ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a I'acceptacio de les seglents
condicions d'Us: La difusié6 d’'aquesta tesi per mitja del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel-lectual Gnicament per a usos privats
emmarcats en activitats d’'investigacio i docéncia. No s’autoritza la seva reproduccié amb finalitats
de lucre ni la seva difusio i posada a disposicio des d'un lloc alie al servei TDX. No s’autoritza la
presentacio del seu contingut en una finestra o marc alie a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentacio de la tesi com als seus continguts. En la utilitzacié o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptacion de las siguientes
condiciones de uso: La difusién de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual Gnicamente para usos
privados enmarcados en actividades de investigacién y docencia. No se autoriza su reproduccién
con finalidades de lucro ni su difusion y puesta a disposicidon desde un sitio ajeno al servicio TDR.
No se autoriza la presentacién de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentacion de la tesis como a sus
contenidos. En la utilizacién o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate
the name of the author

EFFICIENT HARDWARE/SOFTWARE
CO-DESIGNED SCHEMES FOR
LOW-POWER PROCESSORS

Dissertation submitted for the degree of

Doctor of Philosophy in Computer Architecture

PhD Student: Pedro Lépez Munoz
PhD Supervisor: Fernando Latorre Salinas

PhD Co-supervisors: Enric Gibert Codina, Antonio Gonzélez Colas

Universitat Politécnica de Catalunya

Programa de Doctorat en Arquitectura de Computadors

Barcelona, 2014

Contents

(@70 1 1) 4 1 e i
LSt Of FAgUIES.cuiiiiiniiiiiiiiiiiiiiiiiin ittt e e e e eneaes v
LiSt Of TableS . ittt st e e e e e s a e ix
72 01537 2 T xi
AcKkNOW]edgmeEnts....ocoiiiiiiiiiiiiiiiiiiiiiiiiri st e e e a xiii
1 Thesis INtroduction .c.coviivieiiiiiiiiiiiiiiiiiiiiiiiir ettt eeas 1
1.1 Thesis ODJECtIVES iciririieiniiiiiiiiiiiiririisrieisisrcsssreresssaressssscsssssesssssasessssssasssns 2

1.1.1 Code Profiler Desigh ODJECtIVES «evuuiiiiiiiiiiiiiiiiiiai et e e 4

1.1.2 Register CheckPointing Design Objectivescceevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeecceees 5

1.1.3 Loop Parallelization Scheme Design Objectivesccouviiiiiiiiiiiiiiiiiiiiinieeiis 6
P2 © 1 0§ 1 0 = N 7
2 BacKkground ...cooieiiiiiiiiiiiiiiiiii e e e s s e 8
2.1 General Introduction to Virtual Machinesc.ccoouviviiiiiiiiniiiiiininiininiinnne, 8
2.2 Hardware/Software Co-Designed Virtual Machines.......cc..ccoevvunvirnniinnnes 11
2.3 Operation of a Co-Designed VM at System Level.......coceeviviniiniininennnnne 13

2.4 Operation of a Hardware/Software Co-Designed VM at Internal Level 14

2.4.1 Detecting Regions to be Optimizedceeiiiiiiiiiiiiiiiiiiiiiiiiiiiis e, 17
2.4.2 Storing Optimized RegIONScoiiiiiiiiiiiiiiiiiii e 18
2.4.3 Using the Optimized RegIONS ...cciiiiiiiiiiiiiiiii e 20
2.5 Improving Program Execution via a Co-Designed Virtual Machine...... 21
2.5.1 Code OptimizZationsiiiiiiiiiiiai ettt e e e e e e eaeta e e e e e e eeeeennaaanns 21

2.5.2 Mechanisms to allow speculative code execution..........coeeeeiiiiiiiiiiiniiiiiiiiiiinnnnnn. 23
2.5.3 Trade-Offs ..o e 26
2.6 Baseline Hardware/Software Co-designed Processorccocovuvvivniinnnes 26
3 Detecting Hot Code ...cuoviviveniniiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiirrierr et saeaeae 29
5 20 I 0 0 i 1 1 0N 30
.11 DESCTIPEION ettt ettt e ettt ettt e e eat e e ean e een 30
3.1.2 Online versus Offline Profiling..........oiiiiiiiiiii i 30
3.1.3 Gathering Information.........ccooooiiiiiiiiiiiiii e 31
3.1.3.1 Program Events.. ..o e 31
3.1.3.2 Hardware and Software APProaches........cccoooiiiiiiiiiiiiiiia e 32

3.2 Profiling for Hot Code Detection........ccccuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinininininn.. 32
30 B] o Tt 7 SRR PPPPN 32
3.2.2 Related WOTK ..o 33
3.2.3 Application CharacterizZationuuuuiirieieii e 36
3.2.3.1 Static and Dynamic INStructions ... 36
3.2.3.2 Counting INSEIUCEIONS ...uueeiiiiiiiiiiis ettt 41
3.2.4 Basic Block Cycle of Life ..ot 44
3.2.5 Comtext SWItCN . .ue i e 49
3.2.6 Reset Counters Coverage CoStoouuiiiiiiiieriiiiiiiiiie et 50
3.2.7 Basic Block Classificationoooouiiiiiiiii e 54
3.3 Proposed Solution (LIU)...ccccccviiimiiimuiiiuiiiiniiiniiiiiiiicenieeicieenneaneeens 56
3.3.1 Hardware StITCTUTE .. .ooiiiii et 56
3.3.2 SOFEWATE SUPPOT .t eei ettt ettt e e e e et eee et e e e e e e eeeennnna e eeeeas 58
3.3.3 Replacement Policy Motivationuueeiiiiiiiiiiiiiiiiiiiiii e 59
3.3.4 LIU DefiTItiON «.uueeeiie et e 60
3.3.5 pLIU: A Realistic LIU Implementation. ...t 62
3.4 Evaluation...c.c.cocoiviiiiiiiiiiiiiiiiiiiiiiiiiir e e 65
3.4.1 Simulation Frameworkccooiiiiiiiiiiiiie e 65
342 RESUIES ettt 65
3.4.2.1 Indexing Bits...cooiiuiiiiiiiiii e 66
3.4.2.2 Replacement Policies Evaluationcccoooiiiiii 67

ii

3.4.2.3 Basic Block Characterization Evaluation......cocoooviviiiiiiiiiiniiiieieieeieeenn 69

3.4.2.4 PLIU Evaluation.. ..ot 71
3.4.2.5 Performance & Overheadscooeiiiiiiiiiiiiiiiiieiie e 72
3.4.2.6 Power Requirements. ...ttt 76

3.5 Conclusions and Future Work.....c.cocoiviiiiiiiiiiiiiiniiiiiiiiiiiiiinnnnenens 76
4 HW/SW Register Checkpointing......ccc.ccevviuniiiniiiniiiniiiiniiiniiiininneinnennn. 79
4.1 HRC OVervIiEW ..ottt ettt sasasaseeeenenenensnsnans 81
4.2 State of the Art...ciiiiiiiiiiiiiiiii e 83
4.3 Baseline Core Characteristics and Pipeline......cccccoviviiiiniiininiiiciininecennnnes 84
4.4 Detailed HRC Implementationccceevireiminiiiiiiiiirirnirinsrsreisisicassssesesssase 86
4.4.1 Checkpointing Mechanismooouiiiiiiiiiiiiiiiii e 87
4.4.2 Recovery MeChaniSImoo.iiiiiiiiiiiii it ettt 90
4.4.3 Hardware Implementation Detailsoooviiiiiiiiiiiiiiiiii e 92
4.5 Evaluation ... e 94
4.5.1 Simulation Frameworkc..oooiiiiiiiiiiii e 94
4.5.2 RESUIES ittt aaas 95
4.5.2.1 Performance TMPactooiiiiiiiii et e e 95
4.5.2.2 Register Pressure.......cooiiiiiiiiiiiiiiii i 97
4.5.2.3 Arca and Power EStimationscooeeiiiiiieiiiiiiieieiiiiee e 99

4.6 Conclusions and Future Work.....c.cocvivviiiiiiiiiininininiiiiiiinnnnneaes 101
5 Loop Parallelizationc.cccociiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciicnnnneeeaeaeas 103
5.1 State of the Art..iiiiiiiiiiiiiiiiiiiidrr 105
5.2 Loop Parallelizationccccoeciiiiriieieiiiiiieiicininirerarareisssscassssesscasassssssscnsssns 108
5.2.1 Code Regions t0 Parallelizecooiiiiiiiiiiiiiiiiiiiie e 109
5.2.2 Potential Numbers of the Regions to Parallelize.............cccciiiiiiniiiiiiiiiiiinnnn. 112
5.3 Loop Parallelization Scheme Implementation......c.c.cocevveiiiiiiiinininininnnee. 115
5.3.1 Baseline Core CharaCteriStiCs .. .oiiiiiiiiiiiiiiiii et 115

iii

5.3.2 Thread SPAWIINEttt ettt eeeeeeaaiiaes 115

5.3.3 Iteration OTderingccoiiiiiiiiiiiiiieeiiiiii et 118
5.3.4 CoOMIMUINICATIONS ..ottt ettt et 120
5.3.4.1 Register CommuniCationsuuuuiiiiiiiiiiiiiiiiiiii ettt 122
5.3.4.2 Memory CommUNICALIONS . ..iieiuiiiiiii ettt e e et eeeee 126
5.3.5 Tteration FInalizationcooieiiiiiiiiiii e 128
5.3.6 Loop FInaliZationcccoiiiiiiiiii et 130
5.3.7 Exception Handling ...ttt 134
5.3.8 Loop parallelization mechanisms SUMIMATYc..uieriiiiieeiiiieeeiiie e, 136
5.4 Optimizing the Regions to Parallelizecccoeviiiiiiininiiiiiiiniiiiicennns 137
5.4.1 Recurrence Reordering............uviiiiiiiiiiiiiiiiiiiiiiiiiiiiiees e 139
5.4.2 Atomic Execution of Regions. ... 139
5.4.3 Breaking Anti-Dependences by Using Temporal Registers........ccccoooviiiiiinnnnnnn. 140
5.4.4 Combining the OptimizZations........cooivuiiiiiiiiiiiiiiiiii e, 142
5.5 Evaluation...c.cocvivviiiiiiiiiiiiiiiiiiiiiiiiriin e e 142
5.5.1 Simulation Frameworkcoooiiiiiiii e, 142
D520 RESULES it et e 143
5.5.2.1 Removing Thread Spawning Bubbles ... 145
5.5.2.2 Loop Parallelization Performance without Optimizations................cc........ 145
5.5.2.3 Loop Parallelization Performance with Optimizations...........ccccccoveiiiniinn. 146

5.6 Conclusions & Future WorK ...c.cocvvviiiiiiiiiiiniiiiiiniiniiininnin e cnsenes 150
LT G703 Ted 11 153 1o) s 1= N 153
6.1 Original Contributionscccociiiiiiiiiiiiiiiiiiiiiiiiiiiiic e 154
6.2 FULULE WOTK couiiiiiiiiiiiiiiiiii ittt st e e e e 156
2 310Y RT0T<4 210 12T 159

iv

List of Figures

Figure 1.1: Example of possible hardware components to be implemented in software in a
Co-designed Hardware/Soft ware ProCessoT..........ccoiviiiiiiiiiiiiiiiiiiiiiiiiii i 4
Figure 2.1: Today's computer COMPONENTS.oiiiiiiuiiiiiie ettt eeeeeeeaii e 8

Figure 2.2: One possible VM software layer integration in the three component computer

AEBIEIL. ettt ettt ettt ettt eeeaaa s 10
Figure 2.3: J. Smith’s Virtual Machines classification.ccooooo .. 11
Figure 2.4: Co-designed Virtual Machine approach..........ccccooiiiiiiiiiiiiiiiiiinn. 12
Figure 2.5: Memory distribution of a hardware/software co-designed system................... 15

Figure 2.6: Hardware/Software co-designed virtual machine internal operational modes. 15

Figure 2.7: Execution Life Cycle of a Co-designed VM.cooiiiiiiiiiiiiiiiiien, 16
Figure 2.8: Example of a superblock code 1egion.ccccviiiiiiniiiiiiiiiiiiiiinseceiiiiii, 17
Figure 2.9: jJTLB implementation.cccoooiiiiiiiiiiiiiiiiiiiiii e, 20
Figure 2.10: Shadow Register File.o 24
Figure 2.11: Gated Store Buffer implementation.............ccccciiiiiiiiiiiiiiiiiiie e, 25
Figure 3.1: Static vs dynamic instruction code..........oooeiiiiiiiiiiiiniiiiiiiiiiiiis i, 37

Figure 3.2: Coverage & overheads of optimizing different subsets of static instructions

considering Spec2K Integer benchmarks.oooiiiiiiiiiiiiiii e 40
Figure 3.3: Coverage & overheads of optimizing different subsets of static instructions

considering Spec2K6 henchmarks.t 40
Figure 3.4: Basic Blocks execution example.coooiiiiiiiiiiii e 42

Figure 3.5: Number of basic blocks in Spec2000 benchmarks that are executed above a

SpeCific threshold. ... e 43
Figure 3.6: Number of basic blocks in Spec2006 benchmarksthat are executed above a

specific threshold value. ... 43
Figure 3.7: Basic Block Life Cycle during application execution.cccccceeeeiieiiiiiiiiinnnnn.. 44
Figure 3.8: Basic block life cycles during a program execution example...........cccooeevnnnnnn. 45
Figure 3.9: Life Cycle overlap computation example............coouoiiiiiiiiiiiiiiiiiiieiiiiieee 46

Figure 3.10: Percentage of intervals with the same number of basic block life cycle periods
overlapping for Spec2000Int benchmarks.oiiii i 48
Figure 3.11: Percentage of intervals with the same number of basic block life cycle periods
overlapping for Spec2006 benchmarks.ooiiiiiiiii e 48
Figure 3.12: Basic block coverage for SPEC2000 benchmarks when applying counters

Figure 3.13: Basic block coverage for SPEC2006 benchmarks when applying counters

Figure 3.14: Coverage and useful time ratio for detected hot basic blocks in Spec2006
Specrand benchmark when profiler reset technique is applied........c.cciiiiiiiniiiiinnnnn. 53

Figure 3.15: Coverage and useful time_ ratio for non-detected hot basic blocks in

Spec2006 Specrand benchmark when profiling reset technique is applied................c.co..... 53
Figure 3.16: Basic Block execution Classification by using animal speeds.cccc....... 55
Figure 3.17: LIU Profiler hardware desigh.cc.uuuuiiiiiiiiiiiiiiiiiii et o7
Figure 3.18: Hardware implementation of the LIU. V is the victim.cccoo.oinnin. 64
Figure 3.19: High-level block diagram of the P54C core with the pLIU profiler (highlighted
with the arrow). Figure from P54C Datasheet [105]. c.oooiviiiiiiiiniiiiiiiiiiee e 64

Figure 3.20: Hot code coverage evaluated in a 32sets-4way cache profiler by using different
cache indexing bits from instruction address...........coeeeiiiiiiiiiiiiiiii 66
Figure 3.21: Hot code coverage evaluated by using different cache configurations and

replacement POLICIES.u. i 69

Figure 3.22: Hot code coverage evaluated by using LIU, LRU and LFU replacement

policies and Spec2006 DenChMATrKS.iiiiiiiiiia e 69
Figure 3.23: Coverage of the different types of basic blocks in mcf, perlbmk and vpr with

place input set benchmarks.ooooiiiii e 70
Figure 3.24: Dynamic code coverage evaluation for SPEC2000Int benchmarks. 71

Figure 3.25: Potential optimization overheads in Spec2000Int for different replacement
policies using a simple analytical model...........cccoooiiiiiiiii 75
Figure 3.26: Potential speedup for Spec2000Int benchmarks of a dynamic binary optimizer

system using different profiling techniques compared to a system that does not implement

a binary optimizer using a simple analytical model..........ccccoccooiiiiiiiii . 75
Figure 4.1: Example of first usage of registers in a code region.ccccevveiiiiiiiiiiiiiinnnnnn.. 81
Figure 4.2: Processor front-end pipeline.ooiiiiiiiiiiiiieae e 86
Figure 4.3: Processor back-end pipeline.o.coooiiiiiiiiiiiiiii e 86

Figure 4.4: Software layer algorithm to indentify the registers that require checkpointing
WITHIN & TEEIOM . ceeti it e ettt e e e e e eeeaas 88
Figure 4.5: Example of code generated when using the checkpointing and recovery
TNECHIATIISITLL 1.ttt ettt e ettt ettt e et e e ettt et e e e eat s 89
Figure 4.6: Example of code reordering applied on top of a region that already includes
the checkpointing and recovery CoOdes.oouuuiiiiiiiiiiiiiiiiiiie e 89

Figure 4.7: Recovery mechanism functionality example.ceeeiiiiiiiiiiiiiiniiiiiiinnn, 93

vi

Figure 4.8: Processor pipeline execution examples of the CKP_ MOV instruction. In case
a), the instruction is executed with its corresponding instruction that overwrites the
checkpointed register. In case b), the two instructions are executed back to back. 93
Figure 4.9: Performance impact of the HRC scheme when compared to a traditional SRF
scheme. Results for Spec2000FP benchmark suite and top-down instruction list

SCREAUIIILE. ¢ eeeiiiii ettt 96
Figure 4.10: Performance impact of the HRC scheme when compared to a traditional SRF

scheme. Results for Spec2000Int benchmark suite and top-down instruction list scheduling.

Figure 4.11: Performance of the software checkpointing with TD and BU list-scheduling.97
Figure 4.12: Integer Register pressure impact of the software checkpointing proposal. 98

Figure 4.13: Floating-Point Register pressure impact of the software checkpointing

PTOPOSAL. e 99
Figure 4.14: Register file dynamic power consumption evaluated with CACTI................ 99
Figure 5.1: Example of a loop region respresented by using super-blocks........................ 109
Figure 5.2: Inner-most loops dynamic code COVETage.........ouuuumuinieeiiiiiiiiiiiiaseeeeiiiiiiiinnnn. 111
Figure 5.3: Average number of inner-most loop iterations in Spec2000 benchmarks........ 113
Figure 5.4: Estimated performance for loop parallelization in loops.ooeeeiiiiineeiiiinnn.e. 113

Figure 5.5: Impact of memory communications between instructions belonging to

CONSECULIVE THEIATIONIS ¢ .ttt ettt e et e et et e e et eent e e et e eneeenneeennes 114
Figure 5.6: Loop parallelization thread spawning.........cccooooeiiiiiiiii e 117
Figure 5.7: Spawn signal bubbles example by using an Atom®-like processor pipeline....118
Figure 5.8: Speculative thread concept in loop paralellization..........ccccooveiiiiiiiiiiinnnn.... 120

Figure 5.9: Reasons why a 2x speedup is not achieved with speculative loop parallelization

using Spec2000 benchmarks.ooouiiiiiiiiiiii e 121
Figure 5.10: Register dependences in loop parallelization............cccoooeiiiiiiiiiiinniinnn... 122
Figure 5.11: Algorithm used by the software layer to mark producers/consumers properly.
... 123
Figure 5.12: Loop parallelization instruction encoding for register dependences. 123
Figure 5.13: Scoreboard for register communication in loop parallelization..................... 125
Figure 5.14: Loop parallelization iteration rollback example.cccoovviiiiiiiiiiiiiiniiiiinnn... 128
Figure 5.15: Loop finalization branches..........ccccooiiiiiiiiiii i, 130
Figure 5.16: Loop parallelization iteration finalization example.ccccooeiiiiiiiiiiiiiinnnnn.. 130
Figure 5.17: Loop finalization example.cooiiiiiiiiiiiiii e 132

Figure 5.18: The traditional static binding between registers and threads is shown on the

left. On the right, a dynamic binding is achieved by using a Where bit mask W. For each

vii

register R;, Wi identifies whether the local (0) or remote (1) register is used. Note how in
this case we refer to contexts A and B and not contexts 0 and 1. For example, when
thread 0 uses register R2 it will access the copy in context B, while thread 1 will access
the COPY IN CONTEXE A woiiiiii et e et 133
Figure 5.19: Structures used to compute mask W. Dotted lines describe how and when
these structures are initialized and updated.............cooiiiiiiiiii 134
Figure 5.20: Atom-like architecture with the Loop Parallelization mechanism additions
(original block diagram from [143])...c..coiiiiiiiiiiiiiiiii et 136
Figure 5.21: Example of inter-iteration dependence based on instruction scheduling for
loop parallelization. Figure (a) shows the original code and how it is executed in loop
parallelization mode given the inter-iteration dependences. Figure (b) shows the optimized
code and how it is executed in loop parallelization mode.cccooiiiiiiiiiiiiiinn ... 138
Figure 5.22: Example of atomicity optimization for loop parallelization. Figure (a) shows
the original code and the inter-iteration recurrence dependence. Figure (b) shows the
resultant code after applying the atomicity optimization. Figure (c¢) shows how the

resultant optimized code is executed when loop parallelization execution mode is enabled.

Figure 5.23: Example of register temporal usage for breaking anti-dependences
optimizations. Figure (a) shows the original code execution in loop parallelization mode.
Figure (b) shows the execution in loop parallelization mode of the resultant optimized
code after breaking the anti-dependences for the data inter-iteration recurrence. 141
Figure 5.24: Spec2000Int inner-most loops speedups for loop-parallelization with respect to
sequential execution using Spawn-at-execute. Efficient SPAWN mechanism is not
implemented. The y-axis represents the number of loops bucketed based on their
PErfOrmance (X-axiS).c.oiiiiiiiiiiiiiiiii i 144
Figure 5.25: Spec2000Int inner-most loops speedups for loop-parallelization with respect to
sequential execution using Spawn-at-fetch. Efficient SPAWN mechanism is implemented.

The y-axis represents the number of loops bucketed based on their performance (x-axis).

... 144
Figure 5.26: Loop parallelization performance with no optimizations applied to the

TEGIOTIS. Lttt ettt e et ettt e e et e e e 147
Figure 5.27: Speedup of inner-most loops with respect to code reordering. 147
Figure 5.28: Loop parallelization speedup on loops for Spec2000Int benchmarks. 149

Figure 5.29: Accumulated dynamic weight of loop across different optimizations applied to

BRI COAR. i 149

viii

List of Tables

Table 3.1: Static and dynamic instructions of some selected Spec2006 applications using

TEE ITIPUL SO . e e 38
Table 3.2: Traditional replacement policies used for hot code detection (RP stands for

Replacement POLCY). ..oouuiiiiiiiiiiii it e 59
Table 3.3: CIU MEATIIIZ. «evvtruuteettiiiiiiie ettt ettt e e e et eeaaai s 62
Table 3.4: Optimizations overheads and performance improvements.ccooeeeeeeennn... 72

Table 5.1.Summary of hardware/software additions to support Loop Parallelization in a

CO-AESIZNEA PTOCESSOT. «.eeeerriiiiiteeee ettt ettt e e e et eaat e e e et teaaati e e eeeeeennaaiaannes 135
Table 5.2: Hardware simulator configuration parameters..............coooevviiiiiinieiiiiiniiinnnnnn.. 143
Table 5.3: Software simulator configuration parameters.ccovviiiiiiiiinneeeeiiienn. 143

ix

Abstract

Nowadays, we are reaching a point where further improving single thread performance can
only be done at the expenses of significantly increasing power consumption. Thus, multi-
core chips have been adopted by the industry and the scientific community as a proven
solution to improve performance with limited power consumption. However, the number
of units to be integrated into a single die is limited by its area and power restrictions, and
therefore the thread level parallelism (TLP) that could be exploited is also limited. One
way to continue incrementing the number of core units is to reduce the complexity of each
individual core at the cost of sacrificing instruction level parallelism (ILP). We face a
design trade-off here: to dedicate the total available die area to put a lot of simple cores
and favor TLP or to dedicate it to put fewer cores and favor ILP. Among the different
solutions already studied in the literature to deal with this challenge, we selected hybrid
hardware/software co-designed processors. The objective of this solution is to provide high
single thread performance on simple low-power cores through a software dynamic binary
optimizer (a.k.a. software layer) tightly coupled with the hardware underneath. For this
reason, we believe that hardware/software co-designed processors is an area that deserves
special attention on the design of multi-core systems since it allows implementing multiple
simple cores suitable to maximize TLP but sustaining better ILP than conventional pure
hardware approaches. In particular, this thesis explores three different techniques to
address some of the most relevant challenges on the design of a simple low-power

hardware/software co-designed processor.

The first technique is a profiling mechanism, named as LIU Profiler, able to detect hot
code regions. It consists in a small hardware table that uses a novel replacement policy
aimed at detecting hot code. Such simple hardware structure implements this mechanism
and allows the software to apply heuristics when building code regions and applying
optimizations. The LIU Profiler achieves 85.5% code coverage detection whereas similar
profilers implementing traditional replacement require a 4x bigger table to achieve similar
numbers. Moreover, the LIU Profiler only increases by 1% the total area of a simple low-
power processor and consumes less than 0.87% of the total processor power. The LIU
Profiler enables improving single thread performance without significantly incrementing

the area and power of the processor.

xi

The second technique is a checkpointing scheme aimed to support code reordering and
aggressive speculative optimizations on hot code regions. It is named HRC and combines
software and hardware mechanisms to checkpoint and to recover the architectural register
state of the processor. When compared with pure hardware solutions that require doubling
the number of registers, the proposal reduces by 11% the area of the processor and by
24.4% the register file power consumption, at the cost of only degrading 1% the

performance.

The third technique is a loop parallelization (called LP) scheme that uses the software
layer to dynamically detect loops of instructions and to prepare them to execute multiple
iterations in parallel by using Simultaneous Multi-Threading threads. These are optimized
by employing dedicated loop parallelization binary optimizations to speed-up loop
execution. LP scheme uses novel fine-grain register communication and thread dynamic
register binding technique, as well as already existing processor resources. It introduces
small overheads to the system and even small loops and loops that iterate just a few times
are able to get significant performance improvements. The execution time of the loops is
improved by more than a 16.5% when compared to a fully optimized baseline. LP
contributes positively to the integration of a high number of simple cores in the same die
and it allows those cores to cooperate to some extent to continue exploiting ILP when

necessary.

xii

Acknowledgments

Desarrollar y escribir una tesis es una tarea laboriosa que requiere aios de dedicacién y
esfuerzo. En este largo periodo de tiempo son multitud las vivencias y anécdotas
acontecidas. En mi caso, y por fortuna, la mayor parte de ellas las he vivido en compania.
El Dr. William H. Stone, cientifico genetista, dijo en una entrevista en La Vanguardia que
lo mejor de él mismo son las personas que le rodean. Durante el desarrollo de esta tesis
estas palabras me han sobrevenido continuamente por diversos motivos y no puedo mas
que hacer acopio de ellas porque he estado rodeado en todo momento de magnificas
personas. Me gustaria agradecerles a todos ellos su apoyo, comprension y ayuda para sacar
adelante este trabajo. Espero haberles transmitido mi gratitud fuera de estas palabras que
ahora escribo, asi como también espero que pueda seguir haciéndolo después de haber

cerrado esta importante etapa de mi vida.

Me gustaria comenzar agradeciendo a Antonio Gonzélez la confianza depositada en mi,
desde el dia que me contraté para trabajar en Intel asi como cuando me ofrecié la
posibilidad de realizar esta tesis. Me siento muy afortunado de haber podido disfrutar de
sus amplios conocimientos en arquitectura y de haber podido aprender de él los principios
bésicos de la investigacion. Ademds, también me gustaria agradecerle su comprension, su
interés y su paciencia cuando por motivos personales he necesitado priorizar mi vida

personal por encima de la profesional.

Similares palabras puedo dedicar a mis otros dos directores de tesis, Fernando y Enric, con
los que ademas desde hace muchos aflos comparto una bonita amistad. A ambos les
admiro profundamente y les considero verdaderos ejemplos de lo que debe ser un gran
investigador. Me han ayudado mucho guidndome en las investigaciones, asi como en la
escritura de los articulos y en la preparacién del documento final de la tesis. Durante este
tiempo han sabido ensefiarme y transmitirme sus conocimientos para ir mejorando poco a
poco como investigador. Me siento muy afortunado de haber podido contar con ellos para

realizar esta tesis y les agradezco mucho su seriedad y sacrificio para tirarla adelante.

No puedo olvidarme de los integrantes del primer grupo de investigacion en el que
comencé a trabajar en Intel ya que con ellos los primeros trabajos de esta tesis
comenzaron a cobrar vida. Especialmente me gustaria agradecerle a Josep Maria su ayuda
para sacar adelante el capitulo 4, ya que sin él habria sido imposible acabarlo. A Pepe por

ejercer de maestro y enseflarme a disefiar un simulador temporal desde cero, que a la

xiii

postre ha sido el eje de gran parte de las simulaciones requeridas en mis experimentos. Y
por 1ltimo, pero no menos importante, a Alex Pifieiro por guiarme mientras daba mis
primeros pasos por la investigacion y por compartir conmigo largas charlas sobre
arquitectura y temas varios que me ayudaron mucho a formarme dentro de la gran familia

de Intel.

Sin salirme de Intel y aunque no trabajiramos en proyectos comunes, también me gustaria
agradecer a Grigoris, Pedro Marcuello y especialmente a Jestis por sus contribuciones en el
desarrollo del capitulo sobre el Hot Code Profiler. Me siento muy honrado de haber podido
disponer de vuestro tiempo y de vuestros enormes conocimientos para realizar este

trabajo.

También me gustaria agradecerle al resto de compaineros de Intel el que hayan soportado
mis disquisiciones sobre el desarrollo de la tesis y mis peleas personales internas cuando los
animos flaqueaban y la consecucion de acabar la tesis se convertia en un objetivo

demasiado complicado y lejano.

Fuera de laboratorio, me gustaria darles las gracias a mis amigos del CA ComeKM Molins
por motivarme a correr v ayudarme a evadirme de la dura tarea del trabajo y del
desarrollo de la tesis. Sin ellos los caminos siempre son més duros y han sido las liebres
perfectas para allanarme las complicaciones. Aprovecho para pedirles perdén por mis

chistes malos, pero no les aseguro que si algin dia llego a ser doctor deje de hacerlos.

Me gustaria hacer una mencién muy especial a toda mi familia por el infinito apoyo que
he recibido de ellos durante este tiempo. Nada de lo que he realizado durante este periodo
habria sido posible sin su ayuda. Ellos son los principales responsables de que yo haya
tenido fuerzas y animos para continuar luchando en mi desarrollo personal y por lo tanto

de que haya encontrado tiempo para finalizar esta tesis.

Me gustaria dedicar esta tesis a mis abuelos, Pedro y Maria. A pesar de lo dura que ha
sido su vida, jaméas se han rendido en luchar por salir adelante y tirar del carro ayudando
a toda la familia. El abuelo siempre nos ha transmitido que el saber no ocupa lugar y la
abuela que vivir la vida es todo un privilegio que hay que disfrutar se tenga la edad que se
tenga. Ambos, son mis referentes y el mejor espejo en el que mirarme. No es de extrafiar
que uno de los mayores placeres que he experimentado en estos afios de tesis haya sido el
sentarme con ellos para hablar y sentirme arropado por su inmenso cariflo. En estas

charlas, son muchas las veces que me han preguntado por mis estudios y otras tantas las

Xiv

que me han insistido en que no los abandone nunca. Muchas gracias abuelos por quererme

tanto y por estar a mi lado.

También queria hacer una mencién especial para mi padre, al que siempre he considerado
mi primer maestro. Desde bien pequefio supo transmitirme su pasiéon por la electrénica y
la informatica haciéndome participe de sus experimentos. No es de extranar que quisiera
seguir sus pasos y que decidiera convertirme en investigador. Esta tesis no tendria sentido
sin él, por su constante apoyo, su motivacién y por creer en mi mas de lo que yo mismo
hago. Sé que él habria sido capaz de hacer unas cuantas tesis si hubiera tenido las
oportunidades que él me ha procurado. Asi que no puedo mas que agradecerle que me

haya facilitado tanto las cosas.

En esta lista no puede faltar mi madre. Son tantos los sacrificios que ha realizado por mi
que no encuentro palabras para expresar mi gratitud como ella se merece. Siempre me ha
facilitado las cosas para realizar mis estudios. Ha sido la primera en ponerme los pies en el
suelo, en controlar mis nervios y en darme fuerzas para afrontar todos los problemas que
surgian. Sin duda, de ella he aprendido las mejores cosas de esta vida y me ha ayudado a
ser la persona que soy. Una parte muy importante de esta tesis le pertenece por derecho

propio.

Por 1ltimo, pero no por ello menos importante, me gustaria mencionar muy especialmente
a Helena que me haya acompaiiado en todo momento en estos tltimos afios. Ambos
decidimos comenzar nuestras tesis por la misma época y ambos pretendemos acabarlas en
fechas cercanas. Asi que aparte del dia a dia en pareja, durante estos afios también hemos
compartido multitud de situaciones consecuencia del desarrollo de la tesis. Me gustaria
agradecerle principalmente dos cosas. La primera, que ademas tiene un impacto directo
en el presente documento, son sus multiples aportaciones derivadas de sus consejos
ayudandome a disefiar y corregir mis escritos. La segunda, cuyo impacto es més indirecto,
es agradecerle su vitalidad y su coraje para afrontar los retos que ha tenido que superar.
Se ha convertido en un ejemplo para mi y me consta que para muchas personas de nuestro
entorno. Luchar por merecerme su carino es la fuerza que me ha guiado en todas las
situaciones complicadas con las que he tenido que lidiar en estos dltimos afios e imaginar

un mejor futuro, como fruto de nuestro esfuerzo, ha sido el mejor suefio por el que pelear.

XV

xvi

Chapter 1

Thesis Introduction

In the last years the industry and the scientific community have adopted the multi-core
chips as a proven solution to obtain significant performance improvements [1] [2] [3] [4] [5]
[6] [7]. The integration of multiple core units into a single chip allows executing multiple
programs in parallel and also executing multiple threads belonging to the same application
simultaneously, which highly improves the thread level parallelism (TLP) that the full
processor can exploit. However, multi-core chips present area and power restrictions [8]
that can be solved by reducing the complexity of each individual core. This increments the
number of units per chip with the aim of exploiting the TLP of the applications. However,
reducing the complexity of each unit has a negative impact on the execution of single-

threaded applications since less instruction level parallelism (ILP) can be exploited.

Sequential code applications, where instruction level parallelism is still important, are
widely used in nowadays processors. In addition, parallel applications contain significant
sections of sequential codes. Therefore, exploiting ILP and TLP together is one of the
biggest challenges for current and future processor designs. Among the different proposals
existing in the literature to deal with this [9] [10] [11] [12], we believe that the most
promising are those that rely on hybrid hardware/software co-designed architectures. In
these approaches, a software component, known as the software layer, adapts the code of
the running applications to be executed more efficiently by taking advantage from the
particularities of the hardware. The software layer is implemented very tightly with the
hardware and it has full access to its resources. Moreover, the software layer may
implement some functionalities of the hardware, which allows reducing the complexity of
the processor without negatively impacting its performance (for both single-threaded and

multi-threaded applications) [13] [14] [15].

Chapter 1: Thesis Introduction

However, most of the hardware/software co-designed proposals require additional
hardware resources (for instance by duplicating the register file [15] [16]) and/or introduce
significant software overheads (for instance for detecting the code regions to be optimized
[17] [18]), which in turns complicates the adoption of processors based on this technology

to be implemented in multi-core chips.

In this thesis we target some of the most important design decisions that need to be
considered when designing a hardware/software co-designed processor. We propose
solutions that simplify the hardware requirements of these processors and also we propose
solutions for significantly increase their performance. Thus, the proposals described in this
thesis further exploit TLP since the complexity reduction of each core allows
implementing a larger number of them in a multi-core system. Moreover, they will

continue delivering competitive single-thread performance when TLP is scarce.

1.1 Thesis Objectives

The main goal of this thesis is to offer solutions in order to develop a small (from an area
point of view) and low power hardware/software co-designed processor capable of offering
a performance close to the one obtained by more complex processors (i.e. out of order
cores [19] [20]) but requiring less hardware complexity. This goal would allow
incrementing the number of core units per die and, therefore, it would be possible to
continue exploiting application thread level parallelism without sacrificing instruction level

parallelism.

However, designing a hardware/software co-designed processor is a complex task that
requires the interaction of several groups of engineers with different areas of expertise,
including deep knowledge about the hardware and the software components. The design of
the software layer, the communication interfaces between the hardware and the software,
and their interactions, are additional tasks to be considered on top of the already complex
task of designing a processor completely in hardware. However, such processors are very
suitable for multi-core designs because the introduction of the software layer in the system
allows reducing the complexity of the hardware components by moving some of the
processor functionalities to the software without impacting the overall performance of the
system [15] [21] [16].

In Figure 1.1, we show an example of a few hardware functionalities that can be
transferred to the software layer. In the left part of the figure we show a high-block

diagram of a traditional hardware processor. The different components that form the

1.1. Thesis Objectives

processor are highlighted with different colors. In the right part of the figure we show
some of the functions that may form part of the software layer. In this particular example,
we highlight that part of the functionalities of the instruction scheduler and the register
renaming of the traditional hardware processor can be transferred to the software layer in
the form of code functions. The software layer can take care of these functionalities and it
is responsible for communicating with the hardware to ensure correct application
execution. By moving functionalities from the hardware to the software layer, it is possible
to reduce processor area and power consumption at the cost of executing additional

instructions.

The software layer can also be employed to improve the performance of the processor
without incrementing its hardware complexity [21] [22]. Additional features can be
implemented within the software layer to make a more efficient usage of the already
existing hardware resources of the processor [23]. For instance, the most common way to
improve performance is through dynamically optimizing the code of the application by
employing the software layer optimizer. Note that the software layer has full access to the
processor hardware resources because it is implemented very tightly with it. In fact, both
the software layer and the hardware are seen as a single unit for the entire software stack
[13]. However, the software layer introduces additional overheads to the processor that
may compromise the benefits obtained from the optimization of the code. The detection of
the code suitable to be optimized, its optimization, and the mechanisms to ensure its
correct execution introduce additional overheads either by requiring the execution of

additional instructions or by requiring specialized hardware resources.

Software layer overheads should be kept as low as possible to maximize the efficiency of
hardware/software co-designed processors over more traditional approaches. The
techniques presented in this thesis are aimed at reducing these overheads and,
consequently, to improve the overall implementation of the hardware/software co-designed

processors.

In addition, in this thesis, in order to fulfill the expected simplicity and efficiency, the
processor design starting point is to use a simple in-order processor with very constrained
area and power requirements. On top of this simple design and taking advantage from the
software layer, extra functionalities are implemented to improve its performance without

significantly incrementing its hardware complexity.

Chapter 1: Thesis Introduction

Hardware Processor Software layer code

translator_code() { -u
renamer() { H

Legacy
opcodesand
functionality

Figure 1.1: Example of possible hardware components to be implemented in software in a Co-
designed Hardware/Software processor.

Given that a full processor re-design is too ambitious to be covered in this thesis, the goal
of this work is focused on reducing overheads and improving performance by targeting
three key points of the main operational flow of hardware/software co-designed processors.
These are the mechanism for detecting code regions suitable to be optimized, the
mechanisms to guarantee correct region execution, and the optimizer itself. This has
resulted in three original contributions: (1) a novel hot code profiler able to detect the
most promising pieces of code to be optimized, (2) a novel software register checkpointing
technique to support precise interrupts and aggressive optimizations with minimum
hardware and software overheads, and (3) a loop parallelization scheme able to
significantly improve the ILP of the processor. The two first schemes are aimed at
reducing current overheads of hardware/software co-designed processors, whereas the
third technique is aimed at improving performance without requiring significant hardware
changes. Apart from the main objective of the thesis, each one of these solutions has its

own objectives as described in the next sections.

1.1.1 Code Profiler Design Objectives

The code profiler component of a hardware/software co-designed processor is in charge of
detecting the most appealing regions of code to be optimized. These regions are the most
frequently executed and in turn, the ones that offer higher performance gains when
optimized by the software layer (a.k.a. Dynamic Binary Optimizer or DBO for short) [24].
Therefore, the profiler has a big impact on the performance that could be achieved in a

hardware/software co-designed processor.

1.1. Thesis Objectives

An accurate and efficient code profiler should be capable of detecting the most frequently
executed regions, discarding the non-promising regions, and providing up-to-date
information about application execution. It should introduce negligible overheads (if any)
to the system and should not interfere with the execution of the applications. The
potential overheads introduced by the profiler should be widely compensated by the
execution of the optimized regions. Moreover, the design of the profiler should not
compromise the processor area and power constraints and neither the software design

requirements.

The aforementioned objectives for the profiler should guide its design to use less hardware
and software resources while keeping similar or better accuracy at detecting the most
appealing code regions to be optimized when compared with other proposals from the
literature [25] [26] [17] [27] [18].

The design of the code profiler as the detector of the hot regions for the dynamic binary
optimizer is a good example of a technique oriented to simplify the hardware requirements
of current hardware/software co-designed processors while keeping competitive

performance when compared with more complex processors.

1.1.2 Register CheckPointing Design Objectives

In order to support precise exceptions and aggressive code optimizations, the
hardware/software co-designed processor requires executing regions atomically [28]. The
processor architectural state may not be fully correct during the execution of an optimized
region as long as it matches the original architectural state at the end of the region. A
common solution to correctly update the architectural state is to checkpoint the state of
the memory and the registers before the execution of the region. In case that during the
execution of the region there is an exception (including those that are consequence of
aggressive and/or speculative optimizations) the state of the processor can be recovered
from the saved values and the execution of the region can be restarted using a less or non-
optimized version of the code. These saved values for the memory and the registers are
what it is commonly known as an architectural checkpoint. In this thesis, we are only

focused on register checkpointing.

Proposals from the literature tend to duplicate processor hardware resources [16] and/or
to implement costly software algorithms that introduce significant overheads to the
system [29] [30]. An efficient hardware/software register checkpointing scheme should

minimize the hardware requirements of the processor and should not introduce important

Chapter 1: Thesis Introduction

software overheads for saving and restoring the register values. Moreover, the solution
should not penalize the common case that is to correctly execute the regions without
problems (otherwise optimizing the code regions would not make sense). Finally,
supporting speculative aggressive optimizations is a must to further exploit ILP in the
processor and therefore, the checkpointing scheme should not penalize miss speculations in

order to maximize the performance that the processor is able to achieve.

1.1.3 Loop Parallelization Scheme Design Objectives

Simple in-order processors, like the one selected as baseline for this thesis, are not able to
exploit instruction level parallelism. The objective of the loop parallelization scheme is to
improve the execution of loop code regions by increasing the instruction level parallelism
that could be exploited when executing them in such simple in-order processors. Note that
loops are the most predominant parts of the applications and that performance may

significantly increase by optimizing them.

In order to achieve this objective, loop parallelization scheme distributes the loop
iterations into multiple threads that can be executed simultaneously in the processor'. In
fact, although the execution of the instructions within each thread is still in order, the

instructions belonging to different threads are executed out of order.

