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Abstract

We investigate Yang-Mills theory in 2+1 dimensions in the Schr•odinger representation. Three

dimensional Yang-Mills theory is relevant on the one hand, because it is the lowest dimen-

sional Yang-Mills theory with propagating degrees of freedom, and on the other hand, be-

cause it provides the high temperature limit of four dimensional QCD. The Schr•odinger

picture is interesting because it is well suited to explore properties of the vacuum state in

the non-perturbative regime. Yet, not much analytical work has been done on this sub-

ject, and even the topic of perturbation theory in the Schr•odinger representation is not well

developed, especially in the case of gauge theories. In a paper by Hat�eld [Phys. Lett. B

147, 435 (1984)] the vacuum wave functional for SU(2) theory was computed to O(e). In

the non-perturbative regime, the most sophisticated analytical approach has been developed

by Karabali et al. in a series of papers (see [Nucl. Phys. B 824, 387 (2010)] and references

therein). This thesis aims to put perturbation theory in the Schr•odinger representation on

more solid ground by computing the vacuum wave functional for a general gauge group

SU(Nc) up to O(e2), utilizing modi�cations of these two methods. This is important since

it provides us with a tool for testing non-perturbative approaches, which should reproduce

the perturbative result in an appropriate limit.

Furthermore, regularization and renormalization are also not well understood in the

Schr•odinger picture. The regularization method proposed by Karabali et al. leads to con-


icting results when applied to the computation of the vacuum wave functional with the

two di�erent methods mentioned above. We aim to clarify how regularization should be

implemented and develop a new regularization approach, which brings these two expressions

into agreement, providing a strong check of the regularization employed. We argue that this

regularization procedure is not speci�c to the cases studied here. It should be applied in the

same way to any quantum �eld theory in any dimension in the Schr•odinger picture. This is

the main result of the thesis.

We then go on to illustrate how physical observables can be computed in the non-

perturbative regime, using the trial wave functional proposed in [Nucl. Phys. B 824, 387

(2010)]. Among other observables, we compute the static potential at long distances, for

which we �nd corrections not compatible with a linear potential.

Finally, we also discuss the possibility of extending this approach to 3+1 dimensions.
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Notation and Conventions

Throughout this thesis we use the acronyms QCD and QED for Quantum chromodynamics

and Quantum electrodynamics, respectively. We also use LO and NLO for leading order

and next-to-leading order, respectively, and VEV for vacuum expectation value. We use the

abbreviations Ref., Chap., Sec., App. and Eq. for reference, chapter, section, appendix and

equation, respectively, as well as the plural forms Refs., Chaps., Secs., Apps. and Eqs. The

expressions \Wilson line" and \string" are used synonymously.

Furthermore we employ the following conventions:

� We use units such that ~ = c = 1.

� The metric tensor in 2+1 dimensions is ��� = diag(�1;+1;+1).

� Greek indices �; �; �; : : : label the components of vectors and tensors in 2+1 space-

time dimensions and take the values 0; 1; 2, while Latin indices i; j; k; : : : label their

spatial components only, taking the values 1; 2. Spatial vectors are indicated by arrows,

e.g. ~x = (x1; x2).

� Color indices in the adjoint representation are a; b; c; : : : and take the values 1; : : : ; N2
c�1.

� If not noted otherwise, the Einstein summation convention over repeated indices (space-

time as well as color) is employed.

� The SU(Nc) generators are T a, with (T a)bc = �ifabc in the adjoint representation, and

[T a; T b] = ifabcT c. The quadratic Casimir operators are CA = Nc in the adjoint and

CF = N2
c�1

2Nc
in the fundamental representation.

� Color carrying �elds are A� = �iT aAa�, B = �iT aBa, J = JaT a (sic) and � = �i�aT a.

� Integration in position space is written as
R
x
�
R
ddx, and in momentum space asR

=k
�
R

ddk
(2�)d

. Delta functions in momentum space are written as =�(~k) � (2�)d�(d)(~k).

Typically d = 2, except for a small portion of Chap. 6, where d = 3.

� The convention for the Fourier transformation for all �elds is

π(~x) =

Z
=k

ei
~k�~xπ(~k) ;

�

�π(~x)
=

Z
=k

e�i
~k�~x �

�π(~k)
:
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Chapter 1

Introduction

Yang-Mills theories, gauge theories based on an SU(Nc) gauge group, are crucial to our

understanding of the physics of the fundamental forces that govern our world. They form

the basis of our description of the strong force (based on SU(3)), as well as of the uni�ed

electroweak interaction (based on SU(2) � U(1)). Quantum chromodynamics (QCD) de-

scribes hadrons through elementary fermions (quarks and antiquarks) that carry an SU(3)

charge, called color, interacting via the interchange of gauge bosons, called gluons. In con-

trast to photons (the gauge �elds of Quantum electrodynamics (QED), which is based on

the abelian group U(1)), the gauge bosons of a non-abelian theory also carry the charge of

the interaction, which implies that they are self-interacting.

In the case of the electroweak force the Higgs mechanism splits the gauge sector into

three massive self-interacting bosons and the massless photon. The latter does not interact

with itself, while the masses of the former tame the infrared behavior of the non-abelian

gauge theory. This makes it possible to compute observables in general, and the vacuum

state in particular, using weak coupling techniques. No such mechanism exists for the strong

interaction, however, where the gluons remain self-interacting and massless, and the strength

of the coupling increases towards lower energies, which is why the QCD vacuum is non-trivial,

and yet to be understood quantitatively.

This has several important consequences. One is color con�nement, the fact that only

states that transform as a singlet under color transformations appear in experiments. In

particular, no free quarks, which are color triplets, or free gluons, which are color octets, are
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Introduction

observed. Qualitatively this can be explained by the fact that the potential energy between

static color sources, unlike the gravitational or electromagnetic potential, increases linearly

with distance, due to the self-interaction of the gluons. In reality, quark-antiquark pairs

are created as the separation increases, which then hadronize, meaning that they form color

neutral (\white") bound states. A quantitative description of this phenomenon, however, is

still lacking, making it one of the longest standing and most important problems in particle

physics.

Another consequence of self-interacting gauge bosons is the prediction of purely gluonic

bound states, which as of now remains to be experimentally con�rmed. As color con�nement

only allows color neutral states, there can be no free single gluon states, only singlets made

up of two or more gluons. In contrast to QED, where single photon states with a continuous

energy spectrum are possible, these bound states of gluons, called glueballs, have to have a

�nite mass, but the precise mechanism for the generation of this mass remains unknown.

In the quest for a better understanding of QCD, an approach which considers the case of

a large number of colors Nc has been studied (presented in Ref. [1]). In the limit Nc !1,

gluons and quarks decouple; thus a good grasp of pure gluodynamics is crucial for a suc-

cessful application of this method. For all of these reasons, it is important (yet di�cult) to

thoroughly investigate Yang-Mills theories, which describe the dynamics of the gauge bosons.

As up to now it has been impossible to solve them in the physical case of 3+1 dimensions,

one has to devise sensible simpli�cations.

A common one is to consider the theory at weak coupling and to calculate observables

in perturbation theory. This approach has led to several major successes in the description

of electroweak and high-energy QCD events, but it does not provide an understanding of

low-energy QCD phenomena, in particular con�nement. Since the strong coupling constant

is not small at low energies, perturbation theory breaks down in this limit, because all

orders in the perturbation series are important, and higher orders cannot be neglected.

Nevertheless, most of the time we will consider the weak coupling limit in this thesis. It is

important because perturbation theory provides us with a controllable tool for testing non-

perturbative approaches, which should reproduce the perturbative result in an appropriate

limit. Furthermore it allows us to address conceptual questions about the computational

method that we use, which are independent of the magnitude of the coupling constant.

2



Another, independent way to achieve simpli�cation is to reduce the number of space-

time dimensions considered, and to try to draw information from these simpler cases on

how to approach the physical case of 3+1 dimensions. Yang-Mills theory in 1+1 dimen-

sions is exactly solvable (see Ref. [2]), but, since it has no dynamical degrees of freedom,

it is of limited informational value. In 2+1 dimensions the theory is more interesting, as it

does contain propagating degrees of freedom, while still being easier to handle, in partic-

ular because it is super-renormalizable. An introduction to this topic is given in Ref. [3].

Furthermore, 2+1 dimensional Yang-Mills theory is amenable to a non-perturbative analysis

devised by Karabali, Nair and collaborators in Refs. [4, 5, 6, 7, 8, 9] that makes extensive

use of two-dimensional conformal �eld theory (which is very di�erent from conformal �eld

theory in any other dimension), thus making it an ideal testing ground for this approach.

While we hope to gain information about the 3+1 dimensional case by studying the lower

dimensional theory, Yang-Mills theory in 2+1 dimensions also has an important physical ap-

plication: High temperature QCD in 3+1 dimensions, which is needed for the description of

processes in the early universe and which can be tested with heavy ion collision experiments

that are performed at the RHIC and the LHC, can be approximated by Yang-Mills theory

in 3 euclidean dimensions ([10, 11]). Relevant observables in this regime, like the magnetic

screening mass, can thus be computed by way of analytic continuation from 2+1 dimensional

Yang-Mills theory. Most of the time in this thesis, we will work on Yang-Mills theory in 2+1

dimensions, but in Chap. 6 we will also give a brief glimpse of a possible extension to 3+1

dimensions of the methods applied here.

There are three equivalent representations of quantum �eld theory (QFT): operator, path

integral, and Schr•odinger representation. While the �rst two are well known, the Schr•odinger

representation, which makes use of wave functionals and functional di�erential equations, is

less so. Nevertheless, all three approaches are equivalent, and they can bene�t from each

other. For example, the quantum e�ective action can be obtained from the vacuum wave

functional (see [12]). In practice, speci�c problems are often solved most conveniently in

one particular framework. In this thesis we will focus on the Schr•odinger representation,

which is very well suited to obtain information about the Yang-Mills vacuum, in particular

because it allows for a straightforward way to go beyond perturbation theory, hence allowing

for computations outside of the weak coupling regime. Yet, not much analytical work has

3
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been done on this subject, and even the topic of perturbation theory in the Schr•odinger

representation is not well developed, especially in the case of gauge theories. In a paper by

Hat�eld (Ref. [13]) the vacuum wave functional for SU(2) theory was computed to O(e). In

the non-perturbative regime, the most sophisticated analytical approach is the one developed

in Refs. [4, 5, 6, 7, 8, 9]. This thesis aims to put perturbation theory in the Schr•odinger

representation on more solid ground, utilizing modi�cations of these two methods.

Furthermore, regularization and renormalization are also not well understood in the

Schr•odinger picture. Here it proves advantageous to work in 2+1 dimensions: Since 2+1

dimensional Yang-Mills theory is super-renormalizable we do not need to worry about renor-

malization of the parameters of the theory. Regularization, however, must be addressed,

and doing this is one of the main parts of this thesis. In this work, we aim to clarify how

regularization in the Schr•odinger representation should be implemented.

Because the Schr•odinger representation is less well known we give a short introduction

to this topic in Chap. 2 in order to make this thesis self-contained. As all representations of

QFT are equivalent, the determination of the ground-state (or vacuum) wave functional of

Yang-Mills theory, 	[ ~A], is tantamount to solving it, because any observable (for instance

the static potential or the spectrum of the theory) can then be obtained by the computation

of the expectation value of the corresponding operator, as we will see in Chap. 2. Even if the

exact solution is not known, properly chosen trial functions may give valuable information

on the vacuum via variational methods (see for instance [14]).

We are still far from obtaining the exact ground-state wave functionals of non-abelian

Yang-Mills theories. Even obtaining approximate expressions is very complicated. This is

also true in the weak coupling limit. One reason is due to the requirement that the wave

functional, in addition to satisfying the Schr•odinger equation, has to be gauge invariant.

This constraint is imposed by the Gauss law. Therefore, one cannot use standard quantum-

mechanical perturbation theory in a straightforward manner. A procedure to overcome this

problem was devised in the case of SU(2), for 3+1 dimensions, and was applied to O(e) in

the weak coupling expansion, in Ref. [13]. This method (which we shall call method (A))

can also be applied to the 2+1 dimensional case and a general group SU(Nc) without major

modi�cations, and it can be used to compute the terms at higher orders. We do so in Chap. 3

4



and obtain the O(e2) expression for a general group SU(Nc) in three dimensions.

A di�erent approach (method (B)) which reformulates the Schr•odinger equation in terms

of gauge invariant variables was worked out in Refs. [4, 5, 6, 7, 8, 9] in order to understand

the strong coupling limit and con�nement in three dimensions. It can, however, be easily

reformulated to be used in a weak coupling expansion. This is done in Chap. 3 in order to

obtain the vacuum wave functional at O(e2).

Both approaches have their bene�ts and drawbacks, so considering both is in some sense

complementary. The wave functionals found in the two ways should, however, be identical.

Due to the complexity of the expressions, comparing the two results is not an easy task,

and we have to develop a systematic scheme to accomplish this. We do this in Chap. 3 and

�nd that up to O(e) they are identical, while at O(e2) they agree to a large extent but not

completely. The discrepancy is due to regularization issues, which we address in Chap. 4.

The regularization of the Schr•odinger equation and the vacuum wave functional in QFT

is a complicated subject. Whereas some formal aspects have been studied quite a while

ago in Refs. [15, 16], there have not been many quantitative studies of the regularization

of the Yang-Mills vacuum wave functional. In three dimensions, the most detailed analyses

have been carried out using method (B) (see, for instance, the discussions in Refs. [7, 17], in

particular in the appendix of the last reference). While it might seem that in method (B)

regularization has already been completely taken into account, we �nd in Chap. 4 that the

regularization procedure has to be modi�ed to obtain the correct Yang-Mills vacuum wave

functional.

The result of Chap. 3 using method (A) was obtained without any regularization of the

functional Schr•odinger equation at all. In Chap. 4 we carefully regularize the computation,

�nding that also for this method a new contribution has to be added to the result. We then

compare these new, modi�ed results of both methods and �nd that they agree to O(e2).

This is a strong check of our computations and of the regularization method used.

Since this regularization method is independent of the speci�c theory, in Chap. 4 we actu-

ally give the general prescription for the implementation of regularization in the Schr•odinger

representation for a general QFT. In brief, we �nd that the regulator of the Hamiltonian in

the Schr•odinger representation has to be included throughout the determination of the vac-

uum wave functional, since removing it too early may lead to the loss of contributing terms.
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Introduction

The insight gained here can be generalized to other QFTs and also to the four dimensional

case.

In addition, the vacuum wave functional obtained in this way allows us to give an estimate

for the magnetic screening mass.

In Chap. 5 we move away from the perturbative regime. The true power of the Schr•odinger

representation lies in its ability to easily incorporate resummation schemes and

non-perturbative terms, so it does not necessarily depend on a weak coupling expansion.

In Ref. [8] a strong coupling expansion for the vacuum wave functional was developed, which

relies on the fact that the potential term V of the Yang-Mills Hamiltonian, viewed as a

functional, is an eigenfunction of the kinetic operator T . This is apparent in terms of the

variables used in method (B), but it seems to be wrong in terms of the original gauge �elds

(method (A)) { as long as only unregularized operators are considered. Once both the ki-

netic and potential operators are regularized, we �nd in a perturbative expansion that also

in terms of gluon �elds, V is an eigenfunction of T . Nevertheless, we �nd that the corre-

sponding eigenvalue depends on the regulator. This suggests that there may be a problem

with using this strong coupling expansion to obtain the vacuum wave functional.

Another expansion scheme was developed in Ref. [9], leading to a new proposal for the

vacuum wave functional, which is claimed to interpolate between the weak coupling and

the strong coupling regime, and to be a good approximation for all scales. It is given as

an expansion in e2=m (where m is a mass scale that appears in the computation), which

corresponds to a resummation of a perturbative series. This expansion parameter is of O(1),

so its use can only be justi�ed a posteriori. The vacuum wave functional derived from this

more general approach can be used to compute observables in all coupling regimes. In Chap. 5

we give estimates of the gluon condensate and of the correlator of the chromomagnetic �eld.

In Ref. [9] this wave functional has been applied with great success to the computation of the

static potential between a quark and an antiquark, predicting a linearly increasing potential

at long distances from �rst principles. While this is an impressive result, there are some

issues with it (in particular in light of the results of Chap. 4, which demand a modi�cation

of the weak coupling limit of this vacuum wave functional), which we investigate in Chap. 5.

In order to have more control over the computation we reformulate the wave functional of

Ref. [9] in terms of the gauge �elds. Computing the static potential with this trial functional,
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however, we �nd terms at next-to-leading order in e2=m which are cubic in the separation.

This suggests either that e2=m is not a good expansion parameter for the computation of the

static potential, or that the vacuum wave functional proposed in Ref. [9] should be modi�ed

along the lines of the �ndings of Chap. 4.

In Chap. 6 we investigate the possibility of extending the gauge invariant approach to

four dimensions. In Ref. [18], in analogy with method (B), a third formulation of the Hamil-

tonian approach was devised, which we shall call method (C). Like method (B), it employs

a reformulation in terms of gauge invariant variables, albeit di�erent ones. In particular,

these new variables are real, thus avoiding the problem of laborious checks for reality of the

wave functional like the one we employ in Chap. 3. The main advantage of this method is,

however, that it may also be applied to 3+1 dimensional Yang-Mills theory. In Chap. 6 we

will �rst introduce it in 2+1 dimensions and then extend it to the 3+1 dimensional case.

We propose a Hamiltonian which di�ers from the one of Ref. [18], where a di�erent regu-

larization scheme was employed and some terms were dropped because they were argued to

be subleading. Nevertheless, taking the results of Chap. 4 into account, it seems erroneous

to neglect these terms. Here, we hence give an example of how the 2+1 dimensional theory

can inform the theory in 3+1 dimensions, and why it is worthwhile to study it. The under-

standing of how QFTs in the Schr•odinger representation should be regularized that we gain

in this thesis is independent of both the speci�c QFT and the dimensionality and can thus

be generalized.

As most calculations in this subject are very lengthy, this thesis is equipped with an

extensive set of appendices, in order to keep the chapters as clear as possible.
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Chapter 2

The Schrödinger Representation of

Quantum Field Theory

In order to make this thesis self-contained (and to establish our conventions and notation) we

will give an introduction to the Schr•odinger representation of QFT in this chapter, following

mainly the presentation in [19]. Another helpful introduction to the topic can be found in

[20]. The Schr•odinger picture is well known from, and widely used in, ordinary quantum

mechanics: The time-dependence of observables is encoded in the states, while the operators

are time-independent. Canonical quantization is implemented by demanding commutation

relations for conjugated operators. In the coordinate representation, position operators are

represented by their eigenvalues, momentum operators by di�erential operators, and states

by wave functions. The Schr•odinger equation thus becomes a di�erential equation whose

solutions represent the spectrum of the theory. This same picture can be applied to �eld

theory: By using �eld operators instead of position operators, whose eigenvalues are functions

instead of numbers, the states are represented by wave functionals and the Schr•odinger

equation becomes a functional di�erential equation. In the �rst section we will explain the

formalism with the help of the simplest example of a QFT: the case of a real scalar �eld

without interaction. In Sec. 2.2 we will deal with the complications that arise when working

with gauge theories. We start with the abelian (non-interacting) example, U(1) gauge theory,

which has physical relevance in describing the photon �eld. Non-abelian (interacting) gauge

theories will then be the topic of the remainder of the thesis. Since this thesis is mostly

9



The Schrödinger Representation of Quantum Field Theory

concerned with 2+1 dimensional �eld theory, all of our examples will be in this framework,

but the derivations in this chapter hold for general space-time dimensions D = d+ 1.

2.1 Free scalar field theory

Using the metric

��� = diag(�1;+1;+1) ; (2.1)

the Lagrangian density of a free scalar �eld in 2+1 dimensions is given by

L = �1

2
(@�π@

�π+m2π2) ; (2.2)

and the conjugated momentum of the �eld is

�(x) =
@L

@(@0π(x))
= @0π(x) : (2.3)

In order to quantize the �eld we promote the �eld to operator status and impose the equal

time commutator

[π̂(t0; ~x); �̂(t0; ~y)] = i�(2)(~x� ~y) ; (2.4)

while all other commutators vanish.

In the Schr•odinger picture we now choose the states to be time-dependent and the oper-

ators to be time-independent. In the coordinate representation a basis of the Fock space is

chosen such that the (now time-independent) �eld operator π̂(~x) is diagonal. Analogously,

one can have a momentum representation, which we ignore here for reasons that will become

apparent later (see footnote 1 of Chap. 3).

Let jπi be an eigenstate of π̂(~x) with eigenvalue π(~x):

π̂(~x)jπi = π(~x)jπi ; (2.5)

then the coordinate representation of the (now time-dependent) states j	i is given by the

wave functional

	[π(~x); t] = hπj	i ; (2.6)
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a functional of the ordinary function π(~x), and we have the completeness relation

1 =

Z
Dπ jπihπj :=

Z Y
~x

dπ~xjπ~xihπ~xj : (2.7)

The commutator, Eq. (2.4), is realized by1

�̂(~x) = �i �

�π(~x)
; (2.8)

and so the Hamilton operator2

Ĥ =
1

2

Z
x

(�̂(~x)2 + j~rπ̂(~x)j2 +m2π̂2(~x)) (2.9)

turns into a functional di�erential operator

H =
1

2

Z
x

)
� �2

�π2(~x)
+ j~rπ(~x)j2 +m2π2(~x)

(
; (2.10)

and the Schr•odinger equation i @
@t
j	i = Ĥj	i turns into a functional di�erential equation.

Since H is time-independent, the time-dependence of the wave functionals can be separated

out

	[π; t] = e�iEt	[π]; (2.11)

leading to the time-independent functional Schr•odinger equation:

1

2

Z
x

)
� �2

�π2(~x)
+ j~rπ(~x)j2 +m2π2(~x)

(
	[π] = E	[π] : (2.12)

Note that for the ground state the energy can be normalized to zero by moving it to the

left-hand side of the equation and absorbing it in the π2 term as a counterterm.

Once the functional Schr•odinger equation is solved, the vacuum expectation value (VEV)

of a general operator Ô can be computed by functionally integrating over all possible �eld

1in terms of the coordinate basis: hφ̃jΠ̂(~x)jφi = �i δ
δφ̃(~x)

Q
~y δ[φ̃(~y)� φ(~y)].

2Here and in the following, we use the notation (d = 2):
R
x
�
R
ddx,

R
/k
�
R

ddk
(2π)d

, /δ(~k) � (2π)dδ(d)(~k),

and so on.
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The Schrödinger Representation of Quantum Field Theory

con�gurations, weighted by the ground-state functional:

hÔi =
h	0jÔj	0i
h	0j	0i

=

R
DπD ~π h	0jπihπjÔj~πih~πj	0iR

Dπ h	0jπihπj	0i
=

R
Dπ	�0[π]O	0[π]R
Dπ	�0[π]	0[π]

: (2.13)

Since in the Schr•odinger representation the dynamics are in the states, in the case of

interacting theories, S-Matrix elements can be obtained by projecting the interacting initial

and �nal states onto each other:

S�� = h	�j	�i =

Z
Dπ	��[π]	�[π] : (2.14)

Let us now solve the Schr•odinger equation for the ground state, i.e. Eq. (2.12) with

vanishing right-hand side. Since we are talking of the ground state, we expect the wave

functional to be real and to have zero nodes. Therefore, it can be written as the exponential

of a well behaved functional F [π], meaning that it does not diverge for �nite π:

	[π] = e�F [�] : (2.15)

Inserting this in Eq. (2.12) yields

Z
x

 
�2F [π]

�π2(~x)
�
)
�F [π]

�π(~x)

(2
!

=

Z
x

π(~x)
�
�~r2 +m2

�
π(~x) : (2.16)

It is easiest to solve functional di�erential equations in momentum space, so we take the

Fourier transforms

π(~x) =

Z
=k

ei
~k�~xπ(~k) ;

�

�π(~x)
=

Z
=k

e�i
~k�~x �

�π(~k)
: (2.17)

We will use this same convention for all �elds and functional derivatives throughout this

thesis.

If we take F to be quadratic in π, the square of the �rst derivative is so, too, and it can

then be matched to the right-hand side of Eq. (2.16). The second derivative is then a pure

number that can be absorbed in the ground-state energy, or, equivalently, in a counterterm.
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Making the Ansatz

F [π] =

Z
=k

π(~k)π(�~k)~g(~k) (2.18)

and plugging it into the Fourier transformation of Eq. (2.16), leads to the algebraic equation

4~g2(~k) = ~k2 +m2 ; (2.19)

and thus to

	[π] = exp

∣
�1

2

Z
=k

π(~k)

q
~k2 +m2π(�~k)

)
: (2.20)

We use the positive square root because it leads to a normalizable wave functional. From

here it is possible to move on to the wave functionals of excited states, but we will not

consider them in this thesis (see Sec. 10.1 of [19] for details on this topic), instead we will

now look at the vacuum wave functional of another, more physical theory.

