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Abstract

In terms of sustainability, tra�c is currently a signi�cant challenge for urban
areas, where the pollution, congestion and accidents are negative externalities
which have strongly impacted the health and economy of cities. The increasing
use of private vehicles has further exacerbated these problems.

In this context, the development of new strategies and policies for sustainable
urban transport has made transport planning more relevant than ever before.
Mathematical models have helped greatly in identifying solutions, as well as in
enriching the process of making decisions and planning. In particular, dynamic
network models provide a means for representing dynamic tra�c behavior; in
other words, they provide a temporally coherent means for measuring the inter-
actions between travel decisions, tra�c �ows, travel time and travel cost. This
thesis focuses on dynamic tra�c assignment (DTA) models.

DTA has been studied extensively for decades, but much more so in the last
twenty years since the emergence of Intelligent Transport Systems (ITS). The
objective of this research is to study and analyze the prospects for improving
this problem.

In an operational context, the objective of DTA models is to represent the
evolution of tra�c on a road network as conditions change. They seek to describe
the assignment of the demand on di�erent paths which connect every OD pair
in a state of equilibrium.

The behaviour following each individual decision during a trip is a time-dependent
generalization of Wardrop's First Principle, the Dynamic User Equilibrium
(DUE). This hypothesis is based on the following idea: When current travel
times are equal and minimal for vehicles that depart within the same time in-
terval , the dynamic tra�c �ow through the network is in a DUE state based on
travel times for each OD pair at each instant of time (Ran and Boyce (1996)).

This work begins with the time-continuous variational inequalities model pro-
posed by Friesz et al. (1993) for solving the DUE problem. Di�erent solutions
can be used on the proposed DUE formulation. On the one hand, there are
the so-called analytical approaches which use known mathematical optimiza-
tion techniques for solving the problem directly. On the other hand, there are
simulation-based formulations that approximate heuristic solutions at a rea-
sonable computational cost. While analytical models concentrate mainly on
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deriving theoretical insights, simulation-based models focus on trying to build
practical models for deployment in real networks. Thus, because the simulation-
based formulation holds the most promise, we work on that approach in this
thesis.

In the �eld of simulation-based DTA models, signi�cant progress has been made
by many researchers in recent decades. Our simulation-based formulation sepa-
rates the proposed iterative process into two main components, which have been
systematized by Florian et al. (2001) as follows:

� A method for determining the new time dependent path �ows by using
the travel times on these paths experienced in the previous iteration.

� A dynamic network loading (DNL) method, which determines how these
paths �ow propagate along the corresponding paths.

The �ow reassignment algorithms can be grouped into two categories: pre-
ventive and reactive. However, it is important to note that not all computer
implementations based on this algorithmic framework provide solutions that ob-
tain DUE. Therefore, while we analyze both proposals in this thesis we focus on
the preventive methods of �ow reassignment because only those can guarantee
DUE solutions.

Our proposed simulation-based DTA method requires a DNL component that
can reproduce di�erent vehicle classes, tra�c light controls and lane changes.
Therefore, this thesis develops a new multilane multiclass mesoscopic simulation
model with these characteristics, which is embedded into the proposed DUE
framework.

Finally, the developed mesoscopic simulation-based DTA approach is validated
accordingly. The results obtained from the computational experiments demon-
strate that the developed methods perform well.

Keywords: dynamic tra�c assignment, dynamic user equilibrium, variational
inequalities, mesoscopic tra�c simulation, Method of Successive Averages.
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Resumen

En los últimos tiempos, el problema del trá�co urbano ha situado a las áreas
metropolitanas en una difícil situación en cuanto a sostenibilidad se re�ere (en
términos de la congestión, los accidentes y la contaminación). Este problema
se ha visto acentuado por la creciente movilidad promovida por el aumento del
uso del vehículo privado. Además, debido a que la mayor parte del trá�co es
canalizada a través de los modos de carretera, el tiempo perdido por los usuarios
al realizar sus viajes tiene un importante efecto económico sobre las ciudades.

En este contexto, la plani�cación de transporte se vuelve relevante a través del
desarrollo de nuevas estrategias y políticas para conseguir un transporte urbano
sostenible. Los modelos matemáticos son de gran ayuda ya que enriquecen las
decisiones de los gestores de trá�co en el proceso de plani�cación. En particular
podemos considerar los modelos de trá�co para la predicción, como por ejemplo
los modelos de asignación dinámica de trá�co (ADT), los cuales proveen de
una representación temporal coherente de las interacciones entre elecciones de
trá�co, �ujos de trá�co y medidas de tiempo y coste. Esta tesis se centra en los
modelos ADT.

Durante las últimas décadas, los modelos ADT han sido intensamente estudi-
ados. Este proceso se ha acelerado particularmente en los últimos veinte años
debido a la aparición de los Sistemas Inteligentes de Transporte. El objetivo de
esta investigación es estudiar y analizar diferentes posibilidades de mejorar la
resolución del problema.

En un contexto operacional, el objetivo de los modelos ADT es representar
la evolución de la red urbana cuando las condiciones de trá�co cambian. Es-
tos modelos tratan de describir la asignación de la demanda en los diferentes
caminos que conectan los pares OD siguiendo un estado de equilibrio.

En este caso se ha considerado que el comportamiento de los conductores en
cada una de sus decisiones individuales tomadas durante el viaje es una gener-
alización dependiente del tiempo del Primer Principio de Wardrop, denominada
Equilibrio Dinámico de Usuario (EDU). Esta hipótesis se basa en la siguiente
idea: para cada par OD para cada instante de tiempo, si los tiempos de viaje
de todos los usuarios que han partido en ese intervalo de tiempo son iguales
y mínimos, entonces el �ujo dinámico de trá�co en la red se encuentra en un
estado de EDU basado en los tiempos de viaje (Ran and Boyce (1996)).
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El presente trabajo toma como punto de partida el modelo de inecuaciones
variacionales continuo en el tiempo propuesto por Friesz et al. (1993) para re-
solver el problema de equilibrio dinámico de usuario. Por un lado, se encuentran
los denominados enfoques analíticos que utilizan técnicas matemáticas de op-
timización para resolver el problema directamente. Por otro lado, están los
modelos cuyas formulaciones están basadas en simulación que aproximan solu-
ciones heurísticas con un coste computacional razonable. Mientras que modelos
analíticos se concentran principalmente en demostrar las propiedades teóricas,
los modelos basados en simulación se centran en intentar construir modelos que
sean prácticos para su utilización en redes reales. Así pues, debido a que las
formulaciones basadas en simulación son las que se muestran más prometedoras
a la práctica, en esta tesis se ha elegido este enfoque para tratar el problema
ADT.

En los últimos tiempos, el campo de los modelos ADT basados en simulación ha
sido de especial interés. Nuestra formulación basada en simulación consiste en
un proceso iterativo que consta de dos componentes principales, sistematizadas
por Florian et al. (2001) como sigue:

� Un método para determinar los nuevos �ujos (dependientes del tiempo)
en los caminos utilizando los tiempos de viaje experimentados en esos
caminos en la iteración previa.

� Un procedimiento de carga dinámica de la red (CDR) que determine cómo
esos �ujos se propagan a través de sus correspondientes caminos.

Los algoritmos de reasignación de �ujo pueden ser agrupados en dos categorías:
preventivos y reactivos. Es importante notar aquí que no todas las implementa-
ciones computacionales basadas en el marco algorítmico propuesto proporcionan
una solución EDU. Por lo tanto, aunque en esta tesis analizamos ambas propues-
tas, nos centraremos en los métodos preventivos de reasignación de �ujo porque
son los que nos garantizan alcanzar la hipótesis considerada (EDU).

Además, nuestro modelo ADT basado en simulación requiere de una compo-
nente de CDR que pueda reproducir diferentes clases de vehículos, controles
semafóricos y cambios de carril. Así, uno de los objetivos de esta tesis es de-
sarrollar un nuevo modelo de simulación de trá�co con dichas características
(multiclase y multicarril), teniendo en cuenta que será una de las componentes
principales del marco ADT propuesto.
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Finalmente, el modelo ADT basado en simulación mesoscópica es validado en
consecuencia. Los resultados obtenidos a partir de las experiencias computa-
cionales realizadas demuestran el buen comportamienyo de los métodos desar-
rollados.

Palabras clave: asignación dinámica de trá�co, equilibrio dinámico de usuario,
inecuaciones variacionales, simulación mesoscópica de trá�co, Método de las
Medias Sucesivas.
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Chapter 1

Introduction

1.1 Background

Urban tra�c is a major problem that a�ects the quality of life for cities and
metropolitan areas in developed countries. The problem has been exacerbated
in recent decades by increased mobility stemming from the use of private ve-
hicles. Furthermore, the European generalization of the di�used urban model
(characteristically American) has relocated populations, trade and services to
the nearby suburbs while also relegating industrial activity to the environs. As
a result, the traditional city center has been reduced to a symbolic function.
Subsequently, mobility is expanding in terms of both the number as well as the
amplitude of journeys taken.

Although many modes of transport exist (train, waterways, �ight, cycling and
walking), most tra�c consists of vehicles on the road network. Figure 1.1.1
shows published European Commission data on passenger and freight transport
in EU-27 for all of 2012. According to this report, 83% of passenger transport
(75% passenger vehicle and 8% bus, trolleybus or coach) and 45% of freight
transport were channeled through urban roads modes.

The expansion described above, combined with the primary use of roads, has
aggravated the issue of sustainability for urban areas, in which pollution, con-
gestion and accidents are negative externalities that strongly impact their health
and economy.

1
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Figure 1.1.1: European statistics on the use of di�erent modes by passenger
and freight transport.Source: European Commission (2012). EU transport in
�gures. Statistical Pocket Book.

Furthermore, tra�c congestion causes a signi�cant loss of time for private jour-
neys and an inability to comply with timetables for public transport. This
waste of time for users is signi�cant to the economy of cities, as demonstrated
clearly by various studies. For instance, in 2012 the UK estimated that tra�c
congestion cost Britain more than ¿4,3bn a year. (Figure 1.1.2).

In the face of all of these facts, it has become imperative to develop new strate-
gies and policies for sustainable urban transport. Equally important, continued
growth in demand is expected for some time; so it is therefore essential to in-
vest not only in the improvement of infrastructures, but in their planning and
management as well.

The relevance and purpose of transport planning is to address the speci�c needs
of a mobile population. Given the complexity of current transport systems, cer-
tain analytical tools have proven to be essential. These tools allow planners to
inform themselves about the system and make predictions. Thus, mathemat-
ical models, statistics and algorithms have �gured prominently in identifying
solutions and enriching the process of planning and making decisions.

Traditionally, transport planning processhas been divided into the following four
phases (Chicago Area Transportation Study, 1960):

1. Data collection.

2. Analysis and Setting of the Models (Four-Step Model)
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Figure 1.1.2: News about tra�c congestion costs in the UK. Source: www.
telegraph.co.uk

(a) Trip Generation

(b) Trip Distribution

(c) Mode Choice

(d) Route Assignment

3. Demand Forecasts

4. Future Network Evaluation

Travel cost and time are critical factors to consider and key components of all
tra�cmodels,which are used for transportation planning. �Travel time and cost
measures determined using static assignment procedures use variables that are
time invariant. The procedures are inadequate as explanations of in�uences on
travel choices and as measures used to evaluate impacts when deciding how to
develop policies for managing transportation systems, how to fund transporta-
tion system improvements, and how to measure environmental impacts related
to system-wide travel.� (Chiu et al. (2010))



4 CHAPTER 1. INTRODUCTION

Figure 1.1.3: Models used in integrated transport analysis.

In order to perform detailed dynamic analysis of operational strategies, time
must be explicitly considered in the corresponding models. Traditionally, an
e�ective solution has involved the use of microscopic simulation models that
capture all the behaviours of each single vehicles in the network. (Barcelo et al.
(2007), adapted from a presentation by Vassili Alexiadis at the Transportation
Research Board, Modelling Workshop, 2006). This approach is suitable for
small- to medium-sized subarea networks. However, there also exists a clear need
for working at an operational level with regional networks or metropolitan areas.
So, the main issues of �ow dynamics, such as the formation and dissipation of
queues, must be incorporatedwithout detailing the interactions of each single
vehicle in the network. This is because there is a need to analyze regional
dynamic diversion with moderate calibration e�ort. This is the starting point
of the mesoscopic tra�c simulation to be used in the network loading component
of the Dynamic Tra�c Assignment (DTA) models.

The primary limitation of mesoscopic simulation models is that they are inca-
pable of analyzing mode shifts. This thesis focuses on dynamic tra�c assignment
(DTA) models that are based on mesoscopic simulations using di�erent vehi-
cle classes. This will allow multimodal simulations which will improve on the
previously stated limitations of the mesoscopic models.

Dynamic network models provide temporally coherent meansfor representing
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the interactions between travel choices and tra�c �ows, as well as the time
and cost of travel. DTA models describe time-varying networks and demand
interactions using a behaviorally sound approach. The DTA model analysis can
be used to evaluate many more measures related to individual travel cost and
travel time, as well as system-wide network measures for regional planning. So,
DTA models are better suited for travel forecasting models and transportation
planning studies.

DTA has been extensively studied for decades, but even more so in the last
twenty years since Intelligent Transport Systems (ITS) have emerged. Among
other applications, ITS provides pre-trip and en-route travel information that
allows drivers to make informed decisions. It also reduces delays and provides
more reliable travel times. A necessary requirement of such a system is its ability
to predict future tra�c in order to proactively respond to drivers' concerns
and avoid potentially undesirable network conditions. DTA systems simulate
and forecast network conditions under various demands and in�uences such as
accidents, weather, special events, etc.

In an operational context, the objective of DTA models is to represent traf-
�c evolution on road networks when conditions change. They seek to describe
the assignment of demand on di�erent paths connecting every OD pair in an
equilibrium state. This research takes a behavioural approach by using a time-
dependent generalization of Wardrop's First Principle, the Dynamic User Equi-
librium (DUE). This hypothesis is based on the idea that, for each OD pair at
each instant of time, current travel times experienced by vehicles that depart in
the same time interval are equal and minimal (Ran and Boyce (1996)).

DTA systems model complex and dynamic interactions between transportation
supply and demand. To account for the e�ects of supply and demand variations
of the assignment, DTA models are classically composed of two submodels:

� The dynamic network loading component which captures �ow dynamics
and their temporal variations according to the dynamic �uctuation of the
demand.

� An assignment model which governs the behavioral rule for tra�c assign-
ment. It uses the previously calculated travel costs to determine �ow
assignments among all possible paths for each OD pair.

As stated before, DTA models have many applications. Ranging from o�ine
transport planning, design and policy evaluation, to online ITS applications



6 CHAPTER 1. INTRODUCTION

such as real-time tra�c control, travel information services, time-varying tolling,
etc. While o�ine applications require only that DTA models give an accurate
evaluation or prediction, online applications require DTA models to obtain a
reasonably accurate solution within a short period of time. This is because of
the need to manage sudden changes in tra�c conditions and to provide real-
tra�c information to drivers. So, for real-time applications, DTA models have
to strike a balance between the speed of the solution and accuracy in modeling.

Over 95% of the total computational time of a DTA procedure comes from
the dynamic network loading component (Carey and Ge (2012)). Thus, it is
important to include an e�cient process of dynamic network loading with the
shortest possible computational times, even in the case of medium-sized or large
tra�c networks.

1.2 Motivation and Thesis Objectives

The main objective of the research presented in this thesis is to develop a DTA
model based on the dynamic extension of the Wardrop Principle referred to as
Dynamic User Equilibrium (DUE). For this purpose, we solve a variational in-
equalities formulation by employing a preventive approach based on an iterative
solution algorithm, which is a modi�cation of the well-known Method of Succes-
sive Averages (MSA). The developed approach explicitly considers the time and
variable tra�c demand on each path of the network within the �ow propagation
and assignment processes. In particular, this thesis develops a DTA model that
uses a mesoscopic tra�c simulator to reproduce complex tra�c �ow dynamics.

One of the main motivations for addressing this objective is the need to develop
a decision support tool to assist the decision-maker in strategic and operational
decisions, particularly in an urban context. Thus, in order to ensure that the
developed DTA achieves this functional objective, it is fundamental that the dy-
namic network loading component is able to reproduce tra�c light controls, lane
changes, special lanes and di�erent vehicles classes. Therefore, a new multiclass,
multilane mesoscopic simulation model is developed with these characteristics in
mind, since available existing simulation-based dynamic network loading models
were deemed unsuitable for integration into a DTA intended for this use.

In addition, another motivation exists for the research proposed in this the-
sis. For some time now, our research group has been addressing other tra�c
problems related to strategic and operational transport planning. During the
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resolution process of these tra�c problems, we realized the high importance of
having our own DTA model. In this way, we could easily integrate the DTA
results into the resolution approaches of other tra�c problems. For instance, we
are currently dealing with the dynamic OD matrices estimation problem. One
of our proposed solutions includes an iterative approach that performs a com-
plete DTA under the DUE hypothesis at each iteration of the global process.
Thus, our DTA model must be capable of becoming an interactive component in
a more complex model by exchanging information with the other components.
This ability is usually unavailable in most commercial software; and in the few
that do allow the required coupled working node, the capabilities are limited.

Thus, we need a �exible and con�gurable DTA that is more adaptable than
existing commercial DTA tools.

Aside from the primary objective, we are interested in the following research
questions:

� The original MSA indiscriminately diverts tra�c from the paths used in
the last iteration to the current optimum paths. The process extracts the
same amount of �ow from each used path, regardless of whether the path
is the worst or only slightly worse than the optimal. Does this diversion
process a�ect the achievement of DUE? And, if so, in which way?

� From a transportation modeling standpoint, is it realistic to accept unlim-
ited growth in the number of OD paths? And, if not, how does an upper
bound in the number of paths for each OD pair for each departure time
interval a�ect the quality of the reassignment process and its convergence?

� In the MSA approach, how does the initial number of paths through each
OD pair for each interval in�uence convergence towards dynamic user
equilibrium?

� The convergence of the MSA approach depends on the values assigned to
the structural parameters of the algorithm (MSA parameter). What is
the in�uence of the di�erent alternatives on convergence to dynamic user
equilibrium?

The previous research questions all concentrate on the reassignment �ow pro-
cess. Apart from these contributions of our work, we complete this thesis by
considering the following research questions about the dynamic network loading
component:
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� The aim of this component is to describe tra�c �ow. In the literature,
there are basically two approaches for solving it: models that are based on
macroscopic tra�c theory and models that try to simplify the performance
of each single vehicle, such as the car following models. Is there an ap-
proach between these two proposals that is most suitable for representing
these tra�c �ow dynamics?

� Can this approach adequately reproduce the phenomena observed in macro-
scopic tra�c �ow behavior? (For example, shock waves and the tra�c
fundamental diagram?) In addition, can the model that represents the
node behaviour accurately reproduce delays and queue spill-backs?

� Which is the most appropriate characterization to describe these temporal
dynamics? Time-based or event simulation?

� How important is the model representation of the network topology? For
instance, the experiment shows that roundabouts and short-length links
could a�ect the results of the urban tra�c simulation.

1.3 Thesis Contributions

In order to accomplish the objectives listed in the previous section, we �rst
needed to investigate in detail the relevant simulation-based DTAmodels present
in the literature. Therefore, the �rst contribution of this thesis is a complete
literature review of the three types of DTA models based on simulation. They
are distinguished according to the level of detail with which they represent the
studied system, from low to high �delity: macroscopic, mesoscopic and micro-
scopic simulation models. For each examined DTA model, the review analyzed
in-depth not only the approach used to reassign the �ow, but also the dynamic
network loading component. To the best of our knowledge, no state of the art
existed in the literature regarding simulation-based DTA models with any high
level of detail.

The second and main contribution of this dissertation is a mesoscopic simulation-
based DTA method based on the DUE behaviour approach. The proposed DTA
scheme iterates between the two main components until the convergence crite-
rion is satis�ed. These two components are referred to as dynamic network
loading and path �ow reassignment. Additionally, this scheme includes: a time-
dependent shortest path component, in order to add new paths throughout the
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procedure when it becomes necessary; and a K-static shortest path algorithm
that determines an initial path set to be used in the �rst iteration of the process.

DTA models based on simulation use a tra�c simulator to reproduce complex
tra�c �ow dynamics (dynamic network loading component). As a result, the
third contribution of this research is a multiclass, multilane mesoscopic tra�c
simulation model well suited for embedding into a DTA scheme. This meso-
scopic simulator considers a continuous-time link-based approach with a com-
plete demand discretization. It is the �rst proposal to focus on the problem
from this perspective. Considering disaggregated treatment of each individual
vehicle allows the use of di�erent vehicle classes in the problem. Moreover,
in order to reproduce the transversal movements described by vehicles chang-
ing lanes, which can considerably augment link congestion, the proposed model
allows longitudinal discretization of links in lanes.

Finally, this dissertation also proposes a modi�cation of the known Method of
Successive Averages (MSA) for the �ow reassignment process. This extension
takes into account the cost of alternative paths during the diversion process, un-
like the standard MSA, which does it indiscriminately regardless of whether the
path is the worst or only slightly worse than the optimal. Thus, the proposed
method uses a diversion factor based on actual travel times in order to complete
a more realistic �ow reassignment from among the alternative paths. Moreover,
the method combines this with the well-known limitation of the maximum num-
ber of available paths for each OD pair for each departure time interval, in order
to reduce the computational storage needed in the original MSA.

1.4 Thesis Outline

This thesis is organized according to the scheme presented in Figure 1.4.1.

In the following, we discuss the di�erent components of the scheme in more
detail.

Dynamic Tra�c Assignment Problem

Before we can start with the development of the DTA model, we need to investi-
gate this problem in more detail. Based on the existing literature, in Chapter 2
we will describe the problem, starting with apresentation of both dynamic user
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Figure 1.4.1: Schematic presentation of the thesis outline.
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behaviors: dynamic system optimum and dynamic user equilibrium. Consecu-
tively, we will show how a DTA problem can be solved through four di�erent
approaches. We will furthermore illustrate the DTA structure that will follow
our development, which has two main components: dynamic network loading
and �ow reassignment.

Having established the DTA structure, we will analyze relevant DTA models
in Chapter 3. Here, we will concentrate on the models that use simulation for
the dynamic network loading component, as well as demonstrate that consid-
erable di�erences exist among the models that use microscopic, mesoscopic or
macroscopic simulations for this component.

Proposed Dynamic Tra�c Assignment Model

The previous in-depth discussion of the simulation-based DTA models will assist
us in developing the proposed algorithm that solves the DTA problem. Chapter
4 will provide the fundamentals of the new proposed DTA model based on DUE
hypothesis. In addition, it will explain all the components of the proposed
algorithm in detail, paying special attention to the shortest path algorithms:
k-static shortest path and time-dependent shortest path. In Chapters 5 and 6,
we will develop the main components of the proposed DTA model, the dynamic
network loading, and the �ow reassignment, each one independently.

In Chapter 5 we will present our multilane multiclass mesoscopic simulation
model, which will be used to solve the dynamic network loading problem em-
bedded in the DTA. Additionally, as a means of reviewing the dynamic network
loading models present in the literature, we will justify the development of a
mesoscopic simulation model. We will then concentrate on on how the pre-
sented model operates and will conclude with the corresponding computational
experiences, whose results support the proposal.

Moreover, we will present the �ow reassignment algorithm separately. In Chap-
ter 6, following a discussion of the corresponding state of the art, we will present
our modi�ed Method of Successive Averages. We will furthermore demonstrate
the good performance of the proposed �ow reassignment process by using an
external dynamic network loading model to validate it independently of our
mesoscopic simulation model.
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Computational Experiences

In order to validate the proposed DTA model, and also to evaluate whether it
is correct, we will propose some computational experiments. For that purpose,
in Chapter 7 we run the developed DTA model on a real urban network. In
order to investigate the behaviour of the model, we will take the results from
the proposed model and compare them with the results from a non-iterative
assignment simulation. In addition, we will study whether the initial number
of paths are important at the beginning of the global DTA procedure. We will
also study the role played by the MSA parameter in achieving DUE.

Chapter 7 will describe the test network we used and the experiment design,
followed by ananalysis of their corresponding results.

Conclusions and Future Research

Finally, Chapter 8 will provide a review of the main achievements in this dis-
sertation thesis.

We will summarize the main research aims and the approach used to achieve
these aims. After this, we will discuss the main research �ndings. We will
�nish with a discussion of future research that may naturally follow the research
described in this thesis.



Chapter 2

Dynamic Tra�c Assignment

2.1 Introduction

The Dynamic Tra�c Assignment (DTA) problem, which researchers have been
studying since the early 80's, is an extension of the tra�c assignment problem
that describes the evolution of tra�c patterns in the transport network over
time and in space (Mahmassani (2001)).

Tra�c Assignment Tra�c assignment determines how demand is loaded
into the road network providing a way to calculate tra�c intensity on network
sections. Demand is usually de�ned in terms of origin-destination (OD) travels
matrices. The underlying modeling assumption is that trips between origins
and destinations use the routes that connect them. The characteristics of a
tra�c assignment process are determined by a hypothesis of how travelers use
the routes.

Tra�c assignment in equilibrium is the backbone of the entire methodology.
References by Patriksson (1994) and Florian and Hearn (1995) continue to pro-
vide the most comprehensive overview of the fundamentals of the models and
the structure of the main algorithms.

The paradigm modeling hypothesis is based on the concept of user equilibrium,
which means that travelers try to minimize their individual travel times; i.e.,

13
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they tend to use those routes that they perceive as the shortest under pre-
vailing tra�c conditions. This modeling hypothesis is formulated in terms of
Wardrops's First Principle (1952): � The travel times in all routes actually used
are equal and less than those which would be experienced by a single vehicle on
any unused route�. Each user non-cooperatively seeks to minimize his cost of
transportation.

The tra�c assignment models based on this principle are known as user equi-
librium models, as opposed to models where the objective is to optimize total
travel in the system, regardless of individual preferences.

Dynamic Tra�c Assignment As we mentioned in Chapter 1, the higher
market penetration of the underlying technologies in Intelligent Transport Sys-
tems (ITS) has motivated research on DTA problems. This is due to the im-
portant applications that dynamic assignment has for:

� Advanced systems for tra�c management.

� Advanced systems for traveler information.

These transport systems are designed to manage tra�c networks in real time
through: measurement, detection, communication, control and information pro-
vision (in real time).

The DTA problem can determine time-dependent link �ows or time-dependent
path �ows in a congested road network, satisfying a set of individual objectives
and/or an overall system goal.

2.2 Behavioral Hypothesis

According to the behavioral hypothesis of each decision during a trip, the DTA
problems can be classi�ed as follows:

� Dynamic System Optimum assignment (DSO)

� Dynamic User Equilibrium assignment (DUE)
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2.2.1 Problem Statement

Let a graph G = (N,A), with a �nite nodes set N and a �nite set of oriented
links A. The studied time period T is discretized in a set of time intervals, T =
{t1 = (t0, t0 +4t) , t2 = (t0 +4t, t0 + 24t) , .., tS = (t0 + (S − 1)4t, t0 + S4t)},
where t0 is the earliest possible departure time from any origin node, 4t is a
small time interval during which no changes in tra�c conditions or travel costs
are perceived, and S is an integer constant such that the intervals from t0 to
t0 + S4t cover the entire period of interest T .

The rest of the notation and the variable de�nitions are shown below, followed
by an approach to two possible DTA problems, depending on the considered
behavior hypothesis (DUE or DSO).

Notation and variables de�nition

O Origin nodes, O ⊆ N .

D Destination nodes, D ⊆ N .

T Departure time intervals.

o Subscript for the origin nodes, o ∈ O.

d Subscript for the destination nodes, d ∈ D.

t Subscript for the departure time intervals, t ∈ T .

Podt Set of feasible paths for each OD pair (o, d) and for each departure
time interval t.

p Subscript for path p ∈ Podt.

qodt Travel demand from origin o to destination d departing at time in-
terval t.

fodpt Number of trips from origin o to destination d departing at time
interval t using the assigned path p.

f Flow vector f = {fodpt,∀o, d, t, p ∈ Podt}.

codpt Travel time experienced by vehicles departing from origin o to des-
tination d at time interval t using the assigned path p.
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ĉodpt Marginal travel time experienced by vehicles departing from origin
o to destination d at time interval t using assigned path p.

πodt Minimum travel time experienced by vehicles departing from origin
o to destination d at time interval t using the shortest path.

π̂odt Marginal minimum travel time experienced by vehicles departing
from origin o to destination d at time interval t using the shortest
path.

Marginal travel time refers to the additional cost that one more trip would incur
between origin o and destination d in departure time interval t through the
assigned path p. To calculate the marginal travel time, not only the additional
travel time added for that vehicle must be taken into account, but also the
delays that might occur for other vehicles on the same path p.

2.2.2 Dynamic System Optimum (DSO)

When basing the assignment problem on a system optimization behaviour hy-
pothesis, the solution suggests that travelers will aim to minimize the total cost
to the system by behaving cooperatively when choosing their paths and depar-
ture time intervals. This assumption is based on Wardrop's Second Principle.

The dynamic system optimization conditions can be mathematically represented
by system Equation 2.2.1. ĉodpt − π̂odt ≥ 0

fodpt · (ĉodpt − π̂odt) = 0
fodpt ≥ 0

(2.2.1)

Equation 2.2.1 states that if the �ow in the path is strictly positive, then the
marginal travel time experienced on the path must be equal to the minimum
marginal travel time for the same (o, d, t).

This formulation implies that we will have complete information about demand
and time variation during the period of interest, i.e., we will know a priori qodt
∀o, d, t. This information is used by the tra�c assignment problem to globally
optimize the system by �nding a feasible �ow pattern in time-dependent shortest
paths f∗ = {fodpt,∀o, d, t, p ∈ Podt}. In this way, it minimizes the total travel
time of the system.
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2.2.3 Dynamic User Equilibrium (DUE)

In 1996, Ran and Boyce expressed the condition of DUE as a time-dependent
generalization of Wardrop's First Principle: If, for each OD pair at each instant
of time, current travel times experienced by vehicles that have departure in the
same time interval are equal and minimal, then the dynamic tra�c �ow through
the network is in a DUE state based on travel times Ran and Boyce (1996).

Analytically, the DUE conditions may be formulated by the system Equation
2.2.2.  codpt − πodt ≥ 0

fodpt · (codpt − πodt) = 0
fodpt ≥ 0

(2.2.2)

Under these conditions, it is implicit that a traveler is rational and chooses the
path that minimizes its travel cost. Equivalently, the DUE tra�c assignment
tries to �nd feasible �ow patterns on a time-dependent shortest path f∗ ={ ∑
p∈Podt

fodpt = qodt,∀o, d, t

}
. This satis�es Equation 2.2.2, �ow propagation

constraints, path �ow conservation, and non-negativity constraints, as de�ned
in the DTA problem proposed by Peeta and Mahmassani (1995).

All trips on the network are balanced in terms of current costs experienced on
the paths, so it is necessary to determine the function relating �ow and cost in
a DUE assignment model.

To determine these functions, a dynamic tra�c model based on simulation is
often used to evaluate the cost of the paths experienced by a certain �ow vector
f . It should be noted that the choice of a dynamic tra�c model is not restricted
to a particular model; any dynamic tra�c model capable of capturing the com-
plex dynamics of tra�c �ow can be included in the proposed solution algorithm
for DUE. This is particularly true of models that capture the dynamics which
generate and propagate congestion as well as those which form and dissipate
queues.

Before proceeding, it is worth noting here that DTA processes do not always
agree with the dynamic version of the Wardrop Principle, Friesz et al. (1993),
Ran and Boyce (1996), and therefore optimality cannot be guaranteed.

In these cases, the route selection mechanism attempts to optimize route selec-
tion using current information. One frequent variant simulates the uncertainties
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of the available information by using choice functions, as prescribed by the dis-
crete choice theory. This may also include en-route changes.

These approaches are considered DTA procedures, but they do not achieve
DUE. If the assumptions about how travelers choose their routes are consistent
with the dynamic principle of the formulated user equilibrium, then a DTA can
become a DUE assignment. This topic will be addressed in Section 6.1.

2.3 DTA Approaches

Despite the mathematical di�culty of treating DTA problems, this is not an
obstacle to the various real-world solutions available. Di�erent approaches can
address di�erent functional needs with varying degrees of strength. The con-
sensus is that a DTA approach must adequately represent real tra�c conditions
in order to achieve the objectives.

This section reviews the literature about the DTA problem by classifying the
various approaches into four broad methodological groups:

� Mathematical programming

� Optimal control

� Variational inequalities

� Simulation

The �rst three groups are typically considered analytical approaches. In these
cases, DTA is formulated as a mathematical problem which is solved directly
with known mathematical optimization techniques.

In DTA context, mathematical programming and optimal control theory have
signi�cant limitations, while variational inequalities o�er some advantages. Be-
cause of this, analytical DTA models have migrated toward a variational in-
equalities approach in recent years. An extended overview of mathematical pro-
gramming, optimal control and variational inequalities can be found in Peeta
and Ziliaskopoulos (2001).

The advantages of the analytical approach are: an ability to apply existing math-
ematical solution algorithms to the DTA problem, and the ability to determine
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solution properties such as existence and uniqueness. However, a theoretical
guarantee of properties such as existence and uniqueness imposes restrictions
on the mapping function (mapping route �ows for travel times), and this pre-
vents a realistic representation of tra�c propagation. Another drawback is
the limited applicability of analytical models. The successful use of analytical
models is usually limited to small hypothesized networks, as these models use
solution procedures that do not take advantage of the speci�c characteristics of
transportation problems.

Simulation-based DTA models focus on enabling practical deployment for real
networks and are designed to handle tra�c problems in real-life networks. So-
lutions existence and uniqueness propertiesare of secondary importance. They
have the advantage of being applicable to real-life networks and of being able to
adequately capture tra�c dynamics and driver behavior. However, one draw-
back is that theoretical insights cannot be analytically derived, since tra�c
propagation is modeled through simulation. Another is that properties like
existence and uniqueness are not guaranteed in the solution.

Below, we present the existing literature about the di�erent formulations of the
DTA problem, classi�ed according to their approach to the problem.

2.3.1 Mathematical Programming Formulation

DTA models based on mathematical programming formulate the problem in a
discretized time-setting.

Merchant and Nemhauser were the �rst to try formulating DTA as a mathe-
matical programming problem (Merchant and Nemhauser (1978a) and Merchant
and Nemhauser (1978b)). The formulation was limited to: the system optimum
behavior case; a �xed demand, single destination node; and a single commodity.
The model used an exit link function in order to propagate tra�c and a static
link performance function to represent travel cost as a function of link volume.
Thus, it resulted in a non-convex non-linear formulation based on �ows and with
discrete times. This model generalized the static assignment problem based on
the system optimumization behavior.

In 1987, Carey reformulated the Merchant and Nemhauser model into a convex
non-linear problem by manipulating the exit link functions (Carey (1987)). This
new formulation o�ered more mathematical and algorithmic advantages than
the original formulation. The basic part of the formulation was the same as the
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original,but the exit link functions were used to bound the exit �ow through
the link instead of using the exit �ow itself, as in the Merchant and Nemhauser
model. This was done in order to achieve a convex formulation.

In his reformulation, Carey also introduced extensions of the basic model to
handle multiple destinations and commodities. However, these extended for-
mulations remained problematic because of non-convexity arising from a �rst-in
�rst-out (FIFO) requirement. These di�culties appeared to be inherent in all
mathematical programming formulations of the DTA problem, both for dynamic
user equilibrium and for system optimum cases.

Multiple destination nodes require models that explicitly satisfy FIFO require-
ments; that is, they are essential for realistic tra�c simulation. The FIFO rule
has two dimensions: physical and algorithmic. Since in current tra�c networks,
vehicles can occasionally violate FIFO, it can only approximate tra�c propaga-
tion. The problematic FIFO violation is induced by its own algorithm, in which
some vehicle physically jumps over another to reduce system cost. This is also
inconsistent with realistic tra�c behaviour.

In 1992, Carey said that the FIFO requirement is easily satis�ed in formulations
that take into account single node destinations as well as for certain special
network structures (Carey (1992)). However, in a general network, this require-
ment would introduce additional constraints that yield to a set of non-convex
constraints, which would destroy many of the nice properties of the formulation
and increase the computational requirements of any solution algorithm.

There is another phenomenon related to the mathematical programming models
formulating DTA problem under system optimum behavior.That is the �holding-
back� of vehicles in links. This arises when link exit constraints are satis�ed as
strict inequalities. Basically, this phenomenon occurs when vehicles are arti-
�cially delayed on a link for an unreasonable period of time. Such a solution
is probably not acceptable socially nor is it operationally realistic. From a
modeling standpoint, this phenomenon can be avoided by including explicit
constraints that preclude it. In 2000, Carey and Subrahmanian illustrated some
of these constraints, as well as others, in order to solve the previously mentioned
problem related to the FIFO rule (Carey and Subrahmanian (2000)).

In 1991, Janson represented one of the �rst attempts to model the DTA prob-
lem under the DUE behavior hypothesis. He formulated it as a mathematical
program (Janson (1991)). One feature of his approach was that it sought equi-
librium in terms of experienced path travel times rather than the instantaneous
travel times assumed in prior works. In order to ensure the temporal continuity
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of OD �ows, this formulation proposed non-linear, mixed integer constraints, al-
though these constraints can be violated during the solution process.,It was an
extension of the incremental assignment heuristic for static formulations. The
properties of this procedure are not su�ciently well-de�ned, so tra�c behaviour
may be unrealistic.

In 2000, Ziliaskopoulos formulated a linear program for a single destination case
of the DTA problem with system optimum behavior (Ziliaskopoulos (2000)).
This formulation was based on the Cell Transmission Model (CTM) proposed
by Daganzo for the tra�c propagation problem (Daganzo (1994)). Although the
Ziliaskopoulos model could not operate in real-world applications, it provided
some insights into the properties of the DTA problem.

In general, mathematical programming DTA formulations tend to have di�cul-
ties related to:

� The use of link performance and/or exit link functions.

� The FIFO rule problems.

� The holding back tra�c phenomenon.

� Ine�cient solutions for real-time deployment in large-scale tra�c net-
works.

2.3.2 Optimal Control Formulations

In optimal control theory DTA formulations, the OD travel rates are assumed
to be known continuous time functions, and the link �ows also are continuous
functions of time. The constraints are analogous to those for the mathematical
programming, but they are de�ned in a continuous-time scenario. This results
in a continuous time optimal control formulation rather than a discrete time
mathematical program.

In 1989, Friesz discussed this kind of formulation for two behavior cases: system
optimum and dynamic user equilibrium. But he took into account only the
single destination case (Friesz et al. (1989)). The models assumed that the
adjustment from one system state to another might occur concurrently as the
system conditions changed, that is, as routing decisions were made according
to current network conditions of the network. However, the decisions could also
be continuously modi�ed as conditions changed.
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Friesz also proposed a time-dependent generalization of Beckmann's equiva-
lent optimization problem (Beckmann et al. (1956)) for the tra�c assignment
problem, and he based it on static user equilibrium. These models used link
exit functions to propagate tra�c �ow, and link performance functions to de-
termine travel costs. Moreover, this formulation treated the link in�ow as a
control variable and the link out�ow as a function. This was problematic, since
the non-linearity of the exit functions made it di�cult to generalize Wardrop's
First Principle to the time-dependent case for a network with multiple origins
and destinations.

Wie (1989) extended the user equilibrium model to include elastic time-dependent
travel demand,which led to implicit consideration of departure time choices.Wie
also enumerated several limitations of this approach.

Ran and Shimazaki (1989b) used the optimal control approach in order to de-
velop a system optimum optimization model based on links for an urban trans-
port network with multiple origins and destinations . They also de�ned the out-
�ow links as linear functions, while the link performance functions were de�ned
with quadratic functions. They found that the model reproduced congestion in
an unrealistic way. In addition, they did not consider the FIFO issue that arose
from having multiple destinations.

The same year, Ran and Shimazaki presented an optimal control theory based
on an instantaneous user equilibrium DTA model (Ran and Shimazaki (1989a)).
In this case, the exit link �ows were treated as a set of control variables. No
e�cient algorithms were available to solve these formulations.

Ran used the optimal control approach to obtain a convex model for the DTA
problem based on instantaneous user equilibrium behavior, doing so by de�ning
in�ows and out�ows as control variables. He acknowledged that the usual cost
functions failed to take into account dynamic queues and congestion costs, so
he proposed splitting link travel costs into two components: queuing and mov-
ing. However, these functions are assumed to be non-negative, increasing, and
di�erentiable.Therefore, they may not represent real tra�c.

In 1995, Boyce et al. proposed a methodology for solving the discretized version
of the problem using the Frank and Wolfe algorithm along with a spatial and
temporal extension for representing the network(Boyce et al. (1995)). However,
they did not implement the procedure or illustrate it through examples. Also,
the use of static link performance functions was a limitation of this proposed
model.
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In the same year, Codina and Barceló presented a comprehensive and critical
review of the most relevant formulations of the DTA problem and algorithms
used in both discrete and continuous models. They emphasized the underlying
modelling hypothesis and also described a continuous modelling proposal that
overcame one of the major reported shortcomings: the FIFO discipline observed
in tra�c �ows. (Codina and Barcelo (1995)).

Thus, despite the attractiveness of an optimal control approach in representing
dynamic systems, it su�ers from many limitations for DTA formulation:

� The lack of explicit constraints to ensure FIFO and preclude holding ve-
hicles at nodes.

� The inadequate and possibly unrealistic modeling of tra�c congestion.

� The lack of a solution procedure for general networks.

Because of the limitations of optimal control theory for DTA and the advantages
o�ered by variational inequalities, analytical DTA models migrated toward the
variational inequalities approach, which are discussed in the following Section
2.3.3.

2.3.3 Variational Inequalities Formulations

Variational inequalities generally formulate several classes of problems for DTA.
They provide a uni�ed mechanism for addressing equilibrium and other equiv-
alent optimization problems. Also, this approach demonstrates certain mathe-
matical properties such as uniqueness.

In 1979, Smith introduced the variational inequalities approach for the static
equilibrium tra�c assignment (Smith (1979)). He based his study on the pre-
vious work of Dafermos (1971), where the author showed the importance of
symmetrical travel cost Jacobian matrices when transforming a tra�c assign-
ment model into a non-linear convex optimization problem. Smith proposed a
DTA model under a variational inequalities approach based on link �ows instead
of path �ows, as was typical up until that time. In fact, he demonstrated that
both approaches were equal� as well as the existence, the uniqueness and the
stability of the solution of the new raisedvariational inequalities.
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During the 80s, later independent works by Dafermos and Smith inspired other
authors to rapidly develop new theories, applications and resolutions for the
variational inequalities approach.

The variational inequalities approach avoids the problems caused by asymmetric
link interactions when analytically treating constrained optimization formula-
tions. In that sense, it can handle more realistic tra�c scenarios. While the
variational inequalities approach is more general and better equipped than other
analytical approaches presented for addressing di�erent aspects of DTA prob-
lems, the previously discussed broader limitations associated with analytical
models remain.

In 1993, Friesz et al. formulated the time-continuous variational inequalities
model in order to solve the problem of departure time/route selection by equi-
librating the experienced travel times (Friesz et al. (1993)). The model used
link performance functions, penalty functions for early or late arrivals, travel
demand, desired arrival times, and all the possible paths among origins and
destinations. The path cost was a combination of travel cost (determined by
the link performance function) and the penalty for early or late arrivals (due to
traveling along the path). This formulation re�ected traveler behaviour more
realistically, but it had not solved any of the issues. For example, there was no
proof of solution existence or uniqueness. Also, the characteristics of the formu-
lation required it to solve a complex system of simultaneous integral equations.
However, no e�cient algorithm existed for this resolution.

In 1995, Wie et al. introduced discrete variational inequalities formulation for
the simultaneous route-departure equilibrium problem. They also proposed a
heuristic algorithm to approximate it (Wie et al. (1995)). They showed solution
existence under certain regularity conditions and used out�ow functions instead
of the exit time functions proposed by Friesz et al. (1993). The use of out�ow
functions caused the usual problems of unrealistic tra�c �ow. Furthermore, the
formulation was based on paths, and since complete enumeration of the paths is
computationally costly, an e�cient method for identifying a subset of relevant
paths was needed.

In order to avoid the problems of variational inequalities based on paths, Ran
and Boyce proposed in 1996 a discrete formulation based on links with �xed de-
parture times (Ran and Boyce (1996)). They included a queuing delay compo-
nent to partly alleviate the problems of tra�c realism stemming from analytical
approaches. However, capacity and over-saturation constraints increased the
computational burden, leading to computational feasibility issues for realistic
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networks.

In 1998, Chen and Hsueh also proposed a DUE model with a variational in-
equalities formulation based on links (Chen and Hsueh (1998)). They showed
that, without loss of generality, link travel time could be represented as a func-
tion of link in�ow only, and not as a function of in�ow, out�ow and the number
of vehicles on the link. A solution algorithm based on a nested diagonalization
procedure was proposed. However, it was still prohibitively expensive for real
networks.

In 2002, Lo and Szeto developed a DTA problem formulation, based on cells,
that followed a variational inequalities approach under the system optimal be-
haviour hypothesis (Lo and Szeto (2002)). In order to improve the accuracy
of the dynamic tra�c modeling, this formulation included a version of the Cell
Transmission Model of Daganzo. Also, this formulation satis�ed the FIFO con-
dition. The experiment results obtained with this formulation showed that it
was able to capture dynamic tra�c phenomena such as shock waves or the
formation and dissipation of queues.

The variational inequalities approach is more general than the analytical ap-
proaches previously described. They provide greater analytical �exibility and
are more convenient for dealing with DTA problems. This approach has been
used to illustrate the notion of experienced travel time, which was used in DTA
under ideal or simultaneous user equilibrium approach.

However, variational inequalities approaches are not a panacea. They are more
computationally intensive than optimization models and are computationally
intractable in real-time deployment. This issue is further magni�ed by varia-
tional inequalities formulations based on paths, because they require complete
path enumeration. In addition, although they can better represent interactions
between links, the analytical models continue to have problems representing
realistic tra�c.

2.3.4 Simulation-Based Models

DTA models based on simulation use a tra�c simulator to reproduce the com-
plex tra�c �ow dynamicsin order to develop meaningful operational strategies
for real-time situations.

The terminology "simulation-based models" may be a misnomer. This is be-
cause the mathematical abstraction of the problem is a typical analytical for-
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mulation. However, the critical constraints that describe tra�c �ow propaga-
tion and spatial-temporal interactions (such as �ow conservation and vehicle
movement) are addressed through simulation instead of analytical evaluation.
This is because current analytical tra�c �ow representations cannot adequately
replicate theoretical tra�c relationships. Hence, the term �simulation-based�
connotes problem solution methodology instead of problem formulation.

Simulation-based models embedded into DTA resolution are limited by the-
oretical mathematical properties that cannot be analytically derived because
complex tra�c interactions are modeled through simulation. Moreover, due
to the inherent bad behavior of the DTA problem, notions of convergence and
uniqueness in the solution may not be particularly practical. However, due to
their better �delity with the real tra�c situations, simulation-based models have
gained greater acceptability in the real-world context deployment (Ben-Akiva
et al. (1998)).

In addition to the use of a simulator in a descriptive mode in order to deter-
mine tra�c �ow propagation, most existing simulation-based models also use
it partially to search for the optimal solution. When the simulator works in
predictive-iterative mode, each iteration projects future tra�c conditions as a
part of the direction-�nding mechanism in the search process.

Given the substantial computational burden imposed by the simulator, the
choice of �granularity� (macroscopic, mesoscopic or microscopic) is signi�cant
in simulation-based models for real-time deployment.

In 1993 and 1995, Mahmassani and Peeta developed DTA models that use a
mesoscopic tra�c simulator as part of an iterative algorithm in order to solve
the problem under the system optimum or dynamic user equilibrium behavior
hypothesis. They applied it to a demand with �xed departure times (Mahmas-
sani et al. (1993); Mahmassani and Peeta (1995)). The logic of the adopted
simulation combines a microscopic representation of individual drivers with a
macroscopic description of some interactions in the tra�c �ow. This allows an
acceptably accurate solution at a fraction of the computational cost of a micro-
scopic representation of tra�c maneuvers. The use of a tra�c simulator avoids
the problems of unrealistic tra�c arising from analytical formulations while at
the same time it works for general networks.

In 1993, Mahmassani extended the single user class models to the more realistic
multiple user class scenarios. Here multiple user classes are assumed, speci�cally
regarding: available information, information about supply strategy, and driver
response to the provided information (Mahmassani et al. (1993)). However, as
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with the analytical functions, these models are not operationally adequate for
providing real time optimal path information and/or instructions for network
users responding to unpredicted variations in network conditions.

In addition to the conceptual and algorithmic aspects of the models, the real-
time and large scale nature of the models are integral to the computational
problems. In particular, developing algorithmic procedures must address com-
putational e�ciency. As these solutions incorporate a simulator into the itera-
tive research process, they are unfeasible for real-time deployment unless they
are modi�ed further.

In 1992, Ghali and Smith proposed a single user class formulation for the de-
terministic DTA problem under the system optimum hypothesis behavior in
which congestion arises exclusively at speci�ed bottlenecks modeled as deter-
ministic queues (Smith and Ghali (1992)). A simulation-based solution is pro-
posed, where the vehicles are routed individually on paths determined by using
marginal link travel costs. Although the approach does not ensure system op-
timality and it has limitations due to assumptions on queuing, it addresses
some tra�c modeling issues that limit the realism and validity of the analytical
formulations.

Ghali and Smith also discussed di�erent levels for computing approximate marginal
travel times. However, their methodology involves a brute force simulation of
alternative scenarios, which is neither feasible for real-time applications nor ef-
�cient in large scale, real-world networks.

In 1994, Smith addressed the DTA problem under dynamic user equilibrium and
the system optimal behavior hypothesis by implementing its solution through
the CONTRAM simulation model (Leonard et al. (1989)). (See Section 3.2.2).

With the objective of generating a useful real-time model, in 1995 Peeta and
Mahmassani developed rolling horizon DTA models, where they explicitly incor-
porated real time variations in network conditions and fostered computational
e�ciency in order to allow real time treatment (Peeta and Mahmassani (1995)).
The rolling horizon approach provides a practical method for addressing prob-
lems which ideally require information about future demand for the entire plan-
ning horizon. This is a characteristic of DTA problems. Its advantage is the
capacity to use current available information and make short term predictions
with some degree of reliability. In this way it can solve a problem in quasi
real-time while preserving the e�ectiveness of the computational procedure in
�nding good control strategies. From an operational perspective, the informa-
tion needed is more realistic than the perfect knowledge required by determin-
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istic models. Since it is based on stages, the rolling horizon approach ensures
that unpredicted variations in on-line tra�c conditions can be adequately rep-
resented in subsequent stages. However, if the actual origin-destination trips
desired di�er signi�cantly from the forecasts, the solution is suboptimal.

In 1998, Ben Akiva et al. proposed DynaMIT (see Section 3.2.5) as a DTA
system for estimating and predicting future tra�c conditions in real time (Ben-
Akiva et al. (1998)). Its interactive supply and demand simulators generate
user equilibrium routes under a rolling horizon framework. The demand sim-
ulator estimates and predicts origin-destination demand using a Kalman Fil-
tering methodology, and it considers both historical information and the driver
response to information. The supply simulator determines �ow pattern based
on demand. It is a mesoscopic tra�c simulator, where vehicles are moved in
packets, and the links are divided into segments that include a moving part and
a queuing part, in order to model tra�c �ow.

In 2000, Ziliaskopoulos and Waller introduced an internet-based GIS system
that integrated data and models into one framework (Ziliaskopoulos (2000)).
The simulation-based DTA model in this system used RouteSim as the tra�c
simulator. RouteSim is a mesoscopic model based on the cell transmission model
(Daganzo (1994)) for tra�c propagation. The model was most realistic because
it included many realities in the network, such as tra�c signals, by using time-
dependent cell capacities and saturation �ow rates.

Also in 2000, Tong and Wong formulated a DTA model for a network situation
with restricted capacity lanes due to congestion (Tong and Wong (2000)). In
order to load tra�c demand into the network incrementally, they developed
a tra�c simulator; therefore, the tra�c network conditions were dynamically
updated. The proposed method was a promising evaluation tool that captured
the tra�c �ow pattern in a dynamic user equilibrium situation. It also identi�ed
the network area with congestion in a way that was probably subjected to time-
dependent demand.

In 2001, Florian et al. presented DTASQ, which later evolved into the com-
mercial software Dynameq. It was a DTA model that hybridized optimization
and mesoscopic tra�c simulation under a user equilibrium behavior hypothesis
(Florian et al. (2001)) (see Section 3.2.4). In this case, they used an event-based
approach to simulate vehicle movementand other temporal components of the
simulation. It is important to note here that the performance of this model
depends only on the total vehicle �ow that crosses the link. Thus, it is not
a�ected by high densities in the links, unlike most of the existing mesoscopic
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simulators, where the computational e�ort for each link is proportional to the
total time wasted by vehicles when they cross the link.

In 2004, Varia and Dhingra proposed the development of a DTA model under
user equilibrium behavior. It was designed for urban congested networks with
signalized intersections (Varia and Dhingra (2004)). In this case, they used the
simulation-based approach for the case of tra�c �ow with multiple origins and
destinations. They concluded that the formulated model avoided all-or-nothing
assignments and provided results close to equilibrium conditions.

Simulation-based DTA models address some of the observed problems in an-
alytical formulations. When trying to reproduce dynamic tra�c phenomena,
a simulation model incorporates theoretical tra�c relationships into the tra�c
�ow model and thereby avoids the limitations of analytical results based on link
performances and output functions.

A tra�c simulator also captures the complex interactions between vehicles and
evaluates the non-linear objective function more satisfactorily than the idealized
cost function. In addition, a simulation model can implicitly satisfy the FIFO
constraint and circumvent the holding-back phenomenon. All these factors, and
the ability to keep track of paths of individual vehicles, represent the advantages
of simulation-based approaches to DTA.

Hence, while analytical models have concentrated mainly on deriving theoreti-
cal insights, simulation-based models have focused on trying to build practical
models for deployment in real networks. Therefore, their key issues address:
multiple user classes, information availability, driver response, computational
e�ciency, robustness, calibration and consistency. Simulation is an option that
is especially useful in realistically capturing the complex interactions of di�erent
user classes, which are very frequent in actual tra�c networks. Given the traf-
�c modeling problems that arise for analytical models in the single-user class,
introducing multiple user classes adds substantially to their intractability.

The main limitation of simulation-based models for resolving DTAis the inability
to obtain the associated mathematical properties. This is not signi�cant for
general tra�c networks because the DTA problem for general tra�c networks
is inherently bad behaviour and intractibility. This restricts the capacity of
analytical models and complicates analysis with simpli�ed assumptions that
reduce realism.

Another limitation of using a simulator in the DTA context, is in the deployment
context. The computational charge associated with the use of a simulator as
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a part of an iterative mechanism to predict the future can result operationally
restrictive. Hence, many recent research about simulation-based DTA models
treat to achieve an equilibrium among the accuracy and the computational
e�ciency.

As mentioned above, many di�erent approaches to DTA exist. Each approach
has its own speci�c characteristics and each approach addresses speci�c prob-
lems or questions that other approaches cannot address very well. Therefore,
it seems interesting to continue developing the di�erent approaches simultane-
ously. Compared to realistic simulations of real-life networks, analytical models
are especially useful for generating theoretical insights, analyzing system prop-
erties, and exploring new directions to address problems. Based on simulation
models are most useful for this purpose. For example, microsimulation-based
DTA models should only be used if the application asks for a detailed represen-
tation of each individual vehicle.

In the �eld of simulation-based DTA models, signi�cant progress has been made
by many researchers in the last decade. Moreover, our scienti�c experiences
on the four DTA formulations presentedhere have led us to conclude that the
simulation-based formulation is the most promising.Consequently, this is the
approach we will work on in this thesis.

2.4 DTA Structure

As discussed above in Section 2.3, the proposed approaches for solving the DTA
problem may be classi�ed into two broad classes:

� Mathematical formulations that seek analytical solutions.

� Simulation-based formulations that search for approximate heuristic solu-
tions at a reasonable computational cost.

Simulation-based formulations, such as Tong and Wong (2000), Florian et al.
(2001) and Varia and Dhingra (2004), decomposed the proposed iterative pro-
cess into two main components, which Florian et al. (2001) and Cascetta (2001)
systematized as follows:

� A method for determining new, time-dependent paths �ows by using travel
times experienced on these paths in the previous iteration.
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� A dynamic network loading method which determines how these path �ows
propagate along the corresponding paths. It generates time-dependent
tra�c intensities on network sections, link travel times and path travel
times, among others, for the current iteration.

These two components correspond to the �demand� and �supply� sides of the
model, respectively. Di�erent DTA systems may choose to adopt di�erent com-
binations of demand and supply models, but the demand and supply sides are
generally not independent. Network loading depends on the demand (e.g.,
drivers' route choices), yet the route choice is also a function of the supply
(travel time).

Figure 2.4.1 shows a solution algorithm structure for a DTA model based on
the previously described process. The proposed structure has a general purpose
that includes both the dynamic assignment processes that are not equilibrium
solutions (for example, cases where stochastic discrete choice models distribute
�ows among routes), as dynamic user equilibrium solutions. This scheme also
includes both analytical models and simulation models for dynamic network
loading.

This thesis develops a DTA model based on the presented scheme. As we
discussed above, we will choose a simulation model for dynamic network loading,
while the path reassignment �ow component will be based on algorithms that
respect the dynamic user equilibrium hypothesis. Our proposed DTA model is
speci�ed in Chapter 4.
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Figure 2.4.1: DTA model structure. Source: Barceló (2010) (Adapted from
Florian et al. (2001)).



Chapter 3

Simulation-Based DTA

Literature Review

The preceding chapter classi�ed the DTA approaches into two groups: analytical
and simulation-based. While analytical models are mathematically rigorous,
they rely on simpli�ed assumptions to account for tra�c dynamics, making them
unsuitable for large-scale real-world applications. These applications require
models that capture the stochastic characteristics of tra�c dynamics in detail
by estimating and predicting OD �ows, travel times, queues and spill-backs.
These capabilities are generally beyond those of existing analytical models and,
therefore, simulation is required.

This chapter reviews current simulation-based DTA models.

3.1 Simulation-based DTA Classi�cation

There are three types of simulation-based DTA models, which are distinguished
by the level of granularity that represents the studied system. They range from
low �delity to high �delity as follows:

� Macroscopic simulation models

� Mesoscopic simulations models

33
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� Microscopic simulations models

To begin with, macroscopic models treat tra�c in an aggregate manner, such
as a uniform or homogeneous �ow, without considering each constituent par-
ticle (individual vehicle). They approximate �ow propagation throughout the
network using physical concepts or analytical methods. Microscopic approaches
model individual entities, decisions and interactions with a higher degree of
detail. Each vehicle maneuvers at a speci�c simulation time step based on es-
timations derived from a set of behavioral models, such as car following, lane
changing, merging and yielding. Mesoscopic models combine elements from mi-
croscopic and macroscopic approaches, representing the activities and interac-
tions of each vehicle with less detail, but still enough to account for the essentials
of tra�c dynamics.

3.1.1 Macroscopic Simulation-based DTA Models

Macroscopic DTA models apply physical analogies that are usually based on
hydrodynamic theory in describing tra�c dynamics. The evolution of tra�c
over time and space is represented by a set of di�erential equations, the con-
tinuum equation, the fundamental diagram and other equations (in the case of
second-order models), which are solved by numerical methods that are limited
in including appropriate interactions between vehicles and roads. This is why
some macroscopic DTA models resort to simulation.

Macroscopic simulation-based DTA models, such as METANET (Messner and
Papageorgiou (1990)) or INDY (Bliemer et al. (2004)), aggregately describe
both tra�c �ow propagation and traveler decisions, i.e., tra�c is considered to
be a steady-state continuum.

The accurate representation of tra�c �ow in macroscopic models depends on the
dynamic network loading mechanism used. Trip-maker decisions are simulated
with macroscopic models. These models are usually deterministic, delivering
one repeatable average result for a given data set. Computation times no longer
depend on the amount of vehicles in the network, and DTA is possible for large
networks with millions of vehicles. To be able to simulate the result of route
choice decisions, tra�c �ows in INDY are disaggregated by route so that tra�c
can actually be assigned to a speci�c route, as governed by the route choice
model. Flows that are disaggregated by route are often referred to as `multi-
commodity' �ows. Tra�c �ows in METANET are not disaggregated by route.
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Single commodity �ows are routed by splitting proportions at network nodes.
The routes followed in a random network loading are generally not consistent
with the route �ow rates resulting from the route choice model. This is because
split proportions, which correspond to a given route �ow set, are not easily
determined. Existing macroscopic DTA models typically use an equilibrium
approach, requiring tra�c �ows to be disaggregated by route.

