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Introduction

0.1 Motivation

Nanotechnology was named one of the key enabling technologies by the
european commission [Europe, 2012] and it’s tremendous impact on tech-
nology was envisioned early by 20th century physicist R.Feynman in his now
oft-quoted talk "Plenty of Room at the bottom" [Feynman, 1960].
Nanotechnology and nanoscience deal with structures barely visible with
an optical microscope, yet much bigger than simple molecules. Matter at
this mesoscale is often awkward to explore. It contains too many atoms to
be easily understood by straightforward application of quantum mechanics
(although the fundamental laws still apply). Yet, these systems are not so
large as to be completely free of quantum effects; thus, they do not sim-
ply obey the classical physics governing the macroworld. It is precisely
in this intermediate regime, the mesoworld, that unforeseen properties of
collective systems emerge [Roukes, 2001]. To fully exploit the potential of
nanotechnology, a thorough understanding of these properties is paramount.

The objective of the present thesis is to investigate and to control the
dynamics of an optically levitated particle in high vacuum. This system
belongs to the broader class of nanomechanical oscillators. Nanomechani-
cal oscillators exhibit high resonance frequencies, diminished active masses,
low power consumption and high quality factors - significantly higher than
those of electrical circuits [Ekinci and Roukes, 2005]. These attributes make
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them suitable for sensing [Chaste et al., 2012; Moser et al., 2013; Cleland and
Roukes, 1998; Yang et al., 2006; Arlett et al., 2011], transduction [Lin et al.,
2010; Bagci et al., 2013; Unterreithmeier et al., 2009] and signal process-
ing [Liu et al., 2008]. Furthermore, nanomechanical systems are expected
to open up investigations of the quantum behaviour of mesoscopic systems.
Testing the predictions of quantum theory on meso- to macroscopic scales is
one of todays outstanding challenges of modern physics and addresses fun-
damental questions on our understanding of the world [Kaltenbaek et al.,
2012].

The state-of-the-art in nanomechanics itself has exploded in recent years,
driven by a combination of interesting new systems and vastly improved fab-
rication capabilities [Verhagen et al., 2012; Eichenfield et al., 2009; Sankey
et al., 2010]. Despite major breakthroughs, including ground state cooling
[O’Connell et al., 2010], observation of radiation pressure shot noise [Purdy
et al., 2013], squeezing [Safavi-Naeini et al., 2013] and demonstrated ultra-
high force [Moser et al., 2013] and mass sensitivity [Chaste et al., 2012;
Hanay et al., 2012; Yang et al., 2006], difficulties in reaching ultra-high me-
chanical quality (Q) factors still pose a major limitation for many of the
envisioned applications. Micro-fabricated mechanical systems are approach-
ing fundamental limits of dissipation [Cleland and Roukes, 2002; Mohanty
et al., 2002], thereby limiting their Q-factors. In contrast to micro-fabricated
devices, optically trapped nanoparticles in vacuum do not suffer from clamp-
ing losses, hence leading to much larger Q-factors.

0.2 Overview and state of the art

At the beginning of the present PhD thesis (early 2009), quantum optome-
chanics had just emerged as a promising route toward observing quantum
behaviour at increasingly large scales. Thus far, most experimental efforts
had focused on cooling mechanical systems to their quantum ground states,
but significant improvements in mechanical quality (Q) factors are gener-

viii



Overview and state of the art

ally needed to facilitate quantum coherent manipulation. This is difficult
given that many mechanical systems are approaching fundamental limits of
dissipation [Cleland and Roukes, 2002; Mohanty et al., 2002]. To overcome
the limitations set by dissipation, I developed an experiment to trap and
cool nanoparticles in high vacuum.

Figure 1 summarises the content of the thesis. It consists of six chapters,
ranging from a detailed description of the experimental apparatus (chap-
ter 1) and proof-of-principle experiments (parametric feedback cooling -
chapter 3) to the first observation of phenomena owing to the unique pa-
rameters of this novel optomechanical system (thermal nonlinearities - chap-
ter 5). Aside from optomechanics and optical trapping, the topics covered
include the dynamics of complex (nonlinear) systems (chapter 4) and the ex-
perimental and theoretical study of fluctuation theorems (non-equilibrium
relaxation - chapter 6), the latter playing a pivotal role in statistical physics.

0.2.1 Optomechanics and optical trapping

Except for Ashkin’s seminal work on optical trapping of much larger micro-
sized particles from the early seventies [Ashkin, 1970, 1971; Ashkin and
Dziedzic, 1976], there was no further experimental work and little theo-
retical work [Libbrecht and Black, 2004] on optical levitation in vacuum
published at the time. Still, trapping in air had been demonstrated by dif-
ferent groups [Summers et al., 2008; Omori et al., 1997]. Two years later,
Li et al. demonstrated linear feedback cooling of micron sized particles [Li
et al., 2011] in high vacuum. However, due to fundamental limits set by re-
coil heating, nanoscale particles are necessary to reach the quantum regime.
During my thesis, I developed a novel parametric feedback mechanism for
cooling and built an experimental setup, which is capable of trapping and
cooling nanoparticles in high vacuum (c.f. chapters 3 and 1). The com-
bination of nanoparticles and vacuum trapping results in a very light and
ultra-high-Q mechanical oscillator. In fact, the Q-factor achieved with this
setup is the highest observed so far in any nano- or micromechanical system.
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SummaryChapter

Trapping of nanoparticles in high 
vacuum is achieved by a novel 
parametric feedback scheme, 
which allows for thee dimensional 
cooling with a single laser beam.
Subwavelength particles can be 
trapped by single beam because 
the optical gradient force 
dominates over the scattering 
force. Demonstrated cooling from 
room temperature to 50mK and 
ultra-high Q-factors exceeding 100 
million.

Main Result

First observation of nonlinear 
thermal motion in a mechanical 
oscillator, enabled by a 
combination of high Q and low 
mass.

Validation of fluctuation theorem 
for relaxation dynamics from non-
equilibrium steady states.

Experimental 
Setup1. 

Parametric 
Feedback Cooling

3. 

Thermal 
Nonlinearities

5. 

Relaxation from 
non-Equilibrium

6. Study of relaxation dynamics to 
thermal equilibrium from non-
equilibrium steady states.

Study of the dynamics of a 
levitated nanoparticle under 
stochastic (thermal) driving.

Experimental demonstration of 
parametric feedback cooling.

Description of the experimental 
apparatus, which allows to trap 
and cool single dielectric 
nanoparticles in high vacuum.

Dynamics of 
driven particle

4. Study of the nonlinear dynamics of 
a levitated nanoparticle under 
deterministic parametric driving

Theory of optical 
tweezers

2. A simple model is provided to gain 
insight into the optical forces and 
the conditions under which single 
beam trapping in vacuum can be 
achieved.

Particle dynamics is well explained 
by a Duffing model. The Duffing 
nonlinearity has it’s origin in the 
shape of the optical potential.

Figure 1: Overview of the thesis. The thesis consists of the six chapters
summarised above.

0.2.2 Complex systems

Discovering new effects by either pushing existing techniques to their fun-
damental limit or by developing new ones is the main motivation behind
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fundamental research. The exceptional high Q-factor in combination with
the low mass of the vacuum trapped nanoparticle allowed me to observe a
novel dynamic regime in which thermal excitations suffice to drive a me-
chanical oscillator into the nonlinear regime (c.f. chapter 5). The interplay
of thermal random forces and the intrinsic nonlinearity of the oscillator
gives rise to very rich dynamics. Yet, compared to other systems where
this effect can become important (i.e. lattice vibrations in a solid state),
a vacuum trapped nanoparticle is simple enough that it can be modelled
efficiently starting from first principles, thereby making it amenable to rig-
orous theoretical analysis. Therefore, a vacuum trapped nanoparticle is an
ideal testbed to study complex nonlinear dynamics both theoretically and
experimentally.

0.2.3 Statistical physics

Due to low coupling to the environment, random forces act on a vacuum
trapped particle on timescales much larger than the characteristic timescale
of the system (i.e. the oscillation period). However, despite these random
forces being small, they still dominate the dynamics of the particle. This
insight initiated me to study fluctuation relations in the context of optome-
chanics. Fluctuation relations are a generalisation of thermodynamics on
small scales and have been established as tools to measure thermodynamic
quantities in non-equilibrium mesoscopic systems. However, it is paramount
to study the theoretical predictions on controlled experiments in order to
apply them to more complex systems.
During my PhD, I studied experimentally and theoretically non-equilibrium
relaxation of a vacuum trapped nanoparticle between initial and final steady
state distributions. In a newly formed collaboration with Prof. Christoph
Dellago (University of Vienna, Austria), we showed experimentally and the-
oretically (c.f. chapter 6) the validity of the fluctuation theorem for relax-
ation of a non-thermal initial distribution. The same framework allows also
to study experimentally non-equilibrium fluctuation theorems for arbitrary
steady states and can be extended to investigate quantum fluctuation the-
orems [Huber et al., 2008] and situations where detailed balance does not

xi
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hold [Dykman, 2012].
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CHAPTER 1

Experimental Setup

The experimental setup is at the very heart of all experimental results pre-
sented in this PhD thesis and its design and development constitute a main
part of the PhD work. The purpose of this chapter is to provide guidelines
for a researcher interested in reproducing a similar experimental setup.
The setup consists of an optical trap in a vacuum chamber, a loading mech-
anism, optical detection, feedback electronics and data acquisition. Data
acquisition is performed with LabView and will not be detailed in this chap-
ter. The other parts are described in detail in the following sections.

1.1 Optical setup

The optical setup serves two purposes, trapping of a nano-particle with an
optical tweezer and detection of the particle motion.
In section 1.1.1 we give a detailed description of the optical setup. Section
1.1.2 gives the mathematical analysis of the detected signal. Sections 1.1.3
and 1.1.4 discuss the differences between measuring the backscattered or the
forward scattered light as well as homodyne versus heterodyne detection.

1



Experimental Setup

1.1.1 Overview of the optical setup

The optical setup for trapping and cooling is depicted schematically in fig-
ure 1.1. The light source is an ultra-stable low noise Nd:YAG laser1 with
an optical wavelength of λ = 1064 nm (Fig. 1.1). The optical table2 has
active vibration isolation to reduce mechanical noise.
A stable single beam optical trap is formed by focusing the laser (∼ 80mW

at focus) with a high NA objective3 (c.f. chapter 2), which is mounted in-
side a vacuum chamber. To parametrically actuate the particle, the beam
passes through a Pockels cell (EOM)4 before entering the vacuum chamber.
We use parametric actuation to either cool (c.f. chapter 3) or drive the
particle (c.f. chapter 4).

For feedback cooling the particle position must be monitored with high
precision and high temporal resolution. This is achieved with optical in-
terferometry. The particle position is imprinted into the phase of light
scattered by the particle. Through interference of the scattered light with
a reference beam, the phase modulation induced by particle motion is con-
verted into an intensity modulation. The intensity modulation is measured
with fast balanced photodetectors. We have chosen to measure the forward
scattered light. In this configuration, the non-scattered part of the incident
beam serves as a reference. Since light scattered in the forward direction
and the transmitted beam follow the same optical path, the relative phase
between the two is fixed in the absence of particle motion. If the parti-
cle moves, the interference of scattered light and transmitted beam causes
an intensity modulation of the light propagating in forward direction. We
collimate the light propagating in forward direction with an aspheric lens5

which is mounted on a three dimensional piezo stage6 for alignment with
respect to the objective (Fig. 1.2b).

1InnoLight Mephisto 1W
2CVI Melles Griot
3Nikon LU PLan Fluor 50x, NA = 0.8
4Conoptics 350-160 and amplifier M25A
5Thorlabs AL1512-C, NA = 0.546
6Attocube 2×ANPx101, 1×ANPz101
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D-
mi

rro
r

Figure 1.1: Optical Detection(a) The beam from the laser source is split
in two polarisations. The bulk (horizontally polarised) passes a EOM while
the rest (vertically polarised) is frequency shifted by an AOM. Before the
vacuum chamber the two beams are recombined with a second PBS. (b) In the
chamber the light is focused with a high-NA objective to form a single beam
trap. The scattered and the transmitted light are collected with an aspheric
lens. (c) After the vacuum chamber the two polarisations are separated. The
horizontally polarised part of the beam is dumped. The vertically polarised
part of the beam is sent to three balanced photodetectors for detection of
particle motion in all three spatial directions. (d) The detector signal is
processed by a home-built electronic feedback unit and sent to the EOM.
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To detect particle displacement along the transversal x and y axes, we
split the collimated beam with a D-shaped mirror1 vertically and horizon-
tally, respectively. The two parts of each beam (∼ 200µW each) are sent
to the two ports of a fast (80MHz) balanced detector2. The signal propor-
tional to z is obtained by balanced detection of the transmitted beam with
a constant reference (Fig. 1.1c). Note that the reference beam for the bal-
anced detection in z is not interfered with the beam that carries the signal.
The interferometric signal is already contained in the signal beam. Here,
the reference beam only cancels the offset. This could also be achieved by
a standard photodetector and an electronic high pass filter.

At the detectors, the optical intensity is converted into an electrical sig-
nal. This signal is processed by an electronic feedback unit (c.f. section 1.2)
and used to drive the EOM which modulates the intensity of the trapping
laser to cool the motion of the particle. Since an intensity modulation at
the detector resulting from motion of the particle can not easily be distin-
guished from an intensity modulation due to an applied signal at the EOM,
we use an auxiliary beam for detection. The auxiliary beam is obtained by
splitting off a small fraction (ratio 1:20) of the original laser beam before
it enters the EOM. To avoid interference in the laser focus, the auxiliary
beam is cross polarised and frequency shifted by an acusto optic modula-
tor (AOM)3. Before the chamber the auxiliary beam is recombined with
the trapping beam with a polarising beam splitter (PBS) and separated
again after the chamber by another PBS. The trapping beam (horizontal
polarisation) is dumped because it contains both the feedback signal and
the particle motion. The auxiliary beam (vertical polarisation), which con-
tains only the particle motion, is sent to the photodetectors (Fig. 1.2c). A
photograph of the experimental setup is depicted in figure 1.2.

1Thorlabs, BBD1-E03
2Newport, 1817-FS
3Brimrose 410-472-7070, rf-driver AA opto-electronic MODA110-B4-34
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a
a

b

c

b

c

x

y

z

Figure 1.2: Experimental Setup (a) The laser source is split into two
polarisations. One (horizontally polarised) is used for trapping and the other
(vertically polarised) is used for detection. (b) The high-NA objective is
mounted inside the vacuum chamber. The scattered and the transmitted light
is collected with an aspheric lens which is mounted on a piezoelectric stage
for alignment. (c) The vertically polarised light is sent to three balanced
detectors to detect the particle motion is all three spatial directions.
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1.1.2 Detector signal

In this section we look into the formalism of interferometric detection. This
helps us to get a better understanding of how particle motion is related to
the detected signal.

We consider an incident Gaussian beam polarised along x. The electric
field at position r = (x, y, z) is given by

E00(r) = E0
w0

w(z)
e
− ρ2

w(z)2 e
i

(
kz−η(z)+ kρ2

2R(z)

)
nx (1.1)

with beam waist w0, Rayleigh range z0, radial position ρ = (x2 + y2)1/2,
wavevector k electric field at focus E0 and polarisation vector nx.
We used the following abbreviations

w(z) = w0

√
1 + z2/z20 beam radius (1.2)

R(z) = z
(
1 + z20/z

2
)

wavefront radius (1.3)
η(z) = arctan (z/z0) phase correction. (1.4)

The incident field excites a dipole moment µdp (rdp) = αE00 (rdp) in a
particle situated at rdp with polarisability α. The induced dipole in turn
radiates an electric field

EDipole(r, rdp) = ω2µ0G(r, rdp)µdp, (1.5)

where G(r, rdp) is the dyadic Green’s function [Novotny and Hecht, 2006]
of an electric dipole loacted at rdp. µ0 and ω are the vacuum permeability
and optical frequency, respectively.

In the paraxial approximation (z ≫ x, y, hence z ≈ f), the far field of
the dipole at distance f from the focus is a spherical wave

Edp(r, rdp) = Edp exp i(kf + ϕdp)nx (1.6)

6
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with amplitude Edp ∝ 1/f and phase ϕdp, which depend on the particle
position. A lens with focal length f transforms the spherical wave into
a plane wave with k = xk/f (c.f. Fig. 1.3). Here, x = (x, y, f) is the
position on the reference sphere. Hence, the scattered light that arrives at
the detector is a plane wave with amplitude

Edp = E0
αω2µ0

4πf
e−ρ2dp/w0

2

(1.7)

and phase

ϕdp =− k · rdp + (k − 1 /z0 ) zdp (1.8)
=− kxxdp − kyydp − kzzdp + (k − 1 /z0 ) zdp

≈− kxxdp − kyydp − k
(
1 /kz0 −

[
k2x + k2y

] /
2k2

)
zdp,

where we used the approximation kz ≈ k(1− [k2x+k2y]
/
2k2
)
. For clarity, we

dropped the propagation phase k(f + d), where d is the distance between
lens and detector. Both the amplitude and the phase depend on the particle
position rdp(t). But for small displacements of the nano-particle (|rdp| ≪
w0, z0), the dependency of the amplitude is weak. Thus, for the sake of
simplicity we assume in the further discussion that the amplitude of the
scattered field is constant.

As argued in the previous paragraph, the particle motion is primarily
imprinted into the phase of the scattered light. Thus, a phase sensitive
measurement is required. Additionally, the scattering cross section σs =
k4α2

/
6πϵ20 is only 258 nm2 for a a = 75nm SiO2 particle. This means that

the total scattered light intensity is very weak (typically a few µW ). To
read out the phase and to amplify the signal, the scattered light is interfered
with a reference beam field Eref . As a result, the intensity distribution at
the detector is

I(r, rdp) ∝ |Etotal|2 = |Edp +Eref |2 (1.9)

=E2
dp + 2EdpEref cos (ϕdp(r, rdp) + ϕref) + E2

ref ,

7
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outgoing plane wave

outgoing spherical wave

reference sphere

focus

f

z

d

rdp

y / ky

x / k

x

detector

Figure 1.3: Light collection In the far field, light scattered from the particle
has the form of a spherical wave. A lens with focal length f maps the
spherical wave into a plane wave. Hence, each k-vector is mapped onto a
point in the detector plane.

where ϕref depends on the relative phase between the scattered light and the
reference. If the intensity of the reference is much larger than the scattered
intensity, the first term of the last expression in (1.9) is small compared to
the other two and can be neglected.

For detection of the longitudinal displacement z we focus the transmitted
beam on one port of a balanced detector. This amounts to integration of
(1.9) over the full detector area. Due to the symmetry of I(r, rdp), the
dependency on x and y vanishes (c.f. Fig. 1.4b). Hence, the detector
output only depends on z. To cancel the constant offset E2

ref , we focus a
second beam of equal intensity on the second port of the balanced detector.
Thus, the detector signal reads:

Sz = 2

∫ kmax

0

∫ 2π

0
EdpEref cos (ϕdp(r, rdp) + ϕref) dkdϕ. (1.10)

Here, kmax = kNAdet is the maximum k vector that is detected and which
depends on the numerical aperture NAdet of the collimating lens.
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For the detection of the lateral displacement x (y), we split the beam
vertically (horizontally) with a D-shaped mirror (c.f. Fig. 1.4a). Each of
the two parts is focused onto one of the two ports of a balanced detector.
Thus, the detector signal for x (y) is given by:

Sx (y) =

∫ kmax

0

∫ 3π/2 (π)

π/2 (0)
I(r, rdp) dkdϕ−

∫ kmax

0

∫ π/2 (2π)

3π/2 (π)
I(r, rdp) dkdϕ.

(1.11)
Since the polarisation of the beam is aligned parallel (perpendicular) to the
edge of the D-shaped mirror, the symmetry of the beam is conserved. As a
consequence, the orthogonal displacement cancels and we measure a signal
that only depends on xdp (ydp).

1.1.3 Homodyne measurement

We now consider the situation in which the scattered light interferes with a
reference beam at the same optical frequency. This is the situation encoun-
tered when analysing the forward scattered light. In that case the reference
is simply the non-scattered transmitted beam. Alternatively, we can also
analyse the backscattered light. However, in that case, we have to manu-
ally set up a reference beam. Under the assumption that the scattered light
intensity is much weaker than the reference and that the term E2

ref can be
eliminated by balanced detection, the intensity distribution is given by

2EdpEref cos (ϕdp(r, rdp) + ϕref) . (1.12)

To first approximation, the motion of the particle is harmonic, that is
ϕdp ≈ q0 cosΩ0 with oscillation amplitude q0 and angular frequency Ω0.
With the identity

eia cos(b) = J0(a) + 2

∞∑
k=1

ikJk(a) cos(kb), (1.13)

we find that the spectrum of the detected signal (1.12) consists of harmon-
ics of the particle oscillation frequency Ω0. The relative strength of the
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a b

Figure 1.4: Optical detection of the particle position. The total light
that propagates towards the detector consists of the transmitted beam (red)
and the scattered light (black). The red arrow indicated the direction of
beam propagation. (a) To detect lateral displacements, the transmitted light
is split and the two resulting beams are detected in differential mode. Be-
cause scattered light from the particle travels distances that are different for
the two detectors, the accumulated phase at each detector is different. At
the detector the scattered light interferes with the unscattered light, which
serves as reference beam, making the detector signal sensitive to changes in
the phase. Since the phase depends on the position of the particle, the de-
tector signal is proportional to the motion of the particle. (b) To detect the
motion along the optical axis, the entire transmitted beam is detected. The
total intensity at the detector is the sum of scattered light and transmitted
beam. The former has a phase that depends on the particle’s position on the
optical axis. Due to interference of the two, the detector signal is sensitive
to the phase and therefore to the position of the particle. Note that this de-
tection is not dependent on lateral displacement as the phase due to lateral
displacements at one half of the detector cancels with the phase at the other
half of the detector.

harmonics is given by Bessel functions Jk and depends on the particle am-
plitude q0. For small amplitudes only the first terms contribute significantly.

10
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The homodyne signal (1.12) is the real part of (1.13). If ϕref = −π/2
we get an additional factor i in (1.13). Hence, the main contribution to the
signal is ∝ J1(q0) cosΩ0t. In contrast, if the relative phase is ϕref = 0, the
main contribution is ∝ J2(q0) cos 2Ω0t. Therefore, to get a detector signal
that is a linear function of the particle displacement, the relative phase ϕref

has to be fixed to −π/2.
Note that, if the phase is fixed to 0, the detector signal is ∝ cos 2Ω0t.
This is the signal required for feedback cooling. Hence, if we can interfere
the scattered light with a reference that is in-phase, we can circumvent an
electronic frequency doubler (c.f. section 1.2).

Forward detection

In forward detection the reference beam is the non-scattered transmitted
beam. In the paraxial approximation, the far-field of the transmitted Gaus-
sian is a spherical wave

Eref(r) = Eref exp i(kR− π/2)nx, (1.14)

with amplitude Eref ≈ E0z0/R and phase −π/2, known as the Gouy phase
shift. The spherical wave is collected by a lens and propagates as a plane
wave to the detector. Since the transmitted beam and the forward scat-
tered light follow the same optical path, they acquire the same propagation
phase. Hence, the phase difference at the detector is given by the Gouy
phase shift ϕref = −π/2 and the detector signal is linear with respect to
particle position.

Note that in forward scattering the scattered light and the reference are
both proportional to the incident laser Edp ∝ Eref ∝ E0. As a consequence,
if the trapping laser is used for detection, the intensity of the reference (the
last term of (1.9)) is time dependent because of the feedback signal. If the
detectors are not 100% balanced, they will pickup the intensity modulation
and feed it back into the feedback circuit. This results in undesired back-
action. To resolve this problem, we chose to split off a part of the incident
beam before it is modulated as explained in section 1.1.1. But it also means

11



Experimental Setup

that we do not use the scattered light from the trapping beam, which is
much more intense than the scattered light from the auxiliary beam. Hence,
the sensitivity is not as high as it potentially could be if we could use the
scattered light from the trapping beam.

