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Abstract 

 

Drought variability and change is assessed in this study across the Iberian Peninsula 

along the 20th century and the first decade of the 21st century using state of the art 

drought indices: the Sc-PDSI, the SPI and the SPEI. Daily temperature and precipitation 

data from 24 time-series regularly spread over Iberian Peninsula is quality controlled 

and also homogenized in a monthly scale to create the Monthly Iberian Temperature 

and Precipitation Series (MITPS) for the period 1906-2010. The Sc-PDSI, 12-month 

SPI and 12-month SPEI are computed on a monthly basis using the newly MITPS 

dataset to quantify hydrological droughts and wet events across time. Precipitation data 

is only required to compute SPI, but potential evapotranspiration (PET) is also needed 

to perform the Sc-PDSI and SPEI, which is estimated using the Thornthwaite’s method. 

A Principal Component Analysis is carried out to identify spatial-temporal patterns of 

droughts and the characteristics and trends of severity, magnitude and duration of 

droughts and wet events are also described. 

The analysis conducted in this study confirms that drought conditions are worsening for 

most of the Iberian Peninsula across time except in the western and in the north-western 

area, where a wetting trend is identified. Furthermore, the severity and duration of 

droughts show a remarkable increase in the south-western area, while drought 

magnitude is increasing significantly in the Mediterranean region strongly induced by 

global warming especially during the last decades. Severity, duration and magnitude of 

wet events do not experience significantly variations.  

Our results indicate a clear drying trend in most of the Iberian Peninsula and are in 

agreement with other studies which project this evolution to the whole 21st century. For 

this reason, and as a link of our study to societal needs, the application of effective 

water management strategies will be crucial to minimize the impact of the hydrological 

droughts over the Iberian Peninsula into the near future. 
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Chapter 1 

 

INTRODUCTION 

 

1.1. Background 

 

Climate analyses produced during the last decades confirmed the fact that the 

modifications in the atmospheric system are more than a cyclic fluctuation only due to 

climate variability. A global climate change is defined by the Intergovermental Panel on 

Climate Change (IPCC) as a change in the state of the climate that can be identified 

using statistical tests, as changes in the mean and/or the variability of its properties and 

that persists for an extended period, typically decades or longer (Salomon et al., 2007). This 

is happening basically due to an increase of greenhouse gases (GHG), such as CO2, CH4, 

N20, and others in the atmosphere by fossil fuel combustion. 

The IPCC 4th Assessment Report (IPCC AR4, 2007) provides a summary of observed 

changes in climate variables. The Working Group I report indicates that global surface 

temperature increases +0.74ºC from 1906 to 2005, although this increase is not uniform 

and some world regions are affected by a higher temperature increases (Fig. 1-1; top). For 

the century long-period, warming is statistically significant over most of the world’s 

surface (at the 0.05 significance level) with the exception of an area south of Greenland 

and three smaller regions over the south-eastern USA and parts of Bolivia and the 

Congo basin (taking into account the low data availability in the region). Warming is 

strongest over the continental interiors of Asia and north-western North America and 

over some mid-latitude ocean regions of the southern hemisphere as well as in south-

eastern Brazil. This increased temperature causes an intensification of the hydrological 

cycle and a larger atmospheric water capacity. In opposition, land precipitation shows a 

light increase during the last century, although it is not uniform, neither spatially, or 

temporarily (IPCC AR4, Solomon et al., 2007). For most of North America, and especially 

over high-latitude regions in Canada, annual precipitation increases during the 105-year 

period (Fig. 1-1; bottom).  
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Figure 1-1: Linear trend of annual temperatures (upper panel; in ºC per century) and annual land 

precipitation amounts (lower panel; in % per century) for 1901 to 2005 using the GHCN 
dataset from NCDC (Smith and Reynolds, 2005). Areas in grey have insufficient data to 
produce reliable trends. The percentage in precipitation (lower panel) is based on the means 
for the period 1961-1990. Trends significant at the 5% level are indicated by white (upper 
panel) and black (lower panel) + marks. 

 

The main exception is found over the south-west USA, north-west Mexico and the Baja 

peninsula, where the trend in annual precipitation is negative. Across South America, 

increasingly wet conditions are observed over the Amazon Basin and south-eastern 

South America, including Patagonia, while negative trends in annual precipitation are 

found over Chile and parts of western coast of the continent. The largest negative trends 
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are observed over western Africa and the Sahel. North-western Australia shows areas 

with moderate to strong increases in annual precipitation, while over most of Eurasia, 

and for 1901-2005, areas with increased precipitation are larger than those characterized 

by negative trends.  

Although the reduction in the precipitation amounts is very often the main cause of 

drought, increased potential evapotranspiration related to changes in  radiation, wind 

speed, or vapour pressure deficit (itself linked to temperature and relative humidity), can 

contribute to variations in soil moisture and consequently in the advent of hydrological 

droughts.Thereafter, the combination of global increasing temperatures and reduction in 

precipitation in some areas must be linked an intensification of evapotranspiration rate 

and increased water demand. Most of the observed increases in global average 

temperatures since the early-20th century is very likely (>90% probability of occurrence, (IPCC 

AR4, 2007)) due to the observed increase in anthropogenic GHG concentrations. The 

reasoning in the previous links, anticipates a connection between human-induced 

warming and intesified droughts.  

 

The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to 

Advance Climate Change Adaptation, SREX, (Fleig et al., 2012) focused on the inspection 

of changes in trends and impacts derived from extreme events, indicated that there are 

still large uncertainties regarding the observed global-scale trends in droughts. 

However, droughts became more common, especially in the tropics and sub-tropics, and 

the area affected by droughts around the world increased likely (>66% probability of 

occurrence) since the 1970s. It is more likely than not that there is a human contribution to 

this trend. Decreased land precipitation in many regions and global increased 

temperatures, which enhance evapotranspiration and reduce soil moisture, are important 

factors that contributed to more regions experiencing droughts (Dai et al., 2004b). Many 

regional or large-scale studies show  recent trends towards drier conditions (Dai et al., 

2004, 2011 and 2012; Heim, 2002; van der Schrier et al., 2006, 2007 and 2011; Vicente-Serrano et al., 

2006, 2010 and 2012; Dubrovsky et al., 2007b, 2008; Brázdil et al., 2009; Kingtse et al., 2008, 2009; 

Sheffield et al., 2009 and 2012; Briffa et al., 2009).  

Using the Palmer’s Drought Severity Index (PDSI), Dai et al., (2004b) found a large 

drying trend over Northern Hemisphere land since the mid-1950s (Fig. 1-2; upper panel). 

Dai (2011 and 2012) updates his previous work and finds that global drought areas 

increased substantially since the middle of the 20th century, mainly due to widespread 
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drying since the 1970s over most of Africa, southern Europe, East and South-east Asia, 

eastern Australia, and many parts of the northern mid-high latitudes while increased 

wetness are identified over the Central US, Argentina and northern high-latitude areas 

(Fig. 1-2; lower panel). These trends in the PDSI index are found to be largely affected by 

changes in temperature and also in precipitation. Controversially, the study carried out 

by Sheffield et al., (2012) indicates that previous calculations of the increase in global 

drought were overestimated in terms of drying trends and in the proportion of area 

affected by drought. This is mainly attributed to inconsistencies in the forcing data sets 

and simulation configuration.  

 

 

 

 
Figure 1-2: Palmer Drought Severity Index. Upper Panel: PDSI time series, Lower Panel: map of annual 

trends from 1950-2008 in PDSI (Dai, 2011). When the values shown in the lower plot are 
positive the red and orange areas in the upper map are drier and the blue and green areas are 
wetter than average. The smooth black curve shows decadal variations. The time series 
approximately corresponds to a trend, and this pattern and its variations account for 67% of 
the linear trend of PDSI from 1900 to 2002 over the global land area. (after Dai et al., 2004b).  

 
 
Coupled climate models used for the IPCC AR4 project increased aridity during the 21st 

century over the above mentioned areas. At the same time, indicate an increase in 

droughts, in particular in subtropical and mid-latitude areas (Christensen et al., 2007). An 

increase in dry spell length and frequency is considered very likely (>90% probability of 
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occurrence, (IPCC AR4, 2007)) over the Mediterranean region, southern areas of Australia 

and New Zealand, and likely over most subtropical regions, with little change over 

northern Europe. Moreover, available global and regional drought studies (Hirabayashi et 

al., 2008b; Feyen and Dankers, 2009) project a higher likelihood of hydrological drought by 

the end of this century for eastern Europe, central Eurasia, inland China and northern 

North America (IPCC Special Report, Fleig et al., 2012). It is projected that about 5.500 

millions people will live in water-stressed areas around the world by 2025 (UNESCO-

WWAP, 2010). 

 

In southern Europe, there is a medium confidence (medium evidence and medium 

agreement) (Mastrandrea et al., 2010) regarding the increase in dryness, meanwhile there 

are large inconsistencies between different drought indices in this region, and 

inconsistent or statistically non-significant trends in the rest of the continent. For 

example,  Dai et al., (2004); Dai, (2011) and (2012) find increased dryness over most of 

the European continent based on Sc-PDSI, but Lloyd-Hughes and Saunders (2002); Van 

der Schrier et al., (2006b) and Sheffield et al., (2012) only find statistically non-

significant changes in drought conditions over Europe with the exception of the 

Mediterranean region. Other studies of the evolution of precipitation, drought 

conditions and moisture availability in the Mediterranean during the 20th century 

confirm a clear decrease in rainfall (Xoplaki et al., 2004; Trigo et al., 2006; López-Moreno et al., 

2009) and an increase of severe drought episodes over most of the Mediterranean basin 

(Sousa et al., 2011), in the Balkans (Xoplaki et al., 2004), in the central-western Mediterranean 

(Altava-Ortiz et al., 2010) and in the Iberian Peninsula (Garcia-Herrera et al., 2007). Focusing on 

stream flows, Stahl et al., (2010) research over Europe finds negative trends (lower 

stream-flow) in southern and eastern regions, and generally positive trends (higher 

stream-flow) elsewhere (especially in northern Europe). Low flow decreases in most 

regions where the lowest mean monthly flow occurs in summer. Connected to this, the 

larger summer temperature variability projected by Schar et al., (2004) and Seneviratne 

et al., (2006) for 2070 and 2099 will likely lead more droughts in many European 

regions.  

There have been several continental or global-scale assessments of potential change in 

hydro-meteorological drought indicators, but relatively few on measures of water 

resources drought or drought impacts. This is because these impacts are very dependent 

on the socioeconomic context (IPCC Special Report, 2012). Lehner et al., (2006) uses a 
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generalized drought deficit volume indicator, calculated by comparing simulated river 

flows with estimated withdrawals for municipal, industrial, and agricultural uses. The 

indicator is computed across Europe, using climate change projections from two climate 

models (ECHAM4 and HadCM3) and assuming changes in withdrawals over time.  

 

 
Figure 1-3 Change in indicators of water resources due to drought events across Europe by the 2070s. 

Upper Panel: projected changes in the return period of the 1961-1990 100-year drought deficit 
volume for the 2070s, with change in river flows and withdrawals for two climate models; 
ECHAM4 (left) and HadCM3 (right); Lower Panel: projected changes in the intensity (deficit 
volume) of 100-year droughts with changing withdrawals for the 2070s, with climate change 
(left, with HadCM3 climate projections) and without climate change (right). Source: Lehner et 
al., 2006. 
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They show substantial changes in the return period of drought deficit volumes, 

comparing the 100-year return period for the 1961-1990 period with projections for the 

2070s (Fig. 1-3). Lehner et al., 2006 also demonstrate that, in southern and western 

Europe, changes in withdrawals alone are projected to increase deficit volumes by less 

than 5%, whereas the combined effect of changing withdrawals and climate change 

effects (including temperature, precipitation and other climate elements dynamics) is 

projected to increase deficit volumes by at least 10%, and frequently by more than 25%. 

In Eastern Europe, increasing withdrawals are projected to intensify drought deficit 

volumes by over 5%, and more than 10% across large areas, but this is offset under both 

climate scenarios by increasing runoff. 

 

Regions located in the transition zone between major climate zones, (e.g. from 

mesothermic to dry climates) are particularly susceptible to drought and thus to 

potential changes in climate. A shift in climate may create a new transitional zone with 

unknown feedback mechanisms. This is the case of the Iberian Peninsula, where 

temperatures clearly increased during 20th century (Brunet et al., 2006, 2007) in phase with 

the antropogenic forcing described elsewhere. Precipitation patterns show a high inter-

annual variability, but appreciable changes in annual precipitation were not detected in a 

secular perspective (Barrera-Escoda, 2008) maybe with the exception of the spring season 

(Saladié, 2004). A statistically significant increase of droughts is found in the north and 

east of the Iberian Peninsula (Vicente-Serrano and Cuadrat-Prats, 2007), using Markov chains 

in Catalonia (Serra et al., 2006), in some areas of Valencia region (Vicente-Serrano et al., 2004) 

and in the Tagus basin (Lorenzo-Lacruz et al., 2010). Sousa et al., (2011) and Vicente-

Serrano et al., (2011) show that the north-west of the Iberian Peninsula is an exception 

to the predominant trend in the 20th century towards drier conditions, which are 

identified for most of the western Mediterranean. Furthermore, more frequent cycles of 

dry events are identified in south-western Iberian Peninsula in comparison with the 

north-western region (Santos et al., 2010).  

Finally, annual and seasonal trend analysis on Iberian stream-flows reveal a generalized 

and significant decreasing trend (1-3% per year; Fig. 1-4) in stream-flow in most parts of 

the Iberian Peninsula during the second half of the 20th century, especially in winter and 

spring (Lorenzo-Lacruz et al., 2012). Lorenzo-Lacruz concludes that these trends are 

probably related to a downward trend in precipitation (during the second half of 20th 

century), influenced by the persistent positive NAO phase (North Atlantic Oscillation), 
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in combination with an increase in water demand resulting from population growth and 

irrigation demands. Moreover, the drought duration and magnitude is becoming worse 

over most of the hydrological regions of the the Iberian Peninsula and the area affected 

by droughts is also increasing (Lorenzo-Lacruz et al., 2013). 

Being consistent with the observed trends, climate models project a large increase in 

temperatures and a decrease in precipitation of roughly 20% in southern Europe by the 

end of 21st century (IPCC AR4, 2007), including the whole Iberian Peninsula (Sanchez, 2009; 

Gómez-Navarro et al., 2010; Rodríguez-Puebla et al., 2010; Alvarez et al., 2011; Vicente-Serrano et al., 

2011; Jerez et al., 2012a and 2012c) in spite of large uncertainties that are still affecting 

model outputs (Blenkinsop et al., 2007; Sheffield and Wood 2008b; Rammukainen, 2010; Mishra, 

2011). In consequence, an increase of drought conditions can be expected in the 

Mediterranean basin (Blekinsop et al., 2007; Planton et al., 2008; Mariotti et al., 2008; Mata, 2008; 

Dai, 2011; IPCC Special Report 2012) and also over the Iberian Peninsula under climate 

change conditions (Beniston et al., 2007; Rodríguez-Puebla et al., 2010; Alvarez et al., 2011; Sanchez 

et al., 2012). Most of the future projections show that droughts will become more 

common in the Iberian Peninsula with negative effects in water availability and 

undesirable environmental and socio-economic impacts. 

 

 
Figure 1-4: Spatial distribution of the magnitude of annual trends with respect to the average annual 

discharge series for the analyzed period (1945-2005) (Lorenzo-Lacruz et al., 2012). 
 

The most severe human consequences of droughts are often found in semiarid regions 

(this is the case of the Iberian Peninsula), where semi-arid conditions prevail in normal 

conditions and water demand is close to, or exceeds, natural availability and/or society 
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lacks the capacity to mitigate or adapt to drought (Iglesias et al., 2009). For this reason, 

water management strategies will become crucial in the Iberian Peninsula to ensure 

water supply when water demand is increasing progressively trying to avoid economic 

damages as occurred in Spain in the 1990s, when an extreme drought affected six 

million people and caused material losses of US$ 4.5 billion (CRED, 2010). 

As described above, climate change is only one of the different factors that influence 

future water stress; others – related to other global change aspects - are demographic, 

socio-economic and technological changes. They will also play determinant roles at 

most time horizons and in most regions. Changes in climate patterns and an increasing 

probability of drought occurrence may worsen the conditions of available freshwater 

resources for consumption, crops irrigation or tourism and leisure in the Iberian 

Peninsula causing unknown environmental and socio-economic impacts. 
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1.2. Aims and objectives 

 

The Mediterranean basin, including the whole Iberian Peninsula, is an area of special 

interest for climatologists due to its high climate vulnerability caused by its location in 

the transitional area between temperate and subtropical climates. General Circulation 

patterns (together with other factors) determine a climate simultaneously influenced by 

the West Jet Stream located at higher latitudes and the Subtropical stability located at 

lower latitudes. 

Under climate change conditions, this sensitive climate is altered and experts have just 

observed and predicted an increase of temperature and a decrease of precipitation that 

will enhance the evapotranspiration rate. As a consequence, drought conditions are 

expected to worsen over the Iberian Peninsula (Salomon et al., 2007; Fleig et al., 2012). 

This general hypothesis, formulated in the successive IPCC assesement reports, refers to 

a future perspective which builds over already observed events. The evaluation of these 

observed events is carried out in this work to question whether drought conditions have 

worsened over Iberian Peninsula during the 20th century and the first decade of the 21st 

century.  

The main objective of this thesis is to identify and analyze the spatial and temporal 

variability of hydrological droughts across Iberian Peninsula along the 20th century and 

the first decade of the 21st century in order to detect a drying or a wetting trend in a 

multi-decadal perspective (long-term periods).  

For this purpose, it is necessary to investigate how the variability of droughts has 

changed across time and how this affects the whole Iberian Peninsula, fulfilling the 

following specific objectives:  

 

1. The creation of a regional time series for the whole Iberian Peninsula in order to 

know the temporal evolution of temperature and precipitation along the 20th 

century and the first decade of the 21st century. This will provide valuable 

information about climate variability and change in the region of interest. 

 

2. The computation of the most widely used drought indices (Sc-PDSI, 12-month 

SPI and 12-month SPEI) for detecting hydrological dry events (droughts) and 

wet events using comprehensive drought classifications. This will help to 
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quantify the severity of these extreme events across time. The obtained results 

will provide decisive information about how the variables involved and the 

methodology applied to compute each drought index can affect drought 

variability and change across Iberian Peninsula. 

 

3. The validation of the detected dry events through documentary sources that will 

provide reliability and consistency to the obtained results. The impacts of the 

most important identified drought events will be searched in specific 

publications provided from official meteorological services to verify their 

magnitude in order to corroborate the consistency of applied methodology. 

 

4. The analysis of drought trends and drought spatial distribution will help to 

describe the impact of climate change on droughts over the Inerian Peninsula 

along the 20th century. 

 

5. The regionalization of drought conditions will provide crucial information about 

different behaviours of this extreme event from the spatial-temporal patterns 

found at annual and seasonal time-scale. 

 

6. The analysis of the characteristics and trends of severity, magnitude and 

duration of droughts and wet events will be useful to find out wether the 

behaviour of these parameters has changed in the Iberian Peninsula and/or in the 

different spatial-temporal patterns during last decades. 

 

UNIVERSITAT ROVIRA I VIRGILI 
DROUGHT VARIABILITY AND CHANGE ACROSS THE IBERIAN PENINSULA 
Joan Ramon Coll Benages 
DL: T 955-2014



1. Introduction 

 37 

1.3. Thesis outline 

 

This PhD Thesis is structured in 8 chapters, including this Chapter 1, which covers the 

introductory section including a background to drought studies as well as the 

formulation of the aims and objectives of this work.  Chapter 2 is a review about the 

state-of-the-art knowledge about droughts around the world including topics ranging 

from different definitions of the concept to the evaluation methods for detecting dry 

events. First of all a general introduction to the concept of drought is made, together 

with the description of the terminology used in the descrition of climatological 

droughts. After this, different meanings of “drought”, according to different scientific 

disciplines, such as climatology, hidrology or agriculture are specified. Finally, the most 

widely employed evaluation methods of drought based on drought indices are explained 

taking into account the involved variables, introducing the results obtained by different 

authors, pros and cons of each drought index, and their use in drought analyisis and 

monitoring. . 

Chapter 3 describes the area of study, the Iberian Peninsula, including its geographical 

situation and its main climate characteristics in terms of temperature and precipitation 

and the widely used Köppen Climate Classification. Chapter 4 describes the dataset 

used in this study and the procedures applied to the data in order to obtain the results. In 

this way, the techniques used to data treatment, drought indices, trend computation, 

Principal Component Analysis and drought parameter estimation are thoroughly 

explained in this section. The methodology to create the Monthly Iberian Temperature 

and Precipitation Series (MITPS) is introduced in terms of data quality control and 

homogenisation, monthly missing values infilling and the regional time-series 

computation from the individual time series is also discussed. Therefore, the definition 

and application of the drought indices tested in this study (Sc-PDSI, SPI and SPEI) is 

also exposed taking into account the main parameters used to compute the algorithms, 

the method used to estimate the Potential Evapotranspiration (PET) and the time-scale 

selected to identify hidrological droughts. Moreover, the followed procedure to compute 

temporal trends and the regionalization of droughts using Principal Component 

Analysis (PCA) are also described. Finally, the definition and computation of drought 

parameters are widely explained at the end of this section. 
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Chapter 5 describes the application of the methodology introduced in Chapter 4 over 

the new MITPS dataset previously created. First of all, the climate fluctuations are 

analyzed over the Iberian Peninsula in terms of temperature and precipitation at annual 

and seasonal time-scales. Moreover, the linear trends and their statistical significance 

are also computed. This analysis provides crucial information related to the behaviour 

of the main climate variables in the Iberian Peninsula under climate change conditions. 

After the previous description, the most widely used drought indices in different time-

scales (Sc-PDSI, the 12-month SPEI and the 12-month SPI) are computed to identify 

wet and dry periods across Iberian Peninsula along the 20th century. The most relevant 

droughts are found and also validated using documental sources while the calibration of 

drought indices is checked to ensure the reliability of the results. Thus, a trend analysis 

is carried out for the whole region under study as well as for each location individually 

in order to find out significant fluctuations in drought conditions. Furthermore, the role 

of temperature in drought indices is also assessed to quantify the effect of global 

warming on drought trends. Moreover, the evolution of the drought spatial coverage is 

performed across time. 

Next, Principal Component Analysis (PCA) is applied at annual and seasonal time-

scales at 12-month SPEI time-series for the common period 1906-2010 in order to 

detect spatial-temporal variations of droughts. 

Finally, the characteristics and trends of the main parameters related to dry and wet 

events are analysed for the whole Iberian Peninsula and for the spatio-temporal patterns 

found at annual time-scale. The severity, duration, magnitude and other interesting 

parameters such as the seasonal distribution of the onset, offset and the period of the 

maximum severity reached by dry or wet events are also studied. This section also 

shows the changes identified in terms of severity, magnitude and duration of droughts 

and wet events for the whole Iberian Peninsula and also for the spatial-temporal patterns 

found at annual time-scale using the common periods 1921-1950, 1951-1980 and 1981-

2010. 

Chapter 6 covers the discussion and conclusions from the obtained results, as well as 

further work to be done in the near future and finally, Chapter 7 is dedicated to the 

references used for this study. 
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Chapter 2 

 

THEORETICAL AP PROACH TO DROUGHT ANALYSIS  

 

This chapter introduces the conceopt of drought and its different formulation, according 

to different scientific disciplines and the review of the state-of-the-art knowledge about 

droughts around the world, including topics ranging from different definitions of the 

concept to the evaluation methods and concepts used for detecting, describing and 

evaluating dry events. 

 

2.1. Drought concept 

 

Although the concept of drought is intuitively known by most people, its scientific 

definition is not trivial at all. Drought is a complex natural hazard that can be interpreted 

from different points of view, according to different interests. For example, urban 

inhabitants would identify a drought event when the regional or national government 

applies some water restrictions in the city. But, a farmer will surely talk about drought 

when his crops experiment a water shortage affecting their growth. No matter what's 

point of view we use, drought affects our interests. An adequate, objective and scientific 

definition of drought is therefore difficult. So, it is not surprising that two of the main 

questions which scientists have been trying to answer over time are how to define 

drought and how to evaluate its temporal and spatial evolution.  

The Great Britain Meteorological Office proposed, in 1951, a general definition of 

drought based on precipitation amounts and duration: “Drought is a period of more than 

some particular number of days with precipitation less than some specified small 

amount” (Great Britain Meteorological Office, 1951). This and other definitions agree in the 

fact that a drought is a period with little precipitation, but discrepancies arise in the 

definition of its duration period and the size of the precipitation deficit causing the 

event. Palmer discussed more in depth the time scale of droughts, defining a drought 

period as an interval in the range of months or years, where the actual moisture supply 

at a given place rather consistently falls short of the climatically expected or 

climatically appropriate moisture supply (Palmer, 1965). 
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The World Meteorological Organization (WMO) in 1966 defined drought as a 

prolonged absence or significant deficit of rainfall. But, in 1992 WMO changed its 

drought definition and simplified the drought event as a period time with abnormally 

dry weather conditions which produces a serious hydrological imbalance due to a long 

enough lack of rainfall. 

Conceptual definitions try to help people and policymakers to understand the concept of 

drought. This family of definitions was formulated in general terms, without 

considering climate variability and time period and intends to offer a general vision of 

the phenomenon. For example, the definition offered by the Intergovernmental Panel on 

Climate Change (IPCC, 2007) of drought for policymakers is: “Drought is a prolonged 

absence or marked deficiency of precipitation”, or “a deficiency of precipitation that 

results in water shortage for some activity or for some group” or “a period of 

abnormally dry weather sufficiently prolonged for the lack of precipitation to cause a 

serious hydrological imbalance” (IPCC AR4., 2007). This definition has three different 

parts talking about intensity, duration and impact of the drought. 

On the other hand, drought and aridity cannot be confused. The National Climatic Data 

Center (NCDC) clearly explains the difference between both concepts (see 

http://www.ncdc.noaa.gov/oa/ncdc.html, last visit: 09-05-2013). Aridity is measured by 

comparing long-term average water supply (precipitation) to long-term water demand 

(evapotranspiration). If climatological water demand is greater than climatological 

water supply, then the climate is arid or semi-arid. Drought refers to a moisture 

imbalance that occurs on scales of months or a few years and results in a departure from 

climatological normals. Aridity is permanent, but drought is temporary and can be 

associated to arid and non-arid climates (Dai, 2011). To make thinks even more complex, 

some climates are characterized for more frequent droughts than others. The frequency 

and intensity of droughts can also be monitored from a climatic point of view by 

studying them not as single events, but according their frequency, duration and intensity 

across time.  
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2.2. Drought characteristics 

 

It is known that drought is the consequence of atmospheric phenomena of gradual 

development, often characterized by an undefined beginning and end of the event 

according to the National Drought Mitigation Center (NDMC) (Wilhite and Glantz 1985 and 

http://www.drought.unl.edu/DroughtBasics/WhatisDrought.aspx, Last visit: 05-05-2013). In 

the most general sense, drought originates from a deficiency of precipitation over an 

extended period of time resulting in a water shortage for some activity, group or 

environmental sector. However droughts depend not only on precipitation, but 

temperature (related to evapotranspiration), relative humidity, dry winds, solar 

radiation, or cloudiness, among others can play an important role to cause drought or 

worsening its effects. For example, the role of temperature was evident in the 

devastating central European drought during the summer of 2003. Although previous 

precipitation was lower than normal, the extremely high temperatures over most of 

Europe during June and July (more than 4ºC above climatological normals) caused the 

greatest damage to cultivated and natural systems, and dramatically increased 

evapotranspiration rates and water stress (Rebetez et al., 2006). Moreover, a higher 

persistence of dry winds or intense solar radiation in a particular region can produce a 

decrease of relative humidity causing an intensification of evapotranspiration rate. This 

prolonged meteorological situation can initiate a drought or worsening its effects 

depending on the region. 

Drought is considered as a regional phenomenon because the main causes that can 

produce it are linked to the regional scale. Empirical studies showed that drought is 

never the result of a single cause. It is the result of many causes, often synergistic in 

nature (Magaña et al. 1997, Estrada, 2001 and Contreras, 2003). For example, during an ENSO 

event (El Niño-Southern Oscillation), drought can occur virtually anywhere in the 

world, though researchers have found the strongest connections between ENSO and 

intense drought in Australia, India, Indonesia, the Philippines, Brazil, parts of east and 

south Africa, the western Pacific basin islands (including Hawaii), Central America, and 

various parts of United States (Fig. 2-1). Drought occurs in each of the above regions at 

different times (seasons) during an event and in varying degrees of magnitude.  
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Figure 2-1: Teleconnections between ENSO warm episode and droughts around the world. (www.ciifen-

int.org) Last visit: 08-05-2013.  
 

On the other hand, the immediate cause of drought is the predominant sinking motion of 

air (subsidence) that results in compressional warming or high pressure, which inhibits 

cloud formation and results in lower relative humidity and less precipitation (NDMC; 

available at: www.drought.unl.edu/DroughtBasics/PredictingDrought.aspx Last visit: 14-

05-2013. Most climatic regions experience seasonal changes in the influence of high 

pressure. Prolonged droughts occur when large-scale anomalies in atmospheric 

circulation patterns persist for months, seasons or longer, extending the persistence of 

high pressure beyond their climatological normals. Thus, many droughts around the 

world can be explained due to the high pressure belt oscillations and they prolonged 

abnormally conditions (Jáuregui, 1979). 

The synergistic nature of drought and the complexity of the phenomenon worsen the 

drought prediction quality. Predicting drought depends on the ability to forecast, at 

least, two fundamental surface parameters; precipitation and temperature. From the 

historical record we know what climate is inherently variable. We also know that 

anomalies of precipitation and temperature may last from several months to several 

decades. The potential for improved drought predictions in the near future differs by 

region, season and climatic regime. 

According to the National Drought Mitigation Center of USA (NDMC) and the 

European Drought Centre (EDC), drought produces a complex variety of impacts which 

may be more catastrophic than other extreme events. (Fig. 2-2) 
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Figure 2-2: World natural disasters for the period 1900-2004 obtained from Sheffield and Wood 2011 
 

This complexity exists because water is integral to our ability to produce goods and 

provide services. Impacts are commonly referred to as direct or indirect. Reduced crop, 

rangeland, and forest productivity, increased fire hazard, reduced water levels and 

wildlife mortality rates are a few examples of direct impacts. The consequences of these 

impacts lead to indirect impacts. For example, a reduction in crop, rangeland and forest 

productivity may result in reduced income for farmers and agribusiness, increased 

prices for food and timber, unemployment, reduced tax revenues because of reduced 

expenditures, increased crime, foreclosures on bank loans to farmers and businesses, 

migration, and disaster relief programs.  

The impact of drought can be categorized as economic, environmental or social. 

Many economic impacts occur in agriculture and related sectors, including forestry and 

fisheries, because of the reliance of these sectors on surface and subsurface water 

supplies. In addition to obvious losses in yields in crop and livestock production, 

drought can be associated with increases in insect infestations, plant disease, wind 

erosion and reduce growth. The incidence of forest and range fires increases 

substantially during extended droughts, which in turn places both human and wildlife 

populations at higher levels of risk. Water shortages can also affect negatively 

recreation and tourism industries, hydropower production and can food, energy, and 

other products prices. For example, the European Drought Observatory, sponsored by 

the European Commission and Member States, routinely performs estimates about the 
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costs of droughts in Europe over the last 30 years, evaluated in at least 100 billion Euro 

(European Commission, 2007). The drought of 2003 in Central and Western Europe has been 

responsible for an estimated economic damage or more than 12 billion Euros alone 

(Munich Re, 2004). And the drought situation that developed from November 2004 in 

southern Portugal and Spain posed a severe challenge to agriculture and affected water 

supply to households and industry (European Parliament, 2005). 

Environmental losses are the result of damages to plant and animal species, wildlife 

habitat, and air and water quality; forest and range fires, degradation of landscape 

quality, loss of biodiversity and soil erosion. Some of the effects are short-term and 

conditions quickly return to normal following the end of the drought. Other 

environmental effects linger for some time or may even become permanent. Wildlife 

habitat, for example, may be degraded through the loss of wetlands, lakes and 

vegetation. Despite, environmental losses are difficult to quantify due to the complexity 

of dynamic biological system. 

Finally, social impacts mainly involve public safety, health, conflicts between water 

users and reduced quality of life. Many of the impacts specified as economic or 

environmental have social components as well. Population emigration is a significant 

problem in many countries, often stimulated by greater availability of food and water 

elsewhere. Migration usually takes place from rural to urban areas near the stressed area 

or to regions outside the drought areas. For example, the drought-prone northeast region 

of Brazil had a net loss of nearly 5.5 million people between 1950 and 1980. Although 

not all of this population shift was directly attributable to drought, it was a primary 

factor for many in their decision to relocate. However, drought represents one of the 

most important natural triggers for malnutrition and famine, a significant widespread 

problem in many parts of Africa. In this case, the Southern Africa Development 

Community (SADC), for example, monitors the crop and food situation in the region 

and issues alerts during periods of impending crisis. 

Knowing the serious impacts of drought in population and their activities, some actions 

and plans to adapt or mitigate its negative effects have been created. United States is 

pioneer in the development of plans of drought for policymakers and people in general. 

In 2003 National Drought mitigation Center (NDMC) had been created and since, helps 

people and institutions develop and implement measures to reduce societal vulnerability 

and risk management to drought. In Europe, European Drought Centre funded 

Xerochore project recently which its objective is to synthesize knowledge on past and 
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future droughts and to compile a roadmap on research needs and policy choices in 

European areas of drought. However, African Drought Risk and Development Network, 

developed by the United Nations is designed as a resource for drought reduction in 

Africa and includes discussion, lessons and resources for planners, journalists, students 

and others interested in drought and dry land issues. The Centro Internacional para la 

Investigación del Fenómeno de El Niño (CIIFEN) provides predictions about the 

probability of drought and its impacts for South and Central America depending on 

evolution of ENSO event. Finally, Australian Drought Watch Service has as a one of 

their objectives to inform the national government and population possible impacts 

when drought appears. 
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2.3. Drought classification 

 

Droughts can be classified basically in three categories depending on our scientific 

focus (Heim, 2002). Moreover, it is commonly accepted that drought is a multi-scalar 

phenomenon. This means that droughts can be monitored and analysed at different time 

scales (daily, weekly, monthly, seasonal or longer) depending on the focus of interest. 

McKee et al., (1993) clearly illustrated this essential characteristic of droughts through 

the consideration of usable water resources including soil moisture, ground water, river 

discharges and reservoir storages. The time period from the arrival of water inputs to the 

availability of a given usable resource differs considerably. Thus, the time-scale over 

which water deficits accumulate becomes extremely important, and functionally 

distinguishes among three categories: meteorological drought, agricultural drought and 

hydrological drought. 

 

2.3.1. Meteorological drought 

 

Based on climatic data, and by comparison with the climatic normal, drought is defined 

on the basis of the degree of dryness and the duration of the dry period. Definitions of 

meteorological drought must be considered as region specific since the atmospheric 

conditions that result in deficiencies of precipitation are highly variable from region to 

region. Some definitions of meteorological drought identify periods of drought on the 

basis of number of days with precipitation less than some specified threshold. For 

example, in Bali (Indonesia) in the 1960s, it was defined as a meteorological drought a 

six days period without rain (Hudson and Hazen, 1964). This measure is only appropriate for 

regions characterized by a year-round precipitation regime such as the Köppen Af 

climate (Wet Tropical) in precipitation favoured regions, such as islands and/or areas 

sumitted to orographic intensification. Other definitions may relate actual precipitation 

departures to normal amounts characteristic for the monthly, seasonal or annual time 

scales. Monthly precipitation less than 100 mm during the rainy season is labelled as a 

meteorological drought in north-eastern Brazil. In Spain, a particular year is considered 

to be dry when precipitation is less than annual average in different watersheds; 15-25% 

in the Cantábrico, Duero and Ebro, 20-25% in Guadalquivir, 30% in Guadiana/Tajo, 

and 40-50% in south-eastern zone (Olcina, 1994). 
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Different definitions of meteorological drought provide specific information about each 

characteristics of regional climate and it is impossible to extrapolate a definition of one 

region to another (Marcos, 2001). 

 

2.3.2. Agricultural drought 

 

Agriculture is usually the first economic sector affected by the shortage of precipitation 

or – in a more extensive senes – to water availability deficits, so this sector shows a 

special interest in drought research. Agricultural drought occurs when there is not 

enough soil moisture to allow the development of a particular crop in any stage of 

growth. Plant water demand depends on prevailing weather conditions, biological 

characteristics of the specific plant, its stage of growth, the physical and biological 

properties of the soil and cropping techniques. Considering this, it is impossible to 

establish valid global, even regional agricultural drought thresholds. Despite that, Kulik 

(1962) defined agricultural drought as the “period in which there are only 19 mm of 

water available in the first 20 cm of soil”. This implies that if the moisture level in 

subsoil is sufficient to provide water to a particular crop during the meteorological 

drought period, there is no agricultural drought at this moment, even if there is 

meteorological drought. Meteorological drought appears often before agricultural 

drought. If the meteorological drought continues, agricultural drought will appear. 

Obviously, this is true in the absence of irrigation. 

 

2.3.3. Hydrological drought 

 

After meteorological drought appears, the crops may suffer water stress and, if the 

precipitation deficiency worsens, hydrological drought will manifest. Hydrological 

drought can be described as a deficiency in the flow or volume of surface water or 

groundwater (rivers, lake levels, reservoirs, ground water, etc.) caused by climate 

variability (e.g. less precipitation than normal) or water management (e.g. irrigation 

during dry season). Hydrological measurements cannot be an indicator of the beginning 

of the drought, because there is a time lag between rainfall shortage and rivers flow 

depletion (Fig. 1). But, for this reason, this kind of drought is a great indicator of the 

severity of a dry event (Marcos, 2001). The frequency and severity of hydrological 
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drought is often defined on a watershed scale. Agricultural drought appears shortly after 

meteorological drought, but hydrological drought can be delayed for months since the 

onset of the rainfall shortage. In the event of a meteorological drought followed by a 

short-lived agricultural drought, hydrological drought may not appear. For example, a 

precipitation deficiency may result in a rapid depletion of soil moisture that is almost 

immediately discernible to farmers but the impact of this deficiency on the reservoir 

levels may not affect hydroelectric power production, potable water supply, or 

recreational uses for many months. The contrary pattern also commonly occurs. For 

example, four years of low precipitation will probably produce a severe hydrological 

drought in terms of river discharge and reservoir storages, but during the drought period 

high precipitation events may produce high levels of soil moisture (Vicente-Serrano et al., 

2011). From the discussion above, it is easy to conclude that the temporal sequence is: 

meteorological drought, agricultural drought and then hydrological drought. (Fig. 2-3) 

 

 
Figure 2-3: The propagation of a perturbation in precipitation amount through the land branch of the 

hydrologic cycle (Entekhabi et al., 1992). 
 
Although climate is a primary contributor to hydrological drought, other factors such as 

changes in land use, land degradation, and the construction of dams dramatically affect 

the hydrological characteristics of the basin. Thus, hydrological drought does not only 
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depend on the existing water volume in the reservoirs or rivers, but also it is important 

how this water is used. The close relationship between the temporal evolution of 

precipitation and streamflow has become evident at all temporal scales but, together 

with climate variability, water consumption by humans is also responsible for changes 

in hydrological systems (Lorenzo-Lacruz et al., 2012). 

 

2.3.4. Socio-economic drought 

 

In general terms, socio-economic drought occurs after agricultural drought and it 

corresponds to water availability reduction that produces economic or personal 

damages. Socio-economic drought may be defined as “Extensive and significant 

negative deviation of the precipitation compared with normal regime around which a 

society has been established” (Rasmussen, 1987). Is not necessary the restriction of water 

supply to produce socio-economic drought, but it also appears when some economic 

sector is affected by precipitation deficiency. In other words, socio-economic drought 

occurs when the demand for an economic good exceeds supply as a result of a weather-

related shortfall in water supply. In most instances, the demand for economic goods is 

increasing as a result of increasing population and per capita consumption. This 

increased water consumption causes more socio-economic drought even in a mild 

meteorological drought. In many developing countries, agricultural drought is the 

beginning of socio-economic drought, because in this kind of countries the agricultural 

sector is the most important sector in their economies. So, socio-economic drought may 

also be defined as “Unusual water deficit generates adverse impacts on society suffers, 

altering the normal development of their collective life” (Pita López, 1995). 

