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Abstract

Today, 3.5 and 4G systems including Long Term Evolution (LTE) and LTE-Advanced
(LTE-A) support packet-based services and provide mobile broadband access for
bandwidth-hungry applications. In this context of fast evolution, new and challenging
technical issues must be effectively addressed. The final target is to achieve a
significant step forward toward the improvement of the Quality of Experience (QoE).
To that end, interference management has been recognized by the industry as a key
enabler for cellular technologies based on OFDMA. Indeed, with a low frequency
reuse factor, intercell interference (ICI) becomes a major concern since the Quality of
Service (QoS) is not uniformly delivered across the network, it remarkably depends on
user position. Hence, cell edge performance is an important issue in LTE and LTE-A.

Intercell Interference Coordination (ICIC) encompasses strategies whose goal
is to keep ICI at cell edges as low as possible. This alleviates the aforementioned
situation. For this reason, the novelties presented in this Ph.D. thesis include not
only developments of static ICIC mechanisms for data and control channels, but
also efforts towards further improvements of the energy efficiency perspective.

Based on a comprehensive review of the state of the art, a set of research
opportunities were identified. To be precise, the need for flexible performance
evaluation methods and optimization frameworks for static ICIC strategies. These
mechanisms are grouped in two families: the schemes that define constraints on the
frequency domain and the ones that propose adjustments on the power levels. Thus,
Soft- and Fractional Frequency Reuse (SFR and FFR, respectively) are identified as
the base of the vast majority of static ICIC proposals.

Consequently, during the first part of this Ph.D. thesis, interesting insights into
the operation of SFR and FFR were identified beyond well-known facts. These
studies allow for the development of a novel statistical framework to evaluate the
performance of these schemes in realistic deployments. As a result of the analysis, the
poor performance of classic configurations of SFR and FFR in real-world contexts
is shown, and hence, the need for optimization is established. In addition, the
importance of the interworking between static ICIC schemes and other network
functionalities such as CSI feedback has also been identified. Therefore, novel CSI
feedback schemes, suitable to operate in conjunction with SFR and FFR, have been
developed. These mechanisms exploit the resource allocation pattern of these static
ICIC techniques in order to improve the accuracy of the CSI feedback process.
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The second part is focused on the optimization of SFR and FFR. The use of
multiobjective techniques is investigated as a tool to achieve effective network-specific
optimization. The approach offers interesting advantages. On the one hand, it allows
for simultaneous optimization of several conflicting criteria. On the other hand, the
multiobjective nature results in outputs composed of several high quality (Pareto
efficient) network configurations, all of them featuring a near-optimal tradeoff
between the performance criteria. Multiobjective evolutionary algorithms allow
employing complex mathematical structures without the need for relaxation, thus
capturing accurately the system behavior in terms of ICI. The multiobjective
optimization formulation of the problem aims at achieving effective adjustment of
the operational parameters of SFR and FFR both at cell level and network-wide.
Moreover, the research was successfully extended to the control channels, both the
PDCCH and ePDCCH.

Finally, in an effort to further improve the network energy efficiency (an aspect
always considered throughout the thesis), the framework of Cell Switch Off (CSO),
having close connections with ICIC, is also introduced. By means of the proposed
method, significant improvements with respect to traditional approaches, baseline
configurations, and previous proposals can be achieved. The gains are obtained in
terms of energy consumption, network capacity, and cell edge performance.



Resumen

Actualmente los sistemas 3.5 y 4G tales como Long Term Evolution (LTE) y
LTE-Advanced (LTE-A) soportan servicios basados en paquetes y proporcionan
acceso de banda ancha móvil para aplicaciones que requieren elevadas tasas de
transmisión. En este contexto de rápida evolución, aparecen nuevos retos técnicos
que deben ser resueltos eficientemente. El objetivo último es conseguir un salto
cualitativo importante en la experiencia de usuario (QoE). Con tal fin, un factor
clave que ha sido reconocido en las redes celulares basadas en Orthogonal Frequency-
Division Multiple Access (OFDMA) es la gestión de interferencias. De hecho, la
utilización de un factor de reuso bajo permite una elevada eficiencia espectral pero
a costa de una distribución de la calidad de servicio (QoS) que no es uniforme en la
red, depende de la posición del usuario. Por lo tanto, el rendimiento en los ĺımites
de la celda se ve muy penalizado y es un problema importante a resolver en LTE
y LTE-A.

La coordinación de interferencias entre celdas (ICIC, del inglés Intercell Interfe-
rence Coordination) engloba las estrategias cuyo objetivo es mantener la interferencia
intercelular (ICI) lo más baja posible en los bordes de celda. Esto permite aliviar
la situación antes mencionada. La contribución presentada en esta tesis doctoral
incluye el diseño de nuevos mecanismos de ICIC estática para los canales de datos y
control, aśı como también mejoras desde el punto de vista de eficiencia energética.

A partir de una revisión completa del estado del arte, se identificaron una serie
de retos abiertos que requeŕıan esfuerzos de investigación. En concreto, la necesidad
de métodos de evaluación flexibles y marcos de optimización de las estrategias de
ICIC estáticas. Estos mecanismos se agrupan en dos familias: los esquemas que
definen restricciones sobre el dominio de la frecuencia y los que proponen ajustes
en los niveles de potencia. Es decir, la base de la gran mayoŕıa de propuestas ICIC
estáticas son la reutilización de frecuencias de tipo soft y fraccional (SFR y FFR,
respectivamente).

De este modo, durante la primera parte de esta tesis doctoral, se han estudiado
los aspectos más importantes del funcionamiento de SFR y FFR, haciendo especial
énfasis en las conclusiones que van más allá de las bien conocidas. Ello ha permitido
introducir un nuevo marco estad́ıstico para evaluar el funcionamiento de estos
sistemas en condiciones de despliegue reales. Como resultado de estos análisis, se
muestra el pobre desempeño de SFR y FFR en despliegues reales cuando funcionan
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con sus configuraciones clásicas y se establece la necesidad de optimización. También
se pone de manifiesto la importancia del funcionamiento conjunto entre esquemas
ICIC estáticos y otras funcionalidades de la red radio, tales como la información que
env́ıan los usuarios sobre el estado de su canal downlink (feedback del CSI, del inglés
Channel State Information). De este modo, se han propuesto diferentes esquemas de
feedback apropiados para trabajar conjuntamente con SFR y FFR. Estos mecanismos
explotan el patrón de asignación de recursos que se utiliza en ICIC estático para
mejorar la precisión del proceso.

La segunda parte se centra en la optimización de SFR y FFR. Se ha investigado el
uso de técnicas multiobjetivo como herramienta para lograr una optimización eficaz,
que es espećıfica para cada red. El enfoque ofrece ventajas interesantes, por un lado, se
permite la optimización simultánea de varios criterios contradictorios. Por otro lado,
la naturaleza multiobjetivo implica obtener como resultado configuraciones de red
de elevada calidad (Pareto eficientes), todas ellas con un equilibrio casi-óptimo entre
las diferentes métricas de rendimiento. Los algoritmos evolucionarios multiobjetivo
permiten la utilización de estructuras matemáticas complejas sin necesidad de relajar
el problema, de este modo capturan adecuadamente su comportamiento en términos
de ICI. La formulación multiobjetivo consigue un ajuste efectivo de los parámetros
operacionales de SFR y FFR, tanto a nivel de celda como a nivel de red. Además,
la investigación se extiende con resultados satisfactorios a los canales de control,
PDCCH y ePDCCH.

Finalmente, en un esfuerzo por mejorar la eficiencia energética de la red (un
aspecto siempre considerado a lo largo de la tesis), se introduce en el análisis global
el apagado inteligente de celdas, estrategia con estrechos v́ınculos con ICIC. A través
del método propuesto, se obtienen mejoras significativas con respecto a los enfoques
tradicionales y propuestas previas. Las ganancias se obtienen en términos de consumo
energético, capacidad de la red, y rendimiento en el ĺımite de las celdas.



Resum

Actualment els sistemes 3.5 i 4G tals com Long Term Evolution (LTE) i LTE-
Advanced (LTE-A) suporten serveis basats en paquets i proporcionen accés de
banda ampla mòbil per a aplicacions que requereixen elevades taxes de trans-
missió. En aquest context de ràpida evolució, apareixen nous reptes tècnics que
han de ser resolts eficientment. L’objectiu últim és aconseguir un salt qualitatiu
important en l’experiència d’usuari (QoE). Amb tal fi, un factor clau que ha estat
reconegut a les xarxes cel·lulars basades en Orthogonal Frequency-Division Multiple
Access (OFDMA) és la gestió d’interferències. De fet, la utilizació d’un factor de
reús baix permet una elevada eficiència espectral però a costa d’una distribució de
la qualitat de servei (QoS) que no és uniforme a la xarxa, depèn de la posició de
l’usuari. Per tant, el rendiment en els ĺımits de la cel·la es veu molt penalitzat i és
un problema important a resoldre en LTE i LTE-A.

La coordinació d’interferències entre cel·les (ICIC, de l’anglès Intercell Interfe-
rence Coordination) engloba les estratègies que tenen com a objectiu mantenir la
interferència intercel·lular (ICI) el més baixa possible en les vores de la cel·la. Això
permet alleujar la situació abans esmentada. La contribució presentada en aquesta
tesi doctoral inclou el disseny de nous mecanismes de ICIC estàtica per als canals de
dades i control, aix́ı com també millores des del punt de vista d’eficiència energètica.

A partir d’una revisió completa de l’estat de l’art, es van identificar una sèrie de
reptes oberts que requerien esforços de recerca. En concret, la necessitat de mètodes
d’avaluació flexibles i marcs d’optimització de les estratègies de ICIC estàtiques.
Aquests mecanismes s’agrupen en dues famı́lies: els esquemes que defineixen res-
triccions sobre el domini de la freqüència i els que proposen ajustos en els nivells de
potència. És a dir, la base de la gran majoria de propostes ICIC estàtiques són la
reutilització de freqüències de tipus soft i fraccional (SFR i FFR, respectivament).

D’aquesta manera, durant la primera part d’aquesta tesi doctoral, s’han estudiat
els aspectes més importants del funcionament de SFR i FFR, fent especial èmfasi en
les conclusions que van més enllà de les ben conegudes. Això ha permès introduir un
nou marc estad́ıstic per avaluar el funcionament d’aquests sistemes en condicions
de desplegament reals. Com a resultat d’aquestes anàlisis, es mostra el pobre
acompliment de SFR i FFR en desplegaments reals quan funcionen amb les seves
configuracions clàssiques i s’estableix la necessitat d’optimització. També es posa de
manifest la importància del funcionament conjunt entre esquemes ICIC estàtics i
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altres funcionalitats de la xarxa radio, tals com la informació que envien els usuaris
sobre l’estat del seu canal downlink (feedback del CSI, de l’anglès Channel State
Information). D’aquesta manera, s’han proposat diferents esquemes de feedback
apropiats per treballar conjuntament amb SFR i FFR. Aquests mecanismes exploten
el patró d’assignació de recursos que s’utilitza en ICIC estàtic per millorar la precisió
del procés.

La segona part se centra en l’optimització de SFR i FFR. S’ha investigat l’ús
de tècniques multiobjectiu com a eina per aconseguir una optimització eficaç, que
és espećıfica per a cada xarxa. L’enfocament ofereix avantatges interessants, d’una
banda, es permet l’optimització simultània de diversos criteris contradictoris. D’altra
banda, la naturalesa multiobjectiu implica obtenir com resultat configuracions de
xarxa d’elevada qualitat (Pareto eficients), totes elles amb un equilibri gairebé òptim
entre les diferents mètriques de rendiment. Els algorismes evolucionaris multiobjectiu
permeten la utilització d’estructures matemàtiques complexes sense necessitat de
relaxar el problema, d’aquesta manera capturen adequadament el seu comportament
en termes de ICI. La formulació multiobjectiu aconsegueix un ajust efectiu dels
paràmetres operacionals de SFR i FFR, tant a nivell de cel·la com a nivell de xarxa.
A més, la recerca s’estén amb resultats satisfactoris als canals de control, PDCCH
i ePDCCH.

Finalment, en un esforç per millorar l’eficiència energètica de la xarxa (un
aspecte sempre considerat al llarg de la tesi), s’introdueix en l’anàlisi global l’apagat
intel·ligent de cel·les, estratègia amb estrets vincles amb ICIC. Mitjançant el mètode
proposat, s’obtenen millores significatives pel que fa als enfocaments tradicionals i
propostes prèvies. Els guanys s’obtenen en termes de consum energètic, capacitat de
la xarxa, i rendiment en el ĺımit de les cel·les.



A mis padres, Maŕıa Teresa y David, y hermana, Lourdes.



x



Acknowledgements

By writing these lines, I finish an unforgetable journey I started few years ago. What
started as an 18-year-old guy’s dream, have became the biggest experience of my
life. Somebody told me: ‘going for a Ph.D. is an act of faith’. That person was very
right. The way has not been easy, it has been full of ups and downs, but I have
enjoyed it, and more important, I have grown thorough it (in many senses).

I would like express my deep gratitude and respect to my thesis directors,
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Chapter 1

Introduction

1.1 Context and Motivation

The cellular communications industry witnessed a tremendous growth in the past
decade. With more than two billion customers, both Global System for Mobile
communications (GSM) and Universal Mobile Telecommunications System (UMTS)
were a worldwide success, adopted by most countries and mobile network operators.

Although conceived mainly for voice communications, cellular networks experience
an exponential growth of data services. According to [1], the main reason behind
this trend seems to be the fact that mobile devices are becoming the preferred
way to access the Internet. Thus, the increasingly growing market of web-enabled
mobile devices including smarter smartphones, tablets, and notebooks (1) opens
the path towards a wide range of previously unimagined (data-based) applications
and, (2) raises the need for ubiquitous availability of Internet (better coverage) and
faster broadband connections (more efficiency).

In this context of fast evolution, network operators and standardization bo-
dies would realize that significant enhancements of such systems were required as
data-based services demand significantly more network resources than voice commu-
nications. Therefore, serious efforts were done in order to improve data transmission
capabilities of existing Second and Third Generation (2G and 3G, respectively)
technologies. In particular, the Third Generation Partnership Project (3GPP) intro-
duced High Speed Packet Access (HSPA), an enhancement to its 3G technology, the
UMTS system, based on Code Division Multiplexing Access (CDMA). In parallel,
the Institute of Electrical and Electronics Engineers (IEEE), achieved an important
milestone with the introduction of specifications for local and metropolitan (wireless)
area networks, the families IEEE 802.11 and IEEE 802.16, respectively. The main
novelty was the design of the air interface based on Orthogonal Frequency Division
Multiple Access (OFDMA). Similarly, the American counterpart of the 3GPP, the
3GPP2, also evolved towards enhanced systems based on OFDMA, the Ultra Mobile
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2 1.1. Context and Motivation

Figure 1.1: Evolution of cellular systems from 2G to 4G and framework for 5G.

Broadband (UMB) system. Nevertheless, since many carriers in Australia, USA,
Canada, China, Japan and South Korea announced plans to adopt an OFDMA
based solution as their 4G technology, Qualcomm, UMB’s lead sponsor, announced
in November of 2008 the end of the development of such technology, favoring 3GPP’s
initiative instead.

Indeed, the 3GPP started the standardization of Long Term Evolution (LTE), a
new system also based on OFDMA featuring a simpler IP-based network architecture.
LTE and its evolution towards the Fourth Generation (4G), LTE-Advanced (LTE-A),
are expected to ensure the competitiveness of the 3GPP for the next 15-20 years
and guarantee its presence within the umbrella of the Fifth Generation (5G), which
is likely to be around 2020. Figure 1.1 depicts the evolution of cellular systems and
some insights about what 5G is supposed to be.

Independently of the technology, a fundamental principle of cellular systems
is the concept of frequency reuse where the same bands of frequency are used
simultaneously at different places by different base stations. This feature of cellular
systems allows boosting the capacity in terms of number of users/km2 and payload.
However, the frequency reuse implies that cells transmitting/receiving over the
same frequency bands interfere each other. The problem is known as Intercell
Interference (ICI) and it is widely recognized as one of the main capacity-limiting
factors in some cellular technologies. Although, interference mitigation techniques
have always played a crucial role in the optimization and performance of cellular
systems [2], the importance of strategies to deal with ICI in technologies based on
OFDMA such as LTE and LTE-A is maximal [3]. In these systems, the aggressive
frequency reuse results in poor radio channel quality at cell edges (zones where users
receive high levels of ICI and weak signal from their corresponding access points) and
hence, a fairness issue, i.e., the Quality of Experience (QoE) becomes dependent on
the user position as spatial Signal to Interference plus Noise Ratio (SINR) variations
imply different performances of multiantenna techniques.

Thus, strategies aiming at improving the Quality of Service (QoS) of mobile
terminals in cell edges are mandatory. In the context of OFDMA networks, one
approach to accomplish the previous goal is to coordinate (among cells) the radio
resources that are going to be allocated to those unlucky users in such a way that
they receive (1) better signal from their corresponding access points and, (2) less
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ICI from neighbor cells. This general framework is called as Intercell Interference
Coordination (ICIC) and it is the one over which this thesis is about.

This Ph.D. dissertation provides a contribution to the field of ICIC for cellular
systems based on OFDMA. To be precise, static ICIC for the downlink of realistic
LTE/LTE-A deployments have been investigated and proposed. Static ICIC includes
a family of strategies in which the resources available at each cell are determined
in a planning-like manner and only smooth variations are performed in time scales
of tens of minutes, hours or days. Several open issues were addressed and new
methods, guidelines and strategies have been devised accordingly. Throughout the
research process, emphasis was placed on achieving not only effective solutions but
also feasible innovations and, as far as possible, consider several perspectives of the
problem. The main motivation for this work has stemmed from the following factors:

• the optimization of static ICIC techniques in the context of realistic deploy-
ments, an issue that will be introduced and justified later on. Regarding this
particular, the main research objective was to design effective solutions provi-
ding network-specific solutions. Real-life networks are all different and hence,
these particularities can (and must) be exploited to achieve the maximum
benefit.

• the importance of addressing the ICIC problem from several perspectives.
The well-known tradeoff: efficiency-fairness was always in the center of attention,
but in addition, the increasingly important energetic perspective was also
considered in the vast majority of the studies presented herein.

• improving the interworking between ICIC and other network functionalities.
Although many functions of cellular systems are independent (and indeed
operate at very different time scales), sometimes the operation of one has
a significant impact on the performance of another. This is the case of im-
portant static ICIC strategies and some Channel State Information (CSI)
feedback schemes in LTE. Consequently, this aspect was investigated and new
mechanisms were proposed.

The specific aspects that have been covered concerning the previous research
lines are presented in the next section.

1.2 Scope and Structure

The main research objective of this Ph.D. dissertation is the design of new and
advanced schemes to optimize the performance of static ICIC strategies
in the context of the downlink of realistic LTE/LTE-A deployments. As
the reader has probably inferred, an important conceptual difference among ICIC
proposals is the temporality with which resource coordination is performed. Thus,
ICIC schemes can be divided into static and dynamic mechanisms [4]. In static ICIC,
there are not fast adaptations over time. The main advantage of this approach is
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that these schemes require none or little intercell communication and the very low
complexity, but on the other hand, there are no means to react to sudden changes
in network conditions. In dynamic ICIC, a certain amount (sometimes prohibitive)
of intercell signaling is required to be exchanged in time scales of milliseconds
or seconds. The ability of tracking network conditions dynamically is clearly the
biggest advantage in this type of solutions, but again, this comes at the expense of
additional real-time complexity and network resources. It is important to make clear
that, by no means, this research aims at presenting a comparison between static
and dynamic ICIC mechanisms. As it was commented, both approaches have pros
and cons. Instead, the thesis’s objective is to make a solid contribution to the
theory and State of the Art of static ICIC. The results and conclusions of
this work clearly suggest that, provided adequate optimization means, static ICIC
techniques are a very attractive alternative for mobile operators.

The document is composed of nine chapters and six appendices. The next seven
chapters correspond to the core of the Ph.D. dissertation. The final chapter closes
the document with final remarks, conclusions and future research lines. Chapters can
be grouped in two parts, each one focused in different, but interrelated, strategies to
optimize the overall performance of static ICIC schemes in LTE/LTE-A networks.

The first part comprises chapters 2, 3 and 4. It starts with the required back-
ground knowledge and it clarifies the motivation and relevance of the research
work. In this part, the general framework for ICIC in LTE/LTE-A is also explained,
including a description of several mechanisms (the ones relevant to this thesis)
defined in the specifications and a survey of the state of the art and current trends.
Given this, the work started by investigating the feasibility and performance of
static ICIC solutions in realistic networks deployments, i.e., networks in which the
propagation conditions vary significantly at different cells and the cellular layout
is far from the hexagonal models commonly used. The conclusions pointed out
the need for research towards effective static ICIC models that can be applied to
those environments/scenarios. During the studies, several perspectives including
existing tradeoffs, implementation aspects and interworking in LTE/LTE-A were
also considered. The novelties presented were inspired both from analysis of existing
proposals and own conclusions. The need for optimization strategies for realistic
scenarios was clearly established. In addition, detailed analysis of the interaction
between SFR/FFR and other network functionalities revealed that the interworking
with the Channel State Information (CSI) feedback mechanisms in LTE can be
substantially improved. Thus, novel strategies for CSI feedback are presented to
close this part.

The second part, including chapters 5, 6, 7 and 8, begins recovering the need
for optimized and network-specific SFR/FFR models suitable for realistic deploy-
ments. Several approaches, methodologies and optimization tools were considered.
However, taking into account the particularities of this design problem, i.e., the
system model, the mathematical structure of the objective functions (performance
metrics) and some practical considerations, the use of Multiobjective Evolutionary
Algorithms (MOEAs) was proposed and investigated. Novel optimization strategies
based on this approach proved their efficacy achieving significant improvements
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over baseline configurations and previous proposals. One chapter has been devoted
to investigate the adaptation of the new mechanism to ICIC for control channels,
a context that shows certain particularities that required a different treatment.
Potential extensions to adaptive mechanisms, feasibility/implementation aspects,
complexity and convergence properties were also addressed. The studies included
not only the effect of every single design variable on performance but also insightful
analysis of existing tradeoffs, in which the increasingly important energetic perspec-
tive was always taken into account. Indeed, the last chapter of this part, developed
during a research visit in Carleton University, Canada, was fully devoted to further
enhancements from the energy efficiency point of view. Thus, adaptations of the
model used previously for ICIC were successfully extended to the framework of Cell
Switch Off (CSO) and interesting innovations were developed.

In this manner, several open issues and research challenges were identified and
successfully addressed. The innovations, guidelines and new methodologies of study
were obtained by means of studies based on practical engineering considerations,
multiobjective optimization techniques and system level simulations. To support the
desired flexibility, a LTE system level simulator written in C++ was fully developed
by the author during the period of the thesis. A description of this platform is
provided in Appendix D. Mathematically speaking, a complete system level analysis
of ICIC is very complex without incurring in strong assumptions or simplifications.
This is mainly due to the mathematical structure of the performance metrics that
need to be studied and the scale of the problem (real-life deployments are composed
by hundreds of cells). However, by means of the simulation platform that was
developed, it was possible to investigate the ICIC problem accurately and keeping
the mathematical rigour required by the theoretical part of the analysis.

Figure 1.2 illustrates the structure of the thesis and several possible reading
paths of the document. Thus, some interdependencies that should be respected for
better understanding are indicated. Next, a summary of each chapter indicating
main research contributions and novelties is provided.

The chapters at a glance

The next chapter explains the need for ICIC in OFDMA based cellular networks.
As it will be seen, the use of frequency reuse 1 in systems such as LTE and LTE-A
results in poor radio channel quality at cell edges and hence, additional measures
need to be taken to compensate that situation. The chapter provides a description
of the most relevant approaches to ICIC and the state of the art. The literature
about ICIC is extensive and it comprises a wide range of theoretical studies and
schemes including heuristic strategies and optimization algorithms, all with different
levels of complexity and feasibility. In this thesis, the focus is placed on static ICIC
schemes and its performance in LTE/LTE-A deployments. However, dynamic ICIC
is also discussed to make explicitly clear the advantages and drawbacks of each
type of strategy. From this continuous reviewing process, interesting challenges were
identified and research objectives were established accordingly. Next, the chapter
continues with an overview of certain functionalities in LTE and LTE-A that are
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Figure 1.2: Structure of the thesis and interdependencies among chapters.

relevant to this thesis. These include means to implement ICIC, CSI feedback schemes
and structure and operation of the data and control channels. This information is
required as it allows for a better understanding of the novelties presented throughout
the document. In the chapter, great importance is conferred to the way in which
ICIC has evolved according to the new features and capabilities that have been
incorporated into the 3GPP’s specifications. This evolution has raised the need for
new frameworks that are trend nowadays such as enhanced ICIC (eICIC), Further
eICIC (FeICIC), ICIC for Heterogeneous Networks (HetNets), ICIC for Carrier
Aggregation (CA) based systems and ICIC in hyper dense small cell deployments,
among others. A discussion about these topics, key in 4G and 5G networks, is also
presented.

Chapter 3 presents key studies conducted in order to further investigate the
performance, complexity and tradeoffs associated to static ICIC schemes. These
analysis remarked the poor performance of static ICIC schemes (SFR and FFR) in
realistic cellular deployments. Therefore, the need for schemes achieving simultaneous
optimization of several conflicting metrics in those scenarios was established. Besides
this important conclusion, it was also pointed out that more efficient methods to
evaluate the role and impact of design parameters of SFR and FFR were also
required as this particular analysis requires numerous time-consuming system level
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simulations. A novel statistical methodology was developed and proposed to that
end. By means of this approach, insightful design guidelines were obtained.

The need for improving the interworking between static ICIC and CSI feedback
was among the important lessons obtained through the studies focused on the
operation and interworking of SFR and FFR. This is the matter of chapter 4.
Native CSI feedback mechanisms available in LTE do not take into account the
particular resource allocation patterns employed in SFR and FFR, thus resulting in
performances that are far from optimal. The proposed mechanisms provide means to
adapt the CSI feedback in a way that is more appropriate to SFR and FFR: refining
the estimation of the wideband (average) channel quality metric, that is used in
turn as reference point to compute the subbands counterparts. Thus, the proposed
schemes improve the overall QoS maximizing the number of satisfied users. Both
Real Time (RT) and Non Real Time (NRT) services were considered along these
studies.

Chapter 5 recovers the need for optimization of static ICIC schemes in realistic
deployments. The chapter starts introducing the use of metaheuristics in frameworks
such as automatic planning and justifies their suitability for a wide range of combi-
natorial problems similar to SFR and FFR optimization. Next, taking into account
the system model employed to study the performance of static ICIC techniques
(joint analysis of several conflicting perspectives including spectral/energy efficiency
and cell edge performance), the multiobjective approach was considered. In addition,
bearing in mind the computational complexity and mathematical structure of the
optimization problem, it was concluded that the use of an optimization tool based on
stochastic search fitted the research objectives previously defined. Hence, the adapta-
tion of MOEAs to the design of network-specific SFR/FFR models was investigated.
The chapter provides an introduction to the theory of multiobjective (global) opti-
mization and a comprehensive description of the evolutionary algorithms employed
in this thesis, including quality indicators, calibration guidelines, complexity aspects
and convergence properties.

The previous knowledge allows for the understanding of the optimization models
presented in chapter 6. The multiobjective algorithms for SFR and FFR based on
evolutionary optimization are the heart of the second part of the thesis and they
represent a step forward with respect to previous proposals. The algorithms are
based on adaptations of two well-known MOEAs, NSGA-II and SPEA-2, to the
particularities of the problem under consideration. By means of the Pareto dominance
concept, a hybrid scheme able to achieve the best properties of each algorithm was
designed and as a result, the performance of the proposed solution is substantially
better in terms of the number of resulting network configurations, convergence and
distribution. The fundamental idea is to fine tune the operational parameters of SFR
and FFR independently at each cell according to local propagation conditions and the
mutual impact among cells. Since the core processing is based on average interference
conditions, the model does not require neither prohibitive real-time processing nor
unfeasible intercell signaling. Moreover, the multiobjective nature of this framework
implies that the output is not longer one single network configuration but a set
of high quality ones. Thus, this feature enables mobile operators to select among
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different operational modes according to their needs or network conditions. In fact,
these configurations could be stored in databases and used in adaptive mechanisms.
The results show that the novel algorithms outperforms baseline configurations and
previous proposals and provide a wider understanding of intrinsic tradeoffs.

Traditionally, ICIC schemes have been focused on data channels, the user plane.
That is the case of the algorithms presented in chapter 6. However, the operation of
LTE and LTE-A strongly rely on information transmitted over control channels, the
control plane. Although control channels are designed to operate with robust modula-
tion and coding schemes to provide the desired reliability, this additional robustness
comes at the expense of consumption of additional radio resources, and hence, under
certain circumstances, it has been identified that control channels act as a capacity
bottleneck. On the one hand, the time-multiplexed design of the control channel in
LTE, the Physical Downlink Control Channel (PDCCH), is more rigid than its data
counterpart, the Physical Downlink Shared Channel (PDSCH), multiplexed both in
time and frequency. Therefore, strategies to reduce the levels of ICI at cell edges and
avoid the corresponding excessive resource consumption are required. On the other
hand, although the design of the control channel was significantly improved in LTE-A
with the addition of a new control channel, the enhanced PDCCH (ePDCCH), no
mechanism is specified in the standard to perform ICIC on it. Thus, in the light
of these situations and based on the strategies previously developed, suitable ICIC
schemes for the PDCCH and the ePDCCH are presented in Chapter 7.

All the analysis and studies presented so far take the increasingly important
energetic perspective into account by incorporating energy efficiency and related
metrics. Even though the static ICIC solutions based on SFR and FFR minimize
energy requirements over the air interface, i.e., the power transmitted in different
subcarriers, a further step is considering switch off eNBs completely as the major
part of the energy expenditure in these equipments is independent of the power
radiated through the antennas. Since base stations are the main contributors to
the overall network energy consumption, CSO schemes have attracted enormous
attention recently. This is the context of chapter 8. Thus, in order to upgrade this
important aspect, several adaptations of the strategies presented so far for ICIC
were developed. The resulting schemes and innovations were framed in a research
project at Carleton University, Canada, and they constitute the final point to the
activities enclosed by this thesis.

The document is closed with a high level assessment of the achievements accom-
plished through the research presented herein, conclusions and perspectives for future
works in chapter 9. Finally, a set of appendices is provided to 1) facilitate the reading
and understanding of the document (Appendices A, B, C and D) and, 2) complement
the thesis with additional, though relevant, results (Appendix E). The next Section
summarizes the research contributions derived from this Ph.D. dissertation.
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1.3 Research Contributions

The novel proposals and innovations presented in this thesis have been disseminated
through several research contributions1. These publications are grouped according
to the part of the thesis they correspond to. In addition, several contributions to
the European COST Actions 2100 and IC1004 were done and are also indicated.

The publications include:

• [J]: 5 journal papers.

• [P]: 1 US (provisional) patent.

• [B]: 2 book chapters.

• [LN]: 2 lecture notes (selected papers from conference proceedings).

• [C]: 13 conference papers (two of them granted with the best paper award).

• [CA]: 4 contributions to COST Actions.

PART I

Chapters 2, 3 and 4: 2 journal papers, 2 book chapters, 2 lecture notes, 7 conference
papers and 3 COST contributions.

[J1] D. González G, M. Garćıa-Lozano, S. Ruiz, and J. Olmos, “On the Need for
Dynamic Downlink Intercell Interference Coordination for Realistic Long Term
Evolution Deployments,” Wireless Communications and Mobile Computing,
pp. 1–26, Feb. 2012.

[J2] D. González G, M. Garćıa-Lozano, S. Ruiz, and J. Olmos, “Improving
the Interplay between Periodic Channel State Information Feedback and
Static Intercell Interference Coordination in LTE,” Journal of Communications
(Special Issue on Interference Management for 4G Networks), vol. 7, no. 9,
pp. 660–675, Sep. 2012.

[B1] N. Cardona, J. Olmos, J. Monserrat, M. Garćıa-Lozano (ed.), 3GPP LTE: Ha-
cia la 4G móvil (in Spanish). Barcelona, Spain: Marcombo, S.A., 1st ed., 2011.
Chapter entitled: Gestión de Recursos Radio (Radio Resource Management).

[B2] R. Santos, A. Block, and V. Rangel (ed.), Broadband Wireless Access Networks
for 4G: Theory, Application and Experimentation. Hershey (PA), United
States: IGI Global, 1st ed., 2013. Chapter entitled: Aperiodic ICIC-Oriented
CSI Reporting for LTE Networks.

[LN1] D. González G, M. Garćıa-Lozano, S. Ruiz, and J. Olmos, “Static Inter-
Cell Interference Coordination Techniques for LTE Networks: A Fair Perfor-
mance Assessment,” in Multiple Access Communications (A. Vinel, B. Bellalta,

1The publications are also listed at the end of the bibliography
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C. Sacchi, A. Lyakhov, M. Telek, and M. Oliver, eds.), vol. 6235 of Lecture
Notes in Computer Science, pp. 211–222, Springer Berlin Heidelberg, 2010.

[LN2] D. González G, M. Garćıa-Lozano, S. Ruiz, and J. Olmos, “On the Per-
formance of Static Inter-cell Interference Coordination in Realistic Cellular
Layouts,” in Mobile Networks and Management (K. Pentikousis, R. Agüero,
M. Garćıa-Arranz, and S. Papavassiliou, eds.), vol. 68 of Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, pp. 163–176, Springer Berlin Heidelberg, 2011.

[C1] D. González G, S. Ruiz, M. Garćıa-Lozano, J. Olmos, and A. Serra, “System
Level Evaluation of LTE Networks with Semidistributed Intercell Interference
Coordination,” in Proc. of IEEE 20th International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC 2009), Tokyo (Japan),
Sep. 13–16, 2009.

[C2] D. González G, V. Corvino, S. Ruiz, J. Olmos, M. Garćıa-Lozano, and
R. Verdone, “Downlink Resource Allocation in LTE: Centralized vs. Distributed
Approach,” in Proc. of Joint COST2100/NEWCOM++ Workshop on Radio
Resource Allocation for LTE, Vienna (Austria), Sep. 30, 2009.

[C3] D. González G, M. Garćıa-Lozano, V. Corvino, S. Ruiz, and J. Olmos,
“Performance Evaluation of Downlink Interference Coordination Techniques
in LTE Networks,” in Proc. of IEEE 72nd Vehicular Technology Confe-
rence (VTC 2010 Fall), Ottawa (Canada), Sep. 6–9, 2010.

[C4] D. González G, M. Garćıa-Lozano, S. Ruiz, and J. Olmos, “Static Inter-Cell
Interference Coordination Techniques for LTE Networks: A Fair Performance
Assessment,” in Proc. of 3rd Int. Workshop on Multiple Access Communications
(MACOM 2010), Barcelona (Spain), Sep. 13–14, 2010.

[C5] D. González G, M. Garćıa-Lozano, S. Ruiz, and J. Olmos, “On the Per-
formance of Static Inter-cell Interference Coordination in Realistic Cellular
Layouts,” in Proc. of 2nd Int. ICST Conference on Mobile Networks and
Management (MONAMI 2010), Santander (Spain), Sep. 22–24, 2010.

[C6] D. González G, M. Garćıa-Lozano, S. Ruiz, and J. Olmos, “An Analytical
View of Static Intercell Interference Coordination Techniques in OFDMA Net-
works,” in Proc. of IEEE Wireless Communications and Networking Conference
Workshops (WCNCW 2012), Paris (France), Apr. 1–4, 2012.

[C7] D. González G, M. Garćıa-Lozano, S. Ruiz, and J. Olmos, “Improving
Channel State Information Feedback for Static Intercell Interference Coor-
dination in LTE,” in Proc. of IEEE International Conference on Communi-
cations (ICC 2012), Ottawa (Canada), Jun. 10–15, 2012.

[CA1] D. González G, S. Ruiz, J. Olmos, M. Garćıa-Lozano, and A. Serra, “Link
and System Level Simulation of Downlink LTE,” COST 2100, Braunschweig
(Germany), Rep. available as TD(09)734, Feb. 16–18, 2009.
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[CA2] D. González G, M. Garćıa-Lozano, S. Ruiz, and J. Olmos, “Performance
Evaluation of Static Intercell Interference Coordination in Realistic Cellu-
lar Layouts,” COST 2100, Aalborg (Denmark), Rep. available as TD(10)11053,
Jun. 2–4, 2010.

[CA3] D. González G, M. Garćıa-Lozano, S. Ruiz, and J. Olmos, “A Novel ICIC-
Oriented Channel State Information Feedback Scheme for Aperiodic Reporting
in LTE,” COST IC1004, Barcelona (Spain), Rep. available as TD(12)03038,
Feb. 8–10, 2012.

PART II

Chapters 5, 6, 7 and 8: 3 journal paper, 1 US patent application, 6 conference papers
and 1 COST contribution.

[J3] D. González G, M. Garćıa-Lozano, S. Ruiz, and D. Lee, “Optimization
of Soft Frequency Reuse for Irregular LTE Macrocellular Networks,” IEEE
Transactions on Wireless Communications, vol. 12, no. 5, pp. 2410–2423,
May. 2013.

[J4] D. González G, M. Garćıa-Lozano, S. Ruiz, and D. Lee, “A Metaheuristic
based Downlink Power Allocation for LTE/LTE-A Cellular Deployments,”
Wireless Networks, Accepted for publication, Sep. 2013.

[J5] D. González G, M. Garćıa-Lozano, S. Ruiz, Maŕıa A. Lema, and D. Lee, “Mul-
tiobjective Optimization of Fractional Frequency Reuse for Irregular OFDMA
Macrocellular Deployments,” Telecommunication Systems, Accepted for publi-
cation, Oct. 2013.

[P1] D. González G, H. Yanikomeroglu, and G. Senarath, “A System and Method
for a Multiobjective Framework for Cell Switch-Off in Dense Cellular Net-
works.” US Provisional Patent Application, Serial no: 61847403, Filed by
Huawei, Canada. Application date: Jul. 2013.

[C8] D. González G, M. Garćıa-Lozano, S. Ruiz, and J. Olmos, “On the Role of
Downlink Control Information in the Provision of QoS for NRT Services in
LTE,” in Proc. of IEEE 75th Vehicular Technology Conference (VTC 2012
Spring), Yokohama (Japan), May. 6–9, 2012.

[C9] D. González G, M. Garćıa-Lozano, S. Ruiz, J. Olmos, and D. Lee, “Opti-
mization of Realistic Full Frequency Reuse OFDMA-based Cellular Networks,”
in Proc. of IEEE 23rd International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC 2012), Sydney (Australia), Sep. 9–12,
2012.

[C10] D. González G, M. Garćıa-Lozano, S. Ruiz, and D. Lee, “Improving Soft
Frequency Reuse for Realistic OFDMA-based Cellular Deployments,” in Proc.
of IEEE Global Telecommunications Conference (GLOBECOM 2012), Ana-
heim (United States), Dec. 3–7, 2012.
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[C11] D. González G, M. Garćıa-Lozano, S. Ruiz, M. Lema, and D. Lee, “Adap-
ting Fractional Frequency Reuse to Realistic OFDMA Cellular Networks,” in
Proc. of 6th Joint IFIP Wireless and Mobile Networking Conference (WMNC
2013), Dubai (United Arab Emirates), Apr. 23–25, 2013. Paper granted
with the ‘Best Paper Award’.

[C12] D. González G, M. Garćıa-Lozano, and S. Ruiz, “Power Allocation for
the PDCCH in LTE: A Way to Increase its Capacity in Realistic Deploy-
ments,” in Proc. of Wireless Personal Multimedia Communications Sympo-
sium (WPMC 2013), Atlantic City (United States), Jun. 24–27, 2013.

[C13] D. González G, M. Garćıa-Lozano, and S. Ruiz, “Intercell Interference
Coordination for the ePDCCH in LTE-Advanced Macrocellular Deployments,”
in Proc. of 9th International Conference on Wireless and Mobile Communi-
cations (ICWMC 2013), Nice (France), Jul. 21–26, 2013. Paper granted
with the ‘Best Paper Award’.

[CA4] D. González G, M. Garćıa-Lozano, S. Ruiz, and J. Olmos, “Impact of
Downlink Signaling Capacity Constraints on the Provision of QoS in LTE,”
COST IC1004, Lisbon (Portugal), Rep. available as TD(11)02041, Oct. 19–21,
2011.

Apart from publications directly related to the thesis contributions, the author
has participated in several other research works that have been carried out during
the elaboration of this thesis. In particular, 4 additional contributions to COST
Actions and 3 conference papers. These activities will not be explicitly mentioned
here for brevity.



Chapter 2

Strategies for Intercell
Interference Coordination

2.1 Introduction

In the previous chapter it was indicated the key role of interference management
throughout the evolution of cellular systems. Interference, either intracell or intercell,
has been always one of the most important performance-limiting factors in the
context of cellular communications. In general, interference is any spurious signal
on the channel that is being used. These undesired signals can be generated by the
use of the own or an adjacent channel either within the same cell or in neighbor
ones. OFDMA provides intrinsic orthogonality to the users within the cell, which
translates into a almost null level of intracell interference. However, in OFDMA
system, intercell interference is created when the same channel is used in neighbor
cells and it represents a challenging issue in this type of cellular network, especially
for users located at the cell edge due to the frequency reuse 1 that is aimed to meet
the ambitious design targets in technologies such as LTE and LTE-A.

This chapter presents, in Section 2.2, a progressive approach to ICI, its impact on
OFDMA cellular systems and the need for effective interference mitigation techniques.
In the discussion, great attention is paid to the role of frequency reuse, a notion
of utmost importance in this context. Building upon this background, Section 2.3
makes a description of the different strategies to deal with ICI. The survey provides a
wide perspective of the most important frameworks focused not only on ICI but also
related targets, both in the downlink and uplink. Thus, interesting concepts such
as Coordinated Multipoint (CoMP), Interference Alignment (IA) and Interference
Rejection Combining (IRC) are visited. This discussion aims at contextualizing ICIC
within the more general framework of interference mitigation in OFDMA systems.
Then, with this wide perspective, the attention is turned to ICIC and Section 2.4
is fully devoted to these strategies with special emphasis on static schemes, the
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focus of this Ph.D. dissertation. Classification criteria and operational principles
are explained. It will be shown that, the vast majority of ICIC proposals, both
dynamic and static, are fundamentally based on the same principles that govern the
operation of two important static schemes: SFR and FFR. Consequently, the state
of the art of the techniques and strategies based on either SFR or FFR is presented.
From this analysis, several important research directions are established, among
which, the need for studies about the performance of static ICIC schemes in realistic
deployments is the center of attention during the first part of the thesis.

This Ph.D. dissertation is focused on the optimization of static ICIC schemes for
the downlink of LTE and LTE-A networks. The downlink of both systems is based
on OFDMA, being network performance mainly interference-limited. Nevertheless,
throughout Sections 2.3 and 2.4, numerous references to the uplink counterpart of
the interference management problem are included. These comments mainly focus on
the feasibility of each of these strategies in the uplink. Thus, in order to summarize
these aspects and provide a unified perspective of this parallel problem, Section 2.5
addresses the adaptability and possible extensions of the aforementioned techniques
to the uplink.

Two additional sections complete the chapter. Section 2.6 provides an overview of
the framework for ICIC in HetNets and small cell deployments. Section 2.7 includes
an introduction to several aspects of LTE: an overview of the air interface, the
structure of data and control channels (focusing on ICIC aspects), and a basic
description of several ICIC facilitating mechanisms.

2.2 ICI in OFDMA Systems: Background

This section provides a progressive approach to ICI and its management in OFDMA
networks by presenting several fundamental theoretical aspects of this problem. These
notions will facilitate the understanding of the document and the contributions of
the thesis.

2.2.1 OFDM and OFDMA

This theoretical introduction starts discussing the access technology. OFDMA is
based on Orthogonal Frequency Division Multiplexing (OFDM), a multicarrier
transmission technique that allows the transmission of several data streams in parallel
over the same channel. This is accomplished by dividing the available spectrum into
K subchannels. Then, K data symbols are transmitted simultaneously during an
interval K∆t instead of transmitting one data symbol in the whole spectrum during
a time ∆t. Nevertheless, the key aspect of OFDM is the clever overlapping (the
exact location of the subcarriers’ nulls) existing in the frequency domain, such that
the orthogonality among subcarriers is guaranteed. By doing so, the bandwidth can
be used more efficiently, and hence, the spectral efficiency can be increased with
respect to traditional Frequency Division Multiplexing (FDM) techniques. OFDMA
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Figure 2.1: Operational principle of OFDMA.

is a multiuser version of OFDM. Multiple access is achieved by assigning subsets of
subcarriers to individual users during certain time intervals allowing so simultaneous
transmissions. The previous ideas are illustrated in Figure 2.1. The main advantages
of OFDMA include:

X Robustness against inter-symbol interference.

X OFDM can combat multipath easily.

X Flexibility of deployment across various frequency bands with minor modifica-
tions to the air interface: scalable bandwidth and granularity.

X Offers frequency diversity by spreading the subcarriers over the total bandwith.

X No cell size breathing as more users connect.

Some disadvantages include:

× Higher sensitivity to frequency offsets and phase noise.

× Dealing with co-channel interference from nearby cells is more complex in
OFDM than in CDMA.

× Larger Peak to Average Power Ratio (PAPR) than other single carrier modu-
lation options.

A detailed description of OFDM and OFDMA can be found in [5].

2.2.2 Fundamental Aspects

Throughout the document, the downlink of a LTE/LTE-A cellular network is
considered. However, most of the models and analysis presented herein are perfectly
valid for the downlink of any generic OFDMA cellular systems. Thus, the context is
a cellular network in which several users receive data through an air interface based
on OFDMA. It is always assumed that each user accesses the services provided
by the network through one, and only one, base station, i.e., a user receives data
from at most one cell. In general, the rate at which the network is able to transmit
information to any given user depends on the SINR experienced by that user. Let’s
consider the scenario depicted in Figure 2.2. According to the Shannon’s formula,
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Figure 2.2: Typical ICI scenario.

the spectral efficiency1 measured in bit/s/Hz of the UE in this non-interference-free
system can be written as follows:

ηICI = log2

(
1 +

Useful signal power

σ2 + ICI power

)
= log2

(
1 +

P

σ2 + κP

)
. (2.1)

Scenarios in which κP � σ2 are known as interference limited and obviously, these
are the cases of interest from the interference management point of view. Note that
the amount of ICI power received by the UE has been expressed as κP . Therefore,
it can be said that the target of any interference mitigation strategy is to make κ as
small as possible. The previous goal becomes evident by looking at the impact of
ICI on the spectral efficiency. In this example, the Signal to Noise Ratio (SNR) and
Signal to Interference Ratio (SIR) correspond to P

σ2 and κ−1, respectively. Thus, the
spectral efficiency without ICI can be written in the following manner:

ηNoICI = log2 (1 + SNR) . (2.2)

The spectral efficiency loss due to ICI will be given by:

Loss =
ηNoICI − ηICI

ηNoICI
=

log2

(
1+SNR

1+( 1
SNR+κ)

−1

)
log2 (1 + SNR)

. (2.3)

Figure 2.3 clarifies the meaning of (2.1) and (2.3) by showing graphically the
relationship among the involved variables. First, Figure 2.3a shows that for moderate
to high ICI levels (κ ≥ 0.50), significant increments in the useful signal received
power have a negligible effect on the spectral efficiency. Thus, it is clear that ICI
is an important capacity limiting factor. Another quantitative perspective of this
negative effect is provided in Figure 2.3b. It can be seen that in scenarios with
relative low noise (SNR=15 dB), the capacity is reduced between 40% and 80%
when the SIR goes from −10 dB to 0 dB (κ−1 ∈ [−10, 0] dB). The losses in the
heavily interfered region (κ ≥ 0 dB) are above 80%. This example makes evident

1The general notation is described in Appendix A.
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(a) ICI limits capacity. (b) Capacity loss due to ICI.

Figure 2.3: Impact of ICI in interference limited scenarios.

the severe impact of ICI on the performance of cellular systems and the need for
effective strategies to mitigate its effects.

2.2.3 Practical aspects

In the context of OFDMA cellular networks, ICI management has two main issues.
The first fundamental problem appears because ICI is highly non-predictable even in
scenarios without mobility due to time varying transmission patterns in interfering
cells. On top of this, the effect of the frequency selective fading and the limitations of
practical CSI feedback schemes make harder tracking channel quality for narrowband
channels (the case of OFDMA subchannels). As a result, obtaining perfect CSI
is not feasible, and hence, resource allocation schemes typically relying on such
detailed information pose several challenging issues. In addition, even assuming
that perfect CSI is available, time scales at which these algorithms operate is often
prohibitive due to the computational cost and the amount of intercell signaling
that is required. Indeed, and according to [6], ICI management may not have to
track fast dynamics. In practice, the impairments caused by the aforementioned
issues are typically handled by means of several Radio Resource Management (RRM)
mechanisms such as power control, Adaptive Modulation and Coding (AMC), and
advanced retransmission schemes. A wider perspective and classification of RRM
can be found in [7, 8].

The second issue is related to the fact that SINR levels are not uniformly dis-
tributed in the network coverage area. Recall that the wireless channel is basically
composed of three nearly independent mechanisms: path loss, shadowing and multi-
path [9]. The statistics of the loss due to multipath (small scale fading) does not
depend on the position, but path loss and shadowing (large scale fading) are position
dependent. While multipath and shadowing affect users (statistically) in the same
manner, propagation losses are proportional to distance, and hence, users located
near to cell edges receive not only weak signals from their serving base stations
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Figure 2.4: Illustration of the cell edge performance issue in OFDMA networks.

but also high ICI. As a result, SINR values are significantly lower than the ones
experienced by users close to their transmitters. As it was just illustrated, high ICI
penalizes system capacity drastically, and hence, the situation causes an important
performance degradation (from the system perspective) and a no less important
fairness issue (from the users point of view). The cell edge performance degradation
issue is illustrated in Figure 2.4. Consequently, in the context of cellular systems
based on OFDMA such as LTE, a fundamental target of any ICI mitigation strategy
is to improve the QoS of cell edge users, for which, strategies focused on macroscopic
network changes and average interference conditions may represent a good tradeoff
between performance and complexity/feasibility.

2.2.4 Impact of Frequency Reuse

The analysis presented so far, although valid for OFDMA systems, did not include
into the picture a very important element: the bandwidth. Indeed, it was assumed
that a generic resource is used in all cells. The previous assumption is also known as
universal frequency reuse, full frequency reuse, or reuse factor 1. However, a very
interesting feature of OFDMA is the possibility of using different portions of the
system bandwidth independently at each cell. Thus, this subsection is closed by
showing the impact of frequency reuse.

In order to provide an insightful result, the analysis must include the cell edge
performance perspective. Let’s consider a cellular network featuring hexagonal
geometry. Without loss of generality, it is assumed that omnidirectional antennas
are located in the center of each cell, each of which has radius R and transmits
with the same power P . The analysis is focused on one single cell (the target cell),
in which, two users, UECC and UECE, are located in the center and cell edge,
respectively. To evaluate the impact of frequency reuse, three different values are
considered: 1, 3, and 7. Figure 2.5 depicts the scenario previously described and the
frequency reuse patterns. By considering that 1) channel gains are given exclusively
by propagation losses, 2) the effect of the background noise is negligible (σ2 ≈ 0),
and 3) δ is a small quantity (δR is significantly smaller than the cell radius); the
SINR of each user (ψUE) can be expressed as function of the distances (dl) to the
different base stations that are reusing the same frequency (according to the reuse
pattern) and, the propagation loss exponent ν as follows:
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Figure 2.5: Frequency reuse patterns and cell edge performance.

ψUECC
=

(δR)−ν

L∑
l=1,l 6=l̂

(dl)−ν
, ψUECE

=
R−ν

L∑
l=1,l 6=l̂

(dl)−ν
. (2.4)

Thus, taking into account the previous expressions and the different frequency reuse
patterns, SINR and spectral efficiency values for both users can be obtained and
the effect of the propagation loss exponent can be also included into the picture.
Figure 2.6 shows the result considering the Shannon’s formula for spectral efficiency
and δ = 0.05. From Figures 2.6a and 2.6b it can be seen that the improvement on
the average SINR experienced by central users (UECC) due to higher frequency reuse
factors (3 and 7) does not compensate the loss in terms of spectral efficiency caused
by the bandwidth reduction associated to each reuse pattern. Thus, as a conclusion
for central users, frequency reuse factor 1 is the best choice from the capacity point
of view. On the other hand, looking at Figures 2.6c and 2.6d, it is evident that
frequency reuse factor 3 provides the best performance for cell edge users (UECE) as
it maximizes the capacity. Thus, applying different frequency reuse factor to different
groups of users depending on their average channel quality is the fundamental design
principle in many ICI mitigation strategies. Whereas some techniques apply certain
reuse patterns statically, others apply a frequency reuse factor that is computed
based on time varying indicators and/or performance metrics. Consequently, the
notion of frequency reuse is key in ICIC. In addition, as the propagation loss exponent
growths, SINR figures also increase; an effect that is more pronounced in the cell
edge when high frequency reuse factors are employed. This clearly suggests that any
variable resulting in such effect is advisable from the ICI management perspective.
Finally, another aspect to be remarked here is the role of the geometry of the cellular
layout. It has a great influence on the best frequency reuse factor, and indeed, as it
will be shown in Chapter 3, homogeneous frequency reuse patterns are no longer
optimal in realistic deployments where the cellular layout is irregular.

In this manner, having 1) justified the need for ICI mitigation, and 2) introduced
several theoretical and practical aspects of this problem, the following section provides
a high level perspective of the different approaches that have been proposed so far.
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(a) SINR: cell center. (b) Spectral efficiency: cell center.

(c) SINR: cell edge. (d) Spectral efficiency: cell edge.

Figure 2.6: Impact of frequency reuse.

2.3 ICI in OFDMA Systems: Strategies

The objective of this section is to provide a wide perspective of the techniques
and strategies to deal with ICI in cellular systems based on OFDMA, and so,
contextualize ICIC within this broader framework. Given the tremendous impact of
the ICI, it is not surprising that other techniques are also focused on minimizing its
effects. Although, this thesis is about ICIC, and more precisely about static ICIC, a
discussion including all the approaches is needed not only for the sake of completeness
but also to understand how ICIC can coexist with several other strategies and evolve
to deal with current and future challenges of cellular communications.

In a nutshell, interference mitigation can be done by means of 1) randomization,
where the interference is distributed uniformly across the available bandwidth through
scrambling, interleaving, or frequency-hopping (spread spectrum), 2) cancellation,
where interfering signals can be either subtracted from the received signal or, if
Multiple Input Multiple Output (MIMO) is used, the best received signal can
be selected, 3) CoMP, a family of novel resource allocation techniques including
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Figure 2.7: General classification of interference mitigation techniques.

joint processing and/or coordinated scheduling/beamforming, and 4) ICIC, where
restrictions to the radio resources (bandwidth and power) available at each cell are
created to reduce ICI at cell edges. Figure 2.7 provides a panoramic of interference
management in OFDMA systems. The previous families of strategies have been
identified as key frameworks for interference mitigation within the 3GPP [10, 11],
and hence, interference cancellation, interference randomization, and CoMP are
briefly described in Subsections 2.3.1, 2.3.2, and 2.3.3, respectively. Then, ICIC is
covered in detail in Section 2.4.

2.3.1 ICI Randomization

These strategies aim at randomizing interfering signals, which can be done by
using scrambling, applying pseudo-random codes after channel coding/interleaving
or by means of frequency hopping. Sometimes a spreading is also included. The
randomization makes the interference more uniform so that strong interfering signals,
i.e., generated from (or transmitted to) cell edge users, will tend to have a tolerable
impact on the rest of users in adjacent cells, rather than a destructive impact on
few users (thus increasing outage). ICI randomization achieves good performance in
heavily loaded networks since scrambling induces interference fluctuations and this
leads to frequency diversity gains [12]. However, it is worth mentioning that, in the
context of LTE/LTE-A [13], randomization-based strategies are being preferred for
the uplink due to the use of localized Single Carrier Frequency Division Multiple
Access (SC-FDMA) in LTE Rel 8 and 9, and up to two clusters of localized subcarriers
in LTE Rel 10 and 11. In this manner, frequency hopping allows for the introduction
of certain frequency diversity gain. On the other hand, the downlink gets frequency
diversity gains directly from frequency distributed scheduling.

Recent contributions in this area include performance evaluations [14], schemes
for cell search and synchronization [15, 16], enhancements for the control channels
in the uplink [17], and multiple access schemes featuring hopping capabilities [18].
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2.3.2 ICI Cancellation

In ICI cancellation, the basic concept is to regenerate the interfering signals and
subsequently subtract them from the desired signal [19]. In short, the approach
is removing ICI rather than avoiding it. Currently, two major lines are being
investigated:

1. Detection and subtraction: ICI can be removed by explicitly modeling the
interfering symbols. Interfering signals are estimated, for instance, by means
of blind detection [20], and their estimates are then subtracted from received
signals. However, in order to make ICI cancellation feasible at the receiver side,
transmitters must be synchronized.

2. Spatial suppression: This approach requires the use of multiple antennas. ICI
cancellation can be done without synchronization of the transmitters and the
corresponding receiver is usually called Interference Rejection Combining (IRC)
receiver [21].

One good feature of interference cancellation is that the implementation at the
receiver side can be considered independently of the interference mitigation scheme
adopted at the transmitter, and hence, the coexistence with other techniques is
not an issue. However, complexity is the major objection associated with these
strategies. Thus, interference cancellation techniques including IRC and some types
of Interference Alignment (IA) [22] are being considered mostly for the uplink and
implemented in the base station receiver. In practice, only certain (interference
cancellation) approaches such as Successive Interference Cancellation (SIC) [23] are
being considered for the downlink. In the next points, a brief description of these
novel strategies is provided.

Interference Rejection Combining

The fundamental concept in IRC is to exploit the correlation (between antennas) of
interfering signals. Thus, taking advantage of this spatial correlation, interference can
be detected and suppressed by means of multiple antenna techniques. An in-depth
treatment can be found in [24]. Basically, the IRC receiver combines signals in such a
way that the Mean Square Error (MSE) of the combined signal and the desired signal
is minimized. The results presented in [25] indicate that IRC provides significant
cell edge performance gains for the uplink of LTE systems.

