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Abstract

The analysis of learners’ activity in online discussion forums leads to a highly context-dependent

modelling problem, which can be posed from both theoretical and empirical approaches. When

this problem is tackled from the data mining field, a clustering-based perspective is usually adop-

ted, thus giving rise to a clustering scenario where the real number of clusters is a priori unknown.

Hence, this approach reveals an underlying problem, which is one of the best-known issues of the

clustering paradigm: the estimation of the number of clusters, habitually selected by user accor-

ding to some kind of subjective criterion that may easily lead to the appearance of undesired biases

in the obtained models.

With the aim of avoiding any user intervention in the cluster analysis stage, two new cluster mer-

ging criteria are proposed in the present thesis, which allow to implement a novel parameter-free

agglomerative hierarchical clustering algorithm. A complete set of experiments indicates that the

new clustering algorithm is able to provide optimal clustering solutions in the face of a great variety

of clustering scenarios, both having the ability to deal with different kinds of data and outperfor-

ming clustering algorithms most widely used in practice.

Finally, a two-stage analysis strategy based on the subspace clustering paradigm is proposed to

properly tackle the issue of modelling learners’ participation in the asynchronous discussions. In

combination with the new clustering algorithm, the proposed strategy proves to be able to limit

user’s subjective intervention to the interpretation stages of the analysis process and to lead to a

complete modelling of the activity performed by learners in online discussion forums.
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Chapter 1

Framework of the thesis

The original motivation that gives rise to the present thesis is found in the analysis of learners’

activity in online discussion forums, which are one of the most common tools in online teaching-

learning environments. In addition to both the studies set out from different theoretical pers-

pectives and the approaches based on social network analysis, the issue of modelling learners’

participation in discussion forums is posed from the data mining field as a clustering scenario,

where learners with similar activity patterns are grouped together and the analysis of the resul-

tant clusters leads to the identification of different learning behaviours. Since the participation

patterns that can arise from asynchronous discussions in online forums depend on many varia-

bles (e.g. amount of learners in the virtual classroom, teaching-learning strategies promoted by

teacher, kind of subject, etc.), the real number of clusters in such scenario is a priori unknown.

Hence, this approach reveals an underlying problem, which is one of the best-known issues of the

clustering paradigm: the estimation of the number of clusters. Despite the fact that, like in many

other applications of clustering algorithms, the final set of clusters can be manually selected under

some kind of subjective criterion, an automatic estimation based only on the data itself would be a

better solution in order to successfully find the real number of clusters. Thus, the main goal of this

thesis is focused on the issue of the automatic estimation of the number of clusters in clustering

problems and its application to the analysis of learners’ activity in online discussion forums.

In this first chapter, the global framework of the thesis is defined. Firstly, the presence of online

discussion forums in the context of the online learning environments is described in section 1.1.

Next, in section 1.2, different approaches to the issue of modelling learners’ activity in online dis-

cussion forums are presented, including a general conceptual frame (section 1.2.1) and different

perspectives on modelling strategies (sections 1.2.2 and 1.2.3). Finally, both research questions

and hypotheses, as well as the structure of the present thesis, are defined in section 1.3.

1
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1.1 Discussion forums in the online learning context

The term online learning (or e-learning) usually refers to any transference of skills and knowledge

where the information and communication systems serve as specific media to implement the

teaching-learning process (Tavangarian et al., 2004). Although the great diversity of terminologies

and definitions used for online learning that exist in literature have been formulated from many

different standpoints (Keegan, 1990; Khan, 1997; Relan and Gillani, 1997; Carliner, 1999; Cole, 2000;

Rosenberg, 2001; Rossett, 2002; Garrison and Anderson, 2003; Tavangarian et al., 2004; Ally, 2008),

one of their most important common factors is the concept of interaction (Vrasidas, 1999). In this

sense, interaction reveals itself as one of the main components not only in the online learning

context, but in any teaching-learning experience (Vygotsky, 1978).

Interaction, in all of its forms, has been identified as one of the main topics in distance educa-

tion research (Wagner, 1994; Gunawardena and McIsaac, 2004). In fact, a high level of interac-

tion is usually desirable and increases the effectiveness of distance education courses (Fulford

and Zhang, 1993). According to Moore (1989), three different types of interaction may be con-

sidered: learner-content interaction, which refers to the relation between learners and all the

contents, information and ideas they encounter in their course materials; learner-instructor in-

teraction, which provides advice, clarification and feedback between learners and teachers; and

learner-learner interaction, which allows learners to dialogue among themselves in order to ex-

change opinions, thoughts and ideas. Pointing out the fact that, for any type of interaction to take

place in a distance education context, learners have to interact with the medium, a fourth type of

interaction is proposed by Hillman et al. (1994): learner-interface interaction, which defines in-

terface not as a mediating element in all interaction, but as an active and independent mode of

interaction that has an impact over the learning experience and with which learners have to deal.

In this way, the interaction processes that occur in an online teaching-learning environment, as

well as their derived consequences, are both defined and influenced by –among other factors such

as course structure, provided feedback and class size– those mediated communication forms that

make them possible (Vrasidas and McIsaac, 1999).

In general terms, computer-mediated communication can be defined as a process of commu-

nication via computers (or networked computers, or the Internet), involving people, situated in

particular contexts, engaging in processes to shape media for a variety of purposes (December,

1996). From an educational perspective, computer-mediated communication has been principa-

lly understood as a facilitator of critical thinking, collaborative learning and knowledge building

(Harasim, 1989), as an effective and beneficial pedagogical asset (Althaus, 1997) and as a proper

support for conversational models of learning (Laurillard, 1999). As online teaching-learning en-

vironments have become more complex and sophisticated, computer-mediated communication

has proved to have great potential for designing learning tools that serve as a support and media-
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tion for communication and interaction among learners and teachers. Furthermore, it has become

established as one of the most influential features in the context of online learning environments

(Yukselturk, 2010).

According to whether they require temporal concurrence of users or not, computer-mediated

communication tools are generally classified as synchronous or asynchronous (Hines and Pearl,

2004). On the one hand, synchronous communication tools give rise to teaching-learning proces-

ses that occur in real time and need for the simultaneous participation of both learners and tea-

chers (Romiszowski and Mason, 2004). Despite some identified limitations, such as the necessity

of getting learners and teachers online at the same time, difficulty in moderating larger-scale con-

versations, lack of reflection time for learners or intimidation of poor typists, synchronous tools

like text chat, audio/video-conferencing and virtual whiteboards, among others, have proved to be

useful for collaborative decision-making, brainstorming, community building and dealing with te-

chnical issues (Branon and Essex, 2001). On the other hand, teaching-learning processes that take

place by means of asynchronous communication tools occur in delayed time and do not require

the simultaneous participation of both learners and teachers (Johnson, 2006). The most common

lacks associated to asynchronous tools like email and discussion forums are a possible absence of

immediate feedback, large lengths of time for discussions to mature and a possible sense of isola-

tion felt by learners. In contrast, they have many and well-known advantages, such as encouraging

in-depth and more thoughtful discussions, communicating with learners and teachers under no

time constraints, holding ongoing discussions where archiving is required and allowing all learners

to respond to a topic (Branon and Essex, 2001).

Both synchronous and asynchronous ways of communication are necessary for online learning

(Davidson-Shivers et al., 2001). Nonetheless, since they facilitate more unconstrained discussions

of any kind (Sun et al., 2011), asynchronous communication tools are more often used in virtual

learning environments than the synchronous ones, which are frequently considered as optional

course features and used for more specific purposes (Burnett, 2003). In fact, more concretely, the

literature in this area indicates that online discussion forums –also known as discussion boards,

bulletin boards, threaded discussions or message boards– are one of the most widely spread and

primarily used communication tools in educational contexts. Bauer (2002) observes, in his study

on how learners can be assessed from the discussion forums, that almost every online course web

site contains a discussion board, where class members can post messages, exchange ideas and ask

questions. McLoughlin (2002) finds, in a study of undergraduate teams working online to com-

plete tasks, that the majority of teams, including the most successful ones, actively used the fo-

rums to share ideas and discuss the specifics of their projects. In the same way, the study carried

out by Paulus (2007), where the learning processes performed by different working groups are de-

composed in a succession of steps of diverse nature (e.g. check-in, brainstorm ideas, assign tasks,

combine contributions, provide and integrate feedback, etc.), show as well that discussion forums

are by far the communication tool most widely used by all groups throughout the majority of steps.
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Therefore, due to their popularity and demonstrated effectiveness, discussion forums clearly play

an important role in online teaching-learning environments (Rourke and Anderson, 2002; Wu and

Hiltz, 2004).

1.1.1 Online discussion forums from learner and teacher perspectives

Generically, an online discussion forum has been defined as a tool that allows and facilitates asyn-

chronous, computer-mediated, multi-directional, text-based and topic-threaded online commu-

nication (Yang, 2004). From an educational point of view, extensive studies that can be found in

literature have been developed on how to use online discussion forums as a teaching and learning

tool (Collins, 1998; Branon and Essex, 2001; Land and Dornisch, 2002). Online discussion boards

have been pointed to as a useful tool, both for teachers and learners, in order to develop strate-

gies for building collaborative problem-solving courses and designing discovery-oriented activi-

ties (Scardamalia and Bereiter, 1996), as well as for giving and accepting feedback and for greater

reflection (MacKnight, 2000). Also, they have been viewed to have a great potential as an assess-

ment tool (McLoughlin and Luca, 2001). Moreover, it has been argued that interaction through

online discussion forums promotes student-centred learning, encourages wider learner partici-

pation, produces in-depth and reasoned discussions (Karayan and Crowe, 1997; Smith and Harda-

ker, 2000a), is remarkably task-oriented and reflects high phases in knowledge construction (Aulls

et al., 2010).

From a learner’s perspective, asynchronous learning through online discussion forums allows wor-

king with no time constraints, since they can access the online materials and interact with other

learners and teachers at anytime (Ally, 2008). Since discussion, or dialogue, is a valuable educa-

tional tool, that helps in students’ learning (Larson, 2000; Laurillard, 2002; Winiecki, 2003) and

enhances the learning process by creating more opportunities for active learning and collabora-

tion (Klemm, 1997; Landsberger, 2001; Land and Dornisch, 2002), conferencing and interchan-

ging of ideas and knowledge through online discussion boards have become a basic component

of student-centred web-based courses and a main vehicle for contact between learners (Rossman,

1999; Brown, 2001).

Although they lack the immediacy of live communication, discussion boards lead students up to a

more directed and lasting flow of concepts, ideas and opinions (McCampbell, 2000). When using

online discussion forums, learners are required to post questions, answers and ideas, read and

respond to other learners’ contributions and post new messages to clarify or revise their opinions.

These activities involve students into a series of complex cognitive procedures, such as formu-

lating ideas into words, evaluating the viewpoints of others, negotiating meanings with teachers

and other students, and modifying their original ideas. In this way, discussion through online fo-

rums is beneficial for both student involvement and learning outcomes (Harris and Sandor, 2007)

and, from a social-constructivist point of view, helps to build a learning community (Cooper, 2000;
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Tiene, 2000; Brown, 2001) and facilitates learners to construct knowledge (Rovai, 2000; Campos

et al., 2001; Gray, 2002; Laurillard, 2002).

From a teacher’s perspective, online discussion forums are a popular and very useful tool that,

due to its asynchronous nature, allows them to perform their tutoring tasks at anytime and from

anywhere (Bauer, 2002). The role of the teacher in managing discussion boards in a virtual class-

room has been described in many different ways, such as moderator, facilitator, helper, guide and

role model (Landsberger, 2001; Muirhead, 2002; Wozniak and Silveira, 2004). Discussion boards

provide teachers with an alternative method both to interact with learners (Yang, 2004) and to in-

crease interactivity among them (Klemm, 1997; Bannan-Ritland, 2002). Through online discussion

forums, teachers can observe learners’ reaction to instruction and monitor their knowledge cons-

truction process (Jones and Harmon, 2002), as well as they can analyse the discussions content

in order to give feedback (MacKnight, 2000) and assess learners’ higher order activities, critical

thinking and problem solving skills (McLoughlin and Panko, 2002).

In fact, part of the gap between learning theory (descriptions of how learners learn) and instruc-

tional theory (prescriptions for teachers to design and give courses) can be bridged through the

analysis and modelling of learners’ activity in asynchronous discussions (Knowlton, 2005). Ac-

cording to many authors, these analysis and modelling procedures are necessary for teachers and

instructors to properly execute some of their most laborious tasks in the context of the online lear-

ning discussions, such as trying to move passive students to more active types of participation

(Salmon, 2000), changing the mindset of learners to help them break out of their stereotypical ro-

les of information receivers and take the roles of seekers, explorers and users (Prestera and Moller,

2001), and, in general terms, facilitating learners’ interactions beyond not simply playing the ex-

pected role of stimulus providers (Morrison and Guenther, 2000). Furthermore, learners’ needs,

skills and level of expertise can be determined by analysing their participation and patterns of in-

teraction throughout the online threaded discussions (Winiecki, 2003), so that teachers can also

use this information to develop and adapt teaching-learning strategies in order to enhance stu-

dents’ learning outcomes (Ally, 2008).

However, since courses enrolments can easily reach several hundreds of learners, the analysis of

the resultant online interaction that take place in discussion boards can become a considerable

burden on teachers (Kim et al., 2011). Thus, there exist, from teacher’s point of view, both the in-

terest in and the need for having instructional tools that allow studying and modelling the activity

and the interaction patterns performed by learners in online discussion forums (Thomas, 2002).

Inasmuch as the way students participate in online discussion boards can be a very useful source

of indicators for teachers in order to facilitate their tasks, an insight into this activity can provide

them with a mean from which to develop and improve a teaching-learning context that stimulates

learners and enhances the construction of knowledge (Johnson, 2007).
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1.2 Modelling learners’ activity in online discussion forums

In a wide sense, learner participation has been pointed out as a complex and intrinsic part of

learning (Garrison, 1989; Wenger, 1998). From an online educational perspective, online learner

participation can be defined as a process of learning that consists of taking part and maintaining

relations with others, that comprises doing, communicating, thinking, feeling and belonging, and

that occurs both online (e.g. through computer-mediated communication with peers and tea-

chers) and offline (e.g. by studying course materials) (Hrastinski, 2008). As long as computer-

mediated communication tools have been used in online teaching-learning environments, both

understanding and encouraging online learner participation through the asynchronous interac-

tions that rely in online threaded discussion forums have become major research issues (Bento

and Schuster, 2003).

The next steps are dedicated to present, after having previously defined the specifics of their con-

ceptual frame (section 1.2.1), what different approaches and strategies have been followed through-

out the literature in order to model learners’ activity in online discussion boards (sections 1.2.2 and

1.2.3).

1.2.1 Levels of participation and units of analysis

As a result of a literature review over 36 different works on the issue –from Ross (1996) to Caspi

et al. (2008)–, Hrastinski (2008) defines a total of six levels of participation (pages 1756–1757) and

categorises seven different units of analysis (pages 1758–1760) that are considered from different

approaches adopted in literature on conceptualising what online learner participation in discus-

sion forums is and how it can be modelled.

1.2.1.1 Conceptualisation levels of online learner participation in discussion forums

The different conceptions of what online learner participation in discussion forums is can be or-

ganised in a taxonomy composed of the six following levels:

1. Participation as accessing e-learning environments

From its most elemental conception, participation can be understood just as the number of

times the learner accesses the e-learning environment or the communication tool; i.e. the

larger the access rate, the higher the degree of participation (Davies and Graff, 2005).

2. Participation as writing

A second and more sophisticated conception determines that participation is equalled with

writing; i.e. the degree of participation is directly proportional to the amount of writing ac-
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tivity (number of words, notes or messages written by learner) (Mazzolini and Maddison,

2003).

3. Participation as quality writing

One step further, participation can be conceptualised as the quality of the writing contri-

butions; i.e. writing many contributions of high quality points to a more active and better

participation. In this sense, a qualitative analysis of the content of the contributions can be

performed and different types of statements (Davidson-Shivers et al., 2001) and/or messages

(Kim et al., 2011) can be defined.

4. Participation as writing and reading

Considering the two different kinds of activity that can be essentially performed in online

discussion forums, the next level of conception states that participation is equalled with both

writing and reading; i.e. learners that just read messages participate in a different way than

learners that both read and write messages (Lipponen et al., 2003).

5. Participation as actual and perceived writing

Once the reading activity performed by learners is taken into account, a more qualitative le-

vel of conception can be reached and both actual and perceived writing can be considered

to determine what participation is; i.e. the learners’ perception of the usefulness and im-

portance of the messages written by a learner determines his or her level of participation

(Vonderwell and Zachariah, 2005).

6. Participation as taking part and joining in a dialogue

Finally, according to its last and most sophisticated level of conception, true participation

occurs to the extent that learner is taking part and joining in a rewarding dialogue for enga-

ged and active learning; i.e. social conceptions are adopted in the definition of participation,

so that concepts like collaboration among participants and joint construction of learning are

taken into account (Beuchot and Bullen, 2005).

1.2.1.2 Units of analysis on modelling online learner participation in discussion forums

Seven different units of analysis can be defined in order to determine how online learner partici-

pation is empirically studied:

1. System accesses or logins

The simplest unit of analysis of learner participation is constituted by the system accesses

or logins. This quantitative measure of participation simply takes into account how often

learners access the forums where online discussions occurred (Davies and Graff, 2005; Caspi

et al., 2008) or, even more generically, how many times learners log on the online learning

environment (Ellis, 2003; Kuboni and Martin, 2004).
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2. Quantity of messages or items of information

The next unit of analysis is provided by another quantitative measure of participation, which

is the amount of items of information produced by learner. Depending on the particular sce-

nario and/or the available data, these items can be of different kinds; the most usual of them

is the quantity of written messages (Ngwenya et al., 2008), but there are others, such as quan-

tity of threads –sequences of reciprocal messages– (de Laat et al., 2007), ideas or reasonings

(Hakkarainen and Palonen, 2003), complete statements or thoughts (Davidson-Shivers et al.,

2001), and phrases or sentences (Böhlke, 2003).

3. Message or item length

Being the empirical study of learner participation based on some kind of item of information

(most typically, messages), the length of these items can also be used as a quantitative unit

of analysis. This length can be defined as thread depth –number of messages or hierarchical

levels in the thread– (Calvani et al., 2010), word counts (Woods and Keeler, 2001) or lines of

information (Masters and Oberprieler, 2004).

4. Message or item quality

In the same way than the item length, but from a qualitative perspective, the quality of the

items of information can provide another unit of analysis. This item quality is obtained by ca-

tegorising the items according to some kind of classification scheme. Different schemes and

sets of categories can be defined from different approaches, such as on-topic and off-topic

messages (Lipponen et al., 2002), new and reply messages (Beuchot and Bullen, 2005), sta-

tement, limited response, questioning response and dialogue posts (Sackville and Sherratt,

2006), question, answer, elaboration and correction messages (Ravi and Kim, 2007), differ-

ent levels of critical thinking in messages (Bullen, 1998), or presence of key words and/or key

phrases in messages (Garrison et al., 2000).

5. Read messages

Whereas writing activity constitutes the explicit (or visible) way of participation in online dis-

cussion forums, reading activity is an implicit (or invisible) task and it can also be considered

in order to define another unit of analysis of learner participation. Being the amount of read

messages (Calvani et al., 2010) or how many times a learner read certain messages (Erlin

et al., 2009) the most common quantitative measurements used within this unit of analysis,

qualitative studies based on questionnaires (Takahashi et al., 2007) or surveys (Williams and

Pury, 2002) can be used as well in order to characterise reading activity performed by learner.

6. Learner perceptions

Evaluations or appraisals of any kind made by learners on how they perceive and consider

participation are understood as learner perceptions and they can constitute another unit of

analysis. Perceived participation can be measured and studied from different approaches,
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including both quantitative (e.g. how many times and by how many learners a message has

been read (Erlin et al., 2009)) and qualitative measures (e.g. interviews to learners (Bullen,

1998), reflective learner reports (Ellis, 2003; Vonderwell and Zachariah, 2005) or close-ended

(Hrastinski, 2006) and open-ended (Kuboni and Martin, 2004) questions in surveys).

7. Time spent

Finally, the temporal dimension of the activity performed by learners in online discussion fo-

rums can be taken into account in order to define a last unit of analysis of learner participa-

tion. The time spent by learners on participating in threaded discussions can be studied from

both quantitative (e.g. measuring the rhythm of posting (Thomas, 2002; Calvani et al., 2010)

or participation rates (Nandi et al., 2009)) and qualitative perspectives (e.g. using surveys

to determine how many hours learners are engaged in online discussions (Hrastinski, 2006;

McLinden et al., 2006) or the frequency and average length of their visits to the e-learning

environment (Kuboni and Martin, 2004)).

More details on specific indicators used in literature in order to measure and characterise online

learner participation can be found in (Dringus and Ellis, 2005, pages 149–150).

1.2.2 Modelling learners’ activity from a theoretical perspective

Theoretical approaches to this issue try to provide conceptual frameworks, descriptive taxonomies

and argumentative structures in order to explain and model learners’ activity (Kelly, 2004). None-

theless, both quantitative and qualitative analysis of the results of some field experiments are also

performed in some works with the aim of giving empirical support to the theoretical proposals.

According to the learning theories considered to study and describe the activity carried out by

learners in online discussion forums, different kinds of theoretical approaches to this matter are

observed in literature.

1.2.2.1 The behaviourist approach

From this kind of approach, learner’s behaviour is modelled by considering the most basic and

elemental actions that learners can come to perform in online discussion forums, which are es-

sentially two: writing and reading. Dissimilarities among the distinct proposals made by several

researchers according to this premise are, at the most, subtle, since they always end up defining

the same three different models of behaviour.

In the first place, Mason (1994) finds that learners fall into three distinct groups in their online par-

ticipation: active participants (those who both read and post messages), lurkers (those who read,

but do not post messages), and those who do not take part (neither read, nor write messages).
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In an analogous manner, three main types of learner can be defined regarding their participation

in online discussions (Hammond, 1999): the communicative learner, who finds both the time to

take part and the confidence to send messages; the quiet learner, who finds time to take part by

reading messages but not to contribute and the non-participant who find time and other cons-

traints impossible to overcome, even to the extent of reading messages. Hammond (1999) also

points out that these three types are abstractions and, being learners able to slip from one to an-

other –in particular, from very quiet periods of participation to more communicative periods–,

this conception of the styles of participation can be helpful to show the patterns of behaviour that

many learners adopt at least for significant periods of time.

But it is Taylor (2002) who, as a result of his investigation on learners’ participation patterns in

accessing and contributing to online discussions and their influence over academic achievement,

propose one of the most popular terminologies for these three models of behaviour:

• Workers. The workers (or proactive participators) are learners who visit online forums regu-

larly and contribute an above average number of postings to the threaded discussions. These

proactive learners are continuously involved in discussions and are often among the first

both to post a message and to respond quickly to other messages, thereby creating threads

of ongoing dialogue among other peers.

• Lurkers. The lurkers (or peripheral participators) are learners who, even visiting online fo-

rums regularly, contribute occasionally to the threaded discussions (with less than the ave-

rage number of postings), since their regular participation is mostly carried through in "read-

only mode".

• Shirkers. The shirkers (or parsimonious participators) are learners who occasionally visit

online forums and contribute a testimonial number of postings to the threaded discussions.

Slight nuances among some definitions proposed by different authors can be observed. Whereas

Mason (1994) and Hammond (1999) define lurkers and quiet learners as only-readers, Taylor (2002)

considers that lurkers may write, in addition, some occasional and peripheral contributions. In the

same way, Taylor (2002) considers that shirkers can perform some marginal levels of participation,

but Mason (1994) and Hammond (1999), maintain that, respectively, those who do not take part

and non-participants are, as their names imply, absolutely passive learners who don’t participate

at all. The slight differences found in these definitions fit with the fact suggested by Taylor (2002),

such that parameters for levels of learner participation should be defined –it is a difficult task, in-

somuch they are scenario-dependent–, so that the reasons for varying degrees of engagement can

be unpacked.

In any case, it is the definition of lurking behaviour the one that transcend from the rest of mo-

dels posed from this approach, since it have become one of the most interesting and deeply stu-

died matters throughout the literature. A deeper insight into the distinctive features of lurking
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behaviour can be reached by referring to contributions that tackle different subjects concerning

lurking, such as giving a proper definition of lurking (Mason, 1994; Whittaker et al., 1998; Fritsch,

1999; Nonnecke and Preece, 2000; Salmon, 2000; Bowes, 2002; Taylor, 2002; Rafaeli et al., 2004),

finding the specific characteristics of lurkers (Kollock and Smith, 1996; Morris and Ogan, 1996;

Nonnecke and Preece, 1999; Preece et al., 2003), discovering the reasons that motivate lurkers to

lurk (Salmon, 2000; Nonnecke and Preece, 2001; Beaudoin, 2002; Preece et al., 2003; Rafaeli et al.,

2004), discussing how to move lurkers to posters (Whittaker et al., 1998; Bowes, 2002; Nonnecke

et al., 2004; Bishop, 2011) and, probably the most complex of all, determining whether lurkers ac-

tually learn or not (Fritsch, 1999; Lee and McKendree, 1999; Salmon, 2000; Beaudoin, 2002; Rafaeli

et al., 2004).

1.2.2.2 The social approach

The fundamentals of this approach lies on the definition of three capital concepts: impersona-

lity, interpersonality and social presence. Impersonality refers to task-oriented communication

in which information is offered or requested (Walther, 1996). Interpersonality includes social or

personally oriented interaction, or informal communication, that leads to the creation of rela-

tionships among participants (Sudweeks and Simoff, 1999). The social presence –the ability of

participants in a community of to project themselves both socially and emotionally, as real people,

through the medium of communication being used– is closely related to interpersonality (Garrison

et al., 2000). Thus, since research on asynchronous text-based online communication shows that

it does permit high levels of interpersonal communication, learners’ activity in online discussion

forums can therefore be understood and modelled from the concept of social presence (Rourke

et al., 1999).

From these premises, one of the most complete conceptual frameworks on modelling activity in

asynchronous online discussions according to its social perspective is provided by Beuchot and

Bullen (2005). Basing their proposals on the previous works of Lundgren (1977), Bales and Cohen

(1979), Higgins (1991), Henri (1992), Walther and Burgoon (1992), Schutz (1994) and Mabry (1997),

they define a double taxonomy in order to model, on the one hand, the nature of interaction

among participants and, on the other hand, both the impersonal and interpersonal content of

threaded discussions.

The 5-category taxonomy they propose to describe interaction is shown in Table 1.1 and it includes

the detail of the corresponding descriptions for the five types of interaction they define. Next, the

13-category taxonomy utilised to categorise impersonality (two categories) and interpersonality

(eleven categories) is shown in Table 1.2. The categories in this last taxonomy are associated each

other by defining opposite –positive/negative– peers and are subsequently described in Tables 1.3

(impersonality categories) and 1.4 (interpersonality categories).
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Types of interaction Description

Active
Independence from and no reference to any previous sentence, mes-

sage, person or group (e.g. introduction of a new topic).

Explicit reactive
Explicit reference to a previous sentence, message, person or group (e.g.

direct answer to a previous question).

Implicit reactive
Implicit reference to a previous sentence, message, person or group

(e.g. complement to an existing answer to a previous question).

Engaging interactive
Obvious attempts at engaging others at conversation (e.g. asking ques-

tions, suggestions, asking for comments, etc.).

True interactive
Any reference to the nature of previous sentences or messages (e.g. re-

marking on how a previous message is supportive, argumentative, etc.).

Table 1.1: Interaction: a 5-category taxonomy (Beuchot and Bullen, 2005).

Categories

Positive Negative

Impersonality Informing-Offering Asking-Requesting

Interpersonality

Support-Alignment Adversariality-Opposition

Disclosure Reserve

Appraisal Chastisement

Humour Sarcasm

Inquiry Self absorption-Advocacy

Others

Table 1.2: Impersonality and interpersonality: a 13-category taxonomy (Beuchot and Bullen, 2005).

Category Description

Informing-Offering
Forwarding factual information, either as a spontaneous offer, an ans-

wer, a question or a request.

Asking-Requesting
Asking for factual information; requesting repetition, clarification or

confirmation; asking for examples; requesting data.

Table 1.3: Description of categories for impersonal content (Beuchot and Bullen, 2005).

From this conceptual framework on, social roles adopted by learners throughout their activity in

online discussion forums can be defined and modelled. Along these lines, Bento et al. (2005) pro-

pose four elemental models of learners’ roles, by simply considering low and high levels of both

impersonality and interpersonality, as shown in Table 1.5.

Active learners and social participants come to be highly visible students, who often participate

in online discussions and fundamentally differ in terms of their interaction with course contents

(impersonality); witness learners actually interact with course contents but, since their low level

of interpersonality, are invisible students and can be easily equalled to lurkers (see section 1.2.2.1);
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Category Description

Support-Alignment
Acceptance of points of view, agreement, approval, concession,

compliance, friendly greetings, etc.

Adversariality-Opposition
Direct opposition, intellectual conflict, disagreement, critical

view, judgement, assessment, etc.

Disclosure
Self-presentation; revelation of novel, ordinary or personal infor-

mation apart from the subject of discussion.

Reserve
Appealing to end the discussion or no attempting to pursue it fur-

ther; inhibiting the interaction or the development of an idea.

Appraisal
Admiration, commendation, praise, positive reinforcement of

others’ contributions, satisfaction with others’ ideas, etc.

Chastisement
Anger, open hostility, personal attacks, disliking, rudeness, provo-

cation, unfriendly and destructive comments, etc.

Humour
Explicit joking statements, display of wit, positive irony, tension

relieving comments, use of puns and humorous language, etc.

Sarcasm
Derision, making fun of somebody or someone’s ideas, cruel forms

of humour, hostile wit, etc.

Inquiry
Asking expansive questions, asking for others’ opinions, inviting

peers to engage further in the discussion, requesting elaboration.

Self absorption-Advocacy
Forwarding opinions, self-centred use of personal pronouns, self-

promotion, strong and forcefully worded assertions, etc.

Others Any sentence non-assignable to any of the previous categories.

Table 1.4: Description of categories for interpersonal content (Beuchot and Bullen, 2005).

Low impersonality High impersonality

High interpersonality Social participants Active learners

Low interpersonality Missing-in-action learners Witness learners

Table 1.5: Taxonomy of impersonal and interpersonal participation in online courses (Bento et al., 2005).

and, finally, missing-in-action learners are passive students that care neither about the course

content nor their peers’ learning (Bento et al., 2005).

Beyond these basic models and since they are highly context-dependent, a great diversity of social

roles presented in online discussion groups (e.g. local experts, answer people, conversationalists,

fans, discussion artists, flame warriors, trolls, etc.) have been identified and defined, primarily

by conducting ethnographic studies of the content of interaction (Donath, 1996; Burkhalter and

Smith, 2004; Herring, 2004; Marcoccia, 2004). A relation of several roles proposed by different au-

thors is shown in Table 1.6:
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Authors Roles

Kim (2000) Visitors, novices, regulars, leaders and elders.

Golder (2003) Newbies, celebrities, elders, lurkers, flamers, trolls and ranters.

Brush et al. (2005)
Key contributors, low volume repliers, questioners, readers and

disengaged observers.

Waters and Gasson (2005)
Initiators, contributors, facilitators, complicators, knowledge-

elicitors, vicarious-acknowledgers, closers and passive-learners.

Table 1.6: Different learners’ social roles defined by various authors (Turner and Fisher, 2006).

1.2.2.3 The constructivist approach

The main goal of this kind of approach is to provide a description of learning that may come from

asynchronous discussion. Both social cognitivism and constructivism are theoretical frameworks

that might support asynchronous discussion (Tam, 2000), since the online classroom has been

defined as a learner-centred environment (Knowlton, 2000) that allows knowledge construction

among learners (Jonassen et al., 1995). Considering that constructivism emphasises descriptions

of how learning occurs, the use of a constructivist frame seems therefore to be appropriate to mo-

del and explain learners’ activity in online discussion forums (Bannan-Ritland, 2002).

Thus, taking the previous proposals of many authors as a starting point and being consistent with

them, Knowlton (2005) puts forth, from a constructivist view of asynchronous discussion, a five-

tiered taxonomy that defines five different kinds of participants. In addition, it is also provided a

description of both the nature of participation in online discussion forums and the possible types

of learning that derive from it:

• Passive participants. Some learners take a passive approach toward asynchronous discus-

sion (Weedman, 1999). Passive participants –also known as lurkers– read contributions to the

discussion, but they do not participate. Although there is a deficiency of knowledge about

the real behaviour of passive participants (Graham and Scarborough, 1999), the reasons for

their passivity might be, among others, a lack of understanding of the environment, a be-

littling of the role of asynchronous discussion in meeting content-based course goals, an

attempt to understand confusing guidelines from the course instructor or ambiguous con-

tributions from classmates, or even a consequence of their thinking styles (visual thinkers

may tend to participate less than, for instance, analytic thinkers) (Lave and Wenger, 1991).

Passive participants either do not value, or do not understand how to engage in, collaborative

processes. Since they may be accustomed to a teacher-centred view of education, they may

be comfortable by mirroring the instructor’s knowledge and therefore do not need and/or do

not know how to collaborate (Hara and Kling, 2000). However, regardless the real reasons of

their passive attitude, passive participants certainly see knowledge as something construc-

ted by others (Speck, 1998). They consider their own role as one of absorbing, so that they
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take a product view –instead of a process view– of knowledge construction. For the passive

participant, the process is not worthy of being shared with classmates.

• Developmental participants. Developmental participation exhibits more active behaviours

than passive participation, but the contributions of developmental participants still do not

substantively add to a real collaborative knowledge construction (Tam, 2000). Participants

operating at this level understand that meaningful interaction can occur in asynchronous

discussions, but they may see it in terms of the gains that they get from participating in,

instead of the quality of their true learning about course content. Although they are no

completely silent, developmental participants usually do not contribute anything new to the

content-based discussion, only tangential reactions to contributions of others, and they ra-

rely collaborate to a socially-negotiated construction of knowledge (Jonassen et al., 1995).

They may understand personal aspects of collaboration such as community development

(Palloff and Pratt, 1999) or social reinforcement (Prestera and Moller, 2001), but they dis-

miss, or simple have yet to discover, the educational enrichment than can come from online

discussions. Developmental participants do not view asynchronous discussions as a place

for the creation of new knowledge, but as a place where knowledge can be shown and exem-

plified. They participate to validate whether they correctly understand the facts, rather than

to construct knowledge; they look for encouragement and reinforcement, rather than true

discussions and opportunities to build which is not yet known, so that their attempts to par-

ticipate may show some type of intrapersonal interaction or internal dialogue (Berge, 1999).

• Generative participants. Generative participation is characterised as a participant’s attempt

to offer commentary about course content. Participants at the generative level view the

asynchronous discussion as a conducive environment to articulate ideas and the process of

knowledge construction as a private and solitary act. Generative participation can actually

lead to knowledge construction. Generative participants recognise the interactive possibili-

ties of online discussions, but they do not view interaction as an educational necessity. They

understand the environment as a mind tool and as a place to ask to the instructor and to re-

port what they know, but not as a tool for distributing and sharing their ideas (Nicholson and

Bond, 2003). Because of their teacher-centred view of the learning process, generative par-

ticipants do not consider themselves as a part of a dialogue with classmates; instead of that,

they are engaged in a type of collaboration with the instructor, which they connect to the tar-

get of earning a grade. With all that, the generative participant may at least have developed

some kind of sense of communal confidence, since they trust that classmates will treat their

contributions with respect (Rovai, 2001). Knowledge construction by means of generative

participation can be seen both as a sort of generative learning –contributions are offered to

discussions of response to a prescriptive request from a teacher– (Wittrock and Alesandrini,

1990) and as way of generating content and therefore constructing knowledge through the

act of writing –since writing is a learning activity– (Adams and Hamm, 1990).
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• Dialogical participants. Dialogical participation involves a substantive interaction among

learners through asynchronous discussion. Dialogical participants recognise themselves as

a part of a community of learners in the extent that they accept the mutual relation of con-

tent and context, of individual and environment, and of knowing and doing (Barab et al.,

2001). They also understand that the environment itself allows knowledge to be constructed

and they view it as a medium for increasing comprehension and focusing on task completion

(Walther, 1996; Jonassen and Kwon, 2001). Dialogical participants consider collaboration as

a source for knowledge construction and they can use and structure the environment to fa-

cilitate a stronger collaboration and, thus, a more durable knowledge construction (Weiss,

2000). Participants at the dialogical level tend to perform a strong use of asynchronicity,

since they reflect on previous contributions to a discussion before they respond to those

contributions (Lewis et al., 1997) and they recognise the potential for integrating past contri-

butions to a topic as key benefit of the environment (Prestera and Moller, 2001). Dialogical

participants understand the value of interacting with classmates about their thoughts and

reasonings, instead of simply consume their ideas. They are not solitary thinkers, since they

use the processes of debate and discussion both to encounter new ideas about course mate-

rials and to test their ideas through discussion with other participants (de Haan, 2002). The

strong feelings of community among learners created and reinforced through dialogical par-

ticipation can contribute to increase the flow of information and, thus, the efficiency of the

knowledge construction process (Rovai, 2001).

• Metacognitive participants. Metacognitive participation is strongly connected to internal

mental representations of the learning process. In this way, the constructions of knowledge

distributed among a group of learners that take place through asynchronous discussions are

understood and interpreted by participants at the metacognitive level in direct relations-

hip to themselves. Through online discussions, metacognitive participants are able to learn

about themselves and their own learning processes (Knowlton, 2003b) by performing a sort

of reflective learning (Berge, 2002). Thus, by viewing their own contributions to online dis-

cussions as good and strong, they are likely to learn better and more than those who do

not have positive regard for the role that they play in asynchronous discussions (Leinonen

and Järvelä, 2003). Furthermore, in the extent that they use the online forums to monitor

their own comprehension of the discussion contents, metacognitive participants unders-

tand the asynchronous environment as a place conducive both to learn about the content

of the discussion and to learn about the self (Lin, 2001). They use the archives of the dis-

cussions not solely to make reconsiderations on course contents, but they are also focused

on the relationship between their current and previous perspectives and thoughts. In or-

der to development of strategies for generating knowledge, the metacognitive participant

may ask other participants about the strategies they follow to understand and interpret con-

cepts or assignments, which can contribute to all learners’ monitoring and awareness of their

own knowledge (Knowlton, 2003a). And, finally, metacognitive participants understand that
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knowledge construction transcends the boundaries of asynchronous discussion, since their

are able to reflect on how knowledge construction occurred for them both throughout the

discussion and beyond the discussion itself (Palloff and Pratt, 1999).

Finally, it is worth noting that, in spite of the fact that the conceptual framework described from

this taxonomy is generic, the nature of asynchronous discussions –and therefore the way learners

participate in– surely depends on the specific field of study; i.e. the types of both participation and

learning produced from different domains –such as hard sciences, social sciences or humanities–

can easily be dissimilar from each other (Dunlosky, 1998; Knowlton, 2003a,b).

1.2.3 Modelling learners’ activity from the data mining paradigm

Data mining (DM) is defined as the application of specific algorithms for extracting patterns (or

models) from data –i.e. making any high-level description of a set of data, such as, fitting a model

to data or finding structures from it– (Fayyad et al., 1996). As shown in Figure 1.1, DM can be seen

as an integral part of knowledge discovery in databases (KDD), which can be generically defined

as the overall process of converting raw data into useful information (Tan et al., 2006).

Figure 1.1: DM as an integral part of the KDD process (adapted from Tan et al. (2006)).

Since most DM-based studies are performed in a particular application domain, common pre-

vious steps in this process consist in stating the problem to solve and collecting the data (Kantard-

zic, 2003). In general terms, the input data (or target data set) is constituted by a set of objects

(or elements, or points) represented upon a space of variables (or attributes, or features, or di-

mensions), which can be either numerical –representing the value of a quantitative measurable

magnitude– or nominal –taking one of a predefined set of categorical values– (Sevillano, 2009).

Thus, on the one hand, transforming the raw input data into an appropriate format for subsequent

analysis is the purpose of the data preprocessing stage, which can entail transformation processes

such as noise removal, attributes scaling, data parametrisation, or dimensionality reduction (by

means of feature selection and/or feature extraction techniques), among others. On the other

hand, the data postprocessing stage basically consists in evaluating and interpreting the patterns

and models obtained from the DM stage and it often involves processes such as calculation of

statistical measures, application of hypothesis tests, or visualisation of the mined patterns, among

others (Tan et al., 2006).
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The core of the KDD process is the DM stage, where the patterns and models that lead to useful in-

formation are obtained from the preprocessed data. Depending on the goals of the KDD process, a

suitable DM task must be identified and, consequently, a proper DM method must be chosen. Ac-

cording to Fayyad et al. (1996), DM tasks can be classified into verification-oriented tasks, whose

goal is to evaluate a previously proposed hypothesis, and discovery-oriented tasks, whose goal is

to discover useful patterns in the data. For their part, both prediction and description tasks can

be distinguished among the discovery-oriented tasks, as shown in Figure 1.2. The goal of DM pre-

dictive methods –classification and regression– is to find patterns in order to predict the future

behaviour of some entities Fayyad et al. (1996), whereas the different families of DM descriptive

methods –clustering and summarisation, among others– are often more exploratory in nature,

since they focus on finding understandable representations of the underlying structure of the data

(Maimon and Rokach, 2005).

Figure 1.2: A taxonomy of DM tasks and methods (adapted from Sevillano (2009)).

Once a proper DM method is chosen and taking into account which parameters are the most ap-

propriate from an algorithmic viewpoint, as well as which levels of accuracy, utility and intelligi-

bility are required for the patterns and models of the data, a specific algorithm must be selected

to be applied at the DM stage of the KDD process (Fayyad, 1996). Regarding this issue, it is worth

noticing that extracting knowledge from a data set is a both multistage and iterative process, since

the interpretation/evaluation of the obtained patterns performed in the postprocessing stage can

lead to re-execute any of the previous stages for further refinement of the KDD process (Brachman

and Anand, 1996; Halkidi et al., 2002a).

From both conceptual and practical viewpoints, KDD and DM are interdisciplinary fields that

bring together researchers, developers and practitioners from a wide variety of related fields, inclu-

ding statistics, machine learning, artificial intelligence, databases management, knowledge acqui-

sition, pattern recognition, information retrieval, visualisation, intelligent agents for distributed
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and multimedia environments, digital libraries and management information systems (Fayyad,

1996). In this way, there are many areas where DM techniques are applied, such as finance and

business, marketing, social sciences, medicine and healthcare, monitoring and diagnosis, science

data acquisition, manufacturing, engineering, telecommunications industry and automotive sec-

tor, among many others (Fayyad et al., 1996; Kantardzic, 2003; Tan et al., 2006). Thus, the appli-

cation of the principles of this paradigm from the educational scope gives rise to the educational

data mining (EDM) field (Romero and Ventura, 2007).

EDM is a discipline concerned with developing methods for exploring the unique types of data

that come from educational settings and using those methods to better understand learners and

the settings which they learn in (Baker and Yacef, 2009). Making use of the diversity of DM meth-

ods and algorithms, the aim of EDM is to analyse educational data to find out descriptive patterns

and predictions that characterise learners’ behaviours and achievements, domain knowledge con-

tent, assessments and educational functionalities and applications (Romero and Ventura, 2007).

EDM is applied to address a wide variety of goals, which can be encompassed by the following ge-

neral applications: communication to teachers and instructors, maintenance and improvement

of courses and environments, generation of recommendations, modelling of learning behaviours,

prediction of learners’ grades and learning outcomes, and analysis of domain structures (Romero

et al., 2011).

Therefore, the matter of modelling learners’ activity in online discussion forums is addressed from

the EDM field in the terms of a modelling problem of learning behaviours. Unlike the theoreti-

cal approaches previously described, the DM-based approach tackles this issue from an empirical

angle: the activity performed by learners in online discussion forums generates a flow of measu-

rable and collectable data that is analysed in order to discover and identify the different learning

behaviours and roles adopted by learners. The literature in this specific area indicates that this mo-

delling problem is mainly posed either from a social network analysis perspective (section 1.2.3.1)

or as a clustering scenario (section 1.2.3.2).

1.2.3.1 Modelling learners’ activity by means of social network analysis techniques

The social network analysis (SNA) is a widely used research methodology in modern sociology and

anthropology for the study of the social relationships between individuals in a community and it

is also utilised to analyse interaction among members of a virtual community (Garton et al., 1997;

Cho et al., 2002; Reffay and Chanier, 2003). Moreover, there is a line of work on applying SNA

for modelling learners’ activity in online forums, based on extracting social networks from asyn-

chronous discussions and finding appropriate indicators for measuring and evaluating learners’

participation (Lipponen et al., 2003; Willging, 2005; Laghos and Zaphiris, 2006; de Laat et al., 2007;

Welser et al., 2007; Erlin et al., 2009; Calvani et al., 2010; Sundararajan, 2010; Rabbany et al., 2011).
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Since SNA seeks to identify underlying patterns of social relations based on the way actors are con-

nected with each other in a social network (Scott, 1991; Wasserman and Faust, 1994), it is a suitable

choice in order to assist in describing and understanding the patterns of participation and interac-

tion among learners in online discussion forums (de Laat et al., 2007). SNA is therefore a specially

useful technique in order to find and identify social roles (see section 1.2.2.2) in asynchronous on-

line discussions (Welser et al., 2007). Thus, interactions among participants in discussion boards

can be properly mapped out and explored using SNA, since it provides analytical data about the

activity and relationships of the learners (de Laat et al., 2007), as well as useful visualisations of

participants’ activities (Calvani et al., 2010).

In this way, SNA can be somehow regarded, from a DM perspective, as a summarisation method

(see Figure 1.2 in section 1.2.3), since it makes use of multivariate visualisation methods with the

aim of providing a compact description for the data (Rabbany et al., 2011). Furthermore, SNA

is usually utilised in combination with other different techniques, such as content analysis and

critical event recall (de Laat et al., 2007), or regression techniques (Welser et al., 2007).

Using SNA, the social environment developed throughout asynchronous discussions in online fo-

rums is mapped as patterns of relationships among interacting learners (Wasserman and Faust,

1994). The focus is placed on the relational data, instead of the characteristics of each single lear-

ner. Thus, the unit of analysis in SNA is not the individual, but the interaction that occurs between

members of the network. SNA allows to visualise the network of relations among learners based

on the interpersonal activity (see section 1.2.2.2), i.e. by means of the presence and absence of

connections between them (de Laat et al., 2007).

The two key indicators of SNA are density and centrality (Lipponen et al., 2003). On the one hand,

density provides a measure of the overall connections among participants. The density of a net-

work can be defined as the ratio between the number of communicative links observed in a net-

work and the maximum number of possible links. Therefore, the more participants connected to

each other (e.g. by their exchange of messages), the higher will be the density value of the net-

work (Scott, 1991). On the other hand, centrality is a measure that provides information about the

behavior of individual participants within a network. Centrality indicates the extent to which an

individual interacts with other members in the network (Wasserman and Faust, 1994). In order to,

for instance, identify central and peripheral participants of a social network through this measure,

the number of each participant’s connections with other members is measured and the in-degree

–the number of learners who respond to a message from a certain participant– and out-degree

–the number of messages a learner sends to other peers in the online forums– centrality values of

each participant are generated (de Laat et al., 2007).

Driven by these fundamentals, different ways of visualising learners’ activity in online discussion

forums are proposed from the SNA-based approach, the following being the most popular ones:
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• Sociograms. The structure of interpersonal relations in a group situation is plotted in order

to easily visualise both the distribution of the network’s density and the centrality degree of

each participant (Turner et al., 2005; de Laat et al., 2007; Welser et al., 2007; Erlin et al., 2009).

Sociograms can be useful to study both classroom dynamics (interaction patterns within a

group of learners) and the in-degree and out-degree activity around a single participant (ego

networks). Different examples of sociograms are shown in Figure 1.3.

• Radiant graphs. Given a set of measurable and quantifiable variables (or indicators), the

behaviour of both a group of learners or a single participant is visualised in comparison with

the average behaviour of the classroom (Calvani et al., 2010; Rabbany et al., 2011). Radiant

graphs can be useful both to illustrate specific behaviours and to evaluate learners partici-

pation in the context of a classroom. An example of radiant graph is shown in Figure 1.4a.

• Authorlines. The volume of contributions for a single learner is visualised in a temporal

series form (Viégas and Smith, 2004; Turner et al., 2005; Welser et al., 2007). Authorlines

can reveal detailed patterns about learners’ posting/reading behaviour through time. An

example of authorline is shown in Figure. 1.4b.

(a) An example of link-weighted sociogram. (b) An example of node- and link-weighted sociogram.

Figure 1.3: SNA visualisations: sociograms (extracted from de Laat et al. (2007) and Rabbany et al. (2011)).

(a) An example of radiant graph. (b) An example of authorline.

Figure 1.4: SNA visualisations: radiant graph (extracted from Rabbany et al. (2011) and Turner et al.

(2005)).
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Thus, several recent works in the literature show how to visually identify and characterise, by

means of SNA techniques, a great diversity of participation roles in a variety of asynchronous dis-

cussion contexts (as previously mentioned in sections 1.2.2.2 and 1.2.2.3, participation roles are

highly context-dependent).

Turner et al. (2005) analyse patterns of activity and development in a worldwide distributed Inter-

net asynchronous discussion system called Usenet1. By a series of visualisations (treemaps2, aut-

horlines and sociograms, among others) that allow to categorise newsgroups, authors and threads,

they identify eight different social roles performed by Usenet participants: one-time-only posters,

questioners, answer persons, conversationalists, trolls, spammers, binary posters and flame

warriors.

By combining the use of content analysis, critical event recall and SNA visualisations (sociograms),

de Laat et al. (2007) analyse interaction patterns in small groups of learners and discuss the re-

lation between central/peripheral participation and active/passive learning. Their conclusions

suggest that the most active (or central) participants do not necessarily regulate and dominate

the discussions, since while some learners are more socially engaged, others show more extensive

metacognitive skills (Hara et al., 2000). Furthermore, having observed variations through time in

the centrality of participants, they also find that learners may develop different roles or interests

during their collaborative work (Reuven et al., 2003).

Analysing data drawn from Usenet1 posts, Welser et al. (2007) obtain both sociograms and aut-

horlines that allow to identify the patterns of contribution (or signatures) of three main user roles:

question person, discussion person and answer person. By combining the SNA approach with

some regression techniques, they conclude that the obtained signatures are strongly correlated

with role behaviours and may lead to a predictive model for identifying participation roles.

In the specific context of online political discussions, Himelboim et al. (2009) analyse patterns of

thread initiation and reply in several political newsgroups collected from the Microsoft Research

Netscan dataset3. By combining the use of sociograms and content analysis, they are able to iden-

tify two different kinds of participants that act as discussion catalysts: content importers and con-

versation starters.

Finally, this brief review ends with the work of Calvani et al. (2010), who study the effectiveness

of the interactions among learners in small online collaborative groups. They propose to charac-

terise the interactions performed in each group of learners by means of nine different variables:

extent of participation, proposing attitude, equal participation, extent of roles, rhythm, reciprocal

readings, depth, reactivity to proposals and conclusiveness. This set of variables constitutes the

representation space where, by means of radiant graphs, the interaction pattern of each group is

1http://www.usenet.org
2An example of treemap is available online at http://jcmc.indiana.edu/vol10/issue4/turner.1b.gif
3http://research.microsoft.com/en-us/groups/scg

http://www.usenet.org
http://jcmc.indiana.edu/vol10/issue4/turner.1b.gif
http://research.microsoft.com/en-us/groups/scg
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visualised and put in comparison with the average interaction pattern of all groups. An example

of radiant graph for a scarcely effective group can be observed in Figure 1.4a.

1.2.3.2 Modelling learners’ activity by means of clustering techniques

Clustering (or cluster analysis) can be defined as the process of separating a finite unlabelled da-

taset into a finite and discrete set of natural clusters based on resemblance (Jain et al., 1999; Xu

and Wunsch II, 2005). Being one of the most common DM descriptive methods, the goal of cluster

analysis is to identify the underlying structure of the data and to represent it by means of a cluster-

based descriptive taxonomy (where similar objects are labelled with the same cluster labels) that

characterises the data with no previous knowledge (Sevillano, 2009).