2.2 Abelian gauge theory

Pure (non-interacting) photon �eld theory, i.e. QED without fermions is described by a U(1)

gauge theory. Its Lagrangian density is

L = �1

4
F ��F�� =

1

2
( ~E2 �B2) ; (2.21)

where eF�� = [D�; D� ], D� = @� + eA�. The magnetic �eld

B =
1

2
�jkFjk =

1

2
�jk(@jAk � @kAj) =: ~r� ~A (2.22)

(where ~A � ~B � �ijAiBj and ~ri � @i = @=@xi) is a scalar �eld in 2+1 dimensions (recall

that due to our convention for the metric there is no sign di�erence between upper and lower

spatial indices). F�� and hence the Lagrangian are invariant under gauge transformations of

the photon:

A�(x)! Ag�(x) = A�(x) +
1

e
@�g(x) : (2.23)

It is a well known problem of canonical quantization that while the conjugate momenta
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of the gauge �elds Ai are

�i =
@L

@(@0Ai)
= @0Ai � @iA0 = �Ei ; (2.24)

the conjugate momentum of A0 vanishes identically:

�0 =
@L

@(@0A0)
� 0 ; (2.25)

which impedes the direct employment of the canonical commutation relations, Eq. (2.4).

This is solved by choosing a particular gauge in which to quantize the electro-magnetic �eld.

One possibility is to use Coulomb gauge, which requires a modi�cation of the commutators

and thus leads to directional functional derivatives, which are di�cult to handle. In addition

this gauge breaks explicit Lorentz invariance. Another option is to work in Lorentz gauge, in

which both Lorentz invariance and the canonical commutation relations can be maintained.

This choice, however, has the disadvantage that the action has to be modi�ed, leading to

a more complicated Hamiltonian. Furthermore one needs to carry along unphysical (scalar

and longitudinal) photons and the quantization requires a constraint. Here we opt for a

compromise and choose the temporal gauge

A0 = 0 : (2.26)

This has the advantage that we can keep a simple Hamiltonian and the canonical commuta-

tion relations, but, as it is only a partial gauge condition, we have to deal with longitudinal

photons and a constraint to keep the residual gauge freedom under control. Also in this case

we lose explicit Lorentz invariance.

In temporal gauge we work with the spatial components only, ~A = (A1; A2). We have

the equal time commutatorsh
Êi(t0; ~x); Âj(t0; ~y)

i
= i�ij�

(2)(~x� ~y) ; (2.27)

and the Hamiltonian

Ĥ = T̂ + V̂ =
1

2

Z
x

�
Ê2
i (~x) + B̂2(~x)

�
; (2.28)
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where we introduced the kinetic operator T̂ and the potential V̂ . In the coordinate represen-

tation we once again choose a basis of the Fock space in which Âi(~x) is diagonal. We then

represent Âi(~x) by its eigenfunction Ai(~x), and

Êi(~x) = i
�

�Ai(~x)
(2.29)

is a di�erential representation of the commutators Eq. (2.27). The Hamiltonian again be-

comes a functional di�erential operator and the Schr•odinger equation in momentum space3

reads

1

2

Z
=k

 
� �

� ~A(~k)
� �

� ~A(�~k)
+ (~k � ~A(~k))(~k � ~A(�~k))

!
	[ ~A] = E	[ ~A] : (2.30)

The temporal gauge is only a partial gauge, since gauge transformations with @0g(x) = 0

leave A0 = 0 una�ected, leaving us with a residual gauge freedom of the form of Eq. (2.23)

with time-independent g(~x). Therefore, additionally to the Schr•odinger equation we now

have to solve the so-called Gauss law constraint, which means that the generator of the

residual gauge transformations (called the Gauss law operator I) has to vanish on physical

states:

I j	i = ~r � ~E j	i = 0() ~r � �
� ~A

	[ ~A] = 0 : (2.31)

This is equivalent to the request to only consider gauge invariant wave functionals.

When solving the Schr•odinger equation, Eq. (2.30), for the vacuum wave functional, the

same arguments for a Gaussian functional as in the previous section apply, so we make the

Ansatz

	[ ~A] = exp
h
�G[ ~A]

i
= exp

∣
�
Z
=k

Ai(~k)Aj(�~k)gij(~k)

)
: (2.32)

The tensor structure of gij(~k) can be �xed by the Gauss law, Eq. (2.31), which for a free

�eld theory in momentum space reads

~k � �G[ ~A]

� ~Aa(~k)
= 0 : (2.33)

3The conventions for the Fourier transformation are the same as in Eq. (2.17)
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It implies that gij(~k) can only depend on the transverse component of the momentum.

Therefore

gij(~k) = g(~k)Pij(k̂) ; (2.34)

where Pij = �ij � kikj=~k2 is the projector to the transverse component. We can now solve

Eq. (2.30) and determine g(~k). As the equation is quadratic there are again two solutions,

of which we take the one that leads to a normalizable wave functional, which is

	[ ~A] = exp

∣
�1

2

Z
=k

1

Ek
(~k � ~A(~k))(~k � ~A(�~k))

)
; (2.35)

where Ek � j~kj. One can see that, even in the free-�eld case, the implementation of the

Gauss law is not trivial.

One way from here towards interacting theories would be to include fermions. These

can be introduced in terms of Grassmann-valued �elds. We will, however, follow a di�erent

route, and study interacting (non-abelian) gauge theories. In contrast to the cases of non-

interacting �eld theories considered in this chapter, we are still far from obtaining the exact

vacuum wave functionals of (non-trivial) interacting theories. Hence, we have to devise

sensible approximation schemes. We investigate two approaches in the following chapter. In

Sec. 3.2 we will extend the approach considered in this section to non-abelian gauge theories.

We are then forced to rely on perturbation theory and solve the Schr•odinger equation order

by order. Also, the implementation of the Gauss law becomes tedious at higher orders.

Reformulating the Hamiltonian in terms of gauge invariant �eld variables is an elegant

way to bypass the need for the Gauss law constraint. We will study such an approach in

Sec. 3.3.
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Chapter 3

Analysis of the Yang-Mills Vacuum

Wave Functional at O
�
e2
�

The content of this chapter was published in Ref. [21].

3.1 Introduction

We compute the ground-state (or vacuum) wave functional of Yang-Mills theory in 2+1

dimensions in a weak coupling expansion up to O(e2). We use two di�erent methods: (A)

One extends to O(e2) and to a general gauge group the computation performed in Ref. [13]

to O(e) for SU(2) (An alternative procedure has also been considered in Ref. [22] and worked

out to O(e)); (B) The other method is based on the weak coupling limit of the reformulation

of the Schr•odinger equation in terms of gauge invariant variables [4, 5, 6, 7, 8], and on the

approximated expression obtained in Ref. [9] for the wave functional.

Method (A), outlined by Hat�eld [13] was developed for four dimensions and SU(2), but

it can also be applied to the three dimensional case and a general group SU(Nc) without

major modi�cations. The O(e) result agrees with the expression obtained by transforming

the four dimensional result of Ref. [13] to the expected three dimensional counterpart. The

solutions obtained with this method satisfy the Schr•odinger equation by construction but

not necessarily the Gauss law, though it can be explicitly shown that it does at O(e). We

then compute the O(e2) wave functional in what is a completely new result. Again, this
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Analysis of the Yang-Mills Vacuum Wave Functional at O (e2)

result satis�es the Schr•odinger equation by construction, but at this order it is not possible

to explicitly check the Gauss law, due to the complexity of the resulting expressions. The

resulting wave functional is explicitly real (as expected for the ground-state functional) and

we name it 	GL[ ~A], where GL stands for the explicit use of the Gauss law.

The fact that gauge invariance can not be guaranteed in general is one important draw-

back of the previous method. The reason is that the Gauss law is only implemented partially

for some terms in some intermediate expressions. Moreover, even this partial implementation

of the Gauss law is di�cult to automatize, as at each order it has to be tailored somewhat.

A possible solution to the previous problem is the reformulation of the Schr•odinger equa-

tion in terms of gauge invariant variables. One such formulation was originally worked out

in Refs. [4, 5, 6, 7, 8] (for some introductory notes see [23]) and, more recently, in Ref. [9],

where a modi�ed approximation scheme was devised. The authors use a change of �eld

variables, which become complex, to simplify the problem. Even though the original moti-

vation of those works was to understand the strong coupling limit (the opposite limit we are

considering in this chapter), it is not di�cult to see that the approximation scheme worked

out in Ref. [9] could be easily reformulated to provide with a systematic expansion of the

weak coupling limit. We use this reformulation to compute the ground-state wave functional

to O(e2). The vacuum wave functional is a function of the gauge invariant variables Ja,

which we then transform to the original gauge variables ~Aa. The resulting expression is

gauge invariant by construction and also satis�es the Schr•odinger equation by construction.

We name it 	GI [ ~A] � 	GI [J( ~A)], where GI stands for the use of the gauge invariant degree

of freedom. However, the explicit expression has the very unpleasant feature of having a

non-trivial imaginary term.

We have then obtained two di�erent expressions for the vacuum wave functional: 	GL[ ~A]

and 	GI [ ~A], which actually look completely di�erent. At O(e) it is possible to show, after

several manipulations and using the symmetries of the integrals, that they are equal (hence,

both of them are real and gauge invariant at this order). Such brute force approach happens

to be unfeasible at O(e2) due to the complexity of the expressions. We need an organizing

principle for the comparison. The approach we follow is to rewrite 	GL[ ~A] in terms of the

gauge invariant variable J and a gauge dependent �eld �. All � dependent terms should

vanish if 	GL[ ~A] is going to satisfy the Gauss law, and we explicitly show that this happens.
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This means that both 	GL[ ~A] and 	GI [ ~A] are gauge invariant. We would then say that

they should be equal, since both satisfy the Schr•odinger equation. We actually �nd (after a

rather lengthy computation) that they are almost but not completely equal. The di�erence

is proportional to a bilinear real term. This is puzzling but there is a reason behind it:

	GL[ ~A] and 	GI [ ~A] satisfy \di�erent" Schr•odinger equations. 	GL[ ~A] was obtained using

the unregularized Schr•odinger equation, whereas 	GI [ ~A] was obtained after the Schr•odinger

equation in terms of Ja variables was regularized. In this last case, regularization produces

an extra term in the Schr•odinger equation, producing in turn an extra term in the wave

functional. We will follow up on this issue in Chap. 4.

Irrespectively of the above, this comparison allows to rewrite 	GI [ ~A] in an explicitly real

form. This is by far non-trivial, as the initial 	GI [J ] was explicitly complex and dependent

on complex variables. In particular there is a delicate cancellation between terms such that,

after transforming this expression back to real variables, the wave function becomes real

(actually in our comparison we work the other way around and transform 	GL[ ~A], which is

real, in terms of the complex variables). This is an important test of several parts of the

computation done in Ref. [9].

We believe that the weak coupling reformulation of the approach followed in Ref. [9]

can be helpful to understand the meaning of the partial resummations performed in the

approximation scheme used in this reference, though we do not explore this issue here. Our

O(e) or O(e2) wave functional can also be used to test di�erent trial functionals in the

literature that claim to have the proper weak and strong coupling limit. Typically, they

reproduce the leading order weak coupling expansion but not the O(e) corrections. This is

certainly the case with covariantization approaches where the exponent of the wave functional

is approximated by a bilinear term in the B �elds (see for instance [24, 25]). Therefore, our

results can hint to how those trial functions could be improved to correctly incorporate

corrections in the weak coupling limit.

The organization of this chapter is as follows: In Sec. 3.2 we apply method (A) and

obtain 	GL[ ~A] up to O(e2). Method (B) is applied in Sec. 3.3 where we compute 	GI [ ~A]

up to O(e2). We develop a comparison principle in Sec. 3.4 and use it to compare the two

wave functionals obtained in the two previous sections. In Sec. 3.5 we summarize the results

of this chapter. In order to keep the presentation clear we relegate lengthy calculations to

19
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Apps. A and B.

3.2 Determination of ΨGL[ ~A]

In Yang-Mills theory the gauge �elds are matrix-valued (in particular they are SU(Nc) ma-

trices) and the Lagrangian is a generalization of the U(1) Lagrangian, Eq. (2.21). It reads

L = �1

4
G��;aGa

�� ; (3.1)

where

Ga
�� = @�A

a
� � @�Aa� + efabcAb�A

c
� ; (3.2)

eG�� = [D�; D� ], D� = @� + eA�, A� = �iT aAa�, G�� = �iT aG��
a , T a are the SU(Nc)

generators (with (T a)bc = �ifabc in the adjoint representation), and [T a; T b] = ifabcT c. The

quadratic Casimir operators are CA = Nc in the adjoint and CF = N2
c�1

2Nc
in the fundamental

representation.

As in Chap. 2 we will work in the Hamiltonian formalism and partially �x the gauge

to A0 = 0. Under (residual) gauge transformations with a time-independent matrix-valued

function g(~x) the �elds transform as

Ai ! Agi = gAig
�1 +

1

e
g@ig

�1 : (3.3)

The chromomagnetic �eld is

Ba =
1

2
�jk(@jAk � @kAj + e[Aj; Ak])

a = ~r� ~Aa +
e

2
fabc ~Ab � ~Ac ; (3.4)

with B = �iT aBa (recall that ~A � ~B � �ijAiBj is a scalar, and that we use the metric

��� = diag(�1;+1;+1)).

In Ref. [13] the wave functional was computed to O(e) at weak coupling. It is possible to

generalize the method used in this reference. We do so here and compute the ground-state

wave functional to O(e2). The ground-state wave functional has to satisfy the Schr•odinger

20



equation1:

H	GL[ ~A] =
1

2

Z
x

 
� �

� ~Aa(~x)
� �

� ~Aa(~x)
+Ba(~x)Ba(~x)

!
	GL[ ~A] = E	GL[ ~A] ; (3.5)

which is the generalization of Eq. (2.30), and the Gauss law constraint, which in the non-

abelian case reads

Ia	GL[ ~A] = ( ~D � ~E)a	GL[ ~A] = i

)
~r � �

� ~Aa
+ efabc ~Ab �

�

� ~Ac

(
	GL[ ~A] = 0 : (3.6)

Again, because we are talking of the ground state, we expect the wave functional to be

real and to have zero nodes (see [3] for a thorough discussion). Therefore, it can be written

as the exponential of a functional F [ ~A] that does not diverge for �nite ~A:

	GL[ ~A] = e�FGL[ ~A] = e�F
(0)
GL[ ~A]�eF (1)

GL[ ~A]�e2F (2)
GL[ ~A]+O(e3) ; (3.7)

and satis�es the Gauss law)
~r � �

� ~Aa
+ efabc ~Ab �

�

� ~Ac

(
FGL[ ~A] = 0 : (3.8)

In order to compute F , we will do a perturbative expansion in the coupling constant e,

assuming that it is smaller than any other scale that appears.

3.2.1 Order e0

At lowest order the Schr•odinger equation is

Z
=k

�F
(0)
GL[ ~A]

� ~Aa(~k)
� �F

(0)
GL[ ~A]

� ~Aa(�~k)
=

Z
=k

(~k � ~Aa(~k))(~k � ~Aa(�~k)) ; (3.9)

1 At this point it becomes clear why we work in the coordinate representation instead of the momentum
(Eai ) representation, even though Eai are gauge invariant fields: The potential contains terms of O(A4), we
would thus have to solve a fourth order functional differential equation.
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Analysis of the Yang-Mills Vacuum Wave Functional at O (e2)

which has to be solved together with the lowest order Gauss law:

~k � �F
(0)
GL[ ~A]

� ~Aa(~k)
= 0 : (3.10)

F
(0)
GL can be obtained in several ways. It is equivalent to solving the Schr•odinger equation

of the free theory with the free Gauss law, in other words, N2
c � 1 replicas of photon �eld

theory, Eq. (2.35):

F
(0)
GL[ ~A] =

1

2

Z
=k

1

j~kj
(~k � ~Aa(~k))(~k � ~Aa(�~k)) ; (3.11)

3.2.2 Order e

At O(e) the Schr•odinger equation splits into two equations (organized by powers of ~A):

Z
=k

�F
(0)
GL[ ~A]

� ~Aa(�~k)
� �F

(1)
GL[ ~A]

� ~Aa(~k)
=
i

2
fabc

Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!
(~k1 � ~Aa(~k1))( ~Ab(~k2)� ~Ac(~k3)) ; (3.12)

Z
=k

�2F
(1)
GL[ ~A]

� ~Aa(�~k)� ~Aa(~k)
= 0 ; (3.13)

and the Gauss law constraint reads2

~k � �F
(1)
GL[ ~A]

� ~Aa(~k)
= �ifabc

Z
=p1; =p2

~Ab(~p1) � �F
(0)
GL[ ~A]

� ~Ac(~p2)
=�(~p1 � ~p2 + ~k)

= �ifabc
Z
=p

1

j~pj(~p�
~Ab(�~k � ~p))

�
~p� ~Ac(~p)

�
: (3.14)

Using Eq.(3.11) the left-hand side of Eq. (3.12) can be rewritten as follows:

Z
=p

1

j~pj(~p�
~Aa(~p))

 
~p� �F

(1)
GL[ ~A]

� ~Aa(~p)

!

=

Z
=p

1

j~pj

(
~p2

 
~Aa(~p) � �F

(1)
GL[ ~A]

� ~Aa(~p)

!
�
�
~p � ~Aa(~p)

� 
~p � �F

(1)
GL[ ~A]

� ~Aa(~p)

!)
; (3.15)

2Note that in d = 2: ~Ac(�~k � ~p) �
�
~p�

�
~p� ~Ab(~p)

��
= �

�
~p� ~Ab(~p)

�
(~p� ~Ac(�~k � ~p)).

Other useful relations are (~k � ~A)(~k � ~B)� (~k � ~A)(~k � ~B) = ~k2( ~A� ~B) and εijεkl = δikδjl � δilδjk.
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where the second term of the right-hand side is known because of the Gauss law.

We are now in the position to obtain F
(1)
GL. We pro�t from the fact that the kernel can be

taken to be completely symmetric3 under the interchange of any two �elds Ai;ai;xi , Aj;aj ;xj .

Therefore, the density of
R
=p
j~pj
)
~Aa(~p) � �F

(1)
GL[ ~A]

� ~Aa(~p)

(
can be related with the density of F

(1)
GL[ ~A].

More speci�cally, if for a functional F
h
~Aa1(~k1); : : : ; ~Aan(~kn)

i
of n �elds we have

Z
=p

j~pj
 
~Aa(~p) � �F [ ~A]

� ~Aa(~p)

!
=

Z
=k1;:::; =kn

D
h
~Aa1(~k1); : : : ; ~Aan(~kn)

i
; (3.16)

then

F [ ~A] =

Z
=k1;:::; =kn

1

j~k1j+ : : :+ j~knj
D
h
~Aa1(~k1); : : : ; ~Aan(~kn)

i
: (3.17)

With this we �nally obtain

F
(1)
GL[ ~A] = ifabc

Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!(
1

2(
P3

i j~kij)
(~k1 � ~Aa(~k1))( ~Ab(~k2)� ~Ac(~k3))

� 1

(
P3

i j~kij)j~k1jj~k3j
(~k1 � ~Aa(~k1))(~k3 � ~Ab(~k2))(~k3 � ~Ac(~k3))

)
; (3.18)

which is the three dimensional version of Hat�eld's result (except for a di�erent sign con-

vention for e).

3.2.3 Order e2

At O(e2) the Schr•odinger equation leads to the following equality

1

2

Z
x

 
�2F

(2)
GL

(�Aai )
2
� �F

(1)
GL

�Aai

�F
(1)
GL

�Aai
� 2

�F
(0)
GL

�Aai

�F
(2)
GL

�Aai
+

1

4
fabcfade( ~Ab � ~Ac)( ~Ad � ~Ae)

!
= 0 : (3.19)

At this order F
(2)
GL can have contributions with four, two and zero �elds (there are no contri-

butions with three or one �eld): F
(2)
GL = F

(2;4)
GL + F

(2;2)
GL + F

(2;0)
GL . There is no need to compute

F
(2;0)
GL , as it just changes the normalization of the state, which we do not �x, or alternatively

3Any term antisymmetric in any of the two indices will vanish when multiplied by the gauge fields. This
means that the kernel is not completely determined, as such terms can always be added.
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Analysis of the Yang-Mills Vacuum Wave Functional at O (e2)

can be absorbed in a rede�nition of the ground-state energy. Then, Eq. (3.19) can be split

into two terms with two and four �elds respectively:

1

2

Z
x

 
��F

(1)
GL

�Aai

�F
(1)
GL

�Aai
� 2

�F
(0)
GL

�Aai

�F
(2;4)
GL

�Aai
+

1

4
fabcfade( ~Ab � ~Ac)( ~Ad � ~Ae)

!
= 0 ; (3.20)

and
1

2

Z
x

 
�2F

(2;4)
GL

(�Aai )
2
� 2

�F
(0)
GL

�Aai

�F
(2;2)
GL

�Aai

!
= 0 : (3.21)

F
(0)
GL and F

(1)
GL have already been determined (see Eqs. (3.11) and (3.18)) and can be inserted

into Eqs. (3.20) and (3.21), but we still have to implement the Gauss law, which at this order

reads

~k � �F
(2;4)
GL

� ~Aa(~k)
= �ifabc

Z
=p1; =p2

~Ab(~p1) � �F
(1)
GL

�Aai (~p2)
=�(~p1 � ~p2 + ~k) ; (3.22)

~k � �F
(2;2)
GL

� ~Aa(~k)
= 0 : (3.23)

One �rst solves Eq. (3.20) and determines F
(2;4)
GL . Afterwards F

(2;2)
GL is �xed by Eq. (3.21).

The procedure to obtain F
(2;4)
GL is similar to the one used for F

(1)
GL. The dependence on F

(2;4)
GL

is encoded in the 2nd term of Eq. (3.20), which we rewrite in the following way

Z
=p

1

j~pj(~p�
~Aa(~p))

 
~p� �F

(2;4)
GL [ ~A]

� ~Aa(~p)

!

=

Z
=p

1

j~pj

(
~p2

 
~Aa(~p) � �F

(2;4)
GL [ ~A]

� ~Aa(~p)

!
�
�
~p � ~Aa(~p)

� 
~p � �F

(2;4)
GL [ ~A]

� ~Aa(~p)

!)
: (3.24)

Once again the second term on the right-hand side is given by the Gauss law, which allows

us to isolate F
(2;4)
GL . As above we use the fact that the kernel can be taken to be com-

pletely symmetric under the interchange of �elds Ai;ai;xi , which lets us relate the density ofR
=p
j~pj
)
~Aa(~p) � �F

(2,4)
GL [ ~A]

� ~Aa(~p)

(
with the density of F

(2;4)
GL [ ~A] and we �nally obtain

F
(2;4)
GL = �1

2

Z
=p; =k1; =k2; =q1; =q2

1P2
i (j~kij+ j~qij)

 
�F

(1)
GL

�Aai (~p)

!
[~k1; ~k2]

 
�F

(1)
GL

�Aai (�~p)

!
[~q1; ~q2]
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�if b1b2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)P
i(j~kij+ j~qij)j~q1j

(~q1 � ~Ab1(~q1))

 
~Ab2(~q2) � �F

(1)
GL

� ~Ac(~p)
[~k1; ~k2]

!

+
1

8
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�(
P

i(
~ki + ~qi))P

i(j~kij+ j~qij)
( ~Aa1(~k1)� ~Aa2(~k2))( ~Ab1(~q1)� ~Ab2(~q2)) ;(3.25)

which explicitly reads

F
(2;4)
GL = fabcf cde

Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
1

j~k1j+ j~k2j+ j~q1j+ j~q2j

(
1

2(j~k1j+ j~k2j+ j~k1 + ~k2j)(j~q1j+ j~q2j+ j~q1 + ~q2j)

(�
~Ad(~q1)� ~Ae(~q2)

�
�
∣
� 1

4
j~k1 + ~k2j2 ~Aa(~k1)� ~Ab(~k2)

+
j~k1 + ~k2j
j~k2j

(~k1 + ~k2)� ~Aa(~k1)(~k2 � ~Ab(~k2)) +
(~k1 + ~k2) � ~k2

j~k1jj~k2j
(~k1 � ~Aa(~k1))(~k2 � ~Ab(~k2))

+(~k1 � ~Aa(~k1))(~k1 + ~k2) � ~Ab(~k2)

)
+(~k1 � ~Aa(~k1))(~q1 � ~Ad(~q1))

�
~Ab(~k2) � ~Ae(~q2)

�
+

1

j~k1jj~k2j

"
2~k2 � ~Ae(~q2)� ~q1 � ~k2

j~q1jj~k2j
~q2 � ~Ae(~q2)

#
(~k1 � ~Aa(~k1))(~k2 � ~Ab(~k2))(~q1 � ~Ad(~q1))

+
1

j~k1j
(~k1 � ~Aa(~k1))(~k1 + ~k2)� ~Ab(~k2)

∣
1

j~q2j
(~q1 + ~q2)� ~Ad(~q1)(~q2 � ~Ae(~q2))

+
2

j~q1 + ~q2j
(~q1 � ~Ad(~q1))(~q1 + ~q2) � ~Ae(~q2)

)
� 2(~q1 + ~q2) � ~q1

j~k1 + ~k2jj~k1jj~q1jj~q2j
(~k1 � ~Aa(~k1))(~k1 + ~k2)� ~Ab(~k2)(~q1 � ~Ad(~q1))(~q2 � ~Ae(~q2))

+
2~k1 � ~k2

j~k1jj~k2jj~q1 + ~q2jj~q2j
(~k1 � ~Aa(~k1))(~k2 � ~Ab(~k2))(~q2 � ~Ad(~q1))(~q2 � ~Ae(~q2))

+
2

j~q1 + ~q2jj~q2j
(~k1 � ~Aa(~k1))(~k1 + ~k2)� ~Ab(~k2)(~q2 � ~Ad(~q1))(~q2 � ~Ae(~q2))

� 1

j~k2jj~q2j
(~k2 � ~Aa(~k1))(~k2 � ~Ab(~k2))(~q2 � ~Ad(~q1))(~q2 � ~Ae(~q2))

)
+

1

8

�
~Aa(~k1)� ~Ab(~k2)

��
~Ad(~q1)� ~Ae(~q2)

�
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+
1

j~k1j(j~q1j+ j~q2j+ j~q1 + ~q2j)
(~k1 � ~Aa(~k1))

(
1

2
(~k1 + ~k2)� ~Ab(~k2)

�
~Ad(~q1)� ~Ae(~q2)

�
�(~q1 � ~Ad(~q1))

�
~Ab(~k2)� ~Ae(~q2)

�
� 1

j~q1 + ~q2jj~q2j
(~k1 + ~k2)� ~Ab(~k2)(~q1 + ~q2)� ~Ad(~q1)(~q2 � ~Ae(~q2))

+
1

j~q1jj~q2j
(~q2 � ~Ab(~k2))(~q1 � ~Ad(~q1))(~q2 � ~Ae(~q2))

� 1

j~q1 + ~q2jj~q2j
(~k1 + ~k2) � ~Ab(~k2)(~q2 � ~Ad(~q1))(~q2 � ~Ae(~q2))

))
: (3.26)

Proceeding analogously for F
(2;2)
GL we obtain

F
(2;2)
GL =

1

2

Z
=p; =k1; =k2

1P2
i j~kij

=�(~p+ ~k1 + ~k2)

 
�2F

(2;4)
GL

�Aai (~p)�A
a
i (�~p)

!
[~k1; ~k2] : (3.27)

A direct computation of this object turns out to be extremely cumbersome. We will need

to wait until Sec. 3.4, where we will be able to relate F
(2;2)
GL with a known term of F

(2;2)
GI . Its

explicit expression in terms of the ~A �elds can be found in Eq. (3.94).

