
 

 
 
 
 

Biogeography of sponge-associated bacterial 
communities and resilience to  
anthropogenic perturbations 

 
Biogeografía de las comunidades bacterianas asociadas a 

esponjas y su resiliencia frente a perturbaciones 
antropogénicas 

 
Lucía Pita Galán 

 
 
 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – 
SenseObraDerivada  3.0. Espanya de Creative Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento - NoComercial – SinObraDerivada  
3.0.  España de Creative Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0. Spain License.  
 





 

 

 

 

 

 

BIOGEOGRAPHY OF SPONGE-ASSOCIATED BACTERIAL COMMUNITIES 

AND RESILIENCE TO ANTHROPOGENIC PERTURBATIONS 

 

 

 

BIOGEOGRAFÍA DE LAS COMUNIDADES BACTERIANAS ASOCIADAS A 

ESPONJAS Y SU RESILIENCIA FRENTE A PERTURBACIONES 

ANTROPOGÉNICAS 

 

 

 

 

 

 

 

 

 

Lucía Pita Galán 

 

 

Doctoral Thesis 

 2014

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover 

Ircinia felix (Bahamas) and its associated microbial community 

Underwater photography: Courtesy of P.M. Erwin 

Electron micrograph: L. Pita Galán 

Design: L. Pita Galán 

 



 II 

Tesis Doctoral 

 

Facultad de Biología-Departamento de Biología Animal 

Programa de Doctorado: Biodiversidad 

 

BIOGEOGRAPHY OF SPONGE-ASSOCIATED BACTERIAL COMMUNITIES 

AND RESILIENCE TO ANTHROPOGENIC PERTURBATIONS 

 

BIOGEOGRAFÍA DE LAS COMUNIDADES BACTERIANAS ASOCIADAS A 

ESPONJAS Y SU RESILIENCIA FRENTE A PERTURBACIONES 

ANTROPOGÉNICAS 

 

Memoria presentada por 

Lucía Pita Galán 

 

para optar al título de  

Doctora por la Universidad de Barcelona 

 

 

 

Barcelona, Marzo 2014

 

 

 

 

DOCTORANDA 

 

 

 

 

Lucía Pita Galán 

 

 

 

DIRECTORA Y TUTORA 

DE TESIS 

 

 

 

Dra. Susanna López-

Legentil 

Investigadora “Ramón y Cajal” 

Universidad de Barcelona 

DIRECTOR DE TESIS 

 

 

 

 

Dr. Patrick M Erwin 

Assistant Professor 

Center for Marine Science 

UNCW 

  





 

 III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“… Como el comedor de cangrejos,  

que para llevar un poco de carne a la boca 

tiene que hacer un gran montón de cáscaras.” 

- Aristón de Chíos  

(traducción de A. Cunqueiro en “Fábulas y Leyendas de la Mar”) 

 

 



 IV 

 

 



 

 V 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This PhD thesis has been funded by a FI-DGR fellowship to Lucía Pita Galán, 

the Spanish Government project CTM2010-17755, and the Catalan government 

grant 2009SGR-484 for Consolidated Research Groups 

 



 VI 

 



 

 VII 

Agradecimientos 

 

Muchas son las personas que me han apoyado, aconsejado, acompañado y ayudado 

a lo largo de estos años de tesis. Espero que todos sepan lo mucho que han 

significado para mí gracias a esos momentos compartidos y no a las siguientes líneas, 

que siempre se quedarán cortas. 

This thesis has been only possible thanks to Susanna and Patrick. They are not 

only great scientists, always a reference to follow but, above all, the most supportive 

advisors ever. They have always trusted me and if I made a mistake, they helped me to 

fix it. Thanks to you, after three years of hard work I still love what I‟m doing and you 

are still the best supporters in finding my way in this scientific life. And not only in 

Science. I really enjoyed the time we spent together and I already miss you a lot. 

Thank you very much! 

El siguiente en la lista de agradecimientos sólo puede ser Xavier Turon. 

Gracias Xavi por todo el curro y los mails respondidos en tiempo récord, por estar 

siempre ahí,  por todo tu apoyo. Si no llega a ser por ti pues a lo mejor me hubiera 

quedado por el camino… Gracias especialmente por los comienzos, porque, junto con 

Creu, apostasteis por la galleguiña. Gracias también a ti, Creu, por tus ánimos, tu 

alegría, por llevarme de buceo y estar siempre pendiente de mí, aun después de haber 

dejado tu sala de becarios. Los dos me habéis ayudado increíblemente en estos años 

en Barcelona. 

Más gente ha hecho posible el trabajo de esta tesis. Gracias a Emma por 

cedernos muestras, a Álvaro Pujals por sus horas en el laboratorio de Blanes, a la 

gente de los Serveis de Microscopía, Citometría y Genómica de la UB. Gracias a 

Marta Ribes por darnos acceso al sistema de acuarios del ICM y a Max que con tanto 

mimo me ayudó a mantener a las esponjitas en las condiciones que buscábamos. De 

paso me disculpo con la gente del CEAB por el día que Patrick y yo estuvimos 

cortando esponjas y apestaba todo el centro… (todo sea por la ciencia). 

Gracias a todos los miembros (past and current) del IMESA lab! Maricarmen, 

me hubiera encantado que pudieras estar aquí para mi tesis pero al menos si no estás 

es por una buena razón :D Has sido un apoyo increíble a lo largo de toda la tesis y 

siempre serás mi hermanita científica! Gracias en especial a Claudio por tu amistad, a 

Roger por todos esos cafés y viajes entre Blanes y la facultad, a Gema (qué haríamos 

sin ti!) y a Ana (el mejor fichaje para el grupo y no lo digo sólo porque seas una 

ciéntifica de primera categoría).  

Lo mejor de esta tesis en la UB han sido los compañeros de batallas del 

departamento, con los que he compartido cafés, cerves, y “traumas” predoctorales. 



 VIII 

Gracias a Owen, Alex, Fabi y Enric (necesitaría una hoja de agradecimientos para 

cada uno), Eli (ya sabes que eres la caña, no?), Vera, Leti, Paola y Pedro y todos los 

demás Arácnidos que tantas veces me han adoptado en sus comidas y cenas (incluyo 

también a Miquel Angel Arnedo y Carles Ribera aunque no sean doctorandos jeje). 

Gracias Roci, que te echamos de menos desde que nos “abandonaste” para ir a 

Blanes. Gracias también a Juan, no sabes la alegría que trajiste al ala oscura del 

departamento! Y a Blanca, Sergi, María y demás Conxitos. A Sandra, Marina y a los 

Vertebrados con los que he compartido comidas y cerves: Marcel, Morgana, Alberto 

(ahora pasaré la batuta del p-b-k a otra persona), Francesc (por aceptarme en la cena 

:P) y Manolo (por enseñarme que “resumen” es más sencillo que “summary”). Espero 

veros a todos de fiesta el día de mi defensa. 

Gracias a todos los profesores del Departamento. Además de Creu, Miquel 

Angel y Carles (ya mencionados antes), me gustaría agradecer a Adolf de Sostoa el 

permirtirme participar en las prácticas de Zoo, Joan Real por interesarse siempre por 

cómo me iban las cosas, Pedro Moral que me ayudó con el papeleo recién llegada al 

doctorado y la Pepa que me ayudó en el tramo final (gracias por tu paciencia). Gracias 

también a Marina, Santi y Ester por su apoyo a través de la gestión del Departamento. 

Y a Joan y a las secres. Gracias María José por tu supereficiencia, tu buen humor y tu 

cariño. Y pasando a la facultad, no pueden faltar nuestros queridos camareros de la 

cafetería, Jose Luis y Miguel!  

A lo largo de la tesis he tenido la suerte de visitar sitios increíbles gracias a 

congresos y estancias. Además de la oportunidad de conocer estos lugares, me he 

encontrado con personas geniales en Italia y Estados Unidos, en Alemania, Israel y 

Australia. Grazie Valeria, Roberta, Roberto, Alfonso, María, Roberto, Titi y Laura. 

Thanks to Hill‟s lab! You guys are awesome, I learnt so much from you and had a really 

good time at the lab and at the happy hours. It was great to see you again in February. 

Jan, gracias primo porque eres el mejor, sabes que te quiero un montón y espero verte 

muy pronto. Y gracias a Cristobo, Alicia, Oriol y Ana (otra vez) por una aventura 

australiana increible y por ser los mejores compis de chalet, ¿cuándo repetimos? 

jajajaja. 

Y por fin llego a los Mastercianoooooox! Gracias chicos, espero que sepáis que 

siempre podéis contar conmigo, da igual en que parte del mundo nos encontremos o 

cuanto tiempo haya pasado sin vernos. Gracias Jevi por tu paciencia y apoyo. Y 

gracias a todos los compiis de Olzinelles porque habéis sido mi familia! Peibolsito, 

Max, Pecu, Erikota, Mire, Anox,… Por supuesto Andre (te quiero mucho) y Maite. Y 

Laila y Núria, aunque no hayamos vivido juntas, pero siempre estáis ahí. Y gracias a 



 

 IX 

todos los que habéis venido de visita a Barna!!! A María, a Cos, Ely, Yago, Anterín, 

Merce, Paula, Noe, Pablo y Javi, seguro que me dejo gente… 

Aunque esta tesis se ha gestado en Barcelona, si he llegado hasta aquí ha sido 

gracias a mucha gente de La Coruña. Hablo de Rodolfo Barreiro, que me dio el primer 

empujón en este mundillo científico, y de Lucía Couceiro que me enseñó a trabajar en 

el laboratorio de molecular (aunque quien me diera ser la mitad de buena que ella). 

Pero por supuesto, me refiero también a todos mis amigos. Gracias por perdonarme el 

irme lejos, el estar semanas sin dar señales de vida y acogerme siempre que vuelvo 

como si el tiempo no hubiera pasado.  

Y por último, mi familia. Lo más duro de estar lejos. Sin vuestro apoyo en los 

momentos malos y buenos seguro que no habría podido llegar hasta aquí. A mi prima 

Alba, que sin ella saberlo, tiene abrazos con poderes mágicos que todo curan y me 

recuerda que las cosas sencillas son las que merecen la pena. Gracias a mi hermana 

Paula, que es mi amiga y mi ejemplo a seguir. Y a mis padres, Ángeles y Julio, por 

enseñarme que con esfuerzo y cariño todo es posible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Barcelona, Marzo 2014. 



 X 

 



 

 XI 

Contents 

 

 

General Introduction…………………………………………………………………………1 

A Symbiotic World……………………………………………………………………..3 

 The Sponge Host……………………………………………………………………...4 

 Sponge Microbial Symbionts…………………………………………………………6 

 Putative Factors Driving Microbial Symbiont Structure……………………………8 

 Resilience of Sponge-Microbial Symbionts………………………………………..10 

 Our Model: Bacterial communities associated with Ircinia sponges…………....10 

 Objectives ………………………………………………………………...…………13 

 Advisors’ Report……………………………………………………………………15 

Chapter 1. Biogeography and host fidelity of bacterial communities in 

            Ircinia spp. from the Bahamas…………………………………….……………..17 

 Abstract……………………………………………………….…………………….…19 

 Resumen………………………………………………………………………………21 

 Introduction……………………………………………………………………………23 

 Material & Methods…………………………………………………………………..25 

 Results…………………………………………………………………………….…..29 

 Discussion…………………………………………………………………………….36 

            Acknowledgments……………………………………………………………………39 

 Supplemental Information………………………………………………….………..40 

Chapter 2. Host rules: spatial stability of bacterial communities associated  

            with marine sponges (Ircinia spp.) in the Western Mediterranean Sea.….49 

 Abstract………………………………………….…………………………………….51 

 Resumen……………………………………………………………………………...53 

 Introduction……………………………………………………………………………55 

 Material & Methods…………………………………...……………………………...56 

 Results…………………………………………………………………………….…..59 

 Discussion…………………………………………………………………………….64 

            Acknowledgments……………………………………………………………………67 

 Supplemental Information………………………………………………….………..68 

Chapter 3. Stability of sponge-associated bacteria over large seasonal shifts in  

temperature and irradiance……………………………………………………….71 

 Abstract………………………………………….…………………………………….73 

 Resumen……………………………………………………………………………...75 

 Introduction……………………………………………………………………………77 



 XII 

 Material & Methods…………………………………...……………………………...79 

 Results…………………………………………………………………………….…..83 

 Discussion…………………………………………………………………………….95 

 Acknowledgments…………………………………………………………………..100 

 Supplemental Information ……………………………………………….…....…..101 

Chapter 4. Till death do us part: stable sponge-bacteria associations under  

thermal and food shortage stresses.………………………………………….119 

 Abstract ………………………………………….……...…………………………..121 

 Resumen …………………………………………………………………………....123 

 Introduction …………………………………………………………………………125 

 Material & Methods …………………………………...……………...…..………..126 

 Results ……………………………………………………………..….……….……130 

 Discussion…………………………………………………………….……………..135 

 Acknowledgments…………………………………………………………………..138 

Discussion & Conclusions…………………………………………………………….…139 

References……………………………………………………………………………….….151 

Resumen en castellano……………………………………………………………….…..167 

Annex…………………………………………………………………………………….…..189 

 Annex 1. Terminal-restriction fragment length polimorphism technique……...191 

 Annex 2. The ongoing discussion of the systematic position  

of Ircinia species…………………………………………………………………….195 

Annex 3. Publications …………………………………………………………..….197 

 

 

 



 

 1 

 



 

 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Electron Micrograph of the mesohyl of Ircinia strobilina 

L. Pita Galán 

 

 

 



 

 3 

General Introduction 

 

 

A Symbiotic World 

 

Symbiosis is the close association between organisms of different species (De Bary, 

1879). Classically, the symbiotic interactions were further classified according to the 

benefits/costs for each of the partners into three categories: mutualism, commensalism 

and parasitism (Fig. 1). These categories are not closed boxes, but a continuum in 

which the benefit-cost relation may vary depending on environmental conditions 

(Palmer et al. 2008; LaJeunesse et al. 2009; Gsell et al. 2013). Thus, symbiotic 

interactions are dynamic and it is crucial to assess their variability over spatial and 

temporal scales and their susceptibility to perturbations and artificially-induced changes 

in their environment (Kiers et al. 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Symbiotic relationships depending on the benefits (+) or costs (-) for each partner and 

examples in the ocean. Photographies courtesy of Owen Wangensteen and Susanna López-

Legentil.
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Lynn Margulis (1938-2011), who postulated the symbiotic origin of mitochondria 

and chloroplasts in eukaryotic cells, was also a pioneer in perceiving that microbial 

symbionts do not merely cause diseases, but can deeply affect the biology, ecology 

and evolution of animals (Margulis 1998). Advances in microbial ecology techniques 

during the last two decades have provided further evidence of the ubiquity and diversity 

of microbial-animal interactions and further work will probably change the way we 

define the ecological niches, adaptation and evolution of both animal and 

microorganisms (McFall-Ngai 2008; McFall-Ngai et al. 2013). In fact, the term 

“holobiont” is now widely used to refer to the host and its metabolically active 

population of microbial symbionts as the unit of selection and evolution (Mindell 1992; 

Rohwer et al. 2002). 

This PhD thesis is focused on the symbiotic relationship between sponges and 

bacteria, a research field known as sponge microbiology. Research on sponge-

associated microbial communities began in the 1970s, when high densities of microbes 

of different morphologies was observed by microscopy in different sponge species 

(Sarà 1971; Vacelet & Donadey 1977; Wilkinson 1978). Since then, there has been a 

growing interest in investigating the “who, how and why” of microbial symbiosis in 

sponges (Thacker & Freeman 2012). To date, several studies have already 

demonstrated that sponge-associated microbes are implicated in host metabolism and 

chemical defense production and thus in the ecology of sponges in marine ecosystems 

(Taylor et al. 2007). However, there is still an open debate about the processes that 

govern the complex microbial community observed in sponges, their response to biotic 

and abiotic factors, and their vulnerability to environmental perturbations. 

 

The Sponge Host 

 

Sponges - phylum Porifera, L. porus (pores) + ferre (bear) - present a porous body plan 

designed to live attached to the substrate while filtering huge volumes of seawater and 

feeding on organic particles (Fig. 2). The water enters the sponge through pores in 

their surface (ostia). Their body contains a system of channels and chambers 

(choanosome) where specialized cells (choanocytes) facilitate the flow of seawater and 

filter food particles. Seawater exits the sponge by one or more exhalant pores (oscula). 

Food particles are transferred to the matrix within the sponge (mesohyl) and are mostly 

digested by ameboid cells (archeocytes). The outer surface of the sponge is called the 

ectoderm and the inner part, which comprises the choanosome and the mesohyl, is 

called the endoderm. Microbial symbionts in sponges usually occur extracellularly in 

the mesohyl, although some species also harbor intracellular symbionts. 
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Figure 2. (A) Photography of the marine sponge Ircinia felix from the Bahamas (B) Schema of 

the body plan of a typical demosponge. The water enters the sponge through the ostia in the 

surface (ectoderm) and travels to the choanocyte chambers, where food particles are removed 

and transferred to the mesohyl to be digested. The filtered water is exhaled through the 

osculum. (C) Electron micrograph of the mesohyl showing a sponge cell (archeocyte) (star) 

surrounded by symbiotic microbial cells. 

 

Sponges are among the most ancient of the Metazoa. Fossils from the 

Precambrian suggest their appearance around 600 million years ago (Li et al. 1998; 

Love et al. 2009). Their ancient origin has prompted many studies using them as a 

model to identify the events that allowed the emergence of multicellularity and the early 

evolution of animals (e.g., Srivastava et al. 2010; Leys & Riesgo 2012). Marine 

sponges have colonized all the oceans, from shallow to deep waters. The number of 

marine sponge taxa exceeds 8,500 described species and this number is still expected 

to increase (Van Soest et al. 2012). Sponges represent a significant component of the 

ecosystem because of their diversity, abundance and influence on nutrient fluxes (Diaz 

& Rutzler 2001; De Goeij et al. 2013; Fiore et al. 2013). For instance, a recent study 

has evidenced how sponges in coral reefs invest the organic matter they consum in cell 

regeneration so that dead cells are released into the seawater and taken up by 

detritivorous, returning the nutrients back into the ecosystem (De Goeij et al. 2013). 

This model has been called “the sponge loop” and could explain at least part of the 

high productivity of coral reefs in oligotrophic waters (De Goeij et al. 2013). 

Besides their importance in nutrient fluxes, sponges are also well-known 

producers of chemical compounds that they use to avoid competition, predation and 

fouling (Pawlik et al. 1995; Pawlik et al. 2007; Haber et al. 2011). The cytotoxic and 

antimicrobial activities of some of these compounds make marine sponges the most 

rich taxon in novel bioactive secondary metabolites with pharmaceutical applications, 

especially as anti-tumoral drugs (Faulkner 2001; Erwin et al. 2010; Paul et al. 2011).  
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However, in most cases, sponges are not solely responsible for the roles 

described above. In fact, most of these functions are accomplished in association with 

an abundant and complex symbiotic microbiota (Taylor et al. 2007; Thacker & Freeman 

2012; Webster & Taylor 2012). The metabolic activity of microbial symbionts expands 

sponge metabolism by photosynthesis, nitrogen fixation or ammonia oxidation (Weisz 

et al. 2007; Erwin & Thacker 2008b; Fiore et al. 2010). In addition, symbionts may 

actively participate in the chemical defense and the production of bioactive secondary 

metabolites detected in sponges (Esteves et al. 2013; Haber & Ilan 2013). In exchange 

for their contibution, microbes benefit from living in the protected, nutrient-rich sponge 

mesohyl (Taylor et al. 2007) and from some metabolic waste released by host cells 

(e.g., ammonia, López-Legentil et al. 2010). Accordingly, this symbiotic association is 

considered mutualistic in most cases; yet empirical evidence is still scarce (Taylor et al. 

2007).  

 

Sponge Microbial Symbionts 

   

The striking microbial density and diversity in sponges was first revealed by 

transmission electron microscopy (Sarà 1971; Vacelet & Donadey 1977). Later, 

molecular studies confirmed that many sponges harbor a complex microbial community 

that includes mostly Bacteria – 17 described phyla and 12 candidate phyla – and 

Archaea, but also fungi and other eukaryotes (Schmitt et al. 2012; Webster & Taylor 

2012). Hundreds of bacterial taxa can occur in a single host individual (Webster et al. 

2010; Lee et al. 2011), but the dominant phyla are generally Proteobacteria (Class 

Alpha-, Delta- and Gammaproteobacteria), Chloroflexi, Actinobacteria, Acidobacteria 

and Nitrospira (Webster & Taylor 2012). In addition, many species harbor 

photoautrotrophic symbionts in the phylum Cyanobacteria that reach high densities in 

the ectoderm of those sponges (Thacker 2005; Erwin & Thacker 2007; Erwin et al. 

2012b). Archaea in marine sponges belong mostly to the Thaumarchaeota phylum, 

previously known as Marine group I Crenarchaeota (Steger et al. 2008; Turque et al. 

2010; Radax et al. 2012). Several studies have also shown that the majority of the 

microbial community is metabolically active in sponge hosts (Mohamed et al. 2008a; 

Kamke et al. 2010; Moitinho-Silva et al. 2013).  

A recent comprehensive analysis repoted a small core bacterial community in 

sponges, defined as the bacterial phylotypes present in at least 70% of all the analyzed 

sponges (Schmitt et al. 2012). The core bacterial taxa in a particular sponge species 

are closely related to those found in phylogenetically and geographically distant 

sponges and absent or rare in other environments (e.g., surrounding seawater, 
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sediments) (Hentschel et al. 2002; Taylor et al. 2013). This degree of specificity led to 

the definition of sponge-specific bacterial clusters (Box 1). Notably, some ubiquitous 

sponge-associated bacteria are also closely related to bacteria in coral microbiota, 

comprising the sponge-coral clusters (Simister et al. 2012a).  

 

 

 

 

 

 

 

 

 

 

 

This striking specificity between bacteria and host is probably due to the way 

symbiont microbial communities are established and maintained in sponges. The 

general agreement is that a combination of vertical transmission (from parents to 

progeny) and horizontal acquisition (from surrounding seawater) may interplay in the 

transmission of sponge-derived symbionts (Taylor et al. 2007; Hentschel et al. 2012). 

Vertical transmission was documented by microscopic and molecular studies that 

confirmed the presence of bacteria in larvae and juveniles of sponges (Ereskovsky & 

Tokina 2004; Schmitt et al. 2007; Lee et al. 2009a). However, some “sponge-specific” 

bacteria have been found in seawater, though at low abundances (Webster et al. 2010; 

Taylor et al. 2013), which suggest sponges could potentially uptake at least some of 

their symbionts from the surrounding seawater; yet the exact mechanism is still 

unknown.  

 Sponge hosts have been divided into two groups, high microbial abundance 

(HMA) and low microbial abundance (LMA) sponges, defined according to different 

abundances of microorganisms in the mesohyl of each type of sponges (Vacelet & 

Donadey 1977). However, this division corresponds also to differences in symbiotic 

structure: microbial communities in HMA sponges are sponge-specific whereas 

microbial communities in LMA sponges are similar to those in the seawater (Bjork et al. 

2013; Moitinho-Silva et al. 2013). Moreover, the abundance of microorganisms in the 

mesohyl correlates with different pumping and metabolic activities of each sponge type, 

suggesting that the presence of the symbiotic community affects the different 

evolutionary strategies the sponge types have followed (Weisz et al. 2007).  

Box 1 | Sponge-specific clusters    

The concept was introduced by Hentschel and collaborators (2002) to define a 

monophyletic complex (which is composed of, at least, three 16S rRNA gene sequences) 

representing bacteria that are repeatedly detected in different sponge species or the same 

species from different geographical locations, but that are distinct from the microorganisms 

from non-sponge sources. In addition, the cluster must be supported by three independent 

phylogenetic tree building approaches (neighbor-joining, maximum parsimony and 

maximum likelihood). A recent comprehensive study including more than 7500 publicly 

available sponge-associated bacterial 16S rRNA gene sequences confirmed that the 

concept of sponge-specific microbes is still valid (Simister et al. 2012a).  
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Box 2 | Everything is everywhere but the environment selects? 

The principle “everything is everywhere BUT the environment selects” (Baas Becking, 1934) 

defends that microbes are distributed worldwide but in given environmental conditions only 

some of them are abundant and active, whereas the others are present only latently and 

usually in low abundances. Although the assumption “everything is everywhere” is impossible 

to demonstrate, the development of massive sequencing techniques (e.g., pyrosequencing) 

has shown that in every environment there is a big pool of “rare” microbes (Pedrós-Alió 2012). 

Those microorganisms could potentially proliferate and become dominant under particular 

environmental conditions. Under this scenario, dispersal would seem unlimited in a microbial 

world. However, isolation-by-distance also appears to affect bacterial communities and be 

involved in bacterial speciation (reviewed in Hanson et al. 2012). 

An oustanding challenge in sponge microbiology consists of investigating what 

is not a one host-one symbiont system but a “community affair” (Hentschel et al. 2012; 

Bjork et al. 2013), with phylotypes that are diverse yet specific to each host. To date, 

our knowledge concerning sponge microbiota is still based on a few sponge species 

collected at a single point in time and space, whereas the potentially dynamism of this 

interaction is even more understudied. In particular, little is known about the processes 

shaping the sponge-derived communities at spatiotemporal scales and how do they 

respond to perturbations in the surrounding environment. 

 

Putative Factors Driving Microbial Symbiont Structure 

 

Microbial biogeography evaluates the patterns in microbial community structure over 

space and time. Biogeographic patterns emerge primarily from two processes: 

dispersal limitation and environmental selection (Martiny et al. 2006; Fierer 2008; 

Hanson et al. 2012). Dispersal limitation prevents connectivity among distant locations 

or populations, while environment selection affects microbial community structure as 

local conditions “pick up” the best-adapted microbes (Box 2). In the ocean, microbial 

dispersal would be passive and restricted by currents and hydrogeographic features 

(Schauer et al. 2000; Galand et al. 2009), while local conditions (e.g. salinity, 

temperature or nutrient levels) would shape marine microbial communities at a given 

point in time and space (Schauer et al. 2003; Flo et al. 2011).  

 

Sponge-associated microbial communities are far from randomly structured; on 

the contrary, community-level analyses of bacterial symbionts have revealed a 

remarkable host species-specificity (Taylor et al. 2007; Erwin et al. 2012a). However, 
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little is known about the dynamics of these species-specific microbial communities over 

spatiotemporal scales, with most studies suggesting that these communities are 

temporally stable and spatially persistent across wide geographic distances (Taylor et 

al. 2003; Webster et al. 2004; White et al. 2012). A few other studies have detected 

some degree of differentiation depending on location or seasonality in seawater 

conditions (Wichels et al. 2006; Lee et al. 2009b; Anderson et al. 2010). The low 

number of studies and apparently conflicting results make it difficult to draw any 

conclusions about the biogeography of sponge-derived symbiotic communities. 

Besides, the stability of sponge-associated microbial communities may vary regarding 

the species considered, the environmental parameter or the geographic or temporal 

scale used in the study. In addition, the sampling strategy and comparisons of distantly 

related host species may also distort the patterns observed and confound the 

processes involved. Thus, it remains necessary to understand how environmental, 

geographic and host-related factors interact in shaping sponge-derived communities. 

This knowledge will also provide a baseline for predicting the persistence and 

resilience of sponge-symbiont relationship to future perturbations. 

Here, we hypothesized that the processes affecting free-living microbial 

communities (discussed above) are likely to apply to symbiotic communities (Table 1). 

Local conditions may generate variability within the same host species at different 

locations or homogenize the communities of sympatric sponge species. Host-specific 

factors, such as internal conditions in the sponge mesohyl, the physiological status of 

the host or its habitat preference, can also influence the composition and patterns of 

symbiotic microbial communities over time and space (Thacker 2005; López-Legentil et 

al. 2010).  

 

Table 1. Putative factors affection sponge-derived microbial communities depending on their 

source (seawater vs host) and the nature of the process (selection vs dispersal limitation).  

 SELECTION DISPERSAL LIMITATION 

Seawater Temperature, light, nutrients, pollutants Currents, eddies 

Host 
Sponge mesohyl, physiological status, 

habitat preference 
Host population connectivity 
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Resilience of Sponge-Microbial Symbiosis 

 

Marine organisms are and will be directly affected by temperature increases, changes 

in ocean circulation, acidification, and acuteness of seasonal conditions (Harvell et al. 

2002; Calvo et al. 2011; Crisci et al. 2011). In addition, seawater warming has been 

linked to sponge disease outbreaks, a phenomenon affecting sponge populations 

worldwide (Webster 2007; Coma et al. 2009). In the face of increasing human 

populations and unprecedented environmental extremes resulting from a changing 

climate, understanding the vulnerability of sponge-microbial symbiosis is critical to 

preserve the biodiversity and ensure the ecosystem services they provide.  

To date, few studies have assessed how sponge-derived communities respond 

to stressful environmental conditions. In coral-bacteria associations, it has been 

proposed that symbiotic microbial communities could dynamically respond to changing 

environmental conditions so that the whole holobiont would adapt rapidly (i.e., days to 

weeks) to new conditions (“The coral probiotic hypothesis”, Reshef et al. 2006). In 

contrast, manipulated experiments mimicking stress (i.e. elevated temperature, 

presence of pollutants, elevated nutrient levels) suggested that shifts in sponge-derived 

communities were concomitant with declines in host sponge health (Webster et al. 

2001; López-Legentil et al. 2008; Simister et al. 2012c). In temperate regions, sponge-

derived bacterial communities changed when exposed to elevated temperatures 

(Lemoine et al. 2007) but remained stable under starvation conditions (Friedrich et al. 

2001). Further studies are clearly needed to investigate the effect of environmental 

conditions resulting from human impact on sponge-associated bacterial communities 

and in order to assess their resilience. 

 

Our Model: Bacterial communities associated with Ircinia sponges 

 

The genus Ircinia (Dyctioceratida: Irciniidae) exhibits high species richness and occurs 

widely in tropical and temperate environments. Ircinia spp. can reach high densities in 

the rocky bottoms they inhabit (Parra-Velandia & Zea 2003; Turon et al. 2013). In 

addition, the species of this genus produces a broad spectrum of bioactive compounds 

that have exhibited antiinflamatory and antifouling activity (Duque et al. 2001; 

Hammami et al. 2010) and at least some of them are synthesized by their symbionts 

(Esteves et al. 2013). This PhD thesis is focused on 5 Ircinia spp.: I. felix and I. 

strobilina from the Bahamas and I. fasciculata, I. variabilis and I. oros from the 

Mediterranean Sea (Fig. 3).  
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The Ircinia spp. we targeted are HMA sponges that harbor complex and diverse 

symbiotic communities. Previous studies showed that their bacterial communities are 

composed by Proteobacteria, Acidobacteria, Bacteroidetes, Nitrospira, but also 

Chloroflexi, Firmicutes Poribacteria, Actinobacteria and phyla of uncertain affiliation 

(Schmitt et al. 2007; Mohamed et al. 2008c; Yang et al. 2011; Erwin et al. 2012a). Also, 

the sponges I. fasciculata, I. variabilis and I. felix harbor dense populations of 

photosymbionts (Cyanobacteria) that are absent in I. oros and I. strobilina sponges. In 

addition, Schmitt et al. (2007) evidenced the vertical transmission (i.e., from adults to 

larva) of Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes 

and Alpha-, Gamma- and Deltaproteobacteria in I. felix.  

Within each region (Bahamas and Mediterranean Sea), these Ircinia spp. can 

often be found living in sympatry. By targeting these sympatric congeneric species, we 

should be able to discriminate the relative role of host-related vs environmental- related 

factors in shaping the symbiotic communities inhabiting these sponges. Using this 

approach, Erwin et al. (2012a) found that the symbiotic communities in the three 

Mediterranean Ircinia spp. (i.e., I. fasciculata, I. variabilis and I. oros) are comprised 

primarily of bacteria previously described for coral or other sponge species. However, 

at the community level, each Ircinia species harbored a very specific mix of these 

bacteria. This pattern of individual ubiquous symbionts and host species-specific 

structure of entire communities has been defined as a “specific mix of generalists” and 

suggests that each sponge species contributes to shaping the distinct symbiont mix 

(Erwin et al. 2012a). A recent study showed that I. strobilina harbors distinct bacterial 

communities compared to distantly-related sponges that occurred at the same 

sampling location (Yang et al. 2011). Previous studies on I. felix and I. strobilina 

described their bacterial communities using different techniques (Schmitt et al. 2007; 

Mohamed et al. 2008c; Yang et al. 2011), making it difficult to determine the specificity-

level of the symbiosis in Ircinia spp. from the Bahamas. Although the bacterial diversity 

within some of the Ircinia species targeted here is well-described, whether those 

symbiotic communities are maintained over space and time or under stressful 

conditions remains unknown. 
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Figure 3. Underwater photographs of the Ircinia spp. studied in this PhD thesis. (Photos 

courtesy of Patrick M. Erwin). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



General Introduction 

 13 

Objectives 

 

The main goal of this PhD thesis is to identify the specificity and persistence of the 

symbiotic communities associated with HMA sponges and their response to different 

environmental conditions. Congeneric sympatric sponges of the genera Ircinia were 

used as models to disentangle the relative role of host-specific and environmental 

factors in shaping sponge symbiotic communities and create a baseline to identify 

abnormal shifts in symbiotic communities or anticipate conditions where the symbiotic 

relationship could be compromised, particularly in a global climate change scenario.  

 In particular, we aimed to test the effects of currents and spatial heterogeneity 

of water conditions on bacterial symbiotic communities in the Ircinia spp. from 

Bahamas (Ircinia felix and I. strobilina), at a scale of hundreds of kilometers, and 

confirm if the same pattern is valid for Mediterranean species (I. fasciculata, I. variabilis 

and I. oros). As the Mediterranean Sea is characterized by a marked seasonality in 

seawater conditions (i.e., temperature, irradiance, nutrient levels), we also investigated 

the temporal dynamic of bacterial communities associated with these Ircinia species 

across seasons. Finally, considering that the recent, episodic mass mortalities of 

Mediterranean sponges may be related to thermal stresses, we also tested if abnormal 

environmental conditions may cause symbiont fluctuations and compromise the 

holobiont health. The characterization and monitoring of bacterial symbiont 

communities was assessed by electron microscopy and molecular analysis of 16S 

rRNA gene sequences (clone libraries and DNA fingerprinting). Terminal-restriction 

fragment length polymorphism (T-RFLP) analysis, a sensitive DNA fingerprinting 

technique (annex 1), allowed the standardized processing of replicates to approach 

our research questions. 

To achieve this goal, the thesis was structured in 4 chapters, each addressing a 

specific objective. In order to facilitate independent reading, each chapter was written 

as a standalone unit to allow independent reading and included introduction, material 

and methods, results and discussion sections. However, all of them are interconnected 

and may contain cross-references to other chapters. 

 

 Chapter 1 aims to assess the host specificity and spatial variability (at a scale 

from 80 to 400s of kilometers) associated with the sympatric sponge species I. 

felix and I. strobilina from the Bahamas. For this, we characterized the bacterial 

assemblages in I. strobilina and two color morphs of I. felix (tan and white), and 

surrounding seawater from five different sites at the Bahamas islands, by using 

terminal-restriction fragment length polymorphism (T-RFLP) and clone library 
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analysis of bacterial 16S rRNA gene sequences and transmission electronic 

microscopy (TEM). We also sequenced a fragment of the mitochondrial gene 

cytochrome oxidase I (COI) to determine the genetic identity and phylogenetic 

relationships among sponge hosts. 

 Chapter 2 investigates if the spatial patterns observed for the symbiotic 

communities in the Ircinia spp. from the Bahamas are also encountered for the 

species-specific bacterial communities in Mediterranean Ircinia species (I. 

fasciculata, I. variabilis and I. oros). We used T-RFLP analysis of bacterial 16S 

rRNA gene sequences to describe the bacterial communities in Ircinia spp. from 

six locations of the shallow waters of coastal Western Mediterranean Sea, 

including locations affected by different currents and anthropogenic impacts.   

 Chapter 3 seeks to elucidate how sponge-derived bacterial communities 

respond to natural changes in surrounding seawater conditions such as 

seasonality of temperature and light irradiance and to identify permanent and 

transient symbiont taxa in associations with these sponge hosts. To achieve 

this goal, we monitored the bacterial communities in replicate individuals of 

each sympatric Mediterranean Ircinia host every 3 months for 1.5 years, by T-

RFLP and clone libraries analysis of 16S rRNA gene sequences. In addition, we 

monitored photosynthetic pigments in the tissues of the cyanobacterium-rich 

sponges I. fasciculata and I. variabilis, using chlorophyll a (chl a) quantification. 

 Chapter 4 intends to detect abnormal shifts in the sponge-derived bacterial 

communities as a result of warmer-than-usual summer seawater conditions 

(i.e., elevated temperature and stratification of the seawater column). To mimic 

these conditions, we performed manipulated experiments in aquaria testing 4 

different treatments: control, elevated temperature, food shortage and the 

combination of elevated temperature and food shortage on I. fasciculata and I. 

oros symbiotic communities. We studied changes in sponge bacterial 

communities by T-RFLP analysis of 16S rRNA gene sequences and TEM. Also, 

in I. fasciculata, we quantified chl a, as a proxy of photosymbiotic population 

activity. 
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Chapter 1 

 

 

Biogeography and Host Fidelity of Bacterial Communities in 

Ircinia spp. from the Bahamas 

 

Lucía Pita, Susanna López-Legentil & Patrick M. Erwin 

 

Published in: Microbial Ecology (2013) 66:437-447. (2012-Impact factor: 3.277; Q1 

Ecology). 

 

Abstract 

 

Research on sponge microbial assemblages has revealed different trends in the 

geographic variability and specificity of bacterial symbionts. Here, we combined 

replicated terminal-restriction fragment length polymorphism (T-RFLP) and clone 

libraries analyses of 16S rRNA gene sequences to investigate the biogeographic and 

host-specific structure of bacterial communities in two congeneric and sympatric 

sponges: Ircinia strobilina, two color morphs of I. felix and ambient seawater. Samples 

were collected from five islands of the Bahamas separated by 80 to 400 km. T-RFLP 

profiles revealed significant differences in bacterial community structure among sponge 

hosts and ambient bacterioplankton. Pairwise statistical comparisons of clone libraries 

confirmed the specificity of the bacterial assemblages to each host species and 

differentiated symbiont communities between color morphs of I. felix. Overall, 

differences in bacterial communities within each host species and morph were 

unrelated to location. Our results show a high degree of symbiont fidelity to host 

sponge across a spatial scale of up to 400 km, suggesting that host-specific rather than 

biogeographic factors play a primary role in structuring and maintaining sponge-

bacteria relationships in Ircinia species from the Bahamas. 
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Biogeografía y fidelidad de las comunidades bacterianas 

asociadas con esponjas Ircinia spp. de Las Bahamas 

 

 

Resumen 

 

Investigaciones recientes sobre las comunidades microbianas asociadas a esponjas han 

revelado differentes tendencias en cuanto a la variabilidad geográfica y la especificidad 

de los simbiontes bacterianos. Aquí hemos estudiado la especificidad y biogeografía de 

las comunidades bacterianas de dos esponjas congénericas y simpátricas (Ircinia 

strobilina y dos morfotipos de I. felix) y el agua circundante a través de análisis de 

secuencias del gen ARNr 16S bacteriano mediante las técnicas de polimorfismo en la 

longitud de los fragmentos de restricción terminales (T-RFLP) y librerías de clones. Las 

muestras de esponjas y agua de mar fueron recogidas en cinco islas de Las Bahamas, 

separadas un rango de 80-400 km. Los perfiles de T-RFLP revelaron diferencias 

significativas al comparar la estructura de las comunidades bacterianas de esponjas y el 

agua circundante. Comparaciones estadísticas de los datos derivados de las librerías de 

clones confirmaron la especificidad de las comunidades bacterianas a nivel de especie 

de esponja y cierta diferenciación entre morfotipos en I. felix. En general, las diferencias 

entre comunidades derivadas de individuos de la misma especie fueron independientes 

de la localidad de muestreo. Estos resultados muestran un alto grado de fidelidad del 

simbionte hacia su hospedador a lo largo de una escala espacial de hasta 400 km, lo que 

sugiere que son factores específicos del hospedador y no factores locales los que juegan 

un papel principal en estructurar y mantener las relaciones esponja-bacteria en especies 

de Ircinia de las Bahamas. 
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Introduction 

 

Sponges are among the most significant groups in marine benthic communities due to 

their high abundance and diverse functional roles (Gili & Coma 1998; Diaz & Rutzler 

2001; Van Soest et al. 2012). However, much of their contribution to benthic ecosystems 

derives from their association with an abundant and complex microbiota (Taylor et al. 

2007; Webster & Taylor 2012). The metabolic activity of microbial symbionts within 

sponges significantly contributes to nutrient fluxes between benthic and pelagic systems 

and renders sponges critical to healthy ecosystem functioning (Ribes et al. 2012). 

Sponge-microbial relationships have often been considered mutualistic. Sponges may 

offer a range of nutrient-rich microhabitats and shelter from predators to their microbial 

symbionts (Sarà 1971; Taylor et al. 2007). In exchange, the microbial community can 

supplement the nutrition of their host via processes like photosynthesis (Erwin & Thacker 

2008), nitrogen fixation (Mohamed et al. 2008a), or ammonia oxidation (López-Legentil et 

al. 2010). In addition, microbial symbionts can actively participate in the chemical defense 

of the holobiont by producing secondary metabolites, some of which have interesting 

biomedical and industrial applications (Newman & Hill 2006; Paul & Ritson-Williams 2008; 

Erwin et al. 2010).  

As a result of the biological, ecological and biotechnological importance of the 

sponge holobiont, studies have begun to focus on understanding the diversity and 

structuring factors of sponge-associated microbial communities. Similar to free-living 

microorganisms (Hanson et al. 2012), environmental conditions (e.g., distinct bioclimatic 

zones [Taylor et al. 2005] or reefs [Lee et al. 2009b; Morrow et al. 2012]) and dispersal 

limitation (i.e., isolation-by-distance) may influence the composition and structure of 

symbiotic bacterial communities. The relative effect of each process varies depending on 

the scale of sampling: large scale patterns (tens of thousands of km) appear to be more 

affected by dispersion limitations and small scale patterns (few km) by environmental 

conditions, whereas intermediate scale patterns (10-3000 km) are influenced by both 

processes (Martiny et al. 2006). Particular to host-associated microbes, the mode of 

symbiont transmission may also dictate the specificity and spatial structure of the sponge 

microbiota. 

A recent and comprehensive study (Schmitt et al. 2012) reported that the majority 

of sponge-associated bacteria (55-70%) are present in single host species but form 

phylogenetic lineages that are shared by numerous sponge hosts, yet absent or rare in 

the biosphere of bacterioplankton communities. This pattern is explained by a 

combination of vertical transmission (Usher et al. 2001; Ereskovsky et al. 2004; Schmitt et 

al. 2007, 2008; Lee et al. 2009a) and horizontal acquisition of symbionts (Taylor et al. 
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2007; Schmitt et al. 2008; Webster & Taylor 2012). The predominance of vertical 

transmission would create stable bacterial communities linked to the dispersal and 

evolutionary trajectory of their host, whereas horizontal acquisition would generate 

biogeographic patterns related to specific environmental conditions. 

Comparisons of the microbiome within the same sponge species across different 

locations have revealed high similarity of bacterial symbionts in natural host populations 

within the same latitude (Taylor et al. 2003; Webster et al. 2004; Taylor et al. 2005; Lee et 

al. 2009b), suggesting no biogeographic patterns at intermediate spatial scales. However, 

Taylor et al. (2005) found that the microbiota of Cymbastela concentrica hosts inhabiting 

tropical waters was clearly distinct from those from temperate regions (separated by > 

1500 km) and Anderson et al. (2010) reported location-specific bacterial communities in 

Mycale hentscheli across a 50 to 1000 km range in New Zealand. The low number of 

studies and apparently conflicting results highlight the need for additional studies to 

further pinpoint the factors shaping the structure of sponge-associated bacterial 

communities over intermediate biogeographic scales. 

In this study, we examined bacterial communities in the model sponge species 

Ircinia felix and I. strobilina. The genus Ircinia (Dictyoceratida: Irciniidae) occurs widely in 

tropical and temperate environments and produces a broad spectrum of bioactive 

compounds involved in chemical defense against fouling, infection and competition 

(Duque et al. 2001; Pawlik et al. 2002). I. felix and I. strobilina are high-microbial-

abundance (HMA) sponge species commonly found in coral reefs, grass beds, and 

mangroves throughout the Caribbean Sea (Schmahl 1990; Parra-Velandia & Zea 2003). 

The ectosome of I. felix is rich in Cyanobacteria (Maldonado & Young 1998), contrary to I. 

strobilina (Yang et al. 2011); and Schmitt et al. (2007) demonstrated that diverse bacterial 

symbionts in I. felix were present in adult, larval and juvenile life stages of the host, 

indicating vertical transmission of at least some of their bacterial symbionts.  

The goal of this study was to assess the spatial variability (at a scale from 10s to 

100s of km) and host-specificity of the bacteria associated with the sympatric sponge 

species Ircinia felix and I. strobilina from the Bahamas. We characterized the bacterial 

assemblages in I. strobilina, two color morphs of I. felix (white and tan) and ambient 

seawater from five islands of the Bahamas, using terminal-restriction fragment length 

polymorphism (T-RFLP) analysis. We also constructed 16S rRNA gene libraries to 

assess the composition of sponge-associated bacterial communities and sequenced a 

fragment of the mitochondrial gene cytochrome oxidase I (COI) to determine the genetic 

identity and phylogenetic relationships among sponge hosts. We addressed the following 

hypotheses: (i) bacterial communities will differ significantly among sources (i.e., sponge 

species and seawater); (ii) bacterial communities will exhibit greater similarity in more 
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closely related sponge hosts (i.e., greater between I. felix color morphs than among I. 

felix morphs and I. strobilina); (iii) changes in the bacterial communities within each 

sponge species will correlate with geographic distances among host populations. 

 

Materials & Methods 

 

Sample collection  

The marine sponges Ircinia strobilina (Lamarck 1816) and Ircinia felix (Duchassaing & 

Michelotti 1864) and ambient seawater samples were collected from shallow littoral zones 

(< 20 m depth) of the Bahamas in July 2010 by SCUBA diving (Supplemental Information, 

Table S1). The five sampled populations were separated by 80 to 400 km and were 

located around islands of different human population densities 

(http://statistics.bahamas.gov.bs/): San Salvador (24O 03.515N, 074O 32.474 W; < 1,000 

inhabitants), Little San Salvador (24O 34.727 N, 075O 57.628 W; < 2,000 inhabitants), 

Exumas (24O 52.871 N, 076O 47.502 W; < 7,500 inhabitants), Sweeting‟s Cay, Grand 

Bahama (26O 33.578 N, 077O 53.036 W; > 45,000 inhabitants) and New Providence (25O 

00.771 N, 077O 33.794 W; > 250,000 inhabitants). At each site, ambient seawater (500 

mL) was sampled simultaneously and in close proximity (< 1 m) to the sponges. Once on 

board of the research vessel, sponge samples were immediately preserved in RNAlater 

(Ambion) and seawater samples were concentrated on 0.2-µm filters prior to 

preservation. All samples were stored at -20 OC. 

 

Transmission electronic microscopy (TEM) 

For each sponge species and color morph, a piece of the ectosome was dissected with a 

sterile scalpel and fixed in a solution of 2.5% glutaraldehyde and 2% paraformaldehyde 

buffered with filtered seawater and incubated overnight at 4OC. Following incubation, each 

piece was rinsed at least three times with filtered seawater and stored at 4ºC until 

processed as described previously (López-Legentil et al. 2011). TEM observations were 

made at the Microscopy Unit of the Scientific and Technical Services of the University of 

Barcelona on a JEOL JEM-1010 (Tokyo, Japan) coupled with a Bioscan 972 camera 

(Gatan, Germany). Micrographs were visualized in ImageJ (Abràmoff et al. 2004) for 

bacterial cell counts. The relative abundances of bacteria (bacterial cells/mm2) were 

determined as the average (± standard deviation) over 5 TEM micrographs per sample. 
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DNA extractions 

Genomic DNA was extracted from sponge and seawater samples using the DNeasy® 

Blood & Tissue kit (Qiagen®) according to the manufacturer‟s instruction. Full-strength 

and 1:10 diluted DNA extracts were used as templates in PCR amplifications. 

 

Molecular identification of host sponges 

A fragment of ca. 1000 bp of the mitochondrial gene cytochrome oxidase I (COI), 

corresponding to the standard barcoding partition (Folmer et al. 1994; Herbert et al. 2003) 

and the I3-M11 partition (Erpenbeck et al. 2006) was PCR-amplified using a degenerated 

version of the universal barcoding forward primer dgLCO1490 (Meyer & Kuever 2008) (5‟- 

GGT CAA CAA ATC ATA AAG AYA TYG G-3‟) and the reverse primer COX1-R1 (Rot et 

al. 2006) (5‟-TGT TGR GGG AAA AAR GTT AAA TT-3‟). Amplification was performed in 

a GeneAmp® PCR machine (Applied Biosystems) as follows: one initial denaturation step 

for 5 min at 94OC; followed by 30 amplification cycles of 0.5 min at 94OC, 0.5 min of 

annealing at 42OC, and 1.5 min at 72 OC; and a final elongation step for 7 min at 72OC. 

Total PCR volume (50 μL) included 10 μM of each primer, 10 nM of each dNTP, 1x 

Reaction Buffer (Ecogen), 2.5 mM MgCl2, five units of BioTaqTM DNA polymerase 

(Ecogen) and 5 μL of DNA template. PCR products were cleaned and bi-directionally 

sequenced at Macrogen, Inc (Seoul, Korea). The consensus sequences obtained in this 

study for each sponge host and representative sequences from other Ircinia species 

available in GenBank were aligned in Geneious Pro 5.1.6 (Drummond et al. 2011). 

Specifically, the alignment included representative sequences of congeneric species from 

the Mediterranean Sea (Erwin et al. 2012a), the Indo-Pacific (Pöppe et al. 2010), and one 

I. strobilina sequence from the Caribbean (Erpenbeck et al. 2009). Maximum likelihood 

(ML) and neighbor joining (NJ) phylogenies were constructed in MEGA v5 (Tamura et al. 

2011). For ML analyses, we used the GTR+G+I (Tavaré 1986) model and 100 bootstrap 

replicates (Felsenstein 1985). The NJ tree was built based on the Tamura-Nei model of 

nucleotide substitution and 1,000 bootstrap replicates. All sequences have been 

deposited in GenBank (Acc. Nos. JX306085 to JX306089). 

 

T-RFLP analysis 

The universal bacterial forward primer Eco8F (Turner et al. 1999) (5‟-AGA GTT TGA TCC 

TGG CTC AG-3‟), tagged with 6-FAM, and the reverse primer 1509R (Martínez-Murcia et 

al. 1995) (5‟-GGT TAC CTT GTT ACG ACT T-3‟) were used for amplification of ca. 1500 

bp fragments of the 16S rRNA gene from all sponge and seawater DNA extracts. PCR 

was performed in a GeneAmp® PCR machine (Applied Biosystems) as follows: an initial 

denaturation step for 5 min at 94OC; 35 cycles of 1 min at 94OC, 0.5 min at 50OC, 1.5 min 
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at 72OC; and a final elongation step for 5 min at 72OC. Total PCR volume (50 μL) included 

10 μM of each primer, 10 nM of each dNTP, 1x Reaction Buffer (Ecogen), 2.5 mM MgCl2, 

5 units of BioTaqTM DNA polymerase (Ecogen) and 5 μL of DNA template. Products from 

triplicate PCR reactions were gel-purified and cleaned using the Qiaquick Gel Extraction 

kit (Qiagen®) and pooled before quantification using the QubitTM fluorometer and Quant-

iTTM dsDNA Assay kit (InvitrogenTM). For each sample, 100 ng of purified PCR product 

were digested with the restriction endonuclease HaeIII and 100 ng with MspI in a total 

volume of 20 μL, following the manufacturer‟s protocol (Promega). Restriction reactions 

were incubated for 4 h at 37OC, followed by ethanol precipitation to remove residual salts. 

Prior to capillary electrophoresis, samples were fully dried and then eluted in 11.5 μL 

formamide and 0.5 μL GeneScan 600-LIZ size standard (Applied Biosystems), heated at 

94OC for 2 min in a dry bath, and immediately cooled on ice for 2 min. Samples were 

processed on an automated ABI 3730 Genetic Analyzer (Applied Biosystems) at the 

Genomics Unit of the Scientific and Technical Services of the University of Barcelona. 

The lengths of individual terminal-restriction fragments (T-RFs) were determined using 

the program PeakScanner (Applied Biosystems). T-RFs below 50 fluorescence units 

(background noise), smaller than 50 bp or larger than 600 bp (beyond the resolution of 

our internal standard) were excluded from the analysis. T-RFLP peak profiles were 

uploaded in T-REX (Culman et al. 2009) for further filtering, alignment and construction of 

relative abundance matrices. Data was de-noised applying a cut-off value of 2 standard 

deviations (Abdo et al. 2006) and T-RFs were aligned using a clustering threshold of 1 bp 

then standardized by relative peak areas. 

 

Statistical analysis of T-RFLP 

Bray-Curtis similarity matrices were calculated using square-root transformations of 

relative T-RF abundances. Non-metric multidimensional scaling (nMDS) plots were 

constructed for each restriction enzyme to visualize similarities among the bacterial 

communities recovered from each sample. Permutational multivariate analyses of 

variance (PERMANOVA) were used for pairwise comparisons of bacterial communities 

among sources (seawater, sponge species and the two color morphs of I. felix) and 

among locations within each source (nested analysis). PERMDISP was computed for 

comparing the multivariate dispersions among groups on the basis of Bray-Curtis 

distance. Calculations were performed in PRIMER v6 (Clarke 1993; Clarke & Gorley 

2006) and PERMANOVA+ (Plymouth Marine Laboratory, UK). For all pairwise 

comparisons, the critical value for significance was corrected using the Benjamini-

Yekutieli (B-Y) false discovery rate (Benjamini & Yekutieli 2001). To test for isolation-by-
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distance, Mantel tests for each host and enzyme were calculated in R (R Core Team 

2012) using the package ade4 (Dray & Dufour 2007). 

 

16S rRNA gene clone library construction.  

Clone libraries were constructed for two individuals of each sponge species and color 

morph collected in Sweeting‟s Cay and Exumas (ca. 300 km apart). PCR amplification 

was performed as described for T-RFLP analyses (above), except that no fluorescent tag 

was attached to the forward primer. PCR products were gel-purified and cleaned using 

the QIAquick Gel Extraction kit (Qiagen®) and quantified with a QubitTM fluorometer and 

Quant-iTTM dsDNA Assay kit (InvitrogenTM). Cleaned PCR products were ligated into 

plasmids using the pGEM®-T Vector System (Promega). In total, 234 positive clones were 

bi-directionally sequenced using the vector primers T7 and SP6 at Macrogen, Inc. (Seoul, 

Korea). Raw sequence reads were processed and aligned in Geneious Pro 5.1.6 

(Drummond et al. 2011) to recover near full-length 16S rRNA gene sequences (range = 

1042 to 1563 bp). Low quality sequence reads and sequences identified as chimeric 

(Schloss et al. 2009) were discarded. All sequences were deposited in GenBank (Acc. 

Nos. JX280152 to JX280385). 

 

Diversity and structure of the bacterial clone libraries 

Bacterial 16S rRNA gene sequences were ascribed to 99% operational taxonomic units 

(OTUs). A 99% sequence identity threshold was used to increase taxonomic resolution 

and assess fine-scale variability in bacterial communities among hosts. Richness 

(Observed OTUs, Chao1 estimator) and diversity metrics (Shannon index, Simpson‟s 

inverse index) were calculated by source (sponge species or color morph), plotted in 

rarefaction curves and used to compare the richness, diversity and evenness of 

recovered bacterial communities. Pairwise differences in bacterial clone libraries of each 

host species and color morph were determined by LIBSHUFF analyses based on 10,000 

randomizations and adjusted using Bonferroni corrections (Sokal & Rohl 1995). All 

analyses were performed using the mothur software package (Schloss et al. 2009). To 

compare clone library sequences with T-RFs, in silico digestions of a representative 

ribotype of each 99% OTU were generated using the Restriction Analysis option in 

Geneious Pro 5.1.6 (Drummond et al. 2011). A reference database was created 

consisting of 5‟-terminal fragment lengths for each OTU and restriction endonuclease 

(HaeIII and MspI) and T-RF drift was predicted and corrected as described in Erwin et al. 

(Erwin et al. 2012c). This database was then used to match predicted T-RFs based on 

clone library sequences with empirical T-RFs obtained during T-RFLP analysis using the 

phylogenetic assignment tool PAT (Kent et al. 2003). Default bin sizes and an extra bin 
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for small T-RFs (2 bp tolerance applied to fragments of 50-100 bp) were applied to PAT 

analyses. 

 

Phylogenetic analysis of the bacterial clone libraries 

Phylogenetic analyses were performed to determine the affiliations between sequences 

retrieved in this study, top matching sequences from BLASTn searches (Altschul et al. 

1990) and publicly available Ircinia-associated symbionts in the GenBank database 

(January 2012), including sequences from I. felix (Schmitt et al. 2007, 2008), I. strobilina 

(Mohamed et al. 2008c; Yang et al. 2011), Mediterranean Ircinia spp. (Muscholl-

Silberhorn et al. 2008; Erwin et al. 2012c) and an Indo-Pacific Ircinia sp. (GenBank Acc. 

No. GQ487629). All sequences were grouped into 99% OTUs and classified using the 

Ribosomal Database Project II sequence classifier (Cole et al. 2003). When bacterial 

sequences from publicly available database derived from the same sponge species and 

grouped in the same 99% OTU, only a representative sequence was used for the 

following analyses to facilitate tree visualization. Finally, sequences were aligned with 

ClustalX 2.1 (Thompson et al. 1997) and a maximum-likelihood (ML) phylogenetic tree 

was constructed in RAxML (Stamatakis 2006) using the General Time Reversible model 

with a gamma distribution of variable substitution rates among sites (GTR+G) (Tavaré 

1986) and 100 bootstrap replicates (Felsenstein 1985). A binary backbone constraint tree 

was constructed from long (> 1000 bp) sequences to allow precise placement of shorter 

sequences as described in Erwin et al. (2012a).  

 

Results 

 

Phylogenetic relationship between sponge hosts  

Partial COI sequences obtained for each color morph of I. felix were more closely related 

to each other (0.4% divergence) than to I. strobilina (> 1% divergence). I. strobilina was 

more closely related to the Mediterranean species I. fasciculata and I. variabilis (0.5% 

divergence) than to the sympatric I. felix; whereas I. felix was more closely related to the 

Mediterranean species I. oros (Fig. 1). Caribbean and Mediterranean Ircinia species 

formed a well-supported clade and were a sister group to the Indo-Pacific sponges I. 

ramodigitata and I. irregularis.  
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Figure 1. Phylogenetic analysis of host sponges based on a fragment of the mitochondrial gene 

cytochrome oxidase I. Tree topology was obtained by neighbor joining and numbers on nodes 

indicate bootstrap values (> 50%) for neighbor joining (left) and maximum likelihood (right) 

analysis. Terminal node labels show GenBank accession numbers and sponge species. 

Sequences obtained in this study are highlighted in bold. 

 

Bacterial morphology and ultrastructure 

Electron microscopy observations showed that Ircinia spp. from the Bahamas harbored 

diverse microbial communities (Fig. 2). Bacteria were mostly distributed extracellularly in 

the mesohyl of both sponge species (Fig. 2a, b) and occurred in high densities (1.197 x 

106 ± 0.051 cells/mm2 in I. strobilina, 0.816 x 106 ± 0.142 cells/mm2 in I. felix). Different 

bacterial morphotypes were distinguishable, including prokaryotic cells with a nucleoid-

like structure (Fig 2a, b). A cyanobacterium corresponding to the description of 

Candidatus Synechococcus spongiarum (Usher et al. 2004) was abundant in the 

ectosome of I. felix (Fig. 2c) and was characterized by spiral thylakoids located around 

the perimeter of the cell. These thylakoids appeared with electron-dense granules in 

between them. Several cyanobacterial cells were also observed dividing by pinching in 

the center (Fig. 2c). No cyanobacterial symbionts were observed in I. strobilina. Sponge 

cells (archaeocytes) were only observed occasionally in the mesohyl and often contained 

several phagosomes digesting bacteria (Fig. 2d). 
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Figure 2. Representative electron micrographs of sponge holobionts. Bacterial diversity in the 

mesohyl of (A) I. strobilina and (B) I. felix tan morph, including morphotypes containing a nucleoid-

like structure within the cell (black stars). (C) The cyanobacterium Candidatus Synechococcus 

spongiarium (Cy) and active bacterial cell division (black arrows) in the ectosome of the white 

morph of I. felix. (D) Sponge cell (archeocyte) in the tan morph of I. felix showing the cell nucleus 

(N), and numerous phagosomes (Ph). Scale bar represents 2 µm. 

 

Host-specificity and biogeography of bacterial communities 

A total of 181 unique T-RFs for the restriction enzyme HaeIII (141 in I. strobilina, 126 in 

the white morph of I. felix, 109 in the tan morph, and 123 in seawater), and 204 for MspI 

(158 in I. strobilina, 136 in the white morph of I. felix, 106 in the tan morph, and 135 in 

seawater) were recovered. nMDS plots constructed from T-RFLP profiles for both 

restriction enzymes showed clear differences between seawater and sponge-derived 

bacteria (Fig. 3). Differences were also observed between the bacterial communities of I. 

strobilina and I. felix but not between color morphs of I. felix. Accordingly, statistical 

analyses revealed significant differences (PERMANOVA, P < 0.01) among all pairwise 

comparisons of seawater bacteria and sponge-associated bacteria, between I. strobilina 



Biogeography and Host Fidelity of Bacterial Communities in Ircinia spp. 

 

 32 

and I. felix, but not between color morphs of I. felix (P > 0.34; Table 1). PERMDISP 

results reported significant differences in the homogeneity of dispersion between each 

sponge host and seawater, but not among sponge sources (Table 1). No differences in 

the bacterial composition of the sponge samples could be attributed solely to location (P > 

0.05); however, a significant interaction between source and location occurred for the 

restriction enzyme MspI. Subsequent pairwise comparisons in a nested design and after 

Benjamini-Yekutieli correction only revealed significant differences between the 

bacterioplankton communities of Sweeting‟s Cay and San Salvador (Supplemental 

Information, Table S2). No significant correlations between bacterial community similarity 

and geographic distance were recovered for any sponge host (Mantel test, P > 0.233 for 

all comparisons). 

 

Figure 3. nMDS plots of bacterial community structure in sponge hosts (I. strobilina and two color 

morphs of I. felix) and surrounding seawater samples. nMDS ordination based on Bray-Curtis 

similarity of T-RFLP profiles using the restriction enzymes (A) HaeIII and (B) MspI. Stress values 

are shown in parenthesis, with values below 0.15 indicating a good representation of similarity 

matrix distances in the graphical ordination plot. 

 

Diversity and structure of the sponge-associated bacterial communities 

16S rRNA gene sequence libraries from I. strobilina (n = 82), the white morph of I. felix (n 

= 68) and the tan morph (n = 84) were ascribed to a total of 83 unique OTUs (99% 

sequence identity). Rarefaction analyses at a similarity level of 99% showed greater OTU 

saturation for the bacterial communities in both morphs of I. felix than for I. strobilina 

(Supplemental Information, Fig. S1a). Richness and diversity metrics revealed that I. 

strobilina hosted a more diverse and evenly distributed bacterial community than I. felix 

(Table 2). The color morphs of I. felix exhibited similar OTU richness values but diversity 

indices (Shannon and Simpson‟s inverse index) were much higher for the white morph 

than for the tan morph (Table 2). Rarefaction curves of all estimators (Chao 1, Shannon 
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and inverse of Simpson‟s index) approached asymptotes and revealed consistent 

differences among sponge hosts across sampling effort (Supplemental Information, Fig. 

S1b-d).  

 

Table 1. Permutational statistical analysis of T-RFLP data (HaeIII and MspI enzymes) for bacterial 

community structure (PERMANOVA) and homogeneity of dispersion (PERMDISP) among sponge 

hosts and seawater. Main tests of source (sponges and seawater), location (collection site) and an 

interactive term are shown, along with pairwise comparisons among sources: tan and white 

morphs of Ircinia felix (tan and white I. felix, respectively), I. strobilina and seawater. Significant 

comparisons following B-Y correction are indicated with asterisks denoting significance level (*= 

0.05, ** = 0.01, ***  = 0.005). 

 
 

HaeIII MspI 

PERMANOVA  
Main Test 

F-ratio P-value F-ratio P-value 

Source 18.167 0.001*** 10.779 0.001*** 

Location 1.707 0.055 1.423 0.128 

Source x Location 1.389 0.062 1.573 0.013* 

PERMANOVA  
Pairwise comparison

 t P-value t P-value 

Tan I. felix - White I. felix  1.039 0.354 0.930 0.508 

Tan I. felix - I. strobilina 2.404 0.001*** 1.790 0.006* 

White I. felix - I. strobilina 2.951 0.001*** 1.913 0.003** 

Tan I. felix - Seawater 7.114 0.001*** 5.741 0.001*** 

White I. felix - Seawater 7.962 0.001*** 5.879 0.001*** 

I. strobilina - Seawater 7.016 0.001*** 6.048 0.002** 

PERMDISP  
Pairwise comparison

 t P-value t P-value 

Tan I. felix - White I. felix  0.517 0.648 0.866 0.465 

Tan I. felix - I. strobilina 0.087 0.946 0.590 0.636 

White I. felix - I. strobilina 0.613 0.573 1.435 0.239 

Tan I. felix - Seawater 3.677 0.002** 2.721 0.023 

White I. felix - Seawater 4.933 0.001*** 3.846 0.001*** 

I. strobilina - Seawater 3.471 0.001*** 1.693 0.156 

 

Table 2. Richness (observed OTUs, Chao1) and diversity metrics (Shannon and Simpson‟s 

inverse indexes) for the bacterial communities recovered from each sponge host. Confidence 

intervals at 95% are shown in parentheses.  

 
 

I. strobilina White I. felix  Tan I. felix 

 
Observed OTUs 45 26 30 

Expected OTUs (SChao1) 103 (68-194) 39 (30-74) 54 (38-105) 

Shannon Index 3.5 (3.2-3.7) 2.9 (2.7-3.1) 2.7 (2.3-2.9) 

Simpson‟s inverse index  28.6 (18.7-60.6) 15.7 (11.2-26.4) 7.1 (4.9-13.3) 
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Figure 4. Host specificity of the bacterial 

communities in I. strobilina and two color 

morphs of I. felix based on 16S rRNA gene 

sequences obtained after clone library 

construction. Pie charts show the 

percentage of clones for each symbiont 

category. Numbers denote the total OTUs 

(99% sequence identity) in each category 

 

Most bacterial OTUs were unique to one host, with little overlap among the 

three sponge-associated communities (Fig. 4). Only four OTUs (IRCBA01, IRCBA13, 

IRCBA20 and IRCBA44) were shared among I. strobilina and the two color morphs of I. 

felix (hereafter called generalist OTUs). These generalist OTUs were dominant within 

each bacterial community, in terms of number of sequences retrieved, accounting for 

6.0 to 34.5% of all bacterial sequences per host species and morph, except for 

IRCBA20 (< 2.5% of sequences for all hosts) and IRCBA13 for the white morph of I. 

felix (2.9%). The OTU IRCBA01 represented 8.5% of all the sequences recovered for I. 

strobilina, and 34.5% and 17.5% of the sequences from the tan and white morphs of I. 

felix, respectively. The OTU IRCBA44 accounted for 13.4% of I. strobilina-derived 

sequences and 6.0% of tan I. felix and 8.8% of the white I. felix-derived sequences. 

