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Resumen

Hoy en día 
on el desarrollo de sensores iner
iales basados en Sistemas Mi
ro-

ele
trome
áni
os (MEMS), podemos en
ontrar a
elerómetros y girós
opos embebidos

en diferentes dispositivos y plataformas, teniéndolos en relojes, teléfonos inteligentes,


onsolas de video juego hasta sistemas de navega
ión terrestre y vehí
ulos aéreos

no tripulados (UAVs), et
. A pesar del amplio rango de apli
a
iones donde están

siendo utilizados, los sensores iner
iales de bajo 
osto (grado MEMs) son afe
tados por

errores aleatorios y determinísti
os que degradan el rendimiento de los sistemas, en

espe
ial, los sistemas de navega
ión, un ejemplo de ello es la integra
ión del Sistema

de Posi
ionamiento Global (GPS) y el Sistema de Navega
ión Iner
ial (INS). Aunque

diferentes investiga
iones se han realizado para minimizar y modelar el error esto
ásti
o

de los sensores iner
iales MEMS, la estima
ión de los parámetros de este error y su

elimina
ión sigue siendo una tarea po
o fá
il de realizar. Por este motivo, en esta tesis

planteamos solu
iones para fa
ilitar la estima
ión de los parámetros y la 
ompensa
ión

del error esto
ásti
o, espe
í�
amente, para el bias-drift, 
on el propósito de mejorar

el rendimiento del sistema integrado GPS/INS basado en MEMS. Adi
ionalmente, el

sistema de navega
ión es implementado en un Arreglo de Compuertas Programables en

Campo (FPGA), donde se exploran las posibilidades que este tipo de plataformas puede

ofre
er y 
omo re
ursos hardware dedi
ados podrían ser utilizados para a
elerar el �ltro

de navega
ión que es donde se presenta el mayor 
osto 
omputa
ional. Finalmente, 
on

el �n de evaluar la 
ompensa
ión del error esto
ásti
o, el Filtro de Kalman Extendido

(EKF) de la estrategia de integra
ión loosely-
oupled GPS/INS es aumentado 
on

diferentes modelos del error. Los resultados muestran el rendimiento del sistema de

navega
ión 
uando se realiza la 
ompensa
ión del bias-drift bajo bloqueos de la señal del

GPS, utilizando datos reales re
ole
tados en un vehí
ulo terrestre en varias 
ampañas.
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Abstra
t

Nowadays with the development of inertial sensors based on Mi
ro-Ele
trome
hani
al

Systems (MEMS), embedded a

elerometers and gyros
opes 
an be found in several

devi
es and platforms ranging from wat
hes, smart phones, video game 
onsoles

up to terrestrial navigation systems and unmanned aerial vehi
les (UAVs), et
.

Despite the wide range of appli
ations where su
h sensors are being used, low 
ost

inertial sensors (MEMS grade) are a�e
ted by random and deterministi
 errors that

degrade the systems performan
e, espe
ially, in navigation systems like the Global

Positioning System (GPS)/Inertial Navigation System (INS) integration. Albeit

di�erent resear
hes have been 
ondu
ted to minimize and model the sto
hasti
 error

of MEMS inertial sensors, the estimation of the random noise parameters and its

attenuation is still a non-trivial task. Therefore, in this thesis we propose solutions to

fa
ilitate the estimation of the parameters or the sto
hasti
 error and its 
ompensation,

spe
i�
ally, for the bias-drift, with the aim of enhan
ing the performan
e of MEMS

based INS/GPS integrated systems. Additionally, we implement the navigation system

on a Field Programmable Gate Array (FPGA), where we explore the possibilities

that this sort of platforms 
ould o�er and how dedi
ated hardware resour
es 
ould

be used to a

elerate the navigation �lter, that presents the highest 
omputational

burned. Eventually, in order to assess the 
ompensation of the sto
hasti
 error, the

Extended Kalman Filter (EKF) of the loosely-
oupled GPS/INS integration strategy is

augmented with di�erent error models. Results show the performan
e of the navigation

system during the 
ompensation of the bias-drift under GPS signal blo
kages using real

data 
olle
ted in a land vehi
le during several 
ampaigns.

II



A
knowledgments

Now that my thesis is 
oming to an end, I would like to express my gratitude to all those

who have been part of this work. First, I want to sin
erely thank my supervisor, Prof.

Carles Ferrer for his 
ontinuous en
ouragement, guidan
e, for the �nan
ial support

and for giving me the opportunity to address the 
hallenge that involves a Phd. I also

thank members and ex-members of the Department of Mi
roele
troni
s and Ele
troni
s

Systems of the Universitat Autònoma de Bar
elona, espe
ially, Dr. Elena Martin who

gave me advi
e and the members of the examination 
ommittee for the useful 
omments

on this work. I would also like to thank Prof. Joan Oliver for his motivation and for

providing me guidan
e during the hardware development. In addition, I express my

gratitude to Jordi Guerrero, Sergio Villar, Vi
tor Soler, Biruk Geta
hew and Josep

Maria Sanz that in one way or another have helped me in various experiments. I thank

Carlos Pre
kler, Alfred Raúl Giménez, José Caballero, Sergi San
hez, Adria Mendiz

and Gustavo Valera for helping me in preparing the �eld tests and their support during

the data 
olle
tion.

I am also very grateful to Prof. Fabio Dovis for his en
ouragement, support and

for giving me the opportunity to be part of the Navsas resear
h group at Polite
ni
o di

Torino, where I learned a lot. I would like to express my sin
ere thanks to Dr. Gianlu
a

Fal
o from this group for his guidan
e, 
ontinuous support and for the dis
ussions and


omments that helped me to improve my thesis. I also would like to express my

gratitude to Dr. Mar
o Pini, Dr. Emanuela Falleti and Dr. Gianlu
a Maru

o for the

support and help they gave me during my stage at the Istituto Superiore Mario Boella.

I am grateful to Dr. Nuria Blan
o Delgado for her 
ooperation and en
ouragement

and to Dr. Isaa
 Skog for providing me valuable information and the opportunity to

visit the Signal Pro
essing Lab at the Royal Institute of Te
hnology.

III



I gratefully a
knowledge the partially funding of my resear
h to the Universitat

Autónoma de Bar
elona as Personal Investigador en Forma
ión (PIF).

Last but not the least, I would like to thank my friends I spent great time with

during these years and my family for their un
onditional love and support during this

long journey. Thanks to the universe for everything.

IV



Table of 
ontents

Resumen I

Abstra
t II

A
knowledgments III

1 Introdu
tion 1

1.1 Ba
kground and Obje
tives . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Inertial Navigation System and GPS/INS Integration 1

2.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 Referen
e Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2.1 Inertial Frame (i-frame) . . . . . . . . . . . . . . . . . . . . . . 3

2.2.2 Earth Frame (e-frame) . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.3 Navigation Frame (n-frame) . . . . . . . . . . . . . . . . . . . . 4

2.2.4 Body Frame (b-frame) . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Coordinate Transformations . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Rotation Matri
es . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Angular Velo
ity Ve
tors . . . . . . . . . . . . . . . . . . . . . 7

2.4 Navigation and Me
hanization Equations . . . . . . . . . . . . . . . . 9

V



TABLE OF CONTENTS

2.4.1 Navigation Equations . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Me
hanization Equations . . . . . . . . . . . . . . . . . . . . . 12

2.5 GPS/INS Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Bene�ts of GPS/INS Integration . . . . . . . . . . . . . . . . . 17

2.5.2 GPS/INS Integration Approa
hes . . . . . . . . . . . . . . . . 18

2.6 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Dynami
 Model . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.2 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.3 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . 25

2.6.4 KF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 MEMS IMU Inertial Sensors Errors 31

3.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 MEMS Inertial Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Mi
roele
trome
hani
al Systems (MEMS) . . . . . . . . . . . . 32

3.2.2 Operational Prin
iple of MEMS Inertial Sensors . . . . . . . . 33

3.2.3 Classi�
ation of MEMS Inertial Sensors . . . . . . . . . . . . . 38

3.2.4 General Chara
teristi
s of MEMS Inertial Sensors . . . . . . . 39

3.3 Inertial Measurement Unit (IMU) . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Classi�
ation of IMUs . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 MEMS IMUs Errors . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Inertial Sensors Deterministi
 Error . . . . . . . . . . . . . . . . . . . 50

3.4.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.2 Multi-position Calibration Method . . . . . . . . . . . . . . . . 52

3.4.3 A

elerometers Calibration . . . . . . . . . . . . . . . . . . . . 52

3.4.4 Gyros Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 54

VI



TABLE OF CONTENTS

3.4.5 Thermal Calibration Test . . . . . . . . . . . . . . . . . . . . . 55

3.5 Inertial Sensors Sto
hasti
 Error . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Noise Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.2 Inertial Sensor Error Models . . . . . . . . . . . . . . . . . . . 61

4 Sto
hasti
 Modelling of MEMS Inertial Sensors 67

4.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Identifying and Extra
ting Sto
hasti
 Model Parameters . . . . . . . . 67

4.2.1 Auto
orrelation . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Autoregressive Pro
esses . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Power Spe
tral Density . . . . . . . . . . . . . . . . . . . . . . 71

4.2.4 Allan Varian
e . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.5 Wavelet De-Noising . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Auto
orrelation Analysis . . . . . . . . . . . . . . . . . . . . . 77

4.3.2 AR Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.3 PSD Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.4 AV Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.5 Wavelet De-Noising with Allan Varian
e . . . . . . . . . . . . . 86

4.4 INS Bias Model Adapted to the Loosely-Coupled KF . . . . . . . . . . 90

4.5 Constrained Non-linear Fitting . . . . . . . . . . . . . . . . . . . . . . 91

4.5.1 Allan Varian
e Limitations . . . . . . . . . . . . . . . . . . . . 91

4.5.2 Constrained Expe
tation Maximization (EM) . . . . . . . . . . 92

4.5.3 Constrained Non-linear Fitting (NLF) . . . . . . . . . . . . . . 94

VII



TABLE OF CONTENTS

5 Ar
hite
ture Based on FPGA for GPS/INS Integration 117

5.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Platform Based on FPGA . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.1 Field Programmable Gate Array (FPGA) . . . . . . . . . . . . 121

5.3.2 Requirements and Spe
i�
ations . . . . . . . . . . . . . . . . . 122

5.4 GPS/INS Integration Based on FPGA . . . . . . . . . . . . . . . . . . 124

5.4.1 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . 125

5.4.2 Software Development . . . . . . . . . . . . . . . . . . . . . . . 126

5.4.3 Hardware Resour
es . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.4 Matrix Multipli
ation in Hardware . . . . . . . . . . . . . . . . 134

5.5 Testing the Navigation Platform Based on FPGA . . . . . . . . . . . . 142

5.5.1 Mobile Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5.2 Flight Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.5.3 Land vehi
le . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Results and Dis
ussion 149

6.1 Land Vehi
le Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1.1 First Traje
tory Turin . . . . . . . . . . . . . . . . . . . . . . . 151

6.1.2 Se
ond Traje
tory Turin . . . . . . . . . . . . . . . . . . . . . . 154

6.2 Land Vehi
le Test Using FPGA Platform for A
quisition . . . . . . . . 158

6.2.1 First Traje
tory Bar
elona . . . . . . . . . . . . . . . . . . . . 160

6.2.2 Se
ond Traje
tory Bar
elona . . . . . . . . . . . . . . . . . . . 163

7 Con
lusions and Future A
tivities 168

VIII



TABLE OF CONTENTS

A IMU Error State-Spa
e Implementation in the KF 172

A.1 IMU Error State-Spa
e for the 18 State AV Model . . . . . . . . . . . 172

A.2 IMU Error State-Spa
e for the 27 States with Third Order AR Models 175

Bibliography 177

IX



List of tables

2.1 Inertial and GPS advantages and disadvantages (adopted from [56℄). . 18

3.1 Classi�
ation of MEMS sensors a

ording to fabri
ation pro
esses

(adopted from [75℄). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 MEMS IMUs available in the lab of Mi
roele
troni
s and Ele
troni
s

Systems at UAB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Inertial Measurement Units 
ategories. . . . . . . . . . . . . . . . . . . 48

3.4 A

elerometers and gyros deterministi
 errors for the Atomi
 IMU at

20 ˝C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 A

elerometers and gyros deterministi
 errors for the 3DM-GX3-25 IMU

at 20 ˝C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Random error for Power Spe
tral Density analysis [9℄. . . . . . . . . . 59

4.1 Random error for Allan varian
e analysis [9℄. . . . . . . . . . . . . . . 73

4.2 Autoregressive pro
ess 
oe�
ients for ea
h inertial sensor obtained with

Burg's method after wavelet de-noising with six LOD. . . . . . . . . . 80

4.3 Identi�ed error 
oe�
ients for a

elerometers and gyro of the

3DM-GX3-25 IMU with PSD. . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Identi�ed error 
oe�
ients for a

elerometers and gyro of the

3DM-GX3-25 IMU with AV. . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Identi�ed 
orrelation time, pTcq, for the bias instability (B) and standard
deviation for ea
h inertial sensor of the 3DM-GX3-25 IMU. . . . . . . 86

X



LIST OF TABLES

4.6 Maximum horizontal position error during GPS outages before and after

applying wavelet de-noising. . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Wavelet de-noising parameters for ea
h sensor under kinemati



onditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 GPS/INS integration real-time feasibility using XUP-V5 board. . . . . 133

5.2 Devi
e and memory utilization summary. . . . . . . . . . . . . . . . . 134

5.3 Matrix multiply resour
es utilization summary. . . . . . . . . . . . . . 142

5.4 A

ura
y 
omparison between µ-blaze and Matlab 
omputation. . . . 144

5.5 Altitude and horizontal plane position error during GPS outages. . . . 147

6.1 Number of states in the loosely-
oupled integration ar
hite
ture for

di�erent error models. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Maximum and mean horizontal position error during GPS outages for

traje
tory 1. 15AR, 15 state AR; 27AR, 27 state AR; 15AV, 15 state

AV; 18AV, 18 state AV; 18AVWD, 18 state AV with wavelet de-noising. 153

6.3 Maximum and mean horizontal position error during GPS outages for

traje
tory 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4 Sto
hasti
 error models for ea
h IMU adapted to the loosely-
oupled

GPS/INS integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.5 Maximum and mean horizontal position error during GPS outages for

traje
tory 1 BCN. AT-AV, Atomi
 IMU with AV; AT-NLF, Atomi
 IMU

with NLF; 3DM-AV, 3DM-GX3 IMU with AV; 3DM-NLF, 3DM-GX3

IMU with NLF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.6 Maximum and mean horizontal position error during GPS outages for

traje
tory 2 BCN. NLF TD 10 ˝C; NLF TD 20 ˝C; NLF TD 30 ˝C;

NLF TD 40 ˝C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

XI



List of �gures

2.1 Implementation of Inertial Navigation Systems (adopted from [42℄). . . 2

2.2 The inertial frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 The ECEF and NED 
oordinate systems. . . . . . . . . . . . . . . . . 5

2.4 The body frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 INS me
hanization in the n-frame (adopted from [55℄). . . . . . . . . . 16

2.6 Flow diagram for the me
hanization. . . . . . . . . . . . . . . . . . . . 16

2.7 Loosely-
oupled Kalman Filter (KF) integration with feedba
k [53℄. . . 19

2.8 Tightly-
oupled Kalman Filter (KF) integration [53℄. . . . . . . . . . . 20

2.9 Dis
rete Kalman �lter algorithm. . . . . . . . . . . . . . . . . . . . . . 30

3.1 Ele
tro-Me
hani
al mass/spring system for a simple a

elerometer. . . 33

3.2 Ele
tro-Me
hani
al mass/spring system for a simple vibratory rate

gyros
ope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Simpli�ed gyro sensing stru
ture of one gyros
ope of the 3DM GX3 25

IMU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Relationship between the output voltage and input a

eleration (angular

velo
ity) (Adopted from [88℄). . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Inertial Measurement Unit (IMU). . . . . . . . . . . . . . . . . . . . . 46

3.6 (a) 3DM-GX3-25 IMU; (b) Atomi
 IMU. . . . . . . . . . . . . . . . . 46

3.7 Inertial sensor errors in
luding misalignments, s
ale fa
tors, biases and

measurement noise [88℄. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

XII



LIST OF FIGURES

3.8 IMU misalignments: The nonorthogonal axes of the a

elerometers

tXa,Y a,Zau 
an be aligned with the orthogonal body axes tXb,Y b,Zbu
through the six angles tαxy,αxz,αyx,αyz,αzx,αzyu [88℄. . . . . . . . . . . 49

3.9 Up and down position for 
alibration of z-axis a

elerometer with gravity

as referen
e signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Up and down position for 
alibration of z-axis gyro with known angular

velo
ity as referen
e signal. . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 (a) Variation of gyros s
ale fa
tor error for the Atomi
 IMU; (b)

Variation of gyros s
ale fa
tor error for the 3DM-GX3 IMU. . . . . . . 56

3.12 Hypotheti
al PSD in single-sided form of an Inertial Sensor [11℄. . . . 58

3.13 Hypotheti
al power spe
tral density of a �rst order Gauss-Markov

pro
ess for a Gyro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 The auto
orrelation fun
tion of the �rst order Gauss-Markov pro
ess. 69

4.2 (a) A

elerometer bias-drift modeled with two di�erent �rst order

Gauss Markov pro
esses; (b)Auto
orrelation 
urve of two �rst order

Gauss Markov pro
esses. . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Hypotheti
al Allan varian
e (AV) of an inertial sensor [9℄. . . . . . . . 73

4.4 Filter banks of the dis
rete wavelet transform. . . . . . . . . . . . . . 75

4.5 Band frequen
y distribution after applying four levels of de
omposition. 75

4.6 (a) IMU 3DM-GX3-25 auto
orrelation for a

elerometers; (b) IMU

3DM-GX3-25 auto
orrelation for a

elerometers after applying wavelet

de-noising with six levels of de
omposition (LOD). . . . . . . . . . . . 78

4.7 (a) IMU 3DM-GX3-25 auto
orrelation for gyros; (b) IMU 3DMGX3-25

auto
orrelation for gyros after applying wavelet de-noising with six LOD. 79

4.8 (a) Power spe
tral density a

elerometer IMU 3DM-GX3-25; (b)

power spe
tral density a

elerometer IMU 3DM-GX3-25 after frequen
y

averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 Power spe
tral density a

elerometer Z IMU 3DM-GX-25. . . . . . . . 81

XIII



LIST OF FIGURES

4.10 (a) Power spe
tral density gyro IMU 3DM-GX3-25; (b) power spe
tral

density gyro IMU 3DM-GX3-25 after applying frequen
y averaging. . 82

4.11 (a) IMU 3DM-GX3-25 Allan varian
e for a

elerometers; (b) IMU

3DM-GX3-25 Allan varian
e for a

elerometer Z. . . . . . . . . . . . . 84

4.12 IMU 3DM-GX3-25 Allan varian
e for three gyro axes. . . . . . . . . . 84

4.13 Allan varian
e a

elerometer Z IMU 3DM-GX-25 after applying wavelet

de-noising with three and eight levels of de
omposition. . . . . . . . . 87

4.14 (a) First and (b) se
ond traje
tory test in Matlab with the GPS outages

that were introdu
ed intentionally to analyze the e�e
t of wavelet

de-nosing with di�erent LOD. . . . . . . . . . . . . . . . . . . . . . . . 88

4.15 (a) Allan varian
e of a �rst order GM pro
ess; (b) Random walk and

white noise for the Allan varian
e of a �rst order GM pro
ess. . . . . . 96

4.16 Allan varian
e of angle random walk (N) plus rate random walk (K). . 97

4.17 Allan varian
e of angle random walk (N) plus rate random walk (K)

with 
onstraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.18 Allan varian
e of a �i
ker noise with three �rst order Gauss Markov

pro
ess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.19 Allan varian
e of a mixture of �i
ker noise, WN and RW for an

a

elerometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.20 Allan varian
e of a mixture of �i
ker noise and WN for a gyro. . . . . 105

4.21 Allan varian
e of a mixture of WN, two �rst order GM pro
esses and a

RW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.22 Performan
e 
omparison between EM and NLF for 100 realizations of a


ombination of WN, two �rst order Gauss-Markov pro
esses and a RW. 109

4.23 Performan
e 
omparison between EM and NLF for 100 realizations of a

mixture of WN, two �rst order Gauss-Markov pro
esses and a RW. . . 109

4.24 (a) 3DM-GX3-25 IMU and Atomi
 IMU Allan varian
e for

a

elerometers; (b) 3DM-GX3-25 IMU and Atomi
 Allan varian
e for

gyros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

XIV



LIST OF FIGURES

4.25 Performan
e of the NLF for the IMU 3DM-GX3-25 a

elerometer Z. . 111

4.26 Performan
e of the NLF for the Atomi
 IMU gyro Z. . . . . . . . . . . 112

4.27 (a) IMU 3DM-GX3-25 Allan varian
e for a

elerometer Y at di�erent

temperature points; (b) IMU 3DM-GX3-25 Allan varian
e for gyro Y at

di�erent temperature points. . . . . . . . . . . . . . . . . . . . . . . . 115

4.28 (a) Covarian
e of a �rst order GM pro
ess pσ2
GM2q for the three di�erent

a

elerometers at di�erent temperature points; (b) Covarian
e of the

white noise pσ2
WNq for the three gyros at di�erent temperature points. 116

5.1 Generi
 FPGA ar
hite
ture. . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 General system 
omponents. . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Ar
hite
ture for the GPS/INS integration. . . . . . . . . . . . . . . . . 125

5.4 Flow diagram for the loosely-
oupled GPS/INS integration. . . . . . . 127

5.5 Timing diagram for Atomi
 IMU a
quisition. . . . . . . . . . . . . . . 129

5.6 Flow diagram to read GPS re
eiver and Atomi
 IMU. . . . . . . . . . 130

5.7 Memory map for the embedded system. . . . . . . . . . . . . . . . . . 131

5.8 Time frame within 1 sec of µ-blaze 
omputation at 125MHz. . . . . . 133

5.9 Pro

esing element with a DSP48E blo
k. . . . . . . . . . . . . . . . . 135

5.10 Matrix multiplier array with DSP48E blo
ks adapted to Mi
roblaze. . 136

5.11 Matrix multiplier with two stages and six DSP48E blo
ks. . . . . . . . 138

5.12 Simulation of Matrix multiplier A ˆ B ˆ C implemented in VHDL. . . 139

5.13 Terrestrial robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.14 (a) Terrestrial robot traje
tory; (b) Matlab and FPGA solution for the

two MEMS based IMUs. . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.15 Horizontal position error for FPGA solutions. . . . . . . . . . . . . . . 144

5.16 (a) Air
raft traje
tory in Google Earth; (b) Air
raft traje
tory with

three arti�
ial GPS outages. . . . . . . . . . . . . . . . . . . . . . . . 146

XV



LIST OF FIGURES

5.17 Referen
e and FPGA solution traje
tory in 3D plot with three outages. 146

5.18 (a) Maximum horizontal position error during GPS outages; (b)

Maximum altitude position error during GPS outages. . . . . . . . . . 147

5.19 Land vehi
le equipment. . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.1 Experimental setup mounted inside the test vehi
le. . . . . . . . . . . 151

6.2 (a) First traje
tory test in Google Earth; b) First traje
tory test in

Matlab with the GPS outages that were introdu
ed intentionally. . . . 152

6.3 (a) Horizontal position during GPS outage 1; (b) Horizontal position

error during GPS outage 1. . . . . . . . . . . . . . . . . . . . . . . . . 153

6.4 (a) Horizontal position during GPS outage 2; (b) Horizontal position

error during GPS outage 2. . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5 (a) Se
ond traje
tory test in Google Earth; b) Se
ond traje
tory test

in Matlab with the GPS outages that were introdu
ed intentionally. . 154

6.6 (a) Horizontal position during GPS outage 5; (b) Horizontal position

error during GPS outage 5. . . . . . . . . . . . . . . . . . . . . . . . . 155

6.7 (a) Horizontal position during GPS outage 7; (b) Horizontal position

error during GPS outage 7. . . . . . . . . . . . . . . . . . . . . . . . . 156

6.8 (a) Maximum horizontal position error for whole the GPS outages

introdu
ed in both traje
tories; (b) Mean horizontal position error for

whole the GPS outages introdu
ed in both traje
tories. . . . . . . . . 157

6.9 Land vehi
le experimental setup. . . . . . . . . . . . . . . . . . . . . . 159

6.10 (a) First traje
tory test in Google Earth BCN; b) First traje
tory test

in Matlab with the GPS outages that were introdu
ed intentionally. . 160

6.11 (a) Horizontal position during GPS outage 3; (b) Horizontal position

error during GPS outage 3. . . . . . . . . . . . . . . . . . . . . . . . . 161

6.12 (a) Maximum horizontal position error for the GPS outages introdu
ed

in traje
tory 1 BCN; (b) Mean horizontal position error for the GPS

outages introdu
ed in traje
tory 1 BCN. . . . . . . . . . . . . . . . . . 163

XVI



LIST OF FIGURES

6.13 (a) Se
ond traje
tory test in Google Earth; b) Se
ond traje
tory test

in Matlab with the GPS outages that were introdu
ed intentionally. . 164

6.14 Temperature during the se
ond traje
tory. . . . . . . . . . . . . . . . . 164

6.15 (a) Horizontal position during GPS outage 3; (b) Horizontal position

error during GPS outage 3. . . . . . . . . . . . . . . . . . . . . . . . . 165

6.16 (a) Maximum horizontal position error for whole the GPS outages

introdu
ed in traje
tory 2 BCN; (b) Mean horizontal position error for

whole the GPS outages introdu
ed in traje
tory 2 BCN. . . . . . . . . 167

XVII



List of A
ronyms

ADC Analog to Digital Converter

AHDL Altera Hardware Des
ription Language

ARW Angle Random Walk

ASIC Appli
ation-Spe
i�
 Integrated Cir
uit

AV Allan Varian
e

BLUE Best Linear Unbiased Estimator

BPI Byte-wide Peripheral Interfa
e

CF Compa
t Flash

CLB Con�gurable Logi
 Blo
k

CMOS Complementary Metal-Oxide-Semi
ondu
tor

DC Dire
t Current

DCM Dire
tion Cosine Matrix

DDR Double Data Rate

DPR Dynami
 Partial Re
on�guration

DSP Digital Signal Pro
essors

ECos Embedded Con�gurable Operating System

EDK Embedded Development Kit

EKF Extended Kalman Filter

XVIII



LIST OF FIGURES

EM Expe
tation Maximization

ESC Ele
troni
 Stability Control

FDC Flight Dynami
 Controller

FPGA Field Programmable Gates Array

FPU Floating Point Unit

FSL Fast Simple Link

FSM Finite State Ma
hine

GMWM Generalized Method of Wavelet Moments

GNSS Global Navigation Satellite System

GPS Global Positioning System

HDL Hardware Des
ription Language

IC Integrated Cir
uit

IEEE International Ele
tri
al and Ele
troni
 Engineers

IMU Inertial Measurement Unit

INS Inertial Navigation System

ISE Integrated Software Environment

LC Loosely-Coupled

LKF Linearized Kalman Filter

LOD Levels Of De
omposition

MAC Multiply A

umulate

MEMS Mi
roele
trome
hani
al Systems

MODWT Maximal-Overlap Dis
rete Wavelet Transform

MOS Metalâ��Oxideâ��Semi
ondu
tor

NED North-East-Down

XIX



LIST OF FIGURES

NLF Non-linear Fitting

NMEA National Marine Ele
troni
s Asso
iation

NRE Non-Re
urring Engineering

NRMSE Normalized Root Mean Squared Error

PC Personal Computer

PCB Printed Cir
uit Board

PE Pro
essing Element

PLB Pro
essor Lo
al Bus

PLD Programmable Logi
 Devi
es

PROM Programmable Read-Only Memory

PSD Power Spe
tral Density

RRW Rate Random Walk

RW Random Walk

SDRAM Syn
hronous Dynami
 Random-A

ess Memory

SOC System-On-Chip

SSM State-Spa
e Model

TOW Time Of Week

UART Universal Asyn
hronous Re
eiver Transmitter

UAV Unmanned Aerial Vehi
le

UUV Unmanned Underwater Vehi
le

VHDL Very High Speed Integrated Cir
uit Hardware Des
ription Language

VRW Velo
ity Random Walk

WAAS Wide Area Augmentation System

WN White Noise

XX



LIST OF FIGURES

WV Wavelet Varian
e

XCL Xilinx Ca
heLink

XUPV5 Xilinx University Program Virtex 5

XXI



Chapter 1

Introdu
tion

1.1 Ba
kground and Obje
tives

Currently many land vehi
les are equipped with a Global Positioning System (GPS),

whi
h is widely used be
ause of its global availability, portability and low 
ost.

Nonetheless, the GPS is a�e
ted by several errors (i.e., multipath, ionosphere and

troposphere delays), signal unavailability (i.e., momentary blo
kage while driving

through tunnels, indoor 
ar parks or along urban 
anyons), voluntary or involuntary

signal interferen
e like jamming and spoo�ng, et
. All these errors a�e
t the integrity

and reliability of the navigation solution and only some of them 
an be redu
ed

or mitigated (e.g., multipath and interferen
e). Others are intrinsi
 in the GPS

fun
tioning (e.g., signal blo
kage and drop in the signal power) and 
an not be removed.

On the other hand, the Inertial Navigation System (INS) provides information about

position, velo
ity and attitude with a higher rate than the GPS. They are inherently

immune to the signal jamming and blo
kage vulnerabilities of GPS, but the a

ura
y of

INS is signi�
antly a�e
ted by the error 
hara
teristi
s of the inertial sensors [1℄. Sin
e

both of these systems have a 
omplementary nature, it is well known that GPS/INS

integration provides a higher performan
e than their stand-alone operation.

In the last few years, advan
es in the development of Mi
ro-Ele
trome
hani
al

Systems (MEMS) have made possible the fabri
ation of 
heap and small dimension

a

elerometers and gyros
opes, whi
h have in
reased the demand of low 
ost INSs,

1
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expanding their usage in several appli
ations where the GPS and the INS are blended,

e.g., identifying tra
k defe
ts, terrestrial and pedestrian navigation, unmanned aerial

vehi
les (UAVs), stabilization of many platforms, et
. This inertial sensors based on

MEMS te
hnology are fast be
oming ubiquitous and the next few years will witness the


ontinued proliferation of these devi
es with further improvement in 
ost, performan
e

and integration [2℄. Although, low 
ost and small size of MEMS sensors are attra
tive


hara
teristi
s for 
urrent navigation systems, they 
ombine ele
troni
 and me
hani
al


omponents, where the small moving parts (me
hani
al 
omponents) that are built

inside the MEMS devi
es are espe
ially sus
eptible to me
hani
al noise [3℄, not to

mention the noise 
aused by the ele
troni
 
omponents. As a 
onsequen
e, those

noises degrade the performan
e of low 
ost INS/GPS integrated systems in a short

period of time. In other words, MEMS based INS presents errors in position, velo
ity

and attitude, whi
h grow rapidly degrading the a

ura
y of the navigation system in

a few se
onds [4℄. Therefore, a suitable error modelling of MEMS inertial sensors is

ne
essary in order to improve the system performan
e.

The errors that a�e
t the inertial sensors 
an be 
lassi�ed as sto
hasti
 and

deterministi
 [5℄. Modelling the sto
hasti
 
omponent of inertial sensors is a 
hallenging

task [6℄, and is not only a 
urrent topi
 but also a relevant one in many areas where

the MEMS based Inertial Measurement Units (IMUs) are used. A
tually, in re
ent

years di�erent works related to the sto
hasti
 error modelling have been a
hieved using

statisti
al theory as it is des
ribed in [7, 8℄. Most of the papers are based on Allan

varian
e (AV) te
hnique whi
h is detailed in [9�11℄ and it has been applied to inertial

sensors in several resear
hes su
h as [12�18℄ et al. A di�erent approa
h was shown

in [19,20℄ whi
h make use of Parallel Cas
ade Identi�
ation (PCI) and Autoregressive

(AR) models, respe
tively. Despite this, the estimation of the error model parameters

is still non-trivial. Most of the times those unknown parameters are estimated through

tuning (that is often 
hallenging and di�
ult), by using available sensor spe
i�
ations

(high-grade IMUs) or by experien
e [21℄. For this reason, in this thesis we fo
used our

attention on the identi�
ation and modeling of the sto
hasti
 error, spe
i�
ally, the

bias-drift error.

Sin
e this noise has both high-frequen
y noise (short-term) and low-frequen
y noise

2
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(long-term), it is ne
essary to minimize both of them in order to improve the a

ura
y

of the INS. Wavelet de-noising has being used in similar works be
ause of its great

e�e
tiveness removing high-frequen
y noises, as it is shown in [20, 22�24℄. However, it

has a limited su

ess in removing the long-term inertial sensors errors [25℄. Moreover,

Allan varian
e (AV) is a widely used te
hnique in the modeling of inertial sensors

whi
h 
an take into a

ount the long-term noises. Thereby, we present a mixture of

the wavelet de-noising te
hnique and Allan varian
e with the purpose of evaluating

the a

ura
y enhan
ement of the inertial sensors when these methods are blended

together. Even though there are works where AV and wavelet de-noising are performed

(e.g., [24℄), we developed a suitable 
ombination between AV and wavelet de-nosing

showing that MEMS based IMUs require high levels of de
omposition in order to have

an enhan
ement of a

ura
y in the navigation solution, while the vehi
le's dynami
s is

preserved by using a 
onservative threshold.

Moreover, low 
ost inertial sensors have noises with 
omplex spe
tral stru
tures [6℄.

This is be
ause several random pro
esses are superimposed, whi
h makes di�
ult

the estimation of parameters that enable the modelling of these random errors. A

typi
al example of this situation is the �i
ker noise, whi
h 
an be approximated as the


ombination of several exponentially 
orrelated noise terms as it is stated in [11,26℄ and

it has been detailed in [6,8,27,28℄ with �rst order Gauss-Markov pro
esses. Therefore,

in this thesis we evaluate a method for estimating the random error (bias-drift)

parameters of the inertial sensors based on a non-linear �tting with 
onstraints that we


alled (NLF). Sin
e most of the reported works in the literature disregard the sto
hasti


error variations at di�erent temperature points [29℄, we also evaluate the feasibility

of developing a sto
hasti
 error model temperature dependent using the NLF. The

presented method is able to estimate sto
hasti
 error model parameters with 
omplex

stru
tures of noises that are usually found in sensors based on MEMS te
hnology.

Although re
ently similar methods have been developed as the Generalized Method

of Wavelet Moments (GMWM) proposed by Stebler et al. in [8℄, we implemented the

estimator that has been previously des
ribed in [30, 31℄ that is used to minimize the

relative distan
e between the obje
tive fun
tion and the estimate varian
e. It has

shown good results �tting log-log Allan varian
e 
urves and it 
ould be 
onsidered a

3
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parti
ular 
ase of the GMWM. It should be highlighted that di�erent from the existing

methods, in the NLF we developed 
onstraints for the noises that are identi�ed during

the analysis by means of the 95% 
on�den
e interval 
urve. Those 
onstraints are also

set taking into a

ount a prior knowledge of the noise 
hara
teristi
s, whi
h makes

easy the 
onvergen
e of the �tting algorithm and guarantee an appropriate non-linear

�tting. Additionally, sin
e the 
lassi
al least square employed for the �tting 
an lead

to lo
al minimum solutions we 
arried out an optimization of the parameters estimated

by means of pattern sear
h te
hnique.

Eventually, a

ording to the literature we noted that most of the e�orts have fo
used

on the development of algorithms to enhan
e the performan
e of the GPS/INS fusion

and less e�ort has been dire
ted towards the development of pra
ti
al implementations

suitable for 
ompa
t platforms [32,33℄. A
tually, the trend in the navigation systems is

to provide small size platforms, this means, systems on a single board and eventually

onto a single 
hip [34, 35℄. Although, re
ent works have been 
ondu
ted to implement

GPS/INS systems on 
ompa
t platforms, highlighting between them [35�39℄. In most

of them the FPGA (Field Programmable Gate Array) is used as interfa
e for data

a
quisition and in approa
hes where it is used to 
ompute the navigation algorithms

the hardware resour
es available are underutilized, in fa
t, this is where the FPGA


ould o�er great bene�ts [33℄. It should also be mentioned that in this work we make

use of low 
ost INS (MEMS grade) whi
h imposes 
onstrains on the pro
essor speed

sin
e these sensors need an error model that in
reases the number of states in the

Extended Kalman Filter (EKF) and 
onsequently the 
omputational 
ost.

In the 
ase of in-
ar navigation systems there are basi
ally four di�erent sour
es

of information available: various global navigation satellite systems (GNSSs), sensors

observing vehi
le dynami
s, road maps and vehi
le models [40℄. All these sour
es


an be used to enhan
e the navigation solution provided by the GPS. Sin
e most of

the navigation systems require redundant information, we 
onsider that FPGAs (Field

Programmable Gate Array) are suitable for their implementation be
ause they are very

�exible devi
es that allow to easily adapt several instruments su
h as 
ompasses, GPS

re
eivers, odometers, 
ameras even multiple Inertial Measurement Units (IMUs), et
.

In this sense, we aim to develop an embedded system that 
ombines GPS/INS with

4
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an ar
hite
ture based on FPGA te
hnology, where we explore the possibilities that the

FPGA 
an o�er in the loosely-
oupled GPS/INS integration and we study the feasibility

of using hardware resour
es to a

elerate the navigation appli
ation taking advantage

of its parallel pro
essing with DSP blo
ks for the 
omputational 
ost involved in the

Extended Kalman Filter (EKF), whi
h might de
rease the 
omputing time that is a

fundamental fa
tor in real-time appli
ations.

• Obje
tives

� Develop the loosely-
oupled GPS/INS integrated system in platform based

on FPGA for terrestrial appli
ations, studying the feasibility of using

hardware resour
es to a

elerate the EKF.

� Develop sto
hasti
 error models based on a 
onstrained non-linear �tting and

a mixture of Allan varian
e/wavelet de-noising to 
ompensate the bias-drift

that a�e
ts the MEMS inertial sensors in order to enhan
e the performan
e

of a MEMS based INS/GPS loosely-
oupled integration.

1.2 Thesis outline

The thesis is organized in seven 
hapters as follows:

• Chapter 2 - Inertial Navigation System and GPS/INS Integration: it des
ribes

the basi
 blo
ks of an Inertial Navigation System (INS). Comprising the referen
e

frames, the 
omputation of attitude, velo
ity and position from measurements of

angular velo
ity and a

eleration. Subsequently, the bene�ts of the GPS/INS

integration are presented in
luding di�erent strategies and then the navigation

�lter used in this dissertation is detailed.

• Chapter 3 - MEMS IMU Inertial Sensors Errors: it provides information about

how inertial sensors work, the di�erent types of sensors, how they are 
lassi�ed,

their general performan
e 
hara
teristi
s and the errors that are involved in

inertial sensors based on MEMS te
hnology. It also shows the noise sour
es

5
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that a�e
t an Inertial Measurement Unit (IMU), giving a des
ription of the

deterministi
 and sto
hasti
 errors.

• Chapter 4 - Sto
hasti
 Modelling of MEMS Inertial Sensors: it presents 
urrent

approa
hes to estimate the parameters of the sto
hasti
 error modeling in inertial

sensors based on MEMS te
hnology. This 
hapter also 
arries out an analysis

through di�erent te
hniques su
h as Allan varian
e method, autoregressive

models, auto
orrelation and power spe
tral density using a MEMS based IMU.

Subsequently, it des
ribes the 
ompensation of the short-term noises and long

term noises through 
ombination of wavelet de-noising with AV, and then the


onstrained non-linear �tting (NLF) is explained.

• Chapter 5 - Ar
hite
ture Based on FPGA for GPS/INS Integration: it presents

a review of re
ent similar platforms where the GPS/INS integration has been

implemented. Subsequently, it explains the ar
hite
ture developed for the

loosely-
oupled GPS/INS integration based on FPGA, giving details about the

software/hardware implementation and utilization resour
es. Then, a matrix

multipli
ation in hardware is presented as a possibility to speed-up the navigation

algorithm.

• Chapter 6 - Results : it presents the performan
e of di�erent sto
hasti
 error

models using AV and PSD, wavelet de-noising/AR models and the proposed

improvements based on wavelet de-nosing/AV and NLF, they are adapted to

the loosely-
oupled integration and assessed using real data 
olle
ted in a land

vehi
le.

• Chater 7 - Con
lusions : the 
on
lusions of the thesis are drawn and topi
s for

further resear
h work are suggested.
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Chapter 2

Inertial Navigation System and

GPS/INS Integration

2.1 Introdu
tion

An Inertial Navigation System (INS) 
al
ulates the position, velo
ity and attitude of

a vehi
le using measurements of a

eleration and angular rate obtained from inertial

sensors (i.e., a

elerometers and gyros
opes); these measurements are pro
essed by

navigation equations to get the position, velo
ity and attitude of the vehi
le.

In general there are two ways to build up a INS (see Fig. 2.1). In the �rst the

a

elerometers are mounted on an a
tuated platform (gimbaled system). The gimbal

angles are 
ommanded to maintain the platform frame alignment with a spe
i�ed

navigation 
oordinate system. So the platform does not experien
e any rotation relative

to the navigation frame, in spite of vehi
le motion [41℄.

The se
ond is the strapdown that atta
hes the inertial sensors dire
tly to the vehi
le

frame. In this approa
h, the sensors experien
e the full dynami
 motion of the vehi
le,

whi
h in
reases the dynami
 range and in�uen
es the gyro s
ale-fa
tor errors and

non-linearity. In addition, the relationship among vehi
le, navigation, and inertial


oordinate frames must be maintained 
omputationally, whi
h in
reases the on-board


omputational load [41℄.

In this dissertation we fo
used our attention on the strapdown system sin
e it has

1



2 � Inertial Navigation System and GPS/INS Integration

3 accelerometers

3 giroscopes

Gimbal rings
Mounting frame

(a) Gimbaled.

Rigid based
attached

to host vehicle

3 giroscopes

3 accelerometers

(b) Strapdown.

Figure 2.1: Implementation of Inertial Navigation Systems (adopted from [42℄).

been used in the last years be
ause of its 
ost, small size and low power requirements


ompared to the gimbaled system that is typi
ally large and more expensive. From

here on when we refer to INS it will indi
ate a strapdown system.

The Inertial Measurement Unit (IMU) is part of the INS and it is the devi
e where

the inertial sensors are mounted, so it provides measurements along three mutually

orthogonal dire
tions with respe
t to the body frame. In order to have a referen
e

frame for navigation, these measures must be 
onverted from the body frame by means

of a rotation matrix to a referen
e frame that is usually either a lo
al level frame

(n-frame) or an Earth �xed frame (e-frame) [5℄. In this 
hapter we begin with a

des
ription of the referen
e frames that are usually used when the INS is aided with

a GPS. Subsequently, we present the navigation equations whi
h are widely used to

obtain the inertial navigation solution from the data provided by the IMU. Finally, we

des
ribe the bene�ts of the GPS/INS integration in
luding di�erent fusion strategies

and then we explain the navigation �lter used in this thesis.

2.2 Referen
e Frames

For navigation on Earth the inertial measurements provided by the IMU must be

transformed to a referen
e frame where they 
an be related to the 
ardinal dire
tions of

the Earth. This also allows to have a referen
e frame to integrate the inertial navigation

output with the output of instruments su
h as the GPS. Therefore this se
tion des
ribes

di�erent frames whi
h are important to obtain the navigation solution of a land vehi
le.

The dis
ussion of ea
h follows from [41℄ and [43℄.

The notation used throughout this 
hapter is summarized as follows:

2



2 � Inertial Navigation System and GPS/INS Integration

1. xp
denotes a ve
tor x expressed in a 
oordinate p-frame (i.e., n-frame, e-frame,

b-frame, et
.);

2. Cto
from denotes a 
oordinate transformation matrix from one 
oordinate frame

(designated by "from" ) to another 
oordinate frame (designated by "to") (e.g.,

Cn
b denotes the 
oordinate transformation matrix from b-frame to n-frame);

3. the rotation rate ve
tor between two frames expressed in a spe
i�
 frame 
an be

represented either by a ve
tor ω or by the 
orresponding skew-symmetri
 matrix

Ω (with ΩT “ ´Ω).