Backward detection

In backward detection we use the same lens for collection as for focusing of
the light. The collected light is interfered with an independent reference.
This gives us the freedom to choose the strength of the reference field freely
and to optimise it to get the best signal-to-noise ratio (SNR). The light scat-
tered back into the objective is of the same form as the forward scattered
light of equation (1.6) because the dipole radiation pattern is symmetric.
Hence, the detector signal is given by (1.12). However, since the reference
beam and backscattered light do not follow the same optical path, the rel-
ative phase of reference and backscattered light ϕref is not fixed anymore.
It depends on the relative path difference and is therefore subject to any
noise source that alters the optical path length, for example air currents
and mechanical drift of the optical elements.

1.1.4 Heterodyne measurement

Measuring in back-reflection not only allows us to choose the intensity of
the reference field but also it’s frequency. If the optical frequency of the
reference differs from that of the scattered light, it is called a heterodyne
measurement. The detector signal is then given by

2EdpEref cos (ϕdp(r, rdp) + ϕref +∆ωt) , (1.15)

where ∆ω is the difference in optical frequency. For ∆ω = 0 (1.15) reduces
to (1.12). The spectrum of the detector signal is now shifted to ∆ω with
sidebands at ∆ω ± Ω0. In order to benefit from a lower noise floor at
high frequencies, one would typically choose ∆ω ≫ Ω0. With a lock-in
amplifier that locks to the modulation frequency ∆ω one can measure both
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left sideband right sideband

�! � !m �! + !m�!

⌦02EdpEref

✏EdpEref

!m

�!

⌦0

2EdpEref

✏EdpEref

2⌦0

�! + 2⌦0�! � 2⌦0

Figure 1.5: Spectrum of detector signal. In the heterodyne measurement
the spectrum is shifted to ∆ω. The particle oscillation shows up as side-peaks
around ∆ω at harmonics of the particle oscillation frequency Ω0 (black). A
modulation of the intensity at ωm reproduces the main structure at side-
frequencies ∆ω ± ωm (red and blue). The feedback modulates the intensity
of the laser at ωm = 2Ω0. As a consequence, the sidebands overlap with the
main peaks (see inset). However, since the phase of the intensity modulation
is fixed to the particle oscillation, this results only in a constant phase offset,
which is eliminated by the lock-in.

quadratures of (1.13) and extract, therefore, the phase ϕdp + ϕref . To get
rid of the low frequency spurious phase ϕref , the lock-in amplifier output
has to be high-pass filtered.

Note that the bandwidth B of the lock-in has to be large enough so
that the signal from the particle passes, that is B ≫ Ω0. This requirement
is quite demanding, given that typical particle frequencies are of the order
of 100kHz-1Mhz. For an ideal harmonic oscillator, the damping Γ0 deter-
mines the timescale on which the energy and the phase change. Thus, the
minimum required bandwidth for an harmonic oscillator is of the order Γ0,
which is a factor Q ∼ 108 less than Ω0. However, since for efficient feed-
back cooling the phase stability is paramount, a higher bandwidth might be

13



Experimental Setup

necessary (still ≪ Ω0) if there are additional sources of phase noise such as
frequency fluctuations due to nonlinear amplitude to frequency conversion
(c.f. chapter 5). A detection scheme with a bandwidth B ∼ Γ0 ≪ Ω0 could
be realized for instance with a phase locked loop (PLL), where the particle
itself acts as the frequency determining element.

Detection with the trapping laser

As mentioned before, we would get a much stronger signal if we could use
the scattered light from the trapping laser. Let’s assume the trapping laser
is modulated at frequency ωm and modulation depth ϵ. The scattered field
is ∼ Edp(1+ ϵ cosωmt). Hence, the spectrum of the detector signal exhibits
sidebands at the modulation frequency ωm and amplitude ∝ ϵEdpEref as
shown in figure 1.5. However, for small modulation ϵ the amplitude of the
main signal ∝ EdpEref is much stronger than the sidebands.

If the trapping laser is used for detection, the intensity modulation is at
ωm = 2Ω0. Therefore, the sidebands from the intensity modulation overlap
with the main signal. But, since the feedback fixes the phase of the sideband
to the main signal, this results only in a constant phase, which is eliminated
by lock-in detection.

1.2 Feedback Electronics

For feedback cooling of the particle’s center of mass (CoM) motion we use
an analog electronic feedback signal. The signal is used to modulate the
intensity of the trapping laser with an EOM.
Figure 1.6 shows the electronic feedback system. It consists of five units:
a bandpass filter, a variable amplifier, a phase shifter, a frequency doubler
and an adder. The first four units are replicas of the same electronic circuit,
each one optimised for one specific frequency. The frequencies correspond
to the three oscillation frequencies of the vacuum trapped particle. Table
1.1 shows the feedback parameters for the three axes. The fifth unit adds
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Figure 1.6: The Feedback Electronics consist of of five modules. A
bandpass filter (red), variable gain (white), frequency doubler (green), phase
shifter (same module, also green) and adder.

the three signals together and sends the resulting signal to the EOM.

The following sections describe the functionality of each of the individual
modules.

1.2.1 Bandpass filter

The signal of interest is at the natural frequency of the particle. However,
there are low frequency components because of mechanical drift and beam
pointing instability. Furthermore, the auxiliary beam and the part of the
trapping beam that leaks through the polarising beam splitter interfere at
the detector and create a high frequency beating at the AOM frequency. The
unwanted frequency components can have a detrimental effect on the output
signal because each electronic circuit has a maximum range of input voltages
before it saturates. Since the peak values at the unwanted frequencies exceed
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axes

parameters x y z

f0 [kHz] 125 140 38

ϕ(f0) [◦] 12 149 159

BW [kHz] 15-250 15-250 15-150

Table 1.1: Parameters of electronic feedback. Each stage of the elec-
tronic circuit is optimised for one specific particle frequency. f0 is the fre-
quency of the frequency doubler. ϕ is the phase difference between a sinu-
soidal input at the bandpass filter and the frequency doubled output at the
adder. BW is the bandwidth of the bandpass filter. All subsequent modules
have a higher cut-off frequency.

the peak values at the signal frequency, it is necessary to filter them at an
early stage of the feedback circuit. Therefore, each of the three signals from
the balanced photodetectors is filtered by a second order bandpass filter1.
Because every electronic circuit adds noise, the detector signals are also
amplified at this first stage of the feedback by a factor ×20. This mitigates
the noise contribution from subsequent stages of the feedback and thereby
gives a better SNR at the output of the feedback circuit.

1.2.2 Variable gain amplifier

To get the optimum SNR at the end of the feedback circuit, it is important
amplify the signal enough to mitigate subsequent additive noise, but not
too much to saturate any of the circuits. Therefore, to tune to the optimum
gain, the bandpass is followed by a variable gain amplifier2 from ×1 to ×10
that is controlled with a potentiometer.

1multiple feedback, AD817
2OPA1611AID
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1.2.3 Phase shifter

As shown in figure 1.7, the optical power P has to be larger than the average
power P0 when the particle moves away from the trap center and smaller
if the particle comes closer. Thus, the feedback signal has to be exactly
in phase (ϕ = 0) with respect to the particle oscillation to achieve cooling.
Since every stage (detector, electronics, electro-optic modulator) adds some

EOM particle

⇡/2 ⇡0

⌦0t

xP

P0

x0

�x0

✏P0

Figure 1.7: Feedback Phase To achieve cooling, the modulation of the
EOM has to be exactly in phase ϕ = 0 with respect to the particle oscillation.
The modulation depth ϵ depends on the feedback gain.

phase to the feedback signal, the phase of the electronic signal has to be
tuned to the right value. This is achieved with a two stage phase shifter, as
a single stage would not be able to cover the full range of 180◦. Further, it
allows us to have one control for coarse and one for fine tuning. The phase
shifter is essentially a bandpass filter with unitary gain where the center
frequency can be tuned by a potentiometer. Thus, the phase response of
that filter is not flat but has a slope that depends on the value of the
potentiometer. The operational amplifier used was AD8671ARZ.

1.2.4 Frequency doubler

The frequency doubler is integrated in the same module as the phase shifter.
To create a signal at twice the frequency of the input signal, we use a com-
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mercial multiplier circuit1. For an input signal Xin = X0 sinωt, the resulting
signal is Xout = X2

0ω cos 2ωt /(10V ) . Hence, the device is optimised for a
single frequency where an input amplitude of 10V gives and output also at
10V .

1.2.5 Adder

To cool the particle in all three spatial dimensions, we sum the three pro-
cessed signals together2 and send it to the EOM. The summed signal can
be switched off through a TTL signal by an analog switch3. This feature
is used in the relaxation experiment of chapter 6. Additionally, there is an
extra input that is added to the output. This is needed in chapter 4 to drive
and cool the particle simultaneously.

1.3 Particle Loading

Loading a particle into the optical trap is a critical first step. In a liquid
particles can be captured easily. By moving the chamber that contains the
liquid with a translation stage, the suspended particles are dragged along
and can thereby be brought into close vicinity of the trapping laser. In
contrast, particles in a gas will quickly fall down due to gravity.

The size of the optical trap is of the order of the focal volume ∼ λ3.
Therefore, a particle that passes the focus at a distance larger than ∼ λ will
not be captured. Furthermore, if a particle enters the volume at high speed,
the low damping in vacuum will not slow the particle down sufficiently. The
maximum allowed speed is vmax ∼ λΓ0, where Γ0 is the damping constant.
In water Γ0 is given by Stokes formula Γ0 = 6πηa/m, where a and m are
the radius and mass of the particle and η the viscosity of the surrounding
medium. In water η(water) = 890µPa s. Hence, the maximum velocity for a

1AD734/AD
2AD817
3NC7SB3157P6X
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a = 75nm SiO2 particle is v
(water)
max = 344m/s. In air the viscosity is about

two orders of magnitude smaller η(air) = 18µPa s. Hence, the particle ve-
locity should not exceed v

(air)
max = 7m/s. The challenge lies, therefore, in

finding a technique by which a slow single nano-particle is brought into the
focal volume.

One strategy to bring a nano-particle into the focal volume in a con-
trolled manner, is to place it onto a substrate, which can be manipulated
with high accuracy by piezo-electric actuators. However, a particle on a
substrate remains there due to dipole-dipole interactions known as van der
Waals (VdW)-forces. The VdW-force in the "DMT limit" of the Derjaguin-
Muller-Toporov theory is given by [Israelachvili]

FVdW = 4πaγ, (1.16)

where a is the radius of the particle and γ is the effective surface energy.
Measurements on silica spheres on glass give FVdW = 176 nN for a = 1µm
[Heim et al., 1999]. For comparison, the gravitational force for a particle
of this size is only ∼ 0.1 pN and therefore much too weak to remove the
particle.

Sections 1.3.1 and 1.3.2 discuss two approaches that aim at removing
nano-particles form a surface, pulsed optical forces and inertial forces. Both
are found to be insufficient to overcome the forces that keep the particle on
the surface. Section 1.3.3 gives a detailed description of the successfull neb-
uliser approach. The nebuliser creates an aerosol of nano-particles, which
are then trapped by the optical tweezer.

1.3.1 Pulsed optical forces

The maximum force from a typical continuous wave optical tweezer (∼ 1 nN)
is two to three orders of magnitude weaker than the VdW-force. The optical
force depends linearly on the optical power. A pulsed laser can have a peak
power much higher than a continuous wave laser (CW-laser). Therefore, it
was suggested in [Ambardekar and Li, 2005] that a pulsed laser should have
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a maximum force strong enough to overcome the VdW-force. Generally, the
shorter the pulse the higher the maximum peak power that can be achieved.
However, the force has to bring the particle at least to a critical distance
dcrit, so that the VdW-force doesn’t pull the particle back to the surface
once the pulse ends. Hence, assuming a constant acceleration throughout
the pulse, the minimum pulse duration is τpulse = (2dcritm/Fpulse)

1/2.

We used a Nd:YAG laser with a pulse duration of ∼ 50ns and a total
energy per pulse of ∼ 0.1mJ at the sample. Thus, the maximum power
(∼ 2kW) is three orders of magnitude higher than what can be achieved
with a CW-laser. Indeed, we managed to remove several silica particles
from a glass coverslip that was coated with a thin film (∼ 20nm) of either
aluminium or gold. However, the laser pulse often left a crater behind.
This suggests that actually thermal forces due to light absorption in the
metal film removed the particle. Some of the released particles disappeared
from the field of view and some landed a few µm away from their initial
position. Still, we did not manage to trap any of the released particles with
a second superimposed CW laser and decided to pursue other approaches.
In retrospective, this is not too surprising. To trap a particle, we do not
only have to remove it, but also shoot it close to the optical trap with not
too much kinetic energy. From the above discussion about the trap volume
and the required particle speed, it is clear that the probability of catching
a particle is rather small.

1.3.2 Piezo approach

Already Ashkin in his pioneering experiments [Ashkin, 1971] used a piezo-
electric transducer to overcome the VdW-forces. This method was also used
to trap and cool microspheres to mK temperatures [Li et al., 2011] and is de-
scribed in detail in reference [Li, 2011]. For a sinusoidally driven piezo with
oscillation amplitude qp and frequency ωp, the force due to the particle’s
inertia is

Fpiezo = mω2
pqp, (1.17)
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where m is the mass of the particle. Consequently, the acceleration needed
to release the particle is

ap = ω2
pqp = 4πaγ/m ∝ a−2. (1.18)

Hence, for a given maximum acceleration the piezo can provide, there is
a minimum particle size that can be shaken off. For typical values this
is amin ∼ 1µm. Therefore, this approach can not be used to shake nano-
particles off a substrate.

1.3.3 Nebuliser

From the preceding sections it is clear that optical, gravitational and inertial
forces are too weak to remove a particle from a substrate. In this section we
describe a surprisingly simple but functional approach to load the trap with
nanoparticles [Summers et al., 2008]. We use a commercial nebuliser1 and
a highly diluted solution of silica beads2 of 147 nm diameter. The diluted
solution is obtained from mixing 10µl initial solution (50 mg/ml) with ∼
1ml of ethanol. The nebuliser consists essentially of a mesh on top of a piezo
element. A little bit of liquid is brought into the space between the piezo and
the mesh. The motion of the piezo pushes the liquid through the mesh. The
mesh breaks the liquid into little droplets of diameter smaller than 2µm.
Under standard humidity conditions, the droplets quickly evaporate and
only the solid component is left behind. The concentration of the solution
is such that on average there is one or no particles in a single droplet. As
shown in figure 1.8, we use a nozzle in an upside down configuration to
funnel the falling particles close to the laser focus. Through a viewport on
the side of the vacuum chamber we observe the falling particles with a CCD
camera3 and wait until one is trapped. Then we remove the nozzle, close
the chamber and pump down. Note that because the light scattered by the
particle has a dipole radiation pattern the polarisation of the laser beam

1Omron NE-U22-W
2Microparticles SIO2-R-B1181
3Hamamatsu C8484-05G01
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a

b

c

Figure 1.8: Particle loading. The particle is loaded by spraying a solution
of nano-particles through a nozzle which is placed above the focus. (a) Po-
sitioning of the nozzle in the vacuum chamber. (b) Trapped particle imaged
with a CCD camera from the side. (c) Nozzle to funnel the falling particles
towards the focus of the trapping laser.

should be orthogonal to the direction of observation to see the particle with
the camera.

1.4 Vacuum system

Figure 1.9 shows the vacuum system. Close to the main chamber there are
two gauges to measure the pressure as close to the particle as possible.
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One is a convection gauge1 which can be read with the computer and that
covers the range 1.3×103−10−4 mBar. The other one is a combined Pirani
and cold cathode gauge2 which can be read off at the display of the pump
station and that covers 102 − 5× 10−9 mBar.
The chamber is evacuated in a first stage with a membrane pump3 and later
with a turbo-molecular pump4. Both are integrated in a pump station5.
Between the chamber and the pumps is an all-metal valve6 that can be
closed to disconnect the pump from the chamber. The valve is also used to
evacuate the chamber adiabatically from ∼ 1mBar down to ∼ 10−3mBar,
which is a regime of high particle losses in the absence of feedback cooling.
In that case, the valve is closed, while the pump is still running. As a
result, a pressure difference builds up between the chamber and the pump.
When the pump is at a lower pressure than the main chamber, the rate at
which the pressure in the main chamber decreases can be controlled with
the valve. The minimum pressure we can achieve with the pump station is
∼ 10−6mBar.

1.4.1 Towards ultra-high vacuum

To go to lower pressure, we have an ion pump installed. The ion pump
can achieve ultra high vacuum below 10−10mBar. However, to reach such
extreme values, the chamber has to be kept clean with high diligence and
baked to temperatures of ∼ 300◦. This is currently not compatible with our
loading mechanism because the chamber has to be opened to load a particle.
Thus, even with the ion pump we can not improve the vacuum. To achieve,
ultrahigh vacuum we are implementing a load-lock. The load-lock consists
of two chambers and a translation stage. In the loading chamber, a particle
is trapped and brought to high vacuum (10−6mBar). The transfer system

1CVM-201 "Super bee", InstruTec
2PKR 251, Pfeiffer vacuum
3MVP 015-2, Pfeiffer vacuum
4TMH 071, Pfeiffer vacuum
5TSH 071E, Pfeiffer vacuum
6Hositrad technology
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Figure 1.9: The Vacuum System consists of a vacuum chamber, with two
gauges, that cover pressure ranges from 1.3×103−10−3 mBar and 103−10−6

mBar, respectively. The chamber is connected to a pump station and an ion
pump.

translates the trapped particle under high vacuum into the main chamber.
After the particle has been loaded into the main chamber, the main chamber
is disconnected from the rest of the vacuum system and pumped down to
ultra high vacuum. Hence, the main chamber will always be under a high
vacuum and it is possible to pump down to ultra high vacuum with the ion
pump.

1.5 Conclusion

In this chapter we presented the technical details of an experimental setup
which allows for trapping, cooling and parametrically driving of nanopar-
ticles in high vacuum. This is a major step towards employing trapped
nano-particles for ultra-sensitive detection and ground state cooling. How-
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ever, to exploit the full capabilities of the system, improved detection and
higher vacuum are required.
An improved detection can be achieved by several means. One way is to
detect the scattered light of the trapping beam by heterodyne interferome-
try as discussed in section 1.1.4. An alternative way is to place the particle
inside a high finesse cavity. The cavity modes are very sensitive to changes
in optical path length. The optical path length depends on the particle
position inside the cavity. Therefore, light which is transmitted though or
reflected from the cavity becomes highly correlated with the particle mo-
tion. Since the light inside the cavity also exerts a force on the particle,
a cavity can not only be used as a detector but also to cool the particle
motion [Chang et al., 2010; Romero-Isart et al., 2010; Kiesel et al., 2013].
Better vacuum requires that the vacuum chamber is always kept under high
vacuum. This is incompatible with our current loading technique, which re-
quires operation at ambient pressure. To reconcile the two requirements we
are currently developing a load-lock.
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CHAPTER 2

Theory of Optical Tweezers

To understand the working principle of optical tweezers, we have to under-
stand the forces exerted by electromagnetic fields. To this end we discuss a
simple analytical model based on the Rayleigh approximation and a Gaus-
sian description of the trapping laser.

2.1 Introduction

The optical force has two components, the gradient force and the scatter-
ing force. The former points toward the region of highest intensity and,
therefore, allows for stable trapping in the focus of a laser beam. The latter
points in the direction of beam propagation and therefore pushes the parti-
cle out of the trap. Thus, to achieve a stable trap, the scattering force has
to be eliminated or the gradient force has to overcome the scattering force.
The scattering force can be cancelled by two counter propagating beams.
However, the two beams have to be well aligned and symmetric in shape
and power [Ashkin, 1970]. Instead of a second independent beam one can
also use the back-reflection from a mirror to form a standing wave [Zemánek
et al., 1998, 1999]. The scattering force of a single beam can also be compen-
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sated by any other force, for example as in Ashkin’s pioneering experiments
[Ashkin, 1971], by gravity. However, alignment inaccuracies tend to make
all these configurations unstable. If the scattering force is not cancelled, the
gradient force has to dominate over the scattering force to achieve stable
trapping. This configuration requires a tightly focused laser beam [Ashkin
et al., 1986] and is known as optical tweezer. The conditions under which
a sub-wavelength particle can be trapped with an optical laser tweezer is
discussed in this chapter.

2.2 Optical fields of a tightly focused beam

For a stable single beam optical trap it is necessary to tightly focus the
optical field. In this section we discuss, therefore, some of the properties
of optical fields focused with a high numerical aperture objective. For a
detailed treatment see reference [Novotny and Hecht, 2006].

As depicted in figure 2.1, the field incident on the refractive element
(lens or objective) is treated as a bundle of light rays [Wolf, 1959; Richards
and Wolf, 1959]. Each ray represents a plane wave propagating along z. The
refractive element maps the incident field onto a reference sphere of radius
f . From the reference sphere, the plane waves propagate towards the focus,
which lies at the center of the reference sphere. The wave vector k of the
transformed plane waves depends on the position where the incident ray
hits the reference sphere.
Interference of all the plane waves at the focus creates a field distribution

that can be expressed in the angular spectrum representation [Novotny and
Hecht, 2006]:

E(ρ, φ, z) =
ikfe−ikf

2π

∫ θmax

0

∫ 2π

0
E∞(θ, ϕ)eikz cos θeikρ sin θ cos(ϕ−φ) sin θdϕθ,

(2.1)
where E∞(θ, ϕ) is the field distribution on the reference sphere, f the focal
length and k = λ/2π the wave vector. The maximum angle θmax depends
on the numerical aperture (NA) of the lens NA = nm sin θmax , where nm is
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incoming ray

refracted ray

reference sphere

focus

f

z

Figure 2.1: Focusing of the optical field. An incoming ray is refracted at
a lens with focal length f . The wave vector of the refracted ray is determined
by the position where the incident ray hits a reference sphere with radius f

the refractive index of the surrounding medium. The above integral is also
known as the Debye integral.

For lenses with high NA, wave vectors with high angles are involved in
the construction of the field at the focus. As a consequence, new polarisa-
tions are generated and the field distribution is slightly elongated along the
direction of polarisation nx of the incident field [Novotny and Hecht, 2006].
Even for a high NA lens the aperture of the lens is finite. Hence, field com-
ponents with very high spatial frequencies are cut-off. Therefore, the field is
defracted and the spatial profile of the focus has oscillatory side-lobes (c.f.
Fig. 2.2).

In the limit of weak focusing and neglecting the finite size of the aperture,
the above integral (2.1) can be solved analytically. For an incident Gaussian
beam we obtain the familiar paraxial expression [Novotny and Hecht, 2006]
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E(ρ, z) = E0

[
1 + (z/z0)

2
]−1/2

e
− ρ2

w2(z)
+iϕ(z,ρ)

nx, (2.2)

where nx is the direction of polarisation, w0 is the beam waist and E0

the electrical field at the focus. For clarity, we have defined the following
quantities

w(z) = w0

√
1 + z2/z20 beam radius (2.3)

ϕ(z, ρ) = kz − η(z) + kρ2 /2R(z) phase (2.4)

R(z) = z
(
1 + z20/z

2
)

wavefront radius (2.5)
η(z) = arctan (z/z0) phase correction. (2.6)

The gradual phase shift η(z) as the beam propagates through the focus is
known as the Gouy phase shift.