Two additional OTUs were shared between the two color morphs of I. felix (IRCBA33 

and IRCBA60); these OTUs represented 4.8% and 8.8% of all the sequences retrieved 

for the tan and white morphs, respectively. Consistent with the little OTU-overlap 

among host sponges, the symbiotic community associated with each host sponge was 

significantly different, even among color morphs (LIBSHUFF analysis, Table 3). There 

were no significant differences between the 16S rRNA gene sequences from 

Sweeting‟s Cay and Exumas obtained for both color morphs of I. felix, while significant 

differences were detected between populations of I. strobilina (Table 3). 

PAT analysis showed high congruence between bacterial clone libraries and T-

RFLP analyses for both restriction enzymes. In fact, 88% of the OTUs obtained with 

clone libraries were also observed with T-RFLP analysis. Empirical T-RFs obtained 

with the enzyme HaeIII matched 50.6% of the peaks predicted by in silico digestion, 

while for MspI, empirical T-RFs matched 55.6% of the predicted peaks.  
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Table 3. Pairwise statistical comparisons of bacterial community structure (LIBSHUFF 

analyses) based on 16S rRNA gene sequences obtained from clone libraries of I. strobilina and 

the two color morphs of I. felix (tan and white). Comparisons among hosts and between 

sampling sites (Sweeting‟s Cay and Exumas) within hosts are shown. Two tests per pairwise 

comparison (dCXY and dCYX) and corresponding P-values (P-valueXY, P-valueYX) were 

conducted, with significance in either comparison indicating differences in bacterial community 

structure. Significant comparisons following Bonferroni correction are indicated with asterisks 

(*= 0.05, ** = 0.01, ***  = 0.005). 

LIBSHUFF comparisons 
dCXY 
dCYX 

P-value XY 
P-value YX 

I. strobilina - Tan I. felix  
0.0054 
0.0038 

0.0016** 
0.0045* 

I. strobilina - White I. felix  
0.0034 
0.0089 

0.019 
0.001** 

                Tan I. felix - White I. felix  
0.0048 
0.0078 

0.002* 
0.0001*** 

Sweeting‟s – Exumas within 

I. strobilina 
0.0083 
0.0026 

0.0161* 

0.2001 

White I. felix  
0.0027 
0.0014 

0.2125 
0.353 

Tan I. felix  
0.0040 
0.0014 

0.0624 
0.3014 

 

Phylogenetic analysis of 16S rRNA bacterial sequences 

The vast majority of the sequences recovered from each sponge host were closely 

related with other sponge-associated (73.2% in I. strobilina, 94.1% in the white morph 

of I. felix, and 77.4% in the tan morph) and coral-associated bacterial sequences 

(20.7% in I. strobilina, 4.4% in the white morph of I. felix, and 20.2% in the tan morph). 

Some ribotypes matched with seawater-derived sequences (6.1% in I. strobilina, 2.4% 

in the tan morph of I. felix, and 0% in the white morph), but mostly at low identity 

matches (< 97% sequence identity). As in other HMA sponges, the bacterial OTUs 

recovered herein were distributed into eight known phyla and one unclassified group 

(Supplemental Information, Fig. S2-S7). All three sponge taxa hosted representatives 

from two classes of Proteobacteria (Delta and Gamma), as well as Acidobacteria, 

Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospira and Firmicutes (Fig. 5). 

Proteobacteria, specifically the class Delta-Proteobacteria (> 15% total clones in all 

hosts), was the best-represented phylum in all clone libraries. Sequences related to 

Spirochaetes and Alpha-Proteobacteria were only present in I. strobilina and the tan 

morph of I. felix. Sequences affiliated to Cyanobacteria (Synechococcus) were only 

found in I. felix and were more abundant in the white morph than in the tan morph (> 

15% and > 2% of total clones, respectively). The generalist OTUs shared by the three 

sponge hosts corresponded to the class Delta-Proteobacteria (IRCBA01), and the 

phyla Acidobacteria (IRCBA13 and IRCBA20) and Nitrospira (IRCBA44). These 
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symbionts formed sponge-specific (IRCBA20 and IRCBA44) and sponge-coral specific 

(IRCBA01, IRCBA13) clusters (Supplemental Information, Fig. S2). The Delta-

Proteobacteria-affiliated OTU (IRCBA01) was particularly dominant in the bacterial 

clone libraries (8.5% of the sequences in I. strobilina; 17.5% in the white morph of I. 

felix, and 34.5% in the tan morph) and was also common in the Mediterranean species 

I. fasciculata, I. variabilis and I. oros, as well as in other unrelated sponge species and 

corals (Suppelemental Information, Fig. S4). 

 

 

Figure 5. Phylogenetic affiliation of symbiont OTUs (99% sequence similarity) in I. strobilina and 

two color morphs of I. felix (tan and white). Bacteria are classified according to phylum or class 

(*). 

 

Discussion 

 

In this study, we determined whether the bacterial communities associated with the 

sympatric sponges I. strobilina and I. felix were stable across islands separated by tens 

to hundreds of km in the Bahamas. Sequencing of a fragment of the mitochondrial COI 

gene from host sponges confirmed the taxonomic identification and phylogenetic 

relationships of I. strobilina and two color morphs of I. felix (white and tan), allowing for 

the assessment of the bacterial communities specificity among congeneric and 

conspecific host individuals. Electron microscopy, T-RFLP analysis and 16S rRNA 

gene clone libraries confirmed that these sponge taxa harbor host-species specific 

bacterial communities that are clearly differentiated from the bacterioplankton in the 

surrounding seawater. T-RFLP profiles further revealed that the bacterial communities 

in two color morphs of I. felix were more similar to each other than to I. strobilina. 
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Within each sponge host, bacterial assemblages were remarkably stable over locations 

and maintained across host populations and islands.  

Our results revealed a major influence of host-related factors in structuring 

sponge-associated bacterial assemblages. We sampled sponge populations in reefs up 

to 400 km apart located in islands with distinct human population densities and 

oceanographic currents (Colin 1995), yielding different environmental conditions, 

disturbance regimes and dispersal barriers. However, we found high spatial stability of 

sponge-bacteria symbioses and no isolation-by-distance effect, consistent with 

previous studies on sponge-derived bacterial communities at geographical scales 

ranging from tens (Webster et al. 2004; Lee et al. 2009b; Yang et al. 2011) to hundreds 

of km (Webster & Hill 2001; Taylor et al. 2005; Thiel et al. 2007a). Other studies 

suggested that environmental conditions could also influence the structure of symbiont 

communities (Taylor et al. 2005; Yang et al. 2011), although these studies involve 

broader geographic (i.e., inter-ocean) scales and/or genetically distant hosts, thus 

decoupling the effects of biogeography and host-specificity remained a major obstacle. 

In contrast, studies that minimize the phylogenetic distance among host species are 

better suited to distinguish location- and host-related patterns. For instance, Montalvo 

& Hill (2011) compared the bacteria associated with Xestospongia muta and X. 

testudinaria and found that these closely related hosts harbored strikingly similar 

bacterial communities, despite the fact that they inhabit different oceans (Atlantic and 

Pacific, respectively). 

In addition to spatial stability, our study also assessed host specificity of 

bacterial communities among congeneric and conspecific sponges. The bacterial 

sequences derived from 16S rRNA clone libraries for each Ircinia host belonged to the 

same phyla described for other HMA sponges (Webster & Taylor 2012) and were 

largely consistent with previous studies of I. strobilina (Mohamed et al. 2008c; Yang et 

al. 2011) and I. felix (Schmitt et al. 2007, 2008). For example, a sponge-specific cluster 

of Bacteroidetes sequences that was previously detected only in the larvae of I. felix 

(Schmitt et al. 2007) was identified herein in both color morphs of adult I. felix hosts. 

TEM micrographs and clone libraries also revealed the absence of Cyanobacteria in 

the microbiota of I. strobilina, consistent with a recent molecular-based survey (Yang et 

al. 2011) and the low chlorophyll a content of this sponge host (Erwin & Thacker 2007; 

Southwell et al. 2008). While some I. strobilina hosts may harbor nitrogen-fixing 

cyanobacteria (Mohamed et al. 2008a; 2008c), these symbionts are clearly distinct 

from the dense populations of Synechococcus spongiarum consistently reported in I. 

felix (Schmitt et al. 2007; Southwell et al. 2008). The significance for host metabolism 

of these divergent bacterial assemblages is still uncertain and further investigation is 
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necessary to assess whether the net activity of different symbiont microbiota results in 

overall similar biochemical processes in the holobiont (e.g., in nitrogen flux, [Southwell 

et al. 2008]). 

In a broader context, most of the sequences in the bacterial 16S rRNA clone 

libraries of Ircinia spp. from the Bahamas were closely-related to bacterial symbionts in 

taxonomically distant sponge hosts (e.g., different sponge orders) and from different 

geographic origins (e.g., Mediterranean and Pacific). Phylogenetic analyses of bacterial 

clone libraries did not reveal any Ircinia-specific or Caribbean Ircinia-specific symbiont 

clusters. The four bacterial OTUs shared by I. strobilina and both color morphs of I. 

felix were also described in other sponge (IRCBA20, IRCBA44) and coral (IRCBA01, 

IRCBA13) hosts from diverse ecosystems. However, at the community level, the 

bacterial composition in each Ircinia host analyzed herein was still host-specific. Similar 

observations of symbiont structure and specificity were recently described for 

Mediterranean Ircinia spp. and termed a “specific mix of generalists” (Erwin et al. 

2012a). The outstanding questions are which factors result in the observed distribution 

of symbiont taxa among hosts and what are the ecological consequences for host-

symbiont interactions. 

Host-related factors influencing bacterial communities may include particular 

mesohyl conditions (e.g., different pH and oxygen levels) and the evolutionary history 

of each sponge species. Although closely related, I. felix and I. strobilina show striking 

differences in morphological and physiological traits, such as shape and filter-feeding 

capacity (Parra-Velandia & Zea 2003; Pile 1997). Pile (1997) demonstrated that I. 

strobilina had higher filtering efficiencies than I. felix and suggested that I. strobilina, as 

a tall and massive sponge, contained more aquifer units, retained water inside the 

sponge body longer, and exhibited more efficient particle uptake than I. felix. Such 

specific features may create distinct conditions in the mesohyl of each host, each 

supporting particular bacterial consortia. In addition, the evolutionary history of each 

sponge species may also influence the structure of their bacterial communities. Vertical 

transmission has been reported in I. felix for most of the bacterial taxa (Schmitt et al. 

2007) and we have confirmed that morphotypes of I. felix are more similar to each 

other than to I. strobilina. Thus, while periodic horizontal symbiont transmission is likely 

to occur and explain the generalist distribution of individual symbiont taxa, continual 

vertical transmission of specific communities may maintain symbiont structure within 

host species, and their divergence among host species, over recent evolutionary 

scales. 

In conclusion, the bacterial communities observed in I. strobilina and two color 

morphs of I. felix were host-species specific, exhibiting greater similarity within host 



Biogeography and Host Fidelity of Bacterial Communities in Ircinia spp. 

 39 

species (morphotypes) than between host species (I. felix and I. strobilina). The 

bacterial taxa comprising these symbiont communities were also present in other 

sponge and coral species and thus represent generalist symbionts. As described for 

Mediterranean Ircinia species (Erwin et al. 2012a), we conclude that I. strobilina and I. 

felix host a specific mix of generalist symbionts and suggest that host-specific factors 

(mesohyl conditions and host evolutionary history) determine their unique structure in 

each host. Contrary to our original hypothesis of spatial structure in the bacterial 

communities associated with Ircinia hosts, we found high stability of bacterial 

communities within each host sponge across different islands and geographic 

distances up to 400 km, indicating a minimal effect of dispersal limitation and local 

environmental conditions on symbiont structure. Thus, host-specific rather than 

biogeographic factors play a primary role in structuring and maintaining sponge-

bacteria relationships in Ircinia hosts from the Bahamas. 

 

Acknowledgements  

 

This research was funded by the Spanish Government project CTM2010-17755, and 

the Catalan Government grant 2009SGR-484 for Consolidated Research Groups and 

FI-DGR fellowship to LP. Joseph R. Pawlik (University of North Carolina Wilmington, 

USA) financed usage of the UNOLS Research Vessel Walton Smith with the US 

National Science Foundation grant OCE 0550468. 



Biogeography and Host Fidelity of Bacterial Communities in Ircinia spp. 

 

 40 

Supplemental Information 

 

Table S1. Sample collection by site and source (sponge species and seawater). 

 
 

Sweeting‟s 
Cay 

Little San 
Salvador 

San Salvador Exumas 
New 

Providence 

I. strobilina 5 2 2 8 3 

I. felix white morph 5 4 3 6 3 

I. felix tan morph 5 1 0 6 3 

Seawater 19 1 4 3 1 
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Table S2. Permutational statistical analyses of T-RFLP data (MspI enzyme) comparing bacterial 

community structure (PERMANOVA) and homogeneity of dispersion (PERMDISP) among 

locations within each sponge and seawater. For each term, the multivariate version of the t-

statistic and P-values from Monte Carlo‟s correction are shown. No test = not enough samples 

available for nested analyses. Critical value of significance was determined following Benjamini-

Yekutieli correction (B-Y). Significant P-values after B-Y correction are indicated with an 

asterisk. 

 

 
I. felix tan morph 

I. felix white 
morph 

I. strobilina Seawater 

PERMANOVA t P-value t P-value t P-value t P-value 

Sweeting‟s Cay – 
Exumas 

1.555 0.059 0.873 0.549 1.212 0.202 1.533 0.066 

Sweeting‟s Cay – 

New Providence 
1.285 0.185 0.956 0.486 1.089 0.317 1.353 0.107 

Sweeting‟s Cay –  

Little S. Salvador 
0.792 0.656 1.081 0.318 1.284 0.197 0.893 0.534 

Sweeting‟s Cay –  

San Salvador 
No 
test 

No test 1.609 0.068 0.772 0.609 2.175 0.003* 

Exumas –  

New Providence 
1.315 0.171 0.821 0.623 1.156 0.264 0.773 0.59 

Exumas –  

Little S. Salvador 
0.985 0.432 1.174 0.238 1.224 0.231 0.405 0.843 

Exumas –  

San Salvador 
No 
test 

No test 1.599 0.071 1.098 0.279 1.438 0.161 

New Providence –  

Little S. Salvador 
1.124 0.359 0.980 0.41 1.419 0.207 

No 
test 

No test 

New Providence –  

San Salvador 
No 
test 

No test 1.924 0.041 1.500 0.148 0.856 0.516 

Little S. Salvador –  

San Salvador 
No 
test 

No test 1.555 0.087 1.176 0.334 0.813 0.581 

PERMDISP t P-value t P-value t P-value t P-value 

Sweeting‟s Cay – 
Exumas 

2.475 0.054 0.069 0.944 0.580 0.551 1.236 0.378 

Sweeting‟s Cay – 

New Providence 
4.665 0.028 2.228 0.065 1.622 0.383 2.683 0.048 

Sweeting‟s Cay –  
Little S. Salvador 

8.452 0.168 1.015 0.683 0.568 1 2.683 0.048 

Sweeting‟s Cay –  
San Salvador 

No 
test 

No test 0.010 0.986 1.259 0.58 1.165 0.403 

Exumas –  
New Providence 

3.674 0.025 1.751 0.228 1.553 0.307 2.200 0.494 

Exumas –  
Little S. Salvador 

4.128 0.127 0.967 0.620 1.283 0.661 2.200 0.519 

Exumas –  
San Salvador 

No 
test 

 No test 0.140 0.936 1.206 0.552 1.521 0.264 

New Providence –  
Little S. Salvador 

12.505 0.253 1.832 0.377 23.618 0.118 
No 
test 

No test 

New Providence –  
San Salvador 

No 
test 

No test 1.822 0.385 0.459 0.799 1.631 0.623 

Little S. Salvador –  

San Salvador 
No 
test 

No test 0.830 0.827 
No 
test 

No test 1.631 0.626 
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Figure S1. Rarefaction curves for diversity and dominance metrics of the bacterial 16S rRNA 

gene sequences obtained from I. strobilina (IST) and the tan (IFX-TAN) and white morphs (IFX-

WH) of I. felix at a similarity level of 99%: Observed OTUs (A), Chao1 estimator (B), Shannon 

index (C) and the inverse of Simpson index (D). For observed OTUs (A), the bounds on the 

upper (hci) and lower (lci) 95% confidence intervals for each curve are also shown. 
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Figure S2. Phylogeny of sponge-associated Gammaproteobacteria based on bacterial 16S 

rRNA gene sequences. The maximum likelihood tree was constructed in RAxML as described in 

the main text. Bootstrap support values are shown on nodes when >50%. Terminal node labels 

indicate GenBank accession number and source of each bacterial sequence. Non-sponge 

sources are specified in parenthesis. Sequences from this study are highlighted in bold and 

include OTU code and total number of clones obtained (in parenthesis). Reference sequences 

(ref. seq) obtained from cultured bacteria include GenBank accession number and name of the 

bacterium. Shaded boxes indicate sponge-specific clades containing sequences from this study.  
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Figure S3. Phylogeny of sponge-associated Alphaproteobacteria based on bacterial 16S rRNA 

gene sequences. Details are as provided in Fig. S2.  
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Figure S4. Phylogeny of sponge-associated Deltaproteobacteria, Firmicutes and Acidobacteria 

based on bacterial 16S rRNA gene sequences. Details are as provided in Fig. S2.  
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Figure S5. Phylogeny of sponge-associated Acidobacteria (SVA0725), Actinobacteria, 

Gemmatimonadetes and Nitrospira based on bacterial 16S rRNA gene sequences. Details are 

as provided in Fig. S2. 
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Figure S6. Phylogeny of sponge-associated Chloroflexi and the Planctomycetes-

Verrucomicrobia-Chlamydiae (PVC) superphylum based on bacterial 16S rRNA gene 

sequences. Details are as provided in Fig. S2.  
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Figure S7. Phylogeny of sponge-associated Bacteroidetes, Deferribacteres, Spirochaetes, 

Poribacteria and Cyanobacteria based on bacterial 16S rRNA gene sequences. Details are as 

provided in Fig. S2.  
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Ircinia fasciculata (Tossa de Mar, Spain) 

Courtesy of P. M. Erwin 
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Chapter 2 

 

 

Host Rules: Spatial Stability of Bacterial Communities 

Associated with Marine Sponges (Ircinia spp.) in the Western 

Mediterranean Sea 

 

Lucía Pita, Xavier Turon, Susanna López-Legentil & Patrick M. Erwin 

 

Published in: FEMS Microbiology Ecology (2013) 86:268-276. (2012-Impact factor: 

3.563; Q2 Microbiology). 

 

Abstract 

 

Dispersal limitation and environmental selection are the main processes shaping free-

living microbial communities, but host-related factors may also play a major role in 

structuring symbiotic communities. Here, we aimed to determine the effects of 

isolation-by-distance and host species on the spatial structure of sponge-associated 

bacterial communities using as a model the abundant demosponge genus Ircinia. We 

targeted three co-occurring Ircinia species and used terminal restriction fragment 

polymorphism (T-RFLP) analysis of 16S rRNA gene sequences to explore the 

differentiation of their bacterial communities across a scale of hundreds of kilometers in 

the Western Mediterranean Sea. Multivariate analysis and non-metric multidimensional 

scaling plots of T-RFLP profiles showed that bacterial communities in Ircinia sponges 

were structured by host species and remained stable across sampling locations, 

despite geographic distances (80-800 km) and diverse local conditions. While 

significant differences among some locations were observed in Ircinia variabilis-derived 

communities, no correlation between geographic distance and community similarity 

was consistently detected for symbiotic bacteria in any host sponge species. Our 

results indicate that bacterial communities are mostly shaped by host species-specific 

factors and suggest that evolutionary processes acting on long term symbiotic 

relationships have favored spatial stability of sponge-associated bacterial communities.  
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El hospedador manda: estabilidad espacial en las comunidades 

bacterianas asociadas con esponjas marinas (Ircinia spp.) del 

Mediterráneo Occidental 

 

Resumen 

 

La limitación de la dispersión y la selección natural son los principales procesos que 

dan forma a las comunidades microbianas de vida libre, pero factores relacionados 

con el hospedador pueden desempeñar un papel importante en estructurar las 

comunidades simbiontes. El objetivo de este trabajo es determinar los efectos del 

aislamiento por distancia y de la especie de hospedador en la estructura espacial de 

las comunidades bacterianas asociadas a esponjas, usando como modelo el género 

Ircinia. Nosotros hemos centrado la atención en tres especies simpátricas de Ircinia y 

usamos la técnica de polimorfismo en la longitud de los fragmentos de restricción 

terminales (T-RFLP) para analizar secuencias del gen ARNr 16S bacteriano con la 

idea de explorar las comunidades de bacterias a lo largo de una escala espacial de 

cientos de kilómetros en el Mediterráneo Occidental. Análisis multivariantes y gráficos 

de escalado multidimensional no métrico de los perfiles de T-RFLP mostraron que las 

comunidades bacterianas asociadas con esponjas Ircinia estaban estructuradas de 

acuerdo a la especie considerada y se mantenían estables a lo largo de todas las 

localidades de muestreo, independientemente de la distancia considerada (80-800 km) 

y diversas condiciones locales. Aunque se detectaron diferencias significativas entre 

algunas localidades en comunidades bacterianas de I. variabilis, no existe correlación 

entre la distancia geográfica y la similaridad de las comunidades para ninguna especie 

de esponja. Nuestros resultados indican que las comunidades bacterianas de esponjas 

se conforman principalmente dependiendo de factores relacionados con la especie de 

esponja que habitan, lo cual sugiere que procesos evolutivos actuando sobre la 

relación simbiótica podrían haber favorecido la estabilidad espacial observada.  
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Introduction 

 

Microbial biogeography studies often evaluate the relationship between community 

similarity and geographic distance (i.e., isolation-by-distance, also called distance-

decay relationships). These patterns respond primarily to two processes: dispersal 

limitation and environmental selection (e.g., Martiny et al. 2006; Fierer 2008). Dispersal 

limitation prevents connectivity among distant locations or populations, while 

environmental heterogeneity (e.g. different physico-chemical conditions of seawater in 

coastal systems) yields variability of the microbial communities among locations as 

local conditions “pick up” the best-adapted microbes. Disclosing the spatial structure of 

microbial communities helps to elucidate the relative importance of these two 

underlying processes (Hanson et al. 2012).  

Some marine sponges, the so-called high-microbial-abundance sponges 

(HMA), harbor abundant and diverse bacterial communities (Taylor et al. 2007; 

Hentschel et al. 2012). These bacterial communities are far from being randomly 

structured; rather, their diversity, composition and structure depend on each sponge 

host (Schmitt et al. 2012). Accordingly, each sponge species harbors a specific 

symbiotic community, resulting from the combination of vertical transmission (from 

parents to larva) (Usher et al. 2001; Ereskovsky et al. 2004; Schmitt et al. 2007; Lee et 

al. 2009a) and environmental acquisition of bacteria (Schmitt et al. 2008; Webster et al. 

2010; Hentschel et al. 2012; Taylor et al. 2013).  

Recent research on sponge-microbe symbioses has focused on determining 

whether host specificity of symbiotic communities is maintained across locations. 

Previous studies have reported high spatial stability of sponge-associated bacteria 

across geographic distances up to thousands of kilometers (Hentschel et al. 2002; 

Webster et al. 2004; Taylor et al. 2005; Pita et al. 2013a) whereas others have 

detected differentiation depending on location within the same (Lee et al. 2009b) or 

among different ecosystems (Anderson et al. 2010; Yang et al. 2011). Thus, it is 

difficult to draw a general conclusion about the spatial structure of sponge-derived 

bacterial communities. In addition, sampling strategy and comparison of distantly 

related host species may confound the processes involved, given the large effect of 

host sponge species on symbiont community structure.  

In this study, we designed a sampling strategy targeting sympatric and 

congeneric sponges from several western Mediterranean sites. Our goal was to 

distinguish between the relative contribution of biogeographic (dispersal limitation, 

environmental selection) and host-related processes (i.e, linked to evolutionary history 

or biological characteristics) to the spatial structure of bacterial communities associated 
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with sponges. Herein, we used the term “environment” to refer to the abiotic conditions 

in ambient seawater external to the host sponges. We investigated the bacterial 

communities associated with three Ircinia species (I. fasciculata, I. variabilis and I. 

oros) commonly found in the shallow littoral of coastal Mediterranean environments. 

Ircinia bacterial diversity is consistent with other HMA sponges, but each species 

harbors a unique community composed of generalist sponge symbionts (Erwin et al. 

2012). The microbial inheritance mode in Mediterranean Ircinia species has not yet 

been studied; although vertical transmission was shown for I. felix from the Caribbean 

(Schmitt et al. 2007) and bacterial cells were observed in I. oros larva (Ereskovsky & 

Tokina 2004; Uriz et al. 2008). To test whether the host-specific symbiotic communities 

reported in Mediterranean Ircinia spp. were maintained over locations separated by 

hundreds of kilometers and under different local environmental conditions, we 

characterized bacterial communities in Ircinia spp. from six locations using terminal 

restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA gene 

sequences. We hypothesized that, within each host, a significant distance-decay 

relationship in bacterial community similarity would be detected as a consequence of 

(1) dominant currents in the region limiting dispersal of host larvae and 

bacterioplankton and (2) differences in local conditions generating spatial differentiation 

of bacterial communities among locations. 

 

Materials & Methods 

 

Sample collection  

Tissue samples of I. fasciculata (Pallas 1766), I. variabilis (Schmidt 1862), and I. oros 

(Schmidt 1864) were collected by scuba diving from shallow littoral zones (depth < 20 

m) in September-October 2010 at six different locations from the Western 

Mediterranean Sea (Fig. 1). Seventy-four specimens were sampled (I. fasciculata, n = 

28; I. variabilis, n = 27; I. oros, n = 19), including 3-6 replicates per species and site, 

except for I. oros in Caials for which we only had two replicates. All sampled sponges 

appeared healthy and were collected from sites located 80 to 800 km apart and 

characterized by different anthropogenic pressures: from marine protected areas 

(Cabrera National Park, Scandola Nature Reserve in Corsica, Caials-Natural Park of 

Cap de Creus), to locations near dense human populations (Blanes, Calafat and 

Alicante). When possible, ambient seawater (500 mL) was simultaneously sampled in 

close proximity (< 1 m) to the sponges (Caials n = 1; Blanes n = 3; Alicante n = 2). 

Sponge samples were immediately preserved in absolute ethanol and seawater 
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samples were concentrated on 0.2-µm filters prior to preservation in ethanol. All 

samples were stored at -20OC. 

 

Figure 1. Sampling sites in the Western Mediterranean Sea. Sampling sites and main currents 

in the region (adapted from Millot 1999) are shown. Scale bar = 422 km. 

 

DNA extractions and T-RFLP analyses 

Genomic DNA was extracted from tissue and seawater samples using the DNeasy® 

Blood & Tissue kit (Qiagen, Valencia, CA) according to the manufacturer‟s instructions. 

The universal bacterial forward primer Eco8F (Turner et al. 1999), tagged with a 5´-end 

6-carboxyfluorescein label (6-FAM), and the reverse primer 1509R (Martínez-Murcia et 

al. 1995) were used for amplification of a ca. 1500 bp fragment of the 16S rRNA gene. 

PCR was performed as follows: one initial denaturation step for 5 min at 94OC; 35 

cycles of 1 min at 94OC, 0.5 min at 50OC, 1.5 min at 72OC; and one final elongation step 

for 5 min at 72OC. Total PCR volume (50 μL) included 10 μM of each primer, 10 nM of 

each dNTP, 1x Reaction Buffer (Ecogen), 2.5 mM MgCl2, 5 units of BioTaqTM DNA 

polymerase (Ecogen), and full-strength or 1:10 diluted DNA extracts. Products from 

triplicate PCR reactions were purified from electrophoresis gels using the Qiaquick Gel 
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Extraction kit (Qiagen), and quantified using the QubitTM fluorometer and Quant-iTTM 

dsDNA Assay kit (Invitrogen, Carlsbad, CA), according to manufacturers‟ instructions. 

Separate digestions with the restriction enzymes HaeIII and MspI were performed as 

described in Pita et al. (2013) and analyzed in an automated ABI 3730 Genetic 

Analyzer (Applied Biosystems) at the Genomics Unit of the Scientific and Technologic 

Center of the University of Barcelona. The lengths of each terminal-restriction fragment 

(T-RF) were determined with respect to an internal size standard (LIZ600) using the 

PeakScannerTM software (Applied Biosystems). T-RFs smaller than 50 bp or larger 

than 600 bp were discarded because they were beyond the resolution of the size 

standard. Peak intensities below 50 fluorescence units and relative peak area variation 

within a cut-off value of two standard deviations (Abdo et al. 2006) were discarded as 

background noise using the T-REX online tool (Culman et al. 2009). “True” T-RFs were 

then aligned in T-REX using a clustering threshold of 1 bp to construct relative T-RF 

abundance matrices. 

 

Statistical analyses of T-RFLP data 

Relative abundance matrices were square root transformed prior to all analyses based 

on Bray-Curtis distances. For each restriction enzyme, non-metric multidimensional 

scaling (nMDS) plots were constructed to visualize bacterial community similarity. 

Permutational multivariate analyses of variance (PERMANOVAs; Anderson 2001; 

McArdle & Anderson 2001) were used to test for variability across sources (seawater 

and the three sponge species) and among locations within each sponge host. To 

compare structure within groups and determine the effect of heterogeneity (dispersion) 

on significant PERMANOVA outcomes, pairwise comparisons of dispersion 

(PERMDISP; Anderson 2006) were performed. SIMPER analyses were conducted to 

identify the individual T-RFs driving the differentiation between groups. Calculations 

were performed in PRIMER v6 (Clarke 1993; Clarke & Gorley 2006) and 

PERMANOVA+ (Plymouth Marine Laboratory, UK). Critical values for significance were 

corrected for multiple pairwise comparisons following the Benjamini & Yekutieli (2001) 

algorithm (B-Y correction). Mantel tests for each host and restriction enzyme were 

calculated in R v2.15.2 (The R Core Team 2012) using the package ade4 (Dray & 

Dufour 2007) to determine whether differences in bacterial community similarity were 

correlated with geographic distances. We also repeated the Mantel tests excluding the 

island of Cabrera from the analyses to test if dominant currents in the Western 

Mediterranean (Fig. 1) isolated Cabrera from the peninsular locations, creating a 

disproportionate differentiation despite short geographic distances and hence distorting 

the isolation-by-distance effect across the other locations. For each enzyme and 
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species, we partitioned data matrices into “rare” T-RFs (relative abundance ≤ 1% of 

each sample) and “abundant” T-RFs (relative abundance > 1%) to determine the 

influence of rare and abundant T-RFs in the trends observed for the whole community. 

These threshold values were chosen due to their widespread use in microbial ecology 

studies (e.g., Pedrós-Alió 2006) and empirical ability to partition the dataset relatively 

evenly (Table 1). Rare and abundant T-RF matrices were analyzed separately with the 

same procedures described above. 

 

T-RFLP analysis and 16S rRNA gene sequence data 

Predicted T-RFs from a reference database were matched with the empirical T-RFs 

obtained in this study. The reference database consisted of in silico digestions by 

HaeIII and MspI enzymes of Ircinia-associated bacterial 16S rRNA gene sequences 

from a previous study (Erwin et al. 2012b). The analysis was performed with the 

phylogenetic assignment tool PAT (Kent et al. 2003), adding an extra bin size for small 

T-RFs (i.e., 2-bp tolerance applied to fragments of 50-100 bp). 

 

Results 

 

T-RFLP analyses 

We identified 183 bacterial T-RFs with the HaeIII enzyme (139 in I. fasciculata, 108 in I. 

oros, 140 in I. variabilis and 79 in seawater) and 211 using the MspI enzyme (140 in I. 

fasciculata, 145 in I. oros, 184 I. variabilis and 57 in seawater). The mean and standard 

error of T-RFs in each category (total, abundant and rare) per source is reported, for 

HaeIII and MspI enzymes in Table 1. Regarding the specificity of the T-RFs, 25.1% 

(HaeIII) and 20.9% (MspI) were detected in all sources (i.e., present in at least one 

sample of I. fasciculata, I. variabilis, I. oros and seawater), whereas 19.6% (HaeIII) and 

30.3% (MspI) were detected in all sponge species and were absent in the seawater. 

The proportion of T-RFs that are shared among sources is depicted in Supplemental 

Information, Fig. S1. nMDS plots of all samples (Fig. 2a) showed that bacterial 

communities clustered by source, with sponge-derived samples more similar to each 

other than to seawater samples. Sponge-derived samples further grouped by host 

species, but with more discrimination among species for HaeIII than for MspI 

fingerprints. nMDS graphs for sponge-derived communities (Fig. 2b) showed no 

consistent grouping of sponge-associated bacterial communities based on sampling 

location. This apparent lack of spatial structure was maintained when nMDS plots were 

drawn separately for each sponge species (Fig. 3). Some I. variabilis-derived samples 

from HaeIII digestions (Fig. 3b, left) showed a tendency to cluster according to 
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sampling location, yet this spatial pattern was not evident for samples from MspI 

digestions (Fig. 3b, right). 

 

Table 1. T-RFs obtained for each sponge species and seawater.  

Shown are the number (average ± standard error) of total, abundant (relative peak area > 1%) and rare 

(relative peak area ≤1%) T-RFs found per sample within each sponge species and seawater, for each 

restriction enzyme (HaeIII and MspI). IF=I. fasciculata; IO= I. oros, IV= I. variabilis, SW= seawater. 

 

 

Figure 2. Spatial patterns of bacterial communities in marine sponges and seawater. nMDS 

plots of bacterial T-RFLP profiles obtained from HaeIII (left) and MspI (right) digestions. (A) All 

samples coded by source; (B) sponge samples coded by location. Stress values are shown in 

parenthesis. 

 

 

 

 HaeIII  MspI 

 IF         IO         IV        SW  IF         IO       IV     SW 

Total T-RFs 42±3     34±4    41±3     31±6  40±3     42±3    44±3    25±2 
Abundant T-RFs 20±1     18±1    20±1     20±2  19±1     21±1    20±1      9±1 
Rare T-RFs 22±3     16±3    22±2     12±5  19±3     22±3    25±3    17±1 
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Figure 3. Spatial patterns of bacterial communities in three Ircinia sponge species. nMDS plots 

of bacterial T-RFLP profiles obtained from HaeIII (left) and MspI (right) digestions. (A) Ircinia 

fasciculata-derived samples; (B) Ircinia variabilis-derived samples; (C) Ircinia oros-derived 

samples. Stress values are shown in parenthesis. 

 

Comparisons among sources 

Pairwise comparisons of T-RFLP profiles among sources (PERMANOVA, Table 2) 

revealed significant differences (P < 0.05) among the bacterial communities in each 

sponge species and seawater for both enzymes and for all comparisons, confirming the 

patterns visualized in nMDS graphs. The bacterial communities in seawater samples 

were significantly different from sponge samples, and bacterial communities in sponges 

were host-species specific. PERMDISP revealed a similar degree of heterogeneity 

within each source (P > 0.10 for all comparisons), and thus the differences between 
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sources were due to differences in symbiont structure. These results were largely 

maintained when only rare T-RFs or abundant T-RFs were considered (Table 2). The 

only consistent difference between these data partitions and the entire dataset was that 

rare I. variabilis-derived communities were not different to the rare communities in I. 

fasciculata (for both enzymes), and that the rare communities in I. fasciculata and I. 

variabilis did not differ significantly from rare symbionts of I. oros for MspI digestions 

(Table 2). 

 

Table 2. Host-specificity of bacterial communities. Multivariate pairwise comparisons of 

bacterial T-RFLP profiles among sources, for each restriction enzyme (HaeIII and MspI) applied 

to the whole community, to the rare partition (relative abundance ≤ 1%) and to the abundant 

partition (relative abundance > 1%). The multivariate version of P-values after 999 permutations 

from PERMANOVA (above) and PERMDISP (below) tests is reported. Critical values for 

significance were corrected for multiple comparisons (B-Y correction) and significant values are 

indicated with asterisks (*α < 0.05, **α < 0.01, ***α < 0.005). 

 Whole community  Rare T-RFs  Abundant T-RFs 

 HaeIII MspI  HaeIII MspI  HaeIII MspI 

I. fasciculata-    
I. variabilis 

0.001*** 
(0.251) 

0.002** 
(0.300) 

0.063 
(0.295) 

0.480 
(0.530) 

0.001*** 
(0.152) 

0.005** 
(0.004**) 

I. fasciculata-   
I. oros 

0.001*** 
(0.150) 

0.001*** 
(0.574) 

0.001*** 
(0.359) 

0.076 
(0.494) 

0.001*** 
(0.228) 

0.001*** 
(0.043) 

I. variabilis-      
I. oros 

0.001*** 
(0.706) 

0.001*** 
(0.767) 

0.006* 
(0.810) 

0.035 
(0.841) 

0.001*** 
(0.880) 

0.001*** 
(0.523) 

I. fasciculata-
Seawater 

0.001*** 
(0.656) 

0.001*** 
(0.682) 

0.001*** 
(0.632) 

0.001*** 
(0.979) 

0.001*** 
(0.829) 

0.001*** 
(0.601) 

I. variabilis-
Seawater 

0.001*** 
(0.889) 

0.001*** 
(0.355) 

0.001*** 
(0.889) 

0.001*** 
(0.843) 

0.001*** 
(0.454) 

0.001*** 
(0.062) 

I. oros-
Seawater 

0.001*** 
(0.606) 

0.001*** 
(0.496) 

0.001*** 
(0.915) 

0.001*** 
(0.719) 

0.001*** 
(0.408) 

0.001*** 
(0.136) 

 

Differentiation among locations within sponge hosts 

Pairwise comparisons of T-RFLP profiles among locations within each sponge species 

(nested PERMANOVA, Table 3) showed no significant differences in the bacterial 

communities of I. fasciculata and I. oros across sampling sites. In I. variabilis, Blanes 

and Cabrera were significantly different in HaeIII-digested T-RFLP profiles and 

Cabrera-Calafat comparisons were consistently significant for both enzymes. On the 

whole, PERMDISP analyses (Table 3) indicated similar dispersion of the samples 

within groups, with some exceptions for HaeIII digestions in I. fasciculata (Blanes-

Alicante) and I. variabilis (Blanes-Cabrera, Blanes-Calafat, Calafat-Corsica). For rare 
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T-RFs, neither PERMANOVA test nor PERMDISP detected significant differences in 

any pairwise comparison (Supplemental Information, Table S1), indicating higher 

stability and homogeneity of rare sponge symbionts. The analysis of abundant T-RFs 

revealed additional significant comparisons (i.e., recovered for both enzymes) between 

Blanes and Calafat for I. variabilis, and Blanes and Alicante for I. fasciculata 

(Supplemental Information, Table S2). 

 

Table 3. Spatial structure of bacterial communities within sponge hosts. Multivariate 

pairwise comparisons of bacterial T-RFLP profiles among locations within sponge host and 

each restriction enzyme (HaeIII and MspI). The multivariate version of P-values after 999 

permutations from PERMANOVA (above) and PERMDISP (below) tests is reported. Critical 

values for significance were corrected for multiple comparisons (B-Y correction) and significant 

values are indicated with asterisks (*α < 0.05). Isolation-by-distance effects were investigated by 

Mantel tests (P-values indicated) for all locations and excluding the island of Cabrera (in italics), 

for each restriction enzyme. 

 I. fasciculata  I. variabilis  I. oros 

 HaeIII MspI  HaeIII MspI  HaeIII MspI 

Multivariate analysis       

Blanes-Alicante 
0.291 
(0.003*) 

0.019 
(0.344) 

0.038 
(0.911) 

0.192 
(0.620) 

0.184 
(0.842) 

0.025 
(0.167) 

Blanes-Caials 
0.122 
(0.854) 

0.064 
(0.935) 

0.040 
(0.153) 

0.080 
(0.855) 

0.151 
(0.048) 

0.090 
(0.039) 

Blanes-Cabrera 
0.091 
(0.990) 

0.049 
(0.644) 

0.008* 
(0.004*) 

0.029 
(0.060) 

0.036 
(0.492) 

0.036 
(0.507) 

Blanes-Calafat 
0.212 
(0.400) 

0.044 
(0.023) 

0.017 
(0.005*) 

0.023 
(0.125) 

0.059 
(0.087) 

0.029 
(0.087) 

Blanes-Corsica 
0.113 
(0.274) 

0.116 
(0.497) 

0.206 
(0.319) 

0.041 
(0.113) 

0.046 
(0.946) 

0.036 
(0.329) 

Alicante-Caials 
0.527 
(0.269) 

0.193 
(0.763) 

0.216 
(0.547) 

0.273 
(0.521) 

0.468 
(0.220) 

0.331 
(0.213) 

Alicante-Cabrera 
0.452 
(0.174) 

0.075 
(0.051) 

0.061 
(0.052) 

0.124 
(0.222) 

0.628 
(0.623) 

0.251 
(0.819) 

Alicante-Calafat 
0.722 
(0.053) 

0.205 
(0.018) 

0.095 
(0.057) 

0.457 
(0.435) 

0.317 
(0.092) 

0.154 
(0.093) 

Alicante-Corsica 
0.450 
(0.031) 

0.113 
(0.198) 

0.300 
(0.883) 

0.310 
(0.563) 

0.556 
(0.892) 

0.258 
(0.905) 

Caials-Cabrera 
0.218 
(0.958) 

0.150 
(1) 

0.023 
(0.005*) 

0.030 
(0.123) 

0.400 
(0.089) 

0.324 
(0.381) 

Caials-Calafat 
0.490 
(0.709) 

0.104 
(0.776) 

0.154 
(0.017) 

0.109 
(0.259) 

0.365 
(0.105) 

0.489 
(0.114) 

Caials-Corsica 
0.253 
(0.554) 

0.175 
(0.977) 

0.229 
(0.861) 

0.090 
(0.273) 

0.403 
(0.408) 

0.454 
(0.314) 

Cabrera-Calafat 
0.183 
(0.884) 

0.043 
(0.016) 

0.009* 
(0.253) 

0.012* 
(0.898) 

0.250 
(0.102) 

0.181 
(0.103) 

Cabrera-Corsica 
0.241 
(0.568) 

0.304 
(0.563) 

0.225 
(0.018) 

0.060 
(0.161) 

0.669 
(0.588) 

0.450 
(1) 

Calafat-Corsica 
0.301 
(0.850) 

0.113 
(0.092) 

0.083 
(0.009*) 

0.098 
(0.362) 

0.082 
(0.099) 

0.244 
(0.113) 

Mantel test (all sites) 
Mantel test (no Cabrera) 

0.863 
0.411 

0.931 
0.755 

0.085 
0.022* 

0.860 
0.633 

0.950 
0.841 

0.591 
0.438 
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Isolation-by-distance effect 

Mantel tests showed no significant correlation between geographic distances and 

bacterial community similarity for full datasets (Table 3), rare partitions (Supplemental 

Information, Table S1) and abundant partitions (Supplemental Information, Table S2); 

thus, isolation-by-distance effects were not detected in any sponge host or symbiont 

partition. Results from Mantel tests excluding samples from the island of Cabrera were 

also not significant with one exception: a significant outcome (P = 0.022) for HaeIII 

digestions in I. variabilis for the full dataset (Table 3).  

 

Congruence between T-RFLP analysis and 16S rRNA gene sequence data 

PAT analysis showed high congruence between T-RFLP and in silico digestions of the 

reference database containing 16S rRNA gene sequence data from Mediterranean 

Ircinia species (Erwin et al. 2012c). The length profiles obtained from the reference 

database matched 59.1% (HaeIII) and 62.8% (MspI) of the peaks detected empirically 

in T-RFLP profiles, representing 73.2% (HaeIII) and 79.3% (MspI) of the total peak 

area. For instance, the T-RF signature of the OTU001, a dominant 

deltaproteobacterium in all three host species that is closely-related to other sponge- 

and coral-derived symbionts (Erwin et al. 2012a, c), was consistently detected as a 

conspicuous peak in all sponge species at all locations, with both restriction enzymes. 

Combining the information from HaeIII and MspI digestions, T-RFLP profiles retrieved 

72.5% of the OTUs in the sequence database and included Deltaproteobacteria, 

Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Acidobacteria, 

Cyanobacteria (in I. fasciculata and I. variabilis), Actinobacteria, Bacteroidetes, 

Chloroflexi, Firmicutes, Gemmatimonadetes, Nitrospira, Planctomycetes and 

Verrumicrobia that were representative of the bacterial communities in Mediterranean 

Ircinia spp. (Erwin et al. 2012a, c). 

 

Discussion 

 

The bacterial communities associated with the co-occurring Mediterranean sponges I. 

fasciculata, I. variabilis and I. oros were structured primarily by host species and 

remained largely stable across geographic distances of up to 800 km. These results 

reinforced the key role of host sponge species on the composition of their symbiotic 

bacterial communities (Montalvo & Hill 2011; Erwin et al. 2012a; Hardoim et al. 2012) 

and were consistent with high spatial stability reported in previous studies (Taylor et al. 

2005; Wichels et al. 2006; Thiel et al. 2007a; Schöttner et al. 2013) including other 
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Ircinia species (Pita et al. 2013a). In addition, we revealed overall similar patterns of 

spatial stability and host specificity between rare and abundant bacteria, as has been 

found for free-living microbial communities (Galand et al. 2009). 

However, rare bacterial symbionts exhibited slightly higher stability over 

sampled locations than abundant bacterial symbionts, especially for I. variabilis. This is 

contrary to a recent study where we reported the temporal dynamics of microbial 

communities in these same sponge species (Erwin et al. 2012c) and showed 

remarkable stability in symbiont composition over time with some seasonal variability 

observed for the rare symbiont taxa. Rare taxa may represent transient bacteria (e.g., 

from seawater, sediment or fouling) that would be more susceptible to seasonal 

environmental changes than abundant bacteria (true symbionts), while their spatial 

stability suggests low selection pressure due to geographic location. Other rare 

bacterial taxa could be missed in T-RFLP profiles due to technical limitations (Pedrós-

Alió 2012). The fewer T-RFs observed for the seawater profiles compared with 

sponges (an apparent contradiction with previous studies based on cloning and new 

generation sequencing techniques; e.g. (Webster et al. 2010; Erwin et al. 2012a) 

probably result from a lower replication of the seawater samples. Future studies on the 

spatial structure of bacterioplankton communities in the Western Mediterranean are 

needed to further reveal the different ecological constraints affecting free-living and 

sponge-derived communities (Erwin et al. 2012c). 

At the beginning of this study, we hypothesized that within each host species, 

bacterial communities derived from sponges in closer locations would exhibit higher 

similarity (i.e., isolation-by-distance effects) because: (1) vertical symbiont transmission 

in Ircinia spp. (Schmitt et al. 2007) may link symbiont dispersal range with that of host 

larvae, and (2) significant spatial structure and isolation-by-distance patterns were 

found for other sponge species within the same region studied herein (Scopalina 

lophyropoda, Blanquer & Uriz 2010; Crambe crambe, Duran et al. 2004). However, we 

did not observe a significant correlation between bacteria differentiation and 

geographic distances for any host Ircinia species. There are several potential 

explanations for this lack of differentiation. First, these sponges may disperse further 

than expected: bacteria in larvae could represent an extra food supply allowing larvae 

to spend more time in the water column, increasing the probability of successful 

dispersal, and resulting in high connectivity among Ircinia populations (Mariani et al. 

2006; Uriz et al. 2008). Second, host-related factors and symbiotic interactions may 

exert an intense selective pressure on the bacterial community so that there is no 

scope for spatial differentiation, even if the connectivity between localities is scarce. 
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Alternatively, signatures of dispersal limitation may occur yet be masked by the 

taxonomic resolution of 16S rRNA gene sequences (e.g., Erwin & Thacker 2008a).  

In addition to dispersal limitation processes, microbial biogeography patterns 

may be shaped by environmental selection (Fierer 2008). Local features such as 

currents, river discharges and human activities generate variability in physico-chemical 

parameters and spatial differences of bacterioplankton composition among coastal 

locations in the Western Mediterranean Sea (Schauer et al. 2000; Flo et al. 2011). 

While environmental data were not included in our study, it is notable that our sampling 

sites covered locations near dense human populations (e.g. Blanes, Alicante) and 

more pristine, protected areas (e.g., Cabrera, Corsica, Caials). However, Ircinia-

derived bacterial communities persisted across these locations and suggested that the 

symbiotic community was mostly unaffected by differences in local conditions. A 

potential exception was observed in bacterial communities associated with two 

populations of I. variabilis. Specifically, differences in symbiont communities occurred 

between the marine protected area around the island of Cabrera and the populous 

mainland site of Calafat, which suggests some effect of environmental conditions on 

the structure of I. variabilis-associated communities. Specific features of I. variabilis 

sponges, such as plastic morphology characteristic of this species (Turon et al. 2013) 

or reproductive strategy, could make this species more sensitive to local processes 

than the other two Ircinia spp., which in turn could influence the spatial dynamics of the 

bacterial community structure (Lee et al. 2009b). 

Further, a significant isolation-by-distance effect was detected for I. variabilis 

samples after removing Cabrera from the analyses, indicating the inclusion of this site 

distorts distance-decay trends due to its close geographical proximity yet physical 

isolation by dominant currents from the remaining sites. Notably, these spatial trends in 

I. variabilis were only detected in T-RFLP profiles with the enzyme HaeIII, which 

generally exhibited lower resolution than profiles with MspI (e.g., Zhang et al. 2008; 

Erwin et al. 2012c; Pita et al. 2013a; this study). Since these trends were not detected 

in both enzymes, they should be interpreted with caution until more data is obtained to 

confirm these findings.  

In this study, we showed that the bacterial communities associated with three 

co-ocurring Ircinia sponges (I. fasciculata, I. variabilis and I. oros) were host-species 

specific and stable across locations 80 to 800 km apart in the Western Mediterranean 

Sea. Combined with previous reports of symbiont stability in Ircinia spp. over large 

seasonality in environmental conditions (Erwin et al. 2012c), our results support the 

hypothesis of a unique and stable microenvironment (e.g., mesohyl-specific conditions) 

within the host sponge body that is largely unaffected by local or seasonal 
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environmental conditions. Long-term symbiotic interactions shaped by multiple 

selective pressures (e.g., biotic factors, seasonal and stochastic environmental 

changes) over time and vertical transmission of key bacteria may have resulted in 

these persistent bacterial communities. Further studies testing the resilience of these 

relationships under stressful conditions and investigating how bacterial symbionts 

metabolically interact with their hosts will provide insights into the vulnerability and 

resilience of these sponge holobionts in the Mediterranean Sea. 
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Supplemental Information 

 

Table S1. Comparisons of rare bacterial communities among locations within sponge host. 

Multivariate comparisons of rare (relative abundance ≤ 1%) bacterial community structure 

(PERMANOVA, upper row) and dispersion (PERMDISP, lower row in parentheses), for each 

restriction enzyme (HaeIII and MspI). Monte Carlo P-values after 999 permutations are reported 

and significance levels were corrected for multiple comparisons (B-Y correction). Isolation-by-

distance effect was investigated by Mantel test (P-values) for all locations and excluding the 

island of Cabrera (in italics), for each restriction enzyme. 

 
RARE T-RFs 

I. fasciculata  I. variabilis  I. oros 

 HaeIII MspI  HaeIII MspI  HaeIII MspI 

Multivariate 
analysis 

    
  

Blanes-Alicante 
0.409 

(0.886) 
0.161 
(0.936) 

0.161 
(1) 

0.541 
(0.270) 

0.621 
(0.279) 

0.247 
(0.320) 

Blanes-Caials 
0.168 

(0.012) 
0.119 
(0.338) 

0.063 
(0.872) 

0.485 
(0.933) 

0.346 
(0.040) 

0.185 
(0.039) 

Blanes-Cabrera 
0.330 

(0.467) 
0.132 
(0.742) 

0.049 
(0.045) 

0.282 
(0.334) 

0.580 
(0.53) 

0.140 
(0.885) 

Blanes-Calafat 
0.437 

(0.786) 
0.139 
(0.217) 

0.076 
(0.703) 

0.127 
(0.071) 

0.191 
(0.049) 

0.076 
(0.123) 

Blanes-Corsica 
0.266 

(0.797) 
0.266 
(0.037) 

0.143 
(0.864) 

0.101 
(0.024) 

0.385 
(0.053) 

0.276 
(0.150) 

Alicante-Caials 
0.249 

(0.076) 
0.188 
(0.275) 

0.166 
(0.925) 

0.540 
(0.039) 

0.412 
(NA) 

0.264 
(0.318) 

Alicante-Cabrera 
0.216 

(0.406) 
0.331 
(0.726) 

0.104 
(0.255) 

0.297 
(0.285) 

0.516 
(NA) 

0.277 
(0.204) 

Alicante-Calafat 
0.634 

(0.705) 
0.200 
(0.170) 

0.144 
(0.795) 

0.658 
(0.682) 

0.199 
(0.203) 

0.151 
(0.101) 

Alicante-Corsica 
0.430 

(0.941) 
0.339 
(0.041) 

0.435 
(0.903) 

0.327 
(0.799) 

0.329 
(NA) 

0.369 
(0.262) 

Caials-Cabrera 
0.088 

(0.049) 
0.147 
(0.628) 

0.097 
(0.306) 

0.487 
(0.032) 

0.301 
(NA) 

0.353 
(0.204) 

Caials-Calafat 
0.241 

(0.102) 
0.145 
(0.786) 

0.289 
(0.843) 

0.169 
(0.105) 

0.289 
(0.103) 

0.466 
(0.095) 

Caials-Corsica 
0.123 

(0.075) 
0.386 
(0.210) 

0.178 
(1) 

0.240 
(0.018) 

0.387 
(NA) 

0.337 
(NA) 

Cabrera-Calafat 
0.455 

(0.654) 
0.148 
(0.416) 

0.069 
(0.658) 

0.071 
(0.271) 

0.157 
(0.184) 

0.161 
(0.098) 

Cabrera-Corsica 
0.583 

(0.676) 
0.321 
(0.103) 

0.240 
(0.220) 

0.211 
(0.025) 

0.258 
(NA) 

0.385 
(0.259) 

Calafat-Corsica 
0.736 

(0.893) 
0.311 
(0.200) 

0.251 
(0.869) 

0.187 
(0.381) 

0.263 
(0.106) 

0.412 
(0.243) 

Mantel test  
(all sites) 

Mantel test  
(no Cabrera) 

0.781 
0.562 

0.409 
0.391 

0.450 
0.393 

0.483 
0.391 

0.284 
0.346 

0.105 
0.198 
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Table S2. Comparisons of abundant bacterial communities among locations within sponge host. 

Multivariate comparisons of abundant (relative abundance > 1%) bacterial community structure 

(PERMANOVA, upper row) and dispersion (PERMDISP, lower row in parentheses), for each 

restriction enzyme (HaeIII and MspI). Monte Carlo P-values after 999 permutations are reported 

and significance levels were corrected for multiple comparisons (B-Y correction), significant 

values are indicated with asterisks (*α < 0.05; **α < 0.01). Isolation-by-distance effect was 

investigated by Mantel test (P-values) for all locations and excluding the island of Cabrera (in 

italics), for both restriction enzymes. 

 
ABUNDANT T-RFs 

I. fasciculata  I. variabilis  I. oros 

 HaeIII MspI  HaeIII MspI  HaeIII MspI 

Multivariate 
analysis 

    
  

Blanes-Alicante 
0.270 

(0.002**) 
0.016 
(0.003*) 

0.017 
(0.492) 

0.164 
(0.986) 

0.142 
(0.732) 

0.014* 

(0.032) 

Blanes-Caials 
0.066 

(0.560) 
0.047 
(0.990) 

0.058 
(0.013*) 

0.066 
(0.641) 

0.137 
(0.054) 

0.034 
(0.554) 

Blanes-Cabrera 
0.107 

(0.325) 
0.078 
(0.322) 

0.004* 

(0.038) 
0.015 

(0.121) 
0.033 

(0.443) 
0.020 

(0.161) 

Blanes-Calafat 
0.216 

(0.511) 
0.022 
(0.181) 

0.009* 

(0.041) 

0.012* 

(0.411) 
0.037 

(0.218) 

0.011* 

(0.805) 

Blanes-Corsica 
0.062 

(0.096) 
0.086 
(0.637) 

0.171 
(0.199) 

0.054 
(0.849) 

0.034 
(0.512) 

0.012* 

(0.215) 

Alicante-Caials 
0.354 

(0.132) 
0.141 
(0.474) 

0.205 
(0.341) 

0.308 
(0.573) 

0.560 
(0.205) 

0.318 
(0.295) 

Alicante-Cabrera 
0.378 

(0.007*) 
0.082 
(0.020) 

0.025 
(0.038) 

0.195 
(0.173) 

0.642 
(0.746) 

0.298 
(0.525) 

Alicante-Calafat 
0.650 

(0.113) 
0.310 
(0.020) 

0.066 
(0.010*) 

0.469 
(0.538) 

0.412 
(0.104) 

0.238 
(0.113) 

Alicante-Corsica 
0.284 

(0.007*) 
0.227 
(0.018) 

0.328 
(0.821) 

0.445 
(0.760) 

0.502 
(0.298) 

0.299 
(0.212) 

Caials-Cabrera 
0.077 

(0.896) 
0.126 
(0.920) 

0.026 
(0.010*) 

0.036 
(0.119) 

0.400 
(0.292) 

0.333 
(0.576) 

Caials-Calafat 
0.245 

(0.905) 
0.055 
(1) 

0.140 
(0.011*) 

0.097 
(0.313) 

0.542 
(0.101) 

0.515 
(0.796) 

Caials-Corsica 
0.115 

(0.846) 
0.109 
(0.992) 

0.262 
(0.848) 

0.148 
(0.321) 

0.399 
(0.390) 

0.473 
(0.286) 

Cabrera-Calafat 
0.176 

(0.958) 
0.052 
(0.086) 

0.005* 

(0.776) 
0.019 

(0.656) 
0.376 

(0.102) 
0.247 

(0.197) 

Cabrera-Corsica 
0.172 

(0.301) 
0.322 
(0.279) 

0.172 
(0.012*) 

0.085 
(0.148) 

0.532 
(0.217) 

0.594 
(0.787) 

Calafat-Corsica 
0.238 

(0.574) 
0.092 
(0.490) 

0.075 
(0.006*) 

0.189 
(0.433) 

0.179 
(0.312) 

0.422 
(0.200) 

Mantel test  
(all sites) 

Mantel test  
(no Cabrera) 

0.700 
 

0.487 

0.940 
 
0.816 

0.596 
 

0.503 

0.910 
 

0.926 

0.665 
 

0.646 

0.679 
 

0.682 
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Figure S1. Specificity of T-RFs in I. fasciculata (IF), I. variabilis (IV), I. oros (IO), and seawater 

(SW). 
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Ircinia oros (Tossa de Mar) 

Courtesy of S. López-Legentil 
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Chapter 3 

 

Stability of Sponge-Associated Bacteria over Large Seasonal 

Shifts in Temperature and Irradiance 

 

Patrick M. Erwin, Lucía Pita, Susanna López-Legentil & Xavier Turon 

 

Published in: Applied and Environmental Microbiology (2012) 78:7358-7368. (2012-

Impact factor: 3.678; Q1 Biotechnology and Applied Microbiology). 

 

Abstract 

 

Complex microbiomes reside in marine sponges and consist of diverse microbial taxa, 

including functional guilds that may contribute to host metabolism and coastal marine 

nutrient cycles. Our understanding of these symbiotic systems is based primarily on 

static accounts of sponge microbiota, while their temporal dynamics across seasonal 

cycles remain largely unknown. Here, we investigated temporal variation in bacterial 

symbionts of three sympatric sponges (Ircinia spp.) over 1.5 years in the northwestern 

(NW) Mediterranean Sea, using replicated terminal-restriction fragment length 

polymorphism (T-RFLP) and clone library analyses of bacterial 16S rRNA gene 

sequences. Bacterial symbionts in Ircinia spp. exhibited host species-specific structure 

and remarkable stability throughout the monitoring period, despite large fluctuations in 

temperature and irradiance. In contrast, seawater bacteria exhibited clear seasonal 

shifts in community structure, indicating that different ecological constraints act on free-

living and on symbiotic marine bacteria. Symbiont profiles were dominated by 

persistent, sponge-specific bacterial taxa, notably affiliated with phylogenetic lineages 

capable of photosynthesis, nitrite-oxidation and sulfate-reduction. Variability in the 

sponge microbiota was restricted to rare symbionts and occurred most prominently in 

warmer seasons, coincident with elevated thermal regimes. Seasonal stability of the 

sponge microbiota supports the hypothesis of host-specific, stable associations 

between bacteria and sponges. Further, the core symbiont profiles revealed in this 

study provide an empirical baseline for diagnosing abnormal shifts in symbiont 

communities. Considering that these sponges have suffered recent, episodic mass 

mortalities related to thermal stresses, this study contributes to the development of 

model sponge-microbe symbioses for assessing the link between symbiont fluctuations 

and host health. 



 

 74 

 



 

 75 

Estabilidad de las bacterias simbiontes de esponjas a lo largo 

de cambios estacionales en las condiciones de temperatura e 

irradiancia 

 

Resumen 

 

Las esponjas de mar albergan complejas comunidades microbianas compuestas por 

diversos taxones, incluyendo distintos grupos funcionales que pueden contribuir al 

metabolismo del hospedador y a los ciclos de nutrientes en los sistemas costeros. 

Nuestra comprensión del sistema simbiótico esponja-microbiota se basa 

principalmente en descripciones estáticas de la diversidad, mientras que la dinámica 

temporal a lo largo de ciclos estacionales se desconoce. En este estudio hemos 

investigado la variación temporal de los simbiontes bacterianos de tres esponjas 

simpátricas (Ircinia spp.) a lo largo de 1.5 años en el noroeste del Mar Mediterráneo, 

valiéndonos del polimorfismo en la longitud de los fragmentos terminales de restricción 

(T-RFLP) y librerías de clones de secuencias del gen ARNr 16S bacteriano. Los 

simbiontes de Ircinia spp. mostraron una estructura específica de la especie de 

hospedador considerada y una notable estabilidad a lo largo de todo el periodo de 

monitoreo, a pesar de fluctuaciones en las condiciones de temperatura e irradiancia. 

En cambio, la composición del bacterioplancton mostró una clara estacionalidad, lo 

que sugiere que los factores ecológicos que afectan a las comunidades de vida libre 

son distintos de los que afectan a las bacterias simbiontes marinas. Los perfiles de las 

comunidades simbiontes estuvieron dominados por taxones bacterianos persistentes y 

específicos de esponja, principalmente incluidos en linages filogenéticos capaces de 

llevar a cabo la fotosíntesis, la oxidación de nitrito y la reducción de sulfato. La 

variabilidad en la microbiota de la esponja se limitó a los simbiontes raros y tuvo lugar 

perceptiblemente en los meses cálidos, coincidiendo con los regímenes de 

temperatura elevada. La estabilidad estacional de los simbiontes de esponjas apoya la 

hipótesis de la especificidad respecto a la especie de hospedador y de que las 

asociaciones entre esponjas y bacterias son estables. Además, la caracterización de 

los simbiontes persistentes detectados en este estudio proporcionan una base 

empírica para poder diagnosticar cambios anormales en las comunidades simbiontes. 

Considerando que estas esponjas han sufrido episodios recientes de mortalidades 

masivas relacionadas con estrés térmico, este estudio contribuye al desarrollo de un 

modelo de simbiosis esponja-bacteria que sirve para evaluar el vínculo entre las 

fluctuaciones en las comunidades simbiontes y la salud del huésped. 
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Introduction 

 

Sponges are sessile invertebrates that form a species rich phylum at the base of the 

metazoan tree of life (> 8,500 valid species; [Van Soest et al. 2012]). Renowned for 

their efficient filter-feeding capabilities and bioactive secondary metabolite production, 

sponges have important ecological and biotechnological relevance as major players in 

marine nutrient cycles (Diaz & Ward 1997; Diaz & Rutzler 2001; Hoffmann et al. 2009) 

and the most prolific producers of marine natural products (> 6,600 secondary 

metabolites; [(Erwin et al. 2010]). The discovery and characterization of diverse 

microbial symbionts inhabiting the sponge body have prompted the adoption of the 

holobiont concept, thereby incorporating microbial symbionts in the study of sponge 

ecology and evolution (Taylor et al. 2011). The resulting field of sponge microbiology 

has grown rapidly in the past 2 decades (Thacker & Freeman 2012) and revealed a 

tight ecological link between host health and symbiont composition. Indeed, sponge-

associated microbes have been implicated in host metabolism and growth (Wilkinson 

1983; Erwin & Thacker 2008b; Freeman & Thacker 2011), chemical defense 

production (Flatt et al. 2005), and susceptibility to biotic (e.g., disease) and abiotic 

stressors (Lemoine et al. 2007; Webster et al. 2008a; Webster et al. 2008b). 

 The remarkable diversity of the sponge microbiota has presented a formidable 

challenge to understanding the structure and function of microbial guilds in sponge 

hosts (Hentschel et al. 2002; Thacker & Freeman 2012; Webster & Taylor 2012). The 

sponge microbiota includes diverse phylogenetic lineages of Archaea and Bacteria, as 

well as fungi and viruses (Taylor et al. 2007; Simister et al. 2012a). Among bacterial 

symbionts alone, thousands of taxa have been reported, spanning 17 described phyla 

and 12 candidate phyla (Schmitt et al. 2012), and hundreds of bacterial taxa can occur 

in a single host individual (Webster et al. 2010; Lee et al. 2011). Accordingly, 

considerable effort has focused on describing the vast diversity of the sponge 

microbiota, while more applied studies of symbiont functioning have targeted specific 

components (e.g., Cyanobacteria; [Thacker & Freeman 2012]) or functional gene 

pathways (e.g., ammonia oxidation; [López-Legentil et al. 2010]) in these communities. 

As a result, most studies of sponge microbiology have been limited in scope to one or 

few host species collected at a single time point, and thus, much of our knowledge 

concerning the sponge microbiota is based on a static representation of these 

potentially dynamic communities (Thacker & Freeman 2012). 

Understanding the complex sponge microbiota requires a basic knowledge of 

how these communities change over time. The general consensus is that sponge-

microbe associations are largely stable over temporal scales (Taylor et al. 2007), 
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including epibionts (Lee et al. 2006), cultivatable symbionts (Webster & Hill 2001) and 

entire bacterial communities (Taylor et al. 2003; Thiel et al. 2007a; 2007b; White et al. 

2012). Other studies have reported higher levels of variability across seasons (Wichels 

et al. 2006) and when repeatedly sampling the same individuals over time (Anderson et 

al. 2010), indicating some degree of symbiont fluctuation over time and individual 

variation among hosts. The prospect of sponge aquaculture for the production of 

bioactive metabolites has prompted investigations of host-symbiont stability under ex 

situ aquaria conditions, revealing high symbiont stability over short-term time scales 

(11 days to 12 weeks; [Friedrich et al. 2001; Webster et al. 2011]), while longer-term 

maintenance (6 months to 2 years) can result in substantial shifts in symbiont 

composition (Mohamed et al. 2008b;  2008c; Webster et al. 2011). Additional studies of 

temporal variation in sponge-associated bacteria under natural conditions will aid future 

aquaculture efforts by determining natural variation in the sponge microbiota and its 

consequences for host-symbiont dynamics. Further, such studies establish the 

baseline levels of symbiont variability required to define abnormal shifts and ascribe 

symbiont fluctuations to specific abiotic and biotic factors. 