Cluster analysis seeks to find clusters (or groups) of closely related objects in the data, so that those

objects belonging to the same cluster are more similar to each other than those belonging to other

clusters (Tan et al., 2006). In this way, the concept of cluster can be understood as a set of entities

which are alike, whereas entities from different clusters are not alike (Everitt et al., 2011).

Clustering is, thus, an unsupervised task, since the objects in the dataset are unlabelled –i.e. there

is no prior knowledge about how they should be grouped– and the process of identification of the

clusters is data-driven –i.e. the cluster labels are obtained solely from the data, not provided by an

external source– (Jain et al., 1999). This absence of category labels that tag objects with prior iden-

tifiers is what distinguishes cluster analysis from supervised tasks such as classification (see Figure

1.2). Unlike to supervised techniques, cluster analysis is geared toward finding existent structures

in the data in order to find a convenient and valid organization of the data, not to establish rules

for separating future data into categories (Jain and Dubes, 1988).

After a clustering process, the objects contained in the dataset can be represented by a set of mea-

ningful clusters that define a simplified cluster-based data model, since the number of clusters is

comparatively smaller than the number of objects (Berkhin, 2006). However, the obtained clusters

should somehow reflect the mechanisms that cause some objects to be more similar to each other

than to the remaining ones (Witten and Frank, 2005).

Being such a generic DM task, clustering-based applications can be found in a wide variety of

research fields, such as psychology and other social sciences, economics, climatology, biology,

computational genomics, statistics, education, information retrieval, text mining, computer vi-

sion and machine learning, among others (Tan et al., 2006). Focusing on the EDM field, three main

categories of studies that deal with clustering problems in e-learning contexts can be found in lite-

rature: works that group e-learning material based on their similarities, works that group learners

according to their navigational and/or learning behaviour, and works that use cluster analysis as

part of an e-learning strategy but do not present any practical application results (Vellido et al.,

2011). Thus, being directly related with the analysis of learning behaviours, modelling learners’
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activity in online discussion forums by means of cluster analysis clearly fits in the second group of

works.

From a generic perspective and based on the KDD fundamentals (see section 1.2.3), the process of

modelling learners according to their learning behaviours by means of cluster analysis is compo-

sed of three main stages (see Figure 1.5):

Figure 1.5: Modelling of learners’ behaviour by means of cluster analysis.

• Characterisation. Raw data from learners’ activity is first collected and then preprocessed.

The result of this preprocessing process is a set of features that represent and characterise

learners in terms of their behavior regarding the activity subjected to analysis (Amershi and

Conati, 2009). The features that can be used for characterising learners’ behaviour always

depend on both the type of activity and the available data, but, in the specific case of model-

ling learners’ activity in online discussion forums, different levels of participation and units

of analysis have been defined to that effect (see section 1.2.1).

• Clustering. The characterised learners are then used as input objects to a clustering algo-

rithm that groups them according to their resemblance (or proximity), i.e. learners with si-

milar behaviour patterns in terms of the features chosen in the previous stage are grouped

together in the same cluster (Amershi and Conati, 2009). This stage involves taking decisions

that may greatly influence the outcomes of the modelling process (Sevillano, 2009), such as

choosing the specific clustering algorithm to be applied, selecting the proximity measure, or

determining the optimal number of clusters in the data (see Chapter 2 for further details).

• Interpretation. Each resulting cluster represents learners who, regarding the activity sub-

jected to analysis, behave both similarly among them and dissimilarly among the rest of

learners belonging to other clusters (Amershi and Conati, 2009). The obtained set of clus-

ters is then analysed in order both to validate the quality of the clusters (see section 2.4 for

further details), and to interpret what learning behaviour is represented by each cluster of
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learners and its meaning according to the activity subjected to analysis (although both mat-

ters –validation and interpretation– may become strongly related). This interpretation of the

resulting behaviour models has to be performed according to features chosen in the first

stage of the process and, in the specific case of modelling learners’ activity in online discus-

sion forums, considering the conceptual frameworks posed from the different theoretical

approaches to the issue (see section 1.2.2).

Thus, following these fundamentals, clustering-based approaches are useful in building an un-

derstanding of learners’ behaviours in many digital environments, e.g. profiling hypermedia users

according to their navigational behaviour (Barab et al., 1997), characterising behaviour groups in

unstructured collaborative spaces (Talavera and Gaudioso, 2004), analysing cognitive tool use pat-

terns in a hypermedia learning environments (Liu and Bera, 2005), personalising learning paths

in intelligent e-learning systems (Zakrzewska, 2008), building user models for exploratory lear-

ning environments (Amershi and Conati, 2009), or predicting learners’ final marks in a university

course (López et al., 2012), among many others. More details on the usage of cluster analysis in

educational environments can be found in the complete survey performed by Vellido et al. (2011).

Regarding the particularities of adopting clustering-based strategies in order to identity different

learning behaviours according to the activity performed by learners in online discussion forums,

the literature provides several recent works that tackle this issue.

Firstly, different approaches to learning in a learner-centred online environment are analysed by

del Valle and Duffy (2009):

• Input data. Clickstream data along a complete course are collected from 59 learners belon-

ging to different fields, such as arts, math, science and social studies, among others.

• Characterisation. Every learner is characterised by means of three variables regarding the

activity carried out in online asynchronous discussions and other seven general variables:

– Proportion of time spent in the message board

– Number of messages sent to the teacher

– Number of times each teacher’s message is read

– Total time spent in the learning environment

– Course duration

– Total number of sessions performed to complete the course

– Average inter-session interval

– Proportion of time on learning resources

– Proportion of learning resources accessed

– Excess of learning sessions beyond the regular course planning
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• Cluster analysis. Following the proposals of Barab et al. (1997), the cluster analysis is per-

formed by using Ward’s agglomerative hierarchical clustering algorithm and comparing

characterised learners by means of the square Euclidean distance. Being a priori unknown,

the optimal number of clusters is manually determined by obtaining several clustering so-

lutions (from one to sixty clusters) and comparing them according to the distance between

pairs of clusters: an inflection point is observed between the three and four clusters solu-

tions, so that the three clusters solution is finally chosen. Having obtained the final set of

clusters after a manual and partially subjective criterion, meaningful differences in the cha-

racterisation variables along the three clusters are confirmed by performing several statisti-

cal analysis (a Kruskal-Wallis one-way ANOVA with cluster membership as the independent

variable and a Mann-Whitney U pairwise comparisons to determine significance between

pairs of clusters).

• Results. Three distinctive approaches to online learning are identified:

– Mastery oriented (or Self-driven) approach, formed by learners (59.3% of the sample)

committed to the course and self-driven in their work, with the highest number of work

sessions, learning resources used and messages read.

– Task focused (or "Get it done") approach, formed by learners (22% of the sample)

mainly devoted to complete the course tasks as soon as possible, with an intermediate

number of work sessions, total hours online and messages read, but the lowest number

of calendar days invested in the course.

– Minimalist in effort (or "Procrastinator") approach, formed by learners (18.7% of the

sample) weakly committed to the course, with not very frequent logins, no regularity of

work and a tendency to spread the work over time.

Next, the study performed by Bliuc et al. (2010) focuses more specifically on the conceptions of

learning that learners have through both face-to-face and online asynchronous discussions:

• Input data. Data from close-ended questionnaires answered by 113 learners enrolled in a

political science course of one semester long are analysed.

• Characterisation. Following Biggs (1987) and Crawford et al. (998a), three different types of

questionnaires focused on three different matters are used:

– Conceptions of learning through discussions (16 items)

– Approaches to learning through face-to-face discussions (21 items)

– Approaches to learning through online discussions (21 items)

Learners are characterised by means of the 27 more relevant items according to a principal

component analysis (PCA) performed in the preprocessing stage.



1.2. Modelling learners’ activity in online discussion forums 27

• Cluster analysis. The existence of distinctive groups of learners with different conceptions,

approaches and academic performance is explored by means of a agglomerative hierarchi-

cal cluster analysis, using standardised Z-scores for the variables and the Euclidean distance

as proximity measure. After conducting a manual inspection of the results (similar to the one

performed by del Valle and Duffy (2009)) and a discriminant analysis between groups, two

separate clusters of learners are obtained.

• Results. Two different types of learners are identified according to their conceptions of and

approaches to learning:

– Those who had a cohesive conception of learning and took a deep approach to online

discussions (71.7% of the sample).

– Those who had fragmented conceptions and took a surface approach to online discus-

sions (28.3% of the sample).

On classifying discussion boards of general topics –not strictly educational– according to the pre-

dominant interaction profiles of their participators, Chan et al. (2010) identify several different

user roles:

• Input data. Interactions among 2530 users, during a period of six months, along twenty

different online forums of a variety of topics 4 are analysed.

• Characterisation. Nine different features are utilised to characterise every user’s activity:

– In-degree coefficient of user’s ego-centric network (see section 1.2.3.1)

– Out-degree coefficient of user’s ego-centric network (see section 1.2.3.1)

– Percentage of other users with reciprocal communication

– Percentage of threads with reciprocal communication

– Mean of written posts per thread

– Standard deviation of written posts per thread

– Percentage of other users with at least one reply to the user

– Percentage of posts with at least one reply to the user

– Percentage of threads initiated by user

Users with marginal participation profiles are discarded after applying PCA.

• Cluster analysis. Users are grouped Euclidean distance is used as proximity measure) by

means of an agglomerative hierarchical clustering algorithm. In order to determine the fi-

nal number of clusters, several clustering solutions are obtained. After applying five different

clustering validation techniques (Rand, Silhouette, RS, Root mean square and DB Index) and

a manual inspection to the results, the 15 clusters solution is finally chosen.

4http://www.boards.ie

http://www.boards.ie
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• Results. The meaning of every cluster is interpreted according to the values of its users’

features and eight different user roles (atypically, some roles are represented with more than

one cluster) are identified:

– Joining conversationalists: no initiators; high communicators with a small set of users.

– Popular initiators: high popularity and levels of thread initialisation.

– Taciturns: low communications; limited conversations with a few users.

– Supporters: relatively middle of the road statistics; typical average participants.

– Elitists: low percentage of neighbours and high percentage of bidirectional threads,

which indicate strong conversations with a very small set of users.

– Popular participants: involved with a large percentage of users; low initiators.

– Grunts: low communications to a few users; relatively high levels of reciprocity.

– Ignored: very low percentage of posts get replied to.

Khan et al. (2012) present a recent study, in terms of participation in social learning, of the beha-

viour patterns associated with learners accessing an online discussion forum:

• Input data. 303 learners from undergraduate course on project management. The study co-

vers two years (163 learners on the first year; 140 on the second) that are analysed separately.

• Characterisation. Three different features are utilised to characterise learners’ activity:

– Average interval between online work sessions

– Average duration of an online work session

– Average number of discussion messages read during an online work session

• Cluster analysis. Using Euclidean distance as a proximity measure, learners are clustered

by means of Ward’s agglomerative hierarchical clustering algorithm. After a manual ins-

pection of the clustering results, two sets of 5 clusters are obtained (one set per year). Having

applied subjective criteria to obtain the two sets of clusters, one-way ANOVA and Tukey post-

hoc tests are performed in order to find significant statistical differences among clusters.

• Results. By combining the two resultant sets of 5 clusters (one set per year), seven different

types of learners are identified:

– Strategic learners: mainly asocial learners; short and infrequent work sessions.

– Apathetic learners: mainly asocial learners; medium-length and infrequent work ses-

sions.

– Detached learners: mainly asocial learners; long but infrequent work sessions.

– Directed learners: slightly social learners; short and medium-spread work sessions.
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– Purposive learners: slightly social learners; short and frequent work sessions.

– Inquisitive learners: highly social learners; medium-length and frequent work ses-

sions.

– Committed learners: highly social learners; long and frequent work sessions.

And, finally, Wise et al. (2013) examine learners’ participation patterns in online discussion forums

with the goal of getting an insight into learners’ online listening behaviours, i.e. how they engage

with the posts contributed by other peers (Wise et al., 2011b, 2012):

• Input data. In the context of an undergraduate business course taught in a blended format,

clickstream data is collected for 95 learners from 3 week-long online discussions to solve

organisational behavior challenges in groups of 10-13 participants.

• Characterisation. Following their own proposals in previous works (Wise et al., 2011a), the

different facets of every learner’s listening and speaking activity in the discussion forum are

characterised by seven different variables:

– Average length of session

– Percent of sessions with posting actions

– Percent of posts viewed at least once

– Percent of total views (reads) of others’ posts

– Average length of time reading a post

– Average number of posts contributed per discussion

– Average number of reviews of own posts per discussion

In addition, six other variables are used for additional comparisons to further characterise

the differences between the clusters:

– Average number of sessions per discussion

– Average number of reads before contributing a post

– Average number of views per discussion

– Average number of words per post

– Average length of time creating a post

– Final grade

• Cluster analysis. The squared Euclidean distance metric and Ward’s agglomerative hierar-

chical clustering algorithm are utilised to determine the distances between clusters for pos-

sible solutions. Following the same process performed by del Valle and Duffy (2009), a three

clusters solution is finally obtained. Meaningful differences in the variables along the three

clusters are confirmed by performing several statistical analysis (one-way ANOVA and post-

hoc analysis using Tukey’s HSD criterion with a Bonferroni alpha level correction).



30 Chapter 1. Framework of the thesis

• Results. Three types of learners are identified according to their listening behaviours:

– Superficial listeners/Intermittent talkers (31% of the sample), who have a moderate

amount of brief sessions, show a modest breadth of listening, perform shallow readings,

write a poor average of posts per discussion, and do not exhibit a great deal of reflecti-

vity on their own postings.

– Concentrated listeners/Integrated talkers (49% of the sample), who have a limited

amount of extended sessions, show a modest breadth of listening, read posts in great

depth, write a poor average of posts per discussion, and exhibit a limited reflectivity on

their own postings.

– Broad listeners/Reflective talkers (20% of the sample), who have a great amount of

extended sessions, show comprehensive breadth of listening but only moderate depth

on readings, write posts frequently, and exhibit a great reflectivity on their own postings.

Key issues: selecting the clustering algorithm and determining the optimal number of clusters

Having reviewed in detailed the works in literature that propose clustering-based strategies in or-

der to model learners’ activity in online discussion forums, two common aspects of their DM-

based analysis processes reveal themselves as key issues: the selection of the clustering algorithm

and the determination of the optimal number of clusters. While the first one is, considering the

particularities of this modelling problem, both reasonably and properly settled, the second one is

sub-optimally solved and it constitutes the main goal the present thesis is built up around.

On the one hand, given the nature of the problem, it is not happenstance that the totality of the

reviewed works opt for choosing agglomerative hierarchical clustering methods. As it has been

shown throughout the present chapter, identifying learners’ behaviours according to their parti-

cipation patterns in online asynchronous discussions is a context-dependent modelling problem

of exploratory nature. The different learning behaviours that can be performed by learners de-

pend on many variables, such as the total amount of students in the classroom, the duration of the

course, the field of study (hard sciences, social sciences, maths, art, economics, etc.), the teaching-

learning strategies promoted by teacher (group work, individual work, mandatory/recommended

use of the discussion board, etc.), the kind of subject (theoretical/practical, fully online/blended,

etc.), among others. The available input data and therefore the features that can be utilised to cha-

racterise learners’ activity are, as well, another contextual factor that determine to a large extent

what different learning behaviours may become identified and how deeply they may be described.

Furthermore, being, from a DM-based perspective, a discovery-oriented problem of exploratory

and descriptive nature, it requires of analysis methods that provide as much amount of informa-

tion about the obtained models as possible. Hence, under these premises, agglomerative hierar-

chical clustering methods are clearly the most suitable option when posing the problem from a

clustering scenario perspective (see Chapters 2 and 3 for further details).
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On the other hand, a proper identification of the different learning behaviours performed by lear-

ners is closely related with and strongly dependent on a correct determination of the real number

of clusters in the dataset (Xu and Wunsch II, 2005). Firstly, it has to be noticed that this issue cons-

titutes by itself another factor to contemplate in the election of a suitable clustering algorithm (as

shown in Chapter 3, hierarchical clustering methods provide useful information that, among other

aspects, may assist in determining the number of clusters). Furthermore, all the reasons stated in

the previous paragraph to justify the choice of the clustering method can be applied to this matter

as well: it is impossible to know a priori how many clusters of learners there are in the dataset

when dealing with such a variable and context-dependent scenario. Therefore, the clustering-

based approach to the matter of modelling learners’ activity in online discussion forums reveals

the underlying problem of the determination of the number of clusters, which is one of the best-

known issues of the clustering paradigm (see section 2.5.1 for further details).

As in many other clustering-based applications, the previously reviewed works in the present sec-

tion perform a manual and partially subjective process in order to select the number of clusters

and obtain a final clustering solution. Essentially, this process consists in generating a diversity of

solutions, plotting the value of some clustering criterion (distance between pairs of clusters, sum

of the square error with respect to the clusters centroids, etc.) against the number of clusters and

manually seeking for some kind of knee, peak or inflection point that suggests a particular number

of clusters (e.g. see del Valle and Duffy (2009), Chan et al. (2010) or Wise et al. (2013) for more de-

tails). This is clearly a sub-optimal strategy that may easily lead to sub-optimal results of the KDD

process (Tan et al., 2006). This kind of approach has several important drawbacks such as, in a

first instance, requiring of a diversity of clustering solutions to compare each other, which entails

a more time-consuming process. In addition, it is not a completely data-driven process –which

would be desirable and more appropriate–, since it necessitates the user to manually inspect the

procedure and to take a final decision under subjective criteria, which may lead to a non-optimal

clustering solution biased by user’s prior expectations (Everitt et al., 2011). Moreover, in order to

both complement and compensate the subjective dimension of the process, it also requires the

use of validation methods and/or statistical tests, which may help in determining which one of

the generated solutions fits better with certain statistical criteria (see section 2.4 for further de-

tails), but do not guarantee to identify the optimal clustering solution by themselves (see section

2.5.1 for further details).

Consequently, in order to avoid the disadvantages of this sub-optimal solution without giving up

the advantages of the agglomerative hierarchical clustering methods, it would be more conve-

nient to model learners’ activity in online discussion forums by following an strategy based on an

agglomerative hierarchical clustering algorithm that automatically determines the real number of

clusters in the dataset, provides an entirely data-driven clustering solution and limits the user’s

subjective participation to the only stage of the process where is unavoidably required: the inter-

pretation of the clustering results in terms of the learning behaviours performed by learners.
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1.3 Thesis outline

Regarding the current status of the issue of modelling learners’ activity in online discussion forums

by means of cluster analysis, the following research questions arise:

Q1. May the real number of clusters and the final clustering solution of a dataset be automatically

obtained by means of an agglomerative hierarchical clustering algorithm?

Q2. May this agglomerative hierarchical clustering algorithm deal with datasets of different na-

ture that can contain clusters of distinct characteristics?

Q3. May this agglomerative hierarchical clustering algorithm automatically provide optimal clus-

tering solutions without drastically increasing its computational requirements in compari-

son with other agglomerative hierarchical clustering algorithms?

Q4. May this agglomerative hierarchical clustering algorithm be employed to model learners’

activity in online discussion forums limiting the user intervention to the interpretation of

the final results?

In order to give a proper answer to these research questions, the present thesis poses the two fo-

llowing research hypotheses:

H1. Agglomerative hierarchical clustering methods are suitable for automatically determining

the real number of clusters and providing the clustering solution on datasets of different

nature that may contain clusters of distinct characteristics.

H2. Learners’ participation in online discussion forums can be properly modelled and described

by means of a clustering-based strategy that automatically provides the clustering solution

and limits any user intervention to the interpretation stage of the analysis process.

The rest of the present thesis is structured as follows. An overview of clustering methods is presen-

ted in Chapter 2, followed by a more specific study on agglomerative hierarchical clustering algo-

rithms performed in Chapter 3. Next, a novel parameter-free agglomerative hierarchical clustering

algorithm is presented and described in Chapter 4. A first set of experimental results is shown in

Chapter 5, where the performance of the new clustering algorithm is evaluated and compared with

the capacities of other clustering algorithms. Once evaluated its general performance, an analy-

sis strategy based on the new algorithm in order to model learners’ activity in online discussion

forums is built up in Chapter 6. And, finally, the conclusions of the thesis and the proposals for

further work are presented in Chapter 7.



Chapter 2

Overview of clustering methods

As shown in the previous chapter, agglomerative hierarchical clustering methods are chosen to

model learners’ activity in online discussion forums when this issue is posed in terms of a cluste-

ring scenario. Nonetheless, the scope the clustering paradigm covers is huge and complex, since

it involves a great diversity of principles, approaches, methods and techniques, and agglomera-

tive hierarchical clustering methods are just a part of it. Quite obviously, the particularities of

modelling learners’ activity in online discussion forums via clustering techniques (mainly, being a

context-dependent problem of exploratory nature and its high dependency on a proper estimation

of the number of clusters, which is unknown) are the real motivations for this choice. However, the

strategy for the estimation of the number of clusters carried out to date in this context seems to be

an improvable solution, so that it remains unclear whether other clustering strategies may lead to

better results. Thus, the goals of the present chapter are to provide an overview of the clustering

paradigm, contextualising agglomerative hierarchical clustering methods within, and, as a first

contribution of the present thesis, to survey the different approaches to the issue of the estimation

of the number of clusters, analysing the benefits and drawbacks each one of them involve.

Hence, with no claim of being exhaustive, the different aspects relevant to the clustering paradigm

are next studied, specially those of particular interest in the framework of this thesis. Thus, no-

tational conventions are introduced in section 2.1; different proximity measures between objects

are presented in section 2.2; a general categorisation of clustering methods is performed in section

2.3; diverse strategies to validate clustering results are examined in section 2.4; and different inde-

terminacies inherent to any clustering problem are studied in section 2.5, specially emphasising

the problem of determining the number of clusters, which is studied in more detail. Finally, the

reasons for the suitability of parameter-free agglomerative hierarchical clustering methods to the

issue of modelling learners’ activity in online discussion forums are summarised in section 2.6.

33
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2.1 Notational conventions

Being widely employed throughout the present work, the following notational conventions are

introduced:

• In accordance with the statements previously defined in section 1.2.3, a dataset X is consti-

tuted by a set of N objects represented upon a space of D features. That is:

X = {x1,x2, ...,xN} , ∀N ∈ Z+ (2.1)

where xi is the ith object in the dataset X. On its behalf, xi is denoted as a D-dimensional

vector of features:

xi = [xi1xi2 ...xiD ] , ∀D ∈ Z+ (2.2)

being xij the jth feature of the ith object in dataset X. Particularly, only real numerical fea-

tures are considered in the present thesis, therefore xij ∈ R and xi ∈ RD.

• As previously stated in section 1.2.3.2, the outcome of a clustering process is a set P of K

clusters, such that:

P = {C1,C2, ...,CK} , ∀K ∈ Z+ (2.3)

where Ci is the ith cluster in the set P. In general terms, Ci can be defined as a subset of the

dataset X (Ci ⊆ X), since it contains one or more objects belonging to X:

Ci =
{
xni

1
,xni

2
, ...,xni

Ni

}
, ∀Ni ≤ N | Ni ∈ Z+ (2.4)

being ni
j the index of the jth object belonging to cluster Ci and Ni the number of objects

in cluster Ci. Although any given couple of clusters (Ci,Cj) belonging to P may easily be

disjoint (Ci ∩Cj = ∅) or overlapped (Ci ∩Cj ̸= ∅), every object of X belongs to at least one

cluster in P, therefore:
K∪
i=1

Ci = X (2.5)

2.2 Proximity measures

As previously stated in section 1.2.3.2, measuring the resemblance (or proximity) between the ob-

jects in the dataset is central to clustering processes. In general terms, there exist two complemen-

tary ways of comparing objects: measuring the distance (or dissimilarity) between them by means

of a distance function or measuring their degree of similarity by means of a similarity function

(Sevillano, 2009). For convenience, the term proximity is used in the present thesis to refer to ei-

ther similarity or dissimilarity (Tan et al., 2006). In general terms, a proximity function on a dataset
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X is defined such that it assigns a real value to every couple of objects in X:

f : X×X 7→ R

{xi,xj} 7→ f (xi,xj) , ∀xi,xj ∈ X
(2.6)

where f (xi,xj) is a real value that indicates the proximity between xi and xj .

The selection of the proximity measure is essentially problem-dependent (Xu and Wunsch II, 2005).

A data object is described by a set of features, usually represented as a multidimensional vector

(see section 2.1). The features can be quantitative or qualitative, continuous or binary, nominal

or ordinal, which determine the corresponding measure mechanisms. Whilst distance functions

are habitually used for measuring numerical features and similarity functions are more common

for qualitative variables, there are no deterministic and systematic rules in order to decide what

specific measure to apply (Jain et al., 1999; Xu and Wunsch II, 2005). Moreover, it may be added

that there are multiple ways of transforming a similarity measure into a distance, and vice versa

(Fenty, 2004).

Since only real numerical features are considered in the present thesis (see section 2.1), this sec-

tion focuses on measures for computing the proximity between objects under numeric feature

representations. A further insight into both the following and many other distance and simila-

rity measures, their properties and other characteristics is provided by Duda et al. (2001), Xu and

Wunsch II (2005) and Gan et al. (2007).

• Distance functions. Let xi and xj be two D-dimensional objects in the dataset X. A distance

function on X is denoted by D (xi,xj) and is defined to satisfy the following two conditions

(Xu and Wunsch II, 2005):

1. Symmetry: D (xi,xj) = D (xj ,xi) , ∀xi,xj ∈ X.

2. Positivity: D (xi,xj) ≥ 0, ∀xi,xj ∈ X

Furthermore, a distance function is called a metric if also holds the next two conditions:

3. Triangle inequality: D (xi,xj) ≤ D (xi,xk) +D (xk,xj) , ∀xi,xj ,xk ∈ X

4. Reflexivity: D (xi,xj) = 0⇔ xi = xj

Under these conditions, a wide set of distance functions are defined from the seminal Min-

kowski distance, which is actually a family of metrics (Gan et al., 2007):

D (xi,xj) =

(
D∑

k=1

|xik − xjk |
p

) 1
p

, ∀ p ∈ R+ (2.7)

Particular cases of Minkowski distance give rise to different distance functions, such as the

Manhattan (or City-block) distance (p = 1), the Maximum (or Sup) distance (p→∞), or
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the Euclidean distance (p = 2), which is the most commonly used numerical metric (Xu and

Wunsch II, 2005):

D (xi,xj) = +

√√√√ D∑
k=1

|xik − xjk |
2 (2.8)

• Similarity functions. Let xi and xj be two D-dimensional objects in the dataset X. A si-

milarity function on X is denoted by S (xi,xj) and is defined to satisfy the following two

conditions (Xu and Wunsch II, 2005):

1. Symmetry: S (xi,xj) = S (xj ,xi) , ∀xi,xj ∈ X.

2. Positivity: 0 ≤ S (xi,xj) ≤ 1, ∀xi,xj ∈ X

Furthermore, a similarity function is called a similarity metric if also holds the next two con-

ditions:

3. S (xi,xj)S (xj ,xk) ≤ [S (xi,xj) + S (xj ,xk)]S (xi,xk) , ∀xi,xj ,xk ∈ X

4. S (xi,xj) = 1⇔ xi = xj

Many similarity functions are defined under these conditions, such as the Pearson correla-

tion coefficient or the Extended Jaccard coefficient, which measure similarity in terms of

correlation between variables (Sevillano, 2009). One of the most commonly used is the Co-

sine similarity, which measures the angle comprised between the vectors representing the

objects (Tan et al., 2006):

S (xi,xj) = cos (α) =
⟨xi,xj⟩
∥xi∥ ∥xj∥

=

D∑
k=1

xikxjk

+

√(
D∑
l=1

x2
il

)(
D∑

m=1
x2
jm

) (2.9)

where α is the angle between vectors xi and xj . If xik and/or xjk adopt negative values,

the expression in equation 2.9 does not meet the positivity condition of a similarity func-

tion, since −1 ≤ cos (α) ≤ 1. Hence, it can be modified in order to fit to it, by defining

S (xi,xj) = 1+cos(α)
2 . Furthermore, the Cosine distance can be derived from this similarity

measure (Salton and Buckley, 1988):

D (xi,xj) = 1− S (xi,xj) = 1−

D∑
k=1

xikxjk

+

√(
D∑
l=1

x2
il

)(
D∑

m=1
x2
jm

) (2.10)

Thus, considering that a proximity measure can be applied both between objects and between

clusters (sets of objects) and since all the proximity measures used in the present thesis are based

on distance functions, a simplified notation is employed from here on in order to refer to and

differentiate between both kinds of proximities:

dxixj = D (xi,xj)

dij = D (Ci,Cj)
(2.11)
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Finally, all the possible pairwise proximities in a dataset X of N objects are contained in its proxi-

mity matrix (Jain and Dubes, 1988), which can be defined as:

MP (X) =


0 dx1x2 . . . dx1xN

dx2x1
0 . . . dx2xN

...
...

. . .
...

dxNx1 dxNx2 . . . 0

 (2.12)

where MP is a symmetrical N×N matrix that contains N2−N
2 different values (Gan et al., 2007).

2.3 Categorisation of clustering methods

The great diversity of existent clustering methods can be categorised according to two main cri-

teria: the mapping between objects and clusters (or how the objects belong to the clusters) and

the structure of the clustering solution (or how the clusters are related to each other). Thus, a two-

dimensional frame of reference which allows categorising clustering algorithms in a broad sense

–i.e. without resorting to their theoretical foundations– is defined (Sevillano, 2009).

Firstly, and regarding to how the objects are mapped onto the clusters, there exist two categories

of clustering methods:

• Hard (or crisp) clustering methods, where objects’ membership to clusters is binary; i.e.

the object may belong (1) or not belong (0) to the cluster, so that an absolute belonging is

established between objects and clusters (Jain et al., 1999). In a hard clustering solution,

clusters may be either exclusive –every object belongs to one cluster and one cluster only– or

overlapped –objects can simultaneously belong to more than one cluster– (Tan et al., 2006).

• Soft (or fuzzy) clustering methods, where objects’ membership to clusters is established to

a certain degree; i.e. the object belongs to the cluster with a membership weight that may

adopt values between 0 (absolute non-belonging to the cluster) and 1 (absolute belonging

to the cluster), so that a relative belonging is established between objects and clusters (Jain

et al., 1999). In a soft clustering solution, clusters are fully-overlapped, since every object in

the dataset is associated in some degree with every cluster (Tan et al., 2006).

Secondly, and regarding to the structure of clusters that form the clustering solution, two other

categories of clustering methods are defined:

• Partitional clustering methods, where a one-layer structure of clusters (or a single partition

of the data) is defined; i.e. all the clusters reside in the same level (Jain and Dubes, 1988).

On the one hand, hard partitional clustering methods are most typically exclusive (from

here on in the present thesis, "hard exclusive partitional clustering" will be referred as HPC),
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giving therefore rise to a single partition of the data formed by non-overlapped clusters (Tan

et al., 2006). Thus, having a datasetX ofN objects and a HPC onX formed by a partitionP of

K clusters, the clustering solution is usually represented by a N-dimensional integer-valued

label vector (Sevillano, 2009), such as:

λ = [λ1λ2...λN ] | λi ∈ {1,K} , ∀ i ∈ {1, N} (2.13)

where cluster label λi indicates the cluster the ith object in X belongs to (λi = j ⇔ xi ∈ Cj).

It is worth noting that the symbolic nature of the cluster labels, as the same HPC solution may

perfectly be represented by different versions of the same label vector resulting from any pos-

sible permutation of the cluster labels (Sevillano, 2009). For instance, the HPC solution on a

toy dataset shown in Figure 2.2a can be represented by the label vector λ = [1 1 2 2 2 2 3 3 3],

as well as by λ = [2 2 3 3 3 3 1 1 1] or λ = [3 3 2 2 2 2 1 1 1].

On the other hand, the clustering solution in soft partitional clustering (SPC) methods is

formed by a single partition of fully-overlapped soft clusters and it is usually represented by

a N×K real-valued clustering matrix Λ, whose (i, j)th entry (Λij) indicates the ith object’s

degree of membership to the jth cluster (Sevillano, 2009). Every membership weight in Λ is

a real value between 0 and 1 (Λij ∈ R | Λij ∈ [0, 1]) and the sum of weights for each object

must equal 1
(∑K

j=1 Λij = 1
)

(Tan et al., 2006). A SPC solution can be converted into a HPC

solution (Λ 7→ λ) by assigning each object to the cluster with the largest membership weight

(Λij = max {Λi1,Λi2, ...,ΛiK} → λi = j) (Jain et al., 1999).

K-means (Forgy, 1965; MacQueen, 1967) and fuzzy c-means (Dunn, 1973; Bezdek, 1981) are

the best-known and most widely used HPC and SPC algorithms, respectively.

• Hierarchical clustering methods, where a hierarchical structure of several layers of clusters

(or several nested partitions of the data) is defined; i.e. clusters reside in different levels, in

such a way that series of nested clusters (or subclusters) are defined (Jain and Dubes, 1988).

Hard hierarchical clustering methods are by far the most common approach to hierarchical

clustering (from here on in the present thesis, "hard hierarchical clustering" will be referred

as HC) and, according to the way the hierarchical structure of clusters is constructed (see

Figure 2.1), they are subdivided into agglomerative hierarchical clustering (AHC) methods,

which perform a bottom-up process where clusters merge in and produce new clusters, and

divisive hierarchical clustering (DHC) methods, which perform a top-down process where

clusters split into subclusters (Everitt et al., 2011). Although literature provides some imple-

mentations of DHC algorithms such as MONA and DIANA (Kaufman and Rousseeuw, 1990)

or DISMEA (MacQueen, 1967; Späth, 1980), AHC methods are the most widely used in prac-

tise (see Chapter 3 for further details), since DHC methods are more expensive in compu-

tational terms (Xu and Wunsch II, 2005).
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Figure 2.1: HC methods: agglomerative and divisive approaches (adapted from Gan et al. (2007)).

In HC methods, the clustering solution is defined by a hierarchy of clusters in a tree form

that can be represented in many ways, being the dendrogram the most typical one (Gan

et al., 2007). As shown in Figure 2.2b, a dendrogram is a branching diagram representing a

hierarchical tree in which each internal node (or link) is associated to a cluster and indicates

the distance between its two more immediate subclusters (Jain and Dubes, 1988).

(a) Scatterplot of the toy dataset. (b) Dendrogram of the toy dataset.

Figure 2.2: An example of different clustering solutions on a 2-dimensional toy dataset. (a) The scat-

terplot shows the 9 objects of the dataset (each one identified by its object label) and a HPC solution

of 3 clusters. (b) The dendrogram represents an AHC solution on the same dataset: from 9 singleton

clusters on (each one contains one object), clusters merge in pairs forming new clusters (the links

show the proximity between each pair of joined clusters) until a single final cluster is reached.

Thus, a HC solution on a dataset X of N objects is formed by a set P of 2N− 1 clusters,

whose first N clusters are singleton (Ci = {xi} , ∀ i ∈ {1, N}) and whose last N−1 clusters

are assigned a proximity value (Vandev and Tsvetanova, 1995):

f : P 7→ R

Ci 7→ f (Cj ,Ck) = di, ∀Ci,Cj ,Ck ∈ P | i ∈ {N+1, 2N−1} , Ci = Cj ∪Ck

(2.14)

where di is the proximity level of clusterCi and it is defined as the proximity between clusters

Cj and Ck (di = djk). Hence, the dendrogram that comprises all the structure of the HC
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solution can be represented as a (N−1)× 3 real-valued matrix ∆, defined as:

∆ =


∆11 ∆12 dN+1

...
...

...

∆(N−1)1 ∆(N−1)2 d(2N−1)

 ⇔ CN+i = C∆i1 ∪C∆i2 (2.15)

where the ith row in ∆
(
∆i

)
represents the ith link in the dendrogram, which indicates that

cluster CN+i results from the union of clusters C∆i1
and C∆i2

, whose proximity is d(N+i)

(the proximity level of cluster CN+i). Dendrograms aside, Sneath and Sokal (1973) and Gan

et al. (2007) can be consulted for other different representations of a HC solution.

Since HC can be viewed as a sequence of partitions of the data, different HPC solutions can

be obtained from a single HC solution (Tan et al., 2006). In this sense, there are methods that

postprocess dendrograms in order to obtain one or several label vectors (see section 3.1.3

for further details), or there even exist AHC algorithms that automatically yield to a hierar-

chically constructed HC solution where each cluster has its own particular dendrogram (see

section 3.2 for further details).

Finally, much less usual are the soft hierarchical clustering (SHC) methods based of fuzzy

set theories, which provide a clustering solution consisting of several layers of fully-overlapped

hierarchically-structured soft partitions. Thus, a cluster belonging to a given layer may host

a certain amount of clusters belonging to the immediately lower layer, and so recursively

(Geva, 1999).

Next, in order to complete the categorisation of clustering methods performed in the context of

the present thesis, a brief discussion focused on the advantages and drawbacks of AHC in compa-

rison to HPC is presented in section 2.3.1 and the most common theoretical approaches clustering

algorithms are based on are described in section 2.3.2.

2.3.1 AHC versus HPC

The present thesis focuses on the study of AHC. Thus, on the benefits side, when comparing them

with HPC methods, AHC methods presents many advantages:

• AHC methods do not require the real number of clusters in the dataset to be known in ad-

vance (Kotsiantis and Pintelas, 2004). In fact, given the information about the structure of

data provided by a dendrogram, AHC may certainly be a valid strategy in order to properly

decide the value of K (Geva, 1999).

• Unlike many HPC methods (e.g. k-means algorithm), AHC methods set a deterministic initia-

lisation –there are always N singleton clusters in the initial step–, so that the clustering so-

lution provided by an AHC algorithm, and therefore its performance, does no depend on its

initialisation (Tan et al., 2006).
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• AHC methods are clearly more suitable than HPC methods to perform exploratory analysis

of data, since they bring about useful visualisations of the clustering results (Kotsiantis and

Pintelas, 2004). Since a dendrogram collects together many of the proximity and classifica-

tory relationships in a body of data, it is therefore a convenient representation that allows

to identify useful groups and salient interrelationships in the data (Murtagh and Contre-

ras, 2012). Besides, due to both their flexibility regarding the level of granularity (Berkhin,

2006) and their ability to handle any attribute type, different proximity functions and dif-

ferent cluster sizes, densities and shapes (Tan et al., 2006), AHC methods are more versatile

than HPC methods (Jain et al., 1999), since they are applicable in almost any clustering sce-

nario, regardless of whether there are actually underlying hierarchical structures in data or

not (Everitt et al., 2011).

• AHC methods compute a complete hierarchy of clusters and therefore provide a richer and

more complex clustering solution, which itself includes many single partitions (HPC solu-

tions) of the data –which partly justifies their higher computational cost– (Kotsiantis and

Pintelas, 2004).

Nonetheless, on the drawbacks side, there are some criticisms commonly drawn by AHC methods:

• AHC methods lack a global objective function, which allows them to not have problems with

local minima or difficulties in the initialisation stage, but makes them unable to optimise a

global criterion (Tan et al., 2006).

• AHC methods are unable to perform adjustments once a merging decision is made (Kotsian-

tis and Pintelas, 2004). While HPC methods like k-means allow assignations between objects

and clusters to vary throughout the iterations performed by the algorithm, merging decisions

are final in AHC methods, since, once the decision of joining two clusters is taken, it cannot

be undone at a later time (Tan et al., 2006). As a consequence, AHC methods tend to pre-

sent a lower robustness against noise and outliers, since they are not capable of correcting

possible misassignations (Xu and Wunsch II, 2005).

• AHC methods tend to have higher computational requirements, both in storage and time

terms, than HPC methods (Tan et al., 2006). While the computational complexity of many

HPC methods linearly grows with N –in asymptotic notation, their behaviour is O(N) or

O(N logN)– (Xu and Wunsch II, 2005), most efficient implementations of AHC methods are

O
(
N2
)

or O
(
N2 logN

)
(Murtagh and Contreras, 2012), which made them much less suitable

when dealing with very large datasets (Jain et al., 1999).

However, many new AHC techniques have been developed in recent years in order to improve the

clustering performance and be able both to deal with large-scale datasets in spite of their compu-

tational requirements (Xu and Wunsch II, 2005) and to compensate their lack of flexibility once two
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clusters are merged, either by constraining the agglomeration process using a previously obtained

HPC solution –at the expense of requiring the value of K as an input parameter– (Zhao et al., 2005)

or by improving the merging decision criteria used in the agglomeration process –in a free of input

parameters approach– (see section 3.2 for further details).

2.3.2 Theoretical approaches to clustering

There exist a great diversity of clustering algorithms based on different foundations. A succinct

description of the most well-known theoretical approaches for implementing clustering algorithms

is next provided.

Centre-based clustering

Also known as squared error-based clustering, the goal of centre-based clustering is to minimise

an objective function, which define how good the clustering solution is. In centre-based cluste-

ring algorithms, each cluster is represented by a centre (or a central element), which make them

very efficient for clustering large and high-dimensional databases, but not very suitable to deal

with clusters of arbitrary shapes –centre-based clustering algorithms tend to find convex-shaped

clusters– (Gan et al., 2007). Based on the objective function defined by the sum of squared dis-

tances between objects and centroids, the k-means algorithm (Forgy, 1965; MacQueen, 1967) is

probably the most representative example of this type of clustering (Sevillano, 2009). There also

exist other centre-based HPC algorithms, like the ISODATA algorithm (Ball and Hall, 1965) and

many variations of k-means developed to improve its performance and avoid some of its draw-

backs, such as the k-medioids algorithm –which is more robust to outliers– (Kaufman and Rous-

seeuw, 1990) or the x-means algorithm –which automatically estimates the number of clusters–

(Pelleg and Moore, 2000), among many others (Tan et al., 2006; Gan et al., 2007). SPC algorithms

like fuzzy c-means (Dunn, 1973; Bezdek, 1981) and some of its variations –e.g. HUFC algorithm

(Geva, 1999)– are based on optimising a global objective function as well. Finally, and despite

their lack of a global objective function, some AHC methods can be seen as centred-based, since

they either represent clusters by their geometric centres –Centroid (Sokal and Michener, 1958) and

Median methods (Gower, 1967)–, well-scattered points –CURE algorithm (Guha et al., 1998)–, or

height-balanced trees –BIRCH algorithm (Zhang et al., 1996)–, or use a merging criterion based on

minimising a sum of squares error local objective function –Ward’s method (Ward Jr., 1963; Ward Jr.

and Hook, 1963)– (see section 3.1.2 for further details).

Graph-based clustering

Concepts and properties of graph theory can be connected to clustering (Hubert, 1974), since they

may be applied to build a graph (or hypergraph) whose nodes (or links) reflect the similarity bet-
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ween the objects in the dataset (Sevillano, 2009). This graph is usually obtained from the proximity

matrix and it can be partitioned in order to cluster the data (Gan et al., 2007). Some of the most

widely used AHC methods are graph-based, since they define the proximity between clusters by es-

tablishing different linkage criteria –Single-Link (Florek et al., 1951; McQuitty, 1957; Sneath, 1957),

Complete-Link (Johnson, 1967; Lance and Williams, 1967) and Average-Link (Sokal and Michener,

1958; Lance and Williams, 1966) methods– (see section 3.1.1 for further details). There also exist

other implementations of graph-based AHC, such as Chameleon (Karypis et al., 1999) and ROCK

(Guha et al., 2000) algorithms, as well as graph-based criteria to obtain a single data partition from

an AHC solution by dismissing the most inconsistent edges on a minimum spanning tree (Zahn,

1971) –which may be perfectly applied to dismiss the most inconsistent links on a dendrogram

(see 3.1.3 for further details)–. HPC algorithms like CACTUS (Ganti et al., 1999), CLICK (Sharan

and Shamir, 2000) or the Dynamic System-based Clustering algorithm proposed by (Gibson et al.,

2000) and improved by (Zhang et al., 2000) are graph-based as well. Finally, spectral clustering is

a recently emerged branch of graph-based clustering whose methods have proved to be effective

for data clustering, image segmentation, web-ranking analysis and dimension reduction (Kannan

et al., 2004; von Luxburg, 2007).

Model-based clustering

Following a probabilistic perspective, model-based clustering is based on the assumption that data

come from a mixture of probability distributions, each of which typically represents a different

cluster (Gan et al., 2007). Finding the clusters according to this approach usually consists on assu-

ming that their probability distributions fit some kind of parametric model (e.g. Gaussian mixture

models) (Sevillano, 2009) and the estimation of the parameters of the underlying models is usua-

lly posed from a maximum likelihood approach (Jain et al., 1999). The most common strategy to

model cluster probability densities involves Gaussian distributions, which give rise to the multiple

variants of the HPC methods based on the EM algorithm (McLachlan and Krishnan, 1997; Meng

and van Dyk, 1997; Martínez et al., 2005), first formulated by Dempster et al. (1977), as well as the

different AHC methods based on Gaussian models defined by Fraley and Raftery (1998) or the Ba-

yesian AHC algorithm based on evaluating marginal likelihoods of a multivariate Gaussian model

posed by Heller and Ghahramani (2005). Other algorithms implemented under this approach are

AutoClass –which poses the use of Poisson, Bernoulli and log-normal probability distributions–

(Cheeseman and Stutz, 1996), Snob –which combines a mixture model with the minimum mes-

sage length principle– (Wallace and Dowe, 1994), COOLCAT –based on minimising the entropy

of categorical attributes arrangements– (Barbará et al., 2002), STUCCO –uses significant contrast-

sets that meaningfully differ among distinct groups of attributes– (Bay and Pazzani, 1999) or the

Fuzzy Maximum-Likelihood Estimation (FMLE) algorithms proposed by Gath and Geva (1989a)

and Gath and Geva (1989b).
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Density-based clustering

Defining clusters as dense regions of objects separated by low-density regions (Gan et al., 2007)

allows density-based clustering methods discovering arbitrarily shaped clusters and providing a

natural protection against outliers (Sevillano, 2009). Furthermore, important advantages of this

methodology are that only one scan of the dataset is needed, noise can be effectively handled

and the number of clusters to initialise the algorithm is not required (El-Sonbaty et al., 2004; Mur-

tagh and Contreras, 2012), although it may not be the most suitable choice when dealing with

high-dimensional datasets (Gan et al., 2007). Depending on the way density is computed, two

main approaches to density-based clustering are defined (Sevillano, 2009): while algorithms like

DBSCAN (Ester et al., 1996) compute density directly from the objects in the dataset, algorithms

like DENCLUE (Hinneburg and Keim, 1998) define analytical models of density over the features

space. Moreover, there exist algorithms that integrate density-based clustering principles with ot-

her approaches, like centre-based –BRIDGE algorithm (Dash et al., 2001)–, graph-based –CUBN

algorithm (Wang and Wang, 2003), Shared Nearest Neighbours (SNN) (Ertöz et al., 2002, 2003)– or

model-based clustering –DBCLASD algorithm (Xu et al., 1998)–.

Grid-based clustering

With the aim of handling large datasets, the main idea of grid-based clustering methods is to use

a grid-like structure to split the data space into cells, separating the dense grid regions from the

less dense ones, and look for groups of objects (Murtagh and Contreras, 2012). The major advan-

tage of grid-based clustering methods is the significant reduction of their computational comple-

xity when dealing with large-scale high-dimensional datasets (Gan et al., 2007). Thus, the most

typical approach within this methods consists of performing the following steps (Grabusts and

Borisov, 2002): creating a grid structure –i.e. partitioning the data space into a finite number of

non-overlapping cells–, calculating the cell density for each cell, sorting cells according to their

densities, identifying cluster centres and traversing of neighbour cells. Some of the most well-

known implementations based on this approach are HC algorithms like STING (Wang et al., 1997),

OptiGrid (Hinneburg and Keim, 1999) or GRIDCLUS (Schikuta, 1996), and HPC algorithms like

GDILC (Zhao and Song, 2001) or WaveCluster (Sheikholeslami et al., 1998). Further grid-based

clustering algorithms can be found in (Chang and Jin, 2002), (Park and Lee, 2004) and (Xu and

Wunsch II, 2008).

Combinatorial search-based clustering

Many clustering algorithms may not be able to obtain the global optimal clustering solution that

fits the dataset, since they find local optimal partitions of the data. The aim of combinatorial

search-based clustering methods is to search the clustering solution space and find the best par-
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tition of the data in global terms –i.e. clustering is considered as a combinatorial optimisation

problem– (Gan et al., 2007). In this context, combinatorial search-based clustering algorithms are

usually based on either deterministic search techniques or stochastic optimisation methods (Sevi-

llano, 2009). Thus, whereas deterministic annealing is the most typical deterministic search tech-

nique applied to clustering (Hofmann and Buhmann, 1997), other popular approaches are based

on evolutionary computation (or genetic algorithms) (Hall et al., 1999; Tseng and Yang, 2001), si-

mulated annealing (Selim and Al-Sultan, 1991), Tabu search (Al-Sultan, 1995) and hybrid solutions

(Chu and Roddick, 2000; Scott et al., 2001). A compelling insight into several algorithms specifica-

lly implemented under these premises is provided by Gan et al. (2007).

Subspace clustering

Subspace clustering deals with the typical problems of high-dimensional datasets –the proximity

between any given pair of objects may become the same (Beyer et al., 1999) and different clus-

ters may be embedded in different feature subspaces of the high-dimensional data (Agrawal et al.,

1998)– by identifying both clusters within different subspaces in the data and their relevant asso-

ciated features –i.e. the features that engender the subspaces that host the clusters– (Gan et al.,

2007). Subspace clustering is often based on the application of both feature extraction –such as

Principal Component Analysis (PCA) (Jolliffe, 1986) or Independent Component Analysis (ICA)

(Hyvärinen et al., 2001), among others (Fodor, 2003)– and feature selection –by selecting the best

features under some kind of criterion (Molina et al., 2002; Dy and Brodley, 2004)– techniques, with

the aim of finding optimal representation spaces for the data (Gan et al., 2007). There exist many

clustering algorithms implemented under this approach, being CLIQUE (Agrawal et al., 1998),

PROCLUS (Aggarwal et al., 1999) and ORCLUS (Aggarwal and Yu, 2000) the most popular ones,

among many others (Gan et al., 2007).

Kernel-based clustering

Unlike the principles subspace clustering is based on, kernel-based clustering methods aim to

non-linearly transform the objects in the dataset into a higher-dimensional feature space in order

to separate these objects linearly (Sevillano, 2009). Thus, an inner-product kernel is designed in

order to avoid the time-consuming (and sometimes even unfeasible) process of explicitly mapping

the objects of the dataset into the new higher-dimensional transformed space (Xu and Wunsch II,

2005). Either partitional or hierarchical clusters can be formed by Support Vector Clustering (SVC)

(Ben-Hur et al., 2001), the most well-known implementation of this approach, which can also be

extended to allow for fuzzy membership (Chiang and Hao, 2003). Kernel-based clustering provides

many benefits, such as the ability both to handle arbitrarily-shaped clusters and to deal with noise

and outliers (Xu and Wunsch II, 2005).
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Neural networks-based clustering

The learning and modelling abilities of neural networks may be easily exploited in order to solve

clustering problems (Sevillano, 2009). From the paradigm of the competitive learning (Bishop,

1995), Self-Organising Maps (SOM) (Kohonen, 1990) and Generalized Learning Vector Quantiza-

tion (GLVQ) (Karayiannis et al., 1996) are the most popular implementations of neural networks-

based HPC, whereas Adaptive Resonance Theory (ART) (Carpenter and Grossberg, 1987) encom-

passes a whole family of neural networks architectures that can be used for both SPC (Carpenter

et al., 1991) and HC (Wunsch II et al., 1993) –e.g. PART algorithm, which implements a neural-

network inspired subspace clustering (Cao and Wu, 2002)–.

Consensus clustering

With the aim of being robust to some of the inherent indeterminacies of clustering paradigm (see

section 2.5 for further details), the consensus clustering strategy compiles into a cluster ensemble

as many individual clustering solutions as possible (regardless of which different configurations

and/or algorithms these clustering solutions have been obtained from) and, in a fully unsupervi-

sed mode, achieves a consensus clustering solution comparable to (or even better than) the best

individual clustering solution available (Sevillano, 2009). The consensus clustering framework is

defined as the problem of combining multiple partitions of a set of objects into a single consolida-

ted clustering solution without accessing the features or algorithms that determined these parti-

tions (Strehl, 2002). Several works in the literature consider this approach to clustering as a central

or collateral matter (Strehl, 2002; Fred and Jain, 2003; Fern and Lin, 2008; Sevillano, 2009).