For example

ωr
pq “

”

ωx ωy ωz

ıT

(2.1)

or

ωr
pqˆ “ Ωr

pq “

»

—

—

—

–

0 ´ωz ωy

ωz 0 ´ωx

´ωy ωx 0

fi

ffi

ffi

ffi

fl

(2.2)

des
ribe the rotation rate ve
tor of the q-frame with respe
t to the p-frame proje
ted

to the r-frame.

2.2.1 Inertial Frame (i-frame)

Earth-Centered Inertial (ECI) 
oordinates has its origin at the 
enter of the Earth and

the axes are a non-rotating and non-a

elerating with respe
t to �xed stars. The three

axes of the ECI are de�ned as follows (Fig. 2.2):

X i
pointing to the vernal equinox;

Z i
parallel to the rotation axis (North polar axis) of the Earth;

Y i

ompletes the right-handed orthogonal 
oordinate system.

3
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Celestial
Equator

Ecliptic

Earth

Equator

Vernal
Equinox

iX

iY

i eZ ZP

Figure 2.2: The inertial frame.

2.2.2 Earth Frame (e-frame)

The Earth-Centered Earth-Fixed (ECEF) 
oordinates have the origin �xed to the


enter of the Earth and the axes are �xed with respe
t to the Earth. So they rotate

relative to the inertial frame with a frequen
y of

ωie “ 7.292115 ˚ 10´5 rad{sec (2.3)

The three axis are de�ned as follows (Fig. 2.3):

Xe
lies along the inter
eption of the plane of the Greenwi
h meridian with the

Earth's equatorial plane;

Ze
parallel to the Earth's rotation axis;

Y e
is 900

East of Greenwi
h meridian in the equatorial plane to make a right-handed

orthogonal 
oordinate system.

2.2.3 Navigation Frame (n-frame)

The navigation frame (n-frame) is also known as the lo
al level frame (l-frame). It has

its origin at the lo
ation of the navigation system. The n-frame 
an also refer to as the

North-East-Down (NED) system. The advantage of using this frame is that the axes


oin
ide with the IMU axis when it is heading North on a levelled road. In addition,

the n-frame is based on the perpendi
ular to the referen
e ellipsoid, so the geodeti



oordinate di�eren
es (i.e., geodeti
 latitude, longitude and height) are the output of

the system [5℄.
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2 � Inertial Navigation System and GPS/INS Integration

The three axis are de�ned as follows (Fig. 2.3):

Xn
points to the true North (N) (i.e., towards the dire
tion where the latitude

in
reased);

Y n
points East (E) (i.e., towards the dire
tion where the longitude in
reased);

Zn
points downwards (D) perpendi
ular to the referen
e ellipsoid to make a

right-handed orthogonal 
oordinate system.

The NED system and the ECEF system are shown in Fig.2.3, where ϕ denotes the

geodeti
 latitude and λ the geodeti
 longitude.

N

D

E

eZ

eX

eY

l

j

w

Greenwich
meridian

Equator

Figure 2.3: The ECEF and NED 
oordinate systems.

2.2.4 Body Frame (b-frame)

It is an orthogonal frame that is assumed to be aligned with the vehi
le. The axis of

this frame 
oin
ide with the axis of the IMU and the orientation of the axes is de�ned

as follows (Fig.2.4):

Xb
points toward the front of the vehi
le;

Y b
points toward the right of the vehi
le;

Zb
to make a right-handed orthogonal 
oordinate system.

These axes dire
tions are not unique, but are typi
al in air
raft and land vehi
le

appli
ations.

This frame 
an 
oin
ide with the navigation frame (NED) as it was des
ribed

previously and the variables φ, θ and ψ 
orrespond to the Euler angles (Roll, Pit
h and

5
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( )pitch q ( )yaw y

( )roll f

bZ

bY

bX

Figure 2.4: The body frame.

Yaw). A 
ommon 
onvention for vehi
le attitude Euler angles having the body frame

axis aligned with NED 
oordinates (i.e., Xb
axis pointing to North and on a levelled

road) 
an be des
ribed as [44℄:

1. Yaw/Heading : the azimuth is 
onsidered positive if 
al
ulated 
lo
kwise from the

north dire
tion.

2. Pit
h: the pit
h angle is positive upward or nose up dire
tion from lo
al horizontal

plane (elevation).

3. Roll : the roll angle takes positive values if the moving body is rolling towards

right.

Sin
e the vehi
le attitude 
an be spe
i�ed in terms of Euler angles in the body

frame (Fig. 2.4) and the latitude, longitude 
an be related to the n-frame and e-frame

(Fig. 2.3), the transformations between these 
oordinate frames 
an be a
hieved by


onsidering these terms and using rotation matri
es as it is presented below.

2.3 Coordinate Transformations

Before des
ribing the navigation equations it is important to de�ne the relationship

between the di�erent frames, whi
h will permit to transform the inertial measurements

provided by the IMU in the body frame to navigation frame (i.e., assuming that the

IMU is aligned with the body frame), thus the navigation solution 
an be expressed in

a referen
e frame (navigation frame) and later it 
an be 
ombined with GPS data.
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2.3.1 Rotation Matri
es

Although there are several te
hniques to perform the transformations between the

frames; probably the most 
ommon is through the dire
tion 
osine matrix (DCM).

Here we will present the DCM rotation matri
es between some frames. For further

details about the derivation of these matri
es refer to [41, 43, 45, 46℄.

The DCM from the e-frame to the n-frame is [41℄:

Cn
e “

»

—

—

—

–

´ sinϕ cosλ ´ sinϕ sinλ cosϕ

´ sinλ cosλ 0

´ cosϕ cosλ ´ cosϕ sinλ ´ sinϕ

fi

ffi

ffi

ffi

fl

(2.4)

The matrix rotation from the b-frame to the n-frame is based on the Euler angles; it

requires a pro
edure following a order of rotations to obtain the DCM matrixCn
b [5,44℄:

Cn
b “

»

—

—

—

–

cθcψ ´cφsψ ` sφsθcψ sφsψ ` cφsθcψ

cθsψ cφcψ ` sφsθsψ ´sφcψ ` cφsθsψ

´sθ sφcθ cφcθ

fi

ffi

ffi

ffi

fl

(2.5)

where �sin� and �
os� are shortly denoted as �s� and �
�, respe
tively.

The Euler angles (i.e., φ, θ and ψ) may be derived from Eq. (A.5) as des
ribed

below [41, 43℄:

φ “ arctan 2pCn
b r3,2s,Cn

b r3,3sq (2.6)

θ “ ´ arcsinpCn
b r3,1sq (2.7)

ψ “ arctan 2pCn
b r2,1s,Cn

b r1,1sq (2.8)

where arctan2py,xq is a four quadrant inverse tangent fun
tion.

2.3.2 Angular Velo
ity Ve
tors

For the lo
ation of the vehi
le on the surfa
e of the Earth in a navigation frame (e.g.,

the n-frame), we must 
onsider that the movement of the vehi
le involves a 
hange in

7



2 � Inertial Navigation System and GPS/INS Integration

the position of the frame, whi
h in turn 
auses a rotation of this frame with respe
t

to other frames. Therefore, it is ne
essary to take into a

ount the rotation between

di�erent frames involved in the navigation solution. These rates 
an be given in terms

of Earth's rotation and 
hanges of latitud and longitud. So a

ording to the notation

des
ribed in Se
tion 2.2, the rotation ve
tor of the e-frame with respe
t to the i-frame

proje
ted on the e-frame 
an be expressed as [47℄:

ωe
ie “

”

0 0 ωe

ıT

(2.9)

where ωe is the magnitude of the Earth rotation rate « 7.292115 ˚ 10´5 rad{sec.
This is due to the fa
t that the z-axis of the e-frame and i-frame are parallel to ea
h

other (Fig. 2.2) but the e-frame is rotating at an angular velo
ity with respe
t to the

i-frame [5℄. If this ve
tor is proje
ted to the n-frame we obtain:

ωn
ie “ Cn

eω
e
ie “

”

ωe cosϕ 0 ´ωe sinϕ

ıT

(2.10)

The turn rate of the n-frame with respe
t to the e-frame as measured in the n-frame

is 
alled transport rate, and is expressed in terms of the rate of 
hange of latitude and

longitude [43, 47℄:

ωn
en “

”

9λ cosϕ ´ 9ϕ ´ 9λ sinϕ

ıT

(2.11)

where the rate of 
hange of the positions 
omponents (i.e.,

9λ and 9ϕ) 
an be expressed

in terms of the velo
ity 
omponents of the n-frame by:

9ϕ “ vN

M ` h
(2.12)

9λ “ vE

pN ` hq cosϕ (2.13)

where M and N are the radius of 
urvature in a meridian at a given latitude and

the transverse radius of 
urvature, respe
tively. These terms are derived by modelling

the Earth by a ellipsoid referen
e and 
an be expressed as [43℄:
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M “ ap1 ´ e2q
`

1 ´ e2 sin2 ϕ
˘3{2 (2.14)

N “ a
`

1 ´ e2 sin2 ϕ
˘1{2 (2.15)

where a = 6378137.0 m and e = 0.0818 are the semi-major axis length and the

e

entri
ity of the WGS-84 ellipsoid [48℄, respe
tively.

The transport rate (Eq. (2.11)) takes the following form that is fun
tion of position

and velo
ity in the navigation frame [41℄:

ωn
en “

»

—

—

—

–

vE{pN ` hq
´vN{pM ` hq

´vE tanϕ{pN ` hq

fi

ffi

ffi

ffi

fl

(2.16)

where h is the geodeti
 height, and vN ,vE are velo
ities in the North and East

dire
tion, respe
tively.

Next se
tion we will present the navigation equations involved in the strapdown

INS, whi
h 
an des
ribe the motion of a vehi
le taking as input the inertial

measurements in the body frame (a

elerations and angular rotations) and 
onverting

these measurements into the navigation frame.

2.4 Navigation and Me
hanization Equations

The strapdown INS involves navigation equations (or kinemati
 equations) whi
h are

the numeri
al tools to implement the physi
al phenomenal that relates the inertial

sensor measurements to the navigation state (i.e., position, velo
ity and attitude) [5℄.

These INS kinemati
 equations des
ribe mathemati
ally the motion of the vehi
le by

taking inertial measurements as input, usually they 
ome from an Inertial Measurement

Units (IMU) that 
onsists of three a

elerometers and three gyros
opes. Gyros provide

the angular velo
ity ωb
ib, whi
h represents the rotation of the b-frame with respe
t to

the i-frame, measured in the b-frame. A

elerometers sense the spe
i�
 for
e f b in the

9



2 � Inertial Navigation System and GPS/INS Integration

b-frame. These measures along the three mutually orthogonal dire
tions need to be


onverted into a referen
e frame for navigation that is usually either the n-frame or the

e-frame. Although in this thesis the INS kinemati
 equations for both referen
e frames

were implemented, in this se
tion we only fo
us our attention on the INS equations

expressed in the n-frame (NED). At the end of this se
tion we also des
ribe brie�y

the me
hanization equations that are the 
omputer implementation of the motion

equations.

2.4.1 Navigation Equations

The navigation equations of the vehi
le to be positioned in the n-frame 
an be expressed

in a 
ompa
t form as follows [43, 47℄:

»

—

—

—

–

9rn

9vn

9Cn
b

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

D´1vn

Cn
b f

b ´ p2ωn
ie ` ωn

enq ˆ vn ` γn

Cn
b

`

Ωb
ib ´Ωb

in

˘

fi

ffi

ffi

ffi

fl

(2.17)

The position in the n-frame is expressed in geodeti
 (
urvilinear) 
oordinates:

rn “
”

ϕ λ h

ıT

(2.18)

The time rate of 
hange of these position 
omponents is asso
iated to the velo
ity


omponents in the n-frame su
h as:

9rn “

»

—

—

—

–

9ϕ

9λ

9h

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1

M`h
0 0

0 1
pN`hqcospϕq 0

0 0 ´1

fi

ffi

ffi

ffi

fl

»

—

—

—

–

vN

vE

vD

fi

ffi

ffi

ffi

fl

“ D´1vn
(2.19)

where the velo
ity in the NED frame have the following 
omponents:

vn “
”

vN vE vD

ıT

(2.20)

and the diagonal matrix D´1
is de�ned as follows:
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D´1 “

»

—

—

—

–

1

M`h
0 0

0 1

pN`hq cosϕ 0

0 0 ´1

fi

ffi

ffi

ffi

fl

(2.21)

Sin
e the kinemati
 equations are implemented in the NED frame, the rotation

matrix Cn
b that transforms the a

eleration measures from the b-frame to the n-frame

is 
onsidered. So the a

eleration 
omponents in the three axis of the body frame are:

f b “
”

fx fy fz

ıT

(2.22)

and taking into a

ount Eq. (2.17) the velo
ity of the vehi
le in the n-frame 
an

be to obtained by:

9vn “ Cn
b f

b ´ p2ωn
ie ` ωn

enq ˆ vn ` γn
(2.23)

the a

eleration 
omponents f b in the b-frame need to be 
onverted to the n-frame

by means of Cn
b . In addition, three a

eleration 
ompensation are required, the �rst is

the rotation rate of the earth given by Eq. (2.10), the se
ond is the 
hange of rotation

of the n-frame with respe
t to the e-frame expressed by Eq. (2.11), and the third one

is the normal gravity ve
tor given by [5℄:

γn “
”

0 0 γ

ıT

(2.24)

where γ is fun
tion of the latitude and ellipsoidal height and is a dominant fa
tor in

the n-frame velo
ity [49℄. So the lo
al gravity formula when the WGS-84 parameters

are used is expressed as follows [47℄:

γ “ a1
`

1 ` a2sin
2ϕ ` a3sin

4ϕ
˘

`
`

a4 ` a5sin
2ϕ

˘

h` a6h
2

(2.25)

where

a1 “ 9.7803267715m{sec2; a4 “ ´3.087691089 ˚ 10´6 1{sec2;

a2 “ 5.2790414 ˚ 10´3; a5 “ 4.397731 ˚ 10´9 1{sec2;

a3 “ 23.2718 ˚ 10´6; a6 “ 0.721 ˚ 10´12 1{pm sec2q;
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The third equation 
onsidering Eq. (2.17) is for the attitude angles of the moving

platform, whi
h are determined by:

9Cn
b “ Cn

b

`

Ωb
ib ´Ωb

in

˘

(2.26)

where Ωb
ib and Ωb

in 
orrespond to the skew-symmetri
 matri
es of ωb
ib and ωb

in,

respe
tively. The term ωb
ib is provided by the gyros
opes of the inertial system and is

expressed by:

ωb
ib “

”

ωx ωy ωz

ıT

(2.27)

Sin
e the gyros
opes measure the Earth's rotation rate, the 
hange of orientation of

the n-frame, and the angular velo
ities of the moving body. The angular velo
ities in

Ωb
in are subtra
ted from Ωb

ib to remove the �rst two e�e
ts [5℄. Next se
tion des
ribes

the way the navigation equations are solved to get the parameters of navigation.

2.4.2 Me
hanization Equations

The me
hanization equations are the 
omputer implementation that uses initial


onditions (i.e., position, velo
ity and attitude), spe
i�
 for
e and angular velo
ity

measurements to solve the navigation equations. The pro
edure to obtain the

position, velo
ity and attitude of the vehi
le with the me
hanization equations 
an

be summarized in the following steps [50℄:

1. Attitude update

2. Velo
ity and position update.

Before des
ribing the me
hanization steps two aspe
t are worth mentioning : On

the one hand, sin
e the IMU provides angular velo
ity and a

eleration measurements

ea
h ∆t, whi
h is equal to tk`1 ´ tk, the update is performed at the time tk`1 using

information from the previous epo
h tk (i.e., INS me
hanization forward). This is

due to the fa
t that the initial navigation states are known, and they are determined

through a preliminary stage 
alled the alignment.
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On the other hand, given that the inertial sensors are 
hara
terized by high

noise and large un
ertainties in their outputs: su
h as bias, s
ale fa
tor and

non-orthogonalities [51℄, these errors that in�uen
e the inertial measurements need

to be 
ompensated as mu
h as possible in order to have a minimum error in the

me
hanization input and as a 
onsequen
e a more a

urate inertial navigation solution.

The error sour
es that a�e
t the inertial sensors will be dis
ussed in Chapter 3.

Attitude Update

Sin
e the attitude is impli
it in the rotation matrix Cn
b , the update of this matrix


an be performed by di�erent approa
hes i.e., quaternions, dire
tion-
osine and Euler

angles. In this 
ase, we des
ribe the quaternions sin
e they are more 
omputationally

e�
ient than the other two methods [41℄. For further details about these algorithms

refer to [41, 43, 52℄.

In order to solve Eq. (2.26), it ne
essary to determine the body rate with respe
t

to the navigation frame ωb
nb (Eq. (2.16)). This is derived from the di�eren
e between

the measure body rates, ωb
ib (Eq. (2.27)), and the estimates of the 
omponents of the

navigation frame rate ωb
in Eq. (2.28) [43℄.

ωb
nb “ ωb

ib ´ ωb
in “ ωb

ib ´ Cb
nω

n
in (2.28)

where Cb
n “ pCn

b qT and the term ωn
in is the rotation ve
tor of the n-frame with

respe
t to the i-frame and 
an be obtained by adding Eq. (2.16) and Eq. (2.10).

ωn
in “ ωn

ie ` ωn
en “

»

—

—

—

–

ωe cosϕ ` vE{ pN ` hq
´vN{ pM ` hq

´ωe sinϕ ´ vE tanϕ{pN ` hq

fi

ffi

ffi

ffi

fl

(2.29)

Thus Eq. (2.28) 
an be written as the total angular in
rement of the vehi
le by

∆θbnb “ ωb
ib∆t´ Cb

npωn
ie ` ωn

enq∆t “ ∆θbib ´ Cb
nω

n
in∆t (2.30)

where ∆t is the sampling time of the Inertial Measurement Unit (IMU), and the

angular in
rements ∆θbnb 
an be expressed as a ve
tor:
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∆θbnb “
”

∆θx ∆θy ∆θz

ıT

(2.31)

After 
omputing the angular in
rements Eq. (2.30), the 
omponents of this ve
tor

are used to update the quaternions as [53℄:

qk`1 “ qk ` 0.5

»

—

—

—

—

—

—

–

c s∆θz ´s∆θy s∆θx

´s∆θz c s∆θx s∆θy

s∆θy ´s∆θx c s∆θz

´s∆θx ´s∆θy ´s∆θz c

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

qk (2.32)

where s “ 2

θ
sin

`

θ
2

˘

, c “ 2cos
`

θ
2

´ 1
˘

, θ “
a

p∆θxq2 ` p∆θyq2 ` p∆θzq2 and qk is

the quaternion that is a four-parameter ve
tor de�ned as:

qk “
”

q1,k q2,k q3,k q4,k

ıT

(2.33)

Having updated the quaternions the rotation matrix, Cn
b 
an be obtained by doing

the transformation from quaternions to DCM.

Cn
b “

»

—

—

—

—

—

–

`

q21 ´ q22 ´ q23 ` q24
˘

2 pq1q2 ´ q3q4q 2 pq1q3 ` q2q4q

2 pq1q2 ` q3q4q
`

q22 ´ q21 ´ q23 ` q24
˘

2 pq2q3 ´ q1q4q

2 pq1q3 ´ q2q4q 2 pq2q3 ` q1q4q
`

q23 ´ q21 ´ q22 ` q24
˘

fi

ffi

ffi

ffi

ffi

ffi

fl

(2.34)

Thus the Euler angles asso
iated with the attitude of the vehi
le are 
al
ulated as

states in Eqs. (2.7), (2.8) and (2.8).

Velo
ity and Position Update

To obtain the velo
ity in the navigation frame (NED frame), Eq. (2.23) is expressed

as it follows:

∆vn “ ∆vn
f ´ p2ωn

ie ` ωn
enq ˆ vn∆t ` γn∆t (2.35)

14



2 � Inertial Navigation System and GPS/INS Integration

where ∆vn
is the velo
ity in
rement in the n-frame and ∆vn

f is the spe
i�
 for
e

in
rements proje
ted in the navigation frame that is given by:

∆vn
f “ Cn

b

»

—

—

—

–

1 0.5θz ´0.5θz

´0.5θz 1 0.5θx

0.5θy ´0.5θx 1

fi

ffi

ffi

ffi

fl

∆vb
f (2.36)

where the matrix expressed in terms of θx,θy and θz is the �rst-order s
ulling


orre
tion [54℄ and ∆vb
f is the spe
i�
 for
e in
rements in the body frame. The latter

is 
al
ulated by 
onsidering the three axis a

eleration measured by the IMU:

∆vb
f “ f b ˚∆t “

”

fx fy fz

ıT

˚ ∆t (2.37)

After 
omputing the velo
ity in
rement ∆vn
k`1 with Eq. (2.35), the 
urrent velo
ity

in the n-frame 
an be obtained through the previous velo
ity vn
k as:

vn
k`1 “ vn

k ` ∆vn
k`1 (2.38)

Finally, the position of the moving platform in the navigation frame is 
omputed

by integrating Eq. (2.38) as shown in Eq. (2.39).

rnk`1 “ rnk ` 1

2
D´1

`

vn
k ` vn

k`1

˘

¨∆t (2.39)

where the term D´1
is given by Eq. (2.21) and rnk 
orresponds to the position

obtained in the previous epo
h.

Figure 2.5 summarizes the me
hanization equations in the n-frame. As it was

mentioned the input is provided by the IMU's measurements that is adapted in the

vehi
le and the output supplied information of position, velo
ity and attitude of the

vehi
le in the navigation frame (NED frame).

The �ow diagram of the INS me
hanization algorithm is depi
ted in Fig. 2.6, where

the sequen
e of terms that are 
al
ulated is shown. The algorithm takes as inputs vb
f

and ωb
ib and the outputs are the attitude obtained from Cn

b , the position prnk`1q and

the velo
ity vn
k`1 in the navigation frame. It is noteworthy that measures of angular

15
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Figure 2.5: INS me
hanization in the n-frame (adopted from [55℄).

velo
ity and spe
i�
 for
e are 
orre
ted in an earlier stage in order to minimize the

error in the INS. For a better performan
e of the INS, it is 
ombined with the GPS,

whi
h is des
ribed in the below se
tion.
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Figure 2.6: Flow diagram for the me
hanization.
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2 � Inertial Navigation System and GPS/INS Integration

2.5 GPS/INS Integration

In this se
tion we dis
uss the GPS/INS integration, the bene�ts of this integration and

two strategies of integration, spe
i�
ally, we provide details of the tightly 
oupled and

the loosely 
oupled that is the one used in this work.

2.5.1 Bene�ts of GPS/INS Integration

The INS measurements exhibits a noise relatively low from se
ond to se
ond, but it

tends to drift over time due to the inherent error of the inertial sensors. Sin
e this error

is integrated in the me
hanization pro
ess, it is re�e
ted in an unbounded position and

velo
ity solution. Despite this, the INS output is 
omputed using the data provided by

the inertial sensors, whi
h makes it immune to external interferen
es. Additionally, the

INS provides a navigation solution with a higher rate than GPS (typi
ally 100 Hz),

whi
h is limited by the 
hoi
e of the 
omputational approa
h and equipment [41℄.

On the other hand, the GPS errors are relatively noisy from se
ond to se
ond but

in 
ontrast with the INS the biases are bounded, so it does not exhibit long-term

drift [56℄. Thus, the GPS provides position and velo
ity estimation with bounded

estimation errors [41℄. Nonetheless, this information has a low rate (typi
ally between

1 Hz or 10 Hz) and is sus
eptible to jamming, blo
kage, interferen
e, et
.

In the last de
ades the fusion between these two systems has been implemented in

many navigation appli
ations be
ause it provides better performan
e than their stand

alone operation, whi
h is a 
onsequen
e of its 
omplementary nature.

Basi
ally, GPS and inertial measurements are 
omplementary for two reasons: the


hara
teristi
s of their errors are di�erent and these are measurements of di�erent

quantities [56℄. Besides the redundan
y that the two systems 
an provide, it seeks to

take advantage of the synergy as it des
ribes below [56, 57℄:

1. The inertial navigation system provides navigation information when the GPS

signal is not available.

2. GPS measurements 
an be used to 
orre
t the INS estimates by an integrated

navigation �lter that 
ombines inertial system and GPS measurements.
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2 � Inertial Navigation System and GPS/INS Integration

3. The GPS/INS integration ex
eeds the a

ura
y of the GPS alone. This is more

apparent in s
enarios where the GPS is a�e
ted by multipath.

4. The adaptation of the INS provides a navigation solution at rates mu
h higher

than the GPS re
eivers.

Table 2.1 summarizes the features and short
omings of inertial and GPS navigation

systems.

Table 2.1: Inertial and GPS advantages and disadvantages (adopted from [56℄).

Advantages Disadvantages

GPS

• Errors are bounded

• Low 
ost

• Low data rate (typi
ally 1 ´
10 Hz)

• No attitude information

• Sus
eptible to jamming and

signal blo
kage

INS

• Low 
ost MEMS inertial

sensors

• High data rate (typi
ally ě
100 Hz)

• Attitude information

• Self-
ontained (not

sus
eptible to jamming)

• Unbounded errors

• High 
ost for the quality

• Requires initial

referen
e (position, velo
ity

and attitude)

2.5.2 GPS/INS Integration Approa
hes

It is 
ommon to blend GPS and INS using di�erent integration approa
hes (i.e.,

loosely-
oupled, tightly-
oupled or ultra-tightly 
oupled; see [58�60℄). Here we

des
ribed the most 
ommon strategies that are the loosely-
oupled (LC) and the tighly


oupled approa
hes.
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2 � Inertial Navigation System and GPS/INS Integration

Loosely Coupled INS/GPS Integration

In this strategy the position and velo
ity obtained from the me
hanization prnINS,v
n
INSq

(see Se
tion 2.4.2) are 
ombined with the GPS output, whi
h delivers velo
ity

and position data prnGPS,v
n
GPSq. There are two ways to implement the LC

strategy: feed-forward and feed-ba
k. The �rst one is used in systems that have

a high-performan
e inertial measurement unit (IMU), as it merges the GPS/INS

information, but it has no 
ontrol over the error that may o

ur in the IMU; it

basi
ally works with an open-loop ar
hite
ture. On the other hand, the feed-ba
k

in
ludes a 
lose-loop that allows us to 
orre
t the INS error, and in the 
ase of a GPS

outage, the navigation solution will depend only on the INS, whi
h will be 
orre
ted

by its 
orrespondent inertial sensor error model. The blo
k diagram of the GPS/INS

integration with feedba
k is shown in Fig. 2.7.

GPS

INS Kalman Filter

Mechanization

+

-

+

-

closed loop with INS correction

,n n

INS INSr v

,n n

GPS GPSr v

,n n

INS INSr v

( ),n nR Vd d

b

f

b

ib v~,
~

DDq

IMU
Position
Velocity
Attitude

INS

Sensors
Correction

Figure 2.7: Loosely-
oupled Kalman Filter (KF) integration with feedba
k [53℄.

A

ording to Fig. 2.7 the residual error pδRn,δVnq 
al
ulated from the GPS and

INS outputs is the input to the Kalman Filter (KF), where a state-spa
e model is

built with error states for navigation and IMU errors. The error states related to the

IMU errors are fed ba
k though the 
losed loop in order to 
orre
t the INS navigation

solution.

The system model for loosely-
oupled approa
h is given by position error, velo
ity

error and attitude error, whi
h represent the navigation error states, i.e., a total of

nine states for 3D navigation. Moreover, the s
ale fa
tors and bias for gyro and

a

elerometers are in
luded in the IMU error states, and the number of states will

depend on the sto
hasti
 model employed.
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Tightly Coupled INS/GPS Integration

This strategy uses information of pseudoranges pρINSq and Doppler p 9ρINSq obtained

from the INS output with raw GPS data (i.e., pseudoranges pρGPSq and Doppler p 9ρGPSq
determined by using satellite ephemeris data). The residuals pBρ,B 9ρq are the input to
the KF, whi
h 
omputes the INS errors estimates. Then, these error states are used

to 
ompensate the INS navigation solution and at the same time the IMU errors. The

s
heme for the tightly 
oupled GPS/INS integration is shown Fig. 2.8.
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Figure 2.8: Tightly-
oupled Kalman Filter (KF) integration [53℄.

If we 
ompare these two strategies the LC approa
h requires at least four satellites

to provide an a

eptable position and velo
ity, while the tightly 
oupled with less than

four satellites provides a navigation solution. Furthermore, satellites with poor GPS

measurements 
an be dis
arded from the navigation solution in the tightly 
oupled.

Despite this, LC integration is appropriate for hardware implementation be
ause of

its simpli
ity 
ompared to the tightly 
oupled, additionally, both of them 
an be used

to study the IMU bias-drift. Therefore, in this thesis we 
on�ne our attention in

the loosely-
oupled (LC) approa
h, be
ause this strategy 
an be used to evaluate the

behavior of the inertial sensor sto
hasti
 model that is one of main goals of this thesis.

In addition, this strategy has a lower 
omputational load 
ompared to the tightly


oupled, whi
h is more suitable for an FPGA implementation. The loosely 
oupled

integration s
heme is performed using the EKF, whi
h is explained in detail in the

next se
tion.
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2.6 Kalman Filter

The Kalman �lter is an optimal estimation tool that provides a sequential re
ursive

algorithm for the estimation of a system states when the system's model is linear [61℄.

This �ltering te
hnique has been used in a wide range of appli
ations in the navigation

�eld from military to 
ivilian sin
e it has an e�e
tive and versatile pro
edure for


ombining noise sensor outputs to estimate the state of the system with un
ertain

dynami
s [44℄. Additionally, it provides an e�
ient 
omputational method to estimate

the state of a linear sto
hasti
 pro
ess by minimizing the mean and the squared

errors and although this is a good quality that makes the KF suitable for real time

implementations, the most desirable feature is its robustness [5℄. The latter is due

to the fa
t that the KF propagates the un
ertainty of the states and measurements

through a gain equation that is known as Kalman gain, whi
h will be des
ribed latter.

In the derivation of the �lter there are two mathemati
al models involved: the

dynami
 model that 
ontains the time propagation information for the states and the

measurement model that relates the measurements to the states [5℄.

2.6.1 Dynami
 Model

The dynami
 model of an INS error model 
an be represented in a 
ontinuous-time

form by the following �rst-order di�erential equation [51℄:

δ 9xptq “ Fptqδxptq ` Gptqwptq (2.40)

where

• δxptq Ñ pnˆ 1q is the ve
tor with the state of the system;

• Fptq Ñ pnˆ nq is the system dynami
s matrix;

• Gptq Ñ pnˆ pq is a system input matrix; and

• wptq Ñ pp ˆ 1q is system noise ve
tor, the noise is 
hara
terized by zero-mean

and normally distributed with spe
tral density given by Qptq.
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Sin
e the measurements from the inertial sensors and GPS take pla
e in dis
rete

steps, for implementation purposes it is 
onvenient to express Eq. (2.40) in dis
rete

time. Thus, Eq. (2.40) 
an be expressed su
h as

δxk`1 “ Φkδxx ` wk (2.41)

where

• δxk`1,δxk are the system state ve
tors at time tk`1 and tk, respe
tively;

• Φk is a transition matrix relating δxk to δxk`1 in the absen
e of a for
ing fun
tion;

and

• wk is the driven response at tk`1 due to the white sequen
e input of the for
ing

fun
tion during the (tk,tk`1 ) interval.

For an integrated navigation system the states δxk that are usually part of the KF

are related to the position, velo
ity, attitude, sensors errors and any other parameter

that 
an be adapted into the equations of the system (Eq. (2.41)) and 
an 
ontribute

to the overall improvement of the navigation a

ura
y.

The transition matrix Φk that des
ribes the system's natural dynami
s 
an be


al
ulated from Fptq assuming that this is 
onstant over the ptk,tk`1q interval of

interest [62℄. Thus, Φk 
an be 
al
ulated by the matrix exponential of Fptkq∆t, that
is,

Φk “ eFptkq∆t “ I ` Fptkq∆t ` pFptkq∆tq2
2!

` . . . (2.42)

where ∆t is the di�eren
e between tk`1 and tk, in the 
ase of the IMUs that are

used to test the INS, they provide measurements at a frequen
y of p1{∆tq “ 100 Hz,

so the �rst two terms are su�
ient to estimate the transition matrix [5℄.

Based on the assumption that the system noise is a white sequen
e, wk will represent

the inertial sensors noise with zero mean Gaussian noise and known 
ovarian
e matrix

Qk,
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E rwks “ 0 (2.43)

E
“

wkw
T
i

‰

“

$

&

%

Qk, i “ k

0, i ‰ k
(2.44)

where Er‚s is the mathemati
al expe
tation.

The 
ovarian
e matrix Qk 
an be written in integral form [63, 64℄:

Qk “
ż tk`1

tk

Φ ptk`1,τqG pτqQ pτqGT pτqΦT ptk`1,τq dτ (2.45)

A solution of the above equation 
an be obtained by a trapezoidal integration

and 
onsidering that G pτqQ pτqGT pτq is 
onstant in the time interval tk and tk`1,

yielding [63℄

Qk « 1

2

“

ΦkG ptkqQ ptkqGT ptkq ` G ptkqQ ptkqGT ptkqΦT
k

‰

∆t (2.46)

where the spe
tral density matrix Qptq is related to the white noises wptq by

Q ptq δpt ´ τq “ E
“

wptqwT pτq
‰

, the operator δr‚s denotes the Dira
 delta fun
tion

with units 1{time [64℄.

2.6.2 Measurement Model

The measurement model des
ribes the relationship between the states and the

measurements by the matrix Hk. The linear relationship between the observations

(measurements) and states 
onsidering additive noise is given by:

δzk “ Hkδxk ` vk (2.47)

where

• δzk is a measurement ve
tor at time tk ;
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• Hk is a design matrix giving the noiseless 
onne
tion between the measurement

and the state ve
tor at time tk ; and

• vk is a measurement noise ve
tor.

The measurement noise is assumed to be a white sequen
e with zero mean

and un
orrelated with the pro
ess noise. For the loosely 
oupled approa
h the

measurements are provided by the di�eren
e between GPS and INS outputs, that


orrespond to position and velo
ity. The 
ovarian
e matrix for the measurement noise

ve
tor vk is given by:

E rvks “ 0 (2.48)

E
“

vkv
T
i

‰

“

$

&

%

Rk, i “ k

0, i ‰ k
(2.49)

E
“

wkv
T
i

‰

“ 0 for all k and i. (2.50)

where Rk “ E
“

vkv
T
k

‰

is the measurement noise 
ovarian
e matrix.

With the assumption of a prior estimate δx̂´
k , the measurement ve
tor δzk 
an

be used to improved the prior estimate. For this propose Kalman �lter uses a linear

blending of the noisy measurement and the prior estimate in a

ordan
e with the

following equation [62℄:

δx̂`
k “ δx̂´

k ` Kk

`

δzk ´ Hkδx̂
´
k

˘

(2.51)

where δx̂`
k is the update estimate and Kk is the blending fa
tor or better known as

the Kalman gain matrix that minimizes the mean-square estimation error and 
an be

expressed by:

Kk “ P´
k H

T
k

`

HkP
´
k H

T
k ` Rk

˘´1
(2.52)
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where P´
k is the a priori a

ura
y estimate for the states given by δxk`1, and it


an be 
al
ulated by the transition matrix pΦkq, the a priori error 
ovarian
e matrix

pP`
k´1q and the 
ovarian
e matrix for the involved system noise Qk´1 as states in Eq.

(2.53) [5℄.

P´
k “ ΦkP

`
k´1Φ

T
k ` Qk´1 (2.53)

From Eq. (2.52) it 
an be noted that having a large un
ertainty in measurement

pRkq we will have a small Kalman gain, so a small weight will be given to the

measure pδzkq when we estimate δx̂`
k (Eq. (2.51)). Moreover, if the un
ertainty of

the measurement is small, Kk will be large so it will give a signi�
ant weight when we


al
ulate δx̂`
k . This Kalman gain is also 
onsidered for updating the error 
ovarian
e

matrix that is expressed as:

P`
k “ P´

k ` KkHkP
´
k (2.54)

Details of the derivation of Kk, P
´
k and P`

k are available in [65℄, [64℄, or [62℄.

2.6.3 Extended Kalman Filter

Sin
e the Kalman �lter is only applied to linear systems and in the 
ase of the inertial

system it is des
ribed by a non-linear model due to the navigation equations (see Eq.

(2.17)), the typi
al approa
h to deal with non-linear systems is to linearize about some

nominal point or traje
tory, a
hieving a perturbation model or error model [63℄. In the

inertial navigation the linearization is performed at the 
urrent state (nominal point),

and the KF that involves the linearization about the 
urrent state is referred to as an

Extended Kalman Filter (EKF) [66℄.

Thus the non-linear system represented by equations of inertial navigation system

(Eq. (2.17)), 
an be linearized around the 
urrent state. This pro
edure is performed

by perturbing the kinemati
 equations in order to obtain a dynami
 error equations

for navigation system errors. In this sense, position, velo
ity and Euler angles 
an be

written as it follows [67℄:
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r̂n “ rn ` δrn

v̂n “ vn ` δvn

Ĉn
b “ pI ´ pǫnˆqqCn

b

(2.55)

whereˆdenotes the 
omputed value position pr̂nq, velo
ity pv̂nq and attitude DCM

pĈn
b q, whi
h are represented by the true value plus a perturbation (position errors,

velo
ity errors) denoted by δ, while the term pǫnˆq is asso
iated with perturbation of

the attitude and is a skew-symmetri
 matrix of the attitude errors given by:

pǫnˆq “

»

—

—

—

–

0 ´ǫD ǫE

ǫD 0 ´ǫN
´ǫE ǫN 0

fi

ffi

ffi

ffi

fl

(2.56)

A

ording to [47℄, the resulting error equations for this linearization approa
h in

the n-frame are given by the following error state model:

»

—

—

—

–

δ 9rn

δ 9vn

9ǫn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

Frr Frv 03ˆ3

Fvr Fvv pfnˆq
Fer Fev ´pωn

inˆq

fi

ffi

ffi

ffi

fl

¨

»

—

—

—

–

δrn

δvn

ǫn

fi

ffi

ffi

ffi

fl

` w (2.57)

where the error dynami
 matrix is 
omprised with nine states, whi
h are position

error pδrnq, velo
ity error pδvnq and attitude error pǫnq. All the matri
es Fxx are

detailed in [5, 59℄, and the derivation of these error equations and similar ones 
an be

found in [47, 67℄. pfnˆq is the skew-symmetri
 matrix of the spe
i�
 for
e 
orre
ted

and expressed in the n-frame whereas pωn
inˆq is the skew-symmetri
 matrix of rotation

ve
tor of the n-frame with respe
t to the i-frame. Eventually the system noise ve
tor

w is given by:

w “
”

wa wg

ıT

(2.58)

where wa and wg represent the white noise on the a

elerometers and gyros,

respe
tively. The 
orrespondent spe
tral density matrix Q 
an be expressed by:
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Q “

»

–

diagpqaq 03ˆ3

03ˆ3 diagpqgq

fi

fl

(2.59)

diagpvecq denotes a diagonal matrix with the elements of the ve
tor vec. The

spe
tral density for ea
h sensor (i.e., qa and qg) will be 
omputed in Chapter 4.

Sin
e Eq. (2.57) 
onsiders the INS error dynami
s expressed in state-spa
e form

as Eq. (2.40), this system error dynami
 model also known as INS �lter 
an be

implemented with KF. Note that the system dynami
 matrix is in 
ontinuous time

so it 
an be expressed in dis
rete time through Eq. (2.42). In addition, the dynami


model does not in
lude the error states that would represent the IMU errors, those

errors need to be adapted to the model as IMU error states. This will be explained in

Chapter 3.

As it was shown in Fig. 2.7 in the loosely-
oupled integration approa
h the

measurement of the INS Kalman �lter is the di�eren
e between position and velo
ity

provided by the GPS and INS solution, that is, a residual error, so the measurement

matrix is given in dis
rete time by:

δzk “

»

–

δRn

δVn

fi

fl “

»

–

rnINS ´ rnGPS

vn
INS ´ vn

GPS

fi

fl “

»

—

—

—

—

—

—

–

ϕINS ´ ϕGPS

λINS ´ λGPS

hINS ´ hGPS

vn
INS ´ vn

GPS

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.60)

where ϕ, λ, h are the latitude, longitude and altitude respe
tively.

In order to avoid numeri
al instabilities when 
omputing the EKF be
ause ϕ and λ

are in radians and their values are very small, it is ne
essary to multiply the �rst two

rows of Eq. (2.60) by pM ` hq and pN ` hq cosϕ to obtain [47℄:

δzk “

»

—

—

—

—

—

—

–

pM ` hq pϕINS ´ ϕGPSq
pN ` hq cosϕpλINS ´ λGPSq

hINS ´ hGPS

vn
INS ´ vn

GPS

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.61)
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where M and N are the radii of 
urvature in the meridian and prime verti
al at a

given latitude, as reported by Eqs. (2.14) and (2.15), respe
tively.

The design matrix Hk be
omes [59℄:

Hk “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

M ` h 0 0 0 0 0 0 0 0

0 pN ` hq cosϕ 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.62)

Finally, the measurement noise matrix obtained from the GPS 
an be expressed as:

Rk “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

pM ` hq2 ¨ σ2
ϕ 0 0 0 0 0

0 pN ` hq2 ¨ cos2 ϕ ¨ σ2
λ 0 0 0 0

0 0 σ2
h 0 0 0

0 0 0 σ2
VN

0 0

0 0 0 0 σ2
VE

0

0 0 0 0 0 σ2
VD

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.63)

The value of ea
h element in the diagonal matrix Rk depends on the a

ura
y of

the GPS estimates [59℄. Sin
e we use a feedba
k loosely-
oupled approa
h, the error

state ve
tor is set to zero after every measurement updates [47, 53, 59, 68℄.

2.6.4 KF Algorithm

The algorithm for the KF implementation 
ontains two stages, the �rst one known as

predi
tion and the se
ond one update.

Predi
tion

This stage predi
ts the ve
tor states and the un
ertainty of the states by the following

equations.
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δx̂´
k “ Φkδx̂

`
k´1 (2.64)

P´
k “ ΦkP

`
k´1Φ

T
k ` Qk´1 (2.65)

Generally, in the integrated navigation this stage is 
omputed every time there is

a sample available from the inertial sensors, so it is exe
uted even if there is a GPS

update or not. This also propagates the 
ovarian
e matrix error and the states from

the 
urrent epo
h to the next, and in 
ase of a GPS outage, it will estimate the states

in order to 
ompensate the navigation solution and the INS errors.

Update

The update stage is 
omputed only when there is information available to the

measurement (i.e., from GPS) and is given by the following equations:

Kk “ P´
k H

T
k

`

HkP
´
k H

T
k ` Rk

˘´1
(2.66)

δx̂`
k “ δx̂´

k ` Kk

`

δzk ´ Hkδx̂
´
k

˘

(2.67)

P`
k “ P´

k ` KkHkP
´
k (2.68)

A summary of the algorithm for the implementation of the dis
rete EKF is depi
ted

in Fig 2.9.
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Figure 2.9: Dis
rete Kalman �lter algorithm.
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Chapter 3

MEMS IMU Inertial Sensors Errors

3.1 Introdu
tion

Although initially the use of strapdown systems was debated be
ause of the full

dynami
 motion experien
ed by the sensors and its 
omputational requirements, in

the last de
ades advan
es in the 
omputer te
hnologies and sensors have led to show

more interest in this type of inertial systems [41℄. Indeed, an important aspe
t that

has promoted its use in many appli
ations is the progress in the fabri
ation of inertial

sensors based on Mi
roele
trome
hani
al Systems (MEMS). This is be
ause they are

low 
ost, lightweight and small size. Despite the fa
t that MEMS inertial sensors

have su
h 
hara
teristi
s these sensors require a proper error analysis to improve their

performan
e, whi
h is one of the main obje
tives in this work. For this reason, in order

to have a better understanding of the errors that are involved in this inertial sensors

te
hnology this 
hapter provides information about how they work, the di�erent types

of sensors, how they are 
lassi�ed, general performan
e 
hara
teristi
s and �nally a

des
ription of the IMU is presented with the MEMS inertial sensors deterministi
 and

sto
hasti
 errors.