In this study, we investigated temporal variation in the microbiota of three 

congeneric sponge hosts from the Mediterranean Sea: Ircinia fasciculata, I. variabilis 

and I. oros. These sponges are common members of coastal benthic communities in 

the Mediterranean Sea and harbor diverse, host-specific communities of bacterial and 

cyanobacterial symbionts (Sarà 1971; Usher 2008; Erwin et al. 2012a; 2012b). 

Replicate individuals of each sponge species were tagged in situ and sampled 

quarterly for 1.5 years to monitor their bacterial symbiont communities, using terminal-

restriction fragment length polymorphism (T-RFLP) and clone library analyses of 

bacterial 16S rRNA gene sequences. In addition, photosynthetic pigments were 

monitored in the tissues of the cyanobacteria-rich sponges I. fasciculata and I. 

variabilis, using chlorophyll a (chl a) quantification. The specific objectives of the study 

were: 1) to determine the temporal stability of host-symbiont specificity, 2) to identify 

permanent and transient symbiont taxa in association with sponge hosts, and 3) to 

document natural variability in symbiont communities over time. Collectively, these 

objectives contribute to the broader goal of establishing the empirical baselines 

required to diagnose abnormal symbiont shifts and develop these symbiotic systems as 

an impact assessment tool in coastal ecosystems. 

 



Seasonal Stability of Sponge-Associated Bacteria 

 79 

Material & Methods 

 

Sample collection 

The sponge species Ircinia fasciculata (Pallas 1766), I. variabilis (Schmidt, 1862) and I. 

oros (Schmidt, 1864) were monitored in shallow (< 20 m) littoral zones at two 

neighboring sites (< 12 km apart) along the Catalan Coast (Spain) in the northwestern 

(NW) Mediterranean Sea. I. fasciculata colonies were studied in Punta de S‟Agulla 

(Blanes; 41O 40‟ 54.87” N, 2O 49‟ 00.01” E) and I. variabilis and I. oros in Mar Menuda 

(Tossa de Mar; 41O 43‟ 13.62” N, 2 O 56‟ 26.90” E) from March 2010 to June 2011. Initial 

sampling of I. oros (March 2010) was performed in the nearby Punta Santa Anna 

(Blanes; 41O 40‟ 21.48” N, 2O 48‟ 13.55” E); however, from June 2010 to June 2011, 

sampling was conducted in Tossa de Mar, due to the onset of heavy construction in the 

adjacent Blanes Port (< 300 m from the Punta Santa Anna sampling site) in May 2010.  

 Individual sponges were marked in situ and sampled quarterly for genetic 

analyses and chlorophyll a concentrations by scuba diving using a scalpel blade and 

forceps. At each site, ambient seawater samples (500 ml) were collected 

simultaneously and in close proximity (< 1 m) to sampled sponges. Sponge and 

seawater samples were transported in an insulated cooler to the laboratory (ca. 2 h of 

transit time), where sponge samples for genetic analyses were preserved in 100% 

ethanol and stored at -20OC and seawater samples were concentrated on 0.2 μm filters 

and stored at -80OC. Tissue samples for chlorophyll a quantification were processed 

immediately (see below). 

 

Temperature and light measurements 

Hourly temperature and light intensity levels were recorded in situ at Punta de S‟Agulla 

and Tossa de Mar by Hobo Pendant Temperature/Light Data Loggers (UA-002-64, 

Onset Computer Corporation) deployed in close proximity (< 2 m) to sampled sponges. 

Consistent with the distribution of the studied sponge taxa (Erwin et al. 2012a), data 

loggers were deployed at Punta de S‟Agulla on horizontal (exposed) substrate, the 

typical habitat of I. fasciculata, and at Tossa de Mar on vertical wall (cryptic) substrate, 

the typical habitat of I. variabilis and I. oros. Submarine in situ light measurements are 

complicated by light sensor orientation and the occurrence of sensor encasement 

fouling. To minimize orientation error, data loggers were attached parallel to the 

substrate in stable epoxy molds for consistent orientation of light sensors. To minimize 

fouling error, data loggers were replaced monthly and only the first 7 days of light 

measurements (70 to 105 data points per month) were used in subsequent analyses. 

Light measurements were recorded as lux (lumen·m-2), the SI derived unit for luminous 
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flux density, across a broad spectrum of wavelengths (200 to 1200 nm) and used to 

compare relative changes in light intensity across sites and seasons. Light duration 

was calculated as the number of hourly light readings per day greater than 0. Missing 

data from Tossa de Mar (March 2010 to May 2010) resulted from the loss of data 

loggers. For comparative analyses, seasons were defined as winter (January, 

February, March), spring (April, May, June), summer (July, August, September) and fall 

(October, November, December). 

 

DNA extraction 

DNA extracts were prepared from sponge samples containing both ectosome and 

choanosome for six individuals per host species and time point (n = 108) and three 

replicates of filtered seawater per time point (n = 18), using the DNeasy® Blood & 

Tissue kit (Qiagen®). Dilutions (1:10) of DNA extracts were used as templates in 

subsequent PCR amplifications. 

 

T-RFLP analysis 

PCR amplification of 16S rRNA gene sequences (ca. 1500 bp) for T-RFLP analysis 

was conducted using the universal bacterial forward primer 8F (Reysenbach et al. 

1994) and reverse primer 1509R (Martínez-Murcia et al. 1995), with a 5‟-end 6-

carboxyfluorescein (6-FAM) label attached to the forward primer. The total PCR volume 

was 50 μl, and each reaction mix contained 15 pmol of the labeled forward primer, 10 

pmol of the reverse primer, 10 nmol of each dNTP, 1x Reaction Buffer (Ecogen) and 

five units of Biotaq polymerase (Ecogen). Thermocycler reaction conditions were an 

initial denaturing time of 2 min at 94OC, followed by 30 cycles of 1 min at 94OC, 0.5 min 

at 50OC, and 1.5 min at 72OC, and a final extension time of 2 min at 72OC. To minimize 

PCR amplification biases, a low annealing temperature and low cycle number were 

used and three separate reactions were conducted for each sample. Triplicate PCR 

products were gel-purified and cleaned using the QIAquick Gel Extraction kit (Qiagen, 

Valencia, CA) then combined and quantified using a Qubit fluorometer and Quant-i 

dsDNA assay kit (Invitrogen).  

Purified PCR products (ca. 100 ng) were digested separately with the restriction 

endonucleases HaeIII and MspI (Promega) at 37OC for 8 hours and ethanol precipitated 

to remove residual salts from enzyme buffers. Samples were eluted in 10 μl formamide 

and 0.5 μl GeneScan 600-LIZ size standard, heated for 2 min at 94OC, cooled on ice 

and analyzed by capillary electrophoresis on an automated sequencer (ABI 3730 

Genetic Analyzer; Applied Biosystems) at the Scientific and Technical Services of the 

University of Barcelona (Spain). The length of individual terminal-restriction fragments 
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(T-RF) was determined by comparison with internal size standards using the program 

GeneScan (PE; Applied Biosystems). T-RFs beyond the resolution of internal size 

standards (50 to 600 bp) or with peak areas less than 50 fluorescence units were 

removed, and peak profiles were imported into the program T-REX (Culman et al. 

2009). Prior to T-RF alignment in T-REX, the objective filtering algorithm of Abdo et al. 

(2006) based on peak area and a cut-off value of 2 standard deviations (SD) was 

applied to denoise the dataset by eliminating background peaks. Following noise 

reduction, T-RFs were aligned across samples using a 1-bp clustering threshold, and 

peak profiles were standardized using relative abundance (percentage total 

fluorescence). 

 To compare the similarity of bacterial community profiles, Bray-Curtis similarity 

matrices were constructed using square root transformations of relative T-RF 

abundance data and visualized in non-metric multidimensional scaling (nMDS) plots 

and heatmaps. Permutational multivariate analyses of variance (PERMANOVA) were 

used to determine significant differences in bacterial community structure across 

sources (sponge species and seawater) and across seasons within sources (nested 

analysis). Permutational multivariate analyses of dispersion (PERMDISP) were 

conducted for all significant PERMANOVA outcomes to test for differences in 

homogeneity (dispersion) among groups. A significant PERMDISP indicates that 

differences in community structure detected by PERMANOVA may result from unequal 

structural variability among groups (i.e., heterogeneity of dispersion) rather than 

consistent structural shifts. Multiple pairwise comparisons of symbiont structure and 

dispersion were corrected based on the Benjamini-Yekutieli (B-Y) false discovery rate 

control (Benjamini & Yekutieli 2001) and an experiment-wise error rate of 0.05. nMDS, 

PERMANOVA and PERMDISP calculations were performed using PRIMER v6 and 

PERMANOVA+ (Plymouth Marine Laboratory, UK). Heatmaps were constructed using 

JColorGrid v1.869 (Joachimiak et al. 2006). 

 

Clone library construction and sequence analysis 

In a previous study, we provided an initial characterization of bacterial communities in I. 

fasciculata, I. variabilis and I. oros collected in the winter season (March 2010) by 16S 

rRNA gene sequence clones libraries (Erwin et al. 2012a). In the current study, we 

resampled the same host individuals in the summer season (September 2010) and 

constructed clone libraries following the same methodology to: 1) monitor changes in 

symbiont communities across seasons and 2) identify T-RFLP profile peaks not 

represented in the winter clone library. In total, 320 clones from the summer clone 

libraries were bidirectionally sequenced using vector primers at Macrogen, Inc., to 
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recover near full-length 16S rRNA gene sequences (range = 1,399 to 1,525 bp; 

average = 1,478 bp). Raw sequence reads were processed in Geneious (Drummond et 

al. 2011) by aligning high-quality forward and reverse reads to yield a final consensus 

sequence for each clone. Consensus sequences were screened for sequencing 

anomalies (e.g., chimeras) using Mallard (Ashelford et al. 2006) and a reference 16S 

rRNA gene sequence from Escherichia coli (GenBank acc. no. U00096) and confirmed 

or refuted using Pintail (Ashelford et al. 2005) and two related reference sequences.  

To determine seasonal overlap and divergence in symbiont communities, 

sequences were ascribed to operational taxonomic units (OTUs) (99% sequence 

identity, nearest neighbor algorithm), as implemented in the mothur software package 

(Schloss et al. 2009), and compared to 99% OTUs from the winter clone library 

(Supplemental Information, Table S1). Representative sequences from each 99% OTU 

were analyzed using the Ribosomal Database Project II (Cole et al. 2009) sequence 

classifier to assess taxonomic affiliations. In addition, OTU-independent statistical tests 

were conducted to determine seasonal differences in the genetic diversity 

(homogeneity of molecular variance, HOMOVA), genetic differentiation (analysis of 

molecular variance, AMOVA) (Stewart & Excoffier 1996) and phylogenetic structure 

(unweighted UNIFRAC) (Lozupone et al. 2007) of bacterial communities within each 

source. HOMOVA, AMOVA and UNIFRAC analyses were performed as implemented 

in the mothur software package (Schloss et al. 2009). 

 To match clone library sequences with T-RFLP profile peaks, a reference 

database (IRC) was created by in silico digestions of 16S rRNA gene sequences and 

consisted of 5‟-terminal restriction fragment lengths (reference T-RFs) for each 99% 

OTU (n = 190) and restriction endonuclease (HaeIII, MspI) combination. Following 

correction of T-RF drift (see below), the IRC reference database was used to match 

empirical T-RFs from T-RFLP profiles with known 16S rRNA gene sequences from 

clone libraries, using the phylogenetic assignment tool (PAT; [Kent et al. 2003]) with 

1.5-bp bins. Discrepancies between the predicted length of reference T-RFs and actual 

length of empirical T-RFs can occur due to the phenomenon of T-RF drift (Kaplan & 

Kitts 2003), where small differences in the molecular weight of fluorescent labels 

attached to samples (e.g., FAM) and size standards (e.g., LIZ) result in differential 

capillary migration rates and underestimation of DNA fragment sizes (Pandey et al. 

2007). To correct for T-RF drift associated with the fluorescent labels used herein, the 

empirical lengths of T-RFs were determined for eight dominant bacterial OTUs 

(IRC001, IRC002, IRC003, IRC004, IRC006, IRC007, IRC012, IRC015) using 

monocultures of each clone as templates for PCR-amplification and T-RFLP analyses, 

as described above. Regression analysis of the empirical vs predicted lengths of T-RFs 
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from these clones produced a standard curve (R2 > 0.99, Supplemental Information, 

Fig. S1) used to correct for the discrepancies of T-RF drift and more accurately match 

DNA sequences with T-RFLP profile peaks.  

 

Chlorophyll a Concentrations 

Tissue samples for chl a quantification were collected from ectosomal regions of I. 

fasciculata (n = 48) and I. variabilis (n = 47) and processed following previously 

described methods (Erwin, et al. 2012b). Due to the absence of photosymbionts in I. 

oros (Erwin et al. 2012a), this species was not included in chlorophyll analysis. For I. 

fasciculata, the same eight marked individuals were repeatedly sampled, due to the 

large size and rapid healing processes of this species. For I. variabilis, 3 to 11 non-

marked individuals were randomly sampled each month from the same population, as 

the smaller size and slower healing rate of this species prevented repeated sampling of 

the same colonies. Accordingly, a one-way repeated-measures analysis of variance 

(ANOVA) for I. fasciculata and a one-way ANOVA for I. variabilis were conducted to 

compare chl a concentrations within each species across sampling months. Multiple 

pairwise comparisons of chl a concentrations between species within each month were 

conducted using Student‟s t-tests with Bonferroni corrections. Statistical analyses were 

performed using the software Sigmaplot v11.  

 

Nucleotide sequence accession numbers 

The sequences determined in this study have been quality checked and are archived in 

Genbank under accession numbers JX206477 to JX206796. 

 

Results 

 

Seasonal variation in temperature and light intensity 

Both monitoring sites exhibited clear seasonal trends in temperature (Fig. 1). Annual 

temperature minima occurred during the winter season, with the lowest average 

monthly values recorded in March 2010 (12.7OC in S‟Agulla, 12.3OC in Tossa) and 

lowest average daily values in February 2011 (12.4OC in S‟Agulla, 12.1OC in Tossa). 

Annual temperature maxima occurred during the summer season, with the highest 

average monthly and daily values recorded in August 2010 (23.8OC and 25.3OC in 

S‟Agulla, 22.2OC and 24.8OC in Tossa). Annual temperature fluctuations were 

accordingly high at both sites (> 12.7OC). Small differences in seawater temperatures 

between the monitoring sites likely resulted from slightly deeper data logger 

deployment in Tossa (7 m) compared to S‟Agulla (5 m). The summer season was also 
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characterized by large fluctuations in daily temperatures, averaging 2.2OC (±1.3 SD) in 

S‟Agulla and 1.8OC (±1.2 SD) in Tossa, with > 3OC daily fluctuations recorded on 15 

and 12 days in S‟Agulla and Tossa, respectively. In contrast, the winter season 

exhibited minor fluctuations in daily temperatures, averaging 0.4OC (± 0.2 SD) in 

S‟Agulla and 0.3OC (±0.2 SD) in Tossa, and never exceeded 0.8OC at either site. A 

notable upwelling event occurred in August 2010, causing drastic temperature 

decreases at both sites and resulting in weekly temperature fluctuations of 7.7OC and 

9.4OC and daily fluctuations of 6.9OC and 5.4OC in S‟Agulla and Tossa, respectively. 

 

Figure 1. Seasonal variation in seawater temperature from March 2010 to June 2011 at two 

monitoring sites in the NW Mediterranean Sea. Monthly averages (± SD) for Punta de S‟Agulla 

(black circles) and Tossa de Mar (gray diamonds) (A) and daily averages for Punta de S‟Agulla 

(B) and Tossa de Mar (C). Gray triangles highlight sampling times and black dots indicate 

discrete measurements prior to successful data logger deployment at Tossa de Mar. 
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 Both monitoring sites also exhibited clear trends in irradiance conditions across 

seasons (Fig. 2). Light duration (i.e. day length) was longer in spring and summer than 

in the fall and winter seasons, which experienced up to 6 h less of light exposure per 

day. Maximum and average light intensity were higher during the spring and summer 

seasons than in the fall and winter. Light intensity levels in S‟Agulla averaged 1,569 - 

10,240 lux per month, with maximum values reaching over 38,000 lux. Lower levels 

were observed in Tossa, averaging 264 - 1,198 lux per month and maximum values 

never exceeding 3,700 lux. The large differences in irradiance between sites were 

consistent with the deployment of data loggers in photophilic (S‟Agulla) and semi-

sciophilous (Tossa) communities and correspond to the distinct habitats of the host 

sponge species investigated.  

 

 

Figure 2. Seasonal variation in light duration (day length) and intensity from March 2010 to 

June 2011 at two monitoring sites in the NW Mediterranean Sea. Monthly averages (± SD) for 

day length at Punta de S‟Agulla (black circles) and Tossa de Mar (gray diamonds) (A). Monthly 

averages (black diamonds) and maximum light intensity (gray bars) at Punta de S‟Agulla (B) 

and Tossa de Mar (C). 
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Host-specificity of bacterial communities 

A total of 213 unique microbial symbiont T-RFs were identified using the restriction 

enzyme HaeIII (151 in I. fasciculata, 149 in I. variabilis, 147 in I. oros, 144 in seawater) 

and 237 unique T-RFs with MspI (185 in I. fasciculata, 164 in I. variabilis, 156 in I. oros, 

159 in seawater). Binary data analysis of individual T-RFs (presence/absence) 

revealed highly congruent specificity patterns between the two restriction enzymes 

used to construct T-RFLP profiles (Supplemental Information, Fig. S2). One-third of the 

unique T-RFs (32.4% for HaeIII and 33.0% for MspI) were sponge-specific, present in 

one or more host species and absent from seawater, while < 1/10 (8.9% for HaeIII and 

5.9% for MspI) were recovered exclusively from seawater (Supplemental Information, 

Fig. S2). The majority of T-RFs were shared among sponges and seawater, present in 

at least 1 sponge host and seawater (23.0% for HaeIII and 26.6% for MspI) or among 

all 3 host sponges and seawater (35.7% for HaeIII and 34.6% for MspI) (Supplemental 

Information, Fig. S2). Among the sponge-specific T-RFs, the highest number of unique 

(host species-specific) T-RFs were detected in I. fasciculata (n = 14, HaeIII; n = 11, 

MspI) and I. fasciculata and I. variabilis shared more T-RFs than any other pair (n = 12, 

HaeIII; n = 14, MspI). Similarly, community-level analysis based on the relative 

abundance of microbial T-RFs revealed clear differentiation of sponge and seawater 

communities and more similar symbiont communities in I. fasciculata and I. variabilis 

than in I. oros (Fig. 3).  

Statistical analyses of community structure (PERMANOVA) revealed significant 

differences between sponge and seawater microbial fingerprints and among all 

pairwise comparisons of host sponge species (Table 1). Non-metric multidimensional 

scaling (nMDS) plots exhibited clear spatial segregation of sponge and seawater-

derived microbial communities, while among host sponges, symbiont communities 

consistently clustered by host species across all seasons, with no overlap between I. 

fasciculata and I. oros and higher variability in the symbiont profiles of I. variabilis (Fig. 

4a and c).  Dispersion analysis revealed higher variability within seawater communities 

compared to sponge-associated bacteria, as pairwise comparisons between sponges 

and seawater were significant for at least one enzyme while no significant differences 

in dispersion were found in pairwise comparisons among sponge species (Table 1). 
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Figure 3. Average similarity of bacterial communities in I. fasciculata (black triangles), I. variabilis (barred diamonds), I. oros (gray triangles) and ambient 

seawater (white circles) over the 1.5-year monitoring period. Dendrogram (left) based on Bray-Curtis (BC) similarity values from T-RFLP profiles with HaeIII. 

Heatmap (right) shows all pairwise BC similarity values for both HaeIII (upper diagonal) and MspI (lower diagonal) datasets. 
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Table 1. Permutational statistical analyses of T-RFLP data. Analyses included bacterial 

community structure (PERMANOVA) and dispersion (PERMDSIP) among sponges and 

seawater.  

  HaeIII MspI 

Analysis Pairwise Comparison 
t P (perm) t 

P 
(perm) 

PERMANOVA I. fasciculata – I. variabilis 3.683 0.001* 3.682 0.001* 

 I. variabilis – I. oros 5.164 0.001* 4.508 0.001* 

 I. oros – I. fasciculata 6.988 0.001* 6.637 0.001* 

 I. fasciculata – seawater 10.408 0.001* 9.500 0.001* 

 I. variabilis – seawater 9.258 0.001* 8.082 0.001* 

 I. oros – seawater 9.136 0.001* 10.028 0.001* 

PERMDISP I. fasciculata – I. variabilis 1.615 0.177 0.848 0.475 

 I. variabilis – I. oros 0.516 0.639 1.350 0.235 

 I. oros – I. fasciculata 2.152 0.071 0.456 0.683 

 I. fasciculata – seawater 4.016 0.001* 3.575 0.002* 

 I. variabilis – seawater 2.451 0.046 2.933 0.015* 

 I. oros – seawater 1.997 0.093 4.424 0.002* 

*, comparison was found to be significant following B-Y correction (Benjamini & Yekutieli 2001). 
P(perm), permutation P value. 

 

Seasonal variation in bacterial communities 

Symbiont communities within each host sponge species exhibited high stability 

throughout the monitoring period, averaging 69.9% (I. fasciculata), 64.0% (I. variabilis) 

and 63.2% (I. oros) community similarity in T-RFLP profiles. nMDS plots revealed two 

tight spatial clusters for I. oros and I. fasciculata plus I. variabilis samples, particularly 

when considering HaeIII profiles (Fig. 4b and d). Each cluster consisted of all samples 

from 2010-2011 fall and winter and from spring of 2011, as well as some individuals 

from spring and summer 2010. However, most samples from spring and summer of 

2010 were displaced from these central clusters, indicating some change in bacterial 

profiles during these seasons. In contrast, seawater bacterial communities exhibited 

clear and consistent seasonal shifts in composition, resulting in spatially segregated 

clusters in nMDS plots that corresponded to distinct bacterioplankton communities in 

the fall/winter, spring and summer seasons (Fig. 4). 

 



Seasonal Stability of Sponge-Associated Bacteria 

 89 

 

Figure 4. Non-metric multidimensional scaling (nMDS) plots of bacterial community structure 

from replicate individuals of I. fasciculata, I. variabilis and I. oros and ambient seawater over the 

1.5-year monitoring period. nMDS ordination based on Bray-Curtis similarity of T-RFLP profiles 

for HaeIII (A, B) and MspI (C, D) datasets. Stress values for two-dimensional ordination are 

shown in parentheses for each enzyme. Data points are coded by source (A, C) with circles 

encompassing all samples from each source, and by season (B, D) with shaded circles 

denoting core bacterial symbiont profiles and nonshaded circles highlighting deviations from 

core profiles in spring/summer 2010 (B, D). 

 

Statistical analyses of community structure (PERMANOVA) and dispersion 

(PERMDISP) revealed significant differences in structure and homogeneity of 

dispersion among all pairwise comparisons of seawater bacteria (Supplemental 

Information, Table S2), confirming the seasonal shifts in seawater bacteria visualized 

in nMDS plots. Among host sponges, significant differences in community were 

observed in the transition from winter to spring and summer to fall of 2010 for at least 

one enzyme (Supplemental Information, Table S2), due to high variability in bacterial 

community profiles among individuals of each host sponge in spring and summer of 

2010. Indeed, PERMDISP analyses revealed significant differences in dispersion 

during these transitional periods, indicating that heterogeneity was the main driver of 

structural differences in symbiont communities. Within the fall/winter and 
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spring/summer seasons, structural differences in sponge-associated bacteria were 

generally not significant (Supplemental Information, Table S2). 

 Clone library analysis of 16S rRNA gene sequences confirmed the stability of 

sponge-associated microbial communities over time and the seasonal variability of 

seawater communities. Comparisons of clone libraries constructed from the same 

individuals sampled in winter (March) and summer (September) 2010 seasons 

revealed that a large portion of sponge symbiont communities (57-80% of clones) were 

stable across seasons, with no significant differences in the genetic differentiation and 

community structure (Table 2; Supplemental Information, Fig. S3). Bacterial 

communities in I. variabilis and I. oros also exhibited no significant differences in 

genetic diversity between sampling times, while I. fasciculata symbionts showed 

significantly lower diversity in September 2010, due to increased representation of the 

dominant cyanobacterium, Candidatus Synechococcus spongiarum, in the summer 

library compared to winter (51% and 26% of clones, respectively). Seawater clone 

libraries from winter and summer shared few sequences (16-22% of clones) and 

exhibited significant differences in community structure, genetic diversity and genetic 

differentiation (Table 2; Supplemental Information, Fig. S3).  

 

Table 2. Statistical comparisons of genetic diversity and community structure of bacterial 

communities in sponges (Ircinia spp.) and seawater between winter and summer seasons.  

 
Statistical results for: 

 
AMOVA  HOMOVA  UNIFRAC 

Community Fs P  B P  U P 

I. fasciculata 4.434 0.065  1.834 <0.001  0.670 0.147 

I. variabilis 2.241 0.634  0.043 0.248  0.593 0.073 

I. oros 3.365 0.397  0.024 0.502  0.584 0.054 

Seawater 4.408 <0.001  0.620 0.007  0.734 0.006 

Fs, F statistic, B, Bartlett‟s statistic; U, unweighted UniFrac value; P, p-value 

 

Seasonal variation in bacterial OTUs 

Combined analysis of the winter and summer clone libraries revealed 190 bacterial 

OTUs (99% sequence identity) in sponges and seawater, corresponding to 13 

microbial phyla. Within each host sponge species, similar phylogenetic compositions of 
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bacteria were observed between seasons (Table 3), with differences between seasons 

typically resulting from shifts in rare bacterial OTUs. For example, I. fasciculata hosted 

a single rare OTU (2.6% of clones) affiliated with Nitrospira in winter that was absent 

from summer clone libraries. In contrast, seawater bacteria exhibited large fluctuations 

in specific lineages and OTUs. For example, cyanobacterial OTUs accounted for only 

1.4% of seawater clones in winter and over 1/4 of clones (27.6%) in summer (Table 3). 

Similarly, rank-abundance plots of bacterial OTUs revealed that dominant sponge 

symbionts were stable across seasons and rare OTUs were more variable, whereas 

shifts in dominant and rare seawater bacteria were observed between the winter and 

summer seasons (Supplemental Information; Fig. S3).  

Clone libraries also revealed the presence of dominant symbiont OTUs in the 

three sponges species. Overall, eight symbiont OTUs comprised over one-half of all 

Ircinia-associated bacterial clones (51.7%) and were absent from ambient seawater 

(Table 4). Seven of the eight dominant OTUs were recovered from both winter and 

summer seasons and matched closely (> 98% sequence identity) to other sponge-

associated bacteria. The exception was a Gammaproteobacterium (IRC012) present 

only in the winter season and whose closest sequence match was a sediment-derived 

bacterium (Table 4). The most dominant Ircinia-associated OTU (IRC002) matched to 

the sponge-specific cyanobacterium, Candidatus Synechococcus spongiarum (Usher 

et al. 2004), and represented the most common symbiont in I. fasciculata and I. 

variabilis. The second most dominant OTU (IRC001) matched a member of 

Deltaproteobacteria in the order Desulfovibrionales and represented the second most 

common symbiont in all Ircinia hosts. An Acidobacterium (IRC003) was the third most 

dominant OTU and represented the most common symbiont in I. oros, while also 

present in I. variabilis yet absent in I. fasciculata. The remaining four dominant, 

sponge-specific OTUs were less abundant (< 5% of clones) and corresponded to 

symbiont taxa affiliated with Gammaproteobacteria, Nitrospira, and Cyanobacteria 

(Table 4). 
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Table 3. Composition of bacterial communities in Ircinia spp. and ambient seawater sampled in winter (March) and summer (September) seasons.  

 
% of total clones (no. of 99% OTUs)     

 
I. fasciculata  I. variabilis  I. oros  Seawater 

Bacterial phylum Winter Summer  Winter Summer Winter Summer Winter Summer 

Proteobacteria 45.5 (16) 30.0 (11)  61.3 (22) 50.7 (18) 56.1 (17) 47.7 (19) 56.2 (28) 43.7 (21) 

        Alphaproteobacteria* 6.5 (4) 2.9 (2)  11.3 (6) - 12.2 (4) 6.8 (5) 30.1 (15) 32.2 (11) 

        Betaproteobacteria* - -  1.3 (1) - - - 2.7 (2) - 

        Gammaproteobacteria* 20.8 (10) 12.9 (6)  33.8 (11) 32.0 (13) 28.0 (10) 25.0 (10) 23.3 (11) 11.5 (10) 

        Deltaproteobacteria* 18.2 (2) 14.3 (3)  15.0 (4) 18.7 (5) 15.9 (3) 15.9 (4) - - 

Cyanobacteria 32.5 (2) 61.4 (2)  7.5 (1) 21.3 (1) - 1.1 (1) 1.4 (1) 27.6 (4) 

Acidobacteria 5.2 (3) 1.4 (1)  5.0 (3) 10.7 (1) 18.3 (3) 25.0 (5) - 1.1 (1) 

Bacteroidetes 9.1 (3) 2.9 (1)  3.8 (2) 5.3 (2) 3.7 (2) - 9.6 (7) 8.0 (4) 

Chloroflexi 3.9 (3) 1.4 (1)  - 4.0 (2) 4.9 (2) 14.8 (7) - - 

Actinobacteria - -  3.8 (2) 1.3 (1) 3.7 (2) 1.1 (1) 12.3 (3) 5.7 (3) 

Nitrospira 2.6 (1) -  15.0 (1) 4.0 (1) 2.4 (1) 2.3 (2) - - 

Bacillariophyta - -  2.5 (2) - 9.8 (5) - 8.2 (4) 1.1 (1) 

Verrucomicrobia - -  - - - - 1.4 (1) 12.6 (2) 

Firmicutes - 1.4 (1)  - - - 5.7 (2) 1.4 (1) - 

Gemmatimonadetes 1.3 (1) 1.4 (1)  1.3 (1) 1.3 (1) 1.2 (1) 2.3 (2) - - 

Chlorophyta - -  - - - - 4.1 (3) - 

Planctomycetes - -  - 1.3 (1) - - 1.4 (1) - 

Uncertain - -  - - - - 4.1 (2) - 



Seasonal Stability of Sponge-Associated Bacteria 

 93 

 

Table 4. Characteristics of dominant symbiont OTUs in Ircinia spp.  

 No. (%)  of total clones
a 

 Taxonomic classification (Bayesian probability) 

OTU IF IV IO 

All 

Ircinia 

spp. SW 

Source of closest BLAST 

match (% sequence 

identity, accession no.) Taxon
b 

Lowest Taxonomic 

Rank 

Putative 

Function 

IRC001 
18 

(12.2) 

16 

(10.3) 

22 

(13.0) 

56 

(11.9) 
0 

Sponge-associated (99.2, 

EU495967) 

Deltaproteobacteria * 

(79) 

O. Desulfovibrionales 

(70) 
Sulfate Reduction 

IRC002 
56 

(38.1) 

22 

(14.2) 

0 

(0.0) 

78 

(16.5) 
0 

Sponge-associated (98.8, 

GU981862) 
Cyanobacteria (100) 

G. Synechococcus 

(100) 
Carbon Fixation 

IRC003 
0 

(0.0) 

10 

(6.5) 

26 

(15.3) 

36 

(7.6) 
0 

Sponge-associated (98.7, 

AJ347029) 
Acidobacteria (100) Gp10 (100) NA

c 

IRC004 
2 

(1.4) 

15 

(9.7) 

0 

(0.0) 

17 

(3.6) 
0 

Sponge-associated (99.3, 

EU183762) 
Nitrospira (100) G. Nitrospira (100) Nitrite Oxidation 

IRC006 
2 

(1.4) 

11 

(7.1) 

1 

(0.6) 

14 

(3.0) 
0 

Sponge-associated (98.8, 

EU495951) 

Gammaproteobacteria* 

(100) 
Incertae sedis (68) NA 

IRC007 
0 

(0.0) 

6 

(3.9) 

10 

(5.9) 

16 

(3.4) 
0 

Sponge-associated (98.7, 

GQ163729) 

Gammaproteobacteria * 

(100) 

O. Oceanospirillales 

(46) 
NA 

IRC012 
4 

(2.7) 

6 

(3.9) 

5 

(2.9) 

15 

(3.2) 
0 

Sediment bacterium (97.4, 

GQ143791) 
Proteobacteria (100) Incertae sedis (84) NA 

IRC015 
12 

(8.2) 

0 

(0.0) 

0 

(0.0) 

12 

(2.5) 
0 

Sponge-associated (99.3, 

JN655231) 
Cyanobacteria (100) GpIIa (100) Carbon Fixation 

a
IF, I. fasciculata; IV, I. variabilis; IO, I. oros; SW, seawater 

b
All taxa are phyla except Deltaproteobacteria and Gammaproteobacteria, which are classes. 

c
NA = not available
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Comparison of clone library and T-RFLP data revealed high congruency 

between these techniques and allowed for the identification of most symbiont taxa in 

the T-RFLP profiles. In silico restriction enzyme digestion of clone libraries predicted 

71.6% and 95.8% of all peaks in T-RFLP profiles (HaeIII and MspI data, respectively). 

Empirical T-RFs of the eight dominant OTUs were well represented in sponge symbiont 

profiles and accounted for 53.0% (± 2.2% standard error [SE], HaeIII data) and 34.2% 

(± 1.2%, MspI data) of total profile peak areas, while the same T-RF peaks comprised 

only a small portion of seawater bacteria profiles (7.5% ± 0.8 and 6.9% ± 1.1, HaeIII 

and MspI data, respectively). Further, these eight dominant symbionts were present in 

their respective hosts throughout the seasonal cycle (Supplemental Information, Table 

S3), confirming the stability of these symbionts over annual temporal scales and 

seasonal environmental conditions. 

 

Seasonal variation in chlorophyll a content 

The photosymbionts-harboring sponges I. fasciculata and I. variabilis exhibited different 

average concentrations and temporal variability in chlorophyll a content. Chlorophyll a 

levels were higher in I. fasciculata compared to I. variabilis, consistent with the habitat 

preferences of I. fasciculata (higher irradiance zones) and I. variabilis (lower irradiance 

zones). Differences between species were significant for all months except June (2010 

and 2011; Fig. 5), which is, notably, the month with the highest average irradiance 

levels (Fig. 2). For both host sponges, significant variation (P < 0.001) in chl a content 

was observed across the monitoring period. In I. variabilis, this variation was due to a 

significant decrease in average chl a content in September 2010 (83.3 μg/g), whereas 

the remaining months exhibited similar average values (131.0 to 162.4 μg/g). Seasonal 

changes in chl a content were more pronounced in I. fasciculata and inversely related 

to daylight hours and light intensity (Fig. 5), as lower values occurred during the spring 

and summer months (149.8 to 210.7 μg/g) and higher values during fall and winter 

(235.1 to 330.2 μg/g). 
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Figure 5. Chlorophyll a content of the photosymbiont-bearing sponges I. fasciculata (black bars) 

and I. variabilis (gray bars) over the 1.5-year monitoring period. Asterisks denote significant 

differences (P < 0.05) between host sponge species by month; letters indicate significant 

differences among months within each host species (uppercase for I. fasciculata, lowercase 

letters for I. variabilis). Error bars represent ± 1 SD. 

 

Discussion 

 

Seasonal stability and specificity of sponge microbiota 

Temporal monitoring of three Ircinia spp. and ambient seawater over 1.5 years 

revealed remarkable stability and specificity of sponge-associated bacterial symbiont 

communities, despite large fluctuations in ambient environmental conditions. Across all 

seasons, each Ircinia host maintained a specific bacterial symbiont community, more 

similar within each host species over time than among hosts. Further, higher symbiont 

similarity occurred between the microbiota of I. fasciculata and I. variabilis than with 

that of I. oros, consistent with previous analyses of host-specificity among these 

species (Erwin et al. 2012a). Host-specificity patterns in Ircinia-associated bacteria are 

complex, due to variable levels of symbiont overlap among hosts. Despite the 

prevalence of generalist symbionts in Ircinia microbiotas (i.e., taxa occurring in multiple, 

unrelated sponge hosts), community level analyses revealed host species-specific 

symbiont assemblages in each host (Erwin et al. 2012a). Here, we show that this 

phenomenon, termed “a specific mix of generalists”, is maintained over time and 
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across seasons, with little evidence for symbiont re-structuring or specificity shifts in 

response to different environmental conditions. The seasonal stability of host-specificity 

patterns in the Ircinia microbiota supports the hypothesis of host-species specific, 

stable associations between bacteria and marine sponges (Taylor et al. 2007; Webster 

et al. 2010; Lee et al. 2011; Thacker & Freeman 2012; White et al. 2012). 

In contrast, seawater bacterial communities exhibited clear temporal shifts in 

diversity and composition according to a seasonal cycle. Previous studies of surface 

bacterioplankton in the coastal NW Mediterranean Sea have revealed a similar 

seasonal succession of seawater bacterial communities (Schauer et al. 2000, 2003), 

including a greater community similarity in the fall and winter seasons as observed 

here (Anderson et al. 2010). Regional stratification of the water column is a seasonal 

phenomenon in the NW Mediterranean Sea, where restricted upwelling and vertical 

mixing of nutrient-rich, cold water results in nutrient depletion of surface waters during 

summer months (Duarte et al. 1999). The summer stratification period and its effects 

on nutrient availability are primary drivers of seasonal microbial dynamics in the 

Mediterranean Sea (Pinhassi et al. 2006). Comparatively, low seasonal dynamics of 

sponge-associated bacterial community structure suggest that different ecological 

constraints act on free-living versus symbiotic marine bacteria. The effects of nutrient-

poor conditions during summer stratification on bacterial communities in the sponge 

microbiota appear to be limited, supporting the hypothesis of a unique and 

comparatively stable microbial habitat within the sponge body. 

 

Persistent components of the sponge microbiota 

The observed stability of bacterial communities associated with Ircinia hosts was driven 

by the persistent presence of dominant symbiont OTUs. Despite the high diversity of 

the Ircinia microbiota, a small number of symbiont OTUs accounted for the majority of 

bacteria represented in clone libraries and T-RFLP profiles, similar to what was seen in 

previous studies of sponge-associated bacteria (Webster et al. 2010; Erwin et al. 

2011). Selective pressures that maintain specific symbiont taxa in the sponge host may 

result from microbial adaptations to these unique niche microenvironments, as 

suggested by the presence of unique, vertically transmitted (Schmitt et al. 2007) 

sponge-specific bacterial lineages (Taylor et al. 2007; Simister et al. 2012a), or the 

fulfillment of functional roles by particular symbiont guilds that enhance sponge-

bacteria holobiont fitness (Thacker 2005; Erwin & Thacker 2008b; Freeman & Thacker 

2011). In the latter context, it is noteworthy that several of the dominant symbiont OTUs 

recovered in Ircinia hosts were classified into bacterial lineages with known 

physiological capabilities, such as photosynthesis (IRC002 and IRC015, 
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Cyanobacteria), sulfate-reduction (IRC001, Desulfovibrionales) and nitrite oxidation 

(IRC004, Nitrospira). The metabolic profile of the sponge microbiome, assessed by 

both metagenomic (Thomas et al. 2010; Liu et al. 2012) and nutrient flux (Ribes et al. 

2012) approaches, has shown diverse and active functional guilds involved in the 

nutrient cycles of carbon (Thacker & Freeman 2012), nitrogen (Hoffmann et al. 2009) 

and sulfur (Hoffmann et al. 2005) that may boost host sponge metabolism and 

contribute significantly to coastal marine nutrient cycles (Arillo et al. 1993; Diaz & Ward 

1997; Erwin & Thacker 2007; Jimenez & Ribes 2007). As such, symbiont functionality 

and its ecological consequences may represent key factors for the selective 

mechanisms that establish and maintain specific guilds of sponge-associated bacterial 

symbionts.  

Temporal analyses of photosynthetic pigments in I. fasciculata and I. variabilis 

provided further insight into symbiont functionality and evidence for seasonal variation 

in the activity of persistent photosymbiont taxa. Cyanobacteria are a key functional 

guild in the sponge microbiota, capable of photosynthetic carbon assimilation and the 

transfer of surplus carbon stores to their hosts (Thacker & Freeman 2012). A recent 

study reported higher photosynthetic activity of cyanobacterial symbionts in I. 

fasciculata than in I. variabilis, with differences in symbiont functionality related to 

ambient irradiance levels in preferred host habitats rather than symbiont composition 

(Erwin et al. 2012b). Here, we show that I. variabilis exhibited minimal seasonal 

fluctuations in chl a content, consistent with reduced irradiance levels in the shaded 

habitats where this species thrives. In contrast, the chl a content of photosymbionts in I. 

fasciculata followed a seasonal pattern, with annual minima in summer and peak 

values in winter, similar to those reported in surface seawater from the NW 

Mediterranean (Duarte et al. 1999; Pinhassi et al. 2006; Maldonado et al. 2010). Thus, 

while the factors that determine microbial structure may differ between the sponge 

niche and open seawater environments (e.g., nutrient levels), some seasonal 

physiological constraints that dictate microbial function (e.g., irradiance exposure) may 

be conserved between symbiotic and free-living microbes. Structurally, a single 

cyanobacterial taxon dominated the symbiotic microbiota in I. fasciculata and I. 

variabilis across all seasons; yet functionally, their photosynthetic activity differed 

among hosts and appears to have a seasonal component in I. fasciculata, with 

potential consequences for host metabolism and growth. The critical ecological link 

between symbiont structure and function is not well resolved in the sponge microbiota 

and requires further study, including the potential for seasonal variability in the 

physiology and functioning of permanent sponge symbionts and its consequence for 

host metabolism and marine nutrient cycles. 
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Variable components of the sponge microbiota 

Similar to previous studies of temporal variation in the sponge microbiota (Anderson et 

al. 2010), some variability was observed in symbiont communities over time and 

among individual hosts, though primarily restricted to rare symbiont taxa. Transient 

components of the sponge microbiota are not unexpected, as microbes recovered from 

sponge tissue may represent food source bacteria (Pile et al. 1996), invasive (Webster 

et al. 2002) or fouling microbes (Lee et al. 2006), or simply environmental bacteria 

present in the sponge filtration system during collection. For example, a common and 

relatively abundant bacterial OTU (IRC012, 3.2% of sponge clones) was present in the 

microbiotas of all sponge hosts in winter and absent in the summer. Unlike the majority 

of sponge-associated bacteria in Ircinia, this Gammaproteobacterium was not 

phylogenetically related to other sponge symbionts, but rather matched most closely a 

sediment-derived sequence. Considering such possible sources of transient microbes 

in the sponge microbiota, the high degree of bacterial community similarity observed 

throughout the monitoring period herein is even more extraordinary. 

Variability in the composition of bacterial symbionts among conspecific hosts 

was also detected here by monitoring the same individuals over time, a sampling 

design rarely utilized to date in the field of sponge microbiology (Anderson et al. 2010). 

Although this variability was minimal compared to differences among host species, 

some symbionts were consistently recovered from particular individuals and not others. 

The most notable example is a Synechocystis-related cyanobacterium in Ircinia 

fasciculata. A previous report has shown that this cyanobacterium represented a 

distinct clade of sponge symbiont specific to I. fasciculata yet occurred in only one of 

three I. fasciculata individuals studied (Erwin et al. 2012b). Here, we report similar 

findings, with the same Synechocystis phylotype recovered in only one of six host 

individuals, and showed that this association was stable over time, as the 

cyanobacterium was recovered in winter and summer clones libraries and presented in 

all symbiont profiles for this particular sponge host. These results show that 

interindividual variation in the sponge microbiota, often ascribed to the non-specific or 

transient bacterial associates discussed above, can result from persistent symbionts 

that occur sporadically among a host population. The implications of interindividual 

variability in symbiont composition on host ecology and symbiont evolution are 

unknown for sponge-microbial associations, but have the potential to affect symbiont 

community function (e.g., photosynthetic activity) and host-symbiont metabolic 

interactions. 
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Symbiont fluctuations and thermal thresholds 

Recent reports of widespread disease and mass mortality events in Ircinia spp. have 

raised concerns about the future of these sponge populations in the warming 

Mediterranean Sea. Elevated seawater temperatures are hypothesized to trigger such 

episodic mortality events, as recurrent disease outbreaks in I. fasciculata and I. 

variabilis occurred annually following peak seawater temperatures in summer 

(Maldonado et al. 2010; Stabili et al. 2012) and greater disease prevalence has been 

correlated with the length of exposure to temperatures exceeding threshold values 

(Cebrian et al. 2011). In addition to tissue necrosis, affected sponges also exhibit 

characteristic changes in their associated microbiota, including the loss of stable 

symbionts (Cebrian et al. 2011) or their replacement by pathogenic microbes 

(Maldonado et al. 2010; Stabili et al. 2012). Similar symbiont disruption and 

proliferation of putatively pathogenic bacteria was reported in a tropical sponge, 

Rhopaloeides odorabile, when exposed to elevated seawater temperatures (Webster et 

al. 2008a), suggesting that symbiont community collapse and host sponge mortality 

may become widespread as thermal tolerances are exceeded. 

A critical question is whether symbiont disruption precedes and precipitates 

host mortality (e.g., symbiont evacuation followed by colonization of infectious 

microbes) or simply results from declining host health. In the current study, no sponge 

mortality events occurred during the monitoring period, consistent with previous 

surveys of the study area (Cebrian et al. 2011), yet deviations from core symbiont 

communities (i.e., increased heterogeneity) were reported in warmer months, due to 

fluctuations in rare symbiont taxa within some host individuals. At our monitoring sites, 

lower temperatures (daily averages > 25OC during only 3 days) were recorded than 

those that preceded sponge mortality events in other Mediterranean regions (daily 

averages of 26 to 27OC). Accordingly, no pathogenic lineages (e.g., Vibrio spp.) were 

detected in sponge hosts and the symbiont community shifts observed in our study 

were minor (i.e., restricted to heterogeneity in rare symbiont‟s, while dominant 

symbionts were present throughout) and temporary (i.e., symbiont structure in all 

sponge hosts reverted to homogeneous core profiles following the 2010 summer 

season). However, considering the warming trends in the Mediterranean Sea and the 

proximity of temperature maxima in our study area (25OC) to those preceding sponge 

mortality events (26 to 27OC), the observed shifts in rare symbiont taxa may represent a 

precursor to larger symbiont declines and indicate approaching thermal thresholds for 

Mediterranean sponge-microbe symbioses. Additional monitoring studies and 

controlled experimentation are required to assess whether elevated seawater 

temperatures induce shifts in rare symbiont taxa, how these symbiont fluctuations 
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affect host health, and the utility of symbiont monitoring for predicting sponge mortality 

events. 
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SUPPLEMENTAL INFORMATION 

Table S1. Operational taxonomic unit (OTU), isolation source, season and GenBank accession numbers for sponge- and seawater-derived bacterial 16S 

rRNA gene sequences. 

OTU Source Season Clone GenBank 
Acc 

OTU Source Season Clone GenBank 
Acc 

IRC001 Ircinia fasciculata Winter AF10-3-15_C7 JN655221 IRC001 Ircinia oros Summer TO10-919_C12 JX206619 
   AF10-3-7_C11 JN655223    TO10-919_C13 JX206620 
   AF10-3-7_C23 JN655236    TO10-919_C16 JX206622 
   AF10-3-7_C29 JN655241    TO10-919_C22 JX206627 
   AF10-3-7_C8 JN655248    TO10-919_C23 JX206628 
   AF10-3-9_C10 JN655251    TO10-919_C4 JX206611 
   AF10-3-9_C26 JN655265    TO10-922_C14 JX206650 
   AF10-3-9_C27 JN655266    TO10-922_C24 JX206657 
   AF10-3-9_C28 JN655267    TO10-922_C8 JX206645 
   AF10-3-9_C5 JN655273    TO10-922_C9 JX206646 
   AF10-3-9_C7 JN655275    TO10-97_C18 JX206594 
   AF10-3-9_C9 JN655276  Ircinia variabilis Winter TV10-3-12_C14 JN655410 
  Summer AF10-915_C2 JX206520    TV10-3-2_C1 JN655430 
   AF10-915_C23 JX206537    TV10-3-2_C2 JN655440 
   AF10-915_C26 JX206540    TV10-3-2_C20 JN655441 
   AF10-915_C29 JX206543    TV10-3-2_C7 JN655453 
   AF10-97_C5 JX206479    TV10-3-7_C17 JN655463 
   AF10-99_C17 JX206508    TV10-3-7_C20 JN655467 
 Ircinia oros Winter PO10-3-1_C27 JN655346   Summer TV10-912_C13 JX206724 
   PO10-3-18_C10 JN655303    TV10-912_C17 JX206728 
   PO10-3-18_C11 JN655304    TV10-912_C22 JX206732 
   PO10-3-18_C14 JN655307    TV10-912_C27 JX206736 
   PO10-3-18_C15 JN655308    TV10-912_C28 JX206737 
   PO10-3-18_C2 JN655311    TV10-912_C9 JX206720 
   PO10-3-18_C20 JN655312    TV10-92_C22 JX206684 
   PO10-3-18_C21 JN655313    TV10-92_C23 JX206685 
   PO10-3-7_C14 JN655360    TV10-97_C31 JX206711 
   PO10-3-7_C19 JN655365 IRC002 Ircinia fasciculata Winter AF10-3-15_C10 JN655200 
   PO10-3-7_C25 JN655370    AF10-3-15_C11 JN655201 
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Table S1 (continued) 

OTU Source Season Clone GenBank 
Acc 

OTU Source Season Clone GenBank 
Acc 

IRC002 Ircinia fasciculata Winter AF10-3-15_C12 JN655202 IRC002 Ircinia fasciculata Summer AF10-915_C7 JX206525 
   AF10-3-15_C13 JN655203    AF10-97_C1 JX206477 
   AF10-3-15_C14 JN655204    AF10-97_C11 JX206485 
   AF10-3-15_C17 JN655207    AF10-97_C12 JX206486 
   AF10-3-15_C2 JN655209    AF10-97_C13 JX206487 
   AF10-3-15_C21 JN655211    AF10-97_C15 JX206489 
   AF10-3-15_C24 JN655213    AF10-97_C16 JX206490 
   AF10-3-15_C3 JN655216    AF10-97_C17 JX206491 
   AF10-3-15_C4 JN655218    AF10-97_C18 JX206492 
   AF10-3-15_C6 JN655220    AF10-97_C19 JX206493 
   AF10-3-7_C20 JN655233    AF10-97_C20 JX206494 
   AF10-3-7_C25 JN655238    AF10-97_C23 JX206496 
   AF10-3-7_C3 JN655242    AF10-97_C24 JX206497 
   AF10-3-7_C30 JN655243    AF10-97_C31 JX206501 
   AF10-3-7_C32 JN655244    AF10-97_C4 JX206478 
   AF10-3-7_C9 JN655249    AF10-97_C7 JX206481 
   AF10-3-9_C16 JN655255    AF10-97_C9 JX206483 
   AF10-3-9_C6 JN655274    AF10-99_C1 JX206503 
  Summer AF10-915_C10 JX206527    AF10-99_C19 JX206509 
   AF10-915_C12 JX206529    AF10-99_C2 JX206504 
   AF10-915_C15 JX206531    AF10-99_C23 JX206512 
   AF10-915_C18 JX206533    AF10-99_C28 JX206515 
   AF10-915_C19 JX206534    AF10-99_C29 JX206516 
   AF10-915_C24 JX206538    AF10-99_C30 JX206517 
   AF10-915_C25 JX206539    AF10-99_C32 JX206518 
   AF10-915_C3 JX206521  Ircinia variabilis Winter TV10-3-12_C4 JN655426 
   AF10-915_C32 JX206546    TV10-3-2_C13 JN655434 
   AF10-915_C4 JX206522    TV10-3-2_C15 JN655436 
   AF10-915_C6 JX206524    TV10-3-2_C8 JN655454 
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Table S1 (continued) 

OTU Source Season Clone GenBank 
Acc 

OTU Source Season Clone GenBank 
Acc 

IRC002 Ircinia variabilis Winter TV10-3-7_C31 JN655478 IRC003 Ircinia oros Winter PO10-3-7_C28 JN655373 
   TV10-3-7_C8 JN655483   Summer TO10-919_C27 JX206632 
  Summer TV10-912_C16 JX206727    TO10-919_C30 JX206635 
   TV10-92_C14 JX206678    TO10-919_C6 JX206613 
   TV10-92_C15 JX206679    TO10-919_C8 JX206615 
   TV10-92_C2 JX206667    TO10-922_C13 JX206649 
   TV10-92_C24 JX206686    TO10-97_C11 JX206587 
   TV10-92_C25 JX206687    TO10-97_C16 JX206592 
   TV10-92_C31 JX206692    TO10-97_C17 JX206593 
   TV10-92_C32 JX206693    TO10-97_C28 JX206603 
   TV10-92_C5 JX206670    TO10-97_C29 JX206604 
   TV10-92_C6 JX206671    TO10-97_C3 JX206579 
   TV10-92_C8 JX206672    TO10-97_C4 JX206580 
   TV10-92_C9 JX206673    TO10-97_C5 JX206581 
   TV10-97_C19 JX206701    TO10-97_C8 JX206584 
   TV10-97_C26 JX206707  Ircinia variabilis Winter TV10-3-2_C5 JN655451 
   TV10-97_C3 JX206695    TV10-3-7_C18 JN655464 
   TV10-97_C30 JX206710   Summer TV10-912_C23 JX206733 
IRC003 Ircinia oros Winter PO10-3-1_C1 JN655328    TV10-912_C29 JX206738 
   PO10-3-1_C13 JN655332    TV10-92_C10 JX206674 
   PO10-3-1_C22 JN655341    TV10-92_C17 JX206681 
   PO10-3-1_C8 JN655353    TV10-92_C20 JX206682 
   PO10-3-1_C9 JN655354    TV10-92_C26 JX206688 
   PO10-3-18_C16 JN655309    TV10-92_C30 JX206691 
   PO10-3-18_C26 JN655318    TV10-92_C4 JX206669 
   PO10-3-18_C3 JN655320 IRC004 Ircinia fasciculata Winter AF10-3-15_C20 JN655210 
   PO10-3-18_C30 JN655321    AF10-3-7_C10 JN655222 
   PO10-3-18_C7 JN655325    TV10-3-12_C10 JN655406 
   PO10-3-7_C10 JN655356    TV10-3-12_C27 JN655421 
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Table S1 (continued) 

OTU Source Season Clone GenBank 
Acc 

OTU Source Season Clone GenBank 
Acc 

IRC004   TV10-3-12_C30 JN655424 IRC006 Ircinia variabilis Summer TV10-912_C5 JX206717 
   TV10-3-12_C6 JN655427    TV10-97_C11 JX206698 
   TV10-3-2_C10 JN655431    TV10-97_C13 JX206700 
   TV10-3-2_C6 JN655452 IRC007 Ircinia oros Winter PO10-3-18_C18 JN655310 
   TV10-3-7_C1 JN655456    PO10-3-18_C32 JN655322 
   TV10-3-7_C16 JN655462    PO10-3-18_C8 JN655326 
   TV10-3-7_C19 JN655465    PO10-3-7_C22 JN655368 
   TV10-3-7_C23 JN655470   Summer TO10-919_C1 JX206608 
   TV10-3-7_C26 JN655472    TO10-919_C29 JX206634 
   TV10-3-7_C5 JN655480    TO10-922_C25 JX206658 
 Ircinia variabilis Summer TV10-912_C4 JX206716    TO10-922_C7 JX206644 
   TV10-912_C7 JX206719    TO10-97_C24 JX206599 
   TV10-97_C29 JX206709    TO10-97_C7 JX206583 
IRC005 Ircinia oros Winter PO10-3-1_C11 JN655330  Ircinia variabilis Winter TV10-3-2_C9 JN655455 
   PO10-3-1_C15 JN655334    TV10-3-7_C14 JN655461 
   PO10-3-7_C16 JN655362    TV10-3-7_C6 JN655481 
  Summer TO10-97_C26 JX206601   Summer TV10-912_C14 JX206725 
   TO10-97_C27 JX206602    TV10-912_C32 JX206740 
IRC006 Ircinia fasciculata Winter AF10-3-15_C22 JN655212    TV10-97_C28 JX206708 
  Summer AF10-99_C21 JX206511 IRC008 Seawater Winter PW10-3-I_C11 JN655386 
 Ircinia oros Winter PO10-3-1_C19 JN655338    PW10-3-I_C15 JN655389 
 Ircinia variabilis Winter TV10-3-12_C1 JN655405    TW10-3-I_C2 JN655495 
   TV10-3-12_C12 JN655408    TW10-3-I_C5 JN655507 
   TV10-3-12_C16 JN655412    TW10-3-I_C6 JN655508 
   TV10-3-12_C18 JN655413 IRC009 Ircinia oros Winter PO10-3-1_C16 JN655335 
   TV10-3-12_C25 JN655419    PO10-3-1_C23 JN655342 
   TV10-3-12_C26 JN655420    PO10-3-1_C25 JN655344 
   TV10-3-12_C28 JN655422    PO10-3-18_C9 JN655327 
   TV10-3-12_C29 JN655423    PO10-3-7_C17 JN655363 
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Table S1 (continued) 

OTU Source Season Clone GenBank 
Acc 

OTU Source Season Clone GenBank 
Acc 

IRC009 Ircinia oros Winter PO10-3-7_C9 JN655383 IRC013 Seawater Winter TW10-3-I_C16 JN655492 
  Summer TO10-919_C2 JX206609    TW10-3-I_C22 JN655498 
   TO10-919_C31 JX206636    TW10-3-I_C29 JN655502 
 Ircinia variabilis Winter TV10-3-2_C21 JN655442   Summer AW10-9I_C28 JX206573 
   TV10-3-7_C29 JN655475    AW10-9I_C5 JX206551 
IRC010 Ircinia variabilis Winter TV10-3-2_C18 JN655439    TW10-9I_C10 JX206749 
 Seawater Winter AW10-3-I_C13 JN655281    TW10-9I_C11 JX206750 
   AW10-3-I_C15 JN655283    TW10-9II_C19 JX206784 
   TW10-3-I_C19 JN655494    TW10-9II_C20 JX206785 
IRC011 Ircinia fasciculata Winter AF10-3-15_C16 JN655206 IRC014 Ircinia fasciculata Winter AF10-3-7_C16 JN655228 
 Ircinia variabilis Winter TV10-3-12_C13 JN655409    AF10-3-9_C31 JN655270 
IRC012 Ircinia fasciculata Winter AF10-3-7_C2 JN655232    AF10-3-9_C4 JN655272 
   AF10-3-7_C6 JN655247  Ircinia fasciculata Summer AF10-915_C27 JX206541 
   AF10-3-9_C19 JN655258    AF10-915_C31 JX206545 
   AF10-3-9_C32 JN655271  Ircinia variabilis Winter TV10-3-12_C20 JN655416 
 Ircinia oros Winter PO10-3-1_C14 JN655333    TV10-3-12_C22 JN655417 
   PO10-3-1_C18 JN655337  Ircinia variabilis Summer TV10-912_C21 JX206731 
   PO10-3-1_C3 JN655348    TV10-97_C20 JX206702 
   PO10-3-18_C13 JN655306 IRC015 Ircinia fasciculata Winter AF10-3-7_C18 JN655230 
   PO10-3-7_C21 JN655367    AF10-3-7_C19 JN655231 
 Ircinia variabilis Winter TV10-3-12_C23 JN655418    AF10-3-7_C21 JN655234 
   TV10-3-2_C17 JN655438    AF10-3-7_C27 JN655239 
   TV10-3-7_C27 JN655473    AF10-3-7_C4 JN655245 
   TV10-3-7_C3 JN655476   Summer AF10-97_C10 JX206484 
   TV10-3-7_C30 JN655477    AF10-97_C14 JX206488 
   TV10-3-7_C7 JN655482    AF10-97_C21 JX206495 
IRC013 Seawater Winter AW10-3-I_C19 JN655286    AF10-97_C28 JX206499 
   AW10-3-I_C24 JN655292    AF10-97_C30 JX206500 
   TW10-3-I_C14 JN655491    AF10-97_C32 JX206502 
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OTU Source Season Clone GenBank 
Acc 

OTU Source Season Clone GenBank 
Acc 

IRC015 Ircinia fasciculata Summer AF10-97_C8 JX206482 iRC019 Ircinia variabilis Winter TV10-3-7_C21 JN655468 
IRC016 Ircinia oros Winter PO10-3-18_C25 JN655317   Summer TV10-912_C11 JX206722 
   PO10-3-18_C5 JN655323 IRC020 Ircinia oros Summer TO10-97_C20 JX206595 
 Ircinia oros Summer TO10-922_C1 JX206638  Ircinia variabilis Winter TV10-3-12_C19 JN655414 
   TO10-97_C6 JX206582    TV10-3-7_C22 JN655469 
 Ircinia variabilis Winter TV10-3-7_C11 JN655458    TV10-3-7_C24 JN655471 
   TV10-3-7_C28 JN655474 IRC021 Ircinia oros Winter PO10-3-1_C17 JN655336 
IRC017 Seawater Winter AW10-3-I_C2 JN655287    PO10-3-1_C4 JN655351 
   AW10-3-I_C22 JN655290    PO10-3-7_C2 JN655366 
   TW10-3-I_C13 JN655490 IRC022 Ircinia fasciculata Winter AF10-3-15_C15 JN655205 
   TW10-3-I_C7 JN655509    AF10-3-7_C17 JN655229 
  Summer AW10-9I_C7 JX206553 IRC023 Ircinia oros Winter PO10-3-18_C12 JN655305 
   TW10-9II_C17 JX206782    PO10-3-18_C6 JN655324 
   TW10-9II_C6 JX206772 IRC024 Ircinia fasciculata Winter AF10-3-9_C17 JN655256 
IRC018 Ircinia fasciculata Winter AF10-3-15_C19 JN655208  Ircinia variabilis Winter TV10-3-2_C22 JN655443 
   AF10-3-9_C3 JN655269 IRC025 Ircinia fasciculata Winter AF10-3-9_C13 JN655252 
 Ircinia oros Summer TO10-919_C10 JX206617    AF10-3-9_C21 JN655261 
 Ircinia variabilis Winter TV10-3-12_C2 JN655415 IRC026 Ircinia oros Winter PO10-3-7_C13 JN655359 
   TV10-3-2_C28 JN655446    PO10-3-7_C26 JN655371 
 Ircinia variabilis Summer TV10-912_C19 JX206729    PO10-3-7_C7 JN655381 
IRC019 Ircinia fasciculata Winter AF10-3-9_C25 JN655264 IRC027 Ircinia oros Winter PO10-3-7_C11 JN655357 
 Ircinia oros Winter PO10-3-18_C23 JN655315    PO10-3-7_C5 JN655379 
   PO10-3-7_C3 JN655374 IRC028 Seawater Winter AW10-3-I_C10 JN655278 
 Ircinia oros Summer TO10-922_C26 JX206659    AW10-3-I_C26 JN655293 
   TO10-922_C3 JX206640  Seawater Summer TW10-9II_C30 JX206795 
   TO10-922_C4 JX206641 IRC029 Seawater Winter PW10-3-I_C18 JN655392 
   TO10-97_C13 JX206589    PW10-3-I_C9 JN655404 
   TO10-97_C14 JX206590 IRC030 Ircinia fasciculata Winter AF10-3-9_C2 JN655259 
   TO10-97_C22 JX206597    AF10-3-9_C22 JN655262 
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Table S1 (continued) 