We have thus obtained the wave functional toO(e2) by extending the method �rst devised

in Ref. [13] to the next order. The di�erent contributions to 	GL[ ~A] are summarized in

Eqs. (3.11), (3.18), (3.26) and (3.94). This result satis�es the Schr•odinger equation by

construction. It is also explicitly real. On the other hand, we can not claim (a priori) that

the Gauss law is satis�ed, as it has only been used in some intermediate computations.

At O(e) it is possible to directly check that the Gauss law is satis�ed. A direct check at

O(e2) turns out to be extremely di�cult to obtain, due to the complexity of the expressions

involved. In Sec. 3.4 we will devise a method to test the gauge invariance of the expression

obtained in this section. Finally we want to stress that the computation we have performed

in this section has been carried out without any regularization. The �nal result happens to

be �nite but formal manipulations have been performed on potentially divergent expressions.

We will come back to this issue in Sec. 3.4 and in more detail in Sec. 4.3, where we �nd that

the implementation of regularization does not change F
(0)
GL, F

(1)
GL and F

(2;4)
GL computed in this

section. F
(2;2)
GL , however, will have to be modi�ed.

26



3.3 Determination of ΨGI [ ~A]

In the previous section we have been able to compute the ground-state wave functional at

weak coupling at O(e2). However, it is di�cult to automatize the method. First, regular-

ization issues have been completely skipped in the previous computation and, second, the

Gauss law is implemented in a partial, and somewhat ad hoc, manner. This last problem

could be overcome by reformulating the Schr•odinger equation in terms of gauge invariant

variables. One such formulation was originally worked out in Refs. [4, 5, 6, 7, 8]4. Here we

mainly follow Ref. [9], where a modi�ed approximation scheme was devised. Even though

the original motivation of those works was to understand the strong coupling limit, it is not

di�cult to see that the approximation scheme worked out in Ref. [9] could be reformulated

to provide with a systematic expansion of the weak coupling limit. We do so here and com-

pute the ground-state wave functional to O(e2). In order to arrive at the gauge invariant

�elds, called J , a series of �eld variable transformations has to be used. First one de�nes

the holomorphic and anti-holomorphic gauge �elds

A :=
1

2
(A1 + iA2) ; �A :=

1

2
(A1 � iA2) ; (3.28)

which makes it convenient to also change the space and momentum components to complex

variables in the following way (note that k and z are de�ned with di�erent signs):

z = x1 � ix2; �z = x1 + ix2;

k =
1

2
(k1 + ik2); �k =

1

2
(k1 � ik2); ~k � ~x = �k�z + kz; (3.29)

@ =
1

2
(@1 + i@2) ; �@ =

1

2
(@1 � i@2) ; @ �@ =

1

4
~r2 :

A and �A are still gauge-dependent degrees of freedom, so we de�ne SL(N ,C) matrices M

and M y by

A = �1

e
(@M)M�1 and �A =

1

e
M y�1(�@M y) ; (3.30)

4While in those references the regularization of the Schrödinger equation was also addressed, we will find
in Chap. 4 that a different regularization method is needed to achieve agreement between ΨGL and ΨGI .
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Analysis of the Yang-Mills Vacuum Wave Functional at O (e2)

which transform as

M ! gM and M y !M ygy (3.31)

under gauge transformations, Eq. (3.3). This allows us to de�ne the gauge invariant �eld

H = M yM ; (3.32)

and the gauge invariant current5

J =
2

e
@HH�1 = JaT a : (3.34)

We will then use the following change of variables: (A1; A2)! (A; �A)! (J(A; �A); �A(A; �A)),

where the relation between the variables is the following:

�Aa = �Aa (3.35)

Ja = 2i
�
M y�acAc +

2

e

�
(@M y)M y�1

�a
= �1

�@
~r� ~Aa +O(e) :

Inverting Eqs. (3.30) yields (for a more compact expression see Eq. (5) of [6])

M(~x) = 1� e 4

~r2
(�@A) + e2 4

~r2
�@A

4

~r2
�@A+O(e3) (3.36)

= 1� e
Z
y

G(�x; �y)A(~y) + e2

Z
y;z

G(�x; �z)A(~z)G(�z; �y)A(~y) +O(e3) ; (3.37)

M y(~x) = 1 + e
4

~r2
(@ �A) + e2 4

~r2
@

)
4

~r2
@ �A

(
�A+O(e3) (3.38)

= 1 + e

Z
y

�G(x; y) �A(~y) + e2

Z
y;z

�G(x; z) �G(z; y) �A(~y) �A(~z) +O(e3) ; (3.39)

with the Green's functions:

�G(x; y) � �G(x� y) =
1
�@x
�(2)(~x� ~y) = �i

Z
d2k

(2�)2
ei
~k�(~x�~y) 1

�k
=

1

�

(�x� �y)

(x� y)(�x� �y) + �2
;

5The anti-holomorphic current J̄ = 2
eH

−1∂̄H is related to J via a reality condition

∂J̄ = H−1(∂̄J)H , (3.33)

which implies that there is only one gauge invariant degree of freedom in 2+1 dimensions.
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(3.40)

G(�x; �y) � G(�x� �y) =
1

@x
�(2)(~x� ~y) = �i

Z
d2k

(2�)2
ei
~k�(~x�~y) 1

k
=

1

�

(x� y)

(x� y)(�x� �y) + �2
:

(3.41)

Also, a useful relation reads

1
�@

))
1
�@

�Aa
(

�Ab
(

= �1
�@

)
�Aa

1
�@

�Ab
(

+

)
1
�@

�Aa
()

1
�@

�Ab
(
; (3.42)

which can easily be checked in momentum space. We also need (TF = 1=2)

�
M y�ac =

1

TF
Tr[T aM yT cM y�1] : (3.43)

and the analogue for Mac (note that M�1
ac = Mca). With this de�nition one can easily check

the following identity

M y
cgf

gbhM y�1
hd = �f cdfM y�1

bf : (3.44)

More useful relations are:

D = @ + eA = M@M�1 ; �D = �@ + e �A = M y�1 �@M y ; (3.45))
1
�D

(de
yx

= �G(y � x)
�
M y�1(~y)M y(~x)

�
de
; (3.46)

�M y
cd(~y)

� �Ab(~x)
= e

)
1
�D

(de
yx

(�febh)M y�1
hc (~x) = e

)
1
�D

(eb
yx

fedhM
y�1
hc (~y) : (3.47)

�J c(~y)

�Ab(~x)
= 2iM y

cb(~y)�(~y � ~x) ; (3.48)

�J c(~y)

� �Ab(~x)
= 2

"
i
�M y

cd(~y)

� �Ab(~x)
Ad(~y) +

1

e

�

� �Ab(~x)

�
(@M y(~y))M y�1(~y)

�
c

#
: (3.49)

With Eqs. (3.32), (3.34), (3.46) and (3.47) we �nd

M y
dh(~z)Dhe

z

�
�D�1
�ea
zx

= M y
dh(~z)

�
M(~z)@zM

�1(~z)
�he �

M y�1(~z) �G(z � x)M y(~x)
�ea

(3.50)
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=
�
H(~z)@zH

�1(~z) �G(z � x)M y(~x)
�da

(3.51)

=
�
@z �G(z � x)

�
M y

da(~x)� e

2
�G(z � x)

�
J(~z)M y(~x)

�da
(3.52)

=
�
@z �G(z � x)

�
M y

da(~x) +
ie

2
�G(z � x)f edfJe(~z)M y

fa(~x) ; (3.53)

or, more compact and for further reference:

�Jd(~z)

� �Aa(~x)
= �2i

�
Dz �G(z � x)M y(~x)

�da
; (3.54)

Dmn = @z�
mn +

ie

2
fmncJ c(~z) : (3.55)

The Gauss law operator can be written in a compact form in terms of �A and J :

Ia(~x) = ( ~D � ~E)a(~x) = i

Z
y

)
Dab
x

�J c(~y)

�Ab(~x)
+ �Dab

x

�J c(~y)

� �Ab(~x)

(
�

�J c(~y)
+ i �Dab

x

�

� �Ab(~x)
: (3.56)

Not surprisingly the dependence on J drops out, since it is possible to prove, using Eqs. (3.48)

and (3.54) that

Dab
x

�J c(~y)

�Abi(~x)
+ �Dab

x

�J c(~y)

� �Abi(~x)
= 0 : (3.57)

Therefore we obtain

Ia(~x) = i �Dab
x

�

� �Ab(~x)
(3.58)

for the Gauss law operator.

In Refs. [8, 9] the Hamiltonian was written as a pure function of J up to terms propor-

tional to the Gauss law, which vanish when applied to physical (gauge-invariant) states. If

we drop those terms the Hamiltonian reads6

H =
2

�

Z
w;z

1

(z � w)2

�

�Ja(~w)

�

�Ja(~z)
+

1

2

Z
z

: �@Ja(~z)�@Ja(~z) : (3.59)

+ie

Z
w;z

fabc
J c(w)

�(z � w)

�

�Ja(~w)

�

�Jb(~z)
+
e2CA
2�

Z
Ja(~z)

�

�Ja(~z)
;

which we split into H = H(0) + HI , where H(0) is the �rst line and HI the second. It is

6Note that in Ref. [8] the normalization of J is different.
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important to note that the last term in Eq. (3.59) only appears after regularization of a

divergent integral. We will give a thorough derivation of this Hamiltonian in Sec. 4.4.1.

We can now obtain the vacuum wave functional in powers of e. We write

	GI [J ] = exp(�FGI [J ]) ; (3.60)

where (following the notation of [9])

�2FGI [J ] =

Z
f (2)
a1a2

(~x1; ~x2) Ja1(~x1)Ja2(~x2) +
e

2
f (3)
a1a2a3

(~x1; ~x2; ~x3) Ja1(~x1)Ja2(~x2)Ja3(~x3)

+
e2

4
f (4)
a1a2a3a4

(~x1; ~x2; ~x3; ~x4) Ja1(~x1)Ja2(~x2)Ja3(~x3)Ja4(~x4) + : : : (3.61)

and the kernels f
(2)
a1a2(~x1; ~x2), f

(3)
a1a2a3(~x1; ~x2; ~x3), etc., have the expansions

f (2)
a1a2

(~x1; ~x2) = f
(2)
0 a1a2

(~x1; ~x2) + e2f
(2)
2 a1a2

(~x1; ~x2) + : : :

f (3)
a1a2a3

(~x1; ~x2; ~x3) = f
(3)
0 a1a2a3

(~x1; ~x2; ~x3) + e2f
(3)
2 a1a2a3

(~x1; ~x2; ~x3) + : : : (3.62)

f (4)
a1a2a3a4

(~x1; ~x2; ~x3; ~x4) = f
(4)
0 a1a2a3a4

(~x1; ~x2; ~x3; ~x4) + : : : :

Acting with the Hamiltonian of Eq. (3.59) onto this expansion of the wave functional and

equating terms of equal numbers of J 's we obtain recursion relations for the kernels. These

read

2
e2CA
2�

f (2)
a1a2

(~x1; ~x2) + 4

Z
x;y

f (2)
a1a

(~x1; ~x)(�
0)ab(~x; ~y)f
(2)
ba2

(~y; ~x2) + Vab (3.63)

+e2

∣
6

Z
x;y

f
(4)
a1a2ab

(~x1; ~x2; ~x; ~y)(�
0)ab(~x; ~y) + 3

Z
x;y

f
(3)
a1ab

(~x1; ~x; ~y)(�
1)aba2(~x; ~y; ~x2)

)
= 0

for the term with 2 J 's, while for the terms with p � 3 J 's the recursion relation is

e2CA
2�

pf (p)
a1���ap +

pX
n=2

n(p+ 2� n)f (n)
a1���an−1a

(�
0)abf
(p�n+2)
ban���ap

+

p�1X
n=2

n(p+ 1� n)f (n)
a1���an−1a

(�
1)abapf
(p�n+1)
ban���ap−1
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+e2

∣
(p+ 1)(p+ 2)

2
f

(p+2)
a1���apab(

�
0)ab +
p(p+ 1)

2
f

(p+1)
a1���ap−1ab

(�
1)abap

)
= 0 : (3.64)

In these equations, we have used the abbreviations (following [9])

(�
0)ab(~x; ~y) = �ab@y �G(~x; ~y) ;

(�
1)abc(~x; ~y; ~z) = � i
2
fabc [�(~z � ~y) + �(~z � ~x)] �G(~x; ~y) ;

Vab(~x; ~y) = �ab

Z
z

�@z�(~z � ~x) �@z�(~z � ~y) : (3.65)

These equations are the same as the ones in Ref. [9] (which we have checked explicitly). Note

that the splitting into H(0) and HI was di�erent there, since the last term in Eq. (3.59) was

included in H(0).

If one were able to solve the set of Eqs. (3.63-3.64) exactly, one would obtain the exact

vacuum functional, without any truncation. Therefore, those equations are a good play-

ground on which to try di�erent resummation schemes (as it was done in Ref. [9]). Here

we focus on the weak coupling expansion and solve those equations iteratively. There is a

caveat, though: In Chap. 4 we �nd that a di�erent regularization method should be em-

ployed, leading to the kinetic term given in Eq. (4.57), and therefore to di�erent recursion

relations (see Eq. (4.87)). In order to test the proposal of Ref. [9] we will, however, continue

to work with Eqs. (3.63-3.64) in this section.

At the lowest (zeroth) order in e, we have to solve Eq. (3.63) for f
(2)
0 a1a2

(~x1; ~x2) with

e = 0. Note that this equation is quadratic in f (2), thus it has two solutions. We take the

normalizable one, compatible with perturbation theory:

f
(2)
0 a1a2

(~x1; ~x2) = �a1a2
�@2
x1q
�~r2

x1

�(2)(~x1 � ~x2)() f
(2)
0 a1a2

(~k) = �
�k2

Ek
�a1a2 ; (3.66)

where Ek = j~kj.
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At higher orders it is better to work in momentum space. We de�ne

f (3)
a1a2a3

(~x1; ~x2; ~x3) =

Z
=k1��� =k3

exp

 
i

3X
i

~ki � ~xi
!

f (3)
a1a2a3

(~k1; ~k2; ~k3) ; (3.67)

f (4)
a1a2a3a4

(~x1; ~x2; ~x3; ~x4) =

Z
=k1��� =k4

exp

 
i

4X
i

~ki � ~xi
!

f (4)
a1a2a3a4

(~k1; ~k2; ~k3; ~k4): (3.68)

The recursive solution of Eqs. (3.63-3.64) to order e2 gives the following lowest order expres-

sions for the cubic and quartic kernels:

f
(3)
0 a1a2a3

(~k1; ~k2; ~k3) = �f
a1a2a3

24
(2�)2�(~k1 + ~k2 + ~k3) g(3)(~k1; ~k2; ~k3) ; (3.69)

f
(4)
0 a1a2;b1b2

(~k1; ~k2; ~q1; ~q2) =
fa1a2cf b1b2c

64
(2�)2�(~k1 + ~k2 + ~q1 + ~q2) g(4)(~k1; ~k2; ~q1; ~q2) ; (3.70)

where

g(3)(~k1; ~k2; ~k3) =
16

Ek1 + Ek2 + Ek3

(�k1
�k2(�k1 � �k2)

Ek1Ek2
+ cycl: perm:

)
; (3.71)

g(4)(~k1; ~k2; ~q1; ~q2) =
1

Ek1 + Ek2 + Eq1 + Eq2(
g(3)(~k1; ~k2;�~k1 � ~k2)

k1 + k2

�k1 + �k2

g(3)(~q1; ~q2;�~q1 � ~q2)

�
∣

(2�k1 + �k2) �k1

Ek1
� (2�k2 + �k1) �k2

Ek2

)
4

�k1 + �k2

g(3)(~q1; ~q2;�~q1 � ~q2)

� g(3)(~k1; ~k2;�~k1 � ~k2)
4

�q1 + �q2

∣
(2�q1 + �q2) �q1

Eq1
� (2�q2 + �q1) �q2

Eq2

))
:

(3.72)

Note that the various f (n) are not �xed completely, since they are multiplied by local

sources. Therefore, only the completely symmetric combination is determined, any anti-

symmetric term would vanish when multiplied by the sources, as they form a completely

symmetric function.
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Using the expressions for f
(3)
0 , f

(4)
0 in Eq. (3.63), the order e2-term in f (2) is given by

f
(2)
2 a1a2

(~k) = �a1a2
CA
2�

�k2

E2
k

[1 +N ] ; (3.73)

where

N =
Ek
�k2

)Z
d2p

32�

1

�p
g(3)(~k; ~p;�~p� ~k) +

Z
d2p

64�

p

�p
g(4)(~k; ~p;�~k;�~p)

(
: (3.74)

It is possible to perform this integration, albeit numerically. The potentially divergent

terms vanish after doing the integration over the phase of the complex number. We obtain

N = 0:025999 (8�) : (3.75)

Note that it is real. This is not trivial to predict a priori since g(3)=(4) are complex functions.

As we will see this is a strong check of the computation. The kernels f (n), n � 5, become

non-trivial only beyond O(e2).

Note that the results above are nothing but Taylor expansions of the analogous set of

equations in Ref. [9] to the appropriate order. In practice this means setting m = 0 in

their computation and adding the �rst term in Eq. (3.73). This last term will play a very

important role in the comparison with the results of the previous section.

Once we have an (approximated) expression for 	GI [J ] we can transform it back to the

original ~A variables: 	GI [J( ~A)] � 	GI [ ~A]. In principle, as it is a gauge invariant quantity, it

should be possible to write it in terms of the gauge covariant quantities ~B and ~D. However,

since we work order by order in e, we do not need this. On the other hand, rotational O(2)

symmetry is preserved explicitly.

We will use the following relation to transform J �elds into ~A �elds (where the derivatives

are in the adjoint representation: DB = @B + e[A;B]; and we have de�ned J = JaT a):

�@nJ = �iM y( �Dn�1B)M y�1 ; (3.76)

as well as Eqs. (3.37) and (3.39).
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3.3.1 Order e0

In this way at O(e0) we obtain

�2F
(0)
GI [ ~A] = �

Z
=k

1

Ek
(~k � ~Aa(~k))(~k � ~Aa(�~k)) ; (3.77)

which is the expected free-�eld expression.

3.3.2 Order e

At O(e) we obtain

F
(1)
GI [ ~A] = ifabc

Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!(
1

2j~k1j
(~k1 � ~Aa(~k1))( ~Ab(~k2)� ~Ac(~k3))

� 1

j~k3j~k2
1

 
~k1 � ~k2 + i~k1 � ~k2

(j~k1j+ j~k2j+ j~k3j)j~k2j
+ i

!
(~k1 � ~Aa(~k1))(~k2 � ~Ab(~k2))(~k3 � ~Ac(~k3))

+
1

j~k3j~k2
1

(~k1 � ~Aa(~k1))(~k2 � ~Ab(~k2))(~k3 � ~Ac(~k3))

)
: (3.78)

This term stems from a combination of f (3) and f (2) terms, as we have to remember that

J has an expansion in e itself. Using the invariance of the integrals under interchange of

integration variables and the fact that the delta function allows to write one momentum in

terms of the other two, it is possible, however far from obvious, to show that the imaginary

term of Eq. (3.78) vanishes and that the real part is equal to Eq. (3.18). The details are

given in App. A.

3.3.3 Order e2

At O(e2) we obtain

�2F
(2;2)
GI =

CA
2�

Z
=k

1

j~kj2
(~k � ~Aa(~k))(~k � ~Aa(�~k))[1 +N ] : (3.79)

This term is associated with the f
(2)
2 term.

35



Analysis of the Yang-Mills Vacuum Wave Functional at O (e2)

For the term with four gauge �elds we obtain

�2ReF
(2;4)
GI = (3.80)

1

4
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�(~k1 + ~k2 + ~q1 + ~q2)
1

j~k1 + ~k2j

�
~Aa1(~k1)� ~Aa2(~k2)

��
~Ab1(~q1)� ~Ab2(~q2)

�
+fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�(~k1 + ~k2 + ~q1 + ~q2)
1

~k2

2

 
1

j~k1 + ~k2j
� 1

j~k1j

!
(~k1 � ~Aa1(~k1)(~k2 � ~Aa2(~k2))( ~Ab1(~q1)� ~Ab2(~q2))

�fa1a2cf b1b2c
Z
=k1; =k2; =k3; =k4

=�

 
4X
i=1

~k1

!( 
1

j~k1 + ~k2j
� 1

j~k3j

!
1

~k2

2 ~k4

2 (~k1 � ~Aa1(~k1))(~k3 � ~Ab1(~k3)))
(~k2 � ~Aa2(~k2))(~k4 � ~Ab2(~k4))� (~k2 � ~Aa2(~k2))(~k4 � ~Ab2(~k4))

(
+

1

j~k2j(~k3 + ~k4)2~k2
3

(~k1 � ~Aa1(~k1))(~k2 � ~Aa2(~k2)))
(~k3 � ~Ab1(~k3))(~k3 + ~k4) � ~Ab2(~k4)� (~k3 � ~Ab1(~k3))(~k3 + ~k4)� ~Ab2(~k4)

()
+fa1a2cf b1b2c

Z
=k1; =k2; =k3; =k4

=�

 
4X
i=1

~ki

!
~k1 � ~k2

(j~k1j+ j~k2j+ j~k3 + ~k4j)j~k1jj~k2j� 2

j~k3 + ~k4jj~k1j
+

1

(~k3 + ~k4)2

�
(~k1 � ~Aa1(~k1))(~k2 � ~Aa2(~k2))( ~Ab1(~k3)� ~Ab2(~k4))

�2fa1a2cf b1b2c
Z
=k1; =k2; =k3; =k4

=�

 
4X
i=1

~ki

!
(~k1 � ~Aa1(~k1))(~k2 � ~Aa2(~k2))(~k3 � ~Ab1(~k3))

1

(j~k1j+ j~k2j+ j~k3 + ~k4j)j~k1j

)
1

j~k3 + ~k4j~k2
2

~k2 � ~Ab2(~k4)

+
1

j~k3 + ~k4j~k2
2
~k2

4

�
~k2 � (~k3 � ~k1)(~k4 � ~Ab2(~k4)) + ~k2 � (~k3 � ~k1)(~k4 � ~Ab2(~k4))

�
� 1

j~k2j~k2
3
~k2

4

�
~k1 � ~k3(~k4 � ~Ab2(~k4))� ~k1 � ~k3(~k4 � ~Ab2(~k4))

�
+

1

j~k2jj~k3 + ~k4j2~k2
3

�
~k1 � ~k3(~k3 + ~k4) � ~Ab2(~k4)� ~k1 � ~k3(~k3 + ~k4)� ~Ab2(~k4)

�(
�fa1a2cf b1b2c

Z
=k1; =k2; =k3; =k4

=�

 
4X
i=1

~ki

!
(~k1 � ~Aa1(~k1))(~k2 � ~Aa2(~k2))(~k3 � ~Ab1(~k3))(~k4 � ~Ab2(~k4))
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1

(
P

i j~kij)(j~k1j+ j~k2j+ j~k3 + ~k4j)(j~k3j+ j~k4j+ j~k1 + ~k2j)j~k1jj~k3j(~k2
1~q

2
1 � (~k1 � ~k2)(~q1 � ~q2)
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� j~k2j
j~k1 + ~k2j

 
2

)
2
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~q2
2

+ 1

(
+ 4
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~k2
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1� j
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� 4
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!)
;

�2iImF
(2;4)
GI =

ifa1a2cf b1b2c
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=k1; =k2; =k3; =k4

=�

 
4X
i=1

~ki

!
(~k1 � ~Aa1(~k1))(~k2 � ~Aa2(~k2))( ~Ab1(~k3)� ~Ab2(~k4))(

1
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� 1

~k2

2

 
1
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+ifa1a2cf b1b2c
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=k1; =k2; =k3; =k4
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4X
i=1

~ki

!
(~k1 � ~Aa1(~k1))(~k2 � ~Aa2(~k2))(~k3 � ~Ab1(~k3))(~k4 � ~Ab2(~k4))(

1

~k2
1
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2
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2j~k3j~k2
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1

(j~k1j+ j~k2j+ j~k3 + ~k4j)j~k1j

( �2~k2 � ~k1

j~k3 + ~k4j~k2
2
~k2

4

�
~k1 � ~k3

j~k2j~k2
3
~k2

4

+
~k1 � ~k3

j~k2jj~k3 + ~k4j2~k2
3

))
: (3.81)

The last two equations can be rewritten in several ways, yet, without an organizing

principle, their sizes remain more or less the same.