31
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3.2 MEMS Inertial Sensors

3.2.1 Mi
roele
trome
hani
al Systems (MEMS)

Development of sili
on mi
roma
hining was introdu
ed by Bell Laboratories in 1950's

with the dis
overy of the piezoresistive e�e
t of sili
on [69, 70℄. Besides that these

mi
roma
hined sili
on sensors had advantages su
h as small size, low 
ost and

lightweight, there were two fa
tors that made these devi
es attra
tive: the me
hani
al

properties and the readily available fabri
ation te
hnology [70℄.

Over the years, advan
es in sili
on mi
roma
hined systems and mi
roele
troni
s

systems allowed to integrate me
hani
al devi
es together with ele
troni
 
ir
uitry on a

single 
hip, one of the �rst developments was the a

elerometer for air bag appli
ation

that is des
ribed in [71℄.

The fusion between these two system is known as a Mi
roele
trome
hani
al

Systems (MEMS) and it involves a me
hani
al and ele
troni
 design for development

of these devi
es. More exa
tly MEMS 
an be de�ned as devi
es that have


hara
teristi
 length of less than 1 mm but more than 1 micron, that 
ombine

ele
tri
al and me
hani
al 
omponents, and that are fabri
ated using integrated 
ir
uit

bat
h-pro
essing te
hnologies [72℄.

Re
ently, MEMS inertial sensors are being used in a variety of appli
ations,

espe
ially in automotive appli
ations, su
h as lane-keeping assistan
e, Ele
troni


Stability Control (ESC), preventing vehi
le rollover, support to the GPS when there

is not a line of sight of the satellites, et
. One of the reasons for their high demand

in a wide range of appli
ation is their low pri
e. To redu
e the pri
e, the size of the

sensor 
hip should be minimum and the stru
ture and fabri
ation pro
ess should be

simple [73℄. Although these aspe
ts 
an be satis�ed it is ne
essary to 
onsider that

they play an important role in the a

ura
y of the sensors.

Due to the small size, these devi
es bring a low 
ost be
ause they 
an be fabri
ated

using bat
h-pro
essing produ
tion. However, the redu
tion in size of the sensing

element 
reates 
hallenges for attaining good performan
e, sin
e as size de
reases, then

sensitivity (s
ale fa
tor) de
reases and noise in
reases [74℄. A

ording to Honeywell,
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one of the vendors of inertial sensors, there is a 
ompromise between the nominal size of

a inertial sensor and its long-term bias stability, i.e., the smaller the devi
e the lower

the performan
e, while the larger the devi
e the less signi�
ant the long-term bias

instability and, hen
e, high performan
e (see [75℄ for further details). Next se
tion

des
ribes the operational prin
iple of the inertial sensors in order to �gure out why the

small size a�e
ts their performan
e.

3.2.2 Operational Prin
iple of MEMS Inertial Sensors

The fundamental 
on
ept of operation of an inertial sensor 
an be des
ribed from

Fig. 3.1. It shows a proof mass, whi
h is suspended to a me
hani
al frame by means

of springs. There is also a pi
ko� whi
h relates the displa
ement of the mass to an

ele
tri
al signal. Thus, when an input for
e is applied to the stru
ture, there is a

displa
ement of the proof mass, the resultant displa
ement 
an be measured by the

pi
ko� that senses the applied for
e indire
tly. Depending on the inertial sensor, its

transdu
tor may asso
iate the input for
e with an a

eleration of the mass or a Coriolis

a

eleration indu
ed by an angular rotation of the mass (i.e., vibratory rate gyros
ope),

whi
h would be the 
ase of an a

elerometer or a gyros
ope, respe
tively.

Proof
masa

Spring

a

Pick-off

Mechanical
frame

Figure 3.1: Ele
tro-Me
hani
al mass/spring system for a simple a

elerometer.

There are di�erent transdu
tor methods to transform the input for
e of interest into

a response in the proof mass, for further details refer to [43,76℄. A high-quality inertial

sensor generally possesses high transdu
tion gain, while reje
ting the e�e
ts of parasiti


for
es on the proof mass; these for
es a�e
t the performan
e of the sensors and they

are asso
iated to pa
kaging and stresses indu
ed by undesirable for
es a
ting on the
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proof mass due to motions of a type other than the one to be sensed [2℄. The redu
tion

of these parasiti
 for
es involves developing more 
omplex me
hani
al stru
tures and


ir
uitry in order to obtain the best performan
e of the sensor.

Sin
e the proof mass that 
omprises an inertial sensor is small, as well as its

movement that is asso
iated with the physi
al signal to be sensed (e.g., angular velo
ity

or a

eleration), there are several fa
tors not only parasiti
 for
es but also temperature

e�e
ts, noises in the interfa
e 
ir
uits et
, whi
h make it di�
ult to obtain an a

urate

measurement of the movement of the mass.

A

elerometers

MEMS a

elerometers measure a

eleration that is typi
ally provided in g, where 1 g

is equivalent to 9.81 m{s2. A

elerometers development appears more mature than

gyro development, due primarily to the push for the reliable 
rash dete
tors in the

automobile market, so gyro development is the limiting fa
tor in a
hievable a

ura
y

in a MEMS IMU [75℄.

These sensors not only measure Earth gravity but also linear a

eleration due to

motion. Fig. 3.1 illustrates a simple a

elerometer, that, as mentioned, it measures the

displa
ement of the proof mass whi
h is related to the applied for
e, the input for
e


an be generated by the motion of the sensor or by gravity.

Sensing a

eleration due to gravity requires a DC measurement and in 
onsumer-

grade a

elerometers natural frequen
ies appear in the low-kilohertz range, so ten of

nanometers me
hani
al displa
ement o

urs at DC for 1 g a

eleration [2℄. For a given

sensitivity, to dis
riminate between the for
e due to a

eleration and parasiti
 for
es

due to others fa
tors su
h as thermal stress, it is useful to maximize both mass and

spring sti�ness [2℄, whi
h implies an in
rease in the size of the devi
e.

Gyros
opes

These inertial sensors measure angular rate and the units are typi
ally given in deg{h.
The vast majority of the reported mi
roma
hined rate gyros utilizes a vibratory proof
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mass suspended by �exible beams above a substrate [76℄, whi
h is known as a vibratory

gyros
ope.

MEMS gyros are more 
hallenging to manufa
ture than a

elerometers, in fa
t,

they are larger devi
es with higher 
ost and 
an require as mu
h as 10 times more

power than the MEMS a

elerometers [75℄.

The basi
 ar
hite
ture of a vibratory gyros
ope is 
omprised by a drive-mode and

a sense-mode. The drive-mode generates and maintains a linear drive os
illation or

rotatory drive os
illation depending on whether the gyros
ope implementation is with

a linear or torsional resonator. The sense-mode measures the sinusoidal Coriolis for
e

indu
ed due to the 
ombination of the drive vibration and an angular rate input [76℄.

Fig. 3.2 depi
ts a generi
 z-axis gyro, the proof mass requires to be free in a way that

allows movements in two orthogonal dire
tions (i.e., x and y dire
tions), this enables

the proof mass to have movements with two degrees of freedom (2-DoF). In this simple

gyros
ope, the sense-mode 
onsists of a proof mass, the suspension that allows the proof

mass to os
illate in the y dire
tion represented by ky, and the sense-mode dete
tion

ele
trodes asso
iated to Cy. Similar to the sense-mode, the drive-mode is 
omprised by

the proof mass, a suspension that allows to os
illate the mass in the x dire
tion given by

kx, and the drive-mode ele
trodes related to Cx. When the gyros
ope is exposed to an

angular rate, in this 
ase, to sense z-axis (yaw) angular rate, a sinusoidal Coriolis for
e

at the frequen
y of the drive-mode os
illation is indu
ed in the sense dire
tion. The

Coriolis for
e ex
ites the sense-mode a

elerometer 
ausing the proof mass to respond

in y dire
tion, this response is re�e
ted in the dete
tion ele
trodes [76℄.

xk
yk

Sense
directiony

Drive
direction

x
xC

yC

x

y

Applied
angular rate

Figure 3.2: Ele
tro-Me
hani
al mass/spring system for a simple vibratory rate

gyros
ope.
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Figure 3.3 illustrates a simpli�ed version of one of the MEMS gyros
opes used in

this thesis, the stru
ture is similar to an a

elerometer, whi
h has a proof mass (inner

stru
ture) suspended by springs. As mentioned previously the di�eren
e in operation

is that the angular velo
ity is derived by measuring the Coriolis for
e on the vibrating

mass. When the stru
ture is exposed to an angular rate, the Coriolis for
e 
ouples

sense into an outer me
hani
al frame (outer stru
ture), whi
h 
ontains movable �ngers

that are pla
ed between �xed pi
ko� �ngers. The �ngers 
an also be seen like 
ombs

where the 
apa
itan
e 
hange between them when there is a movement of the frame,

for further details about this gyro refer to [77℄.

Moving
electrodes

Fixed
electrodes

Spring

O
u

te
r 

s
tr

u
c
tu

re

In
n

e
r 

s
tr

u
c
tu

re

Figure 3.3: Simpli�ed gyro sensing stru
ture of one gyros
ope of the 3DM GX3 25

IMU.

The absolute value of the Coriolis for
e is extremely small in 
onsumer-grade MEMS

devi
es and it is di�
ult to pre
isely measure the movement of the stru
ture [73℄.

Indeed, a small displa
ement generated by the Coriolis for
e that is not pre
isely

measured may lead to a large error in an inertial navigation system sin
e it indu
es

a bias in the measurements of the inertial sensor that are used as input of the

Me
hanization stage des
ribed in Se
tion 2.4. Therefore, te
hniques su
h as Kalman

�ltering are being used to 
orre
t this error and related errors in navigation systems [73℄.

In general, there are many 
ontributors to the noise in an inertial sensor, for

instan
e: the readout ele
troni
s, me
hani
al damping, ele
tri
al resistan
es, et
;

MEMS sensors are so small that just a Brownian motion agitates ba
teria and dust

motes, whi
h 
an be a large for
e on a tiny MEMS 
omponent [78℄. In [3℄ the
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me
hani
al-thermal noise in mi
roma
hined sensors is analyzed by adding a noise for
e

in a simple a

elerometer, similar to the one showed in Fig. 3.1. The noise for
e

in
ludes Brownian me
hani
al noise from air damping and ele
troni
 noise from the

readout 
ir
uit. A

ording to Gabrielson [3℄, the Brownian for
e F “
?
4kBTD 
auses

Brownian motion of the proof massm, and in order to get the noise response, the signal

ex
itation displa
ement is set to zero and the response of the mass/spring system

is solved in terms of the noise for
e, so it gives a Brownian equivalent a

eleration

noise [79℄:

gb,B “
?
4kBTD

mg
(3.1)

where kB is the Boltzmann 
onstant, T is the ambient temperature, D is the

damping 
oe�
ient of the proof mass m and g is the Earth's gravity. From Eq. (3.1)

we see that a large mass help to a
hieve a low noise �oor [79℄. Regarding the damping,

it results from many sour
es, but for inertial sensors air damping is typi
ally dominant;

for a low damping, it is important to hermeti
ally seal the me
hani
al elements to allow

operation of the sensor at low pressure, hermeti
 sealing also prevents 
ontaminants,

parti
les, and moisture from interfering with the sensor operation [2℄. In order to have

a larger mass, bulk mi
roma
hining pro
ess 
an be used to produ
e wafer-thi
k proof

masses. This fabri
ation pro
ess is des
ribed in the following subse
tion.

In addition to me
hani
s perturbations, the interfa
e 
ir
uit also plays an important

role in the overall performan
e of the whole system [80℄. This is be
ause inertial sensors

require dedi
ated mi
roele
troni
s 
ir
uitry in order to a
hieve a signal 
onditioning to

properly relate the sense movement of the proof mass into an ele
tri
al signal that will

be the sensor output. In this stage, one of the most signi�
ant noises that appear in

the ele
troni
 
omponent of the MEMS sensors is the �i
ker noise. A

ording to [81℄

the noise spe
trum of the �i
ker noise in a MOS (Metalâ��Oxideâ��Semi
ondu
tor)

transistor 
an be expressed by:

v2flicker “ kf

CoxWL

1

f
(3.2)

where kf is a pro
ess-dependent parameter that indi
ates how 
lean the fabri
ation
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pro
ess is, Cox is the gate oxide per unit area, W and L are the drawn transistor

geometry and f is frequen
y. From Eq. (3.2) it 
an be seen that the magnitude of

the �i
ker noise depends on the geometry of the transistor, i.e., the smaller is the size

greater is the �i
ker noise a�e
ting the devi
e performan
e. Further details about low

level me
hani
al and ele
tri
al analysis of di�erent noise sour
es in inertial sensors 
an

be found in [2, 3, 79�81℄.

3.2.3 Classi�
ation of MEMS Inertial Sensors

There are di�erent approa
hes to 
lassify MEMS inertial sensors, among them: the

fabri
ation pro
ess, the method to dete
t the position of the proof mass and the mode

of operation [75℄. In this 
ase, the 
lassi�
ation by the fabri
ation pro
ess will be

des
ribed, for further details about other approa
hes refer to [5, 43℄.

The essen
e of all mi
roma
hining te
hniques is a su

essive patterning of thin

stru
tural layers on a substrate and depending on the stru
tural layer forming

te
hnique, mi
roma
hining pro
esses are usually divided into two 
ategories: bulk

mi
roma
hining and surfa
e mi
roma
hining [76℄.

Bulk Mi
roma
hining

Bulk mi
roma
hining pro
ess was �rst developed for pressure sensors in the sixties and

it has be
ome a mature te
hnology that has been under intensive development [70℄.

This entails 
ontrolled material removal on the substrate to transfer a desired pattern

into the stru
tural layer. Most of bulk mi
roma
hining pro
esses bound two or more

wafers, and the moving stru
tures are made out of the whole thi
kness of a sili
on

wafer [76℄. This thi
k stru
tural layer 
reated in a bulk ma
hined sensor o�ers

advantages be
ause it in
reases the mass and the area available to dete
t 
hanges

with the 
apa
itive ele
trodes. Thi
ker suspension beams also provide higher sti�ness,

whi
h redu
es sho
k and vibration sus
eptibility [76℄. In general, this pro
ess improves

the me
hani
al stability and thus the inertial sensor performan
e. Nonetheless, the

size of bulk mi
roma
hined sensor is bigger than a surfa
e mi
roma
hining sensor

be
ause of its large me
hani
al stru
ture, whi
h is a fa
tor to take into a

ount for
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mass produ
tion. Additionally, the sensing stru
ture is pro
ess-in
ompatible with the

interfa
e 
ir
uitry [75℄, whi
h also makes it di�
ult to be 
ost e�e
tive.

Surfa
e Mi
roma
hining

Surfa
e mi
roma
hining pro
ess was introdu
ed in the 1980's to a
hieve a pro
ess


ompatible with CMOS (Complementary Metal-Oxide-Semi
ondu
tor) manufa
turing

te
hnology. In 
ontrast to bulk mi
roma
hining that is a subtra
tive pro
ess, surfa
e

mi
roma
hining is an additive te
hnique, so the devi
es are built by depositioning

multiple sta
ks of alternating stru
tural layers [76℄. It o�ers better pro
ess 
ontrol

of stru
tural thi
kness and size [70℄. Therefore, the size of a surfa
e mi
roma
hined

sensor is smaller 
ompared to a bulk mi
roma
hined, whi
h is a 
hara
teristi
 that

makes them attra
tive for mass produ
tion.

Sin
e this is pro
ess-
ompatible with standard integrated 
ir
uit manufa
turing, it

makes easy its integration with other ele
troni
 
omponents su
h as 
ontrol, �ltering

and signal 
onditioning stages. Indeed, an Appli
ation-Spe
i�
 Integrated Cir
uit

(ASIC) is usually adapted to MEMS sensing element in order to implement the

ele
troni
 
ir
uitry required to interfa
e of the inertial sensors. In spite of this, surfa
e

mi
roma
hined have relatively thin proof mass and, hen
e, high me
hani
al noise whi
h

degrades the performan
e of the inertial sensor [75℄.

Table 3.1 summarizes the advantages and disadvantages for the MEMS sensors

a

ording to the fabri
ation pro
ess. For further information about di�erent fabri
ation

te
hnologies using these two pro
esses refer to [76℄.

3.2.4 General Chara
teristi
s of MEMS Inertial Sensors

The growing demand of mi
roma
hining devi
es has led to 
ombine surfa
e

mi
roma
hining together with bulk mi
roma
hining pro
esses to a point that it is

not easy to di�erentiate between them. Despite this, generally inertial sensor used in

low 
ost INS are built with surfa
e mi
roma
hining pro
esses, whi
h implies small size

but also low performan
e.
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Table 3.1: Classi�
ation of MEMS sensors a

ording to fabri
ation pro
esses (adopted

from [75℄).

Category

Sensing

element

Advantages Disadvantages

Surfa
e

mi
roma-


hining

A thin sili
on

stru
ture

lo
ated on the

surfa
e of a

die

Suites well for

integration

with other

ele
troni



omponents

Relatively low

a

ura
y and

small

bandwidth

Bulk mi
ro-

ma
hining

A single


rystal inside

a blo
k

sandwi
hed

Better

a

ura
y that

surfa
e mi
ro-

ma
hining

Larger size,

more expensive

and not good

for integration

Sin
e inertial sensors are a fundamental 
omponent in an INS, errors involved in

ea
h sensor need to be minimized in order to enhan
e the INS solution. This may

be 
arried out through various laboratory tests, where the obje
tive is to analyse

and determine the 
hara
teristi
s of the errors that are a�e
ting the inertial sensors.

Subsequently, the parameters obtained from the analysis, that provide information

of the errors, are adapted into the INS with the purpose of 
orre
ting them. In the


ase of the loosely-
ouple GPS/INS integration, the error 
ompensation is a
hieved

at the sensors output measurements, i.e., at a stage prior to the navigation equations

due to the fa
t that if they are not attenuated there, they will be ampli�ed during

the integral operation, degrading in this way the INS solution. Before analysing the

errors, in the following subse
tions, general spe
i�
ations that are often provided by

the manufa
ture and some of the most important performan
e 
hara
teristi
s of MEMS

inertial sensors are des
ribed. These 
hara
teristi
s are the bias, bias instability, s
ale

fa
tor, temperature-dependent bias/s
ale fa
tor, vibration sensitivity, nonlinearity and

sho
k survival.

Bias

Although there are several types of bias when we refer to inertial sensors, a

ording

to [82℄, the bias 
an be de�ned as the average over a spe
i�ed time of a

elerometer/gyro

measured output that at spe
i�ed operating 
onditions has no 
orrelation with input
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a

eleration or rotation. This error 
an be 
aused by various e�e
ts ranging from

manufa
turing toleran
es until temperature gradients. In [83℄ the bias is de�ned as

any nonzero output when the input is zero. This variation of the sensor output is

a deviation of the measurement from the true value, whi
h has 
onsequen
es in the

system where the MEMS sensors are mounted.

The bias is widely used as a performan
e indi
ator of an inertial sensor, in general

the lower the bias the better the performan
e. It is ne
essary to take into a

ount

that the size of the bias is independent of any motion to whi
h the sensor may be

subje
ted and is sometimes referred to as the a

eleration (or g) independent bias [43℄.

Furthermore, the bias 
an be broken down in di�erent 
ategories, when it is 
onstant

from turn-on to turn-on and when it varies randomly at ea
h turn-on. It will be studied

in Se
tion 3.3.2.

In the 
ase of an INS, a small bias error will have less in�uen
e in the integration

stages of the INS and thus a minor error in the navigation solution. A simpli�ed

example 
an be given assuming that an a

elerometer has a bias of bf “ 0.005 g

and no other noise or disturban
e is involved. If there is not 
ompensation of this

bias, the velo
ity error will be proportional to t ptimeq, while the position error will be

proportional to t2 (see Eq. (3.3)). That is, if there is not movement of the a

elerometer

the position error may rea
h 88.2 m in only 60 sec. Note that this is a simpli�ed analysis

sin
e it does not 
onsider all the errors that 
an potentially a�e
t a low 
ost INS. A

similar analysis for both a

elerometers and gyros 
an be found in [5℄.

v “
ż

bf dt “ bf t p “
ż

v dt “ bf t
2

2
(3.3)

At this point it is worth noting the di�eren
e between the terms run-to-run and

in-run, for instan
e, the run-to-run bias, refers to 
hanges in a parameter for ea
h run.

This is be
ause every time the sensor is swit
hed on, a slightly di�erent bias value is

observed [84℄. This error is 
onstant on
e the sensor is swit
hed on, here on we will


all it turn-on bias. Moreover, in-run bias is an error that o

urs due to 
hange in bias

during a run [5℄. This error is related to the bias stability that will be explained below.

The same de�nitions are valid for s
ale fa
tor.
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Bias stability

A term that is normally found in the spe
i�
ations of inertial sensors is the bias stability,

whi
h refers to a measured of the bias 
hanged over time. In other words, bias stability

measurement provides information about how stable the bias of the sensor is over a


ertain spe
i�ed period of time [85℄. In order to obtain this parameter several measures

of the sensor should be performed at di�erent time intervals to determine the bias


hanged over time. Nonetheless, several 
on
erns arise, as for instan
e: how many

intervals should be evaluated? What should be the size of ea
h interval? What is the

bias stability? To address these 
on
erns the bias stability is 
omputed by means of

Allan varian
e te
hnique, where the minimum Allan standard deviation 
orresponds

to the bias stability. For a 
omplete pro
edure to 
ompute the bias stability see [86℄.

Although Allan varian
e was initially introdu
ed to 
hara
terize noise and stability in


lo
k systems, it has be
ome popular in the INS 
ommunity hen
e it is often employed

for noise identi�
ation and analysis in inertial sensors. A detailed des
ription of this

te
hnique will be presented in Chapter 4.

Albeit the bias stability is a referen
e parameter to 
ompare or sele
t a gyro or

a

elerometer, and even though it is provided by the manufa
ture in some low 
ost

sensors, there are others error sour
es involved in the MEMS sensors that are not less

relevant. For instan
e, they exhibit s
ale fa
tor errors, sensitive to external fa
tors

su
h as vibrations and temperature.

S
ale fa
tor

The s
ale fa
tor relates the output signal 
hanges of the sensor with the physi
al signal


hanges at the sensor input (i.e., a

eleration and angular velo
ity). This term 
an

be determined from the 
urve where the x-axis is the sensor input and the y-axis is

the sensor output, thus the slope of the best �t line provides the s
ale fa
tor (see Fig.

3.4). An ideal sensor has a s
ale fa
tor of 1, hen
e, any s
ale fa
tor is above or below

1 is 
ontaminated with sensor errors [5℄. The di�eren
e between the s
ale fa
tors of

the two 
urves (i.e., ideal and measured) represents the s
ale fa
tor error, whi
h is


ommonly expressed as a ratio of output error to input, in parts per million pppmq or
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as a per
entage p%q for low 
ost MEMS inertial sensor [43℄. By the s
ale fa
tor 
urve

additional errors 
an be identi�ed su
h as s
ale fa
tor nonlinearity and s
ale fa
tor

asymmetry, whi
h are asso
iated to thermal 
hanges.

Temperature-dependent bias/s
ale fa
tor

The temperature-dependent variations 
an be quite pronoun
ed in very low 
ost MEMS

sensors [5℄. In fa
t, 
hanges in the temperature of the devi
e involves 
hanges in the

s
ale fa
tor and the bias of the sensor. Dependen
e on temperature 
an be analysed

by a thermal test, whi
h determines 
hanges in the sensors 
hara
teristi
s when the

sensor is exposed to temperature variations. An additional limiting fa
tor is the

temperature hysteresis, that is, the di�eren
e in output at a spe
i�
 temperature when

that temperature approa
hed via 
ooling versus heating [87℄. Further details about

thermal tests 
an be found in [43, 84℄.

Vibration sensitivity

In most of appli
ations where INS are employed the inertial sensors are subje
ted

to movement and vibrations that perturb the measurements. Generally, the inertial

sensors are sensitive to a

elerations and it 
hanges depending on the frequen
y of

vibration. This sensitivity is due to imperfe
tions in the me
hani
al stru
ture, whi
h


auses bias that are proportional to the magnitude of the applied a

eleration (i.e.,

g-dependent bias, g2-dependent bias, et
). The sensitivity to vibrations 
an be de�ned

as a steady state error in the output while vibratory disturban
es are a
ting on the

sensor [82℄.

Although the vibratory reje
tion is not spe
i�ed for the majority of low 
ost

inertial sensors, this is a 
hara
teristi
 that is be
oming more and more important

when sele
ting an inertial sensor, even more than the traditional bias stability. This

is be
ause vibration sensitivity is often the more severe performan
e limitation and

the bias stability represents a smaller 
omponent of error [87℄. Despite this, MEMS

inertial sensors are designed using extremely simple and 
ompa
t me
hani
al systems

that are not optimized for vibration reje
tion (rather, they are optimized for low 
ost)
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and 
an su�er due to vibration greatly [87℄. In order to provide vibratory reje
tion

anti-vibration mounts 
an be used. Nevertheless, these me
hani
al assemblies are not

easy to design and they also in
rease the size of the sensors, as well as the vibration

redu
tion 
hara
teristi
s varies depending on the temperature.

Nonlinearity

From the straight line �tted to the plot of input-output 
hara
teristi
s (see Fig. 3.4)

a nonlineal trend 
an be observed if we 
ompare with the ideal linear 
urve (slope

1). This is sometimes asso
iated to the inherent nonlinearities of the sensors [88℄ and

thermal e�e
ts [43℄, and 
an be de�ned as a systemati
 deviation from the straight line

that de�nes the nominal input-output relationship [82℄.

( )V volts

( )acc g

non linearity-
VD

accD

bias

Figure 3.4: Relationship between the output voltage and input a

eleration (angular

velo
ity) (Adopted from [88℄).

Sho
k survival

This is de�ned as the maximum sho
k that the operating on non-operating devi
e 
an

endure without failure, and 
onform to all performan
e requirement after exposure [76℄.

To evaluate this parameter a sho
k test is a
hieved, whi
h 
onsists in measuring the

response of a sensor to an applied sho
k and to establish the resilien
e of the sensor to

su
h an applied a

eleration over a very short duration, typi
ally in the order of few

millise
onds [43℄. After performing the test 
hara
teristi
s su
h as bias are 
ompared,

that is a 
omparison before and after applying the sho
k, so it 
an be determined

whether there has been a transient or a permanent 
hange after exposing the devi
e to

the sho
k.
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Similar laboratory test 
an be assessed in order to evaluate their performan
e under


ertain environmental 
onditions, for example: thermal test, 
entrifuge test, vibratory

test, et
. The behavior of spe
i�
 parameters 
an be determined through the analysis

of the lab tests, and also the ability to endure sho
ks and vibrations that 
an be

indu
ed by the vehi
le where the sensors are assembly. In this sense, the obje
tive

of these tests is to have a better understanding of the behavior of the sensors in

di�erent situations that may o

ur in a 
ertain appli
ation, as well as to determine

performan
e 
hara
teristi
s of the sensor that 
an be 
ompensated and thus enhan
e

their a

ura
y. Hen
e several errors in�uen
e the MEMS inertial sensors, in this 
ase

we emphasis in the bias, s
ale fa
tor and thermal sensitivity due to the fa
t that these

are some of the main error sour
es when low 
ost MEMS sensor are used in land inertial

navigation systems. Therefore, the following three se
tions present the MEMS IMU


hara
teristi
s in
luding di�erent performan
e 
ategories of IMUs; subsequently, we

fo
us on the deterministi
 and sto
hasti
 errors of inertial sensors where the bias, the

s
ale fa
tor and the temperature e�e
t are analysed.

3.3 Inertial Measurement Unit (IMU)

The inertial measurement unit (IMU), whi
h is a fundamental part of the INS, is the

devi
e where the inertial sensors are mounted; it provides a

elerations and angular

rotations along three orthogonal dire
tions with respe
t to an inertial frame (Fig. 3.5).

These measurements provide information about the motion of the vehi
le, that

are then 
orre
ted and pro
essed by the me
hanization stage with the aim to obtain

position, velo
ity and attitude of the host vehi
le.

For some of the experiments 
ondu
ted in this thesis two inertial measurement units

based on MEMS te
hnology were used. On one hand, the Mi
rostrain 3DM-GX3-25

IMU that in
ludes a triaxial a

elerometer, triaxial gyro, triaxial magnetometer and

temperature sensors (Fig. 3.6(a)). It also has analog anti-aliasing �lters that are

followed by a digital moving average �lter. These stages are implemented on a

board pro
essor of the IMU 3DM-GX3-25. This IMU o�ers a range of output data

quantities, in
luding fully 
alibrated inertial measurements: a

eleration, angular rate,
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Figure 3.5: Inertial Measurement Unit (IMU).

and magneti
 �eld; it 
an also output 
omputed orientation estimates: Pit
h, Roll, and

Heading (Yaw) or rotation matrix [89℄. The 3DM-GX3-25 MEMS IMU is 
onstituted

by surfa
e mi
roma
hining gyros, spe
i�
ally, one is the vibratory reje
tion ADXRS642

whi
h has a pri
e in the market around $48.82 for quantities between 100 and 499. With

respe
t to the a

elerometers, it uses two AD22293 
ontaining surfa
e-mi
roma
hined

sensors and the 
ost of a devi
e is less than $10 per unit. The 
hara
teristi
s provided

for this IMU (MEMS grade) 
an be seen in Table 3.2.

(a) (b)

Figure 3.6: (a) 3DM-GX3-25 IMU; (b) Atomi
 IMU.

On the other hand, the Atomi
 IMU from Sparkfun (Fig. 3.6(b)) is equipped with

three gyros ST LISY300AL with analog output and a single 
hip MMA7260Q from

Frees
ale Semi
ondutors, whi
h allows di�erent sensibility levels. It in
ludes an Atmel

ATMega168TM pro
essor running at 10MHz with 6 dedi
ated 10´ bit ADC 
hannels

reading the sensors [90℄. The pri
e of the inertial sensors is less than $5 per unit.

Unfortunately the bias stability is not provided for the Atomi
 IMU, so it is expe
ted

to be very poor (see Table 3.2). Further details about the 
hara
teristi
s of the Atomi


IMU provided by the manufa
turer 
an be found in [90℄.
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Table 3.2: MEMS IMUs available in the lab of Mi
roele
troni
s and Ele
troni
s

Systems at UAB.

IMU Atomi
 6DoF 3DM-GX3-25

Pri
e pkǫq 0.09494 1.769

A

 te
hnology MEMS MEMS

Bias A

 pµgq ´ 5000

Gyro te
hnology MEMS MEMS

Bias Gyro pdeg{hq ´ 720

Syn
hro signals NO NO

Given that in this resear
h we adopted low 
ost MEMS inertial sensors, for the sake

of 
omparison with other IMUs, next se
tion presents the 
lassi�
ation of these devi
es

and how they are 
ategorized a

ording to qualities like 
ost, size and performan
e.

3.3.1 Classi�
ation of IMUs

Typi
ally the IMUs 
an be 
lassi�ed a

ording to their performan
e and the type

of appli
ation where they are implemented. The appli
ations 
an be divided in


onsumer-grade, where MEMS inertial sensors are usually low 
ost and they are

suitable for motion sensing, freefall dete
tion, man-ma
hine interfa
e, et
. Moreover,

ta
ti
al IMUs are 
lassi�ed between high performan
e IMUs and they are employed in

unmanned underwater vehi
les (UUVs), unmanned air vehi
les (UAVs), torpedoes,


amera stabilization, land navigation, oil drilling et
. Navigation and strategi


IMUs are very a

urate devi
es that are used in navigation missiles, autonomous

vehi
le navigation, stabilization of equipment and weapon platforms. To fa
ilitate

the 
omparison between MEMS IMUs and di�erent IMUs Table 3.3 summarizes the

performan
e 
hara
teristi
s of di�erent inertial sensors, in
luding bias, weight, pri
es,

signal syn
hronization and errors in position when there is support from an external

devi
e like the GPS. Most of the information that is depi
ted in this table has been


olle
ted from [91�95℄.

Although low 
ost MEMS IMUs are widely used in several appli
ations due to their

small size and low 
ost, their performan
e remains as the major limitation. With the

purpose of studying spe
i�
 
hara
teristi
s that 
an lead to the improvement of the

MEMS IMU performan
e, the following se
tion is dedi
ated to explain the errors that
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Table 3.3: Inertial Measurement Units 
ategories.

Grade Low 
ost Ta
ti
al Navigation Strategi


Pri
e pkǫq ă 2 ă 15 ą 10 ą 50

Weight pkgq ă 1 0.5 ´ 2 ą 4 ą 5

Bias A

 pµgq ą 2000 100 ´ 1000 10 ´ 50 ă 1

Bias Gyro

pdeg{hq
ą 10 ă 10 ă 0.01 ă 0.0001

Syn
hro signals NO YES YES YES

Positioning error

pkm{minq
« 2 ą 0.33 ă 0.016 ă 0.0005

are typi
ally involved in these devi
es.

3.3.2 MEMS IMUs Errors

In a low 
ost INS, the measurement of the a

elerometer and gyro sensors is a�e
ted by

di�erent errors, whi
h 
an be 
lassi�ed as deterministi
 and sto
hasti
 errors [5℄. Fig.

3.7 depi
ts some of these errors through a simple relationship between IMU physi
al

signal and the sensor output.

Misaligment Scale factor

Bias
Random

Error

Sensor
output

Physical
signal

Figure 3.7: Inertial sensor errors in
luding misalignments, s
ale fa
tors, biases and

measurement noise [88℄.

Deterministi
 errors are due to manufa
turing and mounting defe
ts and 
an be


alibrated out from the data; on the other hand, the sto
hasti
 errors are the random

errors that o

ur due to random variations of bias or s
ale fa
tor over time [5℄. There

are several errors that a�e
t the MEMS IMU devi
es and among the most signi�
ant

are: the misalignment errors that are the result of non-orthogonalities of the sensor

axes and are usually treated as deterministi
 error (see Fig. 3.8). The s
ale fa
tor

that was des
ribed in Se
tion 3.2.4, whi
h represents the sensibility of the sensor, and

it is the result of manufa
turing toleran
es or aging; it is usually divided between a

linear and a non-linear part, where the linear part is obtained from 
alibration, while

the non-linear is modeled with a sto
hasti
 pro
ess [13℄. In the 
ase of the bias, it
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is divided between bias turn-on and bias-drift: the bias turn-on is 
onstant, but it

varies from turn-on to turn-on and is 
onsidered as a deterministi
 error; the bias-drift

presents a random behavior and needs to be modeled with a sto
hasti
 pro
ess [18℄.

Regarding the random error (Fig. 3.7), this is an additional signal resulting from noise

of the sensor itself or other 
omponents that interfere with the signal provided by the

sensor; it is also 
onsidered part of the sto
hasti
 error of the sensor.

pX

pY

pZ
aZ

aY

aX

zyα

zxα

xyα

xzα

yzα

yxα

Figure 3.8: IMU misalignments: The nonorthogonal axes of the a

elerometers

tXa,Y a,Zau 
an be aligned with the orthogonal body axes tXb,Y b,Zbu
through the six angles tαxy,αxz,αyx,αyz,αzx,αzyu [88℄.

As previously mentioned the inertial sensors are also sensitive to environmental

fa
tors like temperature, pressure, vibrations, ele
tri
 and magneti
 �elds, et
 [28, 96℄.

These 
hanges 
ause the output of MEMS sensors to vary. Sin
e it is very likely

to have 
hanges, parti
ularly, in parameters su
h as s
ale fa
tor and bias, for the

analysis 
arried out in the next se
tions the temperature is maintained 
onstant,

whi
h will make easier to interpret the results. Sin
e this thesis will not 
over all

those environmental fa
tors, we will study variations of the s
ale fa
tor and the bias

under di�erent 
onditions like temperature, espe
ially, temperature dependen
y of the

bias-drift, whi
h will be explained in Chapter 4.

The deterministi
 errors 
an be minimized before implementing the me
hanization

equations by following di�erent pro
edures in the laboratory. These lab tests are known

as the 
alibration of the IMU and will be presented in the next se
tion.
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3.4 Inertial Sensors Deterministi
 Error

Despite the bene�ts provided by the GPS/INS integration that were des
ribed in

Se
tion 2.5.1, the obtained a

ura
y and 
onvergen
e time of a GNSS aided INS is

highly dependent on the quality of the IMU sensors output [22℄. In fa
t, the ability of

the INS to bridge GPS outages depends on the inertial sensor errors, if they are not

treated properly it might 
ause a rapid degradation of the integrated system during

GPS outages. Thus, when the GPS is not available, position, velo
ity and attitude

predi
tions of the vehi
le will be strongly a�e
ted due to the fa
t that the errors will

be a

umulated in the INS. Therefore, the 
alibration of the IMU is 
riti
al for the

overall system performan
e [88℄.

With the purpose of minimizing deterministi
 errors su
h as: turn-on bias, s
ale

fa
tor and non-ortogonalities, the 
alibration is performed by following a pro
edure

that is detailed below.

3.4.1 Calibration

The 
alibration 
an be de�ned as the pro
ess of 
omparing instrument outputs with

known referen
e information and determining 
oe�
ients that for
e the output to agree

with the referen
e information over range of output values [97℄. In order to 
arry out

this pro
ess, the measurement of the inertial sensors are des
ribed in terms of the

parameters asso
iated with the errors as it is stated in Eq. (3.4) and Eq. (3.5) [43,98℄.

fimu « pI ` Sa ` δSaq f ` ba ` δba ` wa (3.4)

ωimu « pI ` Sg ` δSgqω ` bg ` δbg ` wg (3.5)

ba,g “

»

—

—

—

–

bx

by

bz

fi

ffi

ffi

ffi

fl

a,g

, δba,g “

»

—

—

—

–

δbx

δby

δbz

fi

ffi

ffi

ffi

fl

a,g

, wa,g “

»

—

—

—

–

wx

wy

wz

fi

ffi

ffi

ffi

fl

a,g

,
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Sa,g “

»

—

—

—

–

Sxx Sxy Sxz

Syx Syy Syz
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ffi

ffi

ffi

fl
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»

—

—

—

–
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fi

ffi

ffi

ffi

fl

a,g

;

where fimu and ωimu are the raw measurements provided by the IMU, representing

linear a

eleration (m{s2) and angular rate (rad{sec), respe
tively, ba,g are ve
tors


omprising biases, while δba,g are ve
tors that 
omprise residual biases, ve
tors wa,g


orrespond to an additional white noise with zero mean. The subs
ripts a and g are

asso
iated with a

elerometers and gyros, respe
tively, while the supers
ripts tx,y,zu
are related to the sensor in ea
h dire
tion of the body frame; I is a 3ˆ3 identity matrix,

and f and ω are the true linear a

eleration and angular rate, respe
tively. Finally,

the terms Sa,g represent the s
ale fa
tor errors and non-orthogonality errors, whi
h are

in
luded in the diagonal and non-diagonal elements, respe
tively. δSa,g is a matrix

with the residual s
ale fa
tor errors and residual non-orthogonality errors, whi
h are

also in
luded in the diagonal and non-diagonal elements, respe
tively.

Considering Eq. (3.4) and Eq. (3.5), the deterministi
 
omponents 
orresponding

to the IMU errors are the turn-on bias (ba,g), the misalignment and linear s
ale fa
tor

error (Sa,g). These parameters will be obtained o�-line (
alibration in the lab) and

will be introdu
ed to 
orre
t the errors of the IMU. Thus, the 
orre
ted output of the

measurements provided by the sensors would be given by:

f b « pI ` δSaq f ` δba ` wa (3.6)

ωb
ib « pI ` δSgqω ` δbg ` wg (3.7)

Although the deterministi
 errors are minimized by laboratory 
alibration, f b and

ωb
ib should still be 
orre
ted, this is due to the fa
t that residual errors remain [43℄.

The residual errors are typi
ally estimated during navigation through the EKF that

was des
ribed in Se
tion 2.6.3, however the system model needs to be augmented with

the IMU error states, that would be related to the residual errors.
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The 
ompensation in the loosely-
oupled integration is performed by means of the


losed loop with INS 
orre
tions that was shown in Fig 2.7, so the residual errors

are asso
iated with random errors, that a

ording to Eq. (3.6) and Eq. (3.7), they


orrespond to bias-drift (δba,g), non-linear s
ale fa
tor and residual non-orthogonality

errors (δSa,g), whereas (wa,g) is the additive random noise.

These random errors are typi
ally modelled with sto
hasti
 models, where the

pro
esses that are usually used to 
ompensate them are white noise, random walk,

�rst order Gauss-Markov, autoregressive pro
esses, et
. A study of these pro
esses is

detailed in Se
tion 3.5.

3.4.2 Multi-position Calibration Method

To obtain the parameters that represent these deterministi
 errors (i.e., ba,g and Sa,g)

and minimize their e�e
t during navigation, there are two methodologies. One is the

six-position dire
t method and the se
ond one is the one that we adopted to a
hieve the

laboratory 
alibration pro
edure, whi
h El-Diasty in [15℄ 
alled six-position weighted

least squares method. We fo
used on the last one sin
e it takes into a

ount the

non-orthogonality errors. This method 
onsists of pla
ing the IMU in six-positions,

i.e., one by ea
h side 
onsidering the IMU as a 
ube.

Sin
e the 
alibration requires an ex
itation signal that is used as referen
e, the

gravity is used for the a

elerometers and a known angular rate for the gyros. The

latter needs a turntable whi
h rotates with a spe
i�
 angular rate that is used as

referen
e signal.

The following three se
tions present the laboratory tests that were a
hieved for

the 
alibration of the IMUs, spe
i�
ally, two experiments were realized one for

a

elerometers and one for the gyros.

3.4.3 A

elerometers Calibration

For the a

elerometers, the IMU was initially pla
ed on a levelled table using a 
ube

shaped mounting frame, where the ex
itation signal for the z-axis down is the gravity

pgq (Fig. 3.9(a)).
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g
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(a) Down position.

g
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x

y

z

(b) Up position.

Figure 3.9: Up and down position for 
alibration of z-axis a

elerometer with gravity

as referen
e signal.

In this IMU position the measurements from the a

elerometers were taken during

60 sec and then the average was 
omputed for ea
h a

elerometer pAvpf zdown

imu qx,y,zq; so
the expe
ted observation equations are obtained from Eq. (3.4), where the additive

noise and the residual errors are eliminated sin
e their expe
ted values are zeros [15℄:
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—

—
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fi

ffi

ffi

ffi

fl

a

(3.8)

The experiment was repeated but this time pla
ing the IMU with z-axis in the

up dire
tion (see Fig. 3.9(b)). This pro
edure was performed for ea
h one of the

a

elerometers, whi
h led to the following matrix form equation for the six-position

stati
 test [15℄:

XaA “ W (3.9)

where

Xa “

»

—

—

—

–

Sxx Sxy Sxz bx

Syx Syy Syz by

Szx Szy Szz bz

fi

ffi

ffi

ffi

fl

a

(3.10)
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A “
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0 0 0 0 ´g g
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(3.11)
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imuqz
Avpf zup
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ffi

ffi

ffi

fl

T

(3.12)

Now solving Eq. (3.9) by least square we 
an estimate the 
alibration parameters

for the a

elerometers, whi
h are in
luded in matrix Xa.

3.4.4 Gyros Calibration

Although the 
alibration of navigation and ta
ti
al gyros
opes 
an be performed by

using as a referen
e signal the Earth rotation rate, for low 
ost inertial sensors this is

not valid be
ause the Earth's referen
e signal 
an be 
ompletely buried in the noise

levels [84℄. Therefore, it was ne
essary to mount the IMU on a turntable using a 
ube

shaped frame (Fig. 3.10). In this test the ex
itation signal was determined by the

speed of the motor adapted to the testing table.

g

IMU

x
y

z
knownw

(a) Down position.

g

IMU

x

y

z

knownw

(b) Up position.

Figure 3.10: Up and down position for 
alibration of z-axis gyro with known angular

velo
ity as referen
e signal.
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Analogous to the a

elerometer 
ase, we 
olle
ted data from the sensors with the

z-axis is in the down dire
tion and subsequently the average from the three gyros was

estimated:
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˚

˚
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»
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0 0 1

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

fi

ffi

ffi

ffi

fl

g

˛

‹

‹

‹

‚

¨

»

—

—

—

–

0

0

ωknown

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

bx

by

bz

fi

ffi

ffi

ffi

fl

g

(3.13)

After reading the measurements from the six-positions on the testing table, the six

observation equations 
an be written as a single equation in matrix form as it was

stated in Eq. (3.9). Then by using the least squares method, the deterministi
 error


oe�
ient matrix Xg are estimated.