OTU Source Season Clone GenBank 
Acc 

OTU Source Season Clone GenBank 
Acc 

IRC030 Ircinia fasciculata Winter AF10-915_C21 JX206536 IRC038 Ircinia fasciculata Winter AF10-3-7_C12 JN655224 
IRC031 Ircinia oros Winter PO10-3-18_C1 JN655302    AF10-3-7_C24 JN655237 
   PO10-3-18_C22 JN655314   Summer AF10-915_C9 JX206526 
 Ircinia oros Summer TO10-919_C11 JX206618  Ircinia variabilis Winter TV10-3-2_C11 JN655432 
   TO10-922_C29 JX206662 IRC039 Ircinia variabilis Winter TV10-3-12_C9 JN655429 
 Ircinia variabilis Winter TV10-3-2_C32 JN655449  Seawater Winter TW10-3-I_C4 JN655506 
  Summer TV10-912_C20 JX206730   Summer TW10-9II_C26 JX206791 
   TV10-912_C26 JX206735 IRC040 Seawater Winter TW10-3-I_C1 JN655486 
   TV10-97_C12 JX206699    TW10-3-I_C9 JN655511 
IRC032 Ircinia oros Winter PO10-3-7_C6 JN655380 IRC041 Ircinia variabilis Winter TV10-3-2_C31 JN655448 
 Ircinia variabilis Winter TV10-3-2_C24 JN655444    TV10-3-7_C4 JN655479 
   TV10-3-7_C2 JN655466   Summer TV10-92_C16 JX206680 
 Ircinia variabilis Summer TV10-97_C2 JX206694 IRC042 Seawater Winter TW10-3-I_C25 JN655500 
   TV10-97_C21 JX206703    TW10-3-I_C26 JN655501 
IRC033 Ircinia fasciculata Winter AF10-3-9_C18 JN655257 IRC043 Ircinia oros Winter PO10-3-1_C26 JN655345 
   AF10-3-9_C20 JN655260    PO10-3-1_C31 JN655350 
IRC034 Seawater Winter AW10-3-I_C18 JN655285 IRC044 Ircinia fasciculata Winter AF10-3-15_C27 JN655215 
   AW10-3-I_C21 JN655289    AF10-3-7_C22 JN655235 
   PW10-3-I_C21 JN655395 IRC044 Ircinia variabilis Summer TV10-912_C2 JX206714 
   PW10-3-I_C25 JN655399    TV10-92_C11 JX206675 
IRC035 Ircinia oros Winter PO10-3-1_C30 JN655349 IRC045 Seawater Winter PW10-3-I_C2 JN655394 
   PO10-3-7_C18 JN655364    PW10-3-I_C22 JN655396 
IRC036 Ircinia fasciculata Winter AF10-3-9_C14 JN655253 IRC046 Ircinia oros Winter PO10-3-1_C21 JN655340 
   AF10-3-9_C15 JN655254    PO10-3-1_C29 JN655347 
IRC037 Ircinia oros Winter PO10-3-1_C10 JN655329  Ircinia variabilis Summer TV10-912_C3 JX206715 
   PO10-3-7_C32 JN655377 IRC047 Ircinia variabilis Winter TV10-3-7_C12 JN655459 
  Summer TO10-922_C28 JX206661    TV10-3-7_C13 JN655460 
   TO10-97_C30 JX206605 IRC048 Ircinia oros Winter PO10-3-7_C27 JN655372 
   TO10-97_C31 JX206606    PO10-3-7_C4 JN655378 
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OTU Source Season Clone GenBank 
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IRC048 Ircinia oros Summer TO10-922_C17 JX206652 IRC075 Seawater Winter AW10-3-I_C8 JN655301 
IRC049 Ircinia fasciculata Winter AF10-3-15_C25 JN655214 IRC076 Ircinia oros Winter PO10-3-1_C12 JN655331 
IRC050 Ircinia fasciculata Winter AF10-3-15_C30 JN655217 IRC077 Ircinia oros Winter PO10-3-1_C2 JN655339 
IRC051 Ircinia fasciculata Winter AF10-3-15_C5 JN655219 IRC078 Ircinia oros Winter PO10-3-1_C24 JN655343 
IRC052 Ircinia fasciculata Winter AF10-3-7_C13 JN655225   Summer TO10-919_C5 JX206612 
IRC053 Ircinia fasciculata Winter AF10-3-7_C14 JN655226    TO10-97_C10 JX206586 
IRC054 Ircinia fasciculata Winter AF10-3-7_C15 JN655227    TO10-97_C32 JX206607 
 Ircinia oros Summer TO10-922_C21 JX206656 IRC079 Ircinia oros Winter PO10-3-1_C6 JN655352 
IRC055 Ircinia fasciculata Winter AF10-3-7_C28 JN655240 IRC080 Ircinia oros Winter PO10-3-18_C24 JN655316 
  Summer AF10-915_C30 JX206544 IRC081 Ircinia oros Winter PO10-3-18_C27 JN655319 
IRC056 Ircinia fasciculata Winter AF10-3-7_C5 JN655246 IRC082 Ircinia fasciculata Summer AF10-97_C6 JX206480 
  Summer AF10-915_C11 JX206528    AF10-99_C20 JX206510 
IRC057 Ircinia fasciculata Winter AF10-3-9_C1 JN655250    AF10-99_C27 JX206514 
IRC058 Ircinia fasciculata Winter AF10-3-9_C24 JN655263  Ircinia oros Winter PO10-3-7_C1 JN655355 
IRC059 Ircinia fasciculata Winter AF10-3-9_C29 JN655268 IRC083 Ircinia oros Winter PO10-3-7_C12 JN655358 
IRC060 Seawater Winter AW10-3-I_C1 JN655277 IRC084 Ircinia oros Winter PO10-3-7_C15 JN655361 
  Summer TW10-9II_C4 JX206770 IRC085 Ircinia oros Winter PO10-3-7_C23 JN655369 
IRC061 Seawater Winter AW10-3-I_C11 JN655279 IRC086 Ircinia oros Winter PO10-3-7_C30 JN655375 
IRC062 Seawater Winter AW10-3-I_C12 JN655280 IRC087 Ircinia oros Winter PO10-3-7_C31 JN655376 
IRC063 Seawater Winter AW10-3-I_C14 JN655282 IRC088 Ircinia oros Winter PO10-3-7_C8 JN655382 
IRC064 Seawater Winter AW10-3-I_C17 JN655284 IRC089 Seawater Winter PW10-3-I_C1 JN655384 
IRC065 Seawater Winter AW10-3-I_C20 JN655288 IRC090 Seawater Winter PW10-3-I_C10 JN655385 
IRC066 Seawater Winter AW10-3-I_C23 JN655291 IRC092 Seawater Winter PW10-3-I_C13 JN655387 
IRC068 Seawater Winter AW10-3-I_C30 JN655294 IRC093 Seawater Winter PW10-3-I_C14 JN655388 
IRC069 Seawater Winter AW10-3-I_C31 JN655295 IRC094 Seawater Winter PW10-3-I_C16 JN655390 
IRC070 Seawater Winter AW10-3-I_C32 JN655296 IRC095 Seawater Winter PW10-3-I_C17 JN655391 
IRC071 Seawater Winter AW10-3-I_C4 JN655297 IRC096 Seawater Winter PW10-3-I_C19 JN655393 
IRC072 Seawater Winter AW10-3-I_C5 JN655298 IRC097 Seawater Winter PW10-3-I_C23 JN655397 
IRC073 Seawater Winter AW10-3-I_C6 JN655299 IRC098 Seawater Winter PW10-3-I_C24 JN655398 
IRC074 Seawater Winter AW10-3-I_C7 JN655300 IRC099 Seawater Winter PW10-3-I_C27 JN655400 
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IRC100 Seawater Winter PW10-3-I_C3 JN655401 IRC118 Seawater Winter TW10-3-I_C17 JN655493 
IRC101 Seawater Winter PW10-3-I_C30 JN655402   Summer AW10-9I_C29 JX206574 
IRC102 Seawater Winter PW10-3-I_C31 JN655403 IRC119 Seawater Winter TW10-3-I_C20 JN655496 
IRC103 Ircinia variabilis Winter TV10-3-12_C11 JN655407 IRC120 Seawater Winter TW10-3-I_C21 JN655497 
IRC104 Ircinia variabilis Winter TV10-3-12_C15 JN655411 IRC121 Seawater Winter TW10-3-1_C23 JN655485 
  Summer TV10-92_C29 JX206690   Summer TW10-9II_C8 JX206774 
IRC105 Ircinia variabilis Winter TV10-3-12_C32 JN655425 IRC122 Seawater Winter TW10-3-I_C24 JN655499 
IRC106 Ircinia variabilis Winter TV10-3-12_C8 JN655428 IRC123 Seawater Winter TW10-3-I_C3 JN655503 
IRC107 Ircinia variabilis Winter TV10-3-2_C12 JN655433 IRC124 Seawater Winter TW10-3-I_C30 JN655504 
IRC108 Ircinia variabilis Winter TV10-3-2_C14 JN655435 IRC125 Seawater Winter TW10-3-I_C31 JN655505 
IRC109 Ircinia oros Summer TO10-922_C10 JX206647 IRC126 Seawater Winter TW10-3-I_C8 JN655510 
   TO10-922_C20 JX206655 IRC127 Seawater Summer AW10-9I_C12 JX206558 
   TO10-922_C31 JX206664    AW10-9I_C13 JX206559 
 Ircinia variabilis Winter TV10-3-2_C16 JN655437    AW10-9I_C16 JX206562 
IRC110 Ircinia oros Summer TO10-97_C15 JX206591    AW10-9I_C22 JX206567 
 Ircinia variabilis Winter TV10-3-2_C26 JN655445    AW10-9I_C6 JX206552 
IRC111 Ircinia variabilis Winter TV10-3-2_C29 JN655447    TW10-9I_C12 JX206751 
IRC112 Ircinia oros Summer TO10-919_C15 JX206621    TW10-9I_C18 JX206756 
 Ircinia variabilis Winter TV10-3-2_C4 JN655450    TW10-9I_C4 JX206744 
  Summer TV10-912_C31 JX206739    TW10-9II_C16 JX206781 
IRC113 Ircinia variabilis Winter TV10-3-7_C10 JN655457    TW10-9II_C2 JX206769 
IRC114 Ircinia fasciculata Summer AF10-915_C1 JX206519 IRC128 Seawater Summer AW10-9I_C27 JX206572 
   AF10-915_C28 JX206542    TW10-9I_C1 JX206741 
   AF10-915_C5 JX206523    TW10-9I_C21 JX206759 
 Ircinia variabilis Winter TV10-3-7_C9 JN655484    TW10-9I_C24 JX206761 
  Summer TV10-912_C12 JX206723    TW10-9I_C6 JX206746 
IRC115 Seawater Winter TW10-3-I_C10 JN655487    TW10-9II_C10 JX206776 
IRC116 Seawater Winter TW10-3-I_C11 JN655488    TW10-9II_C21 JX206786 
IRC117 Seawater Winter TW10-3-I_C12 JN655489    TW10-9II_C22 JX206787 
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Table S1 (continued) 

OTU Source Season Clone GenBank 
Acc 

OTU Source Season Clone GenBank 
Acc 

IRC128 Seawater Summer TW10-9II_C28 JX206793 IRC132 Ircinia variabilis Summer TV10-92_C27 JX206689 
   TW10-9II_C9 JX206775 IRC133 Ircinia oros Summer TO10-919_C24 JX206629 
IRC129 Ircinia oros Summer TO10-97_C23 JX206598    TO10-922_C27 JX206660 
 Seawater Summer AW10-9I_C18 JX206564    TO10-922_C5 JX206642 
   AW10-9I_C25 JX206570    TO10-922_C6 JX206643 
   AW10-9I_C26 JX206571 IRC134 Seawater Summer AW10-9I_C3 JX206549 
   TW10-9I_C13 JX206752    AW10-9I_C8 JX206554 
   TW10-9I_C2 JX206742    TW10-9I_C30 JX206765 
   TW10-9II_C25 JX206790    TW10-9I_C32 JX206767 
   TW10-9II_C29 JX206794 IRC135 Ircinia variabilis Summer TV10-92_C13 JX206677 
IRC130 Seawater Summer AW10-9I_C30 JX206575    TV10-92_C21 JX206683 
   AW10-9I_C31 JX206576    TV10-92_C3 JX206668 
   TW10-9I_C28 JX206764 IRC136 Seawater Summer AW10-9I_C15 JX206561 
   TW10-9I_C3 JX206743    TW10-9I_C17 JX206755 
   TW10-9I_C31 JX206766    TW10-9I_C8 JX206747 
   TW10-9I_C5 JX206745 IRC137 Ircinia oros Summer TO10-919_C18 JX206624 
   TW10-9II_C24 JX206789    TO10-919_C25 JX206630 
   TW10-9II_C7 JX206773    TO10-97_C21 JX206596 
IRC131 Seawater Summer AW10-9I_C1 JX206547 IRC138 Ircinia fasciculata Summer AF10-915_C16 JX206532 
   AW10-9I_C14 JX206560    AF10-915_C20 JX206535 
   AW10-9I_C24 JX206569 IRC139 Seawater Summer TW10-9I_C19 JX206757 
   TW10-9I_C15 JX206753    TW10-9I_C20 JX206758 
   TW10-9I_C16 JX206754 IRC140 Ircinia variabilis Summer TV10-912_C6 JX206718 
   TW10-9I_C25 JX206762    TV10-97_C4 JX206696 
   TW10-9II_C23 JX206788 IRC141 Ircinia oros Summer TO10-919_C28 JX206633 
   TW10-9II_C31 JX206796    TO10-922_C15 JX206651 
IRC132 Ircinia fasciculata Summer AF10-915_C14 JX206530 IRC142 Ircinia variabilis Summer TV10-97_C25 JX206706 
 Ircinia variabilis Summer TV10-912_C10 JX206721    TV10-97_C6 JX206697 
   TV10-912_C15 JX206726 IRC143 Ircinia fasciculata Summer AF10-99_C3 JX206505 
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Table S1 (continued) 

OTU Source Season Clone GenBank 
Acc 

OTU Source Season Clone GenBank 
Acc 

IRC143 Ircinia variabilis Summer TV10-97_C22 JX206704 IRC168 Ircinia oros Summer TO10-922_C19 JX206654 
IRC144 Ircinia fasciculata Summer AF10-97_C25 JX206498 IRC169 Ircinia oros Summer TO10-922_C2 JX206639 
IRC145 Ircinia fasciculata Summer AF10-99_C15 JX206507 IRC170 Ircinia oros Summer TO10-922_C30 JX206663 
IRC146 Ircinia fasciculata Summer AF10-99_C25 JX206513 IRC171 Ircinia oros Summer TO10-922_C32 JX206665 
IRC147 Ircinia fasciculata Summer AF10-99_C8 JX206506 IRC172 Ircinia oros Summer TO10-97_C1 JX206578 
IRC148 Seawater Summer AW10-9I_C10 JX206556 IRC173 Ircinia oros Summer TO10-97_C12 JX206588 
IRC149 Seawater Summer AW10-9I_C11 JX206557 IRC174 Ircinia oros Summer TO10-97_C25 JX206600 
IRC150 Seawater Summer AW10-9I_C17 JX206563 IRC175 Ircinia oros Summer TO10-97_C9 JX206585 
IRC151 Seawater Summer AW10-9I_C2 JX206548 IRC176 Ircinia variabilis Summer TV10-912_C1 JX206713 
IRC152 Seawater Summer AW10-9I_C20 JX206565 IRC177 Ircinia variabilis Summer TV10-912_C25 JX206734 
IRC153 Seawater Summer AW10-9I_C21 JX206566 IRC178 Ircinia variabilis Summer TV10-92_C1 JX206666 
IRC154 Seawater Summer AW10-9I_C23 JX206568 IRC179 Ircinia variabilis Summer TV10-92_C12 JX206676 
IRC155 Seawater Summer AW10-9I_C32 JX206577 IRC180 Ircinia variabilis Summer TV10-97_C23 JX206705 
IRC156 Seawater Summer AW10-9I_C4 JX206550 IRC181 Ircinia variabilis Summer TV10-97_C32 JX206712 
IRC157 Seawater Summer AW10-9I_C9 JX206555 IRC182 Seawater Summer TW10-9I_C23 JX206760 
IRC158 Ircinia oros Summer TO10-919_C17 JX206623 IRC183 Seawater Summer TW10-9I_C26 JX206763 
IRC159 Ircinia oros Summer TO10-919_C19 JX206625 IRC184 Seawater Summer TW10-9I_C9 JX206748 
IRC160 Ircinia oros Summer TO10-919_C20 JX206626 IRC185 Seawater Summer TW10-9II_C1 JX206768 
IRC161 Ircinia oros Summer TO10-919_C26 JX206631 IRC186 Seawater Summer TW10-9II_C12 JX206777 
IRC162 Ircinia oros Summer TO10-919_C3 JX206610 IRC187 Seawater Summer TW10-9II_C13 JX206778 
IRC163 Ircinia oros Summer TO10-919_C32 JX206637 IRC188 Seawater Summer TW10-9II_C14 JX206779 
IRC164 Ircinia oros Summer TO10-919_C7 JX206614 IRC189 Seawater Summer TW10-9II_C15 JX206780 
IRC165 Ircinia oros Summer TO10-919_C9 JX206616 IRC190 Seawater Summer TW10-9II_C18 JX206783 
IRC166 Ircinia oros Summer TO10-922_C12 JX206648 IRC191 Seawater Summer TW10-9II_C27 JX206792 
IRC167 Ircinia oros Summer TO10-922_C18 JX206653 IRC192 Seawater Summer TW10-9II_C5 JX206771 

 

 



Seasonal Stability of Sponge-Associated Bacteria 

 

 112 

Table S2. Complete results for permutational statistical analyses of bacterial community 

structure (PERMANOVA, upper row) and dispersion (PERMDSIP, in parenthesis) within sponge 

hosts and seawater across the monitoring period (uncorrected P-values shown). 

 I. fasciculata I. variabilis I. oros Seawater 

Pairwise 
Comparison HaeIII MspI HaeIII MspI HaeIII MspI HaeIII MspI 

Sequential          

Mar 2010 – Jun 2010 0.026 

- 

0.012* 

(0.011*) 

0.061 

- 

0.009* 

(0.002*) 

0.003* 

(0.019) 

0.001* 

(0.006*) 

0.001* 

(0.221) 

0.001* 

(0.327) 

Jun 2010 – Sep 2010 0.165 

- 

0.103 

- 

0.102 

- 

0.400 

- 

0.282 

- 

0.086 

- 

0.001* 

(0.390) 

0.001* 

(0.114) 

Sep 2010 –Dec 2010 0.083 

- 

0.08* 

(0.015*) 

0.053 

- 

0.012* 

(0.011*) 

0.021 

- 

0.001* 

(0.264) 

0.001* 

(0.107) 

0.001* 

(0.523) 

Dec 2010 – Mar 2011 0.266 

- 

0.291 

- 

0.268 

- 

0.866 

- 

0.699 

- 

0.409 

- 

0.001* 

(0.696) 

0.001* 

(0.505) 

Mar 2011 – Jun 2011 0.163 

- 

0.046 

- 

0.391 

- 

0.604 

- 

0.273 

- 

0.880 

- 

0.001* 

(1.00) 

0.001* 

(0.105) 

Non-Sequential         

Mar 2010 – Sep 2010 0.046 

- 

0.015* 

(0.236) 

0.089 

- 

0.007* 

(0.002*) 

0.001* 

(0.043) 

0.001* 

(0.004*) 

0.001* 

(0.099) 

0.001* 

(0.090) 

Mar 2010 – Dec 2010 0.009* 

(0.111) 

0.004* 

(0.143) 

0.360 

- 

0.289 

- 

0.181 

- 

0.001* 

(0.906) 

0.001* 

(0.805) 

0.001* 

(1.000) 

Mar 2010 – Mar 2011 0.003* 

(0.085) 

0.004* 

(0.009*) 

0.666 

- 

0.331 

- 

0.244 

- 

0.073 

- 

0.001* 

(0.813) 

0.001* 

(1.000) 

Mar 2010 – Jun 2011 0.098 

- 

0.042 

- 

0.712 

- 

0.589 

- 

0.049 

- 

0.001* 

(0.302) 

0.001* 

(0.384) 

0.001* 

(0.079) 

Jun 2010 – Dec 2010 0.055 

- 

0.001* 

(0.006*) 

0.048 

- 

0.083 

- 

0.121 

- 

0.002* 

(0.310) 

0.001* 

(0.109) 

0.001* 

(1.000) 

Jun 2010 – Mar 2011 0.029 

- 

0.001* 

(0.002*) 

0.033 

- 

0.051 

- 

0.09 

- 

0.029 

- 

0.001* 

(0.493) 

0.001* 

(0.591) 

Jun 2010 – Jun 2011 0.158 

- 

0.001* 

(0.005*) 

0.100 

- 

0.102 

- 

0.001* 

(0.003*) 

0.038 

- 

0.001* 

(0.496) 

0.001* 

(0.102) 

Sep 2010 – Mar 2011 0.047 

- 

0.001* 

(0.005*) 

0.026 

- 

0.001* 

(0.003*) 

0.018 

- 

0.001* 

(0.401) 

0.001* 

(0.109) 

0.001* 

(0.096) 

Sep 2010 – Jun 2011 0.115 

- 

0.005* 

(0.004*) 

0.073 

- 

0.022 

- 

0.001* 

(0.105) 

0.001* 

(0.105) 

0.001* 

(0.100) 

0.001* 

(1.000) 

Dec 2010 – Jun 2011 0.337 

- 

0.041 

- 

0.304 

- 

0.829 

- 

0.085 

- 

0.247 

- 

0.001* 

(0.277) 

0.001* 

(0.201) 

* = Comparison significant following B-Y correction (Benjamini & Yekutieli 2001) 
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Table S3. Presence and relative abundance of T-RF signatures from dominant sponge-associated bacteria throughout the monitoring period. Percentage total 

fluorescence is shown as average values (± SE) per source (sponge and seawater) and sampling time (month). 

Source Time Enzyme IRC001 IRC002 IRC003 IRC004 IRC006 IRC007 IRC012 IRC015 

Ircinia 
fasciculata 

Mar 
2010 

HaeIII 
MspI 

11.22 ±1.07 
12.77 ±1.44 

18.25 ±4.64 
  9.34 ±3.13 

4.62 ±0.81 
3.02 ±0.90 

4.53 ±0.60 
2.20 ±0.53 

5.28 ±0.97 
1.64 ±1.06 

n.a. 
1.01 ±0.38 

4.62 ±0.81 
3.19 ±1.46 

1.93 ±1.86 
2.59 ±2.59 

 Jun 
2010 

HaeIII 
MspI 

4.37 ±0.93 
11.48 ±2.81 

11.98 ±2.92 
7.60 ±3.43 

9.09 ±3.96 
1.00 ±0.36 

3.44 ±0.51 
2.83 ±0.75 

2.57 ±0.89 
2.53 ±1.15 

n.a. 
0.28 ±0.19 

9.09 ±3.96 
3.13 ±1.59 

1.54 ±1.54 
2.20 ±2.20 

 Sep 
2010 

HaeIII 
MspI 

8.15 ±1.97 
15.10 ±2.61 

12.92 ±0.89 
15.38 ±3.30 

3.73 ±0.82 
1.95 ±0.32 

1.67 ±0.23 
0.31 ±0.22 

1.71 ±0.37 
1.57 ±0.73 

n.a. 
0.32 ±0.21 

3.73 ±0.82 
0.47 ±0.19 

1.64 ±1.46 
n.d. 

 Dec 
2010 

HaeIII 
MspI 

6.98 ±1.02 
7.34 ±0.80 

18.39 ±3.93 
16.80 ±2.56 

2.48 ±0.43 
0.68 ± 0.21 

3.53 ±0.65 
2.55 ±0.58 

4.14 ±1.01 
2.62 ±1.26 

n.a. 
0.63 ±0.15 

2.48 ±0.43 
1.29 ±0.51 

0.95 ±0.95 
1.03 ±0.99 

 Mar 
2011 

HaeIII 
MspI 

5.91 ±0.65 
5.85 ±0.99 

12.09 ±1.53 
14.08 ±2.12 

4.02 ±0.44 
0.60 ±0.12 

5.61 ±1.04 
4.03 ±0.87 

4.40 ±0.85 
4.50 ±0.67 

n.a. 
0.74 ±0.08 

4.02 ±0.44 
2.65 ±0.73 

1.86 ±1.82 
1.73 ±1.66 

 Jun 
2011 

HaeIII 
MspI 

7.63 ±0.67 
8.12 ±0.72 

14.72 ±3.35 
14.54 ±2.56 

3.06 ±0.37 
1.52 ±0.14 

4.47 ±0.33 
3.05 ±0.58 

2.70 ±0.45 
1.04 ±0.38 

n.a. 
0.80 ±0.21 

3.06 ±0.37 
n.d. 

1.68 ±1.68 
n.d. 

Ircinia. 
variabilis 

Mar 
2010 

HaeIII 
MspI 

9.80 ±1.76 
5.54 ±1.35 

16.23  ±3.95 
13.21 ±2.48 

10.21 ±1.25 
8.93 ±1.37 

7.79 ±1.36 
4.30 ±0.90 

8.95 ±1.75 
6.83 ±2.22 

n.a. 
6.47 ±1.65 

10.21 ±1.25 
4.68 ±1.28 

n.d. 
0.04 ±0.03 

 Jun 
2010 

HaeIII 
MspI 

3.92 ±0.97 
4.46 ±1.10 

17.17 ±2.48 
10.70 ±3.67 

17.65 ±3.52 
12.05 ±2.16 

4.11 ±1.16 
1.98 ±0.41 

8.70 ±4.01 
3.34 ±1.45 

n.a. 
2.35 ±1.23 

17.65 ±3.52 
4.15 ±1.61 

n.d. 
2.34 ±2.14 

 Sep 
2010 

HaeIII 
MspI 

6.40 ±0.96 
7.49 ±2.44 

11.95 ±3.01 
3.01 ±1.92 

23.66 ±6.64 
16.67 ±3.40 

3.17 ±0.65 
1.66 ±0.44 

5.45 ±2.29 
5.28 ±1.88 

n.a. 
2.34 ±1.43 

23.66 ±6.64 
1.20 ±0.76 

n.d. 
4.14 ±2.81 

 Dec 
2010 

HaeIII 
MspI 

8.60 ±1.74 
4.62 ±1.16 

10.50 ±3.61 
12.13 ±2.63 

9.71 ±0.91 
9.42 ±0.95 

7.34 ±0.72 
4.16 ±0.46 

11.04 ±2.55 
6.61 ±1.46 

n.a. 
3.95 ±1.14 

9.71 ±7.85 
3.02 ±0.90 

0.02 ±0.02 
0.02 ±0.02 

 Mar 
2011 

HaeIII 
MspI 

8.41 ±1.01 
5.08 ±1.31 

17.80 ±2.38 
17.71 ±2.40 

7.85 ±1.32 
6.28 ±0.75 

9.24 ±0.62 
5.70 ±0.62 

10.76 ±1.92 
4.21 ±2.21 

n.a. 
3.84 ±0.89 

7.85 ±1.32 
3.22 ±0.84 

n.d. 
0.27 ±0.20 

 Jun 
2011 

HaeIII 
MspI 

11.24 ±0.51 
7.35 ±1.35 

12.31 ±1.59 
15.89 ±1.23 

5.89 ±0.75 
5.16 ±0.26 

6.65 ±0.83 
3.17 ±0.63 

7.26 ±1.57 
5.02 ±1.86 

n.a. 
3.32 ±0.65 

5.89 ±0.75 
1.95 ±0.96 

n.d. 
0.02 ±0.02 

n.d = not detected, no T-RF fluorescence reading; n.a. =not available, T-RF size larger than sizing standard range 
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Table S3 (continued) 

 

Source Time Enzyme IRC001 IRC002 IRC003 IRC004 IRC006 IRC007 IRC012 IRC015 

Ircinia. 
oros 

Mar 
2010 

HaeIII 
MspI 

16.20 ±1.34 
5.13 ±1.05 

1.17 ±1.15 
1.53 ±1.22 

10.40 ±2.32 
6.27 ±1.00 

3.66 ±0.72 
1.94 ±0.38 

2.51 ±0.85 
0.98 ±0.58 

n.a. 
7.29 ±1.54 

10.40 ±2.32 
4.75 ±1.08 

n.d. 
0.93 ±0.64 

 Jun 
2010 

HaeIII 
MspI 

13.58 ±2.89 
2.14 ±0.39 

n.d. 
0.10 ±0.09 

27.70 ±9.11 
9.31 ±2.46 

3.65 ±2.27 
1.51 ±0.44 

2.66 ±1.62 
2.20 ±1.08 

n.a. 
2.80 ±0.96 

27.70 ±9.11 
8.70 ±2.55 

n.d. 
0.28 ±0.26 

 Sep 
2010 

HaeIII 
MspI 

11.37 ±3.25 
4.66 ±0.97 

n.d. 
0.23 ±0.15 

41.36 ±9.45 
16.81 ±2.94 

0.44 ±0.27 
0.35 ±0.16 

0.42 ±0.20 
0.45 ±0.23 

n.a. 
2.38 ±0.74 

41.36 ±9.45 
1.26 ±1.15 

0.21 ±0.19 
0.43 ±0.39 

 Dec 
2010 

HaeIII 
MspI 

20.34 ±1.95 
3.24 ±0.80 

0.10 ±0.09 
2.10 ±0.90 

9.48 ±0.92 
5.89 ±1.14 

3.62 ±0.80 
1.76 ±0.50 

2.07 ±0.56 
1.18 ±0.34 

n.a. 
6.68 ±0.90 

9.48 ±0.92 
2.20 ±0.56 

0.12 ±0.11 
0.03 ±0.03 

 Mar 
2011 

HaeIII 
MspI 

19.39 ±2.89 
1.90 ±0.18 

n.d. 
1.60 ±0.72 

9.29 ±1.11 
4.59 ±0.54 

6.30 ±0.50 
3.75 ±0.82 

4.07 ±1.10 
1.97 ±1.16 

n.a. 
5.97 ±0.69 

9.29 ±1.11 
4.12 ±1.22 

0.07 ±0.06 
1.13 ±0.84 

 Jun 
2011 

HaeIII 
MspI 

16.27 ±3.61 
2.49 ±0.54 

n.d. 
0.28 ±0.28 

9.44 ±1.20 
3.96 ±1.17 

3.44 ±1.14 
3.20 ±0.69 

2.54 ±0.94 
0.20 ±0.13 

n.a. 
4.47 ±0.91 

9.44 ±1.20 
3.83 ±1.49 

0.03 ±0.03 
1.11 ±0.81 

Seawater Mar 
2010 

HaeIII 
MspI 

n.d. 
0.20 ±0.03 

1.18 ±0.25 
8.54 ±1.28 

n.d. 
0.34 ±0.03 

0.34 ±0.04 
0.05 ±0.02 

n.d. 
n.d. 

n.a. 
n.d. 

n.d. 
0.70 ±0.07 

6.54 ±0.27 
0.42 ±0.29 

 Jun 
2010 

HaeIII 
MspI 

n.d. 
n.d. 

0.84 ±0.33 
0.61 ±0.24 

n.d. 
n.d. 

n.d. 
0.15 ±0.10 

n.d. 
n.d. 

n.a. 
n.d. 

n.d.  
0.61 ±0.21 

1.54 ±0.54 
n.d. 

 Sep 
2010 

HaeIII 
MspI 

n.d. 
0.34 ±0.24 

3.51 ±1.33 
1.50 ±0.34 

3.01 ±0.30 
n.d. 

n.d. 
n.d. 

n.d. 
n.d. 

n.a. 
n.d. 

3.01 ±0.30 
0.20 ±0.14 

1.90 ±0.73 
n.d. 

 Dec 
2010 

HaeIII 
MspI 

n.d. 
0.68 ±0.12 

2.38 ±0.39 
9.83 ±1.42 

0.36 ±0.06 
0.17 ±0.01 

1.51 ±0.14 
0.18 ±0.03 

0.11 ±0.08 
n.d. 

n.a. 
0.03 ±0.02 

0.36 ± 0.06 
0.14 ±0.10 

5.53 ±0.51 
0.70 ±0.25 

 Mar 
2011 

HaeIII 
MspI 

0.11 ±0.04 
0.98 ±0.11 

1.21 ±0.09 
9.99 ±0.32 

0.05 ±0.03 
0.18 ±0.00 

0.61 ±0.07 
0.05 ±0.02 

0.28 ±0.10 
n.d. 

n.a. 
n.d. 

0.05 ±0.03 
0.39 ±0.04 

4.19 ±0.47 
0.12 ±0.08 

 Jun 
2011 

HaeIII 
MspI 

n.d. 
0.09 ± 0.03 

0.17 ±0.12 
2.78 ±0.27 

0.06 ±0.04 
0.55 ±0.06 

n.d. 
n.d. 

n.d. 
n.d. 

n.a. 
n.d. 

0.06 ±0.04 
0.91 ±0.35 

6.24 ±0.30 
n.d. 
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Figure S1. Linear regression analyses showing a negative correlation between T-RF drift and 

T-RF size (top) and positive correlation between empirical T-RF size and predicted T-RF size 

(bottom) used to correct for differential migration rates of labeled primers. 
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Figure S2. Proportion and specificity of unique bacterial T-RFs in Ircinia fasciculata (IF), I. 

variabilis (IV), I. oros (IO) and ambient seawater (SW) based on T-RFLP analyses with the 

restriction enzymes HaeIII (black bars) and MspI (gray bars). 
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Figure S3. Rank-abundance plots of bacterial OTUs in clone libraries of Ircinia fasciculata (A), I. 

variabilis (B), I. oros (C) and ambient seawater (D), with singleton OTUs excluded. Bar shading 

denotes OTUs present during both seasons (black), summer only (gray) and winter only (white); 

asterisk indicate OTUs matching closest to non-sponge sources. Inset pie charts show entire 

clone libraries (singleton OTUs included) for winter (left) and summer (right). 
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Chapter 4 

 

 

Till Death Do Us Part: Stable Sponge-Bacteria Associations 

under Thermal and Food Shortage Stresses 

 

Lucía Pita, Patrick M. Erwin, Xavier Turon & Susanna López-Legentil 

 

Published in: PLoS One (2013) 8:e80307. (2012-Impact factor: 3.730; Q1 

Multidisciplinary Sciences). 

 

Abstract 

 

Sporadic mass mortality events of Mediterranean sponges following periods of 

anomalously high temperatures or longer than usual stratification of the seawater 

column (i.e. low food availability) suggest that these animals are sensitive to 

environmental stresses. The Mediterranean sponges Ircinia fasciculata and I. oros 

harbor distinct, species-specific bacterial communities that are highly stable over time 

and space but little is known about how anomalous environmental conditions affect the 

structure of the resident bacterial communities. Here, we monitored the bacterial 

communities in I. fasciculata (largely affected by mass mortalities) and I. oros (overall 

unaffected) maintained in aquaria during 3 weeks under 4 treatments that mimicked 

realistic stress pressures: control conditions (13OC, unfiltered seawater), low food 

availability (13OC, 0.1 μm-filtered seawater), elevated temperatures (25OC, unfiltered 

seawater), and a combination of the 2 stressors (25OC, 0.1 μm-filtered seawater). 

Bacterial community structure was assessed using terminal restriction fragment length 

polymorphism (T-RFLP) analysis of 16S rRNA gene sequences and transmission 

electron microscopy (TEM). As I. fasciculata harbors cyanobacteria, we also measured 

chlorophyll a (chl a) levels in this species. Multivariate analysis revealed no significant 

differences in bacterial T-RFLP profiles among treatments for either host sponge 

species, indicating no effect of high temperatures and food shortage on symbiont 

community structure. In I. fasciculata, chl a content did not significantly differ among 

treatments although TEM micrographs revealed some cyanobacteria cells undergoing 

degradation when exposed to both elevated temperature and food shortage conditions. 
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Arguably, longer-term treatments (months) could have eventually affected bacterial 

community structure. However, we evidenced no appreciable decay of the symbiotic 

community in response to medium-term (3 weeks) environmental anomalies purported 

to cause the recurrent sponge mortality episodes. Thus, changes in symbiont structure 

are not likely the proximate cause for these reported mortality events. 
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Hasta que la muerte nos separe: La persistencia de la 

simbiosis esponja-bacteria frente a estrés térmico y de escasez 

de alimento  

 

Resumen 

 

Las mortalidades en masa de esponjas registradas en el Mediterráneo tras periodos 

de temperaturas inusualmente altas y periodos de estratificación más largos de lo 

normal (i.e., baja disponibilidad de comida) sugieren que estos animales son sensibles 

a estrés ambiental. Las esponjas mediterráneas Ircinia fasciculata e I. oros albergan 

distintas y específicas comunidades de bacterias que son estables a lo largo del 

tiempo y el espacio pero poco se sabe acerca de cómo condiciones ambientales 

anómalas afectan la estructura de las comunidades bacterianas simbiontes. Nosotros 

hemos monitoreado las comunidades de bacterias en I. fasciculata (en gran parte 

afectada por las mortalidades en masa) e I. oros (generalmente no afectadas) 

mantenidas en acuario durante tres semanas bajo cuatro tratamientos que imitan 

presiones ambientales realistas: condiciones control (13OC, agua sin filtrar), baja 

disponibilidad de comida (agua filtrada a través de 0.1 μm), temperatura elevada 

(25OC, agua sin filtrar) y la combinación de sendos estreses (25OC, agua filtrada a 

través de 0.1 μm). La estructura de las comunidades bacterianas fue determinada a 

través del polimorphismo de los fragmentos terminales de restricción (T-RFLP) 

basados en el gen ARNr 16S y microscopía electrónica de tranmisión (TEM). Dado 

que I. fasciculata alberga cianobacterias simbiontes, también medimos los niveles de 

clorofila a (chl a) en esta especie. Análisis multivariantes no revelaron ninguna 

diferencia significativa en los perfiles bacterianos de T-RFLP entre los distintos 

tratamientos en ninguna de las especies de hospedador estudiadas, indicando que la 

temperatura elevada y la reducción en la disponibilidad de comida no afectan a la 

estructura de la comunidad de simbiontes. En I. fasciculata, el contenido de chl a no 

varió significativamente entre tratamientos, aunque las micrografías de TEM revelaron 

algunas células de cianobacterias degradándose cuando los especímenes estuvieron 

expuestos a la combinación de temperatura elevada y escasez de comida. Se puede 

decir que tratamientos más largos (meses) podrían finalmente afectar a las 

comunidades simbiontes. Sin embargo, hemos demostrado que no hay una variación 

significativa en las comunidades en respuesta a anomalías ambientales a medio 

término (3 semanas) que podrían ser la causa de los episodios recurrentes de 
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mortalidad masiva de esponjas. Por tanto, los cambios en la comunidad simbiontes no 

parecen estar relacionado con las causas de dichas mortalidades. 
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Introduction 

 

Summer in the Western Mediterranean Sea is getting warmer and longer. Over the 

past decades, the frequency of seawater temperature anomalies and the period length 

of stable seawater column (i.e., stratification) have increased (Coma et al. 2009; 

Lejeusne et al. 2009; Calvo et al. 2011). At the same time and coinciding with years of 

record temperatures (1-2OC above the mean summer temperature) or prolonged 

seawater stratification in late summer, mass mortality events were observed for several 

filter-feeding invertebrates, mainly sponges and cnidarians (Cerrano & Bavestrello 

2008; Garrabou et al. 2009; Lejeusne et al. 2009). A typical summer season in the 

Mediterranean Sea is characterized by high temperatures (> 18OC) that stratify the 

seawater column and prevent the upwelling of cooler nutrient-rich water, resulting in 

nutrient depletion, low turbidity and high irradiance in shallow waters (< 20 m) (Coma et 

al. 2009). Consequently, summer is a energetically-challenging season for filter-feeding 

invertebrates in the Mediterranean Sea (Coma et al. 2000; López-Legentil et al. 2013) 

and together with high temperatures or prolonged stratification, the additional 

physiological stress that occurs during this season may facilitate the observed 

episodes of mass mortality (Coma et al. 2009). 

Marine sponges harbor diverse and host-specific bacterial communities (Taylor 

et al. 2007; Simister et al. 2012a) suggesting that the ecology and survival of both the 

sponge and its bacterial associates are tightly connected; e.g. via nutrient translocation 

(Weisz et al. 2010; Freeman & Thacker 2011). However, despite the potential 

importance of sponge-bacteria interactions, to date few studies have experimentally 

assessed the response and stability of these associations under environmental 

conditions chosen to mimic realistic stress pressures. Most notably, manipulative 

experiments with the Great Barrier Reef sponge Rhopaloeides odorabile showed that 

the bacterial community associated with this sponge shifted in response to elevated 

temperatures, high nutrients and pollutants, concomitant with declines in host sponge 

health (Webster et al. 2001; Webster et al. 2008a; Simister et al. 2012b; Simister et al. 

2012c). In temperate regions, sponge-derived bacterial communities changed when 

exposed to elevated temperatures (Lemoine et al. 2007) but remained stable under 

starvation conditions (Friedrich et al. 2001). Further studies are needed to investigate 

the effect of extreme yet realistic environmental conditions on sponge-associated 

bacterial communities and assess their overall resilience amidst a changing climate. 

Sponges in the genus Ircinia are ubiquitous in the Western Mediterranean rocky 

bottoms and harbor a species-specific bacterial community (Erwin et al. 2012a) that 

seems to be adapted to the seasonality of the water column (Erwin et al. 2012c). 
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Recently, Ircinia spp. have suffered dramatic episodes of mass mortality linked to 

extreme summer temperatures (Maldonado et al. 2010; Cebrian et al. 2011) and the 

proliferation of an opportunistic Vibrio-like bacterium (Maldonado et al. 2010; Stabili et 

al. 2012). The factors triggering the proliferation of Vibrio-like bacteria in sponge hosts 

remain unclear, but may be preceded by the disruption of the normal sponge microflora 

caused by abnormally high seawater temperatures lasting 3 weeks (Cebrian et al. 

2011). Cebrián et al. (2011) observed significant reduction in photosynthetic efficiency 

in I. fasciculata individuals maintained in aquaria at elevated temperatures (27OC for 48 

h). Based on these results, the authors suggested that cyanobacteria-harboring 

sponges such as I. fasciculata may be more susceptible to mass mortality events than 

other sponge species lacking photosymbionts.  

In this study, we hypothesized that a high temperature treatment combined with 

low food availability mimicking an especially hot summer season in the Mediterranean 

Sea would be accompanied by a shift in the bacterial communities associated with 

Mediterranean sponges. Based on past studies (Cebrian et al. 2011), we expected that 

sponges harboring photosymbionts would be more susceptible to these shifts than 

those without them. To test these hypotheses, we performed a series of controlled 

aquaria experiments for the sympatric sponges I. fasciculata (which harbors 

cyanobacteria and has suffered mass mortality events) and I. oros (which does not 

harbor cyanobacteria, and has remained overall unaffected by mass mortality events). 

We tested the effect of high seawater temperature (25OC), food shortage (0.1 m-

filtered seawater) and the combination of both treatments on sponge-associated 

bacterial communities. Bacterial symbiont communities were monitored using terminal 

restriction fragment length polymorphism (T-RFLP) of 16S rRNA gene sequences and 

transmission electron microscopy (TEM) analyses. We also measured the 

concentration of chlorophyll a (chl a) in I. fasciculata samples as a proxy for 

photosymbiont abundance/activity in these hosts.  

 

Material & Methods 

  

Specimen collection 

40 individuals of the sponge Ircinia oros (Schmidt, 1864) and 40 of I. fasciculata 

(Pallas, 1766) were collected from shallow (< 20 m) rocky reefs in the northwestern 

Mediterranean Sea (Tossa de Mar, 41O43‟13.62” N, 2O56‟26.90” E) during January 

2011 (I. oros) and February 2011 (I. fasciculata). Collection during winter months was 

favored for our experiments because temperatures are more stable during this period 

(Erwin et al. 2012c). Within 2 h, the sponges were transported in insulated coolers from 
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Tossa de Mar to the Experimental Aquaria Zone (ZAE) located at the Institute of 

Marine Science (ICM-CSIC) in Barcelona (Spain). Ircinia spp. are not endangered or 

protected by any law and all sampling was conducted outside protected areas following 

current Spanish regulations (no specific permits were required). 

 

Experimental design  

Two experiment sets (one for each sponge species) were conducted in consecutive 

months, immediately after specimen collection. For each experiment, 40 specimens 

were placed in separated 2 L aquaria in a flow-through system with direct intake of 

seawater and an independent supply to each aquarium for a total of 4 weeks. The 

aquaria were subjected to circadian cycles of 12 h light/12 h dark using artificial light 

sources. The first week, sponges were maintained at natural (ambient) conditions as 

an acclimation period. During the following 3 weeks, 4 different treatments were set up 

(n = 10 individuals per treatment): non-filtered seawater and environmental 

temperature (control), 0.1 μm-filtered seawater and environmental temperature (FE), 

non-filtered seawater and hot temperature 25OC (NH), 0.1 μm-filtered seawater and hot 

temperature (FH). The environmental seawater temperature at the time of the 

experiments was 13OC. For the heat treatment, the temperature was progressively 

increased (ca. 1.5OC·day-1) during 7 days until reaching 25OC and then maintained at 

25OC for the final 2 wk of the experiment. The health status of the sponges was 

monitored every 2 days by visual inspection for tissue necrosis. Water flux was also 

controlled every 2 days and readjusted if necessary to obtain a final flux rate through 

the aquaria of 0.8 L·min-1. Filters were replaced weekly to avoid flux reduction due to 

particle accumulation.  

 

Experimental sampling 

Temperature (OC) and light intensity levels (lx = lumen·m-2) were recorded hourly with 

Hobo Pendant Temperature/Light Data Loggers (UA-002-64; Onset Computer 

Corporation). To check for filter efficiency and natural bacterial concentrations in the 

seawater, 3 samples of water per treatment were collected weekly, before filter 

replacement. Bacterial concentration was estimated by flow cytometry, based on the 

method described in Gasol & Giorgio (2000). In short, samples were fixed with 1% 

paraformaldehyde + 0.05% glutaraldehyde in a phosphate-buffered saline (PBS) 

solution, incubated in the dark for 10 min, deep frozen in liquid nitrogen and stored at -

80OC. For analysis, samples were unfrozen, stained with Syto13 (Molecular Probes) at 

5 µM (diluted in dymethil sulfoxyde, DMSO), incubated for 15 min in the dark and run 

through a GALLIOS flow cytometer with a laser emitting at 480 nm. Bacteria were 
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detected according to a dot plot of side scatter (SSC, related with cell size) versus 

fluorescent signature (FL1). The number of events (potential bacterial cells) detected 

by the cytometer was then converted into bacterial cell density (cells·mL-1) by 

comparing with the events recorded by the machine after injecting a known volume of a 

solution of 106 Syto13-stained beads·mL-1. For each sponge species, the non-

parametric Mann-Whitney‟s U test was used to compare the bacterial cell density in 

seawater from non-filtered treatments versus filtered treatments. Statistical analyses 

were performed in RStudio (Racine 2012). All cytometry analyses were conducted at 

the Cytometry Unit of the Scientific and Technological Services of the University of 

Barcelona. 

 From all the sponge samples, we randomly selected 3 individuals per treatment 

that remained healthy throughout the experiment for further analysis (n = 24 per 

species). Overall, specimens of I. fasciculata and I. oros remained healthy in all 

experimental treatments with no tissue necrosis or appreciable biomass loss, except 

for 1 individual of I. fasciculata that died during the acclimation period, and 5 individuals 

of I. oros that died during the first week of experiment (1 from the FE treatment, 3 from 

the NH, and 1 from the FH). These specimens were not considered in our analysis for 

several reasons: (i) death was likely due to manipulation rather than to the tested 

conditions because they all died early during the experiments; (ii) by the end of the 

experiment, the sponges had been dead for at least two weeks (iii) there were 

insufficient replicates for robust statistical analysis. 

 

DNA extraction  

After the acclimation period (end of week 1) and at the end of the experiments (end of 

week 4), a tissue sample (ca. 2 mm3) of each selected specimen containing both 

ectosome and choanosome was preserved in 100% ethanol and stored at -20OC. To 

characterize the bacterial community in the seawater, 500 mL of water per treatment 

were filtered through a 0.2 μm filter (Millipore), preserved in 100% ethanol and stored 

at -20OC. DNA was extracted using the DNeasy Blood & Tissue kit (Qiagen®). Dilutions 

(1:10) of DNA extracts were used as templates in subsequent PCR amplifications for T-

RFLP analysis. 

 

T-RFLP analysis  

PCR amplification of 16S rRNA gene sequences was conducted using the universal 

bacterial forward primer Eco8F (Turner et al. 1999), tagged with a 5‟-6-

carboxyfluorescein (6-FAM) label, and reverse primer 1509R (Martínez-Murcia et al. 

1995). PCR was performed as follows: one initial denaturation step for 5 min at 94OC; 
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35 cycles of 1 min at 94OC, 0.5 min at 50OC, 1.5 min at 72OC; and one final elongation 

step for 5 min at 72OC. Total PCR volume (50 μL) included 10 μM of each primer, 10 

nM of each dNTP, 1x Reaction Buffer (Ecogen), 2.5 mM MgCl2 and 5 units of BioTaqTM 

DNA polymerase (Ecogen). Products from triplicate PCR reactions were pooled and 

purified from electrophoresis gels using the Qiaquick Gel Extraction kit (Qiagen®), then 

quantified using the QubitTM fluorometer and Quant-iTTM dsDNA Assay kit (InvitrogenTM) 

according to manufactures‟ instructions. Separate enzymatic digestions with HaeIII and 

MspI were processed as described elsewhere (Pita et al. 2013), then analyzed in an 

automated ABI 3730 Genetic Analyzer (Applied Biosystems) at the Genomics Unit of 

the Scientific and Technological Services of the University of Barcelona. The lengths of 

each terminal-restriction fragment (T-RF) were determined against a size standard 

(600-LIZ) using the PeakScannerTM software (Applied Biosystems). T-RFs smaller than 

50 bp or larger than 600 bp were discarded because they were beyond the resolution 

of the size standard. Background noise was defined by a peak intensity below 50 

fluorescence units and by filtering in T-REX (Culman et al. 2009) using a cut-off value 

of 2 standard deviations (Abdo et al. 2006). „True‟ T-RFs were aligned in T-REX using 

a clustering threshold of 1 bp and relative T-RF abundance matrices were constructed. 

 

T-RFLP statistical analyses  

Samples from each experimental set were analyzed separately to investigate whether 

the observed response to each treatment depended on sponge species (I. fasciculata 

and I. oros). All analyses were based on Bray-Curtis distances calculated from relative 

abundance matrices, following square root transformation. For each restriction enzyme, 

non-metric multidimensional scaling (nMDS) plots were constructed to visually 

compare the bacterial communities. Permutational multivariate analyses of variance 

(PERMANOVA) (Clarke 1993; Clarke & Gorley 2006) were used to test the effects of 

source (sponge or seawater) and treatment (control, FE, NH, FH) on bacterial 

communities. In addition, sponge samples collected after the acclimation period were 

compared to verify that the specimens harbored similar bacterial communities before 

experimental treatments were applied. Calculations were performed in PRIMER v6 

(Clarke 1993; Clarke & Gorley 2006) and PERMANOVA+ (Plymouth Marine 

Laboratory, UK). The empirical T-RFs obtained in this study were compared with the 

available database of in silico HaeIII and MspI digestions of 16S rRNA gene sequences 

derived from the same host sponges in a previous study (Erwin et al. 2012c) using the 

phylogenetic assignment tool PAT (Kent et al. 2003). 
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Transmission electron microscopy (TEM)  

At the end of the experiments, a piece of tissue (ca. 2 mm3) from one sponge in each 

treatment was collected and fixed in a solution of 2.5% glutaraldehyde and 2% 

paraformaldehyde buffered with filtered seawater and incubated overnight at 4OC. 

Following fixation, each piece was rinsed at least three times with filtered seawater and 

stored at 4OC until processed as described previously (López-Legentil et al. 2011). TEM 

observations were made at the Microscopy Unit of the Scientific and Technical 

Services of the University of Barcelona on a JEOL JEM-1010 (Tokyo, Japan) coupled 

with a Bioscan 972 camera (Gatan, Germany). 

 

Chlorophyll a (chl a) concentrations  

For chl a quantification in I. fasciculata, a piece of ectosome was sampled from 5 

sponges per treatment at the end of the experiments (n = 20) and processed them 

using previously described methods (Erwin et al. 2012a). I. oros was excluded from this 

analysis because this species lacks photosymbionts (Erwin et al. 2012a). One-way 

ANOVA was performed to test the effect of the factor “treatment” (4 levels; control, FE, 

NH, FH) on chl a concentrations in I. fasciculata. The assumptions of the ANOVA were 

checked by Cramer-von Mises‟ normality test and Levene‟s homoscedasticity test. 

Statistical analyses were performed in RStudio (Racine 2012). 

 

Results 

 

Aquaria conditions  

Artificial light intensity in the aquaria with I. fasciculata samples was 546.7 ± 25.0 lx 

(mean ± standard error) and in the aquaria with I. oros 644.1 ± 8.9 lx. Both light 

intensity values were in the range of values detected in their natural habitat during 

winter (Erwin et al. 2012c). Environmental water temperature was 13.42 ± 0.01OC and 

13.54 ± 0.18OC (mean ± standard error) for the experiment with I. fasciculata and with I. 

oros, respectively. For hot temperature treatments, temperature was increased at a 

rate of 1.49OC·day-1 for the aquaria with I. fasciculata samples and 1.57OC·day-1 for I. 

oros samples during one week, until reaching a final temperature of 25.41 ± 0.01OC and 

25.23 ± 0.05OC (mean ± standard error) for the experiment with I. fasciculata and with I. 

oros, respectively. The average densities (mean ± standard error) of bacterial cells 

found in seawater samples from the filtered treatments were (2.4 ± 0.3)·104 cells·mL-1 

in I. fasciculata aquaria, and (2.3 ± 0.2)·104 cells·mL-1 in I. oros, while in the unfiltered 

treatments contained (7.4 ± 1.0)·104 cells·mL-1 and (6.8 ± 0.5)·104 cells·mL-1 in aquaria 

with I. fasciculata and I. oros, respectively. In spite of the filtering system, bacterial 
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abundance was only cut by ca. one third. This may relate with decaying filter efficiency 

with time, in spite of weekly filter changes. Still, the bacterial cell density in seawater 

samples from non-filtered treatments was statistically higher than in filtered treatments 

(Mann-Whitney‟s U, P < 0.001) for both I. fasciculata and I. oros experiments. A one-

third reduction in bacterial density is likely a realistic proxy for food shortage conditions 

in nature.  

 

T-RFLP analysis  

A total of 143 unique T-RFs were detected with HaeIII restriction enzyme (101 in I. 

fasciculata, 97 in I. oros and 59 in seawater) and 167 with MspI enzyme (117 in I. 

fasciculata, 110 in I. oros and 79 in seawater). PERMANOVA analysis of Bray-Curtis 

similarity matrices from each experiment reported a significant effect of source (sponge 

vs seawater) on the structure of bacterial communities (Table 1). No significant 

differences in bacterial community structure were detected among samples of the 

same sponge species after the acclimation week (P > 0.225, for both enzymes). 

Likewise, there was not a significant effect of treatment on the bacterial communities of 

I. fasciculata and I. oros after 3 weeks (Table 1). As the experiment was terminated 

after 3 weeks, there is no data beyond the duration of the experiments. The lack of 

structure observed with the nMDS plots further confirmed the similarity of these 

bacterial communities within host species, despite the different treatments applied (Fig. 

1). PAT analysis reported that 58.7% (HaeIII) and 71.6% (MspI) of the unique T-RFs 

obtained in this study for both I. fasciculata and I. oros matched T-RFs from in silico 

digestions of 16S rRNA sequences from environmental samples of these two species 

(Erwin et al. 2012c). 

 

Table 1. Statistical analysis of T-RFLP profiles to test for an effect of source (seawater vs 

sponge) and treatment on the structure of Ircinia-associated bacterial communities.  

 I. fasciculata  I. oros 

 HaeIII MspI  HaeIII MspI 

Source  

(seawater vs sponge) 
0.001 0.001 0.001 0.002 

Treatment  

(control, FE, NH, FH) 
0.317 0.328 0.267 0.066 

Numbers denote P-values from PERMANOVA test after 999 permutations. Significant values at 

α = 0.01 are in bold. Treatments: Control (13OC, unfiltered seawater), FE (13OC, filtered 

seawater), NH (25OC, non-filtered seawater), FH (25OC, filtered seawater). 
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Figure 1. Non-metric multidimensional scaling (nMDS) of sponge-derived bacterial 

communities at the end of the experiment. Ordination in nMDS plots is based on Bray-Curtis 

distances between T-RFLP profiles from HaeIII (left) and MspI (right) digestions of samples of I. 

fasciculata and I. oros experiments. Stress values are shown in parenthesis, with values below 

0.15 indicating good correlation of similarity matrix distances and ordination in the two-

dimension plot. Points are coded by treatment: control (13OC, unfiltered seawater), FE (13OC, 

filtered seawater), NH (25OC, non-filtered seawater), FH (25OC, filtered seawater). 

 

Transmission electron microscopy  

Micrographs of I. fasciculata samples from the control treatment showed typical sponge 

cells with numerous phagosomes and granules of glycogen (Fig. 2a). The same 

sponge cells were observed in all the other treatments. The cyanobacterium 

Candidatus „Synechococcus spongiarum‟ dominated the ectosomal tissue of I. 

fasciculata (Fig. 2b-e). In the micrographs from the hot temperature (25OC) and filtered 

seawater treatment (FH), besides healthy cyanobacterial cells, we also observed many 

cells undergoing degradation (Fig. 2e-f). Electron micrographs from I. oros samples 

(Fig. 3a-d) showed abundant vacuolated sponge cells surrounded by diverse bacterial 

morphotypes. No differences in sponge or bacterial cell abundance or morphology 

were detected for any of the treatments. As expected, no cyanobacterial cells were 

observed either in this sponge species.  

 

Chlorophyll a concentration  

Chl a levels in I. fasciculata at the end of the experiment (3 weeks after acclimation) 

and for each treatment are depicted in Fig. 4. The ANOVA test revealed no significant 
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differences in chl a concentration among treatments (P = 0.4636). The values found 

here (483.8 ± 20.0 µg·g-1 sponge, mean ± standard error) exceeded those observed for 

this species in the field, where the average concentration reported was 248.1 ± 27.8 

µg·g-1 sponge (Erwin et al. 2012c). 

 

Figure 2. Electron micrographs of I. fasciculata bacteria at the end of the experiment. (A) 

Sponge cell in sample from control treatment, containing several phagosomes (ph) and 

glycogen granules (g). Sponge cells surrounded by multiple Cyanobacteria (Cy) and 

heterotrophic bacteria in the mesohyl of sponges from control treatment (B), NH (25OC, non-

filtered seawater) treatment (C) and FE (13OC, filtered seawater) treatment (D). Micrographs of 

a sponge from FH (25OC, filtered seawater) treatment (E, F) showed healthy Cyanobacteria (Cy) 

and Cyanobacteria under different stages of degradation (arrows) within the mesohyl. Scale 

bars represent 2 µm. 
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Figure 3. Electron micrographs of I. oros bacteria at the end of the experiment. Sponge 

cells surrounded by numerous bacteria cells of different morphotypes. Samples from control 

treatment (A); 25OC and non-filtered seawater treatment (B); 13OC and filtered seawater 

treatment (C); and 25OC and filtered seawater treatment (D). Sponge and bacteria cells for all 

treatments showed no sign of degradation.  
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Figure 4. Chlorophyll a concentration in 

I. fasciculata for each treatment at the 

end of the experiment. Control: 13OC and 

non-filtered seawater; NH: 25OC and non-

filtered seawater; FE: 13OC and filtered 

seawater; FH: 25OC and filtered seawater. 

Error bars denote standard error. 

 

 

Discussion 

 

The bacterial communities associated with the Mediterranean sponges I. fasciculata 

and I. oros were stable under thermal and food shortage stresses for a period lasting 3 

weeks. Comparison of T-RFLP profiles and electron microscopy for each species 

showed no significant differences among the 4 treatments tested that combined high 

seawater temperatures (25OC) and low food availability (one-third reduction of the 

natural bacterial abundance) during three weeks after acclimation. The only noticeable 

difference consisted of TEM observations of several degraded cyanobacterial cells of 

S. spongiarum, along with healthy looking ones, when I. fasciculata specimens were 

exposed to both thermal and food shortage stresses. However, the presence of 

degraded cells was not accompanied by a significant decrease in chl a concentrations. 

In fact, chl a content was higher in our aquaria samples and for all treatments than 

what has been observed in the field (Erwin et al. 2012c). This increase in chl a 

concentration may be due to a higher density of cyanobacterial cells in the sponge or 

enhanced photosynthetic activity to compensate for lower ambient irradiance 

conditions or a poorer diet. Overall, our results indicate that the seawater conditions 

that characterize anomalously warm summer seasons in the Mediterranean Sea do not 

affect sponge-associated bacterial communities. Moreover, we did not observe any 

clear evidence supporting the hypothesis that sponges harboring cyanobacterial 

symbionts were more vulnerable to the assayed conditions than sponges without them. 

Other species-specific factors such as habitat-preference or growth dynamics (Turon et 
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al. 2013), alone or in combination, may contribute to the sporadic mass mortality 

events observed for I. fasciculata but not for I. oros in the Mediterranean Sea. 

One specimen of I. fasciculata and 5 of I. oros died during the experiments and 

were excluded from T-RFLP analysis. Necrosis in I. fasciculata occurred during the 

acclimation period and thus was unrelated with the tested treatments. Individual 

plasticity in resilience to collection and transport or health status at the moment of 

sampling may have affected the survival of that specimen when moved into aquaria. 

For I. oros sponges, death occurred early during the second week, before the targeted 

elevated temperature was reached, and sporadically among treatments. Previous 

studies assaying similar thermal stressors have reported host tissue necrosis and 

symbiotic cyanobacterial loss in all specimens at elevated seawater temperatures after 

only 3 to 4 days of treatment (Webster et al. 2008a; Simister et al. 2012b) . While we 

cannot be certain of the reason behind the death of these few sponges (i.e. tested 

treatments or different response to maintenance in aquaria), none of our treatments 

resulted in mass mortality and the remaining specimens looked healthy through the 3-

week experiment. 

We cannot disregard that longer-term experiments (months) could result in a 

significant effect of treatment on bacterial community structure. Stratification of the 

water column along the Mediterranean coast lasts more than three weeks. 

Nevertheless, the persistence reported in this study is still remarkable. The high 

temperature tested here (25OC) represents 3OC more than the summer mean 

temperature in the study area (Erwin et al. 2012c), matched the maximum temperature 

detected during anomalous summer seasons in years when mass mortality events 

occurred (Cebrian et al. 2011), and represents an increase of > 11OC from ambient 

conditions at the time of collection. In addition, the time frame of our experiments (3 

weeks after acclimation) matched the duration of peaks of temperature in abnormally 

warm summers (Cebrian et al. 2011).  

Our results are also in agreement with other studies indicating that sponge-

bacteria associations are very stable and able to resist non-lethal stressful conditions. 

In the Mediterranean sponge Aplysina aerophoba, neither food shortage nor antibiotic 

exposure promoted the consumption of symbionts by the host and the structure of the 

bacterial community remained unchanged for up to 11 days (Friedrich et al. 2001). In 

the tropical sponge Rhopaloeides odorabile, the bacterial community shifted only when 

sponge tissue necrosis occurred, after exposure to temperatures 2 to 4OC above the 

mean temperature in the study area (Webster et al. 2008a; Simister et al. 2012b) . 

Interestingly, Fan et al. (2013) observed that the expression of genes potentially 

essential for the symbiotic relationship (e.g. proteins involved in cell-cell signaling that 
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could mediate recognition of symbiont by host) was maintained in partially necrotic 

sponges although at a lower rate than in healthy ones.  

Despite the overall stability of sponge-associated bacteria, cells of dominant 

cyanobacterium S. spongiarum were observed undergoing degradation in I. fasciculata 

sponges exposed to high temperature and food shortage stresses (FH). While not all S. 

spongiarum cells were degrading and chl a content did not differ among treatments, the 

observation of this phenomenon only in the most stressful treatment suggests higher 

sensitivity of cyanobacteria to these conditions. Previous studies indicated that 

cyanobacteria-harboring sponges were more vulnerable to elevated temperatures due 

to photo-oxidative stress (i.e., rising levels of harmful oxygen compounds) derived from 

temperature-enhanced photosynthesis (Cebrian et al. 2011). However, the stability of 

the symbiotic community and cyanobacterial chl a content across treatments observed 

in this study suggest that the overall photosynthetic activity was not impaired by the 

degradation of some cyanobacterial cells and that the sponge holobiont is able to resist 

these conditions for 3 weeks.   

The persistence of bacterial symbiont communities despite thermal stress and 

food shortage conditions lasting 3 weeks is in opposition to one of the predictions of the 

coral probiotic hypothesis (Reshef et al. 2006). According to this hypothesis, the 

microbial symbionts associated with corals would rapidly shift in response to changing 

environmental conditions (in days to weeks), thereby conferring an adaptive response 

to the host. In sponges, it does not seem that rapid changes in bacterial community 

structures would provide stress tolerance to the host (Simister et al. 2012b). Instead, 

we speculate that, similar to what has been proposed for the human gut microbiome 

(Bäckhed et al. 2005), a persistent symbiotic community in sponges results in 

constitutive benefits, such as preventing the unexpected proliferation of one or a few 

bacterial strains within the symbiotic community that yield holobiont death. The 

empirical demonstration of interactions within the bacterial community and between the 

bacteria and host that maintain the stability of the symbiotic community under 

environmental stresses remains a challenge for sponge microbiology. 

In conclusion, our experiments for the sympatric sponges I. fasciculata and I. 

oros maintained in aquaria mimicking an especially hot summer in the Mediterranean 

Sea revealed high persistence of sponge-associated bacterial communities. These 

findings support trends observed in the field showing high symbiont stability across 

spatial and temporal scales  (Erwin et al. 2012c; White et al. 2012; Turon et al. 2013) 

and also suggest that the disruption of the symbiotic community in response to 

abnormal thermal and food shortage conditions for a period up to three weeks may not 
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be the primary cause of the sporadic mass mortality events observed for some Ircinia 

species.  
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General Discussion 

 

The aim of this discussion is to integrate all the relevant information from the four 

different chapters to summarize the diversity patterns we found in sponge bacteria 

communities, disentangle the underlying processes that shape the symbiotic 

relationships and debate their response to disturbances. We hypothesized that 

biogegraphic processes such as dispersal limitation or local selection could generate 

intraspecific variability on symbiotic bacterial communities over time and space and 

that perturbations in the surrounding environment would threaten the stability of the 

sponge-derived bacteria.   

This PhD thesis offers a dynamic representation of sponge-bacteria symbiosis 

from different perspectives (spatial, temporal and in response to stress). We adopted a 

new approach by investigating the biogeographic patterns and responses to stress in 

microbial communities associated with closely-related sponges that occurr in sympatry. 

Our findings contribute to distinguishing environmental vs host-related factors that mold 

HMA sponge-associated microbial communities and provide a baseline to detect 

abnormal shifts in symbiotic communities, understand the robustness of the symbiosis 

amidst dramatic changes in their environment, and predict the vulnerability of symbiotic 

relationships in a rapidly changing world. 

 

Diversity patterns in sponge-associated microbial communities 

 

We assessed the variability of sponge-bacteria associations over spatial and temporal 

scales. The detection of spatial structure in bacterial symbiotic communities would 

suggest (1) dispersal limitation of symbionts by dominant currents, or (2) selection of 

the best adapted community to particular site-specific conditions related with different 

anthropogenic pressures (i.e., different island size in the Bahamas, protected vs 

unprotected areas in the Mediterranean Sea) or hydrogeographical features (e.g., in 

the Western Mediterranean Sea, Cabrera presents higher mean temperatures and 

more oligotrophic waters than coastal and Corsica sampling sites due to dominant 

currents in the area). As the seawater conditions in the Mediterranean Sea display a 

marked seasonality in terms of temperature, irradiance and nutrient levels that deeply 

affect the composition of the free-living bacterioplankton (Pinhassi et al. 2006; Alonso-

Sáez et al. 2007), we also monitored the temporal variability of bacterial communities in 

Mediterranean Ircinia spp. 

We found that bacterial communities associated with Ircinia sponges are 

species-specific and persist over space (up to 800 km) and time (despite seasonality in 
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seawater conditions). We observed that seawater conditions such as temperature, 

irradiance, currents and anthropogenic pressure provoked significant changes in 

bacterioplankton communities, but had little effect on sponge-derived communities at 

temporal and spatial scales. The patterns reported here for Ircinia spp. highlight that 

host species-specific processes mainly govern the composition and structure on HMA 

sponge symbiotic communities. 

 

Stability of species-specific bacterial communities in sponges 

 

We evidenced the persistence of Ircinia-associated communities in two independent 

studies covering spatial scales ranging 80-400 km in the Bahamas (chapter 1) and 80-

800 km in the Mediterranean Sea (chapter 2). These findings agree with previous 

studies on sponge-derived bacterial communities at similar geographic scales (Webster 

et al. 2004; Wichels et al. 2006; Thiel et al. 2007a). Remarkably, we confirmed the 

pattern observed in Montalvo & Hill (2011), who also minimized the phylogenetic 

distance among host species (Xestospongia muta vs X. testudinaria) and found 

strikingly similar bacterial communities despite the fact that these sponges inhabit 

different oceans (Atlantic and Indopacific, respectively). Reveillaud et al. (2014) 

reported the stability of bacterial communities associated with Hexadella spp. sponges 

over bathymetric gradients (shallow and deep waters) and regardless of geographic 

locations. The overall spatial stability of symbiotic communities in closely-related HMA 

sponges indicates that site-specific factors (e.g., seawater conditions) and dispersal 

limitation have little effect on sponge-derived bacterial communities.  

Despite the seasonal changes in temperature (differences of 12OC between 

summer and winter season) and irradiance (ca. 5 times higher in summer than in 

winter; ca. 6 h more of daylight in summer), the bacterial communities associated with 

Mediterranean Ircinia spp. were remarkably stable across seasons (chapter 3) and 

constrasted sharply with the significant seasonal shifts in composition and structure of 

bacterioplankton communities in the surrounding seawater (Schauer et al. 2000; 2003; 

Pinhassi et al. 2006; chapter 3). The different temporal patterns in sponge-derived vs 

bacterioplankton communities provides strong evidence that different factors structure 

sponge-associated microbiota compared to free-living bacterial communities. 

High dispersal capability of the host‟s larvae could partially explain the stability 

of symbiotic community structure, if these symbionts are mostly vertically-transmitted 

(Ereskovsky et al. 2004; Schmitt et al. 2007; Lee et al. 2009). However, considering the 

demonstrated lack of correlation found between geographical distance and bacterial 

community dissimilarity (Schmitt et al. 2012; chapters 1 and 2) and the possibility of 
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horizontal acquisition of at least some symbionts (Taylor et al. 2007; 2013), it appears 

that larval dispersal alone is not sufficient to explain the persistence of sponge-bacterial 

communities over space and time. We propose that host homeostasis and symbiont‟s 

metabolism may contribute to foster and maintain stable mesohyl conditions that will in 

turn act as a buffer against fluctuations in the external environment, thereby preventing 

marked shifts in sponge-associated bacterial communities. 

Our results from 16S rRNA gene sequence clone library analyses confirmed 

that Ircinia spp. from the Bahamas, like those in the Mediterranean Sea (Erwin et al. 

2012a), harbor a persistent, species-specific bacterial community composed of 

generalist symbionts closely-related to bacteria found in other sponges and corals 

(chapter 1). Notably, the bacterial communities in the color morphs of I. felix were 

more similar to each other than to those in I. strobilina. The phylogenetic affiliation of 

persistent dominant OTUs in Ircinia spp. from the Bahamas and the Mediterranean Sea 

hints their physiological capabilities, such as photosynthesis (Cyanobacteria), nitrite 

oxidation (Nitrospira) or sulfate reduction (Desulfovibrionales) (chapters 1 and 3). 