In this case, drought components as severity and duration of dry event are equally 

crucial that how the economy and society develop its activities. Particular actions may 

increase the vulnerability in front of rainfall shortage. Drought effects on the economy 

and society, measured in material losses, population affected or victims, will be more or 

less important depending on vulnerability. So some droughts may be considered 

catastrophes in terms of vulnerability.  

These four types of drought described show a drought evolution process determined by 

natural climate variability, event duration and the interaction between climate and 

society (see Fig. 2-4). 
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Figure 2-4: Sequence of drought impacts (NDMC, 1995, website: 

http://www.drought.unl.edu/DroughtBasics/TypesofDrought.aspx. Last visit: 14-05-2013. 
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2.4. Evaluation methods: Drought indices 

 

Theoretical definitions of different forms of drought need to be transferred into a 

numerical format to concrete characteristics of dry events (Marcos, 2001). Then, a 

question appears: which components allow us to define and identify a drought? Burton 

et al. (1978) listed seven parameters to characterize it. A first one refers to the 

magnitude of the drought, other four describe its temporal component (duration, 

frequency, implantation rate and temporal spacing), and the last two are related to 

spatial characteristics of the phenomenon (extension and spatial dispersion). To quantify 

these parameters is not enough to measure the number of wet days or evaluate 

perceptions about rainfall shortage, but it is necessary to apply mathematical formulas 

to establish the duration and magnitude of a dry event. The most important parameters 

to detect and analyze droughts, according to Burton, are described below. 

- Magnitude is the average rainfall or flow deficit for the duration period of the 

dry event. Its meassured as an anomaly to the long term average of precipitation 

or flow over a chosen period, expressed either in percentage or difference 

(absolute value). Dracup et al. (1980) indicate that, besides magnitude, drought 

severity can be measured as well. 

- Severity can be defined as an accumulated deficit of precipitation or flow for the 

duration of dry period. 

- Duration  is the time (number of consecutive time steps, either days, months or 

years) for which the precipitation or flow recorded are less than a prescribed 

threshold for the same period.  

- Frequency is the number of known cases of drought occurred for a particular 

period. It can also measured through the empirical probability that the 

precipitation or flow is less than average, or less than return period of dry event 

(average time interval of which can expected a drought of a particular 

magnitude). 

- Implantation rate  refers to the elapsed time between the beginning of the 

precipitation or flow deficit, and the moment when this deficit reaches its 

maximum value. 
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- Temporal spacing is the elapsed time between various dry events. It provides a 

measure of regularity or randomness of the drought. Through this parameter we 

can obtain a first approximation to drought predictability.  

- Extension is the total surface that suffers water shortage. 

- Spatial dispersion measures the diffusion or concentration degree of 

precipitation or flow anomaly. 

Knowing these parameters, Burton et al. (1978) defined drought as a pervasive risk due 

to its intermediate frequency, length duration, slow implantation rate, relatively random 

temporal spacing, expanse of territory affected and high spatial diffusion.  

In this way, some numerical standard is needed for comparing measures of drought 

from region to region, as well as, for comparing past drought events (Heim, 2002). 

However, the considerable disagreement that exists about the definition of drought 

makes it impossible to devise a universal drought index. Furthermore, drought’s 

characteristics and the wide range of economic sectors on which it has an impact make 

its effects difficult to quantify. Because of the complexity of drought, no single index 

has been able to adequately capture the intensity and severity of drought and its 

potential impacts on such a diverse group of users. 

The World Meteorological Organisation defined a drought index as “an index which is 

related to some of the cumulative effects of a prolonged and abnormal moisture 

deficiency” (WMO, 1992).  

The American Meteorological Society (1997) suggested that the time and space 

processes of supply and demand are the two basic processes that should be included in 

an objective definition of drought and, thus, in the derivation of a drought index. 

A wide variety of drought indices exist to characterize dry conditions basically in its 

two most relevant parameters; magnitude (or severity) and duration. Multiple articles 

were published discussing pros and cons about various drought quantification methods 

(Alley, 1984; Karl, 1986; Heim, 2002; Dubrovsky et al., 2008; Vicente-Serrano et al., 2010 and 2011, 

Dai, 2011 and 2012; Shefield et al., 2012). 

A long list of drought indices were described for detecting and analysing drought 

conditions: the Palmer’s Drought Severity Index (Palmer, 1965); Deciles Method (Gibbs 

and Maher, 1967); Keetch-Byram Drought Index (Keetch and Byram, 1968); Surface Water 

Supply Index (Shafer and Daezman, 1982); The Standard Precipitation Index (SPI) (McKee et 

al., 1993), the Standardized Precipitation-Evapotranspiration Index (SPEI) (Vicente-Serrano 
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et al., 2010), the Standardized Streamflow Index (SSI) and The Drought Monitor (Svoboda, 

2000) among others. In this section, the most widely drought indices list were described.  

 

2.4.1. Percent of Normal 

 

The percent of normal precipitation is one of the simplest measures of rainfall deficit for 

a particular location. Analyses using the percent of normal are very effective when used 

for a single region or a single season (Hayes, 1997). Percent of normal is also easily 

misunderstood and gives different indications of conditions, depending on the location 

and season. It is calculated by dividing actual precipitation by normal precipitation 

(typically considered to be a 30-year mean or, if it is possible, more than 50-year mean) 

and multiplying by 100%. This can be calculated for a variety of time scales. Usually 

these time scales range from a single month to a group of months representing a 

particular season, to a natural or hydrological year. Normal precipitation for a specific 

location is considered to be 100%. One of the disadvantages of using the percent of 

normal precipitation is that the mean, or average, precipitation is often not the same as 

the median precipitation, which is the value exceeded by 50% of the precipitation 

occurrence in a long-term climate record. The reason for this is that precipitation on 

monthly or seasonal scales does not have a normal distribution. Use of the percent of 

normal comparison implies a normal distribution where the mean and median are 

considered the same. Other drawbacks of this approach are the difficulty to identify the 

beginning and end of drought period, and its severity as well, because the chosen 

percentage for a region is not applicable in another (Marcos, 2001). In other words, 

percent of normal cannot be comparable between different climatic regions or for 

various time periods because normal precipitation will probably change among regions 

and across time.  

Despite this, it is the most used drought index, because it is very simply and does not 

need complex climatic information. It is ideal for some regions with a few available 

climate records. Bhalme and Mooley renamed this method using the acronym BMDI 

(Bhalme & Mooley Drought Index), in spite it was not a novelty at all. 

As an example, figure 2-5 shows dry and wet conditions for Europe from January to 

March 2012 using percent of normal method. Near normal conditions are expressed in 

yellow and light green; green and blue colors depict wet conditions; brown or red are 
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associated to dry conditions. As described above, this method uses percentages to know 

the degree of dryness or wetness, but these percentages do not represent the same 

amount of precipitation among different regions because the normal precipitation is not 

the same. For example, the 25% of precipitation (red colour in fig. 2-5) was recorded in 

some areas of the Iberian Peninsula, but also in some parts of the Scandinavian 

Peninsula among others. This means that just the 25% of precipitation was recorded in 

these regions, but the total amount of recorded precipitation will be different because 

the normal precipitation is different in the Iberian Peninsula, the British Isles or in 

Scandinavia during this period although both regions recorded the same percentage of 

precipitation. For this reason, the degree of dryness (in this case) cannot be comparable 

between these three regions, although the percent of normal index inform us that both 

regions suffered extremely dry conditions from January to March 2012. 

 

 
Figure 2-5: Example of Percent of Normal map for Europe from January to March 2012 available at: 

http://www.cpc.ncep.noaa.gov/products/Drought. Last visit: 14-05-2013.  
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2.4.2. Quantiles Method 

 

Percent of normal method has some limitations (see section above). To avoid them, 

dryness thresholds can be defined by the calculation of different quantiles. This 

technique consists to divide the distribution of rainfall occurrence during using intervals 

for each 20% (quintiles), 10% (deciles) or 1% (percentiles) of the distribution (Marcos, 

2001). These thresholds are a better representation of the statistical distribution of the 

climate reality in the studied area because they are values referenced to the statistical 

distribution of precipitation series and not linked to absolut values. Thereafter, they can 

be compared among different regions. It is necessary to have long series (30-year 

minimum and, if it possible, more than 50-year), to achieve reliable and statistically 

robust results. The most widely used theresholds are pearhaps the quintiles. In this way, 

it is considered that a period is very dry when the precipitation value is less than 20% of 

the distribution (1st quintile); dry period when it is between 20-40% (2nd quintile), 

normal period when it is between 40-60% (3rd quintile, centered over the median or 

central value), wet period between 60-80% (4th quintile) and very wet period when the 

precipitation value is higher than 80% of the distribution values (5th quintile).  

When it is necessary to apply more precision in these thresholds, it is possible to 

increase the number of intervals using deciles (establishing 10 intervals in series, each 

one representing 10% of values) or percentiles (establishing 100 intervals, each one 

representing 1% of values into distribution). 

The technique developed by Gibbs and Maher (1967) divided the distribution of 

occurrences over a long-term precipitation record into ten categories. By definition the 

fifth decile is the median, and it is the precipitation amount is not exceeded by 50% of 

the occurrences over the period of reference. The deciles method was selected as the 

meteorological measurement of drought within the National Climate Centre from 

Australia (among others) because it is relatively simple to calculate, and requires less 

data and fewer assumptions (Smith et al., 1993). In Australia, farmers and ranchers can 

only request government assistance if the drought is shown to be an event that occurs 

only once in 20-25 years (deciles 1 and 2 over a 100-year record) and has lasted longer 

than 12 months (White and O’Meagher, 1995). This uniformity in drought classifications has 
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assisted Australian authorities in determining appropriate drought responses. One 

disadvantage of the deciles system is that a long climatological record is needed to 

calculate the deciles accurately (Hayes, 1997). 

The Bureau of Meteorology supported by the Australian Government issues regular 

regional rainfall deciles maps to monitor drier or wetter conditions during a particular 

period. Figure 2-6 shows the rainfall deciles over Australia from January to December 

2010 using rainfall deciles ranges (blue ranges are referred to wetter conditions above 

normal (>7th decile) meanwhile red ranges are drier conditions below normal (<4th 

decile)). Although some regions have different climatic conditions, this method allows 

that the results are comparable among different climatic regions because it’s based on 

rainfall distribution occurrence and the ranges are the same for the whole region.  

 

 
Figure 2-6: Example of rainfall deciles over Australia from January to December 2010 available at: 

http://www.bom.gov.au/water. Last visit: 14-05-2013.  
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2.4.3. The Palmer’s Drought Severity Index (PDSI) 

 

The Palmer’s Drought Severity Index (PDSI) (Palmer, 1965) is based on the supply-and-

demand concept of the water balance equation taking into account more than just the 

precipitation deficit at specific locations (Hayes, 1997). The PDSI is based on 

precipitation and temperature data, as well as the local Available Water Content (AWC) 

of the soil. Palmer’s Index includes in its computation two important parameters related 

to drought development: soil moisture and evapotranspiration. Soil moisture generally 

refers to the amount of water stored in the unsaturated soil zone and it is a source of 

water for the atmosphere through processes leading to evapotranspiration from land, 

which include mainly plant transpiration and bare soil evaporation (Seneviratne et al., 

2010). Thus, it incorporates antecedent and current moisture supply (precipitation) and 

demand (PET) into a hydrological accounting system. 

This drought index became widely used in the United States (i.e. the U.S. Drought 

Monitor (NCDC and NDMC)) and for the Intergovernmental Panel on Climate Change 

(IPCC) in its 4th assessment (2007) (Dai et al., 2004b). However, Van der Schrier et al. 

(2006) derived the time series (1901-2002) and maps of Sc-PDSI for Europe and North 

America compiled by the Climatic Research Unit (CRU). 

Palmer applied what he called Climatologically Appropriate for Existing Conditions 

(CAFEC) quantities to normalize his computations so he could compare the 

dimensionless index across space and time. These quantities are related to 

evapotranspiration values, recharge, runoff, loss, potential evapotranspiration (PET), 

potential recharge, potential runoff, and potential loss. The calculation of these 

parameters depends heavily on the available water holding capacity (AWC).  

According to Heim (2002) CAFEC procedure enables the index to measure abnormal 

wetness (positive values) as well as dryness (negative values), with persistently normal 

precipitation and temperature theoretically resulting in an index of zero in all seasons in 

all climates. When PDSI value remains positive (or negative) during a few consecutive 

months it means wet event (or dry) has produced. When PDSI changes the sign, 

although it only occurs in a month, the last wet or dry event has finished and starts 

another one. 
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But PDSI is problematic when it is used in other regions out of United States, mainly 

due to different climatic and land cover properties (Sousa et al., 2011). It has been shown 

that the application of the PDSI tends to result in an exaggerated frequency of extreme 

dry and wet events (van der Schrier et al., 2006). Moreover, PDSI has been criticized 

for a variety of reasons of which most significant is perhaps that is not comparable 

between diverse climatological regions (Alley, 1984 and Karl, 1986). This problem has been 

solved by Wells et al. (2004) creating Self-Calibrated PDSI (Sc-PDSI) which improves 

the “original” PDSI. A detailed description of the modifications to this algorithm to 

obtain the Sc-PDSI is given by Wells et al., 2004 and van der Schrier et al. (2006a).  

Figure 2-7 shows the global Palmer’s Drought Severity Index (PDSI) for January 2002 

as example distinguishing dry conditions in orange or red and violet, meanwhile wet 

conditions are represented in green or blue. In this case, it’s not possible to detect 

various types of droughts due to the fixed time-scale of PDSI, but extreme conditions 

were identified to different parts of the world (e.g. drier conditions were detected in 

most of North America, Central America and the northern South America, the 

Mediterranean basin, Saharan and Sub-Saharan region, Arab world and some areas in 

the north of Russia, eastern Asia and most of Australia). This map was computed using 

the “original” PDSI including the limitations and deficiencies reported above by other 

authors. 

 

 
 
Figure 2-7: Global Palmer’s Drought Severity Index (PDSI) for January 2002 using gridded data. Red 

and purple tonalities are referred to dry conditions while wet conditions are represented in blue 
(Dai et al., 2004). 
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2.4.4. The Standardized Precipitation Index (SPI)  

 

The SPI was designed to quantify the precipitation deficit for multiple time scales. 

These time scales reflect the impact of drought on the availability of the different water 

resources. Soil moisture conditions respond to precipitation anomalies on a relatively 

short scale, while ground water, stream flow, and reservoir storage reflect the longer-

term precipitation anomalies (Hayes, 1997). For these reasons, McKee et al. (1993) 

originally calculated the SPI for 3, 6, 12, 24 and 48 month time scales. This drought 

index is based on the premise that precipitation is the most important parameter to 

define droughts, although temperature or evapotranspiration can influence the behaviour 

of drought severity (Guttman, 1998; Keyantash and Dracup, 2002). 

The index has the advantages of being easily calculated, having modest data 

requirements (only precipitation), and being independent of the magnitude of mean 

rainfall and hence comparable over a range of climatic zones. It does, however, assume 

the data are normally distributed, and this can introduce complications for short time 

periods (Agnew, 2000). The SPI has been accepted by the World Meteorological 

Organization (WMO) as the reference drought index and it should be used by national 

meteorological and hydrological services worldwide to characterize meteorological 

droughts (Hayes et al., 2011). 

McKee et al. (1993) used the classification system to define drought intensities resulting 

from the SPI. McKee et al. (1993) also defined the criteria for a “drought event” for any 

of the time scales. A drought event occurs any time the SPI is continuously negative and 

the event ends when the SPI becomes positive. Each drought event, therefore, has a 

duration defined by its beginning and end, and intensity for each month that the events 

continue. The accumulated magnitude of drought can also be drought magnitude, and it 

is the positive sum of the SPI for all the months within a drought event. 

The SPI allows the determination of duration, magnitude and intensity of droughts 

(Hayes et al., 1999). Its main advantage is that it can be calculated for several time scales 

(McKee et al., 1995; Komuscu, 1999) and identifies various types of drought; meteorological; 

from 1 to 6 months time-scale, agricultural; from 3 to 9 months time-scale, or 

hydrological; greater or equal than 12 months time-scale (Vicente-Serrano et al., 2006). The 

SPI has been extensively used for drought analysis in many studies (e.g., Hayes et al., 1999; 

Lana et al., 2001; Vicente-Serrano et al. 2004, 2006, 2008, 2010 and 2011; Mavromatis, 2007; Kingtse et 

al. 2008, 2009; Dubrovsky et al. 2007b, 2008; Wu et al. 2009; Subash et al. 2010), and has become 
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an important component in many drought monitoring efforts (i.e., the U.S. Drought 

Monitor (NCDC and NDMC), North American Drought Monitor (NOAA) and 

European Drought Observatory (EDC). 

Lloyd-Hughes and Saunders (2002) developed a high spatial resolution, multi-temporal 

SPI-based climatology of Europe and SPI maps are operationally available for the 

U.S.A. as well.  

As an example, figure 2-8 shows the global distribution of meteorological dryness and 

wetness at the end of September 2010 using a 6-month SPI. Regions in white are 

referred to normal conditions meanwhile regions in red (drier conditions) and green 

(wetter conditions) represent extreme conditions in SPI. Regions in grey (out of oceans) 

are referred to missing data (Sahara and some parts of central Asia). Meteorological 

dryness was detected in Greenland, western Alaska, in some areas of central and 

southern South-America, central Russia and some areas spread over central and 

southern Africa among others. Otherwise, wetter conditions were identified in central 

and northern North-America, in western Africa, in east of Europe, in northern Russia, in 

some areas in southern Asia, Indonesia and in central Australia.  

 

 
Figure 2-8: Interpolated global map using a 6-month SPI from April to September 2010. Regions in 

brown are referred to dry conditions while regions in green mean wet conditions (Sivakumar 
et al., 2010). 
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2.4.5. Standardized Precipitation-Evapotranspiration Index (SPEI) 

 

On the other hand, the newly Standardized Precipitation Evapotranspiration Index 

(SPEI) is based on the original SPI calculation procedure. The novelty of SPEI is that 

includes potential evapotranspiration (PET) in its algorithm and represents a simple 

climatic water balance which is calculated at different time scales (Vicente-Serrano et al., 

2010). The SPEI combines the sensitivity of Palmer’s Drought Severity Index (see 

section 2.4.3) to changes in evaporation demand (caused by temperature fluctuations 

and trends) with the simplicity of calculation and the multi-temporal nature of the SPI. 

Thus, SPEI solved the main criticism of SPI, namely that it is based only on 

precipitation variability (Vicente-Serrano et al., 2011). The new index is particularly suited 

to detecting, monitoring and exploring the consequences of global warming on drought 

conditions. SPI and SPEI are purely statistical, and are not intended to reproduce the 

water balance of any particular system. The advantages of such indices are that:  

a) Their calculation only requires climatological information, which is often 

available and of reasonable quality.  

b) They do not require any assumptions about the system being modelled. 

c) They compute the climatological anomalies for periods of exact length (termed 

the “time scale” of the index.  

The ability to calculate these indices at various time scales allows choice of the scale 

most appropriate to the system under study, and can be achieved using simple statistics 

such as correlation analysis (Vicente-Serrano et al., 2011). 

Both SPI and SPEI maintain units with a robust statistical meaning, and the series of the 

various time-scales are comparable between them. These indices have the advantage of 

determining exactly the period (time-scale) in which the antecedent conditions are 

affecting the value of the index. 

Vicente-Serrano et al., (2010b) created a new global 0.5º gridded dataset (1901-2006) of 

a multi-scalar drought index (SPEI), which considers the joint effects of temperature 

and precipitation on droughts. The main advantage of the new dataset lies in its multi-

scalar character, which allows discrimination between different types of drought.  

Some studies tested the reliability and consistency of SPEI compared with other drought 

indices obtaining better results as a global gridded map (Vicente-Serrano et al., 2010b) as a 

few locations around the world (Vicente-Serrano et al., 2010). Therefore, drier conditions 
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were detected using SPEI in Czech Republic (Potop et al., 2011) and for detecting 

agricultural droughts in Republic of Moldova (Potop, 2011). 

Figure 2-9 shows, as example, the global SPEI computed for June 1995 at different 

time-scales (3-month and 12-month) in order to detect different types of drought. The 

time-scale of 3-month is widely used to identify meteorological drought (and 

agricultural drought in some particular crops) and 12-month time-scale is suitable to 

detect hydrological droughts (Vicente-Serrano, 2006). Drier conditions are represented with 

red colour meanwhile wetter conditions are referred to blue colour in fig. 2-9.  Both 

maps show similar results, although meteorological drought became extreme in western 

Russia (left map) meanwhile hydrological drought was moderate at the same region 

(right map). Moreover, wetter conditions were identified in south-eastern Australia (left 

map), but drier conditions were detected at 12-month time-scale (right map).This means 

that short rainfall periods were enough to eliminate meteorological drought but not 

sufficient to stop hydrological drought. These differences represent the capacity of SPEI 

to detect various types of droughts around the world in a particular time-period. 

 

 
Figure 2-9: Example of global (left) 3-month and (right) 12-month SPEI, June 1995. Dry conditions are 

represented in red while wet conditions are in blue. Regions in white have not been studied 
due to the lack of sufficient data to represent drought conditions (Vicente-Serrano et al., 
2010b). 
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2.4.6. The Drought Monitor 

 

Agencies within NOAA and the U.S. Department of Agricultural (USDA) together with 

the National Drought Mitigation Center (NDMC) produce a weekly Drought Monitor 

(DM) product that incorporates climatic data and professional input from all levels 

(Svoboda, 2000). In a review, Heim (2002) discussed the implementation of several key 

indices and ancillary indicators from different agencies to create the final map. The key 

parameters include the Palmer’s Drought Index (PDI), Crop Moisture Index (CMI), soil 

moisture model percentiles, daily stream flow percentiles, percent of normal 

precipitation, topsoil moisture and a satellite-based Vegetation Health Index (VHI). The 

ancillary indicators include such indices as the Surface Water Supply Index (SWSI), 

SPI, snow pack conditions, reservoir levels, groundwater levels determined from wells, 

crop status, and direct in situ soil moisture measurements.  

The key parameters are objectively scaled to five DM categories. The classification 

scheme includes the categories D0 (abnormally dry area) to D4 (exceptional drought 

event) and labels indicating the time-scale of the drought and which sectors are being 

impacted by drought (S; for short time-scales (typically <6 months) generating impacts 

on agriculture and grasslands, W; for long time-scales (typically >6 months) generating 

hydrological and ecological impacts (see table 2-1 and Fig. 2-10). Final maps are adjusted 

manually to reflect real-world conditions. Consequently, the DM is a consensus product 

reflecting the collective best judgement of many experts based on several indicators. 

 

Drought Monitor 

category 
Description Impacts 

D0 Abnormally dry Minor impacts 

D1 Moderate drought 
Some crop damage, high wildfire risk, water 

shortage 

D2 Severe drought 
Moderate crop damage, very high wildfire risk, 

water restrictions 

D3 Extreme drought 
Serious crop losses, extreme wildfire risk, extensive 

water restrictions 

D4 
Exceptional 

drought 

Exceptional and extensive crop losses, extreme 

wildfire risk, extensive water restrictions 

Table 2-1: The Drought Monitor categories (adapted from Svoboda, 2000) 
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A limitation of DM lies in its attempt to show drought at several time scales (from 

short-term drought to long-term drought) on one map product. The intent of the DM is 

not to replace any local or state information or subsequently declared drought 

emergencies or warnings, but rather to provide a general assessment of the current state 

of drought around the United States, Pacific possessions and Puerto Rico (Svoboda, 2000). 

The Drought Monitor may be found by internet at http://droughtmonitor.unl.edu/. Last 

visit: 25-05-2012. 

Figure 2-10 shows an example of weekly Drought Monitor for USA in March 2012. 

Distinct drought categories are represented in brown, red, orange or yellow to indicate 

the intensity of drought, meanwhile no dry conditions remain in white. Moreover, solid 

and bold lines delineate the region of dominant impacts distinguishing between impacts 

derived from short-term droughts, long-term droughts or a combination of both. 

 

 
 
Figure 2-10: Example of weekly Drought Monitor map for U.S.A. available at: 

http://droughtmonitor.unl.edu/ Last visit: 25-05-2013 
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Chapter 3 

 

STUDY AREA 

 

3.1. Geographic location 

 

The Iberian Peninsula, with an extension of 538.254 Km2, is located at the southwest of 

the European continent between 36º and 44º latitude N and between longitude -10 W º 

and 5º E. It is surrounded by the Mediterranean Sea to the east and southeast and by the 

Atlantic Ocean to the north, west and southwest. This peninsula is attached to the 

European continent by the Pyrinees at the northeast of the peninsula. Iberia's 

southernmost tip is only fourteen kilometers far from Africa (Fig. 3-1).  

 
Figure 3-1: Satellite image of the Iberian Peninsula and influence areas (source: Google Earth) 
 

3.2. Climate characteristics 

 

The Iberian Peninsula is located in a transitional area between temperate and subtropical 

climates. Basically, its latitude, topography, maritime influence and General Circulation 

patterns (together with other factors) determine the climate influenced simultaneously 

by the Polar Jet Stream associated with the Westerlies located at higher latitudes and the 

Subtropical High Pressure Belt located at lower latitudes, both climate factors configure 

the Ferrel Cell. 
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General circulation patterns divide the Iberian Peninsula into two markedly different 

climatic areas. A northern area comprising Galicia, Cantabria and Pyrenees is most of 

the time beyond the influence of the subtropical high pressure over the year due to its 

higher latitude. The rest of the Iberian Peninsula is influenced by subtropical high 

pressure especially in summer (Capel Molina, 2000). 

In consequence, the northern area is influenced over the year by the West Jet Stream 

and low pressure originated along Polar Front giving particular climate characteristics 

similar to Western Europe (mild winters, cool summers, high humidity, abundant 

cloudiness and frequent rains in all seasons). On the other hand, the rest of the peninsula 

belongs to a Mediterranean climate (Köppen Cs type) due to markedly differences in 

general circulation patterns between summer and winter (mild winters in coast and 

severe in interior, dry and hot summers, sun many times and very irregular rains in fall, 

winter and spring). Some continental and souteastern locations, isolated from the 

oceanic flow, fall into de the semi-arid Köppen types (BS).  

The subtropical high pressure, the Siberian winter anticyclone and the Saharan low 

pressure are the most important atmospheric elements that they have more influence in 

the Iberian Peninsula. The subtropical high pressure is defined by a strong anticyclone 

located over the Atlantic sea (known as an Azores anticyclone). The Siberian 

anticyclone causes occasional continental cold air advections over the Iberian Peninsula 

when this high pressure is moved to the west. Finally, the Saharan low pressure 

influences in peninsula’s climate related to frequency and severity of African warm air 

advections.  

General atmospheric circulation is not the only element exerting an influence over the 

climate of the Iberian Peninsula. The orography plays a critical role in regional climate 

diversity, as the Iberian Peninsula is one of the most mountainous regions in Europe, 

being Spain only second to Switzerland in mean elevation above sea level,   with an 

average altitude above 500 m. Besides the direct effect of the orography, its particular 

configuration over the peninsula is a key factor in the dynamics of peninsular climate 

increasing the continentally effect. The mountain systems extend preferably along 

parallels closing hydrographic basins and modifying general circulation patterns (see 

Figure 3-2). 

The Galaico massif, the Cantabrian range and the Pyrenees are important barriers to the 

penetration of maritime air masses were coming directly from the Atlantic sea but, in 

opposite, the hydrographic basins of Duero, Tagus, Guadiana and Guadalquivir rivers 

UNIVERSITAT ROVIRA I VIRGILI 
DROUGHT VARIABILITY AND CHANGE ACROSS THE IBERIAN PENINSULA 
Joan Ramon Coll Benages 
DL: T 955-2014



Drought variability and change across the Iberian Peninsula 
 
 

 68 

promote this penetration of oceanic air related with Atlantic storms. On the other hand, 

the Mediterranean coastal mountain systems do not allow the progress of the 

Mediterranean air to the interior of the Iberian Peninsula by focusing on their 

continental. These climatic implications are remarkable between Atlantic and 

Mediterranean influence regions.  

The influence of the interior plateau and the great mountains transform a territory that 

should be warm-temperate or subtropical to a cold-temperate. In addition, areas where 

moisture is expected to be low become in humid regions or otherwise by the direct 

effect of the mountains.  

The climate of the Iberian Peninsula is influenced as well by the warm waters that 

surround it. The air masses that penetrate in the peninsula are warmer and more humid 

due to maritime origin. Even so, the oceanic climatic characteristics are stronger 

modified by the orographic constraints previously described. 

 

 
Figure 3-2: Physical map of the Iberian Peninsula. Source: Instituto Geográfico Nacional available at: 

http://www.ign.es/ign/main/index.do. Last visit: 15-05-2013.  
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Furthermore, the Iberian Climate Atlas (2011) provides crucial climate information 

about annual average air temperature and precipitation for the Iberian Peninsula using 

the normal period 1971-2000. 

The Iberian Peninsula has an irregular distribution of the annual average temperature 

determined by its complex topography. The latitudinal variation of temperatures is 

about 5ºC between northern and southern coasts. Moreover, Mediterranean region is 

2ºC warmer than Atlantic region and the altitude plays an important role in annual 

variability of temperatures in mountain areas (Fig. 3-3).  

Annual precipitation amounts decrease from northwest to southeast of the Iberian 

Peninsula being higher in the Atlantic (higher than 1000 mm. per year) than in the 

Mediterranean region (about 500 mm. per year) (Fig. 3-4). In addition, precipitation 

amounts increase with altitude and decrease in downwind of moist winds. The negative 

aspects of precipitation patterns in the Iberian Peninsula are its temporal variability and 

the frequency of heavy showers that appear in the interior and in the Mediterranean 

region (de Castro et al., 2006). 

 
Figure 3-3: Annual averaged air temperature for the Iberian Peninsula (1971-2000); (Iberian Climate 

Atlas, 2011) 
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Figure 3-4: Annual averaged precipitation for the Iberian Peninsula (1971-2000); (Iberian Climate Atlas, 

2011) 
 

In order to identify the climate types within the Iberian Peninsula, the Köppen Climate 

Classification system was applied. This classification system, although created almost 

100 years ago, continues- with some modifications - to be one of the most widely used 

for climate studies in the world. The Köppen Climate Classification system defines 

distinct types of climate using average monthly values for precipitation and air 

temperature. In order to identify different climates, air temperature and precipitation 

ranges were established, based mainly on their influence on the distribution of 

vegetation and human activity. 
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Figure 3-5: Köppen-Geiger Climate Classification for the Iberian Peninsula; (Iberian Climate Atlas, 

2011) 
 

The results of this classification show the following types of climate present in the 

Iberian Peninsula obtained from the Iberian Climate Atlas (2011) (Fig. 3-5). 

 

a) Dry climates- Type B 

- BWh (hot desert) and BWk (cold desert). 

There are small areas in the southeast of the Iberian Peninsula, in the Spanish provinces 

of Almeria, Murcia and 

Alicante, coinciding with 

minimum rainfall values for the 

Peninsula. 

The annual variability of 

temperature and precipitation 

from Murcia (Southeastern 

Iberian Peninsula) is shown as 

an example of this type of 

Murcia  (1971-2000)
Lat: 37º58'59''N

Lon: 01º07'14''W
Alt: 57m.

0

10

20

30

40

50

60

J F M A M J J A S O N D

(m
m

)

0

5

10

15

20

25

30

(º
C

)

Precipitation Temperature

UNIVERSITAT ROVIRA I VIRGILI 
DROUGHT VARIABILITY AND CHANGE ACROSS THE IBERIAN PENINSULA 
Joan Ramon Coll Benages 
DL: T 955-2014



Drought variability and change across the Iberian Peninsula 
 
 

 72 

climate. Murcia belongs to Mediterranean climate and it is the driest area of the 

peninsula recording less than 300 mm. per year. It is suffering water stress during six 

months per year coinciding the driest and hottest months in summer. The averaged 

temperature is around 18ºC, but it reaches more than 25ºC in average in summer and no 

less than 10ºC in winter. Most of the months the precipitation amount does not reach 30 

mm., except in October and November, when the amount is slightly greater.  

 

- BSh (hot steppe) and BSk (cold steppe). 

In Spain, this is widespread in the southeast of the Peninsula and in the Ebro valley, and 

less in the southern of the Central plateau and Extremadura. In Portugal this covers only 

a small region in the district of Beja. 

Zaragoza, located in the Ebro basin, is an example of this type of climate and belongs to 

Mediterranean climate as Murcia, but it has some differences. The precipitation amount 

reaches 318 mm. per year and the 

averaged temperature is 15ºC. 

Spring and autumn are the rainy 

seasons and the hottest and driest 

months coincide in summer. The 

temperature in winter is less than 

10ºC in average, and almost 

reaches 25ºC in summer months 

(continental climate), while the 

precipitation amount overcomes 

30 mm. in spring months and it is less than 20 mm. in summer months, except in June.   

 

b) Temperate Climates – Type C 

- Csa (temperate with dry or hot summer). 

This is the type of climate which covers most of the Iberian Peninsula, occupying 

approximately 40% of its surface. This covers the majority of the southern of the 

Central plateau, and the Mediterranean coastal region, with the exception of the arid 

zones in the southeast. 

In this way, Barcelona (Mediterranean coast) and Sevilla (southwestern Iberian 

Peninsula) were selected to represent this type of climate. Barcelona belongs to 
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Mediterranean climate while Sevilla has a clear influence from Atlantic Ocean. This is 

noticeable when both climate plots are compared. Autumn and spring are the rainy 

seasons in Barcelona reaching 70 or 80 mm. in some months, while winter is drier and 

summer is the driest and hottest season producing water deficit, especially in July. 

Otherwise, winter and autumn are the rainy seasons in Sevilla reaching 80 mm. in 

November or December, but the driest season is summer when the water deficit begins 

in May and finishes in October. Despite the inter-seasonal precipitation variability, both 

locations have not too many differences in yearly amounts (534 mm. in Sevilla and 649 

mm. in Barcelona). On the other hand, Barcelona is colder in average than Sevilla 

(14.9ºC and 18.6ºC respectively). Monthly temperature overcomes 27ºC in summer in 

Sevilla, but does not reach this threshold in Barcelona (23ºC).  Monthly temperature 

overcomes 10ºC in winter months in Sevilla and this is not the case in Barcelona 

(around 8-9ºC).  

 

- Csb (temperate with dry or temperate summer). 

This covers the majority of the northeast of the Peninsula, as well as almost all of the 

west coast of Mainland Portugal, and numerous mountainous regions within the 

Peninsula. 

La Coruña represents this type of climate recording great amounts of precipitation along 

the year, except in summer, coinciding with the driest season. La Coruña has a clear 

Atlantic influence amounting around 1000 mm. per year. Furthermore, this Atlantic 

influence implies a temperate climate along the year (14.5ºC in average) with low 

temperature variability between summer (reaching 18-19ºC) and winter (reaching 10-

11ºC). 
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- Cfa (temperate with a dry season and hot summer). 

This is mainly seen in the northeast of the Peninsula, within an area of medium altitude 

which surrounds the Pyrenees and the Iberico System. 

Soria, located in the Iberico System at medium altitude (around 1.100 m.) represents 

this type of climate. The 

precipitation amount per year is 

about 500 mm. reaching maximum 

amounts at the end of spring (April 

and May), in June, at the end of 

fall (October and November) and 

in December. Less precipitation is 

concentrated in March, July, 

August and September. Soria is an 

example of continental climate in a mid-altitude because it has a remarkable annual 

thermal oscillation. Averaged temperature reaches 20ºC at the end of summer (July and 

August) coinciding with low precipitation and leading water deficit till October. 

Otherwise, monthly temperature is below 5ºC during winter months. 

 

- Cfb (temperate with a dry season and temperate summer). 

These are located in the Cantabrian coast, in the Iberico System, as well as part of the 

northern of the Central plateau and 

a large part of the Pyrenees, with 

the exception of areas of high 

altitude. 

San Sebastián, located in the 

Cantabrian coast, has been chosen 

as example of this type of climate. 

Precipitation and temperature 

variability are more regular than 

other locations due to oceanic 

influence. Precipitation amount is remarkable along the year (around 1.500 mm.) 

reaching maximum records in October, November and April. The driest season 

coincides in summer months but it is not enough dry to produce water deficit. Finally, 
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averaged annual temperature is 13.2ºC with non remarkable oscillations (around 8-9ºC 

in winter months and 16-19ºC in summer in average). 

 

c) Cold Climates – Type D 

- Dsb (cold with temperate and dry summer) and Dsc (cold with dry and fresh 

summer). 

These are located in small areas of the mountainous regions at higher altitudes in the 

Cantabrian range, in the Iberico System, in the Central System and in the Nevada range. 

 

- Dfb (cold without dry season and temperate summer) and Dfc (cold with a dry 

season and fresh summer). 

Also seen in the highest altitude of the Pyrenees and in some small areas at high altitude 

in the Cantabrian range and in the Iberico System. 

 

d) Mountain Climates – Type H 

- ET (Tundra). 

This is seen only in small areas on the highest plains of the Central Pyrenees and in the 

highest elevations seen in the Cantabrian range. 
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Chapter 4 

 

DATA AND METHODS  

 

This chapter describes the dataset employed and the methods applied in this study. The 

discussion includes the Monthly Iberian Temperature Dataset and Precipitation Series 

compilation, the techniques used for data treatment (including quality control, 

homogenization, missing data interpolation and regional series computation), the 

obtention of drought indices and trends, the application of principal components 

analysis and the drought parameter estimation. All of them are presented before 

discussing the obtained results in the next chapter.  

 

4.1 Monthly Iberian Temperature and Precipitation Series 

(MITPS) descr iption 

 

The final dataset employed for this study is integrated by 22 long temperature and 

precipitation time series regularly spread over the Iberian Peninsula and extending from 

the mid-nineteenth century to the present (Fig. 4-1). Monthly means derived from the 

Spanish Daily Adjusted Temperature/Precipitation Series (SDATS, SDAPS Brunet et al. 

2006, 2007). SDATS and SDAPS have been updated with data directly obtained through 

AEMET.  Two of the original SDATS series (Pamplona and San Sebastian) have been 

removed from the dataset due to excessive missing values and two additional 

Portuguese time series have been obtained from the Climatology and Climate Change 

Research Group of the Instituto Dom Luiz (Lisbon University) to improve the coverage 

on the western side of the Iberian Peninsula (Fig. 4-1 and table 4-1). Monthly averages of 

daily maximum and minimum temperature, as well as monthly accumulated 

precipitation, are derived for those months with 95% or more days with available 

temperature/precipitation.  

In order to compute the Palmer Drought Severity Index, Available Water Content of the 

soil for each location (AWC) is required and it was obtained from the Harmonized 

World Soil Database (HWSD) (Fig. 4-2) available at; 
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http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/ (Last visit: 

20-03-2013). 

Brunet et al., (2006) selected the SDATS and SDAPS networks (Table 3-1) based on 

temporal and spatial coverage, climatic representativeness and long-term continuity of 

data. These criteria are similar to those used in other regional studies (Briffa et al., 2009; 

Vicente-Serrano et al., 2006; Brunet et al., 2006) which prioritize quality and temporal 

continuity over number of stations, a criterion is widely accepted for climate analyses 

focused on the regional-scale. 

From figure 4-1, a reasonable well-spaced distribution of the stations represents the 

main physiographic units of the Iberian Peninsula. In the coastal lowland sectors there 

are three stations over the Northern Atlantic coast (Porto, La Coruña and San 

Sebastián), five over the Mediterranean coast (Barcelona, Valencia, Alacant, Murcia 

and Málaga) and three over South-western Atlantic coast (Cadiz, Huelva and Lisboa). 