Since instructions are executed in an out of order manner, the proposed scheme keeps
track of the dependences among them in order to guarantee the correct execution of the
codes. Note that contrarily to out of order cores where this functionality is already
implemented, simple in-order cores do not require it. Therefore, additional mechanisms to

deal with such dependences need to be implemented.

The proposal should avoid the usage of complex hardware solutions in order to keep the
design as simple and efficient as possible and it should rely on the software layer to
prepare and optimize the codes to be parallelized, removing these responsibilities from the

hardware.

The loop parallelization scheme is a good example of a hardware/software co-designed
technique oriented to improve the performance of applications without increasing

significantly the area and the dissipated power of the processor.

! The simple in-order processor considered as baseline for this thesis is based on an Intel® Atom®
processor that supports Simultaneously Multi-Threading (SMT) execution [111].

6

1.2. Outline

1.2 Outline

This document is organized into 6 chapters. Chapter 1 contains the introduction to this
thesis, with the motivation of the work, its main objectives, and the description of the
outline of the document, in which these words are found. Chapter 2 describes the basic
concepts necessary for proper understanding the rest of the document and the
hardware/software co-designed scheme that has been used for developing the techniques

proposed in this thesis.

The main contributions of this thesis are described in Chapter 3, Chapter 4, and Chapter
5. In particular, Chapter 3 describes a novel efficient hardware/software profiler solution
for fast and accurate code detection. Chapter 4 presents a very efficient
hardware/software register checkpointing scheme designed to support aggressive code
optimizations in the co-designed system, and Chapter 5 describes a novel technique
designed for improving the performance of loop regions even when it is implemented on

top of a very simple processor.

Finally, in Chapter 6, we present the main conclusions of the thesis, including the

contributions and some recommendations for future work.

Chapter 2

Background

The aim of this chapter is to explain the basic concepts that are necessary for a proper
understanding of the rest of the chapters in this thesis. Basically, this chapter describes
the basic concepts about hardware/software co-designed virtual machines and presents the
hardware/software co-designed approach that has been employed to develop the

techniques proposed in this thesis

2.1 General Introduction to Virtual Machines

Modern computers are built around three main components: the hardware, the operating
system (OS), and the applications [31]. Computers require the interaction of these
components in order to operate. These interactions are done through established
interfaces, which are the most effective way to build complete systems made of
independent components. Figure 2.1 shows a common scenario describing how the three
main components interact in a computer. As it is described, the applications and the OS,
which together are also known as the software, communicate with the hardware
component. Applications may communicate with the hardware directly or indirectly
through the OS whereas the OS always communicates directly. Although the case study
presented in Figure 2.1 corresponds to the more common computer design, other design
scenarios are also possible depending on how the three components are combined and how

they communicate though the defined interfaces.

Applications

Direct calls to Operating
HW System calls
Operating System

Hardware

Figure 2.1: Today's computer components.

2.1. General Introduction to Virtual Machines

The main advantage of this design is that each component can be designed independently
of the others. For this reason well defined communication interfaces among them become
crucial. Actually, the fast evolution of both hardware and software (including applications
and OS) compromises the evolution of this design mostly incurring in the following three
main problems. First, the three components only work correctly when they interact in a
very strict manner. For instance, software applications compiled for a particular set of
instructions do not work on hardware that does not support them. Second, the need for
backward compatibility with previous designs forces components to support legacy
constraints that complicate their implementation. In fact, many current processors
maintain obsolete instructions in order to guarantee backward compatibility with older
applications [32]. For instance, the Intel® x86 64 bit processors can execute legacy codes
written for 32 bit processors by using special executions modes [32]. Third, although the
components are independent by definition, their design is limited by the interactions
among them. Therefore, components are usually designed in a constrained manner, having
into account the other components, in order to facilitate the interaction among them. For
instance, most of the traditional OS have been designed to take maximum advantage of
particular processors. A real example is the Windows OS that it was only supporting

Intel® x86 Instruction Set Architecture until recently [33].

Virtualization is a technique proposed to overcome the design problems previously
described. Virtualization is the simulation of the software and/or the hardware component
upon which other component runs [34]. The simulated component is usually called virtual
machine [13]. Virtualization is often achieved by introducing a new software component
within the three component computer design presented previously that connects directly
or indirectly the other components [13]. This software layer is able to adapt the
components in order to work together by filling or emulating the differences among them
[13]. Moreover, it is able to offer compatibility among them guarantying their independent
development if needed [30] [35]. Finally, it is also able to define the required interfaces in a
very efficient manner getting maximum performance from the interaction of the

components [13].

Besides of the aforementioned benefits of introducing the software layer in the three
component design, virtual machines are also employed for improving general system

performance [36] [37] and simplifying the hardware resources [14] [16] among others.

The software layer acts like a barrier in the design, separating the native components of

the system from the ones that communicate through the software layer with the native

9

Chapter 2: Background

components. The term used when referring to the native components is “host” component,
whereas the term used to refer to a component that communicates through the software
layer is “guest”. For instance, an operating system employed directly on top of a specific
hardware is called “host OS”, whereas one that is employed on top of a virtual machine is

called “guest OS”.

Virtualization by means of a software layer can be done at two different levels within the
three components design described in Figure 2.2. On one hand, virtualization can be
applied at the Instruction Set Architecture (ISA) level, which is the communication
interface between the applications and the OS with the hardware. This interface includes
privileged and non-privileged instructions, the memory interface and its programming
model, and the interactions with devices. On the other hand, it can be applied at the
Application Binary Interface (ABI) level, which communicates the applications with the
OS and the hardware. In this case, applications are built according to a specific OS and

hardware.

Smith and Nair proposed a classification of the virtual machines (VMs) [31] based on
where the software layer is introduced within the three component computer design. If the
software layer is introduced at the “ABI interface” level then the virtual machines are
categorized as Process VMs. By contrast, if the software layer is introduced at the “ISA
interface” then the virtual machines are categorized as System VMs. Moreover, within
these two classifications, virtual machines are also classified depending on whether guest
and host components use the same ISA. The classification is shown in detail in Figure 2.3.
As it can be observed, there are different names for referring to each type of virtual
machine. Multi-programmed Systems and Dynamic Optimizers are Process VMs on which
guest and host share the same ISA. Dynamic Translators and High Level Languages
(HLL) are also Process VMs but guest and host do not share the same ISA. On the other
hand, the System VMs where guest and host share the same ISA are the Classic OS and
the Hosted VMs, and the ones where guest and host do not share the same ISA are the
Whole System and the Co-designed VMs.

Applications ABI Interface
Operating System ISA Interface
Hardware

Figure 2.2: One possible VM software layer integration in the three component computer
design.

10

2.2. Hardware/Software Co-Designed Virtual Machines

Process VM System VM
Different Different
Same ISA Same ISA
ISA ISA
Multiprogram Dynamic . Whole System
med Systems Translators Classic OS VMs VMs
Dynamic HW/SW Co-
Optimizers HLL VMs Hosted VMs Designed VMs

Figure 2.3: J. Smith’s Virtual Machines classification.

In this thesis, we focus on the implementation of hardware/software co-designed virtual
machines. We have chosen this category because its capability of improving the efficiency
of simple processors without requiring the addition of significant hardware complexity. As
commented in Section 1.1, the objective of this thesis is to propose mechanisms to
implement an efficient and simple hardware/software co-designed processor that could be

implemented in a multi-core chip in order to further exploit TLP and ILP.

The proposals described in this thesis can also be implemented in other type of virtual
machines. However, we only describe its implementation in a hardware/software co-

designed virtual machine approach in this manuscript.

The rest of the chapter is organized as follows. In Section 2.2, we provide a detailed
overview of hardware/software co-designed virtual machines and its benefits compared to
traditional processor designs. Later, in Section 2.3, we describe how these virtual machines
work from a system level point of view, and in Section 2.4, we describe how they work
from an internal point of view. We conclude this chapter in Section 2.5, presenting
different alternatives to improve the application execution performance by implementing a

hardware/software co-designed virtual machine.

2.2 Hardware/Software Co-Designed Virtual Machines

Smith and Nair call hardware/software co-designed virtual machines to the ones that
implement the software layer at the “ISA interface” level in a system where guest and
host do not use the same ISA set of instructions (see Figure 2.3 for more details). The
software layer is placed between the hardware and the software computer components as
shown in Figure 2.4. The software layer is tightly implemented with the hardware in such

a way that both are perceived as a single entity for the upper components in the system.

11

Chapter 2: Background

Applications

Operating System

Software Layer

Processor

Figure 2.4: Co-designed Virtual Machine approach.

In fact, the software layer has full access to the hardware resources and it is transparent
to the entire software stack. Since the hardware and software layer work in a collaborative

manner, these designs are also known as hybrid hardware/software processors.

Hardware/software co-designed virtual machines present important advantages when
compared with more traditional system designs. Among other things, the co-designed
approach can be used to simplify the processor hardware components, to guarantee
backward compatibility with previous designs, to improve application execution
performance, to reduce product time to market, and to develop specialized solutions to the

costumers.

The simplification of the hardware is achieved by passing functionalities from the
hardware to the software layer. This hardware simplification usually translates into area
and power reductions, without losing performance. For instance, Transmeta® processors
perform instruction decoding in software without any hardware component involved in the

process and they cache these decoded regions for later reuse [16].

The hardware and the software stack do not interact directly. Instead, they communicate
through the software layer. This facilitates the backward compatibility with older designs,
since the software layer may implement legacy functionalities and remove them from the
hardware component. In order to accomplish this, the software layer includes a Dynamic
Binary Translator (DBT) [24] [38] that transforms the original application code from the
guest ISA to the host ISA. In addition, the software layer can also implement a Dynamic
Binary Optimizer (DBO) [24] with the objective of improving the execution of the
application in the processor. In this case, the optimizer also transforms the original
application code from the guest ISA into the host ISA, but it is also able to optimize the
code in order to take full advantage from the hardware specifics. The software layer is
implemented very tightly with the hardware and it has direct access to certain

components which allows it to adapt the application code in a very efficient manner. In

12

2.3. Operation of a Co-Designed VM at System Level

the next Section 2.5.1, we will cover the different optimizations than can be applied to the

code in more detail.

Designing and manufacturing a traditional processor is a very complex and time
consuming task that requires efforts from different groups of people (hardware architects,
silicon manufacturers, validation engineers, among others). This scenario is even more
complex when the different components in the system have to be developed in a
collaborative manner. Therefore, by breaking the dependences among the components by
the introduction of the software layer, the time required to develop the processor can be
reduced significantly. This also translates in a time reduction for the product to reach the
market. Moreover, the software layer can be modified and improved in less time than the
hardware, which is also an advantage for fixing possible bugs in the processor

implementation.

Finally, hardware/software co-designed virtual machines are also very appealing in order
to offer specialized products to the costumers. Actually, not all users employ the processor
characteristics in the same way, and not all the resources are equally utilized. Even by not
modifying the hardware resources, the software layer can be adapted according to the
user’s needs, transforming the processor to fulfill the user experience. Applications can be
adapted by the software layer during the time they are running on the system. Moreover,
the software layer itself can also be modified based on the different user roles. In such a
way, the processor of a graphical designer may include a software layer configured
differently to the one that a biomedical researcher may require. Furthermore, since the
software layer can be developed faster than the hardware, it is possible to incrementally

include more functionalities if the user requires them.

2.3 Operation of a Co-Designed VM at System Level

The booting process of a hybrid hardware/software co-designed processor is different than
in a traditional processor. In this case, the first component to be loaded in memory is the
software layer and it is also the first component to be executed. The software layer code is
stored in a dedicated ROM, normally placed in the motherboard [39]. The content of this
ROM may be compressed and encrypted for security reasons. The software layer is stored
in a protected memory area called the concealed memory [13]. This memory area is totally
under the control of the software layer and it is non-visible for other applications and for
the operating system. The rest of the memory in the system is used in a similar manner
than in traditional systems. Once the software layer is loaded, the software layer takes

control of the system and it executes specialized routines to proceed with the normal

13

Chapter 2: Background

booting of the system. Therefore, the next step is to load the operating system code to
memory. From this point on, the booting process is similar to the one of a traditional
processor, with the difference that the software layer controls all the activity of the

processor driving the execution of all instructions to be executed by the hardware.

Since the software layer is also an application that runs over the processor, its instructions
and data need to be stored in the concealed memory. Moreover, information to
optimize/translate the original code of the application is also stored in the concealed
memory. Therefore, the hardware/software co-designed processor requires storing the
information about instructions and data being executed in the processor, as well as other
three types of information: (1) information about the optimized/translated code, (2)
information about the software layer itself, and (3) information about the execution of the
instructions (meta-data). Most of the existing hardware/software co-designed systems
implement internal memory structures by using software approaches or by combining
hardware with software to store this information [30] [35] [36] [37]. Figure 2.5 details the
distribution of the aforementioned types of information within system main memory. Note
that all data internal to the software layer is stored in the concealed memory area whereas

the rest of information from the applications is placed in the OS-visible memory area.

2.4 Operation of a Hardware/Software Co-Designed VM at

Internal Level
In order to control the execution of the applications and the operating system, the
software layer employs the three following internal operation modes: native, emulated and
interruption/exception modes. The native mode is employed for executing the applications
and the operating system instructions in a non-optimized manner. The code is simply
translated from the guest ISA into the host ISA by the hardware or the software.
Moreover, its semantics are not modified at all since no optimizations are applied, so that
this mode is often used when the software layer needs to guarantee forward progress. This
mode is also employed when there are guest ISA constraints that do not allow
optimizations, as for instance, codes that handle peripheral input/output activity [40]. The
emulated mode is used for executing the code belonging to the software layer itself and
also the optimized versions of code belonging to the original application. In this case,
depending on the optimizations applied to the code, forward progress is not guaranteed.
By contrast, by using this mode the application performance can be improved. Finally, the
interrupt/exception mode is in charge of executing the code of interrupt and exception

handlers that may be raised during the execution of the instructions. The software layer

14

2.4. Operation of a Hardware/Software Co-Designed VM at Internal Level

uses this mode to communicate the interruptions and the exceptions to the applications
and the operating system in order to satisfactorily solve them. The software layer decides
in which mode it should work depending on the execution state of the application. Figure
2.6 shows the transitions that the software layer realizes to move across the three
operational modes. As it can be observed, on interrupts or exceptions code events, the
software layer always transitions to the interrupt/exception mode no matter which is the
original state. However, once the interrupt or exception event is solved, the software layer
may transition to the emulated or to the native operational mode depending on the
previous state before the initial transition to the interrupt/exception operational mode. To
enter in emulated mode it is required to execute optimized or software layer code,
otherwise the system works in native mode. On the other hand, if it is necessary to
execute non-optimized code when the software layer is in emulated mode, then the

software layer transitions to native operational mode.

Software Layer CODE
| CONCEALED
> Software Layer DATA MEMORY
Software Layer Original Code Optimizations
Firmware
— Application CODE
DISK | OS-VISIBLE
Applications & 0S MEMORY
Application DATA

Figure 2.5: Memory distribution of a hardware/software co-designed system.

Optimized code /
-Software Layer-.
code

Exception "™

Interrupt/
exception

Emulated
operational
mode

Native
operational
mode

operational
mode

“~..._Exception __.-

L Exception._._._.ococomimimem T -
solved

Figure 2.6: Hardware/Software co-designed virtual machine internal operational modes.

15

Chapter 2: Background

© Instruction profiling @ VM gets control © Region formation

Original code Region
- Bblock A L

Bblock A
The thread

switches to Bblock B /\f* Bblock C

Bblock D

PROFILING I

CORE

Bblock C

execute VM
Instruction Hot code code

s

Bblock D Bblock E Bblock G

!

detection

O Optimized region execution l
/\ © TheVM storesthe regionin memory

Bblock F Bblock G

O Region optimization

CS CS Optimized region
s z Visibl Region Optimized region
& isi 5] isible to
= & | Visibleto 9]
8 5§ os G 5l os L
= & = .& - /\/"
applications applications

Figure 2.7: Execution Life Cycle of a Co-designed VM.

The native and the emulated modes accumulate most of the execution of the applications
in the system. Deciding which regions of code should be executed in one mode or the other
is one of the key points of the hardware/software co-designed virtual machine execution.
This process is commonly called the execution life cycle of a code region and it is
represented in Figure 2.7. At the beginning, the system does not contain optimized
versions of code and the software layer executes the applications in the native mode.
During this time, it analyzes the application execution with the main objective of
detecting the instructions of code that are more suitable to be optimized. As soon as the
software layer determines that one region of code is suitable to be optimized then it gets
the control of the processor by switching from the currently being executed application
code to a special software layer routine that will be in charge of applying the
optimizations to the code. Since this code is from the software layer itself, the native mode
cannot be used and then the software layer switches execution to the emulated mode.
During the analysis of the applications, the software layer builds an internal
representation (normally by using basic blocks) of each one of the original guest ISA code
regions. It also stores statistical information about how the code is being executed within
the processor. The process of optimizing a region takes this internal representation with
the statistical information and builds a new optimized region but in the host ISA
instruction set. The new representation of the code is then placed inside the concealed
memory in an internal memory structure called the code cache (C$) [13]. From this point

on, the software layer uses the optimized representation of the code stored in the C$ in

16

2.4. Operation of a Hardware/Software Co-Designed VM at Internal Level

order to improve application execution when possible. The code from the C$ is always

executed in the emulated operational mode of the software layer.

From a memory point of view, the execution life cycle of a region requires a structure for
detecting the regions of code to be optimized, a structure for placing the optimized
versions of code and a structure to store the information required to switch processor
execution from a non-optimized region to an optimized version of it. In the rest of this
section we will cover all these structures in more detail. Note that the other information
required for the execution life cycle of a region is stored and managed as simple data

within the virtual machine concealed memory.

2.4.1 Detecting Regions to be Optimized

The software layer uses profiling for detecting the regions of code that are more frequently
executed in the system [13]. The profiling requires storing information about the number
of times each instruction has been executed. Periodically, the software layer analyzes this
information and, based on the number of executions of the instructions it decides which
codes should be optimized. A region of code that has been executed enough times to be
considered for optimization is commonly called Hot Code Region. These regions can be
basic blocks, superblocks [41], routines, and loops, among others types. It is a decision of
the software layer designer to select the more appropriate type of region, normally based
on the optimizations to be applied on top of them. In Chapter 4 and Chapter 5, we use
superblocks to represent code regions. Superblocks are formed by a sequence of basic
blocks as shown in the example of Figure 2.8. Superblock regions may have multiple exit
points but only one entry point is allowed. More details about superblocks are given in

Section 5.2.1.

BB2

Figure 2.8: Example of a superblock code region.

17

Chapter 2: Background

The most appealing hot regions to be optimized are those that significantly improve the
performance of the application without incurring in big overheads to the system.
Therefore, detecting these regions is not a straight forward problem. In the literature, we
can find different examples about how to detect hot code regions. These proposed
solutions can be classified as hardware profilers and software profilers. Hardware profilers
[26] [17] [42] [43] usually implement a hardware table that keeps track of the number of
times each static instruction has been executed. Since the table is implemented in
hardware its size is usually small, which compromises the accuracy of the profiler. By
contrast, its management is fast and does not introduce significant overheads to the
system. On the other hand, software profilers [16] [30] [35] [36] [44] [45] [46] rely on
memory table structures. Special software instructions are executed in the processor to
keep track of the execution of the information and for updating the data of these tables.
The execution of these instructions adds an additional overhead to the system since they
are executed intermixed with the original instructions of the application. However, the
table size is not constrained as in the hardware profiler schemes and, therefore, software

solutions normally present higher accuracy.

In an efficient implementation of a hardware/software co-designed virtual machine, the
profiler should introduce low cost and complexity to the system. Moreover, it should
introduce minimum overheads in order not to compromise the benefits that can be
obtained by the execution of the optimized regions. Therefore, pure software and pure
hardware based solutions are normally discarded because the overheads are high in the
formers, and the accuracy is low in the latters. Fortunately, a hybrid hardware/software
solution is possible in a co-designed virtual machine [17] [27] [18]. For instance, this may
be done by just letting the hardware to count instructions and the software to analyze the

information for later building and optimizing the hot code regions.

2.4.2 Storing Optimized Regions

Once a code region has been optimized, it is stored in memory for further reuse to avoid
the overheads of re-optimizing the region again. Code regions are stored in the code cache
(C$). The main design decisions that determine the effectiveness of the C$ are the
identification of the regions within the structure, the region placing and replacing

mechanisms, the size of the structure, and the persistence of the information.

The identification of the regions is done by the indexing mechanism. This mechanisms in
charge of identifying where the information within the C$ resides. Since the optimized

regions stored in the C$ are modifications of the original regions, the indexing mechanism

18

2.4. Operation of a Hardware/Software Co-Designed VM at Internal Level

requires to identify the relation between them. This identification must be fast, otherwise
every time a region needs to be searched it would be very costly to use it and the possible
benefits of its optimization would be compromised. In the literature, there are different
studies focused on reducing the costs of the indexing mechanisms, like for instance
Indirect Branch Handling Mechanisms [47] and Region Chaining [48]. These techniques
avoid returning to the software layer code once a region has been executed if it is known

that another optimized region is the next to be executed.

The placing and replacing mechanisms are in charge of determining the best position
within the C$ for the optimized regions and which region or regions are the best
candidates to be removed from the structure when there is no free space. Since optimized
regions are inserted, deleted and replaced from the code cache and their sizes are not
fixed, we may have fragmentation problems in the C$ [49]. Actually, fitting regions of

variable size in a limited space is not a straight forward problem [50].

For an efficient design of the C$, the aforementioned indexing, placing, and replacing C$
mechanisms should satisfy the following requirements: (1) to introduce low overhead,
avoiding extra costs to the system, (2) to maximize the data temporal locality by keeping
the most frequently executed regions in place, and (3) to effectively utilize the resources

avoiding fragmentation.

The size of the C$ is one of the most important design decisions for maximizing the
effectiveness of the structure and for determining the most convenient implementation of
the indexing, placing, and replacing mechanisms. The C$ size is dependent on the
instruction footprint of the applications. Actually, its size tends to grow up to five times
the size of the footprint of the executed application [51]. Over-dimensioning the size of the
C$ may imply a waste on the memory resources and it complicates the implementation of
the required mechanisms to correctly handle the structure. By contrast, a small C$ is also
counterproductive because optimized code regions won’t fit in it and re-optimization will
occur more often. The C$ size should meet a compromise between the efficiency of its
handling mechanisms and retaining the most frequently executed regions in place. Several
works focus on the management of the C$ [37] [49] [51] [52] [53].

The last C$ design decision refers to the persistence of the information across different
application executions. The basic C$ design is to remove all the content of the structure
on every application context switch. This solution rely on the fact that the optimized code

between context switches is small and hence flushing C$ during context switches is enough

19

Chapter 2: Background

to make room for the necessary regions [36]. However, it is possible to save the
information of the C$ in other memory structure to recover it in a future application

execution [35].

Finally, the C$ management is also cumbersome because it has to deal with several corner
cases to guarantee correctness [54]. First, some systems have special situations where
regions cannot be directly removed from the C$. For instance, when software layer
exceptions® are being served in the middle of the execution of a region, the software layer
requires the stored version of the region to remain in the C$ in order to know the
returning address once the exception completes. Second, when the OS decides to force C$
region evictions because a page is de-allocated from main memory, the management
mechanism have to be conveniently informed, otherwise the placing and replacing

mechanisms would use incorrect information and would incur in incorrect decisions.

Finally, regions stored in the code cache could become obsolete in ISAs like x86 that
support Self Modifying Code (SMC) if the original code is modified. In these cases, C$
management has to prevent the execution of obsolete optimized versions of the modified

code.

2.4.3 Using the Optimized Regions

Once a code region has been detected, optimized, and stored inside the CS$, it should be
used every time we want to execute the original code it represents. Therefore, the software
layer accesses the C$ looking for the optimized version of the original code that is going to
be executed. In the case that the optimized region is not present, then the software layer
will re-optimize it again (if the region is still considered as hot). On the other hand, if the
region is in the C$ then the software layer executes its optimized version. The searching

mechanisms may incur in significant execution overheads [55].

jTLB Structure

in case of a hit,

TAG PC Target PC |——— itreturnsthe IP of
the optimized version

Source PC

Y

y

—P|_;—,—> hit/miss

Figure 2.9: jJTLB implementation.

2 Software layer exception does not require updating the architectural state of the processor.

20

2.5. Improving Program Execution via a Co-Designed Virtual Machine

Some hardware/software co-designed virtual machines implement their search mechanisms
by software [14]. This software approaches use lookup hash tables. However, other co-
designed virtual machines implement a dedicated hardware structure called the jump TLB
(JTLB) to minimize the execution overheads. The jTLB keeps track of the relation
between the original region identifier and the optimized region identifier within the C$
[31]. Every time an original code region is going to be executed, the jTLB is queried in
order to determine if there is an optimized version for it. The lookup procedure uses the
original region identifier to index the table and if it exists then a hit and the identifier of
the optimized version of the code is reported. In case that the data is not in the table, a
miss is reported with no identifier associated. Figure 2.9 shows an example of the
functionality of a generic jTLB. As it can be observed, it is indexed by the starting PC of
the original region that acts as the original region identifier. In case of hit, the table
returns the target PC of the associated optimized region that acts as the identifier of the
region. Note that a hit always implies that there is also an optimized region in the C$,
whereas a miss does not imply that there is no an optimized version. In this latter case,
the software layer still needs to access the C$ to see if there is the region. Note that the
jTLB structure is very dependent of the C$ and both structures need to work in a

cooperative manner.

2.5 Improving Program Execution via a Co-Designed Virtual
Machine

2.5.1 Code Optimizations

An optimization consists on transforming the original application code into a new version
that can be executed in a faster manner or using fewer system resources. The software
layer dynamically analyzes the execution of the instructions executed by the processor and

applies optimizations to them in order to improve their performance execution.

The optimizations applied to the codes are classified as platform dependent and platform
independent and the co-designed virtual machine can perform both of them indistinctly.
The platform dependent optimizations take advantage of the architectural characteristics
of the system. Actually, since the software layer knows in detail the components that form
the underlying hardware, it can apply very precise optimizations to the codes to take
advantage from the specifics of the architecture. For instance, the software layer can
apply optimizations to the code in order to improve the accuracy of the branch predictor

[56]. Platform independent optimizations are not designed to take advantage from any

21

Chapter 2: Background

particular system and they are effective on most of the systems. In the literature, there
exist different types of independent optimizations that the software layer can adopt in
order to improve the application performance execution [57]. In particular, there are
optimizations oriented to improve loop regions [57], such as loop fission, loop fusion, and
loop unrolling. Other optimizations are focused on improving data-flow execution, such as
common sub-expression elimination [58], constant folding propagation [59] or induction
variable recognition and elimination [60]. There are also SSA-based and code generation
optimizations, like register allocation [61], instruction scheduling, and reordering
computations [60]. Finally there are optimizations like dead code elimination [60], macro
compression [62], and reduction of cache collisions that can be broadly applied to different

types of codes.

The benefits obtained from the different presented optimizations are variable. This
variability is not only dependent on the type of optimization but also on the
characteristics of the codes on which they are applied. The same optimization applied to
different codes may not offer the same benefits to all of them. There is not a perfect rule
for knowing in advance the best optimization to be applied to the codes. Moreover,
optimizations can be combined together, including dependent and independent ones,
which complicates even more the selection of the optimizations to be applied. It is
responsibility of the software layer to find the best trade-off between the cost of applying
the optimizations and the benefits that can be obtained by using them. The software layer
is able to analyze the code execution before and after applying the optimizations and,
moreover, it is also able to dynamically re-optimize the code, even by changing the type of

the optimizations, if the benefits are not the expected ones.

The general rule is that code optimizations must not affect the correct execution of the
application. However, it is possible to apply very aggressive speculative optimizations in
order to get higher performance improvements. The main idea of these techniques is to
start doing work in advance before knowing whether it will be really required or
optimizing the code making certain assumptions that are not always true. Allowing
speculative code execution requires special mechanisms to avoid corruption of the
architectural state in case that the optimization jeopardizes the correctness of the
execution. Basically, any outcome of the speculative execution cannot become part of the
architectural or memory state until the correctness of the execution is validated. In next
section, we cover in more detail the required mechanisms that a hardware/software co-

designed virtual machine requires in order to allow speculative code execution.

22

2.5. Improving Program Execution via a Co-Designed Virtual Machine

2.5.2 Mechanisms to allow speculative code execution

Hardware/software co-designed virtual machines are allowed to wuse speculative
optimizations to achieve high performance improvements. However, speculation implies
generating values that may be incorrect and may compromise the correctness of the
execution. In this case, the software layer needs to guarantee that the architectural state
of the system is not updated until the optimized code is correctly executed. Correct
execution means producing the same values as if the code was executed in the original
sequential order. In order not to promote incorrect speculative values, the software layer
prevents any change on the architectural state to become visible outside the core until the
region completes execution. If the region cannot be executed completely for any reason,
the work is undone and the architectural state is recovered to the point it was at the
beginning of its execution. The execution of a region is also cancelled if an interrupt or an
exception occurs since they have to be handled as if they were produced in the original
sequential application execution [63]. On the other hand, if the execution of the region is
correct, then the architectural state is updated accordingly and the speculative values are
considered correct and visible for other cores. The regions are executed atomically since all
instructions within them retire or any one does [64]. When a problem occurs during the
execution of the speculative region, we say that the region does a Rollback. By contrast,

when the execution is correct, we say that the region does a Commit [65].

The architectural state of the system comprises the registers and the memory. The
speculative execution of a region cannot produce values updating these structures directly
because other cores could see incorrect values and proceed generating wrong results. The
software has to guarantee that these both structures are updated conveniently
guarantying application execution correctness [63]. The most common solution for storing
correctly the architectural state of the processor registers is by using a Shadow Register
File [15] [16]. As it is described in Figure 2.10, the shadow register file is used by the
software layer to make a copy of the value of the registers just at the beginning of the
execution of the code region. In fact, this is a checkpointing mechanism that makes a safe
copy of the architectural state of the registers at this point. Therefore, there are two
copies of the architectural registers coexisting simultaneously in the system. One
containing the checkpointed values (shadow register file) and another containing the
values produced during the execution of the region (normal register file). In case of
rollback, the shadow register file values are copied into the normal register file, recovering

the architectural state of the registers at the beginning of the execution of the region.

Chapter 2: Background

Beggining of a

region
. COPY Shadow
Register .
Fil Register
e Rollback F|Ie
RESTORE

Figure 2.10: Shadow Register File.

In traditional processors, memory-write operations (stores) are buffered in a hardware
structure, called Store Buffer, before their promotion to main memory [66]. This allows
the store operations to be executed even if previous operations have not still retired and
the data is promoted to main memory only when the store operation correctly retires on
the processor. Co-designed virtual machines normally take this idea and extend it to
handle the problem of updating correctly the architectural memory state of the processor.
The extension consists on adding a gate barrier to the store buffer to avoid the promotion
of stores that belong to code regions that are still pending of commit (these stores are
executed speculatively). Note that region commit also requires all stores within the region
to correctly retire. The buffer structure with the additions is commonly called the Gated
Store Buffer [67]. In Figure 2.11, we illustrate how the structure works by using a simple
example. Within the buffer, there is the data of store operations belonging to different
regions. The data of stores that belong to code regions that have already committed are
called senior stores. In the figure, they are located at the right part of the buffer and
highlighted in dark gray color. The store data of regions that have not committed are
called non-senior stores. In the figure, they are located in the left part and highlighted
with light gray color. Between both types of stores, it is placed the gate barrier. This
barrier separates stores that can proceed to main memory from those that no. The gate
barrier position changes every time a region commits and it moves to the first store of a
region that has not already committed (or to the last store belonging to a last region that
has already committed). In case of rollback, all non-senior stores are directly removed
from the buffer and they do not update the main memory content. Therefore, all senior
stores before the gate barrier can be promoted and all non-senior stores after the gate

barrier need to wait for their regions to be committed.

The main problem of the Gate Store Buffer is that regions with more memory store
operations than the size of the structure cannot be executed in their optimized version
because the amount of speculative data generated cannot be temporarily stored on it. This

problem is exacerbated when the software layer operates with big regions (for instance

24

2.5. Improving Program Execution via a Co-Designed Virtual Machine

regions with more than 100 instructions which imply approximately 30 store operations on
average per region) or it allows multiple threads running simultaneously on the same
processor. There are other approaches, based on transactional memory that can also be
employed in order to prevent the promotion of speculative data to the memory [10] [68]
[69] [70] [71] [72] [73]. The fundamental of these techniques is to use the regions as if they
were atomic transactions [74]. A transaction is handled as a sequence of instructions that
execute atomically (as regular code regions from the co-designed virtual machine definition
do). In general, transactional memory techniques use the memory cache structures of the
processor to keep the generated data by the transactions before promoting it to main
memory. In such a way, the space for keeping the speculative data is bigger than in the
Gate Store Buffer proposal which makes these solution more scalable when regions are big
or when multiple threads run simultaneously. By contrast, these solutions are more

complex from a hardware point of view.

The common scenario is to commit the regions and only rolling them back very rarely.
Therefore, the more appealing memory transactional techniques to be adopted by the
software layer are those that introduce minimum overhead to the system when regions
execute correctly, even if they have higher overheads when rollbacks occurs. This is the
case of well-known techniques such as LogTM-SE [72] and others based on it. However,
low rollback overheads are also helpful since they enable the utilization of more aggressive

optimizations.

Transactional memory as described in this section is still under research to be fully
adopted by co-designed systems. In particular, the Transmeta® processors use the Shadow
Register File in both Crusoe® and Efficieon® for the registers, and for memory, the Gated
Store Buffer in Crusoe® [16] and a simplified transactional memory based mechanism in
Efficiecon® [75]. However, there are mno real commercial processors using the

aforementioned transactional proposals

Non-Senior STORES ~ Senior STORES from a committed region

Il A

STORE BUFFER ' "1 '

MAIN
I = |\ Eviony
GATE
<€ Barrier

Figure 2.11: Gated Store Buffer implementation.

25

Chapter 2: Background

2.5.3 Trade-Offs

Co-designed virtual machines employ a set of actions that introduce an additional cost
compared to traditional systems. These actions are: the execution of the application code
in native mode, the detection and optimization of the hot code regions, the storage and
search of the optimized regions, the correct execution of the regions in the processor, and
depending on the processor hardware, the emulation of legacy functionalities. Moreover,
the software layer uses the processor resources for its execution. This means that it
competes for resources with the applications that are being executed and therefore, the
applications do not make forward progress while the software layer executes. Thus, the
optimizations applied to the regions of code need to improve the application execution
performance, at least the minimum necessary to compensate the overheads introduced by
the execution of the software layer. However, optimizing the code is one of the most costly
actions performed by the software layer. Thus, it is very important to find the best trade-
off between the benefits that can be obtained by applying the optimizations and the
overheads of making them possible. For instance, the best optimization to be applied to a
particular code may require high overheads that may not be covered by the benefits
obtained. On the other hand, a simple optimization may give huge benefits if it incurs in

very low overheads.

Overall, the software layer has to be a highly tuned code where all components should
perform their actions as efficient as possible. All of these components cannot be tuned in
an isolation manner since all of them are inter-related. For instance, detecting hot code
regions fast and accurate is crucial to maximize the benefits of the optimizations. If the
regions are not frequently executed then the optimizations are useless. Moreover,
maintaining the optimizations in the C$ is necessary to avoid re-optimizing the code
multiple times, and implementing a fast mechanism to get the regions from the C$ is
important to execute as soon as possible the optimized code. Therefore, all the software
and hardware components involved in the aforementioned software layer actions must be
designed with the objective of reducing the overheads and maximizing the benefits that
can be obtained by their use. As examples, in this thesis, we present a very efficient
implementation of a fast and accurate hot code detector and an efficient implementation

of a hybrid hardware/software register checkpointing mechanism.

2.6 Baseline Hardware/Software Co-designed Processor
In this thesis, we have considered a hardware/software co-designed processor which its

main operational flow matches that presented in Section 2.4. This processor has been

26

2.6. Baseline Hardware/Software Co-designed Processor

employed as the baseline for all our implementations. It uses hardware profiling for
detecting code suitable to be optimized and relies on the software layer to build regions by
using superblocks. Optimized regions are stored in a C$ and are accessed by employing a
jTLB. The software layer applies optimizations such as dead code removal, instruction
reordering, etc. In order to guarantee the correct update of the architectural state of the
processor we use a Gated Store Buffer for the memory and a Shadow Register File for the

registers.

Chapter 2: Background

28

Chapter 3

Detecting Hot Code

The ability of analyzing the code executed by the processor with the purpose of
dynamically improving performance/power is one of the main characteristics of hybrid
hardware/software co-designed systems. Such improvements come from either dynamically
adapting the code to the particularities of the internal architecture or from applying
aggressive optimizations to eliminate unnecessary computations or reducing the critical
paths. The application is analyzed from different points of view in order to gather
information related to its execution. For instance, the detection of memory operations
with high cache miss-ratios can be used for enhanced explicit prefetching strategies or for
improving instruction scheduling in in-order processors, while the extraction of conditional
branches behavior can be used to create better code regions for optimization or to convert
biased branches into assert instructions. However, this information extraction process
introduces an additional cost to the system. First, the code has to be carefully analyzed
and second, the application code has to be transformed and/or optimized by a software
layer referred to as the optimizer. Both steps are time and resource consuming. Thus, the
cost can be amortized only by improving significantly the execution of the transformed
code. One way for reducing these costs is to only optimize the most frequently executed
code regions of the application, also known as hot code regions. Transforming only these
regions is less costly than optimizing the whole application code and they still represent
the major part of the execution of the application. This chapter presents a novel
hardware/software co-designed mechanism for detecting the most frequently executed

application regions in a very efficient manner.

This chapter is organized as follows. First, we introduce how a co-designed system is able
to collect information from the application execution. In Section 3.2, we describe how to

detect the most frequently executed code regions during program execution in detail. In

29

Chapter 3: Detecting Hot Code

Section 3.3, we propose a hardware/software mechanism for detecting these code regions
and later, in Section 3.4 we evaluate the proposal. Finally, in Section 3.5 we conclude the

chapter by presenting the conclusions and the future work.

3.1 Profiling

3.1.1 Description

Profiling in computer engineering is a technique used to analyze the execution of an
application when it is running in the processor. This analysis is done by studying
information that is collected at runtime and that it is related to particular application
characteristics such as the memory usage requirements, the amount of branch instructions
correctly predicted, or the amount of arithmetic operations processed, among others. The
components required to collect the information and analyze it form what is commonly

called the profiler.

Application profiling can be done in many different ways and this leads to multiple types
of profiler designs. However, all of them share a common structure depending on two basic
aspects. The first is related to “how they collect the information at runtime”. The second
is related to “when the information is processed”. In this chapter, we will start describing
the differences related with “when the information is processed” by introducing the
concepts of online and offline profiling. Later, we will cover “how the information is
collected” by describing the concept of program events and also by introducing the two

more typical approaches to roll up such events: by hardware and by software.

3.1.2 Online versus Offline Profiling

Profiling is always performed while the application is running on the system. However,
such profiling is classified as online or offline profiling depending on when the collected
information is processed. Online profiling collects and processes the information while the
application is being executed in the system. That is, both collection and processing are
performed at runtime. This type of profiling is also known as dynamic profiling. On the
other hand, offline profiling collects the information in a first execution of the program
and it processes such information once the execution is finalized. Processed information is
often used to generate better versions of the program for later executions. This type of
profiling is also known as static profiling. In the rest of this thesis, we will use

online/dynamic and offline/static terms indistinctly.

The main advantage of dynamic over static profiling is that the collected information in

the former can be used to enhance the behavior of the application using the same input

30

3.1. Profiling

set. In other words, the application can be transformed at runtime using information from
the same execution. By contrast, in the static approach the input set used to collect
profiling information may be totally different than the input sets used for later executions.
In order to avoid collecting meaningless data, one needs to use representative input sets.
It is important to note that, although in some cases it is possible to use the same input
sets in both executions, there are particular programs, such as games or multimedia
applications, where this is not feasible because their input sets are unknown until the user

executes them.

However, a drawback of online profiling is that the use of the collected profiling
information is limited to the ambit of execution of the application itself. This implies that
accurate profiling information needs to be collected fast in order to spend a significant
amount of time executing the enhanced version of the application. Furthermore, profiling

information needs to be collected every time the program is executed.

One general inconvenient in profiling is that application execution may pass through
different execution phases. In other words, one application could behave totally different
from one moment in time to another. This has implications for static and dynamic
profiling. For the latter, phases may imply that collected information is obsolete once it is
used. For this reason, it is important to review periodically the profiling information and
react when significant changes are observed. On the other hand, phases may be totally
different from different input set executions in static profiling. In addition, phases may be

hidden in offline profiling as average profiling statistics are often generated.

In general, static profiling is used in traditional compilers, whereas dynamic profiling is
commonly used in dynamic binary optimizers and translators such the ones implemented

in hardware/software co-designed systems.
3.1.3 Gathering Information

3.1.3.1 Program FEvents

As we have commented, profiling is based on gathering information about particular
application characteristics. This information is collected via events. An event describes a
particular architectural or micro-architectural situation that happens during the execution
of an application. As example of events once can enumerate data cache misses, branch
miss-predictions, registers usage, among others. It is the responsibility of the computer
architect to define what events are required by the co-designed system in order to apply

transformations/optimizations to the code.

31

Chapter 3: Detecting Hot Code

In general, profiling information is gathered by counting the number of times an event
occurs. There are two ways of processing the information once it has been collected. On
one hand, there is the event-based alternative where the analysis of the information starts
when a particular counter exceeds a fixed number of occurrences (threshold). In this case,
a control flow disruption occurs (e.g. an exception) and the counters are analyzed (see
Section 3.1.3.2). On the other hand, there is the statistical alternative, where particular
event counters are analyzed after fixed periods of time. In this second alternative, the time
between two different reads of the same counter/s can be programmed. It is important to
note that event counters are normally exposed and they can be read at any time during

program execution.

3.1.3.2 Hardware and Software Approaches

There are two basic approaches for counting events during program execution. On one
hand, one can add specific hardware structures to track and count events. On the other
hand, one can count events by inserting instructions in the original code. Since this
approach does not use additional hardware, the profiled information is stored directly in
main memory for its later analysis. Solution based on the first alternative are called
hardware profilers, whereas the alternatives based on the second approach are called

software profilers.

Both alternatives have their own pros and cons. On the one hand, the hardware based
solutions require more processor area than the software based ones. On the other hand,
the software based solutions may slow down the execution of the application and the
additional instructions may impact the profiled behavior of the application. Note that
although we have presented both alternatives in a separate way, there are no limitations

for combining them in hybrid solutions.
3.2 Profiling for Hot Code Detection

3.2.1 Objectives

The main goal of this work is to design a profiler for detecting the most frequently
executed pieces of code of an application. These pieces of code, also called hot code
regions, are very appealing for dynamic binary optimizers because they normally represent
a small fraction of the static code but they account for the majority of the dynamic
instructions. Thus, optimizers could globally improve application execution by optimizing

just these regions requiring less time and resources than optimizing the full program code.