Despite the strong approximations that lead to equation (2.2), the exact
intensity distribution even for a tightly focused beam is very similar to
that of a Gaussian beam. However, the Rayleigh range and focal width
are no longer given by the simple paraxial expressions z0 = w0

2/2 and
w0 = 2/kθmax, respectively. Instead, they are free parameters that are
obtained by a fit to the exact solution (2.1) (see Table 2.1). Thus, the
analytical expression of the focal field is given by a slightly modified equation
(2.2):

E(ρ, z) = E0

[
1 + (z/z0)

2
]−1/2

e
−
(

x2

w2
x(z)

+ y2

w2
y(z)

)
+iϕ(z,ρ)

nx, (2.7)

where the separate beam waists wx and wy account for the asymmetry of the
focus along x and y, respectively. Note that in this model, the asymmetry
of the focus is only accounted for in the amplitude but not in the phase.
Figure 2.2 shows the field distribution in the focal planes. The first row

shows the intensity distribution calculated with the Debye integral (2.1)
in the x-z and x-y plane, respectively. For comparison, the bottom row
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Figure 2.2: Intensity distribution of tightly focused optical fields.
(a) The intensity distribution computed with the Debye integral (2.1) is
shown as black lines for the three mayor axes. The coloured lines are fits to
the Gaussian model (2.2). The exact solution exhibits side lobes as a conse-
quence of diffraction. Both models take the asymmetry of the focal spot into
account. (b,c) The intensity distribution computed with the Debye integral
in the x-y plane and y-z plane, respectively. (d,e) The same fields computed
with the Gaussian model. In the calculation we assumed focusing in air with
a NA= 0.8 objective, a filling factor (ratio between beam waist of incident
beam and lens aperture) of 2 and wavelength λ = 1064nm. For a detailed
description of how to apply equation (2.1) see reference [Novotny and Hecht,
2006].

shows the same distributions obtained with the Gaussian model (2.7). The
Gaussian model does not include diffraction and therefore doesn’t have side-
lobes. However, up to λ/2 away from the center, the Gaussian model fits
the exact solution well.
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Beam parameter Paraxial approx.

wx 687 nm 423 nm

wy 542 nm 423 nm

z0 1362 nm 529 nm

Table 2.1: Beam parameters for the computation of the field at the focus.
The parameters are obtained from a fit to the exact numerical solution.
For comparison, the right column shows the parameters obtained with the
paraxial approximation.

2.3 Forces in the Gaussian approximation

From the optical field we will now calculate the optical forces. Generally,
these forces are summarised by the Maxwell stress tensor [Novotny and
Hecht, 2006]

F =

∫
∂V

↔
T · n(r)da, (2.8)

which is a derivation of the conservation laws of electromagnetic energy
and momentum. Remarkably, the Maxwell stress tensor and therefore the
optical forces are entirely determined by the electromagnetic fields at the
surface of the object. That is, all the information is contained in the elec-
tromagnetic fields and no material properties enter in (2.8). To calculate
↔
T, the self-consistent fields are needed. Generally, this is a non-trivial task
because the presence of the object changes the incident field. Hence, if the
body deforms, the boundary conditions in (2.8) change. Consequently, the
material properties enter the problem through the changed boundary condi-
tions. However, in the following we will assume that the body is rigid. Even
under the assumption that the body is rigid, evaluation of (2.8) is generally
computationally expensive. Furthermore, equation (2.8) has to be evalu-
ated for each particle position. Thus, for practical purposes it is desirable
to have a closed-form expression or a numerically efficient approximation of
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Forces in the Gaussian approximation

the integral (2.8) [Rohrbach and Stelzer, 2001].

For a spherical object of arbitrary size, Mie-theory provides an exact
analytical solution [Van De Hulst, 1981] in form of an infinite series of
multipoles [Neto and Nussenzveig, 2000]. The bigger the sphere, the more
multipoles have to be taken into account. Forces on large dielectric spheres
(a ≫ λ) can be calculated by ray-optics [Ashkin, 1992]. The ray-optics
calculation uses Snells law and the Fresnel formulas. If the particle is small
compared to the wavelength of the incident radiation (Rayleigh limit a ≪
λ), the only significant contribution comes from the electric dipole term.

~n
x

da
✏(~r)

@V

Figure 2.3: Dielectric body The optical forces are determined by the total
electromagnetic fields at the surface ∂V of the object.

2.3.1 Derivation of optical forces

It is instructive to write the optical force as a sum of two terms, the gradient
force Fgrad(r) and the scattering force Fscatt(r) [Novotny and Hecht, 2006;
Rohrbach and Stelzer, 2001]:

F(r) = Fgrad(r) + Fscatt(r). (2.9)

Under the assumption that we can represent the complex amplitude of the
electric field in terms of a real amplitude E0 and phase ϕ, the forces are
given by

Fgrad(r) = α′/4 ∇I0(r) (2.10)
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and
Fscatt(r) = α′′/2 I0(r)∇ϕ(r), (2.11)

where I0(r) = E2
0(r) is the field intensity and α′ and α′′ are the real and

imaginary part of the polarisability, respectively. This approximation is
valid if the phase varies spatially much stronger than the amplitude. This
is the case for weakly focused fields and for the fields given by Eq. (2.7).

For a spherical particle with volume V = 4/3πa3 and dielectric con-
stant εp embedded in a medium with dielectric constant εm, the polaris-
ability is given by Clausius-Mossotti relation (also Lorentz-Lorenz formula)
[Rohrbach and Stelzer, 2001; Novotny and Hecht, 2006]:

α = 3V ϵ0(ϵp − ϵm)/(ϵp + 2ϵm). (2.12)

Generally, α is a tensor of rank two. However, for a spherical particle α
becomes a scalar.

The gradient force is proportional to the dispersive (real) part α′, whereas
the scattering force is proportional to the dissipative (imaginary) part α′′

of the complex polarisability α. The phase ϕ(r) can be written in terms
of the local k vector ϕ(r) = k · r. Hence, the scattering force results from
momentum transfer from the radiation field to the particle. Momentum
can be transferred either by absorption or scattering of a photon. Photon
scattering by the particle changes the electric field. This, in turn, modifies
the optical force acting on the particle. This backaction effect also known
as radiation reaction is accounted for by an effective polarisability [Novotny
and Hecht, 2006]

αeff = α

(
1− i

k3

6πϵ0
α

)−1

. (2.13)

Consequently, even for a lossless particle (Im(ϵp) = 0), the scattering force
does not vanish completely!
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Forces in the Gaussian approximation

From (2.10), (2.11) and (2.7) we calculate the optical forces in the Gaus-
sian approximation

Fgrad(r) = −α′
effI0(r)

×

 x z20
/
w2
x(z

2 + z20)
y z20

/
w2
y(z

2 + z20)

z
[
(z/z0)

2 +
(
1− 2x/w2

x − 2y/w2
y

)] [
z20
/
2(z2 + z20)

]
 (2.14)

and

Fscatt(r) =
α′′
eff

2
I0(r)k

×

 x /R(z)
y /R(z)

1 +
(
x2 + y2

)
z20
/
z2R(z)2 −

[
x2 + y2 + 2z z0

]
/2zR(z)

 , (2.15)

where I0(r) = E2
0

[
1 + (z/z0)

2
]−1

exp
(
−2
[
x2/w2

x(z) + y2/w2
y(z)

])
.

The field intensity at the focus, E2
0 , is related to the total power of the

Gaussian beam by

P =

∫ ∞

−∞

∫ ∞

−∞
⟨S⟩nzdxdy = cϵ0πwxwyE

2
0 /4 , (2.16)

where c is the speed of light, nz is the direction of beam propagation and
⟨S⟩ = ⟨H×E⟩ is the the Poynting vector.

For small displacements |r| ≪ λ, we expand equations (2.14) and (2.15)
to get the first order nonlinear terms

Fgrad(r) ≈ −

k
(x)
trap

[
1− 2x2/w2

x − 2y2/w2
y − 2z2/z20

]
x

k
(y)
trap

[
1− 2x2/w2

x − 2y2/w2
y − 2z2/z20

]
y

k
(z)
trap

[
1− 4x2/w2

x − 4y2/w2
y − 2z2/z20

]
z

 (2.17)

and

Fscatt(r) ≈
α′′
eff

α′
eff

k
(z)
trap

 k xz
k yz

γ0 + γzz
2 + γxx

2 + γyy
2,

 (2.18)
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where

γ0 = z0(z0k − 1), (2.19a)
γz = (2− z0k)/z0, (2.19b)

γx =
[
k/2− 2(z0 − k z20)

/
w2
x

]
and (2.19c)

γy =
[
k/2− 2(z0 − k z20)

/
w2
y

]
. (2.19d)

are constants that depend only on the optical field but not on the properties
of the particle.

The longitudinal and transversal trap stiffness are given by

k
(x)
trap = α′

effE
2
0/w

2
x, (2.20a)

k
(y)
trap = α′

effE
2
0/w

2
y and (2.20b)

k
(z)
trap = α′

effE
2
0/2z

2
0 , (2.20c)

respectively. As expected, the trap stiffness increases with polarisability,
laser power and field confinement.

2.3.2 Discussion

Since the scattering force points mainly in the direction of beam propaga-
tion, the equilibrium position zeq. is not exactly at the intensity maximum
but is displaced along z. For the Gaussian model we find

zeq. ≈
α′′
eff

α′
eff

γ0. (2.21)

If the scattering force is too strong, the particle is pushed out of the
optical trap. Expanding (2.13) to lowest order αeff ≈ α(1 + ik3[6πϵ0]

−1α),
we find that

α′′
eff/α

′
eff ∝ (ka)3∆ϵ, (2.22)

where ∆ϵ = (ϵp − ϵm)/(ϵp + 2ϵm) ≈ (ϵp − ϵm) /3ϵm is the relative dielec-
tric contrast between the particle and the surrounding medium. Hence,
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Forces in the Gaussian approximation

the relative strength of the scattering force decreases for smaller particles
and lower dielectric contrast. For SiO2, the dielectric contrast is about five
times higher in air/vacuum (∆ϵair = 0.15) than in water (∆ϵwater = 0.03).
Consequently, it is more difficult to trap big SiO2 particles in air/vacuum
than in water. However, the total optical force F ∝ a3∆ϵ scales with the
volume and the relative dielectric contrast. This makes it easier to trap
small SiO2 particles in air/vacuum than in water.

The optical force becomes weak for small particles. If it becomes too
weak, any external disturbance destabilises the trap. In vacuum, the main
disturbance comes from collisions with residual air molecules (c.f. section
2.4). In consequence, to successfully trap particles with a single laser beam
we have to choose a particle size in the intermediate region where the gra-
dient force dominates over the scattering force but the total optical force is
still strong enough to dominate all other forces. The range of stable trap-
ping is shown as a white region in Figs. 2.4, 2.6 and 2.7.

Figure 2.4 shows the optical force in the direction of beam propagation at
the focus as a function of particle radius. The force has been calculated with
full Mie theory following reference [Neto and Nussenzveig, 2000]. Due to
symmetry, the gradient force vanishes at the focus and the total force equals
the scattering force. For small particles, the scattering force is negligible and
the trap center coincides with the focus. The force increases with particle
size. It is always positive and, therefore, pushes the particle away from the
focus. As the particle moves away from the focus, the gradient force (which
is zero at the focus and points toward the focus otherwise) increases until
the total force is zero and a stable trap is formed ahead of the optical focus.
Interference of scattered and incident light gives rise to Mie-resonances and
leads to a more complex dependency for bigger particles. For particles larger
than ∼ 120 nm, the scattering force is too strong and the particle is pushed
out of the trap, except of a few special resonances. For particle smaller than
∼ 35 nm, thermal excitations destabilise the trap.

Figure 2.5 shows the force profile along the optical axes for a a = 75nm
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Figure 2.4: Optical force at focus along z axis as a function of
particle size calculated for λ = 1064nm and λ = 532nm. At the focus,
the gradient force vanishes and the total optical force equals the scattering
force. For small particle size, the force is almost zero and a stable trap is
formed near the focus. The force at the focus is always positive and scales
with the volume for small particles . Therefore, the particle is pushed along
the optical axes and the equilibrium position is displaced ahead of the focus.
Interference of scattered and incident light gives rise to Mie-resonances and
leads to a more complex dependency for bigger particles. For particles larger
than a ∼ 120 nm, the scattering force is too strong and the particle is pushed
out of the trap, except of a few special resonances. For particle smaller than
a ∼ 35 nm, thermal excitations destabilize the trap. The region where stable
trapping is possible is shown in white.

Silica particle calculated with Mie theory [Neto and Nussenzveig, 2000],
from the Debye integral (equations (2.1), (2.10) and (2.11)) and with the
Gaussian model (equations (2.17) and (2.18)). All three models yield sim-
ilar results close to the trap center. For larger distances (> 0.5µm), the
optical fields are not accurately described by the Gaussian model (see also
2.2) and the simple model fails. However, we are mostly interested in small
displacements from the trap center (zeq. ≈ 0.2µm) for which the model still
gives good results. The inset of figure 2.5 shows the optical forces for a
larger a = 250 nm particle. For this particle size the dipolar approximation
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Forces in the Gaussian approximation

breaks down and the values obtained with the dipolar models (Debye and
Gauss) differ significantly from the exact Mie-solution. The two dipolar
models predict that there is no stable trapping position anywhere on the
optical axis, whereas Mie theory finds a stable position at ≈ 1.5µm.
Figure 2.6 shows the position of the trap center and the trap stiffness as a
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Figure 2.5: Optical forces along axis for 75nm particle calculated with
different models. Around the center of the trap (zeq. ≈ 0.2µm) all models
give similar results. At larger distances the Gaussian description of the
optical fields breaks down. Inset: For bigger particles (here a = 250 nm),
the dipole approximation for the polarisability fails. The two dipolar models
don’t find a stable trap, whereas Mie theory predicts a stable, albeit shallow
trap at ≈ 1.5µm.

function of particle size calculated with all three models. The trap stiffness
is given by the slope of the optical force at the trap center. For particles
larger than ∼ 120nm the center of the trap is already more than half a
wavelength away from the focus and trapping with a single beam is very
difficult. A stable trapping position does not exist because the scattering
force is always stronger than the gradient force. Mie theory still finds a
few exceptional particle sizes where trapping of larger particles is possible.
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When the particle size is commensurate with the optical wavelength, the
particle acts as a resonator. As a consequence the scattered field and there-
fore the optical forces exhibit resonances (see also Fig. 2.4), which can result
in a stable optical trap even for bigger particles (But a stable trap does not
exist for all optical resonances!). However, the range of particle sizes for
which resonant trapping is possible is very narrow. This makes trapping of
particles larger than ∼ 120 nm impractical for the experimental parameters
considered here.
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Figure 2.6: Trap position and trap stiffness as a function of particle
radius a. We compare the three models discussed in the text. (a) Trap
position along z. The black dashed line marks where the equilibrium position
zeq. is half a wavelength ahead of the focus. For larger displacements of zeq.,
we assume that the trap is unstable. The white space marks the particle
sizes for which stable trapping is possible. (b) Trap stiffness along z axis.
The two dipolar models, Gauss and Debye, don’t find a solution for particles
larger than a ≈ 100 nm and a ≈ 160 nm, respectively. The exact Mie theory
finds a solution up to a ≈ 300 nm. For larger particles, a stable trap only
exists when very specific resonance conditions are fulfilled (not shown here).
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2.4 Optical potential

In this section we introduce the concept of an optical potential. From the
optical potential we can estimate a lower bound of particle size for which a
stable trap can be formed.

Strictly speaking a potential can only be defined for a conservative force.
As we have seen in the previous section, the scattering force is not a con-
servative force (c.f. Eq. (2.11)). However, for sub-wavelength particles, the
non-conservative scattering force is negligible and we can define a potential
U = −α′/4 I0(r) (c.f. Eq. (2.10)). With (2.16) the depth of the potential
is given by

∆U = α′ /πcϵ0wxwy P . (2.23)

Comparing the depth of the potential to the thermal energy of the envi-
ronment we can estimate a lower bound of particle sizes for which a sta-
ble trap exists. If the thermal energy is comparable to or larger than the
depth of the potential, a thermally excited particle can escape. The en-
ergy of the thermal bath follows a Maxwell-Boltzmann distribution with
mean value of kBT0. Since the tail of the distribution extends to high
energies, the potential depth should be at least ≃ 10kBT0 [Ashkin et al.,
1986] to make particle escape through thermal excitation unlikely (The
likelihood of finding the particle with energy 10 kBT0 is less than 0.02%).
Assuming that the trap becomes unstable at ≃ 10kBT0, we can measure the
potential depth at optical power P0 by measuring the optical power Plost

when the particle is lost. For our typical experimental conditions we find
∆U(P0) = 10 kBT0 P0/Plost ≈ 28kBT0.

2.5 Conclusions

In conclusion, we have derived a simple analytical model of the optical
forces. The model is based on a Gaussian description of the focal field
and the dipolar approximation for the particle polarisability. Thus, it is
valid for small sub-wavelength particles and small displacements from the
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Figure 2.7: Potential Depth as a function of particle size for P = 0.1W,
NA = 0.8 and λ = 1064 nm. The gray region marks the particle sizes where
the potential depth is below 10 kBT0. Hence, trapping at the given power will
be difficult for particles with radius of less than ∼ 35 nm.

trap center. These requirements are generally fulfilled for our experimental
conditions. The model allows us to understand the dependence of the trap
parameters (trap stiffness and trap position) on the experimental conditions
(optical power, field confinement and particle polarisability). For typical
experimental conditions we find that a stable optical trap exists for particles
in the range a ≈ 35 . . . 120 nm. For smaller particles, thermal excitations
have a high probability to kick the particle out of the trap. Bigger particles
experience a strong scattering force, which pushes them out of the trap.

Optical forces not only allow us to cool and drive the mechanical os-
cillator but they also determine the mechanical properties of the device.
This is different from conventional nanomechanical oscillators, where the
mechanical properties depend on the material properties and the fabrica-
tion process. There exist also an intermediate solution, where the intrinsic
mechanical properties are enhanced by optical forces [Chang et al., 2012].
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CHAPTER 3

Parametric Feedback Cooling of a
Laser-trapped Nanoparticle

We optically trap a single nanoparticle in high vacuum and cool its three
spatial degrees of freedom by means of active parametric feedback. Using
a single laser beam for both trapping and cooling we demonstrate a tem-
perature compression ratio of four orders of magnitude. The absence of a
clamping mechanism provides robust decoupling from the heat bath and elim-
inates the requirement of cryogenic precooling. The small size and mass of
the nanoparticle yield high resonance frequencies and high quality factors
along with low recoil heating, which are essential conditions for ground state
cooling and for low decoherence. The trapping and cooling scheme presented
here opens new routes for testing quantum mechanics with mesoscopic ob-
jects and for ultrasensitive metrology and sensing.

3.1 Introduction

The interaction between light and matter sets ultimate limits on the accu-
racy of optical measurements. Vladimir B. Braginsky predicted that the
finite response time of light in an optical interferometer can lead to me-
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chanical instabilities [Braginsky, 1977] and impose limits on the precision
of laser-based gravitational interferometers. Later, it was demonstrated
that this “dynamic back-action mechanism" can be used to reduce the os-
cillation amplitude of a mechanical system and to effectively cool it below
the temperature of the environment [Metzger and Karrai, 2004; Cohadon
et al., 1999; Arcizet et al., 2006; Gigan et al., 2006; Schliesser et al., 2006;
Usami et al., 2012] and even to its quantum ground state [Chan et al., 2011;
Teufel et al., 2011; Verhagen et al., 2012]. In addition to the fascinating pos-
sibility of observing the quantum behavior of a mesoscopic system, many
applications have been proposed for such systems ranging from detection
of exotic forces [Geraci et al., 2010; Romero-Isart et al., 2011b; Manjavacas
and García de Abajo, 2010] to the generation of non-classical states of light
and matter [Chang et al., 2010; Romero-Isart et al., 2010].

Most of the mechanical systems studied previously are directly con-
nected to their thermal environment, which imposes limits to thermaliza-
tion and decoherence. As a consequence, clamped systems require cryo-
genic precooling. A laser-trapped particle in ultrahigh vacuum, by contrast,
has no physical contact to the environment [Ashkin and Dziedzic, 1976,
1977], which makes it a promising system for ground state cooling even at
room temperatures [Chang et al., 2010; Romero-Isart et al., 2010]. Cool-
ing of micron-sized particles to milli-Kelvin temperatures has recently been
achieved by applying an active optical feedback inspired by atom cooling ex-
periments [Li et al., 2011]. A particle is trapped by two counter-propagating
beams and cooling is performed with three additional laser beams via ra-
diation pressure. However, because light scattering leads to recoil heating
there is a limit for the lowest attainable temperature. Eliminating recoil
heating as the limiting factor for ground state cooling requires considerably
smaller mechanical systems, such as single dielectric nanoparticles [Chang
et al., 2010; Romero-Isart et al., 2010]. Here we demonstrate for the first
time optical trapping in high vacuum of a fused silica nanoparticle of radius
a ∼ 70 nm. Additionally, we employ a novel cooling scheme based on the
optical gradient force to cool its motional degrees of freedom from room
temperature to ∼ 50mK (compression factor of ∼ 104).
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3.2 Description of the experiment

In our experiments we use a laser beam of wavelength λ = 1064 nm (∼
100mW), focused by an NA=0.8 lens mounted in a vacuum chamber (de-
tails chapter 1). A single nanoparticle is trapped by means of the optical
gradient force, which acts towards the center of the trap for all three transla-
tional degrees of the nanoparticle (c.f. Fig. 3.1). For particles much smaller
than the wavelength, the polarisability scales as α ∝ a3 and the gradi-
ent force dominates over the scattering force (c.f. chapter 2). Scattered
light from the particle is measured interferometrically with three separate
photodetectors that render the particle’s motion in the x, y, and z direc-
tions (c.f. section 1.1). This phase-sensitive detection scheme makes use
of balanced detection and yields a noise floor of ∼ 1.2 pm/

√
Hz. Fig. 3.1

shows a photograph of a trapped nanoparticle along with a typical time
trace of the particle’s x coordinate. Trapping times of several days have
been achieved at pressures below 10−5 mBar, indicating that the particle’s
internal temperature does not affect the center of mass motion [Chang et al.,
2010] and that melting of the particle is not a concern.

3.2.1 Particle dynamics

At ambient pressure the particle’s motion is dominated by the viscous force
(Stokes force) due to the random impact of gas molecules. However, as
shown in Fig. 3.1(b), the inertial force dominates in a vacuum of a few
millibars as the particle’s motion becomes ballistic [Li et al., 2010].
For small oscillation amplitudes, the trapping potential is harmonic and the
three spatial dimensions are decoupled. Each direction can be characterised
by a frequency Ω0, which is defined by the particle mass mand the trap
stiffness ktrap as Ω0 =

√
ktrap/m. The equation of motion for the particle’s
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Figure 3.1: Trapping of a nanoparticle. (a) light scattered from a trapped
silica nanoparticle (arrow). The object to the right is the outline of the
objective that focuses the trapping laser. (b) Time trace of the particle’s x
coordinate (transverse to the optical axis) at 2mBar pressure.

motion (q = x, y, z) is

q̈(t) + Γ0 q̇(t) + Ω2
0 q(t) =

1

m
[Ffluct(t) + Fopt(t)] , (3.1)

where Ffluct is a random Langevin force that satisfies ⟨Ffluct(t)Ffluct(t
′)⟩ =

2mΓ0 kBT0 δ(t−t′) according to the fluctuation-dissipation theorem. Fopt(t) =
∆ktrap(t) q(t) is a time-varying, non-conservative optical force introduced by
parametric feedback. It leads to shifts δΓ and δΩ in the particle’s natural
damping rate Γ0 and oscillation frequency Ω0, respectively.

3.2.2 Parametric feedback

To control and stabilise the particle’s motion in the optical trap we im-
plemented an active feedback loop (c.f. 1.1). All three spatial degrees of
freedom are controlled with the same laser used for trapping. To cool the
CoM motion of the particle we employ a parametric feedback scheme, simi-
lar to parametric amplification of laser fields [Yariv, 1989] and stabilization
of nanomechanical oscillators [Villanueva et al., 2011]. After trapping a
single nanoparticle at ambient temperature and pressure we evacuate the
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vacuum chamber in order to reach the desired vacuum level.