Successive Interference Cancellation

SIC is a PHY layer capability that allows receivers to decode different packets that
arrive simultaneously. This is possible because, aided by signal processing techniques,
receivers are able to decode the stronger signal, subtract it from the combined
signal, and extract the second stronger one from the residue. Thanks to emerging
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software radio platforms, SIC implementations are becoming possible and significant
enhancements of MIMO links have been reported. In [26, 27], various strategies
based on SIC are evaluated in the context of LTE and its performance has been also
tested in conjunction with ICIC techniques as in [28, 29].

Interference Alignment

Interference alignment (IA) is a recent development that reduces the impact of
interference. The design concept is to coordinate multiple transmitters so that
their mutual interference is aligned at the receivers, thus facilitating interference
cancellation. IA can be regarded as a cooperative interference management strategy
that exploits the availability of multiple signaling dimensions provided by multiple
time slots, frequency blocks, or antennas. The transmitters jointly design their
transmitted signals in the multidimensional space such that the interference observed
at the receivers occupies only a portion of the full signaling space. A surprising
result showed in [30], is that alignment may allow the capacity of the network to
grow linearly, and without bound, with the network size. Recall that in TDMA and
FDMA, the sum rate is more or less constant independently of the network size as
only one pair of users can communicate in a given time/frequency block.

The possibilities opened by this new paradigm are infinite and intensive research
is therefore conducted around IA [31–33]. However, IA relies on some assumptions
which must be relaxed before it is adopted in practical wireless systems. These
include the need for an unfeasible CSI, moderate to high SINR levels, accurate
synchronization and self-organization capabilities.

2.3.3 CoMP

CoMP is a family of novel techniques that have been recognized as a key element
to deal with intercell interference and increase spectral efficiency within the LTE
roadmap after the Release 9. Indeed, CoMP concepts appeared in LTE Release 11.
According to [11], CoMP techniques for the downlink can be categorized as:

1. Joint Processing : Users’ data is available at each point in a CoMP cooperating
set2. Within joint processing, a special technique called joint transmission
consists in the transmission from multiple points in the CoMP cooperating set
to one single user at a time.

2. Coordinated Scheduling/Beamforming : These techniques encompasses a wide
range of resource allocation algorithms in which data is only available at
serving cell but scheduling/beamforming decisions are made with coordination
among cells within the CoMP cooperating set.

2A CoMP cooperating set is a set of (geographically separated) base stations directly or indirectly
participating in data transmissions to a user.
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Preliminary field trials were reported in [34] and thereafter, numerous proposals and
contributions have been presented. Recent representative examples include [35–37].
Besides of the theoretical advances that clearly show the potential benefits of CoMP,
implementation requires a high capacity/low latency backhaul architecture, efficient
cell clustering techniques, accurate synchronization and more detailed CSI feedback
schemes. Most of these challenges are being investigated, however it is worth saying
that practical implementations are being tested mainly for the uplink [38].

Summarizing...

On the one hand, the strategies for interference management seen so far 1) modify
the way the interference is distributed across the system bandwidth (randomization
mechanisms), 2) eliminate the interference (cancellation schemes), or 3) make inter-
ference signals orthogonal among users by using spatial multiplexing and multicell
joint/coordinated scheduling (CoMP strategies). On the other hand, the remaining
approach, ICIC, aims at minimizing the impact of ICI on cell edge users by defining
the resources (bandwidth and power) that can be used at each cell at any time. In
this manner, the levels of ICI at cell edges are reduced, and consequently, the QoS
of cell edge users can be improved. The next section is entirely devoted to ICIC.

2.4 Intercell Interference Coordination

The target of this section is to explain the different types of ICIC, their charac-
teristics, advantages and drawbacks, operational principles and discuss how they
differ/resemble each other. Then, a survey of ICIC techniques is presented, with
special emphasis on static ICIC and the schemes based thereon.

Given that ICIC has been recognized as a key piece of 3G, 4G, and future 5G
technologies [3, 39], the research around it has been intensive and an uncountable
number of works and contributions have been presented in the last few years. A
complete compilation and review of such literature is certainly unaffordable, and
consequently, this section presents the papers that are more relevant according to
the objectives of this thesis.

2.4.1 Baseline schemes

As it was shown in Section 2.2, Frequency Reuse 1 (FR1) and 3 (FR3) are configura-
tions that maximize the throughput at the center and edges of the cell, respectively.
These schemes are the common benchmark in the vast majority of ICIC proposals
and they provide the basic reference point to assess the merit of any ICIC solution.
Therefore, for the sake of completeness, the operational principle of FR1 and FR3
are illustrated in Figure 2.8. Recalling briefly, while in FR1, all cells have access
to the whole system bandwidth, in FR3 each cell is only allowed to use one third
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Figure 2.8: Operational principle of FR1 and FR3.

of the system bandwidth. Note that no classification of users is performed, and
consequently, all users experience the same frequency reuse factor.

2.4.2 ICIC strategies: Classification

ICIC allows several possible taxonomies. In fact, different classifications and nomen-
clatures have been presented in surveys about interference mitigation and coordina-
tion. Excellent compilations include [19, 39–41], and more recently, [42, 43].

A widely adopted criterion is the temporality with which resource coordination
is performed [4, 41, 44]. Thus, ICIC solutions can be classified as static and dynamic
schemes.

Static ICIC implies the use of fixed and predefined reuse patterns and power
levels levels to different groups of users according to their average SINR. Therefore,
the radio resources available at each cell are allocated (and kept fixed) for extended
periods of time. To be more precise, the portion of bandwidth and corresponding
power that each base station is allowed to use in its cells is defined during the
planning process. The static approach has several advantages:

X No additinal/detailed CSI is required for the operation of the scheme.

X Intercell signaling does not need to be exchanged.

X Very low complexity/real-time computational cost.

X No explicit interworking with other network functionalities is assumed.

The major inconvenience is the lack of adaptability to network dynamics such as
traffic variations both in time and space. In addition, static ICIC schemes typically
require to define a certain set of rules and operational parameters. As it will be
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indicated, the performance of these strategies is strongly influenced by the choice of
optimal values for such figures, which is not an easy task in many real-life contexts.

On the other hand, dynamic ICIC employs adaptive algorithms to efficiently
manage radio resources. Clearly, the main advantage of this approach is the ability
to respond to inhomogeneous traffic load distributions and other time varying
conditions. Nevertheless, as it will be explained in detail shortly, this dynamism
is only achievable at expense of prohibitive complexity and unfeasible practical
requirements. Indeed, the feasibility is directly linked to the level of adaptation that
is pursued, and consequently, the time scale at which coordination is performed
largely determines the complexity. In this line, it is also worth saying that the tradeoff
between performance and feasibility is also associated to the architecture that is
proposed. While centralized schemes achieve near optimum performance with fairly
stable operation and convergence properties, semi distributed and fully distributed
solutions, though much more feasible, offer less gains and sometimes, convergence
and stability are concerns. The operational principles and design guidelines of several
types of dynamic ICIC are covered in subsection 2.4.4

Before going into the details of each type of ICIC, a summary and comparative
view is provided in Table 2.1.

2.4.3 Static ICIC

The fundamental idea in static ICIC is to apply different frequency reuse factors to
different groups of users based on average SINR measurements3. As it was shown in
Subsection 2.2.4, different frequency reuse factors are optimal (from the capacity
point of view) depending on user position, and consequently, static ICIC techniques
are also known as frequency reuse based schemes. SFR and FFR are the most
fundamental forms of static ICIC, and so, the discussion is mainly centered in these
strategies and the ones derived from them.

The operation of SFR and FFR techniques requires two aspects:

1. Users classification. Based on a SINR classification threshold (ψTH) users are
grouped in two classes: central users and cell edge users. Hereafter, central and
cell edge users are indicated by the symbols I (interiors) and E (exteriors),
respectively.

2. Defining operational parameters. Both SFR and FFR, need to specify the set
of channels (frequency resources) that each cell is allowed to use together with
the power and the group of users (either I or E) associated to them.

Figure 2.9 illustrates the operational principle of SFR and FFR. In the figure, a
tri-sectorial site is considered. The design of SFR and FFR is similar in certain
aspects, however, there are also important differences. In order to illustrate them,
the following convention is adopted.

3Average SINR refers to wideband measurements, i.e., considering all frequency resources.
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Figure 2.9: Operational principle of SFR and FFR.

• Active Band: portion of the system bandwidth in which a cell is allowed to
transmit. Hereafter, BA

l represents the set of frequency resources (subbands)
in which the lth cell is allowed to transmit. BA

l ⊆ B ∀ l. Recall that B is the
set of all subbands in the system bandwidth.

• Reserved Band: portion of the system bandwidth in which the lth cell is allowed
to transmit to either central or cell edge users, BR

l,I and BR
l,E , respectively.

Therefore, BA
l = BR

l,I ∪ BR
l,E ∀ l.

As it is shown in the figure, both SFR and FFR separate users in classes by means
of the parameter ψTH. Each of these classes, E and I, make exclusive use of its
reserved band, whose size and power are determined by the bandwidth sharing
coefficient and the power ratio, β and α, respectively. βl indicates the fraction of the
system bandwidth that is assigned to center users in the lth cell. Thus, βl =

Bl,I
B ∀ l.

αl indicates the power ratio between central and cell edge users in the lth cell. Unless
something different is indicated, βl = β and αl = α ∀ l. Note that in SFR and FFR,

the bandwidth allocated to cell edge users corresponds to (1− β) ·B and (1−β)·B
3 ,

respectively. In this manner, users in the cell edge zone enjoy higher frequency
reuse and are served with higher power levels than users in the central part (where
typically the radio channel is much better). Thus, cell edge users receive significantly
less interference, and hence, their average SINR are much better making possible to
improve the QoS provided to them.

As it can be easily noticed, in SFR each cell has access to the whole system
bandwidth, i.e., BA

l = BR
l,I ∪ BR

l,E = B ∀ l. In contrast, in FFR the active band is

strictly smaller than the system bandwidth, and hence, BA
l = BR

l,I ∪BR
l,E ⊂ B ∀ l. In

addition, while in SFR the ICI experienced by each class of users is also interclass,
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in FFR each class of user uses the same subband in different cells, and therefore,
ICI is only intraclass. The previous makes, in general, SFR notably more sensitive
to α than β. The opposite holds for FFR, as shown afterwards.

Another key aspect is about how classify users. This completely depends on the
SINR classification threshold (ψTH). Since this parameter determines the fraction of
users belonging to each class, it has a big impact on the performance of these schemes
[45]. Note that although this classification is usually regarded as a geographical
distinction, in practice it is a radio condition. A detailed analysis of the effect of β,
α, and ψTH is presented in Chapter 3. Based on these analyses, it came out that the
classification threshold offers a flexible and feasible way to control the performance of
these strategies. The observation turned out to be central in the development of the
schemes that are presented in Chapters 6 and 7, where by fine tuning classification
thresholds locally at cell level, effective optimization of SFR and FFR to realistic
deployments was achieved.

It is important to remark that SFR and FFR are not coupled to scheduling.
These schemes only determine the resources that are available at each cell. From this
point, different scheduling policies can attain several tradeoffs. This is done by taking
advantage of the particular resource allocation patterns, see Figure 2.9. Another
important aspect is that the information users must feedback is minimal, only a
measure of the wideband SINR is required. This is currently supported by most
systems including LTE and LTE-A. As it was indicated, the operation of static ICIC
schemes is fully distributed and only a very low amount of intercell signaling could
be needed (only in cases where the network configuration needs to be changed).

As studied afterwards, a tradeoff appears between the gains in fairness and spec-
tral efficiency. This tradeoff can be adjusted by means of the operational parameters
previously introduced, however, the sensitivity strongly depends on other factors
such as the scheduling policy, the performance metrics’ definition and the network
geometry. Thus, the need for an evaluation methodology completely decoupled
from this type of assumptions was identified, and consequently, a novel paramet-
ric/statistical performance assessment procedure was developed. This methodology
is presented in Chapter 3.

Finally, it is worth saying that, applying the fundamental design concepts found
in SFR and FFR, i.e., frequency reuse 1 and low transmission power for central
users and frequency reuse greater than 1 with high transmission power for cell edges,
several other static ICIC strategies that introduce minor modifications have been
proposed. Given that all of them are basically based on SFR and FFR, the discussion
presented so far suffices to achieve the objectives of this chapter. Instead, only the
particularities of those schemes are explained qualitatively in the following points.

Performance evaluations and methodologies

This type of contributions focus on the impact of the operational parameters and
other context variables such as the type of network, mobility, and traffic model.
Examples of this type of study include [46–49]. However, the merit and performance
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of these schemes (including SFR and FFR) are mainly evaluated through system
level simulations. So conclusions cannot be generalized since simulations are subject
to the previous context variables.

In the light of this situation, analytical models have been also proposed. Inter-
esting examples include [45, 50–52]. However, this methodology applied to complex
technologies such as LTE simply require many simplifications to make the task af-
fordable. Thus, the vast majority of these works strongly rely on synthetic (perfectly
hexagonal) layouts. According to [53], this assumption is quite optimistic from the
cell edge performance degradation point of view. Indeed, SINR figures found in
realistic deployments can be much worse than the SINR generated from idealistic
models.

Thus, it was identified the need for new and efficient performance evaluation
methodologies to study the complex relationships between operational parameters
and performance metrics. In this manner, useful guidelines and better understanding
of the underlying tradeoffs can be obtained. In addition, the methodology should not
be rigid in the sense that any possible network geometry can be taken into account.

Static ICIC schemes derived from SFR and FFR

In the literature, a wide range of static ICIC models based on SFR, FFR, or hybrid
schemes have been proposed. Both SFR and FFR succeed in increasing the sum rate
of users at cell edges, however, this is obtained by paying a price in terms of overall
system spectral efficiency. While the penalty with SFR is smaller than the one with
FFR due to the full frequency reuse, the latter achieves higher SINR values as a
result of the higher frequency reuse factor, which is, on the other hand, desirable for
some certain techniques such as interference cancellation [29]. Thus, research efforts
have been made to enhance the performance of SFR and FFR. The operational
principles of these schemes are explained in the following points and illustrated in
Figure 2.10.

• Soft FFR (SFFR). This scheme was originally proposed in [54]. Basically, the
difference with respect to conventional FFR is that this model allows the use of
the subbands allocated to cell edge users for central users, although with less
power. Variations of SFFR were also investigated in [55, 56]. The idea behind
these modifications is to exploit the fact that cell edge users typically operate at
low SINR regimes, and hence, they are more sensitive to interference (power),
while central users are more sensitive to bandwidth increments [57]. Thus, by
increasing the bandwidth allocated to central users, the cell throughput can
be increased. However, in cases where users get concentrated at cell edges, the
performance of SFFR will be clearly poor even if the new bands of central
users are switched off.

• Incremental Frequency Reuse (IFR). The motivation of incremental frequency
reuse is to improve the efficiency of conventional SFR. Since in SFR cell edge
users have a maximum of one third of the system bandwidth, situations where



Chapter 2. Strategies for Intercell Interference Coordination 31

Figure 2.10: Operational principle of some schemes derived from SFR and FFR.

users are mainly concentrated at cell edges result in poor efficiency as many
subchannels would be idle. IFR was introduced in [58] to address this issue.
The idea is to divide the system bandwidth into segments, i.e., groups of
subchannels. Each cell has its own base segment in which resource allocation
can be done arbitrarily. If the subchannels in the base segment are exhausted,
the cell can start using subchannels of their second extra segment, next third
extra segment, and so on. If more than one segment is required, cell edge users
have priority in the base segment. The number of segments obviously would
depend on the cluster size or the target frequency reuse for low loading factors.
Clearly, this scheme achieves effective ICIC if the traffic is low, however, in
moderate to high load conditions, the operation tends to FR1, and hence, cell
edge users cannot be protected effectively.

• Enhanced Fractional Frequency Reuse (EFFR). In the light of the drawbacks
of IFR, a variation of FFR was proposed in [59]. The novel EFFR scheme
divides the system bandwidth in two segments. A primary segment, orthogonal
among cells, and a secondary segment that is not orthogonal among cells.
Moreover, the primary segment is further divided in two parts with FR1 and
FR3. Similarly to IFR, each cell gives priority to the primary segment being
the access to the secondary one conditioned to a monitoring process. This
scheme outperforms FR1, FR3, and IRF in terms of cell edge capacity.
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• Static ICIC with multiple classes. The authors in [60] considered the use of
more than two classes in static ICIC based on FFR. The idea is to divide the
coverage area of each cell into more than one region and control the amount
of ICI. This approach can help to increase fairness at expenses of additional
complexity as the classification process is based on more thresholds. Moreover,
there is also a frequency diversity loss that implies a reduction in the spectral
efficiency.

• Classification based on Soft Handover. Although the preferred approach to
classify users is according to the average SINR, another interesting alternative
was proposed in [61]. In this work, users are classified as cell edge users if there
are more than 2 neighbor cells in the handover list. Thus, this methodology
leverages the information obtained from the handover algorithm. Results
showed that cell edge performance gains are achievable with a low soft handover
overhead.

• Optimization models and heuristics. A common pattern found in static ICIC
is that most of the previous models are designed and evaluated considering
perfectly hexagonal layouts. However, from the ICIC point of view, the situation
is much worse in realistic deployments with irregular cellular layouts according
to [53, 62]. In those scenarios, propagation conditions vary significantly from one
cell to another, and hence, an homogeneous frequency reuse applied uniformly
to all cells results in poor performances. Indeed, no reuse pattern can be
easily derived. This was initially pointed out in [63, 64], where optimization
algorithms for SFR and FFR were proposed to improve their performance in
realistic large scale networks. The same conclusions were also obtained in [62].
Other examples in this category are [65–68]

Table 2.2 shows a comparative analysis of the static ICIC solutions presented so
far showing their main features. At a glance, it turns out on the one hand, that
simulation is the preferred research methodology, and on the other hand, that the
vast majority of proposals and studies consider synthetic (hexagonal) layouts, thus
making limited their contributions from a practical point of view. The issue of the
performance of static ICIC schemes in realistic deployments was initially addressed
by the contributions of Chen and Yuan in [63, 64], where this problem was identified
and heuristics were proposed to alleviate the situation. However, some aspects of
these contributions were subject to substantial improvements. First, in their work,
Chen and Yuan only consider the achievable rate at cell edge as performance indicator
for their algorithm, and so, in cases when some SFR setting improves this metric, the
throughput of the users that contribute the most to the average spectral efficiency
is penalized. Second, defining common network-wide parameters clearly leads to
suboptimal performances, since in realistic deployments cells are quite different in
terms of ICI and coverage; in fact, the algorithms proposed in [63, 64] does not give
any clue about how to select such operational parameters (α, β, and ψTH), and
therefore, a huge number of trials need to be done in order to find useful results.
Finally, but no less important, the need for more than one network configuration
is also advisable as static ICIC does not provide means for adaptation. Thus, a
feasible approach based on static ICIC that leaves the door open to straightforward
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Table 2.2: Comparison of static ICIC contributions.

Ref. Type
Irregular LTE QoS and

Layout
Research

traffic patterns feasibility fairness Methodology

[45] PE × × X Irregular Analytical
[46] PE × X X Synthetic Simulations
[47] PE × X P Synthetic Simulations
[48] PE × × P Synthetic Simulations
[49] PE × X X Irregular Simulations
[50] PE × × × Synthetic Analytical
[51] PE × × X Synthetic Analytical
[52] PE × X P Synthetic Analytical
[55] DS P × X Synthetic Simulations
[56] DS × × X Synthetic Both
[58] DS × × X Synthetic Simulations
[59] DS P × X Synthetic Simulations
[60] DS × × P Synthetic Simulations
[61] DS × × X Synthetic Simulations
[63] DS × × X Irregular Simulations
[64] DS × × X Irregular Simulations
[65] DS P × X Synthetic Simulations
[66] DS P × X Synthetic Simulations
[67] DS × × × Synthetic Simulations
[68] DS × × P Synthetic Simulations

PE: Performance Evaluation DS: Derived from SFR and FFR P: Partially

extensions to achieve a certain level of dynamism is highly desirable. On top of this,
only few schemes based on static ICIC cover aspects related to LTE feasibility and
irregular traffic distributions. These observations, together with the results presented
in Chapter 3, inspired the first part of the research work presented in this thesis.

Curiously, no significant research efforts have been placed on improving the
performance of static ICIC strategies, although these schemes are the most suitable
ones for implementation in real systems such as LTE. In general, previous works
were focused on dynamic mechanisms that in their vast majority, present serious
feasibility challenges. Here it is important to recall that in real systems such as LTE
and LTE-A, other RRM functionalities are responsible for coping with the effects of
bursty traffic and fast fading. This was remarked in [6], where the authors showed
that around 50%–60% of the typical gains obtained by means of (hardly feasible)
dynamic resource allocation algorithms that determine optimal configurations can
also be obtained by means of ICIC schemes following only macroscopic (medium-
to-long term) conditions. Thus, the author focused on the idea of taking the way
of improving static ICIC schemes rather than go over, theoretically attractive but
unfeasible, dynamic strategies. As it was mentioned, dynamic ICIC will be visited
in the next subsection for the sake of completeness.
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2.4.4 Dynamic ICIC

In essence, dynamic ICIC tries to provide some dynamism to the process of ICIC.
Since traffic load patterns are neither constant over time nor uniformly distributed
spatially, static configurations that perform correctly, on average, may be underusing
network resources in smaller time scales. Therefore, dynamic mechanisms attempt
to cover this gap by adapting the ICIC process to short term variations.

Dynamic ICIC schemes can be classified according to several criteria. In this
survey, the objective is to provide a complete and wide picture of the advantages
and drawbacks of this approach, and consequently, several classification criteria are
considered:

1. Model type. In general terms, dynamic mechanisms can be grouped in two
sets: models based on static ICIC schemes (either SFR or FFR) and models
based on generic resource allocation formulations.

2. Time scale of coordination. As it was shown, several time scales can be identified.
Accordingly, the classification based on adaptive and real time schemes as
proposed in [41] (see Table 2.1) is adopted.

3. Architecture. According to the way in which the operation is performed,
proposals can be centralized, semidistributed, or distributed [43].

The three previous classification criteria result in non disjoint sets of contributions,
and hence, certain works can appear repeatedly along the following descriptions that
illustrate the basic characteristics of each group. Again, the goal is to offer several
perspectives of dynamic ICIC rather than a detailed description of each contribution,
which obviously is out of scope herein. In any case, a unified/comparative view of
all these works is presented along the following points.

Model type

Basically, the models based on static ICIC propose different types of bandwidth
and power reallocations starting from the patterns defined in SFR or FFR. These
strategies aim at making use of the experience with static schemes by means of
heuristic algorithms. A clear example is [69], where cells assign resources orthogonally
to cell edge users by means of a scheme termed dynamic major group allocation
that follows the SFR principle. The final resource allocation is performed by a kind
of centralized proportional fair scheduler. The authors in [70] proposed a two level
semidistributed dynamic algorithm that can coexist with classical SFR and FFR
to achieve further cell edge performance gains. The work is notorious because it
analyzes the effects of scheduling on throughput and fairness for a given amount of
resources. Other relevant contributions following this approach include adaptations
of the previously introduced IFR [71], EFFR [72], and SFR and FFR [73–75].

There is a large number of contributions in which a certain level of ICIC has
been obtained by developing solutions to optimization problems based on generic
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resource allocation formulations. This category encompasses the vast majority of
dynamic ICIC mechanisms. According to [42], performance objectives typically
include maximization of sum rate capacity and minimization of ICI and/or power
subject to one or more constraints to include energy efficiency, QoS, and practical
aspects. As ICI involves transmission in different cells, this type of approach inherently
requires some sort of network-wide opportunistic scheduling and power control.
Interesting heuristic algorithms have been presented in [76–81]. This type of solutions
are inspired on a wide range of models including collisions [82], cross-layer designs [83],
and interference graphs [84]. Tools commonly used to solve these generic ICIC
formulations encompass game theory [85–89], programming techniques [90–93], and
learning algorithms [94, 95].

Given that the general problem of ICIC (closely related to dynamic channel
assignment) in wireless network is, in general, NP-Complete [96], efficient metaheuris-
tics4 for solving combinatorial problems have also been employed. Thus, several
contributions have applied techniques such as simulated annealing [97] and genetic
algorithms [98]. Machine learning methods such as neural networks [99] are also
typical options. Moreover, irregular traffic patterns distributions have been consi-
dered as a very important aspect in many adaptive ICIC solutions. Representative
examples incorporating these aspects can be found in [6, 100–107].

Time scale of coordination

Adaptive ICIC provides flexible resource allocation according to different network
requirements in terms of user-load and cell-load traffic demands. The degree of
flexibility depends on the ICIC time scale, which varies from hundreds of milliseconds
to days. In general, the basic mechanisms consist in adjusting the frequency reuse
at each cell to satisfy traffic demand. So, the usage of the resources devoted to cell
edge users is coordinated. Nevertheless, this requires that different cells exchange
information. ICIC proposals featuring this degree of adaptation can be found in [74,
105, 108, 109].

Real time ICIC is able to achieve near-optimum performance in terms of sum rate
and cell edge performance. These strategies operate at time scales of milliseconds and
full synchronization is required. Moreover, in order to exploit the channel diversity,
full and perfect CSI is assumed to be known at each cell. This information (or the
data derived from it) needs to be transmitted to other cells. The assumption of
global knowledge and the need for a certain level of joint scheduling at such small
time scale impose challenging issues from the implementation point of view [13].
Excellent contributions falling into this category include [70, 110–114].

Architecture

In centralized schemes, ICIC is typically modeled as an optimization problem
that is solved in a central entity that collects all the required information through

4A more formal introduction to the matter is presented in Chapter 5.
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intercell signaling. After the processing of this information, each cell receives resource
allocation commands or guidelines. In practice, the implementation of centralized
schemes represents a difficult task since a high capacity and fast transmission
infrastructure is needed. For this reason, modern technologies such as LTE and
LTE-A avoid such control entity and feature flat architectures, in which, coordination
is possible through intercell interfaces. Examples of centralized schemes are [112, 115–
117].

In semidistributed schemes, coordination is typically performed at two (temporal)
levels. The higher level is still performed in a centralized entity while the lower
level, at smaller time scale, is executed independently at each cell. In this manner,
semidistributed solutions are able to deal with practical limitations of cellular
systems, i.e., processing load and signaling delay. However, an efficient and reliable
infrastructure is required, and more important, a sort of central entity is still
needed. Thus, the vast majority of semidistributed solutions are not practical for
implementation in systems such as LTE and LTE-A. Examples of semidistributed
schemes include [70, 79, 109, 110, 118–121]

In distributed solutions, commonly known as fully distributed, the whole process-
ing and decisions are made independently at each cell. However, intercell signaling
is allowed. Due to this selfish behavior, distributed solutions typically suffer con-
flicts among cells, and so, convergence and stability are often serious concerns.
Given its nature, non-cooperative game theory represents a suitable framework to
solve distributed ICIC formulations [85, 87, 114]. However, heuristics focused on
self-organization are also a popular approach as it can be seen in [103, 111, 122, 123].

In order to provide a comparative perspective of the contributions previously
commented, several criteria have been considered:

• The type of resource allocation. Several classification can be considered.

– According to the time scale of coordination, dynamic ICIC schemes can
be classified as real-time or adaptive, see Table 2.1.

– Three different objectives are commonly used in optimization formulations:
interference minimization, transmit power minimization, and throughput
maximization.

– According to the architecture, the proposals can be: centralized, semidis-
tributed, and distibuted.

• LTE feasibility. It indicates if LTE implementation aspects have been consi-
dered. This aspects include the need for detailed CSI, intercell signaling, and
the required interaction with other functionalities such as AMC, power control,
and scheduling.

• Solution approach. It indicates the type of approach employed in the ICIC
scheme. As it was shown, heuristic algorithms are a popular method, however,
proposals based on mathematical programming (optimization techniques) have
also been presented.
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• Complexity. A numerical scale from 1 to 5 have been used to measure the
complexity. The value ‘5’ means very high complexity, a ‘1’ corresponds to very
low complexity. The scale takes into account the level of intercell overhead, the
type of CSI, and the computational cost required to perform the ICIC process.

• The research methodology. It indicates the type of method used in performance
assessments.

Table 2.3 shows a comparative analysis of the dynamic schemes commented so far
taking into account the previous criteria. As it can be seen, a common approach is to
formulate optimization problems and solve them by means of programming methods
and/or heuristic algorithms. As it happened with static ICIC, simulation is the
preferred evaluation methodology because cellular systems are too complex. So it is
extremely complicated to capture all elements and factors through analytical (closed-
form) models. Note also that almost invariably, feasibility aspects are not completely
addressed. Some authors simply provide certain insights and guidelines about how
their proposals can be implemented, but, to the best of the author’s knowledge, no
contribution is fully compatible with the current features of commercial systems
such as LTE and LTE-A. The previous statement does not imply, by any means,
that the contribution of those works is limited. Instead, excellent works have shed
light on several aspects describing the complex operation of cellular systems, and in
particular, the interference coordination process. Finally, note that all these schemes
feature a moderate to high complexity (values from 3 to 5). For instance, the scheme
presented in [100] is assigned a 5 because it 1) requires perfect CSI, 2) features a
centralized architecture requiring high a significant amount of intercell signaling
exchange and, 3) proposed the online solution of an optimization problem whose
complexity is proportional to the number of users. However, the work presented
in [81] assumes a limited CSI and proposes a semidistributed architecture to solve
an heuritic algorithm that achieves suboptimal performances. Consequently [81]
receives a 3.

2.4.5 Remarks from the state of the art

This section has presented a detailed introduction to ICIC. Besides explaining the
main features of the two approaches, static and dynamic, an updated review of
the literature was also discussed. The structure showing the classification criteria
considered so far is depicted in Figure 2.11. It was shown that ICIC represents today,
one of the most promising alternatives to improve cell edge performance in OFDMA
based cellular systems. From the results reported in the literature, some guidelines
and conclusions can be drawn.

Static ICIC

1. The threshold used to classify users is a parameter of utmost importance as it
has an immediate impact on scheduling decisions.
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Table 2.3: Comparison of dynamic ICIC contributions.

Ref. Type
LTE Solution Complexity Research

feasibility approach [1-5] Methodology

[6] AD/SD/T Partially Heuristics 5 Simulations
[69] AD/CE/T × Heuristics 3 Simulations
[70] RT/SD/I Partially Heuristics 4 Simulations
[71] AD/SD/T Partially Heuristics 3 Simulations
[72] AD/CE/T × Heuristics 3 Simulations
[73] AD/CE/T × Heuristics 3 Simulations
[74] AD/CE/T Partially Heuristics 4 Simulations
[76] RT/CE/T × Programming 4 Simulations
[77] RT/CE/T × Heuristics 4 Simulations
[78] RT/SD/T × Both 5 Simulations
[79] AD/SD/T × Heuristics 4 Simulations
[79] AD/SD/T × Heuristics 3 Simulations
[81] AD/SD/T × Heuristics 3 Simulations
[82] N/A × N/A 3 Analytical
[83] RT/CE/T × Programming 5 Both
[84] AD/SD/I × Heuristics 3 Simulations

[85–89] AD/DI/I × Heuristics 5 Simulations
[90–93] RT/CE/T × Programming 5 Simulations

[94] AD/SD/T × Heuristics 3 Simulations
[95] AD/SD/I × Heuristics 3 Simulations
[99] AD/CE/P × Metaheuristics 3 Simulations
[97] AD/CE/T × Metaheuristics 3 Simulations
[98] AD/CE/T × Metaheuristics 3 Simulations
[100] RT/CE/T × Programming 5 Simulations
[101] AD/CE/T × Programming 5 Both
[102] AD/SD/T Partially Heuristics 4 Simulations
[103] AD/DI/T Partially Heuristics 4 Simulations
[104] AD/SD/P × Heuristics 4 Simulations

[105, 106] AD/SD/T × Heuristics 4 Simulations
[107] AD/DI/T Partially Heuristics 3 Simulations
[108] AD/SD/T Partially Heuristics 4 Simulations
[109] AD/SD/T Partially Heuristics 5 Simulations
[110] RT/SD/T × Heuristics 5 Simulations
[111] RT/DI/T Partially Programming 5 Simulations

[112, 113] RT/CE/T × Heuristics 5 Simulations
[114] RT/DI/P × Heuristics 4 Simulations

[115–117] RT/CE/T × Programming 5 Simulations
[118] AD/SD/I Partially Heuristics 4 Simulations
[119] RT/SD/T Partially Heuristics 5 Simulations

[120, 121] AD/SD/T × Heuristics 4 Simulations
[120] AD/SD/T × Heuristics 4 Simulations
[122] AD/DI/T × Heuristics 3 Simulations
[123] AD/DI/T × Heuristics 5 Simulations

RA: Resource allocation DS: Derived from SFR and FFR P: Partially
AD: Adaptive RT: Real time
CE: Centralized SD: Semidistributed DI: Distributed
T: Maximize throughput P: Minimize power I: Minimize interference
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Figure 2.11: General classification of ICIC strategies.

2. In general, the spectral efficiency of the system is proportional to the power
allocated to central users, while fairness strongly depends on the amount of
resources allocated to cell edge users. This is a fundamental tradeoff in ICIC.

3. Increasing the number of classes is another way to improve fairness, although
at expense of spectral efficiency.

4. Interclass interference can be avoided by reducing the bandwidth available at
each cell. Avoiding interclass interference is key to achieve high SINR values,
but again, at the expense of spectral efficiency.

5. Network geometry strongly affects the optimal frequency reuse to be used at
cell edges and hence, the performance of any static ICIC strategy.

Dynamic ICIC

1. In dynamic ICIC, higher gains come from centralized schemes where a central
coordinator has a global knowledge and takes decisions accordingly.

2. The general problem of resource allocation is NP-hard and hence, optimal
solutions are basically unfeasible.

3. Semidistributed and distributed require cooperation among cells. Thus, adaptive
schemes should minimize the amount of signaling overhead.

4. The coordination time scales is directly related to the ability to exploit the
channel diversity gain. However, faster adaptation implies higher complexity.

In conclusion...

After reviewing the contributions in the state of the art, it was concluded that
significant research opportunities exist in the field of static ICIC. Static mechanisms
are, by the moment, the most feasible approach to ICIC. However, significant research
efforts on this area was required. To be precise, contributions in the following aspects
are needed:

1. Performance assessment. The need for efficient and insightful evaluation metho-
dologies was identified.
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2. Performance in realistic deployments. The need for optimization techniques to
make SFR and FFR (and in general techniques derived from both of them)
suitable to realistic networks was remarked by several authors in previous
contributions.

3. Control channels capabilities. Control channels are shown to be quite sensitive
to ICI. Thus, feasible mechanisms to alleviate this problem in such a critical
component of cellular systems are required. For the sake of clarity, details
on existent works explicitly dealing with control channels are presented in
Chapter 7.

4. Interworking. An interesting aspect of ICIC is the close relationship with
other network functionalities such as CSI feedback schemes. Another way to
improve the overall network performance is by improving such interactions.
In Chapter 4, the interworking between the CSI feedback schemes available
in LTE and SFR/FFR is analyzed, and consequently, several mechanisms are
proposed to improve the performance of ICIC.

5. Flexibility and scalability. A static ICIC based framework should have means
for easy extensions to decision-making entities in a scalable manner, i.e., whose
complexity during real time operation neither depends on the network size/load
nor requires unfeasible knowledge.

6. Energy efficiency. The increasingly important concern about energetic aspects
also encompasses ICIC. Implementing energy-efficient ICIC schemes is not easy
because cell edge users require high transmission power and typically their
spectral efficiency is low. Therefore, the maximization of the number of bits per
Joule, the main energy efficiency metric, is a challenging task. Interestingly, and
according to [43], only few works have included this important perspective into
their ICIC formulations. Thus, all novelties resulting in more energy efficiency
are welcome and highly valuable for mobile operators.

All the previous aspects were addressed in this thesis and will be detailed
throughout the following chapters. In this manner, the general objective of making
a solid contribution to the theory of static ICIC by means of feasible strategies that
optimize their performance in realistic LTE/LTE-A deployments was clearly accom-
plished. Although this thesis is about the downlink, the extension and adaptability
of these strategies to the uplink is an interesting topic. The next section covers this
matter.

2.5 Interference Management in the Uplink

The management of ICI in the uplink has remarkable similarities and differences
with respect to the downlink. In both problems, the main concern is about cell edge
users. Nevertheless, while in the downlink these users receive high levels of ICI, in
the uplink they interfere severely with the transmission of other users in neighboring
cells. The scenario is depicted in Figure 2.12.
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Figure 2.12: Typical ICI scenario in the uplink.

Another fundamental difference in the context of LTE/LTE-A is the access
technology. While the downlink is based on OFDMA, the uplink is based on Single-
Carrier FDMA (SC-FDMA), a frequency-division multiple access scheme. SC-FDMA
can be regarded as a linearly precoded OFDMA mechanism because it includes a
Discrete Fourier Transform (DFT) before the conventional OFDMA processing. A
detailed description can be found in [13, 124]. Its adoption is due to the low PAPR
requirement needed to benefit users in terms of transmit power efficiency and cost
since the power amplifier used in SC-FDMA is simpler than in OFDMA.

The management of ICI in the uplink is especially complicated due to the strong
burstiness of interference patterns caused by users mobility and random variations in
transmitted power. Indeed, ICI is more uniformly distributed both in time and space
in the downlink than in the uplink. To cope with this particularity, power control is
preferred over schemes based on resource restrictions that are more complicated in
SC-FDMA as users have to transmit in contiguous subchannels or at most use two
clusters of contiguous subcarriers (LTE Rel 10) [125]. In LTE, the power transmitted
by UE is dynamically adjusted by an intracell power control scheme [126].

According to [21], the techniques for interference management in the uplink can
be grouped in schemes based on: fractional power control, frequency reuse, and
interference cancellation. A brief description is provided in the following points.

• Fractional Power control. The basic principle is compensating the path loss in
the uplink based on downlink measurements or average received power levels
at the base station. With this approach, a mean ICI level in neighbor cells can
be guaranteed regardless of user position. However, target SINR values need
to be reduced proportionally to the distance to serving cells. Examples can be
found in [127–130].

• Frequency reuse. This category encompasses strategies similar to SFR and FFR
(and dynamic schemes derived from them) applied to the uplink. Proposals
following this approach include [131–133]. However, given that in LTE/LTE-A,
resource allocation is more rigid in the uplink than in the downlink, a more
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promising approach is the usage of these techniques in conjunction with
interference suppression schemes as in [28].

• Interference cancellation. ICIC for the uplink based on interference cancellation
is gaining popularity. The reason is the intensive research activity around
strategies such as IRC [21], SIC [23], IA [22], and the significant performance
gains that has been reported in several recent studies [24, 25, 27, 33]. These
techniques suit perfectly to several features of the problem in the uplink. To
be precise, on the one hand, much higher processing power can be allocated
in base stations than in user devices, and on the other hand, interference
cancellation is inherently robust to bursty transmissions patterns (received
power variations).

• CoMP. Strategies based on CoMP [134] can be used at base stations to
collect uplink signals received by serving and neighboring cells and demodulate
them jointly to reduce the Bit Error Rate (BER). This method mitigates
interference, and hence, the cell edge experience is substantially improved [36].
Representative contributions include [135–137]

Thus, based on the conclusions that can be drawn from recent contributions, and
according to the results shown in [138], the following remarks can be made:

1. The use of conventional ICIC based on frequency reuse is possible for the
uplink. However, their efficacy is not as high as in the downlink where resource
allocation is more flexible than in the uplink. Moreover, the omnipresence of
power control schemes in the uplink makes ICI much more variable than in the
downlink. Thus, reducing the gains that can be achieved by means of frequency
reuse based strategies that are inherently more useful in the mid-to-long run.

2. Strategies based on CoMP and interference cancellation such as IRC and SIC
have proven to be effective and feasible approaches for the uplink. Uplink CSI
is available without resource-consuming CSI reporting, and hence, UE need
almost no modification to become uplink CoMP ready. Indeed, in contrast
to the downlink, it is easy to implement CoMP in the uplink [134]. Similarly,
compared with other algorithms, IRC ensures high network performance and
significantly improves user experience.

2.6 ICIC in HetNets and Small Cell Deployments

Currently, mobile operators have the challenge of answering to the exponential
growth of traffic in cellular networks. HetNets are hierarchical network topologies in
which a combination of macro, micro, pico, and femto cells are deployed all together
as shown in Figure 2.13. HetNets are considered one of the most promising solutions
to enhance the spectral efficiency of the network per area unit, and consequently,
ICIC for HetNets has become an active research field. Another important advantage
of HetNets is that they significantly improve indoor coverage. From a practical
perspective, two major issues must be addressed in HetNets. First, determining
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Figure 2.13: Example of a HetNet deployment.

the amount of radio resources that one layer can grant to others, and second,
implementing association rules to decide which users have to get connected to each
layer [139]. In addition to that, effective interference mitigation is another aspect
that needs to be solved in HetNets.

The frameworks for eICIC and FeICIC addressed interference mitigation issues
within the 3GPP starting from the Release 10 (LTE-A). The techniques that have
been proposed and evaluated so far in the context of HetNets include ABS [140, 141].
ABSs are introduced in time domain to reduce the ICI in severly interfered cells.
In these subframes (ABSs), interfering cells (typically macro ones) mute their
transmissions, and this time is used by interfered cells (typically femto ones) to
provide service for its users. Moreover, dynamic cell range expansion [142], specialized
power control mechanisms [143], static ICIC based strategies [144], and hybrid
techniques with interference cancellation [145] have been proposed.

Carrier Aggregation has been included in LTE-A to increase the operational
bandwidth [146]. This multiband implementation, i.e., the addition of several Com-
ponent Carriers (CC), offers interesting ICIC possibilities to separate interfering and
interfered cells. Interesting ICIC formulations for carrier aggregation can be found
in [147–149].

One step forward in HetNets is small cell deployments, this constitutes the natural
approach to bring the network even closer to the user and not only in hotspots or cell
edge areas. They are key in boosting network capacity by means of a highly aggressive
frequency reuse and they are becoming popular among mobile operators. The idea
behind this access network architecture is a hyperdense deployment of low power
nodes. In addition, strong interworking with other low power based technologies such
as Wireless Local Area Networks (WLANs) is expected. With such a high number
of smaller cells, ICI also increases, and hence, interference mitigation is certainly a
critical aspect to be effectively addressed [150].

Intensive research is being reported and several flavors of interference mitigation
techniques are being studied, among which, ICIC has been also identified as a key
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enabling technique for these hyper-dense cell deployments. Representative proposals
include [151–153].

Finally, it is worth mentioning that Massive MIMO is, in the context of hyper-
dense cell deployments working at frequencies beyond the Ultra High Frequency
(UHF). This constitutes a novel approach in which the high number of antennas
(due to the high number of cells) is used to provide service to users simultaneously
in the same frequency resource. Its importance from an ICIC point of view resides in
the fact that with such a high number of antennas, the aperture of the array grows
and therefore, the resolution also does. As a result, the power can be concentrated
into very small areas, reducing the required transmission power (and hence ICI)
significantly. Further details can be found in [154].

The increasingly important framework of Self Organizing Networks (SON) [39,
155] rises the need for self organizing ICIC. This framework is a necessity in HetNets,
where a large number of access points can be 1) deployed in an ad hoc manner
and 2) switched on/off at any time. In the same manner, SONs is also important in
the context of small cell deployments to help simplifying the management of network
with high number of nodes. However, self organizing strategies for ICIC must be
scalable, feasible, stable, and agile. Interesting examples of this emerging parading
can be found in [95, 156, 157].

2.7 ICIC in LTE

This section introduces the mechanisms available in LTE and LTE-A that allow
for ICIC. Thus, a description of several aspects of LTE are required for a better
understanding of the rest of the document.

It is worth saying LTE and LTE-A are complex systems whose complete descrip-
tion is certainly unaffordable. An excellent description of every single aspect of these
technologies can be found in [96, 158], and the references therein. Instead, given that
this thesis is about ICIC in the downlink, the goal is to provide the reader with the
basic LTE terminology and a general description of the access technology (OFDMA)
and the air interface. The description is mainly based on LTE (Release 8/9), however
some aspects of LTE-A (Release 10/11), are also required.

2.7.1 Introduction to the LTE Downlink Air Interface

Before describing the air interface of LTE, it is important to indicate that there are
3 different types of channels in LTE: logical, transport and physical channels. The
general function of these channels is described in the following points:

• Logical channels. These channels are defined between the Radio Link Con-
trol (RLC) and the Medium Access Control (MAC). They indicate what type
of information, either data (payload) or control (signaling) is transmitted.
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Figure 2.14: Representation of the radio interface protocol architecture in LTE.

• Transport channels. These channels are defined between the Medium Access
Control (MAC) and the physical layer. They determine how the information
has to be transmitted.

• Physical channels. These channels carry the information over the air inter-
face. They define where the information is transmitted within the OFDMA
structure, i.e., what time and frequency resources are used.

As it is shown in Figure 2.14, these channels are defined within the radio interface,
composed of the layers 1, 2, and 3, between the UE and the network [159, 160]. The
figure illustrates the action ambit of ICIC policies. It can be therefore said that,
what ICIC does is to determine how the information of different users should be
transmitted within the OFDMA structure (where the physical channels are defined
over) in order to avoid excessive ICI for cell edge users. In the context of this thesis,
it is enough to focus on the physical channels. In particular, 3 different physical
channels are of interest, the Physical Downlink Shared Channel (PDSCH) that
conveys user payload, and the control channels, the Physical Downlink Control
Channel (PDCCH) and the enhanced PDCCH (ePDCCH) defined for LTE-A. In
order to show how these physical channels are defined, the OFDMA structure and
some basic LTE terminology must be introduced.

Frame structure and resource grid

In LTE, two duplexing modes are supported: Frequency Division Duplex (FDD), with
radio frame structure type 1, and Time Division Duplex (TDD), with radio frame
structure type 2. Thus, LTE supports operation in paired and unpaired spectrum.
The following description is mainly focused on the downlink and it corresponds to
the operation mode considered in the studies of this thesis, i.e., FDD with normal
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Figure 2.15: Downlink frame and OFDMA grid structure in LTE/LTE-A.

cyclic prefix and single-antenna port scheme5. Additional modes and configurations
are detailed in [161].

The radio frame has a duration of 10 ms and it is composed of 20 slots of 0.5 ms.
Independent transmissions are scheduled in Transmission Time Intervals (TTIs) or
subframes of 1 ms (2 slots). All time intervals are defined in terms of the sampling
period Ts = 1/fs, where fs = 30.72×106 samples per second. A slot is composed of 7
OFDM symbols plus a cyclic prefix of 160 ·Ts in the first OFDM symbol and 144 ·Ts

in the last 6 ones as it is shown in Figure 2.15. The figure depicts the structure of
the OFDM resource grid. On it, Resource Elements (REs) are the most fundamental
resource unit comprising one subcarrier in one OFDM symbol.

In order to allow for several bandwidth configurations, the physical layer is
defined in terms of Resource Blocks (RBs). Thus, the system bandwidth is formed
by NDL

RB RBs each of which is composed of NRB
sc consecutive subcarriers of 15 kHz. A

Physical Resource Block (PRB) is defined as NDL
symb = 7 OFDM symbols in the time

domain and NRB
sc = 12 subcarriers (one RB) in the frequency domain. Therefore,

one PRB contains NDL
symb ×NDL

symb = 84 resource elements.

5Transmission with multiple antennas are also supported with configurations in the downlink
with two or four transmit antennas and two or four receive antennas.
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Figure 2.16: Channel mapping and structure of the PDSCH, PDCCH and ePDCCH.

The user plane and the control plane

There are two logical channels dedicated to convey user (traffic) information. The
Dedicated Traffic Channel (DTCH) and the Multicast Traffic Channel (MTCH). The
former is a point-to-point channel dedicated to one single user and the latter is a
point-to-multipoint channel for transmission to users receiving Multimedia Broadcast
Multicast Services (MBMS). Broadly speaking, all the information transmitted by
means of the DTCH is called the user plane. At the transport level, these two channels
are mapped into the versatile Downlink Shared Channel (DL-SCH)6. This channel
supports several mechanisms including AMC, HARQ, power control, semi-static
and dynamic resource allocation, discontinuous reception, MBMS transmission, and
multi-antenna technologies. The DL-SCH is finally transported by means of the
PDSCH that is transmitted in the last ((2 · NDL

symb) − n) OFDM symbols of each
subframe. Note that n ≤ 4 [160]. Figure 2.16 illustrates the case where n = 3.

An aspect of the PDSCH of interest here is the AMC scheme. The PDSCH can
be transmitted using 3 different modulation schemes and several coding rates to
provide different levels of reliability that are selected according to user radio channel
quality. The modulation schemes are QPSK, 16-QAM and 64-QAM. Different coding
rates can be applied to each modulation scheme resulting in 28 possible Modulation
and Coding Schemes (MCSs) that are defined in [162] and shown in Table C.1.

It is worth nothing that a certain control information is also transmitted through
the DL-SCH/PDSCH. This information include paging messages, broadcast and
multicast control information, and common and dedicated control channels. However,
in this thesis, the attention is placed on the control channel that informs each user
where and how its data is located within the PDSCH7. This information is transmitted
as the Downlink Control Information (DCI) and it represents the control plane. The
DCI is mapped into the PDCCH. As it can be seen in Figure 2.16, the PDCCH is
time-multiplexed and it is allocated in the first n (n ≤ 4) OFDM symbols of each
subframe. The DCI includes MCS information, HARQ messages, and power control
commands, among other things. Because of the importance of such information, a

6Other traffic channels are also mapped to the DL-SCH, see [160] for a complete description.
7The impact of this critical information on the performance of LTE is explained in Chapter 7.
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target Block Error Rate (BLER) of 1% is pursued for the PDCCH. The transmission
formats used for the PDCCH are shown in Table C.2.

2.7.2 X2 Interface and ICIC Signaling

Interference management policies, from an intercell point of view, are basically
signaled by means of the X2 interface [163, 164]. This interface allows peer-to-peer
communication between different cells facilitating ICIC tasks. Other functions of
the X2 interface and its protocol, the X2 Application Protocol, are mobility and
load management and certain operation and maintenance procedures.

The mechanisms defined in the X2 interface to allow ICIC are:

• Relative Narrowband Transmit Power (RNTP). By means of this message,
basic ICIC oriented measures can be taken in the downlink. Basically, each cell
notifies to its neighbors about the power that is going to be used in each RB.
The message is a bit map where each bit corresponds to one single RB. If a bit
is ‘0’, the cell guarantees that the power used in that RB is below a certain
threshold, otherwise no guarantees are given. The threshold can be changed
but it is common to all RBs. In this manner, each cell knows the RBs in which
high ICI is likely to occur, and hence, those resources should not be assigned
to cell edge users.

• Interference Overload Indicator (IOI). With this message, each cell informs to
its neighbors about the ICI levels that is receiving in the uplink in each RB.
Three different ICI levels are defined: high, medium, and low.

• High Interference Indicator (HII). This message is equivalent to the RNTP in
the uplink. The message is also based on a bit map where the cell indicates
what are the RBs that are going to be used by users transmitting with high
power (cell edge users), thus helping the ICIC process in the uplink.

2.7.3 LTE Control Channels and ICIC

The framework to deal with ICI in the context of HetNets is commonly known as
eICIC. These mechanisms were developed in the Release 10 (LTE-A). They can
be classified in schemes that operate in the frequency and time domain. In the the
frequency domain, CA and cross-scheduling capabilities have been defined [146].
In the time domain, Almost Blank Subframes (ABS) have been created to protect
victim layers of excessive ICI [140] by muting transmission in certain subframes.

Thus, the framework for ICIC in LTE/LTE-A comprises techniques that can
be implemented by means of the messages defined in the X2 Application Protocol
(RNTP, IOI, and HII), the so-called Frequency Domain based ICIC (Releases 8 and 9)
and the strategies more focused on HetNets (Releases 10 and 11), eICIC and FeICIC.
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The strategies that have been introduced so far provided protection for data
channels. However, control channels are also highly sensitive to ICI not only in macro-
and microcellular deployments [53] but also in HetNets [39]. In LTE the PDCCH is
time multiplexing (operating with full reuse), and hence, frequency domain ICIC
cannot be applied. Thus, the degradation of the PDCCH at cell edges is significant.
The situation worsen in HetNets where one cell interferes severly another one. In
the light of this situation, ICIC for control channels becomes an important research
item.

LTE-A provides means to protect the PDCCH. The first option, in the frequency
domain, is based on carrier aggregation [147] and cross carrier scheduling [146].
However, it is not an option for legacy users. The second approach is in the
time domain, the use of ABSs. Nevertheless, this alternative severely penalizes the
capacity, and hence, it is a solution reserved for HetNets [140, 141].

Given that the capacity of the PDCCH was shown to be a limiting factor
in scenarios with a large number of users using low-rate services such as Voice
over Internet Protocol (VoIP) [165], a new enhanced PDCCH, the ePDCCH, was
introduced in the Release 11 [166]. The ePDCCH employs Frequency Division
Multiplexing (FDM) and it can be allocated dynamically within the PDSCH as it is
illustrated in Figure 2.16. In this manner, the ePDCCH provides additional flexibility
to apply ICIC and exploit conveniently the frequency diversity gain. Similarly to
the PDCCH, a target Block Error Rate (BLER) of 1% is pursued for the ePDCCH.
The transmission formats used for the ePDCCH are shown in Table C.3. However,
given its recent appearance, few research effords and ICIC schemes for the ePDCCH
have been presented.

A complete description of the matter together with a survey of recent proposals
is presented in Chapter 7, where novel ICIC optimization strategies to enhance the
performance of the control channels in LTE and LTE-A (PDCCH and ePDCCH,
respectively) are presented.

Summarizing...

Clearly, the research on ICIC is far from being finished. The framework is rich and, in
the light of the continuous evolution of cellular systems, it requires big efforts to fulfill
the challenges that have been just described. This chapter has presented a review of
the different approaches to interference mitigation, among which ICIC stands out
not only as an effective solution but also as a feasible alternative for mobile operators.
This thesis contributes with solid arguments and novel optimization schemes to
make static ICIC more attractive. The next chapter starts a chronicle detailing the
work that was required to accomplish the previous target.
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Chapter 3

Feasibility of Static ICIC in
Realistic Deployments

3.1 Introduction

In the previous chapter, a complete picture of the techniques for interference manage-
ment in OFDMA networks was provided. It was shown that cell edge performance is
a major concern in technologies such as LTE and LTE-A since ICI affects drastically
the QoE of users located in cell boundaries. ICIC encompasses a family of solutions
aiming at alleviating this problem. While significant research efforts are being placed
on dynamic strategies, the implementation of most of them in real-world systems is
far from a being an easy task due to the complexity of these mechanisms and the
practical limitations of current technologies.

LTE is being deployed at a pace never seen before while in parallel, mobile
operators are looking for ICIC mechanisms that can be integrated without delay in
their networks to maximize performance. Since standards do not provide specific
strategies or algorithms for interference management, static ICIC schemes stand
out for their low complexity and its inherent feasibility. However, the static nature
of these strategies implies the need for a very careful adjustment to make them
effective solutions. As it was shown before, the efforts focused on static ICIC have
been limited, and consequently, important research gaps have been identified. One of
them is the need for more appropriate evaluation models and studies that shed light
on the merit of these algorithms in contexts where it is really important: realistic
deployments.

This chapter looks deeper into the theory of static ICIC by looking at different
analytical models that try to characterize the complex interdependencies between
operational parameters and performance metrics. The discussion about existing
analytical models is presented in the next section. Interestingly, a close gaze to those
frameworks reveals that new evaluation methods are required. In particular to be
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applied in the context of real deployments. As an answer to this, a new framework
is presented in Section 3.3. The proposal aims at getting a good balance between
accuracy and feasibily and this is done in such a way that it can be used to study and
characterize the performance of SFR and FFR in any arbitrary network topology.

Based on this methodology, the performance of SFR and FFR is investigated in
the context of realistic deployments. Section 3.4 is fully devoted to such analysis.
The results clearly point to the need for additional measures in order to make
SFR and FFR attractive and feasible for real-world networks. As it will be seen in
Chapters 6 and 7, the knowledge generated through these initial studies establishes
the foundations of the multiobjective optimization models presented therein.

Finally, the conclusions close the chapter in Section 3.5.

3.2 Deepening into the Theory of Static ICIC

Up to now, not so many analytical models to characterize the performance of the
strategies for static ICIC have been presented. The studies can be grouped in two
categories:

1. Using the stochastic geometry framework. Here, one of the most relevant
contributions is the work by Novlan in [45], which extends to SFR and FFR
the coverage model originally proposed in [167].

2. Using the fluid model. Most works basically adapt the model developed in [168],
which dealt with CDMA networks. In this case, relevant contributions are the
works presented in [50] and [169].

The review of these evaluation models is illustrative and complements the theoretical
introduction presented in Subsection 2.4.3. Moreover, it justifies the need for the
statistical framework presented herein. Therefore, the target of the discussion is to
analyze the advantages and disadvantages of each of them.

3.2.1 Analysis of Static ICIC based on Stochastic Geometry

In [167], the long-standing problem of analytically model the downlink of cellular
systems is addressed. The authors conceived that, instead of assuming fixed locations
for the sites, their location was modeled as an stochastic process. For the sake
of completeness, and in order to make the subsequent discussion clear, the most
fundamental concepts of this framework are explained. An interested reader is
referred to [170, 171] for an in-depth discussion.
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(a) A Gaussian-like point
process.

(b) Poisson Point Process.

Figure 3.1: Point processes in two dimensions.

A bird’s eye view of Stochastic Geometry

A point process is basically a random collection of points in the space as shown in
Figure 3.1. More formally, a point process is a mapping Φ from a probability space
of point measures to another space K of point measures. Each of these measures
can be represented as a sum of Dirac measures on K. Thus, Φ =

∑
i δXi, where the

Xi’s are the random points of Φ that take their values in K. In this context, K is
the Euclidian plane (R2).

A particular type of point process is relevant to this discussion, the homogeneous
Poisson Point Process (PPP). A PPP with density κ is a random set of points
for which the number of points for any bounded area A ⊂ R2 follows a Poisson
distribution with mean equal to κ×Area(A). Moreover, the number of points in
disjoint and independent sets A1 and A2 are also independent. PPPs have interesting
mathematical properties including complete independence, superposition and the fact
that the PPP can be completely characterized by means of the Laplace functional
of the process. This stochastic model is very convenient due to its mathematical
tractability and availability of several interesting theorems. However, when used to
model the position of base station in a mobile communications networks, unrealistic
assumptions are required. These limitations are explained subsequently.

