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Resumen

Hoy en dia con el desarrollo de sensores inerciales basados en Sistemas Micro-
electromecéanicos (MEMS), podemos encontrar acelerémetros y giréscopos embebidos
en diferentes dispositivos y plataformas, teniéndolos en relojes, teléfonos inteligentes,
consolas de video juego hasta sistemas de navegacion terrestre y vehiculos aéreos
no tripulados (UAVs), etc. A pesar del amplio rango de aplicaciones donde estan
siendo utilizados, los sensores inerciales de bajo costo (grado MEMs) son afectados por
errores aleatorios y deterministicos que degradan el rendimiento de los sistemas, en
especial, los sistemas de navegacion, un ejemplo de ello es la integracion del Sistema
de Posicionamiento Global (GPS) y el Sistema de Navegacion Inercial (INS). Aunque
diferentes investigaciones se han realizado para minimizar y modelar el error estocéastico
de los sensores inerciales MEMS, la estimacion de los parametros de este error y su
eliminacion sigue siendo una tarea poco facil de realizar. Por este motivo, en esta tesis
planteamos soluciones para facilitar la estimacion de los parametros y la compensacion
del error estocastico, especificamente, para el bias-drift, con el propoésito de mejorar
el rendimiento del sistema integrado GPS/INS basado en MEMS. Adicionalmente, el
sistema de navegacion es implementado en un Arreglo de Compuertas Programables en
Campo (FPGA), donde se exploran las posibilidades que este tipo de plataformas puede
ofrecer y como recursos hardware dedicados podrian ser utilizados para acelerar el filtro
de navegacion que es donde se presenta el mayor costo computacional. Finalmente, con
el fin de evaluar la compensacion del error estocéstico, el Filtro de Kalman Extendido
(EKF) de la estrategia de integracion loosely-coupled GPS/INS es aumentado con
diferentes modelos del error. Los resultados muestran el rendimiento del sistema de
navegacion cuando se realiza la compensacion del bias-drift bajo bloqueos de la senal del

GPS, utilizando datos reales recolectados en un vehiculo terrestre en varias campanas.



Abstract

Nowadays with the development of inertial sensors based on Micro-Electromechanical
Systems (MEMS), embedded accelerometers and gyroscopes can be found in several
devices and platforms ranging from watches, smart phones, video game consoles
up to terrestrial navigation systems and unmanned aerial vehicles (UAVs), etc.
Despite the wide range of applications where such sensors are being used, low cost
inertial sensors (MEMS grade) are affected by random and deterministic errors that
degrade the systems performance, especially, in navigation systems like the Global
Positioning System (GPS)/Inertial Navigation System (INS) integration. Albeit
different researches have been conducted to minimize and model the stochastic error
of MEMS inertial sensors, the estimation of the random noise parameters and its
attenuation is still a non-trivial task. Therefore, in this thesis we propose solutions to
facilitate the estimation of the parameters or the stochastic error and its compensation,
specifically, for the bias-drift, with the aim of enhancing the performance of MEMS
based INS/GPS integrated systems. Additionally, we implement the navigation system
on a Field Programmable Gate Array (FPGA), where we explore the possibilities
that this sort of platforms could offer and how dedicated hardware resources could
be used to accelerate the navigation filter, that presents the highest computational
burned. Eventually, in order to assess the compensation of the stochastic error, the
Extended Kalman Filter (EKF) of the loosely-coupled GPS/INS integration strategy is
augmented with different error models. Results show the performance of the navigation
system during the compensation of the bias-drift under GPS signal blockages using real

data collected in a land vehicle during several campaigns.
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Chapter 1

Introduction

1.1 Background and Objectives

Currently many land vehicles are equipped with a Global Positioning System (GPS),
which is widely used because of its global availability, portability and low cost.
Nonetheless, the GPS is affected by several errors (i.e., multipath, ionosphere and
troposphere delays), signal unavailability (i.e., momentary blockage while driving
through tunnels, indoor car parks or along urban canyons), voluntary or involuntary
signal interference like jamming and spoofing, etc. All these errors affect the integrity
and reliability of the navigation solution and only some of them can be reduced
or mitigated (e.g., multipath and interference). Others are intrinsic in the GPS
functioning (e.g., signal blockage and drop in the signal power) and can not be removed.
On the other hand, the Inertial Navigation System (INS) provides information about
position, velocity and attitude with a higher rate than the GPS. They are inherently
immune to the signal jamming and blockage vulnerabilities of GPS, but the accuracy of
INS is significantly affected by the error characteristics of the inertial sensors [1]. Since
both of these systems have a complementary nature, it is well known that GPS/INS

integration provides a higher performance than their stand-alone operation.

In the last few years, advances in the development of Micro-Electromechanical
Systems (MEMS) have made possible the fabrication of cheap and small dimension

accelerometers and gyroscopes, which have increased the demand of low cost INSs,
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1 — Introduction

expanding their usage in several applications where the GPS and the INS are blended,
e.g., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial
vehicles (UAVs), stabilization of many platforms, etc. This inertial sensors based on
MEMS technology are fast becoming ubiquitous and the next few years will witness the
continued proliferation of these devices with further improvement in cost, performance
and integration [2]. Although, low cost and small size of MEMS sensors are attractive
characteristics for current navigation systems, they combine electronic and mechanical
components, where the small moving parts (mechanical components) that are built
inside the MEMS devices are especially susceptible to mechanical noise [3], not to
mention the noise caused by the electronic components. As a consequence, those
noises degrade the performance of low cost INS/GPS integrated systems in a short
period of time. In other words, MEMS based INS presents errors in position, velocity
and attitude, which grow rapidly degrading the accuracy of the navigation system in
a few seconds |4]. Therefore, a suitable error modelling of MEMS inertial sensors is

necessary in order to improve the system performance.

The errors that affect the inertial sensors can be classified as stochastic and
deterministic [5]. Modelling the stochastic component of inertial sensors is a challenging
task |6], and is not only a current topic but also a relevant one in many areas where
the MEMS based Inertial Measurement Units (IMUs) are used. Actually, in recent
years different works related to the stochastic error modelling have been achieved using
statistical theory as it is described in |7,8]. Most of the papers are based on Allan
variance (AV) technique which is detailed in |9-11] and it has been applied to inertial
sensors in several researches such as [12-18] et al. A different approach was shown
in [19,20] which make use of Parallel Cascade Identification (PCI) and Autoregressive
(AR) models, respectively. Despite this, the estimation of the error model parameters
is still non-trivial. Most of the times those unknown parameters are estimated through
tuning (that is often challenging and difficult), by using available sensor specifications
(high-grade IMUs) or by experience [21]|. For this reason, in this thesis we focused our
attention on the identification and modeling of the stochastic error, specifically, the

bias-drift error.

Since this noise has both high-frequency noise (short-term) and low-frequency noise
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(long-term), it is necessary to minimize both of them in order to improve the accuracy
of the INS. Wavelet de-noising has being used in similar works because of its great
effectiveness removing high-frequency noises, as it is shown in [20,22-24|. However, it
has a limited success in removing the long-term inertial sensors errors |25]. Moreover,
Allan variance (AV) is a widely used technique in the modeling of inertial sensors
which can take into account the long-term noises. Thereby, we present a mixture of
the wavelet de-noising technique and Allan variance with the purpose of evaluating
the accuracy enhancement of the inertial sensors when these methods are blended
together. Even though there are works where AV and wavelet de-noising are performed
(e.g., [24]), we developed a suitable combination between AV and wavelet de-nosing
showing that MEMS based IMUs require high levels of decomposition in order to have
an enhancement of accuracy in the navigation solution, while the vehicle’s dynamics is

preserved by using a conservative threshold.

Moreover, low cost inertial sensors have noises with complex spectral structures |6].
This is because several random processes are superimposed, which makes difficult
the estimation of parameters that enable the modelling of these random errors. A
typical example of this situation is the flicker noise, which can be approximated as the
combination of several exponentially correlated noise terms as it is stated in |11,26] and
it has been detailed in [6,8,27,28] with first order Gauss-Markov processes. Therefore,
in this thesis we evaluate a method for estimating the random error (bias-drift)
parameters of the inertial sensors based on a non-linear fitting with constraints that we
called (NLF). Since most of the reported works in the literature disregard the stochastic
error variations at different temperature points [29], we also evaluate the feasibility
of developing a stochastic error model temperature dependent using the NLF. The
presented method is able to estimate stochastic error model parameters with complex

structures of noises that are usually found in sensors based on MEMS technology.

Although recently similar methods have been developed as the Generalized Method
of Wavelet Moments (GMWM) proposed by Stebler et al. in [8], we implemented the
estimator that has been previously described in |30, 31] that is used to minimize the
relative distance between the objective function and the estimate variance. It has

shown good results fitting log-log Allan variance curves and it could be considered a
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particular case of the GMWM. It should be highlighted that different from the existing
methods, in the NLF we developed constraints for the noises that are identified during
the analysis by means of the 95% confidence interval curve. Those constraints are also
set taking into account a prior knowledge of the noise characteristics, which makes
easy the convergence of the fitting algorithm and guarantee an appropriate non-linear
fitting. Additionally, since the classical least square employed for the fitting can lead
to local minimum solutions we carried out an optimization of the parameters estimated

by means of pattern search technique.

Eventually, according to the literature we noted that most of the efforts have focused
on the development of algorithms to enhance the performance of the GPS/INS fusion
and less effort has been directed towards the development of practical implementations
suitable for compact platforms [32,33]. Actually, the trend in the navigation systems is
to provide small size platforms, this means, systems on a single board and eventually
onto a single chip [34,35|. Although, recent works have been conducted to implement
GPS/INS systems on compact platforms, highlighting between them [35-39]. In most
of them the FPGA (Field Programmable Gate Array) is used as interface for data
acquisition and in approaches where it is used to compute the navigation algorithms
the hardware resources available are underutilized, in fact, this is where the FPGA
could offer great benefits [33]. It should also be mentioned that in this work we make
use of low cost INS (MEMS grade) which imposes constrains on the processor speed
since these sensors need an error model that increases the number of states in the

Extended Kalman Filter (EKF) and consequently the computational cost.

In the case of in-car navigation systems there are basically four different sources
of information available: various global navigation satellite systems (GNSSs), sensors
observing vehicle dynamics, road maps and vehicle models [40]. All these sources
can be used to enhance the navigation solution provided by the GPS. Since most of
the navigation systems require redundant information, we consider that FPGAs (Field
Programmable Gate Array) are suitable for their implementation because they are very
flexible devices that allow to easily adapt several instruments such as compasses, GPS
receivers, odometers, cameras even multiple Inertial Measurement Units (IMUs), etc.

In this sense, we aim to develop an embedded system that combines GPS/INS with
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an architecture based on FPGA technology, where we explore the possibilities that the
FPGA can offer in the loosely-coupled GPS/INS integration and we study the feasibility
of using hardware resources to accelerate the navigation application taking advantage
of its parallel processing with DSP blocks for the computational cost involved in the
Extended Kalman Filter (EKF), which might decrease the computing time that is a

fundamental factor in real-time applications.

e Objectives

— Develop the loosely-coupled GPS/INS integrated system in platform based
on FPGA for terrestrial applications, studying the feasibility of using

hardware resources to accelerate the EKF.

— Develop stochastic error models based on a constrained non-linear fitting and
a mixture of Allan variance/wavelet de-noising to compensate the bias-drift
that affects the MEMS inertial sensors in order to enhance the performance

of a MEMS based INS/GPS loosely-coupled integration.

1.2 Thesis outline

The thesis is organized in seven chapters as follows:

e Chapter 2 - Inertial Navigation System and GPS/INS Integration: it describes
the basic blocks of an Inertial Navigation System (INS). Comprising the reference
frames, the computation of attitude, velocity and position from measurements of
angular velocity and acceleration. Subsequently, the benefits of the GPS/INS
integration are presented including different strategies and then the navigation

filter used in this dissertation is detailed.

e Chapter 3 - MEMS IMU Inertial Sensors Errors: it provides information about
how inertial sensors work, the different types of sensors, how they are classified,
their general performance characteristics and the errors that are involved in

inertial sensors based on MEMS technology. It also shows the noise sources
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that affect an Inertial Measurement Unit (IMU), giving a description of the

deterministic and stochastic errors.

Chapter 4 - Stochastic Modelling of MEMS Inertial Sensors: it presents current
approaches to estimate the parameters of the stochastic error modeling in inertial
sensors based on MEMS technology. This chapter also carries out an analysis
through different techniques such as Allan variance method, autoregressive
models, autocorrelation and power spectral density using a MEMS based IMU.
Subsequently, it describes the compensation of the short-term noises and long
term noises through combination of wavelet de-noising with AV, and then the

constrained non-linear fitting (NLF) is explained.

Chapter 5 - Architecture Based on FPGA for GPS/INS Integration: it presents
a review of recent similar platforms where the GPS/INS integration has been
implemented. Subsequently, it explains the architecture developed for the
loosely-coupled GPS/INS integration based on FPGA, giving details about the
software/hardware implementation and utilization resources. Then, a matrix
multiplication in hardware is presented as a possibility to speed-up the navigation

algorithm.

Chapter 6 - Results : it presents the performance of different stochastic error
models using AV and PSD, wavelet de-noising/AR models and the proposed
improvements based on wavelet de-nosing/AV and NLF, they are adapted to
the loosely-coupled integration and assessed using real data collected in a land

vehicle.

Chater 7 - Conclusions : the conclusions of the thesis are drawn and topics for

further research work are suggested.



Chapter 2

Inertial Navigation System and

GPS/INS Integration

2.1 Introduction

An Inertial Navigation System (INS) calculates the position, velocity and attitude of
a vehicle using measurements of acceleration and angular rate obtained from inertial
sensors (i.e., accelerometers and gyroscopes); these measurements are processed by

navigation equations to get the position, velocity and attitude of the vehicle.

In general there are two ways to build up a INS (see Fig. 2.1). In the first the
accelerometers are mounted on an actuated platform (gimbaled system). The gimbal
angles are commanded to maintain the platform frame alignment with a specified
navigation coordinate system. So the platform does not experience any rotation relative

to the navigation frame, in spite of vehicle motion [41].

The second is the strapdown that attaches the inertial sensors directly to the vehicle
frame. In this approach, the sensors experience the full dynamic motion of the vehicle,
which increases the dynamic range and influences the gyro scale-factor errors and
non-linearity. In addition, the relationship among vehicle, navigation, and inertial
coordinate frames must be maintained computationally, which increases the on-board

computational load [41].

In this dissertation we focused our attention on the strapdown system since it has



2 — Inertial Navigation System and GPS/INS Integration

3 accelerometers

3 accelerometers

3 giroscopes

3 giroscopes

— Rigid based
Gimbal tings X attached
Mounting frame to host vehicle

(a) Gimbaled. (b) Strapdown.

Figure 2.1: Implementation of Inertial Navigation Systems (adopted from [42]).

been used in the last years because of its cost, small size and low power requirements
compared to the gimbaled system that is typically large and more expensive. From

here on when we refer to INS it will indicate a strapdown system.

The Inertial Measurement Unit (IMU) is part of the INS and it is the device where
the inertial sensors are mounted, so it provides measurements along three mutually
orthogonal directions with respect to the body frame. In order to have a reference
frame for navigation, these measures must be converted from the body frame by means
of a rotation matrix to a reference frame that is usually either a local level frame
(n-frame) or an Earth fixed frame (e-frame) [5|. In this chapter we begin with a
description of the reference frames that are usually used when the INS is aided with
a GPS. Subsequently, we present the navigation equations which are widely used to
obtain the inertial navigation solution from the data provided by the IMU. Finally, we
describe the benefits of the GPS/INS integration including different fusion strategies

and then we explain the navigation filter used in this thesis.

2.2 Reference Frames

For navigation on Earth the inertial measurements provided by the IMU must be
transformed to a reference frame where they can be related to the cardinal directions of
the Earth. This also allows to have a reference frame to integrate the inertial navigation
output with the output of instruments such as the GPS. Therefore this section describes
different frames which are important to obtain the navigation solution of a land vehicle.

The discussion of each follows from [41] and [43)].

The notation used throughout this chapter is summarized as follows:

2
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1. x? denotes a vector x expressed in a coordinate p-frame (i.e., n-frame, e-frame,

b-frame, etc.);

2. C%,,, denotes a coordinate transformation matrix from one coordinate frame

(designated by "from" ) to another coordinate frame (designated by "to") (e.g.,

C} denotes the coordinate transformation matrix from b-frame to n-frame);

3. the rotation rate vector between two frames expressed in a specific frame can be

represented either by a vector w or by the corresponding skew-symmetric matrix

Q (with Q7 = —Q).

For example

T
Wy = [ We Wy W ] (2.1)
or
0 —w. wy
wx =L = w. 0 —w, (2:2)
—Wy Wy 0

describe the rotation rate vector of the g-frame with respect to the p-frame projected

to the r-frame.

2.2.1 Inertial Frame (i-frame)

Earth-Centered Inertial (ECI) coordinates has its origin at the center of the Earth and

the axes are a non-rotating and non-accelerating with respect to fixed stars. The three

axes of the ECI are defined as follows (Fig. 2.2):

X? pointing to the vernal equinox;
Z' parallel to the rotation axis (North polar axis) of the Earth;

Y completes the right-handed orthogonal coordinate system.

3
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Celestial
Equator

Equinox

Figure 2.2: The inertial frame.

2.2.2 Earth Frame (e-frame)

The Earth-Centered Earth-Fixed (ECEF) coordinates have the origin fixed to the
center of the Earth and the axes are fixed with respect to the Earth. So they rotate

relative to the inertial frame with a frequency of

Wie = 7.292115 + 107° rad/sec (2.3)

The three axis are defined as follows (Fig. 2.3):

X¢ lies along the interception of the plane of the Greenwich meridian with the

Earth’s equatorial plane;
/¢ parallel to the Earth’s rotation axis;

Y¢is 90° East of Greenwich meridian in the equatorial plane to make a right-handed

orthogonal coordinate system.

2.2.3 Navigation Frame (n-frame)

The navigation frame (n-frame) is also known as the local level frame (I-frame). It has
its origin at the location of the navigation system. The n-frame can also refer to as the
North-East-Down (NED) system. The advantage of using this frame is that the axes
coincide with the IMU axis when it is heading North on a levelled road. In addition,
the n-frame is based on the perpendicular to the reference ellipsoid, so the geodetic
coordinate differences (i.e., geodetic latitude, longitude and height) are the output of

the system [5].
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The three axis are defined as follows (Fig. 2.3):

X" points to the true North (N) (i.e., towards the direction where the latitude

increased);
Y™ points East (E) (i.e., towards the direction where the longitude increased);

Z™ points downwards (D) perpendicular to the reference ellipsoid to make a

right-handed orthogonal coordinate system.

The NED system and the ECEF system are shown in Fig.2.3, where ¢ denotes the

geodetic latitude and A the geodetic longitude.

Greenwich
meridian

Ye

Figure 2.3: The ECEF and NED coordinate systems.

2.2.4 Body Frame (b-frame)

It is an orthogonal frame that is assumed to be aligned with the vehicle. The axis of
this frame coincide with the axis of the IMU and the orientation of the axes is defined

as follows (Fig.2.4):
X" points toward the front of the vehicle;
Y? points toward the right of the vehicle;
Z® to make a right-handed orthogonal coordinate system.

These axes directions are not unique, but are typical in aircraft and land vehicle

applications.

This frame can coincide with the navigation frame (NED) as it was described

previously and the variables ¢, 6 and 1 correspond to the Euler angles (Roll, Pitch and

5
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Figure 2.4: The body frame.

Yaw). A common convention for vehicle attitude Euler angles having the body frame
axis aligned with NED coordinates (i.e., X° axis pointing to North and on a levelled

road) can be described as [44]:

1. Yaw/Heading: the azimuth is considered positive if calculated clockwise from the

north direction.

2. Pitch: the pitch angle is positive upward or nose up direction from local horizontal

plane (elevation).

3. Roll: the roll angle takes positive values if the moving body is rolling towards

right.

Since the vehicle attitude can be specified in terms of Euler angles in the body
frame (Fig. 2.4) and the latitude, longitude can be related to the n-frame and e-frame
(Fig. 2.3), the transformations between these coordinate frames can be achieved by

considering these terms and using rotation matrices as it is presented below.

2.3 Coordinate Transformations

Before describing the navigation equations it is important to define the relationship
between the different frames, which will permit to transform the inertial measurements
provided by the IMU in the body frame to navigation frame (i.e., assuming that the
IMU is aligned with the body frame), thus the navigation solution can be expressed in

a reference frame (navigation frame) and later it can be combined with GPS data.

6
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2.3.1 Rotation Matrices

Although there are several techniques to perform the transformations between the
frames; probably the most common is through the direction cosine matrix (DCM).
Here we will present the DCM rotation matrices between some frames. For further

details about the derivation of these matrices refer to |41,43,45,46].

The DCM from the e-frame to the n-frame is [41]:

—singpcos A —sinpsin A cosy
C. = —sin A cos \ 0 (2.4)
—COS(ECOSA —CospsinA —singp
The matrix rotation from the b-frame to the n-frame is based on the Euler angles; it

requires a procedure following a order of rotations to obtain the DCM matrix C}! [5,44]:

clcrp  —copsip + spsbc)  spsp + cosbcy
Cy = | sy copcy + spshsy  —spc + chpshsiy (2.5)
—s6 s¢ch coc

where “sin” and “cos” are shortly denoted as “s” and “c”, respectively.

The Euler angles (i.e., ¢, # and 1) may be derived from Eq. (A.5) as described
below [41,43]:

¢ = arctan2(C}[3,2],C}[3,3]) (2.6)
6 = —arcsin(Cy[3,1]) (2.7)
1 = arctan2(C}[2,1],Cy[1,1]) (2.8)

where arctan2(y,z) is a four quadrant inverse tangent function.

2.3.2 Angular Velocity Vectors

For the location of the vehicle on the surface of the Earth in a navigation frame (e.g.,

the n-frame), we must consider that the movement of the vehicle involves a change in

7
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the position of the frame, which in turn causes a rotation of this frame with respect
to other frames. Therefore, it is necessary to take into account the rotation between
different frames involved in the navigation solution. These rates can be given in terms
of Earth’s rotation and changes of latitud and longitud. So according to the notation
described in Section 2.2, the rotation vector of the e-frame with respect to the i-frame

projected on the e-frame can be expressed as [47]:

wi=[00 w]| (2.9)

where w, is the magnitude of the Earth rotation rate ~ 7.292115 = 107° rad/sec.
This is due to the fact that the z-axis of the e-frame and i-frame are parallel to each
other (Fig. 2.2) but the e-frame is rotating at an angular velocity with respect to the

i-frame [5]. If this vector is projected to the n-frame we obtain:

T
wy, = Clwi, = [ wecosp 0 —wesine ] (2.10)

The turn rate of the n-frame with respect to the e-frame as measured in the n-frame

is called transport rate, and is expressed in terms of the rate of change of latitude and

longitude [43,47]:

. , T
Wepp = [ Acosp —¢ —Asing ] (2.11)

where the rate of change of the positions components (i.e., A and ) can be expressed

in terms of the velocity components of the n-frame by:

. UN
6= T (2.12)
. Vg
Ao v 2.1
(N + h)cose (2.13)

where M and N are the radius of curvature in a meridian at a given latitude and
the transverse radius of curvature, respectively. These terms are derived by modelling

the Earth by a ellipsoid reference and can be expressed as [43]:

8
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a(l —e?)

(2.14)

a
N = (g (2.15)

where a = 6378137.0 m and e = 0.0818 are the semi-major axis length and the
eccentricity of the WGS-84 ellipsoid 48], respectively.

The transport rate (Eq. (2.11)) takes the following form that is function of position

and velocity in the navigation frame [41]:

vg/(N + h)
Wy, = —on/(M + h) (2.16)
—vptany/(N + h)

where h is the geodetic height, and vy,vg are velocities in the North and East

direction, respectively.

Next section we will present the navigation equations involved in the strapdown
INS, which can describe the motion of a vehicle taking as input the inertial
measurements in the body frame (accelerations and angular rotations) and converting

these measurements into the navigation frame.

2.4 Nayvigation and Mechanization Equations

The strapdown INS involves navigation equations (or kinematic equations) which are
the numerical tools to implement the physical phenomenal that relates the inertial
sensor measurements to the navigation state (i.e., position, velocity and attitude) |5].
These INS kinematic equations describe mathematically the motion of the vehicle by
taking inertial measurements as input, usually they come from an Inertial Measurement
Units (IMU) that consists of three accelerometers and three gyroscopes. Gyros provide
the angular velocity w?, which represents the rotation of the b-frame with respect to

the i-frame, measured in the b-frame. Accelerometers sense the specific force f¥ in the

9
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b-frame. These measures along the three mutually orthogonal directions need to be
converted into a reference frame for navigation that is usually either the n-frame or the
e-frame. Although in this thesis the INS kinematic equations for both reference frames
were implemented, in this section we only focus our attention on the INS equations
expressed in the n-frame (NED). At the end of this section we also describe briefly
the mechanization equations that are the computer implementation of the motion

equations.

2.4.1 Navigation Equations

The navigation equations of the vehicle to be positioned in the n-frame can be expressed

in a compact form as follows [43,47]:

r" D-lv"
vt | = CMP — (2w] + W) x V" + A" (2.17)
Cp Cy (€2}, - £2},)

The position in the n-frame is expressed in geodetic (curvilinear) coordinates:

= [ o Ak ]T (2.18)

The time rate of change of these position components is associated to the velocity

components in the n-frame such as:

_1 0 0

¥ M+h UN
n o__ \ _ 1 - —1..n
= A o 0 (N+h)cos(p) 0 VE =D (219)
h 0 0 -1 Up
where the velocity in the NED frame have the following components:
T
v = [ UN VE Up ] (2.20)

and the diagonal matrix D! is defined as follows:

10
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Syamn 0 0
-1 _
D o 0 (N+h1)cos<p (221)
0 0 -1

Since the kinematic equations are implemented in the NED frame, the rotation
matrix Cj that transforms the acceleration measures from the b-frame to the n-frame

is considered. So the acceleration components in the three axis of the body frame are:

e=[rn 5] (2.22)

and taking into account Eq. (2.17) the velocity of the vehicle in the n-frame can

be to obtained by:

vt = CHP — (2wl + W) x v A" (2.23)

the acceleration components f° in the b-frame need to be converted to the n-frame
by means of Cj. In addition, three acceleration compensation are required, the first is
the rotation rate of the earth given by Eq. (2.10), the second is the change of rotation
of the n-frame with respect to the e-frame expressed by Eq. (2.11), and the third one

is the normal gravity vector given by [5]:

A = [ 00 ~ ]T (2.24)

where 7 is function of the latitude and ellipsoidal height and is a dominant factor in
the n-frame velocity [49]. So the local gravity formula when the WGS-84 parameters

are used is expressed as follows [47]:

v =a (1 + agsin’p + agsin4ap) + (a4 + a5sm2ap) h + agh® (2.25)
where

ay = 9.7803267715 m/sec®; a4 = —3.087691089 = 107 1/sec?;
as = 5.2790414 = 1073; as = 4.397731 = 107° 1/sec?;

az = 23.2718 1075, ag = 0.721 = 1072 1/(m sec?);

11
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The third equation considering Eq. (2.17) is for the attitude angles of the moving

platform, which are determined by:

Cp = Cy (2, — 92, (2.26)

b

where £25 and £2° correspond to the skew-symmetric matrices of wf and w?,,

respectively. The term w is provided by the gyroscopes of the inertial system and is

expressed by:

T
wgb = |: W Wy Wy ] (227)

Since the gyroscopes measure the Earth’s rotation rate, the change of orientation of
the n-frame, and the angular velocities of the moving body. The angular velocities in
€20 are subtracted from £2% to remove the first two effects [5]. Next section describes

the way the navigation equations are solved to get the parameters of navigation.

2.4.2 Mechanization Equations

The mechanization equations are the computer implementation that uses initial
conditions (i.e., position, velocity and attitude), specific force and angular velocity
measurements to solve the navigation equations. The procedure to obtain the
position, velocity and attitude of the vehicle with the mechanization equations can

be summarized in the following steps |50]:

1. Attitude update

2. Velocity and position update.

Before describing the mechanization steps two aspect are worth mentioning : On
the one hand, since the IMU provides angular velocity and acceleration measurements
each At, which is equal to ;.1 — t;, the update is performed at the time ¢y, using
information from the previous epoch t; (i.e., INS mechanization forward). This is
due to the fact that the initial navigation states are known, and they are determined

through a preliminary stage called the alignment.

12
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On the other hand, given that the inertial sensors are characterized by high
noise and large uncertainties in their outputs: such as bias, scale factor and
non-orthogonalities [51], these errors that influence the inertial measurements need
to be compensated as much as possible in order to have a minimum error in the
mechanization input and as a consequence a more accurate inertial navigation solution.

The error sources that affect the inertial sensors will be discussed in Chapter 3.

Attitude Update

Since the attitude is implicit in the rotation matrix C}, the update of this matrix
can be performed by different approaches i.e., quaternions, direction-cosine and Euler
angles. In this case, we describe the quaternions since they are more computationally
efficient than the other two methods [41]. For further details about these algorithms
refer to [41,43,52].

In order to solve Eq. (2.26), it necessary to determine the body rate with respect
to the navigation frame w?, (Eq. (2.16)). This is derived from the difference between
the measure body rates, wl (Eq. (2.27)), and the estimates of the components of the
navigation frame rate w?, Eq. (2.28) [43].

b _ b b
Wpp = Wi — Wiy

= wh — Clw!!, (2.28)

where C? = (CP)T and the term w, is the rotation vector of the n-frame with

respect to the i-frame and can be obtained by adding Eq. (2.16) and Eq. (2.10).

We cos @ + vg/ (N + h)
w:;l = w?e + w?n = —UN/ (M + h) (229)
—wesinp —vgtanp/(N + h)

Thus Eq. (2.28) can be written as the total angular increment of the vehicle by

AB°, = WO AL — Ch (W + W™ AL = AGY, — CPw! At (2.30)

where At is the sampling time of the Inertial Measurement Unit (IMU), and the

angular increments A@°, can be expressed as a vector:

13
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A6, = | 26, 26, 26, ]T

(2.31)

After computing the angular increments Eq. (2.30), the components of this vector

are used to update the quaternions as [53|:

where s =

[ c sA0, —sA0, sAf, |
—sAb, c sAf, sAf,
qr4+1 =g + 0.5 qx (2.32)
sA0, —sAb0, c sAf,
—sA0, —sA0, —sAf, c

2sin (%), ¢ = 2cos (£ — 1), 6 = /(A6,)% + (A6,)? + (AF.)? and qy is

the quaternion that is a four-parameter vector defined as:

T
qr = [ 1.k 92k 43k qak ]

(2.33)

Having updated the quaternions the rotation matrix, C; can be obtained by doing

the transformation from quaternions to DCM.

n

b

(-6 -6 +ad)

2(q1g2 + q3q4)

2 (Q1Q3 - Q2Q4)

2(1q2 — q3q4)
(& —ai — 45 +47)

2(q2q5 + q1q4)

2(qiqs + q2qq)
2 (Q2Q3 - Q1Q4)

(G —-6G -6 +aq)

(2.34)

Thus the Euler angles associated with the attitude of the vehicle are calculated as

states in Egs. (2.7), (2.8) and (2.8).

Velocity and Position Update

To obtain the velocity in the navigation frame (NED frame), Eq. (2.23) is expressed

as it follows:

AV® = Avi — 2wy, +wy,) x VAL + 4" At (2.35)

14
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where Av™ is the velocity increment in the n-frame and Avf is the specific force

increments projected in the navigation frame that is given by:

1 050, —0.50,
Avi=Cy| —050, 1 0560, | Av} (2.36)
0.5, —0.50, 1
where the matrix expressed in terms of 6,,0, and 0, is the first-order sculling

correction |54] and AVS’c is the specific force increments in the body frame. The latter

is calculated by considering the three axis acceleration measured by the IMU:

AVY ="« At = [ fo fu f ]T « At (2.37)

After computing the velocity increment Avy, ; with Eq. (2.35), the current velocity

in the n-frame can be obtained through the previous velocity v} as:

Vir = Vi + Ay, (2.38)

Finally, the position of the moving platform in the navigation frame is computed

by integrating Eq. (2.38) as shown in Eq. (2.39).

1
ry., =T, + §D_1 (Vi + Vi) - At (2.39)

where the term D! is given by Eq. (2.21) and r? corresponds to the position

obtained in the previous epoch.

Figure 2.5 summarizes the mechanization equations in the n-frame. As it was
mentioned the input is provided by the IMU’s measurements that is adapted in the
vehicle and the output supplied information of position, velocity and attitude of the

vehicle in the navigation frame (NED frame).

The flow diagram of the INS mechanization algorithm is depicted in Fig. 2.6, where
the sequence of terms that are calculated is shown. The algorithm takes as inputs V?c
and w), and the outputs are the attitude obtained from C}, the position (r}, ) and

the velocity vi,; in the navigation frame. It is noteworthy that measures of angular
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Figure 2.5: INS mechanization in the n-frame (adopted from [55]).

velocity and specific force are corrected in an earlier stage in order to minimize the
error in the INS. For a better performance of the INS, it is combined with the GPS,

which is described in the below section.
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2.5 GPS/INS Integration

In this section we discuss the GPS/INS integration, the benefits of this integration and
two strategies of integration, specifically, we provide details of the tightly coupled and

the loosely coupled that is the one used in this work.

