as follows

e We have obtained, in isospin unsaturated situations, the My dependence of the G-
matrix for any two species by relating the Pauli operator to those of the different
pairs of physical particles contributing to the particular (7, M7) channel. We
have seen, however, that the Mp dependence is weak enough to allow a simpler
strategy consisting of obtaining the effective interactions in isospin saturated

situations (kpn = ka, kFE— = kFEO = kF):+’ kFE

_ = kr_,). The various single-
particle potentials can then be obtained by folding the approximate effective

interactions with the Fermi seas of the different species.

e We have studied the dependence of the single—particle potentials on the nucleon
and hyperon asymmetries, focusing on situations relevant in studies of f-stable
neutron star matter with strangeness content. We have found that the presence
of hyperons, especially >7, modifies substantially the single-particle potentials of
the nucleons. The neutrons feel an increased attraction due to the X7 n effective
interaction that only happens through the very attractive 7' = 3/2 XN channel,
while the protons feel a repulsion as the ¥~ p pairs also receive contributions from

the very repulsive 7= 1/2 XN one.

e By decomposing the A and ¥~ single—particle potentials in the contributions from
the various species, we have seen the relevance of considering the YY interaction.
For the particular situation of total baryonic density p = 0.6 fm 3 containing a

10% fraction of hyperons split into ¥~ and A in a proportion 2 : 1 and a fraction
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of protons z, = 0.25zx, we have found that the hyperonic contribution to the
A single—particle potential at zero momentum is of the order of 1/3 of the total

Ux(0), and that for the X~ is of the order of 1/2 of the total Us- (0).

In Chapter 3 we have analyzed a method to obtain the effective hyperon-nucleon
interaction in finite nuclei based on an expansion over a G-matrix calculated in nuclear
matter at fixed density and starting energy. The purpose of this study has been to set
up a reliable frame for hypernuclear structure calculations with the aim of obtaining
information about the hyperon-nucleon interaction, complementary to that provided by
hyperon-nucleon scattering experiments. The corresponding conclusions of this chapter

are the following

e The truncation of the expansion over the nuclear matter G-matrix at second order
gives results that are very stable against variations of the density and starting
energy used in the G-matrix, as well as to the choice (discontinuous or continuous)

adopted in the solution of the Bethe—Goldstone equation.

e Both first and second order terms depend quite strongly on the density and
starting energy used in the nuclear matter G-matrix. This is an indication that
the density dependent effects considered when treating explicitly the finite size
of the nucleus are very important. These effects could be simulated by simpler
first-order calculations at an appropriate average density or by a local density
approximation. However, if the aim is to fine-tune the bare YN interactions
to reproduce the spectroscopic data of hypernuclei, a direct calculation of the
effective interaction in the finite hypernucleus, as the one proposed in this thesis,

is in order.
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e Although the method can be viewed as an alternative way of building up a finite
nucleus effective interaction, it provides also the complete energy dependence of
the hyperon self-energy. This allows in turn for a study of not only the bound
states, as done in this thesis, but also the scattering states. This is especially of
interest in the analysis of hypernuclear production reactions which yield a large

amount of quasifree hyperons.

e Our results compare quite well with the experimental data, and the small spin-

orbit splitting is confirmed microscopically from our calculation.

e We have obtained local Woods-Saxon A-nucleus potentials with A-independent
depths that reproduce the A single-particle energies of several hypernuclei. How-
ever, the wave functions obtained from our microscopic non-local self-energy are
more extended and can only be simulated when we allow the phenomenological
Woods-Saxon potential to have an A-dependent depth and a relatively larger
radius. This could have implications in hypernuclear observables sensitive to

densities nuclear surface, such as the mesonic weak decay of hypernuclei.

Finally, as an extension of our study of Chapter 2, in Chapter 4 we have performed
a microscopic many-body calculation of the structure of S-stable neutron star matter

including nucleonic and hyperonic degrees of freedom. We conclude that

e The potential model employed (NSC97e) allows for the presence in the composi-
tion of -stable neutron star matter of only two types of hyperons, the ¥~ and
the A which appear at p = 0.27 fm 3 and p = 0.67 fm 3, respectively, up to

densities of about seven times nuclear matter saturation density. The interac-
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tions for strangeness S = —2, —3 and —4 are not attractive enough to allow the

formation of other hyperons.

We have observed that the presence of hyperons produces a softening in the
Equation of State. This softening will influence the behaviour of dense matter

and the structure of neutron stars.

Our novel result is that a further softening of the EoS is obtained when including
the effect of the YY interaction since it is attractive over the whole density range
explored. Whether this additional softening is realistic or not will depend on
the details of the YY interaction that is, unfortunately, not well constrained at
present. New data in the S = —2 sector, from (K, KT) reaction, double-A

hypernuclei or =~ —atoms, are very much awaited for.

The softening of the EoS when all the interactions are taken into account trans-
lates into a reduction of the maximum mass of the star from 2.11M, when
only nucleonic degrees of freedom are considered, to 1.44M,, when hyperons are

included.

“Tha, Tha ... That’s all folks”.
Porky Pig



Appendix A: Pauli operator in the

different strangeness channels

In this appendix we show how the Pauli operator @B 5, which prevents scattering
into occupied BB intermediate states, acquires a dependence on the third component

of isospin due to the different Fermi momenta of the baryons B and B.

Taking the following convention for the isospin states representing the particle basis

n) = [1/2,-1/2); |p) = [1/2,+1/2) (A1)

[A) = 10,0) (A.2)

) =1,-1); [£°%)=11,0); |=F)=—]|1,41) (A.3)
27) =—11/2,-1/2); |2%) =11/2,+1/2) (A.4)
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it is easy to obtain the Pauli operator in the coupled-isospin basis, QB 5(K, k; T, Mr),
for each strangeness sector. Note that in the following expressions we have only retained

the dependence on the isospin labels.

A.1. Strangeness (

Qun(T =0,Mr=0) = (Qpn +Qnp) (A.5)
Qny(T =1,Mp = -1) = Q,, (A.6)
Qun(T =1,Mr =0) = = (@, + Q) (A7)
Qun(T =1, Mr = +1) = @, (A.8)

A.2. Strangeness —1

QAN (T = -, Mr = —%> = @An (A.9)
_ 1 1 _
QAN <T = 5: MT = +§) = QAp (AlO)
1 1 1— 2__
Qsn (T = §a My = —§> = gQ + gQE_p (A-H)
Q T = 1 My = 1 0 A12
QZN( =5 T—+§> 3Q2+n+ onp (A.12)
@EN <T = g’ Mr = —g> = @E_n (A-13)
_ 3 1 2 1—-
QRsy <T =5 Mz = —5) = ngOn + ng*p (A.14)
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— 3 3 _
Qsy (T = 5 Mr = +§) = Q2+p

Qen(T =1, My = +1) = Q=
Qus(T=1,Mr = —1) = Qx-
Qus(T =1, My = 0) = Qo
Qpax(T =1, My = +1) = Q5+
Qs (T = 1, My = 1) = & (@so- +Qs-30)
Qux(T=1,Mr=0) = % (Qsis- + Qu-5+)
Qow(T =1, My = +1) = & (@sows + Qo)

Qus(T =2,Mp =—2) = Qx5

(A.15)

(A.16)

(A.17)
(A.18)
(A.19)
(A.20)
(A.21)
(A.22)
(A.23)
(A.24)
(A.25)
(A.26)
(A.27)
(A.28)

(A.29)
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_ 1 — _
Qes(T=2,Mp = —1) = B (QEOE— + QE—EO) (A.30)
— 1~ 2 1
Qss(T =2, My =0) = Qo+ 30romo + £ Qx-n+ (A.31)
_ 1 — _
QEE(T =2,Mr = +1) = 5 (Q202:+ + Q2+20) (A-32)
@EZ(T =2,Mr=+2)= @E"'E"’ (A.33)

A .4. Strangeness —3

— 1 1 —

Qaz (T = §,MT = —§> = Qp=- (A.34)

Qaz (T = 1 , Mp = +1) = Q=0 (A.35)
— T— 1 1y A
Qs= 5, = 5) = —ng_ + QE =0 ( .36)
— 1 1
QEE T = 5, = 5) = —QE+_7 + QEO =0 (A.37)

— 3 _

sz (T = §7MT = _§> = Qg-=- (A.38)
Qs= (T g, = = —ng_— + QE =0 (A.39)

= —Q2+r + onﬁﬂ (A.40)

_3 u
2’
sz (T =5 Mr= +§> = Qu+zo (A.41)
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A.5. Strangeness —4

Q==(T = 0, My =0) = 5 @z +Qz-) (442
Qe=(T=1,Mp =-1)=Qz = (A.43)
Qee(T =1, My = 0) = (Qavz- + Qz-20) (A.44)
Q==(T =1, My = +1) = Qzoxo (A.45)

From the above expressions it is easy to see that in isospin saturated matter matter
(i-e., kp, = kr,, kr,, = kr, = kr,_ and kr_, = kr__) the dependence on the third

component of isospin disappears.



Appendix B: Angular average of

the C.M. and hole momenta

In this appendix we show how to compute an appropriate angular average of the
centre—of-mass momentum of the pair B; By and the hole momentum k B, which enters
in the determination of the starting energy in Eq. (2.2). The centre—of-mass momentum

K and the relative momentum & of the pair BB, are defined in the following way:

K =kp, + kg, , (B.1)

MB2I;B1 - M31EB2
Mp, + Mp,

E = = ﬂEBl — (),/];T‘B2 . (BQ)

From the above expressions it is easy to write K and /;B2 in terms of the external

momentum kp, and the relative momentum k, which is used as integration variable in
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Eq. (2.2)
K = (EB1 - E) ) (B3)

(Bkp, — k) . (B.4)

sz -

QIrm o+

The angle average of the centre-of-mass momentum is defined as

- / d(cos 0)K?*(kg,, k,cos )
K2%(kp,, k) = : (B.5)

/ d(cos )

where K?*(kp,, k,cos0) = %5 (k3, + k> — 2kp, k cosf), with 6 being the angle between

kp, and k. The integration runs over all the angles for which |kp,| < kpy, . Similarly,

for the hole momentum we have

o / d(cos 0)k%, (kg,, k, cos 0)
]{3%2 (kBI’ k) = ) (B6)

/ d(cos 0)

where k% (kp,, k,cos0) = 25 (823, + k* — 2Bkp, k cos0).