3.1.2 Mesoscopic Simulation-based DTA Models

Mesoscopic simulation-based DTA models can move either individual vehicles
or packets of vehicles at an aggregate level, while trip-maker decisions are made
individually; i.e., individual traveler decisions are represented microscopically
in combination with a macroscopic description of tra�c �ow propagation or
dynamic network loading.

Computation times in mesoscopic models are signi�cantly reduced compared to
microscopic models, due to the aggregate description of tra�c �ow. Mesoscopic
models can computationally succeed in the analysis of medium-sized networks.
These models typically carry out both equilibrium assignments and en-route
assignments.

One way to simulate tra�c is to group vehicles into packets, and then route
these packets through the network (CONTRAM, Leonard et al. (1989)). The
packet of vehicles acts as one entity, sharing both the density on the link at
the moment of entry and the speed derived from the speed density function
de�ned for each link. The dynamic network loading model in CONTRAM is
based on time-dependent queuing theory. Link-end capacity constraints yield
queues whenever demand exceeds capacity.

Another mesoscopic paradigm is the queue-server approach used by some mod-
els, such as DynaMIT (Ben-Akiva et al. (1998)), FASTLANE (Gawron (1998))
and DYNASMART (Mahmassani (2001)). In this approach, road segments are
modeled with both a queuing and a moving part. The vehicles travel through
the moving part with the speed calculated by a macroscopic speed-density func-
tion. DYNASMART and DYNAMIT use tra�c models based on �ow that
propagate vehicles on links according to a modi�ed Greenshields speed-density
relationship. As the vehicle moves through the segment, a queue-server rep-
resents congestion by either transferring the vehicles downstream to another
segment or forming queues on the current segment. This approach combines
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the advantages of dynamic disaggregated tra�c modeling (individually mod-
eled vehicles) with easy calibration and the use of macroscopic speed-density
relationships.

Other DTAmodels based on mesoscopic simulation are METROPOLIS (de Palma
and Marchal (1996)) and MEZZO (Burghout (2004)). The latter was developed
at the Royal Institute of Technology as the mesoscopic component of a hybrid
mesoscopic-microscopic simulation model and is open-source software.

3.1.3 Microscopic Simulation-based DTA Models

Microscopic simulation-based DTAmodels describe tra�c �ow propagation with
a higher degree of detail for individual vehicles. They model the movement of
each vehicle as well as their interactions with each other and with the infrastruc-
ture. Trip-maker decisions such as route choice are represented at the individual
level as well.

Tra�c �ow propagation in microsimulation models combines mathematical car-
following and gap acceptance models with heuristics representing driver behav-
ior (e.g., lane-changing behavior and gap acceptance). In addition, tra�c con-
trol (including signal operation), location and tra�c detectors, are also modeled
in detail. These models require the detailed calibration of model parameters,
which is a very time consuming and computationally costly task.

In the microscopic TRANSIMS model (Nagel et al. (1999)), tra�c propagation
is based on a cellular automata technique for car-following and lane-changing,
enhanced by additional rules for elements such as signals, weaving lanes, unpro-
tected turns, etc. The lanes of all network links are divided into cells of equal
size that are either empty or occupied by a single vehicle. Local rules determine
the speed and position of each individual vehicle. Since there are fewer model
parameters, cellular automata models are easier to calibrate. Maerivoet (2006)
also proposes a cellular automaton to propagate tra�c for simulation-based
DTA.

In the microscopic-based DTA model DTASQ, which later became the commer-
cial software DYNAMEQ, (Florian et al. (2001)), attempts to capture the e�ects
of car-following, gap acceptance and lane changing with a minimum number of
parameters. This leads to a reduction in calibration e�ort. The simulation is
a discrete-event procedure and is based on a simpli�ed car-following relation-
ship, which is ultimately somewhat closer to cellular automata models. This



3.2. RELEVANT SIMULATION-BASED DTA MODELS 37

also leads to a sharp reduction in computational e�ort when compared to mi-
croscopic discrete time approaches. Mahut, in his thesis, provides a detailed
description of this DNL model (Mahut (2000)). Though categorized as a micro-
scopic simulation-based DTA model, DYNAMEQ properties (such as calibration
e�orts or computation times) have more in common with mesoscopic simulation
than with typical microscopic approaches.

Most microscopic simulation models use an en-route approach, but Barceló et
al. Barceló and Casas (2004) showed that the microsimulation model Aimsun
(Barceló, 1992) could also be used in conjunction with an iterative, equilibrium-
like assignment method . Recently, Aimsun included the possibility of using
mesoscopic simulation instead of microsimulation to perform the dynamic net-
work loading process into a DTA scheme under the DUE behaviour hypothesis.
TRANSIMS and DYNAMEQ deal with equilibrium assignment as well.

Other microscopic, simulation-based DTA models share the conceptual ap-
proaches discussed here. In 1993, DRACULA (Liu (2010)) was developed at
the University of Leeds; in 1983, INTEGRATION by Van Aerde (Van Aerde
et al. (1996)); and �nally, the most recent, DynusT by the University of Ari-
zona in 2011.

3.2 Relevant Simulation-based DTA Models

Simulation-based DTA models were developed mainly for evaluating Intelligent
Transport Systems as a planning tool that generates and tests scenarios, opti-
mizes control, and forecasts network behaviour at the operational level. Due to
rapid technological advancements, simulation-based DTA models have become
increasingly popular as a real-world transportation planning tool. The leading
advantage of these models is they can test new management strategies without
interrupting tra�c.

In the following, we brie�y summarize relevant DTA models based on simula-
tion and which were presented in the previous classi�cation. For each of these
models, we analyze the approach used in the main parts of the DTA procedure:
the dynamic network loading component and the �ow reassignment or route
selection methods.

The DTA models discussed are (in alphabetical order):

� Aimsun
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� CONTRAM

� DRACULA

� Dynameq

� DynaMIT

� DYNASMART

� DynusT

� INDY

� INTEGRATION

� METANET

� METROPOLIS

� MEZZO

� VISTA

3.2.1 Aimsun

(Advanced Integrated Microscopic Simulation and Urban
Networks)

The tra�c simulation software Aimsun was created in 1985 by a research group
led by professor Jaume Barceló at the Technical University of Catalonia. Since
1998, the company Transport Simulation Systems has continued to develop and
improve the software.

Aimsun answers the need to create a common framework for di�erent analysis
approaches. Thus, with the addition of a mesoscopic simulator, Aimsun has
become a tool that integrates into a single application three types of transport
models: tra�c assignment tools, a mesoscopic and a microscopic simulator.

The mesoscopic simulator provides an additional option for professionals who
wish to model the dynamic aspects of tra�c in large networks. The model works
with individual vehicles and uses simpli�ed car-following and lane changing
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models. When compared with the microscopic simulation, mesoscopic models
remove most of the computational load of calibrating during the loading proce-
dure. It models the sections of the network considering two parts: free �ow and
queueing. For this reason, the mesoscopic approach focuses on the main events
and it is able to advance time simulation among di�erent events. This simpli�es
the computational load and considerably improves process performance.

Aside from the Aimsun's ability to perform a static equilibrium assignment, the
software also has the option of performing a DTA based on the computational
DTA framework proposed by Florian et al. (2001). It consists of the two above-
mentioned components: dynamic network loading and route selection.

Aimsun's Dynamic Experiment Editor o�ers two options for dynamic network
loading: microscopic or mesoscopic. After selecting one of these, the DTA folder
o�ers two di�erent dynamic assignment options:

� Stochastic route choice: based on a stochastic heuristic that uses stochastic
route choice models.

� DUE: in this case, Aimsun has di�erent approaches, depending on the
simulation selected for the dynamic network loading component. For mi-
croscopic simulation, Aimsun uses an iterative heuristic. For mesoscopic
simulation, it uses the Method of Successive Averages (MSA).

The stochastic route choice and the DUE parameters are de�ned inside the DTA
folder with great accuracy.

To implement this conceptual approach in a computationally e�cient manner,
the analytical part of the process (which calculates the routes) needs to be
independent of the selected dynamic network loading procedure. The DTA
exploits the common network representation for mesoscopic and microscopic
approaches. This allows it to calculate in the same way the shortest paths for
both approaches: meso or micro. The calculation is based on the time-dependent
link cost functions evaluated in terms of the current link costs or the link costs
stored in previous iterations. The only di�erence is the argument values of the
link cost functions, which should be provided, respectively, by the microscopic
or mesoscopic tra�c simulator used in the dynamic network loading phase of
the algorithm, depending on the selection made by the user.

As we mentioned above, Aimsun uses a common network representation, object
model and database accessible by all models. In addition, both the microscopic
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Figure 3.2.1: DTA server in Aimsun. Source: Barceló et al. (2006).

and mesoscopic models are based on individual vehicles. This makes it possible
to implement a DTA server (Barceló et al. (2006)), whose conceptual structure
is depicted in Figure 3.2.1.

The convergence criterion depends on the selected alternative: 1) the demand
loading is completed in a one-o� DTA based on route choice models, and 2)
either when the number of de�ned iterations is reached or when the Relative
Gap function reaches the desired accuracy in the DUE-based DTA.

In the latest version of Aimsun (AIMSUN 7), a hybrid simulator is included.
It enables simultaneous microscopic and mesoscopic simulation. This means
that large areas can be modeled mesoscopically and, afterwards, the user can
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Figure 3.2.2: Rich DTA framework in Aimsun v7. Source: www.aimsun.com

zoom in on pockets that require a �ner level of detail. The hybrid simulator
combines the computational e�ciency of an event-based mesoscopic model with
the precise representation of tra�c dynamics provided by a more detailed, time-
sliced microsimulator.

This framework provides model �exibility for recurring and non-recurring con-
ditions at the appropriate level of accuracy. Moreover, by reusing previously
obtained static or dynamic equilibrium assignment routes in a new simulation,
and combining them with discrete route choice (as shown in Figure 3.2.2), Aim-
sun is able to reproduce the blend of habitual driving and congestion avoidance
that occurs in reality.

Dynamic Network Loading

The mesoscopic model in Aimsun works with individual vehicles, but it adopts
a discrete-event simulation approach. Speci�cally, this mesoscopic simulator
includes the following types of events:

� Vehicle generation

� Vehicle system entrance

� Vehicle node movement

� Change in tra�c light status
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Figure 3.2.3: Modeling vehicle movements in Aimsun mesoscopic. Source:
www.aimsun.com

� Statistics collection

� Matrix change.

These events model the vehicle movement through sections and lanes by using
a simpli�cation of the car-following, lane-changing and gap-acceptance models
used in Aimsun's microscopic simulator. On the other hand, nodes are modeled
as queue servers.

The movement of vehicles in the Aimsun mesoscopic model depends on a vehi-
cle's location:

� Vehicle movement in a section

� Vehicle movement at nodes:

� Vehicle movement at turnings

� Vehicle movement from sections to turnings

� Vehicle movement from turnings to sections

Figure 3.2.3 illustrates mesoscopic vehicle movements in Aimsun.

In Aimsun mesoscopic, vehicles are assumed to move through sections and turn-
ings. Section capacity is calculated using jam density, multiplied by the length
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of the section and the number of lanes. Turning capacity is calculated in a sim-
ilar way, but using the feasible connections in the node instead of the number
of lanes.

To calculate section travel time, car-following and lane-changing models are
applied. The modeling of vehicle movements inside sections in the Aimsun
mesoscopic simulator is based on Mahut (1999, 2000). Aimsun is based on this
node model that moves vehicles from one section to the next section of its route.
In this model, two actions take place in all nodes: calculating the next vehicle
to enter the node and calculating the next vehicle to leave the node.

Before a vehicle enters into a section, the event called �node event from turning�
is treated in order to calculate the origin and destination lanes. For this, Aimsun
mesoscopic uses two heuristics in order to decide the next lane movement: the
status of the next section and a look-ahead model.

The gap-acceptance model is used to model give-way behaviour. The generic
rule is the FIFO rule, except when there is a tra�c sign, in which case a sim-
pli�ed gap-acceptance model in the Aimsun microsimulator is applied.

Flow Assignment

Three DTA schemes may be employed by Aimsun in a modeling study, depend-
ing on the objectives:

� Stochastic route choice

� Stochastic route choice with memory

� DUE

Stochastic route choice The DTA, based on discrete choice theory, used
the route choice mechanism in order to try to optimize route selection decisions
based on currently available information. The stochastic route choice in Aimsun
is based on Barceló and Casas (2004). A path selection process based on a
discrete route choice modelselects the route and determines the path �ow rates.

Given a �nite set of alternative paths, the path selection calculates the probabil-
ity of each available path and then the driver's decision is modeled by randomly
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selecting an alternative path according to the probabilities assigned to each al-
ternative. Route choice functions model user behaviour according to the most
likely criteria employed by drivers for deciding on what appear to be the most
useful alternatives routes in terms of the perceived utility of the user, de�ned in
terms of perceived travel times, route lengths, expected tra�c conditions, etc.

The logit, C-logit and proportional route choice functions are the default route
choice functions available in Aimsun. It allows additional functions to also be
introduced by the user.

Stochastic route choice with memory This is a model of how travelers
adjust their current information with conjectures about the expected tra�c con-
ditions ahead. It corresponds to how commuters adapt their behaviour through
day-to-day learning, depending on �uctuations in tra�c patterns, up to the
point that no further improvement seems possible.

Aimsun combines dynamic microscopic or mesoscopic simulations with an it-
erative heuristic procedure that mimics the day-to-day learning process. It
attempts to reach DUE, but with no guarantee of convergence (Barceló and
Casas (2002), Barceló and Casas (2006)).

Dynamic user equilibrium In this case, the planning level intends to ap-
proximate the �nal state by assuming that Wardrop's generalized principle ap-
plies, i.e., by reaching or approaching DUE.

Aimsun uses the Method of Successive Averages (MSA), which redistributes the
�ows among the available paths in an iterative procedure (see Section 6.2.3).
In particular, the MSA implemented in Aimsun is the version of the algorithm
proposed by Florian et al. (2001). This is one of the most e�cient computational
modi�cations of the MSA for keeping the number of alternative paths bounded
in order to account for each OD pair. As we explain later (Section 6.2.3), this
variant of the algorithm initializes the process on the basis of an incremental
loading scheme that distributes the demand among the available shortest paths;
the process is repeated for a prede�ned number of iterations, after which no new
paths are added and the corresponding fraction of the demand is redistributed
according to the classical MSA scheme.
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3.2.2 CONTRAM

(CONtinuous TRa�c Assignment Model)

CONTRAM, developed by Leonard and Power in the early 80s, was one of
the �rst mesoscopic models. Its main objective is to establish a tool that can
reproduce the dynamic aspects of DTA models under an equilibrium approach.
CONTRAM has a wide range of modeling tools (that are continuously under
development) for representing di�erent situations ranging from congested urban
networks to inter-city regions.

As demand for travel increases and congestion occurs over longer time periods
and larger network areas, planners and engineers require models that can re�ect
the complex travel behaviour in these conditions as well as new and innovative
ways of controlling tra�c. For this reason, CONTRAM is designed to model
the varying tra�c demand and congestion that occurs during the day and will
represent the peaks of congestion as well as o�-peak conditions within a single
model.

The CONTRAM model falls into the category of DTA models. Its distinctive
approach is to combine a form of microscopic simulation of tra�c quanta, called
�packets�, by way of analogy with communication networks, with a macroscopic
time-dependent tra�c model

By interpreting packets as analogous to individual vehicles that behave beyond
optimum route seeking (which leads to equilibrium solutions), it is possible to
simulate a response to ITS. CONTRAM is tactical in the sense that it deals
with the assignment of a given demand, not with how that demand is created.

In CONTRAM, vehicle packet histories are continuous over time, but they in-
teract only through an underlying time-sliced macroscopic tra�c model. This
eliminates the need to model all events in a strict sequence. So, the CONTRAM
model is intermediate between macroscopic equilibrium and microscopic models.
In other words, it is a mesoscopic approach.

CONTRAM demand is divided into a stream of small packets, which are routed
independently and assigned sequentially in order of the journey start time. Iter-
ation is needed because each packet can in�uence other packets that start their
journeys earlier as well as later. Knowledge of the network's state develops as
if through day to day experience. Figure 3.2.4 illustrates this.

Trip B is assigned computationally after trip A, but arrives at a part of the
network's congested center before A. B contributes extra �ow and queueing at
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Figure 3.2.4: Schematic representation of packet interaction within the tra�c
model in CONTRAM. Source: Taylor (2003).

a certain iteration (n) by causing additional delay to A in the next iteration
(n+ 1). Each packet follows its minimum cost route in each iteration. If the
assignment converges, no packet can switch unilaterally to a route of less time
or cost. So, in theory, Wardrop's dynamic user equilibrium (DUE) applies.

Dynamic Network Loading

CONTRAM divides tra�c into a maximum of 32 user classes in order to rep-
resent di�erent vehicle types and journey purposes. Each class has properties
which include its generalized cost function given by Equation 3.2.1.

C = aD + bT + cV 2D + pTq, (3.2.1)

where:

D is the distance traveled.

T is the total time spent.

V is the average speed.

Tq is the time spent queuing.
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a, b, c and d are weight parameters.

In CONTRAM, demand data contains time-dependent �ow rates for each origin-
destination class and optionally �xed route combination, producing similar time-
sliced pro�les. If a route is not speci�ed, then the demand is assigned to one
or more routes according to minimum cost, as de�ned by the generalized cost
function for that class.

To create the packet stream, CONTRAM generates a stream of more or less
equal sized packets for each classi�ed OD movement, according to its demand
pro�le. These packets are then interleaved and assigned in order of their journey
start times. The packet size can be calculated automatically. For each classi�ed
OD movement, the packets are all about the same size, so changes in �ow rate
between di�erent time slices are re�ected in changes in departure frequency.

The formula for calculating the target packet size of an ODmovement is intended
to balance the size and number of packets, as shown in Equation 3.2.2.

P = k ·

n∑
i=1

Qi

n∑
i=1

√
Qi

, (3.2.2)

where:

Qi is the total volume loaded on that OD movement in each time slice i.

n is the number of time slices with data.

k is a scaling factor (supplied by the user).

The structure of the model is based on a network (nodes and links),where the
behavior of the group of vehicles at a certain link is determined either by the free-
�ow speed in that link or by a speed-�ow macroscopic relationship. Moreover,
links have �ow saturation limits. The additional delay experienced at the nodes
by the group of vehicles is calculated based on tra�c light control plans, delay
averages in the give ways, stops, etc. Depending on the performance of the
node, the queue can exceed the storage space given by the length of the link
and by the number of lanes. At that point, the queue blocks the entrance of the
link and the upstream node.

The speed-�ow functions used in CONTRAM represent friction in uncongested
conditions on motorways and other high-speed links. Continuous, piecewise
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Figure 3.2.5: COBA uncongested speed-�ow relationship. Source: Taylor
(2003).

linear COBA (COst Bene�t Analysis) functions are supported (see Figure 3.2.5).
These are static functions which modify the cruise speed along a link in each
time slice according to the average �ow entering the link in that time slice.
COBA speed-�ow relationships are unsuitable for modeling congestion because
they do not cover queuing conditions. Queuing on motorways is modeled in
CONTRAM using an explicit bottleneck represented by the �stop line� of a
link. This gives the correct total delay, which is a function of the excess of
demand over capacity; but it is not entirely realistic where the capacity loss is
due to �ow breakdown.

COBA functions have the e�ect of altering the average cruise speed along the
running section of a link. Thus, the e�ective delay is shown in Equation 3.2.3.

dSF = D

(
1

VSF
− 1

V0

)
, (3.2.3)

where:

D is the distance traveled.

V0 is the speed at zero �ow.

Queuing delay is accounted separately. A packet-based model needs to calculate
the delay to each individual packet. For constant capacity C, the mean time
spent in a queue length L is given by the Equation 3.2.4.
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tD =
L

xC
, (3.2.4)

where the product xC is the rate of throughput and C can be interpreted as
the time-average mean degree of saturation of the stop line, or utilization of
capacity. The presence of C in Equation 3.2.4 re�ects the fact that capacity is
generally unused.

Total delay to a vehicle, possibly accumulated over several time slices, is cal-
culated by applying Equation 3.2.4 iteratively to the queue remaining ahead at
the start of each time slice until clearance.

Flow Assignment

CONTRAM �nds the minimum cost routes using a time-dependent link-based
on the all-or-nothing tree-building method (Dijsktra 1959, Whiting and Hillier
1960). Because network conditions can change signi�cantly even for small shifts
in start time, a new route tree has to be built for each packet. Since only the
minimum cost route to the actual destination is required, there is no advantage
to using more e�cient algorithms.

Each packet seeking its minimum cost route has �perfect information�. Packet re-
assignment consists of �rst deducting the �ow of the packets from the network,
and updating the network state; then �nding its new route, loading it and
updating the network again. When calculating the expected travel time along
any link, the packet �ow is temporarily added to the link �ow to compensate
for its �nite size. This proposed method of loading results in small changes,
provided that the packet sizes are not too big.

One iteration of the model is constituted by running through the entire packet
sequence. Iterations are repeated a number of times (as speci�ed by the user),
or until the model converges (gap), or until a number of stability criteria pre-
scribed in the data are satis�ed (Root Mean Square change in link �ows, Average
Absolute Di�erence or Percentage Relative).

In contrast with other DTA models (such as DynaMIT or DYNASMART),
CONTRAM has not been developed to be applied in an online context with the
aim of forecasting. Moreover, the iterative nature of the proposed assignment
process makes the model less suitable for modeling driver behaviour whenchoos-
ing the route during the travel. This is very important when the objective is
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the treatment of incidents. Although CONTRAM has a special version for in-
cidents, it is limited in the way that the model represents queues, shock-waves
and its deterministic assignment.

3.2.3 DRACULA

(Dynamic Route Assignment Combining User Learning and
microsimulation)

The dynamic network microsimulation framework DRACULA has been under-
going development at the University of Leeds since 1993. It was created as a
tool for investigating the dynamics between demand and supply interactions in
road networks. The emphasis is on the integrated microsimulation of individual
decisions of the trip makers. This is represented through a microscopic DTA
model based on the explicit modeling of individuals' day-to-day route and depar-
ture time choices and how their past experience and knowledge of the network
in�uence their future choices.

The DRACULA framework integrates a number of sub-models of tra�c �ow
and driver choices for a given day-to-day driver learning sub-model. The overall
structure of the DRACULA model framework is illustrated in Figure 3.2.6.

The sub-models and the dynamic evolution of the demand-supply interactions
are as follows:

� A population sub-model which synthesizes the population in the study
area and generates all the potential drivers from a traditional origin-
destination matrix.

� A demand sub-model which represents the day-to-day variability in total
demand. It predicts the level of individual demand for a certain day from
a full population of potential drivers.

� A DTA sub-model determines the routes and departure times of the in-
dividual drivers based on their past travel experience and their perceived
knowledge of the network conditions. The results are individuals' trip
plans.

� The costs experienced by drivers for the speci�c day and for each pass-
ing link are then re-entered into their individual �knowledge bases�. In
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Figure 3.2.6: The day-to-day evolution represented in DRACULA.Source: Liu
(2010).

the tra�c microsimulation sub-model, the individual vehicles are then
moved through the network following their chosen routes according to
car-following and lane-changing rules.

� The learning sub-model updates driver perceptions of network conditions,
which in turn a�ects their decision for the next day.

� A data collection sub-module collects measures of travel time, congestion,
incidents, emissions, etc.

The system evolves continuously from one day to the next until a pre-de�ned
number of days or a balanced state between the demand and the supply is
reached.

Dynamic Network Loading

The essential property of the DRACULA tra�c simulation model is that the ve-
hicles move in real-time and their space-time trajectories are determined by car-
following and lane-changing models. Moreover, DRACULA interacts strongly
with the demand model.
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The car-following model in DRACULA is based on the car-following rules of
Gipps (1981) and can represent individual vehicle trajectories in a real way.
Their aggregated impact is also measured for saturation �ow and discharge
pro�les at a tra�c signal controlled intersection.

The speeds which the Gipps model represents are relatively low and mainly cor-
respond to tra�c speeds usually observed on urban streets. For this reason, the
tra�c simulation model in DRACULA has been extended to represent dynamic
tra�c in other situations, for example the �un-interrupted� tra�c �ow dynam-
ics typically seen on long, high-speed motorway links. The new car-following
model, described in Wang (2005), aims to capture some of the motorway �ow
characteristics, namely tra�c breakdown, hysteresis, shock wave propagation
and close-following behaviour.

The new car-following model was built on the concept that drivers in di�erent
tra�c conditions behave di�erently. The tra�c conditions considered were:

� Tra�c build-up: from free towards congestion.

� Close-following: at high speed and short headway.

� Tra�c breakdown: �ow and speed reductions, and increasing density.

� Tra�c recovery

Behaviorally, the drivers are assumed to be in di�erent states of alertness un-
der di�erent tra�c conditions and therefore apply di�erent reaction times and
accelerations accordingly. The car-following behaviour is represented using the
Gipps model, but with di�erent reaction times and accelerations for di�erent
states.

The model is shown to be able to realistically capture key motorway tra�c �ow
characteristics, including speed drop and tra�c hysteresis (Wang (2005)).

The lane-changing model in DRACULA is rule-based and stems from models of
two very di�erent causes or desires for lane-changing:

� Mandatory lane-changing: the vehicle is in the wrong lane, therefore it
has to change lanes. In this case, the move has to be made by a certain
position on the link.

� Discretionary lane-changing: the vehicle wants to change lanes for more
comfort or some other desire. This movement may or may not need to be
carried out, depending on the actual tra�c conditions.
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Flow Assignment

DRACULA was developed as a tool to test the fundamental properties of DTAs.
To this end, various DTA sub-models have been implemented and studied in
DRACULA. These models vary by detail and behavioral assumptions. At a
more aggregate level, a simple dynamic route choice model based on the aggre-
gated response to overall system performances was also implemented in DRAC-
ULA. On the other hand, at its most detailed level is the day-to-day, microscopic
model of individual route and departure time choices. It also has an individual-
based learning model.

All the route choice models presented in DRACULA are pre-trip DTA; there is
no en-route route choice represented in DRACULA.

Simple dynamic route choice model In this model each individual is rep-
resented. Their daily route choices are modeled explicitly and they are based
on each individual's past experience and perception of the network state. Two
route choice models are implemented in DRACULA:

� Bounded rational model: assumes that drivers will use the same route as
on the day they last traveled, unless the cost of travel on the minimum
cost route is signi�cantly better. The threshold is that a driver will use
his habitual route unless

Cp1 − Cp2 > max {η · Cp1 , ϕ} ,

where Cp1 and Cp2 are the costs of the habitual and the minimum cost
routes, respectively, and η and ϕ are global parameters representing the
relative and absolute cost improvement required for a route switch.

� Myopic switch: is a special version of the above de�ned model in which
the threshold is zero, i.e., a driver would always take the least cost route.
In this case,

Cp1 − Cp2 > 0

The individual costs Cp1 and Cp2 were updated from their own past travel
experience using the day-to-day individual learning model. At trip (k − 1), the
perceived cost of the driver on a certain link would be a weighted average of
costs incurred in the previous N trips, where N is the maximum number of
remembered experiences.
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The day-to-day model The simplest model available in DRACULA is cal-
culated from the route choice probabilities of the given costs on alternative
routes. This model assumes that route choice proportion is in accordance with
the choice model shown in Equation 3.2.5.

Pn+1
ijk =

(
Cnijk

)−α
m∑
l=1

(
Cnijl

)−α (3.2.5)

where:

Pn+1
ijk is the proportion of trips from the OD pair ij along route k on the following

day (n+ 1).

Cnijk is the cost along route k from origin i tor destination j on day n.

m is the number of routes used on day n for OD pair ij.

α > 0 is a dispersion parameter that represents the degree of heterogeneity in
a driver's route selection and it is used to disperse drivers among alternative
routes for a given OD pair.

3.2.4 Dynameq

Dynameq (Mahut (2000); Florian et al. (2001)2) was developed by INRO Con-
sultants, who also developed the static tra�c assignment (in equilibrium) model
EMME/2 (Emme 3 and Emme 4). Dynameq is a DTA model based on the DUE
hypothesis.

In an equilibrium DTA model, the objective is to minimize the travel time of
each vehicle so that, for each origin-destination pair, the vehicles that depart
from this origin at the same time should take approximately the same amount of
time to reach their destination. Dynameq accomplishes this through an iterative
process, where each iteration executes, one time each, the route selection model
and the tra�c simulation. The tra�c simulation receives �ow ratios in the
time-dependent paths from the route selection model and simulates the resulting
tra�c patterns in the network. Then, the simulator returns network travel time
information to the route selection model, which induces new path selections in
the next iteration of the global procedure. Therefore, the output data from each
of the models are the input data for the other. The process continues cyclically
until it converges towards a proper DUE state.
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Figure 3.2.7: DTA algorithm scheme in Dynameq. Source: Mahut and Florian
(2010)

The iterations can be thought of as a sequence of consecutive days, where drivers
depart the �rst day with knowledge of the network but without knowledge
of the tra�c patterns resulting from their route selections. Each day, after
experiencing the results of congestion, each driver considers the possibility to
choice di�erent route for the next day. After a certain number of days, drivers
stop, search for new routes, and restrict their choices to the paths that have
been previously selected. The iterative process is shown in Figure 3.2.7.

Dynamic Network Loading

The core of the tra�c simulation model is a simpli�ed car following model
proposed by Mahut (2000) to be an improvement on the popular Gipps model.

In 2001, Mahut proposed a multi-lane version of the previous model, maintaining
the properties of the original. This new model also captures the interactions
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among vehicles due to lane change maneuvers. The multi-lane model also has
a complex set of heuristics for modeling driver decisions about lane selection.
These take into account:

� Driver intention to change lane downstream from its current position.

� The lane that should be used in order to perform the next planned turn.

� The tra�c conditions in each lane, from the current driver position to the
end of the link where the driver is.

The simpli�ed car-following model proposed by Mahut is recursively extended
by applying a sequence of vehicles. For example, instead of modeling the rela-
tionship between vehicles 1 and 2, and the next relationship between vehicles 2
and 3, the model can express the e�ect that vehicle 1 has on vehicle 3. This can
be extended to any number of vehicles. Conceptually, as the network delays are
sourced mainly at the nodes, the role of link dynamics is to correctly propagate
the delays caused by vehicles downstream fromthe link as compared to the ve-
hicles at the entrance of the link. Instead of explicitly modeling the position of
each vehicle (in order to determine when link congestion begins to a�ect link
entrance time), the output delays propagate directly to the link entrance.

This tra�c dynamics model is a time-continuous, space-continuous, discrete-
�ow model. This is combined with a node model that explicitly represents
tra�c control systems. This combined system is solved by an algorithm based
on discrete events that allow modeling the network completely.

The dynamic network loading model used in Dynameq is an event-based model
that is computationally very e�cient. This model also respects the basic laws of
tra�c �ows and represents congestion mechanisms that occur in real tra�c. The
simpli�cation of the car-following model is necessary for an e�ective, event-based
procedure. The computation time is particularly important in DTA, which
performs many repetitions of the simulation model when solving the equilibrium
assignment. The fact that DTA models tend to be used in large networks, where
there are signi�cant route selection processes, makes computation time more
critical.

Furthermore, it should be mentioned that another remarkable property of Dy-
nameq is that it is a multiclass model, i.e., multiple classes of vehicles can be
speci�ed. Each vehicle class has its own paths set for each assignment interval.
And di�erent permitted movements are de�ned at intersections for each vehicle
class and for each di�erent lane of the network sections.
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Flow Assignment

In real life, many drivers make their decisions based on �rst-hand knowledge of
typical tra�c conditions in the network. These tra�c conditions are not used as
input for Dynameq DTA. Since tra�c conditions are the result of driver route
selections, they are the output data of the DTA model, like the selected routes.

The modeled decisions about route selection use an iterative approach. The
DTA iterations can be thought of as days. Each iteration (or day), every driver
makes a decision on which route to use (from its origin to its destination) at
the desired departure time, based on the knowledge of tra�c conditions in the
previous iteration (or day). This is called the �day-to-day learning process�.
The information used for tra�c conditions is the travel times of the routes
between each origin-destination pair for the same period of time that contains
the desired departure time. This period of time is called the assignment interval.
The percentage of drivers who choose each of the available paths, for a given OD
pair is constant for the duration of each assignment interval. These percentages,
like the routes, may change from one assignment interval to the next. Travel
times are obtained using a tra�c simulator that models the tra�c conditions
that would occur in the network, due to the driver route selections given for
each iteration of the model.

The entire structure of the Dynameq DTA model is shown in Figure 3.2.8, which
illustrates the interaction between the components of the route selection and the
tra�c simulation.

Dynameq performs the �rst iteration in a special way because, at that time,
previous tra�c conditions are unknown. So, all drivers choose the shortest path
assuming that tra�c �ows are produced under free �ow conditions at each link.
Then, the simulation component models the movement of all the vehicles in the
network through these routes. At the end of the simulation, the resulting link
travel times are used to �nd the shortest path between each OD pair for each
assignment interval.

In the second iteration, half of the vehicles use the original shortest paths for
each assignment interval and the other half use the new shortest path. The pro-
cess continues by adding a new shortest path at each iteration, until a maximum
number (previously de�ned) is achieved. Thus, if the maximum number is �ve,
the �rst �ve iterations are used to �nd the best minimum �ve paths for each
OD pair for each assignment interval. In this case, in the �fth iteration,1/5 of
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Figure 3.2.8: Complete structure of Dynameq model. Source: Mahut et al.
(2004).

the vehicles use each path for each given assignment interval. These iterations
belong to the path generation phase of the DTA procedure.

During the remaining iterations (which are called the DTA convergence stage),
the number of vehicles that use each path for each OD pair and for each assign-
ment interval is adjusted before each iteration in order to balance travel times.
In Dynameq, there are two algorithms available to perform this process, both
based on the known Method of Successive Averages (MSA). Finally, when the
route selections are such that the travel times on all paths are approximately
equal for each assignment interval and for each OD pair, then the network is in
a DUE state.

Dynameq has the following assignment algorithms available:

� Regular MSA: this algorithm adjusts path �ows by identifying the mini-
mum path for each OD pair and assignment interval, after each complete
execution of the simulation. The �ow of the minimum path will be in-
creased and the �ow for the remaining paths in the network will be de-
creased. The amount of �ow added to the shortest path is proportional
to 1

n , where n is the number of iterations.



3.2. RELEVANT SIMULATION-BASED DTA MODELS 59

� Flow Balancing MSA: this algorithm adjusts path �ows by evaluating the
travel times of all the used paths and by calculating the average travel
times. The �ow is increased in all paths with travel times lower than this
time average, and is decremented in all paths with travel times above the
average. The amount of added or removed �ow is proportional to the
di�erence between path travel time and travel time average.

Since route choices are adjusted at each iteration, the DTA model must con-
verge to equilibrium conditions. The convergence is measured by comparing
measured travel time with the minimum travel time, for each OD pair and for
each assignment interval. The convergence measure is the the di�erence among
these two values splitted by the minimum travel time.. This measure takes into
account the current travel time, so it can determine if the di�erence is signi�cant
or not. Dynameq calculates this Relative Gap for each assignment interval and
for each DTA iteration.

3.2.5 DynaMIT

(Dynamic Network Assignment for the Management of In-
formation to Travelers)

DynaMIT was developed by Moshe Ben-Akiva et al., at the Massachusetts In-
stitute of Technology (Cambridge, Massachusetts, USA) in 1997. DynaMIT
is a real-time dynamic tra�c system that provides tra�c state forecasts and
travel guidance, generates information for drivers and guides them to take the
best decisions. In order to generate consistent information, two main functions
are developed: state estimation and prediction. Two simulators (demand and
supply) interact to perform these tasks. DynaMIT compensates for the level of
network detail by using a reduced computational load without compromising
the integrity of the results.

The global structure of DynaMIT is organized around the two previously men-
tioned main functions: state estimation and prediction-based guidance gen-
eration. The model uses both real-time information (which comes from the
surveillance and control systems) and �o�-line� information (which comes from
the network description, database of the historical network conditions, etc.). In
the diagram shown in Figure 3.2.9, we can see the DynaMIT structure.
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Figure 3.2.9: DynaMIT structure. Source: Ben-Akiva et al. (1998).
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The state estimation module determines the status of the network and the
demand levels through historical and surveillance system data. Two simulation
tools are used iterativelyused: the supply and the demand simulators.

The demand simulator estimates and forecasts origin-destination �ows and drivers
decisions in terms of departure time, mode and route choices. Using this data, a
�rst demand estimation is performed. Then, the supply simulator simulates the
interaction between the demand and the network, producing assignment matri-
ces and transforming the OD �ows into link �ows. Then, the demand simulator
uses the assignment matrices and the real-time observations in order to better
estimate demand. This cycle is repeated until consistency between demand and
supply is achieved.

The prediction-based guidance generation module provides anticipatory guid-
ance using data from the state estimation. Tra�c forecasting is performed for
a given horizon (for example, one hour). The demand simulator and the supply
simulator are also used for the prediction. The guidance generation is based on
an iterative process between tra�c forecasting and candidate guidance strate-
gies. The system imposes consistency between travel times, based on orientation
and travel times resulting from traveler reactions to the guidance.

The quality of the prediction depends on the quality of the state description
and on the time horizon. The network state is usually estimated in order to
incorporate the available information in a timely fashion before a new prediction
is computed.

DynaMIT simulators must be able to simulate di�erent levels of aggregation.
Furthermore, capturing driver response to the information requires disaggre-
gated representation, where almost every type of driver behaviour is included.
OD estimation and prediction is performed at an aggregated level, and the
models must be consistent with the input data of surveillance systems, which is
available at an aggregate level.

The mesoscopic simulator transforms historical demand into �informed� demand
by capturing the e�ect of the information. It then estimates the demand as a
re�ection of daily �uctuations. This process is shown in Figure 3.2.10. Each
row corresponds to a di�erent aggregation level, and each column to a speci�c
demand.

The demand simulator transforms OD historical matrices (base 1) into a dis-
aggregated description of the estimated demand (base 6). The historical OD
matrices are disaggregated into an explicit list of drivers (base 2), using social-
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Figure 3.2.10: Demand simulator. Source: Ben-Akiva et al. (1998).

economic external information and behaviour models that capture habitual be-
haviour. The impact of the information and guidance for driver decisions is
simulated using disaggregated behavioural models in order to obtain informed
demand for base 3. This disaggregated informed demand is successively aggre-
gated to the OD level (base 4). The OD estimation algorithms use data from
the surveillance systems to compute the di�erence between the aggregate rep-
resentation of informed demand (base 4) and estimated demand (base 5). From
the �nal disaggregation, a complete list of drivers is obtained (base 6).

The informed demand (base 3) is obtained by applying disaggregated behavioural
models that capture various route decisions, including whether or not to make a
particular trip from the origin to the destination. They also capture departure
time, mode and route choice. DynaMIT models route choices in three speci�c
contexts:

� The usual choice of departure time, mode and route.

� The decision to change some of the usual choices as a response to informa-
tion received before the departure time from the trip origin. This decision
is called the �pre-trip decision�.

� The decision to change the currently-followed route, in response to the
information received during the trip. This is called the �en-route decision�.

DynaMIT includes disaggregated behavioral models for the above-mentioned
situations. Each person confronted with a choice is individually represented so
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that the model can be applied and eventually translated into vehicle movements
on the network.

The estimated demand (base 5) is obtained using statistical models with the aim
of replicating observed data collected in real-time from the surveillance systems.
DynaMIT presents a dynamic OD estimation process based on a Kalman �lter
algorithm and on an auto-regressive process (Ashok and Ben-Akiva (1993)).
The auto-regressive process captures the dynamic evolution over time for the
state variables in the Kalman �lter.

The prediction module performs in the same way as the estimation module.
Statistical models are the only thing that change because they use data from
the surveillance system in order to estimate OD matrices. On the other hand,
the OD matrices are predicted by applying to the deviations an auto-regression
process between the informed and the estimated OD matrices. This is similar
to the technique proposed by Ashok and Ben-Akiva (1993).

The mesoscopic simulator obtains its input from the list of drivers produced by
the demand simulator, and it simulates trips across the network. As a result, it
obtains a wide range of network performance indicators like travel times, �ows,
and densities.

This supply simulator combines a microscopic tra�c representation (where each
car is individually represented) with macroscopic models that capture the tra�c
dynamics. Vehicles are represented individually in order to model the e�ect of
en-route information on driver decisions. Macroscopic models of tra�c dynamics
meet the requirement of real-time performance.

The network representation consists of static and dynamic components. The
static component represents the network topology. It consists of a set of links,
nodes and loading elements. The nodes correspond to network intersections,
while the links represent unidirectional paths between them. The loading ele-
ments represent locations where demand is generated or attracted.

Dynamic Network Loading

Tra�c dynamics are captured by two main models: a queuing deterministic
model and a speed model.

The dynamic components are designed to capture some aspects of the tra�c dy-
namics, and they are continuously updated. Each link is divided into segments
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Figure 3.2.11: Speed model. Source: Ben-Akiva et al. (1998).

that capture variations in tra�c conditions along the link. While many seg-
ments are previously de�ned, additional segments can be dynamically created
to capture the presence of incidents. Each segment has a capacity constraint at
its end (the end where the �ow is directed). Depending on the nature of the
segment, this capacity limit can stem from the physical characteristics of the
road or the dynamic occurrence of an incident. Each segment has a �moving
part� and a �queuing part�. The moving part represents the portion of the seg-
ment where vehicles are moving at certain speeds. The queuing part represents
vehicles that are queued up.

The speed model is based on the following hypothesis: for the moving part of
the segment, there are two speeds de�ned. The speed of the initial part of the
segment (upstream) (vu) is a function of the average density in the moving part
of the segment. The speed at the end of the segment (vd) is the speed at the
start of the next segment. An acceleration/deceleration zone is de�ned with
length δ at the end of the moving part. Before this zone, each vehicle is moving
at a constant speed. Inside the zone, the speed of vehicles varies linearly as a
function of position, as shown in Figure 3.2.11.

The speed function can be written according to Equation 3.2.6.

v (z) =

{
vu

λ (z − L) + vd

if 0 ≤ z ≤ L− δ
if L− δ ≤ z ≤ L

(3.2.6)

where:

λ = vd−vu
δ
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L = section length

The relationship between density and speed can be given by Equation 3.2.7.

vu = v0

(
1−

(
k

kjam

)β)α
(3.2.7)

where:

v0 is the free �ow speed.

k is the density.

kjam is the jam density.

α, β are parameters.

The queuing model is a family of models. Each speci�c queue status (formation,
dissipation, blockage, etc.) is captured by a di�erent model. As an example,
the position q(t) of a given vehicle joining a dissipating queue at time t is given
by Equation 3.2.8.

q(t) = q(0) + l(ct−m) (3.2.8)

where:

q(0) is the position of the end of the queue at time 0.

l is the average length of vehicles.

c is the output capacity

m is the number of moving vehicles between the considered vehicle and the end
of the queue at time 0.

This is illustrated in Figure 3.2.12.

Flow Assignment

The guidance generation component provides descriptive and prescriptive guid-
ance. Descriptive informs travelers about tra�c conditions they are likely to �nd
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Figure 3.2.12: Queuing model in DynaMIT. Source: Ben-Akiva et al. (1998).

in the possible routes from their current location to their destination. Prescrip-
tive recommends a route for passengers based on the expected tra�c conditions
along the alternative routes. In both cases, the guidance is called �descriptive or
predictive� because it is derived from forecasts of anticipated tra�c conditions
and from the link travel times when the travelers pass through them.

The role of the estimation process is to reproduce a description of the network
state that �ts as much as possible to the available real-time data. As DynaMIT
is designed to operate in real time, it is not possible to calibrate all the parame-
ters. Therefore, it focuses on estimating the OD matrices using real-time data.
As mentioned above, disaggregated behavioral models are combined with an
aggregated OD estimation algorithm in order to obtain a complete description
of the �pre-trip� demand at a single driver level. This demand is loaded into the
network by the supply simulator. The behavioral models also apply demand
route simulation, in order to capture the impact of the information on travel-
ers who are already in the network. The resulting network state is compared
with the observed data from surveillance systems. In case of discrepancy, a new
�on-line� state is estimated, with the supply simulator providing a better assign-
ment matrix. Moreover, the supply simulator parameters (such as capacities or
speed/density model) have to be adapted to reduce these discrepancies. The
last calibration is performed o�-line. The OD estimation algorithm requires
assignment matrices that transform the OD �ows to link �ows. These matrices
can be obtained from the supply simulator, because they describe how OD �ows
have been distributed throughout the network using several routes connecting
origins and destinations.

The information generation module aims to generate information and guidance,
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which are consistent with tra�c predictions for travelers. The last estimated
network state is used as a starting point. Tested guidance strategies and recently
disseminated information are also used. The demand and supply simulators
are used in almost the same way for prediction and for estimation. The main
di�erence is the OD matrices. In order to predict future OD matrices, DynaMIT
needs the calibrated autoregressive process.

Tra�c simulation is performed in two phases: the update phase and the ad-
vance phase. During the update phase, the most time-consuming calculations
are performed, where tra�c dynamic parameters (densities, speeds, etc.) are
updated. The advance phase calculates at a microscopic level, where the vehicles
are driven to their new positions.

Based on the resulting predictions, an information strategy is generated which
is based on travel times using a combination of new and original predictions.
This strategy is also used by the demand and supply simulators to make a new
prediction. This process is iterated until convergence is achieved. The algorithm
is an extension of the MSA.

3.2.6 DYNASMART

(Dynamic Network Assignment Simulation Model for Ad-
vanced Roadway Telematics)

DYNASMART was developed by the research team of Hani Mahmassani at the
University of Texas (Austin, Texas, USA), partly as a result of the thesis of
Jayakrishnan (1996). It was designed as an assignment and simulation model
for analyzing and applying ITS in tra�c networks, for which a description of
�ow tra�c dynamics in time and space is required. In this model, tra�c �ow
is simulated in a microscopic way, based on the continuity equation and on
a modi�ed speed-density relationship by Greenshields. The simulation logic
combines a microscopic simulation level, for the vehicles representation, with
some macroscopic descriptions of the tra�c interactions. This obtains very
accurate solutions with only a fraction of the computational cost required by
only microscopic simulation.

Time-dependent assignment consists of allocating the desired trips into the net-
work, in a way that is consistent with the spatial and temporal tra�c processes
taking place in that network. In the case of DYNASMART, the vehicles are
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Figure 3.2.13: Diagram of DTA procedure in DYNASMART. . Source: Mah-
massani (2001).

generated following origin-destination time-dependent matrices and they are al-
located into the routes speci�ed by the reassignment rules. The time-dependent
�ow pattern is simulated by loading the vehicles into the network and by rep-
resenting their movements (using a dynamic network loading model). The ob-
tained results can be used in the next iteration of the assignment procedure.

Figure 3.2.13 shows a diagram of the DTA procedure in DYNASMART.

DYNASMART considers four assignment rules based on di�erent behaviour
assumptions and the interpretation of the time-dependent �ow patterns in the
network.

The �rst rule determines user paths through the network with an aim toward
minimizing global cost to the system (in this case, total travel time). The system
optimal behaviour hypothesis corresponds to a strategy of providing information
to the users in order to guide them through individual paths that are optimal
for the system as a whole. A system optimal assignment pattern usually does
not correspond to an equilibrium solution, where the users can improve their
individual travel times without taking into account the increasing travel time of
the total system.

The second assignment rule agrees with the DUE behaviour hypothesis, pre-
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viously commented on. In this case, no user can unilaterally improve their
individual cost by changing routes. Such a state is a result of the system's
evolution, where the user can learn from the provided information.

The third rule corresponds to a set of response rules to the strategy of providing
information under which users receive information describing the links travel
times. This set consists on limited changes of path and selection rules, that
include as a special case: a rule of change that always choices the shortest path
based on the current conditions.

The fourth assignment rule is a special case of the previous rule, in which a ve-
hicle is assigned the best path at the origin of the trip. This type of assignment
can occur when the traveler can see an information system at the moment of de-
parture and selects the shortest route under current tra�c conditions. However,
it doesn't take into account future system congestion.

Dynamic Network Loading

Once the network is represented with link characteristics and control parameters
included, the simulation component chooses a time-dependent loading pattern
and processes vehicle movements through the links. Transfers among these
links take into account the speci�ed control parameters. These transfers among
links, which are determined by path processing and path selection rules, require
instructions that direct the vehicles to the desired link as they approach the
output node.

As mentioned above, DYNASMART uses macroscopic tra�c �ow relationships
to model the �ow of vehicles into the network. However, while other macroscopic
models do not take into account individual vehicles, DYNASMART moves ve-
hicles individually or in packets; it is for this reason that DYNASMART is
considered a mesoscopic simulation model. Usually, tra�c simulation consists
of two main components: link �ow propagation and node transfers. Figure
3.2.14 shows an outline of the DYNASMART model's main steps.

Link �ow propagation

This process moves the vehicles into the network links during each time inter-
val (simulation step). The network links can be subdivided into sections or
smaller segments, according to the simulation's purposes. In DYNASMART,
the link density of vehicles during the simulation step is determined from the



70 CHAPTER 3. SIMULATION-BASED DTA LITERATURE REVIEW

Figure 3.2.14: Structure of the simulation-assignment model DYNASMART.
Source: Mahmassani (2001).

solution of the continuity equation using the �nite di�erences method. It pro-
vides the density,the out�ow, and the in�ow from the previous step. Using the
last determined density, the speeds of the corresponding sections are calculated
by modifying the Greenshields speed-density relationship, shown in Equation
3.2.9.

V ti = (Vf − V0)

(
1− Kt

i

K0

)α
+ V0 (3.2.9)

where:

V ti is the average speed in section i during simulation step t.

Kt
i is the average density in section i during simulation step t.

Vf is the maximum average speed.

V0 is the minimum average speed.

K0 is the jam density.

α is the parameter used to capture speed sensitivity from density.



3.2. RELEVANT SIMULATION-BASED DTA MODELS 71

Node behaviour

This dynamic network loading component is responsible for transferring the
vehicles from one link to the next link in its assigned route, or from one section
to the next. This transfer is performed at the intersections of the network, i.e.,
at nodes. The �ow is assigned or divided according to the dominant control
strategy in that node. Some of the outputs of this component are the number of
vehicles that rest in queue or the number of vehicles added or subtracted from
each link section at each simulation step. The limitation of the in�ow/out�ow
capacities re�ects a wide range of tra�c control measures, for both intersections
and highways.

Flow Assignment

One of the important characteristics of DYNASMART is its explicit represen-
tation of individual traveler decisions, especially route choices, at departure
time and also en-route. DYNASMART incorporates behavioural rules govern-
ing route choices, including the special case when drivers have to follow speci�c
instructions from the route-guidance. Experimental tests presented by Mahmas-
sani and Stephan (1988) and later by Mahmassani and Liu (1999) suggest that
the route selection behaviour of commuters is rationally limited. This means
that drivers seek to pro�t only above a certain threshold, within which the re-
sults are satisfactory and su�cient. This can translate into model rerouting
(Mahmassani and Jayakrishnan (1991)), presented in Equation 3.2.10 .

δj =

{
1

0

if TTCj (k)− TTBj (k) > max {ηj · TTCj (k) , τj}
otherwise

, (3.2.10)

where:

δj is equal to 1 when the user j changes from the last path to the best alternative
path, and 0 if it remains into the last path.

TTCj (k) is the travel time that user j experiences along the current path, from
node k to the destination node.

TTBj (k) is the travel time that user j experiences along the best path, from
node k to the destination node.

ηj is the relative indi�erence threshold.
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τj is the minimum absolute improvement in the travel time that needs to change.

The threshold level may re�ect perceptible factors such as indi�erenceof prefer-
ences, persistence or aversion to change. The di�erent values of the threshold
govern user responses according to the information provided and their propen-
sity for change. The minimum acceptable improvement is assumed equal for all
users. The results of the experiments performed by Mahmassani and Liu (1999)
indicate that it has a minimum value of one minute, while for urban commuters
it is about 0,2 minutes.

The route processing component determines attributes (like travel time) for
the user behaviour component, given the attributes of the links obtained in
the simulator. For this, a multiclass k-shortest path algorithm interacts with
the simulation model in order to calculate k di�erent paths for each OD pair.
However, to improve the computational performance of the model, the k-paths
are not recalculated at every step, but at each pre-speci�ed interval. Meanwhile,
the travel times of the last k-path set are updated using the link travel times
from each step.

The described model is the main part of a multiclass algorithmic procedure
which attempts to optimize network performance by distributing routing infor-
mation in real time to equipped vehicles, taking into account the di�erent user
classes for information availability, provision strategyand behavioural response.

Assuming complete a priori information in the form of time-dependent origins
and destinations desired by the user of each class, DYNASMART seeks a DTA
to provide the number of vehicles of each class in the links and in the paths of
the network, satisfying the system objectives and the conditions corresponding
to the behavioural characteristics of each user class. The di�erent user classes
are:

Class 1: Equipped vehicles that follow paths in order to achieve a system optimal
approach.

Class 2: Equipped vehicles that follow paths which achieve a DUE approach.

Class 3: Equipped vehicles that follow certain rules of changing paths that are
limited by their response to the information provided. In this case, the model
emulates the behaviour of drivers who receive real time information, such as the
best paths based on current link travel times. However, they cannot recognize
future conditions.

Class 4: Unequipped drivers that follow speci�c external paths. In this case,
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Figure 3.2.15: Solution algorithm for user multiclass scenario. Source: Mah-
massani (2001).

the model knows the number of vehicles of this class for each origin, destination,
path, and departure time.

The simulation algorithm is solved by extending the reassignment algorithm for
a single user class (Mahmassani and Peeta, 1993 and 1995), as shown in Figure
3.2.15.

The structure of the algorithm consists of an inner loop that incorporates a
mechanism for system optimal and DUE classes (1 and 2) based on the results of
the last iteration of the simulation, experienced travel times, and the associated
marginal travel times. The algorithm seeks to address convergence for each
class. The third class is not directly involved in the procedure. The paths for
these users are obtained from the tra�c pattern developed in the network due
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to the last routing. This di�ers from classes 1 and 2, which get paths from
directions sought in previous iterations. From an algorithmic point of view,
there is no direct guidance mechanism involved in obtaining the paths for the
users of class 3, other than those based on the assignment strategies of classes 1
and 2. As shown in Figure 3.2.15, they form the outer iterative loop. Users who
are not equipped (class 4) are external to the search. They represent background
information while the paths remain unchanged.

The simulator included in the DTA model DYNASMART captures the inter-
actions that take place among the four classes of users in the network. This
allows evaluation of the resulting �ow patterns in the network while the system
obtains a solution for the multiclass assignment problem. Moreover, the simu-
lator allows the algorithm to extract information for the search process. What
is more, it determines the assignment solution for class 3 users by considering
their behaviour rules.

3.2.7 DynusT

(DYNamic Urban Systems for Transportation)

DynusT was developed by researchers at the DynusT Laboratory in the Depart-
ment of Civil Engineering and Engineering Mechanics at the University of Ari-
zona. The DynusT research team also collaborated with Prof. Xuesong Zhou,
of the University of Utah, to develop the graphical user interface NEXTA. In
2012, the RST International Corp. released a new commercial GUI for DynusT,
called DynuStudio, which was developed by Dr. Robert Tung at RST Inter-
national Inc. DynuStudio o�ers expanded visualization and data management
capabilities. DynuStudio is also more scalable and more e�cient for large-scale
networks.

DynusT is a dynamic tra�c simulation and assignment software designed to
support engineers and planners in addressing emerging issues in transportation
planning and tra�c operations. One of their goals is to makeDynusT an open
source project so university researchers can conduct further DTA research based
on the DynusT platform.

DynusT integrates itself with travel demand models and microscopic simulation
models in order to support applications which require realistic tra�c dynamic
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Figure 3.2.16: Where DynusT is used. Source: www. dynust.net

representation for a large-scale regional or corridor network. With DynusT, en-
gineers and planners can estimate the evolution of system-wide tra�c �ow dy-
namic patterns that are generated by individual drivers seeking the best routes
to their destinations as they respond to changes in network demand, supply,
or control conditions. Figure 3.2.16 shows where DynusT is (or is going to be)
used in the U.S.

The objective of DynusT is to determine network tra�c �ows and conditions
resulting from demand/supply interactions via route choices from travelers in
DUE. The DynusT assignment algorithm �nds these interactions to determine
route volumes, link volumes, and travel times that satisfy this equilibrium con-
dition through iterative procedures.

Dynamic Network Loading

DynusT's dynamic network loading is an anisotropic1 mesoscopic simulation
(AMS) model. The AMS model departs from previous models in that it is
a vehicle-based mesoscopic tra�c simulation approach that explicitly consid-
ers the anisotropic property of tra�c �ow in the vehicle state update at each
simulation step. The advantage of AMS is its ability to address a variety of

1Anisotropy: Is the property of being directionally dependent, as opposed to isotropy,
which implies identical properties in all directions.
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uninterrupted �ow conditions in a simple, uni�ed and computationally e�cient
manner. AMS represents a node-link network, which is generally more memory
e�cient and temporally scalable than cell-based models that store network-
related attributes.

A common problem with current mesoscopic models is their representation of
anisotropic tra�c �ow properties. In the case of a long link, the lead vehicle
speeds will be a�ected by the in�ow of the link, implying that an in�nitely
forward moving shock wave of speed is always generated during the simulation.
This violates the basic properties of the AMS model.

AMS is based on two tra�c characteristics:

� At any time, a prevailing speed of the vehicle is in�uenced by the vehicles
in front of it, including those that are in the same or adjacent lanes.

� The in�uence of tra�c downstream upon a vehicle decreases with increased
distance.

The in�uence of tra�c on a single vehicle is shown as a Speed In�uence Region
(SIR). The SIR for vehicle i is de�ned as immediately downstream from vehicle
i, in which the stimulus signi�cantly in�uences the speed response of vehicle
i. (Figure 3.2.17). The advantage of the AMS model is that SIR length is
independent of the link boundary and network connectivity in the uninterrupted
�ow condition.

For each vehicle i at the beginning of each simulation interval, the prevailing
speed of this vehicle is determined by the Equation 3.2.11, which is the non-
increasing speed-density relationship function.

vti = ϕ
(
kt−1i

)
, (3.2.11)

where:

i is the subscript denoting a vehicle. The index i decreases with vehicles traveling
in the same direction on the same link.

t is the superscript denoting a simulation interval.

vti is the prevailing speed of vehicle i during simulation interval t.

kt−1i is the density of the SIR for vehicle i.
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Figure 3.2.17: Di�erent Speed In�uence Region (SIR) situations. Source: www.
dynust.net
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ϕ is the speed-density function where ϕ (0) = vf and ϕ (kjam) = 0.

At every simulation interval, the AMS model evaluates the speed of the vehicle
based on the SIR density of the previous simulation interval. If the SIR spans a
homogeneous highway segment, the SIR density is calculated based on Equation
3.2.12; otherwise, Equation 3.2.13 is used.

kt−1i = min

[
kjam,

N t−1
i

nl

]
(3.2.12)

kt−1i = min

[
kjam,

N t−1
i

mxt−1i + n
(
l − xt−1i

)] (3.2.13)

where:

l is the SIR length.

N t−1
i is the number of vehicles in the SIR at the beginning of the time interval

t− 1.

xt−1i is the distance between vehicle i and the upstream edge of the lane-drop
or the location of the bottleneck point within SIR at time t− 1.

m is the number of lanes for the SIR area designated by xt−1i .

n is the number of lanes for the SIR area outside, designated by xt−1i .

kjam is the queue density.

The AMS model does exhibit both microscopic and macroscopic analytical prop-
erties that are observable. The microscopic analytical properties include over-
taking conditions and deceleration/acceleration rates. The macroscopic analyt-
ical property demonstrated by the AMS model also includes the shock wave.

Flow Assignment

DynusT uses the gap function vehicle-based (GFV) solution algorithm for solv-
ing the simulation-based DTA problem. In contrast to the approach based on
the Method of Successive Averages, the number of vehicles to be updated with
a new path for each iteration and for each origin-destination departure time
combination depends on the relative gap function value (the proximity of the
current solution to the DUE condition). Vehicles with longer travel time are
prioritized for path update selection.
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The proposed approach allows DynusT to converge faster than the MSA-based
approach, since each origin-destination departure time combination has an in-
dividual search direction and step size. When vehicles are loaded with the
previously solved baseline (the DUE solution for alternative scenario analysis),
the solution appears to be more consistent than the MSA-based approach, as
the proposed algorithm avoids over-adjusting �ows that are not signi�cantly
a�ected by network changes to the alternative scenario.