Moreover, there are four stations over the Northern Plateau (Burgos, Soria, Valladolid 

and Salamanca) and four over the Southern Plateau and influenced areas (Madrid, 

Albacete, Ciudad Real and Granada). Finally, the Ebro basin has three stations 

(Pamplona, Huesca and Zaragoza), one more in Guadalquivir basin (Sevilla) and 

another one in Guadiana basin (Badajoz). 

This network essentially covers the entire Iberian Peninsula and the main climate types 

(Dry climates-Type B and Temperate climates-Type C), and sub-types (BWh, BWk, 

BSh, BSk, Csa, Csb, Cfa and Cfb) are represented according to the Köppen-Geiger 

Climate Classification previously described.  

In addition, more than two-thirds of the meteorological stations selected are located in 

non-urban areas from mid-20th century onwards, with most of them located at airfields 

and airports in order to avoid potentially biases  related to urban heat island influences. 
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Figure 4-1: Map showing the locations of measurement stations and the elevations spread over the 

Iberian Peninsula. 
 

As most long-term climatological time series are affected by a number of non-climatic 

factors that can make these data unrepresentative of the actual climate variation 

occurring over time, quality control and homogenization procedeures are necessary. 

These factors include changes in instruments, observing practices, station locations, the 

algorithms used to calculate means, and the station environment. Some changes cause 

sharp discontinuities while other changes, particularly changes in the environment 

around the station, can cause gradual biases in the data. All of these inhomogeneities 

can bias a time series and lead to misinterpretations of the studied climate. It is 

important, therefore, to remove the inhomogeneities or at least determine the possible 

error they may cause (Aguilar et al., 2003). In the original SDATS/SDAPS series, daily 

maximum and minimum temperatures and daily precipitation of mainland Spain were 

adjusted by the Centre for Climate Change (C3) for the period 1850-2005 (Brunet et al., 

2006). The series were quality controlled and homogenized applying the Standard 

Normal Homogeneity Test (SNHT) (Alexandersson and Moberg, 1997) following the 

procedure described by Aguilar et al., (2002). Monthly factors were interpolated to the 

daily scale (Vincent et al., 2002). 
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Location Latitude Longitude Altitude 
(m) Temperature Precipitation  AWC 

(mm) 
ALBACETE 38º 57’ 08” N 01º 51’ 47” W 698.6 1893-2010 1894-2010 50 
ALICANTE 38º 22’ 00” N 00º 29’ 40” W 81.5 1893-2010 1894-2010 50 
BADAJOZ 38º 53’ 00” N 06º 49’ 45” W 185 1864-2010 1876-2010 15 

BARCELONA 41º 25’ 05” N 02º 10’ 36” E 420.1 1885-2010 1855-2010 50 
BURGOS 42º 21’ 22” N 03º 36’ 57’’ W 881 1870-2010 1870-2010 50 

CADIZ 36º 27’ 55” N 06º 12’ 37” W 30 1850-2010 1853-2010 150 
CIUDAD REAL 38º 59’ 22” N 03º 55’ 11” W 627 1893-2010 1894-2010 150 

GRANADA 37º 08’ 10” N 03º 37’ 52” W 685 1893-2010 1894-2010 50 
HUELVA 37º 16’ 48” N 06º 54’ 35” W 19 1903-2010 1903-2010 100 
HUESCA 42º 05’ 00’’ N 00º 19’ 35” W 541 1861-2010 1861-2010 100 

LA CORUÑA 43º 22’ 02’’ N 08º 25’ 10’’ W 67 1882-2010 1882-2010 15 
MADRID 40º 24’ 40” N 03º 40’ 41” W 678.9 1853-2010 1854-2010 150 
MALAGA 36º 39’ 57” N 04º 28’ 57” W 6.5 1893-2010 1894-2010 150 
MURCIA 37º 58’ 59” N 01º 07’ 14” W 57 1863-2010 1863-2010 50 

PAMPLONA 42º 46’ 06” N 01º 38’ 21’’ W 452 1880-2010 1880-2010 50 
SALAMANCA 40º 56’ 50” N 05º 29’ 41” W 789.8 1893-2010 1894-2010 150 

SAN SEBASTIAN 43º 18’ 24’’ N 02º 02’ 22’’ W 251.6 1893-2010 1894-2010 50 
SEVILLA 37º 25’ 15” N 05º 53’ 47” W 31 1893-2010 1894-2010 150 
SORIA 41º 46’ 29” N 02º 29’ 01” W 1083 1893-2010 1894-2010 50 

VALENCIA 39º 28’ 48” N 00º 22’ 52” W 11.4 1864-2010 1884-2010 75 
VALLADOLID 41º 38’40” N 04º 44’ 35” W 691.4 1893-2010 1894-2010 50 
ZARAGOZA 41º 39’ 43” N 01º 00’ 29’’ W 245 1887-2010 1891-2010 150 

PORTO 41º 08' 00" N 08º 36' 00" W 100 1901-2010 1906-2010 150 
LISBOA 38º 43' 00" N 09º 09' 00" W 77 1855-2010 1863-2010 15 

 
Table 4-1: Iberian stations network. Name of station, current geographical location (latitude, longitude 

and altitude), length of record (temperature and precipitation) and AWC of the soil is also shown. 
 

The original raw daily maximum temperature (Tmax), daily minimum temperature 

(Tmin) and daily precipitation (Prec) were subjected to various quality control (QC) 

tests to identify and flag major errors of digitization as well as to ensure internal 

consistency, temporal coherence, and spatial coherence of the data. Checks of gross 

errors (aberrant values, problems with decimal points, calendar dates, negative 

precipitation,…) Tmax < Tmin values, consecutive values repeating at least four times, 

temperature (precipitation) values greater than ±4 (±6) standard deviations of the 

threshold for both the candidate record and its group of reference stations, and values 

exceeding the expected amount of change were exhaustively assessed in the raw data.  

As mentioned above, The Standard Normal Homogeneity Test (SNHT) was used to 

homogenize monthly temperature and precipitation. This method is based on the 

application of iterative process using a candidate time-series together with a group of 

reference time-series. The SNHT does not presupose the homogeneity of any time-

series, so all of them are used as candidate and reference time-series during the process. 

Taking into account that the probability that all time-series are affected by a break point 
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at the same time is very poor, the comparison between any candidate station and the 

reference time-series should detect abrupt shifts and artificial trends in the time-series. 

More detailed information on the applied QC and homogenisation procedure are shown 

and discussed in Brunet et al., (2006). For this study, SDATS and SDAPS were updated 

for the period 2006-2010 directly from the AEMET servers available at www.aemet.es 

(Last visit: 15-03-2010) to cover the current period.  

Otherwise, raw daily data of temperature and precipitation from Porto and Lisboa are 

pending to be quality controlled and to test the homogeneity, which will be carry out in 

section 4.2. 

 
Figure 4-2: Available Water Content of the soil (AWC in mm/m3.) over the Iberian Peninsula obtained 

from the Harmonized World Soil Database (HWSD). 
 

The most dominant soil type was selected for each location obtaining the amount of the 

AWC of the soil, which is divided into nine classes; from wetlands (which are given as 

AWC of the soil of 1000mm/m3) to soils with AWC of less than 20mm/m3. 
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4.1.1. Additional data quality control and homogenisation  

 

As described in the previous section, two additional series plus a 5-year update to the 22 

SDATS/SDAPS series are used. Therefore this new information requires a new quality 

control and a homogenization effort to ensure that the new data is free from non-

climatic biases. The procedures employed are described in this section.  

The quality control (QC) procedure is applied in order to identify errors derived from 

data collection, manipulation, digitalization or transmission. The QC must be rigorous 

especially in daily data and it is the previous step before applying the homogenization 

tests or any climate analysis. Any individual or group of records that exceed an 

established threshold (standard deviation) relative to the normal distribution of the time-

series will be flagged as outliers or potential errors. After that, these outliers will be 

revised thoroughly to decide whether they can be validated or removed using -99.9 as a 

code for missing values. An efficient QC can remove data errors from the time-series 

that would surely affect negatively the final results. This is the key to avoid some wrong 

climate interpretations induced by data errors in a climate change context (Aguilar et al., 

2003; Brunet et al., 2005).    

The QC of daily temperature and precipitation is carried out in this study using the 

ExtraQC Quality Control software produced by the Centre for Climate Change (C3) and 

available at www.c3.urv.cat/data.html (Last visit: 25-03-2013). This software is a set of R-

coded functions for quality control integrated into the widely used ETCCDI’s software 

R-Climdex to produce an unofficial version called R-Climdex-Extraqc. Extraqc routines 

include the following tests to flag various kinds of potential errors. 

- Duplicate dates control. 

- Rounding problems evaluation. 

- Out of range values, based on fixed threshold values. 

- Outliers, based on Interquartile Range exceedance. 

- Interdiurnal differences based on fixed threshold values. 

- Coherence between maximum and minimum temperatures. 

- Consecutive equal values control. 

The detection of outliers is carried out using a range with p25 -3 interquartilic ranges 

(lower bound) and p75 +3 interquartilic ranges (upper bound) for temperature. The 

same ranges, but using 5 interquartilic ranges, are used for precipitation. The advantage 
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of this approach is that the detection of this percentile based oultiers is not affected by 

the presence of larger outliers, so one run of the process is enough. 

The ExtraQC quality control is only applied to daily temperature (maximum and 

minimum) and daily precipitation from Porto (1901-2010) and Lisboa (1856-2010) 

time-series, as SDATS and SDAPS (1850-2005) were intensively quality controlled and 

adjusted on source (Brunet et al., 2006 and 2007) according to section 4. Nevertheless, in 

this study SDATS and SDAPS were updated from 2006 to 2010 directly from the 

AEMET servers. Therefore, the last segment (2006-2010) of SDATS and SDAPS must 

also be quality controlled in a daily scale. In this way, the raw data (maximum and 

minimum temperature and precipitation) from SDATS and SDAPS are recovered for 

the whole period from each time-series and the last segment of data is appended since 

2003 to ensure data continuity and consistency over the entire period (e.g. Cadiz 1850-

2005 + 2006-2010). Once all the raw data of daily maximum and minimum 

temperature, and precipitation are prepared for the whole period, the QC is applied. 

Table 4-2 shows the QC results for Porto, Lisboa and for the last segment of 

SDATS/SDAPS. Despite the longevity of Porto and Lisboa time-series, a low 

percentage of flagged values are identified (the 0,08% and the 0,11% respectively 

relative to the total amount of data). The 0,06% of the total amount of data are validated 

in both time-series while the 0,02% and the 0,04% cannot be recovered in Porto and 

Lisboa respectively. Otherwise, the 0,21% of the total amount of data are flagged in the 

case of the last segment of SDATS/SDAPS (2006-2010) being validated the 0,13% and 

missed the rest of 0,08% of the data. These results confirm that Porto and Lisboa time-

series have a high quality of the records thank to the low percentages of flagged data. 

The data have been validated searching the original values from the raw time-series in 

order to replace them while missing data were replaced by -99.9. 

 

 Porto Lisb oa SDATS/SDAPS 
Period 1901-2010 1856-2010 2006-2010 

Data amount 118642 167007 131400 
Flagged values  99 0,08% 183 0,11% 271 0,21% 

Validated 
values 77 0,06% 108 0,06% 169 0,13% 

Set to missing 22 0,02% 75 0,04% 102 0,08% 
 
Table 4-2: Summary of QC results (in absolute values and also in percentages) from raw daily data for 

Porto, Lisboa and for the updated period of SDATS/SDAPS. The controlled time-period and the 
total data amount tested are also shown. 
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Figure 4-3 and 4-4 show the annual climate cicle for Porto and Lisboa respectively 

using monthly boxplots for maximum temperature (TX), minimum temperature (TN), 

derived diurnal temperature range (DTR) and precipitacion (PREC). All tested variables 

represented very well the climate regime in Porto and Lisboa because most of the values 

fall inside the established thresholds but there are some supicious values or outliers (in 

round circles), especially in summer precipitation for Porto, and in summer/autumn 

precipitation and summer TN for Lisboa.  

The evolution of the quality controlled variables for Porto and Lisboa across time can 

be seen in the inspection of figures 4-5 and 4-6 respectively. The annual plots show the 

normal evolution of the Porto and Lisboa time-series for the whole period in spite of 

some discontinuity can be deduced, at least in TN and also reflected in DTR, at the 

beginning of the Porto time-series. Moreover, another discontinuity can be identified in 

TX and also reflected in DTR for Lisboa around 1940s. These possibilities will be 

checked using the homogeneity test once the QC is tested. Nevertheless, these plots 

confirm the good results found in the QC and described in table 4-2. 

Finally, the frequency of rounding values after de decimal point is shown for Porto (Fig. 

4-7) and Lisboa (Fig. 4-8) using the same variables tested before. Both observatories show 

higher frequency of 0.1 and 0.2 in daily precipitation probably related to negligible 

precipitation or trace precipitation normally identified as 0.1 or 0.2. Otherwise, the 

rounding values are more evident in the case of TX and TN in both time-series finding 

the higher rates of frequency in 0.0 and 0.5 in detriment of 0.3 and 0.9. This is often 

related to the measurement practices given by the observer. 
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Figure 4-3: Monthly boxplots of temperature (for maximum (TX), minimum (TN), diurnal temperature 

range (DTR)) and precipitation (NON ZERO PREC) data for Porto (1901-2010).  
 

 

 
Figure 4-4: Monthly boxplots of temperature (for maximum (TX), minimum (TN), diurnal temperature 

range (DTR)) and precipitation (NON ZERO PREC) data for Lisboa (1856-2010).  
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Figure 4-5: Annual boxplots of temperature (for maximum (TX), minimum (TN), diurnal temperature 

range (DTR)) and precipitation (NON ZERO PREC) data for Porto (1901-2010). 
 

 

 
Figure 4-6: Annual boxplots of temperature (for maximum (TX), minimum (TN), diurnal temperature 

range (DTR)) and precipitation (NON ZERO PREC) data for Lisboa (1856-2010). 
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Figure 4-7: Frequency of rounding values after the decimal point in temperature (for maximum (TX) and 

minimum (TN) and precipitation (NON ZERO PREC) data for Porto (1901-2010). 
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Figure 4-8: Frequency of rounding values after the decimal point in temperature (for maximum (TX) and 

minimum (TN) and precipitation (NON ZERO PREC) data for Lisboa (1856-2010). 
 

As mentioned before, most of the long time-series are affected by non-climatic factors, 

mainly relocations of the measurement stations, changes of the instruments, different 

measurement techniques, among others. These factors can introduce discontinuities in 

the time-series in terms of a shift (e.g. a relocation of the observatory) or a gradual trend 

leading an artificial trend on data (e.g. the urban heat island promoted by a gradual 

development of the cities). Thus, it is crucial to apply the appropriate correction method 

to get temporal and spatial comparability of any time-series against itself or towards 

other time-series before developing a climate analysis (Aguilar et al., 2003). 

The Standard Normal Homogeneity Test (SNHT; Alexandersson and Moberg, 1997) is 

selected as the correction method in this study. As described in section 4, SDATS and 

SDAPS were already homogenized previously (in Brunet et al., 2006 and 2007) for the 
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period 1850-2005 using the SNHT correction method. Thus, it makes sense to 

homogenize Porto and Lisboa time-series using the same approach in spite of other 

newer homogenisation methods currently available which outperform SNHT (Venema et 

al., 2013). The SNHT is based on the application of iterative process using a candidate 

time-series together with a group of reference time-series. The SNHT does not 

presupose the homogeneity of any time-series, so all of them are used as candidate and 

reference time-series during the process. Taking into account that the probability that all 

time-series are affected by a break point at the same time is very poor, the comparison 

between any candidate station and the reference time-series should detect abrupt shifts 

and artificial trends in the time-series. More detailed information about the 

homogenisation procedure was described and widely discussed in Brunet et al., (2006). 

The RSNHT software, developed by the Centre for Climate Change (C3) and available 

at: www.c3.urv.cat/data.html (Last visit: 25-03-2013), is a code created using the R 

environment to compute the SNHT correction method at the monthly scale. In this way, 

the two Portuguese series (Lisboa and Porto) are tested using the RSNHT code to find 

breaks and correct them for the whole period in a monthly scale. Therefore, monthly 

precipitation and monthly mean temperature for Porto and Lisboa are required for this 

purpose. The last segment of SDATS/SDAPS (2006-2010) is not adjusted after a 

subjective graphical evaluation which did not find evidence of large inhomogeneities.  

As mentioned above, the SNHT requires references series to test and correct the 

candidate series. Therefore, raw data of monthly precipitation and mean temperature 

from La Coruña, Porto, Lisboa, Salamanca, Badajoz, Cadiz, Valladolid and Madrid are 

selected to be tested under the criterion of geographical proximity and similar climate 

characteristics. The six best correlated time-series (Pearson r > 0.7) are chosen as a 

reference series for Porto (La Coruña, Valladolid, Salamanca, Madrid, Badajoz and 

Lisboa) and for Lisboa (La Coruña, Porto, Salamanca, Badajoz, Cadiz and Madrid). 

After the accurate inspection of the outputs provided by the RSNHT, the breaks found 

in monthly precipitation for Porto and Lisboa were not adjusted to be not too much 

relevant for the time-series. In fact, Figure 4-9 shows the annual evolution of 

precipitation for Porto and Lisboa demonstrating similar inter-annual variability 

between both time-series. In this case, to keep the original monthly precipitation for 

Porto and Lisboa is highly preferred. 
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Figure 4-9: Annual precipitation evolution of raw data for Porto (1901-2010) and Lisboa (1864-2010). 
 

On the contrary, monthly mean temperature is adjusted to correct 4 breaks in Lisboa 

(detected in 1871, 1892, 1942 and 1964) and 2 breaks in Porto time-series (detected in 

1923 and 1976). Twelve different correction factors (one for each month) are applied to 

the time-series to ensure a reliable homogenisation. Figure 4-10 shows the annual 

evolution of raw data and adjusted mean temperature for Porto and Lisboa. Applying 

the correction factors to the raw data, the adjusted data are obtained for both time-series. 

Therefore, the Portuguese time-series can be integrated to the rest of SDATS and 

SDAPS to produce a new high quality dataset called as Monthly Iberian Temperature 

and Precipitation Series (MITPS).  
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Figure 4-10: Annual mean temperature evolution of raw data and adjusted data for Porto (1901-2010) 

and Lisboa (1956-2010). 
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4.1.2. Missing values interpolation in MITPS 

 

Although the time-series selected for this study were chosen among the most complete 

long term records, they are affected, at some degree by the existence of missing values 

in monthly mean temperature and monthly accumulated precipitation. These missing 

data can influence negatively to the results obtained from the drought indices or even 

prevent us from the application of some techniques that require strict data continuity. As 

has been discussed in previous sections, drought indices computation takes into account 

monthly or weekly precipitation amount (all drought indices) and monthly or weekly 

mean temperature (just some indices) together with AWC of the soil (Sc-PDSI only). 

Therefore, the availability of drought severity values depends directly of the 

simultaneous availability of temperature and precipitation data. For example, if monthly 

temperature is available for a given month, but precipitation amount is missing, drought 

severity value for this month cannot be calculated. For this reason, it is very important 

to ensure that long term records are of high quality and have continuous records of 

simultaneous temperature and precipitation and monthly missing data must be filled. 

Data infilling has been limited to short duration gaps (no more than 3 consecutive 

months) to ensure the quality of the interpolation.  

Figure 4-11 shows the availability of monthly temperature and precipitation (per year) 

across time (1850-2010) in the Iberian time series (24 time series) compared with 

potential data obtained from number of available time series (stations). 

Three stations are available from the 1850s onwards, 7 from 1860s, 8 from 1870s, 12 

from 1880s, 22 from 1890s and 24 from 1900s. 

Different periods with frequent missing values across the whole dataset are evident from 

the inspection of figure 4-11. The fraction of missing data for the whole period (1850-

2010) represents about 9% of the potential data. Moreover, for the two shorter sub-

periods of 1899-1905 and 1931-1939 missing data percentages are higher at 22% and 

17% respectively. This marked reduction in the available data in both intervals is 

mainly related to the political instabilities experienced by Spain between the end of the 

19th century and in the early 1940s, associated with the so-called 1898 Crisis (lost of the 

the overseas Spanish Colonies of Cuba and Philippines) and the convulse transition to 

the II Republic and its abrupt end with the Spanish Civil War from 1931 to 1939. Due 

to these severe political and socio-economic crises, meteorological operational services 
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in Spain were dramatically disturbed during these times (Brunet et al., 2006). Finally, 

during 1940-2010 data availability was always above 95%. 

Availability of monthly temperature and precipitation data in the Iberian time series 
(1850-2010)
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Figure 4-11: Potential vs. available monthly simultaneous temperature and precipitation (left axis) and 
the number of available stations (right axis) in the Iberian Peninsula (1850-2010). 

 

Individual time series have also been inspected to detect missing remarkable missing 

periods for each of them. Figure 4-12 shows the percentages of missing data for each 

time-series in monthly mean temperature and monthly accumulated precipitation for the 

period 1906-2010 (when all time-series guarantee continuity in their records, as shown 

in  fig. 4-11). The fraction of missing data is about 4% for monthly mean temperature 

and of 5% is related to monthly accumulated precipitation for the period 1906-2010. 

Moreover, sixteen time-series are affected by less than 5% of missing data, six stations 

have between 5 and 10% of missing data for at least one variable (Valencia, Soria, 

Porto, Madrid, Huesca and Albacete) and, finally, San Sebastián shows almost 20%, 

both in temperature and precipitation, while Pamplona has almost 30% of missing data 

in precipitation (Fig. 4-12).  

We do not attempt to fill entire periods with consecutive years with missing data, such 

as 1850-1905, which no data or sparse years in most stations (see  fig. 4-11), but punctual 

gaps are reconstructed to ensure continuity and reliability on results. Due to excessive 

missing data, Pamplona and San Sebastián are discarded (although San Sebastián data 
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series has been dramatically improved after a recent Data Rescue effort in the Center of 

Climate Change, C3, the data processing has not ended at the moment of writing these 

lines). Thereby, the original dataset composed by 24 time-series is reduced to 22 time-

series to guarantee high quality on results.  
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Figure 4-12: Percentages of missing data for each time-series in terms of monthly mean temperature and 

monthly accumulated precipitation from 1906 to 2010. 
 

Missing values are infilled using multiple linear regression with neighboring series from 

1906 to 2010. The four best correlated time series (Pearson’s r >0.7) are selected to 

complete punctual gaps for each candidate time-series month by month. Vicente-

Serrano et al., (2005) and (2006) applied this method to complete missing values in 51 

Iberian precipitation series from 1910 to 2000 in order to provide continuity in time-

series. They obtained reliable results in drought detection and analysis using a specific 

drought index (SPI) and, then the spatial-temporal patterns of droughts were computed 

for the whole Iberian Peninsula. 

However, it is important to check the consistency of the results provided from the 

application of the method. Figure 4-13 shows mean standard errors computed for each 

time-series after reconstructing via multiple linear regression for monthly temperature 

and precipitation the whole 1906-2010. Lisboa temperature and precipitation series and 

Barcelona preciptiation series do not appear as it does not present any missing data. The 
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mean standard error in monthly temperature is 0.47ºC while in monthly precipitation is 

21.2 mm after averaging all time-series. 
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Figure 4-13: Mean standard errors computed for each time-series after applying multiple linear 
regression for temperature (upper panel) and precipitation (lower panel) for the period 1906-
2010. Time-series without monthly missing data are not represented. 

 

The final impact on the final time-series is regarded as neglectable, not only for the 

method applied, but also due to the low percentage of missing data found in the time-
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series under study. Figure 4-14 shows the difference between annual averaged 

temperature and precipitation of the original dataset (including missing data) and after 

filling the gaps for all time-series from 1906 to 2010. In the case of temperature, the 

change in annual mean values after introducing the reconstructed values falls in the 

range of ±0.02ºC; among the five time series surpasing this threshold, Valencia shows 

the largest differences, with a range of ±0.09ºC in the annual averages. On the other 

hand, most of the time-series do not reach ±2 mm of change in annual precipitation after 

filling monthly missing data. Just six time-series exceed this value and Soria and 

Madrid reach the highest rate of change (±6 mm) in annual precipitation. Those series 

with larger discrepancies between non-filled and infilled time series agree, as expected, 

with those were more values have been interpolated. Nonetheless, the low percentage of 

monthly missing data on original dataset has an inappreciable impact on temperature 

and precipitation time-series in the Iberian Peninsula for the period 1906-2010. 
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Figure 4-14: Impact of filled data on annual averaged temperature (upper panel) and precipitation (lower 
panel) for each time-series from 1906 to 2010. Grey bars represent the difference between 
annual averaged temperature and precipitation from the original dataset (for the whole period 
1906-2010) and after filling the gaps. 

 

After the data infilling process, continuity in monthly temperature and precipitation is 

ensured from 1906 to 2010 for the 22 time-series that represent the Iberian Peninsula. In 

this way, the simultaneous availability of monthly long-term temperature and 

precipitation data guarantees the continuity of drought severity values across time which 

improves the quality and reliability of the final drought analysis. 
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4.2. MITPS analysis workflow 

 

After the preliminary data treatment of the times series, the Monthly Iberian 

Temperature Series (MITPS) have been created. As mentioned above, the 22 time-series 

of daily temperature and precipitation have different lengths of record (see table 4-1). This 

could affect negatively the reliability of the results taking into account the regional 

character of this work. Furthermore, the need to have simultaneous temperature and 

precipitation records to compute drought indices for each location is crucial to obtain 

reliable drought conditions. For all these reasons, it is necessary to fix a common period 

to solve this issue. Most of the time-series started in 1890s, but the consistency and 

continuity of the records is much improved after the 1900s. The common period to 

compute regional time-series from individual observations has been limited to 1906-

2010, according to the availability and continuity of the records. Although the lost of 

several decades of worthy information is a drawback of this approach, the reliability and 

robustness of the results is ensured. The longest time-series are analyzed individually to 

avoid loosing crucial drought information about some regions of the Iberian Peninsula 

since the mid-19th century. 

Monthly anomalies for each time series are calculated using the common period 1961-

1990 to avoid that some stations have more weigth on the regional series  than others 

due to its own mean-level. Then, these anomalies are averaged again to create one 

single regional temperature and precipitation time-series for whole Iberian Peninsula. 

Annual anomalies of temperature and precipitation for the period 1906-2010 are 

calculated averaging monthly anomalies from the regional time-series (reference base-

period mean 1961-1990) according to the Jones and Hulme (1996) method of separating 

temperature and precipitation into its two components; the climatology and the 

anomaly.  

After the creation of MITPS, drought indices can be computed using individual stations 

to compare dry conditions among various regions under study or averaging the 22 time-

series to obtain the regional drought time-series over the whole Iberian Peninsula for the 

common period 1906-2010. 

The procedure diagram (Fig. 4-15) shows the methodology applied to obtain the Monthly 

Iberian Temperature and Precipitation Series (MITPS) before computing the drought 

indices. 
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Figure 4-15: Procedure diagram of the methodology applied. 
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4.3. Drought indices computation 

 

4.3.1. The PDSI computation and drought severity classification 

 

The Palmer’s Drought Severity Index, PDSI (Palmer, 1965), is based on the supply-and-

demand concept of the water balance equation taking into account more than just the 

precipitation deficit at specific locations (Hayes, 1997). PDSI values are distributed in 9 

categories using a comprehensive classification depending of the severity of dry or wet 

conditions (Table 4-3). The PDSI is calculated based on precipitation and temperature 

data, as well as the local Available Water Content (AWC) of the soil.  

 

CATEGORIES PDSI value 
Extremely wet ≥ +4 
Severely wet ≥ +3 to < +4 

Moderately wet ≥ +2 to < +3 
Slightly wet ≥ +1 to < +2 
Near normal > -1 to < +1 
Slightly dry > -2 to ≤ -1 

Moderately dry > -3 to ≤ -2 
Severely dry > -4 to ≤ -3 

Extremely dry ≤ -4 
Table 4-3: Classification of PDSI categories defined by Palmer (1965) 
 

Palmer applied what he called Climatologically Appropriate for Existing Conditions 

(CAFEC) quantities to normalize his computations so he could compare the 

dimensionless index across space and time. These quantities are related to 

evapotranspiration values, recharge, runoff, loss, potential evapotranspiration (PET), 

potential recharge, potential runoff, and potential loss. The calculation of these 

parameters depends heavily on the available water holding capacity (AWC).  

According to Heim (2002) CAFEC procedure enables the index to measure abnormal 

wetness (positive values) as well as dryness (negative values), with persistently normal 

precipitation and temperature theoretically resulting in an index of zero in all seasons in 

all climates. When PDSI value remains positive (or negative) during a few consecutive 

months it means wet event (or dry) has produced. When PDSI changes the sign, 

although it only occurs in a month, the last wet or dry event has finished and starts 

another one. 
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The computation of Palmer’s index, according to Heim (2002), consists of the 

following: 

1) Carry out a monthly hydrologic accounting for a long series of years using five 

parameters: precipitation, evapotranspiration, soil moisture, loss and recharge, 

and runoff. Potential and actual values are computed for the last four parameters. 

Palmer used monthly averages, but other timescales (such as weeks or days) can 

be used as well. Means of the potential and actual values for these parameters 

are computed over a calibration period that is usually, but not necessarily, the 

data period of record. 

2) Summarize the results to obtain coefficients (of evapotranspiration, recharge, 

runoff, and loss). These coefficients are computed by dividing the mean actual 

quantity by the mean potential quantity. 

3) Reanalyze the series using the derived coefficients to determine the amount of 

moisture required for “normal” weather during each month. These normal, or 

CAFEC, quantities are computed for each of the parameters listed above. 

4) Compute the precipitation departure (precipitation minus CAFEC precipitation) 

for each month, then covert the departures to indices of moisture anomaly. This 

moisture anomaly index has come to be known as the Palmer Z index and 

reflects the departure of the weather of a particular month from the average 

moisture climate for that month, regardless of what has occurred in prior or 

subsequent months. 

5) Analyze the index series to determine the beginning, ending and severity of the 

drought periods. 

The PDSI value for a given month can be calculated using the general formula: 

iii Z+X=X 







− 3

1
0.897 1  

Where Xi is the PDSI value and Xi-1 is the previous PDSI value. 

Where Zi is the moisture anomaly index. 

To calculate the current value of X i (PDSI), 0.897 times the previous PDSI value 1−iX  

is added to one-third of the current moisture anomalyZi . Palmer called the values 

0.897 and 1/3 the duration factors (Palmer, 1965; Wells et al., 2004). 

But, PDSI has been criticized for a variety of reasons of which most significant is 

perhaps that is not comparable between diverse climatological regions (Alley, 1984 and 
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Karl, 1986). This problem has been solved by Wells et al. (2004) creating Self-Calibrated 

PDSI (Sc-PDSI) that improves upon the “original” PDSI. Where Palmer used weighting 

and calibration factors in his algorithm, empirically derived from a limited amount of 

data from the U.S. Great Plains, the Sc-PDSI determines these factors for each location 

separately. This calibrates the PDSI with a set of factors uniquely appropriate to that 

location, and affects the range of values of the Sc-PDSI and its sensitivity for changes in 

the moisture regime. A more detailed description of the modifications of this algorithm 

to obtain the Sc-PDSI is given by Wells et al., 2004 and van der Schrier et al. (2006a). 

Multiple studies have been realized obtaining better results using Sc-PDSI compared 

with the “original” PDSI (van der Schrier et al., 2006, 2007; Mavromatis, 2007, 2009; Dubrovsky et 

al., 2008; Wu and Kinter, 2009, Dai, 2012) and other studies applied Sc-PDSI obtaining 

increased dry conditions (Dubrovsky et al., 2007b; Brázdil et al., 2008; Briffa et al., 2009; Vicente-

Serrano et al., 2010; Dai, 2011and 2012; Sheffield et al., 2012). 

But, according to Vicente-Serrano et al., (2011), the PDSI still has some deficiencies 

such as:  

a) Limitations of the PDSI as a Soil Water Balance Model: Despite Wells et 

al., 2004 solved most of the problems of calibration making the index more 

suitable for drought quantification and monitoring, the PDSI is still highly affected 

by the selected calibration period. The procedure for its computation is based on 

several assumptions and simplifications (like neglect other soil properties, ignore 

the complex role of vegetation, the role of PET,…) and some researchers 

questioned the PDSI as a physical soil water balance model (Sheffield et al., 2004). 

b) The inability of the PDSI to quantify droughts on different time scales (see 

section X). 

c) Problems related to spatial comparability: The PDSI represents water deficit 

at different time-scales depending on the region under consideration, in other 

words, the spectral characteristics of the PDSI vary from site to site (Guttman, 1998). 

The time-scales of the PDSI and the Sc-PDSI are not fixed because they depend 

on the characteristics of the site and vary spatially. It makes difficult to assess 

what kind of deficit of the index is representing and, in terms of spatial 

comparability, the PDSI retains the problem of being an index that represents 

different drought frequencies among sites. 

Nevertheless, this drought index provides undoubtedly valuable information and has 

been widely used in sound drought studies, such as U.S. Drought Monitor (NCDC and 
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NDMC)) and the works of the Intergovernmental Panel on Climate Change (IPCC) in its 

4th assessment (2007) (Dai et al., 2004b). As an improvement, Van der Schrier et al. (2006) 

derived the time series (1901-2002) and maps of Sc-PDSI for Europe and North 

America compiled by the Climatic Research Unit (CRU). 

In this study, the Sc-PDSI was computed for the 22 locations spread over the Iberian 

Peninsula using the calibration period 1906-2010 (the whole period) to calculate the 

main parameters of the algorithm. Monthly mean temperature, monthly precipitation 

and the AWC of the soil were required for each location to compute Sc-PDSI and, 

averaging the 22 Sc-PDSI time-series, the regional Sc-PDSI time-series was performed. 

Moreover, the Sc-PDSI was re-computed for each location using the monthly 

temperature climatology as input data (computed for the common period 1906-2010)  

instead the actual monthly mean temperature in order to assess the drought variability 

across the Iberian Peninsula without the effect of global warming. 

For this work, a software package was used to compute Sc-PDSI. It was developed by 

Wells (2003), and it is available at http://greenleaf.unl.edu) (Last visit: 09-05-2013). 
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4.3.2. The SPI computation and drought severity classification  

 

Understanding that a deficit of precipitation has different impacts on the ground water, 

reservoir storage, soil moisture, snow pack and stream flow led McKee et al. (1993) to 

develop the Standardized Precipitation Index (SPI). The SPI was designed to quantify 

the precipitation deficit for multiple time scales. These time scales reflect the impact of 

drought on the availability of the different water resources. Soil moisture conditions 

respond to precipitation anomalies on a relatively short scale, while ground water, 

stream flow, and reservoir storage reflect the longer-term precipitation anomalies (Hayes, 

1997). For these reasons, McKee et al. (1993) originally calculated the SPI for 3, 6, 12, 

24 and 48 month time scales. 

The definition of drought proposed is based on standardized precipitation. Standardized 

precipitation is simply the difference of precipitation from the mean for a specified time 

period divided by standard deviation where the mean and standard deviation are 

determined from past records. The resulting value is the SPI for the particular 

precipitation data point. 

SPI can be calculated using the following expression: 

SPI=
�X ik− �X i�

ói
 

Where; 

ói= standardized deviation for the ith station. 

X ik= precipitation for the ith station and kth observation. 

�X i= mean precipitation for the ith station. 

 

The index has the advantages of being easily calculated, having modest data 

requirements (only precipitation), and being independent of the magnitude of mean 

rainfall and hence comparable over a range of climatic zones. It does, however, assume 

the data are normally distributed, and this can introduce complications for short time 

periods (Agnew, 2000). The SPI has been accepted by the World Meteorological 

Organization (WMO) as the reference drought index and it should be used by national 

meteorological and hydrological services worldwide to characterize meteorological 

droughts (Hayes et al., 2011). 
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McKee et al. (1993) used the classification system shown in the SPI values table to 

define drought intensities resulting from the SPI. McKee et al. (1993) also defined the 

criteria for a “drought event” for any of the time scales (see table 4-4). A drought event 

occurs any time the SPI is continuously negative and the event ends when the SPI 

becomes positive. Each drought event, therefore, has a duration defined by its beginning 

and end, and intensity for each month that the events continue. The accumulated 

magnitude of drought can also be drought magnitude, and it is the positive sum of the 

SPI for all the months within a drought event. 

 

CATEGORIES SPI  value 

Extremely wet ≥ +2 

Severely wet ≥ +1.5 to < +2 

Moderately wet ≥ +1 to < +1.5 

Near normal > -1 to < +1 

Moderately dry > -1.5 to ≤ -1 

Severely dry > -2 to ≤ -1.5 

Extremely dry ≤ -2 
Table 4-4: Classification of SPI categories defined by McKee et al., (1993). 
 
Based on an analysis of stations across Colorado, they determined that the SPI is in mild 

drought 24 % of the time; in moderate drought 9.2% of the time; in severe drought 4.4% 

of the time; and in extreme drought 2.3% of the time (McKee et al., 1993). Because the SPI 

is standardized, these percentages are expected from a normal distribution of the SPI. 

The 2.3% of SPI values within the “extreme drought” category is a percentage that is 

typically expected for an “extreme” event (Wilhite, 1995). 

The SPI allows the determination of duration, magnitude and intensity of droughts 

(Hayes et al., 1999). Its main advantage is that it can be calculated for several time scales 

(McKee et al., 1995; Komuscu, 1999) and identifies various types of drought; hydrological, 

agricultural or meteorological. The SPI has been extensively used for drought analysis 

in many studies (e.g., Hayes et al., 1999; Lana et al., 2001; Vicente-Serrano et al. 2004, 2006, 2008, 

2010; Mavromatis, 2007; Kingtse et al. 2008, 2009; Dubrovsky et al. 2007b, 2008; Wu et al. 2009; 

Subash et al. 2010), and has become an important component in many drought monitoring 

efforts (i.e., the U.S. Drought Monitor (NCDC and NDMC), North American Drought 

Monitor (NOAA) and European Drought Observatory (EDC). Lloyd-Hughes and 

Saunders (2002) developed a high spatial resolution, multi-temporal SPI-based 

climatology of Europe and SPI maps are operationally available for the U.S.A. as well. 

UNIVERSITAT ROVIRA I VIRGILI 
DROUGHT VARIABILITY AND CHANGE ACROSS THE IBERIAN PENINSULA 
Joan Ramon Coll Benages 
DL: T 955-2014



4. Data and methods 

 105 

The main criticism of SPI is that its calculation in based on precipitation data. The index 

does not consider other variables that can influence droughts, such as temperature, 

evapotranspiration, wind speed, solar radiation, among others. Knowing that 

precipitation is the main driver of droughts (Vicente-serrano et al., 2010 and 2011; Dai, 2011 and 

2012; Sheffield et al., 2012), other variables as temperature or evapotranspiration can have 

an important role when a drought episode is developing. In fact, the use of drought 

indices which include temperature data in their formulation is more suitable than others, 

especially for applications related to current global warming or future climate scenarios 

(Vicente-Serrano et al., 2010). 

In this study, the SPI was computed for the 22 locations spread over the Iberian 

Peninsula using the calibration period 1906-2010 (the whole period) to calculate the 

main parameters of the algorithm. Monthly precipitation was required for each location 

to compute SPI and, averaging the 22 SPI time-series, the regional SPI time-series was 

performed. 

For this work, a software package has been used to compute SPI available at the web 

repository of the Spanish National Research Council: 

http://digital.csic.es/handle/10261/10002.) (Last visit: 09-05-2013). 
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4.3.3. The SPEI computation and drought severity classification 

 

The recently described Standardized Precipitation-Evapotranspiration Index (SPEI) 

(Vicente-Serrano et al., 2010) is based on the original SPI calculation procedure. The novelty 

of SPEI is the integration of the evapotranspiration (PET) in its algorithm and represents 

a simple climatic water balance which can be calculated at different time scales (Vicente-

Serrano et al., 2010). The SPEI combines the sensitivity of Palmer’s Drought Severity 

Index to changes in evaporation demand (caused by temperature fluctuations and 

trends) with the simplicity of calculation and the multi-temporal nature of the SPI. The 

new index is particularly suited to detect, monitor and study the consequences of global 

warming on drought conditions. SPI and SPEI are purely statistical, and are not 

intended to reproduce the water balance of any particular system. The advantages of 

such indices are that:  

a) Their calculation only requires climatological information, which is often 

available and of reasonable quality.  

b) They do not require any assumptions about the system being modelled. 

c) They compute the climatological anomalies for periods of exact length (termed 

the “time scale” of the index.  