3.4.5 Thermal Calibration Test

With the purpose of applying the six-position weighted least squares method and

determine the variations of the deterministi
 errors with the temperature, a thermal

test was performed in the laboratory of Mi
roele
troni
s and Ele
troni
s Systems at

Universitat Autònoma de Bar
elona. In this experiment the IMUs available in the lab

(See Table 3.2) are adapted to a turntable are en
losed in a thermal 
hamber, whi
h

was 
on�gured to remain 
onstant temperatures of 10 ˝C, 20 ˝C, 30 ˝C and 40 ˝C

degrees, ea
h of them lasting 30 min. The method of re
ording the data at spe
i�


temperature points is 
alled the soak method and is typi
ally used to 
alibrate the

inertial sensors [5℄. The IMUs were 
on�gured with a sampling frequen
y of 100 Hz

and 
onne
ted to a battery of 5 v to feed the devi
es. For the free rotation of the

turntable we used a Bluetooth devi
e to send the inertial sensors data to a PC.

The values for a

elerometers and gyros
opes that were obtained at a temperature

of 20 ˝C are shown in Table 3.4 and Table 3.5 for the atomi
 IMU and for the 3DM-GX3

IMU, respe
tively.
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Table 3.4: A

elerometers and gyros deterministi
 errors for the Atomi
 IMU at 20 ˝C.

Bias

pm{s2q
S
ale

Fa
tor

Error

Non-Orthogonalities

A

 X 0.567 0.019
Sxy 0.014

Sxz 0.017

A

 Y 0.770 0.025
Syx 0.024

Syz 0.016

A

 Z 1.357 ´0.001
Szx 0.037

Szy ´0.009

Bias

prad{sq
S
ale

Fa
tor

Error

Non-Orthogonalities

Gyro X ´0.78 ´0.06
Sxy ´0.07

Sxz ´0.83

Gyro Y 0.22 0.08
Syx ´0.15

Syz 0.01

Gyro Z ´0.28 ´0.10
Szx 0.18

Szy 0.01

Figure 3.11 shows the variation of the s
ale fa
tor error for gyros
opes in both

IMUs. The Atomi
 IMU has a more signi�
ant 
hange 
ompared to the 3DM-GX3

IMU as it was expe
ted. This temperature variation in the parameters must be taken

into a

ount in the error model of the inertial sensors, so it 
an be 
ompensated to

improve performan
e navigation system.
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Figure 3.11: (a) Variation of gyros s
ale fa
tor error for the Atomi
 IMU; (b) Variation

of gyros s
ale fa
tor error for the 3DM-GX3 IMU.
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Table 3.5: A

elerometers and gyros deterministi
 errors for the 3DM-GX3-25 IMU at

20 ˝C.

Bias

pm{s2q
S
ale

Fa
tor

Error

Non-Orthogonalities

A

 X ´0.018 ´0.002
Sxy 0.014

Sxz ´0.008

A

 Y 0.008 ´0.001
Syx ´0.002

Syz ´0.026

A

 Z ´0.26 ´0.012
Szx 0.027

Szy 0.020

Bias

prad{sq
S
ale

Fa
tor

Error

Non-Orthogonalities

Gyro X 0.002 ´0.015
Sxy 0.042

Sxz 0.004

Gyro Y ´0.032 ´0.012
Syx ´0.006

Syz 0.001

Gyro Z 0.013 0.041
Szx 0.003

Szy 0.002

The following se
tion makes emphasis in the des
ription of the main random errors

involved in the inertial sensors, this also presents the state-spa
e form of di�erent

sto
hasti
 models and how they are adapted into the Kalman �lter in order to


ompensate the random errors. The sto
hasti
 pro
esses explained are typi
ally used to

model the bias-drift that a�e
ts the INS. It is worth pointing out that the identi�
ation,

analysis and extra
tion of the parameters of the random errors, spe
i�
ally for the

bias-drift, are performed in Chapter 4.

3.5 Inertial Sensors Sto
hasti
 Error

In this se
tion we fo
us our attention on the sto
hasti
 error, spe
i�
ally, in the

bias-drift (δba,b), sin
e the sto
hasti
 modeling of this error is a 
hallenging task,

not only be
ause of the random nature, but also be
ause it seriously a�e
ts the

performan
e of a navigation system. For further details of the impa
t of this error, refer

to [99, 100℄, where it is showed how the position error grows when di�erent bias-drift

are a�e
ting the inertial sensor measurements. Therefore, a suitable estimation of
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the sto
hasti
 model parameters of this error will improve the performan
e of the

INS; as a 
onsequen
e, the input error to the me
hanization stage (Fig. 2.5) 
an be


ompensated and, in turn, the position error minimized. Regarding the misalignment

errors (i.e., non-diagonal elements of δSa,g), they will be not 
overed in this thesis sin
e

the 
alibration is parti
ularly useful for the removal of them, these should be relatively


onstant over time assuming a rigid body IMU platform [66℄.

3.5.1 Noise Terms

This se
tion des
ribes the noise terms that 
an be identi�ed using Allan varian
e (AV)

and Power Spe
tral Density (PSD) by �tting straight lines. Most of these errors are

shown in Fig. 3.12, where an hypotheti
al 
urve of a inertial sensor after 
omputing the

PSD is shown. Below the types of noises are summarized as well as Table 3.6 depi
ts

their 
urve slope and the equivalent 
oe�
ient value [9, 11℄.

Figure 3.12: Hypotheti
al PSD in single-sided form of an Inertial Sensor [11℄.

RatezA

eleration Random Walk (K)

This is a random pro
ess of un
ertain origin, possibly a limiting 
ase of an exponentially


orrelated noise with a very long 
orrelation time. It 
an 
ontribute to the gyro (rate)

or the a

elerometer (a

eleration). Its 
oe�
ient is denoted by K and is represented

by a slope of 1{2 in AV and ´2 in the PSD.
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Table 3.6: Random error for Power Spe
tral Density analysis [9℄.

Noise type PSD Curve slope

Coe�
ient

value

1

Quantization (Q) p2πfq2Q2Ts 2 Q“
?

Sxp1q{Ts
2π

AnglezVelo
ity

random walk (N)

N2 0 N“
?

Sxpfq

Correlated (qc)
pqcTcq2

1`p2πfTcq2 0,´ 2 see [9℄

Sinusoidal (Ω0)
Ω2

0

2
rδpf ´ f0qs dis
rete

spe
tra

see [9℄

Bias instability

(B)

B2

2πf
,0 ´1 B“2.51

?
Sxp1q

RatezA

eleration

random walk (K)

´

K
2πf

¯2

´2 K“2π
?

Sxp1q

Rate ramp (R)

R2

p2πfq3 ´3 R“15.75
?

Sxp1q

1

Sxp1q power spe
tral density of x evaluated at 1Hz

Bias Instability or Fli
ker Noise (B)

The origin of this noise is the ele
troni
s or other 
omponents that are sus
eptible to

random �i
kering [9℄. A

ording to Eq. (3.2), in a transistor it is asso
iated with the


ontamination in the pro
essing of materials. Although it 
an be redu
ed by 
leanliness

pra
ti
es, it still persists; it o

urs at low frequen
ies and it is temperature and

frequen
y dependent [101℄. Fli
ker noise is widely found in nature, o

urring in physi
s,

biology, astrophysi
s, e
onomi
s, psy
hology and even in inertial navigation [102�104℄,

however, no generally re
ognized physi
al explanation has been proposed [105℄. The

�i
ker noise is represented by the �at region in AV and a slope of ´1 in the PSD (see

Fig. 3.12).

AnglezVelo
ity Random Walk (N)

Angle (gyros) and velo
ity (a

elerometer) random walk is 
hara
terized by the white

noise of the inertial sensors; this noise presents high-frequen
y terms that have


orrelation time mu
h shorter than the sample time [9℄. It has a slope of ´1{2 in

AV and 0 in the PSD.
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Quantization Noise (Q)

The quantization noise is one of the errors introdu
ed when the 
ontinuous signal is

approximated by a dis
rete signal. That noise is 
aused in the analog-digital 
onverter

where a 
ontinuous value is asso
iated with a level of quantization with �nite word

length, the amount of levels depends on the resolution of the 
onverter. This noise is

represented by a slope of ´1 in AV and 2 in the PSD.

Drift Rate Ramp (R)

The error terms 
onsidered so far are of random 
hara
ter. However, the drift rate

ramp for long, but �nite time intervals is more a deterministi
 error rather than a

random noise [9℄. The PSD method 
annot distinguish between the rate random walk

and the rate ramp. Thus, the rate ramp must be removed before applying the PSD

method [106℄. However, It 
an be identi�ed in a log-log AV plot with a slope of 1.

The following errors are not as 
ommon in the inertial sensors as the �ve previous

noise terms, however, they 
an be identi�ed using the Allan varian
e method.

Exponentially Correlated (Markov) Noise (qc)

This noise is 
hara
terized by an exponential de
aying fun
tion with a �nite 
orrelation

time (Tc). In a log-log AV plot, for a time 
luster mu
h longer than Tc time its behaviour

is the same as the angle random walk and for a time 
luster mu
h smaller than Tc its

behaviour is the same as the rate random walk.

Sinusoidal Noise (Ω0)

This noise is resulted from periodi
 environmental 
hanges and its PSD is 
hara
terized

by one or more distin
t frequen
ies. A low-frequen
y sour
e 
ould be the slow motion

of the test platform due to periodi
 environmental 
hanges. This error is represented

in AV with multiple frequen
y sinusoids, where the amplitudes of 
onse
utive peaks

fall o� rapidly and may be masked by higher order peaks of other frequen
ies making

observation di�
ult [9℄.
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3.5.2 Inertial Sensor Error Models

In the previous se
tion di�erent random noises that 
an be identi�ed with AV and PSD

were presented. This se
tion will des
ribed the sto
hasti
 pro
esses that are usually

used to model some of these noise terms and also the state-spa
e representation that

is implemented in the EKF for modelling the random errors.

White Noise (WN)

White noise is de�ned to be a stationary pro
ess having a 
onstant spe
tral density

fun
tion [62℄. This noise 
an be 
onsidered as a signal 
ontaining all the frequen
y


omponents, similar to white light (hen
e the name) that in
ludes all the visible

frequen
ies. It has the parti
ularity that its output at any instant of time is independent

of previous values, therefore its auto
orrelation is 
hara
terized by a Dira
 delta.

Although white noise is an idealized 
on
ept it serves as approximation to situations in

whi
h a disturbing noise is wideband 
ompared with the bandwidth of a system [64℄.

It 
an be used to model the random noise of an inertial sensor showed in Fig. 3.7

that is part of the sto
hasti
 error, it is asso
iated with the noise term angle/velo
ity

random walk (N) that is obtained with Allan varian
e or PSD (see Se
tions 4.3.3 and

4.3.4). Additionally, a number of random pro
esses 
an be generated by passing white

noise through a suitable �lter [64℄, whi
h is appropriate for KF sin
e Gaussian noise

disturban
es for the pro
ess noises and measurement noises 
an be represented by white

noise. Moreover, the models of the INS residual error 
an be implemented through a


ertain shaping �lter (i.e., a linear dynami
 system that 
an be adapted into the KF)

that uses as input white noise to yield an output of time-
orrelated (or 
olored) noise,

whi
h will 
hange the 
orrelation 
hara
teristi
s of the white noise [107℄.

Random Constant (RC)

The random 
onstant is a non-dynami
 quantity with a �xed, albeit random, amplitude

[64℄. The 
ontinuous and dis
rete random 
onstant are des
ribed by Eq. (3.14) and

Eq. (3.15), respe
tively.
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9x “ 0 (3.14)

xk`1 “ xk (3.15)

Non-orthogonalities and turn-on bias of sensor triads 
an be dealt with random


onstants, bias-drift of the inertial sensors 
an also be 
onsidered as random 
onstant,

if the operation time is very short. If the operation time is very long even if the state

is 
onstant, it will be preferable to add noise intentionally, whi
h results in a random

walk pro
ess [51℄, although this is not suitable for low 
ost inertial sensors.

Random Walk (RW)

The random walk pro
ess results when un
orrelated signals are integrated, for instan
e

when white noise is integrated. Its 
ontinuous and dis
rete representation are

9x “ w (3.16)

xk`1 “ xk ` wk (3.17)

where w is a white noise with noise 
ovarian
e qk “ qptk`1 ´ tkq “ qδt. The

un
ertainty of the random walk in
reases with time, therefore it is a non-stationary

pro
ess [64℄, however, it 
an be 
onsidered stationary within small time intervals

[108℄. Sin
e an INS integrates signals from a

elerometers and gyros, the white noise


omponents are integrated, this will in
rease the un
ertainty of velo
ity and attitude

[51℄. Parameters that represent random walk are related with the rate/a

eleration

random walk (N) des
ribed in Se
tion 3.5.1, they are obtained through the Power

Spe
tral Density or Allan Varian
e analysis, whi
h will be explained in Chapter 4.

Random Ramp (RR)

Some random errors exhibit a time-growing behavior, for instan
e the drift rate ramp

(R) des
ribed in the previous se
tion; in these 
ases the random ramp whi
h grows

linearly with time 
an be used to des
ribe them [64℄. The growth rate of this fun
tion

is a random quantity with a given probability density, the states ve
tor di�erential
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equation and its 
orresponding dis
rete representation are des
ribed by two variables

[64℄:

9x1 “ x2 (3.18)

9x2 “ 0 (3.19)

xk`1 “ x1k ` ptk`1 ´ tkqx2k (3.20)

x2k`1 “ x2k (3.21)

First-order Gauss-Markov Pro
ess

Gauss-Markov (GM) random pro
esses are stationary pro
esses that have exponential

auto
orrelation fun
tions [15℄. This pro
ess is important be
ause it is able to represent

a large number of physi
al pro
esses. First order GM pro
ess is one of the most 
ommon

pro
esses for modeling random errors of the inertial sensors when the variation sensor

error is slow, in high-end sensors this 
an be done with a large 
orrelation time Tc. For

the �rst order GM pro
ess the 
ontinuous model is des
ribed by the following equation:

9x “ ´ 1

Tc
x` w (3.22)

where x is a random pro
ess with zero mean, 
orrelation time, Tc, and driven noise,

w. The 
orresponding dis
rete time equation 
an be written as:

xk “ e´∆t{Tcxk´1 ` wk (3.23)

where ∆t is the sampling time and wk is a white noise with noise 
ovarian
e:

σ2
wk

“ σ2
xk

`

1 ´ e´2∆t{Tc
˘

(3.24)

where σ2
xk

is the 
ovarian
e of the pro
ess.

On
e the 
orrelation time (Tc) and the driven noise varian
e (σ2
xk
) are obtained, the

model of the �rst order GM pro
ess 
an be implemented with Eq. (3.23). A

ording to
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Eq. (3.23), if Tc “ 8, then Gauss-Markov model be
omes a random walk model. On

the other side, if Tc “ 0, it be
omes a white noise. The �rst order Gauss-Markov model

parameters 
an be estimated using least squares �tting of the estimated auto
orrelation

values for gyro and a

elerometer measurements [29℄. Also Allan varian
e 
an be

used to determine Tc and the varian
e of the driven noise wk, a des
ription of how to

determine these parameters 
an be found in [4, 9, 13, 26℄.

The �rst order Gauss-Markov pro
ess 
an be used to model the �i
ker noise, this

is be
ause it is sometimes approximated as the 
ombination of several exponentially


orrelated noise terms as it is stated in [26℄. The �i
ker noise 
an be approximated over

a bandwidth given as a sum of exponentially 
orrelated noises [11℄, so the sequen
e of

pro
esses formed by many �rst order GM pro
ess 
an be expressed by:

yk “
n

ÿ

i“1

xik (3.25)

where yk would be the �i
ker noise model, xk would be given by Eq. (3.23) and n

would be the number of GM pro
esses to be added. The 
orrespondent power spe
tral

density of the exponential 
orrelated (Markov) noise xk is denoted by Sxpfq [63, 64℄:

Sxpfq “ 2σ2
x{Tc

p2πfq2 ` p1{Tcq2
(3.26)

In Eq. (3.25) it should be 
onsidered that pro
esses xik at di�erent Tc's are

independent [109℄.

The �i
ker noise is very 
ommon in inertial sensors, but why 
an it be approximated

as a sum of �rst order GM pro
esses? This is be
ause this noise was dis
overed by

Johnson [110℄ while doing experiments to study the shot noise in va
uum tubes, then

S
hottky [111℄ attempted to des
ribe it mathemati
ally with a Lorentzian spe
tral

density, whi
h have similar representation to the power spe
tral density of a exponential

Markov 
orrelated noise (Eq. (3.26)), i.e., a white noise for low frequen
ies, a random

walk for high frequen
ies and between them there is a slope of ´1 that 
an represent

the �i
ker noise (see Fig. 3.13).

Later Bernamont [112℄ proposed a superposition of these pro
esses to represent

�i
ker noise and more re
ently Erland and Greenwood [113℄ 
onsidered a 
olle
tion of
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Figure 3.13: Hypotheti
al power spe
tral density of a �rst order Gauss-Markov pro
ess

for a Gyro.

�rst order autoregressive pro
esses. In the 
ase of inertial sensors, the �i
ker noise

has already been modelled as a sum of �rst order GM pro
esses, for further details

see [6, 8, 27, 28℄.

Combinations of Random Pro
esses

A typi
al bias-drift of a inertial sensor 
an be represented by a 
ombination of di�erent

random pro
esses, su
h as white noise (WN), random walk (RW) and �rst order GM

pro
esses. These pro
esses 
an be added into the KF by writing them in a state-spa
e

model. A

ording to the previous de�nitions, a random pro
ess that 
ombines WN,

RW and �rst order GM 
an be generated using the following dis
rete time-invariant

state-spa
e model:

¨

˝

x1

x2

˛

‚

k

“

¨

˝

p1 ´ β∆tq 0

0 1

˛

‚

¨

˝

x1

x2

˛

‚

k´1

`

¨

˝

σGM

a

p1 ´ e´2∆t{Tcq
σRW

?
∆t

˛

‚wk (3.27)

δbk “
´

1 1

¯

¨

˝

x1

x2

˛

‚

k

`
´

σWN{
?
∆t

¯

vk (3.28)

where σWN is the standard deviation of the white noise pro
ess, σRW is the standard

deviation of the random walk pro
ess, β and σGM are the inverse of the 
orrelation

time (Tc) and the 
ovarian
e of the �rst order GM pro
ess, respe
tively. δbk is the
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result of 
ombining WN, RW and �rst order GM. Eqs. (3.27) and (3.28) are easily

adapted into the KF equations, sin
e they are represented in state-spa
e form. In this

example, the bias-drift (δb) would be modeled by the 
ombination of three noises, i.e.,

δb “ WN ` 1stGM ` RW .

Autoregressive (AR) Pro
ess

An AR pro
ess is a time series produ
ed by linear 
ombination of past values, whi
h


an be des
ribed by the following linear equation [114℄:

xpnq “ ´
p

ÿ

k“1

αkxpn´ kq ` β0wpnq (3.29)

where xpnq is the pro
ess output, whi
h is a 
ombination of past outputs, plus a white

noise, wpnq, with standard deviation, β0; p is the order of the AR pro
ess and αk are

the model parameters.

In order to in
lude the AR pro
ess in the EKF transition matrix, it is ne
essary to

express Eq. (3.29) in state-spa
e form. If we 
onsider a third order AR pro
ess, the


orresponding state-spa
e form 
an be expressed as follow [62℄:

¨

˚

˚

˚

˝

x1

x2

x3

˛

‹

‹

‹

‚

n

“

¨

˚

˚

˚

˝

0 1 0

0 0 1

´α3 ´α2 ´α1

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

x1

x2

x3

˛

‹

‹

‹

‚

n´1

`

¨

˚

˚

˚

˝

0

0

β0

˛

‹

‹

‹

‚

wpnq (3.30)

This represents the AR model in state-spa
e for one of the inertial sensors. It should

be noted that if the order of the AR model in
reases by one, the variables in the state

ve
tor of the Kalman �lter will in
rease by six, sin
e this model is applied to ea
h axis

of inertial sensors.

The sto
hasti
 pro
esses that are used to model the inertial sensors bias-drift are

augmented into the Kalman �lter, as was explained in this se
tion. In order to obtain

the parameters of ea
h sto
hasti
 pro
ess, an analysis of the sensors data needs to be

done. The methods addressed to get these parameters are dis
ussed in Chapter 4, as

well as the experimental analysis of ea
h method for low 
ost IMUs.

For more details of higher orders of GM pro
esses and others sto
hasti
 models

see [15, 41, 64, 107℄.
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Chapter 4

Sto
hasti
 Modelling of MEMS

Inertial Sensors

4.1 Introdu
tion

This 
hapter is divided in two parts. The �rst part is fo
used on the identi�
ation and

modeling of the bias-drift sto
hasti
 error applying the most used te
hniques 
urrently

available to analyze these random pro
esses and we present the mixture of the wavelet

de-noising te
hnique and Allan varian
e.

The se
ond part of the 
hapter begins in Se
tion 4.5, where we 
ontinue studying

the bias-drift sto
hasti
 modelling of inertial sensors and we explain the 
onstrained

non-linear �tting (NLF). In order to assess the performan
e of the NLF, a simulation

analysis is a
hieved by generating noise sour
es that typi
ally in�uen
e the inertial

sensors. Then, we 
ompared the NLF with the (EM) [21,115℄ that is a re
ent method

that deals with 
omplex noise stru
tures.

4.2 Identifying and Extra
ting Sto
hasti
 Model

Parameters

The sto
hasti
 modeling of the inertial sensors is a 
hallenging task that in most

pra
ti
al 
ases, it is performed by tuning the GPS/INS Extended Kalman Filter,
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whi
h is often sensitive and di�
ult, by using sensors available spe
i�
ations, but

low 
ost sensors do not provide enough information to develop this sort of models, or

by experien
e [116℄. Therefore, there are di�erent works that have been a
hieved in

order to obtain a suitable estimation of the sto
hasti
 model parameters [7, 12, 19, 20,

24, 117℄. In this se
tion, we des
ribe the most used methods for noise identi�
ation

and extra
tion of the noise parameters for sto
hasti
 modeling of inertial sensors.

Additionally, an introdu
tion to the wavelet de-noising te
hnique is presented at the

end of the se
tion.

4.2.1 Auto
orrelation

The auto
orrelation is one of the most important fun
tions to des
ribe a random pro
ess

due to the fa
t that it indi
ates the similarity degree of a random signal between two

instants of time t1,t2. For a random pro
ess xptq it is de�ned as:

Rxxpt1,t2q “
ż 8

´8

ż 8

´8
x1x2fx px1x2; t1t2qdx1dx2 (4.1)

where x1 “ xpt1q, x2 “ xpt2q and f
x
is the joint density fun
tion. The double

integral arises as 
onsequen
e that at the time instant t1 the amplitude of the signal

xpt1q is asso
iated with the random signal x1 and at the time instant t2 the amplitude

of the signal xpt2q is asso
iated with x2.

The auto
orrelation fun
tion has been used in previous works to analyze the

sto
hasti
 error of the inertial sensors [19, 20℄, and also to obtain the parameters for

modeling using the �rst order Gauss-Markov (GM) pro
ess. As it was mentioned in

the previous 
hapter, this pro
ess seems to �t a large number of physi
al pro
esses

with reasonable a

ura
y.

For a random pro
ess, x, with zero mean, 
orrelation time, Tc, and driven noise, w,

the �rst order Gauss-Markov (GM) pro
ess is des
ribed by Eq. (3.22). The parameters

needed to implement this pro
ess 
an be extra
ted from its auto
orrelation fun
tion

(Fig. 4.1), whi
h is given by:

Rxxpτq “ σ2e´β|τ |
(4.2)
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where the 
orrelation time is Tc “ 1{β and σ2
is the varian
e of the pro
ess at

zero time lag (τ “ 0). The most important 
hara
teristi
 of the �rst order GM

pro
ess is that it 
an represent bounded un
ertainty, whi
h means that any 
orrelation


oe�
ient at any time lag, τ , is less or equal the 
orrelation 
oe�
ient at zero time

lag, Rxxpτq ď Rxxp0q [64℄.

2( )x xR e
-= β τ

τ σ

2

e

σ2

e

σ

τ1
CT =

β

1
CT- = -

β
τ-

2σ

Figure 4.1: The auto
orrelation fun
tion of the �rst order Gauss-Markov pro
ess.

An example of two �rst order GM pro
esses that may be part of the bias-drift

of the inertial sensors are depi
ted in Fig. 4.2(a), where two bias-drift with di�erent


hara
teristi
s 
an be seen (i.e., Tc and σ
2
), pro
ess x2 presents faster variations than

pro
ess x1. Computing their auto
orrelation fun
tions and drawing the result as it

is shown in Fig. 4.2(b), it 
an be observed that a random signal with fast variations

(x2) has a greater value of auto
orrelation over short time lag pτq than over large time

lag be
ause of its similarity in short periods of time, while the auto
orrelation 
urve

of a pro
ess with slow variations (x1) de
reases slowly whi
h indi
ates that there are

similarities even when time lag is large. In MEMS inertial sensors more than two of

this noises 
an be found making 
omplex noises stru
tures.

One of the limitations of this method is that an a

urate auto
orrelation 
urve from

experimental data is rarely done, due to the fa
t that the data 
olle
ted is limited and

�nite. As it is dis
ussed in [62℄, the a

ura
y of the auto
orrelation depends on the

re
orded length data.

In [19, 20, 117℄, it was shown that the auto
orrelation fun
tion of experimental

inertial sensor data might not be as a �rst order GM pro
ess, whi
h is equivalent to a

�rst order autoregressive pro
ess. This means that only a �rst order autoregressive
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Figure 4.2: (a) A

elerometer bias-drift modeled with two di�erent �rst order Gauss

Markov pro
esses; (b)Auto
orrelation 
urve of two �rst order Gauss

Markov pro
esses.

pro
ess may not be adequate to model the bias-drift behavior that a�e
ts the

performan
e of the inertial navigation system. In fa
t, in most of the 
ases when low


ost IMU are used, the shape of the auto
orrelation follows higher order Gauss-Markov

pro
esses. As a 
onsequen
e, higher orders of autoregressive pro
esses are more

appropriate to model inertial sensors sto
hasti
 errors [107℄. Despite this, the

auto
orrelation analysis 
an be useful to determine the 
orrelation grade of the

underlying random pro
esses that a�e
t the sensors and, also, if the un
orrelated noise


an be highly attenuated after �ltering the sensor signal. This issue will be dis
ussed

in Se
tion 4.3.1.

4.2.2 Autoregressive Pro
esses

To avoid the problem of ina

urate modeling of inertial sensor random errors, as in

the 
ase with the low-pre
ise auto
orrelation fun
tion, des
ribed in previous se
tion,

another method, whi
h was introdu
ed in [20℄, 
an be applied. There are di�erent

works where the autoregressive (AR) models have been evaluated, some of them are

well detailed in [19, 20, 114, 117℄.

Although �rst order Gauss-Markov (GM) pro
ess has been very useful for modeling

random errors of inertial sensors, better sto
hasti
 modeling 
an be a
hieved by

modeling these errors as higher order AR models [19℄. In addition, the auto
orrelation

70



4 � Sto
hasti
 Modelling of MEMS Inertial Sensors

of the random error for MEMS sensors often seems to follow a higher order GM pro
ess,

whi
h 
an be modeled using an appropriate AR model.

A

ording to Eq. (3.29), this is assumed that the 
oe�
ients (β0, αk) are 
omputed

so that the linear system is stable, making the model stationary [64℄. It should be

noted in Eq. (3.29) that if p “ 1, then the AR pro
ess approximates �rst order GM

pro
esses. On the other hand, if p “ 1 and α1 “ ´1, it be
omes a random walk

(RW), and if α1 “ 0, it would be a white noise (WN). The 
oe�
ients of this pro
ess

are estimated by Burg's method, sin
e it over
omes some of the drawba
ks of other

methods by providing more stable models and improved estimates with shorter data

re
ords [118℄.

In this thesis, we fo
us on AR models up to the third order, sin
e a higher order

would in
rease the 
omputational load and might result in unstable solutions [20℄. This

method is usually used after applying wavelet de-noising to the stati
 inertial sensor

data, whi
h is explained in Se
tion 4.2.5.

4.2.3 Power Spe
tral Density

Power spe
tral density (PSD) is an important des
riptor of a random pro
ess, be
ause

it provides information of the signal that is not easy to extra
t from the time domain.

The PSD is related to the auto
orrelation fun
tion with:

Sxpjwq “ F rRxxpτqs “
ż 8

´8
Rxxpτqe´jwtdτ (4.3)

where, Sxpjwq is the power spe
tral density of the pro
ess, x, F r¨s indi
ates Fourier
transform, and Rxxpτq is the auto
orrelation of the pro
ess, x [11℄.

Basi
ally, the PSD is used to identify the sto
hasti
 errors of the inertial sensors

(i.e., bias-drift) from the frequen
y 
omponents, and the parameters obtained from the

PSD are eventually used in the sto
hasti
 model of the INS.

Fig. 3.12 depi
ts a hypotheti
al inertial sensor PSD in single-sided. A

ording to

this 
urve, the noise sour
es might be identi�ed 
onsidering the slopes, i.e., a slope

of ´2 represents the rateza

eleration random walk noise for gyro and a

elerometer,

respe
tively. Obviously, the number of random noises that might be present in the
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urve depends on the type of sensors. Table 3.6 shows the PSD fun
tion asso
iated

with di�erent random noises, it in
ludes the 
orresponding 
urve slope and 
oe�
ient

value for various noises terms depi
ted in Fig. 3.12. The noise terms that 
an be

identi�ed with the PSD are well detailed in [9, 11, 12℄.

So far, we have presented the auto
orrelation, where the sto
hasti
 model

parameters are extra
ted from the auto
orrelation 
urve, the autoregressive pro
esses

that estimates the 
oe�
ients of an AR model applying Burg's method over the

de-noised sensor data and the power spe
tral density that identi�es the noise terms

based on the slopes in a log-log PSD 
urve. The following se
tion will des
ribe the

Allan varian
e te
hnique, whi
h is similar to the PSD, but in the time domain.

4.2.4 Allan Varian
e

The Allan varian
e (AV) is a time domain analysis te
hnique originally developed to

study the frequen
y stability of os
illators [17℄. More re
ently, this has been su

essfully

applied to the modeling of inertial sensors [14�17, 24℄, and two key do
uments to

determine the 
hara
teristi
s of the random pro
esses that give rise to the measurement

noise of the sensors using this te
hnique are [9, 12℄. As su
h, AV helps in identifying

the sour
e of a given noise term in the observed data [9℄.

The Allan varian
e is estimated as follows:

σ2pT q “ 1

2T 2pN ´ 2nq
N´2n
ÿ

k“1

pθk`2n ´ 2θk`n ` θkq2 (4.4)

where T represents the 
orrelation time, or 
luster time, i.e., the time asso
iated with

a group of n 
onse
utive observed data samples, N is the length of the data that will

be analyzed and θ is the output velo
ity, in the 
ase of the a

elerometers, and output

angle, in the 
ase of the gyros; these measurements are made at dis
rete times from

the inertial sensors.

The basi
 idea to estimate the AV is to take a long sequen
e of data (N), where the

IMU is in a stati
 
ondition. After having removed the turn-on bias from the gyros'

and a

elerometer's stored data, the output of the inertial sensor is integrated to get

θ. Thus, the AV 
an be 
omputed through Eq. (4.4).
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In AV, the un
ertainty in the data is assumed to be generated by noise sour
es

of spe
i�
 
hara
ter, as for instan
e, rate random walk, angle random walk, bias

instability, et
. In order to obtain the 
ovarian
e of ea
h noise sour
e a�e
ting the

sensor output, it is ne
essary to analyze the 
omputed AV result by Eq. (4.4). This

is usually a
hieved by plotting a log-log AV 
urve, as depi
ted in Fig. 4.3, from whi
h

the 
ovarian
e values for ea
h error 
an be extra
ted doing a similar analysis to the

one performed with the PSD 
urve.

Figure 4.3: Hypotheti
al Allan varian
e (AV) of an inertial sensor [9℄.

Table 4.1 summarizes the AV fun
tion for di�erent segment of the 
urve related to

various noise terms, it in
ludes the 
urve slope and 
oe�
ient value representing the

random noises shown in Fig. 4.3.

Table 4.1: Random error for Allan varian
e analysis [9℄.

Noise type AV Curve slope

Coe�
ient

value

Quantization (Q)

3Q2

T 2
´1 Q “ σp

?
3q

AnglezVelo
ity

random walk (N)

N2

T
´1

2
N “ σp1q

Correlated (qc)
q2cT

3
,

pqcTcq2
T

1
2
,´ 1

2

qcTc “ σp1q,
qc “ σp3q

Sinusoidal (Ω0) Ω2
0

´

sin2 πf0T

πf0T

¯2

1,´ 1 see [9℄

Bias instability

(B)

p0.664Bq2 0 B “ σpT0q
0.664

RatezA

eleration

random walk (K)

K2T
3

1
2

K “ σp3q

Rate ramp (R)

pRT q2
2

1 R “ σp
?
2q
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The AV obtained from Eq. (4.4) is related to the two-sided PSD by:

σ2pT q “ 4

ż 8

0

df ¨ Sxpfq ¨ sin
4pπfT q

pπfT q2 (4.5)

where Sxpfq is the PSD of the random pro
ess, x, written in Eq. (4.3).

An interpretation of Eq. (4.5) is that the Allan varian
e is proportional to the total

noise power of the sensor output when passed through a bandpass �lter with transfer

fun
tion sin4pπfT q{pπfT q2. This �lter depends on T , whi
h suggests that di�erent

types of random pro
esses 
an be examined by adjusting the 
orrelation time pT q.
Thus, the AV provides a mean of identifying and quantifying various noise terms that

exist in the data [9℄.

Computation of AV needs a �nite number of 
lusters that 
an be generated from

the raw data measurements of the sensors. Depending on the size of these 
lusters,

AV 
an identify any noise term that is a�e
ting the data sensor. It is important to

mention that the estimation a

ura
y of the AV for a given T depends on the number

of independent 
lusters within the data set [9℄. The bigger the number of independent


lusters, the better the estimation a

ura
y. It has been des
ribed in [12℄ that the

per
entage error of AV, σpδq, in 
ertain σpT q and with a data set of N points is given

by:

σpδq “ 1
b

2
`

N
n

´ 1
˘

(4.6)

where N is a set of data points 
olle
ted from the sensors and n is the number of data

points of the 
luster in estimating σpT q. Eq. (4.6) shows that the estimation errors in

the region of short 
luster length, T , are small, as the number of independent 
luster

in these regions is large. On the other hand, the estimation error in the region of long


luster length, T , are large, as the number of independent 
lusters in these regions is

small [9, 12℄.

For example, if 360000 data points are 
olle
ted from an inertial sensor and if we

want to 
ompute the estimation a

ura
y of the AV for a bias instability (Fig. 4.3) with

a 
hara
teristi
 time of 10 min, we will have 60000 points with a sampling frequen
y

of the sensor equal to 100 Hz. A

ording to Eq. (4.6), the per
entage error of the AV

for this random pro
ess would be approximately 32%.
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The following se
tion presents wavelet de-noising te
hnique, whi
h will be 
ombined

with autoregressive pro
esses, as well as Allan varian
e.

4.2.5 Wavelet De-Noising

The Dis
rete Wavelet Transform (DWT) is a widely used te
hnique in digital signal

pro
essing, and one of its 
hara
teristi
s is that it allows us to do a multiresolution

analysis. Basi
ally, when DWT is applied to a signal, xpnq, this is �ltered with low-pass,
h0pnq, and high-pass, h1pnq, �lters (the 
oe�
ients of ea
h �lter depend on the wavelet

fun
tion). Subsequently, a sub-sampling by two is done. Wavelet multiple levels of

de
omposition (LOD) are obtained by repeating this stage on the sub-sampled output

of the low-pass �lter, h0pnq, as shows Fig. 4.4. After applying DWT, the spe
trum

of the signal, xpnq, is divided into di�erent sub-bands with di�erent resolutions, as


an be seen in Fig. 4.5. The most signi�
ant 
oe�
ients of the signal, xpnq, are the

approximations (Ak). This means, that they have the majority of the information of

the signal, while the high-frequen
y 
omponents are know as details (Dk), and as its

name says, they are details of the signal, xpnq, that in most 
ases, are high-frequen
y

noise 
omponents.
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Figure 4.4: Filter banks of the dis
rete wavelet transform.

4A
3D 2D

1D

( )x f

f

Figure 4.5: Band frequen
y distribution after applying four levels of de
omposition.

Moreover, wavelet de-noising takes advantage of the sub-band de
omposition

performed by the DWT and removes the noise by eliminating the frequen
y 
omponents
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that are less relevant; in general, this pro
edure is 
alled wavelet de-nosing and is well

des
ribed in [22, 107, 119, 120℄.

This te
hnique is the 
urrent state-of-the-art te
hnique used in the a

ura
y

enhan
ement of inertial sensors [20, 22, 23, 25℄. Sin
e inertial sensors are 
omposed

by long-term and short-term noises, wavelet de-noising 
an be applied in order to

remove part of the high-frequen
y 
omponents (short-terms noises). Although wavelet

de-noising of INS sensors has had limited su

ess in removing both noise 
omponents,

it has been 
ombined with AR pro
esses and the auto
orrelation fun
tion by using the

inertial sensor measurements in stati
 
onditions. Basi
ally, when it is applied in the

auto
orrelation method, the un
orrelated noise is removed using wavelet de-noising in

order to obtain a smooth auto
orrelation fun
tion that 
an be asso
iated to a sto
hasti


pro
ess. In the 
ase of the AR pro
ess, wavelet de-noising is applied, and then the AR


oe�
ients are estimated from the residual noise.

Wavelet de-noising might be used to remove long-term noises (low-frequen
y) by

in
reasing the level of de
omposition that at the same time, in
reases the number of

frequen
y bands that 
an be de-noised. However, in land vehi
le appli
ations, these

low-frequen
y 
omponents 
onsist not only of long-term noises, but also of vehi
le

motion dynami
s. Sin
e wavelet de-noising 
an be used to remove the high-frequen
y


omponents and the AV method 
an be used to model the long-term noises without

removing the vehi
les motion, these two methods are 
ombined in order to enhan
e the

INS a

ura
y. The mixture between these two te
hniques is addressed in the following

se
tion, as well as the experimental analysis for ea
h method explained.

4.3 Experimental Analysis

In order to evaluate and 
ompare the previous methods, the stati
 data for analysis

was obtained from the IMU 3DM-GX3-25 MEMS grade of Mi
roStrain (Fig. 3.6(a)).

The IMU was 
on�gured with a sampling frequen
y of 100 Hz, and the se
ond moving

average �lter stage implemented in the mi
ro
ontroller was adjusted with a �lter width

of 15; this means an attenuation of 14.16% at 20 Hz; for further details of this digital

�lter, whi
h is embedded on the IMU, see [121℄.
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The 
hara
teristi
s provided by the manufa
turer 
an be seen in Table 3.2. The

test for stati
 analysis was 
ondu
ted in a room temperature at the Navsas laboratory,

Polite
ni
o di Torino [122℄. Seven hours of stati
 data were 
olle
ted in order to

analyze the inertial sensors data with the methods that were explained previously.

The following se
tions provide details of the analysis a
hieved for this IMU data.

4.3.1 Auto
orrelation Analysis

After the seven hour-length data 
olle
ting, we used the auto
orrelation method to

a
hieve the analysis of the random errors that a�e
t the a

elerometers and gyros
opes

of the IMU. Nevertheless, before pro
essing the raw samples, we removed the turn-on

bias for ea
h sensor. Then, the high-frequen
y terms were attenuated by applying the

wavelet de-noising te
hnique. The idea in this step is to minimize the un
orrelated

noise that is present in the sensors. Subsequently, the auto
orrelation is 
al
ulated

(Fig. 4.6(b)), and the 
orresponding parameters should be extra
ted from the 
urve.

In the 
ase of the �rst order GM pro
ess, they would be stated as Tc and σ, respe
tively.

Fig. 4.6(a) depi
ts the normalized auto
orrelation fun
tion of the a

elerometers

before applying de-nosing, while Fig. 4.6(b) 
orresponds to the auto
orrelation 
urve

after de-noising with six levels of de
omposition using Daube
hies 4 as the wavelet

fun
tion. This auto
orrelation shows 
learly that the residual noise of the x-axis

a

elerometer after applying wavelet de-noising is still dominated by terms that are

un
orrelated. With respe
t to the other two-axes a

elerometers (i.e., y-axis and

z-axis), their 
orrelations seems to have more 
orrelated terms than in the x-axis

a

elerometer 
ase, so a high order autoregressive model 
ould be used to model their

residual noise, sin
e the auto
orrelation 
urve is similar to the 
urve of high order AR

pro
esses (see [20, 64℄).

The same wavelet de-noising pro
edure was repeated to analyze the gyros
ope's


hara
teristi
s. The results are depi
ted in Fig. 4.7(a). This 
urve shows that the signal

for the three gyros
opes is mainly dominated by short-term noises (high-frequen
y


omponents), whi
h are related to white noise. After applying wavelet de-noising with

six levels of de
omposition using Daube
hies 4 as the wavelet fun
tion (Fig. 4.7(b)); the

auto
orrelation shows that the three gyros have similar 
hara
teristi
s, and although
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part of the un
orrelated noise was removed, the remaining signal for the gyros
opes

still has a representative white noise 
omponent.

In the 
ase of inertial sensors based on MEMS te
hnology, the assumption that the

sto
hasti
 error follows a �rst order Gauss-Markov pro
ess is not valid in most of the

situations. This 
an be visible by 
omparing Fig. 4.1 with Figs. 4.6(b) and 4.7(b),

where it 
an be seen that they are di�erent from the auto
orrelation fun
tion of the

�rst order Gauss-Markov pro
ess. This is be
ause these sensors are 
omposed by more


omplex noise types, and �rst order Gauss-Markov is only a rough approximation of

this 
omplex stru
ture of noises. Nonetheless, for the sake of 
omparison with the

di�erent models and to validate this analysis, a �rst order AR pro
ess is also assessed

in Se
tion 4.5.3.
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Figure 4.6: (a) IMU 3DM-GX3-25 auto
orrelation for a

elerometers; (b) IMU

3DM-GX3-25 auto
orrelation for a

elerometers after applying wavelet

de-noising with six levels of de
omposition (LOD).

It is worth mentioning that the un
orrelated noise 
ould be minimized by applying

more levels of de
omposition during the wavelet de-noising pro
edure, or a very high

order autoregressive model 
ould be used to 
reate the model. However, the use

of su
h a 
omplex AR model in the integration �lter would drasti
ally in
rease the

matri
es sizes, as well as the 
omputational burden. In addition, due to the fa
t that

the auto
orrelation has some other limitations (see Se
tion 4.2.1), the method that

will be analyzed in the following se
tion is more appropriate to model higher order

autoregressive pro
esses.
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Figure 4.7: (a) IMU 3DM-GX3-25 auto
orrelation for gyros; (b) IMU 3DMGX3-25

auto
orrelation for gyros after applying wavelet de-noising with six LOD.

4.3.2 AR Models

Sin
e the auto
orrelation is a low-a

urate te
hnique to identify the noises a�e
ting

a low 
ost INS, a method based on AR models have been used to over
ome this

issue (see [20℄). It 
onsists in 
ombining AR pro
esses and wavelet de-noising to

redu
e high-frequen
y noise and, 
onsequently, to obtain the AR 
oe�
ients from the

residual noise. In other words, after minimizing the short-term error (high-frequen
y


omponents) with wavelet de-noising, the residual noise 
ould be modeled by an AR

model.

For stati
 drift data of the inertial sensors, the approximation part of the DWT

in
ludes the earth gravity, the earth rotation rate frequen
y 
omponents and the

long-term error, while the detail part of the DWT 
ontains the high-frequen
y noise

and other disturban
es [20, 120℄.