Parametric feedback is activated as soon as we enter the ballistic regime.
In a time-domain picture, the feedback loop hinders the particle’s motion
by increasing the trap stiffness whenever the particle moves away from the
trap center and reducing it when the particle falls back toward the trap.
In the frequency domain, this corresponds to a modulation at twice the
trap frequency with an appropriate phase shift. Our parametric feedback
is fundamentally different from previous active feedback schemes based on
radiation pressure [Poggio et al., 2007]. Radiation pressure acts only along
the direction of beam propagation and therefore requires a separate cooling
laser for every oscillation direction [Li et al., 2011]. In contrast, the gradient
force points towards the center of the trap, thus allowing us to cool all three
directions with a single laser beam.

Fig. 3.2 illustrates our parametric feedback mechanism. To obtain a sig-
nal at twice the oscillation frequency we multiply the particle’s position q(t)
with it’s time derivative. The resulting signal q(t) q̇(t) is then phase-shifted
by a controlled amount in order to counteract the particle’s oscillation. Note
that depending on the latency of the feedback loop we can achieve damp-
ing or amplification of the particle’s oscillation. In the absence of active
feedback, the particle’s oscillation naturally locks to the modulation phase
in such a way as to achieve amplification [Yariv, 1989]. Cooling therefore
requires active feedback to adjust the modulation phase constantly.

In our cooling scheme, frequency doubling and phase shifting is done
independently for each of the photodetector signals x, y and z. Since the
three directions are spectrally separated (see Fig. 3.3b), there is no cross-
coupling between the three signals, that is, modulating one of the signals
does not affect the other signals. Therefore, it is possible to sum up all three
feedback signals and use the result to drive a single EOM that modulates
the power P of the trapping laser. Thus, using a single beam we are able
to effectively cool all spatial degrees of freedom.
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Figure 3.2: Principle of parametric feedback cooling. (a) The center-
of-mass motion of a laser-trapped nanoparticle in ultrahigh vacuum is mea-
sured interferometrically with three detectors, labeled x, y, and z. Each
detector signal is frequency doubled and phase shifted. The sum of these
signals is used to modulate the intensity of the trapping beam. (b) The par-
ticle’s motion is hindered by increasing the trap stiffness whenever the par-
ticle moves away from the trap center. When the particle falls back towards
the center of the trap the power decreases, thereby reducing the potential
energy of the particle. As a result of the modulation, the particle’s energy
decreases.

3.3 Theory of parametric feedback cooling

Starting from Eq. (3.1), we now derive a stochastic differential equation for
the energy in the limit of a highly underdamped system (Q ≫ 1)1

E(p, q) =
1

2
mΩ2

0q
2 +

p2

2m
. (3.2)

It turns out that in the low friction limit, the stochastic equation of motion
for the energy (or rather, for the square root of the energy) can be written in
a form which resembles over-damped Brownian motion. As a result, we can
consider the energy as the only variable2. As a side product we also obtain
the energy distribution in the non-equilibrium steady state generated by the

1This section is based on a private note from C.Dellago.
2note that this works only in the low friction limit
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application of the feedback loop. In fact, in energy space the dynamics of the
system with feedback can be viewed as an equilibrium dynamics occurring
in a system with an additional force term.

3.3.1 Equations of motion

For the developments below it is more convenient to write (3.1) as a stochas-
tic differential equation (SDE),

dq =
p

m
dt, (3.3a)

dp = (−mΩ2
0q − Γ0p− Ω0ηq

2p)dt+
√

2mΓ0kBT0dW, (3.3b)

where we have used p = mq̇, Fopt = Ω0ηq
2q̇ and Ffluct =

√
2mΓ0kBT0dW .

Here, W (t) is a Wiener process with

⟨W (t)⟩ = 0 (3.4a)
⟨W (t)W (t′)⟩ = t′ − t. (3.4b)

Note that in particular ⟨W 2(t)⟩ = t for any time t ≥ 0. Accordingly, for a
short (infinitesimal) time interval dt we have

⟨dW ⟩ = 0 (3.5)
⟨(dW)2⟩ = dt. (3.6)

The time derivative of the Wiener process, η(t) = dW (t)/dt, is white noise
and it is related to the random force by Ffluct(t) =

√
2mΓ0kBT0η(t).

3.3.2 Stochastic differential equation for the energy

We determine the energy change dE that occurs during the short time
interval dt during which position and momentum change by dq and dp as
specified by the equations of motion (3.3a) and (3.3b). To lowest order, the
energy change is given by

dE =

(
∂E

∂q

)
dq +

(
∂E

∂p

)
dp+

1

2

(
∂2E

∂p2

)
(dp)2 (3.7)
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Note that this equation differs from the usual chain rule because we have
to keep the term proportional to (dp)2. The reason is that according to Eq.
(3.3b), dp depends on dW which is of order

√
dt. Hence, if we want to keep

all terms at last up to order dt, we cannot neglect the second order term in
the above equation because (dp)2 is of order dt. In contrast, we can safely
neglect the terms proprtional to (dq)2 and dqdp, because they are of order
dt and (dt)3/2, respectively1.

Computing the derivatives of the energy with respect to q and p we
obtain

dE = mΩ2
0qdq +

p

m
dp+

1

2m
(dp)2. (3.8)

Inserting dq and dp from Eqns. (3.3a) and (3.3b) and neglecting all terms
of order (dt)3/2 or higher yields

dE = −m(Γ0+Ω0ηq
2)
( p

m

)2
dt+

p

m

√
2mΓ0kBT0dW+Γ0kBT0dW

2. (3.9)

To avoid the multiplicative noise of Eq. (3.9) we consider the variable
ϵ =

√
E instead of the energy E. The change dϵ due to the changes dq and

dp occurring during an infinitesimal time interval dt is given by

dϵ =

(
∂ϵ

∂q

)
dq +

(
∂ϵ

∂p

)
dp+

1

2

(
∂2ϵ

∂p2

)
(dp)2 (3.10)

as all other terms are of order (dt)3/2 or higher. Evaluation of the partial
derivatives yields

dϵ = mΩ2
0

q

2ϵ
dq +

1

2ϵ

p

m
dp+

1

2

(
1

2mϵ
− 1

4ϵ3
p2

m2

)
(dp)2. (3.11)

Using the equations of motion (3.3a) and (3.3b) and exploiting that (dp)2 =

1This way to apply the chain rule is the basis of the so-called Itô calculus.
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2mΓ0kBT0(dW )2 up to order dt we obtain

dϵ = −m

2ϵ
(Γ0 +Ω0ηq

2)
( p

m

)2
dt+

√
2mΓ0kBT0

2ϵ

p

m
dW

+
Γ0kBT0

2ϵ

(
1− p2

2mϵ2

)
(dW )2. (3.12)

We now integrate this equation over an oscillation period τ = 2π/Ω0 to
obtain the change ∆ϵ =

∫ τ
0 dϵ over one oscillation period,

∆ϵ = −Γ0

2

∫ τ

0

p2

mϵ
dt− Ω0η

2

∫ τ

0

q2p2

mϵ
dt

+
√

2mΓ0kBT0

∫ τ

0

p

2mϵ
dW

+Γ0kBT0

∫ τ

0

1

2ϵ

(
1− p2

2mϵ2

)
(dW )2. (3.13)

To compute the integrals on the right hand side of the above equation, we
assume that in the low-friction limit the energy E, and hence also ϵ remains
essentially constant over one oscillation period. We also assume that the
feedback mechanism changes the energy of the system slowly and that the
motion of the system during one oscillation period is practically not affected
by the feedback either. In the low friction regime, where the coupling to
the bath is weak, a small feedback strength (i.e., a small η) should be
sufficient for considerable cooling. Accordingly, during one oscillation period
the position q and the momentum p are assumed to evolve freely:

q(t) = ϵ

√
2

mΩ2
0

sinΩ0t, (3.14)

p(t) = mq̇(t) = ϵ
√
2m cosΩ0t, (3.15)

where we have selected the phase of the oscillation such that the position
q = 0 at time 0. Hence, the first two integrals of (3.13) are given by∫ τ

0

p2

mϵ
dt = 2ϵ

∫ τ

0
cos2Ω0t dt = ϵτ (3.16)
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and ∫ τ

0

q2p2

mϵ
dt =

4ϵ3

mΩ2
0

∫ τ

0
sin2Ω0t cos

2Ω0tdt =
ϵ3τ

2Ω2
0m

. (3.17)

Insertion of these results and of the harmonic expressions for q(t) and p(t)
from above into Eq. (3.13) gives

∆ϵ = −Γ0ϵ

2
τ − Ω0ηϵ

3

4mΩ2
0

τ

+
√

Γ0kBT0∆R1

+
Γ0kBT0

2ϵ
∆R2. (3.18)

where ∆R1 and ∆R2 are given by

∆R1 =

∫ τ

0
cosΩ0t dW (3.19)

and
∆R2 =

∫ τ

0
sin2Ω0t (dW )2, (3.20)

Since W (t) is a Wiener process, ∆R1 and ∆R2 are random numbers. Next
we will determine the statistical properties of ∆R1 and ∆R2.

As ∆R1 is the result of a (weighted) sum of Gaussian random numbers,
it will be a Gaussian random number, too. The mean of ∆R1 is given by

⟨∆R1⟩ = ⟨
∫ τ

0
cosΩ0t dW ⟩ =

∫ τ

0
cosΩ0t⟨dW ⟩ = 0, (3.21)

where the angular brackets imply an average over all noise histories. The
variance of ∆R1 is given by

⟨(∆R1)
2⟩ = ⟨

∫ τ

0
cosΩ0t dW

∫ τ

0
cosΩ0t

′ dW ′⟩

=

∫ τ

0

∫ τ

0
cosΩ0t cosΩ0t

′⟨dWdW ′⟩

=

∫ τ

0
cos2Ω0t dt =

τ

2
, (3.22)
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where we have exploited that ⟨dWdW ′⟩ = δ(t′ − t)dt. Hence, the random
variable ∆R1 can be written as

∆R1 =

√
1

2
W (τ), (3.23)

where W (τ) is a Wiener process at τ , i.e. a Gaussian random variable with
variance τ .

In a similar way, we can show that the mean of ∆R2 is given by

⟨∆R2⟩ = ⟨
∫ τ

0
sin2Ω0t (dW )2⟩

=

∫ τ

0
sin2Ω0t⟨(dW )2⟩ (3.24)

=

∫ τ

0
sin2Ω0tdt =

τ

2
,

because of ⟨(dW )2⟩ = dt. For the second moment of ∆R2 we obtain

⟨(∆R2)
2⟩ = ⟨

∫ τ

0
sin2Ω0t (dW )2

∫ τ

0
sinΩ0t

′ (dW ′)2⟩

=

∫ τ

0

∫ τ

0
sin2Ω0t sin

2Ω0t
′⟨(dW )2(dW ′)2⟩

=

∫ τ

0

∫ τ

0
sin2Ω0t sin

2Ω0t
′dtdt′

=

(∫ τ

0
sin2Ω0tdt

)2

=
τ2

4
, (3.25)

where we have used that (dW )2 and (dW ′)2 are uncorrelated and that
⟨(dW )2⟩ = dt. Thus, the variance of ∆R2 vanishes,

⟨(∆R2)
2⟩ − ⟨∆R2⟩2 =

τ2

4
− τ2

4
= 0. (3.26)

This result implies that the random variable ∆R2 is sharp such that it can
be replaced by its average, ∆R2 = τ/2.
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Putting everything together we get

∆ϵ =

(
−Γ0ϵ

2
− Ω0ηϵ

3

4mΩ2
0

+
Γ0kBT0

4ϵ

)
τ +

√
Γ0kBT0

2
W (τ). (3.27)

Since the oscillation period τ is assumed to be short compared to the dissi-
pation time scale 1/Γ0 (also the feedback strength η needs to be appropri-
ately small), we can finally write the stochastic differential equation for the
variable ϵ,

dϵ =

(
−Γ0ϵ

2
− Ω0ηϵ

3

4mΩ2
0

+
Γ0kBT0

4ϵ

)
dt+

√
Γ0kBT0

2
dW. (3.28)

This equation, in which ϵ is the only variable, is the main result of this sec-
tion. It implies that the relaxation process can be understood as a Brownian
motion of ϵ (or, equivalently, of the energy) under the influence of an exter-
nal “force”. Using Itô’s formula we can derive the corresponding stochastic
differential equation for the energy E = ϵ2:

dE =

(
−Γ0E − Ω0ηE

2

2mΩ2
0

+ Γ0kBT0

)
dt+

√
E
√

2Γ0kBT0dW. (3.29)

Note that, in contrast to ϵ, the energy is subject to multiplicative noise.

3.3.3 Energy distribution

Equation (3.28) derived in the previous section resembles the Langevin equa-
tion of a variable ϵ evolving at temperature kBT0 under the influence of an
external force f(ϵ) at high friction ν:

dϵ =
1

ν
f(ϵ)dt+

√
2kBT0

ν
dW (3.30)

This equation is known to sample the Boltzmann-Gibbs distribution

ρ(ϵ) ∝ exp(−β0U(ϵ)), (3.31)
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where β0 = 1/kBT0 is the inverse temperature and

U(ϵ) = ϵ2 +
α

4
ϵ4 − kBT0 ln ϵ. (3.32)

is the potential corresponding to the force f(ϵ) = −dU(ϵ)/dϵ. Here, we
have introduced

α =
η

mΩ0Γ0
(3.33)

to simplify the notation. Hence, Eq. (3.28) generates the distribution

ρ(ϵ, α) ∝ ϵ exp
{
−β0

(
ϵ2 +

α

4
ϵ4
)}

, (3.34)

which can be viewed as the equilibrium distribution of the “potential” U(ϵ).
In the above equation we have included the feedback strength α explicitly as
parameter for ρ(ϵ, α) in order to indicate that this distribution is valid also
for the non-equilibrium steady state generated by the feedback mechanism.
The effect of the feedback is, however, reduced to a particular term in this
potential. As can be easily seen by a change of variables from ϵ to E, the
distribution of Eq. (3.34) corresponds to the energy distribution

ρ(E,α) =
1

Z
exp

{
−β0E − β0α

4
E2

}
, (3.35)

where the normalisation factor Z =
∫
dEρ(E,α) is given by

Z =

√
π

αβ0
eβ0/αerfc

(√
β0
α

)
. (3.36)

3.3.4 Effective temperature

The average energy is obtained by integration over the energy distribution
of Eq. (6.7),

⟨E⟩ = Z−1

∫
dE E exp

{
−β0E − β0α

4
E2

}
. (3.37)
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Evaluation of the integrals yields

⟨E⟩ = 2

β0


√

β0
α

e−β0/α

√
π erfc

(√
β0

α

) − β0
α

 , (3.38)

where α is given by Eq. (3.33). Thus, the effective temperature Teff obtained
by applying the feedback mechanism is:

kBTeff = kBT0

 2√
αkBT0

e−1/αkBT0

√
π erfc

(
1√

αkBT0

) − 2

αkBT0

 . (3.39)

For large values of α, the asymptotic behaviour of the effective temper-
ature is given by

kBTeff ≈
√

4kBT0

πα
=

√
4kBT0mΩΓ0

πη
. (3.40)

Hence, at low friction, the effective temperature decreases as
√
Γ0 and in-

versely proportional to √
η.

3.4 Experimental results

In this section we present the main experimental results: linear dependence
of the trap stiffness on optical power, linear dependence of the damping co-
efficient on pressure and parametric feedback cooling down to Teff ∼ 50mK.

3.4.1 Power dependence of trap stiffness

We first consider the particle’s dynamics with the feedback loop deacti-
vated. For small oscillation amplitudes, the particle experiences a harmonic
trapping potential with a trap stiffness ktrap, which is a linear function of

56



Experimental results

P . In the paraxial and dipole approximations (small particle limit, weak
focusing) the transverse trap stiffness is calculated as

k
(x)
trap = α′

effE
2
0/w0

2, (3.41)

where E0
2 ∝ P is the field intensity at the focus, λ is the wavelength, w0

the field confinement (beam waist) and αeff
′ is the particle polarisability.

A similar expression holds for the longitudinal trap stiffness (for details see
chapter 2). For the parameters used in our experiments we find that the
particle’s oscillation frequency in x direction is f

(x)
0 = (ktrap/m)1/2/(2π) =

120 kHz. For the axial oscillation frequency we find f
(z)
0 = 37 kHz and

for the y direction we measure f
(y)
0 = 134 kHz. The different oscillation

frequencies in x and y directions originate from the asymmetry of the laser
focus (c.f. section 2.2). The linear dependence of the trap stiffness on laser
power has been verified for all three directions and is shown in Fig. 3.3(a).
In Fig. 3.3(b) we show the spectral densities of the x, y, and z motions
recorded at a pressure of Pgas = 6.3mBar.

3.4.2 Pressure dependence of damping coefficient

Once a particle has been trapped, the interaction with the background
gas thermalises its energy with the environment and, according to the
fluctuation-dissipation theorem, damps the particle’s motion with the rate
Γ0 in Eq. (3.1). From kinetic theory we find that [Li et al., 2011; Beresnev
et al., 1990]

Γ0 =
6πηa

m

0.619

0.619 + Kn
(1 + cK) , (3.42)

where cK = 0.31Kn/(0.785 + 1.152Kn + Kn2), η is the viscosity coefficient
of air and Kn = l̄/a is the Knudsen number. When the mean free path
l̄ ∝ 1/Pgas is much larger than the radius of the particle, Γ0 becomes pro-
portional to Pgas. Fig. 3.4 shows the measured value of Γ0 for all three
directions as a function of pressure. For a pressure of Pgas = 10−5 mBar
we measure a damping of Γ0 / 2π = 10mHz, which corresponds to a quality

57



Parametric Feedback Cooling
S (nm

2
 / Hz)

0.4
P / P0

a

0.8 1.2 1.60.4

k /
 k 0

0.8

1.2

1.6

z

x
y

40
frequency (kHz)

80 120 160

b

z x y

10-5

10-4

10-3

10-2

10-1

10-6

Figure 3.3: Trap stiffness and spectral densities. (a) Normalized trap
stiffness in the x, y, and z directions as a function of normalised laser power.
Dots are experimental data and the solid line is a linear fit. (b) Spectral
densities of the x, y, and z motions. The trapped particle has a radius of
a = 69nm and the pressure is Pgas = 6.3mBar. The spectral separation of
the resonances makes it possible to feedback-cool the trapped particle with a
single laser beam. The resonance frequencies are f0 = 37 kHz, 120 kHz and
134 kHz, respectively. The dashed curves are fits according Eq. (3.43) and
the data on the bottom correspond to the noise floor.

factor of Q = 107, a value that is higher than the quality factors achieved
with clamped oscillators [Poot and van der Zant, 2012]. In ultrahigh vacuum
(Pgas = 10−9 mBar), the quality factor will reach values as high as Q ∼ 1011.

3.4.3 Effective temperature

Activation of the parametric feedback loop gives rise to additional damping
δΓ and a frequency shift δΩ. The resulting spectral line shapes are defined
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Figure 3.4: Damping rate as a function of gas pressure. The damp-
ing rate Γ0 decreases linearly with pressure Pgas. The dashed line is a fit
according to Eq. (3.42).

by the power spectral density Sq(Ω), which follows from Eq. (3.1) as

Sq(Ω) =

∫ ∞

−∞

⟨
q(t)q(t−t′)

⟩
e−iΩt′ dt′ (3.43)

=
Γ0 kBT0 / (πm)

([Ω0 + δΩ]2 − Ω2)2 +Ω2[Γ0 + δΓ]2
.

Integrating both sides over Ω yields the mean square displacement⟨
q2
⟩

=
⟨
q(0)q(0)

⟩
=

kBT0

m(Ω0 + δΩ)2
Γ0

Γ0 + δΓ
. (3.44)

According to the equipartition principle, the effective temperature Teff fol-
lows from kB Teff = m(Ω0+δΩ)2

⟨
q2
⟩
. Considering that δΩ ≪ Ω0 we obtain

Teff = T0
Γ0

Γ0 + δΓ
, (3.45)
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where T0 is the equilibrium temperature in the absence of the parametric
feedback (δΓ = 0). Thus, the temperature of the oscillator can be raised or
lowered, depending on the sign of δΓ in Eq. (3.45).
Note that (3.45) differs from the previously derived expression (3.39). While
the latter is exact, the former is only approximately valid because under the
action of feedback the particle is not in a true thermodynamic equilibrium
but rather in a steady state. In the phase space distribution the term de-
pending on the squared energy E(q, p)2 causes correlations between q and
p that are absent in thermal equilibrium.

The experimental results of parametric feedback cooling are shown in
Fig. 3.5, which depicts the dependence of the effective temperature Teff on
pressure. Following the theoretical prediction (3.39), the effective temper-
ature scales as Γ

1/2
0 for constant feedback gain η. At Pgas ∼ 4× 10−4mBar

the feedback gain is increased. This results in a sudden drop of the effective
temperature. For lower pressures the gain is held constant again.

The cooling action of the feedback loop competes with reheating due
to collisions with air molecules, ultimately setting a minimum achievable
temperature for each pressure value. Since the area under the line shape
defined in Eq. (3.43) is proportional to Teff , feedback cooling not only in-
creases the linewidth but also lowers the signal amplitude until it reaches the
noise floor. Nevertheless, we are able to reach temperatures of Teff ∼ 50mK
while maintaining the particle in the trap.

3.5 Towards the ground state

The here introduced trapping and cooling technique represents an important
step towards ground state cooling. In the quantum limit, a mechanical
oscillator exhibits discrete states separated in energy by h̄(Ω0+ δΩ) ∼ h̄Ω0.
The mean thermal occupancy is

⟨n⟩ = kBTeff

h̄Ω0
. (3.46)
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Figure 3.5: Parametric feedback cooling. (a) Dependence of the center-
of-mass temperature Teff on pressure. The cooling rate (the slope of the
dashed lines) is similar for the different directions x, y and z. The feedback
gain has been increased at a pressure of ∼ 0.3µBar causing a kink in the
curves. (b) Spectra of the z motion evaluated for different pressures and
temperatures Teff . The area under the curves is proportional to Teff . The
numbers in the figure indicate the pressure in mBar.

In order to resolve the quantum ground state we require ⟨n⟩ < 1. For a
120 kHz oscillator, this condition implies Teff ∼ 6µK. According to equa-
tion (3.45), a low pressure implies a low damping rate and thus, extrapolat-
ing Fig. 3.5a, we find that this temperature will be reached at ultrahigh vac-
uum (10−11mBar), provided that the particle oscillation can be measured
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and the feedback remains operational. Alternatively, lower occupancy can
be reached at higher pressures by an increase of the feedback gain. Laser
power noise introduces fluctuations in the trap stiffness and therefore in
the mechanical oscillation frequency. We believe that the resulting random
phase error in the feedback loop is the current limiting factor in cooling.
This phase error can be minimised by using background suppression and
laser stabilisation techniques [Seifert et al., 2006]. The noise floor in our
measurements is currently 1.2 pm/

√
Hz.

In feedback cooling, the particle’s position has to be measured in order
to operate the feedback loop. Measurement uncertainty of x, y, and z
introduced by shot-noise therefore limits the lowest attainable temperature
Teff . The measurement accuracy is fundamentally limited by the standard
quantum limit, which follows from the uncertainty principle.

3.5.1 The standard quantum limit

Photons that scatter off the particle carry information about it’s position,
which sub-sequentially can be read out via photo detection. The signal
improves with the number of photons Nph that interact with the particle.
However, even for an ideal detector the stochastic arrival of photons adds
an uncertainty to the measurement. For a laser beam with Nph photons
the uncertainty in photon number due to shot noise is ∆n =

√
Nph. Thus

the momentum uncertainty is ∆p =
√

Nphh̄kq, where kq is the wavevector
of the scattered photon into direction q. From the uncertainty principle
∆q∆p ≥ h̄/2 it follows that the position uncertainty is ∆q = 1/(2

√
Nphkq).