The ability to calculate these indices at various time scales allows choice of the scale 

most appropriate to the system under study, and can be achieved using simple statistics 

such as correlation analysis (Vicente-Serrano et al., 2011). With the development of the 

SPEI they sought to resolve the main criticism of the SPI, namely that it is based on 

precipitation data alone. 

SPEI values are distributed in 7 categories (as SPI, see table 4-5 and 4-4) using a 

comprehensive classification depending of the severity of dry or wet conditions.  

 

CATEGORIES SPEI  value 

Extremely wet ≥ +2 

Severely wet ≥ +1.5 to < +2 

Moderately wet ≥ +1 to < +1.5 

Near normal > -1 to < +1 

Moderately dry > -1.5 to ≤ -1 

Severely dry > -2 to ≤ -1.5 

Extremely dry ≤ -2 
Table 4-5: Classification of SPEI categories based on McKee et al., (1993). 
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The SPEI formulation is based on the following steps: 

a) PET estimation. 

b) Difference between the precipitation and PET for a given month. 

c) A normalization of the water balance into a Log-Logistic probability distribution 

to obtain the SPEI index series. 

The first step to compute SPEI is related to the PET estimation which is clearly 

explained in section 4.3.4. With a value for PET, the difference between the 

precipitation (P) and PET for the month i is calculated according to: 

iii PETPD −= , 

which provides a simple measure of the water surplus or deficit for the analyzed month. 

Tsakiris et al., (2007) proposed the ratio of P to PET as a suitable parameter for 

obtaining a drought index that accounts for global warming processes. 

The calculated iD values are aggregated at different time scales, following the same 

procedure as that for the SPI. The difference k jiD ,  in a given month j and year i depends 

on the chosen time-scale,k . 

SPEI need to use three parameter distributions since in two parameter distributions the 

variable (x) has a lower boundary of zero )0( ∞<> x , whereas in three parameter 

distributions (x) can take values in the range ∞<> xγ( , whereγ  is the parameter of 

origin of the distribution), consequently, (x) can have negative values, which are 

common in D series. To modeliD values at different time-scales are used the probability 

density function of a three parameter Log-Logistic distribution: 

2))(1()()( −−+−= ββ

ααα
β yxyx

xf  

Whereα , β andγ are scale, shape and origin parameters respectively for D values in the 

range )( ∞<> Dγ . 

The Log-Logistic distribution adopted for standardizing the D series for all time-scales 

is given by: 

1])(1[)( −

−
+= βα

yx
xF  

F(x) value is the transformed to a normal variable by means of the following 

approximation (Abramowitz and Stegun, 1965): 
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where 321210 ,,,,, dddCCC are similar constants as SPI and W is probability-weighted 

moments: 
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The average value of SPEI is 0, and the standard deviation is 1. The SPEI is a 

standardized variable and it can therefore be compared with other SPEI values across 

time and space. 

The complete calculation procedure for the SPEI can be found in Vicente-Serrano et al., 

(2010).  

Vicente-Serrano et al., (2010b) created a new global 0.5º gridded dataset (1901-2006) of 

a multi-scalar drought index (SPEI), which considers the joint effects of temperature 

and precipitation on droughts. The main advantage of the new dataset lies in its multi-

scalar character, which allows discrimination between different types of drought. This 

gridded SPEI dataset is freely available in different file formats in the web repository of 

the Spanish National Research Council Agency (CSIC), at 

http://hdl.handle.net/10261/22449. Last visit: 09-05-2013. 

Some studies tested the reliability and consistency of SPEI compared with other drought 

indices obtaining better results as a global gridded map (Vicente-Serrano et al., 2010b) as a 

few locations around the world (Vicente-Serrano et al., 2010). Therefore, drier conditions 

were detected using SPEI in Czech Republic (Potop et al., 2011) and for detecting 

agricultural droughts in Republic of Moldova (Potop, 2011). 

In this study, the SPEI was computed for the 22 locations spread over the Iberian 

Peninsula using the calibration period 1906-2010 (the whole period) to calculate the 

main parameters of the algorithm. Monthly precipitation was required for each location 

to compute SPEI and, averaging the 22 SPEI time-series, the regional SPEI time-series 

was performed. Moreover, the SPEI was re-computed for each location using the 

monthly temperature climatology as input data (computed for the common period 1906-

2010)  instead the actual monthly mean temperature in order to assess the drought 

variability across the Iberian Peninsula without the effect of global warming. 

For this work, a software package has been used to compute SPEI available at the web 

repository of the Spanish National Research Council: 

http://digital.csic.es/handle/10261/10002.) (Last visit: 09-05-2013). 
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4.3.4. The PET estimation method 

 

The estimation of Potential Evapotranspiration (PET) is required to compute the Sc-

PDSI and the SPEI drought indices. There are different methods to compute potential 

evapotranspiration, such as Thornthwaite (Thornthwaite, 1948), Penman-Monteith (Allen et 

al., 1994b, Hargreaves, among others The use of one or another PET estimation method 

strongly depends on the long-term available data to compute them. Generally, PET 

estimation methods that require greater amount of data to compute PET are physically 

more realistic than others which less amount of data are needed. 

For example, only monthly mean temperature, latitude and month is required to 

compute Thornthwaite PET estimation (Thornthwaite, 1948) while many climatological 

variables are implied to the computation of Penman-Monteith PET estimation 

(parameterization developed by the Food and Agricultural Organization (FAO), Allen et 

al., 1994b; Ekström et al., 2007). In this way, PET is generally though to be more 

realistically estimated using Penman-Monteih type approaches (van der Schrier et al., 2011; 

Dai, 2010, 2011 and 2012; Sheffield et al., 2012, among others). Penman-Monteith developed by 

FAO defined the reference or potential evapotranspiration as the rate of 

evapotranspiration from hypothethical reference crop with an assumed height of 0.12m, 

a fixed surface resistance of 70 s m-1 and an albedo of 0.23, closely resembling the 

evapotranspiration from an extensive surface of green grass of uniform height, 

completely shading the ground and with adequate water (Allen et al., 1994b). The 

algorithm for the FAO PET estimation is: 
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Where 2U is the wind speed at 2 m height; G is the soil heat flux related to monthly 

mean of daily averaged temperatures of the preceding and following months;∆ refers to 

the slope of the vapour pressure curve based on the saturation vapour pressure and the 

monthly mean of daily averaged temperatures;nR is the net radiation at the crop surface 

and it is computed as the difference between short-wave radiation (based on monthly 

cloud cover data) and long-wave radiation (based on monthly averages of daily total 

extraterrestrial radiation); effective emissivity of the atmosphere (related to relative 

humidity); emissivity by the vegetation; and an adjustment for the cloud cover. 
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Otherwise, Thornthwaite PET estimation method (Thornthwaite, 1948) uses the 

relationship between monthly mean of daily averaged temperatures, T, to compute PET, 

which is given by: 

a

I

T
PET )

10
(16=  

Where PET is in mm month-1 and a, is given by a third-order polynomial in the heat 

index I. The heat index is developed for this purpose and has 12 monthly means of daily 

averaged temperature values for each year as input. 

514.112

1

)
5

(∑
=

=
i

T
I  

The numerical implementation of the last equation is that max (T, 0) is taken as input to 

the summation rather than T. 

Finally, to account for variable day and month lengths, PET is adjusted to: 

)12/)(30/( hPETPET θ=  

Whereθ  is the length of the month (in days) and, h is taken as the duration of daylight 

(in hours) on the fifteenth day of the month. The latter correction ensures that the 

Thornthwaite parameterization for PET is related to the latitude of the site considered, 

next to the monthly means of daily averaged temperatures. 

For this study, the only method to be applied to estimate PET was Thornthwaite since 

there were not long available series of observed wind speed, relative humidity, solar 

radiation and cloud cover for the period under study (1906-2010). Therefore, other more 

robust methods like Penman-Monteith unfortunately could not be applied in this case. 

As is shown, Thornthwaite’s method was formulated in 1948 and it is based on the 

assumption that radiation is the main driver of temperature variability. Therefore, the 

Thornthwaite’s method estimated the radiation based on the temperature. This 

assumption could be valid under the climate conditions in 1948, but under the current 

global warming conditions, the temperature increase is not driven by increased radiation 

but it is caused by increased greenhouse gasses emissions (Solomon et al., 2007; Field et al., 

2012). In this way, the Thornthwaite’s approach is currently overestimating PET since 

the method is overestimating solar radiation, which is not increasing in parallel to the 

temperature increase. Thus, the possible limitations of the followed approach to 

compute PET and how the observed drought trends could be affected in some way by 

the method applied will be thoroughly discussed in section 6. 
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4.3.5. The concept of time-scale 

 

The concept of time-scale in drought has been widely used by drought scientists 

because a drought is considered as a multi-scalar phenomenon. McKee et al., (1993) 

clearly illustrated this essential characteristic of droughts through consideration of 

usable water resources including soil moisture, ground water, snow-pack, river 

discharges, and reservoir storages. The time-period from the arrival of water inputs to 

availability of a given usable resource differs considerably. Thus, the time-scale over 

which water deficits accumulate becomes extremely important, and functionally 

separates hydrological, environmental, agricultural and other kinds of droughts. Short 

time scales are considered an agricultural and/or meteorological drought because they 

indicate the water content of vegetation and the soil moisture conditions while at a time 

scale of 12 months or more, droughts are less frequent, but they last longer. These time 

scales are considered a hydrological drought, because they are used for monitoring 

surface water resources, e.g. river flows, reservoir or lake level (Vicente-Serrano et al., 

2006). 

Numerous scientific studies have shown that particular systems and regions can respond 

to drought conditions at very different time scales in order to identify various types of 

drought (meteorological, agricultural or hydrological) (Szalai et al., 2000; Vicente-Serrano and 

López-Moreno, 2005; Vicente-Serrano, 2007 and Vicente-Serrano et al., 2010 and 2011). 

As an example, it is common to find that two months without precipitation can produce 

drought conditions in the soil moisture suffering meteorological and/or agricultural 

drought. But, this lack of precipitation probably will not have an immediate effect on 

the discharge of large river systems, or in the level of water stored in the reservoirs of a 

region. However, the opposite situation can also occur. For example, five years of low 

precipitation will probably produce a severe hydrological drought in terms of river 

discharge and reservoir storages, but during the same drought period high precipitation 

events can produce high levels of soil moisture removing the meteorological and 

agricultural drought, although hydrological drought is remaining. Thus, it is common 

for drought conditions to occur in only a part of hydrological cycle (Vicente-Serrano et al., 

2011). 

For this reason, it is crucial that drought indices are able to detect drought conditions at 

different time-scales in order to identify various types of droughts.  
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The PDSI and the Sc-PDSI represent a fixed time-scale that typically varies between 9 

and 18 months, with spatial differences among regions depending on local 

characteristics (Guttman, 1998; Vicente-Serrano et al., 2010b). The PDSI was designed to be 

strongly auto-correlated to account for the impact of land memory on drought 

conditions (Dai, 2011), and for this reason it is not able to detect drought on time-scales 

shorter than 12 months (Vicente-Serrano et al., 2011). However, time-scales between 2 and 9 

months are very useful in some regions for capturing the drought response in several 

hydrological, agricultural and environmental systems. Otherwise, the PDSI and the Sc-

PDSI are useful for the analysis of hydrological droughts because it is significantly 

correlated to stream flow (Dai et al., 2009 and 2011; Vicente-Serrano et al., 2011). However, SPI 

and SPEI are able to detect wet and dry conditions at different time scales taking into 

account the complexity of drought phenomenon and the exactly period (time-scale) in 

which the antecedent conditions are affecting the value of the index can be determined. 

Moreover, SPI and SPEI can be compared at different time-scales between them 

because a robust statistical meaning is expressed as a standardized anomaly, whereas 

the units of the PDSI are not so easily interpreted.  

Nevertheless, the time-scale selected to quantify droughts strongly depends on the 

interest of each study. In the case of the Iberian Peninsula (our area of interest), the 

economic importance of non-irrigated agriculture (mainly cereals) has decreased in the 

last decades. For this reason, the analysis of short time scales, indicative of agricultural 

drought, is currently of less interest. Meanwhile, the increase in tourist activities and 

irrigation in the Iberian Peninsula have raised water demands for life, making 

hydrological droughts more damaging to the society and the economy, producing water 

restrictions and losses on irrigated land (Morales et al., 2000 and Del Moral et al., 2003). In this 

way, Lorenzo-Lacruz et al., (2012) analyzed the streamflow evolution in the whole 

Iberian Peninsula between 1945 and 2005, providing evidence of a general decrease in 

river flows between 1-3% in the Iberian Peninsula over the last 60 years for both 

regulated and non-regulated rivers. They found general trends of decreasing streamflow 

for winter and spring (and hence also in annual streamflow) in the Iberian Peninsula can 

be closely related to a decreasing precipitation (Rodrigo and Trigo, 2007; Mourato et al., 2009) 

but also to water management. The downward trend of streamflows for the wet season 

primarily caused by the decreasing precipitation trend can be exacerbated by the typical 

water management strategy, consisting on filling the reservoirs during the wet season 
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(even at the expense of decrease winter and spring streamflows) to guarantee water 

supply in summer. Together with climate variability, change in land cover or land use 

may play an important role in the evolution of streamflow. Main changes are related to 

an increase of the forested land within the Iberian Peninsula and an expansion of the 

irrigated surface, which is closely related to water management strategies. The 

development of irrigated agriculture in Spain has increased the extension of irrigated 

land producing an increase of water demand, especially during drought periods (Causapé 

and Clavería, 2007). Moreover, there has also been a substantial increase in the population 

with the consequent growth of the cities, representing a substantial increase in urban 

water demand. Therefore, tourism is growing in the Iberian Peninsula causing also a 

markedly increased of water demand, mainly in the Mediterranean coastland areas, 

while could also be determining the large negative streamflow observed in this area. 

Water management strategies are one of the main factors explaining the observed 

streamflows patterns and water is progressively released during the dry season to 

guarantee the summer water supply for human consumption and irrigation.  

The future evolution of river flows in the Mediterranean region present a great 

uncertainty. Climate models project a decrease in precipitation of approximately 20% in 

the Mediterranean region (IPCC, 2007) at the end of 21st century. For these reasons, a 

large temporal unit of analysis in SPI and SPEI (12 months) is favoured for this study, 

since it is more suited to monitor hydrological than agricultural droughts in the Iberian 

Peninsula (Hayes et al., 1999 and Vicente-Serrano, 2006). 
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4.4. Trends computation 

 

The evolution of annual and seasonal temperature, precipitation, drought variability 

(from drought time-series) and drought parameters (severity, duration and magnitude) is 

assessed by computing trends for the period 1906-2010. In this study we use a robust 

statistical technique to compute the sign and the significance of observed trends called 

Mann-Kendall test (Mann, 1945; Kendall, 1955 and 1970) and applied according to 

Wang and Swail, (2001).  

The Mann-Kendall test is a nonparametric test for randomness against trend. According 

to Mann, the null hypothesis of randomness states that the data are a sample of n 

independent and identically distributed random variables. The test statistic S is defined 

as: 

∑ ∑
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= +=
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The distribution of S under null hypothesis is symmetrical and is normal in the 

limit ∞→n . Under null hypothesis, the mean of S is zero and, in case of no ties (e.g. no 

multiple values for the same sampling time), the variance of S is given by: 

18/)52)(1(2 +−= nnnVS  

When trend exists, the time-series can be described by linear regression tt btaY ∈++= , 

where t∈ denotes a white noise process, and a and b are regression parameters that are 

usually estimated using a least square estimator. However, the least square estimator of 

b is vulnerable to gross errors and the associated confidence interval is sensitive to non-

normality of the parent distribution (Sen, 1968). In this study, the estimator of b 

proposed by Sen, (1968) is used, which is based on Kendall’s rank correlation (see 

Wang and Swail, (2001) for more details).  

The statistical significance of trends is obtained at the 99% (p<0.01) and 95% (p<0.05) 

significance level provided by the p-values and the 95% confidence interval of trends is 

also computed to fix the margin of error related to trends. 

It is evident that time series of drought indices present a strong autocorrelation, given 

the cumulative character of drought phenomenon (implicit in the algorithms), especially 

when large time-scales are selected for computation. The result of the Mann-Kendall 

test depends strongly on the autocorrelation. As example, if there is a positive 

autocorrelation in the time-series, the test rejects the null hypothesis more often than 
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specified by the significance level (von Storch and Navarra, 1995). In other words, the 

autocorrelation increases the probability that the test detects a significant trend in the 

time-series, whether it is there or not. For this reason, autocorrelation should be 

removed from the time-series prior to computing the Mann-Kendall test. Applying that, 

more reliable trends will be ensured. 

The pre-whitening procedure (Von-Storch and Navarra, 1995) is the method selected for 

this study to remove autocorrelation from observed trends. This is based on the 1-month 

lag autocorrelation coefficient of the series, as follows: 

ttt rXXXp −= +1  

Where tXp is the value of the pre-whitened series for the t interval, X is the value of the 

original series for the t interval, and r is the estimated autocorrelation coefficient. 

Prior to the correction of the effects of autocorrelation, the Trend-free pre-whitening 

method proposed by Yue et al., (2002) is followed to remove the trend (if present). The 

procedure involves the following steps: 

1. Calculation of the slope (b) of the original series using a linear regression. 

2. Calculation of the autocorrelation coefficient r, which is the slope of the 

linear regression between the de-trended seriestX  and the lag-1 de-trended 

series 1'−tX . Removal of the autocorrelation coefficient of the de-trended 

series was performed as follows: 

ttttt TXXrXY −=−= −11 '''  

Where the resulting series tY'  is independent. 

3. The predicted tT and the residual series tY'  were summed: 

ttt YTY '+=  

ensuring that the resulting series preserved the original trend and was not 

affected by autocorrelation. 

More detailed information about the application of the explained method can be found 

at Lorenzo-Lacruz et al., (2012), whom removed autocorrelation to get more reliable 

trends related to assess the stream-flow evolution in the Iberian Peninsula for the period 

1945-2005. 
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4.5. PCA’s definition, computation and principal component 

rotation 

 

Principal Components Analysis (PCA) is possibly one of the most widely used 

multivariate statistical techniques in the atmospheric sciences. The technique became 

popular for analysis of atmospheric data following the paper by Lorenz (1956), who 

called the technique empirical orthogonal function (EOF) analysis. Both names are 

commonly used, and refer to the same set of procedures. 

Multiple methodological descriptions of PCA can be found in literature (Jollife, 1990, 

Wilks, 1995), however, the definition and application of PCA on atmospheric sciences are 

clearly described in Wilks, (2006). 

Wilks indicates that PCA reduces a data set containing a large number of variables to a 

data set containing fewer (“hopefully many fewer”) new variables. These new variables 

(denominated principal component (PC)) are linear combinations of the original ones, 

and these linear combinations are chosen to represent the maximum possible fraction of 

the variability contained in the original data. Data for atmospheric and other 

geophysical fields generally exhibit many large correlations among the variables, and a 

PCA results in a much more compact representation of their variations. PCA has the 

potential for yielding substantial insights into both the spatial and temporal variations 

exhibited by the field or fields being analyzed, and new interpretations of the original 

data can be suggested by the nature of the linear combinations that are most effective in 

compressing the data. 

Usually it is convenient to calculate de PCs as linear combinations of the anomalies. 

The first PC is that linear combination of anomalies having the largest variance. The 

subsequent PCs are the linear combinations having the largest possible variances. The 

result is that all the PCs are mutually uncorrelated. A small set of uncorrelated variables 

is much easier to understand and handle for further analyses than a larger set of 

correlated variables (Dae Ha et al., 2011). 

For any PC, the defined vector for the coefficients of different variables is called 

eigenvector and the sum of the eigenvector components results the eigenvalue for a PC. 

Multiplying this value per 100 and divided with the number of variables provides the 

percentage of the explained variance for each component. 
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The subject of PCA is sometimes regarded as a difficult and confusing one, but much of 

this confusion derives from a proliferation of the associated terminology, especially in 

writings by analysts of atmospheric data (Wilks, 2006). The term coefficient is also a usual 

one in the statistical literature and, for this reason this coefficient will be called weight 

from now to avoid confusions. The term weight expresses better the contribution of 

each variable to the component than others. 

Obviously, the main purpose of PCA is not to obtain the same number of components 

than original variables, but to obtain a reduced number of principal components 

explaining most of the variance of the original variables. In this way, most of the 

information content of the data may be represented using some smaller number of the 

principal components. There is no clear criterion that can be used to choose the number 

of principal components that are best retained in a given circumstance. The choice of 

the truncation level can be aided by one or more of the many available principal 

component selection rules, but it is ultimately a subjective choice that will depend in 

part on the data at hand the purposes of PCA. Perhaps the most basic criterion is to 

retain enough of the principal components to represent a sufficient fraction of the 

variances of the original variables. Of course the difficulty comes in determining how 

large the fraction must be in order to be considered sufficient. Jolliffe (2002) suggests 

that between 70% and 90% of explained variance may often be a reasonable range. 

Basically, there are two main criterions to choose how many principal components are 

needed to extract for each PCA (Wilks, 2006).  

The first one is called Kaiser’s rule (Kaiser, 1960) and involves comparing each 

eigenvalue (and therefore the variance described by its principal component) to the 

amount of the joint variance reflected in the average eigenvalue. Principal components 

whose eigenvalues are above this threshold are retained. Kaiser proposed the threshold 

parameter T>1. Jolliffe (1972, 2002) has argued that Kaiser’s rule is too strict (typically 

seems to discard too many principal components). He suggested that the alternative 

T>0.7 often will provide a roughly correct threshold, which allows for the effects of 

sampling variations. 

On the other hand, Cattell (1966) proposed the scree graph for determining the number 

of principal components to be retained. Plotting the eigenvalue spectrum with a linear 

vertical scale produces what is known as the scree graph. When using the scree graph 

qualitatively, the goal is to locate a point separating a steeply sloping portion to the left, 

and a more shallowly sloping portion to the right. The principal component number at 
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which the separation occurs is then taken as the truncation cutoff. As described above, 

the scree-slope criterion does not involve quantitative statistical inference. 

Finally, the application of PCA for climatic series can be performed in six possible 

operational modes that can be specified in PCA according to Richman (1986). But, 

basically S or T modes are the most used for climatic series depending on the role 

which plays the various elements (variables or cases) (Vicente-Serrano et al., 1999). T-mode 

identifies sub-groups of observations to obtain similar spatial patterns being the time 

observations as variables and the observatories as cases. Meanwhile, S-mode is used to 

obtain general temporal patterns of climatic series: the observatories are the variables; 

and the time observations the cases. 

However, the orthogonality constraint on the eigenvectors can lead to problems with 

these interpretations, especially for the second and subsequent principal components 

(Wilks, 2006). Although the orientation of the first eigenvector is determined solely by the 

direction of the maximum variation in the data, subsequent vectors must be orthogonal 

to previously determined eigenvectors, regardless of the nature of the physical processes 

that may have given rise to the data. The first principal component may represent an 

important mode of variability or physical process, but it may well also include aspects 

of other correlated modes or processes. Thus, the orthogonality constraint on the 

eigenvectors can result in the influences of several distinct physical processes being 

jumbled together in a single principal component. 

When physical interpretation rather than data compression is a primary goal of PCA, it 

is often desirable to rotate a subset of the initial eigenvectors to a second set of new 

vectors referred to different coordinates. The principal component rotation consists 

basically in a mathematical transformation that replaces the retained PCs obtained in 

PCA by the same number of derived variables. The explained variance in the PCs is not 

altered by the rotation and the rotated eigenvectors are less prone to the artificial 

features resulting from the orthogonality constraint on the unrotated eigenvectors 

(Richman, 1986). 

Following rotation of the eigenvectors, a second set of new variables is defined, called 

rotated principal components (RPCs). The rotated principal components are obtained 

from the original data analogously, as de dot products of data vectors and the rotated 

eigenvectors. Depending on the method used to rotate the eigenvectors, the resulting 

rotated principal components may or may not be mutually uncorrelated. 
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Richman (1986) lists 19 approaches to defining the rotation matrix in order to achieve 

simple structure, although his list is not exhaustive. However, by far the most 

commonly used approach is the orthogonal rotation called the Varimax (Kaiser, 1958). 

This type of orthogonal rotation of the PCs minimizes the number of variables which 

have high weights in a particular component. The objective is to obtain a more 

interpretative results being the best correlated variables which have high weights in the 

same component and less weights to other components. The results of eigenvector 

rotation can depend on how many of the original eigenvectors are selected for rotation. 

Moreover, Varimax rotation simplifies the spatial structure by isolating regions with 

similar temporal variations, being the most orthogonal method to improve the creation 

of regions of maximum correlation between the variables and the components (Santos et 

al., 2010). 

There are many studies applying principal component analysis (PCA) on drought 

indices to obtain spatial-temporal variability of droughts in a global or regional time 

scale. Day (2004) applied PCA in PDSI series from 1882 to 2002 for global land areas 

on a 2.5º grid in order to detect wetter or drier conditions across time on monthly and 

seasonal basis. Day (2011) updated and improved the results obtained from the global 

PDSI dataset (1850-2008) applying PCA again to investigate the drying effect of global 

warming. Otherwise, Bordi et al., (2006) studied the behaviour of droughts in some 

regions of the world using ERA-40 and NCEP/NCAR re-analysis precipitation data. 

Then, the leading spatial-temporal variability of dryness and wetness has been assessed 

by applying PCA to the SPI time series. Moreover, Dae Ha et al., (2011) applied PCA 

to the SPI time series in order to evaluate the vulnerability of agricultural drought of 

major river basins in Korea, and Zuluaga (2009) found spatial-temporal patterns of 

droughts in Colombia computing PCA in SPI time series. Finally, Sousa et al., (2011) 

have performed a PCA on the PDSI and Sc-PDSI datasets for the Mediterranean basin 

to obtain regions that can be considered relatively homogeneous in terms of drought 

characteristics. 

On the other hand, Vicente-Serrano (2005) investigated the differences in spatial patters 

of drought on different time scales applying PCA to the SPI series focused in the Iberian 

Peninsula from 1910 to 2000. Boroneant et al., (2011) investigated drought variability 

over Iberian Peninsula using two monthly global datasets; the Sc-PDSI and SPEI having 

a spatial resolution of 0.5º of gridded data for the period 1901-2006. They compared 

both datasets in terms of explained variance, patterns of variability and temporal 
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evolution of PCs computing PCA. Finally, Lana et al., (2001) and Santos et al., (2010) 

identified spatial patterns of drought using PCA on SPI time series for Catalonia and 

Portugal respectively. 

In this study, Principal Component Analysis (PCA) was applied at annual and seasonal 

time-scale in 12-month SPEI time-series from 1906 to 2010 for detecting spatial-

temporal variations of droughts along the year. S-mode was used to obtain general 

temporal patterns of climatic series: the observatories were the variables; and the time 

observations were the cases. Kaiser’s rule was applied to truncate the number of 

principal components under the two recommended thresholds T>0.7 (Jolliffe, 1986) and 

T>1 (Kaiser, 1958, Serrano et al., 1999 and 2005). To achieve more stable spatial patterns, a 

rotation of the principal components with Varimax procedure was performed (White et 

al., 1991, Serrano et al., 1999 and 2005 and Santos et al., 2010). The patterns defined in this way 

were referred as rotated principal components (RPCs). 
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4.6. Defining droughts and wet events and their parameter 

estimation 

 
After choosing the appropriate drought index for the Iberian Peninsula and the time 

scale of interest, wet and dry events are computed. Using Monthly SPEI, we can 

identify a dry or wet event as the time period which a determined number of 

consecutive months remain in dry or wet conditions. A dry or wet period indicates the 

dominance of abnormally dry or wet conditions across time (in average), although some 

interruptions in these conditions can exist. For example, an abnormally dry period was 

identified from early-1980s to mid-1990s (see fig. 4-16). Note that not all the months 

comprised in the dry period need to be dry themselves, but various dry events could be 

detected in the dry period. Obviously, from early 1880s to mid-1990s, there were some 

dry and wet events simultaneously, but in general the period was abnormally dry. 

McKee et al., (1993) defined a drought event as a period in which the SPI is 

continuously negative and reaches a value of -1 or less. The same criteria can be applied 

to SPEI. However, some drought events may have prolonged drought duration, but a 

moderate SPEI for each period that does not reach -1 or less. The cumulative SPEI for 

such events (e.g. the 5th event in fig. 4-16), however, are likely greater than those for 

events with a short duration that have a SPEI less than -1. Serious water supply and 

other drought-related problems are also caused by this type of event (Mirabbasi et al., 

2011). As a result, according to Loukas and Vasiliades (2004), a drought event is defined 

as a continuous period for which the SPEI is below zero (Shiau, 2006). Obviously, a wet 

event will be defined as a continuous period for which the SPEI is = o > 0. 

In addition, some parameters related to drought and wet event can be computed from 

the identification of dry and wet events. Maximum and averaged severity, duration, 

magnitude, the onset and offset months and the inter-arrival time of droughts and wet 

events are the selected parameters to identify changes in their behaviours across time. 

Maximum severity refers to the maximum monthly index value recorded for each 

drought or wet event ( ims  in fig. 4-16), while the average severity is related to the 

average index value for each drought or wet event. 
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Figure 4-16: Definition sketch of drought events. Detected droughts and wet events are shown over 

Iberian Peninsula for the period 1941-1960 as an example. 
 
Drought length or duration  (D) is taken as the number of consecutive intervals 

(months) where SPEI remains below zero (or upper zero in the case of wet events). 

Since the drought event is defined at aggregation of monthly time scale, the minimum 

duration of drought or wet event is one month (Reddy et al., 2011). Drought magnitude 

(M) is the cumulative values of SPEI within the drought duration (or wet event). For 

convenience, magnitude of drought event ,...)2,1(, =iMi i is taken to be positive, which 

is given by McKee et al., (1993). 

∑
=

−=
D

i
ii SPEIM

1

 

Where iSPEI  is value of thi  period SPEI for a D duration drought event. 

The inter-ar rival time (L) is defined as the period (number of months) between the 

beginning of a drought (or wet event) and the beginning of the next drought (or next wet 

event). This parameter is related to drought frequency (Mirakbari et al., 2010). 

Finally, the onset of a drought (or wet event) refers to the first month which SPEI value 

is below zero (negative in droughts and positive in wet events) and the offset is the first 

month which the sign changed in monthly SPEI values (from negative to positive in the 

case of droughts or vice versa in wet events). 
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After obtaining these parameters from observed droughts and wet events, some changes 

in temporal evolution of droughts and wet events can be found out. In order to detect 

changes on their behaviours, the trend values are computed using simple linear least-

squares regressions. Statistical significance is obtained through Mann-Kendall test 

(Kendall, 1970) at a 0.05 (95%) and 0.01 (99%) levels. Moreover, the 95% confidence 

intervals of the trend coefficients are also estimated from tabulated values (see section 

4.4). 
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Chapter 5 

 

RESULTS 

 

This section results from the application of the methodology described above over the 

new MITPS dataset previously created. First of all, the climate fluctuations over the 

Iberian Peninsula are described in terms of temperature and precipitation at annual and 

seasonal time-scale. Then, we discuss the drought variability, which is approached by 

the application of the most widely used drought indices (Sc-PDSI, SPEI and the SPI) 

across the Iberian Peninsula for the common period 1906-2010. A trend analysis is 

carried out on drought time-series in order to understand the behaviour of drought 

conditions along the 20th century and the first decade of the 21st century. The relation 

between temperature change and drought trends under global warming is also evaluated. 

Principal Component Analysis (PCA) is applied at annual and seasonal time-scale at 12-

month SPEI time-series for the common period 1906-2010 in order to detect spatial-

temporal variations of droughts across the 20th century and in the first decade of the 21st 

century. 

Finally, the characteristics and trends of the main parameters related to dry and wet 

events are analyzed for the whole Iberian Peninsula and for the spatial-temporal patterns 

found at annual time-scale. The severity, duration, magnitude and other interesting 

parameters such as the seasonal distribution of the onset, offset and the period of the 

maximum severity reached by dry or wet events are also studied. 
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5.1. Climate fluctuations in the Iberian Peninsula 
 

The variability of temperature and precipitation data is treated in this section for the 

whole Iberian Peninsula from 1906 to 2010 at annual and seasonal time-scale. 

Moreover, the linear trends and their statistical significance are also analyzed. This 

analysis provides relevant information related to the behaviour of the main climate 

variables in the Iberian Peninsula under the current climate change conditions. 

 

5.1.1. Annual and seasonal temperature variability 

 

Annual temperature anomalies computed from 1906 to 2010 show a clear increasing 

trend of 0.126ºC/decade, statistically significant at the 99% level (Table 5-1). This is 

consistent with the Spanish temperature increase described by Brunet et al., 2006 for the 

period 1850-2003. Other regional studies showed a qualitative concordance with this 

one (e.g. for the interior of Valencia, Miró et al., 2006; Castilla-León, del Río et al., 2005; 

Andalucía, Castro-Díez et al., 2007 and Catalonia, Martínez et al., 2009). 

The observed temperature increase is not constant across time (Fig. 5-1). A first period of 

warming took place between 1904 and 1929, followed by a stabilization of temperatures 

during the 1930s and another short period of increasing temperatures during the 1940s. 

A period of falling temperatures was identified from 1948 to 1973, but the final 1973 to 

present warming episode was the period having the highest rates of change. The 

warmest years appear between 1996 and 2010, being 2006 the warmest of the whole 

Iberian time series. 

 

Time-scale Linear trend (ºC/decade)  95% confidence intervals p-value 
Annual 0.126 (0.097/0.155) 2.03E-08 

DJF (Winter) 0.121 (0.063/0.174) 4.37E-05 

MAM (Spring) 0.140 (0.084/0.190) 1.05E-04 

JJA (Summer) 0.143 (0.089/0.189) 2.28E-06 

SON (Autumn) 0.108 (0.062/0.151) 2.04E-05 
 
Table 5-1: Summary of linear trends (in ºC/decade) computed for annual and seasonal temperature in the 

Iberian Peninsula (1906-2010). The associated 95% confidence intervals and p-values are also 
shown. Bold (or Italic) values are referred to statistical significance at the 99% level (or 95%). 
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Figure 5-1: Annual temperature anomalies (base-period 1961-1990) in the Iberian Peninsula for the 

period 1906-2010. Red line represents a 10-year Gaussian filter applied over the annual series. 
 
Moreover, seasonal temperature anomalies also show a clear increase of 0.121ºC/decade 

for winter (DJF); 0.140ºC/decade for spring (MAM); 0.143ºC/decade for summer (JJA); 

and 0.108ºC/decade for autumn (SON), all statistically significant at the 99% level 

(Table 5-1). Summer and spring are the seasons with the highest rates of change while 

winter and autumn show lower trends. But, as described for the annual temperature 

anomalies, the increase is not also constant across time in seasonal temperatures. Figure 

5-2 represents the seasonal temperature variability over the Iberian Peninsula from 1906 

to 2010 using the base-period 1961-1990. The variability of winter temperatures does 

not show high rates of change during a long period (from 1906 to 1970), dominated by 

alternating warm and cold winters. The first period of a clear warming took place since 

1970 followed by a stabilization of temperatures between 1980 and 1990. The second 

warming period began in 1991 until 1998 followed by a stabilization of temperatures 

during the last years of the time-series. Otherwise, the variability of spring temperatures 

is higher than in winter because the first warming period took place earlier, between 

1939 and 1945, followed by a stabilization of temperatures until 1961. A clear decrease 

of temperatures was identified from 1962 to 1971, being the last one the coldest spring 

of the time-series. Finally, a clear warming period was recorded from 1972 to 1997, 

being the last one the warmest spring over the Iberian Peninsula. The last years of the 

time-series were dominated by a slight decrease of temperatures in spring.  
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Figure 5-2: Seasonal temperature anomalies ordered as winter (DJF, upper panel), spring (MAM), 

summer (JJA) and autumn (SON, lower pannel) (base-period 1961-1990) in the Iberian 
Peninsula for the period 1906-2010. Red line represents a 10-year Gaussian filter applied over 
the annual series. 
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Furthermore, the variability of summer temperatures show a short warming period at the 

beginning of the time-series, from 1912 to 1921, followed by a stabilization of 

temperatures until 1939. As occurred in spring temperatures, another warming period 

was identified from 1939 to 1949, although a decreasing period began in 1950 and 

prolonged until 1977, being the last one the coldest summer in the time-series. From 

then, a clear warming period was detected until 2005, being the summer of 2003 the 

warmest summer ever recorded in the Iberian Peninsula with an anomaly of almost 

+3ºC. Finally, the variability of autumn temperatures show a first period of warming 

between 1919 and 1947 followed by a decreasing of temperatures until 1976 (the 

coldest autumn of the time-series). The last warming period began in 1977 and 

prolonged until 2010 in spite of this warmer period was not constant across time. 
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5.1.2. Annual and seasonal precipitation variability 

 

Annual precipitation anomalies for the whole period in the Iberian Peninsula are 

dominated by a high inter-annual variability accompanied by a slight increase 

statistically non-significant at the 95% level of 2.4 mm/decade (Fig. 5-3). This is 

consistent with Trenberth et al., (2007), who did not detect a generalized and significant 

decrease of precipitation in the Mediterranean basin including the Iberian Peninsula. 

Other studies which dealt the evolution of the precipitation during the 20th century or 

before concluded annual precipitation does not show appreciable changes in secular 

time scale (Lana and Burgueño, 2000; Llasat and Quintas, 2004; Saladié, 2004; Barrera-Escoda, 2008; 

CLIVAR, 2010). 

Despite the high inter-annual variability, some dry and wet periods can be identified. 

From 1906 to 1935 dry conditions dominated but, between 1936 and 1942, wet 

conditions were more frequent, but dry conditions came back from 1943 to 1958. Then, 

very wet years appeared in 1960s and early 1970s, followed by a progressive dry 

conditions produced at the end of 1970s, 1980s, and more intense in 1990s. Finally, the 

first decade of 21st century was generally dry with 2005 being the driest year of the 

Iberian time series. 
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Figure 5-3: Annual precipitation anomalies (base-period 1961-1990) in the Iberian Peninsula for the 

period 1906-2010. Red line represents a 10-year Gaussian filter applied over the annual 
series. 
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As occurred in annual precipitation, seasonal anomalies show a very high variability 

among years in all seasons and during all time-series long (Fig. 5-4). The variability of 

winter precipitation is based on the dominance of dry winters from 1906 to 1935 

followed by a balanced combination of dry and wet winters between 1936 and 1958. 

Wetter conditions dominated in 1960s and 1970s while dry winters came back in 1980s, 

1990s and 2000s taking into account the isolated wettest winters of 1979, 1996 and 

2010 ever recorded in the Iberian Peninsula. The variability of spring precipitation 

shows a balanced distribution of wet and dry springs during most of the time-series, 

although the dominance of wet springs was between mid-1940s and early-1960s while 

dry springs were focused from early-1980s to late-1990s. Moreover, the variability of 

summer precipitation shows a high variability among summers, but dry summers were 

found in 1910s, mid-1920s, mid-1930s, mid-late-1940s, 1960s and from 1978 to 2010. 

This last dry period was interrupted by wet summers occurred in 1982, 1983, 1987, 

1988, 1992, 1997, 2002 and 2010, being 1992 the wettest summer of the time-series. 

Finally, the variability of autumn precipitation shows dry periods in late-1910s, from 

late-1920s to 1950s and in 1970s, wet periods in mid-1900s, early-1920s, in 1960s and 

in 1980s while the last three decades of the time-series were dominated by a high 

variability in autumn precipitation. 

The linear trends computed for the seasonal precipitation anomalies show a non-

significant increasing trend in winter and autumn precipitation (at the 95% level) while 

a non-significant decreasing trend is also detected in spring and summer precipitation 

(Table 5-2). 