By working with inertial data 
olle
ted in a stationary 
ondition, we �rst applied the

wavelet de-noising te
hnique, and then, the AR model 
oe�
ients were estimated with

Burg's method. This pro
edure is exe
uted for ea
h sensor and for two AR models: �rst

and third order. In this work, the attention is fo
used on these two models, be
ause

the �rst order AR models is one of the most used in the navigation �eld, and also up

to the third order, be
ause as it is explained by Nassar et al. [20,117℄, the higher order

would in
rease the 
omputational load and might result in unstable solutions.
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Table 4.2 depi
ts the parameters obtained with Burg's method for ea
h inertial

sensor using the wavelet de-noising 
hara
teristi
s des
ribed in the previous se
tion. It

shows the 
oe�
ients for the �rst and third order AR pro
ess that 
orrespond to the

sto
hasti
 pro
ess explained in Se
tion 4.2.2. These ARmodel 
oe�
ients are estimated

after 
omputing wavelet de-noising in stationary 
onditions, whi
h was des
ribed in

Se
tion 4.2.5.

Table 4.2: Autoregressive pro
ess 
oe�
ients for ea
h inertial sensor obtained with

Burg's method after wavelet de-noising with six LOD.

α1 α2 α3 β0

2pm{s2q2

A

 X

´1 2.129 ˚ 10
´10

´2.582 2.166 ´0.585 4.973 ˚ 10
´13

A

 Y

´1 1.148 ˚ 10
´9

´2.564 2.136 ´0.572 8.399 ˚ 10
´12

A

 Z

´1 1.014 ˚ 10
´9

´2.564 2.136 ´0.572 7.964 ˚ 10
´12

α1 α2 α3 β0

2prad{sq2

Gyro X

´0.999 1.014 ˚ 10
´10

´2.564 2.131 ´0.567 2.739 ˚ 10
´13

Gyro Y

´0.999 7.04 ˚ 10
´11

´2.565 2.133 ´0.568 1.905 ˚ 10
´13

Gyro Z

´0.999 8.066 ˚ 10
´11

´2.562 2.128 ´0.566 2.181 ˚ 10
´13

4.3.3 PSD Analysis

The power spe
tral density was implemented using Wel
h's method, sin
e this has been

found to have the widest appli
ation in engineering and experimental physi
s [123℄. In

this 
ase, we have applied a Fast Fourier Transform with 220 data points for the seven

hours of the data 
olle
tion. The results for the PSD are shown in Fig. 4.8(a) for

a

elerometer data.

Figure 4.8(a) depi
ts the one-sided PSD for a

elerometers data. This log-log plot

shows a bun
h of high-frequen
y 
omponents, whi
h makes it di�
ult to identify noise

terms and obtain parameters of the sto
hasti
 model. The varian
e in these short-term

noises may be de
reased by averaging adja
ent frequen
ies of the estimated PSD [18℄;

this task 
an be a

omplished by using a te
hnique that is 
alled frequen
y averaging;

further details of this te
hnique 
an be found in [11℄. Fig. 4.8(b) shows a PSD 
urve

80



4 � Sto
hasti
 Modelling of MEMS Inertial Sensors

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
0

10
2

10
4

10
6

Frequency (Hz)

P
S

D
 (

m
/s

/h
)2

/H
z

 

 

Acc X
Acc Y
Acc Z

(a)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Frequency (Hz)

P
S

D
 (

m
/s

/h
)2

/H
z

 

 

Acc X
Acc Y
Acc Z

(b)

Figure 4.8: (a) Power spe
tral density a

elerometer IMU 3DM-GX3-25; (b)

power spe
tral density a

elerometer IMU 3DM-GX3-25 after frequen
y

averaging.

after applying frequen
y averaging; it 
an be noti
ed that the noise term identi�
ation

is easier than in Fig. 4.8(a), and although the low-frequen
y part of the PSD plot

has a high un
ertainty, it still 
onveys some information [11℄. A

ording to Fig. 3.12,

whi
h was presented in Se
tion 4.2.3, there are three types of noise: the a

eleration

random walk (K), the bias instability (B) and the velo
ity random walk (N). Fig. 4.8(b)

shows that the z-axis a

elerometer has a bias instability (slope ´1) smaller than the

other two a

elerometers, and the velo
ity random walk is almost the same for all the

a

elerometers (slope 0).

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−2

10
0

10
2

10
4

10
6

Frequency (Hz)

P
S

D
 (

m
/s

/h
)2

/H
z

Bias instability (B)

Acceleration random walk (K)

Velocity random walk (N)

Figure 4.9: Power spe
tral density a

elerometer Z IMU 3DM-GX-25.

The values for ea
h noise parameter (B,N,K) were extra
ted drawing straight lines

for ea
h frequen
y band in�uen
ed by the noise. The inter
eption of ea
h line with
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a spe
i�
 point was taken into a

ount. For instan
e, the PSD 
urve for the z-axis

a

elerometer is plotted in Fig. 4.9; it also in
ludes straight dotted lines for ea
h noise,

N, B and K, with their respe
tive slopes, 0, ´1,´2. The a

eleration random walk (K)

is present in the low-frequen
y 
omponents between 1 ˆ 10´4
Hz and 2.29 ˆ 10´3

Hz.

This parameter is obtained by �tting a straight line with a slope of ´2, starting from

1ˆ10´4
Hz, until it meets the verti
al line of f “ 1 Hz. Thus, the a

eleration random

walk for the z-axis a

elerometer is determined as:

K “ 14.60 pm{s{h3{2q (4.7)

The bias instability (B) is the dominant noise between 2.29ˆ10´3
Hz and 7.1ˆ10´2

Hz, with a slope of ´1, while the velo
ity random walk (N) is present between 0.1248

Hz and 20 Hz. After 20 Hz, there is an attenuation, be
ause of the digital moving

average �lter, whi
h is used to minimize high-frequen
y spe
tral noise produ
ed by the

MEMS sensors.
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Figure 4.10: (a) Power spe
tral density gyro IMU 3DM-GX3-25; (b) power spe
tral

density gyro IMU 3DM-GX3-25 after applying frequen
y averaging.

Regarding the gyros
opes, Fig. 4.10(a) represents the power spe
tral density, while

Fig. 4.10(b) 
orresponds to the gyros PSD after applying frequen
y averaging; in the

latter, it was identi�ed as angle random walk (N) and bias instability (B), following

the same pro
edure as with the a

elerometers.

Table 4.3 summarizes the values of di�erent errors that a�e
t the inertial sensors

using PSD method. In order to 
he
k the validity of these noise 
oe�
ients obtained

with the power spe
tral density, AV analysis is presented in the following se
tion.
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Table 4.3: Identi�ed error 
oe�
ients for a

elerometers and gyro of the 3DM-GX3-25

IMU with PSD.

Velo
ity Random

Walk (N) pm{s{p
?
hq

Bias Instability (B)

pm{s{hq
A

eleration

Random Walk (K)

pm{s{h3{2q
A

 X 0.045 4.6447 168.60

A

 Y 0.044 4.6700 26.66

A

 Z 0.047 1.7733 14.60

Angle Random

Walk (N) pdeg{
?
hq

Bias Instability (B)

pdeg{hq
Rate Random Walk

(K) pdeg{h3{2q
Gyro X 2.297 43.438

Gyro Y 1.937 39.614

Gyro Z 2.058 30.705

4.3.4 AV Analysis

For Allan varian
e analysis, the a

eleration and the angular rate were integrated to

obtain the instantaneous velo
ity and angle. Subsequently, the log-log plot of Allan

varian
e standard deviation versus 
luster times (T ) was obtained after evaluating Eq.

(4.4). The results are plotted in Fig. 4.11(a) for the a

elerometer and Fig. 4.12 for

gyro data.

Figure 4.11(a) shows the AV estimated on the 3DM-GX3-25 a

elerometers.

A

ording to Fig. 4.3, whi
h was presented in Se
tion 4.5.1, the a

elerometers

are a�e
ted by three types of error: velo
ity random walk (N), bias instability (B)

and a

eleration random walk (K). It 
on�rms that z-axis a

elerometer has a bias

instability (slope 0) smaller than the other two a

elerometers, and the velo
ity random

walk is almost the same for all the a

elerometers (slope ´1{2), whi
h is 
oherent with

the results obtained with the PSD.

The values for ea
h noise parameter were extra
ted as in the PSD, drawing straight

lines for ea
h error with its 
orresponding slope, but in this 
ase, the inter
eptions are

di�erent. To 
larify, Fig. 4.11(b) depi
ts straight lines for ea
h noise of the z-axis

a

elerometer. In this 
ase, the a

elerometer has N, B and K with slopes ´1{2, 0 and
1{2, respe
tively. It 
an be seen that the dominant noise in short 
luster times is the

velo
ity random walk, while the dominant error in long 
luster times is the a

eleration

random walk. From the straight line with slope ´1/2 �tted to the beginning of the
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Figure 4.11: (a) IMU 3DM-GX3-25 Allan varian
e for a

elerometers; (b) IMU

3DM-GX3-25 Allan varian
e for a

elerometer Z.
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Figure 4.12: IMU 3DM-GX3-25 Allan varian
e for three gyro axes.

N noise, a value, σ “ 0.047 pm{s{hq, at a 
luster times of 1 h 
an be read. Sin
e the

velo
ity random walk (N) is present in a 
luster time interval where the number of

independent 
lusters is very large, the estimation a

ura
y of the AV is approximately

1.1%. Thus, the velo
ity random walk or, in other words, the noise term (N) for the

z-axis a

elerometer is determined as:

N “ 0.047 ˘ 0.00050 pm{s{
?
hq (4.8)

The Allan varian
e standard deviation versus 
luster times (T ) for gyro data

is depi
ted in Fig. 4.12. Unlike a

elerometers, the gyros
opes have all similar


hara
teristi
s, where two types of noises 
an be re
ognized: angle random walk (N)

for short 
luster times and bias instability (B) for long 
luster times.

For the x-axis gyro (blue 
urve), the bias instability is present in the time range
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between 321.92 psq and 654.01 psq. The value of this error 
an be measured with a

�at line at 29.57 pdeg{hq. Dividing this standard deviation by the fa
tor 0.664, as

suggested in [9℄, the B 
oe�
ient 
an be a
hieved:

B “ 44.533 ˘ 5.14 pdeg{hq (4.9)

For further details of the inter
epts of ea
h noise term in the log-log AV 
urve,

see [9, 12, 13℄.

Table 4.4 summarizes the error 
oe�
ients with their respe
tive un
ertainty for

a

elerometers and gyro data. The 
orrelation time, pTcq, of the bias instability, pBq,
and the standard deviation for ea
h sensor (STD) of the IMU 3DM-GX3-25 are shown

in Table 4.5. The 
orrelation time, pTcq, might be used in Eq. (3.22) for modeling

the bias instability (B) as a �rst order Gauss-Markov pro
ess; this value is obtained

from the segment of the 
urve where the bias instability is the dominant noise, i.e.,

the �at segment of the log-log Allan varian
e 
urve. It should be mentioned that not

only these parameters, but also the whole parameters obtained from AV need to be

manually tuned in the KF, sin
e the values obtained from AV are 
onsidered an initial

approximation of the bias-drift [124℄.

Table 4.4: Identi�ed error 
oe�
ients for a

elerometers and gyro of the 3DM-GX3-25

IMU with AV.

Velo
ity Random

Walk (N) pm{s{
?
hq

Bias Instability (B)

pm{s{hq
A

eleration

Random Walk (K)

pm{s{h3{2q
A

 X 0.045 ˘ 0.00023 5.1581 ˘ 0.0370 166.30 ˘ 4.6398

A

 Y 0.045 ˘ 0.00022 4.5507 ˘ 0.0506 24.95 ˘ 2.8368

A

 Z 0.047 ˘ 0.00050 1.8336 ˘ 0.0524 13.53 ˘ 1.8685

Angle Random

Walk (N) pdeg{
?
hq

Bias Instability (B)

pdeg{hq
Rate Random Walk

(K) pdeg{h3{2q
Gyro X 2.420 ˘ 0.0974 44.533 ˘ 5.14

Gyro Y 1.988 ˘ 0.0565 38.810 ˘ 2.51

Gyro Z 2.164 ˘ 0.0599 31.717 ˘ 2.29

This veri�es the results that were obtained with PSD analysis, where velo
ity

random walk (N), bias instability (B) and a

eleration random walk (K) for

a

elerometers data and angle random walk (N) and bias instability (B) for gyro data
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Table 4.5: Identi�ed 
orrelation time, pTcq, for the bias instability (B) and standard

deviation for ea
h inertial sensor of the 3DM-GX3-25 IMU.

A

 X A

 Y A

 Z Gyro X Gyro Y Gyro Z

Tc psq 4.56 7.26 20.74 490.89 623.25 735.17

σ pm{s2 ´ rad{sq 0.0068 0.0065 0.0063 0.0055 0.0045 0.0048

were also identi�ed. It 
an be seen that most of the estimated values in PSD (see Table

4.3) are within the 
on�den
e interval 
omputed by AV (Table 4.4).

The next se
tion presents the inertial sensor error model that mixtures of AV and

wavelet de-noising te
hniques.

4.3.5 Wavelet De-Noising with Allan Varian
e

In order to 
ombine wavelet de-noising (WD) and Allan varian
e under dynami



onditions, it is ne
essary to pro
ess the inertial sensors measures with wavelet

de-noising before 
omputing the me
hanization, whi
h leads to the following question:

how many levels of de
omposition should be applied? In this 
ase, the number of levels

of de
omposition (LOD) for the DWT are 
hosen based on the the spe
trum of the

signal after the DWT is applied. We have to 
onsider that ea
h level of de
omposition

divides the spe
trum of the signal, xpnq, into di�erent sub-bands, as was explained

in Se
tion 4.2.5. This means that if the sampling frequen
y of the inertial sensor is

fs “ 100 Hz, after applying one LOD, we will have a spe
trum between 0 ´ 25 Hz

for the approximations 
oe�
ients (A1) and a spe
trum between 25 ´ 50 Hz for the

details 
oe�
ients (D1), 
onsidering perfe
t �lters. Therefore, the frequen
y band

of the wavelet de-nosing output will be limited to fs{p2 ˆ 2kq for the more relevant


oe�
ients (Ak), where k is the level of de
omposition (LOD). Sin
e the idea is to

preserve the frequen
y 
omponents that are asso
iated with the motion dynami
s of the

land vehi
le, we 
onsider that these motion dynami
s are low-frequen
ies 
omponents

for land-vehi
le appli
ations (e.g., between 0 and 5 Hz), as is mentioned in [114℄.

Therefore, we evaluated the number of LOD from the one that nearly rea
hes 5 Hz and

higher levels, i.e., 
onsidering the approximation 
oe�
ients (Ak).

Thus, the test was a
hieved using the Matlab Wavelet Toolbox from three LOD,
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where the band of approximation 
oe�
ients is limited to 6.25 Hz p100{p2ˆ23q “ 6.25q,
up to eight levels of de
omposition, where the output band is limited to 0.1953 Hz

p100{p2 ˆ 28q “ 0.1953q. This is taking into a

ount that we use a sampling frequen
y

of fs “ 100 Hz for the inertial sensors. These experiments were assessed using the

Daube
hies family, spe
i�
ally, �db4�, as the wavelet fun
tion, with soft thresholding

based on Stein's Unbiased Risk Estimate (SURE), sin
e these parameters are typi
ally

used in pre-�ltering inertial sensors [23,25,114℄. After sele
ting these wavelet de-noising

parameters, the data 
olle
ted in the laboratory was de-noised and, subsequently,

pro
essed with the AV algorithm. Fig. 4.13 depi
ts the Allan varian
e standard

deviation versus 
luster times (T ) for the z-axis a

elerometer (red 
urve) after

applying wavelet de-noising with three and eight levels of de
omposition (blue 
urves).

A

ording to this plot, wavelet de-noising removed the short-term noises, while the

long-term noises remain without attenuation, as was expe
ted. It is also noti
ed

that the higher the level of de
omposition, the more high-frequen
y 
omponents are

removed.
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Figure 4.13: Allan varian
e a

elerometer Z IMU 3DM-GX-25 after applying wavelet

de-noising with three and eight levels of de
omposition.

If we 
onsider these two 
ases�the �rst one applying wavelet de-noising with three

LOD and the se
ond one applying eight LOD (Fig. 4.13)�the most relevant 
omponents

that 
orrespond to the motion dynami
s of the vehi
le would have to be above 0.16 sec

and 5.12 sec (verti
al bla
k dotted lines) for ea
h 
ase, respe
tively. If these 
omponents

that relate to the motion dynami
s are not above these 
luster time values, they would

be attenuated by the de-noising �lters, whi
h 
ould degrade the INS a

ura
y.
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Given that these motions of the vehi
le are mixed with the long-term noises, a

suitable LOD should be sele
ted with the purpose of not removing relevant 
omponents

that would 
ompromise the performan
e of the navigation system. Therefore, to

analyze the e�e
t of wavelet de-nosing, we evaluated the enhan
ement a

ura
y of

the GPS/INS solution with two vehi
le tests, where a total of seven GPS outages

were introdu
ed under di�erent dynami
 
onditions with a duration of 30 sec and

60 sec (see Fig. 4.14). A similar pro
edure was a
hieved in [107℄ with a ta
ti
al-grade

(medium-a

ura
y) and navigation-grade (high-a

ura
y) IMUs. The performan
e of

the GPS/INS solution (i.e., without error models) during GPS outages with wavelet

de-nosing under di�erent LOD is summarized in Table 4.6. It depi
ts the outage

number, the average speed and the maximum horizontal error for ea
h GPS outage

that was assessed. The LOD 0 
orresponds to the navigation solution without applying

wavelet de-noising. In the 
ase of three LOD, we apply one level of de
omposition less

for y-axis and z-axis inertial sensors, sin
e the un
orrelated noise is not so dominant

for the other inertial sensors, as 
an be seen in the auto
orrelation analysis des
ribed

in Se
tion 4.3.1.
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Figure 4.14: (a) First and (b) se
ond traje
tory test in Matlab with the GPS

outages that were introdu
ed intentionally to analyze the e�e
t of wavelet

de-nosing with di�erent LOD.

Table 4.6 shows that the navigation solution performs slightly better for most of

the GPS blo
kage when seven LOD are applied, 
ompared to the navigation solution

without applying wavelet de-nosing (i.e., zero LOD), with an improvement of almost

4.3% in terms of horizontal positioning error.
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The wavelet de-nosing parameters that provided the most signi�
ant enhan
e

a

ura
y of the GPS/INS solution are summarized in Table 4.7. It represents the levels

of de
omposition where the most relevant energy asso
iated with the motion dynami
s

of the vehi
le remain. In this 
ase, the most signi�
ant frequen
y 
omponents of the

vehi
le motion dynami
s for the 3DM-GX3 IMU are below 0.78 Hz for y-axis and

z-axis a

elerometers, while for the rest of inertial sensors, it is below 0.39 Hz.

The use of Stein's Unbiased Risk Estimate (SURE) as a threshold rule helps us

not to lose signi�
ant 
oe�
ients asso
iated with the vehi
le, sin
e it is a 
onservative

threshold that is usually used when small details of the signal lie in the noise range [125℄.

Table 4.6: Maximum horizontal position error during GPS outages before and after

applying wavelet de-noising.

Outage

p#q
Duration

psecq
Average

Speed

pkm{hq

Levels of De
omposition

0 3 7

max pmq max pmq max pmq
1˚ 30 25.16 85.12 85.13 76.08

2˚ 30 18.86 162.98 162.67 157.73

3˚ 30 42.53 189.67 189.69 188.82

4˚ 30 23.56 52.20 52.20 51.62

5˚ 30 39.32 54.03 54.01 43.99

6˚ 60 103.36 232.54 232.74 217.28

7˚ 60 122.73 279.22 279.03 274.74

Table 4.7: Wavelet de-noising parameters for ea
h sensor under kinemati
 
onditions.

LOD

Frequen
y

Limit for Ak

Coe�
ients

pHzq
Thresholding

A

 X
7 0.39 soft, SURE

A

 Y
6 0.78 soft, SURE

A

 Z
6 0.78 soft, SURE

Gyro X
7 0.39 soft, SURE

Gyro Y
7 0.39 soft, SURE

Gyro Z
7 0.39 soft, SURE

Having sele
ted the LOD for wavelet de-noising, the long-term noises are modeled

and 
ompensated by the AV parameters obtained in Se
tion 4.3.4. Overall,

under dynami
 
onditions, wavelet de-noising will be 
omputed for inertial sensor
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measurements prior to the INS me
hanization, and the AV model will be in 
harge

of 
ompensating the long-term noises. The next se
tion explains the way the AV

model and ea
h model obtained so far is adapted into the loosely-
oupled strategy.

4.4 INS Bias Model Adapted to the Loosely-Coupled

KF

Having identi�ed the random errors using AV and PSD, the parameters obtained with

AV were used in the loosely-
oupled GPS/INS integration s
heme (Fig. 2.7) to model

the errors of a

elerometers and gyros of the IMU under test. The sto
hasti
 model

parameters for ea
h sensor are taken from Tables 4.4 and 4.5. Thus, the 3DM-GX3-25

a

elerometers sto
hasti
 error ase was modeled as:

ase “ WNpNq ` 1st GMpBq ` RW pKq (4.10)

where the noise term asso
iated to N is modeled as white noise (WN), the noise term

asso
iated to K as a random walk (RW), while the bias instability (B) is modeled as a

�rst order Gauss-Markov pro
ess p1st GMq.

Regarding the 3DM-GX3-25 gyro sto
hasti
 error, gse, the model was de�ned as:

gse “ WNpNq ` 1st GMpBq (4.11)

where the noise term asso
iated to N is modeled as white noise (WN) and the bias

instability (B) is modeled as a �rst order Gauss-Markov pro
ess (1st GM). The latter

noise 
an be modeled by a 
ombination of Markov noise states [11℄, and there are

also di�erent approa
hes to model the bias instability noise terms; some of them are

presented in [13, 28℄. In this 
ase, a �rst order Gauss-Markov pro
ess was �tted to

the �at part of the AV 
urve taking into a

ount B and its 
orrespondent 
orrelation

time (Tc) (see Table 4.5). Regarding the noise term angle random walk (N), it presents

dominant high-frequen
y 
omponents that have a 
orrelation time mu
h shorter than

the sample time. Therefore, this noise is modeled as additive noise with noise varian
e

obtained from the parameter, N (see Table 4.4).
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On the other hand, the AR 
oe�
ients obtained from Burg's method are adapted

into the KF taking the parameters that were shown in Table 4.2. These sto
hasti


error models were implemented in the KF a

ording to the state-spa
e forms that were

presented in Se
tion 3.5.2. Further details about IMU error state-spa
e implementation

in the Kalman �lter 
an be found in Appendix A. The performan
e of the di�erent

sto
hasti
 error models for the bias-drift when they are adapted into the LC integration

are shown in Chapter 6.

4.5 Constrained Non-linear Fitting

4.5.1 Allan Varian
e Limitations

Although AV is the most widely used method for modeling of inertial sensors, this

error analysis te
hnique presents some drawba
ks, (e.g., it requires very long data set

to obtained a 
onsistent AV 
urve) high un
ertainty for long 
lusters times, it may also

lead to di�erent interpretations when a AV 
urve is observed sin
e many models 
an

be used to �t the log-log AV 
urve [28℄. Despite these limitations Allan varian
e is still

the most a

epted method for modeling inertial sensors based on MEMS te
hnology

be
ause it provides a 
omplete analysis of the error and uses a simple algorithm for the

identi�
ation of the di�erent error sour
es.

In previous works where Allan varian
e has been implemented [14�16, 24℄ et al. it

is often assumed that ea
h noise sour
e is 
onsiderably separated in frequen
y, thus

ea
h noise term 
an be asso
iated with a slope. In fa
t, a

ording to the hypotheti
al

AV 
urve Fig. (4.3) the �i
ker noise (bias instability) should have a slope of 0, the

angle random walk a slope of ´1{2, et
. This 
an be suitable for high-quality inertial

sensors, where the parameters of the sto
hasti
 model are extra
ted by �tting straight

lines with di�erent slopes that 
orresponds to ea
h noise term. However, this pro
edure

is not entirely valid for the majority of low 
ost inertial sensors sin
e the noise terms

might be strongly overlapped in frequen
y, so they might form 
omplex stru
tures that

are not easy to identify by the 
onventional method of the straight line-�tting [6℄. This


an be 
learly seen in the �i
ker noise be
ause it is usually 
ombined with short-term
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and long-term noises, so the identi�
ation of the 0 slope might be ambiguous due to

the fa
t that di�erent noise terms might be mixed in the frequen
y band where it is

supposed to be the dominant noise.

Despite the fa
t that AV presents these limitations, we 
onsider this te
hnique

be
ause we 
an over
ome some of the drawba
ks by using non-linear fun
tions to �t

the log-log 
urves instead of using traditional line-�tting, whi
h is more suitable to

estimate the unknown parameters of the random error.

Additionally, re
ent methods using di�erent te
hniques have been developed to

estimate the sto
hasti
 model parameters more a

urately, for instan
e the Best Linear

Unbiased Estimator (BLUE) estimator and Expe
tation Maximization (EM) algorithm

des
ribed in [7, 21, 115℄. Only the latter is brie�y explained in the following se
tion,

spe
i�
ally the 
onstrained EM, sin
e it is more adequate for low 
ost MEMS sensors

than the BLUE estimator presented in [7℄ that is suitable for high-end IMUs.

4.5.2 Constrained Expe
tation Maximization (EM)

An algorithm that has been used in many areas to estimate unknown parameters is

des
ribed in [126�129℄ and it relies on the Expe
tation Maximization te
hnique that was

�rst proposed in [130℄. The EM algorithm 
an be applied to a generalized State-Spa
e

Model (SSM) in dis
rete time as stated in Eq. (4.12) and Eq. (4.13):

xk`1 “ Φkxk ` wk (4.12)

zk`1 “ Hk`1xk`1 ` vk`1 (4.13)

where Φk is the dynami
 
oe�
ient matrix, Hk`1 is the design matrix whi
h


onverts the unobserved sto
hasti
 ve
tor xk`1 into the observed spa
e zk`1. The

sequen
es wk and vk`1 represent the pro
ess errors 
hara
terized by a zero-mean,

un
orrelated and normally distributed noise su
h thatw „ p0,Qq and v „ p0,Rq, where
R andQ are related to the observation and the state equations, respe
tively [127℄. This
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linear system is adapted with the sto
hasti
 models that will predi
t the random noises

that a�e
t the IMU.

Sin
e the random errors of a low 
ost inertial sensor might be 
omposed by

elaborated stru
tures, whi
h makes di�
ult the estimation of the parameters spe
i�ed

in the SSM, in [21,115℄ the EM algorithm was modi�ed and properly used in order to

estimate the parameters of the sto
hasti
 model and so improve the inertial sensors

performan
e. In this 
ase, we fo
used our attention on the 
onstrained EM method

proposed in [21℄ due to the fa
t that some elements of the sto
hasti
 model remain �xed

in the SSM and some others are freely estimated. Thereby, the SSM is less 
ompli
ated

and allows to estimate more 
omplex sto
hasti
 errors that are involved in any INS

MEMS grade.

The EM is an iterative pro
edure that 
onsists of swit
hing between two steps:

one is the expe
tation E-step and the other one is the maximization M-step [131℄.

The E-step involves the 
al
ulation of the expe
ted states xN
k and of the 
ovarian
e

matri
es PN
k and PN

k,k´1. These quantities 
an be 
al
ulated using a Kalman smoother

(see [127℄). Then, in order to obtain the unknown parameters of the State-Spa
e

Model (e.g., the parameters of the sto
hasti
 model that will des
ribe the behaviour

of the bias-drift) de�ned by Eq. (4.12) and Eq. (4.13), a plogq likelihood fun
tion

logL pθ|yk,xkq is used, where θ is the ve
tor with the unknown parameters in
luded

in the SSM. The idea is to update θ until the plogq likelihood is maximized and after a


ertain number of iterations the parameters monitored in the SSM will 
onverge to a

Maximum Likelihood value that, in 
ase of INS, will represent a reliable estimation of

the bias-drift noise parameters. A detailed des
ription of the algorithm and a 
omplete

derivation of the equations for the 
onstrained 
ase 
an be found in [21, 127, 132℄.

Next se
tion will explain the NLF developed in this thesis, whi
h is based on a


onstrained non-linear �tting, it will be evaluated and further 
ompare in Se
tion 4.5.3

with the previous mentioned.
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4.5.3 Constrained Non-linear Fitting (NLF)

The traditional method using line-�tting in log-log AV 
urves as it is des
ribed in

[12�14, 16, 133℄ is not easy to apply to low 
ost inertial sensors, sin
e AV 
urves are

usually more 
omplex than in the 
ase of high-end IMUs. For instan
e, the �i
ker

noise that is usually modelled with a �rst order Gauss-Markov pro
ess is not easy

to estimate in a low 
ost IMU be
ause the band where it is dominant presents an

overlapping between the long-term and short-term noises [134℄, so it 
ould be in�uen
ed

by a 
ombination of a ARW plus a RRW pro
esses (i.e., for a gyro). Now if we 
onsider

that the �i
ker noise is 
omposed by not only one �rst order Gauss-Markov pro
ess,

the estimation of these error parameters is even more 
hallenging. That is, the �i
ker

noise might be a dominant noise in a wideband frequen
y, where only one �rst order

GM pro
ess is not enough to model it.

In order to improve the estimation of the unknown parameters that represent

the bias-drift of inertial sensors, it is supposed that the existing noise terms are all

statisti
ally independent, so it 
an be shown that the Allan varian
e at any given


luster time T is the sum of Allan varian
es due to the individual random pro
esses at

the same T [9℄.

σ2pT q “ σ2
NpT q ` σ2

KpT q ` σ2
flickerpT q ` ¨ ¨ ¨ (4.14)

where σ2
NpT q, σ2

KpT q are the Allan varian
e of the angle/velo
ity random walk and

rate/a

eleration random walk, respe
tively, whereas σ2
flickerpT q is the AV of the �i
ker

noise. In the 
ase of �i
ker noise, it 
an be modelled as a 
ombination of several �rst

order Gauss-Markov (GM) pro
esses as it was explained in Se
tion 3.5.2. A

ording

to Voss [109℄, �i
ker noise modeling requires a spe
i�
 distribution of independent

pro
esses with di�erent 
orrelation time, whi
h is valid in the 
ase of AV be
ause

pro
esses are independent. So the varian
e of the �i
ker noise 
an be expressed as:

σ2
flickerpT q “ σ2

M1pT q ` σ2
M2pT q ` ¨ ¨ ¨ (4.15)

where σ2
M1pT q is the Allan varian
e of one �rst order GM pro
ess. The 
ontinuous
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time representation for the �rst order GM pro
ess is stated in Eq. (3.22), whi
h has a

noise 
ovarian
e σ2
w that 
an be expressed as:

σ2
w “ 2βσ2

GM (4.16)

where σ2
GM is the 
ovarian
e of the pro
ess and β is the inverse of the 
orrelation

time (Tc). The power spe
tral density Sxpfq of Eq. (3.22) is given by [64℄:

Sxpfq “ 2βσ2
GM

p2πfq2 ` β2
(4.17)

Expressing the PSD of the �rst order GM in terms of the noise 
ovarian
e pσ2
wq

yields:

Sxpfq “ pσwTcq2
1 ` p2πfTcq2

(4.18)

A

ording to the relationship between Allan varian
e and the two-sided PSD,

performing the integration that is stated in Eq. (4.5) yields the Allan varian
e of

the �rst order Gauss-Markov pro
ess:

σ2
M pT q “ pσwTcq2

T

„

1 ´ Tc

2T

´

3 ´ 4e´ T
Tc ` e´ 2T

Tc

¯



(4.19)

Plotting this fun
tion on a log-log s
ale with Tc “ 1 and σw “ 1{p0.437
?
Tcq, we

obtain the AV 
urve for a �rst order GM pro
ess (see Fig. 4.15(a)), where the 
luster

times for the midpoint of the �at region is equal to

Tmp “ 1.89Tc (4.20)

with a standard deviation at Tmp given by [9℄:

σM pTmpq “ σmp “ 0.437σw
a

Tc Ñ σmp “ 0.437σw

b

Tmp{1.89 (4.21)

Thus the Allan varian
e of the �i
ker noise as reported in Eq. (4.15) 
an be repla
ed

by Eq. (4.19) with various σwi and Tci in order to approximate the �i
ker noise as a
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Figure 4.15: (a) Allan varian
e of a �rst order GM pro
ess; (b) Random walk and

white noise for the Allan varian
e of a �rst order GM pro
ess.

sum of multiple �rst order GM pro
esses. Given the fa
t that low 
ost MEMS sensors

are not only 
omposed by �i
ker noise but also by white noise, random walk, ramp

rate, et
, whi
h makes more di�
ult the parameters estimation for the sto
hasti
 error

modelling due to the 
omplex noise stru
tures, we propose 
onstraints for ea
h noise

term identi�ed with AV. In this way, we 
an obtain a more appropriate estimation

of the bias-drift and at the same time we 
an provide additional information to the

algorithm that will estimate the parameters. The determination of the 
onstrains will

be explained in the following subse
tions where we also des
ribe the sto
hasti
 model

identi�
ation, the estimator and the optimization algorithm that are used in the NLF.

Identifying the Sto
hasti
 Model

In the NLF �rst a sto
hasti
 model is set from the noise terms identi�ed in a log-log AV


urve. For instan
e, if we 
onsider the AV 
urve depi
ted in Fig. 4.16, the obje
tive

fun
tion σ2pθ,T q, i.e., the fun
tion to be optimized given 
ertain 
onstraints and that

will be �tted to the estimated varian
e, would be given by:

σ2pT,θq “ σ2
N pT,θq ` σ2

KpT,θq “ N2

T
` K2T

3
(4.22)

where N and K are asso
iated with the ARW (slope ´1{2) and RRW (slope 1{2),
whi
h 
an be represented by white noise (WN) and random walk (RW) pro
esses
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des
ribed in Se
tion 3.5.2. Thus, we would have a sto
hasti
 pro
ess that 
ombines

WN plus RW. In this 
ase, the unknown parameters pθq would be the standard deviation
of the white noise and the standard deviation of the random walk pro
esses, that is,

σWN and σRW , respe
tively. Considering the state-spa
e form that was des
ribed in

Se
tion 3.5.2 the sum of these random pro
esses 
an be expressed by:

xk “ xk´1 ` pσRW

?
∆tqwk (4.23)

yk “ xk´1 ` pσWN{
?
∆tqvk (4.24)

where ∆t would be the sampling time of the IMU raw measurements. Although

Fig. 4.16 
an be found in some inertial sensors, most of MEMS inertial sensor are

a�e
ted by �i
ker noise, whi
h in
reases the 
omplexity of the fun
tion to be �tted.

This issue will be 
onsidered below.
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Figure 4.16: Allan varian
e of angle random walk (N) plus rate random walk (K).

Constraints of the Obje
tive Fun
tion

On
e the sto
hasti
 model is identi�ed, we de�ned 
onstrains for the obje
tive fun
tion

to be �tted. In order to set the 
onstraints in the non-linear �tting for di�erent


ombination of noises, it is ne
essary to 
ompute the 95% 
on�den
e interval of the

analysed log-log AV 
urve. This 
an be performed by estimating the 
oe�
ients related

to the noise terms, i.e., ARW, VRW, �i
ker noise, et
. as it is des
ribed in [10,135,136℄.

Another way to get the 
on�den
e interval is by means of wavelet varian
e (WV). This

97



4 � Sto
hasti
 Modelling of MEMS Inertial Sensors

method is based on the Maximal Overlap Dis
rete Wavelet-Transform (MODWT) and

it uses a modi�ed version of the DWT explained in Se
tion 4.2.5. A
tually, it 
arries

out the same steps as �ltering the dis
rete wavelet transform ordinary but does not

subsample [137℄. The wavelet varian
e based on the MODWT 
an be expressed as [138℄:

σ2
WV pTjq “ 1

MjpNq
N´1
ÿ

t“Lj´1

W̃ 2
j,t (4.25)

where W̃j are the MODWT wavelet 
oe�
ients for levels of de
omposition j “
1,...,J , N is the length of the data to be analysed, Tj is de�ned for dyadi
 s
ales 2j´1

,

LJ is the �lter length for level J andMjpNq “ N ´Lj `1. Although, di�erent wavelet

fun
tions 
an be used to �lter the signal, when Haar wavelet is used, Allan varian
e


an be interpreted in terms of the 
oe�
ients of the Haar wavelet transform [139℄. This

is due to the fa
t that the wavelet varian
e is equal to half the Allan varian
e [138℄.

Sin
e wavelet varian
e is related to Allan varian
e and it does not require a priori

knowledge of the noise parameters asso
iated with the noise terms, the 
al
ulation of

the 95% 
on�den
e interval is a
hieved by 
omputing wavelet varian
e. Details about

the properties of wavelet varian
e and the 
al
ulation of the 
on�den
e interval with

WV 
an be found in [137, 138℄.

Considering Fig. 4.16 the 
onstraints for the noise term N, i.e., upper pNUq and

lower pNLq limits, 
an be determined by:

NL “ σcilpTNLq
a

TNL , NU “ σciupTNUq
a

TNU (4.26)

where pσcil,σciuq are the low and up 95% 
on�den
e interval of σpT q, respe
tively,
and pTNL,TNU q are the 
luster times where pσcil,σciuq will be evaluated to set the lower

and upper bounds of the noise term N. pTNL,TNUq should be 
hosen to 
over the largest

segment where the noise term is dominant and the un
ertainly is relatively low. In other

words, we expe
t to have the parameter N between those 
onstraints due to the fa
t

that the in�uen
e of the noise term (K) is minimal in the segment of the 
urve where

N is dominant.
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If we do the same for K we 
an obtain the upper pKUq and lower pKLq bounds with:

KL “ σcilpTKLq
a

3{TKL , KU “ σciupTKUq
a

3{TKU (4.27)

where pTKL,TKUq are the 
luster times that are used to evaluate pσcil,σciuq and set

the lower and upper bounds of the noise term K. Parameters pTKL,TKUq should be

sele
ted near the 
luster times where the noise term related to K (i.e., 1{2 slope) starts
being dominant be
ause this is where its un
ertainty is lower. Eq. 4.26 and Eq. 4.27

are 
onsidered from the AV 
oe�
ient values for ea
h noise term (see Table 4.1). The


onstraints for parameters K and N for the log-log AV 
urve (Fig. 4.16) are shown in

Fig. 4.17 with green dashed lines. TNL and TNU were set at T “ 0.64 sec, whereas

TKL and TKU were set at T “ 40.96 sec and T “ 81.92 sec, respe
tively. Note that

bounds for N are 
hosen in the segment of the 
urve where this noise term is dominant.

The di�eren
e between upper and lower bounds 
an not be distinguished be
ause of

the low un
ertainty at T “ 0.64 sec. In 
ontrast, the lower and upper bounds for K

are 
learly seen in the �gure and they are sele
ted to 
over most of the segment where

K is dominant.
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Figure 4.17: Allan varian
e of angle random walk (N) plus rate random walk (K) with


onstraints.

Moreover, in a log-log AV 
urve with dominant noises N, K and B, the 
onstraints

for N and K 
ould be de�ned as it is stated in Eqs. (4.26) and (4.27). However,

we would need to spe
ify the 
onstraints for the 
orrelation time Tci and the noise


ovarian
e σ2
wi for ea
h i �rst order GM pro
ess that will 
ompound the �i
ker noise.

Before analysing the sum of several GM pro
ess, we �rst plot the noise 
omponents

for one of them in Fig. 4.15(b), it shows that 0 slope is dominant for 1{3 of decade
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approximately, whi
h will be the segment of the 
urve that would represent the �i
ker

noise. This is be
ause for T " Tc, it be
omes a white noise (´1{2 slope) after almost

one decade above the midpoint (Tmp), whereas for T ! Tc it be
omes a random walk

(1{2 slope) after almost one decade below the midpoint (Tmp). The equations for these

noises that are part of the �rst order GM pro
ess 
an be dedu
ed from Eq. (4.19).

σ2
M pT q ñ pσwTcq2

T
T " Tc (4.28)

σ2
MpT q ñ σ2

w

3
T T ! Tc (4.29)

When multiple �rst order GM pro
esses are superimposed a better approximation

of the �at segment in an log-log AV 
urve (�i
ker noise) 
an be obtained. A

ording

to Keshner [104℄, a pole of �rst order 
an approximate the �i
ker noise in a bandwidth

of one decade. So we 
an de�ne one decade as 
onstraint for ea
h term Tmpi of the

GM pro
esses. i.e., if the �i
ker noise is dominant in two decades, between 10 sec and

1000 sec, we will set two GM pro
esses. The midpoint 
orrelation time Tmp1 would

be 
onstrained by 10 ď Tmp1 ď 100, whereas the parameter Tmp2 for the se
ond GM

pro
ess would be 
onstrained by 100 ď Tmp2 ď 1000.

To determine the 
onstrains of the parameters σ2
wi, we made the following analysis:

If we 
onsider three �rst order GM pro
esses that are uniformly distributed in

a log-log AV 
urve, it means that ea
h noise has equal standard deviation (e.g.,

σmp1 “ 1, σmp1 “ σmp2 “ σmp3) and they are separated a decade (e.g., Tc1 “ 1,

Tc3 “ 10Tc2 “ 100Tc1) as it is shown in Fig. 4.18, we 
an 
ompute Allan varian
e

σ2pT q using Eq. (4.15), so we will have

σ2pT q “ σ2
M1pT q ` σ2

M2pT q ` σ2
M3pT q (4.30)

To determine the value of σ2pT q where σ2
M1pT q is more dominant, we 
an evaluate

Eq. (4.30) for the 
luster times T “ Tmp1 yielding:
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Figure 4.18: Allan varian
e of a �i
ker noise with three �rst order Gauss Markov

pro
ess.

σ2pTmp1q » σ2
mp1 ` σ2

w2Tmp1

3
` σ2

w3Tmp1

3
(4.31)

where we have 
onsidered Eq. (4.29) for σ2
M2pTmp1q and σ2

M3pTmp1q sin
e at Tmp1

they are dominated by a random walk pro
ess. Then, isolating σw in Eq. (4.21) and

repla
ing it in Eq. (4.31) yields

σ2pTmp1q » σ2
mp1 `

3.3σ2
mp2Tmp1

Tmp2

`
3.3σ2

mp3Tmp1

Tmp3

, Tmp1 ! Tc2,Tmp1 ! Tc3 (4.32)

In this equation we 
an see that if Tmp2 and Tmp3 are large 
ompared with Tmp1,

σ2pTmp1q approximates the value of σ2
mp1 sin
e the in�uen
e of σ

2
M3pTmp1q and σ2

M3pTmp1q
would be minimal.

For the midpoint of σM2pT q, we have that the Allan varian
e σ2pTmp2q is given by

σ2pTmp2q » pσw1Tc1q2
Tmp2

` σ2
mp2 ` σ2

w3Tmp2

3
(4.33)

Here the term σ2
M1pTmp2q was repla
ed by Eq. (4.28) whereas the term σ2

M3pTmp2q
was approximated using Eq. (4.29), this is due to the fa
t that at Tmp2 they be
ome

white noise and random walk, respe
tively. Using Eqs. (4.20) and (4.21) we obtain

Eq. (4.34). Note that if Tmp2 is large 
ompared with Tmp1 and small 
ompared with
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Tmp3 the value of Allan varian
e σ2pTmp2q approa
hes to σ2
mp2, that is, as long as

σmp1 “ σmp2 “ σmp3.

σ2pTmp2q »
2.7σ2

mp1Tmp1

Tmp2

` σ2
mp2 `

3.3σ2
mp3Tmp2

Tmp3

, Tmp2 " Tc1,Tmp2 ! Tc3 (4.34)

Following the same pro
edure for σ2pTmp3q we obtain

σ2pTmp3q »
2.7σ2

mp1Tmp1

Tmp3

`
2.7σ2

mp2Tmp2

Tmp3

` σ2
mp3, Tmp3 " Tc1,Tmp3 " Tc2 (4.35)

This is worth noting that Eq. (4.32), Eq. (4.34) and Eq. (4.35) might be applied to

any �i
ker noise in an inertial sensor as long as the inequalities provided are satis�ed.