2.5.1 Benefits of GPS/INS Integration

The INS measurements exhibits a noise relatively low from second to second, but it
tends to drift over time due to the inherent error of the inertial sensors. Since this error
is integrated in the mechanization process, it is reflected in an unbounded position and
velocity solution. Despite this, the INS output is computed using the data provided by
the inertial sensors, which makes it immune to external interferences. Additionally, the
INS provides a navigation solution with a higher rate than GPS (typically 100 Hz),

which is limited by the choice of the computational approach and equipment [41].

On the other hand, the GPS errors are relatively noisy from second to second but
in contrast with the INS the biases are bounded, so it does not exhibit long-term
drift [56]. Thus, the GPS provides position and velocity estimation with bounded
estimation errors [41]. Nonetheless, this information has a low rate (typically between

1 Hz or 10 Hz) and is susceptible to jamming, blockage, interference, etc.

In the last decades the fusion between these two systems has been implemented in
many navigation applications because it provides better performance than their stand

alone operation, which is a consequence of its complementary nature.

Basically, GPS and inertial measurements are complementary for two reasons: the
characteristics of their errors are different and these are measurements of different
quantities [56]. Besides the redundancy that the two systems can provide, it seeks to

take advantage of the synergy as it describes below [56,57]:

1. The inertial navigation system provides navigation information when the GPS

signal is not available.

2. GPS measurements can be used to correct the INS estimates by an integrated

navigation filter that combines inertial system and GPS measurements.
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3. The GPS/INS integration exceeds the accuracy of the GPS alone. This is more

apparent in scenarios where the GPS is affected by multipath.

4. The adaptation of the INS provides a navigation solution at rates much higher

than the GPS receivers.

Table 2.1 summarizes the features and shortcomings of inertial and GPS navigation

systems.

Table 2.1: Inertial and GPS advantages and disadvantages (adopted from [56]).

Advantages Disadvantages

e Low data rate (typically 1 —
10 Hz)

e Errors are bounded
GPS e No attitude information

e Low cost
e Susceptible to jamming and

signal blockage

e Low cost MEMS inertial

SENSors e Unbounded errors

e High data rate (typically > e High cost for the quality
INS 100 H2) . -
e Requires initial

reference (position, velocity

and attitude)

e Attitude information

e Self-contained (not
susceptible to jamming)

2.5.2 GPS/INS Integration Approaches

It is common to blend GPS and INS using different integration approaches (i.e.,
loosely-coupled, tightly-coupled or ultra-tightly coupled; see [58-60]). Here we
described the most common strategies that are the loosely-coupled (LC) and the tighly

coupled approaches.
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Loosely Coupled INS/GPS Integration

In this strategy the position and velocity obtained from the mechanization (r7yg¢,viyg)
(see Section 2.4.2) are combined with the GPS output, which delivers velocity
and position data (rfpg,vipg).  There are two ways to implement the LC
strategy: feed-forward and feed-back. The first one is used in systems that have
a high-performance inertial measurement unit (IMU), as it merges the GPS/INS
information, but it has no control over the error that may occur in the IMU; it
basically works with an open-loop architecture. On the other hand, the feed-back
includes a close-loop that allows us to correct the INS error, and in the case of a GPS
outage, the navigation solution will depend only on the INS, which will be corrected
by its correspondent inertial sensor error model. The block diagram of the GPS/INS
integration with feedback is shown in Fig. 2.7.

closed loop with INS correction

. \ 4 n n E

. Tivs s Vins Position
IMU Mechanization Velocity
. —— Attitude
A, AV, Tins{Vins
J’_

Y

INS Kalman Filter]

KR .57")

n n
VepgsV
Gps |_¢rs>Grs

Figure 2.7: Loosely-coupled Kalman Filter (KF) integration with feedback [53].

According to Fig. 2.7 the residual error (0R"™,0V"™) calculated from the GPS and
INS outputs is the input to the Kalman Filter (KF), where a state-space model is
built with error states for navigation and IMU errors. The error states related to the
IMU errors are fed back though the closed loop in order to correct the INS navigation

solution.

The system model for loosely-coupled approach is given by position error, velocity
error and attitude error, which represent the navigation error states, i.e., a total of
nine states for 3D navigation. Moreover, the scale factors and bias for gyro and
accelerometers are included in the IMU error states, and the number of states will

depend on the stochastic model employed.
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Tightly Coupled INS/GPS Integration

This strategy uses information of pseudoranges (prys) and Doppler (prng) obtained
from the INS output with raw GPS data (i.e., pseudoranges (pgps) and Doppler (paps)
determined by using satellite ephemeris data). The residuals (dp,0dp) are the input to
the KF, which computes the INS errors estimates. Then, these error states are used
to compensate the INS navigation solution and at the same time the IMU errors. The

scheme for the tightly coupled GPS/INS integration is shown Fig. 2.8.

closed loop with INS correction

* Y rn vn

+ Position
. INS > VINS ¢
IMU Mechanization > Velocity
~ Attitude
b ~b n n -
Aeib ,AV/ rINS VINS INS

A

Predicted Range|
and Doppler B

>

Ephemeris

rlleasured Rangg
GPS and Doppler .

Figure 2.8: Tightly-coupled Kalman Filter (KF) integration [53].

If we compare these two strategies the LC approach requires at least four satellites
to provide an acceptable position and velocity, while the tightly coupled with less than
four satellites provides a navigation solution. Furthermore, satellites with poor GPS
measurements can be discarded from the navigation solution in the tightly coupled.
Despite this, LC integration is appropriate for hardware implementation because of
its simplicity compared to the tightly coupled, additionally, both of them can be used
to study the IMU bias-drift. Therefore, in this thesis we confine our attention in
the loosely-coupled (LC) approach, because this strategy can be used to evaluate the
behavior of the inertial sensor stochastic model that is one of main goals of this thesis.
In addition, this strategy has a lower computational load compared to the tightly
coupled, which is more suitable for an FPGA implementation. The loosely coupled
integration scheme is performed using the EKF, which is explained in detail in the

next section.
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2.6 Kalman Filter

The Kalman filter is an optimal estimation tool that provides a sequential recursive
algorithm for the estimation of a system states when the system’s model is linear [61].
This filtering technique has been used in a wide range of applications in the navigation
field from military to civilian since it has an effective and versatile procedure for
combining noise sensor outputs to estimate the state of the system with uncertain
dynamics [44]. Additionally, it provides an efficient computational method to estimate
the state of a linear stochastic process by minimizing the mean and the squared
errors and although this is a good quality that makes the KF suitable for real time
implementations, the most desirable feature is its robustness [5]. The latter is due
to the fact that the KF propagates the uncertainty of the states and measurements

through a gain equation that is known as Kalman gain, which will be described latter.

In the derivation of the filter there are two mathematical models involved: the
dynamic model that contains the time propagation information for the states and the

measurement model that relates the measurements to the states [5].

2.6.1 Dynamic Model

The dynamic model of an INS error model can be represented in a continuous-time

form by the following first-order differential equation [51]:

5x(t) = F(£)0x(t) + G(t)w(?) (2.40)

where

e 0x(t) — (n x 1) is the vector with the state of the system;
e F(t) — (n x n) is the system dynamics matrix;

e G(t) = (n x p) is a system input matrix; and

w(t) — (p x 1) is system noise vector, the noise is characterized by zero-mean

and normally distributed with spectral density given by Q(¢).
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Since the measurements from the inertial sensors and GPS take place in discrete
steps, for implementation purposes it is convenient to express Eq. (2.40) in discrete

time. Thus, Eq. (2.40) can be expressed such as

5Xk+1 = @k(SXx + Wk (241)

where

e 0x;,1,0X are the system state vectors at time ¢, and t;, respectively;

e &b, is a transition matrix relating dx; to dx;,1 in the absence of a forcing function;

and

e w; is the driven response at t;,; due to the white sequence input of the forcing

function during the (tg,tx.1 ) interval.

For an integrated navigation system the states 0x; that are usually part of the KF
are related to the position, velocity, attitude, sensors errors and any other parameter
that can be adapted into the equations of the system (Eq. (2.41)) and can contribute

to the overall improvement of the navigation accuracy.

The transition matrix @, that describes the system’s natural dynamics can be
calculated from F(¢) assuming that this is constant over the (¢j,t;41) interval of
interest [62|. Thus, @, can be calculated by the matrix exponential of F(t;)At, that

is,

(F()a0*

b, = eF(tk)At =1+ F(tk)At + 9]

(2.42)

where At is the difference between t;,; and ¢, in the case of the IMUs that are
used to test the INS, they provide measurements at a frequency of (1/At) = 100 Hz,

so the first two terms are sufficient to estimate the transition matrix [5|.

Based on the assumption that the system noise is a white sequence, wy will represent

the inertial sensors noise with zero mean Gaussian noise and known covariance matrix

Qk,
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E [wy] = 0 (2.43)

E [wyw?] = Qu &=k (2.44)

0, i#k
where E[e] is the mathematical expectation.

The covariance matrix Qg can be written in integral form [63,64]:

Q. - j B (1417) G (1) Q(7) GT (1) BT (t40,7) dr (2.45)

k

A solution of the above equation can be obtained by a trapezoidal integration
and considering that G (1) Q (1) GT (1) is constant in the time interval t; and tg,1,

yielding |63]

Q. ~ 5 [21G (k) Q () GT (th) + G (1) Q (th) G (ti) Py ] At (2.46)

N —

where the spectral density matrix Q(¢) is related to the white noises w(t) by
Q(t)6(t — 1) = E[w(t)w(r)], the operator é[e] denotes the Dirac delta function
with units 1/time [64].

2.6.2 Measurement Model

The measurement model describes the relationship between the states and the
measurements by the matrix Hi. The linear relationship between the observations

(measurements) and states considering additive noise is given by:

0z, = Hpoxy, + vy, (247)
where

e 0z, is a measurement vector at time ¢y ;
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e H; is a design matrix giving the noiseless connection between the measurement

and the state vector at time ¢, ; and

e Vv, is a measurement noise vector.

The measurement noise is assumed to be a white sequence with zero mean
and uncorrelated with the process noise. For the loosely coupled approach the
measurements are provided by the difference between GPS and INS outputs, that
correspond to position and velocity. The covariance matrix for the measurement noise

vector vy is given by:

E[vi] = (2.48)
R, i—k
E[viv?] =4 " (2.49)
0, ik
E[wev]] = :
wiv; | =0 forall k and i. (2.50)

where R, = F [Vkvf] is the measurement noise covariance matrix.

With the assumption of a prior estimate 0%, , the measurement vector dz; can
be used to improved the prior estimate. For this propose Kalman filter uses a linear
blending of the noisy measurement and the prior estimate in accordance with the

following equation |62]:

where §%; is the update estimate and K}, is the blending factor or better known as
the Kalman gain matrix that minimizes the mean-square estimation error and can be

expressed by:

K, = P;H} (H,P;H! + R;) " (2.52)

24



2 — Inertial Navigation System and GPS/INS Integration

where P, is the a priori accuracy estimate for the states given by 0xj.;, and it
can be calculated by the transition matrix (@), the a priori error covariance matrix
(P} _,) and the covariance matrix for the involved system noise Qx_1 as states in Eq.

(2.53) |5).

P, = &P P + Qi (2.53)

From Eq. (2.52) it can be noted that having a large uncertainty in measurement
(Rx) we will have a small Kalman gain, so a small weight will be given to the
measure (0z;) when we estimate 0x; (Eq. (2.51)). Moreover, if the uncertainty of
the measurement is small, K; will be large so it will give a significant weight when we
calculate 0x;7. This Kalman gain is also considered for updating the error covariance

matrix that is expressed as:

P/ =P, + K,H, P, (2.54)

Details of the derivation of K, P, and P} are available in [65], [64], or [62].

2.6.3 Extended Kalman Filter

Since the Kalman filter is only applied to linear systems and in the case of the inertial
system it is described by a non-linear model due to the navigation equations (see Eq.
(2.17)), the typical approach to deal with non-linear systems is to linearize about some
nominal point or trajectory, achieving a perturbation model or error model [63]. In the
inertial navigation the linearization is performed at the current state (nominal point),
and the KF that involves the linearization about the current state is referred to as an

Extended Kalman Filter (EKF) [66].

Thus the non-linear system represented by equations of inertial navigation system
(Eq. (2.17)), can be linearized around the current state. This procedure is performed
by perturbing the kinematic equations in order to obtain a dynamic error equations
for navigation system errors. In this sense, position, velocity and Euler angles can be

written as it follows [67]:
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o= r" + or"
\A,n — v + 5V” (255)
G = (I—(e)C

where " denotes the computed value position ("), velocity (v") and attitude DCM
(Cl’j), which are represented by the true value plus a perturbation (position errors,
velocity errors) denoted by 0, while the term (€"x) is associated with perturbation of

the attitude and is a skew-symmetric matrix of the attitude errors given by:

0 —€p €p
(€"x)=1 e 0 —ey (2.56)
—€R EN 0

According to [47|, the resulting error equations for this linearization approach in

the n-frame are given by the following error state model:

or" Frr Frv 03><3 or”
v | =| Fo Foo (%) || ov* | +Ww (2.57)
€" F.. F., —(wlx) €”

where the error dynamic matrix is comprised with nine states, which are position
error (0r"), velocity error (0v") and attitude error (€"). All the matrices F,, are
detailed in |5,59|, and the derivation of these error equations and similar ones can be
found in [47,67]. (f"x) is the skew-symmetric matrix of the specific force corrected
and expressed in the n-frame whereas (w, x) is the skew-symmetric matrix of rotation
vector of the n-frame with respect to the i-frame. Eventually the system noise vector

W is given by:

W = [ w. W, ]T (2.58)

where w, and w, represent the white noise on the accelerometers and gyros,

respectively. The correspondent spectral density matrix Q can be expressed by:
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diag(q, 03
Q- g(q ) 3x3 (2‘59)
03><3 diag(qg)

diag(vec) denotes a diagonal matrix with the elements of the vector vec. The

spectral density for each sensor (i.e., q, and q,) will be computed in Chapter 4.

Since Eq. (2.57) considers the INS error dynamics expressed in state-space form
as Eq. (2.40), this system error dynamic model also known as INS filter can be
implemented with KF. Note that the system dynamic matrix is in continuous time
so it can be expressed in discrete time through Eq. (2.42). In addition, the dynamic
model does not include the error states that would represent the IMU errors, those
errors need to be adapted to the model as IMU error states. This will be explained in

Chapter 3.

As it was shown in Fig. 2.7 in the loosely-coupled integration approach the
measurement of the INS Kalman filter is the difference between position and velocity
provided by the GPS and INS solution, that is, a residual error, so the measurement

matrix is given in discrete time by:

WPINS — PGPS

oR" e — Iy A - A
Sz, = _ INS GPS _ INS GPS (2.60)

ov" Vins — Vips hins — haps

| Vins ~ Vers
where ¢, A\, h are the latitude, longitude and altitude respectively.

In order to avoid numerical instabilities when computing the EKF because ¢ and A
are in radians and their values are very small, it is necessary to multiply the first two

rows of Eq. (2.60) by (M + h) and (N + h) cos ¢ to obtain [47]:

(M +h) (pins — vaps)

N+h Arvs — A
52y, — ( ) cos pArns = Aars) (2.61)

hins — haps

n n
Vins — Vaps
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where M and N are the radii of curvature in the meridian and prime vertical at a

given latitude, as reported by Eqgs. (2.14) and (2.15), respectively.

The design matrix Hy becomes |59

M+ h 0 000O0O0O0O O
0 (N+h)cosp 0000000
0 0 1000000
H, = (2.62)
0 0 0100000
0 0 00 10O0O0O0
0 0 00 01O0O0O0

Finally, the measurement noise matrix obtained from the GPS can be expressed as:

(M + h)? 02 0 0 0 0 0
0 (N+h)? - cos’p-05 0 0 0 0
0 0 2 0 0 0
Ry, — (2.63)
0 0 0 o2, 0 0
0 0 0 0 o 0
0 0 0 0 0 o

The value of each element in the diagonal matrix R, depends on the accuracy of
the GPS estimates |59]. Since we use a feedback loosely-coupled approach, the error

state vector is set to zero after every measurement updates |47,53,59,68|.

2.6.4 KF Algorithm

The algorithm for the KF implementation contains two stages, the first one known as

prediction and the second one update.

Prediction

This stage predicts the vector states and the uncertainty of the states by the following

equations.
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0%, = Prox; (2.64)

P, = &P/ P + Qi (2.65)

Generally, in the integrated navigation this stage is computed every time there is
a sample available from the inertial sensors, so it is executed even if there is a GPS
update or not. This also propagates the covariance matrix error and the states from
the current epoch to the next, and in case of a GPS outage, it will estimate the states

in order to compensate the navigation solution and the INS errors.

Update

The update stage is computed only when there is information available to the

measurement (i.e., from GPS) and is given by the following equations:

K, = Py H! (H,P,H! + R;)”' (2.66)

A summary of the algorithm for the implementation of the discrete EKF is depicted
in Fig 2.9.
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Figure 2.9: Discrete Kalman filter algorithm.
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Chapter 3

MEMS IMU Inertial Sensors Errors

3.1 Introduction

Although initially the use of strapdown systems was debated because of the full
dynamic motion experienced by the sensors and its computational requirements, in
the last decades advances in the computer technologies and sensors have led to show
more interest in this type of inertial systems [41]|. Indeed, an important aspect that
has promoted its use in many applications is the progress in the fabrication of inertial
sensors based on Microelectromechanical Systems (MEMS). This is because they are
low cost, lightweight and small size. Despite the fact that MEMS inertial sensors
have such characteristics these sensors require a proper error analysis to improve their
performance, which is one of the main objectives in this work. For this reason, in order
to have a better understanding of the errors that are involved in this inertial sensors
technology this chapter provides information about how they work, the different types
of sensors, how they are classified, general performance characteristics and finally a
description of the IMU is presented with the MEMS inertial sensors deterministic and

stochastic errors.
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3.2 MEMS Inertial Sensors

3.2.1 Microelectromechanical Systems (MEMS)

Development of silicon micromachining was introduced by Bell Laboratories in 1950’s
with the discovery of the piezoresistive effect of silicon |69, 70|. Besides that these
micromachined silicon sensors had advantages such as small size, low cost and
lightweight, there were two factors that made these devices attractive: the mechanical

properties and the readily available fabrication technology [70].

Over the years, advances in silicon micromachined systems and microelectronics
systems allowed to integrate mechanical devices together with electronic circuitry on a
single chip, one of the first developments was the accelerometer for air bag application

that is described in |71].

The fusion between these two system is known as a Microelectromechanical
Systems (MEMS) and it involves a mechanical and electronic design for development
of these devices. More exactly MEMS can be defined as devices that have
characteristic length of less than 1 mm but more than 1 micron, that combine
electrical and mechanical components, and that are fabricated using integrated circuit

batch-processing technologies [72].

Recently, MEMS inertial sensors are being used in a variety of applications,
especially in automotive applications, such as lane-keeping assistance, Electronic
Stability Control (ESC), preventing vehicle rollover, support to the GPS when there
is not a line of sight of the satellites, etc. One of the reasons for their high demand
in a wide range of application is their low price. To reduce the price, the size of the
sensor chip should be minimum and the structure and fabrication process should be
simple [73]. Although these aspects can be satisfied it is necessary to consider that

they play an important role in the accuracy of the sensors.

Due to the small size, these devices bring a low cost because they can be fabricated
using batch-processing production. However, the reduction in size of the sensing
element creates challenges for attaining good performance, since as size decreases, then

sensitivity (scale factor) decreases and noise increases [74]. According to Honeywell,
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one of the vendors of inertial sensors, there is a compromise between the nominal size of
a inertial sensor and its long-term bias stability, ¢.e., the smaller the device the lower
the performance, while the larger the device the less significant the long-term bias
instability and, hence, high performance (see |75] for further details). Next section
describes the operational principle of the inertial sensors in order to figure out why the

small size affects their performance.

3.2.2 Operational Principle of MEMS Inertial Sensors

The fundamental concept of operation of an inertial sensor can be described from
Fig. 3.1. It shows a proof mass, which is suspended to a mechanical frame by means
of springs. There is also a pickoff which relates the displacement of the mass to an
electrical signal. Thus, when an input force is applied to the structure, there is a
displacement of the proof mass, the resultant displacement can be measured by the
pickoff that senses the applied force indirectly. Depending on the inertial sensor, its
transductor may associate the input force with an acceleration of the mass or a Coriolis
acceleration induced by an angular rotation of the mass (i.e., vibratory rate gyroscope),

which would be the case of an accelerometer or a gyroscope, respectively.

ta

Mechanical

frame
Pick-off

\

Proof
masa

Spring
Figure 3.1: Electro-Mechanical mass/spring system for a simple accelerometer.

There are different transductor methods to transform the input force of interest into
a response in the proof mass, for further details refer to [43,76]. A high-quality inertial
sensor generally possesses high transduction gain, while rejecting the effects of parasitic
forces on the proof mass; these forces affect the performance of the sensors and they

are associated to packaging and stresses induced by undesirable forces acting on the
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proof mass due to motions of a type other than the one to be sensed [2]|. The reduction
of these parasitic forces involves developing more complex mechanical structures and

circuitry in order to obtain the best performance of the sensor.

Since the proof mass that comprises an inertial sensor is small, as well as its
movement that is associated with the physical signal to be sensed (e.g., angular velocity
or acceleration), there are several factors not only parasitic forces but also temperature
effects, noises in the interface circuits etc, which make it difficult to obtain an accurate

measurement of the movement of the mass.

Accelerometers

MEMS accelerometers measure acceleration that is typically provided in g, where 1 ¢
is equivalent to 9.81 m/s*. Accelerometers development appears more mature than
gyro development, due primarily to the push for the reliable crash detectors in the

automobile market, so gyro development is the limiting factor in achievable accuracy

in a MEMS IMU [75].

These sensors not only measure Earth gravity but also linear acceleration due to
motion. Fig. 3.1 illustrates a simple accelerometer, that, as mentioned, it measures the
displacement of the proof mass which is related to the applied force, the input force

can be generated by the motion of the sensor or by gravity.

Sensing acceleration due to gravity requires a DC measurement and in consumer-
grade accelerometers natural frequencies appear in the low-kilohertz range, so ten of
nanometers mechanical displacement occurs at DC for 1 g acceleration |2]. For a given
sensitivity, to discriminate between the force due to acceleration and parasitic forces
due to others factors such as thermal stress, it is useful to maximize both mass and

spring stiffness |2|, which implies an increase in the size of the device.

Gyroscopes

These inertial sensors measure angular rate and the units are typically given in deg/h.

The vast majority of the reported micromachined rate gyros utilizes a vibratory proof
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mass suspended by flexible beams above a substrate |76|, which is known as a vibratory

gyroscope.

MEMS gyros are more challenging to manufacture than accelerometers, in fact,
they are larger devices with higher cost and can require as much as 10 times more

power than the MEMS accelerometers |75].

The basic architecture of a vibratory gyroscope is comprised by a drive-mode and
a sense-mode. The drive-mode generates and maintains a linear drive oscillation or
rotatory drive oscillation depending on whether the gyroscope implementation is with
a linear or torsional resonator. The sense-mode measures the sinusoidal Coriolis force
induced due to the combination of the drive vibration and an angular rate input [76].
Fig. 3.2 depicts a generic z-axis gyro, the proof mass requires to be free in a way that
allows movements in two orthogonal directions (i.e., x and y directions), this enables
the proof mass to have movements with two degrees of freedom (2-DoF). In this simple
gyroscope, the sense-mode consists of a proof mass, the suspension that allows the proof
mass to oscillate in the y direction represented by k,, and the sense-mode detection
electrodes associated to C),. Similar to the sense-mode, the drive-mode is comprised by
the proof mass, a suspension that allows to oscillate the mass in the x direction given by
k., and the drive-mode electrodes related to C,. When the gyroscope is exposed to an
angular rate, in this case, to sense z-axis (yaw) angular rate, a sinusoidal Coriolis force
at the frequency of the drive-mode oscillation is induced in the sense direction. The
Coriolis force excites the sense-mode accelerometer causing the proof mass to respond

in y direction, this response is reflected in the detection electrodes |76].

Sense
Y | direction

y

Drive Applied X
direction angular rate

Figure 3.2: Electro-Mechanical mass/spring system for a simple vibratory rate
gyroscope.
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Figure 3.3 illustrates a simplified version of one of the MEMS gyroscopes used in
this thesis, the structure is similar to an accelerometer, which has a proof mass (inner
structure) suspended by springs. As mentioned previously the difference in operation
is that the angular velocity is derived by measuring the Coriolis force on the vibrating
mass. When the structure is exposed to an angular rate, the Coriolis force couples
sense into an outer mechanical frame (outer structure), which contains movable fingers
that are placed between fixed pickoff fingers. The fingers can also be seen like combs
where the capacitance change between them when there is a movement of the frame,

for further details about this gyro refer to [77].
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Figure 3.3: Simplified gyro sensing structure of one gyroscope of the 3DM GX3 25
IMU.

0l
10l

The absolute value of the Coriolis force is extremely small in consumer-grade MEMS
devices and it is difficult to precisely measure the movement of the structure |73].
Indeed, a small displacement generated by the Coriolis force that is not precisely
measured may lead to a large error in an inertial navigation system since it induces
a bias in the measurements of the inertial sensor that are used as input of the
Mechanization stage described in Section 2.4. Therefore, techniques such as Kalman

filtering are being used to correct this error and related errors in navigation systems [73].

In general, there are many contributors to the noise in an inertial sensor, for
instance: the readout electronics, mechanical damping, electrical resistances, etc;
MEMS sensors are so small that just a Brownian motion agitates bacteria and dust

motes, which can be a large force on a tiny MEMS component [78]. In [3] the
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mechanical-thermal noise in micromachined sensors is analyzed by adding a noise force
in a simple accelerometer, similar to the one showed in Fig. 3.1. The noise force
includes Brownian mechanical noise from air damping and electronic noise from the
readout circuit. According to Gabrielson |3], the Brownian force F' = v/4kgT D causes
Brownian motion of the proof mass m, and in order to get the noise response, the signal
excitation displacement is set to zero and the response of the mass/spring system
is solved in terms of the noise force, so it gives a Brownian equivalent acceleration

noise |79]:

\VA4kgT' D
9b,B = g (3.1)

where kp is the Boltzmann constant, 7' is the ambient temperature, D is the
damping coefficient of the proof mass m and ¢ is the Earth’s gravity. From Eq. (3.1)
we see that a large mass help to achieve a low noise floor [79]. Regarding the damping,
it results from many sources, but for inertial sensors air damping is typically dominant;
for a low damping, it is important to hermetically seal the mechanical elements to allow
operation of the sensor at low pressure, hermetic sealing also prevents contaminants,
particles, and moisture from interfering with the sensor operation [2|. In order to have
a larger mass, bulk micromachining process can be used to produce wafer-thick proof

masses. This fabrication process is described in the following subsection.

In addition to mechanics perturbations, the interface circuit also plays an important
role in the overall performance of the whole system [80]. This is because inertial sensors
require dedicated microelectronics circuitry in order to achieve a signal conditioning to
properly relate the sense movement of the proof mass into an electrical signal that will
be the sensor output. In this stage, one of the most significant noises that appear in
the electronic component of the MEMS sensors is the flicker noise. According to [81]
the noise spectrum of the flicker noise in a MOS (MetalaASOxideaASSemiconductor)

transistor can be expressed by:

ke 1

vj%lick:er - CoxWL? (32)

where ky is a process-dependent parameter that indicates how clean the fabrication
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process is, C,, is the gate oxide per unit area, W and L are the drawn transistor
geometry and f is frequency. From Eq. (3.2) it can be seen that the magnitude of
the flicker noise depends on the geometry of the transistor, ¢.e., the smaller is the size
greater is the flicker noise affecting the device performance. Further details about low

level mechanical and electrical analysis of different noise sources in inertial sensors can

be found in [2,3,79-81].

3.2.3 Classification of MEMS Inertial Sensors

There are different approaches to classify MEMS inertial sensors, among them: the
fabrication process, the method to detect the position of the proof mass and the mode
of operation [75]. In this case, the classification by the fabrication process will be

described, for further details about other approaches refer to |5, 43].

The essence of all micromachining techniques is a successive patterning of thin
structural layers on a substrate and depending on the structural layer forming
technique, micromachining processes are usually divided into two categories: bulk

micromachining and surface micromachining |76].

Bulk Micromachining

Bulk micromachining process was first developed for pressure sensors in the sixties and
it has become a mature technology that has been under intensive development [70].
This entails controlled material removal on the substrate to transfer a desired pattern
into the structural layer. Most of bulk micromachining processes bound two or more
wafers, and the moving structures are made out of the whole thickness of a silicon
wafer [76]. This thick structural layer created in a bulk machined sensor offers
advantages because it increases the mass and the area available to detect changes
with the capacitive electrodes. Thicker suspension beams also provide higher stiffness,
which reduces shock and vibration susceptibility [76]. In general, this process improves
the mechanical stability and thus the inertial sensor performance. Nonetheless, the
size of bulk micromachined sensor is bigger than a surface micromachining sensor

because of its large mechanical structure, which is a factor to take into account for
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mass production. Additionally, the sensing structure is process-incompatible with the

interface circuitry [75], which also makes it difficult to be cost effective.

Surface Micromachining

Surface micromachining process was introduced in the 1980’s to achieve a process
compatible with CMOS (Complementary Metal-Oxide-Semiconductor) manufacturing
technology. In contrast to bulk micromachining that is a subtractive process, surface
micromachining is an additive technique, so the devices are built by depositioning
multiple stacks of alternating structural layers |76]. It offers better process control
of structural thickness and size [70]. Therefore, the size of a surface micromachined
sensor is smaller compared to a bulk micromachined, which is a characteristic that

makes them attractive for mass production.

Since this is process-compatible with standard integrated circuit manufacturing, it
makes easy its integration with other electronic components such as control, filtering
and signal conditioning stages. Indeed, an Application-Specific Integrated Circuit
(ASIC) is usually adapted to MEMS sensing element in order to implement the
electronic circuitry required to interface of the inertial sensors. In spite of this, surface
micromachined have relatively thin proof mass and, hence, high mechanical noise which

degrades the performance of the inertial sensor |75].

Table 3.1 summarizes the advantages and disadvantages for the MEMS sensors
according to the fabrication process. For further information about different fabrication

technologies using these two processes refer to [76].

3.2.4 General Characteristics of MEMS Inertial Sensors

The growing demand of micromachining devices has led to combine surface
micromachining together with bulk micromachining processes to a point that it is
not easy to differentiate between them. Despite this, generally inertial sensor used in
low cost INS are built with surface micromachining processes, which implies small size

but also low performance.
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Table 3.1: Classification of MEMS sensors according to fabrication processes (adopted

from [75]).
Categor Sensing Advantages Disadvantages
gory element & &
A thin silicon  Suites well for .
. . Relatively low
Surface structure integration aceuracy and
microma- located on the with other y
chining surface of a electronic swall
i bandwidth
die components
A single Better Larger size,
Bulk micro- crystal inside accuracy that more expensive
machining a block surface micro-  and not good
sandwiched machining for integration

Since inertial sensors are a fundamental component in an INS, errors involved in
each sensor need to be minimized in order to enhance the INS solution. This may
be carried out through various laboratory tests, where the objective is to analyse
and determine the characteristics of the errors that are affecting the inertial sensors.
Subsequently, the parameters obtained from the analysis, that provide information
of the errors, are adapted into the INS with the purpose of correcting them. In the
case of the loosely-couple GPS/INS integration, the error compensation is achieved
at the sensors output measurements, i.e., at a stage prior to the navigation equations
due to the fact that if they are not attenuated there, they will be amplified during
the integral operation, degrading in this way the INS solution. Before analysing the
errors, in the following subsections, general specifications that are often provided by
the manufacture and some of the most important performance characteristics of MEMS
inertial sensors are described. These characteristics are the bias, bias instability, scale
factor, temperature-dependent bias/scale factor, vibration sensitivity, nonlinearity and

shock survival.

Bias

Although there are several types of bias when we refer to inertial sensors, according
to [82], the bias can be defined as the average over a specified time of accelerometer/gyro

measured output that at specified operating conditions has no correlation with input
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acceleration or rotation. This error can be caused by various effects ranging from
manufacturing tolerances until temperature gradients. In [83| the bias is defined as
any nonzero output when the input is zero. This variation of the sensor output is
a deviation of the measurement from the true value, which has consequences in the

system where the MEMS sensors are mounted.

The bias is widely used as a performance indicator of an inertial sensor, in general
the lower the bias the better the performance. It is necessary to take into account
that the size of the bias is independent of any motion to which the sensor may be
subjected and is sometimes referred to as the acceleration (or ¢) independent bias [43].
Furthermore, the bias can be broken down in different categories, when it is constant
from turn-on to turn-on and when it varies randomly at each turn-on. It will be studied

in Section 3.3.2.

In the case of an INS, a small bias error will have less influence in the integration
stages of the INS and thus a minor error in the navigation solution. A simplified
example can be given assuming that an accelerometer has a bias of by = 0.005 g
and no other noise or disturbance is involved. If there is not compensation of this
bias, the velocity error will be proportional to ¢ (time), while the position error will be
proportional to ¢ (see Eq. (3.3)). That is, if there is not movement of the accelerometer
the position error may reach 88.2 m in only 60 sec. Note that this is a simplified analysis
since it does not consider all the errors that can potentially affect a low cost INS. A

similar analysis for both accelerometers and gyros can be found in [5].

vszfdtzbft pzfvdtzg (3.3)

At this point it is worth noting the difference between the terms run-to-run and
in-run, for instance, the run-to-run bias, refers to changes in a parameter for each run.
This is because every time the sensor is switched on, a slightly different bias value is
observed [84]. This error is constant once the sensor is switched on, here on we will
call it turn-on bias. Moreover, in-run bias is an error that occurs due to change in bias
during a run [5]. This error is related to the bias stability that will be explained below.