We can distinguish two cases in performing the angular integrals, Skp, < akpy,
and Bkp, > akpg . In the first case, we have two possibilities: 0 < k < akp,, —Sks,,

for which all angle values are allowed, giving the result

— 1
K2(kp, k) = g[kgl +k2} , (B.7)
k2 (kg . k _ L 22 4 k2 B.8
BQ(BI’)_aQﬂ Bl+ ) ()

and akp,, —Pkp, <k < akp,, +Bkp,, which have the following upper limit in the value
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of cosf
k? + (Bkgs,)? — (akiy,)?
(€08 0) max = 25k —, (B.9)
giving the result
_ 1 1
K2(k, k) = — [k%l K =5 ((51@1 + k)2 - (akFBj)} , (B.10)
- 1 1
2 _ 21.2 2 - 2 2
K3, (kg k) = — | 8%k, + K2 — 5 ((Bks, + k)? = (aky,)?) | - (B.11)

In the second case, there is only one possibility: ﬁkBl—ozkpB2 <k< oszB2-|—/Bl~gB1
and the result is the same as in the previous case for the zone akp, —Bkp, < k <
akpy,+Pkp,. The result for the values 0 < k < fkp,—akp,, is zero because EBz is

always larger than its Fermi sea.

This kind of average defines an angle-independent centre—of-mass momentum and
a hole momentum (and therefore a starting energy) for each pair kg, , k so the angular
integration in Eq. (2.2) can be performed analytically. Nevertheless, we still require
to solve the G-matrix equation for each pair of values kp, and k, making the calcula-
tion much time consuming. In order to speed up the procedure we introduce another
average, which gives equivalent results and saves a lot of time. For each external mo-
mentum kp,, we will only need to solve the G-matrix equation for two values of the

centre—of-mass and hole momenta, which are obtained from

- /d?’kKQ(kBl,k,cosO)
K?(kg,) = : (B.12)

/d3k
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/ &’k k3, (kg,, k, cos0)
/d3k

by limiting the integral over the modulus of k to the two possibilities mentioned above.

kTBz(kBl) =

(B.13)

As before, we have the same cases fkp, < akF32 and Bkg, > akF32 . Let’s consider
the first case. Now, when the integral over k£ in Egs. (B.12) and (B.13) is limited to

0<k< oszB2—,6kBl we have

—5 1 3

K2(kp,) = |3, + = (ks — Bh,)?] | (B.14)
5 1 3
k?_az, (kp,) = 2 [ﬂQk%I + g(akFB2 - ﬁkB1)2i| , (B.15)

whereas in the zone OkoB2—,BkBI < k< akpB2 +Bkp, the expressions are a little bit

more tedious

P+
|

a® «
+ (5 + 548 — 268° — 6)) ki, K3, +a?Bki, ki,
53

1502
—1

X [(@he, VBhs, + 5 (8k5)* — ahr, (Bk5)7] . (BI6)

K2%(kp,) = krg,kp, + B(1+26°)kE, k3,

+

(54 36%) k3, |

L 4
kQBz(kBl) = [ Qﬁ

— =k, ki, +38°k,, K,

_ TaBE K2+ o?BEL kp +8—55k5]
3 F32 Bl F32 1 15&2 Bl

(ki 26k, + 5(5h)" — ki, (BEs)?] - (BT

X
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When EBI = 0 there exists only one zone of integration, 0 < k£ < akpy,, and the

average is very simple

K, - (B.18)

Finally, in the second case, Bkp, > akp,, , there is also only one integration zone,

Pkp,—akp,, < k <akp,,+Pkp,, and the corresponding averages are

_ 3

Ky, + KB, - (B.19)

— 3
Blks) = ZH, . (B.20)



Appendix C: Particle channels in

the physical basis

In this appendix we show the particle channel structure of the G-matrix for the
different strangeness sectors when the Bethe-Goldstone equation is solved in the physical

basis |(ByBs)KkLSJMq).
C.1. Strangeness 0

In this sector there are three possible total charges, ¢ = 0,1 and 2, being the

corresponding particle channels

( annﬁnn > ’ ( anpﬂnp ) ’ ( appﬁm’ ) )
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C.1. Strangeness —1

In this case we have to deal with the channels

GAn—)An GAnﬁEOR GAn—)E*p

<GEn—)En) ’ GEOn—>An GZ°n—>EOn GZOn—>Z*p ’

GE‘p—)An GZ‘p—)EOn GE—p—)E—p

for total charges ¢ = —1 and ¢ = 0, respectively, and

GAp—)Ap GApﬁE"‘n GAp—)EOp
GE*n—)Ap Gz+n—>2+n GE*'naEOp ’ (G2+p—>2+p> ’

GEOp—>Ap GEOp—>E+n GEOp—>EOp

for total charges ¢ =1 and ¢ = 2.

C.1. Strangeness —2

In the strangeness —2 sector the channels to consider are

GE‘n—)E_n GE—n—)E—A GE—n—)Z—EO

< GE_E_HE_E_ ) ? GE‘A—)E—n GE_AHE_A GZ‘A—)E—EO ?

GE_EOAE_R GE—EO—)E—A GE_EOHE_EO

for total charges ¢ = —2 and ¢ = —1, respectively,
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( G Ar—AA G Ap—=0n Gapsz- (EJVERSIN G A 30x0 Garss-5+

GEOn—H\A GEOnﬁEOn GEOnﬁE— GEonﬁEOA GEOnﬁEOEO GEOn—)E—E+

GE*p—)AA GE*p—)EOn Ep—ETp GE*p—)EOA GE*p—)EOEO GE*p—)Z*Z*‘

GEOp—>AA GEOp—)EOn GEOp—)E—p GEOp—>ZOA GEOp—i)OEO GEOp—>E—2+

Gyososan  Gyososzon  Gyoyosz-p  Gyoxozon  Groposyozo  Gyoposz-w+

KGE—E"‘HAA Gy-stoz0n Ge-stoz—p Ge-n+omon Gy-s+yox0 Gz—z+az—2+/

for total charge ¢ = 0 and

GEOp—>EOp GEOp—>E+A GEOp—)EOE"‘
Gs+aszop  Gstassin Grtasson+ ’ (G2+2+—>2+2+> ;

Gsos+,z0p Gyogtsin Grostoyzost
for total charges ¢ =1 and ¢ = 2.

C.1. Strangeness —3

In this case we have

Gz-psz-A Gz-aszos-  Ge-pnz-wo
(GE—E——E—E—) ; Gzos-z-A Gzop-,zon- Gzoz-Lz-x0 | o

Gz-sosz-A Gz-yoszos- Gz-xo,z-xo

for total charges ¢ = —2 and ¢ = —1, respectively, and
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Gzoaszon  Geopsmoso Gmopz-s+

Gzosozox0  Gzoxo,=-x+ ) (GEOE"‘%EOEJ") )

Gz s+_=050

Gzoso_,z0p

Gz-»+200 Gz s+ n+

for total charges ¢ = 0 and ¢ = 1.

C.1. Strangeness —4

Finally, in in the strangeness —4 sector there are also three possible total charges,

q = —2,—1 and 0, being the respective particle channels



Appendix D: Single-particle

potential in the BHF approach

Let us consider two baryons B; and B, belonging to the same isomultiplet. In the
BHF approach, the single-particle potential felt by By due to the Fermi sea of baryons
Bs; reads

U, =Re ) (BiBalG(w = Ep, + En,)|BiBa)a (D.1)

By

which in the decoupled basis basis \(BlBg)Elsloltlﬁ, E28202t27'2> can be written as

U (ki) =Re Y 0(kp,, — |k2)

k20272

; , _ , , D.2
X [{(B1Bg)k1s101t171, kaSa0oateos|G|(B1Ba)k1s101t171, kasaoataTs) (D-2)

—<(BlB2)E18101t17'2, E28202827'2 G| (3132)/;2520275202, 12151017517'0]
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Now introducing the average centre-of-mass K and relative momenta E, coupling

the spin and isospin via

|o102) = Y (51520102| SMs)|SMs)
os : (D.3)
|T1T2> = Z(t1t2T1T2|TMT)‘TMT>

TMr

and expanding the states |k) in terms of the states |kLMy)

k) =D Yiur, ()KLMy) (D.4)

LMy,

one has

|(B132)Fk810’1t17’1,820’27527'2): Z (31820'10'2|SM5)(t1t2T1T2|TMT)

TN ,  (D:5)

x (LS My, Mg|JM)Y 7. (k)|(BiBy) KkLSJMT M)

where we have also coupled L and S.

Similarly, for the exchange term we have

_|(B1B2)Fk5202t27—2,5101t17—1>: Z (—1)L+S+T_81_52_t1_t2(81820'10'2|SM5)

LMy SMg
JMT Mt ’

X (tthTlTQ ‘TMT) (LSMLMS ‘ ‘]M)YITML (/;Z) | (BlBQ)F]CLSJMTMT>
where we have employed the identities

(jojimama|im) = (=1) =74y jomyma|jm) | (D.7)
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and

Yar, (—k) = (—1)"Viar, (k) - (D.8)

Hence, taking into account Eqs. (D.5) and (D.6) and that G is diagonal in J, M, T, My

and S, we can write

Z 0(krp, — |ks)) Z [1— (—1)EFS+T—s1-se—ti—ta]

kz(mn LMLL'M’LSMSM’S
JMT My
XYEML(]%)YLIMi(l;')(81820’10’2‘SMs)(SlnglO'Q|SM§)(t1t27'17'2‘TMT)Q . (Dg)

X(LSMLMS|JM)(L’SMiMS|JM)(81820'10'2|SM!5~)

We define now the average over the spin third component o,

B B
R = g S U ). 10
o1
Using the orthogonal property
> (jrjemamaljm) (jijamimali'm') = 65 6mm (D.11)

mimsa

and the symmetry property of the Clebsch-Gordan coefficients,

. . iems [ 2741 .
(jijemima|jm) = (=1)7177Fm2 7j (jjam — maljimy) (D.12)
251 +1
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we can write

Uf:fz)(kl) _ Ze(kFBQ _ |]'€'2|) Z [1-— (_1)L+S+T—sl—52—t1—tz]

2814‘1_,

kaTo LMy L' M} SMg
JMT Mt

XYL*ML (lAﬂ)YL/MIL (iﬂ) (tthTlTQ |TMT)2

x(—1)L+L'm(JSM — Mg|LMp)(JSM — Ms|L'M})

xRe((B1By)KkL'SJMT Mr|G|(B,Bs)KkLSJMT M)
(D.13)

Employing Eq. (D.11) to perform the sums over M and Mg and employing the

identity
. 2L+1 R
ZYLML )You, (G2) = i Pr(q1-42) , (D.14)
one obtains
) = gy S, ) 3 = (st
1 Fors LSJT My

X (2J + 1) (t1t27'17'2 ‘TMT)2

xRe((B,By)KkL'SJMT My|G|(B,Bs)KkLSJMT Mr)
(D.15)

Finally, transforming the sum over ks into an integral over k

kmaw
y - /d%’2 :/ | J | d312:27r(1+531)3/ dka/d(cosﬁ) : (D.16)
= 0
k2

being | J |= (1 + &p,)? the jacobian of the change,

- O S -
k2:§kl_ak:£B1kl_(1+€Bl)k . (Dl?)
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Finally, one arrives at

2 1 +¢&a ’ 1 —so—t—
Ué? )(/ﬂ) = (2&) Z (2J+ 1)[1 _ (_1)L+S+T 1—s2—t1 t2]
s1+1
J,L,S,T,Mrp
kmaac
X(t1t27_17-2|TMT)2/ k*dkf(k, kg,) (D.18)
0

xRe((B1By)KkLSJMTMr|G|(ByBy)KkLSJMT M)

where the angular integral have been performed with the aid of the weight function

f(k,kp,) defined in appendix E.