The resulting expression for the ground-state wave functional seems to have a non-

vanishing imaginary term. This is at odds with expectations, and with the result of Sec. 3.2.

The real part does not look at all like the result obtained in that section either. We discuss

this puzzling situation in the next section.

3.4 Comparison of the two approaches

If we compare the expressions we have found for the ground-state wave functional in Secs. 3.2

and 3.3 we see that they look completely di�erent. Even more so, whereas 	GL is explicitly

real, 	GI has, a priori, a non-vanishing imaginary term. Only the O(e0) expressions are

trivially equal. Starting at O(e) we can get agreement between both expressions after quite

lengthy and non-trivial rearrangements.

At O(e2) a direct comparison by brute force turns out to be completely impossible. In

order to compare expressions we need an organizing principle to split the comparison into

pieces. The procedure we follow is to rewrite 	GL in terms of J and �A (actually we will use
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the variable � de�ned below7). If 	GL and 	GI are going to be equal, all terms proportional

to �A (or �) should vanish. Moreover, to a given order in e the polynomial in �A is �nite so

only a �nite number of terms need to be compared.

In order to perform this comparison to O(e2) we need the following relations:

M y � ee� = 1 + e� +
e2

2
�2 +O(e3) ; (3.82)

M y�1 = 1� e� +
e2

2
�2 +O(e3) ; (3.83)

A = �1

2
M y�1JM y +

1

e
M y�1@M y

= �1

2

∣
J � e[�; J ] +

e2

4
[�; [�; J ]]

)
+ @� � e

2
[�; @�] +

e2

3!
[�; [�; @�]] +O(e3) ; (3.84)

�A =
1

e
M y�1 �@M y = �@� � e

2
[�; �@�] +

e2

3!

�
�; [�; �@�]

�
+O(e3) ; (3.85)

Aa(~k) = � i
2
Ja(~k) + ik�a(~k) +

ie

2
fabc

Z
=q

�b(~k � ~q)J c(~q)� ie

2
fabc

Z
=q

q �b(~k � ~q)�c(~q)

+
ie2

4
f bcdfdea

Z
=q

Z
=p

�b(~k � ~q � ~p)J c(~q)�e(~p)

�ie
2

3!
f bcdfdea

Z
=q

Z
=p

�b(~k � ~q � ~p)q�c(~q)�e(~p) +O(e3) ; (3.86)

�Aa(~k) = i�k�a(~k)� ie

2
fabc

Z
=q

�q �b(~k � ~q)�c(~q)

�ie
2

3!
f bcdfdea

Z
=q;=p

[k�q � �kq] �b(~k � ~q � ~p)�c(~q)�e(~p) +O(e3) ; (3.87)

where � = �i�aT a, and we de�ne the Fourier transform of � and J following the same

conventions as in Eq. (2.17).

For the O(e0) and the O(e) contributions of FGL it is possible to show that the � terms

vanish and the rest agrees with FGI in a direct fashion by just inserting the relations (3.86)

and (3.87) into F
(0)
GL and F

(1)
GL and summing coe�cients of terms with equal numbers of J 's

and �'s. This is, of course, not surprising, since we already showed in Eq. (A.16), that

F
(1)
GI [ ~A] = F

(1)
GL[ ~A]. However, for the O(e2) contributions, even after these simpli�cations, a

brute force attack on the problem leads to expressions too large and complicated to directly

7The field θ could be interpreted as a kind of generator of complex SL(N,C) gauge transformations, see
Ref. [8].
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show the equality of both expressions.

At this respect it is better to use some intermediate expressions of the 	GL computation that

better agree with the structure of the 	GI result in terms of J . Particularly relevant for us

is Eq. (3.25), which relates F
(2;4)
GL with (�F

(1)
GL)=(� ~A). We can write F

(1)
GL[J; �] � F

(1)
GL[ ~A(J; �)]

in terms of g(3). Using

�
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q
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=

Z
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�Ab(~q1)

�
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Z
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)
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� �Ab(~q1)
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�
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(
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1

2
(�1i + i�2i) (2i)

�

�Ja(~p)
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1

2
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)
�2i

p

�p

�

�Ja(~p)
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�

� �Aa(~p)

(
+O(e) ; (3.88)
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GL
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�a1(~k1)�a2(~k2)

)
+O(e) : (3.89)

With this we can write F
(2;4)
GL [J; �] as a second order polynomial in g(3). This gives us the

guiding principle to try to reconstruct g(4), which is also a second order polynomial in g(3).

This term should be proportional to J4 and we �nd that indeed it is.

In Eq. (3.25) one can see that all terms in F
(2;4)
GL [J; �] have a prefactor of 1

j~k1j+j~k2j+j~q1j+j~q2j
.

As we need the gauge (�) dependent terms to cancel with the corresponding terms from
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F
(0)
GL and F

(1)
GL, that don't have this prefactor, we �nd a second guiding principle, which is

to rewrite the � dependent terms of F
(2;4)
GL [J; �] in such a way, that this prefactor drops out

and then try to �nd a form similar to the gauge dependent contributions of F
(0)
GL and F

(1)
GL.

To do so we extensively use the Jacobi identity and the invariance of the integrals under

interchange of integration variables, as well as the delta function. We also use the fact that

the integration kernels can be taken to be completely symmetric under the interchange of

the variables of two equal �elds (for instance Ja1(~k1)Ja2(~k2)). Still the computation is very

tedious and highly non-trivial, therefore we give the details in App. B. In the end we obtain

F
(0)
GL =

1

2

Z
=k

�k2

j~kj
Ja(~k)Ja(�~k) + e

Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!
�k2

3

j~k3j
fabcJa(~k1)�b(~k2)J c(~k3)

�efabc
Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!
�k1(k1

�k3 � �k1k3)

j~k1j
Ja(~k1)�b(~k2)�c(~k3)

+
e2

2
fa1a2cf b1b2e

Z
=k1; =k2; =q1; =q2

=�

 
2X
i

(~ki + ~qi)

!
Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

�
 

(�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!

+e2fa1a2cf b1b2c
Z
=k1;=k2;=q1;=q2

=�

 X
i

(~ki + ~qi)

!
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

�
)

1

3

1

j~k1j
�k1(k1�q2 � �k1q2) +

1

j~q1 + ~q2j
(�q1 + �q2)(q2�q1 � �q2q1)

(
�2e2fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
�a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

�k2k1�q2q1

j~k1 + ~k2j
+O(e3); (3.90)
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We now move to F
(2;2)
GL , which is associated to a one-loop computation. We have already

mentioned in Sec. 3.2 that its direct determination in terms of ~A �elds is not feasible. Again,

we follow the strategy of rewriting F
(2;2)
GL in terms of J and �. For this we use Eq. (3.92),

which we plug into Eq. (3.27) after having rewritten the functional derivatives in terms of J

and �A using Eq. (3.88). The calculation simpli�es a lot and we �nd

F
(2;2)
GL = �CA

32

Z
=p;=k

1

j~kj

)
1

�p
g(3)(~k; ~p;�~k � ~p) +

1

2

p

�p
g(4)(~p;~k;�~p;�~k)

(
Ja(~k)Ja(�~k) +O(e) :

(3.93)

This result allows us to write F
(2;2)
GL in terms of the gauge �elds. It reads

F
(2;2)
GL = �NCA

4�

Z
=k

1

j~kj2
(~k � ~Aa(~k))(~k � ~Aa(�~k)) ; (3.94)

where N has been de�ned in Eq. (3.74).

We can now combine all the di�erent contributions (in an, again, not completely trivial
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computation). We obtain the following equalities

FGL[ ~A(J; �)] = FGI [J ] +
CAe

2

4�

Z
=k

�k2

j~kj2
Ja(~k)Ja(�~k) +O(e3) ; (3.95)

or in terms of the gauge �elds

FGI [J( ~A)] = FGL[ ~A]� CAe
2

4�

Z
=k

1

j~kj2
(~k � ~Aa(~k))(~k � ~Aa(�~k)) +O(e3) : (3.96)

The �rst equality implies that FGL[ ~A] is gauge invariant to O(e2), the second that FGI [J ] is

real to O(e2). We stress that F
(0)
GL, F

(1)
GL, and F

(2;4)
GL are real, which is not evident at all as

written in Eqs. (3.90), (3.91) and (3.92).

Overall we get complete agreement except for one bilinear real extra term in FGI . Its

origin can be traced back to the appearance of the last term of the Schr•odinger equation

in Eq. (3.59). In turn this term appears from an anomaly-like computation only after the

kinetic operator has been regularized. Note that FGL was obtained without regularizing

the theory, working with formal expressions. The existence of very lengthy and complicated

expressions in the intermediate steps impedes in practice the identi�cation of the divergences.

We expect these divergences to particularly a�ect F
(2;2)
GL , since we have functional derivatives

acting on the wave functional density (see Eq. (3.27)) that e�ectively produce contractions

of �elds and internal integrals over momenta. Therefore, even if the �nal result was �nite,

one could have missed contributions of this kind. For the other terms of F we have got a

double check, which gives us strong con�dence in our result.

3.5 Conclusions

We have computed the Yang-Mills vacuum wave functional in three dimensions at weak

coupling with O(e2) precision. We have used two di�erent methods to solve the Schr•odinger

functional equation: (A) One of them generalizes to O(e2) the method followed by Hat�eld

at O(e) [13]. We have named the result 	GL[ ~A]. (B) The other uses the weak coupling

version of the gauge invariant formulation of the Schr•odinger equation and the ground-state

wave functional followed by Karabali, Nair, and Yelnikov [9]. We have named the result
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	GI [J ]. Each method has its own strengths and weaknesses, and they are to some extent

complementary.

The computations performed with method (A) are relatively simple and the results are

explicitly real. The generalization to four dimensions of the O(e2) computation does not

present major conceptual problems. Note that this is the order at which we expect to

start to see the running of the coupling constant in D = 4. On the other hand, such a

computation has two major drawbacks. First, the implementation of the Gauss law is not

done in a systematic way, only partially in some intermediate steps. Therefore, we cannot

guarantee a priori that the �nal result is gauge invariant. Since the results grow rapidly

in size and complexity, a direct check turns out to be unfeasible. Actually we were only

able to check the Gauss law with the help of method (B). The main drawback, however, is

that the computation has been performed with an unregularized kinetic operator. Whereas

all computations can formally be carried out obtaining a �nite result, some terms may be

missed in this way.

The computations with method (B) are somewhat more involved. Rather lengthy ex-

pressions appear when we rewrite the wave functional in terms of the gauge �elds ~A, which,

moreover, look complex. Trying to prove by brute force that the result is real turns out to be

impossible. Actually, we only manage to prove it after a careful comparison with the result

of method (A). Moreover, a possible generalization to four dimensions does not look trivial.

On the other hand, method (B) is particularly appealing, as it directly works with gauge-

invariant degrees of freedom. Therefore, the Gauss law is automatically satis�ed and it is not

necessary to explicitly impose this constraint. Note also that the set of Eqs. (3.63) and (3.64)

can be solved recursively. Therefore, it could be possible to automatize the computation and

obtain the wave functionals at higher orders with a combination of algebraic/numeric pro-

graming. Finally, and most importantly, the kinetic operator had been regularized. This

produced non-trivial contributions.

We have compared both results. It is impossible to show that they are equal in a direct

way. The strategy we follow helps a lot, yet it continues to be extremely complicated to

prove the equality of the two expressions. As we have already mentioned, this comparison

has allowed us on the one hand to prove that 	GL is indeed gauge invariant and on the other

hand that 	GI is real. Most interestingly, the agreement between both results is almost
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complete except for one extra term that appears with method (B). This term shows up from

an anomaly-like computation once the theory is regularized. Such a contribution does not

show up in method (A). As we will show in the next chapter, this is due to the fact that

no regularization was used in this computation. This result is potentially very interesting

because it is precisely this term that produces the mass gap and a linearly rising potential

in the strong coupling limit in Ref. [8]. Therefore, it is important to understand how such

a term can be generated in a regularized version of the Schr•odinger formalism in terms of

the gauge �elds, as this contribution has not been checked with an independent method so

far. However, since regularization in the Schr•odinger formalism with gauge variables is, to

a large extent, uncharted territory, this requires a dedicated study. We address this issue in

the following chapter and also revisit the regularization with method (B), with the aim of

resolving the discrepancy between the two wave functionals. In that analysis we �nd new

contributions for both methods which bring them into agreement.

In this context, it may be worth mentioning that supersymmetric extensions of Yang-

Mills theory with N � 2 do not have this term [26]. This is not completely unexpected,

as the introduction of supersymmetry improves the ultraviolet behavior of the theory. This

may lead to convergent integrals and the disappearance of the extra term.

Finally, we expect that the inclusion of matter �elds in the theory will not produce major

changes to the general procedure.
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Chapter 4

Regularization of the Yang-Mills

Vacuum Wave Functional at O
�
e2
�

The content of this chapter was published in Ref. [27].

4.1 Introduction

In the previous chapter we computed the Yang-Mills vacuum wave functional in three di-

mensions at weak coupling to O(e2), using two di�erent methods: (A) One extends the

computation performed in Ref. [13]; (B) The other uses the weak coupling limit of the

reformulation of the Schr•odinger equation developed in [4, 5, 6, 7, 8, 9].

In the comparison between both results we obtained almost complete agreement, except

for one term. We concluded that this discrepancy could be due to regularization issues,

which had not been systematically addressed. In this chapter we �ll this gap and provide

with the complete expression of the Yang-Mills vacuum wave functional in three dimensions

with O(e2) precision for the �rst time.

The regularization of the Schr•odinger equation and the vacuum wave functional in quan-

tum �eld theories is a complicated subject. Whereas some formal aspects have been studied

quite a while ago in Refs. [15, 16], there have not been many quantitative studies of the

regularization of the Yang-Mills vacuum wave functional. In three dimensions, the most

detailed analyses have been carried out using method (B) (see, for instance, the discussions
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in Refs. [7, 17], in particular in the appendix of the last reference). It is claimed in those

references that the regularization has been completely taken into account. According to this,

the result obtained in the previous chapter using method (B) (which corresponds to the weak

coupling limit of the approximated expression obtained in Ref. [9] for the wave functional)

should be the correct one. We will actually see that this is not so and that the regularization

procedure has to be modi�ed to obtain the correct Yang-Mills vacuum wave functional in

three dimensions at weak coupling. This produces a new contribution that has to be added

to the result obtained in Sec. 3.3.

The result given in the previous chapter using method (A) was obtained without regular-

izing the functional Schr•odinger equation. It directly works with the gauge variables ~A, but

it has the complication that the Gauss law constraint has to be implemented by hand. In the

intermediate steps potentially divergent expressions were found, which, nevertheless could

be handled formally (assuming that the symmetries of the classical theory survive) obtaining

a �nite result. In this chapter we carefully regularize the computation using method (A).

Out of this analysis a new contribution has to be added to the result obtained in Sec. 3.2.

The new results obtained for the Yang-Mills vacuum wave functional in three dimensions

at weak coupling to O(e2) with the methods (A) and (B) agree with each other. This is a

strong check of our computations and of the regularization methods used here. On the other

hand our results imply that the weak coupling limit of the expression obtained in Ref. [9]

for the wave functional is not correct with O(e2) precision (though it is at O(e)).

The outline of this chapter is the following: In Sec. 4.2 we regularize the Schr•odinger

equation. In Sec. 4.3 we compute the wave functional using the method (A) with O(e2)

precision. In Sec. 4.4 we rewrite the regularized version of the Schr•odinger equation obtained

in Sec. 4.2 in terms of the gauge invariant variables, and compute the wave functional using

the method (B) with O(e2) precision. We also discuss the reason why the Schr•odinger

equation used in Ref. [9] is not su�cient to obtain the complete expression for the vacuum

wave functional to O(e2). Sec. 4.5 summarizes the results of this chapter.
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4.2 The regularized Schrödinger equation

In Chap. 3 we used the unregularized Schr•odinger equation, Eq. (3.5), which reads

1

2

Z
x

 
� �

� ~Aa(~x)
� �

� ~Aa(~x)
+Ba(~x)Ba(~x)

!
	 = 0 : (4.1)

In order to regularize the kinetic operator we separate the points at which the di�erential

operators act. As we want to preserve gauge invariance, we do this by introducing a Wilson

line and a regularized delta function

��(~x;~v) =
�2

�
e�(~x�~v)2�2 ; (4.2)

such that after the removal of the regulator �!1, one recovers the original expression:

T = �1

2

Z
x

�

�Aai (~x)

�

�Aai (~x)
�! Treg = �1

2

Z
x;v

��(~x;~v)
�

�Aai (~x)
�ab(~x;~v)

�

�Abi(~v)
: (4.3)

The �rst functional derivative also acts on the Wilson line, which ensures that the regularized

kinetic operator is still hermitian.

The Wilson line is the path-ordered exponential of the gauge �elds along a curve C:

�(C; ~x;~v) = Pe�e
∫ ~x
~v dz

iAi(~z) = Pe�e
∫ 1
0 ds ż

i(s)Ai(~z(s)) ; (4.4)

where ~z(s) is the parametrization of C. The Wilson line transforms as

�(C; ~x;~v)!
�
g(~x)�(C; ~x;~v)gy(~v)

�
ab

(4.5)

under gauge transformations Eq. (3.3).

The physical results should be independent of the curve C. Nevertheless, for convenience,

we choose the Wilson line to be symmetric under the combined interchange of color indices

and endpoints:

�ab(C; ~x;~v) = �ba(C;~v; ~x) : (4.6)

For the computations in perturbation theory we need an explicit realization of the Wilson
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(x1, x2)

(v1, v2) (x1, v2)

(v1, x2)

C1 C2

a

b

Figure 4.1: Curves C1 and C2 used to define �ab(~x;~v) in Eqs. (4.7) and (4.8).

line. We choose the symmetric combination of two paths that go in straight lines (see

Fig. 4.1), so that up to O(e2) the Wilson line reads:

�ab(~x;~v) � 1

2
(�ab(C1; ~x;~v) + �ba(C2;~v; ~x)) (4.7)

= �ab �
e

2

)Z x2

v2

ds2A2(v1; s2) +

Z x1

v1

ds1A1(s1; x2)

(
ab

�e
2

)Z v2

x2

ds2A2(x1; s2) +

Z v1

x1

ds1A1(s1; v2)

(
ba

+
(�e)2

2

)Z x2

v2

ds2A2(v1; s2)

Z s2

v2

ds02A2(v1; s
0
2)

+

Z x1

v1

ds1A1(s1; x2)

Z s1

v1

ds01A1(s01; x2)

+

Z x1

v1

ds1A1(s1; x2)

Z x2

v2

ds2A2(v1; s2)

(
ab

+
(�e)2

2

)Z v2

x2

ds2A2(x1; s2)

Z s2

x2

ds02A2(x1; s
0
2)

+

Z v1

x1

ds1A1(s1; v2)

Z s1

x1

ds01A1(s01; v2)

+

Z v1

x1

ds1A1(s1; v2)

Z v2

x2

ds2A2(x1; s2)

(
ba

+O(e3)

Note that Aabi = �fabcAci and (AiAj)
ab = fadcfdbeAciA

e
j .
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It is possible to write �ab(~x;~v) in a more compact way using the Bars variables [28]:

�ab(~x;~v) =
1

2

�
(M1(~x)M�1

1 (v1; x2)M2(v1; x2)M�1
2 (~v))ab

+(M2(~x)M�1
2 (x1; v2)M1(x1; v2)M�1

1 (~v))ab
�
; (4.8)

where (no sum over repeated spatial indices in Eqs. (4.9-4.15))

Mi(~x) = Pe�e
∫ ~x
∞ dziAi(~z) (4.9)

represents the Wilson line for a straight spatial curve C with �xed xj for j 6= i. This Wilson

line can be Taylor expanded in the standard way in terms of (path-ordered) one-dimensional

integrals (similarly as we have done in Eq. (4.7)), or in terms of (formal) two dimensional

integrals (see, for instance, Ref. [18]):

Mi(~x) = 1�e
Z
y

Gi(~x; ~y)Ai(~y) + e2

Z
y;z

Gi(~x; ~z)Ai(~z)Gi(~z; ~y)Ai(~y) + : : : ; (4.10)

M�1
i (~x) = 1+e

Z
y

Gi(~x; ~y)Ai(~y)� e2

Z
y;z

Gi(~x; ~z)Ai(~z)Gi(~z; ~y)Ai(~y)

+e2

Z
y;z

Gi(~x; ~z)Ai(~z)Gi(~x; ~y)Ai(~y) + : : :)
= 1+e

Z
y

Gi(~x; ~y)Ai(~y) + e2

Z
y;z

Gi(~x; ~y)Gi(~y; ~z)Ai(~z)Ai(~x) + : : :

(
; (4.11)

where

G1(~x; ~y) � G1(~x�~y) = �(x1�y1)�(x2�y2) and G2(~x; ~y) � G(~x�~y) = �(x1�y1)�(x2�y2) :

(4.12)

Mab
i = 2Tr(T aMiT

bM�1
i ) is the Euclidean analogue of Eq. (3.43). With these de�nitions

Ai = �1

e
@iMiM

�1
i (4.13)

() DiMi = 0 : (4.14)

Note that Eqs. (4.10-4.13) are the Euclidean versions of Eqs. (3.36-3.41) and (3.30), respec-

tively, except for the fact that unlike G(�x; �y) and �G(x; y), Gi(~x; ~y) is not antisymmetric.
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Variating Eq. (4.14) one �nds (see App. C.1)

�Mj(y)

�Aai (x)
= ��ijMab

i (x)Gi(y; x)Mi(y)Tb : (4.15)

The functional derivative of Ai acting on the Wilson line in Eq. (4.3) is ill-de�ned if both the

derivative and the Wilson line are de�ned at the same point. Therefore, we have to regularize

it, taking the coincidence limit only after the functional derivative has been applied:Z
x;v

��(~x;~v)

∣
�

�Aai (~x)
�ab(~x;~v)

)
�

�Abi(~v)

:= lim
�!1

Z
x;v;X

��(~x;~v)��( ~X)�ar(~x; ~x+ ~X)

"
�

�Ari (~x+ ~X)
�ab(~x;~v)

#
�

�Abi(~v)
: (4.16)

This way of regularizing is analogous to the regularizations used in Eq. (3.24) of Ref. [7] and

in Eqs. (100-101) of Ref. [18].

Using Eqs. (4.8) and (4.15) in Eq. (4.16) one �ndsZ
x;v

��(~x;~v)

∣
�

�Aai (~x)
�ab(~x;~v)

)
�

�Abi(~v)
= 0 ; (4.17)

such that the regularized kinetic operator Eq. (4.3) reduces to

Treg = �1

2

Z
x;v

��(~x;~v)�ab(~x;~v)
�

�Aai (~x)

�

�Abi(~v)
: (4.18)

This is shown in App. C.2 in detail.

Once we have regularized the kinetic operator we turn to the determination of the vacuum

wave functional. Realizing that the vacuum wave functional for the kinetic operator T alone

is the identity, one can write the complete wave functional as

	 = e�F1 : (4.19)

Therefore, instead of solving

H	 = (T + V)	 = 0 ; (4.20)
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one can solve (see, for instance, Ref. [8])

eH1 = eF (T + V)e�F1 =

)
T + V � [T ; F ] +

1

2
[[T ; F ]; F ]

(
1 = 0 ; (4.21)

since T contains at most two functional derivatives:

T =

Z
x

!ai (~x)
�

�Aai (~x)
+

Z
x;y


ab
ij (~x; ~y)

�2

�Aai (~x)�Abj(~y)
; (4.22)

where !ai (~x) = 0 and 
ab
ij (~x; ~y) = �ij


ab(~x; ~y) = �1
2
�ij��(~x; ~y)�ab(~x; ~y). Using this explicit

expression, Eq. (4.21) reads

V�
Z
x

!ai (~x)
�F

�Aai (~x)
�
Z
x;y


ab
ij (~x; ~y)

�2F

�Aai (~x)�Abj(~y)
+

Z
x;y


ab
ij (~x; ~y)

�F

�Aai (~x)

�F

�Abj(~y)
= 0 : (4.23)

In order to ensure that we restrict ourselves to gauge invariant states we also have to

demand that 	 satis�es the Gauss law constraint Eq. (3.6):

Ia	 = ( ~D � ~E)a	 = i

)
~r � �

� ~Aa
+ efabc ~Ab �

�

� ~Ac

(
	 = 0 : (4.24)

Equations (4.23) and (4.24) will be our starting point for the determination of the vacuum

wave functional.

