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Abstract

Escola Tècnica Superior d’Enginyeries Industrial i Aeronàutica de Terrassa

Department of Mechanical Engineering

Doctor of Philosophy in Mechanical Engineering

by Arnau Clot Razquin

This thesis presents a three-dimensional dynamic model of a double-deck circular tunnel

embedded in a full-space. The model uses the receptance method to obtain the response

of the complete structure from the response of its parts. The considered subsystems are

the interior floor and the tunnel-soil coupled system. The classical thin plate theory is

considered to represent the behaviour of the first and the Pipe in Pipe model is chosen

to describe the second. Because the complete model is assumed to be geometrically

invariant in the train circulation direction, the coupling of both systems is performed in

the wavenumber-frequency domain. After the model formulation, some important issues

about its numerical computation are detailed and the obtained results are discussed.

The response of a double-deck tunnel to a dynamic and to a quasistatic excitation is

compared to the response obtained for a simple tunnel. The first comparison is done

performing a power flow study of both tunnel structures when a harmonic line load is

applied on them. The main differences between their radiation magnitudes and patterns

are identified and discussed. The second comparison is done calculating the total amount

of energy crossing a certain surface when a static load moving at a constant speed is

considered. Results for a wide range of load speeds and radial distances are presented.

A complete track-tunnel-soil model is finally obtained coupling a superstructure model

to the interior floor model previously presented.
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Chapter 1

Introduction

This text begins with a brief introduction to the railway ground-borne vibration problem

and justifies the main reasons that led to the development of the present work. After

this, a brief outline of the contents of each chapter is presented.

1.1 Justification of this work

Underground railway systems have become one of the most important forms of public

transportation in heavily populated cities. One of the major problems of these type of

transport is the propagation of the generated vibration through the soil into the nearby

buildings. If effective isolation methods are not applied, the comfort of the inhabitants

of these buildings is reduced due to the ground-borne vibration and the re-radiated noise

caused by the vibration of the building structural members.

The choice of an adequate isolating system is of critical importance in the design of

an underground railway system. On one hand, if the chosen isolating system is not

sufficiently efficient mitigating the generated vibrations, structural modifications with

a large economical cost may be required. On the other hand, if an effective isolation

system is used in cases where the generated vibration isn’t high enough to be a source

of annoyance, the cost of the constructed infrastructure is unnecessarily increased. It

becomes clear that precise predicting models are a fundamental tool to use in the design

of a new railway system or in the modification of an existing one.

Due to the huge complexity of the train-track-ground-building coupled system, different

approaches have been proposed for obtaining useful models for the prediction of train-

induced ground-borne vibrations. These models are usually classified into three types:

1
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Empirical, numerical and analytical models. A brief description of each one is presented

in the following paragraphs.

Empirical models use experimental results to obtain simple decaying laws between the

vibration levels at certain positions of the ground and the distance of these to the consid-

ered source. These type of models were firstly proposed by Bornitz [2] and popularized

by Barkan [3]. A review on the propagation of ground vibrations, particulary focused on

them, has been written by Gutowsy and Dym [4]. Despite being fast and easy to apply,

these models are unable to give an insight view of the physical phenomena involved in

the problem and also present a high degree of inaccuracy.

Numerical models, such as Finite Element (FE) [5, 6], Boundary Element (BE) and FE-

BE hybrid models [7, 8], can obtain high precision predictions of the vibration behaviour

of complex structures. However, even in the cases where a geometrical invariance [9–11]

or periodicity [12] of the system is considered, the use of this type of models has huge

computational and engineering costs which, combined with their limitations extrapolat-

ing any obtained results, restricts the economical viability of their use to very particular

cases.

Analytical models describe the dynamical behaviour of the system using theoretical con-

siderations. Their use allows to understand the mechanics of the considered problem

and the effect that the involved parameters have on this. These type of models show

many advantages in front of the other ones considered: they are clearly more flexible and

powerful than empirical models and have a much lower computational and engineering

cost than numerical models. The main drawback of these models is that many complex

structures can’t be modelled analytically, requiring the use of numerical models to pre-

dict its response. Examples of analytical models used in the prediction of train induced

vibrations are [13–18].

Almost all the underground railway lines have trains circulating in both directions.

This requirement has usually been solved constructing two identical tunnels, one for

each direction, but different single tunnel designs have also been implemented. An

innovative and interesting solution is the use of double-deck tunnels, where the tunnel

is divided into two sections by an interior floor and trains circulate along both sections.

An example of this type of design has been recently used in some stretches of Line 9, a

new Barcelona’s underground railway. Fig. 1.1 shows the cross-section of this structure.
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Fig. 1.1: Cross-section of the Barcelona’s underground railway Line 9 double-deck
circular tunnel.

It seems clear that the dynamical behaviour of a double-deck tunnel will show novel

and unexpected phenomena that must be properly studied. The use of empirical or

numerical models is not the most adequate way to achieve this goal. While the former

are completely unable to model the problem, the computational costs and numerical

nature of the later makes them adequate for the obtention of precise results for a given

set of parameter values but non-viable for the study of the effect that each element of the

system has in the global response. It is then almost necessary to use an analytical model

for a proper understanding of the dynamic-response of a double-deck tunnel structure.

The lack of existence of an analytical model for this type of tunnel is what has motivated

the development of the present work.

In this thesis, an analytical model for describing the dynamical behaviour of a double-

deck circular tunnel embedded in a full-space is developed. The proposed model treats

the interior floor of the tunnel as an infinite thin plate and uses the well-established PiP

model [17] to represent the tunnel-soil system. The global model is obtained using the

receptance method [19]. Once the model is formulated, different dynamical responses

of a double-deck tunnel are obtained and compared to the ones obtained in a simple

tunnel.

1.2 Thesis outline

The text is divided in seven chapters. In this chapter, a brief justification of the presented

work and an outline of the contents of each chapter of this text are described.
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Chapter 2 presents a short review of the most relevant work published about the vi-

bration of coupled plate-shell systems, fundamental solutions and methods presented to

treat elastodynamic problems and train-induced ground-borne vibration models.

Chapter 3 develops a three-dimensional model of a double-deck circular tunnel embedded

in a full-space. This chapter begins with the formulation of the dynamical models

considered for the interior floor and the tunnel-soil coupled systems. After this, the

assumed coupling conditions are defined and some numerical considerations that should

be taken into account are also described.

Chapter 4 develops a power flow calculation of the response of a double-deck tunnel to

a harmonic line load. Because the problem is a plane-strain one, this chapter begins

presenting the two-dimensional formulation of the model. After that, the considered

power flow calculation is performed and the results are compared to those obtained in

a simple tunnel model.

Chapter 5 presents a calculation of the radiated energy by a double-deck tunnel when a

static load moving at a constant speed is applied on its interior floor. Again, the results

are compared to those obtained in a simple tunnel case.

Chapter 6 adds a track model to the interior floor model to obtain a complete track-

tunnel-soil model for a double-deck tunnel.

Finally, Chapter 7 points out the main conclusions obtained in the previous chapters

and proposes some guidelines and recommendations for further work developed on the

topic.



Chapter 2

Literature review

This chapter presents a review of the previously published works that are relevant to the

present study. The chapter is divided into three sections. The first section is devoted

to the dynamical behaviour of plate-shell combined structures. The second deals with

the modelisation of the soil as a linear elastic media focusing on the existing fundamen-

tal solutions, especially those which consider a buried load. Finally, the last section

presents the main underground train-induced ground-borne vibration models existing in

the literature.

2.1 Vibration of thin shell structures

Thin shell structures play a key role in the proposed model for a double-deck circular

tunnel. Because this type of tunnel is modelled assuming a combined plate-cylindrical

shell structure, a review of works dealing with these structural elements is presented.

2.1.1 Vibration of plates

Depending on the thickness of the plate, theories with different degrees of complexity

have been proposed to model its dynamical response. When this thickness is much

smaller than the width and length of the plate, it is well established that the classical

plate theory formulated by Kirchoff is good enough to represent the dynamics of the

plate. A vast amount of literature deals with the analytical results obtained considering

these type of structure under many different boundary and initial conditions. Important

studies of the free response of a thin plate have been developed by Warburton [20] and

5
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Leissa [21]. Most of the published results in the field of the transverse vibrations of a

thin plate have been collected and unified by Leissa in a must have book [22].

Less efforts have been dedicated to the study of the in-plane vibrations which, at high

excitation frequencies, can be of great importance. An exact solution for two simply

supported boundaries and any combination of classical boundaries for the other two has

been recently obtained by Liu and Xing [23].

2.1.2 Vibration of shells

A great number of theories have been proposed to model the static and dynamic be-

haviour of thin walled structures with curvature. Unlike in the thin plate case, there is

not a common agreement on which one of them is the best for representing the behaviour

of this fundamental structures. Most of the proposed theories are based on the Love’s

shell theory [24] and have been obtained after performing slight modifications on its

hypothesis. Some of the most used are the ones presented by Donell [25], Timoshenko

[26], Reissner [27], Flügge [28] and Sanders [29]. Again, a huge effort has been done by

Leissa collecting and unifying many of the published results in a single reference [30].

2.1.3 Vibration of plate-shell combined structures

Coupled plate-cylindrical shell structures have been studied by several researchers be-

cause of its interest as airplane fuselage models. Peterson and Boyd [31] presented the

first analytical model for a shell with a partitioned floor. Langley [32] studied, using

a dynamic stiffness method, the free vibration of circular cylinders stiffened with an

interior floor. With a variational formulation, Missaoui et al. [33] studied the free and

forced vibration of a plate-shell system using artificial springs to simulate the structural

coupling. Using the receptance method [19], Lee et al. [34] obtained the free vibrations

of a simply supported shell-plate structure. The model was later extended by Lee et

al. [35] to include the laminated composites case. For both cases, the free vibration of

the subsystems was calculated using the Rayleigh-Ritz energy method and the eigen-

frequencies of the global system thereby obtained were compared with experimental

results. The receptance method was also used by Wang et al. [36] to study the power

flow characteristics of the plate cylindrical shell structure and by Zhao et al. [37] to

study the forced response of a plate-cylindrical shell structure.
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2.2 Soil models

In vibration problems, due to the small magnitude of the stresses involved, the soil is

usually modelled as a linear elastic media. When isotropy is assumed, two independent

elastic constants are required to characterise it, usually the first and second Lamé con-

stants. When linear elasticity is assumed in an infinite media, two types of volumetric

waves are found: the compressional or P-waves and the shear or S-waves. A third type of

wave, the Rayleigh wave, is also found when the media is considered to be semi-infinite

[38]. If a layered half-space is considered, the existence of other types of waves is also

found. This is the case of the Love waves [39], that appear when a soft layer lies over a

rigid one, and of the Stoneley waves [40], that exist in a solid-solid interface.

2.2.1 Fundamental elastodynamic solutions

Closed-form solutions have only been obtained for a reduced number of elastodynamic

problems. One of the first and most important results was the one presented by Stokes

[41], who deduced the displacement field of a full-space under the action of time varying

point forces. A not least important work was later developed by Lamb [42], who obtained

the displacement field of an elastic half-space under the action of a line or a point

load. Lamb was unable to fully evaluate the integrals of his solutions and obtained the

asymptotic (far field) solution of the problem. Because of the size of his contribution, this

problem is nowadays known as the Lamb’s problem. The integrals of the exact solution

were later solved, performing a hardly understandable contour integration, by Cagniard

[43]. The procedure was simplified by De Hoop [44], and received the name of the

Cagniard-De Hoop method. The impulse surface line load was also studied by Sherwood

[45], who compared his solution with some experimental results obtained detonating

small explosive charges. Pekeris found the analytical expressions of the displacements

caused by a surface [46] and by a buried [47] point load when its time dependance was

given by a Heaviside function and considering both Lamé constants equal. Interesting

results have also been presented by Arcos et al. [48] who, comparing the exact and the

asymptotic surface line and point load solutions of the Lamb’s problem, determined the

size of the near field and studied the effect of the ground’s mechanical parameters on it.

Studies on the energy distribution among the different types of waves generated by a

surface source have been developed by Miller and Pursey [49, 50]. Their results have

been recently generalised by Razin [51], who presented the distribution of energies for a

buried harmonic point source, finding a particular depth of the source where the energy

in form of Rayleigh waves reaches a maximum.
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Interesting advances have also been performed in the numerical evaluation of Lamb’s

solutions. Georgiadis et al. [52] presented a procedure to evaluate the point load case.

Arcos et al. [53] greatly reduced the computational cost of this numerical evaluation

by combining the use of a clever change of variable and the substraction of the static

integrand, a technique previously proposed by Apsel and Luco [54].

Most of these fundamental elastodynamic solutions have been recently collected and

unified in a book by Kausel [55].

2.2.2 Layered half-space

A matrix formalism to study the dynamic response of a layered media was firstly derived

by Thompson [56] and revised and computed by Haskell [57]. After them, many other

authors worked on increasing the computational efficiency of the method by rewriting

the analytical expressions. Among all the published advances, a special mention must

be done to the work presented by Kausel and Roësset [58] who obtained the stiffness

matrix of each layer, allowing to treat the problem in the same way that conventional

structural analysis problems.

2.2.3 Viscoelasticity

One of the most used damping models in soil dynamics is the nonviscous Kelvin-Voigt

model. In this type of model, the internal friction of the media is modelled considering

complex valued mechanical parameters. Using the correspondence principle announced

by Read [59], any viscoelastic solution is directly obtained from the corresponding elastic

one extending the validity of this last to complex values of the field variables.

2.3 Train induced ground-borne vibration

This section starts with a justification of the considered frequency range of study based

on the published results. After that, some of the most important numerical and an-

alytical underground train-induced ground-borne vibration models are reviewed. The

section end with a description of the inherent limitations and unavoidable uncertainty

of any proposed, numerical or analytical, model.
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2.3.1 Frequency range of the problem

This subsection discusses the range of frequencies of interest in train-induced ground-

borne vibrations. This range must be correctly defined in order to assume valid hy-

pothesis and develop realistic simplifying models of this type of problem. The section

considers separately the range of frequencies excited in the wheel-rail interaction and

the ranges of interest when the response of the track or the soil are predicted.

Excitation mechanisms

Two main types of excitation are usually distinguished in train-induced ground vibra-

tions: the quasi-static and the dynamic excitations.

The quasi-static excitation is related to the static component of the considered moving

load. This type of excitation mechanism is of great importance for High Speed Trains

(HST) tracks placed on soft soils. In these cases, the train speed can be similar to the

critical phase speed of the track-soil system and the quasi-static excitation generates high

vibration levels [60]. The frequency content of the generated excitations is concentrated

between 0 and 50 Hz [61].

The dynamic excitation is caused by the dynamic interaction of the train-track system.

The main causes of this type of excitation are the wheel and track unevenness and the

variations of the mechanical parameters of the track [62]. The dynamic excitation is

usually the main source of excitation in low and mid-speed trains. Remennikov and

Kaewunruen [63] state that the dynamic/impact loading frequency range is 0-2000 Hz.

Track response

Knothe and Grassie [64] modelled the vehicle/track interaction problem giving frequency

ranges of study for each part. When the track, the sleepers and the wheel-rail irregular-

ities are studied, they proposed a frequency range between 0 and 1500 Hz. Regarding

the rail model, the same authors also concluded that a Bernoilli-Euler beam model could

be used for excitation frequencies under 500 Hz. Above this value, higher order theories

must be considered. A Timoshenko beam is used, for example, by Thompson on the

wheel-rail noise generation [65–67].

The importance of considering a detailed ground model in superstructure modelling was

studied by Knothe and Wu [68], who determined that this was mandatory for frequencies

under 250 Hz. The same conclusion was obtained by Van den Broeck and De Roeck [69],
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who studied the changes of the direct receptance (the response of the rail on the position

where the load is applied) when different ballast and substrate models are considered.

Soil response

When the ground response is required, the high frequency content is rapidly attenuated

due to the material damping. Results obtained by Heckl et al. [70] showed that the

dominant frequency range of ground vibrations was between 40-100 Hz and that these

vibrations become very small above 200 Hz. Similar results have been found for example

by Degrande and Schillemans [71] in experimental measures of HST. Significant under-

ground railway vibration levels where found in the range 10-100 Hz in experimental

measures done by Gupta et al. [72].

Building response

For the case of building vibrations caused by train passages, measures performed by

Kuppelwieser and Ziegler [73] showed that the range where building vibrations where

most apreciable was between 10 and 60 Hz. A similar frequency range is considered by

the technical standards [74–76], which state that the frequency range has to be measured

between 1 and 80 Hz. For the case of the re-radiated noise by the structural members of

the building, Hood et al. [77] measures showed that the frequency range of the problem

was between 50 and 160 Hz.

2.3.2 Numerical models

Several numerical models have been proposed to treat the problem of underground train-

induced vibrations. Due to the computational cost of the problem, two-dimensional

(2D) models have been used by some authors as a simplifying assumption. This is

the case for example of Chua et al. [5], who used a 2D FE model with absorbing

boundaries to study the building response to subway train traffic, or Jones et al. [7],

who developed a 2D Finite Element-Boundary Element (FE/BE) hybrid model and

used it to study modifications in the design of two types of tunnels. The possibility of

considering 2D models instead of three-dimensional (3D) ones was studied by Andersen

and Jones [8]. They compared the results of a 2D and a 3D FE/BE hybrid model of

two types underground tunnels. Their conclusion was that a 2D model was useful to

study vibration reductions achieved when changes on the structure are done but a full

3D model was required for absolute vibration transmission predictions.
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To overcome the numerical difficulties of a 3D model, two simplifying considerations

have been lately performed: to assume that the tunnel-soil system is an infinite periodic

structure and to assume that it is an infinite structure of invariant cross-section.

The periodicity of the tunnel-soil system in the train circulation direction can be used to

simplify the computational cost of the numerical models and still obtain accurate results.

Considering this assumption, a Floquet transform [78] can be applied to the problem and

the complete solution is then obtained discretising only a reference cell. This method

was used by Cloteau et al. [79] to study the dynamical behaviour of very long structures.

In the framework of the CONVURT project, Cloteau et al. [12] presented a periodic

coupled FE/BE model to obtain the vibration response of underground infrastructures.

The results of this model have been compared with the ones obtained using the Pipe-

in-pipe model (PiP) by Gupta et al. [80]. The model was also used by Gupta et al. [72]

to predict the vibrations of an underground train passage in Beijin. Recently, Gupta

and Degrande [81] proposed to use this methodology to compare the efficiency between

continuous and discontinuous floating slabs.

The invariance of the system in the train circulation direction allows to solve the problem

using a two-and-a-half dimensional (2.5D) model. In this type of model, the problem

is transformed to the wavenumber domain and the complete solution is found solving

a cross-section of the system for a discrete set of wavenumber values. One of the first

articles using a 2.5D FE/BE model, was presented by Aubry et al [82]. Sheng et al. [9]

outlined the use of this type of model and demonstrated its applicability to surface and

tunnel vibrations. This modelling method was used by the same authors to study the

response of infinite periodic structures to harmonic loads [83]. The method has also been

used by Yang and Hung [84], who presented a 2.5D finite/infinite element procedure to

study the ground vibrations induced by surface and buried moving loads. They also

used this method to develop a parametric study for the case of vibrations caused by

underground trains [85]. A recent example of the use of this modelling technique for a

surface and underground tracks is done by François et al. [10] and Galvin et al [11].

Several alternative numerical formulations can also be found in the literature. To avoid

the inviability of developing a 3D FE model of the problem, Gardien and Stuit [6] divided

it into three submodels. Another interesting approach to obtain fast results and still

take advantage of the adaptability of numerical methods was proposed by Müller et al.

[86], who developed an hybrid FE-analytical model of a non-circular tunnel formulated

in the wavenumber domain.
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2.3.3 Analytical models

Analytical models of underground train-induced vibrations have also been presented by

several authors. These type of models are sometimes divided between fully analytical

and semi-analytical models. In the first case, a closed form solution of the soil vibration

is obtained while in the second, the obtention of results requieres to perform a numerical

calculation (usually an integral antitransform). In both cases, the computational cost

is negligible in front of the computational cost of a realistic numerical model of the

problem. A model to study the low-frequency ground vibrations generated by HST

circulating in tunnels has been proposed by Krylov [15]. Another fully analytical model,

which considered the tunnel as a beam embedded in a half-space has been presented by

Metrikine and Vrouwevelder [16].

A well-established model for the prediction of underground train vibrations is the PiP

model, developed by Forrest and Hunt [17, 18]. This model initially considered the

combined tunnel-soil system as a thin cylindrical shell coupled to a thick cylindrical

shell of infinite external radius [17]. The tunnel-soil model was then coupled to a train-

track model which considered the floating slab, the rail and the axle masses [18]. The

model neglected the effect of the train suspensions and the Hertzian contact, as suggested

by the experimental data given by Heckl et al. [70] and conclusions obtained by Clark

[87]. A more detailed floating slab superstructure model was coupled to the PiP tunnel

model by Hussein and Hunt [88]. In their work, three different coupling assumptions

and the wave-guided solution of the global model where studied. Hussein and Hunt [89]

used the model to study the mean power flow generated by an infinite train of point

loads. This calculation was proposed as a good evaluator to quantify the efficiency of

vibration countermeasures. Using the 2.5D elastodynamic Greens functions for a full-

space obtained by Tadeu and Kausel [90] and those for a half-space (constructed using

the formers ones) obtained by Tadeu et al. [91], the initial PiP model was extended by

Hussein et al. [92] adding the existance of a free-surface. Comparing the full-space and

the half-space versions of the PiP model, Jones et al. [93] suggested a 6 dB difference

in the surface power spectral density (PSD) when the depth of the tunnel is at least

of two tunnel-diameters. The consideration of a layered half-space was also developed

by Hussein et al. [94]. In this case, the multi-layered half-space Green’s functions are

calculated using the direct stiffness method [58]. The model results where also compared

to those obtained with the periodic FE-BE model previously explained [12, 95] finding

good agreement between them despite the huge differences in calculation times (minutes

in a personal computer against hours in one processor of a high performance cluster).

None of the previous analytical models is able to directly deal with a double-deck tunnel
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construction geometry. Some interesting results regarding the effect that the interior

floor has on the track response have been obtained by Otero [1].