Appendix E: Angular integration

Once the angular dependence of the G-matrix has been eliminated by the intro-
duction of the average centre-of-mass and hole momenta defined in appendix B, the
integral over cos f which appears in the construction of the single-particle potential is

replaced by the following weight function

fk,kg,) = %/ d(cosf) , (E.1)

1

where the integration is restricted to certain range of angles by the fact that the hole
momentum & B, = &By k B, — (1 +§BI)E should be inside its Fermi surface, as can be seen

in Fig. E.1. According to the figure we can consider the following cases:

Case A: [€p, ks, | < ki,

o Al: (14&p)k < kFy, — &p kp,; the hole momentum lies always inside its Fermi

surface, all the angles are allowed and therefore f(k,kp,) = 1.

190
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Case Al ks | < K,

AL (148, K<k &g ks A2k Eoky < (148, K< E ko + ke A3 (L4, K> & ks + ke,

Case Bl K5 | > ke,

g K N
i | g K

(1 & K

B (16 k<& k- ke B.2: Gokem e, < (148, Kk<&o ko + ke,  B3(148, k> &k + ke,

Figure E.1: Illustration of the different cases discussed in the text.

o A2 kp, —&p ke, < (1+&B,)k <&pkp, + krp,; there is a maximum angle from
which the hole momentum lies outside its Fermi surface. According to the figure

the cosine of this angle reads

(Emikn)? + (1+Ep,)?K? — K},

cos b, = , E.2
2531]%1(1 + fBl)k ( )
and therefore
1 ! 1 k%‘B - [é-BlkBl - (1 + €Bl)k]2
= — = — ]_ —_ = 2
f(k,kg,) 5 /cosem d(cos 6) 2( cos 6,,) 16p I (1 + Ep )k

(E.3)
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o A3: (1+¢&g,)k > &p kp, + kFp,; the hole momentum is always outside its Fermi
surface and therefore there are no contributions from this kind of configuration,

being in this case f(k,kp,) = 0.
Case B: \§Blk;1| > ki,

e B.l: (1+ &)k < & kn, — kry,, the hole momentum lies always outside the

Fermi surface and as in the case A.3, therefore, f(k, kp,) = 0.

o B.2: &g kp, — kry, < (1+&p,)k < &pkp, + kry,, as in the case A.2 there is
a maximum angle from which the hole momenta lies outside its Fermi surface.

This angle has the same value as in A.2. Hence also in this case f(k, kp,) is given

by Eq. (E.3).

e B.3: (1+&p,)k > &p,kp, +kry,, as in the cases A.3 and B.1, the hole momentum
is always outside its Fermi surface, being therefore f(k,kp,) = 0.

All these cases can be put together, yielding finally,

krg,—¢By kB,

1 for k < v ,
f(kv kBl) = 3 0 for |€B1k31 - (1 + €B1)k| > kFBz’
k%‘BQ o [fBlkBl - (1 + §Bl)k]2 th .
otherwise.
\ 4531(1 + gBl)kBlk

(E.4)
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1. Introduccio

La preséncia de barions extranys, hiperons (A, 3, =) en sistemes nuclears finits i infinits
ha rebut molta atencié durant les darreres decades tant des del punt de vista teoric
com experimental [Ga77, Po78, Ba85, Do89, 0s90, C090, Ba90, Gid5, Ak97, Os98|.
L’estranyesa afegeix una nova dimensié a 'imatge evolutiva de la fisica nuclear i ens
déna una oportunitat per estudiar les interacciéns barié-barié fonamentals des d’una

nova perspectiva.

Els hipernuclis sén sistemes lligats de neutrons, protons i un o més hiperons. Van
ser observats per primer cop I'any 1951 amb el descobriment d’un hiperfragment per
Danysz i Pniewsli [Dab3]. Les primeres observacions d’hipernuclis en rajos cosmics

van ser seguides de produccions en emulsions de feixos de pions i protons i cambres
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de bombolles de *He. La desintegracié feble de la particula A en un 7~ i un proté
fou utilitzada per identificar hipernuclis A i per determinar energies de lligam, espins
i vides mitjes fins A = 15 [Ju73, Da91]. Les propietats mitjes dels sistemes pesats
foren estimades amb posterioritat i dos hipernuclis doble A van ser obtinguts a partir
de la captura de =~ [Da63, Pr66]. Investigacions més sistematiques dels hipernuclis
van comencar amb la possibilitat de generar feixos separats de K, el que va permetre

l'utilitzacié d’experiments de comptatge [Pa73].

Tot i que els avengos de la fisica d’hipernuclis han estat molt lents degut al limitat
nombre d’esdeveniments, els experiments de comptatge de la reaccié en vol (K—,77)
realitzats al CERN [Br75, Be79] i Brookhaven (BNL) [Ch79] han revelat una gran
quantitat de les caracteristiques dels hiperons, tals com que la particula A manté essen-
cialment la seva identitat dins del nucli, el petit acoblament espin-orbita, les estretes
amplades (avui dia descartades) dels hipenuclis ¥, injectant un renovat interés en el
camp. Des d’aleshores, els recursos experimentals han estat millorats i experiments
usant les reaccions (77, K*) i (K, ., 7°) estan essent realitzats als acceleradors AGS

i KEK de Brookhaven amb intensitats dels feixos més altes i resolucions en energia

millorades.

La producci6 electromagnerica d’hipernuclis al laboratori TJNL, mitjantcant la
reaccié (e,e’K™), és una nova eina d’alta precisié per l'estudi de l'espectroscopia
hipernuclear [Hu94]. A més, l'estudi de les desintegracions de nivells hipernuclears
utilitzant detectors de germani amb angles solids grans, pot ajudar a definr ’espectre
d’hipernuclis lleugers. També és possible que feixos de kaons i ions pesats més inten-
sos, acoblats amb noves tecnologies de deteccid, proporcionin els mitjans per detectar

hipernuclis amb diversos hiperons [Gr88].
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Relacionat amb aquest darrer aspecte, menys coses s6n conegudes sobre els hiper-
nuclis = o hipernuclis amb diversos hiperons [Do83]. Uns pocs esdeveniments [Wi59,
Ba63, Bh63, Be68, Mo79] han estat interpretats com a hipernuclis multiestranys, pero
els experiments de comptatge no han estat capacos d’observar la creacié d’aquests sis-
temes. Des del punt de vista de la teoria convencional de molts cossos, un estudi de la
interacci6 hiper6-hiperé (YY) és molt important, i es pot fer amb hipernuclis amb di-
versos hiperons. Naturalment, un estudi directe de la dispersi6 hiperé-hiperé seria molt
interessant, pero donat que aquestes particules tenen vides mitjes molt curtes, aixo no
és possible. Hi ha esdeveniments que han estat interpretats bé com a hipernuclis =,
bé com a hipernuclis doble A. D’aquests esdeveniments, si s’interpreten correctament,
es pot extreure informacié sobre la profunditat del potencial AA [Do91], perd les in-
terpretacions encara soén obertes a debat. Clarament s’ha d’obtenir més informacié

experimental sobre aquest aspecte.

Des del punt de vista teoric, un dels objectius de la investigacié hipernuclear és
relacionar els observables hipernuclears amb la interaccié nua hiperé-nucleé (YN) i
hiperé6-hiperé (YY). Les dificultats experimentals associades a la curta vida mitja dels
hiperons i la baixa intensitat dels feixos han limitat el nombre d’esdeveniments de dis-
persi6 AN i ¥N a menys de mil [En66, Al68, Se68, Ka7l, Ei71], que no sén suficients
per tal de restringir totalment la interaccié YN. Avui dia, hi ha dos models d’intercanvi
mesonic per descriure la interaccié YN: un del grup de Nijmegen [Na77, Ma89], on els
corresponents vertexs es determinen per mitja de la simetria SU(3), i el del grup de
Jiilich [Ho89], que assumeix una simetria SU(6) més forta i on, per tant, totes les con-
stants d’acoblament dels vertexs estranys poden relacionar-se amb les de la interaccié
nucleé-nucleé (NN). Recentment, el grup de Nijmegen ha construit una extensié del les

seves interaccions NN 1 YN a tot I'octet complet de barions, incloent la interacciéo YY
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[Ri99, St99]. Tot i que els models de Nijmegen i Jiilich sén capacos de descriure el con-
junt de dades experimentals, les seves estructures d’espin i isospin sén molt diferents.

Per tant, més dades sobre observables d’espin sén molt desitjables.

Sense aquestes dades, informacié alternativa pot obtenir-se de ’estudi dels hiper-
nuclis. Una possibilitat es centra en I'estudi d’hipernuclis lleugers, tals com 3H, 3 He i

1He, que poden ser tractats “exactament” resolent les equacions a 3 cossos de Fadeev

[Mi93, Mi95] o a 4 cossos de Yakubovsky [Gi88].

Una altra possibilitat és 1’estudi d’hipernuclis amb masses més grans. Tradicional-
ment, els hipernuclis han estat descrits amb un model de capes utilitzant potencials A-
nucli de tipus Woods-Saxon que reprodueixen forca bé els estats hipernuclears mesurats
per hipernuclis mitjans i pesants [Bo76, Do80, Mo88]. La inclusié d’efectes de no lo-
calitat i de densitat en calculs no relativistes de tipus Hartree—Fock amb forces YN
de tipus Skyrme [Mi88, Ya88, Fe89, La97, Vi01l] ha millorat les energies monopartic-
ulars de lligam. Les propietats dels hipernuclis han estat estudiades també dins de
marcs relativistes, tals com la fenomenologia de Dirac on el potencial hiperé-nucli s’ha
obtingut a partir d’un potencial nucleé-nucli [Br81, Ch91], o en la teoria relativista de

camp mig [Ma89b, Ma94, Lo95, G193, In96, Su94, Ma96, Ts97].