As in Chap. 3, in the following we will distinguish between methods (A) and (B), and

name their solutions 	GL = e�FGL and 	GI = e�FGI , respectively. The �rst method consists

in directly solving Eqs. (4.23) and (4.24), and will be addressed in the next section. The

second method consists in rewriting Eq. (4.23) in terms of the gauge invariant variables Ja

de�ned in Eq. (3.34). It will be addressed in Sec. 4.4. In both cases we will Taylor expand

F in powers of the coupling constant e, and solve the resulting equations iteratively, like

in Chap. 3. In this chapter the main focus will be on the novel aspects resulting from the

careful introduction of the regularization.
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4.3 Determination of ΨGL[ ~A]

We expand FGL = F
(0)
GL + eF

(1)
GL + e2F

(2)
GL +O(e3) and


ab(~x; ~y) = �1

2
��(~x; ~y)�ab(~x; ~y) = �1

2
��(~x; ~y)

�
�

(0)
ab (~x; ~y) + e�

(1)
ab (~x; ~y) + e2�

(2)
ab (~x; ~y) +O(e3)

�
(4.25)

in powers of the coupling constant. Considering the contributions order by order in e yields

the following equations:

At O(e0) we have

VjO(e0) �
1

2

Z
x;y

��(~x; ~y)�ab

 
� �2F

(0)
GL

�Aai (~x)�Abi(~y)
+

�F
(0)
GL

�Aai (~x)

�F
(0)
GL

�Abi(~y)

!
= 0 : (4.26)

For this equation we can take the �!1 limit, reducing it to the standard unregularized

free �eld equation, Eq. (3.9), the solution of which is Eq. (3.11):

F
(0)
GL[ ~A] =

1

2

Z
=k

1

j~kj
(~k � ~Aa(~k))(~k � ~Aa(�~k)) (4.27)

=
1

4�

Z
x;y

1

j~x� ~yj(
~r� ~Aa(~x))(~r� ~Aa(~y)) : (4.28)

At O(e) we have

VjO(e) +
1

2

Z
x;y

��(~x; ~y)�ab

 
�2F

(1)
GL

�Aai (~x)�Abi(~y)
� 2

�F
(0)
GL

�Aai (~x)

�F
(1)
GL

�Abi(~y)

!

�1

2

Z
x;y

��(~x; ~y)�
(1)
ab (~x; ~y)

 
�F

(0)
GL

�Aai (~x)

�F
(0)
GL

�Abi(~y)
� �2F

(0)
GL

�Aai (~x)�Abi(~y)

!
= 0 : (4.29)

Both terms proportional to �
(1)
ab (~x; ~y) vanish (the second because of contraction of color

indices, for the �rst see App. D.1). For the remaining terms we can take the limit � ! 1.

Therefore, this equation also reduces to the unregularized Schr•odinger equation, Eq. (3.12).
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It is solved by Eq. (3.18):

F
(1)
GL[ ~A] = ifabc

Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!(
1

2(
P3

i j~kij)
(~k1 � ~Aa(~k1))( ~Ab(~k2)� ~Ac(~k3))

� 1

(
P3

i j~kij)j~k1jj~k3j
(~k1 � ~Aa(~k1))(~k3 � ~Ab(~k2))(~k3 � ~Ac(~k3))

)
: (4.30)

At O(e2) we determine F
(2)
GL. F

(2)
GL can have contributions with four, two and zero �elds:

F
(2)
GL = F

(2;4)
GL + F

(2;2)
GL + F

(2;0)
GL . As argued in Chap. 3 there is no need to compute F

(2;0)
GL , as

it only changes the normalization of the state, which we do not �x, or alternatively can be

absorbed in a rede�nition of the ground-state energy. F
(2;4)
GL is determined by the following

equation:

VjO(e2) �
1

2

Z
x;y

��(~x; ~y)�ab

 
�F

(1)
GL

�Aai (~x)

�F
(1)
GL

�Abi(~y)
+ 2

�F
(0)
GL

�Aai (~x)

�F
(2;4)
GL

�Abi(~y)

!

�1

2

Z
x;y

��(~x; ~y)

 
�

(2)
ab (~x; ~y)

�F
(0)
GL

�Aai (~x)

�F (0)

�Abi(~y)
+ 2�

(1)
ab (~x; ~y)

�F
(0)
GL

�Aai (~x)

�F
(1)
GL

�Abi(~y)

!
= 0 ; (4.31)

The two terms in the second line vanish (see App. D.2). For the leftover we can take the

�!1 limit. Eq. (4.31) then reduces to its unregularized version, Eq. (3.20), which is solved

by Eq. (3.26). We quote it here for completeness:

F
(2;4)
GL = fabcf cde

Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
1

j~k1j+ j~k2j+ j~q1j+ j~q2j

(
1

2(j~k1j+ j~k2j+ j~k1 + ~k2j)(j~q1j+ j~q2j+ j~q1 + ~q2j)

(�
~Ad(~q1)� ~Ae(~q2)

�
�
∣
� 1

4
j~k1 + ~k2j2 ~Aa(~k1)� ~Ab(~k2)

+
j~k1 + ~k2j
j~k2j

(~k1 + ~k2)� ~Aa(~k1)(~k2 � ~Ab(~k2)) +
(~k1 + ~k2) � ~k2

j~k1jj~k2j
(~k1 � ~Aa(~k1))(~k2 � ~Ab(~k2))

+(~k1 � ~Aa(~k1))(~k1 + ~k2) � ~Ab(~k2)

)
+(~k1 � ~Aa(~k1))(~q1 � ~Ad(~q1))

�
~Ab(~k2) � ~Ae(~q2)

�
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+
1

j~k1jj~k2j

"
2~k2 � ~Ae(~q2)� ~q1 � ~k2

j~q1jj~k2j
~q2 � ~Ae(~q2)

#
(~k1 � ~Aa(~k1))(~k2 � ~Ab(~k2))(~q1 � ~Ad(~q1))

+
1

j~k1j
(~k1 � ~Aa(~k1))(~k1 + ~k2)� ~Ab(~k2)

∣
1

j~q2j
(~q1 + ~q2)� ~Ad(~q1)(~q2 � ~Ae(~q2))

+
2

j~q1 + ~q2j
(~q1 � ~Ad(~q1))(~q1 + ~q2) � ~Ae(~q2)

)
� 2(~q1 + ~q2) � ~q1

j~k1 + ~k2jj~k1jj~q1jj~q2j
(~k1 � ~Aa(~k1))(~k1 + ~k2)� ~Ab(~k2)(~q1 � ~Ad(~q1))(~q2 � ~Ae(~q2))

+
2~k1 � ~k2

j~k1jj~k2jj~q1 + ~q2jj~q2j
(~k1 � ~Aa(~k1))(~k2 � ~Ab(~k2))(~q2 � ~Ad(~q1))(~q2 � ~Ae(~q2))

+
2

j~q1 + ~q2jj~q2j
(~k1 � ~Aa(~k1))(~k1 + ~k2)� ~Ab(~k2)(~q2 � ~Ad(~q1))(~q2 � ~Ae(~q2))

� 1

j~k2jj~q2j
(~k2 � ~Aa(~k1))(~k2 � ~Ab(~k2))(~q2 � ~Ad(~q1))(~q2 � ~Ae(~q2))

)
+

1

8

�
~Aa(~k1)� ~Ab(~k2)

��
~Ad(~q1)� ~Ae(~q2)

�
+

1

j~k1j(j~q1j+ j~q2j+ j~q1 + ~q2j)
(~k1 � ~Aa(~k1))

(
1

2
(~k1 + ~k2)� ~Ab(~k2)

�
~Ad(~q1)� ~Ae(~q2)

�
�(~q1 � ~Ad(~q1))

�
~Ab(~k2)� ~Ae(~q2)

�
� 1

j~q1 + ~q2jj~q2j
(~k1 + ~k2)� ~Ab(~k2)(~q1 + ~q2)� ~Ad(~q1)(~q2 � ~Ae(~q2))

+
1

j~q1jj~q2j
(~q2 � ~Ab(~k2))(~q1 � ~Ad(~q1))(~q2 � ~Ae(~q2))

� 1

j~q1 + ~q2jj~q2j
(~k1 + ~k2) � ~Ab(~k2)(~q2 � ~Ad(~q1))(~q2 � ~Ae(~q2))

))
: (4.32)

So far the regularization of the kinetic term has not produced any modi�cation to the

results obtained in Chap. 3. This could have been expected. If we have to make an analogy of

this computation with the standard diagrammatic approach, the computations above would

correspond to tree-level-like diagrams, for which one can take the cuto� to in�nity. It is only

when one has internal loops, where the momentum can run to in�nity, when regularization

e�ects become important. In our approach those e�ects are hidden in F
(2;2)
GL , where we

have an e�ect similar to the contraction of two �elds. We compute this term in the next

subsection.

56



4.3.1 F
(2,2)
GL

F
(2;2)
GL is determined by the following equation:

Z
x;y

��(~x; ~y)

)
�

(0)
ab (~x; ~y)

�2F
(2;4)
GL

�Aai (~x)�Abi(~y)
+ �

(1)
ab (~x; ~y)

�2F
(1)
GL

�Aai (~x)�Abi(~y)
+ �

(2)
ab (~x; ~y)

�2F
(0)
GL

�Aai (~x)�Abi(~y)

�2�
(0)
ab (~x; ~y)

�F
(0)
GL

�Aai (~x)

�F
(2;2)
GL

�Abi(~y)

(
= 0 : (4.33)

In order to solve this equation it is convenient to rewrite it in momentum space. Then, the

last term of Eq. (4.33) reads

�2

Z
x;y

��(~x; ~y)�
(0)
ab (~x; ~y)

�F
(0)
GL

�Aai (~x)

�F
(2;2)
GL

�Abi(~y)

= �2

Z
=p

��(~p)�ab
1

j~pj(~p�
~Aa(~p))

 
~p� �F

(2;2)
GL [ ~A]

� ~Ab(~p)

!

= �2

Z
=p

��(~p)
1

j~pj

(
~p2

 
~Aa(~p) � �F

(2;2)
GL [ ~A]

� ~Aa(~p)

!
�
�
~p � ~Aa(~p)

� 
~p � �F

(2;2)
GL [ ~A]

� ~Aa(~p)

!)
;(4.34)

where ��(~p) = e
� ~p2

4µ2 is the Fourier transform of ��(~x; ~y) and we used �ij�kl = �ik�jl � �jk�il.
The Gauss law implies that the second term on the right-hand side of the last equality of

Eq. (4.34) vanishes, so Eq. (4.33) can be rewritten as

2

Z
=p

��(~p)j~pj
 
~Aa(~p) � �F

(2;2)
GL [ ~A]

� ~Aa(~p)

!
=

Z
x;y

Z
=p;=q

e�i~p�~xe�i~q�~y��(~x; ~y)

)
�ab

�2F
(2;4)
GL

�Aai (~p)�A
b
i(~q)

+�
(1)
ab (~x; ~y)

�2F
(1)
GL

�Aai (~p)�A
b
i(~q)

+ �
(2)
ab (~x; ~y)

�2F
(0)
GL

�Aai (~p)�A
b
i(~q)

(
:

(4.35)

Before going on we need to compute the right-hand side of this equation (which again is

better handled in momentum space). The �rst term corresponds to the regularized version

of the term that already appeared in Eq. (3.27). As we can see in Eq. (4.32), the explicit

expression of F
(2;4)
GL [ ~A] is very lengthy and complicated. This made impossible a direct brute

force computation of
�2F

(2,4)
GL

�Aai (~x)�Abi (~y)
. The strategy we followed instead was to rewrite F

(2;4)
GL [ ~A]
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in terms of J and � = 1
@̄

�A + O(e) (see Eq. (3.92)), which allows for a cleaner arrangement

of the terms, in particular between gauge invariant and gauge dependent terms. Proceeding

in the same way and using (see Eq. (3.88))Z
p

�2

�Aai (�~p)�Aai (~p)
= 4

Z
p

p

�p

�2

�Ja(�~p)�Ja(~p) + 2

Z
p

�p
�2

��a(�~p)�Ja(~p) +O(e) ; (4.36)

we obtainZ
x;y

Z
=p;=q

e�i~p�~xe�i~q�~y��(~x; ~y)�ab
�2F

(2;4)
GL

�Aai (~p)�A
b
i(~q)

(4.37)

= 4CA

Z
=p;=k

e
� ~p2

4µ2

()
� 1

32

1

�p
g(3)(k; p;�k � p)� 1

64

p

�p
g(4)(p; k;�p;�k)

(
Ja(~k)Ja(�~k)

+
1

4

)
1

4
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2
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�p
+

k
�k + �p

� p�k

�p(�k + �p)

(
g(3)(p; k;�p� k)

�2
1

�p

(�k + �p)2

j~k + ~pj
+ 2

1

�p

�k2

j~kj
�

�k � �p

�p(�k + �p)

�k2

j~kj
+

�k � �p
�k + �p

�p

j~pj

(
Ja(~k)�a(�~k)

+

 
p

�p

 
(�p+ �k)2

j~p+ ~kj
� �p2

j~pj

!
� p

�p
�k

 
�p+ �k

j~p+ ~kj
� �p

j~pj

!
+ k

 
�p+ �k

j~p+ ~kj
� �p

j~pj

!!
�a(~k)�a(�~k)

)
:

This expression has an internal loop for the momentum ~p, the integral of which is regularized

by ��(~p). If we naively take the limit �!1 and do formal manipulations (momentum shifts)

of the integrals, we �nd the result obtained in Eq. (3.94):

�NCA
�

Z
=k

�k2

j~kj2
Ja(~k)Ja(�~k) = �NCA

�

Z
=k

1

j~kj2
(~k � ~Aa(~k))(~k � ~Aa(�~k)) ; (4.38)

where N has been de�ned in Eq. (3.74), whereas the terms proportional to J� and �2 vanish.

Yet, this is not the whole story. The internal momentum of the loop is characterized by

two scales: j~pj � � and j~pj � j~kj, and taking the limit � ! 1 before integration neglects

contributions from the j~pj � � region. Things change once the regularization is taken into

account, as the high energy modes j~pj � � are now also included in the computation. The

loop result of the J2 term is not modi�ed by the introduction of the regularization, since the

contribution due to j~pj � � is subleading. Therefore, Eq. (4.38) remains unchanged. Things

are di�erent, however, for the J� and �2 term. The �2 term can be simpli�ed to the following
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expression

4CA

Z
=p;=k

e
� ~p2

4µ2

  
p(�p+ �k)

j~p+ ~kj
� 1

4
j~pj
!

+ k

 
�p+ �k

j~p+ ~kj

!
+

�kp� k�p

j~pj

!
�a(~k)�a(�~k) : (4.39)

The last term vanishes under ~p ! �~p and the �rst and the third can be combined to yield

(note that the integral is dominated by j~pj � � and that the j~pj � j~kj region gives subleading

contributions)

CA

Z
=p;=k

e
� ~p2

4µ2

�
j~p+ ~kj � j~pj

�
�a(~k)�a(�~k) =

Z
=k

CA�

8
p
�
j~kj2�a(~k)�a(�~k) +O(1=�) : (4.40)

We can deal with the J� term of Eq. (4.37) in a very similar way (though with lengthier

expressions). As before, the integral is dominated by the j~pj � � region, whereas the j~pj � j~kj
region of momentum gives a subleading contribution1. Using

1

2

�
Ja(~k)�a(�~k)� Ja(�~k)�a(~k)

�
= � 1

2�k
~Aa(~k) � ~Aa(�~k) + 2k �a(~k)�a(�~k) +O(e) ;(4.41)

we rewrite the result in terms of ~A and �, and obtain

� CA
8
p
�
�

Z
=k

)
� ~Aa(~k) � ~Aa(�~k) + j~kj2 �a(~k)�a(�~k)

(
: (4.42)

The bilinear terms in � in Eqs. (4.40) and (4.42) cancel each other. Therefore, summing the

contributions from Eqs. (4.38), (4.40) and (4.42) we obtain

Z
x;y

Z
=p;=q

e�i~p�~xe�i~q�~y��(~x; ~y)�ab
�2F

(2;4)
GL

�Aai (~p)�A
b
i(~q)

= (4.43)

�NCA
�

Z
=k

1

j~kj
(~k � ~Aa(~k))(~k � ~Aa(�~k)) +

CA
8
p
�
�

Z
=k

~Aa(~k) � ~Aa(�~k) +O
�
��1
�
:

1Actually statements of this sort are not true in general, as finite momentum shifts in the integrals may
produce corrections from the j~pj � j~kj region. Such shifts do not change the leading order contribution,

which in our case is of O(µ) but may change the individual O(µ0) contributions due to the j~pj � j~kj and
j~pj � µ regions (but in such a way that the total sum remains the same), which is the precision we seek.
Therefore, such statements should be understood for a specific routing of momenta.
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We now compute the second term of the right-hand side of Eq. (4.35)
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Z
=p;=q

e�i~p�~xe�i~q�~y��(~x; ~y)�
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��1
�
: (4.44)

The third term of the right-hand side of Eq. (4.35) reads
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CA
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��1
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Combining Eqs. (4.43), (4.44) and (4.45) we obtain

Z
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��(~p)j~pj
 
~Aa(~p) � �F

(2;2)
GL [ ~A]

� ~Aa(~p)

!
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1

8

(
CA
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Z
=p

1

j~pj(~p�
~Aa(�~p))(~p� ~Aa(~p)) : (4.46)

Note that the divergent term has disappeared on the right-hand side so we can take the

�!1 limit. This equation can be solved using Eqs. (3.16) and (3.17). We obtain

F
(2;2)
GL [ ~A] = �

)
N +

1

8

(
CA
4�

Z
=p

1

j~pj2 (~p� ~Aa(�~p))(~p� ~Aa(~p)) : (4.47)

This concludes the computation of the wave functional with O(e2) precision. The complete

result is summarized in Eqs. (4.28), (4.30), (4.32) and (4.47). Note that the result is di�erent

from the one obtained in Sec. 3.2. The reason is that the prefactor of F
(2;2)
GL has changed

from Eq. (3.93) to Eq. (4.47): N ! N + 1=8. This highlights the importance of doing the

regularization of the theory from the very beginning. The existence of very lengthy and

complicated expressions in the intermediate steps impedes in practice the identi�cation of

the divergences. Therefore, one could easily miss some contributions (and yet get a �nite

result) if formally manipulating the integrals as if they were �nite before regularizing them.

4.4 Determination of ΨGI [J ]

In Sec. 3.3 we reformulated the approximation scheme worked out in Ref. [9] to provide

with a systematic expansion of the weak coupling limit. This method uses a change of �eld

variables to the gauge invariant variables J , which has the great advantage that the Gauss

law constraint is trivially satis�ed.
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4.4.1 Regularizing the kinetic term

One important consequence of this approach is that, since the vacuum wave functional is

gauge invariant, it only depends on J . It is also possible to obtain an explicit and compact

expression for the Hamiltonian in terms of J �elds. This was done in Refs. [4, 5, 6, 7,

8, 9], starting with a regularized Hamiltonian. Interestingly enough, the regularization of

the kinetic operator produced a �nite extra term in the Hamiltonian. Yet, the expression

found in those references will prove to be insu�cient for our purposes. Therefore, since

the regularization is an important point for us, we will rederive the Hamiltonian in terms

of the J �elds. In several aspects the derivation will be identical to the one carried out

in Refs. [4, 5, 6, 7, 8, 9], but we will see that we need to consider some extra terms. Our

starting point is the regularized kinetic operator Treg de�ned in Eq. (4.18). We then write

the kinetic operator in terms of holomorphic and anti-holomorphic gauge �elds2:

Treg = �1

4

Z
x;v

��(~x;~v)�ab(~x;~v)

)
�

� �Aa(~x)

�

�Ab(~v)
+

�
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�

� �Ab(~v)

(
; (4.48)

and transform it to J variables. The functional derivatives of the �rst term can be rewritten

in the following way

�
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+
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+
� �Ac(~y)
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)
(4.49)
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� �Aa(~z)

) ∣
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cb(~y)�(~y � ~v)
�

�J c(~y)

)
:

using the equalities of Sec. 3.3. Accordingly, we �nd

�ab(~x;~v)
�

� �Aa(~x)

�

�Ab(~v)

= 2i�ab(~x;~v)
�M y

cb(~v)

� �Aa(~x)
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�J c(~v)

+4

Z
z

�ab(~x;~v)

∣�
@z �G(z � x)

�
M y

da(~x) +
ie

2
�G(z � x)f edfJe(~z)M y

fa(~x)

)
M y

cb(~v)
�2

�Jd(~z)�J c(~v)

2In Refs. [4, 5, 6, 7, 8, 9] the second term of Eq. (4.48) is not incorporated, but trivially considered to be
equal to the first term. Yet, we find it illustrative to show their equality, as it is not evident from the actual
computation after the change of variables.
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+2i�ab(~x;~v)M y
cb(~v)

�2

� �Aa(~x)�J c(~v)
: (4.50)

The last term is proportional to the Gauss law operator Ia = i �Dab �
�Āb

= iM y�1
ad

�@
�
M y

db
�
�Āb

�
(see Sec. 3.3), which vanishes on physical wave functionals. For the other two terms we have

to take care of the regularization. Using Eqs. (3.44) and (3.47) we can rewrite the �rst term

of Eq. (4.50) in the following way

2i�ab(~x;~v)
�M y

cb(~v)

� �Aa(~x)
= 2ie�ab(~x;~v)

1
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M y�1

bd (~v)fdchM y�1
ah (~x) (4.51)

=: 2ieVhd(~x;~v)
1

�(v � x)
fdch ; (4.52)

where we de�ned

V dc(~x;~v) := M y
da(~x)�ab(~x;~v)M y�1

bc (~v) : (4.53)

We now turn to the second term of the regularized kinetic operator, Eq. (4.48):
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(4.54)

= 2i�ab(~x;~v)M y
ca(~x)

�2

�J c(~x)� �Ab(~v)
(4.55)

+4
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∣�
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ie
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+
ie

2
�G(z � v)f edfJe(~z)M y
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)
�

�Jd(~z)
:

Again, the �rst term is proportional to the Gauss law operator Ia. After renaming v $ x

(which can be done under the integral) and using V ba(v; x) = V ab(x; v) the second term is

identical to the second term of Eq. (4.50). The third term, after application of the functional

63



Regularization of the Yang-Mills Vacuum Wave Functional at O (e2)

derivative, reduces to

2ie�ab(~x;~v)M y
ca(~x) �G(x� v)f cdfM y

fb(~v)
�

�Jd(~x)
: (4.56)

Since �G(�x) = � �G(x), this expression is identical to Eq. (4.51).

Therefore, we �nd that both subterms of Eq. (4.48) are equal. Summing them up and

multiplying by
�
�1

4

�
we obtain the completely regularized kinetic term to all orders in

perturbation theory

Treg = �2
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ie
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�ie
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��(~x;~v)Vhd(~x;~v)fdch �G(v � x)
�

�J c(~v)
; (4.57)

This is a pure function of J , since Vdc(~x;~v) is a gauge invariant object, which makes it

possible to rewrite it completely in terms of J . The easiest way to proceed is to �rst consider

an in�nitesimal path with small ~v � ~x. By Taylor expansion one �nds

Vdc(~x;~v) = �dc � (v � x)
e

2
Jdc(~x) +O(j~x� ~vj2) ; (4.58)

where we used Jdc = �ifdceJe. By composition of these in�nitesimal paths we obtain

Vdc(~x;~v) =
�
Pe e2

∫
C dzJ(~z)

�
dc
: (4.59)

Note that the integration is over the holomorphic component only. Vdc(~x;~v) depends on the

path, though physical results should not. For illustration, we show the explicit expression

for small j~x� ~vj for the speci�c combination of paths that we consider in this chapter:

Vdc(~x;~v) = �dc +
e

2

∣
(x� v)Jdc(~v) +

(x� v)2

2
@Jdc(~v) +

(x� v)(�x� �v)

2
�@Jdc(~v)

)
+
e2

4

(x� v)2

2
(J(~v)J(~v))dc +O(j~x� ~vj3) : (4.60)

The O(ej~x � ~vj) and O(e2j~x � ~vj2) terms are path independent but not the O(ej~x � ~vj2)

terms.
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The kinetic operator Treg admits a Taylor expansion in powers of e. We are only interested

in keeping the terms that may contribute to the wave functional to O(e2). We �rst consider

the second term of Eq. (4.57). Inserting Eq. (4.60) in Eq. (4.52) we �nd

2i�ab(~x;~v)
�M y

cb(~v)

� �Aa(~x)
= �e

2CA
�

J c(~x) +O(e2j~x� ~vj; e3j~x� ~vj) : (4.61)

Note that regularization is crucial for obtaining a �nite contribution, as the leading term from

the Wilson line (proportional to �ab) vanishes. Therefore, the integration of the regularized

delta function times Eq. (4.61) over v gives

�2

4

Z
x;v

��(~x;~v)2i�ab(~x;~v)
�M y

cb(~v)

� �Aa(~x)

�

�J c(~v)
=
e2CA
2�

Z
x

J c(~x)
�

�J c(~x)
+O(e2=�; e3=�) :(4.62)

This contribution to the kinetic operator has been generated by the regularization of the

theory, i.e. it is an e�ect produced by the high-energy modes. It was �rst obtained in Ref. [5],

and it has a nice interpretation in terms of an anomaly-like computation. This term has

played a major role in the strong coupling analysis carried out in Refs. [4, 5, 6, 7, 8, 9], where

it is argued to be responsible for generating the mass gap. Yet, we would like to remark, as

is clear from the analysis above, that this contribution is obtained from a pure perturbative

computation (as anomaly-like e�ects are anyway), arising from a Taylor expansion in powers

of e. The corrections to this expression are 1=� suppressed, irrespectively of the power

of e (but starting at O(e2)). In general we may worry that such 1=� suppression may be

compensated by divergences when applied to the wave functional. This is not the case for

this term, as there is a complete factorization between the momentum of the internal loop

and the momentum of the �elds that will act on the wave functional. Therefore, we will not

consider these vanishing contributions explicitly any further (even though they are formally

of O(e2)).