The same definitions are valid for scale factor.
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Bias stability

A term that is normally found in the specifications of inertial sensors is the bias stability,
which refers to a measured of the bias changed over time. In other words, bias stability
measurement provides information about how stable the bias of the sensor is over a
certain specified period of time [85]. In order to obtain this parameter several measures
of the sensor should be performed at different time intervals to determine the bias
changed over time. Nonetheless, several concerns arise, as for instance: how many
intervals should be evaluated? What should be the size of each interval? What is the
bias stability? To address these concerns the bias stability is computed by means of
Allan variance technique, where the minimum Allan standard deviation corresponds
to the bias stability. For a complete procedure to compute the bias stability see [86].
Although Allan variance was initially introduced to characterize noise and stability in
clock systems, it has become popular in the INS community hence it is often employed
for noise identification and analysis in inertial sensors. A detailed description of this

technique will be presented in Chapter 4.

Albeit the bias stability is a reference parameter to compare or select a gyro or
accelerometer, and even though it is provided by the manufacture in some low cost
sensors, there are others error sources involved in the MEMS sensors that are not less
relevant. For instance, they exhibit scale factor errors, sensitive to external factors

such as vibrations and temperature.

Scale factor

The scale factor relates the output signal changes of the sensor with the physical signal
changes at the sensor input (i.e., acceleration and angular velocity). This term can
be determined from the curve where the z-axis is the sensor input and the y-axis is
the sensor output, thus the slope of the best fit line provides the scale factor (see Fig.
3.4). An ideal sensor has a scale factor of 1, hence, any scale factor is above or below
1 is contaminated with sensor errors |5|. The difference between the scale factors of
the two curves (i.e., ideal and measured) represents the scale factor error, which is

commonly expressed as a ratio of output error to input, in parts per million (ppm) or
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as a percentage (%) for low cost MEMS inertial sensor [43]|. By the scale factor curve
additional errors can be identified such as scale factor nonlinearity and scale factor

asymietry, which are associated to thermal changes.

Temperature-dependent bias/scale factor

The temperature-dependent variations can be quite pronounced in very low cost MEMS
sensors [5]. In fact, changes in the temperature of the device involves changes in the
scale factor and the bias of the sensor. Dependence on temperature can be analysed
by a thermal test, which determines changes in the sensors characteristics when the
sensor is exposed to temperature variations. An additional limiting factor is the
temperature hysteresis, that is, the difference in output at a specific temperature when
that temperature approached via cooling versus heating [87|. Further details about

thermal tests can be found in [43,84].

Vibration sensitivity

In most of applications where INS are employed the inertial sensors are subjected
to movement and vibrations that perturb the measurements. Generally, the inertial
sensors are sensitive to accelerations and it changes depending on the frequency of
vibration. This sensitivity is due to imperfections in the mechanical structure, which
causes bias that are proportional to the magnitude of the applied acceleration (i.e.,
g-dependent bias, g?-dependent bias, etc). The sensitivity to vibrations can be defined
as a steady state error in the output while vibratory disturbances are acting on the

sensor [82].

Although the vibratory rejection is not specified for the majority of low cost
inertial sensors, this is a characteristic that is becoming more and more important
when selecting an inertial sensor, even more than the traditional bias stability. This
is because vibration sensitivity is often the more severe performance limitation and
the bias stability represents a smaller component of error |[87]. Despite this, MEMS
inertial sensors are designed using extremely simple and compact mechanical systems

that are not optimized for vibration rejection (rather, they are optimized for low cost)
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and can suffer due to vibration greatly [87]. In order to provide vibratory rejection
anti-vibration mounts can be used. Nevertheless, these mechanical assemblies are not
easy to design and they also increase the size of the sensors, as well as the vibration

reduction characteristics varies depending on the temperature.

Nonlinearity

From the straight line fitted to the plot of input-output characteristics (see Fig. 3.4)
a nonlineal trend can be observed if we compare with the ideal linear curve (slope
1). This is sometimes associated to the inherent nonlinearities of the sensors 88| and
thermal effects [43], and can be defined as a systematic deviation from the straight line

that defines the nominal input-output relationship [82].

A V(volts)

|-

acc (Tg)

Figure 3.4: Relationship between the output voltage and input acceleration (angular
velocity) (Adopted from [88]).

Shock survival

This is defined as the maximum shock that the operating on non-operating device can
endure without failure, and conform to all performance requirement after exposure [76].
To evaluate this parameter a shock test is achieved, which consists in measuring the
response of a sensor to an applied shock and to establish the resilience of the sensor to
such an applied acceleration over a very short duration, typically in the order of few
milliseconds [43]. After performing the test characteristics such as bias are compared,
that is a comparison before and after applying the shock, so it can be determined

whether there has been a transient or a permanent change after exposing the device to

the shock.
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Similar laboratory test can be assessed in order to evaluate their performance under
certain environmental conditions, for example: thermal test, centrifuge test, vibratory
test, etc. The behavior of specific parameters can be determined through the analysis
of the lab tests, and also the ability to endure shocks and vibrations that can be
induced by the vehicle where the sensors are assembly. In this sense, the objective
of these tests is to have a better understanding of the behavior of the sensors in
different situations that may occur in a certain application, as well as to determine
performance characteristics of the sensor that can be compensated and thus enhance
their accuracy. Hence several errors influence the MEMS inertial sensors, in this case
we emphasis in the bias, scale factor and thermal sensitivity due to the fact that these
are some of the main error sources when low cost MEMS sensor are used in land inertial
navigation systems. Therefore, the following three sections present the MEMS IMU
characteristics including different performance categories of IMUs; subsequently, we
focus on the deterministic and stochastic errors of inertial sensors where the bias, the

scale factor and the temperature effect are analysed.

3.3 Inertial Measurement Unit (IMU)

The inertial measurement unit (IMU), which is a fundamental part of the INS, is the
device where the inertial sensors are mounted; it provides accelerations and angular

rotations along three orthogonal directions with respect to an inertial frame (Fig. 3.5).

These measurements provide information about the motion of the vehicle, that
are then corrected and processed by the mechanization stage with the aim to obtain

position, velocity and attitude of the host vehicle.

For some of the experiments conducted in this thesis two inertial measurement units
based on MEMS technology were used. On one hand, the Microstrain 3DM-GX3-25
IMU that includes a triaxial accelerometer, triaxial gyro, triaxial magnetometer and
temperature sensors (Fig. 3.6(a)). It also has analog anti-aliasing filters that are
followed by a digital moving average filter. These stages are implemented on a
board processor of the IMU 3DM-GX3-25. This IMU offers a range of output data

quantities, including fully calibrated inertial measurements: acceleration, angular rate,
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Figure 3.5: Inertial Measurement Unit (IMU).

and magnetic field; it can also output computed orientation estimates: Pitch, Roll, and
Heading (Yaw) or rotation matrix [89]. The 3DM-GX3-25 MEMS IMU is constituted
by surface micromachining gyros, specifically, one is the vibratory rejection ADXRS642
which has a price in the market around $48.82 for quantities between 100 and 499. With
respect to the accelerometers, it uses two AD22293 containing surface-micromachined
sensors and the cost of a device is less than $10 per unit. The characteristics provided

for this IMU (MEMS grade) can be seen in Table 3.2.

Figure 3.6: (a) 3DM-GX3-25 IMU; (b) Atomic IMU.

On the other hand, the Atomic IMU from Sparkfun (Fig. 3.6(b)) is equipped with
three gyros ST LISY300AL with analog output and a single chip MMA7260Q from
Freescale Semicondutors, which allows different sensibility levels. It includes an Atmel
ATMegal68TM processor running at 10 M Hz with 6 dedicated 10 —bit ADC channels
reading the sensors [90]. The price of the inertial sensors is less than $5 per unit.
Unfortunately the bias stability is not provided for the Atomic IMU, so it is expected
to be very poor (see Table 3.2). Further details about the characteristics of the Atomic
IMU provided by the manufacturer can be found in [90].
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Table 3.2: MEMS IMUs available in the lab of Microelectronics and Electronics
Systems at UAB.

IMU Atomic 6DoF | 3DM-GX3-25
Price (ke) 0.09494 1.769
Acc technology MEMS MEMS
Bias Acc (ug) - 5000
Gyro technology MEMS MEMS
Bias Gyro (deg/h) - 720
Synchro signals NO NO

Given that in this research we adopted low cost MEMS inertial sensors, for the sake
of comparison with other IMUs, next section presents the classification of these devices

and how they are categorized according to qualities like cost, size and performance.

3.3.1 Classification of IMUs

Typically the IMUs can be classified according to their performance and the type
of application where they are implemented. The applications can be divided in
consumer-grade, where MEMS inertial sensors are usually low cost and they are
suitable for motion sensing, freefall detection, man-machine interface, etc. Moreover,
tactical IMUs are classified between high performance IMUs and they are employed in
unmanned underwater vehicles (UUVs), unmanned air vehicles (UAVs), torpedoes,
camera stabilization, land navigation, oil drilling etc. Navigation and strategic
IMUs are very accurate devices that are used in navigation missiles, autonomous
vehicle navigation, stabilization of equipment and weapon platforms. To facilitate
the comparison between MEMS IMUs and different IMUs Table 3.3 summarizes the
performance characteristics of different inertial sensors, including bias, weight, prices,
signal synchronization and errors in position when there is support from an external
device like the GPS. Most of the information that is depicted in this table has been
collected from [91-95].

Although low cost MEMS IMUs are widely used in several applications due to their
small size and low cost, their performance remains as the major limitation. With the
purpose of studying specific characteristics that can lead to the improvement of the

MEMS IMU performance, the following section is dedicated to explain the errors that
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Table 3.3: Inertial Measurement Units categories.

Grade Low cost Tactical Navigation Strategic
Price (ke) <2 <15 > 10 > 50
Weight (kg) <1 0.5 -2 >4 )
Bias Acc (ug) > 2000 100 — 1000 10 — 50 <1
Bias Gyro
> 10 < 10 < 0.01 < 0.0001
(deg/h)
Synchro signals NO YES YES YES
Positioning error | - o > 0.33 <0016 | <0.0005
(km/min)

are typically involved in these devices.

3.3.2 MEMS IMUs Errors

In a low cost INS, the measurement of the accelerometer and gyro sensors is affected by
different errors, which can be classified as deterministic and stochastic errors [5]. Fig.
3.7 depicts some of these errors through a simple relationship between IMU physical

signal and the sensor output.

) Random
Bias Error

Physical T Sensor
signal_’l Misaligment l—bl Scale factor l—b{ % —>( % Houtput

Figure 3.7: Inertial sensor errors including misalignments, scale factors, biases and
measurement noise [88].

Deterministic errors are due to manufacturing and mounting defects and can be
calibrated out from the data; on the other hand, the stochastic errors are the random
errors that occur due to random variations of bias or scale factor over time [5]. There
are several errors that affect the MEMS IMU devices and among the most significant
are: the misalignment errors that are the result of non-orthogonalities of the sensor
axes and are usually treated as deterministic error (see Fig. 3.8). The scale factor
that was described in Section 3.2.4, which represents the sensibility of the sensor, and
it is the result of manufacturing tolerances or aging; it is usually divided between a
linear and a non-linear part, where the linear part is obtained from calibration, while

the non-linear is modeled with a stochastic process [13]. In the case of the bias, it
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is divided between bias turn-on and bias-drift: the bias turn-on is constant, but it
varies from turn-on to turn-on and is considered as a deterministic error; the bias-drift
presents a random behavior and needs to be modeled with a stochastic process [18].
Regarding the random error (Fig. 3.7), this is an additional signal resulting from noise
of the sensor itself or other components that interfere with the signal provided by the

sensor; it is also considered part of the stochastic error of the sensor.

Figure 3.8: IMU misalignments: The nonorthogonal axes of the accelerometers
{X®Y? Z% can be aligned with the orthogonal body axes {X°Y? 7%
through the six angles {ay,00.,000 002, 0g,0zy } [88]

As previously mentioned the inertial sensors are also sensitive to environmental
factors like temperature, pressure, vibrations, electric and magnetic fields, etc |28,96].
These changes cause the output of MEMS sensors to vary. Since it is very likely
to have changes, particularly, in parameters such as scale factor and bias, for the
analysis carried out in the next sections the temperature is maintained constant,
which will make easier to interpret the results. Since this thesis will not cover all
those environmental factors, we will study variations of the scale factor and the bias
under different conditions like temperature, especially, temperature dependency of the

bias-drift, which will be explained in Chapter 4.

The deterministic errors can be minimized before implementing the mechanization
equations by following different procedures in the laboratory. These lab tests are known

as the calibration of the IMU and will be presented in the next section.
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3.4 Inertial Sensors Deterministic Error

Despite the benefits provided by the GPS/INS integration that were described in
Section 2.5.1, the obtained accuracy and convergence time of a GNSS aided INS is
highly dependent on the quality of the IMU sensors output |22]. In fact, the ability of
the INS to bridge GPS outages depends on the inertial sensor errors, if they are not
treated properly it might cause a rapid degradation of the integrated system during
GPS outages. Thus, when the GPS is not available, position, velocity and attitude
predictions of the vehicle will be strongly affected due to the fact that the errors will
be accumulated in the INS. Therefore, the calibration of the IMU is critical for the

overall system performance [88].

With the purpose of minimizing deterministic errors such as: turn-on bias, scale
factor and non-ortogonalities, the calibration is performed by following a procedure

that is detailed below.

3.4.1 Calibration

The calibration can be defined as the process of comparing instrument outputs with
known reference information and determining coefficients that force the output to agree
with the reference information over range of output values [97]. In order to carry out
this process, the measurement of the inertial sensors are described in terms of the

parameters associated with the errors as it is stated in Eq. (3.4) and Eq. (3.5) [43,98].

£y ~ (I+ S, + 0Sy) f + by + dby + W, (3.4)
Wimy & (I+ S, +0S,)w + b, + db, + w, (3.5)
b, 0b, Wy
ba,g = by 5 5ba,g = 5by ) Wag = Wy 5
b, ob, w,
a,g a,g a,g
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Sa,g = Sya; Syy Syz 5 5Sa,g = 5Syx 5Syy 5Syz ;
Sz:v Szy Szz 5Sz:v 5Szy 5522
a,g a,g

where f;,,, and w;,,, are the raw measurements provided by the IMU, representing
linear acceleration (m/s?) and angular rate (rad/sec), respectively, b, , are vectors
comprising biases, while db, , are vectors that comprise residual biases, vectors w4
correspond to an additional white noise with zero mean. The subscripts a and g are
associated with accelerometers and gyros, respectively, while the superscripts {x,y,z}
are related to the sensor in each direction of the body frame; I is a 3 x 3 identity matrix,
and f and w are the true linear acceleration and angular rate, respectively. Finally,
the terms S, 4 represent the scale factor errors and non-orthogonality errors, which are
included in the diagonal and non-diagonal elements, respectively. dS,, is a matrix
with the residual scale factor errors and residual non-orthogonality errors, which are

also included in the diagonal and non-diagonal elements, respectively.

Considering Eq. (3.4) and Eq. (3.5), the deterministic components corresponding
to the IMU errors are the turn-on bias (b, ), the misalignment and linear scale factor
error (S,,). These parameters will be obtained off-line (calibration in the lab) and
will be introduced to correct the errors of the IMU. Thus, the corrected output of the

measurements provided by the sensors would be given by:

' ~ (I+0S,) f + db, + w, (3.6)

wh ~ (I+6S,)w + db, + w, (3.7)

Although the deterministic errors are minimized by laboratory calibration, f* and
w}, should still be corrected, this is due to the fact that residual errors remain [43].
The residual errors are typically estimated during navigation through the EKF that
was described in Section 2.6.3, however the system model needs to be augmented with

the IMU error states, that would be related to the residual errors.
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The compensation in the loosely-coupled integration is performed by means of the
closed loop with INS corrections that was shown in Fig 2.7, so the residual errors
are associated with random errors, that according to Eq. (3.6) and Eq. (3.7), they
correspond to bias-drift (0b, ), non-linear scale factor and residual non-orthogonality

errors (0S, ), whereas (w, ) is the additive random noise.

These random errors are typically modelled with stochastic models, where the
processes that are usually used to compensate them are white noise, random walk,
first order Gauss-Markov, autoregressive processes, etc. A study of these processes is

detailed in Section 3.5.

3.4.2 Multi-position Calibration Method

To obtain the parameters that represent these deterministic errors (i.e., b, , and S, )
and minimize their effect during navigation, there are two methodologies. One is the
six-position direct method and the second one is the one that we adopted to achieve the
laboratory calibration procedure, which El-Diasty in [15] called six-position weighted
least squares method. We focused on the last one since it takes into account the
non-orthogonality errors. This method consists of placing the IMU in six-positions,

i.e., one by each side considering the IMU as a cube.

Since the calibration requires an excitation signal that is used as reference, the
gravity is used for the accelerometers and a known angular rate for the gyros. The
latter needs a turntable which rotates with a specific angular rate that is used as

reference signal.

The following three sections present the laboratory tests that were achieved for
the calibration of the IMUs, specifically, two experiments were realized one for

accelerometers and one for the gyros.

3.4.3 Accelerometers Calibration

For the accelerometers, the IMU was initially placed on a levelled table using a cube

shaped mounting frame, where the excitation signal for the z-axis down is the gravity

(9) (Fig. 3.9(a)).
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y
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(a) Down position. b) Up position.

Figure 3.9: Up and down position for calibration of z-axis accelerometer with gravity
as reference signal.

In this IMU position the measurements from the accelerometers were taken during
60 sec and then the average was computed for each accelerometer (Av(f dow), . .); so

the expected observation equations are obtained from Eq. (3.4), where the additive

noise and the residual errors are eliminated since their expected values are zeros [15]:

Av(fim), 10 0 Sue Suy Si 0
Av(fimnr)y | = 01 0|+ | Sy Sy Sy 10
Av(fiam), 00 1 S Sy S| ) |9
-
+| b, (3.8)
b, .

The experiment was repeated but this time placing the IMU with z-axis in the
up direction (see Fig. 3.9(b)). This procedure was performed for each one of the
accelerometers, which led to the following matrix form equation for the six-position

static test [15]:

where

(3.10)
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w7 =

Av(f%;l) -9

( Yup

imu/T

)
Av(fim)

Av(fim)

Av( i)

rmu

T

T

g 0 0 0 O |

0 —g g 0 0

0 0 0 —g ¢

1 1 1 1 1
Av(fimn)y Av(fimi)-
Av(fim)y Av(fimn)=

Av(fimu +9  Av(finh)-

Av(fimdy =9 Av(fin)-
Av(fimdy  Av(finh)= +
Av(famidy — Av(fam)= =

(3.11)

(3.12)

Now solving Eq. (3.9) by least square we can estimate the calibration parameters

for the accelerometers, which are included in matrix X,.

3.4.4 Gyros Calibration

Although the calibration of navigation and tactical gyroscopes can be performed by

using as a reference signal the Earth rotation rate, for low cost inertial sensors this is

not valid because the Earth’s reference signal can be completely buried in the noise

levels |84]. Therefore, it was necessary to mount the IMU on a turntable using a cube

shaped frame (Fig.

3.10).

speed of the motor adapted to the testing table.

o y Winown
G v

IMU

g

(a) Down position.

z
y
% wknown
;s

X

wn

g

(b) Up position.

In this test the excitation signal was determined by the

Figure 3.10: Up and down position for calibration of z-axis gyro with known angular
velocity as reference signal.
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Analogous to the accelerometer case, we collected data from the sensors with the

z-axis is in the down direction and subsequently the average from the three gyros was

estimated:
Av(w;own),. 1 00 Sz Sey  Suz 0
Av(wjdowm) | = 01 0 |+ Sy Sy Sy : 0
Av (wfr(ifﬁm )Z 001 SZ:E Szy Szz Wknown
- g
by
+ | b, (3.13)
b.

— g

After reading the measurements from the six-positions on the testing table, the six
observation equations can be written as a single equation in matrix form as it was
stated in Eq. (3.9). Then by using the least squares method, the deterministic error

coefficient matrix X, are estimated.

3.4.5 Thermal Calibration Test

With the purpose of applying the six-position weighted least squares method and
determine the variations of the deterministic errors with the temperature, a thermal
test was performed in the laboratory of Microelectronics and Electronics Systems at
Universitat Autonoma de Barcelona. In this experiment the IMUs available in the lab
(See Table 3.2) are adapted to a turntable are enclosed in a thermal chamber, which
was configured to remain constant temperatures of 10 °C, 20 °C, 30 °C' and 40 °C
degrees, each of them lasting 30 min. The method of recording the data at specific
temperature points is called the soak method and is typically used to calibrate the
inertial sensors [5]. The IMUs were configured with a sampling frequency of 100 Hz
and connected to a battery of 5 v to feed the devices. For the free rotation of the

turntable we used a Bluetooth device to send the inertial sensors data to a PC.

The values for accelerometers and gyroscopes that were obtained at a temperature
of 20 °C" are shown in Table 3.4 and Table 3.5 for the atomic IMU and for the 3SDM-GX3
IMU, respectively.
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Table 3.4: Accelerometers and gyros deterministic errors for the Atomic IMU at 20 °C.

Bias Scale
9 Factor Non-Orthogonalities
(m/s%)
Error
Sy 0.014
Acc X 0.567 0.019 S, 0.017
Sy 0.024
Acc Y 0.770 0.025 S,. 0.016
S.a 0.037
Acc Z 1.357 —0.001 S., 0.009
Bias Scale
Factor Non-Orthogonalities
(rad/s)
Error
Say —0.07
Gyro X —0.78 —0.06 S.. _0.83
Sy —0.15
Gyro Y 0.22 0.08 S,. 0.01
S.a 0.18
Gyro Z —0.28 —0.10 S., 0.01

Figure 3.11 shows the variation of the scale factor error for gyroscopes in both
IMUs. The Atomic IMU has a more significant change compared to the 3DM-GX3
IMU as it was expected. This temperature variation in the parameters must be taken
into account in the error model of the inertial sensors, so it can be compensated to

improve performance navigation system.

T
==Gyro X -Gy X

02 Gyro Y 012+ GyroY
—+GyroZ +Gyr0Z

I=3
i~

0.15

0] \
0.05

Scale factor error
Scale factor error

-0.05

-0 \/

015 ‘
10 15 2 % 30 3

N N9 1 1 L I}
: 0 " 55 0 5 W % 0
Temperature C Temperature C

(a) (b)

Figure 3.11: (a) Variation of gyros scale factor error for the Atomic IMU; (b) Variation
of gyros scale factor error for the 3DM-GX3 IMU.
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Table 3.5: Accelerometers and gyros deterministic errors for the 3DM-GX3-25 IMU at

20 °C.
Bias Scale
9 Factor Non-Orthogonalities
(m/s%)

Error
Sazy 0.014
Ace X —0.018  —0.002 S 0.008
Syz —0.002
Acc Y 0.008 —0.001 S,. 0.0%
S.w 0.027
Acc Z —0.26 —0.012 S., 0.020

Bias Scale

Factor Non-Orthogonalities
(rad/s)

Error
Say 0.042
Gyro X 0.002 —0.015 S.. 0.004
Sy —0.006
GyroY —0.032 —0.012 S, 0.001
Su 0.003
Gyro Z 0.013 0.041 S.. 0.002

The following section makes emphasis in the description of the main random errors
involved in the inertial sensors, this also presents the state-space form of different
stochastic models and how they are adapted into the Kalman filter in order to
compensate the random errors. The stochastic processes explained are typically used to
model the bias-drift that affects the INS. It is worth pointing out that the identification,
analysis and extraction of the parameters of the random errors, specifically for the

bias-drift, are performed in Chapter 4.

3.5 Inertial Sensors Stochastic Error

In this section we focus our attention on the stochastic error, specifically, in the
bias-drift (0b,y), since the stochastic modeling of this error is a challenging task,
not only because of the random nature, but also because it seriously affects the
performance of a navigation system. For further details of the impact of this error, refer
to [99,100], where it is showed how the position error grows when different bias-drift

are affecting the inertial sensor measurements. Therefore, a suitable estimation of
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the stochastic model parameters of this error will improve the performance of the
INS; as a consequence, the input error to the mechanization stage (Fig. 2.5) can be
compensated and, in turn, the position error minimized. Regarding the misalignment
errors (i.e., non-diagonal elements of §S, ,), they will be not covered in this thesis since
the calibration is particularly useful for the removal of them, these should be relatively

constant over time assuming a rigid body IMU platform [66].

3.5.1 Noise Terms

This section describes the noise terms that can be identified using Allan variance (AV)
and Power Spectral Density (PSD) by fitting straight lines. Most of these errors are
shown in Fig. 3.12, where an hypothetical curve of a inertial sensor after computing the
PSD is shown. Below the types of noises are summarized as well as Table 3.6 depicts

their curve slope and the equivalent coefficient value [9, 11].
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Figure 3.12: Hypothetical PSD in single-sided form of an Inertial Sensor [11].

Rate\Acceleration Random Walk (K)

This is a random process of uncertain origin, possibly a limiting case of an exponentially
correlated noise with a very long correlation time. It can contribute to the gyro (rate)

or the accelerometer (acceleration). Its coefficient is denoted by K and is represented

by a slope of 1/2 in AV and —2 in the PSD.
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Table 3.6: Random error for Power Spectral Density analysis [9].

. Coefficient
Noise type PSD Curve slope 1
value
Quantization (Q) (27Tf)2Q2T8 2 Q=%
Angle\Velocity 9
N 0 N=4/S.:
random walk (N) 2
CTC ‘
Correlated (q.) % 0,—2 see |9]
> discrete
Si idal ({2 2 — see |9
inusoidal ({2) 3 [6(f — fo)] spectra 9]
Bias instability B2
B) W’O -1 B=2.51,/5,(1)
Rate\Acceleration & \?
i —2 K=2m4/8z(1
random walk (K) (27Tf> @
Rate ramp (R) % -3 R=15.754/52(1)

1 s,(1) power spectral density of = evaluated at 1H=

Bias Instability or Flicker Noise (B)

The origin of this noise is the electronics or other components that are susceptible to
random flickering [9]. According to Eq. (3.2), in a transistor it is associated with the
contamination in the processing of materials. Although it can be reduced by cleanliness
practices, it still persists; it occurs at low frequencies and it is temperature and
frequency dependent [101]. Flicker noise is widely found in nature, occurring in physics,
biology, astrophysics, economics, psychology and even in inertial navigation [102-104],
however, no generally recognized physical explanation has been proposed [105]. The
flicker noise is represented by the flat region in AV and a slope of —1 in the PSD (see
Fig. 3.12).

Angle\Velocity Random Walk (N)

Angle (gyros) and velocity (accelerometer) random walk is characterized by the white
noise of the inertial sensors; this noise presents high-frequency terms that have
correlation time much shorter than the sample time [9]. It has a slope of —1/2 in

AV and 0 in the PSD.
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Quantization Noise (Q)

The quantization noise is one of the errors introduced when the continuous signal is
approximated by a discrete signal. That noise is caused in the analog-digital converter
where a continuous value is associated with a level of quantization with finite word
length, the amount of levels depends on the resolution of the converter. This noise is

represented by a slope of —1 in AV and 2 in the PSD.

Drift Rate Ramp (R)

The error terms considered so far are of random character. However, the drift rate
ramp for long, but finite time intervals is more a deterministic error rather than a
random noise |9]. The PSD method cannot distinguish between the rate random walk
and the rate ramp. Thus, the rate ramp must be removed before applying the PSD
method [106]. However, It can be identified in a log-log AV plot with a slope of 1.

The following errors are not as common in the inertial sensors as the five previous

noise terms, however, they can be identified using the Allan variance method.

Exponentially Correlated (Markov) Noise (q.)

This noise is characterized by an exponential decaying function with a finite correlation
time (7;). In a log-log AV plot, for a time cluster much longer than 7, time its behaviour
is the same as the angle random walk and for a time cluster much smaller than 7. its

behaviour is the same as the rate random walk.

Sinusoidal Noise (%)

This noise is resulted from periodic environmental changes and its PSD is characterized
by one or more distinct frequencies. A low-frequency source could be the slow motion
of the test platform due to periodic environmental changes. This error is represented
in AV with multiple frequency sinusoids, where the amplitudes of consecutive peaks
fall off rapidly and may be masked by higher order peaks of other frequencies making
observation difficult [9].
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3.5.2 Inertial Sensor Error Models

In the previous section different random noises that can be identified with AV and PSD
were presented. This section will described the stochastic processes that are usually
used to model some of these noise terms and also the state-space representation that

is implemented in the EKF for modelling the random errors.

White Noise (WN)

White noise is defined to be a stationary process having a constant spectral density
function [62|. This noise can be considered as a signal containing all the frequency
components, similar to white light (hence the name) that includes all the visible
frequencies. It has the particularity that its output at any instant of time is independent
of previous values, therefore its autocorrelation is characterized by a Dirac delta.
Although white noise is an idealized concept it serves as approximation to situations in
which a disturbing noise is wideband compared with the bandwidth of a system [64].
It can be used to model the random noise of an inertial sensor showed in Fig. 3.7
that is part of the stochastic error, it is associated with the noise term angle/velocity
random walk (N) that is obtained with Allan variance or PSD (see Sections 4.3.3 and
4.3.4). Additionally, a number of random processes can be generated by passing white
noise through a suitable filter [64], which is appropriate for KF since Gaussian noise
disturbances for the process noises and measurement noises can be represented by white
noise. Moreover, the models of the INS residual error can be implemented through a
certain shaping filter (i.e., a linear dynamic system that can be adapted into the KF)
that uses as input white noise to yield an output of time-correlated (or colored) noise,

which will change the correlation characteristics of the white noise [107].

Random Constant (RC)

The random constant is a non-dynamic quantity with a fixed, albeit random, amplitude
[64]. The continuous and discrete random constant are described by Eq. (3.14) and
Eq. (3.15), respectively.
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i =0 (3.14)

Tey1 = Tk (315)

Non-orthogonalities and turn-on bias of sensor triads can be dealt with random
constants, bias-drift of the inertial sensors can also be considered as random constant,
if the operation time is very short. If the operation time is very long even if the state
is constant, it will be preferable to add noise intentionally, which results in a random

walk process [51], although this is not suitable for low cost inertial sensors.

Random Walk (RW)

The random walk process results when uncorrelated signals are integrated, for instance

when white noise is integrated. Its continuous and discrete representation are

T=w (3.16)
Th+1 = T + Wy (317)
where w is a white noise with noise covariance g, = q(tp41 — tx) = qdot. The

uncertainty of the random walk increases with time, therefore it is a non-stationary
process [64], however, it can be considered stationary within small time intervals
[108]. Since an INS integrates signals from accelerometers and gyros, the white noise
components are integrated, this will increase the uncertainty of velocity and attitude
[51]. Parameters that represent random walk are related with the rate/acceleration
random walk (N) described in Section 3.5.1, they are obtained through the Power

Spectral Density or Allan Variance analysis, which will be explained in Chapter 4.

Random Ramp (RR)

Some random errors exhibit a time-growing behavior, for instance the drift rate ramp
(R) described in the previous section; in these cases the random ramp which grows
linearly with time can be used to describe them [64]. The growth rate of this function

is a random quantity with a given probability density, the states vector differential
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equation and its corresponding discrete representation are described by two variables

[64]:

T = Ty (3.18)

Za = 0 (3.19)

Tp1 = T1g + (L1 — ti)Tok (3.20)
Togt1 = Tk (3.21)

First-order Gauss-Markov Process

Gauss-Markov (GM) random processes are stationary processes that have exponential
autocorrelation functions [15]. This process is important because it is able to represent
a large number of physical processes. First order GM process is one of the most common
processes for modeling random errors of the inertial sensors when the variation sensor
error is slow, in high-end sensors this can be done with a large correlation time 7. For

the first order GM process the continuous model is described by the following equation:

i L+ (3.22)
r = ——== w .
1.

where x is a random process with zero mean, correlation time, 7., and driven noise,

w. The corresponding discrete time equation can be written as:

_ YT,

T Tp—1 + Wg (323)

where At is the sampling time and wy, is a white noise with noise covariance:

oo =02 (1- e*Mt/Tc) (3.24)

where o7 is the covariance of the process.

Once the correlation time (7;) and the driven noise variance (o7, ) are obtained, the

model of the first order GM process can be implemented with Eq. (3.23). According to
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Eq. (3.23), if T, = oo, then Gauss-Markov model becomes a random walk model. On
the other side, if T, = 0, it becomes a white noise. The first order Gauss-Markov model
parameters can be estimated using least squares fitting of the estimated autocorrelation
values for gyro and accelerometer measurements [29]. Also Allan variance can be
used to determine 7, and the variance of the driven noise wy, a description of how to

determine these parameters can be found in [4,9,13,26].

The first order Gauss-Markov process can be used to model the flicker noise, this
is because it is sometimes approximated as the combination of several exponentially
correlated noise terms as it is stated in [26]. The flicker noise can be approximated over
a bandwidth given as a sum of exponentially correlated noises [11], so the sequence of

processes formed by many first order GM process can be expressed by:

vk = ), T (3.25)

where y; would be the flicker noise model, x; would be given by Eq. (3.23) and n
would be the number of GM processes to be added. The correspondent power spectral

density of the exponential correlated (Markov) noise zj is denoted by S.(f) [63,64]:

203/T,
(2 f)? + (1/T.)’
In Eq. (3.25) it should be considered that processes zi at different T,’s are
independent [109].

(3.26)

The flicker noise is very common in inertial sensors, but why can it be approximated
as a sum of first order GM processes? This is because this noise was discovered by
Johnson [110] while doing experiments to study the shot noise in vacuum tubes, then
Schottky [111] attempted to describe it mathematically with a Lorentzian spectral
density, which have similar representation to the power spectral density of a exponential
Markov correlated noise (Eq. (3.26)), i.e., a white noise for low frequencies, a random
walk for high frequencies and between them there is a slope of —1 that can represent

the flicker noise (see Fig. 3.13).

