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Departament d’Òptica i Optometria

Universitat Politècnica de Catalunya

July 17, 2013
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Cristóbal (2007)). . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Anisotropy measure (Q1) from the image set in Fig. 3.3. . . . 39

3.5 (a) Normal fundus image. (b) Weighting function w[n] de-
scribed by an elliptic paraboloid centered at the OD. . . . . 41

3.6 A pair of retinal images from the same eye for illustrating the
effect of a spatial weighting function on the metric. . . . . . . 41

3.7 Example of local dominant orientation estimation (from Zhu
& Milanfar (2010)). . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Flowchart illustrating the computation of the perceptual-based
sharpness metric based on the “Just noticeable blur” (from
Ferzli & Karam (2009)) . . . . . . . . . . . . . . . . . . . . . 44

3.9 Performance of Q3 versus Gaussian blur when applied to a
set of test images of 512 × 512 pixels and a 7 × 7 Gaussian
filter (from Ferzli & Karam (2009)). . . . . . . . . . . . . . . 45

3.10 Fundus images with varying degree of quality corresponding
to the same eye. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.11 (a) Retinal image with uneven illumination and contrast, (b)
non-uniform sampling grid, and (c) first principal component
of (a) from PCA analysis. . . . . . . . . . . . . . . . . . . . . 49

3.12 Background pixel classification from Eq. 3.17 using (a) the
strategy in Foracchia et al. (2005) and (b) with additional
PCA analysis. Notice that the OD region has been left out in
order not to bias the estimation of the luminosity component. 52
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Abstract

Medical digital imaging has become a key element of modern health
care procedures. It provides a visual documentation, a permanent record
for the patients, and most importantly the ability to extract information
about many diseases. Ophthalmology is a field that is heavily dependent
on the analysis of digital images because they can aid in establishing an
early diagnosis even before the first symptoms appear. This dissertation
contributes to the digital analysis of such images and the problems that arise
along the imaging pipeline, a field that is commonly referred to as retinal
image analysis. We have dealt with and proposed solutions to problems
that arise in retinal image acquisition and longitudinal monitoring of retinal
disease evolution. Specifically, non-uniform illumination, poor image quality,
automated focusing, and multichannel analysis. However, there are many
unavoidable situations in which images of poor quality, like blurred retinal
images because of aberrations in the eye, are acquired. To address this
problem we have proposed two approaches for blind deconvolution of blurred
retinal images. In the first approach, we consider the blur to be space-
invariant and later in the second approach we extend the work and propose
a more general space-variant scheme.

For the development of the algorithms we have built preprocessing so-
lutions that have enabled the extraction of retinal features of medical rel-
evancy, like the segmentation of the optic disc and the detection and vi-
sualization of longitudinal structural changes in the retina. Encouraging
experimental results carried out on real retinal images coming from the clin-
ical setting demonstrate the applicability of our proposed solutions.





Part I

Introduction and
Justification of the Thematic

Unit
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Chapter 1

Introduction

Imagine the following scene: You’re living in a small town several
hundred kilometers away from the nearest city. You’ve been having a
serious headache for the past couple of weeks. You book an appoint-
ment with your local primary care center. The day you go, a family
physician gives you a physical examination and doesn’t detect anything
quite wrong with you, yet you are sent to get your eyes checked. The
ophthalmologist comes once a month to town, thus you get checked by
the person in charge of fundus examination (a non-physician). The
technician takes photographs of the retina in both of your eyes and de-
tects something out of the ordinary: a somewhat enlarged excavation
of the optic nerve head. The computer confirms so and also warns of
several possible micro-aneurysms and loss of retinal nerve fibers since
your last visit. The software automatically sends an alert along with
the images to the ophthalmologist to be reviewed on a smart-phone or
mobile device. The ophthalmologist confirms the diagnosis suggested
by the system in combination with the annotations from the physician
and the fundus examiner. The system automatically books you an ap-
pointment for Monday morning with the ophthalmologist.

This story portrays an ideal situation in some distant future, but the truth is
that scientifically and technologically speaking we are making great efforts
to bring this closer to the present day. It will certainly take time and a
great deal of resources before telemedicine and computer-aided diagnosis
become ubiquitous and mature enough so that we can rely on them, but
the research carried out in the last decade is starting to offer true solutions
to the overwhelming problem of health care. This is the ultimate goal of
science and technology at the service of medicine.

Ophthalmology is a branch of medicine that is heavily dependent on
images. The goal of this thesis is to contribute to the digital analysis of
such images and the problems that arise along the imaging pipeline; a field
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Introduction

Fig. 1.1: Cross section of the human eye (Illustration by Holly Fischer cc).

that is commonly referred to as retinal image analysis. In order to provide a
kind of showcase of many of the challenges involved in bringing retinal image
analysis to the clinical setting, we have deliberately chosen every solution
that has been portrayed in the story above so that it can be linked to a
reference, whether it be a medical study or a technological development.
These references are mentioned in § 1.1.3.

In this chapter we introduce the main background and key concepts
regarding the approach followed in this thesis. We present a brief overview
of the state of the art in the field of retinal image analysis. A more in-depth
discussion with the relevant literature and related works is carried out in
every chapter. We have done this so that any chapter could be read as a
standalone document.

1.1 Background and Motivation

1.1.1 Fundus Imaging

When alluding to the eye, the posterior segment, or all regions behind the
crystalline lens, we refer to it as the ocular fundus (Fig. 1.1). The retina lies
at the rear surface of the globe, and in ophthalmology, is an area of primary
concern if visual loss is an issue not traceable to refractive error or problems
in the cornea or the lens.

4
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1.1 Background and Motivation

Fig. 1.2: The optical pathway of the fundus camera. Light generated from either
(A) the viewing lamp or (B) the electronic flash is projected through a (C) set of
filters and lenses onto a mirror. This mirror reflects the light into a series of lenses
that focus the light. The light is reflected by a (D) round mirror with a central
aperture, exits the camera through the objective lens, and proceeds into the (E) eye
through the cornea. The back-scattered light from the retina exits the cornea and
continues through the central aperture of the previously described mirror, through
the diopter compensation lenses, and then reaches the camera system: (F) the
sensor and (G) the viewing screen.

The eye fundus has been observed by physicians as early as 1850 with
the invention of the ophthalmoscope by the German physician Hermann Von
Helmholtz (Saine & Tyler, 2002). This was an instrument that enabled the
examination of the retina by using a bright light near the eye and shining
it into the patient’s pupil. However, it was not until the mid 1920s that
the Carl Zeiss Company made available the first commercial fundus camera.
Many were the limitations in clinical use of fundus photography in the 1930s
and 1940s which can be attributed to the difficulty in obtaining quality im-
ages (Saine & Tyler, 2002). Since then, many advances came forth both
in quality and specific-purpose developments of techniques for imaging the
eye fundus such as: fluorescent angiography, modern electronic fundus pho-
tography, stereo fundus photography, confocal laser opthalmoscopy, among
others (Abramoff et al., 2010).

All of the modern systems, including the aforementioned and others like
optical coherence tomography (OCT) and scanning laser polarimetry, are
mostly oriented toward the diagnosis of specific diseases related with certain
fundus structures best imaged by a determined technique. In other words,
most of these techniques are capable of imaging the eye fundus under a
specific modality, and therefore usually work in a complimentary way. How-
ever, fundus photography is the most commonly found in medical centers
because it provides a more general fundus examination with little patient
intervention (Bennett & Barry, 2009).

5



Introduction

Fig. 1.3: A retinal image.

To photograph the retina, it is usually required that the iris be dilated
with pharmaceuticals and photographed with a mydriatic fundus camera
(mydriatic means the iris must be dilated). A fundus camera (Fig. 1.2) is
a specialized low-power microscope with an attached camera designed to
photograph the interior of the eye in association with the optical system
of the eye. Retinal cameras can also be non-mydriatic in that the patient’s
natural dilation in a dark room is used. These cameras use near infrared light
to focus and a white light arc lamp to produce a flash that illuminates the
retina. The fundus images are captured using a conventional digital camera,
attached to the retinal camera body designed to image the eye fundus in
association with the optical system of the eye. For further details on fundus
imaging the reader is referred to (Bennett & Barry, 2009, Bernardes et al.,
2011, Abramoff et al., 2010).

A typical retinal image is shown in Fig. 1.3. The normal features include
the optic disc, the fovea, and the blood vessels. The optic disc (or optic
nerve head) is the location where ganglion cell axons exit the eye to form
the optic nerve (Fig. 1.1). The fovea is the part of the retina responsible for
sharp central vision. It has the highest density of photoreceptor cells and
approximately 50% of the nerve fibers in the optic nerve carry information
from the fovea. The blood vessels or vasculature are the circulatory system
that supply blood to the different layers of the retina.

1.1.2 Retinal Manifestations of Eye and Systemic Disease

Many important diseases manifest themselves in the retina and find their
origin in the eye, the brain, or the cardiovascular system. There are a
number of prevalent diseases that can be studied via eye imaging and image
analysis such as the following.

• Diabetic retinopathy: Diabetic retinopathy (DR) is a complication of
diabetes mellitus and the second most common cause of blindness

6



1.1 Background and Motivation

and visual loss in the U.S. In the eye, hyperglycemia damages the
retinal vessel walls and can lead to the growth of new blood vessels
(neo-vascularization), which may bleed and cause retinal detachment
(Fig. 1.4). It can also cause diabetic macular edema and damage the
photoreceptors because of a breakdown of the blood-retinal barrier
(Williams et al., 2004).

• Age-related macular degeneration: Age-related macular degeneration
(AMD) is the most common cause of visual loss in the the U.S. and is a
growing public health problem. The two major forms are dry and wet
AMD, of which dry AMD typically leads to gradual loss of visual acu-
ity. Wet AMD, also called choroidal neo-vascularization, is the most
visually threatening form. Its natural course is a rapid deteriorating
acuity, scarring of the pigment epithelium, and permanent visual loss
or blindness.

• Glaucoma: Glaucoma is the third leading cause of blindness in the
U.S., characterized by gradual damage to the optic nerve and resultant
visual field loss. Early diagnose and optimal treatment have been
shown to minimize the risk of the visual loss due to glaucoma (Heijl
et al., 2002). The hallmark of glaucoma is cupping of the optic disc,
which is the visible manifestation of the optic nerve head 3-D structure.
The ratio of the optic disc cup and the neuroretinal rim surface areas
in these images, called cup-to-disk-ratio, is an important structural
indicator for assessing the presence of progression of glaucoma. In
§ 2.1 we explain further details for optic disc segmentation.

• Vascular disease: Cardiovascular disease manifests itself in the retina
in a number of ways. Hypertension and atherosclerosis cause changes
in the ratio between the diameter of retinal the arteries and veins,
known as the A/V ratio. A decrease in the A/V ratio is associated
with increased risk of stroke and myocardial infarction (Hubbard et al.,
1999).

1.1.3 The Challenges and the Future

We started this chapter by imagining a situation in a somewhat distant
future where many of the challenges and limitations that we have today
have been significantly worked out. In this subsection we briefly discuss a
number of advances that relate directly to the story.

As we have seen there are many diseases that manifest in the retina
and as such, examination of the ocular fundus is a key component of the
general physical examination and critical to the diagnosis of life- and sight-
threatening medical conditions, even among patients with certain presenting
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Fig. 1.4: Retinal manifestations of disease: Diabetic retinopathy (Illustration by
ADAM Images)

complaints such as headache (Sobri et al., 2003, Bruce et al., 2013). However,
such examination is infrequently performed in most non-ophthalmic settings
(Stern et al., 1995, Bruce et al., 2011). Current technology for examining the
ocular fundus, like non-mydriatic fundus photography, enables non-medical
personnel to assist in obtaining high-quality images (Maberley et al., 2004).

The everyday cost associated with eye-care providers’ decisions and the
ever-increasing numbers of retinal images to be reviewed are the major moti-
vations for the adoption of image analysis in ophthalmology (Abramoff et al.,
2010). Clearly, since clinicians are costly experts, they need to optimize the
time devoted to each patient. Moreover, the development of new imaging
technology has resulted in rapidly increasing amounts of data collected as
part of any specific retinal imaging exam. This amount of information is
already exceeding the limit of clinicians’ ability to fully utilize it (Abramoff
et al., 2010). If we also take into account that clinicians are subjective, and
their decisions suffer from inter- and intra-observer variability, the need for
reliable computerized approaches to retinal image analysis is more obvious.

Although recent studies, in automated retinal image analysis, suggest
that automated systems may achieve diagnostic capability levels comparable
to physicians (Faust et al., 2012), this must be interpreted as an aid for the
physician rather than a standalone diagnostic tool. These automated tools
may help to alleviate many of the substantial challenges that remain for
the widespread access of the general population to screening and prevention
programs. In addition, this requires versatile imaging devices and a whole
infrastructure built to satisfy the ever increasing demand for high-quality
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healthcare services.
In this regard, advancements in telemedicine, particularly via nearly

ubiquitous mobile devices, likely hold part of the solution to problems like
reviewing images in a timely fashion. For example, Kumar et al. (2012)
found that the ophthalmologists who reviewed images of patients for the
telemedical diagnosis of DR had very high agreement (κ = 0.9) and gave
high scores to the image quality on the iPhone4. We believe that the true
benefit to society is that clinicians will end up devoting most of their time
to treating the ill and increase their productivity when dealing with routine
population screening. Instead of being replaced by computers (McDonnell,
2010), they will be able to do much more and more accurately—this is the
ultimate goal.

1.2 State of the Art

In this section we give a broad overview of the state of the art in automated
retinal image analysis. We discuss the present concerns and several of the
main ideas that lead up to the contributions presented herein. A detailed
discussion with the specific literature is carried out in each chapter.

1.2.1 Everything Becomes Digital

Although the first reported method for retinal image analysis was published
in 1984 (Baudoin et al., 1984), it was not until the 1990s that the field
dramatically changed due to the development of digital retinal imaging.
Similarly to the general field of image processing, digital retinal images are
usually processed in an algorithmic sequence, with the output of one stage
forming the input to the next. For example, a typical sequence may consist
of one or more preprocessing procedures followed by image segmentation,
feature extraction and classification stages.

Alongside the development of digital imaging systems, the increase in
computational power and its reduced cost have spurred a significant amount
of research in the last decade. The recent reviews by Patton et al. (2006),
Winder et al. (2009), Abramoff et al. (2010), Bernardes et al. (2011), and
Faust et al. (2012) with nearly over a hundred citations each is evidence
of the fervent field. However, recent efforts in the community are shifting
from generating algorithms to detect, localize or measure retinal features
and properties, validated with small sets of test data, to generating mea-
surements of clinical and public health significance for clinicians, eye care
providers and biomedical scientists and researchers, requiring larger and real
life sets of test data (Trucco et al., in press).

In this thesis we have always pursued the application of our algorithms
on real life sets of data chiefly originating from the clinical practice itself
and not obtained under controlled experimental conditions. This is a much
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more demanding challenge, but it is the one needed at present if automated
retinal analysis is to become a reality in the clinical practice.

1.2.2 Present Concerns

The recent paper by Trucco et al. (in press) deals with the present concerns
in the field. It combines input from 14 international research groups on the
validation of automated retinal image analysis. This work demonstrates the
international efforts being put to translating the research findings to the
clinical practice in an effective way. The authors described several scenarios
in which algorithms for retinal image analysis are being used.

• Screening/monitoring, e.g. retinal diseases like DR. The goal is to iden-
tify images showing signs of a target condition in large sets. The im-
ages (patients) selected are referred for clinical attention. It has been
shown that appropriate screening of DR is cost-effective (Abràmoff
et al., 2010). Diabetic retinopathy screening facilitates early detection
of patients with mild stages of DR, and thus early intervention. Auto-
mated screening promises to eliminate inefficiencies within the current
DR screening workflow by providing a faster, more cost-effective and
accurate disease diagnosis.

• Computer-assisted diagnosis and risk stratification. The purpose is to
detect the presence or likelihood of a disease from specific signs. Au-
tomated retinal image analysis performance must be demonstrated to
be more precise than diagnosis in the absence of computer assistance,
or generate richer data improving a clinician’s diagnosis.

• Biomarkers discovery. Aimed to determine whether the occurrence of
measurable features in retinal images is linked significantly (in a statis-
tical sense) with specific outcomes or conditions that impact treatment
decisions, prognosis, or diagnosis.

In addition, Trucco et al. (in press) also identify three areas that would
further benefit from reliable automated retinal image analysis.

• Longitudinal studies. The purpose is to provide a means to study
quantitatively the evolution and characterization of the disease, to
assist treatment planning or gauging patient response to a treatment.

• Computer-aided or image-guided surgery. An emergent application
of retinal image analysis algorithms (Balicki et al., 2009), e.g. vitreo-
retinal microsurgery, for which image analysis allows registration of
intra-operative imagery with pre-operative imagery for image-guided
surgical interventions (Fleming et al., 2008).
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• Tele-health. Disease screening and monitoring could play a very impor-
tant role here, e.g. in less developed countries where the incidence of
diabetes is rising and screening made difficult by the lack of resources
and clinicians (Wild et al., 2004). Computer-assisted telehealth pro-
grams can become a scalable method for providing expert care.

1.3 Aim of the thesis

The different scenarios in which retinal image analysis is useful lead to a
number of technological and scientific challenges, many of which arise from
the attempts to automate or improve a procedure, to decentralize resources,
etc. If we regard retinal image analysis from an algorithmic perspective we
can identify several areas or stages to which the objectives of this thesis are
oriented like the following

1. Image acquisition. It is the most important part of the process. The
goal is to search for better tools that automate and improve acqui-
sition, e.g. autofocusing in retinal cameras. Previous works and the
relevant literature are discussed in § 3.1 and § 4.2.

2. Image quality assessment. Assessment of image quality is a general
topic of interest, however retinal imaging has its own constraints that
merit approaches tailored to the specific requirements. Previous works
and the relevant literature are discussed in § 3.2.

3. Image preprocessing. The goal is to adapt the images so that subse-
quent processing is more efficient or accurate. Previous works and the
relevant literature to the approaches proposed herein are discussed in
§ 2.3.1, § 3.3, § 5.4, and § 6.3.1.

4. Image enhancement/restoration. Image enhancement or restoration
overlap significantly and differ in that the latter is more concerned with
accentuation of features, whereas the former with the minimization of
the effect of some known degradation. For example deconvolution for
deblurring retinal images is a topic extensively addressed in this thesis.
Previous works and the relevant literature are discussed in § 5.1 and
§ 6.1.

5. Image feature extraction. It is typically defined as a procedure in which
the input is an image and the output are measurements. As we have
discussed previously, the segmentation of retinal features (whether nor-
mal or pathological) or the detection of longitudinal changes, are the
examples of feature extraction addressed in this thesis. Previous works
and the relevant literature are discussed in § 2.1 and § 5.1.
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This multistage approach or pipeline changes depending on the situation
at hand. To that end we have identified a number of problems or opportu-
nities which are the subject of study in this thesis. In some cases it is the
improvement of an existing solution, in others proposing an alternate and
possibly better solution, and finally others in which our approach is entirely
novel. The specific objectives achieved in this thesis are:

• To determine and validate a robust technique for retinal image quality
estimation. This is a broad enough objective that we have tackled it by
first analyzing several state-of-the-art no-reference image quality met-
rics and their performance in retinal imaging (Chapter 3). This lead
to the development of a novel robust focus measure for non-mydriatic
retinal imaging (Chapter 4).

• To determine a suitable method for the compensation of non-uniform
illumination in retinal images. This was achieved both for visual-
ization purposes (single-image compensation in Chapter 3) and for
subsequent processing (multi-image compensation in Chapter 5).

• To develop a strategy for the restoration and enhancement of blurred
retinal images. This was achieved initially by considering the space-
invariant case (Chapter 5) in which the blur is modeled as caused by
a single PSF. In the next step we considered the space-variant case
(Chapter 6) in which we have extended the model to take into account
a more general space-variant PSF.

• To detect and identify longitudinal structural changes in the retina pos-
sibly linked to the evolution of a disease. This objective was achieved
as a prerequisite or preprocessing stage for the image enhancement of
blurred retinal images by means of multi-image deconvolution (Chap-
ter 5).

• To design and validate a method for the segmentation of the optic disc.
This objective was the starting point of the thesis as it followed from
the previous work carried out in the research group (Chapter 2). It was
achieved by implementing and adapting an active contours approach
to the considered problem.

1.3.1 Methodology

This work is about the digital analysis of images. In general, we use color
images, although color is not critical from a colorimetric point of view. For
the most part, we use images from real patients thus it is an experimental
work. This thesis is oriented to the development of algorithms that provide
a solution to a range of problems, rather than performing clinical trials with
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a large number of patients and carrying out a statistical comparison with a
panel of specialists.

When necessary, we have used a real reference image. We have degraded
it, and later enhanced it with the considered algorithm. The result has been
compared with the original before the artificial degradation. This enabled
the refinement of the algorithm and served as validation.

1.3.2 Originality

The contributions described herein are not limited to previously existing
solutions, rather we have developed our own algorithms built upon related
approaches found in the literature. In addition, as part of the methodology
of the work, the results obtained with our proposed algorithms have been
compared against existing algorithms published by other authors (in certain
circumstances reproducing and applying them to the images of interest).

The work developed for this thesis is also original in the way the objec-
tives have been laid out. This is a multi-objective work in which we have
considered the whole imaging pipeline, ranging from acquisition to feature
extraction. To that end we have analyzed the numerous limitations while
trying to acquire images and later processing them for feature extraction.
This holistic approach is noteworthy in the sense that most works focus on
a single stage.

1.3.3 Novelty

The topic of this thesis is novel and is clearly very much of international
interest as evidenced by the significant increase of published papers in the
field in the last decade. From the conception of this work we have not set
to perform incremental developments, but to contribute in a much more
substantial way to the different proposed objectives. In fact, this thesis is
presented in the modality of compilation of publications, which gives credit
to the novelty of its contributions.

1.4 Thesis Outline

This thesis is presented as compilation of publications. It is organized in
the following way: Part I, which consists of chapter 1, is the introduction
and justification of the thematic unit, Part II, which consists of chapters 2
to 6, is a summary and analysis of the results, and finally Part III is the
compilation of publications.

In Fig. 1.5 we show a mind-map of the results presented in this thesis. If
you look carefully you will notice that they are organized by the stages that
we have described in the previous section. Presenting the results in this way
seemed unpractical because each contribution would be isolated from the
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Fig. 1.5: A mindmap of the results and contributions of this thesis.

underlying context and the corresponding problem. That is why there are
dashed blue arrows connecting different topics. For this reason the summary
and analysis of the results (which is the most extensive part) is arranged, to
a great extent, in a chronological way. We believe that this will enable the
reader to form a better picture of the overarching story of this thesis.

The first two chapters are the basis or preliminary work in which we set
out to identify the necessities in the field of retinal image analysis and the
goals worth pursuing for research. Unsurprisingly these initial chapters are
incremental contributions that we have produced by addressing the chal-
lenges and limitations of optic nerve head segmentation, image acquisition
and quality assessment, and illumination compensation. In chapter 4 we
dive even further in the acquisition procedure, more precisely the auto-focus
mechanism for non-mydriatic retinal imaging. We propose a robust method
for auto-focusing. In chapters 5 and 6 we discuss the problem of retinal im-
age blurring and propose two approaches for restoring the images. Finally
in chapter 7 we discuss the conclusions of the thesis.
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Chapter 2

Segmentation of the Optic
Disc in Retinal Images

In this chapter we discuss the segmentation of the optic disc (OD), and the
method we proposed to carry it out. By way of introduction, we describe
several previous works in this topic, particularly the method proposed by
Valencia et al. (2006) because it served as the starting point for this thesis.
This work was carried out in our research group and the analysis of its
limitations and possible extensions was the subject of our early results. A
keen analysis of the previous works revealed that the greatest challenge was
overcoming the inherent variability of the OD appearance across the general
population. This showed that a more general and robust method for the
estimation of the OD contour was needed.

2.1 Background

Localization and segmentation of the OD are important tasks in retinal
image analysis. Not only is its shape an important indicator of many oph-
thalmic pathologies (Bock et al., 2010), but its localization is a prerequisite
in many algorithms. In great part, this is due to the fact that it is often nec-
essary to differentiate the OD from other retinal features. Moreover, correct
segmentation of the OD contour is a non-trivial problem. The natural vari-
ation in the characteristics of the OD is a major difficulty for defining the
contour. Blood vessels may cross the boundary of the OD obscuring the rim
of the disc, with edges of vessels also acting as significant distractors (Winder
et al., 2009).

The literature describes a number of algorithms for determining the OD
boundary. One technique that deserves especial mention is active contours
or snakes. Kass et al. (1988) proposed the concept of a deformable contour
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(a) (b)

Fig. 2.1: (a) Retinal image and (b) optic nerve head region.

that changes its shape depending on properties of the image∗. However,
Mendels et al. (1999) were one of the to first report a two-stage method for
the localization of the OD boundary with the use of active contours. The
first stage consisted in processing the image using gray-level mathematical
morphology to remove the blood vessels. Then a snake was manually placed
to detect the OD boundary. The algorithm proposed by Osareh et al. (2002)
extended the work of Mendels et al. (1999) with the use of gradient vector
flows to localize the OD.

The work of Valencia et al. (2006) is interesting because it included a
strategy for segmenting both the OD and the optic cup (OC) (see Fig. 2.1)
in order to determine a glaucomatous risk index. In spite of that, their
approach is not without limitations. In what follows we briefly review the
strategy proposed by Valencia et al. (2006) so that the reader may get an
overview of the method. After this, we show our results on the analysis of
the method’s strengths and limitations.