Symbiont functionality and its ecological consequences may also be key for the 

selective mechanisms that establish and maintain specific guilds of sponge-associated 

bacterial symbionts (Yang et al. 2011). 

 

Intraspecific variability within species-specific bacterial communities in sponges 

 

Species specificity was maintained for both rare and abundant bacterial members of 

the symbiotic community, yet slight intraspecific variability was occasionally detected 

(although it was always less than the interspecific variation). In the spatial study done 

in the Mediterranean Sea (chapter 2), we observed certain shifts in the relative 

abundance of the dominant bacterial members depending on the location, yet the 

dominance of those members was maintained. In contrast, the seasonal study 

conducted in the Mediterranean for Ircinia spp. (chapter 3), revealed interindividual 

variability due to the occurrence of some bacterial phylotypes in some months and their 

absence in others; though this fluctuation was always restricted to rare OTUs. Because 

of the occasional nature of those minor shifts, it is still unkown whether these bacteria 

are true symbionts or whether they are transient bacteria that represent food, fouling or 

environmental bacteria (Pile et al. 1996; Webster et al. 2002; Lee et al. 2006).  

Interestingly, some bacteria were consistently recovered at each season from 

some individuals and not others of the same species (chapter 3). The persistence of 

those taxa suggests they are not merely transient associates but true symbionts. This 

intraspecific variability resulting from persistent symbionts that occur sporadically 
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among a host population suggests some plasticity in symbiosis establishment. The 

implications of interindividual variability in symbiont composition on host ecology and 

symbiont evolution are unknown for sponge-microbial associations, but the activity of 

those symbionts may bring an advantage in particular new conditions (e.g., Weisz et al. 

2010).  

It is also noteworthy that I. variabilis was the species that presented more 

intraspecific variability in the Mediterranean Sea (chapters 2). Similar to what was 

found by Lee et al. (2009a), the different trends observed in I. variabilis may be related 

with specific features of this species, such as a higher degree of morphological 

plasticity (Turon et al. 2013) or a different reproductive strategy. These specific 

characteristics could influence the establishment of sponge-bacteria associations. 

Further studies targeting other sympatric closely-related sponge species may help to 

define which particular species-specific characteristics produce greater variability in 

bacterial symbiont communities. 

The temporal study in Mediterranean species (chapter 3) also evidenced the 

control of host-specific factors, such as habitat preference, on the function of the 

symbiotic community. In particular, photosymbotic activity (assessed by chlorophyll a 

content) was higher in I. fasciculata than in I. variabilis. Also, cholorophyll a levels in I. 

fasciculata changed seasonally so that the lowest levels were detected in the months 

of high irradiance and long daylight duration. In contrast, I. variabilis generally exhibited 

annual stability in chl a content. Cyanobacterial populations in I. fasciculata and I. 

variabilis are composed of Candidatus Synechococcus spongiarum, but these 

populations appeared to respond differently to seasonal changes in seawater 

conditions. These differences could be related to the different ambient irradiance levels 

characterizing the habitats favored by each species (i.e., I. variabilis thrives in shaded 

habitats while I. fasciculata prefers highly exposed surfaces; Erwin et al. 2012a; Turon 

et al. 2013).  

 

Vulnerability of sponge-associated bacterial communities to abnormal 

perturbations in environmental conditions 

 

In chapter 4, we mimicked the stressful conditions that occur in the Western 

Mediterranean Sea in years of anomalously high temperature and overall longer 

summer conditions (e.g., longer stratification of the waters). These conditions were 

previously correlated with episodes of mass mortality of filter-feeding invertebrates 

(Coma et al. 2009; Garrabou et al. 2009), including populations of I. fasciculata 

(Cebrian et al. 2011). Our results showed that the bacterial communities from the 
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Mediterranean sponges I. fasciculata and I. oros were stable despite thermal stress 

and food shortage conditions in controlled aquaria for a period lasting 3 weeks. Overall, 

our results indicate that the seawater conditions that characterize anomalously warm 

summer seasons in the Mediterranean Sea do not significantly affect sponge-

associated bacterial communities.  

Although we cannot disregard that longer-term experiments (months) could 

result in a significant effect of treatment on bacterial community structure, the 

persistence reported in our study is still remarkable. The elevated temperature tested 

here (25OC) represents 3OC more than the summer mean temperature in the study area 

(chapter 3), matched the maximum temperature detected during anomalous summer 

seasons (Cebrian et al. 2011) and represents an increase of > 11OC from ambient 

seawater conditions at the time of collection. In addition, the time frame of our 

experiments (3 weeks after acclimation) matched the duration of peaks of temperature 

in abnormally warm summers (Cebrian et al. 2011).  

Studies on sponge-associated community response to stress are scarce but 

suggest that sponge-bacteria associations are highly persistent until a threshold is 

surpassed. In the tropical sponge Rhopaloeides odorabile, the bacterial community 

shifted only when sponge tissue necrosis occurred, after exposures to temperatures 2 

to 4OC above the mean temperature in the study area (Webster et al. 2008a; Simister et 

al. 2012b; 2012c). In the Caribbean, López-Legentil et al. (2008) were unable to induce 

the release of symbiotic cyanobacteria in the giant barrel sponge Xestospongia muta, 

even when sponges were put under temperatures that yielded significant stress to the 

sponge after a few hours. These studies further confirm that sponge-bacterial 

associations are extremely stable and persist until death 

According to the coral probiotic hypothesis, coral-associated microbes would 

rapidly shift (days, weeks) as an adaptative response of the holobiont to overcome 

changing environmental conditions (Reshef et al. 2006); but this does not seem to be 

the case for sponges. The complex microbial community housed in marine sponges, 

comparable to that found in human gut (Hentschel et al. 2012), may confer robustness 

amidst natural disturbances (e.g., preventing the invasion of opportunist microbes that 

proliferate in warmer months) but may not be able to help the host survive drastic 

changes of some environmental parameters such as temperature (Webster et al. 

2008a; Simister et al. 2012b; 2012c). Thus, under a scenario of increasing seawater 

temperature, acidification and sedimentation (Coma et al. 2009; Calvo et al. 2011; 

Crisci et al. 2011), the sponge holobiont may be unable to change rapidly enough to 

surmount the expected drastic and repeated disturbances, and its health may be 
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Box 4 | “Nothing in biology makes sense except in the light of evolution”  

(Dobzhansky, 1900-1975) 

   

Although this PhD thesis focused on patterns of sponge-associated bacterial communities 

over hundreds of km and accross seasons, results can also help shelding some light on the 

evolution processes that have shaped these symbiotic relationships. First, a less flexible 

(i.e., species-specific) and highly persistent complex symbiotic community could contribute 

maintaining host health. For example, it has been proposed for the human gut microbiome 

that natural selection would have favored symbiotic bacteria that (besides benefitting host 

fitness or at least being harmless) maintain a metabolic equilibrium and avoid the 

unexpected proliferation of one or a few bacterial strains that could compromise the health 

of the holobiont (Bäckhed et al. 2005). Second, the intraspecific variability observed for 

some individuals within a species diversifies the holobiont genetic pool and may bring 

selective advantages when subjected to new environmental conditions. For instance, some 

bacteria are known to produce molecules that the host can use for UV protection (Regoli et 

al. 2000), and their presence in some individuals may result in their natural selection under 

current predictions of higher irradiances. 

ultimately compromised yielding its death (Webster et al. 2008a; Simister et al. 2012b; 

Fan et al. 2013).   

 

 

In conclusion, we investigated the bacterial communities associated with congeneric 

sponges that occurred in sympatry and showed that host-specific processes, rather 

than biogeographic factors, are primarily responsible for shaping sponge-derived 

bacterial communities. Bacterial communities in these sponges were species-specific 

and persisted over spatial (i.e., hundreds of kilometers) and temporal (i.e., seasonal) 

scales. Even short-term exposure to elevated seawater temperatures and simulated 

food limitation conditions did not alter the composition of sponge-associated bacterial 

communities. Our findings suggest a close and stable HMA sponge-bacterial 

community association. We speculate that sponge-bacteria symbiosis has probably 

resulted in a cooperative system where the activity of the community itself as well as 

the animal‟s homeostasis contribute to maintain a stable environment in the mesohyl 

and buffer external disturbances. Under this scenario, the symbioses would have 

evolved to persist as a unit over different environmental situations (Box 4). The threat 

of habitat degradation and climate change impacts (associated with elevated seawater 

temperature and extreme seasonality) to sponge diversity entails the loss of their 

complex symbiotic microbiota and the ecological and biotechnological services they 
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provide. Our results highlight the importance of considering the holobiont rather than 

just the sponge when designing future studies on sponge biology, ecology and 

evolution as well as when deciding on appropriate management strategies to preserve 

the true biodiversity of these taxa. 

 

Future Perspectives 

 

We have demonstrated that host specific factors mostly determine sponge-derived 

bacterial communities. In the discussion, we proposed that the sponge mesohyl is a 

stable habitat that buffers against changes in external seawater conditions. The sponge 

mesohyl has been defined as an anaerobic, nutrient-rich habitat (Hoffmann et al. 

2005), but we know little about its physical and chemical conditions. The use of 

microsensors in experimental studies to record the physical and chemical 

microenvironmental conditions in the mesohyl would help to define sponge mesohyl 

microhabitats and their changes under different levels of light or temperature, as 

published for other marine invertebrates (Kühl et al. 2012), or in actively pumping vs 

non-pumping sponges. Also, the application of such techniques to closely-related 

sponges would allow additional insight into how internal conditions may drive the 

species-specificity of sponge-bacterial communities.  

Although we know more about the factors affecting the structure of the bacterial 

consortia in sponges, studies on the functional response of the symbiotic community 

under different environmental conditions remain limited to few sponge species (e.g., 

Fan et al. 2013) or particular bacterial lineages (e.g., photosymbionts [e.g., this thesis], 

ammonia oxidizers, [e.g., López-Legentil et al. 2010]). Further metagenomic and 

transcriptomic studies are crucial to understand the role of symbiont metabolism for the 

holobiont and how similar or different this role is for different sponge species (Liu et al. 

2011; Thomas et al. 2010). In particular, additiona work is needed to assess the 

response of the holobiont to different environmental conditions (e.g., Fan et al. 2013) 

mimicking current predictions for global climate change and the role of symbionts in 

holobiont adaptation to these conditions.  

Moreover, sponges not only establish symbiotic associations with bacteria. 

Archaea have also been detected in sponges from different oceans (Steger et al. 2008; 

López-Legentil et al. 2010; Turque et al. 2010; Radax et al. 2012) and are also present 

in sponge larvae (Schmitt et al. 2008), suggesting a tight link between archaeal 

symbionts and the sponge host. However, the archaeal symbiotic communities in 

sponges have received less attention than their bacterial counterparts and we know 

little about their diversity patterns (Box 5). In addition, other eukaryotic microorganisms 
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Box 5 | WORK IN PROGRESS: Symbiotic archaea in marine sponges show stability 

and host specificity in community structure and ammonium oxidation functionality. 

Fan Zhang*, Lucía Pita*, Patrick M. Erwin, Summara Abaid, Susanna López-Legentil, Russell 

T. Hill. (*Equal contributors) 

 

Abstract. Archaea associated with marine sponges are active and influence the nitrogen 

metabolism of their hosts. However, we know little about the occurrence, specificity and 

persistence of this group in marine sponges. We aimed to elucidate the relative importance of 

host-specific and environmental factors in shaping sponge-associated archaeal communities. 

We investigated the archaeal communities in sympatric sponges from the Mediterranean Sea 

(Ircinia fasciculata and I. oros, sampled in summer and winter) and from the Caribbean (I. 

strobilina and Mycale laxissima). Analysis of archaeal 16S rRNA and amoA gene sequences 

showed that the archaeal community composition and structure was different from those in 

the seawater and varied between sponge species. The community in M. laxissima differed 

from that in Ircinia spp., including the sympatric sponge I. strobilina; yet geographical clusters 

within Ircinia spp. were also observed. Whereas archaeal phylotypes in Ircinia spp. were 

persistent and seemed to belong to sponge-specific clusters, archaea in M. laxissima were 

closely related with sequences from diverse habitats (i.e., seawater, sediments). In the four 

sponge species, the expression of archaeal amoA gene was confirmed. We proposed that 

host-specific processes, such as host ecological strategy and evolutionary history, rather than 

surrounding environmental conditions determine sponge-archaeal communities. 

This research was mainly conducted during L.P. internship in the group of Russell T. Hill at the Institute 

of Marine and Environmental Technology from the University of Maryland Center for Environmental 

Science. This paper has been submitted to FEMS Microbiology Ecology. 

(e.g., fungi, diatoms and dinoflagellates) are also commonly observed associated with 

sponges and may also play an important role in holobiont metabolism, yet they are 

often disregarded in sponge microbiology studies (Hentschel et al. 2012). Accordingly, 

further research in this topic is also needed to obtain a comprehensive view of 

holobiont complexity and define the role of archaea and microbial eukaryotes in this 

symbiosis. 
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Conclusions 

 

CHAPTER 1: Biogeography and host-fidelity of bacterial communities in Ircinia 

spp. from the Bahamas 

1. Ircinia felix and I. strobilina sponges from the Bahamas harbor species-

specific bacterial communities, different from those in the surrounding 

seawater. The symbiont bacterial communities are composed by bacterial 

phylotypes closely related to bacteria found in other sponge species from 

different oceans, as reported from T-RFLP and clone libraries of 16S rRNA 

gene. Bacterial communities in color morphotypes of I. felix (white and tan) 

are more similar to each other than to those in I. strobilina 

2. Bacterial communities in Ircinia spp. in the Bahamas remained stable over 

locations separated by distances ranging 80-400 km and under different 

anthropogenic pressure (i.e., islands of different human population densities). 

3. Our results show a high degree of symbiont fidelity to host species, 

suggesting that host-specific rather than biogeographic factors play a primary 

role in structuring and maintaining sponge-bacteria relationships in Ircinia spp. 

from the Bahamas. 

 

CHAPTER 2: Host rules: spatial stability of bacterial communities associated 

with marine sponges (Ircinia spp.) in the Western Mediterranean Sea 

4. Multivariate analysis and nonmetric multidimensional scaling plots of 16S 

rRNA gene T-RFLP profiles showed that bacterial communities in Ircinia 

sponges were structured by host species and remained stable across 

sampling locations, despite geographic distances (80-800 km) and different 

local conditions. Despite the overall stability, slight differentiation among 

particular locations was observed in I. variabilis-derived communities. 

5. Host-specicity and spatial stability was observed in both rare and dominant 

components of T-RFLP profiles within the same sponge species, although the 

dominant members presented spatial differentiation in terms of relative 

abundance. 

6. No correlation between geographic distance and symbiotic community 

dissimilarity was consistently detected in any host sponge species. 

7. Our results indicate that the structure of bacterial communities and their 

variability is determined by host species-specific factors. 
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CHAPTER 3: Stability of sponge-associated bacteria over large seasonal shifts in 

temperature and irradiance 

8. Bacterial symbionts in Ircinia spp. exhibited host species-specific structure 

and remarkable stability throughout 1.5 year, despite large fluctuations in 

temperature and irradiance. In contrast, seawater bacteria exhibited clear 

seasonal shifts in community structure.  

9. Variability in the sponge microbiota was restricted to rare symbionts and 

occurred most prominently in warmer seasons, coincident with elevated 

thermal regimes.  

10. Seasonal stability of the sponge microbiota supports the hypothesis of host-

specific, stable associations between bacteria and sponges. Further, the core 

symbiont profiles revealed in this study provide an empirical baseline for 

diagnosing abnormal shifts in symbiont communities.  

 

CHAPTER 4: Till death do us part: stable sponge-bacteria associations under 

thermal and food shortage stresses 

11. We detected no significant differences in bacterial T-RFLP profiles within I. 

fasciculata and I. oros sponges maintained in aquaria during 3 weeks under 4 

treatments that mimicked realistic stress pressures: control conditions (13OC, 

unfiltered seawater), low food availability (13OC, 0.1 μm-filtered seawater), 

elevated temperatures (25OC, unfiltered seawater), and a combination of the 2 

stressors (25OC, 0.1 μm-filtered seawater). 

12. In I. fasciculata, chl a content did not significantly differ among treatments 

although TEM micrographs revealed some cyanobacteria cells undergoing 

degradation when exposed to both elevated temperature and food shortage 

conditions. 

13. Changes in symbiont structure are not likely the proximate cause for recent 

mortality events reported for I. fasciculata, as we evidenced no appreciable 

decay of the symbiotic community in response to medium-term (3 weeks) 

environmental anomalies purported to cause the recurrent sponge mortality 

episodes in filter-feeding invertebrates in the western Mediterranean Sea.  
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Pelecanus conspicillatus (Monkey Mia, Western Australia) 

Courtesy of O. Sacristán 

 

 

 



 

 153 

References 

 

Abdo Z, Schüette UME, Bent SJ, Williams CJ, Forney LJ et al. (2006) Statistical methods for 
characterizing diversity of microbial communities by analysis of terminal restriction 
fragment length polymorphisms of 16S rRNA genes. Environ. Microbiol. 8: 929–938.  

Abràmoff MD, Hospitals I, Magalhães PJ & Abràmoff M (2004) Image Processing with ImageJ. 
Biophotonics Int. 11: 36-42. 

Alonso-Sáez L, Balagué V, Sà EL, Sánchez O, González JM et al. (2007) Seasonality in 
bacterial diversity in north-west Mediterranean coastal waters: assessment through clone 
libraries, fingerprinting and FISH. FEMS Microbiol. Ecol. 60: 98–112.  

Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment tool. J. Mol. 
Biol. 215: 403–410. 

Anderson M (2001) A new method for non-parametric multivariate analysis of variance. Austral 
Ecol. 26: 32–46. 

Anderson M (2006) Distance-based tests for homogeneity of multivariate dispersions. 
Biometrics 62: 245–253.  

Anderson SA, Northcote PT & Page MJ (2010) Spatial and temporal variability of the bacterial 
community in different chemotypes of the New Zealand marine sponge Mycale hentscheli. 
FEMS Microbiol. Ecol. 72: 328–342.  

Arillo A, Bavestrello G, Burlando B & Sarà M (1993) Metabolic integration between symbiotic 
cyanobacteria and sponges: a possible mechanism. Mar. Biol. 117: 159–162. 

Ashelford K, Chuzhanova N, Fry J, Jones A & Weightman A (2005) At least 1 in 20 16S rRNA 
sequence records currently held in public repositories is estimated to contain substantial 
anomalies. Appl. Environ. Microbiol. 71: 7724–7736. 

Ashelford K, Chuzhanova N, Fry J, Jones A & Weightman A (2006) New screening software 
shows the most recent large 16S rRNA gene clone libraries contain chimeras. Appl. 
Environ. Microbiol. 72: 5734–5741. 

Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA & Gordon JI (2005) Host-bacterial mutualism 
in the human intestine. Science 307: 1915–1920.  

Benjamini Y & Yekutieli D (2001) The control of the false discovery rate in multiple testing under 
dependency. Ann. Stat. 29: 1165–1188. 

Bjork JR, Díez-Vives C, Coma R, Ribes M & Montoya JM (2013) Specificity and temporal 
dynamics of complex bacteria – sponge symbiotic interactions. Ecology 94: 2781–2791. 

Blanquer A & Uriz MJ (2010) Population genetics at three spatial scales of a rare sponge living 
in fragmented habitats. BMC Evol. Biol. 10: 13-21.  

Calvo E, Simó R, Coma R, Ribes M, Pascual J et al. (2011) Effects of climate change on 
Mediterranean marine ecosystems : the case of the Catalan Sea. Clim. Res. 50: 1–29. 

Cebrian E, Uriz MJ, Garrabou J & Ballesteros E (2011) Sponge mass mortalities in a warming 
Mediterranean Sea: are cyanobacteria-harboring species worse off? PLoS One 6: e20211.  



 

 154 

Cerrano C & Bavestrello G (2008) Medium-term effects of die-off of rocky benthos in the 
Ligurian Sea. What can we learn from gorgonians? Chem. Ecol. 24: 73–82.  

Clarke K (1993) Non-parametric multivariate analyses of changes in community structure. Aust. 
J. Ecol. 18: 117–143. 

Clarke K & Gorley R (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth. 

Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q et al. (2003) The Ribosomal Database Project 
(RDP-II): previewing a new autoaligner that allows regular updates and the new 
prokaryotic taxonomy. Nucleic Acids Res. 31: 442–443.  

Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. (2009) The Ribosomal Database Project: 
improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: D141–5.  

Colin PL (1995) Surface currents in Exuma Sound, Bahamas, and adjacent areas with 
reference to potential larval transport. Bull. Mar. Sci. 56: 48–57. 

Coma R, Ribes M, Gili J & Zabala M (2000) Seasonality in coastal benthic ecosystems. Trends 
Ecol. Evol. 15: 448–453.  

Coma R, Ribes M, Serrano E, Jiménez E, Salat J et al. (2009) Global warming-enhanced 
stratification and mass mortality events in the Mediterranean. Proc. Natl. Acad. Sci. USA. 
106: 6176–6181. 

Crisci C, Bensoussan N, Romano J-C & Garrabou J (2011) Temperature anomalies and 
mortality events in marine communities: insights on factors behind differential mortality 
impacts in the NW Mediterranean. PLoS One 6: e23814.  

Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H & Buckley DH (2009) T-REX: software 
for the processing and analysis of T-RFLP data. BMC Bioinformatics 10: 171–181.  

Diaz M & Ward B (1997) Sponge-mediated nitrification in tropical benthic communities. Mar. 
Ecol. Prog. Ser. 156: 97–107. 

Diaz MC & Rutzler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull. 
Mar. Sci. 69: 535–546. 

Dray S & Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. 
J. Stat. Softw. 22: 1–20. 

Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A et al. (2011) Geneious v5.4, available 
from http://www.geneious.com 

Duarte CM, Agusti S, Kennedy H & Vaqué D (1999) The Mediterranean climate as a template 
for Mediterranean marine ecosystems : the example of the northeast Spanish littoral. Prog. 
Oceanogr. 44: 245–270. 

Duque C, Bonilla A, Bautista E & Zea S (2001) Exudation of low molecular weight compounds 
(thiobismethane, methyl isocyanide, and methyl isothiocyanate) as a possible chemical 
defense mechanism in the marine sponge Ircinia felix. Biochem. Syst. Ecol. 29: 459–467.  

Duran S, Pascual M, Estoup A & Turon X (2004) Strong population structure in the marine 
sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Mol. 
Ecol. 13: 511–522. 

http://www.geneious.com/


 

 155 

Ereskovsky AV, Gonobobleva E & Vishnyakov A (2004) Morphological evidence for vertical 
transmission of symbiotic bacteria in the viviparous sponge Halisarca dujardini Johnston 
(Porifera, Demospongiae, Halisarcida). Mar. Biol. 146: 869–875.  

Ereskovsky AV & Tokina DB (2004) Morphology and fine structure of the swimming larvae of 
Ircinia oros (Porifera, Demospongiae, Dictyoceratida). Invertebr. Reprod. Dev. 45: 137–
150.  

Erpenbeck D, Hooper JNA & Worheide G (2006) CO1 phylogenies in diploblasts and the 
“Barcoding of Life” - are we sequencing a suboptimal partition? Mol. Ecol. Notes 6: 550–
553.  

Erpenbeck D, Voigt O, Wörheide G & Lavrov DV (2009) The mitochondrial genomes of sponges 
provide evidence for multiple invasions by Repetitive Hairpin-forming Elements (RHE). 
BMC Genomics 10: 591.  

Erwin PM & Thacker RW (2007) Incidence and identity of photosynthetic symbionts in 
Caribbean coral reef sponge assemblages. J. Mar. Biol. Assoc. UK 87: 1683–1692.  

Erwin PM & Thacker RW (2008a) Cryptic diversity of the symbiotic cyanobacterium 
Synechococcus spongiarum among sponge hosts. Mol. Ecol. 17: 2937–2947.  

Erwin PM & Thacker RW (2008b) Phototrophic nutrition and symbiont diversity of two Caribbean 
sponge–cyanobacteria symbioses. Mar. Ecol. Prog. Ser. 362: 139–147.  

Erwin PM, López-legentil S & Schuhmann PW (2010) The pharmaceutical value of marine 
biodiversity for anti-cancer drug discovery. Ecol. Econ. 70: 445–451.  

Erwin PM, Olson JB & Thacker RW (2011) Phylogenetic diversity, host-specificity and 
community profiling of sponge-associated bacteria in the northern Gulf of Mexico. PLoS 
One 6: e26806.  

Erwin PM, López-Legentil S, González-Pech R & Turon X (2012a) A specific mix of generalists: 
bacterial symbionts in Mediterranean Ircinia spp. FEMS Microbiol. Ecol. 79: 619–637.  

Erwin PM, López-Legentil S & Turon X (2012b) Ultrastructure, molecular phylogenetics, and 
chlorophyll a content of novel cyanobacterial symbionts in temperate sponges. Microb. 
Ecol. 64: 771–783.  

Erwin PM, Pita L, López-Legentil S & Turon X (2012c) Stability of sponge-associated bacteria 
over large seasonal shifts in temperature and irradiance. Appl. Environ. Microbiol. 78: 
7358–7368.  

Esteves AIS, Hardoim CCP, Xavier JR, Gonçalves JMS & Costa R (2013) Molecular richness 
and biotechnological potential of bacteria cultured from Irciniidae sponges in the north-east 
Atlantic. FEMS Microbiol. Ecol. 85: 519–536.  

Fan L, Liu M, Simister R, Webster NS & Thomas T (2013) Marine microbial symbiosis heats up: 
the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J. 
7: 991–1002. 

Faulkner DJ (2001) Marine natural products (1999). Nat. Prod. Rep. 18: 1–49.  

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. 
Evolution. 39: 783–791. 



 

 156 

Fierer N (2008) Microbial biogeography : patterns in microbial diversity across space and time. 
In: Accessing uncultivated microorganisms: from the environment to organisms and 
genomes and back. Zengler K (ed). Whashington DC. ASM Press, pp 95-115. 

Fiore CL, Baker DM & Lesser MP (2013) Nitrogen biogeochemistry in the Caribbean sponge, 
Xestospongia muta: A source or sink of dissolved inorganic nitrogen? PLoS One 8: 
e72961.  

Fiore CL, Jarett JK, Olson ND & Lesser MP (2010) Nitrogen fixation and nitrogen 
transformations in marine symbioses. Trends Microbiol. 18: 455–463.  

Flatt P, Gautschi J, Thacker RW, Musafija-Girt M, Crews P et al. (2005) Identification of the 
cellular site of polychlorinated peptide biosynthesis in the marine sponge Dysidea 
(Lamellodysidea) herbacea and symbiotic cyanobacterium Oscillatoria spongeliae by 
CARD-FISH analysis. Mar. Biol. 147: 761–774. 

Flo E, Garcés E, Manzanera M & Camp J (2011) Coastal inshore waters in the NW 
Mediterranean: Physicochemical and biological characterization and management 
implications. Estuar. Coast. Shelf Sci. 93: 279–289.  

Folmer O, Black M, Hoeh W, Lutz R & Vrijenhoek R (1994) DNA primers for amplification of 
mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Mol. 
Mar. Biol. Biotechnol. 3: 294–299. 

Freeman CJ & Thacker RW (2011) Complex interactions between marine sponges and their 
symbiotic microbial communities. Limnol. Oceanogr. 56: 1577–1586.  

Friedrich AB, Fischer I, Proksch P, Hacker J & Hentschel U (2001) Temporal variation of the 
microbial community associated with the mediterranean sponge Aplysina aerophoba. 
FEMS Microbiol. Ecol. 38: 105–115.  

Galand PE, Casamayor EO, Kirchman DL & Lovejoy C (2009) Ecology of the rare microbial 
biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. USA. 106: 22427–22432.  

Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P et al. (2009) Mass mortality in 
Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. 
Glob. Chang. Biol. 15: 1090–1103.  

Gasol JM & Giorgio P (2000) Using flow cytometry for counting natural planktonic bacteria and 
understanding the structure of planktonic bacterial communities. Sci. Mar. 64: 197–224. 

Gili JM & Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine 
food webs. Trends Ecol. Evol. 13: 316–321.  

De Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ et al. (2013) Surviving in a 
marine desert: the sponge loop retains resources within coral reefs. Science 342: 108–
110.  

Gsell AS, Domis LNDS, van Donk E & Ibelings BW (2013) Temperature alters host genotype-
specific susceptibility to chytrid infection. PLoS One 8: e71737. 

Haber M, Carbone M, Mollo E, Gavagnin M & Ilan M (2011) Chemical defense against 
predators and bacterial fouling in the Mediterranean sponges Axinella polypoides and A. 
verrucosa. Mar. Ecol. Prog. Ser. 422: 113–122.  

Haber M & Ilan M (2013) Diversity and antibacterial activity of bacteria cultured from 
Mediterranean Axinella spp. sponges. J. Appl. Microbiol. 116(3): 519-532. 



 

 157 

Hammami S, Bergaoui A, Boughalleb N, Romdhane A, Khoja I et al. (2010) Antifungal effects of 
secondary metabolites isolated from marine organisms collected from the Tunisian coast. 
Comptes Rendus Chim. 13: 1397–1400.  

Hanson CA, Fuhrman JA, Horner-Devine MC & Martiny JBH (2012) Beyond biogeographic 
patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10: 497–506. 

Hardoim CCP, Esteves AIS, Pires FR, Gonçalves JMS, Cox CJ et al. (2012) Phylogenetically 
and spatially close marine sponges harbour divergent bacterial communities. PLoS One 7: 
e53029.  

Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP et al. (2002) Climate warming and 
disease risks for terrestrial and marine biota. Science 296: 2158–2162.  

Hentschel U, Horn M, Friedrich AB, Wagner M & Moore BS (2002) Molecular evidence for a 
uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 
68: 4431–4440. 

Hentschel U, Piel J, Degnan SM & Taylor MW (2012) Genomic insights into the marine sponge 
microbiome. Nat. Rev. Microbiol. 10: 641–654.  

Herbert P, Cywinska A, Ball S & deWaard JR (2003) Biological identifications through DNA 
barcodes. Proc. R. Soc. L. B. Biol. Sci. 270: 313–321. 

Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T et al. (2005) An anaerobic world in sponges. 
Geomicrobiol. J. 22: 1–10.  

Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G et al. (2009) Complex nitrogen 
cycling in the sponge Geodia barretti. Environ. Microbiol. 11: 2228–2243 

Jimenez E & Ribes M (2007) Sponges as a source of dissolved inorganic nitrogen : Nitrification 
mediated by temperate sponges. Limnol. Oceanogr. 52: 948–958. 

Joachimiak M, Weisman J & May B (2006) JColorGrid: software for the visualization of 
biological measurement. BMC Bioinformatics 7: 225–229. 

Kamke J, Taylor MW & Schmitt S (2010) Activity profiles for marine sponge-associated bacteria 
obtained by 16S rRNA vs 16S rRNA gene comparisons. ISME J. 4: 498–508.  

Kaplan CW & Kitts CL (2003) Variation between observed and true Terminal Restriction 
Fragment length is dependent on true TRF length and purine content. J. Microbiol. 
Methods 54: 121–125.  

Kent AD, Smith DJ, Benson BJ & Triplett EW (2003) Web-based phylogenetic assignment tool 
for analysis of terminal restriction fragment length polymorphism profiles of microbial 
communities. Appl. Environ. Microbiol. 69: 6768–6776. 

Kiers ET, Palmer TM, Ives AR, Bruno JF & Bronstein JL (2010) Mutualisms in a changing world: 
an evolutionary perspective. Ecol. Lett. 13: 1459–1474.  

Kühl M, Behrendt L, Trampe E, Qvortrup K, Schreiber U et al. (2012) Microenvironmental 
ecology of the chlorophyll b-containing symbiotic cyanobacterium Prochloron in the 
didemnid ascidian Lissoclinum patella. Front. Microbiol. 3: 402. 

LaJeunesse TC, Smith RT, Finney J & Oxenford H (2009) Outbreak and persistence of 
opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral “bleaching” 
event. Proc. Biol. Sci. 276: 4139–4148.  



 

 158 

Lee OO, Lau SCK & Qian P (2006) Consistent bacterial community structure associated with 
the surface of the sponge Mycale adhaerens Bowerbank. Microb. Ecol. 52: 693–707. 

Lee OO, Chui PY, Wong YH, Pawlik JR & Qian P-Y (2009a) Evidence for vertical transmission 
of bacterial symbionts from adult to embryo in the Caribbean sponge Svenzea zeai. Appl. 
Environ. Microbiol. 75: 6147–6156. 

Lee OO, Wong YH & Qian P-Y (2009b) Inter- and intraspecific variations of bacterial 
communities associated with marine sponges from San Juan Island, Washington. Appl. 
Environ. Microbiol. 75: 3513–3521. 

Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A et al. (2011) Pyrosequencing reveals highly 
diverse and species-specific microbial communities in sponges from the Red Sea. ISME J. 
5: 650–664.  

Lejeusne C, Chevaldonne P, Pergent-Martini C, Boudouresque C & Pérez T (2009) Climate 
change effects on a miniature ocean : the highly diverse, highly impacted Mediterranean 
Sea. Trends Ecol. Evol. 25: 250–260. 

Lemoine N, Buell N, Hill A & Hill M (2007) Assessing the utility of sponge microbial symbiont 
communities as models to study global climate change : a case study with Halichondria 
bowerbanki. In: Porifera Research: Biodiversity, Innovatio and Sustainability. Custódio 
MR, Lôbo-Hajdu G, Hajdu E & Muricy G (eds). Río de Janeiro, Brazil. Série Livros, Museu 
Nacional, pp. 419–425. 

Leys SP & Riesgo A (2012) Epithelia, an evolutionary novelty of metazoans. J. Exp. Zool. B. 
Mol. Dev. Evol. 318: 438–447.  

Li C, Chen J & Hua T (1998) Precambrian sponges with cellular structures. Science 279: 879–
882. 

Liu M, Fan L, Zhong L, Kjelleberg S & Thomas T (2012) Metaproteogenomic analysis of a 
community of sponge symbionts. ISME J. 6: 1515–1525.  

Liu MY, Kjelleberg S & Thomas T (2011) Functional genomic analysis of an uncultured δ-
proteobacterium in the sponge Cymbastela concentrica. ISME J. 5: 427–435.  

López-Legentil S, Song B, McMurray SE & Pawlik JR (2008) Bleaching and stress in coral reef 
ecosystems: hsp70 expression by the giant barrel spone Xestospongia muta. Mol. Ecol. 
17(7): 1840–1849. 

López-Legentil S, Erwin PM, Pawlik JR & Song B (2010) Effects of sponge bleaching on 
ammonia-oxidizing Archaea: distribution and relative expression of ammonia 
monooxygenase genes associated with the barrel sponge Xestospongia muta. Microb. 
Ecol. 60: 561–571.  

López-Legentil S, Song B, Bosch M, Pawlik JR & Turon X (2011) Cyanobacterial diversity and a 
new acaryochloris-like symbiont from Bahamian sea-squirts. PLoS One 6: e23938.  

López-Legentil S, Erwin PM, Velasco M & Turon X (2013) Growing or reproducing in a 
temperate sea: optimization of resource allocation in a colonial ascidian. Invertebr. Biol. 
132: 69–80.  

Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP et al. (2009) Fossil steroids record the 
appearance of Demospongiae during the Cryogenian period. Nature 457: 718–721.  



 

 159 

Lozupone CA, Hamady M, Kelley ST & Knight R (2007) Quantitative and qualitative beta 
diversity measures lead to different insights into factors that structure microbial 
communities. Appl. Environ. Microbiol. 73: 1576–1585.  

Maldonado M, Sánchez-Tocino L & Navarro C (2010) Recurrent disease outbreaks in corneous 
demosponges of the genus Ircinia : epidemic incidence and defense mechanisms. Mar. 
Biol. 157: 1577–1590. 

Maldonado M & Young CM (1998) Limits on the bathymetric distribution of keratose sponges : a 
field test in deep water. Mar. Ecol. Prog. Ser. 174: 123–139. 

Margulis L (1998) Symbiotic planet: a new look at evolution. Basic Books ed. Amherst, 
Massachusetts. 

Mariani S, Uriz M-J, Turon X & Alcoverro T (2006) Dispersal strategies in sponge larvae: 
integrating the life history of larvae and the hydrologic component. Oecologia 149: 174–
184.  

Martínez-Murcia A, Acinas S & Rodríguez-Valera F (1995) Evaluation of prokaryotic diversity by 
restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS 
Microbiol. Ecol. 17: 247–255. 

Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, et al. (2006) Microbial 
biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4: 102–112.  

McArdle BH & Anderson MJ (2001) Fitting multivariate models to community data: a comment 
on distance-based redundancy analysis. Ecology 82: 290–297. 

McFall-Ngai M, Haldfield MG, Bosch TCG, Carey HV, Domazet-Loso T et al. (2013) Animals in 
a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA. 110: 
3229–3236.  

McFall-Ngai M (2008) Are biologists in “future shock”? Symbiosis integrates biology across 
domains. Focus symbiosis 6: 789–792. 

Meyer B & Kuever J (2008) Phylogenetic diversity and spatial distribution of the microbial 
community associated with the Caribbean deep-water sponge Polymastia cf. corticata by 
16S rRNA, aprA, and amoA gene analysis. Microb. Ecol. 56: 306–321.  

Millot C (1999) Circulation in the Western Mediterranean Sea. J. Mar. Syst. 20: 423–442.. 

Mindell D (1992) Phylogenetic consequences of symbioses: Eukarya and Eubacteria are not 
monophyletic taxa. Biosystems 27: 53–62. 

Mohamed NM, Colman AS, Tal Y & Hill RT (2008a) Diversity and expression of nitrogen fixation 
genes in bacterial symbionts of marine sponges. Environ. Microbiol. 10: 2910–2921.  

Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM & Hill RT (2008b) Changes in bacterial 
communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl. 
Environ. Microbiol. 74: 1209–1222.  

Mohamed NM, Rao V, Hamann MT, Kelly M & Hill RT (2008c) Monitoring bacterial diversity of 
the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl. Environ. 
Microbiol. 74: 4133–4143.  



 

 160 

Moitinho-Silva L, Bayer K, Cannistraci CV, Giles EC, Ryu T et al. (2013) Specificity and 
transcriptional activity of microbiota associated with low and high microbial abundance 
sponges from the Red Sea. Mol. Ecol. (In press). DOI:10.1111/mec.12365. 

Montalvo NF & Hill RT (2011) Sponge-associated bacteria are strictly maintained in two closely 
related but geographically distant sponge hosts. Appl. Environ. Microbiol. 77: 7207–7216.  

Morrow KM, Moss AG, Chadwick NE & Liles MR (2012) Bacterial associates of two Caribbean 
coral species reveal species-specific distribution and geographic variability. Appl. Environ. 
Microbiol. 78: 6438–6449.  

Muscholl-Silberhorn A, Thiel V & Imhoff JF (2008) Abundance and bioactivity of cultured 
sponge-associated bacteria from the Mediterranean Sea. Microb. Ecol. 55: 94–106. 

Newman DJ & Hill RT (2006) New drugs from marine microbes: the tide is turning. J. Ind. 
Microbiol. Biotechnol. 33: 539–544.  

Palmer TM, Stanton ML, Young TP, Goheen JR, Pringle RM et al. (2008) Breakdown of an ant-
plant mutualism follows the loss of large herbivores from an African savanna. Science 319: 
192–195.  

Pandey J, Ganesan K & Jain R (2007) Variations in T-RFLP profiles with differing chemistries of 
fluorescent dyes used for labeling the PCR primers. J. Microbiol. Methods 68: 633–638. 

Parra-Velandia FJ & Zea S (2003) Comparación de algunas características de las esponjas del 
género Ircinia (Porifera: Demospongiae) en dos localidades contrastantes del área de 
Santa Marta, Caribe Colombiano. Bol Invest Mar Cost 32: 75–91. 

Paul VJ & Ritson-Williams R (2008) Marine chemical ecology. Nat. Prod. Rep. 25: 662–695.  

Paul VJ, Ritson-Williams R & Sharp K (2011) Marine chemical ecology in benthic environments. 
Nat. Prod. Rep. 28: 345–387.  

Pawlik JR, Chanasl B & Robert J (1995) Defenses of Caribbean sponges against predatory reef 
fish. I. Chemical deterrency. Mar Ecol Prog Ser 127: 183–194. 

Pawlik JR, Fall GMC & Zea S (2002) Does the odor from sponges of the genus Ircinia protect 
them from fish predators? J. Chem. Ecol. 28: 1103–1115. 

Pawlik JR, Steindler L, Henkel TP, Beer S & Ilan M (2007) Chemical warfare on coral reefs : 
Sponge metabolites differentially affect coral symbiosis in situ. Am. Soc. Limnol. 
Oceanogr. 52: 907–911. 

Pedrós-Alió C (2012) The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4: 449–466.  

Pile AJ (1997) Finding Reiswig‟s missing carbon: quantification of sponge feeding using dual-
beam flow cytometry. Proceedings of the 8th International Coral Reef Symposium, 1403–
1410. 

Pile AJ, Patterson MR & Witman JD (1996) In situ grazing on plankton < 10 pm by the boreal 
sponge Mycale lingua. Mar. Ecol. Prog. Ser. 141: 95–102. 

Pinhassi J, Gómez-Consarnau L, Alonso-Sáez L, Sala MM, Vidal M et al. (2006) Seasonal 
changes in bacterioplankton nutrient limitation and their effects on bacterial community 
composition in the NW Mediterranean Sea. Aquat. Microb. Ecol. 44: 241–252.  



 

 161 

Pita L, López-Legentil S & Erwin PM (2013) Biogeography and host fidelity of bacterial 
communities in Ircinia spp. from the Bahamas. Microb. Ecol. 66: 437–447.  

Pöppe J, Sutcliffe P, Hooper JNA, Wörheide G & Erpenbeck D (2010) COI barcoding reveals 
new clades and radiation patterns of Indo-Pacific sponges of the family Irciniidae 
(Demospongiae: Dictyoceratida). PLoS One 5: e9950.  

Racine J (2012) RStudio: A platform-independent IDE for R and Sweave. J. Appl. Econom. 27: 
167–172. 

Radax R, Hoffmann F, Rapp HT, Leininger S & Schleper C (2012) Ammonia-oxidizing Archaea 
as main drivers of nitrification in cold-water sponges. Environ. Microbiol. 14: 909–923.  

Regoli F, Cerrano C, Chierici E, Bompadre S & Bavestrello G (2000) Susceptibility to oxidative 
stress of the Mediterranean demosponge Petrosia ficiformis: the role of endosymbionts 
and solar irradiance. Mar. Biol. 137: 453-461. 

Reshef L, Koren O, Loya Y, Zilber-Rosenberg I & Rosenberg E (2006) The coral probiotic 
hypothesis. Environ. Microbiol. 8: 2068–2073.  

Reveillaud J, Maignien L, Eren AM, Huber JA, Apprill A et al. (2014) Host-specificity among 
abundant and rare taxa in the sponge microbiome. ISME J. (In press). 
DOI:10.1038/ismej.2013.227  

Reysenbach A, Wickham GS & Pace NR (1994) Phylogenetic analysis of the hyperthermophilic 
pink filament community in Octopus Spring, Yellowstone National Park . Appl. Environ. 
Microbiol. 60: 2113. 

Ribes M, Jiménez E, Yahel G, López-Sendino P, Diez B et al. (2012) Functional convergence of 
microbes associated with temperate marine sponges. Environ. Microbiol. 14: 1224–1239.  

Rohwer F, Seguritan V, Azam F & Knowlton N (2002) Diversity and distribution of coral-
associated bacteria. Mar. Ecol. Prog. Ser. 243: 1–10.  

Rot C, Goldfarb I, Ilan M & Huchon D (2006) Putative cross-kingdom horizontal gene transfer in 
sponge (Porifera) mitochondria. BMC Evol. Biol. 6: 71.  

Sarà M (1971) Ultrastructural aspects of the symbiosis between two species of the genus 
Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar. Biol. 11: 214–
221. 

Schauer M, Massana R & Pedrós-Alió C (2000) Spatial differences in bacterioplankton 
composition along the Catalan coast (NW Mediterranean) assessed by molecular 
fingerprinting. FEMS Microbiol. Ecol. 33: 51–59. 

Schauer M, Balagué V, Pedrós-Alió C & Massana R (2003) Seasonal changes in the taxonomic 
composition of bacterioplankton in a coastal oligotrophic system. Aquat. Microb. Ecol. 31: 
163–174.  

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al. (2009) Introducing mothur: 
open-source, platform-independent, community-supported software for describing and 
comparing microbial communities. Appl. Environ. Microbiol. 75: 7537–7541.  

Schmahl GP (1990) Community structure and ecology of sponges associated with four 
Southern Florida coral reefs. In: New perspectives in sponge biology. Rützler, K, ed. 
Washington, DC. Smithsonian Institution Press, pp. 376–383. 



 

 162 

Schmitt S, Weisz JB, Lindquist N & Hentschel U (2007) Vertical transmission of a 
phylogenetically complex microbial consortium in the viviparous sponge Ircinia felix. Appl. 
Environ. Microbiol. 73: 2067–2078.  

Schmitt S, Angermeier H, Schiller R, Lindquist N & Hentschel U (2008) Molecular microbial 
diversity survey of sponge reproductive stages and mechanistic insights into vertical 
transmission of microbial symbionts. Appl. Environ. Microbiol. 74: 7694–7708.  

Schmitt S, Tsai P, Bell J, Fromont J, Ilan M et al. (2012) Assessing the complex sponge 
microbiota: core, variable and species-specific bacterial communities in marine sponges. 
ISME J. 6: 564–576.  

Schöttner S, Hoffmann F, Cárdenas P, Rapp HT, Boetius A et al. (2013) Relationships between 
host phylogeny, host type and bacterial community diversity in cold-water coral reef 
sponges. PLoS One 8: e55505.  

Simister R, Deines P, Botté ES, Webster NS & Taylor MW (2012a) Sponge-specific clusters 
revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ. 
Microbiol. 14: 517–524.  

Simister R, Taylor MW, Tsai P, Fan L, Bruxner TJ et al. (2012b) Thermal stress responses in 
the bacterial biosphere of the Great Barrier Reef sponge, Rhopaloeides odorabile. 
Environ. Microbiol. 14: 3232–3246.  

Simister R, Taylor MW, Tsai P & Webster N (2012c) Sponge-microbe associations survive high 
nutrients and temperatures. PLoS One 7: e52220.  

Van Soest RWM, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D et al. (2012) Global 
diversity of sponges (Porifera). PLoS One 7: e35105.  

Sokal RR & Rohl FJ (1995) Biometry: the principles and practice of statistics in biological 
research. Freeman (3ªed), New York, NY. 

Southwell MW, Weisz JB, Martens CS & Lindquist N (2008) In situ fluxes of dissolved inorganic 
nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnol. 
Oceanogr. 53: 986–996. 

Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA et al. (2010) The Amphimedon 
queenslandica genome and the evolution of animal complexity. Nature 466: 720–726.  

Stabili L, Cardone F, Alifano P, Tredici SM, Piraino S et al. (2012) Epidemic mortality of the 
sponge Ircinia variabilis (Schmidt, 1862) associated to proliferation of a Vibrio bacterium. 
Microb. Ecol. 64: 802–813.  

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with 
thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.  

Steger D, Ettinger-Epstein P, Whalan S, Hentschel U, de Nys R et al. (2008) Diversity and 
mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ. 
Microbiol. 10: 1087–1094.  

Stewart CN & Excoffier L (1996) Assessing population genetic structure and variability with 
RAPD data: Application to Vaccinium macrocarpon (American Cranberry). J. Evol. Biol. 9: 
153–171.  



 

 163 

Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. (2011) MEGA: Molecular 
Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and 
maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. 

Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. 
Some mathematical questions in biology-DNA sequence analysis. Miura RM, ed. 
Providence, RI. American Mathemathics Society, pp. 57–86. 

Taylor MW, Schupp PJ, Dahllöf I, Kjelleberg S & Steinberg PD (2003) Host specificity in marine 
sponge-associated bacteria, and potential implications for marine microbial diversity. 
Environ. Microbiol. 6: 121–130.  

Taylor MW, Schupp PJ, de Nys R, Kjelleberg S & Steinberg PD (2005) Biogeography of 
bacteria associated with the marine sponge Cymbastela concentrica. Environ. Microbiol. 7: 
419–433. 

Taylor MW, Radax R, Steger D & Wagner M (2007) Sponge-associated microorganisms: 
evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71: 295–347.  

Taylor MW, Hill RT & Hentschel U (2011) Meeting report: 1st international symposium on 
sponge microbiology. Mar. Biotechnol. 13: 1057–1061.  

Taylor MW, Tsai P, Simister RL, Deines P, Botte E et al. (2013) “Sponge-specific” bacteria are 
widespread (but rare) in diverse marine environments. ISME J. 7: 438-443.  

The R Core Team (2012) R: A language and environment for statistical computing. http://www.r-
project.org/. 

Thacker RW (2005) Impacts of shading on sponge-cyanobacteria symbioses : A comparison 
between host-specific and generalist associations. Integr. Comp. Biol. 45: 369–376. 

Thacker RW & Freeman CJ (2012) Sponge-microbe symbiosis: recent advances and new 
directions. Adv Mar Biol 62: 57–111. 

Thiel V, Leininger S, Schmaljohann R, Brümmer F & Imhoff JF (2007a) Sponge-specific 
bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, 
Tetractinomorpha). Microb. Ecol. 54: 101–111.  

Thiel V, Neulinger S, Staufenberger T, Schmaljohann R & Imhoff JF (2007b) Spatial distribution 
of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS 
Microbiol. Ecol. 59: 47–63. 

Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M et al. (2010) Functional genomic 
signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 4: 
1557–1567.  

Thompson J, Gibson T, Plewniak F, Jeanmougin F & Higgins D (1997) The ClustalX windows 
interface: flexible strategies for multiple sequence alignments aided by quality analysis 
tools. Nucleic Acids Res. 25: 4876–4882. 

Turner S, Pryer KM, Miao VP & Palmer JD (1999) Investigating deep phylogenetic relationships 
among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. 
Microbiol. 46: 327–338.  

Turon X, Garriga A & Erwin PM (2013) Lights and shadows: growth patterns in three sympatric 
and congeneric sponges (Ircinia spp.) with contrasting abundances of photosymbionts. 
Mar. Biol. 160 (10): 2743-2754. 



 

 164 

Turque AS, Batista D, Silveira CB, Cardoso AM, Vieira RP et al. (2010) Environmental shaping 
of sponge associated archaeal communities. PLoS One 5: e15774.  

Uriz MJ, Turon X & Mariani S (2008) Ultrastructure and dispersal potential of sponge larvae: 
tufted versus evenly ciliated parenchymellae. Mar. Ecol. 29: 280–297.  

Usher KM, Kuo J, Fromont J & Sutton DC (2001) Vertical transmission of cyanobacterial 
symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Hydrobiologia 
461: 15–23. 

Usher KM, Toze S, Fromont J, Kuo J & Sutton DC (2004) A new species of cyanobacterial 
symbiont from the marine sponge Chondrilla nucula. Symbiosis 36: 183–192. 

Usher KM (2008) The ecology and phylogeny of cyanobacterial symbionts in sponges. Mar. 
Ecol. 29: 178–192. 

Vacelet J & Donadey C (1977) Electron microscope study of the association between some 
sponges and bacteria. J. Exp. Mar. Biol. Ecol. 30: 301–314. 

Webster NS & Hill RT (2001) The culturable microbial community of the Great Barrier Reef 
sponge Rhopaloeides odorabile is dominated by an α-Proteobacterium. Mar. Biol. 138: 
843–851. 

Webster NS, Webb RI, Ridd MJ, Hill RT & Negri AP (2001) The effects of copper on the 
microbial community of a coral reef sponge. Environ. Microbiol. 3: 19–31.  

Webster NS, Negri AP, Webb RI & Hill RT (2002) A spongin-boring α -proteobacterium is the 
etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile. 
Mar. Ecol. Prog. Ser. 232: 305–309. 

Webster NS, Negri AP, Munro MMHG & Battershill CN (2004) Diverse microbial communities 
inhabit Antarctic sponges. Environ. Microbiol. 6: 288–300.  

Webster NS (2007) Sponge disease: a global threat? Environ. Microbiol. 9: 1363–1375.  

Webster NS, Cobb RE & Negri AP (2008a) Temperature thresholds for bacterial symbiosis with 
a sponge. ISME J. 2: 830–842.  

Webster NS, Xavier JR, Freckelton M, Motti CA & Cobb R (2008b) Shifts in microbial and 
chemical patterns within the marine sponge Aplysina aerophoba during a disease 
outbreak. Environ. Microbiol. 10: 3366–3376.  

Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T et al. (2010) Deep sequencing reveals 
exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ. 
Microbiol. 12: 2070–2082.  

Webster NS, Cobb RE, Soo R, Anthony SL, Battershill CN et al. (2011) Bacterial community 
dynamics in the marine sponge Rhopaloeides odorabile under in situ and ex situ 
cultivation. Mar. Biotechnol 13: 296–304.  

Webster NS & Taylor MW (2012) Marine sponges and their microbial symbionts: love and other 
relationships. Environ. Microbiol. 14: 335–346.  

Weisz JB, Hentschel U, Lindquist N & Martens CS (2007) Linking abundance and diversity of 
sponge-associated microbial communities to metabolic differences in host sponges. Mar. 
Biol. 152: 475–483. 



 

 165 

Weisz JB, Massaro AJ, Ramsby BD & Hill MS (2010) Zooxanthellar symbionts shape host 
sponge trophic status through translocation of carbon. Biol. Bull. 219: 189–197.  

White JR, Patel J, Ottesen A, Arce G, Blackwelder P et al. (2012) Pyrosequencing of bacterial 
symbionts within Axinella corrugata sponges: diversity and seasonal variability. PLoS One 
7: e38204.  

Wichels A, Würtz S, Döpke H, Schütt C & Gerdts G (2006) Bacterial diversity in the breadcrumb 
sponge Halichondria panicea (Pallas). FEMS Microbiol. Ecol. 56: 102–118. 

Wilkinson CR (1978) Microbial associations in sponges I. Ecology, physiology and microbial 
populations of coral reef sponges. Mar. Biol. 49: 161–167. 

Wilkinson CR (1983) Net primary productivity in coral reef sponges. Science 219: 410–412. 

Yang J, Sun J, Lee O, Wong Y & Qian P-Y (2011) Phylogenetic diversity and community 
structure of sponge-associated bacteria from mangroves of the Caribbean Sea. Aquat. 
Microb. Ecol. 62: 231–240. 

Zhang R, Thiyagarajan V & Qian P-Y (2008) Evaluation of terminal-restriction fragment length 
polymorphism analysis in contrasting marine environments. FEMS Microbiol. Ecol. 65: 
169–178. 



 

 166 



 

 167 

 



 

 168 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Torre de Hércules (A Coruña) 

L. Pita Galán 

 

 

 

 



Resumen 

 169 

INTRODUCCIÓN 

 

Un mundo simbiótico 

 

El botánico alemán Anton de Bary acuñó el término "simbiosis" como la asociación 

estrecha y persistente entre organismos de distintas especies (De Bary, 1879). 

Tradicionalmente, estas relaciones simbióticas se han clasificado de acuerdo con el 

beneficio/coste para cada uno de los organismos simbiontes: mutualismo si la 

relación beneficia a ambos socios, comensalismo si uno de los organismos resulta 

beneficiado sin causarle perjuicio al otro, y parasitismo si uno de los socios se 

beneficia a costa de la supervivencia o el éxito reproductivo del otro. Estas categorías 

no son cajones estancos, sino un continuo en el que el equilibrio beneficio/coste puede 

variar dependiendo de las condiciones ambientales (Palmer et al. 2008; LaJeunesse et 

al. 2009; Gsell et al. 2013). Por tanto, las relaciones simbióticas son dinámicas y es 

esencial evaluar su variabilidad a lo largo de escalas espacio-temporales, así como su 

susceptibilidad frente a perturbaciones en el ambiente (Kiers et al. 2010). 

Lynn Margulis (1938-2011),  quien postuló el origen simbiótico de las 

mitocondrias y cloroplastos de las células eucariotas, fue también pionera en percibir 

que los microorganismos simbiontes no son sólo agentes causantes de enfermedades, 

sino que pueden influir en la biología, ecología y evolución de los animales y plantas 

(Margulis 1998). En las últimas décadas, y gracias al desarrollo de nuevas técnicas en 

ecología microbiana, tenemos evidencias claras de la ubicuidad y la diversidad de las 

interacciones entre microorganismos y animales. Estos datos prometen revolucionar la 

forma en la que definimos tanto el nicho ecológico como la adaptación y la evolución 

de los animales y microorganismos (McFall-Ngai 2008; McFall-Ngai et al. 2013). El 

término “holobionte” es ahora comúnmente utilizado para referirse a la unidad de 

selección y evolución formada por el animal hospedador y su población 

metabólicamente activa de organimos simbiontes (Mindell 1992; Rohwer et al. 2002). 

Esta tesis doctoral está enfocada al estudio de las comunidades microbianas 

simbiontes en esponjas, un campo que se conoce como “microbiología de esponjas”. 

El estudio del filo Porifera (esponjas) y su asociación con diversas y específicas 

comunidades de microorganismos comenzó en la década de los años 70, cuando 

densas poblaciones de microbios con muy diversas morfologías fueron observadas al 

microscopio electrónico en varias especies diferentes de esponjas (Sarà 1971; Vacelet 

& Donadey 1975; Wilkinson 1978). Desde entonces, el interés por investigar el “quién, 

cómo y por qué” de los microorganismos simbiontes de esponjas ha aumentado de 
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manera exponencial (Thacker & Freeman 2012). Numerosos estudios han demostrado 

que esta simbiosis tiene implicaciones directas en el metabolismo de la esponja, su 

defensa química y, en consecuencia, en la ecología de las esponjas en el ecosistema 

(Taylor et al. 2007). Sin embargo, todavía no están claros los procesos que gobiernan 

esta simbiosis, su respuesta a factores bióticos y abióticos, y su vulnerabilidad a 

perturbaciones en el ambiente.  

 

El hospedador: Las esponjas de mar 

 

Las esponjas - filo Porifera, del latín porus (poros) + ferre (contener) – 

presentan un cuerpo poroso, diseñado para vivir anclado al sustrato mientras filtran el 

agua de mar y si alimentan de las partículas orgánicas contenidas en el agua. El agua 

entra en la esponja a través de unos poros en su superficie (ostia). Su cuerpo contiene 

un sistema de canales y cámaras (coanosoma) donde células especializadas llamadas 

coanocitos facilitan el flujo y filtran las partículas del agua. El agua abandona la 

esponja por uno o más poros exhalantes (oscula). Las partículas filtradas pasan a la 

matriz interna de la esponja (mesohilo) y serán principalmente digeridas por unas 

células ameboides denominadas “arqueocitos”. La capa más superficial de la esponja 

se denomina pinacodermo, y la parte interna, que incluye el coanosoma y el mesohilo, 

se denomina endodermo. Los simbiontes microbianos normalmente se encuentran 

extracelularmente en el mesohilo, aunque algunas especies de esponjas contienen 

también simbiontes intracelulares. 

Las esponjas son uno de los filos más antiguos de los Metazoos. Fósiles del 

Precámbrico sugieren su aparición hace unos 600 millones de años (Li et al. 1998; 

Love et al. 2009). El hecho de que este filo se encuentre en la base del árbol 

filogenético de los Metazoos lo ha convertido en modelos para identificar los eventos 

evolutivos que dieron lugar a la multicelularidad y la evolución de los animales (e.g., 

Srivastava et al. 2010; Leys & Riesgo 2012). Las esponjas de mar han colonizado 

todos los océanos, desde las aguas superficiales hasta las más profundas. El número 

de taxones descritos supera ya las 8500 especies y se espera que este número se 

incremente a medida que se vaya resolviendo la filogenia de muchos grupos (Van 

Soest et al. 2012). Las esponjas de mar representan además un componente 

determinante del ecosistema debido a su diversidad, abundancia e influencia en los 

ciclos de nutrientes (Diaz & Rutzler 2001; De Goeij et al. 2013; Fiore et al. 2013). 

Además, las esponjas producen compuestos químicos para evitar la 

competición, la depredación y el asentamiento de epibiontes (Pawlik et al. 1995; 

Pawlik et al. 2007; Haber et al. 2011). La actividad citotóxica y antimicrobiana de estos 
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compuestos hacen de las esponjas el taxón más rico en nuevos metabolitos 

secundarios con potencial commercial para aplicaciones farmacéuticas e industriales, 

especialmente para el desarrollo de medicamentos antitumorales (Faulkner 2001; 

Erwin et al. 2010; Paul et al. 2011).  

La mayoría de las características y funciones que hacen relevante a las 

esponjas derivan de su asociación con una abundante y compleja microbiota (Taylor et 

al. 2007; Thacker & Freeman 2012; Webster & Taylor 2012). La actividad metabólica 

de los microorganismos simbiontes expande el metabolismo de la esponja gracias a 

procesos como la fotosíntesis, la fijación de nitrógeno o la oxidación del amonio (Weisz 

et al. 2007; Erwin & Thacker 2008b; Fiore et al. 2010). Además, los simbiontes pueden 

participar activamente en la defensa química de la esponja y, por tanto, en la síntesis 

de los metabolitos bioactivos detectados en esponjas (Esteves et al. 2013; Haber & 

Ilan 2013). Presumiblemente, los microorganismos se benefician de vivir en un 

ambiente protegido y rico en nutrientes como es el mesohilo de la esponja y, por tanto, 

la simbiosis se considera mutualista. Sin embargo, las evidencias empíricas son 

todavía escasas (Taylor et al. 2007). Así, desarrollar nuestro conocimiento sobre la 

persistencia y resistencia de las asociaciones esponja-microorganismos es crucial 

desde un punto de vista biológico, ecológico y biotecnológico.  

 

El húesped: Microorganismos simbiontes de esponjas 

   

La sorprendente densidad y diversidad microbiana en esponjas fue revelada por 

primera vez gracias a la microscopía electrónica de transmisión (Sarà 1971; Vacelet & 

Donadey 1975). Más adelante, los estudios moleculares confirmaron que la mayoría 

de las esponjas albergan una compleja comunidad microbiana que incluye 

principalmente Bacteria – 17 filos descritos y 12 filos candidatos – y Archaea, pero 

también hongos y otros eucariotas (Schmitt et al. 2012; Webster & Taylor 2012). Es 

más, en un sólo especimen de esponja se pueden encontrar cientos de taxones 

bacterianos diferentes (Webster et al. 2010; Lee et al. 2011). Los filos bacterianos 

dominantes son: Proteobacteria (Clase Alpha-, Delta- y Gammaproteobacteria), 

Chloroflexi, Actinobacteria, Acidobacteria y Nitrospira (Webster & Taylor 2012). 

Además, muchas especies albergan simbiontes fotoautótrofos del filo Cyanobacteria 

que alcanzan altas densidades en el pinacodermo de esas esponjas (Thacker 2005; 

Erwin & Thacker 2007; Erwin et al. 2012b). Las arqueobacterias (Archaea) asociadas a 

las esponjas marinas pertenecen principalmente al filo Thaumarchaeota, antes 

denominado “Marine group I Crenarchaeota” (Steger et al. 2008; Turque et al. 2010; 

Radax et al. 2012). Además, la mayor parte de la comunidad microbiana es 
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metabólicamente activa en el interior de la esponja (Mohamed et al. 2008a; Kamke et 

al. 2010; Moitinho-Silva et al. 2013).  

Un amplio estudio publicado recientemente muestra que las esponjas 

contienen una comunidad basal pequeña, formada por definición por los filotipos 

bacterianos presentes en al menos el 70% de las esponjas analizadas en el estudio 

(Schmitt et al. 2012). Aún así, los taxones bacterianos presentes en una esponja en 

particular pueden estar más relacionados con bacterias de esponjas filogenética y 

geográficamente distantes, y no aparecer o ser raros en otros ambientes (i.e., el agua 

circundante o los sedimentos) (Hentschel et al. 2002; Taylor et al. 2012). Este grado 

de especificidad ha dado lugar a la definición de clusters específicos de esponjas. 

Cabe destacar también que algunas de las más ubicuas bacterias asociadas a 

esponjas están filogenéticamente relacionadas con bacterias simbiontes de corales y 

forman los denominados “clusters esponja-coral” bacterianos (Simister et al. 2012a).  

 La especificidad mencionada anteriormente podría estar relacionada con la 

manera en que las comunidades simbiontes se establecen en las esponjas. Está 

generalmente aceptado que la transmisión vertical (de los padres a su progenie) y 

adquisición horizontal (desde el agua circundante) se combinan y hacen posible el 

mantenimiento de la simbiosis (Taylor et al. 2007; Hentschel et al. 2012). La 

transmisión vertical ha sido documentada a través de microscopía electrónica de 

transmisión y estudios moleculares que confirman la presencia de bacterias en las 

larvas y juveniles de distintas especies de esponjas (Ereskovsky et al. 2004; Schmitt et 

al. 2007; Lee et al. 2009). Sin embargo, algunas de las bacterias que se consideraban 

específicas de esponjas han sido encontradas en el agua de mar, aunque en muy baja 

densidad (Webster et al. 2010; Taylor et al. 2012), lo que sugiere que las esponjas 

podrían potencialmente adquirir sus simbiontes del agua circundante, aunque el 

mecanismo exacto se desconoce todavía.  

 Tradicionalmente, las esponjas se han divido en dos grupos de acuerdo a la 

distinta abundancia de microorganismos en el mesohilo: las esponjas con alta 

densidad de simbiontes (esponjas HMA) y las de baja densidad de simbiontes 

(esponjas LMA), (Vacelet & Donadey 1977a). Sin embargo, esta división también se 

corresponde con diferencias en la estructura de la comunidad simbionte: las 

comunidades de esponjas HMA son específicas del hospedador mientras que las 

comunidades en esponjas LMA son más similares a las encontradas en el ambiente 

(Bjork et al. 2013; Moitinho-Silva et al. 2013). Y es más, la abundancia de 

microorganimos puede influir la cantidad de agua filtrada por la esponja, por lo que 

esta clasificación se relaciona también con dos estrategias fisiológicas distintas. Esto 
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sugiere que la presencia de simbiontes afecta la estrategia evolutiva de las esponjas 

que los albergan (Weisz et al. 2007).  

 Uno de los principales retos de la investigación en microbiogía de esponjas 

radica en que no se trata de un sistema formado por un huésped-un hospedador si no 

que toda una comunidad está involucrada (Hentschel et al. 2012), y está formada por 

filotipos que son diversos pero específicos del hospedador. Hasta ahora, nuestro 

conocimiento acerca de la microbiota de esponjas proviene principalmente de estudios 

sobre muestras recogidas en un punto concreto en el tiempo y el espacio, por lo que 

desconocemos el potencial dinamismo de la interacción. En concreto, sabemos 

relativamente poco de qué procesos gobiernan las comunidades simbiontes en 

gradientes espacio-temporales y cómo responden a perturbaciones en su ambiente. 

 

Procesos que pueden afectar la estructura de la comunidad simbionte 

 

La biogeografía microbiana evalúa los patrones en la estructura de las comunidades 

microbianas en el tiempo y el espacio. Estos patrones pueden emerger principalmente 

por dos procesos: limitación de la dispersión y selección (Martiny et al. 2006; Fierer 

2008; Hanson et al. 2012). Las barreras a la dispersión limitan la conectividad entre 

poblaciones o localidades distantes, mientras que las condiciones locales del ambiente 

seleccionan a los microorganismos mejor adaptados. En el océano, la dispersión de 

microorganismos se considera pasiva y restringida por las corrientes y estructuras 

hidrogeográficas (Schauer et al. 2000; Galand et al. 2009); mientras que las 

condiciones ambientales que pueden estructurar las comunidades microbianas (por 

ej., salinidad, temperatura o concentración de nutrientes) pueden también seleccionar 

la proliferación de ciertos microorganismos y no otros en un momento dado y en una 

localidad en concreto (Schauer et al. 2003; Flo et al. 2011). 