 

Time-scale Linear trend (mm/decade) 95% confidence intervals p-value 
Annual 2.442 (-2.857/8.072) 0.457 

DJF (Winter) 2.139 (-1.797/6.300) 0.401 

MAM (Spring) -0.338 (-2.681/1.977) 0.696 

JJA (Summer) -0.140 (-1.228/1.078) 0.713 

SON (Autumn) 0.450 (-2.919/3.876) 0.663 
 

Table 5-2: Summary of linear trends (in mm/decade) computed for annual and seasonal precipitation in 
the Iberian Peninsula (1906-2010). The associated 95% confidence intervals and p-values are also 
shown. Bold (or Italic) values are referred to statistical significance at the 99% level (or 95%). 
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Figure 5-4: Seasonal precipitation anomalies ordered as winter (DJF, upper pannel), spring (MAM), 

summer (JJA), and autumn (SON, lower pannel) (base-period 1961-1990) in the Iberian 
Peninsula for the period 1906-2010. Red line represents a 10-year Gaussian filter applied over 
the annual series. 
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5.1.3. Summary 

 

Climate fluctuations over the Iberian Peninsula across the 20th century and the first 

decade of the 21st century show a remarkable increase in annual and seasonal 

temperatures being summer and spring the seasons with the highest rates of change. A 

high inter-annual and seasonal variability in precipitation is identified, but a clear signal 

related to the obtained trends is not found, although winter and autumn become slightly 

wetter while spring and summer are slightly drier currently than before.  

But the increase in temperatures was not uniform across time taking into account that 

three different warming periods took place along the 20th century; in the first quarter of 

the twentieth century, during the 1940s, and the warmest period with the highest rates of 

change began in early-1970s to present being 2006 the warmest year of the Iberian time 

series. 

Despite the high inter-annual variability found in precipitation, dry periods can be 

identified in 1910s, 1920s, early-1930s, mid-1940s, 1950s and from 1980s to the 

present while wet periods can be found in mid-late-1930s, early-1940s, 1960s and 

1970s. Finally, the first decade of 21st century was generally dry with 2005 being the 

driest year of the Iberian time series. 
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5.2. Drought variability across the Iberian Peninsula 

 

In this section, we expose the results obtained after different analyses. First, the most 

widely used drought indices such as Sc-PDSI, 12-month SPEI and 12-month SPI are 

computed at monthly time scale to identify wet and dry periods across Iberian Peninsula 

along the 1906-2010 period. The most relevant droughts are identified and validated 

using documental sources. To ensure the quality of our results, the calibration of 

drought indices is checked. Afterwards, a trend analysis is carried out for the whole 

region under study as well as for each location individually in order to find out 

significant fluctuations in drought conditions. Furthermore, the role of temperature in 

drought indices is also assessed to quantify the effect of global warming on drought 

trends. Finally, we study the evolution of the drought spatial coverage across time. 

 

5.2.1. Identification and documentary validation of dry events 

 

Drought variability is analyzed over the whole Iberian Peninsula computing over 

regional series derived from MITPS the monthly Sc-PDSI (Fig. 5-5), 12-month SPI (Fig. 

5-6) and 12-month SPEI outputs (Fig. 5-7) for the period 1906-2010 to detect wet and dry 

periods. 

Drought variability according to Sc-PDSI (Fig. 5-5) shows wet conditions in late-1900, 

mid-1930s, early and late-1940s, early and late-1950s, early-1960s, in 1970s, mid-1990s 

and late-2000. Moreover, dry conditions are found in early-1900s, most of the 1920s 

and 1930s, mid-1940s, early-mid-1950s, late-1960s and in most of the last three decades 

of the time-series in which the driest conditions were identified over the Iberian 

Peninsula in 1995 and in 2005 respectively. Note that extremely dry conditions (less or 

equal than -4 in PDSI categories) are identified only in 1995 for the whole Iberian 

Peninsula (regional average) while extremely wet conditions (greater or equal than +4 

in PDSI categories) are not found in the Iberian time-series. 

Drought variability according to 12-month SPI (Fig. 5-6) shows higher frequency of wet 

and dry conditions than Sc-PDSI time-series, but wet conditions are detected in mid-

late-1930s, early and late-1940s, early and late-1950s, early-1960s, in 1970s, early-

1990s and in early and late-2000s. Furthermore, dry conditions are found in mid-1910s, 

early-mid-1920s, most of the 1930s, mid-1940s, mid-1950s, most of the 1960s and 
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1970s, early-1980s, mid-1990s and mid-2000s. Extremely wet (greater or equal than +2 

in SPI categories) or dry conditions (less or equal than -2 in SPI categories) are not 

found in regional SPI time-series. 

Finally, drought variability according to 12-month SPEI (Fig. 5-7) shows wet conditions 

in late-1900s, early-1910s, mid-late-1930s, late-1940s, early-1950s, most of the 1960s 

and 1970s, late-1990s and late-2000s. Dry conditions are found in most of the 1920s 

and 1930s, mid-late-1940s, mid-late-1950s and in most of the last three decades of the 

SPEI time-series. Extremely dry conditions (less or equal than -2 in SPEI categories) 

are identified in 1995 and in 2005 respectively while extremely wet conditions (greater 

or equal than +2 in SPEI categories) are not found in regional SPEI time-series. 
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Figure 5-5: Variability of wet and dry conditions over the Iberian Peninsula (1906-2010) using Sc-PDSI. 

Red line represents a 10-year Gaussian filter applied over the annual series.  
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Figure 5-6: Variability of wet and dry conditions over the Iberian Peninsula (1906-2010) using 12-month 

SPI. Red line represents a 10-year Gaussian filter applied over the annual series. 
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Figure 5-7: Variability of wet and dry conditions over the Iberian Peninsula (1906-2010) using 12-month 

SPEI. Red line represents a 10-year Gaussian filter applied over the annual series. 
 

In general terms, the variability of wet and dry conditions computed over the three 

different drought indices for the Iberian Peninsula, shows quite a good agreement. The 

decades of 1920, 1940 and 1950 are abnormally dry in average while the decades of 

1930, 1960 and 1970 are abnormally wet in all drought indices. The decade of 1910 is 

wet according to the 12-month SPEI time-series, but it is slightly dry in Sc-PDSI and 

12-month SPI time-series. Moreover, the last three decades of the time-series are 

identified as abnormally dry in Sc-PDSI and 12-month SPEI while changing wet and 

dry conditions are identified by the 12-month SPI. The increase in severity and duration 

of abnormally dry periods from 1980 to present in Sc-PDSI and 12-month SPEI could 

be related to the role of the evapotranspiration in drought indices, because the last three 

decades are dominated by the maximum increase of temperatures in the Iberian 

Peninsula, in phase with less precipitation than normal. This fact highlights the 

importance of including temperature or evaporation in the evaluation of drought.  

It is necessary to note that Sc-PDSI time-series show dry conditions during most of the 

time-period with the exception of 1960 and 1970 decades while 12-month SPI and 12-

month SPEI represented higher frequency of dry and wet conditions than Sc-PDSI 

during all the period. This statement could be related to some differences in calibration 

among drought indices. For this reason, an analysis of the frequency distribution of 

drought categories is needed to assess the statistical consistency and robustness of the 

drought indices.  

Available documentary sources are inspected in order to validate the detected driest 

conditions from Sc-PDSI, 12-month SPI and 12-month SPEI. The most remarkable dry 
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conditions are identified in 1945, in 1995 and in 2005. This can be seen in figures 5-5, 

5-6 and 5-7. Documents obtained from official meteorological services or other 

publications provide valuable objective information about drought impacts occurred 

across time in the Iberian Peninsula.  

EuskalMet (official regional meteorological service of the Basque Country autonomous 

government) provides crucial information about the dry event occurred from 1942 to 

1945 in a document entitled “Recurrencia y efectos de las sequías” (Recurrence and 

effects of droughts) available at www.euskalmet.euskadi.net (Last visit 21-11-2010). This 

document provides insights not only about the meteorological situation during the 

event, compatible with a dry event, but also shows evidence of the occurrence drought-

related impacts. For example, most reservoirs were under minimum levels after three 

consecutives dry years and most river flow levels were at their lowest value in 50 years. 

Furthermore, strong restrictions in water consumption, hydroelectric energy production 

and crop irrigation were applied in 1945, the driest year of this dry period. The drought 

impacts described in this document corroborate the fact that this dry event was 

remarkable in terms of severity, especially in 1945, and its duration prolonged during 

three years. Sc-PDSI, 12-month SPI and 12-month SPEI results totally agree with this 

document in terms of severity and duration of this event.  

The most severe dry event in terms of severity identified by the Sc-PDSI, 12-month SPI 

and 12-month SPEI time series (1906-2010) is the 1990-1995 period. It is also the 

second worst in duration. Llamas (1995) indicated that this dry event affected especially 

central and southern Iberian Peninsula from 1991 to 1995. Llamas work 

“Consideraciones sobre la sequía de 1991 a 1995 en España” (Considerations about the 

drought occurred between 1991 and 1995 in Spain), described the severity and impacts 

of this dry event. In 1995, politicians called it “the worst drought in a century” and six 

million people suffered water restrictions in south and southeast of Spain. New water 

policies were applied by policymakers, such as regulations for saving water in crop 

irrigation, projects to transfer water from the Rhone river to Barcelona. Also sea water 

desalinization was explored for a first time as a futurible option to provide fresh water. 

Obviously, this drought caused territorial conflicts in the influence areas of Tagus-

Segura transfer due to the lack of water in rivers and reservoirs. This information offers 

confirmation of the severe impacts of this dry event. 
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Finally, the dry event occurred from 2004 to 2009 reached the maximum severity in 

2005. At this time,  the Spanish Meteorological Office (Agencia Estatal de Meteorología, 

AEMET) posted on its website www.aemet.es (Last visit: 09-06-2011) a map of the whole 

Iberian Peninsula showing the amount of precipitation recorded respect to the average 

(anomalies). Most of the months in this period were qualified as dry or very dry (less 

than 25% of normal precipitation) in the south, southwest, northeast and central area of 

Spain. This situation caused political conmotion and controversial measures as the 

preparation of a National Hydrological Plan, in order to provide water resources from 

Ebro’s basin to other river basins located in the south of Spain. This intention – which 

never materialized due to political changes – was associated with strong demonstrations 

agains it by people in the Ebro’s area. In 2008 the drought worsened in the northeast of 

Iberian Peninsula causing water restrictions and again some political conflicts in 

Catalonia. The Catalan government projected and started to build a water pipe across 

the highway from the Ebro’s area to Barcelona to provide water to this city and its 

population of more than 3 million inhabitants. The end of the dry event timely arrived 

and the water pipe project was abandoned.  

This valuable information is able to validate the results obtained from Sc-PDSI, 12-

month SPI and 12-month SPEI computation, because the detected dry events are 

supported by documented impacts demonstrating the negative effects of the severity and 

duration of the most relevant droughts identified in the Iberian Peninsula from 1906 to 

2010. 
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5.2.2. Frequency distribution analysis 

 

In the application of the Self-calibrated version of PDSI, 12-month SPI and 12-month 

SPEI it is important to check how the drought index values are distributed into their 

different categories. Figures 5-8, 5-9 and 5-10 show the frequency distribution of Sc-

PDSI values, 12-month SPI values and 12-month SPEI values, respectively, for the 22 

stations located in the Iberian Peninsula using the whole period (1906-2010). The most 

common values fall in the near-normal category. This is a sign of good calibration, 

especially in 12-month SPEI frequency distribution, although a few stations show 

deviances from the expected behaviour in the case of 12-month SPI and in the Sc-PDSI 

computation. Some of these deviances might be linked to problems in the drought index 

calibration. On the other hand, Wells et al., (2004) described that between 1% and 3% 

of PDSI values for each time series should be located in extremely wet or dry categories 

in order to provide a good calibration. In this case, the 91.7% of the 22 time series 

accomplish this requirement, because between 1% and 3% of PDSI values remained in 

extremely wet category and the 87.5% accomplished the same, but in extremely dry 

category. These results are similar to those obtained by Wells et al. (2004) and Briffa et 

al. (2009) from the computation of the Sc-PDSI using various time series. But the 

77.3% of the 22 time-series relative to 12-month SPI remain in the extremely wet 

category while the 86.4% are in the extremely dry category. Otherwise, the 100% of the 

22 12-month SPEI time series accomplish this purpose in extremely wet category, and 

the 87.5% of the 22 12-month SPEI series remain in extremely dry category. The 

conclusion of this analyisis is that we find a better calibration in 12-month SPEI values 

than in Sc-PDSI and 12-month SPI values over the Iberian Peninsula in terms of 

robustness and statistical consistency. Thus, the SPEI is our preferred index for further 

analysis.  
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Frequency distribution of PDSI values
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Figure 5-8: Frequency distribution (in %) of monthly Sc-PDSI values over the major PDSI categories 

computed from the 22 Iberian stations (1906-2010). 
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Figure 5-9: Frequency distribution (in %) of 12-month SPI values over the major SPI categories 

computed from 22 Iberian stations (1906-2010). 
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Frequency distribution of SPEI values
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Figure 5-10: Frequency distribution (in %) of 12-month SPEI values over the major SPEI categories 

computed from 22 Iberian stations (1906-2010). 
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5.2.3. Spatial coverage of droughts  

 

Besides the computation of a regional time series from each one of the selected drought 

indices, it is interesting to study the spatial distribution of dry conditions in the Iberian 

Peninsula across time. This is done by checking the percentage of stations 

simultaneously affected by different categories of drought. This analysis provides us 

complementary but important information: do the three drought indices obtain similar 

areas for the different categories of drought in the different events? Figures 5-11, 5-12 

and 5-13 represent the percentages of stations affected by various categories of drought 

across time according to PDSI categories (Table 4-3), SPI categories (Table 4-4) and SPEI 

categories (Table 4-5). 

It can be seen that the highest percentages of stations affected by dry conditions (values 

below 0 in drought indices) coincide with the longest and driest periods described above 

(see fig. 5-5, 5-6 and 5-7). In fact, Pearson Product-Moment Correlation coefficient between 

the drought Iberian time-series (severity) and the percentage of stations affected by dry 

conditions across time (surface area) is -0.88 for Sc-PDSI, -0.94 for 12-month SPI and -

0.95 for 12-month SPEI (all statistically significant at the 99% level). 

Dry conditions affected 100% of stations under study during a few months in mid-

1910s, mid-1920s, late-1930s, mid-1940s, early-1950s, early-mid-1980s, four times in 

1990s, and three time in early-mid-2000s using Sc-PDSI time-series (Fig. 5-11). It is 

remarkable that more than 30% of stations remained permanently in dry conditions 

during the 2001-2009 period. Severe conditions affected greater than 50% of stations in 

1945, 1950, 1992, 1995, 1999, 2000, 2005 and 2006 while greater than 70% of stations 

reached this drought category in 1945, 1995 and 2005. The extremely dry category was 

reached by more than 25% of stations in 1945, 1950, 1992, 1995, 2000, 2005 and 2006, 

while more than 40% of stations reached this category only in 1945, 1995 and 2005. 

Otherwise, dry conditions affected 100% of stations during a few months in 1925, 1935, 

1981, 1995, 1999 and 2005 using 12-month SPI time-series (Fig. 5-12). However, more 

than 50% of stations were affected by severe dry conditions in 1945, 1949, 1981, 1992, 

1995 and 2005, while greater than 70% of stations reached this drought category only in 

2005. The extremely dry category was reached by greater than 25% of stations in 1945, 

1949, 1981, 1992, 1995 and 2005, while greater than 40% of stations reached this 

category only in 1995 and 2005.  
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Dry conditions affected 100% of stations under study during a few months in mid-

1930s, mid-1940s, mid-1960s, early-1980s, three times in 1990s and in early-mid-2000s 

using 12-month SPEI time-series (Fig. 5-13). Note that around 25% of stations were 

almost permanently in dry conditions during the last decade (except in 2010). 

Moreover, more than 50% of stations were affected by severely dry conditions in 1945, 

1949, 1992, 1995, 1999, 2005 and 2009, while greater than 70% of stations reached this 

drought category in 1945, 1995, 1999 and 2005. Furthermore, greater than 25% of 

stations were affected by extremely dry conditions in 1945, 1949, 1992, 1995 and 2005 

reaching more than 60% of stations during these two last events. 

All drought indices have been able to identify a similar surface area affected by dry 

conditions in the Iberian Peninsula across time. Moreover, the driest periods in terms of 

severity identified through the regional series analyisis are found again as the driest 

periods in terms of affected area. All drought indices coincide to attribute the driest 

conditions (in terms of severity and area affected by drought) identified in the Iberian 

Peninsula along the 20th century to years 1945, 1995 and 2005. 
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Figure 5-11: Percentages of stations affected by various categories of drought in Sc-PDSI individual 
stations in the Iberian Peninsula from 1906 to 2010. 

UNIVERSITAT ROVIRA I VIRGILI 
DROUGHT VARIABILITY AND CHANGE ACROSS THE IBERIAN PENINSULA 
Joan Ramon Coll Benages 
DL: T 955-2014



5. Results 

 143 

0

10

20

30

40

50

60

70

80

90

100

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

%

Dry conditions Moderately dry Severely dry Extremely dry
 

Figure 5-12: Percentages of stations affected by various categories of drought in 12-month SPI individual 
stations in the Iberian Peninsula from 1906 to 2010. 
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Figure 5-13: Percentages of stations affected by various categories of drought in 12-month SPEI 
individual stations in the Iberian Peninsula from 1906 to 2010.
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5.2.4. Drought trends analysis 
 

This section shows the annual trends computed from the Sc-PDSI, 12-month SPI and 

12-month SPEI for both; the regional Iberian time-series and also for the 22 Iberian 

stations. Moreover, the impact of global warming on drought indices and trends is also 

assessed to demonstrate the role of PET on droughts in a climate change context. 

 

5.2.4.1. Drought evolution across the regional Iberian time series 

 

After computing the three drought indices used in this work for the 22 Iberian time 

series individually, the 22 drought time series are averaged to create the regional 

drought time-series. We compute the annual trends and their statistical significance 

using the three regional drought time-series (one for each drought index) over the entire 

Iberian Peninsula for the whole period (1906-2010). Table 5-3 shows annual trends with 

the associated 95% confidence intervals and p-values computed using the three drought 

indices for the whole Iberian Peninsula (1906-2010). 

Sc-PDSI and 12-month-SPEI show a non-statistically significant drying trend while a 

non-significant wetting trend is obtained using 12-month SPI (all at the 95% level) for 

the regional drought time-series for the entire Iberian Peninsula. 

The results obtained using the Sc-PDSI and 12-month SPEI are in good agreement with 

other drying trends found across Europe (Brázdil et al., 2008 (for Czech Republic), Mavromatis 

2007 (for Greece), Briffa et al., 2009 (for Europe in summer), Vicente-Serrano et al., 2010 (for selected 

locations around the world), and Vicente-Serrano et al., 2006; Sousa et al., 2010 and Lorenzo-Lacruz et 

al., 2012 (for the Iberian Peninsula). 

 

Drought index  Linear trend 95% confidence intervals p-values 
Sc-PDSI -0.076 PDSI value/decade (-0.167/0.035) 0.17 

12-month SPI 0.022 SPI value/decade (-0.024/0.064) 0.38 
12-month SPEI -0.049 SPEI value/decade (-0.101/0.004) 0.07 
 
Table 5-3: Summary of annual trends (in drought index value/decade) computed for the whole Iberian 

Peninsula (1906-2010) using all drought indices. The associated 95% confidence intervals and p-
values are also shown. Bold (or Italic) values are referred to statistical significance at 99% level 
(or 95%). 
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5.2.4.2. Drought evolution across the 22 Iberian stations 

 

Once drought trends were computed for the regional Iberian time series, trend values 

from the Sc-PDSI, 12-month SPI and 12-month SPEI are calculated for each station at 

annual time-scale for the common period 1906-2010 in order to find spatial differences 

in drought trend evolution over the Iberian Peninsula. The maps show the annual trends 

and the associated statistical significance of the 22 locations spread over the Iberian 

Peninsula for the common period 1906-2010 using Sc-PDSI (Fig. 5-14, a), 12-month SPI 

(Fig. 5-14, b) and 12-month SPEI (Fig. 5-14, c). The kriging’s spatial interpolation method 

has been applied to cover the entire study area. This method is based on the idea that the 

value at an unknown point should be the average of the known values at its neighbours; 

weighted by neighbours distance to the unknown point. The trend values, the 95% 

confidence intervals and the associated p-values for each location are also shown for Sc-

PDSI (Table 5-4), for 12-month SPI (Table 5-5) and for 12-month SPEI (Table 5-6).  

Figure 5-14a shows a map of trends computed over the Sc-PDSI series. Negative trends 

(drying trend) are identified over most of the Iberian Peninsula reaching maximum rates 

of change in the Pyrenees, Cantabrian range, North and South Plateau and, especially, in 

the southernmost region. These trends are statistically significant in the southern area 

(Cadiz, Málaga and Granada; at the 99% level) and in Madrid and Sevilla (at the 95% 

level). However, positive trends (wetting trend) are detected in western Iberian 

Peninsula although they are statistically significant only in Lisboa (at the 95% level).  

Figure 5-14b shows the trends obtained with the 12-month SPI-series. A non-

statistically significant drying trend (at the 95% level) is found in the Ebro basin and in 

the central-western Iberia reaching maximum rates of change in the Pyrenees and in the 

south and south-eastern area. However, a wetting trend is identified in the north and 

central Mediterranean coast, in the North and South Plateau and in the northern Iberia. 

Maximum rates of change are found in the north-western and western area, especially in 

Lisboa, where the wetting trend is statistically significant at the 95% level. 

Finally, figure 5-14c shows the trends obtained with 12-month SPEI. A drying trend is 

found over most of the Iberian Peninsula, reaching maximum rates of change in the 

Ebro basin, central and southern Iberia and, especially in the south-eastern area This is 

statistically significant in Granada (at the 99% level), Zaragoza, Madrid, Sevilla, Càdiz, 
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Málaga, Alicante and Murcia (at the 95% level). A non-significant (95% level) wetting 

trend is identified in the western and north-western Iberia. 

a)  

b)  

c)  

Figure 5-14: Maps of annual trends (in drought index value/decade) computed for the 22 locations (1906-
2010) using Sc-PDSI (a); 12-month SPI (b); and 12-month SPEI (c). Negative (or positive) 
trends represent drier (or wetter) conditions. * (or +) symbol are referred to statistical 
significance at the 99% level (or 95%). Spatial interpolation is applied using the Kriging 
method. 
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To summarize, all drought indices show a drying trend in the Pyrenees, Ebro basin, 

central Iberia and in the south, south-western and south-eastern area while a wetting 

trend is found in the western and north-western Iberian Peninsula. These results are 

consistent with Sousa et al., (2011) (using Sc-PDSI), Vicente-Serrano et al., (2011) 

(using SPI and SPEI indices) and Lacruz et al., (2012) (using stream-flow data), whom 

detected that droughts increased over most of the Iberian Peninsula with the exception 

of the north-west area of the region for the 20th century. Moreover, an increase of 

regional drought severity was also found in the Ebro basin (Vicente-Serrano and Cuadrat-

Prats, 2006; Vicente-Serrano and López-Moreno, 2006), in some areas of Valencia region 

(Vicente-Serrano et al., 2004) and in Tagus basin (Lorenzo-Lacruz et al., 2010).  

 

Location Annual coefficient (Sc-PDSI value/decade)  95% confidence intervals p-values 
Albacete -0.017 (-0.207/0.219) 0.877 
Alicante -0.102 (-0.265/0.061) 0.217 
Badajoz -0.129 (-0.277/0.043) 0.123 

Barcelona -0.132 (-0.294/0.035) 0.116 
Burgos -0.181 (-0.415/0.042) 0.134 
Cadiz -0.176 (-0.294/-0.064) 0.002 

Ciudad Real -0.112 (-0.217/0.041) 0.168 
Granada -0.230 (-0.381/-0.075) 0.004 
Huelva -0.046 (-0.264/0.071) 0.572 
Huesca -0.144 (-0.342/0.040) 0.106 

La Coruña 0.001 (-0.194/0.159) 0.899 
Lisboa 0.155 (0.058/0.249) 0.021 
Madrid -0.147 (-0.253/-0.049) 0.022 
Málaga -0.222 (-0.379/-0.006) 0.009 
Murcia -0.046 (-0.249/0.057) 0.807 
Porto 0.064 (-0.143/0.272) 0.824 

Salamanca -0.077 (-0.186/0.117) 0.423 
Sevilla -0.085 (-0.270/-0.005) 0.040 
Soria -0.113 (-0.233/0.004) 0.277 

Valencia 0.012 (-0.101/0.217) 0.619 
Valladolid -0.025 (-0.224/0.068) 0.557 
Zaragoza -0.040 (-0.165/0.162) 0.284 

 
Table 5-4: Summary of annual trends (in PDSI value/decade) computed for the 22 locations (1906-2010) 

using Sc-PDSI. The associated 95% confidence intervals and p-values are also shown. Negative 
(or positive) trends represent drier (or wetter) conditions. Bold (or Italic) values are referred to 
statistical significance at the 99% level (or 95%). 
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Location Annual coefficient (SPI value/decade)  95% confidence intervals p-values 
Albacete 0.024 (-0.031/0.110) 0.248 
Alicante -0.017 (-0.066/0.066) 0.877 
Badajoz -0.021 (-0.082/0.048) 0.524 

Barcelona 0.017 (-0.032/0.065) 0.535 
Burgos 0.029 (-0.039/0.094) 0.407 
Cadiz -0.021 (-0.102/0.043) 0.460 

Ciudad Real 0.054 (-0.001/0.137) 0.053 
Granada -0.067 (-0.137/0.003) 0.061 
Huelva 0.001 (-0.064/0.083) 0.726 
Huesca -0.039 (-0.119/0.047) 0.401 

La Coruña 0.053 (-0.024/0.122) 0.165 
Lisboa 0.096 (0.028/0.169) 0.006 
Madrid 0.024 (-0.039/0.093) 0.436 
Málaga -0.001 (-0.085/0.065) 0.734 
Murcia 0.016 (-0.064/0.109) 0.679 
Porto 0.050 (-0.025/0.108) 0.217 

Salamanca -0.012 (-0.077/0.066) 0.859 
Sevilla -0.010 (-0.095/0.065) 0.717 
Soria 0.008 (-0.049/0.086) 0.659 

Valencia 0.046 (-0.026/0.124) 0.197 
Valladolid 0.038 (-0.033/0.104) 0.272 
Zaragoza 0.027 (-0.047/0.085) 0.599 

 
Table 5-5: Summary of annual trends (in SPI value/decade) computed for the 22 locations (1906-2010) 

using 12-month SPI. The associated 95% confidence intervals and p-values are also shown. 
Negative (or positive) trends represent drier (or wetter) conditions. Bold (or Italic) values are 
referred to statistical significance at the 99% level (or 95%). 

 

Some differences in annual trends among drought indices could be identified in both; 

individual and regional time-series. The annual trends are larger in drought indices 

which temperature is included in their computation (Sc-PDSI and 12-month SPEI) than 

in which the main driver of drought variability is only precipitation (12-month SPI). For 

this reason, it is interesting to assess the role of temperature in drought indices 

computation to quantify the impact of current global warming on drought trends. 
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Location Annual coefficient (SPEI value/decade)  95% confidence intervals p-values 
Albacete -0.065 (-0.133/0.026) 0.188 
Alicante -0.105 (-0.161/-0.018) 0.019 
Badajoz -0.085 (-0.135/0.001) 0.052 

Barcelona -0.046 (-0.103/0.011) 0.112 
Burgos -0.042 (-0.118/0.031) 0.256 
Cadiz -0.086 (-0.172/-0.013) 0.021 

Ciudad Real -0.065 (-0.095/0.069) 0.734 
Granada -0.125 (-0.194/-0.055) 0.001 
Huelva -0.048 (-0.127/0.026) 0.180 
Huesca -0.088 (-0.182/0.001) 0.054 

La Coruña 0.015 (-0.069/0.079) 0.802 
Lisboa 0.052 (-0.026/0.131) 0.193 
Madrid -0.091 (-0.162/-0.020) 0.014 
Málaga -0.078 (-0.154/-0.001) 0.049 
Murcia -0.097 (-0.189/-0.004) 0.041 
Porto 0.023 (-0.055/0.090) 0.679 

Salamanca -0.063 (-0.133/0.026) 0.205 
Sevilla -0.089 (-0.176/-0.005) 0.037 
Soria -0.045 (-0.108/0.023) 0.193 

Valencia -0.034 (-0.117/0.063) 0.587 
Valladolid -0.043 (-0.126/0.039) 0.373 
Zaragoza -0.086 (-0.166/-0.020) 0.018 

 

Table 5-6: Summary of annual trends (in SPEI value/decade) computed for the 22 locations (1906-2010) 
using 12-month SPEI. The associated 95% confidence intervals and p-values are also shown. 
Negative (or positive) trends represent drier (or wetter) conditions. Bold (or Italic) values are 
referred to statistical significance at the 99% level (or 95%). 
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5.2.5. The impact of global warming on indices and trends 

 

As described in methods section, the Sc-PDSI and the 12-month SPEI is re-computed 

for each location using the monthly temperature climatology as input data (computed 

for the common period 1906-2010) instead the of the actual monthly mean temperature 

in order to assess the drought variability across the Iberian Peninsula without the effect 

of global warming. Moreover, the difference between 12-month SPEI and 12-month SPI 

is studied for the entire Iberian Peninsula (regional series) and for the 22 Iberian stations 

separately to investigate the role of temperature among drought indices. This valuable 

information about the impact of global warming on drought indices will help us to 

assess how much of the drying/wetting trends and their statistical significance might be 

forced by the influence of global warming. 

 

5.2.5.1. Analysis over the regional Iberian time series 

 

Figure 5-15 shows the variability of wet and dry conditions over the whole Iberian 

Peninsula (for the period 1906-2010) using the Sc-PDSI-all forcing (upper panel), the 

Sc-PDSI-without temperature changes (middle panel), and the difference between the 

two indices (lower panel). Similar drought conditions are represented by the Sc-PDSI-

all forcing and the Sc-PDSI-without temperature changes showing wet conditions in 

early-1940s, 1960s and 1970s while dry conditions are focused in mid-1940s, 1950s, 

1980s, 1990s and 2000s.  

Nevertheless, the difference between Sc-PDSI-all forcing and the Sc-PDSI-without 

temperature changes identifies a temporal pattern with negative differences of about 

0.11 standard deviations for the whole period. This confirms that the Sc-PDSI-all 

forcing shows higher severity of droughts compared with the Sc-PDSI-without 

temperature changes.  

Moreover, figure 5-16 shows the variability of wet and dry conditions over the whole 

Iberian Peninsula (for the period 1906-2010) using 12-month SPEI-all forcing (upper 

panel), 12-month SPEI-without temperature changes (in the middle), and the difference 

between the two indices (lower panel). Similar drought conditions are found by the 12-

month SPEI-all forcing and the 12-month SPEI-without temperature changes showing 

wet conditions in early-1910s, early-1940s, 1960s and 1970s while dry conditions are 
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found in mid-1940s, 1950s, 1980s, 1990s and 2000s. Both 12-month SPEI time-series 

show higher frequency in drought variability than both Sc-PDSI time-series. In fact, the 

difference between 12-month SPEI-all forcing and 12-month SPEI-without temperature 

changes identifies a temporal pattern with positive differences at the beginning of the 

time-series and negative differences at the end of about 0.07 standard deviation for the 

1990s and 2000s decades. This confirms that 12-month SPEI-all forcing shows higher 

severity of droughts compared with the 12-month SPEI-without temperature changes 

due to the increase of PET caused by global warming. 

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

P
D
S
I

 

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

P
D
S
I

 

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

D
iff
er
en

ce

 
Figure 5-15: Variability of wet and dry conditions over the Iberian Peninsula (1906-2010) using Sc-

PDSI-all forcing (upper panel), Sc-PDSI-without temperature changes (applying the monthly 
temperature climatology computed using the period 1906-2010) (in the middle panel), and the 
difference between the two indices (lower panel). 
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Figure 5-16: Variability of wet and dry conditions over the Iberian Peninsula (1906-2010) using 12-

month SPEI-all forcing (upper panel), 12-month SPEI-without temperature changes (applying 
the monthly temperature climatology computed using the period 1906-2010) (in the middle 
panel), and the difference between the two indices (lower panel). 

 
Finally, figure 5-17 shows the variability of wet and dry conditions over the whole 

Iberian Peninsula (for the period 1906-2010) using 12-month SPEI-all forcing (upper 

panel), 12-month SPI (in the middle), and the difference between the two indices (lower 

panel). Similar drought conditions are identified by the 12-month SPEI-all forcing and 

the 12-month SPI showing wet conditions in early-1910s, early-1940s, 1960s and 1970s 
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while dry conditions are found in mid-1940s, 1950s, 1980s, 1990s and 2000s. However, 

12-month SPI shows lower fluctuations than 12-month SPEI-all forcing because it is 

only driven by precipitation and without the role of temperature. Both 12-month SPEI 

and 12-month SPI show higher frequency in drought variability than both Sc-PDSI 

time-series again. Thus, the difference between 12-month SPEI-all forcing and 12-

month SPI identifies a temporal pattern with positive differences at the beginning of the 

time-series and negative differences at the end of about 0.07 standard deviation for the 

1990s and 2000s decades. Obviously, similar results are found between 12-month SPEI-

all forcing, 12-month SPEI-without temperature changes, and 12-month SPI due to not 

large differences in drought indices computation. These results confirm that 12-month 

SPEI-all forcing shows higher severity of droughts compared with the 12-month SPI 

caused by the role of temperature leading an increase of PET under global warming. 

Furthermore, drought trends and their statistical significance are re-computed from 

drought indices for each Iberian regional time-series. Table 5-7 shows the linear trends 

computed taking into account the forcing applied to each drought index, the 95% 

confidence intervals and p-values. 

As seen in previous sections, a non-significant drying trend (at the 95% level) is found 

for the whole Iberian Peninsula (1906-2010) using the Sc-PDSI-all forcing and 12-

month SPEI-all forcing, but these trends became slightly wetter when using drought 

indices without temperature changes (Sc-PDSI and 12-month SPEI) or without 

temperature in its algorithm (12-month SPI). All wetting trends are statistically non-

significant at the 95% level. The results suggest that, even precipitation variability is the 

main driver of droughts, temperature and the strongly related PET play an important 

role in terms of drought severity to explain drought changes over the whole Iberian 

Peninsula. Moreover, the increase in PET during last decades reinforced the drying 

trend found under climate change conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
DROUGHT VARIABILITY AND CHANGE ACROSS THE IBERIAN PENINSULA 
Joan Ramon Coll Benages 
DL: T 955-2014



Drought variability and change across the Iberian Peninsula 
 
 

 154 

 
 

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

S
P
E
I

 

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

S
P
I

 

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

D
iff
er
en

ce

 
Figure 5-17: Variability of wet and dry conditions over the Iberian Peninsula (1906-2010) using 12-

month SPEI (upper panel), 12-month SPI (in the middle panel), and the difference between the 
two indices (lower panel). 
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Drought index  Forcing Linear trend 95% confidence intervals  p-values 

All forcing -0.076 PDSI value/decade (-0.166/0.035) 0.17 Sc-PDSI 
without temperature changes 0.021 PDSI value/decade  (-0.014/0.037) 0.68 

12-month SPI All forcing 0.022 SPI value/decade (-0.024/0.064) 0.38 
All forcing -0.049 SPEI value/decade (-0.101/0.035) 0.07 12-month SPEI 

without temperature changes 0.017 SPEI value/decade (-0.021/0.054) 0.39 
 

Table 5-7: Summary of annual trends (in drought index value/decade) computed for the whole Iberian 
Peninsula (1906-2010) using all drought indices. Linear trends from Sc-PDSI and 12-month SPEI 
using all forcing without temperature changes (applying the monthly temperature climatology 
using the period 1906-2010) are also computed. The associated 95% confidence intervals and p-
values are also shown. Bold (or Italic) values are referred to statistical significance at 99% level 
(or 95%). 

 

5.2.5.2. Analysis over the 22 Iberian stations 

 

The spatial distribution of drought trends computed for the 22 locations spread over 

Iberian Peninsula is also analyzed in order to detect changes in drought variability when 

temperature was included in drought indices computation or when the effect of global 

warming was removed previously. 

Figure 5-18 (together with the associated table 5-8 and 5-9) represents the annual trends 

computed for each location using Sc-PDSI-all forcing, Sc-PDSI-without temperature 

changes, 12-month SPEI-all forcing and 12-month SPEI-without temperature changes. 

Moreover, the trend differences between all forcing-drought indices and drought indices 

without temperature changes are also shown. The Sc-PDSI-all forcing and 12-month 

SPEI-all forcing shows a drying trend over most of the Iberian Peninsula becoming 

statistically significant in Cadiz, Málaga, Granada (at the 99 % level), Sevilla and 

Madrid (at the 95% level) using the Sc-PDSI-all forcing, and Granada (at the 99% 

level), Sevilla, Cadiz, Málaga, Madrid, Zaragoza, Murcia and Alicante (at the 95% 

level) using 12-month SPEI-all forcing. A wetting trend is identified in the western 

Iberian Peninsula only statistically significant in Lisboa (at the 95% level) using the Sc-

PDSI-all forcing. On the contrary, we find a wetting trend over most of the Iberian 

Peninsula stations when both drought indices were computed without temperature 

changes, even the wetting trend became statistically significant in Lisboa (at the 99% 

level) in the case of 12-month SPEI-without temperature changes. The drying trends 

only remain in the south and south-eastern Iberia becoming statistically significant only 

in Granada (at the 99% level) using the Sc-PDSI-without temperature changes. Finally, 

the higher rates of change were identified in the north and north-eastern Iberian in the 
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case of the Sc-PDSI, and in the central and south-eastern area using 12-month SPEI. 

Meanwhile lower rates of change are found in the south-western and south-eastern 

Iberian using the Sc-PDSI and in western and north-western Iberian applying 12-month 

SPEI. 

 

  

 
 
 
 
 

a) 
 
 
 
 
 
 
 
 

b) 
 
 
 
 
 
 
 
 
 

c) 
Figure 5-18: Maps of annual trends (in drought index value/decade) computed for the 22 locations (1906-

2010) using Sc-PDSI-all forcing (a)-left), Sc-PDSI-without temperature changes (b)-left), 12-
month SPEI-all forcing (a)-right ) and 12-month SPEI-without temperature changes (b)-
right ). The trend differences between Sc-PDSI-all forcing minus Sc-PDSI-without 
temperature changes (c)-left), and between 12-month SPEI-all forcing minus 12-month SPEI-
without temperature changes (c)-right ) are also shown. Negative (or positive) trends represent 
drier (or wetter) conditions while * (or +) symbol are referred to statistical significance at the 
99% level (or 95%) in figures a)-left and right, and b)-left and right. Spatial interpolation is 
applied using the kriging method. 

 
 
Figure 5-19 (together with the associated table 5-8 and 5-9) represents the decadal 

trends computed for each location using 12-month SPI, 12-month SPEI-all forcing and 

12-month SPEI-without temperature changes. Moreover, the trend differences between 

12-month SPEI-all forcing minus 12-month SPI, between 12-month SPEI-all forcing 

minus 12-month SPEI-without temperature changes, and between 12-month SPEI-
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without temperature changes minus 12-month SPI are also shown. A non-statistically 

significant drying trend (at the 95% level) is found in the Ebro basin and in the central-

western Iberia reaching maximum rates of change in the Pyrenees and in the south and 

south-eastern area using 12-month SPI. However, a wetting trend is identified in the 

north and central Mediterranean coast, in the North and South Plateau and in the 

northern Iberia. Maximum rates of change are found in the north-western and western 

area, especially in Lisboa, where the wetting trend becomes statistically significant (at 

the 95% level). However, a drying trend is found over most of the Iberian Peninsula 

reaching maximum rates of change in the Ebro basin, central and southern Iberia and, 

especially in the south-eastern area using 12-month SPEI-all forcing. Moreover, the 

drying trend becomes statistically significant in Granada (at the 99% level), Zaragoza, 

Madrid, Sevilla, Cadiz, Málaga, Alicante and Murcia (at the 95% level). However, a 

non-significant wetting trend (at the 95% level) is identified in the western and north-

western Iberia. 