Therefore, the position measurement improves as ∼ 1/
√

Nph with the num-
ber of photons. On the other hand, due to the momentum uncertainty
∆p ∝

√
Nph, the finite probability to excite the mechanical oscillator in-

creases with the number of photons. Consequently, the uncertainty in the
measured energy

∆E = 1/2(mΩ2
0∆q2 +∆p2/m), (3.47)

consists of two terms, measurement uncertainty and measurement back-
action, respectively. The standard quantum limit is achieved when the
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measurement uncertainty is minimized, that is when both terms contribute
equally.

Figure 3.6: Measurement backaction. The standard quantum limit is
reached when the measured position uncertainty is equal to the momentum
imparted by the photons that carry the information about the position. The
red curve shows the measurement uncertainty, the blue curve the measure-
ment back-action and the black curve shows the sum of the two.

3.5.2 Recoil heating

Evidently, the measurement uncertainty ∆q can be reduced by increasing
the signal power at the detector, for example by higher laser power or by
using a larger particle size a and hence a larger scattering cross-section
σscatt = k4|α|2/(6πϵ20). However, strong scattering introduces recoil heating,
which destroys the coherent particle motion.

In general, photon recoil is a small effect since the photon momentum
is small compared to the momentum of the mechanical oscillator. However,
at very low pressures, collisions of the oscillator with air molecules becomes
negligible and photon recoil becomes the dominating decoherence process.
To understand the effect of recoil from our previous discussion of mea-
surement backaction, consider the number of photons needed to add one
quantum of mechanical energy h̄Ω0 to the oscillator. The recoil energy of
a single photon emitted in direction q is given by h̄2k2q/2m, where m is
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the mass of the oscillator. Therefore, Nrecoil = 2mh̄Ω0/h̄
2k2q photons need

to interact with the oscillator to add one quantum of mechanical energy.
The number of photons that are scattered by a particle with scattering
cross section σscatt within a time interval ∆t is Nscat = Pscat∆t/h̄ω, where
Pscat = σscattI0 is the scattered power and I0 = Pin/σfocus is the intensity
at the laser focus.
From this the time ∆trecoil it takes to scatter Nrecoil photons follows as

Γrecoil = 1/∆trecoil =

[
h̄2k2q /2m

h̄Ω0

] [
I0 σscatt

h̄ω

]
. (3.48)

Finally, to obtain the recoil rate in direction q, we consider the probability
of observing a photon scattered in this direction. Since for a sub-wavelength
particle, the scattered light featuers a dipolar radiation pattern, the proba-
bility of observing a particle in direction {θ, ϕ} is P (θ, ϕ) = 3

8 sin
2 θ. Thus,

the contribution to recoil from all photons in direction q is

k2q =

∫ 2π

0

∫ π

0
P (θ, ϕ)(k · nq)

2 sin θdθdϕ = k2

{
2/5 q=y,z
1/5 q=x

, (3.49)

where k · nq is the projection of the wavevector

k = (kx, ky, kz) = k(cos θ, sin θ cosϕ, sin θ sinϕ). (3.50)

in direction q. Here, x is the direction of polarisation of the incident electric
field. Since a dipole doesn’t radiate along the direction of polarisation also
the recoil along the direction of polarisation is reduced.

3.5.3 Detector bandwidth

We continue the discussion to gain some insight into the limits of the de-
tection. Consider the number of photons available to detect the particle
position q. As before Nscat = Pscat∆t/h̄ω, where now the measurement
time ∆t = 1/B is given by the bandwidth of the detector B. The position
uncertainty is then easily found as

∆q ≥
√

h̄cλB/(8πPscat). (3.51)
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For our experimental values a = 70nm, P in = 100mW, λ = 1064 nm and
B = 300 kHz, we find that ≈ 108 photons are scattered and that the po-
sition uncertainty is ∆q ≈ 6.3 pm, which is of the order of the zero point
motion. Our experimental parameters are therefore close to the optimum.
From (3.51), one might argue that the position uncertainty can be fur-
ther improved by simply reducing the bandwidth of the detector. However,
for the feedback to work we need to be sensitive to changes in the ampli-
tude q0(t) and phase ϕ(t) of the particle motion1. Classically, the particle
trajectory can be written as q(t) = q0(t) sin(Ω0t + ϕ(t)), where q0(t) and
ϕ(t) are slowly varying functions that vary over timescales of the order of
∼ 1/Γdecoher.. In other words, the maximum time ∆tmeas. we have for the
measurement of q(t) is the time over which q(t+∆tmeas.) is correlated with
q(t).

In ultrahigh vacuum, the dominant decoherence process is recoil heat-
ing and therefore Γdecoher. = Γrecoil ∝ Pscat.. Using B ≈ Γrecoil, the position
uncertainty (3.51) becomes independent of power. This is again a man-
ifestation of the uncertainty principle, which tells us that the minimum
uncertainty in the position measurement is given by the zero point motion.

Ultimately, we are interested in the number of coherent oscillations that
can be observed. Employing the expression for the trap stiffness derived in
section 2.3, we find that the number

Nosc =
Ω0

2πΓrecoil
∝ 1/(ka)3 (3.52)

of coherent oscillations also does not depend on power. Hence, we can choose
the power high enough to make photon shot noise the dominant noise source.

In conclusion, we have shown that neither the number of coherent os-
cillations, nor the minimum position uncertainty depend on power. As a
consequence, we can work in a regime where the measurement uncertainty is
only limited by photon shot noise. In that case, the minimum measurement

1Actually for the feedback we only need to know the right phase. However, the
amplitude gives us the energy.

65



Parametric Feedback Cooling

uncertainty is achieved by a detector with bandwidth B ≈ Γrecoil. The dis-
cussion highlights the tradeoff between measurement uncertainty and recoil
heating. A nanoparticle of size of a ∼ 70 nm is a good compromise between
the two limiting factors. Notice that Γrecoil and the photon scattering rate
differ by a factor of ∼ 10−9, and hence most of the scattered photons do not
alter the center-of-mass state of the particle. The possibility of observing
the particle without destroying its quantum coherence is a critical advan-
tage over atomic trapping and cooling experiments. Finally, parametric
cooling should work even without continuously tracking q(t) as long as the
frequency and the phase of the center-of-mass oscillation are known.

3.6 Conclusion

We have demonstrated that an optically trapped nanoparticle in high vac-
uum can be efficiently cooled in all three dimensions by a parametric feed-
back scheme. The parametric feedback makes use of a single laser beam
and is therefore not limited by alignment inaccuracies of additional cooling
lasers. Theoretical considerations show that center-of-mass temperatures
close to the quantum ground state are within reach. To fully exploit the
quantum coherence of a laser-trapped nanoparticle, parametric feedback
cooling can be combined with passive dynamical back-action cooling [Kip-
penberg and Vahala, 2007], for example by use of optical cavities [Chang
et al., 2010; Romero-Isart et al., 2010; Kiesel et al., 2013] or electronic res-
onators [Teufel et al., 2011]. The results shown here also hold promise for
ultrasensitive detection and sensing [Geraci et al., 2010]. The ultrahigh qual-
ity factors and small oscillation amplitudes yield force sensitivities on the
order of 10−20N/

√
Hz [Stipe et al., 2001], which outperforms most other ul-

trasensitive force measurement techniques by orders of magnitude, and can
find applications for the detection of single electron or nuclear spins [Rugar
et al., 2004], Casimir forces and vacuum friction, phase transitions [Lechner
et al., 2013], and non-Newtonian gravity-like forces [Geraci et al., 2010].
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CHAPTER 4

Dynamics of a parametrically driven
levitated particle

A prerequisite for applications of a nanomechanical resonator, such as sens-
ing, is a thorough understanding of the resonator response to changes in its
environment. The dynamic response to different external stimuli and the os-
cillator parameters can be characterised by applying a known external force.
In this chapter we use parametric modulation of the trapping potential to ex-
cite an optically levitated particle in high vacuum and analyze its response
for a range of different excitation modalities.

4.1 Introduction

For large oscillation amplitudes the particle motion is governed by a (Duff-
ing) nonlinearity. This nonlinearity is common to most nanomechanical os-
cillators, which are ideal systems to explore nonlinear dynamical behaviour,
as they exhibit high mechanical quality (Q) factors fast response times and
fairly low drift and can be easily excited into the nonlinear regime [Un-
terreithmeier et al., 2010]. The response of a nonlinear oscillator exhibits
characteristic phenomena such as multistability, hysteresis and discontinu-
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ities. They can be exploited in a wide range of applications ranging from
precision frequency measurement [Aldridge and Cleland, 2005], signal am-
plification via stochastic resonance [Almog et al., 2007], to mass sensing
[Buks and Yurke, 2006]. They also allow for studying classical to quantum
transitions [Katz et al., 2007].

Here we study the response of an optically levitated nanoparticle in
high vacuum subject to parametric excitation. This allows to drive the
particle oscillation in a controlled manner and thereby to fully characterise
it’s properties. A thorough understanding of the dynamics of an optically
trapped particle in high vacuum is a necessary condition for ultimate control
(i.e. ground state cooling) and many of the aforementioned applications.

4.2 Theoretical background

Fig. 4.1 shows a schematic of the experimental configuration. A single
nanoparticle is trapped at the focus of the laser beam by means of the

a b
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2ΩΔφΣ
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feedbac
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feedback
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⇠
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Figure 4.1: Experimental configuration. (a) For large oscillation ampli-
tudes, the optical potential is anharmonic. The anharmonicity gives rise to
the Duffing term in (5.3). (b) The center-of-mass motion of a laser-trapped
nanoparticle is cooled with a parametric feedback loop. In addition to the
feedback signal an external modulation is applied to drive the particle.
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optical gradient force and cooled parametrically by a feedback loop. In
addition to the feedback signal, we apply a modulation at frequency Ωm

and modulation depth ϵ.

4.2.1 Equation of motion

The particle motion consists of three modes, each corresponding to a spa-
tial oscillation along one of the three symmetry axes of the optical in-
tensity distribution. For large oscillation amplitudes, the modes couple
through cubic nonlinearities in the optical force (c.f. chapter 2). How-
ever, under the action of feedback cooling, the effective thermal amplitude
qeff =

(
2kBTeff

/
mΩ2

0

)1/2 of the particle oscillation is much smaller than the
size of the trap. As a consequence, coupling between the modes is negligible
and the particle dynamics is well described by a one-dimensional equation
of motion:

q̈ + Γ0q̇ +Ω2
0

1 + ϵ cos (Ωmt)︸ ︷︷ ︸
parametric drive

+Ω−1
0 Γ0qq̇︸ ︷︷ ︸
feedback

+ ξq2︸︷︷︸
Duffing term

 q =
Ffluct

m
≈ 0.

(4.1)
The damping Γ0 can be controlled by the pressure of the vacuum chamber.
In addition, the third term depends on several experimental parameters
which allow us to control the particle motion as follows

• The prefactor is proportional to the mean optical power and defines
the oscillation frequency Ω0 of the trapped particle.

• Parametric driving with modulation depth ϵ and modulation fre-
quency Ωm allows to drive the particle motion. As we will see in
the following sections, the most interesting phenomena occur when
Ωm is close to twice the natural frequency Ω0 of the particle.

• Nonlinear damping is due to parametric feedback cooling. Without
parametric drive (ϵ = 0), the nonlinear damping reduces the effective
thermal energy from T0 to Teff (c.f. chapter 3). It is important to
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note that feedback cooling reduces the effective thermal motion in all
three spatial directions. In contrast, parametric driving only excites
the mode which fulfils the condition Ωm ≈ 2Ω0.

• The Duffing nonlinearity is due to the shape of the optical potential
(c.f. chapter 2). It becomes significant when the particle’s oscillation
amplitude is comparable to the beam waist w0.

The right hand side of equation (5.3) is a stochastic force due to random
collisions with residual air molecules and therefore depends on pressure.
The fluctuation-dissipation relation links the strength of the thermal force
to the damping ⟨Ffluct(t)Ffluct(t

′)⟩ = 2mΓ0 kBTeff δ(t − t′). Under typical
experimental conditions Q = Ω0/Γ0 ≫ 1. Hence, the stochastic force is
much weaker than the nonlinear terms and the parametric driving and can
be neglected in the description of the particle dynamics.

4.2.2 Overview of modulation parameter space

The response of the particle to the external modulation depends on the
parameters of the external driving force ϵ and Ωm, respectively. In the
following we consider resonant and non-resonant parametric driving. For the
former the condition Ωm ≈ 2Ω0 holds, whereas for the latter this condition is
violated. In addition, for resonant driving, we can also distinguish between
excitation below and excitation above threshold, respectively.

Resonance condition

Fig. 4.2 shows the frequency resolved particle response at 6mBar as a func-
tion of modulation frequency Ωm for fixed modulation depth ϵ. Modulation
at frequency Ωm produces sideband frequencies at |Ω0 ± Ωm| (red dashed
lines). For very low modulation frequencies, the overlap of the sidebands
leads to an apparent broadening of the resonance peak (lower inset Fig. 4.2).
In high vacuum, the resonances and consequently also the modulation side-
bands become sharper and we can resolve higher order sidebands (c.f. sec-
tion 4.3.4). When the lower sideband Ωm − Ω0 becomes resonant with the
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Figure 4.2: Parametric excitation overview. The main figure shows
the power spectral density (horizontal axis) of the x-mode (Ω0 ∼ 125kHz)
as a function of modulation frequency Ωm (vertical axis). Modulation at
frequency Ωm (red solid line) produces sideband frequencies at |Ω0±Ωm| (red
dashed lines). When the lower sideband Ωm−Ω0 becomes resonant with the
particle resonance Ω0, energy is transferred from the sideband to the particle
(upper inset). This results in a increase of the particle energy and frequency
locking to the external modulation (green solid line, c.f. section 4.3.1). The
total particle energy is obtained by integration of the power spectral density.
The integrated power spectral density as a function of modulation frequency
is show as black data points to the right. On resonance, the thermal noise
is parametrically amplified.

particle resonance Ω0, energy is transferred from the sideband to the parti-
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cle (upper inset Fig. 4.2). This results in a increase of the particle energy.
The total particle energy is obtained by integration over the power spectral
density (black data points to the right).

Threshold condition

Near the resonance (upper inset Fig. 4.2), we distinguish between weak and
strong resonant driving. For weak modulation, the Duffing term in Eq. (5.3)
can be neglected and we observe parametric amplification of the thermal
noise (black data points Fig. 4.2). However, if the driving is sufficiently
strong, the Duffing term in Eq. (5.3) becomes important and the system
makes a transition reminiscent of a phase transition. The particle motion
changes from thermal (incoherent) motion to sustained (coherent) oscilla-
tions with a fixed frequency with respect to the external modulation.

In the parameter phase space near resonance, the stability condition
(c.f. chapter 4.3.2)

ϵ <
2

Q

√
1 +Q2 (2− Ωm/Ω0)

2, (4.2)

maps out a tongue shaped region (Arnold tongue), which is shown as grey
area in Fig. 4.3a. Typically Q ≫ 1 and the exact condition (4.2) is well
approximated by

|δm| < ϵ/2 (4.3)

shown as dashed diagonal lines, where δm = 2 − Ωm/Ω0 is the normalised
modulation detuning. The particle response to the external modulation for
a given set of parameters {ϵ,Ωm} depends on the phase space trajectory of
the two control parameters ϵ and Ωm. For simplicity we consider only cases
where one of the two is held constant while the other is varied. In that case
we can distinguish five cases

I. Frequency up and down sweeps above threshold. The response exhibits
hysteresis and is discontinuous when the resonance is approached from
below (c.f. section 4.4.3).
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II. Amplitude up and down sweeps below resonance. The response exhibits
hysteresis and is discontinuous when the threshold is crossed from
below and from above (c.f. section 4.4.4).

III. Amplitude up and down sweeps above resonance. The response does
not exhibit hysteresis and is continuous (c.f. section 4.4.4).

IV. Approaching the instability region. The frequency of the thermal mode
is pulled towards the sideband (c.f. section 4.3.3).

V. Below threshold. The response does not exhibit hysteresis and is con-
tinuous. The regime below the onset of self-sustained oscillations can
be used for mechanical parametric amplification and thermal noise
squeezing [Rugar and Gruetter, 1991; Lifshitz and Cross, 2009]. (c.f.
Fig. 4.2 black data points - at the parametric resonance the thermal
noise is parametrically amplified).

4.2.3 Secular perturbation theory

Within the resonance region (grey tongue shaped region Fig. 4.3), we are
interested in solutions q(t) that are slow modulations of the linear resonance
oscillations. Therefore, we introduce a dimensionless slow time scale T =
κΩ0t and displacement amplitude A(T ). With the slowly varying envelope
approximation (SVEA)

q =
q0
2
AeiΩ0t + c.c. (4.4a)
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Figure 4.3: Near resonant modulation: parameter space. (a) The sta-
bility condition (4.2) divides the the ϵ-Ωm plane into two regions, thermal
motion (white) and self oscillation (grey). If the stability condition is ful-
filled, the particle oscillation amplitude is given by it’s effective temperature.
Above threshold (grey), the particle enters a regime of coherent oscillations
in sync with the external modulation. The modulation depth threshold on
resonance depends on the Q factor (here 50). The dashed diagonal lines cor-
respond to Q = ∞. This is a good approximation for typical configurations,
where the Q-factor is larger than 104. (b) The particle response depends on
the value and the trajectory of the two control parameters ϵ and δm.

and using Ȧ = dA
dt = Ω0κ

dA
dT we get:

q̇ = Ω0
q0
2

[
κ
dA

dT
+ iA

]
eiΩ0t + c.c. (4.4b)

q̈ = Ω2
0

q0
2

[
κ2

d2A

dT 2
+ i2κ

dA

dT
−A

]
eiΩ0t + c.c. (4.4c)

q2q̇ =
q30
8
Ω0

[
2κ|A|2dA

dT
+ i|A|2A+ κA2dA

∗

dT

]
(4.4d)

× eiΩ0t + c.c. (4.4e)

q3 =
3q30
8

|A|2AeiΩ0t + c.c. (4.4f)

ϵ cos(Ωmt)q =
ϵq0
4

A∗e(Ωm−2Ω0)t eiΩ0t, (4.4g)
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where c.c. stands for complex conjugate and we dropped small corrections
from fast oscillating terms. For a consistent expansion [Villanueva et al.,
2013; Lifshitz and Cross, 2009], we apply the rescaling

γ̃0 =
Γ0

Ω0κ
; η̃ =

η

ξ
; ϵ̃ =

ϵ

κ
(4.5)

with scale factors κ = Γ0/Ω0 = Q−1 and q20 = κ/ξ. Plugging (4.4) into
(5.3) yields

Ω2
0

q0
2

[
κ2

d2A

dT 2
+ i2κ

dA

dT
−A

]
eiΩ0t (4.6)

+ γ̃0κΩ
2
0

q0
2

[
κ
dA

dT
+ iA

]
eiΩ0t

+Ω2
0

q0
2
AeiΩ0t

+
q0
8
Ω2
0η̃κ

[
2κ|A|2dA

dT
+ i|A|2A+ κA2dA

∗

dT

]
eiΩ0t + c.c.

+Ω2
0κ

3q0
8

|A|2AeiΩ0t + c.c.

+
ϵ̃q0
4

κA∗e−i(δΩm−2Ω0)t eiΩ0t = 0

Dropping higher order terms O(κ2) and fast oscillating terms we arrive
at

dA

dT
= − γ̃0

2
A− 1

8
η̃|A|2A+ i

3

8
|A|2A+ i

ϵ̃

4
A∗e−iδ̃mT , (4.7)

where δ̃m = δm/κ is the rescaled normalised detuning δm = (2− Ωm/Ω0).
To get rid of the phase factor in (4.7), we substitute A = Ã exp(−iT δ̃m/2).
This gives

dÃ

dT
= − γ̃0

2
Ã+ i

δ̃m
2
Ã−

[
1

8
η̃ − i

3

8

]
|A|2Ã+ i

ϵ̃

4
Ã∗. (4.8)

75



Dynamics of a parametrically driven levitated particle

4.2.4 Steady state solution

In the following we investigate the steady state solution A0, which satisfies
d
dT A = 0. Aside from the trivial solution A0 = 0, the non-trivial steady
state solution A0 = a0e

−iϕ of (4.8) is given by

d

dT
A0 = −i

[
−i

(
γ̃0
2

+
1

8
η̃a20

)
−

(
δ̃m
2

+
3

8
a20

)]
a0e

−iϕ

+ i
ϵ̃

4
a0e

iϕ = 0, (4.9)

where

γ̃0 +
1

4
η̃a20 = − ϵ̃

2
sin 2ϕ, (4.10)

δ̃m +
3

4
a20 = − ϵ̃

2
cos 2ϕ. (4.11)

Thus, a0 and ϕ are given as the solutions to

ϕ =
1

2
tan−1

(
γ̃0 +

1
4 η̃a

2
0

δ̃m + 3
4a

2
0

)
(4.12)

and [
γ̃0 +

1

4
η̃a20

]2
+

[
δ̃m +

3

4
a20

]2
=

ϵ̃2

4
. (4.13)

Fig. 4.4 shows the amplitude solution

a20 =
[
(η̃/4)2 + (3/4)2

]−1
×
(
−
[
γ̃0η̃ + 3δ̃m

]
/4

±
√[

(η̃/4)2 + (3/4)2
]
ϵ̃2/4−

[
η̃δ̃m/4− 3γ̃0/4

]2)
(4.14)

as a function of detuning δm. Note that the solution with the negative sign
corresponds to the unstable mode.
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Figure 4.4: The three steady state solutions for different detuning. The
parameters are γ̃0 = 1, η̃ = 1,ϵ̃ = 4.

4.3 Dynamics below threshold (linear regime)

To find the equation of motion for small perturbations δA from equilibrium,
we make the ansatz Ã = A0+δA and plug it into (4.8). Linearization around
the trivial solution A0 = 0 yields

d

dT
δA =

(
− γ̃0

2
+ i

δ̃m
2

)
δA+ i

ϵ̃

4
δA∗.

Writing δA = r exp iϕ, we find the equations of motion for the amplitude
and the phase of the parametrically driven oscillator.

ṙ = − γ̃0
2
r +

ϵ̃

4
sin(2ϕ)r, (4.15a)

ϕ̇ =
δ̃m
2

+
ϵ̃

4
cos(2ϕ). (4.15b)

Equation (4.15b) is known as the Adler equation. It is this equation that
explains the steady state, and in fact also the transient, injection-locking
behaviour of a harmonic oscillator with an external signal [Siegman, 1986].
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4.3.1 Injection locking

According to the Adler equation (4.15b), a steady-state locked oscillation
(ϕ̇ = 0) has a fixed phase relative to the external drive

ϕss(δ̃m) =
1

2
cos−1

(
− δ̃m
ϵ̃/2

)
. (4.16)

The phase lag changes from +π/4 to −π/4 as δ̃m is tuned from −ϵ̃/2 to ϵ̃/2
and changes sign at δ̃m = 0. The Adler equation depends only on ϕ and we
can integrate it

tan(
ϕ

2
) =

δ̃m
∆Ωb

+
ϵ̃/2

∆Ωb
tanh

(
∆Ωb (t− t0)

2

)
. (4.17)

Here, t0 incorporates the initial conditions and the beat frequency is given

by ∆Ωb =
√

(ϵ̃/2)2 − δ̃2m [Knünz et al., 2010]. Note that ϵ̃/2 > |δ̃m|, since
we are considering the behaviour within the lock-in region. From (4.17)
it follows that for an injected signal within the lock-in region, the phase
will always pull-in smoothly towards the steady-state value given by (4.16).
This is easily seen by considering a small perturbation δϕ from the steady
state ϕ = ϕss + δϕ. From (4.15b) we find

δϕ̇ = −

[(
ϵ̃

2

)2

− δ̃2m

]
δϕ (4.18)

Consequently, the phase relaxes exponentially to its steady state value.

4.3.2 Linear instability

Using the steady state value ϕss in (4.15a), we find that the amplitude grows
exponentially at a rate

gL = − γ̃0
2

+
1

2

[(
ϵ̃

2

)2

− δ̃2m

]
(4.19)
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If the total gain becomes positive, the oscillation amplitude grows exponen-
tially until saturation due to nonlinearities. Note that the stability condition
(4.2) is an immediate consequence of (4.19):

ϵ <
2

Q

√
1 +Q2δ2m.