DynusT adopts a gradient projection concept in the GFV algorithm, where path
�ow updates are comprised of both descent direction and step size. Step size is
determined directly by the relative gap measurement calculated for the path set
of each origin-destination departure time combination. For each combination,
paths are sorted in ascending order by travel time, including the auxiliary path
for the current iteration. By determining what paths are not performing well,
vehicles from such paths are re-assigned to other, better performing paths within
the path set. The paths that are found not to perform well will then be removed
from the path set.

Due to the fact that individual vehicles within the DynusT framework main-
tain their own vehicle properties and assigned paths, the GFV algorithm has
unique and e�cient methods for performing DTA, one of which is that it is the
center-point of the Method of Isochronal Vehicle Assignment (MIVA). MIVA
is a temporal decomposition scheme for large spatial- and temporal-scale DTA.
As the analysis period is divided into what is known as Epochs, the vehicle as-
signment is performed sequentially in each Epoch, thus improving the model's
scalability and con�ning the peak run-time memory requirement without regard
for the total analysis period. The computational requirement continues to be
one of the great challenges for DTA in large-scale networks with a long analy-
sis period. A self-tuning scheme adaptively searches for the run-time-optimal
Epoch setting during iterations, regardless of network characteristics.

3.2.8 INDY

INDY is a macroscopic DUE model developed in 2004 by Delft University of
Technology (M.C.J. Bliemer), TNO-FEL (A.I. Barros and R.J. Castenmiller),
and TNO Inro (K.M. Malone and E.H. Versteegt). INDY shows which locations
congestion occurs and how the congestion propagates throughout the network.
The equilibrium approach of INDY DTA produces chosen paths that are con-
sistent with driver desire to minimize travel costs.
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Figure 3.2.18: Flow chart INDY. Source: Snelder (2009).

Figure 3.2.18 depicts the model framework of INDY. It consists of three main
modules:

1. Route generation.

2. Route choice.

3. Dynamic network loading.

First, the route generation module determines the routes based on network
characteristics and travel demand. INDY has three methods implemented for
generating the routes: a Monte Carlo approach, an approach using a static
tra�c assignment and an approach in which a pre-speci�ed route set is used.
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The output of the route generation module will be route sets for all vehicle
classes describing the available routes between each origin-destination pair.

A disadvantage of a priori route generation is that one is never sure that all
relevant routes are included in the route set. Therefore, it is important to create
a su�ciently large route choice set so that all relevant routes are included. After
running the model it is possible to check whether more routes should have been
included or not by running a dynamic shortest path algorithm on the dynamic
link travel times.

Second, the route choice module models the behavior of travelers by choosing
the best route for them from the set of available routes as determined by the
route generation model. The best alternative route depends on the route costs
for each of the alternatives and consists mainly of the route travel time, but can
include other cost components such as tolls. The outputs are dynamic route
�ow rates between each origin-destination pair in the network.

Third, the dynamic network loading module is the heart of the INDY model
propagating tra�c along the chosen routes. Outputs are link in�ows, out�ows,
volume, queue lengths and travel times. These link travel times can be used to
compute the route costs. INDY uses three di�erent approaches in the dynamic
network loading model.

Last, the new route costs provide feedback to the route choice module, leading
to new route �ow rates and then performing a new dynamic network loading.
These two modules are iteratively performed until convergence is reached.

Dynamic Network Loading

The dynamic network loading model is the heart of the DTA model in INDY.
It simulates route �ows over the links of the network. The dynamic network
loading model is macroscopic, which considers vehicle �ow rates.

INDY implements three di�erent approaches to dynamic network loading. The
�rst model uses link performance functions for computing the link travel times
in order to propagate the �ow through the network. The second model explicitly
assumes hard capacity constraints on link in�ows and out�ows, leading to a dy-
namic queuing model. Finally, the third model is the so called link transmission
model.
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Link performance functions The model based on link performance func-
tions is an extension of the single class dynamic network loading model proposed
in Chabini (2001), which uses multiclass dynamic link travel time functions. It
can handle multiple vehicle classes that have di�erent travel characteristics such
as di�erent speeds. These link travel time functions predict, at the time of link
entrance, the time it will take vehicles to exit the link. The capacity of the links
is taken into account only implicitly: when there are more vehicles on the link,
link travel time will increase.

The dynamic network loading model proposed in INDY is a combination of the
model proposed by Chabini (1998) and the model proposed by Bliemer and
Bovy (2003). The multiclass ideas of the latter work are used to extend the
single class model of the �rst proposal.

Dynamic queuing The dynamic network loading model based on dynamic
queuing takes link capacity constraints explicitly into account and determines
queues. This model type will predict queues and be able to deal with spillback,
unlike the model based on link performance functions which cannot reproduce
these phenomena.

In this model, instead of predicting link travel time at the time of link entrance,
only the �ows are determined on the links based on true tra�c conditions. At
the end, the link travel times can be derived from the link �ows.

Many queuing models that have been proposed in the literature adopt the prin-
ciple of a moving part and a queuing part on a link. This means that a link
is split into two parts: one where the queuing part grows from the head of the
link, and another where the remainder of the link forms the moving part. The
INDY proposal di�ers from other queuing models proposed in the literature in
the instant of time at which link travel time is determined: the time of exiting
the link. This is a key component of its strength, because the later link travel
time is determined, the more that can be known from the past about true tra�c
states over time, and the more accurate is the determined link travel time.

Link transmission The link transmission model implemented in INDY works
with �xed time steps. The maximum time step that can be used is equal to the
shortest free �ow time on all links of the network.

Given the time-dependent route �ow rates for a �xed time period, the model
determines time-dependent link volumes, link travel times and route travel times
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Figure 3.2.19: Cumulative vehicles number as a function of time (INDY).
Source: Snelder (2009).

in tra�c networks.

Tra�c networks consist of homogeneous unidirectional links, that can have any
length, and they are connected to each other via nodes. A route is a series
of links and nodes between the origin and destination nodes. Nodes have no
physical length and act merely as a �ow exchange medium.

The model determines primarily the cumulative number of vehicles N(x, t) that
pass the beginning

(
x0a
)
and end

(
xLa
)
of link a at certain time t. Only afterward,

when vehicles have left the link, link volumes and link travel times are derived
from these cumulative vehicles numbers, as we can see in Figure 3.2.19.

This link transmission model is a multi-commodity model, where each commod-
ity corresponds to a speci�c route. Vehicles are disaggregated by route. INDY
keeps track of the routes of the vehicles at all times, when describing the collec-
tive motion of the tra�c stream. This disaggregation by routes is necessary for
using route choice information within the model. For all locations and times,
the cumulative vehicle number is the sum of the cumulative vehicle numbers
disaggregated by route Np (x, t).

The inverse function of the cumulative vehicle number determines the time
tx (N) at which a vehicle number passed this location. Since the link trans-
mission model solution algorithm only calculates cumulative vehicle numbers
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Figure 3.2.20: Linear interpolation of cumulative vehicle numbers. Source:
Snelder (2009).

in discrete time steps, an interpolation procedure (Equation 3.2.14) might be
necessary to calculate tx (N), as shown in Figure 3.2.20.

Np (x, tx (N)) = Np (x, t) + α (Np (x, t+4t)−Np (x, t)) (3.2.14)

for all p ∈ routes.

Flow Assignment

INDY models traveler behavior regarding the choices in a given route set. The
route choice module aims to �nd an equilibrium state in which each traveler
individually aims to minimize this route cost. Di�erent vehicle classes and
driver types can be considered.

INDY assumes that drivers face a prede�ned set of available alternative routes
from which they choose the best option. It should be noted that route choice is
directly in�uenced by driver type and indirectly in�uenced by di�erent vehicle
types due to di�erent route travel times.The route costs consist of route travel
times and possibly other components.

An iterative procedure using the Method of Successive Averages solves the route
choice problem for a deterministic or stochastic dynamic user equilibrium, or
also for a combination of assignment types corresponding to distinct driver
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types. The INDY method computes intermediate route �ow rates based on
the current actual route travel costs. Then these rates are averaged with the
route �ow rates from the previous iteration and used as the new route �ow rates
for the current iteration. By performing a new dynamic network loading, these
new route �ow rates determine new route travel costs and is repeated until they
converge. Since INDY starts with a prede�ned route choice set starting from
the �rst iteration, it already has a good initial solution that converges quickly.

3.2.9 INTEGRATION

INTEGRATION is a trip-based microscopic tra�c assignment, simulation and
optimization model that is capable of modeling big networks (up to 10,000 links
and a half million vehicle departures). The model simulates the departure of
vehicles from time-varying, origin-destination matrices. Vehicles are assigned to
the networks using a time-dependent multiclass tra�c assignment. The model
is designed to trace individual movements of a vehicle from its origin to its
destination with high time resolution (approx. 0.1 sec.) by modeling vehicle
car-following, lane-changing and gap acceptance behaviour.

The model was initially developed in 1983 by Michel Van Aerde, who continued
its development until 1999. Since that year, Hesham Rakha has led its devel-
opment. The name of the model (�INTEGRATION�) stems from the fact that
the model was developed to integrate freeway and arterial corridor modeling as
well as tra�c assignment with tra�c simulation.

Initially, INTEGRATION was developed as a mesoscopic model. Later, it
evolved into a microscopic model in 1995. Further enhancements to the model
incorporated a multimodal DTA, tolls, and high occupancy lanes, as well as
models for adaptive signal control, transit vehicles, transit priority, microscopic
energy, emission, and crash risk.

The main features of the INTEGRATION model are:

� The model combines tra�c assignment with microscopic simulation.

� The model captures vehicle dynamics in terms of acceleration behavior.

� The model includes detailed microscopic energy, emission and safety mod-
els.

� The model provides �exibility in modeling numerous ITS applications.
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Dynamic Network Loading

INTEGRATION combines DTA with microscopic simulation using car-following
to model dynamic network loading.

A vehicle within the microscopic simulation model computes its desired speed on
the basis of the distance headway and speed di�erential between a vehicle and
the vehicle immediately downstream of it in the same lane. The car-following
model explicitly captures the spatial and temporal formation of queues upstream
from bottlenecks and the formation of shock waves. The explicit modeling of
lane changing behavior means that the model can capture the dynamic change
in the capacity of a merging, diverging, or weaving section.

This car-following model was calibrated macroscopically using loop detector
data. The capability of the vehicle to achieve its desired speed is constrained by
its power to weight ratio, aerodynamic resistance, rolling resistance, and grade
resistance. A total of 25 vehicle types are incorporated in the model to capture
di�erent vehicle dynamics.

Flow Assignment

In regard to the route assignment under DUE approach, INTEGRATION pro-
vides seven basic user equilibrium tra�c assignment/routing options:

� Option 1: Time-Dependent Method of Successive Averages.

� Option 2: Time-Dependent Sub-Population Feedback Assignment.

� Option 3: Time-Dependent Individual Feedback Assignment.

� Option 4: Time-Dependent Dynamic Tra�c Assignment

� Option 5: Time-Dependent Frank-Wolf Algorithm.

� Option 6: Time-Dependent External Routing 1.

� Option 7: Time-Dependent External Routing 2.

INTEGRATION currently includes pre-trip and en-route driver decisions, i.e.,
decisions taken prior to the start of the trip or while it is in progress, starting
from the time a driver elects to depart from a particular origin with the objective
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of reaching a particular destination, at a particular time, and by means of a
speci�c vehicle class.

The model has been and continues to be used in Canada, the US and the
Netherlands. The model is also being used in Brazil, Korea, Singapore, Italy,
and France. The model has been used by researchers, transportation planners,
and tra�c engineers from both the private and public sector.

3.2.10 METANET

The �rst version of METANET was developed in 1989 by Messmer and Pa-
pageorgiou as a program for motorway network simulation based on a purely
macroscopic modeling approach. METACOR (Elloumi et al. (1994)) is an ex-
tension of METANET. It also addresses a signal-controlled urban road network
based on a realistic macroscopic modeling approach for urban links and junc-
tions.

METANET has two distinct modes of operation. When tra�c assignment is
not considered, then it may be operated in the non-destination-oriented mode.
When tra�c assignment is an issue, it must be operated in the destination-
oriented mode.

Dynamic network loading

A second-order macroscopic discretized tra�c �ow model is used for the de-
scription of tra�c �ow on a normal motorway link. This model is suitable for
free-�ow, critical conditions, and congested tra�c. The macroscopic description
of tra�c �ow implies the de�nition of variables expressing aggregated behavior
at certain times and locations. The time and space arguments are discretized.
Each segment is macroscopically characterized by: tra�c density, mean speed,
and tra�c volume or �ow.

Non-destination-oriented mode In the non-destination-oriented mode, the
previously de�ned tra�c variables are calculated for each link segment at each
time step by the second-order model proposed by Payne (1971) and extended
by Papageorgiou (1990).

For origin links (links that receive tra�c demand and forward it into the mo-
torway network), a simple queue model is used (Figure 3.2.21). The out�ow
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Figure 3.2.21: The origin link queue node in METANET. Source: Papageorgiou
et al. (2010)

of an origin link depends on the tra�c conditions of the corresponding main-
stream segment and the existence of ramp metering control measures. If ramp
metering is applied, then the out�ow that leaves the origin during certain period
is a portion of the maximum out�ow that would leave in the absence of ramp
metering.

Tra�c conditions in destination links are in�uenced by the downstream tra�c
conditions which may be provided as boundary conditions for the whole time
horizon. Options for boundary conditions at destination links include:

� Free out�ow: downstream tra�c has no in�uence on the modeled network
tra�c.

� Pre-speci�ed maximum possible out�ow: a queue may build up if the
arriving �ows exceed the maximum value.

� Boundary tra�c density: this in�uences upstream tra�c accordingly.

Motorway bifurcations and junctions are represented by nodes. Tra�c enters
a node through a number of input links and is distributed to the output links
according to: the set of links entering the node, the set of links leaving the
node, the total tra�c volume entering the node in that period of time, the
tra�c volume that leaves the node via a certain outlink, and the portion of the
total �ow entering the node that leaves the node through the given link (called
the turning rate of this node). If a node has more than one leaving link, then the
upstream in�uence of density has to be taken into account in the last segment
of the incoming link.
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Destination-oriented mode When DTA or route guidance is an issue, the
second-order macroscopic model (previously mentioned) must be operated in
the destination-oriented mode, in which the following additional variables are
introduced:

� Partial density ρm,i,j (k) is the density of vehicles in segment i on link m
at a certain time destined to destination j ∈ Jm, where Jm is the set of
destinations reachable via link m.

� Composition rate γm,i,j (k) is the portion of tra�c volume or tra�c density
which is destined to destination j ∈ Jm.

The notion of turning rates is generalized to the notion of splitting rates. The
splitting rate βmn,j is the portion of the tra�c volume entering node n at a certain
period which is destined to j and which leaves node n at that period through
link m. Hence 0 ≤ βmn,j ≤ 1.

In the case where route guidance takes place at node n with respect to destina-
tion j, drivers are directed toward this destination. Since the routing message
refers to particular destinations, the in�uence on route choice is projected to
the corresponding splitting rate of the node.

The destination-oriented model version enables DTA or route guidance to be
considered if the introduced splitting rates are appropriately speci�ed. METANET
has three available user options:

� The user may enter splitting rate values via a corresponding input �le.
This option may be used for testing speci�c driver routing scenarios.

� The user may program a real-time route guidance strategy by applying
pre-speci�ed couples (node-link).

� If the user is interested in DUE conditions, METANET can calculate auto-
matically the corresponding splitting rates by using appropriate feedback
algorithms proposed by Papageorgiou (1990) and Messner and Papageor-
giou (1990), which are based on instantaneous travel times. This leads to
an approximate dynamic equilibrium since no iterations are involved.
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Figure 3.2.22: METANET simulation with given splitting rates. Source: Pa-
pageorgiou et al. (2010).

Flow Assignment

METANET approximates DTA in the sense of DUE by using a feedback �one-
shot� procedure mentioned above. Iterative procedures that may aim at estab-
lishing either user-optimal or system-optimal conditions are an alternative to
feedback algorithms that can be used for DTA or route guidance.

On the other hand, the typical structure of an iterative procedure toward exact
user-optimal conditions is the following (Wang et al. (2001)):

1. Set the initial splitting rates.

2. Run the simulation model (Figure 3.2.22) over a time horizon.

3. Evaluate the experienced (predictive) travel times on alternative routes; if
all travel time di�erences are su�ciently small, stop with the �nal solution.

4. Modify the splitting rates appropriately to reduce travel time di�erences;
go to (2). The splitting rates can be modeled using decentralized formulas
like the Frank&Wolfe (Wisten and Smith (1997)) or PI formula (Wang
et al. (2001)).

The described iterative algorithm is employed by an extension of METANET
called METANET-DTA. The METANET-DTA software may be used for exact
DUE, but at the cost of increased computational time (compared to METANET),
which increases by a factor roughly equal to the number of required iterations.
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3.2.11 METROPOLIS

METROPOLIS is a tra�c management model that simulates vehicle tra�c
�ows and congestion in an urban area. The �rst version of METROPOLIS
was developed by Andre de Palma (Université de Cergy-Pontoise (France)) and
Fabrice Marchal (Swiss Federal Institute of Technology-Laussane (Switzerland))
in 1998.

METROPOLIS proposes an interactive environment that simulates automobile
tra�c in large urban areas. The core of the system is a dynamic simulator that
integrates departure time and the route choice decisions of drivers over large
networks. Drivers are assumed to minimize a generalized travel cost function
that depends on travel time and schedule delay. This simulator is based on
behavioral driver information. Route choices are undertaken sequentially by
drivers during the journey to work. This system is based on a disaggregated
description of commuter behavior. It allows real-time and o�-line simulations.

The approach used by METROPOLIS is based on a set of known models:

� Logit model of departure time.

� Dynamic shortest path model.

� Dynamic cost function proposed by Vickrey.

These components are combined with simple behavioral rules. In the dynamics
of the simulator, every driver faces two decisions. The �rst, which is to decide
on departure time, follows a multinomial logit model. The second decision,
which is the direction, must be taken when the driver arrives at each of the
intersections of the network. In this case, METROPOLIS can use a directional
decision process deterministic or stochastic to generate the selected routes for
the vehicles.

Thus, the METROPOLIS simulator proposes an iterative process that converges
to stationary dynamic tra�c regimes if the conditions of tra�c do not vary.

The computing architecture is depicted in Figure 3.2.23 and is quite similar to
that of the initial AIMSUN simulation environment.
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Figure 3.2.23: METROPOLIS software architecture. Source: De Palma and
Marchal (2002).

Dynamic Network Loading

The METROPOLIS model uses a mesoscopic approach to apply the supply
model that describes how vehicles evolve in the road network, given the driving
choices of the users. It consists of link speci�c functions that relate travel time
τi to either instantaneous in�ow φi (t) or instantaneous occupancy Di (t) and

other link parameters
−→
P i such as length and capacity:

τi (t) = f
(
φi (t) , Di (t) ,

−→
P i

)
(3.2.15)

When a simulated vehicle enters link i, the simulator computes the travel time
to cross this link τi (t). This implies having instantaneous access to any relevant
tra�c variables on this link, including density Di (t) and incoming �ow φi (t),
among others. The computation of the link travel time is therefore determinis-
tic, since it is completely computed at the entry point, given the instantaneous
values of the tra�c variables on the downstream link. Therefore, the stochastic
nature of congestion is not taken into account, but the link parameters could
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depend on random external events like weather or road condition. This meso-
scopic description is a cellular automata description where each link and node
would correspond to a unique cell: route decisions happen in node cells and
congestion occurs in link cells.

Inside a given link, there is no underlying representation of the vehicles except
for the fact that they enter a FIFO stack. The vehicle interaction is limited
and described only by a congestion function f(·). This approach implies ver-
tical queuing, since there is no restriction imposed on φi (t), Di(t). To re�ne
the congestion model, they impose that the roads can only support a maximal
density that depends on the average length of vehicles. If a vehicle is about to
enter a saturated link, it should wait for the downstream queue to discharge so
as to accommodate any new incoming vehicle. Lastly, no distinction is made
between freeways or urban streets, except that the function f(·) can be di�er-
ent for each link. METROPOLIS is tool-box oriented and does not impose a
mandatory form for f(·).

Flow Assignment

A heuristic procedure describes a day-to-day adjustment process for stationary
user equilibrium. The core of this system's architecture is the simulation of
drivers processing tra�c information. The information consists of any type of
knowledge about tra�c conditions in some part of the network and over a given
time period. This information is stored as a separate data set and constitutes
a �pool� that drivers can access and update, based on their driving experience.
Drivers access the information pool when they perform a travel choice because
they need relevant decision data such as expected journey travel time. The idea
is that this pool of information is constantly updated and improved as drivers
learn from their traveling experience.

The information is processed during within-day simulation as well as from day-
to-day. After each simulation of a peak period (or day or iteration), the infor-
mation pool is refreshed by day-to-day strategies that are available to the end
user. At the end of each iteration (day), users can build the best tra�c pattern
estimate for the following day by aggregating the travel pattern of the last day
with the historical tra�c patternsof previous days. Such a system converges
toward a stationary regime within a few weeks (20 or 50 iterations, depending
on the data).
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The static assignment models usually consider that the choice of the depar-
ture time does not join into the assignment procedure. This is not the case of
METROPOLIS, which takes into account the departure time through Equation
3.2.16, in the case of early arrivals to the destination, and through Equation
3.2.17, in the case of late arrivals to destination.

Cij (t) = αttij (t) + β (t∗ − (t+ ttij (t))) (3.2.16)

Cij (t) = αttij (t) + γ (−t∗ + (t+ ttij (t))) (3.2.17)

where:

ttij (t) is the minimum travel time at origin i and destination j.

α is the unit cost time (set by the user).

β is the unit cost of early arrivals (set by the user).

γ is the unit cost of late arrivals (set by the user).

t∗ is the o�cial start time

These di�erent costs are added to the route cost. It is important to note here
that this assignment procedure can apply only to those who have a strong
interest in arriving at their destination on time, which is generally the case
for commuters. Instead, some drivers can have very low values of β and γ
(which may be the case for leisure travelers, for example).

The total cost of the trip is equal to the sum costs of early arrival, late arrival,
and travel. A driver is scored more negatively for late than early arrival, which
can be advantageous in certain situations for shifting departure time. As illus-
trated in Figures 3.2.24, 3.2.25 and 3.2.26, METROPOLIS in�uences spreading
demand.

As a reference point, Figure 3.2.24 shows tra�c demand at the peak hour of the
morning. If the capacity of this section is increased by adding a new lane, tra�c
becomes more �uid, travel time decreases, and a greater number of commuters
can leave a little lateryet arrive at the same time. So, in Figure 3.2.25 we
can observe an increase in the number of vehicles in a short time. Similarly, a
reduction in section capacity leads to transportation demand spreading during
peak hour, as shown in Figure 3.2.26.

The METROPOLIS algorithm allows day-to-day learning of tra�c conditions.
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Figure 3.2.24: Pro�le peak hour demand (morning). Source: de Palma and
Marchal (1996).

Figure 3.2.25: Pro�le peak hour demand (morning) due to an increase in ca-
pacity. Source: de Palma and Marchal (1996).

Figure 3.2.26: Pro�le peak hour demand (morning) after a decrease in capacity.
Source: de Palma and Marchal (1996).
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3.2.12 MEZZO

In 2004, MEZZO was developed by Wilco Burghout at the Royal Institute of
Technology (Stockholm) as the mesoscopic component of a hybrid mesoscopic-
microscopic simulation model (Burghout (2004)).

Its structure is similar to the link-node queue-server model of DYNASMART,
in that it uses speed/density relations for determining vehicle link travel times.
Additionally, stochastic node-servers reproduce delays caused by interactions at
nodes.

In contrast to DYNASMART, the simulation is event-based, as in the Dynameq
model. Moreover, explicit mechanisms ensure correct modeling of start-up
shock-waves, in the case of queue dissipation. This results in more realistic
behaviour of queue formation and dissipation over both time and space, which
are essential for correctly estimating congestion and travel times in the network.

The model is based on a time continuous hypothesis, with di�erent stochastic
queue servers for each lane and for each turning movements. It can also use
any type of speed/density functions. As a result, tra�c dynamics are realistic
enough that the model can be integrated into a hybrid model. Experimental
results show that MEZZO performs almost as well as hybrid or microscopic
models (Burghout et al. (2005)).

The computational performance of MEZZO for small networks (over 250 links)
is good. Signi�cant improvements in time calculation are expected through the
simpli�cation of: speed/density functions, queue servers, event aggregation, and
others.

Dynamic Network Loading

In MEZZO, the tra�c network is represented by a graph that consists of nodes
and links. The links represent the roadway between the nodes and are consid-
ered unidirectional. The nodes are the points where multiple tra�c streams
join or diverge, such as intersections and tra�c origins or destinations. Nodes
usually have multiple incoming and outgoing links and are the source of the
main con�icts in the tra�c stream. The lanes on a road are not represented
separately.

Figure 3.2.27 shows an object model of the MEZZO node-link structure.
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Figure 3.2.27: Object model of the MEZZO network structure. Source: Burgh-
out (2004).

The movements of the vehicles are governed by the traversal of links and the
crossing of intersections. They are captured by two models: the link model and
the node model.

Link Model A MEZZO link is divided into two parts: the running part and
the queue part. The queue part begins at the downstream node and grows
towards the upstream node when the incoming �ow exceeds the outgoing �ow
on the link. The running part of the link is the part that contains vehicles that
are on their way to the downstream node but are not delayed by the downstream
capacity limit. So, the boundary between the running part and the queue part
is dynamic. It varies depending on the variations in the in�ow and out�ow in
the link.

When a vehicle enters a link, it moves into the running part with a speed that
functions as the density on that part. This speed is used to calculate the earliest
time a vehicle can reach the downstream node. The speed-density relationship
employed in Mezzo is shown in Equation 3.2.18.
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V (k) =


Vfree if k < kmin

Vmin + (Vfree − Vmin)
(

1−
(

k−kmin

kmax−kmin

)a)b
if k ∈ [kmin, kmax]

Vmin if k > kmax
(3.2.18)

where:

V (k) is the speed assigned to the vehicle function of the density.

k is the current density on the running part of the link.

Vfree is the free �ow speed.

Vmin is the minimum speed.

kmin is the minimum density where speed is still a function of density.

kmax is the maximum density where speed is still a function of density.

a, b are model parameters.

MEZZO allows di�erent sets of parameters to be speci�ed for di�erent link types
to capture the di�erent performance characteristics of the various elements of
the road network.

After the calculation, the vehicles on the link are ordered according to their
earliest exit time. This de�nes which vehicles are in the queue part at any point
in time. The queue part at any simulation time t is de�ned to contain those
vehicles that have an earliest exit time smaller than t. It includes all vehicles
that would have exited the link if not for some delay caused at the downstream
node.

In MEZZO, the density is calculated in the running part only. This is to ensure
that there is no double counting of the delay a vehicle experiences.

Node Model At the downstream end of the links, the node connects to other
links. Each of these connections represent a turning movement. These turning
movements are limited to vehicles that move toward the corresponding down-
stream links. MEZZO represents this capacity with queue-servers. The vehicles
that are part of the queue segment are processed one at a time by these servers
and transferred to the next link if there is available space for them on that link.
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Figure 3.2.28: Queue servers at turning movements serving vehicles. Source:
Burghout (2004).

Each turning movement has one or more stochastic turning servers that transfer
vehicles to the next link. Having one server for each lane with a turning move-
ment instead of one for all of them ensures that headway is distributed more
correctly at the outgoing link. The structure of the MEZZO node model allows
any stochastic process for the servers, but a truncated normal distribution is
usually used.

The turning servers process only the vehicles whose route requires them to make
the turning. Figure 3.2.28 shows three turning movements: straight, left and
right turn. The server for the vehicles moving straight cannot process more
vehicles until the destination link has become unblocked.

The fact that the queue of one turning movement can block access to the other
turning movements needs to be represented. Each turning movement has a
queue look-back limit. This is the maximum number of vehicles at the front of
the queue that a server can �look back� on to �nd a vehicle that is heading for
its speci�c turning movement.

In Figure 3.2.29 we show an example. For instance, it may be unlikely that
the last vehicle in the queue (checkered) could pass the whole queue of vehicles
heading straight before making the left turn. On the other hand, it may or
may not be possible for the vehicles heading for the right turn (striped) to pass,
depending on the exact con�guration of the approach. If the look back limit for
the left turn is 6 vehicles, then the left turning vehicle in the back of the queue
(green) cannot exit until it has advanced to at least position 6 in the queue.

The queue servers in the MEZZO node model provide adequate mechanisms
for representing tra�c dynamics, such as queue build-up and dissipation. The
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Figure 3.2.29: Turning pockets and blocking of turning movements by other
turning movements in MEZZO. Source: Burghout (2004).

model explicitly represents the start-up shockwave of a dissipating queue. In
order to capture the shockwave that travels upstream when a queue begins to
dissolve, the speed of the start-up shockwave is calculated using the density
upstream and downstream of the node following the Equation 3.2.19, which is
known from tra�c literature (May (1990)).

$AB = (qA − qB) / (kA − kB) (3.2.19)

where:

$AB is the shockwave speed.

qA, qB are the upstream and downstream �ows of the node.

kA, kB are the upstream and downstream densities of the node.

So, using this speed, the earliest exit time of all vehicles in the queue-part is
updated by calculating when the shockwave reaches them and how long it would
then take them to drive to the exit. This solves a common problem of queue-
server mesoscopic models, where the space of a vehicle that exits downstream
immediately becomes available upstream.

Flow Assignment

The route choice in MEZZO can be performed by two di�erent mechanisms:

� A pre-trip route choice, which selects the habitual path of the driver.
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� A route-switching mechanism, which allows drivers to divert en-route from
their current path.

Pre-trip route choice In MEZZO, the route choice model is based on a
set of known paths and historical link travel times for all links in the network.
These travel times are time-dependent. When MEZZO creates a vehicle at
an origin, the driver makes a pre-trip route choice according to a multinomial
Logit function and based on the set of known routes that connect its origin to
its destination according to a certain probability.

The Equation 3.2.20 shows the multinomial Logit probability that a driver will
choose certain alternative i.

Pi (t) =
eUi(t)∑

j∈S
eUj(t)

(3.2.20)

where:

Pi (t) is the probability of alternative i being chosen given departure time t.

Ui (t) is the utility of alternative i given departure time t that is a function of
the time-dependent travel time.

S is the set of alternative routes between the given origin and destination.

The pre-trip route choice needs a set of candidate paths for each OD pair and
time-dependent historical travel times for the links. The generation of a path
set that includes all realistic paths is not trivial. MEZZO uses the following
iterative DTA process, shown in Figure 3.2.30.

Starting with the �rst iterative loop, the shortest path algorithm describes the
network and time-dependent travel times for all links in the network. The
shortest path algorithm �nds the shortest paths for all origins and destinations
for each departure time period. All paths that are not in the route database are
added.

Then, Loop 2 becomes active. Drivers will choose their routes according to the
historical travel times. One of the simulation outputs are the new travel times
experienced by drivers as a result of their route choice and interactions with
other drivers. These new travel times are averaged with the �historical� travel
times that were inputs to the simulation following the Equation 3.2.21.
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Figure 3.2.30: MEZZO generation of historical travel times and route database.
Source: Burghout (2004).

ttn+1
i (t) = αTTni (t) + (1− α) ttn+1

i (t) (3.2.21)

where:

ttn+1
i (t) is the historical travel time on link i for iteration n+ 1 when entering

at time t.

ttni (t) is the historical travel time on link i for iteration n when entering at time
t.

TTni (t) is the simulated travel time on link i for iteration n when entering at
time t.

α is the moving average parameter ∈ [0, 1].

Burghout explains that this method of single exponential smoothing ensures
stability in the iterated process, which may have oscillatory behaviour if the
new travel times simply replace the old ones.

The updated travel times are then used in the next iteration of Loop 1. In this
case, the shortest path algorithm may �nd new shortest paths that are added to
the route set. And then a new iteration of Loop 2 is performed. This process is
repeated until Loop 1 does not �nd any new routes and Loop 2 produces travel
times that are su�ciently close to the historical travel times it used as input.
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This DTA procedure does not guarantee convergence to equilibrium, but it
has been shown to converge to a local equilibrium. The path set generation
procedure produces realistic paths.

En-route switching The route switching mechanism in MEZZO models the
reaction of drivers in order to broadcast information about an incident. The
information consists of the link in which the incident happened, the time it
started, the expected duration and the expected delay on that link. When
such information is broadcast, a certain percentage of the drivers receives the
information and determines if the information concerns a link on their current
route. If this is the case, the driver adds the expected delay to the expected
remaining travel time and compares it to the shortest time alternative route
from his current link to the destination. If the alternative is estimated to be
signi�cantly better than the current route, the driver can switch the route en-
route. Other cases in which this would happen include receiving information
about a road blockage or when the driver experiences excessive delay.

3.2.13 VISTA

(Visual Interactive System for Transportation Algorithms)

Another alternative DTA model emulates vehicle dynamics using �rst and sec-
ond order models of tra�c �ow dynamics. VISTA, developed by Ziliaskopoulos
and Waller in 2000 at Northwestern University, uses the familiar Cell Trans-
mission Model of Daganzo. VISTA has been successfully used in transportation
projects in the U.S. and Europe.

The principal characteristics of the VISTA system include:

� A tra�c �ow simulator called RouteSim that is based on the Cell Trans-
mission Model;

� A time-dependent shortest path algorithm;

� The path assignment module;

� A dynamic matrix estimation algorithm.

The basic DTA models implemented in the VISTA software are:
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� Dynamic Tra�c Equilibrium with Drivers Departing at a Fixed Time,

� Dynamic Tra�c Equilibrium with Drivers Arriving at a given Window
and/or Departing at a given time,

� Dynamic Tra�c Equilibrium with Buses and Trucks,

� Dynamic System Optimum,

� Stochastic Dynamic Tra�c Equilibrium,

� Dynamic Person Equilibrium (Intermodal/Multimodal)

The general iterative process that computes DTA is outlined in Figure 3.2.31.

Dynamic Network Loading

The VISTA simulator is RouteSim, developed by Ziliaskopoulos and Lee in 1996.
RouteSim is a path-based simulator that propagates tra�c according to the Cell
Transmission Model (CTM) (Daganzo (1994)). The basic idea of the CTM is to
simulate movements of small groups of vehicles as they enter and leave sections
of each link. Links are divided into cells that are equal in length to the distance
traveled in one time step by a vehicle moving at free �ow speed. As such, if no
congestion exists, all vehicles in a cell will move to the next cell forward in one
time step; however, the number of vehicles that move forward is limited by the
amount of space available in the next cell, and the maximum �ow permitted
across the cell boundary. If the number of vehicles attempting to move forward
exceeds the space or �ow constraints, some vehicles will not be able to move
forward, and a queue will form.

In the CTM, vehicle position is tracked only at a cell level, and vehicle speeds are
estimated based on transmission time across cell boundaries. While this may be
less detailed than other models, the cell length and time step can be reduced for
a higher degree of detail. So, this model does not require explicit calculation of
speeds, and thus does not rely on the use of speed-density functions to propagate
tra�c; however, the principles of the cell transmission model are consistent with
the hydrodynamic theory of tra�c �ow. Further, the model can capture many
realities of the network, such as tra�c signals, by using time-dependent cell
capacities and saturation �ow rates.



3.2. RELEVANT SIMULATION-BASED DTA MODELS 105

Figure 3.2.31: VISTA Dynamic tra�c equilibrium with drivers departing at a
�xed time. Source: Mouskos et al. (2003)



106 CHAPTER 3. SIMULATION-BASED DTA LITERATURE REVIEW

The simulator also includes a car-following model in order to perform micro-
scopic tra�c simulation in some parts of the network. Thus, it allows greater
detail in capturing tra�c movements. VISTA can include tra�c signals, ramp
meters and priority signals. In addition, any class of vehicle can be modeled
by the simulator. And a great variety of tra�c detectors can also be included
in the model to simulate the deployment of ITS. RouteSim can be used in real
time.

In a preprocessing step, RouteSim divides the network links into a number of
cells based on their length and free �ow speed and transmits vehicles between
cells according to the cell density, the downstream cell density, the jam den-
sity, and the saturation �ow rate. Since this involves only simple comparisons
and not complex �oating-point calculations, RouteSim can handle networks of
thousands of links while maintaining acceptable CPU time and memory require-
ments. In addition, the simulator was designed to update vehicle movements
at varying time intervals, depending on how frequently queue evolution needs
to be monitored. Near intersections, incidents, construction zones and other
problematic points, the simulator updates the queues every two seconds. For
long uniform freeway segments at multiples of that time period, it updates at up
to twenty seconds. This results in enormous CPU saving without substantially
sacri�cing the accuracy of computations.

Flow Assignment

VISTA provides the possibility of using static and dynamic routing. Its route
generation procedure uses the results produced by the VISTA simulator in order
to develop time-dependent costs. These times are used in constructing traveler
routes. VISTA costs are not limited to travel time; they can also include dis-
tances, modes of travel, tolls and other factors. The preferences of travelers
can also be incorporated into the model. The assignment module recognizes
multiple classes of vehicles, constraints in the roads for some types of vehicles,
controls, etc.

One of the principal characteristics of the DTA in VISTA is a time-dependent
shortest path algorithm that considers tra�c conditions when �nding the best
path to a destination. It is based on the traveling behavior of the user (either
departure time or arrival time). The VISTA system uses an iterative solution
to assign the time-dependent paths for each OD pair, where path demands are
distributed and redistributed among paths until equilibrium is reached.
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The assignment algorithm includes an inner demand update loop and an outer
path generation loop. In each inner loop, the path demands are loaded into
the network and a simulation (RouteSim) is run to obtain path costs and path
cost derivatives. For each OD and for each departure time, the demands on the
existing path set are updated in such a way that the path costs for all existing
paths approach equilibrium. This is based on an approximation of path cost.
The updated demands are then loaded into the network and the simulation is
repeated. The inner loop is repeated until equilibrium is reached for all OD pairs
for all departure time combinations, or until a maximum number of iterations is
reached. Next, the time-dependent shortest paths are calculated. If equilibrium
is reached, and all of the shortest paths are already included in the path set,
then the algorithm terminates with an equilibrium solution. Otherwise, the
shortest paths are added to the path set and an inner loop cycle is repeated
with the updated path set. This algorithm uses tra�c simulation (RouteSim)
to ensure that tra�c is propagated according to maximum �ow and jam density
rules.

3.3 Summary and Contributions

In order to accomplish the thesis objectives listed in Chapter 1, we �rst needed
to investigate the relevant simulation-based DTA models present in the litera-
ture. In this chapter, we have presented the conducted literature review of the
di�erent DTA models based on simulation.

First, we have distinguished three groups of DTA models based on the level of
detail with which each of them represents the studied system. From low to high
�delity: macroscopic, mesoscopic and microscopic simulation models. In this
chapter, we have brie�y summarized the characteristics of each group and we
have mentioned the main representatives.

Second, we have carefully reviewed thirteen relevant DTA models based on
simulation presented in the previous classi�cation. For each of the examined
models, we have analyzed not only the approach used to reassign the �ow but
also the dynamic network loading component.

To the best of our knowledge, there did not exist in the literature a state of the
art about simulation-based DTA models with the high level of detail that we
have presented in this chapter. Thus, the �rst contribution of this thesis is this
complete literature review of DTA models based on simulation.



108 CHAPTER 3. SIMULATION-BASED DTA LITERATURE REVIEW



Chapter 4

Proposed DTA

4.1 Introduction

The objective of the research presented in this dissertation is to develop a DTA
model based on mesoscopic simulation. As we commented in the previous Chap-
ter 1, one of the reasons for developing a new DTA model is to overcome some
of the limitations observed in literature proposals and current practical imple-
mentations of �ow assignment methods. Other reasons are related to increasing
interest in using time-dependent tra�c models in urban networks and incorpo-
rating them into advanced active tra�c management and information systems.
In these cases, the key is using mesoscopic simulation to perform the dynamic
network loading (DNL) in the DTA scheme. This type of simulation allows a
balance in the number of parameters, process e�ciency, and the reproduction of
certain tra�c behaviors that are needed when the proposed DNL is embedded
into a DTA scheme.

As we commented on the previous Chapter 1, another reason for developing a
new DTA model is that none of the existing models are suitable for easy integra-
tion with other tra�c procedures like estimating time-dependent OD matrices.
Full, smooth and computationally e�cient integration of tra�c models is abso-
lutely necessary for advanced applications.

This chapter is organized as follows. In Section 4.2, we provide the fundamentals
of the new proposed DTA model. Then, Section 4.3 is dedicated to presenting

109
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the new DTA model. Following this, we use the rest of the chapter to describe
the di�erent components of the model, paying special attention to the compo-
nents that do not have their own speci�c Chapter in this thesis: the K-shortest
path algorithm (Section 4.3.2) and the time-dependent shortest path algorithm
(Section 4.3.5).

4.2 Fundamentals

As discussed in Sections 2.3 and 2.4, a simulation-based variational inequalities
formulation of DTA o�ers a more general approach, despite some drawbacks,
and it therefore has been selected for this thesis.

The DTA model developed in this thesis is based on the dynamic extension of
Wardrop's Principle, referred to before as Dynamic User Equilibrium (DUE).
In order to achieve dynamic equilibrium, we solve the variational inequalities
formulation by employing a preventive approach based on an iterative solution
algorithm, which is a modi�cation of the Method of Successive Averages pro-
posed by Powell and She� (1982) for a variational inequalities problem.

DTA models for predicting user equilibrium �ows on tra�c networks are often
solved by an algorithm that iterates between two main components until the
convergence criteria is satis�ed. These two components are referred to as DNL
and path �ow reassignment. The DNL procedure takes the allocation of travel
demands to network paths at each time step as given, loads these by emulating
the dynamics of its propagation through the network and computes time depen-
dent path costs (travel time dependent), from that network loading. The path
�ow reassignment step then uses the time dependent costs obtained in the DNL
to adjust the allocation of tra�c to paths that will be used in the next DNL.

DTA models based on simulation use a tra�c simulator to reproduce complex
tra�c �ow dynamics. In this case, we develop a mesoscopic simulator which is
embedded in the proposed DTA framework in order to capture realistic tra�c
dynamics. A multiclass multilane DNL model based on a mesoscopic scheme
is proposed. This model considers a continuous-time link based approach with
complete demand discretization.

The proposed DTA scheme includes a time-dependent shortest path component
in order to add new paths throughout the procedure when necessary. Shortest
path calculation in DTA is a critical issue. The usual approach computes the
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shortest paths in a kind of one-shot procedure. In this case, link costs change
from time interval to time interval, but the shortest paths for a given time
interval are calculated as if all links in those paths were reached during that
interval and therefore their costs were constant. However, in reality, links are
reached at di�erent time intervals and therefore their costs change, depending
on when the link is traversed. Hence, a proper approach for a shortest path
calculation in a DTA procedure must be a proper time-dependent shortest path
procedure.

The process starts with a path set determined by a static shortest path al-
gorithm, which uses path costs in a free �ow tra�c situation. After the �rst
iteration, the path set can change if a new time dependent shortest path exists
as a result of the new cost situation. Thus, the proposed path �ow reassign-
ment process must take into account this new path in the next path demand
distribution.

Taking into account that the aim of a DTA based on the time-dependent
Wardrop principle is to achieve DUE, a measure of how close the solution is
from DUE is necessary. A relative gap re�ned by a departure time interval is
the gap measure employed in this thesis.

4.3 The Proposed DTA Model

A description of the proposed DTA model is given in the following.

The proposed DTA model requires the followings inputs: the demand that has
to be loaded into the network and some network characteristics like its geometry
or control plans. The demand is divided into discrete departure time periods
and is represented by a set of time-dependent origin-destination matrices that
contains one matrix for each departure time interval. Each matrix contains
the number of trips from each origin to each destination of the network at the
corresponding departure time interval.

At the initialization step, the algorithm requires a set of shortest paths from each
origin to each destination. Here, it is not necessary to calculate time-dependent
shortest path for each OD pair for each departure time interval, because this
calculation is based on the free �ow travel times of the links, and obviously
all these travel times are the same for all the time intervals. In this way, the
initialization step uses a static shortest path algorithm to calculate the same set
of paths for each departure time interval corresponding to each OD pair.
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Also, it is important to note here that if we start the �ow reassignment process
with only one possible path for each OD pair for assigning all the corresponding
�ows, the possibility of generating false congestion is very high. If this occurs,
all the main links of the network can present congestion, and consequently very
high costs. In this case, in the next step of the process, we will �nd a shortest
path that will not use these congested links. Thus, we could arrive at a solution
very far from equilibrium, and will therefore need more iterations in order to
converge. To avoid this phenomenon, the initialization step prepares a small set
of paths for each OD pair instead of only one path by imposing fewer iterations
on the DTA algorithm in order to achieve equilibrium.

In summary, in the initialization step a K-static shortest path algorithm is
executed in order to obtain the best set of paths for each OD pair. The inputs
to the K-static shortest path algorithm are the free �ow travel costs of each
link of the network, which are easy to calculate. We assume that the vehicles
circulate, if it is possible, at the maximum allowed speed in each of the links. So
the free �ow travel cost (in this case, travel time) is calculated for each link by
dividing the length of the link by the maximum allowed speed in this link. Also,
we need to know the number of initial M paths that depends on the network's
characteristics. The most convenient way to select this number would be to
test di�erent options during the network calibration process. Obviously, the
output of the K-static shortest path algorithm (with K=M) is one set of the
best M paths for each origin-destination pair (the same for all the departure
time intervals).

After the initialization step, and while the maximum number of DTA iterations
(established by the user before starting the process) is not achieved, the proposed
algorithm iterates between two main components: the �ow reassignment and
DNL.

Firstly, we try to assign the demand of the di�erent OD pairs (od) at each
departure time interval (t) to the corresponding paths of the initial set of M
�best paths� (Podt). For each OD pair and for each departure time interval, we
have the number of trips qodt for the corresponding time dependent OD matrix.

The �rst iteration of the �ow reassignment component is performed di�erently
from the assignment of the remaining iterations in the procedure. In this �rst
iteration, the �ow assignment is inversely proportional to the path cost. For all
OD pairs od, all departure time intervals t, and all paths p ∈ Podt, the �ow is
assigned by following the Equation 4.3.1.
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fkodpt =
1/codpt∑

j∈Podt

(1/codjt)
· qodt (4.3.1)

where:

fkodpt is the �ow assigned at iteration k to path p from origin o to destination d
departing at time interval t.

codpt is the cost of path p from origin o to destination d departing at time interval
t.

In the initial iteration, the input to the �ow reassignment method is: the set
of initial M paths for each OD pair for each departure time interval, and the
time-dependent OD matrices with the trips between origins and destinations for
each departure time interval. The output is the speci�c �ow for each path of
the initial set of paths for each OD pair for each departure time interval.

After that, the role of DNL is to determine how the reassignment �ows in the
current iteration propagate along the corresponding paths and generate time
dependent tra�c intensities in network sections, link travel times, path travel
times, etc. In this thesis, we develop a new mesoscopic tra�c simulation model
to solve the DNL.

The mesoscopic tra�c simulation provides the new costs of all links of the
network. A time dependent �ow propagation implies that link costs can change
over time and therefore each link can have a di�erent cost for each time interval.

The DTA procedure uses this information:

� To update the cost of the paths used in the previously performed DNL,
in order to know the real current cost of the paths, not the cost assumed
before the loading procedure.

� To calculate the new shortest path for each OD pair for each departure
time interval. Because link costs depend on the arrival time of vehicles
to the link, we have returned to the case discussed above, and the time-
dependent shortest path procedure is needed for calculating the new best
path. The algorithm also needs information about the network geometry
to provide the solution. The output is one shortest path and its cost for
each OD pair for each departure time interval.
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At this time we must measure how close the proposed �ow assignment is to the
goal, the DUE. In other words, it is time to evaluate the relative gap function.
This convergence criterion needs the cost of the used paths of the current iter-
ation and the cost of the best path for each OD pair for each departure time
interval. With this information, we can measure the di�erence between the to-
tal travel costs experienced and those that would have been experienced if the
travel costs of all vehicles were equal to those of the current shortest path.

If the relative gap is acceptable (around 5%, Tong and Wong (2000)) then the
DTA algorithm ends. Otherwise, if the relative error is not acceptable, the �ow
assignment is too far from equilibrium and we need to improve it. It is time to
begin the second iteration.

If the DTA algorithm reaches the pre-established maximum number of itera-
tions, then it ends. In this case, the corresponding result is the last calculated
�ow assignment, although it is not an equilibrium solution. If the performed
iterations are less than the maximum number of iterations, the algorithm con-
tinues by executing a new �ow reassignment (a standard iteration, because it is
not the �rst).

In this case, we propose a modi�cation of the Method of Successive Averages
to determine how the fraction of the demand for a time interval is split for
determining the new time dependent path �ow. This can be performed using
the travel times experienced on these paths in the previous DNL iteration.

In addition to the current path set for each OD pair for each time interval, we
need the new time-dependent shortest path for each OD pair for each departure
time in the previous DTA interval, which was calculated from the travel cost
obtained in the previous DNL. The proposed �ow reassignment procedure acts
di�erently, depending on whether or not the new shortest paths belong to the
current set of paths for the same interval. In the second case, we add this new
path to the set.

Hereafter, the proposed DTA algorithm proceeds identically to the �rst iteration
until either the convergence criteria or the maximum number of iterations is
achieved.

The structure of the proposed DTA model is illustrated in Figure 4.3.1.

Throughout the following sections, we specify each component of the presented
DTA scheme.
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Figure 4.3.1: Structure of the proposed DTA model.
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Figure 4.3.2: Outline speci�cation of inputs and outputs for the proposed DTA
process.

4.3.1 Inputs and Outputs

First of all, we describe in detail the input and output data that appears
throughout the proposed DTA scheme. In Figure 4.3.2, we show the �ow of
data throughout the main components of the procedure: DNL, �ow reassign-
ment, and the time-dependent shortest path algorithm. As we can observe in
this Figure 4.3.2, the output of one component is part of the input of the next
component, iterating until a convergence criteria is satis�ed, i.e., the procedure
feeds on itself, with the exception of the starting input speci�ed in the following.
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4.3.1.1 Time-Dependent OD Matrices

The demand is de�ned by a time-sliced OD matrix for each class of vehicle con-
sidered by the user. The matrices are time-sliced in the sense that constant de-
mand may be speci�ed for given time intervals. We assume the time-dependent
OD trip demands are known a priori for the entire time horizon of interest.

The time-dependent OD matrices specify the number of trips desired from each
origin to each destination at each time interval. A typical length of these in-
tervals ranges between 10-15 minutes, depending on the available data. Time-
dependent OD matrices capture trip rates and travel patterns. OD demand can
potentially vary according to changes in traveler activity patterns, which may
vary by day of the week, season, weather conditions or special events.

The objective of DTA models is to describe the assignment of origin-destination
�ows on the di�erent paths connecting every OD pair corresponding to the
cpreviously mentioned DUE state. One criterion for the quality of the results of
a DTA model is the coherence between the operational goal of the model, the
model itself and the data used, in particular the dynamic OD matrices.

A critical component of such an exercise is the set of time-dependent matrices
of OD �ows that capture network travel demand. OD matrices, be they static
or dynamic, are not directly observable, so the current practice consists of ad-
justing an initial matrix from indirect measurements. OD estimation methods
are typically employed for this purpose.

Link �ow counts, which are provided by an existing layout of tra�c counting
stations, are the most easily available dynamic data sources and the least costly.
A wide range of models has been developed to solve the complex problem of
estimating a dynamic OD matrix from link counts. The classical OD estimation
methods solve a system of linear equations that map the unknown OD �ows to
observed sensor count measurements.

The emergence of new Information and Communication Technology (ICT) sen-
sors provide new types of real-time data, such as samples of travel times between
sensors. They allow new formulations for space-state models that solve the dy-
namic estimation of OD trip tables. In 2012, Barceló et al. proposed a recursive
linear Kalman-Filter for state variable estimation that takes advantage of travel
times and tra�c counts collected by tracking Blue-tooth equipped vehicles and
conventional detection technologies (Barceló et al. (2012)).
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4.3.1.2 Tra�c Network

The network considered for the DTA model presented here is similar to that
used for static network models, with some additional information for links and
nodes. The links have the additional attribute �lanes�, since the vehicles are
accounted for by lane and the nodes require tra�c control information, such as
tra�c signals. The network is composed of the following elements:

Node An intersection of links. Each node has the possibility of including a
tra�c light control in order to manage vehicles passing from links to this
node.

Centroids Special nodes that represent origins or destinations of network traf-
�c.

Link A unidirectional connection de�ned by two nodes (origin and destination).
A link is characterized by its length, the number of lanes and its maximum
speed allowed.

Lane A longitudinal division of a link for a stream of tra�c. It inherits the
attributes of the link.

Turn A movement between two links (incoming and outgoing) at a node. Given
a certain pair of links, the turn is not de�ned between all the lanes of the
two links. The turn is characterized by the lanes of the incoming link
allowed for going to the lanes of the outgoing link.

4.3.2 K-Static Shortest Path Calculation

4.3.2.1 K-Static Shortest Path Algorithms

A shortest path problem is for �nding a path with minimum travel cost from
one or more origins to one or more destinations through a connected network.
In our case, it is important to know the second or third shortest path between
two nodes. For this, k-shortest path algorithms are generally used.

Although a k shortest path algorithm can provide several alternative paths, it is
inherently limited by heavy overlapping among derived paths, which may lead to
erroneous travel information for users. This means that a signi�cant proportion
of links on the �rst path are overlapped by the second and third path calculated
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from this method, so the drivers on those links may su�er severe congestion if
they act on the travel information. In our case, it represents spatial similarity
between generated paths and may not be representative of the heterogeneity
found in the set of all paths. In order to obtain a path set that represents more
the variety of choice available, overlapping alternatives should be excluded.

On the other hand, more shortest path algorithms exist for building the optimal
path based on the node they reach. However, when considering a network
with several turn prohibitions, traditional network optimization techniques have
di�culty dealing with it. Banned and penalized turns may be not described
appropriately in the standard node/link method of de�ning a network with
intersections represented by nodes only. Among all approaches proposed for
solving the problem, the most widely used method is network expansion for
describing turn penalties, for adding extra nodes and links to original network,
and for modifying the network in order to easily implement the conventional
shortest path algorithm. The principal advantage is that it can describe the turn
prohibition perfectly. A limitation, however, is the computational performance
as network size increases, making it unfeasible for very large networks.

4.3.2.2 Lim and Kim Algorithm

The method used in this dissertation is a link-based shortest path algorithm
proposed by Lim and Kim (2005), which provides e�cient alternative paths
for route guidance and which also considers overlapping among paths. This
algorithm builds new paths based on both the degree of overlapping between
each path and travel cost. It then stops building when the overlapping ratio
exceeds its criterion. This algorithm generates the shortest path based on the
link-end cost instead of node cost. Thus, it can re�ect all turns (such as left-
turn, right-turn, P-turn, U-turn and turn prohibition). It constructs a path
between origin and destination by link connection, so network expansion is not
required.

Lim and Kim proposed a standard link-based shortest path algorithm that ex-
pands on the link-based shortest path optimality condition with turn penalty,
shown in Equation 4.3.2.

LEC (o, i) + TP [link (o, i) , link (i, j)] + LC (i, j) ≤ LEC (i, j) , ∀o, i, j ∈ N
(4.3.2)
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where:

G = (N,A) is the network

N is the set of nodes in network G.

A the set of links of the network G.

LC (i, j) is the non-negative link cost required to travel from node i to node j .

LEC (o, i) is the link-end cost, or minimum path cost from origin to node i
through link (o, i). It refers to the directed link leading from node o to node i.

TP [link (o, i) , link (i, j)] is the turn penalty which implies the additional cost
at node i from link (o, i) to link (i, j) when turning prohibitions exist.

In this algorithm, instead of the preceding nodes in conventional shortest path
algorithms, preceding links are used to memorize the track of the shortest path.
The preceding link PL (i, j) is the link immediately before link (i, j) on the
shortest path.

Let R be the set of all labeled links, Ro the set of unlabeled links and O the set
of all connected nodes with origin. The steps of the link-based shortest path
algorithm are as listed:

Step 1

Label the link (h, i) , connecting origin node h with node i ∈ O.
Enter link (h, i) into set R, i.e., R = {link(h, i)}.
Set LEC (h, i) = LC (h, i) and LEC (h, j) =∞∀j 6= i

PL (h, i) = ∅

Step 2

Find an unlabeled link.

If LEC (i, j) + TP [link (i, j) , link (j, k)] + LC (j, k) ≤ LEC (j, k)Then,
LEC (j, k) = LEC (i, j) + TP [link (i, j) , link (j, k)] + LC (j, k).

PL (j, k) = link (i, j)

Step 3

Label the link (i, j)
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Add the link (i, j) to the set R, and delete it from the set Ro.

Step 4

If Ro = Ø then STOP, otherwise go to Step 2.

This shortest path algorithm generates several di�erent paths by adopting both
the link-based shortest path technique presented above and the link penalty
method for �nding dissimilar ones.

Let:

prsn is the n-path for origin-destination pair rs.

lrsn is the length of n-path for origin-destination pair rs.

P rs is the path set for origin-destination pair rs, P rs = {prsn , lrsn }.

olrsk/n is the overlapping length of n-path to the length of k-path for origin-
destination pair rs, ∀P rsk ∈ P rs, k = n− 1, n− 2, ..., 1.

Oprsk/n is the degree of overlap between the length of n-path and the length of

k-path for origin-destination pair rs. Oprsk/n =
olrsk/n

lrsn
∀P rsk ∈ P rs, k = n− 1, n−

2, ..., 1.

Op is the maximum degree of overlap.

Oz is the link penalty; Oz =
[

1
Op

]α
α is the positive parameter.

With these variables, the shortest path algorithm proposed by Lim and Kim
(2005) is described as:

Step 0 Initialization

Set Op and n = 1.

Step 1

With the link-based shortest path algorithm, �nd the shortest path.

Add lrsn and prsn to path set; P rs = {P rsn , lrsn }

Step 2 Link cost update (Link penalty)
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New link costs of the n-th path = link costs of the n-th path * Oz

Step 3 Path search and Overlapping ratio calculate

n = n+ 1

With the link-based shortest path algorithm, �nd the n-th shortest path;
{P rsn , lrsn }

Calculate the degree of overlap: Oprsk/n =
olrsk/n

lrsn
,∀P rsk ∈ P rs, k = n −

1, n− 2, ..., 1

Step 4 Convergence test

If Oprsk/n > Op then STOP.

Otherwise, add {P rsn , lrsn } to P rs and proceed Step 2.

In Step 2 of the algorithm, the link costs pertaining to the shortest path are
modi�ed by the multiplying link penalty Oz, which is a degree function of
path overlap (Op). If Op = 1.0, only one path is generated because all paths
are allowed to overlap each other. If Op is below 1.0, more than one path is
generated. In our case, we consider Op = 1

2 and α = 5.0.

In Figure 4.3.3, we show the output of the k-shortest path algorithm applied in
an urban scenario for di�erent degree values of path overlapping parameter Op
and α.

4.3.3 Flow Assignment

In order to achieve the objective of this thesis, it is fundamental to implement
a �ow reassignment method that converges e�ciently to DUE. First of all, it is
important to note that not all �ow reassignment algorithms achieve the expected
equilibrium. Only the methods that implicitly assume that the network tra�c
conditions are predictable (preventive methods) are able to achieve this (Friesz
et al. (1993)). While reactive algorithms would be those assuming that network
conditions are not predictable and therefore users base their decisions en-route
on real-time information about current tra�c conditions. Due to the objective
of this thesis, we propose a preventive �ow reassignment algorithm which bases
its decisions on its historical experience.
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Figure 4.3.3: Example of the solutions achieved with the k-shortest path al-
gorithm by Lim and Kim. (a) Op = 0.95, α = 2. (b) Op = 0.95, α = 5. (c)
Op = 0.8, α = 5.
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Among the di�erent preventive approaches existing in the literature, the itera-
tive �ow reassignment algorithm proposed here is based on a modi�cation of the
popular Method of Successive Averages (MSA). This is one of the most widely
used methods for the path �ow reassignment component in a DTA scheme, be-
cause it is one of the most simple and e�cient. The method was used for the
�rst time in transportation modeling by Powell and She� (1982).