For the spe
i�
 
ase of Fig. 4.18, where the separation between the GM pro
esses is

one decade, the 
ontribution of ea
h to the �i
ker noise at Tmp1, Tmp2 and Tmp3 
ould

be determined through those equations, as it follows:

σ2pTmp1q » σ2
mp1 ` 0.33σ2

mp2 ` 0.033σ2
mp3, 1 ! 5.29,1 ! 52.91 (4.36)

σ2pTmp2q » 0.28σ2
mp1 ` σ2

mp2 ` 0.33σ2
mp3, 10 " 0.52,10 ! 52.91 (4.37)

σ2pTmp3q » 0.028σ2
mp1 ` 0.28σ2

mp2 ` σ2
mp3, 100 " 0.52,100 " 5.29 (4.38)

This way, we have three equations with three unknown variables σmp1, σmp2 and

σmp3. Solving Eqs. (4.36), (4.37) and (4.38) we 
an obtain a preliminary estimation

of σmp1, σmp2 and σmp3. Thus, knowing an approximate 
urve of the �i
ker noise and

identifying the 
luster times where this is more dominant (i.e., Tmp1, Tmp2 and Tmp3),

one 
ould make a preliminary determination of σmp for ea
h �rst order GM pro
ess,

whi
h 
ould help us to de�ne the 
onstraints. It must be taken into a

ount that these

equations are simply an aid to determine 
onstraints for parameters σwi. In general, we
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onsider a 
onstraint of half decade below the Allan standard deviation σpT q for σwi,

this is be
ause after doing experiments with di�erent Tc and σw through Eqs. (4.32),

(4.34) and (4.35), we noti
ed that half decade is a su�
ient range for the σmp of a �rst

order GM to 
ontribute signi�
antly in the log-log AV 
urve of an inertial sensor.

In order to have more information that might be useful to set the 
onstraints of

the GM pro
esses, we noted that the �i
ker noise 
an be partially observed in a log-log

AV 
urve of an inertial sensor. For this purpose, we 
onsider two log-log AV 
urves

that are typi
ally found in inertial sensors. The �rst one is a mixture of WN, RW and

�i
ker noise as it is shown in Fig 4.19, where we have set 
onstraints for N and K as

we des
ribed previously. The mathemati
al representation 
an be expressed by:

σ2pT q “ σ2
N pT q ` σ2

KpT q ` σ2
flickerpT q (4.39)

Assuming that Allan varian
es for velo
ity random walk (N) and a

eleration

random walk (K) are given by σ2
NL and σ2

KL, that are the varian
es in terms of the

lower bounds NL and KL,

σ2
NLpT q “ N2

L

T
, σ2

KLpT q “ K2
LT

3
(4.40)

then repla
ing Eqs. (4.40) in Eq. (4.39) and isolating σ2
flickerpT q, we 
an obtain an

approximation of the �i
ker noise that we will be denoted as σ2
f pT q:

σ2
fpT q » σ2

flickerpT q » σ2pT q ´ σ2
NLpT q ´ σ2

KLpT q (4.41)

Figure 4.19 shows the segment of the 
urve where σf pT q (in red) better

approximates σflickerpT q. When there is a low un
ertainty, σf pT q approximates very

well to σflickerpT q. However, for 
luster times above 80 sec the un
ertainty in
reases

and its estimate is unreliable.

The se
ond log-log AV 
urve that is typi
ally found in gyros is the mixture of

�i
ker noise and angle random walk as it is shown in Fig. 4.20. The mathemati
al

representation 
an be written as:
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Figure 4.19: Allan varian
e of a mixture of �i
ker noise, WN and RW for an

a

elerometer.

σ2pT q “ σ2
N pT q ` σ2

flickerpT q (4.42)

Assuming that σNpT q is given by the lower bound σNLpT q, we 
ould have an

estimation of the �i
ker noise with σ2
f pT q:

σ2
f pT q » σ2pT q ´ σ2

NLpT q (4.43)

The resultant σfpT q 
an be seen in Fig. 4.20, whi
h shows a very good

approximation of σflickerpT q. In fa
t, this 
ould be better in most of the 
ases 
ompared

to the previous 
urve sin
e there are only two noises and σN pT q 
an be estimated

a

urately by means of σNLpT q, this is due to the low un
ertainty for the short term

noises. It is also noteworthy that when 
omputing Eq. (4.41) or Eq. (4.43) the larger

the data set to be analysed the better the a

ura
y.

To summarize, the 
onstraints of the non-linear �tting are determined taking into

a

ount the following observations:

• N (angle/velo
ity random walk) and K (rate/a

eleration random walk)


onstraints: these bounds are set using the 
on�den
e interval of the analysed

log-log AV 
urve (i.e., 95% 
on�den
e interval expressed by upper and lower

limits). The sele
ted bounds should 
over the largest segment possible where the

noise term is dominant and the un
ertainly is relatively low.
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Figure 4.20: Allan varian
e of a mixture of �i
ker noise and WN for a gyro.

• Tmp Ñ Tc 
onstraints: they are set in the segment where the �i
ker noise is

dominant. Having a decade of di�eren
e between the upper and lower limits. In


ase of several �rst order GM pro
ess these limits may be slightly overlapped.

• σGM 
onstraints: these limits are set from the Allan standard deviation 
urve

where the �i
ker noise is the dominant noise (upper bound) until half decade

below it (lower bound).

Estimator

After having identi�ed the sto
hasti
 model and de�ned the 
onstraints, we estimate

the unknown parameters for ea
h noise term 
omputing AV and performing a non-linear

�tting between the log-log AV 
urve and the obje
tive fun
tion (i.e., the fun
tion

that is de�ned a

ording to the di�erent noise sour
es that have been identi�ed).

The 
ondition for the minimization of the relative di�eren
es between the varian
e

measurements and the theoreti
al varian
e is stated in Eq. (4.44) and it 
an be solved

in the least-squares sense:

min
θ

ÿ

i

„

σ̂2pTiq ´ σ2pθ,Tiq
σ̂2pTiq

2

(4.44)

In this 
ase the obje
tive fun
tion is σ2pθ,Tiq, θ are the unknown parameters (i.e.,

σWN , σRW , σGM1, Tc1, σGM2, Tc2, et
), Ti is the 
luster times and σ̂2pTiq is the estimate

varian
e. Further details about similar estimators and the 
lassi
al least square �t on

the log-log Allan varian
e plots by minimizing the relative distan
e between the 
urve

105



4 � Sto
hasti
 Modelling of MEMS Inertial Sensors

and the estimate pestimate ´ curveq{estimate 
an be found in [6, 8, 30, 31, 140℄. By

using wavelet varian
e instead of Allan varian
e the estimator used for the NLF might

be seen as a parti
ular 
ase of the GMWM des
ribed in [8℄.

Optimization

Sin
e the solution of Eq. (4.44) with the 
lassi
al least square might lead to a lo
al

minimum, we have optimized the parameters estimation by means of pattern sear
h.

This te
hnique 
onsists in a set of ve
tors (patterns) that are used to determine whi
h

point to sear
h at ea
h iteration, so if the pattern sear
h algorithm �nds a point that

improves the obje
tive fun
tion at the 
urrent point, the new point be
omes the 
urrent

point at the next step of the algorithm [141℄. This algorithm for optimization is based

on augmented Lagrangian patter sear
h and the 
omplete des
ription 
an be found

in [142, 143℄.

It is also worth mentioning that if one of the bounds (
onstraints) is rea
hed by

the unknown parameter after the optimization, the bound must be modi�ed, sin
e it

might be an indi
ation that the parameter is not limited by the 
onstraints.

In order to evaluate the bene�ts of the NLF, in the next se
tion we will analyse one

simulation assuming that the inertial sensors are in�uen
ed by di�erent noise sour
es

that are typi
ally found in MEMS IMUs.

Simulation

In this se
tion we analyse the performan
e of the non-linear �tting with 
onstrains

(NLF) 
ompared to the 
onstrained Expe
tation Maximization (EM) des
ribed in [21℄,

these algorithms were developed in MATLAB, where the optimization stage for the

NLF was a
hieved using the Global Optimization Toolbox. In order to evaluate

di�erent sto
hasti
 pro
esses that are often found in inertial sensors based on MEMS

te
hnology, we simulated and analysed a noise 
omposed by white noise (WN), random

walk (RW) and a �i
ker noise with two �rst order Gauss-Markov pro
esses. The

simulation generates 100 times the noise sour
e and ea
h time with 220 samples, having

a sampling frequen
y of 100 Hz. The true values for ea
h parameter are given by
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σ2
WN “ 6.13 ˚ 10´5

, σ2
GM1 “ 1.14 ˚ 10´7

, Tc1 “ 20.74, σ2
GM2 “ 2.36 ˚ 10´8

, Tc2 “ 2.07

and σ2
RW “ 7.36 ˚ 10´11

, the units are in seconds and pm{s2q2 for the 
orrelation time

and the varian
es, respe
tively. To estimate these parameters with the NLF we use the

following obje
tive fun
tion:

σ2pθ,T q “ N2

T
` σ2

M1pT q ` σ2
M2pT q ` K2T

3
(4.45)

This fun
tion is used to �t the log-log AV 
urve of the simulated pro
ess. The

velo
ity random walk (N) and the a

eleration random walk (K) are dire
tly related to

the WN and the RW pro
esses, respe
tively, while σ2
M1pT q and σ2

M2pT q are the Allan
varian
e fun
tions of the �rst order GM pro
ess stated in Eq. (4.19). So the goal is to

estimate the unknown parameters of Eq. (4.45), whi
h are given by:

θ “ tσWN ,σGM1,Tc1,σGM2,Tc2,σRW u (4.46)

The log-log AV 
urve of one simulated noise is depi
ted in Fig. 4.21. A

ording

to this plot, we set the 
onstrains for parameter K at 327.7 sec where it meets the

upper and lower bounds of the 95% 
on�den
e intervals 
urve, whi
h 
orresponds to

3.94 m{s{h and 2.31 m{s{h, respe
tively. The upper and lower bounds are set drawing

straight lines with a slope of 1{2, these lines meet the two points of the 
on�den
e

interval 
urve 3.94 m{s{h and 2.31 m{s{h, respe
tively. The two points need to be


arefully sele
ted in order to 
over the segment of the 
urve where the noise (K) is

dominant. In 
ase of parameter N, we de�ned the upper bound at 3.59 m{s{h and

the lower bound at 3.50 m{s{h Allan standard deviation, taking into a

ount that the

95% 
on�den
e interval 
urve was evaluated at 0.64 sec. These 
onstraints are shown

with green dashed lines of slope ´1{2 (see Fig. 4.21). We de�ned these 
onstraints

sin
e they 
over most of the segment of the 
urve where the long-term noise (K) and

the short-term noise (N) are dominant. Regarding the 
onstraints of the �rst order

GM pro
esses, the 
orrelation time is determined 
onsidering the segment of the 
urve

where the �i
ker noise is dominant, this is approximately between 2 sec and almost

200 sec. A

ording to the observations given in Se
tion 4.5.3, two �rst order GM
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pro
ess 
ould be suitable for modelling this �i
ker noise sin
e it seems to be dominant

in two decades. Therefore, the lower and upper bounds for the 
orrelation time were

pla
ed between p20,200q sec and p2,20q sec for Tc1 and Tc2, respe
tively. In order

to 
over the region where the �i
ker noise is more likely to exist, the limits for the

standard deviation of the two �rst order GM pro
esses pσGM1,σGM2q were set between
1.57 m{s{h and 0.49 m{s{h. That is, half decade below the Allan standard deviation


orresponding to the segment of the 
urve where the �i
ker noise is dominant). The

region where the two �rst order GM pro
esses are suspe
ted to be dominant is also

shown in Fig. 4.21. It should be mentioned that when we applied the NLF we only �t

the obje
tive fun
tion to Allan standard deviation below 655.33 sec 
luster times sin
e

the un
ertainty above this time is high.
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Figure 4.21: Allan varian
e of a mixture of WN, two �rst order GM pro
esses and a

RW.

The results of the 100 simulations are presented in Fig. 4.22 and Fig. 4.23, where

the true values of the parameters (θ) are drawn with horizontal red lines. Note that

AV is not in
luded be
ause it is limited when dealing with signals 
omposed by a


ombination of various pro
esses.

It is also noti
ed that the parameters estimated are highly a�e
ted in 
ase of the EM

algorithm, opposite to the NLF whi
h provides 
onsistent results of the parameters that

represent the noise modelled, and despite the EM has smaller varian
e in parameters

su
h as σRW , the bias of the NLF is smaller than the EM in most of the parameters

estimated. As it was shown in [21℄ the 
onstrained EM 
an be applied in a short data

set 
ompared with the NLF that requires the AV estimation. Despite this, the EM
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Figure 4.22: Performan
e 
omparison between EM and NLF for 100 realizations of a


ombination of WN, two �rst order Gauss-Markov pro
esses and a RW.
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Figure 4.23: Performan
e 
omparison between EM and NLF for 100 realizations of a

mixture of WN, two �rst order Gauss-Markov pro
esses and a RW.

is very likely not to 
onverge to a lo
al maximum of the likelihood fun
tion when the

SSM of the signal modelled be
omes 
omplex (e.g., a noise sour
e 
omposed by WN

and various �rst order GM pro
esses). Additionally, it is very dependent on the initial


onditions.

It should be mentioned that the number of parameters (θ) de�ned for ea
h Allan

varian
e 
urve depends on the number of noise sour
es that are suspe
ted to exist,

therefore to analysed the 
urves it is ne
essary to take into a

ount the slopes that

are shown in Fig. 4.3. In 
ase of �i
ker noise, the number of Gauss-Markov pro
ess

that we 
onsider is related to the number of decades where it is the dominant noise,

as it was mention previously, if the segment 
urve where the �i
ker noise is dominant

o

upies two decades the number of GM pro
ess used to 
reate the sto
hasti
 model

will be two. A

ording to the typi
al Allan varian
es 
urves for MEMS inertial sensors,
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one 
an see that the �i
ker noise is presented in the middle of N and K, just in the


urve segment where they are less dominant.

Next se
tion we analyse the performan
e of the NLF with a real data set 
olle
ted

from two low 
ost Inertial Measurement Units.

NLF Applied on a Real Data Set

Two Inertial Measurement Units were involved to estimate the sto
hasti
 error model

parameters by using the 
onstrained non-linear �tting. Both of them were 
on�gured

with a sampling frequen
y of 100 Hz. The test experiment was 
ondu
ted in a

room temperature and seven hours of stati
 data was 
olle
ted to analyse the raw

measurements with the NLF. For further details of these IMUs refer to [89, 90℄.

Figure 4.24(a) shows the estimated AV for the a

elerometers of both MEMS IMUs.

It 
an be noted that the velo
ity random walk (N) of the Atomi
 IMU is larger than the

noise term (N) for the 3DM-GX3 IMU, (i.e, approximately 10 times). On the other

hand, Fig. 4.24(b) shows the log-log AV 
urve for the gyros of both MEMs IMUs,

where it 
an be noted that both of them are a�e
ted by an angle random walk and a

�i
ker noise.
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Figure 4.24: (a) 3DM-GX3-25 IMU and Atomi
 IMU Allan varian
e for a

elerometers;

(b) 3DM-GX3-25 IMU and Atomi
 Allan varian
e for gyros.

For illustrative purposes we only present the sto
hasti
 error parameters of two

inertial sensors i.e., one a

elerometer and one gyro 
orresponding to the Atomi
 and
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the 3DM-GX3 IMUs, respe
tively. The 
urves of the other sensors are similar to those

analysed as well as the pro
edure that is a
hieved to obtain the parameters. In order to

applied the NLF method the z-axis a

elerometer was 
hosen for the IMU 3DM-GX3-25

while for the Atomi
 IMU we sele
ted the z-axis gyro.

Figure 4.25 shows the 
orrespondent AV 
urve for the z-axis a

elerometer in

blue (
ir
le market), where we assumed that the obje
tive fun
tion is 
omposed by

a WN, a �rst order GM pro
ess and a RW, sin
e it seems to be the model that

would better represent this log-log AV 
urve. Thus, the unknown parameters are

θ “ tσWN ,σGM ,Tc,σRW u and the 
onstraints for the N and K parameters were set as it

was explained in the previous se
tion, 
onsidering the 95% 
on�den
e interval values

at 0.32 sec and 327.70 sec, respe
tively. Con
erning the 
onstraints for the parameters

of the �rst order GM pro
ess, they are set between 10 sec and 100 sec for Tc and

between 0.38 m{s{h and 1.21 m{s{h for σGM , whi
h 
overs the region where the �i
ker

noise is suspe
ted to be. Fig. 4.25 also depi
ts the result after applying the NLF with

the previous 
onstraints, the 
yan solid line that superimposes the AV of the z-axis

a

elerometer represents the �tted 
urve performed by the NLF method, while the blue

line (triangle marker) represents the �rst order GM pro
ess estimated. The parameters

obtained for this inertial sensor are θ “ t0.0079,2.4830´4,18.1401,6.2559 ˚ 10´6u in

seconds and m{s2.
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Figure 4.25: Performan
e of the NLF for the IMU 3DM-GX3-25 a

elerometer Z.

Moreover, the log-log AV 
urve for the Atomi
 IMU z-axis gyro is depi
ted in

Fig. 4.26. It shows that the inertial sensor is dominated by a WN in the short-term


lusters while for the long-term 
luster it is dominated by a �i
ker noise. So in this
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test we 
onsidered a obje
tive fun
tion formed by a WN and three �rst order GM

pro
esses sin
e the �i
ker noise seems to be dominant at least for three decades. In this

way, the goal is to estimate the parameters θ “ tσWN ,σGM1,Tc1,σGM2,Tc2,σGM3,Tc3u.
The 
onstraints for the parameter N were set at 0.16 sec whi
h is asso
iated to

372.17 deg{h and 368.73 deg{h a

ording to the 95% 
on�den
e interval 
urve. In

order to 
over the region where the �i
ker noise is more likely to exist, the bounds for

the standard deviation of the three �rst GM pro
esses were set between 142.1 deg{h
and 44.93 deg{h, while the lower and upper bounds for the 
orrelation time we sele
ted

at p10,100q sec,p1,10q sec, and p100,1000q sec for Tc1,Tc2 and Tc3, respe
tively.

Fig. 4.26 plots the �tted 
urve (
yan line) after performing the NLF with the

mentioned 
onstraints. It 
an be seen that it mat
hes very well to the AV 
urve of the

z-axis gyro, showing that the sum of multiple �rst order GM pro
esses is suitable in

this inertial sensor. The three �rst order GM pro
esses estimated by the 
onstrained

non-linear �tting are also depi
ted, whi
h provides information of the underlying noise

sour
es that are 
ombined to build up the �i
ker noise. The set of parameter in units

of seconds and deg{s are given by θ “ t0.41,0.03,17.12,0.03,1.59,0.02,211.63u.
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Figure 4.26: Performan
e of the NLF for the Atomi
 IMU gyro Z.

Despite the fa
t that there is not a referen
e to 
ompare with the estimated

parameters as in the previous se
tion, we evaluate the goodness of the �t by means

of the Normalized-Root-Mean-Squared-Error(NRMSE) (see [144℄). Thus, we 
onsider

that the NLF makes a suitable �tting of the AV 
urve when the �tness value is greater

than 95%.
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NLF Bias Model Adapted to the Loosely-Coupled KF

Having applied the NLF, we adapted the obtained parameters in the loosely-
oupled

GPS/INS integration in order to 
ompensate the bias-drift of a

elerometers and gyros

of the IMUs under test. For the a

elerometers of the Atomi
 IMU, the sto
hasti
 error

ase was modeled as:

ase “ WNpNq ` 1st GM1pBq ` 1st GM2pBq (4.47)

where the noise term asso
iated to N is modeled as white noise (WN) and the �i
ker

noise is modeled as a superposition of two �rst order Gauss-Markov pro
ess. Regarding

the gyros, the sto
hasti
 error gse was de�ned as:

gse “ WNpNq ` 1st GM1pBq ` 1st GM2pBq ` 1st GM3pBq (4.48)

where we have a white noise (WN) plus a �i
ker noise modeled as a superposition

of three �rst order Gauss-Markov pro
ess.

On the other hand, it is noteworthy that the log-log AV 
urves obtained for the

3DM-GX3-25 IMU in Se
tion 4.3.4 vary with respe
t to the ones showed in Fig. 4.24(a).

This is be
ause we work with three MEMS IMUs, (i.e., two 3DM-GX3-25 IMUs and

one Atomi
 IMU), one 3DM-GX3-25 IMU from the Navsas resear
h group and the

others from the Department on Mi
roele
troni
s and Ele
troni
s Systems of Universitat

Autónoma de Bar
elona (UAB). So the analysis des
ribed in previous se
tions was

a
hieved using the 3DM-GX-25 IMU available in the Navsas resear
h laboratory [122℄.

For the 3DM-GX3-25 IMU available in the UAB, we applied the NLF and we noted

that the error model that �tted better for this IMU was the following:

For the a

elerometers of the 3DM-GX3-25 the sto
hasti
 error ase was:

ase “ WNpNq ` 1st GM1pBq ` 1st GM2pBq (4.49)

it is 
omposed by a white noise (WN) and a �i
ker noise modeled as a superposition

of two �rst order Gauss-Markov pro
ess. For the gyros, we obtained a white noise (WN)

plus a �i
ker noise modeled as a sum of two �rst order Gauss-Markov pro
ess (1st GM).
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gse “ WNpNq ` 1st GM1pBq ` 1st GM2pBq (4.50)

In order to 
ompare the performan
e of the sto
hasti
 models obtained with the

NLF, we not only estimate the noise parameters with this method but also with AV

following the pro
edure des
ribed in Se
tion 4.5.1. The 
omparison between both of

them will be presented in Chapter 6.

Temperature Test for the Sto
hasti
 Error

Most of the reported works in the literature disregard the sto
hasti
 error variations at

di�erent temperature points [29℄. Indeed, the analysis of the Allan varian
e 
urves is

typi
ally a
hieved at an spe
i�
 temperature point, ex
ept for some resear
hes where

AV 
urves have been taken into a

ount with various temperature points [145, 146℄.

Therefore, El-Diasty in [29℄ introdu
es a temperature-dependent sto
hasti
 model for

inertial sensors, where autoregressive models are employed to estimate the parameters

of a �rst order GM pro
ess at di�erent temperature points. Despite the fa
t that

this is a novel error model, we 
onsider that a more appropriate error modelling 
an be

determined. For this reason, we de
ided to develop a temperature-dependent sto
hasti


error based on the NLF. Thus, in order to analyse the behaviour of the bias-drift at

di�erent temperatures points with the NLF we fo
used on the 3DM-GX3-25 MEMS

based IMU. For this purposed, we pla
ed the IMU in the thermal 
hamber available in

the Department of Mi
roele
troni
s and Ele
troni
s Systems at the UAB. During the

temperature test, we 
olle
ted stati
 data sets from the IMU at di�erent temperature

points, spe
i�
ally, 10 ˝C, 20 ˝C, 30 ˝C and 40 ˝C. The 3DM-GX3-25 IMU was


on�gured in the same way as in Se
tion 4.3 with a sampling rate of 100 Hz. Then, we

re
orded seven hours of stati
 data at ea
h temperature point (i.e., a total of 28 hours).

Subsequently, the AV algorithm was 
omputed for ea
h seven hours of the di�erent

temperature points. The y-axis a

elerometer and gyro of the 3DM-GX3-25 IMU were


hosen to illustrate this analysis. The other sensors gave similar results. Fig 4.27(a)

and Fig. 4.27(b) show the log-log Allan varian
e 
urves for y-axis a

elerometer and

y-axis gyro of the IMU at di�erent temperature points, respe
tively. A temperature

dependen
y of the noise terms that are a�e
ting the inertial sensors 
an be appre
iate
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in the plots. For instan
e, the y-axis a

elerometer has a signi�
ant variation in the

�i
ker noise, this is in a segment of the 
urve where the AV estimation has a relatively

low un
ertainty (i.e., for 
luster times between 2 ˚ 10´1 sec and 20 sec). On the other

hand, it 
an be noted that the y-axis gyro presents a temperature dependen
y for the

short term noise angle random walk (slope ´1{2), (i.e., for 
luster times below 10 sec,

where the noise term (N) is more dominant). For 
luster times above 20 sec is not easy

to determine an a

urate variation of the noise term involved, this is due to the fa
t

that the AV un
ertainty is high. Despite this, a temperature dependen
y of the noise

terms is observed in 
luster times where the log-log AV 
urve has a low un
ertainty,

whi
h means, that we 
ould estimate the noise parameters through the NLF at ea
h

temperature point in order to examine how these parameters that 
an be well estimated

at di�erent temperature points a�e
t the performan
e of the system.
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Figure 4.27: (a) IMU 3DM-GX3-25 Allan varian
e for a

elerometer Y at di�erent

temperature points; (b) IMU 3DM-GX3-25 Allan varian
e for gyro Y at

di�erent temperature points.

For building the sto
hasti
 error model temperature dependent, we applied the NLF

to ea
h AV 
urve obtained at di�erent temperature points. The obje
tive fun
tion that

we used to �t ea
h 
urve is the one related to the sto
hasti
 models des
ribed in Eqs.

(4.49) and (4.50).

Figures 4.28(a) and 4.28(b) show some of the estimated parameters for

a

elerometers ans gyros (i.e., the 
ovarian
e of a �rst order GM pro
ess pσ2
GM2q for

the three a

elerometers and the 
ovarian
e of the white noise pσ2
WNq for the three

gyros). These parameters were obtained after 
omputing the NLF and it is 
lear that
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the angle random walk (N) has a linear tenden
y. In fa
t, the experiment was repeated

on di�erent o

asions and we observed that the angle random walk noise in
reased

with temperature.
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Figure 4.28: (a) Covarian
e of a �rst order GM pro
ess pσ2
GM2q for the three di�erent

a

elerometers at di�erent temperature points; (b) Covarian
e of the

white noise pσ2
WNq for the three gyros at di�erent temperature points.

After this temperature test, we 
on
luded that it was ne
essary to in
lude

the sto
hasti
 error model temperature dependent in the loosely-
oupled GPS/INS

integration in order to examine its performan
e. The results for this error model are

shown in Chapter 6.
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Chapter 5

Ar
hite
ture Based on FPGA for

GPS/INS Integration

5.1 Introdu
tion

Although the GPS is highly portable, with low power 
onsumption and dominates

the market in positioning and navigation [75℄, the reability, 
ontinuity and availability

in the navigation appli
ations where it is used is 
ompromised in di�erent situations,

e.g., in urban 
anyons and tunnels where there is not line-of-sight between the GPS

re
eiver and the satellites. In fa
t, these are not the only errors that a�e
t the

GPS, there are also fa
tors su
h as jamming, multipath, interferen
e, et
. Given the

vulnerability of the GPS re
eivers, in the last years it has been supported by additional

information sour
es in order to improve the navigation solution. Sin
e most of the

navigation systems require redundant information, we 
onsider that FPGAs (Field

Programmable Gate Array) are suitable for their implementation be
ause they are

very �exible devi
es that allow to easily adapt several instruments su
h as 
ompasses,

GPS re
eivers, odometers, 
ameras even multiple Inertial Measurement Units (IMUs),

whi
h 
an lead to redundant information sour
es and in turn a better performan
e of

the navigation system. Additionally, they are being used in a wide range of appli
ations

that require 
omputation-intensive, due to the fa
t that they have di�erent features

su
h as embedded pro
essors, DSP blo
ks, high speed serial 
ommuni
ation and high

density in gates. FPGAs 
an be programmed to a
hieve several appli
ations with a
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high performan
e, taking advantage of their high grade of parallel pro
essing and their


apa
ity of run-time re-
on�gurability.

Although, re
ently some works have being 
ondu
ted to implement GPS/INS

integration on 
ompa
t and �exible platforms, highlighting between them [35�39℄, we

noted that in most of the 
ases the FPGA is used as an interfa
e for data a
quisition

and in approa
hes where it is used to 
ompute the navigation algorithms the hardware

resour
es available are underutilized. In fa
t, this is where the FPGA 
ould o�er more

bene�ts if several information sour
es are in
luded. It is also worth noting that the use

of low 
ost INS implies high 
omputational 
ost due to the 
omplex error models that

are needed to enhan
e its performan
e. Therefore, in this 
hapter we aim to develop

an embedded system that 
ombines GPS/INS with an ar
hite
ture based on FPGA

te
hnology, where we will analyse the feasibility to use parallel pro
essing with DSP

blo
ks for the 
omputation involved in the Extended Kalman Filter (EKF).

This 
hapter is organized as it follows. The �rst se
tion presents a review of

re
ent similar platforms where the GPS/INS integration has been implemented. Se
ond

se
tion gives a general des
ription of FPGAs and the requirements and spe
i�
ation of

the embedded system. The third se
tion, explains the ar
hite
ture developed for the

loosely-
oupled GPS/INS integration based on FPGA. This also gives details about the

software/hardware implementation, utilization resour
es and matrix multipli
ation in

hardware as a possibility to speed-up the system. Finally, the appli
ations where the

navigation platform was assessed are presented.

5.2 Previous Work

Re
ently, studies have been 
ondu
ted to 
arry out the GPS/INS integration using

platforms su
h as DSPs (Digital Signal Pro
essors) and FPGAs (Field Programmable

Gates Arrays) [35�38, 147℄. Referen
es [37, 147℄ present the integration GPS/INS

using DSP and FPGA. In this 
ase a �oating-point DSP is used to implement the

Kalman �lter and navigation equations while the FPGA is used as interfa
e with

instruments su
h as the GPS. Basi
ally, the FPGA is responsible for the a
quisition,


ommuni
ation and 
ontrol. Although these papers propose novel systems 
ombining
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FPGA and DSP, platform size 
ould be redu
e using only one of them. At the time,

one of these works was under development and the other one had been tested using

a spa
e
raft simulator 
alled Flight Dynami
 Controller (FDC). A similar work using

DSP/FPGA was des
ribed in [35℄. It summarizes various GPS/INS 
on�gurations

developed in di�erent boards that were reported in the literature at the time and

also details the 
omputational 
ost required by the KF and the INS algorithms

involved in the loosely-
oupled approa
h with 9 states (i.e., position, velo
ity and

attitude). Although this work implements some hardware modules on the FPGA,

su
h as a GPS re
eiver serial link interfa
e, these modules are available in most of

the 
urrent FPGAs development boards. Even though the PCB designed for the

inertial sensors interfa
e provides little versatility, this paper shows a novel approa
h

in a
quiring signals from IMU and GPS for a given Kalman �lter to fuse the data

by means of DSP/FPGA boards. In [36℄ the GPS/INS integration is 
arried out

using an FPGA. This uses the soft-
ore pro
essor Nios II in 
onjun
tion with eCos

(Embedded Con�gurable Operating System), whi
h is responsible for managing the

user interfa
e, the syn
hronization time, the INS and Kalman �lter algorithm. The are

some 
omponents that are designed by using the AHDL (Altera Hardware Des
ription

Language). This proje
t shows good results and also proposes a 
ompa
t platform.

However, it uses AHDL language whi
h limits the design sin
e this is spe
i�
ally for

Altera, 
onsequently it is not an IEEE standard as VHDL (Very High Speed Integrated

Cir
uit Hardware Des
ription Language). In [38℄, a 
ompa
t platform based on FPGA

is des
ribed. It makes the GPS/INS fusion by using the hard 
ore pro
essor PowerPC

440, the navigation algorithm is developed in C language and the 
omplete system

is evaluated with simulated traje
tories. Despite this, there is no any details about

the 
omputational 
ost required by ea
h stage and neither the utilization resour
es.

In [148℄, a new strapdown algorithm in a single FPGA 
hip is developed. Although

it does not implement the GPS/INS integration it des
ribes the parallelization of the

me
hanization and its 
omputational 
omplexity. It shows that hardware 
an greatly

de
rease the exe
ution time, nonetheless, we 
onsider that the e�ort to redu
e the


omputational 
ost in the GPS/INS integration should be fo
used on the EKF, whi
h

is a 
riti
al blo
k of the navigation system as it will be pointed out in the following

se
tions.

119



5 � Ar
hite
ture Based on FPGA for GPS/INS Integration

5.3 Platform Based on FPGA

Despite the fa
t that there are di�erent hardware platforms that 
an be used to develop

an embedded system su
h as mi
ro
ontrollers, digital signal pro
essor DSP, appli
ation

spe
i�
 integrated 
ir
uits (ASIC) [147, 149�151℄. The sele
tion of a platform over

others depends not only on the requirements of the system to be developed su
h as

the performan
e, power 
onsumption, 
ost per 
hip, but also on the ease of the tools

a

ompanied by a spe
i�
 platform to assist the developers [152℄.

On one hand, the DSP 
an be suitable for the GPS/INS integration sin
e some of

these pro
essors are able to work with �oating point, they also have a spe
ialized

data-path for digital signal pro
essing and 
an be programmed in C language.

Nonetheless, adding new sensors to the system might result di�
ult in most of the

situations. Although there is a wide dis
ussion in regard to the use of FPGA and

DSP te
hnologies, we 
onsider that FPGA 
an o�er great advantages in this sort

of navigations systems sin
e it would be enough to implement the loosely-
oupled.

However, the FPGA implementation presents greater 
hallenges than the DSP. On

the other hand, from the works that 
ombine DSP/FPGA, we noted that the

FPGA makes easier the reading from the navigation instruments and the DSP is

appropriate to a
hieve the digital signal pro
essing involved in the KF to fuse the

data. However, it might imply higher power 
onsumption, a less 
ompa
t platform,

additional syn
hronization stages between the two devi
es and a design of di�erent

PCBs to fed all the 
ir
uit boards.

For the loosely-
oupled approa
h fo
used on this thesis, the FPGA was 
hosen

be
ause of the wide variety of advantages that it o�ers over similar platforms. The

FPGA is very �exible to adapt new information sour
es in the navigation system (i.e.,

magnetometers, 
ameras, RF re
eivers, bluetooth devi
es et
.), it has great 
apa
ity

for parallel pro
essing that 
ould redu
e the 
omputation time, whi
h is an important

fa
tor in real-time implementations. Additionally, FPGAs have a low risk design

methodology. Nowadays they 
ome together with resour
es like pro
essors, modules

to handle high-speed 
ommuni
ations, Floating Point Unit (FPU), DSP blo
ks, et
.

These devi
es have the bene�ts of the hardware su
h as speed and �exibility, apart

from their simple design 
y
le. This means that if there is an error in the design, it
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just needs to modify the 
ode and reprogram the FPGA, and does not have a high

non-re
urring engineering (NRE) as in the 
ase of an Appli
ation Spe
i�
 Integrated

Cir
uit (ASIC).

The navigation platform based on FPGA that was developed will be explained in

the following se
tions, but �rst we will make a brief introdu
tion about FPGA devi
es

and subsequently the details of the prototype will be presented.

5.3.1 Field Programmable Gate Array (FPGA)

The �eld programmable gate array is an integrated 
ir
uit (ICs) that belongs to the

family of programmable logi
 devi
es (PLDs). Sin
e its 
reation in the de
ade of the

70's it has been 
hara
terized by o�ering �exibility in the designs, due to the fa
t

that these devi
es have a large amount of gates that are programmable in the �eld

to perform di�erent fun
tions. An FPGA 
hip basi
ally in
ludes I/O blo
ks and a


ore programmable fabri
 [153℄. The I/O blo
ks are lo
ated around the periphery of

the 
hip and provide programmable inputs and outputs that allow intera
tion with

external devi
es. On the other hand, the 
ore programmable fabri
 
onsists of an array

of logi
 blo
ks also 
alled 
on�gurable logi
 blo
ks (CLBs) that are inter
onne
ted

by programmable 
onne
tions. Depending on the te
hnology of FPGAs, it 
an be

programmed only on
e while others 
an be programmed many times.

Modern FPGAs in
orporate resour
es like RAM blo
ks, DSP blo
ks for the

realization of MAC operations, high logi
 density, 
ommuni
ation modules in the order

of Giga bits, 
lo
k management modules, embedded pro
essors, et
. These 
omponents

have made FPGAs an attra
tive alternative for the development of System-On-Chip

designs [153℄.

Figure 5.1 illustrates the general layout of the FPGA ar
hite
ture of a Xilinx

devi
e. In this s
heme shows the programmable logi
 blo
ks, the programmable

inter
onne
tions that are part of the 
ore programmable and the I/O blo
ks. All

the blo
ks are highly 
on�gurable and 
an be used to implement large and 
omplex

fun
tions that had previously been the domain only of ASICs [154℄. The fun
tions

developed by the user are mapped into the logi
 blo
ks of the devi
e performing
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Figure 5.1: Generi
 FPGA ar
hite
ture.

the ne
essary 
onne
tions between them. Thus, 
on�gurable inter
onne
tion lines are

programmed making 
onne
tions between di�erent logi
 blo
ks in order to a
hieve a

spe
i�
 task.

The design methodology for FPGAs 
onsists in two basi
 methods, bottom-up and

top-down [155℄. The bottom-up des
ription of a system begins with the implementation

of basi
 
omponents that are gathering to form more 
omplex modules until the


omplete system is developed. In 
ontrast, the top-down begins with a high level

des
ription where the main blo
ks of the system are identi�ed and then it is divided

into blo
ks that have less 
omplexity and are easier to implement. Here we adopted the

top-down methodology as it allows error 
orre
tions at early stages of the development


y
le.

5.3.2 Requirements and Spe
i�
ations

In order to make the implementation of the GPS/INS integrated system on the FPGA,

we de�ned the following spe
i�
ations and fun
tional requirements for this navigation

embedded system:

• Interfa
e with the Atomi
 IMU, 3DM-GX3-25 IMU, u-blox LEA-6T GPS re
eiver

and a bluetooth 
omponent for 
ommuni
ation with external devi
es, it 
ould be

a PC or an Android devi
e that will intera
t with the platform e.g., to 
olle
t
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data during 
ampaigns or to display the traje
tory of the vehi
le. Ea
h of these

devi
es are provided with a UART serial 
ommuni
ation interfa
e.

• Syn
hronization between di�erent IMUs and GPS (i.e., one IMU at the time)

using the Time Of Week (TOW) provided by the GPS. The inertial sensors will

provide data every 10 msec while the GPS re
eiver every se
ond.

• Drivers for both IMUs and GPS that allow to obtain information that will be

used later in the navigation algorithm. It requires programming the Atomi
 IMU

mi
ro
ontroller to send inertial sensor samples every 10 msec and also adapt a

sensor to monitor the temperature of the devi
e. The 3DM-GX3-25 IMU needs

to be 
on�gured to send a spe
i�
 pa
ket every time the FPGA is power up, so

it will be able to provide raw measurements of angular velo
ity, a

eleration and

Euler angles every 10 msec. The drivers for the GPS should extra
t position and

velo
ity information every se
ond.

• Implement the loosely-
oupled GPS/INS integration algorithm using an

ar
hite
ture based on FPGA, whi
h will be assessed with simulated and real

data 
olle
ted during 
ampaigns.

• Store the navigation solution in a external memory or send it via bluetooth to a

remote devi
e su
h as a mobile devi
e or PC. The developed ar
hite
ture for the

navigation embedded system should be stored in an external non-volatile �ash

memory, thus it does not need to be programmed every time a vehi
le test is

performed.

To test the performan
e of the navigation platform based on FPGA, the following

two approa
hes are 
onsidered:

• A
quisition: to evaluate the data a
quisition of the di�erent devi
es, the FPGA

platform is mounted in a robot and a land vehi
le under several s
enarios, where

it is 
on�gured to read data 
oming from IMU and GPS. The data 
olle
ted is

syn
hronized and stored in a 
ompa
t �ash memory or sent to a PC via bluetooth.
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• Navigation algorithm: in order to assess the performan
e of the GPS aided

INS, the FPGA is re
on�gured with the navigation algorithm. Then, the raw

measurements that were 
olle
ted during the 
ampaigns are stored in an external

DDR SDRAM memory available on the XUPV5 board from Xilinx, where on
e

the algorithm stars running the measurements are loaded from the memory and

fed into the loosely-
oupled GPS/INS integration. To analyse the 
omputational


ost, a timer is added to measure the exe
ution time needed for ea
h stage

involved in the navigation algorithm. The o�-line solution is also 
ompared with

the algorithm developed in Matlab. It is worth mentioning that the extra
ted

information from both IMUs will be evaluated independently in the integration

with the GPS and not as a data fusion of multiple IMUs.

5.4 GPS/INS Integration Based on FPGA

The platform for the GPS/INS data fusion is shown in Fig. 5.2. It presents the

Virtex-5 ML509 board, the IMUs, the GPS and an Android devi
e. There are three

UART interfa
es whi
h 
arry out the data a
quisition from the navigation instruments.

The measurements are stored in a 1 GB 
ompa
t �ash memory that is in the bottom

of the board, although there is also the option to send them via Bluetooth through

a UART peripheral. That is, using a serial 
ommuni
ation interfa
e, where we


onne
t a UART-Bluetooth 
onverter (Bluemore200), whi
h is suitable for integration

in mi
ropro
essor systems without operating system sin
e it does not need a driver to

work [156℄. Thus, the platform is able to send position data to an Android devi
e,

where we 
an monitor the traje
tory of the vehi
le. The 
ommuni
ation with external

devi
es and visualization of the traje
tory were used during the robot test sin
e the user

interfa
e developed in the Android devi
e not only re
eives information from the FPGA

but it is also designed to send 
ommands to the FPGA in order to have intera
tion

with the Virtex-5 ML509 platform.

The following se
tions des
ribe the 
ustomization of hardware and software

development that is ne
essary to build the embedded navigation system.
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Figure 5.2: General system 
omponents.

5.4.1 Hardware Implementation

To implement the navigation system on the Virtex-5 ML509 development kit, we

used the ISE Design suite 12.1 and also the EDK (Embedded Development Kit) from

Xilinx. The Mi
roblaze pro
essor version 7.10.d was 
ustomized to run at 125 MHz

with an IEEE-745 
ompliant single-pre
ision Floating Point Unit (FPU). This soft-
ore

pro
essor is implemented using the logi
 primitives of the FPGA and this is part of the

Xilinx embedded solutions. This soft-
ore pro
essor is an Intelle
tual property (IP)


ore that has a ri
h instru
tion set optimized for embedded appli
ations, whi
h gives


omplete �exibility to sele
t the 
ombination of peripherals, memories and interfa
es,

so it provides the exa
t system that is ne
essary at the lowest 
ost possible [157, 158℄.

Thereby, the ar
hite
ture was 
ustomized with three UART peripherals, two of them

to re
eive data from the IMU and GPS, whereas the third one to 
ommuni
ate with

the Android devi
e through a UART-Bluetooth 
onverter (see Fig. 5.3).

UART-
Bluetooth
converter

UART

UART

UART

Microblaze
Processor

MPMC

Ext. MEM
DDR SDRAM

FPGA
Virtex-5
ML509
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BRAM

L
M

B
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FSL

Timer

3DM-GX3
IMU

LEA-6T
GPS receiver

Atomic IMU

UART GPIO

CF
Controller

MCH EMC

LCD/SW/
LED/PB

CF Card

Interrupt
Controller

Flash
Memory

P
L

B
 1

Figure 5.3: Ar
hite
ture for the GPS/INS integration.
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The Mi
roblaze pro
essor is 
onne
ted to the Multi-Port Memory Controller

(MPMC) whi
h manages the external memory (DDR SDRAM) where the software

appli
ation will be stored. The a

ess to the external DDR SDRAM is performed by the

Xilinx Ca
heLink (XCL) that is a high performan
e solution to 
onne
t dire
tly to the

memory 
ontroller MPMC [158℄. Regarding the Timer IP 
ore, this is added in order

to log the IMU samples and also to measure the exe
ution time that takes di�erent

stages of the algorithm. The ar
hite
ture in
ludes the system ACE CF 
ontroller

that uses the memory based on the Compa
t Flash (CF), whi
h not only permits to

store the raw measurements but also supports multiple-bitstream �les if additional

ar
hite
tures are required. Moreover, the GPIO is the general purpose I/O 
ore, whi
h

enables interfa
e to leds, dip swit
hes, LCD display and push bottoms. These I/O

peripherals are employed to start/end the system and also to 
he
k if the appli
ation

is running properly. It 
an be noted that in the same way all these hardware resour
es

were in
luded any information sour
e with a standard interfa
e 
an be adapted in the

ar
hite
ture by just atta
hing a 
ustom 
ore or an IP 
ore, whi
h will in
rease the

redundan
y of the navigation system and in turn its performan
e. This is one of the

main advantages that FPGAs 
an o�er in the development of navigation systems.