At the threshold detuning δth this becomes an equality. Since for high Q
δth depends only on the modulation depth ϵ, measuring the slope of δth as
a function of the external modulation ϵV = cVϵ is a way to calibrate the
modulation depth ϵ, where cV is the calibration factor.

4.3.3 Frequency pulling

Let us now consider the case where the modulation frequency is close to
but still outside the lock-in range, that is |ϵ̃| < |δ̃m|. The beat frequency is

now defined as ∆Ωb =
√

δ̃2m − (ϵ̃/2)2 and the hyperbolic tangent of (4.17)
becomes a trigonometric tangent:

tan(
ϕ

2
) =

δ̃m
∆Ωb

+
ϵ̃/2

∆Ωb
tan

(
∆Ωb (t− t0)

2

)
. (4.20)

From this it follows that the oscillation signal consist of a new primary
carrier component with a pulled frequency [Siegman, 1986]

Ω = Ωm − Ω0 +

√
(Ωm − 2Ω0)2 − Ω0 (ϵ/2)

2. (4.21)

Fig. 4.5a shows the power spectral density (PSD) for different modulation
frequencies. As the lower sideband Ωm − Ω0 approaches the lock in re-
gion, the particle oscillation frequency is pulled towards the sideband. In
Fig. 4.5b, the oscillator is injection locked and only one resolution limited
component is left. Figure 4.5c shows a quantitative analysis of frequency
pulling which is in good agreement with (4.21).
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Figure 4.5: Frequency pulling. When the sideband Ωm − Ω0 approaches
the main mode Ω0, the main mode is pulled toward the sideband. (a) PSD
for modulation frequencies below the lock-in region. (b) PSD for modulation
frequencies within the lock-in region. Note that the vertical scale is different
from (a). For comparison a PSD from outside the lock-in region is shown
in grey. (c) The frequency of the main mode as a function of modulation
frequency. The grey region mark the lock-in region. The black line is a fit
to (4.21). Here, the pressure is Pgas = 1.9× 10−5mBar and the modulation
depth is ϵ = 0.04.

4.3.4 Off-resonant modulation (low frequency)

A modulation at a frequency much smaller than the particle oscillation
Ωm ≪ Ω0 does not affect the particle energy kBTeff . However, the oscillation
frequency is a slowly varying function of time. Hence, the particle position
is of the form

q(t) ≈ qeff cos
(
Ω0

[
1 +

ϵ

2
cos (Ωmt)

]
t
)
. (4.22)
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Using the identity

eia cos(b) = J0(a) + 2
∞∑
k=1

ikJk(a) cos(kb), (4.23)

we find that the power spectral density of the particle position exhibits side-
bands at Ω0 ± nΩm (n = 1, 2, . . . ). The strength of the sidebands depends
on the modulation depth ϵ and modulation frequency Ωm.
Fig. 4.6 shows the particle PSD as a function of modulation frequency for
ϵ = 24 × 10−3. We can distinguish the five lowest sidebands. For small
modulation depth only the lowest sidebands contribute and they become
dimmer as the modulation frequency increases. The presence of sidebands
in the spectrum allows us to understand the parametric resonance condi-
tion Ωm ≈ 2Ω0. The condition is satisfied when the sideband Ωm − Ω0

approaches a particle resonance. This allows for resonant energy transfer
from the sideband to the particle. Thus, the energy of the resonant mode
increases.

Off-resonant modulation can also lead to phase noise. If the modulation
is not at a single frequency but broadband, the sidebands of all the frequency
components overlap. Consequently, the spectrum exhibits a single peak
which is broader than the natural linewidth Γ0. This kind of broadening
is known as phase noise [Cleland and Roukes, 2002] and can be caused by
laser intensity fluctuations which are predominantly at low frequencies.

4.4 Dynamics above threshold (nonlinear regime)

As we have seen in section 4.3.2 the oscillation amplitude grows large for
driving above threshold. The following section considers the particle dy-
namics in the nonlinear regime.

For comparison with the experimental data we convert (4.14) back to
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Figure 4.6: Low frequency modulation. For modulation frequencies
much smaller than the particle oscillation frequency, the PSD of the particle
position exhibits sidebands. The modulation depth is ϵ = 24× 10−3.

physical quantities

q2 =
−1

ηδ2th

[
3
ξ

η
δm +Q−1 −

√
ϵ2δ2th − δ2m + 3

ξ

η
Q−2

(
2Qδm − 3

ξ

η

)]

≈ −1

ηδ2th

[
3
ξ

η
δm −

√
ϵ2δ2th − δ2m

]
, (4.24)

where
δth =

√
9ξ2 + η2 /2η . (4.25)

The approximation holds for Q ≫ 1. This is the case under typical experi-
mental conditions and for simplicity we assume that Q → ∞ from here on.
Note that we have dropped the amplitude solution with the negative sign,
since it belongs to the unstable solution.

4.4.1 Nonlinear frequency shift

Additionally, typically ξ ≫ η (c.f. Eq. 5.3) and we can further approximate
δth ≈ 3ξ /2η and

q2 ≈ − 4

3ξ
[δm + ϵ/2] . (4.26)

For weak driving at nonzero detuning δm, the second term becomes negligi-
ble and we obtain Ωm/2 = Ω0+3ξq2/8. Recalling that Ωm/2 is the particle
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oscillation frequency of the locked particle, the nonlinear frequency shift is
given by

∆ΩNL = 3ξq2/8. (4.27)

4.4.2 Nonlinear instability

From (4.24) it follows that a solution only exists if

ϵ2δ2th − δ2m > 0. (4.28)

This condition plays a similar role as the linear stability condition (4.2).
However, whereas (4.2) gives the parameter range for which the linear sys-
tem is stable, (4.28) is the stability condition for the nonlinear solution.

4.4.3 Modulation frequency sweeps

In the following we consider the particle response for fixed modulation depth
ϵ as the modulation frequency Ωm is swept over the resonance of the x mo-
tion at 2Ω0 ∼ 250kHz.

Fig. 4.7a shows a map of the particle energy as Ωm is increased from
240 kHz to 255 kHz, for values of ϵ ranging from 1×10−3 to 24×10−3. For off
resonant modulation, the particle energy remains at Teff =

mΩ2
0

2kB
x2 ≈ 17K.

For modulation frequencies within the lock-in range, the particle energy
increases significantly. The lock-in region, as predicted by the linear stability
condition (4.3), is shown as black dashed lines.

Fig. 4.7b shows the frequency sweep performed in the opposite direc-
tion. The high frequency threshold is still given by (4.3). However, the low
frequency threshold is pushed towards lower frequencies (white dashed line)
in agreement with the nonlinear stability condition (4.28).

Fig. 4.7c shows a horizontal cut through subfigures a and b indicated
by black dotted lines (ϵ = 22 × 10−3). When the instability region is ap-
proached from below, the energy stays at Teff until the threshold is reached.
Above threshold, the motion locks to the external modulation and the en-
ergy is given by (4.24). As the modulation frequency is further increased,
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parameter method 1 method 2 combined

η [µm−2] 6.1 (±4%) 7.2 (±7%) 6.3 (±3%)

ξ[µm−2] −10.2 (±4%) −9.5 (±6%) −10.0 (±3%)

Table 4.1: Nonlinear coefficients extracted from experimental data of fre-
quency sweeps. Method 1 extracts the parameters from the threshold values
corresponding to figures 4.7d,e. Method 2 extracts the parameters from a fit
to individual scans corresponding to figures 4.7c.

the particle energy makes a smooth transition to the off-resonant energy.
Conversely, when the instability region is crossed from above, the energy
smoothly increases as predicted by (4.24). Because of the (negative) Duff-
ing nonlinearity, the increasing oscillation amplitude, pushes the effective
resonance frequency Ωeff. = Ω0

(
1 + 3

8ξx
2
)

to lower frequencies. Since the
lock-in region depends on the resonance frequency, it is also dragged along.

From (4.28), we find the lower threshold frequency

Ωth = Ω0 [2− ϵδth] . (4.29)

where the particle energy falls back to the off-resonant value. At this mod-
ulation frequency the particle’s oscillation amplitude reaches it’s maximum
value

x2max =
−3ξ

η2δth
ϵ. (4.30)

Fig. 4.7d,e show the threshold frequency Ωth and energy Emax = 1
2mΩ2

0x
2
max

together with their respective fits. From the fits and equations (4.29) and
(4.30) we extract the nonlinear coefficients. Alternatively we obtain the non-
linear coefficients from a fit of (4.24) to the modulation downward sweep
(blue dashed curve Fig. 4.7c). The coefficients obtained with the two meth-
ods are listed in table 4.1.
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Figure 4.7: Frequency Sweep. (a) For fixed modulation depth and increas-
ing modulation frequency, the particle energy maps out a triangular region in
the ϵ-Ωm plane. The black dashed line marks the instability threshold (4.3).
(b) For decreasing modulation frequency, the lower instability threshold is
pushed to lower frequencies. (c) Up and down sweep at ϵ = 22×10−3 (black
dotted line in subfigures a and b). The blue dashed line is a fit to (4.24).
(d) Threshold modulation depth (white line in subfigure b) and (e) threshold
particle energy as a function of modulation depth. The black arrows mark
the data points which correspond to subfigure c.

4.4.4 Modulation depth sweeps

Next, we consider the situation where the modulation depth ϵ is varied
while the modulation frequency Ωm is kept constant at a frequency close to
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resonance Ωm ≈ 2Ω0.

Fig. 4.8a shows a map of the particle energy as ϵ is increased from
0.1 × 10−3 to 28 × 10−3, for values of Ωm ranging 247.5 kHz to 252.5 kHz.
For the modulation depth given by the stability condition (4.3), the particle
energy remains at Teff ≈ 15K. For modulation depths above threshold
(black dashed lines), the particle energy increases to the value given by
(4.24).

Fig. 4.8b shows the modulation depth sweep performed in the opposite
direction. For modulation frequencies above resonance, the threshold is still
given by (4.3). In contrast, for modulation frequencies below resonance, the
particle continues to oscillate with high amplitude even if the modulation
depth is reduced significantly below the threshold value of the upward sweep
down to a minimum value ϵmin (white dashed line).

Fig. 4.8c shows a vertical cut through subfigures a and b indicated
by black dotted lines (Ωm = 248.3 kHz). When the modulation depth is
increased from zero, the particle energy stays at Teff until the threshold
ϵ = 2δm is reached. Above threshold, the motion locks to the external
modulation and the energy increases suddently to the value given by (4.24).
As the modulation depth is further increased the particle energy increases
slowly. Conversely, when the modulation depth is reduced, the energy de-
creases. However, the energy doesn’t fall back to Teff at ϵ = 2δm but con-
tinues to follow the solution (4.24) until the minimum modulation depth

ϵth =
δm
δth

. (4.31)

At this modulation depth the amplitude is given by

x2min =
−3ξ

η2δm
ϵ2th. (4.32)

Fig. 4.7d,e show the threshold modulation depth ϵth and energy Emin =
1
2mΩ2

0x
2
min together with their respective fits. From the fits and equations

(4.31) and (4.32) we extract the nonlinear coefficients. Alternatively, we
obtain the nonlinear coefficients from a fit of (4.24) to the modulation depth
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parameter method 1 method 2 combined

η [µm−2] 4.3 (±7%) 14 (±59%) 4.3 (±7%)

ξ[µm−2] −16.0 (±6%) −25 (±54%) −16.0 (±6%)

Table 4.2: Nonlinear coefficients extracted from experimental data.
Method 1 extracts the parameters from the threshold values corresponding
to figures 4.8d,e. Method 2 extracts the parameters from a fit to individual
scans corresponding to figure 4.8c.

downward sweep (blue dashed curve Fig. 4.7c). The coefficients obtained
with the two methods are listed in Table 4.2.

4.4.5 Relative phase between particle and external modula-
tion

So far, we merely considered the energy of the particle oscillation while a
resonant modulation is applied. In the following we also consider the rela-
tive phase between the particle oscillation and the external modulation. As
expected from the previous analysis, we find that there exists a fixed phase
relation.

Fig. 4.9 shows the phase of the particle with respect to the external mod-
ulation as the modulation frequency is scanned across the resonance. For a
modulation frequency downward sweep, the particle’s resonance frequency
is pulled toward the modulation sideband and the relative phase locks to

ϕ0 = ϕ(δm = 0) = −1

2
tan−1

(
η

3ξ

)
(4.33)

even before the upper modulation threshold (2 + ϵ/2)Ω0 is reached. Upon
crossing the lock-in region, the phase grows continuously to its maximum
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Figure 4.8: Modulation depth sweep. (a) For fixed modulation frequency
and increasing modulation depth, the particle energy maps out a triangu-
lar region in the ϵ-Ωm plane. The black dashed line marks the instability
threshold (4.3). (b) For decreasing modulation depth, the lower instability
threshold is pushed to lower modulation depth. (c) Up and down sweep at
Ωm = 248.3 kHz (black dotted line in subfigures a and b). The blue dashed
line is a fit to (4.24). The inset shows up and down sweep above resonance,
where no hysteresis is observed. (d) Threshold modulation depth (white line
in subfigure b) and (e) threshold particle energy as a function of modulation
depth. The black arrows mark the data points which correspond to subfigure
c.
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value1

ϕth = ϕ(δm = δth) =
1

2
tan−1

(
3ξ

η

)
. (4.34)

This transition is accompanied by an increase in particle energy. For the
nonlinear parameters obtained from a fit of the particle amplitude to (4.24),
the theoretical phase according to (4.12) is shown as blue dashed line. When
the modulation frequency is swept in the opposite direction, the particle
phase locks to ϕth as soon as the downward threshold modulation frequency
Ω
(down)
th is reached even though the amplitude remains at it’s off-resonant

value. The phase stays at ϕth until the upper Ω
(up)
th threshold is reached,

where the phase jumps to the solution given by (4.12).
The high sensitivity of the phase to an external modulation over a wide
range could be exploited to improve the sensitivity and bandwidth in the
detection of weak periodic signals.

4.4.6 Nonlinear mode coupling

Until now, we have neglected coupling between the three spatial modes.
However, for large oscillation amplitudes, the modes couple because the
trap stiffness along a given direction depends on the oscillation amplitude
along any direction. The trap stiffness along x is of the form (c.f. chapter
2)

k
(x)
trap = mΩ2

0

1−
∑

i=x,y,z

ξ
(x)
i x2i

 (4.35)

and respective expressions hold for the trap stiffness along y and z. Here,
ξ
(x)
x = ξ is the Duffing nonlinearity we have considered so far and ξ

(x)
y and

ξ
(x)
y are the nonlinear coupling coefficients to y and z, respectively. To il-

lustrate the nonlinear coupling we sweep the modulation frequency over a
wide range which covers both the x and the y resonance.

1Note that the relative phase is periodic with periodicity of π/2. Therefore, the phase
wraps around to negative values when it becomes larger than π/4
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th is reached, while the

amplitude remains at a low value. The blue dashed line is Eq. (4.12) for the
parameters obtained from the amplitude fit of subfigure b. (b) The particle
amplitude in the same frequency as the phase shown in subfigure a. (c)
Phase map of modulation frequency up and down sweep, respectively (upper
row) and corresponding amplitude maps (lower row). The amplitude maps
are identical to figures 4.7a,b. The range where the phase is locked to the ex-
ternal modulation is larger than the range where the amplitude of the driven
particle is above the background value.

Fig. 4.10 shows a map of a modulation frequency downward sweep with
modulation depth ϵ ∼ 8 × 10−3. The parametric modulation frequency is
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reduced from 285 kHz down to 230 kHz exciting the resonances of the x and
y mode, respectively. Within the lock-in range energy is transferred to the
particle and the resonant mode is excited (c.f. Fig. 4.10a).

Fig. 4.10b,c show the spectra of the signals that correspond to x and y
motion of the particle as a function of modulation frequency. As discussed
before, when the modulation frequency is close to resonance (Ωm ≈ 2Ω0),
the mode locks to the external modulation and the particle energy of the
resonant mode increases, while the energy of the other mode remains at
a low value. However, an analysis of the power spectral density reveals
that both the frequency of the resonant mode and the frequency of the off-
resonant mode are pulled to lower frequencies. This agrees with Eq. (4.35)
with negative Duffing coefficients.

4.4.7 Sidebands

Aside from the oscillation at Ωm/2, the resonant mode exhibits sidebands
at Ωm/2+Ω±. The sidebands appear much weaker and much broader than
the main peak. The origin of the sidebands can be understood from an
analysis of the dynamics of small deviations from the steady state.

To find the equation of motion for small perturbations δA from equi-
librium, we make the ansatz Ã = A0 + δA and plug it into (4.8). This
yields

d

dT
δA =

(
− γ̃0

2
+ i

δ̃m
2

− 2

[
1

8
η̃ − i

3

8

]
|A0|2

)
δA

−
[
1

8
η̃ − i

3

8

]
A2

0δA
∗ + i

ϵ̃

4
δA∗ (4.36)

Now, making the ansatz δA = e−iϕ(ueiωT + v∗e−iωT ), we get(
u̇eiωT + v̇∗e−iωT

)
+ iω

(
ueiωT − v∗e−iωT

)
= i

ϵ̃

4
ei2ϕ

[
(v − u)eiωT + (u∗ − v∗)e−iωT

]
−
[
1

8
η̃ − i

3

8

]
a20
[
(u+ v)eiωT + (v∗ + u∗)e−iωT

]
.
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Figure 4.10: Spectral map frequency down sweep. The parametric
modulation frequency is reduced from 285kHz down to 230 kHz exciting the
resonances of the x and y mode, respectively. Within the lock-in range
energy is transferred to the particle and the resonant mode is excited. The
particle oscillation of the resonant mode locks to the external modulation
and oscillates at Ωm/2 with modulation sidebands at Ω±. Here, the pressure
is 1.6 × 10−4mBar (Q ∼ 106). The modulation depth is ϵ = 8 × 10−3.
(a) Only the mode near the lower modulation sideband Ω0 ≈ Ωm − Ω0 is
excited. The energy of the other modes remains at Teff . (b) PSD of x-mode
on a logarithmic scale as a function of modulation frequency Ωm. Outside
the lock-in range, the mode frequency stays at it’s natural value ∼ 126 kHz.
Within the lock-in range, the mode frequency is half the external modulation
frequency. Within the lock-in range of the other mode, the frequency is
pulled due to nonlinear coupling. However, the energy does not change. (c)
PSD of y-mode as a function of modulation frequency Ωm.
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yielding two coupled equations of motion

u̇ = −iωu−
[
1

8
η̃ − i

3

8

]
a20(u+ v)− i

ϵ̃

4
ei2ϕ(u− v)

v̇ = −iωv −
[
1

8
η̃ + i

3

8

]
a20(u+ v)− i

ϵ̃

4
e−i2ϕ(u− v).

Applying the transformation

Ψ =

(
c
d

)
= eiωTS−1

(
u
v

)
, S−1 =

(
1 1
−i i

)
, (4.37)

this reads
Ψ̇ = HΨ (4.38)

with

H =

(
−η̃a20/4 ϵ̃ cos(2ϕ)/2
3a20/4 ϵ̃ sin(2ϕ)/2

)
.

Diagonalizing Λ = diag(λ+, λ−) = U−1HU with

U =

(
−λ− − 1

4 η̃a
2
0 −λ+ − 1

4 η̃a
2
0

3a20/4 3a20/4

)
(4.39)

where

λ± = − γ̃0
2

− η̃0
4
a20 ± i

√
3

4
a20(

3

4
a20 + δ̃m)−

(
γ̃0
2

)2

(4.40)

are the eigenvalues of H, we find the solutions

Φ = U−1Ψ =

(
ϕ+ expλ+T
ϕ∗
− expλ−T

)
, (4.41)

where {ϕ+, ϕ−} are determined by the initial conditions. Transforming back
to the original variables (

u
v

)
= e−iωTSUΦ, (4.42)
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we find

δA =e−iϕ

[(
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4
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4
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4
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)
ϕ∗
+

]
eλ−T .

(4.43)

Thus, the frequencies of the modes of δA are given by (4.40) and conse-
quently the sideband shift is

∆Ω± = ±

√
3

4
a20(

3

4
a20 + δ̃m)−

(
γ̃0
2

)2

. (4.44)

Fig. 4.11 shows good agreement between the experimentally measured
sideband shift of the y-mode and the theoretically expected shift (4.44).
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Figure 4.11: Sidebands. (a) Y-mode oscillation amplitude of frequency
down sweep (c.f. Fig. 4.10a). To good approximation, the nonlinear damping
and nonlinear Duffing coefficient determine the cut-off frequency Ωth and
maximum amplitude qmax, respectively. Fitting the experimental data to
(4.14), we extract the nonlinear coefficients ξ = −9µm−2 and η = 0.6µm−2.
(b) Sidebands of y-mode as a function of modulation frequency Ωm. Open
circles are the experimental data and dashed lines are the theoretical curves
(4.40).
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4.5 Conclusions

In conclusion, we have parametrically excited an optically trapped nanopar-
ticle well into the nonlinear regime. We have shown that each of the three in-
dividual spatial modes can be excited independently while the other modes
are cooled by parametric feedback. We can measure the parameters of
the nanomechanical oscillator by performing either amplitude or frequency
sweeps of the external modulation. This provides a method to measure
the nonlinear damping induced by parametric feedback cooling and conse-
quently to optimise the feedback parameters.

Thus far, we have primarily focused on a one-dimensional description
of the particle equation of motion. However, there remains still room for
further investigation of the full three dimensional dynamics. In particular,
the response to resonant (multi-frequency) driving fields is not fully under-
stood. Beside CoM motion, the levitated dielectric particle can also rotate
freely [Arita et al., 2011, 2013]. Further investigation along this line will
potentially reveal valuable insights into ultimate performance limits of a
levitated nanoparticle in high vacuum.
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CHAPTER 5

Thermal nonlinearities in a
nanomechanical oscillator

Nano- and micromechanical oscillators with high quality (Q) factors have
gained much attention for their potential application as ultrasensitive detec-
tors. In contrast to micro-fabricated devices, optically trapped nanoparticles
in vacuum do not suffer from clamping losses, hence leading to much larger
Q-factors. We find that for a levitated nanoparticle the thermal energy suf-
fices to drive the motion of the nanoparticle into the nonlinear regime. First,
we experimentally measure and fully characterize the frequency fluctuations
originating from thermal motion and nonlinearities. Second, we demon-
strate that feedback cooling can be used to mitigate these fluctuations. The
high level of control allows us to fully exploit the force sensing capabilities of
the nanoresonator. Our approach offers a force sensitivity of 20 zNHz−1/2,
which is the highest value reported to date at room temperature, sufficient
to sense ultra-weak interactions, such as non-Newtonian gravity-like forces.
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5.1 Introduction

Recent developments in optomechanics have evolved toward smaller and
lighter resonators featuring high quality (Q) factors, which are important
for the sensing of tiny masses [Chaste et al., 2012; Yang et al., 2006], charges
[Cleland and Roukes, 1998], magnetic fields [Rugar et al., 2004] and weak
forces [Stipe et al., 2001; Moser et al., 2013]. The presence of a force field
or the adhesion of a small mass induces a change in the mechanical re-
sponse and can be monitored by tracking either the oscillation frequency,
phase or its amplitude. Ultimately, dissipation losses as well as thermome-
chanical noise and temperature fluctuations limit the Q-factors of clamped
oscillators and consequently their sensing performance [Postma et al., 2005;
Cleland and Roukes, 2002; Ekinci et al., 2004]. This can be circumvented
by using an optically trapped nanoparticle in high vacuum. Indeed, the
Q-factor of a levitated particle is only limited by collisions with residual air
molecules and can potentially reach 1012 for small particles in ultra high-
vacuum [Ashkin, 1971; Gieseler et al., 2012; Li et al., 2011; Romero-Isart
et al., 2010; Chang et al., 2010]. In this chapter we first show that an
optically trapped nanoparticle is sufficiently sensitive that thermal forces
drive it out of its linear regime. Additionally, we demonstrate that feed-
back cooling can be used to mitigate frequency fluctuations associated with
the thermal nonlinearities thereby recovering the force sensing capabilities
of the oscillator.