In the context of transportation, MSA consists of removing a fraction of the �ow
from each of the used paths in the current iteration and adding this amount to
the �ow of the current time-dependent shortest path for each OD pair and for
each departure time interval.

The aim of the proposed modi�cation is try to overcome the limitations observed
during the state-of-the-art study of DTA with MSA. We focus our e�orts on
resolving two drawbacks:

� The expensive requirement of memory of a typical implementation of the
MSA algorithm.

� The indiscriminate diversion �ow from each used path to the new best
path, which is common in the standard MSA.

In order to improve the currently available options for solving these two limita-
tions, we develop a new MSA that combines some of the literature modi�cations
with the addition of new ones. In order to overcome the �rst problem, we con-
sider the general scheme formulated by Mahut et al. (2003), which is based on
the idea of limiting the number of paths for each origin-destination pair for each
departure time interval. To overcome the second limitation, we propose the use
of a diversion factor in order to perform the reassignment by taking into account
the cost of the alternative paths. This new factor is based on a logit distribution
of demand �ow according to actual travel costs of the alternative paths. The
method considers the costs based on the actual link travel times obtained in the
DNL of the previous iteration of the global procedure.

In summary, an adaptation of the MSA method that combines these two speci�c
solutions has been developed. The former consists of limiting the maximum
number of available paths for each OD pair for each departure time interval,
in order to reduce the computational storage needed in the original MSA. The
second uses a diversion factor based on actual travel times in the reassignment
process, in order to reassign �ow more realistically among the alternative paths.
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Detailed speci�cations of the proposed �ow reassignment method are the objec-
tive of Chapter 6.

4.3.4 Dynamic Network Loading

In the DTA model presented in this thesis, the DNL problem is solved using
a new tra�c simulation model based on a mesoscopic scheme that considers
continuous-time link-based approach with complete demand discretization.

Considering disaggregated treatment of each individual vehicle allows the use
of di�erent vehicles classes in the problem, so the proposed network loading is
a multiclass tra�c simulation. This model considers as many vehicle classes as
deemed necessary. Each vehicle class is characterized by two attributes: mean
reaction time and the mean e�ective length of the vehicles in the class. In order
to avoid that all vehicles belonging to a class are clones, the user can also de�ne
a deviation that will use the average values of a class to generate the reaction
time and e�ective length of each vehicle in this class.

At the level of network links, our model only needs its length and the maximum
allowed speed. The hypothesis is that, when a vehicle enters a link, it considers
its speed as the maximum allowed speed in this link. Thus, the vehicle tries to
achieve this speed and it will do so in the case of free �ow conditions.

Link �ow propagation is based on FIFO assumptions. Thus, if a vehicle enters a
link later than another vehicle, and they come out in the same lane, they must
leave it in the same entry order, i.e., one should not be able to overtake the
other within this link.

Links spatially overlap in the physical representation of the network. More-
over, the proposed model simpli�es the intersections by considering nodes as
non-physical, abstract attributes that are responsible for managing the tra�c
entering and exiting the links. Thus, we cannot calculate the time that a vehicle
needs to cross a node, because we have neither geometric nor speed information.
Therefore, the node crossing time is imputed to the links among which the ve-
hicle circulates. However, it is important to consider a �ctitious node transfer
time for slightly penalizing a vehicle's travel time when it passes from one link
to a consecutive link. This would be done in order to reproduce the reduced
speed of a vehicle making a turn, or of a driver being cautious when changing a
link.
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Each network node must have an associated turning set de�ned. We de�ne
a turn between two lanes of two links: the source link of the turn and the
destination link of the turn. The former should be a link situated upstream
from the node, and the second downstream. The turn manages the vehicle
movement from its output lane origin link to the input lane of the destination
link.

The node manages the vehicles that are waiting to cross, and it is responsible for
informing the corresponding vehicle when the situation that blocked it changes:
the tra�c light phase that controls its turn changes to green, the vehicle that
occupied the space of the node arrives to its next link, or the �rst cell of the
input lane of its destination link is liberated.

Because one of the goals is to reproduce the traversal movements of vehicles
when changing lanes, which considerably increases link congestion, this model
allows longitudinal discretization of the links in lanes. Therefore, it is a multilane
tra�c simulation model.

The proposed model considers lanes in a simpli�ed way: all lanes of a link have
the same length (the link length) and the same maximum speed (the link speed).
The number of lanes on each link of the network is also a required attribute.

The proposed DNL only reproduces temporal delays caused in tra�c due to the
traversal movements of vehicles performing a mandatory lane change within this
link. This type of lane change is produced when the vehicle must perform this
movement to continue on its assigned path without violating turn restrictions
in the network nodes. In order to reproduce tra�c patterns that occur when
vehicles change lanes, it is necessary to consider the lane in which the vehicle
entered the link and the lane in which it left. In this version of the DNL model,
the proposed methodology for calculating these lanes takes into account tra�c
conditions in di�erent link lanes at the moment. Moreover, the hypothesis is to
minimize the number of lane changes.

The DNL problem is considered from a discrete demand point of view, so it is
formulated by de�ning a function for each vehicle. From a speci�c link position,
this provides the time at which the vehicle in question reaches that position
(taveh (x)) and when it leaves

(
tdveh (x)

)
. These times are de�ned at the link level

(not a lane level), although lane con�icts should be taken into account and lane
attributes should be used to de�ne this link level's functions.

The objective of the DNL is to calculate tra�c variables for each link from the
time dependent �ow assignment at each of the network paths. This calculation
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pivots on the knowledge of the input and output times of the vehicle at each of
the links of the network. So, the proposed model considers two positions (the
initial and the �nal) at each lane of a link, in which the functions taveh (x) and
tdveh (x) should be evaluated.

From the above considerations, the development of the DNL model presented
in Chapter 5 always follows the same methodology. Given a certain link of the
network, the model calculates the following times for each vehicle:

� Arrival time of that vehicle to the initial link position.

� Departure time of that vehicle from the initial link position.

� Arrival time of that vehicle to the �nal link position.

� Departure time of that vehicle from the �nal link position.

The model is solved using an algorithm that is a discrete-event procedure. In
a discrete event-based simulation, the di�erent models that compose the proce-
dure are designed in such a way that their outputs will remain valid for as long
as the inputs to the calculation do not change. When a change in information
occurs in the network, an event is generated at a speci�c point in time.

During the development of this mesoscopic network loading model, di�erent
events have been designed and implemented. Some of these events are related
with the di�erent times when the vehicle arrives to or departures from certain
speci�c link positions (initial and end). Moreover, other events are directly
related with the tra�c simulation (start or end), and with the entry and exit
of a vehicle in the network. Finally, some complementary events were needed
to facilitate the implementation of the process and to improve the computation
times. The implemented events are as listed:

� Start Simulation

� Enter Vehicle

� Vehicle Arrives at Link Origin

� Vehicle Leaves Link Origin

� Vehicle Check Departure From Link Origin
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� Vehicle Arrives at Link End

� Vehicle Leaves Link End

� Vehicle Tries To Leave Link End

� Check Node

� Change Interval

� Exit Vehicle

� End Simulation

The process time for each event must be calculated at the same moment the
event is generated. The calculation of this time explicitly follows the functions
that de�ne the tra�c dynamics in the developed mesoscopic simulator.

As we mentioned before, details of how the proposed dynamic network model
was developed are explained in Chapter 5.

4.3.5 Time-dependent Shortest Path Calculation

4.3.5.1 Time-Dependent Shortest Path Algorithms

Although the shortest path problem is one of the best studied combinatorial
optimization problems in the literature, the dynamic graph variants received
much less attention over the years. A graph is dynamic when some of the
graph entities change with time. The most usual time-dependent changes are
in the edge costs. Several combinatorial optimization problems in graphs may
be de�ned in dynamic graphs, and this usually alters the problem's de�nition.

To our knowledge, the �rst citation to deal with the shortest path problem in
dynamic graphs with time-dependent cost changes is Cooke and Halsey (1966).
The authors proposed a recursive approach for �nding the shortest path between
two nodes of the network starting at certain time. It is shown that if travel costs
take on integer positive values, then the procedure terminates with the shortest
path from all nodes to a given destination.

Later, in Dreyfus (1969), Dijkstra's algorithm is extended to the dynamic case.
In this work the FIFO property is not mentioned. This property is necessary
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to prove that Dijkstra's algorithm terminates with a correct shortest path tree
on time-dependent networks. Let cij(t) be the traveling time on the link (i, j)
starting from i at time t. The FIFO property states that for each pair of time
instants t1, t2 with t1 < t2: ∀(i, j) ∈ A, cij(t1) + t1 ≤ cij(t2) + t2. Later,
Kaufman and Smith (1993) formally proved that this Dijkstra generalization is
valid only if the FIFO condition is satis�ed.

Depending on how time is treated, dynamic shortest path problems can be di-
vided into two types: discrete and continuous. In discrete dynamic networks,
time is modeled as a set of integers. In continuous dynamic networks, time is
treated as real numbers. For example, Orda and Rom (1990) proposed a con-
tinuous time-dependent one-to-all shortest path algorithm which allows delays
at the links of the network. While, Ziliaskopoulos and Mahmassani (1993) in-
troduced an all-to-one shortest path algorithm with time-dependent link costs
using a discretization of the horizon of interest for small time intervals. It is im-
portant to note that these authors proposed solving the problem simultaneously
for all values of the departure times.

Chabini (1998) proposed a Decreasing Order of Time Algorithm (DOT), based
on the functional equations de�ned in Cooke and Halsey (1966), to compute the
shortest paths from all origins to one destination for all departure times.

Dynamic problems involving other particularities have been investigated during
the last 10 years. Dean (2004) discussed general properties and algorithms.
Ahuja et al. (2003) studied the one-to-all shortest path algorithm for three
problems: the minimum-time walk problem, the minimum excess time walk
problem and the minim-cost walk problem. Dynamic problems involving turn
penalties and prohibitions, multimodal networks and intersection movements
were investigated by Wardell and Ziliaskopoulos (2000).

4.3.5.2 A Label Correcting Algorithm

The previously presented FIFO property is also called the non-overtaking prop-
erty, because it basically says that if V1 leaves i at time t1 and V2 at time
t2 (t1 < t2), V2 cannot arrive at j before V1 using the link (i, j). It is important
to note here that the developed DTA is based on a mesoscopic simulation model
which does not allow overtaking, i.e, we propose a link �ow propagation that
satis�es FIFO conditions. Thus, the selection of a shortest path algorithm con-
sistent with this is a logical option. Additionally, under the FIFO assumption,
time-dependent shortest path problems exhibit many nice structural properties
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that enable the development of e�cient polynomial-time solution algorithms.
Thus, in this thesis we decided to deal with the time-dependent shortest path
only for FIFO networks.

The used method is an adaptation of the algorithm proposed by Ziliaskopoulos
and Mahmassani (1993). This may be considered a temporal extension of the
label correcting algorithms used to compute static shortest path algorithms.
The obtained results are the shortest paths from all origins to one destination
for all departure times with time-dependent link costs using a discretization of
the horizon of interest in small time intervals.

Let a graph G = (N,A), with a �nite nodes set N and a �nite set of oriented
links A. The studied time period T is discretized in a set of time intervals, T =
{t1 = (t0, t0 +4t) , t2 = (t0 +4t, t0 + 24t) , .., tS = (t0 + (S − 1)4t, t0 + S4t)},
where t0 is the earliest possible departure time from any origin node, 4t is a
small time interval during which no changes in tra�c conditions or travel costs
are perceived, and S is a constant such that the intervals from t0 to t0 + S4t
cover the entire period of interest T . A cost function cij(t) represents the time
required at time t to reach node j from node i. This function is assumed to be
a non-negative function de�ned in each discrete time interval. πi(t) is de�ned
as the shortest traversal time of the directed path which connects node i to
the destination d at time t. Also, bi(t) is the successor node of i at time t on
the temporal shortest paths to destination d, and A−j is the set of arcs in the
backward star of node j. The problem lies in determining, for each departure
time t, the shortest paths from each node i to the destination d.

In the algorithm used, the node labels are maintained in a list Q. This algorithm
performs the following steps:

Step 1. Initialization:

For i = 1(i 6= d) to n do:

For t = t1 to tS do:

πi(t) =∞
For t = t1 to tS do:

πd(t) = 0

Q = {d}

Step 2. Label update:
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If Q = Ø, go to Step 4;

Otherwise, choose the �rst node j of the queue Q, Q = Q− {j};
For i = 1|(i, j) ∈ A−j to n do:

For t = t1 to tS do:

if πi(t) > cij(t) + πj(t+ cij(t)), then

πi(t) = cij(t) + πj(t+ cij(t))

and bi(t) = j

If at least one of the labels πi(t) was modi�ed, then Q = Q ∪ {i}

Step 3. Repeat Step 2.

Step 4. Stop.

At the end of the computations, the vector πi associated to each node of the
network contains the labels for each time period.

4.3.6 Convergence Criteria

In the presented DTA model two convergence criteria can be used to know if
the procedure achieves the DUE or not:

� a relative gap (Rgap)

� a relative gap re�ned by interval (Rgapt)

The relative gap for any feasible solution of DUE, proposed by Janson (1991),
can be determined by the Equation 4.3.3.

RGapk =

∑
o,d,t,p∈Pk−1

odt

fk−1odtp

(
ckodtp − ckodyodtt

)
∑
o,d,t

qodtckodyodtt
(4.3.3)

where:

fk−1odpt Flow assigned on path p at (k − 1) th iteration.
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ckodpt Path cost based on travel time experienced on path p during the last
DNL performed after the �ow assignment of the (k − 1) th iteration.

ckodyodtt Path cost of the minimum path yodt determined with a time-dependent
shortest path algorithm based on travel time experienced on path
p during the last DNL performed after the �ow assignment of the
(k − 1) th iteration.

Mahut et al. (2003) de�ned another gap measure inspired from Janson's pro-
posal. This is a relative gap re�ned by departure time interval (refinedRGap),
and it is the di�erence between the total travel cost experienced and the total
travel cost that would have been experienced if all vehicles had the travel cost
(over each interval) equal to that of the current shortest path. The formulation
is shown in Equation 4.3.4.

RGapkt =

∑
o,d,p∈Pk−1

odt

fk−1odtp

(
ckodtp − ckodyodtt

)
∑
o,d

qodtckodyodtt
(4.3.4)

A re�ned relative gap equal to zero for all the departure time intervals would
indicate a perfect DUE �ow.

4.4 Summary

In this chapter we have presented a new simulation-based DTA model through
a variational inequalities approach. The proposed iterative process solves the
dynamic extension of Wardrop's Principle: the DUE. The developed method
has two fundamental components: the DNL and the �ow reassignment method.

The DNL problem must be able to reproduce the network �ow propagation, tak-
ing into account time and a variable tra�c demand on each path of the network.
In this chapter, we have introduced a multiclass multilane DNL model based on
a mesoscopic scheme that considers a continuous-time link-based approach with
complete demand discretization. Chapter 5 will explore this component more
deeply.
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Similarly, in the present chapter we have only introduced our �ow reassign-
ment component, but detailed speci�cations of the proposed �ow reassignment
method are the objective of Chapter 6.

Therefore, in this chapter we have explained in detail only the other components
of the proposed DTA scheme, paying special attention to the shortest path
algorithms used during the procedure: a K-static shortest path algorithm and a
time-dependent shortest path algorithm. The proposed DTA scheme includes a
time-dependent shortest path component in order to add new paths throughout
the procedure when necessary. Moreover, the process can start with an initial
path set determined through a static shortest path algorithm, which uses path
costs in free-�ow tra�c conditions. After the �rst iteration, the path set can
change if a new time dependent shortest path exists as a result of the new costs.
Thus, the proposed path �ow reassignment process must take into account this
new path in the next path demand distribution.

In addition, we have speci�ed the convergence criteria that the DTAmethod uses
to detect the achieved convergence. The relative gap is one of the gap measures
employed in this thesis for qualifying the reassignment procedure solution.

The main contributions of the developed DTA model will be presented in Chap-
ter 7. In that chapter, a set of computational experiences will be carried out
and the results that support these main contributions are displayed in detail.



134 CHAPTER 4. PROPOSED DTA



Chapter 5

Dynamic Network Loading

5.1 Introduction

For years, models that reproduce the dynamic behavior of tra�c have been
studied from the perspective of tra�c �ow theory. They are applied to freeway
models that are a chain of freeway sections which may have on-o� ramps but
no other extensions to the network. Simpli�ed assumptions may be necessary
to extend the models to other networks. Practical needs and natural curiosity
have prompted research on dynamic models for tra�c networks, especially urban
networks. This has put the DTA models in the forefront. These models can be
used to evaluate tra�c �ow both to simulate tra�c management strategies and
their impact on user behavior.

In many cases, these models were merely an extension of the concepts contained
in static models. But the extension of static models to take into account dy-
namics is by no means straightforward, since dynamic supply modeling requires
a completely new de�nition and formulation of the problem. To properly per-
form a DTA, it is necessary to be able to describe dynamics of tra�c �ow on
the entire network. And this is the problem addressed by DNL: to develop a
model that can reproduce network �ow propagation while taking into account
time and variable tra�c demand on each path of the network.

This thesis proposes a DNL model to be embedded into a DTA framework. A
DNL model is any model that maps time-dependent path demand �ows onto

135
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time-dependent link �ow.

As we mentioned before, DNL models are one of the most important compo-
nents of DTA models, which in turn are a function of origin-destination time-
dependent �ows and time-dependent path �ows. In general, we can say that
DNL models depend on DTA models, since the path �ows depend on the link
costs, whilst the link costs are results of the path �ows.

Section 5.2 summarizes the relevant literature regarding DNL models. We
present the main link �ow propagation schemes proposed in the literature:
macroscopic, mesoscopic and microscopic models. We also analyze the exist-
ing solutions for the problems of node behavior and lane changes. Section 5.3
presents a new multiclass multilane DNL model based on a mesoscopic scheme
that considers a continuous-time link-based approach with microscopic demand
discretization. In Section 5.4, we summarize the model speci�cations and the
design of the event-based algorithm to solve it. Finally, Section 5.5 describes
the intensive computational experiences conducted in order to demonstrate the
proposed multilane, multiclass model.

5.2 Literature Review

At justi�ed in the previous classi�cation of DTA approaches (see Chapter 2),
the simulation-based approach is the best suited option for developing a DNL
component that will be used in a DTA scheme.

All these DNL models have an intrinsic mechanism of �ow propagation. This
problem has been studied with a great number of di�erent approaches that are
sometimes referred to as:

� Macroscopic simulation tra�c models

� Mesoscopic simulation tra�c models

� Microscopic simulation tra�c models

In order to de�ne a DNL model, in addition to the above mentioned �ow propa-
gation models, we should address other issues. One of them is the management
of tra�c behavior at the nodes. If we consider two consecutive network links
joined by a node, the intersection plays a key role in tra�c �ow propagation
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through links, since it is the downstream node of the �rst link and the upstream
node of the second one. The DNL should manage both �ows: those departing
from the �rst link and those entering the second link.

Another important issue is the longitudinal discretization of links in lanes, and
consequently lane changes. In a real network, we often need to use a speci�c lane
in order to perform certain movements at intersections in orderto continue on
a speci�c route (obligatory lane changes). The traversal movements produced
by a vehicle changing its lanes can considerably increase link congestion, so we
need to take this into account in our DNL model.

5.2.1 Flow Propagation Dynamics on the Links

In recent decades, interest in time-dependent tra�c models has increased be-
cause of the need to better reproduce tra�c dynamics in order to evaluate the
continuously evolving ITS.

Despite the rich variety of dynamic network models, there are not many dif-
ferences between the proposed approaches. Sometimes there are di�erences in
temporal, spatial or demand discretization which can make it seem that there
are di�erences between some simulation procedures based on the same model.
For this reason, Astarita (2002) proposed a classi�cation of the DNL mech-
anisms based on whether or not each of the proposed procedures discretizes
time, space and demand.

The Astarita classi�cation identi�es the following models for the DNL proce-
dure. These are intended particularly for link �ow propagation:

� Microsimulation models

� Continuous in time link models

� Discrete in time link models

� Models following a packet approach

� Macroscopic simulation models

Astarita represented the proposed models in three-dimensional space, where the
axes x, y and z are time, space and demand respectively. Thus, the value zero
represents the continuous models which do not make any type of discretization;
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Figure 5.2.1: Our DNL classi�cation inspired by Astarita's representation.

while advancing on one of the axes towards in�nity represents a discretization of
the variable of that axis (time, space or demand). For example, continuous-time
models will be located on the space-demand plane (y − z).

Figure 5.2.1 shows our DNL classi�cation inspired by the representation pro-
posed by Astarita.

In the literature, the DNL models based on the discretization of demand can be
further broken down into a representation of space, which may be either contin-
uous or discrete. Discrete-�ow tra�c models based on the cellular-automaton
(CA) paradigm are de�ned in relatively �ne discrete space (equal to the length
of a single vehicle), while those based on car-following (CFM) logic use a contin-
uous notion of space. Further, if we observe the time approach, the �rst models
(CA) use a time-discrete approach, while the CFM use a time-continuous one.
Also, it is important to note that some continuous-space models (like the pro-
posals of Newell (2002) or Gipps (1981)) use a time-discrete approach, which
di�erentiates them from CFM. All these models explicitly represent the indi-
vidual lanes of each link in the network.
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Car-following models are based on the individual movements of each of the
vehicles which form demand, so these models are located at a point whose
coordinate on the demand axis is equal to one. Following the same argument,
these models treat time continuously, so its coordinate on the temporal axis
must be 0. And �nally space is continuously treated since the vehicles can
physically take up any location in the network (i.e., inside links or nodes) during
the loading process. For this reason, the spatial axis coordinate is zero. So, as
we can see in Figure 5.2.1, the car-following models are located on the point
(0, 0, 1) at the presented classi�cation inspired by Astarita's classi�cation.

As we mention above, other space-continuous microsimulation models presented
in the literature (Newell (2002), Gipps (1981), ...) consider a time-discrete ap-
proach. In this case, the models use a certain simulation step (ST1), so the
coordinate at the temporal axis must be ST1, i.e., a positive number di�erent
from zero. They are located on the point (ST1, 0, 1) at the presented classi�ca-
tion.

Finally, microscopic models based on the cellular automaton paradigm use a
discrete notion of space equal to the length of a vehicle. They also use a certain
simulation step (ST2), so they are located on the point (ST2, vehicle length, 1)
at the presented classi�cation based on Astarita.

Dynamic network models based on continuous time and tra�c demand are gen-
erally well de�ned in a continuous space or they consider a link-discretization
of space. The macrosimulation models belong to the �rst case (thus they are
located at the point(0, 0, 0)), while in the second case the continuous-time link
based models are located on the spatial axis at the point (0, link length, 0).

In the group of macrosimulation-based models, the movements of the vehicles
are modeled through functions of density and �ow, based on �uid dynamics
and respecting the law of �ow conservation. The state variable is described
for the entire length of each link in the network. The link �ow and the speed
are functions of this variable. Furthermore, macroscopic tra�c models assume
homogeneous tra�c characteristics, thus many such models have been developed
in order to be used in simulating freeways.

Some of the continuous-time link-based models have been solved numerically us-
ing time discretization (ST3). This has resulted in models directly related to the
discrete-time link-based models, which were located in Astarita's classi�cation
at the point (ST3, length link, 0).

Finally, packet approach methods are located in the space-time plane with a
coordinate on the demand axis that depends on the size of the platoon. Within
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this group we can di�erentiate between an approach that considers the vehicle
platoon concentrated at a single point in the network (on the links), and another
approach that considers a continuous platoon, which means that vehicles are
uniformly distributed in time and space.

Due to its limitations in realistic tra�c modeling, each of the di�erent presented
approaches have varying degrees of practical application. The literature says
that the most realistic models are those that use a car-following logic; these
are the microscopic simulation models. These models are based on a detailed
representation of the network. They use a relatively high number of tra�c
parameters, and also a great number of heuristics to solve di�erent blocks of the
propagation procedure. This makes large networks more di�cult to calibrate,
which is critical in the real-time applications of DNL and tra�c assignment.

In the following, we review the above-mentioned tra�c �ow models, which are
used to reproduce �ow propagation along the links, i.e., the �ow dynamics in the
network links. We summarize the models by classifying them into three groups,
depending on the �ow demand discretization. So, from continuous consideration
of demand to total discretization (single vehicles), we di�erentiate macroscopic,
mesoscopic and microscopic models.

5.2.1.1 Macroscopic Tra�c Flow Models

Macroscopic tra�c �ow models assume that the aggregate behavior of drivers
depends on the tra�c conditions in their environments. They deal with traf-
�c �ow in terms of aggregate variables. Usually, the models are derived from
the analogy between vehicular and continuous media �ows. In this section,
we discuss continuum macroscopic �ow models. Hereby, we will consider mod-
els describing the dynamics of macroscopic variables using partial di�erential
equations.

Most macroscopic tra�c �ow models describe the dynamics of the spatial density
k = k(x, t), the speed v = v(x, t) and the �ow q = q(x, t). Let (x,t) represents a
location on a road segment, and a time instance respectively. Let density k(x,t)
represents the number of vehicles present on a segment of road between (x,
x+Dx) at time instance t, and �ow q(x,t) represents the number of vehicles pass
location x during time interval (t,t+Dt). Let velocity v(x, t) the space-mean
speed.. Some macroscopic tra�c �ow models also contain partial di�erential
equations of velocity variance Θ = Θ(x, t), or tra�c pressure P = P (x, t) = kΘ.
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Let us assume that the dependent tra�c �ow variables are di�erentiable func-
tions of time and space. Then, the relationship 5.2.1 holds exactly and, due to
this, only two of the presented variables are independent.

q = k · v (5.2.1)

Thus, we may write the fundamental conservation law of �uid dynamics as
Equation 5.2.2 shows.

∂tk + ∂xq = 0 (5.2.2)

Equations 5.2.1 and 5.2.2 constitute a system of two independent equations and
three unknown variables. Consequently, to get a complete description of tra�c
dynamics, a third independent model equation is needed. Later in this section,
several model speci�cations are considered.

In 1955, Lighthill and Whitham provided a pioneering �rst-order macroscopic
dynamic model of tra�c �ow (Lighthill and Whitham (1955)). Their approach
assumed that the expected velocity v can be described as a function of the
density k : v(x, t) = v(k(x, t)). The resulting non-linear �rst-order partial
di�erential Equation 5.2.3 was introduced.

∂tk + ∂x(k · v(k)) = 0 (5.2.3)

Di�erent variants of the model can be characterized by the relationship v = v(k).
The original proposition of the LWR model used a well-known relationship be-
tween speed and density, due to Greenshields et al. (1935). This is a character-
ized by the Equation 5.2.4.

v = v0

(
1− k

kj

)
(5.2.4)

where:

v0 is the free �ow speed.

kj is the jam �ow density (the density of the tra�c system when the velocity is
zero).

In this case, the complete model is given by Equation 5.2.5.



142 CHAPTER 5. DYNAMIC NETWORK LOADING

∂tk + (v0) · ∂xk −
(
v0
kj

)
· ∂xk2 = 0 (5.2.5)

Another relationship that has been used in conjunction with the LWR theory
is the following piecewise linear relationship between �ow and density, shown in
Equation 5.2.6.

q =

{
k · v0 for k ≤ k∗

α · (kjam − k) for k ≥ k∗ (5.2.6)

where α = k∗·v0
kj−k∗ and k∗ is called the critical density and it corresponds to the

maximum �ow.

In 1994, Daganzo proposed another simpli�ed model, known as the Cell Trans-
mission Model, based on a three-linear-segment �ow density relationship (Da-
ganzo (1994)). The third segment de�nes a maximum �ow constraint, some-
where below the maximum �ow de�ned for the two-segment model. This model
requires the discretization of space into cells. It can be applied to general net-
works with the addition of appropriated node models.

Since the assumption is that speed is only a function of density, the LWR the-
ory predicts that a vehicle reacts instantaneously to changes in density. This
is equivalent to saying that acceleration is unbounded, i.e., these changes in
velocity may be instantaneous. This is considered one of the main de�ciencies
of this model.

Second-order models were developed as an attempt to improve the accuracy of
�rst-order models and to circumvent their qualitative de�ciencies, although at
the expense of higher complexity that renders analytical solutions virtually im-
possible. The most popular second-order model was suggested by Payne (1971).
Payne's model considers car-following and takes into account the reaction time
of drivers (T ), which leads to a dynamic mean speed equation instead of the
static one used in �rst-order models. The proposed model overcomes the basic
problem of instantaneous changes in the velocity of the LWR theory mentioned
above. Equation 5.2.7 is Payne's momentum equation.

∂tv + v · ∂xv =
1

T
(v(k)− v)−

(
c2o
k

)
∂xk (5.2.7)

where:
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co is the wave speed of the linearized �ow density relationship.

The model contains convection, relaxation and anticipation terms:

� Convection (v · ∂xv) describes changes in the mean velocity due to in�ow-
ing and out�owing vehicles.

� Relaxation
(
1
T (v(k)− v)

)
describes the tendency of tra�c �ow to relax

to an equilibrium velocity. It limits how quickly the �ow may adapt to
changes in density.

� Anticipation
((

c2o
k

)
∂xk

)
describes the anticipation of the driver in spa-

tially changing tra�c conditions downstream.

A more general model form of Equation 5.2.7 is given by Equation 5.2.8.

∂tv + v · ∂xv =
1

T
(v(k)− v)−

(
1

k

)
∂xP +

(η
k

)
∂2xv (5.2.8)

where η is the kinematic tra�c viscosity. The total time derivative describes
the rate of velocity changes experienced by a moving observer who observes the
tra�c �ow while moving along the stream at the same velocity v. Note that
for the Payne model 5.2.7, we have P = k · c20 and η = 0. Introducing tra�c
viscosity results in approximate smooth solutions of Payne's model. In addition,
the numerical treatment of these higher order models is simpli�ed.

Kühne and Rödiger (1991) and Kerner and Konhäuser (1994) chose P = c20 and
η = η0. The assumption of constant velocity variance is not realistic. Rather, in
equilibrium, velocity variance decreases with increasing tra�c density, leading
to Equation 5.2.9.

∂tv + v · ∂xv =
1

T
(v(k)− v)−

(
c2o
k

)
∂xk +

(η0
k

)
∂2xv (5.2.9)

In 1996, Helbing extended the Payne models by introducing an additional partial
di�erential equation for velocity variance Θ (Helbing (1996)). His macroscopic
model is derive from gas-kinetic equations and consists of the conservation of
vehicles Equation 5.2.2, velocity dynamics and the Equation 5.2.10 describing
the dynamics of the variance Θ.
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∂tΘ + v · ∂xΘ = −2

(
P

k

)
· ∂xv +

(
2

T

)
(Θe −Θ)−

(
1

k

)
· ∂xJ (5.2.10)

where the �ux of velocity variance J = J(x, t) = k(x, t)Γ(x, t) is de�ned by the
product of the density and the skewness of the velocity distribution. Rather
than being experimentally determined, the equilibrium velocity ve and variance
Θe are determined by considering the interaction process between vehicles in
the stream. The resulting expressions are functions of densityk, velocity v and
velocity variance Θ, namely:

ve(k, v,Θ) = v0 − T (1− p(k))P and Θe(k, v,Θ) = C − T (1− p(r))J (5.2.11)

where p(k) denotes the immediate overtaking probability while C is the covari-
ance between the velocity and the desired velocity. The model equations are
`closed' by specifying expressions for p, C and J . In 1996, Helbing also proposed
techniques for incorporating the fact that vehicles occupy a non null amount of
roadway space.

5.2.1.2 Mesoscopic Tra�c Flow Models

Mesoscopic models combine the properties of both microscopic and macroscopic
simulation models that describe tra�c �ow in medium detail. Vehicle and driver
behavior are not described individually, but rather in more aggregate terms.
However, behavior rules are described at an individual level. Di�erent models
describe velocity distributions at speci�c locations and instants of time. The
dynamics of these distributions are generally governed by various processes de-
scribing the individual behavior of drivers. Three well known examples of meso-
scopic �ow models are present in the literature: headway distribution models,
cluster models and gas-kinetic continuum models.

Headway Distribution Models

Headway distribution models are mesoscopic in the sense that they describe
the distribution of the headways of individual vehicles while neither explicitly
considering nor tracing each vehicle separately. A time headway is de�ned
by the di�erence in passage times of two successive vehicles. In general, it
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is assumed that these time-headways are identically distributed, independent,
random variates.

In 1968, Buckley presented a headway distribution model based on a semi-
Poisson distribution (Buckley (1968)). Another example of headway distribution
models was presented by Branston (1976), the generalized queuing model.

One variation of the headway distribution model is the mixed headway distribu-
tion model that distinguishes between leading and following vehicles: the time
headways of leading and following drivers are taken from di�erent probability
distributions.

These mesoscopic models have been criticized for neglecting the role of tra�c
dynamics. Also, these models assume that all vehicles are essentially the same.
That is, the probability distribution functions are independent of traveler type,
vehicle type, travel purpose, etc. In order to remedy this, in 1998 Hoogendoorn
and Bovy developed a headway distribution model for, respectively, multiclass
tra�c �ow and multiclass multilane tra�c �ow (Hoogendoorn and Bovy (1998)).
Using a new estimation technique, they analyzed multiclass tra�c in the Nether-
lands on both two-lane rural roads as well as two-lane motorways.

Cluster Models

A cluster is a group of vehicles that share a speci�c property. Cluster models
are characterized by the central role of these clusters of vehicles. In the lit-
erature, these models consider some di�erent aspects of clusters. Usually the
number of vehicles in a cluster (size of the cluster) and the speed of a cluster
are of dominating importance. The size of a cluster is not static, the number of
vehicles in it can grow and decay during the process. However, the within clus-
ter tra�c condition (as for example headways or speed di�erences) are usually
not considered explicitly, i.e., the clusters are considered homogeneous in this
sense.

Gas-kinetic Continuum Models

Gas-kinetic tra�c �ow models describe the dynamics of the speed distribution
functions of vehicles in the tra�c �ow instead of describing the tra�c dynamics
of individual vehicles. These models are governed by terms that re�ect various
dynamic processes describing individual driver behavior, such as acceleration,
interaction between vehicles and lane-changing.



146 CHAPTER 5. DYNAMIC NETWORK LOADING

In 1971, Prigogine and Herman were the �rst to describe the dynamics of tra�c
�ow by using a gas-kinetic approach (Herman et al. (1971)). Their model de-
scribes the dynamics of the reduced phase-space density (PSD) ρ̃(x, v, t). PSD
is a mesoscopic generalization of macroscopic tra�c density k(x, t), and it re-
�ects the speed distribution function of a single vehicle. Prigogine and Herman
assumed that dynamic changes in the reduced PSD are caused by convection,
acceleration towards the desired speed, and deceleration due to interaction be-
tween drivers, which yields the following partial di�erential Equation 5.2.12.

∂tρ̃+ v∂xρ̃ = (∂tp̃)acc + (∂tp̃)int (5.2.12)

where

(∂tp̃)acc re�ects changes caused by acceleration towards the desired speed,

(∂tp̃)int denotes changes caused by interactions between vehicles, i.e., decelera-
tion due to fast vehicles catching up with slower vehicles.

In Equation 5.2.12, the acceleration term (∂tp̃)accis de�ned.

(∂tρ̃)acc = −∂v
(
ρ̃ ·
(
Ṽ 0 (v |x, t )− v

)
/τ
)

where τ denotes the acceleration time and Ṽ 0 (v |x, t ) is the desired speed dis-
tribution.

The interaction term(∂tp̃)int in Eq. 5.2.12 equals the so-called collision equation.

(∂tp̃)int = (1− π) ρ̃ (x, v, t)

ˆ
(w − v) p̃ (x,w, t) dw (5.2.13)

The interaction term of the original work of Prigogine and Herman was criti-
cized and improved on by Paveri-Fontana (1975)). He considered a hypothetical
scenario where a free �ow vehicle catches up with a slow moving queue. The
author showed that the Prigogine and Herman formalism infers that when a
vehicle passes a platoon, it passes each single car in the queue independently,
while a real-life situation falls between these two extremes.

Paveri-Fontana also showed that the term re�ecting the acceleration process
yields a desired velocity distribution that is dependent on the local number of
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vehicles. This is in contradiction to the well-accepted hypothesis that the per-
sonality of drivers is inconsequential to changing tra�c conditions. To remedy
this de�ciency, Paveri-Fontana considered a generalization of the reduced PSD
ρ(x, v, v0, t) with an independent variable describing the desired speed v0, which
considers the joint distribution of speed and desired speed rather than describ-
ing the dynamics of speed distributions. He proposes an equation similar to
Equation 5.2.12.

(∂tρ)acc = −∂v
(
ρ ·
(
v0 − v

)
/τ
)

and:

(∂tρ)int = −ρ
(
x, v, v0, t

) ´
w<v

(1− π) |w − v| ρ̃ (x,w, t) dw+

+ρ̃ (x, v, t)
´
w>v

(1− π) |w − v| ρ
(
x,w, v0, t

)
dw

(5.2.14)

where the reduced PSD equals:

ρ̃ (x, v, t)
def
=

ˆ
ρ
(
x, v, v0, t

)
dv0 (5.2.15)

Gas-kinetic tra�c �ow models have been criticized by Newell (1995), among
others. One point of concern was the inability to adequately describe tra�c
�ow operations under non-free-�ow tra�c conditions. Moreover, compared to
macroscopic tra�c �ow models, mesoscopic gas kinetic �ow models have a rel-
atively large number of unknown parameters and model relations (e.g., velocity
distribution functions) that need to be estimated from tra�c observations. In
addition, the relatively large number of independent variables (i.e., time, loca-
tion, velocity, and desired velocity) necessitates numerical solution approaches
using a four-dimensional lattice, which hampers application of simple numerical
approximation schemes and increases computational complexity. However, Hel-
bing (1997), Hoogendoorn and Bovy (1998), Hoogendoorn and Bovy (2001a),
and Hoogendoorn (1999) have renewed the interest in gas-kinetic models by
applying them to continuum macroscopic tra�c models.

Helbing's approach (Helbing (1997)) is similar to the approach of Paveri-Fontana
(1975), although lane-changing is explicitly considered using the dynamics of the
Multiclass Phase-Space-Density (MUC-PSD) ρj

(
x, v, v0, t

)
, where j indicates

the corresponding roadway lane. In 1998, Hoogendoorn and Bovy presented an-
other extension of a gas-kinetic model for multiclass tra�c �ow using Multilane
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PSD ρu
(
x, v, v0, t

)
, where u indicates the user class u (cars, buses, trucks, etc.)

(Hoogendoorn and Bovy (2001b)).

In 1999, Hoogendoorn derived gas-kinetic models for both multilane and multi-
class tra�c �ow, considering a platoon-based description of the tra�c stream.
He shows that this approach allows for a realistic macroscopic multilane and
multiclass tra�c �ow model, characterized by asymmetric interaction between
the fast and slow vehicle types among roadway lanes. Moreover, the author
eliminates the inability of gas-kinetic models to describe non-free-�ow tra�c by
considering tra�c as a collection of vehicle platoons, thereby describing the cor-
relation between positions and vehicle velocities. Doing so remedies the �awed
vehicular chaos assumption (the assumption that vehicles can be described by
a collection of independently moving particles). Additionally, the �nite space
requirements of the vehicles are explicitly accounted for in his approach. Both
Helbing (1997) and Hoogendoorn (1999) established that their models yield ex-
pressions for equilibrium velocity and velocity variance, re�ecting the expected
velocity and the velocity variance of the vehicular �ow in a stationary situation,
respectively. Hoogendoorn (1999) also shows how the gas-kinetic foundation
yields the equilibrium distribution of fast and slow vehicles across the roadway
lanes.

In 2001, Hoogendoorn and Bovy consolidated all the previous mentioned gas-
kinetic models (Hoogendoorn and Bovy (2001b)). They presented a generic
continuum modeling approach for the description of �ow operations for a gen-
eral class of tra�c system that models tra�c �ow independently of the type
of tra�c (vehicular tra�c motorways or rural roads, pedestrian �ows). They
presented a generalized Phase-Space Density (g−PSD). This density concept is
a generalization of tra�c density with respect to both discrete attributes (such
as user-class, roadway lane, destination) and continuous attributes (such as
speed, and desired speed). In their approach, the authors also treated the non-
continuum processes which describe non-smooth changes in the g−PSD, while
the continuum processes described smooth changes. Finally, Hoogendoorn and
Bovy showed how previous simpli�ed models can be derived from this generic
gas-kinetic equations.

5.2.1.3 Microscopic Tra�c Flow Models

Microscopic tra�c models describe the movement of each vehicle, i.e., they
model the actions (such as acceleration, deceleration or lane changes) of each
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driver as responses to the surrounding tra�c. These models are especially suited
to the study of heterogeneous tra�c streams consisting of di�erent and individ-
ual types of driver-vehicle units. This results in the appropriate aggregation
of the individual trajectories of all vehicles and, consequently, any macroscopic
information.

In order to describe the complete task of driving, microscopic models generally
comprise:

� An acceleration strategy towards a desired velocity in the free-�ow regime.

� A braking strategy for approaching other vehicles or obstacles.

� A car-driving strategy for maintaining a safe distance when another vehicle
is driving behind.

Microscopic tra�c models typically assume that human drivers react to stim-
ulus from neighboring vehicles, with the dominant in�uence caused by directly
leading vehicles. In addition, the individual behavior of drivers is characterized
in terms of model parameters such as a desired velocity, a preferred gap to the
vehicle ahead while following, a bound for the acceleration, a comfortable decel-
eration, a reaction time, and others. Furthermore, human drivers often exhibit
more complex driving patterns such as di�erent kinds of anticipation, limited
attention or other processes of adaptation that could be taken into account as
well.

Speci�cally, we can distinguish the following subclasses of microscopic tra�c
models:

� Time-continuous models which are formulated as ordinary di�erential equa-
tions and, consequently, space and time are treated as continuous vari-
ables. Car-following models are the most prominent examples of this ap-
proach. In general, these models are deterministic but stochasticity can
be added in a natural way.

� Cellular automaton models that use integer variables to describe the dy-
namic state of the system. In these models time is discretized and the links
are divided into cells which can be either occupied by a vehicle or empty.
Although these models lack the accuracy of the previous ones, they are
able to reproduce some tra�c phenomena. Due to their simplicity, they
can be implemented very e�ciently and are suited to reproduce tra�c in
large scale networks.
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� Iterated coupled maps are between cellular automaton and time-continuous
models. In this model class, the update time is considered as an explicit
model parameter rather than an auxiliary parameter needed for numerical
integration. Consequently, time is discretized while the spatial coordinate
is still considered continuous. Popular examples are the Gipps model and
the Newell model. However, these models are typically associated with
car-following models as well.

In this section we only examine the main models required to justify our proposal
for a tra�c �ow link propagation model.

Car-following Models

Car-following behavior describes how a pair of vehicles interact with each
other, more speci�cally: the way in which the space-time trajectory of one
vehicle depends on that of the vehicle in front of it.

In recent years, the importance of such models has increased further, with `nor-
mative' behavioral models forming the basis of the functional de�nitions of ad-
vanced vehicle control and safety systems. Other systems, such as autonomous
cruise control, seek to replicate human driving behavior through driver misper-
ception and reaction time. A detailed understanding of this key process is now
becoming increasingly important as opportunities for using new techniques and
technologies become available.

The study of car-following models has been extensive, with conceptual bases
supported by empirical data, but generally limited by the lack of time-series
following behavior. In many cases, model stability and the implication of each
of the relationships to macroscopic �ow characteristics have been investigated.
It is highly tempting to try and increase the realism of a chosen model by
attempting to incorporate motivational or attitudinal factors that may be able
to explain the di�erence between drivers, although there is little evidence to
relate such features to observable dynamic behavior.

In an evaluation of microscopic car-following behavior, Panwai and Dia (2005)
described an incentive for tra�c engineers and psychologist to work together
on a car-following model and to open a new branch of research on it. They
enumerated the factors that have been found to in�uence car-following behavior,
some of them psychological factors. Ranney (1999) classi�ed these factors into
these two categories:
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Figure 5.2.2: Relative contribution of di�erent factors in in�uencing car-
following behaviour. Source: Ranney (1999).

� Individual di�erences: age, gender, risk-taking propensity, driving skills,
vehicle size and vehicle performance.

� Situational factors:

� Environment: time of day, day of week, weather and road conditions.

� Individual: situations of distraction, being in a hurry, trip purpose,
driving duration, and impairment due to alcohol, drugs, stress and
fatigue.

In Figure 5.2.2 we show a conceptual model of the relative contribution of dif-
ferent categories of factors in in�uencing car-following behavior presented by
Ranney (1999).

According to this model, car-following occurs primarily at intermediate levels
of service, represented by car-following zone 2 in Figure 5.2.2. Under free-�ow
conditions (zone 1), car-following may occur, but only if the driver chooses to
drive closely to another vehicle. Under congested conditions (zone 3), drivers
have little choice about following the lead vehicle closely. The model also indi-
cates that within zone 2, car-following is determined by a combination of the
constraints imposed by other vehicles, individual factors and situational factors,
and that the relative contribution of these factors di�ers as a function of tra�c
congestion.
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Car- following model classi�cations
Perhaps the earliest car-following model was proposed by Herrey and Herrey

(1945), who postulated that a driver would maintain a minimum �safe driving
distance� that included the stopping distance, thus obtaining a spacing param-
eter which was a quadratic function of velocity. Their paper is signi�cant in
that it is one of the very few papers (along with Newell (2002)) that describe
car-following in terms of vehicle trajectories rather than just velocities, spac-
ings, etc. However, in the literature we can �nd that the car-following models
proposed by Reuschel (1950) and Pipes (1953), independently, are considered
the pioneers of microscopic tra�c models. Both models were inspired by driv-
ing rules, including considerations that the distance between two consecutive
vehicles is proportional to the speed.

Since this �rst car-following experiment, many observations have been made
in an e�ort to understand car-following behavior for the single-lane follow-the-
leader situation.

A study by Brackstone and McDonald (1999) classi�ed car-following models
into �ve groups, as follows:

� Gazis-Herman-Rothery (GHR) model

� Safety distance or collision avoidance models

� Linear models

� Psychophysical or action point models

� Fuzzy logic-based models

Other car-following models not covered in the abovementioned review but present
in the literature are: desired spacing models , models based on trajectories, and
the series of intelligent/human driver models.

This thesis does not attempt to describe all the car-following models presented
in the literature. Instead, this thesis gives a short-term description of the models
that are clearly in�uential in our proposal of link �ow propagation, which are:
collision avoidance models, desired spacing models and Newell's model based on
trajectories (Newell (2002)).
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Collision Avoidance Model
Also known as the safety distance model. The hypothesis of this class of

model is that a driver will place himself at a certain distance from the lead
vehicle, such that in the event of an emergency stop by the leader, the follower
will come to rest without striking the lead vehicle.

This model was �rst presented by Pipes (1953), who characterized the motion of
vehicles in the tra�c stream as following rules, based on the concept of distance
headway, suggested in the California Motor Vehicle Code, namely: �A good rule
for following another vehicle at a safe distance is to allow yourself at least the
length of a car between your vehicle and the vehicle ahead for every ten miles
per hour of speed at which you are traveling�. Pipes' car-following theory leads
to a minimum safe distance headway that increases linearly with speed.

Kometani and Sasaki (1959) also proposed that the base relationship seeks to
specify a safe following distance, within which a collision would be unavoidable
if the driver of the vehicle in front were to act unpredictably.

The major development of this model was made by Gipps (1981). He con-
structed a new car-following model with the following properties:

� The model should mimic the behavior of real tra�c.

� The parameters in the model should correspond to obvious characteris-
tics of drivers and vehicles, so that most can be assigned values without
resorting to elaborate calibration procedures.

� The model should be well behaved when the interval between successive
recalculations of speed and position is the same as the reaction time.

The model is derived by setting limits on the performance of driver and vehicle
and using these limits to calculate a safe speed with respect to the preceding
vehicle. It is assumed that the driver of the following vehicle selects his speed
to ensure that he can bring his vehicle to a safe stop should the vehicle ahead
come to a sudden stop.

The car-following paradigm investigated by Gipps was based on a simple rule:
the follower attempts to maximize his instantaneous speed, subject to two con-
straints: acceleration and safety.

The acceleration constraint is a statement of the physical limitations of a vehicle
in terms of speed and acceleration, as well as of a driver's desire for comfort.
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Figure 5.2.3: Safe deceleration to stop diagram. Source: Mahut (1999)
(Adapted from Gerlough and Huber (1976)).

Essentially, it describes the trajectory of a vehicle that is free to accelerate to its
maximum desired speed in the absence of downstream vehicles. On the other
hand, the safety constraint is a statement of how the trajectory of a vehicle is
a�ected by the next downstream vehicle.

Mahut (1999) presented a generalization of the car-following model originally
proposed by Gipps (1981). It generalizes the safe-stopping (or safety) constraint.
Typically, in the formulation of a safety constraint, all variables are referenced to
the same time t by estimating the follower's state vector at time t+reactionT ime
as a function of his state vector (position, velocity and acceleration) at time t.
The approach by Mahut allowed the state vectors of the leader and the follower
to be referenced to di�erent points in time, i.e., to t and t + reactionT ime,
respectively.

Mahut proposed in Figure 5.2.3 his safe deceleration to stop diagram, where he
showed how the modeling hypothesis of safety distance works:

where:

f is the follower vehicle.

l is the leader vehicle.

T is the response time.
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4 (t) is the minimum distance between the front bumpers of two vehicles at
zero speed, referred to as the e�ective length.

δ [vf (t+ T ) , βf ] is the deceleration distance function: the distance required to
decelerate from speed v to a stop with deceleration parameter β.

xf is the position of the follower.

xl is the position of the leader.

vf is the speed of the follower.

vl is the speed of the leader.

βf is the desired follower deceleration

βl is the anticipated deceleration parameter (how the follower anticipates the
leader's deceleration).

Hence, to avoid a collision, the trajectory of the follower must satisfy the follow-
ing inequality constraint, i.e., the safety constraint shown in Equation 5.2.16.

xf (t+ T ) + δ [vf (t+ T ) , βf ] +4 (t) ≤ xl (t) + δ [vl (t) , βl] (5.2.16)

Assuming that the deceleration distance functions are, respectively:

δ [vf (t+ T ) , bf ] =
[vf (t+ T )]

2

2βf
, δ [vl (t) , βl] =

[vl (t)]
2

2βl
(5.2.17)

So, the safety constraint becomes the Equation 5.2.18 .

vf (t+ T ) ≤

√√√√2βf

(
xl (t) +

[vl (t)]
2

2βl
− xf (t+ T )−4 (t)

)
(5.2.18)

where the absolute values of βl and βf are considered.

In addition to the usual quadratic expression (proposed by Gipps) for the de-
celeration trajectory, a second deceleration function was proposed by Mahut,
which yields a logarithmic relationship between speed and stopping distance.

In 2001, Wilson examined Gipps's model and performed a detailed mathemat-
ical analysis of the uniform �ow solutions and their stability (Wilson (2001)).
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In particular, he showed that the uniform �ow may only become unstable in
unrealistic parameter regimes. It follows that Gipps's model is not able to repli-
cate stop-and-go waves. Further work by Rahme et al. (2002) simulated minor
adaptations of Gipps's model in an attempt to produce stop-and-go waves, but
found no satisfactory parameter regimes.

Desired spacing models
The desired spacing models were proposed by Parker (1996) and Hidas (1998).

These models are based on a desired spacing criterion which is assumed to be a
linear function of the speed:

Di = α · vi + β (5.2.19)

where:

Di is the desired spacing.

vi is the speed of vehicle i.

α, β are constants.

The models are based on the premise that desired spacing is an individual
driver characteristic and that drivers have di�erent desired spacing criteria in
acceleration and deceleration.

These models eliminate the problems associated with the reaction times used
in other models because they describe car-following based on desired spacing
between vehicles without attempting to explain the behavioral aspects of car-
following.

Hidas developed this car-following model speci�cally into a microscopic simula-
tion of congested urban tra�c �ow conditions. It was implemented in ARTEMiS
(Analysis of Road Tra�c and Evaluation by Micro-Simulation), a tra�c simu-
lator developed by the author at the University of New South Wales since 1995.
It has been validated for urban interrupted �ow conditions, which is one of the
reasons why this model is interesting for our research.

In 2005, Hidas modeled vehicle interactions in microscopic simulations of merg-
ing and weaving (Hidas (2005)). He combined his desired spacing, car-following
model with a new lane-changing model. Thus, Hidas eliminated the shortcom-
ings of the previous proposed models by implementing new concepts based on
data collected from video which recorded lane-change observations.
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Figure 5.2.4: Relation between spacing and velocity for a single vehicle. Source:
Newell (2002).

Newell's model
In 2002, a very simple car-following rule was proposed by Newell, wherein if

an nth vehicle is following an (n− 1)th vehicle on a homogeneous highway, the
time-space trajectory of the nth vehicle is essentially the same as the (n− 1)th
vehicle except for a translation in space and in time (Newell (2002)).

The spacing xn−1 (t) − xn (t) between vehicles n and (n − 1) at time t could
change with time, but if the highway is homogeneous, it should remain nearly
constant at some value sn . The sn could be di�erent for di�erent vehicles and
it will also depend on the constant average velocity v.

Newell idealized some empirical relationship between the v (at least over some
range of v) and sn with a linear relation, as illustrated in Figure 5.2.4.

He supposed that the (n− 1)th vehicle travels at a nearly constant v for some
period of time, but then changes velocity and eventually acquires a nearly con-
stant velocity v′ . The new trajectory may look like the path shown with a
broken line in Figure 5.2.5, but it supposes that the two constant velocity seg-
ments are extrapolated until they intersect the solid lines, and that the actual
trajectory stays close to the solid lines. The nth vehicle will do likewise, with the
junction of the solid lines for the nth vehicle displaced relative to the (n− 1)th
vehicle by a space displacement dn and time displacement τn.

So the piecewise linear trajectory xn(t) would be simply a translation of the
piecewise linear xn−1(t) for a distance dn and a time τn, i.e.,

xn (t+ τ) = xn−1 (t)− dn (5.2.20)



158 CHAPTER 5. DYNAMIC NETWORK LOADING

Figure 5.2.5: Piecewise linear approximation to vehicle trajectories. Source:
Newell (2002).

where dn = sn − v · τn.
The details of how a following vehicle manages to stay close to a previous re-
lationship are not important, provided that the driver is capable of doing so,
which should not be di�cult, because if the lead vehicle should increase (de-
crease) its velocity, the following vehicle does not need to respond immediately.
It can wait until the spacing has increased (decreased) to a value comparable to
its value for the new velocity. Indeed, the slope τn in Figure 5.2.5 derives from
what the driver considers to be a safe driving distance, which implies an ability
for him to respond comfortably to anything the (n− 1)th vehicle may do.

Speci�cally, our interest was to analyze the algorithm proposed by Yeo et al.
(2008) inside the Next Generation Simulation (NGSIM) Project, sponsored by
the U.S. Federal Highway Administration. This car-following model is a new
behavioral algorithm for the over-saturated freeway �ow which used Newell's
model as a starting point.

This algorithm combines a car-following model with a lane-changing algorithm.
The car-following model was developed to simulate over-saturated �ow, and they
introduce some additional algorithms to control lane changes and their e�ects
on the car-following models. This modeling framework allowed simulation of all
possible driving conditions.

The di�erent components of the proposed algorithm and the relationships be-
tween them are summarized in the diagram shown in Figure 5.2.6:

In order to simplify, we only discuss the basic car-following model used for Sk-
abardonis in his complete algorithm. This car-following model is a simpli�ed
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Figure 5.2.6: Skabardonis scheme proposed inside the NGSIM Project. Source:
Yeo et al. (2008).

Newell model, to which they added security restrictions in order to avoid colli-
sions during the simulation, and also to represent the physical limits of vehicles
(such as maximum acceleration ratios and deceleration).

Thus, they de�ned it through Equation 5.2.21.

xn (t+4t) = max
{
xUn (t+4t) , xLn (t+4t)

}
(5.2.21)

To calculate the distance traveled during a simulation step, they could de�ne
their upper bound using the minimum value of the distance generated by: the
basic rule of this type of car-following model, the acceleration capabilities of
the vehicle, the desired maximum speed and the maximum safe distance. Thus,
they de�ned it with Equation 5.2.22.

xUn (t+4t) = min

 xn−1 (t+4t− τn)− ln−1 − gjamn ,
xn (t) + vn (t) · 4t+ aUn · 4t2,

xn (t) + vfn · 4t, xn (t) +4xsn (t+4t)

 (5.2.22)
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And the lower bound is determined by the deceleration capability and by re-
stricting the vehicle to maintain the current position without going backwards.
So, from the Equation 5.2.23.

xLn (t+4t) = max
{
xn (t) + vn (t) · 4t+ aLn · 4t2, xn (t)

}
(5.2.23)

where:

4xsn (t+4t) = 4t·(
aLn · τn +

√
(aLn · τn)

2 − 2aLn ·
(
xn−1 (t)− xn (t)−

(
ln−1 + gjamn

)
+ dn−1 (t)

))

dn−1 (t) = − (vn−1 (t))
2

2aLn−1

where:

4t is the simulation step.

τn is the wave travel time for the nth vehicle.

ln−1 is the length of the (n− 1)th vehicle.

gjamn is the distance between (n− 1)th vehicle and nth when both are stopped.

vfn (t) is the free �ow speed of the nth vehicle at time t.

aUn is the maximum acceleration of the nth vehicle.

aLn is the maximum deceleration of the nth vehicle.

vn (t) is the speed of the nth vehicle at time t.

Moreover,

xLn (t+4t) ≤ xn (t+4t) ≤ xUn (t+4t) (5.2.24)

The model proposed by Skabardonis is specially interesting for our research,
because it can overcome Gipps limitations in relationship to the reproduction
of stop-and-go situations.
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Particle Hopping Models

Another development of vehicular tra�c �ow theory is particle hopping mod-
els. In these, a road is represented as a string of cells, which are either empty
or occupied by exactly one particle. Movement takes place by hopping between
cells. If all particles are updated simultaneously, then, formally, the particle hop-
ping model are also cellular automata (CA). The technical di�erence between
car-following and CA models for tra�c �ow is that in the latter space and time
are discrete, whereas they are continuous in the mathematical treatment of car-
following models (with some time-discrete exceptions that we commented on
the introduction of this chapter). Simulations of car-following models discretize
time but use continuous space. From a theoretical point of view, the method-
ology of particle hopping models is somewhere between �uid-dynamical and
car-following theories, and they help to clarify the connections between these
approaches.

In 1956, a CA model for tra�c was proposed byGerlough (1956) and was later
extended further by Cremer and Ludwig (1986). They implemented fairly so-
phisticated driving rules and also used single-bit coding, with the goal of making
the simulation fast enough to be useful for real-time tra�c applications. The
bit-coded implementation, though, made it too impractical for many tra�c ap-
plications.

In 1992, Biham et al. used a model with maximum velocity, applying it to
both one- and two-dimensional tra�c (Biham et al. (1992)). One-dimensional
here refers to roads, etc., and includes multilane tra�c. Two-dimensional tra�c
in the CA context usually means tra�c on a two-dimensional grid, such as a
tra�c model for urban areas. Also in 1992, Nagel and Schreckenberg introduced
a model with maximum velocity for one-dimensional tra�c, which compared
favorably with real world data (Nagel and Schreckenberg (1992)).

In this section we present several CA models that are candidate models for
tra�c. They all are de�ned by a certain number of sites. Each site can be
either empty or occupied by exactly one particle. Also, in all models, particles
can only move in one direction. The number of particles is conserved except at
the boundaries. For tra�c, particles model cars.

The stochastic tra�c cellular automaton
In 1992, a stochastic CA for one dimensional vehicular tra�c was proposed

by Nagel and Schreckenberg (1992). The model is referred to as the Stochastic
Tra�c Cellular Automaton (STCA) and is de�ned as follows. Each particle (car)
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can have an integer velocity between 0 and vmax . The complete con�guration
at time step t is stored and the con�guration at time step t + 1 is computed
from that, using a parallel or synchronous update. All cars execute in parallel
the following steps:

1. Let g (gap) equal the number of empty sites ahead.

2. If v > g (too fast), then slow down to v := g (rule 1); otherwise if v < g
(enough headway) and v < vmax, then accelerate by one: v := v + 1 (rule
2).

3. Randomization: If after the above steps the velocity is larger than zero
(v > 0), then, with probability p, reduce v by one (rule 3).