Developing retinal image analysis techniques to detect diseases like glau-
coma and aid in the prevention of blindness in the general population is
both a challenge and goal worth pursuing. Glaucoma is one of the most
common causes of blindness in the world (Bock et al., 2010). The disease
is characterized by the progressive degeneration of optic nerve fibers show-
ing a distinct pathogenetic image of the optic nerve head. Two commonly
used parameters for glaucomatous risk assessment are the cup-to-disc ratio
(CDR) and the ISNT rule (Harizman et al., 2006). The CDR is calcu-
lated as the area occupied by the OC divided by the OD area, whereas the
ISNT is a mnemonic that provides an easy way to remember how the optic
nerve is supposed to look in a normal eye. Normally, the neuro-retinal rim
is thickest Inferiorly and thinnest Temporally, thus following the pattern of

∗A more detailed description of active contours is given in § 2.3.
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Fig. 2.2: Scheme of the algorithm by Valencia et al. (2006) to mark the optic disc
boundary.

rim width Inferior≥Superior≥Nasal≥Temporal (see Figure 2.1(b)). This
rule is commonly used in clinical practice.

2.1.1 Previous work

The algorithm proposed in Refs. (Valencia et al., 2006, Valencia & Millán,
2008) consists in the following. The color images of the eye fundus are
pre-processed using a sharpening algorithm (Millán & Valencia, 2006) to
smooth noise and sharpen edges by means of the Laplacian of Gaussian op-
erator (LoG). Subsequently, the region of interest (ROI) is manually selected
and transformed to polar coordinates for OD boundary extraction (see Fig-
ure 2.2). This manual selection is a downside to the algorithm because the
user is prompted to assign a manual initial guess for the OD’s diameter.
In the next stage, ∆E00 color differences (Johnson & Fairchild, 2003) are
calculated between neighbor pixels in all radial directions to find the pix-
els with the highest color difference going from the center to the temporal
side (Figure 2.2). These pixels are assumed to belong to the OD boundary.
The authors also assumed an initial circular shape of the OD and refined
it by a pixel-based criterion. The algorithm searches for local distortions of
the OD boundary, and the OD contour is extracted by interpolation and a
back-conversion to Cartesian coordinates.
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Fig. 2.3: (a) Optic cup inside a square, (b) Optic cup in polar coordinates, and (c)
Segmented cup (black line) and optic disc (blue line) in the original image. Figure
from Valencia et al. (2006).

(a) (b)

Fig. 2.4: Examples for OD segmentation using the algorithm by Valencia et al.
(2006). Ground truth in white and contour produced by algorithm in black. (a)
nearly circular shaped OD, (b) an elliptical shaped OD

As mentioned previously this approach also deals with OC extraction by
means of color seed selection, thresholding, and boundary extraction in the
polar coordinate system (see Figure 2.3). From this double segmentation
of the OD and the OC, the authors were able to calculate the Cup-to-Disc
ratio and determine whether the ISNT rule was fulfilled. In short, they were
able to compute quantitatively a glaucomatous risk index.

Figure 2.4(a) shows a satisfactory segmentation for a circular-shaped
OD. The resulting segmentation is compared against manually labeled ground
truth produced by an expert. It comes as no surprise that the contours
match quite well. However, a clear downside of this approach manifests it-
self when segmenting ODs with not so regular shapes. When the OD tends
to a more elliptical shape, which could be a sign of potential risk of glau-
coma at early stages, we show that the output may significantly differ from
the ground truth. The segmentation of an elliptical-shaped OD is shown
in Figure 2.4(b). The arrows indicate regions which cannot be correctly
segmented due to the assumption that the OD is approximately circular.
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2.2 Compression Effects in Segmentation

REFERENCE TO THE PUBLICATIONS OF THIS THESIS

The content of this section is included in the publications:

A. G. Marrugo and M. S. Millán, “Efectos de compresión en imágenes de la retina
para la evaluación del riesgo glaucomatoso”, in IX Reunión Nacional de Óptica,
pp. 140, Orense (Spain) (2009).

A. G. Marrugo and M. S. Millán, “Optic Disc Segmentation in Retinal Images”,
Opt. Pura Apl., 43(2), 79–86 (2010).

Nowadays there are many medical instruments that acquire images and,
with the purpose of saving memory space, most of them are saved by default
under lossy compression standards, such as classic JPEG. Lossy compres-
sion involves deliberately discarding information that is not visually or di-
agnostically important (Clunie, 2000). Until recently, the governing premise
for lossy compression was that the average human observer would not no-
tice the difference between the original image and the lossy compressed
one. However, for quantitative analysis, measurement of lesion size, com-
puter assisted detection, images often need to be interpreted by non-human
observers (computers). Lossy compression may affect such automated or
semi-automated methods. So far, standards for a reliable diagnosis using
lossy compressed images have been established in radiology and pathology,
whereas in ophthalmology this is still an open issue (Conrath et al., 2007,
Winder et al., 2009). Therefore, we analyzed the segmentation of the OD in
retinal images degraded by lossy compression to determine possible problems
and establish a safe ground or a quantifiably lossy threshold.

The lossy compression analysis was carried out using the algorithm de-
scribed previously (Valencia et al., 2006, Valencia & Millán, 2008). We used
two of the most common lossy compression standards, classic JPEG and
JPEG-2000, to determine the effect in OD and OC segmentation. JPEG
compression is a block-DCT (discrete cosine transform) based technique. It
is typically performed on 8 × 8 blocks in the image and the coefficients in
each block are quantized separately. This leads to artificial horizontal and
vertical borders between these blocks (Ebrahimi et al., 2004). On the other
hand, JPEG-2000 is a wavelet based technique, in which the compression is
achieved by quantizing the wavelet coefficients to reduce the number of bits
to represent them. In terms of visual artifacts, this produces ringing artifacts
manifested as blur and rings near edges in the image due to the attenuation
of high frequencies. Figure 2.5 shows a portion of one of the images used
in our tests encoded with JPEG and JPEG2000 at a compression ratio of
1:47. Blockiness and blur are visible in the JPEG- and JPEG2000-encoded
images, respectively.

A set of 20 color retinal images were compressed with both standards
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(a) Original (b) JPEG (c) JPEG 2000

Fig. 2.5: (a) The original image, (b) the JPEG- and (c) JPEG-2000-encoded
images at a compression ratio of 1:47. The respective artifacts of blockiness and
blur are visible in the compressed images.

under ratios of 1:2, 1:8, 1:11, 1:22, 1:31 and 1:47. The low compression ratios
are used as a reference and the higher ratios correspond to the ones used
by Conrath et al. (2007) in a subjective study for the assessment of diabetic
retinopathy. Figure 2.6(a) shows the segmentation of both OD and OC
from the original image without compression in TIFF format. An example
of the effects of compression in segmentation of OD and OC is shown in
Figure 2.6(b)-(g). From these figures we can see that OC segmentation varies
considerably under the effects of classic JPEG compression. On the contrary,
the OC segmentation under JPEG-2000 is more stable. A commonly used
parameter to illustrate the corruption in degraded images is the peak signal
to noise ratio (PSNR) defined as

PSNR = 10 log10

(
max2

I

MSE

)
, (2.1)

where maxI is the maximum possible pixel value of the image, MSE is the
mean squared error given by

MSE =
1

mn

∑

q

∑

p

[I(q, p)−K(q, p)]2 , (2.2)

where I is a noise-free m × n image and K is its degraded version. Higher
PSNR indicates that the image is of better quality (less degraded). Al-
though, there exists other parameters that correlate better with perceptual
assessment such as the Structural Similarity Index (SSIM) (Wang et al.,
2004), the PSNR gives enough information to set a reference so that our
results may be compared against others. The PSNR was calculated for all
compression ratios under JPEG and JPEG-2000 standards. In Figure 2.7(a)
we show the average PSNR for the ROI. The standard JPEG-2000 slightly
outperforms JPEG.
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Fig. 2.6: (a) OD and OC segmentation in image without compression. Segmen-
tation with JPEG compression ratios of (b) 1:2, (c) 1:8, (d) 1:11 and JPEG-2000
(e) 1:2, (f) 1:8, and (g) 1:11.

To appropriately assess the effect in the segmentation we derived a mea-
sure based on the l2-norm of the CDR and ISNT parameters. We recall
that I, S, N, and T parameters correspond to the widths of the neuro-retinal
rim in the inferior, superior, nasal and temporal directions, respectively. In
Figure 2.1(b), for instance, these quantities correspond to the black segment
lengths measured in pixels. For each image, we take a 1-dimensional vector

expressed as Sj =
{
Sji

}
, j = A,B, i = 1, . . . , 4, Sj1 = CDR, Sj2 = I, Sj3 = S,

Sj4 = N; where A and B correspond to the original and the compressed im-
ages, respectively. In other words, the elements of each vector correspond
to the CDR and I, S, N parameters, where the last three components are
normalized to T. Therefore, the normalized distance measure is calculated as

d =
‖SA − SB‖
‖SA‖ =

√∑n
i=1|SAi − SBi |2√∑n

i=1|SAi |2
. (2.3)

The average distance measure for all 20 images of the set is shown in
Figure 2.7(b). As expected, for very low compression ratios there is a negli-
gible difference, whereas for mid and high ratios the difference does become
significant, particularly for JPEG compression. As mentioned previously
it is a known fact that JPEG and JPEG-2000 lossy compression standards
introduce several degradations or artifacts that increase as the compression
ratio increases. The results suggest that the pixel-wise segmentation of the
OD and OC is negatively affected by the blocking artifacts from classic
JPEG, and more robust to the blurring effect of JPEG-2000. In addition, it
is apparent that any algorithm that performs segmentation based on color
seed selection is prone to produce an inadequate segmentation under high
ratio lossy compression. Moreover, JPEG-2000 compression is clearly more
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mediante el operador LoG-vision [7]. Posteriormente se selecciona la región de interés (ROI) alre-
dedor del disco óptico y se realiza una transformación a coordenadas polares para la extracción del
contorno del disco óptico. Se calculan diferencias de color ∆E00 en todas las direcciones radiales
entre píxeles vecinos. Seguidamente se buscan los píxeles con la mayor diferencia de color dentro
de una banda de donde se presume se encuentra el contorno del disco óptico. El contorno se extrae
a partir de la conversión a coordenadas cartesianas. Para la segmentación de la copa se busca una
semilla representativa de la región con coordenadas (máx(L),mı́n(C),máx(h)) dentro del espacio
de representación CIELAB. Se realiza una umbralización y se extrae el contorno por un proceso
similar al anterior por conversión a coordenadas polares. Por último se calculan la CDR y las
relaciones ISNT normalizadas a la sección temporal.

Imágenes de prueba y formatos de compresión. En este trabajo partimos de imágenes digitales del
fondo de ojo capturadas con cámara no midriática. Se ha utilizado un retinógrafo Topcon TRC-
NW6S y una cámara 3CCD Sony DXC-990P. Las imágenes correspondientes a un campo visual
de 30◦ son digitalizadas a un tamaño de 768x576 píxeles en RGB en profundidad de 24 bits. La
región de interés (ROI) ocupa un área aproximada de 100x100 píxeles. Se tomó un conjunto de 6
imágenes y se comprimieron con razones de compresión de 1:2, 1:8, 1:11, 1:22, 1:31 y 1:47, bajo los
formatos JPEG clásico y JPEG2000. En total, un conjunto de 72 imágenes. Se utilizaron niveles
bajos de compresión (1:2 y 1:8) como referencia y los niveles altos corresponden a los utilizados en
un estudio de valoración subjetiva de la retinopatía diabética [3]. Se calculó el PSNR para tener
un referente en cuanto a la degradación de la calidad de las imágenes. Se analizaron todas las
imágenes y se extrajeron los parámetros CDR e ISNT.

Medida de semejanza. La medida de semejanza se derivó a partir de la l2-norma de los parámetros
CDR e ISNT. Esto es, para cada imagen analizada se obtuvo un conjunto de parámetros que se
ordenan en un vector 1-dimensional y que se expresa como Sj = {Sj

i }, j = A, B, i = 1, ..., 4;
Sj

1 = CDR, Sj
2 = I, Sj

3 = S, Sj
4 = N; donde A y B corresponden a la imagen original y la imagen

comprimida, respectivamente. En otras palabras, los parámetros de cada vector corresponden al
CDR y los parámetros I, S y N, que se encuentran normalizados a T. La medida de distancia entre
estos dos vectores en el espacio de parámetros puede ser calculada como

d = |SA − SB |2 =

����
n�

i=1

|SA
i − SB

i |2 (1)
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Figura 1: Comparación del nivel de distorsión bajo los estándares de compresión JPEG y JPEG2000.
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Fig. 2.7: (a) PSNR in dB for the different compression ratios under JPEG and
JPEG-2000 standards. (b) Normalized distance measure for CDR and ISNT.

reliable than classic JPEG for OD and OC feature extraction. This is most
likely due to the the use of the Discrete Wavelet Transform and a more
sophisticated entropy encoding scheme which translates into less visible ar-
tifacts and nearly no blocking.

2.3 Optic Disc Segmentation by Means of Active
Contours

REFERENCE TO THE PUBLICATIONS OF THIS THESIS

The content of this section is included in the publications:
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A. G. Marrugo and M. S. Millán, “Retinal image analysis: preprocessing and
feature extraction” Journal of Physics: Conference Series, 274(1), 012039, (2011).
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2.3 Optic Disc Segmentation by Means of Active Contours

In this section we develop a strategy for OD boundary extraction in
ocular fundus images. The pre-processing stage consists in performing color
mathematical morphology to remove the blood vessel regions. Subsequently,
an active contours approach is used to determine the OD boundary. An
active contour is an energy-minimizing spline guided by external constraint
forces influenced by image forces that pull it toward features such as lines
and edges (Chan & Vese, 2001). Our approach is formulated in the CIELAB
(La*b*) (Johnson & Fairchild, 2003) color space (from now on Lab space)
to take full advantage of the color features available for the pre-processing
and feature extraction stages.

2.3.1 Color Mathematical Morphology

Active contours generally work by locking onto homogeneous regions of a
given image. This task is made extremely difficult in the case of OD seg-
mentation because the OD region is fragmented into multiple subregions
by blood vessels. Furthermore, the blood vessels enter the OD from differ-
ent directions with a general tendency to concentrate around the nasal side
of the OD region. Mathematical morphology can extract important shape
characteristics and also remove irrelevant information. It typically probes
an image with a small shape or template known as a structuring element.
Using gray-level morphology, the operation can be applied to the intensity
or lightness channel. Osareh et al. (2002) showed that in retinal images color
morphology outperforms gray- level morphology, which results in more ho-
mogeneous regions and better preservation of the OD edges. They used a
definition of color morphology within the Lab color space based on a color
difference metric. We performed a closing operation, i.e. dilation to first
remove the blood vessels and then an erosion to approximately restore the
boundaries to their former position.

Color mathematical morphology differs with gray-scale mathematical
morphology in that for each point or pixel there exists three color values, in
our case (L, a∗, b∗), instead of a single intensity value. The operations are
defined in the same way, but a lexicographical order must be defined to be
able to perform max and min operations. For the sake of simplicity, let us
define the operations in gray-scale. The image is considered a function f
that maps a point p in Z2 with spatial coordinates (i, j) to a real number,
that is f : Z2 → R. The morphological operations, erosion (	) and dilation
(⊕), at the point p by a flat structuring element B ⊆ Z2 are defined as

(f 	B)(p) = min {f(q) | q ∈ (B)p} , (2.4)

(f ⊕B)(p) = max {f(q) | q ∈ (Bs)p} , (2.5)

where (B)p is the translation of B by p defined as

(B)p = {q ∈ Z2 | q = b+ p for some b ∈ B} , (2.6)
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Segmentation of the Optic Disc in Retinal Images

and Bs is the reflection of B

Bs = {q | for some b ∈ B, q = −b} . (2.7)

In Fig. 2.8 we show an example to demonstrate how we can use Eqs. (2.4)
and (2.5) to perform erosion and dilation on a gray-scale image by a flat
structuring element. In that example we are interested in computing (f	B)
in point p = (1, 2). The structuring element B is defined as

B = {(0, 0), (0, 1), (−1, 0), (−1, 1)} ,

thus, according to Eq. (2.4)

(f 	B)(p) = (f 	B)(1, 2) ,

= min{f(0 + 1, 0 + 2), f(0 + 1, 1 + 2), f(−1 + 1, 0 + 2),

f(−1 + 1, 1 + 2)} ,
= min{f(1, 2), f(1, 3), f(0, 2), f(0, 3)} ,
= min{3, 2, 7, 5} ,
= 2 . (2.8)

Osareh et al. (2002) introduced a lexicographical order to color mor-
phology in the Lab space such that basic morphological operations could be
performed. This is a problem-oriented formulation based on the knowledge
that the OD region contains contrasting pixels: bright, almost saturated re-
gions crossed by dark blood vessel regions. These color differences will reside
in well-separated regions of the Lab color space. Given that color differences
in the Lab space correspond to the metric distance between them, the basic
morphological operations of dilation and erosion are defined using the color
difference of all pixels within the structuring element to a certain reference
point. The color difference within the Lab color space are obtained using the
Euclidean norm, and the reference point is established at the origin (0, 0, 0).
The dilation is the furthest point from the origin, and the erosion is the point
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D. Gray-scale Morphology with Gray-scale Structuring Elements

The definitions of erosion and dilation of a function f : F→ Z by a gray-scale
structuring element g: G→ Z are

( f $ g)(x) = min
y∈G

{ f (x + y)− g(y)} and (22)

( f ⊕ g)(x) = max
y∈G

x−y∈F

{ f (x − y) + g(y)}, (23)

Fig. 2.8: Example of a gray-scale mathematical morphology operation, in this case
erosion (f 	B)(1, 2) .
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2.3 Optic Disc Segmentation by Means of Active Contours

(a) (b)

!
(c)

Fig. 2.9: Color morphology closing. (a) Original ROI (150× 150 pixels) with OD
inside. (b) Lab closing with a 25× 25 disc-type structuring element. (c) Intensity
profile cuts from (a) solid and (b) dashed.

closest to the origin. The closing operation involves a dilation followed by
erosion. An example of closing using this formulation with a disc-type struc-
turing element is shown in Figure 2.9(b). It is evident that this approach
produces a more homogeneous region while approximately preserving the
OD edges Figure 2.9(c). An important aspect of this preprocessing is that
any lossy compression artifact that may be present in the image is removed
because of the closing operation.

2.3.2 Active Contours

The OD boundary is determined by fitting a geometric active contour model,
namely the Chan-Vese (Chan & Vese, 2001) model. In general the active
contour consists of a set of points placed near the contour of interest, which
are gradually brought closer to the exact shape of the desired region in the
image. This is carried out through iterative minimization of an energy func-
tion. The Chan-Vese model (Chan & Vese, 2001) establishes the following
energy function for an image u0:
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F (c1, c2, C) =

∫

out(C)

|u0(x, y)− c1|2 dxdy +

∫

in(C)

|u0(x, y)− c2|2 dxdy + g(C) ,

(2.9)

where C ⊂ Ω is a piecewise parameterized curve (contour), g is any function
evaluated at C, and c1 and c2 represent the average intensity value of u0

inside and outside the curve, respectively. Minimizing the fitting error in
Eq. (2.9) the model looks for the best partition of u0 taking only two values,
namely c1 and c2, and with one edge C, the boundary between these two
regions, given by {u0 ≈ c1} and {u0 ≈ c2}. Now, let us define a signed
distance function φ that is zero exactly at C, that increases in absolute
value with respect to the distance from C and that is positive inside and
negative outside, as shown in Figure 2.10. By doing so, we have defined
implicitly the curve as C = {(x, y) |φ(x, y) = 0}. Therefore, the energy
function is expressed as:

F (c1, c2, φ) =

∫

φ>0

|u0(x, y)− c1|2 dxdy

∫

φ<0

|u0(x, y)− c2|2 dxdy + g(φ)

F (c1, c2, φ) =

∫

Ω

|u0(x, y)− c1|2H(φ) dxdy

+

∫

Ω

|u0(x, y)− c2|2(1−H(φ)) dxdy + g(φ) , (2.10)

where H(.) is the Heaviside function. Keeping c1 and c2 fixed, and minimiz-
ing F with respect to φ we obtain the associated Euler-Lagrange equation
for φ. Parameterizing the descent direction by an artificial time t ≥ 0 (or
number of iterations), the equation in φ(t, x, y) (with φ(0, x, y) = φ0(x, y)
defining the initial contour) is:

∂φ

∂t
= δ(φ)

[
div

( ∇φ
|∇φ|

)
− (u0 − c1)2 + (u0 − c2)2

]
(2.11)

where δ(.) is the Dirac function. This partial differential equation is solved
numerically using a finite difference scheme. In relation to the problem at
hand, we take the initial contour to be a circle big enough to fully contain
the OD. From this circle a signed distance map is built for φ0, fulfilling the
condition to be positive inside the contour, zero exactly at the boundary,
and negative outside. The iterative process consists in calculating the force
from the image information, from the curvature penalty, and later evolving
the curve (i.e. calculating φn+1).
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2.3 Optic Disc Segmentation by Means of Active Contours

Fig. 2.10: Curve C propagating in the normal direction.

2.3.3 Optic Disc Segmentation Results

The ROI is selected manually as a window of 150 × 150 pixels, with the
whole OD inside Figure 2.9(a). We applied the Lab closing to all images
using a symmetrical 25× 25 pixels disc-structuring element since the blood
vessels were determined not to be wider than 20 pixels. The Lab closing
allowed us to remove the blood vessels cleanly and provided the required
uniform OD region to initialize the active contour (Figure 2.9(b)). The ac-
tive contours approach requires an intensity or gray-scale image to perform
the optimization procedure. Therefore, instead of solely using the lightness
channel L and, more importantly, to be consistent with the color mathemat-
ical morphology approach, we decided to use the weighting function based
on the Euclidean distance within the Lab space, as described in § 2.3.1. This
feature is fundamental to obtain a uniform OD region because our approach
is based on the segmentation of pixels with similar color properties.

Following the color morphological pre-processing step, we initialized the
contour as a circle with the center at the brightest area and with a diameter
equivalent to 80% of the ROI diameter. From these initial conditions the
active contour iteratively shrank towards the final boundary. The number
of iterations for the final contour convergence was determined empirically
and set to 450 for all cases. In Figure 2.11(a)-(c) we show the hand-labeled
ground- truth OD, the initial contour, and the final contour respectively.

In Figure 2.11(d) we show the hand-labeled boundary together with
the final contour to illustrate the close match achieved. We quantify the
accuracy of the boundary localization against the manually labeled ground
truth produced by an expert. We use a simple and effective overlap measure
of the match between two regions as:
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Fig. 2.11: Optic disc segmentation results.

M =
n(R ∩ T )

n(R ∪ T )
× 100 , (2.12)

where R and T correspond to the ground-truth and the final OD contour
region respectively, and n(.) is the number of pixels in a region. In the
optimal case, when both contours perfectly match M = 100. The measure
M represents the accuracy. When compared with the hand-labeled ground-
truth information from the expert, our method was able to localize the OD
pixels in all test images with an average accuracy of 85.67 % (σ = 7.82).
Additional tests are shown in Figure 2.12 for some ODs whose shapes differ
significantly from a circle. Notice the excellent agreement in Figure 2.12(b)
and the improvement achieved in Figure 2.12(c) in comparison with the
previous segmentation of Figure 2.4(b).

2.4 Discussion

In this chapter we have discussed two different approaches for OD segmen-
tation. The analysis of the algorithm by Valencia et al. (2006) revealed
the need for a more general and robust approach, which would enable the
segmentation of OD boundaries that differ considerably from a circular or
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2.4 Discussion

(a) (b)

(c)

Fig. 2.12: Other optic disc segmentation results. Ground truth in white and
algorithm output in black. M values are: (a) 92.61, (b) 90.32, and (c) 88.15.

more regular shape. As regards to compression effects in segmentation of
the optic nerve head, we determined that degradation introduced by lossy
compression plays an important role and cannot be neglected when process-
ing compressed images. Nonetheless, our results showed that JPEG-2000
compression might provide a safer ground for retinal image segmentation
than classical JPEG.

In addition we developed different strategy for OD segmentation based
on active contours. The pre-processing stage consisted in performing color
mathematical morphology. This provided a vessel-free OD region with uni-
form color distribution and preservation of the edges. The active contours
algorithm for OD segmentation yielded a fair approximation to the actual
hand-labeled OD. Our method was able to achieve an average accuracy rate
in pixel classification of 85.67 % (σ = 7.82).
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Chapter 3

Acquisition of Retinal
Images: Addressing the
Limitations

In this chapter we take another look at the procedure for acquiring retinal
images and the difficulties that arise from it. Either for medical interpre-
tation or for automated analysis, good quality retinal images are required
in order to extract meaningful information. As a result, an initial estimate
of image quality is advisable before performing any further processing or
analysis on the images. Furthermore, if there are several images of the same
patient available it would be desirable to process or analyze the “best” im-
age. Obviously this requires a quality estimation and sorting of images,
which we address in this chapter from a no-reference image quality point of
view.

Most retinal image quality issues are related to problems during the
acquisition. More often than not they manifest as improper (non-uniform)
illumination or lack of sharp focus (blur). In this chapter we also address
the problem of illumination compensation to enhance image visibility. The
experiments and results described in this chapter are, for the most part,
preliminary work of this thesis. Despite that, they are interesting on their
own and have paved the way for further experiments discussed in subsequent
chapters.

3.1 Retinal imaging

3.1.1 The retinal image and the fundus camera

Retinal imaging is central to the clinical care and management of patients
with retinal diseases. It is widely used for population-based, large scale de-
tection of diabetic retinopathy, glaucoma, age-related macular degeneration,
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Fig. 3.1: Field of view in fundus cameras.

and other eye-related diseases (Abramoff et al., 2010).

By retinal imaging or fundus imaging we refer to the process whereby
a 2D representation of the reflected light obtained from the 3D retinal tis-
sues is projected onto the imaging plane (Abramoff et al., 2010). By this
definition fundus imaging may refer to a number of different modalities,
like fundus photography, scanning laser ophthalmoscopy, fluorescein angiog-
raphy, among others. The one we are interested in is conventional fundus
photography in which the image intensities represent the amount of reflected
light in the visible spectral waveband, or the R, G, and B wavebands char-
acteristic of color fundus photography. Therefore, fundus photography or
retinal imaging are used interchangeably hereafter. In retinal imaging the
retina is photographed directly as the pupil is used as both an entrance and
exit for the fundus camera’s illuminating and imaging light rays (Saine &
Tyler, 2002).