2.3.4 Inaccuraccy of the common assumptions

Because of the complexity of the coupled system train-track-tunnel-soil, numerous sim-

plifying assumptions must be performed in any predictive model developed. The uncer-

tainty and inaccuracy that some of these assumptions have is presented by Jones et al.

[96] in a review about the topic. Some of these effects are briefly described in the next

paragraph.

The existence of a twin tunnel, common in many underground systems and ignored

by almost all the developed models, is studied by Kuo et al. [97]. The importance of

modelling the discontinuities in floating slab tracks (FST) was considered by Hussein

and Hunt, who developed a continuous [98] and a discontinuous [99] analytical models

for this type of track. Using the 2D TLM, Jones and Hunt studied the importance of

soil inhomogeneities [100] and of moderate layer inclinations [101]. Their use of a 2D

model was justified by the previously mentioned results of Andersen and Jones [8]. The

same authors relaxed the coupling condition between the tunnel and the soil in the PiP

model and studied the effect of considering voids at the tunnel-soil interface [102].

Significant differences where obtained in all of the considered comparisons, in some cases

obtaining differences on the predictions of 20 dB. This result shouldn’t be ignored when

predictive results are obtained from any analytical or numerical model.





Chapter 3

Double-deck circular tunnel

model

In this chapter, a 3D model is developed for calculating the ground vibrations generated

in a double-deck tunnel with a circular cross-section. The model considers the free

response of the interior floor and of the tunnel-soil system separately and makes use of

the receptance method to obtain the response of the coupled system. The interior floor is

modelled as a thin plate and the tunnel-soil system is described using the Pipe in Pipe

(PiP) model. Several issues that must be taken into account to perform an accurate

numerical computation are also described. The response of the surrounding soil to a

vertical harmonic point load applied on the interior floor is compared to the one caused

by a radial point load applied at the bottom of a simple tunnel. The proposed model of a

double-deck tunnel is compared to a weak coupled one. The effect on the interior’s floor

deflection of applying a radial point load at the bottom of the tunnel is also presented.

The proposed model allows the PiP formulation to be extended to a new type of tunnel

structure.

3.1 Notation used

Before exposing the considered model for a double-deck circular tunnel, the notation used

through this chapter is presented. Despite defining it for the case of the displacements,

the notation is also used for the stress fields and for the considered loads.

15
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Harmonic motion is assumed for all the dynamic variables of the system. Then, for a

certain displacement field u, lower and upper case expressions are related as follows

u(x, . . . , t) = U(x, . . . )eiωt, (3.1)

where x is the coordinate in the train circulation direction, ω is circular frequency and

t is time.

Because the coupling of the subsystems is performed in the wavenumber domain, the

displacement field must be transformed using the Fourier transform defined by Eq. (A.3).

The obtained expression is written as

Ū(kx, . . . ) =

∫ ∞
−∞

U(x, . . . )eikxxdx, (3.2)

where the bar notation informs that the variable has been transformed, kx is the x-

direction corresponding wavenumber.

For the tunnel and soil cases, due to the periodicity of the system respect the angular

coordinate, a Fourier series decomposition is also applied (see Section A.2). The notation

used to define this coefficients is Ūn.

3.2 Introduction

The double-deck tunnel (a tunnel with an interior floor dividing it) is modelled in this

work as an infinitely long circular cylindrical shell of constant thickness ht and constant

mean radius rt divided into two equal parts by an interior floor of constant thickness hp,

and no curvature. A cross-section of the model is presented in Fig. 3.1(a). The tunnel is

considered to be embedded in a full-space and the resulting displacements are obtained

at measuring distances rm ≥ rt.

The next sections detail the mechanical models assumed for each subsystem and the

coupling conditions considered, which can be seen in Fig. 3.1(b).
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Fig. 3.1: (a) Cross-section of the double-deck circular tunnel model. (b) Coupling
hypothesis between the interior floor and the tunnel.

3.3 Interior floor

3.3.1 Model hypothesis

The interior floor is modelled as an homogeneous and isotropic Kirchoff’s thin plate

of constant thickness hp, constant width Lp and of infinite extent in the x-direction

(a strip plate). A scheme of the model is shown in Fig. 3.2. A Cartesian system of

coordinates (x, yp, zp) is chosen, where the subscript p, which indicates that the system

of coordinates is related to the plate, is not used for the x-coordinate because it is

shared by both considered subsystems. Because the receptance method requires it, the

y

z

x

p

p

L
p

Fig. 3.2: Model and Cartesian system of coordinates considered for the interior floor.



Chapter 3.Double-deck circular tunnel model 18

two edges of the plate are considered to be free.

The transverse equation of motion of the interior floor is given by

Dp∇4wp(x, yp, t) = p(x, yp, t)− ρphp
∂2wp(x, yp, t)

∂t2
, (3.3)

where

Dp =
Eph

3
p

12(1− ν2
p)

(3.4)

is the flexural rigidity of the interior floor, wp is its deflection, ρp is its density, Ep is its

Young’s modulus, νp is its Poisson’s ratio, p(x, yp, t) is the applied vertical load and

∇4 =
∂4

∂x4
+ 2

∂4

∂x2∂y2
p

+
∂4

∂y4
p

(3.5)

is the biharmonic operator.

The applied loads and the deflection are considered to be harmonic

wp(x, yp, t) = Wp(x, yp)e
iωt, p(x, yp, t) = P (x, yp)e

iωt. (3.6)

Because the considered system is of infinite extent in the x-direction, the problem is

transformed to the wavenumber domain applying the Fourier transform defined by Eq.

(A.3) to Eq. (3.3). The resulting equation is(
d4

dy4
p

− 2k2
x

d2

dy2
p

+ (k4
x − κ4)

)
W̄p(yp) =

P̄ (yp)

Dp
, (3.7)

where

κ =

(
ρphpω

2

Dp

)1/4

. (3.8)

The forced response of a strip plate is obtained in this work using the modal participation

method, which requires to know the free response of the system to obtain the forced one.

3.3.2 Free response

The free response of a strip plate is obtained solving Eq. (3.7) when P̄ = 0 and no

damping is considered. Two types of solutions are usually considered in this problem:

The case where κ2 > k2
x, identified as case I, and the case where κ2 < k2

x, identified as
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case II. The free response can be written as

W̄p(yp) =



AI sin(ζ2yp) +BI cos(ζ2yp)

+ CI sinh(ζ1yp) +DI cosh(ζ1yp),
when κ2 > k2

x,

AII sinh(ζ ′2yp) +BII cosh(ζ ′2yp)

+ CII sinh(ζ1yp) +DII cosh(ζ1yp),
when κ2 < k2

x

(3.9)

where

ζ1 =
√
κ2 + k2

x, ζ2 =
√
κ2 − k2

x, ζ
′2
2 = −ζ2

2 (3.10)

and where the four unknown coefficients are determined using the considered boundary

conditions. The receptance method [19] requires to know the forced response of each

subsystems under free boundary conditions. Due to this, and because the problem is

being solved in the wavenumber domain, these boundary conditions have to be also

transformed. Applying Eq. (A.3) to Eq. (B.10), the obtained transformed boundary

conditions are (
d3W̄p

dy3
p

− (2− νp)k2
x

dW̄p

dyp

)∣∣∣∣∣
yp=0,Lp

= 0,(
d2W̄p

dy2
p

− νpk2
xW̄p

)∣∣∣∣∣
yp=0,Lp

= 0.

(3.11)

Substituting Eq. (3.9) into Eq. (3.11), two systems of equations of the following form

are obtained 
c
I/II
11 c

I/II
12 c

I/II
13 c

I/II
14

c
I/II
21 c

I/II
22 c

I/II
23 c

I/II
24

c
I/II
31 c

I/II
32 c

I/II
33 c

I/II
34

c
I/II
41 c

I/II
42 c

I/II
43 c

I/II
44




AI/II

BI/II

CI/II

DI/II

 =


0

0

0

0

 (3.12)

one for each case.

A nontrivial solution of Eq. (3.12) is only obtained when the determinant of the matrix

of coefficients cij is 0. For each value of the wavenumber, a discrete set of frequencies ωn

verifies this condition. These are the eigenfrequencies of the problem. For each of them,

the previous equation is an undetermined system where a solution W̄n with an arbitrary

amplitude can still be obtained. These solutions are the eigenfunctions of the problem.

To simplify the performed calculations, the eigenfunctions are obtained discarding the

last equation of the undetermined system.
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For case I (κ2 > k2
x), the nonzero coefficients of Eq. (3.12) are

cI12 = −ζ2
2 + k2

xνp, cI14 = ζ2
1 − k2

xνp,

cI21 = (−ζ2
2 + k2

xνp) sin(ζ2Lp), cI22 = (−ζ2
2 + k2

xνp) cos(ζ2Lp),

cI23 = (ζ2
1 − k2

xνp) sinh(ζ1Lp), cI24 = (ζ2
1 − k2

xνp) cosh(ζ1Lp),

cI31 = −ζ2[ζ2
2 + k2(2− νp)], cI33 = ζ1[ζ2

1 − k2(2− νp)],
cI41 = −ζ2[ζ2

2 + k2(2− νp)] cos(ζ2Lp), cI42 = ζ2[ζ2
2 + k2

x(2− νp)] sin(ζ2Lp),

cI43 = ζ1[ζ2
1 − k2

x(2− νp)] cosh(ζ1Lp), cI44 = ζ1[ζ2
1 − k2

x(2− νp)] sinh(ζ1Lp).

(3.13)

Defining

γ1 = κ2 + k2
x(1− νp), γ2 = κ2 − k2

x(1− νp) (3.14)

the determinant of the matrix, known as the characteristic frequency equation of the

problem, can be written as

2ζ1ζ2γ
2
1γ

2
2 [cosh(ζ1Lp) cos(ζ2Lp)− 1] = sinh(ζ1Lp) sin(ζ2Lp)[ζ

2
1γ

4
2 − ζ2

2γ
4
1 ]. (3.15)

Omitting the arbitrary amplitude, the eigenfunctions can be written as

W̄n(yp) = ζ2γ1 sinh(ζ1yp) + ζ1γ2 sin(ζ2yp)

−σFF [γ2 cosh(ζ1yp) + γ1 cos(ζ2yp)], (3.16)

where

σFF =
ζ2γ

2
1 sinh(ζ1Lp)− ζ1γ

2
2 sin(ζ2Lp)

γ1γ2[cosh(ζ1Lp)− cos(ζ2Lp)]
. (3.17)

For case II (κ2 < k2
x), the nonzero coefficients are

cII12 = ζ
′2
2 − k2

xνp, cII14 = ζ2
1 − k2

xνp,

cII21 = (ζ
′2
2 − k2

xνp) sinh(ζ
′
2Lp), cII22 = (ζ

′2
2 − k2

xνp) cosh(ζ
′
2Lp),

cII23 = (ζ2
1 − k2

xνp) sinh ζ1Lp, cII24 = (ζ2
1 − k2

xνp) cosh ζ1Lp,

cII31 = ζ
′
2[ζ
′2
2 − k2

x(2− νp)], cII33 = ζ1[ζ2
1 − k2

x(2− νp)],
cII41 = ζ

′
2[ζ
′2
2 − k2

x(2− νp)] cosh(ζ
′
2Lp), cII42 = ζ

′
2[ζ2
′2 − k2

x(2− νp)] sinh(ζ
′
2Lp),

cII43 = ζ1[ζ2
1 − k2

x(2− νp)] cosh(ζ1Lp), cII44 = ζ1[ζ2
1 − k2

x(2− νp)] sinh(ζ1Lp).

(3.18)

The characteristic frequency equation can be written as

2ζ1ζ
′
2γ

2
1γ

2
2 [cosh(ζ1Lp) cosh(ζ

′
2Lp)− 1] = sinh(ζ1Lp) sinh(ζ

′
2Lp)[ζ

2
1γ

4
2 + ζ

′2
2 γ

4
1 ] (3.19)
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and the eigenfunctions can be written as

W̄n(yp) = ζ
′
2γ1 sinh(ζ1yp) + ζ1γ2 sinh(ζ

′
2yp)

−σ′FF [γ2 cosh(ζ1yp) + γ1 cosh(ζ
′
2yp)], (3.20)

where

σ
′
FF =

ζ
′
2γ

2
1 sinh(ζ1Lp)− ζ1γ

2
2 sinh(ζ

′
2Lp)

γ1γ2[cosh(ζ1Lp)− cosh(ζ
′
2Lp)]

. (3.21)

Once both characteristic frequency equations are known, the frequency spectrum of

the problem can be obtained. In Fig. (3.3), the spectrum is plotted considering the

mechanical parameters specified in Table 3.1. The parameters used are typical values

found in a reinforced concrete structure and are similar to the ones used in [1].

Parameter Value

Lp 10.9 m
hp 0.4 m
Ep 27.6 GPa
νp 0.175
ρp 3000 kg m−3

ηp 0.02

Table 3.1: Mechanical parameters used to model the interior floor as a thin plate.
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Fig. 3.3: Frequency spectrum of a free-free (F-F) strip plate.
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3.3.3 Forced response

When the boundary conditions of a finite continuous system are of the form

3∑
k=0

Coefk
dkW̄p(yp)

dykp
= 0, (3.22)

being Coefk arbitrary constants, the problem eigenfunctions W̄n are an infinite set of

orthogonal functions. Then∫ Lp

0
W̄n(yp)W̄m(yp)dyp = δmnCn, m, n = 1, 2, . . . (3.23)

where δmn is the Kronecker delta and where

Cn =

∫ Lp

0
W̄n(yp)

2dyp. (3.24)

Considering the forced response W̄ (yp) and the applied load P̄ (yp) as linear combinations

of the known eigenfunctions, the the forced response of the strip plate can be written as

[103]

W̄ (yp) =

∞∑
n=1

W̄n(yp)pn

Dp(κ
4
n − κ4)

, (3.25)

where

pn =
1

Cn

∫ Lp

0
P̄ (yp)W̄n(yp)dyp (3.26)

and where

κn =

(
ρphpω

2
n

Dp

)1/4

. (3.27)

The loss of energy due to microstructural mechanisms is modelled using hysteretic damp-

ing [19]. In this damping model, a complex Young modulus is defined as follows

E∗p = Ep(1 + iηp), (3.28)

where ηp is the loss factor of the interior floor. Due to this, Eq. (3.25) is rewritten as

W̄p(yp) =
∞∑
n=1

W̄n(yp)pn
Dp(1 + iηp)(κ4

n − κ4)
. (3.29)
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Substituting Eqs. (3.8) and (3.27) into (3.29), the following expression is obtained

W̄p(yp) =
∞∑
n=1

W̄n(yp)pn

ω2
nρphp

(
(1 + iηp)−

ω2

ω2
n

) . (3.30)

Rearranging the previous expression, the deflection of the plate can be finally written as

W̄p(yp) =

∞∑
n=1

W̄n(yp)pneiφn

Cnρphp
√

(ω2
n − ω2)2 + ω4

nη
2
p

, (3.31)

where

φn = arctan

(
ηp

1− (ω/ωn)2

)
. (3.32)

3.3.4 Response to point and distributed loads

A receptance is defined as the displacement (or slope) at Point/Line i caused by a

harmonic unitary load (or moment) applied at Point/Line j. In this work, receptances

are usually defined in the wavenumber domain instead of in the space domain and can

be understood as the response at Line i to a spatially sinusoidal load applied at Line

j [91]. For the case of the interior floor, these space and wavenumber receptances are

named αij and ᾱij , respectively.

Harmonic point load

A vertical harmonic point load applied at a Point 4, with coordinates (0, y4), is given by

p(x, yp, t) = P (x, yp)e
iωt = δ(yp − y4)δ(x)eiωt. (3.33)

Applying Eq. (A.3) to P (x, yp), the following wavenumber distribution of the load is

obtained

P̄ (yp) = δ(yp − y4) (3.34)

and the coefficients pn, defined in Eq. (3.26), are in this case

pn =
1

Cn

∫ Lp

0
W̄n(yp)δ(yp − y4)dyp =

1

Cn
W̄n(y4). (3.35)
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The receptance of the interior floor at Line i is obtained substituting Eq. (3.35) into

Eq. (3.31). The result can be written as

ᾱi4 =
∞∑
n=1

W̄n(yi)W̄n(y4)Bn, (3.36)

where

Bn =
eiφn

Cnρphp
√

(ω2
n − ω2)2 + η2

pω
4
n

. (3.37)

The receptance in the space domain is obtained applying Eq. (A.4) to Eq. (3.36). The

resulting expression is

αi4 =
1

2π

∫ ∞
−∞

∞∑
n=1

W̄n(yi)W̄n(y4)Bne−ikxxidkx. (3.38)

where (xi, yi) are the coordinates of Point i.

Distributed load

The considered coupling loads between the interior floor and the tunnel are loads applied

at certain position yi and distributed along the x direction. They can be expressed as

p(x, yp, t) = P (x, yp)e
iωt = F (x)δ(yp − y4)eiωt, (3.39)

where F (x) is its distribution. The wavenumber distribution of the load is given by

P̄ (kx, yp) = F̄ (kx)δ(yp − y4) (3.40)

and the load coefficients pn are again given by Eq. (3.35).

The receptance of the interior floor in the wavenumber domain is again given by

ᾱi4 =
W̄p(kx, yp)

F̄ (kx)
=

∞∑
n=1

W̄n(yi)W̄n(y4)Bn (3.41)

while the response of the plate in the space domain is given by

Wp(xi, yi) =
1

2π

∫ ∞
−∞

ᾱi4F̄ e−ikxxidkx (3.42)

The previous antitransform requires to know the wavenumber distribution of the load

F̄ to be analytically or numerically solved. Note that Eq. (3.38) is a particular case of

Eq. (3.42) where F̄ = 1.
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3.3.5 Numerical computation of the plate receptances

This subsection deals with some difficulties and considerations that have to be taken

into account when the numerical computation of the previous expressions is done.

The form of the strip plate eigenfunctions presented in Eqs. (3.16) and (3.20) is not

suitable for performing numerical calculations. For large arguments of the hyperbolic

functions, inaccurate results are obtained. A procedure to solve this problem, for the case

of beam eigenfunctions, has been presented by Gonçalves et al. [104]. This procedure,

which involves to rearrange the eigenfunction expressions and to perform analytical

approximations on them, is adapted here for the case of strip plate eigenfunctions.

Dividing Eq. (3.16) by ζ2γ1 and making use of the equality

sinh(ζ1yp)− cosh(ζ1yp) = −e−ζ1yp ,

the eigenfunction can be expressed as

W̄n(yp) = −e−ζ1yp + νFF cosh(ζ1yp) +
ζ1γ2

ζ2γ1
sin(ζ2yp)−

σFF
ζ2

cos(ζ2yp), (3.43)

where

νFF = 1− σFFγ2

ζ2γ1
. (3.44)

Written this way, the chief cause of the numerical problems of the expression becomes

clear. For large values of ζ1Lp, νFF can be smaller than the typical resolution of the

numerical computation softwares. When this happens, the product νFF cosh(ζ1yp), is

numerically considered zero despite having a significant contribution to the eigenfunction

value. This problem can be avoided performing some analytical approximations before

the numerical results are obtained. If ζ1 is a large value, cosh(ζ1Lp) >> cos(ζ2Lp), and

νFF cosh(ζ1yp) =

[
γ2

1z2e−ζ1Lp + ζ1γ
2
2 sin(ζ2Lp)− ζ2γ

2
1 cos(ζ2Lp)

γ2
1ζ2[cosh(ζ1Lp)− cos(ζ2Lp)]

]
cosh(ζ1yp)

≈ cosh(ζ1yp)

cosh(ζ1Lp)

[
e−ζ1Lp +

ζ1γ
2
2

ζ2γ2
1

sin(ζ2Lp)− cos(ζ2Lp)

]
.

(3.45)

Using also that
cosh(ζ1yp)

cosh(ζ1Lp)
≈ eζ1(yp−Lp) + e−ζ1(yp+Lp), (3.46)

the unstable term can be finally written as

νFF cosh(ζ1yp) ≈
[
eζ1(yp−Lp) + e−ζ1(yp+Lp)

] [ζ1γ
2
2

ζ2γ2
1

sin(ζ2Lp)− cos(ζ2Lp)

]
(3.47)
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and the eigenfunction is no longer a numerically ill-behaved expression. An equivalent

procedure has been done with Eq. (3.20).

The modal summation performed in the calculations of the interior floor receptances are

truncated taking into account the frequency range of interest for the problem, which is

usually taken as 1-200 Hz [74]. A detailed study of the convergence of the double-deck

tunnel model is later described in Subsection 3.6.2.

Two additional considerations are worthy of mention because they avoid unnecessary

calculations. One, the axial symmetry of the applied load implies a symmetrical re-

sponse. Due to this, Ū(kx) = Ū(−kx) and the number of numerical operations and

the required storage memory can be almost halved. This property will also be used

in the numerical computation of the global results. The other, because the strip plate

eigenmodes are independent of the applied loads, they can be computed just once and

be reused for each loading case studied.

3.3.6 Validation of the analytical expressions

This subsection presents a numerical comparison to ensure that the forced response of

a strip plate has been correctly derived and computed. Two different calculations are

performed. The first one, the edge loads of a simply supported-simply supported (SS-

SS) strip plate excited by a harmonic point load. The second, the edge loads required

in a F-F strip plate, excited again by a harmonic load, to ensure zero deflection at these

points. If the harmonic load is applied at the same point for both strip plates and if

the analytical expressions obtained and the numerical computation of them are correct,

both results must be equal.