We now move to the �rst term of Eq. (4.57). The expansion of V around v = x yields

�2

Z
z

∣ �
@z �G(z � x)

�
�dc +

ie

2
�G(z � x)fdceJe(~z) (4.63)

+
ie

2
(v � x)

�
@z �G(z � x)

�
fdceJe(~x)
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�e
2

8
fdeaf ecbJ b(~x)

�
(v � x)2

�
@z �G(z � x)

�
Ja(~x)

+2(v � x) �G(z � x)Ja(~z)
�) �2

�Jd(~z)�Jc(~v)
:

The third and fourth term are of O(ej~x�~vj) and O(e2j~x�~vj2) respectively, but when applied

to a functional they can give �nite contributions. We have not included

O(ej~x�~vj2) terms in this expansion. In principle they may contribute to the wave functional

at O(e2). Nevertheless, as we will see in the following, only the O(ej~x�~vj) terms give �nite

contributions at O(e2). Therefore, the O(ej~x � ~vj2) terms would give, at most, O(e2=�)

corrections to the wave functional. In order to maintain the expressions in a manageable

way, we will neglect them in the following.

After this discussion we can approximate the kinetic operator by an expression suitable

to obtain the wave functional with O(e2) accuracy:

Treg =
e2CA
2�

Z
x

Ja(~x)
�

�Ja(~x)
+

2

�

Z
x;y

1

(y � x)2

�

�Ja(~x)

�

�Ja(~y)

+ie

Z
x;y

fabc
J c(~x)

�(y � x)

�

�Ja(~x)

�

�J b(~y)

+

Z
x;v;y

��(~x;~v)

∣
ie (x� v)

�
@y �G(y � v)

�
fabeJe(~v)

+
e2

4
facef bedJ c(~v)

�
(x� v)2

�
@y �G(y � v)

�
Jd(~v)

+2(x� v) �G(y � v)Jd(~y)
�) �2

�Ja(~x)�J b(~y)

�
Z
y;z

�G(y � z)M y
ca(~y)

�

�J c(~z)
Ia(~y) +O(e3; 1=�) (4.64)

=:

Z
x

!(~x)a
�

�Ja(~x)
+

Z
x;v;y

~
reg
ab (~x;~v; ~y)

�2

�Ja(~x)�J b(~y)
+O(e3; 1=�) (4.65)

=:

Z
x

!(~x)a
�

�Ja(~x)

+

Z
x;y;(v)

�



(0)
ab (~x; ~y) + e


(1)
ab (~x; ~y) + e~


(1)
ab (~x;~v; ~y) + e2 ~


(2)
ab (~x;~v; ~y)

� �2

�Ja(~x)�J b(~y)

+O(e3; 1=�) ; (4.66)

where we dropped the term proportional to the Gauss law operator in the last two equalities,
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and we de�ned 

(0)
ab (~x; ~y) and 


(1)
ab (~x; ~y) as the coe�cients of the second and the third term of

Eq. (4.64), respectively, while ~

(1)
ab (~x;~v; ~y) is the coe�cient of the third line and ~


(2)
ab (~x;~v; ~y)

is the coe�cient of the fourth and �fth line.

Eq. (4.64) is di�erent from the expression used in Ref. [9] (given in Eq. (3.59)). They

only coincide when we take the limit � ! 1. In which case they agree to any order in

perturbation theory. Nevertheless, as we will see, this is not enough for our purposes, since

we will also have to keep some subleading terms in 1=�.

4.4.2 Solving the Schrödinger equation

Once we have obtained the regularized kinetic operator we can compute 	GI [J ]. After

changing to the J variables Eq. (4.23) reads in our case

V �
Z
x

!a(~x)
�FGI
�Ja(~x)

�
Z
x;v;y

~
reg
ab (~x;~v; ~y)

�2FGI
�Ja(~x)�J b(~y)

+

Z
x;v;y

~
reg
ab (~x;~v; ~y)

�FGI
�Ja(~x)

�FGI
�J b(~y)

= 0 ;

(4.67)

where

V =
1

2

Z
x

�@Ja(~x)�@Ja(~x) ; (4.68)

and !a(~x) and ~
reg
ab (~x;~v; ~y) are de�ned in Eq. (4.65). As before, we expand the exponent of

the vacuum wave functional in powers of the coupling constant

FGI = F
(0)
GI + eF

(1)
GI + e2F

(2)
GI +O(e3) ; (4.69)

and separate the Schr•odinger equation order by order in the coupling constant.

At O(e0) we have

Z
x;y



(0)
ab (~x; ~y)

 
�2F

(0)
GI

�Ja(~x)�J b(~y)
� �F

(0)
GI

�Ja(~x)

�F
(0)
GI

�J b(~y)

!
=

1

2

Z
z

�@Ja(~z)�@Ja(~z) : (4.70)

This, as before, is the unregularized lowest order Schr•odinger equation. Its solution is the

leading order computed in Sec. 3.3 (see Eq. (3.66)). It corresponds to the weak coupling
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limit of the leading order of Ref. [9]:

F
(0)
GI =

1

2

Z
=k

�k2

Ek
Ja(~k)Ja(�~k) =

1

2

Z
=k

1

Ek
(~k � ~Aa(~k))(~k � ~Aa(�~k)) +O(e) (4.71)

= F
(0)
GL[ ~A] +O(e) ;

where Ek � j~kj.

At O(e) we have

�
Z
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(0)
ab (~x; ~y)

 
�2F

(1)
GI

�Ja(~x)�J b(~y)
� 2

�F
(0)
GI

�Ja(~x)

�F
(1)
GI

�J b(~y)

!

�
Z
x;y



(1)
ab (~x; ~y)

 
�2F

(0)
GI

�Ja(~x)�J b(~y)
� �F

(0)
GI

�Ja(~x)

�F
(0)
GI

�J b(~y)

!

�
Z
x;v;y

~

(1)
ab (~x;~v; ~y)

 
�2F

(0)
GI

�Ja(~x)�J b(~y)
� �F

(0)
GI

�Ja(~x)

�F
(0)
GI

�J b(~y)

!
= 0 : (4.72)

The �rst term of the last line vanishes under contraction of the color indices. The second

term is of O(��2) (see App. D.3). So, as for the leading order, this equation reduces to the

unregularized version of Sec. 3.3. Thus, its solution is Eq. (3.69), which also corresponds to

the O(e) weak coupling limit of the solution shown in Ref. [9]:

F
(1)
GI = �1

4

Z
=k1; =k2; =k3

fa1a2a3

24
=�(~k1 + ~k2 + ~k3) g(3)(~k1; ~k2; ~k3)Ja1(~k1)Ja2(~k2)Ja3(~k3) ; (4.73)

where

g(3)(~k1; ~k2; ~k3) =
16

Ek1 + Ek2 + Ek3

(�k1
�k2(�k1 � �k2)

Ek1Ek2
+ cycl: perm:

)
: (4.74)

At O(e2) we determine F
(2)
GI . As in the previous section, F

(2)
GI can have contributions with

four, two and zero J 's: F
(2)
GI = F

(2;4)
GI + F

(2;2)
GI + F

(2;0)
GI . Again, there is no need to compute

F
(2;0)
GI , as it only changes the normalization of the state, which we do not �x, or alternatively

can be absorbed in a rede�nition of the ground-state energy. F
(2;4)
GI is determined by the

following equation (where 

(1)
ab (~x; ~y) and ~


(1)
ab (~x;~v; ~y) should be understood in a symmetrized
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way):

Z
x;y



(0)
ab (~x; ~y)

 
�F

(1)
GI

�Ja(~x)

�F
(1)
GI

�J b(~y)
+ 2

�F
(0)
GI

�Ja(~x)

�F
(2;4)
GI

�J b(~y)

!
+ 2

Z
x;y



(1)
ab (~x; ~y)

�F
(0)
GI

�Ja(~x)

�F
(1)
GI

�J b(~y)

+2

Z
x;v;y

~

(1)
ab (~x;~v; ~y)

�F
(0)
GI

�Ja(~x)

�F
(1)
GI

�J b(~y)
+

Z
x;v;y

~

(2)
ab (~x;~v; ~y)

�F
(0)
GI

�Ja(~x)

�F
(0)
GI

�J b(~y)
= 0 ; (4.75)

The last line vanishes for � ! 1 (see App. D.4), and again the equation reduces to the

unregularized equation with the solution

F
(2;4)
GI = �1

8

Z
=k1; =k2; =q1; =q2

fa1a2cf b1b2c

64
=�(~k1 + ~k2 + ~q1 + ~q2)g(4)(~k1; ~k2; ~q1; ~q2)

�Ja1(~k1)Ja2(~k2)J b1(~q1)J b2(~q2) ; (4.76)

where

g(4)(~k1; ~k2; ~q1; ~q2) =
1

Ek1 + Ek2 + Eq1 + Eq2(
g(3)(~k1; ~k2;�~k1 � ~k2)

k1 + k2

�k1 + �k2

g(3)(~q1; ~q2;�~q1 � ~q2)

�
∣

(2�k1 + �k2) �k1

Ek1
� (2�k2 + �k1) �k2

Ek2

)
4

�k1 + �k2

g(3)(~q1; ~q2;�~q1 � ~q2)

� g(3)(~k1; ~k2;�~k1 � ~k2)
4

�q1 + �q2

∣
(2�q1 + �q2) �q1

Eq1
� (2�q2 + �q1) �q2

Eq2

))
:

(4.77)

Again, this term corresponds to the weak coupling limit of the the analogous expression in

Ref. [9], and to the expression already found in Chap. 3.

So far the regularization of the kinetic term has not produced any modi�cation of the

results obtained in Sec. 3.3. The reason is the same as in the previous section, in the sense

that, so far, all computations we did were tree-level-like. \Loop" e�ects (sensitive to the

hard modes) are hidden in F
(2;2)
GI , where we have a kind of contraction of two �elds. We

compute this term in the next subsection.
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4.4.3 F
(2,2)
GI

F
(2;2)
GI is determined by the following equation

�CA
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Ja(~x)
�F

(0)
GI
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�
Z
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(0)
ab (~x; ~y)
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ab (~x; ~y)
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(1)
GI

�Ja(~x)�J b(~y)
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Z
x;v;y

~

(1)
ab (~x;~v; ~y)

�2F
(1)
GI

�Ja(~x)�J b(~y)
�
Z
x;v;y

~

(2)
ab (~x;~v; ~y)

�2F
(0)
GI

�Ja(~x)�J b(~y)
= 0 : (4.78)

The last term vanishes in the � ! 1 limit (see App. D.5), the next-to-last term, however,

does not. With Eqs. (4.66) and (4.73) we �nd

Z
x;v;y

~

(1)
ab (~x;~v; ~y)

�2F
(1)
GI

�Ja(~x)�J b(~y)

=3
CA

48�2

Z
=k;=p

p(�k + �p)

�p
e
� (~k+~p)2

4µ2 g(3)(~p;~k;�~k � ~p)Ja(�~k)Ja(~k) : (4.79)

In order to compute the loop integral over the internal ~p momentum, we again factorize the

modes according to the two scales of the problem: j~pj � � and j~pj � j~kj. The integral is

dominated by j~pj � �, while the j~pj � j~kj region gives subleading contributions. Overall we

obtain (here � is the angular component of ~k, such that �k = 1
2
j~kje�i�)

Z
x;v;y

~

(1)
ab (~x;~v; ~y)

�2F
(1)
GI

�Ja(~x)�J b(~y)
(4.80)

=
CA

16�2(2�)2

Z
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�
� 7e�2i�j~kj��2 +

9

4
e�2i�j~kj2�3=2�

�
Ja(�~k)Ja(~k) +O(1=�2)

= �7

8

CA
2�

Z
=k

�k2

j~kj
Ja(�~k)Ja(~k) +O(1=�) :

We now have all the ingredients to determine f
(2;2)
a1a2 (k) from Eq. (4.78), which now reads

CA
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!
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+
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(1)
ab (~x; ~y)

�2F
(1)
GI

�Ja(~x)�J b(~y)
� 7

8

CA
2�

Z
=k

�k2

j~kj
Ja(�~k)Ja(~k) = 0 (4.81)
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Z
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(~k)Ja1(�~k)Ja2(~k) = �CA
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g(4)(~k; ~p;�~k;�~p)Ja(�~k)Ja(~k)
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g(3)(~k; ~p;�~p� ~k)Ja(�~k)Ja(~k)

�
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1� 7
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(
CA
2�

Z
=k

�k2

j~kj
Ja(�~k)Ja(~k) ; (4.82)

and it is solved by

f (2;2)
a1a2

(~k) = �CA
4�

)
N +

1

8

( �k2

j~kj2
�a1a2 ; (4.83)

where N = 0:025999 (8�) was de�ned in Eq. (3.74). Therefore, e2F
(2;2)
GI reads

e2F
(2;2)
GI = �

)
N +

1

8

(
e2CA
4�

Z
=k

�k2

j~kj2
Ja(�~k)Ja(~k) (4.84)

= �
)
N +

1

8

(
e2CA
4�

Z
=k

1

j~kj2
(~k � ~Aa(�~k))(~k � ~Aa(~k)) +O(e3) (4.85)

= e2F
(2;2)
GL +O(e3) :

This concludes the computation of the wave functional with O(e2) precision in terms of J

�elds. The complete result is summarized in Eqs. (4.71), (4.73), (4.76) and (4.84). This

result di�ers from the expression obtained in Sec. 3.3, and from the weak coupling limit of

the expression obtained in Ref. [9]. The reason is that the prefactor of F
(2;2)
GI has changed

from Eq. (3.79) to Eq. (4.84): N + 1 ! N + 1=8. This is important, as now the new

prefactors of Eqs. (4.47) and (4.84) agree with each other. This was the missing ingredient

to claim complete agreement between both computations, which now we do: The vacuum

wave functional computed with methods (A) and (B) agree with each other with O(e2)

precision (when written with the same variables, either J or ~A). In other words

F
(0)
GI + eF

(1)
GI + e2(F

(2;2)
GI + F

(2;4)
GI ) = F

(0)
GL + eF

(1)
GL + e2(F

(2;2)
GL + F

(2;4)
GL ) +O(e3) : (4.86)
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Considering the recursion relations given in Chap. 3, the above result implies that

Eq. (3.63) should be replaced by

2
e2CA
2�

f (2)
a1a2

(~x1; ~x2) + 4

Z
x;y

f (2)
a1a

(~x1; ~x)(�
0)ab(~x; ~y)f
(2)
ba2

(~y; ~x2) + Vab

+e2

∣
6

Z
x;y

f
(4)
a1a2ab

(~x1; ~x2; ~x; ~y)(�
0)ab(~x; ~y) + 3

Z
x;y

f
(3)
a1ab

(~x1; ~x; ~y)(�
1)aba2(~x; ~y; ~x2)

+3

Z
x;y;v

f
(3)
a1ab

(~x1; ~x; ~y)(�~

1
)aba2(~x; ~y;~v; ~x2)

)
+O

�
e3; ��1

�
= 0 ; (4.87)

with

(�~

1
)aba2(~x; ~y;~v; ~x2) =

i

2
faba2�(~v � ~x2) (4.88)

�
�
��(~x;~v)(x� v)

�
@y �G(y � v)

�
� ��(~y;~v)(y � v)

�
@x �G(x� v)

��
;

while Eq. (3.64) remains valid up to O(e2). Note that Eqs. (3.63-3.64) were taken to be

correct to all orders in Ref. [9], while here we only consider perturbation theory up to O(e2),

dropping terms that would modify Eqs. (3.63-3.64) at higher orders.

Finally, let us note that the \mass term" Eq. (4.62), which is taken to be responsible for

generating the mass gap in a strong coupling analysis, is not a special term from the point of

view of weak coupling, as there are more terms in the Hamiltonian Eq. (4.64) that produce

identical terms to the wave functional (see, for instance, Eq. (4.80)).

4.5 Conclusions

We have obtained the complete expression for the Yang-Mills vacuum wave functional in three

dimensions at weak coupling with O(e2) precision. We have used two di�erent methods to

solve the functional Schr•odinger equation: (A) One of them generalizes to O(e2) the method

followed by Hat�eld at O(e) [13]. We have named the result obtained 	GL[ ~A]. (B) The other

uses the weak coupling version of the gauge invariant formulation of the Schr•odinger equation

and the ground-state wave functional followed by Karabali, Nair, and Yelnikov [9]. We have

named the result obtained 	GI [J ]. We addressed this computation in Chap. 3, obtaining

con
icting results between both methods, because e�ects associated to the regularization of
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the Hamiltonian were not studied. In this chapter we have carried out this study in full

detail. This has led in both cases to new (but di�erent) contributions emanating from the

regularization of the theory. The �nal results for both methods now agree with each other.

This is a very strong check of the computations and of the regularization procedure used

here. We can now claim that we have obtained the complete expression of the Yang-Mills

vacuum wave functional in three dimensions with O(e2) precision for the �rst time. In terms

of the ~A �elds the vacuum wave functional can be found in Eqs. (4.28), (4.30), (4.32) and

(4.47), and in terms of the gauge invariant J variable in Eqs. (4.71), (4.73), (4.76) and (4.84).

Both results are equal to O(e2). To our knowledge this is the �rst time that a full 
edge

(including regularization) computation of the wave functional of a gauge theory has been

undertaken.

That the result obtained here di�ers from the one obtained in Chap. 3 with method (A)

should not be so surprising, as the regularization of the kinetic operator was not considered

there. More surprising is the fact that a new term has been found using method (B), the

regularization of which had been studied in detail in the past (see, for instance, the discussions

in Refs. [7, 17], in particular in the appendix of the last reference). In those references an

intermediate cuto� �0 ∞ � was introduced in the wave functional, damping the modes with

energies greater than �0. This procedure eliminates the extra contribution we found with

method (B) in Sec. 4.4.3. However, if the same procedure is applied to method (A), it also

eliminates the mass term obtained in Sec. 4.3.1, producing the two incompatible results of

Chap. 3. Instead, we advocate doing the whole computation with a single cuto� � that

regularizes the kinetic operator and the ground-state wave functional (and all excitations)

at the same time. It is only after solving the Schr•odinger equation that we can take the

cuto� � to in�nity compared with any �nite momentum of the system. In other words, the

momenta of the �elds of the wave functional can be large. As one goes to higher orders in

perturbation theory, loops appear, whose integrals run up to in�nity, and all of these modes

have to be taken into account, producing new contributions, as we have seen in Eq. (4.80). In

a di�erent language, in order to be able to give meaning to the theory we need to regularize

the Hamiltonian. This de�nes a (regularized) Hilbert space, in which both the Hamiltonian

and the states depend on the same regulator. Preserving unitarity requires all states to

be considered in the computation. In particular, cutting them o� with a second regulator
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impairs the completeness relation.

In any case it is clear that regularization of the wave functional in the Schr•odinger

formalism is still in its infancy, and more work is needed to put the formalism on more

solid ground. In this respect we would like to mention possible additional checks of our

wave functional. One could be a numerical study at short distances, similar to the ones

executed in Refs. [25] and [29], but it is unclear whether it is possible to obtain conclusive

results in this way, since one might not �nd a su�ciently large di�erence between 	GI of

Chap. 3 (i.e. the weak coupling limit of the wave functional proposed in [9]) and the fully

regularized wave functional given in this chapter. Another test, this one analytical, could

be the computation of the static potential in a weak coupling expansion up to O(e2) from

the expectation value of the Wilson loop, and subsequent comparison with known results

computed in other representations of QFT.

Finally, we cannot avoid making some considerations of the possible signi�cance of the

mass-like term (4.84). Its mass prefactor is gauge independent. Following Refs.[4, 5, 6, 7, 8]

one may argue about its relation with the magnetic screening mass. If we do so, we obtain

m =

)
1

8
+ (8�)0:025999

(
CAe

2

2�
= 0:778426

CAe
2

2�
= 0:247781

CA
2
e2 : (4.89)

This value is in the same ballpark as the values obtained from some resummation schemes

of perturbation theory at one loop [30, 31, 32, 33]3. In particular, it is remarkably close to

the value quoted in Ref. [33]. It is also not far from the mass value proposed in Ref. [4]:

m = CAe
2

2�
, which was obtained from a strong coupling computation at leading order.

3At two loops the result depends on the renormalization scale, see Table I of Ref. [34], but the agreement
is still reasonable.
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Chapter 5

Towards the Non-perturbative

Regime

5.1 Introduction

Solving the Schr•odinger equation is of course not an end in itself. Once the vacuum wave

functional, or a suitable approximation, has been found, it can be used to compute observ-

ables, as discussed in Chap. 2. In particular it is possible to calculate the vacuum expectation

value of an operator Ô, using Eq. (2.13):

hÔi =

R
Dπ	�0[π]O	0[π]R
Dπ	�0[π]	0[π]

: (5.1)

Computations at weak coupling can obviously check results obtained with other represen-

tations, but it is in the non-perturbative regime, where the Schr•odinger representation can

realize its full potential, since it allows for a straightforward way to go beyond perturbation

theory. In this chapter we will use a trial wave functional to illustrate how the Schr•odinger

picture can be used to calculate relevant QCD observables in the regimes beyond weak

coupling.

A very important quantity in QCD which in principle can be calculated from the Yang-

Mills vacuum wave functional is the static potential Es between two static color sources. This

object is at the center of the mechanism by which con�nement takes place. So, an analytical
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Towards the Non-perturbative Regime

understanding of the static potential is crucial for a quantitative explanation of this process.

For sources in the fundamental representation (e.g. heavy quarks) it is assumed that the

static potential is linear at long distances, as long as there are no dynamical quarks in the

theory. This has not been proven analytically, but only con�rmed numerically by lattice

calculations (see e.g. Refs. [35, 36]). If dynamical quarks are present, and also for sources in

the adjoint representation, on the other hand, we expect screening of the color charge of the

source, meaning that the potential should approach a constant at long distances.

In order to investigate the static potential at long distances (and possibly other non-

perturbative observables) a strong coupling expansion for the vacuum wave functional was

developed in Ref. [8]. It was based on an interesting fact, easy to see in the formulation

in terms of J �elds: The potential term V of the Yang-Mills Hamiltonian viewed as a

functional is an eigenfunction of the kinetic operator T . Remarkably enough the leading

order (LO) term of the vacuum wave functional in this expansion predicted a linear potential

at long distances. The proportionality coe�cient ε, called string tension, was also obtained,

�nding agreement within one or two percent with lattice simulations, which obviously is an

outstanding result.

In Chap. 4, however, we found that the kinetic operator has to be modi�ed in order to

incorporate the full regularization (see Eq. (4.57)). This raises the question whether the

eigenvalue equation is a�ected by this change in the operator. In Sec. 5.2 we compute the

action of T on V in a perturbative expansion in terms of the original gauge �elds. While

we can show that V is still an eigenfunction of T , we also �nd, however, that the eigenvalue

depends on the regularization used. This sheds some doubt on the straightforward use of

the eigenvalue equation in the determination of the vacuum wave functional.

Independent of this, because of other issues of the strong coupling expansion, and in

order to provide with an expression for the ground-state wave functional that interpolates

between the weak coupling and the strong coupling regimes, a new expansion scheme was

developed in Ref. [9]. The idea of which is to de�ne

m :=
e2CA
2�

(5.2)

as a parameter independent from e and to perform an expansion in e2=m (note that e2=m
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is of O(1), yet the success of the LO result may suggest that this is a good expansion).

With this, the Hamiltonian of Eq. (3.59) could be split in a way di�erent from the splitting

used in Chap. 3, including the term with one derivative in H(0) and only taking the O(e)

term as the perturbative Hamiltonian HI . Maintaining m as an independent parameter,

the Schr•odinger equation was solved up to O (e2), yielding a new vacuum wave functional,

	KNY [J ], which can be considered a result from resummation of perturbation theory.1 Using

this wave functional, a partial set of the O (e2=m) corrections to the static potential were

computed in Ref. [9]. These corrections were still consistent with a linear potential, but there

are several points of concern for this result. First, it is not complete: not all of the O (e2=m)

corrections were computed, since in the expansion scheme used there, it would require an

in�nite number of diagrams. Moreover, some of the corrections were found to be ambiguous,

since they depend on the factorization scale (even though it was argued that the ambiguity

was small). Actually, in Ref. [24] the string tension was computed numerically using a gauge

invariant version of the leading order of 	KNY [J ] in terms of the chromomagnetic �elds and

covariant derivatives. The authors concluded that the string tension obtained from such a

functional would diverge in the continuum limit. A third point of concern regarding the

computation performed in Ref. [9] is that the ground state wave functional was assumed to

be real. Whereas this is true for both the exact result, and the approximate expressions in

the weak coupling limit (as we have shown in Sec. 3.4), the approximate expressions with m

as an independent parameter have a non-vanishing imaginary part. Finally, there may be

issues with the regularization of 	KNY [J ]. As we have seen in Chap. 4, there are problems

in the weak coupling limit, and up to now it is unclear how this translates to other regimes.