32

3.2. Profiling for Hot Code Detection

Detecting hot code regions only represents one part of the total profiling information
required for optimizing the code globally. Depending on the type of
optimizations/transformations different profiling information may be required. In any
case, the detection of hot code regions is the pillar upon which the hardware/software co-
designed processors are designed, since these regions describe the scope where such

optimizations are performed.

A profiler designed for detecting hot code in a co-designed system should satisfy the

following characteristics:

- Low overhead: hot code detection is done during program execution. Thus, it
should not interfere with the application and it should not impact its
performance. All overheads, included the ones from the optimizer, should be
compensated by the execution of the optimized versions of the code.

- High accuracy: events should be accurately counted by the profiler. Only
most frequently executed regions should be detected since detecting regions
that are not executed very often or missing regions that are executed very
frequently would translate in suboptimal performance. In addition, the profiler
should always provide up-to-date information from the application execution.
Decisions taken in the past may not be correct in the future depending on how
the application is being executed.

- Low cost and complexity: one of the main goals of a co-designed
hardware/software system is to reduce hardware complexity without harming
performance. Thus, resources dedicated to the profiler should not compromise

the processor design hardware and the software requirements.

3.2.2 Related Work

Profiling for detecting hot code regions amenable for optimization has been investigated
from different perspectives in the literature. In general, prior art proposals have been
classified into the three following categories: software, hardware, and hybrid

(hardware /software) based solutions.

Profiling in software is achieved by modifying the original program binary. Special profile
instructions dedicated to count events are introduced between the original application
code. Traditionally, these application modifications are done by a code instrumentation
tool [76] [77]. Usually, these tools do not require recompilation in order to generate the

binary with the profiling instructions attached to it.

33

Chapter 3: Detecting Hot Code

Ball and Larus first demonstrated how to build code control-flow events in an efficient
manner [78]. They use instrumentation techniques in order to break the dynamic program
execution into acyclic and intra-procedural sequences of code, called BL (from Ball-Larus)
regions. The number of BL regions executions is counted in order to determine their
contribution to the total program execution. Thus, regions with higher profiled counter
values are the most frequently executed ones. However, BL regions do not include loops
and are also limited to procedure boundaries. These two region formation constraints limit
the type of optimizations that can be applied to the code. Moreover, the required code for
generating the profiled information introduces an overhead that ranges from 30% to 45%

of total program execution time [78].

Later approaches focused on detecting more complex regions in order to extract more fine-
grain information and they apply more complex code transformations. For example,
Whole Program Path (WPP) technique produces an entire dynamic program control flow
by combining acyclic regions, very similar to BL regions, which conforms a complete
sequence of code [79]. However, these more complex regions require large amount of data
to be stored in memory and the profiling required for its generation is also more expensive

than the one required for generating simpler BL regions.

Tallam et. al also improved the initial BL region proposal by extending the code paths to
consider regions across loop iterations and across procedure boundaries [80]. However, this
technique incurred in 4 times the overheads introduced by the BL approach. On the other
hand, several techniques have been directly designed on reducing the overheads of path
profiling [81] [82] [83]. However, the overhead reduction is normally done at the cost of
increasing the time required for producing representative profiling events. These
techniques use less accurate profilers, and more time is required to gather events in order

to get representative information from the application in consequence.

The overheads introduced by software profiling can be reduced by adding hardware
support to the profiler. Early designs have taken advantage from existing branch handling
hardware in order to generate profile information during program execution [84] [85].
However, the small size of the branch management hardware structures compromises the
accuracy of the obtained profile information, and hence the type of optimizations that can
be applied to the code are limited [25]. In order to overcome this problem, the Profile
Buffer technique was proposed as a hardware profiler with higher accuracy than previous
designs [26]. This profiling technique gathers the number of times a branch has been taken

or not-taken and it stores this information into a set of hardware counters that are later

34

3.2. Profiling for Hot Code Detection

used to optimize the code by applying superblock scheduling [86]. Since the Profile Buffer
does not assign events to specific static instructions, the later ProfileMe technique
improved it by adding this feature and also by providing additional information about

paths using historical outcome resolution from branches [17].

One different approach for building frequently executed code regions and for dynamically
optimizing them is the Trace Cache [87]. In this case, a hardware structure stores dynamic
basic block code regions forming straight line code sequences known as traces. As a
consequence, the Trace Cache allows the processor to fetch such traces potentially
spanning multiple basic blocks in a single cycle. Although several techniques have been
proposed for optimizing these traces, they have traditionally been limited to classic

optimization because of traces’ small sizes and short lifetimes.

The Frame Cache was later proposed for solving these aforementioned drawbacks [88]. In
this case, the Frame Cache generates longer traces than the Trace Cache by speculating
on branches. Actually, regions are built considering high biased branches, so that region
control-flow is re-directed to the most taken outcome of the branch. By contrast, an
assertion is added to the less frequently taken outcome of the branch. Therefore, a fail in
the speculation raises an exception with the objective of recovering the initial state of the
machine (prior to the execution of the region). In order to guarantee forward progress
execution, the region is then re-executed in a non-speculative form. In this approach, the
cache line size and the amount of biased branches in the application limit the size of the

detected regions.

Merten et al. proposed the Hot Spot Detector [18] with the objective of identifying longer
regions than the ones detected by the Trace Cache without incurring in code speculation
as the Frame Cache does. The Hot Spot Detector determines at runtime the set of most
frequently executed branches that conforms a region called the hot spot. The profiler uses
a table called Branch Behavior Buffer that monitors the behavior of application branches
during a fixed amount of time. Once this time has elapsed, the buffer is used in order to
generate a code region. Although the overhead required for trace generation is low, the

required hardware is more complex than in previous approaches.

Apart from the aforementioned research proposals, processors hardware support for
profiling events may be also used nowadays for detecting the hot code regions [89] [90]. In
this case, the hardware profiling is combined with a software solution able to read the

events and detecting the interesting code regions. Other proposals combining hardware

35

Chapter 3: Detecting Hot Code

and software have been proposed, such as the aforementioned ProfileMe mechanism which
does the region formation in software by calling a specialized OS routine [17]. Also the
Relational Profiling introduced by Heil and Smith combines hardware and software by
gathering events in hardware and by using a software application running on a dedicated
co-processor in order to perform the region formation and the optimizations to the code
[27].

As it is reflected in this related work summary, software profiling solutions for hot code
detection suffer from important execution overheads whereas hardware solutions normally
sacrifice profiling information accuracy and hardware costs. However, as also commented,
hybrid hardware and software approaches overcome part of these two drawbacks by
reducing the overheads by adding special hardware resources and by improving the
accuracy by using dedicated software functions. Therefore, co-designed systems such the
one described in this thesis, normally use hybrid hardware/software solutions for detecting
hot code regions. In next sections, we describe in detail how a hybrid profiler should be
designed for detecting in a very efficient manner the hot code regions when used in a co-

designed system.
3.2.3 Application Characterization

3.2.3.1 Static and Dynamic Instructions

Static instructions is the term used to refer to the instructions that form the application
executable binary. Static instructions executed by the processor are called dynamic
instructions. Due to the program dynamic execution flow, a static instruction can be
dynamically executed zero, one, or several times. Taking the example from Figure 3.1, a
program formed by the static instructions represented on the left of the figure has two
different dynamic executions depending on the outcome of the control instruction “INS 2”.
These two case examples are represented in the figure as dynamic codes ‘a’ and ‘b’. In
case ‘a’, the dynamic instruction control flow redirects the program execution to the loop
of instructions formed by “INS 3”7 and “INS 4”. In this case, the loop iterates several times
and “INS 5”7 is never executed. On the other hand, in case ‘b’, the loop is not executed
and the control flow is redirected to instruction “INS 5”. Note that in case ‘a’, the 6 static
instructions may contribute with several dynamic instructions (depending on loop
conditions driven by control instruction “INS 47), whereas in case ‘b’ the number of

dynamic instructions is 4.

36

3.2. Profiling for Hot Code Detection

Static Code Dynamic Code
INS1
INS 2 (control) a. b.
INS 1 INS 1
/\ INS 2 INS 2
INS 3 INS 5 INS 3 INS 5
INS 4 (control) INS 4 INS 6
INS 3
\ INS 4
INS 5
INS 6

Figure 3.1: Static vs dynamic instruction code.

In current applications, the number of dynamic instructions is usually several orders of
magnitude higher than the number of static ones due to loops and routines that are
executed several times. In order to show this relation, we have analyzed the number of
static and dynamic instructions of the benchmarks included in the Spec2006 suite [91].
The results are shown in Table 3.1. This table contains four columns: (i) the benchmark
name, (ii) the input set identifier, (iii) the number of static instructions of the benchmark,
and (iv) the number of dynamic instructions when the benchmark is executed using the
input set specified in the second column. It is important to note that benchmarks with
different input sets have different number of static instructions because we are counting
static instructions that have been executed at least once. Instructions that are never
executed are not considered and they are referred to as unused instructions. As shown in
Table 3.1, the number of static instructions is in the order of thousands whereas the
number of dynamic instructions is in the order of hundred billions for all benchmarks.
These trends are similar for other well-known benchmarks such as the ones included in the

Spec2000 suite, but in this case dynamic instructions are in the order of ten billions [92].

Since static instructions are executed multiples times, it is possible to dynamically analyze
their behavior first, and then to optimize them in order to improve program execution.
However, such a runtime analysis and optimization introduces an overhead that must be
amortized by the benefits achieved by executing the optimized version of the code. In
other words, if program execution is improved by X%, but the execution time devoted to
analyze and optimize it is Y%, being Y greater than X, then the dynamic optimization is

useless.

37

Chapter 3: Detecting Hot Code

Benchmark Input Set Static Insts Dynamic Insts Benchmark Input Set Static Insts Dynamic Insts
astarl Ref -1 14,251 4.39E+11 gobmk Ref - 4 116,736 2.61E+11
astar2 Ref - 2 14,241 8.84E+11 gobmk Ref - 5 115,636 3.7T6E+11
bwaves Ref-1 17,813 1.96E+12 h264ref Ref -1 44,005 5.59E+11
bzip2 Ref-1 14,546 4.28E+11 h264ref Ref - 2 53,595 3.88E+11
bzip2 Ref - 2 14,385 1.85E+11 h264ref Ref - 3 53,715 3.53E+12
bzip2 Ref - 3 14,392 3.12E+11 hmmer Ref -1 19,069 9.75E+11
bzip2 Ref - 4 13,917 5.66E+11 hmmer Ref - 2 15,806 2.08E+12
bzip2 Ref-5 13,849 6.00E+11 lbm Ref -1 7,705 1.68E+12
bzip2 Ref - 6 14,574 3.44E+11 leslie3d Ref -1 39,542 1.79E+12
gamess Ref -1 127,589 1.17E+12 libquantum Ref - 1 9,093 4.01E+12
gamess Ref - 2 112,161 8.40E+11 mcf Ref -1 8,969 3.76E+11
gce Ref-1 275,038 8.50E+10 milc Ref-1 20,239 1.22E+12
gee Ref - 2 264,941 1.67E+11 perl Ref -1 101,718 1.26E+12
gee Ref - 3 257,406 1.41E+11 perl Ref - 2 79,347 4.11E+11
gce Ref - 4 254,473 1.05E+11 perl Ref- 3 88,378 7.73E+11
gce Ref- 5 267,338 1.62E+11 povray Ref-1 65,902 1.30E+12
gee Ref - 6 261,931 1.99E+11 soplex Ref -1 36,624 8.59E+11
gce Ref- 7 240,623 1.81E+11 specrand Ref -1 4,694 6.54E408
gce Ref - 8 265,571 6.39E+10 sphinx3 Ref -1 31,292 3.02E+12
gobmk Ref-1 114,872 2.60E+11 tonto Ref -1 202,295 3.28E+12
gobmk Ref - 2 120,434 6.96E+11 wrf Ref-1 283,124 3.14E+12
gobmk Ref - 3 110,028 3.73E+11 zeusmp Ref -1 56,277 2.24E+12

Table 3.1: Static and dynamic instructions of some selected Spec2006 applications using ref

input set.

Figure 3.2 shows the trade-offs between overhead costs and benefits that could be
obtained by optimizing the code for the Spec2000Int benchmarks. In particular, the figure
shows the relation between optimization overheads and code coverage. Coverage is defined
as the ratio of the dynamic execution weights of a subset of static code instructions
compared to the dynamic weight of the full program static instructions, being dynamic
weight the number of times one static instruction is executed during the whole program
run. Note that coverage is a ratio that is always lower or equal to 100% because the
dynamic weight of any subset of static program instructions is lower or equal than the full
program dynamic weight. The X axis shows the optimization threshold or minimum
number of times a static instruction should execute before it is considered for
optimization. As an example, if the threshold is 0, the subset corresponds to all the
instructions that are executed more than 0 times, which, by definition, represents the

whole static instructions (not considering unused). Such a subset always represents 100%

38

3.2. Profiling for Hot Code Detection

coverage. In the figure, the coverage starts to decrease when considering subsets of
instructions with thresholds higher than 10,000 execution times. Moreover, it is important
to remark that still considering a threshold of 1,000,000 execution times the coverage

remains around 89%.

On the other hand, in the left Y-axis of Figure 3.2, we have the overhead costs of
optimizing such subsets of considered instructions. The cost of the optimizer is computed
as the increment of dynamic instructions required to optimize the static instructions in the
subset. In other words, the overhead is the increment of dynamic instructions introduced
by the optimizer in the system. Note that in the Figure 3.2 we consider 3 different costs
for the optimizer. Each one represents a different type of optimizations, starting from very
simple ones and ending with very aggressive ones. For example, we assume in the figure
that a simple optimizer spends 10k dynamic instructions to optimize a single static
instruction, while a very aggressive optimizer incurs in 300k dynamic instructions to
optimize one single static instruction (these numbers are based on previous studies from
the literature [36] [93] [94] [95] [96]). The overhead for simple optimizations is lower than
for aggressive ones but the performance improvements expected by using them are also
lower. From the figure, we can see that if we optimize all code in a very aggressive
manner (extreme case, threshold of zero and overheads of 300k instructions per static
instruction) we incur in an overhead of 5.6%. This means that the optimizations must
provide more than 5.6% performance benefits to start improving the execution compared
to executing the code non-optimized. If we move to instruction subsets with threshold
higher than 10,000 execution times, then the overheads decrease to less than 1.5% still
having a good coverage of 99.8%. The major inflexion occurs at threshold 100,000 where
the coverage is at 99.0% and the overheads are less than 1.1%. After this point the

coverage degrades very rapidly.

Figure 3.3 shows the same information but for Spec2006 benchmarks. In this case, the
overheads are significantly lower because in these benchmarks the number of dynamic
instructions is significantly higher than the number of static instructions, and therefore,
overheads are more easily amortized. For this reason, when it is possible, in the rest of
this document we will consider also the Spec2000 benchmarks suite where overheads are

more difficult to amortize.

39

Chapter 3: Detecting Hot Code

6% -

100%

100.0%

—— e s
“w
o
~ 99%
5% \
\ 98%
\
4% N
979
T \ ;
] \
[
£ 3% \ 96%
g \
o [
95%
2%
94%
1% -
93%
0% — ———ge——————y , & : @ : 92%
10 50 100 1,000 10,000 100,000 1,000,000
execution threshold
eg=overhead (10K) esmsoverhead (100K) overhead (300K) e=» ecoverage
Figure 3.2: Coverage & overheads of optimizing different subsets of static instructions
considering Spec2K Integer benchmarks.
3.5% ——————-—-
-~
-
“a
3.0% N\ 99.5%
2.5% 99.0%
B 2.0% 98.5%
£
=
[
3 15% 98.0%

1.0%

0.5%

e

0.0%
0 10 50 100 1,000

execution threshold

10,000

@@moverhead (10K) eslssoverhead (100K) esswoverhead (300K)

@
100,000

@» ecoverage

1,000,000

97.5%

97.0%

96.5%

Figure 3.3: Coverage & overheads of optimizing different subsets of static instructions

considering Spec2K6 benchmarks.

coverage

coverage

Note that Figure 3.2 and Figure 3.3 do not consider other overheads such as the program

context switches costs (including the necessity of sharing resources through different

applications) or the costs related to ensure correct execution of the optimized codes. The

study of these overheads is out of the scope of this thesis since we are only focused on

those related to detecting hot code.

Optimizing all the application code is not a good approach because of the overheads.

Actually, only a small portion of the static code is responsible of the major part of the

dynamic execution of the program as reflected in the coverage lines in Figure 3.2 and

40

3.2. Profiling for Hot Code Detection

Figure 3.3. By optimizing only these small static code regions, it is possible to reduce the
cost of the optimization without compromising the possible performance improvements
when executing them [18] [42]. Note also that detecting these regions is not trivial in a
dynamic optimizer since they have to be found on time to take full advantage from their
optimization. If a region is detected too late, then the optimization may be useless.
Moreover, the time required for detecting regions suitable to be optimized compromises
also the time required for making the optimization and the possible performance benefits

that could be obtained in consequence.

3.2.3.2 Counting instructions

As we have seen, counting instructions for determining which code regions are of interest
for optimization is important in a co-design profiler. Although in the coverage and
overhead results presented before, we counted directly the number of dynamic
instructions, this is not really required because we can use the number of executions of
basic blocks as a proxy. This is so because all instructions within a basic block are always
executed the same amount of times. Thus, counting basic blocks is equal to counting the
executions of the instructions belonging to it. As described in Figure 3.4, a basic block
starts on the instruction that is the target (or destination) of a previously executed branch
instruction. In the figure, the “jump” instruction in BB1 has 2 destinations, one starts
BB2 and the other starts BB5. In fact, the address of the instruction that is the
destination of the branch identifies the basic block it belongs to. Thus, counting the
number of executions of branch destinations is sufficient to count the executions of
dynamic basic blocks. This instruction counting method is commonly known as basic
block profiling [97]°.

The volume of information to be tracked by the profiler when counting branch targets
(e.g. basic block starting addresses) is described in Figure 3.5 and Figure 3.6. The figures
show the number of basic blocks in Spec2000 and Spec2006 benchmarks respectively.
Comparing Figure 3.6 with the results from Table 3.1, we can observe that the basic block
counting proxy reduces significantly the size of the information to be profiled for Spec2006
(similar trends apply for Spec2000). As a simple example, bwaves has 17,813 static

instructions (from Table 3.1) spread in 2,456 basic blocks (7.25 times less information),

31t is also possible to count the transitions from one basic block to another, which is commonly
called edge profiling [97]. This technique is more accurate but requires storing more information.
We have selected basic block profiling because it is simpler for a hardware implementation.

41

Chapter 3: Detecting Hot Code

and gce has around 260,000 static instructions (depending on the input) in 75,210 basic

blocks (2.46 times less information to be tracked).

Furthermore, there is a second bar in these figures that indicates the number of basic
blocks that are executed more than 100,000 times. Note that this threshold is selected as
the best candidate for reducing the optimizations overheads while keeping good
application coverage, as described in Figure 3.2 and Figure 3.3. Thus, this bar shows the
amount of information to be profiled when detecting the regions of code suitable for
optimization. Taking a look at particular benchmarks, l[bm has 7,705 instructions within
1,345 basic blocks, but just 47 of these basic blocks contribute to the majority of the
dynamic execution of the benchmark. In case of tonto, the 202,295 static instructions are
distributed in 20,583 basic blocks and the code that is suitable to be optimized is

contained in 3,890 basic blocks.

In fact, benchmarks like gce (in both suites), perl (in both suites), crafty, parser, gap,
vortex, gobmk, h264ref, tonto, wrf and zeusmp contain more than 2,000 basic blocks even
when filtering by using the threshold of 100,000. These numbers are still very big for a

direct implementation of the profiler in hardware.

However, this analysis assumes that all instructions are executed evenly distributed during
the time the application is running. In other words, variable “time” is not considered. In
the next section, we describe how time may affect the way to design an efficient basic

block profiler.

@0 @ o0s
BB1 BB4
jump jump
W
BB2
jump
@5 @03

BB5 BB3

jump jump

N\

Figure 3.4: Basic Blocks execution example.

42

3.2. Profiling for Hot Code Detection

20,000
42,039
16,000
@ 12,000
[+2]
G
o
@ 8,000
o
£
S
< 4,000
O -
o w T 5 & O ©® T ¥ HB5 U >0 o0 wvw o s~ XX c XX g X o £ 5
5¢E52seisrgsEesEEggeeEadeg s
85 e ® E & 259 E&E =2 ¢3¢ = o o &
= o & © - o X o >
2 2 o
B Theshold 0 ® Theshold 100K
Figure 3.5: Number of basic blocks in Spec2000 benchmarks that are executed above a specific
threshold.
30,000
75,210
25,000
@ 20,000
[=2]
k]
«. 15,000
]
Q2
g 10,000 -
2
5,000 -+
0 .
L 5 - 5 & S K oA D &
Ry §R & S @ \Q’,bb S &S e \eo% Q@“ @ob & & & &
& 3 o 0 & S &S S & RS i~
0 G LARNGIRN N Q & R A
.,00)
AN
B Threshold 0 B Threshold 100K
Figure 3.6: Number of basic blocks in Spec2006 benchmarksthat are executed above a specific

threshold value.

43

Chapter 3: Detecting Hot Code

fuc bhc luc
BBO BBO
| e N . N
Program Alive Cold Alive Hot Program
starts } < ends
execution execution

application execution time

Figure 3.7: Basic Block Life Cycle during application execution.

3.2.4 Basic Block Cycle of Life

As we have seen, the big amount of basic blocks still imposes restrictions on the design of
a hardware basic block profiler. However, the execution of basic blocks is not evenly
distributed among time. Therefore, it is required to analyze the amount of information to
be considered simultaneously during execution in order to delimit the information to be
profiled. Actually, the amount of basic blocks executing simultaneously represents the size
of the information the profiler requires to work over. In this section, we use an analysis
model that describes how and when the basic blocks are executed. This model considers

that the execution of the basic blocks passes through different stages defined as follows:

- First Used Cycle (fuc): processor clock cycle when the basic block is executed
for the first time during program execution.

- Last Used Cycle (luc): processor clock cycle when the basic block is executed
for the last time during program execution.

- Becomes Hot Cycle (bhc): processor clock cycle when the basic block is
executed more times than a fixed threshold. In other words, the cycle when the

basic block can be considered as part of hot code given a threshold.

These stages in the execution of a basic block conforms different periods of time as
described in Figure 3.7. The period of time from fuc to luc is the total basic block
execution time. We call this period the basic block alive time interval. The period of time
from fuc to bhe, also called the instruction alive cold interval, determines the time the
basic block requires to become hot. Note that if a basic block is not executed more times
than the selected threshold value then this period completely matches the alive interval.
Finally, the time from bhc to luc represents the time that the basic block is executed as
hot code. This is the time that can be exploited by binary optimizers. We also refer to the

process described in Figure 3.7 as the “Basic Block Life Cycle” for hot code detection.

44

3.2. Profiling for Hot Code Detection

During program execution, basic block life cycles for different basic blocks may start and
end in different clock time cycles. Hence, the overlap of alive basic blocks determines the
upper bound amount of information required by the profiler in order to detect the hot
code regions. To be more precise, the alive cold interval is the one that delimits the
amount of information required for the profiler. This concept is described in detail in the
example in Figure 3.8 where 4 basic blocks with their corresponding life cycle time periods
are shown. A dummy brute force profiler would require counting all basic blocks. In this
example, there are four basic blocks. However, basic blocks 1, 2 and 3 overlap their life
cycles, whereas basic block 4 is executed once the others have finalized. Thus, the
maximum alive overlap is 3 basic blocks. A more sophisticated profiler would require
counting only three instead of four basic blocks. In addition, if we consider only the alive
cold intervals, then only basic blocks 2 and 3 overlap their alive cold interval (time to
become hot). In this case the space problem is reduced to just 2 basic blocks to be profiled

simultaneously.

Following the same methodology described in the example of Figure 3.8, we have executed
all Spec2000Int and Spec2006 benchmarks in order to analyze the overlap of the different
“Basic Block Life Cycles” in these applications. However, we are not interested exclusively
in the maximum overlap value. Actually, we are interested on the evolution of the basic
block execution because we want to analyze the more frequent values of overlapped life
periods, since maximum values may not be the common case. As an example, it is possible
to have the maximum overlap during a very short period of time whereas such an overlap
is much lower in the rest of the execution. Thus, we have split the execution of all
benchmark in regular intervals of time. The overlap is then computed within each one of
these intervals. In this sense, a basic block that is alive during all program execution it
will appear in all intervals. In case a basic block is only alive during a fixed interval, then

it is only counted within this interval.

fluc blhc Iulc
BB 1 I I fuc bhc I luc
BB 2 | I |
fuc bhc luc
BB3 I I I fuc bhc luc
BB4 I i |

application execution time

Figure 3.8: Basic block life cycles during a program execution example.

45

Chapter 3: Detecting Hot Code

< it1l it2 it3
BB 1 I I Alive BBl BBl BB2
fuc bhc luc BBs BB2 BB2
| | |
BB 2 ' ' ! COUNT 2 2 1

Overlap computation

application execution time

Figure 3.9: Life Cycle overlap computation example.

Figure 3.9 shows a description on how to make the life cycle overlap computation. In this
example there are two basic block with different life cycles represented in the left part of
the figure. The program execution time has been divided into 3 fixed intervals labeled as
itl, it2, and it3. Both basic blocks are alive during the first two intervals, so that the
number of overlapped alive basic blocks for intervals 1 and 2 is 2. Basic block 1 is
executed for the last time during interval 2, leaving basic block 2 as the only alive one
during interval 3. The table in the right part of Figure 3.9 summarizes the overlap
computation, showing that the more common case is to have 2 alive basic blocks

simultaneously during program execution.

Since Spec2000Int and Spec2006 are very large in terms of dynamic instructions (see
Table 3.1), the execution has been divided into fixed intervals of 100 million dynamic
instructions. This number has been selected because it is more or less in the same order of
magnitude of an Operating System (OS) context switch period as described in Section
3.2.5 of this same chapter. All benchmarks have been executed from beginning to end, and
we have counted the number of basic blocks in their alive and alive cold periods for each
one of the intervals. Moreover, we have also differentiated among basic blocks that at the
end become hot and those that do not. In order to show the results, we have built a
histogram that describes how the different basic block life cycle periods overlap during
Spec2000Int and Spec2006 benchmarks execution. We have used the number of basic
blocks whose life cycle periods overlap as discrete values in order to generate these
histograms. For the histogram frequencies (x-axis), we have chosen the number of
intervals on which basic blocks life cycle overlap is counted. Thus, these histograms show
the number of intervals where a fixed number of basic blocks overlap their life cycle
periods. Since the number of basic blocks is too large for plotting such a histogram, they
have been discretized considering the following values: 0, from 0 to 512, from 512 to 1024,

from 1024 to 2048, from 2048 to 4096, from 4096 to 8192, from 8192 to 16384, and finally

46

3.2. Profiling for Hot Code Detection

more than 16384 basic blocks. Note also that the number of intervals for each application
differs significantly because of the differences in the number of total dynamic instructions
of each one. Therefore, the histograms have been built considering that all applications are
executed one after the other as if they were part of a bigger program. The basic block life
cycle overlap study has been done for each one of the intervals and finally, we have
harmonized the number of intervals considering the total number of intervals in all
applications. As showed in Figure 3.10 and Figure 3.11, this allows us to compute the
number of intervals as the percentage of intervals where a fixed number of basic block
overlap their life cycle periods for Spec2006 and Spec2000 respectively. In particular, we
show four different lines identifying the different stages basic blocks pass through:

o The line with square marks represents the number of application intervals where
there are alive basic blocks (from first used cycle to last used cycle)
simultaneously.

o The line with rhombus marks represents the number of intervals where there are
basic blocks in alive cold stage (from first used cycle to become hot cycle)
simultaneously.

o The line with circle marks represents the amount of intervals where there are basic
blocks in alive hot stage simultaneously.

e The line with triangle marks represents the amount of intervals where there are

basic blocks in alive cold that end up become hot.

For example, from Figure 3.11, around 80% of the time intervals have at most 16k or less
alive cold basic blocks simultaneously (line with rhombus marks). In fact, from the same
figure, there are no intervals with less than 1k alive cold basic blocks simultaneously (line
with rhombus marks). However, if we concentrate on basic blocks that end up becoming
hot, the situation is much better. For instance, 80% of the intervals have 512 alive cold
basic blocks simultaneously that become hot at most (line with triangle marks). The same
trends are observed in Figure 3.10, where 100% of the intervals have 512 alive cold basic

blocks simultaneously that become hot at most (line with triangle marks).

Two important conclusions are extracted from the histograms in Figure 3.10 and Figure
3.11. On one hand, the number of intervals where basic blocks are alive is significantly
high, even when considering only basic blocks that become hot. This number is interesting
because it shows that hot basic blocks persist during long periods of time, so that it is
possible to improve the performance of the application by optimizing them. Secondly, the

number of basic blocks with overlapped alive cold periods is small and ranges between

47

Chapter 3: Detecting Hot Code

4096 to 8192 basic blocks. Note that alive cold period is the one that is of interest for
detecting hot code. With an appropriate mechanism able to filter those basic blocks that
never become hot, the amount of information to be considered may be reduced to a
number around 512 basic blocks, which is an appealing size for efficiently implementing
the hardware component of a profiler for hot code detection. Although we have
demonstrated that the amount of information to be profiled is limited and affordable, we

still require the mechanism to correctly handle this information.

100% —————————— B
90% W

N /] /

60% // /

50% / / /J

40% / /

s
x X/

10% -

Percentage of intervals

0%

<0 <512 <1024 <2048 <4096 <8192 <16384 >16384
Num of Basic Blocks

alive cold of hot BBs «@-alive hot =#=alive cold <m-alive

Figure 3.10: Percentage of intervals with the same number of basic block life cycle periods
overlapping for Spec2000Int benchmarks.

100%

90%
80%
70% /
Nl 7
50%
40% / /
30%
yal /S /
/ o4
0% / - I /
<512

alive cold of hot BBs ~B-alive hot =#=alive cold ~B-alive

Percentage of intervals

<1024 <2048 <4096 <8192 <16384 >16384

Num of Basic Blocks

Figure 3.11: Percentage of intervals with the same number of basic block life cycle periods

overlapping for Spec2006 benchmarks.

48

3.2. Profiling for Hot Code Detection

3.2.5 Context Switch

In all previous studies, we have considered that applications execute completely from the
beginning to the end without external interferences. However, in a real multitasking
environment the Operating System (OS) changes periodically the execution from one
application to another. This is called time sharing and the process to save and restore the

state (context) of the CPU is known as a program context switch.

The OS does a context switch at fixed intervals of time or when the application blocks it
execution (e.g. it executes an input/output operation, it waits for a semaphore, etc.). The
fixed time between context switches is called quantum and it is normally set to 100ms
[98]. Thus, assuming an IPC of 1 instruction per cycle, a processor frequency of 1 Ghz and
a OS quantum time of 100ms, then a context switch occurs every 100 million instructions.
For this reason, we have used intervals comprising 100 million instructions for all our

evaluations.

Context switches impact the way the hot code profiler handles the information about the
execution of basic blocks, since the hardware component is shared among all processes.
When a context switch occurs, we have identified three different design alternatives to be

considered:

e To reset the counters on every context switch, losing the accumulated information.

e To store all information in a dedicated buffer that later will be used for recovering
the previous state of the information. This means that the contents of the
hardware profiler become part of the CPU state to save/restore on context
switches.

e To add an identifier to each counter in order to differentiate among counters
belonging to different applications. This option keeps information about all basic
blocks but at the cost of increasing the data space for accommodating entries of

other different applications.

Because we do not want to increase context switch overheads and we do not want to
increase hardware resources by profiling several (may be tenths) applications
simultaneously, we have chosen to reset the counters on context switches. In next section
we demonstrate that resetting affects coverage, and hence this decision may imply
lowering the detection threshold to maintain coverage. Fortunately, our proposal adapts
better to this scenario than other already existing solutions since it detects basic block of

higher quality in a faster manner, as we demonstrate in Section 3.4.2.5.

49

Chapter 3: Detecting Hot Code

3.2.6 Reset Counters Coverage Cost

Resetting counters on every program context switch may delay the detection of hot code

because the counters may never reach the threshold before they are set back to zero.

Taking this problem to the extreme, this could imply not detecting hot code whatsoever.

This means that coverage may be probably lower than when resetting is not considered.

In addition, this coverage loss may translate directly to a reduction of the benefits that

could be obtained by optimizing the detected hot code.

TANIN YN NN RN DN N |
so% -\ NN §
e oriie e
M R ERRRRARRRRRRRRNERNRERRD
“tHie i i thra
- A HEHE B B L
o

 FERRREE RRRE RN BB R0 1
S PR RRR s) R 000000 1
~THHEEHELEELE L
i DR
NI ARERERRERERERRRRERERIRRRARS

{&*‘& F&E S ELE S ‘(\i&’#z éﬁq,&‘eg@@@ \0“&@3’2@“’1@& zo:é\”& LS £

M reset £ no-reset

Figure 3.12: Basic block coverage for SPEC2000 benchmarks when applying counters reset.

100%

90% -

80% -

70% -

60% -

50% -

40% -

30% -

20% -

10% -

0% -

%, "

%

%, L0 L L L [[
[

-

7 N N I B

(22
%,

S N O O A

4
%

M reset £ no-reset

T —— ——————

[77

%

%,
0%’)0' --

%
Z
2. o

N

Yo
%,

o e i

7

&
O:
%

Figure 3.13: Basic block coverage for SPEC2006 benchmarks when applying counters reset.

50

3.2. Profiling for Hot Code Detection

We have compared the coverage of the hot basic blocks when enabling and disabling the
profiler counter reset technique on every context switch. The numbers are shown in Figure
3.12 and Figure 3.13 for Spec2000 and Spec2006 benchmarks respectively. In this
experiment, coverage has been computed as the number of dynamically executed hot basic
blocks compared to the total number of dynamically executed basic blocks in the
application. Note that the number of executions of a hot basic block is counted from the
moment it becomes hot, discarding the required executions for its detection. As previously
presented in the Section 3.2.3, counting basic block executions is a proxy to counting
instruction executions, so coverage without resetting showed in Figure 3.12 and Figure
3.13 practically matches the previously reported coverage of 98% for Spec2000 and 99%
for Spec2006 showed in Figure 3.2 and Figure 3.3 respectively.

As it can be observed, the coverage degrades significantly for some applications when reset
is applied. Actually, only 8 benchmarks for Spec2000 (gzip, swim, art, mcf, equake,
facerec, ammp and lucas) still present coverage around 90%, whereas 5 benchmarks (mesa,
crafty, fma3d, eon and twolf) are impacted significantly by the reset since the coverage
decrease under 50%. On average, the coverage decreases from 99% to 74% for Spec2000
when reset is applied. There is a similar scenario for Spec2006 benchmarks, where 10
benchmarks are severely impacted by the reset (games, gee, gobmk, h264ref, perl, povray,
sjeng, specrand, tonto and zeusmp) whereas 9 applications (astar, bwaves, hmmer, lbm,
leslie3d, libquantum, mcf, milc, sjeng) still present coverage above 90%. On average,
coverage degrades from almost 100% when no reset is applied to 75% when it is applied
for Spec2006.

The coverage loss is due to the aforementioned resetting counters problem: hot blocks are
detected late or are never detected. In order to analyze this in more detail, we have
studied the impact of resetting on the time required for detecting hot basic blocks, and on
the time the basic block is executed as hot code. Actually, these two concepts can be

summarized by using the following formula:

luc-bhe

luc-fuc

useful__time_ratio=

where fuc is the basic block first used cycle, luc is the basic block last used cycle and bhc
is the cycle the basic block becomes hot, all three belonging to the basic block life cycle
definition presented in Section 3.2.4. This formula quantifies the relation between the time
the basic block is executed as hot code (the numerator) and the time it is alive (the

denominator). In an ideal hot code detector, all basic blocks would have a

51

Chapter 3: Detecting Hot Code

useful _time__ratio of 100%, since luc-bhe time period would match up with luc-fuc period.
By contrast, a useful_time_ratio of 0% implies that the hot basic block is never detected

as hot.

We use the Spec2006 Specrand benchmark to analyze the impact of the reset technique on
the basic blocks useful _time_ratios. Note that Specrand presents a degradation of 60%
coverage as it is shown in Figure 3.13. Figure 3.14 shows the number of executions and
the useful time_ratios of all the basic blocks detected as hot in the Specrand benchmark.
Basic blocks are sorted from left to right by number of occurrences. The square line is
associated to the left y-axis and it shows the number of executions of the basic blocks in
times they exceed the threshold. The triangle and circle lines are associated to the right y-
axis and show the useful time_ratios of the basic blocks. Circle line considers that basic
block execution counters are reset on every interval of 100 million instructions (equivalent
to a context switch), whereas triangle line does not. On the other hand, Figure 3.15 shows
the same information as Figure 3.14 but for the basic blocks that are not detected as hot
when resetting the counters. Note that in this case, the useful time_ratios are only for

the approach of no resetting the counters.

These two figures help us to better understand how the basic blocks are executed during
the time the application is running. In Figure 3.14, we identify in the left part basic blocks
that are fast detected (high wuseful time_ratios) and that contribute widely to the
coverage. By contrast, in the middle part of the figure, we identify basic blocks that are
not fast detected and suffer from coverage degradation when a counter reset is applied.
These basic blocks contribute significantly to the coverage but its detection is difficult
because they are not intensively executed to exceed the threshold during an interval. In
the right part of the figure and in Figure 3.15, we observed the basic blocks that
contribute less to the coverage. The firsts do not present problems on detection since
useful__time__ratios are equal no matter if reset is applied or not, but the ones from Figure

3.15 are not detected although they exceed the threshold.

Basic blocks can be classified attending to these findings, as it is presented in Section
3.2.7. Moreover, this classification allows us to properly define the characteristics of the
basic blocks that the profiler should keep track of. Note that the same basic block

behavior found in Specrand also appears in the other Spec benchmarks.

52

3.2. Profiling for Hot Code Detection

30 | | T+ 120%
| i i
l l
25t ! ! + 100%
]
S WTI |
< | |
g I I
= | | =
s 20 ¢ ! I + 80% =
x | | 2
e | | =}
S ! =
K] I I
2 15 I - 60% 5
] ' £
3 | =
L |]
| E
E 10 | i T+ a0% 3
4 | 3
a
@ L i
57 | $000000¢ : T 20%
I
I I
| | i
I I
o+ i ! 0%

Execution times o—=UTR with reset =—UTR without reset

Figure 3.14: Coverage and useful time ratio for detected hot basic blocks in Spec2006 Specrand
benchmark when profiler reset technique is applied.

25 1 : - 70%
|
I
|
' - 60%
— oy . I
T 2 ;
[]
ﬁ |
< l - 50% &=
= l 5
|
X | o
15 | 2
S l - 40% B
E ! %
o
g | £
) ! - 30% F
é 1 | =)
g | g
& ! - 20%
|
0.5 - :
: - 10%
|
|
|
0 : L 0%

Execution times =—UTR without reset

Figure 3.15: Coverage and useful__time_ ratio for non-detected hot basic blocks in Spec2006

Specrand benchmark when profiling reset technique is applied.

53

Chapter 3: Detecting Hot Code

3.2.7 Basic Block Classification

Basic blocks with a high number of executions and also with high useful time_ratios are
the ones that contribute more to the final application coverage. However, both concepts
are directly dependent of the threshold value and the size of the profiler reset intervals. In
fact, the threshold indicates the amount of executions to be detected as hot, and the reset
interval indicates the time the basic blocks have to accomplish this. Actually, based on
how and when basic blocks exceed the threshold during the application execution, we have
classified them as described below. For illustrate purposes, each type of basic block has
been defined with an animal name in order to identify its execution frequency with the

animal speed. The classification is as follows:

Thoroughbred Horse type: basic blocks that are highly executed and have large
useful__time__ratios even when reset is applied. These basic blocks are intensively executed
during large periods of time. They are easily detected because they exceed the threshold
during the first intervals they are executed. In the example of Figure 3.14, they are
located at the left part and can be identified because their useful time_ratios are close to
100% even when reset is applied. As the representative animal, we have selected the

thoroughbred horse because of its high speed and its tremendous resistance.

Athletic Man type: this type includes the basic blocks that are highly executed but
with high reductions in their useful time_ratios when the reset is applied. This type of
basic blocks is less intensively executed than the previous one and it exceeds the threshold
but requiring more time. An example of these basic blocks can be seen in the Figure 3.14,
located in the middle of the figure and showing high degradation in their
useful time ratios when reset is applied. They are like an athletic man running a
marathon, since their speed and resistance are very high but are not enough to compete

with a thoroughbred horse.

Cheetah type: this type includes the basic blocks that are infrequently executed and
have small useful time ratios. These instructions do not contribute much to the total
coverage because they are executed in very intensive bursts but they are rarely executed
after such bursts. In fact, these basic blocks are detected as hot because the number of
executions exceeds the threshold during their first bursts. These basic blocks are located
at the right part of Figure 3.14. We call them as Cheetah basic blocks because these
animals are very fast but only in small distances when required for hunting. After they

have successfully hunted a prey, they don’t require running again.

54

3.2. Profiling for Hot Code Detection

Mule type: this type includes the basic blocks that are infrequently executed and have
large useful time_ratios when reset is not applied but that are not detected when reset is
applied. These basic blocks are constantly executed during the application. They never
exceed the threshold but at the end of the application they account for a significant part
of the coverage. They are like a Mule, walking at medium speed during long distances. As

an example, they can be seen in the Figure 3.15 located at the left part.

Turtle type: this type includes the basic blocks that are infrequently executed, have
small useful time_ratios when reset is not applied and are not detected when reset is
applied. These basic blocks contribute poorly to the application coverage and it is difficult
to get benefits by optimizing them because of its low execution and small
useful _time_ratio. They are like turtles moving very slowly. In Figure 3.15, they are

located at the right part.

This classification is graphically summarized in Figure 3.16. The figure presents a
fictitious application with 5 different basic blocks, each one being one line in the figure
and belonging to a different type. The x-axis shows the application execution time divided
in reset intervals while the y-axis shows the number of executions of the different basic
blocks. A threshold of 10 has been used in this example. As it is shown, the thoroughbred
horse type is always above the threshold, whereas the athletic man type presents
difficulties to exceed it. The cheetah type appears two times during the execution of the
application and it exceeds the threshold easily in both periods; later such a basic block is
not executed anymore. The mule type is very constant but never exceeds the threshold,

whereas the turtle type appears and disappears but with very low execution frequency.