4. Particle propagation: each particle moves v sites ahead (rule 4).

The randomization incorporates three di�erent properties of human driving into
one computational operation: �uctuations at maximum speed, overreactions at
braking, and retarded (noisy) acceleration.

When the maximum velocity of this model is set to one (vmax = 1), then the
model becomes much simpler; each particle executes the following in parallel:
if a site ahead is free, move with probability 1 − p to that site. Since the
STCA shows di�erent behavior for vmax ≥ 2 than for vmax = 1, the literature
distinguishes them as STCA/1 and STCA/2, respectively.

The deterministic limit of the STCA (Cellular Automata - 184)
One can take the deterministic limit of the STCA by setting the randomiza-

tion probability p equal to zero, which is the same as simply skipping the ran-
domization step. It turns out that when using a maximum velocity vmax = 1,



5.2. LITERATURE REVIEW 163

this is equivalent to the cellular automaton Rule 1841 in Wolfram's code2; so
this model is known as CA-184. Many CA models for tra�c are based on this
model. Biham et al. (1992) introduced it for tra�c �ow, with vmax = 1. Nagel
and Herrmann (1993)used it with vmax larger than one. It is also the basis of
the two-dimensional CA models for tra�c.

It has been reported that the general behavior of the model does not change due
to this simpli�cation. The only practical di�erence obtained by setting vmax = 1
is that the acceleration is now unbounded as well. Another important feature
of CA-184 is that its �uid-dynamical limit is known. This limit is obtained by
making the cells and time steps increasingly smaller while increasing the number
of particles, such that the average density of particles remains constant.

It may be conjectured that CA-184 is equivalent to the LWR model proposed
by Newell in 1993. The existence of only two di�erent wave speeds in Newell's
model (one for each of the two �ow regimes) is consistent with the behavior of
CA-184. Furthermore, both models implicitly allow instantaneous acceleration
and deceleration.

The asymmetric stochastic exclusion process
Probably the most investigated particle hopping model is the Asymmetric

Stochastic Exclusion Process (ASEP). Its behavior is de�ned as follows.

1. Pick one particle randomly (rule 1).

1Rule 184 is a one-dimensional binary cellular automaton rule. In this model, particles
(representing vehicles) move in a single direction, stopping and starting depending on the cars
in front of them. The number of particles remains unchanged throughout the simulation. If
we interpret each 1 cell in Rule 184 as containing a particle, these particles behave in many
ways similarly to automobiles in a single lane of tra�c: they move forwards at a constant
speed if there is open space in front of them, and otherwise they stop.

2Wolfram code is a naming system often used for one-dimensional cellular automaton rules,
introduced by Stephen Wolfram in 1983. The code is based on the observation that a table
specifying the new state of each cell in the automaton, as a function of the states in its
neighborhood, may be interpreted as a k-digit number in the S-ary positional number system,
where S is the number of states that each cell in the automaton may have, k = S2n+1 is the
number of neighborhood con�gurations, and n is the radius of the neighborhood. Thus, the

Wolfram code for a particular rule is a number in the range from 0 to SS
2m+1

=1, converted
from S-ary to decimal notation.
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2. If the site to the right is free, move the particle to that site (Rule 2).

The ASEP is closely related to CA-184 and STCA (i.e., both with maximum
velocity set to one). The actual di�erence lies only in the manner in which
sites are updated. CA-184 and STCA update all sites synchronously, whereas
ASEP uses a random serial sequence. In order to compare itself with the other
synchronously updated models, one has to note that the ASEP notably updates
each particle an average of once after N single-particle updates. A time step in
the ASEP is therefore completed after N single-particle updates.

5.2.2 Node Behavior

One of the major issues we need to address when performing a DNL is how tra�c
behaves in nodes, where the upstream demand �ow may exceed the downstream
supply.

Node management handles the movements of vehicles from one link to the next
on their route. In this section, we describe some of the methodologies used in
the literature to describe these movements, although it is notable that this is
one of the less reported aspects of DNL models.

Here, we describe some of these methodologies, beginning with those based on
queuing theory.

In order to estimate waiting times and queue lengths of isolated bottlenecks,
FIFO (�rst in, �rst out) servers have been used successfully for years. How-
ever, non-stationary arrivals create di�culties for these applications, particu-
larly when demand exceeds system capacity over a certain period of time. In
1995, Daganzo showed that the FIFO rule for non-isolated intersections will pro-
vide inadequate results if it does not incorporate the schockwave phenomenon,
even if it is a simple network with two sequential server-de�ned entries and exits.

We should add some additional restrictions to queuing models in order to meet
some basic physical rules for tra�c �ows. For example, we need to assign a
physical length for each vehicle to calculate the bound capacity of each queue.
However, we are not incorporating the shockwave phenomenon with these ad-
ditional restrictions, because the queuing models are not able to describe how
vehicles propagate in space.

In 1998, Ben Akiva proposed a DNL based on links divided into two parts:
moving and queuing (Ben-Akiva et al. (1998)). The moving part is the portion



5.2. LITERATURE REVIEW 165

of the link where vehicles can move at a certain speed, in accordance with tra�c
�ow theory. The queuing part of the link represents the area where vehicles have
stopped to form a queue. Ben Akiva proposed a deterministic queuing model
for this second part. (see Section 3.2.5).

In 1999, Akçelik proposed a queuing model for signalized intersections (Akcelik
et al. (1999)). With this model, he simulated queue propagation depending
on shockwave propagation. Furthermore, it is important to note that in his
proposal, Akçelik takes into account the phases of the intersection control to
calculate wave movement.

However, there are also other interesting methodologies that are not based on
queueing theory but nevertheless warrant attention.

In 2001, Mahmassani proposed a mechanism for transferring tra�c �ow in the
nodes from link to link (Mahmassani (2001)). The method includes the num-
ber of vehicles that remains in the queue, and the number of vehicles added or
subtracted from each link at each simulation step. In 1994, Mahmassani pro-
posed a wide range of tra�c control measures at intersections in order to re�ect
the entry/exit capacity constraints that are the basis of this transferring node
mechanism.

In 2003, Mahut proposed a management mechanism at each of the intersection
nodes in the network (Mahut et al. (2003)). This method is based on the turn
de�nitions for each allowed movement from one link to another. Each turn is
de�ned by an access code and a saturation �ow rate per lane. The advantage of
this methodology is that it does not require the de�nition of a certain geometry
such as lane width, turning angles or intersection dimensions.

5.2.3 Lane Changing Methods

The second problem to take into account when developing a DNL model is
analogous to the �rst, but refers to the lane discretization of the links. In
real networks, movements at intersections usually occur only in speci�c lanes.
Therefore, vehicles must change to the required lane to follow the route they
have been assigned. These lane changes may result in a demand �ow in a
lane that exceeds the supply that this link can assume. To properly deal with
these phenomena, it is necessary to establish methods for explicitly taking into
account lane changes.
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Aside from the abovementioned proposal by Skabardonis, who combined a car-
following model with a model of lane changing behavior, we analyze some other
methodologies used in the literature to solve this tra�c problem.

In the model proposed by Mahut et al. (2003), vehicle trajectories in the links are
modeled implicitly, rather than explicitly. Speci�cally, each driver chooses the
lane for getting in and out of a link. The driver makes this decision just before
arriving to the link and cannot change once inside. The main argument that
justi�es this approach is that, in order to model the �ow congestion patterns
of certain paths, it is su�cient to model the mandatory lane changes. These
lane changes are carried out in order to enter an exit from the link through the
permitted turns.

The simulation software AIMSUN (see Section 3.2.1), from its mesoscopic view-
point proposes a lane change model governed by this set of rules:

� Input and output lanes are chosen before the vehicle enters the link, and
then cannot be reconsidered (as in the Mahut proposal).

� The FIFO rule is applied according to the departure lane, i.e., once a
vehicle has entered the link it cannot overtake any vehicle going to the
same departure lane.

� The lane change is assumed instantaneously, which means that it does not
consider any rule on gap acceptance.

� (From the above two rules: overtakings are allowed only between two
vehicles with di�erent destination lanes.)

5.3 Proposed Dynamic Network Loading Model

5.3.1 Justi�cation of the Proposed DNL Model

Because the objective is to develop a new DNL model as one of the main com-
ponents of the proposed iterative DTA procedure, it is necessary to have an
e�cient DNL process with the shortest possible computational times, even in
the case of medium- or large-sized tra�c networks. It is also very important to
try to reach a balance in the number of parameters without losing a suitable
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description of the tra�c �ow dynamics. On the one hand, one handicap to cal-
ibration could be: the more parameter values that depend on the network, the
more di�cult it will be to �nd the most suitable values for reproducing reality.
On the other hand, failure to use any input parameter will probably make it
more di�cult to reproduce tra�c behaviors that should not be overlooked and
that are related to network characteristics like geographical location or other
factors.

Taking into account the above requirements for selecting a DNL approach in a
DTA model, we can rule out models based on macroscopic simulation. These
models, which are very suitable in terms of execution times, do not reproduce
tra�c behaviors that are needed for a dynamic network model embedded into
a DTA scheme.

Furthermore, microscopic simulation models are also routinely discarded be-
cause they usually require very high computational time and a large number of
input parameters, which in practice are di�cult to calibrate.

Thus, the most suitable option is a model that combines the best properties of
both microscopic and macroscopic models, i.e., a mesoscopic model. Our goal
is to develop models that can reproduce reality like microscopic models, but
without so many details. In this way, we can achieve better execution times and
remove excessive input parameters that are di�cult to calibrate.

The proposed DNL considers time in a continuous form instead of the micro-
scopic tra�c simulation method of discretizing time in previously de�ned steps.
Our proposed model is di�erent from microsimulation models in that space is
considered as discrete rather than continuous, except for the case of cellular
automaton models, which work with cells. Thus, in our case, there is no ex-
plicit control of what happens with vehicles inside the links. The model focuses
only to speci�c points of the link that are essential for correctly de�ning net-
work loadingcorrectly. However, the proposed model keeps the key feature of
microscopic models: demand discretization considered for each vehicle.

To clarify the position of the proposed model compares to existing ones, we will
refer to the modi�ed Astarita classi�cation (5.2.1) scheme for analyzing time,
space and demand discretizations. In our proposed model:

� Time is considered continuous, therefore the time coordinate is zero.

� Space is considered discrete. As already mentioned, we lose continuous
control of the vehicle's location in the network and we consider only link
control. Therefore, the space coordinate is a link length.
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Figure 5.3.1: Proposed model located at proposed scheme classi�cation.

� Demand is considered discrete and fully disaggregated vehicle to vehicle.
This is crucial for modeling situations which into account di�erent vehicle
classes. Therefore the demand coordinate is one.

Thus, we locate the proposed model at the point (0, arc length, 1) in the pre-
viously presented scheme classi�cation, as shown in Figure 5.3.1.

5.3.2 Proposed Dynamic Network Loading Model

As pointed out before, the proposed DNL link simulation is continuous in time
with disaggregated demand. Link �ow propagation is solved without evaluating
�ow at intermediate points along the links.

Like some microscopic models based on car-following theory or cellular-automaton,
vehicles in the proposed model move by trying to maximize their speeds in
the presence of certain constraints. These constraints ensure that vehicle tra-
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jectories satisfy position, speed and acceleration bounds while trying to avoid
vehicular collisions.

In order to simplify understanding of the models, we will �rst consider tra�c
propagation in a single link in the network, which will also have a single lane.
In this way we will study the model that vehicles follow while entering and
moving in and out of this link. We will only take into account the longitudinal
movements in the link (by assuming that links have only one lane) and without
regard to tra�c con�icts produced by the interaction of several links or by node
management.

Then the model will be extended to the case of two links with only one lane
each and which are joined by a node. In this way, we will study new situations
that did not exist in the initial case. On the one hand, it should explain node
management, i.e., when and why a node can generate congestion in its upstream
link or cannot get the desired �ow to its downstream link. On the other hand,
we must investigate how link �ow a�ects its next downstream link, and vice
versa.

Finally, we will introduce into the proposed model necessary changes for taking
into account lanes within each link in the network. The forward dynamics will
be the same as those proposed for the case of links without lanes. First, we
will analyze the con�icts that arise in single-link �ow propagation when vehicles
change lanes. Then we will try to reproduce the congestion caused by these
traversal movements. After that, we will extend the model to two links joined by
a node, in order to study lane changes produced by node management. Finally,
we will consider lanes and the turns allowed.

5.3.2.1 Proposed Models without Lanes

Assumptions

Before beginning to study the presented model, we will specify some necessary
assumptions made during its development, both in terms of attributes that the
model needs, and the simpli�cations needed to formulate it comfortably.

First, we consider as many vehicle classes as the user deems necessary. Each
vehicle class should be characterized by two attributes: the mean reaction time
and the mean e�ective length of the vehicles in the class. The vehicle reaction
time is the time required by the driver to observe, decide, react and execute
actions which change itsroad behavior. The e�ective length of a vehicle is equal
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to a vehicle's length plus the distance between this vehicle and its preceding
vehicle when they are stopped in a queue. In order to avoid that all vehicles
belonging to a class are clones, the user can also de�ne a deviation for using
the average values of a class to generate the reaction time Tveh and the e�ective
length Lveh of each vehicle in this class.

Disaggregation of each individual vehicle allows use of di�erent vehicle classes
in the problem. Therefore, the proposed network loading is a multiclass tra�c
simulation. This model considers as many vehicle classes as the user of the
model deems necessary. Each vehicle class is characterized by two attributes:
the mean reaction time and the mean e�ective length of the vehicles in the class.

For network links, the �rst developed model needs only two attributes: the link
length and the maximum allowed speed in the link. When a vehicle enters a link,
we consider its speed to be the maximum allowed in this link. Hence, we suppose
that this vehicle is able to achieve this speed and that it will do so in free-�ow
tra�c conditions. We cannot de�ne the maximum allowed speed for each vehicle
because that could cause problems in managing link �ow propagation, which is
under FIFO assumptions. Thus, if a vehicle enters a link later than another
vehicle, and they exit from the same lane, overtaking is not possible in this
link and they must leave it in the same entry order. In addition, if we consider
the maximum speed limitation for each vehicle, we could also have problems
with the shortest path calculations for the �rst DTA iteration. In this case,
we consider that link cost is in free-�ow tra�c conditions, so it is equal to the
time it takes to traverse this link at maximum speed (and therefore we need
maximum speed as a link attribute, not a vehicle attribute).

We consider units of space and time in meters and seconds, respectively. Thus,
the speed unit is meter/second.

Taking into account that we consider the problem from a discrete demand point
of view, the �ow propagation process is described vehicle to vehicle. Usually,
we formulate it from one of the following two relationships: time-dependent
position (x (t)) or space-dependent time (t (x)). In this case we formulate the
�ow propagation model from the latter.

So, we formulate the problem by de�ning a function for each vehicle which
returns the time when that vehicle is in a speci�c link position x: (tveh (x)).

It is important to note that it is not su�cient to know the time when a vehicle
occupies a certain link position. What is really interesting is to control the times
when the vehicle reaches and leaves that position. Otherwise, that function
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(tveh (x)) may not be uniquely de�ned, i.e., the vehicle can be in position x at
di�erent times. So, we de�ne two functions: one that provides the time when
a vehicle arrives at a certain position (taveh (x)), and one that provides the time
when it departs from this position

(
tdveh (x)

)
. In that way, both functions will

be uniquely de�ned.

The aim of a DNL procedure is to calculate time-dependent tra�c variables
(�ow, density, speed) for each link, using the time-dependent �ow assignment in
each of the network paths. Calculating these link variables requires knowledge
of the input and output times of the vehicle for each of the network links. Thus,
at each instant of time we will know the link where each vehicle is, and therefore
the link state (e.g., the number of the vehicles within it). Also, we can easily
calculate the time the vehicle takes to cross the link, allowing us to know the
average circulation speed.

Therefore, in the proposed model we consider only two positions at each link
where we evaluate the functions taveh (x) , tdveh (x). Obviously the two �xed po-
sitions are the link's initial position (xs) and the �nal position (xt).

With respect to these positions, we should make some extra speci�cations. First,
a vehicle is considered to be in a certain position when the bumper of the vehicle
reaches this position. Second, we need to specify the exact point in the link for
considering the terms �initial and �nal positions�.

For practical purposes we need an initial, �separate� space in each of the links.
This initial space is a cell whose length is the weighted average of the e�ective
lengths of all the vehicle classes involved in the problem. Among other reasons,
we need to di�erentiate the beginning of the link to control the in�ow. We
also use this cell to take appropriate measures when reaching maximum �ow
capacity, so that �ow propagation remains realistic.

Also, this initial cell allows us to de�ne the link's initial position (xs). The
initial link position is not the physical position in which the link starts. Rather,
it is the end of the �rst separated cell in the link. Thus, when we calculate the
time when the vehicle arrives at the initial link position, we take into account
the time when the vehicle physically enters that link.

Furthermore, the �nal link position (xt) coincides with the position in which
the link physically ends. Thus, when we calculate the departure time from the
�nal position, we calculate the time when the vehicle leaves the link.

From the above considerations, the models presented below always follow the
same methodology. Given a certain link in the network, we need to calculate
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Figure 5.3.2: Link without lanes scheme with di�erentiated initial and �nal
positions.

the following times for each vehicle:

� Arrival time of that vehicle to the initial link position (taveh (xs)).

� Departure time of that vehicle from the initial link position
(
tdveh (xs)

)
.

� Arrival time of that vehicle to the �nal link position (taveh (xt)).

� Departure time of that vehicle from the �nal link position
(
tdveh (xt)

)
.

Single Link without Lanes Model

The �rst developed model only takes into account the longitudinal movements
of the vehicle within a link. This is why we consider a single link isolated.
Also, to prevent traversal movements proper to the lane changes, we should not
consider the existence of lanes in the link.

Consider a certain link in the network with length Ll and maximum allowed
speed Vl, and vehicle veh. We de�ne below time calculation functions for this
�rst model.

Vehicle arrival time at the initial link position
When we calculate the time when a vehicle arrives at the initial position of

a link (taveh (xs)), we obtain information about the time when the vehicle has
entered this link and has occupied the initial cell, di�erentiated of the rest of
the link as we explained before.

Since in this �rst case we work on an isolated link, there is no possibility that
the upstream node controls the vehicle's arrival to the link. Thus, we start from
a situation in which we randomly generate the time when a vehicle is located
at the entrance of the link and has arranged to enter it (tgveh).
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With the aim of calculating the vehicle arrival time at the initial link position,
we must know the status of the �rst cell of this link. It is for this reason that
the cell's own link should always be able to know the status of its �rst cell.
This state can be busy or free cell, taking into account whether or not another
vehicle exists in that space, which would mean that this vehicle has entered the
link, has occupied the �rst cell and has not yet been able to advance inside this
link.

If the �rst cell is busy, the vehicle must wait until the cell state changes in order
to calculate its arrival time at the initial link position. The link itself must
manage the vehicles that are waiting to get into it. To this end, we save into
the link an ordered list which stores the vehicles that are waiting for space to
enter the �rst cell of this link, preserving arrival order.

When the �rst cell changes its state from busy to free, the link informs the �rst
vehicle that has tried to enter, and then we allow this vehicle to occupy the �rst
cell of this link. Thus, the arrival time at the initial link position is equal to the
time in which the �rst cell is released, plus the time that the vehicle needs to
cross this �rst cell at the maximum allowed speed in this link, plus the driver
reaction time. So, in this case, the arrival time at the initial link position is
expressed by Equation 5.3.3.

taveh (xs) = tiniCellFree + tcrossIniCell + Tveh (5.3.1)

where:

tiniCellFree is the time when the �rst cell changes its state from busy to free.

tcrossIniCell is the time that a vehicle takes to cross the link's �rst cell length
(LiniCell) at the maximum allowed speed in the link (Vl).

tcrossIniCell =
LiniCell
Vl

(5.3.2)

Furthermore, we change the state of the �rst cell, which becomes busy.

Otherwise, if the �rst cell is free, we allow the vehicle to occupy it, i.e., we can
calculate the arrival time of the vehicle at the initial link position, that is, the
time when the vehicle reaches the link and the time that it takes to cross the
�rst cell. Thus, in this case, this time is calculated by Equation 5.3.3.

taveh (xs) = tgveh + tcrossIniCell (5.3.3)
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Furthermore, we change the state of the �rst cell, which becomes busy.

The arrival time of the vehicle at the initial link position is calculated by Equa-
tion 5.3.14.

taveh (xs) = max {tgveh + tcrossIniCell, tiniCellFree + tcrossIniCell + Tveh} (5.3.4)

Vehicle departure time from the initial link position
Once the vehicle is in the �rst cell of the link, we try to calculate its departure

time from that position
(
tdveh (xs)

)
. To do this, we need to know whether there

is free space in the link (without counting the �rst cell) to advance or not. For
this reason, it is essential to keep link capacity control.

Each link must have an attribute that is responsible for controlling its capacity
at each instant of time. Thus, we should always know the free space in the link
(in meters), since the vehicle itself is occupying it. When the vehicle wants to
move into the link, it should ask the link if its free space is enough to enter or
not. Since the presented model allows the use of vehicles of di�erent classes, the
link compares the e�ective length of this vehicle with the available space in the
link.

If there is enough space for this vehicle, its departure time from the initial link
position coincides with the time when it is asked if it could move forward. In
addition, you must subtract vehicle length from free space in this link and the
vehicle becomes part of all vehicles that are in the link. So, in this case, this
time is calculated by Equation 5.3.5.

tdveh (xs) = taveh (xs) (5.3.5)

If there is no space for that vehicle in this link, it should wait until the situation
changes. In this case, we are still not able to calculate the time tdveh (xs). The
link itself will manage the vehicle that is waiting in that �rst cell. When the
available space in the link changes, we inspect again whether or not the vehicle
has space, and so on until space is obtained. In this case vehicle departure time
from the initial link position is equal to the time when the link has enough space
for this vehicle, plus the driver reaction time. Thus, we express this time by
Equation 5.3.6.

tdveh (xs) = tfreeLink + Tveh (5.3.6)
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where:

tfreeLink is the time when the link has enough free space to accommodate the
vehicle.

De�nitively, vehicle departure time from the initial link position is calculated
by Equation 5.3.7.

tdveh (xs) = max {taveh (xs) , tfreeLink + Tveh} (5.3.7)

Vehicle arrival time at the �nal link position
Once the vehicle has moved into the link, our objective is to calculate the

time when it arrives at the �nal link position (taveh (xt)). In the case of dealing
with a �uid tra�c situation, the arrival time of the vehicle at this position is
equal to the time when the vehicle has left the initial position of this link, plus
the time that it takes to cross the link (minus the �rst separated cell) at the
maximum speed allowed on it. So, the Equation 5.3.8 shows the calculation.

taveh (xt) = tdveh (xs) + tcrossLink (5.3.8)

where:

tcrossLink is the time that a vehicle takes to cross link l without taking into
account the �rst cell

tcrossLink =
Ll − LiniCell

Vl
(5.3.9)

However, we may be working in a congested tra�c situation or in a situation
in which vehicles cannot circulate at the maximum allowed speed on the cor-
responding link. In order to address this problem we need to introduce the
concept of vehicle leader (lveh).

When a vehicle enters the link and occupies its �rst cell, we need to record who
its leader is. Since we are considering the case of an isolated link without lanes,
its leader is the last vehicle that has entered this link before it. Considering the
FIFO rule mentioned above, the leader must always leave the link preceding the
lead vehicle. Thus in the case where there is congestion in the link, we use leader
information to calculate the leading vehicle arrival time at the �nal position.
When the vehicle leader leaves the �nal position, this place can be occupied
with the vehicle that follows the leader. In this way, the vehicle arrival time at
the �nal link position is equal to the time that the leader has left this position,
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plus the time that the vehicle takes to cross the leader's e�ective length, i.e.,
the time that the vehicle takes to hold the space that the leader occupied. Also
we need to take into account the reaction time of the driver of this vehicle. So
in this case, this time is calculated by Equation 5.3.10 .

taveh (xt) = tdlveh
(xt) +

Llveh

Vl
+ Tveh (5.3.10)

In any case, to calculate the time when the vehicle arrives at the �nal link
position, we should take the maximum of the calculated times for the two con-
sidered tra�c situations: �uid or congested. Thus, on the one hand, we follow
the FIFO rule to ensure that the vehicle never overtakes its leader; and on the
other hand, we ensure that the vehicle will have enough time to cross the link
at the maximum allowed speed in this link. Therefore, Equation 5.3.11 shows
this maximum value.

taveh (xt) = max

{
tdveh (xs) + tcrossLink, t

d
lveh

(xt) +
Llveh

Vl
+ Tveh

}
(5.3.11)

If the vehicle does not have a leader, we consider that the second factor of this
maximum is zero.

About calculation of the vehicle's arrival time at the �nal link position, we ob-
serve that we cannot calculate this time when the vehicle has a leader, but we
do not know the departure time of the leader from the �nal position. If this
occurs, the vehicle must wait until that time is known. The leader is the one
who manages this process, the vehicle which is led by it and that is waiting to
know its departure time. When this time exists, the leader informs the follower
so that it can calculate its time taveh (xt).

Vehicle departure time from the �nal link position
Finally, the vehicle must know the time when it will leave the �nal link posi-

tion
(
tdveh (xt)

)
. Here, it is the downstream node which manages whether or not

the vehicle can leave the link. Since in this �rst proposed model it is considered
an isolated single link, we consider that the vehicle could always depart from
this position at the same moment that it arrives. Thus, in this case, this time
is calculated by Equation 5.3.12.

tdveh (xt) = taveh (xt) (5.3.12)
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Figure 5.3.3: Link-node-link scheme with di�erentiated initial and �nal posi-
tions.

Link-Node-Link without Lanes Model

The second proposed model is an extension of the previous case in which we
consider two consecutive links in the network connected by an intersection. This
intersection is the downstream node of the �rst link and the upstream node of
the second one. In this way we take into account real tra�c situations that we
cannot analyze or solve in the �rst proposed model. With respect to the lanes,
we continue without regarding their existence, in order to separate the problems
that arise when vehicles move in a traversal way for lane changes. This special
case is explicitly discussed below.

The proposed model works with a network simpli�cation that considers nodes
as abstract attributesthat are responsible for managing the in and out tra�c
of the links, but without physical characteristics. For this reason, we cannot
calculate the time that a vehicle needs to cross a node, because we have neither
geometric information nor speed limits inside it.

In the physical representation of the proposed network, the links practically
overlap in spatial terms. Thus, the node crossing time is imputed to the links
that the vehicle circulates between. However, we know the importance of consid-
ering a �ctitious node transfer time that we could use to appropriately penalize
vehicle travel time when it passes from a link to its consecutive link. In this
way, we want to reproduce the speed reduction that vehicles experience when
they turn, or the caution of drivers when they are changing their circulation
link. This node transfer time must be small compared with the total travel
time experienced in the links in which the vehicle is circulating. In addition, as
is discussed below, we could even ignore this time in searching for a solution to
a problematic proposed situation.

In this scenario we calculate the vehicle departure time from the initial link posi-
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tion
(
tdveh (xs)

)
and the vehicle arrival time at the �nal link position (taveh (xt)).

This identical to the �rst case we explained earlier: the single isolated link
scenario. However, we need to change the calculation of the arrival time at
the initial position (taveh (xs)) and the departure time from the �nal position(
tdveh (xt)

)
, since these are themselves directly a�ected by the �ow propagation

managed by nodes located upstream and downstream from the link, respectively.

To analyze the in�uence of the node �ow management in each of these calcula-
tions, we specify below how the intersection operates in the proposed model.

When the vehicle reaches the �nal link position, it should ask its downstream
node if it can follow its route, i.e., if we can calculate its departure time from the
�nal position that it is occupying. And therefore we can calculated its arrival
time at the initial position of the next link in its assigned route.

To answer this question, each node in the network must de�ne its turn set
(among other attributes). As there are now no lanes in the link, turns are
de�ned at the link level, particularly for two of them: the origin link and the
destination link . The �rst one should be a link that is located upstream from
the node, and the second link must be located downstream from it.

The path assigned to a vehicle must be validated, i.e., the turn de�ned from one
link to the next link in the assigned route should always be allowed. Even so,
when a vehicle wants to know if it can pass to the next link, the �rst thing we
check is whether or not the turn is de�ned for the vehicle that needs to follow
its path.

Then, we must check if this turn has tra�c lights. If tra�c lights exist, we must
verify if they allow the vehicle to cross the node, that is, if it is in a green phase
or not. Otherwise, we must verify that the vehicle has node priority and that
no con�ict exists between the trajectory of that vehicle and the other vehicles
crossing at the same time.

Finally, we need to check if the �rst cell of this turn's destination link is free or
busy. Because simpli�cation of the network nodes (in which the crossing node
time is a temporal penalty that could even be zero) allows the vehicle to leave
the �nal position only if it has free space in its next link. This is discovered
when it consults whether or not it can cross the node.

Obviously, the node �ow management can generate congestion in the links lo-
cated upstream. At the same time, this management could cause the input �ow
of the downstream links to be much lower than their capacity. In short, the
node is responsible for tra�c management in the network.
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For practical purposes, vehicle departure time from the �nal link position
(
tdveh (xt)

)
is equal to the arrival time at this position if the node allows the vehicle to fol-
low its assigned route. Otherwise, the vehicle waits to pass. It may be waiting
because:

� the turn has its tra�c light in a red phase,

� the node is occupied by another vehicle whose trajectory is in con�ict with
the trajectory of the studied vehicle,

� the �rst cell of the destination link of this turn is busy.

The node manages the vehicles that, for these reasons, are waiting. It is also
responsible for informing the corresponding vehicle when the situation that
blocked its pass changes. The delay caused by the management of the node
is added to the travel time of the link in which the vehicle was waiting to pass.
Equation 5.3.13 calculates this time.

tdveh (xt) =

{
taveh (xt) if the vehicle can pass the node inmediatelly
tcanPass + Tveh if the vehiclemustwait to pass

(5.3.13)
where:

tcanPass is the time when the node allows the vehicle to pass.

If we now pay attention to the proposed calculation of the arrival time at the
initial link position (taveh (xs)), we can observe that the proposal is only useful
for the �rst links of all the paths in the network. These links do not have
upstream nodes, and therefore arriving vehicles are generated from a random
procedure that tries to reproduce vehicle arrivals from di�erent locations, which
themselves are generated by demand.

For all other links, the proposed approach simpli�es this time calculation. The
vehicle may not leave a link until it is sure that it can enter its next link. So,
to obtain the arrival time at the next downstream link, we add the following to
the departure time from the �nal position of the upstream link:the time that
the vehicle takes to cross the node and the time to cross the �rst cell of the
next link. As explained above, the temporal penalty of the crossing vehicle may
become negligible. . So, we calculate this time with Equation 5.3.14 .

taveh (xs) = tdveh (xt(previousLink)) + tcrossNode + tcrossIniCell (5.3.14)
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where:

tcrossNode is the penalty time for transferring the node.

De�nitively, this second model allows us to introduce intersections in the pro-
posed scheme. These are represented as nodes in the graph (network). Incor-
porating intersections created con�icts that did not appear in the case of single
isolated links, and which also we could not solve. These con�icts can be re-
solved by interpreting events at real intersections and translating them to node
management rules.

5.3.2.2 Proposed Models with Lanes

Assumptions

In addition to the assumptions used to develop models of links without lanes,
we must appropriately specify some extra changes in order to take into account
lanes in the network links.

The �rst consideration is about network links. We need to expand the previous
de�nition of the link length attribute and to consider it at the lane level, i.e., the
attribute lane length (Lc). In this thesis we simpli�ed all lanes into a link with
the same length. For example, in the case of a curved link with several lanes,
the inner and outer lanes in fact have di�erent lengths; but we have applied a
unique length to both lanes: the assimilated link length for each lane.

About the other attribute de�ned at the link level, we do not need to extend
the maximum allowed speed (Vl) to the lane level, because all lanes inside a link
have the same maximum speed: the speed of the link.

Aside from these attributes, we need to de�ne the number of lanes in each of
the links in the network (nc).

The problem is considered in the same way as the previous case (without lanes).
We begin by de�ning two functions of time calculation for each vehicle. Spe-
ci�c positions on the link return the time when the vehicle arrives and leaves
that position

(
taveh (x) , tdveh (x)

)
. The de�nition of these times is still at the

link rather than the lane level, although we should use lane con�icts and lane
attributes to de�ne the functions at this link level, as we discuss below.

With respect to other considerations of the initial and �nal link positions and
their treatment, we now consider them to be in exactly the same form, taking
into account that the vehicle will be in a certain lane of this link. In the proposed
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Figure 5.3.4: Link with lanes scheme with di�erentiated initial and �nal posi-
tions.

model, we justify the use of two di�erentiated positions, where we will evaluate
our calculation functions: the initial link position (xs) and the �nal link position
(xt).

As for the previous case, we need to separate a space at the beginning of each
of the network links. Moreover, we now need to di�erentiate a �rst cell in each
of the lanes of each link in the network. The size of these cells is the weighted
average of the e�ective lengths of all the vehicle classes involved in problem.

In this case, we consider the initial link position (xs) to be the end of the �rst
cell of the lane where the vehicle enters the link. Furthermore, in regard to the
�nal position (xt), the position in which the link ends physically, in this case in
which the lane by which the vehicle leaves the link ends.

We introduced changes in the model to explicitly treat the lanes within the
links in order to reproduce the temporal delays that are caused by traversal
movements of vehicles changing lanes within the link. At the end of this section,
we detail what type of lane change is taken into account in the developed model
and the assumptions made about it.

From the above considerations, the development of the models presented below
always follows the same method. Given a certain link in the network, we need
to calculate the following times for each vehicle:

� Arrival time of that vehicle at the initial link position (taveh (xs)).

� Departure time of that vehicle from the initial link position
(
tdveh (xs)

)
.

� Arrival time of that vehicle at the �nal link position (taveh (xt)).

� Departure time of that vehicle from the �nal link position
(
tdveh (xt)

)
.
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Lane Change

In real life, when a driver wants change lanes, he or she should pay attention
to the free space available in the adjacent lane before entering it. Because a
driver cannot accept a gap that is smaller than the space needed for the vehicle,
an unlimited number of gaps can be refused when the free space between two
consecutive cars is less than the vehicle length. Under these conditions, a vehicle
can delay its lane change inde�nitely while blocking the lane until the lane
change starts.

On the other hand, if a vehicle occupies a certain amount of space that another
neighboring vehicle wants to occupy, one of the two vehicles should decelerate
or accelerate to provide su�cient longitudinal separation between these two
vehicles in order to the change lanes. Because of the considered assumptions,
a vehicle travels at the maximum allowed speed in this link or it experiences
delay. Because in the proposed model it is not possible to accelerate, in this
case our of the two vehicles will decelerate.

Finally, we need to take into account that each lane change reduces the capac-
ity of the link while the vehicle performs the lane change, because the vehicle
doubles its space by occupying both lanes at the same time.

These commented situations about lane changes have drastic e�ects on the
tra�c �ow of those lanes, and obviously can cause congestion.

The lane changes made by vehicles can be classi�ed into two types:

� Mandatory: the vehicle must perform the lane change to continue its
assigned path without violating the turn restrictions of the network nodes.
Given two consecutive links of a given route, not all the lanes of the �rst
link have a turn de�ned for the second one. Thus, in the case that the
vehicle occupies a lane that prohibits access to its next link, the vehicle
must perform a lane change before reaching the �nal position of the link
in order to then perform the corresponding turn.

� Optional: the vehicle changes its lane in an attempt to increase its speed,
passing to a lane that it perceives as faster.

The DNL model of lanes in the links only reproduces travel time delays in the
links as a result of mandatory lane changes.

In order to reproduce tra�c patterns occurring when vehicles change lanes, it
is necessary to consider the lane through which the vehicle enters the link (cin),
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and the lane through which it leaves this link (cout). They are calculated at
di�erent times in the process. The input lane is calculated in the vehicle route's
upstream link. When the vehicle arrives at the �nal position of the upstream
link, we must calculate the lane that the vehicle will use to enter the next link
in its route. We calculate the exit lane of a link when the vehicle enters the
link, considering its input lane and the next link in its route.

Di�erent methodologies exist for calculating input and output lanes. But in this
version of the model, we propose calculating both by taking into account tra�c
conditions in di�erent link lanes when we calculate input and output lanes.
Moreover, this hypothesis minimizes the number of lane changes performed.

� Input Lane
(
cin)
)
: When a vehicle reaches the �nal position of certain link

and it is ready to leave this by the exit lane cout, we must calculate the
lane to enter the next link in the assigned route before consulting the node
about whether or not it can pass. So, we just have to consider which lanes
of the next link are accessible from the vehicle's current lane. Among all
the options, we calculate by choosing the least busy laneat the time.

� Output Lane (cout): If a vehicle enters a link through the lane cin and
this same lane is allowed to turn to the next link in its assigned route,
then the vehicle does not change its lane and cout = cin. If, however,
the turn between the input lane and the next link in its path does not
exist, the vehicle must change lanes before it arrives at the �nal position
of its current link. The procedure consists of determining which lanes
are capable of performing the turn and to selecting the least busy among
them.

Single Link with Lanes Model

As in the approach taken to formulate the previous model (which does not
take into account the lanes inside the links), we will �rst develop a model that
considers a single isolated link scenario, regardless of upstream and downstream
nodes and the remaining links in the network. Thus, we will analyze the con-
�icts tra�c propagation when the vehicles change lanes in a single link, and we
will develop a model that reproduces the congestion caused by these traversal
movements of the vehicles crossing.

Let there be a certain link in the network with length Ll, maximum allowed
speed Vl and number of lanes nc, and let there be a vehicle veh. We de�ne
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below time calculation functions for the model that considers a single isolated
link with lanes inside it.

Vehicle arrival time at the initial link position
In order to know the time when a vehicle arrives at a link by a certain lane

and it occupies the �rst cell of this input lane, we must calculate the vehicle
arrival time at the initial link position (taveh (xs)).

Since this is the case of an isolated link, we do not consider the existence of an
upstream node that controls the vehicle arrival to the link through this lane. It
is for this reason that we suppose a beginning situation where the vehicle arrival
time at the initial link position is generated randomly (tgveh).

To calculate the arrival time of the vehicle at the initial link position through
the entering lane cin, we must know the situation of the �rst cell in this lane
at the moment when the vehicle tries to enter it. It is for this reason that
the selfsame link must know the state of the �rst cells of each of its lanes. As
explained before, this state can be free or busy, taking into account if there is
another vehicle that occupies that space or not.

If the �rst cell of the entering lane is busy, the vehicle must wait until the cell
state changes in order to calculate its arrival time at the initial link position
through this lane. The link itself must manage the vehicles that are waiting
to get into it by that lane. To this end, we give the link one ordered list for
each lane that the link has, thus storing the vehicles that are waiting for space
to enter the �rst cell of this link through each of the lanes. This preserves the
arrival order.

When the �rst cell of a certain lane changes its state from busy to free, the link
informs the �rst vehicle that tried to enter this lane, and then we allow this
vehicle to occupy the �rst cell of this lane. Thus, the arrival time at the initial
link position through this lane is equal to the time when the �rst cell of the lane
is released, plus the time needed to cross this �rst cell at the maximum allowed
speed in this link, plus the driver reaction time. So, in this case, Equation 5.3.15
shows the calculation.

taveh (xs) = tiniCellFree + tcrossIniCell + Tveh (5.3.15)

Furthermore, we change the state of the �rst cell of this lane, which becomes
busy.
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If the �rst cell of a certain lane is free, we allow a vehicle to occupy it, i.e.,
we can calculate the arrival time of the vehicle at the initial link position; that
is, the time when the vehicle reaches the link through this lane, plus the time
that it takes to cross the �rst cell of this lane. Thus, in this case, this time is
calculated by Equation 5.3.16.

taveh (xs) = tgveh + tcrossIniCell (5.3.16)

Furthermore, we change the state of the �rst cell of this lane,which becomes
busy.

Ultimately, the arrival time of the vehicle at the initial link position is calculated
by Equation 5.3.17.

taveh (xs) = max {tgveh + tcrossIniCell, tiniCellFree + tcrossIniCell + Tveh}
(5.3.17)

Vehicle departure time from the initial link position
Once the vehicle is in the �rst cell of the entering lane in its corresponding

link, we try to calculate its departure time from that position
(
tdveh (xs)

)
. With

this objective, we should know if there is free space in this lane of the link
(without taking into account the �rst cell), so that the vehicle can advance. In
the previous case, we solve the problem with explicit control over the capacity
of the link. In this case, we consider the longitudinal discretization of the links
in lanes; so the process is more complicated because the control of space should
be performed on the lanes instead of on the links.

Each lane of the link must have an attribute that is responsible for controlling its
free space (in meters)and that does not take into account the �rst cell because
the vehicle is occupying it. When a vehicle wants to move into the link, we need
to know if there is enough free space in the entering lane (that is, the vehicle's
current lane). We simply compare vehicle e�ective length with the available
space in the lane.

If there is enough space for this vehicle in this lane, its departure time from the
initial link position coincides with the time when it asks if it can move forward.
In addition, we must subtract vehicle length from free space in that lane, and
the vehicle becomes one of the vehicles that are on the link. So, in this case,
the time is expressed by the Equation 5.3.18.

tdveh (xs) = taveh (xs) (5.3.18)
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If instead there is not enough space in this lane for that vehicle to advance in
it, it should wait until the lane situation changes. In this case, we cannot still
calculate its departure time from the initial link position

(
tdveh (xs)

)
. The link

itself will manage the vehicle that is waiting in that �rst cell of the entering lane
of this link. When the available space in this lane changes, we repeat the free
space check until it is obtained. In this case, the vehicle departure time from
the initial link position is equal to the time when the lane has enough space for
this vehicle, plus the vehicle driver reaction time. Thus, we calculate this time
by Equation 5.3.19.

tdveh (xs) = tfreeLink + Tveh (5.3.19)

where:

tfreeLink is the time when the entering lane of the link has enough free space to
accommodate the vehicle.

When the vehicle moves into the link, then it is able to perform its lane change.

De�nitively, vehicle departure time from the initial link position is calculated
by Equation 5.3.20.

tdveh (xs) = max {taveh (xs) , tfreeLink + Tveh} (5.3.20)

Vehicle arrival time at the �nal link position
Once the vehicle has moved into the link through its corresponding input

lane (cin), our objective is to calculate the time when it arrives at the �nal link
position (taveh (xt)) and occupies its output lane (cout). In order to calculate this
time, we need to consider that the vehicle may have to perform a lane change
if its input and output lanes are di�erent. It is important to note that the
proposed model only allows the vehicle to perform its lane change if it is inside
its input lane and not if it is already in the �rst cell.

We want to know whether or not a vehicle that needs to perform a lane change
is able to. In order to solve this, we apply the following policy: we allow
the lane change if all the lanes that the vehicle must cross to arrive to its
output lane have enough available space. If so, the vehicle can transversely
cross the link. To simplify, we consider that the vehicle performs the spatial
change instantaneously. Thus, the vehicle only physically counts on its input
and output lanes before and after the lane change, respectively. At the temporal
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level, we apply certain delays to the vehicle. These delays will depend on the
density of crossed lanes and on the number of lanes that the vehicle needs to
cross.

Also, it is important to note that we do not allow a vehicle to change its lane if
the leader vehicle by its output lane (lcout

veh ) has not made its own change. When
a vehicle occupies the �rst cell of its input lane in a link, it must record who
its leader in the exit lane is. This refers to the last vehicle that has entered the
link and shares the output lane with the follower vehicle. Since the model must
satisfy the FIFO rule, as in the previous model without lane di�erentiation, the
vehicle leader by output lane should always leave the link preceding the vehicle
being led.

If the lane change has been made (or if the vehicle does not need a lane change
because it is already in a lane that allows it to exit the link) and there is thus
su�cient space to move into the exit lane of this link, then the vehicle must
leave the list of vehicles in the input lane, and it must free the space that it
was occupying. Also, the vehicle passes to occupy an equal space of its e�ective
length in the output lane, and it will be in the list of vehicles of this lane. Now,
the vehicle objective is to calculate its arrival time at the �nal link position
(taveh (xt)).

If the lane change cannot be performed because one of the lanes that the ve-
hicle must cross is busy, then the vehicle must wait in its input lane until the
situation changes. The vehicle will wait until all the lanes that it needs to cross,
output lane included, have enough available space. The delay caused by this
simpli�cation of the model should be slightly greater than the real delay pro-
duced if the vehicle changes from one lane to the next, and so on until reaching
the output lane. This is because it is more di�cult to �nd a situation in which
all the lanes have the available space at the same time than to have free space
only in two lanes. On the other hand, because changes are instantaneous, the
vehicles cannot physically occupy crossing lanes. This generates less congestion.
Both simpli�cations mitigate each other by obtaining congestion caused by lane
changes comparable to those reproduced in the microscopic simulator, as we can
observe in Section 6.4.3.

If the lane change of a vehicle cannot be performed because the leader vehicle
by output lane has not changed, then the vehicle must wait in its input lane
and proceed as if it cannot pass because there is not available space in the link.

It is important to note that we cannot calculate arrival time at the �nal link
position until the vehicle is not in its output lane. If we can calculate this time,
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we need to di�erentiate some tra�c situations. If we consider the case of �uid
tra�c, the arrival time at the �nal position of the link through its output lane
is equal to the time that the vehicle leaves from the initial link position, plus
the time that the vehicle spends crossing the link (without the �rst cell) at the
maximum speed allowed in this link, plus the time caused by the lane change
(if done). Equation 5.3.26 shows the calculation.

taveh (xt) = tdveh (xs) + tcrossLink + tLCH (5.3.21)

where:

tLCH is the added time due to the lane change.

tLCH = pLCH∗number of crossed lanes

where pLCH is the time penalty for changing lane. The value of this constant
depends on the characteristics of the studied network, so we focus on this im-
portant calibration parameter in the following results sections.

If the considered tra�c situation is a case where the vehicles do not circulate
in a free �ow way in the output lane of the studied vehicle, then we need to use
the information of the leader by output lane in order to calculate the vehicle
arrival time at the �nal link position. When the vehicle leader leaves the �nal
position, this can be occupied by the led vehicle. Thus, the arrival time at the
�nal link position is equal to the time that the leader by output lane has left
this position plus the time that the vehicle takes to cross the e�ective length of
the leader vehicle in order to occupy its space. Also, we must take into account
the reaction time of the driver of the vehicle.

In this way, we obtain the Equation 5.3.22.

taveh (xt) = tdlcout
veh

(xt) +
Llveh

Vl
+ Tveh (5.3.22)

Note that we cannot calculate the time taveh (xt) if we do not know the departure
time from the �nal link position of the leader vehicle by output lane. If this
occurs, the vehicle must wait until that time is known. The leader vehicle by
output lane manages this process and informs the led vehicle of the leader's
departure time.

De�nitively, to calculate the vehicle arrival time at the �nal link position in its
exit lane, we must take the maximum of the de�ned times for all the possible
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situations listed. Thus, the model ensures that the vehicle does not overtake its
leader by output lane, in accordance with the FIFO rule. Also, it ensures that
the vehicle has enough time to cross the link without exceeding the speed limit.
On the other hand, the model guarantees that the vehicle arrives at the �nal
link position occupying its output lane, since it is not possible to calculate this
time until the vehicle has occupied this lane.

So, this time is expressed by the Equation 5.3.23.

taveh (xt) = max

{
tdveh (xs) + tcrossLink + tLCH , t

d
l
cout
veh

(xt) +
Llveh

Vl
+ Tveh

}
(5.3.23)

If the vehicles do not have a leader by output lane, we consider that the second
expression is zero.

Vehicle departure time from the �nal link position
Once the vehicle reaches the �nal position of this link, we must calculate the

time when it will leave this position
(
tdveh (xt)

)
. In this case, it is the downstream

node which manages whether or not the vehicle can leave this link. Since in this
model it is considered an isolated single link, we consider that the vehicle could
always depart from a position at the same moment it arrives. Thus,

tdveh (xt) = taveh (xt) (5.3.24)

Link-Node-Link with Lanes Model

We present the last proposed model that is an extension of the case which
has just been developed. We move on to consider two consecutive network
links joined by a node. That intersection plays a key role in the tra�c �ow
propagation on the links, since it is the downstream node of the �rst link and
the upstream node of the second link. It should be responsible for managing
both the exit of a vehicle from the �rst link as well as the entry of a vehicle to
the second link. Thus, we take into account situations that were not possible to
analyze or solve in the previous case of an isolated single link. Also, we consider
traversal movements produced by vehicles when they change their lanes, and we
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Figure 5.3.5: Link-Node-Link with lanes scheme with di�erentiated initial and
�nal positions.

analyze the in�uence of the longitudinal discretization of the link in the model's
node management.

In this case, we calculate the vehicle departure time from the initial link posi-
tion

(
tdveh (xs)

)
and the arrival time at the �nal link position (taveh (xt)). This is

identical to the �rst case we explained about the single isolated link with lanes.
However, we change the calculation of the arrival time at the initial position
(taveh (xs)) and the departure time from the �nal position

(
tdveh (xt)

)
, since they

are directly a�ected by the �ow propagation managed, respectively, by the up-
stream and downstream nodes. In order to analyze the in�uence of node �ow
management at the lane level, we specify below how the intersection operates
on the proposed model.

When a vehicle reaches the �nal link position through its output lane, it should
ask its downstream node if it can follow its assigned route, i.e., if we can calculate
the departure time from the �nal link position through its output lane and,
therefore, if we can calculate its arrival time at the initial position of the next
link in its assigned route.

To answer this question, each node in the network must have de�ned its own
turn set. We de�ne a turn between two lanes of two links: the source link in the
turn and the destination link in the turn. The �rst one should be a link located
upstream from the node, and the second one, located downstream from it. The
turn is responsible for managing the vehicle movement from its output lane of
the origin link to its entering lane of the destination link.

In order to know whether or not a vehicle can perform the corresponding turn,
the �rst check that we need to perform is to verify if this turn exists, i.e., if
the movement from the output lane of the origin link to the input lane of the
destination link exists. Then, we must check if this turn has a tra�c light and,
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in the case that it exists, if it is in a green phase. Otherwise, if a tra�c light
does not exist for this turn, we need to ensure that the vehicle has priority on
this node, i.e., there will be no con�ict between the trajectory of that vehicle
and other vehicles that may be crossing at the same time.

Finally, we need to check if the �rst cell in the input lane of the destination
link of this turn is free or busy. Because we simpli�ed the nodes in the network
(whereby crossing node time is a temporal penalty that could even be zero), we
only allow the vehicle to leave its �nal position if the next link in its input lane
has free space.

Therefore, if the node allows that vehicle to follow its assigned route, then the
vehicle departure time from the �nal link position is equal to the arrival time at
this position. Otherwise, the vehicle remains waiting to pass. It may be waiting
because:

� the turn has its tra�c light in a red phase,

� the node is occupied by another vehicle, whose trajectory is in con�ict with
the trajectory of the studied vehicle,

� the �rst cell of the destination link's input lane for this turn is busy

The node manages the vehicles that are waiting for these reasons, and it is
responsible for informing the corresponding vehicle when the situation that
blocked its pass changes: the tra�c light phase that controls its turn changes
to green, the vehicle that occupied the space arrives at its next link, or the �rst
cell of the input lane is released.

The delay caused by the management of the node is added to the travel time of
the link in which the vehicle is waiting to pass. By taking advantage of the fact
that the information can be disaggregated for each lane of the link, we save the
information about the link travel times, depending on the destination links in
the turns. In this manner, we can give travel times experienced by the vehicles
in certain links, depending on the next link in its assigned route. These detailed
times are critical for calculating time-dependent shortest paths during the DTA
iterations.

So, this time is calculated by the Equation 5.3.25.

tdveh (xt) = max {taveh (xt) , tcanPass + Tveh} (5.3.25)

where:



192 CHAPTER 5. DYNAMIC NETWORK LOADING

tcanPass is the time when the node allows a vehicle to pass because one of the
blocking situations changes.

If we now pay attention to the proposed calculation of the arrival time at initial
link position (taveh (xs)) in a certain input lane, we can observe that the proposal
is only useful for the �rst links of all the paths in the network. These links do
not have upstream nodes and therefore arriving vehicles are generated from a
random procedure,which tries to reproduce the vehicle arrivals in the network
from di�erent demand generation locations.

For the remaining links in the network, the time calculation is simple due to
the proposed approach. The vehicle may not leave a link until it is sure that it
has space in the �rst cell of the input lane of the next link of its assigned route.
So, to obtain the vehicle arrival time at its downstream link, we add �to the
departure time from the �nal position of the upstream link� the time that the
vehicle takes to cross the node and the �rst cell of the next link. So, Equation
5.3.26 expresses it as:

taveh (xs) = tdveh (xt(previousLink)) + tcrossNode + tcrossIniCell (5.3.26)

where:

tcrossNode is the penalty time for transferring the node.

In conclusion, in this section we have developed a multiclass multilane DNL
model. The model has been developed in di�erent stages. In the �rst one, we
try to solve only the multiclass vehicle problem by disregarding the possibility
of having lanes inside the network links. In order to solve this problem, we have
proposed two di�erent scenarios: the �rst one considers only one isolated link,
and the second introduces the e�ects of the intersection and its management in
the dynamic loading process. To solve the multiclass problem, we have consid-
ered the di�erent e�ective lengths of each class of vehicles in order to control
the link capacity during the process.

After solving the multiclass case in the completed scenario (link-node-link), we
have extended the model to the multilane case. With the introduction of lanes
inside the network links, we have found the unstudied lane change situation,
which we want to reproduce because we consider it to be one of the most im-
portant causes of tra�c congestion. To solve the multiclass multilane model,
we have used the same two scenarios and propose some hypotheses about the
lane changing process.
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Finally, we summarize in Equation 5.3.27 the proposed multiclass multilane
DNL model, with the following de�nitions time calculation functions explained
above.

taveh (xs) = tdveh (xt(previousLink)) + tcrossNode + tcrossIniCell
tdveh (xs) = max {taveh (xs) , tfreeLink + Tveh}

taveh (xt) = max
{
tdveh (xs) + tcrossLink + tLCH , t

d
l
cout
veh

(xt) +
Llveh

Vl
+ Tveh

}
tdveh (xt) = max {taveh (xt) , tcanPass + Tveh}

(5.3.27)

5.4 Model Speci�cations and Design

In the previous Section 5.3, a mesoscopic tra�c �ow simulation model is de-
veloped to be used as the DNL component of our previously presented DTA
method. This simulation model is solved using an algorithm based on discrete
events.

In general, there are two primary approaches to building simulation models:
time-step and event-based models. These two paradigms are fundamentally
di�erent approaches due to how they manage time. In a time-step model, time
is the independent variable; while in an event-based model, time is a dependent
variable. Thus:

� Time-step models: the state variables of all vehicles are updated at the end
of each discrete-time interval, based only on the known state variables at
the previous time-step. The conventional approach is to make this time-
step equal to a common divisor of all driver response times. Typically,
this step is between 0.1 and 1.0 seconds.

� Event-based models: the state variables of the vehicles are updated only
at the time which any of its relevant input data changes. An event is
generated at a speci�c point in time (continuous) to re�ect a change in
the information (stimulus) and act accordingly.
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One of the motivations for adopting an event-based simulator in our DNL com-
ponent is that it can potentially be much more computationally e�cient than a
time-step model. The computation time is particularly important in the context
of a DTA, which usually needs some iterations of the simulation model in the
process in order to achieve the DUE.

However, the main motivation is that we must take into account that the other
option, the time-step paradigm, considers time as an independent variable. As
we explained in Section 5.3, our mesoscopic simulation model considers the �ow
propagation process vehicle to vehicle, and it is formulated from the relationship:
space-dependent time (t (x)). So, in this case, it is more suitable to use the
event-based paradigm,which coincides with the idea of considering time as a
dependent variable.

5.4.1 Speci�cations

The developed mesoscopic tra�c �ow simulation model adopts an event-based
approach, in which the simulation clocks move between events and there is no
�xed time step. Events can be known in advance to occur at a particular time
in the simulation or they can be dynamically added to the event list during the
simulation.

During the development of our DNL model, we designed and implemented the
events related with the di�erent times when the vehicle arrives at or departs
from the abovementioned speci�c link positions (initial and end). Also, we
need some other events directly related with the tra�c simulation (start or end
simulation), and with the entry and exit of a vehicle in the network. Finally,
during the development, we need complementary events in order to facilitate the
implementation of the process and to improve the computational time results.

Speci�cally, our mesoscopic simulation model includes the following list of events:

� StartSimulation

� ChangeInterval

� StatsCollector

� EnterVehicle

� VehicleArrivesLinkOrigin
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� CheckNode

� VehicleLeavesLinkOrigin

� VehicleCheckDepartureFromLinkOrigin

� VehicleArrivesLinkEnd

� VehicleTriesToLeaveLinkEnd

� VehicleLeavesLinkEnd

� ExitVehicle

� EndSimulation

These events emulate the movements of the vehicles (the entities of the simula-
tion model) through the lanes by using the previously developed model de�ned
in Section 5.3. All these events have an associated time that is used to sort the
event list, which is the time when the event has to be process. Moreover, we
need some other attribute to sort this list when there are two events with the
same associated time. With this aim, each event has an associated priority in
order to solve this problem.

This priority attribute can be assigned in two ways: randomly or �xed. The
process requires that some events have a �xed priority to ensure that they will
be processed before another event. For example, events related to statistics
collection are going to be treated before events related to changing the interval.
Also, this priority is used to facilitate the auto-management that nodes perform
when blocking situations arise. On the other hand, when the process does not
require a certain priority, we assign a random priority to the events in order to
sort the event list (as arbitrarily as possible) when two events have the same
associated time.

The event time of each event must be calculated in the same moment that
each event is generated. For some events, the calculation of this time explicitly
follows the time de�nition functions presented in the previous Section 5.3.

In the following, we brie�y summarize each event and the calculation of its event
times.
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StartSimulation

This event is added to the event list just when the simulation starts. It is
responsible for adding to the event list events that can be known in advance
to occur at a particular time during the simulation. Thus, it adds to the event
list as many ChangeInterval events as demand intervals are considered in the
problem. Moreover, the StartSimulation event adds events related to statistics
collection. The number of StatsCollector events added depends on the length
of the statistical collector interval previously de�ned by the user.

Its event time is the same time as when the mesoscopic simulation process starts,
i.e., it is zero.

ChangeInterval

As we commented in Chapter 4, one of the inputs of the DTA problem (and
consequently, of the DNL component) is a set of time-dependent OD matrices.
It is important to note that each matrix can contain di�erent OD pairs, because
the possibility that some demand exists only during certain intervals. So, at
each demand interval, it is necessary to know, not only the demand, but also
the OD pairs that have demand for this interval.

This event is responsible for preparing the demand that corresponds to each of
the intervals of the simulation. After the processing of a ChangeInterval event,
an OD pair list with the corresponding trips is prepared. In the particular case
of a multi-class demand, we prepare one di�erent �virtual� OD pair list for each
class.

Its event time coincides with the time when the demand interval of the simula-
tion starts, which is a required input of the global process.

StatsCollector

This event is responsible for collecting the statistics of the process. The DTA
process needs some information about links (travel times) in order to be used
in other components of the procedure, for example, in the RGap convergence
calculation or in the reassignment �ow method. So, we need to perform this
collection at the end of each interval.
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On the other hand, the simulation must be able to collect statistics of the process
from time to time. The decision of the length from one collection to the next is
taken by the user and it may be di�erent from the demand interval length.

So, its event time is calculated according to the length of the demand interval
(the duration of the OD matrices) and the length of the user-de�ned recollection
interval.

EnterVehicle

The EnterVehicle event is responsible for generating a new vehicle (entity) in the
network (system). It is related with the corresponding demand for the interval
when the vehicle is being generated, and with the class to which the vehicle
belongs. Also, this event must generate the next event, which emulates the
arrival of the vehicle to the origin of the �rst link in the assigned route.

Its event time is calculated by following an exponential distribution with pa-
rameters equal to the interval demand / OD trips for each class.

VehicleArrivesLinkOrigin

This event is responsible for performing all the actions that a vehicle needs to
do or that it triggers when arriving at the origin of a certain link through a
certain input lane. So, this event calculates the departure lane of the vehicle
from this link and its leader in the departure lane. Moreover, this event alerts
the node, because the vehicle has freed its space in its own node by generating
a CheckNode event.

If the vehicle can go into the link, the VehicleArrivesLinkOrigin event generates
an event that emulates the departure of this vehicle from the origin of the link.

Finally, this event updates the statistics collected at arrival.