SS-SS Strip plate eigenmodes

As a previous step of the comparison, the forced response of a SS-SS strip plate is

required. The SS-SS strip plate transformed boundary conditions are obtained applying

Eq. (A.3) to Eq. (B.8). The resulting expressions are

W̄p

∣∣∣∣∣
yp=0,Lp

= 0,
d2W̄p

dy2
p

− k2
xνpW̄p

∣∣∣∣∣
yp=0,Lp

= 0. (3.48)

For these boundary condition, it can be demonstrated [21] that eigenfrequencies are only

obtained when κ2 > k2
x. Substituting Eq. (3.9) into Eq. (3.48) the following nonzero
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coefficients are obtained

cI12 = 1, cI14 = 1,

cI21 = sin(ζ2Lp), cI22 = cos(ζ2Lp),

cI23 = sinh(ζ1Lp), cI24 = cosh(ζ1Lp),

cI32 = −(ζ2
2 + νpk

2
x), cI34 = ζ2

1 − νpk2
x,

cI41 = −(ζ2
2 + νpk

2
x) sin(ζ2Lp), cI42 = −(ζ2

2 + νpk
2
x) cos(ζ2Lp),

cI43 = (ζ2
1 − νpk2

x) sinh(ζ1Lp), cI44 = (ζ2
1 − νpk2

x) cosh(ζ1Lp).

(3.49)

Operating, the characteristic equation is reduced to

sin(ζ2Lp) = 0 (3.50)

and the problem eigenfunctions are given by

W̄n(yp) = sin(ζ2yp). (3.51)

The forced response is again given by Eq. (3.36), considering now the SS-SS strip plate

eigenmodes instead of the F-F ones. Once the response has been antitransformed to the

space domain using Eq. (A.4), the edge loads are obtained using Eq. (B.7).

Response comparison

Fig 3.4 presents a cross-section of a F-F strip plate with an harmonic point load applied

at Point 4 and two harmonic distributed loads at both edges of the plate, defined as

Lines 1 and 2. The x-direction distribution of the loads is not drawn but, because the

problem is solved in the wavenumber domain, only the untransformed dimensions are of

interest.

4

f p
4 f p

21

1 2

f p

Fig. 3.4: Free body diagram of the interior floor

For the considered loads, the deflection of a F-F strip plate W̄F
p is given by

W̄F
p (yp) = −F̄1ᾱ

F
i1 − F̄2ᾱ

F
i2 + ᾱFi4, (3.52)
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where ᾱFij are the receptances of the F-F strip plate to a point load and where F̄1 and

F̄2 are the wavenumber distributions of the edge loads, which are unknown.

Imposing that W̄F
p (0) = W̄F

p (Lp) = 0, the following system of equations is obtained

F̄1

F̄2

 =

ᾱF11 ᾱF12

ᾱF21 ᾱF22

−1ᾱF1j
ᾱF2j

 . (3.53)

The space distribution of the edge loads F1 and F2 are obtained applying Eq. (A.4) to

F̄1 and F̄2.

For the case of a SS-SS strip plate, its deflection W̄SS
p when an harmonic point load is

applied at Point 4 is given by

W̄SS
p (yp) = ᾱSSij . (3.54)

The strip plate deflection in the space domain WSS
p (yp) is obtained applying Eq. (A.4)

to Eq. (3.54) and the edge forces Vy(yp) are calculated using Eq. (B.7).

Fig 3.5 compares the edge loads F1 and Vy at four different cross-sections of the strip

plate. The mechanical parameters of the plate are those defined in Table 3.1 and the

harmonic point load is applied at y4 = 5.45 m. The inverse Fourier transform have been

computed considering N = 2048 samples and a space resolution of ∆x = 0.5 m. More

details of how this numerical integration is performed are presented in Appendix A. A

truncation frequency of 4800 Hz has been chosen in order to obtain accurate results (see

Section 3.6 for a justification of this truncation value). The chosen cross-sections are xm

= 0, 20, 50 and 100 m.

The results show a perfect match between both loads for all the cross-sections consid-

ered. This result ensures that the modal summation has been correctly calculated and

computed.
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Fig. 3.5: Comparison between the edge loads of a SS-SS strip plate and the external
loads required to apply to a F-F strip plate to behave as the first one. The cross-sections
considered are: (a) xm = 0 m, (b) xm = 20 m, (c) xm = 50 m and (d) xm = 100 m.

3.4 Tunnel-soil model

3.4.1 Model hypothesis

The soil and the tunnel dynamics are described using the PiP model derived by Forrest

and Hunt [17]. In their work, the tunnel is assumed to behave as a thin cylindrical shell

and the soil is modelled as an infinite linear isotropic homogeneous elastic media. The

coupling between both systems is done in the wavenumber-frequency domain considering

that, at the interface, their displacement fields are equal and that the stress fields caused

by one subsystem to the other are equal in magnitude and of opposite sign. The initial

formulation, which assumed symmetric loads respect to the angular coordinate θ, was

later extended to antisymmetric loads by Hussein and Hunt [88]. Both formulations

of the model are presented in Appendix D. The positive directions considered for the
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Fig. 3.6: Cross-section of the double-deck circular tunnel model with the chosen system
of coordinates and the positive directions considered for the displacement and stress

fields.

displacements (ux, uθ and ur) and stresses (τrx, τrθ and τrr) and the chosen system of

coordinates (x, θ, r) are presented in Fig. 3.6.

In this work, because the external loads are tangential and applied at two opposite points

of the tunnel (see Section 3.5), the origin of the angular coordinate θ has been changed

from the original PiP formulation and only the antisymmetric formulation is required to

obtain the resulting displacements. Due to this, the displacement and stress fields can

be written as

Ū =
∞∑
n=0

SaŪa
n, T̄ =

∞∑
n=0

SaT̄a
n, (3.55)

where Sa is defined in Eq. (D.3). Using Eqs. (D.25) and (D.26), the stress and displace-

ment fields are given by

Ū =
∞∑
n=0

SaMaP̄n, T̄ =
∞∑
n=0

SaKaP̄n, (3.56)

where the Fourier coefficients P̄n are obtained by transforming and decomposing the

applied tangential load and where Ma and Ka are defined in Eqs. (D.27) and (D.28).

To simplify the notation the superscript a will be omitted during the rest of the section.

3.4.2 Receptance to a distributed tangential load

In the proposed model for a double-deck tunnel, two tangential coupling loads are applied

along Lines 1 and 2 of the tunnel’s interior surface. Using the Dirac’s delta definition in
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cylindrical coordinates these loads can be expressed as

p1 =


0

Pθ,1(x)

0

 δ(θ)

rt
eiωt, p2 =


0

Pθ,2(x)

0

 δ(θ − π)

rt
eiωt, (3.57)

where Pθ,1(x) and Pθ,2(x) are the axial unknown distributions of the coupling loads. As

is detailed in Section D.4, these loads are transformed to the wavenumber domain and

decomposed in Fourier series. For p1, the transformed coefficients are

P̄0 =
1

2rtπ


0

P̄θ,1(kx)

0

 , P̄n =
1

rtπ


0

P̄θ,1(kx)

0

 . (3.58)

For p2 the coefficients are

P̄0 =
1

2rtπ


0

P̄θ,2(kx)

0

 , P̄n =
(−1)n

rtπ


0

P̄θ,2(kx)

0

 . (3.59)

The receptances of the PiP are defined in this work as β̄ij . They can be understood as

the response of a Line i to a sinusoidally varying load applied at Line j. In the most

general case, this receptance is a 3× 3 matrix of the following form

β̄ij =


βix,jx βix,jθ βix,jr

βiθ,jx βiθ,jθ βiθ,jr

βir,jx βir,jθ βir,jr

 . (3.60)

Using this notation, the receptances to loads p1 and p2 are named as β̄i,1θ and β̄i,2θ

respectively. These receptances are obtained operating Eq. (3.58) and (3.59) with Eqs.

(D.25) and (3.56). The resulting expressions can be written as

β̄i,1θ =
1

2rtπ


0

m22,0

0

+

∞∑
n=1

1

rtπ


m12,n sin(nθi)

m22,n cos(nθi)

m32,n sin(nθi)

 (3.61)
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and

β̄i,2θ =
1

2rtπ


0

m22,0

0

+

∞∑
n=1

(−1)n

rtπ


m12,n sin(nθi)

m22,n cos(nθi)

m32,n sin(nθi)

 , (3.62)

where mij,n refers to the n-th ring mode of the ij component of the matrix M and θi is

the angular position of Line i.

Similar expressions can be obtained for the stress fields caused by the considered tangen-

tial loads if the coefficients mij,n are replaced by the coefficients kij,n, defined as the n-th

ring modes of the ij component of the matrix K. As in the interior floor case, the re-

sulting displacement at a particular point of the Line i can be obtained antitransforming

Eqs. (3.61) or (3.62).

3.4.3 Numerical computation of the PiP receptances

The modal summation is again truncated considering the frequency range of interest for

the considered problem [74]. For computing the receptances of the PiP model, a finite

number of ring modes have to be considered in Eqs. (3.61) and (3.62). A study of the

convergence of the model respect this parameter is performed in Subsection 3.6.2.

Another difficulty to overcome in the numerical implementation of the model is that the

matrix inversions performed in Eqs. (D.27) and (D.28) are inversions of bad conditioned

matrices. To avoid the numerical problems caused by these inversions, the equations

have been solved using an LU decomposition for complex valued matrices.

The mechanical parameters used to modelise the tunnel as a thin cylindrical shell and the

soil as an linear homogeneous isotropic elastic media are presented in Tables 3.2 and 3.3.

The tunnel parameters are equal to the interior floor ones, which are typical values for

a reinforced concrete. For the case of soil, the values represent a soft tertiary ground.

Hysteretic damping has been considered in the tunnel and in the soil. The damping

definitions and the relations between the different elastic constants are presented in

Section C.2.
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Parameter Value

rt 5.65 m
ht 0.4 m
Et 27.6 GPa
νt 0.175
ρt 3000 kg m−3

DEt 0.02

Table 3.2: Mechanical parameters used to model the tunnel as a thin shell.

Parameter Value

Es 100 MPa
νs 0.3
ρs 1950 kg m−3

DP 0.03
DS 0.03

Table 3.3: Mechanical parameters used to model the soil as an elastic continuum.

3.5 Coupling of the systems

The coupling of the interior floor and the tunnel-soil systems is done using the receptance

method [19]. The interaction between the tunnel walls and the interior floor of a double-

deck tunnel depends on the construction method used to build it. This work focuses in

the case where the interior floor is a separate precast slab structure supported on the

tunnel walls, which is modelled using simply supported connections at both edges of the

interior floor. As can be seen in Fig. 3.1, the interior floor is considered to be simply

supported at Lines 1 and 2 of the tunnel structure. The interior floor is also excited by

a vertical harmonic load applied at Point 4. Fig. 3.7 presents the free body diagrams of

both systems. The distribution of the loads in the x-direction has been omitted because

the problem is solved in the wavenumber domain.
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Fig. 3.7: (a) Free body diagram of the interior floor. (b) Free body diagram of the
tunnel-soil system.

The transformed deflection of the interior floor can be written as

W̄p(yi) = −ᾱi1F̄ p1 − ᾱi2F̄
p
2 + ᾱi4F̄

p
4 , (3.63)

where F̄ p4 , F̄ p1 and F̄ p2 are the wavenumber distributions of the external load and of the

coupling loads respectively.

The transformed displacement field of the tunnel is given by
Ū tix

Ū tiθ

Ū tir

 =


β̄ix,1θ

β̄iθ,1θ

β̄ir,1θ

 F̄ t1 −


β̄ix,2θ

β̄iθ,2θ

β̄ir,2θ

 F̄ t2. (3.64)

where F̄ t1 and F̄ t2 are the transformed unknown loads exerted on the tunnel by the plate.

To model the coupling of both structures, the following set of conditions is considered

W̄p(0) = −Ū t1θ, F̄ p1 = −F̄ t1,

W̄p(Lp) = Ū t2θ, F̄ p2 = −F̄ t2.
(3.65)

The coupling loads are obtained by substituting Eqs. (3.63) and (3.64) into Eq. (3.65)−(ᾱ1,1 + β̄1θ,1θ) −ᾱ1,2 + β̄1θ,2θ

−ᾱ2,1 + β̄2θ,1θ −(ᾱ2,2 + β̄2θ,2θ)

F̄ t1
F̄ t2

 =

ᾱ1,4

ᾱ2,4

 F̄ p4 . (3.66)

The required plate receptances in Eq. (3.66) are obtained from Eq. (3.41). Two consid-

erations can be taken into account to avoid unnecessary calculations. One, because the
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plate modes are symmetric or antisymmetric, ᾱ11 = ᾱ22. The other, due to the Maxwell

reciprocity principle, ᾱ12 = ᾱ21.

The required PiP receptances in Eq. (3.66) are given by the tangential component of

Eqs. (3.61) and (3.62). The resulting expressions are

β̄1θ,1θ = β̄2θ,2θ =
m22,0

2rtπ
+

1

rtπ

∞∑
n=1

m22,n,

β̄1θ,2θ = β̄2θ,1θ =
m22,0

2rtπ
+

1

rtπ

∞∑
n=1

m22,n(−1)n. (3.67)

With the coupling loads calculated, the displacement fields of each subsystem can be

obtained using Eqs. (3.63) and (3.64). The displacement fields in the space domain can

be finally obtained antitransforming. They can be expressed as

Wp(yi) =
1

2π

∫ ∞
−∞

γ̄pi4F̄
p
4 e−ikxxdkx,

Ut
i =

1

2π

∫ ∞
−∞

γ̄ti4F̄
p
4 e−ikxxdkx,

(3.68)

where γ̄pi4 is the interior floor receptance of a double-deck tunnel model to a point load

applied at Line 4 of the interior floor and γ̄ti4 is the tunnel-soil receptance of a double-

deck tunnel to the same load.

3.5.1 Other types of loads

In the space domain, the response of a linear system to any type of loading distribution

can be obtained as a superposition of point loads responses by means of the convolu-

tion product. This convolution product becomes a direct product when the problem is

transformed to the wavenumber domain. This fact is easily seen in Eqs. (3.68), where

the response to a particular load distribution F̄ p4 (kx) is generated from the point load

case, in which F̄ p4 = 1. In this section, two types of loads used to represent simplified

train models are considered: A finite harmonic line load and an infinite multipoint load.

Finite harmonic line load

A finite line load can be written as

F p4 (x) =
1

Lt

[
H

(
x+

Lt
2

)
−H

(
x− Lt

2

)]
, (3.69)
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where Lt is the lenght of the considered line and where H(x) is the Heaviside step

function. Its transformed expression is

F̄ p4 (kx) = sinc

(
kxLt

2

)
, (3.70)

where sinc(x) = sin(x)/x.

The response of a doble-deck tunnel to this type of load is obtained substituting Eq.

(3.70) into Eq. (3.68). The Fourier inverse transform has to be calculated numerically.

Methods to compute this numerical integration are presented in Appendix A. In this

work, the Fast Fourier Transform (FFT) algorithm is the numerical method used to

solve these integrals.

Infinite multipoint load

An infinite set of equispaced points can be described by

F p4 (x) =
∞∑

n=−∞
δ(x− nLp), (3.71)

where Lp is the distance between loads. Using the distribution equality

∞∑
n=−∞

e2πint =
∞∑

n′=−∞
δ(n′ − t),

the transformed expression of this type of load can be written as

F̄ p4 (kx) =
∞∑

n=−∞
eikxnLp =

∞∑
n′=−∞

δ

(
n′ − kxLp

2π

)
. (3.72)

This type of wavenumber distribution allows to perform an additional analytical step.

If Eq. (3.72) is substituted into the first one of Eqs. (3.68), the following interior floor

deflection is obtained

Wp(yi) =
1

2π

∫ ∞
−∞

γ̄pi4(kx)
∞∑

n′=−∞
δ

(
n′ − kxLp

2π

)
e−ikxxdkx

=
1

2π

∞∑
n′=−∞

γ̄pi4

(
2πn

Lp

)
e

(
−i2πnx
Lp

)
.

(3.73)

The solution is obtained as an sum of discrete values instead of an integral. Because the

receptance of the system decays for large values of
2πn

Lp
, this infinite sum is reduced to
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a finite one in the region where γ̄pi4 is significant.

3.6 Numerical results

3.6.1 Maximum displacement magnitude

To perform the comparisons between a simple-tunnel and a double-deck tunnel, the

maximum displacement magnitude will be used. Considering a harmonic displacements

of the form

ui = |Ui| sin(ωt+ ϕi), (3.74)

where ui is any of the three ortogonal components of the displacement and where

ϕi = arctan

(
Im(Ui)

Re(Ui)

)
, (3.75)

the displacement magnitude can be expressed as

u2
R =

3∑
i=1

u2
i =

3∑
i=1

[
U2
i sin2(ωt+ ϕi)

]
. (3.76)

Using trigonometric identities, Eq. (3.76) can be rewritten as

u2
R =

3∑
i=1

U2
i

2
− c cos(2ωt) + s sin(2ωt), (3.77)

where

s =
3∑
i=1

[
U2
i

2
sin(2ϕi)

]
, c =

3∑
i=1

[
U2
i

2
cos(2ϕi)

]
. (3.78)

The maximum value of u2
R occurs when ωt satisfies

du2
R

d(ωt)
= 0, (3.79)

resulting in the condition

sin(2ωt)c = cos(2ωt)s. (3.80)

Combining Eq. (3.80) with sin2(2ωt)+cos2(2ωt) = 1, the following relations are obtained

sin(2ωt) = ± s√
s2 + c2

, cos(2ωt) = ± c√
s2 + c2

. (3.81)
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Substituting the previous expressions in Eq. (3.77) gives the value of the square of the

maximum displacement magnitude

u2
m = max

(
u2
R

)
=

3∑
i=1

U2
i

2
+
√
s2 + c2. (3.82)

3.6.2 Convergence of the model

The convergence of the results have been studied considering four different parameters:

The number of samples N , the space resolution ∆x, the eigenmodes truncation frequency

ft and the number of ring modes Nr. The results are obtained at r = 10 m and θ
′

= π/2

rad. The maximum displacement magnitude is plotted at two different cross-sections:

xm = 0 m and xm = 40 m. The convergence have been studied modifying one of the

parameters each time and setting the others at values that ensure good convergence.

Space resolution

Fig. 3.8 presents the maximum displacement magnitude at the considered points for

five values of the space resolution: ∆x = 4, 2, 1, 0.5 and 0.25 m at the cross-section

xm = 0 m (subfigures (a) and (b)) and xm = 40 m (subfigures (c) and (d)). The same

size of the space sampling has been considered by setting a number of samples N =

512, 1024, 2048, 4096 and 8192 respectively. Due to this, a wavenumber resolution of

π/1024 rad, a truncation frequency ft = 2400 Hz and a number of ring modes Nr =

20 have been considered in all cases. Significant differences are only found between the

first three space resolutions considered (subfigures (a) and (c)). Errors over 10 dB are

found when ∆x = 4 m and about 1 dB for high frequencies if ∆x = 2 m. Smaller space

samplings ensure that all the wavenumber content of the response is taken into account

and correct results are obtained.

Truncation frequency

Fig. 3.9 presents the maximum displacement magnitude at the considered points for

five values of the truncation frequency: 300, 600, 1200, 2400 and 4800 Hz. For all cases,

∆x = 0.25 m, N = 8192 and Nr = 20. As can be seen, only for a truncation frequency

of 300 Hz, the results show a significant lack of accuracy. At frequencies over 50 Hz,

differences of about 3-4 dB are found. If ft = 600 Hz, this differences are reduced to 0.5-

1 dB. Accurate results around the spectrum peaks may require truncation frequencies

up to 2400 Hz or even 4800 Hz. The relation between the desired precision of the
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Fig. 3.8: Comparison of the maximum displacement magnitude at r = 10 m and
θ = π/2 rad for five different values of the space sampling resolution ∆x. Two cross-
sections have been considered: xm = 0 m ((a) and (b)) and xm = 40 m ((c) and (d)).

results and the computational cost required to obtain them is particulary delicate for

this parameters. Also, as is detailed in Section 3.6.3, a high truncation frequency is also

required when the coupling loads are studied.

Wavenumber resolution

Fig. 3.10 presents the results for five different number of samples N = 512, 1024, 2048,

4096 and 8192. Because the space sampling resolution is ∆x = 0.5 m in all cases, this

is equal to consider a wavenumber sampling resolution of ∆k = π/64, π/128, π/256,



Chapter 3.Double-deck circular tunnel model 40

0 50 100 150 200
−260

−240

−220

−200

−180

Frequency [Hz]

|u
m
|
[d
B
re
f
1
m
]

 

 
ft = 300 Hz
ft = 600 Hz
ft = 1200 Hz

0 50 100 150 200
−260

−240

−220

−200

−180

Frequency [Hz]

|u
m
|
[d
B
re
f
1
m
]

 

 
ft = 1200 Hz
ft = 2400 Hz
ft = 4800 Hz

0 50 100 150 200
−260

−240

−220

−200

−180

Frequency [Hz]

|u
m
|
[d
B
re
f
1
m
]

 

 
ft = 300 Hz
ft = 600 Hz
ft = 1200 Hz

0 50 100 150 200
−260

−240

−220

−200

−180

Frequency [Hz]

|u
m
|
[d
B
re
f
1
m
]

 

 
ft = 1200 Hz
ft = 2400 Hz
ft = 4800 Hz

(a)

(c)

(b)

(d)

Fig. 3.9: Comparison of the maximum displacement magnitude at r = 10 m and
θ = π/2 rad for different values of the truncation frequency ft Two cross-sections have

been considered: xm = 0 m ((a) and (b)) and xm = 40 m ((c) and (d)).

π/512 and π/1024 rad respectively. In all cases, ft = 2400 Hz and Nr = 20. When a

bad wavenumber sampling is chosen the antitransformed displacement is not a smooth

function. Differences near 10 dB are found if N = 512 samples. This differences are

reduced to 0.5-2 dB if N = 2048 and are under 0.5 dB if N = 4096 samples. As it

is explained in Appendix A, the lack of accuracy is caused by a bad sampling of the

peaks found in Ū . This problem could be properly solved choosing a wiser sampling

distribution instead of using an equispaced one with a huge number of samples.
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Fig. 3.10: Comparison of the maximum displacement magnitude at r = 10 m and
θ = π/2 rad for five different values of the total number of samples N . Two cross-
sections have been considered: xm = 0 m ((a) and (b)) and xm = 40 m ((c) and (d)).