Later Bernamont [112] proposed a superposition of these processes to represent

flicker noise and more recently Erland and Greenwood [113] considered a collection of
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Figure 3.13: Hypothetical power spectral density of a first order Gauss-Markov process
for a Gyro.

first order autoregressive processes. In the case of inertial sensors, the flicker noise
has already been modelled as a sum of first order GM processes, for further details

see [6,8,27,28|.

Combinations of Random Processes

A typical bias-drift of a inertial sensor can be represented by a combination of different
random processes, such as white noise (WN), random walk (RW) and first order GM
processes. These processes can be added into the KF by writing them in a state-space
model. According to the previous definitions, a random process that combines WN,
RW and first order GM can be generated using the following discrete time-invariant

state-space model:

x 1—B8At) 0\ [=x o 1 — e24YTe
A ey AT L ) Wy (3.27)
T2 A 0 1 ) b1 ORWV At

by, = (1 1) L (aWN/\/E) g (3.28)

X
2 k

where oy is the standard deviation of the white noise process, ory is the standard
deviation of the random walk process, 5 and ogys are the inverse of the correlation

time (7.) and the covariance of the first order GM process, respectively. dby is the
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result of combining WN, RW and first order GM. Eqs. (3.27) and (3.28) are easily
adapted into the KF equations, since they are represented in state-space form. In this

example, the bias-drift (6b) would be modeled by the combination of three noises, i.e.,

b =WN + 1¥*GM + RW.

Autoregressive (AR) Process

An AR process is a time series produced by linear combination of past values, which

can be described by the following linear equation [114]:
p
z(n) = — Z agz(n — k) + Bow(n) (3.29)
k=1

where z(n) is the process output, which is a combination of past outputs, plus a white
noise, w(n), with standard deviation, fy; p is the order of the AR process and «ay are

the model parameters.

In order to include the AR process in the EKF transition matrix, it is necessary to
express Eq. (3.29) in state-space form. If we consider a third order AR, process, the

corresponding state-space form can be expressed as follow [62]:

xq 0 1 0 xq 0
| =1 0 0 1 To +1 0 |wn) (3.30)
3] —Q3 —Qz —o 3] Bo

This represents the AR model in state-space for one of the inertial sensors. It should
be noted that if the order of the AR model increases by one, the variables in the state
vector of the Kalman filter will increase by six, since this model is applied to each axis

of inertial sensors.

The stochastic processes that are used to model the inertial sensors bias-drift are
augmented into the Kalman filter, as was explained in this section. In order to obtain
the parameters of each stochastic process, an analysis of the sensors data needs to be
done. The methods addressed to get these parameters are discussed in Chapter 4, as

well as the experimental analysis of each method for low cost IMUs.

For more details of higher orders of GM processes and others stochastic models

see [15,41,64,107|.
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Chapter 4

Stochastic Modelling of MEMS

Inertial Sensors

4.1 Introduction

This chapter is divided in two parts. The first part is focused on the identification and
modeling of the bias-drift stochastic error applying the most used techniques currently
available to analyze these random processes and we present the mixture of the wavelet

de-noising technique and Allan variance.

The second part of the chapter begins in Section 4.5, where we continue studying
the bias-drift stochastic modelling of inertial sensors and we explain the constrained
non-linear fitting (NLF). In order to assess the performance of the NLF, a simulation
analysis is achieved by generating noise sources that typically influence the inertial
sensors. Then, we compared the NLF with the (EM) [21,115] that is a recent method

that deals with complex noise structures.

4.2 Identifying and Extracting Stochastic Model

Parameters

The stochastic modeling of the inertial sensors is a challenging task that in most

practical cases, it is performed by tuning the GPS/INS Extended Kalman Filter,
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which is often sensitive and difficult, by using sensors available specifications, but
low cost sensors do not provide enough information to develop this sort of models, or
by experience [116]. Therefore, there are different works that have been achieved in
order to obtain a suitable estimation of the stochastic model parameters |7,12, 19,20,
24,117]. In this section, we describe the most used methods for noise identification
and extraction of the noise parameters for stochastic modeling of inertial sensors.
Additionally, an introduction to the wavelet de-noising technique is presented at the

end of the section.

4.2.1 Autocorrelation

The autocorrelation is one of the most important functions to describe a random process
due to the fact that it indicates the similarity degree of a random signal between two

instants of time t1,t5. For a random process x(t) it is defined as:

0 o0
Rz (th,ts) = f f 1122 [z (21223 tite)dw 1 dxy (4.1)
—0 J—w

where z1 = z(t1), x2 = x(t3) and f, is the joint density function. The double
integral arises as consequence that at the time instant ¢; the amplitude of the signal
x(t1) is associated with the random signal z; and at the time instant ¢5 the amplitude

of the signal z(t) is associated with xs.

The autocorrelation function has been used in previous works to analyze the
stochastic error of the inertial sensors [19,20], and also to obtain the parameters for
modeling using the first order Gauss-Markov (GM) process. As it was mentioned in
the previous chapter, this process seems to fit a large number of physical processes

with reasonable accuracy.

For a random process, =, with zero mean, correlation time, 7., and driven noise, w,
the first order Gauss-Markov (GM) process is described by Eq. (3.22). The parameters
needed to implement this process can be extracted from its autocorrelation function
(Fig. 4.1), which is given by:

Ry (1) = o2e Pl (4.2)
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where the correlation time is 7, = 1/8 and o? is the variance of the process at
zero time lag (7 = 0). The most important characteristic of the first order GM
process is that it can represent bounded uncertainty, which means that any correlation

coefficient at any time lag, 7, is less or equal the correlation coefficient at zero time

Figure 4.1: The autocorrelation function of the first order Gauss-Markov process.

An example of two first order GM processes that may be part of the bias-drift
of the inertial sensors are depicted in Fig. 4.2(a), where two bias-drift with different
characteristics can be seen (i.e., T, and 0?), process T, presents faster variations than
process 1. Computing their autocorrelation functions and drawing the result as it
is shown in Fig. 4.2(b), it can be observed that a random signal with fast variations
(x2) has a greater value of autocorrelation over short time lag (7) than over large time
lag because of its similarity in short periods of time, while the autocorrelation curve
of a process with slow variations (z7) decreases slowly which indicates that there are
similarities even when time lag is large. In MEMS inertial sensors more than two of

this noises can be found making complex noises structures.

One of the limitations of this method is that an accurate autocorrelation curve from
experimental data is rarely done, due to the fact that the data collected is limited and
finite. As it is discussed in [62], the accuracy of the autocorrelation depends on the

recorded length data.

In |19, 20, 117|, it was shown that the autocorrelation function of experimental
inertial sensor data might not be as a first order GM process, which is equivalent to a

first order autoregressive process. This means that only a first order autoregressive
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Figure 4.2: (a) Accelerometer bias-drift modeled with two different first order Gauss
Markov processes; (b)Autocorrelation curve of two first order Gauss
Markov processes.

process may not be adequate to model the bias-drift behavior that affects the
performance of the inertial navigation system. In fact, in most of the cases when low
cost IMU are used, the shape of the autocorrelation follows higher order Gauss-Markov
processes. As a consequence, higher orders of autoregressive processes are more
appropriate to model inertial sensors stochastic errors [107]. Despite this, the
autocorrelation analysis can be useful to determine the correlation grade of the
underlying random processes that affect the sensors and, also, if the uncorrelated noise
can be highly attenuated after filtering the sensor signal. This issue will be discussed

in Section 4.3.1.

4.2.2 Autoregressive Processes

To avoid the problem of inaccurate modeling of inertial sensor random errors, as in
the case with the low-precise autocorrelation function, described in previous section,
another method, which was introduced in [20], can be applied. There are different
works where the autoregressive (AR) models have been evaluated, some of them are

well detailed in [19,20,114,117].

Although first order Gauss-Markov (GM) process has been very useful for modeling
random errors of inertial sensors, better stochastic modeling can be achieved by

modeling these errors as higher order AR models [19]. In addition, the autocorrelation
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of the random error for MEMS sensors often seems to follow a higher order GM process,

which can be modeled using an appropriate AR model.

According to Eq. (3.29), this is assumed that the coeflicients (g, o) are computed
so that the linear system is stable, making the model stationary [64|. It should be
noted in Eq. (3.29) that if p = 1, then the AR process approximates first order GM
processes. On the other hand, if p = 1 and a; = —1, it becomes a random walk
(RW), and if oy = 0, it would be a white noise (WN). The coefficients of this process
are estimated by Burg’s method, since it overcomes some of the drawbacks of other
methods by providing more stable models and improved estimates with shorter data

records [118].

In this thesis, we focus on AR models up to the third order, since a higher order
would increase the computational load and might result in unstable solutions [20]|. This
method is usually used after applying wavelet de-noising to the static inertial sensor

data, which is explained in Section 4.2.5.

4.2.3 Power Spectral Density

Power spectral density (PSD) is an important descriptor of a random process, because
it provides information of the signal that is not easy to extract from the time domain.
The PSD is related to the autocorrelation function with:
o
5.(70) = FIRua(D)] = | Runlr)e r (1.3
—
where, S, (jw) is the power spectral density of the process, x, F [-] indicates Fourier

transform, and R,,(7) is the autocorrelation of the process, = [11].

Basically, the PSD is used to identify the stochastic errors of the inertial sensors
(i.e., bias-drift) from the frequency components, and the parameters obtained from the

PSD are eventually used in the stochastic model of the INS.

Fig. 3.12 depicts a hypothetical inertial sensor PSD in single-sided. According to
this curve, the noise sources might be identified considering the slopes, i.e., a slope
of —2 represents the rate\acceleration random walk noise for gyro and accelerometer,

respectively. Obviously, the number of random noises that might be present in the
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curve depends on the type of sensors. Table 3.6 shows the PSD function associated
with different random noises, it includes the corresponding curve slope and coefficient
value for various noises terms depicted in Fig. 3.12. The noise terms that can be

identified with the PSD are well detailed in |9,11,12].

So far, we have presented the autocorrelation, where the stochastic model
parameters are extracted from the autocorrelation curve, the autoregressive processes
that estimates the coefficients of an AR model applying Burg’s method over the
de-noised sensor data and the power spectral density that identifies the noise terms
based on the slopes in a log-log PSD curve. The following section will describe the

Allan variance technique, which is similar to the PSD, but in the time domain.

4.2.4 Allan Variance

The Allan variance (AV) is a time domain analysis technique originally developed to
study the frequency stability of oscillators [17]. More recently, this has been successfully
applied to the modeling of inertial sensors [14-17, 24|, and two key documents to
determine the characteristics of the random processes that give rise to the measurement
noise of the sensors using this technique are [9,12]. As such, AV helps in identifying

the source of a given noise term in the observed data [9].

The Allan variance is estimated as follows:

N—-2n

1
) Z (0k+2n - 20k+n + ek)Z (44)
k=1

2
™=~
)= N =

where T' represents the correlation time, or cluster time, i.e., the time associated with
a group of n consecutive observed data samples, N is the length of the data that will
be analyzed and 6 is the output velocity, in the case of the accelerometers, and output
angle, in the case of the gyros; these measurements are made at discrete times from

the inertial sensors.

The basic idea to estimate the AV is to take a long sequence of data (N), where the
IMU is in a static condition. After having removed the turn-on bias from the gyros’
and accelerometer’s stored data, the output of the inertial sensor is integrated to get

. Thus, the AV can be computed through Eq. (4.4).
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In AV, the uncertainty in the data is assumed to be generated by noise sources
of specific character, as for instance, rate random walk, angle random walk, bias
instability, etc. In order to obtain the covariance of each noise source affecting the
sensor output, it is necessary to analyze the computed AV result by Eq. (4.4). This
is usually achieved by plotting a log-log AV curve, as depicted in Fig. 4.3, from which
the covariance values for each error can be extracted doing a similar analysis to the

one performed with the PSD curve.

Ao SlanC T OIS

Figure 4.3: Hypothetical Allan variance (AV) of an inertial sensor [9].

Table 4.1 summarizes the AV function for different segment of the curve related to
various noise terms, it includes the curve slope and coefficient value representing the

random noises shown in Fig. 4.3.

Table 4.1: Random error for Allan variance analysis [9].

X Coefficient
Noise type AV Curve slope 1
value
Quantization (Q) 31%2 -1 Q = o(V/3)
Angle\Velocity N2 1
= —5 N =o0(1
random walk (N) T 2 o(1)
T.=o(1
Correlated (q.) q%T7@ %, — % ch ‘0 aaé))))’
.=
) p)
Sinusoidal ({2) 22 (%) 1, -1 see [9]
Bias instability 9 o(To)
B) (0.664B) 0 B = 5
Rate\Acceleration K2T 1
= K =
random walk (K) 3 2 o(3)
Rate ramp (R) @ 1 R =0(+/2)
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The AV obtained from Eq. (4.4) is related to the two-sided PSD by:

1) =4 [ ar-s.(p)- 2L (1.5

where S, (f) is the PSD of the random process, x, written in Eq. (4.3).

An interpretation of Eq. (4.5) is that the Allan variance is proportional to the total
noise power of the sensor output when passed through a bandpass filter with transfer
function sin*(7fT)/(wfT)?. This filter depends on T, which suggests that different
types of random processes can be examined by adjusting the correlation time (7).
Thus, the AV provides a mean of identifying and quantifying various noise terms that

exist in the data [9].

Computation of AV needs a finite number of clusters that can be generated from
the raw data measurements of the sensors. Depending on the size of these clusters,
AV can identify any noise term that is affecting the data sensor. It is important to
mention that the estimation accuracy of the AV for a given 7" depends on the number
of independent clusters within the data set |[9]. The bigger the number of independent
clusters, the better the estimation accuracy. It has been described in [12] that the
percentage error of AV, ¢(0), in certain o(7") and with a data set of N points is given

by:

o(6) = —— (4.6)

2(% - 1)
where N is a set of data points collected from the sensors and n is the number of data
points of the cluster in estimating o(7"). Eq. (4.6) shows that the estimation errors in
the region of short cluster length, 7', are small, as the number of independent cluster
in these regions is large. On the other hand, the estimation error in the region of long

cluster length, T', are large, as the number of independent clusters in these regions is

small [9,12].

For example, if 360000 data points are collected from an inertial sensor and if we
want to compute the estimation accuracy of the AV for a bias instability (Fig. 4.3) with
a characteristic time of 10 min, we will have 60000 points with a sampling frequency
of the sensor equal to 100 Hz. According to Eq. (4.6), the percentage error of the AV

for this random process would be approximately 32%.
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The following section presents wavelet de-noising technique, which will be combined

with autoregressive processes, as well as Allan variance.

4.2.5 Wayvelet De-Noising

The Discrete Wavelet Transform (DWT) is a widely used technique in digital signal
processing, and one of its characteristics is that it allows us to do a multiresolution
analysis. Basically, when DWT is applied to a signal, z(n), this is filtered with low-pass,
ho(n), and high-pass, hi(n), filters (the coefficients of each filter depend on the wavelet
function). Subsequently, a sub-sampling by two is done. Wavelet multiple levels of
decomposition (LOD) are obtained by repeating this stage on the sub-sampled output
of the low-pass filter, ho(n), as shows Fig. 4.4. After applying DWT, the spectrum
of the signal, x(n), is divided into different sub-bands with different resolutions, as
can be seen in Fig. 4.5. The most significant coefficients of the signal, x(n), are the
approximations (Ay). This means, that they have the majority of the information of
the signal, while the high-frequency components are know as details (Dy), and as its
name says, they are details of the signal, x(n), that in most cases, are high-frequency

noise components.

1st level of 2nd level of 3rd level of 4th level of
decomposition decomposition decomposition decomposition
| | | |
| | | | A
I I 4y h(n) |2 H—p
| | g |
4 h(n) L2 |42
41 - | | D3
x(n) I|k hu(”) 12 | hy(n) 2 T ID »
I M I ' N
» | | | |
Iy (n) 12 0 I | Ly

Figure 4.4: Filter banks of the discrete wavelet transform.
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Figure 4.5: Band frequency distribution after applying four levels of decomposition.

Moreover, wavelet de-noising takes advantage of the sub-band decomposition

performed by the DWT and removes the noise by eliminating the frequency components
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that are less relevant; in general, this procedure is called wavelet de-nosing and is well

described in [22,107,119,120].

This technique is the current state-of-the-art technique used in the accuracy
enhancement of inertial sensors [20, 22,23, 25|. Since inertial sensors are composed
by long-term and short-term noises, wavelet de-noising can be applied in order to
remove part of the high-frequency components (short-terms noises). Although wavelet
de-noising of INS sensors has had limited success in removing both noise components,
it has been combined with AR processes and the autocorrelation function by using the
inertial sensor measurements in static conditions. Basically, when it is applied in the
autocorrelation method, the uncorrelated noise is removed using wavelet de-noising in
order to obtain a smooth autocorrelation function that can be associated to a stochastic
process. In the case of the AR process, wavelet de-noising is applied, and then the AR

coefficients are estimated from the residual noise.

Wavelet de-noising might be used to remove long-term noises (low-frequency) by
increasing the level of decomposition that at the same time, increases the number of
frequency bands that can be de-noised. However, in land vehicle applications, these
low-frequency components consist not only of long-term noises, but also of vehicle
motion dynamics. Since wavelet de-noising can be used to remove the high-frequency
components and the AV method can be used to model the long-term noises without
removing the vehicles motion, these two methods are combined in order to enhance the
INS accuracy. The mixture between these two techniques is addressed in the following

section, as well as the experimental analysis for each method explained.

4.3 Experimental Analysis

In order to evaluate and compare the previous methods, the static data for analysis
was obtained from the IMU 3DM-GX3-25 MEMS grade of MicroStrain (Fig. 3.6(a)).
The IMU was configured with a sampling frequency of 100 H z, and the second moving
average filter stage implemented in the microcontroller was adjusted with a filter width
of 15; this means an attenuation of 14.16% at 20 H z; for further details of this digital
filter, which is embedded on the IMU, see [121].
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The characteristics provided by the manufacturer can be seen in Table 3.2. The
test for static analysis was conducted in a room temperature at the Navsas laboratory,
Politecnico di Torino [122]. Seven hours of static data were collected in order to
analyze the inertial sensors data with the methods that were explained previously.

The following sections provide details of the analysis achieved for this IMU data.

4.3.1 Autocorrelation Analysis

After the seven hour-length data collecting, we used the autocorrelation method to
achieve the analysis of the random errors that affect the accelerometers and gyroscopes
of the IMU. Nevertheless, before processing the raw samples, we removed the turn-on
bias for each sensor. Then, the high-frequency terms were attenuated by applying the
wavelet de-noising technique. The idea in this step is to minimize the uncorrelated
noise that is present in the sensors. Subsequently, the autocorrelation is calculated
(Fig. 4.6(b)), and the corresponding parameters should be extracted from the curve.

In the case of the first order GM process, they would be stated as 7. and o, respectively.

Fig. 4.6(a) depicts the normalized autocorrelation function of the accelerometers
before applying de-nosing, while Fig. 4.6(b) corresponds to the autocorrelation curve
after de-noising with six levels of decomposition using Daubechies 4 as the wavelet
function. This autocorrelation shows clearly that the residual noise of the z-axis
accelerometer after applying wavelet de-noising is still dominated by terms that are
uncorrelated. With respect to the other two-axes accelerometers (i.e., y-axis and
z-axis), their correlations seems to have more correlated terms than in the x-axis
accelerometer case, so a high order autoregressive model could be used to model their
residual noise, since the autocorrelation curve is similar to the curve of high order AR

processes (see [20,64]).

The same wavelet de-noising procedure was repeated to analyze the gyroscope’s
characteristics. The results are depicted in Fig. 4.7(a). This curve shows that the signal
for the three gyroscopes is mainly dominated by short-term noises (high-frequency
components), which are related to white noise. After applying wavelet de-noising with
six levels of decomposition using Daubechies 4 as the wavelet function (Fig. 4.7(b)); the

autocorrelation shows that the three gyros have similar characteristics, and although
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part of the uncorrelated noise was removed, the remaining signal for the gyroscopes

still has a representative white noise component.

In the case of inertial sensors based on MEMS technology, the assumption that the
stochastic error follows a first order Gauss-Markov process is not valid in most of the
situations. This can be visible by comparing Fig. 4.1 with Figs. 4.6(b) and 4.7(b),
where it can be seen that they are different from the autocorrelation function of the
first order Gauss-Markov process. This is because these sensors are composed by more
complex noise types, and first order Gauss-Markov is only a rough approximation of
this complex structure of noises. Nonetheless, for the sake of comparison with the
different models and to validate this analysis, a first order AR process is also assessed

in Section 4.5.3.
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Figure 4.6: (a) IMU 3DM-GX3-25 autocorrelation for accelerometers; (b) IMU
3DM-GX3-25 autocorrelation for accelerometers after applying wavelet
de-noising with six levels of decomposition (LOD).

It is worth mentioning that the uncorrelated noise could be minimized by applying
more levels of decomposition during the wavelet de-noising procedure, or a very high
order autoregressive model could be used to create the model. However, the use
of such a complex AR model in the integration filter would drastically increase the
matrices sizes, as well as the computational burden. In addition, due to the fact that
the autocorrelation has some other limitations (see Section 4.2.1), the method that
will be analyzed in the following section is more appropriate to model higher order

autoregressive processes.
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Figure 4.7: (a) IMU 3DM-GX3-25 autocorrelation for gyros; (b) IMU 3DMGX3-25
autocorrelation for gyros after applying wavelet de-noising with six LOD.

4.3.2 AR Models

Since the autocorrelation is a low-accurate technique to identify the noises affecting
a low cost INS, a method based on AR models have been used to overcome this
issue (see [20]). It consists in combining AR processes and wavelet de-noising to
reduce high-frequency noise and, consequently, to obtain the AR coefficients from the
residual noise. In other words, after minimizing the short-term error (high-frequency
components) with wavelet de-noising, the residual noise could be modeled by an AR

model.

For static drift data of the inertial sensors, the approximation part of the DWT
includes the earth gravity, the earth rotation rate frequency components and the
long-term error, while the detail part of the DW'T' contains the high-frequency noise
and other disturbances [20,120].

By working with inertial data collected in a stationary condition, we first applied the
wavelet de-noising technique, and then, the AR model coefficients were estimated with
Burg’s method. This procedure is executed for each sensor and for two AR models: first
and third order. In this work, the attention is focused on these two models, because
the first order AR models is one of the most used in the navigation field, and also up
to the third order, because as it is explained by Nassar et al. [20,117], the higher order

would increase the computational load and might result in unstable solutions.
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Table 4.2 depicts the parameters obtained with Burg’s method for each inertial
sensor using the wavelet de-noising characteristics described in the previous section. It
shows the coefficients for the first and third order AR process that correspond to the
stochastic process explained in Section 4.2.2. These AR model coefficients are estimated
after computing wavelet de-noising in stationary conditions, which was described in

Section 4.2.5.

Table 4.2: Autoregressive process coefficients for each inertial sensor obtained with
Burg’s method after wavelet de-noising with six LOD.
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4.3.3 PSD Analysis

The power spectral density was implemented using Welch’s method, since this has been
found to have the widest application in engineering and experimental physics [123]. In
this case, we have applied a Fast Fourier Transform with 2?° data points for the seven
hours of the data collection. The results for the PSD are shown in Fig. 4.8(a) for

accelerometer data.

Figure 4.8(a) depicts the one-sided PSD for accelerometers data. This log-log plot
shows a bunch of high-frequency components, which makes it difficult to identify noise
terms and obtain parameters of the stochastic model. The variance in these short-term
noises may be decreased by averaging adjacent frequencies of the estimated PSD [18|;
this task can be accomplished by using a technique that is called frequency averaging;

further details of this technique can be found in [11]|. Fig. 4.8(b) shows a PSD curve
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Figure 4.8: (a) Power spectral density accelerometer IMU 3DM-GX3-25; (b)
power spectral density accelerometer IMU 3DM-GX3-25 after frequency
averaging.

after applying frequency averaging; it can be noticed that the noise term identification
is easier than in Fig. 4.8(a), and although the low-frequency part of the PSD plot
has a high uncertainty, it still conveys some information |11]. According to Fig. 3.12,
which was presented in Section 4.2.3, there are three types of noise: the acceleration
random walk (K), the bias instability (B) and the velocity random walk (N). Fig. 4.8(b)
shows that the z-axis accelerometer has a bias instability (slope —1) smaller than the
other two accelerometers, and the velocity random walk is almost the same for all the

accelerometers (slope 0).
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Figure 4.9: Power spectral density accelerometer Z IMU 3DM-GX-25.

The values for each noise parameter (B,N,K) were extracted drawing straight lines

for each frequency band influenced by the noise. The interception of each line with
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a specific point was taken into account. For instance, the PSD curve for the z-axis
accelerometer is plotted in Fig. 4.9; it also includes straight dotted lines for each noise,
N, B and K, with their respective slopes, 0, —1,—2. The acceleration random walk (K)
is present in the low-frequency components between 1 x 10~* Hz and 2.29 x 1072 Hz.
This parameter is obtained by fitting a straight line with a slope of —2, starting from
1 x 10~* Hz, until it meets the vertical line of f = 1 Hz. Thus, the acceleration random

walk for the z-axis accelerometer is determined as:

K = 14.60 (m/s/h*?) (4.7)

The bias instability (B) is the dominant noise between 2.29 x 1073 Hz and 7.1 x 1072
Hz, with a slope of —1, while the velocity random walk (N) is present between 0.1248
Hz and 20 Hz. After 20 Hz, there is an attenuation, because of the digital moving

average filter, which is used to minimize high-frequency spectral noise produced by the

MEMS sensors.
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Figure 4.10: (a) Power spectral density gyro IMU 3DM-GX3-25; (b) power spectral
density gyro IMU 3DM-GX3-25 after applying frequency averaging.

Regarding the gyroscopes, Fig. 4.10(a) represents the power spectral density, while
Fig. 4.10(b) corresponds to the gyros PSD after applying frequency averaging; in the
latter, it was identified as angle random walk (N) and bias instability (B), following

the same procedure as with the accelerometers.

Table 4.3 summarizes the values of different errors that affect the inertial sensors
using PSD method. In order to check the validity of these noise coefficients obtained

with the power spectral density, AV analysis is presented in the following section.
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Table 4.3: Identified error coeflicients for accelerometers and gyro of the 3DM-GX3-25
IMU with PSD.

Velocity Random Bias Instability (B) Acceleration
Walk (N) (m/s/(v/h) (m/s/h) Random Walk (K)
(m/s/h*?)
Ace X 0.045 4.6447 168.60
Acc Y 0.044 4.6700 26.66
Acc Z 0.047 1.7733 14.60
Angle Random Bias Instability (B) Rate Random Walk
Walk (N) (deg/v'h) (deg/h) (K) (deg/h*?)
Gyro X 2.297 43.438
Gyro 'Y 1.937 39.614
Gyro Z 2.058 30.705

4.3.4 AV Analysis

For Allan variance analysis, the acceleration and the angular rate were integrated to
obtain the instantaneous velocity and angle. Subsequently, the log-log plot of Allan
variance standard deviation versus cluster times (7') was obtained after evaluating Eq.
(4.4). The results are plotted in Fig. 4.11(a) for the accelerometer and Fig. 4.12 for

gyro data.

Figure 4.11(a) shows the AV estimated on the 3DM-GX3-25 accelerometers.
According to Fig. 4.3, which was presented in Section 4.5.1, the accelerometers
are affected by three types of error: velocity random walk (N), bias instability (B)
and acceleration random walk (K). It confirms that z-axis accelerometer has a bias
instability (slope 0) smaller than the other two accelerometers, and the velocity random
walk is almost the same for all the accelerometers (slope —1/2), which is coherent with

the results obtained with the PSD.

The values for each noise parameter were extracted as in the PSD, drawing straight
lines for each error with its corresponding slope, but in this case, the interceptions are
different. To clarify, Fig. 4.11(b) depicts straight lines for each noise of the z-axis
accelerometer. In this case, the accelerometer has N, B and K with slopes —1/2, 0 and
1/2, respectively. It can be seen that the dominant noise in short cluster times is the
velocity random walk, while the dominant error in long cluster times is the acceleration

random walk. From the straight line with slope —1/2 fitted to the beginning of the
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Figure 4.11: (a) IMU 3DM-GX3-25 Allan variance for accelerometers; (b) IMU
3DM-GX3-25 Allan variance for accelerometer Z.
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Figure 4.12: IMU 3DM-GX3-25 Allan variance for three gyro axes.

N noise, a value, o = 0.047 (m/s/h), at a cluster times of 1 h can be read. Since the
velocity random walk (N) is present in a cluster time interval where the number of
independent clusters is very large, the estimation accuracy of the AV is approximately
1.1%. Thus, the velocity random walk or, in other words, the noise term (N) for the

z-axis accelerometer is determined as:

N = 0.047 + 0.00050 (m/s/v/h) (4.8)

The Allan variance standard deviation versus cluster times (7') for gyro data
is depicted in Fig. 4.12. Unlike accelerometers, the gyroscopes have all similar
characteristics, where two types of noises can be recognized: angle random walk (N)

for short cluster times and bias instability (B) for long cluster times.

For the z-axis gyro (blue curve), the bias instability is present in the time range

84



4 — Stochastic Modelling of MEMS Inertial Sensors

between 321.92 (s) and 654.01 (s). The value of this error can be measured with a
flat line at 29.57 (deg/h). Dividing this standard deviation by the factor 0.664, as
suggested in [9], the B coefficient can be achieved:

B = 44.533 + 5.14 (deg/h) (4.9)

For further details of the intercepts of each noise term in the log-log AV curve,

see 9,12, 13].

Table 4.4 summarizes the error coefficients with their respective uncertainty for
accelerometers and gyro data. The correlation time, (7,), of the bias instability, (B),
and the standard deviation for each sensor (STD) of the IMU 3DM-GX3-25 are shown
in Table 4.5. The correlation time, (7.), might be used in Eq. (3.22) for modeling
the bias instability (B) as a first order Gauss-Markov process; this value is obtained
from the segment of the curve where the bias instability is the dominant noise, i.e.,
the flat segment of the log-log Allan variance curve. It should be mentioned that not
only these parameters, but also the whole parameters obtained from AV need to be
manually tuned in the KF, since the values obtained from AV are considered an initial

approximation of the bias-drift [124].

Table 4.4: Identified error coefficients for accelerometers and gyro of the 3DM-GX3-25

IMU with AV.
Velocity Random Bias Instability (B) Acceleration
Walk (N) (m/s/\/h) (m/s/h) Random Walk (K)
(m/s/h*?)
Acc X 0.045 + 0.00023 5.1581 4+ 0.0370 166.30 + 4.6398
Acc Y 0.045 £ 0.00022 4.5507 + 0.0506 24.95 4+ 2.8368
Acc Z 0.047 £ 0.00050 1.8336 + 0.0524 13.53 4+ 1.8685
Angle Random Bias Instability (B) Rate Random Walk
Walk (N) (deg/v/'h) (deg/h) (K) (deg/h*?)
Gyro X 2.420 £ 0.0974 44.533 £ 5.14
Gyro 'Y 1.988 £ 0.0565 38.810 + 2.51
Gyro Z 2.164 £+ 0.0599 31.717 £2.29

This verifies the results that were obtained with PSD analysis, where velocity
random walk (N), bias instability (B) and acceleration random walk (K) for

accelerometers data and angle random walk (N) and bias instability (B) for gyro data
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Table 4.5: Identified correlation time, (7c), for the bias instability (B) and standard
deviation for each inertial sensor of the 3DM-GX3-25 IMU.

Acc X Acc Y Acc Z Gyro X Gyro Y Gyro Z

T, (s) 4.56 7.26 20.74 490.89 623.25 735.17
o (m/s* —rad/s)  0.0068 0.0065 0.0063 0.0055 0.0045 0.0048

were also identified. It can be seen that most of the estimated values in PSD (see Table

4.3) are within the confidence interval computed by AV (Table 4.4).

The next section presents the inertial sensor error model that mixtures of AV and

wavelet de-noising techniques.

4.3.5 Wayvelet De-Noising with Allan Variance

In order to combine wavelet de-noising (WD) and Allan variance under dynamic
conditions, it is necessary to process the inertial sensors measures with wavelet
de-noising before computing the mechanization, which leads to the following question:
how many levels of decomposition should be applied? In this case, the number of levels
of decomposition (LOD) for the DWT are chosen based on the the spectrum of the
signal after the DWT is applied. We have to consider that each level of decomposition
divides the spectrum of the signal, x(n), into different sub-bands, as was explained
in Section 4.2.5. This means that if the sampling frequency of the inertial sensor is
fs = 100 Hz, after applying one LOD, we will have a spectrum between 0 — 25 Hz
for the approximations coefficients (A;) and a spectrum between 25 — 50 Hz for the
details coefficients (D;), considering perfect filters. Therefore, the frequency band
of the wavelet de-nosing output will be limited to f,/(2 x 2¥) for the more relevant
coefficients (Ay), where k is the level of decomposition (LOD). Since the idea is to
preserve the frequency components that are associated with the motion dynamics of the
land vehicle, we consider that these motion dynamics are low-frequencies components
for land-vehicle applications (e.g., between 0 and 5 Hz), as is mentioned in [114].
Therefore, we evaluated the number of LOD from the one that nearly reaches 5 Hz and

higher levels, i.e., considering the approximation coefficients (Ay).
Thus, the test was achieved using the Matlab Wavelet Toolbox from three LOD,
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where the band of approximation coefficients is limited to 6.25 Hz (100/(2x23) = 6.25),
up to eight levels of decomposition, where the output band is limited to 0.1953 Hz
(100/(2 x 28) = 0.1953). This is taking into account that we use a sampling frequency
of f¢ = 100 Hz for the inertial sensors. These experiments were assessed using the
Daubechies family, specifically, “db4”, as the wavelet function, with soft thresholding
based on Stein’s Unbiased Risk Estimate (SURE), since these parameters are typically
used in pre-filtering inertial sensors [23,25,114|. After selecting these wavelet de-noising
parameters, the data collected in the laboratory was de-noised and, subsequently,
processed with the AV algorithm. Fig. 4.13 depicts the Allan variance standard
deviation wversus cluster times (7') for the z-axis accelerometer (red curve) after
applying wavelet de-noising with three and eight levels of decomposition (blue curves).
According to this plot, wavelet de-noising removed the short-term noises, while the
long-term noises remain without attenuation, as was expected. It is also noticed
that the higher the level of decomposition, the more high-frequency components are

removed.
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Figure 4.13: Allan variance accelerometer Z IMU 3DM-GX-25 after applying wavelet
de-noising with three and eight levels of decomposition.