Regarding the imaging device, the fundus camera is actually a specialized
low power microscope with an attached camera. Its optical design is based
on the indirect ophthalmoscope∗. Fundus cameras are described by the field
of view, more precisely the optical angle of acceptance of the lens (Fig. 3.1).
An angle of 30◦, considered the normal angle of view, creates an image 2.5
times larger than the real-life object. Wide angle fundus cameras capture
images over 45◦ and provide proportionately less retinal magnification. A
narrow angle fundus camera has an angle of view of 20◦ or less (Saine &
Tyler, 2002).

∗For further details on the fundus camera see Chapter 1
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3.1 Retinal imaging

(a) Uneven illumination (b) Underexposed

(c) Blurred (d) Poor contrast

Fig. 3.2: Example of poor quality retinal images.

3.1.2 Errors in fundus photography

Successful fundus photographs are obtained through the mutual interaction
and proper alignment of the patient, the camera, and the photographer.
The photographer must correctly align and set the camera controls (Saine
& Tyler, 2002). The ideal fundus photograph is an accurate visual represen-
tation of the retina. Of course, as with any complex process, many things
may go wrong, and the end result is an image of poor quality. The most
common causes are: (i) Patient movement, like in light-sensitive patients or
patients with insufficient fixation capability, which do not cooperate easily.
(ii) Insufficient pupil dilation, typically found in patients with glaucoma and
diabetes. (iii) The optical quality of the eye, for example elderly patients
often have cataracts. These difficulties manifest as image artifacts resulting
in blurry images, or images with non-uniform illumination and poor contrast
as shown in Fig. 3.2.

Whenever possible these limitations should be tackled during the acqui-
sition procedure in order to avoid or, at least, reduce further post-processing
of the images. This typically involves having best practice principles. For in-
stance, making sure that the pupils are properly dilated, performing proper
eye-camera alignment, carrying out accurate focusing∗ maneuvering around

∗In Chapter 4 we propose a fully automatic focus measure for robust focusing.
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local areas of unsharpness such as central cataracts or corneal scars (Saine
& Tyler, 2002).

Despite the effort in obtaining the best possible images during acquisi-
tion, the resulting images may not always have sufficient quality for human
interpretation or computer analysis. In these cases, image processing tech-
niques can help in overcoming the acquisition difficulties by enhancing the
images. For example, deconvolving blurry images,∗ compensating for the un-
even illumination distribution and enhancing contrast,† among other image
enhancement techniques that leverage the images’ clinical use. In addition,
automated image quality assessment may be required in order to determine
images of sufficient quality.

3.2 Separating the Wheat from the Chaff

REFERENCE TO THE PUBLICATIONS OF THIS THESIS

The content of this section is included in the publications:

A. G. Marrugo, M. S. Millán, G. Cristóbal, S. Gabarda, and H. C. Abril, “No-
reference quality metrics for eye fundus imaging”, Proceedings of the 14th Int. Conf.
on Computer analysis of images and patterns, Lecture Notes in Computer Science,
Springer-Verlag, 6854, 486–493 (2011).

A. G. Marrugo, M. S. Millán, G. Cristóbal, S. Gabarda, M. Šorel, and F. Šroubek,
“Image analysis in modern ophthalmology: from acquisition to computer assisted
diagnosis and telemedicine,” Proc. SPIE, 8436(1), 84360C, (2012).

3.2.1 On retinal image quality

Retinal image quality is a limiting factor for any type of image analysis tech-
nique for the detection of retinopathy (Patton et al., 2006). The imaging
procedure is usually carried out in two separate steps: image acquisition
and diagnostic interpretation. Image quality is subjectively evaluated by
the person capturing the images and they may sometimes mistakenly ac-
cept a low quality image (Bartling et al., 2009). A recent study by Abramoff
et al. (2008) using an automated system for detection of diabetic retinopa-
thy found that from 10 000 exams 23% had insufficient image quality. Most
image restoration algorithms cannot restore an image beyond a certain level
of quality degradation. For that reason, accurate quality assessment al-
gorithms, that allow the fundus photographer to avoid poor images, may
eliminate the need for correction algorithms (Giancardo et al., 2010). In ad-
dition, a quality metric would allow the submission of only the best images
if many are available.

∗This is discussed in Chapters 5 and 6.
†This is discussed in § 3.3.
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The measurement of a precise image quality index is not a straightfor-
ward task, because quality is a subjective concept which varies even between
experts (Giancardo et al., 2008). Furthermore, because each person has a
retina with its own characteristics (vasculature, pigmentation, lesions, etc.)
that vary across the population, there is no reference or standard to compare
the acquired images to. This lack of reference is why attempting to assess
retinal image quality by computer analysis is so difficult. Nonetheless, by
constraining the problem, existing image quality assessment methods may
be used to gain insight into the complexity of retinal image quality assess-
ment.

3.2.2 No-reference image quality metrics

No-reference assessment of image content is, perhaps, one of the most dif-
ficult—yet conceptually simple—problems in the field of image analysis
(Wang & Bovik, 2006). It is only until recently that several authors have
proposed no-reference metrics in an attempt to shed some light on this un-
certain problem.

Image quality assessment through anisotropy

We have considered four metrics to apply them in fundus imaging. The
first metric Q1 was proposed by Gabarda & Cristóbal (2007) and is based
on measuring the variance of the expected entropy of a given image upon
a set of predefined directions. Before further explaining what the measure
does, let us recall several things. First, that entropy histograms provide
a measure of the information content of images. Second, because entropy
can be applied as a global measure or as a local one, differences in entropy
orientations can provide differences in the information content. That is,
information can be stored in an anisotropic way. By anisotropy we mean
the property of being directionally dependent.

The diversity of textures and edges in images gives rise to the anisotropy.
This can be quantified by measuring entropy through the spatial-frequency
content of the image in a directional scheme. Thus, differently oriented
measures should provide different values of entropy according to the image
anisotropy. To get an intuitive idea of a measure of anisotropy consider, for
example, an image of a forest that has many vertical components due to the
stems of the trees. Here the horizontal component of entropy is unbalanced
with the vertical component. The idea that follows is that when an image
is degraded (typically blur and/or noise) the anisotropic properties change
in such a way that the low-quality images may be differentiated from the
high-quality ones.

Directional entropy can be achieved by means of the Rényi entropy
(Rényi, 1976), which applied to a discrete space-frequency distribution P [n, k]
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has the form

Rα =
1

1− α log2

(∑

n

∑

k

Pα[n, k]

)
, (3.1)

where n and k represent the spatial and frequency variables, respectively. In
addition, values of α ≥ 2 are recommended for space-frequency distribution
measures (Flandrin et al., 1994). Rényi measures must be normalized in
order to preserve the unity energy condition

∑
n

∑
k P [n, k] = 1 (Sang &

Williams, 1995). Gabarda & Cristóbal (2007) defined several normalization
criteria, but determined that the best one was a type of normalization in-
spired from quantum mechanics in which the space-frequency distribution
P [n, k] has a probability density function P̆ [n, k] = P [n, k]P ∗[n, k] followed
by a normalization to unity. From this and Eq. (3.1) with α = 3 we obtain

R̆3 = −1

2
log2

(∑

n

∑

k

P̆ 3[n, k]

)
. (3.2)

Gabarda & Cristóbal (2007) used the one-dimensional pseudo-Wigner
distribution to obtain the probability density function P̆ [n, k] associated
with a discrete sequence z[n] of length N . Therefore, the Rényi entropy
associated to a position (pixel) n is computed as

R[n] = −1

2
log2

(
N∑

k=1

P̆ 3
n [k]

)
. (3.3)

From Eq. (3.3) a local measure of anisotropy can be obtained by scanning
the image with a 1D-window centered at n at different θi orientations for
θi ∈ [θ1, θ2, . . . , θK ]. This provides a value of entropy R[n, θi] for each pixel.
To define a figure of merit for the image, the expected value of Eq. (3.3) is
calculated as

R̄[θi] =
∑

n

R[n, θi]/M , (3.4)

where M is the image size. And finally the standard deviation from the
expected entropy for K orientations –the metric itself– is computed as

Q1 =

(
K∑

i=1

(
µ− R̄[θi]

)2
/K

)1/2

, (3.5)

where µ is the mean of R̄[θi] for all K orientations. Q1 is a good indicator
of anisotropy and the authors were able to show that this measure provides
a good estimate for the assessment of fidelity and quality in natural images,
because their degradations may be seen as a decrease in their directional
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viation and the range of the entropy have been empiri-
cally confirmed as a good indicator of anisotropy for natu-
ral images. In-focus, noise-free natural images have
shown a maximum anisotropy if compared to other de-
graded versions.

4. EXPERIMENTAL RESULTS

The method has been tested for classifying the image
quality results of different algorithms. Figure 5 illus-
trates the results of the quality sorting provided by the

Fig. 2. Test scheme consisting in 21 degraded images. Blur decreases from !10 to 0 and noise increases from 0 to 10. The central image
is the original source image.

Fig. 1. Thirty-six images used for empirically determining the directional entropy in natural images. Framed image processing is de-
scribed in Fig. 2 and in the text.
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Fig. 3.3: Test image set for illustrating the anisotropy measure. Blur decreases
from −10 to 0 and noise increases from 0 to 10. The central image is the original
source image (from Gabarda & Cristóbal (2007)).

properties. This directional dependency is also true for fundus images, es-
pecially due to blurring or uneven illumination. To illustrate the anisotropy
measure in Fig. 3.3 we show a set of degraded images. One subset (from −10
to 1) has been progressively blurred by iteratively applying a point-spread
function (PSF) to the source image (labeled as “0”). The other (from 1
to 10) has been generated by iteratively adding a constant amount of noise.
The noisiest image is labelled as “10”. In Fig. 3.4 we show the corresponding
Q1 values for the images of Fig. 3.3. The shape of the plot resembles that
of an ideal quality assessment function (Qu et al., 2006) in which a distinct
and unique maximum is attained for the best quality.

method for two well-known images (Lena and MIT) after
the application of different denoising algorithms [35]. Im-
ages labeled as #1 and #7 correspond to the reference or
ground truth images. In both cases the classification re-

sults match well with the human visual preference and
also with the PSNR. From left to right, images seem to
degrade with increasing blur or noise. The standard de-
viation of the expected values of the Rényi directional en-
tropy has been considered to achieve the classification,
and the resulting values have been normalized between 0
and 1 in order to facilitate the visual assessment. Table 1
shows the quantitative results provided by the described
method in comparison with the PSNR and the SSIM met-
ric [3].

Similar results have been observed with other natural
images (not shown here). Nevertheless, images to be clas-
sified by this method must fulfill some requirements in or-
der to guarantee the reliability of the measurement. Im-
ages to be classified must be registered, and degradation
must be uniform. To illustrate this assumption, another
example in the area of superresolution (SR) imaging [36]
is shown in Fig. 6. The images shown in Fig. 6(a) present
a spatial-variant blur as two 3-D objects compete to be in
focus at the same time. Hence, as the images are 2-D rep-
resentations of 3-D objects, different areas in the same
image may suffer from different amounts of degradation.
Bearing in mind that in this method the quality is mea-
sured as an average value, classification cannot be com-

Fig. 4. A. Standard deviation of the expected values of the Rényi directional entropy for the images shown in Fig. 2. B. Range of the
expected values of the Rényi directional entropy for the images in Fig. 2. The variability refers to six different equally spaced orientations
of the entropy in the image. The maximum variability corresponds to the original image, as an in-focus, noise-free version of the test set
defined in Fig. 2.

Fig. 5. Upper row (from left to right): original Lena image (#1) and progressively degraded blurred and noisy versions. Bottom row (from
left to right): original MIT image (#7) and progressively degraded blurred and noisy versions. Images are courtesy of Sylvain Fischer [35].

Fig. 3. Expected value of the pixelwise Rényi entropy of the 21
images of the test set presented in Fig. 2.

S. Gabarda and G. Cristóbal Vol. 24, No. 12 /December 2007 /J. Opt. Soc. Am. A B47

Fig. 3.4: Anisotropy measure (Q1) from the image set in Fig. 3.3.

As described in (Gabarda & Cristóbal, 2007) Q1 assumes uniform degra-
dation across the whole image in order to work reliably. In retinal imaging
uniform degradation is not always the case. Moreover, on some retinal im-
ages local degradations or artifacts may even be tolerated because they do
not hinder clinical relevancy (Saine & Tyler, 2002). To this end, we make
use of a domain knowledge strategy for retinal imaging to adjust the metric
so as to meet these local requirements. Our formulation is to multiply every
R[n, θi] by a weighting function w[n] ∈ [0, 1] such that some specific areas
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are emphasized more,

R̄[θi] =
∑

n

R[n, θi]w[n]/M . (3.6)

This yields a modified metric Q′1. The weighting function w[n] can be
defined under any arbitrary criterion depending on the desired outcome or
the features of interest. In this work we have considered the following. Be-
cause two of the most relevant features of a fundus image are the optic disc
(OD) and the blood vessels, which for instance are important for assessing
a disease like glaucoma, we have designed a weighting function that empha-
sizes these structures. It is known that in order to assess image sharpness,
specialists fixate on the surroundings of the OD to visualize the small blood
vessels (Moscaritolo et al., 2009). The weighting function used is an elliptic
paraboloid centered at the OD with values ranging from “one” (1) exactly
at the position of the OD to approximately “zero” (0) very near the periph-
ery. This function has also been used to model the illumination distribution
in fundus images. The approximate position of the OD is determined via
template matching (Lowell et al., 2004). The spatial distribution of the
weighting function is shown in Fig. 3.5(b).

To illustrate the possible use of Q′1 let us consider the pair of retinal
images shown in Fig. 3.6. Both images are from the same retina, but differ
in that the image in Fig. 3.6(a) is of good quality and the one in Fig. 3.6(b)
has a blue haze artifact that partially obscures the periphery of the retinal
image, although the remaining image is of adequate quality. These types of
artifacts are common in retinal imaging and this one in particular is caused
by improper objective lens-to-cornea distance (Saine & Tyler, 2002). The
values Q1 and Q′1 for both images are shown in Table 3.1. By introducing
the weighting function, the relative value of I2 (because it is normalized to
I1) changes from 0.81 to 0.92. The important aspect to emphasize here is
that, while not the ideal image, for most purposes I2 can indeed be used
because the retinal features like the OD and the blood vessels are sharp and
properly defined. This is also highlighted in the experiments of § 3.2.4 in
Table 3.2 for a set of retinal images with varying degree of quality.

I1 I2 I2/I1

Q1 0.0312 0.0253 0.81
Q′1 0.0304 0.0281 0.92

Table 3.1: No-reference image quality values Q1 and Q′1 for the images in Fig. 3.6.
The third column represents the metric for I2 normalized to I1
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Fig. 3.5: (a) Normal fundus image. (b) Weighting function w[n] described by an
elliptic paraboloid centered at the OD.

(a) I1 (b) I2

Fig. 3.6: A pair of retinal images from the same eye for illustrating the effect of a
spatial weighting function on the metric.

Local gradients and sharpness metric

The second metric Q2 was recently proposed by Zhu & Milanfar (2010)
and it seeks to provide a quantitative measure of what they call “true image
content”. Without going into much detail, in the following we briefly explain
the basics of Q2. Let G be the gradient matrix over an N × N window of
an image

G =




...
...

px(j) px(j)
...

...


 , (3.7)
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where j is every point inside the window and [px(j), px(j)]T denotes the
gradient of the image at point (xj , yj). The local dominant orientation can
be calculated by computing the singular value decomposition (SVD) of G

G = USVT = U

[
s1 0
0 s2

]
[v1 v2]T , (3.8)

where U and V are both orthonormal matrices. The column vector v1

represents the dominant orientation of the local gradient field. Correspond-
ingly, the second singular vector v2 (which is orthogonal to v1) describes the
doninant “edge orientation” of the patch. The singular values s1 ≥ s2 ≥ 0
represent the energy in the directions v1 and v2, respectively. In Fig. 3.7
an example of the local orientation estimation is shown.
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the idea of probing the denoising operator with additive noise
and manipulating the response signal to estimate MSE. This ap-
proach is also only appropriate when the noise is assumed to be
Gaussian, and generally requires an accurate estimation of the
noise variance as well.

In image restoration, as is the case for any estimation
problem generally, it can be observed that selecting parameters
amounts to a tradeoff between bias and variance in the final
estimate. A canonical example is the regularization parameter
in MAP-based restoration algorithms [5], [8]. Generally, the
larger the parameter is, the more smooth the image content
becomes (small variance), while more useful detail and edges
are flattened or blurred (larger bias). In other words, an ideal
no-reference measure that is useful for the parameter op-
timization problem should take both noise and blur on the
reconstructed image into account [11]. However, most sharp-
ness metrics [3], [4], [12], [13] can hardly distinguish image
quality decay against high frequency behavior due to noise.
Take the approach in [12] for example, whose value drops
when the image is increasingly more blurred. The value of this
measure also rises if the variance of noise is increased [see
Fig. 8(e)]. For the metrics based upon edge detection and edge
width estimation [4], the performance stability can easily suffer
in the presence of noise. Such problems are precisely what our
proposed metric is intended to address.

On a related note, we mention that some no-reference image
quality metrics have been developed to detect noise and blur si-
multaneously. One example is the metric based upon the image
anisotropy [14] proposed by Gabarda and Cristóbal [15]. They
calculate the Rényi entropy [16] pixel by pixel along different
directions, and use the variance of the entropy to index visual
quality. However, such metrics require uniform degradation
across the whole image, and do not work well if the random
noise or blur varies spatially, which is the case, for instance, in
images denoised by spatially adaptive filters.

The rest of this paper is organized as follows. We develop the
definition of the metric2 in several well-motivated steps. In
Section II, we first introduce a preliminary metric , which is
based upon the local gradients of the image, as an intermediate
step in arriving at . This metric can quantify the amount of blur
and random noise, but requires prior knowledge or estimation of
noise variance. Next, Section III gives the definition of the pro-
posed metric and its statistical properties. Metric serves as
an extension of the metric , but does not depend upon prior
knowledge about the noise variance. Simulated and real data
experiments focused on optimizing parameters for various de-
noising algorithms using the metric are shown in Section IV.
Finally, we summarize, conclude, and discuss directions of fu-
ture research in Section V. We note that additional results and
code are available at our project website.3

II. LOCAL GRADIENTS AND THE SHARPNESS METRIC

The aim of this section is to introduce some basic concepts
including the image gradient matrix, the gradient covariance

2The proposed quantity is not a metric in the mathematical sense, but for
convenience, we use this term interchangeably with measure when referring to

.
3http://www.soe.ucsc.edu/~xzhu/doc/metricq.html.

Fig. 1. Example of local dominant orientation estimation. (b) Plots the gradient
of each pixel within the chosen patch in (a). and represent the energy in
the dominant orientation and its perpendicular direction, respectively.

matrix, and their singular values and eigenvalues. Based upon
these concepts and their performance in the presence of blur, a
measure of sharpness which we term is then proposed, which
requires prior knowledge, or careful estimation, of noise vari-
ance across the whole image. As such, this measure is the basis
of the main subject of this paper, which is the content measure

that we subsequently define, analyze, and apply to the param-
eter selection problem.

It is well known that image structure can be measured effec-
tively by using the differences in pixels (or image gradients). In
particular, consider an image of interest . The gradient
matrix over an window is defined as

...
...

...
...

(1)

where denotes the gradient4 of the image at
point . The corresponding gradient covariance matrix
is

(2)

Important information about the content of the image patch
can be derived from the gradient matrix or the gradient

covariance matrix . In particular, we can calculate the local
dominant orientation by computing the (compact) singular value
decomposition (SVD) of [17] [18]

(3)

where and are both orthonormal matrices. The column
vector represents the dominant orientation of the local
gradient field. Correspondingly, the second singular vector
(which is orthogonal to ) will describe the dominant “edge
orientation” of this patch. The singular values
represent the energy in the directions and , respectively
(see Fig. 1).

4The gradient can be estimated through the filters in (16) or (17) for instance.

Fig. 3.7: Example of local dominant orientation estimation (from Zhu & Milanfar
(2010)). (b) Plots the gradient of each pixel within the chosen patch in (a). s1 and
s2 represent the energy in the dominant orientation and its perpendicular direction,
respectively.

From this result Zhu & Milanfar (2010) model different types of image
patches like flat, linear, quadratic, and edge patches. They determine what
happens to G and the singular values s1 and s2 when the patches are de-
graded by blur and/or noise. The metric that they derived is the following

Q2 = s1
s1 − s2

s1 + s2
. (3.9)

It is correlated with the noise level, sharpness, and intensity contrast man-
ifested in visually salient geometric features such as edges. Its value gener-
ally drops if the variance of noise rises, and/or if the image content becomes
blurry. To avoid regions without edges this algorithm divides the image into
small patches and only processes anisotropic ones (non-homogeneous), thus
local information is embedded into the final result.

The just noticeable blur

The third metric Q3 was proposed by Ferzli & Karam (2009). It is a sharp-
ness metric designed to be able to predict the relative amount of blurriness
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in images regardless of their content. Q3 is conceived based on the notion
that the human visual system is able to mask blurriness around an edge
up to a certain threshold, called the“just noticeable blur” (JNB). It is an
edge-based sharpness metric based on a human visual system model that
makes use of probability summation over space. JNB can be defined as the
minimum amount of perceived blurriness given a contrast higher than the
“Just Noticeable Difference”.

As in the previous metric, the perceptual sharpness metric is not applied
to the whole image, instead the image is divided into blocks. A flowchart
illustrating the algorithm is shown in Fig. 3.8. Each block Rb is processed
with a Sobel edge detector and is categorized as a smooth block or an edge
block according to a predefined threshold T . For each edge block the edge
ei is located and the corresponding edge width wJNB(ei) is computed. The
perceived blur distortion is calculated as

DRb =


∑

ei∈Rb

|w(ei)/wJNB(ei)|β



1
β

, (3.10)

where wJNB(ei) is the JNB edge width which depends on the local contrast,
w(ei) is the measured width of the edge ei inside the image block Rb and β
is a fitting constant with a median value of 3.6 as defined by Ferzli & Karam
(2009). The overall distortion is

D =


∑

Rb

|DRb |β



1
β

, (3.11)

and the no-reference objective metric is given by

Q3 =

(
L

D

)
, (3.12)

where L is the total number of processed blocks in the image and D is given
by Eq. (3.11). In Fig. 3.9 we show the performance of Q3 against Gaussian
blur as reported by Ferzli & Karam (2009). The metric is monotonic with
respect to blur and decreases almost linearly.

The image variance

Finally, for the sake of completeness we include the image variance as metric
Q4 defined as

Q4 =
∑

n

(I[n]− ḡ)2 , (3.13)
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Fig. 3.8: Flowchart illustrating the computation of the perceptual-based sharpness
metric based on the “Just noticeable blur” (from Ferzli & Karam (2009))

where I[n] indicates the gray level of pixel n, and ḡ the gray mean of the
image. This measure has been proven to be monotonic and has a straight-
forward relation with image quality for autoregulative illumination intensity
algorithms (Qu et al., 2006).

3.2.3 Constraining the problem

It is often the case that for a given patient several fundus images are ac-
quired. A multilevel quality estimation algorithm at the first few levels has
to determine if the images correspond to fundus images, if they are prop-
erly illuminated, etc.; in other words, if they meet some minimum quality
and content requirements. This is in some way what operators do, they
acquire the image and then decides to accept it or not by rapidly visualizing
a downscaled version of the image. Once several images of acceptable qual-
ity pass this first filter (human or machine), the system would need a final
no-reference metric to decide which image to store or to send for further
diagnostic interpretation. This metric should in principle yield the sharpest
image, with less noise and with the most uniform illumination as possible.

In this work we seek to elucidate the possible use of the no-reference
metrics for fundus image quality assessment. Our purpose is to attempt to
sort a given set of retinal images acquired from the same eye from the best
image down to the worse.
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TABLE V
PROPOSED METRIC PERFORMANCE WHEN APPLIED TO SET 1

Fig. 7. Performance of the proposed perceptual-based sharpness metric and
the perceptual blur metric of [7] when applied to the image testing Set 2.
(a) Performance of the proposed metric when applied to Set 2. (b) performance
of the perceptual blur metric [7] when applied to Set 2.

C. Perceptual Sharpness Metric

The proposed perceptual sharpness metric will be based on
the probability summation model presented in Section IV-B and
will not be directly applied to the whole image, rather, the image
will be divided into blocks. The block will be the region of in-
terest . The block size is chosen to correspond with the foveal
region. Let be the visual resolution of the display in pixels/de-
gree, the viewing distance in cm, and the display resolution
in pixels/cm. Then, the visual resolution can be calculated as
[24]

(6)

Fig. 8. Sample Gaussian blurred images with different content. (a) 640
512 “dancers” image ; Perceptual blur metric

; proposed metric value ; MOS value from
subjective testing . (b) 480 512 “woman” image ;
Perceptual blur metric , proposed metric value ;
MOS value from subjective testing .

In the Human Visual System, the highest visual acuity is limited
to the size of the foveal region, which covers approximately

of visual angle. Let denote the area in the
spatial domain that is centered at location and covers
2 of visual angle. The number of pixels contained in that region

can be computed as [24]

(7)

where is the display visual resolution (in pixels/degree) cal-
culated in (6). Given a viewing distance of 60 cm and 31.5
pixels-per-cm (80 pixels-per-inch) display results in a display
visual resolution of 32.9 pixels/degree and . In this

Authorized licensed use limited to: Arizona State University. Downloaded on July 4, 2009 at 07:32 from IEEE Xplore.  Restrictions apply.

Fig. 3.9: Performance of Q3 versus Gaussian blur when applied to a set of test
images of 512×512 pixels and a 7×7 Gaussian filter (from Ferzli & Karam (2009)).