 La estructura que presentan las comunidades microbianas en esponjas de mar 

no responde puramente al azar; análisis a nivel de comunidad revelan una marcada 

especificidad respecto a la especie de esponja (Taylor et al. 2007; Erwin et al. 2012a). 

Sin embargo, desconocemos la dinámica de estas comunidades específicas a lo largo 

de escalas espaciotemporales. Diversos estudios sugieren que la comunidad 

simbionte en esponjas de mar es estable a lo largo de escalas temporales y 

geográficas (ej., Taylor et al. 2003; Webster et al. 2004; White et al. 2012). Pero 

también otros trabajos detectaron diferenciación significativa en las comunidades de 

bacterias dependiendo de la localidad o la época de muestreo (ej., Wichels et al. 2006; 

Lee et al. 2009; Anderson et al. 2010). Además, la estructura de la comunidad 

simbionte puede variar de acuerdo con la especie de esponja estudiada, el parámetro 
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ambiental considerado y/o la escala del studio. También el plan de muestreo o el 

hecho de comparar esponjas filogenéticamente muy diferentes pueden distorsionar los 

patrones espacio-temporales y confundir los procesos involucrados. Por todo esto, 

urge describir cómo los factores ambientales, geográficos y específicos de la esponja 

interaccionan para conformar la comunidad de simbiontes a lo largo de escalas 

ecológicas. Conocer la variabilidad natural de esta simbiosis nos servirá también de 

punto de referencia para detectar la persistencia y resiliencia de la simbiosis frente a 

futuras perturbaciones.  

 Nuestra hipótesis es que los procesos que afectan a las comunidades 

microbianas del plancton son aplicables a las comunidades simbiontes. Condiciones 

locales pueden generar variabilidad intraespecífica de las comunidades asociadas a 

esponjas en distintas localidades, o pueden incluso homogeneizar las comunidades 

bacterianas en esponjas de especies diferentes pero que ocurren en simpatría. 

Finalmente, los factores relacionados con la especie de hospedador (tales como las 

condiciones internas en el mesohilo de la esponja, el estado fisiológico de la misma o 

su hábitat de preferencia) pueden también dirigir la composición y la estructura de las 

comunidades simbiontes a lo largo de escalas temporales y espaciales. 

.  

Respuesta de la simbiosis esponja-comunidad microbiana frente a 

perturbaciones ambientales 

 

Los organismos marinos están y estarán directamente afectados por los incrementos 

de temperatura, los cambios en la circulación oceánica y una cada vez más marcada 

estacionalidad de las condiciones ambientales (Harvell et al. 2002; Calvo et al. 2011; 

Crisci et al. 2011). Estas condiciones ligadas al cambio climático se han relacionado 

con enfermedades y mortalidades de esponjas, un fenómeno cada vez más común en 

océanos de todo el mundo (Webster 2007; Coma et al. 2009). En un escenario de 

aumento de la densidad de población humana y de las perturbaciones en las 

condiciones ambientales, cada vez más drásticas y repetidas, surge la necesidad de 

evaluar la respuesta de la simbiosis esponja-comunidad microbiana frente a estos 

cambios para una correcta gestión de esta biodiversidad y su preservación como 

recurso.  

Hasta hoy, pocos estudios han descrito cómo las comunidades asociadas a 

esponjas responden al estrés ambiental. En el caso de las comunidades microbianas 

de corales, se ha propuesto que éstas pueden responder dinámicamente a variaciones 

en su ambiente, de manera que el holobionte se adapta rápidamente (en días o 
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semanas) a las nuevas condiciones (“The coral probiotic hypothesis”, [Reshef et al. 

2006a]). En cambio, en las comunidades microbianas de esponjas, los resultados 

derivados de experimentos en acuario con distintas condiciones de estrés (por ej., alta 

temperatura, presencia de contaminantes, incremento de la concentración de 

nutrientes) muestran que las alteraciones en la estructura de la comunidad simbionte 

ocurren simultáneamente al empeoramiento de la salud de la esponja hospedadora 

(Webster et al. 2001; Simister et al. 2012c). En regiones templadas, se ha demostrado 

que la comunidad simbionte puede cambiar en respuesta a altas temperaturas 

(Lemoine et al. 2007), aunque se mantiene estable bajo estrés por reducción de la 

concentración de partículas en el agua (Friedrich et al. 2001). Se necesitan más 

estudios para investigar el efecto de alteraciones en las condiciones ambientales sobre 

las bacterias asociadas a esponjas. 

 

Nuestro modelo: las comunidades bacterianas en esponjas del género 

Ircinia 

 

El género Ircinia (Dyctioceratida: Irciniidae) exhibe una alta riqueza de especies y se 

encuentra ampliamente distribuido en zonas troplicales y templadas. Distintas 

especies de Ircinia pueden vivir en simpatría y alcanzar altas densidades en los fondos 

rocosos en los que habitan (Parra-Velandia & Zea 2003; Turon et al. 2013). Además, 

se ha demostrado que las especies de este género producen un amplio espectro de 

metabolitos secundarios con actividad citotóxica y antimicrobiana (Duque et al. 2001; 

Hammami et al. 2010) que, al menos en algunos casos, se ha demostrado que son 

sintetizados por sus simbiontes (Esteves et al. 2013).  

En esta tesis hemos estudiado cinco especies distintas: I. felix e I. strobilina de 

Bahamas e I. fasciculata, I. variabilis e I. oros del Mar Mediterráneo. Estas especies 

son esponjas HMA que albergan complejas comunidades simbióticas, en ellas 

podemos encontrar bacterias de los filos Proteobacteria, Acidobacteria, Bacteroidetes, 

Nitrospira y también Chloroflexi, Firmicutes, Poribacteria y Actinobacteria (Schmitt et 

al. 2007; Mohamed et al. 2008c; Yang et al. 2011; Erwin et al. 2012a). Además, las 

esponjas I. felix, I. fasciculata e I. variabilis albergan densas poblaciones de 

fotosimbiontes (Cyanobacteria) que están ausentes en las comunidades asociadas a I. 

oros e I. strobilina (Schmitt et a. 2007; Mohamed et al. 2008c, Erwin et al. 2012a). Y, 

como en otras esponjas HMA, los adultos pueden transmitir simbiontes a su 

descendencia (Schmitt et al. 2007; Ereskovsky & Tokina 2004).   
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Dentro de cada una de las regiones estudiadas en esta tesis (Las Bahamas y 

Mediterráno Occidental), estas especies de Ircinia se pueden encontrar viviendo en 

simpatría. Por ello, ofrecen la oportunidad de plantear un diseño experimental que 

permita una mejor discriminación entre la influencia del ambiente y del hospedador 

sobre las comunidades de bacterias simbiontes, ya que estaremos investigando  

comunidades simbióticas en esponjas filogenéticamente próximas y que comparten las 

mismas condiciones ambientales. Utilizando este diseño, Erwin et al. (2012a) 

describieron que las comunidades simbiontes en las tres especies de Ircinia del 

Mediterráneo presentaban bacterias relacionadas con otras que habían sido 

detectadas también en distintas especies de esponjas o en corales. Sin embargo, a 

nivel de comunidad, cada especie de esponja alberga una comunidad bacteriana 

específica, lo que los autores denominaron “cóctel específico de generalistas” 

(“specific mix of generalists”). En el caso de las especies de Las Bahamas, un estudio 

reciente demostró que I. strobilina alberga comunidades distintas de las de otras 

esponjas filogenéticamente distantes pero que ocurren en simpatría en ciertas 

localidades (Yang et al. 2011); sin embargo, los estudios en I. felix e I. strobilina 

describen sus comunidades de bacterias usando técnicas diferentes (Schmitt et al. 

2007; Mohamed et al. 2008c; Yang et al. 2011), lo que dificulta determinar el nivel de 

especificidad en la simbiosis de las especies de Ircinia en Las Bahamas. Aunque la 

diversidad bacteriana asociada a algunas de las especies de Ircinia ha sido descrita 

anteriormente, se desconoce si el patrón de especificidad que presentan las 

comunidades asociadas a esponjas del género Ircinia se mantiene a lo largo de una 

escala espacial y temporal o bajo condiciones de estrés.  

 

OBJETIVOS 

 

El principal objetivo de esta tesis es identificar la especificidad y persistencia de las 

comunidades simbiontes asociadas con esponjas HMA y su respuesta a diferentes 

condiciones ambientales. Para ello, hemos usado como modelo esponjas simpátricas 

del género Ircinia. Así, podremos distinguir entre el efecto de las condiciones 

ambientales y de la especie de hospedador considerada sobre la estructura de la 

comunidad simbiótica. Además, podremos definir una línea de base para identificar 

alteraciones en la comunidad simbionte o predecir bajo qué condiciones la simbiosis 

se puede ver comprometida, en especial en un escenario de cambio climático. 

 En concreto, queremos evaluar el efecto de las corrientes y la heterogeneidad 

espacial del ambiente sobre las comunidades bacterianas asociadas con esponjas que 

abundan en Las Bahamas (Ircinia felix e Ircinia strobilina) a escalas de cientos de 
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kilómetros, y confirmar si el mismo patrón es también válido para las especies 

mediterráneas (Ircinia fasciculata, Ircinia variabilis e Ircinia oros). Dado que el 

Mediterráneo Occidental se caracteriza por una marcada estacionalidad en las 

condiciones del agua (es decir, temperatura, irradiancia, nivel de nutrientes), también 

hemos querido investigar la dinámica temporal que potencialmente pueden sufrir sus 

comunidades bacterianas dependiendo de la estación del año. Finalmente, 

considerando las recientes mortalidades en masa que han sufrido las esponjas y otros 

invertebrados filtradores en el Mediterráneo en relación con el estrés térmico, hemos 

estudiado si cambios anormales en el ambiente (incremento de la temperatura o 

disminución de la densidad de partículas en el agua) pueden influir en la composición 

de las comunidades simbiontes y comprometer la supervivencia del holobionte. La 

caracterización y monitoreo de las comunidades bacterianas simbiontes ha sido 

evaluada a través de microscopía electrónica de transmisión y estudios moleculares 

de secuencias del gen ARN ribosomal 16S (librerías de clones y huella molecular). La 

técnica de huella molecular utilizada ha sido T-RFLP (polimorfismo de la longitud de 

los fragmentos de restricción terminales) y ha hecho posible el procesamiento 

estandarizado de muestras replicadas para su análisis estadístico.  

 Para cumplir con el objetivo principal, esta tesis ha sido estructurada en 4 

capítulos que responden a cuatro objetivos específicos. Cada capítulo ha sido escrito 

de manera independiente con su propia introducción, metodología, resultados y 

discusión. Pero todos están interconectados y pueden ocasionalmente contener 

referencias cruzadas a otros capítulos. 

El capítulo 1 evalúa la especificidad del hospedador y la variabilidad espacial (a 

una escala que va de los 80 a los 400 km) de las comunidades bacterianas asociadas 

con Ircinia felix e I. strobilina en Las Bahamas. Para esto, muestreamos individuos de 

I. strobilina  y dos morfotipos distintos de I. felix (oscuro y claro), así como el agua 

circundante, en distintas localidades de Bahamas. Las comunidades bacterianas 

fueron caracterizadas mediante microscopía electrónica y el análisis de T-RFLP y 

librerías de clones del gen ARNr 16S bacteriano. También secuenciamos un 

fragmento del gen mitocondrial citocromo oxidasa I (COI) para determinal la identidad 

y las relaciones filogenéticas entre las especies hospedadoras.  

El capítulo 2 investiga si el patrón de especificidad observado en las comunidades 

bacterianas asociadas a esponjas Ircinia del Mediterráneo (Ircinia fasciculata, I. 

variabilis e I. oros) se mantiene a una escala espacial de cientos de kilómetros, con un 

diseño comparable al empleado para estudiar la variabilidad espacial en las especies 

Ircinia de Bahamas. Para ello, usamos el análisis de T-RFLP de del gen ARNr 16S 

bacteriano para describir las comunidades bacterianas en individuos de I. fasciculata, 
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I. variabilis e I. oros muestreados en seis localidades del Mediterráneo Occidental, 

afectadas por distintas corrientes y bajo distinta presión antropogénica. 

El capítulo 3 busca estudiar cómo las comunidades bacterianas responden a 

cambios en la estacionalidad de las condiciones del agua (temperatura e irradiancia) 

para distinguir entre bacterias asociadas permanente o transitoriamente con su 

esponja hospedadora. Para alcanzar este objetivo, se monitorearon las comunidades 

bacterianas de individuos de cada especie de Ircinia del Mediterráno durante un año y 

medio, cada tres meses, gracias a análisis de T-RFLP y de las librerías de clones del 

gen bacteriano ARNr 16S. Además, se midió la concentración de pigmentos (clorofila 

a) en los tejidos de las esponjas ricas en fotosimbiontes (I. fasciculata e I. variabilis). 

En el capítulo 4 quisimos detectar cambios en las comunidades simbiontes en 

respuesta a condiciones anormales de temperatura y estratificación de la columna de 

agua (lo que conlleva una disminución de la concentración de partículas de las que la 

esponja se alimenta), similares a las observadas en veranos “anormales” que dieron 

lugar a mortalidades en masa en poblaciones de esponjas. Para imitar estas 

condiciones, se llevaron acabo experimentos en condiciones controladas de acuario 

para evalúar el efecto de cuatro tratamientos distintos (control, incremento de 

temperatura, reducción en la cantidad de partículas en el agua, y combinación de los 

estrés de temperatura y reducción de alimento) en las comunidades bacterianas 

asociadas a I. fasciculata e I. oros. Las comunidades bacterianos fueron 

caracterizadas a través de análisis de T-RFLP de secuencias del gen bacteriano ARNr 

16S y de microscopía electrónica. Además, en I. fasciculata calculamos el contenido 

en clorofila a como estima de la abundancia de las poblaciones simbiontes. 

 

RESULTADOS Y DISCUSIÓN 

 

Patrones de diversidad de las comunidades bacterianas en esponjas del género 

Ircinia 

 

En el capítulo 1 estudiamos la especificidad y biogeografía de las comunidades 

bacterianas asociadas con Ircinia strobilina y dos morfotipos de I. felix, que se 

encuentran a menudo viviendo en simpatría. Muestreamos las esponjas en arrecifes 

de Las Bahamas, localizados en islas con distinta densidad de población humana y 

afectadas por distintas corrientes oceanográficas (Colin 1995), en un rango de hasta 

400 km de distancia. Los análisis de T-RFLP y las librerías de clones de secuencias 

del gen ARNr 16S confirmaron que cada una de las especies de Ircinia alberga una 

comunidad bacteriana específica, claramente diferenciada de la comunidad en el 
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bacterioplancton, y que las comunidades simbiontes de ambos morfotipos de I. felix 

(claro y oscuro) son similares entre sí y distintas de la comunidad en I. strobilina. Los 

análisis filogenéticos de las secuencias bacterianas confirmaron que estas esponjas 

presentan un patrón similar al observado en las especies del Mediterráneo, con 

comunidades simbiontes específicas para cada especie pero compuestas por 

bacterias similares a las encontradas en otras especies de esponjas y en corales 

(“specific mix of generalists” o “cóctel específico de generalistas”). Además, los perfiles 

de T-RFLP revelaron que dentro de cada especie de esponja, la comunidad bacteriana 

se mantenía estable, sin importar la localidad donde fueron muestreadas. Estos 

resultados muestran un alto grado de fidelidad del simbionte hacia su hospedador a lo 

largo de una escala espacial de hasta 400 km. 

A continuación, quisimos testar si el mismo patrón de estabilidad espacial se 

cumplía en las comunidades bacterianas asociadas con las esponjas Ircinia del 

Mediterráneo (capítulo 2). Los análisis multivariantes de los perfiles de T-RFLP 

mostraron que las comunidades bacterianas asociadas con esponjas Ircinia del 

Mediterráneo estaban estructuradas de acuerdo a la especie considerada y se 

mantenían estables a lo largo de todas las localidades de muestreo, 

independientemente de la distancia considerada (80-800 km). Esta especificidad y 

estabilidad espacial fue observada tanto en los miembros dominantes de la comunidad 

simbiontes como en los raros (es decir, aquéllos presentes a baja densidad, picos de 

T-RF con < 1% abundancia relativa). Aunque se detectaron diferencias significativas 

entre algunas localidades en comunidades bacterianas de I. variabilis, no existe 

correlación entre la distancia geográfica y la similaridad de las comunidades para 

ninguna especie de esponja.  

Ambos capítulos (capítulo 1 y capítulo 2) demuestran la persistencia de las 

comunidades asociadas a esponjas del género Ircinia, en acuerdo con lo encontrado 

en otras especies de esponjas a escalas espaciales similares (Webster et al. 2004; 

Wichels et al. 2006; Thiel et al. 2007a). Además, Montalvo & Hill (2011), que también 

realizaron un estudio con esponjas congenéricas (Xestospongia muta vs X. 

testudinaria), encontraron que sus comunidades simbiontes eran muy similares, a 

pesar de que cada especie habita océanos diferentes (Atlántico e Indopacífico, 

respectivamente). También Reveillaued et al. (2014) observaron estabilidad espacial 

en las bacterias asociadas con esponjas Hexadella spp. a lo largo de gradientes 

batimétricos (aguas someras vs aguas profundas) e independientemente de la 

localidad muestreada. La estabilidad espacial de las comunidades simbiontes en 

esponjas HMA filogenéticamente cercanas confirma que factores específicos de las 
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condiciones ambientales locales y la limitación de la dispersión tienen poco efecto 

sobre las bacterias asociadas a esponjas de mar. 

Dado que las condiciones de la columna de agua presentan una marcada 

estacionalidad en el Mediterráneo en términos de temperatura, irradiancia y 

disponibilidad de nutrientes, en el capítulo 3 realizamos un monitoreo de los 

simbiontes bacterianos en individuos de las tres esponjas simpátricas (I. fasciculata, I. 

variabilis e I. oros) a lo largo de 1,5 años en una localidad del noroeste del mar 

Mediterráneo, muestreando los mismos individuos cada 3 meses. Los simbiontes de 

Ircinia spp. mostraron una notable estabilidad a lo largo de todo el periodo de 

monitoreo, a pesar de fluctuaciones en las condiciones de temperatura (hasta 12OC 

más en verano que en invierno) e irradiancia (aproximadamente 5 veces mayor en 

verano que en invierno, con unas 6 h más de luz en verano). La estabilidad estacional 

observada en este trabajo concuerda con la encontrada en otros estudios (Thacker & 

Freeman 2012; Lee et al. 2011; Taylor et al. 2007), y contrasta con los estacionalidad 

significativa en la estructura y composición de las comunidades bacterianas en el agua 

circundante (Schauer et al. 2000; 2003; Pinhassi et al. 2006; capítulo 3). La marcada 

diferencia en los patrones temporales de las comunidades bacterianas asociadas a 

esponjas vs las comunidades del bacterioplancton pone en evidencia que los factores 

ecológicos que estructuran las comunidades bacterianas de vida libre son distintos de 

los que afectan a las que son simbiontes de esponjas.  

Una alta dispersión de la esponja hospedadora podría explicar en parte la 

estabilidad espacial en la estructura de la comunidad simbiótica, si la mayoría de los 

simbiontes son transmitidos de los adultos a su descendencia (Ereskovsky et al. 2004; 

Schmitt et al. 2007; Lee et al. 2009). Sin embargo, considerando la demostrada falta 

de correlación entre distancia geográfica y disimilaridad de las comunidades 

bacterianas (Schmitt et al. 2012; capítulos 1 y 2) y la posible transmisión horizonal de 

los simbiontes (Taylor et al. 2007; 2012), parece que no sólo la dispersión del 

hospedador justifica la alta persitencia de las comunidades bacterianas asociadas a 

esponjas. En cambio, nosotros proponemos que la homeostasis del animal y la 

actividad de la comunidad simbionte contribuyen al mantenimiento de unas 

condiciones estables en el mesohilo de la esponja, tamponando las fluctuaciones en el 

ambiente externo y manteniendo así la composición y estructura de la comunidad de 

simbiontes. 

La afiliación filogenética de las bacterias dominantes en las Ircinia spp. de 

Bahamas (capítulo 1) y del Mediterráneo (capítulo 3), derivada de las librerías de 

clones de secuencias del gen ARNr 16S, nos aporta información acerca de su 

capacidad metabólica; tales como fotosíntesis (Cyanobacteria), oxidación del nitrito 
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(Nitrospira) or reducción del sulfato (Desulfovibrionales). Estos procesos metabólicos 

ocurren exclusivamente en procariotas y se cree que el aprovechamiento por parte del 

hospedador de los compuestos y nutrientes derivados de estas rutas le confieren una 

ventaja evolutiva de la cual carecería si la simbiosis no existiera. Se cree que el 

mantenimiento de esas funciones metabólicas y las consecuencias ecológicas 

derivadas de ellas podrían también ser claves para los mecanismos de selección que 

establecen y mantienen gremios específicos en la comunidad bacteriana asociada a 

las esponjas (Yang et al. 2011). 

 A pesar de la estabilidad general, también detectamos cierta variabilidad 

intraspecífica en las comunidades bacterianas simbiontes (aunque siempre menor que 

la variabilidad interespecífica). En el estudio espacial del Mar Mediterráneo (capítulo 

2), observamos ciertas variaciones significativas en la abundancia relativa de las 

bacterias dominantes, aunque su dominancia frente a otras bacterias se mantuvo. En 

cambio, en el estudio temporal (capítulo 3), observamos que las comunidades de los 

meses cálidos eran más variables, con filotipos de bacterias que estaban sólo 

presentes en esos meses y no eran detectados en las librerías de clones el resto de 

estaciones del año, pero estas fluctuaciones se limitaron a miembros raros de la 

comunidad bacteriana (presentes en poca abundancia o sólo en una muestra).  No 

está claro si estos resultados reflejan la adaptación de simbiontes o realmente se trata 

de bacterias no simbiontes que sirven de comida para la esponja o se encuentran de 

manera transitoria en el agua de sus canales acuíferos (Pile et al. 1996; Webster et al. 

2002; Lee et al. 2006).  

 Resulta particularmente interesante que algunas bacterias fueron detectadas, a 

lo largo de todas las estaciones, asociadas a algunos individuos pero no a otros dentro 

de una misma especie de esponja (capítulo 3). La persistencia temporal de estos 

taxones sugiere que son simbiontes verdaderos. La presencia de simbiontes que 

ocurren esporádicamente dentro de una especie de esponja sugiere cierta plasticidad 

en el establecimiento de la simbiosis. Las implicaciones de esta variabilidad en la 

ecología del hospedador y la evolución de las simbiosis se desconocen, pero 

potencialmente la actividad de esos simbiontes puede ser ventajosa en determinadas 

condiciones ambientales. 

 Cabe destacar que I. variabilis fue la especie, de las tres que habitan el 

Mediterráneo, que presentó más variabilidad intraespecífica en su comunidad de 

bacterias (capítulo 2). Tal y como sugirieron Lee et al. (2009a) diferentes patrones en 

la estructura de la comunidad simbionte podrían emerger en relación con factores 

específicos de cada especie. En el caso de I. variabilis, podrían ser su mayor 

plasticidad (Turon et al. 2013) o su estrategia reproductiva. En todo caso, 
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características específicas pueden influir en la variabilidad de la asociación esponja-

comunidad bacteriana. Sería interesante realizar más estudios en otras especies de 

esponjas filogenéticamente próximas y que ocurren en simpatría para definir 

características específicas concretas que pueden potencialmente favorecer una mayor 

variabilidad en la composición y estructura de la comunidad simbionte. 

El capítulo 3 muestra que factores específicos de la especie de esponjas, 

como su hábitat de preferencia, también pueden afectar a la función de la comunidad 

simbionte. En concreto, la actividad fotosimbiótica (evaluada en términos de contenido 

en clorofila a) fue mayor en I. fasciculata que en I. variabilis. Además, los niveles de 

clorofila a presentaron una marcada estacionalidad en I. fasciculata, con valores más 

bajos en los meses de mayor irradiancia y más horas de luz (Junio y Septiembre). En 

cambio, I. variabilis presentó niveles más uniformes de clorofila a, a excepción de un 

descenso significativo en Septiembre. Las poblaciones de fotosimbiontes en ambas 

especies de esponjas están formadas por Candidatus Synechococcus spongiarum, 

pero las poblaciones respondieron de manera diferente a la estacionalidad en las 

condiciones del agua, en concordancia con los distintos niveles de luz del hábitat de 

preferencia del hospedador, ya que I. variabilis se encuentra en hábitats más sombríos 

y crípticos, mientras que I. fasciculata domina en ambientes expuestos y con altos 

niveles de luz (Erwin et al. 2012c; Turon et al. 2013). Por tanto, aunque los factores 

que determinan la comunidad microbiana difieren entre la esponja y el agua de mar o 

los sedimentos (por ej., la concentración de nutrientes), otras limitaciones fisiológicas 

como la luz pueden ser compartidas entre las bacterias de vida libre y las simbiontes. 

Sin embargo, el efecto en la comunidad simbionte va a a estar marcado por la especie 

de hospedador considerada.  

 

Vulnerabilidad de las comunidades bacterianas simbiontes de esponjas a 

perturbaciones en su ambiente 

 

En el capítulo 4, realizamos experimentos de acuario para testar en las comunidades 

bacterianas simbiontes el efecto de condiciones de estrés en temperatura y reducción 

de disponibilidad de alimento semejantes a las que se dieron en el Mediterráneo 

Occidental en veranos con picos de temperatura anormalmente altos durante días-

semanas y que, como consecuencia, aumentaron también la duración de 

estratificación de la columna de agua. Estos veranos con condiciones atípicas 

coincidieron con episodios de mortalidades en masa de distintas especies de 

invertebrados filtradores (Coma et al. 2009; Garrabou et al. 2009), entre los cuales se 

encontraba I. fasciculata (Cebrian et al. 2011).  
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A pesar de que sometimos a los individuos de I. fasciculata e I. oros a distintos 

tratamientos (control, temperatura elevada, agua filtrada y combinación de temperatura 

elevada y agua filtrada) durante 3 semanas, los perfiles de T-RFLP de secuencias del 

gen ARNr 16S bacteriano fueron estables, demostrando que no existían diferencias 

significativas en la comunidad bacteriana simbionte entre los distintos tratamientos 

testados, para ninguna de las dos especies. Estos resultados nos llevan a concluir que 

las mortalidades observadas no se relacionan directamente con un declive en la 

composición de la comunidad simbionte en estas esponjas.  

Aunque no podemos descartar que experimentos a más largo plazo (meses) 

puedan resultar en un efecto significativo, la persistencia encontrada en este estudio 

es todavía sorprendente. La temperatura testada (25OC) representa 3OC más que la 

temperatura media en verano del área donde las esponjas del estudio fueron 

recolectadas (capítulo 3), coincidiendo con máximos de temperatura en los años de 

verano anómalo (Cebrian et al. 2011) y representando un incremento de > 11OC 

respecto a las condiciones ambientales en el momento de recolección. Además, la 

duración de los experimentos (3 semanas tras la aclimatación) concuerda con la 

duración de los picos de temperatura de esos años de mortalidades en masa en I. 

fasciculata y otros invertebrados (Cebrian et al. 2011).  

Los estudios en microbiología de esponjas enfocadas a resolver la respuesta 

de las comunidades simbiontes al estrés son escasos, pero sugieren que la asociación 

esponja-comunidad bacteriana es altamente persistente hasta que un determinado 

umbral es sobrepasado. En la esponja Rhopaloeides odorabile, que habita en la Gran 

Barrera de Coral, la comunidad bacteriana cambia únicamente cuando el tejido de la 

esponja es necrótico, lo cual ocurrió cuando las esponjas fueron expuestas a 

temperaturas 2-4OC por encima de la temperatura media del área de estudio (Webster 

et al. 2008a; Simister et al. 2012b; 2012c). Estos estudios ejemplifican como, pasada 

una temperatura umbral, no sólo la comunidad bacteriana cambia sino que todo el 

holobionte colapsa. 

De acuerdo con la hipótesis probiótica en corales (“coral probiotic hypothesis”), 

las comunidades bacterianas asociadas a corales cambian rápidamente (en cuestión 

de días o semanas) en respuesta a cambios en el ambiente, lo que proporciona una 

respuesta adaptativa del holobionte para sobrevivir a esas perturbaciones. Pero ése 

no parece ser el caso en las esponjas. La compleja diversidad de las comunidades 

bacterianas en esponjas, comparable a la que se encuentra en el intestino humano 

(Hentschel et al. 2012), puede proporcionar robustez frente a las perturbaciones 

naturales (por ej., la invasión de microbios oportunistas que proliferan en los meses 

cálidos). Sin embargo, en los estudios de estrés térmico en R. odorabile, la comunidad 
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simbiontes se ve afectada cuando todo el holobionte colapsa (Webster et al. 2008a; 

Simister et al. 2012b; 2012c). En un escenario de creciente temperatura del agua, 

acidificación y aumento de la sedimentación (Coma et al. 2009; Calvo et al. 2011; 

Crisci et al. 2011), la fiel y estable simbiosis de la esponja y su comunidad bacteriana 

puede ser incapaz de responder lo suficientemente rápido como para sobrellevar las 

repetidas perturbaciones y su supervivencia se puede ver comprometida (Webster et 

al. 2008a; Simister et al. 2012b; Fan et al. 2013).   

En conclusión, hemos investigado las comunidades bacterianas asociadas 

con esponjas del mismo género que ocurren en simpatría y mostramos que procesos 

específicos de la especie de hospedador, y no factores biogeográficos, son los 

principales responsables de estructurar las comunidades bacterianas simbiontes de 

esponjas. Las comunidades bacterianas en las esponjas de Ircinia fueron específicas 

de la especie considerada, y estables en escalas espaciales (cientos de kilómetros) y 

temporales (a lo largo de distintas estaciones del año). Incluso una exposición a corto 

plazo a condiciones de temperatura elevada y limitación de las partículas bacterianas 

que forman parte de la dieta de la esponja, no causaron ningún cambio en la 

comunidad bacteriana simbionte. Nuestros resultados sugieren una íntima y estable 

asociación de las esponjas HMA con sus comunidades bacterianas. Además, 

proponemos que esta simbiosis ha resultado en un sistema cooperativo en el que la 

actividad de la propia comunidad, junto con la homeostasis del animal hospedador, 

contribuyen a mantener un microambiente estable en el mesohilo de la esponja y 

tampona las perturbaciones en el medio externo. Así, la simbiosis habría evolucionado 

para persistir como unidad bajo distintas condiciones ambientales. La amenaza de la 

degradación del hábitat y el impacto del cambio climático (asociado al incremento en la 

temperatura del agua y una extrema estacionalidad), podría conllevar tanto la pérdida 

de esta compleja simbiosis como de los servicios que proporcionan al ecosistema y 

como recurso biotecnológico. Por todo ello, es imprescindible abordar las 

investigaciones en biología de esponjas, ecología y evolución, así como las estrategias 

de gestión, desde la perspectiva del holobionte (la esponja y sus microorganismos 

simbiontes). 

 

Perspectivas 

 

Hemos demostrado que los factores específicos de la esponja son los que 

principalmente determinan las comunidades bacterianas simbiontes. En la discusión, 

hemos propuesto que el mesohilo de la esponja es un hábitat estable que tampona las 
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perturbaciones en el ambiente externo. El mesohilo de la esponja ha sido definido 

como anaeróbico y rico en nutrientes (Hoffmann et al. 2005), pero las condiciones 

fisicoquímicas han sido muy poco estudiadas. El uso de microsensores para describir 

los parámetros fisicoquímicos (por ej., pH, niveles de O2 o cantidad de luz, etc.) del 

mesohilo frente a distintas condiciones externas, tal y como se ha hecho en otros 

invertebrados marinos (Kühl et al. 2012), o comparando esponjas que están 

bombeando agua activamente frente a las que no, ayudaría a definir los distintos 

microhábitats y testar su estabilidad. Además, la aplicación de estas técnicas a 

esponjas filogenéticamente próximas, permitiría arrojar luz a cómo las condiciones 

internas pueden controlar la especificad de las comunidades bacterianas hacia la 

especie de esponja. 

Aunque ahora conocemos mejor los factores que afectan la estructura de las 

comunidades bacterianas en esponjas, los estudios de la respuesta funcional de los 

simbiontes frente a diferente condiciones ambientales se limita todavía a pocas 

especies de esponjas (ej., Fan et al. 2013) o linajes bacterianos concretos, tales como 

fotosimbiontes (ej., esta tesis) u organismos oxidadores del amonio (ej., López-Legentil 

et al. 2010). Estudios de metagenómica o transcriptómica son imprescindibles para 

entender el papel del metabolismo de los simbiontes para el holobionte y para 

comprobar si este papel es semejante o diferente dependiendo de la especie de 

esponja considerada (Liu et al. 2011; Thomas et al. 2010).  

Además, las esponjas no sólo mantienen relaciones simbiontes con bacterias. 

También se han detectado arqueobacterias asociadas a esponjas de distintos océanos 

(Steger et al. 2008; López-Legentil et al. 2010; Turque et al. 2010; Radax et al. 2012) y 

también están presentes en las larvas de esponjas (Schmitt et al. 2008), lo que sugiere 

un estrecho vínculo entre estas arqueobacterias simbiontes y la esponja hospedadora. 

Sin embargo, las arqueobacterias asociadas a esponjas han sido menos estudiadas 

que las bacterias homólogas y conocemos muy poco de sus patrones de diversidad. 

También existen microorganimos eucariotas (ej, hongos, diatomeas, dinoflagelados) 

como simbiontes de esponjas y, aunque potencialmente pueden jugar un papel 

importante en el metabolismo del holobionte, a menudo son ignorados en los estudios 

de microbiología de esponjas (Hentschel et al. 2012). Por tanto, se necesita investigar 

más en este campo para obtener una visión integradora de la complejidad del 

holobionte y definir la función de las arqueobacterias y los microorganismos eucariotas 

en esta simbiosis.  
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Conclusiones 

 

CAPITULO 1: Biogeografía y fidelidad de las comunidades bacterianas 

asociadas con esponjas  Ircinia spp. de Las Bahamas 

1. Ircinia felix e I. strobilina, esponjas abundantes en Las Bahamas, albergan 

comunidades bacterianas específicas de la especie considerada y distintas 

de las bacterias en el agua circundante, tal y como indican los resultados de 

análisis de T-RFLP y librerías de clones de secuencias del gen ARNr 16S. 

Sus comunidades simbiontes se componen de filotipos bacterianos 

relacionados con bacterias encontradas en otras especies de esponjas y 

corales de distintos océanos. Las comunidades bacterianas encontradas en 

los dos morfotipos de color de I. felix (blanco y oscuro) son más similares 

entre sí que a las comunidades en I. strobilina. 

2. Las comunidades bacterianas de las especies de Ircinia de Las Bahamas 

mantuvieron su especificidad y permanecieron estables en las distintas 

localidades muestreadas, separadas por distancias de 80-400 km y bajo 

distinta presión antropogénica. 

3. Nuestros resultados muestran una alta fidelidad de la comunidad simbionte a 

a la especie de hospedador, lo que sugiere que factores específicos de 

especie y no factores biogeográficos son los que estructuran y mantienen la 

simbiosis esponja-bacteria en las Ircinia spp. de Las Bahamas. 

 

CAPÍTULO 2: El hospedador manda: estabilidad espacial en las comunidades 

bacterianas asociadas con esponjas marinas (Ircinia spp.) en el Mediterráneo 

Occidental 

4. Los análisis multivariantes y gráficos nMDS de los perfiles T-RFLP derivados 

de las secuencias del gen ARNr 16S mostraron que las comunidades 

bacterianas en las esponjas del género Ircinia del Mediterráneo Occidental se 

estructuran de acuerdo con la especie de hospedador y se mantienen 

estables en distintas localidades separadas por distancias de 80-800 km y 

distintas condiciones locales. A pesar de la estabilidad espacial general, 

observamos cierta diferenciación en las comunidades bacterianas de I. 

variabilis en localidades concretas. 

5. La especificidad de especie y la estabilidad espacial fueron observadas tanto 

en las bacterias dominantes como en las raras de los perfiles de T-RFLP 

derivados de una misma especie de esponja, aunque los miembros 
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dominantes presentaron cierta diferenciación espacial en términos de 

abundancia relativa. 

6. No detectamos correlación entre la distancia geográfica y la disimilaridad de 

las comunidades simbiontes en individuos de una misma especie de esponja 

muestreados en distintas localidades. 

7. Nuestros resultados indican que la estructura de las comunidades 

bacterianas y su variabilidad está determinada por factores específicos de la 

especie de esponja hospedadora. 

 

CAPÍTULO 3: Estabilidad de las bacterias simbiontes de esponjas a lo largo de 

cambios estacionales en las condiciones de temperatura e irradiancia 

8. Los simbiontes bacterianos de esponjas mediterráneas del género Ircinia 

mostraron una estructura específica y estable a lo largo de un año y medio de 

muestreo, a pesar de marcadas fluctuaciones en la temperatura del agua y 

las condiciones de irradiancia. En contraste, las comunidades del 

bacterioplancton mostraron una clara estacionalidad en su estructura.   

9. La variabilidad en las bacterias asociadas a esponjas se limitó a los 

simbiontes raros y tuvo lugar principalmente en los meses más cálidos y de 

mayor irradiancia.  

10.  La estabilidad de las comunidades bacterianas en esponjas a pesar de la 

estación del año y de los marcados cambios estacionales en las 

comunidades bacterianas de vida libre del agua, apoyan la hipótesis de la 

estrecha relación esponja-bacteria. Además, la información derivada de este 

estudio nos proporciona una base de referencia para detectar posibles 

cambios anormales en las comunidades simbiontes en condiciones de estrés.  

 

CAPÍTULO 4: Hasta que la muerte nos separe: la persistencia de la asociación 

esponja-bacteria frente a estrés térmico y de escasez de alimento 

11. No se detectaron cambios significativos en los perfiles de T-RFLP, derivados 

de secuencias del gen ARNr 16S, en individuos de I. fasciculata e I. oros  

mantenidos en acuario durante 3 semanas bajo 4 tratamientos distintos: 

control (13OC, agua sin filtrar), baja disponibilidad de comida (13OC, agua 

filtrada a través de 0.1 μm), temperatura elevada (25OC, agua sin filtrar), y 

combinación de temperatura elevada y baja disponibilidad de comida (25OC, 

agua filtrada a través de 0.1 μm). 

12. En I. fasciculata, el contenido de chl a no varió significativamente entre 

tratamientos, aunque las micrografías del TEM revelaron células de 
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cianobacteria en degradación en esponjas expuestas al tratamiento que 

combinaba elevada temperatura y agua filtrada. 

13. No encontramos prueba empírica que apoye la idea de que la disgregación 

de la comunidad bacteriana simbiontes en condiciones de estrés sea la 

causa primaria de los episodios recurrentes de mortalidad en esponjas del 

Mediterráneo Occidental.  
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Annex 1  

 

TERMINAL RESTRICTION FRAGMENT LENGHT POLYMORPHISM (T-

RFLP) TECHNIQUE 

 

A great variety of bacteria have been found to be associated with marine sponges. 

Since cultivation of most symbiotic bacteria is challenging, the study of its diversity is 

based, in most of the cases, on the use of genetic tools. When aiming to describe 

patterns in symbiotic communities, DNA fingerprinting techniques provides a 

standardized method to process a suitable number of samples and replicates for 

statistical analysis in community patterns in a reasonable amount of time and spending 

a reasonable amount of money. This offers the possibility of conducting expansive 

studies to assess spatial and temporal changes in microbial diversity, or to 

systematically explore the effects of treatments and disturbances on microbial 

community composition and structure. 

Terminal Restriction Fragment Length Polymorphism (T-RFLP) technique uses 

restriction enzyme digestion of fluorescently tagged PCR-amplicons separated by 

capillary electrophoresis (Liu et al. 1997) (Fig. 1). T-RFLP analysis has higher 

detection sensitivity and reproducibility than another common DNA fingerprinting 

technique, denaturing gel gradient electrophoresis (DGGE) (Moesenedor et al. 1999; 

Schütte et al. 2008; Lee et al. 2009). By utilizing automated capillary electrophoresis, 

T-RFLP is well standardized and allows easy comparison and simultaneous processing 

of large numbers of samples.  

For T-RFLP analysis, DNA is extracted using commercially available extraction 

kits. Amplification is carried out using a primer set suitable for amplifying a DNA 

fragment of interest, typically a fragment of the 16S rRNA gene. The PCR protocol 

needs a hexachlorofluorescein-label added to the forward primer. We performed 

triplicates of the PCR per each sample for reducing the PCR bias. PCR products from 

the same samples are pooled together for gel purification and cleaning using 

commercially available kits. DNA is then quantified to standardize the amount of clean 

PCR product in the digestion process. After digestion with restriction endonuclease (in 

our case, two separate digestions per sample, one per restriction enzyme) and then 

precipitated and dried. Final analyses are conducted on automated sequencers (e.g. 

ABI Prism 3100) using a size standard. Only the fluorescently labelled terminal 

restriction fragments are detected, and their sizes are determined by comparison to 
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those found the internal standard (LIZ600). Results were interpreted PeackScanner 

(Applied Biosystems). 

 

Figure 1. Scheme of T-RFLP technique. 

 

T-REX provides a user-friendly platform to process our raw data in a 

standardized way and avoid unwanted variability when transforming the data into a 

format ready for analysis and interpretation (Culman et al. 2009). In T-REX we 

determined a baseline threshold for identification of true peaks over noise. Also, we 

aligned T-RFs (terminal restriction fragments) in all samples creating bins to overcome 

any drift between runs of capillary electrophoresis. Finally, we obtain two matrices, one 

for presence/absence and other for relative abundance of the T-RFs in the samples. 

Those matrices were used as input for comparing the bacterial communities in the 

samples based on similarity or distance measures and using multivariate statistics. 
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Annex 2  

 

THE ONGOING DISCUSSION OF THE SYSTEMATIC POSITION OF Ircinia 

SPECIES 

 

The sponge species targeted in this PhD study possess a skeletal structure of 

collagenous material but lack a mineral skeleton (i.e., spicules). As a result, the 

taxonomic status of these taxa and even the broader phylogenetic relationships within 

the family Irciniidae are uncertain (Cook & Bergquist 2002). This annex aims to provide 

a summary of the ongoing discussion of the systematic position of these taxa. 

Pronzato et al. (2004) proposed a solution for the taxonomic status of Ircinia 

felix, I. fasciculata and I. variabilis, based on morphological characters of available type 

material and specimens recently collected in the Mediterranean Sea, the Caribbean 

Sea and the Gulf of Mexico. They supported I. felix and I. variabilis as valid species, 

with good descriptions and illustrations in the literature, and proposed I. variabilis as 

the type species of the genus Ircinia. However, they conclude that the taxonomic status 

of I. fasciculata and its position within the family Irciniidae remains unclear because of 

the lack of a fixed holotype and an invalid neotype. They proposed that this species 

should be included in the genus Sarcotragus and the taxon was tentatively transferred 

to that genus (van Soest et al. 2013). 

 Molecular assessment of the genera Ircinia, Sarcotragus and Psammocinia, the 

three genera that comprise the family Irciniidae, suggests that Ircinia is paraphyletic 

with respect to Sarcotragus (Erpenbeck et al. 2012). Molecular phylogenetic analyses 

of mitochondrial and ribosomal markers (Erwin et al. 2012) showed that I. fasciculata 

and I. variabilis are closely-related but genetically distinct taxa (i.e., 

species/morphotypes) that clearly belong in the same genus. The phylogenetic 

analyses presented in this thesis (chapter 1) with the taxa from the Mediterranean and 

the Bahamas confirmed that the sponge species analyzed herein should be considered 

congeneric species regardless of the higher level taxonomic issues (i.e., paraphyletic 

genera) in family Irciniidae. 
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Abstract Research on sponge microbial assemblages has re-
vealed different trends in the geographic variability and spec-
ificity of bacterial symbionts. Here, we combined replicated
terminal-restriction fragment length polymorphism (T-RFLP)
and clone library analyses of 16S rRNA gene sequences to
investigate the biogeographic and host-specific structure of
bacterial communities in two congeneric and sympatric
sponges: Ircinia strobilina, two color morphs of Ircinia felix
and ambient seawater. Samples were collected from five
islands of the Bahamas separated by 80 to 400 km. T-RFLP
profiles revealed significant differences in bacterial community
structure among sponge hosts and ambient bacterioplankton.
Pairwise statistical comparisons of clone libraries confirmed
the specificity of the bacterial assemblages to each host species
and differentiated symbiont communities between color
morphs of I. felix. Overall, differences in bacterial communities
within each host species and morph were unrelated to location.
Our results show a high degree of symbiont fidelity to host
sponge across a spatial scale of up to 400 km, suggesting that
host-specific rather than biogeographic factors play a primary
role in structuring and maintaining sponge–bacteria relation-
ships in Ircinia species from the Bahamas.

Introduction

Sponges are among the most significant groups in marine
benthic communities due to their high abundance and di-
verse functional roles [11, 29, 80]. However, much of their

contributions to benthic ecosystems derive from their associ-
ation with an abundant and complex microbiota [71, 73, 83].
The metabolic activity of microbial symbionts within sponges
significantly contributes to nutrient fluxes between benthic
and pelagic systems and renders sponges critical to healthy
ecosystem functioning [57]. Sponge–microbial relationships
have often been considered mutualistic. Sponges may offer a
range of nutrient-rich microhabitats and shelter from preda-
tors to their microbial symbionts [59, 71]. In exchange, the
microbial community can supplement the nutrition of their
host via processes like photosynthesis [24], nitrogen fixation
[45], or ammonia oxidation [40]. In addition, microbial sym-
bionts can actively participate in the chemical defense of the
holobiont by producing secondary metabolites, some of
which have interesting biomedical and industrial applications
[23, 50, 52].

As a result of the biological, ecological, and biotechnolog-
ical importance of the sponge holobiont, studies have begun to
focus on understanding the diversity and structuring factors of
sponge-associated microbial communities [22, 31, 36].
Similar to free-living microorganisms [30], environmental
conditions (e.g., distinct bioclimatic zones [70] or reefs [38,
48]) and dispersal limitation (i.e., isolation-by-distance) may
influence the composition and structure of symbiotic bacterial
communities. The relative effect of each process varies
depending on the scale of sampling: large-scale patterns (tens
of thousands of kilometers) appear to be more affected by
dispersion limitations and small scale patterns (few kilome-
ters) by environmental conditions, whereas intermediate scale
patterns (10–3,000 km) are influenced by both processes [43].
Particular to host-associated microbes, the mode of symbiont
transmission may also dictate the specificity and spatial struc-
ture of the sponge microbiota.

A recent and comprehensive study [62] reported that the
majority of sponge-associated bacteria (55–70 %) are pres-
ent in single host species but form phylogenetic lineages
that are shared by numerous sponge hosts, yet absent or rare
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in the biosphere of bacterioplankton communities. This pat-
tern is explained by a combination of vertical transmission
[15, 37, 63, 64, 79] and horizontal acquisition of symbionts
[63, 71, 83]. The predominance of vertical transmission would
create stable bacterial communities linked to the dispersal and
evolutionary trajectory of their host [18, 74], whereas hori-
zontal acquisition would generate biogeographic patterns re-
lated to specific environmental conditions.

Comparisons of the microbiome within the same sponge
species across different locations have revealed high similarity
of bacterial symbionts in natural host populations within the
same latitude [38, 70, 72, 82], suggesting no biogeographic
patterns at intermediate spatial scales. However, Taylor et al.
[70] found that the microbiota of Cymbastela concentrica
hosts inhabiting tropical waters was clearly distinct from those
from temperate regions (separated by >1,500 km) and
Anderson et al. [4] reported location-specific bacterial com-
munities inMycale hentscheli across a 50- to 1,000-km range
in New Zealand. The low number of studies and apparently
conflicting results highlight the need for additional studies to
further pinpoint the factors shaping the structure of sponge-
associated bacterial communities over intermediate biogeo-
graphic scales.

In this study, we examined bacterial communities in the
model sponge species Ircinia felix and Ircinia strobilina. The
genus Ircinia (Dictyoceratida: Irciniidae) occurs widely in
tropical and temperate environments and produces a broad
spectrum of bioactive compounds involved in chemical de-
fense against fouling, infection, and competition [14, 53]. I.
felix and I. strobilina are high-microbial abundance (HMA)
sponges species commonly found in coral reefs, grass beds,
and mangroves throughout the Caribbean Sea [51, 61]. The
ectosome of I. felix is rich inCyanobacteria [41], contrary to I.
strobilina [86]; and Schmitt et al. [64] demonstrated that
diverse bacterial symbionts in I. felix were present in adult,
larval, and juvenile life stages of the host, indicating vertical
transmission of at least some of their bacterial symbionts.

The goal of this study was to assess the spatial variability
(at a scale from 10s to 100s of kilometers) and host specificity
of the bacteria associated with the sympatric sponge species I.
felix and I. strobilina from the Bahamas. We characterized the
bacterial assemblages in I. strobilina, two color morphs of I.
felix (white and tan), and ambient seawater from five islands
of the Bahamas using terminal-restriction fragment length
polymorphism (T-RFLP) analysis. We also constructed 16S
rRNA gene libraries to assess the composition of sponge-
associated bacterial communities and sequenced a fragment
of the mitochondrial gene cytochrome oxidase I (COI) to
determine the genetic identity and phylogenetic relationships
among sponge hosts. We addressed the following hypotheses:
(1) bacterial communities will differ significantly among
sources (i.e., sponge species and seawater); (2) bacterial com-
munities will exhibit greater similarity in more closely related

sponge hosts (i.e., greater between I. felix color morphs than
among I. felix morphs and I. strobilina); (3) changes in the
bacterial communities within each sponge species will corre-
late with geographic distances among host populations.

Materials and Methods

Sample Collection

The marine sponges I. strobilina (Lamarck 1816) and I. felix
(Duchassaing and Michelotti 1864) and ambient seawater
samples were collected from shallow littoral zones (<20-m
depth) of the Bahamas in July 2010 by SCUBA diving (Table
S1). The five sampled populations were separated by 80 to
400 km and were located around islands of different human
population densities (http://statistics.bahamas.gov.bs/): San
Salvador (24°03.515 N, 074°32.474 W; <1,000 inhabitants),
Little San Salvador (24°34.727 N, 075°57.628 W; <2,000
inhabitants), Exumas (24°52.871 N, 076°47.502 W; <7,500
inhabitants), Sweeting’s Cay, Grand Bahama (26°33.578 N,
077°53.036 W; >45,000 inhabitants), and New Providence
(25°00.771 N, 077°33.794W; >250,000 inhabitants). At each
site, ambient seawater (500 mL) was sampled simultaneously
and in close proximity (<1 m) to the sponges. Once on board
the research vessel, sponge samples were immediately pre-
served in RNAlater (Ambion) and seawater samples were
concentrated on 0.2-μm filters prior to preservation. All sam-
ples were stored at −20 °C.

Transmission Electronic Microscopy

For each sponge species and color morph, a piece of the
ectosome was dissected with a sterile scalpel and fixed in a
solution of 2.5 % glutaraldehyde and 2 % paraformaldehyde
buffered with filtered seawater and incubated overnight at 4 °C.
Following incubation, each piece was rinsed at least three times
with filtered seawater and stored at 4 °C until processed as
described previously [39]. Transmission electronic microscopy
(TEM) observations were made at the Microscopy Unit of the
Scientific and Technical Services of the University of
Barcelona on a JEOL JEM-1010 (Tokyo, Japan) coupled with
a Bioscan 972 camera (Gatan, Germany). Micrographs were
visualized in ImageJ [2] for bacterial cell counts. The relative
abundances of bacteria (bacterial cells/square millimeter) were
determined as the average (±standard deviation) over five TEM
micrographs per sample.

DNA Extractions

Genomic DNA was extracted from sponge and seawater
samples using the DNeasy® Blood & Tissue kit (Qiagen®)
according to the manufacturer’s instruction. Full-strength
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and 1:10 diluted DNA extracts were used as templates in
PCR amplifications.

Molecular Identification of Host Sponges

A fragment of ca. 1,000 bp of the mitochondrial gene cyto-
chrome oxidase I (COI), corresponding to the standard
barcoding partition [28, 33] and the I3-M11 partition [17]
was PCR-amplified using a degenerated version of the univer-
sal barcoding forward primer dgLCO1490 [44] (5´-GGT CAA
CAAATC ATA AAGAYATYGG-3´) and the reverse primer
COX1-R1 [58] (5´-TGT TGR GGG AAA AAR GTT AAA
TT-3´). Amplification was performed in a GeneAmp® PCR
machine (Applied Biosystems) as follows: one initial denatur-
ation step for 5 min at 94 °C; followed by 30 amplification
cycles of 0.5 min at 94 °C, 0.5 min of annealing at 42 °C, and
1.5min at 72 °C; and a final elongation step for 7 min at 72 °C.
Total PCR volume (50 μL) included 10 μM of each primer,
10 nM of each dNTP, 1× Reaction Buffer (Ecogen), 2.5 mM
MgCl2, 5 units of BioTaq™DNA polymerase (Ecogen), and
5 μL of DNA template. PCR products were cleaned and bi-
directionally sequenced at Macrogen, Inc. (Seoul, Korea). The
consensus sequences obtained in this study for each sponge
host and representative sequences from other Ircinia species
available in GenBank were aligned in Geneious Pro 5.1.6 [13].
Specifically, the alignment included representative sequences
of congeneric species from the Mediterranean Sea [21], the
Indo-Pacific [55], and one I. strobilina sequence from the
Caribbean [16]. Maximum likelihood (ML) and neighbor join-
ing (NJ) phylogenies were constructed in MEGA v5 [68]. For
ML analyses, we used the GTR+G+I [69] model and 100
bootstrap replicates [26]. The NJ tree was built based on the
Tamura–Nei model of nucleotide substitution and 1,000 boot-
strap replicates. All sequences have been deposited in
GenBank (accession nos. JX306085 to JX306089).

T-RFLP Analysis

The universal bacterial forward primer Eco8F [77] (5´-AGA
GTT TGA TCC TGG CTC AG-3´), tagged with 6-FAM,
and the reverse primer 1509R [42] (5´-GGT TAC CTT GTT
ACG ACT T-3´) were used for amplification of ca. 1,500-bp
fragments of the 16S rRNA gene from all sponge and
seawater DNA extracts. PCR was performed in a
GeneAmp® PCR machine (Applied Biosystems) as follows:
an initial denaturation step for 5 min at 94 °C; 35 cycles of
1 min at 94 °C, 0.5 min at 50 °C, 1.5 min at 72 °C; and a
final elongation step for 5 min at 72 °C. Total PCR volume
(50 μL) included 10 μM of each primer, 10 nM of each
dNTP, 1× Reaction Buffer (Ecogen), 2.5 mMMgCl2, 5 units
of BioTaq™ DNA polymerase (Ecogen), and 5 μL of DNA
template. Products from triplicate PCR reactions were gel-
purified and cleaned using the Qiaquick Gel Extraction kit

(Qiagen®) and pooled before quantification using the
Qubit™ fluorometer and Quant-iT™ dsDNA Assay kit
(Invitrogen™). For each sample, 100 ng of purified PCR
product were digested with the restriction endonuclease
HaeIII and 100 ng with MspI in a total volume of 20 μL,
following the manufacturer’s protocol (Promega). Restriction
reactions were incubated for 4 h at 37 °C, followed by ethanol
precipitation to remove residual salts. Prior to capillary elec-
trophoresis, samples were fully dried and then eluted in 11.
5 μL formamide and 0.5 μL GeneScan 600-LIZ size standard
(Applied Biosystems), heated at 94 °C for 2 min in a dry bath,
and immediately cooled on ice for 2 min. Samples were
processed on an automated ABI 3730 Genetic Analyzer
(Applied Biosystems) at the Genomics Unit of the Scientific
and Technical Services of the University of Barcelona.

The lengths of individual terminal-restriction fragments
(T-RFs) were determined using the program PeakScanner
(Applied Biosystems). T-RFs below 50 fluorescence units
(background noise), smaller than 50 bp or larger than 600 bp
(beyond the resolution of our internal standard) were ex-
cluded from the analysis. T-RFLP peak profiles were
uploaded in T-REX [10] for further filtering, alignment,
and construction of relative abundance matrices. Data were
de-noised applying a cutoff value of 2 standard deviations
[1], and T-RFs were aligned using a clustering threshold of
1 bp then standardized by relative peak areas.

Statistical Analysis of T-RFLP

Bray–Curtis similarity matrices were calculated using
square-root transformations of relative T-RF abundances.
Non-metric multi-dimensional scaling (nMDS) plots were
constructed for each restriction enzyme to visualize similar-
ities among the bacterial communities recovered from each
sample. Permutational multivariate analyses of variance
(PERMANOVA) were used for pairwise comparisons of
bacterial communities among sources (seawater, sponge
species and the two color morphs of I. felix) and among
locations within each source (nested analysis). PERMDISP
was computed for comparing the multivariate dispersions
among groups on the basis of Bray-Curtis distance.
Calculations were performed in PRIMER v6 [6, 7] and
PERMANOVA+ (Plymouth Marine Laboratory, UK). For
all pairwise comparisons, the critical value for significance
was corrected using the Benjamini-Yekutieli (B-Y) false
discovery rate [5]. To test for isolation-by-distance, Mantel
tests for each host and enzyme were calculated in R [56]
using the package ade4 [12].

16S rRNA Gene Clone Library Construction

Clone libraries were constructed for two individuals of each
sponge species and color morph collected in Sweeting’s Cay
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and Exumas (ca. 300 km apart). PCR amplification was
performed as described for T-RFLP analyses (above), except
that no fluorescent tag was attached to the forward primer.
PCR products were gel-purified and cleaned using the
QIAquick Gel Extraction kit (Qiagen®) and quantified with
a Qubit™ fluorometer and Quant-iT™ dsDNA Assay kit
(Invitrogen™). Cleaned PCR products were ligated into
plasmids using the pGEM®-T Vector System (Promega).
In total, 234 positive clones were bi-directionally sequenced
using the vector primers T7 and SP6 at Macrogen, Inc.
(Seoul, Korea). Raw sequence reads were processed and
aligned in Geneious Pro 5.1.6 [13] to recover near full-
length 16S rRNA gene sequences (range=1042 to 1563
bp). Low quality sequence reads and sequences identified
as chimeric [60] were discarded. All sequences were depos-
ited in GenBank (Acc. Nos. JX280152 to JX280385).

Diversity and Structure of the Bacterial Clone Libraries

Bacterial 16S rRNA gene sequences were ascribed to 99 %
operational taxonomic units (OTUs). A 99 % sequence
identity threshold was used to increase taxonomic resolution
and assess fine-scale variability in bacterial communities
among hosts. Richness (Observed OTUs, Chao1 estimator)
and diversity metrics (Shannon index, Simpson’s inverse
index) were calculated by source (sponge species or color
morph), plotted in rarefaction curves and used to compare
the richness, diversity and evenness of recovered bacte-
rial communities. Pairwise differences in bacterial clone
libraries of each host species and color morph were
determined by LIBSHUFF analyses based on 10,000
randomizations and adjusted using Bonferroni correc-
tions [65]. All analyses were performed using the
mothur software package [60].

To compare clone library sequences with T-RFs, in silico
digestions of a representative ribotype of each 99 % OTU
were generated using the Restriction Analysis option in
Geneious Pro 5.1.6 [13]. A reference database was created
consisting of 5’-terminal fragment lengths for each OTU
and restriction endonuclease (HaeIII and MspI) and T-RF
drift was predicted and corrected as described in Erwin et al.
[19]. This database was then used to match predicted T-RFs
based on clone library sequences with empirical T-RFs
obtained during T-RFLP analysis using the phylogenetic
assignment tool PAT [35]. Default bin sizes and an extra
bin for small T-RFs (2 bp tolerance applied to fragments of
50–100 bp) were applied to PAT analyses.

Phylogenetic Analysis of the Bacterial Clone Libraries

Phylogenetic analyses were performed to determine the
affiliations between sequences retrieved in this study, top
matching sequences from BLASTn searches [3] and

publicly available Ircinia-associated symbionts in the
GenBank database (January 2012), including sequences
from I. felix [63, 64], I. strobilina [46, 86], Mediterranean
Ircinia spp. [21, 49] and an Indo-Pacific Ircinia sp.
(GenBank Acc. No. GQ487629). All sequences were
grouped into 99 % OTUs and classified using the
Ribosomal Database Project II sequence classifier [8].
When bacterial sequences from publicly available database
derived from the same sponge species and grouped in the
same 99 % OTU, only a representative sequence was used
for the following analyses to facilitate tree visualization.
Finally, sequences were aligned with ClustalX 2.1 [76] and
a maximum-likelihood (ML) phylogenetic tree was
constructed in RAxML [67] using the General Time
Reversible model with a gamma distribution of variable
substitution rates among sites (GTR+G) [69] and 100 boot-
strap replicates [26]. A binary backbone constraint tree was
constructed from long (>1000 bp) sequences to allow pre-
cise placement of shorter sequences as described in Erwin et
al. [21].

Results

Phylogenetic Relationship Between Sponge Hosts

Partial COI sequences obtained for each color morph of I.
felix were more closely related to each other (0.4 % diver-
gence) than to I. strobilina (>1 % divergence). I. strobilina
was more closely related to the Mediterranean species
Ircinia fasciculata and Ircinia variabilis (0.5 % divergence)
than to the sympatric I. felix; whereas I. felix was more
closely related to the Mediterranean species Ircinia oros
(Fig. 1). Caribbean and Mediterranean Ircinia species
formed a well-supported clade and were a sister group to
the Indo-Pacific sponges Ircinia ramodigitata and Ircinia
irregularis.

Bacterial Morphology and Ultrastructure

Electron microscopy observations showed that Ircinia spp.
from the Bahamas harbored diverse microbial communities
(Fig. 2). Bacteria were mostly distributed extracellularly in
the mesohyl of both sponge species (Fig. 2a, b) and occurred
in high densities (1.197 x 106 ±0.051 cells/mm2 in I.
strobilina, 0.816 x 106 ±0.142 cells/mm2 in I. felix).
Different bacterial morphotypes were distinguishable, in-
cluding prokaryotic cells with a nucleoid-like structure
(Fig 2a, b). A cyanobacterium corresponding to the descrip-
tion of Candidatus Synechococcus spongiarum [78] was
abundant in the ectosome of I. felix (Fig. 2c) and was
characterized by spiral thylakoids located around the perim-
eter of the cell. These thylakoids appeared with electron-
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dense granules in between them. Several cyanobacterial
cells were also observed dividing by pinching in the center
(Fig. 2c). No cyanobacterial symbionts were observed in I.
strobilina. Sponge cells (archaeocytes) were only observed
occasionally in the mesohyl and often contained several
phagosomes digesting bacteria (Fig. 2d).

Host Specificity and Biogeography of Bacterial
Communities

A total of 181 unique T-RFs for the restriction enzyme
HaeIII (141 in I. strobilina, 126 in the white morph of I.
felix, 109 in the tan morph, and 123 in seawater), and 204
for MspI (158 in I. strobilina, 136 in the white morph of I.
felix, 106 in the tan morph, and 135 in seawater) were
recovered. nMDS plots constructed from T-RFLP profiles
for both restriction enzymes showed clear differences
between seawater and sponge-derived bacteria (Fig. 3).
Differences were also observed between the bacterial
communities of I. strobilina and I. felix but not between
color morphs of I. felix. Accordingly, statistical analyses
revealed significant differences (PERMANOVA, P<0.01)
among all pairwise comparisons of seawater bacteria and
sponge-associated bacteria, between I. strobilina and I.
felix, but not between color morphs of I. felix (P>0.34;
Table 1). PERMDISP results reported significant differ-
ences in the homogeneity of dispersion between each
sponge host and seawater, but not among sponge sources
(Table 1). No differences in the bacterial composition of

Fig. 1 Phylogenetic analysis of host sponges based on a fragment of
the mitochondrial gene cytochrome oxidase I. Tree topology was
obtained by neighbor joining and numbers on nodes indicate bootstrap
values (>50 %) for neighbor joining (left) and maximum likelihood
(right) analysis. Terminal node labels show GenBank accession num-
bers and sponge species. Sequences obtained in this study are
highlighted in bold

Fig. 2 Representative electron
micrographs of sponge
holobionts. Bacterial diversity
in the mesohyl of a I. strobilina
and b I. felix tan morph,
including morphotypes
containing a nucleoid-like
structure within the cell (black
stars). c The cyanobacterium
Candidatus Synechococcus
spongiarum (Cy) and active
bacterial cell division (black
arrows) in the ectosome of the
white morph of I. felix. d
Sponge cell (archaeocyte) in the
tan morph of I. felix showing
the cell nucleus (N), and nu-
merous phagosomes (Ph). Scale
bars represent 2 μm
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the sponge samples could be attributed solely to location
(P>0.05); however, a significant interaction between
source and location occurred for the restriction enzyme
MspI. Subsequent pairwise comparisons in a nested design
and after Benjamini–Yekutieli correction only revealed signif-
icant differences between the bacterioplankton communities

of Sweeting’s Cay and San Salvador (Table S2). No signifi-
cant correlations between bacterial community similarity and
geographic distance were recovered for any sponge host
(Mantel test, P>0.233 for all comparisons).

Diversity and Structure of the Sponge-Associated Bacterial
Communities

16S rRNA gene sequence libraries from I. strobilina (n=82),
the white morph of I. felix (n=68) and the tan morph (n=84)
were ascribed to a total of 83 unique OTUs (99 % sequence
identity). Rarefaction analyses at a similarity level of 99 %
showed greater OTU saturation for the bacterial communities
in both morphs of I. felix than for I. strobilina (Fig. S1a).
Richness and diversity metrics revealed that I. strobilina
hosted a more diverse and evenly distributed bacterial com-
munity than I. felix (Table 2). The color morphs of I. felix
exhibited similar OTU richness values, but diversity indices
(Shannon and Simpson’s inverse index) were much higher
for the white morph than for the tan morph (Table 2).
Rarefaction curves of all estimators (Chao 1, Shannon,
and inverse of Simpson’s index) approached asymptotes
and revealed consistent differences among sponge hosts
across sampling effort (Fig. S1b–d).