Its event time is calculated by following Equation 5.3.26, which is previously
de�ned in the model presented in Section 5.3.2.2:

taveh (xs) = tdveh (xt(previousLink)) + tcrossNode + tcrossIniCell (5.3.26)
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CheckNode

This event is responsible for managing movements through the node. As we
explained before, some di�erent tra�c situations can block the passage of a
vehicle from one link to the next in its assigned path. The situations taken
into account in the proposed model are tra�c lights in a red phase, a vehicle
occupying the initial cell of the next link in the path, or a vehicle occupying the
node space.

When some of these situations change, the node can manage the new situation
by generating a TriesToLeaveLinkEnd event.

Its event time is equal to the time when the situation that blocked the tra�c
�ow dynamics changes.

VehicleLeavesLinkOrigin

This event simulates the actions triggered by the departure of the vehicle from
the origin of the link. When the vehicle departs from its input lane, it needs
to know if it can arrive at the end of this link in its departure lane. So, it is
necessary to take into account if the lane change can be performed. This event
is responsible for generating the arrival time at the end of the link. Moreover,
this event alerts the node that the vehicle has freed its space in the link by
generating a CheckNode event.

In this case, perhaps the event must alert another vehicle that is waiting for
this vehicle to progress into the link after it. So, a VehicleCheckDeparture-
FromLinkOrigin is generated for this waiting vehicle.

Its event time is calculated following Equation 5.3.20, which is previously de�ned
in the model presented in Section 5.3.2.2:

tdveh (xs) = max {taveh (xs) , tfreeLink + Tveh} (5.3.20)

VehicleCheckDepartureFromLinkOrigin

This event revises if some vehicle that is waiting to progress inside the link,
can perform this movement or not. The vehicle is waiting the departure of this
leader (in the departure lane) from the initial link position. If the vehicle can
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advance, the event generates an event that emulates its departure from the link
origin.

Its event time is equal to the time when the situation that blocked the progress
of the vehicle through the link changes.

VehicleArrivesLinkEnd

This event is responsible for manage the exit of the vehicle from the link through
its departure lane. If the vehicle can continue its assigned route, VehicleArrives-
LinkEnd event generates an event that reproduces the departure of the vehicle
from the end of the link. If the vehicle cannot pass, the VehicleArrivesLinkEnd
event generates an event that emulates its waiting until the blocking situation
changes.

Its event time is calculated following Equation 5.3.23, which is previously de�ned
in the model presented in Section 5.3.2.2:

taveh (xt) = max

{
tdveh (xs) + tcrossLink + tLCH , t

d
l
cout
veh

(xt) +
Llveh

Vl
+ Tveh

}
(5.3.23)

VehicleTriesToLeaveLinkEnd

This event replicates the actions of the VehicleArrivesLinkEnd event with a few
di�erent implementation details. In this case, when the situation that blocks
the passage of the vehicles through the node changes, the event tries to know
if one of the waiting vehicles can pass. If the vehicle can continue its assigned
route, VehicleTriesToLeaveLinkEnd event generates an event that reproduces
the departure of the vehicle from the end of the link. If the vehicle cannot
pass, the VehicleTriesToLeaveLinkEnd event generates an event that emulates
its waiting until the blocking situation changes. Moreover, in this case, the event
generates a CheckNode event to make it possible for other waiting vehicles to
cross the node.

Its event time is equal to the time when the situation that blocked the passage
of the vehicle through the node changes.
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VehicleLeavesLinkEnd

This event is responsible for emulating all the actions that a vehicle must take
into account when it leaves the link in its departure lane. If the link is the last
link of its assigned route, this event generates the ExitVehicle event. If not, the
event must generate a VehicleArrivesLinkOrigin event to emulate the arrival of
the vehicle to the next link in its assigned route.

In this case, it is important that the event check if some other vehicle is waiting
for space in the lane where the �rst vehicle has been removed. If the vehicle
is waiting at the origin of the link, a CheckDepartureFromLinkOrigin event
must be generated. If the vehicle is waiting to arrive to the end of the link, a
VehicleArrivesLinkEnd event must be generated.

Finally, this event updates the statistics collected at departure.

Its event time is calculated by following Equation 5.3.25, which is previously
de�ned in the model presented in Section 5.3.2.2:

tdveh (xt) = max {taveh (xt) , tcanPass + Tveh} (5.3.25)

ExitVehicle

This event only removes the vehicle (entity) from the network (system).

Its event time is the same as the time when the event is generated, i.e., it
coincides with the time when the vehicle leaves the end of the last link of its
assigned route.

EndSimulation

This event is responsible for treating the collected data before it is used in other
components of the DTA process, or before it is shown as a result of the DNL
method.

Its event time is equal to the total duration of the simulation, which is the sum
of the duration of all demand intervals.
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5.4.2 Model Design

The design of the proposed DNL model is based on the abovementioned events.

The process starts with two events in the event list: StartSimulation and End-
Simulation events. So, �rst of all, we process the StartSimulation event,which
is responsible for generating as many ChangeInterval events as OD matrices are
considered in the demand of the DNL problem. The �rst of these ChangeInter-
val events starts the simulation process by generating an EnterVehicle event for
each of the OD pairs that appear in the �rst OD matrix demand.

All the vehicles departing from the di�erent origins of the network proceed with
the same logic, which is illustrated in Figure 5.4.1 and is explained as follows.

When a vehicle enters the network, another EnterVehicle event is generated
from the same OD pair. Moreover, a VehicleArrivesLinkOrigin event is gener-
ated to emulate the arrival of the vehicle at the �rst link of its assigned route.
When this event is processed, it is time to notify the node that the vehicle has
freed its space, so a CheckNode event is generated. It is also time to gener-
ate the corresponding VehicleLeavesLinkOrigin event. If the vehicle can leave
the origin of the link and it can advance through the link, then a VehicleAr-
rivesLinkEnd event is generated. In this case, perhaps the vehicle must alert
another vehicle that is waiting for this vehicle to enter the link after it (because
the �rst one is the leader in the departure lane of the waiting vehicle). So,
a VehicleCheckDepartureFromLinkOrigin is generated for this waiting vehicle.
Moreover, the vehicle must inform the node that the cell at the beginning of
the link is free through a CheckNode event. After this, the processing of the
VehicleArrivesLinkEnd event is a bit more complicated. If the vehicle can exit
the link, a VehicleLeavesLinkEnd event is generated. But, if the vehicle cannot
pass through the node or does not have space in the following link, it needs to
wait until the situation changes. In this case, a VehicleTriesToLeaveLinkEnd is
generated in order to revise if some of these situations change, in which case
a VehicleLeavesLinkEnd may be generated. Finally, when the vehicle leaves
the end of the link a VehicleArrivesLinkOrigin event is generated to emulate
the arrival of the vehicle to the next link of its assigned route. If the current
link is the last link in the assigned route, then instead of the VehicleArrives-
LinkOrigin event, an ExitVehicle event is generated. In both cases, if there is
a vehicle waiting for the departure of this vehicle from the end of the link, a
VehicleArrivesLinkEnd is generated for it. If a vehicle is waiting at the origin
of the link for space in this lane, a CheckDepartureFromLinkOrigin event must
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Figure 5.4.1: Event conceptual model of the proposed mesoscopic tra�c simu-
lation.

be generated. Of course, the ExitVehicle event emulates the exit of the vehicle
from the network, so this entity (vehicle) is removed from the system.

When some of the blocking situations change, a CheckNode event is generated.
In this case, the node needs to revise if there is some vehicle waiting for this
reason. It generates a VehicleTriesToLeaveLinkEnd event in order to allow these
waiting vehicles to advance or not.

When it is time to process a VehicleCheckDepartureFromLinkOrigin event for
a certain vehicle, the vehicle can advance into the link if the previous conditions
have changed. So a VehicleLeavesLinkOrigin event is generated for this vehicle.
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Link Number 1 2 3 4 5 6 7 8

Length (meters) 110 100 110 130 130 290 290 130
Free Flow Speed (Km/h) 50 50 50 50 50 50 50 50

Number of lanes 3 3 2 2 2 2 3 2

Table 5.1: Input data of each link of the network.

5.5 Computational Experiences

In this section the proposed DNL model is evaluated using laboratory tests. In
order to demonstrate the proposed multilane multiclass model, the following
computational experiments are conducted.

First, the model is applied on a small network and the corresponding fundamen-
tal diagrams are examined for basic correctness. Then, we study the propagation
of the shockwaves arising from an incident. To achieve that, the model is run
over a small freeway corridor where we simulate an incident during certain time
intervals. Finally, the model is tested on two real networks. In both cases, the
obtained results are compared with those obtained from a microsimulator.

5.5.1 Fundamental Diagram Accomplishment

In this section, the performance of the proposed model is validated over a sample
network. This exercise tries to experimentally investigate the accomplishment
of the fundamental diagram by the presented mesoscopic simulation model. The
tra�c fundamental diagram describes the relations among the main macroscopic
tra�c variables: �ow, speed and density.

With this aim, we execute our model over a small test network. Then, the results
are collected for density, �ow and speed. Finally, we graphically compare these
simulation results with a theoretical macroscopic proposal.

5.5.1.1 Test Network

The proposed sample network is shown in Figure 5.5.1. It consists on eight
links, three nodes and �ve centroids. Table 5.1 shows the input data of each
link of the network.
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Figure 5.5.1: Sample network.

In order to validate the multilane characteristic of the proposed DNL model,
we consider a longitudinal discretization of the links. Moreover, we de�ne a set
of turns for each node. As we can see in Figure 5.5.1, not all the feasible turns
are de�ned. In some cases, only some lanes are allowed to be used by vehicles
to go from certain link to its downstream link. For example, only the vehicles
situated in the right lane of Link 2 can turn to Link 7. So, we trigger lane
changes when vehicles enter into Link 2 through the other two lanes, and they
want to go to Link 7.

Centroids 1, 2 and 3 generate demand, while centroids 4 and 5 only can receive
demand. All the feasible combinations are used, so, we consider the following
six OD pairs: (1,4), (1,5), (2,4), (2,5), (3,4) and (3,6). Additionally, we consider
all the possible paths among the di�erent origins and destinations (one or two
paths, depending on the OD pair).
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5.5.1.2 Experiment Design

The proposed experiment investigates the relationships among the values of the
main macroscopic tra�c variables simulated by the proposed DNL model.

In order to obtain a wide range of simulated values, the demand among the
feasible OD pairs is varied over di�erent runs of the simulation. We execute the
proposed mesoscopic simulation model with a light demand. Then, we gradually
increase the demand until no more vehicles can enter certain link. In order to
induce more or less congestion in the di�erent links in the network, we play
with di�erent demands. Some demands take into account only one OD pair,
while other demands combine some OD pairs that share links belonging to their
respective paths.

A 2-hour long simulation determines the average link measurements for each
3-min interval. Two classes of vehicles have been considered: light vehicles with
an e�ective length of 5 meters (90% of the total demand) and reaction time of
0.5 seconds, and heavy vehicles with an e�ective length of 9 meters (10% of the
total demand) and reaction time of 0.75 seconds.

In the following, we show a macroscopic variable relationship of the proposed
model for some links in the sample network. In order to graphically analyze
the results, we superimpose onto these plots the corresponding theoretical re-
lationships. In this case, these relationships are derived from the Fundamental
Tra�c Equation (see Equation 5.5.1) and from the speed-density relationship
proposed by Underwood (1961) shown in Equation 5.5.2.

q = k · v (5.5.1)

v = vf · exp(−k/km) (5.5.2)

where:

q Flow (veh/h/lane).

k Density (veh/Km/lane).

v Average speed (Km/h).

vf Free-�ow speed (Km/h).

km Average density (veh/Km/lane).
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5.5.1.3 Computational Results

Figure 5.5.2 shows the �ow-density relationship of the proposed model for some
links in the sample network. It is important to note that this relationship can
take a di�erent curvilinear shape. This form depends on local conditions of the
link: the demand that its upstream node can supply and the demand that its
downstream node is able to drawn in. In this case, links 2 and 7 are intermediate
links, while links 4 and 5 are input links on the network.

It is important to note that some other links of the network (Link 3, Link 6
and Link 8) do not achieve the same density level as the remaining links in the
network. This phenomenon is a consequence of the local conditions of these
links in the network. In these cases, the demand that their upstream nodes
can supply is less than the demand rate needed to achieve saturation. So, in
these cases, we only can reconstruct the �rst part of the diagram. Because this
zone only represents the �ow under light density conditions, we do not consider
meaningful to show their corresponding graphics.

In conclusion, the obtained test results experimentally show that the presented
model is able to reproduce the fundamental diagram that describes the relation-
ships among the main macroscopic tra�c variables.

5.5.2 Study of the Shockwaves Propagation

In this section we want to study the propagation of shockwaves arising when
a blocking incident occurs. The objective is to complement the fundamental
diagram in demonstrating the basic tra�c performance on links in the proposed
mesoscopic model.

Shockwaves in tra�c are de�ned as discontinuities in one of the macroscopic
variables (�ow, density or speed) in the space-time domain. There is a transition
zone between two tra�c states that moves through a tra�c environment like a
propagation wave.

In order to attain that, the proposed model is run over a network that mimics
a small freeway corridor where we simulate an incident during a certain time
interval.
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Figure 5.5.2: Graphics of �ow vs. density.
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Figure 5.5.3: Network to study the shockwave phenomenon.

5.5.2.1 Test Network

The proposed test network (depicted in Figure 5.5.3) is a simple network con-
sisting of 10 consecutive links. It simulates a small freeway corridor. The link
segments are each 400 meters long, have two lanes, and a free �ow speed of 80
Km/h.

Demand is represented by four 15-min matrices used to perform a one-hour
simulation. The total number of vehicles is 3,000. Two vehicle classes are
considered with an e�ective length of 4 and 6 meters, respectively.

5.5.2.2 Experiment Design

The proposed experiment studies if the implemented model reproduces the prop-
agation of the congestion properly. In order to achieve that, we create an in-
cident in the proposed small freeway network and then we run our model over
this scenario.

As Figure 5.5.3 shows, a blocking incident is created in the node downstream
from Link 4. The incident starts 20 minutes after the beginning of the simulation
and its duration is 10 minutes. Both lanes of the network links are a�ected by
the incident, and no vehicle can pass as long as it exists.

In order to obtain the cumulative �ow of all the links in the network, we execute
a one-hour long simulation. The proposed mesoscopic simulation determines the
number of vehicles that have entered the link (cumulative in�ow) for each 1-min
interval. Also, we collect the number of vehicles that have exited each of the
links in the network (cumulative out�ow) during each minute of the simulation.

In the following, both cumulative �ows over time are plotted for all the links in
the test network.
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5.5.2.3 Computational Results

To illustrate the propagation of the shockwave that arises from the generated
incident, the cumulative in�ow and out�ow plots are shown in Figure 5.5.4. The
slope of the lines are the �ow rates and the distance between the lines represents
the density of the links.

First of all, we analyze the cumulative out�ow plot, where each line represents
the cumulative number of vehicles that have one exit link in the network. In this
case, Figure 5.5.4 shows how the incident starts on the downstream node of Link
4, 20 minutes after the simulation begins. At time = 1200 seconds, the slope of
the line corresponding to Link 4 presents a slope equal to zero, so no vehicles
are exiting from this link because the node is blocked by the incident. Also, we
can observe how the incident backs up to Link 3 and Link 2. And also, how
Links 5, 6, 7, 8 , 9 and 10 progressively tend to this zero-slope (during the next
two minutes of the simulation). At time = 1800 seconds, the blocked situation
is removed from the scenario. At this time, we can observe that the slope of
the line corresponding to Link 4 becomes di�erent to zero, so vehicles exit from
this link. This behaviour is propagated via Links 3 and 2. Some seconds later,
vehicles arrive at the downstream links and their slopes become di�erent to
zero. Around t = 2100 seconds tra�c situation is completely restored. Link 1
is una�ected by the incident.

Secondly, we analyze the cumulative in�ow plot. In this case, each line represents
the cumulative number of vehicles that have entered one link in the test network.
Figure 5.5.4 shows how the incident starts on the upstream node of Link 5. So,
at time = 1200 seconds, the line corresponding to Link 5 presents a zero-slope,
i.e., no vehicles are entering this link because its upstream node is blocked by
the incident. Also, we can observe how the incident backs up to Link 4 and 3,
and how Links 6, 7, 8, 9 and 10 progressively tend to this slope of zero. At time
t = 1800 seconds, the blocked situation is removed from the network. At this
time, we can observe that the slope of the line corresponding to Link 5 becomes
di�erent to zero, so the vehicles enter this link. This behaviour is propagated
to Links 4 and 3. Around t = 2100 seconds the incident is completely clear and
the initial tra�c situation is restored. In this case, Links 1 and 2 are una�ected
by the incident.

This simple experiment graphically shows that the proposed model performs
properly when changes in tra�c conditions occur. We observe that the model
respects the propagation of the congestion, ensuring correct temporal and spatial
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Figure 5.5.4: Cumulative in�ow/out�ow of all the links in the test network with
an incident.
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location of the congestion at the link level. However, it is important to note
here the special behaviour of our model in respect to the propagation of the
queue dissipation shockwave.

In our mesoscopic model space is considered discrete: the link length. As we
mentioned before, we lose continuous control of the vehicle location in the net-
work. However, we can know how much free space we have at each lane of the
link, without knowing where it is exactly located in the lane. It is for this reason
that we can observe in both plots the following phenomenon.

See for example the cumulative out�ow case. Just before the blocked incident is
removed from the network, we can observe that the �rst a�ected link is totally
full. When the situation changes, one vehicle can exit this link, setting free its
own e�ective length in this lane. In this case, our model immediately detects
that this lane has free space and alerts the vehicle that is waiting in the �rst
cell of that lane. If there is enough space, the vehicle leaves the �rst cell and
goes into the link. Consequently, because this vehicle sets free the �rst cell, the
model alerts the vehicle that it is waiting in the upstream link to go into this
link through this lane. It is for this reason that we can observe that Links 4, 3
and 2 start the process of dissipation practically at the same time.

So, the queue dissipation shockwave propagates faster through our proposed
model than it does in a real situation. However, we consider that this special
behaviour it is not relevant in overall model performance. The vehicles that are
waiting in the �rst cell can advance faster into the link through its corresponding
lane, but they cannot exit the link until their leaders do it. So, at the link level,
the density maintains the correspondence with the density of a real situation.

5.5.3 Proposed model vs Microsimulation

Finally, in this section the model is applied to two real networks. The aim of
this exercise is to validate the correctness of the proposed DNL model. Our
model is less detailed than microscopic models that are considered the most
realistic simulation tools for emulating the �ow of individual vehicles. So, in
order to experimentally investigate the performance of the proposed multilane
multiclass model, we compare the results obtained through a microsimulator
with the results obtained through the proposed model. Aimsun is chosen as the
benchmark microsimulator.

We begin by brie�y describing the Aimsun microsimulation model and its main
characteristics. Then, we introduce some goodness-of-�t measures which we use
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to evaluate the correctness of the model. Then, we presents the test networks.
After this, we proceed to outline the experiments performed for both network
scenarios. And �nally, we analyze and discuss the obtained results taking as
a reference di�erent graphics and the goodness-of-�t measures we presented
previously.

5.5.3.1 Aimsun

As we explained in Section 3.2.1, Aimsun is a fully integrated suite of tra�c
and transportation analysis tools, developed by a research group at the Tech-
nical University of Catalonia and led by professor Jaume Barceló (1986). It
can be used for transport planning, microscopic simulation and dynamic tra�c
assignment, among others.

Our aim is to validate the correctness of our proposed model. Microscopic tra�c
simulators are the simulation tools that most realistically emulate the �ow of
individual vehicles in a road network. This is why we decided to compare the
results obtained through the proposed model with the results obtained through
a microscopic tra�c simulator. So, in this section, we focus on the use of the
microscopic component of Aimsun.

Most of the currently existing microscopic tra�c simulators rely on the fam-
ily of car-following, lane-changing and gap-acceptance models to model vehicle
behaviour. In Aimsun, car-following and lane-changing models have evolved
from the seminal model by Gipps (1981). Aimsun's implementation of the car-
following model took into account the additional constraints on the braking
capabilities of vehicles. They are imposed in the classic safe-to-stop-distance
hypothesis carried out by Mahut (1999).

The lane-changing process is modeled as a decision-making process that emu-
lates the behaviour of the drivers when they are analyzing the necessity of the
lane change, the desirability of the lane change and the feasibility conditions
for the lane change. A lane change also depends on the location of the vehicle
on the road network. In order to achieve a more accurate representation of the
behaviour of the drivers in the lane changing decision process, three di�erent
zones inside a section are considered. Each of these zones corresponds to a
di�erent lane-changing motivation. The distance up to the end of the section
characterizes these zones and the next turning point.

The Aimsun microscopic simulation assigns vehicles to routes according to a
route choice model. The vehicles follow paths from their origin in the network to
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their destinations. So, the �rst step in Aimsun's simulation process is to assign a
path to each vehicle when it enters the network. In the Aimsun implementation
the candidate paths can be of di�erent types: user-de�ned paths or calculated
shortest path trees.

A vehicle of a certain vehicle type traveling from origin to destination can choose
one path according to a discrete choice model from the set of alternative paths.
Route choice functions represent implicitly a model of user behavior and the
most likely criteria employed by the user to decide between alternative routes:
perceived travel times, route length, expected tra�c conditions along the route,
etc. The most used route choice functions in transportation analysis are those
based on the discrete choice theory, i.e., Logit functions that assign a probability
to each alternative route between each origin-destination pair, depending on the
di�erence in the perceived utilities. The inability of the Logit function to distin-
guish between two alternative routes when there is a high degree of overlapping
is the main reason for implementation of the C-Logit model (Cascetta et al.
(1996); Ben-Akiva and Bierlaire (1999)) in Aimsun. As we will explain in Sec-
tion 6.1, this model calculates the probability of each alternative path belonging
to the set of available paths connecting an O/D pair, taking into account the
degree of overlapping through a commonality factor for each path.

The tra�c condition to be simulated could be de�ned by an OD matrix, which
gives the number of trips from every origin centroid to every destination cen-
troid, for each time slice and for each vehicle type. Vehicles are generated at
each origin centroid as input into the network. Then, vehicles are distributed
along the network following the shortest path between origin and destination
centroids.

Aimsun de�nes some parameters by vehicle type. The attributes that charac-
terize a vehicle type are: name, length (m), width (m), maximum desired speed
(Km/h), maximum acceleration (m/s2), maximum deceleration (m/s2), speed
acceptance, minimum distance between vehicles (m), maximum give-way time,
percentage of guided vehicles, guidance acceptance parameter (0 <= λ <= 1),
fuel consumption, and pollution emission. Moreover, Aimsun de�nes some pa-
rameters at the experimental level: reaction time (s), look-ahead distance vari-
ability (percentage), or statistical distribution of vehicle arrivals.

In this dissertation we use the following version of the proposed microsimulator:
Aimsun v7.0.



214 CHAPTER 5. DYNAMIC NETWORK LOADING

5.5.3.2 Used Goodness-of-�t Measures

In the following two goodness-of-�t measures are introduced.

Root Mean Squared Error The Root Mean Square Error (RMSE) is a
frequently used measure of the di�erence between values predicted by a model
and the values actually observed from the environment that is being modeled.
In this case, we use the results obtained through the microsimulator Aimsun
as the values observed from the environment. So, we use RMSE to measure
the di�erence between values obtained by two di�erent models: the microscopic
simulator Aimsun and the proposed mesoscopic simulation. The RMSE serves
to aggregate these individual di�erences into a single measure.

The RMSE of our model, with respect to the obtained Aimsun value for the
corresponding variable, is de�ned as the square root of the mean squared error:

RMSE =

√√√√ n∑
i=1

(XAimsun,i −XproposedModel,i)
2

n
(5.5.3)

where:

XAimsun is the value obtained through Aimsun.

XproposedModel is the value obtained through the proposed model.

i is the link index.

n is the number of links in the network.

Normalized Root Mean Squared Error Non-dimensional forms of the
RMSE are useful because often one wants to compare RMSE with di�erent
units. The Normalized Root Mean Squared Error (NRMSE) normalizes the
RMSE to the range of observed data. In our case, we normalize RMSE to the
range of obtained values through Aimsun.

NRMSE =
RMSE

XAimsun,max −XAimsun,min
(5.5.4)
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GEH Geo�rey E.Harvers' statistic GEH (Highways Agency, 1996) is a mea-
surement widely accepted by practicioners because it provides an overall view
which is considered more useful than the individual measurements. GEH cal-
culates the index for each link (GEHi).

GEHi =

√
2 (XAimsun,i −XproposedModel,i)

2

XAimsun,i +XproposedModel,i
(5.5.5)

If the deviation of the proposed model values with respect to the Aimsum values
is smaller than 5% in at least 85% of the cases, then the proposed model is
accepted.

In addition, the GEH average for all links can also be calculated. In this case,
the proposed model is accepted if this value is smaller than 4%.

There is neither theory behind the method to determine the value thresholds
that are purely empirical based on practice.

Theil's Indicator The use of aggregated values to validate a simulation seems
contradictoryt if one takes into account that it is dynamic in nature, and thus
time dependent. Consequently, other analysts propose statistical methods which
account speci�cally for the comparison of the disaggregated time series of the
values. Theil (1961) de�ned a set of indices aim at this goal. The �rst index is
Theil's indicator (U) which provides a normallized measure of the relative error
that smoothes out the impact of large errors.

U =

√
1
n

n∑
i=1

(XAimsun,i −XproposedModel,i)
2

√
1
n

n∑
i=1

(XAimsun,i)
2

+

√
1
n

n∑
i=1

(XproposedModel,i)
2

(5.5.6)

The index U is bounded, 0 ≤ U ≤ 1, with U = 0 for a perfect �t between the
two values. For U ≤ 0.2, the obtained values with the proposed model can be
accepted as replicating the microscopic simulated values acceptably well. For
values greater that 0.2, the proposed model is rejected.
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Figure 5.5.5: Proposed freeway test network.

5.5.3.3 Case Study 1: Freeway Network

Real Freeway Test Network

Figure 5.5.5 shows the case study used to test the proposed DNL model
against the selected microscopic simulator (Aimsun v7.0.). It is the SH1 free-
way in Auckland (New Zealand). This proposed test network consists of 119
nodes, 223 links and 276 turns. Figure 5.5.5 also gives a general overview of the
exported network.

The lengths are distributed among the minimum length of 7.91m and the maxi-
mum length of 1,801.77m. The mean length is equal to 215.09m. The maximum
allowed speed goes from 50 Km/h to 100Km/h, depending on the link type.
Each link has its corresponding longitudinal division by lanes among 1 and 6
lanes.

The main input of the DNL, besides the network itself, is demand. In this case,
we consider a multiclass demand. Table 5.2 shows the characteristics of the
three vehicle classes considered: A, B and C.

In this experiment we use a real demand corresponding to the interval from
6:45 a.m. to 9:00 a.m. So, for each vehicle class we use nine 15-min matrices.
A total of 27 matrices provide the origin-destination demand data for 34 zones
resulting in 221 OD pairs. The total number of trips in the matrices is 69,272
corresponding with a congested scenario. Table 5.3 summarizes this demand.
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Vehicle Class Length (m) Reaction Time (s)

A 4.4 0.75

B 6.5 0.75

C 7.7 0.75

Table 5.2: Vehicle class characteristics.

Auckland Demand (veh)

Vehicle Class
Total

Time Interval A B C

6:45-7:00 5,395 643 108 6,416

7:00-7:15 7,725 934 157 8,816

7:15-7:30 7,419 894 123 8,436

7:30-7:45 7,231 875 115 8,221

7:45-8:00 7,021 849 150 8,020

8:00-8:15 6,796 820 120 7,736

8:15-8:30 6,453 772 144 7,369

8:30-8:45 6,242 750 190 7,182

8:45-9:00 6,372 771 203 7,346

Total 60,654 7,308 1,310 69,272

Table 5.3: Demand of the Auckland case study.



218 CHAPTER 5. DYNAMIC NETWORK LOADING

Experiment Design

In the proposed experiment we run each simulation model over the previously
presented freeway network. The objective is to perform a comparison between
both results, so it is important to run both models with simulation experiments
as close as possible. This means that we need to use the same network geometry,
demand and vehicle classes.

Moreover, we decided to use the same set of paths for each OD pair. With this,
we want to generate the exact same tra�c situation to be simulated. If we use
the same paths, we are avoiding the di�erences in the tra�c �ow variables on
links which arise from a di�erent �ow distribution. In this case, we propose an
experiment that uses among one and three di�erent paths for each OD pair.
These paths and their correspondings assignments are the result of a previous
performed dynamic tra�c assignment. Therefore, they are the paths with which
we achieve the dynamic user equilibrium in Auckland network. This set of DUE
paths is imported to both models respectively.

In addition, a calibration procedure was conducted for the proposed DNL model,
which consisted of adjusting only the following parameters: lane change penalty
(tLCH) and cross node time penalty (tcrossNode). The �nal adjusted values for
these penalty parameters were: tLCH = 0.1s, tcrossNode = 0.7s.

After this calibration, we execute a 135 minutes long simulation through both
models. In the following, all the obtained results are summarized and discussed
through di�erent goodness-�t-measures and statistical plots.

Computational Results and Benchmark

In order to obtain the computational results of the proposed experiment,
we execute the simulation. It is important to note that a relevant aspect of
the simulation tests are the replications. They are needed to account for the
stochastic nature of the models and their results. The number of replications
needed depends on the variability found between simulation runs. There exists
methods to determine the number of replications that are required, however,
their application is outside the scope of this thesis. In this case, in order to
obtain reasonable results from the simulated values, ten replications are made
for each of the simulation models. In the following, the average results over
these runs are compared.

We study quantitatively the results obtained through the proposed mesoscopic
simulation. We analyze link density and travel time for both models (proposed
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Figure 5.5.6: Residual Analysis for Link Densities (Benchmark vs. proposed
model).

vs benchmark) for each link in the network at the end of each 15-min simulation
interval. A residual analysis is performed in order to evaluate the correctness of
the proposed model. We calculate the Root Mean Squared Error (RMSE) and
the Normalized Root Mean Squared Error (NRMSE). In addition, we show a
residual analysis with the 95% Con�dence Interval using RMSE.

Density

Figure 5.5.6 shows the residual analysis for the obtained densities at the end
of each time interval for all the links in the network. The density is expressed
as hourly vehicles per lane (veh/h/lane). The RMSE has the same unit as the
original measurements: veh/h/lane, and the NRMSE shows percentage. The
NRMSE obtained value is 3.61% and the RMSE values is 7.86 veh/h/lane.

Travel Time

Figure 5.5.7 shows the residual analysis for the obtained travel times on each
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Figure 5.5.7: Residual Analysis for Link Travel Times (Benchmark vs proposed
model).

link in the network at the end of each 15-min simulation interval. Travel time
is expressed in seconds (sec). The obtained NRMSE value is 0.38% and the
RMSE value is 15.48 seconds.

In summary, the results obtained for the performed computational experiences
demonstrate the ability of the developed model to reproduce multilane multi-
class tra�c behavior for freeway networks.

5.5.3.4 Case Study 2: Urban Network

In the previous experiment, we showed the proper performing of our mesoscopic
model when is deployed in a freeway scenario. This network type is relatively
simple in terms of tra�c propagation. Since the good obtained results, we now
consider appropiate to increase the level of di�culty of the test network. So, we
repeat the experiments of comparison with a microscopic tra�c simulator but
using a urban network instead. Speci�cally, we use a european network with
roundabouts and short length links that complicate the propagation process.



5.5. COMPUTATIONAL EXPERIENCES 221

Figure 5.5.8: Location of the city of San Sebastian (Spain). Amara Berri district
in the city of San Sebastian.

In these experiments, we want to make sure that we have the same high corre-
spondence between the results obtained with the benchmark microscopic simu-
lator and our simulator. This is very interesting considering the high di�erence
of the number of parameters to calibrate in both cases. The option is a hun-
dred of parameters on the micro simulator versus the only two parameters to
calibrate in the proposed model. In this case, besides the goodness-of-�t mea-
sures used for the previous case, we have calculate the GEH measurement and
the Theil's Indicator, and also we have added a qualitatively comparison of the
results disaggregated by time intervals.

Real Urban Test Network

Figure 5.5.8 shows a road network corresponding to Amara Berri district in
the city of San Sebastian (Spain).

The proposed test network consists of 76 nodes, 192 links and 301 turns. Figure
5.5.9 gives a general overview of the network.

Figure 5.5.10 shows the distribution of the lengths of the links. These lengths
are distributed among the minimum length of 10.19m and the maximum length
of 374.93m. The mean length is equal to 82.23m. It is important to note
here that each of the links with smaller lengths belongs to one of the four
roundabouts present in this network. The maximum allowed speed goes from 35
Km/h to 60Km/h, depending on the link type. Each link has its corresponding
longitudinal division by lanes among 1 and 5 lanes, following the distribution
shown in Figure 5.5.10.
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Figure 5.5.9: Proposed test network of Amara.

Figure 5.5.10: Distributions of lengths and number of lanes in the links of
Amara network.
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The main input of the DNL, besides the network itself, is demand. In this
case, four 15-min matrices provide the origin-destination demand data for 13
zones, resulting in 80 OD pairs. The total number of trips in the matrices is
on the order of 8,428 vehicles. Two vehicle classes are considered: 90% of the
demand corresponds to light vehicles with an e�ective length of 5 meters, while
the remaining 10% of the demand corresponds to a heavy vehicle class with an
e�ective length of 9 meters.

Experiment Design

In the proposed experiment we run each simulation model over the previously
presented urban network. The objective is to perform a comparison between
both results, so it is important to run both models with simulation experiments
as close as possible. This means that we need to use the same network geometry,
demand and vehicle classes.

With respect to the attributes of di�erent vehicle classes, our model distin-
guishes classes taking into account only two vehicle attributes: the e�ective
length and the reaction time. As we said before, we consider two vehicle classes:
light and heavy, with e�ective lengths of 5 and 9 meters respectively. With
respect to the reaction times, we consider the times de�ned in the calibrated
Aimsun model: light vehicle class = 0.75 seconds and heavy vehicle class = 1.5
seconds.

Moreover, we decided to use the same set of paths for each OD pair. With this,
we want to generate the exact same tra�c situation to be simulated. If we use
the same paths, we are avoiding the di�erences in the tra�c �ow variables on
links which arise from a di�erent �ow distribution. In this case, we propose an
experiment that uses three di�erent paths for each OD pair. These paths are
calculated with an external shortest path (standard Dijskstra algorithm), and
they are imported to both models respectively.

Moreover, a calibration procedure was conducted for the proposed DNL model,
which consisted of adjusting only the following parameters: lane change penalty
(tLCH) and cross node time penalty (tcrossNode). The �nal adjusted values for
these penalty parameters were: tLCH = 0.2s, tcrossNode = 0.6s.

After this calibration, we execute a one hour long simulation through both
models. In the following, all the obtained results are summarized and discussed
through di�erent goodness-�t-measures and statistical plots.
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Computational Results and Benchmark

In order to obtain the computational results of the proposed experiment,
we execute a one-hour long simulation. In this case, as in the previous case
study, ten replications are performed for each of the simulation models to obtain
reasonable results from the simulated values. In the following, the average
results over these runs are compared.

First of all, Figures 5.5.11 and 5.5.12 show the link density at the end of each
15-min interval of the simulation. For an easy visual comparison, we show the
results obtained through the proposed model next to those through Aimsun
for the same simulation interval. We can see four simulation intervals which
coincide with the previously de�ned demand intervals.

The results obtained for both models (proposed and benchmark) are very sim-
ilar, except for the congestion caused by roundabouts. The proposed model
overestimates congestion at the roundabouts, causing signi�cant di�erences in
some adjacent links compared with the results obtained through Aimsun.

Secondly, we show quantitatively the results obtained through the proposed
mesoscopic simulation. We analyze density, travel time and vehicles per link for
each link in the network for each interval.

First, in Table 5.4 we show the obtained results for the GEH measurements and
the Theil's indicator for each of the measured variables. We can observe that
the deviations of the proposed model values with respect to the Aimsum values
for the three measured variables are smaller than 5% in more than 85% of the
cases (98.87%, 89.47% and 91.41%). Moreover, the GEH statistics for the sum
of all the links are smaller than 4% in all cases. In addition, the obtained values
for the Theil's Indicator are smaller (or equal) than 0.2 for the three studied
variables. So, taking into account these measurement, the proposed model can
be accepted as replicating the microscopic simulated values acceptably well.

After this, the following �gures show the corresponding variable for both models
(proposed vs. benchmark) at the end of each 15-min simulation interval, all
integrated in the same graphic. So, each point plotted in the graphics has
the following 2D-coordinates: the measured variable obtained through Aimsun
(abscissa axis) and the measured variable obtained through the proposed model
(ordinate axis). Superimposed on these plots is the 45-degree line that would
represent an identical simulation results for both models. Dots over the line
represent that the proposed model overestimates the variable values, while dots
under the line represent an underestimation. Moreover, we study the obtained
errors in order to evaluate the correctness of the proposed model. We calculate
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Figure 5.5.11: Average link densities in the network at the end of 15-min
simulation intervals 1 and 2 .
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Figure 5.5.12: Average link densities in the network at the end of 15-min
simulation intervals 3 and 4.
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Criteria and Measures Acceptance Targets

GEH Statistic < 5 for Individual Link > 85% of cases

Vehicles Per Link 98.87 %

Travel Time 89.47 %

Density 91.41 %

GEH Statistic for Sum of All Link GEH < 4 for sum of all link counts

Vehicles Per Link 0.82 %

Travel Time 1.44 %

Density 2.07 %

Theil Indicator(U) U<=0,2

Vehicles Per Link 0.14

Travel Time 0.20

Density 0.14

Table 5.4: Results of GEH measurements and Theil's Indicator.

the Root Mean Squared Error (RMSE) and the Normalized Root Mean Squared
Error (NRMSE). Finally, we show a residual analysis with the 95% Con�dence
Interval using RMSE.

Density

Figure 5.5.13 shows the densities at the end of each time interval for all the links
in the network. Each plotted dot corresponds with one link for one interval, and
its coordinates are the density obtained through the bechmark microsimulator
and the density obtained through the proposed model. The density is expressed
as hourly vehicles per lane (veh/h/lane).

The RMSE has the same unit as the original measurements: veh/h/lane, and
the NRMSE shows percentage. The NRMSE obtained value is 8.08% and the
RMSE values is 17.32 vehicles per hour per lane.

Although the proposed DNLmodel takes into account considerably fewer param-
eters than the benchmark microsimulator, the reproduced densities are similar
in both cases. However, we think that the topology of the network is impacting
in the results. The test network of Amara is a typical European urban network
with many short links. This causes small variations in the number of vehicles
in the links results in large changes in density values. The variable �vehicles
per link�, which does not consider the length of the link explicitly, removes this
e�ect.
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Figure 5.5.13: Link Densities: Benchmark vs. proposed model.

Vehicles per Link

Figure 5.5.14 shows the number of vehicles on each link in the network at the
end of each 15-min simulation interval. Each dot of the plot corresponds with
one link. Its coordinate x is the number of vehicles in this link obtained through
the benchmark microsimulator, and its coordinate y is the number of vehicles in
this link obtained through the proposed model. The vehicles per link measure
is expressed in vehicles (veh).

The NRMSE value is 2.93% and the RMSE is approximately 4 vehicles. As
expected, the residual analysis shows only that for few links the results obtained
through both models are signi�cantly di�erent.

Travel Time

Figure 5.5.15 shows the travel time on each link in the network at the end of
each 15-min simulation interval. Each plotted dot corresponds with one link.
The x-coordinate is the travel time simulated by the benchmark model, while
the y-coordinate is the travel time obtained through the proposed mesoscopic
model. In this case, we average the travel time experienced for all vehicles
that exit each link during each simulation interval. Travel time is expressed in
seconds (sec).
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Figure 5.5.14: Vehicles per Link: Benchmark vs. proposed model..

Figure 5.5.15: Link Travel Times: Benchmark vs. proposed model.
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The NRMSE value is 4.02% and the RMSE value is 19.88 seconds.

It is important to say that both models assume the following situation can occur:
any vehicle may exit a certain link during a certain time interval. In this case,
the Aimsun model returns the value � − 1� for this link for this interval. In
order to facilitate the comparison, we adopt the same convention. It is for this
reason that, if we observe the results, we can appreciate that there are some
dots plotted over the axis. Actually, they are not over the axis. These dots have
one coordinate (or both) equal to � − 1� (although the resolution of the graphic
may or may not show this).

Summary of the results

If we analyze the aggregated results for the total simulation duration (one hour),
we observe that that the results obtained for both models are very similar for
travel time and vehicles per link variables, with a NRMSE of 4.02% and 2.93%,
respectively. However, in the case of density, an analysis of of the errors shows
that the proposed model overestimates the density . So, the NRMSE rises up
until 8.08%.

In summary, we consider that the experiments performed over the urban net-
work of Amara look promising. The results obtained for both models (proposed
mesoscopic model and benchmark micro) are very similar, except for the conges-
tion caused by roundabouts. Moreover, our model overestimates the congestion
on short links (less than 20 meters) when congestion appears in the network.
Because Amara is a typical European network, links of this dimension can ap-
pear. So, it could be interesting to include in our model a speci�c treatment of
roundabouts and short links.

5.5.4 Conclusions

In this section, an intensive computational experiments were conducted in order
to test the developed mesoscopic simulation model.

The �rst experiment tried to demonstrate that the proposed model was able
to reproduce the fundamental diagram that relates the main macroscopic vari-
ables: �ow, density and speed. With this objective, we graphically compared
the obtained simulation results with the macroscopic theoretical relationship
proposed by Underwood (1961). We conclude that the obtained test results
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experimentally show that the developed DNL model is able to reproduce the
fundamental diagram.

The second proposed experiment studied whether the developed model can re-
produce the propagation of congestion properly. The main objective of this
test was to complement the fundamental diagram test for demonstrating basic
tra�c performance in the links through the proposed mesoscopic model. In this
case, the results show that our model respects the propagation of congestion,
ensuring correct temporal and spatial location of the congestion on links.

In the third set of experiments, we tested our model against a microscopic
simulator. As we previously speci�ed, the proposed model is less detailed than
microscopic models, which are considered the most realistic simulation tools
for emulating the �ow of individual vehicles. So, to experimentally investigate
the performance of the developed model, we compared the results obtained
through a selected microsimulator (Aimsun) with the results obtained through
our model. In this case we used two real networks for the experiments: a freeway
network in Auckland and the urban Amara network.

In the �rst case, the performed residual analysis shows the correctness of the
proposed model, obtaining an NRMSE value of 0.38% for link travel time vari-
able and 3.61% for density.

In the urban case, we performed two di�erent analysis of the results. First of
all, we visually compared the density of the links in the network and showed
here the density obtained after running both models at the end of each 15-min
interval of the simulation. We see that obtained densities are very similar in
all four intervals. However, we note that our model overestimates the density
at roundabouts, causing di�erences in some adjacent links compared with the
results obtained through Aimsun.

After this, we quantitatively analyzed the obtained results for three link vari-
ables: density, vehicles per link and travel time. In this case, the residual
analysis shows an acceptable NRMSE of 8.08%, 4.02% and 2.93% for density,
travel time and vehicles per link variables, respectively.

In summary, we conclude that all the experiments performed look promising.
The �nal experiment shows that, although the proposed model takes into ac-
count fewer parameters than Aimsun (only two), the reproduced tra�c be-
haviour results similarly in both cases. We note that our model overestimates
congestion on roundabouts and at links of short dimension (less than 20 me-
ters) against the microscopic simulation results. The results obtained for the
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performed computational experiments demonstrate the ability of the developed
model to reproduce multilane multiclass tra�c behaviour for medium-sized net-
works.

5.6 Summary and Contributions

In this chapter a new DNL model has been developed in order to be embedded
into the DTA scheme proposed in Chapter 4.

Most DNL models proposed in the literature for a DTA scheme have problems
when applied to medium-large networks. On the one hand, DTA models require
more details than macroscopic simulation models can o�er. On the other hand,
there exist microscopic models which are di�cult to calibrate due to the great
number of parameters usually needed.

In this chapter, a DNL problem has been solved with the proposed mesoscopic
simulation model. Unlike other existing mesoscopic models, the presented DNL
model is able to reproduce a multiclass urban tra�c urban through the disag-
gregated treatment of demand while considering each individual vehicle. Addi-
tionally, the proposed model pays special attention to lane-changing procedures,
which cannot be ignored because of their impact on tra�c �ow propagation.

First of all, this chapter has summarized the relevant literature regarding DNL
models. The approach proposed in this thesis works around the DNL process
based on simulation. Thus, in this chapter the discussion focuses exclusively on
DNL models that base their link �ow propagation on simulation: macroscopic,
mesoscopic and microscopic models.

A wide range of published research has been reviewed. Before this review, a
new classi�cation scheme of DNL models based on simulation was presented.
This representation is adapted from the well-known proposal by Astarita (2002).
This scheme serves as a basis for a more detailed classi�cation.

The DNL problem is crucial to performing DTA. The objective of this thesis
is to develop a DTA that can reproduce tra�c dynamics, specially in urban
situations. Taking this into account has been essential in developing an e�-
cient multiclass multilane DNL model. In this chapter, we have presented our
DNL model based on a mesoscopic scheme that considers a continuous-time,
link-based approach with complete demand discretization. The adapted classi-
�cation scheme shows how our model can be categorized in the existing literature
about DNL models based on simulation.
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The developed mesoscopic tra�c �ow simulation model is solved using an al-
gorithm based on discrete events. The motivation for adopting an event-based
simulator in our DNL component was that it can potentially be much more
computationally e�cient than a time-step model. Moreover, we have taken into
account that our �ow propagation process considers vehicle to vehicle and that
it is formulated from the space-dependent time relationship. So, we have con-
sidered that it is more suitable to use an event-based paradigm,which coincides
with the idea of considering time as a dependent variable of the problem.

Then, the proposed DNL model was evaluated using laboratory tests. In order
to demonstrate our multilane model, an intensive computational experiments
were conducted. First, the model was applied to a small dummy network and
the corresponding fundamental diagrams were examined for basic correctness.
Then, in order to study the propagation of the shockwaves arising from an
incident, the model was run over a simple freeway corridor where a blocking
incident was simulated. Finally, the model was computationally tested on two
real networks: a freeway network in Auckland and the urban Amara network
(Spain). The obtained results were compared to those obtained through a se-
lected benchmark microsimulator (Aimsun v.7.0).

The �rst experiment investigated the relationship among the values of the �ow
and the density simulated by the proposed DNL model. With this aim, we
graphically compared these simulation results with the macroscopic theoreti-
cal relationship proposed by Underwood (1961). The results show links where
relationship between �ow and density is very similar to the Underwood case.
We conclude that the obtained test results have experimentally shown that the
developed model is able to reproduce the fundamental diagram.

The aim of the second proposed experiment was to complement the fundamental
diagram of the �rst experiment in demonstrating basic tra�c performance on
links in the proposed mesoscopic model. The experiment studied if the imple-
mented model reproduces the propagation of the congestion properly. In order
to achieve this, our DNL model was run over a small freeway corridor where a
blocking incident was simulated during a certain time interval. The obtained
cumulative �ows over time were plotted for all the links in the test network.
The corresponding analysis has shown that the proposed model respects the
propagation of congestion, ensuring correct temporal and spatial location of
congestion at the link level.

In the last experiment, two real networks were used to test the obtained results
against a microscopic simulation. The objective of this experiment was to val-
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idate the correctness of the developed DNL model. This model is less detailed
than microscopic ones, which are considered the most realistic simulation tools.
So, to experimentally investigate the performance of the proposed model, we
compared the results obtained through a microsimulator (Aimsun) with those
of our model.

The obtained results have been analyzed and discussed using di�erent graphics
and goodness-of-�t measures as references. We have studied densities, vehicles
per link and travel times obtained through both models at the end of each 15-min
simulation interval. In order to evaluate the correctness of the proposed model,
we have studied the errors between both measures (GEH, Theil's Indicator,
RMSE and NRMSE). The residual analysis demonstrates good performance of
the developed model.

In the urban case, we also have visually compared link densities at the end of
each 15-min interval of the simulation, obtained through the proposed model
and through Aimsun. We conclude that the density results are very similar,
except for the congestion caused by roundabouts. The proposed model over-
estimates congestion at the roundabouts, causing di�erences in some adjacent
links compared with the results obtained through Aimsun.

The experiments performed on the two networks look promising. Although the
proposed model takes into account only two calibration parameters, versus a
hundred of parameters into the microsimulator, the reproduced tra�c behavior
is very similar in both cases. So, the results obtained for this third set of ex-
periments demonstrate the good quality of the proposed model. Furthermore,
the results demonstrate the ability of the model to reproduce multilane multi-
class tra�c behaviors for medium-sized urban networks. However, our model
overestimates congestion on short links (less than 20 meters), so, it could be in-
teresting to improve the model by including a speci�c treatment of roundabouts
and short links, which are typical of European networks.



Chapter 6

Flow Reassignment

6.1 Introduction

As we see in Chapter 4, the iterative process proposed for solving the DTA
problem has two fundamental components: the DNL and the �ow reassignment
method. The second one, the �ow reassignment component, refers to methods
that determine the new �ow assignment on each link at each new iteration of
the global process. Usually, these processes take the assignment of the travel de-
mands in the paths used in the last DNL, and review or adjust these allocations
for the next iteration, i.e., for the next dynamic loading. This reassignment
among paths is usually based on link costs according to link travel times which
have been obtained from the dynamic loading of the previous DTA iteration.

The DNL component has been extensively investigated in numerous publica-
tions, while the �ow reassignment methods have been generally neglected. So,
in this chapter we present the most studied reassignment methodologies that
appear in the literature.

It should be mentioned that, although �ow reassignment takes much less time
and uses fewer computing resources than DNL (over 95% of the total computa-
tional time, Carey and Ge (2012)), the former has more direct in�uence on the
convergence speed of the solution (number of iterations) and also on whether
the global process converges to the DUE or not. Obviously, this is because the
DUE is de�ned in terms of balancing the total travel cost on the used paths,

235
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and it is the �ow reassignment process which is responsible for reallocating the
�ow to achieve this equality. On the other hand, the DNL process is only re-
sponsible for calculating the link travel times and, consequently, the link travel
costs, both of which arise from the corresponding assignment.

In Section 2.2.3, we formulated DUE with the mathematical model de�ned by
system Equations 6.1.1.  codpt − c∗odt ≥ 0

fodpt · (codpt − c∗odt) = 0
fodpt ≥ 0

(6.1.1)

And the �ow balance Equation 6.1.2.∑
p∈Podt

fodpt = qodt ∀o, d, t (6.1.2)

In 1993, Friesz showed that this problem is equivalent to solving the problem of
variational inequalities of �nite dimension, which consists of �nding a link �ow
vector f∗, such that Equation 6.1.3 is satis�ed (Friesz et al. (1993)).

[f − f∗]T · c ≥ 0 ∀f ∈ ℵ

ℵ =

{
fodpt

∣∣∣∣∣ ∑p∈Podt

fodpt = qodt ∀o, d, t, fodpt ≥ 0

}
(6.1.3)

Wu (1991), and especially Wu et al. (1998) showed that it is equivalent to solving
discretized variational inequality 6.1.4.

∑
t

∑
p∈Podt

codpt ·
(
fodpt − f∗odpt

)
≥ 0 (6.1.4)

The existence and uniqueness of the solution of this model may be demonstrated
depending on the properties of the function codpt (f), i.e., link and path travel
costs depend on path �ows, and path �ow depends on link and path travel costs.
The properties of this function are not easy to check (because the function is
the output of a simulation model and not an analytical function), usually do
not make claims about the existence or uniqueness of a solution The equilib-
rium principle is used to calculate an approximate solution of the variational
inequalities discretized in time.
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However, it is important to note that not all computer implementations based
on this algorithmic framework provide solutions that achieve DUE. The �ow
reassignment algorithms can be grouped into two categories: preventive and
reactive. In the �rst, it is implicitly assumed that the network tra�c conditions
are predictable, so they are responsible for decision making, based on their his-
torical experience. While the reactive algorithms assume that network tra�c
conditions are not predictable because of the possibility that incidents occur,
demand variability, and the stochasticity of tra�c systems, among other factors.
However, in this case, the users have real-time information about the current
tra�c conditions and travel times experienced. Therefore, they can make deci-
sions while they are en route.

In 1993, Friesz et al. showed that DUE solutions are achieved through a pre-
ventive �ow reassignment mechanism, combining the experienced travel times
with time predictions of �ow and travel cost variations (Friesz et al. (1993)).

A wide variety of preventive algorithms have been proposed for explicitly solving
the set of variational inequalities presented above, thus creating a DUE solution:
projection methods, methods of alternating directions, and di�erent adaptations
of the Method of Successive Averages. We will review these processes in Section
6.2 of this chapter.

Other proposals, which can be considered DTA with a �ow reassignment compo-
nent based on a reactive approach are those that model the process with discrete
choice theory (Akiva and Lerman (1985)). This approach considers that Podt,
the set of all possible paths from an origin o to a destination d departing at the
time interval t, is a �nite set of choice alternatives, each of which has a utility by
the responsible decisions making, the traveler. It can be considered a random
variable that for the alternative k consists of:

� the measurable utility, a deterministic systematic component Ck [v (t)],
where v (t) is a vector of values of the variables which depend on the
utility in time t, and

� a random error εk (v), which represents the perceptual error due to the
lack of perfect information.

Thus, the perceived utility of alternative k (path k) at time t is shown in Equa-
tion 6.1.5.

Uk (t) = −θ · Ck [v (t)] + εk (v) ∀k ∈ Podt (6.1.5)
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Where θ is a positive parameter when Ck [v (t)] is the expected value of a nega-
tive utility, such as expected travel cost or travel time. Assuming that the ran-
dom term satis�es the condition that the expected values are E [εk (v)] = 0, ∀k,
and which are independently and identically distributed with a Gambel distri-
bution, it can be proved that the probability of choosing the alternative k at
time t is given by the logit function 6.1.6.

Pk (t) =
e−Ck[v(t)]∑

j∈Podt

e−Cj [v(t)]
(6.1.6)

A known drawback of using logit functions for the route choice is that this func-
tion does not distinguish overlapping paths in order to overcome the unwanted
side e�ects of wrong choices. Some researchers like Cascetta et al. (1996) or Ben-
Akiva and Bierlaire (1999) proposed a modi�ed logit that adds to the utility
de�nition a penalty term, which depends on the degree of overlap between the
alternative paths. In this model, the choice probability Pk of each alternative
path k belonging to Podt is de�ned by the function 6.1.7.

Pk (t) =
e−θ·{Ck[v(t)]+CFk}∑

j∈Podt

e−θ·{Cj [v(t)]+CFj}
(6.1.7)

where:

Ck [v (t)]is the same measurable utility as in the Logit function case ,

θ is the same scale factor as in the Logit function case, and

CFk is the common factor of the path k that is directly proportional to the
degree of overlap of the path k with other alternative paths. Therefore, the
paths that present considerable overlap with others, have a factor CFk greater,
and thus less utility with respect to similar paths. An example of CFk, proposed
by Cascetta et al. (1996), might be the Equation 6.1.8.

CFk = β · ln

 ∑
j∈Podt

(
Ljk

L
1/2
j · L

1/2
k

)γ (6.1.8)

where:

Ljk is the length of the links that paths j and k have in common,
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Lj , Lk are the lengths of paths j and k, respectively,

β and γ give greater or lower weight to the common factor, depending on their
value.

Since the main objective of this thesis is to develop a DTA model based on user
behavior that follows a DUE approach, we will not pay more attention to the
reactive methods brie�y introduced before.

Section 6.2 summarizes the relevant literature regarding �ow reassignment meth-
ods based on a preventive approach. We present the main algorithms that
appear in the literature, paying special attention to the Method of Successive
Averages and all its limitations and opportunities. In Section 6.3, we de�ne
a new �ow reassignment method based on an MSA scheme that tries to take
advantage of the information from the DNL component. Finally, in Section 6.4
we use a real network example in order to verify the performance and feasibility
of the �ow reassignment method embedded into the proposed DTA scheme. We
then compare the obtained results with other MSAs proposed in the literature.

6.2 Literature Review

As we justi�ed in the previous Section 6.1, here we only revise the algorithms
proposed in the literature to solve the set of variational inequalities under a
preventive approach, so that the solution is a DUE. Such methods are:

� Projection methods, directly extrapolated from those of the static prob-
lem. (Wu (1991), Wu et al. (1998) and Mahut et al. (2007))

� Methods of alternating directions, Lo and Szeto (2002).

� Di�erent versions and adaptations of the Method of Successive Averages
(MSA). (Tong and Wong (2000), Varia and Dhingra (2004), Mahut et al.
(2003, 2004, 2007) and Sbayti et al. (2007))

6.2.1 Projection Methods

Since the analytical formulation of DUE is a generalization of the variational
inequalities with time discretization, it seems logical that in this thesis the
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�rst approximation to this problem is to explore the application of projection
procedures into the space of the paths in order to solve it.

The equilibrium algorithms used in the static equilibrium models, which oper-
ate in the space of the path �ows, provide some ideas that can be adapted
heuristically in order to obtain solving methodologies for equilibrium DTA.
These algorithms are adaptations of the classic methodologies like the Sim-
plex method or the reduced gradient algorithm implemented using Jacobi or
Gauss Seidel decomposition. Some references on the subject areLeventhal et al.
(1973), Dafermos (1971) and Patriksson (1994).

As we discussed in the previous Section 6.1, Wu (1991); Wu et al. (1998) showed
that the variational inequality problem shown in Equation 6.1.3 is equivalent to
the proposed user dynamic equilibrium conditions shown in Equation 6.1.1.

The solution approach used in the work of Wu is based on the time discretization
already de�ned in Chapter 2, where we formulate the DUE. Thus, following the
de�ned notation of Section 2.2.1, time is discretized into a �nite number of
periods of duration 4t, each of which is called t.

To solve the problem in 6.1.3, given an initial feasible solution f0 at iteration
k = 0, Wu et al. (1998) presented an algorithm that iterates between a DNL
and path �ow reassignment while using approximations of discrete time. At
each iteration, the time dependent path �ow reassignment is calculated using
an adaptation of the projection method, which involves the quadratic problem
shown in Equation 6.2.1.

min
fk+1
odpt∈ℵ

∑
t

∑
p∈Pdot

[(
fk+1
odpt − f

k
odpt

)
codtp +

1

2α

(
fk+1
odpt − f

k
odpt

)2] (6.2.1)

where:

ckodpt = codtp
(
fk
)

α is a positive constant used to weight the two terms in square brackets.

Solving this problem yields a new path �ow vector fk+1, which is used as input
to the DNL which in turn is used to update the network travel times vector
ck+1
odpt. This iterative process continues until the Equation 6.2.2 is achieved.



6.2. LITERATURE REVIEW 241

∑
t

∑
p∈Podt

(
fk+1
odpt − f

k
odpt

)2
< ε (ε > 0) (6.2.2)

Since the above problem is separable for each time interval t and for each OD
pair, it can be solved separately by solving the problem 6.2.3 for each interval
and for each OD pair:

min
fk+1
odpt∈ℵ

∑
t

∑
p∈Podt

[(
fk+1
odpt − fkodpt

)
codpt + 1

2α

(
fk+1
odpt − fkodpt

)2]
s.t.

∑
p∈Podt

fodpt = qodt

fodpt ≥ 0

(6.2.3)

In his thesis, Wu (1991) developed an e�cient algorithm for solving the problem
shown in Equation 6.1.1. There were many inquiries about how to solve a single
constraint problem with bounded variables (Kennington and Helgason (1980),
Dussault et al. (1986) and Pardalos and Kovoor (1990))). In this case, the
problem was rather di�erent in that the variables had no upper bound. Wu
solved it using the same idea as that proposed in the work by Kennington and
Helgason (1980)).

Later, Florian et al. (2001) proposed DTA models using mesoscopic simulation
for DNL. They proposed a path �ow reassignment that reproduces the work of
Wu based on projection methods (Wu et al. (1998)).

Another work based on the projection algorithms is the proposal included in the
comparison of assignment methods based on simulation that Mahut and Florian
presented in 2008. This algorithm operates in the space of path �ows, and hence
it is very attractive to adapt the equivalent of the projected gradient and the
reduced gradient algorithms, even though there is no formal objective function
that can be identi�ed and the model formulation is a time discrete variational
inequality. Since there is no objective function, the step sizes adopted are those
of the MSA or the modi�ed MSA described below.

In order to state the algorithms, the notation used is the following:

K+ Set of paths with positive �ow;

sk Cost (time) of a path;
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s̄ Average value of the path costs;

pk Proportion of input �ows to the paths k ∈ K+;

dk Direction of change for each path;

dnk Normalized direction;

α MSA step size.