Characterization of Cellular Networks in Terms of PPPs

The work presented in [45] aims at determining coverage probabilities, i.e., the
probability that a user experience an SINR greater than a minimum SINR require-
ment (ψmin). The assumptions in this model include:

1. Base stations are distributed according to a PPP with density κ. Note that as
a consequence of the PPP assumption, the distances (d’s) between (uniformly
distributed) users and base stations are Rayleigh distributed random variables.

2. Small scale fading is modeled as Rayleigh fading, and hence, the received power
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is a random variable exponentially distributed with mean µ.

3. Lognormal shadowing is not considered. Only path loss has been taken into
account, being this factor proportional to the path loss exponent (ν). According
to [167], more realistic assumptions for the distribution of received power result
in some loss of tractability.

4. As it is usually done in static ICIC, users are classified according to their
average SINR by means of a classification threshold (ψTH). The frequency reuse
factors applied to interior and exterior users are RFE and RFI , respectively.

Relaying on the previous set of assumptions, the authors in [167] showed that the
coverage probability (pc) of an arbitrary user in a network with reuse factor RF ,
where each cell transmits a power level P is given by:

pc (ψmin, κ, ν, RF ) , P (SINR ≥ ψmin) , (3.1)

pc (ψmin, κ, ν, RF ) = πκ

∫ ∞
0

e−πκx(1+ 1
FRρ(ψmin,ν))e−µψmin

σ2

P xν/2dx, (3.2)

where

ρ (ψmin, ν) = (ψmin)
2
ν

∫ ∞
(ψmin)

−2
ν

1

1 + y
ν
2
dy. (3.3)

Note that, in (3.2), σ2 corresponds to the noise power. Thus, by extending this
model to analyze SFR and FFR, the authors in [45] derived analytical expressions
for coverage probabilities for interior and exterior users both for SFR and FFR.
However, for the sake of clarity and brevity, only the expressions corresponding to
SFR are presented and analyzed here. Similar expressions were obtained for FFR.

Essentially, in SFR users are classified according to ψTH, and based on such
classification, a new resource allocation pattern is applied as it is indicated in
Subsection 2.4.3. Thus, in order to obtain the coverage probability for exterior users,
authors in [45] determined the probability that the resulting SINR, once SFR is
applied (ψSFR), is greater than a minimum requirement in terms of SINR (ψmin).
Of course this probability is conditioned to the user being classified as exterior.
This means its average SINR before classification (ψavg) is smaller than ψTH. Note
that ψavg is measured under reuse 1 conditions, for example, in LTE, over the Cell
Specific Reference Signals (CS-RSs).

pSFR,E
c (ψmin) , P (ψSFR > ψmin | ψavg < ψTH) ,

pSFR,E
c (ψmin) =

pc (Kαψmin, κ, ν, RF = 3)

1− pc (ψTH, κ, ν, RF = 3)
(3.4)

−
πκ
∫∞

0
e−πκx(1+2ζ(ψmin,ψTH,ν,K,α))e−µK(αψmin+ψTH)ασ

2

P xν/2

1− pc (ψTH, κ, ν, RF = 3)
dx.
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Figure 3.2: Coverage probability for SFR.

Recall that α is the power control ratio used in SFR, see Subsection 2.4.3. The
function ζ (ψmin, ψTH, ν,K, α) is defined as follows:

ζ (ψmin, ψTH, ν,K, α) =

∫ ∞
0

(
1− 1

1 +KψTHx−ν
1

1 +Kαψminx−ν

)
xdx. (3.5)

Given that ICI is also interclass in SFR, the parameter K is a power factor consoli-
dating the interference coming from the subbands devoted to exterior and interior
users in neighbor cells and it defined as follows:

K =
RF − 1 + α−1

RF
. (3.6)

Analogously, for interior users:

pSFR,I
c (ψmin) , P (ψSFR > ψmin | ψavg ≥ ψTH) , (3.7)

pSFR,I
c (ψmin) =

pc (K ·max{ψmin, ψTH}, κ, ν, RF = 1)

pc (KψTH, κ, ν, RF = 1)
. (3.8)

In order to provide a more graspable perspective of the previous expressions, (3.5)
and (3.8) have been evaluated numerically. Figure 3.2 shows results for ψTH = 1 dB,
SNR = 25 dB, α = 0.25, and ν = 4. The stochastic geometry approach captures
well the behaviour of SFR. As expected, exterior users perform worse than interiors
in terms of coverage. It was also expected that coverage probability was inversely
proportional to ψmin.

However, as it is analysed in Section 3.4, once SFR is applied it turns out that a
certain fraction of interior users worsen their SINR figures as a result of the change in
frequency reuse and power level that is applied. Note that this effect is not captured
by the stochastic geometry analysis since from (3.8), it becomes evident that if
ψmin < ψTH, then pSFR,I

c (ψmin)→ 1, this is confirmed graphically.

In this manner, the stochastic nature of this model provides a valuable tool
to evaluate the relative merit of SFR and FFR. However, the framework is far
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from being a tool to evaluate the performance of a particular configuration in a
practical network (especially if the configuration is different from cell to cell). As it is
analyzed in Section 3.4, the performance resulting from a certain SFR configuration
is network-specific, and hence, the model would provide performance figures valid
for global features such as site density. But the framework cannot be used by an
operator as an approach for the optimization of static ICIC.

Beyond the previous remarks, the main results from the stochastic geometry
approach shed light on the following aspects:

1. The merit of FFR as a strategy providing the highest interference reduction
and, the excellent resource efficiency of SFR.

2. The utmost role of the classification threshold (ψTH) and its impact on the
performance of SFR and FFR.

3.2.2 Analysis of Static ICIC based on Fluid Models

Another interesting approach to evaluate the performance of different frequency reuse
schemes, including SFR and FFR, in terms of resulting SINR figures is by means of
fluid models. A contribution following this approach can be found in [50]. Similarly to
the framework presented previously, closed-form expressions can be derived relying
on a set of assumptions about the network geometry. Key assumptions in these
models include:

1. Instead of considering base stations as discrete entities, base stations are
modeled as a continuum.

2. Large scale fading is only function of the distance between transmitters and
receivers and the path loss exponent ν. Lognormal shadowing is not taken into
account.

3. Noise power is neglected, and hence, SINR=SIR.

4. The power transmitted by each base station is the same, i.e., P .

The model basically replaces a finite number of base stations by an equivalent
continuum of transmitters that are uniformly distributed in the coverage area.
Therefore, the transmitted power is modeled as a continuum field and both base
stations and users are characterized by means of constant densities, ρBS and ρUE,
respectively. The radius of the total area covered by the network and the inter-
site-distance ISD are dnet and disd, respectively. The distance between a generic
user and its serving base stations is du. Thus, for the case of full frequency reuse,
given that base stations are uniformly distributed, the interference (I) coming from
each area element expressed in circular coordinates is Pκz−νρBSzdzdθ, where κ is a
constant. Thus, to compute the ICI, the integration is approximated by a ring (with
the user in the center) whose inner and outer radius given by disd− du and dnet− du,
respectively. Such integration limits are illustrated in Figure 3.3. Therefore, the
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Figure 3.3: Integration limits in the fluid model.

amount of ICI can be estimated by means of the following expression:

I =

∫ 2π

0

∫ dnet−du

disd−du
Pκz−νρBSzdzdθ, (3.9)

I =
2πκPρBS

ν − 2
[(disd − du)

2−ν − (dnet − du)
2−ν

]. (3.10)

Given that the SINR is equal to
κPd−νu
I , the SINR of the user (ψu) can be estimated

by means of the following expression:

ψu =
d−νu (ν − 2)

2πρBS[(disd − du)
2−ν − (dnet − du)

2−ν
]
. (3.11)

It is important noting that, under the assumption of equal power at each cell, ψu
becomes independent of P , and indeed, it only depends on du similarly to Equation 2.4
in Section 2.2.4. As typically dnet � du, Equation 3.11 can be approximated to:

ψu =
d−νu (ν − 2)

2πρBS (disd − du)
2−ν . (3.12)

Equation 3.12, derived under the assumption of full frequency reuse, can be easily
extended to higher reuse factors by simply modifying distances of co-channel base
stations. Thus, for a reuse factor RF , ρBS and disd must be properly scaled by
(RF )−1 and

√
RF , respectively. According to [50], taking into account the hexagonal

geometry, the density of base stations becomes:

ρBS =
1

2RF
√

3
(

1
2disd

)2 . (3.13)
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Figure 3.4: FFR applied to a cluster of three cells.

Thus, introducing a normalized distance (x = du
1
2disd

), Equation 3.12 can be generalized

as follows:

ψu (x,RF ) =
RF
√

3

π
(ν − 2)

 1(
2
√
RF − x

)2

(2
√
RF

x
− 1

)ν
. (3.14)

The capacity in bps/Hz, according to the Shannon’s formula, is given by:

η (x,RF ) = log2 (1 + ψu (x,RF )) . (3.15)

Given that SFR was considered in the previous model (Subsection 3.2.1), the case
of FFR is presented here. The extension to SFR follows a very similar path, see [50]
for details.

As it can be seen from Figure 2.9 (case FFR), the bandwidth (B) is divided into
four subbands, one of size β ·B (that operates with full reuse) and three subbands
of size ((1− β)/3) ·B (that operates with reuse factor 3).

However, in [50], the authors considered onmidirectional antennas and a cluster
of 3 cells as it is shown in Figure 3.4. Note that B0 corresponds to the full reuse
subband, while B1, B2, and B3 are the ones with reuse factor 3. Moreover, user
classification is done considering a circle with radius dTH, and thus, for interior and
exterior users it holds that du ≤ dTH and du > dTH, respectively.

Assuming a scheduler that guarantees fairness allocation, i.e., the same rate (R)
is allocated to each user, it is clear that users at different distances of the serving
base station require different bandwidths. Let Bu(x) be the bandwidth requirement
of user u at a distance x. It is assumed that NUE users are uniformly distributed in
each cell, and hence, the user density becomes:

ρUE =
NUE

2
√

3
(

1
2disd

)2 . (3.16)
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Given that, R = η (x,RF ) ·Bu(x), it is possible to show that:

B0 = 2π

∫ dTH

0

Bu(r)ρUErdr, (3.17)

B1 = 12

∫ π
6

0

∫ disd
2cos(θ)

0

Bu(r)ρUErdrdθ, (3.18)

Since B = B0 +B1 +B2 +B3 and B1 = B2 = B3, then,

B = B0 + (3×B1) . (3.19)

Finally, combining (3.17), (3.18), and (3.19), and taking into account that the
NUE users receive the same rate (R), the total cell data rate under FFR (CFFR)
becomes:

CFFR =

√
3B

π
∫ κ

0
x

η(x,1)dx+ 18
∫ π

6

0

∫ 1
cos(θ)

κ
x

η(x,3)dxdθ
, (3.20)

where κ = 2dTH/disd. Note that in this model, CFFR does not depends either on
NUE or disd, which is a very nice feature of the model because makes the analysis
independent of system load and network size.

Figure 3.5 shows graphical representations of some relationships that can be
drawn from (3.20). Figure 3.5a illustrates the prediction for the spectral efficiency
as a function of the distance to serving base station. The model clearly captures
the behavior of FFR for the regions below and above of the classification threshold
(in this case dTH). As expected, interior users, at distances smaller than dTH, will
perceive spectral efficiencies of a full reuse (reuse 1) system, while exterior users
enjoy a higher reuse factor. The model also indicates that there is a region in which
interior users obtain worse SINR than exterior users. This observation is key because
it shows that, in the context of static ICIC, it is necessary to analyze cell edge
performance not only in terms of cell edge users but also in terms of
interior ones. Several recent works including [45] and [63] focus almost exclusively
on the performance of exterior users. Moreover, the work presented in this Ph.D.
thesis evidences that, when analyzing irregular deployments, considering the whole
set of users is key to optimize SFR and FFR. Figure 3.5b illustrates the impact
of the classification metric (dTH) on the performance of FFR. Although the model
helps to find an optimum value from the capacity point of view, it does not provide a
clear vision of how does this optimum impacts other performance metrics. Moreover,
the optimum is not valid for irregular layouts where the inter-site distance is not
regular. Finally, but not less important, it is important to say that existing tradeoffs
such as efficiency-fairness can not be analyzed completely by means of this model.

Summarizing...

Analytical methods are an alternative to study the performance of static ICIC
schemes without the need for computationally-heavy and time-consuming system
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(a) Capacity vs. distance to transmitters. (b) Capacity vs. classification distance.

Figure 3.5: Performance of FFR: fluid model.

level simulations. To date, only few research efforts have been done in this direction.
Two analytical models resulting in closed-form expressions have been introduced
and discussed in this section.

These models provide insightful perspectives of the relative merit of different
configurations and the impact of operational parameters in SFR and SFR, being
in these sense, excellent and valuable theoretical contributions. However, a set of
idealistic assumptions and simplifications are required to make the mathematical
analysis tractable. Clearly, this limits the possibility of employing such evaluation
methods in realistic deployments, that are obviously far from those assumptions. In
practice, there are two aspects of interest for mobile operators regarding static ICIC:

1. Regarding the performance of SFR and FFR in realistic deployments, how can
it be efficiently characterized?

2. Is it possible to further customize SFR and FFR to achieve cell edge perfor-
mance gains in such contexts?

The rest of the chapter (and the thesis) is about the previous questions.

3.3 Statistical Analysis of Static ICIC Schemes

In this section, a statistical framework for the analysis of SFR and FFR is presented.
A fundamental difference between this model and previous ones is that no assumption
need to be made on the network topology. Instead the model relies on the radio
characterization of the network in terms of the statistic of the average SINR. Based
on this information, a network-specific performance pattern for SFR and FFR can
be obtained.

It is worth saying that this statistical approach can be considered complementary
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to system level simulations. In this Ph.D. thesis, both methods have been combined
conveniently according to the research objectives.

3.3.1 General Setting

The system model is described in Appendix C, Section C.1. The total available
power per cell (Pmax) is distributed according to the resource allocation pattern of
SFR and FFR (see Figure 2.9), i.e., governed by the operational parameters α, β,
and ψTH. Recall that α is the ratio of the power assigned to interior and exterior
users, β is the fraction of bandwidth allocated to the class of interior users, and
ψTH is the classification threshold. It is assumed that users are classified based on
their average SINR under the assumption of universal frequency reuse. Let’s call
to this figure ψu. The assumption is consistent with the manner in which average
SINR values are computed in LTE/LTE-A, i.e., based on always-on reference signals
that are distributed over the whole system bandwidth at each cell [162].

Thus, according to the system model, if the ath area element (pixel) has an
average SINR ψu, then the average SINR of any user in that pixel is also equal to ψu,
and consequently, the users within that pixel will be classified accordingly. For the
sets of interior (I) and exterior (E) users, ψu ≥ ψTH and ψu < ψTH, respectively.

As in previous models, it is also considered that common values of α, β, and ψTH

are applied at each cell. Hereafter, this type of configurations are referred to as base-
line designs.

Performance Metrics

The following metrics have been considered to characterize the performance of SFR
and FFR:

1. Average spectral efficiency (η [bps/(Hz·cell)]): This system-oriented metric
provides a direct measure of the effectiveness with which radio resources are
employed and it is proportional to the overall network capacity. In the study
of this section, the Shannon’s formula is considered as link performance model.

2. Percentile 5 of users rate r (r5% [bps]): This user-oriented metric is used as
a measure of the performance of users at cell edges, and hence, it is very
important in the context of ICIC. It is defined as the value of r when Fr = 5%.
Recall that Fr is the empirical CDF of r.

3. Jain’s index (): This metric measures the ability of the system to deliver
similar rates to users, i.e., fairness. It is defined in [172] and it is computed
based on user rates. The Jain’s index is defined as follows:

(r1, r2, · · · , rn) =
(
∑n
i=1 ri)

2

n ·
∑n
i=1(ri)2

, (3.21)
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where there are n users and ri is the throughput of the ith connection.

Merit Assessment Methodology

In order to establish a strict order among the different configutations of SFR and
FFR, linear aggregation (weighted sum) is employed in this study. In this manner,
the fitness value (θ) of each configuration is computed as the scalar product between
performance metrics (normalized) and corresponding weights:

θ = y ·wT, (3.22)

Note that w is defined by the operator and the vector y contains the normalized
performance metrics. Thus,

y = [ η̂ r̂5% ̂ ], (3.23)

w = [ wη wr
5%

w ], w · 1 = 1. (3.24)

Given that normalized values are always positive, θ ∈ [0, 1].

In the context of static ICIC, a Network Operation Point (NOP) is defined as
any given configuration of SFR or FFR. Such settings are specified in terms of their
operational parameters (α, β, and ψTH). Thus, a NOP is a vector x ∈ R3 defined as
follows:

x , [ α β ψTH ]. (3.25)

In this manner, for each NOP (x), a fitness value (θ) can be obtained according to
the following flow:

x −→ y
w−→ θ.

The search space (X ) is defined as the Cartesian product of the sets of possible
values of β, α, and ψTH, i.e., the sets Uβ , Uα, and UψTH

, respectively. Thus:

X , Uα × Uβ × UψTH . (3.26)

3.3.2 Statistical Analysis

The results and conclusions that can be drawn from the analytical models previously
introduced (Subsections 3.2.1 and 3.2.2), clearly suggest that the operation of SFR
and FFR can be described in terms of two independent, though interacting,
sub-systems: the subsystems of interior (I) and exterior (E) users/pixels. Thus,
the statistical model presented here exploits and investigates this intuition.

The key element of the analysis is estimating separately the SINR distributions
of each class of users (I and E), which are completely determined by the operational
parameters α, β, and ψTH. The statistical model requires determining the achievable
rate at pixel, obviously taking into account the resource allocation pattern of SFR
and FFR. The proposed methodology is explained along the following points:
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Average SINR

According to the system model, the vector Ψu ∈ RA that indicates the average
SINR (ψu) of each pixel, can be computed as follows:

Ψu = [(S�G) · pCS-RS ]�
[

[(Sc �G) · pCS-RS]⊕ σ2
]
, (3.27)

where the operators �, � and ⊕ indicate Hadamard (pointwise) operations. Recall
that the ath pixel is classified based on its value of ψu, i.e., Ψu(a).

Server Classification

Taking advantage of the trisectorial sectorization, cells are divided into three subsets
based on their antenna azimuth (φ ∈ [0, 359]) to allow efficient processing. Therefore,
a cell belongs to the set Cj (j ∈ J = {0, 1, 2}) according to the rule:

j = bφ/120c (3.28)

Analogously, pixels are also divided into three subsets (Aj , j ∈ {0, 1, 2}), such that,
a pixel is element of the set Aj if it is served by a cell of type j. Recall that the
pixel-to-cell association is stored in the matrix S and that,

∑
∀j∈J |Aj | = A and∑

∀j∈J |Cj | = L. In this manner, the type of the server of each pixel (j ∈ {0, 1, 2})
is stored in the vector t ∈ {0, 1, 2}A.

Classification of Pixels

The classification of each pixel is stored in the matrix C ∈ RA×2. The matrix
indicates the class (either I or E) to which each pixel belongs to. The value ‘1’ in
the column 0 indicates that the pixel belongs to E . A ‘1’ in the column 1 indicates
that the pixel belongs to I.

Coverage per Class and Cell

The matrix Φ ∈ R2×L contains the inverse of the number of pixels classified as I
or E at each cell according to the classification threshold (ψTH) as it was explained
previously. The first and second rows correspond to the classes E and I, respectively.
Each column corresponds to a cell.

Characteristic Matrices

The matrices Pser ∈ RL×2 and Pint ∈ RL×6 are used to compute the average SINR
values corresponding to the PDSCH [161]. The structure of these matrices exploits
the trisectorial layout1.

1The extension to cases in which other sectorization pattern is used is straightforward.
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Let’s consider that the maximum power per subcarrier, P SC
max, is calculated

according to the following expression:

P SC
max = Pmax/

(
NDL

RB ·NRB
sc

)
. (3.29)

The power levels applied to the classes of exterior and interior users (pE and pI ,
respectively), are given as a function of the power ratio (α) as follows:

pE = P SC
max, (3.30)

pI = α · P SC
max. (3.31)

The matrix Pser is defined as follows:

Pser =

[
p

(1)
E p

(2)
E · · · p

(L)
E

p
(1)
I p

(2)
I · · · p

(L)
I

]T

. (3.32)

The matrix Pint is defined in terms of the submatrix Pbase
int ∈ R3×6. Pbase

int depends
on the type of static ICIC, either SFR or FFR, and it is defined as it is shown below:

Pbase
int =

pE pI pI pE pI pI
pI pI pE pI pI pE
pI pE pI pI pE pI

 for SFR, (3.33)

Pbase
int =

pE pI 0 pI 0 pI
0 pI pE pI 0 pI
0 pI 0 pI pE pI

 for FFR. (3.34)

Therefore,

Pint =
[
(Pbase

int )T, (1)(Pbase
int )T, (2) · · · (Pbase

int )T, (L/3)
]T
. (3.35)

The matrices Pser and Pint contain the power levels transmitted from serving
and interfering cells according to the resource allocation pattern of SFR and FFR.
These structures allow efficient matrix-based operations to obtain the resulting SINR
distributions as it will be indicated shortly.

Segmentation

This procedure pulls out from the matrices G, C, S, and Sc, the rows whose
corresponding value in t is equal to j, ∀j ∈ J . In other words, each of these matrices
is segmented in |J | submatrices, one for each type of cell according to the rule given
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by (3.28). In this manner, ∀j ∈ J ,

Cj ∈ {0, 1}|Aj |×2,

Sj and Sc
j ∈ {0, 1}|Aj |×L,

Gj ∈ R|Aj |×L.

Link performance

The spectral efficiency of each pixel is stored in the vector H ∈ RA, which is
obtained by computing a non-decreasing function of the SINR. To capture the
level of sensitivity with respect to the SINR variations, the Shannon’s formula is
considered. This model allows for mathematical tractability. However, any practical
AMC scheme can be used. In system level simulations, the MCSs defined for LTE
are considered.

Given a vector of SINR values (Ψ), the spectral efficiency (ηa) of each ele-
ment (ψa ∈ Ψ) is bounded by:

ηa ≤ log2(1 + ψa), (3.36)

and hence, allowing a certain abuse of notation, the following expression can be
written:

H = log2 (1 + Ψ) . (3.37)

Bandwidth computation

The vector B ∈ R2 indicates the bandwidth allocated to each class. This depends
on the static ICIC scheme, and hence, it is computed as a function of β as follows:

B = [ (1− β) ·B β ·B ] for SFR, (3.38)

B = [
(1− β)

3
·B β ·B ] for FFR. (3.39)

The first and second element correspond to the bandwidth allocated to the class of
exterior (E) and interior (I) users, respectively (see Figure 2.9).

Pixels rate

The rate at each pixel is calculated under the assumption that the bandwidth
allocated to each class (at each cell) is equally divided among the pixels belonging
to that class. This improves the fairness in the long run similarly to the proportional
fairness policy that tends to share the resources equally among users as time passes.

The computation of the vector r ∈ RA that contains the rate of each pixel is
obtained by means of the following operations that must be done for each group of
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pixels. Thus, for each j ∈ {0, 1, 2},

P̃int = Pint( : , 2j : 2j + 1 ), (3.40)

Ψj =
[
[(Sj �Gj) ·Pser ]�

[ [
(Sc
j �Gj) · P̃int

]
⊕ σ2

]]
�Cj , (3.41)

Hj = log2 (1 + Ψj) , (3.42)

rj =
[[

Sj · (ΦT · diag(B))
]
�Hj

]
· 1. (3.43)

Note that P̃int ∈ RL×2 is created by selecting two columns (the columns with indexes
2j and 2j + 1) of the matrix Pint. Once the previous operations are performed for
each j, the vector r is built as follows:

r =
[

rT
1 rT

2 rT
3

]T
. (3.44)

Having r, the empirical CDF of r (Fr) can be obtained. Note that, although the
dependence of r on α, β, and ψTH is not explicitly indicated, the vector r strongly
depends on these parameters, and hence, it captures the essence of each static
ICIC scheme. The results presented in Section 3.4 confirm the previous asseveration.
Therefore, for the sake of clarity, the dependence of r on α, β, and ψTH is omitted.

Performance metrics

The performance metrics (η, r5%, and ) are defined in terms of the vector r and

the spatial traffic distribution, Γ ∈ RA (see Appendix C, Section C.1) according to
the following expressions:

η =
A · (rT · Γ)

B · L
, (3.45)

r5% = F−1
r (0.05), (3.46)

 =
(r · 1)2

((r� r) · 1)2
. (3.47)

Equations 3.45, 3.46, and 3.47 provide the required (accurate) characterization of
SFR and FFR in terms of spectral efficiency, cell edge performance and fairness
among users, respectively.

The next section is devoted to study and characterize the performance of these
schemes by means of the aforementioned statistical model.

3.4 Performance of Static ICIC Schemes

In order to study the performance of SFR and FFR in the context of hexagonal (syn-
thetic) and irregular (realistic) layouts, different cellular scenarios were considered.
The test cases are the scenarios: ‘Synthetic’ and ‘MORANS’, which are defined in
Appendix B, Section B.1.
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The analysis is based on the statistical method presented in the previous section.
In addition, results obtained from LTE-based system level simulations are also
provided to complement the study and validate the conclusions from a practical
point of view.

3.4.1 Statistical Analysis

The analysis focuses on two different aspects:

1. The impact of the operational parameters (α, β, and ψTH) on the average radio
channel quality of each user class: interior (I) and exterior (E). This part of
the study shows the utility of the proposed framework to 1) capture the inter-
dependencies among design variables and performance metrics, and 2) analyze
the operation of SFR and FFR based on the performance of each class of users.

2. A high level performance assessment based on linear aggregation. This method
aims at providing a network-specific performance evaluation tool that can
be suitably tuned to the operators’ preferences/needs. This method provides
mobile operators with means to perform a fast visual analysis by comparing
and/or crossing variable-maps subject to different weights in a convenient
fashion. Based on this part of the analysis, it will be shown (from a theoretical
point of view) the poor performance of baseline design configurations in the
context of realistic deployments.

Impact of α, β, and ψTH on SINR distributions

In this first part, the impact of the operational parameters on the resulting SINR
distributions is studied. The scenario ‘Synthetic’ is considered in this initial part of
the analysis.

The study presented herein investigates the impact of the parameters α and ψTH

on the performance of SFR, and the impact of the parameters β and ψTH on the
performance of FFR.

On the one hand, for the case of SFR, β is kept fixed to 1/3, the maximum
value that avoids overlapping among cell edge subbands in trisectorial layouts. Note
that from the cell edge viewpoint, β = 1/3 maximizes the bandwidth allocated to
cell edge users, and hence, it is the logical choice from the ICIC perspective. Thus,
two degrees of freedom are explored in the context of SFR: α and ψTH. On the
other hand, in case of FFR, α is kept constant as the performance of this scheme is
independent of it as long as 1) it is applied globally in the network (as in baseline
design configurations), and 2) average ICI levels are significantly higher than the
noise power (as in interference-limited systems). In this manner, α = 0.40 was used
in numerical evaluations2. Thus, two degrees of freedom are explored in the context

2This figure guarantees a minimum received power of -123 dBm in the coverage area of both
test cases.
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(a) SINR of exterior users (E). (b) SINR of interior users (I).

(c) Rate of exterior users (E). (d) Rate of interior users (I).

Figure 3.6: Impact of ψTH on the performance of SFR.

of FFR: β and ψTH. As it will be shown shortly, two dimensions are enough to adjust
both SFR and FFR and attain a wide range of values for the performance metrics
with the joined advantage that it simplifies the analysis significantly.

The study starts with the analysis of the impact of each parameter. For the sake
of clarity, the remaining degree of freedom is kept fixed in each case.

Figure 3.6 illustrates the impact of ψTH on SFR. As classification threshold,
ψTH determines the size of the sets E and I. The larger the value of ψTH, the
larger the number of exterior pixels and the smaller the number interior pixels.
Figures 3.6a and 3.6b show how this parameter affects the SINR distribution of each
class. Clearly, increasing ψTH makes the set E larger by adding users with better
SINR figures, and hence, the upper tail of the SINR distribution of the set E moves
to the right (good SINR values) as it is shown in Figure 3.6a. In a similar way,
decreasing ψTH makes the set I larger by adding more worse users, and consequently,
the lower tail of the SINR distribution of the set I moves to the left (bad SINR
values) as it is shown in Figure 3.6b. Note that adding more pixels to the sets I
or E tends to reduce the per-pixel bandwidth as the bandwidth of each class is
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(a) SINR of exterior users (E). (b) SINR of interior users (I).

(c) Rate of exterior users (E). (d) Rate of interior users (I).

Figure 3.7: Impact of α on the performance of SFR.

fixed. This obviously has an impact on the rates at pixel level as it is shown in
Figures 3.6c and 3.6d. Thus, individual rates in the set E are expected to be reduced
if ψTH growths and the opposite holds for the set I. Note that the type and amount
of pixels belonging to each class for different values of ψTH also explains the way
in which the distribution of r varies in each class, i.e., while increasing ψTH results
in notorious changes in the set I and small variations in the set E , decreasing ψTH

results in notorious changes in the set E and small variations in the set I.

Figure 3.7 illustrates the impact of α on SFR. Recall that α determines the
power level of the subbands devoted to the set I. Thus, increasing α results in a
degradation of the SINR distribution of the set E and the corresponding improvement
on the set I as it is shown in Figures 3.7a and 3.7b, respectively. Given that ψTH is
fixed, the size of the sets I and E is also constant, and thus, for a fixed per-class
bandwidth allocation, a better SINR distribution results in a better rate distribution
and viceversa. The previous is shown in Figures 3.7c and 3.7d, where, in addition,
it can be seen that the variations in the rate distributions are always proportional
to the variations of the SINR distributions for both sets. Nevertheless, it is worth
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(a) SINR of exterior users (E). (b) SINR of interior users (I).

(c) Rate of exterior users (E). (d) Rate of interior users (I).

Figure 3.8: Impact of ψTH on the performance of FFR.

saying that in this case, both SINR and rate distributions are more sensitive to
decrements of α than increments of it. The previous is explained because if α→ 1,
the system tends asymptotically to full reuse in terms of ICI, although with the
separation of users into classes. If α→ 0, the system becomes frequency reuse 3 but
only for the set E (the one more sensitive to ICI), and hence, decrements of α result
in increasingly improvements of the SINR distribution. Note that for α → 0, the
SINR distribution of the set I would disappear.

Figure 3.8 illustrates the impact of ψTH on FFR. The effect is exactly the same as
in SFR, i.e., ψTH controls the size of the sets I and E , thus modifying the resulting
SINR distributions as it can be seen in Figures 3.8a and 3.8b. Similarly to SFR,
increasing ψTH makes the set E larger by adding users with better SINR figures, and
hence, the upper tail of the SINR distribution of this set moves to the right (good
SINR values) as it is shown in Figure 3.8a. Decreasing ψTH makes the set I larger by
adding more worse users, and consequently, the lower tail of the SINR distribution
of this set I moves to the left (bad SINR values) as it is shown in Figure 3.8b.
As expected, varying the size of each set of pixels also affects the resulting pixel
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(a) SINR of exterior users (E). (b) SINR of interior users (I).

(c) Rate of exterior users (E). (d) Rate of interior users (I).

Figure 3.9: Impact of β on the performance of FFR.

rates as it is shown in Figures 3.8c and 3.8d. The same analysis about the impact
of ψTH on pixel rates for SFR also holds in this case. Note the similarity among
Figures 3.6c and 3.6c, and Figures 3.8c and 3.8d.

Finally, Figure 3.9 illustrates the impact of β on FFR. The impact of this
parameter on the resulting SINR distributions is illustrated in Figures 3.9a and 3.9b.
As it was mentioned before, in FFR ICI is intra-class, meaning that each type of
users makes exclusive use of the same set of subbands at each cell. Thus, the sets
E and I operate independently with reuse factor 3 and full reuse, respectively. For
this reason, once the sets E and I are fixed (by means of ψTH), the variations of β
have no effect on the distributions of the resulting SINR as it can be appreciated.
However, varying β modifies the bandwidth available to each class, and therefore,
pixel rates are affected by such changes. This can be seen in Figures 3.9c and 3.9d.
In addition, note that such bandwidth variations are more noticeable in the set I (on
average, from 8 to 22 kbps, +175%), precisely the set of pixels that is more sensitive
to bandwidth than interference, while the impact on the set E is less remarked
(on average, from 25 to 15 kbps, -40%) as this set is more sensitive to interference.
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However, the impact is almost linear with respect to the variations of β in both
cases.

Based on the previous analysis, the following conclusions can be drawn:

1. In SFR, α controls the amount of ICI in the system by modifying the power
allocated to the set I. Its impact on the resulting SINR and rate distributions
is quasi-linear for α ∈ (0.6, 1.0) and non-linear for α ∈ (0, 0.6). However, an
issue with the use of this parameter is that varying α (even in one single cell)
modifies ICI conditions in the network.

2. Both in SFR and FFR, the classification thresholds (ψTH) has a significant
impact on the SINR and rate distributions with the joined advantage that this
parameter can be adjusted both globally in the network or locally at each cell
without impact on the levels of ICI affecting neighboring cells.

Up to now, the analysis has been focused on the impact of the operational parameters
on the performance of each user class. Let’s have a look at the performance of SFR
and FFR from a system point of view.

Operation of SFR and FFR

Figure 3.10 illustrates the operation of SFR and FFR from a network perspective.
The resulting SINR distribution of each user class is shown in Figure 3.10b. The
system performance in terms of user rates is illustrated in Figure 3.10a. In addition,
the case of full reuse is also included as a reference. Note how SFR clearly tends to
homogenize the SINR distributions of each user class with respect to full reuse. In
addition, and more important from the ICIC point of view, the lower bound of each
of these distributions are approximately 4 dB above the reference scheme. This is
translated in an improvement of around 50% in terms of the percentile 5 of r (r5%).
The case of FFR is illustrated in Figures 3.10c and 3.10d. Note that the SINR levels
are substantially better than in SFR due to the higher reuse factor. However, as
only part of the system bandwidth is used at each cell, the spectral efficiency is
penalized. Despite of this, a significant improvement of more than 80% is attained
for the percentile 5 of r.

Note that in both cases (SFR and FFR, Figures 3.10b and 3.10d, respectively),
the resulting pixel rate distribution, indicated with the upside-down triangle, is not
necessarily the mean point between the rate distributions of each user class. This is
due to the fact that the amount of pixels in each class is different (it is determined
by ψTH), and hence, the relative importance of each class is not always the same.

Up to now, the impact of the operational parameters and the operation of SFR
and FFR have been analyzed by employing the statistical framework presented in
Subsection 3.3.2. It is evident that the performance evaluation methodology provides
a very convenient approach to study the interactions in SFR and FFR by means of
an independent analysis of each class (E and I).
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(a) SINR per class: SFR (b) Rates per class: SFR

(c) SINR per class: FFR (d) Rates per class: FFR

Figure 3.10: Operation of static ICIC schemes.

Nevertheless, nothing has been said about how to select appropriate values for α,
β, and ψTH. The proposed model can also be used as a performance assessment tool
to explore the search space (X ) of the operational parameters, as it is defined in (3.26).
This can be done in a very efficient manner without the need for computationally-
heavy and time-consuming system level simulations. This part of the study is
presented next.

Performance Assessment based on Linear Aggregation

The system is evaluated by means of different linear aggregations of the metrics η,
r5%, and . This allows selecting different levels of priority for each indicator and
pointing out the tradeoffs among them.
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For numerical purposes, the search space is defined as follows:

Uα = { 0.025, 0.050, 0.075, · · · , 1.000 }, (3.48)

Uβ = { 0.050, 0.075, 0.100, · · · , 0.975 }, (3.49)

UψTH = { −3.00, −2.75, −2.50, · · · , 6.00 } [dB], (3.50)

XSFR = Uα × UψTH
, (3.51)

XFFR = Uβ × UψTH
. (3.52)

Three different criteria (w), as defined in (3.24), have been considered:

w1 = [ 0.34, 0.33, 0.33 ], (3.53)

w2 = [ 0.80, 0.10, 0.10 ], (3.54)

w3 = [ 0.10, 0.80, 0.10 ]. (3.55)

Each of these criteria reflects different preferences among the metrics (η, r5%, and ).
The criterion w1 assigns the same importance to the three metrics. The second
and third one (w2 and w3) prioritize spectral efficiency and cell edge capacity,
respectively.

In order to investigate the performance of SFR and FFR both in regular and
irregular layouts, this study is conducted in the context of synthetic and realistic
cellular layouts, i.e., the scenarios ‘Synthetic’ and ‘MORANS’ defined in Appendix B.
Without loss of generality, in this study, it was considered that the traffic is uniformly
distributed in the coverage area, i.e., Γ(a) = 1/A, ∀a = 1, 2, · · · , A. Recall that Γ is
the spatial traffic distribution.

Figures 3.11 and 3.12 show the characterization of SFR. Figures 3.13 and 3.14
illustrate the resulting pattern for FFR.

The performance of SFR in terms of each metric for the scenario ‘Synthetic’ is
shown in Figures 3.11a, 3.11b, and 3.11c. The figures show the cross-impact of the
parameters α and ψTH on each indicator. In the maps, red tones indicate better values.
Note that, while the pattern of η is fairly monotone with α and ψTH, the variations of
r5% and  are clearly convex. As it can be seen, certain configurations favor more one
metric than others. In general, higher values of α tend to favor the spectral efficiency,
while the value of α that maximizes the percentile 5 of r depends on the classification
threshold. Consequently, the selection of an appropriate NOP strongly depends on
the needs or priorities of the network operator that should consider the weighted
result by means of a predefined criterion as it is shown in Figures 3.11d, 3.11e,
and 3.11f. The figures illustrate the three cases: w1, w2, and w3, respectively. As
it can be seen, the statistical model allows an fast and easy identification of the
configurations that provide the best results according to each criterion. However, it
is important to take into account that the final selection could include additional
factors such as the minimum value of α to guarantee the required coverage. The
parametric sweep shown in the figures is complete for illustrative purposes. Note
the high correlation between the patterns shown in Figures 3.11a and 3.11e, and
Figures 3.11b and 3.11f.
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The tradeoff between the different metrics can be visually assessed by looking at
the distance between yellow and red zones in the maps corresponding to different
indicators. Thus, the methodology allows for a fast assessment of SFR and FFR
based on network-specific patterns (maps).

The pattern of each metric for SFR in the scenario ‘MORANS’ is shown in
Figures 3.12a, 3.12b, and 3.12c. Clearly, the red zones are not only more separated
among the maps but also the transitions between red and blue area are more
pronounced. This can be interpreted as a much worse tradeoff between the metrics,
i.e., the penalty in terms of any variable to improve another is much higher in this
context of irregular layouts. For instance, the selection of a NOP that is optimal in
the synthetic scenario, could result in a poor performance if that setting is applied in
a realistic deployment. This situation remarks the importance of obtaining accurate
network-specific characterizations. The same conclusion was also pointed out in
[63, 64]. As the figures illustrate, the method employed here not only allows for
efficient computation of such patterns but also provides intuitive representations of
them.

The same analysis and conclusions presented so far for SFR also hold for FFR.
Thus, the same analysis is omitted for brevity. The performance characterization
of this scheme for the scenarios ‘Synthetic’ and ‘MORANS’ is presented in Figu-
res 3.13 and 3.14, respectively.

In order to provide additional perspectives about the previous results, Figure 3.15
shows the distribution of the average SINR per-cell in the test cases previously
considered. Based on this, it can be inferred that the good rsults of SFR and FFR
in hexagonal layouts is due to the homogeneity among cells in terms of SINR
distributions as it is shown in Figure 3.15a. Given this, it makes sense that common
values of α, β, and ψTH can be applied uniformly to the network and it results
in acceptable performances. In contrast, the situation is quite different in realistic
deployments because propagation conditions and ICI levels vary significantly from
cell to cell as it is shown in Figure 3.15b. Therefore, it is expected that the same
setting applied to each cell results in suboptimal (indeed poor) achievements.

In order to validate the previous reasoning, LTE-based system level simulations
are presented. The study is presented next.

3.4.2 System Level Simulations

The evaluation setting has been embedded in the LTE system level simulator
described in Appendix D, which carefully models all the relevant aspects of LTE
such as HARQ and the actual structure of the OFDMA frame and transport/physical
channels according to [159, 161, 162]. This simulation environment is calibrated
according to guidelines given in [175, 176].

The system level simulations are based on Monte Carlo experiments with uni-
form randomly spread users. The results compile statistic from 500 independent
experiments each of which has a duration of 900 s (9× 105 TTIs). Recall that the
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(a) Spectral efficiency: η. (b) Percentile 5 of r: r5%. (c) Jain’s index: .

(d) θ considering w1. (e) θ considering w2. (f) θ considering w3.

Figure 3.11: Performance characterization of SFR: scenario ‘Synthetic’.

(a) Spectral efficiency: η. (b) Percentile 5 of r: r5%. (c) Jain’s index: .

(d) θ considering w1. (e) θ considering w2. (f) θ considering w3.

Figure 3.12: Performance characterization of SFR: scenario ‘MORANS’.
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(a) Spectral efficiency: η. (b) Percentile 5 of r: r5%. (c) Jain’s index: .

(d) θ considering w1. (e) θ considering w2. (f) θ considering w3.

Figure 3.13: Performance characterization of FFR: scenario ‘Synthetic’.

(a) Spectral efficiency: η. (b) Percentile 5 of r: r5%. (c) Jain’s index: .

(d) θ considering w1. (e) θ considering w2. (f) θ considering w3.

Figure 3.14: Performance characterization of FFR: scenario ‘MORANS’.
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(a) Sce. ‘Synthetic’ (b) Sce. ‘MORANS’

Figure 3.15: Average SINR distribution per cell.

Table 3.1: Simulation Parameters and Evaluation Setting.

Parameter Value/assumption

Test cases (scenarios) ‘Synthetic’, ‘MORANS’ (see Section B.1).
System bandwidth (B) 5.4 MHz.
System load 30× L users (30 users per cell (on average)).
User distribution Random/uniform.
Scheduler Proportional fair.
Traffic model Full Buffers.
CSI feedback CQI-based, one CQI per RB.
Mobility model Urban vehicular [173]
Link Abstraction Mutual Information Equivalent SINR Mapping [174].
Transmission mode Single-antenna port.

SFR @ ‘Synthetic’ x = [ 0.250 0.33 4.00 dB ]. (x is defined in (3.25))
FFR @ ‘Synthetic’ x = [ 0.400 0.40 4.25 dB ].
SFR @ ‘MORANS’ x = [ 0.475 0.33 0.25 dB ].
FFR @ ‘MORANS’ x = [ 0.400 0.60 -0.75 dB ].

simulation parameters common to all scenarios are indicated in Table B.2. Addi-
tional parameters and assumptions considered in this study are shown in Table 3.1.
Both synthetic and realistic scenarios are considered: the test cases ‘Synthetic’ and
‘MORANS’ that are described in Appendix B.

In order to assess an accurate BLER prediction, the system level is fed by look-up
tables obtained through detailed link level simulations according to [174, 177]. Results
from link level include means to map effective SINR figures subject to different
transport block sizes, modulation and coding schemes, and redundancy version into
transmission error probabilities. In this manner, BLER is modeled similarly as in
the actual LTE operation.

The mobility model is vehicular for urban scenarios as defined in [173]. In order
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(a) Sce. ‘Synthetic’: η (b) Sce. ‘Synthetic’: r5% (c) Sce. ‘Synthetic’: 

(d) Sce. ‘MORANS’: η (e) Sce. ‘MORANS’: r5% (f) Sce. ‘MORANS’: 

Figure 3.16: Performance comparison of different resource allocation schemes.

to emulate low/moderate conditions, pedestrian speed of 3 km/h was assumed. The
channel model is the Extended ITU Pedestrian B defined in [178], which features a
32.55 ns sampling grid that matches the LTE sampling rate of 30.72 MHz.

In order to investigate the operation of SFR and FFR from an ICIC point of
view, several configurations with the best values of θ for w3 are tested. Recall that
the criterion w3 gives high priority to the performance at cell edges (r5%).

The results presented here correspond to the configurations with the best results
in system level simulations, i.e., calculating θ based on results coming from system
level trials. Such setting are also indicated in Table 3.1. In addition, the performance
of full reuse (FR) and reuse factor 3 (R3) are included as reference.

Figure 3.16 shows the results. The results for the scenario ‘Synthetic’ are shown in
Figures 3.16a, 3.16b, and 3.16c. The corresponding figures for the scenario ‘MORANS’
are provided in Figures 3.16d, 3.16e, and 3.16f. The gains (or losses) are always
indicated with respect to the performance of full reuse. On the one hand, in the
context of the scenario ‘Synthetic’, both SFR and FFR provide significant gains in
terms of the percentile 5 of user rates (r5%), 85% and 116%, respectively. However,
the gains come at the expense of losses in terms of spectral efficiency. In addition,
these static ICIC schemes also improve the fairness among users. On the other hand,
looking at the results in the context of the scenario ‘MORANS’, it is evident the very
poor performance of SFR and FFR. Besides the noticeable loss in terms of spectral
efficiency, neither SFR nor FFR are able to provide gains in terms of r5%, indeed



80 3.5. Concluding Remarks

losses of around 25% are obtained in both cases. Moreover, fairness levels decrease
for all the schemes. These results can be analyzed from two different points of view.
First, in terms of absolute values. All the metrics are worsened in the context of
the scenario ‘MORANS’, being these losses more pronounced for the schemes R3,
SFR, and FFR. In other words, the schemes that relies on the fact that reuse 3 is
optimal at cell edges (an assumption valid for regular layouts) are the ones with
the worst performance. However, in irregular layouts, several factors cause different
levels of ICI at each cell. Examples of them are antenna azimuths not perfectly
aligned as in the synthetic case, the different levels of dominancy among cells due
to the terrain orography, irregular intersite distances, propagation conditions, in
some cases strongly guided through streets, and so on. The combined effect of these
elements cause that the amount of ICI received by each cell is different, and hence,
the size of cell edges and the SINR distributions are also different. This essentially
explains the poor performance of baseline designs in the context realistic (irregular)
deployments, and thus, the need for a certain degree of local optimization (at
cell level) is mandatory in the context of irregular layouts to compensate
such unbalances.

3.5 Concluding Remarks

A statistical analysis of SFR and FFR by means of a model that can be used without
assumptions on the network topology has been presented in this chapter. The need
for such methodology has stemmed from drawbacks found in analytical models
previously introduced. More precisely, the fact that such models cannot be used as a
performance assessment tool in cellular deployments featuring an arbitrary network
topology.

The proposed statistical model captures all the complex interactions between
the operational parameters of SFR and FFR and the most important performance
metrics from the ICIC point of view, i.e., cell edge performance and spectral efficiency.
However, the analysis goes beyond well known facts and tradeoffs and it explores the
relationship between the performance of each class of users and the overall system
performance.

The results clearly indicate that the proposed scheme is suitable to be applied
to any realistic network. In this manner, convenient performance patterns in the
form of 2D maps that are specific to every single network can be obtained efficiently
without the need for computationally-heavy system level simulations. These patterns
allow to the mobile operator an easy visual-assessment of the configuration that
can be applied to the network. Moreover, different criteria can also be defined in a
flexible manner.

Based on this tool, the impact of the operational parameters in SFR/FFR (α, β,
and ψTH) represents the first set of results presented in this chapter, and thus, the
main conclusions are summarized next:

• The operation of SFR and FFR can be described in terms of two subsystems,
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namely the class of exterior and interior users. The performance of them is
largely influenced by the selection of the parameters α, β, and ψTH.

• A proper calibration of such parameters implies achieving a proper balance
between these two classes in terms of all performance metrics. Otherwise one
class would be severely penalized, and hence, the performance from a system
point of view would be poor. However, finding such set of values is far from
being an easy task since the impact of each parameter is strongly conditioned
by the values of the other ones.

• The classification threshold (ψTH) arises as a firm candidate to tune the
performance of SFR and FFR as it can be adjusted independently at each cell
without impact on neighboring ones.

• Conversely, local adjustments of the parameters α and β convey practical
difficulties from an implementation point of view.

– On the one hand, increasing α locally originates more ICI in neighbouring
cells, which in turn, could tend to do the same, creating in this manner a
sort of undesirable positive feedback. On the other hand, decreasing α
could result in coverage holes due to the requirements of mobile devices
in terms of received power.

– Similarly, adjusting β (even globally) requires precise coordination in
order to guarantee the required reuse factor for each class of users.

The second set of results presented in this chapter is devoted to investigate the
performance of SFR and FFR in the context of realistic deployments. This was done
by means of two different approaches: 1) the statistical analysis (using the model
previously introduced), and 2) system level simulations. The main conclusions can
be summarized as follows:

• In the context of hexagonal layouts, baseline designs of SFR and FFR provide
convenient means to adjust the well known tradeoff between spectral efficiency
and cell edge performance. This is somehow, expected as it was shown that a
reuse factor 3 is optimal for the cell edges and in this type of layout azimuths
are perfectly aligned, thus minimizing ICI.

• In realistic networks featuring irregular cell layouts, the performance of baseline
designs of SFR and FFR is poor. This is a direct consequence of the fact that
SINRs distributions and cell edge sizes vary significantly from one cell to
another. Thus, the need for optimization in such contexts was justified and
established.

• The results suggest that a certain level of local optimization (at cell level) is
required to compensate such unbalances and improve the performance of SFR
and FFR, being ψTH (as it was previously mentioned) a good candidate for
design variable in such optimization problem.
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In the light of these conclusions, the following chapters focus on investigating
schemes and optimization models to enhance the performance of static ICIC schemes.
The description of such novelties begins in the next chapter, where mechanisms to
improve the interplay between CSI feedback and static ICIC are presented.



Chapter 4

Novel CSI Feedback Methods
for Static ICIC Schemes

4.1 Introduction

Along the previous chapters, the need for additional research efforts to improve
the performance of static ICIC schemes was shown. Mechanisms based on static
ICIC are feasible candidates to deal with ICI due to their low complexity and
ease of implementation. However, ICIC schemes are not standardized in LTE,
which just provides a certain support so that every vendor/operator configures its
particular ICIC option. Hence, the interworking of ICIC with other important network
functionalities such as CSI feedback is not considered within the specifications. This
chapter provides a description of the relationship between ICIC and CSI in LTE
and it introduces novel mechanisms to improve such interworking.

Whereas ICIC is in charge of determining the resources to be used at each cell
by each class of users (exteriors and interiors, E and I, respectively) in the mid and
long term, scheduling deals with resource allocation at the very short term scale. In
this sense, CSI feedback is a key functionality whose role is of utmost importance
because updated and free of errors CSI allows taking opportunistic decisions, and
thus, making the most of each user channel conditions. LTE specifications do include
several CSI feedback methods comprising periodic and aperiodic mechanisms suitable
for Real Time (RT) and Non Real Time (NRT) traffic, respectively. However, such
in-built schemes are quite generic and they do not take into account the presence
of ICIC techniques. Hence, the operation of these native CSI feedback mechanisms
is not optimized to operate in conjunction with static ICIC techniques. Both ICIC
and CSI feedback have been investigated independently, nevertheless, it is desirable
a design in which the joint operation is efficient. As it will be shown later on, this
particular interworking deserves special attention as the performance of native LTE
CSI reporting schemes is poor in cases where static ICIC policies are applied.

83
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This chapter introduces two novel CSI feedback schemes: a periodic scheme and
an aperiodic one. Both mechanisms are suitable to operate in conjunction with
SFR and FFR. The design of these schemes exploit the typical per-class resource
allocation in SFR and FFR. In this manner, UE only feedback to their serving base
stations the quality of the subbands in which they are allowed to be transmitted,
thus reducing the signaling overhead and improving the accuracy of the CSI feedback
process.

The Chapter is organized as follows: the next section introduces the required
LTE background, i.e., a general description of the mechanisms available in LTE for
CSI feedback. The problem statement is also presented. Next, Section 4.3 contains
a survey of related works, where it is shown that the interworking between static
ICIC and CSI feedback has not been explicitly considered before.. In the light of
this situation, novel schemes are proposed and presented in Section 4.4. Section 4.5
describes the system model and the QoS assessment methodology used to evaluate
the performance of these schemes. Finally, the chapter is closed with the analysis of
the numerical results and conclusions in Sections 4.6 and 4.7, respectively.

4.2 CSI Feedback in LTE

There are two different mechanisms to perform CSI feedback in LTE: Periodic and
Aperiodic schemes [162].

1. Periodic CSI feedback: UE reports periodically through the Physical Uplink
Control Channel (PUCCH) channel quality measurements. The reporting
interval is configured by higher layers.

2. Aperiodic CSI feedback: The feedback is performed on-demand and it is
transmitted over the Physical Uplink Shared Channel (PUSCH).

Periodic CSI feedback is recommended for traffic patterns having constant or near
constant bit rate such as conversational or streaming services. Aperiodic CSI feedback
is more appropriate for bursty traffic patterns in which a more detailed reporting is
needed (from time to time). It is worth noting that both types of reporting can be
used together, in such cases aperiodic reporting has priority.

Before describing the CSI schemes defined in LTE, it is important to provide
some details about Channel Quality Indicators (CQI), the main format in which
LTE manages the CSI1.

1Precoding Matrix Indicator (PMI) and Rank Indicator (RI) are required for additional transmi-
ssion modes including transmit diversity, open- and closed- loop spatial multiplexing and multiuser
MIMO [162].
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4.2.1 Cell Specific Reference Signals and Channel Quality
Indicators

A CQI is a 4-bit integer calculated from SINR measurements. Reported CQI values
are used together with additional UE capabilities to select the optimum MCS index
for transmission. In order to allow for SINR estimations, CS-RS are embedded into
the overall signal bandwidth at certain REs. The position of the CS-RS at each
cell is determined taking into account the cell’s identity [162]. Figure 2.16 shows a
possible allocation of the CS-RS within the OFDMA grid.

Lets consider the SINR at subcarrier level. The corresponding expression is as
follows:

ψn,scm =
Pn,sc
l̂
· gn,sc
m,l̂

L∑
l=1, l 6=l̂

Pn,scl · gn,scm,l + σ2

, (4.1)

where the indices m ∈ {1, 2, . . . ,M}, n ∈ {1, 2, . . . , NDL
RB} and sc ∈ {1, 2, . . . , NRB

sc }
indicate the user, RB, and subcarrier, respectively.

Let’s consider the vector Ψ ∈ RNPCS-RS , whose elements ψi (i=1, 2, ..., NPCS-RS)
correspond to the SINR values of the CS-RS in an arbitrary set of PRBs (P). Thus,
taking into account that SINR values are computed according to (4.1), the effective
SINR [179] is obtained from the following expression:

ψeff = a1I
−1

 1

NPCS-RS

NPCS-RS∑
i=1

I

(
ψi
a2

) . (4.2)

The parameters a1 and a2 adapt to different MCS. The function I(·) maps each
SINR value (ψi) to a performance metric that is averaged over all the samples. In this
thesis, the Mutual Information Equivalent SINR Mapping (MIESM) or modulation
constrained capacity [174] is employed. Therefore:

I(ψi) = log2(Q) +
1

2πQ

Q∑
q=1

f(ψi, q), (4.3)

f(γi, q) =

∫
e−ψi(y−xq)

2

log2

(
e−ψi(y−xq)

2∑Q
k=1 e

−ψi(y−xk)2

)
dy, (4.4)

where Q is the size of the modulation alphabet, y is the channel output and xq are
the modulation symbols. The reader is referred to [174] for further details. Note that
each element of P represents a PRB whose index (n) univocally identifies the PRB
in the system bandwidth, and hence, n ∈ {1, 2, . . . , NDL

RB}.

Thus, the equivalent CQI index (Θ ∈ {0 1 2 ... 15}) indicating the MCS that can
be supported for transmissions over P, with an arbitrary BLER (see Table C.4), is
obtained by means of a non-decreasing function (Λ (·)) of the effective SINR (ψeff)
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as follows:
ΘP = Λ (ψeff) . (4.5)

LTE subbands and bandwidth parts

Before describing the CSI feedback schemes in LTE, two LTE definitions/notations
are required:

• Subbands: The system bandwidth, composed of NDL
RB RBs, is divided into

NSB subbands, where bNDL
RB/kc subbands are of size k and one is of size

NDL
RB − k · bNDL

RB/kc. The subband size (k) depends on the system band-
width (NDL

RB) as it is specified in [162] and it is shown in Table C.5. Thus, Ps
represents the set of (consecutive) PRBs within the sth subband.

• Bandwidth parts: NJ consecutive subbands in a total of J bandwidth parts
span the system bandwidth. The value of J also depends on NDL

RB as it is
specified in [162] and it is shown in Table C.6. For J > 1, NJ = dNDL

RB/k/Je
or NJ = dNDL

RB/k/Je − 1 depending on the values of NDL
RB , k, and J . In this

manner, Pi,j represents the ith subband within the jth bandwidth part, where
i ∈ {1, 2, . . . , NJ} and j ∈ {1, 2, . . . , J}.

The different CSI feedback schemes available in LTE are explained in the following
points. Please note that ∆ and δ are the CQI-based CSI report content and uplink
signaling overhead associated to each scheme, respectively.

4.2.2 Aperiodic CSI feedback schemes in LTE

• Wideband feedback (LTE-WB). The UE reports one wideband CQI (ΘWB),
i.e., a value indicating the average channel quality observed in the whole system
bandwidth. To compute this metric, all the CS-RS must be considered in the
CQI estimation process: from (4.1) to (4.5).

∆LTE-WB = ΘWB, (4.6)

δLTE-WB = 4 [bits per report]. (4.7)

• Cell-configured subband feedback (LTE-HLC)2. One single differential CQI
value is reported for each subband within the whole system bandwidth. A 2 bits
differentially encoded CQI, with respect to the wideband CQI (ΘWB), is used
as defined in [162] and it is shown in Table C.8.

∆LTE-HLC = {ΘWB, ~Θ ∈ NNSB }, (4.8)

δLTE-HLC = 4 + 2 ·NSB [bits per report]. (4.9)

2The suffix ‘HLC’ stands for higher layers configured.
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• UE-selected subband feedback (LTE-USa)3. The UE reports one differential
CQI value reflecting the channel quality over the best M subbands. The position
of such M subbands is reported using a combinatorial index (w) composed
of x bits. The wideband CQI (ΘWB) is also reported. The differential encoding
uses 2 bits as it is defined in [162] and it is shown in Table C.9.