2.4 Evaluation of clustering results

Since clustering algorithms can easily perform in different ways depending on the decisions made

in the preprocessing stage and the configuration of parameters that determine their behaviour,

most clustering-based applications require, according Figure 1.1, some evaluation (or validation)

of their results in the postprocessing stage (Halkidi et al., 2002a). This evaluation task is the main

subject of clustering validity methods, which provide a measure of the quality (or validity) of a

clustering solution –by a good quality clustering solution it is meant a solution reflecting well the

true group structure of the data– (Sevillano, 2009). The aims of clustering validity methods are

both determining whether the clustering solution is meaningful –a valid clustering solution cannot

reasonably occur by chance or as an artifact of the clustering algorithm– and helping to its correct

interpretation (Jain et al., 1999), although they can be also utilised to test the clustering tendency

of the data –whether there is an absence of clustering structure in the data or not–, as well as to

estimate how many clusters are actually present in the data (see section 2.5.1 for further details).
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The validity measures (or indices) for evaluating the quality of a clustering solution are traditiona-

lly categorised into three main types of indices, which are described next (Tan et al., 2006):

• External clustering validity indices, which measure the degree of resemblance of the clus-

tering solution to a predefined and allegedly correct external cluster structure, also known

as ground truth. External validation is a supervised measure of clustering goodness, since it

uses information not present in the data themselves, and it is only applicable when a correct

clustering solution is a priori known.

• Internal clustering validity indices, which measure the degree of fitting between the des-

cription of the data provided by the clustering solution and the data themselves. Since it

uses only information present in the data, internal validation is an unsupervised measure of

clustering goodness.

• Relative clustering validity indices, which compare different clustering solutions with each

other. Thus, relative validation is not actually a separate type of cluster evaluation measure,

but a specific use of such measures. In essence, the purpose of relative validation is, given a

set of clustering solutions, to define an (external or internal) evaluation criterion and choose

the best clustering solution accordingly (Halkidi et al., 2002b).

Most commonly, the interpretation of the value of a validity measure is made in statistical terms,

since real (or natural) clusters tend to reflect non-random structure in the data and such structu-

res should generate unusually significant values of the validity index. Besides, cluster evaluation

involves more than obtaining a numerical measure of validity; the value of a clustering validation

index has to be properly interpreted and the significance of the obtained results needs to be asses-

sed (Tan et al., 2006).

Hence, some clustering scenarios may easily require of combining clustering validity indices with

other statistical methods and/or testing hypotheses in order to characterise clustering results (Hal-

kidi et al., 2001). Furthermore, the computational requirements entailed by the calculation of such

validity indices and statistical measures have to be also taken into consideration (Berkhin, 2006).

Clustering evaluation criteria can be used for validating both individual clusters and complete

clustering solutions (sets of clusters). Moreover, different types of both external and internal va-

lidity indices can be distinguish depending on the nature –partitional, hierarchical or soft– of the

clustering solution (Gan et al., 2007). Nonetheless, since soft and hierarchical clustering results can

always be converted to hard and partitional outcomes, the evaluation of HPC solutions is probably

the most common cluster validation procedure (Strehl, 2002).

Thus, whereas SPC and SHC evaluation lies beyond the scope of this work (approaches to soft

clustering validity are reported by Pal and Bezdek (1995), Dave and Krishnapuram (1997), Geva

(1999) and Hammah and Curran (2000)), the specific HPC and HC validity methods used in the
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present thesis are described in next sections. In particular, the Consistency Index (CI) is used as

external HPC validity index (see section 2.4.1); the Silhouette Coefficient
(
S
)

is used as internal

HPC validity index (see section 2.4.2), along with the Kruskal-Wallis statistical hypothesis test (see

section 2.4.3); and, finally, the Cophenetic Correlation Coefficient (CPCC) is used as internal HC

validity index (see section 2.4.4). A further insight into clustering validity can be gained by referring

to diverse works particularly focused on this specific matter (Dubes and Jain, 1979; Dubes, 1993;

Gordon, 1998; Halkidi et al., 2001, 2002a,b; Denoeud et al., 2006; Rendón et al., 2011).

2.4.1 The Consistency Index

LetXbe a dataset constituted by a set ofN objects, letΦbe a HPC solution onX constituted byKΦ

clusters
(
Φ =

{
CΦ

1 , ...,C
Φ
KΦ

})
, represented by label vector φ and considered as ground truth (i.e.

a true and reliable clustering solution on X) and, finally, let P be a HPC solution on X provided by

Algorithm 1 Calculation of the Consistency Index (adapted from Fred (2001)).

1: Input : HPC solutions Φ (ground truth) and P

2: procedure

3: XΦ : XΦ (i, j)←


1 if xi ∈ CΦ

j

0 otherwise
, ∀xi ∈ X, ∀CΦ

j ∈ Φ

4: XP : XP (i, j)←


1 if xi ∈ CP

j

0 otherwise
, ∀xi ∈ X, ∀CP

j ∈ P

5: NΦ : NΦ (i)←
N∑
j=1

XΦ (j, i) , ∀ i ∈ {1,KΦ} , ∀ j ∈ {1, N}

6: NP : NP (i)←
N∑
j=1

XP (j, i) , ∀ i ∈ {1,KP} , ∀ j ∈ {1, N}

7: MΦ
P ← (XΦ)

T ·XP ◃ T denotes transposition

8: cross←MΦ
P

9: Nshared ← 0

10: mapΦP : mapΦP (i)← 0, ∀ i ∈ {1,KΦ}

11: for n← 1,min {KΦ,KP} do

12: (k, l)← argmax(i,j)

{
cross(i,j)

NΦ(i)+NP(j)−MΦ
P (i,j)

}
13: Nshared ← Nshared +MΦ

P (k, l)

14: mapΦP (k)← l

15: cross (k, i)← 0, ∀ i ∈ {1,KP}

16: cross (i, l)← 0, ∀ i ∈ {1,KΦ}

17: end for

18: CI ← Nshared

N

19: end procedure

20: Output : Consistency Index CI , matching matrix MΦ
P and mapping of cluster labels mapΦP
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any given clustering algorithm, constituted by KP clusters
(
P =

{
CP

1 , ...,C
P
KP

})
and represented

by label vector λ.

The Consistency Index (CI) provides an external measure of the validity of P as HPC solution on

X, it is defined as the fraction of shared objects in matching λ with φ over N (Fred, 2001) and it is

calculated as shown in Algorithm 1.

The CI can be considered as an unsupervised measure of accuracy. Its range of values is [0, 1],

where high values indicate great accuracy of the obtained HPC solution –great resemblance to the

ground truth–. Its calculation provides with a mapping
(
mapΦP

)
between the cluster labels of λ and

φ, and the matching matrix –an unsupervised version of the confusion matrix– between P and the

ground truth
(
MΦ

P

)
, which, combined with mapΦP , allows to gain an insight into the differences

between λ and φ. Finally, it can also be applied to determine how similar two any given partitions

on the same dataset are (Fred, 2001).

2.4.2 The Silhouette Coefficient

Let X be a dataset constituted by a set of N objects and let P be a HPC solution on X constituted

by K clusters (P = {C1, ...,CK}) and represented by label vector λ.

The Silhouette Coefficient (S) provides an internal measure of the validity of P as HPC solution

on X, it combines both cluster cohesion (or compactness) and cluster separation (or isolation)

concepts (Tan et al., 2006), and it is defined as (Rousseeuw, 1987):

S =
N∑
i=1

s (i) (2.16)

where s (i) is the individual silhouette coefficient of xi –the ith object in X– and it is defined as:

s (i) =
b (i)− a (i)

max {a (i) , b (i)}
(2.17)

The term a (i) is the average proximity of xi, which belongs to cluster Cj , to the objects also be-

longing to cluster Cj :

a (i) =
1

Nj − 1

Nj∑
l=1
l ̸=i

dxixl
, ∀xl ∈ Cj (2.18)

being Nj the number of objects belonging to cluster Cj ; the term b (i) is defined as:

b (i) = min
k ̸=j
{bk (i)} , ∀ k ∈ {1,K} (2.19)

where bk (i) is the average proximity of xi to the objects belonging to cluster Ck:

bk (i) =
1

Nk

Nk∑
l=1

dxixl
, ∀xl ∈ Ck (2.20)

being Nk is the number of objects belonging to cluster Ck.
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If the set of individual silhouette coefficients associated to the objects belonging to a same cluster

is considered, the average of the a (i) values can be seen as a cohesion measure of the cluster –the

lower the average value, the higher its cohesion–, whereas the average of the b (i) values can be

seen as an isolation measure of the cluster –the higher the average value, the higher its separation

degree with respect to the rest of the clusters– (Tan et al., 2006).

The Silhouette Coefficient may indicate the quality of a HPC solution. The range of values of S

–as well as of each s (i)– is [−1, 1], where high values can be interpreted as a result of a set of high-

compacted and high-isolated clusters, which are assumed by this validity measure to be the cha-

racteristics of a high-quality HPC solution (Rousseeuw, 1987).

Nonetheless, it may easily occur that differently-compacted and/or differently-shaped real clus-

ters in the dataset are not suited for the cohesion and/or isolation measures implemented by this

validity index. Hence, the Silhouette Coefficient, as every internal validity index, has its issues and

limitations and they have to be considered in order to make a proper interpretation of its value

(Halkidi et al., 2002a,b).

To that effect, let’s consider the 2-dimensional toy dataset shown in Figure 2.3a (from here on in

the present thesis, it will be referred as the 4toy dataset). Being a synthetic dataset, its ground

truth solution is known a priori, it is the best HPC solution on this dataset (CI = 1) and it shows

the four different clusters the toy dataset is actually composed of. As shown in Figures 2.3b and

2.3c, objects in clusters C1, C2 and C4 have high silhouette coefficient values, whereas objects in

C3 present low –even negative– silhouette coefficient values.

(a) Scatterplot of the 4toy dataset. (b) Silhouette of the ground truth. (c) Scatterplot of the silhouette.

Figure 2.3: Performance of the Silhouette Coefficient on the 4toy dataset. (a) A 2-dimensional toy data-

set composed of four unbalanced non-overlapped differently-compacted differently-shaped real clusters.

Every object in the dataset is coloured according to its cluster label in the ground truth solution. (b) The

silhouette of the ground truth solution plots the value of every individual silhouette coefficient (s (i)) –

the whole silhouette of a HPC solution can be a useful graphical aid to interpret and validate clustering

results–. The average Silhouette Coefficient
(
S = 0.46

)
is indicated as well. (c) Every object in the dataset

is coloured in the scatterplot of the silhouette according to its individual silhouette coefficient; the more

blue the colour, the higher the value, whereas red colours indicate poor values (s (i) < 0).
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Thus, this example illustrates how this cluster validity index performs poorly when dealing with

low-compacted and/or arbitrarily-shaped clusters (C1, C2 and C4 are much more compact than

C3 and therefore their silhouette coefficients are clearly higher). Furthermore, the value of the

average Silhouette Coefficient
(
S = 0.46

)
is far from its maximum

(
S ∈ [−1, 1]

)
even for a ground

truth solution, which indicates that good HPC solutions may not have high values of S (positive,

in general, but not necessarily high).

2.4.3 Kruskal-Wallis statistical hypothesis test

Statistical hypothesis testing provides a formal way to decide if the results of an experiment are

significant or accidental. In standard statistical terminology, a set of n measurements (or observa-

tions) on a given variable (or dimension) d is called a sample S on d of size n. Let H0 be the null

hypothesis that assume that all the observations in the sample S come from a given distribution

D0. A statistical hypothesis test allows to determine whether the null hypothesis can be rejected;

that is, to state with some degree of confidence –usually expressed as a probability– that all the

observations in the sample S do not come from the same distribution (Duda et al., 2001).

In a clustering scenario, statistical hypothesis tests can be useful as a complement for the cluste-

ring validity indices with the aims of determining the quality of the clustering solution and achie-

ving a better characterisation of the obtained clusters (Wise et al., 2013). Taking a dataset of objects

as a sample of measurements, the features as variables and the clusters as groups of measurements

belonging to the same sample, if a statistical hypothesis test on the objects belonging to different

clusters along a feature d results in a rejection of the null hypothesis, statistically significant diffe-

rences between clusters along the feature d can be assumed, since objects belonging to different

clusters would actually come from different distributions –which can be seen as an indicator of

a quality clustering solution inasmuch as the origin of the clusters is not arbitrary– (del Valle and

Duffy, 2009; Khan et al., 2012).

In this context, the Kruskal-Wallis statistical hypothesis test is a non-parametric one-way method

for the analysis of variance by ranks proposed by Kruskal and Wallis (1952). It can be used for

comparing two or more groups of measurements belonging to the same sample and it allows to

determine whether these groups are originated from the same distribution. Unlike its equivalent

parametric one-way method (the ANOVA test), the Kruskal-Wallis test does not assume any speci-

fic distribution for the origin of the sample in the null hypothesis (the ANOVA test assumes a nor-

mal distribution), although it assumes identically shaped and scaled distributions for each group.

The Kruskal-Wallis test can deal with unbalanced groups –of unequal size– and it is an extension

of the Mann-Whitney test for three or more groups –both methods are the same when comparing

two groups– (Conover, 1980).

Hence, being X a dataset constituted by a set of N D-dimensional objects and being P a HPC
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solution on X formed by K clusters (P = {C1, ...,CK}), the Kruskal-Wallis statistical hypothesis

test consists of ranking all objects in the dataset from 1 to N considering the values of their ith

feature (tied objects –i.e. objects equally ranked– are assigned to the mean of the ranks for which

they are tied) and then computing the following H statistic (Kruskal and Wallis, 1952):

H = 3 (N− 1)

(
4

K∑
c=1

R2
c

nc
−N(N+ 1)

2

)N
(
N2− 1

)
−

G∑
j=1

t3j − tj

−1

(2.21)

where nc is the number of objects belonging to cluster c, Rc is sum of the ranks of the objects

belonging to cluster c, G is the number of groupings of objects that are tied at a particular value

and tj is the number of tied objects in the jth grouping.

Finally, the result of the test is given by the p-value of the H statistic (P
(
χ2 ≥ H

)
, usually referred

as p), which is the significance level of the test under the null hypothesis given by the χ2 statistic

approximation and which can be interpreted as the probability of the null hypothesis being true

given the obtained value of H . This p-value can be obtained from the χ2 approximation of the

distribution of the H statistic under the null hypothesis provided by Kruskal and Wallis (1952).

Thus, obtaining a p-value less than the predetermined significance level –typically, p < 0.01 (Duda

et al., 2001)– allows to reject the null hypothesis. Since the null hypothesis in the Kruskal-Wallis

test is that objects belonging to different clusters come from the same population, if p < 0.01, ob-

jects belonging to two or more different clusters are assumed to come from different populations,

therefore there exist significant differences among, at least, two clusters in the dataset along the

ith feature (del Valle and Duffy, 2009; Khan et al., 2012; Wise et al., 2013).

A further insight into non-parametric statistical hypothesis testing can be gained by referring to

Conover (1980), Siegel and Castellan Jr. (1988), Spurrier (2003) and Fay and Proschan (2010).

2.4.4 The Cophenetic Correlation Coefficient

Let X be a dataset constituted by a set of N objects and let P be a HC solution on X constituted by

2N−1 clusters
(
P =

{
C1, ...,C(2N−1)

})
and represented by dendrogram ∆.

The Cophenetic Correlation Coefficient (CPCC) provides an internal measure of the validity of P

as HC solution on X by means of measuring the degree of similarity between the so-called cophe-

netic matrix of the HC solution (MC) and the proximity matrix of the data (MP ). MC is a symme-

trical N× N matrix, containing N2−N
2 different values and defined in such a way that its (i, j)th

entry is the proximity level at which objectsxi andxj are found in the same cluster for the first time

(in an agglomerative sense) in the dendrogram ∆ (i.e., the proximity level of the smallest cluster

in the dendrogram that contains objects xi and xj). Hence, CPCC is the result of comparing MP
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and MC and it is defined as (Sokal and Rohlf, 1962):

CPCC =

1
M

N−1∑
i=1

N∑
j=i+1

dijcij − µPµC(
1
M

N−1∑
i=1

N∑
j=i+1

d2ij − µ2
P

)(
1
M

N−1∑
i=1

N∑
j=i+1

c2ij − µ2
C

) (2.22)

where M = N2−N
2 ; dij and cij are the (i, j)th entries of matrices MP and MC , respectively; and µP

and µC are the average values of the elements in MP and MC , respectively:

µP =
1

M

N−1∑
i=1

N∑
j=i+1

dij , µC =
1

M

N−1∑
i=1

N∑
j=i+1

cij (2.23)

The Cophenetic Correlation Coefficient establishes the validity of a HC solution by determining

how faithfully the dendrogram preserves the pairwise proximities between objects represented in

MP (MC can be considered as a sort of proximity matrix defined from the dendrogram, which is

in its turn built from MP ). The range of values of CPCC is [−1, 1], where high values indicate

great similarity between MP and MC and, hence, can be interpreted as indicators of a quality HC

solution (Gan et al., 2007).

Nonetheless, high values of CPCC require of a hierarchically structured dataset which gives rise

to a MP formed by hierarchically structured pairwise proximities, since pairwise proximities in

MC are derived from the dendrogram and therefore will always be hierarchically structured. This

fact leads to a limitation of the CPCC as an internal clustering validity index (see section 3.1.3 for

further details), since it has been well proven that HC methods can be perfectly applied regardless

of whether the data actually fit a hierarchical structure or not (Jain et al., 1999; Everitt et al., 2011).

Examples in section 3.1.3 show that CPCC is a relatively reasonable indicator regarding whether

real hard partitional clusters are properly contained within the hierarchical structure of the den-

drogram. Although high values of CPCC (close to 1) should not be expected unless the data are

actually organised under some hierarchical structure, low values of CPCC (close to 0 or nega-

tive) can be easily interpreted as indicators of a low-quality HC solution in almost any clustering

scenario.

Finally, and in addition to these limitations, it is worth noting that tests for the absence of cluster

structure and procedures for validating both partitions and individual clusters can also be applied

when evaluating HC solutions (Gordon, 1996). Probably for these reasons, the most common ap-

proach to validation of hierarchies consists in validating partitions, since hierarchies can be seen

as successions of partitions and different HPC solutions can be obtained from a single dendrogram

(Sousa and Tendeiro, 2005).
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2.5 Clustering indeterminacies

In accordance with the impossibility theorem for clustering stated by Kleinberg (2002) –whilst tin-

ged by Carlsson and Mémoli (2009) in the case of some specific AHC methods–, clustering is a

variable, complex and context-dependent task, hard to be tackled in its entirety from an unified

framework. Thus, like any other task belonging to the KDD paradigm, a clustering process requires

making several critical decisions at each of its stages (Sevillano, 2009). Besides, due to the unsu-

pervised nature of clustering, these decisions are often made blindly and may determine to a large

extent the effectiveness and suitability of the clustering results (Jain et al., 1999).

Hence, obtaining a quality clustering solution is closely related with and strongly dependent on

making optimal decisions at every stage of the KDD process (see Figure 1.1). Sevillano (2009) refers

to the uncertainties inherent to any clustering process as clustering indeterminacies and states

two main types of sources of indeterminacy: indeterminacies at the preprocessing stage (the way

objects are characterised in the dataset) and indeterminacies at the clustering stage (selection and

configuration of the clustering algorithm).

Firstly, regarding decisions on data characterisation, optimal features would allow to easily dis-

tinguish –by means of using a proper proximity function– among objects belonging to different

clusters, would be robust to noise and should provide meaningful interpretations of the data (Xu

and Wunsch II, 2005). The main questions about this source of indeterminacy might be the follo-

wing (Sevillano, 2009):

• How should the objects in the dataset be represented? By their original representation, by

selecting a subset of the original features (i.e. feature selection) or by transforming original

features into new ones (i.e. feature extraction)?

• Should the original data be subjected to a dimensionality reduction process? Which should

be the dimensionality of the reduced feature space?

• In case that a feature selection/extraction process is applied, which selection/extraction cri-

teria should be followed?

• How should objects be compared? By means of a distance function or a similarity function?

Which specific proximity function should be used?

And secondly, the main questions about the selection and configuration of the particular cluste-

ring algorithm to apply might be the following (Sevillano, 2009):

• What type of clustering method should be applied? Hard or soft? Hierarchical or partitional?

• What type of theoretical approach to clustering should be considered?
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• Once method and approach are selected, which clustering algorithm should be applied?

• How should the configuration parameters of the clustering algorithm be tuned, if any?

• How many clusters should the clustering algorithm reveal?

In addition to these proposals, a third source of indeterminacy might be considered depending on

the scenario: indeterminacies relating to the clustering assessment stage (i.e. what cluster validity

index/indices should be selected to evaluate the clustering results?). In any case, these indetermi-

nacies are hard to handle in general terms due to the context-dependent nature of clustering pro-

blems. An interesting and worthy discussion about these issues is performed in Sevillano (2009,

Section 1.4, pages 21–26), where multiples references to works in literature specifically focused

on these matters are provided. Milligan (1996, Section 2, pages 341–343) and Everitt et al. (2011,

Section 9.2, pages 260–262) can be also consulted in order to complement and complete this dis-

cussion.

From amongst these indeterminacies belonging to the clustering paradigm and its application

in real-life scenarios, the present thesis focuses on the problem of determining the number of

clusters, which has a great influence on the quality of the clustering solution (Xu and Wunsch II,

2005) and which has been pointed as the fundamental problem of cluster validity (Dubes, 1993).

2.5.1 How many clusters?

The problem of deciding the number of clusters (K) better fitting a dataset is one of the major

issues of the clustering paradigm and it has been subject of many research efforts (Milligan and

Cooper, 1985; Dubes, 1987; Gath and Geva, 1989b; Dave, 1996; Rezaee et al., 1998; Dimitriadou

et al., 2002). Most clustering algorithms ask K to be provided as an input parameter, being quite

obvious that the quality of resulting clustering solution is largely dependent on the estimation of

K. Although users may be able to determine K according to their expertise in some particular

scenarios, the value of K is unknown under generic circumstances and it should be estimated

exclusively from the data themselves (Xu and Wunsch II, 2005).

The issue of how to properly estimate the optimal value of K has been tackled from the literature

by adopting a great diversity of strategies, which are next surveyed. Thus, as a first contribution

of the present thesis, a conceptual taxonomy is built throughout the following sections in order to

contextualise such strategies according to the approach they adopt.

2.5.1.1 Exploratory approach

An exploratory analysis of the dataset prior to the execution of the clustering algorithm may pro-

vide useful notions to decide the value of K (Tukey, 1977). Such exploration may involve a direct
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observation of the data –by means of visualisation techniques such as scatterplots, histograms, pa-

rallel coordinates, tree maps, etc.– (Gan et al., 2007, Chapter 5, pages 53–65), the use of statistical

summarisation techniques –usually based on the calculation of statistics such as mean, median,

percentiles, mean, standard deviation, covariance, skewness, kurtosis, etc.– (Tan et al., 2006, Sec-

tion 3.2, pages 98–105), or the projection (and posterior visualisation) of the data into optimal

low-dimensional representation spaces by means of feature selection/extraction techniques (Fo-

dor, 2003; Molina et al., 2002; Dy and Brodley, 2004).

The fact that the final selection of the value ofK comes under user’s subjective criterion is the main

drawback of this approach, which can easily lead to a non-optimal estimation of K. Moreover, the

complexity of most real datasets also restricts the effectiveness of this approach only to a small

scope of scenarios (Xu and Wunsch II, 2005).

2.5.1.2 Heuristic-based approach

In case of having some previous knowledge about the dataset and its characteristics, heuristic ap-

proaches based on a variety of techniques and theories may be followed. Depending on both

the particular nature of the data and the kind of clustering method, literature on the specific area

may provide different strategies, such as, by way of example, the eigenvalue decomposition of the

feature space as an indicator of the possible existence of clusters proposed by Girolami (2002) in

kernel-based clustering, the method based on the proximities between neighbour centroids de-

veloped by Kothari and Pitts (1999) for the k-means algorithm, the estimation of K based on in-

fluence zones proposed by Herbin et al. (2001) in image segmentation problems, or the dynamic

branch cutting criterion defined by Langfelder et al. (2008) for HC of genomic data.

The application of such approaches is often subject to both specific datasets and particular cluste-

ring algorithms. Being, therefore, hardly generalisable, this approach usually lacks robustness and

it may easily lead to non-optimal estimations of K (Xu and Wunsch II, 2005).

2.5.1.3 Relative validity approach

One of the most common approaches to the issue of determining K is based on the comparison of

different clustering solutions; that is, on the relative validation (see section 2.4) of a set of different

clustering solutions generated by a given clustering algorithm, where the selected value of K is

that which belongs to the best clustering solution of the set according to some (habitually internal)

validity index (Tan et al., 2006). Depending on the nature of the validity index, the best clustering

solution may either optimise the index value (Milligan and Cooper, 1985) or give rise to a distinct

knee, peak or inflection point in the plot of the obtained validity index values against the number

of clusters of their associated clustering solutions (Tan et al., 2006, Section 8.5.5, pages 546–547).
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Let’s consider, by way of example, the 4toy dataset defined in Figure 2.3a. After several executions

of the k-means algorithm on this dataset –Euclidean distance has been used for comparing ob-

jects, the value of K has been varied for each execution (K ∈ {1, 20}) and centroids have been

randomly initialised–, two different internal validity indices are utilised to evaluate every obtai-

ned clustering solution: the Silhouette Coefficient (see section 2.4.2) and the mean squared error

(MSE), which is defined as (Tan et al., 2006):

MSE =
K∑
i=1

1

Ni

N∑
j=1

wji dxjci (2.24)

where ci is the centroid of cluster Ci, Ni is the number of objects in cluster Ci, dxjci is the proxi-

mity between xj and ci, and wji is a weight factor that equals 1 if xj belongs to cluster Ci and 0

otherwise. The different values obtained for both validity indices are plotted against the number of

clusters of their associated clustering solutions in Figures 2.4a and 2.4b, respectively. Both validity

criterion suggest the presence of an optimal clustering solution at K = 5 (which is shown in Figure

2.4c): the Silhouette Coefficient is objectively maximised at K = 5, whereas a singular inflection

point (note the distinctively stressed decreasing of the function between K = 4 and K = 5) might

be manually identified by user in the MSE plot at K = 5 as well.

(a) S versus K. (b) MSE versus K. (c) Selected clustering solution.

Figure 2.4: Relative validity criteria for the estimation of the number of clusters (K) on the 4toy dataset.

(a) Silhouette Coefficient
(
S
)

values plotted against the number of clusters of the generated clustering

solutions. A maximum value is reached at K = 5. (b) MSE values plotted against the number of clusters

of the generated clustering solutions. A distinctive inflection point might be identified at K = 5. (c)

Scatterplot of the clustering solution with K = 5.

It is worth noting that the clustering solution that optimises both criteria is not the optimal clus-

tering solution on the 4toy dataset, which leads to a poor estimation of the real number of clusters

–its ground truth solution contains 4 clusters (see Figure 2.3a)–. This is due to the fact that k-means

algorithm fails to obtain a good clustering solution for K = 4 (probably because of a poor initia-

lisation of the centroids) and it illustrates the limitations of estimating the value of K from this

approach.

Thus, despite being widely used, this approach presents several drawbacks that may cause a non-

optimal estimation of the value of K. Firstly, its main lack lies in the fact that the set of evaluated
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clustering solutions must include the optimal one (or, at least, it must include a quasi-optimal

solution of the same number of clusters as the optimal one), since the choice of K is subject to the

selection of the best clustering solution within the set. Hence, as shown in the example of Figure

2.4, if none of the solutions in the set is at least close to the optimal one, the value ofK can be easily

miscalculated. Secondly, the necessity of obtaining a diversity of clustering solutions increments

the computational cost of the process (Everitt et al., 2011). Thirdly, a suitable validity index needs

to be selected, since there is no evaluation criterion that always leads to optimal results (Milligan

and Cooper, 1985). In addition, the good performance of a validity criterion for certain data does

not guarantee the same behaviour with different data (Xu and Wunsch II, 2005). And fourthly, if a

distinct inflection point that suggests an optimal clustering solution has to be manually sought in

the plotted results (as shown in Figure 2.4b), the final selection of the value of K will be actually

performed by user instead of being solely driven by the data themselves, which may lead to non-

optimal results biased by user’s prior expectations (Everitt et al., 2011).

2.5.1.4 Self-refining consensus approach

As aforementioned in section 2.3.2, the proposal of the consensus clustering strategy consists of

creating a cluster ensemble composed of a large number of individual clustering results and de-

riving a unique clustering solution upon that cluster ensemble through the application of a con-

sensus clustering process. Obviously, the quality of the final clustering solution resulting from

this consensus strategy can be negatively biased by the poor individual clustering solutions inclu-

ded in the cluster ensemble (Sevillano, 2009). In order to overcome this inconvenience, several

consensus clustering solutions can be obtained by means of multiple consensus functions and a

supraconsensus function can be applied with the aim of, in a blind manner, selecting the highest

quality solution from the set of consensus clustering solutions previously generated (Strehl and

Ghosh, 2002; Gionis et al., 2007).

In this context and closely related with the use of proper supraconsensus functions, the so-called

consensus self-refining procedure is also proposed. Oriented to improve the quality of consensus

clustering solutions, this self-refining strategy prove that it is likely to obtain, in a fully unsupervi-

sed fashion, a refined consensus clustering solution of equal (or even higher) quality than the best

individual one (Fern and Lin, 2008) (Sevillano, 2009, Chapter 4, pages 111–132).

Thus, it seems plausible to define an approach based on a self-refining consensus procedure in

order to provide a proper estimation of the real number of clusters in a dataset, since, similarly

to the aforementioned relative validity approach, a correct choice of K would be subject to a co-

rrect selection of the best clustering solution in the cluster ensemble. However, not many consen-

sus functions are capable of dealing with cluster ensemble components with distinct numbers of

clusters, which, quite obviously, would be a unavoidable feature in such an approach (Sevillano,

2009).
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In any case, this approach would present several drawbacks to deal with, such as the obvious rise

of the computational cost of the process (beyond the cost of the consensus process, multiple clus-

tering solutions are initially needed to build the cluster ensemble), the need of user intervention

in the selection of the amount of components included in the cluster ensemble the self-refined

consensus clustering is derived upon and the limited accuracy of the supraconsensus selection

process, which is an area that requires of more research in order to be improved (Sevillano, 2009)

2.5.1.5 Model-based (or probabilistic) approach

The model-based approach to the problem of estimating the value of K is essentially based on

the optimisation of some criterion functions under a probabilistic mixture-model framework. In

a statistical framework, finding the correct number of clusters in a dataset is equivalent to fitting

a model with observed data (different models correspond to clustering solutions with different

values of K) and optimising some criterion (Xu and Wunsch II, 2005). Thus, the issue of the es-

timation of the number of clusters is transformed by the model-based clustering approach (see

section 2.3.2) into a model selection problem in the probability framework (Gan et al., 2007).

On the one hand, the well-known EM algorithm (McLachlan and Krishnan, 1997) is habitually uti-

lised to estimate the model parameters for a given K, which goes through a predefined range of

values –the value of K that maximises (or minimises) the defined criterion function is regarded

as optimal– (Xu and Wunsch II, 2005). Another well-known example implemented from this ap-

proach is the x-means algorithm (Pelleg and Moore, 2000), which is based on generating multiple

clustering solutions with different values of K by the k-means algorithm and selecting the best one

of them according to the criterion function.

On the other hand, a large number of criterion functions can be found in the literature, such as

Akaike’s information criterion (AIC) (Akaike, 1974; Windham and Culter, 1992), Bayesian informa-

tion criterion (BIC) (Schwarz, 1978; Pelleg and Moore, 2000), minimum description length (MDL)

(Rissanen, 1996; Grünwald et al., 1998), minimum message length (MML) (Oliver et al., 1996), cross

validation-based information criterion (CVIC) (Smith and Hardaker, 2000b), or covariance infla-

tion criterion (CIC) (Tibshirani and Knight, 1999), among others (McLachlan and Peel, 2000).

The main downsides associated to this approach lie on its computational requirements, since mul-

tiple clustering solutions are required in order to optimise the model; its high dependency on the

selection of the model, which needs to fit the data –i.e. the model needs to be able of generating

an optimal (or quasi-optimal) clustering solution for the correct value of K– (Fraley and Raftery,

1998); its dependency on the initialisation of the algorithm (EM or k-means, typically), which is

closely related with the previous mentioned downside (Gan et al., 2007); and its dependency on

a proper selection of the criterion function, being no criterion superior to others in general case

–the selection of different criteria is still dependent on the data– (Xu and Wunsch II, 2005).
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2.5.1.6 Adaptive approach

With the aim of overcoming some of the drawbacks of the previous approaches, it is worth consi-

dering a certain class of methods constituted by a diverse variety of clustering algorithms, which

are implemented from a wide range of theoretical approaches to clustering (see section 2.3.2). The

common characteristic of such clustering algorithms lies on the fact that they do not ask for the

value of K as an input parameter. Instead of that, their behaviours are ruled over a set of confi-

guration parameters, which is distinctive for each particular algorithm and which determines the

final clustering solution the algorithm provides.

Hence, these so-called constructive clustering algorithms (Xu and Wunsch II, 2005) can adaptively

and dynamically adjust the number of clusters of the clustering solution rather than use a pre-

viously specified and fixed value of K, which clearly defines a new different approach to the issue

of determining the number of clusters in a dataset. Although such algorithms could be used in

order to generate the diversity of clustering solutions required in aforementioned approaches by

varying the values of their configuration parameters, their real goal is to have a sufficiently flexible

behaviour to be able to provide by themselves optimal results in a diversity of clustering scenarios.

The only issue this class of clustering algorithms present lies on the fact that their configuration

parameters need to be tuned by the user, which is a clear drawback, specially if heuristic know-

ledge (usually scenario-dependent) about the behaviour of the algorithm is not previously availa-

ble. Thus, the problem of determining the number of clusters is converted by this approach into a

parameter tuning problem, and the resulting number of clusters is largely dependent on parame-

ter tweaking (Xu and Wunsch II, 2005).

Next, some of the most well-known examples of constructive clustering algorithms implemented

from different theoretical approaches to clustering are listed, along with the detail of their distinc-

tive configuration parameters:

Centre-based constructive clustering algorithms

• ISODATA algorithm (Ball and Hall, 1965) requires thresholds for the eleven parameters (ma-

ximum number of iterations, elongation criterion, closeness criterion, exclusion distance,

minimum number of objects per cluster, etc.) that rule over its split-and-merge behaviour.

• HUFC algorithm (Geva, 1999) requires of the number of reduced features (F ) after the PCA

projection and the value of the parameter (Constant) that weights the condition that de-

termines if a cluster needs to be split (according to a fuzzy probabilistic approach based

on a modified fuzzy k-means algorithm and the fuzzy maximum-likelihood estimation al-

gorithm) in a lower level of the hierarchy (the outcome of the HUFC algorithm is a set of

hierarchically structured fuzzy clusters).
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Graph-based constructive clustering algorithms

• Chameleon algorithm (Karypis et al., 1999) requires the parameter (k) utilised to build the

initial k-nearest neighbour graph, the minimum size (MinSize) of the partitions obtained

by splitting the k-nearest neighbour graph and the parameter (α) that weights the merging

criterion the final clusters have to maximise.

Density-based constructive clustering algorithms

• DBSCAN algorithm (Ester et al., 1996) requires the radius (ϵ) utilised to estimate the density

for each object in the dataset and the threshold (MinPts) utilised to determine whether an

object is a core point.

• DENCLUE algorithm (Hinneburg and Keim, 1998) requires the parameter (σ) that characte-

rises the basic influence function and the threshold (ξ) utilised to decide whether an object

is assigned to a certain density-attractor’s cluster.

• VDBSCAN algorithm (Liu et al., 2007) improves DBSCAN by only requiring MinPts and per-

forming an intuitive calculation of several radius values (ϵi) that allow identifying clusters of

different densities.

Grid-based constructive clustering algorithms

• OptiGrid algorithm (Hinneburg and Keim, 1999) requires the number of contracting projec-

tions (k) utilised to determine the cutting planes, the minimum cut score (mcs) utilised to

select which is the best projection cut and the number of cutting planes (q) in the best pro-

jection cut utilised to determine the grids/clusters.

• WaveCluster (Sheikholeslami et al., 2000) algorithm requires the number of intervals each

feature of the D-dimensional dataset is divided into (mi, ∀ i ∈ {1, D}) in the quantisation

stage.

Combinatorial-based constructive clustering algorithms

• CLUSTERING algorithm (Tseng and Yang, 2001) requires the value of the parameter (w) that

weights the fitness function that determines the resolution of the algorithm (a small value

of w tends to increase both the number and the compactness of the clusters the algorithm

identify).
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Subspace constructive clustering algorithms

• CLIQUE algorithm (Agrawal et al., 1998) requires the number of intervals (ξ) each dimension

of the dataset in partitioned into and the density threshold (τ) that determines whether a

partition is dense enough or not.

• ENCLUS algorithm (Cheng et al., 1999) requires the entropy (ω) and the interest (ϵ) thres-

holds utilised to mine significant subspaces.

• FINDIT algorithm (Woo et al., 2004) requires the minimum size of clusters (Cminsize) and the

minimum difference between two resultant clusters (Dmindist).

Kernel-based constructive clustering algorithms

• SVC algorithm (Ben-Hur et al., 2001) requires the width of the Gaussian kernel (q) that con-

trols the scale at which the data is probed and the soft margin constant (C) that helps coping

with outliers and overlapping clusters.

Neural networks-based constructive clustering algorithms

• ART algorithm (Carpenter and Grossberg, 1987) requires the confidence value (ρ) below

which the match between the input pattern and the expectation has to be in order to ge-

nerate a new cluster.

• SPLL algorithm (Zhang and Liu, 2002) requires the threshold value (ε) that rules over the

splitting criterion for cluster prototypes.

2.5.1.7 Parameter-free approach

Most clustering algorithms implemented under the premises of the previous approaches require

the setting of several input parameters and, therefore, the explicit intervention of user. As afo-

rementioned, parameter-dependent clustering algorithms may fail in finding true clusters as a

consequence of an incorrect parametrisation and lead to a clustering solution biased by user’s

subjective criteria. With the aim of being able to work without a prior specification of the true

number of clusters in the dataset, as well as to not require any configuration parameter to be set

by the user, different approaches to parameter-free clustering algorithms have been proposed over

the last years. Thus, the main goal of parameter-free clustering algorithms consists in leading to a

fully data-driven clustering solution, therefore avoiding user’s ability to impose prejudices, expec-

tations and presumptions on the clustering scenario.
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A conceptual view of parameter-free DM applications of different nature (classification, cluste-

ring, anomalies detection, etc.) is provided by Keogh et al. (2004). They state that parameter-free

approaches to DM present interesting advantages, such as their capability for allowing true explo-

ratory data analysis (free of presumptions about the data) and their potentially superior accuracy,

efficiency and generalisation ability in comparison to those of parameter-dependent approaches

(even if exhaustive searches over parameters’ values are performed). Their study is finally more

focused on parameter-free optimal representations of the data than on parameter-free DM al-

gorithms, so that they propose the Compression-Based Dissimilarity (CDM) measure, which is

a parameter-free proximity measure based on information theory principles (specifically, on the

Kolmogorov complexity theory) that can be applied on several DM scenarios.

First attempts of parameter-free clustering go back to the work of Gitman (1972), where a mathe-

matical formulation of the clustering problem with no parameters controlled by user is presented.

Such a proposal is actually a parameter-free relative validity approach to clustering, since it defines

two different internal validity criteria from which determining an optimal partition –and therefore

the value of K– out of a variety of clustering solutions: the maximisation of the average amount

of structure (AS) and the maximisation of the average amount of stability (ST ) –both of them

combine measures of cohesion and isolation of the possible clusters in the dataset–.

Nonetheless, it has been recently when literature has provided a myriad of works focused on

parameter-free clustering, which can be categorised into two main different approaches to the

issue: parameter-free split-and-merge approaches and parameter-free adaptive approaches.

Parameter-free split-and-merge approaches

There exist a great amount of clustering methods that follow a split-and-merge strategy, which

essentially consists on, firstly, splitting the data into a high number of small clusters and, secondly,

merging some of these clusters according to some criterion (e.g. thresholding techniques, internal

measures of clustering validity, optimisation cost functions) until a definitive clustering solution

is finally obtained (Ding and He, 2002). Aside from parameter-dependent implementations of this

strategy, such as the methods defined by Bajcsy and Ahuja (1998) or the improved version of the

k-means algorithm proposed by Chen et al. (2004), the literature provides two different classes of

parameter-free split-and-merge approaches to clustering:

1. Parameter-free relative validity approach. Usually from graph representations (such as

dendrograms, minimum spanning trees, adjacency matrices, among others) of the relations-

hips among the objects in the dataset, a relative validation (by means of the maximisation of

some internal validity criterion, such as Silhouette Coefficient, quality indices for categorical

data, or graph-based validity criteria, among others) of a set of clustering solutions is perfor-

med from this approach through a parameter-free split-and-merge procedure (Huang et al.,
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2009; Raju and Kumari, 2011). Besides, some of the methods implemented under this ap-

proach are particularly designed in order to deal with some specific kinds of data, such as

genomic data (Cesario et al., 2007; Bayá and Granitto, 2011) or protein-protein interactions

(Ngomo, 2010).

2. Parameter-free model-based approach. A diversity of clustering solutions is evaluated in

terms of the optimisation of a model-based criterion, usually designed from the information

theory principle of the minimum description length (MDL), which determines that the best

descriptor for a given set of data is the one that leads to the best compression of the data

(Rissanen, 1996; Grünwald et al., 1998).

A possible interpretation of this approach is made in terms of an improving of the results ob-

tained by any given clustering algorithm. Once a clustering solution previously generated is

taken, its clusters are firstly split into a higher amount of smaller clusters and, finally, some of

these new clusters are merged into the final clusters of the solution. Böhm et al. (2007) pro-

pose a framework that, in addition, refines the split clusters with the aim of improving the

performance of k-means, k-medoids and spectral clustering methods. Moreover, such a fra-

mework has been adapted to mixed attributed –numerical and categorical– datasets (Böhm

et al., 2010).

However, the great majority of algorithms implemented under this approach are designed

from the graph-based cross-associations (CA) method proposed by Chakrabarti et al. (2004),

which allows to decompose a binary matrix into disjoint row and column groups such that

homogeneous intersections (clusters) are formed. Habitually, adjacency matrices (obtained

from either a clustering algorithm or the proximity matrix of the data in the splitting stage)

are used as graph representations of the data and a scalable parameter-free algorithm is run

in the merging stage, so that the optimal CA –and therefore the optimal clustering solution

obtained from the graph– is reached according to the optimisation of a MDL-based criterion

(Chakrabarti, 2004). Many proposals in the literature follow this parameter-free strategy (Sun

et al., 2007; He et al., 2009; Hirai et al., 2011; Mueller et al., 2011), or particularise it to specific

kinds of data and/or applications such as image data organization for effective image retrie-

val (Oh et al., 2012). Furthermore, modified versions of this strategy have been also proposed

both to find hierarchical clusters (Papadimitriou et al., 2008) and to perform hierarchical co-

clustering –the final clustering solution results from crossing clusterings on both objects and

features spaces– (Ienco et al., 2009). Finally, an evolved version of the method based on a

greedy iterative heuristic procedure has been as well designed with the aim of find cohesive

subgraphs (Akoglu et al., 2012).

Regardless of the specific kind of parameter-free split-and-merge approach each one of them be-

long to, all these clustering methods suffer from the same drawbacks; to wit, high dependance on

both the clustering algorithm that generates the diversity of solutions and the validity indices utili-
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sed to evaluate such solutions, the necessity of including the optimal –or a quasi-optimal– solution

in the variety of evaluated clustering solutions and the high data-dependency in the selection of

the model-based optimisation criterion.

Parameter-free adaptive approaches

The parameter-free adaptive approach is less habitual in the literature, while it is probably more

interesting due to its ability to avoid the drawbacks presented by the parameter-free split-and-

merge approach. The upside of the algorithms implemented from the parameter-free adaptive

approach lies on the fact that they do not manipulate and/or evaluate representations of the data

or clustering solutions previously generated by means of other procedures, but their own nature is

free of tunable parameters and they are able to provide a final clustering solution without depen-

ding on any other methods. Mainly, three different classes of clustering methods have been so far

proposed under this kind of approach:

1. Parameter-free density-based approach. While being the best-known density-based clus-

tering method, DBSCAN algorithm (Ester et al., 1996) presents two distinct drawbacks: its

dependency on two user-specified parameters and its inability to handle datasets with clus-

ters with different densities. Hence, several methods have been proposed in order to address

these problems, from among which the VDBSCAN algorithm (Liu et al., 2007) stands out,

since it reduces the dependency to a single user-specified parameter and allows to iden-

tify clusters with different densities, as well as some derived methods that propose how to

deal with the tuning of VDBSCAN’s parameter, such as the subjective method designed by

(Chowdhury et al., 2010) and the OVDBSCAN algorithm (Wang et al., 2013). Interesting sur-

veys that study and compare the performances of these methods and some of the following

have been conducted by Nagpal and Mann (2011) and Parimala et al. (2011).

Along this line of work, parameter-free density-based algorithms have been implemented in

order to overcome the problems presented by DBSCAN algorithm and its variants, as well as

to eliminate any user intervention in the clustering process.

Firstly, the DBCLASD algorithm (Xu et al., 1998) is a parameter-free density-based cluste-

ring algorithm proposed as an alternative to DBSCAN. DBCLASD combines its density-based

nature with a model-based behaviour, since it defines the density of the clusters by estima-

ting the probability distribution of the nearest neighbour distance within each cluster, which

allows it to find clusters with different densities. Furthermore, a combination of the princi-

ples of DBCLASD and Chamaleon algorithms is proposed by Mu et al. (2008) in its parameter-

free DMBC algorithm, although its experimental results has been tested from a very reduced

set of datasets.

And secondly, parameter-free improvements of the DBSCAN algorithm have been recently

implemented by Chen et al. (2011) and Sabau (2012). Whereas the former generates a norma-
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lised list of local densities to detect clusters with different densities in a purely density-based

behaviour, the latter combines density-based clustering with a combinatorial search-based

method with the aim of handling various data distributions, finding arbitrary shaped clusters

and being robust to outliers.

In any case, all these methods (from the original DBSCAN algorithm and its variants, to the

more recent parameter-free implementations) suffer from the same drawback, which seems

to be inherent to their density-based nature: they fail to accurately delimit clusters whose

objects are not uniformly distributed; i.e. they fail to properly identify clusters with variable

density, since they characterise clusters according to their density and they interpret differ-

ent densities as different clusters (Chen et al., 2011, Figure 11 and Table 3, page 985) (Sabau,

2012, Figure 8, page 205).

2. Parameter-free AHC approach. Another recent and very promising approach to parameter-

free clustering is constituted by the algorithms proposed by Fred and Leitão (2003) and Ai-

dos and Fred (2011a). By combining graph-based and model-based clustering concepts, they

have implemented two different versions of a parameter-free AHC algorithm (SL-DID) accor-

ding to merging decision criteria based on the distribution of the dissimilarity (or proximity)

increments between neighbouring objects within a cluster –which has been also applied in

a HPC version of the method (Aidos and Fred, 2011c)–. Although they obtain interesting re-

sults when clustering synthetic datasets with clusters of different nature, the performance of

both algorithms worsens when dealing with real datasets.

Since it is this precise approach which has been followed to implement the parameter-free

AHC algorithm proposed in the present thesis (see Chapter 4 for further details), an insight

into this issue is provided in Chapter 3, where both fundamentals on AHC methods and par-

ticulars of this parameter-free AHC approach are detailed.

3. Miscellaneous methods. Very recently, two new parameter-free clustering algorithms have

been proposed from the adaptive strategy to the issue, but beyond the margins of both the

density-based and the AHC approaches.

Operating in a similar but completely inverse way to the split-and-merge method designed

by Böhm et al. (2007), Xiong et al. (2012) propose the DHCC algorithm, a parameter-free

DHC method for categorical data. According to a classical divisive strategy –i.e. starting

from a single partition that includes all the objects in the dataset–, DHCC follows an iterative

splitting procedure consisting of two phases per iteration: the bisection of a cluster is carried

out in the preliminary splitting phase according to a MCA (multiple correspondence analysis

for categorical data) criterion and the refinement phase optimises the global objective func-

tion SCE (sum of χ2 error) locally to improve the quality of the bisection. The main issues

of DHCC are its lack of generalisation, since it is particularised for categorical data, and its

sensitivity to outlier objects (authors suggest the design of strategies to perform a previous

detection of outliers as an interesting area for future research).
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Cheung and Jia (2013) propose a penalised competitive learning clustering algorithm (PCL-

OC) that, based on an object-cluster similarity metric for mixed data (both categorical and

numerical attributed data), estimates the optimal value of K and provides a final HPC solu-

tion. PCL-OC requires two input parameters: a randomly initialised partition ofK ′ (K ′ > K)

singleton clusters and the value of the learning rate (η) that regulates the cluster penalisation

rule (redundant clusters are gradually faded out during the clustering process). Obviously,

the result of the algorithm may depend on both the initial setting of K ′ and the objects ran-

dom selection for the initial singleton clusters, specially in clustering scenarios with none

previous knowledge about the data. Moreover, a heuristic-type method is provided to deter-

mine the correct value of η, but it is not clear how generalisable such a method can be.

2.6 Discussion

On the one hand, AHC methods seem to properly fit the problem of modelling learners’ activity

in online discussion forums when it is posed in clustering terms (see section 1.2.3.2), since the

nature of such scenario allows both to take advantage of all AHC upsides –number of clusters not

required in advanced, no initialisation needed and, above all, high suitability to exploratory data

analysis– and, due to the relatively small size of the datasets such scenario involves, to avoid its

main drawback –the computational cost– (see section 2.3.1 for further details).

On the other hand, as a first contribution of the present thesis, the different existing approaches

that tackle the issue of the estimation of the optimal number of clusters in a dataset have been

surveyed in section 2.5.1. Such a survey indicates that both the strategy habitually followed to mo-

del learners’ activity in online discussion forums –i.e. relative validity approach– and the other

strategies most typically adopted to handle this issue –i.e. heuristic-based approach, model-based

approach, self-refining consensus approach, split-and-merge approaches, etc.– present noticea-

ble drawbacks that, depending on the characteristics of the clustering scenario, can easily make

them unable to provide optimal clustering results. Therefore, all these approaches certainly leave

room for improvement regarding this particular task.

Consequently, a survey specifically concerning AHC methods is performed in the next chapter of

the present thesis, whose main focuses are the fundamentals of AHC algorithms, their appropria-

teness for determining the number of clusters in a dataset and the particularities, advantages and

drawbacks of the parameter-free AHC algorithms proposed in the literature to date (see section

2.5.1.7).
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Given their strong points (see section 2.3.1), AHC methods are a natural choice in the clustering

scenario derived from modelling learners’ activity in online discussion forums (see section 1.2.3.2).

Moreover, the diversity of approaches to the issue of determining the number of clusters in a da-

taset (see section 2.5.1) reveals the usage of parameter-free AHC algorithms as an interesting and

promising strategy in this context, since they combine their behaviour free of tunable parameters

(therefore avoiding any user intervention in the clustering stage) with the rest of AHC upsides.

Hence, the present thesis requires a more detailed survey on the nature of AHC and more particu-

larly on the specifics of parameter-free AHC algorithms, in order to clearly identify all their bene-

fits and to understand how to improve their limitations, if necessary. Thus, the goals of the present

chapter are to deepen the fundamental principles of AHC methods, to determine their usefulness

in the estimation of the optimal number of clusters and to study whether existing approaches to

parameter-free AHC are able to deal with the particularities of the online forums activity modelling

scenario or not.

Consequently, this third chapter is firstly focused on the fundamentals of AHC methods, which

are surveyed in section 3.1, laying special emphasis on how to postprocess dendrograms to try

to determine the real number of clusters in a dataset, as well as to obtain a derived HPC solution.

Next, the particularities of parameter-free approaches to AHC are tackled in section 3.2. Finally, the

upsides and limitations of the currently existing parameter-free AHC algorithms regarding their

possible application to the analysis of learners’ activity in online discussion forums are discussed

in section 3.3.
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3.1 Fundamentals on AHC methods

The basics of the AHC methods, the characteristics of the main AHC algorithms and the procedu-

res to obtain a HPC solution from a dendrogram are studied in the present section. Thus, although

both terms are habitually used with the same purpose, it is worth noting the differences between

method, which involves a general description and a target structure, and algorithm, which is an

specific implementation of a method in terms of both efficiency –from the computational point of

view– and effectiveness –from the application point of view– (Murtagh and Contreras, 2012).