20

18

16

14 -

12

10 threshold H H -

8 ._....-' HENE N A

Number of executions

__

* o —e —o—o—0—9 r—e RISITIE ~—e
[e S S S e e S S SR SR S ¥ A e SRS S S S T S AT
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Application execution time (in intervals)

—&—thoroughbred horse athleticman ~ «eeee cheetah =<=mule +—turtle

Figure 3.16: Basic Block execution Classification by using animal speeds.

55

Chapter 3: Detecting Hot Code

The hardware profiler can take advantage from this classification in order to prioritize the
detection of those basic blocks that at the end contribute positively to the coverage.
Furthermore, it can give less priority to those basic blocks that are not contributing
significantly to the coverage and also interfere negatively in the detection of the others.
Therefore, thoroughbred horse basic blocks are the most appealing ones because of its high
coverage contribution and easy detection. After them, athletic man and mule basic blocks
are the next important ones. In these cases, however, their execution frequency imposes
difficulties for their detection. Cheetah basic blocks may also contribute significantly to
the coverage if they exceed comfortably the threshold or if they appear multiple times.
Finally, turtle basic blocks contribute poorly to the coverage, so this type is the less
interesting for detection. As a summary, hot basic blocks that contribute significantly to

coverage always satisfy at least one of the three following conditions:

e High and constant execution frequency (thoroughbred horse and athletic man).
e High execution frequency on short intervals (cheetah).

e Low but constant execution frequency (mule).

All the studies done so far in this chapter have helped us to characterize the data
information space that the hot code detector should work with and how this information
evolves during program execution in order to detect it properly. In the next section, we
propose a solution that takes advantages from all these find-outs and that it is able to
identify the basic blocks that are the most frequently executed efficiently during

application execution.

3.3 Proposed Solution (LIU)

Hybrid hardware and software hot code detectors combine the flexibility of software
profilers with the low execution overheads of the hardware ones. However, hardware
resources required in these detectors are still complex and big [18]. In this section, we
propose a hybrid software/hardware hot code detector that requires significantly less
hardware resources than other hybrid solutions. It has been designed by following the

ideas described in this chapter about basic block execution behavior.

3.3.1 Hardware Structure

The proposed technique combines hardware and software solutions for detecting the hot
code. A hardware table tracks the number of basic block executions during the time the
application is running on the processor. Once one basic block is executed more times than

the fixed detection threshold, an exception is raised and the control is transferred to the

56

3.3. Proposed Solution (LIU)

software layer. From this point on, the software is responsible of building and optimizing

the code regions that will be executed later in the processor.

The profiler hardware table is typically implemented like a small set-associative cache.
Previous designs tend to overestimate the size of this structure in order to accommodate
as many entries as possible. In our previous results, we have demonstrated that the size of
the table could be equal or lower than 512 entries for tracking correctly hot basic blocks
execution (Figure 3.10 and Figure 3.11). However, the risk of losing information increases
when using a finite structure because of conflicts derived from mapping branch targets to
table entries. These conflicts appear when a new branch destination address is added into
the profiler and it requires evicting an existing entry (possibly with useful information).
These conflicts may affect the detection of hot code. In fact, it is not possible to know
exactly what basic blocks will become hot and are the more promising ones to be kept in
the structure in case of conflicts. One way to efficiently use the limited number of entries
of the cache structure (the table) is to use an appropriate replacement policy designed to
maximize the presence of the most promising basic blocks in terms of coverage, not
wasting resources for the less promising ones. In other words, it should efficiently use the
limited hardware storage resources. Therefore, the replacement policy is the heart of the
proposed hot code detector. We will describe the proposed replacement policy in more

detail in Section 3.3.4.

BB @ Exec Cilu
valid (TAG) Counter coefficient

Basic Block
address

LIV
Replacement Policy

Exception Trigger
THRESHOLD ———» >= |———> 1o Software Layer

v

—— | HotBB Register

Figure 3.17: LIU Profiler hardware design.

57

Chapter 3: Detecting Hot Code

The hardware implementation of the profiling table is shown in Figure 3.17. Each table
entry contains some bits of the address as a tag, an associated execution counter, a valid
bit, and a CIU coefficient field for the replacement policy (more on this in Section 3.3.4).
In order to index it, we use the logical address of the instruction that is executed after
executing a control instruction (a branch, a routine call, or a routine return) either if the
instruction changes the control flow or not (e.g. regardless of whether they are taken or
not taken). This profiled information corresponds to the starting address of a basic block.
As in any other conventional cache, some bits from the address have to be selected in
order to index the set of the structure we want to access. In Section 3.4.2.1, we analyze
different indexing proposals with the objective of selecting the one that maximizes the
coverage. When the hardware table is accessed (a basic block starting point is executed)
and there is no entry in the structure associated to it, one entry in the table is allocated,
evicting the previous entry if necessary and setting the initial number of executions to 1.
By contrast, if the basic block has been previously allocated in the table, then its
execution counter value is just incremented by 1. The execution counter is compared with
the constant threshold detection value on every access. If the number of executions is
greater or equal to the threshold, then the exception that communicates to the software
layer that the profiler has found a new hot code region is raised. The starting address of
the detected basic block is stored in a special register (hot BB register) for the software to
access. Note that the threshold value for detection also affects the coverage of the detected
basic blocks. A high threshold implies lower number of basic blocks that exceed it and
lower coverage in consequence. In the proposed implementation, we consider a threshold of
100K executions, since the coverage is greater than 90% for most of the Spec applications
and the cost of the optimizations is affordable, as previously commented in Section 3.2.3.
Finally, the proposed hardware table structure is placed at the retirement stage of the

processor. This removes the profiler from any processor critical path.

3.3.2 Software Support

Once an entry of the hardware table exceeds the threshold it is considered as hot. An
exception is raised, the detected hot address is selected in the spatial hot basic block
region, and the dynamic optimizer takes control of the processor execution. The dynamic
optimizer then implements proper heuristics to build code regions and apply optimizations
based on this profiling information. For instance, the optimizer can build a super-block
[41] or a tree-region [99] starting at the specified address and by including reachable basic
blocks where executions counters are big enough. Once it has created, optimized, and

stored the region in the code cache [13], it may decide to invalidate the entry associated

o8

3.3. Proposed Solution (LIU)

with the starting address in order to provide space for later basic blocks (and it may also
invalidate those of the rest of basic blocks included in the region). Note that an entry is

considered as invalid when the valid bit is set to 0.

In this thesis, we are focused on the detection of the code regions that are suitable to be
optimized by a dynamic optimizer. The formation and the optimization of the detected

regions are not evaluated since this is out of the scope of this study.

3.3.3 Replacement Policy Motivation

The replacement policy should always try to keep the basic blocks that will contribute the
most to coverage in the hardware table (see coverage definition in Section 3.2.3). These
important basic blocks follow a predictable execution behavior as it has been highlighted
in the classification of Section 3.2.7. Actually, this classification is based on the number of
basic block executions and how recent they were executed. However, as we will show in
the evaluation section, traditional replacement policies that use the number and recency of
uses in a separated manner are not appropriate for detecting hot code. As described in
Table 3.2 and confirmed in the evaluation section, not all the basic blocks that contribute
significantly to the coverage will be detected if the hot code detector uses one of these
traditional replacement policies. On one hand, replacement policies based on recency are
not able to retain the basic blocks that execute slowly but constantly, since they are fast
evicted from the table by younger and more recent basic blocks. In fact, basic blocks with
mule behavior are not protected by such a replacement policy. On the other hand,
replacement policies based on number of uses do not retain the basic blocks that execute
fast on short time intervals because older basic blocks with higher number of executions
are prioritized. This replacement policy do not protect basic block with cheetah behavior.
Fortunately, both types of replacement policies can be combined in order to ensure the

detection of the three types of basic blocks that contribute most to coverage.

RP based on the RP based on the

Type of Hot Basic Blocks

number of uses recency of uses

High and constant execution frequenc

g x . d Y Detected Detected

(horse and athletic man)
High execution frequency on short intervals
& 4 Y X Detected
(cheetah)
Low and constant execution frequenc
d Y Detected X
(mule)

Table 3.2: Traditional replacement policies used for hot code detection (RP stands for
Replacement Policy).

59

Chapter 3: Detecting Hot Code

Table 3.2 summarizes how the replacement policies based on number and recency of uses
adapt to detect hot basic block. The first column shows the type of basic blocks that
contribute more to the coverage of the application. The second and the third columns
indicate if the replacement policies are able to detect the different types of basic blocks.
We can observe that when the replacement policy based on number of uses fails, the one

based on recency succeeds, and vice versa.

There are some examples of replacement policies in the literature combining number and
recency of accesses. The most relevant proposals are the IRP [100] and the LRFU [101].
However, they have not been designed for tracking basic block execution behavior. In fact,
they have been developed to be used in scenarios like software web caching and page
management in operating systems and they have been specially designed to be purely
implemented in software. For this reason, they employ complex algorithms to compute the

best victim candidate that are not adequate for a direct hardware implementation.

IRP has two important drawbacks to be directly incorporated into the aforementioned
hardware table. First, it requires a computational costly software algorithm for selecting
the best victim candidate. Second, it needs to refresh periodically the cache on every
processor clock in order to compute the age (that determines its recency) of each entry.
On the other hand, LRFU also uses a complex mathematical expression for selecting the
victim that is hard to be implemented in hardware. In particular, it computes a coefficient
for every way in the cache and it selects the one with the minimum value as eviction
candidate. The main complexity of this coefficient comes from two factors: (1) the
expression is based on a variable that keeps the history of all previous accesses (which
means that every time a way is accessed this history factor must be recomputed), and (2)

the expression requires floating point division and exponential operations.

We propose a new replacement policy that combines frequency and recency aimed to
detect hot basic blocks, avoiding the complexity of previous proposals. In next section, we

describe in deep detail how this replacement policy, called LIU, works.

3.3.4 LIU Definition

The proposed LIU scheme combines the philosophies behind two well-known replacement
policies: the Least Recently Used (LRU) and the Least Frequently Used (LFU). The
former is based on the recency of the accesses, and the second is based on the number of
executions. In fact, the LIU replacement policy works by observing the recent uses of basic

blocks and by taking into account also their number of executions. LIU name comes from

60

3.3. Proposed Solution (LIU)

Least Intensively Used, where intensity refers to the relation between the number and the

recency of the uses®.

LIU selects a victim entry from the hardware profiler cache structure based on its elapsed
time since it was last accessed and the number of times it has been used. This relation
between frequency and recency of the accesses is numerically described by using a
mathematical coefficient stored in each entry of the table. Since the coefficient combines
the age and the number of accesses, we call it as Coefficient of Intensively Used (CIU). In
particular, for a given cache entry 1, it is computed by using the following expression:

T4,
CIU, = — ¢

i

In the above expression, T is the current absolute time, t;is the last absolute time entry ¢
was accessed and C;is the number of times entry 7 has been accessed since it was added to
the table. The entry with the highest CIU value in the affected cache set is selected as the
replacement policy victim. When a basic block is evicted from the table, the information
in the entry is lost. The corresponding entry counter is set to 1 when a basic block is
reallocated again in the table. Note that we could also use the total number of accesses
instead of time, but we will use time for the rest of this document for the sake of

simplicity.

The LIU proposal gives priority to basic blocks that are constantly executed during long
periods of time and to those that are very frequently executed in short periods of time.
Note that the formers also include basic blocks that are highly and constantly executed
during all the time the application is running because they derive in several short but
frequent execution periods. The selection of which basic blocks are kept in the table is
controlled by the CIU coefficient. As described in Table 3.3, a low CIU value for an entry
indicates a basic block that is frequently executed or that it has been recently accessed.
By contrast, a high CIU value indicates that the associated basic block is infrequently

accessed or it has not been used for a long period of time.

Since the CIU value does not require historical information, it is only computed when
eviction is required (a given basic block is not found in the accessed set and there are no
invalid entries in the set). However, the time of the last access (ti) and the number of

executions (C;) for a given entry have to be updated on every access to that entry.

* The intensity measures the force with which an event occurs.

61

Chapter 3: Detecting Hot Code

It means It implies

Frequently or very recently
Low Candidate to be kept
used entry

. Infrequently or not used for a
High Candidate to be evicted
long time entry

Table 3.3: CIU meaning.

3.3.5 pLIU: A Realistic LIU Implementation

LIU requires a relatively complex expression that can be simplified in order to achieve
reasonable implementation complexity. We call pLIU (pseudo-LIU) to this simplified
version of the original replacement policy. pLIU assumes a set associative table with its
corresponding valid bit, tag, and execution counters fields per entry and the following

additional information.

- Global time counter (T), incremented on every processor cycle.
-t (last access time) field in each entry of the cache. It is set with the current
global counter value every time its corresponding entry is accessed.

- Logic to compute the CIU value when an eviction is required.

Since the division operation within the CIU expression requires complex hardware, we
propose a simplification of the expression consisting on a division by a power of two. This
can be implemented by a less costly shift operation. In fact, since the division denominator
is the value of the counter (C;), the simplification basically consists on truncating this
value. This operation can be done in a very efficient manner by using a priority encoder
and a decoder [102] [103]. The priority encoder returns the position of the highest input
signal set to 1 and the decoder transforms this result into a binary number with only the
indicated position set to 1. For instance, if the value of the counter is 00101101, then the
priority encoder returns 101=>5 as the position of the most significant bit set to 1, from
this result the decoder generates 00100000=2° as the final value. The encoder and the
decoder can be seen as a unique hardware component in our proposal, so that for the rest
of the document we will refer to this logic as the encoder. Therefore, the proposed
simplification transforms the CIU expression formula as follows:
pCIU, = Tt

2 [log-C; |

62

3.3. Proposed Solution (LIU)

In the formula above, T is the global time counter, t; is the time counter stored in each
entry, and C; is the number of executions of the entry. We call to this coefficient as the

pseudo-Coefficient of Intensively Used (pCIU).

Figure 3.18 describes the pLIU implementation for a particular profiler cache with 4 ways
per set and 16-bit counters. The extension to other configurations can be done directly by
using this as a baseline. The pLIU is computed for each way/entry in the set. The T value
is sent to 4 adders, one per way, in order to compute the division numerator (7-t;) part of
the formula. Moreover, the C; value is truncated by using the encoder. The result from (T-
t;) is then shifted by the number of times indicated by the encoder. This encode and
truncate logic is graphically described in the figure by the DIV dotted grey box. Finally,
the resulting coefficient of each way is sent to a MAX component that computes which is
the maximum value in order to select the victim. From a timing point of view, the
coefficient computation affects only the hardware profiler eviction time since coefficients

do not need to be computed in case of hit accesses to the structure.

The profiler table entries are 32 bits wide, with 16 bits for representing t; and 16 bits for
Ci. The detection of a hot entry is done by just checking when a C; counter overflows.
Therefore, no comparators involving the threshold value are required. However, this
solution requires scaling down the detection threshold from 100k to 65k executions (16
bits for the threshold counter) because a power of 2 value is required®. We have
implemented the pLIU proposal in an FPGA on top of a processor similar to the Intel®
P54C [104]. The P54C is a 2-way superscalar in-order core with separated instruction and
data caches of 8KB each one. A high-level block diagram of the processor with the pLIU
hardware additions is shown in Figure 3.19. The pLIU gets the address of a basic block
from the Target Address wires once the branch instruction is completely executed.
Therefore, the proposed hardware structure can be placed at the retirement stage of the
processor, not affecting any critical path of the processor and avoiding the profiling of

speculative code instructions.

When using a 128 entry profiler table (32 sets and 4 ways), the total processor area is only
incremented by 1%. Note that the P54C is a small in-order core. Thus, adding this
profiling hardware to more complex cores would have a negligible impact on area and

leakage.

% Using 17 bits for the threshold (131k executions) is less appealing than using 16 bits because the ratio
coverage/optimization-overheads is clearly in favor for the second (see section 3.4.2.5). The reason is that

higher threshold values than 100k executions degrade very rapidly the coverage.

63

Chapter 3: Detecting Hot Code

T t C, t, C, t, C, t, C,
1 1 Ve 1 {4 1 - f{_* 1 ']
16 J1e 16 L6 16 J16 16 J1e
16 16 16 16 116 L6 L6 16
E 4 i 4 4 4
| IRSHIFT ! IRSHIFT I RSHIFT RSHIFT
! Lie i e e L1e
: DIV
e et pClu pClU
pCIU pCIlU
MAX
4
\%

Figure 3.18: Hardware implementation of the LIU. V is the victim.

|

3
B h .
Controlf DP T;i;cet prefetch 8 I Instruction Cache
Logic Address
Buffer 8 KBytes
LIU) I
64-Bit Profiler IPns‘trtucnon Prefet<.:h Buffers Control ROM
Data ointer Instruction Decode
Bus L l [J]
a { 1 ¥
32-Bit e » Control Unit
Address] 12
~Bus | Bus e Page | |2 Add Add Floati
Unit g £ ress ress oating
[« Unit = < Generate Generate [Point
(U Pipeline) (V Pipeline) Unit
<Control | | Control
- Integer Register File [Register File
ALU ALU
(U Pipeline) (V Pipeline)
Data Barrel Shifter
Apic [7]
Control] L — R
Data Cache
TLB 8 KBytes
b

Figure 3.19: High-level block diagram of the P54C core with the pLIU profiler (highlighted with
the arrow). Figure from P54C Datasheet [105].

64

3.4. Evaluation

3.4 Evaluation

3.4.1 Simulation Framework

In order to evaluate the quality of the proposed hot code detector, we use the execution
coverage metric presented in previous Section 3.2.3.1. This metric indicates the ratio
between hot dynamic basic blocks and the total dynamic basic blocks of the application. A
high coverage value indicates that most of the application execution could be improved by
applying code optimizations. By contrast, a low coverage indicates that fewer basic blocks

can be optimized and the benefits that could be obtained are lower in consequence.

The simulation framework has been implemented by using PIN [76]. PIN is a software tool
designed to dynamically instrument the execution of applications. It provides special
functions to track the execution of instructions, allowing access to the register identifiers
and memory addresses among other instruction properties. We have developed a fully
customizable PIN tool that simulates the behavior of a hot code profiler based on a set-
associative cache for storing the information. This tool allows multiple configurations of

thresholds, cache sizes (including number of sets and ways), and replacement policies.

We have employed the Spec2000Int benchmarks for the sensitivity studies required to
determine the best hardware profiler configuration. The Spec2006 benchmarks have very
large execution times under our simulation infrastructure, making unaffordable running all
sensitivity experiments among them. However, we demonstrated in our previous
characterizations in Section 3.2 that Spec2006 should behave similarly to Spec2000
benchmarks. Therefore, we use Spec2006 benchmarks for the final evaluation, once we

have selected the most appropriate configuration in our sensitivity studies.

In all the studies, we have used the reference input sets for both Spec2000Int and
Spec2006 benchmark suites. For Spec2000Int we have 12 benchmarks that result in 33
executions when counting for the different input sets, and for Spec2006 we have 9

benchmarks that result in 30 executions.

Finally, we have estimated the power consumption of the LIU profiler by a model based

on the CACTT access and time model for on-chip caches [106].

3.4.2 Results
In this section, we present the evaluation results of the hot code detector. First, we
evaluate the performance of different cache indexing methods. Then, we analyze the

performance of the LIU replacement policy compared to well-known replacement policies.

65

Chapter 3: Detecting Hot Code

86%

85% -

84% -
83% -
82% -

81% -

coverage

80% -|
79% -
78% -

77% -

76% -i
Bits 4-0 Bits 5-1 Bits 6-2 Bits 7-3 Bits 8-4 Bits 9-5

Figure 3.20: Hot code coverage evaluated in a 32sets-4way cache profiler by using different
cache indexing bits from instruction address.

Later, we analyze how the different types of basic blocks contribute to the coverage when
employing recency and frequency based replacement policies. We continue by comparing
the LIU replacement policy against its simplified version, and we analyze the overheads
and the performance improvements that could be obtained by implementing a co-designed
hardware/software system with a hot code detector based on the LIU proposal. Finally,

we conclude this section by analyzing the power requirements of the LIU profiler.

3.4.2.1 Indexing Bits

In order to index the profiler cache, we use the address of the destination of a branch (the
instruction that is executed after a branch, either if it is taken or not taken). In other
words, we use the first address of the basic block. As in any other conventional set-
associative cache, we need to select some bits from the address or a combination of them
to index the set we want to access. It is necessary to select the best subset of address bits
in order to avoid unnecessary conflicts that may end in wrong basic block execution
tracking (note that two basic blocks sharing the same entry may have totally different
executions life cycles). Therefore, we have evaluated different simple indexing alternatives
and we have selected the one that maximizes the coverage. As previously described in the
Section 3.2.3, the coverage is computed as the accumulated number of executions of
detected hot basic blocks divided by the accumulated frequency of all basic blocks in the
application. In order to compute this metric, we have considered that once a basic block is
executed more times than the given threshold, it does not make use of the counters again
because it has already been detected as hot. Hence, this basic block produces no
interference with other basic blocks that are profiled from that point on. Moreover, if the

basic block is optimized it will be placed at a different memory address. The profiler

66

3.4. Evaluation

configuration employed for this study consists on a 32 sets and 4 way associative cache

structure with the LIU replacement policy.

The simple evaluated schemes use the necessary n bits after ignoring the m lowest bits of
the address. Since the selected cache structure configuration contains 32 sets, we need 5
bits from the address in order to index it. We have evaluated 5 alternatives: bitsyo, bitss,

bitse.2, bitsr.s, bitssy, and bitses. Results are shown in Figure 3.20.

The alternative with more benefit is the bitss, with 85.49% coverage, whereas the
alternative with lower coverage is the bitsg; with 79.44% coverage. The remaining
alternatives present similar coverage numbers than the bitse, one. This study highlights
the importance of using the correct address bits to index the profiler in order to avoid
conflicts. In fact, the probability of having different basic blocks attached to the same
profiler entry increases if the less significant bits from the address are not considered for

indexing the cache.

3.4.2.2 Replacement Policies Evaluation

In this section, we evaluate the performance of well-known replacement policies when
employed for hot code detection by using the coverage metric. In Section 3.2.4, we have
demonstrated that a profiler with less than 512 entries should be enough for detecting hot
code if an efficient mechanism for handling the execution of the basic blocks is employed.
Thus, the cache configurations we have selected are the following ones: 16sets-2way (32
entries), 16sets-dway (64 entries), 32sets-dway (128 entries), 64sets-dway (256 entries),
128sets-dway (512 entries), and 128sets-8way (1024 entries).

The LIU proposal has been compared with five different replacement policies. All of them
have been implemented into the profiling scheme presented in Section 3.3.1. Since LIU
combines number and recency of the accesses, we have evaluated how these two factors
work in a separate manner by taking into account the LRU and LFU traditional
replacement policies. We have included a random technique that selects victims blindly
and a perfect technique, called oracle, that it is able to select the best victim candidate at
any time. This oracle replacement policy is an unrealistic technique that has the
information of the application in advance prior to its execution and we use it as an upper-
bound. Finally, we have considered the LRFU proposal since it has been also designed

taking into account the recency and the frequency of the accesses [101].

The coverage evaluation for the SPEC2000Int programs is shown in Figure 3.21. All of the

replacement policies achieve more than 80% coverage when employed in the 128sets-8way

67

Chapter 3: Detecting Hot Code

cache configuration. However, when reducing the size of the cache, the coverage achieved
by the LRU, the LFU, the LFRU, and the random policies degrades rapidly. This does
not happen for the LIU proposal. In fact, the LIU replacement policy achieves good
coverage even when the table has a small 16sets-dway configuration. In the 32sets-dway
cache configuration, the LIU outperforms by 2x the LRU and the random policies, and by
~1.5x the LFU and the LFRU policies. At this same cache configuration, the LIU achieves
only 10% less coverage than the ideal oracle. In fact, the LIU proposal is pretty close to
the oracle from this point on, guaranteeing 90% coverage when more than 128 profiler
entries are considered, with minimum differences between using 512-entry and 1024-entry
configurations. The figure also shows that policies based on frequency perform better than
those based on time. As it is shown, the LFU presents better results than the LRU
replacement policy in all cache configurations. The main reason is that mule type basic
blocks, not detected by time based replacement policies, contribute more to the coverage

than cheetah type basic blocks, not detected by frequency based replacement policies.

The low results, with respect to the proposed solution, of the traditional replacement
policies (LRU, LFU, random) when limiting the number of profiler entries highlight the
importance of selecting an appropriate replacement policy based on basic block life-time
execution. On the other hand, the LRFU policy, that combines time and frequency, is also
far from the LIU proposal. In fact, LFRU performs similar to the traditional LFU. Note
that the parameter configuration proposed in [101] and used in this study, configures
LFRU to behave more like LFU than LRU’. However, this proposal has not been designed
to track program code activity and, moreover, its hardware implementation would be

more complex than the LIU one.

The best design point for the hardware profiler table is the 32-sets and 4-way
configuration because it maximizes the coverage while keeping a reduced number of
entries. In Figure 3.22, we show the evaluation of LIU, LRU, and LFU replacement
policies by using the Spec2006 benchmarks for this configuration. In this case, LIU gets
83.3% coverage whereas LRU gets 48% and LFU 68.7%. These results are similar to the
ones reported for the Spec2000Int benchmarks and highlight again the importance of

combining properly recency and frequency of the accesses.

% We have used a LFRU value of 0.00005. This value is suggested by the LFRU authors to maximize the
cache hit-ratio.

68

3.4. Evaluation

100%
90%

80%

70%

60%

& 50%
o
2 40%
o
30%
20%
10%
0%
16sets - 2ways (32 16sets - 4ways (64 32sets - 4ways 64sets - 4ways 128sets - 4ways 128sets - 8ways
entries) entries) (128 entries) (256 entries) (512 entries) (1024 entries)
ERandom MELRU ELFU BELFRU ®ELIU mOracle
Figure 3.21: Hot code coverage evaluated by using different cache configurations and
replacement policies.
100%
90%
80%
70%
o 60%
7
©
o 50%
>
o
o

40%

30%

20%

10%

0%

astar bzip2 gce gobmk h264ref hmmer leslie3d mcf perlbmk AVG

®LRU ®mLFU mLIU Profiler size 32sets - 4ways (128 entries)

Figure 3.22: Hot code coverage evaluated by using LIU, LRU and LFU replacement policies and
Spec2006 benchmarks.

3.4.2.3 Basic Block Characterization Evaluation

We have analyzed the contribution to the coverage of the different types of basic blocks
for the LRU, LFU, and LIU replacement policies. For the sake of simplicity, we only show
the results for mcf, perlbmk and vpr benchmarks from the Spec2000 suite. However, we
have observed similar trends for other benchmarks. Mcf is an example of a benchmark

that performs very well in all three replacement policies scenarios, perlbmk is an example

69

Chapter 3: Detecting Hot Code

where LRU performs better than LFU, and vpr with the place log input set is an
example in which LFU performs better than LRU.

Figure 3.23 shows the dynamic coverage of the different types of basic blocks that are
detected when employing LRU, LFU, and LIU replacement policies. Note that we only
show cheetah, mule, athletic man (from now on just man), and thoroughbred horse (from
now on just horse) types because turtle basic blocks do not contribute significantly to
coverage. As it can be observed, man and horse types of basic blocks are the ones that
contribute more to the coverage. In the case of mcf, the different replacement policies are
able to detect them reaching coverage closer to 99%. In perlbmk, LRU is able to detect
more man and horse basic blocks than LFU but less than LIU. By contrast, LFU and LIU
detect more mules. In this case, man and horse accesses occur in burst which makes LRU
and LIU more efficient than LFU. Finally, vpr is partially dominated by mule type basic
blocks as shown in the LIU coverage results. In this case, LFU does better than LRU,
although it cannot reach the numbers obtained by LIU. In this case, LFU policy is able to
track them but conflicts with man and horse basic blocks delay their detection with
respect to LIU. On the other hand, LRU makes it impossible to track this type of basic

blocks correctly since it prioritizes cheetah-like behaviors.

Although man and horse types are the most important ones for coverage, mule type also

contributes to it non-negligibly.

100%

90%

80% |

70% -

60% -

50% -

40% -

30% -

20% -

10% -

0% - 2 % %
Iru ‘ Ifu ‘ liu Iru ‘ Ifu ‘ liu

mcf perlbmk

Coverage

Iru ‘ Ifu ‘ liu

vpr.place

8 cheetah mule @ thoroughbred horse & athletic man

Figure 3.23: Coverage of the different types of basic blocks in mcf, perlbmk and vpr with place

input set benchmarks.

70

3.4. Evaluation

coverage

[
o
X

{

[

[

|

[

[

[

|

[

|

[

[

[

|

[

[

|

[

[

|

[

|

[

[

[

|

[

|

[

I

& © O & OSBNCY L © O » % AN <o &
SIS EIIEFL L ELS TS ITFTESS IS T TS EFFFF LSS
QN SO S0P S O L TN R B S ARNC Y N MR N GO LR SN)
S RLPEFTEE S EE I TSV AT FILLLEGLS s
IR A N (S P TS T DD X EFTFFF RN
SEFPLESLLY YN D PSPPI F VEFFIRS
R8RSR S 9 VTSN EE 5o o LA
& N AN NN N G 97D N XS o @ S S SO SR V)
% & o & YV AV Oy 9.9 VN v
K3 $EN F ISV
~ S
g LR &
S
I, v

pLIU (simplified) ™ LIU

Figure 3.24: Dynamic code coverage evaluation for SPEC2000Int benchmarks.

3.4.2.4 pLIU FEvaluation

We have also evaluated the performance of the pLIU proposal (the hardware simplified
version of the LIU proposal). As in previous sections, this evaluation has been done by
analyzing the coverage that could be obtained when the replacement policy is
implemented on top of the profiler cache. In this case, we have compared the pLIU

proposal with the original LIU by using all Spec2000Int benchmarks.

Figure 3.24 shows the coverage for the SPEC2000Int benchmarks and all the ref input sets
when using a profiler table of 32 sets and 4 ways (chosen configuration). As it is shown,
both original and simplified LIU proposals perform similarly. The complete LIU proposal
gets on average 85.49% coverage whereas the simplified proposal gets 86.46%. The higher
coverage of the pLIU is due to the lower threshold of 65k executions. In this case, pLIU
detects 13,6k static basic blocks as hot whereas LIU detects 12,2k. This extra 10%
detected basic blocks only contribute with an extra 1% coverage. The higher differences in
favor of the pLIU proposal are found in the gce, parser, and gzip with the “random” input
set, obtaining 2.47%, 4.31%, and 6.33% better coverage respectively. By contrast, the
higher differences in favor of LIU are found in eon with the “cook” input set where LIU
gets 3.78% more coverage than pLIU. In the rest of the benchmarks, the differences are
always below 2%.

Therefore, we can say that pLIU proposal presents similar coverage numbers than the

original LIU and, although it may detect some extra basic blocks with low coverage

71

Chapter 3: Detecting Hot Code

contribution, it can be implemented requiring less hardware resources because it does not

require the complex division computation for the CIU coefficient.

3.4.2.5 Performance & Overheads

In this section, we evaluate the benefits in terms of performance that could be obtained by
implementing a dynamic binary optimizer using different profiling schemes. The purpose
of this experiment is to show the importance of using correct profiling schemes in order to
balance optimizer overheads and performance. For this reason, we use a simple analytical
model that considers coverage, optimizer overheads, and performance benefits and we
compare the results against a baseline system that does not use dynamic binary

optimization.

For the analysis, we have categorized the optimizations to be applied to hot code as
simple, medium, aggressive, and very-aggressive. The cost (a.k.a. overhead) and the
benefit for each one of the optimizations is totally different. The simpler the
optimizations, the lower the cost of applying them and the lower the benefits obtained.
Table 3.4 shows the considered group of optimizations (first column), the overhead that
they introduce (second column), and the benefits that could be obtained by executing the
resultant optimized code (third column). Note that the overhead is measured as the
number of additional instructions to be executed per instruction to be optimized. These
parameters are consistent with previous work [36] [93] [94] [95] [96]. Examples of simple
optimizations include dead code removal, constant propagation, simple loop unrolling,
etc., whereas example of more complex optimizations may include control and data
speculation optimizations, complex loop transformations, module scheduling, instruction

fusion, etc. (see Section 2.5.1 for more details).

For the sake of simplicity, the model does not assume a staged compilation optimizer in
which hot code that is detected for the first time is optimized with less aggressive
optimizations than code that is detected as hot for the second or third time (super-hot). In
addition, we do not account for replication in the analytical model, where a particular

guest instruction may be included in more than one optimized region.

Optimizations Overhead (insts per inst to optimize) Perf. Improvement
Simple 1,000 instructions 10%
Medium 10,000 instructions 20%
Aggressive 100,000 instructions 40%
Very-aggressive 300,000 instructions 60%

Table 3.4: Optimizations overheads and performance improvements.

72

3.4. Evaluation

The total overhead introduced in the system when optimizing hot code regions is

computed by using the following formula:

overhead=NSHI x Cost,y,,

where NSHI is the number of static instruction of the application that have been detected
as hot code (Number of Static Hot Instructions) and Cost, is the overhead of optimizing

one instruction.

Thus, the execution time of the application can be computed as follows:
execution time=((NDI-NDHI) x© CPI,,,)+(NDHI z CPI,,)+(overhead x CPIL,,,)

where, NDI is the total number of dynamic instructions of the application (Number of
Dynamic Instructions), NDHI is the total number of dynamic instructions detected as hot
code (Number of Dynamic Hot Instructions, which is related to coverage), CPlL. is the
number of processor clocks required to execute one instruction in native mode, CPIL, is
the number of processor clocks required to execute one instruction in optimized mode
(which depends on the value in the Performance Improvement column) and CPlL.., is the

number of processor clocks required to execute one instruction from the software layer.

In this experiment, we assume that code that is not detected as hot is executed with a
CPI of 1. This means that CPlL, is set to 1 in the previous formula, describing the fact
that cold code is executed natively in the processor, as in dynamic binary optimization
systems in which the guest and the host ISA is the same (for example, Dynamo [36]).
Note that hot code coverage could be of much greater importance if we had assumed a
lower CPI for cold code in the model (such as in systems in which interpretation is used
instead). We also assume that the optimizer has a similar CPI than native execution. For

this reason we have also set CPl... to 1 in the formula.

The potential optimizer overheads using the analytical model for the Spec2000Int
benchmarks are shown in Figure 3.25. The x-axis of the figure shows the previously
presented 4 groups of optimizations, and the y-axis shows the percentage of additional
instructions executed in the system that are required to optimized the hot code. The LIU,
pLIU (considering two versions of 16 bits and 17 bits for the threshold) and LFU
replacement policies incur in the higher overheads, ranging from 0.01% overhead for the
simpler optimizations to a maximum of 5% overhead in the case of pLIU (16 bits). The
LFRU goes from 0.01% for the simpler optimizations to 2.12% overhead for the very-

aggressive ones. Finally, the LRU replacement policy, that is the one that has also the

73

Chapter 3: Detecting Hot Code

lowest coverage, incurs in a 0.0028% overhead for the simpler optimizations and in a
0.84% overhead for the very-aggressive ones. As an interesting reference point, a dynamic
binary optimizer that considered all static code to be hot would incur in overheads of
0.53%, 5.26%, 52.58% and 157.73% for simple, medium, aggressive and super-aggressive

optimizations respectively.

However, overhead numbers need to be correlated with performance numbers to
understand the potential benefits of the dynamic binary optimizer. The performance
numbers for Spec2000Int benchmarks using the analytical model are shown in Figure 3.26.
The performance is computed as the ratio between the execution time of a design that
does not use dynamic binary optimization and the execution time of a design that uses
dynamic binary optimization and different profiling strategies. In particular, we show the
results for profilers that use the LRU, LFU, LRFU, and the proposed LIU and pLIU (16
and 17 bits versions) replacement policies. As it can be observed, the LIU and pLIU
proposals would perform in a similar way. For the simple optimizations they get an 8.4%
execution improvement, whereas for the very-aggressive optimizations they get a
performance improvement of 47.2% in the case of LIU and 48% in the case of pLIU (16
bits). These benefits cover widely the overheads introduced for optimizing the code. Based
on these results, we can say that the expected benefits would be much higher in the LIU
and the pLIU proposals than in the other proposals, and especially against LRU. This is
mainly because coverage is increased significantly. Moreover, LFU overheads are similar
than the ones from LIU and pLIU but the performance improvements are lower. LFU
detects approximately the same number of static instructions than the pLIU proposal
does, but the static instructions from LFU contribute less to the final coverage. Finally,
from Figure 3.25 and Figure 3.26, we can observe that although LFU and LFRU present
similar performance improvements, LFRU introduces lower overhead to the system. The
main reason of this can be found in the number of static instructions detected by both
alternatives. The LFRU detects less static instructions than the LFU but this less
instructions contribute more to the final coverage of the application than the ones
detected by the LFU.

We have fed the analytical model with other overhead and performance values and we
have observed similar trends: the proposed LIU and pLIU proposals increase the
overheads minimally compared to other proposals but performance is increased
significantly due to: (i) an increase in hot code coverage and (ii) the ability to detect more
relevant static instructions as hot code. These results highlight the importance of

combining recency and frequency of the accesses for detecting hot code.

74

3.4. Evaluation

5.0%

4.5%

4.0%

3.5%

3.0%

2.5%

Overhead

2.0%

1.5%

1.0%

0.5%

0.0%

simple medium aggressive very aggressive
Type of Optimizations

~-LRU -®-LFU -4-LFRU =<pLIU (16 bits) -@-pLIU (17 bits) LIU

Figure 3.25: Potential optimization overheads in Spec2000Int for different replacement policies

using a simple analytical model.

1.50
1.45 //>0<
1.40 /

1.35

1.30 /

Speedup
= =
S &

1.05 ——

1.00

simple medium aggressive very aggressive
Type of Optimizations

~-LRU -B-LFU -A-LFRU =<plLIU (16 bits) -@-pLIU (17 bits) LIU

Figure 3.26: Potential speedup for Spec2000Int benchmarks of a dynamic binary optimizer
system using different profiling techniques compared to a system that does not implement a

binary optimizer using a simple analytical model.

75

Chapter 3: Detecting Hot Code

3.4.2.6 Power Requirements

As it has been commented in Section 3.3.5, the LIU profiler has been implemented in a
FPGA on top of a processor similar to the Intel® P54C [104]. However, power estimations
cannot be made by employing the FPGA model, and moreover, the P54C power numbers
are not representative of current processor power budgets because it was developed by
employing an old semiconductor manufacturing process’. Instead of employing the P54C
approach for estimating the power requirements of the LIU profiler, we have selected the
contemporary Intel® Atom® [107] [108]. This processor has been built on a 45nm which is
more representative of current semiconductor manufacturing processes. Apart from this,
we have selected this processor because it has in common with the P54C the in-order
execution and the low power design constraints. The Intel® Atom® processor presents a

maximum Thermal Design Power (TDP) of 2.2W when it works at 1.6 Ghz.

We have employed CACTI [106] for estimating the power requirements of the LIU
Profiler. Unfortunately, CACTI does not allow modeling a small cache structure of 32 sets
and 4 ways like the one used by the LIU profiler. For this reason, we have analyzed the
power of the LIU profiler by employing a four times bigger cache structure of 128 sets and

4 ways.

Even when considering the extreme case where this structure is accessed in every clock
cycle (not only accessed by branches), the LIU profiler only consumes 8.8mW when the
processor is clocked at 1.6Ghz. The total read dynamic energy per access to the cache
structure is 0.12pJ. Therefore, considering the configuration used for the CACTI
estimations, the LIU proposal consumes less than 0.87% of the total power of the Intel®

Atom® processor.

3.5 Conclusions and Future Work

Hardware/software co-designed systems require fast hot code detection in order to
improve application execution performance by applying different code
optimizations/transformations. In this chapter, we have presented a profiling technique
that is able to detect hot code regions fast and in a very efficient manner by using a
simple hardware table. This hardware table can be complemented by software algorithms
and heuristics to build code regions for optimization based on this information. This co-
designed approach is able to detect important basic blocks with minimal overheads while

maintaining the flexibility by implementing heuristics in software. The pillar of the

" The P54C processor was developed in semiconductor fabrication processes ranging from 0.8 pm to 0.25 pm.

76

3.5. Conclusions and Future Work

hardware component is a novel replacement policy, called LIU, which outperforms the
results that can be achieved when considering other traditional replacement policies. The
proposed LIU Profiler achieves 85.49% hot code coverage when used in a 128 entries
hardware table. Furthermore, it outperforms by 2x the hot code coverage of similar
profilers that makes use of random and LRU replacement policies and by 1.5x to profilers
that employ LFU and LFRU replacement policies. These other profilers require at least
1024 entries to achieve similar coverage numbers than the proposed LIU Profiler.
Moreover, the proposed technique can be implemented requiring few hardware resources,
incrementing the total processor area by only 1% and the total processor power by less
than 0.87%.

However, some tasks have not been covered in this work. For instance, while we have
considered the effects of context switches, we have done so in an analytical way. Hence, it
would be extremely interesting to understand the effects of multi-tasking in a real
execution environment. Finally, we have just presented the part of the technique designed
for detecting hot code but not the software required to build the code regions by using the
profiled information. We emplace to future work these drawbacks since we consider that

they are out of the scope of this thesis.

7

Chapter 3: Detecting Hot Code

78

Chapter 4

HW /SW Register Checkpointing

Because code transformations in a hardware/software co-designed processor often imply
instruction reordering, instruction removal, and other speculative optimizations, the
execution of a dynamically optimized region must be observed as atomic. This is because
the architectural state may not be fully correct during the execution of an optimized
region as long as it matches the original architectural state at the end of the region. In
addition, atomic execution is also a requirement if precise exceptions are assumed, as it is

the case for most modern ISAs.

After executing a dynamically optimized region in a hardware/software co-designed
system, the architectural state of the processor must be exactly equal than the one that
would be generated by the execution of the same code region in its original form.
However, the way the architectural values are produced in the optimized region may be
different when compared to the original execution. If speculative optimizations are
considered, even wrong values maybe produced during execution. For this reason, if an
exception or a mispeculation occurs before the end of the region completes, then the
architectural state of the system may differ significantly when compared to the original. In
addition, supporting precise exceptions implies recovering the state of the machine as if
the original code would have been executed until the precise point where the exception
occurs [109]. In order to achieve this, a hardware/software co-designed system implements
a mechanism that allows the processor to restore a previous architectural state, including
memory and registers. In case an exception or a mispeculation occurs, the architectural
state is recovered and the region is executed again in its original form in order to
reproduce the exception as in the original code (see Section 2.5.2 for more details) or to

avoid the mispeculation failure.

79

Chapter 4: HW/SW Register Checkpointing

In this section, we focus on the architectural registers. For this particular case, the most
common approach in the literature is to save (checkpoint) the value of the architectural
registers in a secondary register file, called Shadow Register File (SRF) [13] [39] [110]. The
movement of the data through both register files is made with a flash-copy operation that
can normally be achieved within a single processor clock cycle. If a mispeculation or an
exception occur, the contents of the shadow register file is copied back to the regular
register file and the region is rolled back. The implementation of this pure hardware
checkpointing mechanism increases the complexity of the processor design. In addition, in
simple cores, such as the Intel® Atom® selected for the studies of this thesis, incrementing

the size of the register file may affect significantly the power and the area of the design.