3.2.4 Experiments and results

Experimental details

All images were acquired using a digital fundus camera system (TRC-NW6S,
Topcon, Tokyo Japan) with a Fuji FinePix S2 Pro camera, with an image
resolution of 1152 × 768. The images were digitized in color RGB of 24
bit-depth in TIFF format without compression. In all figures the images are
shown in color, however all metrics were computed using only the luminance
channel (Y) of the YUV color space as usual in image quality assessment.
From Fig. 3.5(a) it is evident that the region of interest of the image is that
of an approximately circular shaped area that corresponds to the captured
object field. The remaining black at pixels at the corners are not of interest,
thus all metrics have been modified to solely include pixels within the circular
region of interest in the calculation. The neighboring pixels of the sharp
black circular contour are also left aside from all calculations.

Experiments

We have analyzed a set of 20 fundus images divided in 5 subsets of 4 images
corresponding to the same eye and acquired within the same session. All
images within each subset have a varying degree of quality similar to the
first subset shown in Fig. 3.10. The relative values from all the metrics
applied to this set are shown in Table 3.2. Notice the value Q′1 for image
2. This image is in focus, however it suffers from uneven illumination. Q′1
puts more emphasis on the retinal structures, which are well defined in spite
of the illumination, hence the increase with respect to Q1. Illumination
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Fig. 3.10: Fundus images with varying degree of quality corresponding to the
same eye.

problems∗ are less difficult to compensate as opposed to blurring† (Marrugo
et al., 2011a). This is in line with the specialist’s evaluation of the images.

To validate the results two optometrists were recruited as readers A and
B. They were familiarized with fundus images and were asked to examine
and assess the whole set of images (4 per subject). They evaluated each
subset and organized the images from the “best” to the “worse” in terms
their subjective perception of sharpness and visibility of retinal structures.
The relative scores of the metrics are converted to sorting or permutation
indexes so as to compare with the quality sorting carried out by the readers
(Table 3.3). Note that in this case only Q1 and Q′1 agree entirely with the
readers. To quantify the agreement we devised a similarity score based on
the Spearman’s footrule (Fagin et al., 2003). It is basically the l1-norm of
the difference between the reference permutation πr (from the reader) and
the metric Q permutation πq. Given a set U of m elements (images), a
permutation π of this set is defined as a set of indexes mapping to U to
produce a particular order of the elements, π : {1, · · · ,m} → {1, · · · ,m}.
The similarity score S of two permutations πr and πq is defined as:

S = 1−
∑m

i=1|πr(i)− πq(i)|
pmax

, (3.14)

∗Illumination compensation is dealt in §3.3.
†Deblurring of retinal images is dealt in Chapters 5 and 6
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Image Q1 Q′1 Q2 Q3 Q4

1 1.00 1.00 1.00 0.91 1.00
2 0.67 0.90 0.40 1.00 0.81
3 0.10 0.12 0.54 0.81 0.85
4 0.38 0.38 0.79 0.70 0.96

Table 3.2: Relative values for all the metrics applied to the set of images in
Fig. 3.10.

A B Q1 Q′1 Q2 Q3 Q4

1 1 1 1 1 2 1
2 2 2 2 4 1 4
4 4 4 4 3 3 3
3 3 3 3 2 4 2

Table 3.3: Reader A and B vs. metric sorting of images from Fig. 3.10 in accor-
dance to quality. Top to bottom: best to worse.

where pmax is the maximum value of the numerator. It occurs when the
permutations are reversed and it can be shown that pmax is equal to m2/2
when m is even and (m2 − 1)/2 when m is odd. Perfect agreement means
S = 1, and the opposite S = 0. The inter-reader agreement for the whole
set of 20 images yielded an S score of 0.90. The S scores for the first 4 image
subset and the whole set of images are shown in Table 3.4. The difference
in the overall scores for both readers is practically negligible. It is also clear
that Q1 outperforms the other metrics in this experiment with agreement
scores of 0.8 and 0.9. The most probable reason is the computation of the
metric from normalized space-frequency representation of the image.

3.2.5 Discussion

We have considered four state-of-the-art no-reference image quality metrics
and their applicability for eye fundus imaging, particularly the problem of
retinal image sorting. To this end, we showed that from the considered
metrics, Q1 and its modified version Q′1 are the most reliable in terms of
agreement with expert assessment, evidenced by average similarity scores of
0.8 and 0.9 with readers A and B, respectively. Q1 performs a measure of
anisotropy throughout the whole image. That is, quantifying the fact that
structures change in a directional way is good indicator of image sharpness.
What this means is that the visibility of retinal structures (caused either
by poor illumination or blur) is one of the most important features to take
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Q1 Q′1 Q2 Q3 Q4

SA 1st subset 1.00 1.00 0.50 0.50 0.50
SB 1st subset 1.00 1.00 0.50 0.50 0.50

SA all images 0.80 0.80 0.55 0.55 0.40
SB all images 0.90 0.90 0.60 0.65 0.45

Table 3.4: Evaluation of the no-reference metrics w.r.t. reader grading with the
use of the similarity score S in (3.14). The subindex in S indicates reader A or
B. The inter-reader agreement for the whole set of 20 images yielded an S score of
0.90.

into account when evaluating retinal image quality. The results lend strong
support to the development of a no-reference metric for fundus imaging
based on a type of anisotropy measure. This is exactly what we have done
in Chapter 4 by further developing these findings into a focus measure for
retinal imaging.

3.3 Dealing with Uneven Illumination
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Retinal images are acquired with a digital fundus camera which cap-
tures the illumination reflected from the retinal surface. Despite controlled
conditions, many retinal images suffer from non-uniform illumination given
by several factors: the curved surface of the retina, pupil dilation (highly
variable among patients), or presence of diseases, among others. The curved
retinal surface and the geometrical configuration of the light source and cam-
era, lead to a poorly illuminated peripheral part of the retina with respect
to the central part (Figure 3.11(a)).
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Figure 1. (a) Normal fundus image, (b) non-uniform sampling grid, and (c) fundus

image with uneven illumination and contrast.

2. Retinal image enhancement based on domain knowledge

Retinal images are acquired with a digital fundus camera, which captures the

illumination reflected form the retinal surface. Despite the controlled conditions, many

retinal images suffer from non-uniform illumination given by several factors: the curved

surface of the retina, pupil dilation (highly variable among patients), or presence of

diseases, among others. The curved retinal surface and the geometrical configuration

of the light source and camera, lead to the fact that the peripheral part of the retina

appears darker than the central region. In many works, such as [3], the local contrast

enhancement method is used for equalizing uneven illumination in the intensity. Most

approaches [1] are designed for gray-scale images. Attempts to extend them to color

images tend to produce hue-shifting related artifacts [4], given by the introduction of new

colors to the image. In this section we implement a color retinal image enhancement

based on the knowledge of the retina geometry and imaging conditions. The main

idea behind this enhancement is described in [5, 6], we determine the strengths of this

approach and discuss its further improvement.

The general idea is that the image can be enhanced by estimating the background

luminosity and contrast distribution in order to compensate for uneven illumination.

Thus, the enhanced image U(x, y) is expressed in [5, 6] as:

U(x, y) =
I(x, y) − L(x, y)

C(x, y)
, (1)

where I is the original image, C and L are the contrast and luminosity drifts,

respectively. C and L can also be understood in terms of gain and offset. They have to

be estimated by sampling the original image. The sampling approach of [6] divides the

whole image into small squares, whereas in [5] they use a more intuitive sampling scheme

based on the knowledge of the illumination distribution that leads to less computational

burden. Therefore, we decided to use a similar type of non-uniform sampling grid shown

in figure 1(b). The sampling is coarse in the central region and dense in the periphery.

(b) (c)

Fig. 3.11: (a) Retinal image with uneven illumination and contrast, (b) non-
uniform sampling grid, and (c) first principal component of (a) from PCA analysis.

Several techniques have been used to enhance retinal images. Histogram
equalization has been shown to be inappropriate for retinal images (Feng
et al., 2007). A local normalization of each pixel to zero mean and unit
variance aims to compensate lighting variation and enhancing local contrast
but also introduces artifacts (Feng et al., 2007). Histogram matching be-
tween the red and green planes have been used as a preprocessing step for
vessel segmentation (Salem & Nandi, 2007). This improves the contrast of
gross dark features like vessels but reduces the contrast of bright objects and
tiny dark objects like micro-aneurysms. While most of the aforementioned
methods are motivated by automatic analysis, as a preprocessing stage, they
are all formulated for a single color plane or for gray-scale images.

Color retinal image enhancement is required for human visual inspec-
tion or for the application of vector processing techniques. The work of
Foracchia et al. (2005) aimed to introduce a strategy for luminosity and
contrast enhancement on each color plane of the RGB color space, inde-
pendently. This approach tended to produce hue-shifting related artifacts,
given by the introduction of new colors to the image. More recently, Joshi
& Sivaswamy (2008), proposed a strategy that would reduce the color ar-
tifacts by performing the enhancement on single color plane to compensate
equally every channel and ultimately perform linear color remapping. How-
ever, their method has a serious shortcoming in that the pixels belonging to
the OD are not always properly identified. This has a negative impact on
the proper estimation of the background illumination distribution. To deal
with this we propose to improve the estimation of the luminosity distribu-
tion by using principal component analysis (PCA) (Li & Chutatape, 2003)
so as to leave out the OD.
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3.3.1 Image enhancement on a single color plane

The main idea is that the image can be enhanced by estimating the back-
ground luminosity and contrast distribution in order to compensate for un-
even illumination. The fact that a retinal image can be expressed in terms
of a background image or background set B (the retinal fundus free of any
vascular structure) and a foreground image or foreground set 1 − B (which
contains the vascular structures, optic disc, etc.) was proposed by Foracchia
et al. (2005). They also derived the statistical description of a background
pixel as a white random field N (µ, σ) with mean value µ representing the
ideally uniform luminosity, and standard deviation σ, representing the natu-
ral variability of the fundus pigmentation. They further developed this into
the following

I(x, y) ∼ N (L(x, y), C(x, y)), (x, y) ∈ B , (3.15)

where I is the original image, C and L are the contrast and luminosity drifts,
respectively. L and C can also be understood in terms of gain and offset. It
follows from (Foracchia et al., 2005) that estimates L̂ and Ĉ can be computed
by measuring the mean and standard deviation of the background image.
With the proper estimation of the background luminosity we can subtract
it from the original image to make the illumination uniform. Thus, the
enhanced image U(x, y) is expressed as:

U(x, y) =
I(x, y)− L(x, y)

C(x, y)
, (3.16)

The sampling approach of Foracchia et al. (2005) divides the whole image
into a square sampling grid, whereas in Joshi & Sivaswamy (2008) they use a
more intuitive sampling scheme based on the knowledge of the illumination
distribution that leads to less computational burden. Therefore, we decided
to use a similar type of non-uniform sampling grid shown in figure 3.11(b).
The sampling tries to compensate for the decreasing illumination outwards,
therefore it is coarse in the central region and dense in the periphery.

This enhancement is oriented toward compensating the green channel of
the RGB retinal image because it is the component with highest contrast.
The algorithm for the enhancement is shown in Algorithm 1. In the first
stage (Stage 0), the image is separated into a set of background and fore-
ground pixels. The second stage (Stage 1) consists in computing estimates
Ĉ and L̂ of the C and L components from the background image.

This strategy is motivated by the fact that the retinal structures can
bias the luminosity component. For instance, the OD is a naturally high
luminosity zone, while the blood vessels typically exhibit low luminosity.
The sampling scheme is as follows: for each sampling point p on the grid
we take a window of size w0 ×w0 large enough to include retinal structures
and the background. We compute the local mean µ0[p] and the standard
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3.3 Dealing with Uneven Illumination

Algorithm 1: Algorithm for enhancing the illumination of retinal im-
ages.

input : Original image I(x, y)
output: Enhanced image U(x, y)

// Stage 0: identify background pixels

foreach sampling point p in grid do
measure σ0[p], µ0[p] in windows of w0 × w0 from I(x, y) ;

end
interpolate σ0[p], µ0[p] for all (x, y) to obtain σ0(x, y), µ0(x, y) ;
classify background (B) pixels with Eq. (3.17) ;
improve background (B) classification with PCA and thresholding ;

// Stage 1: estimate L and C from background

foreach sampling point p in grid do
measure σ1[p], µ1[p] in windows of w1 ×w1 from I(x, y), x, y ∈ B ;

end
interpolate σ1[p], µ1[p] for all (x, y) to obtain σ1(x, y), µ1(x, y) ;

compute U(x, y) from Eq. (3.16) and L̂(x, y) = µ1(x, y),
Ĉ(x, y) = σ1(x, y) ;

deviation σ0[p] for each p point. We perform bi-cubic interpolation to obtain
µ0(x, y) and σ0(x, y) for all (x, y) points of the retinal image. To identify
background pixels the criteria defined by Foracchia et al. (2005) states that
a pixel is considered to belong to the background if its Mahalanobis distance
from µ0(x, y), defined as

D(x, y) =

∣∣∣∣
I(x, y)− µ0(x, y)

σ0(x, y)

∣∣∣∣ , (3.17)

is lower that a certain threshold t, which for this work is taken as 1. This
threshold is somewhat critical, because, as pointed out before, any retinal
structure that does not belong to the background, especially the OD, can
bias the background components. Therefore, to ensure that the OD region is
not taken into account in this estimation we developed a strategy using PCA.
We have not used the template matching algorithm mentioned in § 3.2.2 by
Lowell et al. (2004), because it only provides an approximate location of
the OD, whereas for this we need a rough estimate of the OD area. Along
the same line a precise segmentation as described in § 2.3 is not needed as
well. Li & Chutatape (2003) used a PCA based model to approximately
localize the OD region in an intensity retinal image. More recently, Fadzil
et al. (2008) developed a model for retinal pigment identification using in-
dependent component analysis (ICA) on the RGB retinal image, although
no experiments were carried out including the OD. The main drawback of
ICA is that it does not prioritize the output components, whereas in PCA
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(a) (b)

Fig. 3.12: Background pixel classification from Eq. 3.17 using (a) the strategy
in Foracchia et al. (2005) and (b) with additional PCA analysis. Notice that the
OD region has been left out in order not to bias the estimation of the luminosity
component.

this is not an issue. As a result we used PCA on the three RGB channels
to identify the OD region. The first principal component from the image
in Fig. 3.11(a) is shown in Fig. 3.11(c). It can clearly be seen that the OD
region has different properties than the surrounding retinal regions. Using
the first principal component and a simple thresholding approach, like that
of Otsu (1979), the OD region can be entirely left out from the background
image as shown in Figure 3.12(b).

In the following stage (Stage 1) we estimate the L̂ and Ĉ components
from the background image to perform the enhancement. It involves repeat-
ing the sampling scheme but this time including just background pixels (B)
and with a smaller window of size w1 × w1 to increase the precision in the
estimation of µ1[p] and σ1[p]. Bi-cubic interpolation is carried out to obtain
µ1(x, y) and σ1(x, y) for all (x, y). From Foracchia et al. (2005) L̂ and Ĉ can
be approximated as µ1(x, y) and σ1(x, y). The enhanced image is obtained
by applying Eq.(3.16). In our experiments we set w0 = 125 and w1 = 51.
The estimated Ĉ and L̂ components are shown in Figure 3.13. Notice how
the OD region has little influence on the components in Figures 3.13(c)
and (d) that were computed from the background pixels after the PCA and
thresholding operation. To illustrate the impact on the single channel en-
hancement by applying Eq. (3.16), both images are shown in Figure 3.14.
Note that in Fig. 3.14(b) the illumination in the surrounding area of the OD
has not been significantly modified when compared to Fig. 3.14(a).

3.3.2 Color remapping

After the single channel enhancement we perform the following color remap-
ping: given a color image with color components (r, g, b), the single plane
enhancement is applied to the g plane and genh is obtained. Next, the en-
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Fig. 3.13: Estimated L̂ and Ĉ components using background pixels (B) (a)-(b)
from Figure 3.12(a) and (c)-(d) from Figure 3.12(b). For the purpose of comparison
(a) and (c), as well as (b) and (d) are in the same scale. As expected, notice how
the OD region has little influence on the components in (c)-(d).

(a) (b)

Fig. 3.14: Image enhancement on single channel from (a) the strategy by Joshi &
Sivaswamy (2008) and (b) with additional PCA analysis. In (b) the illumination
in the surrounding area of the OD has not been modified significantly compared to
that in (a).

hanced color image (r̂, ĝ, b̂) is computed on pixel basis as:

r̂ =
genh
v
· r, ĝ =

genh
v
· g, b̂ =

genh
v
· b, (3.18)

where v is a scalar defined as v = max[rmax, gmax, bmax] to play a normal-
ization role in the enhancement. Thus, the ratio of the original r, g, and b
components is maintained. Figure 3.15(b) shows the enhanced color retinal
image. Notice that it has good luminosity and different retinal structures
are contrasted well against the background.

3.3.3 Discussion

We have developed a strategy for retinal image enhancement. We showed
that the problem of non-uniform illumination and poor contrast in retinal
images may be addressed via an image enhancement technique based on the
knowledge of luminosity distribution in the retina. If not taken into con-
sideration, the retinal structures like the OD have a negative impact on the
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(a) (b)

Fig. 3.15: (a) Original color retinal image with uneven illumination and (b) re-
sulting enhanced color retinal image.

estimation of the background luminosity. With the use of additional PCA
analysis we have been able to leave out the OD region so as to estimate
proper luminosity components for the illumination compensation. The re-
sulting enhanced image shows remarkable gain in contrast related to retinal
structures against the background. The background exhibits a much more
uniform illumination distribution, in spite of a minor decrease in intensity.
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Chapter 4

Robust Automated Focusing
in Retinal Imaging

In the previous chapter we discussed the problems associated with the ac-
quisition of retinal images, for example blurry retinal images because of lack
of focus. In this chapter we discuss the problem of focusing as the search for
the sharpest image within a sequence of images. To carry out such a task we
propose a robust focus measure based on a calculation of image anisotropy.
This was implemented in a non-mydriatic retinal imaging system with real
subjects.

REFERENCE TO THE PUBLICATIONS OF THIS THESIS

The content of this chapter is included in the publications:

A. G. Marrugo, M. S. Millán, G. Cristóbal, S. Gabarda, M. Šorel, and F. Šroubek,
“Image analysis in modern ophthalmology: from acquisition to computer assisted
diagnosis and telemedicine,” Proc. SPIE, 8436(1), 84360C, (2012).

A. G. Marrugo, M. S. Millán, G. Cristóbal, S. Gabarda, and H. C. Abril,
“Anisotropy-based robust focus measure for non-mydriatic retinal imaging,” J.
Biomed. Opt., 17(7), 076021, (2012).

A. G. Marrugo, M. S. Millán, and H. C. Abril, “Implementation of an Image Based
Focusing Algorithm for Retinal Imaging,” presented at the X Reunión Nacional de
Óptica, Zaragoza, 40–43, (2012)

4.1 Non-Mydriatic Retinal Imaging

Fundus cameras can be mydriatic or non-mydriatic. Mydriatic fundus cam-
eras require pharmacological dilation, while non-mydriatic cameras use a
near infrared (NIR) viewing system to exploit the patient’s natural dilation
in a dark room (Bennett & Barry, 2009). Infrared light is used to preview
the retina on a video monitor. Once the monitor’s image is focused and
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Fig. 4.1: A simplified diagram of the focusing mechanism. A sharp image is
obtained when a retinal layer is the object (A) and the sensor coincides with the
image plane (or plane of sharp focus ∆ ≈ 0). The focus control compensates
refractive errors by displacing the lens.

aligned, a flash of visible light from a Xenon arc lamp is fired and the image
is captured.

Non-mydriatic fundus cameras perform the focusing mechanism by dis-
placing a compensation lens. This compensation lens is basically an as-
pheric objective lens design that, when combined with the optics of the
eye, matches the image plane to the eye fundus. The focus control of the
fundus camera is used to compensate for refractive errors in the subject’s
eye. Figure 4.1 shows a simplified diagram of the focusing mechanism. Un-
til recently (Moscaritolo et al., 2009), these cameras were entirely operated
manually with the focusing mechanism assisted by a split line visual aid.
Manual focusing is error prone especially in the presence of inexperienced
photographers and may lead to images that require additional restoration
or enhancement (Marrugo et al., 2011a). The autofocus feature offered in
new retinal cameras is a significant advance that ultimately leads to a more
robust imaging system, especially for medical screening purposes. However,
it still relies on the split line mechanism. Alternatively, we have proposed a
passive focus measure (FM) completely based on image analysis, which we
describe in the following.

4.1.1 Focusing

In a single lens optical imaging system operating within the paraxial regime
the process of focusing consists in adjusting the relative position of the
object, the lens, the image sensor, or a certain combination of the three
to obtain a focused image (Fig. 4.1). Let f(x, y) be the focused image of
a planar object and gi(x, y) a sequence of images recorded for a sequence
of camera parameter settings. The eye fundus is actually a curved surface,
however in our case f(x, y) corresponds to a small region of the fundus so
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that it can be considered as an isoplanatic patch(Bedggood et al., 2008).
We consider the variation of only one camera parameter at a time –either
the lens position or the focal length. The acquired set of images can be
expressed by convolution

gi(x, y) = (f ∗ hi)(x, y), i = 1, . . . ,m , (4.1)

where hi(x, y) is the point spread function (PSF) of the blur in the ith
observation. In a practical imaging system the image magnification and
mean image brightness change while focusing even if nothing has changed
in the scene. Normalization with respect to these two parameters can be
carried out. However, illumination normalization is more easily performed.
Image magnification may be neglected because in most practical applications
the magnification is less than 3 percent (Subbarao et al., 1993). Ideally, the
best possible case occurs when hi(x, y) = δ(x, y), therefore gi(x, y) = f(x, y).
In practice all hi(x, y) have an unknown low-pass filter effect.

A FM may be understood as a functional defined on the image space
which reflects the amount of blurring introduced by hi(x, y). Let S be
the FM with which we look for the “best” (or sharpest) image by maxi-
mizing/minimizing S(gi) over i = 1, . . . ,m. A reasonable FM should be
monotonic with respect to blur and robust to noise. Groen et al. (1985)
used eight different criteria for the evaluation of focus functions. Ideally the
focus function should be unimodal, but in practice it can present various
local maxima which can affect the convergence of the autofocus procedure.
Moreover, the focus curve should be ideally sharp at the top and long tailed,
which can accelerate the convergence of the screening procedure.

4.2 The Focus Measure in Related Works

Various FMs have been reported in the literature (Subbarao et al., 1993,
Lee et al., 2008, Kautsky et al., 2002, Aslantas & Kurban, 2009, Moscari-
tolo et al., 2009). They mainly consist of a focus measuring operator that
estimates the sharpness of the image. The image that yields a maximum
FM is considered as the focused one. Almost all FMs depend directly on
the amount of high frequency information in the image. The high frequency
components correspond to edge information. On the other hand, their ac-
curacy can deviate depending on the content of the processed images. Since
well focused images have sharper edges, they are expected to have higher fre-
quency content than blurred ones (Aslantas & Kurban, 2009). The common
FMs are based on norm of gradient or second derivative of the image, gray
level variance and energy of Laplacian. Surprisingly, little is known about
the performance of these methods for fundus imaging and the literature on
this subject is scarce.

57



Robust Automated Focusing in Retinal Imaging

To the best of our knowledge, before our work was published (Marrugo
et al., 2012b), only two other works concerning auto-focusing in retinal imag-
ing had been published (Liatsis & Kantartzis, 2005, Moscaritolo et al., 2009).
In these other works, the authors used conventional mydriatic imaging in
the visible spectrum, which is not our case. In the work by Liatsis & Kan-
tartzis (2005), the authors do not propose a FM, instead they use several
preprocessing operations to improve the performance of traditional FMs for
segmentation purposes. On the other hand, in the work by Moscaritolo et al.
(2009), they propose a filtering technique to assess the sharpness of optic
nerve head images, however no comparison with other methods was carried
out. In this section we briefly summarize five notable approaches–including
(Moscaritolo et al., 2009)–for later comparison with our proposed method.

The first FM S1 was proposed in (Moscaritolo et al., 2009). It may be
defined mathematically as

S1 = Var (zmed |gi − zlp(gi)|) , (4.2)

where zlp is a low-pass filtering of gi(x, y), zmed is a nonlinear median filter
of the absolute value |.| of the difference for removing noise, and Var(.) is
the variance. Another important measure is the l2-norm of image gradient,
also called the energy of gradient, is defined as

S2 =
∑

x

∑

y

(
∂gi(x, y)

∂x

)2

+

(
∂gi(x, y)

∂y

)2

. (4.3)

The third measure is the energy of Laplacian. It can analyze high frequencies
associated with image edges and is calculated as

S3 =
∑

x

∑

y

(
∇2gi(x, y)

)2
. (4.4)

Nayar & Nakagawa (1994) proposed a noise-insensitive FM based on the
summed modified Laplacian operators. When two second partial derivatives
with respect to horizontal and vertical directions have different sign, one
offsets the other and the evaluated focus value is incorrect. The method is
a modification to obtain the absolute value of each second partial derivative
as

S4 =
∑

x

∑

y

(∣∣∣∣∂2 gi(x, y)

∂x2

∣∣∣∣+

∣∣∣∣∂2 gi(x, y)

∂y2

∣∣∣∣
)

. (4.5)

The Frequency-Selective Weighted Median (FSWM) Filter (Choi et al.,
1999) is a high-pass nonlinear filter based on the difference of medians.
It is well known as a nonlinear edge detector that removes impulsive noise
effectively. The FSWM uses several nonlinear subfilters having a weight
according to the frequency acting like a bandpass filter as

zF (x) =

P∑

j

βj ẑj(x) , (4.6)
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where zF (x) is the FSWM filter, P is the number of subfilters, βj ∈ R,
and ẑj(x) is the weighted median filter. The FM is produced by summing
FSWM results, Fx and Fy , applied to an image along the horizontal and
vertical directions as

S5 =
∑

x

∑

y

(
F 2
x + F 2

y

)
. (4.7)

Subbarao & Tyan (1998) analyzed the robustness of three FMs: the
image variance (not included here), S2, and S3. They recommended to use
S3 because of its tolerance to additive noise. However, the differences among
individual measures were not significant. There are many other FMs like
the wavelet based FM proposed in Ref. (Kautsky et al., 2002), or the mid-
frequency discrete cosine FM in Ref. (Lee et al., 2008) but were not included
in our study either because of their lack of robustness to noise or for their
complex implementation. For a review and evaluation of FMs in natural
images the reader is referred to (Aslantas & Kurban, 2009, Subbarao et al.,
1993).