Next, the most common and most widely used scheme of the AHC methods is introduced. None-

theless, there exist other strategies that allow building a hierarchy of clusters. Sneath and Sokal

(1973) may be also consulted for other representations of the stages in the construction of HC

methods. And, in general terms, a further insight into AHC and other HC methods can be gai-

ned by referring to Gordon (1987), Holman (1992), Gordon (1996), Gan et al. (2007), Carlsson and

Mémoli (2009) and Murtagh and Contreras (2012).

Thus, let X be a dataset constituted by a set of N D-dimensional objects. As it has been previously

illustrated in Figure 2.1, AHC methods start with every single object in a single cluster (N singleton

clusters) and perform a series of merging operations (N−1 merging steps) so that the closest pair

of clusters according to some cluster proximity criterion (i.e. linkage function) are merged at every

step (leading to N−1 overlapped clusters) until all the objects are held under one cluster (Gan

et al., 2007). Thus, according to equation 2.15, an AHC solution consists of a set P of 2N−1 over-

lapped clusters represented by means of a dendrogram ∆ (see Figure 2.2b). Hence, the general

AHC procedure can be summarised by the method shown in Algorithm 2.

Algorithm 2 Basic AHC method (adapted from Xu and Wunsch II (2005) and Tan et al. (2006)).

1: Input : Dataset X

2: procedure

3: MP : MP (i, j)← dxixj
, ∀xi,xj ∈ X | i ̸= j ◃ Initially, dij = dxixj

, since

P = {C1, ...,CN} | Ci = {xi}

4: for n← 1, N−1 do

5: Select the two closest clusters Ci and Cj according to MP ◃ dN+n = dij

6: ∆ : ∆n ← [ i j dN+n] ◃P = P+CN+n | CN+n = Ci ∪Cj

7: Update MP : According to some linkage function, reflect the proximity between the new

cluster CN+n and the rest of clusters, and dismiss the proximities between Ci, Cj and

the rest of clusters.

8: end for

9: end procedure

10: Output : Dendrogram ∆ ◃∆ represents the final set P of 2N−1 clusters
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As shown in line 3, the first step defined in the method involves calculating the proximity matrix

(MP ) of X. As aforementioned in section 2.2 concerning equation 2.12, MP contains N2−N
2 dif-

ferent proximity values, so that the minimum computational requirements of this method grow

quadratically with N, which is the reason why AHC methods are, at least, O
(
N2
)

–if a sorting of

the values in MP prior to the execution of the procedure was required, the method would then be

O
(
N2 logN

)
–.

Moreover, once two clusters have merged giving rise to a new cluster in the hierarchy, the proxi-

mities between the new cluster and the rest of clusters in P need to be computed (see line 7 in

Algorithm 2). Hence, a linkage function that defines how to update MP needs to be defined (Gan

et al., 2007). To that effect, Lance and Williams (1967) proposed the Lance-Williams recurrence

update formula, which gives the proximity between a cluster Cl and a cluster Ck resultant of the

union of clusters Ci and Cj :

dkl = D (Ci ∪Cj ,Cl) = αidil + αjdjl + βdij + γ |dil − djl| (3.1)

Different configurations of the parameters αi, αj , β and γ in the Lance-Williams formula define

different linkage functions, which in its turn give rise to different variants of the basic AHC method

(Murtagh and Contreras, 2012, Table 1, page 6). Some properties of Lance-Williams formula have

been investigated by DuBien and Warde (1979) and a more general recurrence formula with more

configuration parameters has been proposed by Jambu (1978). In addition, there exist AHC meth-

ods less used in practise that do not fit the Lance-Williams formula, such as the bicriterion analysis

proposed by Delattre and Hansen (1980).

Therefore, regarding the way their linkage functions are defined, basic AHC methods can be conve-

niently classified into two main groups: the first group is that whose linkage functions are defined

from graph-based criteria (see section 3.1.1) and the second group is that whose linkage functions

are based on geometric concepts which allow the cluster centres to be specified (see section 3.1.2).

Other methods different from those detailed in the two following sections have been defined by

Scheibler and Schneider (1985) and Scheibler and Schneider (1989) from the more general recu-

rrence formula proposed by Jambu (1978). Finally, different strategies in order to postprocess the

dendrogram and obtain an HPC solution are presented in section 3.1.3.

3.1.1 Graph-based AHC methods

In graph-based AHC methods, the proximity between two clusters is defined by means of linkage

criteria that represent each cluster in terms of a subgraph or interconnected points Gan et al.

(2007). The three most common graph-based linkage criteria according to literature are illustrated

in Figure 3.1, which give rise to the three more widely used graph-based AHC methods: Single-

Link method (see section 3.1.1.1), Complete-Link method (see section 3.1.1.2) and Average-Link

method (see section 3.1.1.3).
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(a) Single-Link criterion. (b) Complete-Link criterion. (c) Average-Link criterion.

Figure 3.1: Graph-based linkage criteria.

3.1.1.1 Single-Link (or nearest neighbour) method

First introduced by Florek et al. (1951) and, later, independently by McQuitty (1957) and Sneath

(1957), the Single-Link (SL) method is the simplest and most widely used AHC method. It estab-

lishes that the proximity between to exclusive clusters Ck and Cl equals to the proximity between

the two closest objects xm and xp respectively belonging to Ck and Cl; i.e. the proximity between

clusters is determined by the nearest neighbour criterion (Gan et al., 2007):

d
(SL)
kl = dxmxp

= min
{
dxqxr

}
, ∀xq ∈ Ck, ∀xr ∈ Cl, ∀Ck ∩Cl = ∅ (3.2)

The linkage function defined by the SL method can be derived by particularising the parameters

in Lance-Williams formula according to the values αi =
1
2 , αj = 1

2 , β = 0 and γ = −1
2 (Murtagh

and Contreras, 2012):

d
(SL)
kl = D (Ci ∪Cj ,Cl) =

1

2
dil +

1

2
djl −

1

2
|dil − djl| = min {dil, djl} (3.3)

SL method gives priority to the connectedness between objects, so that it allows to identify un-

balanced clusters with arbitrary shapes and distributions, although it tends to present a low ro-

bustness against noise (Everitt et al., 2011). The SLINK algorithm proposed by Sibson (1973) is

a O
(
N2
)

implementation of the SL method. Furthermore, other O
(
N2
)

time and O
(
N2
)

space

implementations are described in Murtagh (1983) and Murtagh (1985).

3.1.1.2 Complete-Link (or farthest neighbour) method

First introduced by Sørensen (1948) and, later, independently by Johnson (1967) and Lance and

Williams (1967), the Complete-Link (CL) method establishes that the proximity between to ex-

clusive clusters Ck and Cl equals to the proximity between the two most distant objects xm and

xp respectively belonging to Ck and Cl; i.e. the proximity between clusters is determined by the

farthest neighbour criterion (Gan et al., 2007):

d
(CL)
kl = dxmxp = max

{
dxqxr

}
, ∀xq ∈ Ck, ∀xr ∈ Cl, ∀Ck ∩Cl = ∅ (3.4)

The linkage function defined by the CL method can be derived by particularising the parameters

in Lance-Williams formula according to the values αi =
1
2 , αj =

1
2 , β = 0 and γ = 1

2 (Murtagh and
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Contreras, 2012):

d
(CL)
kl = D (Ci ∪Cj ,Cl) =

1

2
dil +

1

2
djl +

1

2
|dil − djl| = max {dil, djl} (3.5)

CL method gives priority to the compactness of the sets of objects, so that it tends to identify com-

pact balanced clusters with equal diameters. It also tends to be more robust against noise than the

SL method (Everitt et al., 2011). The CLINK algorithm proposed by Defays (1977) is a O
(
N2
)

imple-

mentation of the CL method. Furthermore, other O
(
N2
)

time and O
(
N2
)

space implementations

are described in Murtagh (1983) and Murtagh (1985).

3.1.1.3 Average-Link (or group average) method

First introduced by Sokal and Michener (1958) and, later, independently by Lance and Williams

(1966) and McQuitty (1966), the Average-Link (AL) method establishes that the proximity between

to exclusive clusters Ck and Cl equals to the average of the proximities between all possible pairs

of objects that are made up of one object from each cluster; i.e. the proximity between clusters is

determined by the group average criterion (Gan et al., 2007). There exist two different variants of

the AL criterion; the UPGMA method (unweighted pair group method using arithmetic averages):

d
(UPGMA)
kl =

1

NkNl

nk
Nk∑

q=nk
1

nl
Nl∑

r=nl
1

dxqxr , ∀xq ∈ Ck, ∀xr ∈ Cl, ∀Ck ∩Cl = ∅ (3.6)

where np
m the index of the mth object belonging to cluster Cp, and Nk and Nl are the number of

objects in clusters Ck and Ck, respectively; and the WPGMA method (weighted pair group method

using arithmetic averages):

d
(WPGMA)
kl =

nk
Nk∑

q=nk
1

nl
Nl∑

r=nl
1

(
1

2

)αk
q+αl

r

dxqxr , ∀xq ∈ Ck, ∀xr ∈ Cl, ∀Ck ∩Cl = ∅ (3.7)

where αp
m is the number of subclusters nested under the cluster Cp (including singleton clusters)

the object xm belongs to.

The linkage function defined by the UPGMA method can be derived by particularising the para-

meters in Lance-Williams formula according to the values αi = Ni

Nk
, αj =

Nj

Nk
, β = 0 and γ = 0

(Murtagh and Contreras, 2012):

d
(UPGMA)
kl = D (Ci ∪Cj ,Cl) =

Ni

Nk
dil +

Nj

Nk
djl (3.8)

whereas, in the case of the WPGMA method, the values of the parameters are αi =
1
2 , αj =

1
2 , β = 0

and γ = 0:

d
(WPGMA)
kl = D (Ci ∪Cj ,Cl) =

1

2
dil +

1

2
djl (3.9)

AL methods tend to join clusters with small variances and, although they also tend to give more

priority to the compactness than to the connectedness, they are usually considered as an interme-

diate option between SL and CL methods. Whereas WPGMA tends to identify more unbalanced
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clusters, since it weights objects in small clusters more highly than UPGMA, both methods are

relatively robust against noise (Everitt et al., 2011). Murtagh (1983) and Murtagh (1985) describe

O
(
N2
)

time and O
(
N2
)

space implementations of both UPGMA and WPGMA methods.

3.1.2 Geometric AHC methods

In geometric AHC methods, the proximity between two clusters is defined by means of linkage

criteria that represent each cluster in terms of its centroid –or centre point– Gan et al. (2007). The

three most widely used geometric AHC methods according to literature are Centroid method (see

section 3.1.2.1), Median method (see section 3.1.2.2) and Ward’s method (see section 3.1.2.3). Alt-

hough all these methods use the proximity between clusters’ centroids in order to define the pro-

ximity between clusters (see Figure 3.2), they present significant differences relating to both the

way the centroid of a new cluster is located and the way the proximity between two clusters is

measured from their centroids.

Figure 3.2: Geometric linkage criteria.

It is worth noting that geometric AHC methods are less used in practise that graph-based AHC

methods, since, among other reasons, they only support proximity measures based on represen-

tation spaces geometrically interpretable –e.g. Euclidean space–. Moreover, Centroid and Median

methods may give rise, unlike the rest of AHC methods detailed in the present thesis, to non-

monotonic dendrograms (Everitt et al., 2011); i.e. Centroid and Median methods do not guarantee

that the proximity level of any given cluster in the hierarchy is higher than those of its nested sub-

clusters (ni > nj < dN+ni ≥ dN+nj ; see Figure 3.3k for further details). Finally, discussions on

O
(
N2
)

time and O(N) space implementations of the geometric AHC methods next detailed can

be found in Murtagh (1983), Day and Edelsbrunner (1984), Murtagh (1984) and Murtagh (1985).

3.1.2.1 Centroid (or UPGMC) method

First introduced by Sokal and Michener (1958), the Centroid method (or UPGMC –unweighted

pair group method using centroids–) establishes that the proximity between to exclusive clusters

Ck and Cl equals to the proximity between their two respective centroids (Gan et al., 2007):

d
(UPGMC)
kl = dgkgl

, ∀Ck ∩Cl = ∅ (3.10)

where gk and gl are the centroids of clusters Ck and Cl, respectively.
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The linkage function defined by the UPGMC method can be derived by particularising the para-

meters in Lance-Williams formula according to the values αi = Ni

Nk
, αj =

Nj

Nk
, β = −NiNj

N2
k

and

γ = 0 (Murtagh and Contreras, 2012):

d
(UPGMC)
kl = D (Ci ∪Cj ,Cl) =

Ni

Nk
dil +

Nj

Nk
djl −

NiNj

N2
k

dij (3.11)

where Ni, Nj and Nk are the number of objects in clusters Ci, Cj and Ck, respectively.

In UPGMC method, the centroid of the merged cluster (gk) tends to be dominated by the centroid

of the more numerous subcluster, since gk =
Nigi+Njgj

Nk
, where gi and gj are the centroids of

clusters Ci and Cj , respectively.

3.1.2.2 Median (or WPGMC) method

First introduced by Gower (1967), the Median method (or WPGMC –weighted pair group method

using centroids–) establishes that the proximity between to exclusive clusters Ck and Cl equals to

the proximity between their two respective centroids (Gan et al., 2007):

d
(WPGMC)
kl = dgkgl

, ∀Ck ∩Cl = ∅ (3.12)

where gk and gl are the centroids of clusters Ck and Cl, respectively.

The linkage function defined by the WPGMC method can be derived by particularising the para-

meters in Lance-Williams formula according to the values αi = 1
2 , αj = 1

2 , β = −1
4 and γ = 0

(Murtagh and Contreras, 2012):

d
(WPGMC)
kl = D (Ci ∪Cj ,Cl) =

1

2
dil +

1

2
djl −

1

4
dij (3.13)

In WPGMC method, the centroid of the merged cluster (gk) is in an intermediate position between

the centroids of both subclusters, since gk =
gi+gj

2 , where gi and gj are the centroids of clusters

Ci and Cj , respectively.

3.1.2.3 Ward’s (or minimum variance) method

Proposed by Ward Jr. (1963) and Ward Jr. and Hook (1963), Ward’s method minimises the loss of

information associated with the merging of clusters Ci and Cj into the new cluster Ck. Ward’s

method quantifies the information loss by means of an error sum of squares (ESS) local objective

function, so that it is often referred to as the minimum variance method (Gan et al., 2007):

ESS (Ci) =
∑
x∈Ci

(x− gi) (x− gi)
T (3.14)
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where T denotes transposition, gi is the centroid of Ci and ESS (Ci) is the ESS of Ci. Thus, the

total within-cluster ESS is the objective function minimised at the nth step of the method:

ESS =
N+n∑

i=N+1

ESS (Ci) (3.15)

Ward’s method establishes that the proximity between to exclusive clusters Ck and Cl equals to

the weighted proximity between their two respective centroids (Gan et al., 2007):

d
(Ward′s)
kl =

NkNl

Nk +Nl
dgkgl

, ∀Ck ∩Cl = ∅ (3.16)

where Nk and Nl, on the one hand, and gk and gl, on the other hand, are both the number of

objects and the centroids of clusters Ck and Cl, respectively.

The linkage function defined by the Ward’s method can be derived by particularising the parame-

ters in Lance-Williams formula according to the values αi =
Ni+Nl

Nk+Nl
, αj =

Nj+Nl

Nk+Nl
, β = − Nl

(Nk+Nl)
2

and γ = 0 (Murtagh and Contreras, 2012):

d
(Ward′s)
kl = D (Ci ∪Cj ,Cl) =

Ni +Nl

Nk +Nl
dil +

Nj +Nl

Nk +Nl
djl −

Nl

(Nk +Nl)
2 dij (3.17)

where Ni, Nj , Nk, and Nl are the number of objects in clusters Ci, Cj , Ck and Cl, respectively.

In Ward’s method, the centroid of the merged cluster (gk) is located as in UPGMC method, i.e.

gk =
Nigi+Njgj

Nk
, wheregi andgj are the centroids of clustersCi andCj , respectively. Furthermore,

Ward’s method tends to identify balanced and spherical clusters.

3.1.3 Obtaining data partitions from a dendrogram

As aforementioned in section 2.3, the clustering solution resulting from an AHC algorithm is usua-

lly depicted by a dendrogram, which is a representation that provides very informative descrip-

tions and visualisation for the potential data clustering structures (Xu and Wunsch II, 2005). None-

theless, since a HC solution is nothing more than a sequence of hierarchical partitions of the data,

there exist different strategies that allow postprocessing the dendrogram in order to obtain an HPC

solution (i.e. obtaining a cluster label vector λ from a dendrogram ∆).

The first and most common approach to this issue is to derive a partition by simply cutting the den-

drogram at a certain proximity level (Murtagh and Contreras, 2012); i.e. to dismiss those clusters

(links in the dendrogram) whose proximity level is higher than some threshold (di > dth). Thus,

setting dth in order to perform the cut is a parameter selection problem, which can be posed either

previously determining the number of clusters in the HPC solution (K → dth → λ) or deriving

some criterion to determine dth from the information on the data provided by the dendrogram

(∆→ dth → λ). Whichever strategy applies, this approach always presents the same problem as

to the obtainment of an optimal HPC solution: the dendrogram has to contain the real clusters
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and they have to be the K clusters present at the Kth level in the hierarchy (i.e. the (N−K)th step

in Algorithm 2), otherwise they cannot be identified by a horizontal cut in the dendrogram.

Figure 3.3 illustrates the particularities and limitations of this approach by applying the seven dif-

ferent AHC methods detailed in sections 3.1.1 and 3.1.2 to the 4toy dataset presented in Figure 2.3a.

Since this dataset comprises 4 real clusters, every dendrogram has been cut at a dth calculated so

that a 4-cluster HPC solution is obtained. Different considerations can be stated:

• The limitations of this approach are clearly revealed by the fact that none of the seven meth-

ods leads to a dendrogram that allows recovering the 4 real clusters by means of any hori-

zontal cut and therefore identifying the optimal HPC solution.

• It is also worth noting that SL, UPGMA, WPGMA and UPGMC methods lead to dendrograms

that, while at different levels in the hierarchy, do contain the 4 real clusters present in the

(a) SL: Dendrogram (CPCC = 0.8 ; dth = 0.49). (b) SL: HPC solution.

(c) CL: Dendrogram (CPCC = 0.72 ; dth = 3.3). (d) CL: HPC solution.

(e) UPGMA: Dendrogram (CPCC = 0.85 ; dth = 1.7). (f) UPGMA: HPC solution.
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(g) WPGMA: Dendrogram (CPCC = 0.82 ; dth = 1.8). (h) WPGMA: HPC solution.

(i) UPGMC: Dendrogram (CPCC = 0.85 ; dth = 1.6). (j) UPGMC: HPC solution.

(k) WPGMC: Dendrogram (CPCC = 0.83 ; dth = 1.9). (l) WPGMC: HPC solution.

(m) Ward’s: Dendrogram (CPCC = 0.77 ; dth = 6.04). (n) Ward’s: HPC solution.

Figure 3.3: HC and HPC solutions on the 4toy dataset by means of graph-based AHC methods. (a) (c) (e)

(g) (i) (k) (m) Clusters over the horizontal cut in the dendrogram (black dashed line) are dismissed (grey

dotted links) to obtain a 4-cluster HPC solution. Ground truth’s cluster labels are shown on the x-axis, as

well as Cophenetic Correlation Coefficients (CPCC) and the proximity threshold levels (dth). (b) (d) (f)

(h) (j) (l) (n) Scatterplots: clusters of the HPC solution are depicted by colours (see legends).
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dataset, which makes these dendrograms better HC solutions than the rest, since they may

allow other more sophisticated approaches to identify the optimal HPC solution.

• Finally, the CPCC of the different dendrograms have been calculated before the cutting pro-

cess. As aforementioned in section 2.4.4, the obtained range of CPCC values ([0.72, 0.85])

indicates that CPCC does not adopt significantly high or low values depending on whether

the dendrogram contains the 4 real clusters or not, respectively. Nonetheless, it can be inter-

preted a slight tendency to lower CPCC values in the dendrograms that do not even contain

the 4 real clusters at different levels in the hierarchy (CL and Ward’s present the lowestCPCC

values, while WPGMC dendrogram breaks this tendency).

Hence, considering the shortcomings of this strategy, other approaches arise aiming to detect clus-

ters of interest at varying levels of the hierarchy (Murtagh and Contreras, 2012). One of the most

widely used is Zahn’s inconsistency criterion (ZIC), which establishes that, instead of determining

an horizontal cutting threshold, the dendrogram should be cut at its most inconsistent links (or

edges, in a minimum spanning tree), so that the most inconsistent clusters are dismissed, as well

as their superior clusters in the hierarchy (Zahn, 1971).

Given a cluster Ci and a sample di consisting on its own proximity level (di) and the proximity

levels of its most immediate nested clusters in the hierarchy
(
dN+i = [dN+i d∆i1 d∆i2 ...]

)
, ZIC defi-

nes the inconsistency of cluster Ci (ιi) as the extent di exceeds the sample average of di measured

in units of the sample standard deviation of di; i.e. ιi is defined as the standard score of di with

respect to di (Zahn, 1971):

ιi =
di − µdi

σdi

(3.18)

being µdi
and σdi

the sample average and the sample standard deviation of di, respectively:

µdi
=

1

M

M∑
j=1

dij , σdi
=

1

M

M∑
j=1

(
dij − µdi

)2
(3.19)

where dij and M are the jth observation and the length of sample di, respectively. Since obser-

vations in sample di are taken from a subtree of depth δ (a user-selected parameter that indicates

how many hierarchical levels of nested clusters under Ci are considered to obtain di), the length

of sample di directly depends on δ
(
M = 2δ − 1

)
.

Thus, once the dendrogram is completed according to Algorithm 2 and the inconsistency of its

links is calculated according to equation 3.18, a HPC solution can be obtained by cutting the den-

drogram at a certain inconsistency level; i.e. by dismiss those links whose inconsistency value is

higher than some threshold (ιi > ιth) and their higher (in proximity terms) links. Again, parame-

ter ιth can be determined either from a target value of K (K → ιth → λ) or from the information

provided by the dendrogram (∆→ ιth → λ).

Figure 3.4 illustrates how ZIC allows to obtain optimal HPC solutions from the four AHC methods

(SL, UPGMA, WPGMA and UPGMC) whose dendrograms (see Figure 3.3) contain the 4 real clusters
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present in the 4toy dataset at different levels in the hierarchy. Some conclusions about ZIC can be

obtained regarding these results:

• Although this approach does not need the dendrogram to include the optimal solution at

some level in the hierarchy, it does need the K optimal clusters to be preserved under the

most inconsistent links in the dendrogram. Hence, its performance still depends on obtai-

ning a well-aimed dendrogram in the first place.

• Since ZIC performs a local measure for the cluster inconsistency, the values of ιi and there-

fore the compliance of the condition mentioned in the previous point depend in great extent

on a proper selection of δ. Hence, while it can lead to better clustering results, this approach

involves a more complex parameter selection problem, given that two parameters are now

required to be successfully estimated: the proximity levels sample’s depth (δ) and the incon-

sistency threshold (ιth).

• Finally, having obtained an optimal HPC solution by means of four different AHC methods,

each one of the 4 clusters in the dataset is represented by four different subdendrograms. As

shown in Table 3.1, a CPCC can be calculated for each one of them.

C1 C2 C3 C4

SL + ZIC 0.68 0.61 0.72 0.73

UPGMA + ZIC 0.7 0.71 0.78 0.78

WPGMA + ZIC 0.65 0.69 0.77 0.77

UPGMC + ZIC 0.7 0.7 0.77 0.78

Table 3.1: CPCC values for clustering solutions in Figure 3.4.

In general terms, although CPCC values tend to be slightly lower for SL than for the rest

of methods, these results (all values contained in the [0.61, 0.78] interval) confirm that no

high values of CPCC (close to 1) should be expected unless the data fit some hierarchical

structure. Moreover, the absence of significantly low CPCC values (close to 0 or negative)

indicates that the structure of the data within each cluster is reasonably well represented by

the subdendrograms provided by the four methods.

There exist other different approaches to the issue of how to postprocess a dendrogram in or-

der to obtain an optimal HPC solution (Rapoport and Fillenbaum, 1972; Lerman, 1981; Murtagh,

2007; Langfelder et al., 2008). Notwithstanding, they all suffer from the same two main problems:

dendrogram-dependency (they all require as an input a dendrogram that somehow preserve the

real clusters in its structure) and tuning-dependency (they all define parameter-dependent proce-

dures whose performance is susceptible to an improper parameter tuning).

In fact, this two problems connect with some of the issues relative to the estimation of the optimal

number of clusters in a dataset. Considering several of the approaches to this matter exposed in
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(a) SL + ZIC: Dendrogram (δ = 3 ; ιth = 1.65). (b) SL + ZIC: HPC solution.

(c) UPGMA + ZIC: Dendrogram (δ = 4 ; ιth = 3.06). (d) UPGMA + ZIC: HPC solution.

(e) WPGMA + ZIC: Dendrogram (δ = 5 ; ιth = 2.73). (f) WPGMA + ZIC: HPC solution.

(g) UPGMC + ZIC: Dendrogram (δ = 3 ; ιth = 1.83). (h) UPGMC + ZIC: HPC solution.

Figure 3.4: HC and HPC solutions on the 4toy dataset by means of graph-based AHC methods combined

with ZIC. (a) (c) (e) (g) The most inconsistent links in the dendrogram (black dashed links + inconsistency

values), as well as higher links in the hierarchy (grey dotted links), are dismissed to obtain a 4-cluster

HPC solution. Ground truth’s cluster labels are indicated on the x-axis.(b) (d) (f) (h) Scatterplots: all HPC

solutions match the ground truth 100% (CI = 1).
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section 2.5.1, a dendrogram may seem to be an asset when it comes to determine the real value

of K (Geva, 1999). However, while dendrograms may feasibly be convenient representations that

allow identifying salient interrelationships and finding useful groups in a body of data, differing

results can be easily provided by a single dendrogram depending on the scenario and the postpro-

cessing strategy (Murtagh and Contreras, 2012), since they are both subordinate to open research

questions such as how to estimate the number of clusters in the dataset or how to choose optimal

cutting parameters (Langfelder et al., 2008).

In response to these limitations, proposals of parameter-free AHC adaptive algorithms arise with

the aim of applying cluster merging and isolation criteria that have an impact on the structure of

the dendrogram as it is being constructed, instead of postprocessing complete dendrograms.

3.2 Parameter-free AHC algorithms

Parameter-free AHC algorithms are proposed from an adaptive approach to clustering (see section

2.5.1), since they adaptively and dynamically adjust their behaviour in order to be flexible enough

to provide optimal results in a diversity of clustering scenarios. Besides, their own nature is free

of tunable parameters, so that their performance does not depend on user’s criteria or prior ex-

pectations. This specific approach to clustering is constituted by the algorithms proposed by Fred

and Leitão (2003) and Aidos and Fred (2011a), which are next detailed in sections 3.2.1 and 3.2.2,

respectively.

3.2.1 AHC under a hypothesis of smooth dissimilarity increments

The problem of cluster defining criteria has been addressed in various forms (see section 2.3.2).

Fred and Leitão (2000) propose a cluster isolation criterion based on a hypothesis of smooth dissi-

milarity increments between neighbouring objects within a cluster. Such a criterion is derived

from the notions that (i) dissimilarity between objects within a cluster should not occur with

abrupt changes and (ii) the merging of well-separated clusters incurs in abrupt changes in dis-

similarity values.

From this starting point, let X be a dataset constituted by a set of N D-dimensional objects, let

xi be an arbitrary object of X and let (xi, xj , xk) be the triplet of nearest neighbours obtained as

follows:

xj : j = argmin
l
{dxixl

} , ∀xl ∈ X | l ̸= i

xk : k = argmin
l

{
dxjxl

}
, ∀xl ∈ X | l ̸= i, l ̸= j

(3.20)

where dxixj expresses the proximity between objects xi and xj in terms of a dissimilarity measure.
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Figure 3.5: DID in different examples of clusters and data generation models (extracted from Fred and Lei-

tão (2003)). Histograms (bar graphs) of the dissimilarity increments computed over neighbouring objects

in the data approximately fit exponential functions (solid line curves). Examples include uniform, Gaus-

sian, ring-shaped and noisy grid clusters, as well as other different stochastic data generation models. The

dissimilarity measure used in all examples is the Euclidean distance.

Thus, the dissimilarity increment between neighbouring objects is defined as:

dinc (xi, xj , xk) =
∣∣dxixj − dxjxk

∣∣ (3.21)

which can be seen as the first derivative of the dissimilarity function at the first point of the list of

neighbouring objects in X ordered according to equation 3.20.

Figure 3.5 shows empirical evidence on how the dissimilarity increments between neighbouring
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objects within a cluster fit, regardless of the kind of cluster, a statistical distribution that, given its

smooth evolution, can be approximated in terms of an exponential probability density function:

p (x) = βe−βx, x > 0 (3.22)

where β is the rate parameter that defines the steepness of the dissimilarity increments distribu-

tion (DID). It is worth noting that distinct data generation models (i.e. clusters of different size,

shape and distribution) lead to very similar curves, while variations in the data dispersion level

(i.e. variations in the density of objects within the cluster) results in variations in the steepness of

the DID, which can be simply modelled by varying the value of β.

Hence, according to this empirical hypothesis, a single parametric model (i.e. the exponential

distribution defined in equation 3.22) can be utilised to characterise distinct kinds of clusters or

data generation paradigms. In addition, when considering two well-separated clusters, it seems

reasonable that dissimilarity increments between objects in different clusters are positioned far

on the tail of the DID associated with the other cluster. This notion is explored by Fred and Leitão

(2000) in order to define a cluster isolation criterion for AHC algorithms based on the SL method.

Since the nearest neighbour criterion (see equation 3.2) is the foundation of the SL method and

the dissimilarity increments between nearest neighbours (see equation 3.21) are the basis of the

model utilised to characterise clusters, Fred and Leitão (2000) propose to approximate dissimila-

rity increments by means of the gaps of the clusters (see Figure 3.6) in a SL-dendrogram. Thus,

being Ci and Cj two clusters candidate to be merged into a new cluster Ck at some step in the

agglomeration process, the gaps of clusters Ci and Cj (γi and γj , respectively) are defined as:

γi = dk − di = dij − di

γj = dk − di = dij − dj

(3.23)

Figure 3.6: Gaps of clusters Ci and Cj in a SL-dendrogram.

According to this approximation, the statistical distribution of the gaps (i.e. the DID) within a clus-

ter has a smooth evolution and should fit an exponential probability density function, whose data

dispersion is characterised by its rate parameter β, as well as its mean value
(
µ = 1

β

)
. Further-

more, gaps between clusters that do not belong to the same cluster in the ground truth solution

(i.e. increments computed for objects belonging to different real clusters) should have high values

located on the tail of the DID of each cluster; that is to say, gaps generated by the merging of two
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clusters that should not be merged are significantly higher than the mean value of the statistical

distribution of the gaps within each cluster.

Therefore, an isolation criterion to decide whether two clusters merge or not in an AHC algorithm

based on the SL method can be stated as (Fred and Leitão, 2000):

• Let Ci and Cj be two clusters candidate for merging, and γi and γj their respective gaps.

Let µi and µj the mean values of the gaps distributions within Ci and Cj , respectively. If

γi > αµi, cluster Ci is isolated and the agglomerative clustering process continue with the

remaining objects; ditto on Cj . If neither cluster exceeds the gap limit, Ci and Cj merge into

a new cluster and the agglomerative clustering process continue.

It is worth noting that the isolation criterion situates the tail of the gaps distribution beyond a

multiple (α) of its mean value. In order to obtain a clustering algorithm free of tunable parameters,

Fred and Leitão (2003) propose the following setting: α = 3.

Finally, since the estimation of the mean values of the gaps distribution may not be reliable for

very small cluster sizes, the computation of the isolation criterion replaces the term αµi by the

following dynamic threshold (Fred and Leitão, 2003):

γth (α, µi, nγi, nγj) = αµi widenfact (nγi, nγj) + deltafact (nγi) (3.24)

where nγi and nγj are the number of gaps within clusters Ci and Cj , respectively (i.e. the sizes

of the samples for the computation of µi and µj). The amplifying factor widenfact (nγi, nγj) is

a monotonous decreasing function of nγi and nγj , whose purpose is to enlarge the value of the

threshold γth with the aim of compensating for possible underestimations of the true distribution

mean when nγi and nγj are small and which is defined as:

widenfact (nγi, nγj) = 1 + 3

(
1− 1

1 + e−0.4(nγi−10)

)(
2− 1

1 + e−0.4(nγj−10)

)
(3.25)

In addition, since applying a multiplicative factor may not solve the underestimation problem of

µi when nγi is extremely low, the term deltafact (nγi) is added to the computation of the threshold

γth in order to boost near zero estimates of µi for extremely small sized clusters:

deltafact (nγi) = bigval

(
1− 1

1 + e−10(nγi−5)

)
(3.26)

where bigval is a large positive number.

Thus, the isolation criterion defined according to the dynamic threshold in equation 3.24 gives rise

to the first version of the SL-DID clustering algorithm (see Algorithm 3), which is a parameter-free

AHC algorithm that combines elements from both graph-based and model-based approaches to

clustering: graph-based, since it implements the SL method, and model-based, since it is defined

by a cluster isolation criterion that models the DID in probabilistic terms. Moreover, since it is able

to reject cluster unions, SL-DID is a more flexible algorithm than any implementation of the basic
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AHC method (see Algorithm 2). Despite this fact, its flexibility is certainly limited insomuch as a

merging rejection involves the isolation of, at least, one of the two clusters candidate for merging

(in the most flexible case, only one of the candidates is still able to participate in further unions,

whereas the other is definitely isolated as one of the final clusters in the clustering solution).

As shown in Algorithm 3, SL-DID produces a data partitioning and simultaneous accessibility to

the intrinsic data inter-relationships in terms of a dendrogram-type graph; i.e. SL-DID allows to

automatically obtain a twofold clustering solution, since it simultaneously results in a HPC solu-

tion (represented by λ) of a certain number of clusters (K) and in an AHC solution (represented

Algorithm 3 First version of the SL-DID algorithm (adapted from Fred and Leitão (2003)).

1: Input : Dataset X and parameter α ◃ Default setting: α = 3

2: procedure

3: MP : MP (i, j)← dxixj , ∀xi,xj ∈ X | i ̸= j

4: λ : λi ← i, ∀ i ∈ {1, N} ◃ Initially, P = {C1, ...,CN} | Ci = {xi}

5: ∆ : ∆i ← [0 0 0] , ∀ i ∈ {1, N−1}

6: di ← 0, nγi ← 0, µi ← 0, ∀ i ∈ {1, N}

7: k ← N+1

8: while MP ̸= ∅ do

9: (m, p)← argmin(q,r) {MP (q, r)} , dij ← min {MP }

10: i← λm, j ← λp

11: γi ← dij − di, γj ← dij − dj

12: if (γi < γth (α, µi, nγi, nγj)) ∧ (γj < γth (α, µj , nγj , nγi)) then

13: λl ← k, ∀ l ∈ {1, N} | λl = i, λl = j ◃Ck = Ci ∪Cj

14: ∆(k−N) ← [ i j dij ]

15: dk ← dij , nγk ← nγi + nγj + 2, µk ← nγi

nγk
µi +

nγj

nγk
µj +

1
nγk

(γi + γj)

16: k ← k+1

17: Update MP : Dismiss the proximities between objects belonging to Ci and Cj

18: else

19: if (γi ≥ γth (α, µi, nγi, nγj)) then

20: Update MP : Dismiss all the proximities relative to objects belonging to Ci

21: end if

22: if (γj ≥ γth (α, µj , nγj , nγi)) then

23: Update MP : Dismiss all the proximities relative to objects belonging to Cj

24: end if

25: end if

26: end while

27: end procedure

28: Output : Label vector λ and dendrogram ∆
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by ∆) composed of K dendrograms, each one of which describes the internal structure of a single

hard cluster; ∆ actually includes K independent dendrograms and its lasts K−1 rows are empty(
∆i = [0 0 0] , ∀ i ∈ {N−K+ 1, N−1}

)
. This fact is illustrated in Figure 3.7, which shows the final

clustering solution provided by SL-DID algorithm on the 4toy dataset previously used in Figures

3.3 and 3.4.

(a) SL-DID: AHC solution. (b) SL-DID: HPC solution.

Figure 3.7: AHC and HPC solutions on the 4toy dataset by means of SL-DID algorithm. (a) The AHC

solution comprises four dendrograms, one for every cluster in the HPC solution. (b) The HPC solution

matches the ground truth 100% (CI = 1).

It is worth noting the insight into the nature of the dataset gained from this twofold clustering solu-

tion. Apart from the fact that the optimal HPC solution is reached (it equals the ground truth), the

absence of significantly low CPCC values (see Table 3.2) indicates that internal structure of clusters

is properly represented by the resultant dendrograms, even though clusters are not hierarchically

structured and therefore high CPCC values are not obtained either.

C1 C2 C3 C4

0.68 0.72 0.61 0.73

Table 3.2: CPCC values for dendrograms in Figure 3.7a.

Thus, the dendrograms provide useful information on the constitution (size, density and some no-

tions on the objects distribution) of the clusters: e.g. whereas C1 is the most dense and compact

cluster, C3 is the most populated and C4 is the smallest and sparsest cluster in the dataset. In ad-

dition, dendrograms allows to identify and contextualise each individual object within its cluster:

core and frontier objects can be located, as well as neighboring objects, potential central represen-

tatives or possible outliers.

Concerning the computational requirements, the behaviour of SL-DID is O
(
N2
)

in storage terms

and O
(
N2 logN

)
in time terms:

• As stated in section 2.2, the computation of MP (see line 3 in Algorithm 3) requires the sto-

rage of N2−N
2 different proximity values. In addition, whereas λ and ∆ respectively require

to store N and 3 (N−1) values (see lines 4 and 5), the storage requirements of the rest of va-
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riables (see line 6) vary in the range [N, 2N−1] (see line 15), since their size depends on the

number of hard clusters the algorithm identifies (K), which may vary in the range [1, N ].

Therefore, due to the requirements of MP , SL-DID is an O
(
N2
)

algorithm in storage terms.

• While the initialisation of the rest of variables linearly depends on N, N2−N
2 proximities have

to be calculated to obtain MP , which involves a N2-dependent computation time. However,

the minimum value of MP needs to be sought at every stage of the agglomeration process

(see line 9). In order to optimise this step, the values in MP can be previously sorted by

means of O(n log n) sorting algorithms such as Quicksort, Mergesort or Heapsort, being n

the number of elements to be sorted (Knuth, 1998). Since SL-DID requires to sort N2−N
2

proximities, this sorting step involves a
(
N2 logN

)
-dependent computation time.

As for the rest of the agglomeration process, it is not finished while MP is not empty (see

line 8). Considering that the proximities between objects belonging to Ci and Cj are always

dismissed regardless of whether they merge into a new cluster or not (see lines 17, 20 and

23), the maximum possible number of agglomeration stages is N−1, since no more than

N−1 pairs of clusters can arise as candidates for merging (see line 4 in Algorithm 2). Apart

from the updating of MP (it involves N2−N
2 dismissing operations in total, which leads to a

N2-dependent computation time), the rest of operations performed at every agglomeration

stage (see lines 9–16, 19 and 22) are independent from N, which, given that no more than

N−1 stages are possible, involves a N-dependent computation time.

Therefore, due to the requirements of the sorting step, SL-DID is an O
(
N2 logN

)
algorithm

in time terms, although this behaviour is usually referred as O
(
N2
)

, since the logN factor is

negligible in front of the N2 factor when N tends to be large.

Finally, Fred and Leitão (2003) provide a set of experimental results that illustrate the performance

of SL-DID algorithm on a diversity of both synthetic and real datasets and in comparison with ot-

her clustering algorithms. SL-DID prove to be a highly versatile algorithm in identifying clusters

of different sizes, shapes, densities and distributions, intrinsically finding the number of clusters

without the requirement of any user intervention. In general terms, interesting results are obtai-

ned when clustering synthetic datasets, whereas the performance of SL-DID significantly worsens

when clustering both synthetic datasets with touching or overlapped clusters of similar densities

and real datasets –which also include touching and overlapped clusters– Fred and Leitão (2003,

Section 5, pages 951–954). The cluster isolation criterion SL-DID is based on is the reason for this

behaviour, since it rejects abrupt dissimilarity changes (i.e. large gaps) to avoid the merging of

well-separated clusters. If two clusters with a similar density of objects are touching or overlapped

enough to not incur in a significantly large gap, the criterion is not able to isolated them separately,

being this the main limitation of SL-DID in terms of performance.
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3.2.2 AHC based on high order dissimilarities

While it gives rise to a highly versatile parameter-free AHC algorithm (SL-DID), the estimation of

the DID between neighboring objects in terms of an exponential function proposed by Fred and

Leitão (2000) is just an empirical approximation. In order to obtain a more accurate estimation,

Aidos and Fred (2011b) analytically derive a general statistical model for the DID under milder

approximations.

Assuming that data come from a cluster with a 2-dimensional Gaussian distribution as an underl-

ying hypothesis, the DID between neighboring objects within a cluster can be analytically expres-

sed as (Aidos and Fred, 2011b):

p (ω;µ) =
π
(
2−
√
2
)2

4µ2
ω e

(
−π(2−

√
2)2

4µ2 ω2

)
+

π2
(
2−
√
2
)3

8
√
2µ3

 4µ2

π
(
2−
√
2
)2 − ω2

 e

(
−π(2−

√
2)2

8µ2 ω2

)
erfc

√π
(
2−
√
2
)

2
√
2µ

ω

 (3.27)

where ω is an stochastic variable that represents the values of the dissimilarity increments within

the cluster, µ is its first moment (µ = E [ω]) –i.e. the mean value of the dissimilarity increments–

and erfc is the complementary error function (Andrews, 1998):

erfc (x) =
2√
π

∫ +∞

x

e−t2dt (3.28)

It is worth noting that, in spite of having assumed a 2-dimensional Gaussian distributed cluster,

this approximation for the DID only depends on ω and µ, so that it can be applied to other higher-

dimensional cluster distributions –Aidos and Fred (2011b) provide empirical evidence that con-

firms the possibility of this generalisation–.

Thus, Aidos and Fred (2011a) propose to incorporate this analytical model for the DID in a second

version of the SL-DID algorithm –it has been also applied in the design of a HPC algorithm (Ai-

dos and Fred, 2011c)–, whose schematic description is shown in Algorithm 4. This new version

presents several differences in comparison with Algorithm 3, which are next summarised:

• Small clusters receive a different treatment than the rest (see lines 6–19 in Algorithm 4, being

Ni and Nj the number of objects in clusters Ci and Cj , respectively). According to Aidos

and Fred (2011a), 6 is the minimum number of objects a cluster has to contain in order that

a rough estimation of its DID may be computed. Therefore, if both candidate clusters have

less than 6 objects, they automatically merge into a new cluster. Furthermore, if only one of

the candidates has less than 6 objects and the mean value of its gaps distribution (µi and µj

are the mean values of the gaps distributions of clusters Ci and Cj , respectively) does not

fall in the tail of the DID of the other candidate, both clusters also merge.

• The merging of large enough clusters (whose number of objects is greater than 6) is subject
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to a test similar to the isolation criterion the Algorithm 3 is based on (see lines 21–27, being

γi and γj the gaps of clusters Ci and Cj , respectively): those clusters candidate whose gap

falls in the tail of the DID of the other candidate are definitely isolated for the rest of the

agglomeration process.

• In case none of the two clusters candidate for merging is isolated, an MDL criterion is applied

in order to determine whether these two clusters finally merged or not (see lines 28–34).

Being p (ω;µ) the DID stated in equation 3.27, the description length for cluster Ci is defined

as:

DL (Ci) =
1

2
(1− log (12)) + log (µi) +

1

2
log I (µi)− log (p (ωi;µi)) (3.29)

where I (·) is the expected Fisher information
(
I (µi) = −E

[
∂2p(ωi;µi)

∂2µi

])
. Thus, the resultant

MDL criterion is that defined in line 29.

• Algorithm 4 is certainly more flexible than Algorithm 3, since it allows to reject possible clus-

ter unions without necessarily involving the definitive isolation of, at least, one of the two

clusters candidate for merging (see lines 12, 18 and 33), so that they are still able to merge

with other clusters at further stages of the agglomeration process.

Algorithm 4 Schematic description of the second version of the SL-DID algorithm (extracted from

Aidos and Fred (2011a)).

1: Input : Dataset X

2: procedure

3: Each object is a cluster.

4: repeat

5: The most similar pair of clusters not yet tested (Ci,Cj) is chosen.

6: if (Ni < 6) ∧ (Nj < 6) then

7: Ci and Cj merge into a new cluster.

8: else if (Ni ≥ 6) ∧ (Nj < 6) then

9: if (µj < 7µi) then

10: Ci and Cj merge into a new cluster.

11: else

12: Ci and Cj do not merge into a new cluster.

13: end if

14: else if (Ni < 6) ∧ (Nj ≥ 6) then

15: if (µi < 7µj) then

16: Ci and Cj merge into a new cluster.

17: else

18: Ci and Cj do not merge into a new cluster.

19: end if

20: else
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21: γi and γj are computed.

22: if γi is in the tail of Cj then

23: Ci is isolated.

24: end if

25: if γj is in the tail of Ci then

26: Cj is isolated.

27: end if

28: if γi is not in the tail of Cj and γj is not in the tail of Ci then

29: DL (Ci), DL (Cj) and DL (Ci ∪Cj) are computed.

30: if (DL (Ci ∪Cj) ≤ DL (Ci) +DL (Cj)) then

31: Ci and Cj merge into a new cluster.

32: else

33: Ci and Cj do not merge into a new cluster.

34: end if

35: end if

36: end if

37: until All pairs of clusters should not be merged.

38: end procedure

39: Output : Label vector λ and dendrogram ∆

Concerning the computational requirements, Algorithm 4 behaves similarly to Algorithm 3; i.e. it

is O
(
N2
)

in storage terms, and O
(
N2 logN

)
in time terms (Aidos and Fred, 2011a).

Finally, experimental results show that the performance of both versions of SL-DID algorithm is

equivalent. While synthetic clusters of different sizes, shapes, densities and distributions are pro-

perly identified in a parameter-free environment, both synthetic datasets with touching or over-

lapped clusters of similar densities and real datasets cause a significant decrease in the perfor-

mance of both versions of the algorithm (Aidos and Fred, 2011a, Section 4.3, Table 2, page 291).

3.3 Discussion

While postprocessing dendrograms proceeded from basic AHC methods has proved to be an in-

sufficient strategy in order to guarantee a proper estimation of the real number of clusters in a

dataset (see section 3.1.3), parameter-free AHC algorithms resulting from combining graph-based

(SL methods) and model-based (probabilistic modelling of the nature of clusters) approaches to

clustering seem to be a more proper choice to such a task.

In addition, algorithms proposed by Fred and Leitão (2003) and Aidos and Fred (2011a) suitably

fit the characteristics of the scenario arisen from posing the modelling of learners’ activity in on-
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line discussion forums as a clustering problem, since they have proved to be versatile enough to

identify clusters of different nature and characteristics (see sections 3.2.1 and 3.2.2). The twofold

clustering solution (both partitional and hierarchical) they result in by means of a free of tunable

parameters procedure allows to automatically determine the number of clusters, to perform a vi-

sual exploration of the data and to contextualise each individual object within its cluster. However,

the scope of application of these algorithms is limited by its lack of good results when dealing with

datasets that present touching or overlapped clusters of similar density, which can be a serious

drawback in highly context-dependent clustering scenarios.

In this context and with the purposes of both outperforming the previous algorithms of its class

and being a more suitable choice to model learners’ activity in online discussion forums, the main

contributions of the present thesis are presented and described in Chapter 4: the design of a novel

parameter-free AHC algorithm based on the definition of two new cluster merging criteria.



Chapter 4

A novel parameter-free AHC

algorithm based on two new cluster

merging criteria

As aforementioned in the previous chapter, parameter-free AHC algorithms proposed so far in the

literature lack good performance results when handling touching or overlapped clusters of similar

density. This limitation seems to be caused by the nature of the cluster isolation criterion they

are based on (see section 3.2 for further details). Thus, possible ways to improve this deficiency

might be both to enhance the existing criterion and to combine different criteria with the aim of

compensating their respective lacks. Therefore, with the goal of overcoming these deficiencies

and improving the current approach to parameter-free AHC, this chapter is focused on presenting

the main contributions of the present thesis, which can be summarised into the definition of two

new cluster merging criteria and the design of a novel parameter-free AHC algorithm derived from

these criteria, whose characteristics are analysed both in comparison with previous parameter-

free AHC algorithms and in terms of its computational requirements.

For that purpose, this fourth chapter is structured as follows. Two new cluster merging criteria

are defined and presented in section 4.1; a novel parameter-free AHC algorithm derived from the

proposed criteria is implemented and described in detail in section 4.2; the computational requi-

rements, both in terms of storage and time, of the proposed algorithm are analysed in section 4.3;

and, finally, the main differences and significant improvements of the new algorithm with respect

to its predecessors are discussed in section 4.4.

93
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4.1 Beyond the cluster isolation criterion based on dissimila-

rity increments

Parameter-free AHC algorithms existing to date derive from the cluster isolation criterion stated

by Fred and Leitão (2000), which is based on a model of the dissimilarity increments distribution

(DID) between neighbouring objects (see section 3.2). Nonetheless, despite their interesting fea-

tures and very promising results, both versions of the SL-DID algorithm derived from this cluster

isolation criterion (Fred and Leitão, 2003; Aidos and Fred, 2011a) present problems for identifying

both touching and overlapped clusters (see sections 3.2.1 and 3.2.2).

The reasons for these limitations can be found in the initial notions the cluster isolation criterion

proposed by Fred and Leitão (2000) is based on, which states that (i) dissimilarity between objects

within a cluster should not occur with abrupt changes and that (ii) the merging of well-separated

clusters incurs in abrupt changes in dissimilarity values. Whereas the first statement leads to the

ability of the probabilistic model derived from this criterion to successfully fit clusters of all kind,

the second statement clearly indicates the reasons for the lack of performance of both versions of

SL-DID algorithm: since both touching and, specially, overlapped clusters are not well-separated,

they do not provoke abrupt changes in dissimilarity values and they cannot therefore be isolated

by the criterion.

Hence, with the aim of overcoming these limitations, it is at this point where the main contribution

of the present thesis arises, which can be defined as the implementation of a novel parameter-

free AHC algorithm –whose full design is described and analysed in section 4.2– that improves the

abilities of SL-DID algorithm by satisfying the following premises:

• Maintaining the upsides of SL-DID algorithm, which can be mainly summarised into having

a behaviour free of tunable parameters, generating twofold clustering solutions and being

able to handle clusters of any kind.

• Gaining the ability of successfully dealing with touching and overlapped clusters.

• Not involving a significant increase of the computational requirements in comparison to SL-

DID algorithm, whose behaviour is O
(
N2
)

in storage terms and O
(
N2 logN

)
in time terms.

• And, as a consequence of the previous premises, having a wider scope of application than

that of SL-DID algorithm (see Chapter 5 for further details).

Thus, in order to achieve these improvements, this novel algorithm bases the decision about whet-

her a pair of clusters merge or not on two different new cluster merging criteria, whose definitions

are main contributions of the present thesis as well. While the first new cluster merging criterion
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can be seen as an improved version of the cluster isolation criterion proposed by Fred and Lei-

tão (2000), the second new cluster merging criterion is put forward to compensate for the main

limitation of criteria exclusively based on the DID:

1. The LSS criterion (LSS refers to Local Standard Score): a cluster merging local criterion

whose main difference from the cluster isolation criterion proposed by Fred and Leitão (2000)

–whilst being directly derived from it– resides in the local and density-dependent nature of

its threshold decision, which improves the behaviour of the criterion in the frontier regions

between barely-separated, or even touching, clusters (see section 4.1.1 for further details).