If we consider these two cases—the first one applying wavelet de-noising with three
LOD and the second one applying eight LOD (Fig. 4.13)—the most relevant components
that correspond to the motion dynamics of the vehicle would have to be above 0.16 sec
and 5.12 sec (vertical black dotted lines) for each case, respectively. If these components
that relate to the motion dynamics are not above these cluster time values, they would

be attenuated by the de-noising filters, which could degrade the INS accuracy.
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Given that these motions of the vehicle are mixed with the long-term noises, a
suitable LOD should be selected with the purpose of not removing relevant components
that would compromise the performance of the navigation system. Therefore, to
analyze the effect of wavelet de-nosing, we evaluated the enhancement accuracy of
the GPS/INS solution with two vehicle tests, where a total of seven GPS outages
were introduced under different dynamic conditions with a duration of 30 sec and
60 sec (see Fig. 4.14). A similar procedure was achieved in [107| with a tactical-grade
(medium-accuracy) and navigation-grade (high-accuracy) IMUs. The performance of
the GPS/INS solution (i.e., without error models) during GPS outages with wavelet
de-nosing under different LOD is summarized in Table 4.6. It depicts the outage
number, the average speed and the maximum horizontal error for each GPS outage
that was assessed. The LOD 0 corresponds to the navigation solution without applying
wavelet de-noising. In the case of three LOD, we apply one level of decomposition less
for y-axis and z-axis inertial sensors, since the uncorrelated noise is not so dominant
for the other inertial sensors, as can be seen in the autocorrelation analysis described

in Section 4.3.1.
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Figure 4.14: (a) First and (b) second trajectory test in Matlab with the GPS
outages that were introduced intentionally to analyze the effect of wavelet
de-nosing with different LOD.

Table 4.6 shows that the navigation solution performs slightly better for most of
the GPS blockage when seven LOD are applied, compared to the navigation solution
without applying wavelet de-nosing (i.e., zero LOD), with an improvement of almost

4.3% in terms of horizontal positioning error.
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The wavelet de-nosing parameters that provided the most significant enhance

accuracy of the GPS/INS solution are summarized in Table 4.7. It represents the levels

of decomposition where the most relevant energy associated with the motion dynamics

of the vehicle remain. In this case, the most significant frequency components of the

vehicle motion dynamics for the 3DM-GX3 IMU are below 0.78 Hz for y-axis and

z-axis accelerometers, while for the rest of inertial sensors, it is below 0.39 H z.

The use of Stein’s Unbiased Risk Estimate (SURE) as a threshold rule helps us

not to lose significant coefficients associated with the vehicle, since it is a conservative

threshold that is usually used when small details of the signal lie in the noise range [125].

Table 4.6: Maximum horizontal position error during GPS outages before and after
applying wavelet de-noising.

Levels of Decomposition
Outage Duration Asvszzge 0 3 P =

(#) (sec) (km/h) ~ max (m) max (m) max (m)
1* 30 25.16 85.12 85.13 76.08
2% 30 18.86 162.98 162.67 157.73
3* 30 42.53 189.67 189.69 188.82
4* 30 23.56 52.20 52.20 51.62
H* 30 39.32 54.03 54.01 43.99
6* 60 103.36 232.54 232.74 217.28
* 60 122.73 279.22 279.03 274.74

Table 4.7: Wavelet de-noising parameters for each sensor under kinematic conditions.

Frequency
Limit for A, .
LOD Coefficients Thresholding
(Hz)
Ace X 7 0.39 soft, SURE
Acc Y 6 0.78 soft, SURE
Acc Z 6 0.78 soft, SURE
Gyro X 7 0.39 soft, SURE
Gyro 'Y 7 0.39 soft, SURE
Gyro Z 7 0.39 soft, SURE

Having selected the LOD for wavelet de-noising, the long-term noises are modeled

and compensated by the AV parameters obtained in Section 4.3.4.  Overall,

under dynamic conditions, wavelet de-noising will be computed for inertial sensor
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measurements prior to the INS mechanization, and the AV model will be in charge
of compensating the long-term noises. The next section explains the way the AV

model and each model obtained so far is adapted into the loosely-coupled strategy.

4.4 INS Bias Model Adapted to the Loosely-Coupled
KF

Having identified the random errors using AV and PSD, the parameters obtained with
AV were used in the loosely-coupled GPS/INS integration scheme (Fig. 2.7) to model
the errors of accelerometers and gyros of the IMU under test. The stochastic model
parameters for each sensor are taken from Tables 4.4 and 4.5. Thus, the 3DM-GX3-25

accelerometers stochastic error ag, was modeled as:
ase = WN(N) + 1% GM(B) + RW (K) (4.10)

where the noise term associated to N is modeled as white noise (WN), the noise term
associated to K as a random walk (RW), while the bias instability (B) is modeled as a
first order Gauss-Markov process (15 GM).

Regarding the 3DM-GX3-25 gyro stochastic error, gs., the model was defined as:
gse = WN(N) + 1* GM(B) (4.11)

where the noise term associated to N is modeled as white noise (WN) and the bias
instability (B) is modeled as a first order Gauss-Markov process (1% GM). The latter
noise can be modeled by a combination of Markov noise states [11], and there are
also different approaches to model the bias instability noise terms; some of them are
presented in [13,28]. In this case, a first order Gauss-Markov process was fitted to
the flat part of the AV curve taking into account B and its correspondent correlation
time (7,) (see Table 4.5). Regarding the noise term angle random walk (N), it presents
dominant high-frequency components that have a correlation time much shorter than
the sample time. Therefore, this noise is modeled as additive noise with noise variance

obtained from the parameter, N (see Table 4.4).
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On the other hand, the AR coefficients obtained from Burg’s method are adapted
into the KF taking the parameters that were shown in Table 4.2. These stochastic
error models were implemented in the KF according to the state-space forms that were
presented in Section 3.5.2. Further details about IMU error state-space implementation
in the Kalman filter can be found in Appendix A. The performance of the different
stochastic error models for the bias-drift when they are adapted into the LC integration

are shown in Chapter 6.

4.5 Constrained Non-linear Fitting

4.5.1 Allan Variance Limitations

Although AV is the most widely used method for modeling of inertial sensors, this
error analysis technique presents some drawbacks, (e.g., it requires very long data set
to obtained a consistent AV curve) high uncertainty for long clusters times, it may also
lead to different interpretations when a AV curve is observed since many models can
be used to fit the log-log AV curve [28]. Despite these limitations Allan variance is still
the most accepted method for modeling inertial sensors based on MEMS technology
because it provides a complete analysis of the error and uses a simple algorithm for the

identification of the different error sources.

In previous works where Allan variance has been implemented [14-16,24| et al. it
is often assumed that each noise source is considerably separated in frequency, thus
each noise term can be associated with a slope. In fact, according to the hypothetical
AV curve Fig. (4.3) the flicker noise (bias instability) should have a slope of 0, the
angle random walk a slope of —1/2; etc. This can be suitable for high-quality inertial
sensors, where the parameters of the stochastic model are extracted by fitting straight
lines with different slopes that corresponds to each noise term. However, this procedure
is not entirely valid for the majority of low cost inertial sensors since the noise terms
might be strongly overlapped in frequency, so they might form complex structures that
are not easy to identify by the conventional method of the straight line-fitting [6]. This

can be clearly seen in the flicker noise because it is usually combined with short-term
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and long-term noises, so the identification of the 0 slope might be ambiguous due to
the fact that different noise terms might be mixed in the frequency band where it is

supposed to be the dominant noise.

Despite the fact that AV presents these limitations, we consider this technique
because we can overcome some of the drawbacks by using non-linear functions to fit
the log-log curves instead of using traditional line-fitting, which is more suitable to

estimate the unknown parameters of the random error.

Additionally, recent methods using different techniques have been developed to
estimate the stochastic model parameters more accurately, for instance the Best Linear
Unbiased Estimator (BLUE) estimator and Expectation Maximization (EM) algorithm
described in [7,21,115]. Only the latter is briefly explained in the following section,
specifically the constrained EM, since it is more adequate for low cost MEMS sensors

than the BLUE estimator presented in [7] that is suitable for high-end IMUs.

4.5.2 Constrained Expectation Maximization (EM)

An algorithm that has been used in many areas to estimate unknown parameters is
described in [126-129] and it relies on the Expectation Maximization technique that was
first proposed in [130]. The EM algorithm can be applied to a generalized State-Space
Model (SSM) in discrete time as stated in Eq. (4.12) and Eq. (4.13):

Xpi1 = Prexp + Wy (412)

Zipi1 = Hie 11Xk + Vg (413)

where @, is the dynamic coefficient matrix, Hjy ., is the design matrix which
converts the unobserved stochastic vector x;,; into the observed space z,,;. The
sequences Wi and vi,i represent the process errors characterized by a zero-mean,
uncorrelated and normally distributed noise such that w ~ (0,Q) and v ~ (0,R), where

R and Q are related to the observation and the state equations, respectively [127]|. This
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linear system is adapted with the stochastic models that will predict the random noises

that affect the IMU.

Since the random errors of a low cost inertial sensor might be composed by
elaborated structures, which makes difficult the estimation of the parameters specified
in the SSM, in [21,115] the EM algorithm was modified and properly used in order to
estimate the parameters of the stochastic model and so improve the inertial sensors
performance. In this case, we focused our attention on the constrained EM method
proposed in |21] due to the fact that some elements of the stochastic model remain fixed
in the SSM and some others are freely estimated. Thereby, the SSM is less complicated
and allows to estimate more complex stochastic errors that are involved in any INS

MEMS grade.

The EM is an iterative procedure that consists of switching between two steps:
one is the expectation E-step and the other one is the maximization M-step |131].
The E-step involves the calculation of the expected states x) and of the covariance
matrices P and Py, ;. These quantities can be calculated using a Kalman smoother
(see [127]). Then, in order to obtain the unknown parameters of the State-Space
Model (e.g., the parameters of the stochastic model that will describe the behaviour
of the bias-drift) defined by Eq. (4.12) and Eq. (4.13), a (log) likelihood function
log L (8]y,xx) is used, where 0 is the vector with the unknown parameters included
in the SSM. The idea is to update @ until the (log) likelihood is maximized and after a
certain number of iterations the parameters monitored in the SSM will converge to a
Maximum Likelihood value that, in case of INS, will represent a reliable estimation of
the bias-drift noise parameters. A detailed description of the algorithm and a complete

derivation of the equations for the constrained case can be found in |21,127,132|.

Next section will explain the NLF developed in this thesis, which is based on a
constrained non-linear fitting, it will be evaluated and further compare in Section 4.5.3

with the previous mentioned.
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4.5.3 Constrained Non-linear Fitting (NLF)

The traditional method using line-fitting in log-log AV curves as it is described in
[12-14, 16, 133] is not easy to apply to low cost inertial sensors, since AV curves are
usually more complex than in the case of high-end IMUs. For instance, the flicker
noise that is usually modelled with a first order Gauss-Markov process is not easy
to estimate in a low cost IMU because the band where it is dominant presents an
overlapping between the long-term and short-term noises [134], so it could be influenced
by a combination of a ARW plus a RRW processes (i.e., for a gyro). Now if we consider
that the flicker noise is composed by not only one first order Gauss-Markov process,
the estimation of these error parameters is even more challenging. That is, the flicker
noise might be a dominant noise in a wideband frequency, where only one first order

GM process is not enough to model it.

In order to improve the estimation of the unknown parameters that represent
the bias-drift of inertial sensors, it is supposed that the existing noise terms are all
statistically independent, so it can be shown that the Allan variance at any given
cluster time 7" is the sum of Allan variances due to the individual random processes at

the same 7" [9].

0*(T) = on(T) + 05 (T) + OFricker(T) + - (4.14)

where 0%(T), 0% (T) are the Allan variance of the angle/velocity random walk and
rate/acceleration random walk, respectively, whereas 0%, ., (T) is the AV of the flicker
noise. In the case of flicker noise, it can be modelled as a combination of several first
order Gauss-Markov (GM) processes as it was explained in Section 3.5.2. According
to Voss [109], flicker noise modeling requires a specific distribution of independent
processes with different correlation time, which is valid in the case of AV because

processes are independent. So the variance of the flicker noise can be expressed as:

iicker(T) = o (T) + 0 (T) + -+ (4.15)

where 03,,(T) is the Allan variance of one first order GM process. The continuous
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time representation for the first order GM process is stated in Eq. (3.22), which has a

noise covariance o2 that can be expressed as:

02 = 2B02, (4.16)

where 02, is the covariance of the process and f3 is the inverse of the correlation

time (7.). The power spectral density S,(f) of Eq. (3.22) is given by |64]:

250%1\/[
(2rf)? + B2
2

Expressing the PSD of the first order GM in terms of the noise covariance (o))

Se(f) = (4.17)

yields:

(0 T.)?

Sf) =17 (27 fT.)2

(4.18)

According to the relationship between Allan variance and the two-sided PSD,
performing the integration that is stated in Eq. (4.5) yields the Allan variance of

the first order Gauss-Markov process:

wTC 2 Tc _ T _2T
02,(T) = (UT ) [1 - (3—4e T te T>] (4.19)

Plotting this function on a log-log scale with T, = 1 and o, = 1/(0.437\/T.), we
obtain the AV curve for a first order GM process (see Fig. 4.15(a)), where the cluster

times for the midpoint of the flat region is equal to

Tpp = 1.897, (4.20)

with a standard deviation at 7}, given by [9]:

031 (Tp) = Omp = 04370,/ T. = Gmp = 043707/ Tynp/1.89 (4.21)

Thus the Allan variance of the flicker noise as reported in Eq. (4.15) can be replaced

by Eq. (4.19) with various o,,; and T,; in order to approximate the flicker noise as a
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Figure 4.15: (a) Allan variance of a first order GM process; (b) Random walk and
white noise for the Allan variance of a first order GM process.

sum of multiple first order GM processes. Given the fact that low cost MEMS sensors
are not only composed by flicker noise but also by white noise, random walk, ramp
rate, etc, which makes more difficult the parameters estimation for the stochastic error
modelling due to the complex noise structures, we propose constraints for each noise
term identified with AV. In this way, we can obtain a more appropriate estimation
of the bias-drift and at the same time we can provide additional information to the
algorithm that will estimate the parameters. The determination of the constrains will
be explained in the following subsections where we also describe the stochastic model

identification, the estimator and the optimization algorithm that are used in the NLF.

Identifying the Stochastic Model

In the NLF first a stochastic model is set from the noise terms identified in a log-log AV
curve. For instance, if we consider the AV curve depicted in Fig. 4.16, the objective
function 0%(0,T), i.e., the function to be optimized given certain constraints and that

will be fitted to the estimated variance, would be given by:

N?  K?T
02(T70) = OJQV(Tve) + U%{(T,Q) = ? + 3

(4.22)

where N and K are associated with the ARW (slope —1/2) and RRW (slope 1/2),
which can be represented by white noise (WN) and random walk (RW) processes
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described in Section 3.5.2. Thus, we would have a stochastic process that combines
WN plus RW. In this case, the unknown parameters (6) would be the standard deviation
of the white noise and the standard deviation of the random walk processes, that is,
own and ogw, respectively. Considering the state-space form that was described in

Section 3.5.2 the sum of these random processes can be expressed by:

T = Tp_1 + (URW\/E)wk (4.23)
Uk = Tpo1 + (own/V Ay (4.24)

where At would be the sampling time of the IMU raw measurements. Although
Fig. 4.16 can be found in some inertial sensors, most of MEMS inertial sensor are
affected by flicker noise, which increases the complexity of the function to be fitted.

This issue will be considered below.
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Figure 4.16: Allan variance of angle random walk (N) plus rate random walk (K).

Constraints of the Objective Function

Once the stochastic model is identified, we defined constrains for the objective function
to be fitted. In order to set the constraints in the non-linear fitting for different
combination of noises, it is necessary to compute the 95% confidence interval of the
analysed log-log AV curve. This can be performed by estimating the coefficients related
to the noise terms, i.e., ARW, VRW, flicker noise, etc. as it is described in [10,135,136].

Another way to get the confidence interval is by means of wavelet variance (WV). This
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method is based on the Maximal Overlap Discrete Wavelet-Transform (MODWT) and
it uses a modified version of the DW'T explained in Section 4.2.5. Actually, it carries
out the same steps as filtering the discrete wavelet transform ordinary but does not

subsample [137]. The wavelet variance based on the MODWT can be expressed as |138]:

N-1
W?

J,t
t=L;—1

1

oy (Tj) = M, (N) (4.25)

where Wj are the MODWT wavelet coefficients for levels of decomposition j =
1,....J, N is the length of the data to be analysed, T} is defined for dyadic scales 291,
L is the filter length for level J and M;(N) = N — L; + 1. Although, different wavelet
functions can be used to filter the signal, when Haar wavelet is used, Allan variance
can be interpreted in terms of the coefficients of the Haar wavelet transform [139]. This
is due to the fact that the wavelet variance is equal to half the Allan variance [138].
Since wavelet variance is related to Allan variance and it does not require a priori
knowledge of the noise parameters associated with the noise terms, the calculation of
the 95% confidence interval is achieved by computing wavelet variance. Details about

the properties of wavelet variance and the calculation of the confidence interval with

WYV can be found in [137,138].

Considering Fig. 4.16 the constraints for the noise term N, i.e., upper (Ny) and

lower (Np) limits, can be determined by:

Ny = Ucz‘l(TNL)\/ TNy, , Ny= Uciu(TNU)\/m (4-26)

where (0.,00,) are the low and up 95% confidence interval of o(T'), respectively,
and (Tp,Tvy) are the cluster times where (o.,0.:,) will be evaluated to set the lower
and upper bounds of the noise term N. (T ,Tny) should be chosen to cover the largest
segment where the noise term is dominant and the uncertainly is relatively low. In other
words, we expect to have the parameter N between those constraints due to the fact
that the influence of the noise term (K) is minimal in the segment of the curve where

N is dominant.
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If we do the same for K we can obtain the upper (Ky) and lower (K1) bounds with:

K =o0a(Tk)V3/Tkr , Ku = 0ci(Trv)\3/Tku (4.27)

where (T, Txy) are the cluster times that are used to evaluate (0.,0.) and set
the lower and upper bounds of the noise term K. Parameters (Txr,Tky) should be
selected near the cluster times where the noise term related to K (i.e., 1/2 slope) starts
being dominant because this is where its uncertainty is lower. Eq. 4.26 and Eq. 4.27
are considered from the AV coefficient values for each noise term (see Table 4.1). The
constraints for parameters K and N for the log-log AV curve (Fig. 4.16) are shown in
Fig. 4.17 with green dashed lines. Ty and Ty were set at T' = 0.64 sec, whereas
Tk and Txy were set at T' = 40.96 sec and T' = 81.92 sec, respectively. Note that
bounds for N are chosen in the segment of the curve where this noise term is dominant.
The difference between upper and lower bounds can not be distinguished because of
the low uncertainty at 7' = 0.64 sec. In contrast, the lower and upper bounds for K
are clearly seen in the figure and they are selected to cover most of the segment where

K is dominant.

w

10 T T T T T
—0o(T) with 95% confidence interval
< == 0\(M
810’ == 0(M)
b= N and K constraints
S L i i
ke R 0T 9T T
s , , . 4
g T 1
g \\\
2
%10 : i i LTme e L T~a (1)
i Zarein ‘..h cilt KL

=
o
=<
o =

N 10" 10° 10" 10° 10°
Cluster times (sec)

Figure 4.17: Allan variance of angle random walk (N) plus rate random walk (K) with
constraints.

Moreover, in a log-log AV curve with dominant noises N, K and B, the constraints
for N and K could be defined as it is stated in Eqs. (4.26) and (4.27). However,
we would need to specify the constraints for the correlation time 7,; and the noise

covariance o2, for each i first order GM process that will compound the flicker noise.

Before analysing the sum of several GM process, we first plot the noise components

for one of them in Fig. 4.15(b), it shows that 0 slope is dominant for 1/3 of decade
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approximately, which will be the segment of the curve that would represent the flicker
noise. This is because for T' » T, it becomes a white noise (—1/2 slope) after almost
one decade above the midpoint (7,,,), whereas for T' « T, it becomes a random walk
(1/2 slope) after almost one decade below the midpoint (75,,). The equations for these
noises that are part of the first order GM process can be deduced from Eq. (4.19).

(0,T:)*

o3, (T) = T>T. (4.28)

2
o2,(T) = %wT T<«T, (4.29)

When multiple first order GM processes are superimposed a better approximation
of the flat segment in an log-log AV curve (flicker noise) can be obtained. According
to Keshner |104], a pole of first order can approximate the flicker noise in a bandwidth
of one decade. So we can define one decade as constraint for each term 75, of the
GM processes. i.e., if the flicker noise is dominant in two decades, between 10 sec and
1000 sec, we will set two GM processes. The midpoint correlation time 77,, would
be constrained by 10 < 7,1 < 100, whereas the parameter T,,,, for the second GM
process would be constrained by 100 < 75,2 < 1000.

2

To determine the constrains of the parameters o7,, we made the following analysis:

If we consider three first order GM processes that are uniformly distributed in
a log-log AV curve, it means that each noise has equal standard deviation (e.g.,
Ompt = 1, Ompt = Ompz2 = Omps) and they are separated a decade (e.g., Ty = 1,
Tes = 10T, = 1007,;) as it is shown in Fig. 4.18, we can compute Allan variance

0?(T) using Eq. (4.15), so we will have

o*(T) = o3 (T) + 0iga(T) + ohgs(T) (4.30)

To determine the value of o*(T') where o3,,(T) is more dominant, we can evaluate

Eq. (4.30) for the cluster times T' = T, yielding:

100



4 — Stochastic Modelling of MEMS Inertial Sensors

10 T
: _ch(T)
—_ GMZ(T)
5 Oa(T)
E 100 Tmpl = Omp2 = Omp3 —— ——0(T)
>
~
g /><\ N
T
[] \
kel
g N
ﬁ -1
E 10 °F g
<
Tey Tey Tey
5 Tonp1 T2 g3
10 L L

-2 1 0

10 107 10 10" 10 10

Cluster times (sec)

Figure 4.18: Allan variance of a flicker noise with three first order Gauss Markov
process.

2 2
Ow2 Tmp 1 Ows3 Tmp 1

3 3

0 (Tp1) = 0ppy + (4.31)
where we have considered Eq. (4.29) for 03,5(Thp1) and 035(Tmp1) since at Ty
they are dominated by a random walk process. Then, isolating o,, in Eq. (4.21) and

replacing it in Eq. (4.31) yields

3.302, 5 Trnp1 . 3.302,3 Tmp1

mp2 mp3

s Tmpl < TcZmipl < Tcg (432)

2 2
o“(T, ~o0 1+
( ol ) el Tmp2 Tmp3

In this equation we can see that if 7,2 and T,,,3 are large compared with 71},,:,
0%(Trnp1) approximates the value of o2, , since the influence of 03 5(Tp1) and o735 (Trup1)

would be minimal.

For the midpoint of o2(T), we have that the Allan variance 02(T),,2) is given by

(O-wchl)2 2 UzzusTmp?

+ + 4.33
Tmp2 amp2 3 ( )

o’ (Tmp2> =

Here the term o3, (T,np2) was replaced by Eq. (4.28) whereas the term o3,5(Tp2)
was approximated using Eq. (4.29), this is due to the fact that at T),,» they become
white noise and random walk, respectively. Using Eqs. (4.20) and (4.21) we obtain
Eq. (4.34). Note that if T},,» is large compared with 7,1 and small compared with
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2

Trnps the value of Allan variance o*(T,2) approaches to oy, .

that is, as long as

Ompl = Omp2 = Omp3-

2.702 T, 3.302 T,
0'2 (Tmpg) x~ Lpl + 0'12?74)2 + M, Tmp2 > TclaTmpZ < Tcg (434)
Tmp2 Tmp3

Following the same procedure for 0%(T,,,3) we obtain

mpl mp2 2

0mp3 )

2.702,  Trup1 . 2.7072 0 Tonp2

0 (Trp3) ~ Trupz » Ter, Tyupz » Teo (4.35)

Tmp3 Tmp3

This is worth noting that Eq. (4.32), Eq. (4.34) and Eq. (4.35) might be applied to
any flicker noise in an inertial sensor as long as the inequalities provided are satisfied.
For the specific case of Fig. 4.18, where the separation between the GM processes is
one decade, the contribution of each to the flicker noise at 15,1, Tynpe and 15,3 could

be determined through those equations, as it follows:

0 (Tonp1) = Oy + 033075 + 0.03302,5, 1« 5.29,1 « 52.91 (4.36)
0 (Thp2) = 0.28072, 1 + 0ppy + 033003, 10> 0.52,10 « 52.91 (4.37)
0*(Tp3) =~ 0.02807, 1 + 0.280%, 5 + 0z, 100 » 0.52,100 » 5.29 (4.38)

This way, we have three equations with three unknown variables 0,1, 0pmp2 and
Omps- Solving Eqs. (4.36), (4.37) and (4.38) we can obtain a preliminary estimation
of Oyp1, Omp2 and o3 Thus, knowing an approximate curve of the flicker noise and
identifying the cluster times where this is more dominant (i.e., Tip1, Tinpe and Tps),
one could make a preliminary determination of o,,, for each first order GM process,
which could help us to define the constraints. It must be taken into account that these

equations are simply an aid to determine constraints for parameters o,,;. In general, we
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consider a constraint of half decade below the Allan standard deviation o(T") for o,
this is because after doing experiments with different 7, and o,, through Eqgs. (4.32),
(4.34) and (4.35), we noticed that half decade is a sufficient range for the o,,, of a first

order GM to contribute significantly in the log-log AV curve of an inertial sensor.

In order to have more information that might be useful to set the constraints of
the GM processes, we noted that the flicker noise can be partially observed in a log-log
AV curve of an inertial sensor. For this purpose, we consider two log-log AV curves
that are typically found in inertial sensors. The first one is a mixture of WN, RW and
flicker noise as it is shown in Fig 4.19, where we have set constraints for N and K as

we described previously. The mathematical representation can be expressed by:

0*(T) = ox(T) + 0k (T) + OFricker (T) (4.39)

Assuming that Allan variances for velocity random walk (N) and acceleration
random walk (K) are given by 0%, and o%,, that are the variances in terms of the

lower bounds Ny, and K7,

N? K2T
OJQVL(T):TL ) U?(L(T): L

(4.40)

then replacing Eqs. (4.40) in Eq. (4.39) and isolating 0%, (T), we can obtain an

approximation of the flicker noise that we will be denoted as o7(T):

U?(T) = szclicker(T) ~ 0*(T) = 051 (T) — o5 (T) (4.41)

Figure 4.19 shows the segment of the curve where o¢(7) (in red) better
approximates o icker(1'). When there is a low uncertainty, o;(7") approximates very
well to o ficker (). However, for cluster times above 80 sec the uncertainty increases

and its estimate is unreliable.

The second log-log AV curve that is typically found in gyros is the mixture of
flicker noise and angle random walk as it is shown in Fig. 4.20. The mathematical

representation can be written as:
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Figure 4.19: Allan variance of a mixture of flicker noise, WN and RW for an
accelerometer.

0*(T) = on(T) + 0 fricer(T) (4.42)

Assuming that on(T') is given by the lower bound oy (7)), we could have an

estimation of the flicker noise with o%(7T):

oi(T) ~ o*(T) — o3 (T) (4.43)

The resultant o7(7) can be seen in Fig. 4.20, which shows a very good
approximation of o fjicker (T'). In fact, this could be better in most of the cases compared
to the previous curve since there are only two noises and oy (7)) can be estimated
accurately by means of on(7T), this is due to the low uncertainty for the short term
noises. It is also noteworthy that when computing Eq. (4.41) or Eq. (4.43) the larger
the data set to be analysed the better the accuracy.

To summarize, the constraints of the non-linear fitting are determined taking into

account the following observations:

e N (angle/velocity random walk) and K (rate/acceleration random walk)
constraints: these bounds are set using the confidence interval of the analysed
log-log AV curve (i.e., 95% confidence interval expressed by upper and lower
limits). The selected bounds should cover the largest segment possible where the

noise term is dominant and the uncertainly is relatively low.
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Figure 4.20: Allan variance of a mixture of flicker noise and WN for a gyro.

o T, — T, constraints: they are set in the segment where the flicker noise is
dominant. Having a decade of difference between the upper and lower limits. In

case of several first order GM process these limits may be slightly overlapped.

e ogum constraints: these limits are set from the Allan standard deviation curve
where the flicker noise is the dominant noise (upper bound) until half decade

below it (lower bound).

Estimator

After having identified the stochastic model and defined the constraints, we estimate
the unknown parameters for each noise term computing AV and performing a non-linear
fitting between the log-log AV curve and the objective function (i.e., the function
that is defined according to the different noise sources that have been identified).
The condition for the minimization of the relative differences between the variance
measurements and the theoretical variance is stated in Eq. (4.44) and it can be solved

in the least-squares sense:

~92 2 2
. o*(Ti) — o*(0,13)
min 4.44
i3 R 4

In this case the objective function is 02(6,T;), 6 are the unknown parameters (i.e.,
OWN> ORW s 0GM1, Le1, 0care, T, etc), T; is the cluster times and 62(7;) is the estimate

variance. Further details about similar estimators and the classical least square fit on

the log-log Allan variance plots by minimizing the relative distance between the curve
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and the estimate (estimate — curve)/estimate can be found in [6,8,30,31,140|. By
using wavelet variance instead of Allan variance the estimator used for the NLF might

be seen as a particular case of the GMWM described in [8].

Optimization

Since the solution of Eq. (4.44) with the classical least square might lead to a local
minimum, we have optimized the parameters estimation by means of pattern search.
This technique consists in a set of vectors (patterns) that are used to determine which
point to search at each iteration, so if the pattern search algorithm finds a point that
improves the objective function at the current point, the new point becomes the current
point at the next step of the algorithm [141]. This algorithm for optimization is based
on augmented Lagrangian patter search and the complete description can be found

in [142,143].

It is also worth mentioning that if one of the bounds (constraints) is reached by
the unknown parameter after the optimization, the bound must be modified, since it

might be an indication that the parameter is not limited by the constraints.

In order to evaluate the benefits of the NLF, in the next section we will analyse one

simulation assuming that the inertial sensors are influenced by different noise sources

that are typically found in MEMS IMUs.

Simulation

In this section we analyse the performance of the non-linear fitting with constrains
(NLF) compared to the constrained Expectation Maximization (EM) described in [21],
these algorithms were developed in MATLAB, where the optimization stage for the
NLF was achieved using the Global Optimization Toolbox. In order to evaluate
different stochastic processes that are often found in inertial sensors based on MEMS
technology, we simulated and analysed a noise composed by white noise (WN), random
walk (RW) and a flicker noise with two first order Gauss-Markov processes. The
simulation generates 100 times the noise source and each time with 2?° samples, having

a sampling frequency of 100 Hz. The true values for each parameter are given by
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oty = 6.13%107° 02, = 11451077, Ty = 20.74, 020 = 2.36 % 1078, Ty = 2.07
and 0%y, = 7.36 = 1071, the units are in seconds and (m/s*)? for the correlation time
and the variances, respectively. To estimate these parameters with the NLF we use the

following objective function:

N? K?*T
‘72(97T) = T + ‘712\41<T) + ‘712\42(T) + 3

(4.45)

This function is used to fit the log-log AV curve of the simulated process. The
velocity random walk (N) and the acceleration random walk (K) are directly related to
the WN and the RW processes, respectively, while 02,,(T) and o3,,(T) are the Allan
variance functions of the first order GM process stated in Eq. (4.19). So the goal is to

estimate the unknown parameters of Eq. (4.45), which are given by:

0 = {own.ocm1,Ter,06m2.Te2,0 R | (4.46)

The log-log AV curve of one simulated noise is depicted in Fig. 4.21. According
to this plot, we set the constrains for parameter K at 327.7 sec where it meets the
upper and lower bounds of the 95% confidence intervals curve, which corresponds to
3.94 m/s/h and 2.31 m/s/h, respectively. The upper and lower bounds are set drawing
straight lines with a slope of 1/2, these lines meet the two points of the confidence
interval curve 3.94 m/s/h and 2.31 m/s/h, respectively. The two points need to be
carefully selected in order to cover the segment of the curve where the noise (K) is
dominant. In case of parameter N, we defined the upper bound at 3.59 m/s/h and
the lower bound at 3.50 m/s/h Allan standard deviation, taking into account that the
95% confidence interval curve was evaluated at 0.64 sec. These constraints are shown
with green dashed lines of slope —1/2 (see Fig. 4.21). We defined these constraints
since they cover most of the segment of the curve where the long-term noise (K) and
the short-term noise (N) are dominant. Regarding the constraints of the first order
GM processes, the correlation time is determined considering the segment of the curve
where the flicker noise is dominant, this is approximately between 2 sec and almost

200 sec. According to the observations given in Section 4.5.3, two first order GM
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process could be suitable for modelling this flicker noise since it seems to be dominant
in two decades. Therefore, the lower and upper bounds for the correlation time were
placed between (20,200) sec and (2,20) sec for T.; and T, respectively. In order
to cover the region where the flicker noise is more likely to exist, the limits for the
standard deviation of the two first order GM processes (0ga1,0¢02) Were set between
1.57 m/s/h and 0.49 m/s/h. That is, half decade below the Allan standard deviation
corresponding to the segment of the curve where the flicker noise is dominant). The
region where the two first order GM processes are suspected to be dominant is also
shown in Fig. 4.21. It should be mentioned that when we applied the NLF we only fit
the objective function to Allan standard deviation below 655.33 sec cluster times since

the uncertainty above this time is high.
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Figure 4.21: Allan variance of a mixture of WN, two first order GM processes and a
RW.