4.3 The Focus Measure in Our Proposal

In this section we describe the proposed FM, the theoretical basis supporting
it, the optimization procedure and the hardware implementation with the
experimental setup.

4.3.1 Representing the blur

Discrete cosine transform

The discrete cosine transform (DCT) is an invertible, linear transformation
T : RN → RN . An image is transformed to its spectral representations by
projection onto a set of of orthogonal 2-D basis functions. The amplitude
of these projections are called the DCT coefficients. Let g(x, y), for x =
0, 1, 2, . . . ,M − 1 and y = 0, 1, 2, . . . , N − 1, denote an M ×N image and its
DCT denoted by T [g(x, y)] : G(u, v), given by the equation

G(u, v) =

M−1∑

x=0

N−1∑

y=0

g(x, y)α(u)α(v) cos

[
(2x+ 1)uπ

2M

]
cos

[
(2y + 1)vπ

2N

]
,

(4.8)
where

α(ξ; A) =





√
1
A ξ = 0,√
2
A otherwise ,

(4.9)

where A = {M,N} depending on variables u and v, respectively. Low-
order basis functions represent low spatial frequencies, while those of higher
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Fig. 4.2: Relationship between DCT coefficients and frequency components of an
image.

orders represent high spatial frequencies (Fig. 4.2). Therefore, low-order
coefficients depict slow spatial variations in image intensity, while those of
higher orders depict rapid variations.

The DCT is closely related to the discrete Fourier transform (DFT),
a standard tool in signal processing and has been reported as a suitable
transform for spectral-based focusing algorithms (Ng Kuang Chern et al.,
2001). However, the DCT has a greater energy compaction property than
the DFT, i.e. most of the image information tends to be concentrated in
a few low frequency DCT coefficients. This is also the reason why the
JPEG compression standard is based on the DCT. In addition, many efficient
schemes for the computation of DCT exist (Wallace, 1992) and hardware
implementations are commonly available (Ramirez et al., 2000).

Normalized DCT

The normalized DCT (Kristan et al., 2006) of an image is defined as

G̃(u, v) = T̃ [g](u, v) =
|T [g](u, v)|∑

(u,v)|T [g](u, v)| , (4.10)

This normalization is important because it leads to invariance to changes
in the contrast of the image. This can be shown with the following: let
g′(x, y) = cg(x, y), where c is a non-zero scaling factor. Given that the DCT
is linear, the normalized DCT of g′ is

T̃ [g′](u, v) =
c|T [g](u, v)|

c
∑

(u,v)|T [g](u, v)| = T̃ [g](u, v) , (4.11)

which implies that the normalized DCT is contrast invariant and any mea-
sure based on this transform as well.

For illustrating the nature of blurring and the behavior of the DCT we
take the red channel from a sharp RGB fundus image (because it resem-
bles more to the NIR image) and simulate the imaging system as a linear
shift-invariant system to acquire a sequence of images by varying the lens
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Fig. 4.3: (a) Original sharp fundus image (R channel from RGB fundus image).
(b) ROI from sharp image and (c) its DCT spectrum. (d) ROI from blurred image
and (e) its DCT spectrum. For visualization purposes both spectra are shown in
log scale. Coefficients with the highest values are shown in red and those with the
lowest values are shown in blue. The blurred image spectrum is dominated by low
order coefficients.

position. This was carried out by means of Fresnel propagation. In Fig. 4.3
we show the original sharp image, image patches of both the sharp and
blurred images, and their DCT spectra (in the same log scale). Notice how
the spectrum changes, there is less high and mid frequency content in the
blurred image spectrum. In addition, in the original spectrum there are
some favored orientations in the mid and low frequency coefficients, while
in the blurred spectrum they seem to become more uniformly distributed.
Another important feature is that in the blurred spectrum the coefficients
related to high frequency have decreased significantly, and, as described in
Section 4.2, many FMs are actually based on the notion of emphasizing high
frequencies. While this may be true in theory, in practice there will always
be noise contributing to the high frequency content due to different acqui-
sition conditions. Furthermore, given that the focusing mechanism involves
acquiring a sequence of images, there will be spatial and temporal variations
of noise.

4.3.2 A Measure of Anisotropy

As we have seen in the previous example, the overall nature of blurring can
be described as a low-pass filtering that tends to break down the charac-
teristic anisotropy of the original image. The FM proposed here aims to
quantify this anisotropic dependence based on the normalized DCT of the
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image.
To define our measure we shall introduce the notation. From Eq. (4.10)

G̃(u, v) is the normalized DCT of g(x, y) of size N×N , and λj , for j = 1, 2, 3,
is a vector along one of the three main orientations of the spectrum depicted
in Fig. 4.4. We will restrict our study to angular partitions of the spectrum
roughly equivalent to vertical, diagonal and horizontal components of the
image space. Our measure of anisotropy mainly consists in calculating a dif-
ference of weighted coefficients along these orientations. Let G̃j = {G̃(u, v) :
θ = arctan

(
v
u

)
, θj ≤ θ < θj+1, j = 1, 2, 3} be the set of DCT coefficients

located between θj and θj+1 angles, for θj ∈ {0◦, 30◦, 60◦, 90◦}. The function
ψλj (.) takes as input G̃j, performs orthogonal projection of all its elements
along vector λj and averages the elements that after projection fall on the
same discrete (u, v) coordinates. With ψλj (.) we seek to compact the in-
formation around the three main orientations in a one dimensional vector
of N elements. To illustrate, lets compute ψλ1(G̃1) =

[
ψ1
λ1
, ψ2

λ1
, . . . , ψNλ1

]T
,

where G̃1 is the set of coefficients located between θ1 = 0◦ and θ2 = 30◦. In
Fig. 4.4(b) we show the projection of the coefficient with coordinates (4, 2)
along λ1. After projection this coefficient has coordinates (4, 1). Therefore,
the element ψ4

λ1
= mean[G̃(4, 1), G̃(4, 2)]. Consequently, we can stack all

ψλj to form the following matrix,

Ψ =




ψ1
λ1

ψ1
λ2

ψ1
λ3

ψ2
λ1

ψ2
λ2

ψ2
λ3

...
...

...
ψNλ1 ψNλ2 ψNλ3


 .

Note that the first element of each vector corresponds to the dc coefficient.
This coefficient does not convey any directional information of the image,
however we decided to keep it in the matrix for the sake of completeness.
To obtain a measure of anisotropy –the FM itself– from Ψ we compute
the variance of the weighted sum of the columns, computed as the matrix
product wΨ,

Sa(g) = Var(wΨ) = E
[
(wΨ− µ)2

]
, (4.12)

where w = [w1, w2, . . . , wN ], E is the expected value and µ is the mean
of the matrix product wΨ. The vector w can be regarded as a weighting
procedure and with it we aim to achieve robustness to noise and illumination
variation.

DCT coefficient weighting

The first issue to address is the selection of a suitable w. In DCT-based
pattern recognition, robustness is achieved by means of coefficient trunca-
tion (Lian & Er, 2010). It is known that low frequencies are related to
illumination variation and smooth regions, and high frequencies represent
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(a)

(4,1)

(4,2)

(b)

Fig. 4.4: (a) Vectors along the main directions of the DCT and (b) projection of
a coefficient along λ1.

noise as well as rapid variations (like edges and details) of the image. The
middle frequency coefficients contain useful information of basic structure,
therefore these are suitable candidates for recognition (Chen et al., 2006).
Consequently, a trade-off between low frequency and high frequency trun-
cation should be achieved to obtain a robust FM that is monotonic with
respect to blur, unimodal, and at the same time robust to noise and illumi-
nation variations.

We decided to find a w that meets our requirements based on a training
set of m images. This can be formulated as an optimization problem. The
goal would be to find the vector w = [w1, w2, . . . , wN ] that simultaneously
optimizes K objective values {J1(w), J2(w), . . . , JK(w)}. Every objective
value Jk(w) is formulated so that the FM Sa decreases with respect to blur,
Sa(g

k
i ) > Sa(g

k
i+1) ∀i = 1, . . . ,m. There are K subsets of gi(x, y) all gener-

ated in the same way as described in Eq. 4.1, but they differ in that every
k stands for a different kind of noise degradation, except for k = 1 the noise
free case. In other words, we want to find a w that guarantees monotonic-
ity of Sa with respect to blur under different types of noise. The objec-
tive values are implicitly defined in terms of permutations of the ordered
set H = {Sa(g1), Sa(g2), . . . , Sa(gm)}. Thus, the reference permutation is
πr = {1, 2, . . . ,m}, and any other arbitrary permutation of H violates the
decreasing property of Sa with respect to blur. As a result, our goal is to
find a w that produces permutations πk for all K types of noise equal to
that of πr. The objective value is defined as the l1-norm of the difference
between πr and πk,

Jk(w) :

m∑

j

|πr(j)− πk(j)| . (4.13)

It is zero for two identical permutations, and approaches zero as πk ap-
proaches πr. This is the same for all Jk(w), hence our single aggregate
objective function (Suppapitnarm et al., 2000) is the weighted linear sum of
all Jk(w), where all weights are equal to 1.

The solution to this problem is not a straightforward task as the search
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Fig. 4.5: DCT coefficient weights obtained from the optimization procedure. The
distribution resembles a bandpass filter.

space is multivariate and a unique global optimum cannot be guaranteed to
exist. Therefore, we solved it using a probabilistic meta-heuristic approach
called simulated annealing (Granville et al., 1994). It provides an acceptably
good solution in a fixed amount of time. Each step of the algorithm replaces
the current solution by a random nearby solution, chosen with a probability
that depends both on the difference between the corresponding function
values and also on a global parameter T (called the temperature), that is
gradually decreased during the process. The dependency is such that the
current solution changes almost randomly when T is large, but increasingly
downhill as T goes to zero (For further details see Ref. (Suppapitnarm et al.,
2000)).

4.3.3 Implementation

A diagram that summarizes the algorithm is shown in Figure 4.6. In order
to reduce the computation time, the FM is applied to a small region of the
image that contains retinal structures. This window is transformed to the
DCT domain and a weighted directional sampling procedure is carried out,
as previously described in § 4.3.2. The output is what we call a measure of
anisotropy or a directional variance from the vectors. To achieve real time
computation we decided to implement our measure by dividing the focusing
window into sub-windows, to which the same procedure is applied. The
measure is computed in the following manner:

1. The focusing window is divided into non-overlapping sub-images of
size 16 × 16. This is chosen so that the most basic structures of the
image fit in the sub-windows.

2. Each sub-window image is transformed with the normalized DCT and
the FM Sa is computed.

3. An overall FM S̄a is computed by taking the mean of all Sa values
from the sub-windows.
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Fig. 4.6: Block diagram illustrating the focus measure algorithm.

According to this implementation, the parameter w consists of 16 ele-
ments. The considered noise degradations for the procedure described in
§ 4.3.2 are: Gaussian noise (σ2 = 0.001), Speckle noise (σ2 = 0.001) and Im-
pulsive noise (d = 0.01). The resulting w is shown in Fig. 4.5. As expected
the first two coefficients are practically zero. Observe the distribution of w
instead of the individual values per coefficient. This means that a strong
emphasis should be put to mid-frequency coefficients. It is perhaps not
surprising that the distribution resembles a bandpass filter. This finding
is consistent with the work of Subbarao et al. (1993) where they showed
that bandpass filtering causes the FMs to have sharp peaks while retaining
monotonicity and unimodality. Interestingly, these weights also resemble the
band pass response of the contrast sensitivity function of the human visual
system. In the DCT domain different approaches have been considered for
computing visually optimized coefficients for a given image (Watson, 1994).

A major feature of our approach is the fast computation of the FM. The
average execution time per frame, in MATLAB implementation in a PC with
a 2.66 GHz Intel Core 2 Duo processor, is 40 milliseconds. In most cases this
is sufficient, however if needed, implementation in a low level programming
language could significantly reduce the execution time. In addition, because
we divide the focusing window into sub-windows, our implementation could
be further improved by taking advantage of large parallel architectures such
as in GPU (Graphics Processor Unit) computing.

Experimental setup

The experimental set-up consisted mainly of an AF mechanism attached to
a digital fundus camera system (TRC-NW6S, Topcon, Tokyo Japan) showed
in Figure 4.7. The AF apparatus consisted of in-house assembled stepper
motor mechanism for the displacement of the compensation lens controlled
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Fig. 4.7: Experimental setup.

Fig. 4.8: The autofocus system in operation while examining a subject.

via RS232 with a PC. This mechanism was coupled to the fundus camera.
The image acquisition and processing, along with the motor control, were
carried out in MATLAB. The images were acquired from the video output
of the infra-red focusing system with a resolution of 640× 480. The fundus
camera focusing system enables a compensation range of −13D : 12D (D
stands for diopters) in normal operation. For strong myopia or hyperopia
two additional compensation lenses are available to compensate the ranges
−12D : −33D and +9D : +40D, respectively. The image sequences an-
alyzed in this chapter were acquired for the normal operation range. In
Figure 4.8 we show the assembled autofocus system in operation while ex-
amining a subject.
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4.4 Results

4.4.1 Simulated images and robustness assessment

To evaluate the robustness of our proposed FM Sa we have simulated the
focusing procedure. We generate a sequence gi(x, y) for i = 1, . . . ,m from
the red channel of a sharp RGB fundus image and propagate it at different
distances through a linear imaging system of fixed focal length by means of
Fresnel propagation. This is equivalent to displacing the lens or the sensor
to look for the optimal focus position. From this noise free sequence we
generate 6 additional sequences by corrupting it with 2 levels of 3 different
types of noise: Gaussian, speckle, and impulse noise. We carried out this
procedure for 20 retinal images for a total of 140 focusing sequences. Ideally,
a noise robust FM should produce the same (or similar) focusing curve for
both the noise free and the corrupted sequences. To quantify the similarity
between two focusing curves Sr and Sc we used the zero-lag normalized cross
correlation defined as

R(Sr, Sc) =

∑
i Sr(i) · Sc(i)√∑

i Sr
2(i) ·∑i Sc

2(i)
, (4.14)

where r stands for the reference curve computed from the noise free sequence,
and c the curve computed from the noise corrupted sequence. The output is
1 in the case of perfect correlation and 0 for no correlation at all. The reason
for the zero-lag calculation, as opposed to the regular cross correlation by
sliding dot product, is that we need the maxima of the curves to coincide at
the horizontal position in addition to the matching of the curves solely by
shape.

All FMs were computed using a focusing window of 128× 128 pixels lo-
cated over retinal structures. In Fig. 4.9 we show an example to illustrate the
robustness assessment of the FMs. The FM curves represent the normalized
measure value over the search space for different lens positions. The high-
est value should be obtained when the lens is on the optimal focus position
identified by the dashed vertical line, which was verified via the split-line
focusing mechanism. As the lens gets farther from the optimal position the
measure value should decrease with the distance. It comes as no surprise
that all measures perform sufficiently well in the noise free sequence shown
in Fig. 4.9(a), where all curves follow a typical bell shape with a unique max-
imum. However, in the curves shown in Figs. 4.9(b)-(d) where the focusing
sequence is corrupted by different types of noise, the proposed FM Sa clearly
outperforms the other measures in terms of monotonicity and unimodality.
Notice that under Gaussian and speckle noise (Figs. 4.9(b)-(c)) the Sa curves
are nearly identical to the noise free Sa curve in Fig. 4.9(a). Without jump-
ing to conclusions this result is interesting because it graphically shows the
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Fig. 4.9: Focus measures curves for the simulated images, the dashed vertical line
indicates the correct in-focus position. (a) Noise free images; images corrupted with:
(b) Gaussian noise (σ2 = 0.001), (c) Speckle noise (σ2 = 0.001) and (d) Impulsive
noise (d = 0.01).

robustness of the proposed FM. The results for all 140 sequences are sum-
marized in Table 4.1. Each value represents the average cross-correlation
obtained for all 20 sequences corrupted with a specified type and level of
noise for a particular FM. The overall average for each FM is shown in the
last column. These results provide further evidence that the proposed FM
Sa has a considerable robustness to noise with an overall performance value
of 0.929 and an exceptional 0.996 for the sequence corrupted with Gaussian
noise with σ2 = 0.001. The second and third best FMs were S4 and S1,
with overall values of 0.781 and 0.502 respectively. In comparison with Sa
these values represent a moderate to mild noise robustness. In the following
section we use these two FMs to compare with Sa in real images.
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Gaussian Gaussian Speckle Speckle Impulse Impulse Overall
(0.001∗) (0.005∗) (0.001∗) (0.005∗) (0.01∗∗) (0.05∗∗) Average

S1 0.554 0.486 0.635 0.422 0.477 0.438 0.502
S2 0.524 0.499 0.468 0.408 0.476 0.462 0.473
S3 0.449 0.444 0.370 0.359 0.420 0.417 0.410
S4 0.784 0.782 0.750 0.746 0.836 0.791 0.781
S5 0.495 0.380 0.495 0.304 0.795 0.362 0.472
Sa 0.996 0.939 0.997 0.992 0.979 0.667 0.929

Table 4.1: Average normalized cross correlation results for noise robustness as-
sessment of focus measures from 140 sequences generated from 20 retinal images
corrupted with different types and levels of noise. (∗ : Standard deviation σ2,
∗∗ : Noise ratio d )

4.4.2 Real images

In this subsection we show the results obtained from real NIR focusing eye
fundus images. The images have a relatively low SNR which justifies the
need for a robust FM.

It is a well known fact that as a person ages the crystalline lens of the
eye gradually gets opacified obstructing the passage of light. This is called
a cataract. A complete loss of transparency is only observed in advanced
stages in untreated patients. In early stages of cataracts retinal examination
is considered practicable–however, it is not without difficulty. For this reason
we decided to test our focusing method on healthy young subjects and elderly
subjects with first signs of cataracts not only to demonstrate its applicability
on real images, but to assess its limitations as well. In this work we show
results from five representative subjects with ages 27, 40, 68, 70 and 81 years
old for a total number of ten eye fundi.

First we show the effects of placing the focusing window on different
regions of the retinal image. A retinal image has distinct sharp structures
such as the blood vessels and the optic disc, as opposed to the relatively
uniform background. No FM is reliable without placing the focusing window
on top of structures with edges, a fact easily appreciable from the three
focusing curves shown in Fig. 4.10, which were computed from the right eye
fundus of the 27-year-old subject. The Sa curves computed from the regions
(b) and (c) are clearly reliable in terms of monotonicity and unimodality,
and coincide on the optimal focus position. Conversely, the S1 and S4 curves
when compared against Sa failed to produce a profile in which the maximum
is easy to identify. In that regard, the Sa curves display a steeper peak at
the optimal focus position, evidence of the measure’s robustness to noise. In
contrast, all measures computed from region (d) are unusable because they
are mainly given by noise.

To illustrate the link between the focusing curves and the image qual-
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Fig. 4.10: Focus measure curves obtained by placing the focusing window over
different regions of the retinal image (a): (b) and (c) are located over prominent
retinal structures, whereas (d) is located over a relatively uniform region. The
dashed vertical line indicates the correct focused position in (b)-(d).
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Fig. 4.11: Image detail from Fig. 4.10 for different focusing positions: (a) 6 (b) 11
(optimal focus), and (c) 15. The positions are in reference to Figures 4.10(b)-(c).

ity, in Fig. 4.11 we show three image details depicting the optic disc region
for three different focusing positions. The image detail in Fig. 4.11(b) cor-
responds to the focused image (optimal focus position 11 in the Sa curve
Fig. 4.10). Notice how this image is properly focused, it has sharp details
like the blood vessels. The other two images are blurred demonstrating the
consistency of the Sa curves with image quality or sharpness. The result that
emerges from this example is that to effectively locate the best focused im-
age, homogeneous regions should be avoided. An adaptive technique, based
e.g. on an edge detector, could prove useful for detecting such prominent
structures and therefore candidate regions for applying automatically the
focusing technique. The focusing curves shown hereafter, however, were all
computed from a focusing window located manually over retinal structures.

To further analyze the performance of the FM in Fig. 4.12 we show the
focusing curves obtained from four of the five subjects; the ages are shown
in the figure caption. In general, from the comparison against S1 and S4

it can clearly be stated that the proposed FM Sa outperforms them in the
considered cases. From the four cases shown only in one (Fig. 4.12(c)) the
Sa measure peak did not coincide precisely with the optimal focus position.
However, the error is no more than a single position. The FMs curves of S1

and S4 are generally flatter than those of Sa which in a focus search strategy
is not wanted because of the difficulty to properly distinguish the optimum
position in a coarse or initial search. From the curves in Fig. 4.12 we can also
note that there appears to be little difference between the curves from young
and elderly subjects. In Fig. 4.13 we show the focusing curves obtained from
the 81-year-old subject for both eye fundi. This case is interesting on its own
because in the right eye (Fig. 4.13(a)) the crystalline lens has been extracted
and replaced with an intraocular lens, whereas the left eye (Fig. 4.13(b))
is in an early stage of cataract. While both focusing curves are able to
successfully identify the optimal focus position, the curve in Fig. 4.13(b) is
certainly flatter throughout most of the search space. This is most likely
due to the difference in visibility and clarity from both eyes.

A close examination of the results reveal that the shape of the focusing
curve is not exclusively given by the degree of defocus, but by the subject’s
state of the eye and the analyzed region of the fundus as well. This is
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Fig. 4.12: Focusing curves obtained from four subjects with ages (a) 27, (b) 40,
(c) 68, and (d) 70 years old. The dashed vertical line indicates the correct focused
position.

important because it conditions the strategy for searching the optimal focus
position (Marrugo et al., 2012a). Finally, even though the results seem to
indicate that the FM could be successfully applied to both young and elderly
subjects, further research on a higher number and variety of subjects is
necessary. Additionally, we report here that we encountered some difficulty
in the procedure with the elderly subjects related to sustaining fixation
during the acquisition procedure. From an initial number of six subjects one
was excluded from all calculations due to this condition. Patient inability
to successfully establish fixation is a true challenge in fundus photography
and dealing with it is out of the scope of this work.

4.5 Discussion

In this chapter we have introduced a new focus measure for non-mydriatic
retinal imaging. It is based on a measure of anisotropy, mainly the weighted
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Fig. 4.13: Focusing curves obtained from the 81-year-old subject for each eye
fundus. In the (a) right eye the crystalline lens has been extracted and replaced
with an intraocular lens, the (b) left eye is in an early stage of cataract. The dashed
vertical line indicates the correct focused position.

directional variance of the normalized discrete cosine transform. The weights
were calculated by means of an optimization procedure to maximize the
noise robustness of the focus measure. Not only were the resulting weights
in agreement with previous works (Subbarao et al., 1993), but they also
provide a key insight into the design of noise invariant focus measures. Both
by simulation and real fundus imaging we demonstrated the robustness and
the accuracy of the novel focus measure, clearly outperforming the other
considered measures. The findings presented here may have a number of
implications for the design and operation of autofocusing in modern retinal
cameras. Finally, in this study we included several young and elderly sub-
jects to assess the limitations of the proposed focus measure. Even though
we found no significant differences between the focusing curves, there was
some difficulty in the acquisition of images from the elderly mainly given by
inability to sustain fixation. As with all such studies, there are limitations
that offer opportunities for further research. Adapting our method to these
variations within the patient population is a goal worth pursuing.
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Chapter 5

Deblurring Retinal Images
and Longitudinal Change
Detection

5.1 Introduction

Blur is one of the main image quality degradations in eye fundus imaging,
which along with other factors such as non-uniform illumination or scatter-
ing hinder the clinical use of the images. In this chapter we focus on the
enhancement of blurred retinal images. A successful retinal image restora-
tion with no knowledge of the point-spread-function (PSF) that blurred the
image is rather recent in the literature (Chenegros et al., 2007). Besides,
results on real images have been rarely produced. This deblurring problem
is referred to as blind deconvolution (Kundur & Hatzinakos, 1996, Campisi
& Egiazarian, 2007), in which the goal is to recover a sharp version of the
input blurry image when the blur kernel is unknown. Mathematically, we
wish to decompose a blurred image z(x, y) as

z(x, y) = u(x, y) ∗ h(x, y) =

∫
u(s, t)h(x− s, y − t) dsdt , (5.1)

where u(x, y) is a visually plausible sharp image, h(x, y) is a non-negative
linear shift blur kernel (PSF), and ∗ is the two-dimensional linear convolution
operator. This problem is severely ill-posed∗ and there is an infinite set of
pairs (u, h) explaining any observed z. For example, one undesirable solution
that perfectly satisfies Eq. (5.1) is the no blur explanation: h is a delta
(identity) kernel and u = z. The ill-posed nature of the problem implies
that additional assumptions on u and h must be introduced.

∗Ill-posed problems, Encyclopedia of Mathematics, URL: http://www.

encyclopediaofmath.org/index.php/Ill-posed_problems
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Fig. 5.1: (a) Patients receive regular examination either for early disease detection
or disease-progression assessment. (b) Low-quality image occurrence is not uncom-
mon. Archival blurred images are of little clinical use unless they are enhanced.

It has been shown that a way to mitigate this ill-posedness is to have sev-
eral images of the same scene blurred differently (Sroubek & Flusser, 2003).
This better-poses the problem in that there is redundant information and
makes it more robust to noise (Sroubek & Milanfar, 2012). Taking advan-
tage of this approach, in a recent publication (Marrugo et al., 2011a) we
proposed a novel strategy for retinal image deblurring where we considered
a general image degradation scenario: a sequence of blurred retinal images
acquired with different time lapses (ranging from minutes to months), which
meant that disease progression was also a key factor to consider.