2. The GCSS criterion (GCSS refers to Global Cumulative Standard Score): a cluster merging

global criterion which, based on the progressive increment of the cumulative proximity le-

vels within each cluster throughout the agglomeration process –which do incur in abrupt

changes when clusters, well-separated or not, merge–, allows to avoid possible erroneous

cluster unions between both touching and overlapped clusters (see section 4.1.2 for further

details).

4.1.1 The LSS cluster merging criterion

In order both to gain an insight into the downsides of the cluster isolation criterion proposed by

Fred and Leitão (2000) and to understand the improvement a local cluster merging criterion may

involve, let the 2bars dataset shown in Figure 4.1a be considered (see section 5.2.2.3 for further

details).

(a) Scatterplot of the 2bars dataset. (b) 2bars dataset: SL-dendrogram.

Figure 4.1: The 2bars dataset.

It is a 2-dimensional synthetic dataset consisting of two nearly balanced clusters (C1 and C2)

whose density of objects progressively diminishes. Such a distribution gives rise to a frontier bet-

ween clusters delimited by a high-density region and a low-density region, each one belonging to

a different cluster. This dataset has been previously used in the literature with the aim of exposing

some limitations of the basic AHC algorithm based on the SL method (Aidos and Fred, 2011a, Sec-

tion 3.3, Figure 4, page 288). Thus, the resultant SL-dendrogram on the 2bars dataset is shown in

Figure 4.1b.
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At a certain stage of the agglomeration process, a pair of clusters candidate for merging (Ci and

Cj) arises. Being two remarkably unbalanced clusters (Ni = 3 , Nj = 666), they both merge into a

new cluster in the dendrogram (Ck) as shown in Figure 4.2. This precise merging presents several

peculiarities:

• Ci is entirely composed by objects belonging to C1, whereas Cj is constituted only by ob-

jects belonging to C2; i.e. Ci ⊂ C1 and Cj ⊂ C2. Thus, it is a troublesome merging, since

it results in a new cluster composed of objects belonging to different clusters in the ground

truth, and algorithms like SL-DID or the one proposed in the present chapter should there-

fore reject it.

• The merging takes place before both C1 and C2 are completely formed in the dendrogram

and, as shown in Figure 4.2b, it does not cause any significantly high gap with respect to the

gaps already existing within Ci or Cj .

• The neighbouring objects (xm ∈ Ci and xp ∈ Cj) that give rise to the merging belong to very

different regions in density terms: xm belongs to the lowest density region in C1, whereas xp

belongs to the highest density region in C2.

(a) Candidate clusters Ci and Cj . (b) Ci and Cj in the SL-dendrogram.

Figure 4.2: 2bars dataset: detail of the agglomeration process. (a) Zoom in on the scatterplot in Figure 4.1a.

Candidate clusters Ci and Cj are depicted by colours (see legend); the proximity between neighbouring

objects is green-coloured. (b) Zoom in on the dendrogram in Figure 4.1b. Ci and Cj can be identified

according to their respective colours in Figure 4.2a; the link resulting from the merging is green-coloured.

Considering the perspective of the cluster isolation criterion the SL-DID algorithm is based on, this

particular merging presents two problems that prevent the algorithm from accurately identifying

C1 and C2 (the real clusters present in the ground truth of the dataset):

• Despite of being a non-desirable merging, it cannot be rejected by the cluster isolation crite-

rion proposed by Fred and Leitão (2000), since neither of the generated gaps falls in the tail

of the DIDs of Ci and Cj , respectively.

• According to the behaviour of the SL-DID algorithm in its first version (its second version

is certainly more flexible), if the merging were hypothetically rejected, at least one of the
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candidate clusters (Ci, Cj , or both) would keep isolated for the rest of the agglomeration

process, which would involve that at least one of the clusters in the ground truth (C1, C2 or

both) could not be properly identified by the algorithm.

Nevertheless, from a local perspective, it can be observed that the proximity between neighbou-

ring objects xm and xp (i.e. the proximity between clusters Ci and Cj) is significantly high in

comparison with the proximities between objects existing in the vicinities of xm and, specially,

xp, which belongs to the high-density region in cluster Cj .

Thus, with the aim of increasing the robustness of the clustering process, as well as to improve its

flexibility in case the merging between candidate clusters is rejected, the LSS criterion is defined

under the following premises:

1. The union between candidate clusters Ci and Cj will be rejected if any of the gaps caused by

the merging falls in the tail of the DIDs existing in the vicinities of neighbouring objects xm

and xp. In this way, and continuing with the 2bars dataset example, the merging between

candidate clusters would be rejected from the point of view of Cj , since its gap would fall in

the tail of the DID present in the vicinity of xp, which is composed of objects much nearer to

xp than to xm.

2. In case of rejection, any of the candidate clusters will not be isolated. Since the merging

criterion operates in local terms, the nature of the rejection will be considered local as well.

Hence, in case of local rejection, candidate clusters will remain separated and pairwise pro-

ximities between objects belonging to the vicinities ofxm andxp will be dismissed from the

proximity matrix of the dataset. In this way, Ci and Cj would not merge through this local

region (defined by xm, xp and their respective vicinities), but there would remain the possi-

bility that they merge in further stages of the agglomeration process through a different local

region (defined by a different pair of neighbouring objects and their respective vicinities).

Clearly, these premises require of the LSS criterion both to identify the vicinities of the neighbou-

ring objects and to estimate their DIDs at every stage of the agglomeration process. Apart from the

need of a proper definition of vicinity, such a requirement may certainly increase the computatio-

nal cost of the clustering process. Therefore, the following question arises:

• How the vicinity of every object in the dataset can be defined during the agglomerative cons-

truction of the dendrogram without involving a significant increase of the computational

cost of the clustering process?

Considering that the vicinity of an object has to be necessarily defined by the nearest neighbours

of the object in the dataset, it can be properly estimated from the hierarchy of clusters represen-

ted in the dendrogram, since an SL-dendrogram defines clusters of nearest neighbouring objects.
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Hence, the LSS criterion establishes that the vicinity of an object xi is defined by that cluster Cυi

which is the smallest cluster in the dendrogram that contains xi and whose size is greater than

or equal to a certain threshold size (Nυi ≥ NMIN ) –i.e. the smallest cluster in the dendrogram

that contains a minimum amount of objects, including xi–.

Such a criterion is illustrated in Figure 4.3, where, continuing with the 2bars dataset example, the

vicinity of xp is defined by cluster Cυp (i.e. that subcluster of Cj which contains a minimum

amount of objects, including xp). As shown in Figure 4.3b, it is worth noting the significant dif-

ference existent between the gap resulting from the merging when considering Cj and the gap

resulting from the merging when considering Cυp .

(a) Vicinities of xm and xp. (b) Cυm and Cυp in the SL-dendrogram.

Figure 4.3: 2bars dataset: detail of the vicinities of two neighbouring objects. (a) Zoom in on the scatter-

plot in Figure 4.1a. The vicinities of xm and xp are clusters Cυm and Cυp , respectively, which are depicted

by colours (see legend); the proximity between neighbouring objects is green-coloured. (b) Zoom in on the

dendrogram in Figure 4.1b. Cυm and Cυp can be identified according to Figure 4.3a; differences between

the resultant gaps considering Cj (green link) and Cυp (green dashed link) are illustrated.

Thus, let X be a dataset constituted by a set of N D-dimensional objects. Given an agglomeration

process of the objects in X based on the SL method, let xm and xp be a pair of neighbouring

objects in X that give rise to a pair clusters (Ci and Cj) candidate for merging (xm ∈ Ci and

xp ∈ Cj). Finally, let dij be the proximity between clusters Ci and Cj according to the SL method(
dij = dxmxp

)
. The LSS criterion determines whether Ci and Cj should merge into a new cluster

or not and it is defined as follows.

Firstly, let Cx be any given cluster in the dendrogram ∆ resulting from the agglomeration process

of the objects in X and let γx be the sample consisting of the gaps nested within Cx. The standard

score statistic of cluster Cx (ssx) is defined as the standard score of the largest gap within Cx (Γx)

with respect to γx:

ssx =
Γx − µx√
σx − µ2

x

(4.1)

where Γx = max {γx}, and µx and σx are the first and second moments of γx, respectively:

µx =
1

nγx

nγx∑
l=1

γxl
, σx =

1

nγx

nγx∑
l=1

γ2
xl

(4.2)

being γxl
and nγx the lth observation and the length of sample γx, respectively.
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Secondly, let Cυm be the cluster in ∆ which defines the vicinity of the neighbouring object xm.

Cυm is defined as that subcluster of Ci which contains, at least, NMIN objects, including xm:

Cυm : υm = argmin
l
{Nl} , ∀Cl ⊂ Ci | xm ∈ Cl, Nl ≥ NMIN (4.3)

where Nl is the number of objects in cluster Cl. Since the size of the local vicinity is relative with

respect to the total size of the dataset, the value of NMIN is defined as 1% of the number of clusters

in X (NMIN = 0.01N).

Thus, the LSS criterion determines that Ci is suitable for merging with Cj if the standard score

statistic of Cυm (ssυm) is greater than or equal to the following dynamic merging threshold:

lssth(dij ,Cυm ,Ci, NMIN ) =

lssth(dij , dυm , µυm , συm , nγυm , cdυm , Nυm , cdi, Ni, NMIN ) = γ′
υm
− µ′

υm√
σ′
υm
− µ′2

υm

 Φ(cdυm , Nυm , cdi, Ni) ΨL(Ni, NMIN )

(4.4)

where γ′
υm

is the gap that would appear if Cυm merged with Cj

(
γ′
υm

= dij−dυm

)
. Similarly, µ′

υm

and σ′
υm

are the first and second moments of γ′
υm

, which is the sample consisting of the union of

γυm
and γ′

υm

(
γ′
υm

= γυm
∪ γ′

υm

)
, respectively:

µ′
υm

=
µυmnγυm + γ′

υm

nγυm + 1
, σ′

υm
=

συmnγυm + γ′2
υm

nγυm + 1
(4.5)

Therefore, the merging rule derived from the LSS criterion is defined as follows:

• If the LSS criterion is met from the vicinities of xm (ssυm ≥ lssth(dij ,Cυm ,Ci, NMIN )) and

xp

(
ssυp ≥ lssth

(
dij ,Cυp ,Cj , NMIN

))
simultaneously, Ci and Cj merge into a new cluster.

• Otherwise, Ci and Cj remain separated and pairwise proximities between objects belon-

ging to Cυm and Cυp are dismissed from the proximity matrix of the dataset and, hence, not

anymore considered for the rest of the agglomeration process.

It is worth noting that the LSS criterion essentially defines a comparison between the largest gap

within Cυm (Γυm) and the hypothetical gap
(
γ′
υm

)
that would appear on Cυm as a result of its

hypothetical merging with Cj (see the green dashed link in Figure 4.3b); if γ′
υm

is not significantly

higher than Γυm , Ci will be suitable for merging with Cj .

Finally, on the one hand, Φ(cdυm , Nυm , cdi, Ni) is a density factor whose purpose is to relax the

LSS criterion when the neighbouring object is located in a low-density region of its cluster:

Φ(cdυm , Nυm , cdi, Ni) = Φ(drυm
i ) =

0.75

1 + e10(dr
υm
i −0.8)

+ 0.25 (4.6)

being drυm
i the density rate, which indicates the density in the vicinity of the neighbouring object

(Cυm) with respect to the density of the candidate cluster (Ci):

drυm
i =

(
cdυm

Nυm

)(
Ni

cdi

)
(4.7)



100 Chapter 4. A novel parameter-free AHC algorithm based on two new cluster merging criteria

The factor
(

cdx

Nx

)
is an estimation of the average proximity between objects in cluster Cx, so that

it provides an estimated measure of the density of Cx, where Nx is the number of objects in Cx

and cdx is the cumulative proximity level in Cx (i.e. the sum of the proximity levels of the clusters

nested in Cx and the proximity level of Cx):

cdx =
x∑

l=1

dl, ∀Cl ⊆ Cx (4.8)

Thus, the density rate defined in equation 4.7 (drυm
i ), which results from the ratio between the

estimated densities of Cυm and Ci, gives a measure of how dense is Cυm with respect to Ci: if Cυm

is located in a high-density region of Ci, the value of drυm
i will tend to be lower than 1 (drυm

i < 1);

if Cυm is located in a low-density region of Ci, the value of drυm
i will tend to be similar to or higher

than 1 (drυm
i & 1).

Hence, as shown in Figure 4.4a, in case that the neighbouring object is located in a high-density

region, the density factor defined in equation 4.6 (Φ) keeps approximately equal to 1, which has

no effect; however, if the neighbouring object is located in a low-density region, the value of Φ di-

minishes, which causes a decreasing of the value of lssth and the LSS criterion is therefore relaxed.

(a) Detail of the density factor Φ
(
drυm

i

)
. (b) Detail of the size factor ΨL(sri).

Figure 4.4: LSS criterion: dynamic factors present in the merging threshold lssth.

And on the other hand, ΨL(Ni, NMIN ) is a size factor whose purpose (similar to the purpose of the

factors widenfact and deltafact defined by Fred and Leitão (2003); see equation 3.24) is to inhibit

the LSS criterion when the size of the candidate cluster is small and, hence, to avoid local rejections

at too early stages of the agglomeration process:

ΨL(Ni, NMIN ) = ΨL(sri) =
0.9

1 + e−10(sri−1)
+ 0.1 (4.9)

being sri the size rate, which indicates the size of the candidate cluster (Ci) with respect to the

total size of the dataset:

sri =
Ni

10NMIN
(4.10)
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Thus, if the size of Ci is less than 10NMIN (10% of the total size of the dataset), the value of sri is

less than 1, whereas sri is greater than 1 otherwise. Therefore, as shown in Figure 4.4b, the inhi-

bition of the LSS criterion performed by the size factor ΨL disappears as the size of the candidate

cluster exceeds the 10% of the total size of the dataset.

4.1.2 The GCSS cluster merging criterion

Whilst it does go beyond the cluster isolation criterion proposed by Fred and Leitão (2000), the LSS

criterion may certainly be insufficient by itself in case of dealing with overlapped clusters –or with

non-overlapped but highly close clusters–, whose merging can easily give rise to gaps not large

enough to cause a rejection, not even in local terms. Hence, the parameter-free AHC algorithm

proposed in the next section of the present chapter makes also use of a global cluster merging

criterion able to avoid the merging of both touching and overlapped clusters.

To that effect, let the 2Gauss dataset shown in Figure 4.5a be considered (see section 5.2.2.2 for fur-

ther details). It is a 2-dimensional synthetic dataset consisting of two partially overlapped Gaus-

sian clusters (C1 and C2) of the same size (N1 = N2 = 100) and variance.

(a) 2Gauss dataset: scatterplot. (b) 2Gauss dataset: SL-dendrogram.

Figure 4.5: The 2Gauss dataset.

Whereas Fred and Leitão (2003, Section 5.2, pages 951–952) use this kind of dataset (mixture of

Gaussian clusters) in order to explore some performance limits of their first version of the SL-DID

algorithm, the 2Gauss dataset allows to gain an insight into how partially overlapped clusters can

be identified from an AHC algorithm based on the SL method. Thus, the SL-dendrogram on the

2Gauss dataset is shown in Figure 4.5b.

At a certain stage of the agglomeration process, a pair of clusters candidate for merging (Ci and

Cj) arises. Being two approximately balanced clusters (Ni = 84 , Nj = 90), they both merge into a

new cluster in the dendrogram (Ck) as shown in Figure 4.6. This precise merging presents several

peculiarities:

• Due to the partial overlapping of the two Gaussian clusters that constitute the dataset, both

candidate clusters include elements belonging to the two ground-truth clusters. Nonethe-
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less, Ci and Cj are mostly composed by objects belonging to C1 and C2, respectively. Thus,

it is a troublesome merging, since, in case of not being rejected, it makes impossible to dis-

tinguish between C1 and C2 in the final clustering solution. Therefore, it should be rejected.

• The merging does not cause any significantly high gap with respect to the gaps already exis-

ting within Ci or Cj (see the green-coloured link in Figure 4.6b).

• Beyond this particular example, the neighbouring objects (xm ∈ Ci and xp ∈ Cj) that give

rise to a merging between two partially overlapped clusters can easily belong as much to a

low density region as to a high density region in their respective clusters.

(a) Candidate clusters Ci and Cj . (b) Ci and Cj in the SL-dendrogram.

Figure 4.6: 2Gauss dataset: detail of the agglomeration process. (a) Zoom in on the scatterplot in Figure

4.5a. Candidate clusters Ci and Cj are depicted by colours (see legend); the proximity between neighbou-

ring objects is green-coloured. (b) Zoom in on the dendrogram in Figure 4.5b. Ci and Cj can be identified

according to their respective colours in Figure 4.2a; the link resulting from the merging is green-coloured.

As a consequence, mergings of this kind can easily not cause any gap to be high enough to fall

not only in the tail of the DIDs of Ci and Cj , but even in the tail of the DIDs existing in the vicini-

ties of the neighbouring objects. Thus, such mergings will hardly be rejected, neither locally nor

globally, by means of merging criteria or statistical rules derived only from the proximity level of

the hypothetical new cluster. Therefore, again, a question arises:

• How touching and overlapped clusters can be identified in the context of a SL-dendrogram

without involving a significant increase of the computational cost of the clustering process?

The answer to that question is provided in the present thesis by making use of one of the parame-

ters the density factor Φ utilised in the LSS criterion (see equation 4.6) is based on: the cumulative

proximity level of a cluster, which is defined in equation 4.8 as the sum of its proximity level and

the proximity levels of its nested clusters in the dendrogram.

As shown in Figure 4.7, the cumulative proximity level of clusters in the SL-dendrogram of the

2Gauss dataset shown in Figure 4.6b presents an abrupt increase when clusters Ci and Cj merge

into Ck (see the green mark in Figure 4.7), which causes a sudden interruption of the progressive

increment of the cumulative proximity levels throughout the agglomeration process.
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Figure 4.7: Cumulative proximity levels in the SL-dendrogram of the 2Gauss dataset. The green mark

indicates the cumulative proximity level of cluster Ck (cdk).

It is worth noting that the abrupt increase cdk involves in comparison with the cumulative pro-

ximities of the rest of clusters in the dendrogram is a differential characteristic that may allow to

identify undesired mergings of touching or overlapped clusters and, therefore, to reject them.

Thus, let X be a dataset constituted by a set of N D-dimensional objects. Given an agglomeration

process of the objects in X based on the SL method, let Ci and Cj be a pair of clusters of Ni and Nj

objects, respectively, candidate for merging into a new cluster Ck and let dij be the proximity bet-

ween them. The GCSS criterion determines whether Ci and Cj should merge into a new cluster

or not and it is defined as follows.

Firstly, let Cx be any given cluster in the dendrogram ∆ resulting from the agglomeration process

of the objects in X and let cdx be the sample consisting of its own cumulative proximity level (cdx)

and the cumulative proximity levels of its nested clusters in ∆. The cumulative standard score

statistic of cluster Cx (cssx) is defined as the standard score of cdx with respect to dx:

cssx =
cdx − cµx√
cσx − cµ2

x

(4.11)

where cµx and cσx are the first and second moments of cdx, respectively:

µx =
1

ndx

ndx∑
l=1

cdxl
, σx =

1

ndx

ndx∑
l=1

cd
2

xl
(4.12)

being cdxl
the lth observation in cdx and ndx the length of cdx (i.e. the number of non-singleton

clusters nested within Cx). Continuing with the example of the 2Gauss dataset, the values of the

css statistic for the clusters in the 2Gauss dataset SL-dendrogram are shown in Figure 4.8. It is

worth noting that the maximum value is reached for the critical cluster Ck (see the green-coloured

link in Figure 4.6b and the green mark in Figure 4.8). Thus, the abrupt increase of the cd parame-

ter illustrated in Figure 4.7 (cdk) leads into a maximum value of the css statistic (cssk), which is

significantly higher than the rest of the previous values of the statistic.
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Figure 4.8: Cumulative standard score of the clusters in the SL-dendrogram of the 2Gauss dataset. The

green mark indicates the cumulative standard score of cluster Ck (cssk).

In this way, the GCSS criterion determines that the union between Ci and Cj into a new cluster

Ck is a suitable merging if their cumulative standard score statistics (cssi and cssj) are greater

than or equal to the following dynamic merging threshold:

gcssth(Ck,Ci,Cj , NMIN ) =

gcssth(cssk, Ni, γi, µi, σi, Nj , γj , µj , σj , NMIN ) =

cssk Υ(Ni, Nj) ΨG(Ni, γi, µi, σi, Nj , γj , µj , σj , NMIN )

(4.13)

where cssk is the cumulative standard score of Ck, NMIN = 0.01N , γi = dij − di, γj = dij − dj

and µi, σi, µj and σj are defined according to equation 4.2.

Therefore, the merging rule derived from the GCSS criterion is defined as follows:

• If the GCSS criterion is simultaneously met from both Ci (cssi ≥ gcssth(Ck,Ci,Cj , NMIN ))

and Cj (cssj ≥ gcssth(Ck,Ci,Cj , NMIN )), Ci and Cj merge into a new cluster.

• Otherwise, the merging between Ci and Cj is rejected in global terms, so that they remain

separated and all the pairwise proximities between objects belonging to Ci and Cj are dis-

missed from the proximity matrix of the dataset in case of rejection and, hence, not anymore

considered for the rest of the agglomeration process.

Similarly to the merging rule derived from the LSS criterion, neither of the candidate clusters is

isolated in case of global rejection, so that flexibility is maximised; i.e. the possibility that both Ci

andCj merge with other clusters in further stages of the agglomeration process remains unaltered.

It is worth noting that the GCSS criterion essentially compares the cumulative proximity level of

the hypothetical new cluster (cdk) with the cumulative proximity levels of both candidate clusters

(cdi and cdj). These cumulative proximity levels are compared into the context of the distributions

of cumulative proximity levels present in their respective clusters, modelled by means of cssk, cssi

and cssj , respectively. Hence, in essence, if cdk involves an increment in the context of Ck higher

than both the increments cdi and cdj involve in the contexts of Ci and Cj , respectively (i.e. if cssk

is higher than both cssi and cssj), Ci and Cj will not be suitable for merging in global terms.
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Finally, on the one hand,Υ(Ni, Nj) is a balance factor whose purpose is to relax the GCSS criterion

when the candidate clusters Ci and Cj are far from being balanced each other:

Υ(Ni, Nj) = Υ(brij) =
0.9

1 + e
20

(
brij
3 −1

) + 0.1 (4.14)

being brij the balance rate, which indicates how unbalanced Ci and Cj are:

brij =
max {Ni,Nj}
min {Ni,Nj}

(4.15)

Thus, brij is equal to the size of the most populated candidate cluster divided by the size of the less

populated candidate cluster. Therefore, being a ratio always greater than or equal to 1 (brij ≥ 1),

the value of brij is close to 1 to the extent that Ci and Cj are balanced (brij ≈ 1⇔ Ni ≈ Nj) and it

reaches its minimum when Ci and Cj are completely balanced (brij = 1⇔ Ni = Nj)

Hence, as shown in Figure 4.9a, in case that candidate clusters are approximately balanced, the ba-

lance factor defined in equation 4.14 keeps approximately equal to 1, which has no effect; however,

if candidate clusters are clearly unbalanced, the value of Υ diminishes, which causes a decreasing

of the value of gcssth and the GCSS criterion is therefore relaxed. Since its purpose is to provide the

ability of identifying approximately balanced and partially overlapped clusters (e.g. see Figure 4.5),

this behaviour is worthwhile in the GCSS criterion with the aim of avoiding undesired rejections of

mergings between unbalanced touching clusters, which are particularly likely when dealing with

clusters of uniformly distributed objects (see section 5.2.1 for further details).

(a) Detail of the balance factor Υ(brij). (b) Detail of the size factor ΨG(msri, gfij).

Figure 4.9: GCSS criterion: dynamic factors present in the merging threshold gcssth.

And on the other hand, ΨG(Ni, γi, µi, σi, Nj , γj , µj , σj , NMIN ) is a size factor whose purpose is to

inhibit the GCSS criterion when the size of candidate clusters is not large enough and, hence, to

avoid global rejections at too early stages of the agglomeration process:

ΨG(Ni, γi, µi, σi, Nj , γj , µj , σj , NMIN ) = Ψ(msrij , gfij) = gfij
0.9

1 + e−10((msrij gfij)−1)
+0.1 (4.16)

being msrij the maximum size rate, which indicates the size of the largest candidate cluster with

respect to the total size of the dataset:

msrij =
max {Ni, Nj}
20NMIN

(4.17)



106 Chapter 4. A novel parameter-free AHC algorithm based on two new cluster merging criteria

and gfij the gap factor, whose purpose is to disable the size factor Ψ(msrij , gfij) to the extent that,

regardless of the size of Ci and Cj , the merging causes large gaps on the candidate clusters:

gfij = max

1,
γi − µi√
σi − µ2

i

,
γj − µj√
σj − µ2

j

 (4.18)

Thus, if the size of the largest candidate cluster is less than 20NMIN (20% of the total size of the

dataset), the value of msrij is less than 1, whereas msrij is greater than 1 otherwise. In addition, if

γi and/or γj lie more than a standard deviation above the mean value of the distribution of gaps

within its respective cluster, the value of gfij is greater than 1, whereas gfij is equal to 1 otherwise.

Therefore, as shown in Figure 4.9b, the inhibition of the GCSS criterion performed by the size factor

ΨG (msrij , gfij = 1) disappears as the size of the largest candidate cluster exceeds the 20% of the

total size of the dataset. Moreover, inasmuch as gfij increases its value, this inhibition tends to

disappear by means of both a decrease of the threshold value of msrij (smaller candidate clusters

lead to higher values of ΨG) and an increase of the top value of ΨG (by setting max {ΨG} = gfij ,

the GCSS criterion is toughened when gfij > 1).

4.2 The LSS-GCSS algorithm

The cluster merging criteria presented in the previous section give rise to the main contribution

of the present thesis: The LSS-GCSS algorithm (LSS-GCSS refers to Local Standard Score - Global

Cumulative Standard Score), a novel parameter-free AHC algorithm based on both LSS and GCSS

criteria and whose flowchart is show in Figure 4.10. Furthermore, a detailed description of LSS-

GCSS is provided in Algorithm 5, along with the procedures shown in Algorithms 6, 7 and 8).

This new algorithm presents several noticeable characteristics, specially in comparison with both

versions of the SL-DID algorithm (see sections 3.2.1 and 3.2.2), which are next summarised:

• Being an evolution of the SL-DID algorithm, LSS-GCSS is a parameter-free AHC algorithm

that combines elements from both graph-based (it also implements the SL method) and

model-based (it is also defined by merging criteria that characterise clusters in probabilis-

tic terms) approaches to clustering. In addition, the behaviour of the LSS criterion depends

on the density of the regions the neighbouring objects are located, so that the LSS-GCSS al-

gorithm takes some notions belonging to the density-based approach to clustering as well.

• Compared to both versions of SL-DID, LSS-GCSS is a more flexible algorithm, since, firstly, it

never isolates any candidate cluster in case of rejection and, secondly, the decoupling of can-

didate clusters performed in case of local rejection only considers the pairwise proximities

belonging to the vicinities of the neighbouring objects (see lines 10–15 in Algorithm 6).
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Figure 4.10: Flowchart diagram of LSS-GCSS algorithm.

• Similarly to the second version of SL-DID (see Algorithm 4 in section 3.2.2), LSS-GCSS gives

a differential treatment to small candidate clusters. As shown in lines 7 and 9 of Algorithms

6 and 7, respectively, candidate clusters whose size is lower than NMIN are not required

to account for the merging criteria. In fact, the merging between Ci and Cj always take

place in case both candidate clusters include less than NMIN objects. Regarding the cluster

size threshold, it is worth noting the difference between NLOCAL and NMIN (see line 7 in

Algorithm 5); being both values referred to the size of clusters, NLOCAL is a real value used

in the calculation of the dynamic merging thresholds (see line 8 in Algorithm 6 and line 10

in Algorithm 7), whereas NMIN is an integer threshold value used when a direct comparison

with a cluster size is required (see lines 7, 10 and 13 in Algorithm 6, line 9 in Algorithm 7 and

line 18 in Algorithm 8). Finally, the minimum value of NMIN is limited to 4 (see line 7 in

Algorithm 5) inasmuch as the minimum amount of objects required to calculate the first and

second moments of a sample of gaps is 4 (4 objects give rise to 2 gaps).

• When dealing with non-small clusters (those whose size is greater than NMIN ), both LSS and

GCSS criteria are tested in order to accept or reject the merging, which, as shown in Figure

4.10, takes place if and if only both merging criteria are met.
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• The dynamic merging thresholds are computed according to equations 4.4–4.7, 4.9 and 4.10

in the case of LSS criterion (see line 8 in Algorithm 6) and according to equations 4.13–4.18

in the case of GCSS criterion (see and line 10 in Algorithm 7).

• Finally, part of the parameters that characterise the hypothetical new cluster (Ck) are cal-

culated as the GCSS criterion is tested (see lines 2–6 in Algorithm 7. The characterisation of

Ck is completed when candidate clusters eventually merge (see lines 4–24 in Algorithm 8).

Singleton clusters are excluded from this characterisation (see line 12 in Algorithm 8), since

their gaps are in reality just proximities between a pair of neighbouring objects. Moreover,

the vicinity of objects is also determined at this point, in the event of (Ck) being non-small

and, at least, one of the candidate clusters being small (see lines 18–20 in Algorithm 8).

Algorithm 5 LSS-GCSS algorithm.

1: Input : Dataset X

2: procedure

3: MP : MP (i, j)← dxixj , ∀xi,xj ∈ X | i ̸= j

4: υi ← 0, ∀ i ∈ {1, N}

5: λ : λi ← i, ∀ i ∈ {1, N} ◃ Initially, P = {C1, ...,CN} | Ci = {xi}

6: ∆ : ∆i ← [0 0 0] , ∀ i ∈ {1, N−1}

7: NLOCAL ← 0.01N, NMIN ← min {4, ⌊NLOCAL⌉}

8: Ni ← 1, di ← 0, nγi ← 0, Γi ← 0, µi ← 0, σi ← 0, ssi ← 0, cdi ← 0, ndi ← 0,

cdi ← 0, ndi ← 0, cµi ← 0, cσi ← 0, cssi ← 0, ∀ i ∈ {1, N}

9: k ← N+1

10: ρ← false

11: while MP ̸= ∅ do

12: (m, p)← argmin(q,r) {MP (q, r)} , dij ← min {MP }

13: i← λm, j ← λp

14: LSS ◃ Evaluation of LSS criterion

15: if ¬ρ then

16: GCSS ◃ Evaluation of GCSS criterion

17: end if

18: Update MP : Dismiss the proximities between objects belonging to Ci and Cj

19: if ¬ρ then

20: MERGINGCANDIDATES ◃ A new cluster is created

21: else

22: ρ← false

23: end if

24: end while

25: end procedure

26: Output : Label vector λ and dendrogram ∆
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Algorithm 6 LSS procedure in LSS-GCSS algorithm.

1: procedure

2: objects← [m p]

3: candidates← [i j]

4: for l← 1, 2 do

5: o← objects (l)

6: c← candidates (l)

7: if (Nc ≥ NMIN ) then

8: if (ssυo < lssth(dij , dυo , µυo , συo , nγυo , cdυo , Nυo , cdc, Nc, NLOCAL)) then

9: ρ← true ◃ Local rejection

10: if Ni ≥ NMIN then

11: i← υm

12: end if

13: if Nj ≥ NMIN then

14: j ← υp

15: end if

16: break for ◃ Break out of the loop

17: end if

18: end if

19: end for

20: end procedure

Algorithm 7 GCSS procedure in LSS-GCSS algorithm.

1: procedure

2: cdk ← cdi + cdj + dij

3: ndk ← ndi + ndj + 1

4: cµk ← cµi ndi+cµj ndj+cdk

ndk

5: cσk ← cσi ndi+cσj ndj+cd2
k

ndk

6: cssk ← cdk−cµk√
cσk−cµ2

k

7: γi ← dij − di

8: γj ← dij − dj

9: if (Nj ≥ NMIN ) ∧ (Nj ≥ NMIN ) then

10: gth ← gcssth(cssk, Ni, γi, µi, σi, Nj , γj , µj , σj , NLOCAL)

11: if (cssi < gth) ∧ (cssj < gth) then

12: ρ← true ◃ Global rejection

13: end if

14: end if

15: end procedure
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Algorithm 8 MERGINGCANDIDATES procedure in LSS-GCSS algorithm.

1: procedure

2: λl ← k, ∀ l ∈ {1, N} | λl = i, λl = j ◃Ck = Ci ∪Cj

3: ∆(k−N) ← [ i j dij ]

4: Nk ← Ni +Nj

5: dk ← dij

6: nγk ← nγi + nγj

7: Γk ← max {Γi, Γj}

8: µk ← µi nγi + µj nγj

9: σk ← σi nγi + σj nγj

10: for l← 1, 2 do

11: c← candidates (l)

12: if (Nc > 1) then ◃ Gaps of singleton clusters are not considered

13: nγk ← nγk + 1

14: Γk ← max {Γk, γc}

15: µk ← µk + γc

16: σk ← σk + γ2
c

17: end if

18: if (Nc < NMIN ) ∧ (Nk ≥ NMIN ) then

19: υl ← k, ∀ l ∈ {1, N} | λl = c ◃ Vicinity of the objects belonging to Cc

20: end if

21: end for

22: µk ← µk

nγk

23: σk ← σk

nγk

24: ssk ← Γk−µk√
σk−µ2

k

25: k ← k+1

26: end procedure

Thus, similarly to SL-DID, LSS-GCSS algorithm automatically generates a twofold clustering so-

lution composed of an HPC solution (represented by λ, which identifies K hard clusters) and an

AHC solution (represented by ∆, which includes K dendrograms –one per hard cluster–). The in-

sight into the nature of the data provided by this kind of clustering solution is illustrated in Figure

4.11, which shows the clustering solutions obtained by means of the LSS-GCSS algorithm on 2bars

(see section 4.1.1), 2Gauss (see section 4.1.2) and 4toy (see sections 3.1.3 and 3.2.1) datasets.

It is worth noting that optimal HPC solutions are reached for 2bars and 4toy datasets (ground truth

solutions are equalled in both cases), whereas, since it contains partially overlapped clusters, the

HPC solution on 2Gauss dataset is not optimal, but highly close to the ground truth (CI = 0.97).

Furthermore, CPCC values of the dendrograms included in the AHC solutions are shown in Table
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(a) 2bars dataset: AHC solution. (b) 2bars dataset: HPC solution.

(c) 2Gauss dataset: AHC solution. (d) 2Gauss dataset: HPC solution.

(e) 4toy dataset: AHC solution. (f) 4toy dataset: HPC solution.

Figure 4.11: AHC and HPC solutions on 2bars, 2Gauss and 4toy datasets by means of LSS-GCSS algorithm.

(a) (c) (e) Every AHC solution comprises as many dendrograms as clusters are identified in its respective

HPC solution. Dendrograms in AHC solutions are validated in Table 4.1 by means of their CPCC values.

(b) (d) (f) HPC solutions on 2bars and 4toy dataset match the ground truth 100% (CI = 1), whereas HPC

solution on 2Gauss dataset in a quasi-optimal solution (CI = 0.97).

2bars 2Gauss 4toy

C1 C2 C1 C2 C1 C2 C3 C4

0.358 0.372 0.541 0.617 0.672 0.72 0.643 0.729

Table 4.1: CPCC values for dendrograms in Figure 4.11.

4.1. The absence of significantly close to 0 (or even negative) CPCC values validates the obtai-

ned AHC solutions and indicates that the resultant dendrograms properly represent the internal

structure of clusters in the three datasets (e.g. the shape of dendrograms in Figures 4.11a and 4.11c

indicates the variable density of objects present in clusters belonging to both 2bars and 2Gauss da-

tasets, in contrast with the more uniform distributions suggested by dendrograms in Figure 4.11e).
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However, CPCC values in 2bars dataset are clearly lower in comparison with the rest, which is a

noticeable fact regarding that the HPC solution on the 2bars dataset matches the ground truth

(CI = 1); as aforementioned in sections 3.1.3 and 3.2.1, this fact may easily be suggesting that

objects in 2bars dataset are not hierarchically distributed (see section 2.4.4 for further details).

4.3 Computational requirements of LSS-GCSS algorithm

Despite involving the computation of more complex merging criteria than both versions of SL-

DID algorithm, the behaviour of LSS-GCSS algorithm concerning its computational requirements

remains O
(
N2
)

in storage terms and O
(
N2 logN

)
in time terms.

Storage requirements of LSS-GCSS algorithm

As aforementioned in sections 2.2, 3.1 and 3.2.1, the computation of MP , λ and ∆ (see lines 3, 5

and 6 in Algorithm 5) requires the storage of N2−N
2 , Nand 3 (N−1) values, respectively. In addition,

each of the remaining variables (see lines 4 and 8 in Algorithm 5, lines 2–6 in Algorithm 7 and lines

4–24 in Algorithm 8) requires the storage of 2N−K values, where K is the number of hard clusters

the algorithm eventually identifies (K ∈ [1, N ]).

Therefore, the most restrictive requirement correspond to the storage of MP , which leads LSS-

GCSS to be an O
(
N2
)

algorithm in storage terms.

Time requirements of LSS-GCSS algorithm

Concerning the computational requirements of LSS-GCSS algorithm in time terms, an important

consideration has to be firstly noticed: they cannot be calculated a priori in deterministic terms.

Let the computation of the LSS-GCSS algorithm on two different datasets (X1 and X2) of the same

size (N1 = N2 = N) be considered. Even in the case that LSS-GCSS identifies the same number

of clusters for both datasets (K1 = K2 = K), the number of iterations required to complete both

clustering processes may easily be different, since it does not depend on either N or K, but on

the way the values of MP are dismissed throughout both agglomeration processes (see line 11 in

Algorithm 5).

Furthermore, Figure 4.10 clearly shows that every iteration in the clustering process has four pos-

sible endings (merging of small candidate clusters, merging locally rejected, merging globally re-

jected, or merging of large candidate clusters), each one of which involves both a different compu-

tation time and dismissing a different amount of values from MP . Hence, the total computation

time of the LSS-GCSS algorithm cannot be determined with exactitude in advance, since it always

depend on the particularities of every dataset.
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Thus, the aim of the following analysis is to establish an upper bound for the computational requi-

rements of the LSS-GCSS algorithm in time terms:

• As previously stated in section 3.2.1, the calculation of MP involves a N2-dependent compu-

tation time. Besides, the step consisting on finding the minimum value of MP at every itera-

tion of the algorithm according to the SL method (see line 12 in Algorithm 5) can be optimi-

sed by means of a prior sorting of the values in MP . Algorithms like Quicksort, Mergesort or

Heapsort can perform this task involving a
(
N2 logN

)
-dependent computation time.

• As aforementioned, the total amount of iterations required to complete the clustering pro-

cess is a priori unknown. However, it will never overpass the maximum amount of different

proximity values present in MP ; i.e. it will always be lower than N2−N
2 , which is an adequate

but poor estimation of an upper bound, since proximities are dismissed one at a time only

when singleton clusters merge.

• The LSS procedure (see Algorithm 6) is computed once per every iteration that entails, at

least, one large candidate cluster. The cost of this procedure resides in the calculation of the

dynamic merging threshold of the LSS criterion (line 8 in Algorithm 6), which is computed

according to equations 4.4–4.7, 4.9 and 4.10. These equations comprise a constant (i.e. inde-

pendent fromN ) number of operations, so that the LSS procedure involves aN-independent

computation time per iteration.

• The GCSS procedure (see Algorithm 7) is composed of two different parts.

On the one hand, lines 2–8 are computed once per every iteration that does not entail a local

rejection of the merging. These lines comprise a constant (i.e. independent from N ) number

of operations, so that this part of GCSS procedure involves a N-independent computation

time per iteration.

On the other hand, the second part of the GCSS procedure is computed once per every ite-

ration with two large candidate clusters whose merging has not been locally rejected. Its cost

resides in the calculation of the dynamic merging threshold of the GCSS criterion (line 10 in

Algorithm 7), which is computed according to equations 4.13–4.18. These equations com-

prise a constant (i.e. independent from N ) number of operations, so that this part of GCSS

procedure involves an N-independent computation time per iteration as well.

Hence, the GCSS procedure involves a N-independent total computation time per iteration.

• The update ofMP (line 18 in Algorithm 5) involves dismissing N2−N
2 values fromMP through-

out the entire algorithm. Hence, its total cost isO
(
N2
)

, regardless of the number of iterations

eventually completed.

• Finally, the MERGINGCANDIDATES procedure (see Algorithm 8) is computed, at most, N−1

times throughout the entire algorithm, since, starting from the N initial singleton clusters,
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the maximum number of new clusters the AHC solution can contain is N−1, which occurs

when LSS-GCSS algorithm identifies that the dataset is composed of one single hard cluster.

The MERGINGCANDIDATES procedure is composed of three different parts.

The update of cluster labels vectorλ (line 2 in Algorithm 8) involves, regardless of the number

of objects belonging to the new cluster, making N comparisons per iteration. Hence, in the

worst case (N−1 new clusters), its total cost is O
(
N2
)

throughout the entire algorithm.

The determination of the vicinity of every object in the dataset (lines 18–20 in Algorithm

8) entails the assignation of N vicinities (one per object) throughout the entire algorithm.

Hence, it involves a N-dependent computation time, regardless of the number of iterations

eventually completed.

The rest of Algorithm 8 is dedicated to complete the characterisation of the new cluster (Ck)

and entails the computation of a constant (i.e. independent from N ) number of operations.

Considering that there cannot arise more than N−1 new clusters, the total cost of this part of

MERGINGCANDIDATES procedure is O(N), regardless of the number of iterations eventually

completed.

Hence, each one of the, at most, N2−N
2 iterations involves a N-independent computation time,

which may vary depending on how the iteration eventually ends (merging of small candidate clus-

ters, merging locally rejected, merging globally rejected, or merging of large candidate clusters).

Hence, aside from the calculation, sorting and updating of the proximity values in MP (lines 3, 12

and 18 in Algorithm 5) and the definition of objects’ vicinity (lines 18–20 in Algorithm 8), the total

upper bound for the computation time of the LSS-GCSS algorithm once the proximity values in

MP have been calculated and sorted is
(
αN2−N

2

)
-dependent, being α a constant value indepen-

dent from N .

Therefore, the most restrictive requirement correspond to the sorting of the values in MP , which

lead LSS-GCSS to be an O
(
N2 logN

)
algorithm in time terms.

4.4 Discussion

While both versions of SL-DID algorithm are based on a single cluster isolation criterion, LSS-

GCSS algorithm is derived from the combination of two new cluster merging criteria: LSS can

be seen as a result of the improvement of the cluster isolation criterion proposed by Fred and

Leitão (2000), whereas GCSS is designed as a complement for LSS in order to better deal with

both touching and overlapped clusters. The aim of such foundations is to lead LSS-GCSS both

to maintain the upsides of SL-DID (mainly, a behaviour free of tunable parameters, the capability

to generate twofold clustering solutions and the ability to handle clusters of all kind) and to be

a more flexible algorithm (clusters are never isolated during the agglomeration process), able to
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cope with a higher diversity of clustering situations, including those that present touching and

overlapped clusters. Furthermore, in spite of involving a higher cost in computation and being a

more sophisticated algorithm than SL-DID, the computational requirements of LSS-GCSS keep a

quadratic dependency with respect to N both in storage and time terms.

At this stage of the present thesis, the real benefits, if any, of using LSS-GCSS algorithm instead of

other both partitional and hierarchical clustering algorithms need to be properly measured and

determined. The next chapter in the present thesis is therefore focused on evaluating the perfor-

mance results of LSS-GCSS algorithm on different datasets of varied nature, defining its limitations

and determining in what measure it involves an improvement with respect to both SL-DID and ot-

her clustering algorithms.
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Chapter 5

Experimental performance of

LSS-GCSS algorithm

The main contribution of the present thesis has been presented in the previous chapter. Derived

from on the combination of LSS and GCSS cluster merging criteria, the LSS-GCSS algorithm aims

to overcome the limitations of the previous approaches to parameter-free AHC clustering and to

be able to successfully deal with a variety of clustering situations as wide and diverse as possible:

randomly generated data, real-word clustering scenarios, clusters of different shapes and distri-

butions, datasets with different density regions, touching and overlapped clusters, balanced and

unbalanced clusters, single- and multiple-cluster datasets, low- and high-dimensional data, data

of different origin and nature (e.g. text, speech, image), etc. Therefore, the contributions of the pre-

sent chapter derive from an exhaustive evaluation of the performance of LSS-GCSS in the face of

a great diversity of clustering scenarios, so that both upsides and limitations that characterise the

behaviour of the LSS-GCSS algorithm are defined. Additionally, this evaluation includes a compa-

rative study among a variety of clustering algorithms with the aim of determining to what extent

LSS-GCSS outperforms the capabilities of other clustering methods.

Thus, this fifth chapter is structured as follows. The general setup of the experiments is descri-

bed in section 5.1. Next, sections 5.2 and 5.3 include all the experiments relative to the study of

the performance of LSS-GCSS algorithm in the face of both synthetic and real data, respectively.

A comparison of performance among a diversity of clustering algorithms is provided in section

5.4. And finally, conclusions and considerations about the obtained experimental results are de-

tailed in section 5.5, which includes a discussion directly referred to both the first three research

questions and the first research hypothesis posed in section 1.3.

117
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5.1 Experimental setup

After the design and implementation of the LSS-GCSS algorithm (see Chapter 4), the next con-

tribution of the present thesis consists of a detailed study of its performance, which is evaluated

in a wide variety of clustering scenarios. Mainly, this study is carried out in order to achieve the

following two goals:

1. To gain an awareness of both profits and limitations of LSS-GCSS algorithm, which may be

useful in order to decide, depending on what prior knowledge about the clustering scenario

is available, how to make use of LSS-GCSS in practice.

2. To compare LSS-GCSS with other clustering algorithms in terms of performance, which may

lead to relevant information in order to decide, given a specific clustering problem, what

clustering algorithm best fits the characteristics of the scenario.

Hence, with the aim of accomplishing such goals and obtaining both reliable and profitable con-

clusions, a complete set of experiments is defined and arranged throughout the following three

sections, each comprising a diversity of datasets and clustering situations:

• Synthetic datasets (see section 5.2 for further details). In the same way that other related

works in the literature (Fred and Leitão, 2003; Aidos and Fred, 2011a), a wide set of different

synthetic datasets –artificially created, not belonging to real clustering scenarios– is crea-

ted in order to have control over some specific parameters (e.g. number of clusters, data

dimensionality, closeness/overlapping between clusters, distribution of objects within clus-

ters, balancing between clusters, shape of clusters, etc.). This strategy allows to evaluate how

the performance of LSS-GCSS varies according to determinate characteristics of the data.

• Real datasets (see section 5.3 for further details). As a complement to the experiments per-

formed on synthetic datasets, LSS-GCSS algorithm is also tested on a set of well-known real

datasets, which come from real-world scenarios and include data from different origin and

nature. These benchmark datasets are widely used in the literature in order both to evaluate

how clustering algorithms behave when dealing with real clustering scenarios and to com-

pare their performance under equal and known conditions.

• Comparative study (see section 5.4 for further details). A set of both synthetic and real

datasets is selected from the two previous sections in order to conduct a comparison bet-

ween LSS-GCSS and other clustering algorithms (both partitional and hierarchical, both

parameter-dependent and parameter-free) in terms of performance.

It is worth noting that the ground truth solution is known in advance for all the datasets tested in

this chapter, which includes both their optimal number of clusters (Kopt) and their optimal cluster
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labels. Since all the cluster analyses in the present chapter are performed in a blind manner (i.e.

without considering any prior knowledge about the structure of data), this information is only

used for evaluation purposes, in order to determine the validity of the obtained clustering results

(see section 2.4).

5.2 Synthetic datasets

The main goal of the present section is to study in what measure the performance of the LSS-GCSS

algorithm depends on some specific characteristics of the data. To that effect, a great diversity of

synthetic datasets is created and arranged throughout the following clustering scenarios:

• Single-cluster datasets (see section 5.2.1 for further details). Does LSS-GCSS tend to identify

clusters where there are none? How does LSS-GCSS behave when the dataset comprises a

single cluster only?

• Touching and overlapped clusters (see section 5.2.2 for further details). Does LSS-GCSS

have the ability to identify both touching and overlapped clusters? Which degree of close-

ness/overlapping between two different clusters is LSS-GCSS able to admit?

• Unbalanced clusters (see section 5.2.3 for further details). Does LSS-GCSS have the ability to

identify unbalanced clusters? Which degree of unbalancing between two different clusters is

LSS-GCSS able to admit?

• Multiple-cluster datasets (see section 5.2.4 for further details). Does LSS-GCSS have diffi-

culties in dealing with a high amount of clusters?

• Concentric clusters (see section 5.2.5 for further details). Does LSS-GCSS have the ability to

identify concentric clusters (typically troublesome clusters for centre-based clustering algo-

rithms)?

• Arbitrary-shaped clusters (see section 5.2.6 for further details). Does LSS-GCSS have the

ability to identify clusters regardless of their shape?

All the datasets defined in this section present real numerical features and the proximity between

objects is measured by means of the Euclidean distance (see equation 2.8) in all the clustering

scenarios. Furthermore, aside from comparing the number of identified clusters (K) with the real

number of clusters in the ground truth solution (Kopt), every clustering solution obtained in the

present section is externally validated by means of the Consistency Index (CI) (see section 2.4.1

for further details).
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5.2.1 Single-cluster datasets

Input data

It is typical for clustering algorithms to tend to find clusters regardless of whether they actually

exist or not, eventually being able to impose inappropriate clustering structures on unstructured

or random data (Fred and Leitão, 2003). Hence, a test for absence of cluster structure prior to the

cluster analysis may be required (Dubes and Jain, 1979; Everitt et al., 2011). The behaviour of LSS-

GCSS when handling single-cluster datasets is studied in the present section. To that end, 1Gauss

and 1unif datasets are defined. They both comprise one single D-dimensional cluster (Kopt = 1)

of N objects randomly generated from Gaussian and uniform distributions, respectively.

Characterisation

• The study covers multiple values of both the number of objects (N ∈ {100, 10000}) and the

data dimensionality (D ∈ {2, 100}) per every dataset.

• 100 instances of both datasets are tested per each combination of parameters N and D.

Cluster analysis

Figures 5.1, 5.2 and 5.3 show the performance of LSS-GCSS in terms of both CI and K.

(a) 1Gauss dataset: CI averaged-values obtained by LSS-GCSS.

(b) 1unif dataset: CI averaged-values obtained by LSS-GCSS.

Figure 5.1: Performance of LSS-GCSS on single-cluster datasets. Results are averaged along 100 instances.
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(a) D = 2 (b) D = 3

(c) D = 4 (d) D = 5

(e) D = 6 (f) D = 7

(g) D = 8 (h) D = 9

(i) D = 10 (j) D = 50

(k) D = 100

Figure 5.2: Performance of LSS-GCSS on 1Gauss dataset: histograms of K. Every histogram corresponds

to a specific value of D and includes the 100 instances corresponding to each value of N .
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(a) D = 2 (b) D = 3

(c) D = 4 (d) D = 5

(e) D = 6 (f) D = 7

(g) D = 8 (h) D = 9

(i) D = 10 (j) D = 50

(k) D = 100

Figure 5.3: Performance of LSS-GCSS on 1unif dataset: histograms of K. Every histogram corresponds to

a specific value of D and includes the 100 instances corresponding to each value of N .
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Moreover, examples of clustering solutions obtained by LSS-GCSS on two-dimensional (D = 2)

instances of both 1Gauss and 1unif datasets are shown in Figure 5.4:

(a) 1Gauss dataset: scatterplot. (b) 1Gauss dataset: LSS-GCSS dendrogram (N = 500, D = 2, K = 1, CI = 1).

(c) 1Gauss dataset: scatterplot. (d) 1Gauss dataset: LSS-GCSS dendrograms (N = 400, D = 2, K = 2, CI = 0.988).

(e) 1unif dataset: scatterplot. (f) 1unif dataset: LSS-GCSS dendrogram (N = 600, D = 2, K = 1, CI = 1).

(g) 1unif dataset: scatterplot. (h) 1unif dataset: LSS-GCSS dendrograms (N = 400, D = 2, K = 2, CI = 0.72).

Figure 5.4: Single-cluster datasets: clustering solutions by LSS-GCSS.