The quasi-projected gradient algorithm proposed by Mahut et al. (2007) modi-
�es the �ow changes by using the following steps:

Step 1 Compute the vector of dk = s̄− sk, k ∈ K+;

Step 2 Normalize the vector dnk = dk∑
|dk|
k

;

Step 3 Check for αmax, the largest value of α: αmax = max
{
pk
dnk
|dnk < 0

}
,

which would diminish the input proportion of a path to 0;

Step 4 The step size is α = min {αmax, αMSA};

Step 5 Update the path proportions pk = pk + α · dnk .

The quasi-reduced gradient algorithm modi�es the �ow changes by using the
following steps:

Step 0 Select the path that has the largest �ow: k∗ = arg max {fk} ;

Step 1 Compute the vector of dk = s∗k − sk, k 6= k∗and d∗k = −
∑
dk

k 6=k∗
;

The remaining steps are the same as in the case of a quasi-projected gradient.
Also, note that the trips that are assigned to be loaded on each path k are
simply the product of the demand for the O-D pair, multiplied by the path
proportions pk.
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6.2.2 Alternating Direction Methods

In order to facilitate understanding of the method, the formulation shown in
Equation 6.1.3 is simpli�ed using matrix notation. Thus, the variational in-
equalities equations would be as follows in Equation 6.2.4.

[f − f∗]T c (f) ≥ 0 ∀f ∈ ℵ
ℵ = {f |Af = q } (6.2.4)

where:

f Time-dependent path �ow vector, f = {fodpt ∀o, d, t, p ∈ Podt}.

fodpt Number of trips from origin o to destination d departing on the time
interval t by the assigned path p ∈ Podt.

c (f) Vector of ct (f) ∀t.

ct (f) Vector of codpt.

codpt (f) Travel times experienced by vehicles departing from origin o to des-
tination d at time interval t through the assigned path p ∈ Podt.

A Diagonal matrix with diagonal elements equal to A (t).

A (t) Incidence OD matrix of dimension |od| × |P (o, d, t)| where the item
(o, d, p) = 1 if the path p departing a time interval t belongs to the
path set Podt, and 0 otherwise.

q Vector of qt ∀t.

qt Vector of qodt.

qodt Total trips from origin o to destination d departing on the time
interval t.

These methods begin by adding a Lagrangian multiplier u to the linear demand
constraint Af = q in order to obtain the following equivalent formulation for
the variational inequalities problem to be discussed.

Find x∗ ∈ ψ, such that Equation 6.2.5 is satis�ed.
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(x− x∗)T F (x∗) ≥ 0, x ∈ ψ (6.2.5)

where: x =

(
f
u

)
, F (x) =

(
c (f)−ATu
Af − q

)
The motivation for this modi�cation is to build a set ψ that has an easier
projection than the original set ℵ.
For such problems, Gabay and Mercier (1976) and Gabay (1983) proposed the
following alternating direction method:

� Given
(
fk, uk

)
at the k-th iteration, �nd fk+1 such that:(

f
′
− fk+1

)T {
c
(
fk+1

)
−AT

(
uk − βk+1

(
Afk+1 − q

))}
≥ 0 ∀f

′

(6.2.6)

� Then, update u via:

uk+1 = uk − βk+1

(
Afk+1 − q

)
(6.2.7)

where βk+1 > 0 is a given penalty parameter (or sequence of parameters)
for the linear constraint Af = q.

When uk and βk+1 are known, then
{
c
(
fk+1

)
−AT

(
uk − βk+1

(
Afk+1 − q

))}
is a function of fk+1. Thus, 6.2.6 is a subproblem which involves only fk+1.
Alternating directions methods are attractive for large-scale problems if the
subproblem can be solved e�ciently. Nevertheless, the exact solution of the
subproblem may be computationally intensive by itself.

To overcome this de�ciency of the Gabay approach, in 1996 Zhu and Marcotte
considered the case of co-coercive functions and proved that many iterative
schemes based on the projection method converge to a solution of the proposed
variational inequalities problem (Zhu and Marcotte (1996)). Motivated by this
study, Han and Lo (2002) developed a modi�ed alternating directions method,
extending the proposal by He and Zhou (2000), where they proposed a solution
method for non-linear functions which sought the convergence of the method
when the function was co-coercive1.

1Let φ a not empty convex closed subset of Rn, a function F : φ → Rn is co-coercive if
there is a positive constant µ such that:

(u− v)T · [F (u)− F (v)] ≥ µ · ‖F (u)− F (v)‖2 ∀u, v ∈ φ
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According to Zhu and Marcotte (1996), the co-coercive functions are monotone,
but perhaps they do not have to be strictly monotone. On the other hand,
the strictly monotone and Lipschitz continuous functions are co-coercive. So,
you could say that co-coercive functions are an intermediate concept between
monotone and strictly monotone functions.

Given the above concepts, Han and Lo (2002) proved the convergence of these
new alternating directions methods based on:

� The function c (f) is co-coercive.

� The solution set of the proposed variational inequalities problem is not
empty.

In 2002, Lo and Szeto proposed a new formulation based on cells for the DTA
problem with a DUE hypothesis and following the approach of the variational
inequalities problem (Lo and Szeto (2002)). In order to solve this formulation,
they used the alternating direction method developed by Han and Lo (2001) for
solving co-coercive valid inequalities.

This method requires that the path travel cost based on travel time is a coercive
function of the path �ow and also that the solution set is not empty.

The slightly smoothed nature of the path travel time functions makes the solu-
tion methods based on derivatives di�cult to apply. That is why the authors
developed a resolution method for the variational inequalities shown in Equation
6.1.3, based on projection methods.

Their proposed alternating directions algorithm is speci�ed below.

First of all, they denote the set K, the space in which it shall be projected; and
the residual error function for the problem is considered:

e (x, β) = e (f, u, β) =

(
f − PK

{
f − β

[
c (t)−ATu

]}
β (Af − q)

)
where β is a certain penalty parameter and PK {·} is the projection in K.

They veri�ed that if e (x, β) = 0 then, the proposed variational inequalities are
solved. Furthermore, they de�ne:

r (x, β) =

(
f − PK

{
f − β

[
c (t)−AT (u− β (Af − q))

]}
β (Af − q)

)
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The proposed variational inequalities system is equivalent to �nding the point
where the function r (x, β) is zero.

The detailed steps of the algorithm are:

Step 0 Given an arbitrary initial point x =
(
f0, u0

)
, and positive constants

β, µ, ε such that β < 4µ and ε > 0. Set iteration number k = 0.

Step 1 Calculate x̄k =
(
f̄k, ūk

)T
as follows:

f̄k = PK
{
fk − β

⌊
c
(
fk
)
−AT

(
uk − β

(
Afk − q

))⌋}
ūk = uk − β

(
Af̄k − q

)
Step 2 Calculate xk+1 =

(
fk, uk

)T
xk+1 = xk − tkγk

(
xk − x̄k

)
where:

tk = δk

(
1− β

4µ

)
, δk ∈ (0, 2) so that tk ∈ (0, 1)

γk =
‖r(xk,β)‖2
‖r(xk,β)‖2H

where:

H =

(
I + βATA 0

0 I

)
∥∥r (xk, β)∥∥2

H
= rT

(
xk, β

)
Hr
(
xk, β

)
Step 3 If

∥∥r (xk+1, β
)∥∥ < ε, STOP.

Otherwise, set k = k + 1 and Go to Step 1.

This �ow reassignment method consists mainly of two steps. First it calculates
the �ow projections on the path �ows and the associated multipliers, taking into
account the tra�c conservation constraints. In the second step, the path �ows
and the multipliers are updated, replacing them with either weighted averages of
their own values of the same iteration or weighted averages of their projections.

Each iteration requires the determination of the path travel costs vector c
(
fk
)

from the path �ow given in the last iteration. To this end, a DNL procedure is
executed at each iteration. Furthermore, the algorithm requires projections over
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the non-negative quadrant without the need for any matrix inversion. In this
way, the computational load per iteration is mild, so the algorithm resolution
for large-scale networks is feasible within a reasonable time.

The speci�ed method uses four parameters: β, µ, δk and tk, which are not in-
dependent of each other as tk is determined from the other three. Since µ, δk
are not used elsewhere in this method, it is only necessary to assign numerical
values to β and tk. Following Lo and Szeto (2002) can ensure that 1 ≥ tk ≥ 0
and β > 0.

Finally, it should be noted that in the alternating directions methods, the search
strategy involves convergence towards a feasible solution. The degree to which

�ow conservation constraints are met is given by the value
∥∥r (xk, β)∥∥2. How-

ever, for the other methods analyzed in this section, the generated path �ows are
always feasible, i.e., they are non-negative and they satisfy the �ow conservation
constraints.

6.2.3 Method of Successive Averages

Among di�erent methods of solving the general static assignment problem, per-
haps the Method of Successive Averages (MSA) is the most simple and e�cient.
This appears to be the most widely used method for the path �ow reassignment
component in a DTA scheme.

MSA was introduced by Robbins and Monro (1951) for quite a di�erent type of
problem. The method was later used in transportation modeling (e.g.,in Powell
and She� (1982)) and it has been widely used since then. In the present context
of path �ow reassignment, MSA consists of removing a fraction of the �ow (step
size) from each of the currently used paths and adding this amount to the �ow
of the current shortest path for each OD pair.

MSA takes the �ow on a link as a linear combination of: the previous �ow and
an auxiliary �ow from an all-or-nothing assignment. The method is based on a
predetermined series of step sizes for overcoming the problem of allocating too
much tra�c to congested links. With the proper choice of the step size at each
iteration, the method converges to the Wardrop equilibrium solution in static
tra�c assignment (She� (1985)).

In order to ensure this MSA theoretical convergence, the step size series must
satisfy the two conditions shown in Equation 6.2.8.
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∑
λk =∞∑(
λk
)2
<∞

(6.2.8)

where lk is the step size of iteration k.

One of the most convenient move size sequence that satis�es the above two
conditions is the reciprocal of the iteration number; i.e., lk = 1

k . With this step
size, path assignments of the k iteration fk may be updated to obtain the path
assignment fk+1 for iteration k + 1, following Equation 6.2.9.

fk+1 = fk +
1

k
dk = fk +

1

k

(
yk − fk

)
=

(
1− 1

k

)
fk +

1

k
yk (6.2.9)

where:

dk = yk − fk is the search direction of iteration k

yk is the auxiliary path assignment obtained by using the all-or-nothing
assignment in iteration k.

When it is applied to the dynamic assignment, the MSA needs a slight mod-
i�cation of the algorithm. Since in static assignment the path �ows are time
independent, the application of the averaging process on the path �ows is equiv-
alent to that on the link �ows. This simpli�es the calculation of an updated
tra�c pattern at each iteration, since the path �ows accumulated in previous
iterations of MSA do not need be assigned to the network again in the current
iteration.

However, in dynamic assignment the application of the averaging process to
link �ows will lead to erroneous results. This is because, when a small amount
of tra�c is taken away from a previous path, the movements of the remaining
vehicles on that path will be a�ected, as well as vehicles on many other paths
in the network. These vehicles may move slower or faster on some links, and
this will result in a totally di�erent link �ow pattern. Therefore, the averaging
process should be applied to the path �ows rather than the link �ows, as for the
static assignment (Tong and Wong (2000)).

As the assignment is dynamic in nature, the new path generated at any time
interval of the current iteration (having no �ow during the previous iteration)
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raises the problem of �ow distribution as soon as it is no longer a shortest path
in MSA. Tong and Wong (2000) proposed the following problem formulation
and resolution in order to overcome this problem.

Let fk = fkodpt ∀o, d, t, p ∈ P kodt be the path �ow vector at the kth iteration,

where P kodt is the set of all paths obtained from all iterations so far, and fkodpt is
the corresponding path �ow values. These path �ows are then loaded onto the
network using a DNL process. Then, an auxiliary set of time-dependent shortest
paths for all OD pairs for all time intervals, Y = yodt ∀o, d, t, is determined by
a time-dependent shortest path algorithm, where yodt is the shortest path for a
vehicle traveling to the destination node d from the origin node o departure at
time t.

If the auxiliary path is newly generated (i.e., P k−1odt

⋂
yodt =∅ ), the updated

path �ow vector is determined by:

fkodpt =

{
(1− λk)fk−1odpt

λkqodt

if p ∈ P kodt
if p = yodt

∀o, d, t

And the set of used paths at the k iteration is updated as P kodt = P k−1odt

⋃
yodt.

However, if the auxiliary path is an old path (i.e., yodt ∈ P k−1odt ), the updated
path �ow vector becomes:

fkodpt =

{
(1− λk)fk−1odpt

(1− λk)fk−1odpt + λkqodt

if p 6= yodt

if p = yodt
∀o, d, t

And the set of used paths remains unchanged (i.e., P kodt = P k−1odt ).

In the MSA method referred to above, and in the other methods considered
in this chapter, the step size λk varies with the iteration number. Depending
on the values that are given to these coe�cients λk, we will obtain di�erent
implementation schemes of the MSA procedure: Tong and Wong (2000), Varia
and Dhingra (2004), Florian et al. (2001), Mahut et al. (2003, 2004). Another
possibility would be to choose a predetermined �xed λk, and let it remain con-
stant over all iterations. Carey and Ge (2012) showed that the results obtained
with MSA with constant step sizes (1 > λ > 0) are in all cases worse than those
obtained by MSA with a variable step size λk = 1

k .
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In 2004, Varia and Dhingra proposed a modi�cation in the MSA procedure,
using variable weight coe�cients de�ned from a Logit distribution function, in
order to take into account the cost (travel times) of the alternative paths for the
�ow reassignment of certain paths (Varia and Dhingra (2004)). The proposed
process for the di�erent conditions is given as follows.

In this case, aside from di�erences that depend on whether the generated aux-
iliary path is new or not, the �rst iteration of the process of the remaining
iterations is also separate.

� First iteration:

fkodpt =

{
λqodt

(1− λ) qodtα
(1)
odpt

if p = yodt

if p 6= yodt
∀o, d, t

where :

λ is the �ow distribution factor

α
(1)
odpt =

exp(−βodpt)∑
p

exp(−βodpt)

βodpt is the instantaneous travel time2 of the path p departing at time
interval t.

� Next iterations:

� If generated shortest path yodt is in the set of paths of previous iter-
ation P k−1odt :

fkodpt =


(
1− λs

k+1

)
fk−1
odpt +

(
λs
k+1

)
qodtα

(2)
odpt if p = yodt

yodt if p 6= yodt and p ∈ P k−1
odt(

λs
k+1

)
qodtα

(2)
odpt if p /∈ P k−1

odt

∀o, d, t

where:

s is a suitable constant

α
(2)
odpt =

exp(−βodpt)

exp(−βodyodtt)+
∑

p/∈Pk−1
odt

exp(−βodpt)

2Instantaneous path travel time: Sum of link travel times along the path estimated at the
time when drivers enter the path from origin.
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� If generated shortest path yodt is not in the set of paths of previous
iteration P k−1odt :

fkodpt =


(
λs
k+1

)
qodtα

(2′)
odpt(

1− λs
k+1

)
fk−1odpt

if p /∈ P k−1odt

if p ∈ P k−1odt

where:

α
(2′)
odpt =

exp(−βodpt)∑
p/∈Pk−1

odt

exp(−βodpt)

The di�erent iterative algorithms iterate until some selected convergence crite-
rion is satis�ed. The convergence criterion often used is the relative gap for any
feasible solution of DUE, proposed by Janson (1991). (See Section 4.3.6).

Generally, the successive averages algorithm ends when:

� It gets an acceptable error GAP k < ε.
Because this gap measures the deviation of the MSA solution from a true
equilibrium solution, a 5% gap can be considered acceptable (Tong and
Wong 2000).

� It reaches a maximum number of iterations: k > kmax.

Mahut et al. (2003, 2004) described a DTA model based on simpli�ed micro-
scopic tra�c simulation. To this end, Mahut determined time-dependent route
�ows solving the MSA problem. One of the novel contributions of the author
was the de�nition of another gap measure. While no formal convergence proof
can be given for this type of algorithm, a measure of gap inspired by Janson's
relative gap may be used for qualifying a given MSA solution, since the network
loading map does not have an analytical form. We call this the re�ned relative
gap.

The re�ned relative gap is the di�erence between the total travel cost experi-
enced and the total travel cost that would have been experienced if all vehicles
had the travel cost (over each interval) equal to that of the current shortest
path. (See Section 4.3.6).

A relative gap of zero would indicate a perfect DUE �ow.
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In 2007, Sbayti, Lu and Mahmassani showed some of the limitations that arise
when using the technique of successive averages in the �eld of DTA (Sbayti et al.
(2007)).

Although it has been established that using the successive averages method for
static assignment satis�es the Wardrop equilibrium solution, its convergence
properties for the DTA are questionable since the majority of the studies on
this subject base their conclusions on small networks.

These authors pointed out two drawbacks of the MSA, which tend to worsen
when network congestion levels or network sizes grow. They explained that
most of the works on this subject have avoided the use of MSA for large or
congested networks.

The �rst problem is that MSA expressly requires the storage of all paths and
its �ow assignments at each iteration of the process. This can consume a lot of
memory when implementing the algorithm, even for medium-sized networks.

The other disadvantage is that, when you try to divert tra�c from the path
with the worst travel times to the current optimum paths, the MSA does it
indiscriminately, regardless of whether the path is the worst or only slightly
worse than the optimal. This penalizes the paths that are only slightly lower as
much as the paths that are far lower. The authors showed that this feature is
inconvenient for getting good solutions when the congestion level is high.

Sbayti, Lu and Mahmassani proposed two new techniques to avoid these dis-
advantages of MSA applied to DTA. These techniques exploit the properties
of mesoscopic simulation used by authors to perform the DNL component of
the DTA. This simulation reproduces vehicle movement in platoons, but it also
keeps track of each individual. This ability to track vehicles means that you
can rebuild the whole path set and its path �ow assignment from the vehicle
trajectories. Therefore, it is a powerful tool for saving memory (especially when
working with large networks) and for avoiding the �rst MSA problem mentioned.

To address the second mentioned drawback, the authors proposed a second
implementation based on an ordering of the vehicles. For a given triplet, vehicles
are ranked according to their travel times and only the slower vehicles are forced
to update their current path towards a better route, provided by the current
best path. The authors tested this new technique on two real-sized networks
with excellent results.

But we can say that, with respect to the �rst mentioned disadvantage, possibly
one of the most e�cient modi�cations of the implemented methodologies is
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the proposal by Mahut et al. (2003), which limits the number of alternative
paths for each origin destination pair and for each time interval. Let Nodt be
the maximum number of di�erent alternative paths that we want to get for
a certain OD pair (o, d) for a certain time interval t. Taking into account the
possibility of repeating the shortest path from one iteration to the next, a proper
implementation of the algorithm will require a di�erent number of iterations for
each origin destination pair for each time interval if it is going to achieve these
Nodt paths (Kodt).

In their proposed variant of the MSA, an initial feasible solution is computed by
assigning the demand for each time period to a set of successive shortest paths.
Starting at the second iteration, and up to a pre-speci�ed maximum number of
iterations,Kodt, the time-dependent link travel times after each loading are used
to determine a new set of dynamic shortest paths that are added to the current
set of paths.

For iteration k, k ≤ Kodt, the volume assigned as input �ow to each path in
the set is qodt/k ∀o, d, t. After that, for iteration k, k > Kodt, no new paths are
added to the choice set. Only the shortest route among used paths is identi�ed
and the path input �ow rates are redistributed over the known paths. This
algorithm stops when the total travel time (sum of travel times of all vehicles)
approaches the �optimal� travel time (the sum of vehicle travel times if they were
to have taken the shortest paths). Also, it may stop if it achieves a prede�ned
maximum number of total iterations Kmax.

The algorithm speci�cation is shown below:

Step 0 Initialize iteration count k = 1.

Compute dynamic shortest paths based on free-�ow travel times.

Load the demands to obtain an initial solution.

Set k = k + 1.

Step 1 If k ≤ Kodt:

� Compute a new dynamic shortest path.

� Assign to each path k ∈ K the input �ow fkodtp = qodt
k .

If k > Kodt:

� Identify the shortest among used paths (yodt).
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� Redistribute the �ows as follows:

fkodpt =

{
k−1
k fk−1odpt

k−1
k fk−1odpt + 1

k qodt

if p 6= yodt

if p = yodt
∀o, d, t

Step 2 If k reaches a pre-speci�ed maximum number of iterations Kmax or
RGap ≤ e : STOP

Otherwise: Return to Step 1.

In 2007, Mahut, Florian and Tremblay made an interesting comparison be-
tween two alternative methodologies for solving DTA equilibrium: the above
commented MSA modi�cation and an adaptation of classical convex projected
gradient methods. In order to compare them, they modi�ed both algorithms,
which was found to be successful (Mahut et al. (2007)). This modi�cation is a
powerful contribution of the authors to the area of algorithms for solving DTA,
with particular regard to path �ow reassignment. Here, we present the phenom-
ena observed by the authors in the di�erent tests that they performed, and the
proposed modi�cation for eluding them.

A basic observation on the behavior of the MSA algorithm is that the assignment
for speci�c departure-time intervals is further away from the equilibrium condi-
tions with later departure time intervals. In fact, for most studied real networks,
the relation between the departure time and the relative gap is monotonically
non-decreasing.

One explanation for this phenomenon is that the travel times of later-departing
vehicles are a�ected by earlier-departing vehicles; and thus the convergence for
a later-departing interval cannot be achieved until it has �rst been achieved for
the prior interval. This inherent property of the method suggests the possibility
that the higher values of relative gap in the later-departing intervals might be
partially a result of the fact that the MSA step-size is the same for all departure-
time intervals at each iteration. To state it simply, the idea is that when a latter
time interval starts its convergence, the step size does not move a su�cient
amount of �ow to the shortest path.

Another reason for the increased relative gap value in latter time departure
intervals is that the departing vehicle in these time intervals may cause much
congestion. Therefore, it is more di�cult for the algorithm to achieve equilib-
rium conditions if congestion increases.
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These observations are the basis of a time-varying step-size heuristic proposed by
Mahut (2008), which gradually modi�es the step-sizes applied to latter intervals.

The heuristic uses an integer reset parameter n, and it is applied to the previ-
ously mentioned modi�ed MSA in this section (Mahut et al. (2003)). So, the
�rst Kodt iterations remain unchanged. And in the next step of the procedure
the modi�cation is the following.

Let D be the number of departure time intervals, and let t = 0, . . . , D − 1 be
the time intervals in increasing order. For the �rst n · D iterations, the MSA
step size is calculated as Equation 6.2.10 shows.

Mk =

{ 1

k−
(⌊

k−Kodt
n

⌋
+1
)
n

if t >
⌊
k−Kodt

n

⌋
1

k−tn else
(6.2.10)

After the iteration k = Kodt+n ·(D−1), the step size is calculated: Mk = 1
k−tn .

The proposed modi�ed MSA, with this step-size adjustment rule signi�cantly
accelerated the convergence results. This was observed in the various tests
performed on real networks (Stockholm, Montreal, Calgary, . . . ) by Mahut.

6.3 Proposed Flow Reassignment Method

6.3.1 Justi�cation of the Proposed Method

The main goal of this thesis is to develop a competitive DTA model. In order to
achieve this, it is very important to be able to implement a �ow reassignment
method that e�ciently converges to the desired DUE. The proposed iterative
�ow reassignment algorithm is based on a modi�cation of the MSA.

The main objective of the proposed modi�cation is to overcome some of the lim-
itations observed during our study of the state-of-the art about DTA with MSA
for the reassignment component. Among the main drawbacks of the method,
we pay attention to two of them previously presented in Section 6.2, which we
summarize in the following.

The �rst observed limitation is that MSA requires the storage of all paths and
its �ow assignments at each iteration of the process. This can require a lot of
memory space in order to perform the usual implementation of the algorithm.
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Furthermore, this drawback of the MSA tends to worsen when the size of the
network grows or when the level of congestion in the studied network is high.
It is for this reason that most of the early works on this subject avoided the use
of MSA for large or congested networks.

The second problem is the standard �ow reassignment used to divert tra�c
from the paths used in the last iteration to the current optimum paths. At
each iteration of the process (or during some iterations), the MSA adds a new
path to the set of used paths for each OD pair and for each time interval. This
new path is the one with a lower cost, and the MSA takes into account the
cost of the links obtained in the last DNL. So, the objective of the method is
to divert some �ow from each used path to this new best path. The original
MSA does it indiscriminately, and it extracts the same amount of �ow from each
used path regardless of the path costs, i.e., regardless of whether the path is the
worst or only slightly worse than the optimal. This way of �ow reassignment
is not intuitive, because the paths that have appropriate costs should not su�er
the same �ow discharge as paths that have high costs, from which we would
intuitively remove �ow to reduce congestion and consequently to reduce costs.

In the next Section 6.3.2, we propose a new modi�cation of the MSA to improve
these two limitations in order to obtain better results for the proposed DTA
model.

6.3.2 The Proposed Modi�cation of the MSA

Regarding the previously mentioned drawbacks of the MSA (Section 6.3.1), we
develop a �ow reassignment algorithm based on another new modi�cation of
this method. With this proposal, we try to improve the currently available
options proposed in the literature to address the limitations of the algorithm,
which sometimes solve one of the problems but not both. Taking into account
the proposed solutions (previously speci�ed in Section 6.2), we develop a new
MSA that combines some of these modi�cations with the addition of new ones.

As we mentioned in the previous section, one of the common problems that
these methods present is the large computational charge associated with their
implementation, because MSA needs to store the new best paths found for each
OD for each time interval for each of the iterations. In the state-of-the art
(Section 6.2.3), we mention the solution that Mahut et al. (2003) proposed to
alleviate this problem, which is based on the idea of limiting the number of
alternative paths for each OD pair for each possible departure time interval.
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That is why we consider the general scheme formulated by Mahut (2003) as a
starting point of our algorithm.

Mahut's algorithm performs the reassignment of the �ow in a di�erent way, de-
pending on whether not the maximum number of paths (de�ned previously) has
been reached yet. Or, it performs the reassignment conversely if the maximum
has been reached. In the �rst case, it must recalculate the minimum path us-
ing the link costs obtained from the performance of the last DNL. In this case,
Mahut assigns the �ow equally to all the possible paths (including the new one).
In the case of having reached the minimum number of paths, it is not necessary
to recalculate any more shortest paths, so the set of paths remains stable until
the end of the procedure. From this point forward, the �ow is distributed among
the possible paths using a classic MSA scheme.

We can say that in this case the problem with path storage is solved. However
this solution does not take into account the di�erent costs of each path when
it reassigns the �ow, i.e., the second MSA drawback still holds. That is why
our method uses the same idea of dividing the process into two parts, according
to whether or not the maximum number of paths for each OD pair for each
time interval is reached; but, the presented �ow reassignment for each iteration
is di�erent from the proposal by Mahut et al. Here is where we incorporate
the second and most important modi�cation, which is developed to eliminate
the second MSA problem. Therefore, we propose an algorithm that solves both
con�icts simultaneously.

In the classical version of the MSA, the MSA parameter used to distribute the
�ow among the possible paths depends on the current iteration of the assignment
process, and usually it is equal to the inverse of the number of iterations (i.e.,
1
k ). In that case, as already mentioned, the diversion of �ow to the best path
from the remaining paths is made indiscriminately, without taking into account
the cost of all the possible paths.

To overcome this limitation, Varia and Dhingra (2004) (Section 6.2.3) proposed
a modi�cation to the procedure using a new factor based on a logit distribution
of demand �ow and according to instantaneous travel time on the corresponding
paths. So the reassignment explicitly takes into account the cost of the alter-
native paths when it diverts the �ow. Thus, the main part of the �ow assigned
to the new shortest path comes from the worst paths, i.e., from the paths with
higher costs.

It is important to note here that improvements in performance allowed by the
algorithm proposed by Varia and Dhingra (2004) are negligible in comparison
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those that could have been induced by a classical approach. This is because the
logit factor that Varia and Dhingra proposed is based on instantaneous path
travel times rather than on the actual path travel times3.

The main idea of the proposed MSA modi�cation is to complement the usual
parameter of MSA in some speci�c parts of the proposed scheme, trying to take
advantage of the information from the previous DNL (the other main component
of the DTA model). Therefore, when at a certain iteration of the process a new
shortest path is found, the proposed factor improves the method by taking into
account the cost of the alternative paths (all the paths belonging to the set of
paths used in the previous iteration) in the �ow reassignment.

Looking at the commented proposal of Varia and Dhingra (2004), this new
factor (called in the following a diversion factor) is based on a logit distribution,
but in this case it follows the actual costs of alternative paths. The method
considers the costs based on the link actual travel times obtained by the DNL
in the previous iteration of the procedure. Thus, the expected improvements
will be signi�cant in comparison to the results obtained through a classic MSA
procedure.

The diversion factor (δodpt) is de�ned for each path p from origin o to destination
d departing at time interval t as Equation 6.3.1 shows.

δodpt =
exp (−codpt (ttodpt))∑
p

exp (−codpt (ttodpt))
(6.3.1)

where codpt is the cost of the path p based on the actual travel times ttodpt of
the path.

Finally, we comment on some ideas about the �rst iteration of the proposed �ow
reassignment method. At the initialization step, we calculate a static shortest
path for each OD pair. Here, we do not need to calculate a time-dependent
shortest path for each OD pair for each departure time interval, because we base
the calculation on the free �ow link travel times. Obviously, all travel times are
the same for all time intervals. In this way, we can use a static shortest path
algorithm in the initialization. We can also calculate the same set of paths for
each departure time interval for each OD pair.

3Actual path travel times: Sum of the link travel times along the path estimated at the
time when driver enters each link.
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We also propose calculating more than one path for each OD pair in the �rst
step. This is because, if we start with only one possible path for assigning all
the �ow of each OD pair, the possibility of generating false congestion is very
high. If this occurs, all the main links of the network can present congestion
and, consequently, very high costs. In the next step of the process we �nd
a shortest path that does not use these congested links, so we can go very far
from the equilibrium solution and will need more iterations in order to converge.
However, if we start with a small set of paths for each OD pair and assign the �ow
inversely proportional to each path cost, then we will need fewer iterations to
achieve equilibrium. The number of initial paths (M) depends on the network
characteristics. The most convenient way would be to test di�erent options
during the network calibration process. (see Chapter 7).

In summary, an adaptation of the MSA that combines the following two speci�ed
solutions is presented:

� Limit the maximum number of available paths for each OD pair for each
departure time interval t, in order to reduce the computational storage
needed in the original MSA.

� Use a diversion factor based on actual travel times in the reassignment
process in order to perform a more realistic �ow reassignment for the
alternative paths.

6.3.2.1 Global Scheme of the Proposed Flow Reassignment Algo-

rithm

In the following scheme, we show the speci�c proposed algorithm:

1. Initialization (k = 1)

(a) Static shortest path calculation based on costs according to free �ow
link travel times . All path sets Podt are generated with the same
number of paths de�ned previously (M).

(b) Initial �ow assignment (inversely proportional to the path costs).

(c) DNL to obtain an initial solution.

(d) Update iteration count (k = k + 1).
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2. Path Flow Reassignment

For all OD pairs (o, d), for all departure time intervals t

� If the maximum number of paths is not achieved
(∣∣P k−1odt

∣∣ < Nodt
)

(a) Time-dependent shortest path (yodt) calculation based on the
link costs according to the actual link travel times obtained in
the last DNL.

(b) Path �ow reassignment:

� If the shortest path is new
(
yodt /∈ P k−1odt

)
i. Assign the �ow fkodpt ∀p ∈ P

k−1
odt and on yodt following (a).

ii. Update path set: P kodt = P k−1odt ∪ yodt.
iii. Update number of paths.

� Else
(
yodt ∈ P k−1odt

)
i. Assign the �ow fkodpt ∀p ∈ P

k−1
odt following (b).

ii. Update path set: P kodt = P k−1odt .

� Else (the maximum number of paths is achieved)
(∣∣P k−1odt

∣∣ ≥ Nodt)
(a) Identify the shortest path (yodt) among those already used P k−1odt .

(b) Path �ow reassignment:

i. Assign the �ow fkodpt ∀p ∈ P
k−1
odt following (b).

ii. Update path set: P kodt = P k−1odt .

3. Dynamic Network Loading

(a) Flow propagation using mesoscopic simulation.

(b) Update link travel times and, consequently, their costs.

4. Convergence criteria

� If the maximum number of iterations (Kmax) is reached (k = Kmax)
or the RGap is satis�ed =⇒ STOP.

� Else

(a) Update iteration count (k = k + 1).

(b) Go to Step 1.
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6.3.2.2 Proposed Flow Reassignment Options

Considering the algorithm proposed in the previous section, now it is time to
de�ne the di�erent �ow reassignment processes for each of the possibilities:

� Flow reassignment (a)

If the calculated shortest path (yodt) is new, the �ow reassignment pro-
posed for it is shown in Equation 6.3.2.

fkodpt =

{
λkqodt if p = yodt

(1− λk) qodtδodpt if p 6= yodt
(6.3.2)

where:

fkodpt is the �ow assigned to the path p departing at time interval t at
iteration k.

λk is the MSA parameter depending on the iteration k.

qodt is the demand from o to d entering the network during the time
interval t.

δodpt is the diversion factor.

codpt is the cost of the path p based on the actual travel times ttodpt
obtained by the DNL performed at the previous iteration k − 1.

� Flow reassignment (b)

If the calculated shortest path (yodt) belongs to the previous iteration path
set or if no more paths are calculated because the maximum number of
paths for each OD pair for each interval is achieved, the �ow reassignment
proposed for it is shown in Equation 6.3.3. In the second case, yodt is the
best path among those already used.

fkodpt =

{
λkqodt + (1− λk) fk−1odpt if p = yodt

(1− λk) fk−1odpt if p 6= yodt
(6.3.3)

Depending on the di�erent proposed values for the MSA parameter (λk), we
have some di�erent results. Our proposal is the standard λk = 1

k+1 , but other
options have also been tested. In the next Section 6.4, we propose an experiment
design which includes three di�erent options for the MSA parameter.



262 CHAPTER 6. FLOW REASSIGNMENT

6.4 Computational Experiences

In the previous Section 6.3, we presented a modi�cation of the MSA algorithm.
The objective of this section is to test the performance of this proposed �ow
reassignment approach. In particular, we want to verify the quality of the
convergence of the proposed method measured by the number of DTA iterations
needed to reach convergence. Moreover, we take advantage of this computational
experience to verify the correct selection of the MSA parameter λk = 1

k+1 .

In order to perform an evaluation of the �ow reassignment method without
taking into account the other components of the presented DTA scheme, we
propose integrating the new proposed MSA into an external DTA environment.

During the development of this thesis, we collaborated with the Division of
Transportation and Logistics of the Department of Transportation Sciences of
the Royal Institute of Technology (Kungliga Tekniska Högskolan - KTH) in
Stockholm. They had researched widely the topics referred to in this work,
with developments like their hybrid mesoscopic-microscopic simulation model,
which used their own proposal for the mesoscopic component: MEZZO. So,
we considered it appropriate to take the opportunity to work with our �ow
reassignment method in a MEZZO environment and integrate the DNL and the
shortest path algorithm proposed in MEZZO.

In Section 6.4.1, we begin by brie�y describing the MEZZO model and its assign-
ment structure. Then, in Section 6.4.2, we discuss several assumptions (about
our di�erent structure assignment) that were employed to work around practical
constraints and considerations. After this, in Section 6.4.3, we explain in detail
the computational tests performed, and �nally in Section 6.4.4 we summarize
the analysis of the obtained results.

6.4.1 MEZZO

As explained in Section 3.2.12, MEZZO is a mesoscopic simulator developed by
W. Burghout in 2004. It is an event-based simulator with changes in tra�c
states calculated only when something happens (like in Dynameq). Events in
MEZZO are de�ned by vehicles entering a link, exiting a link, making a new
route choice, etc.

It was developed as the mesoscopic component of a hybrid mesoscopic-microscopic
simulation model. The use of event-based simulation in the mesoscopic model
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Figure 6.4.1: MEZZO link structure.

provides a natural way of synchronizing with the usually time-based microscopic
models. Each time-step of the microscopic model enters as an external event in
the event list of the mesoscopic model.

MEZZO is a synthesis of a number of models and processes that capture all
the important aspects of the operations of tra�c networks. These models and
procedures include the network representation, the movement of vehicles in links
and intersections, and travel behavior (route choice).

6.4.1.1 Dynamic Network Loading in MEZZO

The model is based on the familiar queue-server paradigm, where the main
assumption is that queues are only generated from nodes, not inside links. At
each time instant, the link from Node 1 to Node 2 is divided into two sections:
a running section and a queuing section (Figure 6.4.1).

The boundary between the queuing section and the running section is dynamic.
This means that the queue length may change, depending on the in�ow of the
vehicles through Node 1 and the out�ow through Node 2. In the extreme cases,
the queue �lls the entire link (and possibly blocks back onto other links) or it
vanishes. The running segment contains vehicles that run at a steady traversal
speed, which is chosen upon entering the link as a function of the density of
the running segment at that moment. Using the traversal speed, an earliest
exit time is calculated for the vehicle. At any given time t, the vehicles whose
earliest exit time is smaller than t and are still on the link are considered to be
part of the queuing section. Conversely, all vehicles whose earliest exit time is
greater than t are part of the running section. At the queue exit, the node has
one turn server for each turning movement. The turn server determines the rate
at which the vehicles are taken from the queue and transferred to the next link.

6.4.1.2 Assignment in MEZZO

The assignment structure in MEZZO is documented, as we show in Figure 6.4.2.
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Figure 6.4.2: MEZZO structure.

This is done in the following way. Starting from the free-�ow travel times
for each link, a shortest path is calculated for each OD pair by using a label
correcting algorithm. Then, a small random noise is generated, is added to the
link travel times, and each route search is repeated a number of times with
di�erent draws of the random noise components. This results in multiple paths
being available at the start of the �rst iteration. After this, each OD pair
demand is assigned to those paths in proportion to their travel time. Then,
using all this information, the MEZZO DNL is executed and it generates new
route travel times and consequently new route assignments.

The route assignments are saved, as well as the resulting link travel times, and
these are used as input for the DNL in the next iteration. The historical travel
times for iteration n + 1 are calculated as a moving average of the historical
travel times for iteration n and the resulting link travel times of iteration n.
The iterations come to an end when the historical travel times and resulting
travel times are equal. During this part of the process the number of paths for
each OD pair does not vary. (See Loop 2 in Figure 6.4.2).

When travel time convergence achieves Loop 2, the process calls Loop 1, which
generates new routes and adds them to the set of known routes. Then, Loop 2
is run another time. So, Loop 1 contains Loop 2 as an inner loop, making sure
that route searches are conducted only on converged travel times.
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Figure 6.4.3: Proposed DTA structure.

6.4.2 Integration

6.4.2.1 Decisions about the Integration

In Chapter 4, we presented our computational framework for DTA that con-
siderably di�ers from the MEZZO assignment structure. In order to use the
di�erent components of the Mezzo structure, our assignment is proposed in the
following way.

Starting from the free-�ow travel times for each link, a shortest path is calculated
for each OD pair. Then, a small random noise is generated and is added to the
link travel times. Now, each route search is repeated k − 1 times with di�erent
draws of the random noise components (with k as the prede�ned number).
This results in k paths being available for each OD pair at the start of the �rst
iteration (initialization iteration). And all vehicles are assigned to these shortest
paths in proportion to their travel times.

Then, using all this information, the DNL is executed generating new link travel
times. These times are used as input in the next iteration, which starts by
calculating a new shortest path for each OD pair (only one). The existing
route sets are augmented with these new shortest routes if they are found, and
each OD pair demand is assigned into those paths following the proposed �ow
reassignment process: the modi�ed MSA. The current iteration continues the
DNL with these new route sets and route �ows. The iterations come to an end
when the DUE convergence is achieved (measured with the relative gap).

Inspired by the MEZZO scheme, our assignment structure is shown in Fig. 6.4.3.
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In this case, Loop 1 generates new routes and adds them to the set of known
routes, and Loop 2 calculates the new travel times by executing the DNL. Ob-
viously, the process is di�erent than the MEZZO approach, because here �Loop
2� is not a real loop, because we only execute one iteration of Loop 2 into each
iteration of Loop 1.

The second di�erence between the two processes is that we need an independent
module for the �ow reassignment process. In the MEZZO model, the route
assignment is performed instantaneously when a new vehicle is generated in the
DNL process (MEZZO simulation). This is because it is very simple (the route
�ow is proportional to the route travel time), so a separate module is not needed
for its treatment.

Due to these di�erences, we have decided to use for this computational exper-
iment only some parts of the MEZZO model: the shortest path algorithm and
the DNL (MEZZO simulation). Consequently, we �nally implement all our DTA
process as a separate function of the DTA MEZZO, but have also included it in
the same project in order to take advantage of all the MEZZO features.

6.4.2.2 Computational Integration Details

The the MEZZO model was implemented in C, and it was strictly object ori-
ented, both in design and implementation. So, all the new developments in
the MEZZO Project have been in C. In order to use the maximum number of
MEZZO functions, we have not added any new class in the MEZZO project. We
take advantage of the existing classes by adding new attributes and functions
to them.

We consider that the speci�c details of all the new functions and the attributes
are not pertinent to this thesis.

6.4.3 Computational Tests and Results

In the previous section, we presented an iterative scheme for the resolution of
the DTA problem, which includes a new �ow reassignment process based on a
modi�cation of the MSA algorithm. The objective now is to use a real example
to carry out a primary performance test of the proposed approach.
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With this aim, we design a set of experiments that test the proposed �ow reas-
signment approach. This set is based on a factor design that takes into account
three di�erent elements:

� The incorporation of the proposed diversion factor into the classical MSA
approach.

� The use of the limitation on the number of paths for each OD pair for
each departure time interval.

� The MSA parameter used.

To this end, we compare the proposed �ow assignment method (including the
diversion factor) with other standard MSA approaches existing in the literature.
Moreover, to test the goodness of the limitation about the number of paths, we
propose experiments with and without this bound. Ultimately, in order to quan-
tify the importance of the MSA parameter in the proposed �ow reassignment
approach, we test three di�erent options for λk.

It is important to note here that the �ow reassignment method proposed in
Section 6.3.2 coincides with the experiment that considers the diversion factor,
takes into account the limitation about the number of paths and uses the MSA
parameter λk = 1

k+1 . So, we want to test if it is the best option of all the
possible combinations.

With this objective, all the di�erent methods obtained through the di�erent
combinations of the design factors are embedded into the DTA scheme presented
before (see Section 6.4.2) and executed for the studied real network. Finally,
the results obtained with all of these are compared to each other.

We begin by brie�y describing the studied network and the demand data used for
the computational experiment, and we proceed to outline the experiment design.
Then, we present results for the DTA process that verify the performance and
feasibility of the �ow reassignment method that we propose in this chapter.

6.4.3.1 Example Dataset

Network Description

A set of computational experiments is conducted with an example network
corresponding to the Södermalm district in central Stockholm (Figure 6.4.4),
with the infrastructure corresponding to 2007. This network, depicted in Figure
6.4.5, has 1,101 sections, 409 intersections, 168 centroids and 462 OD pairs.
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Figure 6.4.4: Södermalm district in central Stockholm.

Figure 6.4.5: Södermalm MEZZO model.
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Data Description

The main input of the DTAmodel is time-dependent demand. In this case, the
performed experiments use a synthetic demand that assigns to the Södermalm
network the total �ow of 34,451 trips. The demand is split into eight di�erent
time-dependent OD matrices corresponding to eight di�erent time slices of 15
minutes.

One of the common MEZZO input �les contains the description of the set of
known routes from each origin to each destination (chains of links). Multiple
paths per OD pair are possible, and the �le is augmented by MEZZO if new
shortest paths are found. In this case, we prefer to start the process without
this information; so we suppose no routes are available and an empty �le is
be provided. As shown in the previously proposed algorithm, the process calls
the shortest path algorithm to initialize this information before the �rst DNL
execution.

The other necessary input �les that are common in the MEZZO environment
remain unchanged, i.e., we use the �les attached to the Södermalm network.

6.4.3.2 Experiment Design

An experimental design is conducted in order to evaluate the performance of
the proposed �ow reassignment method. The selected design factors are:

� Flow reassignment option.

� MSA parameter.

� Limited-Unlimited number of paths.

We compare the di�erent DTA solutions achieved with the proposed algorithm
when we use each of the combinations among the design factors.

Flow reassignment

The performed experiments take into account two di�erent �ow reassignment
options. As we showed in Section 6.3.2.1, the presented MSA scheme needs two
possible assignments for each option ((a) and (b)), depending on whether a path
belongs to the current path set or not. So, we propose these two possibilities
for the two proposed �ow reassignment options, which are shown as follows:
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� The �ow reassignment option proposed in Section 6.3.2.2 (from now on
�Flow Reassignment 1�):

� Flow Reassignment (a)

fkodpt =

{
λkqodt if p = yodt

(1− λk) qodtδodpt if p 6= yodt
(6.4.1)

� Flow Reassignment (b)

fkodpt =

{
λkqodt + (1− λk) fk−1odpt if p = yodt

(1− λk) fk−1odpt if p 6= yodt
(6.4.2)

� A �ow reassignment inspired by other literature options proposed in Sec-
tion 6.3.2.2 (from now on �Flow Reassignment 2�):

� Flow Reassignment (a)

fkodpt =

{
λkqodt if p = yodt

(1− λk)
(
qodt
Nodt

)
if p 6= yodt

(6.4.3)

� Flow Reassignment (b)

fkodpt =

{
λkqodt + (1− λk) fk−1odpt if p = yodt

(1− λk) fk−1odpt if p 6= yodt
(6.4.4)

We can see that �ow reassignment (b) is the same for both options (1 and 2),
so the di�erence between both approaches concerns �ow reassignment (a).

MSA parameter

The performed experiments take into account the following three di�erent
MSA parameters (λk):

� λAk = 1
k+1
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� λBk = 1
2

� λCk = k
k+1

The �rst one
(
λAk
)
is a standard option used by most methods in the literature.

It is an MSA parameter that depends on the current iteration of the method
and satis�es Equation 6.2.8. These two conditions ensure the MSA theoretical
convergence.

With the second proposal
(
λBk
)
, we want to test what happens if the parameter

does not depend on the current iteration, i.e., it is a �xed diversion parameter
within the new path and the remaining paths of the path set. So, we propose a
surprising parameter which diverts half of the total demand to the new path and
distributes the other half of the total demand among all the other paths of the
set. It is important to mention that this parameter does not satisfy Equations
6.2.8.

Finally, we want to test the importance of using an MSA parameter that satis�es
Equation 6.2.8. With this aim, we propose an MSA parameterλCk that depends
on the current iteration, that does not satisfy these two conditions, and with
which we want to test the �bad�convergence of the MSA in this case.

Limited-Unlimited number of paths

One of the important changes in the proposed modi�ed MSA is the limitation
of the maximum number of available paths for each OD pair for each time in-
terval. This is to reduce the computational storage needed in the original MSA.
In order to test this adjustment, the experimental design takes into account
two speci�c situations. While the �rst one does not consider this limitation,
the second strictly follows the DTA scheme proposed with a limited number of
paths.

In this case, the quantity of bound paths is considered to be �ve, in accordance
with the network characteristics. During the network calibration process in-
cluded into this computational experienc, we test di�erent options. Finally, we
consider that �ve paths for each OD pair for each departure time interval is a
good bound for the Södermalm network.

Proposed Computational Experiments

Table 6.1 summarizes the proposed experiments, detailing the design factor
combinations.
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EXPERIMENT DESIGN

Experiment Path Limitation Flow Assignment λk
Y1A yes 1 A
Y1B yes 1 B
Y1C yes 1 C
Y2A yes 2 A
Y2B yes 2 B
Y2C yes 2 C
N1A no 1 A
N1B no 1 B
N1C no 1 C
N2A no 2 A
N2B no 2 B
N2C no 2 C

Table 6.1: Set of the proposed experiments.

6.4.3.3 Computational Results

In this section we present the results of the DTA process executed for each of
the proposed experiments. These results verify the performance and feasibility
of the �ow reassignment method proposed in Section 6.3.2. First, we present the
Janson relative gap results in order to have a global idea of the good performance
of the process. Then, using the re�ned relative gap proposed by Mahut, we try
to re�ne the conclusions by taking into account the di�erent departure time
intervals in the analysis of the obtained results.

Relative Gap

The proposed DTA experiments are run for 16 iterations. The 120-min load-
ing interval is divided into eight time intervals for the proposed MSA assignment
algorithm. After each iteration, the relative gap proposed by Janson in 1991
(Section 4.3.6 ) is calculated. Table 6.2 presents the relative gap for each exe-
cuted experiment after each iteration:

Figure 6.4.6 shows the results for the all experiments together.

It can be observed that the results for the MSA parameter λk = k
k+1 are the most

unstable and they do not seem to converge. Figure 6.4.7 shows the results if we



6.4. COMPUTATIONAL EXPERIENCES 273

E
x
p
e
r
im
e
n
t

I
t

Y
1
A

Y
2
A

N
1
A

N
2
A

Y
1
B

Y
2
B

N
1
B

N
2
B

Y
1
C

Y
2
C

N
1
C

N
2
C

0
0
.3
0
5
4

0
.3
1
0
1

0
.2
9
9
3

0
.3
1
4
9

0
.3
1
3
9

0
.3
0
9
5

0
.2
9
2
6

0
.3
0
0
2

0
.3
0
1
2

0
.3
0
0
3

0
.3
0
6
4

0
.2
7
7
2

1
0
.1
5
2
9

0
.1
4
8
4

0
.1
3
5
7

0
.1
3
9
2

0
.1
4
8
4

0
.1
4
9
3

0
.1
3
8
5

0
.1
3
9
6

0
.1
5
0
5

0
.1
4
5
4

0
.1
3
3
1

0
.1
2
9
8

2
0
.0
6
5
8

0
.0
9
9
3

0
.0
4
6
3

0
.0
9
9
4

0
.0
7
5
5

0
.0
7
1
2

0
.0
3
8
0

0
.0
6
4
8

0
.0
3
6
1

0
.0
5
0
2

0
.0
8
2
4

0
.0
3
6
8

3
0
.0
3
9
1

0
.0
6
7
2

0
.0
4
5
9

0
.0
5
4
6

0
.0
2
9
2

0
.0
4
2
1

0
.0
4
5
0

0
.0
2
9
6

0
.0
6
8
4

0
.0
5
9
4

0
.0
7
0
3

0
.0
6
0
5

4
0
.0
2
8
3

0
.0
4
7
0

0
.0
3
2
4

0
.0
4
3
6

0
.0
4
5
2

0
.0
3
3
0

0
.0
5
1
0

0
.0
4
6
4

0
.0
2
9
9

0
.0
3
4
4

0
.0
2
1
2

0
.0
6
4
1

5
0
.0
2
2
7

0
.0
3
3
2

0
.0
2
8
0

0
.0
2
9
0

0
.0
2
2
8

0
.0
3
1
3

0
.0
2
3
4

0
.0
1
9
6

0
.0
3
5
9

0
.0
3
6
2

0
.0
1
6
4

0
.0
2
2
7

6
0
.0
2
0
7

0
.0
4
5
3

0
.0
3
0
3

0
.0
3
6
0

0
.0
1
3
2

0
.0
2
8
5

0
.0
1
4
6

0
.0
1
6
8

0
.0
6
0
7

0
.0
2
9
5

0
.0
4
3
8

0
.0
3
5
7

7
0
.0
1
9
9

0
.0
3
9
5

0
.0
1
9
7

0
.0
3
1
9

0
.0
2
3
1

0
.0
2
3
8

0
.0
1
3
6

0
.0
2
3
4

0
.0
2
4
7

0
.0
3
4
6

0
.0
3
0
1

0
.0
5
0
0

8
0
.0
1
6
7

0
.0
3
2
9

0
.0
1
4
6

0
.0
2
9
9

0
.0
0
8
4

0
.0
2
3
8

0
.0
1
5
9

0
.0
2
0
7

0
.0
2
1
1

0
.0
4
8
3

0
.0
4
2
2

0
.0
4
5
4

9
0
.0
2
2
5

0
.0
3
2
4

0
.0
1
5
4

0
.0
2
6
4

0
.0
1
5
1

0
.0
1
0
1

0
.0
2
1
6

0
.0
1
7
7

0
.0
8
4
2

0
.0
2
0
8

0
.0
2
8
8

0
.0
4
9
9

1
0

0
.0
1
6
0

0
.0
2
3
1

0
.0
1
2
6

0
.0
1
8
2

0
.0
1
1
5

0
.0
1
1
6

0
.0
1
0
7

0
.0
1
0
0

0
.0
3
2
5

0
.0
4
2
3

0
.0
3
6
7

0
.0
4
0
9

1
1

0
.0
1
8
7

0
.0
2
2
6

0
.0
1
4
7

0
.0
2
2
5

0
.0
1
5
5

0
.0
1
0
6

0
.0
0
6
3

0
.0
1
3
0

0
.0
3
2
9

0
.0
3
3
4

0
.0
6
5
0

0
.0
4
1
2

1
2

0
.0
1
8
7

0
.0
2
0
0

0
.0
1
3
1

0
.0
1
9
5

0
.0
1
9
2

0
.0
1
5
2

0
.0
2
3
5

0
.0
1
8
9

0
.0
1
9
9

0
.0
5
9
9

0
.0
4
8
0

0
.0
5
3
8

1
3

0
.0
1
5
3

0
.0
1
8
7

0
.0
1
3
3

0
.0
1
7
7

0
.0
1
5
4

0
.0
1
6
9

0
.0
2
1
0

0
.0
0
6
6

0
.0
3
0
1

0
.0
3
1
1

0
.0
4
7
8

0
.0
8
7
8

1
4

0
.0
1
4
4

0
.0
1
7
1

0
.0
1
2
9

0
.0
1
7
0

0
.0
1
3
6

0
.0
1
3
1

0
.0
2
2
6

0
.0
1
0
8

0
.0
3
3
9

0
.0
5
2
2

0
.0
2
4
0

0
.0
3
9
5

1
5

0
.0
1
3
7

0
.0
1
6
4

0
.0
1
0
5

0
.0
1
6
1

0
.0
1
1
2

0
.0
1
0
6

0
.0
1
8
0

0
.0
1
7
5

0
.0
7
8
7

0
.0
3
7
3

0
.0
7
2
4

0
.0
4
5
4

Table 6.2: Relative gap for each iteration for each executed experiment.
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Figure 6.4.6: Relative gap for each experiment after each DTA iteration.

do not consider the experiments that included the mentioned MSA parameter
option.

Now, we see that for all the combinations of �ow reassignment methods (1 and
2) and MSA parameters (λk = 1

2 and λk = 1
k+1 ), the DTA process converges

quickly and stably.

In Figure 6.4.8, graphic N1 shows the results for the experiments with unlimited
number of paths for each OD pair for each interval, with the �rst proposed reas-
signment �ow method (1) combining the three di�erent MSA parameters (A, B
and C). The same experiments were run with changes to the �ow reassignment
method to the second proposal (2). The results are shown in graphic N2.

Graphics Y 1 and Y 2 show the results for the same previous experiments with
limited number of paths of each OD pair for each interval (5 paths).

These disaggregated results clearly show that the experiments performed with
parameter λk = k

k+1 do not have good behaviour. Regarding the limitation
on the number of paths, there are no signi�cant di�erences between limiting
or not. Nor are there di�erences between the two reassignment �ow methods.
Perhaps slightly better results could be obtained for the experiment performed
with λk = 1

2 , combined with the second �ow reassignment method.

In Figure 6.4.9, graphics NA and Y A show the results for the experiments
performed with unlimited and limited numbers of paths for each OD pair for



6.4. COMPUTATIONAL EXPERIENCES 275

Figure 6.4.7: Relative gap for some experiments after each DTA iteration.

each interval (5 paths), with the �rst proposed MSA parameter
(
λk = 1

k+1

)
combining the two �ow reassignment methods (1 and 2). The results for the
same experiments with the second proposed MSA parameter

(
λk = 1

2

)
are shown

in graphics NB and Y B.

Looking at these results in terms of the relative gap, we may conclude that
both reassignment methods have a similar rate of convergence that is or is not
independent of the limitation to the number of paths. We only can consider that
by using the �rst MSA parameter (λk = 1

k+1 ), the �rst option converges faster
than the second one. However, we cannot draw any conclusion for parameter
λk = 1

2 .

Re�ned Relative Gap

The proposed DTA experiments are run for 15 iterations. The 120-min load-
ing interval is divided into eight time intervals for the proposed MSA assignment
algorithm. After each iteration, the re�ned relative gap proposed by Mahut in
2003 (see Section 4.3.6) is calculated for the vehicles departing from the ori-
gin during each of these intervals (see Figure 6.4.10 for the color legend of the
intervals).

In Figure 6.4.11, graphics Y 1A, Y 1B and Y 1C show the results for the exper-
iments with a limited number of paths for each OD pair for each interval (5
paths). The �rst proposed reassignment �ow method (1) combines the three
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Figure 6.4.8: Relative gap of the experiments after each DTA iteration by dif-
ferentiating the use of each MSA parameter option.
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Figure 6.4.9: Relative gap of the experiments after each DTA iteration di�er-
entiating the use of each �ow reassignment option.

Figure 6.4.10: Color legend for the eight departure time intervals.
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Figure 6.4.11: Limited number of paths re�ned relative gap experiments.

di�erent MSA parameters (A,B,C). The same experiments were run but with
changes to the �ow reassignment method to the second proposal (2). The results
are shown in graphics Y 2A, Y 2B and Y 2C.

With respect to the MSA parameter, the main observation is that, as expected,
the MSA parameter λk = k

k+1 does not work well. It presents oscillations for
several of the departure intervals in the last executed iterations of the MSA
process. In contrast, the other two proposed options seem much more stable
and we can distinguish the good performance of the option λk = 1

k+1 .

With respect to the �ow reassignment options, if we consider λk = 1
k+1 , the

�rst option improves the results produced by the second one. For the other
combinations, the results are very similar for both proposals. It can also be
observed that the results for the last departure time interval (red interval 8)
are worse than the other departure intervals for all the proposed experiments
(which is theoretically expected, as explained in previous sections). It appears
that the new reassignment �ow method (1) mitigates this e�ect.

In Figure 6.4.12, graphics N1A, N1B and N1C show the results for the experi-
ments with an unlimited number of paths for each OD pair for each interval, with
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Figure 6.4.12: Unlimited number of paths re�ned relative gap experiments.

the �rst proposed �ow reassignment method (1) combining the three proposed
MSA parameters (A,B,C). The same experiments were run but with changes
to the �ow reassignment method to the second proposal (2). The results are
shown in graphics N2A, N2B and N2C.

In this case, the bad performance of the MSA parameter λk = k
k+1 is re�ected

another time in the results. We also repeat the same considerations for the
other experiments with one exception: the �rst �ow reassignment method works
worse in this case (with unlimited number of paths), because it presents more
instability for the last departure time interval.

Simultaneously analyzing the presented result sets, it could be said that the
results of the experiments that have limitations in the number of paths are a
bit more stable than the results of the experiments that are not restricted.

6.4.4 Conclusions

In the relative gap case, the quality of the solution achieved with the new �ow
reassignment method does not depend very much on whether or not we use
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a limited number of paths for each OD pair for each departure time interval.
Therefore, the high computational storage that is typical with classical MSA is
reduced without losing the quality of the reassignment solution.

However, the selected option of the MSA parameter has proved to be basic for
the good quality of the solution. The solutions obtained for the experiments that
use the MSA parameter λCk = k

k+1 are as bad as we expected when we decided
on this value for the MSA parameter, which does not satisfy the Equation
6.2.8. On the other hand, combining the MSA parameter λAk = 1

k+1 with �ow
assignment 1 is more stable than combining this �ow assignment with the �xed
MSA parameter λBk = 1

2 . If the combination includes the other �ow assignment
(2), then, both MSA parameter options provide similar results.

If we now pay attention to the �ow assignment, we can conclude that both
methods have a similar rate of convergence. The �rst option converges faster
than the second one when using the MSA parameter λAk = 1

k+1 . However, we

cannot draw any conclusions for parameter λk = 1
2 .

In summary, the best combination corresponds to experiment Y 1A: �ow reas-
signment 1 with a limited number of paths for each OD pair for each departure
time interval with MSA parameter λAk = 1

k+1 .