 
Location Annual coefficient (Sc-PDSI value/decade)  95% confidence interval p-value 
Albacete 0.158 (-0.017/0.304) 0.201 
Alicante -0.111 (-0.234/0.019) 0.414 
Badajoz 0.106 (-0.013/0.230) 0.143 

Barcelona 0.160 (-0.034/0.275) 0.102 
Burgos 0.158 (-0.033/0.277) 0.171 
Cadiz -0.071 (-0.176/0.023) 0.242 

Ciudad Real 0.132 (-0.001/0.254) 0.260 
Granada -0.161 (-0.273/-0.045) 0.009 
Huelva 0.041 (-0.085/0.163) 0.700 
Huesca 0.046 (-0.064/0.173) 0.700 

La Coruña 0.099 (-0.001/0.211) 0.495 
Lisboa 0.068 (-0.132/0.115) 0.659 
Madrid 0.063 (-0.060/0.186) 0.584 
Málaga -0.072 (-0.173/0.041) 0.319 
Murcia -0.177 (-0.274/0.081) 0.074 
Porto 0.115 (-0.008/0.227) 0.379 

Salamanca 0.032 (-0.069/0.134) 0.738 
Sevilla 0.008 (-0.086/0.096) 0.855 
Soria 0.001 (-0.138/0.131) 0.948 

Valencia -0.137 (-0.259/0.040) 0.404 
Valladolid 0.087 (-0.015/0.205) 0.647 
Zaragoza 0.148 (-0.048/0.258) 0.084 

 
Table 5-8: Summary of annual trends (in PDSI value/decade) computed for the 22 locations for the 

common period 1906-2010 using Sc-PDSI-without temperature changes. The associated 95% 
confidence intervals and p-values are also shown. Negative (or positive) trends represent drier (or 
wetter) conditions. Bold (or Italic) values are referred to statistical significance at the 99% level 
(or 95%). 
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c) 

 
Figure 5-19: Maps of annual trends (in drought index value/decade) computed for the 22 locations (1906-

2010) using 12-month SPI (a)-left), 12-month SPEI-all forcing (a)-right ) and 12-month SPEI-
without temperature changes (b)-right ). The trend differences between 12-month SPEI-all 
forcing minus 12-month SPI (b)-left), between 12-month SPEI-all forcing minus 12-month 
SPEI-without temperature changes (c)-right ), and between 12-month SPEI-without 
temperature changes minus 12-month SPI (c)-left) are also shown. Negative (or positive) 
trends represent drier (or wetter) conditions while * (or +) symbol are referred to statistical 
significance at the 99% level (or 95%) only in figures a)-left and right, and b)-right. Spatial 
interpolation is applied using the kriging method. 

 
 
Obviously, similar results in spatial trends are expected from the computation of 12-

month SPI and 12-month SPEI-without temperature changes since temperature 

evolution is not included in both drought indices. In fact, figure 5-18 shows the same 

drought patterns and figure 5-19 reproduces almost the same differences in trends 

between 12-month SPEI-all forcing minus 12-month SPI and between 12-month SPEI-

all forcing minus 12-month SPEI-without temperature changes. Thus, the trend 
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difference between 12-month SPEI-without temperature changes and 12-month SPI is 

almost negligible. 

 
Location Annual coefficient (SPEI value/decade)  95% confidence interval p-values 
Albacete 0.024 (-0.029/0.083) 0.291 
Alicante -0.019 (-0.077/0.032) 0.857 
Badajoz -0.022 (-0.077/0.033) 0.557 

Barcelona 0.019 (-0.036/0.071) 0.513 
Burgos 0.030 (-0.024/0.089) 0.398 
Cadiz -0.022 (-0.081/0.037) 0.429 

Ciudad Real 0.058 (-0.001/0.118) 0.052 
Granada -0.074 (-0.133/0.014) 0.057 
Huelva 0.011 (-0.048/0.073) 0.747 
Huesca -0.038 (-0.091/0.019) 0.361 

La Coruña 0.055 (-0.003/0.116) 0.154 
Lisboa 0.100 (0.040/0.158) 0.006 
Madrid 0.026 (-0.030/0.087) 0.443 
Málaga -0.013 (-0.074/0.047) 0.721 
Murcia 0.016 (-0.044/0.075) 0.647 
Porto 0.052 (-0.003/0.110) 0.228 

Salamanca -0.013 (-0.072/0.044) 0.738 
Sevilla -0.012 (-0.074/0.050) 0.705 
Soria 0.008 (-0.048/0.070) 0.663 

Valencia 0.046 (-0.011/0.011) 0.199 
Valladolid 0.041 (-0.025/0.098) 0.277 
Zaragoza 0.028 (-0.024/0.085) 0.639 

 
Table 5-9: Summary of annual trends (in SPEI value/decade) computed for the 22 locations for the 

common period 1906-2010 using 12-month SPEI-without temperature changes. The associated 
95% confidence intervals and p-values are also shown. Negative (or positive) trends represent 
drier (or wetter) conditions. Bold (or Italic) values are referred to statistical significance at the 99% 
level (or 95%). 
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5.2.6. Discussion on the applicability of the different drought indices 
 

The Sc-PDSI, the 12-month SPI and the 12-month SPEI are computed to detect 

hydrological droughts across Iberian Peninsula using the common period 1906-2010. 

In general, the three drought indices represent similar variability of wet and dry 

conditions in the Iberian Peninsula across time clearly identifying the most important 

dry and wet events, which were thoroughly validated. It means that 12-month SPEI and 

12-month SPI are able to provide similar results than Sc-PDSI with less data 

requirements (only monthly precipitation in the case of 12-month SPI; monthly 

precipitation and temperature for the 12-month SPEI). The Sc-PDSI computation 

requires monthly precipitation, temperature and Available Water Content of the soil. 

Available information on soil water content is very poor in most regions of the world 

and it is often a local and fixed value normally associated with current soil conditions, 

knowing that soil properties may change across time (Vicente-Serrano et al., 2011). It could 

lead the use of inaccurate values when applying Sc-PDSI in the Iberian Peninsula. 

Additionaly, 12-month SPEI and 12-month SPI show better calibration in terms of the 

frequency distribution of values into the drought categories than the Sc-PDSI over the 

Iberian Peninsula. Despite Wells et al., (2004) solved most of the calibration problems 

from the original PDSI, making the index more suitable for drought quantification and 

monitoring (Sc-PDSI), some calibration problems appear in the computation of Sc-

PDSI over the Iberian Peninsula. The 12-month SPEI maintains robust units with 

statistical consistency obtained from cumulative antecedent climate conditions and it 

provides more reliability than Sc-PDSI in the region under study.   

Moreover, all drought indices are able to identify similar surface area affected by dry 

conditions in the Iberian Peninsula across time. Moreover, the driest periods detected 

before in terms of severity (see section 5.2.1) are found again as the driest periods in terms 

of affected area too (see section 5.2.3). All drought indices coincide to attribute the driest 

conditions (in terms of severity and area affected by drought) to years 1945, 1995 and 

2005 over the Iberian Peninsula along the 20th century. 

Despite the similar results found in terms of temporal drought variability and surface 

area affected by droughts, some differences in trends among all drought indices are 

identified in both; individual and regional time-series. The annual trends are larger in 

drought indices which temperature is included in their computation (the Sc-PDSI and 

12-month SPEI) than in which the main driver of drought variability is only 
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precipitation (12-month SPI). The Sc-PDSI and SPEI indices represent better drought 

conditions under global warming than other indices since evapotranspiration process is 

included in their algorithms (Vicente-Serrano et al., 2010 and 2011, Dai 2004 and 2011, Van der 

Schrier et al., 2006 and 2011). There is general agreement on the importance of precipitation 

in explaining drought variability, but the observed and predicted global warming by 

IPCC (2007) have important implications for evapotranspiration processes, increasing 

the influence of this parameter on drought severity (Vicente-Serrano et al., 2010). 

For all these reasons, the 12-month SPEI is the most suitable drought index to identify 

wet and dry conditions over the Iberian Peninsula along the 20th century. Thus, the 

analysis of the spatial-temporal patterns of droughts and the univariate performing of 

severity, duration and magnitude of droughts and wet events will be carried out using 

only the 12-month SPEI in the next sections. 
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5.2.7. Summary 

 

The results obtained from the analysis of drought variability across the Iberian 

Peninsula along the 20th century and the first decade of the 21st century show lack of 

significant changes for the Iberian Peninsula as a whole, but drying trends in good parts 

of the Iberian Peninsula such as in the Pyrenees, Ebro basin and in the central Iberia, but 

the highest rates of change are mainly identified in the south and south-eastern area. On 

the contrary, a wetting trend is found in the western and north-western Iberian 

Peninsula. 

The analysis of temporal evolution of droughts confirms that dry conditions dominated 

in 1920s, 1940s and in 1950s while wet conditions were present in 1930s, 1960s and in 

1970s. The last three decades of the time-period (1980-2010) were abnormally dry 

mainly due to less precipitation than normal. But the severity and duration of dry 

conditions were reinforced during that period caused by the increase of the 

evapotranspiration rate coinciding with the maximum increase of temperatures in the 

Iberian Peninsula in a climate change context. In this way, the most remarkable 

droughts occurred in 1945, 1995 and 2005 and have been thoroughly validated using 

documental sources. Moreover, the driest periods identified in terms of severity in the 

Iberian Peninsula are also found as the driest periods in terms of the area affected by 

droughts. 

The results found from the inspection of the impact of global warming on drought 

indices and trends suggest that, despite precipitation variability is the main driver of 

drought fluctuations, temperature and the strongly related PET play an important role in 

terms of drought severity and duration to explain drought changes over the whole 

Iberian Peninsula. Despite these results, drought severity and trends could be affected 

by some uncertainties derived from the applied method to estimate PET (Thornthwaite) 

since it is demonstrated (Sheffield et al., 2012) that it tends to overestimate PET conditions. 

This fact highlights the importance of including evapotranspiration in the evaluation of 

droughts while, at the same time, it warns that the use of unsuitable methods to estimate 

PET could compromise the final results. 

Finally, the 12-month SPEI has been selected as the most suitable drought index to 

identify wet and dry conditions over the Iberian Peninsula along the 20th century 

according to the reasons already discussed in section 5.2.6.  
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5.3. Drought fluctuations since the second half of the nineteenth 

century 

 

The previous section has studied the drought variability and trends for the whole Iberian 

Peninsula as well as for each station using the common period 1906-2010. As 

mentioned in previous sections, this common period is selected according to the 

availability and consistency of precipitation and temperature data to compute drought 

indices in order to obtain reliable and continuous results. But there are some stations in 

which the precipitation and temperature data began to be recorded since the second half 

of the nineteenth century (see table 4-1). In this section, and in order to approach the 

evolution of drougths for a longer period, we study the five longest time-series available 

according to table 4-1, going back to the 1850s. The individual time-series avaliable to 

analyse drought variability since the second half of the nineteenth century are Cadiz 

(1854-2010), Madrid (1855-2010), Huesca (1963-2010), Murcia (1864-2010) and 

Lisboa (1865-2010) (see figure 4-1 to see the geographical location). Note that the records of 

drought time-series start 12 months later than the original time-series (table 4-1) due to 

the time-scale used to compute the drought index. The 12-month SPEI is chosen to 

identify the drought variability in the five long-term time-series because - as discussed 

in section 5.2.6, it is found to be the best performer over the Iberian Peninsula. 

Redundant information would be obtained whether all drought indices tested before 

were computed again in this section. 

Figure 5-20 shows the evolution of drought conditions using 12-month SPEI for the five 

longest time-series of the Iberian Peninsula since the second half of the nineteenth 

century. Cadiz (1854-2010) shows wet conditions in mid-1850s, mid-1870s, in 1880s, 

early-1890s, in 1910s, in 1930s, early and mid-1940s, late-1950s, 1960s, 1970s, late 

1990s and late-2000s while dry conditions were focused in 1860s, late-1870s, mid-late-

1890s, 1900s, mid-1920s, mid-1930s, mid-1940s, 1950s, 1980s, early and late-1990s 

and early-mid-2000s. The wettest conditions are found in 1970, while the driest year is 

in 1869. Otherwise, Madrid (1855-2010) shows wet conditions in mid-1850s, mid-

1860s, 1880s, early-mid-1890s, 1910s, 1920s, mid-1930s, early and late-1940s, mid-

late-1950s, 1960s and 1970s while dry conditions are identified in early-1860s, 1870s, 

early-1900s, mid-late-1930s, early-1950s, and from 1980s to 2000s interrupted by short 

wet periods. The wettest conditions occurred in 1972 while the driest year was in 2005. 
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Huesca (1863-2010) drought time-series represented wet conditions in mid-1860s, 

early-1870s, mid-late-1880s, early-1900s, mid-late-1910s, early-1920s, mid-1930s, 

1940s, 1960s, 1970s and late-1990s while dry conditions were detected in early 1870s, 

early-1880s, mid-late-1890s, mid-late-1900s, mid-1920s, early and late-1950s and from 

1980s to 2000s with the exception of the wet period focused in late-1990s. The wettest 

conditions occurred in 1973 while the driest year was identified in 1995. 

Murcia (1864-2010) showed wet conditions in mid-1860s, early-1870s, mid-late-1880s, 

early-mid-1890s, early-mid-1920s, mid-1930s, early-1950s, 1970s, late-1980s and 

early-1990s while dry periods were in late-1860s, late-1870s, early-1880s, late-1890s, 

1900s, 1910s, late-1920s, early-mid-1940s, early-1960s, early-1980s and from mid-

1990s to 2000s. The wettest conditions were in 1949 while the driest year is identified 

in 1878. 

Finally, Lisboa (1865-2010) represented wet conditions in mid-1860s, early-1870s, 

1880s, early-mid-1890s, early-1910s, late-1930s, early and late-1940s, mid-late-1950s, 

1960s, 1970s, mid-1990s and late-2000s while dry periods were focused in late-1860s, 

mid-1870s, late-1890s, 1900s, 1920s, 1930s, mid-1940s, early-1950s, 1980s, early-

1990s and early-mid-2000s. The wettest conditions were in 2010 while the driest year 

was identified in 2005. 

In general, the time-series show common wet conditions in mid-1850s (only data 

available for  Cadiz and Madrid), mid-1860s, early-1870s (except in Madrid), during all 

the decade of 1880 (in all time-series), in most of the 1910s (except in Lisboa), in 1930s 

and early-1940s (except in Murcia), in 1960s and 1970s (except in Murcia only in 1960s 

and Lisboa in 1970s), mid-1990s (except in Murcia) and in really late-2000s (except in 

Huesca). Otherwise, common dry periods among time-series took place in early-1870s 

(except in Murcia and Lisboa), late-1890s and 1900s (in all time-series), mid-late-1920s 

(except in Madrid), the decade of 1950 (except in Murcia). Note that dry conditions 

dominated during the last three decades in all time-series except in Murcia (in early-

1990s) and in Lisboa, where dry conditions were not identified during this period. 
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Figure 5-20: 12-month SPEI time series for Cadiz (1854-2010), Madrid (1855-2010), Huesca (1863-

2010), Murcia (1864-2010) and Lisboa (1865-2010). In red, 10-year gaussian filter. 
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5.4. Drought regionalization of the Iberian Peninsula 

 

5.4.1. PCAs application and spatial-temporal patterns selection 

 

In this study, Principal Component Analysis (PCA) is applied at the annual and seasonal 

time-scales using 12-month SPEI time-series for the common period 1906-2010 to 

identify spatial-temporal variations of droughts across the 20th century. 

In order to determinate the adequate number of RPCs to be extracted we essayed two 

different cutting criteria (T>0.7 and T>1, (Kaiser’s rule; where T = eigenvalue) see 

section 4.5 for further details on these thresholds), plus the qualitative inspection of the 

scree plots. Five rotated principal components are extracted at the annual time-scale 

using the threshold T>0.7 that explains the 77.9% of accumulated variance (table 5.10), 

while three components are found applying the threshold T>1 explaining the 70.8% of 

accumulated variance. T>0.7 threshold provides two components more than T>1 

threshold explaining only an additional 7.1% of variance. Five components are also 

extracted in winter (DJF) using T>0.7, explaining the 76.7% of accumulated variance, 

meanwhile four components are found with T>1, explaining the 73% of accumulated 

variance. In this case, the lost of variance in T>1 is only 3.7%. For Spring (MAM) the 

0.7 threshold determinates the extraction of 3 components (77.8% of explained 

variance), meanwhile the T>1 threshold accounts for 70.2% of the variance with 

distributed in 3 RPCs. In summer (JJA), five components are extracted with T>0.7 

(79.5% of accumulated variance), while three components are found with T>1, 

explaining the 72.7% of accumulated variance. Two components more are found 

applying T>0.7 than T>1 that explaining only a 6.8% of variance. Finally, in autumn 

(SON), four components are extracted using T>0.7 explaining the 76.5% of 

accumulated variance and three components are found using T>1 explaining the 72.9% 

of accumulated variance.  
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  RPCs T>0.7 T>1 
Time-scale  Component number % variance % variance 

1 49.3 49.3 
2 14.9 14.9 
3 6.5 6.5 
4 3.8   
5 3.3   

Annual 

Total 77.9 70.8 
1 47.4 47.4 
2 14.1 14.1 
3 6.8 6.8 
4 4.6 4.6 
5 3.8   

DJF 
(Winter) 

Total 76.7 73.0 
1 48.7 48.7 
2 14.7 14.7 
3 6.8 6.8 
4 4.2   
5 3.4   

MAM 
(Spring) 

Total 77.8 70.2 
1 50.2 50.2 
2 16.2 16.2 
3 6.4 6.4 
4 3.6   
5 3.2   

JJA 
(Summer) 

Total 79.5 72.7 
1 51.6 51.6 
2 15.1 15.1 
3 6.3 6.3 
4 3.6   

SON 
(Autumn) 

Total 76.5 72.9 
 
Table 5-10: Number of extracted components and percentages of variance explained by the rotated 

principal components using T >0.7 and T >1 thresholds at annual and seasonal time-scales using 
12-month SPEI time series. 

 

The comparison between T>0.7 and T>1 shows that the explained variance obtained by 

the inclusion of additional RPCs in T>0.7 is relatively small and does not justify the 

selection of this criteria. The qualitative analysis of the scree plots (Fig 5-21) also 

recommends the selection of the same number of RPCs derived by the application of the 

T>1 criteria. The selected number of components ensures that the accumulated variance 

falls in the range of 70-90% recommended by Jolliffe (2002). 

In summary, the principal componments analysis is finally applied over the 22 12-

month SPEI time series at annual and seasonal time scales for the 1906 to 2010 period. 

For our regionalization purposes, the S-mode of PCA is selected using the truncation 

threshold T>1 and applying Varimax rotation of the components. The results provide 
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spatial-temporal patterns of droughts over Iberian Peninsula in order to identify 

homogeneous areas with similar behaviour of drought conditions across time (1906-

2010). 
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Figure 5-21: Scree graph showing the eigenvalue spectrum related with different components found in 

rotated principal components at annual and seasonal time-scales. 
 

From the extraction of the Rotated Principal Component Analysis (RPCA) to the 12-

month SPEI series over Iberian Peninsula for the period 1906-2010, the spatial patterns 

together with the associated time series are obtained at annual and seasonal time scales. 

In this section, annual and seasonal time scales are analyzed separately in order to 

distinguish the spatial patterns found across the year. Moreover, the areas with similar 

temporal behaviour of droughts, suggested by RPCAs analysis, are identified and the 

variability and trends of the time series associated to the spatial-temporal patterns are 

also described in the following sections. 

Three Rotated Principal Components (RPCs) are extracted to represent the variability 

over Iberian Peninsula at annual time scale explaining the 70.8% of total variance. The 

first component (RPC1) explains the 49.3% of total variance and it will be called as 

South-western pattern (SWP) from now onwards. The second component (RPC2) 

explains the 14.9% of variance and will be called as North-western pattern (NWP) from 

now. The third component (RPC3) just explains the 6.5% of variance and will be called 

as Mediterranean pattern (MedP) hereafter. The South-western pattern focuses its 
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maximum weights in the south-west and central area of the Iberian Peninsula while the 

North-western pattern covers the north and north-western Iberia. Finally, the 

Mediterranean pattern is focused mainly in the Mediterranean region of the Iberian 

Peninsula. 

The RPCs are also extracted at seasonal time scale from the RPCA computed over the 

Iberian Peninsula. Four RPCs are extracted explaining the 73% of total variance in 

winter (DJF); three RPCs in spring (MAM) explaining the 70.2%; three RPCs in 

summer (JJA) explaining the 72.7%; and three RPCs in autumn (SON) explaining the 

72.9% of total variance (see table 5-10). Similar spatial patterns to those found at annual 

scale are extracted at the sesasonal time scale, and the associated time series are also 

computed. The South-western pattern, the North-western pattern and the Mediterranean 

pattern are the spatial-temporal patterns also identified at seasonal basis and they will be 

described and analyzed below one by one. 
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5.4.2. The South-western pattern 

 

 5.4.2.1. Annual and seasonal spatial structure 

 

The South-western pattern (Fig. 5-22) shows the maximum weights located in the south-

west of the Iberian Peninsula (Cadiz Gulf) but also reaching the central area of the 

region with a weaker signal (Central System) at annual time-scale. This spatial pattern 

spreads over Iberian Peninsula following the Guadiana, Guadalquivir and Tagus basins 

and covers the western part of the South Plateau and the southern part of the Central 

Plateau. 

  

 
Figure 5-22: Spatial distribution of the maximum weights referred to the South-western pattern (SWP) 

computed over the 22 12-month SPEI series at annual time-scale over the Iberian Peninsula. 
This component explains the 49.3% of total variance. Spatial interpolation is applied using the 
kriging method. 
 

The spatial distribution of the South-western pattern is also identified over the Iberian 

Peninsula at seasonal time-scale, with maximum weights located in the south-west of 

the Iberian Peninsula (Fig. 5-23). This pattern spreads over the region under study from 

the Cadiz Gulf to the Central System reaching the south-west and central area of the 

Iberian Peninsula. It involved the Guadiana, Tagus and Guadalquivir basins, and 

extends to the western area of South Plateau and in the Central Plateau with a weaker 

signal. Most of the variance explained in summer (50.2%) and autumn (51.6%) over the 

Iberian Peninsula is related to the South-western pattern coinciding with its maximum 

weights located at the Cadiz Gulf and maximum expansion of the pattern along to the 

Central Plateau. 
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       Winter (DJF)         Spring (MAM) 

 

 
       Summer (JJA)       Autumn (SON) 

Figure 5-23: Spatial distribution of the maximum weights related to the South-western pattern identified 
over the Iberian Peninsula at seasonal time-scale. This pattern explains the 14.1% of total 
variance in winter (DJF), the 14.7% in spring (MAM), the 50.2% in summer (JJA) and the 
51.6% of total explained variance in autumn (SON). Spatial interpolation is applied using the 
kriging method. 
 

5.4.2.2. Annual and seasonal temporal evolution 

 

Figure 5-24 presents the variability of 12-month SPEI time series associated to the 

South-western pattern determined by the RPC analysis over the Iberian Peninsula for 

the period 1906-2010 at annual time-scale. The driest periods identified in the South-

western pattern (SWP) time series are the 1930s, mid-1940s, mid-1970s, 1980s, early 

and mid-1990s and 2000s while the wettest periods were identified in 1900s, 1910s, 

early-1940s, 1960s, early-1970s, early and late-1990s and late-2000s. Otherwise, a high 

variability between shorter dry and wet periods than in other decades characterises the 

1920s and 1950s decades. The time-series associated to the South-western pattern 

shows a statistically significant (at the 95% significance level) decreasing trend of -

0.064/decade  for the period 1906-2010 (Table 5-11). 
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Figure 5-24: Fluctuations of 12-month SPEI time series associated to the South-western pattern found at 

annual time-scale over Iberian Peninsula for the period 1906-2010. Red line; 10-year Gaussian 
filter. 

 

The fluctuations of averaged 12-month SPEI time series associated to the South-western 

pattern at seasonal time scale for the period 1906-2010 are shown in figure 5-25. The 

time series show similar variability across time independently of the chosen season 

detecting the driest conditions in 1930s, mid-1940s, mid-1970s, 1980s, early-mid-1990s 

and 2000s. The wettest periods are identified in 1900s, 1910s, late-1930s and early-

1940s, 1960s, 1970s and late-1990s while the alternation of shorter dry and wet 

conditions occurred in 1920s and 1950s. 

The wettest winter (DJF) was in 1990 (+1.77 SPEI value) in the time-series associated 

to the South-western pattern at seasonal scale, however, the driest winter occurred in 

1995 according to figure 6-25 (-2.24 SPEI value). The wettest spring was found in 1990 

(+2.43) and the driest one was recorded in 1995 (-2.83). The wettest summer was 

identified in 1970 (+2.07), but the driest summer occurred in 1995 (-2.72). Finally, the 

wettest autumn was in 1996 (+2.20), while the driest autumn was in 1995 (-2.10). These 

results show that the wettest and driest seasons are identified basically in 1990s in the 

South-west of the Iberian Peninsula. According to the 12-month SPEI, the year 1995 is 

the driest one of the time-series in the South-west of the Iberian Peninsula because 

major seasonal records are found during all seasons in 1995. 
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Figure 5-25: Fluctuations of averaged 12-month SPEI time series associated to the South-western pattern 

found over Iberian Peninsula at seasonal time scale for the period 1906-2010 (with smoothed 
by Gauss filter over 10 years). 
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5.4.3. The North-western pattern 

 

5.4.3.1. Annual and seasonal spatial structure 

 

The North-western pattern (NWP) (Fig. 5-26) represents a spatial pattern with maximum 

weights located in the north and north-west of the Iberian Peninsula at annual time-

scale, but its influence also reaches some areas of central part of the region (Central 

System). The spatial pattern spreads over the north-west and north of the Iberian 

Peninsula (from the north of Portugal and Galicia to the Western Pyrenees) covering the 

Cantabrian range and also the North Plateau till Central System and Iberic System.  

 
North-western pattern (RPC2) 

 
 
Figure 5-26: Spatial distribution of the maximum weights referred to the North-western pattern (NWP) 

computed over the 22 12-month SPEI series at annual time-scale over the Iberian Peninsula. 
This component explains the 14.9% of total variance. Spatial interpolation is applied using the 
kriging method. 

 
The North-western pattern analyzed at seasonal time-scale concentrates the maximum 

weights in the north and north-west of the Iberian Peninsula in spring, summer and 

autumn (Fig. 5-27). This pattern spreads over the Iberian Peninsula from the Cantabrian 

coast to the Central System reaching the north of Portugal, Galicia, all the North Plateau 

and the Cantabrian range. But, two sub-patterns were identified in winter, named as 

Sub-pattern 1 and Sub-pattern 2 in fig. 5-27. The sub-pattern 1 shows the maximum 

weights in the north and central area of the Iberian Peninsula from the Cantabrian coast 

to the north-western part of the South Plateau reaching the Cantabrian range, all the 

North Plateau and also the Central System. Otherwise, the sub-pattern 2 is located in the 

north-western corner of the Iberian Peninsula with maximum weights just covering 

Galicia and the north-west of Portugal. These two sub-patterns found in winter (DJF) 
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over the Iberian Peninsula belong to the North-western pattern detected at annual time 

scale. Most of the variance explained in spring over Iberian Peninsula is related to the 

North-western pattern (48.7%) while most of the variance explained in winter is related 

to the sub-pattern 1 (47.4%). 

 

   Spring (MAM) 

                                                         

 
      Summer (JJA)       Autumn (SON) 

 
      Winter (DJF) sub-pattern 1          Winter (DJF) sub-pattern 2 
 
Figure 5-27: Spatial distribution of the maximum weights related to the North-western pattern identified 

over the Iberian Peninsula at seasonal time-scales. Note that two sub-patterns were found in 
winter (DJF) related to the North-western pattern. The North-western pattern explains the 
48.7% of total variance in spring (MAM), the 16.2% in summer (JJA) and the 15.1% of total 
explained variance in autumn (SON). The sub-patterns 1 and 2 found in winter (DJF) 
represents the 47.4% and 4.6% of total variance respectively. Spatial interpolation is applied 
using the kriging method. 
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5.4.3.2. Annual and seasonal temporal evolution 

 

Figure 5-28 presents the variability of 12-month SPEI time series associated to the 

North-western pattern determined by the RPC analysis over the Iberian Peninsula for 

the period 1906-2010 at annual time-scale. The driest periods identified in the time 

series associated to the North-western pattern are detected in 1900s, late-1940s, late-

1980, early-1990s and mid-late-2000s. The wettest periods are identified in late-1920s, 

1930s, 1960s, late-1970s and early-2000s while periods based on high variability are 

shown in 1910s, early-mid-1920s, 1950s, early-mid-1970s, mid-1980s and mid-1990s. 

The time-series associated to the North-western pattern show a non-significant 

decreasing trend of -0.001/decade (at the 95% level). 
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Figure 5-28: Fluctuations of 12-month SPEI time series associated to the North-western pattern found at 

annual time-scale over Iberian Peninsula for the period 1906-2010. Red line; 10-year Gaussian 
filter. 

 

The variability of averaged 12-month SPEI time series associated to the North-western 

pattern found at seasonal time scale in the Iberian Peninsula for the period 1906-2010 

together with sub-patterns 1 and 2 are shown in figure 5-29. The driest periods recorded 

in the time series associated to the North-western pattern in spring, summer and autumn 

occurred in 1900s, early-1920s, 1940s and early-1990s while the wettest conditions are 

identified in 1930s, early-1960s and late-1970s. Otherwise, the 1910s, late-1920s, 

1950s, late-1960, early-1970s, 1980s, late-1990s and 2000s are characterized by the 

alternation of dry and wet conditions. In this way, the wettest spring occurred in 1960 

(+2.40 SPEI value), while the driest spring was recorded in 1949 (-2.55) for the North-

west of the Iberian Peninsula. The wettest summer is identified in 1961 (+2.63), but the 
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driest summer is shown in 1949 (-2.53). Finally, the wettest autumn occurred in 1960 

(+2.35), however, the driest autumn (-2.92) was found in 1989. 

The driest periods detected in the time series associated to the sub-pattern 1 are 

concentrated in 1940s, late-1960s, 1980s and 1990s while wettest periods are identified 

in 1900s, 1910s, mid-1930s, 1950s, early-mid-1960s and 1970s. However, a high 

variability between dry and wet periods is shown in 1920s, early 1930s and 2000s. The 

wettest winter according to the time series associated to sub-pattern 1 occurred in 1958 

(+1.88), but the driest winter identified in the North and central area of the Iberian 

Peninsula was recorded in 1971 (-2.25). Furthermore, the driest periods recorded in the 

time series associated to the sub-pattern 2 occurred in 1900s, 1910s 1920s, late-1940s, 

mid-1970s, early-1990s and mid-late-2000s while wettest conditions were identified in 

1930s, early-mid-1940s, 1960s, early and late-1970s, early-mid-1980s and early-2000s. 

The alternation of wet and dry periods occurred just in 1950s and 1990s. Moreover, the 

wettest winter found in the time-series associated to the sub-pattern 2 was identified in 

1960 (+2.37) while the driest winter occurred in 1907 (-3.07). 
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Figure 5-29: Fluctuations of averaged 12-month SPEI time series associated to the North-western pattern 

found over Iberian Peninsula at seasonal time scale for the period 1906-2010 (with smoothed 
by Gauss filter over 10 years). 
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5.4.4. The Mediterranean pattern 

 

5.4.4.1. Annual and seasonal spatial structure 

 

Finally, the Mediterranean pattern (Fig. 5-30) shows a spatial pattern clearly influenced 

by the Mediterranean Sea, reaching the maximum weights in the east side of the Iberian 

Peninsula. This pattern spreads over Iberian Peninsula through the Mediterranean coast 

reaching oriental Pyrenees to the Betic System and covering the eastern part of Iberic 

System and the eastern part of the South Plateau.  

 
Mediterranean pattern (RPC3) 

 
Figure 5-30: Spatial distribution of the maximum weights referred to the Mediterranean pattern (MedP) 

computed over the 22 12-month SPEI series at annual time-scale over the Iberian Peninsula. 
This component explains the 6.5% of total variance. Spatial interpolation is applied using the 
kriging method. 

 
The Mediterranean pattern found at seasonal time-scale shows a spatial structure 

strongly influenced by the Mediterranean shoreline, locating the maximum weights at 

the east and south-east of the Iberian Peninsula in all seasons (Fig. 5-31). This pattern 

reaches the Mediterranean coast extending to the eastern part of the South Plateau and 

following the Segura and Jucar basins. The Mediterranean pattern explains less variance 

than other patterns (around 6% or 7% of total variance during all seasons) and the 

maximum weights reach more Iberian extension in spring and autumn.  
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       Winter (DJF)        Spring (MAM) 

 

 
 

   Summer (JJA)       Autumn (SON) 
 
Figure 5-31: Spatial distribution of the maximum weights related to the Mediterranean pattern identified 

over the Iberian Peninsula at seasonal time-scales. This pattern explains the 6.8% of total 
variance in winter (DJF), the 6.8% in spring (MAM), the 6.4% in summer (JJA) and the 6.3% 
of total explained variance in autumn (SON). Spatial interpolation is applied using the kriging 
method. 

 
5.4.4.2. Annual and seasonal temporal evolution 

 

Figure 5-32 presents the variability of 12-month SPEI time series associated to the 

Mediterranean pattern determined by the RPC analysis over the Iberian Peninsula for 

the period 1906-2010 at annual time-scale. The time series associated to the 

Mediterranean pattern (MedP) shows the driest periods in early-1910s, mid-late-1920s, 

1960s, early-mid-1980s, mid-late-1990s and 2000s. The wettest periods are identified in 

1900s, mid-late-1910s, early-1920s, early-1930s and 1970s, while a high variability 

between dry and wet periods were detected in 1940s, 1950s, late-1980s and early-1990s. 

The time-series associated to the Mediterranean pattern shows a statistically significant 

decreasing trend of the -0.101/decade (at the 99% level) for the period 1906-2010. 
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Figure 5-32: Fluctuations of 12-month SPEI time series associated to the Mediterranean pattern found at 

annual time-scale over Iberian Peninsula for the period 1906-2010. Red line; 10-year Gaussian 
filter. 

 
The fluctuations of averaged 12-month SPEI time series associated to the Mediterranean 

pattern found in the Iberian Peninsula at seasonal time scale for the period 1906-2010 

are shown in figure 5-33. The time series associated to the Mediterranean pattern 

showed similar behaviour across time during all seasons. The driest periods identified in 

the time series occurred in early-1910s, 1920s, mid-1960s, early-1980s, mid-late-1990s 

and 2000s while the wettest conditions were referred to 1900s, late-1910s, early-1930s, 

1970s, and late-1980s. Otherwise, shorter dry and wet periods combined alternatively 

were detected in 1940s, 1950s and 1960s. 

The wettest winter found in the Mediterranean region occurred in 1972 (+2.36), but the 

driest winter was identified in 2007 (-2.22). Moreover, the wettest spring was recorded 

in 1973 (+2.43), while the driest spring occurred in 2001 (-2.34). The wettest summer 

was identified in 1972 (+2.37), but the driest summer was detected in 2001 (-2.33). 

Finally, the wettest autumn occurred in 1972 (+2.85) and the driest autumn was shown 

in 1995 (-2.35). The wettest seasonal records was found in early-1970s, meanwhile the 

driest seasons of the Mediterranean time-series occurred between mid-1990s and 2000s 

when most of the seasons remained in dry conditions.  
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Figure 5-33: Fluctuations of averaged 12-month SPEI time series associated to the Mediterranean pattern 

found over the Iberian Peninsula at seasonal time scale for the period 1906-2010 (with 
smoothed by Gauss filter over 10 years). 
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5.4.5. Summary 

 

Three Rotated Principal Components (RPCs) are extracted from PCAs to represent the 

variability over Iberian Peninsula at annual time scale explaining the 70.8% of total 

variance. Similar spatial-temporal patterns to those found at annual scale are also 

extracted at the sesasonal time scale. The South-western pattern (RPC1) focuses its 

maximum weights in the south-west and central area of the Iberian Peninsula while the 

North-western pattern (RPC2) covers the north and north-western Iberia. Finally, the 

Mediterranean pattern (RPC3) is mainly focused in the Mediterranean region of the 

Iberian Peninsula. 

The time-series associated to the South-western pattern and the Mediterranean pattern 

shows a statistically significant decreasing trend (95% significance level) reaching -

0.064/decade and -0.101/decade (significant at the 99% level) respectively for the 

period 1906-2010 (Table 5-11). Otherwise, the time-series associated to the North-western 

pattern show a non-significant decreasing trend of -0.001/decade (at the 95% level). A 

plausible interpretation is that the south and south-west of the Iberian Peninsula (SWP) 

is suffering drier conditions currently than before, but the Mediterranean region does it 

duplicating the drying trend, caused basically by the driest last decades observed in this 

region. However, the north and north-west of the Iberian Peninsula (NWP) do not show 

a significant trend in drought conditions. These results are in good agreement with 

Vicente-Serrano et al., (2011) whom found that dry conditions did not increase in the 

north-west of the Iberian Peninsula between 1930 and 2006 using SPI and SPEI drought 

indices. This contrasts with the general trends found in other Iberian regions, in which 

dry conditions have increased (Vicente-Serrano 2006a). On a regional scale, there is 

evidence of a significant increase in the severity of drought in the Ebro basin (Vicente-

Serrano & Cuadrat-Prats 2006, Vicente-Serrano & López-Moreno 2006), in some areas of the 

Valencia region (Vicente-Serrano et al., 2004) and in the Tagus basin (Lorenzo-Lacruz et al., 

2010). Sousa et al., (2011) have also shown that north-west of Iberian Peninsula is an 

exception to the predominant trend in the 20th century towards drier conditions using 

PDSI, which has been recorded for most of the western Mediterranean. 
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Patterns Linear trend (SPEI value/decade) 95% confidence intervals p-values 
South-western  -0.064 (-0.117/-0.001) 0.045 
North-western  -0.001 (-0.053/0.054) 0.993 
Mediterranean  -0.101 (-0.153/-0.049) 0.005 

 
Table 5-11: Summary of annual trends (in SPEI value/decade) computed for the spatial patterns found at 

annual time scales in the Iberian Peninsula (1906-2010). The associated 95% confidence intervals 
are also shown. Bold (or Italic) values are referred to statistical significance at the 99% level (or 
95%). 
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5.5. Univariate analysis of droughts and wet events 

 
The characteristics and trends of the main parameters related to dry and wet events are 

analyzed for the whole Iberian Peninsula and also for the spatial-temporal patterns 

found at annual time-scale. According to Burton et al., (1978), the main parameters to 

analyse dry and wet events are severity, duration and magnitude, all described in section 

4.6. Perhaps, magnitude is the most relevant parameter because combines severity and 

duration (referred to the accumulated severity for a dry or wet period) and it is 

interesting to see the fluctuations of these parameters across time. Moreover, other 

interesting parameters are also studied, such as the seasonal distribution of the onset, 

offset and the period of the maximum severity reached by dry or wet events. It provides 

information about the seasons in which dry or wet events tend to begin or to end and in 

which seasons these extreme events reach their maximum severity from 1906 to 2010. 

 
5.5.1. Characteristics and trends for the whole Iberian Peninsula 

 

As described in methods section, a drought event is defined as a continuous period in 

months for which the SPEI remains below zero (Shiau, 2006). Fluctuations in wet and dry 

events in the Iberian Peninsula from 1906 to 2010 are shown in figure 5-34. 

In total, 155 events are identified, from which 77 are dry events and 78 are wet events. 