∆LTE-USa = {ΘWB, w, ~Θ ∈ RM }, (4.10)

δLTE-USa = 4 + x+ 2 [bits per report], (4.11)

x =

⌈
log2

(
NSB

M

)⌉
. (4.12)

4.2.3 Periodic CSI feedback schemes in LTE

• Wideband feedback (LTE-WB). See wideband feedback in aperiodic mode.

• UE-selected subband feedback (LTE-USp). The UE selects the single subband
with the best CQI out of NJ subbands of the jth bandwidth part, and then,
it feeds back the corresponding CQI together with a label (w) of x bits to
identify the best subband within the current bandwidth part. The reporting
period is Np ∈ { 2, 5, 10, 16, 20, 32, 40, 64, 80, 128, 160 } ms. The index j of
the bandwidth part does not need to be fed back since the cell can compute
it directly by means of an internal counter NSF as follows: j = mod(NSF, J).
The size of the label is given by x = dlog2(dNDL

RB/k/Jee).
It is worth saying that with this approach, there is a high risk of having
outdated CSI if the reporting frequency is larger than the coherence time of
the channel [9]. Moreover, CQI is encoded differentially using 3 bits with respect
to the wideband CQI that is measured every H · Np ms, where H = J + 1.
The differential encoding is defined in [162] and it is shown in Table C.9.

∆LTE-USp(t) = ΘP∗ + w, (4.13)

j = t mod (J + 1) , (4.14)

P∗ =

{
argmax
Pi,j

ψeff ∀ i, j 6= 0,

ΘWB, j = 0,
(4.15)

δLTE-USp = 4 + x, or 2 [bits per report]. (4.16)

4.2.4 Problem Statement

As it has been shown, both periodic and aperiodic CSI feedback are coded differen-
tially with respect to the wideband CQI (ΘWB). Note that the highest granularity
that can be reported is at subband level, which is a set of contiguous PRBs, and as
it was indicated, the subband size depends on the system bandwidth (NDL

RB).

3The scheme LTE UE-selected subband feedback can operate both in periodic and aperiodic
mode with minor differences. To make the distinction explict, the letters ‘p’ and ‘a’ have been used
as suffixes.
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Figure 4.1: Wideband CQI estimation issue.

Both differential encoding and subband reporting are needed to reduce the uplink
CSI feedback overhead. Thus, given that 1) ΘWB is computed by considering all the
CS-RSs in the system bandwidth, and 2) the resource allocation used in SFR and
FFR assigns different power levels (or even no power) to different portions of the
system bandwidth, it is clear that ΘWB only provides a very rough estimate of the
actual average radio channel quality from the perspective of each class of users (E or
I). Since subband CQIs are differentially encoded with respect to this figure, when
static ICIC is applied, ΘWB will be under- and over- estimated for exterior (E) and
interior (I) users, respectively. The situation is illustrated in Figure 4.1 for the case
of FFR.

The situation previously described results in suboptimal performance of the LTE
CSI feedback schemes, and consequently, additional measures need to be taken to
alleviate this issue. Before presenting the proposed CSI reporting schemes, a survey
of related works is provided.

4.3 Related Work

The literature about CSI feedback in LTE is extensive since it is 1) a very important
aspect affecting the performance of wireless systems [180], and 2) especially useful
in case of multicarrier based access methods such as OFDMA [181]. This section
provides an overview of important works about CSI feedback.

4.3.1 Work within the 3GPP

The work related to CSI feedback is mainly discussed in the meetings of the Technical
Specification Group (TSG) Radio Access Network (RAN), specifically by the Working
Group 1 (WG1). During the final phase of the standardization of LTE (2007 and
2008), discussions and proposals about CSI feedback were mainly focused on CQI
definition, measurement, and reporting methodologies [182–187]. From the very
beginning, especial emphasis was placed on the amount of uplink signaling overhead
and the overall complexity involved in the different reporting mechanisms. Subsequent
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discussions addressed other important aspects such as overhead analysis, feedback
compression, CQI computation, and the interplay with retransmissions [188–191].

With the advent of LTE-A, during 2010 and 2011, discussions on aperiodic
reporting schemes and their adaptation to new features such as CA and eICIC
have also taken place [192–198]. More recently, as CoMP [34] has become a very
active research field, further improvements are being discussed in that direction as
well [199–202].

4.3.2 Contributions from the Research Community

According to [203], CSI feedback is an element that needs to be taken into greater
consideration when wireless systems are investigated. However, the way in which
this is done is rather diverse and, in general, it depends on the research objectives
in each case. Bearing this in mind, it is possible to distinguish the following groups:

• Group 1: works implementing existing reporting mechanisms as a complemen-
tary functionality to study other aspects, rather than CSI feedback, such as
ICIC or scheduling.

• Group 2: studies presenting performance evaluation and/or analysis of one or
more existing feedback schemes either analytically or by means of system level
simulations.

• Group 3: contributions introducing new reporting strategies.

Group 1: Modeling CSI Feedback

One common assumption found in the literature is considering full and perfect channel
knowledge both in frequency and time domain. In the frequency domain, this implies
that channel quality information is available with an arbitrary small resolution, i.e.,
at subcarrier level, at PRB level, or in groups of PRBs. In the time domain, full
knowledge implies that channel measurements are available instantaneously to the
transmitter. Perfect knowledge implies that channel quality estimations are done
without errors, which is rather arguable in practical systems. In addition, it is worth
noting that the performance of several RRM algorithms relying on such detailed
CSI could be significantly different if erroneous or delayed channel estimations are
considered.

An interesting example is [107], where the authors proposed a set of interference
avoidance schemes for the particular case of light load conditions. In this study,
channel information was available for each PRB (full knowledge in the frequency do-
main), but 2 ms reporting delay was assumed (partial knowledge in the time domain).
Measurement error was also introduced through a log-normal random variable, thus
imperfect knowledge was assumed. Channel quality information was represented by
means of SINR levels with 1 dB resolution to emulate the discrete nature of realistic
reporting schemes such as the ones in LTE. This way, the assumptions are perfectly
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valid for the context of the study since small variations on them would not affect
the conclusions qualitatively speaking. The work eventually shows the importance
of an accurate and realistic CSI feedback modeling.

Group 2: Performance Analysis of CSI Feedback Strategies

Although analytical treatment is in general advisable, evaluating analytically the
performance of CSI feedback schemes in the context of cellular networks requires
incurring in analytical approximations and modeling simplifications, as it has been
pointed out in [203]. In [203], closed-form expressions measuring the merit of different
reporting schemes available in LTE were obtained. Nevertheless, Donthi and Mehta
remarked 1) the complementary nature of their work with respect to the need for
detailed/accurate system level simulations, and 2) the fact that their findings should
be understood as independent theoretical references that can provide additional
insights to system design and optimization. Additional aspects such as the impact
of estimation errors were identified as open issues. Given this, the study presented
in this chapter addresses these and other related issues by means of detailed system
level simulations. Other interesting analytical performance assessments have been
presented recently in [204, 205], although for more generic CSI feedback mechanisms
and OFDMA settings.

Group 3: Previous Proposals

One of the first practical CSI feedback schemes was proposed by Su et al. in [206].
Their reporting scheme is mainly based on two ideas: first, reporting CQIs only for
subbands featuring the best channel conditions, and second, using a hierarchical
structure to divide the system bandwidth into levels with different granularities.
According to [207], where this structure was initially introduced, by iterating through
these levels, it is possible to roughly estimate a fading profile of the whole bandwidth.
However, this would require certain reporting periodicity that indeed does not exist
for several types of services.

Another practical approach was proposed in [81]. In this work, the authors
employed a Modified Top-M scheme, in which, UE only feedbacks the average
channel quality of the best M subbands. However, in this scheme the value of M
depends on traffic load and type. When system load increases, the value of M is
decreased in order to keep the uplink overhead mostly constant.

The previous works realistically deal with the LTE specifications and its cons-
traints, however, the vast majority of works about CSI with limited feedback are
proposals mainly oriented to generic OFDMA systems, whose LTE-feasibility would
require important changes in the system design. In practice, new proposals must be,
as far as possible, in compliance with the standards. Moreover, no previous proposal
has addressed ICIC aspects explicitly.

A brief overview of other recent generic works (that are not compatible with
LTE) are also presented. The work in [208] identifies interesting aspects of the CSI
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feedback problem: the need for efficient low-rate strategies and the question on
how accurate CSI should be transmitted to achieve near optimum performances.
Nevertheless, a pitfall of the system model in [208] is that it only considers one
single access point, and hence, the random nature of ICI is not taken into account.

The contribution in [209] extended the analysis presented in [208] to OFDMA.
This work is important because it introduces a feedback scheme that allocates feed-
back resources depending on the status of buffers and channel conditions. However,
the model used in this study assumes that the transmissions are always done with
the same format, and that the number of required subbands per user is constant.
These assumptions are hardly justified for complex multiservice modern cellular
systems.

Recently, a joint feedback-scheduling scheme, similar to [209], was proposed
in [210]. The authors also highlighted the importance of considering the impact of
CSI feedback on the performance of queuing systems with realistic traffic models.
Other feedback schemes providing partial CSI for the downlink of generic OFDMA
systems include [211–213].

In order to provide a comparative perspective, Table 4.1 shows a summary of
these contributions highlighting the following aspects:

X CSI estimation errors. Given that channel quality measurements are based on
CS-RS, CSI is partial. In addition, this information is subject to other sources
of error such as delay processing, quantization, and measurement impairments.

X LTE feasibility. Any CSI feedback proposal must be, as far as possible, in
compliance with the technical specifications, meaning that only minor changes
would be required for implementation.

X Uplink capacity. As mentioned before, the limited capacity of uplink feedback
channels is an important practical constraint in real systems.

X Overhead analysis. Given the previous point, the required uplink overhead is
an indicator that must be considered as a performance metric.

X Realistic traffic. Aperiodic feedback schemes are especially useful for NRT traffic
patterns, where CSI is more likely to be requested on-demand. Considering
realistic traffic patterns is required to consistently evaluate the performance
and merit of CSI reporting schemes.

X System model. This aspect is particularly important in the context of inter-
ference limited systems. If only one access point is considered, radio channel
quality can only be expressed in terms of SNR, instead of SINR, and therefore,
the inherent randomness of intercell interference cannot be taken into account.

X ICIC aspects. As it was shown, the resource allocation pattern in static ICIC
techniques can have a significant effect on the performance of the CSI feedback
schemes. Hence, it is important to highlight this aspect within this survey.

From Table 4.1, it can be seen that no ICIC-oriented CSI feedback scheme has
been investigated so far. In addition, the lack of a realistic performance assessment
considering a multi-cell system, in which ICI and CSI can be jointly modeled is
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Table 4.1: Summary of CSI feedback proposals and contributions

Ref.
CSI LTE Uplink Overhead Realistic

Model ICIC
errors feasibility capacity analysis traffic

[81] X X X × X Multi-cell ×
[206] × X X X × Multi-cell ×
[208] × × X X × Single-cell ×
[209] × × X × X Single-cell ×
[210] × × X X X Single-cell ×
[214] × × × × X Single-cell ×
[212] × × X X × Single-cell ×
[211] × × X × × Single-cell ×
[213] × × × X × Single-cell ×

notorious. A fair performance assessment must take all the aspects shown in Table 4.1
into account. Thus, the main novelties presented in this chapter can be summarized
as follows:

1. The introduction of periodic and aperiodic CSI feedback schemes for LTE
aiming at optimizing both user QoS and system performance when static
ICIC is considered. This is done by employing realistic traffic patterns and an
independent QoS oriented scheduling policy.

2. The proposed schemes incorporate all the aspects shown in Table 4.1. The
channel quality definition and SINR measurements are done according to the
LTE specifications, i.e., CSI is based on CQI reports obtained by means of
SINR values of CS-RS, and subject to delay and estimation errors.

3. Additional notorious aspects include:

• The performance of the proposed CSI feedback schemes has been evaluated
by considering both FFR and SFR.

• The impact of the novel strategies on user satisfaction ratio has been
analyzed by means of the joint system capacity notion [215], which
provides good insights into the actual impact on the QoS.

4.4 Description of the Proposed Schemes

In this section, a description of the proposed CSI feedback schemes is provided. As
it was explained, two fundamental aspects of the design of CSI feedbacks schemes in
LTE are 1) the wideband CQI (ΘWB) is computed by each UE taking into account
the whole system bandwidth, and 2) the CQI of different subbands (see Table C.4)
is encoded differentially with respect to ΘWB (see Tables C.8 and C.9). Recall that
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the differential encoding aims at reducing the amount of CSI feedback overhead in
the uplink.

Nevertheless, despite this design is effective in the vast majority of cases, it is
counter-productive if static ICIC is employed. This is because the estimation of the
wideband CQI (ΘWB) takes into account parts of the system bandwidth in which
the user will not be allocated due to 1) the resource allocation pattern of SFR and
FFR, and 2) the current classification of the user (either E or I). Even worse is the
fact that the channel quality in those subbands changes significantly as a result of
the variation of the reuse factor and power level.

In this manner, the design of the CSI feedback schemes presented herein relies on
refining the estimation of ΘWB. This can be done by focusing the computation
of this figure only on the subbands assigned to the class (E or I) each UE belongs
to. This has another advantage, the estimation of ΘWB is simpler (it requires less
processing) because the user equipment does not have to sweep the whole system
bandwidth.

Given that for the vast majority of scenarios, ΘWB does not change significantly
over time, it can be fedback every few seconds, i.e., at a very low frequency from
the CSI feedback point of view. In any case, the update interval of ΘWB can be
adjusted conveniently by higher layers (RRC protocols) and it can be combined
with the classic ΘWB definition to let the proposed schemes to be aware of potential
classification changes (from E to I or vice versa).

The operation of the proposed schemes is explained next.

4.4.1 Periodic CSI feedback for static ICIC: ICIC-SEQ

The operation of the proposed periodic scheme (ICIC-SEQ)4 is illustrated in Fi-
gure 4.2 for the case of SFR. The operation is exactly the same for FFR.

The approach requires transmitting a very small amount of information in the
downlink (Step 1 in Figure 4.2), the vector m that indicates the subbands in which
the user can be allocated in virtue of the class it belongs to (E or I). The size of the
vector is dNDL

RB/ke bits, where k depends on the system bandwidth (NDL
RB) as it is

indicated in Table C.5. Note that the worst case, NDL
RB = 110, gives |m| = 14 bits.

In any case, this information only needs to be transmitted once, unless the user
changes its classification which typically either does not happen during the session
time or it happens only a few times5

Having the vector m, the UE focuses the estimation of the wideband CQI (ΘWB)
on the subbands of interest (Step 2 in Figure 4.2), for which, it is required less
processing than in the normal case. Then, at every CSI feedback interval6, the UE

4The suffix ‘SEQ’ stands for sequential.
5Assuming a very pessimistic case in which a user changes its classification every 20 s, the

required downlink overhead is, again in the worst case (NDL
RB = 110), equal to 14/20 = 0.70 bps.

6In periodic CSI feedback, the feedback interval is transmitted to the user by means of user-
specific signaling.
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Figure 4.2: Description of the proposed periodic scheme: ICIC-SEQ.

feedbacks sequentially the CQIs of the subbands indicated by m. In particular,
it transmits one differentially encoded CQI to its serving base station (Step 3 in
Figure 4.2). In this manner, the proposed scheme accomplishes the design targets:
improving the accuracy of the CSI, while keeping both computational effort and
uplink overhead to minima.

The CQI-based CSI report content (∆) and uplink signaling overhead (δ) asso-
ciated to the proposed mechanism are indicated next:

∆ICIC-SEQ(t) = Θi (i over the active subbands in m), (4.17)

i = t mod (|m · 1|), (4.18)

δICIC-SEQ = 2 [bits per report]. (4.19)

4.4.2 Aperiodic CSI feedback for static ICIC: ICIC-LOC

The operation of the proposed aperiodic scheme (ICIC-LOC)7 is illustrated in
Figure 4.3 for the case of SFR. The operation is exactly the same for FFR.

The operation is similar to the periodic scheme ICIC-SEQ. The information that
is transmitted by the serving base station (Step 1 in Figure 4.3) in the downlink is
exactly the same as in ICIC-SEQ, i.e., a vector m indicating the subbands in which
the user will be allocated in virtue of the class it belongs to (E or I).

However, there are some differences. When aperiodic feedback is required over
the PUSCH (Step 2 in Figure 4.3), the UE computes and feedbacks (Steps 3 and 4 in
Figure 4.3), based on the vector m, the wideband CQI (ΘWB), plus one differentially
encoded CQI for the subbands marked with ‘1’ in m. Note that similarly to the

7The suffix ‘LOC’ stands for localized.
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Figure 4.3: Description of the proposed aperiodic scheme: ICIC-LOC.

schemes defined for LTE, aperiodic feedback provides more precise CSI. Thus, the
proposed scheme improves the accuracy of such information by focusing exclusively
on the subbands of interest for each user.

The CQI-based CSI report content (∆) and uplink signaling overhead (δ) asso-
ciated to the proposed mechanism are indicated next:

∆ICIC-LOC = ΘWB + Θi (For all index i marked as ‘1’ in m), (4.20)

δICIC-LOC = 4 + [2× (m · 1)] [bits per report]. (4.21)

4.5 System Model

In order to investigate the impact of the CSI feedback schemes previously introduced
on system performance, the downlink of an LTE network was considered. The
interworking considered for this study between different network functionalities such
as CSI feedback, scheduling, and HARQ is illustrated in Figure 4.4. As it can be
seen, the scheduler allocates radio resources and shapes future transmissions to
different users taking into account the resource allocation pattern of the static ICIC
scheme, the status of the buffers, and several operator-defined policies. However, as
the figure suggests, the focus is placed on the role of the CSI feedback scheme, while
the rest of functionalities are kept fixed.

In this study, QoS is measured in terms of the number of satisfied users. A user
is said to be satisfied, if it mets a certain service-dependent criterion. In this manner,
in order to provide a quite realistic perspective of the merit of the proposed schemes,
different services have been considered. For the service s, the user satisfaction ratio
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Figure 4.4: System interworking used to study the impact of CSI feedback.

(Qs) is given by:
Qs = µ̂s/µs, (4.22)

where µs is the number of users of the service s, and µ̂s is the number of satisfied
users in the service s. In this work, it has been considered both RT and NRT services
in single-service scenarios, i.e., scenarios in which all the users employ the same
application, and hence, the subindex s is omitted for the sake of clarity.

The traffic models used in this study are VoIP, FTP, and HTTP. They are defined
in Appendix B, Section B.2.

The MAC scheduler allocates radio resources in such a way as to satisfy QoS
requirements and to optimize system performance. However, despite its importance,
the design of the MAC scheduler is not specified within the LTE specifications. As
different schedulers may result in significantly different levels of user satisfaction and
system performance, mobile operators implement vendor-specific solutions according
to their needs. In this study, the scheduler implementation corresponds to the
Capacity-driven Resource Allocation (CRA) scheduler proposed in [215]. The CRA
scheduler dynamically controls the resource sharing among flows of different services
such as delay-sensitive and rate demanding ones. The authors in [215] claim that the
CRA scheduler improves the joint system capacity [216], defined as the maximum
total offered load in which all provided services fulfill a certain user satisfaction ratio.
In case of NRT services such as HTTP and FTP, a user is said to be satisfied if a
target bit rate (rT) is met. In case of RT services such as VoIP, a user is said to be
satisfied if the BLER is below a certain threshold. Other parameters such as delay
and jitter are indirectly considered due to the operation of the CRA scheduler.

Thus, the joint system capacity concept fits perfectly the research objectives of
this study since it captures all the relevant aspects of multiservice environments
such as per-service QoS requirements, while it allows to assess how different CSI
feedback schemes affect the QoS provisioning. In addition, it is worth saying that
the CRA scheduler by itself does not apply any restriction to users based on classes
(E or I), i.e., such constraints come from the static ICIC policy, which determines
the resources assigned to each class of users at each cell.
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4.6 Performance evaluation

In order to obtain accurate and realistic performance figures, this study is conducted
by means of detailed LTE-based system level simulations. This approach allows
taking into account all the elements affecting the performance of CSI feedback
schemes such as realistic ICI, fading effects, estimation errors, and processing delay.
In addition, more insights can be obtained about the actual impact of the feedback
mechanisms previously described on the QoS experienced by users.

The simulation conditions are the ones described in Subsection 3.4.2 with minor
differences. Such details are indicated next. Experiments were also conducted by
means of Monte Carlo simulations and the results were obtained from 500 independent
experiments with uniform randomly spread users. Each experiment simulates 60 s
(6× 104 TTIs) to account with traffic features and let enough time to the scheduler
to converge to a stable regime. The test case is the scenario ‘Synthetic’ described in
Appendix B, Section B.1.

Channel model and users mobility deserve especial attention because the these
elements have an important influence on the performance of CSI feedback mecha-
nisms, and hence, on the results and conclusions. The mobility model is vehicular
for urban scenarios as defined in [173]. In order to emulate low/moderate conditions,
pedestrian speed of 3 km/h was assumed. The channel model is the Extended
ITU Pedestrian B defined in [178], which features a 32.55 ns sampling grid that
matches the LTE sampling rate of 30.72 MHz. Additional implementation details
and parameters used in numerical evaluations are shown in Tables 4.2 and B.2.

4.6.1 Benchmarks

The performance of the proposed periodic scheme (ICIC-SEQ) is compared with the
native CSI feedback schemes in LTE, i.e., UE-selected subband feedback (LTE-USp)
and Wideband feedback (LTE-WB).

The performance of the proposed aperiodic scheme (ICIC-LOC) is also compared
with LTE schemes, i.e., Wideband feedback (LTE-WB), Cell-configured subband
feedback (LTE-HLC), and UE-selected subband feedback (LTE-USa). In addition,
two additional aperiodic reporting mechanisms previously proposed have been also
included as benchmarks. The hierarchical selective (HI-SEL) scheme presented
in [206], and the modified Top-M reporting mechanism (MOD-TOPM) introduced
in [81].

Moreover, in order to obtain a sort of optimality gap in each case, an ideal
reporting scheme (IDEAL), where one CQI is fedback for each RB is also considered
both for periodic and aperiodic CSI feedback. The remaining benchmarks are
described next.
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Table 4.2: Simulation Parameters and Evaluation Setting.

Parameter Value/assumption

Test cases (scenarios) ‘Synthetic’, ‘MORANS’ (see Section B.1).
System bandwidth (B) 18 MHz.
User distribution Random/uniform.
Scheduler CRA [215].
Mobility model Urban vehicular [173].
PDCCH Capacity 8 scheduling grants per TTI.
CSI processing delay 3 TTIs.
CS-RS power boost 0 dB.
Resource allocation Type 1 [162].
Link Abstraction Mutual Information Equivalent SINR Mapping [174].
Transmission mode Single-antenna port.
Services VoIP, HTTP, and FTP. (see Section B.2).
Target BLER: VoIP ≤ 1%.
Target rate (rT): HTTP ≥600 kbps.
Target rate (rT): FTP ≥400 kbps.
Periodic reporting interval 5 TTIs.
Aperiodic reporting interval ≥5 TTIs.

SFR setting α = 0.40, β = 0.33, and ψTH = 1.00 dB.
FFR setting α = 0.40, β = 0.40, and ψTH = 1.00 dB.

Ideal CSI feedback: IDEAL

In this scheme, one perfectly estimated (without error) CQI is fedback and instan-
taneously known for each RB. The CQI-based CSI report content (∆) and uplink
signaling overhead (δ) associated to this scheme are indicated next:

∆IDEAL = Θi (i = 1, , 2, · · · , NDL
RB), (4.23)

δIDEAL = 4×NDL
RB [bits per report]. (4.24)

Hierarchical selective CSI feedback: HI-SEL

In this scheme, proposed in [206], the system bandwidth is divided into different
levels with different granularities. For NDL

RB = 100 (the case of study herein), the
implementation defines 5 levels. The number of subbands in the lth level (N l

SB)
is: 1, 2, 4, 20, and 100, for l = 1, 2, 3, 4, and 5, respectively. Correspondingly, the
subband size (Sl) and the number of suboptimal subbands (ql) in the level l is 100,
50, 25, 5, and 1, and 0, 1, 2, 3, and 4, respectively. Note that the notion of subband
in the context of this strategy is not the same as in LTE, and hence, the size of
each of them depends on both the hierarchical level and the system bandwidth.
The algorithm transmits, for each level, a CQI value for the best subband together
with another CQI representing the average quality in the next q best subbands
(the suboptimal subbands). In addition to the pair of CQIs, the positioning of the
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best and suboptimal subbands at each level must be indicated to the network by
means of a combinatorial index (w) composed of x bits. The CQI-based CSI report
content (∆) and uplink signaling overhead (δ) associated to this mechanism are
indicated next:

∆HI-SEL = {ΘBest, Θq, w }, (4.25)

δHI-SEL = 4 + 4 + x [bits], (4.26)

x =

⌈
log2

(
5∑
l=2

((
N l

SB

1

)
·
(
N l

SB − 1
ql

)))⌉
. (4.27)

Modified TOP-M CSI feedback: MOD-TOPM

This scheme was proposed in [81] and it operates similarly to LTE-USa with some
differences. The UE reports a 4-bit CQI representing the average quality observed
within the best M subbands. Thus, instead of using differential encoding, 4-bit
CQIs are employed, and so, wideband CQI is not required. However, the value
of M is adjusted depending on the load (the number of users at each cell). The
positioning of the best M subbands must be informed to the transmitter by means of
a combinatorial index w composed of x bits. The CQI-based CSI report content (∆)
and uplink signaling overhead (δ) associated to this mechanism are indicated next:

∆MOD-TOPM = {ΘBestM, w }, (4.28)

δMOD-TOPM = 4 + x [bits], (4.29)

x =

⌈
log2

(
NSB

M

)⌉
. (4.30)

4.6.2 Numerical Results

The impact of the CSI feedback schemes on the overall user satisfaction ratio is
shown in Figure 4.5 for the periodic CSI feedback strategies.

Figures 4.5a and 4.5b show the impact of the periodic CSI feedback schemes on
the satisfaction ratio for VoIP users when SFR and FFR are applied, respectively.
The figures indicate the resulting satisfaction ratio for different cell loads. As it can
be seen, the amount of satisfied users (the ones with BLER < 1%) is quite similar in
both static ICIC schemes (SFR and FFR). Actually, for low load conditions, FFR
tends to improve the system capacity (especially for LTE-WB and LTE-USp) due
to the higher levels of SINR that are obtained by means of this strategy. In terms of
the VoIP capacity, ICIC-SEQ outperforms both LTE-WB and LTE-USp in a range
that varies from 3% to 12%. These gains represent (on average) between 6 and 40
more satisfied VoIP users per cell. The figures also show the performance of the
scheme IDEAL, which can be regarded as an upper bound from the performance
point of view. Recall that this scheme is unfeasible for practical systems due to the
extremely high amount of overhead in the uplink and the computational cost at UE
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(a) VoIP - SFR. (b) VoIP - FFR.

(c) FTP - SFR. (d) FTP - FFR.

Figure 4.5: Impact of periodic CSI feedback schemes on QoS.

side. As it was mentioned before, this scheme was included in order to provide a
perspective of the optimality gap between practical schemes and the ideal case.

Figures 4.5c and 4.5d show the users satisfaction ratio in the FTP scenario for
different cell loads. Focusing first on the ICIC strategies, it can be seen that, in
general, the performance of the schemes is similar for both SFR and FFR. Despite
that, theoretically, SFR provides higher levels of spectral efficiency. This is due to the
fact that the CRA scheduler strictly tries to provide users with the target rate (rT).

Looking at the results from a comparative perspective, the proposed periodic
CSI feedback scheme (ICIC-SEQ) clearly improves the QoS provided by the system
with respect to the native LTE schemes. The gains in case of SFR range from 5% to
8%, while in case of FFR the improvement goes from 7% to 13% in terms of the
number of satisfied users, i.e., users with r ≥ rT. Note that the optimality gap (with
respect to the scheme IDEAL) ranges from 22% to 35%, but as it was mentioned
before, this gain comes at the expense of a prohibitive increase of around ×100 times
in the required uplink overhead. A per-scheme overhead analysis is shown later on.
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(a) HTTP - SFR. (b) HTTP - FFR.

(c) FTP - SFR. (d) FTP - FFR.

Figure 4.6: Impact of aperiodic CSI feedback schemes on QoS.

Figure 4.6 shows the performance comparison of the aperiodic CSI feedback
schemes. Figures 4.6a and 4.6b present the results corresponding to the scenarios
with HTTP users. As it can be quickly noticed, the proposed aperiodic CSI feedback
scheme (ICIC-LOC) clearly improves the overall QoS with respect to the LTE
schemes and existing approaches from the literature. The significant improvement is
due to the fact that more accurate wideband CQI estimations in ICIC-LOC allows
for a more precise MCS selection. Of particular interest is always the case where
the system load is high (45 and more active users per cell). ICIC-LOC provides
gains with respect to the closest LTE scheme (LTE-HLC) ranging from 5% to 28%
(in case of SFR), and gains from 20% to 45% (in case of FFR). These gains can
be explained by the bursty nature of the HTTP traffic that leaves more room for
retransmission, from which ICIC-LOC can be especially benefited from. As it will
be shown, ICIC-LOC features a less conservative MCS selection than the schemes in
LTE, which are more pessimistic in that sense. In case of bursty traffic, HARQ can
effectively handle the errors resulting of such aggressive MCS selection, and hence,
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the less conservative (but more accurate) channel estimation in ICIC-LOC results in
gains from the QoS point of view.

Figures 4.6d and 4.6d show the results corresponding to the FTP scenarios
for SFR and FFR, respectively. In case of FTP traffic, the optimality gap with
respect to the case IDEAL is greater meaning that the spectral efficiency loss due to
HARQ retransmissions is more pronounced. In any case, the proposed scheme also
outperforms all the benchmarks although with smaller gains than in cases of HTTP
traffic. The gains range from 5% to 15% in case of SFR, and from 8% to 20% in
case of FFR.

It is worth mentioning that in the context of FTP traffic (a model that is
similar to the full buffer assumption), the results presented herein confirm and
complement the theoretical findings shown in [203], in the sense that LTE-HLC
clearly outperforms LTE-USa. The results presented herein confirm that this is also
true in the context of static ICIC. However some clarifications need to be remarked.
In [203], the comparison was presented in terms of the average throughput subject
to ‘synthetic’ scheduling policies such as greedy and proportional fair that have
a clear asymptotic behavior under the full/infinite buffer assumption. The CRA
scheduler employed herein is multiservice and QoS oriented [215]. This means that
the scheduler, on the one hand, tries to allocate the minimum amount of resources
to meet the QoS (target bit rate) of each user, and on the other hand, it tries to
maximize the number of satisfied flows meaning that under heavy load conditions it
focuses on users more likely to be satisfied, jeopardizing unlucky users. For these
reasons, the study presented in this chapter is both required and relevant as it extends
previous theoretical findings to cases where analytical treatment is impossible, but
that have great interest from a practical viewpoint.

The performance of HI-SEL [206] and MOD-TOPM [81] is especially poor in the
context of static ICIC (Figure 4.6), being even below of 3GPP baselines. Both HI-SEL
and MOD-TOPM showed acceptable performances in [206] and [81], respectively.
However, it is worth saying that these strategies were tested under the full frequency
reuse assumption, for which they were explicitly designed. Moreover, no comparison
with LTE reporting schemes was presented therein, and hence, their relative merit
with respect to these important baselines was not clarified. The introduction of
static ICIC schemes sketches a completely different picture from the CSI point of
view. Indeed, some of the strengths in HI-SEL and MOD-TOPM become important
drawbacks in this new scenario. For instance, both HI-SEL and MOD-TOPM just
report the best subbands. On the one hand, MOD-TOPM is a variation of LTE-USa
without neither wideband CQI nor differential encoding. To some extent, wideband
estimates are good in the sense that, as they favor conservative estimations, it makes
possible to limit other error sources such as reporting/processing delay. On the other
hand, HI-SEL always reports the quality of the best M subbands at each level, but,
in static ICIC the bandwidth portion reserved for exterior users receives significantly
less ICI, and hence, without an explicit mechanism to deal with this, these subbands
are always the ones reported no matter the current UE classification.

Figure 4.7 provides a user-oriented perspective of the performance of the CSI
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(a) Periodic reporting: r (FTP - FFR). (b) Periodic reporting: r5% (FTP - FFR).

(c) Aperiodic reporting: r (FTP - SFR). (d) Periodic reporting: r5% (FTP - SFR).

(e) Legend for aperiodic reporting: (c) and (d).

Figure 4.7: Impact of reporting schemes on users rates and cell edge performance.

feedback schemes. To be precise, Figures 4.7a and 4.7b show the impact of the periodic
reporting mechanisms on the average user rates (r) and percentile 5 of r (r5%),
respectively, for the scenario FTP/FFR. A similar performance pattern was also
found for rest of periodic scenarios. As it can be seen, ICIC-SEQ achieves gains in
terms of users rate ranging from 5% to 16%. Given that the overall spectral efficiency
is proportional to the average value of r, it can be concluded that ICIC-SEQ also
helps to improve the spectral efficiency of the system, which is a consequence of the
accurate CSI estimation and its corresponding BLER reduction. Equally important,
and even more in the context of ICIC, is the cell edge performance. The results
shown in Figure 4.7b clearly indicate that ICIC-SEQ also improves the percentile 5
of r for low to moderate levels of load. For instance, the improvement ranges from
27% (in case of 15 users per cell) to 100% (in case of 35 users per cell). In case of
heavy load conditions (45 and 50 users per cell), the gains are significantly reduced
due to the fact that under such circumstances, the CRA scheduler tends to block the
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(a) BLER. (b) Energy efficiency. (c) MCS selection.

(d) BLER. (e) Energy efficiency. (f) MCS selection.

Figure 4.8: Additional performance metrics.

worst users as it has been designed to maximize the number of satisfied connections
(users with r ≥ rT). However, the level of fairness can be adjusted as in many other
scheduling algorithms, in this case, by reducing the overall satisfaction ratio (Q).

The same results are also found for the aperiodic proposal, ICIC-LOC (Figure 4.7)
with gains that go up to 33% for r and between 2% and 21% for the percentile 5.

Given the previous paragraphs, it can be stated that ICIC-SEQ and ICIC-LOC
are excellent companion for the static ICIC schemes.

Additional performance metrics

In order to provide additional insights, Figure 4.8 shows a comparison among schemes
in terms of BLER, energy efficiency, and MCS selection. BLER provides a measure
of the accuracy of the CSI provided by each reporting mechanism. The energy
efficiency provides an indication of the effectiveness of the transmissions over the air
interface. It is defined as the ratio of the total (successfully) transmitted payload
and the energy expenditure required to do that. The MCS selection indicates the
transmission format that is selected (on average) by the scheduler based on the
CSI, thus providing an idea of how conservative the CSI is, i.e., low values of this
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Table 4.3: Uplink signaling overhead of CSI feedback schemes.

Periodic Schemes Overhead [kbps] (Reporting period: 5 TTIs)

IDEAL 80.00
LTE-WB 0.50
LTE-USp 1.00
ICIC-SEQ 1.2 (Assuming that ΘWB is always transmitted)

Aperiodic Schemes Overhead [bits/report] (NDL
RB = 100)

IDEAL 400
LTE-HLC 30
LTE-USa 17
ICIC-LOC 20 (SFR), 14 (FFR)
HI-SEL 29
MOD-TOPM 17

figure indicate a more conservative channel quality estimation. The figure shows the
comparative for both periodic (Figures 4.8a, 4.8b, and 4.8c) and aperiodic schemes
(Figures 4.8d, 4.8e, and 4.8f).

The results indicate that the proposed schemes (ICIC-SEQ and ICIC-LOC)
improve the BLER with respect to LTE schemes and previous proposals (Figu-
res 4.8a and 4.8d). This is very important for two main reasons. First, less erroneous
transmissions imply less ICI in the system, and hence, less impact on cell edge users
as it was shown before. Second, the need for less transmissions also implies that less
energy is required to transmit the same amount of information, and thus, energy
efficiency can also be enhanced as it can be seen in Figures 4.8b and 4.8e. Finally,
Figures 4.8c and 4.8f confirm what it was mentioned before, the more accurate
channel state estimation of ICIC-SEQ and ICIC-LOC, which is reflected not only by
the lower BLER but also the higher MCS selection.

Uplink overhead and complexity

From the complexity point of view, the proposed schemes require less computational
effort at UE side. Recall that in ICIC-SEQ and ICIC-LOC, less subcarriers need to
be processed to estimate the wideband CQI (ΘWB).

Regarding the required signaling overhead in the uplink, Table 4.3 shows the
comparison. Although the proposed scheme requires a small increment of signaling
overhead with respect to LTE schemes, it is affordable since it only represents
0.2 kbps of additional overhead than in LTE-USp, but substantial gains as previously
shown. Similarly, the required overhead of ICIC-LOC is fairly in the same order of
magnitude as the other options and much lower than IDEAL.
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Feasibility in LTE

Finally, some implementation aspects in LTE are discussed. As it was commented
before, any proposal must be, as far as possible, standard-compatible, otherwise
implementation would be unfeasible. This aspect has been considered in the design
of ICIC-SEQ and ICIC-LOC. They do not require additional functionalities at UE
level since wideband CQI estimation and differential encoding, both used in LTE, are
preserved. Besides, the new feedback solutions can coexist with legacy devices without
problems. The only aspect to be considered is the bit stream m, introducing minimal
extra overhead as previously quantified. Such information could be transmitted
by means of the ‘RRC connection reconfiguration’ message from the network to
UE [217]. Through this control signaling, LTE provides means to send user-specific
information associated to their connections. As the amount of information is at most
13 bits, it can be allocated easily in any of the several available optional fields such
as the ‘pdsch-ConfigDedicated’ within the ‘radioResourceConfigDedicated’ subtree.
Indeed, this message is transmitted to users in ‘RRC CONNECTED’ state, and
hence, it fits perfectly the operational principle of ICIC-SEQ and ICIC-LOC.

In the light of the previous discussion, it is clear that ICIC-SEQ and ICIC-LOC
can be implemented by vendors in their mobile terminals and base stations without
the need for significant changes in their equipment.

4.7 Concluding Remarks

QoS refers to the ability of the network to provide a desired level of service for
selected traffic on the network. Typically, service levels are described in terms of
throughput, latency, jitter, and packet error rate and these figures are specified for
different types or streams of traffic. Designing QoS policies for evolving packet-based
applications is a fundamental requirement in modern multiservice cellular systems as
QoS impacts directly the Quality of Experience (QoE) of the users. In this chapter,
novel periodic and aperiodic CSI feedback schemes have been proposed for LTE.

The solutions have been designed bearing in mind the objectives of the disserta-
tion. Therefore they are suitable to work in conjunction with static ICIC techniques
requiring minimal signaling with respect to current LTE mechanisms. The novel
strategies allow QoS improvements when static ICIC techniques are introduced.

After describing the operation of ICIC-SEQ and ICIC-LOC, they have been
evaluated and compared with 3GPP schemes and several existing proposals. For this
purpose, scenarios with different types of traffic have been considered and the main
conclusions can be summarized as follows:

• Numerical results indicate the importance of designing CSI feedback considering
and adequate interworking with other network functionalities. Both ICIC-SEQ
and ICIC-LOC provide significant gains in terms of overall QoS, average user
rates, and cell edge performance. Thus, the proposed CSI feedback schemes
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are good candidates to work in conjunction with static ICIC strategies and
they are suitable for practical implementation in LTE systems.

• The performance of the proposed schemes is especially good with bursty traffic,
where retransmissions can be easily allocated. In this sense, the following
design guidelines are obtained:

– In scenarios with FTP (full buffers like patterns) channel quality estima-
tions based on average figures are recommended in order to minimize the
number of retransmissions.

– In scenarios with bursty traffic, a small amount of transmissions errors
can be afforded and compensated by retransmission capabilities such as
HARQ, without a negative impact on the overall QoS. Thus, narrow band
estimations (based on short term samples) can be used.

• The solutions can be implemented in LTE networks without substantial modi-
fications. Indeed, UE featuring these new reporting capabilities can coexist
transparently with legacy users.

• Theoretical findings about the performance of LTE schemes presented in
previous studies were confirmed also in the context of static ICIC. Moreover,
the results presented herein point out that the way to improve the performance
of CSI feedback schemes is not necessarily through more uplink overhead.
Instead, a more accurate and better localized channel quality estimations
suffice to achieve desired results.

• The schemes presented in this chapter represents by themselves a contribution
that is well aligned with the objectives of this Ph.D. dissertation, i.e., provided
a solid contribution and significant improvements to the theory and operation
of static ICIC schemes. In this sense, the importance of effective CSI feedback
in the context of static ICIC was shown and quantified.
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Chapter 5

Multiobjective Evolutionary
Algorithms

5.1 Introduction

In Chapter 3, the need for optimization for the static ICIC schemes (SFR and FFR)
in the context of realistic cellular deployments was shown. It was explained that
the poor performance of baseline design configurations in such scenarios is mainly
due to the irregular network topologies (far from the commonly assumed hexagonal
layout) and the significantly different propagation conditions that can be found from
one cell to another. These factors result in very different SINR distributions at each
cell. Recall that baseline designs are configurations in which the same values of the
operational parameters (α, β, and ψTH) are applied to all cells of the network.

Based on those findings, it was concluded that a certain level of adjustment at
cell level needs to be done. Moreover, previous studies also showed the importance
of focusing not only on cell edge performance (the main design goal of ICIC), but
also looking at other performance metrics such as spectral and energy efficiency.
As it was shown in Chapter 2, this interesting research problem has gone almost
unnoticed despite the unquestionable importance of the strategies for static ICIC
and their potential as feasible solutions to address the cell edge performance issue in
cellular networks based on OFDMA.

Bearing in mind the previous context, and taking into account the existing
literature, the research was directed towards investigating the use of multiobjective
optimization techniques as a novel approach to address the design of SFR and
FFR. In this framework, several conflicting objectives are required to be jointly
satisfied. This contrasts with single objective options. In this case the problem could
be posed 1) as the optimization of a linear combination of individual objectives,
and 2) the transformation of all but one objective into constraints. Note that the
first option was used in the performance assessment method presented in Section 3.3.

109
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On the other hand, tackling the problem under a multiobjective perspective offers
several advantages as for example:

1. The possibility to study the problem as it is, without the need for incurring in
system simplifications or assumptions to make the mathematical treatment
feasible. In this manner, by capturing all the relationships among design
variables and performance metrics, better insights and more design guidelines
can be obtained.

2. Provides a complete picture of the tradeoffs among objective functions: The
analysis of such dependencies allows detecting very sensitive variations. This
for example is useful when a slight loss in one objective allows very high gains
in others. Thus, final solutions can be chosen in a smarter way.

3. Rather than getting one single solution, multiobjective optimization brings as
output several network configurations, all of them representing different trade-
offs among the objectives. Thus, the multiobjective approach provides more
flexibility to mobile operators to select different network settings (solutions)
according to criteria that can change over time.

Today, multiobjective optimization is both a rich matter from the theoretical
point of view and a very active research field. This paradigm encopassess a broad set
of strategies and algorithms whose individual consideration would require a complete
Ph.D. dissertation [218]. In this chapter, based on the features of the optimization
problem that is required for static ICIC and practical considerations, evoluationary
algorithms are investigated. These constitute a type of metaheuristic highly suitable
for multiobjective optimization.

This chapter presents the most relevant concepts of the theory of multiobjective
optimization and it explains the motivation behind the use of evolutionary algorithms.
The chapter should be regarded as a transition point to the Chapters 6, 7, and 8,
where this approach has been successfully applied.

The chapter is organized as follows: the next section presents some background
theory and general concepts of multiobjective optimization. Section 5.3 introduces
the metaheuristics and it clarifies their use in static ICIC optimization. Next, two
important Multiobjective Evolutionary Algorithms (MOEAs) that were employed in
the studies presented in this Ph.D. thesis, the algorithms NSGA-II and SPEA 2, are
explained in Sections 5.4 and 5.5, respectively. Readers that are already confident
with these two approaches can directly jump to Section 5.6 where the conclusions
are presented.

5.2 Multiobjective Optimization

Many fields of science have to deal with large scale problems in which acceptable
solutions involve simultaneous optimization of several conflicting criteria or objectives.



Chapter 5. Multiobjective Evolutionary Algorithms 111

Multiobjective optimization (MO) is the discipline that focuses on the resolution of
these problems [219].

The target of MO is to find a subset of good solutions (X ?) from a set X
according to a set of criteria F , with cardinality greater than one, typically expressed
as mathematical functions, the so-called objective functions. Thus,

F = { fi(x) : Rn → R, i = 1, 2, · · · ,m }, (5.1)

where, fi represents the ith objective function and x ∈ Rn is the optimization vector
containing the n design variables (DVs). Therefore, every single x ∈ X is a solution
of the multiobjective problem, that in general, is defined by:

• A set of n DVs (x1, x2,· · · , xn) subject to optimization such that ∀ x ∈ X ,
x = [ x1, x2, · · · , xn ].

• The domain of each DV (X1, X2,· · · , Xn) such that xi ∈ Xi and X = X1 ×
X2 × · · · × Xn. The set X is also known as search space or feasible set.

• Constraints among DVs.

• An objective space defined by a function f : X → Rm, such that for each
x ∈ X , f(x) = [ f1(x), f2(x), · · · , fn(x) ].

It might well happen that the objectives are in conflict. In this case, improving one
of them implies worsening another. It makes no sense talking about a signle global
optimum, and for this reason, the notion of an optimum set (X ?) acquires especial
relevance in the context of MO.

A central element in the theory of MO is the concept of Pareto efficiency. A
solution x? is element of the set X ?, i.e., it is Pareto efficient, if and only if, there
does not exist a solution x ∈ X , such that x dominates to x? in the Pareto sense.
A solution x1 dominates in the Pareto sense (is preferred to) another solution x2,
(x1 � x2), if x1 is better than x2 in at least one criterion (objective function) and
no worse with respect to the remaining ones1. Thus,

x1 � x2, ⇐⇒ fi(x1) ≤ fi(x2) ∧ ∃ j | fj(x1) < fj(x2). (5.2)

In this manner, the notion of optimality in the multiobjective context can be
formalized as follows: a solution x? features Pareto efficiency (is Pareto optimal),
and hence, element of X ?, if and only if, there does not exist a solution x ∈ X , such
that x dominates x?. Thus,

x? ∈ X ? ⇐⇒ @ x ∈ X | x � x?. (5.3)

The set X ? of Pareto optimal solutions is called optimal nondominated set and its
image is known as the Optimal Pareto Front (OPF). When a multiobjective problem

1In global optimization, it is a convention that optimization problems are defined as minimizations
problems [220], and hence, if one criterion f needs to be maximized, then f is redefined as −f .
The same convention is adopted in this document.
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Figure 5.1: A representation of the Pareto Front.

is solved, it is unusual to obtain the OPF due to problem complexity, instead a
set of near-optimal solutions is found. Hereafter, for the sake of clarity, it should
be understood that the set X ? contains such near-optimal solutions, and hence, its
image, the corresponding Pareto Front (PF), is an estimation of the OPF. These
ideas are illustrated in Figure 5.1 for the case where f = [ f1(x), f2(x) ].

Any solution in X ? is optimal in the sense that no improvement can be made
on a component of f without worsen at least another of its components. Given this,
the estimation of the set X ? provides a complete picture of the tradeoffs
among objective functions, which is desirable in problems such as the optimiza-
tion of static ICIC techniques, where improving cell edge performance always comes
at the expense of spectral efficiency.

Multiobjective optimization problems, in general, can be expressed in the
following form:

minimize f(x) = [ f1(x), f2(x), · · · , fn(x) ], (5.4a)

subject to: x ∈ X . (5.4b)

Solving problems such as 5.4 is very difficult for the following reasons:

1. As it was shown, the definition of optimality in MO only allows establishing
a partial order [221] between the solutions, which complicates the design of
resolution algorithms.

2. The vast majority of multiobjective problems are NP-hard [96].

3. The cardinality of the set X ? grows exponentially with the number of objectives.

Problem 5.4 can be solved encoding the solutions either with real-valued variables
(continuous optimization problems) or discrete variables (combinatorial optimization
problems). The following discussion applies to both types of problems.
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The approaches to solve (5.4) can be classified as follows:

• Pareto approaches. The search and selection of solutions is based on the concept
of Pareto efficiency. This chapter focuses on this strategy because MOEAs are
also based on this approach.

• Non-Pareto and non-scalar approaches. These methods use operators to deal
with the objective functions separately. Few works have employed this approach.
Examples include parallel [222] and lexicographic [223] selection.

Why Multiobjective Evolutionary Optimization in Static ICIC Design?

As it was shown in Chapter 3, the performance of baseline designs of SFR and FFR
is poor in cellular scenarios where the network geometry is irregular. Based on the
analysis presented therein, it was suggested that a way to improve the performance
of such strategies is by means of local adjustments at each cell. In other words, by
tuning the configuration (the operational parameters α, β, and ψTH) of SFR and
FFR locally at each cell. Thus, the optimization of static ICIC schemes could be
posed as a MO problem where the design variables correspond to the parameters of
different cells and the objectives include cell edge performance and network capacity,
among others. The optimization formulation can be done, as it will be shown in
Chapter 6, by means of discrete- or real-valued design variables.

However, as previously mentioned, multiobjective (combinatorial or not) optimiza-
tion problems typically belong to the class NP-Complete [96], and hence, optimality
cannot be guaranteed in polinomial time2. Therefore, deterministic methods for
finding optimal solutions are not an option. Moreover, multiobjective problems with
objective functions depending on many (independent) design variables often results
in large n-dimensional objective spaces, full of local optima and discontinuities [220].
In the particular case of static ICIC optimization, n would be proportional to the
network size (the number of cells), which is considerably high even in deployments
covering small cities. In addition, discontinuities could occur on objectives such as
aggregate cell edge rate due to variations of ψTH, when a certain (integer) number
of pixels changes its classification from E to I or vice versa.

Certain algorithms such as gradient based methods are susceptible to be trapped
in local optima, while other optimization techniques such as Sequential Quadratic
Programming based methods [224] require convexity (a very strong assumption in this
context) to guarantee convergence. In addition, traditional constrained optimization,
in which only one objective function is optimized subject to a set of constraints
on the remaining ones, has the drawbacks of 1) limiting the visibility of the whole
objective space, and 2) reducing the output to one single network configuration.

Summarizing, the problem under consideration requires of an optimization tool
fulfilling the following features:

2An optimization (decision) problem is NP-Complete if the computational time required to find
the answer to a worst case instance grows faster with the size of the problem than any polynomial
function [218].
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X It must be able to find good (near-optimal) solutions by efficiently exploring
the search space.

X It should operate in an effective manner with multiple criteria and a large
number of design variables.

X It should not require strong assumptions on the objective functions such as
linearity, convexity, continuity, or differentiability.

MOEAs [225] fulfill the previous requirements, and hence, their use in static ICIC
optimization for large and irregular networks is investigated. MOEAs are population-
based metaheuristics that simulate the process of natural evolution. Two well-known
algorithms have been used: The Nondominated Sorting Genetic Algorithm II (NSGA-
II) [226] and The Strength Pareto Evolutionary Algorithm 2 (SPEA 2) [227]3. The
main advantages of these algorithms are: 1) their black box nature makes them
suitable to deal with many practical problems as only few assumptions need to be
made on the objective functions, and 2) they incorporate important features such as
elitism, convergence, and distribution. The next section provides an introduction to
metaheuristics and evolutionary optimization. Interested readers are refereed to [225]
for an in-depth treatment of the matter. The algorithms NSGA-II and SPEA 2 are
described in Sections 5.4 and 5.5, respectively.

5.3 Metaheuristics and Evolutionary Algorithms

The solution of multiobjective optimization problems has always been of great
interest for scientist and engineers working on operations research. Several exact
methods have been proposed for solving problems involving two objectives and
a small number of design variables such as branch and bound [229] and dynamic
programming [230]. However, these methods are not effective for large scale problems
with more than two criteria and a high number of design variables. Indeed, for more
than two criterion, there are not useful procedures due to the multiobjective nature
of the problems and the NP-Complete difficulty [225].

Thus, heuristic methods have become a very popular approach to solve problems
involving a large number of design variables and multiple objective functions. These
strategies do not guarantee to find the OPF, but a good approximation of it. In this
context, the methods can be grouped into two types: on the one hand, the heuristic
based algorithms that are problem-specific (heuristics), and on the other hand, high
level strategies that can be applied to a large number of multiobjective problems
(metaheuristics).

3These two algorithms are widely accepted as reference in the field of Evolutionary multiobjective
optimization and their performance has been shown to be superior to other MOEAs [228].
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Figure 5.2: Methods for solving multiobjective optimization problems.

5.3.1 On the Use of Heuristic-based Methods

An heuristic can be considered as a part of an iterative optimization algorithm that
uses available information to determine 1) which solution candidate should be tested
in each iteration, and 2) how next candidates must be produced [220]. However,
as heuristics are problem type dependent, they have been used as means to solve
specific problems.

A metaheuristic is a method for solving more general classes of problems. They
combine objective functions and heuristics in an abstract and hopefully efficient
way, usually without utilizing deeper insight into their structure, i.e., by treating
them as black-box-procedures [220]. Due to this versatility, metaheuristics have
become a very active research area and several algorithms have been proposed.
Popular ones include adaptations of classic (single objective) schemes such as
Tabu Search [231], Simulated Annealing [232], Particle Swarm Optimization [233],
and Evolutionary Algorithms [225]. For instance, a simulated annealing based
multiobjective optimization algorithm can be found in [234]. A summary of the
methods for solving MO problems is shown in Figure 5.2. A complete and in-depth
discussion of metaheuristics and evolutionary computation can be found in [218]
and [225].

In this chapter, the attention is placed on evolutionary algorithms, and more
precisely, on MOEAs, the approach used in static ICIC optimization. The next
subsection provides an introduction to evolutionary algorithms.

5.3.2 Essentials of Evolutionary Algorithms

According to [235], “evolutionary algorithms are algorithms that perform optimization
or learning tasks with the ability to evolve.”. The evolutionary algorithms have three
main characteristics:
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Figure 5.3: Main cycle of evolutionary algorithms.

1. Population-based. In evolutionary algorithms, a set of solutions, called ‘popula-
tion’, is processed to optimize the design variables and learn from the problem
structure.

2. Fitness-oriented. Every single solution in the population is called ‘an individual’,
and each individual is codified by means of a genotype, i.e., the particular
values of the design variables. The corresponding performance of each genotype
(obtained through the objective functions) is referred to as its fitness. Thus,
the target of evolutionary algorithms is to improve progressively (generation
by generation) the quality of the individuals in the population by means of
certain selection and fitness assignment schemes.

3. Variation-driven. The individuals of the population are subject to some me-
chanisms to mimic the process of natural evolution. This principle is key to
explore efficiently the search space (the set X ).

Thus, in MOEAs, a population of individuals (candidate solutions) is iteratively
modified by means of two basic principles: selection and variation. While selection
tries to imitate the battle for reproduction among living beings, variation mimics their
inherent ability of creating new (better adapted) individuals through recombination
and mutation. The overall cyclic process followed by MOEAs is depicted by Figure 5.3.
A description of the different steps stages is provided in the following points:

• Initial Population. An initial population of individuals or solutions, the x’s,
is created. Such elements can be created either randomly or (if possible) by
means of a predefined algorithm to further exploit the structure of the problem.

• Evaluation. Each solution is assigned with a fitness value that is based on the
objective function values. Typically, in Pareto-based approaches, the fitness is
based on Pareto dominance, i.e., the number of solutions each x dominates to.

• Ranking. It consists in establishing a strict order [221] among the individuals
of the population. This sorting procedure is typically based on the fitness
values previously assigned, however, it can include other variables, by which
certain desired traits can be preserved.
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• Reproduction. Reproduction involves the process of selecting well-adapted
(good fitness) individuals and combining their genes in order to create new
offsprings with high probability of achieving good (or even better) fitness
figures. In this manner, the evolution (convergence of the algorithm) of the
population is improved. The process of combining two solutions is performed
by means of crossover operators [220]. In addition, mutating some genes of
some individuals is also a mechanism to introduce diversity in the population
and to favor faster convergence.

• Selection. Selection is the process to determine which individuals pass to the
next generation and which ones are discarded. The criterion is typically based
on fitness values.

• Termination criterion. Although not shown in Figure 5.3, a termination crite-
rion is verified after each generation to determine whether the evolutionary
process should stop. This criterion is typically context-specific and depends on
convergence criteria and/or computational cost that can be afforded.

As it was mentioned, the main advantage of MOEAs is their black box nature that
makes them suitable to deal with many practical problems as only few assumptions
need to be done on the objective functions. However, there are three important
features that any good MOEA must incorporate.

X Elitism. It refers to the ability of MOEAs to preserve good individuals. Its role
has been shown to be crucial in the performance of genetic algorithms [228].
To be precise, not only it speeds up the convergence, but also to avoid losing
good solutions once they are found.

X Convergence. MOEAs should implement mechanisms to find (or estimate) the
set X ? as soon as possible. In problems with one objective, the direction is
clear because there is only one objective. However, in multiobjective problems,
a good algorithm should determine different paths in such a way that the
exploration of the set X allows for finding solutions that 1) feature Pareto
efficiency, and 2) are well distributed in the Pareto Front.

X Distribution. It is related to the ability to provide the largest possible set of
nondominated solutions and keep them as evenly distributed as possible along
the Pareto Front.

Another interesting aspect in MOEAs is how to measure performance. The
literature in this particular case is large and a compilation of quality measures is
certainly unaffordable. Instead, the quality indicators used in this dissertation are
explained.

• Hypervolume indicator (υ). This measure reflects the size of volume dominated
by the estimated Pareto Front [236, 237]. Formally, the hypervolume indicator
is defined for a given set of nondominated points X ? and a reference point



118 5.3. Metaheuristics and Evolutionary Algorithms

(a) The hypervolume indicator (υ). (b) The nonuniformity index (%).

Figure 5.4: Quality measures in multiobjective optimization.

xref ∈ Rm as follows:

υ(X ?,xref) = Λ

( ⋃
x∈X

x̂ | x ≺ x̂ ≺ xref

)
, X ? ⊆ Rm, (5.5)

where Λ denotes the Lebesgue measure [238]. Note that xref should be domi-
nated by all the elements of X ?. Since it has been shown that maximizing the
hypervolume measure is equivalent to finding the OPF [239], higher values
of υ indicate better convergence. As it can be seen in Figure 5.4a, each single
element in the set X ? contributes to the hypervolume, and hence, having more
solutions (belonging to the same front) implies improving the hypervolume.