The reason for considering images acquired with such long time-lapses
comes from the fact that a correct assessment of a patient’s state evolu-
tion requires sharp images from all moments in time (see Fig. 5.1). In
other words, because single-image deblurring is—to date—a difficult prob-
lem to tackle successfully, we set out to deblur retinal images from a pa-
tient’s archive so that we could readily have several images of the same scene
(eye fundus) for implementing a multi-image deblurring strategy. However,
equally important to the image enhancement, we have developed a longitu-
dinal change-detection algorithm because disease progression could manifest
as structural changes in the images. This has enabled the identification and
localization of changes of pathological origin in the retina.

5.1.1 Motivation and Background

Retinal imaging is acknowledged to be an important tool for the detection
and the progression-assessment of diseases affecting the eye such as dia-
betic retinopathy, glaucoma, and age-related macular degeneration (Kanski,
2005). The digital format provides a permanent record of the appearance of
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the retina at any point in time (Winder et al., 2009).
The imaging procedure is usually carried in two separate steps: image

acquisition and diagnostic interpretation. Image quality is subjectively eval-
uated by the person capturing the images and they can sometimes mistak-
enly accept a low quality image (Bartling et al., 2009). Low-quality image
occurrence rate has been reported at 3.7-19.7% in clinical studies (Agrawal
& McKibbin, 2003, Boucher et al., 2003, Herbert et al., 2003), which is not
a minor fact. A recent study by Abramoff et al. (2008) using an automated
system for detection of diabetic retinopathy found that from 10 000 exams
23% had insufficient image quality.

Major source of retinal image quality degradation are aberrations of
the human eye, imperfections in the fundus camera optics, and improper
camera adjustment, flash lighting or focusing during the exam (Larichev
et al., 2001). Moreover, regardless of how well controlled the aforemen-
tioned parameters are, in practice it may not always be possible to obtain
good enough image quality as a result of additional factors such as lens
opacities in the examined eye, scattering, insufficient pupil dilation or pa-
tient difficulty in steady fixating a target in the camera; such as in patients
suffering from amblyopia (Bartling et al., 2009). Out of all possible retinal
image degradations, some can be properly compensated via enhancement or
restoration techniques; e.g., low-contrast, non-uniform illumination, noise,
and blur (Winder et al., 2009). However, this compensation is also depen-
dent on the extent of the degradation. Regarding retinal image blurring its
main causes are: relative camera-eye motion, inherent optical aberrations in
the eye, and improper focusing.

In the past decade many wavefront technologies (that originated from
astronomy) such as Adaptive Optics (AO) (Christou et al., 2004) and De-
convolution from Wavefront Sensing (DWFS) (Primot et al., 1990) gave rise
to the correction of monochromatic aberrations of the eye and also created
new opportunities to image the retina at unprecedented spatial resolution.
However, AO-corrected and DWFS-based fundus imagers usually aim at re-
solving details at the level of individual photoreceptors, thus have a Field
of View (FOV) of a couple degrees and a high resolution in the order of 1
or 2 microns (Catlin & Dainty, 2002). Despite the fact that greater FOVs
can be achieved (∼ 5◦) (Yang et al., 2008, Burns et al., 2007), with addi-
tional hardware constraints, diffraction limited imaging is not guaranteed
due to an increase in aberrations (Bedggood et al., 2008). Nevertheless it
is still a considerably narrow FOV and a major disadvantage with clinical
subjects because of the need to examine larger areas of the retina. Alterna-
tively, regular non-AO-corrected fundus imagers used for routine check-ups
have a large FOV (typically 30◦) at the expense of lower spatial resolution,
but still sufficient for practical detection and progression-assessment of ob-
servable clinical signs such as, microaneurysms, dot and blot hemorrhages,
exudates, among others. Consequently, large FOV fundus imagers are the
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major imaging modality available to patients visiting an eye-care clinic. All
images analyzed in this chapter were acquired with a conventional large
FOV fundus imager.

5.1.2 Contribution
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age restoration by means of blind deconvolution”, in Journal of Biomedical Optics,
16(11):116016, (2011).
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In this chapter our novel contributions to the retinal image processing
task are twofold. First, we propose a degradation model for time-series
retinal images, which captures the underlying distortions resulting from in-
strument limitations and changes between patient visits; we are also able to
identify and highlight such changes. Second, we propose a restoration strat-
egy based on blind deconvolution that is able to obtain image enhancement
and resolution improvement using inexpensive digital methods applied to
images acquired with a conventional fundus camera.

5.2 The Blind Deconvolution Problem

The goal of blind deconvolution is to recover the original (or unblurred) scene
from a single or a set of blurred images in the presence of a poorly determined
or unknown PSF. The main assumption is that the blur can be described by
a convolution of a sharp image with the unknown PSF (Eq. (5.1)). Restora-
tion by deconvolution improves contrast and resolution of digital images,
which means that it is easier to resolve and distinguish features in the re-
stored image. To avoid confusion with super-resolution, we explain what we
mean by resolution improvement. Digital deconvolution can be described
as any scheme that sharpens up the PSF while the spatial frequency band-
width remains unchanged. This means that the spatial frequency response
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and the two-point resolution is improved but the cut-off frequency is un-
changed (Sheppard, 2007). In the super-resolution context the goal is to
increase the cut-off frequency.∗

5.2.1 The Multichannel Approach

Blind deconvolution algorithms can be single input (single-image blind de-
convolution SBD) or multiple input (multi-channel blind deconvolution MBD).
SBD is truly a complicated problem in that it is an under-determined inverse
problem as there are more unknowns (image and blur) than equations. For a
long time, the problem seemed too difficult to solve for general blur kernels.
Past algorithms usually worked only for special cases, such as astronomical
images with uniform (black) background, and their performance depended
on initial estimates of PSFs (Sroubek & Milanfar, 2012). Despite the fact
that SBD is one of the most ill-posed problems, there are several reliable
SBD algorithms (Levin et al., 2011), although most of them require that
the blurred image be governed by relatively strong edges or that the blur is
exclusively caused by motion. In either case, insofar as retinal imaging is
concerned, these assumptions do not hold and these methods would likely
fail (we show this in § 5.5.1).

As regards MBD its robustness lies in the requirement of multiple images
of the same scene blurred in a slightly different way, which adds information
redundancy and better poses the problem. In many practical applications
it is certainly difficult to obtain multiple images with these requirements.
However, retinal images are special in that the acquisition conditions change
relatively little between patient visits (even with a time span of months),
and most importantly the retina or the retinal features like blood vessels—
the scene itself—is highly stable in time. Most common diseases do not
change the distribution of the blood vessels in a way that its topology is
affected. From this consideration we have hypothesized that a pair of fundus
images of the same retina, acquired at different moments in time, contain
enough common information for their restoration via existing multi-channel
deconvolution techniques.

A block diagram illustrating our proposed method (Marrugo et al., 2011a)
is shown in Fig. 5.2. The input are two color retinal images acquired with
a conventional fundus camera within a time lapse that can span from sev-
eral minutes to months given by routine patient check-ups, as illustrated
in Fig. 5.1. The images correspond to the same retina, but can differ to
some extent with respect to illumination distribution, object field and per-
spective, blur, and local structural changes of possible pathological origin.
These differences cannot solely be accounted for by the convolutional model
described in Section 5.3. For that reason the images have to be preprocessed

∗For an extensive discussion on the topic see (Sheppard, 2007).
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Fig. 5.2: Block diagram illustrating the proposed method. z̆i are the unregistered
degraded input images and ûi are their restored versions. The other variables are
intermediate outputs of every stage, their meaning is given in the text.

before the blind deconvolution stage can take place. This consists in image
registration to properly align the images, compensation of both inter-image
illumination variation and structural changes. In fact, this preprocessing
work is a great opportunity to meet one of the main concerns of ophthal-
mologists when they visually compare fundus images of the same retina
over time. It enables the identification of true structural or morphological
changes pertaining to possible pathological damage and consequently dis-
regarding other changes merely caused by variation of illumination or blur.
Once the input images have been preprocessed they are ready for blind
deconvolution. Our blind deconvolution strategy is a two-stage one. The
first stage consists in the estimation of the PSFs following a multi-channel
scheme and the second stage is the image deconvolution, where every image
is restored with its corresponding PSF independently.

The multi-channel scheme is based on the work by Sroubek & Flusser
(2005), which has proved to work well in practice with sufficient experimen-
tal data. It is an alternating minimization scheme based on a maximum a
posteriori (MAP) estimation, with a priori distribution of blurs derived from
the multichannel framework, and a priori distribution of the ideal sharp im-
age defined by regularization with the total variation of the image (Rudin
et al., 1992). MAP is formulated as an optimization problem, where regu-
larization terms are directly related to priors. Regularization involves the
introduction of additional information in order to solve an ill-posed problem
in the form of a penalty or restriction in the minimization routine (See Sec-
tion 5.4.4). This provides good quality of restoration—significantly better
than for example Lucy-Richardson algorithm (Richardson, 1972) still widely
used in biomedical applications. We have modified the algorithm by Sroubek
& Flusser (2005) to leave out regions where the eye fundus has structurally
changed (it only takes into account one image in these regions) with the use
of a masking operator, similarly to the solution proposed by Šroubek et al.
(2008) within the super-resolution context. This has allowed the restoration
of both degraded input images.
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5.3 Mathematical Model of Image
Degradation

Let z̆1 and z̆2 be two unregistered degraded input images, as depicted in
Fig. 5.2. After registration we obtain two degraded registered images z1 and
z2, which we model as originating from an ideal sharp image u. Mathemat-
ically, the degradation model is defined as

z1 = u ∗ h1 + n1

z2 =
(
uk−1

)
∗ h2 + n2 , (5.2)

where ∗ is the standard convolution, hi are called convolution kernels or
PSFs, and k is a function accounting for relative local illumination change
between images z1 and z2 (see Eq. (5.3)). For pixels where no illumination
changes occur, k ≈ 1. The noise ni is assumed Gaussian additive with zero
mean in both images. From Eq. (5.2), the PSFs and k comprise all radio-
metric degradations except structural changes in the eye, which are taken
into account by a masking operator defined in Section 5.4.3. Despite the
fact that we consider the PSFs to vary between the two image acquisitions,
we assume them to be spatially invariant within each image. Since the FOV
is of 30◦ or less, this assumption can be accepted in first approach. Spatially
variant blur is considered in Chapter 6. The ideal sharp image u is actually
unknown and its estimation is the purpose of this chapter. Thus to avoid
confusion the estimated (restored) image is denoted by û. In Section 5.5.1
we test the performance of our method with synthetically degraded images,
which means that we know the original u. This is important, because we
can compare the restored image û with the original one u and, therefore
assess the quality of the method.

5.4 The Deblurring Method

In this section we describe every stage of the proposed method. To illustrate
each stage we use the images shown in Fig. 5.3. They were acquired using a
non-mydriatic digital fundus camera system with conventional xenon flash
lighting source (in the visible spectrum). The fundus images were acquired
from a patient that suffered from age-related macular degeneration and were
captured within a seven-month time lapse. They are color RGB 24 bit-
depth fundus images of size 1500 × 1200 digitized in TIFF format. This is
a general example were both images do not correspond exactly to the same
object field, the illumination distribution across both images is not exactly
the same, and there are some structural differences between them given by
the pathological development in the macula (centered yellowish region).

81



Deblurring Retinal Images and Longitudinal Change Detection

(a) (b)

Fig. 5.3: Color fundus images of a human eye affected by age-related macular
degeneration. Images (a)-(b) were captured within a seven-month time lapse, (a)
was captured before (b).

5.4.1 Image Registration

Image registration is a procedure that consists of spatial alignment of two
or more images. General and application-specific image registration, such
as in retinal imaging, has been investigated from the beginning of image
processing research. The interested reader is referred to the image registra-
tion review by Zitova & Flusser (2003) and the recent work by Lee et al.
(2010) for objective validation of several retinal image registration algo-
rithms. Image registration techniques are usually divided into two groups:
intensity-based and feature-based methods. Intensity based methods have
the drawback of poor performance under varying illumination conditions.
Feature based methods are robust to such effects but rely on accurate and
repeatable extraction of the features. The retinal vasculature is known to
provide a stable set of features for registration in the conditions of interest.

For registering the images we use the robust dual-bootstrap iterative
closest point algorithm; we describe the main features here, for a full de-
scription of the method the reader is referred to the work by Stewart et al.
(2003). The vasculature from each image is automatically traced starting
from initial seed points extracted from a 1D edge detection and later recur-
sively tracking the vessels using directional templates. The vessel branching
and crossover points are used as landmarks to register the images to subpixel
accuracy. The registration algorithm starts from initial low-order estimates
that are accurate only in small image regions called bootstrap regions. The
transformation is then refined using constraints in the region, and the boot-
strap region is expanded iteratively. The algorithm stops when the boot-
strap region expands to cover the overlap between the images, and uses
a 12-dimensional quadratic mapping. This transformation model includes
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(a) (b)

Fig. 5.4: Registration of images from Fig. 5.3 in checkerboard representation. (a)
Before and (b) after registration.

rotation, scale, translation, a shearing term and a quadratic term that de-
scribes the spherical shape of the retina. We refer the interested reader to
Ref. (Can et al., 2002) for details on the model derivation. This registration
algorithm is very robust to local changes and low overlap between images
as demonstrated by its high success rate on test images with at least one
common landmark point and overlaps even as low as 35% (Stewart et al.,
2003). Even though the reported accuracy by Stewart et al. (2003) is of up to
subpixel accuracy, in our case of degraded images this can be slightly worse
without compromising the outcome. Minor local misregistration errors may
occur when landmark points do not match precisely, but they are not be
taken into account in the restoration because they are masked out before
the PSF estimation and image deconvolution stages (see Section 5.4.3).

To confirm the registration outcome the pair of images before and after
registration are shown in Fig. 5.4 in checkerboard representation, where the
images are merged together in a chess-like pattern where each square alter-
nates information from one image to the other. Notice how after registration
the images have been correctly aligned, specially the blood vessel distribu-
tion (see the continuous transitions of vessels between neighbor squares).

5.4.2 Compensation of uneven illumination

Despite controlled conditions in retinal image acquisition such as optical
stops to prevent glares and provide a diffuse illumination, there are many
patient-dependent aspects that are difficult to control and mainly affect the
illumination component with gradual non-uniform spatial variations. Some
of the contributing factors are:

• The curved surface of the retina. As a consequence, all regions cannot
be illuminated uniformly.
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• Imaging requires either a naturally or an artificially dilated pupil. The
degree of dilation is highly variable across patients.

• Unexpected movements of the patient’s eye.

• The presence of diseases.

The non-uniform illumination across the image results in shading arti-
facts and vignetting. This effect hinders both quantitative image analysis
and the reliable operation of subsequent global operators.

In our model, described by Eq. (5.2), the relative changes in intensity
between the two fundus images cannot be described exclusively by con-
volution with different PSFs and must be compensated by k. A number of
general-purpose techniques have been investigated to attenuate the variation
of illumination. However, most techniques are oriented towards single-image
compensation (Winder et al., 2009), for instance using the red channel to
estimate background illumination (Muramatsu et al., 2010). Therefore, no
consistency between two images is guaranteed. For our case this uneven
illumination can be compensated by properly adjusting the intensity values
on one image to approximately match that of the other while satisfying a
predetermined illumination model. This can be carried out if the blurring
is not too large and the illumination changes smoothly, which is usually the
case for fundus images. This assumption can be expressed mathematically
as

(k−1 · u) ∗ h ≈ k−1 · (u ∗ h) .

The illumination of the fundus is formed by a slowly varying light field
over a smooth surface, thus it can be modeled by a low-order parametric
surface. Narasimha-Iyer et al. (2006) used a 4th-order polynomial to ef-
fectively model the light pattern formed by an illumination source passing
through the attenuating ocular media. Here we use a similar approach, but
fitting the surface with respect to both images. The parametric surface
fitting equation can then be formulated as

arg min
k
‖z1(x, y)− k(x, y) · z2(x, y)‖ , (5.3)

where k(x, y) = α15y
4 +α14y

3x+ · · ·+α2y+α1, and z1, z2 are the registered
fundus images. We minimize Eq. (5.3) in the least squares sense to estimate
the 15 parameters. This procedure can be both carried out using the lu-
minance channel or the green channel as is commonplace in retinal image
processing (Foracchia et al., 2005). Here we have used the green channel.
Owing to the fact that the illumination can be compensated globally by the
polynomial function k, it is important to realize that the structural changes
remain unaffected. The interpretation of k from Eq. (5.3) is straightfor-
ward. If the registered images z1 and z2 had neither illumination changes
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Fig. 5.5: Illumination compensation function k(x, y). This is applied only within
the region of interest (the central circle).

nor structural changes, then k ≈ 1 throughout the common object field. In
Fig. 5.5 we show the resulting k(x, y) for the images in Fig. 5.3. The dif-
ferent shades of gray indicate the average contrast and intensity difference
between the two images. From the image it can be seen that most areas
have similar intensity values except for the upper left part (dark region).

5.4.3 Segmentation of Areas with Structural Changes

Up to this point we have addressed two conditions required to make the
images comply with the convolutional model: the registration or spatial
alignment of the images, and the compensation for illumination variation.
As we discussed previously, because we consider images acquired between
patient visits, we must also take into account the presence of possible lon-
gitudinal changes in the given retina over time due to treatments and/or
disease progression (Fig. 5.1). The detection of such changes is no small
feat. Traditionally, the clinical procedures for inspecting the images have
been mostly manual. Until recently (Narasimha-Iyer et al., 2006) there was
no fully automated and robust way to carry it out. The work of Narasimha-
Iyer et al. (2006) has prompted further research (Narasimha-Iyer et al., 2007,
Xiao et al., 2012) as we have done here (Marrugo et al., 2011b;a) by adapting
the general methodology to suit our purposes for restoring retinal images.

Longitudinal Change Detection

The longitudinal changes in the retina are typically structural changes, and
as such they need to be segmented and masked out. Image change analysis
is of interest in various fields and many algorithms have been developed for
such a task (Aach & Kaup, 1995, Chang et al., 2005). A complete overview of
change detection methods can be found in the survey by Radke et al. (2005).
An initial step in order to identify these changes comes from computing the
difference from the two registered images including the illumination com-
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Fig. 5.6: Intermediate outputs from the algorithm: (a) Image difference ∆z(x, y)
in absolute value, (b) Image difference in pseudocolor on top of gray-scale fundus
image, and (c) mask m for avoiding areas with structural changes in subsequent
PSF estimation.

pensation as

∆z(x, y) = z1(x, y)− k(x, y) · z2(x, y) . (5.4)

The difference image ∆z(x, y) from the two input images (Fig. 5.3) is
shown in absolute value in Fig. 5.6(a). To better understand this result, in
Fig. 5.6(b) we show one of the retinal images in gray-scale where the pixels
related to structural changes are highlighted in pseudo-color. This image
constitutes an important output of our algorithm. The structural changes
can now be visualized and detected from the difference image ∆z(x, y) by
taking a statistical significance test, in the same fashion as described by
Narasimha-Iyer et al. (2006). First, structural changes are often associated
with a group of pixels, thus the change decision at a given pixel j should
be based on a small block of pixels in the neighborhood of j denoted as wj .
Second, in the absence of any change, the difference can be assumed to be
due to noise alone. Therefore, the decision as to whether or not a change has
occurred corresponds to choosing one of two competing hypothesis: the null
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hypothesis H0 or the alternative hypothesis H1, corresponding to no-change
and change decisions, respectively. Assuming a Gaussian distribution for the
difference values, the changes can be identified by comparing the normalized
sum square of the differences within the neighborhood wj to a predetermined
threshold τ as described by Aach & Kaup (1995). The test is carried out as

Ωj =
1

σ2
n

∑

(x,y)∈wj

∆z(x, y)2
H1

≷
H0

τ , (5.5)

where σn is the noise standard deviation of the difference in the no-change
regions. The threshold τ is derived from the fact that Ωj follows a χ2 distri-
bution with N degrees of freedom, where N is the number of pixels in the
window wj . It can be obtained for a particular false positive rate α from
the χ2 tables. The choice of an appropriate α is both guided by mathe-
matical considerations, e.g. the conventional 5% level for statistical signif-
icance (Stigler, 2008), and the consequences that false alarms and misses
might have. In this case, the effect of false alarms is unimportant because
there would still be a large number of remaining pixels from where to com-
pute the PSFs. On the other hand, misses do have a considerable impact in
view of the fact that these pixels do not fulfill the convolutional model. As
a result, α values below 0.05 might yield a more accurate change detection
at the expense of possible undesirable misses. For all experiments we use a
3 × 3 window (N = 9) and set α = 0.05. The parameter σn was estimated
by manually picking out no-change regions from a training set of images,
computing Eq. (5.4) and the standard deviation inside these regions. Using
Eq. (5.5) at each pixel, we can determine a change mask between the images
or conversely a no-change mask. Given that for the MBD procedure we are
interested in estimating the PSF from the no-change regions the masking
function m is obtained directly from the no-change mask of the significance
test. The mask for the input images (Fig. 5.3) is shown in Fig 5.6(c). Notice
that the pathological region is the main cause of structural changes.

5.4.4 PSF Estimation

In this subsection, we describe the basic principles of the blind deconvolution
method used for the estimation of the PSFs. For this purpose we have
chosen one of the best working MBD methods (Sroubek & Flusser, 2005).
The algorithm can be viewed as a Bayesian MAP estimation of the most
probable sharp image and blur kernels. For our purposes, we modified the
original method so that it ignores regions affected by structural changes,
which improves stability and precision of the computation. Without this
modification, represented by the mask m in Eq. (5.6), the algorithm does
not work reliably. The algorithm can be described as a minimization of the
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functional

arg min
u,h1,h2

(
1

2
||u ∗ h1 − z1||2 +

1

2
||m(u ∗ h2 − kz2)||2 + λu

∫
|∇u|dx dy

+ λh||m(z1 ∗ h2 − kz2 ∗ h1)||2
)
, h1, h2 ≥ 0 , (5.6)

with respect to the latent image u and blur kernels h1 and h2. The first and
second terms measure the difference between the input blurred images and
the searched image u blurred by kernels h1 and h2. The size of this difference
is measured by L2 norm ||.|| and should be small for the correct solution; ide-
ally, it should correspond to the noise variance in the given image. Function
k compensates for uneven illumination as described in Section 5.4.2. The
value of the masking function m is 1 in the valid points (white in Fig. 5.6(d))
and 0 in the pixels where the eye fundus has structurally changed. Any of
the first two terms could be masked, but not both at the same time. This
is because the latent image u cannot have pixels with no value at all, hence
these pixels must take values from any of the two images. In this case z2

is masked, as a result these pixels take values from the first term. The two
remaining terms are regularization terms with positive weighting constants
λu and λh. The third term is nothing else than the total variation of im-
age u. It improves stability of the minimization and from the statistical
viewpoint incorporates prior knowledge about the solution. The last term is
a condition linking the PSFs h1 and h2 of both images, which also improves
the numerical stability of the minimization.

The functional is alternately minimized in the subspaces correspond-
ing to the image and the PSFs. The advantage of this scheme lies in its
simplicity, this alternating minimization approach is actually a variation of
the steepest-descent algorithm. The minimization in the PSF subspace is
equivalent to the solution of a system of linear equations in the least square
sense with the non-negativity constraint, in our implementation solved by
the MATLAB fmincon function (MATLAB, 2010). The non-blind decon-
volution realized by the minimization in the image subspace, is solved by
half-quadratic iterative scheme (Chambolle & Lions, 1997), replacing the to-
tal variation by

∫ √
|∇u|2 + ε2, where ε is an auxiliary variable in the range

0 < ε << 1. It is a small relaxation parameter which makes total variation
differentiable around zero. A typical value for ε is 10−1.

The main difference with respect to the original method (Sroubek &
Flusser, 2005) is the introduction of the masking function m, which is com-
puted in the beginning of the algorithm as described in Section 5.4.3. During
the minimization, the multiplication by m is included in the operator corre-
sponding to the convolution with u (in the PSF minimization step) and in
the operator corresponding to the convolution with h2 (in the image min-
imization step). Because of the simplicity of this masking operation, the
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speed is practically the same as the speed of the original algorithm. In ad-
dition, even though we work with a complicated set of pixels, we can use
the standard operation of convolution, which can eventually be speeded up
using the Fast Fourier transform (FFT).

5.4.5 Image Restoration

Once the PSFs have been properly estimated the restoration step is basically
a non-blind deconvolution operation. Nevertheless, note that from Eq. (5.6)
the restored version of z1 (û1) is obtained because z2 is masked. Conversely,
û2 could be obtained by minimizing Eq. (5.6) again with fixed PSFs and
masking z1. However, this procedure has the disadvantage that both images
are restored only within the common object field. Therefore, the proper
solution is to restore each image zi via single-channel (non-blind) deconvo-
lution with their corresponding PSF hi (estimated from the previous step)
by the minimization of the functional

arg min
ui

(
||ui ∗ hi − zi||2 + λu

∫
|∇ui|dx dy

)
. (5.7)

Assuming that the PSFs are spatially invariant in the object field, this ap-
proach has a further advantage in that the PSF estimation can be computed
from a relatively small area of the common object field, provided that there
are retinal structures within, thus greatly reducing the computational cost
of the combined PSF estimation plus image deconvolution.

Finally, it should also be noted that the whole process of PSF estima-
tion plus deconvolution can be computed for every channel of the RGB color
fundus image. However, in spite of the increase in computational burden,
tests showed no real advantage to estimate the PSF for each channel. More-
over, we found the green channel to be the most suitable channel for PSF
estimation because it provides the best contrast. Whereas the blue channel
encompasses the wavelengths most scattered and absorbed by the optical
media of the eye, hence the image has very low energy and relatively high
level of noise. As a result, the RGB deconvolved fundus image was com-
puted by deconvolving every R, G, and B channel from the green channel
PSF.