Ring modes

Fig. 3.11 presents the results considering four different number of total ring modes Nr

= 6, 10, 15 and 20. The results are obtained considering ft = 2400 Hz, ∆x = 0.5

m and N = 8192 samples. As can be seen from (a) and (c), choosing 6 or 10 ring

modes for the calculations gives errors of 10-15 dB and 2-3 dB respectively. As in the

case of the truncation frequency, the errors are more significant when high excitation

frequencies are studied. From (b) and (d) can be concluded that convergence of the

results is achieved when at least 15 ring modes are considered. Differences smaller than
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Fig. 3.11: Comparison of the maximum displacement magnitude at r = 10 m and
θ = π/2 rad for four different values of the total number of ring modes Nr Two cross-
sections have been considered: xm = 0 m ((a) and (b)) and xm = 40 m ((c) and (d)).

0.1 dB are obtained if 20 ring modes are calculated instead of 15. These results are agree

with the convergence criteria proposed by Forrest and Hunt [17].

3.6.3 Model results

Fig. 3.12 shows the magnitude of the left coupling load F̄ p1 for four different excitation

frequencies: 10, 40, 80 and 160 Hz. The results have been obtained considering that

a harmonic unitary vertical point load is applied at the centre of the interior floor,

where y4 = 5.45 m, and considering the cross-section x = 0 m. In this case, the
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Fig. 3.12: Magnitude of the coupling load F̄ p
1 when the strip plate is excited by a

vertical harmonic point load applied at y4 = 5.45 m and considering three different
truncation frequencies (600, 2400 and 4800 Hz). Results are presented for different

exciting frequencies: (a) 10 Hz, (b) 40 Hz, (c) 80 Hz and (d) 160 Hz.

wavenumber and space distributions of the coupling loads are symmetric with respect

to the x-direction and equal for both. Calculations have been performed considering

three diferent frequency truncation limits: 600, 2400 and 4800 Hz. Differences in the

results are only found for high wavenumber values. When the displacement field of the

double-deck tunnel is desired, this high wavenumber contribution of the coupling load is

multiplied by the response of the system which, at these wavenumber values, is almost

zero. Due to this, the product of both becomes negligible and the 600 Hz truncation

limit ensures good accuracy of the results. Only when the space domain distribution

of the coupling load is desired, the high wavenumber content plays an important role

in the calculations and a higher truncation limit must be considered. The importance

of choosing a high truncation limit is demonstrated in Fig. 3.13, where the coupling
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Fig. 3.13: Magnitude of the coupling load F p
1 when the strip plate is excited by a

vertical harmonic point load applied at y4 = 5.45 m and considering three different
truncation frequencies (600, 2400 and 4800 Hz). The cross-sections considered are: (a)

xm = 0 m, (b) xm = 20 m, (c) xm = 50 m and (d) xm = 100 m.

load F̄ p1 has been transformed to the space domain and the frequency dependance of its

magnitude is plotted at four tunnel cross-sections: xm = 0, 20, 50 and 100 m. It is clear

that the coupling load distribution is not accurately calculated if a truncation frequency

of 600 Hz is considered, especially when measuring positions near the applied loads are

considered.

Fig. 3.12 also provides an additional information that is used for choosing an adequate

wavenumber sampling. Since the range where the main wavenumber contribution of

the coupling loads becomes wider as the excitation frequency increases, an adequate

wavenumber sampling for the maximum exciting frequency case can be used for all the

other exciting frequencies. The use of a unique wavenumber sampling vector enables
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Fig. 3.14: Maximum displacement magnitude response of a double-deck tunnel and a
simple tunnel. Results are calculated at rm = 10 m and θm = π/2. The cross-sections

considered are: (a) xm = 0 m, (b) xm = 20 m, (c) xm = 50 m and (d) xm = 100 m.

a much faster computation of the results. The sampling defined with the previously

specified values of N and ∆k is adequate for all the excitation frequencies studied.

In Fig. 3.14 a comparison of the frequency response of the double-deck tunnel against

the frequency response of a simple tunnel is presented. The double-deck tunnel is excited

by a vertical unitary point load applied at y4 = 5.45 m and the simple tunnel, which is

modelled using the PiP tunnel model [17], is excited by a radial unitary point load applied

at its bottom. The results are obtained, for the previously used set of cross-sections,

at r3 = 10 m and θ3 = π/2 rad. The comparison has been performed calculating the

maximum displacement magnitude for excitation frequency values in the range 1-200 Hz

with a frequency resolution ∆f = 1 Hz.



Chapter 3.Double-deck circular tunnel model 46

The comparison shows some clear differences between the response of both types of tun-

nels. At the chosen positions the response of the double-deck tunnel tends to be higher

than the response of the simple one for most of the considered frequencies. Also, for

all of the cross-sections considered, the double-deck tunnel response shows moderately

sharp peaks at certain frequencies. This type of response is not found in the simple

tunnel case, therefore it must be caused by the interior floor dynamic behaviour and the

interaction between it and the tunnel-soil systems. Looking at the obtained displace-

ments at cross-sections away from the one where the load is applied, it is also seen that

the decay of the double-deck tunnel response is smoother than the one obtained in the

simple tunnel case.

3.6.4 Comparison with an uncoupled model

A simpler way to model the interaction between the interior floor and the tunnel-soil

system is to consider a weak coupling model. In this type of coupling, the tunnel-soil

system is assumed to be perfectly rigid when the interaction loads are calculated. These

loads are then introduced to the tunnel-soil system to obtain its response. To justify the

use of the proposed coupling hypothesis instead of the weak coupling ones, both models

are compared. Under the weak coupling assumption, the interior floor is considered as

an strip plate simply supported at both edges. Its response is given again by Eq. (3.36)

but by considering the eigenmodes of the SS-SS case instead of the F-F ones. Finally,

to obtain the weak coupling model response, the edge loads Vy of the SS-SS strip plate

(Eq. (B.7)) are obtained and applied as the input loads of the PiP model.

In Fig. 3.15 the SS-SS strip plate edge load at yp = 0 is compared to the antitransformed

left coupling load F p1 for two different types of ground. The first one, named soft ground,

has already been defined in Table 3.3. The second one, named hard ground, is considered

to have a Young modulus 100 times higher. A vertical harmonic point load applied at

y4 = 5.45 m is again considered and the truncation frequency is set to 4800 Hz. As can

be seen in the plots, the soft ground case presents some peaks that the weak coupling

model doesn’t predict. In contrast, in the case of the hard ground, these peaks are not

obtained and the resulting coupling loads are very similar to the ones obtained with an

uncoupled model. It is concluded that the weak coupling assumption would only be an

acceptable hypothesis for very a hard ground, being clearly unrealistic for the types of

ground that typically surrounds tunnels.
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Fig. 3.15: Comparison between the coupling load F p
1 of the double-deck model for

two types of ground and the edge load Vy in a SS-SS strip plate. The cross-sections
considered are: (a) xm = 0 m, (b) xm = 20 m, (c) xm = 50 m and (d) xm = 100 m.

3.6.5 Effect of a tunnel bottom load

The proposed model allows to study the effect that a load applied at the bottom of the

tunnel (labeled as Line 5) has on different positions of Line 4. This effect is calculated

here comparing the displacements obtained at this line of the interior floor when a radial

point load applied at the cross-section xm = 0 is added to the previously considered

vertical point load acting on the interior floor. This calculation requires adding the

terms β̄1θ,5rF̄
t
5 and β̄2θ,5rF̄

t
5 in the right part of Eq. (3.66). The new system of equations

is −(ᾱ11 + β̄1θ,1θ) −ᾱ12 + β̄1θ,2θ

−ᾱ21 + β̄2θ,1θ −(ᾱ22 + β̄2θ,2θ)

F̄ t1
F̄ t2

 =

ᾱ14

ᾱ24

 F̄ p4 +

 β1θ,5r

−β2θ,5r

 F̄ t5. (3.83)
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Fig. 3.16: Displacement magnitude at yp = 5.45 m when a radial point load applied
at the bottom of the tunnel is added to the initial loading configuration and also when
it is not. The cross-sections considered are: (a) xm = 0 m, (b) xm = 20 m, (c) xm = 50

m and (d) xm = 100 m.

In the chosen system of coordinates the radial point load is applied at θ5 = 3π/2. Again,

at the plate edges, only antisymmetric terms are once again used and the receptances

can be written as

β̄1θ,5r =
1

rtπ

∑∞
n=1m23,n sin

(
3πn

2

)
,

β̄2θ,5r =
1

rtπ

∑∞
n=1(−1)nm23,n sin

(
3πn

2

)
.

Fig. 3.16 compares the resulting displacements at y4 = 5.45 m for the four previously

considered cross-sections. The results show that the effect of the radial bottom load can

almost be ignored in all the frequency range considered. This load effect should only be
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taken into account for the farthest measuring points and at high frequencies.

3.7 Chapter conclusions

A three-dimensional model for the dynamic behaviour of double-deck tunnels is pre-

sented. The use of the receptance method allows to calculate the response of the global

structure by combining the responses of the interior floor and of the tunnel-soil system

separately. The interior floor is assumed to behave as a thin strip plate while the tunnel-

soil system is modelled using the PiP model. The obtained model can be used to extend

the prediction of vibration levels generated by underground trains to this new type of

tunnel infrastructure. The details of the numerical computation of the model are also

described. The results presented show the importance of the interior floor behaviour

on the resulting displacements. A comparison is made between the vibration levels of

a double-deck tunnel and those found in a simple tunnel, finding significant differences

between their responses. In order to justify the use of a strong coupled model, the

resulting interaction loads are compared to those obtained in a weak coupled model.

Except for the case of unrealistically rigid grounds, the coupling assumptions considered

in the proposed model are found to be necessary. Finally, the effect that the application

of a second load at the bottom of the tunnel has on the interior floor deflection is also

studied. It is found that this load effect only becomes important at long distances from

the points where both loads are applied.





Chapter 4

A power flow calculation in

plane-strain conditions

The purpose of the present chapter is to present a calculation of the mean power flow

radiated by a double-deck circular tunnel and compare it to the one radiated by a simple

circular tunnel. The comparison is performed considering that a harmonic line load is

applied on both tunnels. Plane-strain conditions can be assumed for both tunnel models,

simplifying the analytical formulation of the problem and improving the efficiency of

the calculations. Numerical results show significant differences between the power flow

radiated by both tunnels, with the one radiated by the double-deck tunnel reaching much

higher values. The effect of changing the position of the applied load on the interior

floor and of modifying its flexural rigidity is also studied. A comparison is made between

the radiation patterns of both tunnels for the most important one-third octave bands in

human exposure to building vibrations caused by underground trains [76].

4.1 Analytical formulation of the model in plane-strain

conditions

In this chapter, the power flor radiated by a double-deck tunnel is compared to the

one radiated by a simple tunnel. This comparison is performed considering that both

structures are excited by a harmonic line load. This type of load is not adequate to

calculate accurate values of the ground-borne vibration caused by a train passage but

it is an interesting choice when a power flow comparison between two types of tunnel

structures is desired. When harmonic line loads are considered, plain strain conditions

51
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Fig. 4.1: (a) Cross-section of a double-deck circular tunnel. A Cartesian and a cylin-
drical system of coordinates are defined. (b) Positive signs for the displacements and
stresses. (c) Coupling condition considered between the tunnel and the interior floor.

can be assumed and the problem is solved using only a cross-section of the tunnel-

soil system. Fig. 4.1 presents this cross-section for a double-deck tunnel. The figure

also shows the chosen positive direction for the displacements u and stresses τ and the

coupling condition considered between the tunnel and the interior floor. A cylindrical

system of coordinates (θ, r) is defined to describe any point of soil or the tunnel. A

Cartesian system of coordinates (xt, yt) is also defined to describe the mean local power

flow distributions presented in Section 4.3.

As in the previous chapter, the interior floor is coupled to the tunnel structure at Lines

1 and 2 and the external load, which in this case is a vertical harmonic line load fp4 ,

is applied at Line 4. The response of the structure is obtained at an arbitrary Line

3 of the soil. The problem is again solved coupling the interior floor to the tunnel-

soil structure by means of the receptance method. The next subsections describe the

dynamic equations of each subsystem in plane-strain conditions.

4.1.1 Thin-plate in plane-strain conditions

Fig. 4.2 presents a cross-section of the interior floor with its thickness hp and width Lp

defined. A Cartesian system of coordinates (yp, zp) is defined and the deflection of any

line of the interior floor is described by wp.
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Fig. 4.2: Interior floor model in plane-strain conditions

The equation of motion of a thin plate in plane-strain conditions is obtained imposing

that
∂

∂x
= 0 in Eq. (3.3), which gives

Dp
∂4wp(yp, t)

∂y4
p

+ ρphp
∂2wp(yp, t)

∂t2
= fp4 (yp, t), (4.1)

where

Dp =
Eph

3
p

12(1− ν2
p)

(4.2)

is the flexural rigidity of the plate, ρp is its density, Ep is its Young modulus and νp is

its Poisson ratio. The obtained equation is equivalent to the equation of motion of a

Bernoulli-Euler beam [103].

The vertical harmonic line load can be written as

fp4 (y, t) = δ(yp − y4)eiωt. (4.3)

Because harmonic motion is assumed

wp(yp, t) = Wp(yp)e
iωt. (4.4)

Introducing Eqs. (4.4) and (4.3) into Eq. (4.1) the following equation is obtained

d4Wp

dy4
p

− κ4Wp =
δ(yp − y4)

Dp
, (4.5)

where κ has been defined in Eq. (3.8).

Again, the receptance method requires to know the forced response of the system con-

sidering free boundary conditions. Now, the boundary conditions of a free edge of the

plate are

d2Wp

dy2
p

∣∣∣∣∣
yp=0,Lp

= 0,
d3Wp

dy3
p

∣∣∣∣∣
yp=0,Lp

= 0 (4.6)
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and the resulting characteristic equation is

cosh(κnLp) cos(κnLp)− 1 = 0, (4.7)

where κn has been defined in Eq. (3.27).

In this case is not necessary to perform analytical approximations to obtain numerically

well-behaved eigenfunctions. Very accurate results can be obtained if the eigenfunctions

are rewritten as Tang [105] proposes. For the F-F case, this expression is

Wn(yp) =

(
1

sin(κnLp)− sinh(κnLp)

)
·

[cosh(κnLp) sinh(κnyp)− cosh(κnyp) sinh(κnLp)

− cos(κnyp) sinh(κnLp)− cos(κnLp) sinh(κnyp)

+ cosh(κnyp) sin(κnLp) + cosh(κnLp) sin(κnyp)

+ cos(κnyp) sin(κnLp)− cos(κnLp) sin(κnyp)].

(4.8)

The modal participation method is again used to obtain the forced response of the

interior floor. The deflection is now written as

Wp(yp) =
∞∑
n=1

Wn(yp)pn
Dp(κ4

n − κ4)
, (4.9)

where

pn =
1

Cn

∫ Lp

0
δ(yp − y4)Wn(yp)dyp =

Wn(y4)

Cn
(4.10)

and where

Cn =

∫ Lp

0
Wn(yp)

2dyp. (4.11)

The obtained expressions are almost equal to those obtained in the global model but,

in this case, the results are directly written in the space domain. It is also worth to

mention that the summation of modes must include the two rigid body modes existing

at ωn = 0 (degenerate modes). Those modes only appeared in the 3D model when the

results for kx = 0 were obtained.

In plane-strain conditions, the receptances αij are defined as the response at Line i

to a harmonic line load applied at Line j. Considering again hysteretic damping, the
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receptance αi4 can be written as

Wp(yi) = αi4 =
∞∑
n=1

Wn(yi)Wn(y4)Bn, (4.12)

where

Bn =
e−iφn

Cnρphp
√

(ω2
n − ω2)2 + ω4

nη
2
p

(4.13)

and where φn has been defined in Eq. (3.32).

4.1.2 PiP model in plane-strain conditions

Along this chapter, the PiP model is used for two reasons: To obtain the soil response

to the interior floor-tunnel coupling loads of a double-deck tunnel and to obtain the soil

response to a load applied at a simple tunnel. The only difference between both cases is

the chosen origin of the angular coordinate. This difference is pointed out in Fig. 4.3,

where a new angular coordinate θ
′

has been defined. This definition is the one proposed

in [17] and simplifies the calculation of the PiP response to a radial load applied at the

bottom of the tunnel. The same positive direction for the displacement and stress fields

have been defined.

As in the interior floor case, the receptance of the PiP model βij is defined as the

responses at Line i of the system to a load applied at Line j. In plane-strain conditions

these receptances are 2× 2 matrices that can be written as

βi,j =

βiθ,jθ βiθ,jr

βir,jθ βir,jr

 , (4.14)

where the subscript definition is the same that has been used in Chapter 3.

An analogous frequency response function εi,j , representing the stress caused at Line i

by an line load applied at Line j is defined. These function can be also written as

εi,j =

εirθ,jθ εirθ,jr

εirr,jθ εirr,jr

 . (4.15)
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Fig. 4.3: (a) Cross-section of a simple circular tunnel with a load applied at its bottom.
A Cartesian and a cylindrical system of coordinates are defined. (b) Positive signs for

the displacements and stresses.

To obtain the response of a simple tunnel to a radial load applied at θ
′

= 0 only the

symmetric formulation of the PiP model is required. In this case, Eqs. (D.48) become

u = Ueiωt =

∞∑
n=0

Ss2DUs
neiωt,

τ = Teiωt =
∞∑
n=0

Ss2DTs
neiωt,

(4.16)

where Ss2D is defined in Eq. (D.49) and where Us
n and Ts

n are obtained from Eq. (D.50).

The tangential and radial load coefficients of the considered load are given by

F t,s4θ,n = 0, F t,s4r,n =


1

2πrt
, n = 0,

1

πrt
, n > 0.

(4.17)

Combining Eqs. (4.16) and (4.17), the displacement and stress fields of Line 3 caused

by a radial load applied at Line 4 can be written as

u = β3,4re
iωt, τ = ε3,4re

iωt, (4.18)
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where

β3,4r =

β3θ,4r

β3r,4r

 =
1

2rtπ

 0

ms
22,0

+
1

rtπ

∞∑
n=1

ms
12,n sin(nθ

′
3)

ms
22,n cos(nθ

′
3)

 (4.19)

and

ε3,4r =

ε3rθ,4r

ε3rr,4r

 =
1

2rtπ

 0

ks22,0

+
1

rtπ

∞∑
n=1

ks12,n sin(nθ
′
3)

ks22,n cos(nθ
′
3)

 . (4.20)

When the response of a double-deck tunnel to tangential loads applied at θ1 = 0 and

θ2 = π is calculated, only the antisymmetric formulation formulation of the PiP model

is required. In this case, Eq. (D.48) becomes

u = Ueiωt =

∞∑
n=0

Sa2DUa
neiωt,

τ = Teiωt =
∞∑
n=0

Sa2DTa
neiωt.

(4.21)

The load coefficients for Line 1 are given by

F t,a1r,n = 0, F t,a1θ,n =


1

2πrt
, n = 0,

1

πrt
, n > 0,

(4.22)

while the load coefficients for Line 2 are

F t,a2r,n = 0, F t,a2θ,n =


1

2πrt
, n = 0,

(−1)n

πrt
, n > 0.

(4.23)

The displacement and stress fields of the double-deck tunnel are detailed in the next

subsection.

4.1.3 Coupling both systems

As was mentioned in Chapter 3, the interaction between the tunnel walls and the interior

floor of a double-deck tunnel depends on the construction method used to build it. When

the interior floor is a separate precast slab structure supported on the tunnel walls simply

supported connections at both edges of the interior floor are considered (see Fig. 4.1).

Omitting the terms eiωt, the coupling conditions of the plain-strain case can be expressed
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as
Wp(0) = −Uθ(rt, 0), Wp(Lp) = Uθ(rt, π),

F p1 = −F t1θ, F p2 = −F t2θ.
(4.24)

The related deflections and displacements can be written in terms of the subsystems

receptances as

Wp(0) = −α11F
p
1 − α12F

p
2 + α14F

p
4 ,

Wp(Lp) = −α21F
p
1 − α22F

p
2 + α24F

p
4 ,

Uθ(rt, 0) = β1θ,1θF
t
1θ − β1θ,2θF

t
2θ,

Uθ(rt, π) = β2θ,1θF
t
1θ − β2θ,2θF

t
2θ,

(4.25)

where the signs are defined by the positive directions defined in each subsystem.

The coupling loads are obtained inserting Eq. (4.25) into Eq. (4.24). The system of

equations obtained is−(β1θ,1θ + α11) −α12 + β1θ,2θ

−α21 + β2θ,1θ −(α22 + β2θ,2θ)

F t1θ
F t2θ

 =

α14

α24

F p4 . (4.26)

The required plate receptances, calculated using Eq. (4.12), are

α14 =
∞∑
n=1

Wn(0)Wn(y4)Bn, α24 =
∞∑
n=1

Wn(y4)Wn(Lp)Bn,

α11 =
∞∑
n=1

Wn(0)2Bn, α12 =
∞∑
n=1

Wn(0)Wn(Lp)Bn.

(4.27)

Some considerations can be used to avoid unnecessary calculations. First, because the

plate eigenmodes are symmetric or antisymmetric, α11 = α22. Second, due to the

Maxwell reciprocity principle, α12 = α21. And finally, if y4 = Lp/2, only symmetric

modes are excited and α14 = α24.

For the PiP model, the required receptances are obtained substituting Eqs. (4.22) and

(4.23) into the tangential component of Eq. (4.16), obtaining

β1θ,1θ = β2θ,2θ =
1

2rtπ
ma

11,0 +
1

rtπ

∞∑
n=1

ma
11,n,

β1θ,2θ = β2θ,1θ =
1

2rtπ
ma

11,0 +
1

rtπ

∞∑
n=1

ma
11,n(−1)n.