• Nonuniformity index (%). This metric measures how well distributed the ele-
ments of the estimated Pareto Front are [226]. Thus, for any given distribution
of solutions, the non-uniformity index is defined as follows:

% =
df + dl +

∑N−1
i=1 |di − d̄|

df + dl + d̄ (N − 1)
, (5.6)

where the parameters df and dl are the Euclidean distances between the
extreme solutions (optimal values of each metric, in case they are known) and
the boundary solutions of the estimated nondominated set, as it is illustrated in
Figure 5.4b. In problems where the extreme solutions are not known, they can
be replaced by the best values found for each metric. The figures di correspond
to the distances between consecutive solutions. The parameter d̄ is the average
of all distances di (i = 1, 2, · · · , (N − 1)), under the assumption that the set
X ? is composed of N solutions. Note that if all the distances di are equal, and
the estimated Pareto Front includes the extreme solutions, df = dl = 0 and
the sumation in the numerator of (5.6) is also zero. Thus, for this ideal case
% = 0. Higher values of % indicate worse distributions.
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5.3.3 Calibration Aspects

An important aspect of evolutionary (genetic-based) algorithms is that a calibration
is required for the parameters that control the algorithm. The goal of this subsection
is to provide insights into this particular by 1) indicating the main parameters
subject to calibration, and 2) presenting certain (empirical) rules of thumb for
an easy adjustment. The following paragraphs aim at highlighting some practical
calibration guidelines:

• Population size: There is a general consensus about the number of individuals
in the population in approaches based on genetic algorithms (such as NSGA-
II and SPEA-2). The range to consider during calibration is [20,100] and
beyond 100, extra gains are hardly achieved and the same global convergence is
obtained [240]. Since computation time grows exponentially with this input, the
final population size also depends on the problem scale and the computational
complexity that can be afforded. However, in the context of study of this thesis,
greater populations allow a smoother Pareto Front (better characterization
of the tradeoffs among the performance metrics), and hence, operators could
choose alternatives from a denser/bigger set of solutions.

• Termination criterion: The number of generations depends on a predefined
termination criterion that can be defined in several ways. Note that more than
one single termination criterion can be used simultaneously.

– Direct termination criteria. For instance, defining a maximal number of
generations or execution time. Another option is to stop the algorithm
when one or more objective functions surpass a predefined bound(s). In
practice, this approach is not very recommended unless the termination
criterion guarantees (a priori) the desired convergence level. Hence, this
method is only suitable in very particular contexts.

– Derived termination criteria. This approach considers the definition of
termination criteria that can be problem-specific. For instance, the relative
progress of one or more objective functions after a certain number of
generations or the relative improvement in a convergence measure such
as the hypervolume indicator.

• Parameters in genetic operators: Genetic operators include crossover, mutation,
and selection. The calibration of these internal procedures of evolutionary
algorithms has a great impact on the performance of them, and therefore, it
requires special attention. However, the operation of these operators depends
on several factors such as the type of design variables (continuous or discrete) or
problem-specific features, and hence, the calibration process varies accordingly.

Crossover is a fundamental process when genetic algorithms preserve elitism. It
guarantees exploring the search space in regions where good solutions are more
likely to be found, by combining individuals with good fitness. The crossover
rate determines the probability of combining such solutions to preserve their
genes in future generations. Values close to one are suggested in the related
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literature [226]. In addition, the way in which the combination is performed can
also be adjusted according to the needs of each particular problem, see [241, 242]
for further details.

Mutation is another important source of diversity in MOEAs [241]. The
mutation rate determines the probability of of changing each gene (generate a
new random value for the gene or modify its value according to a certain rule).
However, high mutation rates would result in random search. A practical rule
of thumb is to select a mutation rate equal to 1/n, where n is the number of
design variables [226].

In practice, it is advisable to perform some calibration trials in order to
determine appropriate values, and so, avoid the evolutionary algorithm to
operate with wrong (highly suboptimal) settings. This can be done by means
of parametric sweeps to study the performance of the algorithm by looking at
metrics such as the hypervolume indicator.

5.4 Description of the Algorithm NSGA-II

In 2002, Deb et al. [226] presented improvements of their Nondominated Sorting
Genetic Algorithm (NSGA) that was originally introduced in 1994 [243]. The algo-
rithm NSGA was based on the Pareto rank method, in which the individuals in the
population are ranked taking into account a domination count, i.e., the number of
solutions that dominates to each individual. Thus, the solutions with rank 1 are
nondominated solutions. Rank 2 implies that an individual is only dominated by
another solution, rank 3 means that a solution is only dominated by two individuals,
and so on. The individuals with the same rank share the same fitness. In this manner,
individuals with lower rank gain advantage in the selection procedure, thus including
increasingly better solutions and favoring the convergence of the algorithm. In [226],
the algorithm NSGA-II introduced the following improvements:

1. Lower complexity. The complexity of the algorithm NSGA is O(MN3), where
M and N are the number of objective functions and population size, respecti-
vely. By adding an improved nondominated sorting approach, the complexity
of the algorithm NSGA-II becomes O(MN2).

2. Elitism. The algorithm NSGA does not implement elitism, a feature that,
as it was indicated before, is useful to speed up the convergence of genetic
algorithms [228] by preventing the loss of good solutions once they are found.
NSGA-II implements an archive-based mechanism to introduce elitism.

3. Improved distribution. In NSGA-II, the need for a diversity-controlling para-
meter, the sharing figure (σshare) in NSGA, was eliminated.
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Improved Nondominated Sorting

The pseudo-code describing the fast nondominated sort in NSGA-II is shown in
Algorithm 5.1. Basically, for each element p, the number of individuals that dominates
p (np) is calculated. The variable np is referred to as nondomination count. In
addition, the set of elements dominated by p (Sp) is also computed. Therefore, the
individuals in the first front (F1) will have np = 0. Next, for each solution p with
np = 0, the value of np of the individuals in the set Sp is reduced by one. If np in an
element of Sp becomes zero, it is moved to a separate list Q, the members of the
second front. The previous procedure is now executed for the members of Q and so,
the third front is also created. The loop goes until all fronts are created. Note that
all the elements in the ith front have rank i.

Algorithm 5.1 is an important novelty presented in [226]. This algorithm is the
main responsible for the gain in terms of computational cost with respect to NSGA.

Crowding Distance

The method used in NSGA to preserve diversity based on a user-defined parameter
(σshare) has two main drawbacks:

× the performance of the sharing function strongly depends of σshare, and

× the complexity of the sharing function approach is O(N2).

Thus, in NSGA-II the sharing function is replaced by a crowding distance assign-
ment procedure that does not require any user-defined parameter. The definition
and computation of crowding distances in a set of nondominated individuals is given
in Algorithm 5.2. Basically, the procedure computes the crowding distance for each
solution in a nondominated set F . In the pseudo-code, F [i]m corresponds to the
value of the mth objective function of the ith individual in the set F . The parameters
fmax
m and fmin

m are the maximum and minimum values of the mth objective function.
The complexity of Algorithm 5.2 is O(MN log(N)).

Thus, by means of this density metric and the previously introduced nondo-
mination rank, NSGA-II uses the following crowded comparison operator (≺n) to
establish a partial order between different solutions as follows:

p ≺n q if (prank < qrank) or ((prank = qrank) and (pdistance > qdistance)) . (5.7)

According to the partial order ≺n, p ≺n q means that p is preferred over q. Therefore,
the algorithm always prefers solutions 1) with lower rank (better domination count),
and 2) located in lesser crowded regions to favor a better distribution.
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Algorithm 5.1: Fast Nondominated Sort in NSGA-II

Input : A set of individuals (R).
Output : Efficient nondominated sorting of the elements of the set R.

1 for each p ∈ R do

2 Sp = ∅, np = 0;
3 for each q ∈ R do

// If p dominates q;
4 if (p ≺ q) then
5 Sp = Sp ∪ q; /* Add q to the set of solutions dominated by p */

6 end
7 else if (q ≺ p) then
8 np = np + 1; /* Increment the domination counter of p */

9 end
10 if (np = 0) then
11 prank = 1; /* p belongs to the first front */

12 F1 = F1 ∪ {p};
13 end

14 end

15 end
16 i = 1; /* Initialize the front counter */

17 while Fi 6= ∅ do
18 Q = ∅; /* Used to store the members of the next front */

19 for each p ∈ Fi do
20 for each q ∈ Sp do
21 nq = nq − 1; /* Decrement the domination counter of q */

22 if (nq = 0) then
23 qrank = i+ 1; /* q belongs to the next front */

24 Q = Q∪ {q};
25 end

26 end

27 end
28 i = i+ 1, Fi = Q; /* Updates the next front */

29 end

Elitism

In NSGA-II, elitism is introduced by comparing (using the operator ≺n) each new
generation with the best nondominated solutions of the previous generation. The
best solutions are stored in a separate archive.
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Algorithm 5.2: Crowding distance assignment in NSGA-II

Input : A set of nondominated individuals (F).
Output : Crowding distance assignment to the elements of the set F .

1 l = |F|; /* Number of solutions in F */

2 for each i ∈ F do
3 F [i]distance = 0; /* initialize distance */

4 end

5 for each m do
6 F = sort(F ,m); /* sort using each objective value */

7 F [1]distance = F [l]distance =∞; /* boundary points are always selected */

8 for each i = 2:(l − 1) do

9 F [i]distance = F [i]distance + F [i+1]m−F [i−1]m
fmax
m −fmin

m

10 end

11 end

NSGA-II Procedure

The pseudo-code of the algorithm NSGA-II is shown in Algorithm 5.3. The evol-
ving process in the tth generation is graphically illustrated in Figure 5.5. In the
pseudo-code, the set Rt contains the initial (combined) population of the tth gene-
ration. Recall that the population size is N , and therefore, |Rt| = 2N . Initially, the
combined population is created by merging the previous generation (Pt, |Pt| = N)
and the offsprings (Qt, |Qt| = N). Next, the nondominated sorting (Algorithm 5.1)
takes place. The elitism is guaranteed because current and previous population
members are all included in Rt. Then, the whole population is sorted again by means
of the crowded comparison operator ≺n (5.7), and finally the best N individuals
according to the partial order established by ≺n are selected to pass to the next
generation (Pt+1). The offsprings of the new generation (Qt+1) are obtained from
the elements in Pt+1 by means of binary (pairwise) tournament selection based on
≺n, crossover, and mutation. Note that diversity is promoted by using the crowding
comparison procedure as it is indicated in 5.7, which is employed both in selection
and population reduction.

The schemes for convergence, distribution, and elitism are implemented in the
algorithm NSGA-II by means of the nondominated sorting (Pareto rank) and selec-
tion (≺n), the crowding distance assignment (Algorithm 5.2), and the introduction of
an archive (of size equal to the baseline population), respectively. Thus, the algorithm
NSGA-II obtains a good balance between these three important requirements.
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Algorithm 5.3: Algorithm NSGA-II

input :
|P|: Population size (the same figure is used for the archive).
C: Calibration parameters (genetic operators).
T : Binary termination criterion.

output :
F1: Set of nondominated solutions (referred to as X ? in the document).

1 t = 0, Qt = ∅, T = 0; /* Initial generation */

2 Pt = Create-Random-Generation(|P|);

3 while T 6= 1 do

4 Rt = Pt ∪Qt; /* combine parent (Pt) and offspring (Qt) population */

5 F = Nondominated-Sort(Rt); /* Algorithm 5.1 */

6 Pt+1 = ∅, i = 1;

7 while |Pt+1|+ |Fi| ≤ N do
8 Crowding-Distance-Assignment(Fi); /* Algorithm 5.2 */

9 Pt+1 = Pt+1 ∪ Fi; /* include the ith nondominated front in Pt+1 */

10 i = i+ 1; /* check the next front for inclusion */

11 end
12 Sort(Fi,≺n); /* sort in descending order using ≺n */

13 Pt+1 = Pt+1 ∪Fi[1 : (N − |Pt+1|)]; /* first (N − |Pt+1|) elements of Fi */

14 Qt+1 = Offsprings(Pt+1); /* selection, crossover and mutation */

15 t = t+ 1; /* increment the generation counter */

16 Check-Termination-Criterion(Pt+1); /* Check T */

17 end

Figure 5.5: The evolving process in one generation of the algorithm NSGA-II.
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5.5 Description of the Algorithm SPEA 2

In 1998, Zitzler and Thiele introduced its Strength Pareto Approach for multiobjec-
tive optimization [244]. The algorithm SPEA showed its potential by outperforming
existing (non-elitist) alternatives at that time, including the algorithm NSGA [243].
However, further advances in the theory of multiobjective optimization were made
and subsequent proposals, including NSGA-II, clearly outperform SPEA on certain
test cases.

Taking advantage of new insights into the theory and design of evolutionary
algorithms, the authors of SPEA introduced several improvements to SPEA in 2001.
The novel algorithm (SPEA-2) [227] differs from its predecessor in the following
aspects:

1. The fitness assignment takes into account not only the number of individuals
dominating each solution but also the number of individuals each solution
dominates to.

2. The density estimation approach is largely based on the distances to the nearest
neighbors.

3. An archive is introduced to keep boundary solutions and improve the distribu-
tion of the Pareto Front.

During the design stage of SPEA 2, its authors considered the following aspects: why
does the size of the archive need to be the same than in the population? In addition,
in NSGA-II, the rank is somehow considered twice (in the nondominated sorting
and crowded comparison operator). Thus, the authors also investigated whether
these process can be shorten into a single one. Finally, the authors were specially
concerned with the selection procedure.

Fitness Assignment and Density Estimation

A novel aspect of SPEA 2 (with respect to SPEA) is that individuals that are
dominated by the same number of solutions in the archive (elitist group) do not have
the same fitness. Thus, in SPEA 2, both dominating and dominated solutions are
considered. Let’s consider that the sets At and Pt are the archive and the population
in the tth generation. The strength (S(i)) of an individual p is the number of solutions
it dominates to. Therefore,

S(p) = |{ q | q ∈ (At + Pt) ∧ p ≺ q}|. (5.8)

Based on the strength measure, the raw fitness (R(p)) of the individual p is calculated
as follows:

R(p) =
∑

q∈(At+Pt), q≺p

S(q). (5.9)
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The raw fitness tells how good an individual p is because it tells how many individuals
dominate p. Note that 1) the term ‘raw’ suggests that the fitness needs to be further
refined, and 2) the fitness should be minimized, i.e., R(p) = 0 means that p is a
nondominated individual.

Given that the raw fitness could fail in cases where most individuals do not
dominate each other, SPEA 2 uses additional density information to refine the
measure. The density estimation in SPEA 2 is an adaptation of the kth nearest
neighbor method [245]. In this method, the density at any point is a decreasing
function of the distance to the kth nearest point. In SPEA 2, the inverse of such
distance is considered as the density estimation. In [227], Zitzler and Thiele suggest
using k =

√
|A|+ |P|. Thus, the density of the individual p (D(p)) is computed as

a function of the distance of p to kth nearest neighbor (ρk(p)). Thus, D(p) is given
by the following expression:

D(p) =
1

2 + ρk(p)
. (5.10)

The two in the denominator of (5.10) ensures that D(p) ∈ (0, 0.5]. Thus, the fitness
of the individual p (used for selection purposes) is obtained according to:

F (p) = D(p) +R(p). (5.11)

The computational complexity of the fitness assignment procedure is O(M2log(M)),
where M = |A|+ |P|.

Environmental Selection based on Archive Truncation

The clustering strategy used in SPEA was able to reduce the nondominated set
without destroying its features, however, boundary solutions are often lost. The
novel truncation method in SPEA 2 guarantees keeping those individuals, and hence,
it improves the spread of the Pareto Front.

How does SPEA 2 handle the situation when the number of nondominated
solutions in (A ∪ P) is not equal to |A| (the size of the archive)? Let’s consider
that the set B is the set of nondominated solutions in (A ∪ P). If |B| < |A|, more
dominated solutions are added according to the fitness given by (5.11). If |B| > |A|,
the individuals with the smallest distance (ρ1) to others are deleted, then individuals
with the smallest second distance (ρ2), and so on, until |B| = |A|.

Basically, for dominated individuals, their raw fitness (several times greater than
their densities, which is smaller than 0.5) predominates. For nondominated solutions,
their raw fitness is always zero, and hence, sparser solutions are preferred. Elitism
is guaranteed because individuals that are far from others in the estimated Pareto
Front will never be lost, which at the same time achieves an excellent distribution.
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Algorithm 5.4: Algorithm SPEA 2

input :
|P|: Population size.
|A|: Archive size.
C: Calibration parameters (genetic operators).
T : Termination criterion.

output :
X ?: A set of nondominated solutions.

1 t = 0, T = 0, At = ∅; /* Initial generation */

2 Pt = Create-Random-Generation(|P|)
3 while T 6= 1 do
4 Fitness(Pt ∪ At); /* According to 5.11 */

5 Environmental-Selection(Pt ∪ At); /* Fitness-based sorting */

6 At+1 = Archive-Truncation(|A|, Pt ∪ At); /* Archive truncation */

7 Pt+1 = Offsprings(At+1); /* selection, crossover and mutation */

8 X ? = Nondominated-individuals(Pt+1 ∪ At+1); /* Pareto Front */

9 Check-Termination-Criterion(X ?); /* Check T */

10 t = t+ 1; /* increment the generation counter */

11 end

SPEA 2 Procedure

The pseudo-code of SPEA 2 is shown in Algorithm 5.4. The evolving process in the
tth generation is graphically illustrated in Figure 5.6. As a genetic algorithm, the
overall procedure is quite similar to NSGA-II, with differences in the form of fitness
calculation. These particular mechanisms of SPEA 2 have been already explained,
and hence, the pseudo code is self-explanatory. However, it is important to highlight
some points. In SPEA 2, the size of the archive is not specified. The authors in [227]
claim that increasing the size of the archive favors a better distribution but less
pressure is done towards the OPF.

The convergence, distribution, and elitism mechanisms are implemented in
SPEA 2 by means of the raw fitness assignment, density, and the introduction of an
archive, respectively.



128 5.6. Concluding Remarks

Figure 5.6: The evolving process in one generation of the algorithm SPEA 2.

5.6 Concluding Remarks

In this chapter, the most fundamental aspects of the theory of multiobjective
optimization have been presented. In addition, a discussion of the most relevant
methods and approaches to address problems involving several objectives has been
provided.

In contrast to single objective optimization formulations, multiobjective problems
do not have a single optimal solution. There exist several solutions that cannot be
sorted following a single total order. Thus, the notions of Pareto dominance and
optimal set play a crucial role in the design of suitable optimization strategies. This
particularity of multiobjective problems can be regarded as a two-edge sword because,
on the one hand, these are features that are very difficult to model mathematically.
But, on the other hand, having multiple solutions allows to capture tradeoffs among
objective functions. This certainly is a highly desirable feature in many practical
contexts and in ICIC design in particular, as shown in the next chapter.

Multiobjective problems usually are very hard to solve due to its complexity
(typically NP-hard), and hence, exact procedures to determine optimal solutions are
not available. In the chapter, it was shown the advantages of heuristic-based schemes
when facing such problems and the increasing interest on the use of metaheuristics.

A particular class of metaheuristic, evolutionary algorithms, has demonstrated
its effectiveness in solving problems whose mathematical structure is not suitable for
traditional methods. Evolutionary algorithms designed for multiobjective problems
dealing with several (more than two) objective functions and a high number of
design variables have been successfully employed by scientists and engineers in the
last 20 years. These strategies are generically known as MOEAs and they have the
distinguished feature that a population of individuals evolve together to explore
the search space efficiently, i.e., finding regions of the domain in which solutions
featuring Pareto efficiency are likely to be found.

Thus, by revisiting the characteristics and needs previously shown for static
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ICIC optimization (Chapters 2 and 3), the suitability of MOEAs was discussed
and analyzed. As it was seen, the optimization of static ICIC schemes in realistic
deployments require adjustments in the operational parameters of these schemes at
cell level. This implies that a potentially high number of design variables need to be
considered. Moreover, given the conflicting nature between cell edge performance
and overall spectral efficiency in OFDMA based cellular networks, the multiobjective
approach arises as an attractive alternative to investigate the matter. In addition, the
stochastic nature of MOEAs eliminates the need for system simplifications,
and hence, expressions capturing all the relevant aspects of the problem could be
considered as they are.

The next chapters of this thesis prove that the use MOEAs in the context of
static ICIC optimization is not only effective but also it conveys several remarkable
advantages from a practical point of view. Two MOEAs were used to conduct
the research presented next: the algorithms NSGA-II and SPEA 2, both of them
presented and explained in this chapter.

Thus, having introduced this important background, multiobjective optimization
schemes to improve the performance of static ICIC strategies, both for data and
control channels, are presented in Chapters 6 and 7, respectively.
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Chapter 6

Optimization of Static ICIC
Schemes through the use of
MOEAs

6.1 Introduction

In Chapter 2, it was shown that, in the context of OFDMA based cellular systems,
the low SINR levels at cell edges have a very negative impact on the QoE of users
located in such areas. Thus, the techniques for interference management, and more
precisely the schemes for ICIC, have attracted the attention of the industry and
research community.

SFR and FFR, the static ICIC techniques par excellence, have the following
advantages: 1) their low complexity, thus making implementation almost straight-
forward, and 2) they do not require either unrealistic CSI feedback from users or
prohibitive intercell signaling exchange. As it is detailed in Chapters 2 and 3, both
SFR and FFR aim at reducing the amount of ICI and increasing the reuse factor of
cell edge users. By means of these principles, and under the assumption of regular
layouts, the aggregate capacity of cell edge users can be increased at the expense of
a reasonable price in terms of spectral efficiency.

However, in-depth studies about the operation of SFR and FFR, such as the
one presented in Section 3.4, show that relaxing the hexagonal geometry condition
results in severe performance degradations. This conclusion is also pointed out in
related research works including [62–64].

Indeed, the analysis presented in Chapter 3 about the impact of the operational
parameters of SFR and FFR clearly suggests that the reason of such poor performance
in realistic deployments is twofold. On the one hand, an irregular layout implies
that cell edge size and SINR distribution at different cells vary significantly (see
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Figure 3.15b). On the other hand, the SINR levels found at cell edges (assuming
the same propagation conditions) are worse than the ones obtained in hexagonal
models [53]. Thus, the following hypothesis is formulated:

The performance of SFR and FFR can be optimized for any arbitrary cellular
layout by adjusting locally (at each cell) the configuration of these schemes
(the parameters α, β, and ψTH) in such a way that the unbalances created
by the layout irregularities can be compensated.

This chapter presents the work developed around the previous idea. It represents
one of the central contributions of this Ph.D. dissertation: the introduction of
multiobjective optimization algorithms to make SFR and FFR feasible and useful in
the context of realistic deployments. As it was discussed in the previous chapter, the
multiobjective approach is, by itself, an interesting novelty in the context of ICIC.
It has some interesting advantages:

1. It provides a better view of the tradeoffs among conflicting criteria such as
cell edge performance and spectral efficiency.

2. It makes possible to obtain an output composed of many near-optimal solutions
(network settings). Thus, additional flexibility is provided to mobile operators
to select configurations according to their needs.

3. It allows including additional perspectives to the problem such as the energy
consumption.

However, as it is analyzed in the previous chapter, the complexity involved in the
optimization (at cell level) of SFR or FFR cannot be addressed by means of exact
(deterministic) procedures. Thus, this study investigates a metaheuristic approach
based on stochastic search, in which MOEAs are considered and successfully applied
to static ICIC optimization.

The next section presents practical considerations and it describes the proposed
multiobjective formulation. The system model is explained in Section 6.3. The
description of the novel multiobjective strategy and the results corresponding to
performance evaluations are presented in Sections 6.4 and 6.5, respectively. In
Section 6.6, additional aspects including calibration, complexity, and LTE-feasibility
are discussed. Finally, the chapter is closed with conclusions in Section 6.7.

6.2 Multiobjective Problem Design

The optimization of SFR and FFR is, from a practical point of view, a problem in
which the interest is placed not only in guaranteeing certain levels of QoS to users
but also avoiding severe penalties in terms of spectral efficiency.

Indeed, the attention of this study is not only placed on the tradeoff between the
cell edge performance and spectral efficiency. Recently, an increasingly interest on
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energy efficiency and green communications [246–248]1 has appeared. Consequently,
this important aspect has also been included not only for its relevance, but also for
the intuition that transmitting less power implies introducing less ICI in the system.

Therefore, the performance assessment presented in this study is based on the
following criteria:

1. Maximization of the average cell capacity (f1): This metric is proportional
to the overall system spectral efficiency, and hence, the system-oriented pers-
pective is captured by means of this criterion.

2. Maximization of the aggregate capacity of the worst percentile 5 of
the coverage area (f2): With this metric, ICIC’s main objective, cell edge
performance, is considered. Note that the area corresponding to this percentile
can be geographically distributed among the coverage of different cells, and
hence, it introduces a certain level of fairness among cells.

3. Minimization of the power transmitted over the air interface (f3): By
considering this metric, the proposed algorithms contribute not only to reduce
the Operation Expenditures (OPEX), but also to improve the network energy
efficiency [249].

6.2.1 Practical Insights

According to the hypothesis presented previously, the design target of the proposed
strategy is to optimize SFR and FFR not only from a global (network) perspective,
but also from a local point of view. These local adjustments would make possible to
compensate the unbalances found in realistic deployments.

In order to 1) decouple the analysis from assumptions such as scheduling policies,
and 2) obtain reliable results (from an statistical point of view), the framework
presented herein focuses on the optimization of expected values. To be precise, the
minimization of average ICI conditions. This approach was suggested in [6], where it
is indicated that ICIC may not have to track fast dynamics such as small scale
fading. These elements can be handled more efficiently by other RRM functionalities
such as instantaneous power control and retransmissions.

The authors in [6] showed that around 60% to 70% of the gains achieved by
dynamic (but often impractical) schemes can be obtained by means of ICIC schemes
following only macroscopic network changes such as average channel conditions. Thus,
in the light of these observations, a similar approach is followed in Chapter 3 (Sec-
tion 3.3), and it is also suggested and applied by other researchers (see [45, 50, 63, 64])
working on static ICIC.

Bearing in mind the previous considerations, and aiming at keeping a reasonable
complexity, the proposed multiobjective optimization framework is based on the
following idea:

1A complete discussion about the matter is presented in Chapter 8.
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Defining cell edges independently at each cell by means of cell-local thresholds
(ψlTH, l = 1, 2, · · · , L), subject to an additional network-wide (global) parameter
common to all cells. This global adjustment is done by means of the parameters α
and β, in case of SFR and FFR, respectively. The rationale of the previous design
stems from the following facts:

X Local adjustments of α or β result in a significant increment of the computa-
tional cost (basically 2×), whereas treating them as global design variables
allows the use of easy-to-build matrices to characterize the ICI (see (3.32)
and (3.35)). This is done by leveraging both the trisectorial topology and
resource allocation pattern in SFR and FFR. Moreover, previous studies such
as [63, 64], in which optimization is based on adjustments of α and β, only
achieve cell edge capacity improvements at the expense of significant (more
than 60%) spectral efficiency degradations. As it is shown in the next chapter,
local adjustments of α only provide small gains, and hence, the additional
computational cost is not worth.

X As it was shown in Chapter 3, local adjustments of ψTH are a convenient
way to deal with the tradeoff between cell edge performance and spectral
efficiency at each cell, without modifying the levels of ICI at neighbor ones.
Moreover, by adding α and β as global design variables, the genetic search
is also aided. Simultaneous and uncoordinated variations of α and ψTH (in
SFR), and β and ψTH (in FFR), are counterproductive because the effects
of one could be neutralized by the other. Thus, the novel strategy aims at
performing a sort of parallel optimization for the different values of the global
design variable (α or β), and so, a desirable equilibium between local and
global goals is achieved. On the one hand, in case of SFR, the use of the global
design variable (α) is justified because cell edge users are more sensitive to
interference than bandwidth [45], and hence, exploring different values of α is
mandatory from an ICIC point of view. On the other hand, in case of FFR,
it was shown that the effect of α is almost negligible, whereas β provides a
convenient way to include the required network-wide component.

X In case of SFR, β is set to 2/3. Given a trisectorial topology, the figure (1− β)
is restricted to the interval (0, 1/3] in order to avoid overlapping of cell edge
subbands in adjacent sectors. Thus, from the cell edge viewpoint, β = 2/3 is
the logical global choice as this value is the one assigning more bandwidth to
the class E , and hence, it helps to localize the exploration in regions of the
search space (X ) boosting the cell edge capacity.

X In case of FFR, the value of α must be set taking into account coverage criteria,
i.e., it should be selected such that a minimum received power can be provided
in the coverage area both for interior and exterior pixels.

By means of the previous strategy, a convenient tradeoff between local and global
goals is accomplished. The proposed scheme aims at optimizing the network config-
uration that is represented by the optimization vector x (similarly to x in (3.25)).
However, x is codified by means of L+ 1 design variables as depicted in Figure 6.1.
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(a) SFR. (b) FFR.

Figure 6.1: Codification of solutions in multiobjective optimization of static ICIC.

Note that this approach guarantees a complexity (in terms of the number of design
variables) linear with respect to the network size. Recall that L is the number of
cells in the network.

6.2.2 Problem Formulation

The multiobjective optimization problem is formulated as follows:

minimize f(x) = [ −f1(x), −f2(x), f3(x) ], (6.1a)

subject to:

x(l) ∈ [ψlow, ψup], l = 1, 2, · · · , L, (6.1b)

x(L+ 1) ∈ [αlow, αup], case SFR, (6.1c)

x(L+ 1) ∈ [βlow, βup], case FFR. (6.1d)

In the optimization problem (6.1), f(x) determines the objective space that includes
the performance criteria previously introduced: average cell capacity (f1), cell edge
capacity (f2), and transmitted power (f3). The constants ψlow, ψup, αlow, αup, βlow,
and βup are used to define the domain of the design variables, and hence, the set X .

The connection of the objective functions and design variables is as follows:
the classification threshold (ψTH) (optimized at each cell) controls the tradeoff
between f1 and f2. In general, an increment of ψTH increases the network spectral
efficiency (f1) but reduces fairness among users, and hence, the capacity of worst
regions, thus penalizing f2. In both cases (SFR and FFR) f3 is strictly linked to the
global design variable (α or β). While an increment of α or β favors f1, decrementing
such variables tend to favor f2. Therefore, there is a close interconnection among
objective functions and design variables. The mathematical definition of the objective
functions is provided in the next section.
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6.3 System Model

The system model is the one presented in Appendix C, Section C.1. Moreover,
it includes most of the formulations corresponding to the statistical framework
explained in Section 3.3.2.

For the sake of modularity, a functional nomenclature is used. Thus, the following
functions, summarized in Table 6.1, are defined:

• Average SINR. The function AvgSINR()determines average SINR figures and
it is represented by the operation corresponding to (3.27).

• Type of Server. The process of determining the type of serving cell of each pixel
is done according to (3.28) and it is performed by the function TypeOfServer().

• Pixel Classification. The process of determining the class of each pixel is done
as it is described in Section 3.3.1. Thus, a pixel is classified as exterior (E) if
its average SINR (ψu) is smaller than the classification threshold (ψTH), i.e.,
ψu < ψTH, otherwise, the pixel is classified as interior (I). Recall that in the
framework presented herein, the classification threshold is cell-specific and it is
indicated in the optimization vector x (see Figure 6.1). This process is defined
in ‘Classification of Pixels’ (Subsection 3.3.2), and it is represented by the
function Class().

• Relative Coverage. This process is described in ‘Coverage per Class and
Cell’ (Subsection 3.3.2), and it is represented by the function RelCov().

• Characteristic Matrices. The function CharacMat()determines the characte-
ristic matrices according to (3.32) and (3.35).

• Segmentation. The function Segmentation()performs the segmentation pro-
cedure as described in ‘Segmentation’ (Subsection 3.3.2).

• Link Performance. The function LinkPer()applies the link performance model
according to (3.37) as it is described in ‘Link performance’ (Subsection 3.3.2).

• Bandwidth allocation. The function Bandwidth()determines the bandwidth
allocation of each class according to (3.38) and (3.39), as it is described in
‘Bandwidth computation’ (Subsection 3.3.2).

• Pixels rate. The function PixRate()determines the rate obtained by each
pixel (3.44) according to the iterative process described in ‘Pixels rate’ (Subsec-
tion 3.3.2), i.e., computing (3.40), (3.41), (3.42), and (3.43) for each j ∈ {0, 1, 2}.

• Sorting. The function Sort() sorts a vector that is passed as argument in
ascending order.

• Sum of the first k elements. The function Sum()determines the sum of the
first k elements of a vector that is passed as argument.
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Table 6.1: Summary of the functions used in Static ICIC optimization.

Function Reference

AvgSINR() Eq. 3.27 in ‘Average SINR’ (Subsection 3.3.2).

TypeOfServer() Eq. 3.28 in ‘Server Classification’ (Subsection 3.3.2).

Class() Section 3.3.1 and ‘Classification of Pixels’ (Subsection 3.3.2).

RelCov() ‘Coverage per Class and Cell’ (Subsection 3.3.2).

CharacMat() Eq. 3.32 and 3.35 in ‘Characteristic Matrices’ (Subsection 3.3.2).

Segmentation() ‘Segmentation’ (Subsection 3.3.2).

LinkPer() Eq. 3.37 in ‘Link performance’ (Subsection 3.3.2).

Bandwidth() Eq. 3.38 and 3.39 in ‘Bandwidth computation’ (Subsection 3.3.2).

PixRate() Eq. 3.40, 3.41, 3.42, and 3.43 in ‘Pixels rate’ (Subsection 3.3.2).

Sort() Section 6.3.

Sum() Section 6.3.

NormPow() Eq. 6.2 and 6.3.

ObjFunc() Algorithm. 6.1.

• Normalized power consumption. The function NormPow()determines the nor-
malized power consumption (f3 ∈ (0, 1]) as a function of β and α as follows:

f3 = α · β + (1− β) , for SFR, (6.2)

f3 = α · β + ((1− β) /3) , for FFR. (6.3)

• Objective Functions. The procedure for computing the objective functions (f1,
f2, and f3, see Section 6.2) for each possible NOP (x ∈ RL+1) is represented
by the function ObjFunc() . The pseudo-code shown in Algorithm 6.1 indicates
the exact procedure and it is explained in the next subsection.

6.3.1 Objective Functions

Algorithm 6.1 determines for every single SFR/FFR configuration (x ∈ RL+1),
the objective vector f . This is done according to the system model presented in
Appendix C (Section C.1) and the framework introduced in Subsection 3.3.2.

The steps 1 to 7 correspond to preliminary computations that are based on the
functions previously introduced. The goal is determining the rate at pixel level (the
vector r ∈ RA). In lines 8 to 10, the objective functions are calculated. The average
cell capacity (f1) is calculated by dividing the total aggregate capacity by the number
of cells in the system (L). The objective function f2 that corresponds to the aggregate
capacity of the worst 5% pixels is obtained through the function Sum() , and finally,
the normalized power consumption (f3) is computed according to (6.2) and (6.3),
by means of the function NormPow(). The objective vector (f) is returned in line 12.
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Algorithm 6.1: Objective functions in static ICIC optimization

Inputs :
x(1 : L): The L classification thresholds. See Figure 6.1.
α, β: Power ratio and bandwidth sharing (x(L+ 1)). See Figure 2.9.
Pser and Pint: Characteristic matrices. See (3.32) and (3.35).
Ψu: Average SINR vector. See 3.27.
Gj , Sj , and Sc

j : Segmented matrices.
B, L, and A: System bandwidth, number of cells, and number of pixels.

Output :
f : Objective vector.

// Preliminary computations

1 B←Bandwidth(β, B); /* Bandwidth allocation */

2 C←Class(Ψu,x(1 : L)); /* Pixel classication */

3 Cj ←Segmentation(C); /* For j = 1, 2, 3. */

4 Φ←RelCov(Sj, Cj); /* For j = 1, 2, 3. */

5 r←PixRate(B, Pser, Pint, Gj, Sj, Sc
j); /* Rate of each pixel */

6 r←Sort(r); /* Sorting (ascending order) */

7 k ← d0.05 ·Ae; /* Number of ‘cell edge pixels’ */

// Objective functions

8 f1 ← (r · 1) /L; /* f1: average cell capacity */

9 f2 ←Sum(r, k); /* f2: cell edge aggregate capacity */

10 f3 ←NormPow(α, β); /* f3: normalized power consumption */

// Objective vector

11 f ← [ −f1, −f2, f3 ];
12 return f ;

6.4 Multiobjective Optimization of SFR and FFR

Once defined the method to compute the objective functions (f1, f2, and f3), (6.1)
is solved by means of MOEAs. To be precise, by means of the algorithms NSGA-II
or SPEA 2 (or both). The proposed framework can be used for both SFR and FFR,
just taking into account the particularities of each scheme as it is explicitly indicated.
For instance, (3.33) vs. (3.34), (3.38) vs. (3.39), and (6.2) vs. (6.3).

Algorithm 6.2 shows the procedure. Lines 1 to 4 perform preliminary compu-
tations. In line 1, the function PerCellCov() determines the coverage of each cell
according to (C.1) and (C.2) (Appendix C). The average SINR estimation that
is required to classify pixels as exteriors (E) or interiors (I) is done in line 2 by
means of the function AvgSINR() (see Table 6.1). In lines 3 and 4, the functions
TypeOfServer()and Segmentation() determine the type of serving cell of each
pixel and perform the segmentation of the matrices G, S, and Sc, respectively.
Both procedures appear in Table 6.1.
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Algorithm 6.2: Multiobjective framework for static ICIC optimization

Inputs :
Z: Pareto Front estimation. (‘0’ for NSGA-II, ‘1’ for SPEA 2, ‘2’ for both).
B: System bandwidth.
Pmax: Available power per cell.
L: Number of cells.
A: Number of pixels in the coverage area.
σ2: Noise power.
αlow, αup, βlow, βup, ψlow, ψup: Design variables bounds.
ONSGA-II, OSPEA 2: Configuration of MOEAs.
pCS-RS: Vector with the power of CS-RS at each cell.
vφ: Vector with the azimuth of each cell.
G: Long term channel gain matrix.

Output :
X ?: Estimated set of nondominated solutions.

// Preliminary computations

1 S, Sc ←PerCellCov(G, pCS-RS); /* Per-cell coverage. See Section C.1. */

2 Ψu ←AvgSINR(σ2, pCS-RS, G, S, Sc) ; /* Average SINR. See Table 6.1. */

3 t←TypeOfServer(vφ, S); /* Type of serving cell. See Table 6.1. */

4 {Gj ,Sj ,S
c
j} ←Segmentation(G, S, Sc); /* Segmentation. See Table 6.1. */

// Estimation of nondominated solutions through MOEAs

5 if Z = 0 then
6 X ?NSGA-II ←NSGA-II(ONSGA-II); /* NSGA-II. See Section 5.4. */

7 X ?SPEA-2 ← ∅;
8 end
9 if Z = 1 then

10 X ?NSGA-II ← ∅;
11 X ?SPEA-2 ←SPEA-2(OSPEA-2); /* SPEA 2. See Section 5.5. */

12 end
13 if Z = 2 then
14 X ?NSGA-II ←NSGA-II(ONSGA-II); /* NSGA-II. See Section 5.4. */

15 X ?SPEA-2 ←SPEA-2(OSPEA-2); /* SPEA 2. See Section 5.5. */

16 end

17 X ? ←MergePF(X ?NSGA-II ∪ X ?SPEA-2); /* Set of nondominated solutions. */

The estimation of the set of nondominated solutions (X ?) is done depending
on the choice of the decision variable Z. Thus, for Z = 0 or Z = 1, the set of
nondominated solutions is obtained by means of the algorithm NSGA-II or SPEA 2,
respectively. This was the initial approach of the research. It was observed that
while SPEA-2 provides better distribution of the estimated Pareto Front, NSGA-II
is able to achieve better convergence, but only in certain regions of the objective
space. Details are provided in the next section. Thus, based on these differences,
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the possibility of combining both algorithms was investigated. This corresponds
to the option Z = 2. If Z = 2, the estimation is done by using both algorithms
and merging the output of each one (the sets X ?NSGA-II and X ?SPEA 2) by means of
the function MergePF() as it is indicated in line 17. This function returns a set
of Pareto efficient solutions taken from the set that is passed as argument, in this
case X ?NSGA-II ∪ X ?SPEA-2. This is done by applying the Pareto dominance notion
(Section 5.2).

In this manner, the novel approach introduces the idea of using both MOEAs
to take advantage of the best features of each of them. Both sets, X ?NSGA-II and
X ?SPEA 2 are, by definition, composed of nondominated solutions, but the union of
them could contain dominated individuals. Indeed, it is reasonable to expect that,
for Z = 2, |X ?| > |X ?NSGA-II|, |X ?| > |X ?SPEA 2|, and |X ?| < |X ?NSGA-II|+ |X ?SPEA 2|.
Hence, the option of employing both algorithms offers obtaining more SFR/FFR
(Pareto efficient) configurations for the same computational cost. The satisfactory
results shown in the next section demonstrate the effectiveness of this new method.
Real- and discrete-valued design variables are considered to further illustrate the
versatility of the proposed framework.

6.5 Performance Evaluation

In this section, the setting used in numerical evaluations is presented. Subsection 6.5.1
describes the network parameters, configuration of evolutionary algorithms, and
the cellular scenario. The reference schemes (benchmarks) are introduced in Sub-
section 6.5.2. The numerical results corresponding to the optimization of SFR and
FFR are analyzed in Subsections 6.5.3 and 6.5.4, respectively.

6.5.1 Settings and Test Case

The set of parameters used in numerical evaluations together with the configuration
of the evolutionary algorithms are shown in Table 6.2. A discussion on calibration
aspects is provided in Subsection 6.6.1 to explain the calibration process and provide
practical guidelines.

In order to prove the effectiveness of the proposed multiobjective framework, a
realistic deployment is considered. The test case is the scenario ‘MORANS’ that is
defined in Appendix B (Subsection B.1.2).

6.5.2 Benchmarks and Reference Cases

In order to provide a good perspective of the merit of the proposed framework, this
strategy is compared with a wide set of reference schemes including classic resource
allocation patterns, baseline SFR/FFR designs, and existing approaches from the
literature. The benchmarks are described next.
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Table 6.2: Evaluation setting and MOEAs configuration

Network settings and parameters

Available power per cell 43.00 dBm
System bandwidth (B) 5.40 MHz

Number of cells (L) 60
Number of pixels (A) 288750

CS-RS power (pCS-RS(l), l = 1, 2, · · · , L) 18.4 dBm
Bandwidth sharing (β) in SFR optimization 2/3

Power ratio (α) in FFR optimization 0.40

MOEAs configuration

Population size 600
Max number of generation 2000

Crossover probability 1.0
Mutation probability 1/(L+ 1)=1/61

Termination criterion: relative gain in each fi < 0.01%/40 generations
Design variable bounds: ψTH [-4.00 8.00] [dB]

Design variable bounds: α (SFR optimization) [0.15 0.50]
Design variable bounds: β (FFR optimization) [0.30 0.50]

• Full reuse (xFR): or reuse factor 1, each cell transmits full power over the
whole system bandwidth, i.e., full frequency reuse (see FR1 in Figure 2.8).
It is worth saying that, 1) this is a common configuration used in real-world
deployments, and 2) this benchmark is very often the only one used in related
works [63, 250, 251]. Note that user classification is not required in this scheme.

• Reuse factor 3 (xR3): Each cell transmits the available power over a third part
of the system bandwidth (see FR3 in Figure 2.8). User classification is not
required in this scheme.

• SFR/FFR - Class proportionality (xxCP): A common SINR threshold (ψTH)
is applied to all cells so that each class has, on average, the same number of
users. The average SINR distribution (see the blue curve in Figure 3.15b) is
considered to determine ψTH. Several configurations have been considered and
they are indicated by the superindex x.

• SFR/FFR - Bandwidth proportionality (xxBP): The SINR threshold (ψTH)
guarantees that the number of pixels in each class is proportional to its
bandwidth. Similarly to class proportionality, ψTH holds for all cells and it
is computed based on the average SINR distribution of the whole network.
Several configurations have been considered and they are indicated by the
superindex x.

• Subband Allocation (xxSA): It corresponds to the best configurations found
by means of the subband allocation (local-search-based) algorithms proposed
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Table 6.3: Benchmarks configuration and performance.

Scheme K α or β (SFR/FFR) ψTH [dB] f1 [Mbps] f2 [Mbps] f3

Classic configurations

xFR 1 NA NA 9.81 5.70 1.00

xR3 3 NA NA 7.40 3.82 1.00

SFR configurations

x1
CP 3 0.45 3.60 10.97 5.03 0.630

x2
CP 3 0.40 3.60 10.84 5.17 0.600

x1
BP 3 0.46 0.90 9.04 6.73 0.640

x2
BP 3 0.41 0.90 8.92 6.67 0.610

x1
SA 3 0.20 3.00 9.90 6.60 1.000

x2
SA 3 0.50 5.00 12.33 4.09 1.000

x3
SA 4 0.15 2.00 9.69 6.74 1.000

x4
SA 4 0.50 5.00 13.44 3.25 1.000

FFR configurations

x1
BP 3 0.50 -0.92 7.70 8.16 0.367

x2
BP 3 0.40 -0.08 7.60 7.84 0.360

x3
BP 3 0.33 0.69 7.51 7.65 0.355

x4
BP 3 0.25 1.92 7.64 7.26 0.350

x1
SA 3 0.35 2.00 9.85 5.50 0.425

x2
SA 4 0.35 1.00 8.94 7.03 0.369

x3
SA 4 0.40 0.00 8.03 8.35 0.471

in [63] and [64] for SFR and FFR, respectively. It is worth saying that since
these algorithms require as input the number of subbands K, α or β, and
ψTH, more than 150 trials2 were required to find the configurations achieving
the best results. Several configurations have been considered and they are
indicated by the superindex x.

The configuration and performance of the benchmarks in terms of f1, f2, and f3 are
shown in Table 6.3.

6.5.3 Numerical Results: SFR Optimization

In this subsection, the results corresponding to the optimization of SFR through
Algorithm 6.2 are presented. In particular, the novel approach that considers the

2The search space was obtained after an initial trial and error procedure required to localize
the region of interest, i.e., K ∈ {3, 4}, ψTH ∈ {−3,−2, · · · , 6} [dB], α ∈ {0.05, 0.10, · · · , 0.60}, and
β ∈ {0.15, 0.10, · · · , 0.60}.
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(a) 3D view. (b) 2D view: f1 vs. f2

(c) 2D view: f1 vs. f3 (d) 2D view: f3 vs. f2

Figure 6.2: Representations of the estimated Pareto Front.

parallel use of two different MOEAs (NSGA-II+SPEA 2) is considered at this
instance.

Figure 6.2 shows 3D and 2D visualizations of the estimated Pareto Front (X ?).
Recall that each element of X ? represents a Pareto efficient SFR configuration,
meaning that no improvement can be made on an objective function without worsen
at least another one. In the figure, the images of the nondominated solutions and
reference schemes are represented by orange starts and blue circles, respectively.

Figure 6.2a provides a 3D representation of the estimated Pareto Front, from
which it can be seen that the benchmarks are all behind the surface created by the
images of the elements in X ?. Given that the convex shape of the Pareto Front
points to regions where better values of f1, f2, and f3 are located, the result gives a
first insight about the excellent quality of the solutions.

In order to provide a better qualitative perspective of the improvement that can
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(a) Average cell capacity. (b) Cell edge capacity. (c) Norm. power consumption.

Figure 6.3: CDF of objective functions of the elements in X ?.

be achieved, 2D profiles are shown in Figures 6.2b, 6.2c, and 6.2d, for each possible
pair of objective functions. 2D profiles are generated by projecting the Pareto Front
onto the f1-f2, f1-f3, and f2-f3 planes. They are an alternative representation
providing better insights about the tradeoff between each pair of objective functions.
In this manner, the operator can decide how much loss in terms of one metric is
traded by a more significant gain in terms of another one. For instance, Figure 6.2c
shows that small losses in terms of f1 allow significant energy savings (f3) while,
Figure 6.2b indicates a more linear relationship between f1 and f2.

Note that from the perspective of each pair of objective functions, there exist
dominated solutions. This is due to the fact that the Pareto dominance is applied
considering all the metrics: f1, f2, and f3. In any case, the 2D profiles clearly show
that Algorithm 6.2 always succeeds in finding SFR configurations dominating each
reference scheme from the perspective of each pair of objective functions. Thus, the
intersection of the set of solutions dominating each benchmark in each 2D profile is
the set of solutions dominating that reference scheme in the Pareto sense.

Focusing on the spectral efficiency vs. cell edge performance tradeoff (Figure 6.2b),
it can be seen that most of the reference cases only offer tradeoffs (improve one
performance metric by paying a price in another one) with respect to full reuse (xFR).
However, it is possible through the proposed algorithm to find SFR configurations
dominating xFR, i.e., improving simultaneously all performance metrics. This is
very important, because it means that there is no point in employing full
frequency reuse instead of optimized SFR configurations in the context of
realistic deployments. Note that the scheme represented by x1

SA (indicated in the
figures) is also strictly superior to xFR and it is very close to the Pareto Front.
However, it is still dominated by some SFR configurations in the set X ? in terms
of f1 and f2, and it is clearly outperformed in terms of energy consumption (see
2D profiles including f3). Thus, the SFR settings obtained by means of Algorithm 6.2,
not only improve all reference cases from the perspective of spectral efficiency and
cell edge performance, but also do it reducing the energy consumption.

Figures 6.3 provide a first quantitative point of view of the gains. The CDFs
of the objective functions (obtained by means of the elements of X ?) are shown in
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Figure 6.4: Gains obtained by the elements of X ?.

Figures 6.3a, 6.3b, and 6.3c. This representation is a convenient way of looking at
the improvement with respect to any reference case or benchmark. In the figure,
the important case of full reuse is shown. The results basically tell that, randomly
selecting a solution from the set X ? results in an average gain of 15% and 52% with
respect to f1 and f3, respectively. The average loss of 4% with respect to f2 just means
that in X ? there are more solutions with worse values of f2 than xFR. Nevertheless,
it is important that all the benchmarks are dominated by a non-empty set of SFR
configurations, and hence, a mobile operator can select solutions according to its
needs. Moreover, obviously the design variable bounds can be redefined to focus the
exploration in a certain region of the search space X . The CDFs show the widespread
of the estimated Pareto Front, i.e., f1 ∈ [8.5, 15] (in Mbps), f2 ∈ [3.0, 7.0] (in Mbps),
and f3 ∈ [0.4, 0.73].

In order to have another quantitative perspective, Figure 6.4 shows average
gains that can be achieved by means of the proposed scheme using both MOEAs
(option Z = 2 in Algorithm 6.2), and each MOEA independently (options Z = 0
and Z = 1 in Algorithm 6.2). In order to make a fair comparison, the number of
generations for NSGA-II and SPEA 2 was doubled with respect to the hybrid case
(NSGA-II+SPEA 2). The figure shows the maximum gain in terms of each metric (f1,
f2 and f3) and with respect to each benchmark. Note that, after 800 generations3,
the extra gain by running NSGA-II (or SPEA 2) for 800 additional generations is

3As it will be shown later on, 800 generations suffices, on average, to fulfill the termination
criterion.
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Figure 6.5: Representation of two solutions in X ?.

typically quite small, within 2%. Note that there are benchmarks the algorithm
NSGA-II was unable to outperform (x1

BP, x2
BP and x3

SA), as the performances of
these reference cases are located in the boundaries of the Pareto Front. Nowever,
these extreme solutions are outperformed by SPEA-2 which is able to achieve better
diversity than NSGA-II due to its excellent diversity-preserving mechanism.

In the light of the previous results, it was decided to investigate a novel approach
based on the joint use of NSGA-II and SPEA-2 by means of the Pareto dominance
notion. As the results shown in Figure 6.4 confirm, this method allows obtaining the
best properties of each algorithm without increasing the computational cost.
While NSGA-II is well-known for its excellent convergence, SPEA 2 provides good
diversity [228]. Therefore, it is concluded that the performance of the hybrid scheme
(NSGA-II+SPEA 2) is superior to the one of each MOEA because it outperforms
(without exception) all the benchmarks. Thus, by sacrificing a marginal gain in
terms of convergence that is quantified shortly, the hybrid scheme is able to obtain a
wide- and well distributed Pareto Front. In addition, the hybrid approach increases
significantly the number of nondominated solutions for the same computational cost,
this is also quantified shortly.

It is worth noting that, in most of the cases, the gains obtained by the scheme
NSGA-II+SPEA 2 at 800 generations are still greater than the ones achieved by
SPEA-2 at 1600 generations due to the excellent convergence of NSGA-II at 800
generations. This clearly shows the potential benefit of the proposed scheme as a
mean to improve the convergence vs. diversity synergy through the joint use of
NSGA-II and SPEA 2.

Focusing on the features of the SFR settings obtained through Algorithm 6.2,
Figure 6.5 shows the structure of two elements of X ?. As mentioned before, every
single solution is composed of L classification thresholds (one for each cell) plus a
global SFR power ratio α. Recall that every SFR configuration belonging to X ? is, by
definition, Pareto efficient, and hence, selecting another element in X ? always implies
a tradeoff. The figure illustrates how different SFR settings featuring more or less the
same energy requirement attain different goals. While the upper solution enhances
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Figure 6.6: Per-cell stattistics: solutions in X ?.

28% the system capacity with respect to the solution below, the latter increases
27% the capacity in the worst percentile 5 of the coverage area. Nevertheless, in this
case, only the upper configuration dominates xFR, while the lower one only brings
a tradeoff. In addition, an increment of the classification thresholds (orange lines
indicate mean values) favors, on average, spectral efficiency and penalizes cell edge
performance. Thus, the upper configuration outperforms the one below in terms
of f1, while the latter dominates the former in terms of f2. This goes in line with
previous results reported in [45].

Another important point of view is the performance at cell level. Figure 6.6 shows
the statistic of cell-level versions of f1, f2, and f3: f c

1 , f c
2 , and f c

3 , respectively. In this
case, a wide range of values is also obtained for these metrics (f c

1 ∈ (2.5, 20) [Mbps]
and f c

2 ∈ (60, 285) [kbps]). Based on these CDFs, it can be concluded that the
proposed algorithm is able to find different SFR profiles, all of them achieving
network-wide (f1, f2, and f3) gains and different performance at cell level. The fact
that the results at cell level can be suboptimal is not necessarily bad because network
dynamics (traffic patterns) change from one cell to another, and therefore, having
multiple solutions is desirable from a practical standpoint. As it was mentioned, this
particular feature of the proposed multiobjective optimization framework becomes
one of its major strengths, i.e., it provides mobile operators with a set of pre-
calculated SFR operational points that can be applied as required without any
online computational cost nor heavy intercell signaling overhead.

It is important to stress that global optimization gains come from the fact that
the proposed algorithm takes advantage of the differences among cells, and thus, it
is expected that higher gains are more feasible under quite unbalanced conditions,
otherwise, optimization makes no sense and it is not feasible.

If minimum performances at cell level are required, the proposed methodology
allows for any of the following approaches:

X Selecting elements of X ? whose objective function values at cell level are within
desired limits,
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X adjusting variable bounds in (6.1) to further localize the stochastic search of
the MOEAs, or

X applying the ‘Method of Inequalities’ [252], in which an interval of interest is
defined as a goal range [fi,low, fi,up] for each objective function fi. However,
this would require to evaluate each performance metric for each cell, and hence,
it would increase the overall complexity/cost.

6.5.4 Numerical Results: FFR Optimization

In order to illustrate the versatility of the proposed framework, the results corres-
ponding to the optimization of FFR are presented for the case where only one MOEA
is used. The conclusions on the comparative between NSGA-II and SPEA 2 (the
cases Z = 0, Z = 1, and Z = 2) are extensible to the case of FFR optimization.
Thus, for the sake of brevity, the use of NSGA-II (Z = 0) is considered herein.

As it was done in Figure 6.2, now Figure 6.7 shows 3D and 2D representations of
the estimated Pareto Front. A similar analysis also holds for this case. The proposed
scheme is able to find solutions dominating each benchmark from the perspective
of each pair of objective functions in a strict sense, i.e., improving simultaneously
f1, f2, and f3. However, in this case, it is notorious the relative position of the
full reuse scheme, which is much above of the Pareto Front (see Figure 6.7b). This
means that there are only few solutions (6%) improving xFR in terms of average
cell capacity (f1), while most of the elements in X ? do outperform xFR from the
cell edge capacity (f2) viewpoint. The situation is expected given the bandwidth
reduction in FFR. In any case, Algorithm 6.2 is able to find solutions strictly better
than xFR, and thus, the algorithm also shows the potential and feasibility of FFR
for realistic deployments with irregular cell layouts.

Figures 6.7c and 6.7d show the 2D profiles in which the energy consumption (f3)
is included. In this case, it is evident that this parameter is much less sensitive to
variations of β ∈ [0.3, 0.5] than in case of SFR/α. Note that for β = 0 and β = 1,
f3 = 1/3 and f3 = αFFR = 0.4. Thus, the range of f3 is smaller than in case of SFR.

The quantitative point of view is provided in Figure 6.8. The figure shows the
maximum gains that can be achieved in terms of each objective function and with
respect to each benchmark. As mentioned before, the gains in terms of f1 with
respect to xFR are much lower (around 5%) than the ones in terms of f2 and f3,
which go up to 60% and 65%, respectively. The improvement is even greater in case
of xR3, being the gain in terms of aggregate cell edge capacity of around 70%. The
gains with respect to the baseline designs range from 5% and 40% in terms of f1 and
10% to 65% in terms of f2. All these gains are always accompanied of reductions
that go from 2% to 25% in terms of average power consumption (f3).

Figure 6.9 shows the statistics corresponding to the elements of the set X ?.
Figures 6.9a, 6.9c, and 6.9e, show the statistics of f1, f2, and f3, respectively. Again
the analysis is focused on the important case of full reuse (xFR), but the same
analysis holds for the rest of benchmarks. Figure 6.9a indicates that a random
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(a) 3D view. (b) 2D view: f1 vs. f2

(c) 2D view: f1 vs. f3 (d) 2D view: f3 vs. f2

Figure 6.7: Representations of the estimated Pareto Front.

selection of the solutions in X ? provides, on average, a loss of 8% in terms of f1 with
respect to xFR. As it can be seen, only 25% of the elements of X ? achieves a higher
average cell capacity. Average gains in terms of f2 and f3 are in the order of 21%
and 64%, respectively.