Regarding the re�ned relative gap results, the �rst observation is that the MSA
parameter λCk = k

k+1 does not work well, as expected. It presents severe oscil-
lations for some of the departure time intervals, especially in the last executed
iterations of the process. This phenomenon occurs with or without limitations in
the number of paths for each OD pair for each departure time interval. The other
two MSA parameters seem more stable, although the variable option λAk = 1

k+1
is the best option. Moreover, it is important to note here the successful perfor-
mance of the experiments with the MSA parameter λBk , which does not depend
on the iteration number and does not satisfy Equations 6.2.8. However, it has
been observed that the two proposed �ow assignment methods become more
unstable with this MSA parameter option, particularly in the latter iterations.

With respect to the �ow assignment options, the �rst proposal (1) improves
the results obtained by the second method. This proposal is faster than the
other option, and an accepted relative gap is achieved some iterations earlier.
This improvement is particularly notable when using the MSA parameter λAk =
1
k+1 with limitations in the number of paths (Y 1A). In this case, the �rst
proposal achieves good re�ned relative gap results (less than 0.055, Tong and
Wong(2000)) in about half as many iterations as the other tested �ow assignment
method (Y 2A).
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The bad convergence of the latter departure time intervals (which was theoreti-
cally expected, as explained in previous Section 6.2.3) is clearly observed in the
results from all the experiments performed on the re�ned relative gap in the
Södermalm network (red interval 8). The �rst proposed method (1) mitigates
this e�ect by using the diversion factor which enhances the �ow reassignment
among the alternative paths. In this way, no other sophisticated solutions, like
the previously mentioned time-varying step-size adjustment, are required.

Moreover, concerning the re�ned relative gap, both �ow assignment methods
are better at limiting the maximum available paths for each OD pair for each
interval.

In summary, the best combination corresponds to experiment Y 1A: �ow reas-
signment 1 with a limited number of paths for each OD pair for each departure
time interval with MSA parameter λAk = 1

k+1 . Therefore, we propose that this
combination be included in the developed DTA model.

6.5 Summary and Contributions

In this chapter a new modi�cation of the Method of Successive Averages has
been developed in order to work around the improvement of the reassignment
�ow module of the proposed DTA scheme.

First of all, this chapter has reviewed �ow reassignment methods for possible use
in a DTA scheme. The discussion has focused exclusively on the algorithms pro-
posed in the literature to solve a set of variational inequalities under a preventive
approach, which results in a DUE solution. Such methods are: projection meth-
ods, alternating directions methods, and modi�cations of the popular MSA. A
wide range of published research has been summarized.

Taking into account the objective of this thesis, it has been essential to im-
plement a method of �ow reassignment that converges e�ciently to the DUE.
Therefore, the proposed �ow reassignment algorithm based on MSA was devel-
oped. The new method tries to overcome some detected drawbacks of the MSA
by combining the following two speci�ed solutions:

� Limit the maximum number of available paths for each OD pair for each
departure time interval, in order to reduce the computational storage
needed in the original MSA.



282 CHAPTER 6. FLOW REASSIGNMENT

� Use a diversion factor based on actual travel times in the reassignment
process, in order to make a more realistic �ow reassignment among the
alternative paths.

Then, a computational experiment was runin order to test the performance of
the proposed �ow reassignment approach. We have proposed integrating the
new MSA into an external DTA environment (MEZZO) in order to evaluate the
�ow reassignment method without taking into account the other components of
the presented DTA scheme.

Finally, we have run a computational experiment in order to test the feasibility
of the proposed �ow reassignment approach. With this aim, we have designed a
set of experiments to execute on the real network of Södermalm in Stockholm.
These tests incorporated the proposed diversion factor into the classical MSA
approach and they used a limited number of paths for each OD pair for each
departure time interval, as well as di�erent MSA parameter values. Ultimately,
we have analyzed the obtained results.

In the relative gap case, all the proposed methods (obtained through the dif-
ferent combinations of the design factors of the experiments) were found to
generate solutions whose quality is independent of a limited number of paths
for each OD pair for each departure time interval. Thus, the limitation solu-
tion can reduce the computational storage needed in the classical MSA without
reducing the good performance of the process.

It has been shown that the solutions are more a function of the selected MSA
parameter. It is interesting to note that λAk (which satis�es Equation 6.2.8)
and λBk (which does not satisfy Equation 6.2.8) have achieved similar results
for convergence speed. However, using λAk produced stable solutions while λBk
produced unstable solutions. Moreover, as expected theoretically, the use of
the MSA parameter λCk had no good behaviour, which was common in all the
proposed experiments.

With respect to the use of the diversion factor in the �ow assignment method
(�ow assignment 1), and comparing it with approaches in the literature (�ow
assignment 2), both methods had similar convergence in the �nal iteration.
When we combined these two options with the more stable MSA parameter

(
λAk
)

(with or without limitations in the number of available paths), the proposed
method (Y 1A or N1A) achieved the accepted DUE gap (0.05, Tong and Wong
(2000)) some iterations before the other evaluated option (Y 2A or N2A).
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Regarding the re�ned relative gap, all the proposed methods were found to
perform better by limiting the maximum available paths for each OD pair for
each interval.

Another observation is that, as we expected, the MSA parameter λCk did not
work well. It presented �uctuations in the solutions of some of the departure
time intervals. This occurred with or without the maximum number of path
limitations. MSA parameters λAk and λBk have been more stable, especially the
λAk option, which provided good and stable results.

Moreover, when the MSA parameter λAk was used, incorporating the diversion
factor in the �ow reassignment process (�ow assignment 1) improved the results
obtained with the other option (�ow assignment 2). The �rst proposal achieved
good re�ned relative gaps (less than 0.055) in about half as iterations as the
other tested �ow assignment method. For the other combinations, the results
were very similar for both proposals.

The known bad convergence of the latter departure time intervals is observed
in the solutions of all the proposed experiments. The �rst �ow assignment
method mitigated this e�ect by using the diversion factor which enhances the
�ow reassignment among the alternative paths.

It is important to note here that the evaluation of how the di�erent methods
perform di�ers, depending on whether we consider relative gap or the re�ned
proposal as a reference measurement. In the DTA, the best convergence criteria
seems to be the re�ned relative gap, because the goal of a DTA model based
on DUE behaviour is to achieve equilibrium for all the departure time intervals.
If we consider only the global relative gap, it appears to be a good solution;
but only if we disregard the fact that it is bad for the latter departure time
intervals. This is because it can be compensated by very good results for the
initial departure time intervals.

The main conclusion is that the method corresponding to experiment Y 1A pro-
duces the best results for the studied network. Therefore, we propose this
method be included in the developed DTA model. This �ow assignment method
considers: the proposed diversion factor in the reassignment among alternative
paths, a limited number of available paths for each OD pair for each departure
time interval, and an iteration-dependent MSA parameter λAk = 1

k+1 .
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Chapter 7

DTA Computational

Experiences

7.1 Introduction

7.1.1 Previously Obtained Results

The main components of the proposed DTA model, the DNL and the �ow
reassignment have been treated independently in Chapters 5 and 6. Thus, their
computational experiments have been conducted in the corresponding sections.

In Section 5.5 intensive computational experiments were conducted in order to
test the developed mesoscopic simulation model. The results obtained in the �rst
experiment experimentally demonstrate that the proposed mesoscopic model is
able to reproduce the fundamental diagram. We have graphically shown this by
comparing the obtained �ow-density link simulation results and the Underwood
macroscopic theoretical relationship. The second experiment complemented the
fundamental diagram test that demonstrated the proposed model's basic tra�c
performance on links. In this case, the obtained results show that our mesoscopic
model respects the propagation of congestion, ensuring the temporal and spatial
location of congestion at the link level.

In order to experimentally investigate the performance of the developed simu-
lation model, the third set of experiments presented in Section 5.5 tested our

285
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model against a microscopic simulator using a real urban networks as a test
scenarios. We quantitavely analyzed density, vehicles per link and travel time
results. We have studied the errors between measures of both models using
RMSE and NRMSE goodness-of-�t measures. The residual analysis showed the
correctness of the proposed model for the �rst scenario: a freeway network. In
the second case, the urban network, we also visually compared the network link
densities after running both models. The results at the end of each 15-min
simulation interval were very similar. However, we note that our model over-
estimates the density at roundabouts, causing discrepancies in some adjacent
links when compared with the results obtained through the microsimulator.

In summary, the obtained results demonstrate the ability of the developed meso-
scopic simulation model to reproduce multilane multiclass tra�c behaviour for
urban networks.

In Chapter 6 we have presented our modi�cation of the Method of Successive
Averages (MSA). In Section 6.4 a computational experiment was performed in
order to demonstrate the good performance of the proposed �ow reassignment
process. We used an external DNL model to validate this part independently
of our mesoscopic simulation model. An experimental design was conducted
by combining the following design factors: �ow reassignment option, MSA pa-
rameters and limitations on the number of paths for each OD pair for each
interval.

The main conclusion of Section 6.4 is that the proposed method (Y 1A) produces
better results for the studied network. Therefore, we have proposed this method
to be included in the developed DTA model. This �ow assignment method con-
siders: the proposed diversion factor in the reassignment among the alternative
paths, a limited number of available paths for each OD pair for each departure
time interval, and an iteration-dependent MSA parameter λk = 1

k+1 .

7.1.2 Summary of the Chapter

In view of the above, we only need to validate whether it is correct to embed
both the main components (DNL and �ow reassignment) into the DTA method
proposed in Chapter 4.

For that purpose, in this chapter the developed DTA model is applied to a real
urban network. The aim of this exercise is to validate the correctness of the
proposed DTA model. So, to do this, we compare the results obtained through
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15-min Demand Simulation Intervals

Vehicle Class Interval 1 Interval 2 Interval 3 Interval 4
Light 2179 3267 3541 1906
Heavy 244 367 398 214
Total 2423 3634 3939 2120

Table 7.1: Demand simulation distributed over the four 15-min simulation in-
tervals.

our proposed DUE with the results obtained with a one-shot simulation. In
addition, we analyze the importance of the initial number of paths in the begin-
ning of the global DTA procedure and the importance of the MSA parameter
in achieving DUE.

First, we brie�y present the real medium-sized test network, which was also
used in the computational experiments of the DNL model. Then, we proceed
to outline the performed experiments. And �nally, we analyze and discuss the
obtained results, using di�erent gap measures and other signi�cant graphics as
references.

7.2 Test Network

In order to test the behaviour of the developed DTA model in a network, we
applied it to the same medium-sized network used previously (Section 5.5.3.4):
the Amara Berri district in the city of San Sebastian (Spain).

The main input of the DTA model, besides the network itself, is the time-
dependent demand. In this case, the performed experiments use a synthetic
demand that assigns to the Amara network the total �ow of 12116 trips. Four 15-
min matrices provide the origin-destination demand data for 13 zones, resulting
in 80 OD pairs. The total number of trips in the matrices is distributed in the
manner shown by Table 7.1. Two vehicle classes are considered: 90% of the
demand corresponds to light vehicles with an e�ective length of 5 meters, while
the remaining 10% of the demand corresponds to a heavy vehicle class with an
e�ective length of 9 meters.
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7.3 In�uence of the Number of Initial Paths

At the initialization step, the proposed DTA process requires a set of shortest
paths from each origin to each destination. These path sets are determined
through a static shortest path algorithm with uses link costs in free �ow tra�c
conditions. As we have explained in Section 4.3, the decision about the number
of paths for each OD pair is a key point in achieving convergence. A bad
decision may result in false congestion at the beginning of the process, making
DUE convergence more di�cult.

As we have previously proposed, it is best to test di�erent options during the
network calibration process. Depending on the network characteristics, we must
select the most convenient number of paths. In this experiment, we consider
this parameter as a design factor in order to test its signi�cance.

Because the proposed test network is not a large scenario, the OD pairs have
only a few viable routes. In addition, due to the topology of the network, only
relevant routes are generated. Thus, the experimental design takes into account
one, two or three paths for each OD pair for each interval at the beginning of
the DTA process. Moreover, for similar reasons, the quantity of paths is not
bounded in these experiments.

It is important to note here that the developed DTA method can remove paths
during the process. If some path �ow becomes close to zero at a certain iteration
of the global process, then this path is removed from the corresponding path
set. So, in the next DTA iteration the total demand will be distributed among
the remaining paths of the set.

7.3.1 Experiment Design

Table 7.2 summarizes the proposed experiments and details the corresponding
design factor combinations.

In addition, with respect to the attributes of di�erent vehicle classes, our DTA
model distinguishes classes taking into account only two vehicle attributes: the
e�ective length and the reaction time. As we say before, we consider two vehicle
classes: light and heavy, with e�ective lengths of 5 and 9 meters, respectively.
With respect to the reaction times, we consider: light vehicle class = 0.75
seconds and heavy vehicle class = 1.5 seconds. Moreover, a calibration procedure
is conducted for the mesoscopic simulation model. This consists of adjusting
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EXPERIMENTS

Experiment No. Initial Paths

ADUE1 1
ADUE2 2
ADUE3 3

Table 7.2: Set of the proposed experiments.

the following parameters: lane change penalty (tLCH) and cross node time
penalty (tcrossNode). The �nal adjusted values for these penalty parameters
are: tLCH = 0.2s, tcrossNode = 0.6s

After this calibration, we execute our DTA for a one-hour long demand. In
the following, all the obtained results are summarized and discussed through
di�erent convergence measures.

7.3.2 Computational Results

In this section we present the results of the proposed experiments executed over
the presented test network of Amara. First, we present the relative gap results
in order to have a global idea of the performance of the processes. Then, using
the relative gap proposed by Mahut, we try to re�ne the conclusions by taking
into account the di�erent departure time intervals in the analysis of the obtained
results. Finally, we complement the convergence measure results by analyzing
the total number of paths used during the DTA process and studying the speci�c
path evolutions of certain OD pairs throughout the global procedure.

Relative Gap

The proposed DTA experiments are run for 30 iterations. The 60-min loading
interval is divided into four 15-min time intervals for the proposed DTA model.
After each iteration, the relative gap proposed by Janson in 1991 (Section 4.3.6)
is calculated. Table 7.3 presents the relative gap for each experiment executed
after each iteration. Figure 7.3.1 shows the results for the all experiments to-
gether.

All these experiments combine the MSA parameter λk = 1
k+1 with the options

for thenumber of initial paths (1, 2 or 3), as we proposed. We can observe that
the developed DTA process obtains good results. The results are similar for all
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Experiment

It ADUE1 ADUE2 ADUE3 It ADUE1 ADUE2 ADUE3

1 1,32033 1,443510 1,98347 16 0,024884 0,057661 0,0440309

2 0,281416 1,02389 1,52189 17 0,0192511 0,0496009 0,0377936

3 0,123935 1,10864 1,54018 18 0,017192 0,0475279 0,0334088

4 0,0804506 0,438925 0,456263 19 0,0640334 0,082236 0,0379974

5 0,0543731 0,836755 0,282174 20 0,0207849 0,045409 0,0300988

6 0,0734269 2,38421 0,189246 21 0,023140 0,0379952 0,0309471

7 0,0409453 0,394492 0,132304 22 0,0211947 0,0325866 0,0341701

8 0,0387291 0,252831 0,110916 23 0,0163969 0,062268 0,0381676

9 0,0352297 0,137747 0,111853 24 0,066151 0,0530731 0,0334261

10 0,0400965 0,130131 0,0826172 25 0,0609422 0,0549249 0,0307209

11 0,0375388 0,0828837 0,0820837 26 0,0473897 0,0394265 0,0224247

12 0,0279188 0,0872711 0,071147 27 0,0285407 0,0372569 0,0250192

13 0,0251143 0,0740704 0,0574055 28 0,0428903 0,0505024 0,020432

14 0,0270387 0,0709509 0,0528119 29 0,0261308 0,0480049 0,0229247

15 0,0189426 0,0643989 0,0475976 30 0,027495 0,0338252 0,0224747

Table 7.3: Relative Gap for each iteration of each executed experiment.

Figure 7.3.1: Relative Gap for each experiment after each DTA iteration.
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the cases, but we can note that the results for the experiment that starts with
three paths for each OD pair for each interval (ADUE3) is more stable than
the other two experiments. It converges at the seventh iteration of the process
without losing this convergence throughout the rest of the procedure.

Re�ned Relative Gap

The proposed DTA experiments are run for 30 iterations. The 60-min loading
interval is divided into four 15-min time intervals for the proposed DTA algo-
rithm. After each iteration, the re�ned relative gap proposed by Mahut in 2003
(see Section 4.3.6) is calculated for the vehicles departing from the origin during
each of these intervals.

In Figure 7.3.2, graphics ADUE1, ADUE2 and ADUE3 show the results for
the MSA parameter λk = 1

k+1 combined with each of the three options for
the number of initial paths (1, 2 or 3). To better analyze the results of the
experiments, the zooms of the results are shown in graphics ADUE1(zoom),
ADUE2(zoom) and ADUE3(zoom).

With respect to the re�ned RGap results, we can observe that if the experiment
that starts the DTA process with only one path for each OD pair for each
interval (ADUE1), it seems better than the other experiments at the beginning
of the process. In fact, ADUE1 achieves the DUE convergence (less than 0.05)
at the 8th iteration. However, it is important to note here that at this iteration
the process does not achieve stability. This is because two iterations later we
can observe that the RGap grows above 0.05 for some departure time intervals.

In the case of the second experiment (ADUE2), we can observe the same absence
of stability. In this case, the method achieves DUE convergence at iteration 18,
but it is lost in the next iteration.

Similar to the case of the standard relative gap measure, the option ADUE3
improves stability when compared to the results obtained by the other two
experiments. In this case, we need more iterations to achieve equilibrium (20
iterations). But in the following ten iterations the re�ned RGap measure results
remain under 0.05.

Path Analysis

The proposed experiments are run for 30 iterations. The 60-min loading
interval is divided into four 15-min time intervals for the proposed DTA model.
Figures 7.3.3, 7.3.4 and 7.3.5 show the total number of paths used at each
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Figure 7.3.2: Re�ned Relative Gap experiments with MSA parameter λk = 1
k+1 .
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Total no. of paths used at the 30th iteration

Interval 1 Interval 2 Interval 3 Interval 4

ADUE1 103 104 116 109

ADUE2 103 109 113 120

ADUE3 107 107 107 111

Table 7.4: Total number of paths used at the end of the 30th iteration.

DTA iteration for each 15-min simulation interval for each of the proposed
experiments.

The �rst observation about the obtained results in the study of the paths is
that not all the OD pairs can use two or more paths. When we observe the
second and third proposed experiments (ADUE2 and ADUE3), we note the
following. In the �rst case, we hoped that the number of paths used in the �rst
DTA iteration would be 160 (80 OD pairs x 2 initial paths), but there are only
around 140 paths at each simulation interval. In the second case, we hoped
that the number of total paths used at the end of the �rst DTA iteration would
be 240 (80 OD pairs x 3 initial paths), but there are around 200 paths at each
simulation interval. So, we can conclude that some OD pairs do not have more
than one path between their origin and their destination.

Along the DTA process, we can observe di�erent numbers of total paths used
for each of the proposed experiments. In the ADUE1 experiment the process
starts with one path for each OD pair for each interval. We can observe that
this total number quickly grows until reaching approximately 100 paths. After
this, the DTA process remains stable in respect to the number of paths used.
In the second proposed experiment, ADUE2, we can see that the total number
of paths used starts growing until reaching 180 paths. After this, the DTA
process starts to remove paths until reaching stability at 100 paths. Finally,
the ADUE3 experiment shows that the process needs less than 3 paths for each
OD pair for each interval. So, it removes some paths ofthe total set of the �rst
iteration until reaching around 100 paths.

If we pay attention to the last iterations of the DTA process, we can observe that
the total number of paths used at each 15-min simulation interval are similar for
all the proposed experiments. In particular, Table 7.4 shows the results for the
30th iteration, when all the experiments have achieved DUE or are very close
to this equilibrium.
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Figure 7.3.3: Total number of paths used for the experiment ADUE1.
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Figure 7.3.4: Total number of paths used for the experiment ADUE2.
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Figure 7.3.5: Total number of paths used for the experiment ADUE1.
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Paths Used throughout the DTA process

Experiment

Interval 1 Interval 2 Interval 3 Interval 4

No. Paths No. Paths No. Paths No. Paths

ADUE1 3 1,2,3 4 1,2,3,5 3 1,2,7 5 1,2,3,4,5

ADUE2 4 1,2,7,8 5 1,2,5,7,10 5 1,2,5,6,7 7 1,2,4,5,7,11,12

ADUE3 5 1,2,5,7,13 7 1,2,3,5,7,12,13 6 1,2,3,7,12,13 6 1,2,7,9,12,13

Table 7.5: Paths used throughout the DTA process (OD Pair 806-783).

It is important to note that ADUE3 is the experiment that shows more stable
results in terms of relative gaps (standard and re�ned). However, this is the
experiment that starts with the largest excess of paths and the process that uses
more paths at the last DTA iteration.

In order to better analyze the obtained results, we have decided to select one
particular OD pair and to study the evolution of its paths used throughout the
DTA procedure. We chose the OD pair formed at origin 806 and destination
783.

First of all, Table 7.5 summarizes the number of paths used at each 15-min
simulation interval throughout each of the proposed experiments. Experiment
ADUE1 uses a total of six paths throughout the procedure. ADUE2 uses a
total number of ten paths. And experiment ADUE3 uses eight paths during
the DTA process. In addition, Table 7.5 shows the identi�cation number of
each of the paths used. We can observe that there are paths used in all three
experiments, other paths used in two experiments, and other paths that are
used exclusively in one experiment. Finally, the total number of di�erent paths
used in all the experiments is 13.

Below, Figure 7.3.6 (zoom in Figure 7.3.7) describes in detail the evolution of the
paths from origin 806 to destination 783 during the DTA process in experiment
ADUE1. The process starts by using only one path (Path 1). It is interesting to
note that adding paths in the next iterations depends on the network situation,
which is not the same at every interval. For instance, in the second iteration,
the process adds a new path to the set of paths. In the case of Intervals 1 and
3, the added path is Path 2, while in the case of Interval 2 it is Path 5. And in
Interval 4, it is Path 4.

Finally, we can observe that some paths are added throughout the procedure.
But in the end, DUE is achieved using 1, 2 or 3 paths.
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Figure 7.3.6: Example of OD pair path evolution during the DTA process with
experiment ADUE1.
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Figure 7.3.7: Example of OD pair path evolution during the DTA process with
experiment ADUE1 (zoom).
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Figure 7.3.8: Example of OD pair path evolution during the DTA process with
experiment ADUE2.
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Figure 7.3.9: Example of OD pair path evolution during the DTA process with
experiment ADUE2 (zoom).
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Figure 7.3.10: Example of OD pair path evolution during the DTA process
with experiment ADUE3.
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Figure 7.3.11: Example of OD pair path evolution during the DTA process
with experiment ADUE3 (zoom).
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Figure 7.3.8 (zoom in Figure 7.3.9) describes in detail the evolution of the
paths from origin 806 to destination 783 during the DTA process in experi-
ment ADUE2. The process starts by using two paths (Path 1and Path 7). As
in the previously mentioned experiment, the addition of paths depends on the
network situation, which is not the same at every interval. Moreover, in this
experiment we need to add more paths throughout the procedure. The number
of paths rises to 6 paths at Interval 4. However, at the end of the DTA process,
the number of paths used is two for all the intervals.

Figure 7.3.10 (zoom in Figure 7.3.11) describes in detail the evolution of the
paths from origin 806 to destination 783 during the DTA process in experiment
ADUE3. The process starts by using three paths (Path 1, Path 7 and Path 3).
As in the previously mentioned experiments, the addition of paths depends on
the network situation, which is not the same at every interval. Moreover, in this
experiment we need to add more paths throughout the DTA procedure. In this
experiment we can see that the process converges to only two paths (Path 1 and
Path 2) and that it happens quickly in comparison to the other experiments.

The presented graphics re�ect once again the results obtained for relative gap
(standard and re�ned) measures. It should be remembered that the DUE solu-
tion is expected to use all the paths with similar travel costs. In these computa-
tional experiments, Experiment ADUE1 uses only two paths with similar costs
faster than the other two experiments. However, we detect that the process is a
bit unstable, particularly at Interval 4. On the other hand, Experiment ADUE2
presents the worst results of the three proposed experiments. Finally, we can
see that the experiment that starts with three paths for each OD pair for each
interval is the best. This presents a stable solution which uses two paths with
very similar travel costs from the 20th iteration.

Finally, we can observe that the three proposed experiments use almost the
same number of paths in achieving DUE. Moreover, at the end of the DTA
process they use practically the same paths. In this particular case, Path 1 and
Path 2 are both included in the three proposed solutions.

7.4 DUE vs One-Shot Simulation

In this section, we want to study the tra�c assignment that results from a
DTA model based on the DUE approach. The objective is to quantify the
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improvements in the tra�c network if we base the DTA on a speci�c equilibrium
(DUE), instead of doing the tra�c assignment through a one-shot simulation.

It should be recalled here that the DUE approach is a time-dependent gener-
alization of the First Wardrop Principle: If, for each OD pair at each instant
of time, current travel times experienced by vehicles that have departure in the
same time interval are equal and minimal, then the dynamic tra�c �ow through
the network is in a DUE state based on travel times.

In order to attain the objective, the proposed model is run over the presented
test network of Amara. In addition, a one-shot simulation is executed and both
results are compared qualitatively and quantitatively.

7.4.1 Experiment Design

The performed experiments take into account two di�erent assignment situa-
tions. The �rst one corresponds to the proposed DTA model whose objective
is to converge towards DUE. So, in this case the method must iterate as many
times as necessary until DUE is achieved. The second option is commonly re-
ferred to as the �one-shot� assignment; it is a simulation approach commonly
used in some microsimulators.

In order to perform the one-shot assignment in the proposed experiments, we
force the method to stop after the �rst iteration. Thus, the demand assignment
will correspond to the �rst iteration assignment, which is performed di�erently
than those in the remaining DTA iterations. As we have shown in Section 4.3,
the �ow assignment is inversely proportional to the path cost. For each OD
pair od, for each departure time interval t, and for all paths p ∈ Podt, the �ow
is assigned by following the Equation 7.4.1.

fkodpt =
1/codpt∑

p∈Podt

(1/codpt)
· qodt (7.4.1)

where:

fkodpt is the �ow assigned at iteration k to the path p from origin o to the
destination d departing at time interval t.

codpt is the cost of the path p from origin o to the destination d departing at
time interval t.
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qodt is the number of trips of the corresponding time dependent OD matrix.

In the case of the DUE assignment, the DTA process is allowed to iterate until
reaching a pre-established maximum number of iterations. Perhaps equilibrium
is achieved before, when the corresponding re�ned relative gap measure is ac-
ceptable (around 5% ), but we prefer to extend the procedure in order to verify
the stable behaviour of the developed DTA model. In these experiments, we
consider the maximum number of DTA iterations to be equal to 30. In addition,
we consider the initial number of paths for each OD pair for each interval to be
equal to three (experiment ADUE3).

7.4.2 Computational Results

In this section, we want to illustrate the importance of the improvements achieved
with DUE. In order to attain this objective, we execute the proposed experi-
ments over the presented real network of Amara. First of all, Figures 7.4.1 and
7.4.2 show the link density at the end of the �rst and the fourth 15-min inter-
vals of the simulation, respectively. For an easy visual comparison, we show the
results obtained through the proposed DTA model next to the results obtained
through one-shot, all of them at the same simulation interval. We consider that
the other two 15-min simulation intervals do not provide additional information
for the proposed objective of the experiment.

We can observe that the results obtained for both experiments (One-shot Sim-
ulation vs DUE) are totally di�erent. The one-shot simulation congests the
network in the �rst 15-min simulation interval. In addition, at the end of the
simulation, we can consider that the network situation is critical. On the other
hand, at the right side of the �gures, we observe the simulation results obtained
by using DUE paths and their corresponding �ows. It is obvious that the ob-
tained results show practically a free-�ow situation. So, the assignment result
of our DTA model allows us to load into the network all the demand (12.116
trips) without generating congestion.

Secondly, we want to show other results that con�rm the previously detected im-
provements in the network. For each vehicle, we plot a dot whose x-coordinate
is the departure time of the vehicle (the time when the vehicle enters the net-
work) and whose y-coordinate is the total time that this vehicle spends in the
network. Figure 7.4.3 shows the results for the two proposed experiments: one-
shot simulation vs DUE. In addition, Table 7.6 shows a quantitative summary
of the obtained results.
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Figure 7.4.1: DUE vs One-Shot Simulations: Average link densities at the end
of 15-min simulation interval 1.

Experiment
Consumed Time in Network (seconds for vehicle) Accumulated Consumed

Time (seconds)Min Median Mean Max

One-Shot 19,08 158,70 224,90 1.181,00 2.482.045

DUE 19,08 92,59 91,06 234,90 1.031.604

Table 7.6: Summary of the obtained results for one-shot vs DUE simulations.
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Figure 7.4.2: DUE vs One-Shot Simulations: Average link densities at the end
of 15-min simulation interval 4.

Figure 7.4.3: Total Time in Network One-Shot Simulation vs DUE.
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In the case of one-shot simulation, we can observe that the total time used for
each vehicle varies from 19.08 seconds to 1,181 seconds. The mean is 224.9
seconds, which is very high if we consider the lengths of the links in the Amara
scenario. However, if we observe the total time used for each vehicle in the
case of the DUE experiment, we see that it varies from 19.08 seconds to 234.90
seconds. And its mean is 91.06 seconds. Thus, we can conclude that if we use
the assignment result of our DTA model (under a DUE approach), the achieved
average improvement for each vehicle of the network is of 59.51% compared to
the time spent in the proposed one-shot simulation.

7.5 MSA Parameter Impact

The objective of this computational experiment is to prove the importance of
the MSA parameter in the DTA process, particularly in achieving convergence.
We suspect that when the tra�c demand is low, whatever MSA parameter is
used makes no di�erence. The DTA process is able to �nd the DUE tra�c �ow
assignment through the MSA procedure, no matter what the MSA parameter.

7.5.1 Experiment Design

The performed experiments consider the following three di�erent MSA param-
eters (λk):

� λAk = 1
k+1

� λBk = 1
2

� λCk = k
k+1

The �rst one, λAk , is a standard option used by most methods in the literature.
It is an MSA parameter that depends on the current iteration of the method and
that satis�es Equations 6.2.8. These two conditions ensure the theoretical MSA
convergence. With the second proposal, λBk , we want to test what happens
if the parameter does not depend of the current iteration, i.e., it is a �xed
diversion parameter within the new path and the rest of the paths belonging
to the path set. So, we propose a surprising parameter which does not satisfy
Equation 6.2.8 and that diverts a half of the total demand to the new path. It
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EXPERIMENTS

Experiment No. Initial Paths λk
ADUE3 3 A
BDUE3 3 B
ADUE3 3 C

Table 7.7: Set of the proposed experiments.

also distributes the other half of the total demand among all the other paths
of the set. Finally, we want to test the importance of using an MSA parameter
that satis�es Equations 6.2.8. With this aim, we propose λCk , which does not
satisfy these two conditions. We also want to test the �bad�convergence of the
MSA in this case.

Taking into account the results obtained in the previous Section 7.3, we have
decided to use three paths for each OD pair for each interval at the beginning
of the DTA process. In this case, we run three di�erent experiments, one of
them with one of the presented proposals for the MSA parameter (the same as
in Section 6.4). Table 7.7 summarizes the proposed experiments.

In order to accomplish the objective of the computational experiment, we exe-
cute each proposed experiment for two di�erent demands. The �rst one is the
demand used in the previous computational experiments, which is detailed in
Section 7.2. In this case, we assign the total �ow of 12,116 trips through four
15-min matrices. The other used demand is a reduction of the �rst one. We
consider 40% of the previous demand. So, in this case we assign the total �ow
of 4,847 trips that follow the same distribution as the �rst assigned demand.

After the calibration, we execute our DTA for a one-hour long demand. In
the following, all the obtained results are summarized and discussed through
di�erent convergence measures.

7.5.2 Computational Results

In this section we present the results of the proposed experiments executed over
the presented test network of Amara. First, we present the relative gap results
in order to have a global idea of the performance of the processes. Then, using
the relative gap proposed by Mahut, we try to re�ne the conclusions by taking
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Figure 7.5.1: Relative Gap for each experiment after each DTA iteration.

into account the di�erent departure time intervals in the analysis of the obtained
results.

Relative Gap

The proposed DTA experiments are run for 30 iterations. The 60-min loading
interval is divided into four 15-min time intervals for the proposed DTA model.
After each iteration, the gap proposed by Janson in 1991 (Section 4.3.6 ) is
calculated.

Demand : 12.116 trips Figure 7.5.1 shows the results for the three experi-
ments executed with a demand of 12,116 trips.

Demand : 4.847 trips Figure 7.5.2 shows the results for the three experi-
ments executed with a demand of 4,847 trips.

All these experiments combine an initial number of paths for each OD pair for
each interval equal to three, with the proposed options of the MSA parameter.
In the case of higher demand, we can observe that the developed DTA process
obtains reasonable results only in the case of experiment ADUE3. The experi-
ments that use λBk = 1

2 or λCk = k
k+1 provide the expected bad results, because

neither of these parameters satis�es Equations 6.2.8.

In contrast, we observe very di�erent results for the same experiments with low
demand. Surprisingly, all the experiments provide very good and stable results.
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Figure 7.5.2: Relative Gap for each experiment after each Low Demand DTA
iteration .

In fact, in the �rst iteration the relative gaps of the proposed DTA procedure
are around 0.15, and they fall rapidly (within a few iterations) to practically
zero.

Re�ned Relative Gap

The proposed DTA experiments are run for 30 iterations. The 60-min loading
interval is divided into four 15-min time intervals for the proposed DTA algo-
rithm. After each iteration, the re�ned relative gap proposed by Mahut in 2003
(see Section 4.3.6) is calculated for the vehicles departing from the origin during
each of these intervals.

Demand : 12,116 trips In Figure 7.5.3, graphics ADUE3, BDUE3 and
CDUE3 show the results for the three di�erent proposed MSA parameters,
combined with a number of initial paths equal to three. To better analyze
the results of the experiments, the zooms of the ADUE3 results are shown in
graphic ADUE3(zoom).

Demand : 4,847 trips In Figure 7.5.2, graphics ADUE3, BDUE3 and
CDUE3 show the results for the three di�erent proposed MSA parameters
combined with a number of initial paths equal to three.

With respect to the re�ned RGap results, we can observe the same surprising
results as in the case of a standard RGap measure. For the demand of 12,116
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Figure 7.5.3: Re�ned Relative Gap experiments with initial number of paths
equal to three.
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Figure 7.5.4: Re�ned Relative Gap experiments with initial number of paths
equal to three (Low Demand).
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trips, only the third proposed experiment, which uses MSA parameter λAk =
1
k+1 , achieves good results. The other two experiments, which use λBk = 1

2

and λCk = k
k+1 , respectively, provide the expected bad results. The results

for CDUE3 are even worse than the constant option assumed in experiment
BDUE3.

In contrast, for the low demand executed experiments, we observe very di�erent
results. The three experiments start with a re�ned relative gap of around 0.3,
but they fall very fast to practically zero. The best experiment is CDUE3, which
uses λCk = k

k+1 and which does not satisfy the convergence Equation 6.2.8.

As we suspected, the MSA �ow reassignment converges independently of the
proposed MSA parameter in low-demand scenarios. This is true even for options
with theoretically bad behaviour.

7.6 Summary and Conclusions

In this chapter we have performed a computational experiments that test the
feasibility of the proposed DTA model on the real network of Amara in Spain.

The �rst experiment has investigated the in�uence of deciding the number of
paths for each OD pair for each interval, speci�cally in the way the proposed
DTA model achieves DUE convergence . At the initialization step of the devel-
oped model, it requires a set of shortest paths for each origin to each destination
for each departure time interval. These sets of paths are determined using a
k-static shortest path algorithm (Section 4.3). Thus, before beginning the DTA
process, we must decide the initial number of paths for each OD (k).

During the network calibration process, and depending on the network charac-
teristics, we select the most convenient number of paths. In certain cases, a bad
decision may result in false congestion at the beginning of the process, render-
ing the DUE convergence more di�cult. In the �rst proposed experiment, we
considered this parameter as a design factor in order to test its real signi�cance
in the global convergence process. In this particular case, as we have justi�ed
in the corresponding section, we took into account one, two or three paths for
each OD pair for each interval at the start of the DTA process.

In this experiment we the graphically compared Relative Gap and re�ned Rel-
ative Gap measures obtained for each of the proposed experiments. In this
case, we observed that the experiment starting with only one path (ADUE1)
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seems better than the other two experiments. It achieves convergence at the
8th iteration. However, this experiment is not stable because it presents conver-
gence oscillations during approximately 30 DTA iterations. On the other hand,
the third proposed experiment (ADUE3) improves the stability in the other
obtained results. In this case, it needs 20 iterations to achieve equilibrium;
but in the next ten iterations the re�ned RGap measure remains under 0.05.
The observed behaviour for the RGap measure is very close to the previously
mentioned re�ned RGap.

In addition, we have analyzed in detail the paths used throughout the DTA
process in this �rst computational experiment. First, we studied the evolution
of the total number of paths used during the 30 iterations of the proposed DTA
experiments. Throughout the procedure, we observed a di�erent number of
paths for each of the proposed experiments, depending on the initial number
of paths. However, we paid attention to the last iterations of the DTA (when
all the experiments achieved DUE or were very close to this equilibrium), and
we observed that the total numbers of paths used at each 15-min simulation
interval were similar for all the proposed experiments.

Secondly, we have decided to select one particular OD pair and to study its
path evolution throughout the iterative DTA process. We have observed that
the results obtained for RGap and re�ned RGap measures are re�ected again in
this particular case. The main conclusion is that the three proposed experiments
use almost the same number of paths to achieve DUE, independently of the
initial number. In addition, the three experiments used practically the same
paths (Path 1 and Path 2 are both included in the three proposed solutions).

In summary, we have concluded through this �rst computational experiment
that the experiment starting with the largest excess of paths provides more
stable results in terms of RGap and re�ned RGap convergence measures. This
is the ADUE3 experiment, which uses three paths at the beginning of the DTA
process. This is possible because the developed DTA method can remove paths
during the process. If some path �ow becomes close to zero during a certain
iteration of the global process, then this path is removed from the corresponding
path set. So, in the next DTA iteration the total demand will be distributed
among the remaining paths of the set.

The aim of the second proposed computational experiment was to verify the
expected behaviour of the developed DTA model. Our proposed model is based
on the DUE approach; so we hoped that the results obtained through a simu-
lation based on our DTA approach would be better than other results without
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a DUE assignment. In order to attain the objective of this computational ex-
periment, the proposed model was run over the test network of Amara, and
the results were compared with those obtained through a previously proposed
one-shot simulation.

As expected, the results obtained from both experiments were totally di�erent.
The one-shot simulation congests the network rapidly, �nalizing the simulation
with a critical network situation. In contrast, the assignment result of our DTA
model allows loading all the proposed demand (12,116 trips) into the network
without generating congestion. After qualitatively and quantitatively comparing
the results, we conclude that if we use the assignment result of our DTA model,
the average consumed time in the network drops from 224.9 seconds for each
vehicle to 91.06 seconds.

In the last computational experiment, the objective was to prove the importance
of the MSA parameter in the DTA process, particularly in its achievement of
DUE convergence using the MSA �ow reassignment. Before this computational
experiment, we suspected that the MSA parameter was not relevant to the pro-
cedure when the considered demand is low. In order to accomplish the objective,
we considered three di�erent MSA parameters (the same as in the computational
experiments of Section 6.4). Moreover, we executed each proposed experiment
for two di�erent demands: the demand used in computational experiment which
had 12,116 trips; and a low demand with 4,847 trips, which followed the same
distribution as the �rst assigned demand.

In this experiment we graphically compared RGap and re�ned RGap conver-
gence measures for all the proposed experiments. Both RGap and re�ned RGap
results show the same expected results. For the demand of 12,116 trips, only
the third proposed experiment, which used MSA parameter λAk = 1

k+1 , provided

good results. The other two experiments that uses λBk = 1
2 and λCk = k

k+1 , re-
spectively, provided the expected bad results. In contrast, for the low demand
experiments, the three MSA options start with very good results and the gaps
fall very fast to practically zero. The best experiment is CDUE3, which uses
λCk = k

k+1 and which does not satisfy the convergence Equation 6.2.8.

As we suspected, the MSA �ow reassignment converges independently of the
proposed MSA parameter in the case of low demand scenarios. So, it is im-
portant to note here that this conclusion must be taken into account in the
previously presented results of Chapter 6.

Finally, we conclude that the computational experiments carried out in this
chapter have demonstrated the good behaviour of our DTA model. We have
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shown that the initial number of paths for each OD pair for each interval at the
beginning of the process has a key role in the stability of the convergence. All
the proposed options achieve DUE convergence using almost the same number
of paths, but not with the same level of stability. Starting with an excess of
paths and removing them when it becomes necessary appears to be the most
stable option. In addition, we were able to test the importance of the MSA
parameter in the reassignment �ow process on its way to convergence. In the
computational experiments of Chapter 6, we observed surprising results with the
MSA parameters that, intuitively, seemed they would provide bad convergence.
Now, we have shown that the demand assigned to the network must be taken
into account: very low demand scenarios will accept any MSA parameter.



Chapter 8

Conclusions

In this �nal chapter, we look back on the main achievements of this dissertation.
The summary of the main research objectives and the approach used to achieve
these objectives are presented. After this, we discuss the main research �ndings.
And, �nally, some recommendation for further research are formulated.

8.1 Summary

This dissertation deals with a problem that has been extensively studied for
decades: the dynamic tra�c assignment (DTA) problem. This area of research
has particularly accelerated in the last twenty years, since the emergence of
Intelligent Transport Systems (ITS). In an operational context, the objective of
the DTA model is to represent tra�c evolution in the roadway network when
tra�c conditions change. These models describe the demand assignment on the
di�erent paths connecting every OD pair corresponding to an equilibrium tra�c
state. In particular, we studied the problem when DTA is based on dynamic user
equilibrium (DUE), where no users can decrease their travel time by changing
paths.

Thus, the main objective of the research presented in this thesis was to develop
a DTA model based on the dynamic extension of the Wardrop Principle (DUE).
The main motivation for developing this model was the need to develop a de-
cision support tool for assisting operators (sometimes our own research group)

319



320 CHAPTER 8. CONCLUSIONS

in making strategic and operational decisions, particularly in an urban context.
In addition, for some time now our research group has been addressing other
tra�c problems, and while resolving them we realized the importance of having
our own DTA model. In this way, we could easily integrate the DTA results
into the resolution approaches of other tra�c problems related to strategic and
operational transport planning.

For this purpose, we solved a variational inequalities formulation by employ-
ing an iterative solution algorithm based on a preventive approach, which is a
modi�cation of the well-known Method of Successive Averages. In particular,
this thesis develops a DTA model that uses a mesoscopic tra�c simulator to
reproduce complex tra�c �ow dynamics. In fact, in order for the developed
DTA to achieve its functional objective in an urban context, we realized that it
was fundamental that the dynamic network loading component be able to repro-
duce tra�c light controls, lane changes and di�erent vehicle classes. Therefore,
a new multiclass, multilane, mesoscopic simulation model was developed with
these speci�c characteristics.

8.2 Main Contributions

This section brie�y summarizes the main contributions presented in this thesis.

First Contribution: Dynamic Tra�c Assignment Model

The �rst and main contribution of this thesis is a mesoscopic simulation-based
DTA model based on DUE behavior.

As shown in Figure 8.2.1, the proposed DTA scheme iterates between the two
main components until the convergence criterion is satis�ed. These two compo-
nents are referred to as dynamic network loading and path �ow reassignment.
In addition, this proposal includes a time-dependent shortest path component,
in order to add new paths throughout the procedure when it becomes necessary.
A K-static shortest path algorithm that determines an initial path set is also
used in the �rst iteration of the process.

It is important to note here that the proposed scheme of the developed DTA
model was designed in such a way that it is relatively easy to substitute di�er-
ent components for others with the same associated. For example, in Chapter
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Figure 8.2.1: Structure of the proposed DTA model.
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6 we validate our proposed �ow reassignment method with external dynamic
network loading, time-dependent and K-static shortest path algorithms. In this
particular case, we adopted all these methods from the mesoscopic software
MEZZO.

Second Contribution: Mesoscopic Tra�c Simulator

DTA models based on simulation use a tra�c simulator to mimic the complex
tra�c �ow dynamics, which is the dynamic network loading component of the
previously commented scheme. As a result, the second main contribution of
this research is a mesoscopic tra�c simulation model that is well suited for
embedding into the developed DTA model.

This mesoscopic simulator considers a continuous-time link-based approach with
complete demand discretization. Considering the disaggregated treatment of
each individual vehicle allowed us to use di�erent classes of vehicles in the DTA
problem. Moreover, the proposed model allows longitudinal discretization of
links in lanes in order to reproduce the traversal movements described by vehicles
performing lanes changes, which can considerably augment congestion in the
network links. Thus, a complete and new multiclass, multilane, mesoscopic
tra�c simulator was developed in this dissertation.

Furthermore, the computational experiment performed in Chapter 5 concluded
that the developed simulation model was able:

� To reproduce the fundamental diagram,

� To respect the propagation of congestion, ensuring correct temporal and
spatial location of the congestion,

� To reproduce tra�c behavior in a similar way as a microscopic simulator,
except for the case of the roundabout behavior.

Third Contribution: Modi�cation of the MSA Flow Reassignment

One of the main components of the proposed DTA scheme is the �ow reas-
signment method used to distribute the �ow at each iteration of the global
process. This dissertation proposes a modi�cation of the well known Method
of Successive Averages (MSA) for this �ow reassignment process. During the
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�ow diversion process, this developed extension takes into account the cost of
the alternative paths, unlike the classical MSA which does it indiscriminately
regardless of whether or not the path is the worst or only slightly worse than
the new optimal path.

So, in order to perform a more realistic �ow reassignment among the alternative
paths throughout the iterative scheme, we developed a new MSA that uses
a diversion factor based on a logit distribution according to travel times. In
this case, we adapted the idea of Varia and Dhingra about using this logit
distribution in accordance with instantaneous travel time. In our case, we used
actual travel times instead of instantaneous ones in order to take advantage of
the information provided by the previous dynamic network loading in the global
DTA scheme. This travel time information on all the links at each time interval
was a considerable improvement on the classical approach. Moreover, in order
to reduce the computational storage needed to save all the paths used in the
original MSA, the proposed method also combined the proposed diversion factor
with the popular limitation on the maximum number of available paths for each
OD pair for each departure time interval.

The computational experiments performed in Chapter 6 showed that this pro-
posal produced similar or sometimes better results than other proposals in the
literature. In this case, we took advantage of the previously mentioned �exi-
ble design of the proposed DTA scheme, and we carried out these experiments
by integrating the new proposed MSA with other external components from
MEZZO.

Fourth Contribution: Literature Review of Simulation-based DTA

Models

In order to accomplish the thesis objectives, we �rst needed to investigate in
detail the relevant DTA models based on simulations in the literature. To the
best of our knowledge, there did not exist a state of the art for simulation-based
DTA models, at least not at the level of detail we needed. So, the �rst challenge
of this dissertation was to create a speci�c one.

Therefore, another contribution of this thesis was a complete literature review
of the three types of DTA models based on simulation. They were distinguished
based on the level of detail with which they represent the studied system, from
low to high �delity: macroscopic, mesoscopic and microscopic simulation mod-
els. For each examined DTA model, the in-depth review analyzed not only
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the approach used to reassign the �ow, but also the dynamic network loading
component.

The thirteen DTA models discussed are (in alphabetical order):

Aimsun
CONTRAM
DRACULA
Dynameq
DynaMIT
DYNASMART
DynusT

INDY
INTEGRATION
METANET
METROPOLIS
MEZZO
VISTA

Fifth Contribution:

Aside from these main contributions, we will answer the research questions

presented in Chapter 1.

� The original MSA indiscriminately diverts tra�c from the paths used in
the last iteration to the current optimum paths. The process extracts the
same amount of �ow from each used path, regardless of whether the path
is the worst or only slightly worse than the optimal. Does this diversion
process a�ect the achievement of DUE?And, if so, in which way?

One of the computational experiments in Chapter 6 compared classical
MSA with our developed MSA modi�cation. We remind the reader here
that our proposal, in contrast to the original MSA, took into account the
cost of the alternative paths when it diverted the �ow. Thus, the main
part of the �ow assigned to the new shortest path came from the worst
paths, i.e., from the paths with higher costs.

It is important to note that we performed this special �ow reassignment
by using a diversion factor which was based on a logit distribution in ac-
cordance with the actual travel times from the DTA scheme's previous
dynamic network loading. In this way, we took advantage of the informa-
tion collected throughout the global process.

The experiment showed that the modi�ed MSA produced better results
than the original approach. Thus, we can conclude that an indiscriminate
standard �ow reassignment may have e�ects on achieving DUE, particu-
larly in the number of DTA iterations needed.
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� From a transportation modeling standpoint, is it realistic to accept unlim-
ited growth in the number of OD paths? And, if not, how does an upper
bound in the number of paths for each OD pair for each departure time
interval a�ect the quality of the reassignment process and its convergence?

In the computational experiments in Chapter 6, we observed that the �ow
reassignment process had good behaviour, regardless of whether or not it
used limitations in the number of paths for each OD pair for each interval.

In the global Gap measure case, all the experiments generated solutions
whose quality was independent of the limited number of paths. So, the
limitation solution was able to reduce the computational storage needed in
the classical MSA without reducing the good performance of the process.

Regarding the results obtained for the Relative Gap convergence mea-
sure, all the experiments obtained better results by limiting the maximum
number of available paths for each OD pair for each interval.

� In the MSA approach, how does the initial number of paths through each
OD pair for each interval in�uence convergence towards dynamic user
equilibrium?

One of the experiments in Chapter 7 investigated how deciding on the
initial number of paths for each OD pair for each interval in�uences DUE
convergence in the developed DTA model. At the initialization phase
of this model, a set of shortest paths is required from each origin to each
destination for each departure time interval. These path sets are calculated
using a K-static shortest path algorithm (Section 4.3). Depending on the
network characteristics, we must decide on the most convenient number of
paths during the network calibration process. In fact, in certain cases, a
bad decision may result in false congestion at the beginning of the process,
making DUE convergence more di�cult.

In the performed computational experiment, we graphically compared con-
vergence measures obtained from the three experiments, in which each of
them had one di�erent parameter option. We concluded that the experi-
ment that began with the largest excess of paths was the experiment with
more stable results for Gap and RGap measures. This was possible be-
cause the developed DTA model can remove paths during the process. If
some path �ow becomes close to zero at certain iterations of the global
process, then this path is removed from the corresponding path set. So,
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in the next DTA iteration the total demand will be distributed among the
remaining paths of the set.

All the proposed options achieved DUE convergence by using almost the
same number of paths, but not with the same level of stability. Starting
with an excess of paths and removing them when it becomes necessary,
appeared to be the most stable option. In conclusion, the initial number
of paths for each OD pair for each interval at the beginning of the DTA
process has a key role in obtaining a stable convergence.

� The convergence of the MSA approach depends on the values assigned to
the structural parameters of the algorithm (MSA parameter). What is
the in�uence of the di�erent alternatives on convergence to dynamic user
equilibrium?

In the computational experiment of Chapter 6, we observed surprising
results when we used MSA parameters which intuitively seemed to be bad
for achieving DUE convergence. We suspected that the MSA parameter
was not relevant to the procedure when the considered demand is low.

In the last computational experiment of Chapter 7, the objective was to
test the real importance of the MSA parameter in the DTA process, par-
ticularly in achieving DUE convergence with the MSA �ow reassignment.
We considered three di�erent MSA parameters (the same as in the com-
putational experiments in Section 6.4), and we executed each experiment
with two di�erent demands: normal and low.

For the standard demand, only the experiment that used MSA parameter
λk = 1

k+1 (where k was the DTA iteration) achieved good results. The
other two options, which intuitively seemed unsuitable, provided the ex-
pected bad results. In contrast, all three MSA options in the low-demand
experiments began with very good convergence measures and quickly fell
to practically zero. Thus, the obtained Gap and RGap measures clearly
show that the volume of the demand assigned to the network must be taken
into account when selecting the MSA parameter. Furthermore, when we
need some computational experiment to test a new proposal of the MSA
parameter, it would be prudent to test the network with a high volume
demand, because very low demand scenarios will accept any MSA param-
eter.
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� Can this approach adequately reproduce the phenomena observed in macro-
scopic tra�c �ow behavior? (For example, shock waves and the tra�c fun-
damental diagram?) In addition, can the model that represents the node
behaviour accurately reproduce delays and queue spill-backs?

In the computational experiment of Chapter 5, we demonstrated that
the macroscopic fundamental diagram can be accomplished with the pro-
posed mesoscopic simulation model. The results obtained show that tra�c
behavior on the links of the test network follow theoretical macroscopic
relationships.

Furthermore, in the second experiment of the same Chapter, we studied
whether or not the developed model properly reproduces the propagation
of congestion. The results obtained show that the proposed approach cor-
rectly reproduces shock waves, ensuring the correct temporal and spatial
location of congestion at the link level.

We conclud that the proposed approach adequately reproduces the phe-
nomena observed in macroscopic tra�c �ow behavior, including delays
and queue spill-backs.

� Which is the most appropriate characterization to describe these temporal
dynamics? Time-based or event simulation?

In Section 5.4, we explained that there are generally two primary ap-
proaches to building simulation models: time-step and event-based. These
two paradigms are fundamentally di�erent approaches in how they man-
age time. In a time-step model, time is the independent variable; while in
an event-based model, time is a dependent variable.

Because the proposed mesoscopic simulation model considers the �ow
propagation process from vehicle to vehicle, and because it is formulated
from a space-dependent time relationship, the most suitable approach is
the event-based paradigm, which coincides with the idea of considering
time as a dependent variable.

In addition, throughout this thesis we have particularly demonstrated the
importance of e�ciency in DTA. Adopting an event-based simulator in our
DNL component can potentially be more computationally e�cient than
using the other, time-based simulation approach.
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� How important is the model representation of the network topology? For
instance, the experiment shows that roundabouts and short-length links
could a�ect the results of the urban tra�c simulation.

During the validation of the developed mesoscopic tra�c simulator, we
detected special tra�c behaviour at roundabouts and their adjacent links.
One of the computational experiments in Chapter 5 tested the developed
model against a microscopic tra�c simulator using the real urban net-
work of Amara (Spain). In general, the results obtained looked promis-
ing. Although the proposed model took into account considerably fewer
parameters than the microsimulator, the reproduced tra�c behavior was
very similar in both cases, except for roundabout behavior. Moreover, the
developed mesoscopic simulator overestimated density on short links (less
than 20 meters) when congestion appeared in the network (compared to
benchmark microsimulator measurements).

In conclusion, the developed mesoscopic model encountered some problems
when executed on networks that included roundabouts and short links in
their topology. These scenarios are very typical in European cities, thus
we could not avoid this problem. However, it will be handled promptly.
This is the reason we include in the following section, Further Research, a
suggestion to improve the model by including a speci�c treatment of this
problematic topology: roundabouts and short links.

8.3 Further Research

In this �nal section we discuss directions for future research which naturally
follow the research described in this thesis.

One of the issues that need further investigation is the treatment of roundabouts
and short links (less than 20 meters) in the developed mesoscopic tra�c simu-
lation model. As we explained before, in the computational experiments which
validated the dynamic network loading component, the only observed signif-
icant di�erence between our results and those of a microscopic simulator was
the overestimated density that our simulator produces on short links and round-
abouts. Although our results were reasonably similar to those of the benchmark
microscopic simulator, we think there is an opportunity for improved investiga-
tion of the special behaviour of the proposed simulation for di�erent network
topologies.
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A further step in this research is to full validation the developed model against
real tra�c data (counts, speeds, travel times, etc.).

In addition, test the developed models on larger networks (e.g., the cities of
Barcelona or Vitoria in Spain) in order to clearly highlight the e�ects of some
of the developed proposals. For instance, our proposed modi�cation of the
MSA �ow reassignment process improves computational storage by limiting the
number of paths for each OD pair for each interval. This improvement should
be further evaluated on larger networks.

Another issue that should be focus in a future work is a comparison between
models based on di�erent behaviour hypothesis: DUE vs. Stochastic DUE
(preventive vs. reactive methods). This would be relevant in the current state of
the art of the dynamic tra�c assignment models. In the DUE case, the objetive
is to achieve a situation where all the vehicles for certain OD pair departing in
the same interval have experienced the same and minimal travel times. While
in the case of SDUE, its equilibrium is de�ned in terms of a �xed point in terms
of route �ows, where the path may have di�erent and non-minimal costs. It
is for that reason that I consider that this comparison could be useful for the
state of the art if we use real tra�c data to evaluate the correctness of the two
di�erent behaviour approaches.

Moreover, this computational experience would have signi�cant value if it would
be done on di�erent scenarios and with di�erent DTA models. If the experiment
would be a comparison of only two models or on only one scenario, the obtained
conclusions could not be generalized. The used models and the scenarios can
bias the obtained results. For instance, comparing two DUE models we often
observe that the resuls are not equal. And moreover, the location of the network
and the used demand could concern the decision of what behaviour hypothesis
best �ts the real behavior of the system.

Another direction of research following from this thesis is to restart one of the
�ow reassignment methods summarized in the literature review section of Chap-
ter 6: projection methods. For some time now, our research group has addressed
asymmetric static tra�c assignment problems by using methods based on pro-
jection procedures. So, it seems logical that we should try to yield synergies
between both problems: DTA and asymmetric assignment. Since the analytical
formulation of DUE generalizes variational inequalities with time discretization,
approximating this problem with projection procedures in the space of the paths
seems to be a suitable approach with promising prospects.

A good starting point would be the algorithm proposed by Wu (1991) in his
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dissertation, and his corresponding follow-up work in 1998 (Wu et al. (1998)).
In addition, we would study the most recent work of Mahut et al. (2007), in
which they present an algorithm that operates in the path �ow space, which
is very attractive for adapting the equivalent projected gradient and reduced
gradient algorithms.

Another line of research to be explored using our proposed DTA scheme is the
joint calibration of the OD estimation process and the DTA model. The value
of DTA models depends on their ability to accurately replicate conditions for
the speci�c network being studied. The DTA model outputs are governed by
a set of parameters that must be estimated before the models are applied, in
particular the OD matrices that represent tra�c demand. The calibration of
both components, demand and supply, has been attempted generally through a
sequential procedure.

One possible starting point would be the dissertation of Balakrishna (2006). In
this work he proposed the calibration problem as a minimization problem whose
objective non-linear function is a goodness-of-�t function of the parameters used.
He proposed three algorithms to solve the problem: box-complex, SNOBFIT
and SPSA. He concluded that the latter is the most e�cient. For some time now,
our research group has addressed the dynamic OD matrix estimation problem by
using methods based on the SPSA algorithm. So, following this line of research
is clearly needed.

Finally, although it was far beyond the scope of this dissertation, the experience
of this work has shown us that there are great opportunities for reducing the
computational e�orts of the developed tools. All the developments included
in this thesis are academic works, so the computational e�ciency is less than
we would like. However, they are usually used as research tools and, since the
results look promising, they are strong candidates for improvements in more
e�cient and sophisticated tools.

8.4 Related Presentations and Publications

� Comparison on path �ow reassignment methods for dynamic tra�c assign-
ment based in mesosimulation. M.P. Linares, J. Barceló. LATSIS 2012
(1st European Symposium on Quantitative Methods in Transportation
Systems), September 2012, EPFL, Lausanne, Switzerland.
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� An approach to multiclass mesoscopic simulation based on individual vehi-
cles for dynamic network loading. M.P. Linares, C. Carmona, J. Barceló,
O. Serch, O. Mazariegos. 16th International IEEE Conference on Intel-
ligent Transport Systems (ITS for All Transportation Modes), October
2013, The Hague, The Netherlands.

� An approach to multiclass mesoscopic simulation based on individual vehi-
cles for dynamic network loading. M.P. Linares, C. Carmona, J. Barceló,
O. Serch, O. Mazariegos. Accepted for publication in the Proceedings of
16th International IEEE Conference on Intelligent Transport Systems (ITS
for All Transportation Modes), October 2013, The Hague, The Nether-
lands.

� A mesoscopic simulation based dynamic tra�c assignment model. M.P.
Linares, C. Carmona, J. Barceló, O. Serch. Accepted for presentation
at the 93rd TRB Annual Meeting, January 2014, included in the Com-
pendium of Papers.

� A mesoscopic simulation based dynamic tra�c assignment model. M.P.
Linares, C. Carmona, J. Barceló, O. Serch. Accepted for presentation at
the IFORS 2014, Barcelona, July 2014.
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