Results

In general terms, the evaluation of the clustering results shown in Figures 5.1, 5.2 and 5.3 indicates

that LSS-GCSS tends to successfully identify one single cluster to the extent that both the num-
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ber of objects (N) and the dimensionality (D) grow. Furthermore, while this behaviour stands

regardless of the cluster distribution, it is also noticeable that, regarding single-cluster datasets,

LSS-GCSS tends to behave more accurately when dealing with Gaussian distributed clusters than

with uniformly distributed ones.

In addition, more specific conclusions can be drawn:

• LSS-GCSS tends to always identify one single Gaussian cluster (K = 1) when the number of

objects is large enough (N ≥ 3000), regardless of the data dimensionality (see Figures 5.1a

and 5.2).

• To reach stable successful results (K = 1) when handling one single uniformly-distributed

cluster, LSS-GCSS requires, in addition, a data dimensionality large enough (D ≥ 6) (see Fi-

gures 5.1b and 5.3).

• Due to the nature of both distributions (unlike the uniform distribution, the Gaussian dis-

tribution presents outlier objects), clustering errors in 1Gauss dataset tend to affect smaller

amounts of objects than in 1unif dataset, therefore leading to less-penalised CI values (see

Figures 5.4c and 5.4g).

• Figure 5.4f clearly shows how the LSS-GCSS dendrograms of uniform clusters are formed:

objects join together first in small subclusters, which in their turn progressively merge into

a larger cluster. This agglomeration tendency justifies why the GCSS criterion requires a ba-

lance factor (see equation 4.14) in order to be able to successfully handle uniformly distribu-

ted clusters: a small group of objects in comparison with the rest of the cluster, but not with

the other small subclusters already merged, can break the agglomeration tendency in the last

stages of the agglomeration process and be misidentified as an actual different cluster.

Moreover, this undesired behaviour justifies why LSS-GCSS deals better with a single Gaus-

sian cluster than with a uniformly distributed one. It also explains why low-populated two-

dimensional instances of the 1unif dataset present the poorest clustering results, since sin-

gular groups of objects are easier to arise in such an scenario (see Figure 5.4h).

• It is also worth noting how LSS-GCSS dendrograms may be helpful to visually identify how

objects are distributed within their clusters: the progressive increment of the proximities in

the dendrogram shown in Figure 5.4b indicates the presence of a variable density of objects

within the cluster (which matches with the nature of the Gaussian distribution) and con-

trasts with the more homogeneous proximity values present in the dendrogram of Figure

5.4f, which suggest a more constant density of objects (typical of a uniform distribution).

Finally, the tendency of LSS-GCSS to improve its performance as the data dimensionality grows has

an explanation in the "curse of dimensionality" (Bellman, 1961): the volume of the space increa-

ses fast with the dimensionality and, therefore, data becomes sparse, which is problematic when
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statistical significance is required. Among other effects, this phenomenon causes that the proxi-

mity between any two objects in a high-dimensional space becomes practically the same (Beyer

et al., 1999). This leads to an homogenisation of the values in the proximity matrix (see equation

2.12), which brings about an absence of significantly high gaps in the resulting dendrogram. In

such conditions, the higher the data dimensionality, the easier for LSS-GCSS (as well as for both

any other clustering algorithm and any test for absence of cluster structure) to conclude that all

objects in the dataset are grouped into one single cluster.

5.2.2 Touching and overlapped clusters

The main drawback of SL-DID algorithm (the clustering algorithm LSS-GCSS arises from) is its

lack of performance in the face of both touching and overlapped clusters (see section 3.3). Thus,

the performance of LSS-GCSS algorithm when dealing with datasets that present touching and

overlapped clusters is studied in the present section, which is structured as follows:

• The study on how LSS-GCSS handles touching clusters is carried out in section 5.2.2.1 by

means of the 2unif dataset.

• The performance of LSS-GCSS in the face of the 2Gauss dataset (probably, the most typical

case of overlapped clusters present in the literature) is tackled in section 5.2.2.2.

• A particular case of touching/overlapped clusters (the 2bars dataset) is studied in section

5.2.2.3.

5.2.2.1 The 2unif dataset

Input data

The 2unif dataset comprises one thousand objects (N = 1000) structured into two uniformly dis-

tributed D-dimensional clusters (Kopt = 2). Both clusters (C1 and C2) are perfectly balanced

(N1 = N2 = 500) and separated a distance d along their frontier region: whereas objects belon-

ging to C1 are located between 0 and 1 along all dimensions
(
xij ∈ [0, 1] , ∀xi ∈ C1, ∀ j ∈ {1, D}

)
,

objects belonging to C2 are moved along the first dimension (xi1 ∈ [1+d, 2+d] , ∀xi ∈ C2) and

located between 0 and 1 along the rest of dimensions
(
xij ∈ [0, 1] , ∀xi ∈ C2, ∀ j ∈ {2, D}

)
.

Characterisation

• The study covers multiple values of both the distance between clusters (d ∈ [0, 2]) and the

data dimensionality (D ∈ {2, 100}).

• 100 instances of the 2unif dataset are tested per each combination of parameters d and D.
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Cluster analysis

Firstly, the performance of LSS-GCSS in terms of both CI and K is shown in Figures 5.5 and 5.7.

Moreover, examples of clustering solutions obtained by LSS-GCSS on two-dimensional (D = 2)

instances of the 2unif dataset are shown in Figure 5.6.

Figure 5.5: Performance of LSS-GCSS on 2unif dataset. CI values averaged along 100 instances.

(a) 2unif dataset: scatterplot. (b) 2unif dataset: LSS-GCSS dendrograms (d = 0.05, D = 2, K = 2, CI = 1).

(c) 2unif dataset: scatterplot. (d) 2unif dataset: LSS-GCSS dendrograms (d = 0.025, D = 2, K = 2, CI = 0.997).

(e) 2unif dataset: scatterplot. (f) 2unif dataset: LSS-GCSS dendrogram (d = 0, D = 2, K = 1, CI = 0.5).

Figure 5.6: 2unif dataset: clustering solutions by LSS-GCSS.
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(a) D = 2 (b) D = 3

(c) D = 4 (d) D = 5

(e) D = 6 (f) D = 7

(g) D = 8 (h) D = 9

(i) D = 10 (j) D = 50

(k) D = 100

Figure 5.7: Performance of LSS-GCSS on 2unif dataset: histograms of K. Every histogram corresponds to

a specific value of D and includes the 100 instances corresponding to each value of d.
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Results

The clustering results illustrated in Figures 5.5 and 5.7 indicate that LSS-GCSS successfully deals

with touching clusters, even for remarkably short separation distances. Two-dimensional clus-

tering results (D = 2) show that LSS-GCSS begins to not distinguish between both clusters only

when the frontier region becomes imperceptible (d < 0.05) (see Figure 5.6). Furthermore, the ef-

fects of the dimensionality can be also appreciated: wider frontier regions are required in order to

identify two clusters as the dimensionality grows.

In addition, more specific conclusions can be drawn:

• LSS-GCSS identifies more than two clusters (K ≥ 3) only in a few low-dimensional instan-

ces (D ≤ 4) of the 2unif dataset (see Figures 5.7a, 5.7b and 5.7c). Despite of being formed by

uniformly distributed objects (which, as shown in section 5.2.1, are more likely to be grou-

ped into more than one cluster by LSS-GCSS), the size of the clusters in the 2unif dataset

is always lower in relative terms (with respect to the total size of the dataset) than in any

single-cluster dataset. This fact increases the effect of the size factors of both LSS and GCSS

criteria, which, in addition with the effect of the balance factor of the GCSS criterion, cause

this desirable result.

• It is worth noting why the clustering results tends now to worsen due to the effect of dimen-

sionality. Assuming that the variance
(
xij ∈ [0, 1]

)
and the size (N1 and N2) of both clusters

remain constant, objects become more sparse within their own clusters as the dimensiona-

lity (D) grows, so that the proximities between the objects belonging to the same cluster go

(a) 2unif dataset: SL-dendrogram (Kopt = 2, N1 = N2 = 100, d = 0.25, D = 2).

(b) 2unif dataset: SL-dendrogram (Kopt = 2, N1 = N2 = 100, d = 0.25, D = 100).

Figure 5.8: 2unif dataset: SL-dendrograms.
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up. Since the separation between both clusters (d) does not depend on the data dimensiona-

lity, the differences between intra-cluster proximities and the distance between both clusters

diminishes as dimensionality grows. Hence, both clusters eventually become indistinguis-

hable when D is high enough, unless the value of d is also increased (see Figure 5.5).

This effect is clearly illustrated in Figure 5.8, where the SL-dendrograms of two instances

of the 2unif dataset are shown. Despite the fact that all the parameters of the dataset re-

main constant except for the data dimensionality, the differences between both dendro-

grams are noticeable: the significantly high final proximity (d ≈ 0.25) in the dendrogram

of the 2-dimensional instance clearly suggests the presence of two well-separated clusters

(see Figure 5.8a), whereas the dendrogram of the 100-dimensional instance indicates that

all objects are contained in one single cluster (see Figure 5.8b). The effect of dimensio-

nality is clearly illustrated by the range of proximities covered by the second dendrogram

(d ∈ [3.13, 3.766]), which is much higher than the separation distance between both distri-

butions (d = 0.25). A higher distance between clusters (d ≥ 1) is required under such con-

ditions in order to obtain truly separated clusters (see D = 50 and D = 100 plots in Figure

5.5).

• The performance of LSS-GCSS has been also tested in the face of differently sized instances

of the 2unif dataset (N ∈ {200, 10000}) and the obtained clustering results have no suffered

from any significant variation. Hence, the present conclusions and considerations can be

generalised for the 2unif dataset, regardless of the size of its clusters.

5.2.2.2 The 2Gauss dataset

Input data

The 2Gauss dataset comprises one thousand objects (N = 1000) structured into two Gaussian dis-

tributed D-dimensional clusters (Kopt = 2). Both clusters (C1 and C2) are perfectly balanced

(N1 = N2 = 500). Like any Gaussian distribution, both clusters are completely characterised by

their respective means (µ1 and µ2) and standard deviations (σ1 and σ2). They both have unitary

variance (σ1 = σ2 = σ = 1) and their degree of overlapping is ruled over by the distance between

their means (d), which is measured in units of σ (d = nσ, ∀n ∈ R+): while n = 2 (d = 2σ) causes

a high overlapping between C1 and C2, n = 6 (d = 6σ) leads to faintly overlapped clusters.

Characterisation

• The study covers multiple values of both the overlapping degree between clusters (n ∈ [2, 10])

and the data dimensionality (D ∈ {2, 100}).

• 100 instances of the 2Gauss dataset are tested per each combination of parameters n and D.
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Cluster analysis

Firstly, the performance of LSS-GCSS in terms of both CI and K is shown in Figures 5.9 and 5.11.

Moreover, examples of clustering solutions obtained by LSS-GCSS on two-dimensional (D = 2)

instances of the 2Gauss dataset are shown in Figure 5.10.

Figure 5.9: Performance of LSS-GCSS on 2Gauss dataset. CI values averaged along 100 instances.

(a) 2Gauss dataset: scatterplot. (b) 2Gauss dataset: LSS-GCSS dendrograms (n = 4, D = 2, K = 2, CI = 0.975).

(c) 2Gauss dataset: scatterplot. (d) 2Gauss dataset: LSS-GCSS dendrograms (n = 3, D = 2, K = 2, CI = 0.932).

(e) 2Gauss dataset: scatterplot. (f) 2Gauss dataset: LSS-GCSS dendrogram (n = 2, D = 2, K = 1, CI = 0.5).

Figure 5.10: 2Gauss dataset: clustering solutions by LSS-GCSS.
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(a) D = 2 (b) D = 3

(c) D = 4 (d) D = 5

(e) D = 6 (f) D = 7

(g) D = 8 (h) D = 9

(i) D = 10 (j) D = 50

(k) D = 100

Figure 5.11: Performance of LSS-GCSS on 2Gauss dataset: histograms of K. Every histogram corresponds

to a specific value of D and includes the 100 instances corresponding to each value of n.
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Results

The clustering results illustrated in Figures 5.9 and 5.11 indicate that LSS-GCSS successfully deals

with overlapped clusters, even for strong degrees of overlapping. Two-dimensional clustering re-

sults (D = 2) show that LSS-GCSS begins to not distinguish between both clusters only when the

degrees of overlapping becomes remarkably intense (n < 3) (see Figure 5.11a). Again, the effects

of the dimensionality affect the clustering results: distance between means (d) has to increase in

order for LSS-GCSS to successfully distinguish between both clusters as the dimensionality grows.

It is worth noting that only when both clusters are completely non-overlapped, perfect clustering

results (CI = 1) can be reached. Nonetheless, considering the two-dimensional instances by way

of example, LSS-GCSS obtains certainly accurate results (K = 2) when clusters are clearly over-

lapped (d ≤ 4) without incurring into a perfect grouping of all objects in the dataset (CI < 1) (see

Figure 5.10).

Finally, considerations drawn in the case of the 2unif dataset (i.e. the few low-dimensional instan-

ces where LSS-GCSS identifies more than two clusters, the reasons according to which the effect

of dimensionality worsens the clustering results and the generalisation of the results regardless of

the size of the clusters) apply equally to the 2Gauss dataset (see section 5.2.2.1).

5.2.2.3 The 2bars dataset

Input data

The 2bars dataset comprises a slightly random amount (N ∈ {1314, 1373}) of 2-dimensional ob-

jects (D = 2) grouped into two clusters (Kopt = 2), whose density of objects progressively dimi-

nishes along the first dimension of the dataset. Both clusters (C1 and C2) are faintly unbalanced

(N1 ∈ {642, 706} , N2 ∈ {651, 705}) and they both can be either touching or overlapped clusters.

Whereas the location of C1 is static (xi1 ∈ [0, 1] , xi2 ∈ [0, 2] , ∀xi ∈ C1), the location of C2 varies

along the first dimension of the dataset (xi1 ∈ [1 + ∆x, 2 + ∆x] , xi2 ∈ [0, 2] , ∀xi ∈ C2).

Thus, short shiftings (∆x ≥ −0.15) lead to touching clusters, while long shiftings (∆x < −0.15)

cause clusters to be overlapped. It is also noticeable that the frontier between clusters is delimited

by a high-density region and a low-density region, each one belonging to a different cluster.

Characterisation

• The study covers multiple values of the distance between clusters, which is adjusted by the

shifting of C2 along the first dimension of the dataset (∆x ∈ [−1, 0]).

• 100 instances of the 2bars dataset are tested per each value of parameter ∆x.
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Cluster analysis

Figures 5.12 and 5.13 show the performance of LSS-GCSS in terms of both CI and K.

Figure 5.12: Performance of LSS-GCSS on 2bars dataset. CI values averaged along 100 instances.

Figure 5.13: Performance of LSS-GCSS on 2bars dataset: histogram of K. The histogram covers the 100

instances corresponding to each value of ∆x.

Moreover, examples of clustering solutions obtained by LSS-GCSS on different instances of the

2bars dataset are shown in Figure 5.14.

Results

The clustering results illustrated in Figures 5.12 and 5.13 indicate that LSS-GCSS successfully deals

with both touching and overlapping versions of the 2bars dataset. LSS-GCSS begins to not distin-

guish between both clusters only when the frontier region disappears (∆x < −0.3) and the over-

lapping degree becomes intense enough to lead to a single-cluster scenario (see Figure 5.14).

In addition, more specific conclusions can be drawn:

• The total CI averaged-value (considering all the instances along every value of ∆x) equals

0.981, which indicates a really successful behaviour of LSS-GCSS in global terms. In addition,

two clusters are identified (K = 2) in 97.42% of the instances.

• Extremely long shiftings of C2 (∆x ≤ −0.6) move the clustering scenario away from the ex-

pected configuration of the 2bars dataset and get it closer to a single-cluster configuration

more typical of the 1unif dataset. Under such conditions, it is reasonable that clustering

solutions with K ̸= 2 begin to appear (see section 5.2.1).
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(a) 2bars dataset: scatterplot. (b) 2bars dataset: LSS-GCSS dendrograms (∆x = −0.12, K = 2, CI = 1).

(c) 2bars dataset: scatterplot. (d) 2bars dataset: LSS-GCSS dendrograms (∆x = −0.25, K = 2, CI = 0.984).

(e) 2bars dataset: scatterplot. (f) 2bars dataset: LSS-GCSS dendrogram (∆x = −0.6, K = 1, CI = 0.506).

Figure 5.14: 2bars dataset: clustering solutions by LSS-GCSS.

5.2.3 Unbalanced clusters

Input data

The performance of LSS-GCSS in the face of unbalanced clusters is studied in the present sec-

tion. To that effect, the 2ubGauss dataset is defined. It comprises two Gaussian distributed 2-

dimensional unbalanced clusters (D = 2, Kopt = 2). The unbalancing between both clusters (C1

and C2) is ruled over by the unbalancing ratio R (N1 = 100, N2 = RN1, ∀R ∈ Z+ | R ≥ 2). Si-

milarly to the 2Gauss dataset (see section 5.2.2.2), both clusters are completely characterised by

their respective means (µ1 and µ2) and standard deviations (σ1 and σ2). They both have unitary

variance (σ1 = σ2 = σ = 1) and their degree of overlapping is ruled over by the distance between

their means (d), which is again measured in units of σ (d = nσ, ∀n ∈ R+).
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Characterisation

• The study covers multiple values of both the overlapping degree between clusters (n ∈ [2, 10])

and the balancing ratio (R ∈ {2, 10}).

• 100 instances of the 2ubGauss dataset are tested per each combination of n and R.

Cluster analysis

Firstly, the performance of LSS-GCSS in terms of both CI and K is shown in Figures 5.15 and 5.16.

Moreover, examples of clustering solutions obtained by LSS-GCSS on different instances of the

2ubGauss dataset are shown in Figure 5.17.

Figure 5.15: Performance of LSS-GCSS on 2ubGauss dataset. CI values averaged along 100 instances.

Results

In general terms, the evaluation of the clustering results shown in Figures 5.15 and 5.16 indicates

that LSS-GCSS tends to successfully identify unbalanced clusters to the extent that the degree of

separation/overlapping between clusters (n) grows with the unbalancing ratio (R).

In addition, more specific conclusions can be drawn:

• On the one hand, a proper understanding of the CI averaged-values shown in Figure 5.15

involves noticing that the higher the balancing ratio, the higher the values of CI , regardless

of the quality of the clustering solution. Let the instance illustrated in Figures 5.17g and

5.17h be considered by way of example: only one cluster (K = 1) is identified by LSS-GCSS,

but an apparently high value of CI is reached (CI = 0.909), since R = 10 and only a 9.01%(
(%) = 100 1

R+1

)
of the objects are misassigned in the obtained clustering solution.

• On the other hand, similarly to the 2Gauss dataset, the fact that clusters are overlapped cau-

ses the maximum value of CI (CI = 1) not to be reached although certainly accurate results

are obtained (K = 2), since there will always be misassigned objects as a result of the over-

lapping (see Figures 5.17a and 5.17b).
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(a) R = 2 (b) R = 3

(c) R = 4 (d) R = 5

(e) R = 6 (f) R = 7

(g) R = 8 (h) R = 9

(i) R = 10

Figure 5.16: Performance of LSS-GCSS on 2ubGauss dataset: histograms of K. Every histogram corres-

ponds to a specific value of R and includes the 100 instances corresponding to each value of n.

• The crux of the matter is the relationship between the unbalancing ratio (R) and the degree

of separation/overlapping between clusters (n). LSS-GCSS proves to be able to handle un-

balancing inasmuch as unbalanced clusters are not highly overlapped. Figure 5.16 clearly

shows that, if the unbalancing ratio grows, LSS-GCSS needs of higher degrees of separation

between unbalanced clusters in order to be able to identify two clusters in the dataset.
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(a) 2ubGauss dataset: scatterplot. (b) 2ubGauss dataset: LSS-GCSS dendrograms (R = 2, n = 4, K = 2, CI = 0.98).

(c) 2ubGauss dataset: scatterplot. (d) 2ubGauss dataset: LSS-GCSS dendrogram (R = 2, n = 3, K = 1, CI = 0.667).

(e) 2ubGauss dataset: scatterplot. (f) 2ubGauss dataset: LSS-GCSS dendrograms (R = 10, n = 6, K = 2, CI = 1).

(g) 2ubGauss dataset: scatterplot. (h) 2ubGauss dataset: LSS-GCSS dendrogram (R = 10, n = 4, K = 1, CI = 0.909).

Figure 5.17: 2ubGauss dataset: clustering solutions by LSS-GCSS.

• It has also been verified that the effect of dimensionality does not affect to the present con-

clusions and considerations: if data dimensionality grows (D > 2), the distance between

clusters has to grow in absolute terms in order for the degree of separation/overlapping bet-

ween clusters to remain constant and, therefore, LSS-GCSS still successfully deals with the

unbalanced clusters present in the dataset.
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• Equivalent clustering results are reached and same conclusions are drawn (LSS-GCSS deals

properly with the unbalancing as it grows with the separation between clusters) in the case

of two uniformly distributed unbalanced clusters.

5.2.4 Multiple-cluster datasets

Input data

The performance of LSS-GCSS in the face of multiple-cluster datasets is studied in the present

section. To that effect, the Munif dataset is defined. It comprises M uniformly-distributed 2-

dimensional balanced clusters (Kopt = M, D = 2, Ni = 100, N = 100M). Assuming that the ith

object in the dataset (xi) is centred around the coordinates (xi0 , yi0), all clusters have the same

variance
(
xi1 ∈

[
xi0− 1

2 , xi0+
1
2

]
, xi2 ∈

[
yi0− 1

2 , yi0+
1
2

]
, ∀xi

)
. Similarly to the 2unif dataset (see

section 5.2.2.1), every cluster is separated a distance d from their neighbours, so that clusters are

moved along the two dimensions of the dataset (see Figure 5.20a for further details).

Characterisation

• The study covers multiple values of both the distance between clusters (d ∈ [0, 0.8]) and the

total number of clusters in the dataset (M ∈ {3, 100}).

• 100 instances of the Munif dataset are tested per each combination of parameters d and M .

Cluster analysis

Firstly, the performance of LSS-GCSS in terms of both K and CI is shown in Figures 5.18 and 5.19.

Moreover, the clustering solution obtained by LSS-GCSS in the face of an instance of the Munif

dataset that contains 32 clustes (M = 32) is shown in Figure 5.20 by way of example.

Results

In general terms, the evaluation of the clustering results shown in Figures 5.19 and 5.18 indicates

that LSS-GCSS is able to successfully identify large amounts of clusters in a dataset. Nonetheless,

accurate clustering results are subject to the fact that the separation between clusters (d) grows

with the true number of clusters in the ground truth (M).

In addition, more specific conclusions can be drawn:

• Since the merging of small candidate clusters (Ni < 0.01N) is not required to account for the

merging criteria in the agglomeration process performed by LSS-GCSS, datasets that com-
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(a) M = 3 (b) M = 4

(c) M = 5 (d) M = 6

(e) M = 7 (f) M = 8

(g) M = 9 (h) M = 10

(i) M = 20 (j) M = 50

(k) M = 100

Figure 5.18: Performance of LSS-GCSS on Munif dataset: histograms of K. Every histogram corresponds

to a specific value of M and includes the 100 instances corresponding to each value of d.
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Figure 5.19: Performance of LSS-GCSS on Munif dataset. CI values averaged along 100 instances.

(a) Munif dataset: scatterplot (M = 32, d = 0.3).

(b) Munif dataset: LSS-GCSS dendrograms (K = 32, CI = 1).

Figure 5.20: Munif dataset: clustering solution by LSS-GCSS.

prise more than a hundred of balanced clusters (M > 100) cannot be properly analysed with

LSS-GCSS (see line 7 of Algorithm 5 in section 4.2). In case of clusters being unbalanced,

LSS-GCSS could be able to identify them, regardless of the value of M , when the size of at

least one of them is large enough (Ni < 0.01N < Nj), but never between two small enough

clusters (Ni, Nj < 0.01N).

Nonetheless, such a scenario is certainly unlikely in practice, since the goal of cluster analysis

is to provide simplified and understandable descriptions of the underlying structure of the

data; a clustering solution that comprises a large amount of clusters may easily fail in being

understandable and can complicate the interpretation of the results (see sections 1.2.3 and

1.2.3.2 for further details). Moreover, if it is necessary, there exist data mining strategies that

allow clustering algorithms to easily overcome limitations like this one (see Chapter 6 for

further details).



5.2. Synthetic datasets 141

• The crux of the matter is again the relationship between the number of clusters (M) and their

degree of separation (n). LSS-GCSS proves to be able to handle multiple clusters inasmuch

as they are separated enough. Figure 5.18 clearly shows that, if the amount of clusters grows,

LSS-GCSS needs of higher distances between them in order to be able to accurately estimate

the real number of clusters present in the dataset.

• It has also been verified that the effect of dimensionality does not affect to the present con-

clusions: if data dimensionality grows (D > 2), the distance between clusters has to grow in

absolute terms in order for the separation between clusters to remain constant and, there-

fore, LSS-GCSS still successfully handles the large amount of clusters present in the dataset.

• Equivalent clustering results are reached and same conclusions are drawn in the case of M

Gaussian distributed clusters.

5.2.5 Concentric clusters

Scenarios with concentric clusters are typically troublesome for centre-based HPC algorithms (e.g.

k-means), which are unable to deal with clusters of this kind, imposing globular-shaped clusters

on the data (Fred and Leitão, 2003). Thus, the performance of LSS-GCSS algorithm in the face of

datasets that present touching and overlapped clusters is studied in the present section, which in-

cludes datasets that comprise both circular-shaped clusters (see section 5.2.5.1) and spiral-shaped

clusters (see section 5.2.5.2).

5.2.5.1 The 3rings dataset

Input data

The 3rings dataset is composed of fifteen hundred objects (N = 1500) structured into three 2-

dimensional uniformly-distributed ring-shaped concentric clusters (D = 2, Kopt = 3). All three

clusters (C1, C2 , and C3) are perfectly balanced (N1 = N2 = N3 = 500) and separated the same

distance d. According to polar coordinates, the radius of the ith object in the dataset (xi) is denoted

as ri and its value fences in a specific range, depending on which cluster the object belongs to:

ri ∈ [0, 0.75] , ∀xi ∈ C1; ri ∈ [0.75+d, 1.25+d] , ∀xi ∈ C2; ri ∈ [1.25+2d, 1.75+2d] , ∀xi ∈ C3.

Characterisation

• The study covers multiple values of the distance between clusters (d ∈ [0.05, 0.5]).

• 100 instances of the 3rings dataset are tested per each value of parameter d.
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Cluster analysis

Figures 5.21 and 5.22 show the performance of LSS-GCSS in terms of both CI and K.

Figure 5.21: Performance of LSS-GCSS on 3rings dataset. CI values averaged along 100 instances.

Figure 5.22: Performance of LSS-GCSS on 3rings dataset: histogram of K. The histogram covers the 100

instances corresponding to each value of d.

Moreover, examples of clustering solutions obtained by LSS-GCSS on different instances of the

3rings dataset are shown in Figure 5.23.

Results

The clustering results illustrated in Figures 5.21 and 5.22 indicate that LSS-GCSS is able to success-

fully identify ring-shaped concentric clusters. LSS-GCSS begins to not identify concentric clusters

properly only when the frontier region between rings tends to disappear (d < 0.15) and a single-

cluster scenario is progressively reached (see Figure 5.23).

In addition, more specific conclusions can be drawn:

• The total CI averaged-value considering all the instances with d ≥ 0.15 equals 0.98, which

indicates a really successful behaviour of LSS-GCSS in global terms. In addition, the three

rings are successfully identified (K = 3) in 98.75% of same set of instances with d ≥ 0.15.

• Extremely low separations between rings (d ≤ 0.05) move the clustering scenario away from

the expected configuration of the 3rings dataset and get it closer to a single-cluster configu-

ration more typical of a concentric-shaped 1unif dataset. Under such conditions, it is reaso-

nable that clustering solutions tend to identify one single cluster in the dataset (K = 1).
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(a) 3rings dataset: scatterplot. (b) 3rings dataset: LSS-GCSS dendrograms (d = 0.25, K = 3, CI = 1).

(c) 3rings dataset: scatterplot. (d) 3rings dataset: LSS-GCSS dendrograms (d = 0.15, K = 3, CI = 1).

(e) 3rings dataset: scatterplot. (f) 3rings dataset: LSS-GCSS dendrogram (d = 0.05, K = 1, CI = 0.333).

Figure 5.23: 3rings dataset: clustering solutions by LSS-GCSS.

5.2.5.2 The 2spirals dataset

Input data

The 2spirals dataset comprises a slightly random amount (N ∈ {1025, 1175}) of 2-dimensional

objects (D = 2) grouped into two spiral-shaped concentric clusters (Kopt = 2). Both clusters (C1

and C2) are unbalanced (N1 = 600, N2 ∈ {425, 575}).

Identifying the 2-dimensional space of the dataset as the complex plane, every cluster describes

the trajectory of an arithmetic spiral, whose ith point is defined as:

ri = αi e
jθi + δi (5.1)

being αi, θi and δi defined in the 2spirals dataset as follows:

αi =
i− 1

200L
, θi =

π

100
(i− 1) , δi = 0.01 (5.2)
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where L is the number of loops the spiral traces –starting from its centre with zero phase– and it

has been set at the value of 3.

Thus, the ith object in the dataset (xi), which belongs to the jth cluster (Cj), is defined as:

xi = ejθ
(j)
0 ri + η (5.3)

where the term η is a Gaussian noise of zero mean and varianceσ2
η

(
σ2
η ' 10−4

)
and θ

(j)
0 is the initial

phase of the spiral traced by objects belonging to Cj . In the 2spirals dataset, θ(1)0 =0 and θ
(2)
0 =θ0.

Hence, the parameter θ0 allows to define the separation between both spirals; i.e. the separation

between C1 and C2 increases inasmuch as the value of θ0 moves away from 0 and towards π.

Finally, it is worth noting that the unbalancing ratio between both clusters is also ruled over by

θ0, since, depending on its value, the second spiral traces more or less loops and, therefore, C2

comprises more or less objects.

Characterisation

• The study covers multiple values of the distance between clusters
(
θ0 ∈

[
π
4 ,

7π
4

])
.

• 100 instances of the 2spirals dataset are tested per each value of parameter θ0.

Cluster analysis

Figure 5.24 shows the performance of LSS-GCSS in terms of CI .

Figure 5.24: Performance of LSS-GCSS on 2spirals dataset. CI values averaged along 100 instances.

Moreover, examples of clustering solutions obtained by LSS-GCSS on different instances of the

2spirals dataset are shown in Figure 5.25.

Results

The clustering results illustrated in Figure 5.24 indicates that LSS-GCSS is able to successfully iden-

tify spiral-shaped concentric clusters. Again, LSS-GCSS begins to not identify clusters properly

only when the frontier region tends to disappear
(
−π

4 ≤ θ0 ≤ π
4

)
(see Figure 5.25).
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(a) 2spirals dataset: scatterplot. (b) 2spirals dataset: LSS-GCSS dendrograms (α = π, K = 2, CI = 1).

(c) 2spirals dataset: scatterplot. (d) 2spirals dataset: LSS-GCSS dendrograms
(
α = π

2
, K = 2, CI = 1

)
.

(e) 2spirals dataset: scatterplot. (f) 2spirals dataset: LSS-GCSS dendrograms
(
α = π

4
, K = 3, CI = 0.766

)
.

Figure 5.25: 2spirals dataset: clustering solutions by LSS-GCSS.

The total CI averaged-value (considering all the instances along every value of parameter θ0)

equals 0.946, which indicates a really successful behaviour of LSS-GCSS algorithm in global terms.

In addition, the two spirals are successfully identified (K = 2) in 96.87% of the instances of the

2spirals dataset.

5.2.6 Arbitrary-shaped clusters

Input data

Scenarios with differently-shaped clusters can be certainly troublesome for many clustering algo-

rithms, since they may impose determinate shapes to the clusters they identify, which can make

them unable to deal with the real shape of the clusters actually present in the dataset. Thus, the

performance of LSS-GCSS algorithm in the face of clusters with different shapes is studied in the
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present section, which includes three distinct datasets that comprise different mixes of arbitrary-

shaped clusters (see Figure 5.26):

(a) The Mix#1 dataset. (b) The Mix#2 dataset. (c) The Mix#3 dataset.

Figure 5.26: Datasets with a mix of arbitrary-shaped clusters.

• The Mix#1 dataset (see Figure 5.26a)) comprises a composition of approximately four thou-

sand two-dimensional objects uniformly-distributed into seven irregularly-shaped clusters

(N = 3958 , D = 2, Kopt = 7) of different sizes (N1 = 385 , N2 = 793, N3 = 247, N4 = 386,

N5 = 1002, N6 = 729, N7 = 416).

• The Mix#2 dataset (see Figure 5.26b)) comprises a composition of approximately four thou-

sand two-dimensional objects uniformly-distributed into six clusters (N = 3960 , D = 2,

Kopt = 6)of different sizes (N1 = 354 ,N2 = 350,N3 = 839,N4 = 586,N5 = 386, N6 = 1445),

which adopt different geometric shapes (triangles, rectangles, circles, stars, etc.).

• The Mix#3 dataset (see Figure 5.26c)) comprises a composition of approximately two thou-

sand two-dimensional objects structured into five clusters (N = 1916 , D = 2, Kopt = 5) of

different sizes (N1 = 500 , N2 = 100, N3 = 600, N4 = 200, N5 = 516) and distributions

(Gaussian, uniform, spiral, ring and bar).

Cluster analysis

Figure 5.27 shows the clustering solutions obtained by LSS-GCSS in the face of Mix#1, Mix#2 and

Mix#3 datasets.

Results

The clustering results illustrated in Figure 5.27 indicates that LSS-GCSS successfully deals with

arbitrary-shaped clusters, since it matches the ground truth solution 100% (CI = 1) on the three

proposed datasets.
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(a) Mix#1 dataset: scatterplot. (b) Mix#2 dataset: scatterplot. (c) Mix#3 dataset: scatterplot.

(d) Mix#1 dataset: LSS-GCSS dendrograms.

(e) Mix#2 dataset: LSS-GCSS dendrograms.

(f) Mix#3 dataset: LSS-GCSS dendrograms.

Figure 5.27: Datasets with a mix of arbitrary-shaped clusters: clustering solutions by LSS-GCSS.

It is worth noting that neither the unbalancing between clusters nor the presence of multiple clus-

ters lead to troublesome clustering situations (see sections 5.2.3 and 5.2.4 for further details) in

none of the proposed datasets, since, although frontier regions can become certainly narrow and

lengthy –specially in Mix#1 and Mix#2 datasets–, clusters are not overlapped each other.
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5.3 Real datasets

The main goal of the present section is to study the performance of the LSS-GCSS in the face of

different real-word clustering problems. To that effect, a diversity of real datasets that includes

both clusters of different characteristics (dimensionality, unbalancing ratio, degree of overlapping,

number of clusters, etc.) and data from different nature and origin (speech, images, text, etc.) is

selected. Every of the following datasets is used as benchmark in the literature (with the aim of

performing tests and comparisons under equal and known conditions) and is of public access

from the Machine Learning Repository of the University of California, Irvine (UCI)1:

• The Wine dataset (see section 5.3.1) is a well-known benchmark dataset in the machine lear-

ning field.

• The Iris dataset (see section 5.3.2) is probably the most widely used benchmark dataset in

pattern recognition literature.

• The WDBC datasets (see section 5.3.3) include data from medical images and are benchmark

datasets also highly used in classification contexts.

• The SAD dataset (see section 5.3.4) includes preprocessed speech data and is a well-known

benchmark dataset in the speech processing field.

• The MiniNews dataset (see section 5.3.5) includes text data and is also a widely used bench-

mark dataset in the information retrieval field.

Furthermore, all the datasets selected in this section present real numerical features and the pro-

ximity between objects is measured by means of either the Euclidean distance (see equation 2.8)

or the Cosine distance (see equation 2.10), depending on the nature of the dataset.

Finally, aside from comparing the number of identified clusters (K) with the real number of clus-

ters in the ground truth solution (Kopt), every twofold clustering solution obtained by LSS-GCSS

in the present section is evaluated under several validation methods:

• External validation

– The Consistency Index (CI), which provides external validation for the partitional clus-

tering solution (see section 2.4.1 for further details).

• Internal validation

– The Silhouette Coefficient
(
S
)

, which provides internal validation for the partitional

clustering solution (see section 2.4.2 for further details).

1http://archive.ics.uci.edu/ml/index.html

http://archive.ics.uci.edu/ml/index.html
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– The Kruskal-Wallis statistical test, which measures the presence or absence of signi-

ficant differences among the populations of the identified clusters in the partitional

clustering solution (see section 2.4.3 for further details).

– The Cophenetic Correlation Coefficient (CPCC), which provides internal validation

for the hierarchical clustering solution corresponding to every identified cluster (see

section 2.4.4 for further details).

5.3.1 The Wine dataset

Input data

The Wine dataset2 results of a chemical analysis of one hundred and seventy-eight different wines

(N = 178) grown in the same region in Italy, but derived from three distinct cultivars (Kopt = 3).

The analysis determine the quantities of thirteen constituents (D = 13) found in each of the three

types of wines (Forina et al., 1990).

In classification contexts, the Wine dataset is considered to give rise to a not very challenging clas-

sification problem with well-behaved class structures.

Characterisation

• The dataset is slightly unbalanced (N1 = 59, N2 = 71, N3 = 48).

• The objects in this dataset are characterised by the 13 features next listed, along with their

range of values:

– Alcohol ([11.03, 14.83])

– Malic acid ([0.74, 5.8])

– Ash ([1.36, 3.23])

– Alcalinity of ash ([10.6, 30])

– Magnesium ([70, 162])

– Total phenols ([0.98, 3.88])

– Flavanoids ([0.34, 5.08])

– Nonflavanoid phenols ([0.13, 0.66])

– Proanthocyanins ([0.41, 3.58])

– Color intensity ([1.28, 13])

– Hue ([0.48, 1.71])

– OD280/OD315 of diluted wines

([1.27, 4])

– Proline ([278, 1680])

• All features are normalised to zero mean and unit variance prior to cluster analysis.

• The squared Euclidean distance (the square of the Euclidean distance) is used as proximity

measure.

2http://archive.ics.uci.edu/ml/datasets/Wine

http://archive.ics.uci.edu/ml/datasets/Wine


150 Chapter 5. Experimental performance of LSS-GCSS algorithm

Cluster analysis

As shown in Figure 5.28, three different clusters are identified by the LSS-GCSS algorithm in the

Wine dataset:

Figure 5.28: Wine dataset: clustering solution by LSS-GCSS.

Results

The evaluation of the obtained clustering results (see Tables 5.1 and 5.2) indicates that LSS-GCSS

successfully identifies the three distinct cultivars present in the Wine dataset:

CI S
CPCC

C1 C2 C3

0.938 0.392 0.808 0.624 0.746

Table 5.1: Validity measures for the clustering so-

lution shown in Figure 5.28.

C1 C2 C3

Cultivar 1 56 0 3

Cultivar 2 4 3 64

Cultivar 3 0 47 1

Table 5.2: Matching matrix of the clustering so-

lution shown in Figure 5.28.

• The obtained clustering solution matches the ground truth in a high degree (CI = 0.938),

which points out a proper identification of the real clusters present in the dataset.

• The matching matrix resulting from the calculation of CI illustrates the mapping between

the different cultivars present in the dataset and the obtained clusters, as well as the misas-

signments performed by the clustering solution (11 misassigned objects out of 178).

• The value of the Silhouette Coefficient
(
S = 0.392

)
indicates the presence of relatively low-

compacted and/or low-isolated clusters, which assists in a better characterisation of the re-

sults. The value of S (whose behaviour is illustrated in Figure 2.3) needs to be carefully in-

terpreted: despite being far from its maximum, it is positive and significantly higher than 0,

which, at least, allows to dismiss the presence of incoherent clustering results.

• Finally, the CPCC values confirms that the obtained dendrograms properly represent the

structures and relationships between objects within their respective clusters. Moreover, the

shape of dendrograms shown in Figure 5.28 suggest the presence of non-uniform clusters,

with low-density regions in the frontiers between clusters, which would explain the few mi-

sassignments detected in the matching matrix.
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In addition, the Kruskal-Wallis statistical hypothesis test indicates that there are significant diffe-

rences (p < 0.01) between objects belonging to different clusters considering all pairs of clusters

along every feature in the dataset (i.e. objects belonging to different clusters actually come from

different statistical distributions), except for the three cases shown in Table 5.3.

Feature p-value

Ash (C1−C2) 0.536

Magnesium (C2−C3) 0.011

Hue (C1−C3) 0.368

Table 5.3: Non-significant differences in the clustering solution shown in Figure 5.28.

This results confirm the internal quality of the obtained clustering solution, since, aside from mat-

ching the ground truth in a high degree, the identified clusters present differences among them

non-attributable to randomness; i.e. objects belonging to different clusters are actually not alike.

5.3.2 The Iris dataset

Input data

The Iris dataset3 is one of the best known and most widely used databases in the pattern recogni-

tion field. It contains data about one hundred and fifty specimens (N = 150) belonging to three

different types of iris plants (Kopt = 3): Setosa, Versicolour and Virginica. Four distinct features

(D = 4) are utilised to describe every instance in the dataset (Fisher, 1936).

Characterisation

• The dataset is completely balanced (N1 = N2 = N3 = 50). While Setosa class is linearly se-

parable from the others, Versicolour and Virginica classes are not linearly separable from

each other (i.e. overlapped classes).

• The objects in this dataset are characterised by the 4 features next listed, along with their

range of values:

– Sepal length in cm ([4.3, 7.9])

– Sepal width in cm ([2, 4.4])

– Petal length in cm ([1, 6.9])

– Petal width in cm ([0.1, 2.5])

• The Euclidean distance is used as proximity measure.

3http://archive.ics.uci.edu/ml/datasets/Iris

http://archive.ics.uci.edu/ml/datasets/Iris
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Cluster analysis

As shown in Figure 5.29, three different clusters are identified by the LSS-GCSS algorithm in the

Iris dataset:

Figure 5.29: Iris dataset: clustering solution by LSS-GCSS.

Results

The evaluation of the obtained clustering results (see Tables 5.4 and 5.5) indicates that LSS-GCSS

successfully identifies the three different types of iris plants present in the Iris dataset:

CI S
CPCC

C1 C2 C3

0.953 0.484 0.622 0.611 0.472

Table 5.4: Validity measures for the clustering so-

lution shown in Figure 5.29.

C1 C2 C3

Setosa 0 0 50

Versicolour 6 44 0

Virginica 49 1 0

Table 5.5: Matching matrix of the clustering so-

lution shown in Figure 5.29.

• The obtained clustering solution matches the ground truth in a high degree (CI = 0.953),

which points out a proper identification of the real clusters present in the dataset.

• The matching matrix resulting from the calculation of CI illustrates the mapping between

the three types of iris plants present in the dataset and the obtained clusters, as well as the

misassignments performed by the clustering solution (7 misassigned objects out of 150). The

linearly separable Setosa class (clusterC3) is perfectly identified, whereas the partial overlap-

ping between Versicolour and Virginica classes causes the misassignments located in clus-

ters C2 and C1, respectively.

• Again, the value of the Silhouette Coefficient
(
S = 0.484

)
indicates the presence of relatively

low-compacted and/or low-isolated clusters; specially C1 and C2, since C3 identifies a fully

isolated class, which may explain the slight increase in the value of S in comparison with the

previous section.

• The CPCC values are lower than those obtained in the previous section, but high enough to

confirm the suitability of the representation provided by the obtained dendrograms, whose

shapes, again, indicate the presence of clusters of variable density.
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Finally, the results of the Kruskal-Wallis test shown in Table 5.6 confirm that all clusters identify

different statistical distributions of data, except for clusters C1 and C2 when considering the sepal

width (p = 0.048), which concurs with the absence of linear separation (i.e. partial overlapping)

between Versicolour and Virginica classes.

C1−C2 C1−C3 C2−C3

Sepal length in cm 3.99 10−7 1.50 10−18 5.04 10−12

Sepal width in cm 0.048 1.13 10−9 1.03 10−12

Petal length in cm 1.05 10−15 9.12 10−19 3.97 10−17

Petal width in cm 7.88 10−15 4.22 10−19 1.51 10−17

Table 5.6: Kruskal-Wallis’ p-values in the clustering solution shown in Figure 5.29.

5.3.3 The Wisconsin Diagnostic Breast Cancer dataset

The Wisconsin Diagnostic Breast Cancer (WDBC) dataset4 comes from data resulting from real

cases of breast cancer medical diagnosis at the University of Wisconsin Hospital, which involve

measurements taken according the Fine Needle Aspirate (FNA) test. This test involves fluid extrac-

tion from a breast mass using a small-gauge needle and visual inspection of the cell nuclei present

in the fluid under a microscope; therefore, the data consist of diverse features of cell nuclei (size,

shape, thickness, texture, area, concavity, etc.) measured from microscopic images. According to

these features, the diagnosis is performed and breast masses are categorised into either benign

–i.e. no further actions are required– or malignant –i.e. a breast cancer case has been diagnosed,

so that the malignant mass must be excised– (Anagnostopoulos et al., 2006).

There exist two different versions of this dataset, both highly used in bioinformatics and machine

learning fields: the WDBC#1 dataset, which dates from year 1992 (see section 5.3.3.1), and the

WDBC#2 dataset, which dates from year 1995 (see section 5.3.3.2).

5.3.3.1 The WDBC#1 dataset

Input data

The WDBC#1 dataset5 comprises data from 699 images belonging to two different breast mass

diagnostic cases (Kopt = 2): Benign and Malignant. Every image is characterised by means of

nine distinct cell nuclei features (D = 9) (Bennett and Mangasarian, 1992).

4http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
5http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-

wisconsin.names

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.names
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.names
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Characterisation

• It is worth noting that there are 16 objects in the dataset which present a single missing (i.e.

unavailable) feature value. In addition, 234 objects are duplicated (i.e. they are identical to

some other object in the dataset). Therefore, after omit both faulty and duplicated objects

from the initial 699, the cluster analysis is run on the four hundred and forty-nine remaining

objects (N = 449).

• The real clusters in the dataset (formed by objects belonging to Benign and Malignant clas-

ses) are not linearly separable and slightly unbalanced (N1 = 213 and N2 = 236, respecti-

vely).

• The objects in this dataset are characterised by the 9 features next listed, where the range of

values is the same for all features ({1, 10}):

– Clump thickness

– Uniformity of cell size

– Uniformity of cell shape

– Marginal adhesion

– Single epithelial cell size

– Bare nuclei

– Bland chromatin

– Normal nucleoli

– Mitoses

• All features are normalised to zero mean and unit variance prior to cluster analysis.

• The Cosine distance is used as proximity measure.

Cluster analysis

As shown in Figure 5.30, two different clusters are identified by the LSS-GCSS algorithm in the

WDBC#1 dataset:

Figure 5.30: WDBC#1 dataset: clustering solution by LSS-GCSS.

Results

The evaluation of the obtained clustering results (see Tables 5.7 and 5.8) indicates that LSS-GCSS

successfully identifies the two different classes of images present in the WDBC#1 dataset:
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CI S
CPCC

C1 C2

0.947 0.661 0.776 0.508

Table 5.7: Validity measures for the clustering so-

lution shown in Figure 5.30.

C1 C2

Benign 201 12

Malignant 12 224

Table 5.8: Matching matrix of the clustering so-

lution shown in Figure 5.30.

• The obtained clustering solution matches the ground truth in a high degree (CI = 0.947),

which points out a proper identification of the real clusters present in the dataset.

• The matching matrix resulting from the calculation of CI illustrates the mapping between

the two types of images present in the dataset and the obtained clusters, as well as the mi-

sassignments performed by the clustering solution (24 misassigned objects out of 449). C1

identifies Benign cases, while images resulting from Malignant cases tend to be grouped

within C2. Regarding the missassignments, the 12 malign cases included in C1 are more

dangerous than the others, since they are false negative cases from a diagnostic perspective

(i.e. they would be malignant breast masses diagnosed as non-carcinogenic cases).

• The value of the Silhouette Coefficient
(
S = 0.661

)
indicates the presence of more compac-

ted and isolated clusters in comparison with Wine and Iris datasets.

• Again, CPCC values confirm the suitability of the representation provided by the obtained

dendrograms, which indicate the presence of clusters of variable density (specially C1).

Finally, the results of the Kruskal-Wallis test confirm that both clusters identify different statistical

distributions of data, since there are significant differences (p < 0.01) between both clusters along

all features in the dataset.

5.3.3.2 The WDBC#2 dataset

Input data

The WDBC#2 dataset6 comprises data from five hundred and sixty-eight images (N = 568) belon-

ging to two different breast mass diagnostic cases (Kopt = 2): Benign and Malignant. Every image

is characterised by means of thirty distinct cell nuclei features (D = 30) (Mangasarian et al., 1995).

Characterisation

• The real clusters in the dataset (formed by objects belonging to Benign and Malignant clas-

ses) are not linearly separable and more unbalanced than in the first version of the dataset

(N1 = 357 and N2 = 212, respectively).

6http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.names

http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.names
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• Every object in this dataset is characterised by 30 features, which result from the following

process. Firstly, 10 real-valued attributes are measured for each cell nucleus present in the

image. And secondly, the mean (µ), the standard deviation (σ) and the mean of the three

largest values
(
µ(3)

)
of every attribute are calculated, giving rise to the 30 definitive features.

Both the original attributes and the range of values of every final feature are next listed:

– Radius
(
µ ∈ [6.98, 28.11] , σ ∈ [0.112, 2.873] , µ(3) ∈ [7.93, 36.04]

)
– Texture

(
µ ∈ [9.71, 39.28] , σ ∈ [0.36, 4.885] , µ(3) ∈ [12.02, 49.54]

)
– Perimeter

(
µ ∈ [43.79, 188.5] , σ ∈ [0.757, 21.98] , µ(3) ∈ [50.41, 251.2]

)
– Area

(
µ ∈ [143.5, 2501] , σ ∈ [6.802, 542.2] , µ(3) ∈ [185.2, 4254]

)
– Smoothness

(
µ ∈ [0.053, 0.163] , σ ∈ [0.002, 0.031] , µ(3) ∈ [0.071, 0.223]

)
– Compactness

(
µ ∈ [0.019, 0.345] , σ ∈ [0.002, 0.135] , µ(3) ∈ [0.027, 1.058]

)
– Concavity

(
µ ∈ [0, 0.427] , σ ∈ [0, 0.396] , µ(3) ∈ [0, 1.252]

)
– Concave points

(
µ ∈ [0, 0.201] , σ ∈ [0, 0.053] , µ(3) ∈ [0, 0.291]

)
– Symmetry

(
µ ∈ [0.106, 0.304] , σ ∈ [0.008, 0.079] , µ(3) ∈ [0.157, 0.664]

)
– Fractal dimension

(
µ ∈ [0.05, 0.097] , σ ∈ [0.001, 0.03] , µ(3) ∈ [0.055, 0.208]

)
• All features are normalised to zero mean and unit variance prior to cluster analysis.

• The Cosine distance is used as proximity measure.

Cluster analysis

As shown in Figure 5.31, two different clusters are identified by the LSS-GCSS algorithm in the

WDBC#2 dataset:

Figure 5.31: WDBC#2 dataset: clustering solution by LSS-GCSS.

Results

The evaluation of the obtained clustering results (see Tables 5.9 and 5.10) indicates that LSS-GCSS

successfully identifies the two different classes of images present in the WDBC#2 dataset:
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CI S
CPCC

C1 C2

0.94 0.456 0.42 0.459

Table 5.9: Validity measures for the clustering so-

lution shown in Figure 5.31.

C1 C2

Benign 349 8

Malignant 26 186

Table 5.10: Matching matrix of the clustering so-

lution shown in Figure 5.31.

• The obtained clustering solution matches the ground truth in a high degree (CI = 0.94),

which points out a proper identification of the real clusters present in the dataset.

• Similarly to the previous section, the matching matrix resulting from the calculation of CI

indicates that C1 identifies Benign cases, while Malignant cases are identified by C2, with 32

misassigned objects out of 568, 26 of which are false negative cases included in C1.

• The value of the Silhouette Coefficient
(
S = 0.456

)
indicates the presence of less compacted

and isolated clusters than in the WDBC#1 dataset.