In this section, we propose a hardware/software co-designed scheme, called HRC (Hybrid
Register Checkpointing), where the software is in charge of checkpointing and recovering
the register state of the processor on demand and the hardware offers mechanisms to
speed up the process. The key feature of this scheme is the low additional hardware
support compared to pure hardware solutions [111]. In particular, no additional registers
are required because already existing ones are used instead. Moreover, only those registers
modified within the code region need to be checkpointed. The proposed scheme incurs in
less overheads than previously software checkpointing and recovery mechanisms [29] [112]
[109], and it is intended not only to be used for exception recovery but also to help on
performing aggressive dynamic code optimizations (e.g. code regions optimized

speculatively).

Results show that the HRC achieves almost the same performance as a zero-cycle register
file flash-copy solution (copying the register file into a shadow register file) without the
additional hardware and additional complexity this latter solution requires. In fact, the
proposal only degrades performance by 1% when compared to the SRF proposal. In
addition, the proposal is still very competitive when checkpointing resources are scarce,
guaranteeing coverage of 95% of optimized code. Moreover, the HRC scheme reduces by
11% the area and by 19.4% (Spec2000FP) and 30.1% (Spec2000Int) the power of the SRF

solution.

The rest of this chapter is organized as follows. First, we introduce the checkpointing
main concept. In Section 4.2, we describe previous work done in the literature. In Section
4.4, we present the HRC implementation and in Section 4.5, we discuss the evaluation
results. Finally, in Section 4.6, we conclude the chapter by presenting the conclusions and

future work.

80

4.1. HRC Overview

4.1 HRC Overview

In order to correctly update the architectural state of the machine, we need a mechanism
to keep track of the values produced during the execution of an optimized region and a
recovery mechanism to undo the work done when an exception or a miss-speculation event
occurs. Common solutions generate a checkpoint at the beginning of each optimized code
region with the state of the architectural registers at that point. In particular, the content
of the register file is flashed into a shadow register file. When an exception occurs, the

state is recovered from this shadow register file copy.

Architectural registers are those specified by the instruction set architecture (ISA) of the
processor. In the particular case of the Intel® Atom® processor, this includes general
purpose, x87, MMX, XMM, and EFLAGS registers [113] and these are the ones that are
checkpointed, as they define the architectural register state. Apart from these registers,
there are other registers not visible to the applications (programmers) but accessible by
the hardware resources [113]. These registers are commonly called non-architectural or

temporal registers and they are not checkpointed because they are not part of the ISA.

The proposed register checkpointing mechanism uses software to create and restore
register checkpoints. In particular, the software needs to copy the original value of an
architectural register before this register is speculatively overwritten. Since the software
layer is in charge of generating the optimized regions, it knows which registers are read
and which are written within the region and it also knows when they are consumed.
Therefore, the software layer can easily keep track of these registers to implement the

checkpointing and the recovery mechanisms.

Code Region from the Software Layer

@0x8000

First definition of
these register in
the region

REGISTERS TO
CHECK-POINT:
RAX, RBX, RCX

Figure 4.1: Example of first usage of registers in a code region.

81

Chapter 4: HW/SW Register Checkpointing

We use Figure 4.1 to illustrate how the software layer identifies which registers need to be
checkpointed. The figure shows an example of a code region generated by the software
layer. As it is shown, three architectural registers, RAX, RCX, and RBX, are written by
instructions of the region. We also highlight when these registers are written for the first
time. In this case, the software layer needs to checkpoint the value of the RAX, RCX, and
RBX registers before their first definition. The idea of the proposal is to introduce
instructions to copy explicitly the values to temporal registers. In the example of the
figure, the software layer would introduce extra move instructions to copy the values of
RAX, RBX, and RCX into available temporal registers. Note that these new move
instructions would be handled by the software layer as any other instruction when doing
optimizations such as code reordering. In particular, the only restrictions to these
instructions is that they cannot be eliminated (for instance, when applying dead code

removal) and they need to be scheduled before the corresponding register is defined.

If the execution of the region is successful, the temporal data stored for the checkpointed
values can be discarded and the values produced by the region become the new
architectural state. In contrast, in the case of region rollback, the recovery mechanism
takes the checkpointed information and recovers the state of the registers before the
region was executed. This can be implemented by employing a software routine that is
formed by a sequence of move instructions in charge of copying the checkpointed values
from the temporal registers into the corresponding architectural registers. This software

routine is called region recovery code.

The proposed software register checkpointing mechanism presents the following

characteristics:

- Minimal hardware support required (see Section 4.4 for more details). In
particular, there is no need for an additional shadow register file as required in
hardware approaches. The proposal makes use of the currently available
temporal registers in the processor.

- Small changes required in the software layer implementation (see Sections 4.4.1
and 4.4.2 for more details).

- Low impact on performance since only registers that are modified by the region
need to be checkpointed. Hence, few extra instructions are introduced. In
particular, it performs only 1% worse than with pure hardware solutions (see

Section 4.5.2 for more details).

82

4.2. State of the Art

- Low overhead for the recovery mechanisms when compared to other software

checkpointing solutions, which enables aggressive speculative optimizations.

4.2 State of the Art

Several techniques have been proposed in industry and academia on how to handle the
speculative state of dynamic optimizers in hardware/software co-designed processors that

use speculative optimizations.

RePlay [114] and Parrot [22] [115] build traces of instructions after the commit pipeline
stage and optimize them in hardware. They target superscalar out-of-order machines, and
therefore rely on already existing hardware checkpointing mechanisms. Although adding
or extending these mechanisms to an in-order pipeline is possible, it would significantly
impact the complexity of the design, making it not very different from a traditional out-
of-order design. Since our proposal targets simple in-order processors like the Intel®

Atom®, we need a different checkpointing mechanism.

Speculative optimizations are also used by Transmeta’s Crusoe® [16] and Efficeon® [14]
[110] processors when optimizing x86 code on top of a VLIW in-order processor.
Transmeta’s processors rely on a hardware checkpointing mechanism. Actually, all
registers are shadowed, that is, there are two copies of each register, a working copy and a
shadow copy. Instructions in an optimized region only update the working copy. When the
optimized region completes successfully, the contents of the working copy are copied to
the shadow one. On the other hand, if an exception or a mispeculation occurs, the shadow
copy containing a previous valid state is copied back to the working copy, restoring the
previous valid architectural state. This requires doubling the number of registers and some
additional logic to perform the copies among the registers files. Moreover, the registers

used for checkpointing cannot be used for other purposes.

IBM® DAISY [30] and BOA [29] projects also use the hardware/software co-designed
virtual machine concept to execute PowerPC code speculatively on top of a VLIW
processor. These systems rely on a software-controlled checkpointing and recovery
mechanisms to provide precise exceptions. They propose two different alternatives. The
basic approach [30] relies on using a set of non-architectural registers. The registers
accessed while executing an optimized region are renamed to non-architectural registers,
keeping the architectural registers untouched. Therefore, the speculative state generated is
not promoted to the architectural state. The moves from speculative to architectural state

are done by software at the end of each code region, when the state can be safely

83

Chapter 4: HW/SW Register Checkpointing

committed. Hence, the execution of these move instructions cannot be overlapped with the
execution of the other instructions belonging to the optimized region, conversely to the
instructions introduced by our proposal. Moreover, such explicit move instructions have to
be executed always introducing an additional overhead to the system that penalizes the

most common scenario, which is committing correctly the region.

The second alternative proposed for the DAISY and BOA is based on keeping the results
always, even after the commit of the region, in non-architectural registers and only move
them to the architectural registers when required [9]. Once an exception arises, a repair
mechanism is called, which is part of the software layer. The repair mechanism produces
the appropriate recovery code based on information previously generated when the code
was optimized. Generating recovery code at run-time is possible because the virtual
machine translator has always the control of the system and knows at each point where
the non-speculative values reside. This scheme and our proposal differ in the following: (1)
additional information (annotations) must be stored for each optimized region to generate
the recovery code [109] whereas our scheme does not, and (2) the former scheme incurs in
important overheads compared to our proposal when an exception arises, because it

requires the virtual machine to generate recovery code on demand.

The important overheads associated to the second alternative used in DAISY and BOA
may be affordable for handling exceptions and interrupts, which rarely occur. However,
the mechanism proposed in this thesis can also be applied as a fast recovery mechanism to
enable aggressive speculative optimizations. In order to exploit this feature, the incurred
overheads must be negligible, which is the case of the proposed scheme but may not be

the case for the second solution proposed for DAISY and BOA.

4.3 Baseline Core Characteristics and Pipeline

The core employed for implementing the software checkpointing scheme is based on the
Intel® Atom® processor [107]. This processor follows the bases commented in the
introduction of this chapter since it is a small in-order core with very low power
consumption. Both characteristics make it ideal for its integration in a multi-core

environment.

The Intel® Atom® supports the x86 ISA, but internally the instructions are split into
simpler RISC instructions called pops. The core allows the execution of two pops per clock
cycle, and it can be used in a traditional single thread execution mode or in a two

simultaneous multithreading execution mode. In this second mode, the two threads

84

4.3. Baseline Core Characteristics and Pipeline

compete for the core resources. In particular, the caches, the decoders, the ports, the
branch predictor, the branch target buffer (a.k.a. BTB), and the execution units are
totally shared between the threads. By contrast, the prefetch buffers, the instruction
queues (IQs), and the registers files are replicated for each thread. Moreover, both threads
are treated equally for accessing to the shared resources, having availability to a particular
resource every two clock cycles in case of conflict. The maximum throughput of the core is

always two instructions per cycle independently of the number of executing threads.

The core has three caches. A first level instruction cache of 32KB and 8-way set
associative, a first level data cache of 24 KB, and 6-way set associative and a second level
cache of 512KB (or 1MB) and 8-way set associative. All caches use a cache line size of 64
bytes. The memory unit is connected only to the integer cluster, and so, floating
point /SIMD instruction require more time for execution. The processor also supports store
forwarding in a very efficient manner allowing reading back to back a value written by a

previous operation.

The pipeline of the core has sixteen stages. The front-end pipeline has three stages for
instruction fetch, three for instruction decoding, and two for instruction dispatch. The
backend pipeline has one stage for reading the register operands, one for calculating the
address of a memory operand, two for accessing the data cache, one for execution, two
more for exception and multithreading handling, and one for committing the results. Both
front-end and backend pipelines are graphically described in Figure 4.2 and Figure 4.3
respectively. This pipeline allows the execution of read-modify and read-modify-write x86
type instructions in one cycle. Other more complex instructions require to be split into
serial pops. To guarantee the execution of two instructions per cycle the execution unit

has two ports, each one connected to the integer and the floating point execution units.

The front-end and the back-end pipelines are decoupled. Instructions (in this case pops)
after the decoding stages are placed into a queue of 32 entries. In multithread execution

mode this queue is split into 16 entries per thread.

The simple integer instructions have an execution latency of one clock cycle. The
multiplications, divisions and floating point instructions require longer latencies (from 5
cycles in the case of ¢mul instruction and up to 31 cycles for floating point divisions).
Moreover, moving data between a SIMD vector register and a general purpose register or
a flag register require 4-5 clock cycles due to the communication required between

separated register files for SIMD and integer data.

85

Chapter 4: HW/SW Register Checkpointing

I N Le e]

Instruction Instruction Instruction
Fetch Decode Dispatch

Figure 4.2: Processor front-end pipeline.

SRR Data Cache Exception and MT
Operand Execute

. Commit
Read Access Handling

Figure 4.3: Processor back-end pipeline.

4.4 Detailed HRC Implementation

The proposed hybrid hardware/software register checkpointing scheme requires minimal
hardware support to be implemented on top of a low-power processor such as the Intel®
Atom® [107]. In particular, the checkpointing and recovery mechanisms only require a

new type of move instruction and a dedicated register.

This new register is called RCIP (Recovery Code Instruction Pointer) and it keeps track
of the IP address where the recovery code resides. The RCIP register is updated at the
beginning of every optimized region executed with a regular move instruction, as each

region has a different recovery code routine.

The new type of instruction is a conventional move that additionally updates the RCIP
register. We refer to this new type of move instruction as CKP_ MOV and it is
distinguished from regular move operations by using a new opcode. CKP_ MOV
instructions are used to save the content of the architectural registers before they are
overwritten for the first time within the region. In such a way, the saved values
correspond to the architectural register state before the execution of the region. Moreover,
every time a CKP_ MOV instruction is executed, the RCIP register is updated
(subtracting a fixed amount from the value already stored) in order to prepare the
recovery mechanism to restore the previous values of the checkpointed architectural

registers in case there is a mispeculation or an exception.

Temporal /non-architectural registers are already implemented in most processors
nowadays [113] and it is not required to add them for the HRC scheme. However, if there

are not enough temporal registers in the processor to keep track of the architectural state

86

4.4. Detailed HRC Implementation

of a region, we have assumed that the software layer will not be able to optimize that
region. As we will show in Section 4.5.2.2, this is not the case for more than 95% of the

regions.

4.4.1 Checkpointing Mechanism

A register checkpoint is performed by inserting a set of CKP_ MOV instructions at the
beginning of each optimized code region. CKP_MQOYV instructions are included within the
original code region to preserve the value of the registers. Each architectural register
written within the original region has its corresponding CKP MOV instruction, which
copies the architectural register before it is overwritten by any other instruction. These
instructions are included before the software layer generates the optimized version of the
region, so that the instructions are also considered for optimization with the rest of the
instructions of the region. This means that these CKP_MOV instructions can be
reordered and optimized with the rest, except that they cannot be eliminated by
optimizations such as dead code removal and they cannot be reordered below the

instruction that defines the register being checkpointed.

A first regular move operation included in the region initializes the RCIP register that
indicates the address where the recovery code for this particular region resides. This
instruction must be executed prior to all other instructions belonging to the same region
and it cannot be reordered as the CKP_MOV instructions. Note that a regular move
instruction can be employed in this case because the software layer has full access to all

registers in the processor, including the RCIP and all temporal registers.

The architectural state is then distributed between architectural registers (those
architectural registers that have not been overwritten in the region yet) and temporal
registers (those architectural registers that have already been overwritten in the region).
By using temporal registers, the movement of data between the speculative and the
architectural state and vice versa can be done in a fast and cheap manner. However, we
are constraining the usage of temporal registers for other purposes since processors
normally have a small number of dedicated temporal registers. As shown later in Section
4.5.2, we decided to use the temporal registers because the pressure over these registers is

not increased significantly.

87

Chapter 4: HW/SW Register Checkpointing

writtenRegistersQueue.clear();
for each instruction 1 in region r do
if !(writeRegister(i) e writtenRegistersQueue) &&
(writeRegister(i) € architecturalRegisters) then
writtenRegistersQueue.push_back(writeRegister(i));
endif

end for

Figure 4.4: Software layer algorithm to indentify the registers that require checkpointing within
a region.
In Figure 4.4, we show the algorithm that the software layer employs to identify which
registers are required to be checkpointed. As it has previously been described, all
architectural registers written during the execution of the region need to be checkpointed.
Thus, the algorithm traverses in program order all instructions within the region and for
each one it checks (i) if the instruction has a destination register, (ii) if such a register is
an architectural register (the algorithm uses a list named architecturalRegisters that stores
the identifiers of all architectural registers used in the processor), and (iii) if such a
register is defined for the first time in the superblock. The algorithm uses a list named
writtenRegister Queue where it enqueues the registers that satisfy the three conditions as it
traverses the instructions. Note that in such a way, the registers are stored in their
definition order. The writtenRegisterQueue is later used by the software layer to insert the

checkpointing CKP__ MOV instructions.

In Figure 4.5, we show an example on how an original code region is modified with the
additions of the checkpointing instructions and the recovery code. On the left of the
figure, we show the original region. It starts at address 0x8000 and it contains two branch
instructions and five instructions writing into a register. From these instructions, only
architectural registers RAX, RBX, and RCX are detected by the algorithm depicted in
Figure 4.4, and so, only these three registers need to be checkpointed (Tmpl0 is not an
architectural register). On the right part of the figure, we show the original region with
the checkpointing and the recovery codes. Note that the address of the optimized region is
different from the address of the original one because the software layer maps optimized
code regions into the code cache memory. The checkpointing instructions are placed at the

beginning of the region whereas the recovery code is placed at the bottom.

88

4.4. Detailed HRC Implementation

Original Code Region

@0x8000 Wt
Branch @0x9000

RBX = ...
Tmpl0=..
RAX = ...

RCX= ...

Branch @0x7000

Original Region with check-pointing and recovery codes

@0x1000
@0x1004

@0x1008

@0x1012

@0x1016
@0x1020

@0x1024

@0x1028
@0x1032

@0x1036
@0x1040

@0x1044

@0x1048
@0x1052

@0x1056

Move 0x1056, RCIP
CKP_MOV RAX, Tmp0

CKP_MOV RBX, Tmp1

CKP_MOV RCX, Tmp2

RAX = ...

Branch @0x9000
RBX =...
Tmpl0=..

RAX = ...

RCX=...

Branch @0x7000

Branch @0x8000

Check-pointing
Code

Space reserved for
Recovery Code

Figure 4.5: Example of code generated when using the checkpointing and recovery mechanism.

Original Region with check-pointing and recovery codes

@O0X1000 | 1o 0l e
@O0x1004 [« el
@O0x1008 e oA o
@0x1012 | o
@0x1016 Ve
@0x1020 [0o
@0x1024 [
@0x1028 [
@0x1032 [IveE
@0x1036 [l
@0x1040 [
@0x1044 (VS
@0x1048 RV r i

Code

@0x1052 [V o8
@0x1056 JEEl)

Check-pointing

Recovery Code

Optimized Region with check-pointing and recovery codes

@O0xX1000 |1 e e
@O0x1004 [< 0 ien i

@0x1008 [l
@O0x1012 | s @l el

@OX1016 | et e
@0x1020 CKP_MOV RBX, Tmp1

@0x1024 [
@0x1028 Fp e

@0x1032 5

@0x1036 filot

@O0x1040 (-)
(@OSZTY viove Tmpi, RBX
@0x1048 RV P
@0x1052 (VR fal T
@0x1056 [EiNal))

Check-pointing
Code

Recovery Code

Figure 4.6: Example of code reordering applied on top of a region that already includes the

checkpointing and recovery codes.

The first instruction of the checkpointing code initializes the RCIP register to point to the

last instruction of the recovery code that is placed at address 0x1056 (see Section 4.4.2 for

more details). The rest of the checkpointing instructions are the CKP_MOYV for storing
the initial values of RAX, RBX, and RCX into Tmp0, Tmp1, and Tmp2 respectively. The

recovery code is depicted as empty spaces because recovery code is generated once the

89

Chapter 4: HW/SW Register Checkpointing

region is optimized, as we explain later in Section 4.4.2. As for now, we just need to know
that there is space for the same amount of CKP__ MOV instructions attached to the region

plus one.

Finally, once the checkpointing code is created, the code region is passed to the software
layer optimizer which performs aggressive speculative optimizations such as code
reordering (instruction scheduling), control, and data speculation, dead code removal,
common subexpression elimination, among others. For example, in Figure 4.6, we show
how the original region presented in Figure 4.5 may be optimized once the checkpointing
and recovery instructions are included. As it can be observed, the “CKP_MOV RBX,
Tmpl” instruction at address 0x1008 is reordered and placed at address 0x1020 and the
instruction “CKP__MOV RCX, Tmp2” is also reordered and placed at address 0x1016.
Therefore, the checkpointing code is intermixed within the instructions that belong to the
region and they are handled as regular instructions. The only restriction when reordering
instructions is that an instruction overwriting an architectural register for the first time
cannot be executed before its associated CKP_MOV instruction. The software layer
ensures this by adding an anti-dependence relation between the instruction overwriting
the architectural register and the associated CKP_MOYV instruction in the Data
Dependence Graph (DDG) of the region while doing optimizations. In Figure 4.4, we can
see that all CKP_MOV instructions precede their associated register overwritten
instructions. Note also that, although the “CKP_ MOV RBX, Tmpl” is first in the
original order, the “CKP_MOV RCX, Tmp2” precedes it in the reordered version of the
region. Moreover, this latter instruction is separated from the first RCX overwriting
register instruction by several instructions, highlighting that the software layer may decide
to separate the CKP__MOYV instruction from its associated register overwriting instruction

if there is an opportunity to have a better instruction scheduling.

Since CKP_MOYV instructions can be reordered, the recovery code is generated once the
final disposition of the CKP_MOYV instructions is known. This guarantees that the move
instructions in the recovery code are executed in reverse order than the register
checkpointing definition order, which is necessary for the recovery mechanism as described

in next Section 4.4.2.

4.4.2 Recovery Mechanism
When an exception or mispeculation occurs during the execution of the optimized region,
control is given back to the software layer, with the objective of executing the region in its

original version in order to reproduce the exception with the correct architectural state if

90

4.4. Detailed HRC Implementation

required (real exception) or to guarantee forward progress (mispeculation). In any case,
prior to transferring the control to the re-execution of the region, the software layer

executes the recovery code to re-establish the architectural register state.

The recovery code is in charge of moving back the state stored in the temporal registers to
the architectural ones. After that, the recovery code transfers the control to the original
code to reproduce the exception. In order to accomplish this, a branch instruction that
jumps to the initial IP of the original code is added as the last instruction of the recovery
code. The recovery code is placed at the end of the optimized region, after the last exit
instruction and it is not subject to optimizations. Note that this code is only executed in

case an exception is raised.

An exception or mispeculation may arise at any point in time when running the optimized
code region. Since the CKP _MOVs instructions are mixed and reordered with the rest of
the instructions, there is no guarantee that all of them have been executed at the moment
the exception occurs. Therefore, specific recovery code must be executed to recover the
state at each possible execution point of the optimized code region. However, this may
significantly increase the amount of instructions stored in the code cache. Instead, the
proposed mechanism generates the recovery code assuming that all the checkpointing
moves have been executed, and relies on the contents of the RCIP register in order to only

execute the appropriate recovery move instructions.

As commented before, the software layer generates the recovery move instructions in
reverse order than that of the CKP_MOVs inserted within the region code. The RCIP
register is initialized to point to the last instruction of the recovery code. This last
instruction is the branch that jumps to the beginning of the original code region. At this
point, since no CKP_MOVs have been executed yet, the recovery code is only formed by
this branch instruction. Once the first CKP__ MOV instruction is executed, it decreases the
RCIP pointer by an amount equal to the size of a move instruction, including in such a
way its associated recovery move counterpart operation in the recovery code (the move
instruction that recovers the checkpointed value for the corresponding register). As more
CKP_MOYV instructions are executed, the RCIP register is updated to include their
recovery instruction counterparts. Thus, an exception can occur at any point in time in
the optimized code region because the RCIP register always points to the appropriate set
of recovery move instructions. Note that since regions are stored internally as superblocks
(single entry multiple exists block regions), the order and the number of CKP_MOV

instructions is always the same within the region because there is no multiple control flow

91

Chapter 4: HW/SW Register Checkpointing

within the region. This guarantees the correct order between the CKP__MOYV instructions

and the counterpart recovery move instructions.

To better illustrate how the RCIP register is updated during the execution of a region, we
use the example of Figure 4.7. The code shown in the figure includes the instructions for
performing the checkpoint (CKP_MOYV instructions) and their respective recovery
instructions (highlighted at the bottom of the region). The first instruction in the region
initializes the RCIP register to point to address 0x1056. At this point, in the recovery
code there are no mowve instructions since any architectural register has been checkpointed.
After the first CKP_MOYV instruction is executed (move from RAX to Tmp0), the RCIP
is updated to point to IP 0x1052, where the counterpart move resides (move from Tmp0
to RAX). After the execution of the CKP_MOV for RCX, the RCIP points to 0x1048
where the counterpart move instruction that restores RCX from the Tmp2 register
resides. Finally, once the CKP_MOYV instruction for the RBX register is executed, the
RCIP points to 0x1044 which allows the execution of the whole recovery code if needed to

guarantee precise exceptions or to recover from a miss-speculation.

4.4.3 Hardware Implementation Details

The update of the RCIP register occurs in the write-back stage of the Intel® Atom®
processor pipeline. The architectural registers are also updated at this same stage.
Therefore, the update of the RCIP register must occur in a synchronized manner with the
update generated by the instruction overwriting the architectural register. In Figure 4.8,
we show two examples of the execution of the CKP__MOYV instruction and the associated
instruction that overwrites the register to be checkpointed. In the case a), the CKP_ MOV
instruction is executed at the same time that the instruction that overwrites the register
R. If an exception occurs during the execution of this latter instruction, which is detected
in FT1 and FT2 stages, the CKP_ MOV operation will not retire and the RIP register and
the content of register R will not be updated. In the case b), both instructions are
executed back-to-back (the instruction that overwrites register R is executed one cycle
later than the CKP__MOYV instruction). In this case, if an exception arises when executing
the second instruction, the content of register R is not updated (the instruction does not
retire). However, the CKP_MOV will retire and therefore it will update the RIP register.
Fortunately, this is not a problem because the value of register R and the checkpointed
value are equal at that point. Therefore, the recovery mechanism will overwrite register R
with the same original value, and although RCIP and R will not be updated in a

synchronized manner, the architectural state will be correctly recovered despite the

92

4.4. Detailed HRC Implementation

execution of the unnecessary move operation. In case that the instruction that overwrites
register R is executed more than 1 cycle later than the corresponding CKP_MOYV, the
same rationale described for case b) applies. Note that there are no other possible
scenarios for updating the RIP and the architectural registers because the overwritten
operation for an architectural register cannot occur before its corresponding CKP_MOV
operation (the software layer prevents this scenario to occur as it is commented in Section
4.4.1).

Optimized Region with checkpointing and recovery codes

Lo
(@B (> vov Rex, Tmp1 0x1048

@0x1024 e el 01044
@0x1028 B Floe

@0x1032 [y

@0x1036 e

@O0x1040 (-2 e

@0x1044 VIS rh:

@0x1048 RYER e

@ox1052 (I Recovery Code

@0x1056 e ee)

RCIP
@O0x1000 | e atesa e ,
@0x1004 [) c bl 0x1056
@0x1008 fiyErs A > [roes
@O0x1012 | =i @0 el
@O0x1016 | S oo s Rl

Figure 4.7: Recovery mechanism functionality example.

Exception Register

Pipeline execution of the CKP_MOV instructions ! :
detection write

a) CKP_MOV forreg R SC IS IRF AG DC1 DC2 EX FT1 FT2 IWB
overwrite operation for reg R SC IS IRF AG DC1 DC2 EX FT1 FT2 1WE

b) CKP_MOV forreg R SC IS IRF AG DC1 DC2 EX FT1 FT2 IWB
overwrite operation for reg R SC IS IRF AG DC1 DC2 EX FT1 FT2 IWE

Figure 4.8: Processor pipeline execution examples of the CKP__MOYV instruction. In case a), the
instruction is executed with its corresponding instruction that overwrites the checkpointed

register. In case b), the two instructions are executed back to back.

93

Chapter 4: HW/SW Register Checkpointing

4.5 Evaluation

4.5.1 Simulation Framework

The HRC scheme has been implemented on top of an in-house research simulator that
models a hardware/software co-designed processor. The hardware component of the
simulator models a processor similar to the Intel® Atom® and it is based on the
architecture described in Section 4.3. This cycle accurate simulator allows up to 4
instructions (upops) to be issued and retired simultaneously and it models the Intel® x86

ISA [113] in very high detail, including interrupts, exceptions, APIC support, etc.

The software layer implemented in the simulator uses profiling counters in order to detect
pieces of code that are frequently executed. When a hot code is detected, instructions
belonging to that code are grouped into a code region. Currently, the software layer
groups pops into superblocks which are single-entry multiple-exits block regions. Once a
superblock has been constructed, instructions for the proposed mechanisms are included
into it. Code reordering and register reallocation are applied over the whole superblock

(including the checkpointing instructions but not the initial move and the recovery code).

We have compared the software register checkpointing technique presented in this thesis
against a hardware checkpointing mechanism based on a shadow register file (SRF). We
have included the new type of CKP_ MOV instructions and the RCIP register in the
hardware component of the simulator, and we have implemented the software
checkpointing and recovery mechanisms in the software layer of the simulator. Moreover,

the SRF technique has also been implemented in the simulator.

In this section, we evaluate the performance impact of the proposal and also the pressure
it exerts over the registers. The proposed scheme makes use of the non-architectural
registers of the processor, which reduces the number of available registers for the
instruction scheduler. Both performance and register pressure metrics are also determined
by the register allocator and the instruction scheduler employed. The software layer
implements a SSA-based register allocator [116], and two different instruction schedulers.
These schedulers analyze and reorder the instructions of the detected superblocks in order
to improve instruction-level parallelism. One of these schedulers is based on a Top-Down
(TD) approach and the other is based on a Bottom-Up (BU) approach. The Top-Down
(TD) scheduler analyzes the code from the entries of the superblock to the exits, whereas
the Bottom-Up (BU) scheduler proceeds from the exits to the entries. TD pulls control-

dependent instructions up across the control-flow branch points (last instruction of a basic

94

4.5. Evaluation

block in the superblock) and BU pushes them down across the control-flow joint point.
Pulling up introduces speculative execution and pushing down requires predicated
execution. Therefore, TD scheduling tends to increase register pressure but it is better

than BU to exploit speculation and improve ILP performance [117].

We have performed simulations by using 22 programs from the Spec2000 benchmark suite.
The selected programs are bzip2, crafty, eon, gap, gcc, gzip, mcf, parser, perlbmk, twolf,
vortex, and vpr from the Spec2000Int and art, ammp, applu, apsi, facerec, fma3d, galgel,
mesa, sixtrack, and wupwise from the Spec2000FP. Each benchmark is simulated by using
a set of representative traces of 20 million instructions. These traces have been obtained
by gathering the program information directly from real processor activity. For each trace
there are two simulation phases. During the first phase, the software layer identifies the
regions and generates the optimized code with the checkpointing additions. In the second
phase, the optimized regions are executed in the hardware simulator and relevant
statistics are collected. In such a way we do not assume overheads due to the use of the
dynamic optimizer. However, the overhead of the dynamic optimizer should not increase

significantly when moving from the hardware checkpoint to the software one.

Finally, we have estimated the area and the power consumption of the HRC scheme by
employing a model based on CACTI for on-chip caches [106]. We have configured CACTI
to model a regular register file and a shadow register file. Moreover, for the shadow
register file we have considered an optimized implementation that minimizes the dynamic
power overheads when the registers need to be checkpointed. More details in Section

4.5.2.3.

4.5.2 Results

We have evaluated the proposed checkpointing mechanism by analyzing the performance
impact due to the additional instructions introduced in the optimized code regions, as well
as the impact on register pressure due to the usage of the non-architectural/temporal

registers.

4.5.2.1 Performance Impact

The HRC scheme has been compared against a hardware checkpointing mechanism based
on a SRF scheme. We have assumed that the hardware checkpointing mechanism incurs
in a zero-cycle penalty and that the HRC scheme uses unlimited number of temporal

registers.

95

Chapter 4: HW/SW Register Checkpointing

In Figure 4.9 and Figure 4.10, we show the performance impact of the proposal for
Spec2000FP and Spec2000Int benchmarks respectively. The performance results are shown
by varying the issue width of the processor and assuming a Top-Down (TD) instruction
scheduler approach. The baseline is the Intel® Atom® processor without dynamic binary
optimization support. As it can be observed, the additional extra instructions required for
the checkpointing do not introduce an important penalty for issue width 4. On average, in
this case the slowdown is 1.75% and 1% for Spec2000FP and Spec2000Int respectively.
The slowdown slightly increases when the issue width is decremented. On average, it is
7.9% and 5% for 2-issue and 3-issue for Spec2000FP benchmarks, and 7.2% and 2.7% for

2-igsue and 3-issue for Spec2000Int benchmarks.

When Bottom-Down (BU) instruction scheduling is employed the performance numbers
are slightly lower. In Figure 4.11, we show the speedup results of the HRC proposal for
the Spec2000FP and Spec2000Int benchmarks and different processor issue widths. As it
can be observed, the slowdown for BU is always less than 2% with respect to TD. In
particular, for 4-issue width, the different between the two instruction schedulers is 1.2%
and 0.6% for Spec2000FP and Spec2000Int respectively. BU allows less speculation and it
is not able to exploit as ILP as the TD approach.

1.9

1.8

1.7

1.6

15 -

1.4 -

Speedup

13 -

1.2

1.1

sixtrack ‘ wupwise ‘ AVG

ammp ‘ applu ‘ apsi art ‘ facerec ‘ fma3d galgel ‘ mesa
B Shadow Register File (SRF) m Hybrid Register Checkpointing (HRC)

Figure 4.9: Performance impact of the HRC scheme when compared to a traditional SRF

scheme. Results for Spec2000FP benchmark suite and top-down instruction list scheduling.

96

4.5. Evaluation

bzip2 ‘ crafty ‘ eon ‘ gap ‘ gee ‘ gzip ‘ mcf parser ‘perlbmk‘ twolf ‘ vortex ‘ vpr ‘ AVG ‘
M Shadow Register File (SRF) m Hybrid Register Checkpointing (HRC)

Figure 4.10: Performance impact of the HRC scheme when compared to a traditional SRF
scheme. Results for Spec2000Int benchmark suite and top-down instruction list scheduling.

1.6

2-Issue 3-Issue 4-Issue 2-Issue 3-Issue 4-Issue

Spec200FP Spec200Int

B Top-Down | [Lottom-Up

Figure 4.11: Performance of the software checkpointing with TD and BU list-scheduling.

4.5.2.2 Register Pressure

We have also evaluated the impact on performance when restricting the amount of
temporal registers in order to understand how register pressure is affected when
introducing the extra move instructions. As we explained before, our dynamic binary
optimizer does not generate an optimized version of a code region if the register allocator
fails at assigning registers to instructions. Thus, we show how register pressure is affected

by employing the coverage metric, that is computed as the ratio of dynamic instructions

97

Chapter 4: HW/SW Register Checkpointing

executed in optimized mode in comparison to the total number of dynamic instructions of

the program.

We have considered different number of temporal registers assigned to save the
architectural non-committed state of the processor, including integer and floating point
registers. Figure 4.12 shows the coverage obtained when employing the HRC scheme
limiting the number of integer temporal registers. In the y-axis, we show the region
coverage and in the x-axis we show the number of registers available for the checkpointing
scheme. As it can be observed, the proposal is able to optimize 98% of the code using only
16 temporal integer registers. There are no remarkable differences between the different
tested issue widths and the two different instruction schedulers employed (TD and BU).
However, as expected, BU exerts slightly less register pressure when the number of
registers is scarce. Figure 4.13 shows the region coverage when limiting the number of
floating-point temporal registers. In this case, the proposal is able to optimize 95% of the
code using only 8 temporal floating point registers. As in the case of the integer registers,
there are no remarkable differences between the different tested issue widths and neither

between the two employed schedulers.

Therefore, with 16 integer temporal registers and 8 temporal floating-point registers, the
proposal is able to optimize 95% of the code. Moreover, although the BU scheduler
presents slightly less register pressure when the number of temporal registers is scarce, TD
scheduler is the preferred option because it presents better performance numbers with

similar register pressure.

100%

90%

80%

70%
60%

50%

Coverage

40%

30%

20%

10%
/ r/
0% T T T T T T T)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Available INT Registers

——2-Issue TD -®-3-|ssue TD 4-lssue TD =<2-Issue BU —=#3-Issue BU 4-1ssue BU

Figure 4.12: Integer Register pressure impact of the software checkpointing proposal.

938

4.5. Evaluation

Coverage

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

FP Register Pressure

2 3 4 5 6 7 8 9 10
Available FP Registers

11 12 13 14 15 16

——2-Issue TD -®-3-|ssue TD —*—4-Issue TD —=<2-Issue BU —=#3-Issue BU -#-4-Issue BU

Figure 4.13: Floating-Point Register pressure impact of the software checkpointing proposal.

100%
90%
80%
70%
60%
50%
40%
30%

Register File Power

20%
10%
0%

SRF

\\

HRC SRF HRC

Spec2000FP Spec2000Int

M regular_inst commits Hckp_movs

Figure 4.14: Register file dynamic power consumption evaluated with CACTI.

4.5.2.83 Area and Power Estimations

We have employed CACTI [106] to estimate the area and the power consumption of the

register file for the HRC and SRF schemes. For these analyses we have considered a

register file with 16 integer temporal, 8 floating-point temporal, 16 integer general purpose

(architectonic) and 26 floating-point (including x87 and SIMD registers) general purpose

registers. In the case of the SRF scheme, we have also considered 16 integer and 8

floating-point shadow registers.

99

Chapter 4: HW/SW Register Checkpointing

For the area and power estimations, we have modeled an optimized version of the SRF
scheme that minimizes the dynamic power consumption of the checkpointing operation. In
this design, each cell of the register file contains the original value and the shadow one.
This makes possible to access both values by using the same circuitry and therefore no
extra access to index the shadow cell is required. In addition, the original value can be
copied into the shadow one without exiting the register file. Therefore, the logic related
with moving out the values from the register file is not required (sense amplifiers,
multiplexors, etc.), which significantly reduces the dynamic power of the checkpointing
operation. Finally, the design of the cell allows all register values to be copied
simultaneously in a zero-cycle operation (flash copy), which also reduces the possible

performance overheads of the SRF scheme.

Figure 4.14 shows the dynamic power consumption of the register files for the HRC and
SRF schemes for the Spec2000FP and Spec2000Int benchmarks. Power numbers have
been normalized to the total power consumption of the SRF scheme. Moreover, the power
consumption is split into two categories. First, the power contribution of the regular
instructions accessing the register file, such as memory, arithmetic, and control
instructions. Second, the power contribution of the additional extra instructions, such as
the CKP_ MOVs for the HRC scheme and the commits for the SRF scheme®. As shown in
Figure 4.14, the cost of executing the regular instructions is lower in HRC. This is so
because the register file for the software checkpointing is smaller and therefore, its

dynamic power cost per access is lower.

Moreover, HRC also shows an advantage over the SRF scheme since the extra
CKP__MOYV instructions consume less power than the required flash-copy of the registers.
Note that in the SRF scheme, every time a new region is going to be executed all registers
need to be checkpointed, no matter if they are going to be modified during the execution
of region. By contrast, the HRC proposal only copies the registers that really need to be
checkpointed as commented in previous sections. In addition, the size of the regions in the
Spec2000FP and the Spec2000Int benchmarks is small (in the order of 30 instructions for
Spec2000Int benchmarks and 60 instructions for Spec2000FP benchmarks), which implies
a high number of checkpoints. Considering the total power consumption of the register
file, the SRF scheme consumes 19.4% and 30.1% more dynamic power than the software

checkpointing for the Spec2000FP and Spec2000Int benchmarks respectively. Moreover,

8 The number of commit instructions executed is equal to the number of optimized regions

executed.

100

4.6. Conclusions and Future Work

SRF commit operations consume more power in Spec2000Int than in Spec2000FP |, this is
mainly due to the smaller size of the regions found in Spec2000Int benchmarks. As shown

in the figure, HRC is less sensitive to the size of the regions.

Finally, given the aforementioned configuration for the register file, the proposed software

checkpointing scheme reduces by 11% the area required to implement the SRF scheme.

4.6 Conclusions and Future Work

In order to guarantee precise exceptions and to perform speculative optimizations in a
hardware/software co-designed processor, it is necessary to implement a mechanism to
correctly handle the architectural and speculative states and to update the former at
specific safe points. The solution is to checkpoint the state of the processor prior to
execute the optimized region and promote the speculative state to architectural state upon
successful execution of the region. In case of an exception or mispeculation, the speculative
state is discarded, the architectural state is restored, and execution continues by
transferring control to the non-optimized version of the region. In this thesis, we have

focused on checkpointing mechanisms for the registers.

We have presented a register checkpointing technique, called HRC, oriented to correctly
update the register architectural state of the machine. The proposal does not require
important hardware additions and it uses the software combined with the hardware to
implement very efficient checkpointing and recovery mechanisms. The presented proposal
is a good example of a technique oriented to find a balanced trade-off between high
performance and low hardware complexity. In fact, the proposal makes use of already
existing processor resources, such as the temporal (non-architectonic) registers that are
present in most of nowadays processors. Common hardware proposals use the Shadow
Register File scheme that requires doubling the number of registers and the
implementation of additional logic to perform the copies among the registers. The
proposed mechanism does not require these hardware structures, saving a significant
amount of power and area, and it is only 1% to 1.75% slower than the Shadow Register
File scheme when both are implemented on top of an in-order 4-issue width processor.
Moreover, it is focused only on those registers that are overwritten during the region
execution and the recovery code only executes the minimum amount of move instruction
to reestablish the architectural state, which significantly reduces the software overheads
when compared to other software checkpointing proposals. Finally, the proposed HRC
scheme reduces by 11% the area and by 19.4% (Spec2000FP) and 30.1% (Spec2000Int)
the power of the Shadow Register File scheme.

101

Chapter 4: HW/SW Register Checkpointing

The recovery mechanism of our proposal does not penalize the execution of the code
region when it is correctly executed, which is the most common scenario. Instead, the
proposed recovery mechanism only penalizes the execution of the region when a rollback
operation is required. Moreover, the proposed technique does not impact the performance

of the non-optimized code regions.

As future work, we emplace the study of the interactions that our proposal may have with
other optimization techniques that make use of the temporal registers too. This task is out
of the scope of this thesis because it requires developing and analyzing such optimization
techniques. It would be good to analyze the possible interactions between our technique
and those optimizations because they may impact the final optimized code coverage and

hence the performance that could be achieved by optimizing the regions.

Finally, it would also be very interesting to study heuristics in order to improve the
register allocation mechanisms to better adapt them to the inserted CKP_ MOV

instructions within the optimized region.

102

Chapter 5

Loop Parallelization

The industry and the scientific community have adopted chip multiprocessors (CMPs)
and simultaneous multithreading (SMT) as good design points for improving performance
while keeping a reasonable power budget [8]. These schemes allow executing multiple
processes simultaneously as well as exploiting the parallelism of multi-threaded
applications, what is commonly known as thread level parallelism (TLP). However,
instruction level parallelism (ILP) is still important for legacy and serial code and
processors have become very complex to increase their performance. Thus, we face a
design trade-off: dedicate the available area to put a lot of simple cores and exploit TLP
or dedicate it to put fewer complex cores and exploit ILP. A very appealing design would
be to have several simple cores that can cooperate to some extent to exploit ILP when

necessary.