The results of the 100 simulations are presented in Fig. 4.22 and Fig. 4.23, where
the true values of the parameters (f) are drawn with horizontal red lines. Note that
AV is not included because it is limited when dealing with signals composed by a

combination of various processes.

It is also noticed that the parameters estimated are highly affected in case of the EM
algorithm, opposite to the NLF which provides consistent results of the parameters that
represent the noise modelled, and despite the EM has smaller variance in parameters
such as ogw, the bias of the NLF is smaller than the EM in most of the parameters
estimated. As it was shown in [21]| the constrained EM can be applied in a short data

set compared with the NLF that requires the AV estimation. Despite this, the EM
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Figure 4.22: Performance comparison between EM and NLF for 100 realizations of a
combination of WN, two first order Gauss-Markov processes and a RW.
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Figure 4.23: Performance comparison between EM and NLF for 100 realizations of a
mixture of WN, two first order Gauss-Markov processes and a RW.

is very likely not to converge to a local maximum of the likelihood function when the
SSM of the signal modelled becomes complex (e.g., a noise source composed by WN
and various first order GM processes). Additionally, it is very dependent on the initial

conditions.

It should be mentioned that the number of parameters (6) defined for each Allan
variance curve depends on the number of noise sources that are suspected to exist,
therefore to analysed the curves it is necessary to take into account the slopes that
are shown in Fig. 4.3. In case of flicker noise, the number of Gauss-Markov process
that we consider is related to the number of decades where it is the dominant noise,
as it was mention previously, if the segment curve where the flicker noise is dominant
occupies two decades the number of GM process used to create the stochastic model

will be two. According to the typical Allan variances curves for MEMS inertial sensors,
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one can see that the flicker noise is presented in the middle of N and K, just in the

curve segment where they are less dominant.

Next section we analyse the performance of the NLF with a real data set collected

from two low cost Inertial Measurement Units.

NLF Applied on a Real Data Set

Two Inertial Measurement Units were involved to estimate the stochastic error model
parameters by using the constrained non-linear fitting. Both of them were configured
with a sampling frequency of 100 Hz. The test experiment was conducted in a
room temperature and seven hours of static data was collected to analyse the raw

measurements with the NLF. For further details of these IMUs refer to [89,90].

Figure 4.24(a) shows the estimated AV for the accelerometers of both MEMS IMUs.
It can be noted that the velocity random walk (N) of the Atomic IMU is larger than the
noise term (N) for the 3DM-GX3 IMU, (i.e, approximately 10 times). On the other
hand, Fig. 4.24(b) shows the log-log AV curve for the gyros of both MEMs IMUs,
where it can be noted that both of them are affected by an angle random walk and a

flicker noise.
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Figure 4.24: (a) 3DM-GX3-25 IMU and Atomic IMU Allan variance for accelerometers;
(b) 3DM-GX3-25 IMU and Atomic Allan variance for gyros.

For illustrative purposes we only present the stochastic error parameters of two

inertial sensors i.e., one accelerometer and one gyro corresponding to the Atomic and
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the 3DM-GX3 IMUs, respectively. The curves of the other sensors are similar to those
analysed as well as the procedure that is achieved to obtain the parameters. In order to
applied the NLF method the z-axis accelerometer was chosen for the IMU 3DM-GX3-25
while for the Atomic IMU we selected the z-axis gyro.

Figure 4.25 shows the correspondent AV curve for the z-axis accelerometer in
blue (circle market), where we assumed that the objective function is composed by
a WN, a first order GM process and a RW, since it seems to be the model that
would better represent this log-log AV curve. Thus, the unknown parameters are
0 = {own,06m,Tc,0rw} and the constraints for the N and K parameters were set as it
was explained in the previous section, considering the 95% confidence interval values
at 0.32 sec and 327.70 sec, respectively. Concerning the constraints for the parameters
of the first order GM process, they are set between 10 sec and 100 sec for T, and
between 0.38 m/s/h and 1.21 m/s/h for ogys, which covers the region where the flicker
noise is suspected to be. Fig. 4.25 also depicts the result after applying the NLF with
the previous constraints, the cyan solid line that superimposes the AV of the z-axis
accelerometer represents the fitted curve performed by the NLF method, while the blue
line (triangle marker) represents the first order GM process estimated. The parameters

obtained for this inertial sensor are § = {0.0079,2.48304,18.1401,6.2559 = 1075} in

seconds and m/s?.
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Figure 4.25: Performance of the NLF for the IMU 3DM-GX3-25 accelerometer Z.

Moreover, the log-log AV curve for the Atomic IMU z-axis gyro is depicted in
Fig. 4.26. It shows that the inertial sensor is dominated by a WN in the short-term

clusters while for the long-term cluster it is dominated by a flicker noise. So in this
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test we considered a objective function formed by a WN and three first order GM
processes since the flicker noise seems to be dominant at least for three decades. In this
way, the goal is to estimate the parameters 0 = {own,00m1,Te1,060m2,Te2,060m3,Te3}-
The constraints for the parameter N were set at 0.16 sec which is associated to
372.17 deg/h and 368.73 deg/h according to the 95% confidence interval curve. In
order to cover the region where the flicker noise is more likely to exist, the bounds for
the standard deviation of the three first GM processes were set between 142.1 deg/h
and 44.93 deg/h, while the lower and upper bounds for the correlation time we selected

at (10,100) sec,(1,10) sec, and (100,1000) sec for T.1,T.e and T3, respectively.

Fig. 4.26 plots the fitted curve (cyan line) after performing the NLF with the
mentioned constraints. It can be seen that it matches very well to the AV curve of the
z-axis gyro, showing that the sum of multiple first order GM processes is suitable in
this inertial sensor. The three first order GM processes estimated by the constrained
non-linear fitting are also depicted, which provides information of the underlying noise

sources that are combined to build up the flicker noise. The set of parameter in units

of seconds and deg/s are given by 6 = {0.41,0.03,17.12,0.03,1.59,0.02,211.63}.
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Figure 4.26: Performance of the NLF for the Atomic IMU gyro Z.

Despite the fact that there is not a reference to compare with the estimated
parameters as in the previous section, we evaluate the goodness of the fit by means
of the Normalized-Root-Mean-Squared-Error(NRMSE) (see |144]). Thus, we consider
that the NLF makes a suitable fitting of the AV curve when the fitness value is greater
than 95%.
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NLF Bias Model Adapted to the Loosely-Coupled KF

Having applied the NLF, we adapted the obtained parameters in the loosely-coupled
GPS/INS integration in order to compensate the bias-drift of accelerometers and gyros
of the IMUs under test. For the accelerometers of the Atomic IMU, the stochastic error

as. was modeled as:

tse = WN(N) + 1° GMy(B) + 1° GMy(B) (4.47)

where the noise term associated to N is modeled as white noise (WN) and the flicker
noise is modeled as a superposition of two first order Gauss-Markov process. Regarding

the gyros, the stochastic error gs. was defined as:

Jse = WN(N) + 1St GMl(B) + 1St GM2(B) + 1St GM3(B) (448)

where we have a white noise (WN) plus a flicker noise modeled as a superposition

of three first order Gauss-Markov process.

On the other hand, it is noteworthy that the log-log AV curves obtained for the
3DM-GX3-25 IMU in Section 4.3.4 vary with respect to the ones showed in Fig. 4.24(a).
This is because we work with three MEMS IMUs, (i.e., two 3DM-GX3-25 IMUs and
one Atomic IMU), one 3DM-GX3-25 IMU from the Navsas research group and the
others from the Department on Microelectronics and Electronics Systems of Universitat
Auténoma de Barcelona (UAB). So the analysis described in previous sections was
achieved using the 3DM-GX-25 IMU available in the Navsas research laboratory [122].
For the 3DM-GX3-25 IMU available in the UAB, we applied the NLF and we noted
that the error model that fitted better for this IMU was the following:

For the accelerometers of the 3DM-GX3-25 the stochastic error a,. was:

tse = WN(N) + 15 GMy(B) + 1t GMy(B) (4.49)

it is composed by a white noise (WN) and a flicker noise modeled as a superposition
of two first order Gauss-Markov process. For the gyros, we obtained a white noise (WN)

plus a flicker noise modeled as a sum of two first order Gauss-Markov process (15 GM).
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gse = WN(N) + 15t GM,(B) + 1% GMy(B) (4.50)

In order to compare the performance of the stochastic models obtained with the
NLF, we not only estimate the noise parameters with this method but also with AV
following the procedure described in Section 4.5.1. The comparison between both of

them will be presented in Chapter 6.

Temperature Test for the Stochastic Error

Most of the reported works in the literature disregard the stochastic error variations at
different temperature points [29]. Indeed, the analysis of the Allan variance curves is
typically achieved at an specific temperature point, except for some researches where
AV curves have been taken into account with various temperature points 145, 146].
Therefore, El-Diasty in [29] introduces a temperature-dependent stochastic model for
inertial sensors, where autoregressive models are employed to estimate the parameters
of a first order GM process at different temperature points. Despite the fact that
this is a novel error model, we consider that a more appropriate error modelling can be
determined. For this reason, we decided to develop a temperature-dependent stochastic
error based on the NLF. Thus, in order to analyse the behaviour of the bias-drift at
different temperatures points with the NLF we focused on the 3DM-GX3-25 MEMS
based IMU. For this purposed, we placed the IMU in the thermal chamber available in
the Department of Microelectronics and Electronics Systems at the UAB. During the
temperature test, we collected static data sets from the IMU at different temperature
points, specifically, 10 °C, 20 °C, 30 °C' and 40 °C. The 3DM-GX3-25 IMU was
configured in the same way as in Section 4.3 with a sampling rate of 100 Hz. Then, we
recorded seven hours of static data at each temperature point (i.e., a total of 28 hours).
Subsequently, the AV algorithm was computed for each seven hours of the different
temperature points. The y-axis accelerometer and gyro of the 3DM-GX3-25 IMU were
chosen to illustrate this analysis. The other sensors gave similar results. Fig 4.27(a)
and Fig. 4.27(b) show the log-log Allan variance curves for y-axis accelerometer and
y-axis gyro of the IMU at different temperature points, respectively. A temperature

dependency of the noise terms that are affecting the inertial sensors can be appreciate
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in the plots. For instance, the y-axis accelerometer has a significant variation in the
flicker noise, this is in a segment of the curve where the AV estimation has a relatively
low uncertainty (i.e., for cluster times between 2 = 107! sec and 20 sec). On the other
hand, it can be noted that the y-axis gyro presents a temperature dependency for the
short term noise angle random walk (slope —1/2), (i.e., for cluster times below 10 sec,
where the noise term (N) is more dominant). For cluster times above 20 sec is not easy
to determine an accurate variation of the noise term involved, this is due to the fact
that the AV uncertainty is high. Despite this, a temperature dependency of the noise
terms is observed in cluster times where the log-log AV curve has a low uncertainty,
which means, that we could estimate the noise parameters through the NLF at each
temperature point in order to examine how these parameters that can be well estimated

at different temperature points affect the performance of the system.
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Figure 4.27: (a) IMU 3DM-GX3-25 Allan variance for accelerometer Y at different
temperature points; (b) IMU 3DM-GX3-25 Allan variance for gyro Y at
different temperature points.

For building the stochastic error model temperature dependent, we applied the NLF
to each AV curve obtained at different temperature points. The objective function that
we used to fit each curve is the one related to the stochastic models described in Eqs.

(4.49) and (4.50).

Figures 4.28(a) and 4.28(b) show some of the estimated parameters for
accelerometers ans gyros (i.e., the covariance of a first order GM process (c2,,) for
the three accelerometers and the covariance of the white noise (03,y) for the three

gyros). These parameters were obtained after computing the NLF and it is clear that
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the angle random walk (N) has a linear tendency. In fact, the experiment was repeated

on different occasions and we observed that the angle random walk noise increased

with temperature.
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Figure 4.28: (a) Covariance of a first order GM process (0,,,) for the three different
accelerometers at different temperature points; (b) Covariance of the
white noise (03, ,) for the three gyros at different temperature points.

After this temperature test, we concluded that it was necessary to include
the stochastic error model temperature dependent in the loosely-coupled GPS/INS

integration in order to examine its performance. The results for this error model are

shown in Chapter 6.
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Chapter 5

Architecture Based on FPGA for
GPS/INS Integration

5.1 Introduction

Although the GPS is highly portable, with low power consumption and dominates
the market in positioning and navigation [75], the reability, continuity and availability
in the navigation applications where it is used is compromised in different situations,
e.g., in urban canyons and tunnels where there is not line-of-sight between the GPS
receiver and the satellites. In fact, these are not the only errors that affect the
GPS, there are also factors such as jamming, multipath, interference, etc. Given the
vulnerability of the GPS receivers, in the last years it has been supported by additional
information sources in order to improve the navigation solution. Since most of the
navigation systems require redundant information, we consider that FPGAs (Field
Programmable Gate Array) are suitable for their implementation because they are
very flexible devices that allow to easily adapt several instruments such as compasses,
GPS receivers, odometers, cameras even multiple Inertial Measurement Units (IMUs),
which can lead to redundant information sources and in turn a better performance of
the navigation system. Additionally, they are being used in a wide range of applications
that require computation-intensive, due to the fact that they have different features
such as embedded processors, DSP blocks, high speed serial communication and high

density in gates. FPGAs can be programmed to achieve several applications with a
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high performance, taking advantage of their high grade of parallel processing and their

capacity of run-time re-configurability.

Although, recently some works have being conducted to implement GPS/INS
integration on compact and flexible platforms, highlighting between them [35-39], we
noted that in most of the cases the FPGA is used as an interface for data acquisition
and in approaches where it is used to compute the navigation algorithms the hardware
resources available are underutilized. In fact, this is where the FPGA could offer more
benefits if several information sources are included. It is also worth noting that the use
of low cost INS implies high computational cost due to the complex error models that
are needed to enhance its performance. Therefore, in this chapter we aim to develop
an embedded system that combines GPS/INS with an architecture based on FPGA
technology, where we will analyse the feasibility to use parallel processing with DSP

blocks for the computation involved in the Extended Kalman Filter (EKF).

This chapter is organized as it follows. The first section presents a review of
recent similar platforms where the GPS/INS integration has been implemented. Second
section gives a general description of FPGAs and the requirements and specification of
the embedded system. The third section, explains the architecture developed for the
loosely-coupled GPS/INS integration based on FPGA. This also gives details about the
software/hardware implementation, utilization resources and matrix multiplication in
hardware as a possibility to speed-up the system. Finally, the applications where the

navigation platform was assessed are presented.

5.2 Previous Work

Recently, studies have been conducted to carry out the GPS/INS integration using
platforms such as DSPs (Digital Signal Processors) and FPGAs (Field Programmable
Gates Arrays) [35-38, 147]. References [37, 147| present the integration GPS/INS
using DSP and FPGA. In this case a floating-point DSP is used to implement the
Kalman filter and navigation equations while the FPGA is used as interface with
instruments such as the GPS. Basically, the FPGA is responsible for the acquisition,

communication and control. Although these papers propose novel systems combining
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FPGA and DSP, platform size could be reduce using only one of them. At the time,
one of these works was under development and the other one had been tested using
a spacecraft simulator called Flight Dynamic Controller (FDC). A similar work using
DSP/FPGA was described in [35]. It summarizes various GPS/INS configurations
developed in different boards that were reported in the literature at the time and
also details the computational cost required by the KF and the INS algorithms
involved in the loosely-coupled approach with 9 states (i.e., position, velocity and
attitude). Although this work implements some hardware modules on the FPGA,
such as a GPS receiver serial link interface, these modules are available in most of
the current FPGAs development boards. Even though the PCB designed for the
inertial sensors interface provides little versatility, this paper shows a novel approach
in acquiring signals from IMU and GPS for a given Kalman filter to fuse the data
by means of DSP/FPGA boards. In [36] the GPS/INS integration is carried out
using an FPGA. This uses the soft-core processor Nios II in conjunction with eCos
(Embedded Configurable Operating System), which is responsible for managing the
user interface, the synchronization time, the INS and Kalman filter algorithm. The are
some components that are designed by using the AHDL (Altera Hardware Description
Language). This project shows good results and also proposes a compact platform.
However, it uses AHDL language which limits the design since this is specifically for
Altera, consequently it is not an IEEE standard as VHDL (Very High Speed Integrated
Circuit Hardware Description Language). In [38], a compact platform based on FPGA
is described. It makes the GPS/INS fusion by using the hard core processor PowerPC
440, the navigation algorithm is developed in C language and the complete system
is evaluated with simulated trajectories. Despite this, there is no any details about
the computational cost required by each stage and neither the utilization resources.
In [148|, a new strapdown algorithm in a single FPGA chip is developed. Although
it does not implement the GPS/INS integration it describes the parallelization of the
mechanization and its computational complexity. It shows that hardware can greatly
decrease the execution time, nonetheless, we consider that the effort to reduce the
computational cost in the GPS/INS integration should be focused on the EKF, which
is a critical block of the navigation system as it will be pointed out in the following

sections.
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5.3 Platform Based on FPGA

Despite the fact that there are different hardware platforms that can be used to develop
an embedded system such as microcontrollers, digital signal processor DSP, application
specific integrated circuits (ASIC) [147,149-151|. The selection of a platform over
others depends not only on the requirements of the system to be developed such as
the performance, power consumption, cost per chip, but also on the ease of the tools

accompanied by a specific platform to assist the developers [152].

On one hand, the DSP can be suitable for the GPS/INS integration since some of
these processors are able to work with floating point, they also have a specialized
data-path for digital signal processing and can be programmed in C language.
Nonetheless, adding new sensors to the system might result difficult in most of the
situations. Although there is a wide discussion in regard to the use of FPGA and
DSP technologies, we consider that FPGA can offer great advantages in this sort
of navigations systems since it would be enough to implement the loosely-coupled.
However, the FPGA implementation presents greater challenges than the DSP. On
the other hand, from the works that combine DSP/FPGA, we noted that the
FPGA makes easier the reading from the navigation instruments and the DSP is
appropriate to achieve the digital signal processing involved in the KF to fuse the
data. However, it might imply higher power consumption, a less compact platform,
additional synchronization stages between the two devices and a design of different

PCBs to fed all the circuit boards.

For the loosely-coupled approach focused on this thesis, the FPGA was chosen
because of the wide variety of advantages that it offers over similar platforms. The
FPGA is very flexible to adapt new information sources in the navigation system (i.e.,
magnetometers, cameras, RF receivers, bluetooth devices etc.), it has great capacity
for parallel processing that could reduce the computation time, which is an important
factor in real-time implementations. Additionally, FPGAs have a low risk design
methodology. Nowadays they come together with resources like processors, modules
to handle high-speed communications, Floating Point Unit (FPU), DSP blocks, etc.
These devices have the benefits of the hardware such as speed and flexibility, apart

from their simple design cycle. This means that if there is an error in the design, it
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just needs to modify the code and reprogram the FPGA, and does not have a high
non-recurring engineering (NRE) as in the case of an Application Specific Integrated

Circuit (ASIC).

The navigation platform based on FPGA that was developed will be explained in
the following sections, but first we will make a brief introduction about FPGA devices

and subsequently the details of the prototype will be presented.

5.3.1 Field Programmable Gate Array (FPGA)

The field programmable gate array is an integrated circuit (ICs) that belongs to the
family of programmable logic devices (PLDs). Since its creation in the decade of the
70’s it has been characterized by offering flexibility in the designs, due to the fact
that these devices have a large amount of gates that are programmable in the field
to perform different functions. An FPGA chip basically includes I/O blocks and a
core programmable fabric [153]. The I/O blocks are located around the periphery of
the chip and provide programmable inputs and outputs that allow interaction with
external devices. On the other hand, the core programmable fabric consists of an array
of logic blocks also called configurable logic blocks (CLBs) that are interconnected
by programmable connections. Depending on the technology of FPGAs, it can be

programmed only once while others can be programmed many times.

Modern FPGAs incorporate resources like RAM blocks, DSP blocks for the
realization of MAC operations, high logic density, communication modules in the order
of Giga bits, clock management modules, embedded processors, etc. These components
have made FPGAs an attractive alternative for the development of System-On-Chip
designs [153].

Figure 5.1 illustrates the general layout of the FPGA architecture of a Xilinx
device. In this scheme shows the programmable logic blocks, the programmable
interconnections that are part of the core programmable and the I/O blocks. All
the blocks are highly configurable and can be used to implement large and complex
functions that had previously been the domain only of ASICs [154]. The functions
developed by the user are mapped into the logic blocks of the device performing
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Figure 5.1: Generic FPGA architecture.

the necessary connections between them. Thus, configurable interconnection lines are
programmed making connections between different logic blocks in order to achieve a

specific task.

The design methodology for FPGAs consists in two basic methods, bottom-up and
top-down [155]. The bottom-up description of a system begins with the implementation
of basic components that are gathering to form more complex modules until the
complete system is developed. In contrast, the top-down begins with a high level
description where the main blocks of the system are identified and then it is divided
into blocks that have less complexity and are easier to implement. Here we adopted the
top-down methodology as it allows error corrections at early stages of the development

cycle.

5.3.2 Requirements and Specifications

In order to make the implementation of the GPS/INS integrated system on the FPGA,
we defined the following specifications and functional requirements for this navigation

embedded system:

e Interface with the Atomic IMU, 3DM-GX3-25 IMU, u-blox LEA-6T GPS receiver
and a bluetooth component for communication with external devices, it could be

a PC or an Android device that will interact with the platform e.g., to collect
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data during campaigns or to display the trajectory of the vehicle. Each of these

devices are provided with a UART serial communication interface.

e Synchronization between different IMUs and GPS (i.e., one IMU at the time)
using the Time Of Week (TOW) provided by the GPS. The inertial sensors will

provide data every 10 msec while the GPS receiver every second.

e Drivers for both IMUs and GPS that allow to obtain information that will be
used later in the navigation algorithm. It requires programming the Atomic IMU
microcontroller to send inertial sensor samples every 10 msec and also adapt a
sensor to monitor the temperature of the device. The 3DM-GX3-25 IMU needs
to be configured to send a specific packet every time the FPGA is power up, so
it will be able to provide raw measurements of angular velocity, acceleration and
Euler angles every 10 msec. The drivers for the GPS should extract position and

velocity information every second.

e Implement the loosely-coupled GPS/INS integration algorithm using an
architecture based on FPGA, which will be assessed with simulated and real

data collected during campaigns.

e Store the navigation solution in a external memory or send it via bluetooth to a
remote device such as a mobile device or PC. The developed architecture for the
navigation embedded system should be stored in an external non-volatile flash
memory, thus it does not need to be programmed every time a vehicle test is

performed.

To test the performance of the navigation platform based on FPGA, the following

two approaches are considered:

e Acquisition: to evaluate the data acquisition of the different devices, the FPGA
platform is mounted in a robot and a land vehicle under several scenarios, where
it is configured to read data coming from IMU and GPS. The data collected is

synchronized and stored in a compact flash memory or sent to a PC via bluetooth.
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e Navigation algorithm: in order to assess the performance of the GPS aided
INS, the FPGA is reconfigured with the navigation algorithm. Then, the raw
measurements that were collected during the campaigns are stored in an external
DDR SDRAM memory available on the XUPV5 board from Xilinx, where once
the algorithm stars running the measurements are loaded from the memory and
fed into the loosely-coupled GPS/INS integration. To analyse the computational
cost, a timer is added to measure the execution time needed for each stage
involved in the navigation algorithm. The off-line solution is also compared with
the algorithm developed in Matlab. It is worth mentioning that the extracted
information from both IMUs will be evaluated independently in the integration

with the GPS and not as a data fusion of multiple IMUs.

5.4 GPS/INS Integration Based on FPGA

The platform for the GPS/INS data fusion is shown in Fig. 5.2. It presents the
Virtex-5 ML509 board, the IMUs, the GPS and an Android device. There are three
UART interfaces which carry out the data acquisition from the navigation instruments.
The measurements are stored in a 1 GB compact flash memory that is in the bottom
of the board, although there is also the option to send them via Bluetooth through
a UART peripheral. That is, using a serial communication interface, where we
connect a UART-Bluetooth converter (Bluemore200), which is suitable for integration
in microprocessor systems without operating system since it does not need a driver to
work |156]. Thus, the platform is able to send position data to an Android device,
where we can monitor the trajectory of the vehicle. The communication with external
devices and visualization of the trajectory were used during the robot test since the user
interface developed in the Android device not only receives information from the FPGA
but it is also designed to send commands to the FPGA in order to have interaction

with the Virtex-5 ML509 platform.

The following sections describe the customization of hardware and software

development that is necessary to build the embedded navigation system.
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Figure 5.2: General system components.
5.4.1 Hardware Implementation

To implement the navigation system on the Virtex-5 ML509 development kit, we
used the ISE Design suite 12.1 and also the EDK (Embedded Development Kit) from
Xilinx. The Microblaze processor version 7.10.d was customized to run at 125 M Hz
with an IEEE-745 compliant single-precision Floating Point Unit (FPU). This soft-core
processor is implemented using the logic primitives of the FPGA and this is part of the
Xilinx embedded solutions. This soft-core processor is an Intellectual property (IP)
core that has a rich instruction set optimized for embedded applications, which gives
complete flexibility to select the combination of peripherals, memories and interfaces,
so it provides the exact system that is necessary at the lowest cost possible [157,158|.
Thereby, the architecture was customized with three UART peripherals, two of them
to receive data from the IMU and GPS, whereas the third one to communicate with

the Android device through a UART-Bluetooth converter (see Fig. 5.3).
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The Microblaze processor is connected to the Multi-Port Memory Controller
(MPMC) which manages the external memory (DDR SDRAM) where the software
application will be stored. The access to the external DDR, SDRAM is performed by the
Xilinx CacheLink (XCL) that is a high performance solution to connect directly to the
memory controller MPMC [158]. Regarding the Timer IP core, this is added in order
to log the IMU samples and also to measure the execution time that takes different
stages of the algorithm. The architecture includes the system ACE CF controller
that uses the memory based on the Compact Flash (CF), which not only permits to
store the raw measurements but also supports multiple-bitstream files if additional
architectures are required. Moreover, the GPIO is the general purpose I/O core, which
enables interface to leds, dip switches, LCD display and push bottoms. These I/O
peripherals are employed to start/end the system and also to check if the application
is running properly. It can be noted that in the same way all these hardware resources
were included any information source with a standard interface can be adapted in the
architecture by just attaching a custom core or an IP core, which will increase the
redundancy of the navigation system and in turn its performance. This is one of the

main advantages that FPGAs can offer in the development of navigation systems.

Since XUPV5 board includes a platform flash PROM as most FPGAs development
kits, we used the non-volatile memory available on the board to store the complete
system (i.e., a linear flash device that provides 32 M B of flash memory). Thus, the
System on Chip design can be loaded every time the FPGA is turned-on. Finally,
an interrupt controller is attached into the PLB bus for the acquisition of the inertial
sensors measurements and the information provided by the GPS. This issue will be

explained in the next section.

5.4.2 Software Development

The software development for the navigation application is made up of different blocks
as it is depicted in Fig. 5.4. The EKF explained in Section 2.6.3 was implemented
considering 15 states, nine for the navigation states and six for the IMU error states as

it is stated in Eq. (5.1). The flowchart for this algorithm can be seen in Section 2.6.4.
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The algorithms were developed in m-code with Matlab and also in C language. They
were debugged and validated and latter on the C language code was ported to the soft
core Microblaze processor. It should be mentioned that although currently there are
tools that can be used to accelerate the development of prototypes in hardware, for
instance, Matlab HDL coder that converts m-code to HDL code or Matlab coder that
converts m-code to C code, in this case we implemented the GPS/INS integration in
m-code and we manually converted m-code to C code. Despite the fact that it is a
slower process than using Matlab toolboxes, we chose this option because we have more
control over the code e.g., it is readable, it is not necessary to alter the Matlab code
and besides the code can be optimized more easily to adapt the navigation system to

a specific processor, such as Microblaze.
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Figure 5.4: Flow diagram for the loosely-coupled GPS/INS integration.

According to the flow diagram shown in Fig 5.4, the initialization provides the
initial conditions of the navigation system, ¢.e., information of position, velocity and
attitude. This block can be performed as a separate algorithm, which can be seen as a
software application that runs the alignment and it is stored as an image in the flash
PROM. The initial position and velocity is given by the GPS while the Euler angles
are read from the 3DM-GX3-25 IMU. The process to acquire the measurements from
the GPS and IMUs is explained in the following section.
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Acquisition

The data acquisition from the GPS and the Inertial Measurement Units was carried
out through universal asynchronous receiver transmitter (UART) peripherals. These
peripherals are included during the set up of the hardware architecture and are
connected to the PLB (Processor Local Bus); each of them were configured with a

baud rate of 115200 baud.

To obtain the measurements from the Atomic IMU, the inertial sensors signals are
passed through a signal conditioning and a low-pass filters stage providing a high level
analog output proportional to the acceleration and angular rate measurements. These
analog outputs are then sampled by the on-board microcontroller ATMegal68TM,
that runs at 10 M Hz with 8 dedicated 10-bit ADC channels. In order to obtain
temperature data during the campaigns, we modified the Atomic IMU from Sparkfun
electronics adapting the LM35 temperature sensor. This is a precision integrated-circuit
temperature sensor that provides an output voltage linearly proportional to the
centigrade temperature and does not require any external calibration to provide
accuracies of +0.75°C' over a full temperature range —55°C' to +150°C' [159]. In this
case the ATMegal68TM is programmed to perform the conversion of each channel
of the ADC as it is shown in Fig. 5.5, the seven ADC channels are sampled by the
microcontroller to obtain a message packet with acceleration, angular velocity in the
three axis and temperature i.e., A;, Ay, A, w,, wy, w, and T, respectively. Given the
fact that the ADC is connected to an 8-channel analog multiplexer, the seven entries
can not be simultaneously sampled, so there is a delay between each digital sample,
this indicates that the samples obtained from the accelerometers, gyroscopes and
temperature sensor not correspond to the same instant of time due to the delays caused
by the multiplexer. In spite of this, if the ADC conversion time is significantly high,
then the effect of errors due to the phase delays will be minimal. This nonsimultaneous
sampling will have an impact if the computational cycle time (i.e., approximately
10 ms) is comparable with the conversion time [35]. In the present case it is not
critical since the conversion time is about 83.6 us (13 cicles) with a frequency of
156.25 K H z for the ADC. After getting the digital samples for each sensor, the Atomic
IMU message packet is sent to the FPGA through the USART interface available in
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the microcontroller.
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Figure 5.5: Timing diagram for Atomic IMU acquisition.

Since GPS and IMUs provide different sampling frequency, 7.e., 1 Hz and 100 Hz,
respectively, the synchronization between these instruments is done by the GPS, that
is typically used as time reference in multi-mobile sensors systems [160]. Therefore,
we used the time of week supplied by the GPS as time stamp on each data received
from the IMUs. Although a better synchronization procedure can be implemented, in
this first prototype of the navigation platform we consider a conventional method. For

further details of recent methods of synchronization refer to [160-162].

Thus, whenever a packet is received from one IMU, it is tagged with the current time
of week given by the GPS. Thus, an IMU with a sampling frequency of 100 H z will have
100 samples with the same time of week. To achieve this task we enabled the interrupts
in the UART interface, giving priority to the interrupt of the UART associated with
the GPS. The interrupts are generated when a valid data exists in the receive register
of the UART, then, it is stored into a buffer and when it is complete, this is copied to
another buffer, which is processed to extract the data (e.g., position and velocity for the
GPS and angular velocity, acceleration and Euler angles for the IMU). Each packet has
a specific structure that supports a header for synchronization, payload with a group of
messages which are related to position, velocity, angular velocity, acceleration, attitude,
etc, and a check sum. The algorithms implemented on the FPGA to read the Atomic
IMU and the GPS are slightly similar, they are summarized in one flowchart depicted
in Fig. 5.6. For the 3DM-GX3-25 IMU, each time the FPGA is turned-on a command
needs to be sent to configure the data-stream format. This message format is saved

on its on-board processor and then when the IMU is enabled it sends a continuous
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stream with acceleration, angular velocity and Euler angles with a sampling frequency
of 100 Hz. See [121,163] for further details about the structure of each packet sent by
the GPS receiver and the 3DM-GX3-25 IMU.

Read GPS/
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start interrup, index =0

< Index++
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Is Index = buffer
size+offset
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| | Offset=buffer
size-index

Y

Go to INS
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Figure 5.6: Flow diagram to read GPS receiver and Atomic IMU.