The corresponding cell-level versions (f c
1 , f c

2 , and f c
3) are also included and they

are shown in Figures 6.9b, 6.9d, and 6.9e (note that the statistic of f3 is the same
statistic than f c

3). The distribution of β is shown in Figure 6.9f. A very similar loss
in terms of cell capacities (f c

1) is obtained with respect to xFR as a consequence of
the bandwidth reduction. However, more important from an ICIC point of view, is
the average gain of more than 90% in terms of cell edge capacity at each cell, thus
confirming the effectiveness of the proposed strategy, also for the case of FFR.

Finally, to close this subsection, the structure of two solutions in X ? and its
corresponding system and cell level performance are shown in Figure 6.10. It can
be seen how two different nondominated solutions result in significantly different
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Figure 6.8: Gains obtained by the elements of X ?.

results at cell level. This nondomination relationship does not necessarily holds at
cell level because the multiobjective optimization procedure is performed taking into
account f1, f2, and f3, but f c

1 , f c
2 , and f c

3 . The figure also indicates average values
(orange lines and bold text) in each case. Note that, the upper solution, featuring a
higher average classification threshold (ψTH), favors spectral efficiency, while the
one below, with smaller ψTH, achieves better cell edge performance.

As it can be intuitively inferred from Figure 6.10, it is interesting to study the
connections between cell level performances and system oriented metrics. The fact
that very dissimilar performance at cell level can result in similar global performances
opens the possibility of employing the proposed framework as the starting point
of adaptive (low-complexity) ICIC schemes based on SFR or FFR. Given that,
according to [253], there are close relationships between multiobjective optimization
and multi-agent decision theory, the extension of the framework presented in this
thesis seems natural.



Chapter 6. Optimization of Static ICIC Schemes through the use of MOEAs 151

(a) Average cell capacity. (b) Per-cell capacity.

(c) Cell edge capacity. (d) Per-cell cell edge capacity.

(e) Norm. power consumption. (f) Distribution of β in X ?

Figure 6.9: CDF of objective functions of the elements in X ?.

Figure 6.10: Performance of two solutions in X ?.
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6.6 Additional Aspects

The previous section demonstrates the effectiveness and suitability of the novel
multiobjective optimization framework in the context of realistic cellular deployments.
In addition to those numerical results, additional aspects include the calibration of
MOEAs, convergence properties of these algorithms applied to (6.1), feasibility in
LTE, and complexity. This section covers all these elements. Most of the discussion
apply both to SFR and FFR optimization. Wherever a distinction is required, it
will be explicitly indicated.

6.6.1 Calibration of MOEAs

An important aspect of the novel multiobjective optimization scheme is that a
calibration is required for the parameters that control the evolutionary algorithms.
The objective of this discussion is to give an insight into the matter and derive rules
of thumb for an easy adjustment.

Thus, the sensitivity of the results to the inputs (subject to calibration) was
studied. These aspects have been investigated considering that, as it was mentioned
in Chapter 5, any good MOEA must implement mechanisms to satisfy convergence
and distribution requirements.

X In the context of MOEAs, convergence refers to the ability of the algorithm
to get close to the Optimal Pareto Front as soon as possible. Convergence
has been speeded up through the use of elitism, a technique by which the
algorithm preserves good solutions.

X The distribution is related to the ability to provide the largest possible set of
nondominated solutions and keep them as evenly distributed as possible along
the Pareto Front.

The way in which NSGA-II and SPEA 2 implement such desired features is
discussed in Chapter 5, however, these mechanisms are summarized in Table 6.4. Thus,
the calibration procedure investigates how changes in the parameters that govern
the algorithm affect its performance in terms of hypervolume (υ) and nonuniformity
index (%), the reader is referred back to Subsection 5.3.2 for their description.

The convergence of MOEAs depends on its operational parameters such as pop-
ulation size, number of generations, crossover and mutation probabilities, crossover
and mutation type, and distribution indexes. The following paragraphs aim at
highlighting some practical calibration guidelines:

• Population size: There is a general consensus about the population size in
approaches based on genetic algorithms (such as NSGA-II and SPEA 2). The
range to consider during calibration is [20,100] and beyond 100, extra gains are
hardly achieved and the same global convergence is obtained [240]. In this sense,
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Table 6.4: Main features of NSGA-II and SPEA 2.

Convergence Distribution

NSGA-II Nondomination based rank. Selection based on crowding distance metric.

SPEA-2 Raw fitness assignment process. Density metric based on distance.

Figure 6.11: Convergence pattern in SFR optimization.

during calibration time it is obtained that the statistical properties of different
sets of nondominated solutions (in different executions of the optimization
process) converged for a population size of more than 30 individuals. In fact, for
sets of cardinality 30, the hypervolume indicator went asymptotically close to a
common value and the mean value of nonuniformity was almost constant. Since
computation time grows exponentially with this input, the final population
size also depends on the problem scale and the computational complexity that
can be afforded.

However, in our context: a higher population size allows a smoother Pareto
Front, and hence, operators could choose among a more contiguous and denser
set of solutions. Thus, taking into account this tradeoff, the results presented
herein considered populations of 600 individuals, which surpasses by far any
recommendation in the literature.

• Number of generations and termination criterion: The number of generations
depends on a predefined termination criterion. In this study, the execution
of MOEAs finishes when the improvement of each objective function is less
than 0.01% after a block of 40 generations. With this approach, the stochastic
nature of genetic algorithms is taken into account, thus avoiding a premature
termination of the algorithm. This situation could happen if the condition is
tested after a small number of generations. Figure 6.11 shows the convergence
pattern of Algorithm 6.2 in terms of the slowest objective function (f2) and
the hypervolume indicator (υ). The normalized points in the plot correspond
to the average of 50 realizations and error bars are used to represent statistical
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reliability [254].

Note that there is a close correlation between the evolution of f2 and υ.
This behavior is expected because, as it was explained in Chapter 5, the
maximization of the hypervolume is equivalent to the estimation of the Optimal
Pareto Front [239]. For the setting employed herein, 800 generations typically
suffice to fullfil the termination criterion, but obviously, this figure would vary
according to the problem scale (network size) under consideration.

• Genetic operators: When real-valued design variables are used, genetic algo-
rithms use simulated binary crossover (see [226, 227, 241, 242]) and polynomial
mutation (see [226, 227, 241]) for crossover and mutation, respectively. In
case of discrete-valued design variables, Single Point Crossover and Unary
Reproduction operators [220] are employed.

The crossover operator is a key element in the search process, since it defines
how flexible the algorithm is to generate new solutions in the search space. On
the one hand, simulated binary crossover creates children solutions proportional
to the differences in parents, and on the other hand, polynomial mutation uses a
certain probability distribution to model the required variations. Both methods
require an input denoted as distribution index that is inversely proportional
to the creation of children solutions distant to the parents. Thus, distribution
indexes are scalars used for tuning both crossover and mutation: nc and nm,
respectively. These coefficients control the spread of the next generations in the
space of solutions, and hence, they govern the convergence-diversity tradeoff of
the evolutionary process. Crossover and mutation operators for discrete-valued
design variables are simpler and these mechanisms are described in [220].

In case of highly nonlinear responses, smaller values of crossover and mutation
distribution indexes yield good results. The range for this value goes from 0.5 to
500. A value of 20 is selected as a result of a previous calibration process based
on small scale experiments, in which the evolution of the hypervolume indicator
with the number of generations is analyzed. Figure 6.12 shows average values
obtained from 50 independent starting points. As expected, smaller distribution
indexes favor better distribution (low nonuniformity). A distribution index of
20 provides the best convergence for the problem under consideration. Indeed,
values ranging from 5 to 70 will not have a very different impact. Note that
this figure (nc = nm = 20) is the reference value suggested by the creators of
the algorithms in their original references [226, 227].

• Crossover and mutation rate (probabilities): These parameters control the rate
of evolutionary operations. Recall that 1) crossover is a fundamental process,
especially when genetic algorithms preserve elitism, because it guarantees
exploring the search space in regions where good solutions are more likely to
be found, and 2) mutation is an important source of diversity in evolutionary
processes.

Values close to one are suggested in the related literature [226] for crossover rate,
while mutation rates around 1/n, where n is the number of design variables,
have been also suggested [226]. In any case, the selection of these parameters
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Figure 6.12: Calibration of distribution indexes (SFR optimization).

Figure 6.13: Calibration of mutation rate (FFR optimization).

is done following a calibration process. As an example, Figure 6.13 shows the
results corresponding to different mutation rate in FFR optimization. Recall
that L is number of cells in the network. As it can be seen in the figure, a fine
tuning calibration around the reference value (1/(L+ 1)) implies a marginal
differences of around 1% in the case of NSGA-II. Thus, one can conclude that
the recommendations in the literature are suitable for this particular problem,
and hence, crossover and mutation rate are set to 1 and 1/(L+ 1), respectively.
These values provide good results for the setting presented herein.

6.6.2 Convergence Properties and Statistical Reliability

The convergence is studied by looking at the evolution of the hypervolume indicator.
Figure 6.14 shows the evolution of the hypervolume for NSGA-II and SPEA 2 until
1600 generations for the SFR case. This is done in order to make a fair comparison
and to show the advantage of the novel approach (NSGA-II+SPEA 2). In this
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Figure 6.14: Hypervolume evolution and nonuniformity of the Pareto Front

manner, the three cases have the same computational cost in terms of objective
function evaluations. The figure also shows the hypervolume figure obtained with
the hybrid scheme at 800 generations (when the termination criterion is fulfilled).
The experiments were conducted with a population size of 600 individuals. The
results represent average values of 50 realizations and error bars are used to represent
statistical reliability [254], corresponding to the standard deviation found in each
case. It is clear that both algorithms exhibit the expected asymptotic behavior. The
ratio between the extra gain (in terms of hypervolume) and the number of additional
generations (number of function evaluations) decreases very slowly once a certain
quality in the set of solutions is reached. In addition, the legend indicates average
nonuniformity figures.

The results show that the average gains in terms of hypervolume are of 0.69%
and 3.20% with respect to NSGA-II and SPEA-2, respectively. Since NSGA-II@1600
generations is rather close to Algorithm 6.2 (with Z = 2), a statistical analysis is
performed to provide further evidence supporting the use of the combined approach.

By using the samples used to estimate the cumulative distribution functions, the
Wilcoxon-Mann-Whitney [255] test4 was performed and the corresponding p-values
were obtained (Table 6.5). The results clearly show that the null hypothesis can
be rejected in both cases. Indeed, the null hypothesis, i.e., distributions have same
median, can be rejected at significance levels much below 0.05, the typical threshold
used for statistical significance. Given the previous paragraphs, it can be said that,
on average, NSGA-II+SPEA 2@800 generations provides better convergence than
NSGA-II@1600 and SPEA-2@1600.

In addition, by means of the merging process based on the Pareto dominance,
the hybrid scheme increases the number of nondominated SFR configurations by

4Prior to perform Wilcoxon-Mann-Whitney’s test, the data was analyzed in order to verify
that it does not follow a normal distribution by means of the Shapiro-Wilk’s [256] and Kolmogrov-
Smirnov-Lilliefors’s [257] tests. Normality was always discarded with a significance level of 0.05.
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Table 6.5: Wilcoxon-Mann-Whitney’s test (U-test).

Test
p-value: p-value:

Hypervolume Nonuniformity

NSGA-II+SPEA 2 vs. NSGA-II 3.30e-10 1.37e-17

NSGA-II+SPEA 2 vs. vs. SPEA-2 7.06e-18 7.06e-18

Figure 6.15: Convergence pattern in FFR optimization.

78% (on average). Note that after 800 generations, both NSGA-II and SPEA 2
have an average number of 575 and 581 nondominated solutions respectively. Thus,
after merging both sets, through the Pareto dominance notion, an average number
of 1068 Pareto efficient configurations is obtained. This represents 78% more than
the number of nondominated solutions found by NSGA-II and SPEA-2 after 1600
generations. This is very important from a practical perspective as the improvement
of the objective function values is marginal after a certain number of generations.
This also explains the gain in terms of hypervolume previously shown.

Finally, Figure 6.15 shows the convergence pattern obtained in FFR optimization.
The figure indicates the evolution of the slowest objective function (f2) and hypervol-
ume indicator (υ). Note that after only 80 generations, both f2 and υ reached more
than 85% of their final value showing excellent convergence, and hence, the accurate
calibration of NSGA-II for this problem. It can be seen that after the fulfillment of
the termination criterion (typically after 800 generations), the relative improvement
in terms of hypervolume is less than 2%, despite that 800 additional generations
are run. Therefore, it can be concluded that the ratio between gains and processing
cost decreases very fast after the termination criterion meaning that the algorithm
reaches a convergence state.
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6.6.3 LTE Feasibility and Complexity

Although SFR and FFR are ICIC strategies whose implementation is in essence
straightforward, it is advisable to consider the targeted received power when defining
the coverage area to be optimized. This is important because SFR and FFR apply
some power reduction to the PDSCH in certain parts of the system bandwidth.
Besides, since SINR estimations are based on RSs, current values of α must be
informed to UEs (by means of user-dedicated signaling [162]) to conveniently take
them into account when processing SINR figures and CSI feedback reports (further
details are provided in Chapter 4).

Moreover, it is worth saying that, all the processing required to perform the
optimization can be done offline.This functionality, is not standardized in the LTE
specifications, and hence, it would be an added-value feature that can be offered by
vendors.

The complexity of Algorithm 6.2 is mainly set by the complexity associated with
the evolutionary mechanisms employed to estimate the Pareto Front. According
to [226] and [227], the complexity of NSGA-II and SPEA 2 is O(MN2) and O((N +
R)2 · Log(N + R)), respectively. The variables N , M , and R correspond to the
population size, number of objectives, and the archive size (used to preserve elitism),
respectively.

Although, a priori, such complexity looks restrictive, it is important to take into
account that after one execution of Algorithm 6.2, the output represents a big set of
nondominated (SFR or FFR) configurations. In the stochastic search, near-optimum
values for each design variable are found. In contrast, other algorithms such as the
one proposed in [63], with an overall complexity bounded by O(L2 ·K · (K − 1)/2)5,
has the drawback that, since it is local search, global optima cannot be guaranteed,
and indeed, a huge number of trials needs to be performed in order to find acceptable
results.

Given that these algorithms are different in nature, computational complexity
is given in terms of different set of parameters. Therefore, in order to establish
some point of comparison, note that in case of Algorithm 6.2, the number of design
variables is equal to the number of cells plus one (N = L+ 1). As it was indicated
before, the complexity grows linearly with L. In case of the algorithm proposed in
[63], the number of cells L also affects the complexity, but exponentially.

6.7 Concluding Remarks

The performance at cell edges is a critical issue in OFDMA cellular systems such
as LTE and LTE-A. In realistic deployments featuring irregular cellular layouts,
the performance of baseline design configurations of SFR and FFR and reference
schemes such as full reuse is significantly degraded. This chapter presents a novel

5Recall that K is the number of subbands in the system bandwidth and that K − 1 subbands
are devoted to cell edges.
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multiobjective optimization framework that aims at improving the operation of SFR
and FFR in this type of deployments. Given that SFR and FFR constitute the
fundamental basis of most static ICIC schemes, the framework is general and easily
extensible.

Requiring only commonly available propagation information, the proposed ap-
proach is suitable to be applied to any realistic deployment without need for making
assumptions on network topology. Moreover, it allows mobile operators to suitably
define several performance indicators according to their needs.

The optimization strategy succeeds in finding Pareto efficient configurations
enhancing simultaneously all performance metrics with respect to an important
group of reference cases, and hence, its effectiveness and suitability has been clearly
demonstrated. The main results can be summarized as follows:

• A significant reduction of ICI in cell edge is achieved. This is confirmed by the
gains in terms of the capacity of those areas. This is very important because
the main target of ICIC techniques is precisely to improve the QoS in zones
with low SINR levels. The formulation presented herein optimizes average
ICI conditions by means of expressions that consider the resource allocation
pattern in SFR and FFR.

• The merit of the proposed scheme is demonstrated as the algorithm is able
to find a set of SFR/FFR configurations outperforming schemes existing in
the literature, baseline designs, and reference schemes. Moreover, it provides a
consistent set of network configurations from which, the operator is able to
make a selection according to its needs. Besides, this is done having a clear
picture of the different tradeoffs among objectives. As it was mentioned, the
methodology by itself opens the door for further research towards SFR/FFR-
based adaptive mechanisms.

• The hypothesis formulated in Section 6.1 is verified. Such idea is based on the
suitability of the classification threshold (ψTH) to control the operation of SFR
and FFR. This paremater can be adjusted at each cell without impact in terms
of ICI at neighbour cells. Thus, it is shown that by adjusting the classification
thresholds at cell level, an attractive cost-performance tradeoff is attained.
The results also show the suitability of MOEAs in the context of static ICIC
optimization, another important conceptual novelty of this research.

• A novel method based on the combination of two different MOEAs is pro-
posed. The approach allows to leverage the best characteristics of each algo-
rithm (NSGA-2 and SPEA 2). In particular, it was shown that the hybrid
scheme (NSGA-II+SPEA 2@800 generations) provides better convergence than
NSGA-II@1600 and SPEA-2@1600. This result indicates that for the same com-
putational cost (objective function evaluations), the number of nondominated
solutions (network configurations) is significantly increased (78% on average)
and a more distributed Pareto Front is obtained. Given that after a certain
number of generations the improvement of the objective function values is very
small (typically less than 1%), the extra number of solutions compensate this
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marginal loss as they all contribute to improve the hypervolume indicator. In
this manner, gains in terms of hypervolume are also achieved.

• A detailed statistical analysis of the convergence properties of the evolutionary
algorithms was performed. The results show the impact of the calibration
process on the performance of the proposed strategy, and consequently, a
detailed discussion on the matter is provided indicating rules of thumb and
practical guidelines.

• As it was indicated in Chapter 3, the consideration of irregular traffic dis-
tributions can be done almost directly by simply considering a probability
space to weight different zones of the coverage area. Thus, providing the pro-
posed scheme of another interesting practical feature. An example of this is
shown in Chapter 8, where the consideration of irregular traffic distributions
is mandatory.

• Although multiobjective optimization was performed taking into account
system-oriented metrics, the study of the features of the resulting nondominated
SFR/FFR configurations showed that such dominance relationships do not
hold necessarily at cell level. The performance at cell level is obviously very
important and, as such, requires attention. The proposed framework also takes
that aspect into account and allows several means to guarantee minimum
local performances. However, it should be clearly understood that high global
optimization gains typically comes at the expense of local unbalances, being this
feature another strength of the proposed algorithm. Indeed, it provides several
solutions that, having similar global performances, provide quite different
performances at cell level, and hence, the set of solutions can be used by the
mobile operator according to its needs or preferences.

• The proposed multiobjective approach has been designed for data channels.
However, another very important component of cellular systems such as LTE
and LTE-A, is the performance of control channels, which are also affected by
the cell edge performance issue. That is the matter of the next chapter.



Chapter 7

ICIC for Control Channels

7.1 Introduction

In previous chapters, it was shown that cell edge performance is especially impor-
tant in realistic deployments mainly due to the irregularities found in real-world
networks. As a result, long tails in SINR distributions are expected because these
inhomogeneities cause significant variations in the radio channel quality, both in
serving and interfering signals.

The industry recognized this challenge and responded by means of Intercell
Interference Coordination (ICIC) techniques aiming at reducing the ICI at cell
edges, and so, homogenizing SINR values. An example of such efforts is the novel
multiobjective optimization algorithm presented in the previous chapter, whose
design is oriented to improve the SINR levels experienced by cell edge users in data
channels. In systems such as LTE and LTE-A, the design of those channels allows
the implementation of the adjustments in terms of transmit power and frequency
reuse factor defined in SFR and FFR. Therefore, ICIC is a useful tool to alleviate
the cell edge performance issue from the perspective of data channels.

The design of the control channel in LTE, the PDCCH, is less flexible than its
data counterpart because it is time-multiplexed, and hence, traditional ICIC schemes
such as SFR or FFR (or optimization techniques derived from them as the ones
presented in the previous chapter) cannot be applied directly. The situation worsen
because the PDCCH operates under full frequency reuse. Thus, cell edge SINR
figures are so bad that, even employing robust modulations and coding schemes,
the PDCCH would fail [53]. Indeed, it has been shown that the PDCCH acts as a
bottleneck in certain traffic scenarios and load conditions. To be precise, the PDCCH
limitates the system capacity in scenarios with many low-rate users as every single
user requires control resources independently of the targeted rate, and hence, they
saturate the PDCCH. Most of the works investigating this issue, such as [165, 258],
are focused on scenarios limited by an extensive presence of VoIP users. For this
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reason, during this dissertation a study on NRT services was done. For the sake of
clarity, this study is not included in this chapter. The interested reader can find it in
Appendix F. A reading of it will provide a deeper insight on PDCCH capacity issues.

In the light of this situation, LTE-A introduces some mechanisms to protect
the PDCCH (subsequently revised). Nevertheless, LTE networks still require some
measures to enhance the reliability and capacity of the PDCCH. Therefore, taking
into account that conventional ICIC is not an option and the operation of the PDCCH,
an adaptation of the solution introduced in the previous chapter is proposed in order
to enhance the performance of the PDCCH, and consequently, increase its capacity.
As it will be shown shortly, the proposed multiobjective optimization scheme is
based on adjustments of the power allocated to the PDCCH at each cell1.

As an answer to the aforementioned problems in the PDCCH, release 11 intro-
duces the ePDCCH. This new structure is defined to increase the signaling capacity
to cope with the increasing amount of control information required to support the set
of new features in LTE-A such as wider bandwidths, enhanced downlink and uplink
transmission, relaying, support of heterogeneous networks, and machine-to-machine
communications, among others [158]. The ePDCCH solves some lacks such as the
possibility of employing frequency domain ICIC, and hence, the use of optimization
schemes based on the framework presented in the previous chapter seems to be logical.
However, the optimization of the ePDCCH poses a new problem. The resources
devoted to the ePDCCH need to be borrowed from the PDSCH, and hence, it creates
a conflict between the capacity of data and control channels. This tradeoff is carefully
considered by the SFR-based optimization scheme presented in this chapter.

The chapter is organized as follows: the next section starts reinforcing the need
for ICIC for control channels and providing an overview of related works. The system
model and the definition of the performance metrics are explained in Section 7.3. The
multiobjective problem formulations are described in Section 7.4. Sections 7.5 and 7.6
present numerical results and convergence aspects. Finally, the chapter is closed
with final remarks in Section 7.7.

7.2 The Need for ICIC for Control Channels

The deployment of LTE is growing at a pace never seen before, and according to [1], a
similar trend is expected for LTE-A. While the proper operation of LTE strongly relies
on the performance of the PDCCH, the new features and enhancements in LTE-A
also require a reliable management of the increasing amount of control information.

This section aims at providing the description of the novel strategies for the
PDCCH in LTE and the ePDCCH in LTE-A. Recall that a basic description of
the structure and operation of these channels was presented in Chapter 2 (Subsec-
tion 2.7.1). The following discussion completes the required background and justifies
the need for ICIC in control channels.

1An extension of this approach for the data channels is presented in Appendix E.
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7.2.1 The PDCCH

As it can be seen from Figure 2.16, the PDCCH in one PRB is composed of all
subcarriers (except for 2 CS-RS) of the n first OFDM symbols (n ≤ 4, in the
figure n = 3). Each PDCCH is transmitted using one or more Control Channel
Elements (CCEs), where each CCE contains 9 sets of 4 REs known as Resource
Elements Group (REGs). The CCEs are the basic control information unit in LTE.
As it was indicated in Chapter 2, the information transmitted over the PDCCH
includes downlink (and uplink) scheduling grants, power control commands, and
data required to decode and demodulate OFDM symbols in the downlink (encode
and modulate in the uplink). Given the importance of such information, a target
BLER of 1% is pursued for the PDCCH. Thus, in order to satisfy that requirement,
both link adaptation and power control have been defined for the PDCCH [259].
In particular, 4 different PDCCH formats, Aggregation Levels (ALs), have been
specified. All of them use QPSK as modulation scheme and 4 different coding rates
can be selected based on the target SINR of the AL x (ψT

x ). This is shown in
Table C.22.

As it was mentioned, the PDCCH is time-multiplexed, and thus, its design is
less flexible than the PDSCH which can be multiplexed both in time and frequency.
Therefore, traditional ICIC techniques such as SFR and FFR cannot be applied
directly to the PDCCH. To be precise, the PDCCH does not support any signaling
mechanism to indicate users where to find their control information if those resources
were moved dynamically to avoid ICI. Indeed, users must perform a search process
to find their control messages, the so-called blind detection [159, 162].

On the one hand, increasing the aggregation level implies grouping CCEs in sets
of 1, 2, 4, and 8 to increase the robustness (see Table C.2). Since the number of
CCEs depends on average SINR values, higher ALs (required at cell edges) increase
significantly the consumption of CCEs. On the other hand, power boost is mainly
used in coverage-limited scenarios. When signal power is boosted up, ICI is also
increased, and hence, improvements are hardly achieved in interference limited
environments. In addition, it is worth mentioning that:

1. The PDCCH offers a natural protection against ICI in low load conditions due
to the shifted positioning of the CCEs in different cells. However, in case of
low-rate services such as voice, many users would saturate the PDCCH, and
thus, the interference scenario becomes full reuse.

2. LTE-A provides means to protect the PDCCH. The first option, in the frequency
domain, is based on CA [147] and cross carrier scheduling [146]. However, it is
not an option for legacy users. The second approach is in the time domain,
the use of ABSs. Nevertheless, this alternative severely penalizes the capacity,
and hence, it is a solution reserved for HetNets [140, 141].

Given that the PDCCH conveys critical scheduling information to mobile termi-

2The extension to other antenna configurations such as MIMO can be done by modifying the
SINR thresholds (ψT

x ).
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nals, the impact of its limitations (capacity) on system performance has been widely
studied in the context of real-time services such as VoIP [165, 258]. Recall that a
study of the impact of the capacity constraints of the PDCCH on the provision of QoS
for NRT services is presented in Appendix F. In addition, several resource allocation
schemes have been proposed including strategies based on power boost [259] and
search space redefinitions [260]. However, one important drawback of these schemes
is their feasibility as they rely on strong assumptions such as perfect CSI and the
restrictive real-time complexity.

Bearing in mind the previous context, the power allocation scheme described in
Section 7.4 is proposed as a mean to reduce the consumption of control resources in
the network.

7.2.2 The ePDCCH

As it was mentioned earlier, the ePDCCH was introduced to increase the signaling
capacity of the system given the increased amount of signaling required to support
the new features introduced in LTE-A. The ePDCCH is designed in such a way that
frequency domain ICIC can be used. This is done by inserting the ePDCCH into
the PDSCH. For this reason, an adapation of the strategies previously presented for
ICIC for data channels is developed. However, a new tradeoff appears because the
ePDCCH take resources normally devoted to users payload, and hence, the increment
of the signaling capacity comes at the expense of a reduction in terms of spectral
efficiency [45]. Therefore, this important conflict must be carefully considered.

In order to allow frequency domain ICIC, the ePDCCH is based on FDM as it
is illustrated in Figure 2.16. Additional Demodulation Reference Signals (DM-RSs)
are inserted within the ePDCCH to allow for user-specific beamforming and spatial
diversity. Thus, each serving cell configures UE with one or more ePDCCH PRB
sets, i.e., a set of contiguous PRBs used to allocate the ePDCCH. This user-specific
allocation is transmitted to UE by means of higher layers signaling [261].

The exact position and amount of resources devoted to the ePDCCH can be
changed dynamically and it depends on aspects such as system bandwidth, required
control capacity and location of the ePDCCH in neighbor cells. Details about the
control resource allocation mechanism for the ePDCCH in LTE-A, i.e., how to localize
and index the enhanced CCEs (eCCEs) within the PRBs carrying the ePDCCH,
can be found in [166, 261]. Note that the eCCEs are an improved version of the
CCEs in the PDCCH.

The type of information that is transmitted over the ePDCCH is basically of the
same type as in the PDCCH, and consequently, similar reliability requirements are
also specified for the ePDCCH. Therefore, ALs are also defined for the ePDCCH
as it is shown in Table C.3. In this manner, the consumption of control resources
(eCCEs) is also conditioned to the SINR levels. However, in contrast to the PDCCH,
that selects the AL based on average (wideband) SINR figures, the aggregation of
eCCEs for the ePDCCH is done with CSI at PRB level.
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It is worth mentioning that the ePDCCH is compatible with legacy carriers,
providing so more signaling capacity. Moreover, it can operate in Multicast-Broadcast
Single Frequency Network (MBSFN) subframes [262].

Given its recent appearance (release 11, 2012), few studies about the ePDCCH
have been reported. Indeed, most of the work done about the ePDCCH has been
focused on comparing its performance with the PDCCH. The recent study presented
in [263] demonstrates that the ePDCCH outperforms the PDCCH in terms of
achievable SINR levels mainly due to its inherent capability to perform frequency
domain resource allocation. The work presented in [264] is concentrated on the
design of the search space, i.e., how to allocate the eCCEs in the physical resources
devoted for such purpose. Other related works such as [147] and [265], are focused
on the mechanisms introduced in the release 10 such as cross carrier scheduling and
ABS. To the best of the authors’ knowledge, no work has investigated static ICIC
for the ePDCCH, and consequently, the suitability of SFR to protect the ePDCCH
is studied herein.

7.3 System Model

The system model is the one presented in Appendix C, Section C.1. Moreover, it
considers the analytical framework explained in Section 3.3.2.

The proposed scheme requires that all cells in the system are time-synchronized,
meaning that the PDCCH is transmitted simultaneously in the network. Nowadays,
time synchronization is becoming a trend for operators of systems such as LTE and
LTE-A. It is a requirement for important functionalities including MBSFN [262] and
other radio resource management techniques such as CoMP [34] and eICIC [141].
There are several feasible alternatives to synchronize distributed clocks with an
accuracy of less than one microsecond such as IEEE 1588 [266] and/or Global
Positioning System (GPS).

7.3.1 Design Insights

The target of the optimization schemes presented in this chapter is to increase the
capacity of the PDCCH and ePDCCH by reducing the average consumption of control
resources. Given that the signaling for cell edge users (typically with low average
SINR values) is expensive in terms of CCEs and eCCEs (see Tables C.2 and C.3), the
proposed strategies aim at minimizing the number of users with such high demand.
The previous goal can be attained by improving the radio channel quality at cell
edges, and hence, it is expected that the framework developed so far for ICIC can
be adapted to these problems.

As it was indicated, the optimization problem for the PDCCH is modeled
as power allocation. Note that assuming that the PDCCH is time-synchronized
is indeed the worst case scenario. Given this, a expression similar to (3.27) can
be used to approximate the SINR levels in the PDCCH. Once the statistic for
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those average SINR values (ψPDCCH
u ) is built, the analysis must be focused on the

average consumption of CCEs. Since the PDCCH is independent of the PDSCH
(see Figure 2.16), no impact on the capacity of the latter is expected.

The analysis for the case of the ePDCCH has some similarities but important
differences. Again, the strategies for the ePDCCH are oriented to reduce the con-
sumption of eCCEs. However, the model based on wideband SINR levels is not
longer valid because the ePDCCH is allocated within the PDSCH (the data channel).
The previous condition has two important implications:

1. A more refined estimation of average SINR values is required. In this study,
the use of SFR is proposed to enhance the performance of the ePDCCH. Thus,
the statistical framework developed for data channels can be adapted since it
predicts average SINR figures in different subbands of the PDSCH that are
subject to different resource allocation conditions.

2. Given that the ePDCCH borrows resources from the PDSCH, the capacity of
the latter is affected. Thus, such impact must be included into the analysis.

In addition to the previous considerations, the power expenditure over the air
interface is also studied to include the important energetic perspective. In the next
subsection, the performance metrics that are considered in each case are presented
together with their corresponding mathematical definition.

7.3.2 Objective Functions

Bearing in mind the design aspects previously discussed, two different sets of
performance metrics are required for the PDCCH and ePDCCH. Both sets are
presented separately next.

Objective Functions in PDCCH Optimization

The following performance criteria have been considered:

1. Minimization of the average CCE consumption (f1): this metric reflects
the consumption of control resources network-wide, thus providing a system-
oriented perspective.

2. Minimization of the consumption of CCEs in the worst cell (f2): this
metric reflects the condition of the worst cell in the system. Thus, f2 introduces
fairness among cells as it can be regarded as a min-max model within the
whole multiobjective formulation.

3. Minimization of the transmit power in the PDCCH (globally) in the sys-
tem (f3): the reason of including this metric is twofold. First, reducing the
energy expenditure over the air interface. Recall that the PDCCH is always
active. Second, minimizing the ICI in the network.
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Figure 7.1: Power allocation optimization model for the PDCCH.

The estimation of the previous objectives is based on the statistic of the SINR
levels in the PDCCH. Recall that the PDCCH operates under full reuse condition
provided the required synchronization. Thus, average SINR levels are obtained by
means of an expression similar to (3.27)3. In this manner, the vector ΨPDCCH

u ∈ RA
that indicates the SINR levels at each pixel, depends on the power allocated to the
PDCCH at each cell (pPDCCH ∈ RL). In order to be consistent with the notation
used so far (and for the sake of clarity), let’s consider x = pPDCCH. Therefore,

ΨPDCCH
u = [(S�G) · x ]�

[
[(Sc �G) · x]⊕ σ2

]
, (7.1)

where each element x(l) (the power allocated to the PDCCH in the lth cell) is
bounded, i.e., x(l) = pl ∈ [ pmin, pmax ], ∀ l = 1, 2, · · · , L, as it is shown in Figure 7.1.
In this manner, the optimization vector (x) is defined as follows:

x = [ p1, p2, · · · , pL ]. (7.2)

Once the vector ΨPDCCH
u is obtained, according to (7.1), the empirical CDF of

ψPDCCH
u in the lth cell (F lψPDCCH

u
) can be built. Note that F lψPDCCH

u
is a function of

x. This dependence is omitted for the sake of clarity.

Let’s denote as ξl the average consumption of CCEs in the lth cell. Thus, ξl is
obtained as follows:

ξl =

3∑
x=0

ALx · P lx, (7.3)

where the weights ALx are indicated in the column ‘Format’ in Table C.2. The
probabilities P lx are obtained from the empirical CDFs (F lψPDCCH

u
) as follows:

P l0 = 1− F lψPDCCH
u

(
ψT

0

)
, (7.4)

P l1 = F lψPDCCH
u

(
ψT

0

)
− F lψPDCCH

u

(
ψT

1

)
, (7.5)

P l2 = F lψPDCCH
u

(
ψT

1

)
− F lψPDCCH

u

(
ψT

2

)
, (7.6)

P l3 = F lψPDCCH
u

(
ψT

2

)
. (7.7)

Note that P lx corresponds to the probability of requiring the ALx in the lth cell.

3The estimation of the matrices G, S, and Sc is indicated in Appendix C (Section C.1).
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Thus, the objective functions (f1, f2, and f3) are calculated as follows:

f1 (x) =
1

L

L∑
l=1

ξl, (7.8)

f2 (x) = max
(
[ ξ1, ξ2, · · · , ξL ]

)
, (7.9)

f3 (x) =
1

(L · pmax)
· (x · 1) . (7.10)

The dependence of f1, f2, and f3 on x is also omitted for the sake of clarity.

Objective Functions in ePDCCH Optimization

It is worth recalling that the optimization of the ePDCCH adds another interesting
perspective: the impact of allocating resources (normally devoted to data) to control
channels on the capacity of data channels. Therefore, in order to provide such
visibility, the performance assessment is based on the joint optimization of the
following metrics:

1. Maximization of the average cell capacity (f1): it corresponds to the same
metric f1 introduced in Section 6.2. In this case, f1 will be affected by the
presence of the ePDCCHs.

2. Maximization of the capacity of the worst 5% of the coverage area (f2):
it corresponds to the same metric f2 introduced in Section 6.2.

3. Minimization of the average eCCE consumption (f3): this metric reflects
the impact of the ICI on the radio quality associated to the ePDCCH network-
wide. It indicates the average consumption of eCCEs per cell. It would corre-
spond to the metric f1 in PDCCH optimization (the previous point), however,
the consumption will be given in eCCEs rather than CCEs.

4. Minimization of the worst eCCE consumption (f4): it corresponds to the
average eCCE consumption in the worst cell of the system, i.e., the most
interfered cell. It would correspond to the metric f2 in PDCCH optimization,
although it is given in eCCEs.

5. Maximization of ePDCCH resources (f5): this metric quantifies how much
resources (PRBs) are devoted to the ePDCCH, which is independent of the
average consumption of eCCEs (f3 or f4). As it was mentioned, this objective
is in conflict with f1.

6. Minimization of the normalized energy consumption (f6): it corresponds
to the metric f3 introduced in Section 6.2.

The parameters βc and α determine how much resources are devoted to the
ePDCCH and the power ratio between interior (I) and exterior (E) users, respectively.
As it can be seen in Figure 7.2, the resources allocated to the ePDCCH (controlled
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Figure 7.2: SFR-based optimization models for the ePDCCH.

by βc) are proportionally distributed between the bandwidth portions of each class
of users (E and I). The bandwidth sharing coefficient (β) is kept as an input and its
value is set to the minimum value avoiding overlapping between cell edge subbands,
thus β = 2/3. Recall that β determines the bandwidth allocated to the set of interior
users (see Figure 2.9).

As it has been indicated, in virtue of the design (FDM-based) of the ePDCCH,
the framework previously investigated for ICIC for data channels is applied to
this problem. Thus, the optimization of the previous objectives is based on SFR
(see Figure 2.9) and it follows an approach similar to the one used in Chapter 6, i.e.,
fine tuning the operational parameters α and ψTH at each cell. It is important to recall
that in the previous chapter, the parameter α is defined as a global design variable to
reduce the computational cost and to favor a better convergence (see Subsection 6.2.1).
Experimental trials showed that the gain obtained throught local adjustments of α is
very small and it comes at the expense of a significant computational cost increment.
The study presented here on the complete problem (data and control channels)
demonstrates the previous statement. In order to differenciate this analysis from
the case where α is kept as a global design variable, the following nomenclature is
introduced: Partially Optimized SFR (POS) and Fully Optimized SFR (FOS). Both
models are described in the following points.

1. Partially Optimized SFR: In this scheme, there are L local classification
thresholds (ψlTH) optimized at cell level plus 2 additional network-wide design
variables (βc and α) that are applied globally. This model corresponds to
the following mapping: x ∈ RL+2 → f ∈ R6. Recall that f is the vector that
defines the objective space (see Section 5.2) through of each objective function.
The design target of this scheme is achieving a competitive optimization level
while keeping the computational complexity as low as possible. For this reason,
α and βc are defined as a network-wide design variable. Thus, the model is
similar to the one presented in Chapter 6 for SFR optimization.

2. Fully Optimized SFR: This scheme corresponds to the complete study in which
the gains achieved by the local optimization of α are investigated. As it was
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mentioned in Section 6.2, it will be shown that the improvement obtained
by means of this fine tuning is marginal and it comes at the expense of
computational cost. Thus, the study considers 2L + 1 design variables, αl

and ψlTH, for l = 1, 2, · · · , L, plus βc as global design variable. This model
corresponds to the following mapping: x ∈ R2L+1 → f ∈ R6.

It is important to note that the first model (POS) is a particular case of the
second one (FOS), where αl = α, ∀ l. Hence, the more general case is used for both
models and the genotype of the decision vector (x) for ePDCCH optimization is as
follows:

x = [ ψ1
TH, ψ2

TH, · · · ψlTH, βc, α1, α2, · · · αl ]. (7.11)

The steps required to compute the objective functions (f1, f2, · · · f6) are indicated in
Algorithm 7.1. In the pseudo-code, some of the functions introduced in the previous
chapter (see Table 6.1) are also used. Lines 1 to 7 perform preliminary computations
by means of the aforementioned functions. In line 8, the vector vα ∈ RL is created
with the power ratio coefficient (α) corresponding to each cell. The amount of
bandwidth devoted to the ePDCCH is indicated by βc in line 9.

A generalized form of the characteristic matrices, similar to (3.32) and (3.35),
is built in lines 10-15. Recall that these matrices capture the resource allocation
pattern of SFR. In line 16, the bandwidth allocated to each class of users (E and I) is
calculated taking into account the amount of resources devoted to the ePDCCH (given
by βc). In line 17, the function PixRate() (introduced in Section 6.3) determine
the achievable rate at each pixel. Note that the bandwidth matrix (B) passed as
argument is computed in line 16, and hence, the effect of βc is included.

In lines 18 and 19, a vector of pointers to CDFs is created. Each of these pointers
represents the CDF of each class of user at each cell, and hence, 2L pointers are
required. In order to generate these CDFs, the average SINR of each pixel (stored
in Ψ) is required. In addition, the classification and serving cell of each pixel are
required as well. This information is stored in the matrices C and S, respectively.

In lines 20 and 21, the vector with the rate of each pixel (r) is sorted and the
number of pixels that compose the worst 5% of the coverage area is calculated,
respectively. Lines 22 to 24 determine the objective functions f1, f2, and f6, similarly
as it was done in Chapter 6. However, note that f6 takes into account the particular
value of α at each cell, which is stored in the vector vα.

The loop enclosed in lines 25 to 36, determines the average eCCE consumption at
each cell. The procedure is similar to the one used for the PDCCH in the sense that
it is based on average SINR distributions. However, given that SFR is employed,
a user classification exist, and thus, the analysis needs to be done independently
for each class (the loop enclosing lines 26 to 33). The resulting consumption at cell
level, is computed in line 35, where the proportion of exterior and interior users is
taken into account to weight the partial result of each class. Once the outer loop is
completed, the eCCE consumption of each cell is available and the rest of objective
functions (f3, f4, and f5) are calculated according to the expressions in lines 37 to
39. The objective vector (f) is created and returned in lines 40 and 41, respectively.
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Algorithm 7.1: Objective functions in ePDCCH optimization

Inputs :
x: Design vector. See (7.11).
Ψu: Average SINR vector. According to (3.27).
G, S, and Sc: As indicated in Appendix C (Section C.1).
vφ: Vector with the azimuth of each cell.
B, L, and A: System bandwidth, number of cells, and number of pixels.

Output :
f : Objective vector.

// Preliminary computations

1 S, Sc ←PerCellCov(G, pCS-RS); /* Per-cell coverage. See Section C.1. */

2 Ψu ←AvgSINR(σ2, pCS-RS, G, S, Sc) ; /* Average SINR. See Table 6.1. */

3 t←TypeOfServer(vφ, S); /* Type of serving cell. See Table 6.1. */

4 {Gj ,Sj ,S
c
j} ←Segmentation(G, S, Sc); /* Segmentation. See Table 6.1. */

5 C←Class(Ψu,x(1 : L)); /* Pixel classification */

6 Cj ←Segmentation(C); /* For j = 1, 2, 3. */

7 Φ←RelCov(Sj, Cj); /* For j = 1, 2, 3. */

8 vα ← x(L+ 2 : 2L+ 1); /* Vector with the α’s. */

9 βc ← x(L+ 1); /* ePDCCH bandwidth. */

// Generalized characteristic matrices

10 Pmax ← P SC
max; /* As defined in (3.29). */

11 Pser =

[
Pmax Pmax · · · Pmax

vα(1) · Pmax vα(2) · Pmax · · · vα(L) · Pmax

]T

;

12 for each s = 0 : ((L/3)− 1) do

13 Pbase
int (s) =



Pmax vα(3s) · Pmax vα(3s) · Pmax

vα(3s) · Pmax vα(3s) · Pmax Pmax

vα(3s+ 1) · Pmax Pmax vα(3s+ 1) · Pmax

Pmax vα(3s+ 1) · Pmax vα(3s+ 1) · Pmax

vα(3s+ 2) · Pmax vα(3s+ 2) · Pmax Pmax

vα(3s+ 2) · Pmax Pmax vα(3s+ 2) · Pmax



T

;

14 end

15 Pint =
[
Pbase

int (0)T Pbase
int (1)T · · · Pbase

int ((L/3)− 1)T
]T

;

// Bandwidth allocation

16 B← B · [ ((1− β) · (1− βc)), (β · (1− βc)) ];



172 7.3. System Model

Algorithm 7.1.: Continuation.

// Rate of each pixel, see Table 6.1.

17 r←PixRate(B, Pser, Pint, Gj, Sj, Sc
j);

// Resizing the vector with pointers to per-cell/per-class SINR CDFs.

18 Resize( PCDF, 2 · L); /* PCDF points to 2L CDFs ( {E, I} × L cells). */

// Create CDFs of average SINR values: per class and per cell: F lE and F lI ∀ l.
19 PCDF ←CreateCDFs(Ψj, Cj, Sj); /* For j = 1, 2, 3. */

20 r←Sort(r); /* Sorting (ascending order)’ */

21 k ← d0.05 ·Ae; /* Number of ‘cell edge pixels’ */

// Objective functions: f1, f2, and f6.

22 f1 ← (r · 1) /L; /* f1: average cell capacity */

23 f2 ←Sum(r, k); /* f2: cell edge aggregate capacity */

24 f6 = 1
L

∑L
l=1 (1− (β · (1− vα(l)))); /* f6: normalized power consumption */

// For each cell l = 1, 2, · · · , L.
25 for l = 1 : L do

// For each class (‘0’ for class E, and ‘1’ for class I).
26 for c = 0 : 1 do
27 F ← PCDF(2l + c− 1); /* Average SINR CDF: class c at cell l */

// Required probabilities: ψT
x are defined in Table C.3.

28 P0 ← 1− F (ψT
0 );

29 P1 ← F (ψT
0 )− F (ψT

1 );

30 P2 ← F (ψT
1 )− F (ψT

2 );

31 P3 ← F (ψT
2 );

// Average eCCE consumption: class c, cell l. ALx in Table C.3.

32 U(c)←
∑3
x=0 ALx · Px;

// Number of pixels in the class c at cell l.

33 V(c)← (Φ(c, l))
−1

;

34 end
// The consumption per cell depends on the amount of interior and exterior

pixels, and hence, ξl depends on the classification threshold (ψlTH).

35 ξl ←
(

V(0)
V(0)+V(1) ·U(0)

)
+
(

V(1)
V(0)+V(1) ·U(1)

)
;

36 end

// Objective functions: f3, f4, and f5.

37 f3 (x)← 1
L

∑L
l=1 ξl; /* f3: average eCCE consumption */

38 f4 (x)← max
(
[ ξ1 ξ2 · · · ξL ]

)
; /* f4: worst eCCE consumption */

39 f5 ← βc ·NDL
RB ; /* f5: control resources devotes to the ePDCCH */

// Objective vector

40 f ← [ −f1, −f2, f3, f4, −f5, f6 ];
41 return f ;
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The procedure described by Algorithm 7.1, must be executed to estimate the
objective vector for every single x, as it is defined in (7.11). Consequently, this
procedure must be invoked continuously from the evolutionary algorithm employed
to perform the multiobjective optimization.

Having explained the method for computing the required objectives functions
for each case (PDCCH and ePDCCH), the multiobjective formulations can be
introduced. That is the content of the next section.

7.4 Multiobjective Problem Formulation

This section introduces the multiobjective formulations used for PDCCH and
ePDCCH optimization according to the setting previously explained.

Multiobjective Formulation for PDCCH Optimization

The formulation is based on adjustments of the power allocated to the PDCCH
locally at each cell as it is shown in Figure 7.1. Thus, each network configuration or
solution (x ∈ RL), see (7.2), is represented by a set of L power levels (one for each
cell) that must be applied to the REs corresponding to the PDCCH, see Figure 2.16.
Thus, the multiobjective problem can be written as follows:

minimize f(x) = [ f1(x), f2(x), f3(x) ], (7.12a)

subject to:

x(l) ∈ [ pmin, pmax ], l = 1, 2, · · · , L, (7.12b)

where pmin and pmax are the bounds of the design variables required to define
the search space X . Note that the selection of pmin is scenario-dependent and
it should be done considering the minimum power level expected to be received.
Recall that the mathematical definitions of the objective functions (f1, f2, and f3)
in (7.12a) correspond to (7.8), (7.9), and (7.10), respectively. The multiobjective
formulation (7.12) allows to reduce the ICI at cell edges, and hence, it minimizes
the average consumption of CCEs. Recall that the consumption of control resources
is significantly increased by the aggregation levels (AL2 and AL3, see Table C.2)
assigned to users with low average SINR levels.

Multiobjective Formulation for ePDCCH Optimization

The formulation is based on adjustments of the classification thresholds (ψTH) and
power ratios (α) as it is shown in Figure 7.2. Two different optimization models are
considered (POS and FOS, see ‘Objective Functions in ePDCCH Optimization’ in
Subsection 7.3.2). The optimization vector (x ∈ R2L+1) as it is defined in (7.11) is
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used for both schemes. Thus, the multiobjective problem can be written as follows:

minimize f(x) = [ −f1(x), −f2(x), f3(x), f4(x), −f5(x), f6(x) ], (7.13a)

subject to:

x(l) ∈ [ ψlow, ψup ], l = 1, 2, · · · , L, (7.13b)

x(L+ 1) ∈ [ βc,low, βc,up ], (7.13c)

x(l) ∈ [ αlow, αup ], l = L+ 2, L+ 3, · · · , 2L+ 1, (7.13d)

where ψlow, ψup, βc,low, βc,up, αlow, and αup are the bounds that define the search
space (X ).

On the Use of MOEAs in PDCCH and ePDCCH Optimization

As the reader has probably inferred, the mathematical structure of the optimization
problems (7.12) and (7.13) is similar to (6.1) in Chapter 6. Consequently, in this study
the use of MOEAs to explore the domains of the design variables (the set X ) is also
investigated. Indeed, (7.13) is much more complex than all the previous multiobjective
formulations because both the number of design variables and objective functions
are doubled.

As it was indicated in Chapter 5, and it was confirmed in Sections 6.5.3 and 6.5.4,
the black-box nature of MOEAs makes them suitable to deal with complex objectives
such as the ones specified in Algorithm 7.1. In addition, in the light of the excellent
convergence properties of the algorithm NSGA-II in problems such as SFR and
FFR optimization, it is reasonable to expect that a similar performance would be
obtained in this context as well. Therefore, the algorithm NSGA-II (see Section 5.4)
is employed to estimate the set of nondominated network configurations (X ?) both
in PDCCH and ePDCCH optimization.

Numerical results are presented in the next section.

7.5 Performance Evaluation

In this section, the whole setting used in numerical evaluations is presented. Subsec-
tion 7.5.1 describes the network parameters, configuration of the algorithm NSGA-II,
and the cellular scenario. The reference schemes (benchmarks) are introduced in Sub-
section 7.5.2. Finally, the numerical results corresponding to PDCCH and ePDCCH
optimization are analyzed in Subsections 7.5.3 and 7.5.4, respectively.

7.5.1 Settings and Test Case

The set of parameters used in numerical evaluations together with the configuration
of the algorithm NSGA-II is shown in Table 7.1. Calibration is done according to
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Table 7.1: Evaluation setting and NSGA-II configuration

Network settings and parameters

Available power per cell 43.00 dBm
System bandwidth (B) 5.40 MHz

Number of cells (L) 60
Number of pixels (A) 288750

CS-RS power (pCS-RS(l), l = 1, 2, · · · , L) 18.4 dBm
Bandwidth sharing (β) in ePDCCH optimization 2/3

NSGA-II configuration

Population size 300
Max number of generation 3000

Termination criterion: relative gain in each fi < 0.001%/40 generations
Crossover probability 1.0

PDCCH optimization: mutation probability 1/(L+ 2)
ePDCCH optimization: mutation probability 1/(2L+ 1)

PDCCH optimization: [ pmin, pmax ] [9.16, 17.4] [dBm/15 KHz]
ePDCCH optimization: ψTH ∈ [-4.00 8.00] [dB]

ePDCCH optimization: α ∈ [0.15 0.60]
ePDCCH optimization: βc ∈ [0.10 0.30]

Type of design variables Discrete-valued (Res: 2%)

the guidelines explained in Subsection 6.6.1.

In this study, the realistic deployment considered in the previous chapter (the
scenario ‘MORANS’, see Appendix B, Subsection B.1.2) is also considered.

7.5.2 Benchmarks and Reference Cases

For comparison purposes, in case of PDCCH optimization, the solutions obtained
through the proposed scheme are compared with the full reuse case, xFR, i.e., all
cells transmit the PDCCH with the same power (pmax).

In case of ePDCCH optimization, several benchmarks have been considered.
These references include full reuse (xxFR), considering different bandwidth allocations
(βc) for the ePDCCH, and baseline designs of SFR (xxSFR) according to the bandwidth
proportionality criterion (see Subsection 6.5.2). Recall that baseline designs are
schemes in which the parameter ψTH is selected according to the SINR statistic
observed in the whole coverage area (see the blue pattern in Figure 3.15b). The
configurations of these benchmarks together with their corresponding objective
function values are shown in Table 7.2.
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Table 7.2: Benchmarks used in ePDCCH optimization.

Ref Type ψTH α β βc f1 f2 f3 f4 f5 f6

x1
FR1 FR N/A N/A N/A 0.10 8.83 5.13 4.25 6.26 3.00 1.00

x2
FR1 FR N/A N/A N/A 0.20 7.84 4.56 4.25 6.26 6.00 1.00

x3
FR1 FR N/A N/A N/A 0.30 6.86 3.99 4.25 6.26 9.00 1.00

x1
SFR SFR 0.00 0.40 2/3 0.10 5.72 5.84 4.08 5.67 3.00 0.60

x2
SFR SFR 0.00 0.40 2/3 0.20 5.14 5.19 4.08 5.67 6.00 0.60

x3
SFR SFR 0.00 0.40 2/3 0.30 4.56 4.54 4.08 5.67 9.00 0.60

Units: f1 [Mbps], f2 [Mbps], f3 [eCCE], f4 [eCCE], f5 [PRB], f6 [·], ψTH [dB].

7.5.3 Numerical Results: PDCCH Optimization

Figure 7.3 shows several representations of the obtained Pareto Front. Figure 7.3a
corresponds to a 3D visualization of the images of the elements in X ?. Figu-
res 7.3b, 7.3c, and 7.3d show 2D representations. As it was mentioned, 2D profiles
provide better insights about the tradeoff between each pair of metrics. In these
profiles, the performance of the baseline design xFR is indicated as well as the
gains that can be obtained. The proposed algorithm succeeds in finding network
settings outperforming the reference scheme with respect to each performance metric.
The gains vary from 3.15% to 5.67%, 1.3% to 25.5%, and 38% to 50% in terms of
f1, f2, and f3, respectively. Thus, by selecting different solutions from the set X ?,
different tradeoffs among the objective functions can be attained (within the ranges
previously indicated). The best solution in terms of f2 reduces the CCE requirement,
on average, one fourth in the worst cell of the system. Moreover, power savings of
at least 38% (up to 50%) are always achieved. If one considers that 21% of power
transmitted over the air interface is devoted to the PDCCH (3 out of 14 OFDM
symbols in the setting employed here), the results indicate that between 8% and
10% of the total radiated power can be saved.

Figure 7.4 illustrates the performance of the solutions in X ? at cell level, by
showing the cell level version of the objective functions, f c1 , f c2 , and f c3 . Focusing
on f c1 , the results indicate that, although the CCE consumption of some cells are
above the average CCE consumption obtained by means of xFR, the average at
system level (f1) is always better as it was shown in Figure 7.3. However, it is
worth noting that there are solutions in which the vast majority of cells reduce their
consumption of control resources. Such cell-to-cell variability is what allows to the
proposed optimization scheme to obtain global gains, and more important, always
reduce the average consumption of CCEs in the worst cell. This feature,
and the fact that many Pareto efficient configurations are available, makes possible
to tune the network in situations where load unbalances at different cells appear.
Given that as all these solutions are calculated offline, no real-time processing cost
is required.
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(a) 3D view. (b) 2D view: f1 vs. f2

(c) 2D view: f1 vs. f3 (d) 2D view: f3 vs. f2

Figure 7.3: Representations of the estimated Pareto Front.

In order to illustrate the previous idea, Figure 7.5 shows the CDF of the average
PDCCH SINR (ψPDCCH

u ) at two different cells (l = 34 and l = 37) when two
solutions taken from the set X ? (xA and xB), and the benchmark xFR are applied.
In each case, the average CCE consumption (ξ) according to (7.3) is indicated. It can
be seen that switching from xA to xB increases ξ in cell 37, while the corresponding
effect in cell 34 is the opposite, i.e., a reduction of the average consumption of
CCEs. In addition, the gains achieved by xA and xB with respect to xFR vary
significantly. The gains in terms of ξ with respect to xFR are 19% (by xA) and
16% (by xB), and 34% (by xA) and 44% (by xB) in cells 34 and 37, respectively.
Thus, the proposed scheme improves the average CCE consumption globally, while
different performances at cell level can be obtained. In this manner, different network
configurations can be selected to account with the time-varying nature of the traffic.
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Figure 7.4: Performance at cell level.

Figure 7.5: Statistic of average PDCCH SINR at cell level (two solutions in X ?).

7.5.4 Numerical Results: ePDCCH Optimization

Given the high number of objective functions considered for the case of ePDCCH
optimization, the main results are presented as CDFs for each performance metric.
Such statistics for both optimization models (POS and FOS) are shown in Figure 7.6.
The performances of the benchmarks are also indicated (black lines).

The results indicate, on the one hand, that the SFR-based settings obtained
through the proposed schemes are able to offer different tradeoffs among f1, f2,
f4, and f5, while on the other hand, the performance in terms of f3 and f6 is
always enhanced with respect to the benchmarks. Therefore, the solutions in the
set X ? allow selecting different levels of spectral efficiency (f1), cell edge perfor-
mance (f2), consumption of the worst cell (f4), or amount of resources allocated
to the ePDCCH (f5), but always achieving gains in terms of the average
consumption of eCCEs and transmitted power (f3 and f6, respectively). As
a conclusion, the proposed optimization schemes succeed in reducing significantly
the average consumption of control resources (eCCEs), and hence, the signaling
capacity of the ePDCCH is increased.
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(a) Average cell capacity. (b) Cell edge performance. (c) Average eCCE consumption.