Most bacterial OTUs were unique to one host, with little
overlap among the three sponge-associated communities

Fig. 3 nMDS plots of bacterial
community structure in sponge
hosts (I. strobilina and two color
morphs of I. felix) and
surrounding seawater samples.
nMDS ordination based on Bray–
Curtis similarity of T-RFLP pro-
files using the restriction enzymes
a HaeIII and b MspI. Stress
values are shown in parenthesis,
with values below 0.15 indicating
a good representation of similari-
ty matrix distances in the graphi-
cal ordination plot

Table 1 Permutational statistical analysis of T-RFLP data (HaeIII and
MspI enzymes) for bacterial community structure (PERMANOVA)
and homogeneity of dispersion (PERMDISP) among sponge hosts
and seawater

HaeIII MspI

PERMANOVA F ratio P value F ratio P value
Main test

Source 18.167 0.001*** 10.779 0.001***

Location 1.707 0.055 1.423 0.128

Source×location 1.389 0.062 1.573 0.013*

PERMANOVA t P value t P value
Pairwise comparison

Tan I. felix–white I. felix 1.039 0.354 0.930 0.508

Tan I. felix–I. strobilina 2.404 0.001*** 1.790 0.006*

White I. felix–I. strobilina 2.951 0.001*** 1.913 0.003**

Tan I. felix–seawater 7.114 0.001*** 5.741 0.001***

White I. felix–seawater 7.962 0.001*** 5.879 0.001***

I. strobilina–seawater 7.016 0.001*** 6.048 0.002**

PERMDISP t P value t P value
Pairwise comparison

Tan I. felix–white I. felix 0.517 0.648 0.866 0.465

Tan I. felix–I. strobilina 0.087 0.946 0.590 0.636

White I. felix–I. strobilina 0.613 0.573 1.435 0.239

Tan I. felix–seawater 3.677 0.002** 2.721 0.023

White I. felix–seawater 4.933 0.001*** 3.846 0.001***

I. strobilina–seawater 3.471 0.001*** 1.693 0.156

Main tests of source (sponges and seawater), location (collection site),
and an interactive term are shown, along with pairwise comparisons
among sources: tan and white morphs of I. felix (tan and white I. felix,
respectively), I. strobilina and seawater. Significant comparisons fol-
lowing B-Y correction are indicated in bold, with asterisks denoting
significance level (*α=0.05, **α=0.01, ***α=0.005)

Table 2 Richness (observed OTUs, Chao1) and diversity metrics
(Shannon and Simpson’s inverse indexes) for the bacterial communi-
ties recovered from each sponge host

I. strobilina White I. felix Tan I. felix

Observed OTUs 45 26 30

Expected OTUs
(SChao1)

103 (68–194) 39 (30–74) 54 (38–105)

Shannon index 3.5 (3.2–3.7) 2.9 (2.7–3.1) 2.7 (2.3–2.9)

Simpson’s
inverse index

28.6 (18.7–60.6) 15.7 (11.2–26.4) 7.1 (4.9–13.3)

Confidence intervals at 95 % are shown in parentheses

442 L. Pita et al.



(Fig. 4). Only four OTUs (IRCBA01, IRCBA13, IRCBA20,
and IRCBA44) were shared among I. strobilina and the two
color morphs of I. felix (hereafter called generalist OTUs).
These generalist OTUs were dominant within each bacterial
community, in terms of number of sequences retrieved, ac-
counting for 6.0 % to 34.5 % of all bacterial sequences per
host species and morph, except for IRCBA20 (<2.5 % of
sequences for all hosts) and IRCBA13 for the white morph
of I. felix (2.9 %). The OTU IRCBA01 represented 8.5 % of
all the sequences recovered for I. strobilina, and 34.5 % and
17.5 % of the sequences from the tan and white morphs of I.
felix, respectively. The OTU IRCBA44 accounted for 13.4 %
of I. strobilina-derived sequences and 6.0 % of tan I. felix
and 8.8 % of the white I. felix-derived sequences. Two
additional OTUs were shared between the two color
morphs of I. felix (IRCBA33 and IRCBA60); these OTUs
represented 4.8 % and 8.8 % of all the sequences retrieved
for the tan and white morphs, respectively. Consistent with
the little OTU overlap among host sponges, the symbiotic
community associated with each host sponge was signifi-
cantly different, even among color morphs (LIBSHUFF
analysis, Table 3). There were no significant differences
between the 16S rRNA gene sequences from Sweeting’s
Cay and Exumas obtained for both color morphs of I. felix,
while significant differences were detected between populations
of I. strobilina (Table 3).

PAT analysis showed high congruence between bacterial
clone libraries and T-RFLP analyses for both restriction
enzymes. In fact, 88 % of the OTUs obtained with clone
libraries were also observed with T-RFLP analysis.
Empirical T-RFs obtained with the enzyme HaeIII matched
50.6 % of the peaks predicted by in silico digestion, while
for MspI, empirical T-RFs matched 55.6 % of the predicted
peaks.

Phylogenetic Analysis of 16S rRNA Bacterial Sequences

The vast majority of the sequences recovered from each
sponge host were closely related with other sponge-
associated (73.2 % in I. strobilina, 94.1 % in the white
morph of I. felix, and 77.4 % in the tan morph) and coral-
associated bacterial sequences (20.7 % in I. strobilina, 4.4 %
in the white morph of I. felix, and 20.2 % in the tan morph).
Some ribotypes matched with seawater-derived sequences
(6.1 % in I. strobilina, 2.4 % in the tan morph of I. felix, and
0 % in the white morph), but mostly at low identity matches
(<97 % sequence identity). As in other HMA sponges, the
bacterial OTUs recovered herein were distributed into eight
known phyla and one unclassified group (Fig. S2–S7). All
three sponge taxa hosted representatives from two classes of
Proteobacteria (Delta andGamma), as well as Acidobacteria,
Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospira, and
Firmicutes (Fig. 5). Proteobacteria, specifically the class
Delta-Proteobacteria (>15 % total clones in all hosts), was
the best-represented phylum in all clone libraries. Sequences
related to Spirochaetes and Alpha-Proteobacteria were only
present in I. strobilina and the tan morph of I. felix. Sequences
affiliated to Cyanobacteria (Synechococcus) were only found
in I. felix and were more abundant in the white morph than in
the tan morph (>15 % and >2 % of total clones, respectively).
The generalist OTUs shared by the three sponge hosts
corresponded to class Delta-Proteobacteria (IRCBA01) and

Table 3 Pairwise statistical comparisons of bacterial community struc-
ture (LIBSHUFF analyses) based on 16S rRNA gene sequences
obtained from clone libraries of I. strobilina and the two color morphs
of I. felix (tan and white)

LIBSHUFF comparisons dCXY P value XY

dCYX P value YX

I. strobilina–tan I. felix 0.0054 0.0016**

0.0038 0.0045*

I. strobilina–white I. felix 0.0034 0.019

0.0089 0.001**

Tan I. felix–white I. felix 0.0048 0.002*

0.0078 0.0001***

Sweeting’s–Exumas within I. strobilina 0.0083 0.0161*

0.0026 0.2001

White I. felix 0.0027 0.2125

0.0014 0.353

Tan I. felix 0.0040 0.0624

0.0014 0.3014

Comparisons among hosts and between sampling sites (Sweeting’s Cay
and Exumas) within hosts are shown. Two tests per pairwise comparison
(dCXY and dCYX) and corresponding P values (P value XY, P value YX)
were conducted, with significance in either comparison indicating differ-
ences in bacterial community structure. Significant comparisons follow-
ing Bonferroni correction are indicated in bold, with asterisks denoting
significance level (*α=0.05; **α=0.01; ***α=0.005)

Fig. 4 Host specificity of the bacterial communities in I. strobilina and
two color morphs of I. felix based on 16S rRNA gene sequences
obtained after clone library construction. Pie charts show the percent-
ages of clones for each symbiont category. Numbers denote the total
OTUs (99 % sequence identity) in each category
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phyla Acidobacteria (IRCBA13 and IRCBA20) and
Nitrospira (IRCBA44). These symbionts formed sponge-
specific (IRCBA20 and IRCBA44) and sponge–coral-specific
(IRCBA01, IRCBA13) clusters (Fig. S2). The Delta-
Proteobacteria-affiliated OTU (IRCBA01) was particularly
dominant in the bacterial clone libraries (8.5 % of the se-
quences in I. strobilina; 17.5 % in the white morph of I.
felix and 34.5 % in the tan morph) and was also common
in the Mediterranean species I. fasciculata, I. variabilis and
I. oros, as well as in other unrelated sponge species and
corals (Fig. S4).

Discussion

In this study, we determined whether the bacterial communi-
ties associated with the sympatric sponges I. strobilina and I.
felix were stable across islands separated by tens to hundreds
of kilometers in the Bahamas. Sequencing of a fragment of the
mitochondrial COI gene from host sponges confirmed the
taxonomic identification and phylogenetic relationships of I.
strobilina and two color morphs of I. felix (white and tan),
allowing for the assessment of the bacterial communities
specificity among congeneric and conspecific host individ-
uals. Electron microscopy, T-RFLP analysis, and 16S rRNA
gene clone libraries confirmed that these sponge taxa harbor
host–species-specific bacterial communities that are clearly
differentiated from the bacterioplankton in the surrounding
seawater. T-RFLP profiles further revealed that the bacterial
communities in two color morphs of I. felixwere more similar
to each other than to I. strobilina. Within each sponge host,
bacterial assemblages were remarkably stable over locations
and maintained across host populations and islands.

Our results revealed a major influence of host-related
factors in structuring sponge-associated bacterial assem-
blages. We sampled sponge populations in reefs up to
400 km apart located in islands with distinct human popu-
lation densities and oceanographic currents [9], yielding
different environmental conditions, disturbance regimes
and dispersal barriers. However, we found high spatial

stability of sponge–bacteria symbioses and no isolation-by-
distance effect, consistent with previous studies on sponge-
derived bacterial communities at geographical scales ranging
from tens [38, 82, 85] to hundreds of kilometers [70, 75, 84].
Other studies suggested that environmental conditions could
also influence the structure of symbiont communities [70, 86],
although these studies involve broader geographic (i.e., inter-
ocean) scales and/or genetically distant hosts, thus decoupling
the effects of biogeography and host specificity remained a
major obstacle. In contrast, studies that minimize the phylo-
genetic distance among host species are better suited to dis-
tinguish location- and host-related patterns. For instance,
Montalvo and Hill [47] compared the bacteria associated with
Xestospongia muta and Xestospongia testudinaria and found
that these closely related hosts harbored strikingly similar
bacterial communities, despite the fact that they inhabit dif-
ferent oceans (Atlantic and Pacific, respectively).

In addition to spatial stability, our study also assessed host
specificity of bacterial communities among congeneric and
conspecific sponges. The bacterial sequences derived from
16S rRNA clone libraries for each Ircinia host belonged to
the same phyla described for other HMA sponges [81, 83] and
were largely consistent with previous studies of I. strobilina
[46, 86] and I. felix [63, 64]. For example, a sponge-specific
cluster of Bacteroidetes sequences that was previously
detected only in the larvae of I. felix [64] was identified herein
in both color morphs of adult I. felix hosts. TEM micrographs
and clone libraries also revealed the absence ofCyanobacteria
in the microbiota of I. strobilina, consistent with a recent
molecular-based survey [86] and the low chlorophyll a con-
tent of this sponge host [25, 66]. While some I. strobilina
hosts may harbor nitrogen-fixing cyanobacteria [45, 46], these
symbionts are clearly distinct from the dense populations of
Synechococcus spongiarum consistently reported in I. felix
[64, 66]. The significance for host metabolism of these
divergent bacterial assemblages is still uncertain, and fur-
ther investigation is necessary to assess whether the net
activity of different symbiont microbiota results in overall
similar biochemical processes in the holobiont [e.g., in
nitrogen flux, 66].

Fig. 5 Phylogenetic affiliation
of symbiont OTUs (99 %
sequence similarity) in I.
strobilina and two color morphs
of I. felix (tan and white).
Bacteria are classified
according to phylum or class
(marked with an asterisk)
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In a broader context, most of the sequences in the bacterial
16S rRNA clone libraries of Ircinia spp. from the Bahamas
were closely related to bacterial symbionts in taxonomically
distant sponge hosts (e.g., different sponge orders) and from
different geographic origins (e.g., Mediterranean and Pacific),
consistent with reports from other HMA sponge hosts [e.g.,
27, 32, 34]. Phylogenetic analyses of bacterial clone libraries
did not reveal any Ircinia-specific or Caribbean Ircinia-spe-
cific symbiont clusters. The four bacterial OTUs shared by I.
strobilina, and both color morphs of I. felix were also de-
scribed in other sponge (IRCBA20, IRCBA44) and coral
(IRCBA01, IRCBA13) hosts from diverse ecosystems.
However, at the community level, the bacterial composition
in each Ircinia host analyzed herein was still host-specific.
Similar observations of symbiont structure and specificity
were recently described for Mediterranean Ircinia spp. and
termed a “specific mix of generalists” [21]. The outstanding
questions are which factors result in the observed distribution
of symbiont taxa among hosts and what are the ecological
consequences for host–symbiont interactions.

Host-related factors influencing bacterial communities may
include particular mesohyl conditions (e.g., different pH and
oxygen levels) and the evolutionary history of each sponge
species. Although closely related, I. felix and I. strobilina show
striking differences in morphological and physiological traits,
such as shape and filter-feeding capacity [51, 54]. Pile [54]
demonstrated that I. strobilina had higher filtering efficiencies
than I. felix and suggested that I. strobilina, as a tall andmassive
sponge, contained more aquifer units, retained water inside the
sponge body longer, and exhibited more efficient particle up-
take than I. felix. Such specific features may create distinct
conditions in the mesohyl of each host, each supporting partic-
ular bacterial consortia. In addition, the evolutionary history of
each sponge species may also influence the structure of their
bacterial communities. Vertical transmission has been reported
in I. felix for most of the bacterial taxa [64], and we have
confirmed that morphotypes of I. felix are more similar to each
other than to I. strobilina. Thus, while periodic horizontal
symbiont transmission is likely to occur and explain the gener-
alist distribution of individual symbiont taxa, continual vertical
transmission of specific communities may maintain symbiont
structure within host species, and their divergence among host
species, over recent evolutionary scales.

In conclusion, the bacterial communities observed in I.
strobilina and two color morphs of I. felix were host species
specific, exhibiting greater similarity within host species
(morphotypes) than between host species (I. felix and I.
strobilina). The bacterial taxa comprising these symbiont
communities were also present in other sponge and coral
species and thus represent generalist symbionts. As described
for Mediterranean Ircinia species [21], we conclude that I.
strobilina and I. felix host a specific mix of generalist symbi-
onts and suggest that host-specific factors (mesohyl conditions

and host evolutionary history) determine their unique structure
in each host. Contrary to our original hypothesis of spatial
structure in the bacterial communities associated with Ircinia
hosts, we found high stability of bacterial communities within
each host sponge across different islands and geographic dis-
tances up to 400 km, indicating a minimal effect of dispersal
limitation and local environmental conditions on symbiont
structure. Thus, host-specific rather than biogeographic factors
play a primary role in structuring and maintaining sponge–
bacteria relationships in Ircinia hosts from the Bahamas.
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Abstract

Dispersal limitation and environmental selection are the main processes shap-

ing free-living microbial communities, but host-related factors may also play a

major role in structuring symbiotic communities. Here, we aimed to determine

the effects of isolation-by-distance and host species on the spatial structure of

sponge-associated bacterial communities using as a model the abundant demo-

sponge genus Ircinia. We targeted three co-occurring Ircinia species and used

terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S

rRNA gene sequences to explore the differentiation of their bacterial communi-

ties across a scale of hundreds of kilometres in the Western Mediterranean Sea.

Multivariate analysis and nonmetric multidimensional scaling plots of T-RFLP

profiles showed that bacterial communities in Ircinia sponges were structured

by host species and remained stable across sampling locations, despite geo-

graphic distances (80–800 km) and diverse local conditions. While significant

differences among some locations were observed in Ircinia variabilis-derived

communities, no correlation between geographic distance and community sim-

ilarity was consistently detected for symbiotic bacteria in any host sponge spe-

cies. Our results indicate that bacterial communities are mostly shaped by host

species-specific factors and suggest that evolutionary processes acting on long-

term symbiotic relationships have favored spatial stability of sponge-associated

bacterial communities.

Introduction

Microbial biogeography studies often evaluate the rela-

tionship between community similarity and geographic

distance (i.e. isolation-by-distance, also called distance–
decay relationships). These patterns respond primarily to

two processes: dispersal limitation and environmental

selection (Martiny et al., 2006; Fierer, 2008). Dispersal

limitation prevents connectivity among distant locations

or populations, while environmental heterogeneity (e.g.

different physicochemical conditions of seawater in

coastal systems) yields variability of the microbial com-

munities among locations as local conditions ‘pick up’

the best-adapted microbes. Disclosing the spatial structure

of microbial communities helps to elucidate the relative

importance of these two underlying processes (Hanson

et al., 2012).

Some marine sponges, the so-called high-microbial-

abundance sponges (HMA), harbor abundant and diverse

bacterial communities (Taylor et al., 2007; Hentschel

et al., 2012). These bacterial communities are far from

being randomly structured; rather, their diversity, compo-

sition and structure depend on each sponge host (Schmitt

et al., 2012). Accordingly, each sponge species harbors a

specific symbiotic community, resulting from the combi-

nation of vertical transmission (from parents to larva;

Usher et al., 2001; Ereskovsky et al., 2004; Schmitt et al.,

2007; Lee et al., 2009b) and environmental acquisition

of bacteria (Schmitt et al., 2008; Webster et al., 2010;

Hentschel et al., 2012; Taylor et al., 2013).
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Recent research on sponge–microbe symbioses has

focused on determining whether host specificity of sym-

biotic communities is maintained across locations. Pre-

vious studies have reported high spatial stability of

sponge-associated bacteria across geographic distances

up to thousands of kilometres (Hentschel et al., 2002;

Webster et al., 2004; Taylor et al., 2005; Pita et al.,

2013) whereas others have detected differentiation

depending on location within the same (Lee et al.,

2009a) or among different ecosystems (Anderson et al.,

2010; Yang et al., 2011). Thus, it is difficult to draw a

general conclusion about the spatial structure of

sponge-derived bacterial communities. In addition, sam-

pling strategy and comparison of distantly related host

species may confound the processes involved, given the

large effect of host sponge species on symbiont commu-

nity structure.

In this study, we designed a sampling strategy targeting

sympatric and congeneric sponges from several western

Mediterranean sites. Our goal was to distinguish between

the relative contribution of biogeographic (dispersal limi-

tation, environmental selection) and host-related pro-

cesses (i.e. linked to evolutionary history or biological

characteristics) to the spatial structure of bacterial com-

munities associated with sponges. Herein, we used the

term ‘environment’ to refer to the abiotic conditions in

ambient seawater external to the host sponges. We inves-

tigated the bacterial communities associated with three

Ircinia species (I. fasciculata, I. variabilis and I. oros)

commonly found in the shallow littoral of coastal Medi-

terranean environments. Ircinia bacterial diversity is con-

sistent with other HMA sponges, but each species harbors

a unique community composed of generalist sponge sym-

bionts (Erwin et al., 2012a). The microbial inheritance

mode in Mediterranean Ircinia species has not yet been

studied, although vertical transmission was shown for

Ircinia felix from the Caribbean (Schmitt et al., 2007) and

bacterial cells were observed in I. oros larva (Ereskovsky

& Tokina, 2004; Uriz et al., 2008). To test whether the

host-specific symbiotic communities reported in Mediter-

ranean Ircinia spp. were maintained over locations sepa-

rated by hundreds of kilometers and under different local

environmental conditions, we characterized bacterial

communities in Ircinia spp. from six locations using

terminal restriction fragment length polymorphism

(T-RFLP) analyses of 16S rRNA gene sequences. We

hypothesized that, within each host, a significant dis-

tance–decay relationship in bacterial community similar-

ity would be detected as a consequence of (1) dominant

currents in the region limiting dispersal of host larvae

and bacterioplankton; and (2) differences in local condi-

tions generating spatial differentiation of bacterial

communities among locations.

Materials and methods

Sample collection

Tissue samples of I. fasciculata (Pallas 1766), I. variabilis

(Schmidt 1862) and I. oros (Schmidt 1864) were col-

lected by scuba diving from shallow littoral zones

(depth < 20 m) in September–October 2010 at six dif-

ferent locations from the Western Mediterranean Sea

(Fig. 1). Seventy-four specimens were sampled (I. fascic-

ulata, n = 28; I. variabilis, n = 27; I. oros, n = 19),

including 3–6 replicates per species and site, except for

I. oros in Caials for which we only had two replicates.

All sampled sponges appeared healthy and were col-

lected from sites located 80–800 km apart and charac-

terized by different anthropogenic pressures: from

marine protected areas (Cabrera National Park, Scandola

Nature Reserve in Corsica, Caials-Natural Park of Cap

de Creus), to locations near dense human populations

(Blanes, Calafat and Alicante). When possible, ambient

seawater (500 mL) was simultaneously sampled in close

proximity (< 1 m) to the sponges (Caials, n = 1;

Blanes, n = 3; Alicante, n = 2). Sponge samples were

immediately preserved in absolute ethanol and seawater

samples were concentrated on 0.2 lm filters prior to

preservation in ethanol. All samples were stored at

�20 °C.

Fig. 1. Sampling sites in the western Mediterranean Sea. Sampling

sites and main currents in the region (adapted from Millot, 1999) are

shown. Scale bar = 422 km.
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DNA extractions and T-RFLP analyses

Genomic DNA was extracted from tissue and seawater

samples using the DNeasy� Blood & Tissue kit (Qiagen,

Valencia, CA) according to the manufacturer’s instruc-

tions. The universal bacterial forward primer Eco8F

(Turner et al., 1999), tagged with a 5′-end 6-carboxyfluo-

rescein label (6-FAM), and the reverse primer 1509R

(Mart�ınez-Murcia et al., 1995) were used for amplifica-

tion of a c. 1500-bp fragment of the 16S rRNA gene. PCR

was performed as follows: one initial denaturation step

for 5 min at 94 °C; 35 cycles of 1 min at 94 °C, 0.5 min

at 50 °C and 1.5 min at 72 °C; and one final elongation

step for 5 min at 72 °C. Total PCR volume (50 lL)
included 10 lM of each primer, 10 nM of each dNTP,

1 9 Reaction Buffer (Ecogen, Barcelona, Spain), 2.5 mM

MgCl2, 5 units of BioTaqTM DNA polymerase (Ecogen),

and full-strength or 1 : 10 diluted DNA extracts. Products

from triplicate PCR reactions were purified from electro-

phoresis gels using the Qiaquick Gel Extraction kit (Qia-

gen), and quantified using the QubitTM fluorometer and

Quant-iTTM dsDNA Assay kit (Invitrogen, Carlsbad, CA),

according to the manufacturers’ instructions. Separate

digestions with the restriction enzymes HaeIII and MspI

were performed as described by Pita et al. (2013) and

analyzed in an automated ABI 3730 Genetic Analyzer

(Applied Biosystems, Foster City, CA) at the Genomics

Unit of the Scientific and Technologic Center of the

University of Barcelona. The lengths of each terminal-

restriction fragment (T-RF) were determined with respect

to an internal size standard (LIZ600) using the PeakScan-

nerTM software (Applied Biosystems). T-RFs smaller than

50 bp or larger than 600 bp were discarded because they

were beyond the resolution of the size standard. Peak

intensities below 50 fluorescence units and relative peak

area variation within a cut-off value of two standard devi-

ations (Abdo et al., 2006) were discarded as background

noise using the T-REX online tool (Culman et al., 2009).

‘True’ T-RFs were then aligned in T-REX using a clustering

threshold of 1 bp to construct relative T-RF abundance

matrices.

Statistical analyses of T-RFLP data

Relative abundance matrices were square root trans-

formed prior to all analyses based on Bray–Curtis dis-

tances. For each restriction enzyme, nonmetric

multidimensional scaling (nMDS) plots were constructed

to visualize bacterial community similarity. Permutational

multivariate analyses of variance (PERMANOVAs; Anderson,

2001; McArdle & Anderson, 2001) were used to test for

variability across sources (seawater and the three sponge

species) and among locations within each sponge host.

To compare structure within groups and determine the

effect of heterogeneity (dispersion) on significant PERMA-

NOVA outcomes, pairwise comparisons of dispersion (PERM-

DISP; Anderson, 2006) were performed. SIMPER analyses

were conducted to identify the individual T-RFs driving

the differentiation between groups. Calculations were per-

formed in PRIMER v6 (Clarke, 1993; Clarke & Gorley,

2006) and PERMANOVA+ (Plymouth Marine Laboratory,

UK). Critical values for significance were corrected for

multiple pairwise comparisons following the Benjamini &

Yekutieli (2001) algorithm (B-Y correction). Mantel tests

for each host and restriction enzyme were calculated in R

v2.15.2 (The R Core Team, 2012) using the package ADE4

(Dray & Dufour, 2007) to determine whether differences

in bacterial community similarity were correlated with

geographic distances. We also repeated the Mantel tests

excluding the island of Cabrera from the analyses to test

if dominant currents in the Western Mediterranean

(Fig. 1) isolated Cabrera from the peninsular locations,

creating a disproportionate differentiation despite short

geographic distances and hence distorting the isolation-

by-distance effect across the other locations. For each

enzyme and species, we partitioned data matrices into

‘rare’ T-RFs (relative abundance ≤ 1% of each sample)

and ‘abundant’ T-RFs (relative abundance > 1%) to

determine the influence of rare and abundant T-RFs in

the trends observed for the whole community. These

threshold values were chosen due to their widespread use

in microbial ecology studies (Pedr�os-Ali�o, 2006) and

empirical ability to partition the dataset relatively evenly

(Table 1). Rare and abundant T-RF matrices were ana-

lyzed separately with the same procedures described

above.

T-RFLP analysis and 16S rRNA gene sequence

data

Predicted T-RFs from a reference database were matched

with the empirical T-RFs obtained in this study. The ref-

erence database consisted of in silico digestions by HaeIII

and MspI enzymes of Ircinia-associated bacterial 16S

rRNA gene sequences from a previous study (Erwin et al.,

2012b). The analysis was performed with the phylogenetic

assignment tool PAT (Kent et al., 2003), adding an extra

bin size for small T-RFs (i.e. 2-bp tolerance applied to

fragments of 50–100 bp).

Results

T-RFLP analyses

We identified 183 bacterial T-RFs with the HaeIII enzyme

(139 in I. fasciculata, 108 in I. oros, 140 in I. variabilis
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and 79 in seawater) and 211 using the MspI enzyme (140

in I. fasciculata, 145 in I. oros, 184 I. variabilis and 57 in

seawater). The mean and standard error of T-RFs in each

category (total, abundant and rare) per source is reported

for HaeIII and MspI enzymes in Table 1. Regarding the

specificity of the T-RFs, 25.1% (HaeIII) and 20.9%

(MspI) were detected in all sources (i.e. present in at least

one sample of I. fasciculata, I. variabilis, I. oros and sea-

water), whereas 19.6% (HaeIII) and 30.3% (MspI) were

detected in all sponge species and were absent in seawa-

ter. The proportion of T-RFs that are shared among

sources is depicted in Supporting Information, Fig. S1.

nMDS plots of all samples (Fig. 2a) showed that bacterial

communities clustered by source, with sponge-derived

samples more similar to each other than to seawater sam-

ples. Sponge-derived samples further grouped by host

species, but with more discrimination among species for

HaeIII than for MspI fingerprints. nMDS graphs for

sponge-derived communities (Fig. 2b) showed no consis-

tent grouping of sponge-associated bacterial communities

based on sampling location. This apparent lack of spatial

structure was maintained when nMDS plots were drawn

separately for each sponge species (Fig. 3). Some I. varia-

bilis-derived samples from HaeIII digestions (Fig. 3b, left)

showed a tendency to cluster according to sampling loca-

tion, yet this spatial pattern was not evident for samples

from MspI digestions (Fig. 3b, right).

Comparisons among sources

Pairwise comparisons of T-RFLP profiles among sources

(PERMANOVA, Table 2) revealed significant differences

(P < 0.05) among the bacterial communities in each

sponge species and seawater for both enzymes and for all

comparisons, confirming the patterns visualized in nMDS

graphs. The bacterial communities in seawater samples

were significantly different from sponge samples, and bac-

terial communities in sponges were host-species specific.

PERMDISP revealed a similar degree of heterogeneity within

each source (P > 0.10 for all comparisons), and thus the

differences between sources were due to differences in

symbiont structure. These results were largely maintained

when only rare T-RFs or abundant T-RFs were consid-

ered (Table 2). The only consistent difference between

these data partitions and the entire dataset was that rare

I. variabilis-derived communities were not different from

the rare communities in I. fasciculata (for both enzymes),

and that the rare communities in I. fasciculata and

I. variabilis did not differ significantly from rare symbio-

nts of I. oros for MspI digestions (Table 2).

Differentiation among locations within sponge

hosts

Pairwise comparisons of T-RFLP profiles among locations

within each sponge species (nested PERMANOVA, Table 3)

Table 1. T-RFs obtained for each sponge species and seawater

HaeIII MspI

IF IO IV SW IF IO IV SW

Total T-RFs 42 � 3 34 � 4 41 � 3 31 � 6 40 � 3 42 � 3 44 � 3 25 � 2

Abundant T-RFs 20 � 1 18 � 1 20 � 1 20 � 2 19 � 1 21 � 1 20 � 1 9 � 1

Rare T-RFs 22 � 3 16 � 3 22 � 2 12 � 5 19 � 3 22 � 3 25 � 3 17 � 1

Shown are the number (average � SE) of total, abundant (relative peak area > 1%) and rare (relative peak area ≤ 1%) T-RFs found per sample

within each sponge species and seawater, for each restriction enzyme (HaeIII and MspI). IF, Ircinia fasciculata; IO, Ircinia oros, IV, Ircinia variabilis;

SW, seawater.

(a)

(b)

Fig. 2. Spatial patterns of bacterial communities in marine sponges

and seawater. nMDS plots of bacterial T-RFLP profiles obtained from

HaeIII (left) and MspI (right) digestions. (a) All samples coded by

source; (b) sponge samples coded by location. Stress values are

shown in parentheses.
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showed no significant differences in the bacterial commu-

nities of I. fasciculata and I. oros across sampling sites. In

I. variabilis, Blanes and Cabrera were significantly differ-

ent in HaeIII-digested T-RFLP profiles and Cabrera–
Calafat comparisons were consistently significant for both

enzymes. On the whole, PERMDISP analyses (Table 3) indi-

cated similar dispersion of the samples within groups,

with some exceptions for HaeIII digestions in I. fascicula-

ta (Blanes–Alicante) and I. variabilis (Blanes–Cabrera,
Blanes–Calafat, Calafat–Corsica). For rare T-RFs, neither

PERMANOVA nor PERMDISP detected significant differences in

any pairwise comparison (Table S1), indicating higher

stability and homogeneity of rare sponge symbionts. The

analysis of abundant T-RFs revealed additional significant

comparisons (i.e. recovered for both enzymes) between

Blanes and Calafat for I. variabilis, and Blanes and Alic-

ante for I. fasciculata (Table S2).

Isolation-by-distance effect

Mantel tests showed no significant correlation between

geographic distances and bacterial community similarity

for full datasets (Table 3), rare partitions (Table S1) and

abundant partitions (Table S2); thus, isolation-by-

distance effects were not detected in any sponge host or

symbiont partition. Results from Mantel tests excluding

samples from the island of Cabrera were also not signifi-

cant with one exception: a significant outcome

(P = 0.022) for HaeIII digestions in I. variabilis for the

full dataset (Table 3).

Congruence between T-RFLP analysis and 16S

rRNA gene sequence data

PAT analysis showed high congruence between T-RFLP

and in silico digestions of the reference database contain-

ing 16S rRNA gene sequence data from Mediterranean

Ircinia species (Erwin et al., 2012b). The length profiles

obtained from the reference database matched 59.1%

(HaeIII) and 62.8% (MspI) of the peaks detected empiri-

cally in T-RFLP profiles, representing 73.2% (HaeIII) and

79.3% (MspI) of the total peak area. For instance, the

T-RF signature of operational taxonomic unit (OTU)001,

(a)

(b)

(c)

Fig. 3. Spatial patterns of bacterial communities in three Ircinia

sponge species. nMDS plots of bacterial T-RFLP profiles obtained from

HaeIII (left) and MspI (right) digestions. (a) Ircinia fasciculata-derived

samples; (b) Ircinia variabilis-derived samples; (c) Ircinia oros-derived

samples. Stress values are shown in parentheses.

Table 2. Host-specificity of bacterial communities

Whole community Rare T-RFs Abundant T-RFs

HaeIII MspI HaeIII MspI HaeIII MspI

I. fasciculata–I. variabilis 0.001*** (0.251) 0.002** (0.300) 0.063 (0.295) 0.480 (0.530) 0.001*** (0.152) 0.005** (0.004**)

I. fasciculata–I. oros 0.001*** (0.150) 0.001*** (0.574) 0.001*** (0.359) 0.076 (0.494) 0.001*** (0.228) 0.001*** (0.043)

I. variabilis–I. oros 0.001*** (0.706) 0.001*** (0.767) 0.006* (0.810) 0.035 (0.841) 0.001*** (0.880) 0.001*** (0.523)

I. fasciculata–Seawater 0.001*** (0.656) 0.001*** (0.682) 0.001*** (0.632) 0.001*** (0.979) 0.001*** (0.829) 0.001*** (0.601)

I. variabilis–Seawater 0.001*** (0.889) 0.001*** (0.355) 0.001*** (0.889) 0.001*** (0.843) 0.001*** (0.454) 0.001*** (0.062)

I. oros–Seawater 0.001*** (0.606) 0.001*** (0.496) 0.001*** (0.915) 0.001*** (0.719) 0.001*** (0.408) 0.001*** (0.136)

Multivariate pairwise comparisons of bacterial T-RFLP profiles among sources, for each restriction enzyme (HaeIII and MspI) applied to the whole

community, to the rare partition (relative abundance ≤ 1%) and to the abundant partition (relative abundance > 1%). The multivariate version of

P-values after 999 permutations from PERMANOVA and PERMDISP (in parentheses) tests are reported. Critical values for significance were corrected for

multiple comparisons (B-Y correction) and significant values are indicated with asterisks (*a < 0.05, **a < 0.01, ***a < 0.005).
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a dominant deltaproteobacterium in all three host species

that is closely related to other sponge- and coral-derived

symbionts (Erwin et al., 2012a, b), was consistently

detected as a conspicuous peak in all sponge species at all

locations, with both restriction enzymes. Combining the

information from HaeIII and MspI digestions, T-RFLP

profiles retrieved 72.5% of the OTUs in the sequence

database and included Deltaproteobacteria, Alphaproteo-

bacteria, Betaproteobacteria, Gammaproteobacteria, Acido-

bacteria, Cyanobacteria (in I. fasciculata and I. variabilis),

Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gem-

matimonadetes, Nitrospira, Planctomycetes and Verrucomi-

crobia that were representative of the bacterial

communities in Mediterranean Ircinia spp. (Erwin et al.,

2012a, b).

Discussion

The bacterial communities associated with the co-occurring

Mediterranean sponges I. fasciculata, I. variabilis and

I. oros were structured primarily by host species and

remained largely stable across geographic distances of up

to 800 km. These results reinforced the key role of host

sponge species on the composition of their symbiotic bac-

terial communities (Montalvo & Hill, 2011; Erwin et al.,

2012a; Hardoim et al., 2012) and were consistent with

high spatial stability reported in previous studies (Taylor

et al., 2005; Wichels et al., 2006; Thiel et al., 2007;

Sch€ottner et al., 2013), including other Ircinia species

(Pita et al., 2013). In addition, we revealed overall similar

patterns of spatial stability and host specificity between

rare and abundant bacteria, as has been found for free-

living microbial communities (Galand et al., 2009).

However, rare bacterial symbionts exhibited slightly

higher stability over sampled locations than abundant

bacterial symbionts, especially for I. variabilis. This is

contrary to a recent study where we reported the tempo-

ral dynamics of microbial communities in these same

sponge species (Erwin et al., 2012b) and showed remark-

able stability in symbiont composition over time with

some seasonal variability observed for the rare symbiont

taxa. Rare taxa may represent transient bacteria (e.g. from

seawater, sediment or fouling) that would be more sus-

ceptible to seasonal environmental changes than abundant

bacteria (true symbionts), while their spatial stability sug-

gests low selection pressure due to geographic location.

Other rare bacterial taxa could be missed in T-RFLP pro-

files due to technical limitations (Pedr�os-Ali�o, 2012). The

fewer T-RFs observed for the seawater profiles compared

with sponges (an apparent contradiction with previous

studies based on cloning and next-generation sequencing

techniques; e.g. Webster et al., 2010; Erwin et al., 2012a)

probably result from a lower replication of the seawater

samples. Future studies on the spatial structure of

Table 3. Spatial structure of bacterial communities within sponge hosts

I. fasciculata I. variabilis I. oros

HaeIII MspI HaeIII MspI HaeIII MspI

Multivariate analysis

Blanes–Alicante 0.291 (0.003*) 0.019 (0.344) 0.038 (0.911) 0.192 (0.620) 0.184 (0.842) 0.025 (0.167)

Blanes–Caials 0.122 (0.854) 0.064 (0.935) 0.040 (0.153) 0.080 (0.855) 0.151 (0.048) 0.090 (0.039)

Blanes–Cabrera 0.091 (0.990) 0.049 (0.644) 0.008* (0.004*) 0.029 (0.060) 0.036 (0.492) 0.036 (0.507)

Blanes–Calafat 0.212 (0.400) 0.044 (0.023) 0.017 (0.005*) 0.023 (0.125) 0.059 (0.087) 0.029 (0.087)

Blanes–Corsica 0.113 (0.274) 0.116 (0.497) 0.206 (0.319) 0.041 (0.113) 0.046 (0.946) 0.036 (0.329)

Alicante–Caials 0.527 (0.269) 0.193 (0.763) 0.216 (0.547) 0.273 (0.521) 0.468 (0.220) 0.331 (0.213)

Alicante–Cabrera 0.452 (0.174) 0.075 (0.051) 0.061 (0.052) 0.124 (0.222) 0.628 (0.623) 0.251 (0.819)

Alicante–Calafat 0.722 (0.053) 0.205 (0.018) 0.095 (0.057) 0.457 (0.435) 0.317 (0.092) 0.154 (0.093)

Alicante–Corsica 0.450 (0.031) 0.113 (0.198) 0.300 (0.883) 0.310 (0.563) 0.556 (0.892) 0.258 (0.905)

Caials–Cabrera 0.218 (0.958) 0.150 (1) 0.023 (0.005*) 0.030 (0.123) 0.400 (0.089) 0.324 (0.381)

Caials–Calafat 0.490 (0.709) 0.104 (0.776) 0.154 (0.017) 0.109 (0.259) 0.365 (0.105) 0.489 (0.114)

Caials–Corsica 0.253 (0.554) 0.175 (0.977) 0.229 (0.861) 0.090 (0.273) 0.403 (0.408) 0.454 (0.314)

Cabrera–Calafat 0.183 (0.884) 0.043 (0.016) 0.009* (0.253) 0.012* (0.898) 0.250 (0.102) 0.181 (0.103)

Cabrera–Corsica 0.241 (0.568) 0.304 (0.563) 0.225 (0.018) 0.060 (0.161) 0.669 (0.588) 0.450 (1)

Calafat–Corsica 0.301 (0.850) 0.113 (0.092) 0.083 (0.009*) 0.098 (0.362) 0.082 (0.099) 0.244 (0.113)

Mantel test (all sites) 0.863 0.931 0.085 0.860 0.950 0.591

Mantel test (no Cabrera) 0.411 0.755 0.022* 0.633 0.841 0.438

Multivariate pairwise comparisons of bacterial T-RFLP profiles among locations within sponge host and each restriction enzyme (HaeIII and MspI).

The multivariate version of P-values after 999 permutations from PERMANOVA and PERMDISP (in parentheses) tests are reported. Critical values for sig-

nificance were corrected for multiple comparisons (B-Y correction) and significant values are indicated with asterisks (*a < 0.05). Isolation-by-

distance effects were investigated by Mantel tests (P-values indicated) for all locations and excluding the island of Cabrera (in italics), for each

restriction enzyme.
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bacterioplankton communities in the Western Mediterra-

nean are needed to further reveal the different ecological

constraints affecting free-living and sponge-derived bacte-

rial communities (Erwin et al., 2012b).

At the beginning of this study, we hypothesized that

within each host species, bacterial communities derived

from sponges in closer locations would exhibit higher

similarity (i.e. isolation-by-distance effects) because: (1)

vertical symbiont transmission in Ircinia spp. (Schmitt

et al., 2007) may link symbiont dispersal range with that

of host larvae; and (2) significant spatial structure and

isolation-by-distance patterns were found for other

sponge species within the same region studied herein

(Scopalina lophyropoda, Blanquer & Uriz, 2010; Crambe

crambe, Duran et al., 2004). However, we did not observe

a significant correlation between bacteria differentiation

and geographic distances for any host Ircinia species.

There are several potential explanations for this lack of

differentiation. First, these sponges may disperse farther

than expected: bacteria in larvae could represent an extra

food supply allowing larvae to spend more time in the

water column, increasing the probability of successful dis-

persal, and resulting in high connectivity among Ircinia

populations (Mariani et al., 2005; Uriz et al., 2008). Sec-

ond, host-related factors and symbiotic interactions may

exert an intense selective pressure on the bacterial com-

munity so that there is no scope for spatial differentia-

tion, even if the connectivity between localities is scarce.

Alternatively, signatures of dispersal limitation may occur

yet be masked by the taxonomic resolution of 16S rRNA

gene sequences (Erwin & Thacker, 2008).

In addition to dispersal limitation processes, microbial

biogeography patterns may be shaped by environmental

selection (Fierer, 2008). Local features such as currents,

river discharges and human activities generate variability

in physicochemical parameters and spatial differences of

bacterioplankton composition among coastal locations in

the Western Mediterranean Sea (Schauer et al., 2000; Flo

et al., 2011). While environmental data were not included

in our study, it is notable that our sampling sites covered

locations near dense human populations (e.g. Blanes,

Alicante) and more pristine, protected areas (e.g. Cabrera,

Corsica, Caials). However, Ircinia-derived bacterial com-

munities persisted across these locations and suggested

that the symbiotic community was mostly unaffected by

differences in local conditions. A potential exception was

observed in bacterial communities associated with two

populations of I. variabilis. Specifically, differences in

symbiont communities occurred between the marine

protected area around the island of Cabrera and the

populous mainland site of Calafat, which suggests some

effect of environmental conditions on the structure of

I. variabilis-associated communities. Specific features of

I. variabilis sponges, such as the plastic morphology char-

acteristic of this species (Turon et al., 2013) or reproduc-

tive strategy, could make this species more sensitive to

local processes than the other two Ircinia spp., which in

turn could influence the spatial dynamics of the bacterial

community structure (Lee et al., 2009a).

Furthermore, a significant isolation-by-distance effect

was detected for I. variabilis samples after removing

Cabrera from the analyses, indicating that inclusion of

this site distorts distance–decay trends due to its close

geographical proximity yet physical isolation by domi-

nant currents from the remaining sites. Notably, these

spatial trends in I. variabilis were only detected in

T-RFLP profiles with the enzyme HaeIII, which generally

exhibited lower resolution than profiles with MspI

(Zhang et al., 2008; Erwin et al., 2012b; Pita et al., 2013;

this study). Thus, these trends should be interpreted

with caution until more data are obtained to confirm

these findings.

In this study, we showed that the bacterial communi-

ties associated with three co-ocurring Ircinia sponges

(I. fasciculata, I. variabilis and I. oros) were host-species

specific and stable across locations 80–800 km apart in

the Western Mediterranean Sea. Combined with previous

reports of symbiont stability in Ircinia spp. over large sea-

sonality in environmental conditions (Erwin et al.,

2012b), our results support the hypothesis of a unique

and stable microenvironment (e.g. mesohyl-specific con-

ditions) within the host sponge body that is largely unaf-

fected by local or seasonal environmental conditions.

Long-term symbiotic interactions shaped by multiple

selective pressures (e.g. biotic factors, seasonal and sto-

chastic environmental changes) over time and vertical

transmission of key bacteria may have resulted in these

persistent bacterial communities. Further studies testing

the resilience of these relationships under stressful condi-

tions and investigating how bacterial symbionts metaboli-

cally interact with their hosts will provide insights into

the vulnerability and resilience of these sponge holobionts

in the Mediterranean Sea.
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Stability of Sponge-Associated Bacteria over Large Seasonal Shifts in
Temperature and Irradiance
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Complex microbiomes reside in marine sponges and consist of diverse microbial taxa, including functional guilds that may con-
tribute to host metabolism and coastal marine nutrient cycles. Our understanding of these symbiotic systems is based primarily
on static accounts of sponge microbiota, while their temporal dynamics across seasonal cycles remain largely unknown. Here, we
investigated temporal variation in bacterial symbionts of three sympatric sponges (Ircinia spp.) over 1.5 years in the northwest-
ern (NW) Mediterranean Sea, using replicated terminal restriction fragment length polymorphism (T-RFLP) and clone library
analyses of bacterial 16S rRNA gene sequences. Bacterial symbionts in Ircinia spp. exhibited host species-specific structure and
remarkable stability throughout the monitoring period, despite large fluctuations in temperature and irradiance. In contrast,
seawater bacteria exhibited clear seasonal shifts in community structure, indicating that different ecological constraints act on
free-living and on symbiotic marine bacteria. Symbiont profiles were dominated by persistent, sponge-specific bacterial taxa,
notably affiliated with phylogenetic lineages capable of photosynthesis, nitrite oxidation, and sulfate reduction. Variability in
the sponge microbiota was restricted to rare symbionts and occurred most prominently in warmer seasons, coincident with ele-
vated thermal regimes. Seasonal stability of the sponge microbiota supports the hypothesis of host-specific, stable associations
between bacteria and sponges. Further, the core symbiont profiles revealed in this study provide an empirical baseline for diag-
nosing abnormal shifts in symbiont communities. Considering that these sponges have suffered recent, episodic mass mortali-
ties related to thermal stresses, this study contributes to the development of model sponge-microbe symbioses for assessing the
link between symbiont fluctuations and host health.

Sponges are sessile invertebrates that form a species-rich phy-
lum at the base of the metazoan tree of life (�8,500 valid

species [65]). Renowned for their efficient filter-feeding capabili-
ties and bioactive secondary metabolite production, sponges have
important ecological and biotechnological relevance as major
players in marine nutrient cycles (11, 12, 26) and the most prolific
producers of marine natural products (�6,600 secondary metab-
olites [16]). The discovery and characterization of diverse micro-
bial symbionts inhabiting the sponge body have prompted the
adoption of the holobiont concept, thereby incorporating micro-
bial symbionts in the study of sponge ecology and evolution (55).
The resulting field of sponge microbiology has grown rapidly in
the past 2 decades (59) and revealed a tight ecological link between
host health and symbiont composition. Indeed, sponge-associ-
ated microbes have been implicated in host metabolism and
growth (20, 22, 75), chemical defense production (21), and sus-
ceptibility to biotic (e.g., disease) and abiotic (e.g., temperature
stress) stressors (33, 66, 72).

The remarkable diversity of the sponge microbiota has pre-
sented a formidable challenge to understanding the structure and
function of microbial guilds in sponge hosts (24, 59, 70). The
sponge microbiota includes diverse phylogenetic lineages of
Archaea and Bacteria, as well as fungi and viruses (52, 56). Among
bacterial symbionts alone, thousands of taxa have been reported,
spanning 17 described phyla and 12 candidate phyla (50), and
hundreds of bacterial taxa can occur in a single host individual
(32, 71). Accordingly, considerable effort has focused on describ-
ing the vast diversity of the sponge microbiota, while more applied
studies of symbiont functioning have targeted specific compo-
nents (e.g., Cyanobacteria [59]) or functional gene pathways (e.g.,
ammonia oxidation [35]) in these communities. As a result, most
studies of sponge microbiology have been limited in scope to one

or a few host species collected at a single time point, and thus,
much of our knowledge concerning the sponge microbiota is
based on a static representation of these potentially dynamic com-
munities (59).

Understanding the complex sponge microbiota requires a ba-
sic knowledge of how these communities change over time. The
general consensus is that sponge-microbe associations are largely
stable over temporal scales (56), including epibionts (31), culti-
vatable symbionts (68), and entire bacterial communities (57, 60,
61, 73). Other studies have reported higher levels of variability
across seasons (74) and when repeatedly sampling the same indi-
viduals over time (3), indicating some degree of symbiont fluctu-
ation over time and individual variation among hosts. The pros-
pect of sponge aquaculture for the production of bioactive
metabolites has prompted investigations of host-symbiont stabil-
ity under ex situ aquarium conditions, revealing high symbiont
stability over short-term time scales (11 days to 12 weeks [23, 67]),
while longer-term maintenance (6 months to 2 years) can result in
substantial shifts in symbiont composition (39, 40, 67). Addi-
tional studies of temporal variation in sponge-associated bacteria
under natural conditions will aid future aquaculture efforts by
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determining natural variation in the sponge microbiota and its
consequences for host-symbiont dynamics. Further, such studies
establish the baseline levels of symbiont variability required to
define abnormal shifts and ascribe symbiont fluctuations to spe-
cific abiotic and biotic factors.

In this study, we investigated temporal variation in the micro-
biota of three congeneric sponge hosts from the Mediterranean
Sea: Ircinia fasciculata, I. variabilis, and I. oros. These sponges are
common members of coastal benthic communities in the Medi-
terranean Sea and harbor diverse, host-specific communities of
bacterial and cyanobacterial symbionts (15, 17, 46, 63). Replicate
individuals of each sponge species were tagged in situ and sampled
quarterly for 1.5 years to monitor their bacterial symbiont com-
munities, using terminal restriction fragment length polymor-
phism (T-RFLP) and clone library analyses of bacterial 16S rRNA
gene sequences. In addition, photosynthetic pigments were mon-
itored in the tissues of the cyanobacterium-rich sponges I. fascicu-
lata and I. variabilis, using chlorophyll a (chl a) quantification.
The specific objectives of the study were (i) to determine the tem-
poral stability of host-symbiont specificity, (ii) to identify perma-
nent and transient symbiont taxa in association with sponge hosts,
and (iii) to document natural variability in symbiont communi-
ties over time. Collectively, these objectives contribute to the
broader goal of establishing the empirical baselines required to
diagnose abnormal symbiont shifts and develop these symbiotic
systems as an impact assessment tool in coastal ecosystems.

METHODS
Sample collection. The sponge species Ircinia fasciculata (Pallas, 1766), I.
variabilis (Schmidt, 1862), and I. oros (Schmidt, 1864) were monitored in
shallow (�20 m) littoral zones at two neighboring sites (�12 km apart)
along the Catalan Coast (Spain) in the northwestern (NW) Mediterra-
nean Sea. I. fasciculata colonies were studied in Punta de S’Agulla (Blanes;
41°40=54.87�N, 2°49=00.01�E) and I. variabilis and I. oros in Mar Menuda
(Tossa de Mar; 41°43=13.62�N, 2°56=26.90�E) from March 2010 to June
2011. Initial sampling of I. oros (March 2010) was performed in the nearby
Punta Santa Anna (Blanes; 41°40=21.48�N, 2°48=13.55�E); however, from
June 2010 to June 2011, sampling was conducted in Tossa de Mar, due to
the onset of heavy construction in the adjacent Blanes Port (�300 m from
the Punta Santa Anna sampling site) in May 2010.

Individual sponges were marked in situ and sampled quarterly for
genetic analyses and chlorophyll a concentrations by scuba diving, using a
scalpel blade and forceps. At each site, ambient seawater samples (500 ml)
were collected simultaneously and in close proximity (�1 m) to sampled
sponges. Sponge and seawater samples were transported in an insulated
cooler to the laboratory (ca. 2 h of transit time), where sponge samples for
genetic analyses were preserved in 100% ethanol and stored at �20°C and
seawater samples were concentrated on 0.2-�m filters and stored at
�80°C. Tissue samples for chlorophyll a quantification were processed
immediately (see below).

Temperature and light measurements. Hourly temperature and light
intensity levels were recorded in situ at Punta de S’Agulla and Tossa de
Mar by Hobo Pendant Temperature/Light Data Loggers (UA-002-64;
Onset Computer Corporation) deployed in close proximity (�2 m) to
sampled sponges. Consistent with the distribution of the studied sponge
taxa (15), data loggers were deployed at Punta de S’Agulla on the horizon-
tal (exposed) substrate, the typical habitat of I. fasciculata, and at Tossa de
Mar on the vertical wall (cryptic) substrate, the typical habitat of I. varia-
bilis and I. oros. Submarine in situ light measurements are complicated by
light sensor orientation and the occurrence of sensor encasement fouling.
To minimize orientation error, data loggers were attached parallel to the
substrate in stable epoxy molds for consistent orientation of light sensors.
To minimize fouling error, data loggers were replaced monthly and only

the first 7 days of light measurements (70 to 105 data points per month)
were used in subsequent analyses. Light measurements were recorded as
lux (lumen m�2), the SI-derived unit for luminous flux density, across a
broad spectrum of wavelengths (200 to 1,200 nm) and used to compare
relative changes in light intensity across sites and seasons. Light duration
was calculated as the number of hourly light readings per day greater than
0. Missing data from Tossa de Mar (March 2010 to May 2010) resulted
from the loss of data loggers. For comparative analyses, seasons were
defined as winter (January, February, and March), spring (April, May, and
June), summer (July, August, and September), and fall (October, Novem-
ber, and December).

DNA extraction. DNA extracts were prepared from sponge samples
containing both ectosome and choanosome for six individuals per host
species and time point (n � 108) and three replicates of filtered seawater
per time point (n � 18), using the DNeasy Blood & Tissue kit (Qiagen).
Dilutions (1:10) of DNA extracts were used as the templates in subsequent
PCR amplifications.

T-RFLP analysis. PCR amplification of 16S rRNA gene sequences (ca.
1,500 bp) for T-RFLP analysis was conducted using the universal bacterial
forward primer 8F (44) and reverse primer 1509R (38), with a 5=-end
6-carboxyfluorescein (6-FAM) label attached to the forward primer. The
total PCR volume was 50 �l, and each reaction mixture contained 15 pmol
of the labeled forward primer, 10 pmol of the reverse primer, 10 nmol of
each deoxynucleoside triphosphate (dNTP), 1� reaction buffer (Ecogen),
and five units of Biotaq polymerase (Ecogen). Thermocycler reaction con-
ditions were an initial denaturing time of 2 min at 94°C, followed by 30
cycles of 1 min at 94°C, 0.5 min at 50°C, and 1.5 min at 72°C, and a final
extension time of 2 min at 72°C. To minimize PCR amplification biases, a
low annealing temperature and low cycle number were used and three
separate reactions were conducted for each sample. Triplicate PCR prod-
ucts were gel purified and cleaned using the QIAquick gel extraction kit
(Qiagen) and then combined and quantified using a Qubit fluorometer
and the Quant-iT dsDNA assay kit (Invitrogen).

Purified PCR products (ca. 100 ng) were digested separately with the
restriction endonucleases HaeIII and MspI (Promega) at 37°C for 8 h and
ethanol precipitated to remove residual salts from enzyme buffers. Sam-
ples were eluted in 10 �l formamide and 0.5 �l GeneScan 600-LIZ size
standard, heated for 2 min at 94°C, cooled on ice, and analyzed by capil-
lary electrophoresis on an automated sequencer (ABI 3730 Genetic Ana-
lyzer; Applied Biosystems) at the Scientific and Technical Services of the
University of Barcelona (Spain). The lengths of individual terminal re-
striction fragments (T-RF) were determined by comparison with internal
size standards using the program GeneScan (PE; Applied Biosystems).
T-RFs beyond the resolution of internal size standards (50 to 600 bp) or
with peak areas of less than 50 fluorescence units were removed, and peak
profiles were imported into the program T-REX (10). Prior to T-RF align-
ment in T-REX, the objective filtering algorithm of Abdo et al. (1) based
on peak area and a cutoff value of 2 standard deviations (SD) was applied
to denoise the data set by eliminating background peaks. Following noise
reduction, T-RFs were aligned across samples using a 1-bp clustering
threshold, and peak profiles were standardized using relative abundance
(percentage total fluorescence).

To compare the similarity of bacterial community profiles, Bray-Cur-
tis similarity matrices were constructed using square root transformations
of relative T-RF abundance data and visualized in nonmetric multidimen-
sional scaling (nMDS) plots and heat maps. Permutational multivariate
analyses of variance (PERMANOVA) were used to determine significant
differences in bacterial community structure across sources (sponge spe-
cies and seawater) and across seasons within sources (nested analysis).
Permutational multivariate analyses of dispersion (PERMDISP) were
conducted for all significant PERMANOVA outcomes to test for differ-
ences in homogeneity (dispersion) among groups. A significant PERMDISP
outcome indicates that differences in community structure detected by
PERMANOVA may result from unequal structural variability among
groups (i.e., heterogeneity of dispersion) rather than consistent structural
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shifts. Multiple pairwise comparisons of symbiont structure and disper-
sion were corrected based on the Benjamini-Yekutieli (B-Y) false discov-
ery rate control (7) and an experiment-wise error rate of 0.05. nMDS,
PERMANOVA, and PERMDISP calculations were performed using
Primer v6 and Permanova� (Plymouth Marine Laboratory, United King-
dom). Heat maps were constructed using JColorGrid v1.869 (28).

Clone library construction and sequence analysis. In a previous
study, we provided an initial characterization of bacterial communities in
I. fasciculata, I. variabilis, and I. oros collected in the winter season (March
2010) by 16S rRNA gene sequence clone libraries (15). In the current
study, we resampled the same host individuals in the summer season
(September 2010) and constructed clone libraries following the same
methodology to (i) monitor changes in symbiont communities across
seasons and (ii) identify T-RFLP profile peaks not represented in the win-
ter clone library. In total, 320 clones from the summer clone libraries were
bidirectionally sequenced using vector primers at Macrogen, Inc., to re-
cover near-full-length 16S rRNA gene sequences (range, 1,399 to 1,525
bp; average length, 1,478 bp). Raw sequence reads were processed in Ge-
neious (13) by aligning high-quality forward and reverse reads to yield a
final consensus sequence for each clone. Consensus sequences were
screened for sequencing anomalies (e.g., chimeras) using Mallard (6) and
a reference 16S rRNA gene sequence from Escherichia coli (GenBank ac-
cession no. U00096) and confirmed or refuted using Pintail (5) and two
related reference sequences.

To determine seasonal overlap and divergence in symbiont commu-
nities, sequences were ascribed to operational taxonomic units (OTUs)
(99% sequence identity, nearest-neighbor algorithm), as implemented in
the mothur software package (49), and compared to 99% OTUs from the
winter clone library (see Table S1 in the supplemental material). Repre-
sentative sequences from each 99% OTU were analyzed using the Ribo-
somal Database Project II (9) sequence classifier to assess taxonomic af-
filiations. In addition, OTU-independent statistical tests were conducted
to determine seasonal differences in the genetic diversity (homogeneity of
molecular variance [HOMOVA]), genetic differentiation (analysis of
molecular variance [AMOVA]) (54) and phylogenetic structure (un-
weighted UNIFRAC [36]) of bacterial communities within each
source. HOMOVA, AMOVA, and UNIFRAC analyses were performed
as implemented in the mothur software package (49).

To match clone library sequences with T-RFLP profile peaks, a refer-
ence database (IRC) was created by in silico digestions of 16S rRNA gene
sequences and consisted of 5=-terminal restriction fragment lengths (ref-
erence T-RFs) for each 99% OTU (n � 190) and restriction endonuclease
(HaeIII or MspI) combination. Following correction of T-RF drift (see
below), the IRC reference database was used to match empirical T-RFs
from T-RFLP profiles with known 16S rRNA gene sequences from clone
libraries, using the phylogenetic assignment tool (PAT) (30) with 1.5-bp
bins. Discrepancies between the predicted length of reference T-RFs and
actual length of empirical T-RFs can occur due to the phenomenon of
T-RF drift (29), where small differences in the molecular weight of fluo-
rescent labels attached to samples (e.g., FAM) and size standards (e.g.,
LIZ) result in differential capillary migration rates and underestimation of
DNA fragment sizes (41). To correct for T-RF drift associated with the
fluorescent labels used here, the empirical lengths of T-RFs were deter-
mined for eight dominant bacterial OTUs (IRC001, IRC002, IRC003,
IRC004, IRC006, IRC007, IRC0012, and IRC0015) using monocultures of
each clone as the templates for PCR amplification and T-RFLP analyses, as
described above. Regression analysis of the empirical versus predicted
lengths of T-RFs from these clones produced a standard curve (R2 � 0.99;
see Fig. S1 in the supplemental material) used to correct for the discrep-
ancies of T-RF drift and more accurately match DNA sequences with
T-RFLP profile peaks.

Chlorophyll a concentrations. Tissue samples for chl a quantification
were collected from ectosomal regions of I. fasciculata (n � 48) and I.
variabilis (n � 47) and processed following previously described methods
(17). Due to the absence of photosymbionts in I. oros (15), this species was

not included in chlorophyll analysis. For I. fasciculata, the same eight
marked individuals were repeatedly sampled, due to the large size and
rapid healing processes of this species. For I. variabilis, three to 11 non-
marked individuals were randomly sampled each month from the same
population, as the smaller size and slower healing rate of this species
prevented repeated sampling of the same colonies. Accordingly, a one-
way repeated-measures analysis of variance (ANOVA) for I. fasciculata
and a one-way ANOVA for I. variabilis were conducted to compare chl a
concentrations within each species across sampling months. Multiple pair-
wise comparisons of chl a concentrations between species within each month
were conducted using Student’s t tests with Bonferroni corrections. Statistical
analyses were performed using the software Sigmaplot v11.

Nucleotide sequence accession numbers. The sequences determined
in this study have been quality checked and are archived in GenBank
under accession numbers JX206477 to JX206796.

RESULTS
Seasonal variation in temperature and light intensity. Both
monitoring sites exhibited clear seasonal trends in temperature
(Fig. 1). Annual temperature minima occurred during the winter
season, with the lowest average monthly values recorded in March

FIG 1 Seasonal variation in seawater temperature from March 2010 to June
2011 at two monitoring sites in the NW Mediterranean Sea. Monthly averages
(	SD) for Punta de S’Agulla (black circles) and Tossa de Mar (gray diamonds)
(A) and daily averages for Punta de S’Agulla (B) and Tossa de Mar (C). Gray
triangles highlight sampling times, and black dots indicate discrete measure-
ments prior to successful data logger deployment at Tossa de Mar.
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2010 (12.7°C in S’Agulla and 12.3°C in Tossa) and lowest average
daily values in February 2011 (12.4°C in S’Agulla and 12.1°C in
Tossa). Annual temperature maxima occurred during the sum-
mer season, with the highest average monthly and daily values
recorded in August 2010 (23.8°C and 25.3°C in S’Agulla; 22.2°C
and 24.8°C in Tossa). Annual temperature fluctuations were ac-
cordingly high at both sites (�12.7°C). Small differences in sea-
water temperatures between the monitoring sites likely resulted
from slightly deeper data logger deployment in Tossa (7 m) than
in S’Agulla (5 m). The summer season was also characterized by
large fluctuations in daily temperatures, averaging 2.2°C (	1.3
SD) in S’Agulla and 1.8°C (	1.2 SD) in Tossa, with �3°C daily
fluctuations recorded on 15 and 12 days in S’Agulla and Tossa,
respectively. In contrast, the winter season exhibited minor fluc-
tuations in daily temperatures, averaging 0.4°C (	0.2 SD) in
S’Agulla and 0.3°C (	0.2 SD) in Tossa and never exceeding 0.8°C
at either site. A notable upwelling event occurred in August 2010,
causing drastic temperature decreases at both sites and resulting in
weekly temperature fluctuations of 7.7°C and 9.4°C and daily fluc-
tuations of 6.9°C and 5.4°C in S’Agulla and Tossa, respectively.

Both monitoring sites also exhibited clear trends in irradi-

ance conditions across seasons (Fig. 2). Light duration (i.e., day
length) was longer in spring and summer than in the fall and
winter seasons, which experienced up to 6 h less of light expo-
sure per day. Maximum and average light intensity values were
higher during the spring and summer seasons than in the fall
and winter. Light intensity levels in S’Agulla averaged 1,569 to
10,240 lx per month, with maximum values reaching over
38,000 lx. Lower levels were observed in Tossa, averaging 264 to
1,198 lx per month, and maximum values never exceeded 3,700
lx. The large differences in irradiance between sites were con-
sistent with the deployment of data loggers in photophilic
(S’Agulla) and semisciophilous (Tossa) communities and cor-
respond to the distinct habitats of the host sponge species in-
vestigated.

Host specificity of bacterial communities. A total of 213
unique microbial symbiont T-RFs were identified using the re-
striction enzyme HaeIII (151 in I. fasciculata, 149 in I. variabilis,
147 in I. oros, and 144 in seawater) and 237 unique T-RFs with
MspI (185 in I. fasciculata, 164 in I. variabilis, 156 in I. oros, and
159 in seawater). Binary data analysis of individual T-RFs (pres-
ence/absence) revealed highly congruent specificity patterns be-
tween the two restriction enzymes used to construct T-RFLP pro-
files (see Fig. S2 in the supplemental material). One-third of the
unique T-RFs (32.4% for HaeIII and 33.0% for MspI) were
sponge specific, present in one or more host species and absent
from seawater, while �1/10 (8.9%, HaeIII; 5.9%, MspI) were re-
covered exclusively from seawater (see Fig. S2 in the supplemental
material). The majority of T-RFs were shared among sponges and
seawater, present in at least 1 sponge host and seawater (23.0%,
HaeIII; 26.6%, MspI) or among all 3 host sponges and seawater
(35.7%, HaeIII; 34.6%, MspI) (see Fig. S2). Among the sponge-
specific T-RFs, the highest number of unique (host species-spe-
cific) T-RFs was detected in I. fasciculata (n � 14, HaeIII; n � 11,
MspI), and I. fasciculata and I. variabilis shared more T-RFs than
any other pair (n � 12, HaeIII; n � 14, MspI). Similarly, commu-
nity-level analysis based on the relative abundance of microbial
T-RFs revealed clear differentiation of sponge and seawater com-
munities and more similar symbiont communities in I. fasciculata
and I. variabilis than in I. oros (Fig. 3).

Statistical analyses of community structure (PERMANOVA)
revealed significant differences between sponge and seawater mi-
crobial fingerprints and among all pairwise comparisons of host
sponge species (Table 1). Nonmetric multidimensional scaling
(nMDS) plots exhibited clear spatial segregation of sponge and
seawater-derived microbial communities, while among host
sponges, symbiont communities consistently clustered by host
species across all seasons, with no overlap between I. fasciculata
and I. oros and higher variability in the symbiont profiles of I.
variabilis (Fig. 4A and C). Dispersion analysis revealed higher
variability within seawater communities than among sponge-as-
sociated bacteria, as pairwise comparisons between sponges and
seawater were significant for at least one enzyme while no signif-
icant differences in dispersion were found in pairwise compari-
sons among sponge species (Table 1).

Seasonal variation in bacterial communities. Symbiont com-
munities within each host sponge species exhibited high stability
throughout the monitoring period, averaging 69.9% (I. fascicu-
lata), 64.0% (I. variabilis), and 63.2% (I. oros) community simi-
larity in T-RFLP profiles. nMDS plots revealed two tight spatial
clusters for I. oros and I. fasciculata plus I. variabilis samples, par-

FIG 2 Seasonal variation in light duration (day length) and intensity from
March 2010 to June 2011 at two monitoring sites in the NW Mediterranean
Sea. Monthly averages (	SD) for day length at Punta de S’Agulla (black cir-
cles) and Tossa de Mar (gray diamonds) (A). Monthly averages (black dia-
monds) and maximum light intensity (gray bars) at Punta de S’Agulla (B) and
Tossa de Mar (C).
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ticularly when considering HaeIII profiles (Fig. 4B and D). Each
cluster consisted of all samples from the 2010-2011 fall and winter
and from spring of 2011, as well as some individuals from spring
and summer of 2010. However, most samples from spring and
summer of 2010 were displaced from these central clusters, indi-
cating some change in bacterial profiles during these seasons. In
contrast, seawater bacterial communities exhibited clear and con-
sistent seasonal shifts in composition, resulting in spatially segre-
gated clusters in nMDS plots that corresponded to distinct bacte-

rioplankton communities in the fall/winter, spring, and summer
seasons (Fig. 4).