In this chapter, we propose Loop Parallelization (LP), a hardware/software co-designed
scheme that uses multiple threads to improve the execution of single-threaded codes
requiring very few hardware changes since it makes and efficient use of the already
existing processor resources. By means of a software layer, this scheme dynamically
detects loops and prepares them to execute multiple iterations in parallel by using
Simultaneous Multi-Threading (SMT) threads. Parallel iterations are in turn software
layer optimized regions and therefore they are speculative until they commit. Moreover,
given that, by definition, iterations are not independent, the hardware keeps track of
memory and register dependences to allow communication among them. Actually, the
proposed scheme uses memory dependence speculation, and the hardware, in collaboration
with the software, is in charge of rolling back the execution of the faulty iterations in case
of a memory violation. On the other hand, register dependences are satisfied in a

synchronized manner by employing instruction marks and new hardware extensions.

103

Chapter 5: Loop Parallelization

The proposed LP technique has been designed on top of a simple in-order processor based
on the Intel® Atom® architecture [107]. The small area and low power consumption of
this processor allow us to integrate several of them in the same envelop with the objective
of intensively exploit TLP. Moreover, the loss on ILP performance due to the core
simplicity is minimized to some extent by implementing the proposed LP scheme. As
other hardware/software proposals, LP passes part of the complexity of some hardware
components to the software layer. In such a way, it is possible to increment the
performance of the processor without significantly incrementing the hardware complexity
of the individual units. For instance, in our system, the software layer performs the
instruction scheduling and register allocation without requiring dedicated hardware

components.

The proposed LP scheme takes advantage from the fact that the full execution width of
an Intel® Atom®-like processor (which is 4 instructions) is only used in 28.1% of the
cycles’. This means that it is possible to issue additional instructions in 71.9% of the
cycles, as there are available execution slots. The proposed scheme uses the empty issue
slots to accommodate instructions of next loop iterations, parallelizing the execution of
instructions of consecutive iterations. Therefore, although instructions within an iteration

are executed in order, instructions across iterations may be executed out of order.

Parallel loop iterations are executed in the same core by employing SMT threads and,
therefore, all loop execution happens locally. This allows reducing the parallelization
overheads and makes possible that even small loops and loops that iterate just a few times
get significant performance improvements. In fact, the execution time of the loops in
Spec2000Int benchmarks is improved by more than 16% when compared to a fully

optimized baseline.

The main contributions of LP when compared to other speculative SMT approaches are as

follows:

- Fast speculative thread start up: LP makes use of a novel mechanism to
start the execution of the speculative thread as soon as the loop to parallelize is
detected. This solution minimizes the overheads associated to the thread
spawning process and allows parallelizing small loops and loops that iterate

just few times. More details about this mechanism in Section 5.3.2.

 This number has been obtained by using the infrastructure presented in Section 5.5.1.

104

5.1. State of the Art

- Fine-grain register communication: LP employs a hardware/software co-
designed mechanism to synchronize the register communications across the
SMT threads. This mechanism does not require executing additional
instructions and it is implemented by employing minimum hardware changes.
More details about this mechanism are given in Section 5.3.4.1.

- Thread dynamic binding for registers: LP implements a dynamic binding
between registers and threads that avoids moving register values across the
different register files on loop finalization. This solution minimizes the loop
finalization overheads. The dynamic binding scheme is described in more detail
in Section 5.3.6.

- Dynamic code optimization: LP has been implemented on top of a
hardware/software co-designed processor, where the software layer is able to
detect and optimize the regions to be parallelized. Therefore, LP can take
advantage from the inherited capabilities of hardware/software co-designed
virtual machines. Special optimizations oriented to improve the execution of

parallel loops are presented in Section 5.4.

The rest of the chapter is organized as follows. Previous work related to LP is described in
Section 5. Section 5.2 introduces the basic principles of the LP scheme. Later, in Section
5.3 the hardware and software mechanisms required to implement LP are described in
detail. Additional optimizations for improving loop parallelization are presented in Section
5.4. The evaluation of the proposal is presented in Section 5.5, and we conclude the

chapter and expose the future work in Section 5.6.

5.1 State of the Art

Improving the performance of loops has been deeply studied in the literature [60].
Techniques such as hoisting of loop-invariant computations, elimination of induction
variables, elimination of null and array-bound checks, loop splitting, and loop tiling are
currently considered as classical loop optimizations and are commonly applied by offline
compilers. These techniques are focused on improving the ILP of the loops by
transforming the original loop codes into more efficient versions of them. All these

techniques are orthogonal to the presented LP scheme and can be combined together.

Loop Unrolling, also a classical loop optimization, presents more similarities to the LP
scheme than the previous techniques based on code optimization [57] [118]. Loop unrolling
is based on repeating the original static instructions of the loop body multiple times,

eliminating non-necessary branch instructions, adjusting the loop termination conditions,

105

Chapter 5: Loop Parallelization

and reusing common computations. Besides of the positive effect of removing instructions
from the original code, loop unrolling combined with other optimizations can increase the
ILP of the application by overlapping the execution of instructions belonging to different
iterations [57] [118] [119]. This is achieved, however, at an increase in code footprint.
Another classical technique specially designed to improve the ILP of loops is Software
Pipelining [120]. This technique improves the performance of loops by overlapping the
execution of instructions belonging to different iterations. Actually, Software Pipelining is
a type of out of order execution but the scheduling of instructions is done by the compiler.
Loop Unrolling and Software Pipelining differ from the presented LP scheme in the fact
that they are pure software techniques that are only applied at compilation time and they
do not get feedback from the dynamic execution of the code. They can also be combined

with the presented LP scheme and/or other classical loop optimizations.

LP scheme has been proposed to improve the performance of loops by exploiting TLP. A
significant amount of research efforts in the literature have been devoted to exploit TLP
of the applications and they have come up with appropriate design points to deal with
ILP and TLP. The techniques more similar to the one presented in this chapter are the
ones based on speculative multithreading. These techniques decompose the original
sequential application and distribute the execution of the instructions into different
threads. On one hand, there are the traditional techniques that decompose the sequential
codes into large chunks of consecutive instructions [11] [121] [122] [123] [124] [125] [126]
[127] [128] [129]. This coarse grain instruction decomposition may constraint the benefits
of this paradigm because code that is hard to parallelize may present too many
dependences among threads, limiting the parallelisms that can be achieved. On the other
hand, there are techniques like Anaphase that parallelizes applications at instruction
granularity [10] [130], which provides more flexibility than previous schemes. In general,
these speculative multithreading schemes distribute instructions among threads belonging
to different core units and the threads are generated by the software compiler. These two
characteristics imply that threads need to be big in order to pay off their creation and
management overheads and they need to be co-scheduled at the same time by the

operating system to achieve the designed performance.

Speculative multithreading implemented in Simultaneous Multithreading (SMT)
processors [131] has also been deeply studied in the literature. SMT processors are able to
improve system throughput by overlapping the execution of multiple threads on a single
wide-issue processor. Therefore, besides the explicit parallelism that can be exploited by

the programmer, these techniques are aimed to exploit the implicit parallelism of the

106

5.1. State of the Art

applications by generating speculative threads. When compared with the aforementioned
CMP proposals, threads in speculative SMT compete for the same resources but introduce

lower overheads for inter-thread communication [132].

The Thread Multipath Execution (TME) [133] and the Dynamic Multithreading (DMT)
[134] proposals create speculative threads that are executed in parallel with the original
program instructions by employing hardware heuristics. TME creates the speculative
threads on branch miss-predictions whereas DMT does it on call instructions (routines)
and backward branches (it assumes all backward branches belong to loops). Both
techniques speculate on register and memory communications, and they use value
prediction to improve the performance of the communications among the threads.
Marcuello et al. [135] proposed a similar hardware based speculative simultaneous

multithreading technique specialized in loop parallelization.

These hardware based proposals offer binary compatibility in a total transparent way for
the programmer. However, these techniques have a limited scoped for generating the
speculative threads. They apply simple code optimizations and they rely on value
prediction to improve inter-thread communications. Implicitly-Multithreaded (IMT) [136]
was proposed as a solution to overcome the problems of hardware based solutions by
employing the software compiler. In IMT, the compiler is in charge of selecting the best
code points to generate the speculative threads (a.k.a. spawning pairs). Moreover, it
reduces the inter-thread register dependences and avoids inter-thread control-flow
mispredictions by enclosing both “if” and “else” paths within the thread code. However,
memory communications are serialized to guarantee correct execution. Finally, IMT
introduces a fast thread spawning startup technique aimed to reduce the overheads of
initiating the speculative threads (mostly because of the required register renaming

initializations).

Venkatesan et al. [137] proposed a similar solution to IMT but in this approach register
dependences are satisfied in a synchronized manner. The technique to synchronize the
register communication among threads is based on the software solution described in [138].
Moreover, this technique makes use of a cache based scheme to further speculate in
memory communications, which allows incrementing the size of the speculative threads.
This proposal is very similar to LP although it does not make use of the dynamic

optimizer and it uses a coarser grain register communication solution.

107

Chapter 5: Loop Parallelization

Finally, Dual-thread Speculation [132] shows that by employing very few hardware
resources it is possible to significantly improve application performance. In fact, they
demonstrated that most of the parallelism exploited by an 8-way CMP processor could

also be exploited with their simple dual-thread model based on a 2-way SMT processor.

The LP scheme is a type of speculative multithreading scheme that takes the principles of
traditional multithreading schemes (it works with chunks of instructions) but it generates
code for hardware thread contexts implemented within the same core unit (SMT threads).
Executing the parallel codes in the same core allows creating light threads even for small
loops. Moreover, LP scheme is a co-designed hardware/software technique where threads
are generated during the dynamic execution of the application (online) and it can take
advantage from analyzing the dynamic information of the programs running on the
processor to better adapt the codes to the hardware underneath. Finally, the same code is
used to represent the sequential version and the parallelized version. Thus, if the other
SMT context is available, the second thread is spawned. Otherwise, the loop is executed

serially.

5.2 Loop Parallelization

The objective of the LP scheme is to overlap the execution of two iterations in an in-order
hardware/software co-designed processor by fully utilizing all its resources. The processor
needs to support at least the execution of two simultaneous threads in order to distribute
the loop iterations among them (one iteration executed by each thread). Moreover, the
software layer is in charge of detecting the loops that are more appealing to be optimized,
as well as preparing them for their correct execution in the hardware. The software layer
may also decide to optimize the code (even by reordering memory instructions) if it is
necessary to improve the parallelism of the iterations. Additional information is included
in the loop instructions in order to guide the hardware when executing them and special
hardware structures are included to guarantee the correctness of the execution. In
principle, threads are not expected to communicate through memory, although hardware
mechanisms designed to keep track of memory accesses are considered to detect possible
memory dependence violations. Moreover, threads communicate through registers in a
synchronized manner by having access to the register values produced by the other

threads.

The rest of this section is organized as follows. First, we introduce the requirements that
loops have to accomplish to be parallelized. Later, we describe in detail the different

hardware and software mechanisms required for parallelizing the execution of the loops.

108

5.2. Loop Parallelization

Finally, we present different optimizations to be applied on top of the original loop codes

in order to improve their performance when used in the LP scheme.

5.2.1 Code Regions to Parallelize

Almost all application time is spent executing loops of instructions. In particular, loops
that do not include other nested loops represent a significant part of the dynamic code
execution [139]. These loops are commonly known as inner-most loops and by optimizing
them it is possible to improve the overall execution time of the application. Optimizing
bigger code regions, such as outer-loops, is more costly as the overheads associated with

analyzing and optimizing complex control flows increase.

The software layer uses inner-most loops as code region candidates to be parallelized by
the LP scheme. The hardware monitors the execution of the code (with mechanisms
similar to the ones explained in Chapter 3) and invokes the software layer when hot code
is detected. The software layer then builds a superblock (SB) starting at the specified hot
address. If it detects an inner most loop inside the SB and the loop is suitable to be
parallelized, it is optimized and stored into the code cache for later reuse. Note that,
although SB regions may have multiple exit points, only one entry point is allowed. This

entry point serves as the loop identifier for the hardware and the software layer.

1 1
1 1
1 1
! BB1 :
! : SB2
I ! i :
| ! | BB4 I
| | | |
B B v :
! L BBS :
—_—l—— = = = N = === J
11 | e
11 1 //
11 : g
- BB3 | R
11 | i
1 1 //
11 1 e
1L !
L

Figure 5.1: Example of a loop region respresented by using super-blocks.

109

Chapter 5: Loop Parallelization

In Figure 5.1, there is an example of a loop represented by using superblocks. As it can be
observed, there is a complex control flow consisting of 5 basic blocks (BB). The starting
point of the hot region is the address of the first instruction of BB1. The software layer
then builds a SB starting at this address and it continues adding BBs following the most
probable path until a finalization criteria is met. In the example, we have assumed that
the path BB1-BB2-BB3 is the most common one and such a SB is created. If later BB4
becomes hot, the software layer will create a second SB consisting of BB4, BB5 and a
replica of BB3. Such a replica BB is required because SBs consist of a control flow with
single entry points and potentially multiple exit points as previously commented. In this
particular example, SB1 is detected as an innermost loop by the software layer as it
contains a loopback branch from BB3 to BBI1. Hence, it will be considered for loop
parallelization. Note that although SB2 forms part of a complex innermost loop, it is not

detected in isolation and the software layer is not able to parallelize it in consequence.

The reasons to finalize the construction of a SB are the common criteria found in the

literature, which are as follows:

1. The SB cannot contain more than a maximum number of instructions (in our case
the limit is 64 instructions).

2. The SB cannot contain more than one indirect branch and if so, this must be the
last instruction of the SB. Note that exceptions are allowed since they are
considered as return statements with paired call instructions.

3. The SB must have a higher probability than a given threshold (in our case 80%) to
be exited by the last BB. This probability is based on profiling information.

4. The SB cannot contain instructions that have execution restrictions in the
processor pipeline [113], such as changes to segment registers, special move

instructions, etc. We call these instructions not to be in the correct format.

Given the aforementioned constraints, not all inner-most loops of an application may end
being parallelized by the proposed technique and, moreover, not all instructions of them
may form part of the region to be parallelized. For instance, as previously commented, the
inner-most loop of Figure 5.1 cannot be completely parallelized. In fact, only the dynamic
instances of the SB1 instructions can be parallelized. This means that the LP will end on
every transition to SB2 instructions and also every time that the back-edge of BB3 is not

taken.

110

5.2. Loop Parallelization

100%

90% #¢ Indirect
6 -
' Format

80%

B Correct |

70%

60%
50%
40% -

Loop Coverage

30% -
20%
10%
0% -

Spec2000FP Spec2000Int ‘

Figure 5.2: Inner-most loops dynamic code coverage.

We have analyzed the coverage of the inner-most loops in the Spec2000 benchmarks by
using an off-line analysis tool. This tool analyzes the application dynamic stream
execution and counts the number of instructions that belong to the inner-most loops. The
loops are simply detected by tracking branch instructions whose target is an older
instruction in the dynamic stream and between this older instruction and the current
instruction there are no other loops. This process is done by truncating the dynamic
stream into fixed windows of dynamic instructions ranging from 64 to 1024 dynamic
instructions. In Figure 5.2, we show the percentage of the dynamic stream that belongs to
the inner-most loops computed by using the tool (a.k.a. code coverage of the inner-most
loops). In the figure, the x-axis shows the benchmarks separated as floating point
(Spec2000FP) and integer (Spec2000Int). Moreover, in the same axis there are the
different dynamic window sizes used in the study. The y-axis represents the loop coverage
in percentage. The bar named as Correct is the actual percentage that can be achieved
(coverage of the correct loop regions satisfying all the constraints), while the bar named as
Format shows the coverage lost by mnot including special x86 instructions (the
aforementioned incorrect format instructions). The bar named as Indirect shows the
coverage lost by not including indirect branches in the loop regions (except for paired
call/return instructions). As it can be observed, the coverage of the inner-most loops is
72.81% for Spec2000FP and 60.7% for Spec2000Int benchmarks when using a dynamic
window of 1024 instructions. However, the coverage is reduced to 46.5% and 52.14% for
Spec2000FP and Spec2000Int benchmarks respectively when using a dynamic window of

64 instructions. The main reason is that when limiting the dynamic window size some

111

Chapter 5: Loop Parallelization

loops are not detected and they do not contribute to the coverage. Note that some loops
are discarded because of format constraint in Spec2000FP, whereas some loops are
discarded because indirect jumps in Spec2000Int. In both cases the coverage loss is low

and always below 5.5%.

Starting and stopping the execution of an LP loop requires additional tasks to be done by
the processor (see Section 5.3.2). These tasks introduce an additional overhead to the
system. Therefore, if the loops do not iterate a certain number of times the overheads will
have a significant impact and overall performance may not improve (it could even
degrade). We have enhanced the analysis tool to detect loops, build super-blocks, and
compute the number of iterations of the inner-most loops. We have employed Spec2000
benchmarks and we show the results in Figure 5.3. In x-axis of the figure, we show the
average number of iterations discretized by using the following intervals: less than 5,
between 5 and 10, between 10 and 50, between 50 and 100, between 100 and 1024,
between 1024 and 2048, between 2048 and 4069, and more or equal than 4096 iterations.
In the y-axis, we show the number of Spec2000 simulation traces that satisfies that their
inner-most loops iterate on average the number of times reflected in x-axis. A total of 59
traces have been used for this experiment. As it can be observed, 12 traces have inner-
most loops that on average iterate less than 5 times. However, there are 10 traces with
inner-most loops that on average iterate between 100 and 1024 times. In fact, 76% of the
traces have loops that iterate less than 1024 times (45 from a total of 59 traces). Since
there are a significant number of loops that iterate just a few times, the proposed LP
scheme has been developed very efficiently to introduce minimal overheads when spawning
the threads of a parallel loop. Otherwise, the cost of enabling loop parallelization for those
loops would not be amortized by the possible benefits that could be obtained by their

parallelization.

We have also evaluated the coverage of using hyper-blocks [140] for representing the loops
instead of superblocks using the same tool. Hyper-blocks allow multiple control flow paths
within the regions at the expense of added complexity to the software layer and/or the
hardware to generate efficient parallel code. Since we did not observe a significant increase
on coverage and neither on the average number of iterations, we discarded hyper-blocks

and continued the work using superblocks.

5.2.2 Potential Numbers of the Regions to Parallelize
In this section, we evaluate the upper-bound performance that can be achieved by

parallelizing the execution of the aforementioned inner-most loops. As in previous studies,

112

5.2. Loop Parallelization

we have considered the Spec2000 benchmarks and the offline analysis tool. When memory
dependences between consecutive iterations are not taken into account, the estimated
performance results for LP scheme show speedups of 1.07x, 1.17x, 1.29x, and 1.36x in
loops for the Spec2000FP benchmarks when employing a 2-way, 3-way, 4-way, and an
unbounded issue width in-order processor. For Spec2000Int benchmarks, the speedups are
1.17x, 1.31x, 1.37x and 1.4l1x, for 2-way, 3-way, 4-way, and unbounded issue width
respectively. These numbers are reflected in Figure 5.4, in which speedups are shown on
the y-axis and plotted as bars. Note that better results are obtained with wider machines

because there are more issue slots available for the next iteration.

14

Total Spec2000 traces = 59

12 -

10

8

6 -

4

2* |
0 - T T

<5 <10 <50

<100 <1024 <2048 <4096 24096

Spec2000 Traces

Number of Iterations

Figure 5.3: Average number of inner-most loop iterations in Spec2000 benchmarks.

1.45
2 14
o
9 135
£
a 13
=
5 1.25
>
° 12
Q
>
T 115 —
Q
8
2 11 4+
(-9
= 1.05 -
+
e 1 ;
=

Spec2000FP Spec2000Int

M 2-issue 3-ijssue M 4-issue M unbounded-issue

Figure 5.4: Estimated performance for loop parallelization in loops.

113

Chapter 5: Loop Parallelization

1.45

w 14 n
8

® 1.35 L
L0

B 13 =
©

Q125 —
g 12 B
o

& 115 - —
©

6 1.1 - —
c

‘s 1.05 — —
[-%

g ! |

g 2-issue 3-issue 4-issue unb issue 2-issue 3-issue 4-issue unb issue |
<%

«» Spec2000FP | Spec2000Int |

M no-alias realistic-alias

Figure 5.5: Impact of memory communications between instructions belonging to consecutive

iterations.

The impact of memory communications between instructions belonging to consecutive
iterations has also been evaluated. In this next study, we compare the previous estimated
speedups (where memory dependences' are not considered) and the estimated speedups
when a memory dependence between two consecutive iterations incurs in a thread squash.
We call to the former as no-alias' and to the second as realistic alias. Figure 5.5 shows
these speedups for Spec2000FP and Spec2000Int benchmarks. The slowdown of realistic-
alias is lower than 2% for Spec2000FP and negligible for Spec2000Int benchmarks for all
the issue width bandwidth configurations. Note that slowdowns for the realistic alias are
larger on wider machines because there are more chances for reordering memory
instructions. Such a small performance indicates that a simple eager squash policy is
sufficient and we do not need to design fancy synchronization mechanisms in memory or

other hybrid techniques.

The presented potential numbers indicate that it is possible to improve application
performance significantly by employing the LP scheme, even when considering the
dependences across iterations. However, the design should be very efficient to do not

introduce big overheads and to do not penalize loops that iterate only a few times.

10 Memory dependences come in three flavors: Write After Write (WAW), Write After Read (WAR) and
Read after Write (RAW) [152].

11 Alias comes from aliasing.

114

5.3. Loop Parallelization Scheme Implementation

In the Section 5.3.4 we analyze these numbers again by using an enhanced version of the

simulation tool and we provide insights on why a 2x speedup is not achieved.

5.3 Loop Parallelization Scheme Implementation

This section describes the different mechanisms required to implement the LP scheme on
top of an in-order processor built in combination with a hardware/software co-designed
virtual machine. The required mechanisms strongly depend on the particular architecture
of the processor, so we start this section by describing the characteristics and the pipeline
of the core. Once the processor architecture is presented, we continue describing in detail
the implementation and the functionality of the new required support for LP. In
particular, the introduced mechanisms are the following: thread spawning, register
communication, memory communication, iteration finalization, loop finalization, and
exception handling techniques. This section ends with a brief summary of all the required
hardware and software modifications for supporting the technique and it provides a

general overview of the processor once all the techniques are implemented on top of it.

5.3.1 Baseline Core Characteristics

The core employed for implementing the LP scheme is based on the Intel® Atom®
processor [107]. This is the same processor employed in the Chapter 4 (Hybrid
Hardware/Software Register Checkpointing) and its characteristics have already been

presented in Section 4.3.

The Intel® Atom® is very attractive for implementing the LP scheme because it supports
native simultaneous multi-threading (SMT) execution, where two internal threads execute
independently but sharing common resources. By means of the hardware/software co-
designed virtual machine, the software layer may easily adapt the code of single thread
applications to take advantage of the two threads by parallelizing the execution of

particular loops.

5.3.2 Thread Spawning

Thread spawning refers to the action of creating a second thread to be executed into the
processor. In LP, thread spawning is used to generate new threads that in conjunction
with the original one will parallelize the execution of a particular loop. The original thread
is also known as the spawning thread because it is in charge of creating the other thread,
whereas the new non-original threads are also known as the spawned threads. The
execution of the loop is distributed among the different threads, which execute the

different iterations that comprise it. In particular, in a two threads scenario, the odd

115

Chapter 5: Loop Parallelization

iterations of the loop are attached to one thread and the even iterations to the other. Note
that the proposal described in this document is focused on two threads only, although we

propose some extensions to support more threads as a future work.

The software layer is the responsible for deciding when to start a new thread, and hence it
is in charge of initiating the loop parallelization process. It does this by communicating to
the front-end of the processor the initial PC (Program Counter) of the thread to be
created by means of executing a new instruction “Spawn PC@". In the meantime, the
processor continues fetching instructions from the original thread. However, there is a
delay between the creation of a thread and the actual dispatch and execution of its
instructions since the spawn is processed once it is executed and there are several pipeline
stages between execution and fetch. Figure 5.6 describes this problem graphically where
the original thread, in the left of the figure, initiates the process at the Begin Of the Loop
(BOL, that is the first dynamic instruction of the loop) instruction point. The instructions
of iteration 1 in the spawned thread require some cycles to reach execution. In the
meantime, the original thread continues executing instructions of iteration 0. The delay
before executing instructions of the spawned thread may produce that subsequent
iterations execute in an unbalanced manner, making one iteration to start too late with
respect to the other. All the unproductive time waiting to execute instructions of the
spawned thread is called spawn bubbles. In Section 5.5.2, we analyze in detail what is the
performance impact of the spawn bubbles on the execution performance of the parallelized

loops.

To understand better the impact of spawn bubbles, we show in Figure 5.7 how the first
instructions of a loop parallelization process are executed in an Atom®-like processor. On
the left of the figure, we show the involved instructions. They are identified by the thread
id and by the iteration number they belong to. On the right part of the figure we show
the pipeline stage each instruction occupies at a given processor cycle. Note that thread 0
starts the loop parallelization (Spawn instruction) and it executes the instructions
belonging to iteration 0. On the other hand, thread 1 is the spawned thread and it starts
executing the instructions of iteration 1. As shown in the figure for instruction 1 of
iteration 0, after the decode stages the spawn signal is sent to the IF1 stage to start

fetching instructions for the spawned thread. The first instruction from iteration 1 is

12 Note that in the case of loop parallelization, both threads share the same code so there is no need to specify
explicitly a starting address for the other thread. That is, the other thread starts fetching instructions at the
PC address right after the SPAWN instruction. However, we decided to leave the PC explicit for future
extensions to overlap the execution of code not in loops.

116

5.3. Loop Parallelization Scheme Implementation

fetched at cycle 6 and it reaches the SC stage at cycle 12. This is 6 cycles later than the
first instruction from thread 0. Moreover, thread 0 has already 7 instructions in-flight
(from instl to inst7 of iteration 0) when thread 1 starts fetching instructions of iteration
1. In the right part of the figure, we highlight with a double-ended red arrow that the first
committed instruction belonging to thread 1 occurs at cycle 21, whereas thread 0 has
committed already 6 instructions and it is committing instruction 7 at this same cycle.
This is what we call unbalanced work. This problem is exacerbated in loops with few
instructions that iterate few times because unbalanced execution has an important impact

on performance.

In order to remove the bubbles introduced by the spawning thread process, we have
adapted the front-end of the processor to start fetching instructions as soon as possible.
The solution consists of marking the thread spawning instructions with a special flag. A
pre-decoding hardware logic implemented in the IF1 stage of the processor is able to
identify the mark and, therefore, to start fetching instructions for the spawned thread just
at the next cycle. By doing so, we are able to reduce the aforementioned 6 cycle bubble to
just 1 cycle. Moreover, since both threads execute the same code, the spawned thread will
only miss in the instruction cache when the spawning thread misses, generating a balance
flow of instructions for both threads. As later shown in Section 5.5.2, a significant number

of loops are beneficiated by this solution.

Original thread Non-original thread

n

BOL - SPAWN ins

o
o
o
p
— > Spawn bubbles;
i Q Fetching instruction
t
0
i
t
2

for spawned thread

Figure 5.6: Loop parallelization thread spawning.

117

Chapter 5: Loop Parallelization

INSTRUCTIONS PROCESSOR CYCLES

Tid Iteration & Inst id 0.. 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
TO Spawn inst (iter0 inst1) SC IS IRF AG DC1 DC2 EX FT1 FT2 IWB

T1 stopped Sffawn signal

TO iter0inst2 ID3 SC IS IRF AG DC1 DC2 EX FT1 FT2 IWB

T1 spawn received SPAWN bubbles

TO iter0inst3 m@cl DC2 EX FT1 FT2 IWB

T1 instl IF1 IF2 IF3 ID1 ID2 ID3 SC IS IRF AG DC1 DC2 EX FT1 FT2\IWB

TO iterOinst4 ID1 ID2 ID3 SC IS IRF AG DC1 DC2 EX FT1 FT2 IWB

T1 inst2 IF1 IF2 IF3 ID1 ID2 ID3 SC IS IRF AG DC1 DC2 EX FT1 F IWB

TO iter0inst5 IF3 ID1 ID2 ID3 SC IS IRF AG DC1 DC2 EX FT1 FT2 IWB i u

T1 inst3 IF1 IF2 IF3 ID1 ID2 ID3 SC IS IRF AG DC1 DC2 EX F W(sz IWB

TO iter0inst6 IF2 IF3 ID1 ID2 ID3 SC IS IRF AG DC1 DC2 EX FT1 FT2 |WB/&

T1 inst4 IF1 IF2 IF3 ID1 ID2 ID3 SC IS IRF AG DC1 DC2 T1 FT2 IWB

TO iter0inst7 IF1 IF2 IF3 ID1 ID2 ID3 SC IS IRF AG DC1 DC2 EX FT1 FTZW

T1 inst4 IF1 IF2 IF3 ID1 ID2 ID3 SC IS IRF AG DC1 DC2 EX FT1 FT2 IWB

Figure 5.7: Spawn signal bubbles example by using an Atom®-like processor pipeline.

We have also analyzed a second alternative for reducing the spawning bubbles by copying
instructions from the original thread Instruction Queue (IQ) to the IQ of the spawned
thread. This is a one cycle operation, so that it mimics the behavior of the aforementioned
proposal. However, this solution was discarded because of its higher hardware complexity

when compared with adding the pre-decoder component at the IF1 stage.

Iterations in LP are handled in hardware as regular regions optimized by the software
layer. So that, at the moment of the spawn, a checkpointing of the register file is done and
the gate barrier of the store buffer is set. Additionally, the identifier of the hardware
thread context initiating the parallelization is stored in a special register, and the iteration
counter register is initialized to 0. This counter is used to keep track of the total number
of executed iterations and, as we will describe later in the Section 5.3.4.1, it is necessary to
guarantee the correct register thread communication that may occur during the execution

of the first iteration of the loop.

Finally, when there are no free contexts for spawning a new thread then the software layer
executes the loop serially by employing only one thread context. Note that the same code

is used to represent the sequential and the parallelized version.

5.3.3 Iteration Ordering

In LP, the code of an iteration is handled as an atomic region by the software layer: either
all instructions belonging to the iteration retire or none does. Therefore, if a problem
occurs during the execution of the iteration, then a rollback process is initiated and all the
work done by it is squashed. The architectural state of the processor is then recovered

from the saved state before the execution of the iteration in order to continue execution

118

5.3. Loop Parallelization Scheme Implementation

from the last correctly executed iteration. Thus, the architectural state of the machine has

to be saved after every successful iteration execution.

Moreover, consecutive iterations have to finalize in order to respect the original program
order. In other words, iteration i+1 cannot finalize before iteration 7, otherwise it is not
possible to correctly restore the architectural state of the machine if region ¢ fails because
iteration {+1 has speculatively updated it. A special register in the processor keeps track
of the total number of executed iterations. This counter is incremented on every iteration

finalization.

Since LP overlaps the execution of consecutive iterations and iterations as a whole are
committed in strict program order, one thread executes iteration ¢ in a non-speculative
manner while the other thread executes ¢+1 in a speculative manner. In other words, one
thread is speculative while the other is not and such behavior ping-pongs between the two
threads. Figure 5.8 shows a simple example of a loop parallelized by using two threads
that serves us to illustrate better this speculative concept. The speculative instructions are
highlighted in grey color. As it can be observed, all instructions in iteration 0 are non-
speculative whereas the first instructions of iteration 1 are speculative. However, when
iteration 0 successfully commits, then the older not committed iteration in the processor is
iteration 1, and its instructions are now non-speculative. Note that at this moment,
instructions of iteration 2 in the original thread are speculative. As we will describe later,
in Section 5.3.4.2, the concept of speculative thread is crucial for guaranteeing correct
thread memory communications. In order to identify it, the speculative thread id is always
stored in a special register of the processor that is initialized to the non-original thread id

value at the moment of the spawn.

Threads do not have to be attached to any particular hardware context of the processor.
If the original thread is being executed in hardware context 0 at the moment of the
spawn, then the non-original thread is executed in hardware context id 1, and vice versa.
In fact, the thread id is not relevant for the execution of the iterations, what matters is
the identification of the thread that initiated the loop and the identification of the
spawned thread. The hardware uses a special register that stores the thread id of the
original thread. In a two hardware context processor, identifying the original thread is
enough to also identify the non-original thread. Additional registers for identifying the

non-original threads are required in case of having more than two threads.

119

Chapter 5: Loop Parallelization

store @x

ITER O

load @x

SPECULATIVE
ITER 1

store @x

SPEC

ITER 2

SPEC

ITER 3

Figure 5.8: Speculative thread concept in loop paralellization.

5.3.4 Communications

The values produced during the execution of one iteration may be consumed later by
instructions belonging to the same iteration or by instructions of younger iterations.
Therefore, the proposed technique must ensure that the values are correctly
communicated across iterations. Values need to be communicated correctly when there is
a dependence between a producer instruction and one or more consumer instructions from
another iteration. There are two different types of wvalue dependences (a.k.a.
communications). On one hand, there are the register dependences, where the
communications are done through the register file. On the other hand, there are the
memory dependences, where communications are done through the memory hierarchy.
Register and memory dependences must be correctly tracked and solved, otherwise the

execution of the application will not be correct from a semantic point of view.

In order to study the impact that communications have on the parallel execution of the
loops, we have done a simple study that employs the aforementioned off-line tools to
understand why the technique does not achieve a 2x speedup when using a 2-way SMT
processor with unbounded issue width. In this study, we have also considered two more
limiting factors besides the communications. The first is the overhead due to workload
unbalance that happens when the loop iterates an odd amount of times and the original
thread executes one more iteration than the spawned thread. The second is the overhead
introduced to correctly handle the live-outs produced at the end of the loop (see Section
5.3.6 for more details). Figure 5.9 compares the speedup of parallelized loops versus their
sequential execution. The legend of the figure is as follows: real is the obtained speedup,

memory is the speedup that can be achieved by not taking into account memory

120

5.3. Loop Parallelization Scheme Implementation

dependences, registers is the speedup achieved by removing register dependences,
finalization is the speedup when there are no overheads for loop finalization, and numiters
is the speedup achieved by not having iteration workload unbalance. Assuming regions
execute atomically, register dependences between consecutive iterations are the main
limiting factor, which reduce the potential speedup by 35% in Spec2000FP and by 25% in
Spec2000Int. The second limiting factor is workload unbalance with 12% and 18% for
Spec2000FP and Spec2000Int respectively. Memory communications account for an extra
6% and 1% slowdown for Spec2000FP and Spec2000Int respectively. This figures

highlights that register communications is the main factor limiting the performance.

Therefore, we have adopted two different approaches for tracking explicitly dependences
across iterations. On one hand, since register communications are very common, we have
implemented a solution that synchronizes the execution of the threads in order to
guarantee correct communication. On the other hand, since memory communications are
not so common, we do not explicitly synchronize the threads (we assume there will not be
memory dependences between the threads) but we track memory accesses in order to
detect memory violations. In case there is a memory violation then the faulty thread is

squashed. In the next two sections, we explain these two solutions in more detail.

1.9

1.8

1.7 -

1.5 -

14

1.3 -+

1.2 -

TLP + ILP speedup over ILP in loops

Spec2000FP Spec2000Int

B REAL ™ MEMORY i REGISTERS . FINALIZATION — NUM ITERS

Figure 5.9: Reasons why a 2x speedup is not achieved with speculative loop parallelization using
Spec2000 benchmarks.

121

Chapter 5: Loop Parallelization

Inter-iter

- inter-iteration
consumer rex =

rax=

inter-iteration
producer

iteration
intra-iteration =rex rcx is an invariant
consumer e.g. array base @

rex is not
redefined

(a) (b)

Figure 5.10: Register dependences in loop parallelization.

5.3.4.1 Register Communications

The register dependences in LP are satisfied by synchronizing the execution of the
iterations. One consumer instruction cannot execute until its producer instruction
generates the corresponding value. In order to synchronize the execution, the software
layer tracks the register dependences among the instructions within the loop. It classifies

the register dependences as follows:

1. Invariant dependence: the value is generated before the execution of the loop
and it is not modified during the execution of the loop (the initial value does not
vary). The consumer is an instruction of the loop whereas the producer is an
instruction previous to the loop.

2. Intra-iteration dependence: the value is generated and consumed within the
same loop iteration. The producer and the consumer belong to the same iteration.

3. Inter-iteration dependence: the value is generated in a previous iteration than
the one where it is consumed. The producer belongs to an older iteration than the
consumer. Note that since our loops are formed within a superblock the inter-
iteration distance is always one. In other words, there cannot be a register value

produced in iteration ¢ and consumed in iteration i+n being n>1.

We use Figure 5.10 to better explain the three types of dependences. In the left part of
the figure (figure a), there is an example of an inter-iteration dependence and another one
of an intra-iteration dependence. The intra-iteration dependence occurs because there is
one instruction producing a value stored in register RAX, and later there is another

instruction within the same iteration that is consuming it. The inter-iteration dependence

122

5.3. Loop Parallelization Scheme Implementation

occurs because at the beginning of the iteration there is an instruction consuming the
value stored in the same register RAX. After the first iteration this value is always
generated by an instruction belonging to the immediately previous iteration. This is
commonly called a loop-carried dependence and it has always at least 1 consumer before
the producer within the iteration. In the right part of the figure (figure b), there is an
example of an invariant dependence. In this case, the value generated and stored in RCX
register is not modified during the execution of the loop, though it is consumed in all

iterations by one static instruction that reads the RCX register.

Therefore, inter-/intra-/invariant consumers and inter-/intra- producers of the loop are
key instructions to be clearly identified. Inter-iteration consumers are the first consumer
instructions of a register before the register is redefined within the loop body, while the
inter-iteration producer is the last producer instruction of the register. On the other hand,
intra-iteration consumers are the consumer instructions of a register following the
definition of the register in the same iteration, while the intra-iteration producer is the
previous producer instruction of the register being consumed in the same iteration.
Invariants can be detected by instructions that consume a value that is not defined within

the loop. The algorithm used to identify these types of dependences is shown in Figure
5.11.

Build registers sets: INVARIANT, INTER, INTRA
For each register in set INVARIANT
- Set to 1 the INV bit associated with the corresponding source operands of
the consumers instructions
For each register in INTRA
- Set to @ the INV and INTER bits associated with the corresponding consumers
- Set to @ the INTER bit associated with the corresponding producers
For each register in INTER
- Set to @ the INV bit associated with the corresponding consumers
- Set to 1 the INTER bit associated with all the consumers that are
sequentially before the 1st redefinition of the register > the rest
(posterior consumers) are marked with a @
- Set to 1 the INTER bit associated with the last producer instruction of the
register - the rest of producers are marked with a @

Figure 5.11: Algorithm used by the software layer to mark producers/consumers properly.

destination sourcel source2
- A N A ~ A ~
INSTRUCTION | OPCODE DEST | INTER? | SRC1 2 |skc2 |E |2
1-bit flag 2 bits 2 bits

Figure 5.12: Loop parallelization instruction encoding for register dependences.

123

Chapter 5: Loop Parallelization

The loop instructions produced by the software layer are encoded with additional
information in order to keep track of the different dependences. As shown in Figure 5.12,
each instruction is marked with 5 additional flags besides the opcode and the destination
and source register identifiers. One of the flags indicates if the instruction is an inter-
producer instruction. This flag is associated to the destination register of the instruction.
Moreover, the source operands are also marked to indicate if the instruction is inter-
consumer or invariant-consumer for the registers that it consumes. Note that in this case 2

bits (inter and invariant bits) per source register are required.

Since each thread is executed in an SMT context (with its own register file), and register
dependences are marked by the software layer, we extend the scoreboard with a simple
technique to allow one thread to access the register file of the other in a synchronized
manner. Actually, the register file of the original thread initiating the loop parallelization
process holds all values before the loop starts'®. By contrast, the register file of the
spawned thread will only contain intra-iteration and inter-iteration produced values. In
this case, invariant values will be read directly from the register file of the original thread.
Therefore, when executing in loop parallelization mode, the intra-iteration values are
produced and consumed locally (in its own register file) within each thread, the inter-
iteration values are produced locally (in its own register file) per thread and consumed
remotely (from the other register file) with synchronization, and the invariant values are
read locally in the original thread and remotely in the case of the spawned thread. Note

that all register writes happen locally and register reads may be local or remote.

As commented before, registers are communicated through a scoreboard hardware
structure designed to synchronize the reading of the values among the two threads. As
depicted in the Figure 5.13, the scoreboard is split into two equal parts, each one for each
thread. The registers in the scoreboard have one ready and one sync flag per thread. The
ready flag indicates to the thread that the value of the register is ready and it can be read
from its own register file, whereas the sync flag indicates that the value of the register is
ready and it can be read from the register file of the other thread. If there is a dependence
that is not satisfied (may be the local or the remote) then the affected thread cannot
continue executing instructions until the dependence is resolved as indicated by the
scoreboard, which will check the ready or sync flags depending on the mark associated

within its source operands (inter-iteration, intra-iteration, invariant). Note that original

13 This is not 100% true as will be explained later in the loop finalization section. In reality, values are spread
between both register files even before the loop starts its execution. However, we use this simplified version

now for clarity purposes.

124

5.3. Loop Parallelization Scheme Implementation

and spawned thread concept does not match with the local and remote concept. The

operational mode is as follows:

- Intra-iteration producer instructions set the ready bit of the corresponding
register in the local thread of the scoreboard. This indicates that the value can
be read by a local consumer.

- Inter-iteration producer instructions unset the sync bit of the corresponding
register in the local thread and set it in the remote one. Unsetting the value in
the local thread when executing iteration ¢ is necessary to guarantee correct
synchronization. Otherwise, the local thread may read from the remote thread
the value generated by the remote thread at iteration i+1 when executing
iteration i+2.

- Intra-iteration consumer instructions are stalled until the corresponding ready
bit is set in their corresponding local thread register. The values are read from
their own register file.

- Inter-iteration consumer instructions are stalled until the corresponding sync
bit is set in their corresponding local thread register. In this case, the value is
read from the remote register file.

- Inter-iteration consumers of the first iteration in the original thread are
handled in a special manner. This situation can be detected because the
identifier of the original thread and the number of iterations executed (in this
case 0) are stored in special registers upon thread spawning. This case is
handled as regular intra-iteration dependence by reading the value from the
local register file as soon as the local ready bit is set.

- Invariant consumer instructions are stalled until their corresponding ready bits
of local scoreboard are set. The values are always read from the original thread

register file.

tid=0 tid=1

RAX —| READY SYNC READY SYNC

SCOREBOARD

Figure 5.13: Scoreboard for register communication in loop parallelization.

125

Chapter 5: Loop Parallelization

This fine grain register communication mechanism allows better iteration overlap and
better instruction scheduling than other techniques such as signal/wait [141]. Moreover,
there is no requirement of having FIFO queues to store values since they can be read

directly from the register files.

Live-outs must be handled carefully upon loop finalization. This is described in more

detail in Section 5.3.6.

5.3.4.2 Memory Communications

As we have presented before, we assume threads do not communicate through memory.
However, this cannot be guaranteed and it may be possible that the speculative thread
reads a value from memory before it has been generated by the non-speculative thread
that is executing the code of the previous iteration (Read After Write (RAW)
dependence). Memory violations are detected by using a bloom filter technique [142]. A
speculative thread reading an incorrect value is allowed to continue execution until the
non-speculative thread detects the memory violation and a rollback process is initiated for
squashing the speculative work. The squashed thread will always be the speculative thread
because, from a semantic point of view, the iteration being executed by the non-

speculative thread is always previous in the original program order.