Memory Mapping

Since the Block RAM available to run a Microblaze application is by default 64 K B, we
used the external memory DDR2 SDRAM of 256 M B to avoid limitations with regards
to the space required to execute the GPS/INS application. Furthermore, in order to
evaluate the platform in a terrestrial vehicle, we used a non-volatile device PROM as
a platform to store the software application and the configuration data of the FPGA
during power-down. The SDRAM and the flash PROM memories are typically included
in the development kits based on FPGA; the latter memory is sometimes dedicated
to load the FPGA configuration data upon power-up. This non-volatile device can be
also employed to hold small amounts of user data or several images to configure the
FPGA, it might be useful to store images with different proposes. For instance, in the
GPS/INS application one image could have the navigation alignment and another one

the computation of the navigation solution; it would be convenient and flexible.
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Figure 5.7: Memory map for the embedded system.

Figure 5.7 shows the contents of the flash memory, in this case, the linear flash
chip available on the XUPV5 board is used. This non-volatile memory provides
32 M B with 16-bit wide to storage data, software, or bitstream files. The section that
includes the software applications storages the executable loosely-coupled GPS/INS
integration, while the FPGA configuration section contains the information to configure
the logic cells and routing within the FPGA (i.e., the hardware architecture described
previously). Additionally, it also storages a bootloader application to initialize the

BRAM of the Microblaze.

FPGA Configuration

Having customized the architecture with the features shown in Fig. 5.3, the hardware
design is synthesized and the bitstream file is generated with the EDK. Then, in order
to configure the FPGA with the navigation system two steps are required. Firstly, the
hardware architecture and software application need to be stored in the flash memory
and mapped as it was explained in the previous section. Secondly, the GPS/INS
software application need to be run from the external DDR SDRAM memory. This is
achieved by following these steps:

e Programming the flash memory with the GPS/INS application image. This
is loaded into the flash with a offset address, that corresponds to the address
memory where the bootloader will look for the software application once the

FPGA is switched-on.
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e Programming the flash memory with a image containing the hardware platform

and the BRAM initialized with the bootloader.

Once these steps are accomplished every time the platform is switched-on the
hardware architecture described in Fig. 5.3 is configured on the FPGA from the
linear flash. Subsequently, the bootloader, stored in the BRAM, accesses to the
pre-determined memory location where the loosely-coupled application was stored in
the flash, then copies it from the flash to the DDR SDRAM. Finally, the bootloader
application jumps to the extern memory where the the navigation application has
already been stored and starts running. The complete process is implemented using the
Byte-wide Peripheral Interface (BPI) mode. See further details about this procedure
in [164,165].

Software Profiling

Here we present the execution time of the code implemented on the FPGA that requires
a higher computational cost. To measure how long the program takes to execute a piece
of code we used a timer/counter peripheral, which count the number of clock cycles
between two instructions, where each clock cycle is related to the Microblaze frequency,
that is 125 Mhz. As shown in Table 5.1 the time required for one mechanization
computation is 2.7 msec, one Kalman filter computation requires 111.30 msec. During
the acquisition of the IMU (i.e., considering the 3DM-GX3-25 IMU that provides
more samples than the Atomic IMU), the reading takes approximately 0.118 msec
on average, while for the GPS read and parse take 0.006 msec on average. Taking into
account that the GPS provides samples every second while for the 3DM-GX3-25 IMU
every 10 msec. Since the algorithm runs in an infinite loop the navigation solution
is calculated continuously, providing position, velocity and attitude outputs every
57.72 msec which is equivalent to approximately 17 results of position every second.
This is in the case when the GPS is not available, otherwise if there is a GPS update,
the number of results provided by the navigation system is reduced to 16 due to the

calculation of the EKF update stage.

A time frame within a second for the calculation of the navigation algorithm in

p-Blaze can be seen in Fig. 5.8. The time segment that takes 114.12 msec to compute
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Table 5.1: GPS/INS integration real-time feasibility using XUP-V5 board.

Acquisition Mechani- EKF Pre- EKF  Exec.
GPS IMU  zation diction Update Time

(msec) (msec)  (msec) (msec) (msec) (msec)

p-blaze

(125 Mhz) 0.006 0.118 2.7 54.9 56.4 114.12

the navigation solution is related to the EKF update stage (green time slot), which is
computed every second when there is a GPS update. If there is not GPS update the
solution is provided every 52.72 msec having the highest computational burned during

the EKF prediction stage (purple time slot).

navigation navigation navigation navigation navigation
solution solution solution solution solution
1 15 16
000
|-
< > < > v
114.12 msec 57.72 msec t

Figure 5.8: Time frame within 1 sec of u-blaze computation at 125 M H z.

Thereby, the platform provides a navigation solution at approximately 16 Hz
in real-time, which might be appropriate for terrestrial applications. Despite this,
expanding the capabilities of the platform, e.g., adding new sensors, using the platform
in applications with high dynamic vehicle movement environment that require a
navigation solution with a higher rate or considering more complex stochastic models
to compensate low cost IMUs errors, would increase the computational cost of the
navigation algorithm. From the software profiling, it was noted that the highest
computational burned occurs in the matrix multiplication operation of the EKF,
specifically, for the calculation of P} and P}, since it involves matrices with a size of
15 x 15. Indeed, every time these matrices are computed the soft core processor takes
on average around 11 M clock cycles, that is, an equivalent of 88 msec, 77.11% of the
total execution time. Therefore, we decided to evaluate the feasibility of accelerating
the application with a hardware multiplier using available resources on the FPGA.

Further details about this custom core will be given in Section 5.4.4.

133



5 — Architecture Based on FPGA for GPS/INS Integration

5.4.3 Hardware Resources

Table 5.2 is listing the amount of resources required to implement the architecture of
the GPS/INS integrated system. Most of the slice LUTs and slice registers resources
are attributed to the p-blaze processor (i.e., around 10000 between slice LUTs and slice
registers), it also uses 7% of the DSP blocks available on the FPGA. The architecture
uses 121 Blocks RAM dedicated hardware resources from 148 available on the Virtex-5
XC5H5VLX110T. Moreover, the code that is executed by the microblaze consumes 0.1
percent of the external memory DDR SDRAM. The results show that there are many
hardware resources available in the FPGA that could be used to add new sensors
into the navigation system. Furthermore, customization of the architecture provides
information about the necessary hardware resources to achieve the development of a

GPS/INS integration in a system on chip.

Table 5.2: Device and memory utilization summary.

Used (#) Available (#) Utilization (%)
Slice Register 8.324 69.120 12
Slice LUTs 7.438 69.120 10
DSP48Es 5) 64 7
Block RAM 121 148 81
DDR SDRAM 284 KB 256 M B 0.1

5.4.4 Matrix Multiplication in Hardware

Matrix multiplication is an essential operation in many applications and in this
particular case in the Kalman filter implementation for the loosely-coupled GPS/INS
integration, where depending on the IMU, the number of states might be increased
significantly. ~ Although there are several architectures that perform a parallel
implementation of the matrix multiplication [166-168|, they are used with small
matrix dimensions. Nowadays, there are embedded devices that can be used to
accelerate the matrix multiplication, for instance, in [153,169], an efficient matrix
multiplication is described using DSP blocks available on Xilinx FPGAs. Therefore,
we focused in the development of an architecture using DSP blocks in order to compute

the matrix multiplication operations that are typically found in the Kalman filter
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algorithm. Different from those designs where two dimensional systolic arrays are used,
the architecture implemented organizes the matrix elements with only one dimension
processing elements to reduce the utilization of DSP blocks available on the FPGA. The
hardware design presented in this section is also flexible, scalable and parametrisable

and is not restricted to the matrix size or the number of matrices to be multiplied.

In this way, if we focus on the XC5VLX110T FPGA, which is integrated in Xilinx
University Program (XUP) kit, it has 64 DSP48E slice that can be used to evaluate the
calculation of the matrix multiplication. The DSP48E slices support many independent
functions. They include multiply, multiply accumulate (MAC), three-input add, among
others. The architecture of these DSP48E blocks also supports cascading multiple DSP
slices to form wide math functions, DSP filters, and complex arithmetic operations

without the use of FPGA fabric |170].

Figure 5.9: Proccesing element with a DSP48E block.

The very simplified form of the DSP48E slice for the Virtex-5 FPGA is shown in Fig.
5.9. It includes 25 x 18 multiplier and a three-input adder/subtracter /accumulator. So
the partial output from the multiplier is 43-bit that is extended, forming 48-bit input

datapath. This number of bits can be increased concatenating two DPS48E slices.

Matrix Multiplication Architecture

The architecture developed for matrix multiplication is shown in Fig. 5.10, it consists
of processing elements (PEs) that are built with DSP48Es blocks. In this designed they
are configured to perform the MAC operation. Moreover, dual port memories are used
to store the matrix elements. Each memory has been tagged taking into account the
matrix elements stored, e.g., memory B stores all the elements of B matrix, memory
C stores all the elements of C matrix, whereas memory A 1 stores the first row of

matrix A, memory A x B_ 1 stores the first row of the result A x B and so on.
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Figure 5.10: Matrix multiplier array with DSP48E blocks adapted to Microblaze.

This designed is scalable because depending on the number of rows of matrix A,
the architecture can be extended. For instance, adding dual port memories A 4, A 5
and A 6, we could multiply matrices with six rows. This is easily achieved with the
generate statement in VHDL (VHSIC Hardware Description Language), which allows
to replicate hardware. Similarly, considering that a multiplier stage is given by M1
(i.e. enclosed by the dotted line in Fig. 5.10 and it computes A x B only), this can
be replicated as many times as necessary to multiply several matrices, which is the
case when we are computing the Kalman filter. Here we only implement two stages
that correspond to A x B — M1 and A x B x C — M2. The matrix multiplication
developed in VHDL includes modules such as control mult-in, counter A /B and control

mult-out, the functionality of these modules is described below:

e Counter A: this module is a counter that acts as bus address for memories A 1,
A 2 A 3, etc. Each counter has two inputs to maintain a value or reset the
counter besides the clk signal. The input signals come from the control mult-in
module. Each stage has its own counter A, e.g., it works as the bus address of

memories A x B_1 and A x B_ 2 in stage M2.

e Counter B: this module has the same hardware description as the previous one,
but it acts as the bus address for memory B. Each stage has its own counter B,

e.g. it works as the bus address of memory C' in stage M2.

e Control mult-in: this module is included in each stage M and it is implemented by

a Finite State Machine (FSM). This is the one that provides the control signals to
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perform the matrix multiplication. One of its functions is to reset the processing
elements and counters A /B until the multiplication is enabled by the start signal
(matriz_mult = 1). This module also stores in a register the size of the matrices
to be multiplied i.e., the number of elements of B and the number of columns
of A, so its value can be modified to multiply matrices of different sizes. When
it receives the signal to start the multiplication (matriz _mult = 1), it sends a
signals to enable the counters and at the same time to performed the accumulation
operation in the DSP blocks. While counters A and B are increasing, the DSP
blocks are accumulating the multiplication results. So if counter A reaches the
number of columns of matrix A, a signal is sent to control mult-out module to
store the result in A x B_1 and A x B_2. Subsequently, counter A is reset
together with the PEs with the purpose of starting the multiplication of the
next column of matrix B. Then, counter B is incremented and the previous
steps mentioned are repeated. Once counter B reaches the equivalent value of
the number of elements of matrix B, the multiplication ends and control mult-in

returns to its initial state.

Control mult-out: this module was developed with a Finite State Machine (FSM)
and its main function is to store the result of each stage. It also sends the control
signal in order to start the multiplication in the next stage, this is in case the

matrices to be multiplied are more than two.

With the purpose of clarifying the functionality of the modules and evaluating

the architecture with operations that are used in the navigation algorithm, i.e.,

multiplications between two and three matrices and all of them not necessarily

square matrices, we adapted the generate statement in VHDL language to create the

architecture showed on the right side of Fiig. 5.11, which was tested computing a matrix

multiplication of three matrices: Asys X Boys X Coy3. The matrix multiplication was

assessed with a test bench, loading into the memories matrices like A, B and C with

the elements that are presented on the left side of Fig. 5.11.

The resultant simulation for this architecture is depicted in Fig. 5.12. It begins

storing the elements of the matrices in their respective memories, in this case, for
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Figure 5.11: Matrix multiplier with two stages and six DSP48E blocks.

illustrative purposes we used the same input address bus for each memory (addressa).
Moreover, memories A 1, A 2 and A 3 are connected to the same input data bus
(input _datala) so both memories are loaded with 4 and 1 (i.e., the rows of matrix A).
In the same way, memories B and C' are loaded with their matrix elements through the
input data bus (input data2a). Matrix multiplication starts when the matriz_mult
signal is set to 1 in the control mult-in module for one clock cycle (i.e., at 605 sec),
which enables counter A, that is connected to the bus address of memories A 1,
A 2 — address _cal0] and A x B_1, A x B_2 — address_ca[l], while counter B
is also enabled and is connected to the bus address of memories B — address_cb[0]
and C' — address__cb[1]. At the same time, it allows the PEs to start accumulating.
This first step lasts 5 clock cycles, which is due to synchronization states and the
intermediate latches that are between the memory and the DSP blocks (see Fig. 5.10).
Once the data arrives in the PEs, it takes one clock cycle to multiply the first element
of matrix B[1,1] = 1 with the first column of matrix A (see Fig. 5.11), which is
achieved in parallel. Then, while both counters A /B are increasing the DSP blocks are
accumulating each result until counter A reaches the number of columns of matrix A,
so at this step we have 3 additional clock cycles due to the two columns of matrix A to
get the first column result of A x B in the accumulator. Subsequently, counter B keeps
its value and the result 6 is stored in memories A x B_1 and A x B_ 2, while counter
A and the DSP blocks of the first stage are reset in order to begin the multiplication
with the next column of matrix B, these steps last around 2 clock cycles. Thereby,

the first result is produced approximately after 10 clocks cycles that is equivalent to
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100 ns as it can be seen in Fig. 5.12 from 605 ns until 705 ns, the result appears
in the output data bus ram_output3B[0 - -2] that is connected to the output port of
memories Ax B 1, Ax B 2and Ax B_3.
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Figure 5.12: Simulation of Matrix multiplier A x B x C implemented in VHDL.

After computing the second column of A x B, stage M2 begins when control
mult-out sets matriz_init _next signal to 1 for one clock cycle (i.e., at 785 sec).
The same as in the previous stages it takes around 100 ns to get the first column of
A x B x C, that corresponds to 38 and it is shown at 885 sec. This result come outs in

the output data bus ram__output3B[3--5] that is connected to the dual port memories

AxBxC 1,AxBx(C 2and Ax Bx(C _3.

Total computation time

According to the previous description, we can summarize the computation of the first
column for each stage in three steps: the first step is the initialization that enables
counters A/B, enables the DSP blocks and move the data from memory to the PEs,
it lasts 5 clock cycles and we will denote as k. The second step consists in the MAC
operation, the number of cycles at this step (7,,4.) depends on the number of columns
of the first factor to be multiplied, e.g., for the first stage M1, it is equivalent to
(# columns of A) + 1 = 3 clock cycles, while for the second stage M2 it is the same
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but this time is given by (# columns of (A x B))+ 1 = 3 clock cycles. The third step,
that we will denote as n, takes 2 clock cycles, this is to store the result provided by the
DSP blocks in the output memory, reset counter A and reinitialize the MAC operation

in the PEs. Thus, we can express the computation time to get the first column of stage

M1 (i.e., the first column of matrix A x B) by Eq. (5.2).

computation times s copumn m1 = (K + Nmac + 1) * (1/ far) (5.2)

where fuy is the clock frequency. Eq. (5.2) can be applied to any stage, for stages
M1 and M2 in Fig. 5.12 both of them take 100 ns . The computation time of the
next columns for each stage is smaller, this is because only steps 2 and 3 are repeated.
This can be seen more clearly in Fig. 5.12, where the result of the second column of
A x B x C comes out at 935 ns, that is, after n,,,. + n = 50 ns of getting the first
column of A x B x C. The computation time for each column at stage M1 can be

obtained with

computation timesng cotumn M1 = (kK + (Nmae + 1) *2) = (1/ far) (5.3)

computation times,q copumn M1 = (K + (Mmae + 1) * 3) = (1/ fer)

computation timey copumn 1 = (kK + (Mmae + 1) * N) # (1/ far)

where N is the number of columns of the second factor to be multiplied, e.g., for the
first stage M1 shown in Fig. 5.11, the second factor would be matrix B) while for the
second stage M2 would be matrix C. Therefore, we can write the total computation

time for computing the result at one stage M by Eq. (5.4).

computation timeyr = (k + (Nmae + 1) * N) # (1/ for) (5.4)

According to this equation the number of cycles to perform a matrix multiplication
of two square matrices 2 x 2 after setting matriz_mult to 1 would be equal to 15 clock

cycles. For the example given in Fig. 5.12, we can also applied Eq. 5.4 in stage M2,
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since it begins at 785 ns we obtained the complete result of A x B x C at 985 ns, that
is after 200 ns:

computation timeyrs = (5 + (3 + 2) * 3) = (10 ns) = 200 ns (5.5)

Now considering a matrix multiplication that can be found in the KF algorithm,
for instance, two square matrices 21 x 21, the number of clock cycles to perform this
operation after setting matriz _mult to 1 would be equal to 509. Using a clock
frequency of 100 MHz it would take more than a few 5.1 psec to produce the
resultant matrix taking into account the write/read of the memories, which could

improve significantly the computation time of the matrix multiplication.

Even though this module was developed in order to study the possibility of
accelerating the navigation algorithm using the FPGA hardware resources, it is
recommended to concatenate DSP blocks to obtain a double precision before connecting
it to the p-blaze processor. Note that this module could be adapted to the p-blaze
processor using the Fast Simple Link (FSL) which would be an custom IP tailored as
it can be seen in the architecture presented in Fig. 5.10. The architecture described
in this section is scalable since several matrices can be multiplied by increasing the
number of stages M1, M2, M3, etc. Two matrices can be multiplied in an architecture
with three stages, this is due to the flexibility of the hardware implementation that can
be enabled to read intermediate values. Moreover, the size of each matrix is loaded in
a register, which makes the architecture parametrisable. Thus, an architecture with
one stage an 20 PEs can be used to perform matrix multiplications with a size up to

20 x 20 as well as matrix multiplications with a size of 2 x 2.

Hardware Resources for the Matrix Multiplication

The utilization of hardware resources for two matrix multiplication architectures is
described in Table 5.3. The used of the FPGA resources is very small, actually, is less
than 3% between slice register and slice LUTs considering both designs. The number

of dedicated DSP blocks is 3 for A x B and 6 for A x B x C, which would be including

a second stage M2 as in the architecture presented in Fig. 5.11. It also shows the
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maximum frequency for both hardware implementations.

Table 5.3: Matrix multiply resources utilization summary.

Slice Register Slice LUTs DSP48Es Max.
Freq.

# o) ) ) #) (k) (Mh)

A xB 214 0.3 174 0.25 3 4.69 271.08
AxBxC 420 0.61 216  0.31 6 9.38 221.24

5.5 Testing the Navigation Platform Based on FPGA

5.5.1 Mobile Robot

The navigation system implemented on the FPGA was mounted on a mobile robot.
The robot was in-house constructed using a chassis from Dagu Electronics that allows
to adapt different sensors and additional hardware with a maximum payload of 5 kg.
It has 6-wheels with independent suspension for each of the wheels and it is designed to
move around rough terrain and steep inclines making this chassis suitable to perform
tasks in different environments. To get the chassis moving we used a dual serial motor
controller qik 2s12v10 from Pololu, when it is powered at 7.2 v each motor could
have a stall torque of roughly 11 kg — c¢m [171]. We adapted the chassis with seven
infrared sensors, the ATmegal28 microcontroller, the u-blox LEA-6T receiver, the
3DM-GX3 IMU, the Atomic IMU and two packs of batteries of 7.2V with 4200 mAh
and 5000 mAh to power the Xilinx FPGA evaluation board and the motor controller,
respectively. The experimental setup of the sensors and the FPGA platform on the
robot can be seen in Fig. 5.13. The robot was designed to operate in two modes:

autonomous and remote control.

In this application, the FPGA is dedicated to collect data from the GPS and Inertial
Measurement Units, the raw measurements are stored in the flash compact memory.
The Android device sends commands to control the robot movements (i.e., in remote
control mode). The messages are sent to a microcontroller which is responsible for

reading, parsing and sending the necessary signals to control the robot motors.
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Figure 5.13: Terrestrial robot.

The trajectories acquired with the mobile robot were performed around the campus
of the Universitat Autonoma de Barcelona. Fig. 5.14(a) shows one of the robot tests,
which has a duration of 275 sec. The navigation system was not exposed to any GPS
signal blockage in the area where the robot test was carried out. The information
obtained during this campaign was later used to verified the loosely-coupled algorithm

developed in Matlab and the one implemented on the FPGA.
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Figure 5.14: (a) Terrestrial robot trajectory; (b) Matlab and FPGA solution for the
two MEMS based IMUs.

Figure 5.14(b) shows the position solution calculated with the platform based on
FPGA and the position solution obtained with Matlab. In this case, the reference is
the GPS/INS integration in Matlab that was fed with the measurements provided by
the 3DM-GX3-IMU, using a loosely-coupled with 15 states as it is described in Eq.
(5.1).
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Figure 5.15: Horizontal position error for FPGA solutions.

The position error in the horizontal plane between the position solution obtained in
Matlab and the ones calculated in microblaze with the the two MEMS based IMUs is
shown in Fig. 5.15. As it was expected, the Atomic IMU has a larger error with respect
to the 3DM-GX3-25 IMU, this error is on average 0.60 m whereas for the 3DM-GX3-25
IMU is around 0.15 m.

Table 5.4: Accuracy comparison between pu-blaze and Matlab computation.

PN PE PD VN VE VD Roll Pitch Yaw

IMU

(m) (m) (m) (m/s) (m/s) (m/s) (deg) (deg) (deg)
Atomic o0 )10 160 034 042 035 2.61 146 0.83
(RMSE)
3DM-
GX3 020 008 040 0.12 007 006 143 066 048
(RMSE)

Table 5.4 shows the computation accuracy in terms of the root-mean-square error
(RMSE) between the navigation solution computed with the algorithm implemented on
p-blaze and the one developed in Matlab. The difference between the FPGA solutions
for the 3DM-GX3 and the one computed in Matlab might be due to the fact that
microblaze uses a single-precision floating point FPU, which can be improved by using

the software libraries that emulate double-precision floating point.
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5.5.2 Flight Simulator

The performance of the navigation system implemented on the XUPV5 development
kit was also evaluated collecting navigation data from several flights using a flight
simulator framework called Flightgear (FG). It uses JSBsim, that is the default Flight
Dynamic Model (FDM), which can be used to model and simulate a small autonomous
Unmanned Aerial vehicle (UAV). This software is mainly developed in C++, both of
them (FG, FDM) are open source for used in research or academic environments which
can model the flight dynamic of several aircrafts [172]. The data coming from the
aircraft, such as acceleration, angular velocity, position and velocity was obtained via
the generic protocol of FlightGear (FG), this protocol allowed us to store the data from
the flight simulator in a plain text file. In this case, the Cessna C172P aircraft was used
since it is easy to pilot and provides enough data to test the platform. The sampling
frequency for the inertial sensors was set at 100 H z. After getting different trajectories,
the plain text file was read and the inertial sensor measurements were perturbed with
a bias-drift error, i.e., age = WN(N) + 15 GM(B) and gsc = WN(N) + 1°* GM(B)
for accelerometers and gyros, respectively. It includes a white noise and a flicker noise
modelled with a first order Gauss-Markov process. The parameters that represent this
stochastic model were set taking into account the Allan variance analysis that was
made on the real devices (see Section 4.4). Subsequently, the noisy measurements were
downloaded into the external memory (DDR SDRAM) of XUPV5 board to assess the
performance of the platform. It is noteworthy that Flightgear is not an ideal data set,
since the simulated GPS position is not 100% accurate, in fact, an error function is

being under develop to improve its accuracy.

Once the data collected is stored into the DDR SDRAM, the navigation algorithm
implemented on the FPGA is executed until each data is processed. Then, the result
of the loosely-coupled integration is sent by means of the UART interface to a PC,

where it is analysed.

One of the trajectories that was performed with Flightgear is depicted in Google
Earth (see Fig. 5.16(a)). This flight was acquired around Barcelona with a total time
flight of 767 sec. With the purpose of testing the navigation platform when there are

absences of the GPS signal, three GPS outages were introduced intentionally as it is
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Figure 5.16: (a) Aircraft trajectory in Google Earth; (b) Aircraft trajectory with three
artificial GPS outages.

depicted in Fig. 5.16(b).

The code implemented in the microblaze processor was modified to simulate GPS
signal blockages at different time instants. They were introduced in the trajectory at

160, 500 and 650 seconds with a duration of 60, 60 and 30 seconds, respectively.

—FPGA solution
o Reference

outage 2

outage 3

500

Altitude(m)

Landing outage 1

East(m) 42 4572 4.574 - x10°

Figure 5.17: Reference and FPGA solution trajectory in 3D plot with three outages.

The 3D position of the aircraft in the local navigation frame (NED) is shown in
Fig. 5.17, the blue line represents the estimated position provided by the embedded
system and the green line is the reference trajectory provided by GPS/INS integration
of the Cessna C172P airplane in Matlab.

Figure 5.18 shows the position error in the horizontal plane (i.e., the square root
of the sum of the square error between north and east position) and the altitude error

for the different outages that were introduced intentionally. The outages were inserted
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Figure 5.18: (a) Maximum horizontal position error during GPS outages; (b)
Maximum altitude position error during GPS outages.

considering different dynamics of the aircraft and the average speed for each of them
is listed in Table 5.5. It also presents the maximum error and the mean error for the
p-blaze solution. From this information, it can be noticed that the largest error occurs
in the GPS outage 2, which is performed while the aircraft makes a turn towards
south-east with an average speed of 307.64 km/h during 60 sec. This GPS outage
has a maximum horizontal error of 91.12 m with the FPGA solution. After 2.5 min
there is the third GPS outage with a duration of 30 sec, which has an average speed

of 251.71 km/h and a maximum horizontal error of 17.85 m.

Table 5.5: Altitude and horizontal plane position error during GPS outages.

Av. Alt. Error Hor. Error

Outage Dur. Speed mean max mean max
(#) () /b)) m) (m)  (m) ()

1 60 90.44 4.69 11 17.24  50.99

2 60 307.64 11.72 2777 43.90 91.12

3 30 251.71 2.50 5.62 7.32 1785

Despite the fact that we were focused on an embedded system for terrestrial
applications, the flight simulator was used with the propose of easily acquire trajectories
to debug and test the navigation platform during the GPS blockages. In addition, it
also shows that the navigation platform might not be limited to terrestrial applications

only.
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5.5.3 Land vehicle

The development board was mounted in a land vehicle and the experimental setup
is depicted in Fig. 5.19. It shows the XUPV5 board, a voltage regulator, the GPS
receiver u-blox LEA-6T and the MEMS based IMUs.

During the campaigns the navigation platform was powered through the car battery,
using the regulator, that was configured to provide an output voltage of 5 v to feed
the board. The navigation instruments are not externally powered since all of them
are connected to the XUPV5 board. It supplies 5 v output pins for the IMUs and 5 v
through the USB port for the GPS receiver.

Figure 5.19: Land vehicle equipment.

The results obtained for the different trajectories collected with the FPGA platform

mounted in the land vehicle are analysed in the following chapter.
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Chapter 6

Results and Discussion

This chapter it is divided in two parts, land vehicle test and land vehicle test using
FPGA platform. The first part shows the performance of the stochastic models that
were analysed in Section 4.3. The data sets were obtained in the city of Turin, Italy,
during a stage that was held at the Navsas research group of the Istituto Superiore
Mario Boella. For those results the 3DM-GX3-25 IMU available in the same group was
under test. The second part of this chapter presents the performance of the stochastic
models obtained with the NLF described in Section 4.5.3. The datasets for the vehicle
test were collected with the navigation platform based on FPGA explained in Chapter
5, they were carried out around the campus of the Universitat Autonoma de Barcelona
in Spain. During these campaigns the two MEMS IMUs available in the laboratory of
Microelectronics and Electronics Systems (see Table 3.2) were under test, except for

the temperature test.

6.1 Land Vehicle Test

As explained in Section 2.5, we use loosely-coupled integration with feed-back, which
corrects the INS error through a close-loop. The INS error dynamics equations are
built in the KF, having initially nine states for position, velocity and attitude error

plus additional states to estimate the bias of each sensor of the IMU.
The EKF was adapted for each designed bias model in order to evaluate the
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Table 6.1: Number of states in the loosely-coupled integration architecture for different
error models.

15 States 18 States 27 States

WN(N)
WN(N) +
AV\PSD Qge + GM (B)
GM(B) +
RW (K)
WN(N) WN(N)
AV\PSD g,. . ¥
GM (B) GM(B)
AR ase\gge 15torder AR 3"4order AR

accuracy of the stochastic processes that were obtained from the previous analysis.
Firstly, the two models extracted from AV\PSD were implemented, so the vector error
states of the Extended Kalman Filter was augmented with 6 and 9 states, respectively.
The latter error model was combined with wavelet de-noising in order to evaluate
the enhancement accuracy when Allan variance parameters and wavelet de-noising
techniques are blended together. Finally, two autoregressive models were assessed
augmenting EKF with 6 and 18 states. Table 6.1 summarizes the stochastic models for
the 3DM-GX3 sensors and the number of states that are required in the loosely-coupled
GPS/INS integration.

The EKF for the loosely-coupled integration has 15 states for two models: one is the
model obtained with AV\PSD where the bias instability (B) of both accelerometers and
gyro are modelled with a first-order Gauss-Markov process (GM) plus velocity\angle
random walk (N) that is modelled as white noise (WN) for accelerometers and gyros,
respectively . The second model with 15 states is a first-order AR model. Although it
is not depicted in Table 6.1, the AV model that was mixtured with wavelet de-noising
corresponds to the case of EKF with 18 states. From here on, the abbreviations 15AR,
27AR, 15AV, 18AV and 18AVWD may be used when referring to the 15 states AR,
27 states AR, 15 states AV, 18 states AV and 18 states AV with wavelet de-noising

models, respectively.

In order to assess the performance of the inertial sensor error models, a car was

equipped with the 3DM-GX3-25 MEMS grade IMU, which was integrated with the
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Sat-Surf platform with u-blox LEA-5X receiver [122]. The experimental setup that
was installed inside the car is provided in Fig. 6.1. This platform with the navigation
instruments was mounted in the car rear, including the power supply that was delivered

by one battery of 12 volts dc.

Figure 6.1: Experimental setup mounted inside the test vehicle.

Two data sets were collected in urban roadways inside the city of Turin, Italy.
After the data collection campaign, the loosely-coupled integration architecture with
the stochastic error models were evaluated. Although there were no GPS outages
during the campaigns, we introduced intentionally several GPS outages off line, lasting
30 sec and 60 sec. During an outage the system works in prediction mode only and the
accuracy of the loosely-coupled’s performance relies entirely on the INS error model
and in particular on the INS bias model. Therefore, it is straightforward to consider
different outage lengths and different vehicle’s dynamic conditions in order to have
a clearer answer on the accuracy of the bias models under investigation. It is really
worth mentioning that since this results are based on the loosely-coupled strategy, the
simulated outages have complete GPS signal blockages. The GPS/INS solution without
any outages was used as a reference to compare the performance of the different error

models during the simulated GPS signal blockages.

6.1.1 First Trajectory Turin

The first trajectory that was used to asses the different sensor error models is shown
in Google Earth map (Fig. 6.10(a)). This road-test is part of the whole trajectory

and lasts near 17.3 min, we have acquired the data from the IMU with a sampling
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frequency of 100Hz. The GPS signal blockages that were intentionally introduced
during postprocessing are depicted in Fig. 6.10(b) (shown as blue lines overlaid on
the red trajectory), in which there are three outages with a duration of 30, 60 and
30 seconds for outage 1, 2 and 3, respectively. These artificial GPS outages includes
straight and turns portions of the trajectory in a urban roadway, that comprise typical

conditions of a real GPS signal degradation inside a city.
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Figure 6.2: (a) First trajectory test in Google Earth; b) First trajectory test in Matlab
with the GPS outages that were introduced intentionally.

The easting and northing position for two of the three outages (outage 1 and outage
2) are presented in Figs. 6.3(a) and 6.4(a), while the corresponding horizontal position
error of these two outages are shown in Figs. 6.3(b) and 6.4(b). Table 6.2 summarizes
the computation of the maximum and the mean horizontal position error for the error
models solutions during the outages of the first trajectory. This table also shows
the duration of each outage and the average speed during the 3 outages that were

introduced in this road-test.

During the first GPS outage (Fig. 6.3(a)) there is a turn out of approximately
90 deg, this is a challenging segment of the trajectory to evaluate the bias models
since there is an abrupt change in heading angle. From the correspondent horizontal
position error (Fig. 6.3(b)), it can be noticed that the 18AVWD model produces the
minimum horizontal error, less than 15 m for almost the whole GPS outage. The mean
horizontal error for the 18AVWD model is 12.56 m, while the same error parameter for

the 27AR model is 19.62 m. Regarding the 15AV and 18AV states models based on
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Figure 6.3: (a) Horizontal position during GPS outage 1; (b) Horizontal position error
during GPS outage 1.

Allan variance parameters, it can be seen that they are slightly similar since the only
difference is the acceleration random walk (RW (K), see Table 6.1) that is added in the
bias model of the accelerometers. On the other hand, 15AR model presents the worse
result having a maximum horizontal error of 38.72 m and a mean horizontal error of

20.74 m.

Figure 6.4(a) shows the northing easting plane for the five compared solutions
during outage 2. According to Table 6.2 this outage lasts 60 sec and the average speed
is about 42.31 km/h. This outage introduced in a straight portion of the trajectory
shows that the I8AVWD model is better than the AR models and the other stochastic

error models based on AV parameters.