També sén possibles els calculs microscopics d’estructura hipernuclear. Aquests
poden ser realitzats amb una interaccié YN efectiva o matriu G obtinguda a partir
de la interaccié nua mitjantcant I'’equacié de Bethe—Goldstone. En calculs previs es
van utilitzar parametritzacions gaussianes de la matriu G calculades a materia nuclear
a una densitat promig [Ya85, Ya90, Ya92, Ya94]. Una matriu G obtinguda directa-
ment al nucli finit es va fer servir per estudiar el nivells monoparticulars de diversos

hipernuclis [Ha93]. La matriu G de materia nuclear es va utilitzar també en un calcul
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de Destructura del ;'O [Ha93b]. En aquesta tesi derivarem microscopicament, d’una
manera similar a la dels autors de la Ref. [Hj96], les propietats monoparticulars de la
particula A a les ones s i p per diversos hipernuclis, des de 3 He fins a 2%®Pb, constru-

int una matriu G pel nucli finit a partir d’'una matriu G de materia nuclear. Aquest

metode fou utilitzat per I’estudi de les propietats del nucleé i la A al nucli [Bo92, Hj94).

A més dels hipernuclis, els fisics nuclears s’han interessat també en la materia
hiperonica (matéria nuclear amb graus de llibertat nucleonics i hiperonics), especial-
ment en connexié amb la fisica dels estels de neutrons. Aquests objectes sén un
excel.lent observatori per comprovar el nostre coneixement de la teoria de les inter-
accions fortes a densitats extremes. L’interior dels estels de neutrons és forca dens
per tal de permetre ’aparicié de noves particules amb contingut d’estranyesa a més
dels nucleons i leptons convencionals per mitja de 1’equilibri feble. Hi ha una forta
evidencia que els hiperons son els primers hadrons en apareixer a la materia densa
i ho fan a una densitat tipicament el doble de la densitat normal de la materia nu-
clear [G185], com ha estat recentment confirmat amb potencials efectius no relativistes
[Ba97], el model d’acoblament quark-mesé [Pa99], models relativistes de camp mig
[Kn95, Sc96], Hartree-Fock relativista [Hu98] i dins de la teoria de Brueckner-Hartree—

Fock [Ba00, Vi00b].

Les propietats dels estels de neutrons estan molt relacionades amb I’Equacié d’Estat
de la materia a altes densitats. Aquestes propietats son afectades per la preséncia
d’estranyesa [G197, Pr97]. Una forta deleptonitzacié de la materia dels estels de neu-
trons passa quan els hiperons apareixen, per que és energeticament més convenient
mantenir la neutralitat de carrega amb hiperons. A més, sembla clar que el principal

efecte del hiperons sobre la materia densa es que suavitza la seva Equacié d’Estat, el
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que es tradueix en una massa maxima de I’estel més petita. Altres propietats com son
les evoluciéns térmica i estructural de I’estel sén molt sensibles a la composicié, i per

tant al contingut en estranyesa de l'interior de 1’estel.

Tot i que la mateéria hiperonica és un sistema ideal, la determinacié teorica de la
seva Equaciéo d’Estat representa un pas essencial pel coneixement de les propietats
fisiques dels estels de neutrons. A més, la comparacié de les prediccions teoriques amb
les observacions poden proporcionar informacié sobre les interaccions entre els seus
constituents. Per tant, es requereix un coneixement detallat de ’Equacié d’Estat per
un ample rang de densitats [Sh83]. Aixd representa una gran tasca des del punt de
vista teoric. Tradicionalment, s’ha seguit dues aproximacions per tal de descriure la
interaccié barié-bario en el medi nuclear i per tant, per construir ’Equacié d’Estat: les

anomenades aproximaci6 fenomenologica i aproximacié microscopica.

A Taproximacié fenomenologica el punt de partida és una interaccié efectiva de-
pendent de la densitat que conté un cert nombre de parametres ajustats per tal de
reproduir dades experimentals com per exemple propietats dels nuclis o les propietats
de saturacié de la materia nuclear. Hi ha moltes interaccions efectives, tals com la
forca de Migdal [Mi67] o la forca de Gogny [GoT75]. Perd la més popular de totes és
la interaccié de Skyrme [Sk56, Va72]. Aquesta interaccié ha guanyat molta importan-
cia per que reprodueix les energies de lligam i els radis nuclears de tots el nuclis de
la taula periodica amb un conjunt raonable de parametres [Va72]; és pot connectar
[Ne72] amb la matriu G que és més fonamental i la seva forma matematica és bas-
tant simple. Balberg i Gal [Ba97, Ba99] han derivat recentment una Equacié d’Estat
efectiva i analitica utilitzant potencials barié-barié dependents de la densitat basats

en forces de tipus Skyrme incloent graus de llibertat hiperonics. Les caracteristiques
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d’aquesta Equacié d’Estat es basen en les propietats dels nuclis pel que respecta a la
interaccié nucleé-nucled i principalment en les dades experimentals d’hipernuclis pel
que fa a les interaccions hiperé-nucleé i hiperé-hiperd. A més, aquesta Equacié d’Estat
reprodueix les propietats tipiques de la materia a altes densitats que es troben amb

models microscopics.

Una aproximacié fenomenologica alternativa involucra la formulacié d’una teoria
efectiva relativista de camp mig [Se86, Se97]. Aquesta aproximacié trata els graus
de llibertat barionics i mesonics de forma explicita, és completament relativista i, en
general és més sencilla per qué només fa servir densitats i camps locals. L’Equacié
d’Estat per la materia densa amb hiperons fou descrita dins del model relativista
de camp mig per Glendenning [G182, G185, GI87]. El model de camp mig, pero, no
és capac de reproduir la forta atraccié de la interaccié hiperé-hiperé observada en
els hipernuclis doble A. Tot i aix0, Schaffner i els seus col.laboradors [Sc93, Sc94]
han solucionat aquest problema incorporant camps mesonics estranys adicionals al
lagrangia estandar del model. El conjunt de parametres d’aquest model s’ha fixat amb
les propietats del nuclis i de la materia nuclear perl sector nucleonic, mentre que les
constants d’acoblament dels hiperons s’han determinat amb relacions de simetria SU(6)

i amb observables hipernuclears.

Per altra banda, en una aproximacié microscopica el punt de partida és una in-
teraccié bario-barié a dos cossos que descriu els observables de dispersio, tals com els
potencials de Bonn-Jiilich [Ma87, Ho89] o Nijmegen [Na78, Ma89, St94, Ri99, St99].
Aquestes interaccions realistes es construeixen dins del marc de la teoria d’intercanvi
mesonic. Per tal d’obternir I’Equacié d’Estat hom ha de resoldre el complicat problema

dels molts cossos. La dificultat més gran d’aquest problema és el tractament del “core”
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fortament repulsiu, que domina el comportament de la interaccié a curt abast. S’han
considerat diversos metodes per resoldre aquest problema, essent els més utilitzats el

métode variacional i la teoria de Brueckner—Bethe—Goldstone.

El meétode variacional suggerit per Jastrow [Jab5], fa s d’una funcié de prova
per tractar les correlacions de dos nucleons. L’Equaciéo d’Estat per materia nuclear
asimetrica ha estat considerada per diferents autors dins d’aquesta aproximacié [Wi88,
Ak97b, Bo98], i de fet el calcul d’Akmal i els seus col.laboradors [Ak98], utilitzant la in-
teracci6 nucleé-nucle6 Argonne Vig [Wi95] amb correccions relativistes i una interaccié
a tres cossos, pot ser considerat com el calcul actual més realista pel sector nucleonic.

Els hiperons no han estat considerats encara dins d’aquesta aproximacié.

Una aproximacié alternativa al meétode variacional per tractar el problema dels
molts cossos ve donada per la teroria de Brueckner-Bethe-Goldstone (BBG). Brueckner
i els seus col.laboradors [Br54] van desenvolupar un meétode per tal de sumar fins
ordre infinit els anomenats diagrames escala particula-particula que tenen en compte
les correlacions de curt abast. Un pas endavant vers I’aplicacié d’aquest metode als
sistemes nuclears va ser donat per Bethe [Be56] mitjantgant el desenvolupament de
I’expansio de linia de forat. El desenvolupament formal d’aquesta aproximacio el va fer
Goldstone [Go57] qui utilitzant métodes pertorbatius va establir ’anomenada expansi6
de grups enllagats. La teoria BBG s’ha aplicat molt a ’estudi de la materia nuclear,
i recentment a la mateéria hiperonica. Schulze i els seus col.laboradors [Sc98] han
realitzat un calcul de molts cossos de tipus Brueckner per estudiar el punt d’aparicio
dels hiperons a la materia dels estels de neutrons. Recentment aquests autors han
ampliat el seu estudi als estels de neutrons amb hiperons [Ba00], posant especial atencié

al paper jugat per les forces a tres cossos entre els nucleons. Tot i aix0, aquests estudis
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no inclouen la interacci6 hiper6o-huperé, que és essencial des del moment en que apareix
el primer hiperd en la materia, la X~. En aquest sentit, un dels objectius d’aquesta tesi
és el d’incloure la interaccié hiper6-hiper6 en un calcul microscopic de molts cossos de
tipus Brueckner i estudiar les propietats de la materia S-estable dels estels de neutrons

amb graus de llibertat hiperonics.

Per tal de fer les coses més sencilles per al lector donem aqui una idea de com esta

organitzada aquesta tesi:

Al Capitol 2, mostrem els resultats d’un calcul microscopic de tipus Brueckner
per materia densa que inclou tots els tipus d’interaccions barié-barié i permet tractar
qualsevol asimetria en les fraccions dels diferents barions (n,p, A, X, 3% ¥+ = i =9).
En aquest capitol presentem resultats pels potencials monoparticulars i les energies de
lligam per barid, centrant-nos en densitats barioniques i fraccions d’hiperons que poden

ser rellevants en ’estudi de la materia [-estable dels estels de neutrons.

Pel que fa a les propietats dels hiperons en el nucli finit, al Capitol 3, determinem
I’energia monoparticular i la funcié d’ona de 'hiperé A en diferents nuclis obtingudes a
partir de la seva autoenergia. Aquesta autoenergia s’ha construit dins del marc d’una
aproximaci6 pertorbativa al problema dels molts cossos utilitzant interaccions hipero-
nucleo realistes tals com les dels grups de Jiilich i Nijmegen. Investigem els efectes de
no localitat i la dependéncia en densitat de 'autoenergia dels estats lligats. Mostrem,
que tot i que les energies monoparticulars dels hiperons es poden reproduir forga bé
amb potencials de tipus Woods-Saxon, les funcions d’ona obtingudes amb I’autoenergia

no local sén més esteses.