5.5 Experiments and Results

5.5.1 Synthetic Images

In this subsection, we use synthetically degraded retinal images to test the
performance of the proposed method. We use blurred signal-to-noise ratio
(BSNR) to measure the noise contained in the degraded image, and im-
provement in signal-to-noise ratio (ISNR) to measure the quality of restored
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Fig. 5.7: (a)-(b) Degraded images (BSNR = 40 dB). (c)-(d) PSFs.

images. They are defined as follows:

BSNR = 20 log10

( ‖z‖
‖n‖

)

ISNR = 20 log10

(‖u− z‖
‖u− û‖

)

where u, z, û, and n are the original image, degraded image, restored image,
and the noise vector, respectively. For ISNR higher means better restoration,
whereas for BSNR lower means noisier degraded image. These metrics are
mainly used to provide an objective standard for comparison with other
techniques and they can only be used for simulated cases.

The first example is shown in Fig. 5.7, where the degraded images are
synthesized from a sharp real image and the kernels shown in Fig. 5.7(c)
plus Gaussian noise with zero mean and variance σ2 = 10−6 (BSNR =
40dB). The recovered image and PSFs are shown in Fig. 5.8. The restoration
provides an ISNR = 4.45dB. In this case for synthetically degraded images
the masking operation of Section 5.4.3 was not applied. Visual inspection
of the details shown in Fig. 5.9 clearly reveal the accuracy of the method.
Under these circumstances the algorithm is able to produce a significant
restoration of fine details like small blood vessels around the optic disc.

To further test our approach under a more realistic degradation we pro-
duced an initial geometrical distortion via a quadratic model (Can et al.,
2002, Lee et al., 2010) as the one used for registration (Fig. 5.10). After the
geometric distortion the degradation (blur plus noise) is produced on both
images (BSNR = 40dB). They are then registered and the restored image is
recovered via MBD. The restored image and the estimated PSFs are shown
in Fig. 5.11. The ISNR is slightly less (4.11dB) than in the previous case,
but still sufficient to produce a significant restoration. To corroborate our
assumption that MBD methods seem better suited for this type of images,
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Fig. 5.8: (a) Restored image (ISNR = 4.45dB). (b) Estimated PSFs.

(a) (b) (c)

Fig. 5.9: Details from (a) Degraded image, (b) Restored image, and (c) Original
image.
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(a) (b)

Fig. 5.10: (a) Original image and (b) geometrically distorted image.

we tried to restore the image with a recent SBD method proposed by Xu
& Jia (2010). The result is shown in Fig. 5.11(c) and visually reveals that
it does not follow the true nature of the blurring with artifacts around the
blood vessels, thus being prone to produce a poor restoration evidenced by
an ISNR = −0.72dB.

Concerning parameter setting, in Fig. 5.12 we show the sensitivity of
the two parameters λu and λh for the minimization of Eq. (5.6) in ISNR
of the restored images. In Fig. 5.12(a) we fix the value of λh to 10 and
check the ISNR of the restored images for different initial values of λu ={

100, 101, 102, 103, 104, 105
}

. The best restoration is obtained with λu = 103,
thus in Fig. 5.12(b) we carried out the same procedure by fixing the value of
λu to 103 and checking the ISNR of the restored images for different values
of λh = {1, 10, 20, 30, 40, 50}. The best restoration was obtained with an
initial value of λh = 30. For this type of images, when scaled to the interval
〈0, 1〉, we find 20 < λh < 40 to be a suitable range to produce an optimal
restoration.

5.5.2 Real Images

The experiments shown in this subsection aim to demonstrate the applica-
bility of the proposed method for retinal image deblurring in real scenarios.
Three different cases are shown in Fig. 5.13 including the retinal images
that were used to illustrate the method (Fig. 5.3). The estimated PSFs
are shown at the bottom of the restored images. All images contain some
pathological damage and have been acquired within considerable lapses of
time (several months). In all examples the resolution improvement can be
visually assessed by the clear distinction of details such as small blood ves-
sels or the increase in sharpness of edges specially in the pathological areas.
We emphasize the fact that these images correspond to real routine patient
follow-up and were not intentionally degraded. From a clinical viewpoint,
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Fig. 5.11: Image restoration from degraded and geometrically distorted images.
(a) Restored image by the proposed method (ISNR = 4.11dB), (b) estimated PSFs
and (c) image detail. (c) Restored image with the method of Xu & Jia (2010)
(ISNR = −0.72dB) and (d) image detail.
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Fig. 5.12: Test on parameter setting (BSNR = 40dB). Average ISNR with respect
to different initial values of (a) λu and (b) λh.
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the enhancement can be used for a more precise assessment of a patient’s
state. Likewise, the images are more suitable for subsequent processing such
as for the detection of retinal pathology (Muramatsu et al., 2010, Xu & Luo,
2010).

In Fig. 5.14 the same images are shown but in grey-scale to highlight the
areas of structural change in pseudocolor. As we have mentioned earlier, this
is an important result for its potential impact in the medical practice. Subtle
changes can be identified by this approach such as the ones in Fig. 5.14(b)
and the hemorrhage in the region of the optic disc in Fig. 5.14(c). Another
technique to rapidly identify changes from the two images is by alternating
both restored images in a video sequence.∗ Videos 1 and 2 (Fig. 5.13)
correspond to the first two real cases.

∗The videos are available in http://www.goapi.upc.edu/usr/andre/retvideo.html
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z1 û1 z2 û2

(a)

(b)

(c)

Fig. 5.13: Original and restored color retinal images; (a), (b) and (c) indicate three
separate cases arranged from left to right following our notation for degraded (zi)
and restored (ûi) images. The images are cropped to represent the region of interest
given by the pathological area. The estimated PSF is shown at the bottom of the
restored image. Video files are also included for change detection in cases (a) and
(b) http://www.goapi.upc.edu/usr/andre/retvideo.html (Video 1, Quicktime,
0.5MB; Video 2, Quicktime, 0.4MB).
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(a) (b) (c)

Fig. 5.14: (This figure is meant to be viewed in color) Visualization of structural
changes in pseudo-color for the images of Fig. 5.13.

5.6 Discussion

In this chapter we have investigated a new approach for retinal image restora-
tion based on multichannel blind deconvolution. In addition, we have devel-
oped a strategy for identifying and highlighting areas of structural change
with possible relation to pathological damage. We have verified that fundus
images of the same retina over time contain enough common information
to be restored with the proposed method. The method consists of a se-
ries of preprocessing steps to adjust the images so they comply with the
convolutional model, followed by the final stages of PSF estimation and de-
convolution. At this level of approach, spatially invariant PSFs are assumed.
The synthetically degraded images have enabled us to test the performance
of the proposed approach and also to compare with a state-of-the-art single-
channel blind deconvolution method. The results have showed a remarkable
enhancement evidenced by the increased visibility of details such as small
blood vessels or pathological areas.
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Chapter 6

Deblurring Retinal Images
with Space-Variant Blur

6.1 Introduction

In the previous chapter we introduced the problem of retinal image blurring
and proposed a deblurring strategy (see § 5.4) to overcome such degrada-
tion. However, that strategy is limited to images blurred uniformly; in other
words, we assumed the blur to be space-invariant. The space-invariant as-
sumption is commonplace in most of the restoration methods reported in
the literature, (Levin et al., 2011) but in reality it is a known fact that blur
changes throughout the image (Bedggood et al., 2008). In Fig. 6.3(a) we
show an attempt at restoring an image degraded with spatially variant blur
with the space-invariant approach. Note how the restoration fails. In this
chapter we consider the blur to be both unknown and space-variant (SV).
This in itself is a novel approach in retinal imaging; relevant to such ex-
tent that many common eye related conditions, such as astigmatism, kera-
toconus, corneal refractive surgery, or even tear break-up, may contribute
significantly to a decline in image quality typically in the form of a SV degra-
dation (Tutt et al., 2000, Xu et al., 2011). An example of such a condition
is shown in Fig. 6.11(a). The image corresponds to an eye from a patient
with corneal abnormalities that lead to a loss in visual acuity and a quality
degradation of the retinal image (Fig. 6.11(b)).

Restoration of images with SV blur from optical aberrations has been
reported in the literature (Costello & Mikhael, 2003), although the main lim-
itation is that the blurred image is often restored in regions or small sections,
which are then stitched together. This inevitably leads to ringing artifacts
associated with frequency-domain filtering like in Wiener filtering. Another
clear disadvantage is a significant complexity for accurately estimating the
SV PSF, for instance Bardsley et al. (2006) use a phase-diversity based
scheme to obtain the PSF associated with an image patch. This type of ap-
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Fig. 6.1: Block diagram illustrating the proposed method. z is the degraded
image, g is an auxiliary image of the same eye fundus used for the PSF estimation,
and u is the restored image. The other variables are intermediate outputs of every
stage; their meaning is given in the text.

proach is common in atmospheric optics where the conditions and set-up of
the imaging apparatus (typically a telescope) are well known and calibrated.
Unfortunately, this is not immediately applicable to retinal imaging, at least
non-adaptive optics retinal imaging.

If we assume that the SV PSF is locally space-invariant, its estimation
can be carried out on a patch basis. However, the estimation may fail in
patches with no structural information. Tallón et al. (2012) developed a
strategy for detecting these non-valid patches in a SV deconvolution and
denoising algorithm from a pair of images acquired with different exposures:
a sharp noisy image with a short exposure and a blurry image with a long
exposure. Because they had two distinct input images they were able to: (i)
Identify patches where the blur estimates were poor based on a comparison
(via a thresholding operation) of the deconvolved patches with the sharp
noisy patches. (ii) In those patches, instead of correcting the local PSFs
and deconvolving the patches again, they performed denoising in the noisy
sharp image patch. The end result is a patchwork-image of deconvolved
patches stitched together with denoised patches. Their method is mainly
oriented at motion blur, this is the reason for a dual exposure strategy. This
is not readily implementable in the retinal imaging scenario where the SV
blur is generally caused by factors like aberrations.

Finally, there have been several works (Harmeling et al., 2010, Whyte
et al., 2010, Gupta et al., 2010) that try to solve the SV blind deconvolution
problem from a single image. The common ground in these works is that the
authors assume that the blur is only due to camera motion. They do this
in order to reduce the space in which to search for SV blurs. Despite their
approach being more general, the strong assumption of camera motion, as
in (Tallón et al., 2012), is simply too restrictive to be applied in the retinal
imaging scenario.

6.1.1 Contribution

In this chapter we propose a method for removing blur from retinal images.
We consider images degraded with SV blur, which may be due to factors

98



6.2 Space-Variant Model of Blur

like aberrations in the eye or relative camera-eye motion. Because restoring
a single blurred image is an ill-posed problem, we make use of two blurred
retinal images from the same eye fundus to accurately estimate the SV PSF.
Before the PSF estimation and restoration stages take place, we preprocess
the images to accurately register them and compensate for illumination vari-
ations not caused by blur, but by the lighting system of the fundus camera.
The principles of these stages are shared with the deblurring method already
described in § 5.4 of the previous chapter. This is depicted in the block dia-
gram shown in Fig. 6.1. The individual stages of the method are explained
in § 6.3.

We assume that in small regions of the image the SV blur can be ap-
proximated by a spatially invariant PSF. In other words, that in a small
region the wavefront aberrations remain relatively constant; the so-called
isoplanatic patch (Bedggood et al., 2008, Goodman, 1968). An important
aspect of our approach is that instead of deblurring each patch with its corre-
sponding space-invariant PSF—and later stitching together the results—we
sew the individual PSFs by interpolation, and restore the image globally.
The estimation of local space-invariant PSFs, however, may fail in patches
with no structural information. Unlike other methods, we incorporate prior
knowledge of the blur that originates through the optics of the eye to ad-
dress this limitation. To this end we propose a strategy based on eye-domain
knowledge for identifying non-valid local PSFs and replacing them with ap-
propriate ones. Even though methods for processing retinal images in a
space-dependent way (like locally adaptive filtering techniques (Salem &
Nandi, 2007, Marrugo & Millán, 2011)) have been proposed in the litera-
ture, to the best of our knowledge this is the first time a method for SV
deblurring of retinal images is proposed.

6.2 Space-Variant Model of Blur

In the previous chapter we modeled the blurring of a retinal image by con-
volution with a unique global PSF, assuming space-invariant blurring by a
model

z = u ∗ h+ n (6.1)

where z and u are the blurred and sharp (original) images, respectively, h is a
convolution kernel and n white Gaussian noiseN(0, σ2). This approximation
is valid as long as the PSF changes little throughout the field of view (FOV).
In other words, that the blurring is homogenous. In reality we know that
the PSF is indeed spatially variant (Bedggood et al., 2008), to such extent
that in some cases the space-invariant approach completely fails, bringing
forth the need for a SV approach. To address this limitation we now model
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the blurred retinal image z by a general linear operator

z = Hu+ n , (6.2)

The operator H can be written in the following form

z(x, y) = [Hu](x, y) =

∫
u(s, t)h(s, t, x− s, y − t) dsdt , (6.3)

where h the SV PSF. The operator H is a generalization of standard con-
volution where h is now a function of four variables. We can think of this
operation as a convolution with a PSF h(s, t, x, y) that is now dependent on
the position (x, y) in the image. Standard convolution is a special case of
Eq. (6.3), where h(s, t, x, y) = h(s, t) for an arbitrary position (x, y). Note
that the PSF h is a general construct that can represent other complex im-
age degradations which depend on spatial coordinates, such as motion blur,
optical aberrations, lens distortions and out-of-focus blur.

6.2.1 Representation of space-variant PSF

An obvious problem of spatially varying blur is that the PSF is now a func-
tion of four variables. Except trivial cases, it is hard to express it by an
explicit formula. Even if the PSF is known, we must solve the problem of a
computationally-efficient representation.

In practice we work with a discrete representation, where the same no-
tation can be used but with the following differences: the PSF h is defined
on a discrete set of coordinates, the integral sign in Eq. (6.3) becomes a
sum, operator H corresponds to a sparse matrix and u to a vector obtained
by stacking the columns of the image into one long vector. For example in
the case of standard convolution, H is a block-Toeplitz matrix with Toeplitz
blocks and each column of H corresponds to the same kernel h(s, t) (Golub
& Van Loan, 1996). In the SV case that we address here, as each column of
H corresponds to a different position (x, y), it may contain a different kernel
h(s, t, x, y).

In retinal imaging, all typical causes of blur change in a continuous grad-
ual way, which is why we assume the blur to be locally constant. Therefore,
we can make the approximation that locally the PSFs are space-invariant.
By taking advantage of this property we do not have to estimate local PSFs
for every pixel. Instead, we divide the image into rectangular windows and
estimate only a small set of local PSFs (see Fig. 6.5) following the method
described in (Marrugo et al., 2011a) and outlined in Section 6.3. The es-
timated PSFs are assigned to the centers of the windows from where they
were computed. In the rest of the image, the PSF h is approximated by
bilinear interpolation from the four adjacent local PSFs. This procedure is
explained in further detail in the following section.
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6.3 Description of the Method

In this section we describe the different stages of the proposed restoration
method depicted in Fig. 6.1. This work follows from Chapter 5 and addresses
a more general problem: restoration of retinal images in the presence of
a SV PSF. Blind deconvolution of blur from a single image is a difficult
problem, but it can be made easier if multiple images are available. In
§ 5.5.1 we showed that single image blind deconvolution for blurred retinal
images does not provide a suitable restoration. Moreover, in images with
SV blur the restoration is even worse. Alternatively, by taking two images
of the same retina we can use a multi-channel blind deconvolution strategy
that is mathematically better-posed (Sroubek & Flusser, 2005). In fact,
in order to properly estimate the SV PSF we use the degraded original
image z (Fig. 6.2(a)) and a second auxiliary image g of the same retina,
shown in Fig. 6.3(b). Unlike the previous chapter, the images used here
were acquired in the same session. It is important to note that because
the eye is a dynamical system the two images are not blurred in exactly
the same way, which is a requirement in the multi-channel approach. The
second image is used only for the purpose of PSF estimation. We make clear
that the method is proposed so that there is no preference over which of the
two images is restored; meaning that in ideal conditions restoring one or the
other would produce the similar results. A practical approach, nevertheless,
would be to restore the image that is less degraded, thereby obtaining the
best restoration possible. Once the PSF is properly estimated, we restore
the image as described in the last part of this section.

To illustrate the method we used the image shown in Fig. 6.2(a) as the
degraded original image to be restored. This retinal image was acquired from
a person with strong astigmatism in the eye, which introduces a SV blur.
The strong aberrations hinder the imaging procedure making it impossible
to achieve a perfectly sharp image throughout the whole FOV. Notice how
the upper regions are much more blurred than anywhere else in the image.

6.3.1 Preprocessing

Because we use a multi-channel scheme for the estimation of the local PSFs,
the images are preprocessed so that they meet the requirements imposed
by the space-invariant convolutional model given by Eq. (6.5). In the same
way as in § 5.4 this consists in registering the images and adjusting their
illumination distribution. By accounting for these differences the remaining
radiometric differences between the images are assumed to be caused by blur
and noise.
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Fig. 6.2: (a) Retinal image degraded with space-variant blur given by strong
astigmatism. (b), (c), (d), and (e) zoomed regions to show the space-variant nature
of the blur.

Image registration

For registering the images we have used the robust dual-bootstrap iterative
closest point algorithm (Stewart et al., 2003), which we already described
in § 5.4.1. The transformation model includes rotation, scale, translation,
a shearing term and a quadratic term that accounts for the spherical shape
of the retina (Can et al., 2002). With this procedure we transform the
auxiliary image g (Fig. 6.3(b) in our example) to the coordinates of z. The
transformed image is denoted by ĝ.

Illumination compensation

Nonuniform illumination is particularly a problem in retinal imaging due
to a combination of several factors. These include: the difficulty of achiev-
ing uniform illumination even with a fully dilated pupil, instrument limi-
tations such as the ring-shaped illumination pattern, and curved surface of
the retina. Because we use two images to estimate the blurring kernels we
must compensate for this spatially nonuniform illumination.

In the same fashion as in § 5.4.2 we compensate the illumination differ-
ences between the two images z and ĝ by properly adjusting the intensity
values of one image to approximately match those of the other, while satis-
fying a predetermined illumination model (Marrugo et al., 2011a).

We use a low-order parametric surface fitting equation to model the
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(a) (b)

Fig. 6.3: (a) The space-invariant restoration of Fig. 6.2(a) (Marrugo et al. (2011a)).
Notice the artifacts. (b) Second (auxiliary) image g for the PSF estimation.

illumination k(x, y) of the fundus as a slowly varying light field over a smooth
surface as (Narasimha-Iyer et al., 2006)

arg min
k
‖z − k · ĝ‖2 , (6.4)

where k(x, y) = α15y
4 + α14y

3x + · · · + α2y + α1, and ĝ, z are the retinal
images. We minimize Eq. (6.4) in the least squares sense to estimate the
15 parameters. The interpretation of k is straightforward. If the images ĝ
and z had neither illumination changes nor structural changes, then k ≈ 1
throughout the common object field. In Fig. 6.4 we show the resulting
k(x, y) for the pair of images shown in Fig. 6.2(a) and Fig. 6.3(b). The
different shades of gray indicate the average contrast and intensity difference
between the two images. This is applied to image ĝ to match the illumination
distribution of the background of image z (Fig. 6.2(a)).

6.3.2 Estimation of local PSFs

In section 6.2 we described the model for a spatially varying blur in which we
assume the PSF h to vary gradually, which means that within small regions
the blur can be locally approximated by convolution with a space-invariant
PSF. For this reason we approximate the global function h from Eq. (6.3) by
interpolating local PSFs estimated on a set of discrete positions. The main
advantage of this approach is that the global PSF needs not be computed
on a per-pixel basis which is inherently time-consuming.
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Fig. 6.4: Illumination compensation function k(x, y).

The procedure for estimating the local PSFs is the following. We divide
the images z and ĝ with a grid of m×m patches. In each patch p we assume
a convolutional blurring model, like in § 5.2, where an ideal sharp patch up
originates from two degraded patches zp and ĝp (for p = 1 . . .m×m). The
local blurring model is

zp =hp ∗ up + n

ĝp =ĥp ∗ (k−1
p · up) + n̂ , (6.5)

where ∗ is the standard convolution, hp and ĥp are the convolution kernels or
local PSFs, and kp is the function accounting for relative local illumination
change between patches zp and ĝp. The noise (n and n̂) is assumed to be
Gaussian additive with zero mean.

From this model we can estimate the local PSFs with an alternating
minimization procedure as described in § 5.4.4, but applied locally. We
do so on a grid of 5–by–5 image patches to compute 25 PSFs, as shown
in Fig. 6.5. The grid size was chosen so that the image patches were big
enough to include retinal structures. This makes it easier to successfully
recover a PSF. In our case, with retinal images of size approximately of
1280×1280 pixels (the region of interest is slightly smaller) local PSFs hp of
size 11× 11 pixels proved sufficient, with image patches of approximately 1

5
of the size of region of interest. Every local PSF is computed on each patch
p by minimizing the functional

E(up, hp, ĥp) = arg min
up,hp,ĥp

(
1

2
‖up ∗ hp − zp‖2 +

1

2
‖up ∗ ĥp − kpĝp)‖2 +

+ λ1

∫
|∇up| dx dy + λ2‖zp ∗ ĥp − kpĝp ∗ hp)‖2

)
,

hp, ĥp(s, t) ≥ 0, (6.6)
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(a) (b)

Fig. 6.5: (a) Fig. 6.2(a) with a 5 by 5 grid that defines the image patches. (b)
Estimated local PSFs.

with respect to the ideal sharp patch up and the blur kernels hp and ĥp.
The blur kernel hp(s, t) is an estimate of h(s, t, x0, y0), where (x0, y0) is the
center of the current window zp, and ‖.‖ is the L2 norm. The first and
second terms of Eq. (6.6) measure the difference between the input blurred
patches (zp and ĝp) and the sharp patch up blurred by kernels hp and ĥp.
This difference should be small for the correct solution. Ideally, it should
correspond to the noise variance in the image. The two remaining terms
of Eq. (6.6) are regularization terms with positive weighting constants λ1

and λ2, which we have set following the fine-tuning procedure described in
(Marrugo et al., 2011a). The third term is the total variation of up. It
improves stability of the minimization and from a statistical perspective it
incorporates prior knowledge about the solution. The last term is a condition
linking the convolution kernels which also improves the numerical stability of
the minimization. The functional is alternately minimized in the subspaces
corresponding to the image and the PSFs. Note that Eq. (6.6) is the local
version of the expression derived in Eq. (5.6) of previous chapter for the
computation of the space-invariant PSF.

Although up is a restored patch, however it is discarded. This is because
our method does not work by performing local deconvolutions and sewing
restored patches together, which in practice would produce artifacts on the
seams. Instead we perform a global restoration method explained in § 6.3.5.
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6.3.3 Identifying and correcting non-valid PSFs

Strategy based on eye domain knowledge

The local PSF estimation procedure not always succeeds. For instance, if
we use the estimated local PSFs shown in Fig. 6.5 for deconvolution, the
reconstruction develops ringing artifacts (see Fig. 6.9(b)). Consequently,
such non-valid PSFs must be identified, removed and replaced. In our case
we replace them by an average of adjacent valid kernels. The main rea-
son why the kernel estimation fails is due to the existence of textureless
or nearly homogenous regions bereft of structures with edges (e.g. blood
vessels) to provide sufficient information (Tallón et al., 2012). To identify
them we devised an eye-domain knowledge strategy. The incorporation of
proper a priori assumptions and domain knowledge about the blur into
the method provides an effective mechanism for a successful identification
of non-valid PSFs. First, because the patient’s eye is part of the imaging
system, it is logical to consider that the PSF’s shape is partly determined
by the eye’s PSF. Moreover, experimental measurements of the eye’s PSF
(Navarro, 2009) have shown it to be characterized by a ring or star shape.
Great deviations from this pattern are unlikely and have no physical basis
supporting them; despite the fact that it could well satisfy a numerical so-
lution. Along the same line of thought, Meitav & Ribak (2012) proposed
a method for enhancing the contrast of high-resolution retinal images. For
the reconstruction process they avoided distant lobes of the estimated PSF
and used only the PSF area that would be under the central lobe and the
first ring of the Airy pattern.

The second aspect to consider is the following. Because the images have
been registered, the peak of maximum intensity of the PSF should tend to
be close to the geometrical center of the PSF space. Or at least, because
we assume the PSF to change smoothly, great shifts between adjacent PSFs
are not expected. From this analysis we defined the following two criteria:

Criterion 1. Characterizing the energy distribution along the local PSF
space. PSFs that are too wide, or have a high energy content concentrated
far from the center, are most likely regions where the PSF estimation failed.
We characterize the distribution by adding the PSF values along concentric
squares and normalizing the resulting vector. Valid kernels should not have
most of the energy concentrated in the last position.

Criterion 2. Measuring the distance from the maximum peak of the local
PSF to the geometrical center. Any PSF with its maximum at a distance
greater than three pixels from the center, in a PSF size of 11× 11 pixels, is
discarded.

In Fig. 6.6 we show the PSF energy distribution and the identification
of regions where the PSF estimation failed (regions with energy distribution
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Fig. 6.6: Characterization of estimated local PSFs by energy distribution. The
ones plotted with white bars correspond to local PSFs with most of the energy
concentrated around the boundaries.

plotted with white bars) based on Criterion 1. The regions identified by
both criteria are represented by white squares in Figures 6.7(a) and (b).
The overall criterion, for identifying the non-valid local PSFs, is the combi-
nation of both criteria (equivalent to a logical OR operation). The procedure
for correcting the non-valid local PSFs consists in replacing them with the
average of adjacent valid kernels. The resulting set of valid local PSFs is
shown in Fig. 6.7(c).