Table 6.2: Maximum and mean horizontal position error during GPS outages for
trajectory 1. 15AR, 15 state AR; 27AR, 27 state AR; 15AV, 15 state AV;
18AV, 18 state AV; 18AVWD, 18 state AV with wavelet de-noising.

Av. Stochastic error model
spd. 15AV 18AV 18AVWD 15AR 27TAR
(km/h) T€an Imax Inean max mean Imax Inean max Imean max

(m) (m) (m) (m) (m) (m) (m) (m) (m) (m)

30 23.58 17.11 21.84 16.82 21.60 12.56 18.42 20.74 38.72 19.62 23.94
60 4231 1441 44.84 14.10 38.04 13.16 34.81 42.82 122.07 29.70 71.49
30 47.60 13.34 4997 11.86 40.41 11.80 39.69 17.48 64.26 19.02 70.21

Out. Dur.
(#) (sec)
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Figure 6.4: (a) Horizontal position during GPS outage 2; (b) Horizontal position error
during GPS outage 2.

6.1.2 Second Trajectory Turin

To further validate the performance of the different stochastic error models, a second
road-test trajectory was collected in some urban roadways in the city of Turin, there
is also a part of the path on a highway in the outskirts of the city. The road-test
trajectory is 15.05 min long and it is depicted in Fig. 6.5(b).
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Figure 6.5: (a) Second trajectory test in Google Earth; b) Second trajectory test in
Matlab with the GPS outages that were introduced intentionally.

Figs. 6.6(a) and 6.7(a) show two of the four GPS outages performed during the
second road-test and their respective horizontal errors can be seen in Figs. 6.6(b) and
6.7(b). The same as in the previous trajectory, Table 6.3 summarizes the mean and

the maximum error for each error model analysed, as well as the average speed and
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the duration of each outage that was introduced off-line.

Regarding the GPS outage 5 (Fig. 6.6(a)), it includes a turn out with an average
speed of 52.25 km/h. According to the correspondent horizontal error (Fig. 6.6(b)),
it can be observed that the correction that is achieved by the 18AVWD error model
is bigger with respect to the one applied through the other methods and it has a
maximum horizontal and mean position error of 53.61 m and 36.50 m, respectively,
during 30 sec of absence of the GPS signal. As far as the GPS outage 7 is concerned,
it has been simulated along a straight portion of the path including a slight curve at
the end of the outage (Fig. 6.7(a)). This GPS blockage lasts 60 sec having an average
speed of the vehicle of 112.42 km/h. In this GPS outage it was intended to evaluate the
stochastic error models under high speed conditions and the same as in the previous

GPS blockages, the 18AVWD performed better than the other models.
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Figure 6.6: (a) Horizontal position during GPS outage 5; (b) Horizontal position error
during GPS outage 5.

Table 6.3: Maximum and mean horizontal position error during GPS outages for
trajectory 2.

Av. Stochastic error model

Out. Dur. 4.~ 15AV 18AV 18AVWD 15AR 27AR
#) (sec) (km/h) TM€ANn Imax Inean max mean ImMax Inean max mmean max

(m) (m) (m) (m) (m) (m) (m) (m) (m) (m)
4 30 33.60 10.85 22.70 10.44 21.13 7.29 10.81 6.72 14.72 9.99 29.26
5 30  52.25 44.57 64.46 44.36 64.17 36.50 53.61 44.34 65.28 44.43 64.65
6 30 2044 274 619 271 591 225 532 412 13.17 4.18 1341
7 60 11242 39.40 92.51 40.85 96.32 8.74 17.20 49.62 181.38 32.27 82.74
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Figure 6.7: (a) Horizontal position during GPS outage 7; (b) Horizontal position error
during GPS outage 7.

In order to summarize the maximum and mean position error for both trajectories
and each GPS outage performed, Figs. 6.8(a) and 6.8(b) show a comparison between
the error model solutions for the seven GPS outages introduced during the test

campaigns made in the city of Turin.

Overall, the model based on AV and wavelet de-noising is the one that has provided
the best accuracy in most of the cases under investigation. For instance, taking into
account the results that are depicted in Fig. 6.8(a), the combination of the Allan
variance parameters and wavelet de-nosing model (18 AVWD) has got an improvement
in terms of horizontal positioning error of 50.95% over the the first-order AR model
(15AR) maximum horizontal position error. Furthermore, the 18AVWD provides an
improvement of 48.20% over the 3rd order AR model (27AR). Regarding the models
obtained from AV, the model 18AVWD has shown an improvement of 31.89% and
26.06% over the 15AV and 18AV, respectively. Considering the mean error in horizontal
positioning (Fig. 6.8(b)), the blending of the Allan variance parameters and wavelet
de-nosing (18AVWD) has allowed to get an improvement of 39.75% over the the
first-order AR model (15AR) and it has also got a better accuracy of almost 41.94%
with respect to the 3rd order AR model (27AR). In the same way the 18AVWD has
provided an improvement of 27.67% and 25.13% over the 15AV and 18AV, respectively.

We can also clearly appreciate how the 18AV shows better results compared with

the 15AV in most situations where the GPS signal is not available (see Figs. 6.8(a)
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Figure 6.8: (a) Maximum horizontal position error for whole the GPS outages
introduced in both trajectories; (b) Mean horizontal position error for
whole the GPS outages introduced in both trajectories.

and 6.8(b)) since it offers a more adequate representation of bias-drift according to
the noise terms identified with AV and PSD (i.e., the addition of the noise source
associated to the acceleration random walk (K) for each of the accelerometers - 18AV
). Moreover, the performance of the AR models are lower than the ones obtained with

AV, the explanation of this fact is commented next.

As far as the AR technique is concerned, the main objective of using AR models and
wavelet de-noising is to remove the uncorrelated noise of the inertial sensors as much as
possible. In fact, if we are able to remove the main quantity of the uncorrelated noise we
can then obtain a smooth autocorrelations curve and the noise can be modeled with an
higher order Gauss-Markov process (e.g., third order AR model) with a consequently
benefit on the accuracy and performance of the GPS/INS system. Unfortunately, this
is not the case of the low cost inertial sensors (MEMS IMUs) we have used since
as it is shown in Section 4.3.1, the autocorrelation function of some of the inertial
sensors after processing the data with the de-noising technique does not have a smooth
autocorrelation curve, which makes the estimation of the parameters less accurate
compared to the parameters obtained with AV (i.e., 15AV and 18AV). Another option
to get a more accurate estimation of the bias-drift can be achieved by using higher
order AR models (for instance in reference [19] the authors use an AR model with 120
states). In this case, we adopted a tradeoff between complexity and accuracy and we

selected 27 states in the AR modeling.
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At last, the mixture between AV and wavelet de-noising has shown much better
enhancement accuracy of the INS than the others methods presented in this dissertation

compensating the short-term and long-term noises that affect the inertial sensors.

6.2 Land Vehicle Test Using FPGA Platform for

Acquisition

To evaluate the stochastic error models obtained with the NLF and compare with
a conventional method, we got the AV models for each IMU following the procedure
described in Section 4.3.4. Thus, the EKF filter was augmented with the correspondent
model for each Inertial Measurement Unit. This is worth mentioning that the raw
measurements read from the inertial sensors were not filtered with wavelet de-noising
since the idea was to evaluate the bias-drift compensation with NLF models only.

Table 6.4: Stochastic error models for each IMU adapted to the loosely-coupled
GPS/INS integration.

Atomic IMU 3DM-GX3 IMU

WN(N)
WN(N) +
AV ag. + GM(B)
GaM(B) n
RW (K)
WN(N) WN(N)
AV Jse + +
GM(B) GM(B)
WN(B) WN(B)
+ +
NLF ag, GM(B) GM(B)
+ +
GM(B) GM(B)
WN(B) WN(B)
+ +
GM(B) GM(B)
NLF Jse + +
aM(B) aM(B)
+ +
GM(B) GM(B)
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The stochastic error for the accelerometers ag and gyros gs. of the Atomic IMU were
modeled by a white noise and a first order GM process and the parameters are taken
from AV. Moreover, the error model identified with the NLF for the accelerometers
of the Atomic IMU is composed by a white noise plus two first order GM processes;
whereas the stochastic error for the gyros is modelled as a sum of a white noise and
three first order GM processes. Table 6.4 summarizes the stochastic error models for
the 3DM-GX3-25 and for the Atomic using AV and NLF. In order to assess the error
models, they are adapted into the loosely-coupled GPS/INS integration.

To validate the performance of the different stochastic error models, the
experimental setup using the navigation platform based on FPGA (see Fig. 5.19) was
mounted in the car rear, as shows Fig. 6.9. During the vehicle tests the data acquisition
was performed on the FPGA for the 3DM-GX3-25 and the GPS receiver u-blox LEA-6T
through the UART peripherals, whereas the data acquisition of the Atomic IMU and
the same GPS receiver (i.e., using the available USB port) was performed from a PC
using a software developed in Visual Basic. Several trajectories were collected between
March and July 2013 near the campus of the Universitat Autonoma de Barcelona
(UAB) using the navigation platform. During the vehicle tests different roads and
driving conditions were considered in order to evaluate the error models under real
world situations, so two sample trajectories were selected and the behaviour of the

models was put to the test as it is presented below.

Figure 6.9: Land vehicle experimental setup.
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6.2.1 First Trajectory Barcelona

At the time this road-test was performed the temperature measurements were not
available in the platform. Therefore, for this trajectory the parameters that were used
in each error model were the ones estimated at 20 °C', which was considered as a

temperature close to the real temperature during the kinematic test.

Figure 6.10(a) shows one of the vehicle test, which includes not only the highway
but also the urban area near the UAB campus. The trajectory starts at the UAB
and ends in Sabadell, it has a duration of nearly 40.85 min of continuous navigation.
The data collected from the MEMS based IMUs and the GPS receiver is stored in a
PC and in the CF memory available on the FPGA, the platform runs the algorithm
that was explained in Section 5.4.2. After the campaign, the raw measurements are
processed off line with the loosely-coupled algorithm developed in Matlab, then we
used the GPS/INS solution as a reference to compare the performance of the different

error models during GPS outages.
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Figure 6.10: (a) First trajectory test in Google Earth BCN; b) First trajectory test in
Matlab with the GPS outages that were introduced intentionally.

Since during this test only one natural GPS blockage occurred, we intentionally
inserted off line three GPS outages, each of them lasting 30 sec. Fig. 6.10(b) shows
the trajectory with the simulated outages, where the natural GPS outage corresponds
to outage 3. Although this is a short natural GPS blockage (< 15 sec), we have
extended its duration to 60 sec in order to examine the system performance when

there is a reliable reference, i.e., before and after the outage when the GPS is available.
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Figure 6.11: (a) Horizontal position during GPS outage 3; (b) Horizontal position
error during GPS outage 3.

The easting and northing position for GPS outage 3 is presented in Fig. 6.11(a) and
the horizontal position error is depicted in Fig. 6.11(b). This GPS outage is present in
a straight portion of the path, where the vehicle has an average speed of 40.24 km/h.
The minimum horizontal position error is obtained with the NLE error model of the
3DM-GX3-25 IMU (3dm with NLF), which is less than 22 m, compared with the error
model based on AV (3dm with AV) that is 147.63 m. Similarly, the NLF of the Atomic
IMU (Atomic with NLF) has a superior performance to the one obtained with AV
(Atomic with AV), having a difference between them of 482.65 m in the maximum
horizontal position error. Table 6.5 summarizes the computation of the maximum and
mean horizontally position error for each model during different GPS outages. Here
the abbreviations AT-AV, AT-NLF, 3DM-AV and 3DM-NLF refer to Atomic IMU with
AV, Atomic IMU with NLF, 3DM-GX3 IMU with AV and 3DM-GX3 IMU with NLF,

respectively.

The natural GPS outage can be seen in Fig. 6.11(a), the fact is seen at
(4.2484+10°,4.5994 % 10%) m easting and northing position coordinates. In this segment
of the trajectory the reference (in red) is not reliable because the integrated solution
trust in the GPS position. In other words, in this portion of the trajectory the GPS/INS
integration (in red) relies on the information provided by the GPS, so the navigation
solution is misled by the GPS. During the GPS outage the 3dm with NLF model does

not follow the reference trajectory and continues following the true path, which is an
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indication that it properly corrects the bias-drift error. Since we are evaluating the
error models we can see their behaviour after the GPS outage has finished. It happens
nearly 1427 sec where the error of the 3DM-NLF is around 11.08 m (see Fig. 6.11(b)).
In a real situation, the degrade GPS signal would be detected and the solution would
rely in the EKF prediction stage that is built with the stochastic models, in case of the
GPS outage 3 with the 3DM-GX3-25 IMU, the solution provided by the NLF would

follow the green line.

Table 6.5: Maximum and mean horizontal position error during GPS outages for
trajectory 1 BCN. AT-AV, Atomic IMU with AV; AT-NLF, Atomic IMU
with NLF; 3DM-AV, 3DM-GX3 IMU with AV; 3DM-NLF, 3DM-GX3 IMU

with NLF.
Av. Stochastic error model
Out.  Dur. spd. AT-AV AT-NLF 3DM-AV 3DM-NLF
(#) (sec)

(km/h) Mean max mean max mean max mean max
(m) (m) (m) (m) (m) (m) (m) (m)

30 45.26  138.61 453.52 69.42 219.75 22.84 7233 7.132 18.05
30 3291 3088 69.08 2427 5730 1548  43.19 5.69 13.70
60 40.24  251.58 883.19 128.28 400.54 39.92 147.63  6.89 21.43
30 20.59  99.76  346.37 44.77 161.70  8.53 19.66 6.46 11.60

N

Fig. 6.12(a) and Fig. 6.12(b), compare the maximum and mean position error in
the horizontal plane, respectively, for each error model as well as for each MEMS based
IMU during the four GPS outages introduced. Clearly the overall system performance
benefited from the NLF stochastic models, that is, when the INS is in stand-alone mode
the NLF stochastic model of the 3DM-GX3 provides a higher performance than the
error models obtained from AV technique, and it also occurs for the Atomic IMU. The
average percentage improvement taking into account the four GPS signal blockages for
the vehicle maximum horizontal position error is 67.44% when the NLF is used in the
3DM-GX3-25 IMU (3DM-NLF) compared with the model given by AV (3DM-AV). For
the Atomic IMU the average percentage of improvement by comparing the AT-NLF
and AT-AV for the maximum horizontal position error is 44.14%. The accuracy
enhancement provided by the NLF models is more significant when the absence of the
GPS signal lasts 60 sec (i.e., for GPS outage 3, 85.49% and 54.65% for the 3DM-GX3-25
and the Atomic MEMS IMUs, respectively), it might be due to the fact that the NLF

error models can compensate more noise components that the AV models.
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Figure 6.12: (a) Maximum horizontal position error for the GPS outages introduced in
trajectory 1 BCN; (b) Mean horizontal position error for the GPS outages
introduced in trajectory 1 BCN.

6.2.2 Second Trajectory Barcelona

To examine the performance of the stochastic models that were obtained with the NLF
at different temperature points (see Section 4.5.3), the navigation platform based on
FPGA was installed in a land vehicle and adapted with the 3DM-GX3-25 MEMS IMU
and the GPS receiver u-blox LEA-6T. Additionally, the LM35 temperature sensor was

used to record temperature data during the road-test.

The data set was collected on July 17, 2013, starting and ending the vehicle test at
the UAB campus. The trajectory has urban roadways sections in Sabadell and there
is also a segment of the path through a highway near the campus. Fig. 6.13(a) shows
the trajectory in Google Earth, which was performed following a counterclockwise
direction. The duration of the road-test was around 46 mun of continuous navigation.
It has some natural GPS outages (< 10 sec) that were extended to evaluate the position
estimation with the EKF in prediction mode and augmented with the stochastic error
models. Fig. 6.13(b) depicts the GPS signal outages (blue lines) lasting 30 sec and
60 sec, those outages were intentionally introduced during postprocessing considering

highway and urban area segments, where different driving conditions were under test.

Figure 6.14 shows the recorded temperature during the kinematic test; it varies
between 30 °C' and 34 °C. The raw measurements collected in the campaign are saved

in the CF of the Xilinx development board, and then, they are downloaded in a PC
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Figure 6.13: (a) Second trajectory test in Google Earth; b) Second trajectory test in
Matlab with the GPS outages that were introduced intentionally.

in order to introduce them in the loosely-coupled GPS/INS integration implemented
in Matlab. The navigation algorithm has been adapted with the four stochastic error
models that were built up as explained in Section 4.5.3, and the parameters of the

deterministic errors that were measured during the calibration test (see Section 3.4).
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Figure 6.14: Temperature during the second trajectory.

The EKF is augmented with the four stochastic error models using the same
combination of random processes presented in Table 6.4, but in this case the error
model parameters correspond to the ones estimated by means of the NLF at different
temperature points, i.e., at 10 °C, 20 °C, 30 °C' and 40 °C. From here on, the
abbreviations NLF TD 10 °C', NLF TD 20 °C, NLF TD 30 °C' and NLF TD 40 °C' may
be used when referring to the constrained non-linear fitting error model temperature

dependent at 10 °C, 20 °C', 30 °C and 40 °C', respectively.
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Figure 6.15: (a) Horizontal position during GPS outage 3; (b) Horizontal position
error during GPS outage 3.

Figures 6.15(a) and 6.15(b) show the position and the position error in the
horizontal plane during GPS outage 3. Since two natural GPS blockages are presented
in this segment of the trajectory (i.e., the outages begin approximately at 1295 sec
and 1320 sec) we introduced intentionally an outage of 60 sec between 2995 sec and
2355 sec, which combines the two outages into one longer outage. This GPS blockage is
one of the four outages inserted in this road and it has the highest maximum horizontal
position error. Fig. 6.15(a) depicts a comparison between the estimated 2-D horizontal
position for the different error models and the GPS/INS integrated solution (in red).
This GPS outage is really challenging as it consists in a turn while driving at relatively
high speed, i.e., an average speed nearly 96.11 km/h. From Fig. 6.15(b) it can be seen
that the performance of the NLF TD 40 °C' is superior over the error models computed
at 10 °C, 20 °C and 30 °C/, having a maximum horizontal position error of 155.31 m,
while the worst performance is given by the NLF TD 10 °C' with a maximum horizontal
position error of 229.90 m. The error models corresponding to NLF TD 20 °C' and
NLF TD 30 °C' show similar behaviour having a difference between them of 5.17 m in

the maximum horizontal position error.

Table 6.6 summarizes the maximum and the mean position error in the horizontal
plane for each one of the error models during the GPS outages, it also shows the
characteristics of the four GPS blockages that were simulated. The bar graph

representation of the maximum and mean position error can be seen in Figs. 6.16(a)

165



6 — Results and Discussion

Table 6.6: Maximum and mean horizontal position error during GPS outages for
trajectory 2 BCN. NLF TD 10 °C'; NLF TD 20 °C'; NLF TD 30 °C; NLF

TD 40 °C.
Stochastic error model
Out. Dur. Av. NLF TD NLF TD NLF TD NLF TD
(#) (sec) spd. 10°C 20°C 30 °C 40 °C
(km/h)

mean max Imean max Imnean max mean max
(m) (m) (m) (m) (m) (m) (m) (m)

490/520 31.88  4.32 6.53 4.34 6.74 4.08 6.78 4.33 6.87
1220/1280 39.09 39.86 106.10 14.11 37.64 6.28 1796 7.32  25.37
2295/2355 96.11 76.37 22990 66.75 197.79 68.32 202.96 50.99 155.31
2500/2560 95.26 43.17 15296 38.08 137.16 34.05 124.68 24.34 88.70

N R

and 6.16(b), respectively, while the temperature versus time and the time interval when
the GPS outages were inserted can be seen in Fig. 6.14 and Table 6.6, respectively.
It can be noted that the best performance is given by the NLF TD 30 °C' and NLF
TD 40 °C' error models. For the first two outages the performance of the NLF TD
30 °C' is slightly better than the others, and the difference becomes more significant
for relatively long GPS outages (e.g., GPS outage 2 that lasts 60 sec), it seems to
work as it was expected since the temperature was close to 30 °C' at the time the GPS
outages were introduced. Although, it was supposed to have a similar tendency for the
last two outages, as it can be observed from Figs. 6.16(a) and 6.16(b), the NLF TD
40 °C' shows a superior performance for GPS outages 3 and 4. Taking into account the
temperature measurements during the road-test, the NLF TD 30 °C should perform
better than the other error models due to the fact that the temperature at the time
was close to this model, but it does not. We consider that it might be caused by the
uncertainty involved during the estimation of the error parameters that are used in
the models. Thus, the best performance of the NLF TD 40 °C' for the last two GPS
outages might be attributed to the uncertainty of the variance computation. In other
words, for GPS outages above 2295 sec the estimated error parameters related to the
NLF TD 40 °C' model seem to be more adequate than the ones estimated for the NLF
TD 30 °C' model. This might be due to the uncertainty of the variance computation

that affects the parameters estimation.

To this end, we conclude that the NLF models enhance the accuracy of the GPS/INS
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Figure 6.16: (a) Maximum horizontal position error for whole the GPS outages
introduced in trajectory 2 BCN; (b) Mean horizontal position error for
whole the GPS outages introduced in trajectory 2 BCN.

integration compare with a traditional method such as AV. In spite of this, it has been
noted that high position errors occurred, especially, for GPS outages of 60 sec when the
vehicle has a high speed and at the same time there is a change in the vehicle dynamics.
We consider that this position errors might be attenuated by adapting the procedure
described with AV /wavelet de-noising to the NLF since the complex composite models
do not seem to mitigate this errors. This is also worth mentioning that further
improvement can be obtained by aiding information from the vehicle dynamics such
as non-holonomic constraints and odometer signal, which gave significant advantages
regarding the position accuracy when the GPS signal is not available. On the other
hand, the NLF TD has shown satisfactory results, but a stochastic error model with
a better resolution in temperature might be set up, actually, the temperature test
developed in [29] is performed at 20 °C interval. Although collecting a larger data set
during the temperature static test might not be a practical solution, the uncertainty
of the variance computation can be reduced and as a consequence a better resolution

of the NLF TD in temperature could be obtained.
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Chapter 7

Conclusions and Future Activities

In this work, different stochastic error models for the measurement noise of
MEMS-based IMUs have been implemented using experimental data, specifically,
autoregressive/wavelet de-noising models, Allan variance, Allan variance/wavelet
de-noising and constrained non-linear fitting (NLF). These stochastic models were
adapted to the loosely-coupled strategy integration. Additionally, their performance
was assessed in a low cost navigation application by means of intentionally introducing
several GPS outages in different trajectories collected in real highways and urban
roadways. The artificial GPS blockages were introduced in straight and curved portions

of the trajectories comprising conditions of real GPS signal degradation.

For the first stochastic error models implemented (i.e., autoregressive/wavelet
de-noising models, Allan variance and Allan variance/wavelet de-noising - Section
4.3), we concluded that although AR processes combined with wavelet de-noising are
commonly used for modeling INS stochastic errors, due to the fact that they have
more modeling flexibility than first order Gauss-Markov, random walk and white noise
processes, it is necessary to consider that the autocorrelation function of the stationary
raw inertial sensors measurements is desirable to be a smooth curve (after de-nosing),
in order to use a low order AR model, which most of the time is not the case for low

cost inertial sensor (MEMS grade).

On the other hand, the inertial sensors are affected not only by short-term noises,

but also by long-term noises. Minimizing the latter is not an easy task, since these
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are combined with vehicle motion dynamics. Therefore, we evaluated an error model
that is a mixture of AV parameters and wavelet de-noising techniques (18AVWD); this
model showed better performance than the other traditional methods based on AV and
AR models during different GPS outages. The 18AVWD stochastic error model uses
the parameters obtained from AV to compensate the long-term noises, while wavelet
de-noising is employed to minimize the short-term noises that affect the inertial sensor
of the IMU. Albeit, wavelet de-noising technique has once again demonstrated its
utility for removing the short-term noises of the inertial sensors, we noted that MEMS
based IMU requires many levels of decomposition to attenuate part of the uncorrelated
noise and observe small enhancement in the position accuracy when using only wavelet
de-nosing. Evaluating the combination of AV /Wavelet de-nosing showed that although
some vehicle motion components might be attenuated the selected LOD provide more

benefits concerning position accuracy.

The methodology adopted to study Allan variance together with wavelet de-nosing
in the same log-log curve after applying different levels of decomposition, allowed us
to analyze the attenuation of the error terms and the vehicle motion dynamics. By
exploiting a combined use of the AV and wavelet de-noising, we have shown how to
enhance the position accuracy in a GPS/INS integrated system without excessively

increasing the complexity of the INS error model.

From the AV and wavelet-denoising analysis followed in this thesis one could
consider not only static data but also kinematic data in order to better study the
de-noising under dynamic conditions. Moreover, noise suppression methods that take

into account the vehicles dynamics might be developed to enhance the INS performance.

Regarding the constrained non-linear fitting (NLF) (Section 4.5.3), we proposed
constraints using the 95% confidence interval curve and taking into account
characteristics of the noises that are typically found in low cost inertial sensors. The
constraints not only provide information of noises that are possibly affecting the sensors
but also can be used to facilitate the convergence of the fitting algorithm. It is
worth mentioning that one of the limitations of the NLF is that it uses the variance
curve estimated to fit the objective function, which has a considerable uncertainty for

long-term cluster times. Therefore, a large static data set need to be recorded in order
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to have a good accuracy.

We investigated the effect of temperature changes on the stochastic modelling of
MEMS based IMU and developed an error model temperature-dependent based on the
NLF'. This model is more appropriate that the ones reported in the literature since most
of the models only take into account the deterministic error temperature variations and
the few that consider the temperature-dependent stochastic errors are not adequate for
low cost sensors since most of them are based in AR models and one first order GM
process. We assessed the NLEF TD model collecting temperature data during a vehicle
test, and then various GPS outages were inserted under different driving conditions.
We noted that it requires a large data set in order to reduce the uncertainty of the

variance estimation, so it might yield a better resolution in temperature.

The error models could be adapted in more complex GPS/INS integration
strategies, such as tightly-coupled, in order to enhance the position accuracy by using
GPS estimates of pseudoranges and Doppler. It is worth noting that they can be applied

to all inertial sensors grades and they are not limited to terrestrial applications.

As for the platform based on FPGA (Chapter 5), we developed a relatively compact
and flexible navigation platform that can be easily customized. The platform allows to
adapt different information sources, which is a feature suitable for current navigation
systems. We analysed the software profiling of the loosely-couple GPS/INS integration,
where we found that the highest computational cost was in the matrix multiplication
computed in the EKF. Therefore, we studied the possibility of adapting dedicated
hardware by means of DSP blocks in order to accelerate the navigation application.
The custom IP developed is scalable, flexible and parametrisable and is not restricted

to the matrix size or the number of matrices to be multiplied.

From the architecture developed on the FPGA, we concluded that although
hardware implementation is a challenging task it can significantly speed-up the
algorithm due to its capability to parallelize the design. It should be mentioned that
high accuracy in the navigation solution requires a lot of hardware resources but current
tools are being enabled to assist the developers in this sort of implementations. A future
activity for the embedded navigation system would be to improve the synchronization

algorithm and also study the possibility to use the partial dynamic reconfiguration in
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the GPS/INS integration, e.g., modifying the hardware architecture when the EKF is

in prediction mode or while navigating under different scenarios indoor/outdoor.
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Appendix A

IMU Error State-Space

Implementation in the KF

The equations that represent the error dynamics in the n-frame for the loosely-coupled
approach are given by position error, (or"), velocity error, (6v"), and attitude error,
(03p™). The description of the transition matrix for these nine states is detailed in [5,59],
and the derivation of these error equations can be found in [47,173|. In order to evaluate
the models, it is necessary to increase these nine states, (or™,0v™,d9"), with the IMU
error states. For illustrative purposes, in this section, we only present the state-space
form of the model associated with 18 states calculated with Allan variance and the 27

state model, where the third order AR model is adopted.

A.1 IMU Error State-Space for the 18 State AV
Model

To include the bias of the inertial sensors (i.e., Eqs. (4.10) and (4.11)), the transition

matrix in the discrete time is augmented from the initial nine states, as in Eq. (A.1):

I35 — diag(B.At) O3x3 033
Ag 99 = O3x3 I3y — diag(B,At) 0343 (A.1)

O3x3 172 O3x3 I3y3
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where At is the sampling time of the INS i.e., 0.01 s, while 8, and B, correspond to
the reciprocal of correlation time, (7.), presented in Table 4.5 for accelerometers and
gyros, respectively. This transition matrix was described for one inertial sensor in Eq.

(3.27); in the case of the three accelerometers, the expression, diag(8,At), is given by:

Baz 0 0
diag(B.At) = | 0 B, 0 | At (A.2)
0 0 Pfa

The complete error states after adapting Eq. (A.1) into the first nine state of the
KF is presented in Eq. (A.3):

T
e L R R YO (A.3)

where 0b, ;; and 0bg,; are the bias-drift associated to the first order GM process for
accelerometers and gyros, respectively, while db, j is the bias-drift of the accelerometers

that represents the random walk process.

The design matrix, G, for the 18 error states AV can be written as:

O3x3 O3x3 O3x3 03x3 03x3
Cy 0O3x3 0O3x3 Osxs Osxs

O3x3 —CF 0O3x3 0Osx3 O3x3

G = (A.4)
O3x3 O3x3 ]3x3 03x3 03x3
O3x3 O3x3 O3x3 ]éx3 03x3
| O3x3 Osxs O3xz Osxz Isxs |
where C}' is the frame rotation matrix from the body to the n-frame [44,47]|.
clcrp  —cops + spsbc)  spsp + cosbcy
Cy =1 chsp  cocp + spshsy)  —spcy + cpslsy (A.5)

—s6 s¢ch coch
where “sin” and “cos” are shortly denoted as “s” and “c”, respectively. The variables, ¢,

6 and v, correspond to the Euler angles (Roll, Pitch and Yaw).

The noise covariance matrix (Q of the model is:
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diag(da,n) 033 033 033 033
033 diag(dg,n) 033 033 O3x3
Q= O3x3 033 diag(dap:) 033 O3x3 (A.6)
033 033 033 diag(dp,p;) O3x3
033 033 033 033 diag(qq,k) |

where qq 1, Qo and q, x are the spectral densities of the process driving noises for each
noise term that are used to model the bias-drift of the accelerometers (i.e., WN, RW
and first order GM process). Similarly, q,, and qg;; are the noise variance quantities
that will be used within the KF to model the bias-drift of the gyros (i.e., WN and first
order GM process). All these quantities are computed based on the parameters that
were obtained with the AV technique (see Tables 4.4 and 4.5). In order to describe the
relationship between the parameters obtained from the experiments (i.e., N, B and K),
and the noise process that are modeled (i.e., WN, first order GM process and RW), we
take as an example the z-axis accelerometer, so the spectral density in discrete time of

the process driving noises of a WN process can be expressed as:
Qazn = Oy, At = N2, /(3600 = At) (A7)

where o, is the variance of the white noise process and N is the velocity random
walk associated to the z-axis accelerometer from Table 4.4. The spectral density, guz i,

in discrete time for the first order GM process is given by [62]:
o = Oy, (1~ ¢ 2T A

where T ,, is the correlation time from Table 4.5 and aéMw is the covariance of the
first GM process that can be determined by means of the bias instability parameter

for the z-axis accelerometer (B, ) from Table 4.4.

ocnt,, = Bag * 0.664/3600 (A.9)

The spectral density, gqq5i, in discrete time for the random walk process can be
expressed as:

Qaw e = Oy, * At = K2, = At/(3600) (A.10)

where 0%y, is the noise covariance of the RW process and K,, is the acceleration

random walk for the z-axis accelerometer from Table 4.4.
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A.2 IMU Error State-Space for the 27 States with
Third Order AR Models

The transition matrix in the discrete time used to augment the KF with a bias-drift
modeled as a third order AR process for each inertial sensors can be described by Eq.

(A.11):

O3x3 I3xs O3x3 O3x3 O3x3 O3x3
O3x3 O3x3 I3 O3x3 O3x3 O3x3
A rsers = —diag(ag) —diag(ay) —diag(af) Osx3 O3x3 Osx3 (A11)
O3x3 O3x3 O3x3 O3x3 I3x3 O3x3
O3x3 O3x3 O3x3 O3x3 O3x3 I3xs
| Osxs 03x3 03x3 —diag(ad) —diag(ad) —diag(af) |

where af, af and af are vectors with the coefficients for the three accelerometers,
while af, af and af are the vectors with the coefficients for the three gyros. This
transition matrix was described for one inertial sensor in Eq. (3.30); in the case of the

three accelerometers, the expression, diag(ayf), is given by:

ot 0 0
diag(af) =1 0 o 0 (A.12)
0 0 af?

The complete error states of the KF' will have 27 states, which are given by:

T
ox = | 7 5v' Y7 by Sbus buss Obys by Sbys | (AL3)

where dbg 41, 0bg o and db,ps are the nine states associated to the third order AR
models of the three accelerometer, while dbg 1, dbgpe and ob, s are the nine states

associated to the third order AR models of the three gyros.

The design matrix, G, for the 27 error states based on the third AR models can be

written as:
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In this case, the noise covariance matrix, Q, of the model is:

diag(da,n)
03x3
03x3

O3x3

03x3

dmg(‘ly,n)

O3x3

03x3

O3x3

033

diag(qa,b)

O3x3

O3x3
033

033

diag(qgs) |

(A.14)

(A.15)

where qq ., 44, are the same spectral densities of the white noise processes described

in the 18 states AV models, while q, 5 and q,; are the the spectral densities of the third

order AR processes for each inertial sensor. In the case of the y-axis accelerometer, the

spectral density in discrete time is by given by:

2
Qayb = o

where (3, is the standard deviation of the AR process.
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