• In addition, CPCC values are lower than those obtained in the WDBC#1 dataset, but high

enough to confirm the suitability of the obtained dendrograms.

Finally, the Kruskal-Wallis statistical hypothesis test indicate the presence of significant differences

between both clusters along every feature in the dataset, except for the four cases shown in Table

5.11 (i.e. p < 0.01 in 26 of the 30 features), which confirms that both clusters identify different

statistical distributions of data.

Feature p-value

Mean of the fractal dimension 0.105

Standard deviation of the texture 0.984

Standard deviation of the smoothness 0.565

Standard deviation of the symmetry 0.481

Table 5.11: Non-significant differences in the clustering solution shown in Figure 5.31.

5.3.4 The SAD dataset

Input Data

The SAD dataset7 includes speech data from 44 male and 44 female native Arabic speakers bet-

ween the ages 18 and 40, and it comprises time series of mel-frequency cepstrum coefficients

(MFCC) corresponding to ten (from 0 to 9) Spoken Arabic Digits (Kopt = 10). This dataset co-

mes from the Laboratory of Automatic and Signals, belonging to the University of Badji-Mokhtar

in Annaba, Algeria.

7http://archive.ics.uci.edu/ml/datasets/Spoken+Arabic+Digit

http://archive.ics.uci.edu/ml/datasets/Spoken+Arabic+Digit
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More specifically, the SAD dataset includes 8800 time series of MFCC taken from 88 different Ara-

bic native speakers, each to perform 10 repetitions of 10 digits. Each time series comprise a de-

terminate number of frames (Mi), which varies depending on the digit, the speaker and the repe-

tition (Mi ∈ {4, 93} , ∀ i ∈ {1, 8800}). Each frame is composed of 13 MFCC computed under the

following conditions (Hammami and Bedda, 2010):

• Sampling rate: 11025 Hz

• Quantisation resolution: 16 bits

• Framing process: Hamming window

• Pre-emphasis filter: H (z) = 1− 0.97 z−1

Therefore, the ith object in the dataset (corresponding to a given digit, a given speaker and a given

repetition) is characterised by 13Mi features.

Characterisation

• Objects belonging to different users are analysed separately. Hence, 88 different datasets are

generated (one per user), each including 10 repetitions of 10 digits belonging to one single

user (N = 100) and each comprising 10 perfectly balanced clusters (Ni = 10, ∀i ∈ {1, 10}),

being Ni the size of cluster Ci.

• Given a user (i.e. a dataset), in order for the 100 objects in that dataset to be characterised by

the same number of features, a resampling process is performed over every time series (i.e.

every object). Thus, the resampling factor applied to the ith object (xi) is Ri (Ri ∈ Q+), so

that all objects are finally characterised by 13M features (M = Ri Mi, ∀i ∈ {1, 100}).

• Since the selection of the value of M can easily have a great influence on the clustering re-

sults, the study performed in the present section covers a range of values ofM (M ∈ {1, 100}).

Thus, that characterisation which leads to the best clustering results (MBest) is finally selec-

ted a posteriori (D = 13MBest). The purpose of such strategy is to separate the characteri-

sation of this specific data from the ability of LSS-GCSS to deal with speech data, which is

truly the object of the present study and which is evaluated here by minimising the negative

effects of an improper data characterisation.

• The Cosine distance is used as proximity measure.

Cluster analysis

Firstly, the performance of LSS-GCSS in terms of both CI and K is shown in Figure 5.32, alongside

the different values adopted by the parameter MBest. Moreover, examples of clustering solutions

obtained by LSS-GCSS on different users of the SAD dataset are shown in Figure 5.33.



5.3. Real datasets 159

(a) Histogram of MBest. (b) Histogram of K. (c) CI per user.

Figure 5.32: Clustering results obtained by LSS-GCSS algorithm on the SAD dataset. (a) The histogram

of best characterisations (MBest) shows that most users are clearly located at low values (78.4% of users

at MBest ∈ {2, 5}). (b) Histogram of the number of clusters (K) identified considering every user’s best

characterisation (MBest); K=Kopt=10 is clearly the most habitual result (72.8% of users). (c) CI values

considering every user’s best characterisation (MBest).

Results

The clustering results shown in Figures 5.32b and 5.32c indicate that LSS-GCSS successfully deals

with the speech data present in the SAD dataset. In addition, Tables 5.12 and 5.13 provide a more

specific evaluation of the clustering solutions illustrated in Figure 5.33:

User #48 User #8 User #79 User #74 Total average

CI 0.758 1 0.93 0.88 0.964

S 0.334 0.77 0.619 0.658 0.658

Table 5.12: Validity measures (CI and S) for the clustering solutions shown in Figure 5.33. The total ave-

rage values embrace all the individual results within the entire dataset (88 users).

User #48 User #8 User #79 User #74

CPCC

C1 0.823 0.647 0.58 0.585

C2 0.87 0.753 0.716 0.655

C3 0.776 0.709 0.669 0.906

C4 0.601 0.75 0.59 0.967

C5 0.688 0.63 0.56 0.742

C6 0.719 0.679 0.63 0.904

C7 0.916 0.671 0.712 0.9

C8 0.846 0.661 0.82 0.756

C9 - 0.855 0.694 0.67

C10 - 0.816 0.833 0.825

C11 - - 0.898 0.8

C12 - - - 0.614

Table 5.13: Validity measures (CPCC) for the clustering solutions shown in Figure 5.33.
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(a) User #48: LSS-GCSS dendrograms. Clusters C6 and C8 include digits 4 and 7, and 0 and 6, respectively.

(b) User #8: LSS-GCSS dendrograms. The ground truth is matched 100%.

(c) User #79: LSS-GCSS dendrograms. Digit 7 is identified by means of C7 and C11.

(d) User #74: LSS-GCSS dendrograms. Digits 1 and 2 are identified by means of C4 and C8, and C3 and C7, respectively.

Figure 5.33: SAD dataset: clustering solutions by LSS-GCSS. Ground truth’s cluster labels are shown on the

x-axis and directly indicate the digit (from 0 to 9) every object actually belongs to.

• The total CI averaged-value (considering all users) equals 0.964, which certainly indicates a

highly successful behaviour of LSS-GCSS algorithm in global terms. In addition, Figure 5.32c

shows that LSS-GCSS reaches a CI value greater that 0.9 in 90% of users.

• The real number of clusters is successfully estimated (K = 10) in 72.8% of users. Further-

more, most cases with K > 10 are caused by some specific digits being identified by the
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combination of two different clusters, which are very interesting quasi-optimal clustering

results, since they avoid any confusion between different digits (see Figures 5.33c and 5.33d

by way of example).

• Although the Silhouette Coefficient
(
S
)

may adopt significantly different values depending

on the user (see Table 5.12), its averaged-value considering all users
(
S = 0.658

)
suggests the

presence of relatively high-compacted and/or high-isolated clusters in many of the datasets.

• Despite the differences in the ranges of their values
(
CI ∈ [0.656, 1] , S ∈ [0.334, 0.807]

)
, CI

and S present some agreement. Considering the pair of variables formed by the values of CI

and S along the 88 users in the dataset (under every user’s best characterisation), respecti-

vely, Kendall’s non-parametric statistical test (Kendall, 1938) indicates a significant degree of

statistical dependency between both variables: τ = 0.412
(
p−value = 9.85 10−8

)
.

• Finally, Table 5.13 shows that CPCC values tend to be high regardless of the user (proba-

bly due to the small size of all clusters, in general terms), which confirms the quality of the

obtained dendrograms.

5.3.5 The MiniNews dataset

Input data

The MiniNews (or MiniNewsgroups) dataset8 is a subset of the 20 Newsgroups document collec-

tion that comprises 100 text documents of each of the following newsgroups (or topics) –i.e. it

comprises 2000 documents and 43063 terms (or words)– (Zha et al., 2001):

• NG1: alt.atheism

• NG2: comp.graphics

• NG3: comp.os.ms-windows.misc

• NG4: comp.sys.ibm.pc.hardware

• NG5: comp.sys.mac.hardware

• NG6: comp.windows.x

• NG7: misc.forsale

• NG8: rec.autos

• NG9: rec.motorcycles

• NG10: rec.sport.baseball

• NG11: rec.sport.hockey

• NG12: sci.crypt

• NG13: sci.electronics

• NG14: sci.med

• NG15: sci.space

• NG16: soc.religion.christian

• NG17: talk.politics.guns

• NG18: talk.politics.mideast

• NG19: talk.politics.misc

• NG20: talk.religion.misc

8http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups

http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
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The most typical representation of the textual information is based on considering documents as

term vectors (Salton and Buckley, 1988); i.e. a document is just a collection of terms (or bag-of-

words), where each term is weighted as follows (Joachims, 1996):

xij = tfij idfj = tfij log

(
D

nj

)
, ∀ i ∈ {1, N} , ∀ j ∈ {1, D} (5.4)

where tfij is the number times the jth term occurs in the ith document (xi) and nj is the number

of documents in which the jth term occurs at least once (i.e. the document frequency of the term).

This representation gives rise to a document-by-term matrix X (i.e. a dataset), where and N and

D are the number of documents (i.e. objects) and terms (i.e. features), respectively, in the dataset.

Characterisation

• The present study analyses the performance of LSS-GCSS in the face of all the binary clus-

tering problems of variable difficulty present in the MiniNews dataset (Srinivasan, 2002); i.e.

different newsgroups present different degrees of semantic overlapping (e.g. NG1 and NG2

are well-separated topics, whereas NG18 and NG19 are highly overlapped). Hence, 190 dif-

ferent datasets are analysed, resulting from the 190 possible couples of newsgroups resulting

from the MiniNews dataset: couple #1 (NG1 & NG2), couple #2 (NG1 & NG3)... couple #190

(NG19 & NG20). Thus, each single dataset comprises two hundred documents grouped into

two perfectly balanced clusters (N = 200, Kopt = 2, N1 = N2 = 100).

• Typically, the document-by-term matrix is preprocessed in order to obtain more suitable re-

presentation spaces for the textual information, so that the characteristics relative to the to-

pics the documents belong to are more properly represented. Thus, a D-dimensional space

is built from the original document-by-term matrix in order to make easier to identify docu-

ments according to their content (i.e. to distinguish among documents belonging to different

topics). In this context, two main strategies are usually followed to perform this dimensio-

nality reduction (Sebastiani, 2002):

– Term selection. A subset of terms from the original collection is selected in order to

represent documents in a more proper space of terms. Among many others, the most

typical term selection technique consists of selecting those terms whose document fre-

quency is enclosed between document frequency thresholds βl and βu, respectively

(βl ≤ nj ≤ βu).

– Term extraction. Mainly due to the pervasive problems of linguistic situations like

polysemy, homonymy and synonymy, the terms by themselves may not be optimal di-

mensions for document content representation. Hence, the term extraction strategy

involves engendering a new representation space by means of a completely new set of

synthetic terms, which are generated from the original terms and which more properly

represent the underlying latent semantic structure of the data.
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Among others, the most typical term extraction technique is known as Latent Semantic

Indexing (LSI) (Deerwester et al., 1990), which generates the new representation space

by performing a Principal Component Analysis (PCA) implemented through the Single

Value Decomposition (SVD) of the original document-by-term matrix. Every dimension

of the new semantic space is identified with the principal components resulting from

LSI, so that new dimensions result from linear combinations of terms weighted through

the SVD. Thus, the dimensionality of the new space corresponds to the number of prin-

cipal components (D = α), which is required to be selected and which is usually much

lower than the original number of terms.

• Previous works present in the literature indicate that the accuracy of clustering solutions in

this context depends in extremely high degree on a proper characterisation of the textual

information (Cobo et al., 2006; Sevillano et al., 2006a). In addition, optimal text representa-

tions are difficult to be determined beforehand and may also vary from one clustering pro-

blem to another (Sevillano et al., 2006b). This particular issue is analysed more deeply in the

literature, where strategies for robust document clustering based on a consensus clustering

approach have been proposed (Sevillano et al., 2007a,b).

Nonetheless, the object of the present study is not the optimal representation of textual in-

formation, but the ability of LSS-GCSS to deal with text data. Therefore, in order to minimise

the negative effects of an improper data characterisation, the study performed in the present

section covers a range of values of parameters βl, βu and α (βl ∈ {1, 10} , βl ∈ {10, 200} and

α ∈ {1, 30}). Thus, similarly to the previous section, that characterisation –either by term se-

lection (βl, βu), or by term extraction (α)– which leads to the best clustering results is finally

selected a posteriori.

• The Cosine distance is used as proximity measure.

Cluster analysis

The performance of LSS-GCSS in terms of both CI throughout the 190 possible couples of news-

groups in the MiniNews dataset is shown in Figure 5.34:

Figure 5.34: Clustering results obtained by LSS-GCSS on the MiniNews dataset. CI values per couple of

newsgroups, considering the best characterisation (i.e. the best clustering result) for every couple.
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Moreover, examples of clustering solutions obtained by LSS-GCSS in the face of different couples

of newsgropus –each under its best characterisation– of the MiniNews dataset are shown in Figure

5.35. Specifically, three binary clustering problems of incremental difficulty are illustrated (Srini-

vasan, 2002): NG1 and NG2 (alt.atheism and comp.graphics) are well-separated topics (see Figure

5.35a), NG10 and NG11 (rec.sport.baseball and rec.sport.hockey) are relatively overlapped topics

(see Figure 5.35b), and, finally, NG18 and NG19 (talk.politics.mideast and talk.politics.misc) are

highly overlapped topics (see Figure 5.35c).

(a) Couple #1 (NG1 & NG2): LSS-GCSS dendrograms (βl = 1, βu = 40, D = 10095).

(b) Couple #136 (NG10 & NG11): LSS-GCSS dendrograms (βl = 10, βu = 20, D = 321).

(c) Couple #188 (NG18 & NG19): LSS-GCSS dendrograms (βl = 5, βu = 20, D = 1273).

Figure 5.35: MiniNews dataset: clustering solutions by LSS-GCSS. The specifics of each couple’s best cha-

racterisation are detailed in the captions.

Results

The clustering results shown in Figure 5.34 indicate that LSS-GCSS presents a successful perfor-

mance when handling binary clustering problems of text data. In addition, Tables 5.14 and 5.15

provide a more specific evaluation of the clustering solutions illustrated in Figure 5.35.

In addition, more specific conclusions can be drawn:
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Couple #1 Couple #136 Couple #188 Total average

CI 0.96 0.725 0.715 0.896

S 0.013 0.017 0.016 0.0161

Table 5.14: Validity measures (CI and S) for the clustering solutions shown in Figure 5.35. The total ave-

rage values embrace all the individual results within the entire dataset (190 couples of newgroups).

Couple #1 Couple #136 Couple #188

CPCC
C1 0.621 0.367 0.724

C2 0.578 0.502 0.492

Table 5.15: Validity measures (CPCC) for the clustering solutions shown in Figure 5.35.

• The total CI averaged-value (considering all couples) equals 0.896, which certainly indicates

a successful behaviour of LSS-GCSS algorithm in global terms. More specifically, the best

clustering result corresponds to couple #50 (NG3 and NG16, βl = 1, βu = 100, D = 11051,

K = 2, CI = 0.985), whereas the worst clustering result corresponds to couple #78 (NG5 and

NG13, D = α = 5, K = 2, CI = 0.6250).

• The real number of clusters is successfully estimated (K = 2) by LSS-GCSS in 189 out of the

190 possible couples (the exception is couple #155: NG12 and NG13, D = α = 20, K = 3,

CI = 0.78), which is a highly successful result. More specifically, LSS-GCSS tends to behave

better with term selection (K = 2 in 184 couples) than with term extraction (K = 2 in 124

couples).

• According to the preprocessing stage, term selection leads to the best characterisation in

141 couples (if only term selection had been considered, the total averaged CI would have

equalled 0.882), whereas term extraction leads to the best characterisation in the 49 remai-

ning couples (if only term extraction had been considered, the total averaged CI would have

equalled 0.836).

• The Silhouette Coefficient
(
S
)

adopts significantly low values regardless of the couple (see

Table 5.14), which clearly indicates that text data tend to be sparse and to group into certainly

low-compacted and low-isolated clusters.

• Table 5.13 shows that, although they may vary depending on the couple of newsgroups,

CPCC values are high enough to confirm the suitability of the representation provided by

the obtained dendrograms, whose ranges of proximity values also indicate that objects are

sparsely arranged within their clusters (see Figure 5.35).

• It is worth noting that the performance of LSS-GCSS in the face of binary clustering problems

of text data is essentially the same regardless of which distance function (either Cosine or

Euclidean, which has been also tested) is used as proximity measure.
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• The performance of LSS-GCSS has been also tested in the face of combinations of more than

two newsgroups (Kopt > 2) and it suffers from a significant decrease, which is in agreement

with the behaviour of LSS-GCSS in the presence of multiple low-compacted and low-isolated

clusters (see section 5.2.4).

• Finally, the obtained clustering results in the present section indicate, in agreement with the

literature, that the accuracy of clustering solutions highly depends on the characterisation

of the data. This fact suggests that, regarding the characterisation of textual data, it might

be interesting to consider strategies beyond the typical bag-of-words approach (e.g. features

related to other grammatical units –groups of words, sentences, subordinate sentences– or

grammatical marks –periods, commas, colons, semicolons–) in order to give rise to more

compacted and isolated clusters, which might be helpful in the subsequent cluster analysis,

regardless of what specific clustering algorithm is used.

5.4 Comparative study between LSS-GCSS and other clustering

algorithms

The main goal of the present section is to conduct a comparison between LSS-GCSS and other

clustering algorithms in terms of performance. To that effect, a variety of clustering algorithms

(both partitional and hierarchical, both parameter-dependent and parameter-free) is tested by a

set of both synthetic and real datasets selected from the two previous sections.

Thus, on the one hand, the present comparative study comprises the following clustering scena-

rios:

• 2unif : 100 instances of the 2unif dataset (see section 5.2.2.1), each comprising two touching

uniformly-distributed clusters (Kopt = 2 , N1 = N2 = 500, D = 2, d = 0.05).

• 2Gauss: 100 instances of the 2Gauss dataset (see section 5.2.2.2), each comprising two par-

tially overlapped Gaussian clusters (Kopt = 2 , N1 = N2 = 500, D = 2, n = 4).

• 2bars: 100 instances of the 2bars dataset (see section 5.2.2.3), each comprising two touching

bar-shaped clusters (Kopt = 2 , N1 ∈ {642, 706}, N2 ∈ {651, 705}, D = 2, ∆x = −0.2).

• 2ubGauss: 100 instances of the 2ubGauss dataset (see section 5.2.3), each comprising two

slightly-overlapped unbalanced Gaussian clusters (Kopt = 2 , R = 5, N1 = 100, N2 = 500,

D = 2, n = 6).

• Munif : 100 instances of the Munif dataset (see section 5.2.4), each comprising twenty well-

separated uniformly-distributed clusters (M = 20 , Kopt = 20, Ni = 100, D = 2, d = 0.25).
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• 3rings: 100 instances of the 3rings dataset (see section 5.2.5.1), each comprising three tou-

ching ring-shaped clusters (Kopt = 3 , N1 = N2 = N3 = 500, D = 2, d = 0.15).

• 2spirals: 100 instances of the 2spirals dataset (see section 5.2.5.2), each comprising two tou-

ching spiral-shaped clusters (Kopt = 2 , N1 = 600, N2 = 550, D = 2, α = π
2

)
.

• Mix#1, Mix#2 and Mix#3: Three different synthetic datasets that comprise a mix of arbitrary-

shaped clusters (see section 5.2.6).

• Wine, Iris, WDBC#1 and WDBC#2: Four benchmark datasets corresponding to real-world

clustering problems (see sections 5.3.1, 5.3.2, 5.3.3.1 and 5.3.3.2, respectively, for further de-

tails).

• SAD: 88 instances of the SAD dataset, each corresponding to a different speaker (see section

5.3.4 for further details).

• MiniNews: 190 instances of the MiniNews dataset, each corresponding to a different couple

of newsgroups (see section 5.3.5 for further details).

On the other hand, the present comparative study covers a diversity of clustering algorithms.

It comprises, among others, the clustering algorithms most widely used in practice, which in-

cludes the majority of approaches to clustering that deal with the estimation of the number of

clusters –i.e. relative validity approaches, self-refining consensus approaches and model-based

approaches–, regardless of whether they are parameter-free or not (see section 2.5.1 for further

details):

• k-means: Centre-based HPC algorithm that requires both the number of clusters (K) and

the initialisation of its K centroids (Forgy, 1965; MacQueen, 1967). Hence, in order to opti-

mise its performance, it is provided with the real number of clusters (K = Kopt) and it is run

ten times with ten different random initialisations (the best clustering solution is selected a

posteriori) on each instance of every dataset.

• EM: Model-based HPC algorithm that requires an initial clustering solution, typically provi-

ded by the k-means algorithm (see section 2.5.1.5 for further details). To avoid local minima,

the k-means algorithm is run ten times with ten different random initialisations and the hig-

hest likelihood solution is used in order to begin the EM estimation.

In addition, EM clustering algorithm may or may not require the value of K, since it can be

initialised either once for a specific value of K, or several times for a range of values of K

and select the optimal initialisation (and therefore the final value of K) according to a Monte

Carlo cross-validation method (Smyth, 1996). In the present study, EM is provided with the

real number of clusters (K = Kopt).
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• x-means: Model-based HPC algorithm, which, after being initialised by multiple k-means

clustering solutions with different values of K, selects the best one of them according to the

BIC function 2.5.1.5. It requires both the Kmin and Kmax values that enclose the range of

possible values of K (K ∈ {Kmin,Kmax}). In the present study, both parameters are set so

that the resulting range of values of K includes the real number of clusters in all the tested

scenarios (Kmin = 1 , Kmax = 25).

• SL, CL, UPGMA, WPGMA, UPGMC, WPGMC, and Ward’s: Both graph-based (SL, CL, UPGMA

and WPGMA) and geometric (UPGMC, WPGMC and Ward’s) basic AHC algorithms that do

not require any initial parametrisation (see sections 3.1.1 and 3.1.2, respectively, for further

details). Nonetheless, these clustering algorithms result in a dendrogram, which needs to

be postprocessed to give rise to a HPC solution of K clusters. In the present study, final HPC

solutions are obtained from dendrograms by means of the ZIC approach, which requires two

parameters –depth (δ) and inconsistency threshold (ιth)– to be defined (see section 3.1.3 for

further details). Thus, in order to optimise the performance of these algorithms, a range of

values of every parameter is covered (δ ∈ {1, 50}; ιth ∈ {ι1, ι20}, where ι1... ι20 are the incon-

sistency values of the 20 most inconsistent links in the dendrogram) and the best clustering

solution is selected a posteriori.

• SL-DID and LSS-GCSS: Parameter-free AHC algorithms that do not require any user inter-

vention (see sections 3.2.1 and 4.2 for further details).

It is worth noting that the parameter-dependent clustering algorithms included in the present

study certainly enjoy a comparative advantage, since the negative effects of an improper para-

metrisation are eliminated by selecting a posteriori the best possible clustering solution each of

them can provide in every scenario. This strategy allows to evaluate them at their maximum per-

formance, which in its turn includes the best possible performance of any approach to the esti-

mation of Kopt based on the analysis of a variety of clustering solutions provided by any of these

algorithms (see section 2.5.1 for further details).

Moreover, in order for every tested clustering algorithm to perform at its best in all the scenarios,

the same data characterisation procedures carried out in sections 5.2 and 5.3 on every specific

dataset are applied in the present section to every dataset and every clustering algorithm. Additio-

nally, the same distance functions used in sections 5.2 and 5.3 as proximity measures are also kept

in the present section, except for the x-means algorithm, which has reported its best clustering

results by means of the Euclidean distance in all the clustering scenarios.

Hence, the results of the present comparative study are shown in Table 5.16. Regarding the valida-

tion procedure of the clustering results, every clustering solution obtained in the present section is

compared with the ground truth solution and evaluated by means of the Consistency Index (CI)

(see section 2.4.1 for further details).
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A detailed analysis of the obtained results allows to draw the following conclusions:

• Firstly, LSS-GCSS certainly proves to be the best overall method considering the whole set of

clustering scenarios tested: it always found the real number of clusters, it always performs

beyond a 0.9 CI value (except in the MiniNews scenario, with a 0.896 CI) and it reaches the

best clustering results in absolute terms on nine of the sixteen scenarios tested.

• Regarding the estimation of the number of clusters, LSS-GCSS clearly outperforms SLDID

and x-means algorithms, which are able to properly found the real number of clusters on

three and four of the scenarios, respectively. Its performance on this particular issue is even

better than that of the basic AHC algorithms, whose best possible clustering solutions selec-

ted a posteriori do not include the correct number of clusters on many of the scenarios.

• Additionally, LSS-GCSS also outperforms k-means and EM algorithms in spite of working

under worse conditions, since both HPC methods are always fed with the real number of

clusters and released from the possible negative effects of a bad initialisation (specially in

the case of k-means). Specifically, LSS-GCSS beats k-means and EM algorithms on eleven

and thirteen of the scenarios, respectively, whereas k-means and EM are able to reach the

best clustering results in absolute terms on four and two of the scenarios, respectively.

• In the particular comparison between LSS-GCSS and SLDID, the former always outperforms

the latter, except on the WDBC#1 scenario, where SLDID reaches the best clustering results

in absolute terms and slightly beats LSS-GCSS. Regarding scenarios with touching and over-

lapping clusters (e.g. 2Gauss, 2bars, 3rings and Iris), the present study clearly illustrates how

LSS-GCSS overcomes the most remarkable lack of SLDID.

• LSS-GCSS reaches its optimum performance on scenarios with concentric- and arbitrary-

shaped clusters (3rings, 2spirals, Mix#1, Mix#2 and Mix#3), as well as in the face of some of

the scenarios that present touching and overlapping clusters (2unif, 2Gauss, 2bars and Iris).

In addition, it is also noteworthy the case of the Munif scenario, where LSS-GCSS and SL

reach a perfect performance –since clusters are separated enough (see section 5.2.4 for fur-

ther details)– and outperform the rest of methods, which proves that handling a high num-

ber of clusters can be troublesome for many clustering algorithms even working on optimal

conditions (i.e. knowing the true number of clusters a priori and not depending on parame-

trisation issues).

On the contrary, the hardest scenarios for LSS-GCSS are 2ubGauss, which is both plausible

and expectable, considering the highly-unbalanced overlapped clusters this scenario pre-

sents (see section 5.2.3 for further details), and MiniNews, since knowing in advance the real

number of clusters is truly a great advantage when confronting such a difficult clustering

problem (see section 5.3.5 for further details). Nonetheless, despite this latter fact, LSS-GCSS

successfully estimates the real number of clusters in the MiniNews scenario, outperforming

seven of the eleven clustering algorithms included in the study.
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• The results corresponding to the basic AHC algorithms reveals that they are far from outper-

forming LSS-GCSS in overall terms, even enjoying the comparative advantage of considering

only the best clustering results they are able to reach on every scenario, which are selected

a posteriori. In addition, it is also shown that, in case a cluster analysis is based on a basic

AHC algorithm, a proper choice of the specific AHC method (SL, CL, UPGMA, Ward’s, etc.) is

crucial to achieve success, since their performance may come to depend to a high extent on

the nature of the clustering scenario (e.g. UPGMA, UPGMC and Ward’s are more successful

than the rest of basic AHC methods to deal with overlapped Gaussian clusters; only SL is able

to properly identify arbitrary-shaped clusters; and all basic AHC methods tend to fail when

handling touching bar-shaped clusters).

• Finally, it is certainly revealing to compare between the performances of k-means and x-

means algorithms (the former clearly outperforms the latter, which is totally understanda-

ble), since it illustrates both the importance of knowing in advance the real number of clus-

ters and the high influence the initialisation of a clustering algorithm has over the quality of

the final clustering solution.

5.5 Discussion

The main conclusions drawn from the experimental study performed in the present chapter are

next detailed:

• The LSS-GCSS algorithm is able to properly deal with a wide variety of datasets without re-

quiring either prior knowledge about the data or any user intervention. This successful beha-

viour includes both appropriately finding the real number of clusters and resulting a cluste-

ring solution either highly similar or equal to the ground truth, regardless of the nature of the

clusters present in the data.

Specifically, LSS-GCSS proves to be able to identify the presence of randomly generated data,

without forcing a cluster structure in the absence of it –specially in the face of Gaussian clus-

ters and inasmuch as both size and dimensionality of data increase– (see section 5.2.1); to

distinguish between touching and overlapped clusters of different distribution, density and

nature (see sections 5.2.2, 5.3.2 and 5.3.3); to deal with unbalanced clusters (see sections

5.2.3, 5.2.6, 5.3.1 and 5.3.3); to identify the presence of multiple clusters in a single dataset

(see sections 5.2.4, 5.2.6 and 5.3.4); to identify clusters regardless of their shape (see sections

5.2.5 and 5.2.6); and to handle data of different nature and origin (see section 5.3).

• The main limitations of the LSS-GCSS algorithm are due to either the presence of highly-

unbalanced and not well-separated clusters, or the presence of a high number of not well-

separated clusters.
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On the one hand, the ability of LSS-GCSS to properly handle unbalanced clusters depends

on their separation; i.e. distinguishing between highly-unbalanced clusters is a problem for

LSS-GCSS, unless separation between clusters is large enough (see section 5.2.3 for further

details). Specifically, separation between clusters is required to increase from unbalancing

ratios equal to or greater than three (N2 ≥ 3N1) in order for LSS-GCSS to be able to distin-

guish between clusters (see Figures 5.16b–5.16i). Nonetheless, LSS-GCSS easily deals with

lower unbalancing ratios (see sections 5.2.6 and 5.3.1), even when clusters are partially over-

lapped (see Figures 5.16a and 5.17a, and section 5.3.3).

On the other hand, the ability of LSS-GCSS to properly handle a high number of clusters

also depends on how well separated they are (see section 5.2.4 for further details). Specifi-

cally, separation between clusters is required to increase in order for LSS-GCSS to be able to

distinguish between multiple clusters, specially from a number of clusters equal to or greater

than six (Kopt ≥ 6) (see Figure 5.18). Nonetheless, this limitation does not prevent LSS-GCSS

from being able to identify multiple clusters in a variety of clustering scenarios, both synt-

hetic (see Figure 5.20 and section 5.2.6) and real (see section 5.3.4). Additionally, it is worth

noting that properly identifying a high number of clusters in a single dataset is not an exclu-

sive problem of LSS-GCSS algorithm, since it can be troublesome even if the real number of

clusters is known in advance (see Munif scenario in Table 5.16).

• In the context of a wide variety of clustering scenarios, the LSS-GCSS algorithm outperforms

in overall terms the clustering algorithms most commonly used in practice, regarding both

the ability to estimate the real number of clusters and the validity of their respective cluste-

ring solutions (see section 5.4).

Thus, as a consequence of both the conclusions reached in previous chapters of this thesis (see

sections 2.6 and 3.3 for further details) and the results obtained in the experimental study carried

out in the present chapter, it can be concluded that the task of obtaining a proper estimation of

the true number of clusters in a dataset is more reliably performed by LSS-GCSS that by any of the

previous AHC methods, specially when no knowledge about the nature of the clustering scenario

is available in advance.

On the one hand, aside from the fact that they involve solving a parameter-dependent problem,

basic AHC methods do not lead to successful results in determinate clustering scenarios and their

behaviour may vary to a high extent from one scenario to another. On the other hand, SLDID is a

well-behaved AHC algorithm that allows working under parameter-free conditions, but its perfor-

mance severely decreases in the face of both touching and overlapped clusters.

Therefore, LSS-GCSS is a parameter-free AHC algorithm that does allow to automatically estimate

the real number of clusters and obtain a successful final clustering solution in the context of a wide

variety of clustering scenarios that may contain clusters of distinct nature and characteristics. In

addition, LSS-GCSS proves to be able to perform such a task without involving any drastic increase
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of the computational requirements in comparison with previous AHC methods (see section 4.4 for

further details).

It is worth noticing that the present discussion directly refers to and affirmatively responds the first

three research questions posed in the present thesis, as well as it addresses the falsifiability of the

first research hypothesis the present thesis is based on (see section 1.3 for further details), which is

validated by means of the clustering results the LSS-GCSS algorithm provide in the experimental

study performed in the present chapter.

Finally, since LSS-GCSS proves to be versatile enough to face clustering problems of diverse na-

ture without requiring any user intervention and any prior knowledge about the scenario, both

the fourth research question and the second research hypothesis posed in the present thesis are

next addressed in Chapter 6, where learners’ activity in online discussion forums is modelled by

applying the LSS-GCSS algorithm in the context of a subspace clustering-based analysis strategy.
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Chapter 6

A novel strategy to model learners’

activity in online discussion forums

The issue of modelling learners’ activity in online discussion forums leads to a highly context-

dependent analysis scenario. In addition, user intervention is habitually required in clustering-

based approaches to that matter in order to provide a final clustering solution, which can easily

introduce biases into the final modelling. Thus, having proved its versatility and reliability to face

clustering problems of diverse nature without requiring any user intervention, LSS-GCSS algo-

rithm seems to be a good candidate to try to minimise such biases. Therefore, with the aim of im-

proving the analysis conditions of the previous approaches to the issue, this chapter is focused on

presenting the last contributions of the present thesis, which essentially comprise the definition of

a two-stage subspace clustering-based analysis strategy that, in combination with the LSS-GCSS

algorithm, both be easily adaptable to the conditions of this modelling scenario and limit user’s

subjective intervention to the interpretation stages of the analysis process.

Consequently, this sixth chapter is structured as follows. The contributions provided in the pre-

sent thesis regarding the matter of modelling learners’ activity in online discussion forums from

a clustering-based approach are defined in 6.1. Next, the proposed analysis strategy is detailed in

section 6.2. Once defined, the proposed analysis strategy is applied in the context of a particular

teaching-learning environment. Hence, a description of the input data available in such scenario

is performed in section 6.3 and the implementation of the proposed analysis strategy in the defi-

ned scenario is included in sections 6.4 and 6.5. Finally, conclusions and considerations about the

performed study are detailed in section 6.6, which includes a discussion directly referred to both

the fourth research question and the second research hypothesis posed in section 1.3.
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6.1 On modelling learners’ activity in online discussion forums

from a clustering perspective

As aforementioned in Chapter 1, the problem of modelling learners’ activity in online discussion

forums can be easily posed from the DM field as a clustering scenario, where learners with similar

participation profiles are grouped together and the analysis of the resulting clusters leads to the

identification of different learning behaviours. However, the different learning behaviours per-

formed by learners in the asynchronous discussions depend on many variables (e.g. amount of

learners in the virtual classroom, course duration, field of study, kind of subject, teaching-learning

strategies promoted by teacher, etc.), which leads to a highly context-dependent modelling scena-

rio and causes the real number of clusters to be a priori unknown.

Consequently, such a potentially troublesome clustering scenario needs to be tackled by means of

a suitable analysis strategy, which is required to be both versatile enough to be adaptable to such a

changeable problem and as less biased as possible, so that user’s subjective intervention is restric-

ted to the interpretation of the clustering results in terms of the learning behaviours performed by

learners (see section 1.2.3.2 for further details).

Therefore, regarding the context of a clustering-based approach to the matter of modelling lear-

ners’ activity in online discussion forums, the two last contributions of the present thesis are next

defined:

• Design and implementation of an analysis strategy based on the subspace clustering para-

digm for the problem of modelling learners’ activity in online discussion forums. Such an

analysis strategy has the ability to be easily adaptable to the highly context-dependent con-

ditions of this modelling scenario, regardless of both what knowledge about the scenario is

available in advance and which specific clustering algorithm is eventually selected.

• Application of the LSS-GCSS algorithm to the problem of modelling learners’ activity in on-

line discussion forums, hence avoiding any user intervention in the clustering stage and

ensuring that the estimation of the number of clusters does not depend on any subjective

criteria.

Thus, the present chapter is focused on both presenting and developing these contributions. To

that effect, the benefits of their application in the specific context of the online discussion forums

belonging to a particular teaching-learning environment are illustrated. Finally, the following sec-

tions also allow to complement the study on the abilities of the LSS-GCSS algorithm performed

in the previous chapter, by incorporating experimental results from the framework of a complex

analysis strategy in a real-word clustering scenario.
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6.2 Two-stage clustering-based strategy of analysis

On the one hand, the paradigm of subspace clustering (or projected clustering) arises with the aim

of overcoming some of the undesired effects that appear as the dimensionality of data grows (Be-

llman, 1961; Beyer et al., 1999). In a nutshell, the goal of subspace clustering is to identify clusters

embedded in low-dimensional subspaces of the original data space along with their own associa-

ted dimensions. To that effect, subspace clustering methods are usually based on reducing the

dimensionality of data through the use of either feature extraction or feature selection techniques

in order to find optimal representation spaces for the data (Gan et al., 2007). Although there exist

several clustering algorithms originally designed according to the subspace clustering premises

(see section 2.3.2 for further details), the principles of this paradigm can be applied in order to de-

compose any clustering problem into several simpler problems, hence facilitating the subsequent

cluster analysis regardless of the nature of the selected clustering algorithm.

On the other hand, the matter of modelling learners’ activity in online discussion forums from

a clustering perspective gives rise to a complex and high-context dependent analysis scenario.

Aside from depending on many variables, learners’ activity in online discussion forums can be

characterised by means of multiple features of different nature, each one of which, in its turn, can

result from considering one or several of the many different aspects relative to participation in

asynchronous discussions (see sections 1.2.1 and 1.2.2 for further details). Thus, in order to obtain

proper and complete descriptions of learners’ participation considering all possible angles, it may

be interesting to adopt an approach that decomposes the clustering scenario into several simpler

scenarios that can be analysed separately, so that each one of them is focused on characterising

a single specific aspect of learners’ activity in online discussion forums. Following this logic, it

seems therefore plausible to build up an analysis strategy that applies the principles of subspace

clustering in order to perform such a decomposition of the clustering scenario.

Hence, being inspired in the subspace clustering paradigm and as a culmination of several pre-

vious approximations to the issue (Cobo et al., 2011, 2012), the analysis strategy proposed in the

present chapter decomposes the traditional KDD process (see Figure 1.1 for further details) into

two different stages, as shown in Figure 6.1:

1. Learners’ activity in online discussion forums is differently characterized in several dis-

tinct subspaces on the first analysis stage; i.e. different features are used depending on

the subspace, so that different subspaces describe different specific aspects of the partici-

pation in the asynchronous discussions. Thus, learners with similar activity patterns are

grouped together in the same cluster belonging to the ith subspace according to the parti-

cularities of the characterisation performed in that specific subspace, therefore giving rise to

as many clustering solutions as different subspaces are comprised in the first analysis stage
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Figure 6.1: Two-stage clustering-based strategy of analysis.

(
P(i), ∀ i ∈ {1,M}

)
. In addition, this first stage of analysis includes the evaluation and a first

interpretation of every obtained clustering solution according to the particular context of the

subspace it belongs to (see section 6.4 for further details).

It is worth noting that the different aspects of learners’ participation characterised in this

analysis strategy (i.e. both the number of subspaces and the specific features used in each

subspace) are a direct consequence of the input data available in the scenario, which, in their

turn, depend on many variables and are highly context-dependent (see section 6.3 for fur-

ther details). Hence, splitting up the characterisation of the activity performed by learners

into a variety of subspaces provides the proposed analysis strategy with a great deal of flexi-

bility concerning its potential application in different contexts and scenarios. Moreover, the

cluster analysis performed in the context of any subspace is always more simple and afforda-

ble than that which would take place if all the aspects of the participation were characterised

in one single go, regardless of the utilised clustering algorithm.

2. The second stage of the proposed analysis strategy essentially comprises an interpreta-

tion process of the clustering solutions resulting from the first stage, which consists in as-

sembling the clustering solutions obtained in the first stage and identifying those learners

belonging to the same clusters in all the subspaces. Since each cluster has been previously

characterised and interpreted in the context of the particular subspace it belongs to, it is

at this point trivial to group together learners whose activity patterns have been described

in the same terms on every subspace. Therefore, a final set of clusters
(
P(F)

)
is eventually

obtained, where each cluster results from the combination of specific activity patterns pre-

viously identified in the first stage of analysis. In this way, the nature of the final clusters can

be interpreted in terms of complex participation profiles, so that different models of learning

behaviour can be identified with different final clusters (see section 6.5 for further details).

It is worth noting that the whole interpretation/identification process requires the user to

make use of conceptual analysis tools provided by the different theoretical approaches that
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describe and analyse the nature of the asynchronous discussions performed by learners in

the context of an online teaching-learning environment (see section 1.2.2 for further details).

Finally, the specific implementation of the proposed analysis strategy performed in the present

chapter includes the use of the LSS-GCSS algorithm on all the subspaces present in the first stage

of the analysis process (see section 6.4 for further details). The main reason for this choice is that

LSS-GCSS has already proved its versatility and reliability in the face of a great variety of cluste-

ring scenarios, being able both to successfully estimate the real number of clusters and to provide

clustering solutions of high quality in total absence of prior knowledge about the scenario (see

Chapter 5 for further details). Moreover, LSS-GCSS is a parameter-free algorithm, so that it avoids

the user from intervening in the cluster analysis stage and, therefore, it favours obtaining unbiased

clustering results.

It is, however, worth noting that the proposed analysis strategy is not only not linked to the use

of any specific clustering method or algorithm, but it even allows to utilise a different clustering

algorithm on each subspace in case it is convenient.

6.3 Input data

With the aim of illustrating its benefits, the application of the analysis strategy presented in the

previous section to the modelling of the activity performed by learners in the online discussion

forums belonging to a particular teaching-learning environment is studied. Specifically, the study

involves three complete semesters (from February 2009 to July 2010) of three different courses be-

longing to the online Bachelor’s Degree in Telecommunication Technologies from the Open Uni-

versity of Catalonia (UOC)1: Mathematics, Linear Systems and Circuits Theory.

In general terms, courses were taught in UOC’s asynchronous web-based teaching-learning envi-

ronment, every course comprised two different virtual classrooms per semester and the partici-

pation of learners in the online discussion forums of their respective classrooms was never man-

datory, but always strongly recommended. Thus, the whole study involves a total amount of 672

learners distributed in eighteen different virtual classrooms and a total amount of 3842 written

posts. The total academic performance rate (APR) considering the three courses and the three

entire semesters indicates that 52.2% of learners pass their respective courses at the end of the

semester. A more detailed description of these data is provided in Table 6.1:

Thus, data relative to the asynchronous discussions performed by learners are stored in a rela-

tional database by the online discussion forums tool included in the virtual classrooms of UOC’s

teaching-learning environment. Essentially, any given entry of the forums database comprises the

1Open University of Catalonia’s website: http://www.uoc.edu/portal/en/index.html

http://www.uoc.edu/portal/en/index.html
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Posts Learners APR

TOTAL 3842 672 52.2%

Mathematics
Classroom #1 337 83 34.9%

Classroom #2 196 25 68%

First semester
Linear Systems

Classroom #1 161 34 64.7%

(107 days) Classroom #2 101 14 50%

Circuits Theory
Classroom #1 187 41 63.4%

Classroom #2 101 13 76.9%

Mathematics
Classroom #1 317 87 46%

Classroom #2 111 28 42.9%

Second semester
Linear Systems

Classroom #1 179 31 64.5%

(119 days) Classroom #2 134 20 70%

Circuits Theory
Classroom #1 517 55 65.5%

Classroom #2 114 15 53.3%

Mathematics
Classroom #1 183 58 53.4%

Classroom #2 164 30 36.7%

Third semester
Linear Systems

Classroom #1 393 48 58.3%

(107 days) Classroom #2 69 21 28.6%

Circuits Theory
Classroom #1 389 43 51.2%

Classroom #2 189 26 46.2%

Table 6.1: General description of the input data. Posts, Learners and APR columns indicate, respectively,

the total amount of written posts, the number of learners and the academic performance rate (i.e. per-

centage of learners that pass the course) per classroom, course and semester. TOTAL row indicates global

values considering the totality of classrooms, courses and semesters.

following data: what learner performs what action at what instant of time. Thus, three different

kinds of action are stored in the forums database:

• SEND: Indicates that a starting post2 has been written by some learner. Numeric identifica-

tion codes associated both to the author of the starting post and to the starting post itself are

also indicated, as well as the instant of time the writing action has been performed.

• REPLY: Indicates that a reply post3 has been written by some learner. Numeric identification

codes associated to the author of the reply post, to the reply post itself, to the author of the

replied post and to the replied post itself are also indicated, as well as the instant of time the

replying action has been performed.

2By "starting post" it is meant that post which is written outside the context of any existing thread of conversation, so

that it may give rise to a new thread of conversation.

3By "reply post" it is meant that post which is written inside the context of any existing thread of conversation, so that

it replies to another previously written post.
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• READ: Indicates that a post has been read for the first time by some learner. Numeric iden-

tification codes associated to the author of the reading action, to the author of the read post

and to the read post itself are also indicated, as well as the instant of time the reading action

has been performed.

The instant of time every action has been performed at is indicated in a date form (dd/mm/yyyy

hh:mm:ss). Moreover, learners are identified by means of an arbitrary numeric identification code,

so that their anonymity is guaranteed in the context of the forums database.

Thus, regarding the different levels of participation and units of analysis that can be considered

on conceptualising what online learner participation in discussion forums is and how it can be

modelled (Hrastinski, 2008), the data available in UOC’s forums database does not allow to work

beyond a quantitative conception of participation in terms of written posts, first time read posts,

replied classmates, and pace of both writing and first time readings (see section 1.2.1 for further

details). In this sense, the data stored in the forums database in UOC’s teaching-learning environ-

ment is minimum, both in quantitative and qualitative terms, in comparison to the data managed

in many works present in the literature, which, by way of example, include indicators relative to

the total number of readings of every post performed by every learner (Calvani et al., 2010), the

content of posts (Kim et al., 2011) or how learners score posts written by their classmates (Romero

et al., 2013).

Finally, it is worth noting some interesting remarks concerning how the forums database has been

exploded and how the obtained data have been preprocessed in the present study:

• Self-readings (i.e. reading actions where both the author of the action and the author of

the read post are the same learner) have been dismissed, since learners get their own posts

marked as read as soon as they just write them. Hence, self-readings do not provide any

relevant information.

• Activity relative to teachers (i.e. teachers’ writing and reading actions) has not been explo-

ded, since the present study is focused on modelling learners activity only. Nonetheless,

both replying and first reading actions performed by learners on teachers’ posts do have

been considered.

• Regarding the filtering of the exploded data, sporadic duplicated first readings of the same

post performed by the same learner have been eliminated, since they are anomalies caused

by possible a malfunction of the forums databased marking system.

In addition, the typical self-introduction posts written by learners at the beginning of the

semester have also been eliminated after confirming that never give rise to any conversa-

tion thread or any further interaction among learners. In this way, learners that only write
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this self-introduction post throughout the whole semester are more easily identified as non-

writers, which they are.

6.4 First stage of analysis

Considering the existing theoretical approaches to the conceptualisation of participation in asyn-

chronous discussions (see section 1.2.2 for further details) and according to the available input

data, the first stage of the analysis strategy is arranged in the present study as shown in Figure 6.2:

Figure 6.2: First stage of analysis.

Hence, the subspaces defined in this first stage are grouped into different domains, which repre-

sent different high-level conceptual approaches to the issue of characterising the activity perfor-

med by learners in online discussion forums. Specifically, two distinct characterisation domains of

the activity performed by learners are defined in the present study, each one of which comprising

different subspaces:

• Behavioural domain. It comprises three different subspaces where learners’ activity is cha-

racterised according to strictly behaviourist conceptions of participation in asynchronous

discussions (see section 1.2.2.1 for further details):

– The Start subspace comprises features relative to the writing activity of starting posts

(see section 6.4.1 for further details).
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– The Reply subspace comprises features relative to the writing activity of reply posts (see

section 6.4.2 for further details).

– The Reading subspace comprises features relative to the reading activity (see section

6.4.3 for further details).

• Social domain. It comprises two different subspaces where learners’ activity is characterised

according to strictly social conceptions of participation in asynchronous discussions (see

section 1.2.2.2 for further details):

– The In-degree subspace comprises features relative to the way learners are contacted by

their classmates (see section 6.4.4 for further details).

– The Out-degree subspace comprises features relative to the way learners contact with

their classmates (see section 6.4.5 for further details).

As shown in Figure 6.2, every subspace includes the traditional stages of the KDD process are in-

cluded in the particular context of each defined subspace.

Firstly, the activity performed by all learners involved in the present study is separately characte-

rised in the different subspaces, giving rise to as many datasets as subspaces are defined, so that

the number of objects (i.e. learners) is the same for all the datasets (N = 672). It is the particu-

lar set of features included in each subspace what differentiates subspaces from each other, since

different feature selection processes are performed in the context of different subspaces, so that

features belonging to a given subspace represent singular aspects of learners’ participation that

are exclusive from that specific subspace.

It is worth noting that all features are normalised to zero mean and unit variance prior to the cluster

analysis performed in every subspace. Moreover, the Euclidean distance (see equation 2.8) is used

as proximity measure in all the subspaces.

Secondly, all the cluster analyses included in this first stage of analysis are performed by the LSS-

GCSS algorithm, so that both the number of clusters and the clustering solutions associated to

each subspace are automatically obtained, without requiring any user intervention.

Thirdly, every obtained clustering solution is exclusively evaluated under internal validation meth-

ods, since the present study deals with a real-world clustering scenario and ground truth solutions

are not therefore available. Thus, Silhouette Coefficient
(
S
)

, Cophenetic Correlation Coefficient

(CPCC) and Kruskal-Wallis statistical test (see sections 2.4.2, 2.4.4 and 2.4.3 for further details,

respectively) are utilised to evaluate and characterise the obtained clustering solutions.

And fourthly, a great variety of concepts are utilised as tools in the interpretation stages in or-

der to identify every obtained cluster with some kind of participation profile and hence provide

them with useful meanings. Such interpretation tools are provided by works present in the litera-
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ture that tackle the issue of modelling learners’ activity in online discussion forums by adopting a

theoretical-conceptual perspective, either from behaviourist, social or constructivist approaches

(see sections 1.2.2.1, 1.2.2.2 and 1.2.2.3 for further details, respectively). Additionally, contribu-

tions provided by other previous works based on modelling learners’ participation in asynchro-

nous discussions by means of a clustering perspective are also considered to such a purpose (see

section 1.2.3.2 for further details).

6.4.1 Start subspace

Characterisation

Every learner’s activity in asynchronous discussions is characterised in the Start subspace accor-

ding to the following features (D = 2):

• p(st): Number of starting posts written by the learner, normalised by the maximum number

of starting posts written by some learner of that classroom.

• d(st): Number of days dedicated by the learner to write, at least, one starting post, normalised

by the maximum number of days dedicated by some learner of that classroom to write, at

least, one starting post.

Cluster analysis

As shown in Figure 6.3, three different clusters are identified by the LSS-GCSS algorithm within the

Start subspace:

Figure 6.3: Start subspace: clustering solution by LSS-GCSS.

Evaluation

The result of the evaluation of the clustering solution belonging to the Start subspace confirms the

quality of the obtained results (see Table 6.2):

• The values of the Silhouette Coefficient considering each cluster separately indicates the pre-

sence of two high-compacted and high-isolated clusters (C(st)
1 and C

(st)
2 ), along with a larger
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C
(st)
1 C

(st)
2 C

(st)
3

S 1 0.98 0.173

CPCC 1 0.934 0.785

Table 6.2: Validity measures (S and CPCC) for the clustering solution shown in Figure 6.3.

cluster of much lower density (C(st)
3 ). In addition, the global value of the Silhouette Coeffi-

cient
(
S = 0.751

)
confirms the overall quality of the obtained clustering solution.

• The values of CPCC are high enough to confirm the suitability of the representation provi-

ded by the three obtained dendrograms.

• Finally, the results of the Kruskal-Wallis test confirm that all the obtained clusters identify dif-

ferent statistical distributions of data, since there are significant differences (p < 0.01) bet-

ween all clusters regarding every feature of the dataset.

Interpretation

Figure 6.4 shows the ranges of values adopted by the obtained clusters along the two features be-

longing to the Start subspace. In addition, both the amount of learners and the APR present in

every cluster are detailed in Table 6.3.

(a) Boxplots corresponding to the p(st) feature. (b) Boxplots corresponding to the d(st) feature.

Figure 6.4: Location of clusters belonging to the Start subspace.