(d) Worst eCCE consumption. (e) eCCE resources. (f) Norm. power consumption.

Figure 7.6: Performance of the elements of X ? in ePDCCH optimization.

From a comparative perspective, the performance obtained by means of the
model FOS is slightly better than the model POS as a result of the more accurate
power adjustment. Recall that in FOS, the parameter α is optimized at each cell. In
this sense, gains are observed in terms of f1 and f2 (Figures 7.6a and 7.6b) as the
CDF of the FOS model is completely to the right of the one corresponding to the
model POS. Moreover, smaller (better) values of f3 and f4 are also attained through
the scheme FOS as it is shown in Figures 7.6c and 7.6d. Given that the bounds
of the design variables α and βc are the same in both schemes, the distribution
of the amount of resources devoted to the ePDCCH (f5) and the average power
consumption (f6) are quite similar in both cases as it can be appreciated from
Figures 7.6e and 7.6f.

Figure 7.7 shows the gains in terms of each performance metric and with respect
to each benchmark. Such gains are computed based on the subsets of solutions
dominating each case in the Pareto sense, and hence, no loss is expected. The
cardinality of these subsets is indicated in Table 7.3. Thus, the proposed strategies
are able to find non-empty sets of configurations dominating each benchmark. The
gains shown in Figure 7.7 make evident that significant improvements are obtained
with respect to the important case of full reuse (three different values of βc were
considered, see Table 7.2). Both subfigures include an example indicating how they
must be read. For instance, focusing on Figure 7.7b and x2

FR, it has been obtained
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(a) Partially Optimized SFR (POS).

(b) Fully Optimized SFR (FOS).

Figure 7.7: Gains achieved by means of the proposed optimization models.

Table 7.3: Cardinality of the subsets dominating each benchmark.

Model x1
FR x2

FR x3
FR x1

SFR x2
SFR x3

SFR

POS 36 3 22 8 2 10

FOS 47 7 29 13 3 10

that the energy consumption (f6) can be decreased up to 53% without losses in
terms of any other performance metric (there are 7 configurations dominating x2

FR

in Table 7.3).

Note that the proposed schemes outperform all the benchmarks achieving gains
of 20% or more in at least one of the objective functions. These results confirm
the effectiveness of the optimization models as they are able to 1) achieve effective
ICIC for the ePDCCH (which is evident given the gains in terms of f3 and f4),
and 2) attain gains in terms of spectral efficiency and cell edge performance (f1 and
f2, respectively).
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(a) 2D view: f1 vs. f2 (b) 2D view: f1 vs. f5

(c) 2D view: f3 vs. f4 (d) 2D view: f6 vs. f2

Figure 7.8: Several 2D views of the obtained Pareto Front (POS model).

In order to provide additional insights on the tradeoff between the performance
metrics, 2D profiles are presented in Figure 7.8 for the case of the scheme POS.
Similar patterns were obtained for the model FOS. The figure includes 4 different
planes out of 15 possible combinations that can be taken from the six objective
functions. The profiles correspond to: f1-f2, f1-f5, f3-f4, and f6-f2. In the two first
cases, it is notorious the conflicting nature of each pair of metrics. Indeed, Figure 7.8a
corresponds to the well-known tradeoff between cell edge performance and spectral
efficiency. Figure 7.8b illustrates how allocating more resources to the ePDCCH
(increasing βc) tends to penalize the overall network capacity (the capacity of the
PDSCH). The next case, shown in Figure 7.8c, suggests that SFR settings attaining
better average eCCE consumption are also able to minimize the consumption of
control resources in the worst cell of the system, which is not evident from the
analogy that could be made a priori with the tradeoff f1-f2. Finally, Figure 7.8d
illustrates a case where a metric (f2) is plotted as a function of the normalized
power consumption (f6). In this case no evident connection can be inferred between
them, despite it could be expected that decreasing α would benefit the cell edge
performance. The situation can be explained because Pareto dominance include
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Figure 7.9: Convergence pattern in PDCCH optimization.

other metrics that depends on other (independent) parameters such as βc, and hence,
the expected tradeoff is not reflected in the 2D profile. Nevertheless, the idea is
to illustrate how much complex the analysis of the problem becomes by adding
additional objectives to the multiobjective formulation. This is a consequence of the
Pareto dominance relationships in a high-dimensional (more than 3) objective space.
In any case, all the metrics considered are mandatory to get sure that the resulting
configurations provide actual gains without losing sight of the important objectives
related to the capacity of the data channel (f1 and f2).

7.6 Convergence and Feasibility Aspects

In this section, the convergence pattern of the algorithm NSGA-II for PDCCH and
ePDCCH optimization is presented.

Figure 7.9 shows the evolution of the normalized hypervolume (υ) and each
objective function. It was found that the termination criterion is fulfilled, on average,
after 1310 generations. It can be noticed that, after only 750 generations, all the
indicators are within 98% of their final value. This means that the algorithm reaches
a convergence state relatively fast taking into account the amount of generations
required to meet the termination criterion.

Similarly, Figure 7.10 illustrates the convergence pattern of both optimization
schemes (POS and FOS) in terms of the hypervolume indicators (υ) for the case of
ePDCCH optimization. It can be seen that initially the convergence of FOS is slower
than POS. This is due to the higher number of design variables that need to be
adjusted in FOS. However, after a certain number of generations (approx. 500), FOS
features better convergence, explaining so the differences in performance previously
found. However, it is worth mentioning that both schemes are valid since there are
cases in which the computational cost is a limiting factor, for instance, in very large
scale scenarios, and hence, a 3% in convergence can be traded by an interesting
saving of 26% in computational cost that can be achieved by means of POS.
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Figure 7.10: Convergence pattern in ePDCCH optimization.

Both schemes, POS and FOS, are compatible with the mechanisms already
defined in LTE-A. As it was mentioned previously, the allocation of the ePDCCH
to users is dynamic, and hence, the allocation of the amount of resources indicated
by the parameter βc is already considered in the technical specifications (see [261]
for details). A similar reasoning applies to the power adjustments specified by the
paremeter α. Thus, the way in which the proposed models are implemented depends
on the vendor but no change with respect to the standard is required.

7.7 Concluding Remarks

The performance of cellular systems such as LTE and LTE-A strongly depends on the
reliability of the control channels that convey the critical user-specific information.
In practice, it is commonly believed that since control channels are designed to be
more robust than data channels, no additional measures need to be taken. However,
the consumption of control resources is linked to the average radio channel quality,
and hence, cell edge users penalize significantly the capacity of the control channels.

In addition, previous studies have shown how the PDCCH acts as a bottleneck
in scenarios with many real-time (low-rate) users. In the light of this situation, the
new frequency-multiplexed ePDCCH was incorporated in LTE-A to increase the
signaling capacity of the system.

This chapter investigates multiobjective ICIC optimization frameworks to improve
the performance of both structures: the PDCCH and ePDCCH. In the first case,
the capacity of the PDCCH was enhanced by reducing the areas of the network
where high aggregation levels are required. The previous was accomplished by means
of a strategy that optimizes the power allocated to the PDCCH at each cell. The
problem in ePDCCH optimization is much more complicated because resources from
the data channels are borrowed from, and hence, the impact of the capacity of these
channels must be considered. Given that the ePDCCH is frequency-multiplexed,
frequency domain ICIC can be applied to it. The schemes presented in this chapter
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investigate the use of SFR to protect the ePDCCH and so, increase its capacity. The
two different schemes presented are largely based on the framework introduced in
previous chapters, although with the required adaptations.

Given that these solutions are based on the statistical framework presented
in Chapter 3, they can be used in any realistic deployment. The novel strategies
are able to find network configurations providing significant enhancements to the
capacity of the control channels without a negative impact on the performance of the
data channels. Moreover, the core-processing can be done offline and the output is
composed of many near-optimal solutions that jointly optimize all the performance
criteria. After evaluating the merit of the novel strategies, the main conclusions can
be summarized as follows:

• Both global and local improvements are only achievable by improving the radio
channel conditions at cell edges as these areas represent a severe penalty in
terms of the consumption of control resources. Thus, ICIC for control channels
is both relevant and required.

• The rigid design of the PDCCH does not allow applying an ICIC strategy
properly said. However, the formulation presented in this chapter captures the
essence of the problem and it takes an ICIC-oriented approach by focusing on
improving the bottom tail of the resulting average SINR distributions. This
provides, on average, a reduction of the consumption of control resources.

• The ePDCCH, being inserted within the PDSCH, allows for ICIC. Thus, two
SFR-based schemes were developed. By adjusting the classification thresholds
(ψTH) at each cell and the power ratio (α) locally and globally, configurations
that increase the capacity of the ePDCCH were obtained.

• The use of MOEAs in the context of ICIC for control channels was investigated.
The results and experience obtained during the research indicate that appro-
priate calibration results both in effective optimization and good convergence.
As it was mentioned earlier, in problems such as the one studied herein, the
use of exact or deterministic optimization techniques is not possible without re-
laxing the problem. Thus, in order to keep expressions that capture accurately
the behavior of the ICI, metaheuristic procedures (MOEAs) based on global
stochastic search has been successfully employed. The main advantage of the
method resides on the fact that a good picture of the tradeoffs and several
solutions are obtained. Interestingly, it is found that reducing the average
consumption of eCCEs (network-wide) does not implies necessarily a payoff in
terms of the consumption of the worst cell.

Finally, it is important to remark that the implementation and use of the
solutions obtained through the novel strategies are transparent in system such as
LTE and LTE-A. Indeed it does not require either any change with respect to the
current specifications or assume any particular interworking with other network
functionalities. The optimization models capture the network geometry and focus
on the optimization of long term ICI conditions, thus, they feature an attractive
tradeoff between performance and feasibility.



Chapter 8

Further Improvements to
Energy Efficiency

8.1 Introduction

Along the previous chapters, the proposed ICIC strategies included the energetic
perspective by minimizing power requirements in the air interface. As it was indicated
in Chapter 2, this is an increasingly important aspect in the context of wireless
networks, but it is often missed in ICIC solutions. Nevertheless, although the
optimization models presented so far for ICIC reduce significantly the transmitted
power, the corresponding energy saving only represents a very small fraction of
the overall power consumption at base stations. Thus, in order to achieve a more
graspable improvement in terms of energy saving, additional measures need to be
taken. This chapter takes the efforts a step further by extending and adapting the
ICIC models presented in previous chapters to the emerging field of CSO. As it
will be shown shortly, there are interesting connections between this framework and
ICIC. Therefore, the experience and knowledge previously obtained were successfully
applied in CSO. The study, developed at Carleton University, Canada, was framed in
the context of the project ‘5G+’, the largest collaborative research project between
academia and industry in Canada on 5G wireless networks1.

Today, nobody can deny the explosive growth of the wireless network industry.
The rising cost of energy and the increased environmental awareness have created
the urgent need for developing energy efficient green communications [248]. This
requires close interactions between different (previously independent) frameworks
towards this common objective. Thus, this Ph.D. dissertation also aims at getting
ICIC closer to this transversal goal, and consequently, the scope has been not limited

1The project is funded by the Ontario Ministry of Economic Development and Innovation’s
ORF-RE (Ontario Research Fund - Research Excellence) program, Huawei Canada, Telus, and
Carleton University.
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to include energy efficient aspects into the optimization formulations, but also to
develop energy saving schemes inspired by ICIC models. This is the case of the CSO
proposal presented in this chapter.

The next section introduces the context of green communications and the different
approaches that are being investigated. Among them, CSO is without a doubt, one
of the most promising strategies, and as such, it has captured great attention in
the last few years. The section introduces the most fundamental aspects of this
framework. Next, in Section 8.3, a survey of relevant contributions is provided. Based
on this review, several research gaps were identified, and eventually, they turned
into a multiobjective optimization scheme for CSO in dense cellular networks. The
details of the novel system and method are explained in Section 8.4. Performance
evaluations based on system level simulations are presented in Section 8.5. The
results include a comparative analysis with previous proposals. Finally, the chapter
is closed with a discussion about the advantages of this approach and conclusions.

8.2 Green Communications and Cell Switch Off

According to [267], Information and Communications Technologies (ICT) is a growing
sector that has an important share of the overall green house gas emissions. Thus, as
an important component of ICTs, wireless communications networks are concerned
with strategies to reduce the energy consumption not only for environmental aspects
but also for economical reasons. In this scenario, the cellular communications indus-
try is growing exponentially worldwide. Thus, green communications and energy
efficiency are now very important issues for mobile operators. To cope with this
issue, the research community has addressed the problem from different angles and
a variety of proposals has been presented. In the context of cellular systems, the
proposals can be classified as follows:

1. Cell Layout Adaptation: This family of strategies includes algorithms and
schemes in which the cell coverage pattern is modified dynamically. Within
this category, strategies designed for HetNets have been studied [268]. These
schemes have proven to be an interesting alternative to improve the energy
efficiency of cellular networks by means of cell-breathing-like mechanisms.
However, from an energy consumption point of view, the value of these algo-
rithms is limited. Another approach is the use of relays [269], but in this case,
energy efficiency gains are only possible in cases where the power consumed
by relaying is significantly low compared to direct links.

In addition to these schemes, algorithms whose idea is to exploit temporal and
spatial variations of traffic to turn off base stations in which a significant part
of resources are idle have been proposed. This paradigm is called CSO and
preliminary works such as [270] showed that the power consumption can be
significantly improved in dense deployments. In these scenarios, energy savings
between 25% and 60% can be obtained [271]. Thus, the framework presented
herein is inspired by this approach. An introduction to CSO is provided shortly.
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Figure 8.1: Techniques enabling energy efficient and green communications.

2. Radio Resource Management: This family includes several energy-efficient
transmission techniques and radio resource allocation algorithms. Interesting
surveys on this type of contributions can be found in [272, 273].

3. Other approaches: Additional strategies include Cognitive Radio (CR) based
schemes and research towards energy efficient components such as power am-
plifiers and cooling systems. Potential applications of CR for green communi-
cations are discussed in [274]. Research focused on energy-efficient components
is another highly active area. An interesting example can be found in [275].

A big picture of the context of green communications is illustrated in Figure 8.1.
Additional material related to techniques enabling energy-efficient communications
in wireless networks can be found in [246–248] and the references therein.

8.2.1 Cell Switch Off Basics

The CSO problem has its origin in the need for energy-efficient wireless networks.
Initial approaches to green communicationswere were oriented towards minimizing
the radiated power, which in turns reduces the electromagnetic pollution and its
potential risks on human health. Unfortunately, between 50% to 80% of the energy
consumption in wireless networks takes place on the radio access infrastructure,
specifically at base stations [276]; being this consumption independent of the traffic
load. Therefore, the idea of switching off lightly loaded base stations has
been considered recently as the alternative to achieve significant energy savings.
Interesting CSO contributions are surveyed in the next section.

Problem Statement

The CSO problem consists in determining the largest set of cells that can be switched
off without compromising the Quality of Service (QoS) provided to users.

Theoretical aspects

• Energy savings and deployment density. It is well-known that, the denser the
cellular deployments is, the higher the energy saving that can be achieved [277].
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Figure 8.2: Energy saving tradeoffs. Arrows indicate increments of the variables.

Recall that cellular networks are dimensioned to meet traffic demand in the
busy hour, and hence, most of the resources are underutilized. Thus, the dense
cell deployment is the natural context to test the performance of CSO.

• Energy savings and traffic behavior. The amount of energy saving is propor-
tional to the variance-to-mean ratio of the traffic load (in time and space) [277].

• Energy savings and network capacity. In general, the higher the number of
active cells, the higher the network capacity, which is a direct consequence
of the frequency reuse. Therefore, energy saving and offered capacity are
conflicting objectives in the context of CSO.

• Energy savings and ICIC. In OFDMA, the higher the frequency reuse, the
worse the radio quality at cell edges as more ICI is created. Thus, intuitively,
it can be concluded that less active cells create less ICI, and hence, the radio
channel quality of cell edge users can be improved more easily.

The previous tradeoffs are illustrated in Figure 8.2.

Practical aspects

• Coverage. This is an important aspect that must be taken into account. The
term ‘coverage’ refers to the fraction of the serving area in which the network
is able to provide services. In general, coverage depends on two variables: the
received signal power (sensitivity) and SINR (inversely proportional to the
amount of ICI). Thus, any given point of the serving area is said to be in
coverage outage (hereafter outage), if the minimum requirement in terms of 1)
the received power from the serving cell (PRx

min), and 2) SINR (ψmin), are not
met. Coverage analysis in CSO is crucial due to the fact that many coverage
holes can appear as base stations are switched off.

• Switch on/off transitions. From a practical perspective, minimizing the number
of transitions is advisable. Switching on/off base stations is far from being a
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simple procedure, and indeed, this process must be gradual and controlled as
it has been pointed out in [278, 279]. Moreover, a large number of transitions
could result in a high number of network-triggered handovers with a negative
impact on other RRM functionalities.

• Solution architecture. Although centralized solutions provide more stability
than distributed mechanisms, they require that information from all over the
network is transmitted to a centralized unit. Depending on the type/amount of
data, network size, and operation time scale, feasibility and complexity could
become difficult issues to deal with. Thus, distributed and semidistributed
solutions are preferred.

• Additional aspects. Other practical aspects such as emergency switch-on
mechanisms, improved migration (handover) procedures [280], pilot power
adaptation, and control channels reliability are also interesting features to
consider. A discussion about these aspects can be found in [281, 282].

8.3 Related Work

The literature review presented herein includes relevant contributions presented
recently. Given the diversity among existing studies, it is difficult to establish common
points for comparison. Thus, the following criteria have been considered:

• C1: It indicates the type of tool used in the resolution of the problem: analytical
tools, heuristics, metaheuristics.

• C2: It indicates the type of architecture of each proposal: distributed, semidis-
tributed, or centralized.

• C3: It indicates whether coverage/outage aspects are considered. Coverage
aspects include a minimum SINR or the receiver’s sensitivity, i.e., the minimum
required power.

• C4: It indicates whether a realistic ICI model is used. A strong assumption that
can be easily found is the computation of SINR values considering all cells as
active, even after swithching off some of them. Somehow this invalidates part
of the outcomes. C4 indicates whether this assumption has been considered.

• C5: It indicates whether practical aspects such as the number of transitions,
stability, intercell signaling, real time complexity, or computational cost are
analyzed.

• C6: It indicates the traffic model.

Table 8.1 shows a comparative assessment based on the previous criteria, referred to
as Cx. As it can be seen, no proposal meets all these criteria. Note that typically
the works propose heuristics to tackle the CSO problem (C1), sometimes preceded
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by analytical formulations used as starting point. This clearly indicates the practical
approach followed by many authors, in contrast to the vast majority of resource
allocation schemes that rely on optimization formulations.

As it can be seen, the majority of schemes require centralized operation (C2).
This is expected given the nature of CSO, i.e., a certain global knowledge is required
in order to determine which base stations can be switched off.

From the comparative analysis, it is also clear that coverage analysis is often
missed (C3). Moreover, the survey also reveals that ICI models (C4) are not so
accurate, which is done mainly to make the mathematical treatment feasible. Some-
times, these type of assumptions could lead to erroneous conclusions, especially in
a CSO-ICIC scenario. Regarding this aspect, the author believe that ICI must be
modeled accurately since it is the main capacity-limiting factor in cellular systems,
and in the particular case of CSO, ICI conditions vary drastically as cells are
switched on/off. The author also believes that, a joint ICIC-CSO framework is an
interesting research line. However, it is worth saying that incorporating this feature
into the picture makes the problem extremely complicated.

Feasibility aspects (C5) are also forgotten most of the time. Despite it is a very
important element, the vast majority of the studies do not pay great attention to
implementation. Indeed, statistics of the number of handovers or required number
of transitions rarely appear.

Finally, full buffers is usually considered as traffic model (C6). Only few works
incorporate more realistic patterns.

In the light of the previous findings, it can be concluded that 1) there is a good
room for improvement in the context of CSO, and 2) ICIC notions can (and should)
be incorporated within these formulations. The next section provides a description
of the framework developed for CSO in dense cellular networks.

8.4 Framework Description

The main research objective of this work is to design a scheme that can take advantage
of the well-known behavior of traffic both in space and time to reduce the energy
expenditure in the radio access network. Rather than following the conventional, but
hardly feasible, user-oriented approach in which an optimization procedure needs to
be performed for every discrete realization of users, this framework aims at employing
the statistical behavior of the traffic. In this manner, by means of multiobjective
optimization, a set of high quality (Pareto efficient2) network configurations is found.
These network configurations, understood as any possible combination of active and
inactive cells, provide a near-optimum tradeoff between the number of active cells
and average system capacity.

2An introduction to multiobjective optimization is provided in Chapter 5.
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Design insights

First, some definitions and conventions need to be introduced:

• Network Operation Point (NOP): In this context, a NOP is any possible
state of the network in terms of active and non-active (switched off) cells.
Thus, a network composed of L cells, has (2L − 1) NOPs, being each of them
represented by a binary string x ∈ {0, 1}L of length L. All possible solutions
form the set X with |X | = (2L − 1). If the ith element of x is equal to 1, the
ith cell is active, otherwise it is switched off.

• Network Energy Level (NEL): The NEL is defined as the number of active
cells in a NOP, i.e., the sum of the ‘1’s in any CSO network configuration.
Thus, the jth NEL can be understood as the set Xj defined as the set of all
the solutions in which j cells are active. Thus, Xj = {x ∈ X | x · 1 = j}.

• Snapshot: A snapshot corresponds to any possible state of the network in
terms of active users. It is assumed that the location of users at any given
time follows a spatial traffic distribution Γ. The vector Γ ∈ RA indicates the
probability (in the event of a new a user) of each pixel having the user on it,
and hence, Γ ·1 = 1. Since the traffic behavior is statistically well-known to the
mobile operators, it is reasonable to assume that Γ is known. The assumption
is commonly found in CSO literature [277, 291, 294, 296, 297].

The research objectives can be summarized as follows:

1. Minimize overall network power expenditure. To that end, the underlying
intuition is to find the minimum set of active cells that provides a certain QoS.

2. Prioritize zones in which traffic load is concentrated. The idea is to give higher
importance to cells providing better capacity to areas in which users are
more likely to appear. This is done by weighting each pixel according to Γ.
Thus, a novel metric: the weighted network capacity, is proposed aiming at
focusing the exploration of the search space (X ) in regions where such network
configurations can be found.

3. Find near-optimal NOPs (X ?): The idea is to find, for each NEL, the NOP that
maximizes the weighted network capacity. In principle, the solutions belonging
to the set X ? would provide good QoS, on average, to users located/distributed
according to Γ. Thus, the set X ?, composed of solutions that are Γ-specific, is
obtained by considering the tradeoff between the number of switched off cells
and aggregate network capacity. As these criteria are conflicting objectives,
multiobjective optimization represents a convenient approach to investigate
CSO through the Pareto dominance notion. This hypothesis is confirmed by
the results presented in Section 8.5.

4. Robustness and feasibility : The design should be flexible to be applied to any
network topology. In addition, the operation should be done in time scales of
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tens of minutes or hours as the traffic patterns (Γ’s) can be considered fairly
constant during time intervals with arbitrarily small duration [277, 294]. In
addition, no interworking with other RRM entities must be assumed in order
to allow for transparent implementation.

5. Low complexity : The real time complexity should be minimized. In the CSO
scheme presented here, the optimization procedure is done offline. Such pro-
cessing requires, on the one hand, a radio characterization of the coverage area,
and on the other hand, the knowledge of Γ, both typically available. Thus, the
solutions can be stored in databases and/or look-up tables and they can be
used in real-time operation with minimal effort.

8.4.1 System Model

The system model is described in Appendix C, Section C.1. In addition, each cell
transmits all its available power equally distributed over the system bandwidth, i.e.,
full frequency reuse.

Recall that the vector x is a binary string indicating which cells are active and
which ones are switched off. Taking this into account, the average CS-RS received
power, indicated in (C.1), can be generalized by considering the vector x as follows:

RCS-RS = G · diag (pCS-RS � x) . (8.1)

Note that (C.1) and (8.1) are equivalent if all the cells are active. Thus, the cell
coverage pattern, i.e., the area associated to each cell (given by the matrix S,
see Section C.1) becomes a function of x. However, for the sake of clarity, that
dependence is omitted.

According to the system model, the vector pPDSCH indicates the transmitted
power over the data channel (the PDSCH) at each cell. Without loss of genera-
lity, it is assumed that pPDSCH(l) is the same for all l = 1, 2, · · · , L and that
pPDSCH = pCS-RS (see Appendix C). Recall that coverage criteria are taken into
account. In this manner, the vector Ψ ∈ RA representing the average SINR at each
pixel is given by:

Ψ = [(S�G) · (pPDSCH � x) ]�
[

[(Sc �G) · (pPDSCH � x)]⊕ σ2
]
. (8.2)

Recall that �, �, and ⊕ indicate Hadamard (pointwise) operations and σ2 is the
noise power. Note that the definition of Ψ captures the actual ICI generated in the
network as only active cells are taken into account. Without loss of generality, it has
been assumed that collisions (among active cells) occur with probability 1 as CSO
schemes tend to concentrate traffic in few cells. Nevertheless, load factors < 100%
can be introduced easily in the system model [300].

In order to take coverage aspects into account, it is assumed that the ath pixel is
in outage if the following conditions are not met:
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• Minimum received power: RCS-RS (a, l?) ≥ PRx
min.

• Minimum SINR: Ψ (a) ≥ ψmin.

The spectral efficiency of each pixel is stored in the vector H ∈ RA, which is
obtained by computing a non-decreasing function of the SINR. To capture the
level of sensitivity with respect to the SINR variations, the Shannon’s formula is
considered. Thus, allowing a certain abuse of notation, the following expressing can
be written:

H = log2 (1 + Ψ) . (8.3)

In order to take into account the coverage criteria and penalize solutions with
coverage holes, the spectral efficiency of the ath pixel is computed according to the
following rule:

H (a) = u (Ψ (a)− ψmin) · u
(
RCS-RS (a, l?)− PRx

min

)
· log2(1 + Ψ (a)), (8.4)

where u ( ) is the unit step function (see Apendix A).

8.4.2 Performance metrics

The main target in any CSO scheme is minimizing energy consumption subject to
QoS constraints. In this manner, two objectives are considered:

1. The minimization of the number of active cells (f1). This metric was considered
because the major part of the energy consumption is proportional to the
number of active cells. This expression can be easily generalized to the case
where different cells have different energy expenditure by considering the
minimization of a weighted sum. The assumption is largely adopted in the
literature [283, 295]. Note that f1 is equivalent to the NEL of each solution x.
Thus, f1 is defined as follows:

f1 = x · 1. (8.5)

2. The maximization of the weighted network capacity (f2): This metric is based
on the expected value of the spectral efficiency at pixel level but including
the effect of the traffic distribution Γ. In this manner, it represents the
weighted sum of the pixel’s throughputs. Given that the contribution of the
pixels out of coverage is not considered, see (8.4), this metric takes into account
information about the offered traffic and coverage level provided by each NOP.
Thus, for any given solution x, the metric is defined as follows:

f2 = (B ·A) ·
[[

(H� Γ)T · S
]
� n

]
· 1. (8.6)

Equation 8.6 deserves some comments. The vector H � Γ contains the weighted
spectral efficiency of each pixel as the nominal one is scaled by Γ. The intuition is to
give more importance to the x’s that are expected to provide better spectral efficiency
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to the zones with more concentrated traffic load. The constant A corresponds to the
number of pixels and it is used to normalize the obtained capacity to the reference
case where all the pixels have the same probability, i.e., Γ(a) = 1/A ∀a. The
vector n ∈ RL contains the inverse of the sum of each column in S, i.e., the number
of pixels served by each cell. It is assumed that each pixel is served by one cell at
a time. This vector is used to distribute the capacity of each cell evenly over its
coverage area, i.e., the bandwidth is shared equally by the pixels belonging to each
cell. This improves the fairness in the long run similar to the proportional fairness
policy that tends to share the resources equally among users as time passes. This
fairness notion results in decreasing the individual rates as the number of users
increases. This effect is also captured by n as the bandwidth per pixel is inversely
proportional to the pixels associated with each cell.

8.4.3 Multiobjective Problem Formulation

In order to 1) capture the tradeoff between the number of active cells (f1) and
aggregate network capacity (f2), and 2) obtain more than one single network
configuration for each traffic profile Γ, the use of multiobjective optimization has
been investigated. The multiobjective optimization problem can be formulated as
follows:

minimize [ f1 (x) , −f2 (x) ], (8.7a)

subject to:

.
(vT · 1)

A
≤ κCOV, (8.7b)

. x ∈ {0, 1}L, x 6= 0. (8.7c)

Problem 8.7 defines the multiobjective framework considered herein. The objective
functions in (8.7a), f1 and f2, are defined by (8.5) and (8.6), respectively. Cons-
traints 8.7b and 8.7c correspond to the coverage criterion and the feasible set (X ),
respectively. The binary vector v ∈ {0, 1}A indicates the outage pattern associated
to each solution x. Therefore, if the ath pixel is in outage, v(a) = 1, and 0 otherwise.
The parameter κCOV is an operator-defined figure indicating how much (coverage)
outage is allowed.

Problem 8.7 corresponds to a combinatorial optimization task that belongs
to the class NP-complete, and hence, an optimal solution cannot be found in
polynomial time. Thus, in order to solve it efficiently, two different approaches has
been considered:

1. Stochastic search: This is done by means of the algorithm NSGA-II (see
Section 5.4). The use of MOEAs is also considered in the context of CSO given
the similarities between the frameworks investigated for ICIC (Chapters 6 and 7)
and the combinatorial formulation required for CSO. Indeed, the particularities
found in this context makes even more advisable to use MOEAs because the
inherent tradeoff between the aggregate capacity and the number of active
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cell is suitable to be exploited by means of multiobjective techniques and the
Pareto efficiency concept. Moreover, the very complex structure of the weighted
network capacity (8.6) together with its combinatorial nature makes impossible
to address this problem by means of traditional optimization tools without
relaxation. The results presented later on confirm that the proposed method
is a convenient approach to CSO featuring several interesting advantages with
respect to previous proposals3.

2. Minimum distance algorithm: As it was mentioned, the need for minimizing
the number of transitions is very important from a practical perspective. With
this requirement in mind, a novel heuristic is also proposed. The algorithm
aims at finding a collection of NOPs, one for each NEL, featuring 1) the
minimum distance property, and 2) acceptable performance. In this context,
the word ‘distance’ refers to the Hamming distance (dH), i.e., the number of
positions in which the corresponding symbols in two different solutions are
different. In this manner, for two solutions xi and xj in a set X ?md featuring
the minimum distance property, the following implication always holds:

dH (xi,xj) = 1⇒ |(xi · 1)− (xj · 1)| = 1. (8.8)

Algorithm 8.1 is used for finding the set X ?md. Initially, the algorithm determines
the best NOP with NEL = 1 (x1) in lines 3-9. Then, in lines 11-19, for each
successive NEL (NEL = 2, 3, . . . , L), the algorithm finds the best cell that
should be activated (resulting in the solution xj), such that 1) the Hamming
distance with the previous solution xj−1 is one, and 2) the function f2 is
maximized. In this manner, each solution that is added to the set X ?md provides
the biggest increment in terms of f2 with respect to the one previously added
and only one cell needs to be turned on, i.e., only one transition.

It is worth saying that the two previous methodologies can be used to estimate
the set of Pareto efficient solutions X ?. Both approaches build a set composed of
solutions with different NELs, and hence, different values of f2. This is accomplished
in case of stochastic search by means of the Pareto dominance notion4, while in case
of the minimum distance algorithm, the heuristic is explicitly designed to do that.
Note that, in case of the minimum distance algorithm, X ? = X ?md and |X ?| = L.
The second condition, in general, cannot be guaranteed by means of stochastic
search. This depends on the level of diversity achieved by the MOEA. Indeed, having
|X ?| = L is very important because it indicates the best distribution of the elements
of X , i.e., one solution for each NEL.

3The multiobjective method has been patented and filed by Huawei Canada, see [P1].
4Recall that f1 is equivalent to the NEL of each solution x, see (8.5), and hence, the Pareto

efficiency concept (see Section 5.2) guarantees that two solutions in X ? cannot have the same NEL.
However, it is possible to obtain solutions with the same NEL for different traffic profiles (Γ).
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Algorithm 8.1: A method for finding a minimum distance set.

input :
X1: Set of NOPs with NEL=1, X1 = {x ∈ X | x · 1 = 1}, |X1| = L.

output :
X ?md: A set of L NOPs featuring minimum distance.

// Initiates the capacity variable;
1 C? ← 0;

// Initiates the output set;
2 X ?md ← ∅;
// Looking for the best NOP with NEL = 1;

3 for each x ∈ X1 do

// Get the weighted network capacity;
4 Cx ← f2(x);

// Look for the best initial point;
5 if Cx > C? then

// Updates the best value;
6 C? ← Cx;

// Update the best NOP with NEL = 1;
7 x1 ← x;

8 end

9 end

// Updates the output;
10 X ?md ← X ?md ∪ {x1};

// Looking for the rest of NOPs, NEL > 1;
11 for each j = 2 : L do

// Initiates the capacity variable;
12 C? ← 0;

// Look for the best new active cell;
13 for each x ∈ Xj | dH(x,xj−1) = 1 do

// Get the Weighted Network Capacity;
14 Cx ← f2(x);

// Look for the best new member;
15 if Cx > C? then

// Updates the best value;
16 C? ← Cx;

// Update the best NOP with NEL = j;
17 xj ← x;

18 end

19 end

// Updates the output;
20 X ?md ← X ?md ∪ {xj};
21 end
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Figure 8.3: Conceptual design of the proposed framework.

8.4.4 Overall Architecture

Figure 8.3 illustrates the conceptual design of the proposed framework. The frame-
work relies on the knowledge of traffic behavior both in time and space. By means
of different traffic distributions (Γj), the spatial component of the traffic at different
moments of the day can be captured. These patterns can be considered fairly constant
during time intervals whose duration can be arbitrarily small [277, 294].

Thus, starting from the knowledge of Γ, a set of Pareto Efficient NOPs (with
respect to f1 and f2, see Equations 8.5 and 8.6) can be obtained through MOEAs
or Algorithm 8.1. It is important to say that X ? is specific to Γ, and hence, a traffic
pattern Γj results in its corresponding set X ?j .

The set X ? is composed of several NOPs. Thus, an interesting question is about
what configuration should be used at any given time. The answer requires introducing
another element: the traffic intensity λ expressed in arrivals/sec. In general, the
solution that must be applied depends on the traffic load because each element of
X ? provides a different aggregate throughput. However, higher network throughput
requires more active cells, and consequently, more energy consumption. This is the
fundamental tradeoff inspiring the multiobjective CSO approach.

Note that, by modulating λ by means of Γ, different arrival rates λx result
at different zones of the coverage area, thus modeling the behavior of the traffic
realistically. This idea is illustrated in Figure 8.4.

A very nice feature of this framework is that the evaluation of the different
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Figure 8.4: Realistic/irregular traffic patterns.

NOPs in the set X ? can be done offline by means of system level simulations based
on network operators’ interests. In this manner, different QoS criteria, scheduling
policies and traffic load patterns can be considered and evaluated independently.

In real time operation, provided a certain level of coordination among cells and
basic pattern recognition techniques, it is possible to determine the current status
of the network in terms of traffic distribution (Γ) and load (λ). Thus, the selection
and application of the configurations previously calculated and tested (the elements
of the sets X ?j corresponding to each possible Γj , see Figure 8.3) can be done with
minimal real-time effort.

Obviously, each set X ?j mus be evaluated offline by means of system level simu-
lations (for different traffic intensities) to determine the load that each solution can
support subject to the QoS policies.

The next section presents the results corresponding to each of the processes
described so far: the estimation of the set X ? (by means of the two approaches
presented before) and system level simulations.

8.5 Results

8.5.1 Test Case and Evaluation Setting

The test case is the scenario ‘Small-dense’ described in Appendix B, Subsection B.1.3.
In order to emulate traffic unbalances, a particular spatial traffic distribution (Γ)
is required. Figure 8.5 illustrates the particular realization of Γ used for numerical
evaluations. It is worth saying that the pattern shown in the figure is generated
by means of the same bidimentional model used for shadowing, which is described
in Appendix B, Section B.3. However, some parameters such as the correlation
distance are adjusted to properly scale to the size of the network. As it can be seen,
the traffic distribution pattern features a certain spatial correlation similar to traffic
behavior. Note that red areas have around 10 times more probability of having
traffic than blue areas, and hence, distributing users according to Γ results in a non
uniform traffic distribution.
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(a) Non uniform traffic distribution. (b) CDF of the probability of each pixel.

Figure 8.5: Spatial traffic distribution.

Table 8.2: Coverage constraints used in numerical evaluations.

Parameter Value

Minimum SINR (ψmin) -7.0 dB

Minimum received power (PRx
min) -123 dBm

Outage threshold (κCOV) 2.0 %

The coverage constraints are shown in Table 8.2. The next subsection discusses
and illustrates the impact of such parameters.

8.5.2 Impact of Coverage Constraints

In order to show the impact of coverage constraints, a random NOP (xR) is evaluated
according to the formulation presented in Section 8.4. The solution xR belongs to
the NEL = 38 (38 out of the 54 cells are active) and it is as follows:

xR=[1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1
1 1 1 1 1 0 0 1 1 1 1 1]T

As it can be seen in Table 8.3, more rigid coverage constraints result not only
in greater outage but also lower values of the objective function f2 as the spectral
efficiency of outage pixels is discarded, see (8.4). Recall that along the optimization
process, NOPs resulting in outage values larger than κCOV (the operator-defined
threshold) are also considered out of the feasible set.
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Table 8.3: Evaluation of xR under different coverage constraints.

Constraints set 1 Constraints set 2

ψmin = -7.0 dB ψmin = -3.0 dB

PRx
min = -123.00 dBm PRx

min = -90.00 dBm

f1(xRef) = 38 f1(xRef) = 38

f2(xRef) = 536.68 [Mbps] f2(xRef) = 529.07 [Mbps]

SINR outage = 0.02% SINR outage = 4.49%

Received power outage = 0.00% Received power outage = 4.20%

Total outage = 0.02% Total outage = 4.49%

8.5.3 Multiobjective Optimization

As previously indicated, the estimation of the set X ? has been investigated by means
of two approaches. In this subsection, the merit of both alternatives is compared. It
is important to recall that the calibration of the algorithm NSGA-II is done as in
previous chapters. General guidelines are provided in Subsection 6.6.1.

Modified Initial Generation: Improved Convergence and Distribution

An improvement is proposed for the initial population in order to favor both
convergence and distribution (better diversity). Bearing in mind the definition of
the objective functions, it is expected that the estimated Pareto will be composed of
at most L solutions, one for each NEL. The idea is to include the extreme solutions
(the ones in the borders of the Pareto Front) from the very begining of the stochastic
search. Thus, adding the solution with all the cells active implies having the upper
limit of the Pareto Front. The lower limit is expected to be a solution with only one
active cells, and so, the L solutions with NEL = 1 are included as well. Thus, the
set XBase of configurations added to the initial generation is defined as follows:

XBase = {x ∈ X | x · 1 = 1} ∪ {x ∈ X | x · 1 = L}. (8.9)

In this manner, the fact of having the extreme solutions in the initial population
is exploit to complete the estimated Pareto Front from its limits by means of the
genetic mechanisms (crossover and mutation).

A comparative study between the proposed initial population and the default
(random) population is presented in Figure 8.6. The comparison is based on a
population size of 110 individuals. Figure 8.6a shows a representation of the estimated
Pareto Front (the images of the elements in X ?) for each case. On the one hand, the
proposed modified initial generation succeeds in finding one solution for each NEL,
i.e., the best possible diversity in terms of the number of members of the Pareto Front
(54 Pareto efficient NOPs). On the other hand, the search starting from a random
generation not only requires 24% more generations to converge, see Figure 8.6b,
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(a) Estimated Pareto Front. (b) Evolution of the hypervolume.

Figure 8.6: Performance gains through the improved initial generation.

but also fails in finding a complete Pareto Front, indeed, only 52 NOPs were found.
This clearly indicates that the proposed modified initial generation represents an
enhancement with respect to the baseline as both convergence and distribution are
improved.

Stochastic Search vs. Algorithm 8.1

The merit of each approach can be estimated through direct comparison. Two aspects
must be considered, the quality of the estimated Pareto Fronts and the complex-
ity. The asymptotic complexity of Algorithm 8.1 is O(L2), while the asymptotic
complexity of the algorithm NSGA-II is O(K · L2). Recall that L is the number of
cells in the system and K corresponds to number of objective functions. Thus, at
least in terms of asymptotic complexity there is not big difference because in this
formulation K = 2.

Let’s consider that the sets X ?SS and X ?MD correspond to the sets of nondominated
solutions found by means of stochastic search (by employing the algorithm NSGA-II)
and the minimum distance heuristic (Algorithm 8.1), respectively. Thus, looking at

the number of objective function evaluations, Algorithm 8.1 requires L·(L+1)
2 opera-

tions to find the nondominated set X ?MD, while NSGA-II requires (Npop ×Ngens) ope-
rations to estimate X ?SS. Npop and Ngens are the population size and number of
generations till the termination criterion, respectively. Note that in practice, a good

termination criterion typically results in that (Npop × Ngens) � L·(L+1)
2

5. In any
case, it is expected that the additional computational cost required in the stochastic
search approach achieves better NOPs.

Figure 8.7 shows a comparison between X ?SS and X ?MD. Figure 8.7a shows the
corresponding Pareto Fronts in terms of the images f1 and f2. Note that the quality

5In the numerical assessment presented herein, Npop × Ngens = 100 × 190 = 20900, while
L·(L+1)

2
=

54·(54+1)
2

= 1485.
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(a) f1 vs f2. (b) f1 vs real capacity.

Figure 8.7: Comparison: Stochastic search vs. minimum distance algorithm.

of the solutions with f1 ≥ 20 is almost the same. However, for NOPs in the low NEL
region (f1 < 20), the solutions found by means of the algorithm NSGA-II are better.
Given that f2, the weighted network capacity, scales the spectral efficiency with Γ,
it is also interesting to look at the network capacity according to the conventional
definition (without any weighting). The result is shown in Figure 8.7b. Again, the
solutions in X ?SS also outperform the ones in X ?MD in terms of network capacity for
the low NEL region. Taking as example the solutions with f1 = 14, the difference in
terms of network capacity is 45.6 Mbps, but as only 14 cells are active, a substantial
gain of 3.26 Mbps/cell is obtained. This clearly illustrates the gain in terms of quality
that can be achieved by means of MOEAs.

Moreover, it is worth noting that, taking into account the number of objective
function evaluations required to meet the termination criterion and the size of the
search space (X ), it can be concluded that the use of NSGA-II in conjunction with
f1 and f2 accomplish a highly efficient exploration of the search space because
only

Npop×Ngens

2L
= 1.16× 10−10% of the domain need to explored to obtain a good

estimation of the set X ?.

Up to now, two different methods for finding the set of Pareto efficient solutions
in terms of the metrics f1 and f2 have been presented. However, in order to shed
light into the practical value of the solutions in the set X ?, system level simulations
are presented.

8.5.4 System Level Simulations

General Setting and Methodology

System level simulations are based on Monte Carlo experiments. The results compile
statistics taken from 100 independent experiments, each of which has a duration of
3600 s. The rest of the setting is explained in the following points:
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• Users: Users are allocated in the coverage area according to the spatial traffic
distribution Γ (see Figure 8.5a). It is assumed that a new user appears in
the system (in some point of the coverage area) every 75 ms (on average).
This inter arrival time is modeled as an exponentially distributed random
variable with mean 1/λ = 0.075 s. Each user remains in the network during
a certain session time that is also modeled as an exponentially distributed
random variable with mean 1/µ = 60 s. Therefore, the average number of
users in the system (Mavg) can be obtained by means of the Little’s formula
as follows:

Mavg =
λ

µ
. (8.10)

The target rate is (rT) is equal to 250 kbps and link performance is calculated
with the Shannon’s formula (see Appendix A).

• QoS: At every QoS checking interval, the target QoS policy is said to be
fulfilled if at least 97.5% of users obtain a rate equal to rT. The impact of
other values for the target QoS is presented in Subsection 8.5.5.

• Scheduling : The scheduling policy that have been considered in the simulations
is referred to as ‘Best first’. It is described next:

– Best first: At each cell, the users are sorted according their average
radio channel quality (spectral efficiency). Then, starting from the best
user, each one is granted with the bandwidth required to obtain an
instantaneous rate equal to rT. Only users that receive enough bandwidth
to achieve rT are scheduled.

In Subsection 8.5.5, a comparative study among the scheduling disciplines
is presented to clarify the impact of other scheduling policies. However, the
studies presented in the current subsection are just for the ‘best first’ case
which is shown to have the highest number of satisfied users.

The results presented in this section are grouped in two types:

• NOP selection based on NEL sorting : In this study, at every QoS checking
interval, all the solutions within the set of nondominated solutions, either
X ?SS or X ?MD, are evaluated. The solution with the lowest NEL that is able
to satisfy the QoS policy is selected. The idea is to create an statistic about
the solutions that fulfill the QoS policy and simultaneously achieve the higher
energy consumption saving. To determine the winning solution at each time, a
binary search algorithm can be used6. The QoS checking interval is one second.

• Single NEL performance evaluation: One single solution is applied statically to
study its performance without the possibility of switching to another solution.
Obviously, the solution that is applied is selected by taking into account the
results from the previous analysis, i.e., the NOP selection based on NEL sorting
(binary search).

6The complexity of the binary search algorithm is O(log(n)). As a reference, a search in an
array of 50000 elements takes, on average, 26 iterations. The sort can be done offline.
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(a) CDF of the lowest NEL selection. (b) CDF of users rate.

Figure 8.8: Performance of the sets of nondominated solutions.

Performance Evaluation of NOP Selection Based on NEL Sorting

System level simulations can be used to complete the performance comparison
between the sets X ?SS and X ?MD. Figure 8.8 illustrates the NOP selection based on
binary search considering the ‘Best first’ scheduling policy. Figure 8.8a shows that
by using the set X ?SS, the selected NOP almost always has a NEL between 15 and
29, while the use of X ?MD results in NOPs with NELs between 17 and 40. This is
a direct consequence of the difference in terms of aggregate capacity between the
solutions in both sets. Clearly, X ?SS requires, on average, less active cells to meet
the QoS criterion, and hence, its performance is better than X ?MD from the energy
saving point of view. Figure 8.8b shows the resulting user rates. Also from this
perspective, X ?SS performs better. The small deviation (less than 2%) with respect
to the target QoS (97.5% of users with a rate ≥ rT) is due to the fact that the user
rate (r) reflects the average rate of each user taking into account the whole session
period. Note that if a user, due to the network dynamism (users coming in and out),
does not receive rT in at least one scheduling interval, then its rate will be lower
than rT. Recall that 1) the scheduling policy only assigns the instantaneous rates
in the set {0, rT}, and 2) NOP selection based on NEL sorting guarantees the QoS
policy at each interval, but this policy could imply that the sets of satisfied and
unsatisfied users can be different at different scheduling intervals.

Another comparative study is shown in Figure 8.9. Figure 8.9a illustrates the
effect of ICI when more cells are active. Recall, that in this part of the analysis
all NOPs in X ? are evaluated, and hence, statistics are collected for each NEL. As
expected, average SINR levels are worse as more cells are active. However, it is
interesting to note that the solutions in X ?SS provide small improvements in this sense,
meaning that they are also better from the ICIC point of view. The average QoS
level of each NEL is shown in Figure 8.9b. The result is interesting because suggest
that, for any given traffic distribution pattern and load level, there is a certain NOP
that provides the desired QoS (with high probability), and hence, solutions with
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(a) Average SINR. (b) QoS. (c) Bandwidth consumption.

Figure 8.9: Performance of the sets of nondominated solutions.

NEL above that point result in idle capacity, and consequently, energy wasting. This
perspective is important because it means that network capacity and offered QoS
should be characterized in terms of Γ and λ.

Finally, Figure 8.9c shows the average per-cell bandwidth consumption as a
function of the NEL. It is found that the lower the number of active cells, the higher
the average per-cell bandwidth consumption due to the traffic concentration.

Given that X ?SS achieves better performance, the rest of results are based on this
set and the subscript ‘SS’ is omitted for the sake of clarity.

Results for Single NEL Performance Evaluation

Given that the NEL sorting selection indicated that the NOP with NEL=18 is
selected most of the time, it results interesting to investigate what happens if
that configuration is applied and kept fixed during an interval of time in which
Γ is constant. The idea is to show that it is not necessary to change the network
configuration every second (as it was done previously in simulations by means of
the NOP selection based on NEL sorting) to achieve the desired QoS level.

Figure 8.10 presents the result. Interestingly, the degradation in terms of QoS
with respect to NOP selection based on NEL sorting is minimal, while the gain
from the feasibility point of view is significant because applying one single solution
statically implies that no cell needs to be switched on/off.

The statistic of users rate (r) is shown in Figure 8.10a. Thus, the system level
simulations confirm that x18 succeeds in achieving an acceptable performance as
only less than 2.5% users do not receive the target rate (rT), and hence, it can be
said that the desired rate was delivered, on average, to more than 97.5% of users.

From the QoS perspective, Figure 8.10b shows that only 5% of the time, the
global QoS is below the required threshold. However, this small tradeoff can be
afforded in the light of the excellent performance in terms of user rates and the
significant energy saving. Note that NEL = 18 implies that 66% of the network
can be switched off. Moreover, during the interval in which the NOP is applied, no



Chapter 8. Further Improvements to Energy Efficiency 207

(a) Users rate. (b) QoS.

Figure 8.10: Single NEL performance evaluation (NEL=18).

transition would be required, and hence, he number of handovers is also minimized
to the number of handovers required due to mobility.

Thus, as a conclusion, the proposed methodology accomplishes all the design
targets: good performance and feasibility. Based on the statistics collected from
the lowest NEL selection analysis part, the mobile operator can select a NOP (that
most of the time provides the desired QoS such as x18) and apply it conveniently
during an interval of time in which the traffic is distributed according to Γ. As it
was mentioned aerlier, this can be done by means of pattern recognition techniques
that are out of the scope of this thesis.

Performance Comparison with Previous Proposals

In order to provide another perspective of the merit of the proposed CSO framework,
a performance comparison with reference schemes is shown. Reference schemes taken
from the literature include: the Cell Zooming algorithm proposed in [295] and the
Improved Cell Zooming scheme presented in [283]. The Cell Zooming algorithm tries
to swicth off cell with low traffic starting from the lowest loaded. If at least one
user of a cell can not be re-associated, the execution of the algorithm finishes. In
contrast, the Improved Cell Zooming tries to switch off every cell in the network
before terminating.

Figure 8.11a illustrates the average power consumption (in terms of NEL) versus
system load. Recall that the NEL is equivalent to the value of f1 of the solution
selected at each QoS checking interval, and therefore, its mean value determines the
energy saving that can be obtained, on average, with each scheme. As it can be seen,
the proposed multiobjective framework outperforms the reference schemes, being the
gains with respect to the closest benchmark between 6% and 30%. Besides to that,
the good efficiency of the solutions in X ? becomes evident when looking to the QoS
provided to users. Figure 8.11b shows that when the system goes to the overload
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(a) NEL selection vs. system load (b) QoS vs. system load

Figure 8.11: Performance comparison among several CSO schemes.

region (40 new users per second in the network) the proposed framework minimizes
the QoS degradation by improving 8% the QoS with respect to the improved cell
zooming scheme.

Table 8.4 provides additional performance figures including the average number
of transitions and handovers per QoS checking interval. In this manner, the feasibility
perspective can also be considered. Recall that transitions refer to the number of
cells that should be switched on/off by selecting another network configuration. As
it was mentioned, this is important because a high number of transitions results in a
undesirable number of network-triggered handovers. The first row shows the merit of
the solution with f1 = 18 (x18). As it was mentioned, the performance degradation
with respect to the NOP selection based on NEL sorting is minimal, while the gains
from the feasibility point of view are significant as no cell needs to be switched
on/off. Note that the NOP selection based on NEL sorting has been include for
comparative purposes because evaluating such QoS at that small time scales is not
practical due to the computational cost and the required signaling overhead. Thus,
the gains with respect to the benchmarks in terms of power consumption (> 50%),
number of handovers (> 85%), and transitions (> 87%) are remarkable, being this
feasibility aspect one of the most attractive features of the proposed multiobjective
CSO framework.

Note that, although reference schemes are very close to 100% in term of QoS,
this comes at the expense of the need for more active cells, and hence, less energy
saving. In addition, as those schemes explore the whole search space continuously, it
is expected that the number of transitions, and consequently, handovers, is also very
high as it was shown in Table 8.4. Thus, it is verified that the proposed scheme
provides a much better tradeoff between performance, feasibility, and
complexity.

The next subsection includes complementary, though interesting, results.
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Table 8.4: Additional performance indicators (λavg = 0.075 s)

Scheme NEL QoS Handovers Transitions

x18 ∈ X ? 18.00 97.81 0.00 0.00

NOP selection based on NEL sorting 18.47 98.74 7.14 0.31

Cell zooming [295] 41.45 99.05 57.56 3.47

Improved cell zooming [283] 25.36 99.87 80.14 7.47

8.5.5 Additional perspectives

To close this section, a comparative study among scheduling policies is presented. As
it was commented, the idea is to evaluate the impact of this important functionality of
the performance of the proposed CSO strategy. To be precise, illustrate the fact that
different schedulers imply different NELs, and hence, the gains of a CSO algorithm
should be given with respect to a scheduling discipline and QoS parameters.

Besides the ‘best first’ policy, the following scheduling strategies are also consi-
dered:

• Best first: At each cell, the users are sorted according their average radio
channel quality (spectral efficiency). Then, starting from the best user, each
one is granted with the bandwidth required to obtain an instantaneous rate
equal to rT. Only users that receive enough bandwidth to achieve rT are
scheduled.

• Random: The policy is similar to the previous. However, users are served in a
random order. Similarly, users that cannot be assigned with enough bandwidth
are left out of the scheduling at that moment.

• Fair: At each cell, the bandwidth is equally shared among active users. Each
user receives exactly the same bandwidth, and hence, instantaneous rates
depends on the spectral efficiency of each user.

In addition, the impact of other parameters is analyzed. Figure 8.12 illustrates the
impact of the scheduling and system load on the performance of the NOPs found
through the proposed framework. The analysis was carried out by means of the NOP
selection based on NEL sorting.

Figure 8.12a shows that the ‘Best first’ policy achieves the lowest NEL selection.
From this point of view, the performance of the ‘Random’ scheme typically results
in the choice of NOPs with NEL> 30, and hence, this policy does no favor the
main goal of CSO. Even worse is the performance of the ‘Fair’ policy that almost
invariantly requires to have all cells active to fulfill the desired QoS.

Looking at the problem from the users rate standpoint as illustrated in Fi-
gure 8.12b reveals the ‘Best first’ scheduling also provides a convenient tradeoff
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(a) Scheduling: lowest NEL selection. (b) Scheduling: users rate

(c) Load: lowest NEL selection. (d) Load: users rate

Figure 8.12: Effect of scheduling and system load.

between energy saving and fairness, being the policy that achieves the highest energy
saving, and at the same time, it provides a very good fairness level because the vast
majority of users get the target rate while only a marginal fraction gets smaller
figures.

Figures 8.12c and 8.12d illustrate the effect of system load on the lowest NEL
selection and offered QoS, respectively. As expected, it is found that the higher the
system load in terms of average arrivals per second, the higher the average NEL
that is required to fulfill the QoS target. Figure 8.12c indicates that, for a given
QoS requirement, there is a certain traffic load after which, no energy saving is
feasible. A complementary view of this result is provided in Figure 8.12d, where
it is also confirmed that traffic load is a context variable of utmost relevance in
CSO. Thus, the results of the studies indicate that, in the context of CSO, several
perspective of the problem must be considered. This is precisely another strength of
the multiobjective framework presented herein, i.e., it allows decoupling the CSO
from other context variables and studying their impact independently.

Finally, Figure 8.13 shows the effect of the target rate and QoS. It is evident
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(a) Target rate: lowest NEL. (b) Target rate: QoS (c) Target QoS: lowest NEL.

Figure 8.13: Effect of target rate and QoS.

that the selection of rT has a great influence on the amount of energy that can
be saved. Looking at Figures 8.13a and 8.13b, it can be seen that while moving
from 200 kbps to 250 kbps only implies moving the average NEL selection from
16 to 18, the same increment from 250 to 300 kbps implies a more considerable
energy expenditure because the average lowest NEL goes from 18 to 32. Similarly,
the target QoS, see Figure 8.13c, is another important parameter that must be
carefully calibrated because small deviations result in significant changes in terms
of the number of active cells. As a conclusion, it can be said that, in addition to
a good CSO strategy, selecting operational parameters properly also plays a very
important role in CSO. Consequently, a well designed CSO strategy is useless if the
setting is not properly calibrated by means of the corresponding network-specific
studies. In these analysis, the impact of the rest of network and QoS parameters
must be considered.

8.6 Concluding Remarks

CSO is a paradigm that has gained popularity is the last few years as it has been
shown to be an effective approach to reduce the energy consumption in cellular
networks. By extending the multiobjective models previously employed in ICIC
to this emerging field, a novel CSO has been developed and several aspects of
this problem have been investigated. The research has revealed that exploiting the
tradeoff between aggregate network capacity and the number of active cells is a
natural and effective way to reduce the complexity of this difficult problem. This
approach allows for achieving the main goal: reduce energy consumption without
penalizing QoS. The studies have remarked the need for carefull calibration as an
important requirement to maximize the profit.

The proposed framework has the following desirable features:

X Robustness: It makes no assumption on network topology nor QoS policies.
Indeed, it focuses on providing the best spectral efficiency (with the minimum
energy consumption) to the areas in which higher traffic load is expected.
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X Feasibility : The proposed scheme does not require any new additional func-
tionality. The operation could be done in a time scale of tens of minutes or
hours as Γ typically does not change drastically over time. In addition, no
interworking with other RRM entities is assumed, and hence, integration in
existing (operative) networks is transparent.

X Real time complexity and scalability : The real time complexity is minimum
since the optimization task is done offline. Such processing requires, on the
one hand, a radio characterization of the coverage area, and on the other hand,
the knowledge of the traffic behavior. Note that an interesting feature of the
proposed scheme, in contrast to user-oriented approaches, is that the real-time
complexity does not depend on the network load, i.e., the number of users in
the system.