This, similar number of wet and dry events is detected over the Iberian Peninsula being 

consistent with the 50.5% of months for the whole period with dry conditions and the 

rest of 49.5% with wet conditions according to the 12-month SPEI time series. Fig. 6-30 

shows how the most severe wet event occurred between 1969 and 1970, when 

maximum severity index was slightly shorter than +2 (severely wet in SPEI categories; 

table 4-5). The longest wet event occurred between 1976 and 1980 (Table 5-12) in which 

wet conditions prolonged during 40 consecutive months, although the maximum 

severity was moderately wet and, in average, it was slightly wet. Note the wettest events 

occurred in late-1950s, 1960s and 1970s over the Iberian Peninsula coinciding with 

temperatures lower than normal and an increase in precipitation in average. 
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Figure 5-34; Dry and wet events detected in the Iberian Peninsula (1906-2010) using 12-month SPEI. 
Black bars refer to the maximum monthly index value (maximum severity) recorded for each 
event, while grey bars indicate the average index value for each event. The duration in months 
for each event is represented in the x axis: bars’ widths are proportional to duration.   

 

The maximum severity of the driest event identified (between 2004 and 2007) reached 

the category of extremely dry in a given month and, in average, it was considered 

moderately dry during 35 months. The second driest event was from 1994 to 1996 

reaching extremely dry category and lasted 25 months. Finally, the longest dry event 

occurred between 1943 and 1946 along 37 months becoming a severely dry event 

according to the comprehensive categories. Note the driest events occurred during the 

last two decades coinciding with the warmest years of the time series and, in general, 

less precipitation than normal. 

Fluctuations of magnitude identified for wet and dry events over the Iberian Peninsula 

across time are shown in figure 5-35. As described in the methods section, magnitude is 

defined as the accumulation of monthly severity index value related to duration of the 

analysed drought. The highest magnitudes in wet events appeared in 1910s, late-1930s, 

1960s and 1970s. The highest drought magnitudes were recorded in mid-late-1940s, 

early-1950s and during the last three decades of the records (from 1980 to 2010). 
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Figure 5-35: Magnitude of wet and dry events identified over Iberian Peninsula (1906-2010) using 12-

month SPEI. Red bars refer to the accumulated SPEI severity (magnitude) recorded for each 
event related to the duration in months represented in the x axis: bars’ widths are proportional 
to duration. 

 

The major magnitude of dry and wet events identified over the Iberian Peninsula from 

1906 to 2010 are shown in table 5-12 related with the maximum severity reached for 

each event, averaged severity and duration in months. In this way, the wet event 

detected between 1976 and 1980 was the major wet event reaching the maximum 

magnitude of the time-series while the drought occurred from 2004 to 2007 reached the 

maximum magnitude becoming the major drought identified over the Iberian Peninsula 

since 20th century. Other major wet and dry events were included in table 5-12 that 

occurred in 1960s and 1970s (in the case of wet events) and in 1940s and two of them in 

1990s (in the case of droughts). In fact, the driest and wettest event (in terms of 

magnitude) did not coincide with the most severe and longest ones because the 

maximum magnitudes were reached when both severity and duration of dry and wet 

events were very high simultaneously. 

Table 5-13 shows the statistics of maximum severity reached for each event, averaged 

severity, duration in months and magnitude of wet and dry events. The mean of 

maximum severity and averaged severity of dry events is slightly higher than the 

equivalent paraeters for wet events, demonstrating that dry events tend to be more 

severe than wet events. However, the duration of wet events is found to be higher than 
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in dry events. Wet periods last on average 8.26 months, contrasting with the lower value 

of 7.88 months for dry events. Although the severity of dry events is found to be 

slightly higher than in wet events, the longer duration of wet events results in similar 

average magnitudes compared to those found for dry events over the Iberian Peninsula. 

However, maximum severity index value and maximum magnitude reached by a 

particular dry event is higher than the equivalent parameters reached for particular wet 

events, although the highest maximum duration was reached by a wet event. 

 

 
Major 
events 

Maximum 
severity 

Averaged 
severity 

Duration in 
months 

Magnitude  

1959-1961 1.49 0.82 32 26.19 

1961-1964 1.40 0.82 34 27.73 

1969-1970 1.95 1.03 22 29.12 
Wet 

1976-1980 1.49 0.85 40 33.87 

1943-1946 1.63 0.74 37 27.44 

1994-1996 2.06 1.13 25 28.28 

1998-2001 1.62 0.98 29 28.48 
Dry 

2004-2007 2.11 1.16 35 40.76 

 
Table 5-12; Summary statisitics of the most remarkable wet and dry events in terms of maximum severity 

reached for each event, averaged severity and magnitude in absolute values. Duration in months is 
also shown. 

 

 Parameter s Mean Maximum STD Linear trend 

Max. Severity 0.55 2.11 0.50 0.059 SPEI/10 events 

Avg. Severity 0.32 1.16 0.26 0.039 SPEI/10 events 

Duration (months) 7.88 37 8.99 0.588 month/10 events 

D
ry

 e
ve

nt
s 

Magnitude 4.46 40.76 8.03 0.211 SPEI/10 events 
Max. Severity 0.49 1.95 0.49 0.003 SPEI/10 events 

Avg. Severity 0.28 1.04 0.26 0.007 SPEI/10 events 

Duration (months) 8.26 40 10.40 -0.330 month/10 events 

W
et

 e
ve

nt
s 

Magnitude 4.53 33.87 7.94 0.050 SPEI/10 events 
 
Table 5-13: Summary statistics of all dry and wet events detected over Iberian Peninsula from 1906 to 

2010. Maximum severity reached for each event, averaged severity, magnitude and duration in 
months are the parameters analyzed and the mean, maximum value, standard deviation, linear 
trend and its statistical significance (linear trend calculated for each 10 events) are the statistics in 
absolute values. Bold (Italic) values are referred to statistical significant trends at 99% level 
(95%). 

 

To assess time evolution of the different wet/dry events related parameters, their linear 

trends are computed (Table 5-13). Linear trends in maximum severity, averaged severity 

and magnitude of the SPEI index values of wet events show a slight and non-significant 

increase while the duration (in months) tended to decrease also not reaching the the 95% 
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significance level (Table 5-13). In comparison, the same parameters of severity computed 

over dry events show a statistically significant (99% level) increase of the 0.059SPEI/10 

events in maximum severity and of the 0.039 SPEI/10 events in average severity. This 

new unit (drought index value/10 events) is used to quantify trends in severity and 

magnitude (using the pertinent drought index value of SPEI trend in this case) of wet 

and dry events for each 10 events. Linear trends of drought magnitude and duration 

show a significant increase of the 0.211 SPEI/10 events and of the 0.588 months/10 

events at the 95% and 99% level respectively for the whole period (1906-2010). This 

means that the severity, magnitude and duration of droughts is experiencing a 

significant increase over the Iberian Peninsula while the same parameters computed for 

wet events are not changing their behaviour significantly.  

Otherwise, a joint analysis of severity, magnitude and duration could give us an idea 

about the relationship among these relevant parameters in wet and dry events, for this 

reason it is better to study them together. In fact, the correlation coefficient (Pearson) 

between maximum severity reached and duration in dry events is 0.89, while in wet 

events is 0.85, and between averaged severity and duration is 0.82 in both; wet and dry 

events. 

The behavior of identified dry and wet events according to the maximum and averaged 

severity related with its duration is shown in figure 5-36. The accumulative character of 

droughts can be identified by noting that when the duration of the drought increases so 

does the severity drawing a logarithmic trend.  

Obviously, most of the dry and wet events remain in low severity and duration due to 

high variability between wet and dry months that do not allow to produce dry or wet 

conditions in a long time, but this is not so in a few cases. The 1990s and 2000s were 

abnormally warm due to climate change (Salomon et al., 2007) and abnormally dry (in 

precipitation) causing the three driest events of the series mentioned above (recovering 

table 5-12).  
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Figure 5-36; Behavior of identified dry and wet events according to the average index value for each 

event (upper panel) and the maximum monthly index value (maximum severity) recorded for 
each event (lower panel) related with the duration of each event. Most remarkable wet and dry 
events detected previously are also shown and black lines draw logarithmic trends. 

 

As occurred when maximum and averaged severity of dry and wet events were analyzed 

together with duration, magnitude and duration can also be treated jointly. Obviously, 

drought magnitude also has a strong correlation with duration of dry events. In fact, the 

correlation coefficient (Pearson) between magnitude and duration is 0.94 in wet events 
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and is 0.93 in dry events. The behaviour of magnitude according to the respective 

duration in months is represented in figure 5-37. The most remarkable wet and dry 

events described above are highlighted as well, but most of wet and dry events remain 

in lower magnitude and duration caused basically by the high variability of droughts 

that did not allow prolonged dry and wet periods with some exceptions called as major 

droughts described before. Note that when the duration of wet and dry events increases 

so did the magnitude of these events because the duration in time implied more or less 

accumulated severity, so more or less magnitude recorded in wet and dry events. 

This exercise clearly demonstrates that there is a strong relationship between severity, 

magnitude and duration in wet and dry events.  
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Figure 5-37: Behaviour of identified wet and dry events according to the magnitude reached for each 

event related with the duration in months. Most remarkable wet and dry events are also shown. 
 
Finally, seasonal distribution of the onset and offset of identified droughts and wet 

events are also described together with the season in which the dry or wet events 

reached their maximum severity. This information provides knowledge about which 

seasons are prone to accumulate onsets, offsets or maximum severities related to dry 

and wet events for the whole Iberian Peninsula taking into account the extreme events 

found in SPEI time-series. Figures 5-38 and 5-39 show the seasonal distribution of the 

percentages related to the onset, offset and maximum severity reached in wet (Fig. 5-38) 

and dry events (Fig. 5-39) for the whole Iberian Peninsula from 1906 to 2010. Note that 
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the coldest colours in the plots are referred to the parameters about wet events 

meanwhile the warmest ones represent the parameters related to droughts. 

25.2

30.8

14.0

29.9

27.1

26.2

17.8

29.0

35.5

21.5

13.1

29.9

DJF

MAM

JJA

SON

Onset (%)

Maximum severity (%)

Offset (%)

 
Figure 5-38: Seasonal distribution of the percentages referred to the onset, offset and maximum severity 

reached by wet events in the Iberian Peninsula. Seasons are shown in the y axis; where DJF is 
referred to winter, MAM to spring, JJA to summer and SON to autumn. Seasonal percentages 
for each parameter are also included inside the bars. 
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Figure 5-39: Seasonal distribution of the percentages referred to the onset, offset and maximum severity 

reached by droughts in the Iberian Peninsula. Seasons are shown in the y axis; where DJF is 
referred to winter, MAM to spring, JJA to summer and SON to autumn. Seasonal percentages 
for each parameter are also included inside the bars. 

UNIVERSITAT ROVIRA I VIRGILI 
DROUGHT VARIABILITY AND CHANGE ACROSS THE IBERIAN PENINSULA 
Joan Ramon Coll Benages 
DL: T 955-2014



Drought variability and change across the Iberian Peninsula 
 
 

 194 

 

Around 60% of wet events found in the Iberian Peninsula from 1906 to 2010 began in 

the equinoccial seasons, spring or autumn, meanwhile the 25% of wet events started in 

winter; the reamaining 14% started in summer (Fig. 5-38). That is logical taking into 

account that summer is the climatologically driest and warmest season in the Iberian 

Peninsula. Similar results are found identifying the seasons in which wet events reached 

maximum severity. The 29% of wet events reached maximum severity in autumn, the 

27% in winter, the 26% in spring and less than 18% in summer. These results show that 

winter, spring and autumn has a similar capacity to reach maximum severity in wet 

events, meanwhile in summer, the lack of precipitation together with the highest 

temperatures of the year cause higher evapotranspiration and, in consequence, less 

capacity to reach maximum severity of wet events during this season. Finally, more than 

35% of wet events finished in winter, the 30% in autumn, around 21% in spring and 

13% in summer. As shown, most of wet events began, finished and reached maximum 

severity basically in winter or autumn coinciding with the seasons that record higher 

amounts of precipitation along the year in the Iberian Peninsula. In fact, the behaviour 

of wet events in terms of the onset, the offset and maximum severity reached is mainly 

regulated by winter and autumn (lesser extent in spring) in the region under study. 

On the other hand, almost the 36% of droughts identified in the Iberian Peninsula began 

in winter, the 28% in autumn, almost the 22% in spring and the 14% in summer (Fig. 5-

39). Moreover, the 33% of droughts reached their maximum severity in autumn, the 

24.5% in spring, almost the 22% in summer and almost the 21% in winter. Finally, the 

31% of droughts finished in spring, the 30% in autumn, the 24.5% in winter and the 

14% in summer. As shown in wet events, the behaviour of droughts related to the onset, 

the offset and maximum severity reached is basically regulated by winter, autumn and 

spring in the Iberian Peninsula. The role of summer related to the beginning and end of 

droughts is less than other seasons (as in wet events), but the percentage of maximum 

severity reached in droughts during summer is slightly greater than in winter due to 

higher temperatures and less precipitation recorded in summer than in winter, leading 

that maximum severity is greater in summer than in winter. The high percentage 

recorded in maximum severity of droughts reached in autumn (33%) is related to 

climate conditions given in summer (less precipitations and the highest temperatures) 
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that can cause a worsening of droughts reaching maximum severity if dry conditions 

prolong during autumn. 

 

5.5.2. Characteristics and trends for the spatial-temporal patterns 

 

Once major droughts and wet events were identified and linear trends and their 

statistical significance were analyzed for magnitude, severity and duration of the events 

over the whole Iberian Peninsula, the same parameters and their statistics are obtained 

for the time-series associated to the spatial-temporal patterns found previously. The aim 

of this analysis is to find differences on the behaviour of droughts and wet events in 

terms of magnitude, severity and duration for each pattern. As known from previous 

section, the spatial-temporal patterns found in the Iberian Peninsula at annual time scale 

are: The South-western pattern, the North-western pattern and the Mediterranean 

pattern. The results are analyzed separately for each pattern. 

 

5.5.2.1. The South-western pattern 

 
A drying trend was found in the time series associated to the South-western pattern in 

previous section, so it will also be interesting to investigate how these drier conditions 

can affect the parameters related to wet and dry events identified from 1906 to 2010 

(Fig. 5-40). The same number of dry and wet events is determined in the time series 

associated to the South-western pattern. In total, 134 events; 67 are wet events and 67 

are referred to droughts. Six events reach the category of extremely wet (greater or 

equal to +2 in SPEI categories, table 4-5) in 1910, 1967, 1976, 1989, 1996 and 2010, 

while five events reach the extremely dry category (less or equal to -2 in SPEI 

categories) in 1973, 1990, 1994, 1998 and 2005. Note that the extremely wet and 

extremely dry events are concentrated basically during the last four decades of the time-

series. The wettest event occurred between 1910 and 1913 reached the extremely wet 

category during a few months and, in average, it is considered a severely wet event 

during 26 consecutive months. Otherwise, the longest wet event was detected between 

1967 and 1972 reaching also the extremely wet category and, in average, the severely 

wet category during 54 consecutive months (Table 5-14). However, the driest event 

occurred between 1994 and 1995 reaching the extremely dry category and, in average, 

the severely dry category during 22 consecutive months. Furthermore, the longest 
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drought was identified between 1931 and 1936 and prolonged during 58 consecutive 

months, but it does not reach the extremely dry category, just the severely dry category 

during a few months. 
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Figure 5-40; Dry and wet events detected in the time-series associated to the South-western pattern 
(1906-2010) using 12-month SPEI. Black bars refer to the maximum monthly index value 
(maximum severity) recorded for each event, while grey bars indicate the average index value 
for each event. The duration in months for each event is represented in the x axis: bars’ widths 
are proportional to duration. 

 
The fluctuations of the magnitude of wet and dry events (accumulated SPEI for a 

particular duration) are shown in figure 5-41. As shown, the highest magnitudes are 

recorded in wet events in early-1910s, late-1930s, early-1940s, early-1960s, early and 

late-1970s, in early and late-1990s and late-2000s. Otherwise, the highest magnitudes in 

droughts appear in early-mid-1930s, mid-1940s, mid-1970s, early-mid-1980s, mid-

1990s and early-mid-2000s.  

In this way, table 5-14 shows the major wet and dry events detected in the time-series 

associated to the South-western pattern in terms of magnitude, maximum severity 

reached, averaged severity and duration in months. The major wet event occurred 

between 1967 and 1972 reaching the maximum magnitude of the time series promoted 

by 54 consecutive months remaining in wet conditions, although this was not the most 

severe wet event. Otherwise, the major drought was detected between 1931 and 1936 

during 58 consecutive months, but it was not also the most severe drought. In both 

cases, major extreme events coincide with the longest events, but not with the most 
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severe ones, demonstrating that the duration of wet and dry events plays an important 

role when computing magnitudes in the South-western pattern. Other major events are 

shown in table 5-14 jointly with their magnitude, severity and duration in months. 
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Figure 5-41: Magnitude of wet and dry events identified in the time-series associated to the South-

western pattern (1906-2010) using 12-month SPEI. Red bars refer to the accumulated SPEI 
severity (magnitude) recorded for each event related to the duration in months represented in 
the x axis: bars’ widths are proportional to duration. 

 

 
Major 
events 

Maximum 
severity 

Averaged 
severity 

Duration in 
months 

Magnitude  

1910-1913 2.57 1.54 26 40.08 
1939-1942 1.84 0.98 28 27.32 
1961-1964 1.87 1.41 36 50.60 
1967-1972 2.22 1.03 54 55.39 

Wet 

1996-1998 2.27 1.59 34 54.18 
1931-1936 1.54 0.89 58 51.86 
1943-1946 1.93 1.32 31 41.06 
1990-1994 2.17 1.09 39 42.43 
1994-1995 2.85 1.71 22 37.68 

Dry 

1998-2000 2.15 1.28 26 33.31 

 
Table 5-14; The most remarkable wet and dry events detected in terms of maximum severity reached for 

each event, averaged severity and magnitude in absolute values. Duration in months is also shown. 
 
Some basic statistics are computed to see the main characteristics of dry and wet events 

in terms of maximum severity reached in a single month, averaged severity, magnitude 

and duration in months for the South-western pattern (Table 5-15). Similar statistics are 

found comparing dry and wet events caused basically by the standardized drought 
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index, but the main difference detected in the South-western pattern is that duration of 

droughts lasts, more or less, 1 month more in average than duration in wet events (9.84 

and 8.97 months respectively). 

Finally, linear trends and their statistical significance are computed to identify 

variations on the behaviour of wet and dry events (Table 5-15). The maximum severity 

reached in a single month, the averaged severity, duration in months and magnitude of 

wet events show an increasing trend, but statistically non-significant at the 95% level. 

However, the same parameters computed in droughts experience a statistically 

significant increase at the 99% level except the magnitude that does it at the 95% level.  

In summary, the time-series associated to the South-western pattern shows changes on 

the behaviour of all main parameters related to droughts, while wet events do not 

present significantly variations. 

 Parameter s Mean Maximum STD Linear trend 

Max. Severity 0.83 2.85 0.68 0.136 SPEI/10 events 

Avg. Severity 0.49 1.71 0.37 0.071 SPEI/10 events 
Duration (months) 9.84 58 11.33 1.163 month/10 events 

D
ry

 e
ve

nt
s 

Magnitude 7.66 51.86 11.98 0.735 SPEI/10 events 

Max. Severity 0.80 2.57 0.72 0.021 SPEI/10 events 

Avg. Severity 0.50 1.82 0.44 0.012 SPEI/10 events 
Duration (months) 8.97 54 9.95 0 month/10 events 

W
et

 e
ve

nt
s 

Magnitude 7.66 55.39 12.78 0.036 SPEI/10 events 
 
Table 5-15: Summary statistics of all dry and wet events detected in the time-series associated to the 

South-western pattern from 1906 to 2010. Maximum severity reached for each event, averaged 
severity, magnitude and duration in months are the parameters analyzed and the mean, maximum 
value, standard deviation, linear trend and its statistical significance (linear trend calculated for 
each 10 events) are the statistics in absolute values. Bold (Italic) values are referred to statistical 
significant trends at 99% level (95%). 

 
Finally, seasonal distribution of the onset and offset of identified droughts and wet 

events are also assessed in the time series associated to the South-western pattern 

together with the season in which dry or wet events reached their maximum severity. 

Figures 5-42 and 5-43 show the seasonal distribution of the percentages related to the 

onset, offset and maximum severity reached in wet (Fig. 5-42) and dry events (Fig. 5-43) 

for the South-western pattern from 1906 to 2010. Note that the coldest colours in the 

plots are referred to the parameters about wet events meanwhile the warmest ones 

represent the parameters related to droughts. 
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Figure 5-42: Seasonal distribution of the percentages referred to the onset, offset and maximum severity 

reached by wet events in the time-series associated to the South-western pattern. Seasons are 
shown in the y axis; where DJF is referred to winter, MAM to spring, JJA to summer and SON 
to autumn. Seasonal percentages for each parameter are also included inside the bars. 
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Figure 5-43: Seasonal distribution of the percentages referred to the onset, offset and maximum severity 

reached by droughts in the time-series associated to the South-western pattern. Seasons are 
shown in the y axis; where DJF is referred to winter, MAM to spring, JJA to summer and SON 
to autumn. Seasonal percentages for each parameter are also included inside the bars. 

 
As shown in figure 5-42, almost the 33% of wet events began in winter, around 30% did 

it in spring and autumn while just the 7.5% started in summer. Moreover, the 42% of 
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wet events reached their maximum severity in winter, the 25.4% did it in spring and 

autumn, but the 7.5% in summer. Finally, the 42% of wet events ended in winter, the 

27% in spring, the 19.4% in autumn and the 12% in summer. As identified, winter is the 

season in which the highest percentage of wet events started, ended and reached the 

maximum severity in the South-western pattern. This fact can be related to the winter 

maxima in the annual cycle of precipitation which characterizes the south-west of the 

Iberian Peninsula. For this reason, winter is more conducive to accumulate onsets, 

offsets and maximum severities reached by wet events. However, the driest and 

warmest season (summer) plays a minor role in terms of the onset, the offset and 

maximum severity reached by wet events in the South-west of the Iberian Peninsula. 

Similar results are found in spring and autumn related to the onset and the maximum 

severity reached by wet events, but the percentage about offsets of wet events is greater 

in spring than in autumn. It means that wet events tend to end basically in winter, but if 

it is not so, probably it will be finished in spring. 

Furthermore, almost the 39% of droughts began in winter, the 27% in spring, the 21% 

in autumn and the 13.4% in summer in the inspection of figure 5-43. Moreover, the 

32.8% of droughts reached their maximum severity in autumn, the 28.4% in winter, the 

24% in spring and the 15% in summer. Finally, the 32.8% of droughts ended in autumn, 

almost the 30% did it in winter and spring while just the 7.5% finished in summer. 

Droughts tend to start in winter or spring (followed by autumn), while they tend to 

reach maximum severity in winter or autumn (followed by spring). Similar results are 

obtained in winter, spring and autumn related to the end of droughts, although the 

percentages are slightly greater in autumn. Finally, as shown in wet events, summer is 

the season that has less weight on the behaviour of droughts in terms of the onset, the 

offset and maximum severity reached in the South-western pattern. 
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5.5.2.2. The North-western pattern 

 
The time series associated to the North-western pattern did not show a significant trend 

(at the 95% level) in dry conditions across time when it was computed in previous 

section. Despite it will also be interesting how the main parameters related to wet and 

dry events are distributed in the time-series from 1906 to 2010. In total, 161 extreme 

events are found in the North-western pattern of which 80 are wet events and 81 are 

droughts. Six wet events reach the extremely wet category (greater or equal to +2 in 

SPEI categories) and occurred in mid-1930s, early-1940s, early-1960s, mid-1960s, late-

1970s and early-2000s. Otherwise, five droughts reach the extremely dry category in 

SPEI values and occurred in mid-1900s, late-1940s, late-1980s, early-2000s and mid-

2000s (Fig. 5-44). The wettest event was identified between 1959 and 1962 when the 

SPEI index reached +3 in a few single months and it was considered severely wet in 

average during 42 consecutive months. In this case, the wettest event (the most severe) 

coincides with the longest wet event for the North-western pattern. On the other hand, 

the driest event was identified between 1989 and 1991 when the maximum severity 

reached -3 in SPEI index and the averaged severity remained severely dry during 26 

consecutive months. In this case, the driest event does not coincide with the longest one, 

because the longest occurred between 2004 and 2007 and lasted 39 months becoming an 

extremely drought. 

The fluctuations in magnitude of wet and dry events found in the time-series associated 

to the North-western pattern for the period 1906-2010 are shown in figure 5-45. The 

highest magnitudes identified in wet events were recorded in 1930s, early-1940s, early-

1960s, mid-1960s and late-1970s, while the highest magnitudes detected in droughts 

were observed in mid-1900s, early-1920s, late-1940s, early-1990s and mid-2000s.  
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Figure 5-44; Dry and wet events detected in the time-series associated to the North-western pattern 
(1906-2010) using 12-month SPEI. Black bars refer to the maximum monthly index value 
(maximum severity) recorded for each event, while grey bars indicate the average index value 
for each event. The duration in months for each event is represented in the x axis: bars’ widths 
are proportional to duration. 
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Figure 5-45: Magnitude of wet and dry events identified in the time-series associated to the North-

western pattern (1906-2010) using 12-month SPEI. Red bars refer to the accumulated SPEI 
severity (magnitude) recorded for each event related to the duration in months represented in 
the x axis: bars’ widths are proportional to duration. 

 
The major wet events and major droughts are shown in table 5-16 taking into account 

the magnitude of each event, the maximum severity reached, the averaged severity and 
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duration in months for the North-western pattern. In this way, the major wet event 

occurred between 1959 and 1962 promoted by the highest severity reached during 42 

consecutive months under wet conditions. In contrast, the major drought was identified 

between 1948 and 1951 reaching the highest magnitude of droughts, but it was not the 

most severe and the longest of the records too. A high severity during 35 consecutive 

months characterizes this drought as the largest in the North-western pattern time-series. 

Other major wet and dry events can also be consulted in table 5-16. 

 

 
Major 
events 

Maximum 
severity 

Averaged 
severity 

Duration in 
months 

Magnitude  

1935-1937 2.04 1.06 24 25.42 
1940-1942 2.14 0.99 25 24.68 
1959-1962 3.02 1.64 42 68.71 
1965-1967 2.39 1.54 17 26.24 

Wet 

1977-1980 2.21 1.27 38 48.45 
1906-1908 2.25 1.00 32 31.92 
1948-1951 2.73 1.66 35 57.94 
1989-1991 3.01 1.78 26 45.74 
1991-1993 1.80 0.90 24 21.52 

Dry 

2004-2007 2.14 1.02 39 39.61 
 
Table 5-16; The most remarkable wet and dry events detected in terms of maximum severity reached for 

each event, averaged severity and magnitude in absolute values. Duration in months is also shown. 
 

The main statistics (Table 5-17) of the parameters related to wet and dry events show the 

severity and duration are slightly higher in dry events, but the magnitude of wet events 

is slightly higher than in droughts. However, linear trends show an increasing in 

severity, duration and magnitude in wet events and droughts simultaneously, but they 

are statistically non-significant at the 95% level in all cases. The results demonstrate 

that the time-series associated to the North-western pattern is not experiencing linear 

changes on the behaviour of wet and dry events, but the fluctuations of drought time-

series is just the result of the temporal variability without clearly trends recorded in the 

main drought parameters. 

On the other hand, seasonal distribution of the onset and offset of identified droughts 

and wet events are also determined in the time series associated to the North-western 

pattern together with the season in which dry or wet events reached their maximum 

severity. Figures 5-46 and 5-47 show the seasonal distribution of the percentages related 

to the onset, offset and maximum severity reached in wet (Fig. 5-46) and dry events (Fig. 

5-47) for the North-western pattern from 1906 to 2010. Note that the coldest colours in 
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the plots are referred to the parameters about wet events meanwhile the warmest ones 

represent the parameters related to droughts. 

 

 Parameters  Mean Maximum STD Linear trend 
Max. Severity 0.79 3.01 0.68 0.019 SPEI/10 events 
Avg. Severity 0.45 1.78 0.37 0.014 SPEI/10 events 

Duration (months) 7.89 39 8.68 0.031 month/10 events 

D
ry

 e
ve

nt
s 

Magnitude 6.12 57.94 10.47 0.241 SPEI/10 events 

Max. Severity 0.74 3.02 0.72 0.032 SPEI/10 events 
Avg. Severity 0.44 1.64 0.40 0.012 SPEI/10 events 

Duration (months) 7.75 42 9.00 0.132 month/10 events 

W
et

 e
ve

nt
s 

Magnitude 6.20 68.71 10.99 0.173 SPEI/10 events 
 
Table 5-17: Summary statistics of all dry and wet events detected in the time-series associated to the 

North-western pattern from 1906 to 2010. Maximum severity reached for each event, averaged 
severity, magnitude and duration in months are the parameters analyzed and the mean, maximum 
value, standard deviation, linear trend and its statistical significance (linear trend calculated for 
each 10 events) are the statistics in absolute values. Bold (Italic) values are referred to statistical 
significant trends at 99% level (95%). 
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Figure 5-46: Seasonal distribution of the percentages referred to the onset, offset and maximum severity 

reached by wet events in the time-series associated to the North-western pattern. Seasons are 
shown in the y axis; where DJF is referred to winter, MAM to spring, JJA to summer and SON 
to autumn. Seasonal percentages for each parameter are also included inside the bars. 
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Figure 5-47: Seasonal distribution of the percentages referred to the onset, offset and maximum severity 

reached by droughts in the time-series associated to the North-western pattern. Seasons are 
shown in the y axis; where DJF is referred to winter, MAM to spring, JJA to summer and SON 
to autumn. Seasonal percentages for each parameter are also included inside the bars. 

 

As shown in figure 5-46, the 31.3% of wet events began in winter and autumn, the 

22.5% in spring and the 15% in summer. Moreover, the 32.5% of wet events reached 

maximum severity in autumn, the 28.8 % in winter, the 22.5% in spring and the 16.3% 

in summer. Finally, the 33.8% of wet events ended in winter, the 31.3% in autumn, the 

27.5% in spring and just the 7.5% in summer. As occurred in the case related to the 

South-western pattern, winter and autumn are the most conducive seasons to 

accumulate the highest percentages related to the onset, the offset and maximum 

severity reached in wet events in the North-western pattern. These results are similar 

results to those previously obtained for the South-west of the Iberian Peninsula taking 

into account that winter and autumn tend to accumulate the highest amount of 

precipitation of the year in the North and North-western area of the Iberian Peninsula. 

More or less precipitation in autumn or winter can determine a change on the behaviour 

of a particular wet event in the region under study. Otherwise, summer has not a 

remarkable role in the North-western pattern too. 

On the other hand, the 33.3% of droughts began in winter, the 32.1% did it in autumn, 

the 27.2% in spring and the 7.4% in summer (Fig. 5-47). Moreover, the 32.1% of 

droughts reached maximum severity in winter, the 25.9% did it in autumn, the 24.7% in 
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spring and the 17.3% in summer. Finally, the 32.1% of droughts ended in winter, the 

30.9% did it in autumn, the 22.2% in spring and the 14.8% in summer. The onset of 

droughts tends to concentrate during winter or autumn (followed by spring) in the North 

and North-west area of the Iberian Peninsula, but the maximum severity of droughts can 

be reached either during winter, autumn or spring. The highest percentages of the offset 

of drought are basically found during winter or autumn and followed by spring. Finally, 

summer shows the lowest percentage of occurrence of onset, the offset and maximum 

severity reached in the North-western pattern. 
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5.5.2.3. The Mediterranean pattern 

 

Finally, the time-series associated to the Mediterranean pattern shows a statistically 

significant increase in dry conditions at the 99% level (duplicating the drying trend 

computed to the South-western pattern), so from these results, it will be necessary to 

find out how the drying trend is affecting on the main parameters in wet and dry events 

for the period 1906-2010. Similar extreme events are found in the Mediterranean pattern 

(164 events) compared to the North-western pattern (161 events) being 82 wet events 

and 82 are droughts. Just four wet events reach the extremely wet category (greater or 

equal to +2 in SPEI categories) and occurred in mid-1930s, early-1950s, late-1950s and 

early-1970s, while seven droughts are considered extremely dry events and they were 

recorded in early-1910s, early-1930s, mid-1960s, and from mid-1990s to mid-2000s. 

Note the presence of driest events is concentrated during the last two decades coinciding 

with the less presence of relevant wet events compared with other decades of the time-

series (Fig. 5-48). The wettest event is clearly identified between 1971 and 1973 when the 

SPEI index reached +3 in the extremely wet category and it prolonged during 31 

consecutive months reaching the severely wet category in average. But the longest wet 

event occurred between 1974 and 1978 (53 consecutive months under wet conditions), 

although it was not considered an extremely wet event, but a severely wet event during 

a few months and a moderately wet event in average. 

The longest and driest events are identified between 1994 and 2007 reaching the 

extremely dry category with similar severities and various durations in four times 

almost consecutively. This category was neither achieved in other periods of the 

Mediterranean time-series nor in the other patterns.  

Associated to this fact, the magnitude of wet and dry events across time (Fig. 5-49) shows 

the highest magnitudes of wet events in mid-1900s, late-1910s and early-1920s, mid-

1930s and 1970s and the highest magnitudes of droughts from 1994 to 2007, obviously 

coinciding with the driest events across the different patterns. 
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Figure 5-48; Dry and wet events detected in the time-series associated to the Mediterranean pattern 
(1906-2010) using 12-month SPEI. Black bars refer to the maximum monthly index value 
(maximum severity) recorded for each event, while grey bars indicate the average index value 
for each event. The duration in months for each event is represented in the x axis: bars’ widths 
are proportional to duration. 
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Figure 5-49: Magnitude of wet and dry events identified in the time-series associated to the 

Mediterranean pattern (1906-2010) using 12-month SPEI. Red bars refer to the accumulated 
SPEI severity (magnitude) recorded for each event related to the duration in months 
represented in the x axis: bars’ widths are proportional to duration. 
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Table 5-18 shows the major droughts and wet events of the time-series associated to the 

Mediterranean pattern together with the maximum severity reached, the averaged 

severity, duration in months and the magnitude of each one. The major wet event 

occurred between 1971 and 1973 reaching the maximum magnitude accumulated during 

31 consecutive months, but the major drought was found between 1997 and 2002 

reaching the maximum severity of the SPEI series, maximum magnitude and maximum 

duration (55 consecutive months). 

 

 
Major 
events 

Maximum 
severity 

Averaged 
severity 

Duration in 
months 

Magnitude  

1906-1909 1.98 1.10 47 51.73 
1917-1920 1.62 0.79 41 32.27 
1932-1934 2.16 1.21 29 34.95 
1971-1973 3.02 1.86 31 57.52 

Wet 

1974-1978 1.74 0.90 53 47.70 
1911-1913 2.36 1.14 18 20.49 
1994-1996 2.69 1.58 35 55.47 
1997-2002 2.81 1.62 55 89.27 
2003-2004 2.41 1.40 15 20.94 

Dry 

2005-2007 2.71 1.48 31 45.86 
 
Table 5-18: The most remarkable wet and dry events detected in terms of maximum severity reached for 

each event, averaged severity and magnitude in absolute values. Duration in months is also shown. 
 

 Parameters  Mean Maximum STD Linear trend 

Max. Severity 0.75 2.81 0.72 0.020 SPEI/10 events 

Avg. Severity 0.46 1.62 0.39 0.011 SPEI/10 events 

Duration (months) 7.34 55 9.26 0.633 month/10 events 

D
ry

 e
ve

nt
s 

Magnitude 6.14 89.27 13.13 1.202 SPEI/10 events 

Max. Severity 0.68 3.02 0.66 -0.010 SPEI/10 events 

Avg. Severity 0.41 1.86 0.37 -0.003 SPEI/10 events 

Duration (months) 8.05 53 10.35 -0.752 month/10 events 

W
et

 e
ve

nt
s 

Magnitude 6.14 57.52 11.59 -0.700 SPEI/10 events 
 
Table 5-19: Summary statistics of all dry and wet events detected in the time-series associated to the 

Mediterranean pattern from 1906 to 2010. Maximum severity reached for each event, averaged 
severity, magnitude and duration in months are the parameters analyzed and the mean, maximum 
value, standard deviation, linear trend and its statistical significance (linear trend calculated for 
each 10 events) are the statistics in absolute values. Bold (Italic) values are referred to statistical 
significant trends at the 99% level (95%). 

 
The statistics of the main parameters (Table 5-19) show the mean severity is slightly 

higher in droughts than in wet events, the mean magnitude is the same for both and the 

duration of wet events is slightly higher than in droughts. Despite the remarkable and 

significant linear trend computed for the Mediterranean time-series, the recent linear 

trends re-computed for the main parameters of wet and dry events show a non-
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significant increase of severity and duration of droughts (95% level), but a statistically 

significant increase of magnitude at the 95% level. It means that the magnitude of 

droughts is increasing significantly +1 accumulated SPEI value every 8 droughts in the 

Mediterranean time-series. Otherwise, the evolution of main parameters of wet events 

experiences a non-significant decrease at the 95% significance level. 

Finally, seasonal distribution of the onset and offset of identified droughts and wet 

events are also detected in the time series associated to the Mediterranean pattern 

together with the season in which dry or wet events reached their maximum severity. 

Figures 5-50 and 5-51 show the seasonal distribution of the percentages related to the 

onset, offset and maximum severity reached in wet (Fig. 5-50) and dry events (Fig. 5-51) 

for the Mediterranean pattern from 1906 to 2010. Note that the coldest colours in the 

plots are referred to the parameters about wet events meanwhile the warmest ones 

represent the parameters related to droughts. 
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Figure 5-50: Seasonal distribution of the percentages referred to the onset, offset and maximum severity 

reached by wet events in the time-series associated to the Mediterranean pattern. Seasons are 
shown in the y axis; where DJF is referred to winter, MAM to spring, JJA to summer and SON 
to autumn. Seasonal percentages for each parameter are also included inside the bars. 
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Figure 5-51: Seasonal distribution of the percentages referred to the onset, offset and maximum severity 

reached by droughts in the time-series associated to the Mediterranean pattern. Seasons are 
shown in the y axis; where DJF is referred to winter, MAM to spring, JJA to summer and SON 
to autumn. Seasonal percentages for each parameter are also included inside the bars. 

 
As shown in figure 5-50, the 35% of wet events began in autumn, the 22.5% did it in 

summer and spring and the rest of 20% in winter. Moreover, the 28.8% of wet events 

reached maximum severity in autumn, the 26.3% did it in summer, the 23.8% in winter 

and the rest of 21.3% in spring. Finally, the 35% of wet events ended in autumn, the 

27.5% did it in spring, the 21.3% in summer and the 16.3% in winter. The highest 

percentages related to the onset, the offset and maximum severity reached by wet events 

are exclusively concentrated during autumn in the Mediterranean region. Similar results 

are obtained during summer or spring meanwhile the season in which wet events 

present lower percentages is winter.  

Figure 5-51 shows the 34.1% of droughts started in autumn, the 28% did it in spring, the 

20.7 in summer and the rest of 17.1% in winter. Moreover, the 29.3% of droughts 

reached maximum severity in autumn, the 26.8% did it in spring, the 24.4% in summer 

and the 19.5% in winter. Finally, the 32.9% of droughts ended in autumn, the 25.6% did 

it in spring, and the 20.7% during summer or winter. Similar results are obtained from 

wet events and droughts in the Mediterranean region highlighting that the season which 

has the most important role related to the parameters analyzed is unquestionably 

autumn. However, winter is the season in which the beginning and ending of droughts 

and wet events is less prominent in the Mediterranean region.  
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5.5.3. Changes in severity, magnitude and duration for different periods 

 

This section shows the changes identified in terms of severity, magnitude and duration 

of droughts and wet events for the whole Iberian Peninsula and also for the spatial-

temporal patterns found at annual time-scale. The common periods 1921-1950, 1951-

1980 and 1981-2010 are used to find out changes in drought parameters. Tables 5-20, 5-

21 and 5-22 represent the values of averaged severity, averaged magnitude and 

averaged duration of droughts and wet events respectively for each time-period and for 

each region or pattern. All regions show higher rates of severity, magnitude and 

duration of wet events for the period 1951-1980 than in the other two time-periods 

analyzed. This is consistent knowing that the decades of 1960s and 1970s were 

abnormally wet according to the results described before. Otherwise, the severity, 

magnitude and duration of wet events have represented similar characteristics for all 

regions between the periods 1921-1950 and 1981-2010 without showing a clear increase 

or decrease of these parameters. This is in good agreement with the non-significant 

trends computed in section 5.5 for the same parameters referred to wet events for the 

period 1906-2010. 