C
(st)
1 C

(st)
2 C

(st)
3

%N 66.8% 3.1% 30.1%

APR 40.5% 95.2% 73.8%

Table 6.3: Characterisation of clusters in the Start subspace regarding their size (i.e. percentage of learners

included in each cluster) and APR (i.e. percentage of learners in each cluster that pass the course).

Thus, the clustering results obtained in the Start subspace allow to identify the following partici-

pation profiles:

• Non-initiators
(
C

(st)
1

)
: Learners who present a total absence of activity regarding the wri-

ting of starting posts.
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• Leading initiators
(
C

(st)
2

)
: Learners who intensively write high amounts of starting posts

throughout the entire semester, leading this particular aspect of the participation in the dis-

cussion boards of their respective classrooms.

• Mid-class initiators
(
C

(st)
3

)
: Learners who dedicate between small and medium amounts

of time to write between small and medium amounts of starting posts.

6.4.2 Reply subspace

Characterisation

Every learner’s activity in asynchronous discussions is characterised in the Reply subspace accor-

ding to the following features (D = 2):

• p(re): Number of reply posts written by the learner, normalised by the maximum number of

reply posts written by some learner of that classroom.

• d(re): Number of days dedicated by the learner to write, at least, one reply post, normalised

by the maximum number of days dedicated by some learner of that classroom to write, at

least, one reply post.

Cluster analysis

As shown in Figure 6.5, three different clusters are identified by the LSS-GCSS algorithm within the

Reply subspace:

Figure 6.5: Reply subspace: clustering solution by LSS-GCSS.

Evaluation

The result of the evaluation of the clustering solution belonging to the Reply subspace confirms

the quality of the obtained results (see Table 6.4):

• The values of the Silhouette Coefficient considering each cluster separately indicates the pre-

sence of two high-compacted and high-isolated clusters (C(re)
1 andC

(re)
2 ), along with a larger
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C
(re)
1 C

(re)
2 C

(re)
3

S 1 0.949 0.061

CPCC 1 0.887 0.692

Table 6.4: Validity measures (S and CPCC) for the clustering solution shown in Figure 6.5.

cluster of much lower density (C(re)
3 ). In addition, the global value of the Silhouette Coeffi-

cient
(
S = 0.576

)
confirms the overall quality of the obtained clustering solution.

• The values of CPCC are high enough to confirm the suitability of the representation provi-

ded by the three obtained dendrograms.

• Finally, the results of the Kruskal-Wallis test confirm that all the obtained clusters identify dif-

ferent statistical distributions of data, since there are significant differences (p < 0.01) bet-

ween all clusters regarding every feature of the dataset.

Interpretation

Figure 6.6 shows the ranges of values adopted by the obtained clusters along the two features be-

longing to the Reply subspace. In addition, both the amount of learners and the APR present in

every cluster are detailed in Table 6.5.

(a) Boxplots corresponding to the p(re) feature. (b) Boxplots corresponding to the d(re) feature.

Figure 6.6: Location of clusters belonging to the Reply subspace.

C
(re)
1 C

(re)
2 C

(re)
3

%N 56.1% 4.2% 39.7%

APR 38.2% 100% 67%

Table 6.5: Characterisation of clusters in the Reply subspace regarding their size (i.e. percentage of learners

included in each cluster) and APR (i.e. percentage of learners in each cluster that pass the course).

Thus, the clustering results obtained in the Reply subspace allow to identify the following partici-

pation profiles:

• Non-repliers
(
C

(re)
1

)
: Learners who present a total absence of activity regarding the writing

of reply posts.
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• Leading repliers
(
C

(re)
2

)
: Learners who intensively write high amounts of reply posts through-

out the entire semester, leading this particular aspect of the participation in the discussion

boards of their respective classrooms.

• Mid-class repliers
(
C

(re)
3

)
: Learners who dedicate between small and medium amounts of

time to write between small and medium amounts of reply posts.

6.4.3 Reading subspace

Characterisation

Every learner’s activity in asynchronous discussions is characterised in the Reading subspace ac-

cording to the following features (D = 2):

• p(rd): Number of posts read by the learner, normalised by the maximum number of posts

read by some learner of that classroom.

• d(rd): Number of days dedicated by the learner to the first reading of, at least, one post, nor-

malised by the maximum number of days dedicated by some learner of that classroom to the

first reading of, at least, one post.

Cluster analysis

As shown in Figure 6.7, five different clusters are identified by the LSS-GCSS algorithm within the

Reading subspace:

Figure 6.7: Reading subspace: clustering solution by LSS-GCSS.

Evaluation

The result of the evaluation of the clustering solution belonging to the Reading subspace confirms

the quality of the obtained results (see Table 6.6):

• The values of the Silhouette Coefficient considering each cluster separately indicates the pre-

sence of two high-compacted and high-isolated clusters (C(rd)
1 and C

(rd)
5 ), along with a mo-

derately compacted cluster (C(rd)
3 ) and two other clusters of much lower density (C(rd)

2 and
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C
(rd)
1 C

(rd)
2 C

(rd)
3 C

(rd)
4 C

(rd)
5

S 1 0.097 0.252 0.078 0.829

CPCC 1 0.484 0.518 0.663 0.572

Table 6.6: Validity measures (S and CPCC) for the clustering solution shown in Figure 6.7.

C
(rd)
4 ). Due to the presence of a higher number of low-compacted clusters, the global Sil-

houette Coefficient
(
S = 0.296

)
decreases its value in comparison with the previous subspa-

ces, but it still confirms the overall quality of the obtained clustering solution.

• The values of CPCC are high enough to confirm the suitability of the representation provi-

ded by the three obtained dendrograms.

• Finally, the results of the Kruskal-Wallis test confirm that all the obtained clusters identify dif-

ferent statistical distributions of data, since there are significant differences (p < 0.01) bet-

ween all clusters regarding every feature of the dataset.

Interpretation

Figure 6.8 shows the ranges of values adopted by the obtained clusters along the two features be-

longing to the Reading subspace. In addition, both the amount of learners and the APR present in

every cluster are detailed in Table 6.7.

(a) Boxplots corresponding to the p(rd) feature. (b) Boxplots corresponding to the d(rd) feature.

Figure 6.8: Location of clusters belonging to the Reading subspace.

C
(rd)
1 C

(rd)
2 C

(rd)
3 C

(rd)
4 C

(rd)
5

%N 6.8% 22.6% 23.4% 32.6% 14.6%

APR 2.2% 29.6% 65% 51.1% 92.9%

Table 6.7: Characterisation of clusters in the Reading subspace regarding their size (i.e. percentage of

learners included in each cluster) and APR (i.e. percentage of learners in each cluster that pass the course).

Thus, the clustering results obtained in the Reading subspace allow to identify the following par-

ticipation profiles:

• Non-readers
(
C

(rd)
1

)
: Learners who present a total absence of reading activity.
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• Low-readers
(
C

(rd)
2

)
: Learners who dedicate a small amount of time to perform first readings

of a small amount of posts.

• Intense readers
(
C

(rd)
3

)
: Learners who dedicate medium amounts of time to perform first

readings of high amounts of posts.

• Mid-class readers
(
C

(rd)
4

)
: Learners who dedicate between small and high amounts of time

to perform first readings of a medium amount of posts.

• Leading readers
(
C

(rd)
5

)
: Learners who intensively perform first readings of high amounts

of posts throughout the entire semester, leading this particular aspect of the participation in

the discussion boards of their respective classrooms.

6.4.4 In-degree subspace

Characterisation

Every learner’s activity in asynchronous discussions is characterised in the In-degree subspace ac-

cording to the following features (D = 2):

• lrd(in): Number of learners of that classroom that have read, at least, one post written by the

learner, normalised by the maximum number of learners of that classroom that have read,

at least, one post written by some learner of that classroom.

• lre(in): Number of learners of that classroom that have replied to, at least, one post written

by the learner, normalised by the maximum number of learners of that classroom that have

replied to, at least, one post written by some learner of that classroom.

Cluster analysis

As shown in Figure 6.9, four different clusters are identified by the LSS-GCSS algorithm within the

In-degree subspace:

Figure 6.9: In-degree subspace: clustering solution by LSS-GCSS.
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Evaluation

The result of the evaluation of the clustering solution belonging to the In-degree subspace confirms

the quality of the obtained results (see Table 6.8):

C
(in)
1 C

(in)
2 C

(in)
3 C

(in)
4

S 1 0.95 0.756 0.117

CPCC 1 0.865 0.741 0.72

Table 6.8: Validity measures (S and CPCC) for the clustering solution shown in Figure 6.9.

• The values of the Silhouette Coefficient considering each cluster separately indicates the pre-

sence of three high-compacted and high-isolated clusters (C(in)
1 , C(in)

2 andC
(in)
3 ), along with

a larger cluster of much lower density (C(in)
4 ). In addition, the global value of the Silhouette

Coefficient
(
S = 0.693

)
confirms the overall quality of the obtained clustering solution.

• The values of CPCC are high enough to confirm the suitability of the representation provi-

ded by the three obtained dendrograms.

• Finally, the results of the Kruskal-Wallis test confirm that all the obtained clusters identify dif-

ferent statistical distributions of data, since there are significant differences (p < 0.01) bet-

ween all clusters regarding every feature of the dataset, except for clusters C
(in)
1 and C

(in)
3

when considering the lre(in) feature (p = 1)

Interpretation

Figure 6.10 shows the ranges of values adopted by the obtained clusters along the two features

belonging to the In-degree subspace. In addition, both the amount of learners and the APR present

in every cluster are detailed in Table 6.9.

(a) Boxplots corresponding to the lrd(in) feature. (b) Boxplots corresponding to the lre(in) feature.

Figure 6.10: Location of clusters belonging to the In-degree subspace.

Thus, the clustering results obtained in the In-degree subspace allow to identify the following par-

ticipation profiles:

• Invisible learners
(
C

(in)
1

)
: Learners who are neither read not replied by any of their class-

mates.
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C
(in)
1 C

(in)
2 C

(in)
3 C

(in)
4

%N 51.3% 4.3% 13.5% 30.8%

APR 35.1% 86.2% 70.3% 68.1%

Table 6.9: Characterisation of clusters in the In-degree subspace regarding their size (i.e. percentage of

learners included in each cluster) and APR (i.e. percentage of learners in each cluster that pass the course).

• Popular learners
(
C

(in)
2

)
: Learners who are both read and replied by most of their classma-

tes.

• Overlooked learners
(
C

(in)
3

)
: Learners who are read by between a medium and high amount

of their classmates, whereas they are not replied by any of their classmates.

• Integrated learners
(
C

(in)
4

)
: Learners who are read by most of their classmates and replied

by a small and high amount of their classmates.

6.4.5 Out-degree subspace

Characterisation

Every learner’s activity in asynchronous discussions is characterised in the Out-degree subspace

according to the following features (D = 2):

• lrd(out): Number of learners of that classroom that have been read, at least, once by the

learner, normalised by the maximum number of learners of that classroom that have been

read, at least, once by some learner of that classroom.

• lre(out): Number of learners of that classroom that have been replied to, at least, once by the

learner, normalised by the maximum number of learners of that classroom that have been

replied to, at least, once by some learner of that classroom.

Cluster analysis

As shown in Figure 6.11, five different clusters are identified by the LSS-GCSS algorithm within the

Out-degree subspace:

Figure 6.11: Out-degree subspace: clustering solution by LSS-GCSS.
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Evaluation

The result of the evaluation of the clustering solution belonging to the Out-degree subspace con-

firms the quality of the obtained results (see Table 6.10):

C
(out)
1 C

(out)
2 C

(out)
3 C

(out)
4 C

(out)
5

S 1 0.864 0.464 0.95 0.048

CPCC 1 0.501 0.714 0.852 0.697

Table 6.10: Validity measures (S and CPCC) for the clustering solution shown in Figure 6.11.

• The values of the Silhouette Coefficient considering each cluster separately indicates the pre-

sence of three high-compacted and high-isolated clusters (C(out)
1 , C(out)

2 and C
(out)
4 ), along

with a moderately compacted cluster (C(out)
3 ) and a larger clusters of much lower density

(C(out)
5 ). In addition, the global value of the Silhouette Coefficient

(
S = 0.539

)
confirms the

overall quality of the obtained clustering solution.

• The values of CPCC are high enough to confirm the suitability of the representation provi-

ded by the three obtained dendrograms.

• Finally, the results of the Kruskal-Wallis test confirm that all the obtained clusters identify dif-

ferent statistical distributions of data, since there are significant differences (p < 0.01) bet-

ween all clusters regarding every feature of the dataset, except for the cases shown in Table

6.11:

C
(out)
1 −C

(out)
2 C

(out)
1 −C

(out)
3 C

(out)
2 −C

(out)
3 C

(out)
2 −C

(out)
4 C

(out)
4 −C

(out)
5

lrd(out) 0.158 0.681

lre(out) 1 1 1

Table 6.11: Kruskal-Wallis’ p-values that indicate non-significant differences in the clustering solution

shown in Figure 6.11.

Interpretation

Figure 6.12 shows the ranges of values adopted by the obtained clusters along the two features be-

longing to the Out-degree subspace. In addition, both the amount of learners and the APR present

in every cluster are detailed in Table 6.12.

C
(rd)
1 C

(rd)
2 C

(rd)
3 C

(rd)
4 C

(rd)
5

%N 7.1% 45.2% 13.1% 3.3% 31.3%

APR 6.3% 49% 37.5% 90.9% 69.5%

Table 6.12: Characterisation of clusters in the Out-degree subspace regarding their size (i.e. percentage of

learners included in each cluster) and APR (i.e. percentage of learners in each cluster that pass the course).
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(a) Boxplots corresponding to the lrd(out) feature. (b) Boxplots corresponding to the lre(out) feature.

Figure 6.12: Location of clusters belonging to the Out-degree subspace.

Thus, the clustering results obtained in the Out-degree subspace allow to identify the following

participation profiles:

• Introverted learners
(
C

(out)
1

)
: Learners who neither read not reply to any of their classma-

tes.

• Peeping learners
(
C

(out)
2

)
: Learners who, despite not replying to any of their classmates, do

read between a medium and high amount of their classmates.

• Witness learners
(
C

(out)
3

)
: Learners who, despite not replying to any of their classmates, do

read between a small and medium amount of their classmates.

• Extroverted learners
(
C

(out)
4

)
: Learners who both read and reply to most of their classma-

tes.

• Sociable learners
(
C

(out)
5

)
: Learners who read between a medium and high amount of their

classmates and reply to between a small and high amount of their classmates.

6.5 Second stage of analysis

As a consequence of the distribution of subspaces arranged in the previous stage, the interpreta-

tion process performed in the second stage of the analysis strategy is implemented in the present

study, as shown in Figure 6.13, by means of a hierarchical structure articulated through the charac-

terisation domains initially defined in the first stage of the process. Thus, the subspace clustering

solutions obtained in the first stage are not processed all at once, but the assembling process is

decomposed according to the characterisation domains the subspaces are grouped into, so that

subspace clustering solutions belonging to the same domain are firstly assembled each other in

an initial phase and the resulting set of clusters belonging to each domain are finally assembled in

the last phase of the stage.
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Figure 6.13: Second stage of analysis.

Such assembling processes embrace a variety of input clustering solutions and essentially consist

in identifying those learners belonging to the same clusters in all the input clustering solutions,

so that a new set of clusters is obtain as a result of the assembly. The models of participation as-

sociated to each of these new clusters entirely depend on the nature of the clusters of the input

clustering solutions that determine their composition. Thus, depending on both the composition

of the new clusters and the conceptual tools utilised in the interpretation of the results, a determi-

nate model of learners’ participation may be identified with either a single specific new cluster or

the union of several new clusters that share some particular features. To that effect and similarly

to the first stage of analysis, the concepts employed to interpret the results in this second stage of

analysis are again provided by different theoretical approaches to the issue (see section 1.2.2 for

further details), as well as by previous works that also adopt a clustering-based perspective (see

section 1.2.3.2 for further details).

Therefore, learners’ participation profiles are described in a first level by a set of models whose

identification results from the assembly of, on the one hand, the subspace clustering solutions

belonging to the Behavioural domain and, on the other hand, the subspace clustering solutions

belonging to the Social domain (see sections 6.5.1 and 6.5.2 for further details, respectively). The

obtained domain models –represented by the resulting sets of clusters P(B) and P(S)– are neces-

sarily constricted to a description of learners’ participation in either purely behaviourists or purely

relative to the social presence of participation terms, depending on the characterisation domain

they belong to.

Finally, a final set of clusters
(
P(F)

)
that give rise to the final models of learners’ participation

arises as a result of the assembly of the obtained domain models (see section 6.5.3 for further

details). Such final models identify complex profiles of participation, whose description results
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from combining interpretation elements belonging to both behaviourists and social approaches

to the matter of modelling learners’ activity in online discussion forums.

It is worth noticing that the actual final outcome of the analysis strategy is much richer the final set

of models obtained in the last phase of this second stage, since it comprises a complex conceptual

map both resulting from and representative of the entire process of analysis and it illustrates the

relationships and dependencies between the variety of participation profiles and models identi-

fied throughout the different stages of the whole analysis strategy (see Figure 6.18 in section 6.5.3).

6.5.1 Behavioural domain

The assembly of the subspace clustering solutions belonging to the Behavioural domain (i.e. P(st),

P(re) and P(rd)) is detailed in Table 6.13, whereas the ranges of values adopted by the resulting

clusters along the features defined in the subspaces belonging to the Behavioural domain are illus-

trated in Figure 6.14. Moreover, both the amount of learners and the APR of the clusters corres-

ponding to the models of participation identified in the Behavioural domain are provided in Table

6.14.

Thus, a detailed analysis of the obtained results leads to the identification of the following models

of learners’ participation in the Behavioural domain:

• Shirkers
(
C

(B)
1 = C1

)
: Learners who do not participate at all in the asynchronous discus-

sions, presenting a total absence of activity regarding both writing and reading actions.

• Lurkers
(
C

(B)
2 = C2 ∪C3 ∪C4 ∪C5

)
: Learners whose participation in the asynchronous

discussions is restricted to the reading of others classmates’ posts, presenting a total absence

of writing activity. The presence of lurkers with different levels of reading activity has been

identified:

– Low-lurkers (C2): Lurkers who dedicate a small amount of time to perform first readings

of a small amount of posts.

– Middle-class lurkers (C3): Lurkers who dedicate between small and high amounts of

time to perform first readings of a medium amount of posts.

– Intense lurkers (C4): Lurkers who dedicate medium amounts of time to perform first

readings of high amounts of posts.

– Leading lurkers (C5): Lurkers who intensively perform first readings of high amounts

of posts throughout the entire semester.

• Mere engagers
(
C

(B)
3 = C6 ∪C7 ∪C8 ∪C9 ∪C10

)
: Learners whose participation is distin-

ctively focused on the writing of between small and medium amounts of starting posts, pre-

senting an absence of replying activity and a diversity of levels of reading activity.
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C
(st)
1 C

(st)
2 C

(st)
3 C

(re)
1 C

(re)
2 C

(re)
3 C

(rd)
1 C

(rd)
2 C

(rd)
3 C

(rd)
4 C

(rd)
5 %N APR P(B)

C1 10.2% 12.2% 100% 6.8% 2.2% C
(B)
1

C2 28.5% 34% 84.2% 19% 28.1%

C
(B)
2

C3 21.4% 25.5% 43.8% 14.3% 40.6%

C4 13.1% 15.6% 37.6% 8.8% 52.5%

C5 3.6% 4.2% 16.3% 2.4% 87.5%

C6 2% 1.1% 2.6% 0.6% 50%

C
(B)
3

C7 4% 3% 5.3% 1.2% 50%

C8 8.4% 4.5% 7.8% 2.5% 64.7%

C9 3.5% 1.9% 4.5% 1% 85.7%

C10 2% 1.1% 4.1% 0.6% 100%

C11 2.7% 4.5% 7.9% 1.8% 25%

C
(B)
4

C12 9.1% 15.4% 18.7% 6.1% 53.7%

C13 6.7% 11.2% 19.1% 4.5% 63.3%

C14 4.2% 7.1% 19.4% 2.8% 78.9%

C15 0.45% 7.1% 2% 0.3% 100%

C16 29.7% 22.5% 27.4% 8.9% 60%

C
(B)
5C17 27.7% 21% 35.7% 8.3% 73.2%

C18 16.3% 12.4% 33.7% 4.9% 97%

C19 9.5% 0.75% 0.91% 0.3% 50%

C
(B)
6C20 9.5% 0.75% 1.3% 0.3% 100%

C21 19% 1.5% 4.1% 0.6% 100%

C22 0.5% 3.6% 0.46% 0.15% 100%

C
(B)
7C23 0.99% 7.1% 1.3% 0.3% 100%

C24 5% 35.7% 10.2% 1.5% 100%

C25 9.5% 7.1% 0.91% 0.3% 100%

C
(B)
8C26 4.8% 3.6% 0.64% 0.15% 100%

C27 47.6% 35.7% 10.2% 1.5% 100%

Table 6.13: Clusters in the Behavioural domain. Columns from C
(st)
1 to C

(rd)
5 indicate the percentage of

learners in that cluster that belong to the same clusters in the other subspaces of the Behavioural domain.

Columns %N and APR indicate the percentage of learners belonging to each cluster and the APR of each

cluster (i.e. the percentage of learners belonging to that cluster that pass the course), respectively. The

sum of percentages in columns C(st)
i , C(re)

i , C(rd)
i and %N equals 100%.

C
(B)
1 C

(B)
2 C

(B)
3 C

(B)
4 C

(B)
5 C

(B)
6 C

(B)
7 C

(B)
8

%N 6.8% 44.5% 6% 15.5% 22.2% 1.2% 1.9% 1.9%

APR 2.2% 40.1% 67.5% 58.7% 73.2% 87.5% 100% 100%

Table 6.14: Characterisation of clusters in the Behavioural domain regarding their size (i.e. percentage of

learners included in each cluster) and APR (i.e. percentage of learners in each cluster that pass the course).
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Those mere engagers who read a small amount of posts (C6 and C7) can be distinguis-

hed from those who dedicate between medium and high amounts of time to perform first

readings of between medium and high amounts of posts (C8 , C9 and C10). Punctually, a

marginal set of mere engagers who present negligible levels of replying activity has been also

identified (C7).

• Mere reactive learners
(
C

(B)
4 = C11 ∪C12 ∪C13 ∪C14 ∪C15

)
: Learners whose participa-

tion is distinctively focused on the replying of between small and medium amounts of other

classmates’ posts, presenting a total absence of writing activity regarding starting posts and

a diversity of levels of reading activity.

Figure 6.14: Location of clusters belonging to the Behavioural domain.
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Those mere reactive learners who read a small amount of posts (C11) can be distinguished

from both those who read a medium amount of posts (C12) and those who dedicate between

medium and high amounts of time to perform first readings of a high amount of posts (C13 ,

C14 and C15).

• Mid-class workers
(
C

(B)
5 = C16 ∪C17 ∪C18

)
: Learners whose participation includes the

writing of between small and medium amounts of both starting and reply posts, as well as

between medium and high levels of reading activity.

Those mid-class workers who read a medium amount of posts (C16) can be distinguished

from those who dedicate between medium and high amounts of time to perform first readings

of a high amount of posts (C17 and C18).

• Hard engagers
(
C

(B)
6 = C19 ∪C20 ∪C21

)
: Learners whose participation is distinctively fo-

cused on the writing of high amounts of starting posts, presenting between small and me-

dium levels of replying activity and between medium and high levels of reading activity.

Those hard engagers who both reply a small amount of posts and read a medium amount

of posts (C19) can be distinguished from those who both reply a medium amount of posts

and dedicate between medium and high amounts of time to perform first readings of a high

amount of posts (C20 and C21).

• Hard reactive learners
(
C

(B)
7 = C22 ∪C23 ∪C24

)
: Learners whose participation is distin-

ctively focused on the replying of high amounts of other classmates’ posts, writing a medium

amount of starting posts and presenting between medium and high levels of reading activity.

Those hard reactive learners who read a medium amount of posts (C22) can be distinguis-

hed from those who dedicate between medium and high amounts of time to perform first

readings of a high amount of posts (C23 and C24).

• Hard workers
(
C

(B)
8 = C25 ∪C26 ∪C27

)
: Learners whose participation includes the wri-

ting of high amounts of both starting and reply posts, as well as between medium and high

levels of reading activity.

Those hard workers who read a medium amount of posts (C25) can be distinguished from

those who dedicate between medium and high amounts of time to perform first readings of

a high amount of posts (C26 and C27).

6.5.2 Social domain

The assembly of the subspace clustering solutions belonging to the Social domain (i.e. P(in) and

P(out)) is detailed in Table 6.15, whereas the ranges of values adopted by the resulting clusters

along the features defined in the subspaces belonging to the Social domain are illustrated in Figure

6.15. Moreover, both the amount of learners and the APR of the clusters corresponding to the

models of participation identified in the Social domain are provided in Table 6.16.
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C
(in)
1 C

(in)
2 C

(in)
3 C

(in)
4 C

(out)
1 C

(out)
2 C

(out)
3 C

(out)
4 C

(out)
5 %N APR P(S)

C1 13.9% 100% 7.1% 6.3% C
(S)
1

C2 23.2% 90.9% 11.9% 35%
C

(S)
2

C3 62.9% 71.4% 32.3% 41.5%

C4 4.4% 4.5% 0.6% 75%
C

(S)
3

C5 61.5% 18.4% 8.3% 71.4%

C6 1.9% 4.5% 0.6% 50%
C

(S)
4

C7 15% 10.2% 4.6% 61.3%

C8 34.1% 14.8% 4.6% 67.7% C
(S)
5

C9 79.7% 78.6% 24.6% 68.5% C
(S)
6

C10 48.3% 6.7% 2.1% 85.7%

C
(S)
7C11 3.4% 31.8% 1% 100%

C12 51.7% 68.2% 2.2% 86.7%

Table 6.15: Clusters in the Social domain. Columns fromC
(in)
1 toC

(out)
5 indicate the percentage of learners

in that cluster that belong to the same cluster in the other subspace of the Social domain. Columns %N

and APR indicate the percentage of learners belonging to each cluster and the APR of each cluster (i.e. the

percentage of learners belonging to that cluster that pass the course), respectively. The sum of percentages

in columns C(in)
j , C(out)

j and %N equals 100%.

C
(S)
1 C

(S)
2 C

(S)
3 C

(S)
4 C

(S)
5 C

(S)
6 C

(S)
7

%N 7.1% 44.2% 8.9% 5.2% 4.6% 24.6% 5.4%

APR 6.3% 39.7% 71.7% 60% 67.7% 68.5% 88.9%

Table 6.16: Characterisation of clusters in the Social domain regarding their size (i.e. percentage of lear-

ners included in each cluster) and APR (i.e. percentage of learners in each cluster that pass the course).

Thus, a detailed analysis of the obtained results leads to the identification of the following models

of learners’ participation in the Social domain:

• Solitaries
(
C

(S)
1 = C1

)
: Learners who develop a total lack of social activity in the asynchro-

nous discussions, avoiding both reading and replying to any of their classmates and being

also neither read nor replied by any of their classmates.

• Beholders
(
C

(S)
2 = C2 ∪C3

)
: Learners who participate in the asynchronous discussions by

adopting a purely observing role, which is limited to reading their classmates’ posts.

Those mid-class beholders who read a medium amount of their classmates (C2) can be dis-

tinguished from those intense beholders who read a high amount of their classmates (C3).

• Teacher-oriented learners
(
C

(S)
3 = C4 ∪C5

)
: Learners whose active interaction is strictly

limited to the teacher, since, despite both reading and being read by their classmates, they do

not actively engage with any other learner, which indicates that all their active participation,
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either in form of starting or reply posts, is addressed to engage with and be replied by the

teacher.

Those teacher-oriented learners who read between a small and medium amount of their

classmates (C4) can be distinguished from those who read between a medium and high

amount of their classmates (C5).

• Detached learners
(
C

(S)
4 = C6 ∪C7

)
: Learners who actively reject to engage with other

learners, even when they are actually replied by their classmates. The difference between

detached and teacher-oriented learners lies in the fact that the former do not react to the re-

plies they receive from their classmates, whereas the latter are not engaged by other learners.

Those detached learners who read between a small and medium amount of their classmates

(C6) can be distinguished from those who read between a medium and high amount of their

classmates (C7).

• Ignored
(
C

(S)
5 = C8

)
: Learners who are not replied by any other learner despite their active

attempts to engage with them, since they reply to between a small and medium amount of

their classmates.

• Interactive learners
(
C

(S)
6 = C9

)
: Learners who reach average levels of social engagement,

by reading and being read by between a medium and high amount of their classmates, as well

as by replying to and being replied by between a small and high amount of their classmates.

Figure 6.15: Location of clusters belonging to the Social domain.
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• Social leaders
(
C

(S)
7 = C10 ∪C11 ∪C12

)
: Learners who lead the levels of social engage-

ments in their respective classrooms, both by reading and being read by a high amount of

their classmates and by replying to and being replied by between a medium and high amount

of their classmates.

Those social leaders who reply to a medium amount of their classmates (C10) can be distin-

guished from those who reply to a high amount of their classmates (C11 and C12).

6.5.3 Final models of learners’ participation

Finally, the assembly of the sets of clusters that represent the models of participation belonging

to both the Behavioural and Social domains (i.e. P(B) and P(S)) is detailed in Table 6.18: columns

from C
(B)
1 to C

(S)
7 indicate the percentage of learners in that cluster that belong to the same cluster

of the other domain, and columns %N and APR indicate the percentage of learners belonging to

each cluster and the APR of each cluster (i.e. the percentage of learners belonging to that cluster

that pass the course), respectively.

The ranges of values adopted by the resulting clusters along the features defined in the Behaviou-

ral and Social domains are illustrated in Figures 6.16 and 6.17, respectively. Moreover, both the

amount of learners and the APR of the clusters corresponding to the final models of participation

identified in this last phase of the second stage of analysis are provided in Table 6.17.

C
(F )
1 C

(F )
2 C

(F )
3 C

(F )
4 C

(F )
5 C

(F )
6 C

(F )
7

%N 7.1% 44.2% 6% 15.5% 21% 3.1% 3.1%

APR 6.3% 39.7% 67.5% 58.7% 73% 90.5% 95.2%

Table 6.17: Characterisation of the final models of learners’ participation regarding their size (i.e. percen-

tage of learners that belong to each model) and APR (i.e. percentage of learners belonging to each model

that pass the course).

Thus, a detailed analysis of the obtained results leads to the identification of the final models of

learners’ participation:

• Non-participants
(
C

(F )
1 = C1 ∪C2

)
: Learners who do not participate at all in the asynch-

ronous discussions, presenting a total absence of any kind of activity and social presence.

Learners belonging to (C1) are solitary shirkers, whereas (C2) represents a marginal amount

of solitary lurkers who have performed a negligible reading action of some post written by

the teacher.

• Listeners
(
C

(F )
2 = C3

)
: Learners who restrict their participation to merely observing other

learners’ discussions, by exclusively performing lurking and beholding behaviours.
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Listeners present a passive attitude regarding the asynchronous discussions that take place

in their respective classrooms and decide to stay on the edge of any possible active interac-

tion with other learners.

• Questioners
(
C

(F )
3 = C4 ∪C5 ∪C6

)
: Learners who are distinctively focused on writing star-

ting posts, who are read and can easily be replied, and who do not engage previously started

conversations.

Questioners are essentially mere engagers who can either develop a teacher-oriented activity

(C4), simply be detached from the interests of their classmates (C5) or, more marginally, be

slightly interactive learners (C6).

Figure 6.16: Location of clusters corresponding to the final models along the features belonging to the

Behavioural domain.
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• Joining conversationalists
(
C

(F )
4 = C7 ∪C8 ∪C9 ∪C10 ∪C11

)
: Learners who are distin-

ctively focused on engaging previously started conversations, who are read and can easily be

replied, and who by no means start any new thread of discussion.

Joining conversationalists are essentially mere reactive learners who can either develop a

teacher-oriented behaviour detached from the rest of their classmates (C7 and C8), be ig-

nored by the rest of their classmates (C9), play the role of interactive learners in originally

foreign discussions (C10), or even be social leaders with between medium and high levels of

activity and popularity who are exclusively focused on joining existing conversations (C11).

• Regular participants
(
C

(F )
5 = C12 ∪C13 ∪C14 ∪C15

)
: Learners who present average levels

of activity of diverse nature in overall terms.

Regular participants are mainly mid-class workers with an interactive presence in the asyn-

chronous discussions (C12), who can also be either teacher-oriented (C13), detached (C14)

or ignored (C15) learners.

• Dialogical learners
(
C

(F )
6 = C16 ∪C17 ∪C18

)
: Learners who are both distinctively and in-

tensely focused on engaging previously started conversations, who are specially interested

in engaging dialogue with other learners, who generate high levels of interaction with their

classmates, and who occasionally start new threads of discussion as well.

Figure 6.17: Location of clusters corresponding to the final models along the features belonging to the

Social domain.
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Dialogical participants are either mid-class workers (C16) or, mostly, hard-reactive learners

(C17) at the top of the social engagement levels of their respective classrooms, as well as,

more marginally, simply interactive learners specially focused on performing an intense par-

ticipation in conversations started by other learners (C17).

• Leading participants
(
C

(F )
7 = C19 ∪C20 ∪C21 ∪C22 ∪C23

)
: Learners who present high

levels of activity of diverse nature in overall terms.

Leading participants can be either hard engagers (C19 and C20) or hard workers (C21 and

C22) who present high levels of interaction and social engagement. It results particularly

interesting the participation model represented by C23, which identifies an extremely sin-

gular leading participant who, despite of both presenting high levels of activity of all kinds

and being read and replied by the majority of classmates, develops a behaviour completely

detached from the rest of learners in the classroom.

Finally, the final outcome that illustrates the entirety of the analysis process implemented in the

present chapter is shown in Figure 6.18, where all the participation profiles and models of beha-

viour identified throughout the different stages of the proposed analysis strategy are detailed and

linked each other.

6.6 Discussion

Whereas most of the works that adopt a clustering-based perspective regarding the matter of mo-

delling learners’ activity in online discussion forums perform the cluster analysis on a single da-

taset that contain a heterogeneity of features (see section 1.2.3.2 for further details), a two-stage

analysis strategy based on the subspace clustering paradigm that decompose the problem into a

multiplicity of smaller and simpler clustering scenarios is proposed and developed in the present

chapter.

Such analysis strategy proves to be able to not only identify and describe a certain amount of

models of participation, but to provide a complex characterisation of the activity performed by

learners in the asynchronous discussions materialised in the form of a conceptual map, which

comprises a variety of hierarchically linked models that contextualise each other. Moreover, the

particular implementation of the proposed analysis strategy in the context of a specific online

teaching-learning environment shows the advantages of organising the subspaces into domains

according to their similarities, which both facilitates the interpretation process of the results by

decomposing it into different phases and gives directly rise to a hierarchy of models.

Additionally, combining the proposed analysis strategy with the use of the LSS-GCSS algorithm

allows to automatically obtain all the subspace clustering solutions, thus limiting user’s subjective
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intervention to the interpretation stages of the analysis process and, therefore, minimising the

possible biases user’s prior expectations may introduce into the obtained results.

It is worth noticing that the present discussion directly refers to and affirmatively responds the

fourth research question posed in the present thesis, as well as it addresses the falsifiability of

the second research hypothesis the present thesis is based on (see section 1.3 for further details),

which is validated by the outcomes obtained in the study performed in the present chapter.

Finally, it may also be interesting to pay heed to the fact that the results obtained in the context of

the study performed in the present chapter suggest the possibility of widen the scope of applica-

tion of the proposed analysis strategy beyond the strict task of modelling learners’ behaviour:

• Regarding how to provide learners with a better and more personalised feedback (Ngwenya

et al., 2008), or even in the context of assessment tasks (Yang, 2004), different specific stra-

tegies can be developed by teachers depending on the model of participation adopted by

learners in the online discussion forums.

• The information resulting from the proposed analysis strategy can easily be utilised to feed

visualisation tools present in online teaching-learning environments that show useful indi-

cators to both teachers and learners, such as, by way of example, different aspects of par-

ticipation and academic performance represented in radiant graphs (Calvani et al., 2010;

Rabbany et al., 2011) (see section 1.2.3.1 for further details) or personal learning information

sketched into data portraits (García-Solórzano et al., 2012).

• Inasmuch as the average academic performance of learners that develop a specific model

of participation can sensibly vary between models (see Tables 6.3, 6.5, 6.7, 6.9, 6.12, 6.14,

6.16 and 6.17 for further details), it seems reasonable to think that the information relative to

these models may certainly be helpful in order to predict learners’ academic performance.

Aside from providing participation features that can be correlated with the academic perfor-

mance to some extent, knowing how a learner participates in the asynchronous discussions

can utilised to particularise a distinctive prediction scenario depending on the model, since

the balancing between classes (learners that pass the course vs. learners that fail the course)

varies depending on the model of participation the learner belongs to.

Such connection between both scopes of application (modelling and prediction) can per-

fectly be applied both to prediction scenarios that consider data unrelated to the asynchro-

nous discussions (Antunes, 2011) and to try to predict final academic performance exclusi-

vely from data resulting from learners’ activity in online discussion forums (Romero et al.,

2013).



Chapter 7

Conclusions and further work

As aforementioned at the beginning of Chapter 1, the present thesis arises from the issue of the

modelling of learners’ activity in online discussion forums from a clustering-based perspective,

which gives rise to a highly context-dependent analysis scenario where the real number of clusters

is a priori unknown. Such an underlying problem is one of the best-known issues of the cluste-

ring paradigm. With the aim of avoiding any user intervention in the estimation of the number of

clusters, which may easily lead to the appearance of undesired biases in the obtained models, a

novel parameter-free AHC algorithm (LSS-GCSS) is proposed in the present thesis. Experimental

results show that LSS-GCSS algorithm is able to provide optimal clustering solutions in the face

of a great variety of clustering scenarios, both outperforming clustering algorithms most widely

used in practice and involving computational requirements comparable to those of other AHC al-

gorithms of its kind. Finally, the issue of modelling learners’ participation in the online discussion

forums belonging to a particular teaching-learning environment is tackled by means of LSS-GCSS

algorithm, which is applied in the context of a two-stage strategy of analysis based on the subspace

clustering paradigm. The combination of both techniques limits user’s subjective intervention to

the interpretation stages of the analysis process and lead to a complete modelling of the activity

performed by learners.

In this last chapter, both the conclusions and the future lines of work derived from the present the-

sis are detailed. Firstly, conclusions are presented in section 7.1, following the structure of research

questions and research hypotheses defined in the first chapter of this thesis. Finally, possible fur-

ther work is proposed in section 7.2.

209
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7.1 Conclusions

As a conclusion of the present thesis, the following lines address the matter of providing suitable

response to the four research questions initially posed in section 1.3. Additionally, the matter of

the falsifiability of the two research hypotheses directly derived from the research questions, also

posed in section 1.3 and around which the present thesis has been developed, is tackled as well.

Q1. May the real number of clusters and the final clustering solution of a dataset be automati-

cally obtained by means of an agglomerative hierarchical clustering algorithm?

On the one hand, despite not demanding the number of clusters to be identified as an input pa-

rameter, AHC basic methods require a postprocessing stage subsequent to the obtaining of the

dendrogram in order to eventually identify a determinate number of clusters in the dataset, which

may involve switching the estimation problem of the number of clusters for a parameter selection

problem (see section 3.1.3for further details).

Thus, as a first contribution of the present thesis, the survey performed in section 2.5.1 indicates

the existence of multiple different approaches (e.g. relative validity approach, self-refining con-

sensus approach, model-based approach, etc.) to the issue of the estimation of the real number

of clusters in a dataset. Many of these approaches make use of parameter-dependent AHC al-

gorithms to generate a diversity of clustering solutions and, according to some kind of criterion,

select one of them as a final result. Hence, despite their different inconveniences may easily make

them to provide non-optimal clustering solutions, this class of approaches prove that parameter-

dependent AHC algorithms –as well as other parameter-dependent clustering methods– can be

utilised to try to automatically estimate the real number of clusters in a dataset.

On the other hand, there also exist parameter-free approaches to clustering that propose the im-

plementation of parameter-free AHC algorithms specifically designed to automatically generate

twofold clustering solutions (i.e. hard partitional solutions constructed as a result of an agglome-

ration process) by themselves, without involving any complementary strategy or further postpro-

cessing stage (see 2.5.1.7 for further details). Thus, parameter-free AHC algorithms also allow to

automatically obtain a final clustering solution without requiring the number of clusters –or any

other input parameter– to be provided in advance.

Q2. May this agglomerative hierarchical clustering algorithm deal with datasets of different

nature that can contain clusters of distinct characteristics?

Due to the significant limitations they present regarding their scope of application (their perfor-

mance depends to a high extent on the characteristics of the clustering scenario), neither the dif-
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ferent strategies that make use of parameter-dependent AHC methods nor the implementations

of parameter-free AHC algorithms made to date can guarantee to be able to properly deal with da-

tasets of different nature that may contain clusters of distinct characteristics (see sections 2.6 and

3.3 for further details, respectively).

In this context, the main contributions of the present thesis consist of the definition of two new

cluster merging criteria and, as a direct consequence, the design and implementation of LSS-

GCSS, a novel parameter-free AHC algorithm (see Chapter 4 for further details). In overall terms,

the main goal of LSS-GCSS is to be able to automatically provide optimal clustering solutions in all

kind of clustering scenarios, regardless of the nature of the datasets and the characteristics of the

clusters they contain. Thus, with the aim of verifying whether LSS-GCSS achieves such a goal and

overcomes the lacks of other AHC algorithms, the next contribution of the present thesis consists

in the experimental study carried out in Chapter 5, which draws two main conclusions.

Firstly, LSS-GCSS is certainly able to handle a great variety of clustering problems (i.e. LSS-GCSS

properly handles different kinds of data, clusters with different densities and distributions, tou-

ching and overlapped clusters, arbitrary-shaped clusters, etc.) and provide optimal clustering so-

lutions with neither any user intervention nor any prior knowledge about the scenario required

(see sections 5.2 and 5.3 for further details). Its most significant limitation lies in requiring clusters

to be more separated as either the unbalancing between clusters or the number of clusters in the

dataset increase (see sections 5.2.3 and 5.2.4 for further details, respectively).

And secondly, LSS-GCSS clearly proves to be more versatile and reliable than any of the clus-

tering algorithms most widely used in practice, including both basic AHC methods and earlier

parameter-free AHC algorithms. In the face of a high diversity of clustering scenarios and suffe-

ring a comparative disadvantage (since negative effects an improper parametrisation might cause

on the performance of parameter-dependent algorithms have not been considered), LSS-GCSS

outperforms both HPC and AHC algorithms in overall terms, being even able to provide the best

clustering results in many of the scenarios (see section 5.4 for further details).

Therefore, unlike other AHC algorithms that can be employed to estimate the real number of clus-

ters in a dataset, LSS-GCSS proves to be able to successfully perform such a task in the face of

datasets of different nature that can contain clusters of distinct characteristics and without requi-

ring any user intervention.

Q3. May this agglomerative hierarchical clustering algorithm automatically provide optimal

clustering solutions without drastically increasing its computational requirements in compari-

son with other agglomerative hierarchical clustering algorithms?

As it is analytically proved in section 4.3, the computational requirements of the LSS-GCSS algo-

rithm are of the same order than those of both basic AHC methods and other parameter-free AHC
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algorithms; i.e. they remain O
(
N2
)

in storage terms and O
(
N2 logN

)
in time terms, thus quadra-

tically growing with the number of objects in the dataset (N).

Hence, LSS-GCSS proves to be able to provide optimal clustering solutions without drastically in-

creasing its computational requirements in comparison with other AHC algorithms.

Q4. May this agglomerative hierarchical clustering algorithm be employed to model learners’

activity in online discussion forums limiting the user intervention to the interpretation of the

final results?

With the aim of improving the analysis conditions imposed by the previous approaches to the

issue of modelling learners’ participation in discussion forums from a clustering perspective (they

require the user to participate in the cluster analysis stage in order to provide a final estimation of

the number of clusters), the last contributions of the present thesis are made in Chapter 6 .

To that effect, a two-stage analysis strategy based on the subspace clustering paradigm is defined

in section 6.2. Despite not being linked to the use of any specific clustering method or algorithm,

the proposed analysis strategy is applied in combination with the LSS-GCSS algorithm in order to

model learners’ participation in the online discussion forums belonging to a particular teaching-

learning environment (see sections 6.4 and 6.5 for further details).

As the obtained results indicate, LSS-GCSS proves to be able to provide a complete modelling of

the activity performed by learners, limiting the user intervention to the interpretation stages of the

proposed analysis strategy (see section 6.6 for further details).

H1. Agglomerative hierarchical clustering methods are suitable for automatically determining

the real number of clusters and providing the clustering solution on datasets of different nature

that may contain clusters of distinct characteristics.

As a consequence of the responses provided to the first three research questions, the first research

hypothesis of the present thesis proves to be false, since it is only validated by means of the LSS-

GCSS algorithm, but not so by basic AHC methods, nor by earlier parameter-free AHC algorithms.

H2. Learners’ participation in online discussion forums can be properly modelled and descri-

bed by means of a clustering-based strategy that automatically provides the clustering solution

and limits any user intervention to the interpretation stage of the analysis process.

As a consequence of the response provided to the last and fourth research question, the second

research hypothesis of the present thesis proves to be true, since it is validated by combined use of

the proposed two-stage analysis strategy and the LSS-GCSS algorithm.
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7.2 Further work

Finally, as a culmination of the present thesis, possible future lines of work are next proposed.

Regarding the cluster merging criteria (LSS and GCSS) developed in this thesis, it would interes-

ting to study the possibility of developing equivalent merging rules in the context of other AHC

methods different from the SL-based ones (e.g. CL, AL, Ward’s, etc.), so that novel proposals of

parameter-free AHC algorithms based on these new merging rules could arise.

Regarding the LSS-GCSS algorithm (and, actually, the rest of AHC methods), it would be interesting

to compensate its computational requirements
(
O
(
N2
))

in order to make possible its application

to very large-scale datasets (i.e. big data applications). To that effect, it would deserve further study

the viability of the two-stage clustering process next outlined. In the first stage, either a grid-based

or a density-based clustering algorithm –whose computational cost is linear with respect to the

number of objects in the dataset (O(N))– would always identify the same large number of clusters

(e.g. N ′ = 10000), both extremely much lower than N and much greater than the real number of

clusters in the dataset (N ≫ N ′ ≫ Kopt). Thus, in the second stage, LSS-GCSS would automati-

cally obtain the final clustering solution handling an input dataset whose size would always be N ′.

In this way, the total computational cost of the process would be affordable regardless of the size

of the input dataset, since it would always be linear with respect to N ; i.e. O(N) + O
(
N ′2), where

N > N ′2.

Regarding the issue of modelling learners’ activity in online discussion forums from a clustering

perspective, it would be interesting to apply the proposed two-stage analysis strategy to discussion

boards that provide richer input data, so that learners’ activity could be characterised by a greater

variety of features, more domains and subspaces could be arranged and, therefore, more complex

participation profiles could be modelled. In fact, it would also be interesting to widen the scope of

the modelling scenario and apply the proposed analysis strategy to model other kinds of activity

that takes place in an online teaching-learning environment; e.g. learners’ activity performed in

the context of remote practice laboratories, such as those belonging to both Bachelor’s Degree in

Telecommunication Technologies and Master’s Degree in Telecommunications Engineering from

the Open University of Catalonia (UOC).

And, finally, regarding other e-learning tasks different from the modelling of learners’ behaviour,

it would be interesting to explore how the outcome provided by the proposed two-stage analy-

sis strategy (see Figure 6.18 in section 6.5.3) could be integrated with other visualisation tools or

utilised to build robust predictors of learners’ academic performance.
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"Life moves pretty fast. If you don’t stop and

look around once in a while, you could miss it."

Ferris Bueller


	Abstract
	Contents
	List of tables
	List of figures
	List of algorithms
	1 Framework of the thesis
	1.1 Discussion forums in the online learning context
	1.1.1 Online discussion forums from learner and teacher perspectives

	1.2 Modelling learners' activity in online discussion forums
	1.2.1 Levels of participation and units of analysis
	1.2.1.1 Conceptualisation levels of online learner participation in discussion forums
	1.2.1.2 Units of analysis on modelling online learner participation in discussion forums

	1.2.2 Modelling learners' activity from a theoretical perspective
	1.2.2.1 The behaviourist approach
	1.2.2.2 The social approach
	1.2.2.3 The constructivist approach

	1.2.3 Modelling learners' activity from the data mining paradigm
	1.2.3.1 Modelling learners' activity by means of social network analysis techniques
	1.2.3.2 Modelling learners' activity by means of clustering techniques


	1.3 Thesis outline

	2 Overview of clustering methods
	2.1 Notational conventions
	2.2 Proximity measures
	2.3 Categorisation of clustering methods
	2.3.1 AHC versus HPC
	2.3.2 Theoretical approaches to clustering

	2.4 Evaluation of clustering results
	2.4.1 The Consistency Index
	2.4.2 The Silhouette Coefficient
	2.4.3 Kruskal-Wallis statistical hypothesis test
	2.4.4 The Cophenetic Correlation Coefficient

	2.5 Clustering indeterminacies
	2.5.1 How many clusters?
	2.5.1.1 Exploratory approach
	2.5.1.2 Heuristic-based approach
	2.5.1.3 Relative validity approach
	2.5.1.4 Self-refining consensus approach
	2.5.1.5 Model-based (or probabilistic) approach
	2.5.1.6 Adaptive approach
	2.5.1.7 Parameter-free approach


	2.6 Discussion

	3 Overview of AHC algorithms
	3.1 Fundamentals on AHC methods
	3.1.1 Graph-based AHC methods
	3.1.1.1 Single-Link (or nearest neighbour) method
	3.1.1.2 Complete-Link (or farthest neighbour) method
	3.1.1.3 Average-Link (or group average) method

	3.1.2 Geometric AHC methods
	3.1.2.1 Centroid (or UPGMC) method
	3.1.2.2 Median (or WPGMC) method
	3.1.2.3 Ward's (or minimum variance) method

	3.1.3 Obtaining data partitions from a dendrogram

	3.2 Parameter-free AHC algorithms
	3.2.1 AHC under a hypothesis of smooth dissimilarity increments
	3.2.2 AHC based on high order dissimilarities

	3.3 Discussion

	4 A novel parameter-free AHC algorithm based on two new cluster merging criteria
	4.1 Beyond the cluster isolation criterion based on dissimilarity increments
	4.1.1 The LSS cluster merging criterion
	4.1.2 The GCSS cluster merging criterion

	4.2 The LSS-GCSS algorithm
	4.3 Computational requirements of LSS-GCSS algorithm
	4.4 Discussion

	5 Experimental performance of LSS-GCSS algorithm
	5.1 Experimental setup
	5.2 Synthetic datasets
	5.2.1 Single-cluster datasets
	5.2.2 Touching and overlapped clusters
	5.2.2.1 The 2unif dataset
	5.2.2.2 The 2Gauss dataset
	5.2.2.3 The 2bars dataset

	5.2.3 Unbalanced clusters
	5.2.4 Multiple-cluster datasets
	5.2.5 Concentric clusters
	5.2.5.1 The 3rings dataset
	5.2.5.2 The 2spirals dataset

	5.2.6 Arbitrary-shaped clusters

	5.3 Real datasets
	5.3.1 The Wine dataset
	5.3.2 The Iris dataset
	5.3.3 The Wisconsin Diagnostic Breast Cancer dataset
	5.3.3.1 The WDBC#1 dataset
	5.3.3.2 The WDBC#2 dataset

	5.3.4 The SAD dataset
	5.3.5 The MiniNews dataset

	5.4 Comparative study between LSS-GCSS and other clustering algorithms
	5.5 Discussion

	6 A novel strategy to model learners' activity in online discussion forums
	6.1 On modelling learners' activity in online discussion forums from a clustering perspective
	6.2 Two-stage clustering-based strategy of analysis
	6.3 Input data
	6.4 First stage of analysis
	6.4.1 Start subspace
	6.4.2 Reply subspace
	6.4.3 Reading subspace
	6.4.4 In-degree subspace
	6.4.5 Out-degree subspace

	6.5 Second stage of analysis
	6.5.1 Behavioural domain
	6.5.2 Social domain
	6.5.3 Final models of learners' participation

	6.6 Discussion

	7 Conclusions and further work
	7.1 Conclusions
	7.2 Further work

	References