(4.28)
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Once the coupling forces are determined, the displacement and stress fields at Line 3

can be written as

u = γ3,4ze
iωt, τ = ς3,4ze

iωt, (4.29)

where γ3,4z is the double-deck tunnel receptance at Line 3 when a load is applied at Line

4 and ς3,4z is the corresponding stress frequency response function. These functions are

given by

γ3,4z =

γ3θ,4z

γ3r,4z

 eiωt =


β3θ,1θ

β3r,1θ

F t1θ −

β3θ,2θ

β3r,2θ

F t42θ

 eiωt (4.30)

and

ς3,4z =

ς3rθ,4z
ς3rr,4z

 eiωt =


ε3rθ,1θ

ε3rr,1θ

F t1θ −

ε3rθ,2θ

ε3rr,2θ

F t2θ

 eiωt. (4.31)

4.2 Power flow calculations

The mean local power flow P at a certain point of the soil is defined as [89]

P =
1

T0

∫ T0

0
{Re[vr(t)]Re[τrr(t)] + Re[vθ(t)]Re[τrθ(t)]}dt, (4.32)

where T0 is the integration time and where plane strain conditions have been assumed

again. The radial and tangential velocities of the considered point, vr(t) and vθ(t), are

obtained differentiating the first of Eq. (D.48):

v =

vθ
vr

 = iω

Uθ
Ur

 eiωt. (4.33)

Substituting the second one of Eq. (D.48) and Eq. (4.33) into Eq. (4.32) and separating

the power flow into a radial component Pr and a tangential component Pθ, Eq. (4.32)

can be written as

P = Pθ + Pr =

1

T0

∫ T0

0

{
Re
[
iωUθe

iωt
]

Re
[
Tθe

iωt
]

+ Re
[
iωUre

iωt
]

Re
[
Tre

iωt
]}

dt.

(4.34)
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For the double-deck tunnel, using Eqs. (4.30) and (4.31), the previous equation can be

split into

Pr =
1

T0

∫ T0

0
Re[iωγ3r,4ze

iωt]Re[ς3rr,4ze
iωt]dt,

Pθ =
1

T0

∫ T0

0
Re[iωγ3θ,4ze

iωt]Re[ς3rθ,4ze
iωt]dt.

(4.35)

Operating, Eq. (4.35) reduces to

Pr = − ω

T0(2π)2

∫ T0
0 {Im

[
γ3r,4z

]
Re
[
ς3rr,4z

]
cos2(ωt)

−Im
[
ς3rr,4z

]
Re
[
γ3r,4z

]
sin2(ωt)

+
(

Re
[
γ3r,4z

]
Re
[
ς3rr,4z

]
− Im

[
γ3r,4z

]
Im
[
ς3rr,4z

])
sin(ωt) cos(ωt)}dt

(4.36)

and an equivalent expression for Pθ. If the integration time is chosen to be a positive

integer number of times n the period of the harmonic load, then

T0 = nT =
2πn

ω
, n > 0

and, integrating Eq. (4.36) for both components of the power flow and adding them,

the following result is obtained

P =
ω

2
{Re[γ3θ,4z]Im[ς3rθ,4z]− Im[γ3θ,4z]Re[ς3rθ,4z]

+ Re[γ3r,4z]Im[ς3rr,4z]− Im[γ3r,4z]Re[ς3rr,4z]}.

(4.37)

Finally, the mean power flow P̃ radiated through a circular section defined by angles θ1

and θ2 and radius r0 is obtained integrating Eq. (4.37). The resulting expression is

P̃ (θ1, θ2) =
ω

2

∫ θ2
θ1
{Re[γ3θ,4z]Im[ς3rθ,4z]− Im[γ3θ,4z]Re[ς3rθ,4z]

+Re[γ3r,4z]Im[ς3rr,4z]− Im[γ3r,4z]Re[ς3rr,4z]}r0dθ.

(4.38)

The previous development is also valid for the simple tunnel case with a radial load

applied on its bottom just replacing the receptances γ3r,4z, γ3θ,4z by β3r,4r and β3θ,4r

and the stresses responses ς3rr,4z and ς3rθ,4z by ε3rr,4r and ε3rθ,4r.
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Fig. 4.4: Mean upwards power flow comparison between a simple tunnel and a double-
deck tunnel with the load applied at the middle point of the interior floor. Results are

plotted for r = 10 m.

4.3 Numerical results and discussion

Because the frequency range of interest in building response to train-induced vibrations

is 1-80 Hz [76], the forced response of the plate is calculated using the eigenmodes found

between 0 and 400 Hz. The same consideration has been made for the ring modes of the

tunnel-soil structure. Also, because the inverted matrices in Eq. (D.51) are usually badly

conditioned, an LU decomposition of them is performed to avoid numerical problems.

The mechanical parameters used for the interior floor, the tunnel and the soil models

are detailed in Tables 3.1, 3.2 and 3.3 respectively.

In Fig. 4.4 a comparison between the power flow radiated through the upper half of a 10

m radius circumference for both types of tunnels is presented. Both cases are calculated

using Eq. (4.32), taking into account that θ
′
1 = π/2 and θ

′
2 = 3π/2 for the simple tunnel

and θ1 = 0 and θ2 = π for the double-deck tunnel. The line load is applied at the

centre of the plate, y4 = 5.45 m. The calculations are done with a frequency resolution

of ∆f = 0.25 Hz from 1 to 200 Hz. As has been stated by Hussein and Hunt [89],

when no wave reflection is considered, the upwards power flow is the one received by

surface buildings. With the considered assumptions, the results clearly indicate that, for

certain frequency ranges, the mean power flow radiated by double-deck tunnel reaches

much higher values than the one radiated by the simple tunnel. As detailed in Table 4.1,

the radiation peaks appear at frequencies close to those of the transverse eigenmodes of a

strip plate with simple supported (SS) edges. This result can be understood considering

the limit case of a tunnel-soil system much more rigid than the plate; In this case, the

boundary conditions considered at the edges of the plate become the ones of the SS case,
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Peak/Mode number Frequency [Hz] SS-SS eigenfrequency [Hz]

1 4.69 4.70
2 18.90 18.81
3 42.60 42.32
4 75.99 75.25
5 119.31 117.56
6 170.11 169.31

Table 4.1: Comparison between the frequencies where the radiated power flow for a
double-deck tunnel is maximum and the transverse eigenfrequencies of a SS-SS strip

plate.

0 20 40 60 80 100 120 140 160 180 200
−100

−90

−80

−70

−60

−50

−40

−30

Frequency [Hz]

P̃
[d
B
re
f
1
W

N
−
1
]

 

 
Simple tunnel
D−d tunnel. y

p
 = 5.45 m

D−d tunnel. y
p
 = 4 m

Fig. 4.5: Mean upwards power flow of a double-deck tunnel for different positions of
the applied load. The simple tunnel case is also plotted.

which are written as

Wp

∣∣∣∣∣
yp=0,Lp

= 0,
d2Wp

dy2
p

∣∣∣∣∣
yp=0,Lp

= 0. (4.39)

This fact can be of great help in the case of a tunnel embedded in hard ground, where

the maximum radiation frequencies can be directly approximated to the roots of

sin(κnLp) = 0. (4.40)

Fig. 4.5 presents the mean power flow radiated upwards by a double-deck tunnel for

different positions of the external load. New peaks appear when the antisymmetric

modes of the plate are excited increasing the differences between the radiation behaviour

of both tunnels. The simple tunnel case is also plotted in the comparison.

Figs. 4.6 and 4.7 show the total radiated power flow for different values of the flexural
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Fig. 4.6: Comparison of mean upwards power flow for different values of the flexural
rigidity of the plate (D′) when the load is applied at yp = 5.45 m. The simple tunnel

case is also plotted.
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Fig. 4.7: Comparison of mean upwards power flow for different values of the flexural
rigidity of the plate (D′) when the load is applied at yp = 4 m. The simple tunnel case

is also plotted.

rigidity of the plate in the case when the external load is applied at the centre of the

plate (yp = 5.45 m) and when it is applied at yp = 4 m. The radiation peaks are shifted

to lower frequencies when the flexural rigidity is reduced and to higher frequencies when

it is increased.

All the previous results have been focused on the global value of the mean power flow

radiated, without considering its angular distribution. Figs. 4.8 to 4.11 show the mean

local power flow for the most significant one-third octave bands in train-induced ground

vibrations. The first comparison is done with different color scales but the other three

use the same. The results have been calculated considering a pink noise excitation, again
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with a frequency resolution of ∆f = 0.25 Hz. The angular and radial resolutions are

∆θ =
π

180
rad and ∆r = 0.25 m respectively.

In Fig. 4.8, which presents the results for the one-third octave with nominal midband

frequency of 40 Hz, the obtained double-deck tunnel radiation is several orders of mag-

nitude higher than the simple tunnel one. This result agrees with the peak frequency

of 42.60 Hz obtained in Table 4.1 for the total radiated power flow. The differences

between both tunnels are much smaller for the other one-third octave bands considered.

In Fig. 4.9, the energy radiated by the double-deck tunnel is slightly higher than the

one radiated by the simple tunnel while in Figs. 4.10 and 4.11 the simple tunnel radiates

more energy than the double-deck one. Clear differences between the radiation patterns

of both tunnels are observed in all the one-third octave bands studied. The most im-

portant of them refers to the amount of energy radiated vertically in each case. For the

simple tunnel, the highest values of local power flow are mainly obtained at positions

where |xt| > yt. The opposite is found in the double-deck tunnel, where an important

fraction of the vibration energy is radiated towards the vertical direction. Another phe-

nomena seen in Fig. 4.10 and especially in Fig. 4.11 is the tunnel shadowing of the

vibration radiated upwards in the simple tunnel case. This phenomena can also be seen

in the double-deck tunnel radiation patterns presented in Figs. 4.8 and 4.9. However,

the decay of the local power flow values in these cases is much more moderate than the

one found in the simple tunnel.
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Fig. 4.8: Mean local power flow radiated upwards for the one-third octave with nominal
midband frequency of 40 Hz. (a) Results for a double-deck tunnel. (b) Results for a

simple tunnel. Different color scales are used.
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Fig. 4.9: Mean local power flow radiated upwards for the one-third octave with nominal
midband frequency of 50 Hz. (a) Results for a double-deck tunnel. (b) Results for a

simple tunnel.
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Fig. 4.10: Mean local power flow radiated upwards for the one-third octave with
nominal midband frequency of 63 Hz. (a) Results for a double-deck tunnel. (b) Results

for a simple tunnel.
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Fig. 4.11: Mean local power flow radiated upwards for the one-third octave with
nominal midband frequency of 80 Hz. (a) Results for a double-deck tunnel. (b) Results

for a simple tunnel.
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4.4 Conclusions

An analytical model is presented for a double-deck circular tunnel under plane strain

conditions. The receptance method has been used to obtain the forced response of the

system to a harmonic line load. Classical thin plate theory is used to describe the

dynamics of the plate and the two dimensional PiP formulation is considered for the

tunnel and soil behaviours. The effects of changing the load position and of modifying

the flexural rigidity of the plate are also studied. In the case of a stiff ground, a good

approximation of the frequencies of maximum radiation is also proposed.

The mean power flow radiated by a double-deck tunnel is compared to the one radiated

by a simple tunnel. Clear differences between their radiation magnitudes and patterns

has been found. The ratio between the energy (or power) radiated upwards by the struc-

tures clearly depends on the excitation frequency considered. It has been found that,

when this frequency is close to any of the transversal eigenfrequencies of the interior

floor, the power radiated by the double-deck tunnel structure is several orders of mag-

nitude higher than the one radiated by a simple tunnel. For frequencies far from any of

these eigenfrequencies, this ratio is inverted, becoming the energy radiated by a simple

tunnel slightly higher. From the radiation patterns of both tunnels, it is also concluded

that the amount of energy directed vertically is much bigger for the double-deck tunnel

case.

The presented method and a very similar comparison between the power flow radiated

by a simple and by a double-deck tunnel have been recently published in [106].





Chapter 5

An energy flow study of a

double-deck tunnel

This chapter presents an energy flow study of a double-deck tunnel structure excited by

a static load moving at a constant speed. This type of excitation, known as quasi-static

excitation, is the main source of ground-borne vibration in high speed trains [60, 61].

The chapter is divided into three sections. The first section derives the response of a

generic tunnel model to a quasi static moving load, formulated in the stationary frame.

The second section describes the proposed energy flow calculation, which considers the

amount of energy that crosses a certain surface during the load circulation. Finally, the

third section presents a numerical comparison between the energy radiated by a double-

deck tunnel and the one radiated by a simple tunnel. The obtained results include the

frequency content of the soil response, the total energy radiated upwards for a wide

range of load speeds and the energy flow distribution for two types of soils. Important

differences between the energy radiated by both structures are mainly found when the

load circulates at very high speeds.

5.1 Response to a moving load

This section is devoted to obtain the displacement and stress fields caused by a unitary

static load moving at a constant speed vt. Assuming that the load is moving in the

positive x-direction and that at a time t = 0 s its position is x = 0 m, it can be

expressed as

p(x, t) = δ(x− vtt). (5.1)

69
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For obtaining the tunnel response to this type of excitation, the load is transformed

to the wavenumber-frequency domain. Instead of assuming a harmonic motion (as was

done in Chapters 3 and 4), a Fourier transform of the form presented in Eq. (A.1) is

applied to Eq. (5.1). The resulting expression is

P (x, ω) =
1

vt
e
−iωx

vt . (5.2)

Now, applying Eq. (A.3) to Eq (5.2), the load in the frequency-wavenumber domain is

finally given by

P̄ (kx, ω) =
1

vt
δ

(
kx −

ω

vt

)
. (5.3)

In the frequency-wavenumber domain, the response of the tunnel is directly obtained

by multiplying Eq. (5.3) by the response of the tunnel to a harmonic point load. The

displacement field Ū caused by the static moving load can be expressed as

Ū(kx, ω) = H̄u (kx, ω)
1

vt
δ

(
kx −

ω

vt

)
(5.4)

where H̄u is the displacement field generated by a harmonic point load.

To obtain the displacement field in the space-time domain, Eq. (5.4) has to be properly

antitransformed. First, the displacement in the space-frequency domain is obtained

applying Eq. (A.4) to Eq. (5.4). Using the properties of the Dirac’s delta, the result

can be written as

U(x, ω) =
1

(2π)

1

vt
H̄u

(
ω

vt
, ω

)
e
−i

(
ωx
vt

)
. (5.5)

The displacement field in the space-time domain is obtained applying Eq. (A.2) to Eq.

(5.5), which gives the following result

u(x, t) =
1

(2π)2vt

∫ ∞
−∞

H̄u

(
ω

vt
, ω

)
eiωt′dω, (5.6)

where t′ = t− x

vt
.

As Xing and Price [107] expose, in a power/energy flow analysis, the obtained results

must be measurable quantities. Due to this, in the power flow definition only the real

part of the velocity of vibration and stress have to be considered, because they are the

ones carrying their physical meaning. Taking this requirement into account, the velocity

of vibration field, which is directly obtained from the displacement field by derivation,

should be written as

v(x, t) = Re
[
u̇(x, t)

]
=

1

(2π)2vt
Re

[∫ ∞
−∞

iωH̄u

(
ω

vt
, ω

)
eiωt′dω

]
. (5.7)
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The stress field, which is obtained following the steps previously performed for the

displacement field, can be written as

τ (x, t) =
1

(2π)2vt
Re

[∫ ∞
−∞

H̄τ

(
ω

vt
, ω

)
eiωt′dω

]
, (5.8)

where H̄τ is the stress response of the system to a harmonic point load. As in the case

of the displacement and velocity of vibration fields, this expression is not restricted to a

particular tunnel model.

5.2 Energy flow calculation

The circulation of a static load along a tunnel generates a transient response on the

soil. It is due to the nature of this response that a power flow calculation like the one

presented in Chapter 4 is replaced in this chapter by an energy flow calculation.

The energy flow E that crosses a certain surface S during the load circulation is expressed

as

E =

∫ ∞
−∞

P̃ (t)dt, (5.9)

where P̃ (t) is the power flow radiated across the surface and is given by

P̃ (t) =

∫
S
P (x, θ, t)dS =

∫
S

v(x, θ, t) · τ (x, θ, t)dS. (5.10)

Because the tunnel is assumed to be embedded in a full-space, no wave reflections are

considered and the only radiation of interest is the one propagating upwards [89]. With

this in mind, the chosen surface of integration is the cylindrical surface plotted with

wider lines in Fig 5.1. The proposed surface is defined by the measuring radius rm, the

space resolution ∆x and the angles θ1 and θ2, which will depend on the considered origin

of the angular coordinate, but will obey that θ2 − θ1 = π rad. Substituting Eq. (5.10)

into Eq. (5.9), the total energy radiated across the surface can be written as

E =

∫ x2

x1

dx

∫ θ2

θ1

rmdθ

∫ ∞
−∞

P (x, θ, t)dt, (5.11)

where x1 = xm −
∆x

2
and x2 = xm −

∆x

2
.

Some considerations are used in order to simplify the previous calculation. Because

the width of the considered surface in the load moving direction is equal to the chosen

numerical resolution ∆x (see Appendix A), the integral of the energy radiated in the
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Fig. 5.1: Integration surface chosen for the proposed energy flow calculation.

x-direction is simply given by the multiplication of the radiated energy at x = xm by

∆x. Also, because the system is infinite in the x-direction, the energy radiated across

the proposed surface is independent of the cross-section xm considered and the results

are obtained at a cross-section xm = 0 for simplicity. Using both properties, the energy

radiated across the defined surface can be written as

E = r0 ∆x

∫ θ2

θ1

∫ ∞
−∞

v(0, θ, t) · τ (0, θ, t)dtdθ, (5.12)

where

v(0, θ, t) =
1

(2π)2vt
Re

[∫ ∞
−∞

iωH̄u

(
ω

vt
, ω

)
eiωtdω

]
(5.13)

and

τ (0, θ, t) =
1

(2π)2vt
Re

[∫ ∞
−∞

H̄τ

(
ω

vt
, ω

)
eiωtdω

]
. (5.14)

In both results it has been used that t′ = t for the considered cross-section.

5.3 Numerical results

This section presents a comparison between the energy radiated by the double-deck

tunnel presented in Chapter 3 and the one radiated by a simple tunnel. Before obtaining

the energy flow results, the frequency content of both tunnel responses is presented. The

comparison of the energy radiated for a wide range of load speeds and the energy flow
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distribution on the surrounding ground generated by both types of tunnels are also

plotted and discussed.

5.3.1 Frequency spectra

This subsection presents the frequency content of the velocity of vibration and stress

fields of a point of the soil for different values of the load speed. These frequency

distributions are the transformed expressions of v and τ , which need to be calculated

to obtain, using Eq. (5.12), the energy flow radiated by the structure under the action

of a static moving load. This load is applied at the bottom of the simple tunnel and

centre of the interior floor floor of the double-deck tunnel.

The frequency spectra of the soil’s velocity of vibration and stress for load speeds of 40,

80 and 200 m s−1 are shown in Figs. 5.2 to 5.4. The third speed can’t be considered

as a realistic speed for a train circulating in a tunnel but it is also studied in order to

understand the dynamical response of the systems. The results are obtained at rm = 10

m and at θ
′

= π rad for the simple tunnel and θ = π/2 rad for de double-deck tunnel

(The results are obtained in the same position of the soil but different angular coordinate

origins are used in both tunnels, as can be seen in Figs. 4.1 and 4.3). The numerical

results are computed considering a frequency resolution ∆f = 0.05 Hz with a sampling

frequency fs = 200 Hz for the two firsts speeds and fs = 400 Hz for the third one. To

ensure the obtention of accurate results (see Section 3.6.2), Nr = 20 ring modes and a

truncation frequency ft = 4800 Hz have been used. The interior floor, tunnel and soil

properties used are those presented in Tables 3.1, 3.2 and 3.3.

In each figure, subplots (a) and (b) are the velocity of vibration and stress fields for the

simple tunnel while subplots (c) and (d) are the same fields for the double-deck tunnel.

Both fields are separated into their components but, due to the system symmetries in

the chosen point of calculation, only the radial and tangential displacements are not

null.

As can be seen from the figures, the higher the load speed is the wider the range of

significant frequencies becomes. The soil response when the load speed is 40 m s−1 is

almost negligible over 5 Hz for both tunnels. When the load moves at 80 m s−1, their

response is significant up to values around 10 Hz. Finally, for a load speed of 200 m s−1,

while the double-deck tunnel response is almost zero over 30 Hz, the simple tunnel shows

a much more smooth decay than in the previous cases (see Fig 5.5). Despite this, the loss

of accuracy caused by considering a sampling frequency of 200 Hz is negligible, at least

for the calculations performed in this chapter. If very accurate results are desired, the
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Fig. 5.2: Soil’s velocity of vibration and stress fields at rm = 10 m and θ
′

= π rad or
θ = π/2 rad for a simple and for a double-deck tunnel (subplots (a)-(b) and (c)-(d),
respectively) when the moving load speed is 40 m s−1. Only the axial (continuous line)

and radial (dotted line) components of the fields are not null.
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Fig. 5.3: Soil’s velocity of vibration and stress fields at rm = 10 m and θ
′

= π rad or
θ = π/2 rad for a simple and for a double-deck tunnel (subplots (a)-(b) and (c)-(d),
respectively) when the moving load speed is 80 m s−1. Only the axial (continuous line)

and radial (dotted line) components of the fields are not null.
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Fig. 5.4: Soil’s velocity of vibration and stress fields at rm = 10 m and θ
′

= π rad or
θ = π/2 rad for a simple and for a double-deck tunnel (subplots (a)-(b) and (c)-(d),
respectively) when the moving load speed is 200 m s−1. Only the axial (continuous

line) and radial (dotted line) components of the fields are not null.
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Fig. 5.5: Soil’s velocity of vibration and stress fields at rm = 10 m and θ
′

= π rad
for a simple tunnel when the moving load speed is 200 m s−1. Results are plotted up
to 200 Hz. Only the axial (continuous line) and radial (dotted line) components of the

fields are not null.

response at higher excitation frequencies has to be taken into account but, if a higher

sampling frequency is considered, the previously defined values of Nr and ft may no

longer ensure the convergence of the results.