Statistical analyses of community structure (PERMANOVA)
and dispersion (PERMDISP) revealed significant differences in
structure and homogeneity of dispersion among all pairwise com-
parisons of seawater bacteria (see Table S2 in the supplemental
material), confirming the seasonal shifts in seawater bacteria visu-
alized in nMDS plots. Among host sponges, significant differences
in community structure were observed in the transition from win-
ter to spring and summer to fall of 2010 for at least one enzyme
(see Table S2), due to high variability in bacterial community
profiles among individuals of each host sponge in spring and sum-
mer of 2010. Indeed, PERMDISP analyses revealed significant dif-
ferences in dispersion during these transitional periods, indicating
that heterogeneity was the main driver of structural differences in
symbiont communities. Within the fall/winter and spring/sum-
mer seasons, structural differences in sponge-associated bacteria
were generally not significant (see Table S2).

Clone library analysis of 16S rRNA gene sequences confirmed the
stability of sponge-associated microbial communities over time and
the seasonal variability of seawater communities. Comparisons of
clone libraries constructed from the same individuals sampled in
winter (March) and summer (September) 2010 seasons revealed that
a large portion of sponge symbiont communities (57 to 80% of
clones) were stable across seasons, with no significant differences in
the genetic differentiation and community structure (Table 2; see Fig.
S3 in the supplemental material). Bacterial communities in I. varia-
bilis and I. oros also exhibited no significant differences in genetic
diversity between sampling times, while I. fasciculata symbionts
showed significantly lower diversity in September 2010, due to in-

FIG 3 Average similarity of bacterial communities in I. fasciculata (black triangles), I. variabilis (barred diamonds), I. oros (gray triangles), and ambient seawater
(white circles) over the 1.5-year monitoring period. Dendrogram (left) based on Bray-Curtis (BC) similarity values from T-RFLP profiles with HaeIII. Heat map
(right) shows all pairwise BC similarity values for both HaeIII (upper diagonal) and MspI (lower diagonal) data sets.

TABLE 1 Permutational statistical analyses of T-RFLP dataa

Analysis Pairwise comparison

HaeIII MspI

t
P
(perm) t

P
(perm)

PERMANOVA I. fasciculata/I. variabilis 3.683 0.001* 3.682 0.001*
I. variabilis/I. oros 5.164 0.001* 4.508 0.001*
I. oros/I. fasciculata 6.988 0.001* 6.637 0.001*
I. fasciculata/seawater 10.408 0.001* 9.500 0.001*
I. variabilis/seawater 9.258 0.001* 8.082 0.001*
I. oros/seawater 9.136 0.001* 10.028 0.001*

PERMDISP I. fasciculata/I. variabilis 1.615 0.177 0.848 0.475
I. variabilis/I. oros 0.516 0.639 1.350 0.235
I. oros/I. fasciculata 2.152 0.071 0.456 0.683
I. fasciculata/seawater 4.016 0.001* 3.575 0.002*
I. variabilis/seawater 2.451 0.046 2.933 0.015*
I. oros/seawater 1.997 0.093 4.424 0.002*

a Analyses included bacterial community structure (PERMANOVA) and dispersion
(PERMDISP) among sponges and seawater. *, comparison was found to be significant
following B-Y correction (7). P (perm), permutation P value.
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creased representation of the dominant cyanobacterium, “Candida-
tus Synechococcus spongiarum,” in the summer library compared to
the winter one (51% and 26% of clones, respectively). Seawater clone
libraries from winter and summer shared few sequences (16 to 22% of
clones) and exhibited significant differences in community structure,
genetic diversity, and genetic differentiation (Table 2; see Fig. S3).

Seasonal variation in bacterial OTUs. Combined analysis of
the winter and summer clone libraries revealed 190 bacterial
OTUs (99% sequence identity) in sponges and seawater, corre-
sponding to 13 microbial phyla. Within each host sponge species,
similar phylogenetic compositions of bacteria were observed be-

tween seasons (Table 3), with differences between seasons typi-
cally resulting from shifts in rare bacterial OTUs. For example, I.
fasciculata hosted a single rare OTU (2.6% of clones) affiliated
with Nitrospira in winter that was absent from summer clone li-
braries. In contrast, seawater bacteria exhibited large fluctuations
in specific lineages and OTUs. For example, cyanobacterial OTUs
accounted for only 1.4% of seawater clones in winter and over
one-fourth of clones (27.6%) in summer (Table 3). Similarly,
rank-abundance plots of bacterial OTUs revealed that dominant
sponge symbionts were stable across seasons and rare OTUs were
more variable, whereas shifts in dominant and rare seawater bac-
teria were observed between the winter and summer seasons (see
Fig. S3 in the supplemental material).

Clone libraries also revealed the presence of dominant symbi-
ont OTUs in the three sponge species. Overall, eight symbiont
OTUs comprised over one-half of all Ircinia-associated bacterial
clones (51.7%) and were absent from ambient seawater (Table 4).
Seven of the eight dominant OTUs were recovered from both
winter and summer seasons and matched closely (�98% sequence
identity) other sponge-associated bacteria. The exception was a
member of Gammaproteobacteria (IRC012) present only in the
winter season and whose closest sequence match was a sediment-
derived bacterium (Table 4). The most dominant Ircinia-associ-
ated OTU (IRC002) matched the sponge-specific cyanobacterium

FIG 4 Nonmetric multidimensional scaling (nMDS) plots of bacterial community structure from replicate individuals of I. fasciculata, I. variabilis, and I. oros
and ambient seawater over the 1.5-year monitoring period. nMDS ordination based on Bray-Curtis similarity of T-RFLP profiles for HaeIII (A, B) and MspI (C,
D) data sets. Stress values for two-dimensional ordination are shown in parentheses for each enzyme. Data points are coded by source (A, C), with circles
encompassing all samples from each source, and by season (B, D), with shaded circles denoting core bacterial symbiont profiles and nonshaded circles
highlighting deviations from core profiles in spring/summer 2010 (B, D).

TABLE 2 Statistical comparisons of genetic diversity and community
structure of bacterial communities in sponges (Ircinia spp.) and
seawater between winter and summer seasonsa

Community

Statistical result for:

AMOVA HOMOVA UNIFRAC

Fs P B P U P

I. fasciculata 4.434 0.065 1.834 �0.001 0.670 0.147
I. variabilis 2.241 0.634 0.043 0.248 0.593 0.073
I. oros 3.365 0.397 0.024 0.502 0.584 0.054
Seawater 4.408 �0.001 0.620 0.007 0.734 0.006
a Fs, F statistic; B, Bartlett’s statistic; U, unweighted UniFrac value.
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“Candidatus Synechococcus spongiarum” (64) and represented
the most common symbiont in I. fasciculata and I. variabilis. The
second most dominant OTU (IRC001) matched a member of Del-
taproteobacteria in the order Desulfovibrionales and represented
the second most common symbiont in all Ircinia hosts. An Acido-
bacterium (IRC003) was the third most dominant OTU and rep-
resented the most common symbiont in I. oros, while also present
in I. variabilis yet absent in I. fasciculata. The remaining four dom-
inant, sponge-specific OTUs were less abundant (�5% of clones)

and corresponded to symbiont taxa affiliated with Gammaproteo-
bacteria, Nitrospira, and Cyanobacteria (Table 4).

Comparison of clone library and T-RFLP data revealed high
congruency between these techniques and allowed for the identi-
fication of most symbiont taxa in the T-RFLP profiles. In silico
restriction enzyme digestion of clone libraries predicted 71.6%
and 95.8% of all peaks in T-RFLP profiles (HaeIII and MspI data,
respectively). Empirical T-RFs of the eight dominant OTUs were
well represented in sponge symbiont profiles and accounted for

TABLE 3 Composition of bacterial communities in Ircinia spp. and ambient seawater sampled in winter (March) and summer (September) seasons

Bacterial phylum

% of total clones (no. of 99% OTUs)

I. fasciculata I. variabilis I. oros Seawater

Winter Summer Winter Summer Winter Summer Winter Summer

Proteobacteria 45.5 (16) 30.0 (11) 61.3 (22) 50.7 (18) 56.1 (17) 47.7 (19) 56.2 (28) 43.7 (21)
Alphaproteobacteria 6.5 (4) 2.9 (2) 11.3 (6) 12.2 (4) 6.8 (5) 30.1 (15) 32.2 (11)
Betaproteobacteria 1.3 (1) 2.7 (2)
Gammaproteobacteria 20.8 (10) 12.9 (6) 33.8 (11) 32.0 (13) 28.0 (10) 25.0 (10) 23.3 (11) 11.5 (10)
Deltaproteobacteria 18.2 (2) 14.3 (3) 15.0 (4) 18.7 (5) 15.9 (3) 15.9 (4)

Cyanobacteria 32.5 (2) 61.4 (2) 7.5 (1) 21.3 (1) 1.1 (1) 1.4 (1) 27.6 (4)
Acidobacteria 5.2 (3) 1.4 (1) 5.0 (3) 10.7 (1) 18.3 (3) 25.0 (5) 1.1 (1)
Bacteroidetes 9.1 (3) 2.9 (1) 3.8 (2) 5.3 (2) 3.7 (2) 9.6 (7) 8.0 (4)
Chloroflexi 3.9 (3) 1.4 (1) 4.0 (2) 4.9 (2) 14.8 (7)
Actinobacteria 3.8 (2) 1.3 (1) 3.7 (2) 1.1 (1) 12.3 (3) 5.7 (3)
Nitrospira 2.6 (1) 15.0 (1) 4.0 (1) 2.4 (1) 2.3 (2)
Bacillariophyta 2.5 (2) 9.8 (5) 8.2 (4) 1.1 (1)
Verrucomicrobia 1.4 (1) 12.6 (2)
Firmicutes 1.4 (1) 5.7 (2) 1.4 (1)
Gemmatimonadetes 1.3 (1) 1.4 (1) 1.3 (1) 1.3 (1) 1.2 (1) 2.3 (2)
Chlorophyta 4.1 (3)
Planctomycetes 1.3 (1) 1.4 (1)
Uncertain 4.1 (2)

TABLE 4 Characteristics of dominant symbiont OTUs in Ircinia spp.

OTU

No. (%) of total clonesa

Source of closest BLAST
match (% sequence
identity, accession no.)

Taxonomic classification (Bayesian probability)

Putative functionIF IV IO

All
Ircinia
spp. SW Taxonb Lowest taxonomic rank

IRC001 18 (12.2) 16 (10.3) 22 (13.0) 56 (11.9) 0 Sponge associated (99.2,
EU495967)

Deltaproteobacteria
(79)

Order Desulfovibrionales
(70)

Sulfate reduction

IRC002 56 (38.1) 22 (14.2) 0 (0.0) 78 (16.5) 0 Sponge associated (98.8,
GU981862)

Cyanobacteria (100) Genus Synechococcus
(100)

Carbon fixation

IRC003 0 (0.0) 10 (6.5) 26 (15.3) 36 (7.6) 0 Sponge associated (98.7,
AJ347029)

Acidobacteria (100) Gp10 (100) NAc

IRC004 2 (1.4) 15 (9.7) 0 (0.0) 17 (3.6) 0 Sponge associated (99.3,
EU183762)

Nitrospira (100) Genus Nitrospira (100) Nitrite oxidation

IRC006 2 (1.4) 11 (7.1) 1 (0.6) 14 (3.0) 0 Sponge associated (98.8,
EU495951)

Gammaproteobacteria
(100)

Incertae sedis (68) NA

IRC007 0(0.0) 6(3.9) 10(5.9) 16(3.4) 0 Sponge associated (98.7,
GQ163729)

Gammaproteobacteria
(100)

Order Oceanospirillales
(46)

NA

IRC012 4 (2.7) 6 (3.9) 5 (2.9) 15 (3.2) 0 Sediment bacterium (97.4,
GQ143791)

Proteobacteria (100) Incertae sedis (84) NA

IRC015 12 (8.2) 0 (0.0) 0 (0.0) 12 (2.5) 0 Sponge associated (99.3,
JN655231)

Cyanobacteria (100) GpIIa (100) Carbon fixation

a IF, I. fasciculata; IV, I. variabilis; IO, I. oros; SW, seawater.
b All taxa are phyla except Deltaproteobacteria and Gammaproteobacteria, which are classes.
c NA, not available.
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53.0% (	2.2% standard error [SE], HaeIII data) and 34.2%
(	1.2%, MspI data) of total profile peak areas, while the same
T-RF peaks comprised only a small portion of seawater bacteria
profiles (7.5% 	 0.8% and 6.9% 	 1.1%, HaeIII and MspI data,
respectively). Further, these eight dominant symbionts were pres-
ent in their respective hosts throughout the seasonal cycle (see
Table S3 in the supplemental material), confirming the stability of
these symbionts over annual temporal scales and seasonal envi-
ronmental conditions.

Seasonal variation in chlorophyll a content. The photosym-
biont-harboring sponges I. fasciculata and I. variabilis exhibited
different average concentrations and temporal variability in chlo-
rophyll a content. Chlorophyll a levels were higher in I. fasciculata
than in I. variabilis, consistent with the habitat preferences of I.
fasciculata (higher irradiance zones) and I. variabilis (lower irra-
diance zones). Differences between species were significant for all
months except June (2010 and 2011 [Fig. 5]), which is, notably,
the month with the highest average irradiance levels (Fig. 2). For
both host sponges, significant variation (P � 0.001) in chl a con-
tent was observed across the monitoring period. In I. variabilis,
this variation was due to a significant decrease in average chl a
content in September 2010 (83.3 �g/g), whereas the remaining
months exhibited similar average values (131.0 to 162.4 �g/g).
Seasonal changes in chl a content were more pronounced in I.
fasciculata and inversely related to daylight hours and light inten-
sity (Fig. 5), as lower values occurred during the spring and sum-
mer months (149.8 to 210.7 �g/g) and higher values during fall
and winter (235.1 to 330.2 �g/g).

DISCUSSION
Seasonal stability and specificity of sponge microbiota. Tempo-
ral monitoring of three Ircinia spp. and ambient seawater over 1.5
years revealed remarkable stability and specificity of sponge-asso-
ciated bacterial symbiont communities, despite large fluctuations
in ambient environmental conditions. Across all seasons, each
Ircinia host maintained a specific bacterial symbiont community,
more similar within each host species over time than among hosts.
Further, higher symbiont similarity occurred between the micro-
biotas of I. fasciculata and I. variabilis than with that of I. oros,

consistent with previous analyses of host specificity among these
species (15). Host specificity patterns in Ircinia-associated bacte-
ria are complex, due to variable levels of symbiont overlap among
hosts. Despite the prevalence of generalist symbionts in Ircinia
microbiotas (i.e., taxa occurring in multiple, unrelated sponge
hosts), community level analyses revealed host species-specific
symbiont assemblages in each host (15). Here, we show that this
phenomenon, termed “a specific mix of generalists,” is main-
tained over time and across seasons, with little evidence for sym-
biont restructuring or specificity shifts in response to different
environmental conditions. The seasonal stability of host specific-
ity patterns in the Ircinia microbiota supports the hypothesis of
host species-specific, stable associations between bacteria and ma-
rine sponges (32, 56, 59, 71, 73).

In contrast, seawater bacterial communities exhibited clear
temporal shifts in diversity and composition according to a sea-
sonal cycle. Previous studies of surface bacterioplankton in the
coastal NW Mediterranean Sea have revealed a similar seasonal
succession of seawater bacterial communities (47, 48), including a
greater community similarity in the fall and winter seasons as
observed here (2). Regional stratification of the water column is a
seasonal phenomenon in the NW Mediterranean Sea, where re-
stricted upwelling and vertical mixing of nutrient-rich, cold water
results in nutrient depletion of surface waters during the summer
months (14). The summer stratification period and its effects on
nutrient availability are primary drivers of seasonal microbial dy-
namics in the Mediterranean Sea (43). Comparatively low sea-
sonal dynamics of sponge-associated bacterial community struc-
ture suggest that different ecological constraints act on free-living
versus symbiotic marine bacteria. The effects of nutrient-poor
conditions during summer stratification on bacterial communi-
ties in the sponge microbiota appear to be limited, supporting the
hypothesis of a unique and comparatively stable microbial habitat
within the sponge body.

Persistent components of the sponge microbiota. The ob-
served stability of bacterial communities associated with Ircinia
hosts was driven by the persistent presence of dominant symbiont
OTUs. Despite the high diversity of the Ircinia microbiota, a small
number of symbiont OTUs accounted for the majority of bacteria
represented in clone libraries and T-RFLP profiles, similar to what
was seen in previous studies of sponge-associated bacteria (18,
71). Selective pressures that maintain specific symbiont taxa in the
sponge host may result from microbial adaptations to these
unique niche microenvironments, as suggested by the presence of
unique, vertically transmitted (51) sponge-specific bacterial lin-
eages (52, 56), and/or the fulfillment of functional roles by partic-
ular symbiont guilds that enhance sponge-bacteria holobiont fit-
ness (20, 22, 58). In the latter context, it is noteworthy that several
of the dominant symbiont OTUs recovered in Ircinia hosts were
classified into bacterial lineages with known physiological capa-
bilities, such as photosynthesis (IRC002 and IRC015, Cyanobacte-
ria), sulfate reduction (IRC001, Desulfovibrionales), and nitrite
oxidation (IRC004, Nitrospira). The metabolic profile of the
sponge microbiome, assessed by both metagenomic (34, 62) and
nutrient flux (45) approaches, has shown diverse and active func-
tional guilds involved in the nutrient cycles of carbon (59), nitro-
gen (26), and sulfur (25) that may boost host sponge metabolism
and contribute significantly to coastal marine nutrient cycles (4,
12, 19, 27). As such, symbiont functionality and its ecological con-
sequences may represent key factors for the selective mechanisms

FIG 5 Chlorophyll a content of the photosymbiont-bearing sponges I. fascicu-
lata (black bars) and I. variabilis (gray bars) over the 1.5-year monitoring
period. Asterisks denote significant differences (P � 0.05) between host
sponge species by month; letters indicate significant differences among
months within each host species (uppercase letters for I. fasciculata and low-
ercase letters for I. variabilis). Error bars represent 	1 SD.
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that establish and maintain specific guilds of sponge-associated
bacterial symbionts.

Temporal analyses of photosynthetic pigments in I. fasciculata
and I. variabilis provided further insight into symbiont function-
ality and evidence for seasonal variation in the activity of persis-
tent photosymbiont taxa. Cyanobacteria are a key functional guild
in the sponge microbiota, capable of photosynthetic carbon as-
similation and the transfer of surplus carbon stores to their hosts
(59). A recent study reported higher photosynthetic activity of
cyanobacterial symbionts in I. fasciculata than in I. variabilis, with
differences in symbiont functionality related to ambient irradi-
ance levels in preferred host habitats rather than symbiont com-
position (17). Here, we show that I. variabilis exhibited minimal
seasonal fluctuations in chl a content, consistent with reduced
irradiance levels in the shaded habitats where this species thrives.
In contrast, the chl a content of photosymbionts in I. fasciculata
followed a seasonal pattern, with annual minima in summer and
peak values in winter, similar to those reported in surface seawater
from the NW Mediterranean (14, 43, 47). Thus, while the factors
that determine microbial structure may differ between the sponge
niche and open seawater environments (e.g., nutrient levels),
some seasonal physiological constraints that dictate microbial
function (e.g., irradiance exposure) may be conserved between
symbiotic and free-living microbes. Structurally, a single cyano-
bacterial taxon dominated the symbiotic microbiota in I. fascicu-
lata and I. variabilis across all seasons; yet functionally, their pho-
tosynthetic activity differed among hosts and appears to have a
seasonal component in I. fasciculata, with potential consequences
for host metabolism and growth. The critical ecological link be-
tween symbiont structure and function is not well resolved in the
sponge microbiota and requires further study, including the po-
tential for seasonal variability in the physiology and functioning of
permanent sponge symbionts and its consequence for host metab-
olism and marine nutrient cycles.

Variable components of the sponge microbiota. Similar to
previous studies of temporal variation in the sponge microbiota
(3), some variability was observed in symbiont communities over
time and among individual hosts, though primarily restricted to
rare symbiont taxa. Transient components of the sponge micro-
biota are not unexpected, as microbes recovered from sponge tis-
sue may represent food source bacteria (42), invasive (69) or foul-
ing (31) microbes, or simply environmental bacteria present in the
sponge filtration system during collection. For example, a com-
mon and relatively abundant bacterial OTU (IRC012, 3.2% of
sponge clones) was present in the microbiotas of all sponge hosts
in winter and absent in the summer. Unlike the majority of
sponge-associated bacteria in Ircinia, this Gammaproteobacterium
was not phylogenetically related to other sponge symbionts but
rather matched most closely a sediment-derived sequence. Con-
sidering such possible sources of transient microbes in the sponge
microbiota, the high degree of bacterial community similarity ob-
served throughout the monitoring period here is even more ex-
traordinary.

Variability in the composition of bacterial symbionts among
conspecific hosts was also detected here by monitoring the same
individuals over time, a sampling design rarely utilized to date in
the field of sponge microbiology (3). Although this variability was
minimal compared to differences among host species, some sym-
bionts were consistently recovered from particular individuals
and not others. The most notable example is a Synechocystis-re-

lated cyanobacterium in Ircinia fasciculata. A previous report has
shown that this cyanobacterium represented a distinct clade of
sponge symbionts specific to I. fasciculata yet occurred in only one
of three I. fasciculata individuals studied (17). Here, we report
similar findings, with the same Synechocystis phylotype recovered
in only one of six host individuals, and we showed that this asso-
ciation was stable over time, as the cyanobacterium was recovered
in winter and summer clone libraries and present in all symbiont
profiles for this particular sponge host. These results show that
interindividual variation in the sponge microbiota, often ascribed
to the nonspecific or transient bacterial associates discussed
above, can result from persistent symbionts that occur sporadi-
cally among a host population. The implications of interindi-
vidual variability in symbiont composition on host ecology and
symbiont evolution are unknown for sponge-microbe associa-
tions but have the potential to affect symbiont community func-
tion (e.g., photosynthetic activity) and host-symbiont metabolic
interactions.

Symbiont fluctuations and thermal thresholds. Recent re-
ports of widespread disease and mass mortality events in Ircinia
spp. have raised concerns about the future of these sponge popu-
lations in the warming Mediterranean Sea. Elevated seawater tem-
peratures are hypothesized to trigger such episodic mortality
events, as recurrent disease outbreaks in I. fasciculata and I. varia-
bilis occurred annually following peak seawater temperatures in
summer (37, 53) and greater disease prevalence has been corre-
lated with the length of exposure to temperatures exceeding
threshold values (8). In addition to tissue necrosis, affected
sponges also exhibit characteristic changes in their associated mi-
crobiota, including the loss of stable symbionts (8) and/or their
replacement by pathogenic microbes (37, 53). Similar symbiont
disruption and proliferation of putatively pathogenic bacteria
were reported in a tropical sponge, Rhopaloeides odorabile, when
exposed to elevated seawater temperatures (66), suggesting that
symbiont community collapse and host sponge mortality may be-
come widespread as thermal tolerances are exceeded.

A critical question is whether symbiont disruption precedes
and precipitates host mortality (e.g., symbiont evacuation fol-
lowed by colonization of infectious microbes) or simply results
from declining host health. In the current study, no sponge mor-
tality events occurred during the monitoring period, consistent
with previous surveys of the study area (8), yet deviations from
core symbiont communities (i.e., increased heterogeneity) were
reported in warmer months, due to fluctuations in rare symbiont
taxa within some host individuals. At our monitoring sites, lower
temperatures (daily averages of �25°C during only 3 days) were
recorded than those that preceded sponge mortality events in
other Mediterranean regions (daily averages of 26 to 27°C). Ac-
cordingly, no pathogenic lineages (e.g., Vibrio spp.) were detected
in sponge hosts, and the symbiont community shifts observed in
our study were minor (i.e., restricted to heterogeneity in rare sym-
bionts, while dominant symbionts were present throughout) and
temporary (i.e., symbiont structure in all sponge hosts reverted to
homogeneous core profiles following the 2010 summer season).
However, considering the warming trends in the Mediterranean
Sea and the proximity of temperature maxima in our study area
(25°C) to those preceding sponge mortality events (26 to 27°C),
the observed shifts in rare symbiont taxa may represent a precur-
sor to larger symbiont declines and indicate approaching thermal
thresholds for Mediterranean sponge-microbe symbioses. Addi-
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tional monitoring studies and controlled experimentation are re-
quired to assess whether elevated seawater temperatures induce
shifts in rare symbiont taxa, how these symbiont fluctuations af-
fect host health, and the utility of symbiont monitoring for pre-
dicting sponge mortality events.

ACKNOWLEDGMENTS

We thank F. Crespo (CEAB) for field assistance.
This research was supported by the Spanish Government projects

CTM2010-17755 and CTM2010-22218, by the Catalan Government
grant 2009SGR-484 for Consolidated Research Groups, and by the U.S.
National Science Foundation under grant 0853089.

REFERENCES
1. Abdo Z, et al. 2006. Statistical methods for characterizing diversity of

microbial communities by analysis of terminal restriction fragment length
polymorphisms of 16S rRNA genes. Environ. Microbiol. 8:929 –938.

2. Alonso-Sáez L, et al. 2007. Seasonality in bacterial diversity in north-west
Mediterranean coastal waters: assessment through clone libraries, finger-
printing and FISH. FEMS Microbiol. Ecol. 60:98 –112.

3. Anderson SA, Northcote PT, Page MJ. 2010. Spatial and temporal vari-
ability of the bacterial community in different chemotypes of the New
Zealand marine sponge Mycale hentscheli. FEMS Microbiol. Ecol. 72:328 –
342.

4. Arillo A, Bavestrello G, Burlando B, Sará M. 1993. Metabolic integration
between symbiotic cyanobacteria and sponges: a possible mechanism.
Mar. Biol. 117:159 –162.

5. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ. 2005.
At least 1 in 20 16S rRNA sequence records currently held in public repos-
itories is estimated to contain substantial anomalies. Appl. Environ. Mi-
crobiol. 71:7724 –7736.

6. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ. 2006.
New screening software shows that most recent large 16S rRNA gene clone
libraries contain chimeras. Appl. Environ. Microbiol. 72:5734 –5741.

7. Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in
multiple testing under dependency. Ann. Stat. 29:1165–1188.

8. Cebrian E, Uriz MJ, Garrabou J, Ballesteros E. 2011. Sponge mass
mortalities in a warming Mediterranean Sea: are cyanobacteria-harboring
species worse off? PLoS One 6:e20211. doi:10.1371/journal.pone.0020211.

9. Cole JR, et al. 2007. The ribosomal database project (RDP-II): introduc-
ing myRDP space and quality controlled public data. Nucleic Acids Res.
35:D169 –D172.

10. Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH.
2009. T-REX: software for the processing and analysis of T-RFLP data.
BMC Bioinform. 10:171. doi:10.1186/1471-2105-10-171.

11. Diaz MC, Rützler K. 2001. Sponges: an essential component of Caribbean
coral reefs. Bull. Mar. Sci. 69:535–546.

12. Diaz MC, Ward BB. 1997. Sponge-mediated nitrification in tropical
benthic communities. Mar. Ecol. Prog. Ser. 156:97–107.

13. Drummond AJ, et al. 2010. Geneious v5.3. http://www.geneious.com.
14. Duarte CM, Agustí S, Kennedy H, Vaqué D. 1999. The Mediterranean

climate as a template for Mediterranean marine ecosystems: the example
of the northeast Spanish littoral. Prog. Oceanogr. 44:245–270.

15. Erwin PM, López-Legentil S, González-Pech R, Turon X. 2012. A
specific mix of generalists: bacterial symbionts in Mediterranean Ircinia
spp. FEMS Microbiol. Ecol. 79:619 – 637.

16. Erwin PM, López-Legentil S, Schuhmann PW. 2010. The pharmaceuti-
cal value of marine biodiversity for anti-cancer drug discovery. Ecol. Econ.
70:445– 451.

17. Erwin PM, López-Legentil S, Turon X. 2012. Ultrastructure, molecular
phylogenetics, and chlorophyll a content of novel cyanobacterial symbi-
onts in temperate sponges. Microb. Ecol. doi:10.1007/s00248-012-0047-5.

18. Erwin PM, Olson JB, Thacker RW. 2011. Phylogenetic diversity, host-
specificity and community structure of sponge-associated bacteria in the
northern Gulf of Mexico. PLoS One 6 :e26806. doi:10.1371/
journal.pone.0026806.

19. Erwin PM, Thacker RW. 2007. Incidence and identity of photosynthetic
symbionts in Caribbean coral reef sponge assemblages. J. Mar. Biol. Assoc.
U.K. 87:1683–1692.

20. Erwin PM, Thacker RW. 2008. Phototrophic nutrition and symbiont

diversity of two Caribbean sponge-cyanobacteria symbioses. Mar. Ecol.
Prog. Ser. 362:139 –147.

21. Flatt P, et al. 2005. Identification of the cellular site of polychlorinated
peptide biosynthesis in the marine sponge Dysidea (Lamellodysidea) her-
bacea and symbiotic cyanobacterium Oscillatoria spongeliae by CARD-
FISH analysis. Mar. Biol. 147:761–774.

22. Freeman CJ, Thacker RW. 2011. Complex interactions between marine
sponges and their symbiotic microbial communities. Limnol. Oceanogr.
56:1577–1586.

23. Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U. 2001.
Temporal variation of the microbial community associated with the med-
iterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol. 38:105–
113.

24. Hentschel U, et al. 2002. Molecular evidence for a uniform microbial
community in sponges from different oceans. Appl. Environ. Microbiol.
68:4431– 4440.

25. Hoffmann F, et al. 2005. An anaerobic world in sponges. Geomicrobiol.
J. 22:1–10.

26. Hoffmann F, et al. 2009. Complex nitrogen cycling in the sponge Geodia
barretti. Environ. Microbiol. 11:2228 –2243.

27. Jiménez E, Ribes M. 2007. Sponges as a source of dissolved inorganic
nitrogen: nitrification mediated by temperate sponges. Limnol. Oceanogr.
52:948 –958.

28. Joachimiak MP, Weisman JL, May BCH. 2006. JColorGrid: software for
the visualization of biological measurement. BMC Bioinform. 7:225–229.

29. Kaplan CW, Kitts CL. 2003. Variation between observed and true termi-
nal restriction fragment length is dependent on true TRF length and pu-
rine content. J. Microbiol. Methods 54:121–125.

30. Kent AD, Smith DJ, Benson BJ, Triplett EW. 2003. Web-based phylo-
genetic assignment tool for analysis of terminal restriction fragment
length polymorphism profiles of microbial communities. Appl. Environ.
Microbiol. 69:6768 – 6776.

31. Lee OO, Lau SCK, Qian PY. 2006. Consistent bacterial community
structure associated with the surface of the sponge Mycale adhaerens Bow-
erbank. Microb. Ecol. 52:693–707.

32. Lee OO, et al. 2011. Pyrosequencing reveals highly diverse and species-
specific microbial communities in sponges from the Red Sea. ISME J.
5:650 – 664.

33. Lemoine N, Buell N, Hill A, Hill M. 2007. Assessing the utility of sponge
microbial symbiont communities as models to study global climate
change: a case study with Halichondria bowerbanki, p 239 –246. In Custó-
dio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (ed), Porifera research: bio-
diversity, innovation, and sustainability. Série livros 28. Museu Nacional,
Rio de Janeiro, Brazil.

34. Liu M, Fan L, Zhong L, Kjelleberg S, Thomas T. 2012. Metaproteog-
enomic analysis of a community of sponge symbionts. ISME J. doi:
10.1038/ismej.2012.1.

35. López-Legentil S, Erwin PM, Pawlik JR, Song B. 2010. Effects of sponge
bleaching on ammonia-oxidizing Archaea: distribution and relative ex-
pression of ammonia monooxygenase genes associated with the barrel
sponge Xestospongia muta. Microb. Ecol. 60:561–571.

36. Lozupone CA, Hamady M, Kelley ST, Knight R. 2006. Quantitative and
qualitative 
 diversity measures lead to different insights into factors that
structure microbial communities. Appl. Environ. Microbiol. 73:1576 –
1585.

37. Maldonado M, Sánchez-Tocino L, Navarro C. 2010. Recurrent disease
outbreaks in the corneous demosponges of the genus Ircinia: epidemic
incidence and defense mechanisms. Mar. Biol. 157:1577–1590.

38. Martínez-Murcia AJ, Acinas SG, Rodriguez-Valera F. 1995. Evaluation
of prokaryotic diversity by restrictase digestion of 16S rDNA directly am-
plified from hypersaline environments. FEMS Microbiol. Ecol. 17:247–
255.

39. Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM, Hill RT. 2008.
Changes in bacterial communities of the marine sponge Mycale laxissima
on transfer into aquaculture. Appl. Environ. Microbiol. 74:1209 –1222.

40. Mohamed NM, Rao V, Hamann MT, Kelly M, Hill RT. 2008. Moni-
toring bacterial diversity of the marine sponge Ircinia strobilina upon
transfer into aquaculture. Appl. Environ. Microbiol. 74:4133– 4143.

41. Pandey J, Ganesan K, Jain RK. 2007. Variations in T-RFLP profiles with
differing chemistries of fluorescent dyes used for labeling the PCR prim-
ers. J. Microbiol. Methods 68:633– 638.

42. Pile AJ, Patterson MR, Witman JD. 1996. In situ grazing on plankton

Seasonal Stability of Sponge-Associated Bacteria

October 2012 Volume 78 Number 20 aem.asm.org 7367

 on S
eptem

ber 27, 2012 by guest
http://aem

.asm
.org/

D
ow

nloaded from
 

http://www.geneious.com
http://aem.asm.org
http://aem.asm.org/


�10 �m by the boreal sponge Mycale lingua. Mar. Ecol. Prog. Ser. 141:95–
102.

43. Pinhassi J, et al. 2006. Seasonal changes in bacterioplankton nutrient
limitation and their effects on bacterial community composition in the
NW Mediterranean Sea. Aquat. Microb. Ecol. 44:241–252.

44. Reysenbach AL, Wickham GS, Pace NR. 1994. Phylogenetic analysis of
the hyperthermophilic pink filament community in Octopus Spring, Yel-
lowstone National Park. Appl. Environ. Microbiol. 60:2113–2119.

45. Ribes M, et al. 2012. Functional convergence of microbes associated with
temperate marine sponges. Environ. Microbiol. 14:1224 –1239.

46. Sarà M. 1971. Ultrastructural aspects of the symbiosis between two species
of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Dem-
ospongiae). Mar. Biol. 11:214 –221.

47. Schauer M, Balagué V, Pedrós-Alió C, Massana R. 2003. Seasonal
changes in the taxonomic composition of bacterioplankton in a coastal
oligotrophic system. Aquat. Microb. Ecol. 31:163–174.

48. Schauer M, Massana R, Pedrós-Alió C. 2000. Spatial differences in
bacterioplankton composition along the Catalan coast (NW Mediter-
ranean) assessed by molecular fingerprinting. FEMS Microb. Ecol. 33:
51–59.

49. Schloss PD, et al. 2009. Introducing mothur: open-source, platform-
independent, community-supported software for describing and compar-
ing microbial communities. Appl. Environ. Microbiol. 75:7537–7541.

50. Schmitt S, et al. 2012. Assessing the complex sponge microbiota: core,
variable and species-specific bacterial communities in marine sponges.
ISME J. 6:564 –576.

51. Schmitt S, Weisz JB, Lindquist N, Hentschel U. 2007. Vertical transmis-
sion of a phylogenetically complex microbial consortium in the viviparous
sponge Ircinia felix. Appl. Environ. Microbiol. 73:2067–2078.

52. Simister RL, Deines P, Botté ES, Webster NS, Taylor MW. 2012.
Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-
associated microorganisms. Environ. Microbiol. 14:517–524.

53. Stabili L, et al. 2012. Epidemic mortality of the sponge Ircinia variabilis
(Schmidt, 1862) associated to proliferation of a Vibrio bacterium. Microb.
Ecol. doi:10.1007/s00248-012-0068-0.

54. Stewart CN, Excoffier L. 1996. Assessing population genetic structure and
variability with RAPD data: application to Vaccinium macrocarpon
(American Cranberry). J. Evol. Biol. 9:153–171.

55. Taylor MW, Hill RT, Hentschel U. 2011. Meeting report: 1st Interna-
tional Symposium on Sponge Microbiology. Mar. Biotechnol. 6:1057–
1061.

56. Taylor MW, Radax R, Steger D, Wagner M. 2007. Sponge-associated
microorganisms: evolution, ecology, and biotechnological potential. Mi-
crobiol. Mol. Biol. Rev. 71:295–347.

57. Taylor MW, Schupp PJ, Dahllof I, Kjelleberg S, Steinberg PD. 2004.
Host specificity in marine sponge-associated bacteria, and potential im-
plications for marine microbial diversity. Environ. Microbiol. 6:121–130.

58. Thacker RW. 2005. Impacts of shading on sponge-cyanobacteria symbi-

oses: a comparison between host-specific and generalist associations. In-
tegr. Comp. Biol. 45:369 –376.

59. Thacker RW, Freeman CJ. 2012. Sponge-microbe symbioses: recent ad-
vances and new directions. Adv. Mar. Biol. 62:57–111. doi:10.1016/B978-
0-12-394283-8.00002-3.

60. Thiel V, Leininger S, Schmaljohann R, Brümmer F, Imhoff JF. 2007.
Sponge-specific bacterial associations of the Mediterranean sponge Chon-
drilla nucula (Demospongiae, Tetractinomorpha). Microb. Ecol. 54:101–
111.

61. Thiel V, Neulinger SC, Staufenberger T, Schmaljohann R, Imhoff JF.
2007. Spatial distribution of sponge-associated bacteria in the Mediterra-
nean sponge Tethya aurantium. FEMS Microbiol. Ecol. 59:47– 63.

62. Thomas T, et al. 2010. Functional genomic signatures of sponge bacteria
reveal unique and shared features of symbiosis. ISME J. 4:1557–1567.

63. Usher KM. 2008. The ecology and phylogeny of cyanobacterial symbionts
in sponges. Mar. Ecol. 29:178 –192.

64. Usher KM, Toze S, Fromont J, Kuo J, Sutton DC. 2004. A new species
of cyanobacterial symbiont from the marine sponge Chondrilla nucula.
Symbiosis 36:183–192.

65. Van Soest RWM, et al. 2012. Global diversity of sponges (Porifera). PLoS
One 7:e35105. doi:10.1371/journal.pone.0035105.

66. Webster NS, Cobb RE, Negri AP. 2008. Temperature thresholds for
bacterial symbiosis with a sponge. ISME J. 2:830 – 842.

67. Webster NS, et al. 2011. Bacterial community dynamics in the marine
sponge Rhopaloeides odorabile under in situ and ex situ cultivation. Mar.
Biotechnol. 13:296 –304.

68. Webster NS, Hill RT. 2001. The culturable microbial community of the
Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an
�-Proteobacterium. Mar. Biol. 138:843– 851.

69. Webster NS, Negri AP, Webb RI, Hill RT. 2002. A spongin-boring
alpha-proteobacterium is the etiological agent of disease in the Great Bar-
rier Reef sponge Rhopaloeides odorabile. Mar. Ecol. Prog. Ser. 232:305–
309.

70. Webster NS, Taylor MW. 2011. Marine sponges and their microbial
symbionts: love and other relationships. Environ. Microbiol. 14:335–346.

71. Webster NS, et al. 2010. Deep sequencing reveals exceptional diversity
and modes of transmission for bacterial sponge symbionts. Environ. Mi-
crobiol. 12:2070 –2082.

72. Webster NS, Xavier JR, Freckelton M, Motti CA, Cobb R. 2008. Shifts
in microbial and chemical patterns within the marine sponge Aplysina
aerophoba during a disease outbreak. Environ. Microbiol. 10:3366 –3376.

73. White JR, et al. 2012. Pyrosequencing of bacterial symbionts within
Axinella corrugate sponges: diversity and seasonal variability. PLoS One
7:e38204. doi:10.1371/journal.pone.0038204.

74. Wichels A, Würtz S, Döpke H, Schütt C, Gerdts G. 2006. Bacterial
diversity in the breadcrumb sponge Halichondria panicea. FEMS Microb.
Ecol. 56:102–118.

75. Wilkinson CR. 1983. Net primary productivity in coral reef sponges.
Science 219:410 – 412.

Erwin et al.

7368 aem.asm.org Applied and Environmental Microbiology

 on S
eptem

ber 27, 2012 by guest
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org
http://aem.asm.org/


 



Till Death Do Us Part: Stable Sponge-Bacteria
Associations under Thermal and Food Shortage Stresses
Lucı́a Pita1, Patrick M. Erwin2, Xavier Turon3, Susanna López-Legentil1,2*
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Abstract

Sporadic mass mortality events of Mediterranean sponges following periods of anomalously high temperatures or longer
than usual stratification of the seawater column (i.e. low food availability) suggest that these animals are sensitive to
environmental stresses. The Mediterranean sponges Ircinia fasciculata and I. oros harbor distinct, species-specific bacterial
communities that are highly stable over time and space but little is known about how anomalous environmental conditions
affect the structure of the resident bacterial communities. Here, we monitored the bacterial communities in I. fasciculata
(largely affected by mass mortalities) and I. oros (overall unaffected) maintained in aquaria during 3 weeks under 4
treatments that mimicked realistic stress pressures: control conditions (13uC, unfiltered seawater), low food availability
(13uC, 0.1 mm-filtered seawater), elevated temperatures (25uC, unfiltered seawater), and a combination of the 2 stressors
(25uC, 0.1 mm-filtered seawater). Bacterial community structure was assessed using terminal restriction fragment length
polymorphism (T-RFLP) analysis of 16S rRNA gene sequences and transmission electron microscopy (TEM). As I. fasciculata
harbors cyanobacteria, we also measured chlorophyll a (chl a) levels in this species. Multivariate analysis revealed no
significant differences in bacterial T-RFLP profiles among treatments for either host sponge species, indicating no effect of
high temperatures and food shortage on symbiont community structure. In I. fasciculata, chl a content did not significantly
differ among treatments although TEM micrographs revealed some cyanobacteria cells undergoing degradation when
exposed to both elevated temperature and food shortage conditions. Arguably, longer-term treatments (months) could
have eventually affected bacterial community structure. However, we evidenced no appreciable decay of the symbiotic
community in response to medium-term (3 weeks) environmental anomalies purported to cause the recurrent sponge
mortality episodes. Thus, changes in symbiont structure are not likely the proximate cause for these reported mortality
events.
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Introduction

Summer in the Western Mediterranean Sea is getting warmer

and longer. Over the past decades, the frequency of seawater

temperature anomalies and the period length of stable seawater

column (i.e., stratification) have increased [1–3]. At the same time

and coinciding with years of record temperatures (1–2uC above

the mean summer temperature) or prolonged seawater stratifica-

tion in late summer, mass mortality events were observed for

several filter-feeding invertebrates, mainly sponges and cnidarians

[3–5]. A typical summer season in the Mediterranean Sea is

characterized by high temperatures (.18uC) that stratify the

seawater column and prevent the upwelling of cooler nutrient-rich

water, resulting in nutrient depletion, low turbidity and high

irradiance in shallow waters (,20 m) [2]. Consequently, summer

is a energetically-challenging season for filter-feeding invertebrates

in the Mediterranean Sea [6,7] and together with high temper-

atures or prolonged stratification, the additional physiological

stress that occurs during this season may facilitate the observed

episodes of mass mortality [2].

Marine sponges harbor diverse and host-specific bacterial

communities [8,9] suggesting that the ecology and survival of

both the sponge and its bacterial associates are tightly connected;

e.g. via nutrient translocation [10,11]. However, despite the

potential importance of sponge-bacteria interactions, to date few

studies have experimentally assessed the response and stability of

these associations under environmental conditions chosen to

mimic realistic stress pressures. Most notably, manipulative

experiments with the Great Barrier Reef sponge Rhopaloeides

odorabile showed that the bacterial community associated with this

sponge shifted in response to elevated temperatures, high nutrients

and pollutants, concomitant with declines in host sponge health

[12–15]. In temperate regions, sponge-derived bacterial commu-

nities changed when exposed to elevated temperatures [16] but

remained stable under starvation conditions [17]. Further studies

are needed to investigate the effect of extreme yet realistic
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environmental conditions on sponge-associated bacterial commu-

nities and assess their overall resilience amidst a changing climate.

Sponges in the genus Ircinia are ubiquitous in the Western

Mediterranean rocky bottoms and harbor a species-specific

bacterial community [18] that seems to be adapted to the

seasonality of the water column [19]. Recently, Ircinia spp. have

suffered dramatic episodes of mass mortality linked to extreme

summer temperatures [20,21] and the proliferation of an

opportunistic Vibrio-like bacterium [21,22]. The factors triggering

the proliferation of Vibrio-like bacteria in sponge hosts remain

unclear, but may be preceded by the disruption of the normal

sponge microflora caused by abnormally high seawater temper-

atures lasting 3 weeks [20]. Cebrián et al. [20] observed significant

reduction in photosynthetic efficiency in I. fasciculata individuals

maintained in aquaria at elevated temperatures (27uC for 48 h).

Based on these results, the authors suggested that cyanobacteria-

harboring sponges such as I. fasciculata may be more susceptible to

mass mortality events than other sponge species lacking photo-

symbionts.

In this study, we hypothesized that a high temperature

treatment combined with low food availability mimicking an

especially hot summer season in the Mediterranean Sea would be

accompanied by a shift in the bacterial communities associated

with Mediterranean sponges. Based on past studies [20], we

expected that sponges harboring photosymbionts would be more

susceptible to these shifts than those without them. To test these

hypotheses, we performed a series of controlled aquaria experi-

ments for the sympatric sponges I. fasciculata (which harbors

cyanobacteria and has suffered mass mortality events) and I. oros

(which does not harbor cyanobacteria, and has remained overall

unaffected by mass mortality events). We tested the effect of high

seawater temperature (25uC), food shortage (0.1 mm-filtered

seawater) and the combination of both treatments on sponge-

associated bacterial communities. Bacterial symbiont communities

were monitored using terminal restriction fragment length

polymorphism (T-RFLP) of 16S rRNA gene sequences and

transmission electron microscopy (TEM) analyses. We also

measured the concentration of chlorophyll a (chl a) in I. fasciculata

samples as a proxy for photosymbiont abundance/activity in these

hosts.

Materials and Methods

Specimen collection
40 individuals of the sponge Ircinia oros (Schmidt, 1864) and 40

of I. fasciculata (Pallas, 1766) were collected from shallow (,20 m)

rocky reefs in the north-western Mediterranean Sea (Tossa de

Mar, 41u43913.620 N, 2u56926.900 E) during January 2011 (I. oros)

and February 2011 (I. fasciculata). Collection during winter months

was favored for our experiments because temperatures are more

stable during this period [19]. Within 2 h, the sponges were

transported in insulated coolers from Tossa de Mar to the

Experimental Aquaria Zone (ZAE) located at the Institute of

Marine Science (ICM-CSIC) in Barcelona (Spain). Ircinia spp. are

not endangered or protected by any law and all sampling was

conducted outside protected areas following current Spanish

regulations (no specific permits were required).

Experimental design
Two experiment sets (one for each sponge species) were

conducted in consecutive months, immediately after specimen

collection. For each experiment, 40 specimens were placed in

separated 2 L aquaria in a flow-through system with direct intake

of seawater and an independent supply to each aquarium for a

total of 4 weeks. The aquaria were subjected to circadian cycles of

12 h light/12 h dark using artificial light sources. The first week,

sponges were maintained at natural (ambient) conditions as an

acclimation period. During the following 3 weeks, 4 different

treatments were set up (n = 10 individuals per treatment): non-

filtered seawater and environmental temperature (control),

0.1 mm-filtered seawater and environmental temperature (FE),

non-filtered seawater and hot temperature 25uC (NH), 0.1 mm-

filtered seawater and hot temperature (FH). The environmental

seawater temperature at the time of the experiments was 13uC.

For the heat treatment, the temperature was progressively

increased (ca. 1.5uC?day21) during 7 days until reaching 25uC
and then maintained at 25uC for the final 2 wk of the experiment.

The health status of the sponges was monitored every 2 days by

visual inspection for tissue necrosis. Water flux was also controlled

every 2 days and readjusted if necessary to obtain a final flux rate

through the aquaria of 0.8 L?min21. Filters were replaced weekly

to avoid flux reduction due to particle accumulation.

Experimental sampling
Temperature (uC) and light intensity levels (lx = lumen?m22)

were recorded hourly with Hobo Pendant Temperature/Light

Data Loggers (UA-002-64; Onset Computer Corporation). To

check for filter efficiency and natural bacterial concentrations in

the seawater, 3 samples of water per treatment were collected

weekly, before filter replacement. Bacterial concentration was

estimated by flow cytometry, based on the method described in

Gasol & Del Giorgio [23]. In short, samples were fixed with 1%

paraformaldehyde + 0.05% glutaraldehyde in a phosphate-

buffered saline (PBS) solution, incubated in the dark for 10 min,

deep frozen in liquid nitrogen and stored at 280uC. For analysis,

samples were unfrozen, stained with Syto13 (Molecular Probes) at

5 mM (diluted in dymethil sulfoxyde, DMSO), incubated for

15 min in the dark and run through a GALLIOS flow cytometer

with a laser emitting at 480 nm. Bacteria were detected according

to a dot plot of side scatter (SSC, related with cell size) versus

fluorescent signature (FL1). The number of events (potential

bacterial cells) detected by the cytometer was then converted into

bacterial cell density (cells?mL21) by comparing with the events

recorded by the machine after injecting a known volume of a

solution of 106 Syto13-stained beads?mL21. For each sponge

species, the non-parametric Mann-Whitney’s U test was used to

compare the bacterial cell density in seawater from non-filtered

treatments versus filtered treatments. Statistical analyses were

performed in RStudio [24]. All cytometry analyses were conduct-

ed at the Cytometry Unit of the Scientific and Technological

Services of the University of Barcelona.

From all the sponge samples, we randomly selected 3

individuals per treatment that remained healthy throughout the

experiment for further analysis (n = 24 per species). Overall,

specimens of I. fasciculata and I. oros remained healthy in all

experimental treatments with no tissue necrosis or appreciable

biomass loss, except for 1 individual of I. fasciculata that died during

the acclimation period, and 5 individuals of I. oros that died during

the first week of experiment (1 from the FE treatment, 3 from the

NH, and 1 from the FH). These specimens were not considered in

our analysis for several reasons: (i) death was likely due to

manipulation rather than to the tested conditions because they all

died early during the experiments; (ii) by the end of the

experiment, the sponges had been dead for at least two weeks

(iii) there were insufficient replicates for robust statistical analysis.

Sponge-Bacteria Symbioses under Stress
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DNA extraction
After the acclimation period (end of week 1) and at the end of

the experiments (end of week 4), a tissue sample (ca. 2 mm3) of

each selected specimen containing both ectosome and choano-

some was preserved in 100% ethanol and stored at 220uC. To

characterize the bacterial community in the seawater, 500 mL of

water per treatment were filtered through a 0.2 mm filter

(Millipore), preserved in 100% ethanol and stored at 220uC.

DNA was extracted using the DNeasy Blood & Tissue kit

(QiagenH). Dilutions (1:10) of DNA extracts were used as

templates in subsequent PCR amplifications for T-RFLP analysis.

T-RFLP analysis
PCR amplification of 16S rRNA gene sequences was conducted

using the universal bacterial forward primer Eco8F [25], tagged

with a 59-6-carboxyfluorescein (6-FAM) label, and reverse primer

1509R [26]. PCR was performed as follows: one initial denatur-

ation step for 5 min at 94uC; 35 cycles of 1 min at 94uC, 0.5 min

at 50uC, 1.5 min at 72uC; and one final elongation step for 5 min

at 72uC. Total PCR volume (50 mL) included 10 mM of each

primer, 10 nM of each dNTP, 1x Reaction Buffer (Ecogen),

2.5 mM MgCl2 and 5 units of BioTaqTM DNA polymerase

(Ecogen). Products from triplicate PCR reactions were pooled and

purified from electrophoresis gels using the Qiaquick Gel

Extraction kit (QiagenH), then quantified using the QubitTM

fluorometer and Quant-iTTM dsDNA Assay kit (InvitrogenTM)

according to manufactures’ instructions. Separate enzymatic

digestions with HaeIII and MspI were processed as described

elsewhere [27], then analyzed in an automated ABI 3730 Genetic

Analyzer (Applied Biosystems) at the Genomics Unit of the

Scientific and Technological Services of the University of

Barcelona. The lengths of each terminal-restriction fragment

(T-RF) were determined against a size standard (600-LIZ) using

the PeakScannerTM software (Applied Biosystems). T-RFs smaller

than 50 bp or larger than 600 bp were discarded because they

were beyond the resolution of the size standard. Background noise

was defined by a peak intensity below 50 fluorescence units and by

filtering in T-REX [28] using a cut-off value of 2 standard

deviations [29]. ‘True’ T-RFs were aligned in T-REX using a

clustering threshold of 1 bp and relative T-RF abundance

matrices were constructed.

T-RFLP statistical analyses
Samples from each experimental set were analyzed separately to

investigate whether the observed response to each treatment

depended on sponge species (I. fasciculata and I. oros). All analyses

were based on Bray-Curtis distances calculated from relative

abundance matrices, following square root transformation. For

each restriction enzyme, non-metric multi-dimensional scaling

(nMDS) plots were constructed to visually compare the bacterial

communities. Permutational multivariate analyses of variance

(PERMANOVA) [30,31] were used to test the effects of source

(sponge or seawater) and treatment (control, FE, NH, FH) on

bacterial communities. In addition, sponge samples collected after

the acclimation period were compared to verify that the specimens

harbored similar bacterial communities before experimental

treatments were applied. Calculations were performed in PRIM-

ER v6 [32,33] and PERMANOVA+ (Plymouth Marine Labora-

tory, UK). The empirical T-RFs obtained in this study were

compared with the available database of in silico HaeIII and MspI

digestions of 16S rRNA gene sequences derived from the same

host sponges in a previous study [19] using the phylogenetic

assignment tool PAT [34].

Transmission electron microscopy (TEM)
At the end of the experiments, a piece of tissue (ca. 2 mm3) from

one sponge in each treatment was collected and fixed in a solution

of 2.5% glutaraldehyde and 2% paraformaldehyde buffered with

filtered seawater and incubated overnight at 4uC. Following

fixation, each piece was rinsed at least three times with filtered

seawater and stored at 4uC until processed as described previously

[35]. TEM observations were made at the Microscopy Unit of the

Scientific and Technical Services of the University of Barcelona on

a JEOL JEM-1010 (Tokyo, Japan) coupled with a Bioscan 972

camera (Gatan, Germany).

Chlorophyll a (chl a) concentrations
For chl a quantification in I. fasciculata, a piece of ectosome was

sampled from 5 sponges per treatment at the end of the

experiments (n = 20) and processed them using previously

described methods [18]. I. oros was excluded from this analysis

because this species lacks photosymbionts [18]. One-way ANOVA

was performed to test the effect of the factor ‘‘treatment’’ (4 levels;

control, FE, NH, FH) on chl a concentrations in I. fasciculata. The

assumptions of the ANOVA were checked by Cramer-von Mises’

normality test and Levene’s homoscedasticity test. Statistical

analyses were performed in RStudio [22].

Results

Aquaria conditions
Artificial light intensity in the aquaria with I. fasciculata samples

was 546.7625.0 lx (mean 6 standard error) and in the aquaria

with I. oros 644.168.9 lx. Both light intensity values were in the

range of values detected in their natural habitat during winter

[19]. Environmental water temperature was 13.4260.01uC and

13.5460.18uC (mean 6 standard error) for the experiment with

I. fasciculata and with I. oros, respectively. For hot temperature

treatments, temperature was increased at a rate of 1.49uC?day21

for the aquaria with I. fasciculata samples and 1.57uC?day21 for

I. oros samples during one week, until reaching a final temperature

of 25.4160.01uC and 25.2360.05uC (mean 6 standard error) for

the experiment with I. fasciculata and with I. oros, respectively. The

average densities (mean 6 standard error) of bacterial cells found

in seawater samples from the filtered treatments were

(2.460.3)?104 cells?mL21 in I. fasciculata aquaria, and

(2.360.2)?104 cells?mL21 in I. oros, while in the unfiltered

treatments contained (7.461.0)?104 cells?mL21 and

(6.860.5)?104 cells?mL21 in aquaria with I. fasciculata and I. oros,

respectively. In spite of the filtering system, bacterial abundance

was only cut by ca. one third. This may relate with decaying filter

efficiency with time, in spite of weekly filter changes. Still, the

bacterial cell density in seawater samples from non-filtered

treatments was statistically higher than in filtered treatments

(Mann-Whitney’s U, P,0.001) for both I. fasciculata and I. oros

experiments. A one-third reduction in bacterial density is likely a

realistic proxy for food shortage conditions in nature.

T-RFLP analysis
A total of 143 unique T-RFs were detected with HaeIII

restriction enzyme (101 in I. fasciculata, 97 in I. oros and 59 in

seawater) and 167 with MspI enzyme (117 in I. fasciculata, 110 in

I. oros and 79 in seawater). PERMANOVA analysis of Bray-Curtis

similarity matrices from each experiment reported a significant

effect of source (sponge vs seawater) on the structure of bacterial

communities (Table 1). No significant differences in bacterial

community structure were detected among samples of the same

sponge species after the acclimation week (P.0.225, for both

Sponge-Bacteria Symbioses under Stress
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enzymes). Likewise, there was not a significant effect of treatment

on the bacterial communities of I. fasciculata and I. oros after 3

weeks (Table 1). As the experiment was terminated after 3 weeks,

there is no data beyond the duration of the experiments. The lack

of structure observed with the nMDS plots further confirmed the

similarity of these bacterial communities within host species,

despite the different treatments applied (Fig. 1). PAT analysis

reported that 58.7% (HaeIII) and 71.6% (MspI) of the unique T-

RFs obtained in this study for both I. fasciculata and I. oros matched

T-RFs from in silico digestions of 16S rRNA sequences from

environmental samples of these two species [18].

Transmission electron microscopy
Micrographs of I. fasciculata samples from the control treatment

showed typical sponge cells with numerous phagosomes and

granules of glycogen (Fig. 2a). The same sponge cells were

observed in all the other treatments. The cyanobacterium

Candidatus ‘Synechococcus spongiarum’ dominated the ectosomal

tissue of I. fasciculata (Fig. 2b–e). In the micrographs from the hot

temperature (25uC) and filtered seawater treatment (FH), besides

healthy cyanobacterial cells, we also observed many cells

undergoing degradation (Fig. 2e–f). Electron micrographs from

I. oros samples (Fig. 3a–d) showed abundant vacuolated sponge

cells surrounded by diverse bacterial morphotypes. No differences

in sponge or bacterial cell abundance or morphology were

detected for any of the treatments. As expected, no cyanobacterial

cells were observed either in this sponge species.

Figure 1. Non-metric multidimensional scaling (nMDS) of
sponge-derived bacterial communities at the end of the
experiment. Ordination in nMDS plots is based on Bray-Curtis
distances between T-RFLP profiles from HaeIII (left) and MspI (right)
digestions of samples of I. fasciculata and I. oros experiments. Stress
values are shown in parenthesis, with values below 0.15 indicating
good correlation of similarity matrix distances and ordination in the
two-dimension plot. Points are coded by treatment: control (13uC,
unfiltered seawater), FE (13uC, filtered seawater), NH (25uC, non-filtered
seawater), FH (25uC, filtered seawater).
doi:10.1371/journal.pone.0080307.g001

Table 1. Statistical analysis of T-RFLP profiles to test for an
effect of source (seawater vs sponge) and treatment on the
structure of Ircinia-associated bacterial communities.

I. fasciculata I. oros

HaeIII MspI HaeIII MspI

Source (seawater vs
sponge)

0.001 0.001 0.001 0.002

Treatment (control,
FE, NH, FH)

0.317 0.328 0.267 0.066

Numbers denote P-values from PERMANOVA test after 999 permutations.
Significant values at a = 0.01 are in bold.
Treatments: Control (13uC, unfiltered seawater), FE (13uC, filtered seawater), NH
(25uC, non-filtered seawater), FH (25uC, filtered seawater).
doi:10.1371/journal.pone.0080307.t001

Figure 2. Electron micrographs of I. fasciculata bacteria at the
end of the experiment. A) Sponge cell in sample from control
treatment, containing several phagosomes (ph) and glycogen granules
(g). Sponge cells surrounded by multiple Cyanobacteria (Cy) and
heterotrophic bacteria in the mesohyl of sponges from control
treatment (B), NH (25uC, non-filtered seawater) treatment (C) and FE
(13uC, filtered seawater) treatment (D). Micrographs of a sponge from
FH (25uC, filtered seawater) treatment (E, F) showed healthy Cyanobac-
teria (Cy) and Cyanobacteria under different stages of degradation
(arrows) within the mesohyl. Scale bars represent 2 mm.
doi:10.1371/journal.pone.0080307.g002

Sponge-Bacteria Symbioses under Stress
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Chlorophyll a concentration
Chl a levels in I. fasciculata at the end of the experiment (3 weeks

after acclimation) and for each treatment are depicted in Fig. 4.

The ANOVA test revealed no significant differences in chl a

concentration among treatments (P = 0.4636). The values found

here (483.8620.0 mg?g21 sponge, mean 6 standard error)

exceeded those observed for this species in the field, where the

average concentration reported was 248.1627.8 mg?g21 sponge

[19].

Discussion

The bacterial communities associated with the Mediterranean

sponges I. fasciculata and I. oros were stable under thermal and food

shortage stresses for a period lasting 3 weeks. Comparison of

T-RFLP profiles and electron microscopy for each species showed

no significant differences among the 4 treatments tested that

combined high seawater temperatures (25uC) and low food

availability (one-third reduction of the natural bacterial abun-

dance) during three weeks after acclimation. The only noticeable

difference consisted of TEM observations of several degraded

cyanobacterial cells of S. spongiarum, along with healthy looking

ones, when I. fasciculata specimens were exposed to both thermal

and food shortage stresses. However, the presence of degraded

cells was not accompanied by a significant decrease in chl a

concentrations. In fact, chl a content was higher in our aquaria

samples and for all treatments than what has been observed in the

field [19]. This increase in chl a concentration may be due to a

higher density of cyanobacterial cells in the sponge or enhanced

photosynthetic activity to compensate for lower ambient irradi-

ance conditions or a poorer diet. Overall, our results indicate

that the seawater conditions that characterize anomalously

warm summer seasons in the Mediterranean Sea do not affect

sponge-associated bacterial communities. Moreover, we did not

observe any clear evidence supporting the hypothesis that sponges

harboring cyanobacterial symbionts were more vulnerable to the

assayed conditions than sponges without them. Other species-

specific factors such as habitat-preference or growth dynamics

[34], alone or in combination, may contribute to the sporadic mass

mortality events observed for I. fasciculata but not for I. oros in the

Mediterranean Sea.

One specimen of I. fasciculata and 5 of I. oros died during the

experiments and were excluded from T-RFLP analysis. Necrosis

in I. fasciculata occurred during the acclimation period and thus

was unrelated with the tested treatments. Individual plasticity in

resilience to collection and transport or health status at the

moment of sampling may have affected the survival of that

specimen when moved into aquaria. For I. oros sponges, death

occurred early during the second week, before the targeted

elevated temperature was reached, and sporadically among

treatments. Previous studies assaying similar thermal stressors

have reported host tissue necrosis and symbiotic cyanobacterial

loss in all specimens at elevated seawater temperatures after only 3

to 4 days of treatment [13,14]. While we cannot be certain of the

reason behind the death of these few sponges (i.e. tested treatments

or different response to maintenance in aquaria), none of our

treatments resulted in mass mortality and the remaining specimens

looked healthy through the 3-week experiment.

We cannot disregard that longer-term experiments (months)

could result in a significant effect of treatment on bacterial

community structure. Stratification of the water column along the

Mediterranean coast lasts more than three weeks. Nevertheless,

the persistence reported in this study is still remarkable. The high

temperature tested here (25uC) represents 3uC more than the

summer mean temperature in the study area [19], matched the

maximum temperature detected during anomalous summer

seasons in years when mass mortality events occurred [20], and

Figure 3. Electron micrographs of I. oros bacteria at the end of
the experiment. Sponge cells surrounded by numerous bacteria cells
of different morphotypes. Samples from control treatment (A); 25uC and
non-filtered seawater treatment (B); 13uC and filtered seawater
treatment (C); and 25uC and filtered seawater treatment (D). Sponge
and bacteria cells for all treatments showed no sign of degradation.
doi:10.1371/journal.pone.0080307.g003

Figure 4. Chlorophyll a concentration in I. fasciculata for each
treatment at the end of the experiment. Control: 13uC and non-
filtered seawater; NH: 25uC and non-filtered seawater; FE: 13uC and
filtered seawater; FH: 25uC and filtered seawater. Error bars denote
standard error.
doi:10.1371/journal.pone.0080307.g004

Sponge-Bacteria Symbioses under Stress

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e80307



represents an increase of .11uC from ambient conditions at the

time of collection. In addition, the time frame of our experiments

(3 weeks after acclimation) matched the duration of peaks of

temperature in abnormally warm summers [20].

Our results are also in agreement with other studies indicating

that sponge-bacteria associations are very stable and able to resist

non-lethal stressful conditions. In the Mediterranean sponge

Aplysina aerophoba, neither food shortage nor antibiotic exposure

promoted the consumption of symbionts by the host and the

structure of the bacterial community remained unchanged for up

to 11 days [17]. In the tropical sponge Rhopaloeides odorabile, the

bacterial community shifted only when sponge tissue necrosis

occurred, after exposure to temperatures 2 to 4uC above the mean

temperature in the study area [13,14]. Interestingly, Fan et al. [35]

observed that the expression of genes potentially essential for the

symbiotic relationship (e.g. proteins involved in cell-cell signaling

that could mediate recognition of symbiont by host) was

maintained in partially necrotic sponges although at a lower rate

than in healthy ones.

Despite the overall stability of sponge-associated bacteria, cells

of dominant cyanobacterium S. spongiarum were observed under-

going degradation in I. fasciculata sponges exposed to high

temperature and food shortage stresses (FH). While not all S.

spongiarum cells were degrading and chl a content did not differ

among treatments, the observation of this phenomenon only in the

most stressful treatment suggests higher sensitivity of cyanobacteria

to these conditions. Previous studies indicated that cyanobacteria-

harboring sponges were more vulnerable to elevated temperatures

due to photo-oxidative stress (i.e., rising levels of harmful oxygen

compounds) derived from temperature-enhanced photosynthesis

[20]. However, the stability of the symbiotic community and

cyanobacterial chl a content across treatments observed in this

study suggest that the overall photosynthetic activity was not

impaired by the degradation of some cyanobacterial cells and that

the sponge holobiont is able to resist these conditions for 3 weeks.

The persistence of bacterial symbiont communities despite

thermal stress and food shortage conditions lasting 3 weeks is in

opposition to one of the predictions of the coral probiotic

hypothesis [36]. According to this hypothesis, the microbial

symbionts associated with corals would rapidly shift in response to

changing environmental conditions (in days to weeks), thereby

conferring an adaptive response to the host. In sponges, it does not

seem that rapid changes in bacterial community structures would

provide stress tolerance to the host [13]. Instead, we speculate that,

similar to what has been proposed for the human gut microbiome

[37], a persistent symbiotic community in sponges results in

constitutive benefits, such as preventing the unexpected prolifer-

ation of one or a few bacterial strains within the symbiotic

community that yield holobiont death. The empirical demonstra-

tion of interactions within the bacterial community and between

the bacteria and host that maintain the stability of the symbiotic

community under environmental stresses remains a challenge for

sponge microbiology.

In conclusion, our experiments for the sympatric sponges

I. fasciculata and I. oros maintained in aquaria mimicking an

especially hot summer in the Mediterranean Sea revealed high

persistence of sponge-associated bacterial communities. These

findings support trends observed in the field showing high

symbiont stability across spatial and temporal scales [19,38,39]

and also suggest that the disruption of the symbiotic community in

response to abnormal thermal and food shortage conditions for a

period up to three weeks may not be the primary cause of the

sporadic mass mortality events observed for some Ircinia species.
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