The memory instructions of one code region (iteration) are not reordered by the software
layer on region formation. Moreover, Write After Write (WAW) and Write After Read
(WAR) dependences are satisfied correctly because iterations finish in order and stores are
also promoted to memory in order by using the gated store buffer. Note that a load can
read the local store buffer if a previous store in the iteration has already generated the
data (intra-iteration dependence). Also a load can read the remote store buffer looking for
data generated by stores of previous non-committed iterations (inter-iteration

dependence).

As said earlier, the register file is checkpointed and the gate of the store buffer is set on
each iteration starting point (Begin of Iteration, BOI). Therefore, the same mechanism for
architectural state checkpointing can be employed to guarantee correct execution of the
loop being parallelized. In case of a successful execution of a given iteration, the shadow
register file is discarded and the gate of the store buffer is open. On the other hand, in
case of an unsuccessful execution of a given iteration, the register file is restored by using
the content of the shadow register file and the speculative stores gated in the store buffer

are discarded. Therefore, rollbacks may happen because of exceptions and memory

126

5.3. Loop Parallelization Scheme Implementation

violations. However, unlike exceptions, a memory violation rollback requires unsetting the
Sync bits in the scoreboard of the other thread and the processor remains in optimized

mode ready for re-executing the squashed iteration.

As commented before, a memory violation rollback is raised when the bloom filter
structure detects a memory inter-iteration dependence infringement. Load instructions
executed by the speculative thread (the thread executing the youngest iteration) update
the bloom filter mask indicating the addresses they read. By contrast, store instructions
executed by the non-speculative thread (the thread executing the oldest iteration) check
the bloom filter mask to detect if a younger load has read the value before it has been
generated. In Figure 5.14, there is an example of how the bloom filter is used to track
memory dependences. As it can be observed, load @X of iteration 1 executes before store
@X of iteration 0 and it reads a stale value in consequence. Since the load instruction
updates the bloom filter mask, the store of iteration 0 is able to see the incorrect remote
access and it rollbacks the speculative thread execution. After the rollback of the
speculative thread, the execution of the loop is re-established as depicted in the right part
of the figure. In this new scenario, load @X of iteration 1 is now reading the correct value
produced by store @X of iteration 0 and so that, no additional rollbacks are required.
Note that our mechanism assumes that load @X will then execute after store @X, but
there is no guarantee that this will happen. Hence, it may be the case that the speculative
iteration is squashed several times before it is able to proceed. However, we have not seen

this happening in our simulations.

Bloom filters may report false positives but not false negatives [142]. This guarantees
correct memory violation detection at the cost of killing iterations where there are no real
memory violations. The baseline bloom filter accuracy can be improved for the proposed
LP scheme in different ways. For instance, one solution is to consider more than one
bloom filter (having more than one hashing function). A different solution may be letting
the co-designed virtual machine to selectively mark memory instructions that are known
not to alias. In this document, we use a regular bloom filter since the accuracy is good for

the benchmarks we analyze.

From our studies, we have seen that less than 1.5% of the iterations are squashed due to
memory communications when LP is employed. A squash occurs when iteration i+1 reads
a memory value produced by iteration 7, but the load executes before the store due to the

out-of-order execution nature of speculative LP scheme.

127

Chapter 5: Loop Parallelization

Loop parallelization before Rollback of iteration 2 ROLLBACK Loop parallelization after Rollback of iteration 2
initiated by
store of iter 1
P——
o w :
m | -
W oad@x s E
= S[| = -
-
x = o
o] w
y store @x &|| & store @x
£ @ SPEC :
2 i =
o~ o (o] & []
% £ o
w) w
= w =
- al|l ™ -
| & 2]
o
'; n|| x
w
=
-
1. Load @X of iter 1 writes @X in Bloom Filter
2. Store @X of iter 0 checks previous read of @X in

Bloom Filter and kills the offending thread
3. lter 1is reexecuted again

Figure 5.14: Loop parallelization iteration rollback example.

5.3.5 Iteration Finalization

In the proposed LP scheme, correct execution from register and memory dependences
point of view is guaranteed by forcing iterations to finalize in program order. After
finalizing the execution of one iteration the following two scenarios may occur: a new
iteration is executed or the loop execution is completed. As it is shown in Figure 5.15, the
iteration finalization is always decided by a branch instruction. If the loopback branch
instruction jumps back to the beginning of the loop, then a new iteration is going to be
executed. However, if the loopback branch is not taken or if another branch jumps to an
address out of the loop, then the whole loop execution is finalized. From a nomenclature
point of view, a branch instruction that drives to a new iteration is called loopback
branch, whereas a branch that goes out of the loop is called exit. If the exit occurs in the

middle of an iteration it is called early-exit.

Potential loop exits have to be identified to ensure the in-order iteration execution and a
correct loop finalization. The software layer marks branch instructions by using two
additional flags in its encoding representation. One flag is used to identify if the
instruction is an iteration finalization instruction when taken (the loopback), the other
flag indicates if the loop execution ends when this instruction is taken or when it is not
taken. Note that since we build superblock loops, there are no internal branches and the
aforementioned flag marks suffice to synchronize the execution of iterations. In other

words, all branches may finalize the loop depending on their condition. We call the former

128

5.3. Loop Parallelization Scheme Implementation

the finalization flag, and the second the exit flag. We can use Figure 5.15 to illustrate how
these flags are used. In the case of an early exit branch, the iteration finalization flag is set
to 1 and the exit flag is set to taken. By contrast, for a loopback branch, the iteration
finalization flag is set to 1 and the exit flag is set to not-taken. Note that all branches
within the loop always have the iteration finalization flag set to 1. Moreover, branches

that finalize iteration execution are called End Of Iteration (EOI) instructions.

In order to guarantee that iterations are finalized in order, EOI instructions are executed
in a special manner. If the executed EOI belongs to a speculative thread, then it has to be
stalled until the non-speculative thread successfully commits the execution of the previous
iteration. This scenario is shown in the Figure 5.16 by using the iterations 0 and 1 of a
generic loop. On the other hand, an EOI instruction can be directly executed and retired if
it belongs to the non-speculative thread. One example of this scenario is shown in Figure
5.16 by iterations 2 and 3. The case of loop finalization is described in more detail in

Section 5.3.6.

The execution of an EOI instruction is used to compute which of the two threads is
speculative. Actually, the threads always change their execution automatically from
speculative to non-speculative or from non-speculative to speculative when executing an
EOIL 1In other words, the speculative behavior ping-pongs between the two threads as
iterations are finalized. The example of Figure 5.16 helps us to illustrate how the thread
execution mode moves from speculative to non-speculative and vice-versa. In the example,
iteration O starts as non-speculative whereas iteration 1 is speculative. Iteration 1 cannot
directly commit because iteration 0 is required to commit before. Once it commits then
the thread 0 moves to speculative and the thread 1 to non-speculative. However, just
immediately, the thread 1 that was waiting for commit executes the EOI, moving again
thread 1 to non-speculative and thread 1 to speculative. Finally, when thread 0 executes
the EOI of iteration 2 then it moves to speculative and thread 1 executing iteration 3
moves to non-speculative. Note that, as commented in previous sections, instructions
belonging to the older not committed iteration are always non-speculative, whereas
instructions belonging to younger iterations not committed are always speculative.
Therefore, we can also use the iteration counter and the original thread identifier to

determine which thread is speculative at any point of the execution.

129

Chapter 5: Loop Parallelization

LOOP CODE

branch
Loopback
branch early

exit
branch
A4
Loop Finalization

Figure 5.15: Loop finalization branches.

tido tid1
Iter 0
Iter 1
L tid 1is
EOI speculative
kol ,~SVNC| \(gALL
Iter 2 Iter 3
tid 1is
speculative
EOI
EOI

Figure 5.16: Loop parallelization iteration finalization example.

5.3.6 Loop Finalization

Loop Finalization occurs when an iteration finalization branch exits the loop. Although all
branch instructions are EOI, in this particular case such a branch acts as an End Of Loop
(EOL) instruction. Once the loop finishes, live-out values generated during execution are
spread among both register files. Since the original thread will continue with the
execution, its register file must be correctly updated as if the whole loop were executed in
single-thread mode. Otherwise, instructions reading values generated during the execution
of the loop may consume stale data and hence, the correctness of the application execution

will be compromised.

Therefore, some additional tasks have to be done before continuing with the application

execution once a loop is exited. First, the spawned thread has to be squashed freeing the

130

5.3. Loop Parallelization Scheme Implementation

corresponding hardware context in the processor. Second, the original thread local register
file has to be updated with the live-out values generated by the other thread because these

values are stored in the remote register file.

In Figure 5.17, we present how the live-out register values should be handled at the
finalization of a generic loop. The code of the loop is shown in the left part of the figure.
It is formed by two basic blocks, A and B. The first BB ends in the “jeq EXIT” branch
instruction that it is at the same time an early exit of the loop. The second basic block
ends in the loopback branch “jne LOOP”. Basic block A defines registers ECX, ESI and
EAX, whereas basic block B defines ESI, EDI, and EBX. Note that EDX is an invariant
in the loop. ESI and EDI are used as intra-iteration dependences and ECX, EAX, and
EBX are used as inter-iteration dependences. The following four different scenarios may

happen depending on which thread ends the loop and from which branch instruction:

1. Original thread ends the loop execution:

a. Iteration finalization from the early exit: the live-outs that are defined in
basic block B by the non-original thread that are not re-defined in basic
block A (in this case EDI and EBX, since ESI is also defined in basic block
A) are located in the non-original thread register file and they need to be
moved somehow to the register file of the original thread. This case is only
valid if the loop is not exited in the first iteration. Otherwise, the non-
original thread has not produced any value.

b. Iteration finalization from the loopback branch: nothing additional to be
done since all register values generated in the loop have been generated by
the original thread.

2. Non-original thread ends the loop execution:

a. lIteration finalization from the early exit: the non-original thread generates
the live-out values corresponding to basic block A. All of them need to be
moved from the register file of the non-original thread to the register file of
the original thread.

b. Iteration finalization from the loopback branch: the non-original thread
generates the live-out values corresponding to both A and B basic blocks.
ECX, ESI, EAX, EDI, and EBX register values needs to be moved from
the register file of the non-original thread to the register file of the original

thread.

131

Chapter 5: Loop Parallelization

LOOP: ecx = add ecx, 1 Exit Original Thread 0 Non-original Thread 1
) esl = |Oa'd LABEL1 [eCX] (1] Move {B} from RF(1) to RF(0)* Move {A} from RF(1) to RF(0)
< eax = shift_left eax, 5
2 eax = Xor eax, esi edi, ebx ecx, esi, eax
eax = and eax, edx (2] nothing Move {A} + {B} from RF(1) to RF(0)
©Qjeq EXIT

esi = move ecx ecx, esi, eax, edi, ebx

edi = load LABEL2[eax * If not exited in first iteration
. _ . Live-outs defined in BB A

esi = and esi, edx {ecx, esi, eax} Registers identification

LABELZ2[esi] = store edi i

LABELZ2[eax] = store ecx ;Jnr:,urs:gds rze?:;rp, -
ebx = sub ebx, 1 intra regs = {esi, edi}

L '@ jne LOOP g Live-outs defined in BB B inter regs = {ecx, eax, ebx}
{esi, edi, ebx}

Figure 5.17: Loop finalization example.

LOOPBACK
BB B

In order to avoid adding explicit special move instructions to move values from one
register file to the other, we propose a new hardware extension that allows registers to
spread between both register files. The idea is to establish a dynamic binding between
threads and registers, having a hardware table structure that indicates in which register
file is the latest value produced for each register. In such a way, the movement of values is
not required and the original thread will continue accessing the remote register file for
those registers that are live-outs generated by the spawned thread. Therefore, this

structure needs to be accessed even after the loop parallelization process.

The idea of the dynamic binding between threads and registers is to mark where the
current value of a register resides: whether it resides in the local or in the remote register
file. This is achieved by attaching a “where” bit W mask to each register. A value of 0 for
a given register indicates that both threads use their local register, whereas a value of 1
indicates that both threads use their remote register. An example is shown in Figure 5.18
where thread 0 uses the local register for registers r1 and r3, and the remote register file
for registers r2, r4, and r5. The same applies to thread 1 that uses the local register file for

rl and r3 and the remote one for r2, r4, and r5.

Applying this concept to the speculative loop parallelization approach, it is just a matter
of appropriately updating the W mask. Once a parallelized loop is exited, the W mask
update is performed in such a way that reflects where the live values of each register
reside. Note that in this case any of the two threads are able to continue the execution
after loop finalization, as opposed to the static scheme, in which the original thread is

always in charge to continue execution.

132

5.3. Loop Parallelization Scheme Implementation

Static Binding Dynamic Binding
Register File Register File W bit Register File Register File
Context 0 Context 1 Context A Context B
rl Thread 0 ri Thread 1 ri|] o rl Thread 0 rl Thread 1
r2 Thread 0 r2 Thread 1 r2| 1 r2 Thread 1 r2 Thread 0
r3 Thread 0 r3 Thread 1 r3] o r3 Thread 0 r3 Thread 1
r4 Thread 0 r4 Thread 1 rd | 1 rd Thread 1 r4 Thread 0
r5 Thread 0 r5 Thread 1 r51 1 r5 Thread 1 r5 Thread 0

Figure 5.18: The traditional static binding between registers and threads is shown on the left.
On the right, a dynamic binding is achieved by using a Where bit mask W. For each register
Ri, Wi identifies whether the local (0) or remote (1) register is used. Note how in this case we
refer to contexts A and B and not contexts 0 and 1. For example, when thread 0 uses register
R2 it will access the copy in context B, while thread 1 will access the copy in context A.

The updated W mask can be generated in different ways. One option is to encode it
within each branch instruction in the loop (mask can be computed when code is generated
for the loop). Another alternative is to have these masks in memory. However, we think
the best implementation for updating the W mask is based on using simple hardware

structures.

The idea is to have two additional masks referred to as DEF masks, each one assigned to
a thread as shown in Figure 5.19. DEF masks implement one bit per register and describe
which registers have been written by the corresponding thread in the currently executed
iteration. These masks are initialized to zeros whenever a thread starts executing a new
iteration. Each time an instruction writes to a register, its corresponding definition mask
DEF is updated with a 1 for that particular register and thread. After one thread finishes
one iteration, the corresponding mask DEF is flashed to another new mask called W .
Wiext accounts for who was the last writer for each register. Since our scheme guarantees
that iterations finish in order, Wyex is an accumulative mask updated after each iteration.
Note that Begin of Loop, Begin Of Iteration, End Of Iteration, and End Of Loop are
identified by flow marking specific instructions in the loop body. This flow marks are used
by the hardware to detect the boundaries of the loop and the iterations. After the
execution of the loop, W and W, are combined using a XOR-like function to generate
the final W mask. Note that the proposed scheme is very simple and low-complex because
it only uses three additional masks that are updated by employing very simple logic

functions.

133

Chapter 5: Loop Parallelization

Init DEFi Vi to 0 when BOI
Set DEFi to 1 when register i is defined
: ; Init WnextiVi to 0 when BOL
v v v
DEForig Whext DEFspawned
A]]]
— — — When original thread executes last iteration:
¢ W=W XOR Whext
1% 1 1 1 * Original thread continues execution
2
0 When spawned thread executes last iteration:
S * W =W NXOR Whext
+ * Spawned thread continues execution
v — — —
A A
When EOI, set Whexti When EOI, set Whexti to
to 0 if DEForigiis 1 1 if DEFspawnediis 1

Figure 5.19: Structures used to compute mask W. Dotted lines describe how and when these
structures are initialized and updated.
Finally, it is worth to remark that the dynamic binding between registers and threads is
totally transparent to the normal execution mode of the processor (where normal mode
refers to periods when the processor is not executing a parallel loop). In this case, each
thread works independently with the registers indicated by the W mask. Note in addition
that the mechanism is also transparent to the Operating System and context switches in

consequence.

5.3.7 Exception Handling

The proposed LP scheme supports precise exceptions. However, unlike in traditional
hardware/software co-designed virtual machines, in a loop parallelization process there
may be two code regions (iterations) being executed simultaneously when the exception is
raised. Although we consider one iteration as speculative and the other as non-speculative,
none of them has been already committed, so that, both of them may be rolled back and
the architectural state reestablished to the latest committed point for both threads. After

the exception is solved, the failing iterations are executed in non-optimized mode.

Moreover, loop parallelization mode is enabled after the iteration raising the exception is
correctly executed and committed. This approach guarantees forward progress by ensuring
safe execution of the failing iterations. In this sense, an exception is treated similarly to an
EOL instruction. In particular, the bloom filter and the scoreboard structures are
initialized again removing all activity from the previous execution of the loop. Otherwise,
the threads may read stale values from the other register file or incur in false memory

violations.

134

5.3. Loop Parallelization Scheme Implementation

Component Size Type Description

2xGated SB™ 16 entries Hw Each thread has its own Gated Store Buffer

2xRegister Filel 32 int Hw Each thread has its own Register File

34 fp

Scoreboard 32 entries Hw This structure tracks the register dependences (intra,
inter and invariant) between two threads

Bloom Filter 1024 bits Hw This structure tracks the RAW memory dependences
between the two threads

Original thread register 1 bit Hw Register with the context id of the thread that initiates
the loop parallelization

Speculative thread 1 bit Hw Register with the context id of the spawned thread (only

register valid when parallelizing loops by using two contexts ids)

Iteration number register 16 bits Hw Register that holds the number of the latest valid
committed iteration

DEF original mask 66 bits Hw Original thread register definition mask. It uses one bit
per register to describe which registers have been written
by the original thread in the currently executed iteration.

DEF spawned mask 66 bits Hw Spawned thread register definition mask. It uses one bit
per register to describe which registers have been written
by the spawned thread in the currently executed
iteration.

W mask 66 bits Hw Where bit mask. This mask indicates per each register if
its value resides in the local register file or in the remote
register file.

W next mask 66 bits Hw Where next bit mask. This mask accounts for who was
the last writer for each register.

EOI flag 1 bit per Both End Of Iteration flag associated with an instruction.

instruction Hw/Sw Software is in charge of assigning this flag to
corresponding instruction

Inter/Intra/Invariant 5 bits per Both Instructions flags associated to register operands (source

flags instruction Hw/Sw and destination) to track inter/Intra/Invariant-iteration
register dependences. Software is in charge of setting
these flags

Iteration finalization flag 1 bit per Both Instruction flag indicating if the instruction is a branch

instruction Hw/Sw that may finalize the execution of the current iteration
(it depends on the iteration exit flag value). Software is
in charge of initializing this flag

Iteration exit flag 1 bit per Both Instruction flag indicating if the instruction is branch

instruction Hw/Sw that may finalize the execution of the current iteration

when it is taken or not-taken. Software is in charge of

initializing this flag

Table 5.1.Summary of hardware/software additions to support Loop Parallelization in a co-

14 Already implemented in SMT processors

designed processor.

135

Chapter 5: Loop Parallelization

Branch |....Front-End Cluster
Instructon
AT A 2owide nst. §] Cache
Length [i
Decoder
XLAT/ [lg u;
FL
SCOREBOARD - e
SPAW Dec

Per thread
FP ,
Register File Memory Execution
— Cluster

| | W
[prefetcher

l" BLOOM s | ‘
ALY ALU Fitr m i :
Data TLBs 1 |
O | T
r e 1k
Cache I
SIMD ' 1 '
multiplior \ - -
e |
| DR . Fss
2 Y Y ¥ i I
multiplier -
| _FPROM | 1 B
|
Integer Execution Cluster bt et emsaniaor
FP divider Bus Cl r

FPI/SIMD execution cluster

Figure 5.20: Atom-like architecture with the Loop Parallelization mechanism additions (original
block diagram from [143]).

5.3.8 Loop parallelization mechanisms summary

The LP scheme presented in this document requires implementing modifications in both
hardware and software components of the hardware/software co-designed processor. Table
5.1 summarizes the main modifications required to support loop parallelization on top of a
traditional hardware/software co-designed processor that supports SMT. The first column
of the table shows the component (or modification) required, the second column shows the
size of the component, the third column indicates if the modification is in hardware (Hw),
software (Sw), or in both hardware and software (Hw/Sw), and the fourth column is a
short description of the component. Note that all these modifications have been

commented in more detail in previous sections of this chapter.

In Figure 5.20, we show the Intel® Atom® architecture high level block diagram with the
additions for supporting the LP scheme. The Spawn instruction decoder component is

added to the Front-End cluster and it is accessed before the instruction decoder. The

136

5.4. Optimizing the Regions to Parallelize

Scoreboard is placed close to the per-thread Instruction Queues because it also controls
the issue of the instructions based on whether their consumed register values have been
already produced. The Bloom Filters and the Gated Store Buffers (Gated SB) are placed
in the Memory Execution cluster. Both structures are accessed with the physical addresses
of the memory accesses. Finally, we place the counters required to keep track of the
number of iterations close to the Fault and Retire logic. These counters are updated once

the instructions marked with the EOI flag retire.

5.4 Optimizing the Regions to Parallelize
In order to improve the performance of the loops selected for parallelization, we have
considered two different types of optimizations. The software layer is in charge of applying

these optimizations when it is optimizing the selected loop for parallelization.

The first optimization consists of a list scheduling code reordering technique focused on
adapting the original codes to be more efficiently executed in the hardware. The software
layer knows in detail the relevant characteristics of the hardware and it is able to
dynamically transform the codes in order to improve the usage of the processor resources.
For instance, attending to the core characteristics described in Section 5.3.1, it may
reorder the original code instructions in order to take advantage from the particular
Atom® pipeline that allows back-to-back memory to ALU operations. Given the
generality of this instruction scheduling algorithm we have applied it both to the baseline
(sequential execution) and the loop parallelization. Moreover, note that in an in-order
processor the impact of this type of optimizations is important, because the instruction
scheduling is done by the software and not by the hardware like in an Out of Order

processor.

The second group of optimizations is focused on minimizing the impact of the inter-
iteration register dependences. As commented in Section 5.3.4.1, register data dependences
are satisfied in a synchronized manner in order to guarantee correct execution. Such
synchronization stalls the execution of the thread that requires a register value generated
by the other thread and the distance between the producer and consumer instructions
dictates the overlap that can be achieved. In other words, we need to reduce the impact of
recurrences in order to have better performance. In order to better illustrate this, we can
use the example of Figure 5.21 (left) that shows the execution of the first three iterations
of a loop with an inter-iteration register dependence. The dependence is over register EBX
that is consumed by the first instruction and produced by the last instruction of the loop.

Note that this dependence makes the first instructions of the next iteration to be stalled

137

Chapter 5: Loop Parallelization

until the value of register EBX is produced by the last instruction of the previous
iteration. Therefore, iterations are executed sequentially and no parallelization can be

exploited. We have considered the following optimizations to minimize the impact of

inter-iteration dependences:

- Instruction reordering with special emphasis to reduce the length of the
recurrences. We call this optimization as Recurrence Reordering and it is
described in more detail in Section 5.4.1.

- Convert biased branches to asserts to allow more aggressive reordering. We call

this optimization as Atomicity and it is described in more detail in Section

5.4.2.

- Usage of temporal register to break false anti-dependences. We call this

optimization as Anti-dependences and we describe it in more detail in Section

5.4.3.
Thread 0 Thread 1 Thread 0 Thread 1
.."‘I.:eration O.‘~ ;
1 EAX =‘EBX i Iteration O
2 ECX = EAX i 1. EAX = EBX Iteration 1
3 ESI = EAX 4. @—EDX N
5 | . |2 ECx=EeAx |1 EAXSEBX
4. @—-{UX Iterat 17>\ E) i&ED_{
— EAX = EBX . |3 ESI=E =
ECX = EAX i | 1. EAX=(EBX)]|2 ECX=EAX
Esi=eax | 5[4 EBX=EDX [3. ESI=EAX
teration 2 {eBx)=EDx | | £[2 ECX=EAX
1. EAX =@ . |3 ESI=EAX
2. ECX = EAX §
3. ESI=EAX
4. EBX = EDX '

(a) Original code

(b) Reordered code

Figure 5.21: Example of inter-iteration dependence based on instruction scheduling for loop
parallelization. Figure (a) shows the original code and how it is executed in loop parallelization
mode given the inter-iteration dependences. Figure (b) shows the optimized code and how it is

138

executed in loop parallelization mode.

5.4. Optimizing the Regions to Parallelize

5.4.1 Recurrence Reordering

Besides the aforementioned list scheduling algorithm, we have also considered another
instruction scheduling algorithm focused on minimizing the impact of the register inter-
iteration recurrences. The main idea is to reduce the length of the inter-iteration
dependences by moving the consumer and producer instructions as close as possible. This
is achieved by giving more priority in the list scheduling algorithm to instructions that

generate a register value that is required by the next iteration.

We illustrate how this reordering optimization works with the example in Figure 5.21. In
the figure, we have numbered the static instructions that belong to the region being
parallelized from 1 to 4. As it can be observed, the inter-iteration recurrence dependence
occurs because instruction 4 produces register EBX that is later consumed by instruction
1. This dependence avoids the iterations to be executed in a parallel manner as shown in
the left part of the figure. In the right part of the figure, we show the execution of the
first three iterations of the loop once the list scheduling algorithm is applied. In this case,
instruction 4 is reordered just after instruction 1. This movement is possible because
instructions 2 and 3 have no dependences with instruction 4 (they only have a RAW
dependence for register EAX with instruction 1). This simple reordering allows
overlapping the execution of the instructions belonging to consecutive iterations as shown

in the left part of the figure.

In order to guarantee that the data live outs of the regions are correctly generated,
instructions can only be reordered within basic blocks. This limits the benefits that can be

obtained by applying this technique when regions have multiple exists.

5.4.2 Atomic Execution of Regions

This optimization converts biased branches to asserts in order to reduce the number of
early exists. This allows a more aggressive reordering of the instructions with higher
chances to reduce the distance between an inter-iteration producer and its consumer.
Actually, the jump instructions that are good candidates to be transformed into assert
instructions are those which their outcomes can be predicted with very high confidence.
For instance, jump instructions with high percentage of possibilities to be not-taken. In
such a way, the objective of inserting the assert instruction is to check if the jump
prediction is satisfied. Otherwise, if the check fails, this means that the optimization
applied is incorrect and the region needs to be rollback. In order to guarantee forward
progress, the loop is then executed in a less optimized version or even in normal execution

mode.

139

Chapter 5: Loop Parallelization

e, ECX = EDX
S[EBX =EAX: s |
; s i [EBX = EAX ECX=EDX | || EBX=EAX
ECX = EDX | 5
i | ECX = EDX EBX=EAX | | EAX=EDX [ECX = EDX
JUMP B2 s 5
EarlyExit | | ASSERT1 |—p| EAX=EDX | || ASSERT1 | EBX = EAX
P . | EAX = EDX ASSERT1 | || ASSERT2 | EAX =EDX
EAX)= EDX i | ASSERT2 ASSERT2 | | ASSERT1
JUMP B1 ASSERT2
I | i !
(a) Original code (b) Atomicity and re-ordering (c) Parallelization that can be
: : obtained

Figure 5.22: Example of atomicity optimization for loop parallelization. Figure (a) shows the
original code and the inter-iteration recurrence dependence. Figure (b) shows the resultant code
after applying the atomicity optimization. Figure (c) shows how the resultant optimized code is

executed when loop parallelization execution mode is enabled.

We use Figure 5.22 to describe how this optimization works. In the figure, we show an
example of an original code region in the left part. In the middle part of the figure, we
show how the optimization is applied to the code region, converting the early exist branch
into an assert instruction, and in the right part, we show the parallelism that can be
obtained when executing it in loop parallelization mode. As it can be observed, the
original loop is formed by two basic blocks. The first one contains an early exit and the
second contains a loopback branch. The instruction of the second basic block is not
allowed to be moved over the “Jump B2” instruction that marks the separation among
the two basic blocks because it would overwrite EAX incorrectly. As it is depicted in the
figure, by converting the jump instructions into asserts we can handle the two basic blocks
as if they were one single basic block, allowing the instruction that produces the EAX
register value to be scheduled one cycle earlier. Finally, in the right part of the figure, we
can see that applying this instruction movement, we can increase the parallelization of the

region by overlapping the execution of 3 instructions over a total of 5.

5.4.3 Breaking Anti-Dependences by Using Temporal Registers

The third optimization that we have considered is also focused on reducing the distance
between the consumer and the producer of the register inter-iteration dependence. In this
case, the main objective is to increase the possibilities of code reordering (instruction
scheduling) by breaking key anti-dependences using temporal registers. An anti-

dependence (also kown as WAR) occurs when an instruction requires a value that is later

140

5.4. Optimizing the Regions to Parallelize

updated. Anti-dependences could be removed by copying the wvalue causing the

dependence into a new register (in our case a temporal register) and applying renaming.

Figure 5.23 shows how this optimization can improve the parallel execution of a loop. In
the left part of the figure, we show the original code and how it is executed (just the first
3 iterations) in LP mode. As it can be observed, the dependence between the first
instruction and the last instruction of the iteration does not allow any parallelism across
iterations. Moreover, we cannot apply the previous aforementioned optimizations because
there are anti-dependences that do not allow the instructions to be reordered. In other
words, instruction I3 cannot be moved ahead of instruction 12 because 12 uses a previous
definition of EAX. The proposed optimization breaks these anti-dependences by using
temporal registers. In the right part of the figure we show the resultant code. Note that
the instruction “EAX=EBX” has been replaced by “TMP1=EBX” and the instruction
“ECX=EAX” has been replaced by “ECX=TMP1”. In other words, the first instances of
register EAX have been renamed to register TMP1. By doing this, all the instructions in

the loop can be executed in parallel.

Thread 0 Thread 1 Thread 0 Thread 1
I1:_.": EAX =*E BX;.:
2i | ECX = EAX e

H dependence g EAX = EDX
13:5 | EAXeEBX— ;
" EI;(m ¢ | TMP1 = EBX
ECX = EAX | |ECX= _TMPL | TMP1
i | EAX = EDX _
EAX = EDX Newes ‘/— EAX
/\(@ EAX | = ECX= TMP1
EAX=(EBX) | EBX=EAX
ECX = EAX i |ECX= TMP1
EAX = EDX
EBX = EAX
(a) Original code (b) Optimized code

Figure 5.23: Example of register temporal usage for breaking anti-dependences optimizations.
Figure (a) shows the original code execution in loop parallelization mode. Figure (b) shows the
execution in loop parallelization mode of the resultant optimized code after breaking the anti-

dependences for the data inter-iteration recurrence.

141

Chapter 5: Loop Parallelization

5.4.4 Combining the Optimizations

All optimizations presented in this section are orthogonal and can be applied
simultaneously forming more complex optimizations. However, applying some of them
together does not guarantee better results than applying the optimizations in a separated
manner. For instance, the use of temporal registers to break anti-dependences reduces the
length of the inter-iteration dependences at a potential increase of the execution time of
individual iterations. Hence, optimizations should be combined depending on the

characteristics of each individual loop.

In Section 5.5, we analyze the execution performance impact of all the different

optimizations presented in this section.
5.5 Evaluation

5.5.1 Simulation Framework

The LP scheme has been implemented on top of an in-house research simulator that
models a hardware/software co-designed processor. The development of this simulator has
required modeling the software and the hardware components. Both components have
been designed to work in a collaborative manner. The software models a
hardware/software co-designed virtual machine that, among other things, it is able to
detect hot code (including loop regions), to optimize the detected hot regions and to store
them in the code cache region for their later reuse. On the other hand, the hardware
component models an Intel® Atom® processor and it is based on the architecture
described in Section 5.3.1. This cycle accurate simulator allows 4 instructions (pops) to be
issued and retired simultaneously and it models the Intel ® x86 ISA in very high detail,
including interrupts, exceptions, APIC support, etc. Unfortunately, such high detail on
modeling the Intel® x86 ISA and some specific problems with the x86 emulator regarding
special ISA features have made impossible the implementation of a realistic memory and
branch predictor models. Thus, the LP paradigm has been evaluated using perfect
memory and branch prediction. Note that these simplifications do not necessarily work in
favor of the presented numbers. In fact, the LP paradigm using a perfect cache is not able
to provide performance benefits when the application has important amount of Memory
Level Parallelism (MLP), a key contributor factor to performance for code parallelization

[10] [130].

We have summarized the more relevant configuration parameters for the simulator in

Table 5.2 and Table 5.3. Table 5.2 describes the hardware parameters and Table 5.3 the

142

5.5. Evaluation

software parameters. The first column of each table shows the parameter name and the

second column shows the value used in the simulator.

We have performed simulations using 12 programs from the SPEC2000Int benchmarks
suite. The selected programs are bzip2, crafty, eon, gap, gcc, gzip, mcf, parser, perlbmk,
twolf, vortex, and vpr. KEach benchmark is simulated by using a set of representative
traces of 10 million instructions. These traces have been obtained by gathering the
program information directly from real processor activity. For each trace there are two
simulation phases. During the first phase, the software layer identifies the loops and
optimizes them for execution. In the second phase, the loops are executed in the hardware

simulator and relevant statistics are collected.

Hardware Simulator Parameters

Parameter

Configuration

Multithreading

2 SMT

Issue queue

32 entries (16x2 threads)

Issue 4 pops (2 per thread in case that
both thread issue instructions)

Retire 4 pops

Pipeline Stages 16 stages

Data Cache Read Ports 1 port

Data Cache Write Ports 1 port

Branch Predictor

Not modeled

Cache Hierarchy

Not modeled

Table 5.2: Hardware simulator configuration parameters.

Software Simulator Parameters

Parameter

Configuration

Loop Detection Threshold

50 executions

Super-Block Formation Branch | 80%

Bias Threshold

Code Cache

Unbounded

Table 5.3: Software simulator configuration parameters.

Results

In this section, we evaluate the LP scheme by employing the previously presented
simulation framework. First we analyze the impact on performance of the thread spawning
mechanism. Later we present the performance numbers for the LP paradigm with and
without applying the different presented optimizations. We conclude this section by
comparing the different optimizations and showing an upper-bound of the performance

that can be achieved when the best is considered for each particular loop.

143

Chapter 5: Loop Parallelization

70

Total loops = 122

60

50

40

30

20

inner-most loops

10

0 T T T T T T T T
7’1/(9010 , "),00’0 ’gao‘o '\90,0 - %elo B} ’L&nle - 00,0 Q_,/()ﬂle
\\ \\ \\ \\ D
o o R 60\!‘ o« 60\!‘\ o« 60\!“ éoq“\ \ﬁéo\s Qeed
B8 B8 S S 80 ° °

Figure 5.24: Spec2000Int inner-most loops speedups for loop-parallelization with respect to
sequential execution using Spawn-at-execute. Efficient SPAWN mechanism is not implemented.
The y-axis represents the number of loops bucketed based on their performance (x-axis).

80

Total loops = 128

70

60

50

40

30

inner-most loops

20

10

0 T T T T T T T T
olo oo oo olo oo olo oo olo oo
70)0 77’(‘) 7r)9 7&6) 7»\0 7‘9 <‘) Q 7/0
S S S S oo &0 \)
° ° ° ° ° o &°
80 = ES = ES B &0

Figure 5.25: Spec2000Int inner-most loops speedups for loop-parallelization with respect to
sequential execution using Spawn-at-fetch. Efficient SPAWN mechanism is implemented. The

y-axis represents the number of loops bucketed based on their performance (x-axis).

144

5.5. Evaluation

5.5.2.1 Removing Thread Spawning Bubbles

In this section, we evaluate two different proposals for thread spawning. The first one
consists on activating the fetch of the spawned thread once the Begin Of Loop (BOL)
instruction is issued, while the second one consists on activating the fetch of the spawned
thread once the BOL instruction is fetched. This second approach can be achieved by pre-
decoding the BOL instruction in the first stages of the pipeline’, as described in Section

5.3.2. We refer to both options as Spawn-at-execute and Spawn-at-fetch respectively.

The evaluation has been done for each individual loop of the Spec2000Int benchmarks
that has been detected as hot. We have compared the required execution time of each
loop with and without LP support and by using both thread spawning approaches. In
Figure 5.24, we show a histogram with the number of loops classified according to the
relation between their execution time for Spawn-at-execute and Spawn-at-fetch compared
to the sequential execution. The categories of the histogram range from slowdowns greater
than 30% to speedups and the y-axis shows the amount of loops. As it can be observed
there are a total of 122 loops identified across all benchmarks. We can see that 53 loops
have slowdowns and 69 speedups. From the slowdowns, there is one loop with a slowdown
greater than 30% and 6 with slowdowns greater than 15%. Most of these slowdowns are

consequence of waking up the second iteration too late for loops with low trip counts.

In Figure 5.25, we show the same histogram when using Spawn-at-fetch. Unlike the results
presented in Figure 5.24, in this case, only one loop presents a slowdown greater than
15%. Although there are still 51 loops that present slowdowns, all of them are in the range
of 0% to 5%. As it can be observed, when comparing Figure 5.24 and Figure 5.25,
advancing the spawn of the second thread to the fetch stage of the processor has a
positive effect on the performance of most of the loops. In addition, the slowdowns
observed when compared to sequential execution of the loops are consequence of other
limiting factors not related to the thread spawning overheads, such as the inter-iteration
register dependences for example. These other limiting factors are described later in more

detail.

5.5.2.2 Loop Parallelization Performance without Optimizations
In this section, we evaluate the LP scheme when not applying any of the optimizations
oriented to maximize the parallelization of the loop iterations and when applying code

reordering only. In Figure 5.26, we show the speedup of the detected loops in the

1> A similar solution can be achieved by flashing the contents of the issue queue from one thread to the other,
once the BOL instruction is issued. This solution is also mentioned in Section 5.3.2

145

Chapter 5: Loop Parallelization

Spec2000Int benchmarks for different techniques. The baseline executes the loop iterations
sequentially without applying code reordering. The techniques analyzed are as follows:
sequential execution with instruction reordering (Baseline+Reordering), LP and LP with
instruction reordering (LP+Reordering). The techniques presented do not show
performance improvements for crafty, gap, and twolf applications. By contrast, they
present high speedups in bzip2, eon, vortex, and vpr applications. On average,
LP+Reordering gets 14.7% speedup, whereas Baseline+Reordering gets 8.2% and LP 6%.
In most of the benchmarks, LP+Reordering is the best option. Moreover, LP alone
presents worse performance numbers than the Baseline+Reordering approach. This means
that instruction reordering based on the processor characteristics improves both the
baseline and LP approaches significantly. For this reason, the baseline presented in the
rest of this chapter considers this instruction reordering optimization always enabled by

default.

Finally, Figure 5.26 shows that LP without reordering performs better than the reordering
optimization in eon, gce, gzip, and vortex. In eon and vortex the effect of combining both
optimizations is additive, whereas for gcc and gzip it is not. In other words, for gce and
gzip the benefits from instruction reordering are hidden within the LP optimization
benefits. By contrast in mcf, parser, and vpr the speedups come from the instruction
reordering optimization and the LP alone does not improve performance at all. As we
show in next section, the loops in these benchmarks suffer from register inter-iteration

dependences and require additional optimizations in order to improve their performance.

5.5.2.3 Loop Parallelization Performance with Optimizations

In this section, we evaluate the optimizations designed to reduce the impact of inter-
iteration dependences. As previously described in section 5.4, we consider three
optimizations: (1) Code reordering with the objective of moving the producer and the
consumer as close as possible (Recurrence-Reordering optimization), (2) Atomic regions to
allow instruction reordering over branch instructions (Atomicity optimization), and (3)
usage of temporal registers to break anti-dependences (False Anti-Dependences

optimization).

146

5.5. Evaluation

1.5

14

13

1.2 -

1.1 -

Speedup of loops

0.9 -
bzip2 crafty eon gap gcc gzip mcf parser twolf vortex vpr AVG

M Baseline + Reordering 1 Loop Parallelization (LP) B LP + Reordering

Figure 5.26: Loop parallelization performance with no optimizations applied to the regions.

1.6
1.5
1.4
13
1.2
11

1

Speedup of Loops wrt Code Reordering
© o o o
[e)} ~ [o] [(e]

I
n

©
>
,

bzip2 crafty eon gap gce gzip mcf parser perlbmk twolf vortex vpr AVG

M Loop Parallelization (LP) = LP + Recurrence Reordering M LP + Atomicity M LP + False Anti-Dependences

Figure 5.27: Speedup of inner-most loops with respect to code reordering.

In Figure 5.27, we show the speedups obtained for Spec2000Int loops when using the three
optimizations. As commented before, the baseline is the sequential execution with code
reordering and we have also included the baseline LP scheme (LP without any

optimization) in the figure. As it is observed, LP achieves 4.1% speedup when compared

147

Chapter 5: Loop Parallelization

to the sequential execution of the loop iterations'®, Atomicity and Recurrence-Reordering
do not improve performance in general, and False Anti-Dependences achieves 13%
speedup on average. In general, this last optimization is the best option for most of the
benchmarks. However, there are some benchmarks where Recurrence-Reordering and
Atomicity perform better than False Anti-Dependences. For instance, Atomicity is the
best option in bzip2 and mcf. In fact, the proposed optimizations affect differently to each
individual loop. Therefore, applying the optimizations globally to all loops does not
guarantee the best results. In some cases, the proposed optimizations reduce the distance
between instructions in an inter-iteration dependence at a potential increase of the
execution time of the individual iterations. In these situations, it maybe more convenient

to select a different approach to improve the performance.

In order to analyze the best optimization for each individual loop, and hence, to determine
the upper-bound performance that we can achieve by applying the LP scheme, we have
applied all the optimizations and their combinations to all detected loops of the

Spec2000Int benchmarks. Thus, in this study we have the following optimizations:

- Code Reordering (CR): simple instruction reordering based on processor
characteristics.

- Atomicity (AT): this optimization includes code reordering and the atomicity
optimization.

- Recurrence Reordering (RR): it includes code reordering and the inter-iteration
dependence based reordering.

- False Anti-Dependences (AD): it includes code reordering and the usage of
temporal registers to break anti-dependences.

- Atomicity + Recurrence Reordering (AT + RR)

- Atomicity + False Anti-Dependences (AT + AD)

- False Anti-Dependences + Recurrence Reordering (AD + RR)

- Atomicity + False Anti-Dependences + Recurrence Reordering (AT + AD +
RR).

Therefore, we have simulated eight versions of the same loop by using the eight different
combinations. Later, we have chosen the best version for each individual loop (the one

that executes the loop in less time) using an offline analysis of the statistics. Since this

16 Numbers are slightly different from the ones presented in Section 5.5.2.2 because of some
enhancements applied to the simulation infrastructure regarding x86 emulation support.