Figures 5-52, 5-53 and 5-54 show the averaged severity, magnitude and duration of 

droughts for the whole Iberian Peninsula and also for each spatial-temporal pattern 

using the three 30-year periods. 

 

 Periods I P SWP NWP MedP 

1921-1950 0.23 0.47 0.40 0.34 

1951-1980 0.35 0.56 0.57 0.59 

W
et

 e
ve

nt
s 

1981-2010 0.26 0.55 0.39 0.33 

1921-1950 0.29 0.42 0.41 0.40 

1951-1980 0.30 0.59 0.40 0.44 

D
ro

ug
ht

s 

1981-2010 0.49 0.70 0.51 0.55 
 
Table 5-20: Averaged severity (in SPEI values) of droughts and wet events for the whole Iberian 

Peninsula (IP), for the South-western pattern (SWP), for the North-western pattern (NWP) and for 
the Mediterranean pattern (MedP) using the periods 1921-1950, 1951-1980 and 1981-2010. 
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 Periods IP  SWP NWP MedP 

1921-1950 3.06 5.22 5.21 4.00 

1951-1980 7.58 12.79 11.00 10.86 

W
et

 e
ve

nt
s 

1981-2010 2.19 7.34 3.97 2.14 

1921-1950 3.76 7.06 5.70 3.91 

1951-1980 2.50 8.39 4.33 4.74 

D
ro

ug
ht

s 

1981-2010 9.77 13.43 7.24 10.89 
 
Table 5-21: Averaged magnitude (accumulated severity in SPEI values) of droughts and wet events for 

the whole Iberian Peninsula (IP), for the South-western pattern (SWP), for the North-western 
pattern (NWP) and for the Mediterranean pattern (MedP) using the periods 1921-1950, 1951-1980 
and 1981-2010. 

 

 Periods I P SWP NWP MedP 

1921-1950 6.3 7.6 7.4 6.5 

1951-1980 10.5 14.4 11.2 11.2 

W
et

 e
ve

nt
s 

1981-2010 5.4 6.8 5.9 4.7 

1921-1950 7.6 7.6 7.0 6.1 

1951-1980 5.8 12.2 6.8 7.2 

D
ro

ug
ht

s 

1981-2010 13.2 15.1 8.4 9.8 
 

Table 5-22: Averaged duration (in months) of droughts and wet events for the whole Iberian Peninsula 
(IP), for the South-western pattern (SWP), for the North-western pattern (NWP) and for the 
Mediterranean pattern (MedP) using the periods 1921-1950, 1951-1980 and 1981-2010. 

 

The averaged severity of droughts has experienced a clear increase in all regions for the 

period 1981-2010 relative to other periods. The South-western area already had a 

considerably increase in drought severity for the period 1951-1980 relative to 1921-

1950 while the other regions have shown similar severity of droughts among both 

periods, although the Mediterranean region experienced a slight increase. 

The averaged magnitude of droughts have had different behaviour than severity 

however they have coincided showing the highest rates of average magnitude of 

droughts for the period 1981-2010. This parameter has decreased in the whole Iberian 

Peninsula and in the North-western area in 1951-1980 relative to 1921-1950. In 

opposite, the South-western Iberia and the Mediterranean region have had an increase of 

magnitude for the period 1951-1980 that was more prominent during 1981-2010. 
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Figure 5-52: Averaged drought severity (in SPEI values) for the whole Iberian Peninsula (IP), for the 

South-western pattern (SWP), for the North-western pattern (NWP) and for the Mediterranean 
pattern (MedP) using the periods 1921-1950, 1951-1980 and 1981-2010. 
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Figure 5-53: Averaged drought magnitude ( accumulated severity in SPEI values) for the whole Iberian 

Peninsula (IP), for the South-western pattern (SWP), for the North-western pattern (NWP) and 
for the Mediterranean pattern (MedP) using the periods 1921-1950, 1951-1980 and 1981-
2010. 
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Figure 5-54: Averaged drought duration (in months) for the whole Iberian Peninsula (IP), for the South-

western pattern (SWP), for the North-western pattern (NWP) and for the Mediterranean 
pattern (MedP) using the periods 1921-1950, 1951-1980 and 1981-2010. 

 

The averaged duration of droughts has shown similar behaviour rather than magnitude 

with a remarkable increase in the South-western area in 1951-1980 that continued 

during the last three decades of the time-series. In fact, droughts lasted almost twice in 

average for 1981-2010 relative to 1921-1950. Moreover, figure 6-50 shows that the 

duration of droughts for the period 1981-2010 lasted more than twice relative to 1951-

1980 for the whole Iberian Peninsula. The duration also increased in the North-western 

area and in the Mediterranean region, but with lower rates of change. 

In summary, the drought severity, magnitude and duration have experienced a 

remarkable increase in the entire Iberian Peninsula but especially in the south-western 

area for the period 1981-2010 relative to 1951-1980 while the same parameters for wet 

events have not experienced significantly changes. 
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5.5.4. Summary 

 

Severity, magnitude and duration of droughts and wet events are analyzed for the whole 

Iberian Peninsula and also for the spatial-temporal patterns found at annual time-scale 

for the period 1906-2010 in this section. Moreover, other interesting parameters are also 

studied, such as the seasonal distribution of the onset, offset and the period of the 

maximum severity reached by dry or wet events. 

From the results, we can conclude that the severity, magnitude and duration of droughts 

are having a remarkable increase over the entire Iberian Peninsula and also in the south-

western region while only drought magnitude is changing significantly in the 

Mediterranean region mainly related with the major droughts occurred in the last 

decades. The North-western Iberia is the exception of the drying trend found in most of 

the studied area, since the behaviour of drought parameters is not changing across time. 

The same parameters computed for wet events have not shown significantly changes 

over the Iberian Peninsula along the 20th century and the first decade of the 21st century. 

From the joint analysis of severity-duration and magnitude-duration of droughts, we can 

affirm that the accumulative character of droughts can be identified by noting that when 

the duration of a given drought event increases so does its severity and, consequently, 

its drought magnitude too.  

The onset, offset and maximum severity of droughts and wet events are mostly 

produced in winter, autumn and spring while summer shows a much lower number of 

starts/ends. The same results are found related to the South-western pattern and the 

North-western pattern while the equinoccial seasons have a major role in the 

Mediterranean pattern in detriment of winter and summer to produce an onset, offset 

and maximum severity reached in dry or wet events indistintely. 

Finally, after the comparisons between the averaged drought severity, magnitude and 

duration for the common periods 1921-1950, 1951-1980 and 1981-2010, we can 

conclude that drought parameters mentioned above have experienced a clear increasing 

for the entire Iberian Peninsula, but especially in the south-western area, for the period 

1981-2010 relative to 1951-1980, while the same parameters analyzed for wet events 

have not been affected significantly according to the established 30-year periods. 
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Chapter 6 

 

SUMMARY  

 

 

After the exposition of our results, this chapter will discuss them. At the end of the 

Chapter, final conclusions will be drafted.  

 

6.1 Discussion  

 

This study provides a comprehensive analysis about drought variability and trends over 

the Iberian Peninsula across the 20th century and the first decade of the 21st century. The 

Sc-PDSI, 12-month SPI and 12-month SPEI are computed in a monthly basis using a 

high quality dataset to assess the spatial-temporal evolution of hydrological droughts 

and wet events at annual and seasonal time-scales, taking into account the severity, 

magnitude and duration of these extreme events. From the results, a drying trend is 

detected for most of the Iberian Peninsula along the 20th century except in the western 

and in the north-western area, where a wetting trend is identified. 

For this study, the compilation and use of the Monthly Iberian Temperature and 

Precipitation Series (MITPS) ensures consistency and reliability on the identified 

drought conditions over the area of interest. A dataset of 24 long temperature and 

precipitation time series regularly spread over the Iberian Peninsula and extending from 

the mid-nineteenth century to the present is used. Monthly means derived from the 

Spanish Daily Adjusted Temperature/Precipitation Series (SDATS, SDAPS Brunet et al. 

2006, 2007) and 2 Portuguese time series obtained from Climatology and Climate Change 

Research Group of the Instituto Dom Luiz (Lisbon University) are required.  

The use of a limited number of observatories could produce some uncertainties in terms 

of data representativeness for the whole region. However, this study is focused in a 

regional perspective since drought is considered as a regional phenomenon because the 

main causes that can produce it also affect a regional scale (Hayes et al., 2011). Prolonged 

droughts occur when large-scale anomalies in atmospheric circulation patterns persist 

for months or seasons (or longer) extending the persistence of high pressure beyond 
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their climatological normals. This is most prominent when we are referred to 

hydrological droughts because the fluctuations of this kind of drought are highly 

dependent on regional climate patterns among other anthropogenic causes (Lorenzo-

Lacruz et al., 2012). Some studies of drought variability used a few observatories to detect 

drought conditions across wide regions highlighting the longevity and the quality of the 

time-series prior to the density of the network. For example, Szinell et al., (1999) 

analyzed drought trends in Hungary using 15 long-term stations spread over the 

country; Briffa et al., (2009) detected dry and wet summers in Europe using 22 long-

term series to explain the evidence of increasing drought; Laux et al., (2009) used 29 

observatories to demonstrate the precipitation variability in Volta Basin (West Africa); 

and Potop (2011) assessed drought variability in the Czech Republic using 15 

meteorological stations. Moreover, it is crucial to have time-series as long as possible 

since this study is focused on drought evolution across time. The temporal character of 

droughts requires long-term series to quantify reliable observed trends. For example, 

van der Schrier et al., (2011) computed global drought trends for the period 1901-2006, 

while Sousa et al., (2011) did it across the Mediterranean region for the period 1901-

2000. Furthermore, the difficulty of having a great number of long-term and high 

quality precipitation and temperature series must be considered. A quality controlled 

and homogenized dataset can provide robust climate results temporally and spatially 

comparables among other regions. For this reason, projects focused on data rescue, 

quality control and time-series homogenisation are crucial to ensure high-quality results 

on climate analysis. 

The selected dataset fulfils the main requirements to be potentially used for drought 

analysis over the region under study; it is a high quality dataset, long-term records of 

temperature and precipitation are provided to get reliable trends, and a great spatial 

coverage over the region is ensured involving the main climate characteristics found in 

the Iberian Peninsula. Unfortunately, most of the long-term climatological time series 

are affected by a number of non-climatic factors that make these data unrepresentative 

of the actual climate variation across time. All of these inhomogeneities can bias a time 

series and lead to misinterpretations of the studied climate. It is important, therefore, to 

remove the inhomogeneities or at least determine the possible error they may cause 

(Aguilar et al., 2003). Thus, Daily maximum, minimum, derived daily mean temperatures 

and daily precipitation of mainland Spain had been adjusted by the Centre for Climate 

Change (C3) for the period 1850-2005 (Brunet et al., 2006). The series were quality 
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controlled (QC) following Aguilar et al., (2002) and were homogenized applying the 

Standard Normal Homogeneity Test (SNHT) (Alexandersson and Moberg, 1997). Moreover, 

SDATS and SDAPS have been updated to 2010 directly from the AEMET servers, after 

applying the pertinent QC procedures. Updated SDATS and SDAPS are pending of re-

homogenisation for the period 2005-2010, although basic data analysis suggest that no 

large homogeneity problems were present in this segment. The two Portuguese series 

(Lisboa and Porto) were subjected to quality control procedure of raw data and tested in 

a monthly scale using SNHT to maintain spatial and temporal consistency with 

SDATS/SDAPS time-series for the whole period. As example, Brázdil et al., (2009) 

used SNHT method to homogenize monthly temperature and precipitation time-series 

before detecting drought variability in the Czech Republic. 

But, time-series of observed data are often affected by missing values due to directly 

non-observation or gaps produced by removed outliers during the QC procedure among 

others. In this study was crucial to fill these gaps to ensure temporal continuity in time-

series avoiding drought indices interruption. Thus, punctual monthly missing values 

were completed using multiple linear regressions with respective reference series. 

Vicente-Serrano et al., (2005) and (2006) applied this method to complete missing 

values in 51 Iberian precipitation series from 1910 to 2000 in order to provide 

continuity in time-series before computing SPI to detect drought conditions over the 

Iberian Peninsula. Unfortunately, Pamplona and San Sebastián observatories could not 

be included in our study due to excessive missing data found in both time-series. The 

results confirm that the low percentage of monthly missing data filled on the original 

dataset has an inappreciable impact on temperature and precipitation time-series in the 

Iberian Peninsula.  

However, the analysis of the time-series using various lengths of records could affect 

negatively the reliability of the results taking into account the regional character of this 

work. Therefore, the comparisons between different regions under study could be 

erroneous. Furthermore, the needed to have simultaneous temperature and precipitation 

records to compute drought indices for each location is crucial to obtain drought 

conditions. For all these reasons, it is needed to fix the common period 1906-2010 in all 

dataset to solve this issue according to the availability and continuity of the records.  

The creation of MITPS dataset ensures maximum continuity and reliability in monthly 

temperature and precipitation for the 22 time-series across Iberian Peninsula using the 
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common period 1906-2010. Thus, the simultaneous availability of monthly long-term 

temperature and precipitation data guarantees the continuity of drought severity values 

across time, which affects positively the final quality and reliability of the results related 

to drought detection in the Iberian Peninsula. 

The variability and trends of temperature and precipitation data are computed for the 

whole Iberian Peninsula (1906-2010) at annual and seasonal time-scale. This climate 

analysis provides crucial information related to the behaviour of the main climate 

variables under climate change conditions. From the results, annual temperature 

anomalies computed for the whole Iberian Peninsula (1906-2010) shows a clear 

increase of 0.13ºC/decade while seasonal temperature anomalies also increase 

significantly. This is consistent with the Spanish temperature increase described by 

Brunet et al., 2006 for the period 1850-2003. Other regional studies show a qualitative 

concordance with this one (e.g. for the interior of Valencia, Miró et al., 2006; Castilla-

León, del Río et al., 2005; Andalucía, Castro-Díez et al., 2007 and Catalonia, Martínez et al., 

2009). 

Otherwise, annual precipitation anomalies are dominated by a high inter-annual 

variability accompanied by a slight non-significant increase. Seasonal precipitation 

anomalies show a slight increasing trend in winter and autumn precipitation while a 

slight decreasing trend is detected in spring and summer precipitation. These findings 

are consistent with Trenberth et al., (2007), who did not detect a generalized and 

significant decrease of precipitation in the Mediterranean basin including the Iberian 

Peninsula. Other studies which dealt the evolution of the precipitation during the 20th 

century or before concluded that annual precipitation do not show appreciable changes 

in a secular time scale (Lana and Burgueño, 2000; Llasat and Quintas, 2004; Saladié, 2004; Barrera-

Escoda, 2008; CLIVAR, 2010). Being consistent with the observed trends, climate models 

project a large increase in temperatures and also a decrease in precipitation of roughly 

20% in southern Europe at the end of 21st century (Salomon et al., 2007), including the 

whole Iberian Peninsula (Sanchez, 2009; Gómez-Navarro et al., 2010; Rodríguez-Puebla et al., 

2010; Alvarez et al., 2011; Jerez et al., 2012a and 2012c). 

The most widely used drought indices (the Sc-PDSI (Wells et al., 2004), the SPI (McKee et 

al., 1993) and the SPEI (Vicente-Serrano et al., 2010)) are computed to identify hydrological 

droughts across Iberian Peninsula using the common period 1906-2010. A wide 

temporal window of analysis in SPI and SPEI (12 months) is preferred for this study, 

since it is more suited to identify hydrological than agricultural droughts in the Iberian 
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Peninsula (Hayes et al., 1999 and Vicente-Serrano, 2006). The Sc-PDSI is used instead the 

original PDSI because it is more appropriate for geographical comparison of climate in 

diverse regions (van der Schrier et al., 2006a). 

The estimation of Potential Evapotranspiration (PET) is required to compute the Sc-

PDSI and the SPEI drought indices. There are various methods to compute potential 

evapotranspiration (Thornthwaite, Penman-Monteith, Hargreaves,…) and multiple 

algorithms and variables can be implied depending on the selected method. The use of 

one or another PET estimation method strongly depends on the long-term available data 

to compute them. Generally, PET estimation methods that require greater amount of 

data to compute PET are physically more realistic than others which less amount of data 

are needed (Dai, 2012 and Sheffield et al., 2012). For this study, the unique method to be 

applied to estimate PET is Thornthwaite (Thornthwaite, 1948) since there are not available 

long-term series of observed wind speed, relative humidity, solar radiation and cloud 

cover for the period under study (1906-2010). Therefore, other more robust methods 

like Penman-Monteith unfortunately cannot be applied in this case. As is shown, 

Thornthwaite’s method was formulated in 1948 and it is based on the assumption that 

radiation is the main driver of temperature variability. Therefore, the Thornthwaite’s 

method estimates the radiation based on the temperature. This assumption could be 

valid under the climate conditions in 1948, but under the current global warming 

conditions, the temperature increase is not driven by increased radiation but it is caused 

by increased greenhouse gasses emissions (Solomon et al., 2007; Field et al., 2012). In this 

way, the Thornthwaite’s approach is currently overestimating PET since the method is 

overestimating solar radiation, which is not increasing in parallel to the temperature 

increase. Thus, the PET estimation method chosen here could introduce possible 

limitations on drought detection, especially when computing observed drought trends, 

which could be affected in some way by the method applied. 

The results related to drought time-series show that the three drought indices represent 

similar variability of wet and dry conditions for the whole Iberian Peninsula across 

time. The decades of 1940 and 1950 were abnormally dry in average while the decades 

of 1910, 1930, 1960 and 1970 were abnormally wet in all drought indices. A high 

variability of wet and dry conditions were found in 1920s while mostly dry conditions 

were detected in 1980s, 1990s and 2000s, especially using the Sc-PDSI and the 12-

month SPEI due to the impact of the evapotranspiration rate on the drought series under 
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global warming. Furthermore, all drought indices identified clearly the most important 

droughts in 1945, 1995 and 2005, which were thoroughly validated using documental 

sources. Similar results were found for the entire Mediterranean basin (Xoplaki et al., 2004; 

Trigo et al., 2006; and Sousa et al., 2011), whom detected severe droughts in 1920s, 1940s and 

mostly dry conditions since 1980s while Vicente-Serrano et al., (2006) found similar 

drought variability using SPI in the Iberian Peninsula. It means that 12-month SPEI and 

12-month SPI are able to provide similar results rather than Sc-PDSI with less data 

requirements (just monthly precipitation (in the case of 12-month SPI) and monthly 

precipitation and temperature (using 12-month SPEI)). Otherwise, Sc-PDSI 

computation requires monthly precipitation, temperature and Available Water Content 

of the soil. Available information on soil water content is not easy to find in most 

regions around the world and it is often a local and fixed value normally associated with 

current soil conditions, knowing that soil properties may change across time (Vicente-

Serrano et al., 2011). It could lead the use of inaccurate values when applying Sc-PDSI in 

the Iberian Peninsula. 

Nevertheless, 12-month SPEI and 12-month SPI show better calibration in terms of the 

frequency distribution of values into drought categories than the Sc-PDSI over the 

Iberian Peninsula. Despite Wells et al., (2004) solved most of the calibration problems 

from the original PDSI, making the index more suitable for drought quantification and 

monitoring (Sc-PDSI), some calibration problems appear in the computation of Sc-

PDSI over the Iberian Peninsula. The 12-month SPEI maintain robust units with 

statistical consistency obtained from cumulative antecedent climate conditions and it 

provides more drought reliability than Sc-PDSI in the region under study. These 

differences in drought index calibration could be explained knowing that SPI and SPEI 

are purely statistical, and their purpose is not related to reproduce the water balance of 

any particular system as Sc-PDSI (Vicente-Serrano et al., 2011). 

Otherwise, all drought indices are able to identify similar surface area affected by dry 

conditions in the Iberian Peninsula across time. Moreover, the driest periods detected 

before in terms of severity are found again as the driest periods in terms of affected area 

too. All drought indices coincide to attribute the driest conditions (in terms of severity 

and area affected by drought) to years 1945, 1995 and 2005 over the Iberian Peninsula 

along the 20th century. These findings are in good agreement with Vicente-Serrano et 

al., (2006), whom found a high inverse correlation between severity and area affected 

by drought over the Iberian Peninsula. 

UNIVERSITAT ROVIRA I VIRGILI 
DROUGHT VARIABILITY AND CHANGE ACROSS THE IBERIAN PENINSULA 
Joan Ramon Coll Benages 
DL: T 955-2014



Drought variability and change across the Iberian Peninsula 
 
 

 224 

Despite the similar results found in terms of drought variability and area affected by 

drought among all drought indices, some differences in trends are identified in both; 

individual and regional time-series. In general, all drought indices identify a drying 

trend in the Pyrenees, Ebro basin, central Iberia and in the south, south-western and 

south-eastern area while a wetting trend is focused in the western and north-western of 

the Iberian Peninsula. These results are consistent with Sousa et al., (2011) using the 

Sc-PDSI, Vicente-Serrano et al., (2011), using SPI and SPEI indices, and Lorenzo-

Lacruz et al., (2012) using stream-flow data, whom detected that droughts increased 

over most of the Iberian Peninsula with the exception of the north-west area of the 

region for the 20th century. Sc-PDSI and 12-month-SPEI show a non-statistically 

significant drying trend while a non-significant wetting trend is obtained using 12-

month SPI (all at the 95% level) for the whole Iberian Peninsula. The results obtained 

are in good agreement with other drying trends found using the Sc-PDSI across 

southern-Europe (Dai, 2011 and 2012; Sheffield et al., 2012), (Brázdil et al., 2008 (for the Czech 

Republic), Mavromatis 2007 (for Greece), Briffa et al., 2009 (for Europe in summer), and Sousa et al., 

2011 (for the Mediterranean basin). In fact, an increase of drought conditions can be expected 

in the Mediterranean basin (Blekinsop et al., 2007; Planton et al., 2008; Mariotti et al., 2008; Mata, 

2008; Dai, 2011 and 2012; Field et al., 2012) and also over the Iberian Peninsula under climate 

change conditions (Beniston et al., 2007; Rodríguez-Puebla et al., 2010; Alvarez et al., 2011; Sanchez 

et al., 2012). 

The annual trends are larger in drought indices which include temperature in their 

computation (the Sc-PDSI and 12-month SPEI) than in those where the only driver is 

precipitation (such as 12-month SPI). The Sc-PDSI and SPEI indices represent better 

drought conditions under global warming than other indices since evapotranspiration 

process is included in their algorithms (Vicente-Serrano et al., 2010 and 2011, Dai 2004 and 

2011, Van der Schrier et al., 2006 and 2011). There is general agreement on the importance of 

precipitation in explaining drought variability, but the observed and predicted global 

warming by IPCC AR4 (Solomon et al., 2007) have important implications for 

evapotranspiration processes, increasing the influence of this parameter on drought 

severity (Vicente-Serrano et al., 2010). Nevertheless, the use of Thornthwaite PET 

estimation method could have exacerbated the drying trends found in the Sc-PDSI and 

12-month SPEI across Iberian Peninsula since this parameterization tends to 

overestimate PET. Multiple studies tested the effect of the PET on the Sc-PDSI (van der 

Schrier et al., 2011; Dai, 2010, 2011 and 2012) showing similar results in global drought trends 
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using different PET estimation methods, however, a current study showed that 

Thornthwaite PET estimation produces higher rates of PET than other parameterizations 

as Penman-Monteith around the world (Sheffield et al., 2012). This study reported that the 

increase in global drought was overestimated because the PDSI used a simplified model 

of PET (referred to Thornthwaite method) causing large uncertainties on drought 

conditions under global warming. More realistic estimations of PET (referred to 

Penman-Monteith method) suggested a little change in drought over the past 60 years. 

For this reason it is interesting to assess the role of temperature in drought indices 

(between SPI and SPEI) and the impact of global warming on drought trends (in the 

case of Sc-PDSI and SPEI) over the Iberian Peninsula. 

The results confirm that the Sc-PDSI and the 12-month SPEI-all forcing show higher 

severity of droughts compared with the Sc-PDSI and the 12-month SPEI-without 

temperature changes due to the increase of PET caused by global warming. Moreover, 

12-month SPEI-all forcing shows higher severity of droughts compared with the 12-

month SPI due to the role of temperature, which enhances the role of PET leading an 

increase of drought severity under global warming. As mentioned before, a non-

significant drying trend (at the 95% level) is found for the whole Iberian Peninsula 

(1906-2010) using the Sc-PDSI-all forcing and 12-month SPEI-all forcing, but these 

trends become slightly wetter when using drought indices without temperature changes 

(Sc-PDSI and 12-month SPEI) or without temperature in its algorithm (12-month SPI). 

All wetting trends are statistically non-significant at the 95% level. The results suggest 

that precipitation variability is the main driver of droughts, but temperature (and derived 

PET) has an important role (in terms of drought severity) to explain drought trends over 

the whole Iberian Peninsula. Moreover, the increase in PET during last decades 

reinforces the drying trend found under climate change conditions. The high probability 

that PET is overestimated in this study caused by the use of Thornthwaite method 

instead other more realistic PET estimation methods must be considered. Thus, the 

drought trends computed for Sc-PDSI and 12-month SPEI could also be affected by 

PET overestimation. Van der Schrier et al., (2011) and Dai, (2011) assessed the role of 

PET in the global Sc-PDSI finding slight differences in drought trends when comparing 

both PET estimation methods. This statement is not in agreement with those studies 

probably caused by the geographical location of the Iberian Peninsula in a subtropical 

climate where the evapotranspiration rate has a major role than in other regions. From 

the results, it is crucial to use an accurate PET estimation method in drought indices 
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when computing them in the Iberian Peninsula due to the importance of PET on drought 

trends in this region. Nevertheless, the indices and PET estimations used to monitor 

droughts are still affected by large uncertainties leaded by the complexity of drought 

phenomenon and by the multiple factors and feedbacks implied in it (Sheffield et al., 2012). 

Therefore, short-term temperature anomalies are likely to be a response to drought 

rather than a factor in forcing drought. 

From the main results obtained using different drought indices, we can conclude that the 

12-month SPEI is the most suited drought index to identify wet and dry conditions over 

the Iberian Peninsula along the 20th century. This drought index is able to show similar 

drought conditions (both in terms of severity and area affected by drought) rather than 

other more complex drought index (such as Sc-PDSI) has fewer data requirements and 

includes the role of evapotranspiration in its algorithm (in detriment of SPI). Moreover, 

12-month SPEI shows statistical consistency and robustness thanks to better calibration 

than the other indices allowing the detection of a drying trend in most of the Iberian 

Peninsula also observed by other studies already mentioned. Thus, the analysis of the 

spatial-temporal patterns of droughts and the univariate performing of severity, duration 

and magnitude of droughts and wet events are carried out using only the 12-month 

SPEI. 

But, before that, drought conditions are inspected since the mid-nineteenth century 

using 12-month SPEI for only a few observatories which data are available for this 

period (Cadiz, Madrid, Lisboa, Murcia and Huesca). The results show wet conditions in 

mid-1850s, mid-1860s, all the 1880s and in most of the 1910s while dry conditions are 

focused in early-1870s, late-1890s and in most of the 1900s. Briffa et al., (2009) 

analyzed 22 long-term time-series for Europe using the Sc-PDSI to detect drier or 

wetter summers across time. Unfortunately, the results from that study cannot be 

compared to the time-series mentioned above because there is not any station located in 

the Iberian Peninsula, only the summer drought variability detected in Marseille is 

similar to the Iberian drought variability found in late-19th century. 

In this study, Principal Component Analysis (PCA) is applied at annual and seasonal 

time-scale to the 12-month SPEI time-series for the common period 1906-2010 in order 

to detect spatial-temporal variations of droughts across the 20th century. The 

regionalization shows three different spatial-temporal drought behaviours in the Iberian 

Peninsula called as the South-western pattern, the North-western pattern and the 
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Mediterranean pattern. A clear drying trend is found in the South-western pattern and in 

the Mediterranean pattern while the North-western pattern does not show a significant 

trend in drought conditions. It means that the south and south-west of the Iberian 

Peninsula (South-western pattern) are suffering drier conditions currently than before, 

but the Mediterranean region does it duplicating the drying trend, caused basically by 

the driest last decades observed in this region. Similar behaviour of drought patterns is 

also found at seasonal time-scale. These results are in good agreement with Vicente-

Serrano et al., (2011) whom found that dry conditions did not increase in the north-west 

of the Iberian Peninsula between 1930 and 2006 using SPI and SPEI drought indices. 

Sousa et al., (2011) have also shown that the north-west of the Iberian Peninsula is an 

exception to the predominant trend in the 20th century towards drier conditions using 

PDSI, which were detected for most of the western Mediterranean. In the same way, 

Lorenzo-Lacruz et al., 2012 showed a drying trend over most of the Iberian Peninsula 

analyzing stream-flow data, while a wetting trend was detected in the north-west area 

from the Iberian regionalization (Lorenzo-Lacruz et al., 2013). This contrasts with the 

general trends found in other Iberian regions, in which dry conditions have increased 

(Vicente-Serrano 2006a and Lorenzo-Lacruz et al., 2012). On a regional scale, there is evidence 

of a significant increase in the severity of drought in the Ebro basin (Vicente-Serrano & 

Cuadrat-Prats 2006, Vicente-Serrano & López-Moreno 2006), some areas of the Valencia region 

(Vicente-Serrano et al., 2004) and in the Tagus basin (Lorenzo-Lacruz et al., 2010).  

Otherwise, the characteristics and trends of the main parameters related to dry and wet 

events (severity, duration and magnitude) are analyzed for the whole Iberian Peninsula 

and for the spatial-temporal patterns found at annual time-scale. The accumulative 

character of droughts can be identified by noting that when the duration of the drought 

increases so does the severity drawing a logarithmic distribution. In summary, droughts 

have changed their behaviour in terms of severity, duration and magnitude over the 

whole Iberian Peninsula from 1906 to 2010, while wet events do not present 

significantly variations over the analysed parameters. The time-series associated to the 

South-western pattern shows significant changes on the behaviour of all main 

parameters related to droughts, while wet events do not present significantly variations. 

The results demonstrate that the time-series associated to the North-western pattern is 

not experienced changes on the behaviour of wet and dry events, but the fluctuations of 

drought time-series is only the result of the temporal variability without clearly trends 

observed in the main drought parameters. Finally, the Mediterranean pattern shows a 
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non-significant increase of severity and duration of droughts, but a clear increase of 

drought magnitude. Otherwise, the evolution of main parameters of wet events 

experiences a non-significant decrease. Furthermore, the severity, magnitude and 

duration of droughts have a remarkable increase especially in the entire Iberian 

Peninsula and in the south-western area for the period 1981-2010 relative to 1951-1980 

while the same parameters for wet events do not experience significantly changes. 

These findings are consistent with Lorenzo-Lacruz et al., (2013), whom found a clear 

increase in drought duration and magnitude in the central-eastern Iberian Peninsula for 

the period 1975-2005 relative to 1945-1974 while a decrease of the same drought 

parameters were found in the north-west area of the region using stream-flow data. 

However, a clear decrease in drought duration and magnitude was detected in the north-

west of the Iberian Peninsula for the period 1980-2005 relative to 1930-1955 using SPI 

and SPEI (Vicente-Serrano et al., 2011). 

Finally, winter, autumn and spring are the seasons in which most of droughts and wet 

events began, reached their maximum severity and ended for the whole Iberian 

Peninsula while summer has a low weight related to this kind of parameters. Therefore, 

winter and autumn are the seasons in which most of droughts and wet events began, 

ended and reached the maximum severity in the South-western and North-western 

pattern. Otherwise, the season which has the most important role related to the 

parameters analyzed is unquestionably in autumn. However, winter is the season in 

which the beginning and ending of droughts and wet events is less prominent in the 

Mediterranean region. These less relevant findings are strongly related with the seasonal 

precipitation variability across Iberian Peninsula.  

As mentioned above, a clear increase in drought conditions can be expected in most of 

the Iberian Peninsula along the 21st century according to the future projections since the 

drying trend detected across the 20th century not only in this study. Therefore, the 

availability of water resources for consumption, irrigation and tourism among others 

could be worsening in this area leading unknown socio-economical and environmental 

impacts actually not easy to solve. Nevertheless, the application of effective water 

management strategies, strongly related to water policies, together with a general 

consensus about saving water will be crucial to minimize the impact of the hydrological 

droughts over the Iberian Peninsula across time. 
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6.2. Further work 

 

The robustness of the results obtained about drought variability and trends in the Iberian 

Peninsula along the 20th century could surely get more reliability including more 

observatories in this analysis. Despite the station network selected for this study 

represents the main climate characteristics of the region, an extended station network 

could produce more accurate results especially in terms of spatial drought distribution 

and impact over the region of interest. Nevertheless, the crucial importance of long and 

high quality time-series must be prior to the increase of the network density. 

There are many homogeneity tests that could be applied to the dataset used in this study 

in order to improve the consistency of the main variables related to drought. The field 

related to data treatment is in constant progress in climatology and new robust 

homogeneity software packages were developed during the last years. It will be 

interesting to test them together with the SNHT to ensure that the evolution of climate 

variables is only influenced by the climate variability. This experiment would probably 

provide more reliability on drought results. 

Unfortunately, the uncertainties on results not only depend on the quality of the input 

data, but the drought index computations are still affected by some limitations. It is 

widely known that drought indices are not able to reproduce accurately the actual 

drought conditions of any region since drought is a complex phenomenon in which 

many distinct variables and feedbacks are involved. Thus, the improvements in drought 

indices are highly required to monitor more reliable drought variability especially under 

climate change conditions. 

Moreover, the results related to drought variability and trends carried out in this study 

are strongly influenced by the use of a weak PET estimation method (Thornthwaite). 

The known limitations of this method to compute PET should be considered in future 

works and the results obtained through this method should be compared to other 

drought results computed using more physically realistic PET estimation methods. This 

is a great issue to solve in the case of the Iberian Peninsula, where the 

evapotranspiration rate could have an important role on drought worsening under global 

warming. 

This study could be complemented analyzing various kinds of drought (meteorological 

and agricultural drought) because only the hydrological drought is assessed here. This 
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could be figured out using different time-scales on drought index computation. This 

experiment could provide more information about the behaviour of short-term and mid-

term droughts over the region of interest. Furthermore, once the univariate analysis of 

the main parameters related to drought (severity, duration and magnitude) is carried out 

in this study, it could be interesting to analise all these parameters together to get an 

accurate characterization of droughts. The multi-variate analysis could be computed 

using Copulas model method in order to figure out the return periods for various 

categories of drought taking into account a given magnitude and/or duration using the 

severity-frequency-duration curves. 

Finally, it might be worth to project precipitation, temperature and derived drought 

conditions over the Iberian Peninsula across the 21st century taking into account various 

IPCC climate change scenarios. The temporal evolution of the main variables that 

explain drought could be analyzed using drought indices from different Regional 

Climate Models across the 21st century to give us an approach about drought variability 

and change into the future.
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6.3. Conclusions 

 

The evaluation and analysis of the spatial and temporal variability of hydrological 

droughts are carried out across the Iberian Peninsula along the 20th century and the first 

decade of the 21st century in this study. The Sc-PDSI, 12-month SPI and 12-month 

SPEI are computed in a monthly basis by using a long-term high quality and adjusted 

dataset (MITPS) to assess the evolution of hydrological droughts and wet events in 

terms of severity, magnitude and duration at annual and seasonal time-scales.  

 

Once the results have been thoroughly described and analyzed, the main conclusion of 

this Ph.D. Thesis can be summarized as: 

- A drying trend is found for most of the Iberian Peninsula, especially in the 

south and south-eastern region, but a wetting trend is identified in the 

western and in the north-western area. 

 

But other specific conclusions are also extracted: 

- Annual and seasonal temperature anomalies computed for the whole Iberian 

Peninsula (1906-2010) show a significantly increase while annual precipitation 

anomalies are dominated by a high inter-annual variability accompanied by a 

slight non-significant increase. Seasonal precipitation anomalies show a slight 

increasing trend in winter and autumn precipitation while a slight decreasing 

trend is identified in spring and summer precipitation. 

 

- The three drought indices tested in this study represent similar variability of wet 

and dry conditions for the whole Iberian Peninsula across time. The analysis of 

temporal evolution of droughts confirms that dry conditions dominated in 1920s, 

1940s and in 1950s while wet conditions were present in 1930s, 1960s and in 

1970s. The last three decades of the time-period (1980-2010) were abnormally 

dry mainly due to less precipitation than normal.  

 

- Drought conditions inspected since the mid-nineteenth century show wet 

conditions in mid-1850s, mid-1860s, all the 1880s and in most of the 1910s 
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while dry conditions are focused in early-1870s, late-1890s and in most of the 

1900s. 

 

- The most important droughts occurred in 1945, 1995 and 2005 in terms of 

drought severity and area affected by drought, which were thoroughly validated 

using documental sources.  

 

- All drought indices identify a drying trend in the Pyrenees, Ebro basin, central 

Iberia and in the south and south-eastern area while a wetting trend is focused in 

the western and north-western of the Iberian Peninsula.  

 

- Annual trends are larger in drought indices which temperature is included in 

their computation than in which the main driver of drought variability is only 

precipitation. Nevertheless, the use of Thornthwaite PET estimation method 

must be considered because it could have exacerbated the drying trends found 

across the Iberian Peninsula since this parameterization tends to overestimate 

PET.  

 

- Precipitation variability is the main driver of droughts, but temperature (and 

derived PET) has an important role (in terms of drought severity) to explain 

drought trends over the whole Iberian Peninsula. This fact highlights the 

importance of including evapotranspiration in the evaluation of droughts while, 

at the same time, it warns that the use of unsuitable methods to estimate PET 

could compromise the final results. 

 

- The severity and duration of dry conditions were reinforced during the last three 

decades caused by the increase of the evapotranspiration rate coinciding with the 

maximum increase of temperatures in the Iberian Peninsula in a climate change 

context.  

 

- The 12-month SPEI is the most favoured drought index to identify hydrological 

wet and dry events over the Iberian Peninsula. This drought index is able to 

show similar drought conditions rather than other more complex drought index 
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(as Sc-PDSI) with less data requirements and also including the role of 

evapotranspiration in their algorithm (in detriment of SPI). Moreover, 12-month 

SPEI shows statistical consistency and robustness thanks to better calibration 

than the other indices allowing the identification of a drying trend in most of the 

Iberian Peninsula.  

 

- Three different drought patterns have been found in the Iberian Peninsula. A 

clear drying trend is identified in the south and south-western Iberian Peninsula 

and also in the Mediterranean region while the north-western area does not show 

a significant trend in drought conditions. Similar behaviour of drought patterns 

is also found at seasonal time-scale. 

  

- The accumulative character of droughts can be identified by noting that when 

the duration of the drought increases so does the severity.  

 

- The severity, magnitude and duration of droughts have a remarkable increase 

especially in the entire Iberian Peninsula and in the south-western area for the 

period 1981-2010 relative to 1951-1980 while the same parameters for wet 

events do not experience significantly changes.  

 

- The onset, offset and maximum severity of droughts and wet events are mostly 

produced in winter, autumn and spring while summer has a less role related to 

this kind of parameters for the whole Iberian Peninsula. The same results are 

found related to the south-western Iberia and the north-western area while the 

equinoccial seasons have a major role in the Mediterranean region in detriment 

of winter and summer to produce an onset, offset and maximum severity reached 

in dry or wet events indistintely. 

 

Future projections indicate a clear increase in hydrological drought conditions in most 

of the Iberian Peninsula along the 21st century mainly caused by a decrease of 

precipitation together with an increase of water demand for consumption or human 

activities among others. Thus, water saving and the application of effective water 

management strategies will be crucial to minimize the impact of the hydrological 

droughts over the Iberian Peninsula across time. 
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