Sin
e XUPV5 board in
ludes a platform �ash PROM as most FPGAs development

kits, we used the non-volatile memory available on the board to store the 
omplete

system (i.e., a linear �ash devi
e that provides 32 MB of �ash memory). Thus, the

System on Chip design 
an be loaded every time the FPGA is turned-on. Finally,

an interrupt 
ontroller is atta
hed into the PLB bus for the a
quisition of the inertial

sensors measurements and the information provided by the GPS. This issue will be

explained in the next se
tion.

5.4.2 Software Development

The software development for the navigation appli
ation is made up of di�erent blo
ks

as it is depi
ted in Fig. 5.4. The EKF explained in Se
tion 2.6.3 was implemented


onsidering 15 states, nine for the navigation states and six for the IMU error states as

it is stated in Eq. (5.1). The �ow
hart for this algorithm 
an be seen in Se
tion 2.6.4.
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δx “
”

δrn δvn δψn δba,b δbg,b

ıT

(5.1)

The algorithms were developed in m-
ode with Matlab and also in C language. They

were debugged and validated and latter on the C language 
ode was ported to the soft


ore Mi
roblaze pro
essor. It should be mentioned that although 
urrently there are

tools that 
an be used to a

elerate the development of prototypes in hardware, for

instan
e, Matlab HDL 
oder that 
onverts m-
ode to HDL 
ode or Matlab 
oder that


onverts m-
ode to C 
ode, in this 
ase we implemented the GPS/INS integration in

m-
ode and we manually 
onverted m-
ode to C 
ode. Despite the fa
t that it is a

slower pro
ess than using Matlab toolboxes, we 
hose this option be
ause we have more


ontrol over the 
ode e.g., it is readable, it is not ne
essary to alter the Matlab 
ode

and besides the 
ode 
an be optimized more easily to adapt the navigation system to

a spe
i�
 pro
essor, su
h as Mi
roblaze.

GPS/INS 

Algorithm

GPS signal ?

Mechanization

EKF

Update

Initialization

GPS

IMU

Position

Velocity

Attitude

YesNo

EKF 

Prediction

Figure 5.4: Flow diagram for the loosely-
oupled GPS/INS integration.

A

ording to the �ow diagram shown in Fig 5.4, the initialization provides the

initial 
onditions of the navigation system, i.e., information of position, velo
ity and

attitude. This blo
k 
an be performed as a separate algorithm, whi
h 
an be seen as a

software appli
ation that runs the alignment and it is stored as an image in the �ash

PROM. The initial position and velo
ity is given by the GPS while the Euler angles

are read from the 3DM-GX3-25 IMU. The pro
ess to a
quire the measurements from

the GPS and IMUs is explained in the following se
tion.
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A
quisition

The data a
quisition from the GPS and the Inertial Measurement Units was 
arried

out through universal asyn
hronous re
eiver transmitter (UART) peripherals. These

peripherals are in
luded during the set up of the hardware ar
hite
ture and are


onne
ted to the PLB (Pro
essor Lo
al Bus); ea
h of them were 
on�gured with a

baud rate of 115200 baud.

To obtain the measurements from the Atomi
 IMU, the inertial sensors signals are

passed through a signal 
onditioning and a low-pass �lters stage providing a high level

analog output proportional to the a

eleration and angular rate measurements. These

analog outputs are then sampled by the on-board mi
ro
ontroller ATMega168TM,

that runs at 10 MHz with 8 dedi
ated 10-bit ADC 
hannels. In order to obtain

temperature data during the 
ampaigns, we modi�ed the Atomi
 IMU from Sparkfun

ele
troni
s adapting the LM35 temperature sensor. This is a pre
ision integrated-
ir
uit

temperature sensor that provides an output voltage linearly proportional to the


entigrade temperature and does not require any external 
alibration to provide

a

ura
ies of ˘0.750C over a full temperature range ´550C to `1500C [159℄. In this


ase the ATMega168TM is programmed to perform the 
onversion of ea
h 
hannel

of the ADC as it is shown in Fig. 5.5, the seven ADC 
hannels are sampled by the

mi
ro
ontroller to obtain a message pa
ket with a

eleration, angular velo
ity in the

three axis and temperature i.e., Ax, Ay, Az, ωx, ωy, ωz and T , respe
tively. Given the

fa
t that the ADC is 
onne
ted to an 8-
hannel analog multiplexer, the seven entries


an not be simultaneously sampled, so there is a delay between ea
h digital sample,

this indi
ates that the samples obtained from the a

elerometers, gyros
opes and

temperature sensor not 
orrespond to the same instant of time due to the delays 
aused

by the multiplexer. In spite of this, if the ADC 
onversion time is signi�
antly high,

then the e�e
t of errors due to the phase delays will be minimal. This nonsimultaneous

sampling will have an impa
t if the 
omputational 
y
le time (i.e., approximately

10 ms) is 
omparable with the 
onversion time [35℄. In the present 
ase it is not


riti
al sin
e the 
onversion time is about 83.6 µs (13 cicles) with a frequen
y of

156.25 KHz for the ADC. After getting the digital samples for ea
h sensor, the Atomi


IMU message pa
ket is sent to the FPGA through the USART interfa
e available in
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the mi
ro
ontroller.
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Figure 5.5: Timing diagram for Atomi
 IMU a
quisition.

Sin
e GPS and IMUs provide di�erent sampling frequen
y, i.e., 1 Hz and 100 Hz,

respe
tively, the syn
hronization between these instruments is done by the GPS, that

is typi
ally used as time referen
e in multi-mobile sensors systems [160℄. Therefore,

we used the time of week supplied by the GPS as time stamp on ea
h data re
eived

from the IMUs. Although a better syn
hronization pro
edure 
an be implemented, in

this �rst prototype of the navigation platform we 
onsider a 
onventional method. For

further details of re
ent methods of syn
hronization refer to [160�162℄.

Thus, whenever a pa
ket is re
eived from one IMU, it is tagged with the 
urrent time

of week given by the GPS. Thus, an IMU with a sampling frequen
y of 100 Hz will have

100 samples with the same time of week. To a
hieve this task we enabled the interrupts

in the UART interfa
e, giving priority to the interrupt of the UART asso
iated with

the GPS. The interrupts are generated when a valid data exists in the re
eive register

of the UART, then, it is stored into a bu�er and when it is 
omplete, this is 
opied to

another bu�er, whi
h is pro
essed to extra
t the data (e.g., position and velo
ity for the

GPS and angular velo
ity, a

eleration and Euler angles for the IMU). Ea
h pa
ket has

a spe
i�
 stru
ture that supports a header for syn
hronization, payload with a group of

messages whi
h are related to position, velo
ity, angular velo
ity, a

eleration, attitude,

et
, and a 
he
k sum. The algorithms implemented on the FPGA to read the Atomi


IMU and the GPS are slightly similar, they are summarized in one �ow
hart depi
ted

in Fig. 5.6. For the 3DM-GX3-25 IMU, ea
h time the FPGA is turned-on a 
ommand

needs to be sent to 
on�gure the data-stream format. This message format is saved

on its on-board pro
essor and then when the IMU is enabled it sends a 
ontinuous
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stream with a

eleration, angular velo
ity and Euler angles with a sampling frequen
y

of 100 Hz. See [121,163℄ for further details about the stru
ture of ea
h pa
ket sent by

the GPS re
eiver and the 3DM-GX3-25 IMU.

Read GPS/

Atomic IMU

Copy buffer and clear flag/

start interrup, index = 0

Is Index = buffer 

size+offset

Is header found?

No

No

Is package 

complete?

Yes

Index++

Extract data 

Yes

Offset=buffer 

size-index

Go to INS 

mechanization and 

EKF computation

No

Yes

Figure 5.6: Flow diagram to read GPS re
eiver and Atomi
 IMU.

Memory Mapping

Sin
e the Blo
k RAM available to run a Mi
roblaze appli
ation is by default 64 KB, we

used the external memory DDR2 SDRAM of 256MB to avoid limitations with regards

to the spa
e required to exe
ute the GPS/INS appli
ation. Furthermore, in order to

evaluate the platform in a terrestrial vehi
le, we used a non-volatile devi
e PROM as

a platform to store the software appli
ation and the 
on�guration data of the FPGA

during power-down. The SDRAM and the �ash PROMmemories are typi
ally in
luded

in the development kits based on FPGA; the latter memory is sometimes dedi
ated

to load the FPGA 
on�guration data upon power-up. This non-volatile devi
e 
an be

also employed to hold small amounts of user data or several images to 
on�gure the

FPGA, it might be useful to store images with di�erent proposes. For instan
e, in the

GPS/INS appli
ation one image 
ould have the navigation alignment and another one

the 
omputation of the navigation solution; it would be 
onvenient and �exible.
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PROM Contents

0x00
FPGA configuration

Uncertain

Uncertain

Software application

Uncertain

User data/additional
software

GPS/INS
integration{

Hardware architecture/
bootloader{ {- Timers

- UARTs
- GPIO
- SysACE Compact Flash
- Flash (mch-emc)
- DDR2 SDRAM (mpmc)
- Interrupt Controller
- Microblaze

Figure 5.7: Memory map for the embedded system.

Figure 5.7 shows the 
ontents of the �ash memory, in this 
ase, the linear �ash


hip available on the XUPV5 board is used. This non-volatile memory provides

32MB with 16-bit wide to storage data, software, or bitstream �les. The se
tion that

in
ludes the software appli
ations storages the exe
utable loosely-
oupled GPS/INS

integration, while the FPGA 
on�guration se
tion 
ontains the information to 
on�gure

the logi
 
ells and routing within the FPGA (i.e., the hardware ar
hite
ture des
ribed

previously). Additionally, it also storages a bootloader appli
ation to initialize the

BRAM of the Mi
roblaze.

FPGA Con�guration

Having 
ustomized the ar
hite
ture with the features shown in Fig. 5.3, the hardware

design is synthesized and the bitstream �le is generated with the EDK. Then, in order

to 
on�gure the FPGA with the navigation system two steps are required. Firstly, the

hardware ar
hite
ture and software appli
ation need to be stored in the �ash memory

and mapped as it was explained in the previous se
tion. Se
ondly, the GPS/INS

software appli
ation need to be run from the external DDR SDRAM memory. This is

a
hieved by following these steps:

• Programming the �ash memory with the GPS/INS appli
ation image. This

is loaded into the �ash with a o�set address, that 
orresponds to the address

memory where the bootloader will look for the software appli
ation on
e the

FPGA is swit
hed-on.
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• Programming the �ash memory with a image 
ontaining the hardware platform

and the BRAM initialized with the bootloader.

On
e these steps are a

omplished every time the platform is swit
hed-on the

hardware ar
hite
ture des
ribed in Fig. 5.3 is 
on�gured on the FPGA from the

linear �ash. Subsequently, the bootloader, stored in the BRAM, a

esses to the

pre-determined memory lo
ation where the loosely-
oupled appli
ation was stored in

the �ash, then 
opies it from the �ash to the DDR SDRAM. Finally, the bootloader

appli
ation jumps to the extern memory where the the navigation appli
ation has

already been stored and starts running. The 
omplete pro
ess is implemented using the

Byte-wide Peripheral Interfa
e (BPI) mode. See further details about this pro
edure

in [164, 165℄.

Software Pro�ling

Here we present the exe
ution time of the 
ode implemented on the FPGA that requires

a higher 
omputational 
ost. To measure how long the program takes to exe
ute a pie
e

of 
ode we used a timer/
ounter peripheral, whi
h 
ount the number of 
lo
k 
y
les

between two instru
tions, where ea
h 
lo
k 
y
le is related to the Mi
roblaze frequen
y,

that is 125 Mhz. As shown in Table 5.1 the time required for one me
hanization


omputation is 2.7 msec, one Kalman �lter 
omputation requires 111.30 msec. During

the a
quisition of the IMU (i.e., 
onsidering the 3DM-GX3-25 IMU that provides

more samples than the Atomi
 IMU), the reading takes approximately 0.118 msec

on average, while for the GPS read and parse take 0.006 msec on average. Taking into

a

ount that the GPS provides samples every second while for the 3DM-GX3-25 IMU

every 10 msec. Sin
e the algorithm runs in an in�nite loop the navigation solution

is 
al
ulated 
ontinuously, providing position, velo
ity and attitude outputs every

57.72 msec whi
h is equivalent to approximately 17 results of position every second.

This is in the 
ase when the GPS is not available, otherwise if there is a GPS update,

the number of results provided by the navigation system is redu
ed to 16 due to the


al
ulation of the EKF update stage.

A time frame within a second for the 
al
ulation of the navigation algorithm in

µ-Blaze 
an be seen in Fig. 5.8. The time segment that takes 114.12 msec to 
ompute
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Table 5.1: GPS/INS integration real-time feasibility using XUP-V5 board.

A
quisition
Me
hani-

zation

EKF Pre-

di
tion

EKF

Update

Exe
.

Time
GPS IMU

pmsecq pmsecq pmsecq pmsecq pmsecq pmsecq

µ-blaze

p125Mhzq 0.006 0.118 2.7 54.9 56.4 114.12

the navigation solution is related to the EKF update stage (green time slot), whi
h is


omputed every second when there is a GPS update. If there is not GPS update the

solution is provided every 52.72 msec having the highest 
omputational burned during

the EKF predi
tion stage (purple time slot).

114.12 msec

navigation
solution

1

navigation
solution

57.72 msec

navigation
solution

navigation
solution

15 16

t

navigation
solution

Figure 5.8: Time frame within 1 sec of µ-blaze 
omputation at 125MHz.

Thereby, the platform provides a navigation solution at approximately 16 Hz

in real-time, whi
h might be appropriate for terrestrial appli
ations. Despite this,

expanding the 
apabilities of the platform, e.g., adding new sensors, using the platform

in appli
ations with high dynami
 vehi
le movement environment that require a

navigation solution with a higher rate or 
onsidering more 
omplex sto
hasti
 models

to 
ompensate low 
ost IMUs errors, would in
rease the 
omputational 
ost of the

navigation algorithm. From the software pro�ling, it was noted that the highest


omputational burned o

urs in the matrix multipli
ation operation of the EKF,

spe
i�
ally, for the 
al
ulation of P`
k and P´

k , sin
e it involves matri
es with a size of

15 ˆ 15. Indeed, every time these matri
es are 
omputed the soft 
ore pro
essor takes

on average around 11M 
lo
k 
y
les, that is, an equivalent of 88 msec, 77.11% of the

total exe
ution time. Therefore, we de
ided to evaluate the feasibility of a

elerating

the appli
ation with a hardware multiplier using available resour
es on the FPGA.

Further details about this 
ustom 
ore will be given in Se
tion 5.4.4.
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5.4.3 Hardware Resour
es

Table 5.2 is listing the amount of resour
es required to implement the ar
hite
ture of

the GPS/INS integrated system. Most of the sli
e LUTs and sli
e registers resour
es

are attributed to the µ-blaze pro
essor (i.e., around 10000 between sli
e LUTs and sli
e

registers), it also uses 7% of the DSP blo
ks available on the FPGA. The ar
hite
ture

uses 121 Blo
ks RAM dedi
ated hardware resour
es from 148 available on the Virtex-5

XC5VLX110T. Moreover, the 
ode that is exe
uted by the mi
roblaze 
onsumes 0.1

per
ent of the external memory DDR SDRAM. The results show that there are many

hardware resour
es available in the FPGA that 
ould be used to add new sensors

into the navigation system. Furthermore, 
ustomization of the ar
hite
ture provides

information about the ne
essary hardware resour
es to a
hieve the development of a

GPS/INS integration in a system on 
hip.

Table 5.2: Devi
e and memory utilization summary.

Used p#q Available p#q Utilization p%q
Sli
e Register 8.324 69.120 12

Sli
e LUTs 7.438 69.120 10

DSP48Es 5 64 7

Blo
k RAM 121 148 81

DDR SDRAM 284 KB 256MB 0.1

5.4.4 Matrix Multipli
ation in Hardware

Matrix multipli
ation is an essential operation in many appli
ations and in this

parti
ular 
ase in the Kalman �lter implementation for the loosely-
oupled GPS/INS

integration, where depending on the IMU, the number of states might be in
reased

signi�
antly. Although there are several ar
hite
tures that perform a parallel

implementation of the matrix multipli
ation [166�168℄, they are used with small

matrix dimensions. Nowadays, there are embedded devi
es that 
an be used to

a

elerate the matrix multipli
ation, for instan
e, in [153, 169℄, an e�
ient matrix

multipli
ation is des
ribed using DSP blo
ks available on Xilinx FPGAs. Therefore,

we fo
used in the development of an ar
hite
ture using DSP blo
ks in order to 
ompute

the matrix multipli
ation operations that are typi
ally found in the Kalman �lter
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algorithm. Di�erent from those designs where two dimensional systoli
 arrays are used,

the ar
hite
ture implemented organizes the matrix elements with only one dimension

pro
essing elements to redu
e the utilization of DSP blo
ks available on the FPGA. The

hardware design presented in this se
tion is also �exible, s
alable and parametrisable

and is not restri
ted to the matrix size or the number of matri
es to be multiplied.

In this way, if we fo
us on the XC5VLX110T FPGA, whi
h is integrated in Xilinx

University Program (XUP) kit, it has 64 DSP48E sli
e that 
an be used to evaluate the


al
ulation of the matrix multipli
ation. The DSP48E sli
es support many independent

fun
tions. They in
lude multiply, multiply a

umulate (MAC), three-input add, among

others. The ar
hite
ture of these DSP48E blo
ks also supports 
as
ading multiple DSP

sli
es to form wide math fun
tions, DSP �lters, and 
omplex arithmeti
 operations

without the use of FPGA fabri
 [170℄.

DSP48E

Figure 5.9: Pro

esing element with a DSP48E blo
k.

The very simpli�ed form of the DSP48E sli
e for the Virtex-5 FPGA is shown in Fig.

5.9. It in
ludes 25ˆ18 multiplier and a three-input adder/subtra
ter/a

umulator. So

the partial output from the multiplier is 43-bit that is extended, forming 48-bit input

datapath. This number of bits 
an be in
reased 
on
atenating two DPS48E sli
es.

Matrix Multipli
ation Ar
hite
ture

The ar
hite
ture developed for matrix multipli
ation is shown in Fig. 5.10, it 
onsists

of pro
essing elements (PEs) that are built with DSP48Es blo
ks. In this designed they

are 
on�gured to perform the MAC operation. Moreover, dual port memories are used

to store the matrix elements. Ea
h memory has been tagged taking into a

ount the

matrix elements stored, e.g., memory B stores all the elements of B matrix, memory

C stores all the elements of C matrix, whereas memory A_1 stores the �rst row of

matrix A, memory A ˆ B_1 stores the �rst row of the result A ˆ B and so on.
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Counter A

Counter B

Control
Mult-in

Control
Mult-out

Counter A

Counter B

Control
Mult-in

B

A_1

A_2

C

AxB_1

AxB_2

DSP48E

Control
Mult-out

AxBxC_2

AxBxC_1

u-blaze

M1 M2

Figure 5.10: Matrix multiplier array with DSP48E blo
ks adapted to Mi
roblaze.

This designed is s
alable be
ause depending on the number of rows of matrix A,

the ar
hite
ture 
an be extended. For instan
e, adding dual port memories A_4, A_5

and A_6, we 
ould multiply matri
es with six rows. This is easily a
hieved with the

generate statement in VHDL (VHSIC Hardware Des
ription Language), whi
h allows

to repli
ate hardware. Similarly, 
onsidering that a multiplier stage is given by M1

(i.e. en
losed by the dotted line in Fig. 5.10 and it 
omputes A ˆ B only), this 
an

be repli
ated as many times as ne
essary to multiply several matri
es, whi
h is the


ase when we are 
omputing the Kalman �lter. Here we only implement two stages

that 
orrespond to A ˆ B Ñ M1 and A ˆ B ˆ C Ñ M2. The matrix multipli
ation

developed in VHDL in
ludes modules su
h as 
ontrol mult-in, 
ounter A/B and 
ontrol

mult-out, the fun
tionality of these modules is des
ribed below:

• Counter A: this module is a 
ounter that a
ts as bus address for memories A_1,

A_2, A_3, et
. Ea
h 
ounter has two inputs to maintain a value or reset the


ounter besides the 
lk signal. The input signals 
ome from the 
ontrol mult-in

module. Ea
h stage has its own 
ounter A, e.g., it works as the bus address of

memories Aˆ B_1 and Aˆ B_2 in stage M2.

• Counter B: this module has the same hardware des
ription as the previous one,

but it a
ts as the bus address for memory B. Ea
h stage has its own 
ounter B,

e.g. it works as the bus address of memory C in stage M2.

• Control mult-in: this module is in
luded in ea
h stageM and it is implemented by

a Finite State Ma
hine (FSM). This is the one that provides the 
ontrol signals to
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perform the matrix multipli
ation. One of its fun
tions is to reset the pro
essing

elements and 
ounters A/B until the multipli
ation is enabled by the start signal

pmatrix_mult “ 1q. This module also stores in a register the size of the matri
es

to be multiplied i.e., the number of elements of B and the number of 
olumns

of A, so its value 
an be modi�ed to multiply matri
es of di�erent sizes. When

it re
eives the signal to start the multipli
ation pmatrix_mult “ 1q, it sends a
signals to enable the 
ounters and at the same time to performed the a

umulation

operation in the DSP blo
ks. While 
ounters A and B are in
reasing, the DSP

blo
ks are a

umulating the multipli
ation results. So if 
ounter A rea
hes the

number of 
olumns of matrix A, a signal is sent to 
ontrol mult-out module to

store the result in A ˆ B_1 and A ˆ B_2. Subsequently, 
ounter A is reset

together with the PEs with the purpose of starting the multipli
ation of the

next 
olumn of matrix B. Then, 
ounter B is in
remented and the previous

steps mentioned are repeated. On
e 
ounter B rea
hes the equivalent value of

the number of elements of matrix B, the multipli
ation ends and 
ontrol mult-in

returns to its initial state.

• Control mult-out: this module was developed with a Finite State Ma
hine (FSM)

and its main fun
tion is to store the result of ea
h stage. It also sends the 
ontrol

signal in order to start the multipli
ation in the next stage, this is in 
ase the

matri
es to be multiplied are more than two.

With the purpose of 
larifying the fun
tionality of the modules and evaluating

the ar
hite
ture with operations that are used in the navigation algorithm, i.e.,

multipli
ations between two and three matri
es and all of them not ne
essarily

square matri
es, we adapted the generate statement in VHDL language to 
reate the

ar
hite
ture showed on the right side of Fig. 5.11, whi
h was tested 
omputing a matrix

multipli
ation of three matri
es: A2ˆ2 ˆ B2ˆ2 ˆ C2ˆ3. The matrix multipli
ation was

assessed with a test ben
h, loading into the memories matri
es like A, B and C with

the elements that are presented on the left side of Fig. 5.11.

The resultant simulation for this ar
hite
ture is depi
ted in Fig. 5.12. It begins

storing the elements of the matri
es in their respe
tive memories, in this 
ase, for
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Figure 5.11: Matrix multiplier with two stages and six DSP48E blo
ks.

illustrative purposes we used the same input address bus for ea
h memory (addressa).

Moreover, memories A_1, A_2 and A_3 are 
onne
ted to the same input data bus

(input_data1a) so both memories are loaded with 4 and 1 (i.e., the rows of matrixA).

In the same way, memories B and C are loaded with their matrix elements through the

input data bus (input_data2a). Matrix multipli
ation starts when the matrix_mult

signal is set to 1 in the 
ontrol mult-in module for one 
lo
k 
y
le (i.e., at 605 sec),

whi
h enables 
ounter A, that is 
onne
ted to the bus address of memories A_1,

A_2 Ñ address_car0s and A ˆ B_1, A ˆ B_2 Ñ address_car1s, while 
ounter B

is also enabled and is 
onne
ted to the bus address of memories B Ñ address_cbr0s
and C Ñ address_cbr1s. At the same time, it allows the PEs to start a

umulating.

This �rst step lasts 5 
lo
k 
y
les, whi
h is due to syn
hronization states and the

intermediate lat
hes that are between the memory and the DSP blo
ks (see Fig. 5.10).

On
e the data arrives in the PEs, it takes one 
lo
k 
y
le to multiply the �rst element

of matrix Br1,1s “ 1 with the �rst 
olumn of matrix A (see Fig. 5.11), whi
h is

a
hieved in parallel. Then, while both 
ounters A/B are in
reasing the DSP blo
ks are

a

umulating ea
h result until 
ounter A rea
hes the number of 
olumns of matrix A,

so at this step we have 3 additional 
lo
k 
y
les due to the two 
olumns of matrix A to

get the �rst 
olumn result of AˆB in the a

umulator. Subsequently, 
ounter B keeps

its value and the result 6 is stored in memories AˆB_1 and AˆB_2, while 
ounter

A and the DSP blo
ks of the �rst stage are reset in order to begin the multipli
ation

with the next 
olumn of matrix B, these steps last around 2 
lo
k 
y
les. Thereby,

the �rst result is produ
ed approximately after 10 
lo
ks 
y
les that is equivalent to
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100 ns as it 
an be seen in Fig. 5.12 from 605 ns until 705 ns, the result appears

in the output data bus ram_output3Br0 ¨ ¨2s that is 
onne
ted to the output port of

memories Aˆ B_1, A ˆ B_2 and A ˆ B_3.

Figure 5.12: Simulation of Matrix multiplier A ˆ B ˆ C implemented in VHDL.

After 
omputing the se
ond 
olumn of A ˆ B, stage M2 begins when 
ontrol

mult-out sets matrix_init_next signal to 1 for one 
lo
k 
y
le (i.e., at 785 sec).

The same as in the previous stages it takes around 100 ns to get the �rst 
olumn of

AˆBˆC, that 
orresponds to 38 and it is shown at 885 sec. This result 
ome outs in

the output data bus ram_output3Br3 ¨ ¨5s that is 
onne
ted to the dual port memories

Aˆ B ˆ C_1, A ˆ B ˆ C_2 and Aˆ B ˆ C_3.

Total 
omputation time

A

ording to the previous des
ription, we 
an summarize the 
omputation of the �rst


olumn for ea
h stage in three steps: the �rst step is the initialization that enables


ounters A/B, enables the DSP blo
ks and move the data from memory to the PEs,

it lasts 5 
lo
k 
y
les and we will denote as k. The se
ond step 
onsists in the MAC

operation, the number of 
y
les at this step pnmacq depends on the number of 
olumns

of the �rst fa
tor to be multiplied, e.g., for the �rst stage M1, it is equivalent to

p# columns of Aq ` 1 “ 3 
lo
k 
y
les, while for the se
ond stage M2 it is the same
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but this time is given by p# columns of pAˆBqq `1 “ 3 
lo
k 
y
les. The third step,

that we will denote as n, takes 2 
lo
k 
y
les, this is to store the result provided by the

DSP blo
ks in the output memory, reset 
ounter A and reinitialize the MAC operation

in the PEs. Thus, we 
an express the 
omputation time to get the �rst 
olumn of stage

M1 (i.e., the �rst 
olumn of matrix A ˆ B) by Eq. (5.2).

computation time1st column M1 “ pk ` nmac ` nq ˚ p1{fclkq (5.2)

where fclk is the 
lo
k frequen
y. Eq. (5.2) 
an be applied to any stage, for stages

M1 and M2 in Fig. 5.12 both of them take 100 ns . The 
omputation time of the

next 
olumns for ea
h stage is smaller, this is be
ause only steps 2 and 3 are repeated.

This 
an be seen more 
learly in Fig. 5.12, where the result of the se
ond 
olumn of

A ˆ B ˆ C 
omes out at 935 ns, that is, after nmac ` n “ 50 ns of getting the �rst


olumn of A ˆ B ˆ C. The 
omputation time for ea
h 
olumn at stage M1 
an be

obtained with

computation time2nd column M1 “ pk ` pnmac ` nq ˚ 2q ˚ p1{fclkq (5.3)

computation time3rd column M1 “ pk ` pnmac ` nq ˚ 3q ˚ p1{fclkq
.

.

.

computation timeN column M1 “ pk ` pnmac ` nq ˚Nq ˚ p1{fclkq

where N is the number of 
olumns of the se
ond fa
tor to be multiplied, e.g., for the

�rst stage M1 shown in Fig. 5.11, the se
ond fa
tor would be matrix Bq while for the
se
ond stage M2 would be matrix C. Therefore, we 
an write the total 
omputation

time for 
omputing the result at one stage M by Eq. (5.4).

computation timeM “ pk ` pnmac ` nq ˚ Nq ˚ p1{fclkq (5.4)

A

ording to this equation the number of 
y
les to perform a matrix multipli
ation

of two square matri
es 2ˆ2 after setting matrix_mult to 1 would be equal to 15 
lo
k


y
les. For the example given in Fig. 5.12, we 
an also applied Eq. 5.4 in stage M2,
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sin
e it begins at 785 ns we obtained the 
omplete result of AˆBˆC at 985 ns, that

is after 200 ns:

computation timeM2 “ p5 ` p3 ` 2q ˚ 3q ˚ p10 nsq “ 200 ns (5.5)

Now 
onsidering a matrix multipli
ation that 
an be found in the KF algorithm,

for instan
e, two square matri
es 21 ˆ 21, the number of 
lo
k 
y
les to perform this

operation after setting matrix_mult to 1 would be equal to 509. Using a 
lo
k

frequen
y of 100 MHz it would take more than a few 5.1 µsec to produ
e the

resultant matrix taking into a

ount the write/read of the memories, whi
h 
ould

improve signi�
antly the 
omputation time of the matrix multipli
ation.

Even though this module was developed in order to study the possibility of

a

elerating the navigation algorithm using the FPGA hardware resour
es, it is

re
ommended to 
on
atenate DSP blo
ks to obtain a double pre
ision before 
onne
ting

it to the µ-blaze pro
essor. Note that this module 
ould be adapted to the µ-blaze

pro
essor using the Fast Simple Link (FSL) whi
h would be an 
ustom IP tailored as

it 
an be seen in the ar
hite
ture presented in Fig. 5.10. The ar
hite
ture des
ribed

in this se
tion is s
alable sin
e several matri
es 
an be multiplied by in
reasing the

number of stagesM1, M2, M3, et
. Two matri
es 
an be multiplied in an ar
hite
ture

with three stages, this is due to the �exibility of the hardware implementation that 
an

be enabled to read intermediate values. Moreover, the size of ea
h matrix is loaded in

a register, whi
h makes the ar
hite
ture parametrisable. Thus, an ar
hite
ture with

one stage an 20 PEs 
an be used to perform matrix multipli
ations with a size up to

20 ˆ 20 as well as matrix multipli
ations with a size of 2 ˆ 2.

Hardware Resour
es for the Matrix Multipli
ation

The utilization of hardware resour
es for two matrix multipli
ation ar
hite
tures is

des
ribed in Table 5.3. The used of the FPGA resour
es is very small, a
tually, is less

than 3% between sli
e register and sli
e LUTs 
onsidering both designs. The number

of dedi
ated DSP blo
ks is 3 for AˆB and 6 for AˆBˆC, whi
h would be in
luding

a se
ond stage M2 as in the ar
hite
ture presented in Fig. 5.11. It also shows the

141



5 � Ar
hite
ture Based on FPGA for GPS/INS Integration

maximum frequen
y for both hardware implementations.

Table 5.3: Matrix multiply resour
es utilization summary.

Sli
e Register Sli
e LUTs DSP48Es

Max.

Freq.

p#q p%q p#q p%q p#q p%q pMhzq
A ˆ B 214 0.3 174 0.25 3 4.69 271.08

A ˆB ˆ C 420 0.61 216 0.31 6 9.38 221.24

5.5 Testing the Navigation Platform Based on FPGA

5.5.1 Mobile Robot

The navigation system implemented on the FPGA was mounted on a mobile robot.

The robot was in-house 
onstru
ted using a 
hassis from Dagu Ele
troni
s that allows

to adapt di�erent sensors and additional hardware with a maximum payload of 5 kg.

It has 6-wheels with independent suspension for ea
h of the wheels and it is designed to

move around rough terrain and steep in
lines making this 
hassis suitable to perform

tasks in di�erent environments. To get the 
hassis moving we used a dual serial motor


ontroller qik 2s12v10 from Pololu, when it is powered at 7.2 v ea
h motor 
ould

have a stall torque of roughly 11 kg ´ cm [171℄. We adapted the 
hassis with seven

infrared sensors, the ATmega128 mi
ro
ontroller, the u-blox LEA-6T re
eiver, the

3DM-GX3 IMU, the Atomi
 IMU and two pa
ks of batteries of 7.2V with 4200 mAh

and 5000 mAh to power the Xilinx FPGA evaluation board and the motor 
ontroller,

respe
tively. The experimental setup of the sensors and the FPGA platform on the

robot 
an be seen in Fig. 5.13. The robot was designed to operate in two modes:

autonomous and remote 
ontrol.

In this appli
ation, the FPGA is dedi
ated to 
olle
t data from the GPS and Inertial

Measurement Units, the raw measurements are stored in the �ash 
ompa
t memory.

The Android devi
e sends 
ommands to 
ontrol the robot movements (i.e., in remote


ontrol mode). The messages are sent to a mi
ro
ontroller whi
h is responsible for

reading, parsing and sending the ne
essary signals to 
ontrol the robot motors.
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(a) (b)

Figure 5.13: Terrestrial robot.

The traje
tories a
quired with the mobile robot were performed around the 
ampus

of the Universitat Autònoma de Bar
elona. Fig. 5.14(a) shows one of the robot tests,

whi
h has a duration of 275 sec. The navigation system was not exposed to any GPS

signal blo
kage in the area where the robot test was 
arried out. The information

obtained during this 
ampaign was later used to veri�ed the loosely-
oupled algorithm

developed in Matlab and the one implemented on the FPGA.
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Figure 5.14: (a) Terrestrial robot traje
tory; (b) Matlab and FPGA solution for the

two MEMS based IMUs.

Figure 5.14(b) shows the position solution 
al
ulated with the platform based on

FPGA and the position solution obtained with Matlab. In this 
ase, the referen
e is

the GPS/INS integration in Matlab that was fed with the measurements provided by

the 3DM-GX3-IMU, using a loosely-
oupled with 15 states as it is des
ribed in Eq.

(5.1).
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Figure 5.15: Horizontal position error for FPGA solutions.

The position error in the horizontal plane between the position solution obtained in

Matlab and the ones 
al
ulated in mi
roblaze with the the two MEMS based IMUs is

shown in Fig. 5.15. As it was expe
ted, the Atomi
 IMU has a larger error with respe
t

to the 3DM-GX3-25 IMU, this error is on average 0.60 m whereas for the 3DM-GX3-25

IMU is around 0.15 m.

Table 5.4: A

ura
y 
omparison between µ-blaze and Matlab 
omputation.

IMU

PN PE PD VN VE VD Roll P itch Y aw

pmq pmq pmq pm{sq pm{sq pm{sq pdegq pdegq pdegq

Atomi


(RMSE)

0.53 0.42 1.69 0.34 0.42 0.35 2.61 1.46 0.83

3DM-

GX3

(RMSE)

0.20 0.08 0.40 0.12 0.07 0.06 1.43 0.66 0.48

Table 5.4 shows the 
omputation a

ura
y in terms of the root-mean-square error

(RMSE) between the navigation solution 
omputed with the algorithm implemented on

µ-blaze and the one developed in Matlab. The di�eren
e between the FPGA solutions

for the 3DM-GX3 and the one 
omputed in Matlab might be due to the fa
t that

mi
roblaze uses a single-pre
ision �oating point FPU, whi
h 
an be improved by using

the software libraries that emulate double-pre
ision �oating point.
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5.5.2 Flight Simulator

The performan
e of the navigation system implemented on the XUPV5 development

kit was also evaluated 
olle
ting navigation data from several �ights using a �ight

simulator framework 
alled Flightgear (FG). It uses JSBsim, that is the default Flight

Dynami
 Model (FDM), whi
h 
an be used to model and simulate a small autonomous

Unmanned Aerial vehi
le (UAV). This software is mainly developed in C++, both of

them (FG, FDM) are open sour
e for used in resear
h or a
ademi
 environments whi
h


an model the �ight dynami
 of several air
rafts [172℄. The data 
oming from the

air
raft, su
h as a

eleration, angular velo
ity, position and velo
ity was obtained via

the generi
 proto
ol of FlightGear (FG), this proto
ol allowed us to store the data from

the �ight simulator in a plain text �le. In this 
ase, the Cessna C172P air
raft was used

sin
e it is easy to pilot and provides enough data to test the platform. The sampling

frequen
y for the inertial sensors was set at 100 Hz. After getting di�erent traje
tories,

the plain text �le was read and the inertial sensor measurements were perturbed with

a bias-drift error, i.e., ase “ WNpNq ` 1st GMpBq and gse “ WNpNq ` 1st GMpBq
for a

elerometers and gyros, respe
tively. It in
ludes a white noise and a �i
ker noise

modelled with a �rst order Gauss-Markov pro
ess. The parameters that represent this

sto
hasti
 model were set taking into a

ount the Allan varian
e analysis that was

made on the real devi
es (see Se
tion 4.4). Subsequently, the noisy measurements were

downloaded into the external memory (DDR SDRAM) of XUPV5 board to assess the

performan
e of the platform. It is noteworthy that Flightgear is not an ideal data set,

sin
e the simulated GPS position is not 100% a

urate, in fa
t, an error fun
tion is

being under develop to improve its a

ura
y.

On
e the data 
olle
ted is stored into the DDR SDRAM, the navigation algorithm

implemented on the FPGA is exe
uted until ea
h data is pro
essed. Then, the result

of the loosely-
oupled integration is sent by means of the UART interfa
e to a PC,

where it is analysed.

One of the traje
tories that was performed with Flightgear is depi
ted in Google

Earth (see Fig. 5.16(a)). This �ight was a
quired around Bar
elona with a total time

�ight of 767 sec. With the purpose of testing the navigation platform when there are

absen
es of the GPS signal, three GPS outages were introdu
ed intentionally as it is
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Figure 5.16: (a) Air
raft traje
tory in Google Earth; (b) Air
raft traje
tory with three

arti�
ial GPS outages.

depi
ted in Fig. 5.16(b).

The 
ode implemented in the mi
roblaze pro
essor was modi�ed to simulate GPS

signal blo
kages at di�erent time instants. They were introdu
ed in the traje
tory at

160, 500 and 650 seconds with a duration of 60, 60 and 30 seconds, respe
tively.
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Figure 5.17: Referen
e and FPGA solution traje
tory in 3D plot with three outages.

The 3D position of the air
raft in the lo
al navigation frame (NED) is shown in

Fig. 5.17, the blue line represents the estimated position provided by the embedded

system and the green line is the referen
e traje
tory provided by GPS/INS integration

of the Cessna C172P airplane in Matlab.

Figure 5.18 shows the position error in the horizontal plane (i.e., the square root

of the sum of the square error between north and east position) and the altitude error

for the di�erent outages that were introdu
ed intentionally. The outages were inserted
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Figure 5.18: (a) Maximum horizontal position error during GPS outages; (b)

Maximum altitude position error during GPS outages.


onsidering di�erent dynami
s of the air
raft and the average speed for ea
h of them

is listed in Table 5.5. It also presents the maximum error and the mean error for the

µ-blaze solution. From this information, it 
an be noti
ed that the largest error o

urs

in the GPS outage 2, whi
h is performed while the air
raft makes a turn towards

south-east with an average speed of 307.64 km{h during 60 sec. This GPS outage

has a maximum horizontal error of 91.12 m with the FPGA solution. After 2.5 min

there is the third GPS outage with a duration of 30 sec, whi
h has an average speed

of 251.71 km{h and a maximum horizontal error of 17.85 m.

Table 5.5: Altitude and horizontal plane position error during GPS outages.

Outage

p#q
Dur.

psecq
Av.

Speed

Alt. Error Hor. Error

mean max mean max

pkm{hq pmq pmq pmq pmq
1 60 90.44 4.69 11 17.24 50.99

2 60 307.64 11.72 27.77 43.90 91.12

3 30 251.71 2.50 5.62 7.32 17.85

Despite the fa
t that we were fo
used on an embedded system for terrestrial

appli
ations, the �ight simulator was used with the propose of easily a
quire traje
tories

to debug and test the navigation platform during the GPS blo
kages. In addition, it

also shows that the navigation platform might not be limited to terrestrial appli
ations

only.
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5.5.3 Land vehi
le

The development board was mounted in a land vehi
le and the experimental setup

is depi
ted in Fig. 5.19. It shows the XUPV5 board, a voltage regulator, the GPS

re
eiver u-blox LEA-6T and the MEMS based IMUs.

During the 
ampaigns the navigation platform was powered through the 
ar battery,

using the regulator, that was 
on�gured to provide an output voltage of 5 v to feed

the board. The navigation instruments are not externally powered sin
e all of them

are 
onne
ted to the XUPV5 board. It supplies 5 v output pins for the IMUs and 5 v

through the USB port for the GPS re
eiver.

(a) (b)

Figure 5.19: Land vehi
le equipment.

The results obtained for the di�erent traje
tories 
olle
ted with the FPGA platform

mounted in the land vehi
le are analysed in the following 
hapter.
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Chapter 6

Results and Dis
ussion

This 
hapter it is divided in two parts, land vehi
le test and land vehi
le test using

FPGA platform. The �rst part shows the performan
e of the sto
hasti
 models that

were analysed in Se
tion 4.3. The data sets were obtained in the 
ity of Turin, Italy,

during a stage that was held at the Navsas resear
h group of the Istituto Superiore

Mario Boella. For those results the 3DM-GX3-25 IMU available in the same group was

under test. The se
ond part of this 
hapter presents the performan
e of the sto
hasti


models obtained with the NLF des
ribed in Se
tion 4.5.3. The datasets for the vehi
le

test were 
olle
ted with the navigation platform based on FPGA explained in Chapter

5, they were 
arried out around the 
ampus of the Universitat Autònoma de Bar
elona

in Spain. During these 
ampaigns the two MEMS IMUs available in the laboratory of

Mi
roele
troni
s and Ele
troni
s Systems (see Table 3.2) were under test, ex
ept for

the temperature test.

6.1 Land Vehi
le Test

As explained in Se
tion 2.5, we use loosely-
oupled integration with feed-ba
k, whi
h


orre
ts the INS error through a 
lose-loop. The INS error dynami
s equations are

built in the KF, having initially nine states for position, velo
ity and attitude error

plus additional states to estimate the bias of ea
h sensor of the IMU.

The EKF was adapted for ea
h designed bias model in order to evaluate the
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Table 6.1: Number of states in the loosely-
oupled integration ar
hite
ture for di�erent

error models.

15 States 18 States 27 States

WNpNq

WNpNq `

AVzPSD ase ` GMpBq

GMpBq `

RW pKq

WNpNq WNpNq

AVzPSD gse ` `

GMpBq GMpBq

AR asezgse 1
storderAR 3

rdorderAR

a

ura
y of the sto
hasti
 pro
esses that were obtained from the previous analysis.

Firstly, the two models extra
ted from AVzPSD were implemented, so the ve
tor error

states of the Extended Kalman Filter was augmented with 6 and 9 states, respe
tively.

The latter error model was 
ombined with wavelet de-noising in order to evaluate

the enhan
ement a

ura
y when Allan varian
e parameters and wavelet de-noising

te
hniques are blended together. Finally, two autoregressive models were assessed

augmenting EKF with 6 and 18 states. Table 6.1 summarizes the sto
hasti
 models for

the 3DM-GX3 sensors and the number of states that are required in the loosely-
oupled

GPS/INS integration.

The EKF for the loosely-
oupled integration has 15 states for two models: one is the

model obtained with AVzPSD where the bias instability (B) of both a

elerometers and

gyro are modelled with a �rst-order Gauss-Markov pro
ess (GM) plus velo
ityzangle
random walk (N) that is modelled as white noise (WN) for a

elerometers and gyros,

respe
tively . The se
ond model with 15 states is a �rst-order AR model. Although it

is not depi
ted in Table 6.1, the AV model that was mixtured with wavelet de-noising


orresponds to the 
ase of EKF with 18 states. From here on, the abbreviations 15AR,

27AR, 15AV, 18AV and 18AVWD may be used when referring to the 15 states AR,

27 states AR, 15 states AV, 18 states AV and 18 states AV with wavelet de-noising

models, respe
tively.