Clarifying these questions is very important, since if it were possible to show that all

corrections to all orders are compatible with a linear potential, this would prove con�nement

in three dimensions2. In order to shed light on them, we rewrite 	KNY [J ] in terms of the

gauge �elds, which allows us to compute all of the O(e2=m) corrections. In view of the issues

mentioned above, in particular the fact that the weak coupling limit of 	KNY [J ] does not

agree completely with the vacuum wave functional of Chap. 4, we do not claim that the wave

functional obtained in this way is the actual Yang-Mills vacuum wave functional, rather we

1The functional ΨGI [J ] of Sec. 3.3 is the Taylor expansion up to O
�
e2
�

(writing m as e2CA

2π ) of ΨKNY [J ].
2Provided that the sum of all contributions is different from zero.
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use it as a trial functional to test the proposal of Ref. [9]. We �nd, unsurprisingly, that at

LO a linear potential is predicted with the same coe�cient as obtained in Refs. [8] and [9].

The next-to-leading order (NLO), however, includes terms of a cubic potential. We know

that when the potential is computed in perturbation theory, it contains terms of all powers,

while in the full expression all of these terms should add up to produce the linear potential:

Epert
s (r) = c0 ln r + c1r + c2r

2 + c3r
3 + : : :

r!1
= εr +O(1) : (5.3)

Hence, higher order terms in the potential are not a problem per se, but they suggest that

either this resummation scheme is not su�cient to prove con�nement, or that the trial

functional does not have the correct long distance limit.

We investigate the strong coupling expansion of Ref. [8] in Sec. 5.2. In Sec. 5.3 we

explore the interpolating wave functional proposed in Ref. [9] and develop a method to

compute expectation values. As an illustration of the method, we calculate the correlator of

the chromomagnetic �eld and the gluon condensate at LO in Sec. 5.4. We then perform the

computation of the static potential up to NLO in Sec. 5.5. We summarize the results of this

chapter in Sec. 5.6.

5.2 A strong coupling expansion: The Yang-Mills po-

tential as an eigenfunction of the kinetic operator

Considering the Yang-Mills Hamiltonian in the language of the currents J reveals an in-

teresting property: The potential term V viewed as a functional is an eigenfunction of the

kinetic operator. The potential term considered in Ref. [8] is

V =
�

mCA

Z
x

�@Ja(x)�@Ja(x) (5.4)

and the kinetic operator is

TKKN =
mCA
�

Z
x;y

1

(y � x)2

�

�Ja(x)

�

�Ja(y)
+ im

Z
x;y

fabc
J c(x)

�(y � x)

�

�Ja(x)

�

�J b(y)
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+m

Z
x

Ja(x)
�

�Ja(x)
; (5.5)

where m = e2CA
2�

. They are obtained from the Hamiltonian of Eq. (3.59) (which is the �!1
limit of Eq. (4.57)) by a rescaling of the currents Ja ! 2�

eCA
Ja. The last term of Eq. (5.5)

counts the number of J �elds in any functional it is applied to. When applied to Eq. (5.4),

the �rst term of the kinetic operator produces an in�nite constant and the second term

vanishes. Therefore

TKKN : V := 2m : V : ; (5.6)

where we subtracted an in�nite constant in the de�nition of the normally ordered potential

: V :. Note that this equality is exact to all orders in perturbation theory. It was taken as

the starting point of a strong coupling expansion of the vacuum wave functional in Ref. [8],

in order to solve Eq. (4.21):

eH1 = eF (T + V)e�F1 =

)
T + V � [T ; F ] +

1

2
[[T ; F ]; F ]

(
1 = 0 : (5.7)

For momentum modes k ∞ m (in the regime of e2 → J) the potential can be treated

perturbatively, leading to

F =
1

2m
V +O(m�2) : (5.8)

This is the opposite limit of what we considered in Chaps. 3 and 4, where we took e2 ∞ J .

The LO vacuum wave functional obtained in this way allowed for the prediction of a static

potential with a string tension within one or two percent of the results of lattice computations.

This is an impressive result, but it has been obtained with the kinetic operator in the

� ! 1 limit, while the momenta ~k of the potential term were taken to be j~kj ∞ �. In

Chap. 4, however, we found that the � ! 1 limit should only be taken at the end of the

computation. This raises the question whether this new regularization method changes the

property of V being an eigenfunction of T or, if not, whether it modi�es the eigenvalue.

In Ref. [7] the computation was done with a di�erently regularized kinetic operator

in terms of J variables (which after removal of the regulator reduces to Eq. (5.5)) and a

regularized potential, but maintaining the assumption that the momenta in V are much

smaller than �. In this computation an eigenvalue was found which depends logarithmically
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Towards the Non-perturbative Regime

on the regulators. While it was argued that the regulator dependence could be �xed in such

a way that the eigenvalue was 2m (reproducing the result of Eq. (5.6)), it is interesting to

see how this relates to the regularization method of Chap. 4.

To investigate these questions we turn to the formulation of the Yang-Mills Hamiltonian in

terms of the original gauge �elds (method (A)). When looking at these expressions, however,

one �nds that the action of T on V is ill-de�ned { as long as only unregularized operators

are considered. But when regularizing both the kinetic operator (Eq. (4.18))

Treg = �1

2

Z
u;v

��(~u;~v)�ab(~u;~v)
�

�Aai (~u)

�

�Abi(~v)
; (5.9)

and the potential term (where a Wilson line is necessary for gauge invariant point splitting,

and we use an independent cuto� �0 for the potential in order to keep the discussion as

general as possible)

Vreg =
1

2

Z
x;y

��′(~x; ~y)Ba(~x)�ab(~x; ~y)Bb(~y) ; (5.10)

we also �nd that Vreg is an eigenfunction of Treg at O(e2). The eigenvalue, however, is

di�erent, and in particular it depends on the regulators. Note that Eq. (5.10) is di�erent

from the regularized potential used in Ref. [7]. The computation goes as follows. We look

at the terms order by order in e. For this we split the chromomagnetic �eld as

Ba = ~r� ~Aa +
e

2
fabc ~Ab � ~Ac =: B(0)

a + eB(1)
a ; (5.11)

and we also expand the Wilson lines in both the potential and kinetic terms up to O(e2),

using Eqs. (4.8-4.11). With this we can write T V up to O(e2):

Treg(�)Vreg(�0) =�1

4

Z
u;v;x;y

��(~u;~v)�ab(~u;~v)
�2

�Aai (~u)�Abi(~v)
��′(~x; ~y)Bc(~x)�cd(~x; ~y)Bd(~y)

(5.12)

=�1

4

Z
u;v;x;y

��(~u;~v)��′(~x; ~y)�ab
�2

�Aai (~u)�Abi(~v)
B(0)
c (~x)�cdB

(0)
d (~y)

�e
4

Z
u;v;x;y

��(~u;~v)��′(~x; ~y)

(
2�ab

�2

�Aai (~u)�Abi(~v)
B(0)
c (~x)�cdB

(1)
d (~y)

+�ab
�2

�Aai (~u)�Abi(~v)
B(0)
c (~x)�

(1)
cd (~x; ~y)B

(0)
d (~y)
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+�
(1)
ab (~u;~v)

�2

�Aai (~u)�Abi(~v)
B(0)
c (~x)�cdB

(0)
d (~y)

)
�e

2

4

Z
u;v;x;y

��(~u;~v)��′(~x; ~y)

(
�ab

�2

�Aai (~u)�Abi(~v)
B(1)
c (~x)�cdB

(1)
d (~y)

+2�ab
�2

�Aai (~u)�Abi(~v)
B(0)
c (~x)�

(1)
cd (~x; ~y)B

(1)
d (~y)

+�ab
�2

�Aai (~u)�Abi(~v)
B(0)
c (~x)�

(2)
cd (~x; ~y)B

(0)
d (~y)

+2�
(1)
ab (~u;~v)

�2

�Aai (~u)�Abi(~v)
B(0)
c (~x)�cdB

(1)
d (~y)

+�
(1)
ab (~u;~v)

�2

�Aai (~u)�Abi(~v)
B(0)
c (~x)�

(1)
cd (~x; ~y)B

(0)
d (~y)

+�
(2)
ab (~u;~v)

�2

�Aai (~u)�Abi(~v)
B(0)
c (~x)�cdB

(0)
d (~y)

)
+O(e3) : (5.13)

The term at O(e0) is an in�nite constant which we call c and absorb in the de�nition of the

normally ordered potential. Also, it can be checked easily, that the terms at O(e) vanish

under color symmetry. The terms at O(e2) however, turn out to be proportional to the

potential. The computation of these terms is lengthy but straightforward (see App. E for

details).

Treg(�)Vreg(�0) = c

�e
2CA
2�

Z
y

)
�2�02

(�2 + �02)
~Aa(~y) � ~Aa(~y)

� �2�02

4 (�2 + �02)2

�
(@1A

a
1(~y))2 + (@2A

a
2(~y))2 + (@1A

a
2(~y))2 + (@2A

a
1(~y))2

�(
+
e2CA
2�

Z
y

)
2

�4�02

(�2 + �02)2
~Aa(~y) � ~Aa(~y)� �4�02

2 (�2 + �02)3 (~r � ~Aa(~y))2

+B(0)a(y)B(0)a(y)

 
�2

2�0
p
�2 + �02

+
�2

2 (�2 + �02)
� �4�02

4 (�2 + �02)3

!(

+
e2CA
2�

Z
y

)
B(0)a(~y)B(0)a(~y)

�s
1 +

�2

�02
� 1
�

+
�4�02

(�2 + �02)3

�
(�02 � �2) ~Aa(~y) � ~Aa(~y)� �02 � 2�2

8 (�2 + �02)
(~r � ~Aa(~y))2

�
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�1

2

�
~r� ~Aa(~y)

�2 �4

(�2 + �02)2

(
+
e2CA
2�

Z
y

)
2

�2�04

(�2 + �02)2
~Aa(~y) � ~Aa(~y)

� �2�04

2 (�2 + �02)3 (~r � ~Aa(~y))2 +
�2�04

4 (�2 + �02)3 (~r� ~Aa(~y))2

(
+
e2CA
2�

Z
y

)
� 4�4�04

(�2 + �02)3
~Aa(~y) � ~Aa(~y)

+
3�4�04

4 (�2 + �02)4

�
(@1A

a
1(~y))2 + (@2A

a
2(~y))2

�
+

3�4�04

4 (�2 + �02)4

�
(@1A

a
2(~y))2 + (@2A

a
1(~y))2

�
+B(0)a(~y)(~r� ~Aa(~y))

�1

2

�2

�2 + �02
� 1

2

�2 (�2 + 2�02)
p
�2 + �02

�0 (�2 + �02)2

�(
+
e2CA
2�

Z
y

�2�04

(�2 + �02)3

)
(�2 � �02) ~Aa(~y) � ~Aa(~y)� �2 � 2�02

8 (�2 + �02)
(~r � ~Aa(~y))2

(
+O

�
��1
�

+O
�
e3
�

(5.14)

Summing up all the terms one �nds

Treg(�)Vreg(�0) = c+
e2CA
2�

1

2

Z
y

B(0)a(~y)B(0)a(~y)

�
)
� 1 +

3�08

2 (�2 + �02)4 �
3�06

(�2 + �02)3 +
�04

2 (�2 + �02)2

+
�03

(�2 + �02)3=2
� �0p

�2 + �02
+ 2

p
�2 + �02

�0

(
+O(e3) : (5.15)

Since we used a gauge invariant regularization and Treg and Vreg are gauge invariant operators,

it was to be expected that TregVreg would result in a gauge invariant object. That this would

be the potential, or any local quantity at all, however, was not obvious.

While we �nd that Vreg(�0) is also an eigenfunction of Treg(�) in this formulation, its

eigenvalue depends on the regulators that are used. In particular the dependence is di�erent

from the one found in Ref. [7]. In the case of equal regulators �0 = �, the eigenvalue equation

82



is

Treg(�) : Vreg(�) :=
1

32

�
�37 + 56

p
2
� e2CA

2�
: V : +O(e3) ; (5.16)

In the limit of �→ �0 it reduces to

Treg(�) : Vreg(�0) :=

)
2
�

�0
� 1 +O(��1)

(
e2CA
2�

: V : +O(e3) ; (5.17)

and it vanishes in the limit of �0 → �.

The computation in Ref. [8] was done in the limit of �→ �0, which in our case leads to a

divergent eigenvalue. As T V is not a physical observable this is no fundamental problem, but

the discrepancy of this result with Eq. (5.6) and, more importantly, its regulator dependence,

suggest that the straightforward use of the eigenvalue equality in a strong coupling expansion

of Eq. (5.7) may be problematic.

Another problem with this expansion, which was already mentioned in Ref. [8], is the fact

that the contribution of momentum modes k & e2 were completely neglected. This is not

justi�ed, even if we were only interested in the long distance behavior of the static potential,

because the e�ect of those modes is of the same order as the e�ect already included in the

previous approximation, and could go from changing the value of the coe�cient of the linear

potential to completely changing the asymptotic behavior of the potential at long distances.

In order to overcome this problem and to �nd an expression for the vacuum wave func-

tional that interpolates between the weak and the strong coupling regimes, a new approach

was developed in Ref. [9], which we investigate in the following section.

5.3 An interpolating wave functional

Taking m = e2CA
2�

as an independent parameter, in Ref. [9], the Hamiltonian of Eq. (3.59)

H = V +
2

�

Z
w;z

1

(z � w)2

�

�Ja(~w)

�

�Ja(~z)
+m

Z
Ja(~z)

�

�Ja(~z)

+ie

Z
w;z

fabc
J c(w)

�(z � w)

�

�Ja(~w)

�

�Jb(~z)
(5.18)

= H(0) +HI
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Towards the Non-perturbative Regime

was split in a way di�erent from the splitting used in Chap. 3, including the term with one

derivative in H(0) and only taking the O(e) term as HI . Using a double expansion of the

vacuum wave functional in e and the number of J �elds (Eqs. (3.61) and (3.62)), the authors

obtained the recursion relations Eqs. (3.63) and (3.64) with e2CA
2�

replaced by m. Maintaining

m as an independent parameter, the recursion relations were solved up to O(e2), yielding

the (resummed) vacuum wave functional

	KNY [J ] = exp(�FKNY [J ]) ; (5.19)

�2FKNY [J ] =

Z
f (2)
a1a2

(~x1; ~x2) Ja1(~x1)Ja2(~x2) +
e

2
f (3)
a1a2a3

(~x1; ~x2; ~x3) Ja1(~x1)Ja2(~x2)Ja3(~x3)

+
e2

4
f (4)
a1a2a3a4

(~x1; ~x2; ~x3; ~x4) Ja1(~x1)Ja2(~x2)Ja3(~x3)Ja4(~x4) + : : : ;(5.20)

= �2
�
F

(0)
KNY [J ] + eF

(1)
KNY [J ] + e2F

(2)
KNY [J ] + : : :

�
(5.21)

f (2)
a1a2

(~x1; ~x2) = f
(2)
0 a1a2

(~x1; ~x2) + e2f
(2)
2 a1a2

(~x1; ~x2) + : : : ;

f (3)
a1a2a3

(~x1; ~x2; ~x3) = �f
a1a2a3

24

Z
=k1��� =k3

exp

 
i

3X
i

~ki � ~xi
!
=�

 
3X
i

~ki

!
g(3)(~k1; ~k2; ~k3)

+O(e2) ; (5.22)

f (4)
a1a2a3a4

(~x1; ~x2; ~x3; ~x4) =
fa1a2cf b1b2c

64

Z
=k1��� =k4

exp

 
i

4X
i

~ki � ~xi
!
=�

 
4X
i

~ki

!
g(4)(~k1; ~k2;~k3; ~k4)

+O(e2) ; (5.23)

with

f
(2)
0 a1a2

(~k) = �
�k2

m+ Ek
�a1a2 ; (5.24)

f
(2)
2 a1a2

(~k) = �a1a2
1

Ek

CA
2�

)Z
d2p

32�

1

�p
g(3)(~k; ~p;�~p� ~k) +

Z
d2p

64�

p

�p
g(4)(~k; ~p;�~k;�~p)

(
= �a1a2

�k2

m2

CA
2�

~N +O(�k2~k2) ; (5.25)
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~N =

)
�63

32
+

25

4
ln

3

2

(
∝ 0:565407 ; (5.26)

g(3)(~k1; ~k2; ~k3) =
16

Ek1 + Ek2 + Ek3

( �k1
�k2(�k1 � �k2)

(m+ Ek1)(m+ Ek2)
+ cycl: perm:

)
; (5.27)

g(4)(~k1; ~k2; ~q1; ~q2) =
1

Ek1 + Ek2 + Eq1 + Eq2(
g(3)(~k1; ~k2;�~k1 � ~k2)

k1 + k2

�k1 + �k2

g(3)(~q1; ~q2;�~q1 � ~q2)

�
∣

(2�k1 + �k2) �k1

m+ Ek1
� (2�k2 + �k1) �k2

m+ Ek2

)
4

�k1 + �k2

g(3)(~q1; ~q2;�~q1 � ~q2)

� g(3)(~k1; ~k2;�~k1 � ~k2)
4

�q1 + �q2

∣
(2�q1 + �q2) �q1

m+ Eq1
� (2�q2 + �q1) �q2

m+ Eq2

))
;

(5.28)

where now in all of the above

Ek =

q
m2 + ~k2 : (5.29)

This vacuum wave functional was claimed to interpolate between the weak and the strong

coupling regimes, and to be a good approximation for all scales. In the strong coupling limit

it reduces to the wave functional proposed in Ref. [8]. We have seen in 5.2 that the latter

may be problematic conceptually, but on the other hand, it led to an impressive prediction

for the string tension. In the weak coupling limit 	KNY yields3 	GI of Chap. 3, which we

found to be correct up to O(e), but slightly di�erent from the true vacuum wave functional

at O(e2). So, while there are issues with this proposal, we still think it is worthwhile to use

it as a trial functional to test it on di�erent observables.

In order to do so, we again use Eq. (3.76):

�@nJ = �iM y( �Dn�1B)M y�1 ; (5.30)

3Note that Eqs. (3.66) and (3.71-3.73) are just the Taylor expansions of the above expressions to O(e2),

after setting m = e2CA

2π again.
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and Eq. (3.39):

M y(~x) = 1 + e

Z
y

�G(x; y) �A(~y) + e2

Z
y;z

�G(x; z) �G(z; y) �A(~y) �A(~z) +O(e3) ; (5.31)

to transform J �elds into ~A �elds. We then obtain the trial functional

	trial[ ~A] = e�Ftrial[ ~A] = e�F
(0)
trial[

~A]�eF (1)
trial[

~A]�e2F (2)
trial[

~A]+O(e3)

= e�F
(0)
KNY [J( ~A)]�eF (1)

KNY [J( ~A)]�e2F (2)
KNY [J( ~A)]+O(e3)

= 	KNY [J( ~A)] +O(e3) : (5.32)

Up to O(e) we �nd

F
(0)
trial = �

Z
=k

1

m+ Ek
Tr
h
B(~k)B( ~�k)

i
�2ie

Z
=k1; =k2; =k3

=�
�P3

i=1
~ki

�
(m+ E3)~k2

1

Tr

∣ h
~k1 � ~A(~k1)� i~k1 � ~A(~k1); B(~k2)

i
B(~k3)

)
+O(e2) (5.33)

and

eF
(1)
trial = �2e

Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!
~k1 � ~k2 + i~k1 � ~k2

(
P

iEi)(m+ E2)(m+ E3)~k2
1

Tr
h
B(~k1)

h
B(~k2); B(~k3)

ii
+O(e2) : (5.34)

Hence there is a non-trivial imaginary part at O(e)

ImF
(0)
trial

���
O(e)

= �i
Z
=k1; =k2; =k3

=�
�P3

i=1
~ki

�
(m+ E3)~k2

1

 
1 +

~k1 � ~k2

(E1 + E2 + E3)(m+ E2)

!
�
�
~k1 � ~Aa(~k1)

��
~k2 � ~Ab(~k2)

��
~k3 � ~Ac(~k3)

�
fabc ; (5.35)

which only vanishes in the limit of m ! 0 (as shown in App. A), and the same is true at

O(e2). The ground-state wave functional is real (see e.g. Ref. [3]), so it could be argued that

the non-vanishing imaginary part is an artifact of the expansion, which should drop out in

the complete expression. In any case, in Ref. [9] 	 was set to be real.
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In the method which we use to compute VEVs it is built in from the beginning that only

the real part of the wave functional is needed, as long as the operator whose expectation

value we want to compute does not contain any functional derivatives. In this case

hÔ[ ~A]i =

R
DA1DA2	�trial[

~A]O[ ~A] 	trial[ ~A]R
DA1DA2	�trial[

~A]	trial[ ~A]
=

R
DA1DA2e

�(F †trial[
~A]+Ftrial[ ~A])O[ ~A]R

DA1DA2e�(F †trial[
~A]+Ftrial[ ~A])

: (5.36)

The relevant terms are therefore

F
(0)
trial + F

(0)y
trial = �2

Z
=k

1

m+ Ek
Tr
h
B(~k)B( ~�k)

i
�4ie

Z Z
=k1; =k2; =k3; =k4

=�

 
3X
i=1

~ki

!
1

(m+ E3)~k2
1

Tr

∣ h
~k1 � ~A(~k1); B(~k2)

i
B(~k3)

)

+
e2

2
fa1a2cf b1b2c

Z
=k1; =k2; =k3; =k4

=�

 
4X
i=1

~ki

!()
1

m+ E1+2

� 1

m+ E3

(
1

~k2

2 ~k4

2)
(~k1 � ~Aa1(~k1))(~k2 � ~Aa2(~k2))(~k3 � ~Ab1(~k3))(~k4 � ~Ab2(~k4))

�(~k1 � ~Aa1(~k1))(~k2 � ~Aa2(~k2))(~k3 � ~Ab1(~k3))(~k4 � ~Ab2(~k4))

(
+

1

(m+ E2)(~k3 + ~k4)2~k2
3

(~k1 � ~Aa1(~k1))(~k2 � ~Aa2(~k2)))
(~k3 � ~Ab1(~k3))(~k3 + ~k4) � ~Ab2(~k4)� (~k3 � ~Ab1(~k3))(~k3 + ~k4)� ~Ab2(~k4)

()
+O(e3) ; (5.37)

F
(1)
trial + F

(1)y
trial = �4

Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!
~k1 � ~k2

(
P

iEi)(m+ E2)(m+ E3)~k2
1

Tr
h
B(~k1)

h
B(~k2); B(~k3)

ii
+4ie

Z
=k1; =k2; =k3; =k4

=�

 
4X
i=1

~ki

!
1

(E1+2 + E3 + E4)(m+ E3)~k2
1

Tr

∣ h
B(~k3); B(~k4)

i
(

1

(m+ E1+2)~k2
4

)
� ~k2

1

h
~k4 � ~A(~k1); B(~k2)

i
+((~k3 � ~k2) � ~k4)

h
~k1 � ~A(~k1); B(~k2)

i
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+((~k3 � ~k2)� ~k4)
h
~k1 � ~A(~k1); B(~k2)

i(
+

1

(m+ E4)(~k1 + ~k2)2~k2
2)

(~k2 � ~k4)((2~k1 � ~k2 + ~k2
2) ~k1 � ~k2

1
~k2)�

h
~A(~k1); B(~k2)

i
�(~k2 � ~k4)((2~k1 � ~k2 + ~k2

2) ~k1 � ~k2
1
~k2) �

h
~A(~k1); B(~k2)

i())
+O(e2) ; (5.38)

and

F
(2)
trial + F

(2)y
trial =

~N
CA
�

Z
=k

1

m2
Tr
h
B(~k)B( ~�k)

i
+O(~k2)

�2

Z
=k1; =k2; =k3; =k4
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4X
i=1

~ki

!
Tr
hh
B(~k1); B(~k2)

i h
B(~k3); B(~k4)

ii
� 1

(
P

iEi)(E1 + E2 + E3+4)(E3 + E4 + E1+2)(m+ E1)(m+ E3)

�
(

1

(m+ E2)(m+ E4)

~k2
1
~k2

3 � (~k1 � ~k2)(~k3 � ~k4)

(~k1 + ~k2)2

+
~k2

2

(m+ E2)

 
�2

 
2
~k3 � ~k4

~k2
4

+ 1

!
� 4

(~k1 � ~k2)(~k3 � ~k4)

~k2
2
~k2

4

! 
1

m+ E1+2

� E3 + E4 + E1+2

(~k3 + ~k4)2

!

+
(~k3 + ~k4)2

(m+ E3+4)

  
2
~k1 � ~k2

~k2
2

+ 1

! 
2
~k3 � ~k4

~k2
4

+ 1

!
� 4

(~k1 � ~k2)(~k3 � ~k4)

~k2
2
~k2

4

!

�
 

1

m+ E1+2

� 2
E3 + E4 + E1+2

(~k3 + ~k4)2

!)
+O(e) ; (5.39)

where, for brevity, we use

E1+2 =

r
m2 +

�
~k1 + ~k2

�2

: (5.40)

There is still a residual gauge freedom in 	trial, which we �x by going to the axial gauge

A1 = 0, in order to be able to actually perform the calculation. For convenience, we shall
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then call A2 = A, which should not be confused with the holomorphic component.