Al Capitol 4 presentem resultats per un calcul Brueckner—-Hartree—Fock de la materia
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[-estable dels estels de neutrons amb graus de llibertat nucleonics i hiperonics, util-
itzant la parametritzacié més recent de la interaccié barié-barié del grup de Nijmegen.
Es troba que els tinics barions estranys presents fins a una densitat de 1.2 fm=3 sén la
¥~ ila A. Calculem les corresponents Equacions d’Estat i determinem propietats dels

estels de neutrons com la massa, el radi i el moment d’inercia.

Les conclusions principals d’aquesta tesi estan resumides al final del manuscrit.

2. Materia hiperonica

Les propietats i la composicié de la materia densa a densitats supranuclears determina
el comportament estatic i dinamic dels estels de neutrons [G192, La91, Co94, Kn95,
Pr97]. L’estudi de la materia densa a densitats i temperatures extremes ha rebut un
interes renovat degut a la possibilitat d’assolir aquestes condicions en les col.lisions

relativistes d’ions pesats a GSI, Brookhaven (BNL) i al CERN.

Es creu que a densitats extremadament altes pot tenir lloc una transicié de materia
hadronica a materia de quarks. El punt de transicié i les seves caracteristiques depenen
crucialment de I'Equacié d’Estat de la matéria en totes dues fases. Es ben conegut
que la preséncia d’estranyesa, en forma d’hiperons (A,X,Z) o mesons (K ) fa més
suau ’Equacié d’Estat i enderrerira la transici6. Moltes investigacions s’han fet dins
del marc d’aproximaci6 de camp mig [E195, Sc96] o utilitzant interaccions efectives de
Skyrme [Ba97]. Les teories microscopiques intenten obtenir les propietats dels hadrons
en materia densa a partir de la interaccié nua a ’espai lliure. En aquest sentit, la teoria
de Brueckner va permetre entendre les propietats de la materia nuclear no estranya a

partir d’interaccions realistes.
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Un primer intent d’incorporar 1’estranyesa en forma d’hiperons dins de la teoria de
Brueckner pot trobar-se a les referéncies [Sc95, Sc98]. En aquest treballs no es va tenir
en compte el paper de la interaccié hiperé-hiperd, de manera que els resultats pels
potencials monoparticulars i de I’energia per barié amb una quantitat finita d’hiperons

s’han de considerar com simplement orientatius.

Els recents potencials barié-barié (NSC97a-f) pel octet complet de barions de-
senvolupats pel grup de Nijmegen [St99], han permes la incorporacié de la inter-
accié hiperé-hiperé als calculs microscopics de materia densa amb una fraccié no
nula d’hiperons [St99b]. Per tal de tenir en compte alhora totes les possibles inter-
accions barié-barié s’ha de solucionar I’equacié de Bethe—Goldstone en canals acoblats
pels diferents sectors d’estranyesa: nucleé-nucleé NN (S = 0), hiperé-nucle6 YN
(S = —1,—2) i hiperé-hiperé YY (S = —2, -3 1 —4). El treball presentat a [St99b] es
va concentrar principalment en sistemes saturats d’isospin, és a dir, sistemes amb la
mateixa fraccié de particules dins del mateix isomultiplet. En aquest sentit, les com-
plicacions associades als diferents mars de Fermi es van evitar de forma que la matriu

G de cada sector d’estranyesa fos independent de la tercera component d’isospin.

No obstant aixo I'estudi microscopic de la materia S-estable dels estels de neutrons
amb hiperons requereix el tractament de materia altament asimetrica tant en el sector

no estrany com en l'estrany.

En aquest capitol estenem D'estudi de [St99] per tal de permetre qualsevol fraccié
de les diferents espeécies [Vi00] i explorarem l'efecte de la interaccié hiperd-hiperé en
els potencials monoparticulars dels hiperons, centrant-nos en situacions rellevants per

I'estudi dels estels de neutrons.
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La matriu G que descriu la transicié B;By — B3B,4 s’obté a partir de la interaccid

nua bario-barid resolent I’anomenada equacié de Bethe—Goldstone

<BgB4|G‘BlBQ> = <BgB4|V|BlBQ>

QB5B§
— Ep, — Ep, + 1)

BsB,|V|BsB
+ Y (BsBu|V|Bs 6)

BsBs

(B5Bs|G|B1Bs) .

En comparacié amb el cas purament nucleonic, aquest problema és més complicat
degut a la seva estructura de canals acoblats: mentre pels sectors d’estranyesa 0 i —4
només hi ha un canal, NN — NN i == — Z=, respectivament; en el d’estranyesa
—1 (=3) n’hi ha tres: AN - AN, ¥N — ¥N i AN — EN (EA — EA, EY — =X i
EA — ZY); ien el d’estranyesa —2, nou: AA — AA, AA — EN, AA — £¥, =N — =N,
EN = X3 83N =5 XN EN - AY AY -5 AY i AY —» XX

El potencial monoparticular Up, que sent un barié B; inmers en el mars de Fermi

de barions By, B», - - - ve donat a ’aproximacié de Brueckner—Hartree—Fock per
Us,=Re Y Y (BiB;|G(w = Ep, + Ep,) |B;B;) , , (R.2)
B; kjgkpj
on
Ep, =T, + Up, + Mp, , (R'3)

essent 1T'g, I’energia cinetica del barié B;.

L’enegia total per barié ve donada per

E ¢ 2 ke B k2 1
A p pEB;/O (2m)? ( B oMy, QUB’(k)) (R-4)

i
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Figura R.1: Potencial monoparticular dels neutrons, protons, A i ¥~ a p = 0.6
fm=3 i una fraccié d’hiperons zy = 0.1. El panells de la dreta corresponen a materia
nuclear simetrica, z, = x, = 0.5z, mentre que els de ’esquerra mostren resultats per
materia asimetrica amb z,, = 3z, = 0.75zy. Als panells superiors la fraccié d’hiperons
composta és exclusivament per ¥~ (rx- = zy ), mentre que als inferiors I'estranyesa es
reparteix entre 37’s (zg- = 2xy/3) i A’s (zp = 2y /3).

i els potencials quimics dels diferents barions, agafats iguals a les seves corresponents

energies de Fermi, per

ps = Ep(kr,) = Mp + Tg(kr,) + Ug (kry) + U (kry) (R.5)

on el superindex en els potencials es refereix a la interaccié del barié B amb els nucleons

(N) o amb els hiperons (Y).

A la figura R.1 mostrem el potencial monoparticular dels neutrons, protons, A i
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Y~ a p = 0.6 fm~3 i una fraccié d’hiperons zy = 0.1 composta exclusivament a X,
Tx- = Zy, (panells superiors), o repartida entre ¥ ’s i A’s en una proporcié 2 : 1
(panells inferiors). Els panells de la dreta corresponen a materia nuclear simeétrica,
Zn = T, = 0.5z, mentre que els de ’esquerra mostren resultats per materia asimetrica
amb z,, = 3z, = 0.75zy. La presencia de la ¥~ trenca la simetria entre protons i
neutrons. Els neutrons es fan més atractius. Aixo es degut al diferent comportament
de la interaccié X~ n, que només rep contribucions del canal XN d’isospin 7" = 3/2 que és
molt atractiu, mentre la interaccié >~ p també rep contribucions del canal XN d’isospin
T = 1/2 que és molt repulsiva. Quan anem a una situacié asimetrica s’observa que la
>~ es fa més atractiva degut al major nombre de parelles X7n. La A perd atraccié en
moure’ns de la situacié simetrica a I’asimetrica perque el mar de Fermi dels neutrons
és més gran i la seva contribucié al potencial monoparticular de la A explora regions
de moment relatiu més alt que son menys atractives. Donat que els mars de Fermi dels
hiperons son petits, les diferencies observades quan substituim algunes >~ per A son

petites.

Per tal de veure la influéncia de la interaccié hiperé-hiperd, a les figures R.2 i R.3
mostrem les contribucions dels diferents barions als potencials monoparticulars de la A
ila ¥~ respectivament, per una densitat p = 0.6 fm 3 i una fracci6é d’hiperons zy = 0.1
repartida entre X7 ’s i A’s en una proporcié 2 : 1. En el cas de la A, podem veure que
la contribucié de la propia A és atractiva i gairebé menyspreable; per altra banda la
contribucié de la X~ és comparable a les dels protons i neutrons. Aix0 és un exemple
clar de la importancia que la interaccié hiperé-hiper6 té sobre les propietats de la A.
Aquesta adquireix més atraccid i apareix a la materia densa a densitats més baixes que

quan aquesta interaccié no es considera.
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Figura R.2: Contribucions al potencial monoparticular de I’hiperé A a p = 0.6 fm 3,
fraccié d’hiperons zy = 0.1 amb zx- = 2zy/3 i zpn = xy /3, per materia simetrica
(panell dret) i asimetrica (panell esquerra).

Les diferents contribucions al potencial monoparticular de la ¥~ es mostren a la
figura R.3. La A contribueix molt poc donat que el seu mar de Fermi és molt petit.
La contribucié dels parells X7~ és molt important i esdevé crucial degut al fet que

les contribucions de neutrons i protons gairebé cancelen una a I’altra.

Finalment a la figura R.4 es pot veure ’energia per barié en funcié de la densitat
barionica. Els panells de la dreta i ’esquerra mostren resultats per materia nuclear
simetrica i asimetrica (x, = 3z, = 0.75xy), respectivament. Als panells superiors,
es donen resultats per xy,- = 0 i diversos valors de la densitat de A, py. Als panells

inferiors es considera x, = 0 i es varia la concentracié de ¥7. L’energia per barié és el
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Figura R.3: Contribucions al potencial monoparticular de I’hipero ¥~. Les condicions
son les mateixes que les de la figura R.2.

resultat d’'un balang entre ’energia cinetica promig de cada mar de Fermi dels barions
i de la contribucio de les interaccions mutues, donada per un promig sobre el potencial
monoparticular de cada especie. Per tal d’identificar els efectes de la interaccié hipero-
hiperé sobre 1’energia per barid, hem inclos també una corba que correspon a un calcul
on el percentatge d’hiperons és d'un 10% (A o ¥7) on la interaccié hiperé-hiperé no
s’ha tingut en compte. En tots dos casos, quan es desconnecta la interaccié hipero-
hiperé es perd energia de lligam. El punt de saturacié de ’energia per barié es veu
poc afectat quan s’incrementa la fraccié d’hiperons. Quan una petita quantitat de
nucleons se substitueix per hiperons, automaticament es produeix una disminucié de

la contribucié d’energia cinetica degut que els hiperons poden acomodar-se en estats
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Figura R.4: Energia per barié en funcié de la densitat barionica.

de moment més baix i a més sén més massius. Tot i que les interaccions AN i AA

s6n clarament menys atractives que la NN, la reduccié en I'energia cinetica és suficient

per compensar la peérdua de lligam quan un 10% de nucleons sén substituits per A’s.