5.2 Description of the experiment

In our experiment, a silica nanoparticle with diameter ∼ 75nm is trapped
at room temperatue in the focal region of a tightly focused NIR laser
beam (λ = 1064nm, polarized along the x-axis). The intensity near the
focus of the objective (NA = 0.8) can be well approximated by Gaus-
sian functions (c.f. Fig.5.1), defining a focal volume of wx × wy × wz ≈
0.69µm×0.54µm×1.36µm 1. For large displacements, the optical potential

1estimated from numerical calculation of a highly focused beam with NA=0.8
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w0

Figure 5.1: Experimental configuration A silica nanoparticle is trapped
by a tightly focused laser beam. Random collisions with residual air
molecules drive the particle into the nonlinear regime of the potential. (in-
set) The focal intensity distribution forms a trap which can be approximated
by a Gaussian potential (white). The deviation from a harmonic potential
(red) is described by a Duffing nonlinearity.

becomes anharmonic featuring a Duffing nonlinearity. For a Gaussian field
distribution the nonlinear coefficients are given by

ξj = −2/wj
2, (5.1)

where wi is the beam waist radius or Rayleigh range. For small displace-
ments |qi| ≪ |ξ−1/2

j |, the nonlinearity is negligible and the three motional
degrees of freedom decouple. Due to the asymmetry of the optical focus,
the oscillation frequencies Ωi = (ki/m)1/2 along the three major axes are
different (Ωz/2π = 37kHz, Ωx/2π = 125kHz, Ωy/2π = 135kHz). The lin-
ear trap stiffness is given by ki = αE2

0/w
2
i , where E0 is the electric field

intensity at the focus. The gradient of the optical intensity distribution
exerts a restoring force F grad

i = −ki

(
1 +

∑
j=x,y,z ξjq

2
j

)
qi on a dipolar par-

ticle with polarizability α, that is displaced from the trap center by xi.
For a sphere of radius a and dielectric constant ϵp, the polarizability is
α = 4πa3ϵ0(ϵp − 1) /(ϵp + 2) , ϵ0 being the vacuum permittivity.
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We experimentally determine the nonlinear coefficients by parametric
excitation through modulation of the trapping laser at a frequency close
the parametric resonance Ωmod ≈ 2Ωi and find

(ξz, ξx, ξy) = (−0.98,−7.95,−10.41)µm−2, (5.2)

in good agreement with the values estimated from the size of the focus (5.1)
(c.f. chapter 4).

5.2.1 Origin of nonlinear frequency shift

The equation of motion for each spatial degree of freedom (i = x, y, z) is
given by

q̈i +ΩiQ
−1
i q̇i +Ω2

i

1 +
∑

j=x,y,z

ξjq
2
j

xi = Ffluct /m . (5.3)

In the following we concentrate on a single degree of freedom and denote
the corresponding resonance frequency by Ω0 and the quality factor by
Q. Random collisions with residual air molecules provide both damping
Γ0 = Ω0Q

−1 and stochastic excitation Ffluct of the trapped nanoparticle.
From kinetic theory we find that the damping coefficient of a particle in a
rarified gas is given by [Epstein, 1923; Chang et al., 2010]

Γ0 =
64a2

3mv̄
P, (5.4)

where v̄ = (8kBT/πµ)
1/2 is the average velocity and µ is the weight of

the air molecules [O’Hanlon, 2003]. The random force Ffluct is related to the
damping coefficient by the fluctuation-dissipation theorem ⟨Ffluct(t)Ffluct(t

′)⟩ =
2mΓ0kBT0δ(t− t′). The damping coefficient determines the frequency sta-
bility of the harmonic oscillator ∆ΩL = Ω0Q

−1, and the temperature-
dependent stochastic excitations determine the minimum oscillation am-
plitude according to qth =

√
2kBT0

/
mΩ2

0 . The thermal amplitude qth is
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usually small compared to the dimensions of the oscillator. However, for
a small and hence light oscillator like our levitated nanoparticle, the ther-
mal amplitude eventually becomes comparable to the particle size. Conse-
quently, a proper description of the particle motion requires the inclusion of
nonlinearities. The latter give rise to a frequency shift ∆ΩNL = 3ξΩ0/8 q

2
th

[Dykman and Krivoglaz, 1984; Lifshitz and Cross, 2009]. In contrast to
linear thermal frequency fluctuations, nonlinear frequency fluctuations add
frequency noise but do not affect the damping.

In order to resolve the nonlinear frequency shift originating from thermal
motion, the nonlinear contribution must be larger than the linear one, that
is

R =
∆ΩNL

∆ΩL
=

3ξQkBT0

4Ω2
0m

≫ 1, (5.5)

where T0 is the temperature of the residual gas and kB is Boltzmann’s con-
stant. To fulfil condition (5.5) a light and high-Q mechanical resonator is
required. In our experiment, m = 3× 10−18kg and Q = 108, as determined
in a ring-down measurement at a pressure of Pgas = 0.5×10−6mBar. These
parameters place us well into the nonlinear regime. Importantly, the depen-
dence of the Q-factor on pressure Pgas allows us to continuously tune the
system between the linear and nonlinear regimes.

5.2.2 Nonlinear spectra

To demonstrate the differences between a thermally driven harmonic oscil-
lator (R ≪ 1) and an anharmonic oscillator (R ≫ 1), we compare the parti-
cle’s motion at high pressure (6mBar) and at low pressure (1.2×10−2mBar).
These pressures correspond to Q-factors of 25 and 12×103, respectively. At
high pressures (low Q) the dominant source of frequency fluctuations is lin-
ear damping ∆ΩL = Γ0 and the power spectral density (PSD) of the particle
motion features a single symmetric Lorenzian peak, whose width is equal to
the linear damping coefficient Γ0 (Fig. 5.2b). In contrast, at low pressure
(high Q) nonlinear frequency fluctuations ∆ΩNL = 3ξΩ0 /8 q2th dominate
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and we observe an asymmetric peak that is considerably broader than what
is expected for the equivalent linear oscillator. However, if we limit the
observation time to time intervals 1/∆ΩNL < τ < 1/∆ΩL, we find a clean
oscillation with an almost constant amplitude, corresponding to a narrow
and symmetric peak in the frequency domain. For large oscillation ampli-
tudes the peak appears down-shifted, consistent with the measured negative
Duffing nonlinearity. Consequently, for observation times ≫ 1/∆ΩNL, the
non-Lorenzian peak becomes a weighted average [Dykman et al., 1990]

SNL(Ω) =

∫
ρ(E)SL(Ω, E)dE, (5.6)

over Lorenzian peaks centred at the shifted frequency Ω̂0(E) = Ω0+3ξ/(4mΩ0)E
and weighted by the Gibbs distribution ρ(E) = Z−1 exp(−E/kBT0). Here,
Z =

∫
ρ(E)dE is the partition function and

SL(Ω, E) =
E

πmΩ2
0

Γ0(
Ω− Ω̂0(E)

)2
+ (Γ0/2)2

. (5.7)

is the power spectral density of a harmonic oscillator with frequency Ω̂0(E)
and energy E.
Note that (5.6) is valid in the low friction limit (Q ≫ 1). An expression
which holds for arbitrary R can be found in [Dykman and Krivoglaz, 1984].
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Figure 5.2: Nonlinearity-induced frequency fluctuations (a) Time
trace of the particle motion along x at 1.2×10−2mBar. The oscillation am-
plitude changes randomly and the positions are normally distributed. (b,c)
However, on time scales short compared to the relaxation time τ , the particle
motion is sinusoidal with a constant oscillation amplitude over many cycles
and has a position distribution featuring two lobes (subfigure (a) right). The
part of the timetrace when the particle oscillates with a large (small) ampli-
tude is shown in red (green). (d) From the long time trace (black) and the
short time traces (red, green) we calculate the power spectral density (PSD).
For short observation times we observe a Fourier limited symmetric PSD
with an amplitude dependent center frequency. The overall PSD (black) re-
sults from a temporal average of the instantaneous PSDs (red, green). In
contrast, the PSD of a low Q oscillator (blue) is described by a Lorentzian
peak at all times (red thin line). (e) Time trace of particle motion at 6mBar
used to calculate the (blue) Lorentzian PSD in subfigure (b).
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5.3 Experimental results

In what follows we present further evidence that the observed frequency
fluctuations are a consequence of thermal motion in the nonlinear optical po-
tential. We analyze the correlations between the instantaneous frequencies
and energies and we investigate the pressure dependence of the frequency
fluctuations.

To quantify the frequency fluctuations, we continuously measure the in-
stantaneous energy Ei(tj) and frequency Ωi(tj) of the three spatial modes
(i = x, y, z), given by the area and the position of the maximum of the in-
stantaneous PSDs, respectively (c.f. Fig. 5.2d). The instantaneous PSDs are
calculated from position time traces x(j)i (t) (where tj − τ/2 < t < tj + τ/2)
of τ = 20ms duration. Figs. 5.3a,b show the timetraces of the relative fre-
quency fluctuations Ωi/⟨Ωi⟩ of the three modes for high Q (low pressure)
and low Q (high pressure), respectively. Fig. 5.3c shows the correlations
between Ei and Ωi as a function of pressure, calculated from 30min long
time traces. The nonlinearity is conservative and, thus, doesn’t change the
particle energy, which is determined only by random molecule collisions.
Therefore, the energy of the three degrees of freedom are uncorrelated. In
contrast, a change in energy of one mode shifts the frequency of all modes
(Eq. 5.3). At low pressure (R > 1), the nonlinearities dominate and the
frequency fluctuations are highly correlated. In contrast, at high pressure
(R < 1), linear damping dominates and consequently the frequencies be-
come uncorrelated.

5.3.1 Frequency and energy correlations

In Figure 5.3d we plot the oscillator amplitude response to parametric mod-
ulation (black) and to thermal excitation (scatter plot) at a pressure of
10−5 mBar. Independently of the origin of the excitation, there is a lin-
ear relationship between the particle’s energy and the particle’s oscillation
frequency. However, while the response to an excitation at a fixed fre-
quency is sharp, the thermal response is downshifted and much broader.
Indeed, according to Eq. 5.3, an average thermal excitation of the orthog-
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Figure 5.3: Frequency and energy correlation. (a) Time traces of the
instantaneous oscillation frequencies Ωx, Ωy and Ωz evaluated at low pres-
sure and (b) at high pressure. (c) Frequency and energy correlations as a
function of pressure. The energies (dashed, lower curves) are uncorrelated
and independent of pressure. The frequencies (solid, upper curves) are corre-
lated at low pressure where nonlinear fluctuations dominate and uncorrelated
at high pressure, where linear fluctuations dominate. The points labeled ’a’
and ’b’ indicate the pressures at which figures (a) and (b) were evaluated.
(d) Energy vs. frequency for the oscillator in x-direction (x mode) obtained
from both random fluctuations (colored density plot) and from parametric
excitation (black). The thermal excitation of the orthogonal modes (y, z)
shifts the resonance by ≈ 2.5 kHz in good agreement with the value esti-
mated from the thermal amplitude and the measured nonlinear coefficients.

onal modes (y and z) leads to an average shift the frequency of the mode
under consideration (here x). The shift of the center of the frequency dis-
tribution (≈ 2.5kHz) is in good agreement with the value estimated from
the measured nonlinear coefficients and average thermal amplitudes (sup-
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plementary information). Additionally, since the amplitudes of the modes
fluctuate independently (c.f. Fig. 5.3c), we get a distribution of frequencies
for a given oscillation amplitude of the considered mode. In contrast, when
we drive the system parametrically at a fixed frequency, we simultaneously
cool the orthogonal modes. Therefore, the contribution to the frequency
shift originating from the orthogonal modes is negligible and we obtain a
sharp response.

5.3.2 Pressure dependence of frequency fluctuations

In figure 5.4 we show the power spectral density of the relative frequency
Ω/Ω0 (fPSD) as a function of pressure. The fPSDs are calculated from
30min long timetraces of the instantaneous frequencies (c.f. Fig.5.3). For
low Q, the fPSD is flat as expected for a harmonic oscillator. In contrast for
high Q the nonlinear coupling maps the Lorenzian power spectral density of
the amplitude onto the frequency power spectral density, which is therefore
given by

Sf(Ω) = I
Ωc/π

Ω2 +Ω2
c

, (5.8)

where I is the total spectral power, which is independent of pressure. The
characteristic cut-off frequency Ωc has a clear pressure dependence, as shown
in Fig. 5.4c. This further confirms that the fluctuations arise as a combi-
nation of nonlinearities and thermal excitations.

The small mass and high Q-factor make the levitated nanoparticle an ul-
trasensitive force sensor with sensitivity of SF = 4kBTmΩ0/Q ≈ (20zN)2/Hz
at room temperature, which compares to the best values achieved at cryo-
genic temperatures [Moser et al., 2013]. There are several ways to couple a
force to a levitated nanoparticle, including electric [Li et al., 2011] and mag-
netic [Neukirch et al., 2013; Geiselmann et al., 2013] coupling or more subtle
forces due to fluctuating charges within the particle [Zurita-Sánchez et al.,
2004]. Additionally, in contrast to trapped ions [Knünz et al., 2010], the
still considerable mass of the particle makes it susceptible to gravitational
forces [Arvanitaki and Geraci, 2013].
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Figure 5.4: Pressure dependence of frequency fluctuations. Pressure
dependence of frequency fluctuations. (a) At high pressures (6mBar), the
fluctuations are solely determined by the linear damping (low Q). (b) When
the Q factor becomes larger (1e-5mBar), the fluctuations are dominated
by nonlinear amplitude-frequency conversion. In this case, the frequency
power spectral density (fPSD) exhibits a characteristic cut-off, which we
extract from a fit to (5.8) (black dashed line). (c) The characteristic cut-off
frequency depends on the Q factor which scales linearly with pressure. (d)
Using feedback cooling, the fluctuations can be suppressed to the level of the
laser intensity fluctuations (gray).

In addition to constant forces, a levitated nanoparticle can detect posi-
tion dependent forces. A position dependent force causes a frequency shift.
Therefore, following the resonance frequencies of the nanoparticle allows for
measuring a force gradient with a precision given by the noise floor of the
frequency fluctuations. In practice though, as shown above nonlinear effects
lead to frequency fluctuations in ultra-high Q oscillators. It is possible to
surpass this limit by operating the oscillator at special points [Villanueva
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et al., 2013]. Furthermore, as we show in the following, nonlinear frequency
fluctuations can also be suppressed by feedback cooling [Gieseler et al.,
2012]. Feedback cooling lowers the oscillation amplitude and therefore re-
duces the thermal motion of the oscillator. Under the action of feedback,
the effective temperature reduces to Teff = (Γ0/Γfb)T , where Γfb is the total
damping with feedback [Mertz et al., 1993; Gieseler et al., 2012]. As shown
in Fig.5.4d, we manage to reduce the frequency fluctuations to the level of
the laser intensity fluctuations, which become the main source of frequency
noise. Using active stabilization techniques, relative laser intensity noise
can be brought to the level of 10−8/

√
Hz [Seifert et al., 2006].

5.3.3 Frequency stabilization by feedback cooling

We demonstrate the improved sensitivity by mimicking a periodic potential
landscape. A modulation at 50mHz is applied to the trapping laser. The
modulation causes a variation of the force gradient, which is measured as
a frequency shift. As shown in Fig. 5.5, without feedback the signal is
overwhelmed by noise while with feedback, the fluctuations are suppressed
down to the level of laser intensity fluctuations and the applied signal is
clearly visible. Using feedback cooling, we are able to improve the sensitivity
of the oscillator by two orders of magnitude and achieve a relative frequency
noise floor of

√
Sf/Ω0 of 3 × 10−3/

√
Hz for frequencies below 1 Hz and

1 × 10−4/
√
Hz for frequencies larger than 10Hz. In the absence of laser

intensity noise the highest sensitivity is obtained when linear and nonlinear
fluctuations contribute equally. However, since cooling to Teff = T Qeff/Q
is required to reduce nonlinear frequency fluctuations, the effective Q-factor
is reduced, too. The best compromise is achieved when the linear and the
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nonlinear frequency fluctuations contribute equally, that is

∆ΩL =∆ΩNL

Ω0Q
−1
eff =

3

8
ξΩ0r

2
eff =

3ξΩ0kBTeff

4mΩ2
0

⇒ Q
(opt)
eff =

√
4

3

mΩ2
0

ξkBT
Q = R−1/2Q. (5.9)

Thus, under the assumption that with cooling the oscillation remains in
the linear regime, the frequency spectral density is given by

S
(opt)
f =

Ω0

Q
(opt)
eff

=
Ω0

Q
R1/2. (5.10)

For the values presented here we obtain
√

S
(opt)
f /Ω0 ∼ 10−6/

√
Hz, suffi-

cient to sense ultraweak interactions, such as non-Newtonian gravity-like
forces [Geraci et al., 2010]. However, to reach this value, relative intensity
fluctuation have to be suppressed down to the same level.

The ultimate cooling limit is defined by the zero point motion qzp =√
h̄ /2mΩ0 . In order to resolve the nonlinear frequency shift due to the

zero point motion ∆Ωzp, the condition

∆Ωzp

∆ΩL
=

3

8
Qξq2zp ≫ 1 (5.11)

has to be satisfied in analogy to (5.5). This requires a Q factor of
Q = Ω0/∆Ωzp ≈ 1010. In absence of other noise sources, this regime is
reached for pressures below 10−8mBar.

5.4 Conclusion

In conclusion, we have demonstrated that a laser-trapped nanoscale par-
ticle in high vacuum defines an ultrasensitive force sensor. The thermal
motion of the residual gas drives the nanoparticle into its nonlinear regime,
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Figure 5.5: Detection of a Periodic force gradient using feedback
cooling. A periodic potential landscape is emulated by modulating the trap-
ping frequency at 50mHz. In absence of feedback cooling the small signal is
overwhelmed by noise (red). Feedback cooling reduces the random frequency
fluctuations thereby making it possible to detect the signal (blue). (inset)
Time domain signal of relative frequency with (blue) and without feedback
(red).

which gives rise to frequency fluctuations. Using a parametric feedback
cooling scheme, we can stabilize the nanoparticle and suppress its nonlin-
earities, without sacrificing sensitivity. We expect that feedback-controlled
nanoparticles will find applications for sensing a wide range of interactions,
including van der Waals and Casimir forces [Geraci et al., 2010], nuclear
spins [Rugar et al., 2004], and gravitation [Arvanitaki and Geraci, 2013].
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CHAPTER 6

Dynamic relaxation from an initial
non-equilibrium steady state

Fluctuation theorems are a generalisation of thermodynamics on small
scales and have been established as tools to measure thermodynamic quanti-
ties in non-equilibrium mesoscopic systems. Here, we study experimentally
and theoretically non-equilibrium relaxation of a vacuum trapped nanopar-
ticle from an initial steady state distribution to thermal equilibrium and
show that the Crooks fluctuation theorem holds. The here established frame-
work allows to study experimentally non-equilibrium fluctuation theorems
for arbitrary steady states and can be extended to investigate experimentally
quantum fluctuation theorems or systems which do not obey detailed balance.

6.1 Introduction

One of the tenets of statistical physics is the central limit theorem. It
allows to reduce many microscopic degrees of freedom ui (i = 1 . . . N ,
N = O(1023)) to only a few macroscopic degrees of freedom U . The cen-
tral limit theorem states that, independently of the distributions of the ui,

111



Dynamic relaxation from an initial non-equilibrium steady state

a macroscopic extensive quantity U , such as the total energy of a system
with N degrees of freedom follows a Gaussian distribution with a mean
value ⟨U⟩ ∝ N and variance σ2

U ∝ N . Consequently, for N → ∞, the rela-
tive fluctuations σU/⟨U⟩ → 0 vanish and the macroscopic quantity becomes
sharp. However, with the advance of nanotechnology it is now possible to
study experimentally systems small enough that the relative fluctuations
are comparable to the mean value. This gives rise to new physics where
classical thermodynamic relations such as the second law of thermodynam-
ics appear to be violated [Wang et al., 2002]. The statistical properties
of the fluctuations are described by mathematical relations known as fluc-
tuation theorems [Crooks, 1999; Jarzynski, 1997; Bochkov and Kuzovlev,
1981; Machlup and Onsager, 1953], which in the limit N → ∞ recover the
macroscopic thermodynamic relations.

Fluctuation relations are particularly important to understand funda-
mental chemical and biological processes, which occur on the mesoscale
where the dynamics are dominated by thermal fluctuations [Bustamante
et al., 2005]. They allow us, for instance, to relate the work along non-
equilibrium trajectories to thermodynamic free-energy differences [Alemany
et al., 2012; Collin et al., 2005]. Fluctuation theorems have been experimen-
tally tested on a variety of systems including pendulums [Douarche et al.,
2006], trapped microspheres [Wang et al., 2002], electric circuits [Garnier
and Ciliberto, 2005], electron tunneling [Küng et al., 2012; Saira et al., 2012],
two-level systems [Schuler et al., 2005] and single molecules [Hummer and
Szabo, 2001; Liphardt et al., 2002]. Most experiments are described by
an overdamped Langevin equation. However, systems in the underdamped
regime, or in quantum systems where the concept of classical trajectory
looses its usual meaning [Alemany et al., 2011], are less explored.

Here, we study experimentally the thermal relaxation of non-Gaussian
steady states of a highly underdamped nanomechanical oscillator. Because
of the low damping, the dynamics can be precisely controlled even at the
quantum level [Teufel et al., 2011; Chan et al., 2011; O’Connell et al., 2010].
This high level of control allows to produce non-thermal steady states and
makes them ideal candidates for investigating non-equilibrium fluctuations
for transitions between arbitrary steady states. To prove the basic concept

112



Description of the experiment

of our approach, we investigate the relaxation of non-thermal initial states to
thermal equilibrium. While for the initial steady state detailed balance can
be violated, the relaxation dynamics are described by the Langevin equation
which satisfies detailed balance and we can prove that the Crooks fluctua-
tion theorem is fulfilled. Our experimental framework naturally extends to
study transitions between arbitrary steady states and even to experimen-
tally investigate quantum fluctuation theorems [Huber et al., 2008] for a
nanomechanical oscillator prepared in a quantum state [Teufel et al., 2011;
Chan et al., 2011; O’Connell et al., 2010].

6.2 Description of the experiment

The experimental configuration is shown in Fig. 6.1. We consider a silica
nanoparticle of radius a ∼ 75nm and mass m ∼ 3×10−18 kg that is trapped
in vacuum by an optical tweezer (Fig. 6.1). Within the trap, the particle
oscillates in all three spatial directions. To first approximation, the three
motional degrees of freedom are well decoupled. Hence, the particle position
q is described by the following one-dimensional equation of motion

q̈ + Γ0q̇ +Ω2
0q = (Ffluct + Fext) /m, (6.1)

where Ω0 /2π ∼ 125kHz is the particle’s angular frequency along the di-
rection of interest, Γ0 the friction coefficient and Fext is an externally
applied force. The random nature of the collisions does not only pro-
vide deterministic damping Γ0 but also a stochastic force Ffluct that ther-
malises the energy of the particle. The fluctuation-dissipation theorem
links the damping rate intimately to the strength of the stochastic force
⟨Ffluct(t)Ffluct(t

′)⟩ = 2mΓ0kBT0δ(t − t′), with T0 being the bath tempera-
ture and kB Boltzmann’s constant.
The energy of the free harmonic oscillator with displacement q and mo-

mentum p is given by

E(q, p) =
1

2

(
mΩ2

0q
2 + p2/m

)
=

1

2
mΩ2

0q0(t)
2, (6.2)
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where in the second part we use the slowly-varying amplitude approxima-
tion (q(t) = q0 sin(Ω0t), q̇0 ≪ Ω0q0). This approximation is well satisfied
in our experiments since it takes several oscillation periods for the particle
amplitude to change (inset Fig. 6.2a).