In order to assess the performan
e of the inertial sensor error models, a 
ar was

equipped with the 3DM-GX3-25 MEMS grade IMU, whi
h was integrated with the
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Sat-Surf platform with u-blox LEA-5X re
eiver [122℄. The experimental setup that

was installed inside the 
ar is provided in Fig. 6.1. This platform with the navigation

instruments was mounted in the 
ar rear, in
luding the power supply that was delivered

by one battery of 12 volts d
.

Figure 6.1: Experimental setup mounted inside the test vehi
le.

Two data sets were 
olle
ted in urban roadways inside the 
ity of Turin, Italy.

After the data 
olle
tion 
ampaign, the loosely-
oupled integration ar
hite
ture with

the sto
hasti
 error models were evaluated. Although there were no GPS outages

during the 
ampaigns, we introdu
ed intentionally several GPS outages o� line, lasting

30 sec and 60 sec. During an outage the system works in predi
tion mode only and the

a

ura
y of the loosely-
oupled's performan
e relies entirely on the INS error model

and in parti
ular on the INS bias model. Therefore, it is straightforward to 
onsider

di�erent outage lengths and di�erent vehi
le's dynami
 
onditions in order to have

a 
learer answer on the a

ura
y of the bias models under investigation. It is really

worth mentioning that sin
e this results are based on the loosely-
oupled strategy, the

simulated outages have 
omplete GPS signal blo
kages. The GPS/INS solution without

any outages was used as a referen
e to 
ompare the performan
e of the di�erent error

models during the simulated GPS signal blo
kages.

6.1.1 First Traje
tory Turin

The �rst traje
tory that was used to asses the di�erent sensor error models is shown

in Google Earth map (Fig. 6.10(a)). This road-test is part of the whole traje
tory

and lasts near 17.3 min, we have a
quired the data from the IMU with a sampling
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frequen
y of 100Hz. The GPS signal blo
kages that were intentionally introdu
ed

during postpro
essing are depi
ted in Fig. 6.10(b) (shown as blue lines overlaid on

the red traje
tory), in whi
h there are three outages with a duration of 30, 60 and

30 seconds for outage 1, 2 and 3, respe
tively. These arti�
ial GPS outages in
ludes

straight and turns portions of the traje
tory in a urban roadway, that 
omprise typi
al


onditions of a real GPS signal degradation inside a 
ity.
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Figure 6.2: (a) First traje
tory test in Google Earth; b) First traje
tory test in Matlab

with the GPS outages that were introdu
ed intentionally.

The easting and northing position for two of the three outages (outage 1 and outage

2) are presented in Figs. 6.3(a) and 6.4(a), while the 
orresponding horizontal position

error of these two outages are shown in Figs. 6.3(b) and 6.4(b). Table 6.2 summarizes

the 
omputation of the maximum and the mean horizontal position error for the error

models solutions during the outages of the �rst traje
tory. This table also shows

the duration of ea
h outage and the average speed during the 3 outages that were

introdu
ed in this road-test.

During the �rst GPS outage (Fig. 6.3(a)) there is a turn out of approximately

90 deg, this is a 
hallenging segment of the traje
tory to evaluate the bias models

sin
e there is an abrupt 
hange in heading angle. From the 
orrespondent horizontal

position error (Fig. 6.3(b)), it 
an be noti
ed that the 18AVWD model produ
es the

minimum horizontal error, less than 15 m for almost the whole GPS outage. The mean

horizontal error for the 18AVWD model is 12.56 m, while the same error parameter for

the 27AR model is 19.62 m. Regarding the 15AV and 18AV states models based on
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Figure 6.3: (a) Horizontal position during GPS outage 1; (b) Horizontal position error

during GPS outage 1.

Allan varian
e parameters, it 
an be seen that they are slightly similar sin
e the only

di�eren
e is the a

eleration random walk (RW pKq, see Table 6.1) that is added in the

bias model of the a

elerometers. On the other hand, 15AR model presents the worse

result having a maximum horizontal error of 38.72 m and a mean horizontal error of

20.74 m.

Figure 6.4(a) shows the northing easting plane for the �ve 
ompared solutions

during outage 2. A

ording to Table 6.2 this outage lasts 60 sec and the average speed

is about 42.31 km{h. This outage introdu
ed in a straight portion of the traje
tory

shows that the 18AVWD model is better than the AR models and the other sto
hasti


error models based on AV parameters.

Table 6.2: Maximum and mean horizontal position error during GPS outages for

traje
tory 1. 15AR, 15 state AR; 27AR, 27 state AR; 15AV, 15 state AV;

18AV, 18 state AV; 18AVWD, 18 state AV with wavelet de-noising.

Out.

p#q
Dur.

psecq

Av.

spd.

pkm{hq

Sto
hasti
 error model

15AV 18AV 18AVWD 15AR 27AR

mean

pmq
max

pmq
mean

pmq
max

pmq
mean

(m)

max

pmq
mean

pmq
max

pmq
mean

pmq
max

pmq

1 30 23.58 17.11 21.84 16.82 21.60 12.56 18.42 20.74 38.72 19.62 23.94

2 60 42.31 14.41 44.84 14.10 38.04 13.16 34.81 42.82 122.07 29.70 71.49

3 30 47.60 13.34 49.97 11.86 40.41 11.80 39.69 17.48 64.26 19.02 70.21
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Figure 6.4: (a) Horizontal position during GPS outage 2; (b) Horizontal position error

during GPS outage 2.

6.1.2 Se
ond Traje
tory Turin

To further validate the performan
e of the di�erent sto
hasti
 error models, a se
ond

road-test traje
tory was 
olle
ted in some urban roadways in the 
ity of Turin, there

is also a part of the path on a highway in the outskirts of the 
ity. The road-test

traje
tory is 15.05 min long and it is depi
ted in Fig. 6.5(b).
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Figure 6.5: (a) Se
ond traje
tory test in Google Earth; b) Se
ond traje
tory test in

Matlab with the GPS outages that were introdu
ed intentionally.

Figs. 6.6(a) and 6.7(a) show two of the four GPS outages performed during the

se
ond road-test and their respe
tive horizontal errors 
an be seen in Figs. 6.6(b) and

6.7(b). The same as in the previous traje
tory, Table 6.3 summarizes the mean and

the maximum error for ea
h error model analysed, as well as the average speed and
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the duration of ea
h outage that was introdu
ed o�-line.

Regarding the GPS outage 5 (Fig. 6.6(a)), it in
ludes a turn out with an average

speed of 52.25 km{h. A

ording to the 
orrespondent horizontal error (Fig. 6.6(b)),

it 
an be observed that the 
orre
tion that is a
hieved by the 18AVWD error model

is bigger with respe
t to the one applied through the other methods and it has a

maximum horizontal and mean position error of 53.61 m and 36.50 m, respe
tively,

during 30 sec of absen
e of the GPS signal. As far as the GPS outage 7 is 
on
erned,

it has been simulated along a straight portion of the path in
luding a slight 
urve at

the end of the outage (Fig. 6.7(a)). This GPS blo
kage lasts 60 sec having an average

speed of the vehi
le of 112.42 km{h. In this GPS outage it was intended to evaluate the

sto
hasti
 error models under high speed 
onditions and the same as in the previous

GPS blo
kages, the 18AVWD performed better than the other models.
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Figure 6.6: (a) Horizontal position during GPS outage 5; (b) Horizontal position error

during GPS outage 5.

Table 6.3: Maximum and mean horizontal position error during GPS outages for

traje
tory 2.

Out.

p#q
Dur.

psecq

Av.

spd.

pkm{hq

Sto
hasti
 error model

15AV 18AV 18AVWD 15AR 27AR

mean

pmq
max

pmq
mean

pmq
max

pmq
mean

pmq
max

pmq
mean

pmq
max

pmq
mean

pmq
max

pmq
4 30 33.60 10.85 22.70 10.44 21.13 7.29 10.81 6.72 14.72 9.99 29.26

5 30 52.25 44.57 64.46 44.36 64.17 36.50 53.61 44.34 65.28 44.43 64.65

6 30 20.44 2.74 6.19 2.71 5.91 2.25 5.32 4.12 13.17 4.18 13.41

7 60 112.42 39.40 92.51 40.85 96.32 8.74 17.20 49.62 181.38 32.27 82.74
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Figure 6.7: (a) Horizontal position during GPS outage 7; (b) Horizontal position error

during GPS outage 7.

In order to summarize the maximum and mean position error for both traje
tories

and ea
h GPS outage performed, Figs. 6.8(a) and 6.8(b) show a 
omparison between

the error model solutions for the seven GPS outages introdu
ed during the test


ampaigns made in the 
ity of Turin.

Overall, the model based on AV and wavelet de-noising is the one that has provided

the best a

ura
y in most of the 
ases under investigation. For instan
e, taking into

a

ount the results that are depi
ted in Fig. 6.8(a), the 
ombination of the Allan

varian
e parameters and wavelet de-nosing model (18AVWD) has got an improvement

in terms of horizontal positioning error of 50.95% over the the �rst-order AR model

(15AR) maximum horizontal position error. Furthermore, the 18AVWD provides an

improvement of 48.20% over the 3rd order AR model (27AR). Regarding the models

obtained from AV, the model 18AVWD has shown an improvement of 31.89% and

26.06% over the 15AV and 18AV, respe
tively. Considering the mean error in horizontal

positioning (Fig. 6.8(b)), the blending of the Allan varian
e parameters and wavelet

de-nosing (18AVWD) has allowed to get an improvement of 39.75% over the the

�rst-order AR model (15AR) and it has also got a better a

ura
y of almost 41.94%

with respe
t to the 3rd order AR model (27AR). In the same way the 18AVWD has

provided an improvement of 27.67% and 25.13% over the 15AV and 18AV, respe
tively.

We 
an also 
learly appre
iate how the 18AV shows better results 
ompared with

the 15AV in most situations where the GPS signal is not available (see Figs. 6.8(a)
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Figure 6.8: (a) Maximum horizontal position error for whole the GPS outages

introdu
ed in both traje
tories; (b) Mean horizontal position error for

whole the GPS outages introdu
ed in both traje
tories.

and 6.8(b)) sin
e it o�ers a more adequate representation of bias-drift a

ording to

the noise terms identi�ed with AV and PSD (i.e., the addition of the noise sour
e

asso
iated to the a

eleration random walk (K) for ea
h of the a

elerometers - 18AV

). Moreover, the performan
e of the AR models are lower than the ones obtained with

AV, the explanation of this fa
t is 
ommented next.

As far as the AR te
hnique is 
on
erned, the main obje
tive of using AR models and

wavelet de-noising is to remove the un
orrelated noise of the inertial sensors as mu
h as

possible. In fa
t, if we are able to remove the main quantity of the un
orrelated noise we


an then obtain a smooth auto
orrelations 
urve and the noise 
an be modeled with an

higher order Gauss-Markov pro
ess (e.g., third order AR model) with a 
onsequently

bene�t on the a

ura
y and performan
e of the GPS/INS system. Unfortunately, this

is not the 
ase of the low 
ost inertial sensors (MEMS IMUs) we have used sin
e

as it is shown in Se
tion 4.3.1, the auto
orrelation fun
tion of some of the inertial

sensors after pro
essing the data with the de-noising te
hnique does not have a smooth

auto
orrelation 
urve, whi
h makes the estimation of the parameters less a

urate


ompared to the parameters obtained with AV (i.e., 15AV and 18AV). Another option

to get a more a

urate estimation of the bias-drift 
an be a
hieved by using higher

order AR models (for instan
e in referen
e [19℄ the authors use an AR model with 120

states). In this 
ase, we adopted a tradeo� between 
omplexity and a

ura
y and we

sele
ted 27 states in the AR modeling.
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At last, the mixture between AV and wavelet de-noising has shown mu
h better

enhan
ement a

ura
y of the INS than the others methods presented in this dissertation


ompensating the short-term and long-term noises that a�e
t the inertial sensors.

6.2 Land Vehi
le Test Using FPGA Platform for

A
quisition

To evaluate the sto
hasti
 error models obtained with the NLF and 
ompare with

a 
onventional method, we got the AV models for ea
h IMU following the pro
edure

des
ribed in Se
tion 4.3.4. Thus, the EKF �lter was augmented with the 
orrespondent

model for ea
h Inertial Measurement Unit. This is worth mentioning that the raw

measurements read from the inertial sensors were not �ltered with wavelet de-noising

sin
e the idea was to evaluate the bias-drift 
ompensation with NLF models only.

Table 6.4: Sto
hasti
 error models for ea
h IMU adapted to the loosely-
oupled

GPS/INS integration.

Atomi
 IMU 3DM-GX3 IMU

WNpNq

WNpNq `

AV ase ` GMpBq

GMpBq `

RW pKq

WNpNq WNpNq

AV gse ` `

GMpBq GMpBq

WNpBq WNpBq

` `

NLF ase GMpBq GMpBq

` `

GMpBq GMpBq

WNpBq WNpBq

` `

GMpBq GMpBq

NLF gse ` `

GMpBq GMpBq

` `

GMpBq GMpBq
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The sto
hasti
 error for the a

elerometers ase and gyros gse of the Atomi
 IMU were

modeled by a white noise and a �rst order GM pro
ess and the parameters are taken

from AV. Moreover, the error model identi�ed with the NLF for the a

elerometers

of the Atomi
 IMU is 
omposed by a white noise plus two �rst order GM pro
esses;

whereas the sto
hasti
 error for the gyros is modelled as a sum of a white noise and

three �rst order GM pro
esses. Table 6.4 summarizes the sto
hasti
 error models for

the 3DM-GX3-25 and for the Atomi
 using AV and NLF. In order to assess the error

models, they are adapted into the loosely-
oupled GPS/INS integration.

To validate the performan
e of the di�erent sto
hasti
 error models, the

experimental setup using the navigation platform based on FPGA (see Fig. 5.19) was

mounted in the 
ar rear, as shows Fig. 6.9. During the vehi
le tests the data a
quisition

was performed on the FPGA for the 3DM-GX3-25 and the GPS re
eiver u-blox LEA-6T

through the UART peripherals, whereas the data a
quisition of the Atomi
 IMU and

the same GPS re
eiver (i.e., using the available USB port) was performed from a PC

using a software developed in Visual Basi
. Several traje
tories were 
olle
ted between

Mar
h and July 2013 near the 
ampus of the Universitat Autonòma de Bar
elona

(UAB) using the navigation platform. During the vehi
le tests di�erent roads and

driving 
onditions were 
onsidered in order to evaluate the error models under real

world situations, so two sample traje
tories were sele
ted and the behaviour of the

models was put to the test as it is presented below.

Figure 6.9: Land vehi
le experimental setup.
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6.2.1 First Traje
tory Bar
elona

At the time this road-test was performed the temperature measurements were not

available in the platform. Therefore, for this traje
tory the parameters that were used

in ea
h error model were the ones estimated at 20 ˝C, whi
h was 
onsidered as a

temperature 
lose to the real temperature during the kinemati
 test.

Figure 6.10(a) shows one of the vehi
le test, whi
h in
ludes not only the highway

but also the urban area near the UAB 
ampus. The traje
tory starts at the UAB

and ends in Sabadell, it has a duration of nearly 40.85 min of 
ontinuous navigation.

The data 
olle
ted from the MEMS based IMUs and the GPS re
eiver is stored in a

PC and in the CF memory available on the FPGA, the platform runs the algorithm

that was explained in Se
tion 5.4.2. After the 
ampaign, the raw measurements are

pro
essed o� line with the loosely-
oupled algorithm developed in Matlab, then we

used the GPS/INS solution as a referen
e to 
ompare the performan
e of the di�erent

error models during GPS outages.
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Figure 6.10: (a) First traje
tory test in Google Earth BCN; b) First traje
tory test in

Matlab with the GPS outages that were introdu
ed intentionally.

Sin
e during this test only one natural GPS blo
kage o

urred, we intentionally

inserted o� line three GPS outages, ea
h of them lasting 30 sec. Fig. 6.10(b) shows

the traje
tory with the simulated outages, where the natural GPS outage 
orresponds

to outage 3. Although this is a short natural GPS blo
kage (ă 15 sec), we have

extended its duration to 60 sec in order to examine the system performan
e when

there is a reliable referen
e, i.e., before and after the outage when the GPS is available.
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Figure 6.11: (a) Horizontal position during GPS outage 3; (b) Horizontal position

error during GPS outage 3.

The easting and northing position for GPS outage 3 is presented in Fig. 6.11(a) and

the horizontal position error is depi
ted in Fig. 6.11(b). This GPS outage is present in

a straight portion of the path, where the vehi
le has an average speed of 40.24 km{h.
The minimum horizontal position error is obtained with the NLF error model of the

3DM-GX3-25 IMU (3dm with NLF), whi
h is less than 22 m, 
ompared with the error

model based on AV (3dm with AV) that is 147.63 m. Similarly, the NLF of the Atomi


IMU (Atomi
 with NLF) has a superior performan
e to the one obtained with AV

(Atomi
 with AV), having a di�eren
e between them of 482.65 m in the maximum

horizontal position error. Table 6.5 summarizes the 
omputation of the maximum and

mean horizontally position error for ea
h model during di�erent GPS outages. Here

the abbreviations AT-AV, AT-NLF, 3DM-AV and 3DM-NLF refer to Atomi
 IMU with

AV, Atomi
 IMU with NLF, 3DM-GX3 IMU with AV and 3DM-GX3 IMU with NLF,

respe
tively.

The natural GPS outage 
an be seen in Fig. 6.11(a), the fa
t is seen at

p4.2484˚105,4.5994˚106q m easting and northing position 
oordinates. In this segment

of the traje
tory the referen
e (in red) is not reliable be
ause the integrated solution

trust in the GPS position. In other words, in this portion of the traje
tory the GPS/INS

integration (in red) relies on the information provided by the GPS, so the navigation

solution is misled by the GPS. During the GPS outage the 3dm with NLF model does

not follow the referen
e traje
tory and 
ontinues following the true path, whi
h is an

161



6 � Results and Dis
ussion

indi
ation that it properly 
orre
ts the bias-drift error. Sin
e we are evaluating the

error models we 
an see their behaviour after the GPS outage has �nished. It happens

nearly 1427 sec where the error of the 3DM-NLF is around 11.08 m (see Fig. 6.11(b)).

In a real situation, the degrade GPS signal would be dete
ted and the solution would

rely in the EKF predi
tion stage that is built with the sto
hasti
 models, in 
ase of the

GPS outage 3 with the 3DM-GX3-25 IMU, the solution provided by the NLF would

follow the green line.

Table 6.5: Maximum and mean horizontal position error during GPS outages for

traje
tory 1 BCN. AT-AV, Atomi
 IMU with AV; AT-NLF, Atomi
 IMU

with NLF; 3DM-AV, 3DM-GX3 IMU with AV; 3DM-NLF, 3DM-GX3 IMU

with NLF.

Out.

p#q
Dur.

psecq

Av.

spd.

pkm{hq

Sto
hasti
 error model

AT-AV AT-NLF 3DM-AV 3DM-NLF

mean

pmq
max

pmq
mean

pmq
max

pmq
mean

(m)

max

pmq
mean

pmq
max

pmq

1 30 45.26 138.61 453.52 69.42 219.75 22.84 72.33 7.132 18.05

2 30 32.91 30.88 69.08 24.27 57.30 15.48 43.19 5.69 13.70

3 60 40.24 251.58 883.19 128.28 400.54 39.92 147.63 6.89 21.43

4 30 20.59 99.76 346.37 44.77 161.70 8.53 19.66 6.46 11.60

Fig. 6.12(a) and Fig. 6.12(b), 
ompare the maximum and mean position error in

the horizontal plane, respe
tively, for ea
h error model as well as for ea
h MEMS based

IMU during the four GPS outages introdu
ed. Clearly the overall system performan
e

bene�ted from the NLF sto
hasti
 models, that is, when the INS is in stand-alone mode

the NLF sto
hasti
 model of the 3DM-GX3 provides a higher performan
e than the

error models obtained from AV te
hnique, and it also o

urs for the Atomi
 IMU. The

average per
entage improvement taking into a

ount the four GPS signal blo
kages for

the vehi
le maximum horizontal position error is 67.44% when the NLF is used in the

3DM-GX3-25 IMU (3DM-NLF) 
ompared with the model given by AV (3DM-AV). For

the Atomi
 IMU the average per
entage of improvement by 
omparing the AT-NLF

and AT-AV for the maximum horizontal position error is 44.14%. The a

ura
y

enhan
ement provided by the NLF models is more signi�
ant when the absen
e of the

GPS signal lasts 60 sec (i.e., for GPS outage 3, 85.49% and 54.65% for the 3DM-GX3-25

and the Atomi
 MEMS IMUs, respe
tively), it might be due to the fa
t that the NLF

error models 
an 
ompensate more noise 
omponents that the AV models.
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Figure 6.12: (a)Maximum horizontal position error for the GPS outages introdu
ed in

traje
tory 1 BCN; (b)Mean horizontal position error for the GPS outages

introdu
ed in traje
tory 1 BCN.

6.2.2 Se
ond Traje
tory Bar
elona

To examine the performan
e of the sto
hasti
 models that were obtained with the NLF

at di�erent temperature points (see Se
tion 4.5.3), the navigation platform based on

FPGA was installed in a land vehi
le and adapted with the 3DM-GX3-25 MEMS IMU

and the GPS re
eiver u-blox LEA-6T. Additionally, the LM35 temperature sensor was

used to re
ord temperature data during the road-test.

The data set was 
olle
ted on July 17, 2013, starting and ending the vehi
le test at

the UAB 
ampus. The traje
tory has urban roadways se
tions in Sabadell and there

is also a segment of the path through a highway near the 
ampus. Fig. 6.13(a) shows

the traje
tory in Google Earth, whi
h was performed following a 
ounter
lo
kwise

dire
tion. The duration of the road-test was around 46 min of 
ontinuous navigation.

It has some natural GPS outages pă 10 secq that were extended to evaluate the position
estimation with the EKF in predi
tion mode and augmented with the sto
hasti
 error

models. Fig. 6.13(b) depi
ts the GPS signal outages (blue lines) lasting 30 sec and

60 sec, those outages were intentionally introdu
ed during postpro
essing 
onsidering

highway and urban area segments, where di�erent driving 
onditions were under test.

Figure 6.14 shows the re
orded temperature during the kinemati
 test; it varies

between 30 ˝C and 34 ˝C. The raw measurements 
olle
ted in the 
ampaign are saved

in the CF of the Xilinx development board, and then, they are downloaded in a PC
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Figure 6.13: (a) Se
ond traje
tory test in Google Earth; b) Se
ond traje
tory test in

Matlab with the GPS outages that were introdu
ed intentionally.

in order to introdu
e them in the loosely-
oupled GPS/INS integration implemented

in Matlab. The navigation algorithm has been adapted with the four sto
hasti
 error

models that were built up as explained in Se
tion 4.5.3, and the parameters of the

deterministi
 errors that were measured during the 
alibration test (see Se
tion 3.4).
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Figure 6.14: Temperature during the se
ond traje
tory.

The EKF is augmented with the four sto
hasti
 error models using the same


ombination of random pro
esses presented in Table 6.4, but in this 
ase the error

model parameters 
orrespond to the ones estimated by means of the NLF at di�erent

temperature points, i.e., at 10 ˝C, 20 ˝C, 30 ˝C and 40 ˝C. From here on, the

abbreviations NLF TD 10 ˝C, NLF TD 20 ˝C, NLF TD 30 ˝C and NLF TD 40 ˝C may

be used when referring to the 
onstrained non-linear �tting error model temperature

dependent at 10 ˝C, 20 ˝C, 30 ˝C and 40 ˝C, respe
tively.
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Figure 6.15: (a) Horizontal position during GPS outage 3; (b) Horizontal position

error during GPS outage 3.

Figures 6.15(a) and 6.15(b) show the position and the position error in the

horizontal plane during GPS outage 3. Sin
e two natural GPS blo
kages are presented

in this segment of the traje
tory (i.e., the outages begin approximately at 1295 sec

and 1320 sec) we introdu
ed intentionally an outage of 60 sec between 2995 sec and

2355 sec, whi
h 
ombines the two outages into one longer outage. This GPS blo
kage is

one of the four outages inserted in this road and it has the highest maximum horizontal

position error. Fig. 6.15(a) depi
ts a 
omparison between the estimated 2-D horizontal

position for the di�erent error models and the GPS/INS integrated solution (in red).

This GPS outage is really 
hallenging as it 
onsists in a turn while driving at relatively

high speed, i.e., an average speed nearly 96.11 km{h. From Fig. 6.15(b) it 
an be seen

that the performan
e of the NLF TD 40 ˝C is superior over the error models 
omputed

at 10 ˝C, 20 ˝C and 30 ˝C, having a maximum horizontal position error of 155.31 m,

while the worst performan
e is given by the NLF TD 10 ˝C with a maximum horizontal

position error of 229.90 m. The error models 
orresponding to NLF TD 20 ˝C and

NLF TD 30 ˝C show similar behaviour having a di�eren
e between them of 5.17 m in

the maximum horizontal position error.

Table 6.6 summarizes the maximum and the mean position error in the horizontal

plane for ea
h one of the error models during the GPS outages, it also shows the


hara
teristi
s of the four GPS blo
kages that were simulated. The bar graph

representation of the maximum and mean position error 
an be seen in Figs. 6.16(a)
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Table 6.6: Maximum and mean horizontal position error during GPS outages for

traje
tory 2 BCN. NLF TD 10 ˝C; NLF TD 20 ˝C; NLF TD 30 ˝C; NLF
TD 40 ˝C.

Out.

p#q
Dur.

psecq

Av.

spd.

pkm{hq

Sto
hasti
 error model

NLF TD NLF TD NLF TD NLF TD

10
˝C 20

˝C 30
˝C 40

˝C

mean

pmq
max

pmq
mean

pmq
max

pmq
mean

(m)

max

pmq
mean

pmq
max

pmq

1 490{520 31.88 4.32 6.53 4.34 6.74 4.08 6.78 4.33 6.87

2 1220{1280 39.09 39.86 106.10 14.11 37.64 6.28 17.96 7.32 25.37

3 2295{2355 96.11 76.37 229.90 66.75 197.79 68.32 202.96 50.99 155.31

4 2500{2560 95.26 43.17 152.96 38.08 137.16 34.05 124.68 24.34 88.70

and 6.16(b), respe
tively, while the temperature versus time and the time interval when

the GPS outages were inserted 
an be seen in Fig. 6.14 and Table 6.6, respe
tively.

It 
an be noted that the best performan
e is given by the NLF TD 30 ˝C and NLF

TD 40 ˝C error models. For the �rst two outages the performan
e of the NLF TD

30 ˝C is slightly better than the others, and the di�eren
e be
omes more signi�
ant

for relatively long GPS outages (e.g., GPS outage 2 that lasts 60 sec), it seems to

work as it was expe
ted sin
e the temperature was 
lose to 30 ˝C at the time the GPS

outages were introdu
ed. Although, it was supposed to have a similar tenden
y for the

last two outages, as it 
an be observed from Figs. 6.16(a) and 6.16(b), the NLF TD

40 ˝C shows a superior performan
e for GPS outages 3 and 4. Taking into a

ount the

temperature measurements during the road-test, the NLF TD 30 ˝C should perform

better than the other error models due to the fa
t that the temperature at the time

was 
lose to this model, but it does not. We 
onsider that it might be 
aused by the

un
ertainty involved during the estimation of the error parameters that are used in

the models. Thus, the best performan
e of the NLF TD 40 ˝C for the last two GPS

outages might be attributed to the un
ertainty of the varian
e 
omputation. In other

words, for GPS outages above 2295 sec the estimated error parameters related to the

NLF TD 40 ˝C model seem to be more adequate than the ones estimated for the NLF

TD 30 ˝C model. This might be due to the un
ertainty of the varian
e 
omputation

that a�e
ts the parameters estimation.

To this end, we 
on
lude that the NLF models enhan
e the a

ura
y of the GPS/INS
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Figure 6.16: (a) Maximum horizontal position error for whole the GPS outages

introdu
ed in traje
tory 2 BCN; (b) Mean horizontal position error for

whole the GPS outages introdu
ed in traje
tory 2 BCN.

integration 
ompare with a traditional method su
h as AV. In spite of this, it has been

noted that high position errors o

urred, espe
ially, for GPS outages of 60 sec when the

vehi
le has a high speed and at the same time there is a 
hange in the vehi
le dynami
s.

We 
onsider that this position errors might be attenuated by adapting the pro
edure

des
ribed with AV/wavelet de-noising to the NLF sin
e the 
omplex 
omposite models

do not seem to mitigate this errors. This is also worth mentioning that further

improvement 
an be obtained by aiding information from the vehi
le dynami
s su
h

as non-holonomi
 
onstraints and odometer signal, whi
h gave signi�
ant advantages

regarding the position a

ura
y when the GPS signal is not available. On the other

hand, the NLF TD has shown satisfa
tory results, but a sto
hasti
 error model with

a better resolution in temperature might be set up, a
tually, the temperature test

developed in [29℄ is performed at 20 ˝C interval. Although 
olle
ting a larger data set

during the temperature stati
 test might not be a pra
ti
al solution, the un
ertainty

of the varian
e 
omputation 
an be redu
ed and as a 
onsequen
e a better resolution

of the NLF TD in temperature 
ould be obtained.
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Chapter 7

Con
lusions and Future A
tivities

In this work, di�erent sto
hasti
 error models for the measurement noise of

MEMS-based IMUs have been implemented using experimental data, spe
i�
ally,

autoregressive/wavelet de-noising models, Allan varian
e, Allan varian
e/wavelet

de-noising and 
onstrained non-linear �tting (NLF). These sto
hasti
 models were

adapted to the loosely-
oupled strategy integration. Additionally, their performan
e

was assessed in a low 
ost navigation appli
ation by means of intentionally introdu
ing

several GPS outages in di�erent traje
tories 
olle
ted in real highways and urban

roadways. The arti�
ial GPS blo
kages were introdu
ed in straight and 
urved portions

of the traje
tories 
omprising 
onditions of real GPS signal degradation.

For the �rst sto
hasti
 error models implemented (i.e., autoregressive/wavelet

de-noising models, Allan varian
e and Allan varian
e/wavelet de-noising - Se
tion

4.3), we 
on
luded that although AR pro
esses 
ombined with wavelet de-noising are


ommonly used for modeling INS sto
hasti
 errors, due to the fa
t that they have

more modeling �exibility than �rst order Gauss-Markov, random walk and white noise

pro
esses, it is ne
essary to 
onsider that the auto
orrelation fun
tion of the stationary

raw inertial sensors measurements is desirable to be a smooth 
urve (after de-nosing),

in order to use a low order AR model, whi
h most of the time is not the 
ase for low


ost inertial sensor (MEMS grade).

On the other hand, the inertial sensors are a�e
ted not only by short-term noises,

but also by long-term noises. Minimizing the latter is not an easy task, sin
e these
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are 
ombined with vehi
le motion dynami
s. Therefore, we evaluated an error model

that is a mixture of AV parameters and wavelet de-noising te
hniques (18AVWD); this

model showed better performan
e than the other traditional methods based on AV and

AR models during di�erent GPS outages. The 18AVWD sto
hasti
 error model uses

the parameters obtained from AV to 
ompensate the long-term noises, while wavelet

de-noising is employed to minimize the short-term noises that a�e
t the inertial sensor

of the IMU. Albeit, wavelet de-noising te
hnique has on
e again demonstrated its

utility for removing the short-term noises of the inertial sensors, we noted that MEMS

based IMU requires many levels of de
omposition to attenuate part of the un
orrelated

noise and observe small enhan
ement in the position a

ura
y when using only wavelet

de-nosing. Evaluating the 
ombination of AV/Wavelet de-nosing showed that although

some vehi
le motion 
omponents might be attenuated the sele
ted LOD provide more

bene�ts 
on
erning position a

ura
y.

The methodology adopted to study Allan varian
e together with wavelet de-nosing

in the same log-log 
urve after applying di�erent levels of de
omposition, allowed us

to analyze the attenuation of the error terms and the vehi
le motion dynami
s. By

exploiting a 
ombined use of the AV and wavelet de-noising, we have shown how to

enhan
e the position a

ura
y in a GPS/INS integrated system without ex
essively

in
reasing the 
omplexity of the INS error model.

From the AV and wavelet-denoising analysis followed in this thesis one 
ould


onsider not only stati
 data but also kinemati
 data in order to better study the

de-noising under dynami
 
onditions. Moreover, noise suppression methods that take

into a

ount the vehi
les dynami
s might be developed to enhan
e the INS performan
e.

Regarding the 
onstrained non-linear �tting (NLF) (Se
tion 4.5.3), we proposed


onstraints using the 95% 
on�den
e interval 
urve and taking into a

ount


hara
teristi
s of the noises that are typi
ally found in low 
ost inertial sensors. The


onstraints not only provide information of noises that are possibly a�e
ting the sensors

but also 
an be used to fa
ilitate the 
onvergen
e of the �tting algorithm. It is

worth mentioning that one of the limitations of the NLF is that it uses the varian
e


urve estimated to �t the obje
tive fun
tion, whi
h has a 
onsiderable un
ertainty for

long-term 
luster times. Therefore, a large stati
 data set need to be re
orded in order
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to have a good a

ura
y.

We investigated the e�e
t of temperature 
hanges on the sto
hasti
 modelling of

MEMS based IMU and developed an error model temperature-dependent based on the

NLF. This model is more appropriate that the ones reported in the literature sin
e most

of the models only take into a

ount the deterministi
 error temperature variations and

the few that 
onsider the temperature-dependent sto
hasti
 errors are not adequate for

low 
ost sensors sin
e most of them are based in AR models and one �rst order GM

pro
ess. We assessed the NLF TD model 
olle
ting temperature data during a vehi
le

test, and then various GPS outages were inserted under di�erent driving 
onditions.

We noted that it requires a large data set in order to redu
e the un
ertainty of the

varian
e estimation, so it might yield a better resolution in temperature.

The error models 
ould be adapted in more 
omplex GPS/INS integration

strategies, su
h as tightly-
oupled, in order to enhan
e the position a

ura
y by using

GPS estimates of pseudoranges and Doppler. It is worth noting that they 
an be applied

to all inertial sensors grades and they are not limited to terrestrial appli
ations.

As for the platform based on FPGA (Chapter 5), we developed a relatively 
ompa
t

and �exible navigation platform that 
an be easily 
ustomized. The platform allows to

adapt di�erent information sour
es, whi
h is a feature suitable for 
urrent navigation

systems. We analysed the software pro�ling of the loosely-
ouple GPS/INS integration,

where we found that the highest 
omputational 
ost was in the matrix multipli
ation


omputed in the EKF. Therefore, we studied the possibility of adapting dedi
ated

hardware by means of DSP blo
ks in order to a

elerate the navigation appli
ation.

The 
ustom IP developed is s
alable, �exible and parametrisable and is not restri
ted

to the matrix size or the number of matri
es to be multiplied.

From the ar
hite
ture developed on the FPGA, we 
on
luded that although

hardware implementation is a 
hallenging task it 
an signi�
antly speed-up the

algorithm due to its 
apability to parallelize the design. It should be mentioned that

high a

ura
y in the navigation solution requires a lot of hardware resour
es but 
urrent

tools are being enabled to assist the developers in this sort of implementations. A future

a
tivity for the embedded navigation system would be to improve the syn
hronization

algorithm and also study the possibility to use the partial dynami
 re
on�guration in
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the GPS/INS integration, e.g., modifying the hardware ar
hite
ture when the EKF is

in predi
tion mode or while navigating under di�erent s
enarios indoor/outdoor.
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Appendix A

IMU Error State-Spa
e

Implementation in the KF

The equations that represent the error dynami
s in the n-frame for the loosely-
oupled

approa
h are given by position error, pδrnq, velo
ity error, pδvnq, and attitude error,

pδψnq. The des
ription of the transition matrix for these nine states is detailed in [5,59℄,

and the derivation of these error equations 
an be found in [47,173℄. In order to evaluate

the models, it is ne
essary to in
rease these nine states, pδrn,δvn,δψnq, with the IMU

error states. For illustrative purposes, in this se
tion, we only present the state-spa
e

form of the model asso
iated with 18 states 
al
ulated with Allan varian
e and the 27

state model, where the third order AR model is adopted.

A.1 IMU Error State-Spa
e for the 18 State AV

Model

To in
lude the bias of the inertial sensors (i.e., Eqs. (4.10) and (4.11)), the transition

matrix in the dis
rete time is augmented from the initial nine states, as in Eq. (A.1):

Ak,9x9 “

»

—

—

—

–

I3ˆ3 ´ diagpβa∆tq 03ˆ3 03ˆ3

03ˆ3 I3ˆ3 ´ diagpβg∆tq 03ˆ3

03ˆ3 03ˆ3 I3ˆ3

fi

ffi

ffi

ffi

fl

(A.1)
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where ∆t is the sampling time of the INS i.e., 0.01 s, while βa and βg 
orrespond to

the re
ipro
al of 
orrelation time, pTcq, presented in Table 4.5 for a

elerometers and

gyros, respe
tively. This transition matrix was des
ribed for one inertial sensor in Eq.

(3.27); in the 
ase of the three a

elerometers, the expression, diagpβa∆tq, is given by:

diagpβa∆tq “

»

—

—

—

–

βax 0 0

0 βay 0

0 0 βaz

fi

ffi

ffi

ffi

fl

¨ ∆t (A.2)

The 
omplete error states after adapting Eq. (A.1) into the �rst nine state of the

KF is presented in Eq. (A.3):

δx “
”

δrn δvn δψn δba,bi δbg,bi δba,k

ıT

(A.3)

where δba,bi and δbg,bi are the bias-drift asso
iated to the �rst order GM pro
ess for

a

elerometers and gyros, respe
tively, while δba,k is the bias-drift of the a

elerometers

that represents the random walk pro
ess.

The design matrix, G, for the 18 error states AV 
an be written as:

G “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

03ˆ3 03ˆ3 03ˆ3 03ˆ3 03ˆ3

Cn
b 03ˆ3 03ˆ3 03ˆ3 03ˆ3

03ˆ3 ´Cn
b 03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 I3ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 I3ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 03ˆ3 I3ˆ3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(A.4)

where Cn
b is the frame rotation matrix from the body to the n-frame [44, 47℄.

Cn
b “

»

—

—

—

–

cθcψ ´cφsψ ` sφsθcψ sφsψ ` cφsθcψ

cθsψ cφcψ ` sφsθsψ ´sφcψ ` cφsθsψ

´sθ sφcθ cφcθ

fi

ffi

ffi

ffi

fl

(A.5)

where �sin� and �
os� are shortly denoted as �s� and �
�, respe
tively. The variables, φ,

θ and ψ, 
orrespond to the Euler angles (Roll, Pit
h and Yaw).

The noise 
ovarian
e matrix Q of the model is:
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Q “

»

—

—

—

—

—

—

—

—

—

–

diagpqa,nq 03ˆ3 03ˆ3 03ˆ3 03ˆ3

03ˆ3 diagpqg,nq 03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 diagpqa,biq 03ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 diagpqb,biq 03ˆ3

03ˆ3 03ˆ3 03ˆ3 03ˆ3 diagpqa,kq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(A.6)

where qa,n, qa,bi and qa,k are the spe
tral densities of the pro
ess driving noises for ea
h

noise term that are used to model the bias-drift of the a

elerometers (i.e., WN, RW

and �rst order GM pro
ess). Similarly, qg,n and qg,bi are the noise varian
e quantities

that will be used within the KF to model the bias-drift of the gyros (i.e., WN and �rst

order GM pro
ess). All these quantities are 
omputed based on the parameters that

were obtained with the AV te
hnique (see Tables 4.4 and 4.5). In order to des
ribe the

relationship between the parameters obtained from the experiments (i.e., N, B and K),

and the noise pro
ess that are modeled (i.e., WN, �rst order GM pro
ess and RW), we

take as an example the x-axis a

elerometer, so the spe
tral density in dis
rete time of

the pro
ess driving noises of a WN pro
ess 
an be expressed as:

qax,n “ σ2
WNax

{∆t “ N2
ax{p3600 ˚ ∆tq (A.7)

where σ2
WNax

is the varian
e of the white noise pro
ess and N is the velo
ity random

walk asso
iated to the x-axis a

elerometer from Table 4.4. The spe
tral density, qax,bi,

in dis
rete time for the �rst order GM pro
ess is given by [62℄:

qax,bi “ σ2
GMax

`

1 ´ e´2∆t{Tc,ax
˘

(A.8)

where Tc,ax is the 
orrelation time from Table 4.5 and σ2
GMax

is the 
ovarian
e of the

�rst GM pro
ess that 
an be determined by means of the bias instability parameter

for the x-axis a

elerometer pBaxq from Table 4.4.

σGMax
“ Bax ˚ 0.664{3600 (A.9)

The spe
tral density, qax,bi, in dis
rete time for the random walk pro
ess 
an be

expressed as:

qax,k “ σ2
RWax

˚∆t “ K2
ax ˚∆t{p3600q3 (A.10)

where σ2
RWax

is the noise 
ovarian
e of the RW pro
ess and Kax is the a

eleration

random walk for the x-axis a

elerometer from Table 4.4.
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A.2 IMU Error State-Spa
e for the 27 States with

Third Order AR Models

The transition matrix in the dis
rete time used to augment the KF with a bias-drift

modeled as a third order AR pro
ess for ea
h inertial sensors 
an be des
ribed by Eq.

(A.11):

Ak,18x18 “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

03ˆ3 I3ˆ3 03ˆ3 03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 I3ˆ3 03ˆ3 03ˆ3 03ˆ3

´diagpαa
3
q ´diagpαa

2
q ´diagpαa

1
q 03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 03ˆ3 I3ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 03ˆ3 03ˆ3 I3ˆ3

03ˆ3 03ˆ3 03ˆ3 ´diagpαg
3
q ´diagpαg

2
q ´diagpαg

1
q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(A.11)

where αa
1, α

a
2 and α

a
3 are ve
tors with the 
oe�
ients for the three a

elerometers,

while αa
1, α

a
2 and αa

3 are the ve
tors with the 
oe�
ients for the three gyros. This

transition matrix was des
ribed for one inertial sensor in Eq. (3.30); in the 
ase of the

three a

elerometers, the expression, diagpαa
1q, is given by:

diagpαa
1q “

»

—

—

—

–

αax
1 0 0

0 α
ay
1 0

0 0 αaz
1

fi

ffi

ffi

ffi

fl

(A.12)

The 
omplete error states of the KF will have 27 states, whi
h are given by:

δx “
”

δrn δvn δψn δba,b1 δba,b2 δba,b3 δbg,b1 δbg,b2 δbg,b3

ıT

(A.13)

where δba,b1, δba,b2 and δba,b3 are the nine states asso
iated to the third order AR

models of the three a

elerometer, while δbg,b1, δbg,b2 and δbg,b3 are the nine states

asso
iated to the third order AR models of the three gyros.

The design matrix, G, for the 27 error states based on the third AR models 
an be

written as:
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G “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

03ˆ3 03ˆ3 03ˆ3 03ˆ3

Cn
b 03ˆ3 03ˆ3 03ˆ3

03ˆ3 ´Cn
b 03ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 I3ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 03ˆ3

03ˆ3 03ˆ3 03ˆ3 I3ˆ3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(A.14)

In this 
ase, the noise 
ovarian
e matrix, Q, of the model is:

Q “

»

—

—

—

—

—

—

–

diagpqa,nq 03ˆ3 03ˆ3 03ˆ3

03ˆ3 diagpqg,nq 03ˆ3 03ˆ3

03ˆ3 03ˆ3 diagpqa,bq 03ˆ3

03ˆ3 03ˆ3 03ˆ3 diagpqg,bq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(A.15)

where qa,n, qg,n are the same spe
tral densities of the white noise pro
esses des
ribed

in the 18 states AV models, while qa,b and qg,b are the the spe
tral densities of the third

order AR pro
esses for ea
h inertial sensor. In the 
ase of the y-axis a

elerometer, the

spe
tral density in dis
rete time is by given by:

qay,b “ β2
0 (A.16)

where β0 is the standard deviation of the AR pro
ess.
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