No obstant aix0, per una fraccié xx = 30% la perdua d’energia cinética no és suficient

per compensar aquesta perdua d’atraccié. Si mirem als panells inferiors on tots els

hiperons sén X7, s’observa més lligam que respecte al cas on només hi ha A. Aix0 és

degut, basicament, a la major perdua d’energia cinetica perque la massa de la X~ és

més gran. En general, la substitucié de nucleons per hiperons produeix un guany en

energia de lligam i una suavitzacié de I’Equacié d’Estat, que tindra conseqiiéncies molt

importants en 'estructura dels estels de neutrons.
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3. Propietats dels hiperons als nuclis finits

Els hipernuclis son sistemes lligats de neutrons, protons i un o més barions estranys,
tals com els hiperons A, ¥ o Z. Entendre el comportament dels hipernuclis (com es
produeixen, la seva espectroscopia i els seus mecanismes de desintegracié) ha estat

intensament investigat durant les darreres decades, veure per exemple les referencies

[GaT77, Po78, Ba85, Do89, 0s90, Co90, Ba90, Gid5, Ak97, Os98|.

Un dels principals objectius d’aquests estudis ha estat explorar com la presencia
de l'estranyesa pot alterar i ampliar el coneixement adquirit de la fisica nuclear con-
vencional. D’aquests esforcos han emergit diverses caracteristiques de les propietats
monoparticulars de ’hiperé A en el nucli. Es ben acceptat que la profunditat del po-
tencial A-nucli es ~ —30 MeV, que és uns 20 MeV menys atractiu que el corresponent
nucleé-nucli. S’ha trobat que el desdoblament espin-orbita dels nivells monoparticu-
lars de I’hiper6 A és tipicament més d’'un ordre de magnitud més petit que el cor-
responent pels nucleons. A més, 'hiperé A, al contrari que el nucled, manté el seu
caracter monoparticular fins i tot per estats molt per sota de la superficie de Fermi
[Pi91, Ha96], cosa que indica una interaccié més feble amb els altres nucleons. Els
estudis sobre la desintegracié mesonica del hipernuclis A lleugers [Mo091, St93, Ku95|
han mostrat que les dades [Sz91] sén favorables a un potencial A-nucli que mostra una
repulsié a curtes distancies. Aix0o sembla ser també una caracteristica del potencial

Y-nucli per hipernuclis ¥ lleugers [Ha90).

Des del punt de vista teoric, s’han fet diverses aproximacions per tal de derivar les
propietats dels hiperons en nuclis finits. Tradicionalment la gent ha utilitzat poten-

cials de tipus Woods-Saxon [Bo76, Do80, Mo88| que reprodueixen for¢a bé les energies
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mesurades per la A en hipernuclis mitjans i pesats. Les no localitats i els efectes de-
penents de la densitat han estat inclosos en calculs Hartree—Fock no relativistes amb
forces de Skyrme hiperé-nucleé [Ya88, Mi88, Fe89, La97] per tal de millorar 'ajust de
les energies monoparticulars. Els hipernuclis també han estat estudiats dins del marcs
relativistes, com la fenomenologia de Dirac [Br81, Ch91] o la teoria relativista de camp
mig [Ma89b, Ma94, Lo95, G193, In96, Su94, Ma96, Ya85]. També s’han realitzat calculs

microscopics de l'estructura d’hipernuclis [Ha93, Ha93b).

El nostre treball segueix aquesta darrera aproximacié amb l’objectiu de compro-
var les interacciéns hiperé-nucleé actuals (Jilich B [Ho89], NSC89 [Ma89] i NSC97a-
f [Ri99, St99]). A tal efecte, hem evaluat l'energia i les funcions d’ona dels estats
monoparticulars 1s1/9, 1ps/2 i 1p1/2 de I'hiperé A en diversos hipernuclis des de 1’3 He
fins el 2%Pb. La comparacié amb l’experiment pot ajudar a restringir la interaccié
hiperé-nucleé. El punt de partida d’aquest treball és una matriu G avaluada a materia
nuclear per una densitat i una energia inicial fixes. Aquesta matriu G s’utilitza per con-
struir una matriu G al nucli finit que després s’utilitzara per tal d’avaluar ’autoenergia
de I’hiperé al nucli. Finalment, la part real d’aquesta autoenergia es fa servir com a
potencial no local en una equacié de Schrodinger per tal d’obtenir les energies i les

funcions d’ona dels diferents orbitals.

Una possible manera de construir la matriu Gyp al nucli finit és resoldre la seva

corresponent equacié de Bethe—Golstone,

Gryp =V +V (%) Gur (R.6)
NF

No obstant aixo, podem treure profit del fet que ja hem obtingut una matriu G a
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materia nuclear, i intentar trobar la matriu Gyr del nucli finit relacionant-la amb la
de materia nuclear. Recordant que la corresponent matriu G de materia nuclear ve

donada per

)
G=V+V(Z] @&, R.7

podem eliminar la interaccié nua V' a les equacions anteriors per obtenir Gyp mit-

jantcant la seglient equacié integral

=G+G [(%)NF - (%)MN} G+ (R.8)

+G [(%)NF - (%)MN} G [(%)NF o (%)MN} G+...,

que involucra la matriu G de materia nuclear i la diferencia entre els propagadors
de nucli finit i materia nuclear. Aquesta tltima té en compte els estats intermitjos
rellevants. L’expansi6 (R.8) pot tallar-se a segon ordre perque la diferéncia entre els

propagadors és de fet bastant petita. Per tant es té

Grr~G+G [(%) - (%) MN] G (R.9)

En I’'aproximacié de Brueckner-Hartree-Fock ’autoenergia en nucli finit dels hiper-

ons A o ¥ pot escriure’s esquematicament de la forma

SBHE = (Y N|Gyrp|YN) =Y (Y N|G|YN)
+) (YN|G|Y'N) [(%) - (%) MN} VNIGIYN . (R.10)

Y'N

que es pot descomposar, com es pot veure a ’equacié i a la figura R.5, en la suma d’una
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Figura R.5: Aproximacié Brueckner-Hartree—-Fock de ’autoenergia de I'hiperé al
nucli finit (diagrama (a)), descomposada en la suma d’una contribucié de primer ordre
(diagrama (b)), i una correcci6 2plf (diagram (c)).

contribuci6 de primer ordre representada pel diagrama b, i la correccié dues particules
i un forat (2plf) representada pel diagrama c. Aquesta autoenergia és no local i depen

de I'energia de 1’estat inicial.

Primerament, hem de comprovar I’estabilitat dels nostres resultats en front de varia-
cions de la densitat nuclear i ’energia inicial utilitzades en el calcul de la matriu G de
materia nuclear. A tal efecte a les Taules R.1 i R.2 es mostra respectivament I’energia
de lligam de la A en }’O per diferents valors de la densitat i de I'energia inicial obtin-
guda amb les interaccions Jiilich B i NSC89. Com es pot veure, els termes de primer i
segon ordre depenen fortament d’aquests parametres, la qual cosa és una indicacié que
els efectes de densitat sén importants quan es té en compte el tamany finit del nucli.

Tot i aixo0, el calcul total fins a segon ordre déna resultats molt estables.

Un cop el nostre metode ha estat comprovat, és el moment d’estudiar la sistematica
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w = —50 MeV Jiilich B NSC89
kp (fm™1) 1r 1 4+ 2plf 1er 1¢ 4+ 2plf
1.00 1371 —11.74 —9.33 —7.30
1.25 ~12.56  —11.83 —766  —7.34
1.36 ~11.73  —11.84 ~559  —7.36

Taula R.1: Dependeéncia de I'energia monoparticular de ’hiperé A en 1O en el
moment de Fermi de la matriu G de materia nuclear. En la nostra notacié w =
(Bn) + Ba(k =0), on (By) = —50 MeV. Les unitats venen donades en MeV.

kr =1.36 fm~! Jilich B NSC89
w (MeV) 1er 19" + 2plf 1er 19" 4+ 2plf
—100 —9.25 —11.85 —-3.83 —7.43
—80 —10.15 —11.83 —4.76 —7.39
—50 —11.73 —11.84 —5.59 —7.36

Taula R.2: Dependéncia de ’energia monoparticular de I’hiperé A en }7O en I’energia
inicial de la matriu G' de materia nuclear.

de les energies de lligam de la A a través de la taula periodica. A la Taula R.3 presentem
resultats obtinguts amb les interaccions Jiilich B i NSC89. La comparaci6 amb les dades
experimentals és bastant bona, especialment per I'orbital 1s;/,. Cal notar que, d’acord
amb la informacié empirica, el desdoblament espin-orbita és molt petit. En el cas de
la interacci6 de Jiilich notem que I'orbital 1p; /o és més lligat que I'orbital 1ps3/s, la qual

cosa és una caracteristica de I’estructura d’espin de la interaccié de Jiilich.