Applying an external force Fext, the system is initially prepared in a
steady state with distribution ρss(u, α), where u = {q, p} describes the
state of the system. At time t = toff the external force is switched off and
we follow the evolution of the undisturbed system. Here, α denotes one or

x

y

zzzzz

+
feedback

2⌦0��⌃

parametric drive
⌦m, ✏

t
on

t
o↵

Figure 6.1: Experimental setup. The particle is trapped by a tightly
focused laser beam. In a first experiment, the particle is initially cooled by
parametric feedback. At time t = toff the feedback is switched off and the
particle trajectory is followed as it relaxes to equilibrium. After relaxation,
the feedback is switched on again and the experiment is repeated. In a second
experiment the particle is initially excited by an external modulation in a
addition to feedback cooling. Again at a time t = toff , both the feedback and
the external modulation are switched off and the particle is monitored as it
relaxes.
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Description of the experiment

several parameters such as the strength of the feedback mechanism, which
determines the initial steady state distribution. In general, ρss(u, α) is not
known analytically.

6.2.1 Average energy relaxation

We derive from (6.1) the corresponding stochastic differential equation for
the energy E of the unperturbed system1 (c.f. Eq. 3.29):

dE = −Γ0 (E − kBT0) dt+
√
E
√

Γ0kBT0dW, (6.3)

which has a deterministic and stochastic contribution. Carrying out an
average over noise realisations and exploiting that ⟨dW ⟩ = 0, the ensemble
average of the energy evolves according to

d⟨E⟩
dt

= −Γ0⟨E⟩+ Γ0kBT0. (6.4)

This differential equation can be easily solved yielding an exponential re-
laxation of the average energy to its equilibrium value of kBT0

⟨E(t)⟩ = kBT0 + [⟨E(0)⟩ − kBT0]e
−Γ0t, (6.5)

where ⟨E(0)⟩ is the average energy at time 0.

According to Eq. 6.5, we expect the particle’s energy to increase (de-
crease) as it relaxes to equilibrium if the particle’s initial energy is below
(above) the energy of the thermal bath. However, due to the smallness of
the system, there is also a finite probability that molecule collisions further
decrease (increases) the particle’s energy. In the following section we show
that the fluctuation theorem

Pt(Y )

Pt(−Y )
= e−Y . (6.6)

1i.e. the feedback or any other modulation is off
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holds for the a quantity Y , which accounts for the contribution of feedback
to the particle energy. Eq. 6.6 links the probability of observing a process
were Y increases to the probability of observing a process where Y decreases.
Since Y is an extensive quantity, irreversibility for macroscopic systems is
a direct consequence of the fluctuation theorem.

6.3 Fluctuation theorem

The fluctuation theorem for relaxation from an arbitrary initial distribution
can be derived based on two conditions:

momentum (time) reversal symmetry for all times and

detailed balance for t > 0.

Since the energy is quadratic in the momentum p, the former condition is
always fulfilled if the distribution is a function of the energy only. This is
the case for parametric feedback cooling. The latter condition is fulfilled
for a system evolving according to a Langevin equation.

6.3.1 General case

Consider the relaxation from an initial steady state distribution

ρss(u, α) =
1

Zα
exp {−β0Hα} , (6.7)

to the equilibrium distribution

ρeq(u) =
1

Z
exp{−β0E}, (6.8)

where β0 = 1/kBT0 is the inverse temperature of the thermal bath and
where Zα =

∫
duρss(u, α) and Z = 2πkBT0/Ω0 are the partition functions

of the initial distribution and the final equilibrium distribution, respectively.
The initial distribution is determined by the total energy

Hα(u) = E(u)−Mα(u), (6.9)
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which we can write as the sum of the particle energy and the (negative)
feedback energy Mα(u). To proof (6.6), we introduce

Y (u, v) = M(v)−M(u) = ∆E − β−1
0 ∆ϕ, (6.10)

which measures the difference in feedback energy between states u and
v. For a simplified notation we have introduced ∆E = E(v) − E(u) and
∆ϕ = ϕα(v)− ϕα(u) = β0∆Hα.

The distribution of Y at time t is obtained by averaging over all initial
conditions u0 and all possible trajectory endpoints ut after time t

Pt(Y ) =

∫
du0

∫
dutρss(u0)pt(u0 → ut)δ [M(ut)−M(u0)− Y ] (6.11)

=

∫
du

∫
dvρss(u)pt(u → v)δ [M(v)−M(u)− Y ], (6.12)

where δ(u) is the Dirac function and we changed variables {u0, ut} → {u, v}
to save some writing. Pt(Y )dY is the probability to observe Y in the interval
[Y, Y + dY ]. Accordingly, the probability to observe −Y is

Pt(−Y ) =

∫
du

∫
dvρss(u)pt(u → v)δ [M(v)−M(u) + Y ] . (6.13)

Renaming integration variables yields

Pt(−Y ) =

∫
dv

∫
duρss(v)pt(v → u)δ [M(u)−M(v) + Y ] (6.14)

=

∫
dv

∫
duρss(v)pt(v → u)δ [M(v)−M(u)− Y ]

=

∫
du

∫
dvρss(u)

ρss(v)

ρss(u)
pt(v → u)δ [M(v)−M(u)− Y ].

Additionally, by combining (6.7), (6.8) and (6.10), it is easy to show that

ρss(v)

ρss(u)
=

ρeq.(v)

ρeq(u)
eY (u,v). (6.15)

117



Dynamic relaxation from an initial non-equilibrium steady state

Now, we know that a system evolving according to the Langevin equation
at temperature T0 obeys the detailed balance condition with respect to the
equilibrium distribution ρeq.(u). In particular this holds for the unperturbed
system (feedback off) 1

ρeq.(u)pt(u → v) = ρeq.(v̄)pt(v̄ → ū). (6.16)

Here, ū denotes the phase space point ū = {q,−p} obtained from u = {q, p}
by inversion of the momenta and pt(u → v) is the probability (density) to
find the system at v at time t provided it was at u at time 0. Now, detailed
balance (6.16) implies

ρeq.(v)

ρeq.(u)
pt(v → u) = pt(ū → v̄), (6.17)

where we used that ρeq.(u) = ρeq.(ū) since the energy E(u), and hence
also distribution (6.8) is symmetric with respect to momentum reversal.
This symmetry also applies to the feedback energy M(u) = M(ū) and,
therefore, also applies to the initial steady state distribution (6.7), that is

1 Since we can derive a Langevin equation for the energy E (more precisely ϵ =
√
E),

this holds also true for the system evolving under feedback
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ρss(u, α) = ρss(ū, α) (c.f. chapter 3). Therefore, (6.14) can be written as

Pt(−Y ) =

∫
du

∫
dvρss(u)e

Y (u,v) ρeq.(v)

ρeq(u)
pt(v → u)δ [M(v)−M(u)− Y ]

(6.18)

=

∫
du

∫
dvρss(u)e

Y (u,v)pt(ū → v̄)δ [M(v)−M(u)− Y ]

=

∫
dū

∫
dv̄ρss(ū)e

Y (ū,v̄)pt(ū → v̄)δ [M(v̄)−M(ū)− Y ]

=

∫
du

∫
dveY (u,v)ρss(u)pt(u → v)δ [M(v̄)−M(ū)− Y ]

=eY
∫

du

∫
dvρss(u)pt(u → v)δ [M(v̄)−M(ū)− Y ]︸ ︷︷ ︸

Pt(Y )

,

where in the third line we changed variables to ū and v̄, using
∣∣∣∂(ū,ū)∂(u,v)

∣∣∣ = 1

and used the fact that M(u) is symmetric with respect to momentum re-
versal, that is M(u) = M(ū). In the fourth line we renamed the integration
variables and in the final step we have used that the Dirac delta vanishes
for all Y (u, v) ̸= Y 1. Note that Y (u, v) is a function of the states u and v,
while Y is the value for which we evaluate the probability Pt(Y ).

Finally, we arrive at the Crooks fluctuation relation for Y :

⇒ Pt(Y )

Pt(−Y )
= e−Y . (6.19)

The relation is valid for any time t > 0. Note that the time t is arbitrary
and it is not required that within this time the system actually reaches the

1Y (u, v) = M(v) −M(u) = M(v̄) −M(ū), thus all contributions Y (u, v) ̸= Y to the
integral vanish and we can substitute Y (u, v) → Y . Since Y doesn’t depend on the states
u, v, we can pull it out of the integral.
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equilibrium distribution, thus Pt = P . From this relation we can easily
obtain

⟨eY ⟩ =
∫

dY P (Y )eY =

∫
dY P (−Y ) = 1, (6.20)

where the last step involves a variable change from Y to −Y .

6.3.2 Relaxation from an initial equilibrium state

If the initial steady state ρss(u, α) is an equilibrium distribution e−βE(u)/Z(β)
corresponding to the temperature T = 1/kBβ , the expressions become par-
ticularly simple. In this case, ∆ϕ = β∆E and

Y = (β0 − β) (Et − E0) . (6.21)

6.3.3 Relaxation from a steady state generated by paramet-
ric feedback

If the initial steady state ρss(u, α) is due to parametric feedback cooling,
the total energy is given by (c.f. chapter 3)

Hα = E +
α

4
E2. (6.22)

In this case, ∆ϕ = β0∆H and

Y = −β0
α

4

(
E2

t −E2
0

)
. (6.23)

Theoretical position distribution

Based on the energy distribution ρfb(E,α) of Eqs. 6.7 and 6.22 we can derive
the phase space distribution ρfb(q, p, v) of the non-equilibrium steady state
generated by application of the feedback. We start by writing the joint
probability distribution function ρfb(q, E, α) to observe the pair (q, E) as

ρfb(q, E, α) = ρ(q|E,α)ρfb(E,α), (6.24)
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where ρ(q|E,α) is the conditional probability to observe the position q for
a given energy E at feedback strength α. Assuming that the motion of the
oscillator is essentially undisturbed during an oscillation period (this is the
assumption that we have made all along), the distribution of positions is
given by

ρ(q|E,α) =


Ω0

π
√

2E/m−Ω2
0q

2
if q2 ≤ 2E

mΩ2
0

0 else
(6.25)

simply because the probability to find the system at q is inversely propor-
tional to the magnitude of the velocity, |v| = |p|/m =

√
2E/m− Ω2

0q
2 the

system has at q. This conditional probability distribution diverges at the
turning points ±q0 = ±

√
2E/mΩ2

0 and it vanishes for |q| > q0. Multiplying
the conditional distribution ρ(q|E,α) with the energy distribution from Eq.
(6.7) one obtains the desired joint distribution ρfb(q, E, α). Next, we change
variables from (q, E) to (q, p). The respective distributions are related by

ρfb(q, p, α) =
1

2
ρfb(q, E, α)

∣∣∣∣∂(q, E)

∂(q, p)

∣∣∣∣ (6.26)

The Jacobian of the transformation is given by∣∣∣∣∂(q, E)

∂(q, p)

∣∣∣∣ =
∣∣∣∣∣ ∂q∂q ∂q

∂p
∂E
∂q

∂E
∂p

∣∣∣∣∣ = |p|
m

. (6.27)

In Eq. 6.26 we have exploited that the distribution ρfb(q, p, α) is symmetric
in p, and the factor 1/2 arises because p and −p correspond to the same
energy E = mΩ2

0q
2/2 + p2/2m. Thus, the phase space density ρfb(q, p, α)

becomes

ρfb(q, p, α) =
1

2
ρfb[E(q, p), α]

Ω0

π
√

2E/m− Ω2
0q

2

|p|
m

=
Ω0

2π
ρfb[E(q, p), α], (6.28)

where we have used that |p|/m =
√

2E/m− Ω2
0q

2. Note that the second
case of Eq. (6.25) does not need to be taken into account, because for given
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q and p, the condition q2 ≤ 2E/mΩ2
0 is always obeyed. Using the energy

distribution from Eqs. 6.7 and 6.22 we finally obtain

ρfb(q, p, α) =
Ω0

2πZα
exp

{
−β0E(q, p)− β0αE(q, p)2

}
. (6.29)

From the phase space density ρfb(q, p, α) one can get the distribution ρfb(q, α)
of the positions by integration over the momenta:

ρfb(q, α) =

∫ ∞

−∞
dp ρfb(q, p, α). (6.30)

Carrying out the integral yields the position distribution

ρfb(q, α) =

√
β0mΩ2

0(4 + αmΩ2
0q

2)

8π3

exp
[
−β0(4+αmΩ2

0q
2)2

32α

]
erfc

(√
β0/α

)
× K1/4

[
β0(4 + αmΩ2

0q
2)2

32α

]
, (6.31)

where erfc and K1/4 are the complementary error function and a generalized
Bessel function of the second kind, respectively.

6.4 Experimental results

In the following we experimentally investigate the fluctuation theorem (6.19)
for two different initial steady state distributions, parametric feedback cool-
ing (ss = fb) and external modulation (ss = mod), respectively.

6.4.1 Relaxation from feedback cooling

First, we enforce a non-equilibrium state on the particle by applying a force
Fext = Ffb to the oscillating particle through a parametric feedback scheme
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[Gieseler et al., 2012]. The feedback Ffb = −ηΩ0q
2q̇ adds a cold damping

Γfb to the natural damping Γ0. This is different to thermal damping, where
an increased damping is accompanied by an increase in fluctuations. Since
parametric feedback adds an amplitude dependent damping Γfb(u) ∝ q2,
oscillations with a large amplitude experience a stronger damping than os-
cillations with a small amplitude.

Position distribution

At time t = toff the feedback is switched off. Once the feedback is switched
off, the collisions with the surrounding molecules are no longer compensated
by the feedback and the particle energy increases and the system relaxes
back to the thermal equilibrium distribution (Fig. 6.2c,d).

The relaxation experiment is carried out 104 times, i.e., we repeatedly
prepare initial conditions u0 distributed according to ρfb(u0, α) watch the
system as it evolves from u0 to ut in time t. Along each ∼ 1s trajectory
we sample the position at a rate of 625kHz and from integration over 64
successive position measurements we obtain the energy at a rate of 9.8kHz.
In figure 6.2a we show the average over the individual time-traces together
with a fit to (6.5). Equilibrium is reached after a time of the order of
τ0 = 1/Γ0 = 0.17s. According to Eq. 6.5 and the measurement shown in
Fig. 6.2, the average energy of the particle increases monotonically. How-
ever, due to the small size of the particle, the fluctuating part of (6.3) is
comparable to the deterministic part and hence an individual trajectory
can be quite different from the ensemble average in (6.5). Fig. 6.2b shows
four realizations of the relaxation experiment. Each particle trajectory q(t)
results from switching off the feedback at a time t = toff .

Fluctuation theorem

The 104 trajectories allow us to evaluate the distributions Pfb(Y ) = ⟨δ[Y −
Y (ut)]⟩ for different times t, where Y is calculated from Eq. 6.23 with the
energies E0, Et measured at time 0 and t, respectively. Fig. 6.3a shows the
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Figure 6.2: Time evolution of relaxation of feedback cooled particle.
(a) The particle is initially prepared with low energy kBTeff by parametric
feedback cooling. At time toff the feedback is switched off and the particle
energy relaxes to the equilibrium energy kBT0. The average energy increases
exponentially (The red dashed line is a fit to Eq. 6.5). (b) Each realization
of the relaxation experiment renders a different trajectory and the time it
takes the particle to acquire an energy equal to the thermal energy kBT0 de-
viates considerably from the average exponential increase of subfigure a. (c)
Time evolution of the position distribution resulting from switching and (d)
Cross cuts at 0, 0.1s and 0.9s, respectively. The red lines are the theoreti-
cal position distributions. The initial distribution shows a small deviation
from a thermal equilibrium distribution (gray dashed line). Inset subfigure
a: Over short times the particle oscillates with constant amplitude.

measured steady state distribution in excellent agreement with (6.7) and
(6.22). For comparison, the equivalent thermal distribution is shown (gray
dashed line). As shown in Fig. 6.3a, the distributions Pfb(Y ) are symmetric
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for short times, whereas they become increasingly asymmetric for longer
times, with higher probabilities for positive Y and lower probabilities for
negative Y . To apply the fluctuation theorem (6.19) to our measurements
we define

Σ(Y ) = ln

[
P (Y )

P (−Y )

]
= −Y, (6.32)

where Σ(Y ) is predicted to be time-independent. Using the distributions
for Y shown in Fig. 6.3b we compute Σ(Y ). The resulting data is shown
in Fig. 6.3c. Since (6.19) is time-independent, we take the time-averaged
distributions to improve the statistics. Fig. 6.3d shows Σ(⟨P (Y )⟩t) in ex-
cellent agreement with the fluctuation theorem!

6.4.2 Relaxation from excited state

With our experimental apparatus we can study non-equilibrium relaxation
for arbitrary initial states and transition between them. We demonstrate our
capabilities by producing an extremely non-Gaussian initial distribution.
In a second experiment, the system is driven by applying a parametric
modulation in addition to parametric feedback cooling Fext = Ffb + Fmod,
where Fmod = ϵΩ2

0 cos(Ωmodt)q with modulation frequency Ωmod = 249kHz
and modulation depth ϵ = 0.03.

Modulation at Ωmod/2π brings the particle into oscillation at 124.5kHz
and amplitude q0. The resulting initial steady state position distribution
features a characteristic double-lobe distribution

ρharm(q) =
π−1√
q20 − q2

(6.33)

of an harmonic oscillation. As in the previous experiment, at t = toff the
modulation and the parametric feedback are switched off simultaneously,
and we measure the dynamics during relaxation. Fig. 6.4 shows the re-
laxation of the particle’s average energy and position distribution. The
average initial energy is larger than the thermal energy kBT0 and relaxes
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exponentially to the equilibrium value according to (6.5). As in the pre-
vious experiment, individual realizations of the switching experiment differ
significantly from the average (Fig. 6.4b). As the system relaxes, the two
lobes of the initial position distribution broaden until they merge into a
single Gaussian peak.

Since the form of the initial distribution ρmod(E) is not know analytically
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Figure 6.3: Fluctuation theorem for the nanoparticle in Fig. 6.2. (a) En-
ergy distribution with feedback on (red circles) and fit to Eq. 6.7 (black solid
line). Large amplitude oscillations experience stronger damping and are
therefore suppressed with respect to an equilibrium distribution with identi-
cal average energy (gray dashed line). (b) Probability density P (Y ) evaluated
at different times after switching off the feedback. (c) The function Σ(Y )
evaluated for the distributions shown in (c) and (d) evaluated for the time
averaged distributions ⟨P (Y )⟩t is in excellent agreement with the theoretical
prediction (black dashed line).
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(as it is the case for parametric feedback), we determine it experimentally.
With the measured initial distribution, we calculate Y according to Eq. 6.10
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Figure 6.4: Time evolution of relaxation of excited particle. (a) The
particle is initially prepared with high energy kBTeff by applying a parametric
modulation in addition to parametric feedback. At time toff the feedback is
switched off and the particle energy relaxes to the equilibrium energy kBT0.
The average energy decreases exponentially (The red dashed line is a fit to
Eq. 6.5). (b) Each realization of the relaxation experiment renders a differ-
ent trajectory and the time it takes the particle to acquire an energy equal
to the thermal energy kBT0 deviates considerably from the average exponen-
tial decrease of subfigure a. (c) Time evolution of the position distribution
resulting from switching and (d) cross cuts at 0, 0.1s and 0.9s, respectively.
The red lines are the theoretical position distributions, respectively. The
initial distribution features a sharply peaked double lobe distribution, char-
acteristic for a harmonic oscillation. As the system evolves, the two peaks
smear out and approach each other until they form a single Gaussian.
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Figure 6.5: Fluctuation theorem for the nanoparticle in Fig. 6.4. (a)
The energy distribution with feedback and modulation on (red circles) differs
significantly from an equilibrium distribution with identical average energy
(gray dashed line). (b) Probability density P (Y ) evaluated at different times
after switching off the feedback. (c) The function Σ(Y ) evaluated for the
distributions shown in (c) and (d) evaluated for the time averaged distribu-
tions ⟨P (Y )⟩t is in excellent agreement with the theoretical prediction (black
dashed line).

from the energies E0, Et measured at times 0 and t, respectively. Fig. 6.5a
shows the initial energy distribution ρmod(E). It features a narrow spread
around a non-zero value and therefore differs significantly from a thermal
distribution with identical effective temperature (gray dashed line). As be-
fore, we calculate Σ(Y ) and Σ(⟨p(Y )⟩t) from the distributions P (Y ) and
find excellent agreement with the theoretical prediction (Fig. 6.5).
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6.5 Conclusion

In conclusion, we have measured energy fluctuations of a highly under-
damped nanomechanical oscillator during relaxation from non-equilibrium
steady states. Thanks to the low damping, the time scales of the random
force and the intrinsic timescale of the oscillator separate. This allows us
to control the motional degrees of freedom of the oscillator and to prepare
it in an arbitrary initial state and study it’s dynamics during relaxation
to equilibrium. We show both theoretically and experimentally that the
fluctuation theorem is fulfilled for relaxation from a steady state to ther-
mal equilibrium. The here presented experimental framework naturally ex-
tends to study the transitions between arbitrary steady states and quantum
fluctuation theorems similar to a recent proposal for trapped ions [Huber
et al., 2008]. Further, we envision that our exponential approach of using
an highly controllable nano-mechanical oscillator for studying fluctuation
theorems will open up experimental and theoretical investigation of fluctu-
ation theorems in more complex settings which arise for instance from the
interplay of thermal fluctuations and nonlinearities [Gieseler et al., 2013]
and in which detailed balance might be violated [Dykman and Krivoglaz,
1979; Dykman, 2012].
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Appendix

A Calibration

In this section we relate the measured power spectral density to the physical
one. This allows us to extract the calibration factor ccalib., the radius of the
particle a, the effective temperature Teff and the natural damping rate Γ0.

A.1 Calibration factor

We write the power spectral density in the form

S(Ω) =
a1

(a23 − Ω2)2 + a22Ω
2
, (34)

where

a1 = (ccalib)
2kBT0

πm
Γ0, (35)

a2 = Γ0 + δΓ and (36)
a3 = Ω0 + δΩ (37)

are the fit parameters and ccalib. is a calibration factor with units V/m.

When the feedback is switched off δΓ and δΩ are zero. Therefore, a2 =
Γ0 and we find the particle radius a from the measured pressure Pgas and

a = 0.619
9π√
2

ηd2m
ρSiO2kBT0

Pgas

Γ0
, (38)

where we have expanded (3.42) for small Kn−1 = a/̄l. This is a valid
approximation for the particle size and pressures considered here. For a
gas at pressure Pgas and temperature T0, the free mean path is given by
l̄ = (kBT0)/(

√
2d2mπPgas), where dm = 0.372 nm is the diameter of the gas

molecules [O’Hanlon, 2003]. Here, η = 18.27× 10−6 Pa s the viscosity of air
and ρSiO2 = 2200 kg/m3 the density of Silica.
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The calibration factor is then

ccalib =

√
a1
a2

πm

kBT0
, (39)

where m = 4π ρSiO2a
3 /3 is the mass of the particle.

A.2 Effective temperature

From a calibration measurement without feedback and a measurement with
feedback on we calculate the effective temperature as

Teff = T0
R(FB)

R(calib.) , (40)

where R = a1/a2. The superscripts denote measurements with feedback
on (FB) and feedback off (calib.), respectively.

A.3 Natural damping rate

In the case when the feedback is off the natural damping rate is simply
given by a2 = Γ0. However, despite the fact that the feedback broadens the
resonance, we can still determine Γ0 from the shape of the power spectral
density. Because the coefficient a1 also depends on Γ0 we find that

Γ0 =
a
(FB)
1

R(calib.) , (41)

where R(calib.) is determined from a calibration measurement without feed-
back.
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