5.3.2 Power flow results

Fig. 5.6 shows a comparison between the power flow P̃ radiated by a simple and a double-

deck tunnels for the same load speeds previously considered. The result is obtained at

rm = 10 m and considering a space resolution ∆x = 1 m. For the simple tunnel θ
′
1 = π/2

rad and θ
′
2 = 3π/2 rad and for the double-deck tunnel θ1 = 0 rad and θ2 = π rad. Again,
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Fig. 5.6: Comparison of the power flow radiated upwards by a simple tunnel (subplots
(a),(c) and (e)) and a double-deck tunnel (subplots (b),(d) and (f)) at rm = 10m.
Results are obtained for three different load speeds: 40 m s−1 (subplots (a) and (b)),

80 m s−1 (subplots (c) and (d)) and 200 m s−1 (subplots (e) and (f)).

the calculations have been performed considering ∆f = 0.05 Hz, fs = 200 Hz, Nr = 20

and ft = 4800 Hz. With the chosen frequency resolution ∆f = 0.05 Hz, the response

of the soil is obtained for t ∈ [−10, 10] s. However, as can be seen in the six subfigures,

because of the transient nature of the excitation, the soil response is only significant in

a small time interval around t = 0 s and the results are only plotted in the range [−1, 1]

s.

Two numerical considerations are done when the velocity of vibration and stress fields

V and T are antitransformed to the time domain. One, the velocity of vibration and

stress fields at ω = 0 are not calculated but defined as zero. Because of the term iω of

Eq. (5.13), this definition has no change on the results and allows to avoid the numerical

instabilities found in this case. The other, because the velocity of vibration and stress

fields defined in Eq. (5.13) and (5.14) must be real valued, its frequency spectra obeys

that F (−ω) = F ∗(ω), where the asterisk means complex conjugate. Using this property,

the calculation of negative frequencies is unnecessary.

Comparing the obtained power flow of both tunnels it is found that, while the dynamic
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response of both tunnels is very similar for load speeds of 40 and 80 m s−1, clear dif-

ferences between the power flow magnitude and the shape of the response are obtained

for a load speed of 200 m s−1. It seems that, at this unrealistic speed, the interaction of

the interior floor and the tunnel causes a heavy increase of the power radiated upwards.

This effect is properly studied in the next subsection.

5.3.3 Total energy radiated upwards

This subsection presents a comparison between the total energy radiated upwards by

both tunnel structures for a wide range of load speeds. The results are obtained com-

puting Eq. (5.12) for load speeds between 25 and 250 m s−1 with a resolution ∆vt = 2.5

m s−1. All the results are obtained considering a sampling frequency fs = 200 Hz with

a frequency resolution ∆f = 0.05 Hz, which ensures enough precision of the results for

the whole set of speeds. Nr = 20 samples, ft = 4800 Hz and an angular resolution

∆θ = π/60 rad has been considered in the calculations.

In Fig 5.7, a comparison between the total energy radiated by the simple and the double-

deck tunnels is presented. The mechanical parameters used are those presented in Tables

3.1, 3.2 and 3.3. The subplot (a) considers rm = 10 m while the subplot (b) rm = 50

m.

Two main behaviours found for both measuring distances should be highlighted. One,

the existence, for both tunnels, of a narrow band of speeds where the radiated energy

shows a fast increase. This narrow band is found at speeds between 135 and 145 m s−1,

values that are around the S-wave speed of the soil. The other, the heavy increase of

the radiated energy by a double-deck tunnel when the load speed is over 200 m s−1.

It appears that when the load speed becomes similar to a phase speed of the interior

floor-tunnel system, the energy radiated experiments a huge increase. These phenomena

occurs at speeds much higher from those reached by any underground train so, in the

range of realistic train speeds, the energy radiated by a double-deck tunnel in quasi-static

loading conditions is similar to that radiated by a simple tunnel. The results obtained

at rm = 50 m show again the previously described phenomena with only a decrease of

the value of the total energy radiated, mainly caused by the material damping of the

soil.

A very similar comparison is performed in Fig 5.8, where the total energy radiated

upwards for a typical Tertiary (subplot (a)) and a soft Quaternary soil (subplot (b)), is

calculated. Their mechanical properties and P- and S-wave speeds are the ones detailed

in Table 5.1. As before, a heavy increase of the total energy radiated occurs in a narrow
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Fig. 5.7: Total energy radiated upwards for different values of the load speed and
considering a simple and a double-deck tunnel. (a) Results at rm = 10 m. (b) Results

at rm = 50 m.

Parameter Tertiary soil Quaternary soil

Es 100 MPa 30 MPa
νs 0.3 0.3
ρs 1950 kg m−3 1950 kg m−3

cP 262.74 m s−1 143.91 m s−1

cS 140.44 m s−1 76.92 m s−1

Table 5.1: Mechanical parameters of the considered soils.

band of speeds that is independent of the type of tunnel considered. This increase is

now found between 70 and 80 m s−1, which is again around the S-wave phase speed

of the soil. It is also found that reaching the P-wave speed has no influence on the

radiated energy. This is particulary clear for the second type of soil, where the P-wave

speed is much lower than the maximum speed considered in the calculations. The heavy

increase of the energy radiated by the double-deck tunnel is again obtained for load
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Fig. 5.8: Total energy radiated upwards for different values of the load speed and
considering a simple and a double-deck tunnel. Two types of soil are considered: A

typical Tertiary soil (a) and a soft Quaternary soil (b).

speeds above 200 m s−1. The change of the soil properties has had almost no influence

on this phenomena.

Fig. 5.9 shows the energy radiated by a double-deck tunnel for different positions of the

static moving load. Significant differences are only obtained at high values of the load

speed.

5.3.4 Energy flow distribution

The last result presented is a comparison between the energy flow distributions obtained

for both tunnels. The comparisons are done considering a load speed of 40 and 80 m

s−1 and for the two types of soil defined in Table 5.1. The results are presented in Figs.

5.10 to 5.13. Once more, a sampling frequency of 200 Hz with ∆f = 0.05 Hz, Nr = 20

samples and ft = 4800 Hz has been considered. The results are presented from rint =
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Fig. 5.9: Total energy radiated upwards for different positions and speeds of the load.

Fig. 5.10: Energy flow distribution in a Tertiary soil when vt = 40 m s−1, (a) for a
simple tunnel and (b) for a double-deck tunnel.

Fig. 5.11: Energy flow distribution in a Tertiary soil when vt = 80 m s−1, (a) for a
simple tunnel and (b) for a double-deck tunnel.

6 m to rext = 80 m with an angular resolution ∆θ = π/60 rad and a radial resolution

∆r = 2 m. A system of coordinates xt, yt equal to the one considered in Fig. 4.1 is

defined in the considered cross-section. xt should not be confused with the x-coordinate

used along this chapter and Chapter 3.

For the Tertiary soil, where the considered load speeds are below the S-wave phase speed,
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Fig. 5.12: Energy flow distribution in a Quaternary soil when vt = 40 m s−1, (a) for
a simple tunnel and (b) for a double-deck tunnel.

Fig. 5.13: Energy flow distribution in a Quaternary soil when vt = 80 m s−1, (a) for
a simple tunnel and (b) for a double-deck tunnel. A different color scale has been used

this time.

the radiated energy distribution doesn’t exhibit significant changes when the load speed

is doubled. In contrast, for the soft Quaternary soil, the effect of approaching the S-wave

speed is clearly visible, showing an important increase of the total radiated energy in

the second load speed case. However, the obtained distributions only show important

changes in the total energy radiated, not in its distribution.

In all cases important differences are found between the radiation distribution of both

tunnels. The region found directly upwards the tunnel receives a much higher amount

of energy in the double-deck tunnel case. In the simple tunnel case, this region seems to

be more shadowed by the tunnel structure and the smallest radiation values are found

there.

5.4 Chapter conclusions

In this chapter, a comparison has been performed between the energy radiated by a

simple and a double-deck tunnel when both are excited by a static load moving at a

constant speed. The frequency spectrums of the velocity of vibration and stress fields
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generated by this type of load have been studied for different load speeds. The maximum

frequency of interest has been found to be clearly dependent of the considered load speed

but, in all cases, the obtained spectra is dominated by low frequencies. These results

have been used to define an adequate frequency sampling for the energy flow calculations.

The total energy radiated upwards by both tunnels has been determined for a wide range

of load speeds. The effects induced by the soil properties and the tunnel interior floor

have clearly been identified by considering two different type of soils. For both soils,

an increase of the radiated energy has been found when the load speed is similar to the

S-wave phase speed. Important differences between both types of tunnel are only found

for load speeds over 200 m s−1, where the energy radiated by the double-deck tunnel

is much higher than the one radiated by the simple tunnel. These load speeds are far

above those typically found in underground trains and it can be concluded that, for

typical train speeds and soil parameters, the responses of a double-deck and of a simple

tunnel to a static moving load are similar.

The energy flow distributions for both type of tunnels and soils have also been presented

for load speeds of 40 and 80 m s−1. Only the radiation magnitude of the tunnels

shows significant changes when these parameters are modified. Also, from a comparison

between the radiation patterns of both tunnels it can be concluded that the region

that lies directly upwards of the tunnel receives a much higher amount of energy in the

double-deck tunnel case.



Chapter 6

Complete track-tunnel-soil model

In this chapter, a superstructure model is coupled to the upper deck of the double-deck

tunnel model presented in Chapter 3. With this, a complete track-tunnel-soil model for

a double-deck circular tunnel embedded in a full-space is obtained. The superstructure

model considered is presented in the first section and coupled to the tunnel’s interior

floor in the second. The analytical formulation of the complete track-tunnel-soil model

is finally presented in the third section. The proposed model uses again the receptance

method [19] and separates the global structure into the track-interior floor system and

the tunnel-soil system.

6.1 Superstructure model

The superstructure modelled in this work is the one that has been implemented in Line 9

of Barcelona Underground System, where, as can be seen in Fig. 6.1, the rails are fixed

to the interior floor of the double-deck tunnel by means of Direct Fixation Fasteners

(DFF).

Both rails are modelled as Bernoulli-Euler beams of infinite extent in the train circulating

direction. Knothe and Grassie [64] determined that this is an adequate beam model for

the range of frequencies studied in this work [74]. The DFF are modelled as a continuous

massless distribution of springs and dashpots with a stiffness per unit of length kF and

a viscous damping per unit of length cF , respectively.

83
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Fig. 6.1: Direct Fixation Fasteners (DFF) used in Line 9 of Barcelona Underground
System.

A scheme of the proposed model and the chosen Cartesian system of coordinates are

presented in Fig. 6.2.

Rails
wr1(2)

xz

wp kF,cF Fasteners
Interior floor

p

r1 wr2

yz p p

kF,cF kF,cF

dr

Rails
Fasteners

Interior floor

w

Fig. 6.2: Considered model for the rails fixed at the interior floor.

The positions where the rails are coupled to the interior floor are named y1 and y2

respectively. The rails are not necessarily centered in the middle of the plate but its

separation is given by dr = y2 − y1. It is assumed that only vertical loads are applied

on the rails so, because in the beam model considered the vertical equation of motion is
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uncoupled from the horizontal and axial ones, only vertical displacements (deflections)

are considered. These deflections are described by wr1 and wr2 respectively.

The equation of motion of both rails can be written as

ErIr
∂4wri
∂x4

+ ρrSr
∂2wri
∂t2

+ kF
[
wri − wp(yi)

]
+

cF

(
∂wri
∂t
− ∂wp(yi)

∂t

)
= pi(x, t), i = 1, 2,

(6.1)

where Er is the Young’s modulus of the rail, Ir is its second moment of area, ρr is its

density and Sr is its cross-sectional area. wp(yi) are the deflections of the interior floor at

the rails’ positions and pi(x, t) are the applied loads on the rails (usually, the wheel-rail

interaction forces).

Considering harmonic motion and applying Eq. (A.3), Eq. (6.1) takes the form(
ErIrk

4
x − ρrSrω2 + kF + iωcF

)
W̄ri − (iωcF + kF ) W̄p(yi) = P̄i, (6.2)

where the notation defined in Section 3.1 has been used.

The loss of energy in the rails caused by microstructural friction mechanics is modelled

assuming a complex valued Young’s modulus E∗r of the form

E∗r = Er (1 + iηE) , (6.3)

where ηE is the rail loss factor. In the same way, hysteretic damping is also considered

in the fasteners by assuming a complex valued stiffness k∗F of the form

k∗F = kF (1 + iηF ) , (6.4)

being ηF the fastener loss factor. With this last definition, hysteretic or viscous damping

can be used in the superstructure model.

6.2 Track-interior floor model

The coupling between the superstructure model described in Section 6.1 and the interior

floor model presented in Section 3.3 is performed in the wavenumber-frequency domain.

A general and a simplified coupling models are proposed. An alternative coupling model

between an infinite plate and a track has been presented by Otero [1].
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6.2.1 General rail coupling

When the rails are excited by external loads, the interior floor of the double-deck tunnel

is also excited by rail-interior floor coupling loads, which can be expressed as

p(x, yp, t) = (k∗F + iωcF )

2∑
i=1

δ(yp − yi)
[
wri(x, t)− wpi(x, t)

]
, (6.5)

where wpi(x, t) = wp(x, yi, t).

Assuming harmonic motion and applying Eq. (A.3) to Eq. (6.5), the wavenumber

distribution of the applied load can be written as

P̄ (yp) = (k∗F + iωcF )
2∑
i=1

δ(yp − yi)[W̄ri − W̄p(yi)] (6.6)

and the load coefficients pn, defined in Eq. (3.26), becomes

pn =
k∗F + iωcF

Cn

2∑
i=1

[
W̄ri − W̄pi

]
W̄n(yi). (6.7)

The interior floor deflection can be obtained by substituting Eq. (6.7) into Eq. (3.31).

The resulting expression is

W̄p(yp) =
2∑
i=1

[
W̄ri − W̄pi

]
Ii(yp), (6.8)

where

Ii(yp) =
(
k∗F + iωcF

) ∞∑
n=1

W̄n(yp)W̄n(yi)e
iφn

Cnρphp
√

(ω2
n − ω2)2 + ω4

nη
2
p

. (6.9)

In Eq. (6.8) the deflection of the interior floor at an arbitrary position yp is related

to its deflection at the position of both rails. The equations obtained considering the

particular cases yp = y1 and yp = y2 are

W̄r1I1(y1)− W̄p1

[
1 + I1(y1)

]
+ W̄r2I2(y1)− W̄p2I2(y1) = 0,

W̄r1I1(y2)− W̄p1I1(y2) + W̄r2I2(y2)− W̄p2

[
1 + I2(y2)

]
= 0.

(6.10)

The unknown deflections can be obtained combining Eq. (6.10) with the equation of

motion of both rails (Eq. (6.2) for i = 1 and i = 2). The system of equations obtained
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is 
Ω 0 −(iωcF + k∗F ) 0

0 Ω 0 −(iωcF + k∗F )

I1(y1) I2(y1) −(1 + I1(y1)) −I2(y1)

I1(y2) I2(y2) −I1(y2) −(1 + I1(y2))




W̄r1

W̄r2

W̄p1

W̄p2

 =


P̄1

P̄2

0

0

 , (6.11)

where

Ω = E∗r Irk
4
x − ρrSrω2 + iωcF + k∗F .

The deflections of both rails in the wavenumber domain are directly obtained from Eq.

(6.11).

The developed track-interior floor model can be used to study the coupling between both

rails. This study is performed comparing two responses: One, the response of a rail to

a harmonic point load applied on it. The other, the response of this rail to a harmonic

point load applied on the other rail. Following the receptance definitions used during

this work and considering that the rails are positioned at Lines 4 and 5 (see Fig 6.3),

the previous receptances are defined as αr-p
44 and αr-p

45 , respectively.

4

2

1 2

5

1

Fig. 6.3: Edge and rails positions for the general rail-plate coupling.

For both cases, it has been considered that the interior floor is simply supported at both

edges, which is a good approximation when the tunnel is embedded in a hard ground.

The mechanical parameters used for the rail and fasteners are presented in Table 6.1.

The ones used for the interior floor model are those presented in Table 3.1. Hysteretic

damping is considered for the fasteners.

The results have been calculated considering N = 8192 samples with a space resolution

∆x = 0.5 m. Good precision has been obtained taking a truncation frequency ft = 4800

Hz. To ensure that Eq. 6.11 is properly solved, an LU decomposition is performed.

Results are presented from 1 to 200 Hz with a frequency resolution ∆f = 0.5 Hz.

Fig. 6.4 presents the receptances αr-p
44 and αr-p

45 for two different cross-sections: xm = 0

m and xm = 20 m. The results in the first cross-section show a weak coupling between
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Parameter Value

Sr 6.93 · 10−3 m2

Ir 23.5 · 10−6 m4

Er 207 · 109 Pa
ρr 7850 kg m−3

ηE 0.01
k∗F 192 · 106 N m−2

ηF 0.2

Table 6.1: Mechanical parameters used in the rail and fasteners models. Results
taken from [1].

the rails except in the region around 5 Hz, where their deflection is almost equal. At

xm = 20 m the rails deflections have a similar magnitude for almost all the considered

frequencies.
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Fig. 6.4: Comparison between the receptances αr-p
44 and αr-p

45 of the track-interior floor
system. The interior floor is assumed to be simply supported on a rigid wall. (a)

Results at xm = 0 m. (b) Results at xm = 20 m.

In Fig. 6.5, the relative rail-interior floor deflection is calculated at the same cross-

sections considered in the previous figure. From the results are xm = 0 m, it becomes

clear that deflections previously found around 5 Hz were mainly caused by the interior

floor deflection. The relative deflection of rail 2 is now much lower than the one found
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in rail 1. It can be also seen that, the frequency response of Wr1 −Wp1 at xm = 0 m

is the one expected of a single degree of freedom system. This can be justified noting

that, at this cross-section, the direct response of the beam is equal to the one found for

a lumped-mass system.
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Fig. 6.5: Comparison between the relative rail-plate displacement Wr1 −Wp1
for a

harmonic load applied at rail 1 and at rail 2. The interior floor is assumed to be simply
supported on a rigid wall. (a) Results at xm = 0 m. (b) Results at xm = 20 m.

6.2.2 Simplified rail-plate coupling

It is now assumed that when a load is applied on one of the rails the dynamic response

of the other rail can be ignored. With this, the deflection of the interior floor becomes

W̄ (yp) =
[
W̄ri − W̄pi

]
Ii(yp). (6.12)

As in the general case, considering yp = yi,

Ii(yp)W̄ri −
[
1 + Ii(yp)

]
W̄pi = 0, (6.13)
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which, combined with Eq. (6.2), gives the following system of equations Ω −(iωcF + k∗F )

Ii(yi) −
[
1 + Ii(yi)

]
W̄ri

W̄pi

 =

P̄i
0

 . (6.14)

Again, the deflection of the rail is directly obtained from Eq. (6.14) while the deflection

of the interior floor is given by substituting the results of this equation into Eq. (6.12).

6.3 Track-tunnel-soil model

A complete track-tunnel-soil model for a double-deck tunnel is obtained coupling the

superstructure-interior floor model with the PiP model. This coupling is again performed

using the receptance method [19]. The free body diagrams of both systems, ignoring

again the axial distribution of the loads, is presented in Fig. 6.6. The rails are fixed to

the interior floor at Lines 4 and 5 while the edges are again positioned at Lines 1 and 2.

For the case of the superstructure-interior floor system, external load f r-p
4 and f r-p

5 are

considered on rails 1 and 2 and coupling loads f r-p
1 and f r-p

2 are considered on edges left

and right.

4

f r-p
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f r-p
21
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Fig. 6.6: (a) Free body diagram of the tunnel-soil system. (b) Free body diagram of
the superstructure-interior floor system.

In the wavenumber-frequency domain the deflection of the interior floor is written as

W̄pi = −ᾱr-p
i1 F̄

r-p
1 − ᾱr-p

i2 F̄
r-p
2 + ᾱr-p

i4 F̄
r-p
4 + ᾱr-p

i5 F̄
r-p
5 , (6.15)

while the tunnel displacements are again given by Eq. (3.64).
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The same type of coupling conditions considered in Section 3.5 are used for this case.

They are expressed as

W̄p(0) = −Ū t1θ, F̄ r-p
1 = −F̄ t1,

W̄p(Lp) = Ū t2θ, F̄ r-p
2 = −F̄ t2.

(6.16)

The coupling loads are obtained substituting Eqs. (6.15) and (3.64) into Eq. (6.16).

The resulting system of equations is−(ᾱr-p
11 + β̄1θ,1θ) −ᾱr-p

12 + β̄1θ,2θ

−ᾱr-p
21 + β̄2θ,1θ −(ᾱr-p

22 + β̄2θ,2θ)

F̄ t1
F̄ t2

 =

ᾱr-p
14

ᾱr-p
24

 F̄ r-p
4 +

ᾱr-p
15

ᾱr-p
25

 F̄ r-p
5 . (6.17)

The receptances ᾱr-p
14 , ᾱr-p

24 , ᾱr-p
15 and ᾱr-p

25 are calculated using any of the coupling models

proposed in Section 6.2. For the calculation of the receptances ᾱr-p
11 , ᾱr-p

12 , ᾱr-p
21 and ᾱr-p

22

an additional assumption is done. Because, in these receptances, both the excitation

and the response points are points of the interior floor, they can be approximated to the

interior floor ones, so

ᾱr-p
11 ≈ ᾱ11, ᾱr-p

12 ≈ ᾱ12,

ᾱr-p
21 ≈ ᾱ21, ᾱr-p

22 ≈ ᾱ22,

(6.18)

which can be calculated using Eq. (3.41). The required PiP receptances are the ones

defined in Eq. (3.67).

Once the coupling loads are obtained, the displacement field of the tunnel-soil system is

obtained from Eq. (3.64). In the space domain, it can be expressed as

Ui =
1

2π

∫ ∞
−∞

[
γ̄ci4F̄

p
4 + γ̄ci5F̄

p
5

]
e−ikxxdkx, (6.19)

where γ̄ci4 and γ̄ci5 are the soil receptances to point loads applied at rails 1 and 2, respec-

tively.

6.4 Chapter conclusions

This chapter has presented a track-tunnel-soil model for a double-deck tunnel embedded

in a full space. A superstructure model has been proposed and coupled to the interior

floor of the tunnel and the track-interior floor structure has been used to study the degree

of coupling between both rails by comparing their response to a harmonic point load. It

has been found that these coupling is very important at certain excitation frequencies.
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The track-interior floor model has been finally coupled to the PiP model to obtain the

complete track-tunnel-soil model.