Finalment, a la figura R.6, mostrem la funcié d’ona de I'orbital 1s;/; de la A en 13C,
170 i 4Ca, obtinguda a partir de la nostra autoenergia no local (linies continues) o a
partir d'un potencial local de tipus Woods-Saxon (linies discontinues) de profunditat
—30.2 MeV i un radi ajustat a reproduir la mateixa energia de lligam. Tot i aixo, com

es pot veure, la nostra funcié d’ona és més estesa i aixo pot tenir conseqiiencies impor-
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Nucli | Orbital Jiilich B NSC89 Exp.
1er 1¢m + 2p1f 167 1em + 2p1f

THe (LHe)
1s1 | —1.43 ~2.98 ~0.04  —0.58 ~3.12

x'C (X’C)
1512 —7.93 —9.48 —3.42 —5.69 —11.69

A0 (’O)
1s12 | —10.15 —11.83 —4.76 —7.39 —12.5
1pi2 | —0.08 ~1.06

A Ca (X'Ca)
Is12 | —16.85 —19.60 —-10.24  —15.04 —20.
1pss | —6.70 —9.64 307  —6.92 | —12. (1p)
1p1/2 —6.92 —9.92 —2.33 —6.29

T (7x)
Is10 | —22.24 —25.80 -16.35  —=22.77 —23.
1psjp | —14.74 ~18.19 ~10.13  —17.08 | —16. (1p)
1p1 | —14.86 —18.30 -9.73 —16.68

iOQPb (?\OBPb)
Is12 | —26.28 —31.36 —23.58  —29.52 —27.
1psjy | —21.22 —27.13 —21.42  —26.01 | —22. (1p)
1pij2 | —21.30 —27.18 —-21.18  —25.72

Taula R.3: Energies de lligam de la A (en MeV) en els orbitals 1s;/2, 1p3/2 i 1p1/2 per
diferents nuclis. Les dades experimentals han estat agafades de [Ba90, Pi91, Ha96]. Es
mostren resultats per les interaccions Jiilich B i NSC89.

tants en la desintegracié mesonica dels hipernuclis. Només si permetem al potencial
Woods-Saxon tenir una profunditat inferior (—23.11, —23.56 i —27.84 MeV respecti-
vament) i un radi més gran podrem no solament reproduir 'energia de lligam sino
també maximitzar el solapament de les funcions d’ona resultants (linies discontinues
amb punts) amb la nostra. De fet s’ha observat que les probabilitats de desintegracié

d’hipernuclis lleugers, tals com 4 H, {He i 3 He, poden reproduir-se millor si la funci6
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Figura R.6: Funcié d’ona 1s;/> de la A en >C, YO i {'Ca, obtinguda a partir de
l'autoenergia de la A (linies continues) comparada amb les obtingudes a partir d’un
potencial Woods-Saxon de profunditat fixa (linies discontinues) o a partir d’'un Woods-
Saxon amb el radi i la profunditat ajustats per reproduir I’energia i maximitzat el
solapament amb la funcié d’ona obtinguda amb I’autoenergia (linies discontinues amb
punts). La interaccié de Jiilich s’ha fet servir en tots els casos.

d’ona de la A és empesa cap a la superficie del nucli. Aixo afavoriria la desintegracio
mesonica d’hipernuclis perque la A exploraria regions amb densitats nuclears més pe-
tites i els efectes del bloqueig de Pauli serien menys pronunciats. Les implicacions dels
nostres resultats en la desintegracié mesonica d’hipernuclis A és fora dels objectius

d’aquesta tesi pero seran explorats en un futur.

4. Materia dels estels de neutrons

Els estels de neutrons ofereixen una interessant conexié entre els processos nuclears i

els observables astrofisics. Les condicions de la materia a l'interior d’aquests objectes
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son molt diferents de les que hom pot trobar a la Terra, per tant és necessari un bon
coneixement de I’Equacié d’Estat a tan altes densitats per tal de compendre les propi-
etats dels estels de neutrons. A densitats properes a la densitat normal de saturacié
(po ~ 0.16 fm~3) la materia es composa fonamentalment de neutrons, protons i elec-
trons en equilibri 3, perque els neutrins tenen, en promig, un cami lliure més gran que
el radi de 'estel de neutrons. Les condicions d’equilibri venen donades en aquest cas
per

Hn = Hp + te  Pp = Pe - (R.11)

Un cop el potencial quimic de I'electré supera la massa en repos del mué (M, =
105.7 MeV), és energeticament més favorable per un electrd a la superficie de Fermi
decaure en un mué via el proces feble e~ — u~ + v, + v.. Llavors es comenca a
desenvolupar un mar de Fermi de muons i en conseqiiencia, el balan¢ de carrega es

modifica d’acord amb p, = p, + p, i, a més, es requereix i = p,.

Quan la densitat augmenta, poden apareixer nous graus de llibertat tals com con-
densats de pions o de kaons, materia de quarks o hiperons. La presencia d’aquests
darrers en la materia dels estels de neutrons i la seves implicacions en les propietats

dels estels de neutrons és el tema del present capitol.

Contrariament al que passa a la Terra, on els hiperons sén inestables i decauen en
nucleons mitjantgant la interaccié feble, les condicions d’equilibri a I'interior dels estels
de neutrons poden fer que passi el proces invers, de forma que la formacié d’hiperons
resulti energeticament favorable. Tan aviat com el potencial quimic del neutré es fa
suficientment gran, neutrons energetics poden decaure en hiperons A via processos

febles que no conserven I’estranyesa, donant lloc a un mar de Fermi d’hiperons A amb
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a = pn. No obstant, hom espera que ’hiperé ¥~ aparegui mitjancant el proces

e +n—%X +v,, (R.12)

a densitats més petites que la d’aparicié de la A, tot i que la ¥~ és més massiva. Els
hiperons carregats negativament apareixen a l’estat fonamental de la materia quan les
seves masses es fan iguals a u, + i, mentre que el hiperons neutres, com ara la A,
ho fan quan la seva massa iguala u,,. Com que el potencial quimic de I’electré és més
gran que la diferéncia de massa entre la X~ ila A (Myg- — My = 81.76 MeV), 'hiperd
>~ apareixera a densitats menors que la de la A. Per materia amb graus de llibertat

nucleonics i hiperonics les condicions d’equilibri s’escriuen

M- = fx- = lp T [,
HAa = Hz0 = 50 = ln, (R13)

He+ = Hp = Hn — He ,

i la neutralitat de carrega imposa

Pp + Pst+ = pet+ pu+ ps- + p=- . (R.14)

Els graus de llibertat hiperonics han estat considerats per diversos autors, princi-
palment en el marc de la teoria relativista de camp mig [Kn95, Sc96, Pr97| o utilitzant
interaccions efectives parametritzades [Ba97]. Recentment Schulze i col.laboradors
[Sc98, Ba00] han realitzat calculs de molt cossos amb interaccions hiperé-nucleé (YN)
realistes per tal d’estudiar el punt d’aparicio dels hiperons en la materia dels estels de

neutrons i el paper de les forces a tres cossos. Tot i aix0, aquests autors no han con-
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siderat el paper jugat per la interaccié hiperé-hiper6 que, nogensmenys, és fonamental
des del moment en que apareix el primer hiperé en la materia, perque modifica les
energies monoparticulars de totes les especies, i en conseqiiéncia, els potencials quimics

i les condicions d’equilibri.

En aquest capitol, presentem resultats per a un calcul microscopic de tipus Brueckner—
Hartree-Fock per materia [-estable amb graus de llibertat nucleonics i hiperonics,
incloent-hi no tnicament les interaccions nucle6-nucleé i hiperé-nucled, sino també les
interaccions hiperd-hiperé. Dedicarem una atenci6 especial al paper jugat per aquestes

ultimes interaccions.

El nostre estudi s’inicia amb la parametritzaci6 més recent de la interaccié nua
bari6-bari6 per 'octet complet de barions, construida per Stoks i Rijken [St99]. Aquest
potencial descriu tots els sectors d’estranyesa des de S = 0 fins a S = —4 i esta basat
en extensions SU(3) de les interaccions nucleé-nucle6 (NN) i hiperé-nucle6 del grup
de Nijmegen. Introduim els efectes del medi per mitja de I’anomenada matriu G i
resolem les equacions per les energies monoparticulars dels diversos barions de manera

autoconsistent.

Per tal de reproduir les propietats de saturacié de la materia nuclear, hem substituit
la part purament nucleonica de I’Equaci6 d’Estat per la parametritzacié que Heiselberg

i Hjorth-Jensen [He99| van fer del calcul variacional de Akmal i col.laboradors [Ak9S8]

u—2-—9

- - - (1 — 2
T + Sou” (1 — 2x,)° . (R.15)

E
Z = Ecomp(pN) + S(,ON)(l — pr)Q = EOU

La figura R.7 mostra la composicié de la materia dels estels de neutrons en equilibri

3

B fins a una densitat p = 1.2 fm™. Les linies continues corresponen a un calcul en
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Figura R.7: Composici6é de la materia 5. Les linies continues corresponen al cas en
que totes les interaccions (nucleé-nucled, hiperé-nucleé i hiperé-hiperd) es consideren.
Les linies discontinues al panell inferior corresponen al cas on la interaccié hipero-hipero
no ha estat tinguda en compte.

que es consideren totes les interaccions, nucleé-nucled, hiperé-nucleé i hiperé-hipero.
Les linies discontinues mostren el resultat quan la interaccié hiperé-hiperé no es té
en compte. Els hiperons ¥~ apareixen en els dos casos a la mateixa densitat perque
aquest és el primer hiperé en apareixer i, per tant, la interaccié hiperé-hiperé no
juga cap paper per densitats més baixes que la marcada per aquest punt. Hi ha una
reduccié de la seva fraccié quan la interaccié hiperé-hiperd no és considerada degut a la
abséncia del canal ¥~ %~ que és fortament atractiu. A més, es pot observar un moderat
increment de la fraccié de leptons a fi de mantenir la neutralitat de carrega. D’altra
banda, menys hiperons >~ impliquen menys parells >"n, que sén molt atractius en
aquest model. Aixo significa que el potencial quimic del neutré es fa menys atractiu i

en conseqiiencia, I'hiperé A apareix a una densitat més petita, i presenta una fraccié
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Figura R.8: Energia per barié (panell esquerra) i pressié (panell dret) per materia
[-estable com a funcié de la densitat barionica p per quatre escenaris diferents: materia
purament nucleonica; materia amb nucleons i hiperons lliures; materia amb nucleons
i hiperons que només interaccionen amb nucleons; i materia amb nucleons i hiperons
interaccionant amb nucleons i hiperons. La contribucio dels leptons ha estat inclosa en
cada cas.

relativa més gran. La figura R.8 mostra ’energia per barié i la pressiéo per quatre
escenaris diferents: materia purament nucleonica; materia amb nucleons i hiperons
lliures; materia amb nucleons i hiperons que només interaccionen amb nucleons; i
materia amb nucleons i hiperons interaccionant amb nucleons i hiperons. L’aparicio
dels hiperons condueix a una considerable suavitzacié de I’Equacié d’Estat, que és
degut essencialment a una reduccié de I’energia cinetica. La interaccié hiperé-nucled
té dos efectes. Fins a densitats de 'ordre de ~ 0.72 fm 3, és atractiva i fa I’Equacié

d’Estat encara més suau. Pero per densitats més grans es fa repulsiva i I’Equaci
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Figura R.9: Relaci6é massa-radi amb (panell dret) i sense (panell esquerra) correccions
rotacionals. Notacié com a la figura R.8.

d’Estat esdevé més rigida. La interaccié hiperé-hiperd és sempre atractiva en tot el

rang de densitats explorat i produeix una suavitzacié adicional de I’Equacié d’Estat.