(a) (b) (c)

Fig. 6.7: Identification and replacement of non-valid local PSFs. The white squares
correspond to non-valid local PSFs identified by: (a) Criterion 1, and (b) Crite-
rion 2. (c) New corrected set of 5× 5 local PSFs (compare with Fig. 6.5(b)).
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6.3.4 PSF interpolation

The computation of the SV PSF h is carried out by interpolating the local
PSFs estimated on the regular grid of positions. The PSF values at inter-
mediate positions are computed by bilinear interpolation of four adjacent
known PSFs, (Nagy & O’Leary, 1998) as shown in Fig. 6.8. Indexing any
four adjacent grid points as p = 1 . . . 4 (starting from the top-left corner and
continuing clockwise), the SV PSF in the position between them is defined
as

h(s, t;x, y) =
4∑

p=1

αp(x, y)hp(s, t) , (6.7)

where αp are the coefficients of bilinear interpolation. Let us denote x1 and
x2 minimum and maximum x-coordinates of the sub-window, respectively.
Analogously, y1 and y2 in the y-coordinates. Using auxiliary quantities

tx =
x− x1

x2 − x1
, ty =

y − y1

y2 − y1
, (6.8)

the bilinear coefficients are

α1 = (1− ty)(1− tx) , α2 = (1− ty)tx , α3 = ty(1− tx) , α4 = tytx .
(6.9)

In light of the definition for a SV PSF in Eq. (6.7) we can compute the
convolution of Eq. (6.3) as a sum of four convolutions of the image weighted
by coefficients αp(x, y)

[Hu](x, y) =

∫
u(s, t)h(s, t, x− s, y − t) dsdt ,

=

∫
u(s, t)

4∑

p=1

αp(s, t)hp(x− s, y − t) dsdt ,

=

4∑

p=1

∫
(αp(s, t)u(s, t))hp(x− s, y − t) dsdt ,

=




4∑

p=1

[αpu] ∗ hp


 (x, y) . (6.10)

All first order minimization algorithms (as the one used in the restoration
stage Eq. (6.12)) also need the operator adjoint to H (space-variant coun-
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ÏÏ

Ï Ï

Ï

Interpolated PSF

Fig. 6.8: Because the blur changes gradually, we can estimate convolution kernels
on a grid of positions and approximate the PSF in the rest of the image (bottom
kernel) by interpolation from four adjacent kernels.

terpart of correlation), which is defined as

[H∗u](x, y) =

∫
u(s, t)h(s− x, t− y, x, y) dsdt ,

=

∫
u(s, t)

4∑

p=1

αp(x, y)hp(s− x, t− y) dsdt ,

=

4∑

p=1

αp(x, y)

∫
u(s, t)hp(s− x, t− y) dsdt ,

=

4∑

p=1

αp(x, y)[u~ hp](x, y) , (6.11)

where the symbol ~ represents correlation.

6.3.5 Restoration

Having estimated a reliable SV PSF we proceed to deblur the image. Image
restoration is typically formulated within the Bayesian paradigm, in which
the restored image is sought as the most probable solution to an optimization
problem. The restoration then, can be described as the minimization of the
functional

E(u) = min
u

[
1

2
‖z −Hu‖2 + λ

∫
|∇u| dxdy

]
, (6.12)

where z is the blurred observed image, H is the blurring operator (Eq. (6.10)),
u is the unknown sharp image, and λ is a positive regularization constant,
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which we have set according to a fine-tuning procedure (Marrugo et al.,
2011a). The tuning procedure consists in artificially degrading a retinal
image and restoring it with Eq. (6.12) by varying λ. Because the sharp
original image is known we can compare it against the restored image using
a metric like the peak-signal-to-noise ratio to determine an optimal value
of λ. The first term penalizes the discrepancy between the model and the
observed image. The second term is the regularization term which, as in
Eq. (6.6), serves as a statistical prior. Once again we use total variation,
a regularization technique that exploits the sparsity of image gradients in
natural images. At present, solving the convex functional of Eq. (6.12) is
considered a standard way to achieve close to state-of-the-art restoration
quality without excessive time requirements (Campisi & Egiazarian, 2007).
We used an efficient method (Chambolle & Lions, 1997) to solve Eq. (6.12)
iteratively as a sequence of quadratic functionals

ui+1 = arg min
u

[
1

2
‖z −Hu‖2 + λ

∫ |∇u|2
2|∇ui|

+
|∇ui|

2
dxdy

]
. (6.13)

The functional of Eq. (6.13) bounds the original function in Eq. (6.12) and
has the same value and gradient in the current ui, which guarantees con-
vergence to the global minimum. To solve Eq. (6.13) we used the conjugate
gradient method (Golub & Van Loan, 1996), in which the adjoint operator
(Eq. (6.11)) is used in the gradient of the data term

∂

∂u

1

2
‖z −Hu‖2 = H∗(Hu− z) . (6.14)

Using the operators H and H∗, in forms given by Equations (6.10) and
(6.11), for large PSFs can be sped up significantly by computing convolutions
and correlations using the Fast Fourier transform. For further details, see
the third section in (Chambolle & Lions, 1997).

6.4 Experiments and Results

We performed several experiments to illustrate the appropriateness of the
SV approach for restoring blurred retinal images. Moreover, to achieve an
artifact free restoration we used our strategy for detecting the non-valid
local PSFs and replacing them with a corrected one. All of the images used
in the experiments were acquired within the same session, typically with a
time span between acquisitions of several minutes.

Initially, to show the limits of the space-invariant approach we restored
the blurred retinal image from Fig. 6.2(a) with a single global PSF with the
space-invariant method we proposed in (Marrugo et al., 2011a). Recall that
this image corresponds to the eye fundus of a patient with strong astigma-
tism, which induces a SV blur. The restoration is shown in Fig. 6.3(a) and
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(a) (b) (c)

Fig. 6.9: (a) Original degraded image, (b) space-variant restoration with the PSFs
of Fig. 6.5(b) which include non-valid elements and (c) space-variant restoration
with the corrected PSFs of Fig. 6.7(c). Compare with space-invariant restoration
shown in Fig. 6.3(a). The reader is strongly encouraged to view these images
in full resolution in http://www.goapi.upc.edu/usr/andre/sv-restoration/

index.html

we can clearly observe various artifacts despite an increase in sharpness in
a small number of areas. In view of this, it is evident that the the space-
invariant assumption does not hold in such cases. In the following we move
to the SV approach.

To carry out the SV restoration we estimated the local PSFs on a 5–by–5
grid of image patches as shown in Fig. 6.5. From the estimated PSFs, we
notice a clear variation in shape mainly from the top right corner, where
they are quite narrow, to the bottom corners where they are more spread
and wide. This variation is consistent with the spatial variation of the blur
observed in the retinal image of Fig. 6.2(a). We restored the image with
these local PSFs that were estimated directly without any adjustment. The
restored image is shown in Fig. 6.9(b). One immediately obvious feature
is that in several areas the restoration is rather poor, displaying ringing
artifacts, whereas in others it is to some extent satisfactory. The local poor-
restoration is linked to areas where the PSF estimation failed. By removing
and correcting these non-valid local PSFs, we obtained a noteworthy restora-
tion shown in Fig. 6.9(c). Notice the overall improvement in sharpness and
resolution with small blood vessels properly defined as shown by the image-
details in the third column of Fig. 6.10. It could be said that without
the replacement of the non-valid PSFs the image-quality after restoration
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Original Restored
without PSF correction with PSF correction

Fig. 6.10: Details of restoration. From left to right: the original degraded image,
the space-variant restoration without correction of PSFs, and the space-variant
restoration with the correction.

is certainly worse than the original degraded image (see second column of
Fig. 6.10).

To further demonstrate the capabilities of our method, additional restora-
tion results on real cases from the clinical practice are shown in the fol-
lowing figures. A typical source of retinal image degradation comes from
patients with corneal defects in which the cornea has an irregular structure
(Fig. 6.11(a)). This induces optical aberrations, which are mainly respon-
sible for the space-variant blur observed in the retinal image. The image
details shown in Fig. 6.11(b) reveal a significant improvement in which the
retinal structures are much sharper and enhanced. In Fig. 6.12(a) a full
color retinal image is shown, in which three small hemorrhages are more
easily discernible in the restored image, along with small blood vessels. An-
other retinal image, shown in Fig. 6.12(b), reveals a clear improvement in
resolution with a much finer definition of blood vessels.

In addition, we processed retinal angiography images to test our method
against a different imaging modality. Ocular angiography is a diagnostic
test that documents by means of photographs the dynamic flow of dye in
the blood vessels of the eye (Saine & Tyler, 2002). The ophthalmologists use
these photographs both for diagnosis and as a guide to patient treatment.
Ocular angiography differs from fundus photography in that it requires an
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(a)

Original Restored

(b)

Fig. 6.11: (a) Top: Eye with corneal defects that induce retinal images with SV
degradation. Bottom: zoomed region. (b) Left column: original image with details.
Right column: restored image with details.

exciter–barrier filter set (for further details see (Saine & Tyler, 2002)). The
retinal angiography shown in Fig. 6.13 is degraded with a mild SV blur that
hinders the resolution of small—yet important—details. The restoration
serves to overcome this impediment; this can be observed from the zoomed-
detail of the restored image. The image enhancement may be useful for the
improvement of recent analysis techniques for automated flow dynamics and
identification of clinical relevant anatomy in angiographies (Holmes et al.,
2012).

Finally, another way to demonstrate the added value in deblurring the
retinal images is to extract important features, in this case detection of
blood vessels. Such a procedure is commonly used in many automated dis-
ease detection algorithms. The improvement in resolution paves the way for
a better segmentation of structures with edges. This is in great part due to
the effect of the total variation regularization because it preserves the edge
information in the image. To carry out the detection of the retinal vascula-
ture we used Kirsch’s method (Kirsch, 1971). It is a matched filter algorithm
that computes the gradient by convolution with the image and eight tem-
plates to account for all possible directions. This algorithm has been widely
used for detecting the blood vessels in retinal images (Al-Rawi et al., 2007).
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Original Restored

(a)

Original Restored

(b)

Fig. 6.12: Other retinal images restored with the proposed method. First row:
original and restored full-size retinal images. Second and third rows: image details.

In Fig. 6.14 we show the detection of the blood vessels from a real image of
poor quality image and its restored version using our proposed method. A
significant improvement in blood vessel detection is achieved. Smaller blood
vessels are detected in the restored image, whereas the detection from the
original image barely covers the main branch of the vasculature.

6.5 Discussion

In this chapter we have introduced a method for restoring retinal images
affected by space-variant blur by means of blind deconvolution. To do so,
we described a spatially variant model of blur in terms of a convolution
with a PSF that changes depending on its position. Since the space-variant
degradation changes smoothly across the image, we have showed that the
PSF needs not be computed for all pixels but for a small set of discrete
positions. For any intermediate position bilinear interpolation suffices. In
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6.5 Discussion

Original Restored

Fig. 6.13: Restoration of a retinal angiography. First row: original and restored
full retinal images. Second row: image details.

this way we achieve a space-variant representation of the PSF.
The estimation of accurate local PSFs proved difficult due to the very na-

ture of the images; they usually contain textureless or nearly-homogenous re-
gions that lack retinal structures, such as blood vessels, to provide sufficient
information. In this regard we proposed a strategy based on eye-domain
knowledge to adequately identify and correct such non-valid PSFs. With-
out this, the restoration results are artifact-prone. The proposal has been
tested on a variety of real retinal images coming from the clinical practice.
The details from the restored retinal images show an important enhance-
ment, which is also demonstrated with the improvement in the detection of
the retinal vasculature (see, for instance, the example of Fig. 6.14).
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Fig. 6.14: First row (from left to right): original and restored retinal images.
Second row: detection of blood vessels. Notice how the small blood vessels are
better detected in the restored image.
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Chapter 7

Conclusions

Retinal image analysis is a constantly growing applied and interdisciplinary
field in which any recent development in optics, medical imaging, image
and signal processing, statistical analysis, etc. is likely to find its place to
further augment the capabilities of the modern clinician. Its primary goal is
to have automated image analysis and computer-aided diagnosis ubiquitous
and effective enough that ultimately leads to the improvement of the health-
care system, thus enhancing the health and quality of the general population.

When we started this thesis the aforementioned goal seemed rather far,
today many strong initiatives are being developed to solidify the use of
computer-aided diagnosis in many different medical fields. Ophthalmology
is a field that is heavily dependent on the analysis of digital images be-
cause they can aid in establishing an early diagnosis even before the first
symptoms appear. In this way it is easier to stop the development of many
ocular diseases when they are in the early stages. As such we have made
our best effort to contribute and find solutions to different problems along
the imaging pipeline. We have dealt with problems arising in image acqui-
sition (Chapters 3 and 4), poor image quality (Chapters 4, 5, and 6), and
extraction of features of medical relevancy (Chapters 2 and 5). By improv-
ing the acquisition procedure, sorting the images by quality, or enhancing
the images, among the different topics we have covered herein, we leverage
the potential use of the images in the clinical setting. This has been our
motivation throughout this thesis and the true common denominator of all
chapters.

In every chapter we have tried to solve a particular problem, we have
proposed a solution and in doing so we have opened new avenues for research
that have been, to some extent, dealt with in subsequent chapters. For the
most part, in my humble opinion this is how research is done, and if you
allow me the simile, it is like trying to find the next piece of a puzzle to
which you have little idea what it looks like until you find more pieces. This
is why in this concluding chapter we revisit the key pieces of this thesis and

117



Conclusions

draw specific conclusions that hopefully will help the reader to form and
identify the contributions within the overarching story of this thesis.

On Retinal Image Acquisition

Retinal image quality

Whether it be for medical interpretation or for automated analysis, good
quality retinal images are always required in order to extract meaningful
information that is medically relevant. As we discussed in Chapter 3, there
are a number of different difficulties in the imaging process that lead to
artifacts and images of poor quality. Sorting images in terms of quality is
certainly an extremely difficult task due to the complexity of the problem,
yet we studied it from a no-reference image quality metric perspective.

1. From the different state-of-the-art no-reference quality metrics that
we considered, and their applicability to fundus imaging, we found
the metric based on a measure of anisotropy proposed by Gabarda &
Cristóbal (2007) to be the best. On top of this metric we proposed
a modification that accounts for local quality requirements (by way
of a weighting function, see § 3.2) which is commonplace in retinal
imaging.

2. The performance of each metric was compared to that of two expert
readers. From this we found the anisotropy measure to show the best
agreement. It was not unexpected to find that the visibility of retinal
structures, like the blood vessels, is one of the most important features
to take into account when evaluating retinal image quality. Moreover,
we did determine that anisotropy, by which we mean quantifying the
fact that when an image is degraded the structures within change
in a directional way, is a good indicator of image sharpness. This
enabled us to rethink other strategies like those used while focusing
for obtaining the sharpest image (Chapter 4).

Robust focusing

5. Following from our preliminary results on no-reference image quality
metrics, we designed a focus measure for non-mydriatic fundus imag-
ing that would take into account the anisotropic properties of image
degradation (Chapter 4). The proposed focus measure is based on a
weighted directional variance of the normalized discrete cosine trans-
form. The normalization is carried out in order to achieve illumination
invariance. This is due to the fact that illumination may change during
acquisition because of the dynamic properties of the fundus imaging
device and the eye itself.
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6. Another important aspect that we considered was to achieve sufficient
robustness to noise, so that the sharpest image is properly identified.
Because the focusing is carried out in the near infrared, the images
are noise-prone. To address this issue we optimized the weights with
a test set of images corrupted with different types of noise. From this
procedure we found that a strong emphasis should be put to mid-
frequency coefficients (see § 4.3.3), rather than to high frequencies
that are prone to noise contamination. The mid-frequency coefficients
contain information of basic structure, but not sharp details in the
high frequencies, that seem to be sufficient for correct focusing.

7. The focus measure performance was compared, by means of simulated
and real images, to that of other standard focus measures (§ 4.2).
The results clearly showed that our measure outperformed the con-
sidered measures in robustness and accuracy. Once again, measur-
ing anisotropy proves to be a reliable approach for quantifying image
degradation, and may be a practical approach for the design of the
autofocus function in modern retinal cameras.

8. In our study we included several young and elderly subjects to assess
the limitations of the proposed focus measure. We found no significant
differences between the focusing curves (§ 4.4.2), although there was
some difficulty in the acquisition of images from the elderly subjects
handicapped by unstable fixation.

On Retinal Image Enhancement

There are a number of reasons for wanting to enhance (restore) retinal im-
ages, but the most important is that relevant information may be extracted
from them. Fundus imaging is a complex process in which many things may
go wrong (§ 3.1.2) and the end result is an image of poor quality. Just as
there are certain types of degradations, there are also image enhancements
tailored to address them.

Non-uniform illumination

Despite controlled conditions, many retinal images suffer from non-uniform
illumination and poor contrast given by several factors like the curved sur-
face of the retina or pupil dilation. The curved retinal surface and the
geometrical configuration of the light source and camera, lead to a poorly
illuminated peripheral part of the retina with respect to the central part.

9. To address this limitation we have developed a strategy based on the
knowledge of the luminosity distribution in the retina (§ 3.3). Our
strategy is based on the idea that a retinal image can be separated
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into a foreground (composed of retinal structures like the vasculature
or the optic disc) and a background (the fundus free of any structure).
To make the illumination uniform across the whole field of view the
background luminosity must be properly estimated. To this end, on
top of the pixel classification procedure described by Foracchia et al.
(2005), we performed additional Principal Component Analysis to cor-
rectly identify and leave out the optic disc region from the background
estimation so as not to bias the luminosity component. The resulting
enhanced images (Fig. 3.15) show a remarkable gain in contrast and
a much more uniform illumination distribution, in spite of a minor
decrease in overall intensity.

Retinal image deblurring

Blur is one of the main image quality degradations in eye fundus imaging.
It significantly hinders the clinical use of the images. Image deconvolution
is the appropriate way to address this problem and we have done so in
two different—yet complementary—approaches. The most general case is
that the blur varies across the whole field of view, which can be described
by a space-variant point-spread function (PSF). In small regions where the
variation of blur is negligible, the PSF is considered space-invariant. This is
the so-called isoplanatic patch (Bedggood et al., 2008). In some cases if the
blur varies little throughout the field of view, the blur of the whole image
can be considered to be caused by a space-invariant PSF.

The space-invariant approach. It is the most common constraint of
the deconvolution approaches reported in the literature. For this reason
this was the first approach we considered when deblurring retinal images
(Chapter 5).

10. Because the PSF that blurred the image is unknown we must make
use of a blind deconvolution strategy. Specifically, we proposed an im-
age enhancement strategy based on multichannel blind deconvolution
(§ 5.2.1). The multichannel aspect refers to the use of two or more im-
ages for deconvolution which adds information redundancy and better
poses the problem.

11. An important part of our approach is that we have been able to use
pairs of images from the same patient acquired even months apart. To
the best of our knowledge this has no precedent in the literature. This
has been possible because in retinal imaging the acquisition conditions
change little. Nonetheless, in our approach we have to preprocess the
images to adjust them and have them comply with the degradation
model (§ 5.3). Regardless that the acquisitions conditions remain rel-
atively constant in time, the retina can indeed change locally due to
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pathological developments (hemorrhages, micro-aneurysms, etc.). To
address this problem we developed a strategy for identifying and mask-
ing such changes because convolution with a PSF cannot account for
them (§ 5.4.3).

12. We tested our approach on a set of synthetically degraded images and
obtained significant enhancements. When compared with a state-of-
the-art single-channel blind deconvolution, the multi-channel scheme
is considerably superior (§ 5.5.1). Results on real images showed a re-
markable enhancement evidenced by the increase in visibility of details
such as small blood vessels or pathological structures (§ 5.5.2).

The space-variant approach. There are some situations in which the
space-invariant approach fails because the blur changes considerably through-
out the field of view. For that reason we have proposed a space-variant
retinal image enhancement technique (Chapter 6).

13. The technique is based on the fact that the space-variant PSF can be
locally considered space-invariant. This means that we can estimate
local PSFs by dividing the image in a grid of small patches. However,
unlike other works, we do not deconvolve the image per patch and later
stitch the patches together to produce the restored image. We do esti-
mate the PSFs per patch, with the approach described in Chapter 5,
but later sew them through interpolation to build the space-variant
PSF.

14. The estimation of the local PSFs may sometimes fail due to the prop-
erties of retinal images; i.e. they usually contain textureless or nearly
homogenous regions that lack retinal structures to provide sufficient
information. To address this problem we have designed a strategy that
takes into account two criteria based on the knowledge of the PSF of
the eye and the conditions of acquisition. Without this process, the
deconvolution results are artifact-prone.

• PSFs that are too wide, or have a high energy content concen-
trated far from the center, are most likely regions where the PSF
estimation failed. The distribution is characterized by adding
the PSF values along concentric squares and normalizing the re-
sulting vector. Valid kernels should not have most of the energy
concentrated in the last position.

• Measuring the distance from the maximum peak of the local PSF
to the geometrical center. Any PSF with its maximum at a dis-
tance greater than a predetermined threshold distance from the
center is discarded. The threshold distance depends on the PSF
size.
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15. The deconvolution is carried out with the space-variant PSF in the
way detailed in § 6.3.5. We have tested our approach on a variety of
real retinal images coming from the clinical practice. The details from
the restored images show a remarkable enhancement in visibility of
subtle details like small blood vessels (Fig. 6.10). This has also been
demonstrated with the improvement in the detection of the retinal
vasculature (Fig. 6.14). We believe this to be a significant contribution
that can leverage the clinical use of blurred retinal images, that would
otherwise be discarded because of low quality.

On Retinal Image Feature Extraction

Optic disc segmentation

As we mentioned in Chapter 2, segmentation of the optic disc (or optic
nerve head) was the first problem we have addressed in this thesis because
previous efforts had been carried out in our research group.

16. To that end we have analyzed the work of Valencia et al. (2006) and
have determined possible drawbacks. Although an important contri-
bution, the authors assumed the optic disc contour of approximately
circular shape, which is a limitation when segmenting optic discs of
a more elongated shape. In addition, because Valencia et al. (2006)
proposed the extraction of the contour by means of a pixel-wise color
difference approach, we have studied how lossy compression (classic
JPEG and JPEG-2000) may influence the segmentation. Our results
have showed that such an approach is not advisable if the images have
been lossy compressed with mid-to-high compression ratios. However,
by comparing the results of classic JPEG versus JPEG-2000, the lat-
ter seems more suitable due to the fact that segmentation results have
been more reliable and reproducible.

17. After having analyzed the approach of Valencia et al. (2006) we deter-
mined that a more general and robust approach was needed to perform
the segmentation of the optic disc. For this reason we have proposed in
§ 2.3 a segmentation scheme based on active contours and mathemati-
cal morphology in the color space. Because one of the main difficulties
in segmenting the optic disc lies in the lack of homogeneity in the optic
disc region, it is fragmented into multiple subregions by blood vessels,
we have carried out a closing operation to remove the blood vessels.
This was successfully achieved (Fig. 2.9) by taking into account the
color properties of the region. Another important aspect of this pre-
processing is that any lossy compression artifact that may be present
in the image is removed because of the closing operation that yields a
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rather uniform optic disc without blood vessels. Our results showed
that if the preprocessing is successful, the active contour locks and
segments the optic disc within acceptable accuracy when compared to
the hand-labelled ground-truth produced by an expert (§ 2.3.3).

Longitudinal change detection

18. Our proposed approach for deblurring retinal images (Chapter 5) re-
quired a number of preprocessing steps, which in turn became a great
opportunity to meet one of the main concerns of ophthalmologists
when they visually compare retinal images of the same retina over
time. Central to the task of determining disease progression is the dis-
tinction of true change from variability. The detection of longitudinal
changes in retinal images is not an easy task, and even today it is still
performed manually (Xiao et al., 2012, Narasimha-Iyer et al., 2006),
although the use of computer-aided diagnosis systems is becoming a
reality in the clinical setting.

19. By properly registering the images and compensating for illumination
distribution differences, we have been able to identify true structural
changes pertaining to possible pathological damage or healing. Thus,
any change caused by variation of illumination or blur is disregarded.
Moreover, the statistical significance test, following the underlying idea
that changes must be associated with a group of pixels, proved suffi-
cient for identifying the change and no-change regions (§ 5.4.3). This
is a powerful tool for the clinician so that his attention is drawn to
the area of interest and further investigates the causes of such changes
(Fig. 5.6).

Future Research

The results of this thesis have opened several new avenues for research and
applications. Whenever possible we have tried to address such concerns
herein, but it is clear that there is still room for improvement. For instance,
in the case of retinal image enhancement a possible application is found in
the restoration of stereo retinal images for depth estimation. Most stereo
images do not satisfy the brightness constancy assumption along with the
expected blurring of some parts of the images because photographers find it
difficult to focus two images simultaneously. Research can also be conducted
to compare the restoration results with deconvolution from wavefront sens-
ing fundus imagers to determine if our methods could be a suitable and
inexpensive alternative. Determining a robust approach for estimating a
reliable point-spread function (whether space-variant or invariant) is still a
open issue and we are currently pursuing such line of work.
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Even though we have used real images from the clinical practice, it is
evident that the proposed algorithms need further validation on a greater set
of patients. This will probably show aspects worth improving and to verify
its statistical validity. This requires a collaboration work with other research
groups in the field of ophthalmology with access to the clinical practice.

Another line of work is the use of images from multiple modalities. This
enables the extraction of information from different sources, even from sev-
eral not directly related to photographic fundus imaging, like Optical Co-
herence Tomography, Polarimetric imaging, laser scanning, among others.

Finally, we recognize that the one of the greatest challenges in retinal
image analysis comes from the inherent variability of the appearance of the
retina throughout the general population. We believe this to be one of the
key aspects that offers opportunities for further research. Adapting our
methods to such variation is a goal worth pursuing.
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A. G. Marrugo, Michal Šorel, Filip Šroubek, and Maŕıa S Millán, “Retinal
image restoration by means of blind deconvolution”, Journal of Biomedical
Optics, 16(11):116016, (2011).

A. G. Marrugo, M. S. Millán, G. Cristóbal, S. Gabarda, and H. C. Abril,
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