Chapter 7

Conclusions and further work

This chapter presents a summary of the main conclusions drawn in this work and also

proposes some recommendations for further research on the topic.

7.1 Conclusions

A three-dimensional analytical model of the dynamic behaviour of a double-deck circu-

lar tunnel embedded in a full-space has been developed. The model uses the receptance

method to obtain the structure response combining the responses of its interior floor

and of the tunnel-soil system separately. The interior floor has been modelled using the

classical thin plate theory while the well-established PiP model has been used for the

tunnel-soil dynamics. With this model, the prediction of vibration levels generated by

underground trains using efficient models is extended to a new type of tunnel infrastruc-

ture. Up to date, their response could only be calculated using numerical models.

In addition to the analytical formulation of the model, its numerical computation has

also been described in depth. Well-behaved expression for the problem eigenmodes

have been obtained, adequate methods for solving bad-conditioned systems have been

applied and efficient and accurate numerical integration techniques have been used.

Also, convergence studies have been performed to ensure the correctness of the obtained

results.

The obtained results clearly show the importance that has the dynamic response of

the interior floor to the vibrations generated in the soil. For the same type of loading

conditions, the vibration levels generated by the double-deck tunnel have been compared

to those caused by a simple tunnel finding significant differences .
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In order to justify the proposed coupling conditions, the interaction loads have been

compared to those obtained in a weak coupled model. Clear differences have been found

between both cases except when an unrealistically rigid ground has been considered.

Therefore, the coupling assumptions have been found to be necessary for representing

the interior floor-tunnel interactions.

A power flow calculation has been developed to perform a global comparison between the

dynamic response of a double-deck tunnel and the one of a simple tunnel. A harmonic

line load has been considered in both cases, allowing to formulate the problem in plane-

strain conditions. In addition to the power flow radiated upwards by both tunnels, their

radiation patterns have also been calculated for the most significative one-third octave

bands. The obtained results show that the ratio between the power flow radiated up-

wards by both structures clearly depends on the excitation frequency considered. When

this frequency is close to any of the transversal eigenfrequencies of the interior floor,

the power radiated by the double-deck tunnel structure is several orders of magnitude

higher than the one radiated by a simple tunnel. Also, the amount of energy directed

vertically is much bigger for the double-deck tunnel case. In addition to the previous

results, the effects of changing the load position and of modifying the flexural rigidity

of the plate have been also studied. In the case of a stiff ground, a good approximation

of the frequencies of maximum power flow has been proposed.

A comparison has been performed between the radiated energy by a simple tunnel and

by a double-deck tunnel excited with a static moving load. It has been found that the

frequency spectrums of the velocity of vibration and stress fields are clearly dependent of

the considered load speed. The total energy radiated upwards by both tunnels have been

determined for a wide range of speeds. The effect of the soil properties and of the tunnel

interior floor have been identified by considering two different type of soils in addition

to the two different types of tunnels. An important increase of the radiated energy

has been found when the load speed is similar to the S-wave phase speed. Important

differences between the energy radiated by both tunnels are only found for load speeds

over 200 m s−1, where the energy radiated by the double-deck tunnel has a much higher

value than the one radiated by the simple tunnel. The response of a double-deck tunnel

to a load moving at typical train speeds is very similar to the one obtained for a simple

tunnel. From a local energy flow computation it has been concluded that the differences

between the radiation patterns of both tunnels are not significantly affected by changes

in the load speed or soil stiffness.

A superstructure model has been also coupled to the interior floor in order to obtain a

complete superstructure-tunnel-soil model. The superstructure has been firstly coupled



Chapter 7.Conclusions and further work 95

to the interior floor and the coupling between both rails has been studied. The track-

interior floor model has been coupled to the PiP model to obtain the complete track-

tunnel-soil model for a double-deck tunnel.

7.2 Further work recommendations

The point where the presented work finishes can also be the starting point for new

interesting researches and improvements of the presented model. Some of them are

mentioned here with recommendations that may be interesting to follow.

Geometry of the interior floor

The proposed model considers the interior floor as an infinite thin plate of constant

thickness but, in real cases, double-deck tunnels won’t necessarily obey this assumption

(see Fig. 1.1). However, an equivalent thin plate model can be considered for most of the

interior floor structures, allowing to use the described model once the former is obtained.

Another consideration that can be studied is the validity of the contact assumption

between the interior floor and the tunnel structure. The assumed hypothesis can be

improved by considering that the coupling loads obtained are not point loads applied

on the tunnel but a have a certain angular distribution along the tunnel wall. It is

expected that, the wider the interior floor-tunnel wall contact surface is the worse the

point-contact hypothesis becomes.

Coupling conditions

The coupling conditions between the interior floor and the tunnel assumed in this work

are equivalent to consider the interior floor simply supported on the walls of the tunnel. A

pinned connection between the interior floor and the tunnel wall is a realistic hypothesis

when the interior floor is a separate precast slab structure supported on the tunnel

walls. For a different construction method of the double-deck tunnel structure, the

real interaction between these parts may require to consider more complex coupling

conditions. One type of improvement would be to add moments or/and inplane loads in

the coupling assumptions and compare their effect on the soil response. Better knowledge

on the real interaction between both systems could also be gained by measuring the

response of a double-deck tunnel to an applied known load.
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Soil model

In the present work, the double-deck tunnel is considered to be deeply buried in a

homogeneous infinite media. Under this assumption, the soil can be considered as a

full-space and surface results could be obtained by adding 6 dB to the former [93]. In a

shallow tunnel case or in the case of considering a layered half-space, other formulations

of the soil must be considered [92, 94]. The interaction of a double-deck tunnel structure

with this new soil models may predict new dynamic responses that should be properly

studied.

Experimental validation

A complete vehicle-superstructure-tunnel model will be obtained if a vehicle model is

coupled to the double-deck tunnel model proposed in this work. This coupled model can

be then validated by comparing the results predicted with experimental results from a

train passage.



Appendix A

Fourier transforms and series

This appendix presents the definitions of the Fourier transforms and series used in this

work and a brief description of how the defined Fourier antitransforms are numerically

integrated.

A.1 Fourier transform

As Grundmann and Trommer discussed [108], when the Integral Transform Method

can be applied to a problem, not only efficient solutions are obtained but a deeper

understanding of the physical nature of the problem is gained. This is the case of the

dynamical system considered where, with the application of a double Fourier transform,

the problem is transformed from the space-time domain to the wavenumber-frequency

domain and its solution can be easily obtained. Once the transformed solution is known,

the proper Fourier antitransform allows to obtain the solution of the problem in the

original domain.

In the next subsections, the considered definition of these Fourier transforms is presented

together with its numerical treatment.

A.1.1 Definitions

A dynamical magnitude f(x, t) defined in the space-time domain is transformed to the

space-frequency domain applying the following Fourier transform

F (x, ω) =

∫ ∞
−∞

f(x, t)e−iωtdt. (A.1)
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The corresponding Fourier antitransform, which transforms F (x, ω) back to the space-

time domain is given by

f(x, t) =
1

2π

∫ ∞
−∞

F (x, ω)eiωtdω. (A.2)

In the same way, a dynamical magnitude F (x, ω) defined in the space-frequency do-

main is transformed to the wavenumber-frequency domain applying the following Fourier

transform

F̄ (kx, ω) =

∫ ∞
−∞

F (x, ω)eikxxdx. (A.3)

The corresponding Fourier antitransform, which transforms F̄ (kx, ω) back to the space-

frequency domain is given by

F (x, ω) =
1

2π

∫ ∞
−∞

F̄ (kx, ω)e−ikxxdkx. (A.4)

When these integral transforms are applied to the system of partial differential equations

that describe the dynamics of the problem, this system is reduced to one composed of

ordinary differential equation or algebraic equations. The same set of equations are

obtained if, instead of applying the previous Fourier transforms, the following type of

solution is considered

f(x, t, . . . ) = F (x, . . . )eiωt = F̄ (. . . )ei(ωt−kxx). (A.5)

In the presented work, a combination of both methods is usually applied. Harmonic

motion is assumed and Eq. (A.3) is applied to transform the problem to the wavenumber

domain.

A.1.2 Numerical integration: The Discrete Fourier Transform (DFT)

Except for a small set of cases where closed-form solutions can be obtained, the integrals

of Eqs. (A.2) and (A.4) can only be solved using numerical integration methods. The

chosen method to perform this will depend on the type of solution desired. Regard-

less of the method used, two parameters should be properly defined in any numerical

integration: The integration limits and the integrand sampling.

A necessary condition to obtain a precise result of the Fourier antitransform is that the

chosen inferior (Linf) and superior (Lsup) integration limits ensure that

F̄ (kx) ≈ 0, kx ∈ (−∞,Linf) ∪ (Lsup,∞). (A.6)
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where the condition has been defined for Eq. A.4 but an analogous condition is required

in A.2.

Another requirement for the obtention of precise results is that the integrand has to be

correctly sampled, specially in the case when the function contains sharp peaks. If the

performed sampling is not smooth enough, the numerical integration won’t be a correct

approximation of the analytical one.

Considering again Eq. (A.4), if the results for only one position of the x-coordinate are

desired, the numerical integration of this highly oscillating function can be performed

using, for example, the Filon’s method [109]. However, when results in a considerable

number of positions is required, the use of the Discrete Fourier Transform (DFT) is

much more efficient.

The DFT defined in this work is the one used by the numerical software MATLAB. The

direct and inverse DFT are given by

F (q) = DFT[f(p)] =
N∑
p=1

f(p)e
−2πi(p−1)(q−1)

N , q = 1, ..., N (A.7)

and

f(p) = IDFT[F (q)] =
1

N

N∑
q=1

F (q)e
2πi(p−1)(q−1)

N , p = 1, ..., N, (A.8)

where N is the number of samples.

The discrete expression of Eq. (A.4) can be written as

F (xp) =

N/2−1∑
q=−N/2

F̄qe
−iq∆kxp∆x∆kx. (A.9)

where the frequency dependance has been omitted and a wavenumber sampling of the

following form has been considered

kq =

(
q − N

2

)
∆kx, q = 0, ..., N − 1. (A.10)

If the function samples are properly reordered and using that

∆x =
2π

N∆kx
, (A.11)

it can be seen that, Eq. (A.4) is obtained using the Inverse DFT and multiplying the

result by ∆x−1. An analogous conclusion is found for Eq. (A.3), which can be calculated
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using the DFT and multiplying the result by ∆x. Analogous results are found if Eq.

(A.2) is considered.

The values N∆x and N∆kx are the lengths of the space and wavenumber domains that

have been sampled so farther information is ignored in the calculations. Also, the chosen

wavenumber sampling (and its corresponding space one) have been defined considering

an even number of samples. This is done this way because the DFT is computed using

Fast Fourier Transform (FFT) algorithm [110], which is more efficient if N is a power

of 2. In order to improve the efficiency of the FFT for the cases where the integrands

present a smooth decay, some authors have proposed the use of a logarithmic change of

variable [111]. Algorithms for performing a FFT with unequally spaced data have also

been proposed [112, 113].

A.2 Fourier series

A function f(t) is a periodic function if f(t) = f(t + T ), being T its period. Periodic

functions can be decomposed as an infinite sum of harmonic functions as follows

f(t) = a0 +

∞∑
n=1

[
an cos

(
2πnt

T

)
+ bn sin

(
2πnt

T

)]
, (A.12)

where

a0 =
1

T

∫ T

0
f(t)dt,

an =
2

T

∫ T

0
f(t) cos

(
2πnt

T

)
dt,

bn =
2

T

∫ T

0
f(t) sin

(
2πnt

T

)
dt.

(A.13)

Of particular interest during this text (see Section D.4) is the Fourier series decomposi-

tion of an angular Dirac’s delta distribution. In this case T = 2π and

δ(θ − θi) =
1

2π
+

1

π

∞∑
n=1

(
cos(nθ) cos(nθi) + sin(nθ) sin(nθi)

)
, (A.14)
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being θi the position where the load is applied. When the delta is placed at θi = 0 or

θi = π, two cases considered in Section 3.4.2, the previous expression become

δ(θ) =
1

2π
+

1

π

∞∑
n=1

cos(nθ),

δ(θ − π) =
1

2π
+

1

π

∞∑
n=1

(−1)n cos(nθ).

(A.15)





Appendix B

Thin shell theory

This appendix presents a brief review of the thin shell theory results used during this

work. The initial section defines the general thin shell equations while the following

sections detail the results of interest for the particular cases of a thin plate and of a thin

circular cylindrical shell.

B.1 General thin shell equations

The general equations of motion of a thin shell [19, 30] can be written as

L1{u1, u2, u3} − ρshs∂
2u1

∂t2
= −q1,

L2{u1, u2, u3} − ρshs∂
2u2

∂t2
= −q2,

L3{u1, u2, u3} − ρshs∂
2u3

∂t2
= −

[
q3 +

1

A1A2

{
∂(M1A2)

∂α1
+

∂(M2A1)

∂α2

}]
,

(B.1)

where ui is the displacement in the curvilinear surface coordinate αi, ρs is the density

of the shell, hs is its thickness and Ai = ∂2~r/∂α2
i are the fundamental form or Lamé

parameters. The considered positive directions of the external loads qi, moments Mi

and coordinates αi are shown in Fig. B.1. Two particular cases of thin shells are used

in this work, a thin strip plate and a thin circular cylindrical shell. They are detailed in

the following sections.
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Fig. B.1: Positive signs considered for the loads and moments applied on the shell.

B.2 Thin plate

A thin plate can be considered as a thin shell with no curvature. In this case

α1 = x, α2 = y, u3 = w,

A1 = A2 = 1, M1 = My, M2 = Mx

(B.2)

and the equation of motion for the transverse displacements w takes the form

Ltp
3 {w} − ρshs

∂2w

∂t2
= −

[
q3 +

{
∂My

∂x
+

∂Mx

∂y

}]
, (B.3)

where Ltp
3 = −Dp∇4.

The bending moments Mx and My are given by

Mx = −Dp

(
∂2wp

∂x2 + νp
∂2wp

∂y2

)
, My = −Dp

(
∂2wp

∂y2 + νp
∂2wp

∂x2

)
. (B.4)

The twisting moment Mxy can be written as

Mxy = −Dp(1− νp)
∂2wp
∂x∂y

. (B.5)

The transverse shearing forces Qx and Qy are given by

Qx = −Dp

(
∂3wp

∂x3 +
∂3wp
∂x∂2y

)
, Qy = −Dp

(
∂3wp
∂y∂2x

+
∂3wp

∂y3

)
. (B.6)

Finally, the Kelvin-Kirchoff edge reactions Vx and Vy can be obtained from the previous

expressions

Vx = Qx +
∂Mxy

∂y
, Vy = Qy +

∂Mxy

∂x
. (B.7)
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Three types of basic boundary conditions are usually considered in the edges of a thin

plate: Simply supported (SS), clamped (C) and free (F) edges. These boundary con-

ditions will be defined considering the edge y = ye, but analogous expression could be

obtained for the edge x = xe.

In a SS edge, both the deflection and the bending moment per unit of length My of the

plate are zero. In terms of the deflection this can be written as

wp

∣∣∣∣∣
y=ye

= 0,
∂2wp

∂y2 + νp
∂2wp

∂x2

∣∣∣∣∣
y=ye

= 0. (B.8)

For a clamped edge, both the deflection and its slope vanish so:

wp

∣∣∣∣∣
y=ye

= 0,
∂wp
∂y

∣∣∣∣∣
y=ye

= 0. (B.9)

Finally, in a free boundary of the plate, the bending moment My and the Kelvin-Kirchoff

edge reaction Vy are zero. In terms of the deflection

∂3wp

∂y3 + (2− νp)
∂3wp
∂y∂x2

∣∣∣∣∣
y=ye

= 0,
∂2wp

∂y2 + νp
∂2wp

∂x2

∣∣∣∣∣
y=ye

= 0. (B.10)

B.3 Thin circular cylindrical shell

Several theories have been proposed to model the dynamics of a thin cylindrical shell

[25–30]. Among them, the Flügge equations of a thin circular cylindrical shell [28] are

the ones presented here. In this case

α1 = x, α2 = θ,

u1 = ux, u2 = uθ, u3 = ur,

q1 = qx, q2 = qθ, q3 = qr,

A1 = 1, A2 = rs, M1 = Mθ, M2 = Mx,

(B.11)

where rs is the radius of the shell and Eq. (B.1) is takes the form

rs
∂2ux
∂x2

+
1− νs

2rs

∂2ux
∂θ2

+
1 + νs

2

∂2uθ
∂x∂θ

− ρsrs
1− ν2

s

Es

∂2ux
∂t2
−

νs
∂ur
∂x

h2
s

12

[
(1− νs)

2r3
s

∂2ux
∂θ2

+
∂3ur
∂x3

− (1− νs)
2r2
s

∂3ur
∂x∂θ2

]
= −rs

1− ν2
s

Eshs
qx,

(B.12)
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1 + νs
2

∂2ux
∂x∂θ

+ rs
1− νs

2

∂2uθ
∂x2

+
1

rs

∂2uθ
∂θ2

− 1

rs

∂ur
∂θ
− ρsrs

1− ν2
s

Es

∂2uθ
∂t2

+

h2
s

12

[
3(1− νs)

2rs

∂2uθ
∂x2

+
(3− νs)

2rs

∂3ur
∂x2∂θ

]
= −rs

1− ν2

Eshs
qθ,

(B.13)

ν
∂ux
∂x

+
1

rs

∂uθ
∂θ
− ur
rs
− ρsrs

1− ν2
s

Es

∂2ur
∂t2

+

h2
s

12

[
rs
∂4ur
∂x4

+
2

rs

∂4ur
∂x2∂θ2

+
1

r3
s

∂4ur
∂θ4

+
∂3utx
∂x3

− (1− νs)
2r2
s

∂3ux
∂x∂θ2

]
+

h2
s

12

[
(3− νs)

2rs

∂3uθ
∂x2∂θ

+
ur
r3
s

+
2

r3
s

∂2ur
∂θ2

]
=

−rs
1− ν2

Eshs

(
qr +

1

rs

[
∂(Mθrs)

∂x
+ ∂Mx

∂θ

])
.

(B.14)

where ρs is the density of the shell, hs is its thickness, Es is its Young modulus and

νs is its Poisson’s ratio. The cylindrical system of coordinates used and the positive

directions of the displacement and stress fields can be seen in Fig. B.2.
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Fig. B.2: Thin circular cylindrical shell model used for the tunnel. Positive displace-
ments and stresses are also defined.



Appendix C

Linear Elasticity

This appendix begins with a brief review of the linear elastic equations in cylindrical

coordinates, which are used in Appendix D to represent the soil behaviour. Some im-

portant relations between the most used elastic constants and two different types of

damping formulations are also presented.

C.1 Elasticity equations in cylindrical coordiantes

When small strains are considered, the displacement of an isotropic elastic media obeys

the Navier’s equation [114]

(λs + µs)∇∇ · u + µs∇2u = ρs
∂2

∂t2
u, (C.1)

where λs is the first Lamé constant, µs is the shear modulus or second Lamé constant,

ρs is the soil density and where gravity forces haven’t been considered.

Eq. (C.1) can be solved applying the Helmholz decomposition, which states that

u = ∇φ+∇×ψ, ∇×ψ = F, (C.2)

where F is an arbitrary function. Using Eq. (C.2) in Eq. (C.1), the following scalar and

a vectorial wave equations are obtained

∇2φ =
1

c2
P

∂2φ

∂t2
, ∇2ψ =

1

c2
S

∂2ψ

∂t2
, (C.3)
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where φ and ψ are the scalar and vectorial potentials and where

cP =

√
λs + 2µs

ρs
, cS =

√
µs
ρs

(C.4)

are the phase speeds of the P-wave and S-wave respectively.
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Fig. C.1: Thick cylindrical shell model used for the soil (and the tunnel). Positive
displacements and stresses are also defined.

If a cylindrical system of coordinates of the form presented in Fig. C.1 is considered,

the displacement and stress fields and the vectorial potential components are given by

u =


ur

uθ

ux

 , τ =


τrr

τrθ

τrx

 , ψ =


ψr

ψθ

ψx

 , (C.5)

In this system of coordinates, Eq. (C.2) becomes

ur =
∂φ

∂r
+

1

r

∂ψx
∂θ
− ∂ψθ

∂x
,

uθ =
1

r

∂φ

∂θ
+

∂ψr
∂x
− ∂ψx

∂x
,

ux =
∂φ

∂x
+

1

r

∂(rψθ)

∂r
− 1

r

∂ψr
∂θ

.

(C.6)
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The relation between the stresses and the potentials can be obtained substituting Eq

(C.6) into the following equation

τrr = (λs + 2µs)
∂ur
∂r

+ λs

(
1

r

∂uθ
∂θ

+
ur
r

)
+ λs

∂ux
∂x

,

τrθ = µs

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
,

τrx = µs

(
∂ur
∂x

+
∂ux
∂r

)
.

(C.7)

The positive directions of both fields have also been presented in Fig. C.1.

C.2 Elastic constants

An isotropic linear elastic media is completely defined by two independent elastic con-

stants. In the previous equations, the two Lamé parameters have been used, but other

elastic constants such as the Young modulus Es, the Poisson ratio νs, the shear mod-

ulus Gs and the bulk modulus Ks can also be used. Some relation between them are

presented here.

Knowing the couple (Es, νs), the Lamé parameters can be obtained using

λs =
Esνs

(1 + νs)(1− 2νs)
, µs =

Es
2(1 + νs)

. (C.8)

Knowing the Lamé parameters, the couple (Es, νs) can be obtained from

Es =
µs(3λs + 2µs)

λs + µs
νs =

λs
2(λs + µs)

. (C.9)

Finally, the bulk modulus can also be obtained from

Ks = λs +
2µs
3

=
Es

3(1− 2νs)
. (C.10)

C.3 Material damping

To take into account the energy loss caused by microstructural friction mechanisms,

the elastic model must be replaced by a viscoelastic one. A well-established procedure

is to assume the validity of the correspondence principle [59] which states that the

viscoelastic case can be obtained from the elastic one by considering complex valued
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elastic constants. Two damping theories are presented in the following sections. The

former is the one used in this work.