Les equacions de Tolman-Oppenheimer—Volkoff [To39, Op39] determinen l'estructura

dels estels relativistes

ar 2 r(rc? —2GM(r)) (R.16)

= d7r?e(r). (R.17)
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Hem resolt aquestes equacions amb i sense correccions degudes a la rotacié dels es-
tels per tres dels quatre escenaris considerats abans. A la figura R.9 mostrem la relacié
massa-radi obtinguda pels escenaris considerats. L’Equacié d’Estat per la materia (-
estable amb només graus de llibertat nucleonics, és la més rigida, i déna una massa
maxima de 1.89M sense correccions rotacionals i 2.11 Mg, quan aquestes correccions
s’inclouen, on Mg és la massa del sol. El segon escenari correspon al cas en que perme-
tem la presencia dels hiperons, considerem explicitament la interaccié hiperd-nucled,
pero excloim la hiper6-hiper6. En aquest cas, sense correccions rotacionals, obtenim
una massa maxima de 1.47M, mentre que, quan les correccions rotacionals es tenen
en compte aquest valor s’incrementa fins 1.60M. Aquesta gran reduccid, respecte al
cas en que només hi ha nucleons al medi, és una conseqiiencia de la forta suavitzacié de
I’Equacié d’Estat degut a ’aparicié dels hiperons. El darrer escenari inclou també la
interaccié hiperd-hiperé. Aquesta interaccio fa I’Equacié d’Estat encara més suau, la
qual cosa porta a una reduccié adicional de la massa maxima de I’estel. En aquest cas,
obtenim una massa maxima de 1.34 M quan les correccions rotacionals no sén tingudes
en compte, i 1.44 M, quan s’inclouen aquestes correccions. La presencia d’altres hiper-
ons a més altes densitats, donaria lloc a una major suavitzacié de ’'Equacié d’Estat i,
en conseqiiencia, una massa maxima de I’estel encara menor. Com a resum dels nostres
resultats a la Taula R.4, mostrem les masses maximes, els radis i els moments d’inercia

maxims obtinguts pels diferents escenaris.

Tot i que només hem considerat la formacié d’hiperons als estels de neutrons, tran-
sicions a d’altres graus de llibertat com ara materia de quarks, o condensats de pions o
kaons poden o no tenir lloc als estels de neutrons. No obstant aix0, voldriem emfatitzar
que el mecanisme de formacié d’hiperons és, potser, el que té una probabilitat més alta

d’ocorrer a l'interior dels estels de neutrons, a menys que les autoenergies del hiperons
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Escenari Massa Maxima Radi | ez
No Correc. Rot. | Amb Correc. Rot.

NN 1.89 2.11 10.3 | 101.1

NN YN 1.47 1.60 10.2 | 65.2

NN YNYY 1.34 1.44 10.0 | 55.4

Taula R.4: Massa maxima, radi i moment d’inercia maxim pels tres escenaris consid-
erats. Les unitats de la massa, el radi i el moment d’inércia sén respectivament Mg,
km i Mgykm?.

resultin fortament repulsives degut a possibles interaccions repulsives hiperé-nucleé i
hiperé-hiperd, una repulsié que estaria en contradicci6 amb les dades actuals sobre
hipernuclies [Ba90]. L’Equaci6 d’Estat amb hiperons déna, tanmateix, una massa
maxima al voltant de 1.4M ), en el limit inferior de les observacions. Aixo significa que
la nostra Equacié d’Estat amb hiperons necessita ser més rigida, un fet que a la seva
vegada implica la necessitat de termes a molts cossos més complicats que no han estat
inclosos en el nostre calcul, tals com forces a tres cossos entre nucleons i hiperons i/o

efectes relativistes.

5. Conclusions

L’objectiu d’aquesta tesi ha estat ’estudi, dins de la teoria de Brueckner—Hartree—Fock,
de les propietats de sistemes nuclears finits (hipernuclis) i infinits (materia hiperonica)
amb graus de llibertat hiperonics, i investigar, en el darrer cas, les implicacions que la
presencia d’estranyesa té en les propietats dels estels de neutrons. El punt de partida
pels nostres calculs tipus Brueckner, ha estat les interaccions hiperé-nucleé Jiilich B

[Ho89] i Nijmegen Soft-Core 89 [Ma89], i la més recent parametritzacié de la interaccié
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nua barié-barié per l'octet complet de barions construida per Stoks i Rijken [St99].

Aquestes tres interaccions es basen en models d’intercanvi mesonic.

Al Capitol 2 vam desenvolupar un formalisme per calculs microscopics de tipus
Brueckner per materia nuclear densa amb estranyesa, permetent qualsevol concentracié
de les diferents especies de barions. Les principals conclusions d’aquest capitol poden

resumir-se com segueix

e Hem obtingut, en situacions no saturades d’isospin, la dependeéncia de la matriu
G de dues especies qualsevol en la tercera component de I'isospin M7 relacionant
I’operador de Pauli amb els diferents parells de particules que contribueixen al
canal particular d’isospin T i tercera component Mp. Hem vist, tanmateix, que
aquesta dependencia és bastant petita a fi de permetre una estrategia de calcul
més simple que consisteix en obtenir les interaccions efectives als sistemes saturats

d’isospl'n (an = ka, kF):— = kFEO = kFE+’ kFE—

= kr_,) i integrant després
sobre els respectius mars de Fermi de cada especie per obtenir els potentials

monoparticulars.

e Hem estudiat la dependéncia dels potencials monoparticulars en les asimetries
nucleoniques i hiperoniques, centrant-nos en situacions rellevants en estudis de la
materia [S-estable amb contingut d’estranyesa. Hem trobat que la presencia dels
hiperons, especialment la X7, modifica substancialment els potencials monopar-
ticulars dels nucleons. Els neutrons senten un augment en la seva atraccié degut
a la interaccié efectiva X~ n que nicament passa per mitja del canal 3N d’isospin
T = 3/2 que és molt atractiu, mentre que els protons senten una repulsié perque
els parells ¥~ p també reben contribucions del canal ¥N d’isospin 7' = 1/2, que

és molt repulsiu.
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e Descomposant els potentials monoparticulars de la A i la ¥~ en les contribucions

degudes a les diferents especies, hem vist la importancia de considerar la interaccié
hiperé-hiperé (YY). Hem trobat, per la situaci6 particular de densitat barionica
total p = 0.6 fm=3 amb un 10% d’estranyesa repartida entre ¥~ i A en una
proporcié 2 : 1 i una fraccié de protons z, = 0.25zy, que la contribucié dels
hiperons al potencial monoparticular de la A a moment zero és de ’ordre d’'un

terg del total Ux(0), i per la ¥~ és d’un mig del total Us- (0).

Al Capitol 3 hem analizat un metode per obtenir la interaccié efectiva hiperé-

nucled al nucli finit basat en una expansié sobre la matriu GG calculada a materia

nuclear a una densitat i una energia inicial fixades. L’objectiu d’aquest estudi ha estat

establir un marc de confianca per calculs d’estructura hipernuclear amb I'idea d’obtenir

informaci6 sobre la interaccié hiperé-nucled, complementaria a la proporcionada pels

experiments de dispersié hiper6-nucled. Les conclusions corresponents a aquest capitol

son les segiients

e Truncant ’expansi6 sobre la matriu G' de materia nuclear al segon ordre, obtenim

resultats que sén molt estables enfront de variacions de la densitat i ’energia
inicial utilitzades en el calcul de la matriu G, i en I’espectre (discontinu o continu)

escollit per resoldre I'equacié de Bethe—Goldstone.

Tots dos ordres, primer i segon, depenen bastant d’aquells parametres (densitat
i energia inicial). Aix0 és una indicaci6 que els efects de dependeéncia en densitat
considerats en tractar explicitament el tamany finit del nucli sén molt importants.
Aquests efectes poden simular-se amb calculs més simples a primer ordre a una

densitat promig apropiada o amb una aproximacié de densitat local. De tota
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manera, si el que un vol es afinar la interaccié nua YN per tal de reproduir les
dades espectroscopiques, un calcul directe de la interaccié efectiva al hipernucli

finit, com el que es proposa en aquesta tesi, és més adequat.

e Tot i que el metode pot ser considerat com una manera alternativa de construir
una interacci6 efectiva pel nucli finit, proporciona també la dependéncia completa

en energia de 'autoenergia de ’hipero.

e Els nostres resultats es comparen prou bé amb els resultats experimentals, i

confirmem miscrocopicament la petita separacié de ’espin-orbita.

e Hem obtingut un potencial A-nucli local de tipus Woods-Saxon amb una profun-
ditat independent del nombre massic A que reprodueix les energies monopartic-
ulars de I’hiperé A en diversos hipernuclis. No obstant, les funcions d’ona obtin-
gudes amb la nostra autoenergia no local sén més esteses i poden ser simulades
unicament quan permetem que potencial Woods-Saxon tingui un profunditat i
un radi depenents d’A. Aix0 pot tenir importants implicacions en els observables
hipernuclears sensibles a les densitats nuclears de la superficie, com per exemple

la desintegracié mesonica dels hipernuclis A.

Finalment, com a extensié del nostre estudi del Capitol 2, al Capitol 4 hem realitzat
un estudi microscopic de 'estructura de la materia [-estable amb graus de llibertat

nucleonics i hiperonics.

e El model de potencial utilitzat (NSC987e) només permet la preséncia de dos
tipus d’hiperons fins a densitats de ’ordre de set vegades la densitat de saturacié

de la materia nuclear. Aquests hiperons sén la ¥~ i la A. Les interaccions per
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estranyeses S = —1, —2, —3 i —4 no sén suficientment atractives a fi de permetre

la formaci6 d’altres hiperons.

Hem observat que la presencia dels hiperons produeix una suavitzacié de I’Equacio
d’Estat. Aquesta suavitzacié influira en el comportament de la mateéria densa i

en Destructura dels estels de neutrons.

El nostre resultat més innovador és que obtenim una suavitzacié adicional de
I’Equacié d’Estat quan s’inclou I'efecte de la interaccié hiperé-hiperd, perque és
atractiva sobre tot el rang de densitats explorat. Si aquesta suavitzacié adi-
cional és realista o no dependra dels detalls de la interaccié hiper6-hiperé que no
esta, desafortunadament, ben determinada actualment. Noves dades en el sector
d’estranyesa S = —2, ja sigui obtingudes d’hipernuclis doble A o de atoms =,

son molt desitjables.

Aquesta suavitzacié adicional de I’'Equacié d’Estat quan es tenen en compte totes
les interaccions es tradueix en una reduccié de la massa maxima de l'estel de
neutrons de 2.11M, quan es consideren només graus de llibertat nucleonics, a

1.44 M, quan s’inclou Pefecte dels hiperons.
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