148

5.5. Evaluation

selection is done in an offline manner, and it is the best optimization per each individual
loop, we call it as the Oracle scheme. Figure 5.28 summarizes the results obtained for the
Spec2000Int benchmarks. LP scheme achieves a 26.3% speedup when compared to a
baseline with code reordering. However, the aforementioned optimizations may also help
increasing the performance of the baseline configuration. When comparing the Oracle LP
scheme against and Oracle baseline, where the best version of each individual loop is also

considered for the baseline, the speedup is reduced to 16.5%.

1.6

1.5

1.4

13

1.2 —

1.1

Speedup On Loops

1.0 1+

0.9 -
bzip2 crafty eon gap gcc gzip mcf parser perlbomk twolf vortex vpr AVG

Oracle LP vs Baseline M Oracle LP vs Oracle Baseline

Figure 5.28: Loop parallelization speedup on loops for Spec2000Int benchmarks.

100%
§ 90%
o
...6 80%
o AT+AD+RR
-En 70%
o = AD+RR
3 60% - AT+AD
2
g 50% % AT+RR
< = RR
3 40% o
T =
2 30%
o ° HAT
3
€ 20% mCR
S
5]
< 10%
0%

Baseline Loop Parallelization

Figure 5.29: Accumulated dynamic weight of loop across different optimizations applied to the
code.

149

Chapter 5: Loop Parallelization

In order to understand the importance of each optimization, Figure 5.29 summarizes what
version is chosen for each individual loop by the offline Oracle for the baseline
configuration and for the LP scheme. As it can be seen, Code-Reordering and Atomicity
optimizations accumulate 80% of the loops for the baseline configuration. On the other
hand more optimizations are crucial to improve performance for LP. The False Anti-
Dependences optimization is the best optimization for 33% of the loops, followed by
Atomicity + Recurrence-Reordering that is the best for 20% of the loops. Finally,
Atomicity + False Anti-Dependences combined accumulates 9.8%. This numbers correlate
with the ones shown in Figure 5.27, since False Anti-Dependences is the optimization that

performs better globally for all loops.

5.6 Conclusions & Future Work

Instruction level parallelism (ILP) has been improved significantly during the last decades.
However, this type of parallelism is difficult to exploit because it requires complex
hardware structures that lead to high power consumption and design complexity. In this
scenario, chip multiprocessors (CMPs) and simultaneous multithreading schemes (SMT)
are good alternatives to improve performance while keeping a reasonable power budget.
These schemes consider the execution of multiple parallel applications at the same time
exploiting what is known as thread level parallelism (TLP). Unfortunately, designing

techniques to exploit TLP and ILP is not straight-forward.

In this chapter, we have proposed Loop Parallelization (LP), a hardware/software co-
designed scheme that uses multiple thread contexts to improve the execution of single-
threaded codes. The proposal detects loop codes and optimizes them to be executed in
parallel by using two SMT threads. LP makes use of already existing processor resources
and it executes the loops locally (within the same processor). For this reason, overheads
are small, which allows LP to even parallelize small loops or loops that iterate just a few
times. Moreover, the hardware and the software collaborate to guarantee correct loop
execution. Threads communicate register values in a synchronized manner and memory
dependences are tracked in order to ensure that the outcome of the loop execution
matches the outcome of the original code it represents. Finally, LP is only enabled when
there is a free context in the processor. If there are no free contexts then the loop is

executed as in the original sequential order with no additional overheads because of LP.

LP is a very attractive scheme for improving the performance of single threaded
applications. As it has been shown, LP improves the execution time of the loops in

Spec2000Int benchmarks by more than a 26% by employing two threads when compared

150

5.6. Conclusions & Future Work

to a baseline that does not consider any optimization. Moreover, we have also
demonstrated that LP can be combined with other optimizations techniques. In fact, the
efficient code reordering optimization that takes into account the processor characteristics
is able to improve both, the baseline and the loop parallelization codes, such an enhanced
code reordering and other optimizations aimed to increase the execution overlap. Even
when considering the most optimized baseline, LP scheme is still able to improve it by

16% on average across all benchmarks.

LP scheme does not require increasing the processor design complexity because it exploits
most of the existing SMT resources from the Intel® Atom® processor. Moreover, the
required hardware additions have been designed with small overheads since LP scheme
has been designed to do not penalize loops that iterate just a few times, which are
important from our analysis data. We have demonstrated that most of the detected loops
are improved, or in the worst case they only present small slowdowns, no matter if their

number of iterations is low or if they present small trip-counts.

In this chapter, we have proposed and evaluated the LP proposal. However, several
extensions can also be explored as future work. For example, the simulator can be
enhanced in order to support realistic branch predictor and memory models and the
results can be extended by including other benchmarks suites. Moreover, it would also be

interesting to analyze the power consumption of the technique.

Regarding the technique per se, it is necessary to work on heuristics especially designed to
select the best optimization to be applied to each particular detected loop. Although we
have evaluated all the possible optimizations, we have used an Oracle solution that makes
decision in an offline manner. This offline decisions should be done at run-time based on

the characteristics of the loop.

In this chapter, we have also commented several times the possibility of extending the
technique to support more than two simultaneous threads but we have not fully defined
the proposal. It would be also very interesting to consider it, mostly for loops that exhibit

high parallelism between iterations.

One idea that has not been evaluated yet and may improve significantly the performance
of LP is to not attach threads to iterations in a static manner. In such a way, threads are
able to execute as many consecutive iterations (i+1, i+2, i+3, ..) as possible during the
time that the other thread is stalled while executing iteration ¢ (due to a cache miss, TLB

miss, etc.). This solution requires adjustments of the already presented mechanisms.

151

Chapter 5: Loop Parallelization

Finally, it would be of special interest to combine the LP scheme with other speculative
multithreading techniques in order to continue exploiting TLP and ILP at the same time
in a multicore processor. In this scenario, the code generated by the speculative
multithreading technique can even be optimized when executed in a particular core

processor by the LP proposal.

152

Chapter 6

Conclusions

The main objective of this thesis was to improve current hardware/software co-designed
processors by reducing their hardware and software overheads and by improving their

performance. To do so, we have proposed three different techniques.

First, we have proposed a novel hot code detector that is able to detect high quality hot
code regions at very low cost. The pillar of the proposal is a novel replacement policy,
called LIU, which outperforms the results that can be achieved by other more traditional
replacement policies. The LIU proposal achieves 85.49% hot code coverage and it only
requires a 128 entries table to implement the profiler. Other profilers require at least 1024
entries to achieve similar coverage results. Moreover, the proposal only increases the
processor area by 1% and the total power by less than 0.87%. This profiler contributes
positively to improve processor single thread performance since it detects the code regions

that contribute more to the program execution faster than other approaches.

Second, we have proposed an efficient hardware/software register checkpointing that
requires half the hardware resources than other hardware techniques and that does not
affect performance. The proposal makes use of already existing processor resources, such
as the non-architectonic registers that are present in most of nowadays processor and it
does not require additional hardware structures to be implemented. In particular, the
proposal saves significant amount of power and area when compared to a traditional
shadow register file approach and it is only 1% slower. Although the small performance
degradation, the reduction in the area and power makes a processor implemented with

this scheme a more appealing candidate for a multiprocessor approach.

Finally, we have presented a loop parallelization scheme, referred as LP, which improves

the performance of simple in-order processors by 16% without requiring complex hardware

153

Chapter 6: Conclusions

additions. The proposal detects loop codes and optimizes them to be executed in parallel
by using two SMT threads. LP makes use of already existing processor resources. The
hardware and the software collaborate to guarantee correct loop execution. Threads
communicate register values in a synchronized manner and memory dependences are
tracked to guarantee correct program order execution. This technique is a clear example
on how single thread performance can be improved without impacting processor hardware

requirements by employing hardware/software co-designed techniques.

These three techniques cover three key points of the hardware/software co-designed
processors main operational flow: the detection of hot code, its optimization, and its
execution in the hardware. By means of these techniques we have improved the design of
current hardware/software co-designed processors by reducing software and hardware
overheads (LIU and HRC) and by improving performance (LP). In addition, LIU and
HRC also allow the implementation of optimizations designed to continue improving

performance.

Therefore, we believe that a multicore processor based on the technologies described in
this thesis is a good approach to continue exploiting thread level parallelism without

sacrificing single thread performance.

This chapter is organized as follows. In Section 6.1, we present the main contributions of
this thesis, and in Section 6.2, we describe some recommendations about new areas to be
explored to continue on the definition of an efficient hardware/software co-designed

processor.

6.1 Original Contributions

The development of this thesis has generated the following original contributions:

o A detailed classification on how basic blocks execute has been performed for the
LIU Profiler. This classification has served to define which basic blocks are of
higher priority for the profiler and need to be detected as soon as possible for
optimization.

e A novel replacement policy for the LIU Profiler has been proposed. This new
replacement policy is called LIU (from Least Intensively Used) and it combines the
recency and the frequency of the accesses. It has been designed by taking into
account the aforementioned basic block classification proposed in this thesis. The
LIU replacement policy outperforms the results that can be achieved when

considering other traditional replacement policies for detecting hot code when

154

6.1. Original Contributions

employed in a profiler hardware table. Moreover, the LIU replacement policy could
be employed in other environments because of its open and general design (for
instance, similar proposals are implemented for page replacement in Operating
Systems and for web page replacing in servers). The LIU replacement policy has
been patented [144].

A novel hardware/software hot code profiler, referred as the LIU Profiler, has been
designed and implemented. The LIU Profiler is able to detect hot code regions in a
very fast and efficient manner by using a simple hardware table for code profiling
and a software algorithm to build code regions for optimization. The proposal
introduces minimal overheads in the system and it is able to achieve better
coverage than other solutions that require more hardware resources for their
implementation. Moreover, the LIU profiler presents high accuracy when detecting
hot code, prioritizing the detection of basic blocks that contribute more to the
coverage of the applications over those that contribute less.

An efficient hardware implementation of the LIU replacement policy has also been
proposed. We call this implementation as the pLIU replacement policy (p stands
for pseudo). The pLIU replacement policy demonstrated similar coverage numbers
than the original LIU when employed for detecting hot code but it requires
significantly less hardware resources to be implemented in the processor. The LIU
Profiler that makes use of the pLIU only requires 1% extra area overhead when
implemented on top of an Intel® P54C processor.

An efficient hardware/software register checkpointing scheme has been defined and
implemented. This proposal does not require important hardware additions and it
uses the software combined with the hardware to implement very efficient
checkpointing and recovery mechanism. It makes use of already existing processor
resources, such as the non-architectonic registers that are present in most of
nowadays processors. The proposal saves significant amount of power and area
when compared with other hardware solutions. Moreover, it is only 1% slower than
these solutions when implemented on top of an Intel® Atom®-like processor.

A novel loop parallelization scheme for exploiting ILP in simple in-order SMT
processors has been proposed. The proposal decomposes the loops into multiple
threads in order to speedup its execution by means of parallelizing them. It
requires simple hardware enhancements to support fast and low-cost
synchronization across the threads. The loop parallelization scheme significantly

improves the execution of loops when compared to their sequential execution.

155

Chapter 6: Conclusions

o An efficient and fast thread spawning generator technique has been developed for
the loop parallelization scheme. This technique minimizes the delay from fetch to
execution of the instruction belonging to the new spawned threads. We call this
feature Spawn-at-fetch and it is crucial in the proposed loop parallelization to not
suffer from slowdowns when executing small loops and loops that iterate just a few
times.

e Finally, a fast register communication scheme for SMT threads has been presented.
This proposal has been proposed for loop parallelization but it can also be used for
executing speculative threads in code that is not inside loops. In this case, the
same synchronization/communication mechanisms proposed in this thesis can be
used to access register values from the different thread register files. Moreover, the
register communication also involves a dynamic binding between threads and
registers that can be used to specify live-outs registers. The communication scheme

has been patented [145].

6.2 Future Work

As it has already been commented, the different techniques exposed in this manuscript
may be subjected to some improvements and extensions. In this section, we summarize all
of them briefly and we address the reader to the specific chapter of each technique to get

more details.

Regarding the LIU profiler, it would be very interesting to understand the effects of multi-
tasking in a real execution environment. Note that the LIU profiler has been studied in a
single thread execution environment and that the context switch impact has been studied

with a simple analytical model.

Moreover, the LIU profiler chapter only covers the part of detecting hot code but not the
software required to build the final code regions. Therefore, as future work, it would be
very interesting to study how the code regions can be built by employing the profiled

information from the LIU profiler.

Regarding the hardware/software register checkpointing technique, we have emplaced as
future work the interactions that the proposal may have with other optimization
techniques that make use of non-architectural registers. Moreover, we are also interested
on continuing exploring heuristics to improve the register allocation mechanisms that

interact with the new inserted move instructions.

156

6.2. Future Work

Regarding the loop parallelization scheme, it is necessary to continue working on
heuristics to select the best optimizations to be applied to each particular loop. We have
done these analyses in an offline manner and it would be good to analyze alternatives to

make these decisions at run-time.

Moreover, the loop parallelization scheme can be extended to support more than two
simultaneous threads, which is very appealing for loops that exhibit high parallelism

between iterations.

Finally, we have proposed as future work to do not attach iterations and threads in a
static manner for loop parallelization. In such a way, threads are able to execute as much

consecutive iteration as possible during the time that the other thread is stalled.

157

Chapter 6: Conclusions

158

Bibliography

Bibliography

1]

S. Shankland y M. Kanellos, «Intel to elaborate on new multicore processor,» 2003.
[En linea]. Available:
http://news.zdnet.co.uk /hardware/chips/0,39020354,39116043,00.htm.

C. Farivar, «Intel Developers Forum roundup: four core now, 80 cores later,» 2006.
[En linea]. Available: http://www.engadget.com/2006/09/26/intel-developers-forum-

roundup-four-cores-now-80-cores-later/.
D. Geer, «Chip Makers Turn to Multicore Processors,» n® May, 2005.

S. Bisson, «Azul announces 192 core Java appliance,» 2006. [En linea]. Available:
http://www.itpro.co.uk/servers/news/99765/azul-announces-192-core-java-

appliance.html.

AMD, «Multi-core processors - The next evolution in computing,» Advanced Micro

Devices, Inc., 2005.

Intel, «A new era of architectural innovation arrives with dual-core processors,»

Technology@Intel Magazine, 2005.

R. Kalla, B. Sinharoy y J. M. Tendler, «<IBM Powerb chip: a dual-core multithreaded
processor,» IEEE Micro, 2004.

S. Palacharla, N. P. Jouppi y J. E. Smith, «Complexity-Effective Superscalar
Processors,» de Proceedings of the 24th annual international symposium on
Computer architecture (ISCA '97), 1997.

H. Zhong, S. A. Lieberman y S. A. Mahlke, «Extending Multicore Architectures to
Exploit Hybrid Parallelism in Single-thread Applications,» de Proceedings of the

2007 IEEE 13th International Symposium on High Performance Computer
Architecture (HPCA '07), 2007.

C. Madriles, P. Lépez, J. M. Codina, E. Gibert, F. Latorre, A. Martinez, R. Martinez

y A. Gonzélez, «Boosting Single-thread Performance in Multi-core Systems through

159

Bibliography

Fine-grain Multi-Threading,» de The 36th International Symposium on Computer
Architecture (ISCA '09), 2009.

C. Garcia, C. Madriles, J. Sanchez, P. Marcuello, A. Gonzalez y D. M. Tullsen,
«Mitosis compiler: an infrastructure for speculative threading based on pre-
computation slices,» de Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation (PLDI '05), 2005.

E. Ipek, M. Kirman, N. Kirman y J. F. Martinez, «Core fusion: accommodating
software diversity in chip multiprocessors,» de Proceedings of the 3/th annual

international symposium on Computer architecture (ISCA '07), 2007.

J. E. Smith y R. Nair, Virtual Machines: Versatile Platforms for Systems and

Processes, Elsevier, 2005.

J. Dehnert, «Transmeta Crusoe and Efficeon: Embedded VLIW as a CISC

Implementation,» Vienna, 2003.
T. Halfhill, Transmeta Breaks x86 Low-Power Barrier. Microprocessor Report, 2000.
A. Klaiber, «The Technology Behind the Crusoe Processors,» 2000.

J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl y G. Chrysos, «ProfileMe:
Hardware Support for Instruction-Level Profiling on Out-of-Order Processors,»

Proceedings of the 30th annual Internation Symposium on Microarchitecture
(MICRO 30), pp. 292-302, 1997.

M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal y W.-m. W. Hwu, «A
hardware-driven profiling scheme for identifying program hot spots to support
runtime optimization,» de Proceedings of the 26th internation symposium on
Computer Architecture (ISCA '99), 1999.

A. Semin, «Intel Next Generation Nehalem Microarchitecture,» Intel Corporation,
EMEA, 2009.

D. Kanter, «cAMD's Bulldozer Microarchitecture,» Real World Technologies, 26
August 2010. [En linea]. Available: http://www.realworldtech.com/bulldozer/ .

160

Bibliography

[21]

[24]

[25]

[27]

28]

R. F. Cmelik, D. R. Ditzel, E. J. Kelly y C. B. Hunter, «Combining Hardware and
Software to Provide an Improved Microprocessor». US Patent Patente 6,031,992,
Feb. 2000.

Y. Almog, R. Rosner, N. Schwartz y A. Schmorak, «Specialized Dynamic
Optimizations for High-Performance Energy Efficient Microarchitecture,» de Procs.
of 4th International Symposium on Code Generation and Optimization (CGO'04),
2004.

J. E. Smith, S. Sastry, T. Heil y T. M. Bezenek, «Achieving high performance via co-
designed virtual machines,» de Proceedings of the internationl Workshop on
Innovative Architecture (IWIA '98), 1998.

K. Ebcioglu, E. Altman, M. Gschwind y S. Sathaye, « Dynamic Binary Translation
and Optimization,» IEEE Transactions on Computers, vol. 50, n® 6, pp. 529-548,
2001.

T. M. Conte, B. A. Patel y J. S. Cox, «Using branch handling hardware to support
profile-driven optimization,» Proceedings of the 27th annual internationl symposium
on Microarchitecture (MICRO 27), pp. 12-21, 1994.

T. M. Conte, K. N. Menezes y M. A. Hirsch, «Accurate and Practical Profile-Driven
Compilation Using the Profile Buffer,» Proceedings of the 29th Annual International

Symposium on Microarchitecture, 1996.

T. Heil y J. E. Smith, «Relational profiling: enabling thread-level parallelism in
virtual machines,» Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture (MICRO 33), pp. 281-290, 2000.

N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan y C. Zilles, «Hardware
atomicity for reliable software speculation,» de Proceedings of the 34th annual

international symposium on Computer architecture (ISCA '07), 2007.

E. Altman, M. Gschwind, S. Sathaye, S. Kosonocky, A. Bright, J. Fritts, P. Ledak,
D. Appenzeller, C. Agricola y Z. Filan, «BOA: The Architecture of A Binary
translation Engine,» IBM Research Report RC 21665 (97500), 1999.

161

Bibl

iography

[30]

[31]

[36]

162

K. Ebcioglu y E. R. Altman, «DAISY: Dynamic Compilation for 100% Architectural
Compatibility,» de Proc. of the 24th International Symposium on Computer
Architecture (ISCA '97), 1997.

J. E. Smith y R. Nair, «An Overview of Virtual Machine Architectures,» de Virtual
Machines: Architectures, Implementations and Applications, Morgan Kaufmann
Publishers, 2004.

Intel, «Intel 64 and TA-32 Architectures Optimization Reference Manual,» 2011.
Wikpedia, «Windows RT,» [En linea].

Wikipedia, «Virtualization,» [En linea]. Available:
http://en.wikipedia.org/wiki/Virtualization.

A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. B. Yadavalli y
J. Yates, «FX132: A Profiler-Directed Binary Translator,» de IEEE Micro (18),
1998.

V. Bala, E. Duesterwald y S. Banerjia, «Dynamo: A transparent dynamic
optimization system,» de Proc. of the ACM SIGPLAN Conf. on Programming
Language Design and Implementation, 2000.

D. Bruening, T. Garnett y S. Amarasinghe, «An Infrastructure for Adaptive
Dynamic Optimization,» de International Symposium on Code Generation and
Optimization (CGO '03), 2003.

Wikipedia, «Binary translation,» [En linea]. Available:

http://en.wikipedia.org/wiki/Binary_translation.
L. Harrison, «Transmeta Crusoe,» Processor Presentation Series, 2005.

Wikipedia, «Input/Output,» 2012. [En linea]. Available:
http://en.wikipedia.org/wiki/Input /output.

W.-m. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm y D.
M. Lavery, «The super block: An effective technique,» The Journal of

Bibliography

[44]

[45]

[47]

[48]

Supercomputig - Special issue on instruction-level parallelism, vol. 7, n® 1-2, pp. 229-
248, 1993.

M. C. Merten, A. R. Trick y R. D. Barnes, «An architectural framework for runtime
optimization,» IEEFE Transactions on Computers, vol. 50, n® 6, pp. 567-589, 2001.

G. Ammons, T. Ball y J. R. Larus, «Exploiting Hardware Performance Counters

With Flow and Context Sensitive Profiling,» de Prog. Lang. Design and Impl, 1997.

S. Eranian, «The hardware-based performance monitoring interface for Linux,» [En

linea]. Available: http://perform2.sourceforge.net.

R. S. Cohn, D. W. Goodwin y P. G. Lowney, «Optimizing Alpha Executables on
Windows NT with Spike,» Digital Technical Journal, pp. 3-20, 1998.

E. Duesterwald y V. Bala, «Software profiling for hot path prediction: Less is more,»
de 9th International Conference on Architectural Support for Programming

Languages and Operating Systems, 2000.

J. D. Hiser, D. Williams, W. Hu, J. W. Davidson, J. Mars y B. R. Childers,
«Evaluating Indirect Branch Handling Mechanisms in Software Dynamic Translation

Systems,» de International Symposium on Code Generation and Optimization
(CGO'07), 2007.

H.-S. Kim y J. E. Smith, «Hardware Support for Control Transfers in Code Caches,»
de 36th annual IEEE/ACM International Symposium on Microarchitecture (MICRO
36), 2003.

K. Hazelwood y M. D. Smith, «Code Cache Management Schemes for Dynamic
Optimizers,» de Proceedings of the Sixth Annual Workshop on Interaction between
Compilers and Computer Architecture (INTERACT '02), 2002.

R. M. Karp, «Reducibility Among Combinatorial Problems,» de Complexity of
Computer Computations, 1972.

K. Hazelwood y M. D. Smith, «Generational Cache Management of Code Traces in

Dynamic Optimization Systems,» de Proceedings of the 36th International

163

Bibliography

[52]

[54]

[55]

[56]

[57]

[58]

Symposium on Microarchitecture (MICRO 36), San Diego, CA, 2003.

J. A. Baiocchi, B. R. Childers, J. W. Davidson y J. D. Hiser, «Reducing Pressure in
Bounded DBT Code Caches,» de International Conference on Compilers
Architecture and Synthesis for Embedded (CASES 08), 2008.

J. A. Baiocchi, B. R. Childers, J. W. Davidson, J. D. Hiser y J. Misurda, «Fragment
Cache Management for Dynamic Binary Translators in Embedded Systems with
Scratchpad,» de International Conference on Compilers Architecture and Synthesis
for embedded (CASES 07), 2007.

K. Hazelwood y M. D. Smith, «Managing bounded code caches in dynamic binary
optimization systems,» de ACM Transactions on Architecture and Code
Optimization (TACO), 2006.

Y. Sun y W. Zhang, «Improving code caching performance for Java applications,» de
Proceedings of the International Symposium on Parallel and Distributed Processing
(IPDPS '08), Miami, FL, 2008.

K. Casey, M. A. Ertl y D. Gregg, «Optimizing Indirect Branch Prediction Accuracy
in Virtual Machine Interpreters,» de ACM Transactions on Programming Languages
and Systems (TOPLAS), 2007.

D. F. Bacon, S. L. Graham y O. J. Sharp, «Compiler transformations for high-
performance computing,» ACM Computing Surveys, pp. Volume 26, Issue 4, 1994.

J. Cocke, «Global Common Subexpression Elimination,» de Proceedings of a

Symposium on Compiler Optimization, 1970.

S. S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann,

1997.

A. V. Aho, R. Sethi y J. D. Ullman, Compilers: Principles, Techniques and Tools,
1986.

M. D. Smith, N. Ramsey y G. Holloway, «A Generalized Algorithm for Graph-
Coloring Register Allocation,» de Proceedings of the ACM SIGPLAN 200/

164

Bibliography

[62]

[66]

[69]

conference on Programming Language Design and Implementation, 2004.

M. C. Golumbic, R. B. Dewar y C. F. Goss, «Macro Substitutions in MICRO
SPITBOL - a Combinatorial Analysis,» de Proceedings of the 11th Southeastern
Conference on Combinatorics, Graph Theory and Computing, Congressus

Numerantium, Utilitas Math, Winninpeg, Canada, 1980.

J. E. Smith y A. R. Pleszkun, «Implementation of Precise Interrupts in Pipelined
Processors,» de Proceedings of the 12th Annual International Symposium on
Computer Architecture (ISCA '85), 1985.

N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan y C. Zilles, «Hardware
Atomicity for Reliable Software Speculation,» de Proceedings of the 34th annual
international symposium on Computer Architecture (ISCA'07), San Diego, 2007.

W. Ahn, Y. Duan y J. Torrellas, «DeAliaser: Alias Speculation Using Atomic Region
Support,» de Proceedings of the eighteenth international conference on Architectural

support for programming languages and operating systems (ASPL0OS'13), 2013.

H. Akkary, R. Rajwar y S. T. Srinivasan, « Checkpoint Processing and Recovery:
Towards Scalable Large Instruction Window Processors,» de Proceedings of the 36th
annual IEEE/ACM International Symposium on Microarchitecture (MICRO 36),
2003.

M. J. Wing y G. P. D'Souza, «Gated Store Buffer for an Advanced Microprocessor».
US Patente 6011908, 2000.

K. Hazelwood y J. E. Smith, «Exploring code cache eviction granularities in dynamic
optimization systems,» de International Symposium on Code Generation and
Optimization (CGO '04), 2004.

C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson y S. Lie, «Unbounded
Transactional Memory,» de HPCA '05 Proceedings of the 11th International
Symposium on High-Performance Computer Architecture, 2005.

M. Herlihy y J. E. B. Moss, «Transactional memory: architectural support for lock-

free data structures,» de Proceedings of the 20th annual international symposium on

165

Bibl

iography

[71]

[72]

[74]

[75]

[76]

166

computer architecture (ISCA '93), 1993.

R. Rajwar, M. Herlihy y K. Lai, «Virtualizing Transactional Memory,» de
Proceedings of the 32nd annual international symposium on Computer Architecture
(ISCA '05), 2005.

L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift y D.
A. Wood, «LogTM-SE: Decoupling Hardware Transactional Memory from Caches,»
de Proceedings of the 2007 IEEE 13th International Symposium on High
Performance Computer Architecture (HPCA '07), 2007.

J. F. Martinez, J. Renau, M. C. Huang, M. Prvulovic y J. Torrellas, «Cherry:
Checkpointed Early Recycling in Out-of-order Microprocessors,» de Proceedings of
the 35th annual ACM/IEEE international symposium on Microarchitecture (MICRO
35), 2002.

Wikipedia, «Atomicity (Database Systems),» Wikipedia, [En linea]. Available:
http://en.wikipedia.org/wiki/Atomicity (database_systems).

G. Rozas, A. Klaiber, D. Dunn, P. Serris y L. Shah, «Supporting Speculative
Modification in a Data Cache». United States Patent Patente 7,225,299, May 2007.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi y K. Hazelwood, «Pin: Building customized program analysis tools with
dynamic instrumentation,» de Proceedings of the 2005 ACM SIGPLAN conference
on Programming Language Design and Implementation (PLDI '05), 2005.

N. Nethercote y J. Seward, «Valgrind: A framework for heavyweight dynamic binary
instrumentation,» de Proceedings of the 2007 ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI '07), 2007.

T. Ball y J. R. Larus, «Efficient Path Profiling,» Proceedings of the 29th Annual
International Symposium on Microarchitecture, pp. 46-57, 1996.

J. R. Larus, «Whole Program Paths,» de Proceedings of the ACM SIGPLAN 1999

conference on Programming language design and implementation (PLDI '99), 1999.

Bibliography

[80]

[87]

S. Tallam, X. Zhang y R. Gupta, «Extending Path Profiling across Loop Backedges
and Procesdure Boundaries,» de Proceedings of the International Symposium on
Code Generation and Optimization (CGO '04), 2004.

M. Arnold y B. G. Ryder, «A Framework for Reducing the cost of Instrumented
Code,» Proceedings of the ACM SIGPLAN Conference on Programming Languages
Design and Implementation, pp. 168-179, 2001.

R. Joshi, M. D. Bond y C. B. Zilles, «Targeted Path Profiling: Lower Overhead Path
Profiling for Staged Dynamic Optimization Systems,» Proceedings of the
International Symposium on Code Generation and Optimization (CGO '04), pp. 239-
250, 2004.

T. Yasue, T. Suganuma, H. Komatsu y T. Nakatani, « An Efficient Online Path
Profiling Framework for Java Just-In-Time Compilers,» de Proceedings of the 12th

International Conference on Parallel Architectures and Compilation Techniques
(PACT '03), 2003.

T. M. Conte, B. A. Patel, K. N. Menezes y J. S. Cox, «Hardware-Based Profiling:
An Effective Technique for Profile-Driven Optimization,» International Journal of
Parallel Programming, pp. 187-206, 1996.

R. Nair y T. J. Watson, «Dynamic path-based branch correlation,» de Proceedings
of the 28th annual internation symposium on Microarchitecture (MICRO 28), 1995.

P. P. Chang, S. A. Mahlke y W.-m. W. Hwu, «Using profile information to assist
classic code optimizations,» Software - Practice and Fzxperience, vol. 21, n® 12, pp.
1301-1321, 1991.

E. Rotenberg, S. Bennet y J. E. Smith, «Trace Cache: a Low Latency Approach to
High Bandwidth Instruction Fetching,» de Proceedings of the 28th annual
ACM/IEEE international Symposium on Microarchitecture (MICRO 29), 1996.

S. J. Patel y S. S. Lumetta, «rePLay: A Hardware Framework for Dynamic Program
Optimization,» IEEE Transactions on Computers, vol. 50, n° 6, pp. 590-608, 2001.

B. Sprunt, «Pentium 4 Performance Monitoring Features,» IFEE Micro, vol. 22, n°

167

Bibliography

[90]

[91]

[92]

[95]

4, pp. 72-82, 2002.
S. M. Inc, «UltraSPARC User's Manual,» 1997.

J. L. Henning, «SPEC CPU2006 benchmark descriptions,» ACM SIGARCH
Computer Architecture News, vol. 34, n® 4, pp. 1-17, 2006.

J. L. Henning, «SPEC CPU2000: Measuring CPU Performance in the New
Millennium,» Journal, vol. 33, n® 7, pp. 28-35, 2000.

S. Hu y J. E. Smith, «Reducing Startup Time in Co-Designed Virtual Machines,» de
Proceedings of the 33rd annual international symposium on Computer Architecture
(ISCA '06), 2006.

A. Shankar, S. S. Sastry, R. Bodik y J. E. Smith, «Runtime specialization with
optimistic heap analysis,» de Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications
(OOPSLA '05), 2005.

S. Hu y J. E. Smith, «Using Dynamic Binary Translation to Fuse Dependent
Instructions,» de Proceedings of the international symposium on Code generation

and optimization (CGO '04), 2004.

B. Fahs, T. Rafacz, S. J. Patel y S. S. Lumetta, «Continuous Optimization,» de

Proceedings of the 32nd annual international symposium on Computer Architecture
(ISCA '05), 2005.

T. Ball y J. R. Larus, «Optimally Profiling and Tracing Programs,» ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 16, n® 4, pp.
1319-1360, 1994.

R. Love, «The Linux Process Scheduler,» informIT, 2003.

A. Gal y M. Franz, «Incremental Dynamic Code Generation with Trace Trees,»

Technical Report, 2006.

[100] M. Jaragh y A. Hasswa, «Implementation, Analysis and Performance Evaluation of

the IRP-Cache Replacement Policy,» Microelectronics Reliability Journal, 2005.

168

Bibliography

101] D. Lee, J. Choi, H. Choe, S. H. Noh, S. L. Min y Y. Cho, «Implementation and
y
performance evaluation of the LRFU replacement policy,» EUROMICRO 97, pp.
106-111, 1997.

[102] Wikipedia, «Priority Encoder,» [En linea]. Available:
http://en.wikipedia.org/wiki/Priority encoder.

[103] Wikipedia, «Decoder,» [En linea]. Available: http://en.wikipedia.org/wiki/Decoder.

[104] Wikipedia, «Intel P54C Pentium Processor,» [En linea]. Available:
http://en.wikipedia.org/wiki/Pentium.

[105] I. Corporation, «Pentium® Processor Datasheet,» Intel Corporation, 1997.

[106] S. Wilton y N. P. Jouppi, «An Enhanced Access And Cycle Time Model for On-Chip
Caches,» Technical Report 93/5, DEC WRL, 1994.

[107] Intel, «Intel(r) Atom TM Processor 230 Series,» Intel Corporation, 2010.
[108] I. Corporation, «Intel(r) Atom(tm) Processor Z5xx Series,» Intel Corporation, 2011.

[109] M. Gschwind y E. R. Altman, «Precise Exceptions Semantics in Dynamic
Compilation,» Procs. of the 2002 Symposium on Compiler Construction (CC '02),
2002.

[110] K. Krewell, « Transmeta gets more efficeon,» Micro-processor Report, 2003.

[111] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber y J.
Mattson, «The Transmeta Code Morphing Software: Using Speculation, Recovery,
and Adaptive Retranslation to Address Real-Life Challenges,» de International
Symposium on Code Generation and Optimization (CGO '03), 2003.

[112] E. Altman, K. Ebcioglu, M. Gschwind y S. Sathaye, «Efficient Instruction
Scheduling with Precise Exceptions,» IBM Research Report RC 22957 (97495), 1999.

[113] Intel, Intel® 64 and 1A-32 Architectures Software Developer’s Manual - Volume 1:
Basic Architecture, Intel Corporation, 2009.

169

Bibliography

[114] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S. J. Patel y S. S.
Lumetta, «Performance Characterization of a Hardware Mechanism for Dynamic
Optimization,» de Procs. of 34th International Symposium On Microarchitecture
(MICRO 34), 2001.

[115] R. Rosner, Y. Almog, M. Moffie, N. Schwartz y A. Mendelson, «Power Awareness
through Selective Dynamically Optimized Traces,» de Proceedings of the 31st
International Symposium on Computer Architecture (ISCA 21), 2004.

[116] S. Hack, D. Grund y G. Goos, «Register Allocation for Programs in SSA-Form,» de
Proceedings of the 15th International Conference on Compiler (CC'06), 2006.

[117] G. Chen y M. D. Smith, «Reorganizing Global Schedules for Register Allocation,» de
I1CS'99 Proceding of the 13th International Conference on Supercomputing, 1999.

[118] S. A. Mahlke, W. Y. Chen, J. C. Gyllenhaal y W.-m. W. Hwu, «Compiler code
transformations for superscalar-based high performance systems,» de Proceedings of

the 1992 ACM/IEEE conference on Supercomputing (Supercomputing '92), 1992.

[119] J. W. Davidson y S. Jinturkar, «Memory access coalescing: a technique for
eliminating redundant memory accesses,» de Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementation (PLDI '94),
1994.

[120] V. H. Allan, R. B. Jones, R. M. Lee y S. J. Allan, «Software Pipelining,» ACM
Computing Surveys (CSUR), vol. 27, n® 3, pp. 367 - 432, 1995.

[121] S. Balakrishnan y G. Sohi, «Program Demultiplexing: Data flow based Speculative
Parallelization of Methods in Sequential Programs,» de Proceedings of the

International Symposium on Computer Architecture, 2006.

[122] M. Cintra, J. Martinez y J. Torrellas, «Architectural Support for Scalable
Speculative Parallelization in Shared Memory Systems,» de Proceedings of the 27th

International Symposium on Computer Architecture, 2000.

[123] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery y J. Shen,

«Speculative Precomputation: Long Range Prefetching of Delinquent Loads,» de

170

Bibliography

Proceedings of the 28th International Symposium on Computer Architecture, 2001.

[124] T. Johnson, R. Eigenmann y T. Vijaykumar, «Min-Cut Program Decomposition for
Thread-Level Speculation,» de Proceedings of Conference on Programming

Language Design and Implementation, 2004.

[125] P. Marcuello y A. Gonzélez, « Thread-Spawning Schemes for Speculative
Multithreaded Architectures,» de Proceedings of the Symposium on High

Performance Computer Architectures, 2002.

[126] T. Ohsawa, M. Takagi, S. Kawahara y S. Matsushita, «Pinot: Speculative Multi-
threading Processor Architecture Exploiting Parallelism over a wide Range of
Granularities,» de Proceedings of the 38th International Symposium on

Microarchitecture, 2005.

[127] N. Vachharajani, R. Rangan, E. Raman, M. Bridges, G. Ottoni y D. August,
«Speculative Decoupled Software Pipelining,» de Proceedings of the Conference on

Parallel Architecture and Compilation Techniques, 2007.

[128] C. Zilles y G. Sohi, «2001,» de Proceedigns of the 28th International Symposium on

Computer Architecture, Execution-Based Prediction Using Speculative Slices.

[129] C. Zilles, S. Lieberman y S. Mahlke, «Extending Multicore Architectures to Exploit
Hybrid Parallelism in Single-thread Applications,» de Proceedings in the

International Symposium on High Performance Computer Architecture, 2007.

[130] C. Madriles, P. Lopez, J. Codina, E. Gibert, F. Latorre, A. Martinez, R. Martinez y
A. Gonzélez, « Anaphase: A fine-grain thread decomposition scheme for speculative
multithreading,» de In Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques, 20009.

[131] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm y D. Tullsen, «Simultaneous

multithreading: a platform for next-generation processors,» de IEEE Micro, 1997.

[132] F. Warg y P. Stenstrom, «Dual-thread Speculation: A Simple Approach to Uncover
Thread-level Parallelism on a Simultaneous Multithreaded Processor,» de

International Journal of Parallel Programming, 2008.

171

Bibliography

[133] S. Wallace, B. Calder y D. M. Tullsen, «Threaded multiple path execution,» de
Proceedings of the 25th Annual International Symposium on Computer Architecture,
1998.

[134] H. Akkary y M. A. Driscoll, «A dynamic multithreading processor,» de Proceedings
of the 31st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 31), 1998.

[135] P. Marcuello y A. Gonzélez, «Exploiting speculative thread-level parallelism on a
SMT processor,» de Proceedings of the International Conference on High

Performance Computing and Networking, 1999.

[136] I. Park, B. Falsafi y T. N. Vijaykumar, «Implicitly-multithreaded processors,» de
Proceedings of the 30th annual international symposium on Computer architecture
(ISCA'03), 2003.

[137] V. Packirisamy, S. Wang, A. Zhai, W.-C. Hsu y P.-C. Ywe, «Supporting speculative
multithreading on simultaneous multithreaded processors,» de Proceedings of the

13th international conference on High Performance Computing (HiPC'06), 2006.

[138] A. Zhai, C. B. Colohan, J. G. Steffan y T. C. Mowry, «Compiler optimization of
scalar value communication between speculative threads,» de Proceedings of the 10th

international conference on Architectural support for programming languages and
operating systems (ASPLOS X), 2002.

[139] A. Kejariwal, X. Tian, W. Li, M. Girkar, S. Kozhukhov, H. Saito, U. Banerjee, A.
Nicolau, A. V. Veidenbaum y C. D. Plychronopoulos, «On the Perofrmance
Potential of Different Types of Speculative Thread-Level Parallelism,» de

Proceedings of the 20th annual international conference of Supercomputing, 2006.

[140] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank y R. A. Bringmann, «Effective
Compiler Support for Predicated Execution Using the Hyperblock,» de Proceedings
of the 25th annual International Symposium on Microarchitecture (MICRO 25),
1992.

[141] A. Zhai, C. B. Colohan, J. G. Steffan y T. C. Mowry, «Compilter Optimization of

Scalar Value Communication Between Speculative Threads,» de Proceedings of the

172

Bibliography

10th international conference on Architectural support for programming languages

and operating systems (ASPLOS'02), 2002.

[142] B. H. Bloom, «Space/Time Trade-offs in Hash Coding with Allowable Errors,»
Communications of the ACM, vol. 13, n® 7, pp. 422 - 426, July 1970.

[143] G. Gerosa, S. Curtis, M. D'addeo, B. Jiang, B. Kuttanna, F. Merchant, B. Patel, M.
Taufique y H. Samarchi, «A Sub-1W to 2W Low-Power TA Processor for Mobile
Internet Devices and Ultra-Mobile PCs in 45nm Hi-k Metal Gate CMOS,» de IEEE
International Solid-State Circuits Conference (ISSCC 2008), 2008.

[144] P. Lopez, J. F. Sanchez, J. M. Codina, E. Gibert, F. Latorre, G. Magklis, P.
Marcuello y A. Gonzédlez, «A Replacement Policy For Hot Code Detection». US
Patente 201001155247, 6 May 2010.

[145] E. Gibert, J. M. Codina, F. Latorre, A. Pifieiro, P. Lépez y A. Gonzélez,
«Communicating Between Multiple Threads In A Processor». US Patente

20100005277, 7 January 2010.

[146] V. J. Reddi, D. Connors, R. Cohn y M. D. Smith, «Persistent Code Caching:
Exploiting Code Reuse Across Executions and Applications,» de Proceedings of the

International Symposium on Code Generation and Optimization (CGO '07), 2007.

[147] S. Gochman, A. Mendelson, A. Naveh y E. Rotem, «Introduction to Intel(r) Core
TM Duo Processor Architecture,» Intel Technology Journal, 2006.

[148] L. Harrison, «Prof. Luddy Harrison Home Page,» 2005. [En linea]. Available:
http://www.cs.uiuc.edu/homes/luddy/PROCESSORS /TransmetaCrusoe.pdf.

[149] T. Krazit, « Transmeta Hype Suffers Hardware Reality [PCWorld],» 6 September
2004. [En linea]. Available: http://www.pcworld.com/article/117685 /article.html.
[Ultimo acceso: 14 February 2013].

[150] F. Warg y P. Stenstrom, «Dual-thread speculation: a simple approach to uncover
thread-level parallelism on a simultaneous multithreaded processor,» de International

Journal of Parallel Programming, 2008.

173

Bibliography

[151] J. L. Ayala y A. Veidenbaum, «Reducing Register File Energy Consumption using,»
de 1st Workshop on Application Specific Processors (WASP) held in conjuntion with

35th Annual International Symposium on Microarchitecture, Istanbul, Turkey, 2002.

[152] W. T. F. Encyclopedia, «Memory Disambiguation,» [En linea]. Available:

en.wikipedia.org/wiki/Memory disambiguation.

174