C.3.1 Hysteretic damping

A typical definition of this type of damping considers complex valued Lamé parameters

(λ∗s and µ∗s), which are defined as follows

λ∗s + 2µ∗s = (λs + 2µs)(1 + 2iDP sgn(ω)), µ∗s = µs(1 + 2iDSsgn(ω)), (C.11)

where DP and DS are the hysteretic damping ratios for P and S waves and where sgn

refers to the sign function.

Other definition typically used are

K∗s = Ks(1 + iηK), µ∗s = µs(1 + iηµ), E∗s = Es(1 + iηE), (C.12)

where ηK , ηµ and ηE are the loss factors associated to this parameters.

In this work, the interior floor and tunnel hysteretic damping are defined using Eq.

(C.12) while the soil hysteretic damping is defined using Eq. (C.12).

C.3.2 Rayleigh damping

The Rayleigh damping model considers that

E∗s = Es(1 + iωβR), ρ∗s = ρs

(
1 +

αR
iω

)
, (C.13)

where ω is frequency and αR and βR are two independent constant. This type of damping

can also be applied at the Lamé parameters as follows

λ∗s = λs(1 + iωβR), µ∗s = µs(1 + iωβR). (C.14)



Appendix D

The Pipe-in-Pipe model

This appendix presents a brief review of the different formulations of the Pipe-in-Pipe

(PiP) model, presented by Forrest and Hunt [17] as an analytical model for a deep buried

cylindrical tunnel. The initial formulation has been later extended introducing a second

load formulation [88], modifying the considered tunnel model and assuming plane-strain

conditions [102].

The model considers the tunnel as a thin cylindrical infinite shell and the soil as a

homogeneous and isotropic infinite elastic media with a cylindrical cavity in it. The

coupling of both systems is performed in the wavenumber-frequency domain.

D.1 Thin cylindrical shell equations

Among the existing thin shell theories, Forrest and Hunt [17] considered ones proposed

by Flügge’s [28] (Eqs. (B.12) to (B.14)) to describe the dynamical behaviour of the

tunnel. Considering harmonic motion and Eq. (A.4), the displacement field and the

applied loads can be written as

ut =
1

2π

∫ ∞
−∞

Ūtei(ωt−kxx)dkx,

q =
1

2π

∫ ∞
−∞

Q̄tei(ωt−kxx)dkx,

(D.1)
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where, performing a Fourier series decomposition, Ūt and Q̄ are written as

Ūt =
∞∑
n=0

[
SsŪs

n + SaŪa
n

]
,

Q̄ =

∞∑
n=0

[
SsQ̄s

n + SaQ̄a
n

]
,

(D.2)

where

Ss =


cosnθ 0 0

0 sinnθ 0

0 0 cosnθ

 , Sa =


sinnθ 0 0

0 cosnθ 0

0 0 sinnθ

 . (D.3)

Transforming Eqs. (B.12) to (B.14)) to the wavenumber domain and substituting Eq.

(D.2) into them, the following equations are obtained

AsŪt,s
n =

−rt(1− ν2
t )

Etht
Q̄s
n,

AaŪt,a
n =

−rt(1− ν2
t )

Etht
Q̄a
n.

(D.4)

These two uncoupled sets of algebraic equations relate the n-th coefficient of the applied

load decomposition with the n-th term of displacements decomposition. If one of them

is known, the other is univocally obtained. The first set of equations corresponds to the

symmetric loading distribution [17] while the second corresponds to the antisymmetric

one [92]. The superscripts s and a are used here to identify each case. To simplify the

notation, when an equation is valid for both formulations, these superscripts will be

omitted.

The matrix A is defined as

A =


a12 a14 a16

a22 a24 a26

a32 a34 a36

 , (D.5)

where

as11 =
ρtrt(1− ν2

t )ω2

Et
− rtk2

x −
(1− νt)n2

2rt

(
1 +

h2
t

12r2
t

)
,

as12 =
(1 + νt)ikxn

2
,

as13 = −νtikx −
h2
t ik

3
x

12
+
h2(1− νt)ikxn2

24r2
t

,
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as21 =
−(1 + νt)ikxn

2
= −as12,

as22 =
ρtrt(1− ν2

t )ω2

Et
− rt(1− νt)k2

x

2

(
1 +

h2
t

4r2
t

)
− n2

rt
,

as23 =
n

rt
+
h2
t (3− νt)k2

xn

24rt
,

as31 = νtikx +
h2
t ik

3
x

12
− h2(1− νt)ikxn2

24r2
t

= −as13,

as32 =
n

rt
+
h2
t (3− νt)k2

xn

24rt
= as23,

as33 =
ρtrt(1− ν2

t )ω2

Et
− h2

t

12

(
rtk

4
x +

2k2
xn

2

rt
+
n4

r3
t

)
− 1

rt
+
h2
t (2n

2 − 1)

12r3
t

. (D.6)

The antisymmetric loading coefficients are obtained from the following relations

aa11 = as11, aa12 = −as12, aa13 = as13,

aa21 = −as21, aa22 = as22, aa23 = −as23,

aa31 = as31, aa32 = −as32, aa33 = as33.

(D.7)

D.2 Thick cylindrical shell equations

Thick cylindrical shell equations can be used to model the tunnel structure and an

infinite soil with a cylindrical cavity in it. In the second case, the full-space is obtained

considering the asymptotic case where the external radius of the shell tends to the

infinite. The mathematical procedure followed to solve the problem is only outlined

here. The details can be found the work presented by Gazis [115]. As in the thin

shell case, two loading cases can be considered. The formulation is developed for the

symmetric loading case but results for the antisymmetric case are also presented.

The solution of the problem is obtained decomposing the scalar and vector potentials in

Fourier series and substituting the result into the transformed expression of Eqs. (C.3).

The wave equations are then reduced to a system of Bessel differential equations of order

n and n + 1. Their solution, found using the following Gauge condition Ψ̄r,n = −Ψ̄θ,n,

can be written as
Φ̄n = AnKn(νP r) +DnIn(νP r),

Ψ̄r,n = BnKn+1(νSr) + EnIn+1(νSr),

Ψ̄θ,n = −Ψ̄r,n,

Ψ̄x,n = CnKn+1(νSr) + FnIn+1(νSr),

(D.8)

where

ν2
P = k2

x −
ω2

c2
P

, ν2
S = k2

x −
ω2

c2
S

. (D.9)
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The displacement and stress fields are obtained substituting Eqs. (D.8) into the trans-

formed expressions of Eqs. (C.6) and (C.7). Their value at an arbitrary radius r can be

written as

Ūn = UTh

∣∣∣∣∣
r

CTh
n , T̄n = TTh

∣∣∣∣∣
r

CTh
n , (D.10)

where

CTh
n =

(
An Bn Cn Dn En Fn

)T
(D.11)

has to be determined with the considered boundary conditions and where UTh

∣∣∣∣∣
r

and

TTh

∣∣∣∣∣
r

are 3× 6 matrices with the following coefficients

us11 =
n

r
In(νP r) + νPKn+1(νP r), us12 =

n

r
Kn(νP r)− νPKn+1(νP r),

us13 = ikxIn+1(νSr), us14 = ikxKn+1(νSr),

us15 =
n

r
In(νSr), us16 =

n

r
Kn(νSr),

us21 =
−n
r
In(νP r), us22 =

−n
r
Kn(νP r),

us23 = ikxIn+1(νSr), us24 = ikxKn+1(νSr),

us25 = −n
r
In(νSr)− νSIn+1(νSr), us26 = −n

r
Kn(νSr) + νSKn+1(νSr),

us31 = ikxIn(νP r), us32 = ikxKn(νP r),

us33 = −νSIn(νSr), us34 = νSKn(νSr),

us35 = 0, us36 = 0.

(D.12)
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ts12 =

(
2µs

n2 − n
r2

− λsk2
x + (λs + 2µs)ν

2
P

)
Kn(νP r) + 2µs

νP
r
Kn+1(νP r),

ts14 = −2µsikxνSKn(νSr)− 2µsikx
n+ 1

r
Kn+1(νSr),

ts16 = 2µs
n2 − n
r2

Kn(νSr)− 2µs
n

r
νSKn+1(νSr),

ts22 = −2µs
n2 − n
r2

Kn(νP r) + 2µs
n

r
νPKn+1(νP r),

ts24 = −µsikxνSKn(νSr)− 2µsikx
n+ 1

r
Kn+1(νSr),

ts26 =

(
−2µs

n2 − n
r2

− µsν2
S

)
Kn(νSr)− 2µs

νS
r
Kn+1(νSr),

ts32 = 2µsikx
n

r
Kn(νP r)− 2µsikxνPKn+1(νP r),

ts34 = µs
n

r
νSKn(νSr)− µs(k2

x + ν2
S)Kn+1(νSr),

ts36 = µsikx
n

r
Kn(νSr),

ts11 =

(
2µs

n2 − n
r2

− λsk2
x + (λs + 2µs)ν

2
P

)
In(νP r)− 2µs

νP
r
In+1(νP r),

ts13 = 2µsikxνSIn(νSr)− 2µsikx
n+ 1

r
In+1(νSr),

ts15 = 2µs
n2 − n
r2

In(νSr) + 2µs
n

r
νSIn+1(νSr),

ts21 = −2µs
n2 − n
r2

In(νP r)− 2µs
n

r
νP In+1(νP r),

ts23 = µsikxνSIn(νSr)− 2µsikx
n+ 1

r
In+1(νSr),

ts25 =

(
−2µs

n2 − n
r2

− µsν2
S

)
In(νSr) + 2µs

νS
r
In+1(νSr),

ts31 = 2µsikx
n

r
In(νP r) + 2µsikxνP In+1(νP r),

ts33 = −µs
n

r
νSIn(νSr)− µs(k2

x + ν2
S)In+1(νSr),

ts35 = µsikx
n

r
In(νSr).

(D.13)
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The antisymmetric loading coefficients are obtained from the following relations

ua12 = us12, ua14 = −us14, ua16 = −us16,

ua22 = −us22, ua24 = us24, ua26 = us26,

ua32 = us32, ua34 = −us34, ua36 = −us36,

ua11 = us11, ua13 = −us13, ua15 = −us15,

ua21 = −us21, ua23 = us23, ua25 = us25,

ua31 = us31, ua33 = −us33, ua35 = −us35

(D.14)

and
ta12 = ts12, ta14 = −ts14, ta16 = −ts16,

ta22 = −ts22, ta24 = ts24, ta26 = ts26,

ta32 = ts32, ta34 = −ts34, ta36 = −ts36,

ta11 = ts11, ta13 = −ts13, ta15 = −ts15,

ta21 = −ts21, ta23 = ts23, ta25 = ts25,

ta31 = ts31, ta33 = −ts33, ta35 = −ts35.

(D.15)

The soil is modelled as an infinite homogeneous isotropic elastic media with a circular

cylindrical cavity in it. This is directly obtained considering that rext → ∞ (see Fig.

C.1). Because when r → ∞ the displacement must satisfy the Sommerfeld radiation

condition, a solution with physical meaning requires that Dn = En = Fn = 0, and the

displacements and stress coefficients are given by

Ūn = UfsCn, T̄n = TfsCn (D.16)

where

Cn =
(
An Bn Cn

)T
(D.17)

and where the matrices Ufs and Tfs are 3× 3 matrices constructed as follows

Ufs =


u12 u14 u16

u22 u24 u26

u32 u34 u36

 , Tfs =


t12 t14 t16

t22 t24 t26

t32 t34 t36

 . (D.18)

D.3 Tunnel/soil coupling

Once both subsystems have been transformed to the wavenumber-frequency domain

and decomposed in Fourier series, the coupling between them is easily performed. This

procedure is detailed here considering the tunnel as a thin shell and as a thick one.
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D.3.1 Tunnel as a thin shell

The considered positive directions of the tunnel and soil displacement and stress fields

have been presented in Figs. B.2 and C.1 respectively. Using the first ones for the soil

displacements and stresses, Eq. (D.16) is rewritten as follows

Ū
′
n = UthCn, T̄

′
n = TthCn (D.19)

where

Uth =


u32 u34 u36

u22 u24 u26

−u12 −u14 −u16

 , Tth =


−t32 −t34 −t36

−t22 −t24 −t26

t12 t14 t16

 . (D.20)

Two coupling conditions are assumed at the interface between both systems. The first

one, that the displacements of the soil and the tunnel are equal. The second one, that the

stresses caused by each subsystem to the other are equal in magnitude and of opposite

sign. Two loads are applied on the thin shell, the external load p which is applied on

the interior surface of the tunnel, and the coupling load τ c, applied on the exterior one.

Considering both, Eq. (D.4) is then written as

AEŪt
n = (P̄n − T̄c,n). (D.21)

where

AE =
Etht

−rt(1− ν2
t )

A. (D.22)

The equations of the soil at the interface are

Ū
′
n

∣∣∣
rt

= Uth

∣∣∣
rt

Cn, T̄
′
n

∣∣∣
rt

= Tth

∣∣∣
rt

Cn = T̄c,n. (D.23)

Due to the first coupling condition, Ū
′
n

∣∣∣
rt

= Ūt
n and, substituting Eq. (D.23) into Eq.

(D.21), the vector of unknown coefficients Cn can be written in terms of the coefficients

of the transformed external load as

Cn =

(
AEUth

∣∣∣
rt

+ Tth

∣∣∣
rt

)−1

P̄n. (D.24)

The displacement and stress coefficients at an arbitrary radius r ≥ rt are given by

Ū
′
n = MP̄n (D.25)
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and

T̄
′
n = KP̄n, (D.26)

where

M = Uth

∣∣∣
r

(
AEUth

∣∣∣
rt

+ Tth

∣∣∣
rt

)−1

(D.27)

and

K = Tth

∣∣∣
r

(
AEUth

∣∣∣
rt

+ Tth

∣∣∣
rt

)−1

. (D.28)

Shell thickness correction

To take into account that one load is applied at the interior surface of the tunnel and

the other at the exterior one, the following alternative expression of Eq. (D.21) has been

proposed by Hussein [116]

AEŪt
n =

(
rint

rt

)
P̄n −

(
rext

rt

)
T̄c,n, (D.29)

being rint and rext the interior and exterior radius of the tunnel respectively.

D.3.2 Tunnel as a thick shell

In this case, the tunnel and the soil equations are defined using the cylindrical system of

coordinates defined in Fig. C.1. The displacement and stress Fourier series coefficients

are then given by

Ūn =


Ufs
∣∣∣
r
Cn, r ≥ rext

UTh

∣∣∣
r
CTh
n , rint ≤ r ≤ rext

(D.30)

and

T̄n =


Tfs
∣∣∣
r
Cn, r ≥ rext

TTh

∣∣∣
r
CTh
n , rint ≤ r ≤ rext

(D.31)

where rint and rext are the interior and exterior radius of the tunnel respectively. If an

external load p is applied at the interior radius of the tunnel

TTh

∣∣∣
rint

CTh
n = −Pn. (D.32)

where the sign has been chosen considering the load directions opposite to the positive

stress directions. At the exterior radius of the tunnel, the stress field is equal to the
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coupling stresses

TTh

∣∣∣
rext

CTh
n = −T̄n (D.33)

An opposite coupling stress is applied at the soil cavity

Tfs
∣∣∣
rext

Cn = −T̄n. (D.34)

where has been used that the radius of the cavity is equal to the exterior radius of the

tunnel.

Combining Eqs. (D.33) and (D.34),

TTh

∣∣∣
rext

CTh
n = Tfs

∣∣∣
rext

Cn. (D.35)

Assuming that the displacements at the surface of the soil cavity must be equal to the

displacements at the outer radius of the tunnel

UTh

∣∣∣
rext

CTh
n = Ufs

∣∣∣
rext

Cn. (D.36)

Combining Eqs. (D.33), (D.35) and (D.36), the following system of equations is obtained
03×3 TTh

∣∣∣
rint

Tfs
∣∣∣
rext

−TTh

∣∣∣
rext

Ufs
∣∣∣
rext

−UTh

∣∣∣
rext



 Cn

CTh
n

 =

−P̄n

06×1

 . (D.37)

Once Cn and CTh
n are known, the displacements and stresses coefficients at any point

of the soil or the tunnel are obtained using Eqs. (D.30) and (D.31).

D.4 Response to a distributed load

A harmonic load applied at θ = θi and r = rt with an arbitrary distribution along the

x-direction can be expressed as

p(x, θ, r, t) = Peiωt =


Px(x)

Pθ(x)

Pr(x)

 δ(θ − θi)
rt

eiωt. (D.38)
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This load is transformed to the wavenumber domain and decomposed in terms of ring

modes. The transformed expression can be written as

P̄ =
∞∑
n=0

[
SsP̄s

n + SaP̄a
n

]
, (D.39)

where

P̄s
0 =

1

2rtπ


P̄x

0

P̄r

 , P̄s
n =

1

rtπ


P̄x cos(nθi)

P̄θ sin(nθi)

P̄r cos(nθi)

 , n > 0 (D.40)

and

P̄a
0 =

1

2rtπ


0

P̄θ

0

 , P̄a
n =

1

rtπ


P̄x sin(nθi)

P̄θ cos(nθi)

P̄r sin(nθi)

 , n > 0. (D.41)

The transformed displacement field is given by

Ū =
∞∑
n=0

[
SsMsP̄s

n + SaMaP̄a
n

]
. (D.42)

where Eq. (D.25) and the sum of both formulations has been used.

Antitransforming Eq. (D.42), the displacement field can be finally written as

u =
1

2π

∫ ∞
−∞

∞∑
n=0

[
SsMsP̄s

n + SaMaP̄a
n

]
ei(ωt−kxx)dkx. (D.43)

An analogous expression for the stress field is obtained replacing the matrices M (Eq.

(D.27)) by the matrices K (Eq. (D.28)) in the previous equation.

A radial harmonic point load applied at the bottom is given by

p =


0

0

1

 δ(θ)δ(x)

rt
eiωt. (D.44)

In this case, only the symmetric terms of Eqs. (D.40) and (D.41) remain. They are

given by

Ps
0 =

1

2rtπ


0

0

1

 , Ps
n =

1

rtπ


0

0

1

 , n > 0 (D.45)
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and Eq (D.42) is reduced to

Ū =
1

2rtπ


ms

13,0

0

ms
33,0

+
1

rtπ

∞∑
n=1


ms

13,n cos(nθ)

ms
23,n sin(nθ)

ms
33,n cos(nθ)

 . (D.46)

D.5 Plane-strain case

Plane-strain conditions are obeyed when the geometrical parameters, the mechanical

parameters and the applied loads are invariant along the x-direction, and also, when

these loads are perpendicular to this direction. The dynamic equations of the plane-

strain case can be obtained from the transformed dynamic equations of the general case

imposing that kx = 0.

Using the thin shell system of coordinates (see Fig. B.2), the displacement and stress

fields are reduced to

u =

uθ
ur

 , τ =

τθ
τr

 (D.47)

As in the general case, the displacement and stress fields are written as

u = Ueiωt =

∞∑
n=0

[Ss2DUs
n + Sa2DUa

n] eiωt,

τ = Teiωt =
∞∑
n=0

[Ss2DTs
n + Sa2DTa

n] eiωt,

(D.48)

where

Ss2D =

sinnθ 0

0 cosnθ

 , Sa2D =

cosnθ 0

0 sinnθ

 . (D.49)

The displacement and stress coefficients are again related to the external load coefficients

by

Ūn = M2DP̄n, T̄n = K2DP̄n, (D.50)

where the superscripts s and a have been again omitted and where

M2D = U2D

∣∣∣
r
(AE,2DU2D

∣∣∣
rt

+ T2D

∣∣∣
rt

)−1,

K2D = T2D

∣∣∣
r
(AE,2DU2D

∣∣∣
rt

+ T2D

∣∣∣
rt

)−1,

(D.51)
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where

AE,2D =
Etht

−rt(1− ν2
t )

a2D
11 a2D

12

a2D
21 a2D

22

 (D.52)

and

U2D =

 u2D
21 u2D

22

−u2D
11 −u2D

12

 , T2D =

−t2D
21 −t2D

22

t2D
11 t2D

12

 . (D.53)

The coefficients are given by

a2D,s
11 =

ρrt(1− ν2)ω2

E
− n2

rt
,

a2D,s
12 =

n

rt
,

a2D,s
21 = a2D,s

12 ,

a2D,s
22 =

ρrt(1− ν2)ω2

E
− h2

t

12

n4 − 2n2 + 1

r3
t

− 1

rt
,

u2D,s
11 =

n

r
Kn(νP r)− νPKn+1(νP r),

u2D,s
12 =

n

r
Kn(νSr),

u2D,s
21 =

−n
r
Kn(νP r),

u2D,s
22 = −n

r
Kn(νSr) + νSKn+1(νSr),

t2D,s
11 =

(
2µs

n2 − n
r2

+ (λs + 2µs)ν
2
P

)
Kn(νP r) + 2µs

νP
r
Kn+1(νP r),

t2D,s
12 = 2µs

n2 − n
r2

Kn(νSr)− 2µs
n

r
νSKn+1(νSr),

t2D,s
21 = −2µs

n2 − n
r2

Kn(νP r) + 2µs
n

r
νPKn+1(νP r),

t2D,s
22 =

(
−2µs

n2 − n
r2

− µsν2
S

)
Kn(νSr)− 2µs

νS
r
Kn+1(νSr).

(D.54)
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The antisymmetric loading formulation is given by

a2D,a
11 = a2D,s

11 , a2D,a
12 = −a2D,s

12 ,

a2D,a
21 = −a2D,s

21 , a2D,a
22 = a2D,s

22 ,

u2D,a
11 = u2D,s

11 , u2D,a
12 = −u2D,s

12 ,

u2D,a
21 = −u2D,s

21 , u2D,a
22 = u2D,s

22 ,

t2D,a
11 = t2D,s

11 , t2D,a
12 = −t2D,s

12 ,

t2D,a
21 = −t2D,s

21 , t2D,a
22 = t2D,s

22 .

(D.55)
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