The conclusions can be summarized as follows:

• The proposed framework is a new approach to analyze the CSO problem
by 1) explicitly considering the spatial traffic distribution, and 2) introducing
a weighted network capacity metric that prioritizes cells providing better
capacity to zones where traffic is concentrated.

• The network characterization in terms of a set of near-optimal NOPs (that
are traffic-profile-specific) is addressed by means of two different approaches:
stochastic search (through MOEAs) and a minimum distance heuristic. Both
algorithms are based on the inherent tradeoff between energy consumption
(NEL) and aggregate capacity. In this manner, the method proposed here
only operates with a reduced number of CSO configurations. The fact that
the solutions are computed offline makes the proposed scheme suitable for
distributed implementations. The results indicates that the proposed strategy
offers a convenient tradeoff in terms of complexity, performance, and feasibility.

• System level trials confirm that the performance obtained is excellent. In
addition, it clearly outperforms reference schemes both in terms of achievable
gains and feasibility/complexity. Although achievable energy savings are, in
general, network dependent, the proposed framework provides a suitable way
to observe the impact of parameters such as target rate (rT) and the scheduling
policy on the performance of the CSO strategy.

Potential extensions of this work include:

• Investigate and integrate traffic patterns recognition schemes that can operate
efficiently in conjunction with proposed CSO model in real-world implementa-
tions.
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Final Considerations,
Conclusions and Future
Works

The extended mobility is the main advantage of cellular networks. This fundamen-
tal aspect has promoted that mobile devices including smartphones, tablets, and
notebooks are becoming the preferred way to access the Internet. This situation is
pressing the industry because the number of users of cellular networks has grown
exponentially, and hence, in order to keep up in this competitive market, operators
must guarantee seamless coverage and excellent QoS to their users.

In current (and future) cellular technologies such as LTE and LTE-A, ICIC has
been identified as a key framework to meet the challenges posed by this evolving
context. Thus, the objective of this Ph.D. thesis is to make a solid contribution to
the theory of static ICIC and its feasibility for implementation in real-world cellular
deployments. Based on the study of the state of the art, a set of research opportunities
were identified, and consequently, new methods of analysis, strategies of optimization,
and guidelines have been presented with the goal of improving network performance.
The current dissertation contributes with solid arguments and novel optimization
schemes to make static ICIC more attractive. The research methodology comprised
a combination of mathematical models, optimization techniques, and system level
simulations.

The novelties presented in this Ph.D. thesis include not only developments of
static ICIC mechanisms for data and control channels but also efforts towards further
improvements of the energy efficiency perspective. Thus, the framework developed
for ICIC has been successfully applied to investigate traffic-driven multiobjective
optimization strategies for CSO.
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On the Feasibility of Static ICIC Schemes in Real-World Deployments.

Currently, the research on ICIC is far from being finished. Mobile operators, industry,
and academia are working on developing effective and feasible solutions. In this
context, static ICIC stands out as an attractive alternative to deal with the cell edge
performance issue in OFDMA-based cellular networks due to their low complexity.

The research work presented in this Ph.D. thesis started investigating efficient and
flexible models to study the performance and feasibility of static ICIC techniques in
cellular deployments featuring arbitrary network topologies. The proposed statistical
model takes into account the network geometry to predict the long term (average)
behavior of ICI. It can be regarded as a type of planning scheme for ICIC. The
analysis revealed that the operation of SFR and FFR can be described in terms of
two subsystems: the class of interior and exterior users. This approach is convenient
because it allows for a deeper understanding of the impact of the operational
parameters of SFR and FFR on the system. This knowledge proved to be key in the
design of the optimization schemes subsequently developed.

By means of this method, it is possible to study the performance of SFR and
FFR in any arbitrary network topology without the need for computationally-heavy
system level simulations. The model provides convenient performance patterns in
the form of 2D maps that can be used by mobile operators to obtain an easy visual-
assessment of the configuration that should be applied to the network. Moreover,
different criteria can also be defined in a flexible manner.

The performance of SFR and FFR has been analyzed in the context of both
synthetic and realistic deployments. It was found that while in synthetic scenarios
they provide a convenient way to adjust the tradeoff between spectral efficiency and
cell edge performance, in a real-world context, the performance of baseline design
configurations is poor in the sense that no attractive tradeoff can be attained. This
conclusion was also verified by means of system level simulations.

The reason of such poor results in irregular topologies stems from the fact that,
in this type of scenarios, SINRs distributions and cell edge sizes vary significantly
from one cell to another, and hence, applying the same configuration globally clearly
leads to performances that are far from optimal. In this manner, the need for
optimization in such contexts is demonstrated. Moreover, it is worth saying that
based on the analysis carried out by means of the proposed method, several insights
into how to perform the required optimization have also been obtained. Thus, local
adjustments of the parameters α and β are not recommended due to practical
difficulties. On the one hand, increasing α implies more ICI in neighbor cells and
decreasing it could result in coverage holes. On the other hand, adjusting β (even
globally) implies a precise coordination among cells to avoid undesired inter-class
bandwidth overlapping. The study revealed that the classification threshold (ψTH)
is the best candidate to achieve the required local tuning. First, changing this
parameter is transparent as it would only require to modify the scheduling policy
(an operator-defined rule). Second, ψTH can be adjusted independently at each cell
without impact on neighboring ones.
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Besides the need for optimization in realistic deployments, it was also identified
that the interworking between static ICIC schemes and other network functionalities
such as CSI feedback is not considered within the specifications. Indeed, LTE just
provides a certain support so that every vendor/operator configures its particular
ICIC option. CSI feedback is a very important and fundamental piece in wireless
communications; as such, its design must be done considering an adequate inter-
working with other network entities. Thus, two novel CSI feedback schemes, suitable
to operate in conjunction with SFR and FFR, have been developed. ICIC-SEQ and
ICIC-LOC exploit the typical resource allocation pattern of SFR and FFR to improve
the accuracy of the CSI feedback process. To be precise, refining the estimation
of the wideband CQI figure, which is done focusing each user on the subbands of
interest in the system bandwidth. The novel proposals provide significant gains in
terms of overall QoS, average user rates, and cell edge performance. Moreover, they
are suitable for practical implementation in LTE systems and their requirement of
uplink overhead is minimal compared to native LTE schemes and existing proposals
from the literature. UE performing CSI feedback according to the novel strategies
can coexist transparently with legacy users. Based on the performance analysis, the
following rules of thumb are advised:

X A way to improve the performance of CSI feedback schemes is not necessarily
through more uplink overhead. Instead, more accurate and better localized
channel quality estimations suffice to achieve desired results.

X In scenarios with traffic of type full buffer such as FTP, transmission errors
must be avoided. Thus, channel quality estimations based on average figures
are recommended in order to minimize the number of retransmissions.

X In scenarios with bursty traffic such as HTTP, a more aggressive channel quality
estimation, i.e., narrow band estimations (based on short-term samples), can
be afforded because a certain number of transmissions errors are compensated
by retransmission capabilities such as HARQ, without a negative impact on
the overall QoS.

ICIC for Data and Control Channels in LTE/LTE-A based on MOEAs.

As it was suggested by the results of the first studies, the performance of SFR and
FFR can be optimized by adjusting the configuration of these schemes locally at
each cell. This type of optimization problems (combinatorial or not) typically belong
to the class NP-Complete, and hence, deterministic methods or exact procedures
are not an option.

The use of MOEAs has been investigated taking into account the particularities
required for static ICIC optimization. In this context, MOEAs offer the following
advantages:

X The possibility to study the problem as it is, without the need for incurring in
system simplifications or assumptions to make the mathematical treatment
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feasible. This is possible thanks to the black-box nature of this type of meta-
heuristic that does not require any particular condition on objective functions
such as linearity, convexity, or differentiability.

X A complete picture of the tradeoffs among objective functions. Therefore, it is
possible to detect when a slight loss in one objective allows very high gains in
others, and hence, different configurations can be selected in a clever way.

X Multiobjective optimization brings as output several network configurations
rather than one single solution. These solutions feature Pareto efficiency, and
hence, they represent different tradeoffs among the objectives and allow mobile
operators to select the network setting best fitting their needs.

X They are able to find good (near-optimal) solutions by efficiently exploring
complex n-dimensional search spaces.

The proposed multiobjective optimization strategies are based on the statistical
framework developed during the initial stage of the research. Thus, they aim at
optimizing expected values, i.e., the minimization of average ICI levels. The method
achieves an attractive tradeoff between effectiveness and feasibility as significant
reductions of ICI levels in cell edge areas are achieved. Moreover, the formulation
based on the optimization of the classification threshold (ψTH) at each cell confirms
the hypothesis that this parameter is the best option to deal with the spectral
efficiency vs. cell edge performance tradeoff.

The main conclusions can be summarized as follows:

• Initially the work dealt with the adaptation of NSGA-II and SPEA-2 to the
current optimization problem. The proposed schemes succeed in finding SFR
and FFR configuration that outperform schemes from the state-of-the-art
along with baseline designs of SFR/FFR and basic reference schemes (reuse 1
and 3).

• Next, a novel hybrid scheme is designed. It considers the use of two different
MOEAs (NSGA-II + SPEA 2) and it provides both better convergence and
distribution than each of them separately. This was verified under fair experi-
ments subject to the same computational cost in terms of objective function
evaluations. Moreover, another important practical advantage is is an increase
in the number of Pareto efficient network configurations, 78% on average.

• The convergence properties of the evolutionary algorithms have been studied by
means of statistical methods. The results show the importance of an accurate
calibration process, and hence, practical guidelines and rules of thumb for an
easy adjustment were derived for the optimization problem under consideration.

• The study of the features of the resulting nondominated SFR/FFR configura-
tions showed that such dominance relationships do not hold necessarily at cell
level. The performance at cell level is obviously very important and, as such,
requires attention. The proposed framework also takes that aspect into account
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and allows several means to guarantee minimum local performances. However,
it should be clearly understood that high global optimization gains typically
comes at the expense of local unbalances. This can be seen as a strength of the
method given that it provides means to select network configurations fulfilling
the requirements of each cell.

Besides the development of ICIC strategies for data channels, optimization
schemes for control channels have also been investigated. The performance of cellular
systems such as LTE and LTE-A strongly depends on the reliability of the control
channels as they convey the critical user-specific information. Both for the PDCCH
and ePDCCH, the consumption of control resources is overloaded by cell edge users
requiring higher aggregation levels. Thus, ICIC can be employed to reduce the
needs of these users, and so, increase the signaling capacity of the system. The
novel strategies are based on the statistical framework presented in Chapter 3, and
therefore, they can also be used in any realistic deployment.

Previous studies have shown that the PDCCH limits network capacity in scenarios
with many low-rate users (either RT or NRT). LTE-A introduces some features
to further protect the PDCCH, but additional measures are still required. The
PDCCH is time-multiplexed, and hence, frequency domain ICIC cannot be applied.
In this manner, a solution based on the optimization of the power allocated to the
PDCCH at each cell was designed. The proposed formulation takes an ICIC-oriented
approach by focusing on improving the bottom tail of the resulting average SINR
distributions. In this manner, it results in reductions of the average consumption
of control resources. Given that the design of this strategy assumes full frequency
reuse, it is clearly extensible to data channels as well. Such adaptation has been
proposed for SON and it is shown in Appendix E.

The design of the ePDCCH is much more flexible than the PDCCH. Thus,
frequency domain ICIC can be used. Given this, an adaptation of the static ICIC
strategies previously designed for data channels has been investigated. However,
ICIC optimization for the ePDCCH is more complicated because the resources
devoted to this channel are borrowed from the PDSCH (the data channel). Thus,
increasing the signaling capacity implies reducing the resources devoted to users
payload. The proposed optimization strategy does take this tradeoff into account by
adding the required objective functions. The optimized network configurations allow
gains with respect to baseline designs and reference schemes.

It is important to mention that, under this general optimization framework that
includes both control and data channels, the marginal gains obtained by means of
local adjustments of α was investigated. It is concluded that this improvement is
not worth given the significant complexity cost that is required.

A Step Forward Towards Greener Cellular Networks.

As final objective of the research presented in this Ph.D. thesis, studies focused on
network energy efficiency have been conducted. Thus, the multiobjective optimization
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schemes introduced previously for ICIC have been extended and adapted to the
framework of CSO. CSO is a paradigm that has gained popularity in the last
few years as it has been shown to be an effective approach to reduce the energy
consumption in cellular networks.

The studies reveal that there are interesting connections between ICIC and CSO,
and hence, the tradeoff between aggregate network capacity and the number of
active cells has been successfully exploited by means of the Pareto dominance notion.
To be precise, the main idea is to take advantage of the fact that decreasing the
number of active cells reduces ICI. However, the decision of which cells must remain
active depends on the spatial traffic distribution. This is accomplished by means of
a weighted network capacity metric that prioritizes cells providing better capacity
to zones where traffic is concentrated.

The proposed multiobjective optimization method, based on evolutionary opti-
mization, allows for achieving significant energy savings without penalizing QoS. The
core processing, i.e., the network characterization in terms of a set of near-optimal
NOPs that are traffic-profile-specific, is done offline, and thus, the novel optimization
scheme does not require real-time computational cost. Moreover, an analysis (based
on system level simulations) of this set of Pareto efficient NOPs allows to determine
the network configuration that is selected most of the time for a given spatial traffic
distribution, load, and QoS policy. It is shown that by applying this configuration
statically, it is not necessary to change the NOP continuously in order to achieve the
desired QoS level. This implies a significant gain from the feasibility point of view
because applying one single setting implies minimizing the number of transitions: no
cell needs to be switched on/off. Moreover, the merit of the proposed CSO solution
has been shown by comparing it with schemes taken from the literature. The novel
multiobjective provides higher energy savings and better QoS. In this manner, it is
concluded that the novel method provides an excellent tradeoff between performance,
feasibility, and complexity.

Finally, the studies also point out the need for a careful selection of network
parameters such as target rate as they have a great influence on the performance
of the CSO scheme. From this part of the analysis, it is concluded that even a well
designed CSO strategy results in highly suboptimal performances if those figures
are not carefully chosen.

Future Research Lines.

In the current context of exponential grow in mobile data traffic, there is a consensus
about the next challenge, increasing capacity in a factor 1000x. Among the different
challenges that this goal has, providing better coverage and user experience for
cell edge users still is a priority. ICIC mechanisms should be extended to fit in the
new technological developments. In the light of the conclusions and the experienced
obtained so far, future research items include:

• Research towards pattern recognition schemes to be used in the frameworks
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presented in this thesis as a mean to develop feasible dynamically self-tuned
ICIC strategies.

• With radio link performance getting closer and closer to the Shannon limit,
extreme densification of networks and hierarchical topologies appears to be a
clear trend towards the 1000x objective. Therefore, investigate the potentials
of the proposed ICIC framework in hyper dense network deployments and
HetNets seems to be a logical direction.

• The current work is general enough to consider other likely scenarios such as
the uplink counterpart of the problem.
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Appendix A

Notation

The following tables contain the notation and symbols used throughout the docu-
ment. For convenience, the overall notation has been divided into (1) system model
and operational parameters, (2) performance metrics and, (3) functions and trans-
formations.

The following symbols have global scope. However, sub- and super-indices are
used to denote different instances of the same measure. For instance, while η always
denotes a measure of spectral efficiency, the symbol ηx could correspond to the
spectral efficiency of a user x. The meaning of the indices is either evident from the
context or explicitly indicated.

The following matrix convention is adopted. For the vector v and the matrix
V, v (x) and V (x, y) correspond to the xth element and the element in the xth row
and yth column, respectively. These inclusion relationships will be always evident
from the context as vectors and matrices are written in bold while functions and
transformations are not.

System model and operational parameters

A Number of area elements or pixels in which the coverage area is divided.

B System bandwidth.

B Set of subbands in the system bandwidth.

BA
l Set of subbands that the lth cell is allowed to use.

BR
l,I , BR

l,E SFR/FFR: Set of subbands reserved for each class of users in the lth cell.

Bl,I , Bl,E SFR/FFR: Bandwidth reserved for each class of users in the lth cell.

E , I Sets of central and cell edge users.

G
Long term channel gain (inverse of large scale fading) matrix (G ∈ RA×L
or G ∈ RM×L).
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gn,scm,l
Channel gain (inverse of large plus small scale fading) of user m with cell
l in RB n and subcarrier sc.

J LTE: Number of bandwidth parts in the system bandwidth.

l, L Indices for cells and total number of cells. Thus, l = 1, 2, · · · , L.

l̂ Index of serving cell.

m, M Indices for UEs and total number of users. Thus, m = 1, 2, · · · ,M .

NJ LTE: Number of consecutive subbands in each bandwidth part.

NDL
RB LTE: Number of resource elements in the system bandwidth.

NSB LTE: Number of subbands in the system bandwidth.

NRB
sc LTE: Number of subcarriers per resource element.

NDL
symb LTE: Number of OFDM symbols per slot.

n The inverse of the number of pixels associated to each cell (n ∈ RL).

Pmax Maximum power available at each cell.

PRx
min Receivers sensitivity.

Pn,scl Power transmitted by cell l in RB n and subcarrier sc.

p Vector to indicate a set of transmited powers (p ∈ RL).

P LTE: An arbitrary set of PRBs.

Ps LTE: An arbitrary set of (contiguous) PRBs in the sth subband.

Pi,j LTE: ith subband within the jth bandwidth part.

R Matrix to indicate a set of received powers (R ∈ RA×L or R ∈ RM×L).

S, Sc Binary coverage matrix and its complement. (S, Sc ∈ {0, 1}A×L or
S, Sc ∈ {0, 1}M×L), see Appendix C, Section C.1.

v Binary vector to indicate outage in pixels (v ∈ {0, 1}A). ‘1’ = outage.

x, X A generic solution vector and the set of multiple solutions. The dimension
of x is always clear from the context, otherwise indicated.

α SFR/FFR: Power ratio. Ratio between the power assigned to cell edge
users and central users.

β
SFR/FFR: Bandwidth sharing coefficient. Fraction of the system band-
width assigned to central users.

Γ
Generic probability space used to describe the traffic (load) distribution
spatially in the network.

∆X LTE: Content of the CSI feedback report type X.

δX LTE: Uplink overhead of the CSI feedback report type X.

Θ LTE: A CQI value.

κ An arbitrary constant: κ ∈ R+.

λ Traffic intensity [arrivals per second].

σ2 Thermal noise power.

ψmin Minium SINR threshold to establish a radio link.

ψTH SFR/FFR: SINR threshold used to classify users.
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Performance metrics and objective functions

C Capacity or aggregate sum rate.

FX Cumulative Distribution Function of the random variable X.

F ′X Probability Mass Function of the random variable X.

fi The ith objective function in multiobjective formulations.

r Users or pixels rate.

x̂ Normalized value of the variable x.

η, H Spectral efficiency: scalars and matrices, respectively.

ξ Average consumption of control resources (CCEs or eCCEs).

% Non-uniformity index.

υ Hypervolume indicator.

ψ, Ψ SINR values: scalars and matrices, respectively.

 Jain’s index.

Functions and/or transformations

dH (x1,x2)
Hamming distance between the binary strings x1

and x2.

log2 (1 + ψ) [bps/Hz] Shannon’s formula for spectral efficiency.

u ( ) Unit step function. u (z) = 1 if z ≥ 0, 0 otherwise.

Θ = Λ (ψeff) Mapping from effective SINR (ψeff) to CQI (Θ).
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Appendix B

Simulation Scenarios

This appendix presents a description of the simulation scenarios considered in this
thesis. The description includes basic features that include topology, number of cells
and propagation model, leaving aspects that are particular to each study such as
system bandwidth/power configuration to be indicated in the corresponding chapters.
In addition, a description of the traffic models and the generation of large and small
scale fading is also included.

B.1 Cellular scenarios

Two different antennas have been used: a synthetic antenna defined in [175] and
a commecial antenna [301]. In the document, these antennas are referenced to
as ‘M.2135’ and ‘Kathrein’, respectively. The main features of the antennas are
shown in Table B.1. Vertical and horizontal radiation patterns are shown in Figu-
res B.1 and B.2, respectively.

Table B.1: Main features of the antennas.

Antenna Gain [dBi] 3 dB beam (H/V) Front-to-back ratio [dB]

M.2135 17.00 70◦/15◦ 20 dB
Kathrein 19.33 65◦/4◦ >25 dB

In this thesis, several cellular scenarios have been considered. The first one
is a synthetic (hexagonal) layout similar to the one proposed by ITU in [175] as
a reference for evaluation of radio interface technologies for IMT-Advanced. The
second scenario is a realistic cellular network covering the city of Vienna and its
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(a) Horizontal. (b) Vertical.

Figure B.1: Radiation pattern of antenna M.2135.

(a) Horizontal. (b) Vertical.

Figure B.2: Radiation pattern of antenna Kathrein

surroundings. The term ‘realistic’ is used in the sense that the digital elevation model
and sites/cells parameters have been obtained from the MORANS initiative [302].
This activity was framed within the European COST 273 Action and aimed at
providing common system simulation environments so that different researchers can
compare results. In addition to the previous test cases, a small/dense deployment
was considered for the studies about CSO, which require a deployment that is small
in size but with high density of eNBs. However, before presenting the description of
each scenario, Table B.2 shows a set of parameters that are common to all of them.
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Table B.2: Parameters common to all scenarios/studies.

Parameter Value

Thermal noise power (σ2) –174 dBm/Hz
UE noise figure 7 dB

Pixels resolution 5 m/pixel (square pixels)
Available power per cell (Pmax) 43.0 dBm

Carrier frequency 2.140 GHz
Large and small scale fading As indicated in Section B.3

(a) Cellular layout and average SINR map. (b) CDF of the average SINR.

Figure B.3: Synthetic cellular layout.

B.1.1 Synthetic Test Case

The synthetic scenario is a 3GPP based urban/macrocellular network. The scenario
features an hexagonal grid with 57 cells in 19 trisectorial sites. The sites are separated
by a distance of 1.5 km. The scenario is assumed to be flat, i.e., no elevation model
is considered and the antennas are all at a height of 25 m and downtilted 6◦.
Propagation was modelled according to the 3GPP urban macrocellular model as
defined [303]. In the document, the scenario is referred to as scenario ‘Synthetic’. The
cellular layout with the average SINR map under full frequency reuse (the condition
assumed for cell selection) and the CDF of this variable are shown in Figure B.3.

B.1.2 Realistic Test Case

The realistic scenarios considered in this thesis are based on one of the reference
scenarios defined within the MORANS initiative [302]. In particular, the one covering
the city of Vienna. The scenario is built upon real world information including
geo-localization-data for the sites, clutter definition (traffic information), realistic
elevation model, sites features/configuration and propagation based on in-field
measurements. This realistic test case is composed of 211 sites in which 628 cells
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(a) Cellular layout.

(b) Subscenario MORANS. (c) Realistic propagation

Figure B.4: MORANS reference test case: Vienna.

provide service to a zone of 19×23 km2. Given the realistic nature of this scenario,
sites features such as azimuth, antennas height and downtilts are specific for each
transmitter. Figure B.4 illustrates several aspects of this scenario. The cellular layout
of the whole reference test case is shown in Figure B.4a, where the subscenario used
for numerical evaluations is indicated. The area corresponding to this subscenario
is accurately characterized in terms of ICI by means of the empirical propagation
model COST 231-Walfish-Ikegami [304]. As an example, Figure B.4b shows the
topografical information of the subscenario ‘MORANS’ and Figure B.4c depicts the
propagation pattern for one reference site.
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(a) Cellular layout and average SINR map. (b) CDF of the average SINR.

Figure B.5: Small and dense deployment.

Table B.3: Summary of cellular test cases.

Scenario Layout/ISD Sites/cells Antenna/height Area

Synthetic Hexagonal/1.5 km 19/57 Kathrein/25 m 37.02 km2

MORANS Irregular/Variable 20/60 Kathrein/Variable 20.79 km2

Small-dense Hexagonal/300 m 18/54 M.2135/15 m 1.78 km2

B.1.3 Small Dense Test Case

The scenario is a small dense deployment which extension is comparable to a campus
such as Carleton University. To be precise, the scenario is composed of 18 trisectorial
sites with 54 cells and, without loss of generality, the sites are uniformly distributed
over a flat area of 1.55×1.15 km2. The propagation model is the one proposed in
ITU-R M.2135 for urban microcellular deployments [175]. Sites height is 15 m and
the downtilt of antennas is 12◦. In the document, the scenario is referred to as
scenario ‘Small-dense’. The cellular layout with the average SINR map and the CDF
of this variable are shown in Figure B.5.

Table B.3 summarizes the main features of the cellular test cases.

B.2 Traffic Models

Four different traffic models are considered: Hypertext Transfer Protocol (HTTP),
File Transfer Protocol (FTP), Voice over Internet Protocol (VoIP) and full buffers.
Traffic models for HTTP (web browsing sessions) and FTP (file transfers) are defined
in [57]. The traffic model for VoIP was taken from [175].

A brief description of these models is provided.
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Table B.4: Traffic models parameters.

Traffic Parameters/Distributions

HTTP Main object size: Truncated Lognormal
(mean: 10710 bytes, standard deviation: 25032 bytes)
Embedded object size: Truncated Lognormal
(mean: 7758 bytes, standard deviation: 126168 bytes)
Number of embedded objects: Truncated Pareto
(mean: 5.64)
Reading time: Exponential (mean: 30 s)
Parsing time: Exponential (mean: 0.13 s)

FTP File size: Truncated Lognormal
(mean: 2 Mbytes, standard deviation: 0.722 Mbytes)
Reading time: Exponential (mean: 180 s)

VoIP Adaptive Multi-Rate (AMR) audio codec. Source rate: 12.2 kbps
Activity factor: 50 %
Voice packets: 40 bytes every 20 ms
Silence packets: 15 bytes every 160 ms

• HTTP. Sessions are divided into ON/OFF periods representing web-page
downloads and intermediate reading times, where the web-page downloads are
referred to as packet calls. These ON and OFF periods are a result of human
interaction.

• FTP. In FTP applications, a session consists of a sequence of file transfers,
separated by reading times. The size of the transfers is typically much bigger
than in HTTP sessions.

• VoIP. The model is based on a two-state Markov Chain such that each user
remains, on average, 50% of the session time generating VoIP packets.

• Full buffers. It is assumed that there is always traffic awaiting for transmission.

Table B.4 summarizes the main parameters of the stochastic models used for each
service. Figure B.6 illustrates a typical realization of each type of traffic.
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(a) HTTP.

(b) FTP.

(c) VoIP.

Figure B.6: A realization of the stochastic models for realistic traffic.

B.3 Large and Small Scale Fading

The large scale fading (shadowing) is based on multiple correlated layers according
to the bidimentional model proposed in [305]. By means of this model, a common
shadowing value is assigned to each pixel with respect to each cell. In this manner,
the actual behavior of shadowing can be captured, i.e., nearby users have correlated
values. Table B.5 shows the parameters employed in the generation of correlated
shadowing layers. As an example, one small layer of 64×64 pixels is shown in
Figure B.7.

The small scale fading (frequency selective fading) is generated according to [306].
Since this computation is very time consuming, its use is based on pre-generated
traces. In addition, in order to be consistent with the LTE numerology, an extended
channel model featuring a tap resolution of 32.55 ns was selected, see [178] for details.
Table B.5 shows the parameters employed in the generation of the small scale fading.
Figure B.8 shows a small representation of the channel used in dynamic system level
simulations.
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(a) A simple shadowing map. (b) CDF of shadowing.

Figure B.7: A bidimentional shadowing pattern.
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(a) A channel snapshot.

(b) A temporal cut. (c) A frequency cut.

Figure B.8: A representation of the channel used in dynamic system level simulations.
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Table B.5: Shadowing parameters.

Parameter Value

Mean 0 dB
Standard deviation 7 dB

Correlation between layers 0.5
Decorrelation distance 20 m

Resolution (square pixels) 5 m/pixel

Table B.6: Frequency selective fading and channel model parameters.

Parameter Value

Bins bandwidth 15 kHz (Subcarriers separation in LTE)
FFT size 2048

Doppler frequency 5.94 Hz (Speed: 3 km/h)
Sampling frequency 1000 Hz (One value each millisecond)

Channel model ITU - Extended Pedestrian B [178]
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Appendix C

Evaluation settings and LTE
parameters

This appendix presents the configurations and models used for numerical evaluations
and/or simulations. LTE settings and parameters are also included. The appendix is
based on the general notation previously defined in Appendix A whose reading can
be considered complementary and recommended.

C.1 System model

The system model considers the downlink of an OFDMA cellular network based on
LTE. The network is composed of L cells and the coverage area is divided in A small
area elements (pixels). It is assumed that within each pixel, the average received
power from each cell is constant and hence, average SINR figures are also constant
within each pixel. Received power is measured in the central point of each pixel.

The system bandwidth is B [Hz] and it is composed of NDL
RB RBs, each of which

is divided into NRB
sc consecutive subcarriers of 15 kHz. The total available power

per cell is Pmax. The way in which the power is distributed among the different RBs
is explicitly indicated where it is required.

The radio characterization of the network is given by the matrix G containing
the net large scale fading, i.e. it accounts for propagation loss, antenna gain, and
shadowing. The vectors pCS-RS and pPDSCH indicate the power transmited (per
subcarrier) at each cell in CS-RS and the PDSCH, respectively. Without loss of
generality, it is assumed that the power allocated to CS-RS is the same at each cell,
in this manner, pCS-RS(l) = Pmax/(N

DL
RB ·NRB

sc ) ∀ l = 1, 2, · · · , L.

Cell selection is based on the average CS-RS received power that is given by the
following expression:

RCS-RS = G · diag (pCS-RS) (C.1)
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Figure C.1: A pictorial representation of the system model.

Thus, the pixel a (ath row in RCS-RS) is served by cell l?, if and only if:

l? = argmax
l∈{1,2,... ,L}

RCS-RS(a, l) (C.2)

Based on Equations C.1 and C.2, the binary coverage matrices S, Sc ∈ RA×L can be
easily obtained. If a is served by l?, then S(a, l?) = 1. Sc is the binary complement
of S. Note that, the cell coverage pattern, implicitly defined in S, is a function of
pCS-RS. The vector n ∈ RL contains the inverse of the sum of each column in S, i.e.,
the number of pixels associated to each cell.

The vector Γ ∈ RA indicates the probability of each pixel of having a user on it.
Therefore ΓT · 1 = 1. Note that, in the particular case where users are uniformly
distributed in the coverage area, each element γi ∈ Γ is equal to 1/A.

Finally, it is assumed that each pixel (or user) can be served only by one cell. A
pictorial representation of the system model is shown in Figure C.1.
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C.2 Modulation and Coding Schemes

Table C.1 shows the modulation and coding rate used in LTE for the PDSCH.
Tables C.2 and C.3 show the transmission formats used in LTE for the PDCCH [307]
and the ePDCCH [308], respectively. Target SINR values were computed to achieve
a target BLER of 1% according to [174, 177]. Single Input Single Output (SISO) is
assumed.

Table C.1: MCS used in LTE system level simulations.

Index Modulation Coding rate Index Modulation Coding rate

0 QPSK 0.12 14 16QAM 0.54
1 QPSK 0.16 15 16QAM 0.60
2 QPSK 0.19 16 16QAM 0.64
3 QPSK 0.25 17 64QAM 0.43
4 QPSK 0.30 18 64QAM 0.46
5 QPSK 0.37 19 64QAM 0.51
6 QPSK 0.44 20 64QAM 0.55
7 QPSK 0.52 21 64QAM 0.60
8 QPSK 0.59 22 64QAM 0.65
9 QPSK 0.67 23 64QAM 0.70
10 16QAM 0.33 24 64QAM 0.75
11 16QAM 0.37 25 64QAM 0.80
12 16QAM 0.43 26 64QAM 0.85
13 16QAM 0.48 27 64QAM 0.89

Table C.2: Transmission formats for the PDCCH.

Format Modulation CCEs Coding rate Target SINR (ψT
x ) [dB]

0 (AL0) QPSK 1 2/3 ψT
0 = 4.40

1 (AL1) QPSK 2 1/3 ψT
1 = 0.40

2 (AL2) QPSK 4 1/6 ψT
2 = −2.10

3 (AL3) QPSK 8 1/12 < ψT
2

Table C.3: Transmission formats for the ePDCCH.

Format Modulation CCEs Coding rate Target SINR (ψT
x ) [dB]

0 (AL0) QPSK 1 2/3 ψT
0 = 9.25

1 (AL1) QPSK 2 1/3 ψT
1 = 2.50

2 (AL2) QPSK 4 1/6 ψT
2 = −0.50

3 (AL3) QPSK 8 1/12 < ψT
2
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C.3 Channel State Feedback

Table C.4 indicates the CQI definition for CSI feedback. Tables C.5, C.6, C.7, C.8 and
C.9 show several LTE specifications related to periodic and aperiodic CSI reporting
in LTE.

Table C.4: Definition of the CQIs in LTE.

Index Modulation Coding rate×1024
Target SINR (ψT

x ) [dB]

(BLER = 10%)

0 Out of range
1 QPSK 78 ψT

1 = −7.05

2 QPSK 120 ψT
2 = −5.20

3 QPSK 193 ψT
3 = −3.10

4 QPSK 308 ψT
4 = −1.15

5 QPSK 449 ψT
5 = 0.70

6 QPSK 602 ψT
6 = 2.70

7 16QAM 378 ψT
7 = 4.30

8 16QAM 490 ψT
8 = 6.30

9 16QAM 616 ψT
9 = 8.10

10 64QAM 466 ψT
10 = 9.20

11 64QAM 567 ψT
11 = 10.8

12 64QAM 666 ψT
12 = 12.7

13 64QAM 772 ψT
13 = 14.70

14 64QAM 873 ψT
14 = 16.80

15 64QAM 948 ψT
15 = 19.00

Table C.5: Subband size vs. system bandwidth.

System bandwidth (NDL
RB) Subband size (k)

6-7 Wideband CQI only
8-10 4
11-26 4
27-63 6
64-110 8
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Table C.6: Subband size and bandwidth parts vs. system bandwidth.

System bandwidth (NDL
RB) Subband size (k) Bandwidth parts (J)

6-7 Wideband CQI only 1
8-10 4 1
11-26 4 2
27-63 6 3
64-110 8 4

Table C.7: Subband size and number of preferred subbands vs. system bandwidth.

System bandwidth (NDL
RB) Subband size (k) Preferred subbands (M)

6-7 Wideband CQI only Wideband CQI only
8-10 2 1
11-26 2 3
27-63 3 5
64-110 4 6

Table C.8: Differential encoding for LTE-HLC aperiodic CSI reporting.

Subband CQI reports are encoded differentially with respect to
the wideband CQI using 2 bits as follows:

Subband differential CQI offset = Subband CQI − Wideband CQI (ΘWB)

Possible values are {≤ −1, 0, +1, ≥ +2}

Table C.9: Differential encoding for LTE-UESEL CSI aperiodic/periodic reporting.

Subband CQI reports are encoded differentially with respect to
the wideband CQI using 2 and 3 bits (aperiodic and periodic) as follows:

Differential CQI = CQI of the best M subbands − Wideband CQI (ΘWB)

Aperiodic reporting values are {≤ +1, +2, +3, ≥ +4}
Periodic reporting values are {≤ −4, −3, −2, −1, 0, +1, +2, ≥ +3}
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Appendix D

Simulation Platform

The complexity of cellular systems such as LTE and LTE-A often makes unfeasible
to investigate the impact of many RRM algorithms on high level system- and user-
oriented metrics by means of analytical methods. However, the study by means of
software tools allows accurate modeling of almost every single aspect of complex
technologies such as LTE. Therefore, simulation tools are highly valued by researchers
and engineers working on cellular systems.

In parallel to the research work corresponding to this Ph.D. thesis, the author
developed a complete and flexible LTE-based system level simulation environment
to facilitate the study and analysis of the schemes and innovations presented in the
document. This appendix provides a general description of the main features of this
research tool.

D.1 Architecture

The architecture of the network simulator is shown in Figure D.1. As it can be seen,
the simulation environment is composed of three main components:

1. Core processing software. It was completely developed in C++ [309] and it
implements all the network functionalities and additional features that have
been needed during the research. These elements include functional aspects
of LTE and LTE-A that were required for each study and complementary
modules to analyze or generate additional data that was also used in system
level simulations.

2. Graphical user interface (GUI). This visual interface has been developed in
Visual Basic R© [310] and it allows a visual and easy configuration of experiments
and studies as well as the processing and analysis of results.

3. Data repository. It is composed of a database and a set raw files with infor-
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Figure D.1: Architecture of the simulation environment.

mation related to network configurations, traffic profiles, channel and link
performance models, results and statistics, and data of cellular scenarios,
among others.

D.2 Description of the Main Features

In this section, a general description of the main features and capabilities of the
simulation environment is presented. The next points summarize the most important
features:

X Flexible configuration of system level simulations. The GUI allows for an
easy/visual inspection of the overall setting that is used in system level simu-
lations. As it is illustrated in in Figure D.2a, the GUI provides means to inspect
and modify LTE/LTE-A parameters such as the OFDMA setting, power and
bandwidth allocation, HARQ and CSI feedback, among others. By means of
controls provided by the GUI, static ICIC schemes or CSI feedback schemes
can be flexibly configured, thus facilitating the research activity. Similarly,
other parameters related to particular preferences of each study including
mobility models, scheduling policies, user allocation methods, duration of
experiments, number of trials (for standard Montecarlo experiments), and the
cellular scenario can also be configured.

It is important to remark that all the strategies and optimization algorithms
presented in this Ph.D. thesis have been implemented and evaluated by means
of this tool.

X Complementary modules. In addition to the control panel, the GUI also pro-
vides access to additional, though very useful, functionalities (see Figure D.2b)
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(a) Configuration of system level simulations.

(b) Complementary modules.

Figure D.2: Several views of the GUI.



246 D.2. Description of the Main Features

that have been included as in-built modules within the simulation environment.
They allow to study/create antenna’s propagation patterns, channel models,
realistic traffic traces, and large scale fading effects, among others.

X Radio Resource Management. The core processing module has been designed
in a flexible manner such that every single RRM entity can be modified and
configured independently. Thus, the cross-impact and interworking among
functionalites such as ICIC algorithms, CSI feedback, and scheduling can be
studied conveniently. Moreover, the widely use of C++ allows for a direct
integration of cutting-edge and reliable routines and external programming
resources, such as Numerical Recipes R© [311] that guarantees the minimum
processing cost.

X Compatibility and calibration. The data repository stores information of
several standardized cellular scenarios (test cases) such as MORANS (see Sub-
section B.1.2), but in general, any particular data can be loaded and integrated.
This is important to obtain reproducible and comparable results. Moreover,
the model used to define the scenarios allows for flexible implementation of
almost any possible cellular layout without contraints nor limitations of scale.
In this sense, the extension to hierarchical architectures (HetNets) can be done
without significant effort. Moreover, previously (external) calibrated data can
be also easily integrated and used. For instance, data for shadowing patterns
or look-up tables for link performance abstraction.

X Further enhancements. The open and modular architecture that has been
followed during the development of this simulation environment allows for
extensions to investigate the interworking of LTE and LTE-A with other
technologies such as WLANs.



Appendix E

A SON Scheme based on
Power Planning

Besides to the initial planning, dimensioning, installation, testing and preliminary
optimization, the operation and management of complex systems such as LTE and
LTE-A include performance monitoring, troubleshooting, post-launch optimiza-
tion and maintenance. These activities are both time-consuming and highly complex.
Very often, human intervention in these processes results in inaccuracies that lead to
QoS degradations. Therefore, the only way to deal with this challenge is by means of
more automated and autonomous systems such as SON. SON allows addressing this
problem in an effective and cost-efficient manner minimizing human intervention.

This appendix presents a multiobjective optimization scheme based on power
planning that is suitable to be used in SON. The proposed multiobjective scheme is
based on the framework introduced in Chapter 3 and it aims at reconfiguring the
average transmission power at each cell as a mean to adaptively tune the network
to traffic load unbalances. Several levels of adaptation are obtained by identifying
solutions capturing the best possible tradeoff between spectral efficiency, cell edge
performance and the minimization of the transmitted power.

E.1 Self-Organizing Networks: An Introduction

The focus of SON are autonomous network deployment, performance optimization
and dynamic adaptation to environmental changes such as variations in traffic
load. Thus, in SON, one or more configuration parameters are independent and
dynamically modified at each base station to reduce operational costs and improve
network performance [312].

The main functionalities of SON can be classified as:
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Figure E.1: SON architectures.

1. Self-configuration: it refers to the set of mechanisms or procedures by which a
new base station is automatically installed and configured.

2. Self-optimization: it includes means by which both mobile devices and base
stations dynamically tune the network based on measurements, performance
metrics or any other information that can be used to enhance the network
operation.

3. Self-healing : it encompasses functions that aim at automatic detection and
localization of failures. It also include recovering and fallback procedures.

According to the location of the optimization algorithms, SON can be divided
into three classes: Centralized SON, Distributed SON and Hybrid SON. Figure E.1
illustrates the different architectures for SON.

1. Centralized SON : in this kind of solutions, the optimization algorithms are
executed in a small number of locations in the network. The Operation and
Maintenance (OAM) subsystem is responsible for collecting and processing
such information.

2. Distributed SON : the optimization algorithms are executed in each base station
or in many locations in the network.

3. Hybrid SON : in this type of SON, some decisions are taken in a centralized
manner, while others are executed in each base station.

E.1.1 Representative Contributions

In the context of OFDMA systems such as LTE and LTE-A, significant efforts
are being devoted to SON. Remarkable contributions addressing aspects such as
adaptive interference coordination [313], load balancing [314], coverage/capacity
optimization [315], energy saving [316], and mobility and handover optimization [317]
have been presented.

In addition, it is worth mentioning that the research on SON is especially
active in the context of HetNets, where this feature plays a crucial role in the
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optimization of such hierarchical deployments. Relevant and interesting resource
allocation contributions include [318, 319].

E.2 Proposed SON Scheme

E.2.1 System Model

The system model is the one presented in Appendix C, Section C.1.

The novel framework aims at adjusting the transmit power for the data channels
at each cell. In the proposed scheme, full frequency reuse is assumed. Therefore, the
vector x ∈ RL indicates the power that must be applied in the PRBs of each cell as
it is indicated in Figure E.2. Note that each element of x (x(l), l = 1, 2, · · · , L) is
bounded to the interval [ pmin, pmax ]. This approach is convenient because different
configurations only require adjusting one single parameter: the power of the PDSCH,
and hence, the real-time cost is minimal. In addition, the highly critical configuration
of control channels does not need to be altered as it would be the case if the cell
coverage pattern were modified, for instance, if CS-RS power were modified.

In this study, the use of the objectives functions f1, f2, and f3, as they are
defined in Section 6.2 is proposed. Thus, the optimization scheme aims at the joint
optimization of the following criteria:

1. Maximization of average cell capacity (f1). This performance indicator provides
the system-oriented perspective.

2. Maximization of the capacity of the worst 5% of the network coverage area,
typically users at cell edge (f2). This metric introduces fairness.

3. Minimization of transmitted power (f3). This figure includes the energy efficient
point of view.

The evaluation of the objective functions is done in terms of the power allocation
vector (x). Once the cell coverage pattern (the matrices S and Sc) are computed
according to the procedure indicated in Section C.1, the resulting average SINR (ψu)
at each pixel can be obtained by using an expression similar to (3.27), therefore,

Ψu = [(S�G) · x ]�
[

[(Sc �G) · x]⊕ σ2
]
. (E.1)

Given Ψu ∈ RA, the spectral efficiency of each pixel is obtained by means of the
Shannon’s formula. Thus, the vector H ∈ RA is given by:

H = log2 (1 + Ψu) . (E.2)

Under the assumption of full frequency reuse and equal resource sharing among
pixels, the rate of each pixel (the vector r ∈ RA) can be obtained as follows:

r = B · ((S ·Φ)�H) . (E.3)
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Figure E.2: Codification of network configurations.

The vector Φ ∈ RL contains the inverse of the number of pixels associated to each
cell, and hence, Φ = 1�

(
ST · 1

)
. The objective functions are calculated according

to the following expressions:

f1 = (r · 1) /L, (E.4)

f2 = Sum( Sort(r), 0.05 ·A ), (E.5)

f3 = (x · 1) / (L · pmax) . (E.6)

The functions Sort() and Sum() are introduced in Section 6.3. The function
Sort() sorts a vector in ascending order, while the function Sum() determines the
sum of the first k elements of the vector that is passed as argument. Note that in
(E.5), k = 0.05 ·A, and hence, f2 represents the aggregate capacity of the worst 5%
of the coverage area.

E.2.2 Multiobjective Problem Design

The proposed multiobjective problem formulation can be written as follows:

minimize
x

f(x) = [ −f1(x), −f2(x), f3(x) ], (E.7a)

subject to:

x(l) ∈ [ pmin, pmax ], l = 1, 2, · · · , L, (E.7b)

where pmin and pmax are the bounds of the design variables. Recall that the selection
of pmin is scenario dependent and it should be done considering the minimum
power level expected to be received at each pixel. In this study, (E.7) is solved
by means of the algorithm NSGA-II (see Section 5.4) for the reasons that were
explained in Subsections 5.3.1 and Section 6.4. In summary, the ability of this
type of multiobjective-metaheuristic procedures to explore objective spaces whose
mathematical structure does not allow the use of exact/deterministic procedures.
Moreover, as it was shown in Chapters 6, 7, and 8, NSGA-II has excellent convergence
properties in problems similar to (E.7).
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Figure E.3: Proposed operation: continuous monitoring of the network.

E.2.3 Conceptual Design

Figure E.3 illustrates the implementation of the proposed SON framework, whose
most important features are described in the following points:

• From users point of view, neither additional functionality is required nor control
information is needed to be transmitted over the air interface.

• The operation time scale is in the order of tens of minutes or hours depending
on network dynamism.

• Each base station would transmit basic information about its current traffic
load and QoS to several SON processors that control clusters of cells. Thus,
implementation is semidistributed. The previous data can be transmitted by
means of indexes indicating discrete traffic load levels and current QoS. For
this, few bits suffices, lets say 3 bits (8 states) to indicate the status in terms
of load and QoS. The information can be transmitted through the interface
X2 being the intercell overhead negligible given the operation time scale.

• Each SON processor determines, based on the information coming from base
stations, whether another configuration is required to better tune the network
(or the cluster) according to current status. Recall that the network configura-
tions (solutions in the set X.) are computed and evaluated offline and stored
in databases (look-up tables).

• Finally although the implementation of the proposed scheme would be a
vendor-specific feature (added value), it is worth saying that some aspects of
power setting changes are indicated with the specifications of LTE or LTE-A
[162, 217], and hence, not new functionality need to be indicated to do that.



252 E.3. Performance Evaluation

Table E.1: Evaluation setting and NSGA-II configuration

Network settings and parameters

Available power per cell 43.00 dBm
System bandwidth (B) 5.40 MHz

Number of cells (L) 60
Number of pixels (A) 288750

CS-RS power (pCS-RS(l), l = 1, 2, · · · , L) 18.4 dBm
Bandwidth sharing (β) in ePDCCH optimization 2/3

NSGA-II configuration

Population size 150
Max number of generation 1000

Termination criterion: relative gain in each fi < 0.01%/40 generations
Crossover probability 1.0
Mutation probability 1/L

Type of design variables Discrete-valued (Res: 2%)
[ pmin, pmax ] [9.16, 17.4] [dBm/15 KHz]

E.3 Performance Evaluation

In this section, performance evaluation results are presented. Given that convergence
and calibration aspects have been addressed in Chapters 6, 7, and 8, only the most
basic results are shown.

E.3.1 Multiobjective Optimization

The set of parameters used in numerical evaluations together with the configuration
of the algorithm NSGA-II is shown in Table E.1. Calibration was done according to
the guidelines explained in Subsection 6.6.1.

The performance of the proposed framework is analyzed/compared with the case
where each cell transmits (selfishly) at maximum power over its available bandwidth.
Thus, the reference scheme (xFR) is defined as follows:

xFR =
[
p (1)

max, p (2)
max, · · · , p (L)

max

]T
.

Figure E.4 shows several views of the estimated Pareto Front. In the figures,
the reference scheme (xFR) is also indicated in dark blue. Focusing on the 2D
profiles (Figures E.4b E.4c, and E.4d), it can be clearly observed how the proposed
optimization framework always succeeds in finding network configurations dominating
the reference scheme from the perspective of each pair of objective functions. Recall
that the intersection of the set of solutions dominating each baseline design in each



Appendix E. A SON Scheme based on Power Planning 253

(a) 3D view. (b) 2D view: f1 vs. f2

(c) 2D view: f1 vs. f3 (d) 2D view: f3 vs. f2

Figure E.4: Representations of the estimated Pareto Front.

2D profile correspond to the set of solutions that dominates xFR in the Pareto sense.
In the example shown, the cardinality of such set is 97 which means that 64% of
the population become into solutions dominating xFR. However, the size of such set
can be increased by changing the number of individuals in the population at the
expense of more objective function evaluations per generation.

In the light of the previous results, it can be concluded that the proposed
multiobjective scheme is also effective to improve not only the performance of SFR
and FFR, but also classic schemes such as full reuse. The extension to other cases
including reuse factor 3 is straightforward.

Finally, Figure E.5 indicates both system and cell level performance of two Pareto
efficient solutions (x1 and x2) and the reference scheme (xFR). Recall that from the
system point of view, x1 and x2 are Pareto efficient, and hence, switching from one
to another always implies a tradeoff. For instance, the configuration x1 increases
4.6% the average cell capacity with respect to x2, which in turn improves the cell



254 E.3. Performance Evaluation

Figure E.5: Performance at cell level of two nondominated solutions.

edge performance and energy consumption 13% and 4%, respectively.

Regarding the suitability of the proposed scheme for SON, it can be seen that
both x1 and x2 results in quite different performances at cell level which is precisely
the desired feature to compensate load unbalances from cell to cell. By recognizing
average traffic profiles in the network the operator can look for the appropriate
solution in databases and apply the selected network configuration with minimal
intercell signaling and computational cost.



Appendix F

Impact of PDCCH Capacity
Limitations on the QoS

One of the main issues associated to dynamic scheduling is the high amount of
signaling overhead required to provide users with resource allocation information.
While the impact of control channel limitations on LTE VoIP capacity has been
widely studied [165, 258], the tradeoffs associated to the use of control resources and
the provision of QoS for NRT services has been omitted in current literature.

Only few works, such as [307, 320], addressing such issue have been presented. The
study presented here also deals with the same framework, nevertheless it differs from
them in that a pure QoS-oriented scheduler [215] (fed by a CQI-based channel quality
reporting scheme) explicitly designed for multi-service environments is considered.
Thus the impact of PDCCH resources consumption on performance is evaluated for
different levels of QoS (measured in terms of offered bit rates).

F.1 Interworking Description

In this work, the downlink of an LTE-based cellular network that largely follows
the LTE specifications [159] was considered. As in Chapter 4, the scheduling imple-
mentation corresponds to the Capacity-driven Resource Allocation (CRA) scheduler
proposed in [215]. The CRA scheduler dynamically controls the resource sharing
among flows in order to satisfy the maximum number of users according to the
QoS criterion of each service. The system performance depends on the following
inputs: operational configuration of the scheduler, users channel status given by CSI
reports, and HARQ acknowledgments. This interworking is shown in Figure F.1.
Two different parameters of the CRA scheduler are considered:

1. Target bit rate (rT): the target throughput the scheduler tries to deliver to
each user in the system.
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Figure F.1: System interworking.

2. Scheduling set size (NG): the maximum number of downlink grants the sched-
uler is allowed to make at each TTI per cell.

The allocation of control resources is done as explained in Subsection 7.2.1, i.e.,
the number of control resources allocated to each user depends on the average
radio channel quality (wideband SINR) (see also Table C.2). The allocation of data
resources depends on the CRA scheduler. Thus, the output (and hence the overall
system performance) includes the actual resource allocation which comprises how
both PDCCH and PDSCH resources are going to be shared among users.

Recall that, as it was indicated in ‘The user plane and the control plane’ in
Subsection 2.7.1, The DCI carries downlink (and uplink) scheduling assignments,
power control commands, and additional information required to decode and de-
modulate data symbols in the downlink (encode and modulate data symbols in
the uplink). In addition to the DCI, also the Control Format Indicator (CFI) and
HARQ indicator (HI) are transmitted over the first OFDMA symbols of every frame,
although through different physical channels: the Physical Control Format Indicator
Channel (PCFICH) and Physical HARQ Indicator Channel (PHICH), respectively.
Since resource consumption of both CFI and HI is variable [161, 162], a practical
rule of thumb is to assume that the amount of resources devoted to the DCI is
approximately equal to k = 4/5 of the total PDCCH capacity [258]. In this study,
only downlink is considered, so it is assumed that only 50% of the resources devoted
to the PDCCH are available. The rest of resources are reserved to uplink grants.
The minimum resource unit allocated to one single user for control signaling is a
CCE. Thus, an upper bound for the number of avaiable CCEs (NMax

CCE) is given by:

NMax
CCE =

1

2
· k · n ·NSC

4 ·NREG
, (F.1)

where the parameter n indicates how many OFDM symbols are dedicated to the
PDCCH (n ∈ {1, 2, 3, 4}]). The parameters NREG and NSC correspond to the
number of REGs per CCE and the number of subcarriers in the system bandwidth,
respectively. It can be noted that NSC depends on the number of resource blocks
(NDL

RB), indeed NSC = 12 ·NDL
RB .
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Table F.1: Simulation Parameters and Evaluation Setting.

Parameter Value/assumption

Test cases (scenarios) ‘Synthetic’ (see Section B.1).
System bandwidth (B) 5.4 MHz, (NDL

RB = 30).
System load 20× L users (20 users per cell (on average)).
PDCCH OFDM symbols (n) 3.
Scheduler CRA scheduler [215].
Traffic model Full Buffers.
CSI feedback CQI-based, one CQI per RB.
Mobility model Urban vehicular [173]
Link Abstraction Mutual Information Equivalent SINR Mapping [174].
Transmission mode Single-antenna port.

F.2 Impact of PDCCH Capacity Constraints

F.2.1 Evaluation Setting

This study was conducted by means of LTE-based system level simulations. The
general setting is the one described in Subsection 3.4.2. The results were collected
from Monte Carlo experiments with uniform randomly spread users. They com-
pile statistics from 500 independent experiments each of which has a duration of
60 s (6× 104 TTIs). Simulation parameters common to all scenarios are indicated
in Table B.2. Additional parameters and assumptions considered for this study are
shown in Table F.1.

F.2.2 Numerical Results

In order to determine the impact of PDCCH resources consumption on the QoS
experienced by users, different independent experiments were performed. As men-
tioned, the study has two degrees of freedom: the maximum number of users that
can be scheduled per TTI/cell (NG) and the offered bit rate (rT).

Scheduler Operation and CCE Consumption

The general operation of the CRA scheduler is illustrated by means of the CDFs
of the user rates r for different values of rT and NG = 4. Figure F.2 shows the
basic principle of the CRA scheduler, where only the minimum amount of resources
required to achieve the target bit rate is allocated to users. It can be seen that the
lower the value of rT, the higher the percentage of users achieving such rate. Given
this, the effect of NG is studied next.

In order to illustrate the pace at which PDCCH resources are used, the CDF
of the number of CCEs per TTI/cell (NCCE) as a function of NG (assuming that
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Figure F.2: CRA scheduler operation: CDF of user rates.

Figure F.3: CCE Consumption: rT = 100 kbps.

resources for PDCCHs are never fully consumed) is shown in Figure F.3. The dashed
black line indicates the value of NMax

CCE for the setting under consideration, see (F.1).
This is important because in practice, schedulers are forced to verify the availability
of PDCCH resources before schedule each user. It can be seen that if a blocking
probability of around 5-10% due to PDCCH capacity were allowed, then the choice
of NG = 3-4 would be required. However, as it will be shown shortly, this limitation
plays an important role in the provisioning of QoS for NRT services.

User Satisfaction Ratio

Figure F.4 shows the user satisfaction probability. Note that NG ∈ {2, 3, ..., 11}
and RT ∈ {100, 200, ..., 600}. Any point in the surface can be understood as the
probability of a user to obtain a throughput at least equal to rT. For low values of rT

the system capacity is clearly limited by the amount of available PDCCH resources,
and hence, the overall satisfaction level is directly proportional to the number of
users the scheduler can attend. It is assumed that resources for PDCCHs are never
fully consumed in order to determine when this constrain is a limiting factor (bearing
in mind the value of NMax

CCE previously computed). This behaviour goes in the line
with results reported for VoIP in [165], specifically for the case of dynamic scheduling.
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Figure F.4: User satisfaction probability.

In this case VoIP is a service demanding very low bit rates and the the capacity
is effectively limited by the number of control resources. As rT grows, the
optimum value of NG becomes smaller. This is due to the fact that the CRA scheduler
operates in such a way as to maximize the number of satisfied flows. Therefore, for
high values of rT, overall satisfaction becomes inversely proportinal to NG, i.e., an
opposite behaviour compared to cases where rT is small. It is important to recall
that the system capacity is, according to [215], a function of the load and traffic mix.
Consequently, the result shown in Figure F.4 clearly suggests that in order to let
the system operate efficiently from the radio resource allocation perspective, it is
important to characterize the system taking into account the traffic features (offered
QoS and expected load), scheduling policy, and availability of resources available
for PDCCH. Thus, given the constraint seen in the previous subsection (NG = 3-4),
the impact of the PDCCH capacity would not be harmful if high values of rT were
pursued, while for low values of rT the system capacity would be penalized.
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[C1] D. González G, S. Ruiz, M. Garćıa-Lozano, J. Olmos, and A. Serra, “System
Level Evaluation of LTE Networks with Semidistributed Intercell Interference
Coordination,” in Proc. of IEEE 20th International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC 2009), Tokyo (Japan),
Sep. 13–16, 2009.
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[C12] D. González G, M. Garćıa-Lozano, and S. Ruiz, “Power Allocation for
the PDCCH in LTE: A Way to Increase its Capacity in Realistic Deploy-
ments,” in Proc. of Wireless Personal Multimedia Communications Sympo-
sium (WPMC 2013), Atlantic City (United States), Jun. 24–27, 2013.
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[CA2] D. González G, M. Garćıa-Lozano, S. Ruiz, and J. Olmos, “Performance
Evaluation of Static Intercell Interference Coordination in Realistic Cellu-
lar Layouts,” COST 2100, Aalborg (Denmark), Rep. available as TD(10)11053,
Jun. 2–4, 2010.
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