In practice, the computation of a VEV in 2+1 dimensions in the Schr•odinger picture

is then similar to a computation in the path-integral formalism with a complicated two

dimensional euclidean e�ective action S[A] := (F ytrial[
~A] + Ftrial[ ~A])A1=0;A2=A:

hÔ[ ~A]i =

R
DA1DA2�(A1)e�(F †trial[

~A]+Ftrial[ ~A])O[ ~A]R
DA1DA2�(A1)e�(F †trial[

~A]+Ftrial[ ~A])
=

R
DAe�S[A]O[A]R
DAe�S[A]

(5.41)

=

R
DAe�S(0)[A]�eS(1)[A]�e2S(2)[A]+O(e3)O[A]R
DAe�S(0)[A]�eS(1)[A]�e2S(2)[A]+O(e3)

(5.42)

=

R
DAe�S(0)[A]O[A]

�
1� eS(1)[A]� e2S(2)[A] + e2

2

�
S(1)[A]

�2
+O(e3)

�
R
DAe�S(0)[A]�eS(1)[A]�e2S(2)[A]+O(e3)

;(5.43)

where

S(0) =
1

2

Z
=k1; =k2

=�
�
~k1 + ~k2

� 2
�
k(1)
�2

m+ Ek1
�abAa(~k1)Ab(~k2) (5.44)

S(1) = 2i
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1 k
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(m+ E3+4)
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~k1 � ~k2

~k2
2
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~k3 � ~k4

~k2
4
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!
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(~k1 � ~k2)(~k3 � ~k4)
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!

�
 

1

m+ E1+2

� 2
E3 + E4 + E1+2

(~k3 + ~k4)2

!))
; (5.46)

and k
(i)
j indicates component i of vector ~kj.

In terms of this e�ective action the LO correlator of the A �eld is thus

hAa(~x)Ab(~y)i =

Z
=k

m+ Ek

2 (k(1))
2 e

i~k�(~x�~y)�ab : (5.47)

5.4 The magnetic field correlator and the gluon con-

densate at leading order

As a warm up we will calculate the correlator of the chromomagnetic �eld

hBa(~x)�ab(~x; ~y)Bb(~y)i (5.48)

at leading order, which is a special case of the �eld strength correlator

D����(x; y) := hGa
��(x)�ab(x; y)Gb

��(y)i : (5.49)

This is an interesting object, since it appears in non-perturbative models of QCD (see

e.g. [37]), in the gluelump spectrum ([38]) and in the hybrid static potential ([39], [40]).

In order to compute the chromomagnetic �eld correlator in the Schr•odinger picture, we
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make use of Eq. (5.47). At leading order, where �ab(~x; ~y) = �ab and in the A1 = 0 gauge,

the correlator reads

hBa(~x)�ab(~x; ~y)Bb(~y)i = @x1@
y
1�

abhAa(~x)Ab(~y)i+O
�
e2=m

�
; (5.50)

and with Eq. (5.47) this is computed to

hBa(~x)�ab(~x; ~y)Bb(~y)i = �e
�mj~zj(1 +mj~zj)

4�j~zj3 (N2
c � 1) +O

�
e2=m

�
; (5.51)

where ~z = ~x� ~y.

We can compare this to the leading order result of the �eld strength correlatorD����(x; y) =

D����(z), calculated in the operator approach in Ref. [41]. From the Lorentz structure of

this object it is clear that it can be written as

D����(z) = (������ � ������)(D0(z2) +D1(z2))

+(���z�z� � ���z�z� � ���z�z� + ���z�z�)
@

@z2
D1(z2) ; (5.52)

see Ref. [41] and references therein. There the LO in perturbation theory was computed in

D = 4� 2� dimensions. Taking �! 1
2

instead of 0, the 2+1 dimensional result is

D����(z) = (������ � ������)
N2
c � 1

2�(z2)
3
2

+(���z�z� � ���z�z� � ���z�z� + ���z�z�)
�3

4�(z2)
5
2

(N2
c � 1) +O(e) :(5.53)

With Ba = 1
2
�ijG

a
ij, and taking x and y at the same time, we can compare this to Eq. (5.51):

hBa(~x)�ab(~x; ~y)Bb(~y)i =
1

4
�ij�klDijkl(z0 = 0; ~z) = � 1

4�j~zj3 (N2
c � 1) +O(e) : (5.54)

This is equal to the m! 0 limit of Eq. (5.51).

The gluon condensate is the z ! 0 limit of D ��
�� (z) and is also relevant for non-

perturbative QCD models ([42]). In three dimensions it appears in the computation of

the three dimensional static potential (see Ref. [40]) as well as in the computation of the
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thermodynamic pressure of four dimensional QCD, being hence relevant for the expansion

rate of the universe (see e.g. [43]). The chromomagnetic part of



G��;a(~x)Ga

��(~x)
�

= �2

(�
~Ea(~x)

�2

� (Ba(~x))2

√
(5.55)

can also be computed from Eq. (5.50) by �rst taking the limit of ~z ! 0, and then doing

the integration over ~k, making use of dimensional regularization to eliminate the power

divergences:



(Ba(~x))2� =

1

2
�aa
Z

ddk

(2�)d

)
m+

q
m2 + ~k2

( ����
d!2

= � m
3

12�
(N2

c � 1) +O
�
e2=m

�
: (5.56)

The VEV of the squared chromoelectric �eld can be computed by taking the functional

derivative of the wave functional. In this case, one can set A1 = 0 only after the derivative

has been taken:

(�
~Ea(~x)

�2
√

=

R
DA1DA2�(A1)	�trial[

~A]
�
� �2

(�Aai )2

�
	trial[ ~A]R

DA1DA2�(A1)	�trial[
~A]	trial[ ~A]

(5.57)

= �
Z
=p;=q

ei(~p+~q)�~x
(~p � ~q) p1q1

(m+ Ep)(m+ Eq)
hAa(~p)Aa(~q)i (5.58)

=
m3

12�
(N2

c � 1) +O
�
e2=m

�
: (5.59)

Summing up both contributions leaves us with



G��;a(~x)Ga

��(~x)
�

= �m
3

3�
(N2

c � 1) +O
�
e2=m

�
: (5.60)

This has the same color structure and is numerically in the same ballpark as the �nite term

of the result of Ref. [44].
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5.5 The static potential at leading and next-to-leading

order

After this brief illustration we shall now come to the main point of this chapter: The com-

putation of the static potential up to NLO. The usual way to do this is by calculation of the

VEV of a rectangular Wilson loop hW�i with sides of lengths r and T . The static potential

at long distances r is then given by

Es(r) = � lim
T!1

1

T
lnhW�i : (5.61)

If the VEV of the Wilson loop satis�es the famous area law, i.e.

hW�i / exp(�εA�) ; (5.62)

where A� = r�T is the area enclosed by the Wilson loop, then the potential is linear in r and

thus con�ning. While a dependence on higher powers in r would still result in con�nement,

it was shown in Ref. [45] that, in principle, the potential cannot rise faster than linearly in

the limit of r !1, and lattice calculations (see e.g. Refs. [35, 36]) con�rm that this is the

actual behavior in 2+1 dimensions.

We will follow a di�erent, but equivalent approach here. First it will be convenient to

consider one of the two euclidean dimensions as time, so we choose x2 = it purely imaginary.

We then add static fermionic sources in the (anti-)fundamental representation of color, which

can be thought of as heavy (anti-)quarks, to the gluonic action

Stot = Sstat[ ; σ;A] + Sgl[A] (5.63)

=

Z �
 y(i@2 + eA2) + σyc(i@2 � eAT2 )σc

�
+
�
F ytrial[

~A] + Ftrial[ ~A]
� ����

A1=0;A2=A

(5.64)

=

Z �
 y(i@2 + eA) + σyc(i@2 � eAT )σc

�
+

1

2

Z
=k1; =k2

=�
�
~k1 + ~k2

� 2
�
k(1)
�2

m+ Ek1
�abAa(~k1)Ab(~k2)

+eS(1)[A] + e2S(2)[A] ; (5.65)
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where  is the Pauli spinor �eld that annihilates the fermion and σc = Cσ� (with C being

the charge conjugation matrix) is the Pauli spinor �eld that annihilates the antifermion.

S(1)[A] and S(2)[A] are given in Eqs. (5.45) and (5.46), respectively.

We create a color singlet state S(x;x0; t) depending on time t as well as (anti-)quark

positions x and x0:

jS(x;x0; t)i =  y(x; t)�(x; x0)σ(x0; t)j	0i ; (5.66)

where �(x; x0) is the Wilson line in the fundamental representation. We consider the time

evolution amplitude I(T ) of S:

I(T ) = hS(y; y0; 0)jS(x;x0;T )i (5.67)

= hS(y; y0; 0)je�iHT jS(x;x0; 0)i (5.68)

=
X
n

hS(y; y0; 0)j	nih	njS(x;x0; 0)ie�iEnT (5.69)

T!1�! hS(y; y0; 0)j	0ih	0jS(x;x0; 0)ie�iE0T (5.70)

Since the sources are static, we can take jx� x0j = jy� y0j =: r and �nd the static potential

as

Es(r) = lim
T!1

i

T
ln I(T ) : (5.71)

This computation is equivalent to the approach using the VEV of a rectangular Wilson loop,

see Ref. [46].

Making use of the framework of potential non-relativistic QCD (pNRQCD), developed in

Ref. [47] (for a review see Ref. [48]), we will match this computation on an e�ective theory

with

L = Sy(i@2 + Es(r))S : (5.72)

We can compute the potential in momentum space order by order in e2. Since we are

interested in very long distances this is equivalent to very low (external) momentum q ! 0.

This will simplify the computation, yet there are two momentum scales that have to be

considered in the loops: k � q (soft) and k � m (hard).

94



5.5.1 The leading order

At tree-level, there is only one diagram:

Figure 5.1: Tree-level gluon exchange.

In momentum space, at leading order in the exchanged momentum, the result is given

by

Ẽ(0)
s = −e2CF

m

q2
1

+O(q0) , (5.73)

which in position space becomes the sought after linear potential

E(0)
s =

e2

2
mCF r , (5.74)

with a string tension of

σ =
e4CACF

4π
. (5.75)

Unsurprisingly, we just reproduced the result of Ref. [8], using a modified approach.
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5.5.2 The next-to-leading order

At NLO there is a variety of diagrams:

a) b) c)

d) e) f)

g) h) i) j)

k) l) m) n)

Figure 5.2: Diagrams a) to n) of the NLO.

Except for diagram a), all of these diagrams have a hard (k ∼ m) and a soft (k ∼ q)

contribution. Once again, in order to keep the chapter uncluttered, we will give the actual

computations in the appendix (App. F), and only present the results here.

In diagram a) we insert the O(e2A2) term of the action (the first term of Eq. (5.46)) as

a 2-field vertex. We are only interested in the leading order in the exchanged momentum,
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which is why we already expanded the term in k=m in Eq. (5.25). The result of this diagram

is thus

� ~E(1);a
s = �2 ~Ne2CF

m

q2
1

e2CA
2�m

+O(q0) : (5.76)

While this strongly modi�es the numeric value of the leading order result (since 2 ~N ∝
1:1308), it maintains the linear dependence of the potential on the separation. This diagram

is equivalent to the correction found in Eq. (34) of Ref. [9]. The other diagrams cannot be

related in such a direct fashion to the computation done there.

Diagram b) does not contribute, neither in the hard nor in the soft regime, because the

3-�eld vertex is proportional to fabc, while the propagator in the loop is proportional to �ab,

hence the diagram vanishes:

� ~E(1);b
s = 0 : (5.77)

Diagram c) has to be evaluated in the soft and in the hard regime. In the hard regime

we �nd

� ~E(1);c
s = e2CF

m

q2
1

∣
K(3) 4�m2

q2
1

+O(q0
1)

)
e2CA
2�m

; (5.78)

with

K(3) = �1

2

Z
=k

Ek �m
(m+ Ek)(m+ 2Ek)2

; (5.79)

giving a non-linear contribution for the potential.

Diagram d) also has to be computed in both regimes. The contribution of the hard

regime is

� ~E(1);d
s = e2CF

m

q2
1

∣
K(4) 4�m2

q2
1

+O(q0
1)

)
e2CA
2�m

; (5.80)

with

K(4) =
1

2

Z
=k

(
m3 + 3m2Ek +mE2

k � E3
k

4E3
k(m+ Ek)2

� 2
2m3 + 4m2Ek +mE2

k � E3
k

(m+ 2Ek)2Ek(m+ Ek)2

)
: (5.81)

While K(3) and K(4) are divergent quantities in d = 2, their divergences cancel once they

are added up and we obtain

K(3) +K(4) = �2 + log(3=8)

16�
: (5.82)
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So we �nd that the NLO term in the e2=m expansion leads to terms of O
�
q�4

1

�
:

� ~E(1);c
s + � ~E(1);d

s = �e2CF
(2 + log(3=8))

4

m3

q4
1

e2CA
2�m

+O
�
q�2
�
: (5.83)

In position space this corresponds to a term cubic in the separation. This is in contradiction

to the result of Ref. [9], where only linear contributions were found at NLO. Moreover it

crushes our hope of computing the string tension from �rst principles, at least with this

wave functional. The only remedy would be more terms of O
�
q�4

1

�
that cancel Eq. (5.83),

coming from the other diagrams. Unfortunately, however, this does not happen (see App. F

for details):

� Both diagrams c) and d) are of O
�
q�2

1

�
in the soft regime.

� The soft contribution of diagram e) is the iteration of the potential Es(r) of Eq. (5.72)

and its hard contribution is of O (q0
1).

� Diagram f) vanishes in the soft regime, while in the hard regime it is of O (q0
1).

� Diagrams g) and h) are of O
�
q�2

1

�
in both the soft and the hard regime.

� The same is true for diagrams i) and j).

� Diagrams k) to n) are all of O
�
q�2

1

�
in both the soft and the hard regime.

So we conclude that the e2=m correction to the static potential of Eq. (5.73) is of O
�
q�4

1

�
,

or in position space, of O (r3):

~Es = �e2CF
m

q2
1

∣
1 +

e2

m

)
CA

(2 + log(3=8))

8�

m2

q2
1

+O
�
q0
�()

+O
 )

e2

m

(2
!

() Es =
e2

2
mCF r

∣
1� e2

m

)
CA

(2 + log(3=8))

48�
m2r2 +O

�
r0
�()

+O
 )

e2

m

(2
!
:(5.84)

This is not a fundamental problem, as these higher order terms should combine in such a

way that the sum grows at most linearly for long distances. It could also be that they are

canceled by higher order terms in the expansion in e2=m, which as mentioned before is of
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O(1). The possible conclusions to be drawn from Eq. (5.84) are, however, either that the

expansion in e2=m is not helpful in proving con�nement, or that 	KNY [J ] does not have the

correct long distance behavior. This last possibility is supported by our �ndings of Chap. 4.

Of course, it is also possible that both explanations are true.

5.6 Conclusions

In this chapter we have explored the non-perturbative regime and we have illustrated how

observables can be computed from the vacuum wave functional. Mathematically the com-

putation is identical to a computation in the path integral formalism, where the action is

given by the exponent of the vacuum wave functional. E�ectively the problem is reduced

to a calculation in two euclidean dimensions, the price to pay, however, is that it has to be

done with a very complicated action.

First we looked at the potential term V of the Yang-Mills Hamiltonian and found that

also in a perturbative expansion in terms of the gauge �elds, it is an eigenfunction of the

kinetic term T . Regularization of both terms is crucial for this property to exhibit itself. It

was used in Ref. [8] as the starting point of a strong coupling expansion of the vacuum wave

functional. We �nd, however, that the eigenvalue depends on the regulators, which might

make its use in the determination of the vacuum wave functional problematic. This issue

should be clari�ed before relying on a strong coupling expansion along these lines.

In a second step, we then used a trial wave functional obtained from 	KNY [J ], which

was proposed in Ref. [9], via a transformation of the �eld variables from gauge invariant

currents Ja to gluon �elds ~Aa. This functional is claimed to be a good approximation at all

scales. It is given as a series with e2=m � O(1) as expansion parameter, and it enables us

to estimate the correlator of the chromomagnetic �eld, the gluon condensate, and the string

tension. At LO the result for the gluon condensate is in reasonable agreement with the result

of Ref. [44], and the string tension agrees exactly with the result of [9], which itself is in

very good agreement with results from lattice computations. At NLO, however, we run into

trouble. While the NLO computation of the static potential in Ref. [9] produced only terms

compatible with a linear potential, we do �nd terms that are cubic in the separation. We

presume that this di�erence is due to one or several of the problems of the calculation done
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Towards the Non-perturbative Regime

there: First, not all contributions at NLO were computed, second, some of the contributions

were ambiguous, and third, the wave functional was assumed to be real, which is true for

the complete functional, but not for the individual terms of this approximation.

The failure to produce only linear terms at O (e2=m) in this computation leads us to

two possible conclusions. The obvious one seems to be that e2=m is not a good expansion

parameter, given that it is of O(1). On the one hand this has the e�ect that, like in ordinary

(non-resummed) perturbation theory, higher order terms appear which then should add up

to the linear potential. On the other hand, even if only linear terms were found, we could

never be sure of the numeric value of the string tension, as higher order terms might give

big contributions to it, so the justi�cation for its use could only be given a posteriori, when

comparing with results obtained with lattice calculations. Still, given the success of the

LO result and the tantalizing outlook to compute the string tension analytically from �rst

principles keeps us from dismissing this approach.

In light of our conclusions of Chap. 4, a second (not necessarily exclusive) explanation for

the appearance of the cubic term comes to mind: As we had to use a di�erent regularization

for method (B) than the one used in Ref. [9] to obtain the correct vacuum wave functional

at weak coupling, this di�erent regularization method will probably also modify the wave

functional in the non-perturbative regime. This would imply that in this chapter we did not

use a good approximation, and a di�erent functional, obtained from the Hamiltonian (4.57)

might actually lead to a purely linear potential.

In order to determine the vacuum wave functional in the non-perturbative regime, while

incorporating the regularization method that we developed in Chap. 4, a possibility could

be to explore an approach proposed in Ref. [49]. The idea is to apply the background �eld

method to the Schr•odinger representation: splitting the �elds into hard and soft modes,

treating the hard modes perturbatively and integrating them out. This then leads to an

e�ective potential for the soft modes. This approach is particularly appealing, since its

validity in 3+1 dimensions is straightforward, given that the coupling constant is indeed

small for the hard modes, as long as the factorization scale is set high enough. In light of

this, a good choice of variables for this kind of calculation might be the real gauge invariant

currents, proposed by Freidel in Ref. [18], which can be extended to 3+1 dimensions without

conceptual problems. We will discuss them in the following chapter.
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Chapter 6

Towards Four Dimensions

6.1 Introduction

As we have seen, considering Yang-Mills theory in three dimensions and at weak coupling

is important, since it advances our understanding of the theory. In particular, in Chap. 4

the simpli�cations provided by the weak coupling limit and the super-renormalizability of

the three dimensional theory enabled us to clarify how Yang-Mills theory in the Schr•odinger

representation should be regularized. This knowledge translates to other dimensions and to

the strong coupling regime, as well as to other theories. Furthermore, it is an alternative

approach to compute observables in three dimensions in the weak coupling regime, but it

may also allow us to compute physically relevant objects in four dimensions like the magnetic

screening mass (see Eq. (4.89)). Possible extensions to the non-perturbative regime have been

explored in Chap. 5.

Nevertheless, it is of course of major importance to devise computationally useful schemes

that can be applied to the Schr•odinger representation in the physical case of four dimensions.

A possible way to do this is to use real gauge invariant variables instead of complex ones:

Inspired by, and in order to pro�t from, the computational power of the approach developed

by Karabali et al. in Refs. [4, 5, 6, 7, 8, 9], a modi�ed approach was devised in Ref. [18].

The �eld variables in this case are real, which has the advantage that any wave functional

obtained in this way is real and gauge invariant by construction. As we have seen in Chap. 3,

depending on the computational method, neither of these properties is necessarily evident.
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More importantly, this approach allows for a generalization to any dimension. We shall call

it method (C). We will begin in 2+1 dimensions and then see how this formulation can be

extended to 3+1 dimensions. For both cases we obtain the Hamiltonian in these variables.

It di�ers from the one proposed in Ref. [18], because we employ the regularization developed

in Chap. 4.

6.2 Real gauge invariant variables

The principal idea of method (C) is that the variable transformation used by Karabali et

al. does not rely on the variables being complex. So instead of �nding complex solutions

M and M y for Eq. (3.30) one can also start with Eq. (4.13) (no sum over repeated spatial

indices in all of this chapter):

Ai = �1

e
@iMiM

�1
i ; (6.1)

which is the Euclidean analogue of Eq. (3.30). It is solved by the Bars variables (see Ref. [28]),

given in Eq. (4.9):

Mi(~x) = Pe�e
∫ ~x
∞ dziAi(~z) ; (6.2)

where the integral is a straight spatial contour for �xed xj for j 6= i, explicitly

M1(x) = 1 +
1X
n=1

(�e)n
Z
x1>t1>:::>tn

A1(t1; x2) � � �A1(tn; x2) dt1 � � � dtn

=
1X
n=0

(�e)n
Z
y

(G1A1)n(~x; ~y) ; (6.3)

with

(G1A1)2 =

Z
z

G1(x; z)A1(z)G1(z; y)A1(y) etc: (6.4)

and analogously for M2. The Green's functions are (see Eq. (4.12))

G1(~x; ~y) � G1(~x�~y) = �(x1�y1)�(x2�y2) and G2(~x; ~y) � G(~x�~y) = �(x1�y1)�(x2�y2) :

(6.5)

Note that they are not antisymmetric under exchange of ~x and ~y.

Gauge transformations (3.3) act on the Mi's like on their (anti-)holomorphic counterparts
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as

Mi ! gMi ; (6.6)

so one can de�ne gauge invariant variables

Hij = M�1
i Mj (6.7)

and currents

Jij =
1

e
(@jHij)H

�1
ij : (6.8)

Note that Hii = 1 and Hji = H�1
ij .

There is a \reality condition" on the currents' derivatives (analogous to Eq. (3.33)):

@iJij = �Hij(@jJji)Hji ; (6.9)

which in 2+1 dimensions just means that there is only one physical degree of freedom. We

choose to work with J12. It is related to the magnetic �eld by

B = �M1(@1J12)M�1
1 ; (6.10)

thus the potential term in terms of these new �elds is

V =
1

2

Z
x

@1J
a
12(x)@1J

a
12(x) : (6.11)

It is somewhat more involved to �nd the kinetic operator. To obtain the regularized

kinetic operator we start again from Eq. (4.18)

Treg = �1

2

Z
x;v

��(~x;~v)�ab(~x;~v)
�

�Aai (~x)

�

�Abi(~v)
; (6.12)

with the Wilson line

�ab(~x;~v) =
1

2

�
(M1(~x)M�1

1 (v1; x2)M2(v1; x2)M�1
2 (~v))ab

+(M2(~x)M�1
2 (x1; v2)M1(x1; v2)M�1

1 (~v))ab
�
; (6.13)
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de�ned in Eq. (4.8), and transform the �elds (A1; A2)! (A1; J12):

�2

�Aai (~x)�Abi(~v)
=

Z
z;w

(∣
�Ac1(~z)

�Aa1(~x)

�

�Ac1(~z)
+
�J c12(~z)

�Aa1(~x)

�

�J c12(~z)

)
�
∣
�Ad1(~w)

�Ab1(~v)

�

�Ad1(~w)
+
�Jd12(~w)

�Ab1(~v)

�

�Jd12(~w)

)
+

∣
�Ac1(~z)

�Aa2(~x)

�

�Ac1(~z)
+
�J c12(~z)

�Aa2(~x)

�

�J c12(~z)

)
�
∣
�Ad1(~w)

�Ab2(~v)

�

�Ad1(~w)
+
�Jd12(~w)

�Ab2(~v)

�

�Jd12(~w)

))
: (6.14)

Similar to Eqs. (3.48) and (3.54) we �nd

�J c12(~z)

�Aa1(~x)
= [Dce12(~z)G1(~z; ~x)]Mae

1 (~x) ; (6.15)

�J c12(~z)

�Aa2(~x)
= �Mac

1 (~x)�(~x� ~z) ; (6.16)

Dce12 = @2�
ce � eJ ce12 = @2�

ce + eJf12f
cef = (H12@2H21)ce : (6.17)

With these three equalities one can show that the Gauss law operator reads

Ia(~x) = i ~Dab � �

� ~Ab(~x)
(6.18)

= iDab
1 (~x)

∣
�

�Ab1(~x)
+

Z
y

�J c12(~y)

�Ab1(~x)

�

�J c12(~y)

)
+ i

Z
y

Dab
2 (~x)

�J c12(~y)

�Ab2(~x)

�

�J c12(~y)
(6.19)

= iDab
1 (~x)

�

�Ab1(~x)
: (6.20)

This reduces the kinetic operator to

T = �1

2

Z
x;v;z

��(~x;~v)�ab(~x;~v)
�2J c12(~z)

�Aa1(~x)�Ab1(~v)

�

�J c12(~z)
+

Z
x

caIa(~x)

�1

2

Z
x;v;z;w

��(~x;~v)�ab(~x;~v)

(
�J c12(~z)

�Aa1(~x)

�Jd12(~w)

�Ab1(~v)
+
�J c12(~z)

�Aa2(~x)

�Jd12(~w)

�Ab2(~v)

)
�

�J c12(~z)

�

�Jd12(~w)

(6.21)

= �e
4

Z
x;v;z

[�1(~x;~v)eg + �1(~v; ~x)ge] ��(~x;~v)

104



h
f cef

h
Dfg12 (~z)G1(~z;~v)

i
G1(~z; ~x)�

h
Dcf12(~z)G1(~z; ~x)

i
G1(~x;~v)f gfe

i �

�J c12(~z)

�1

4

Z
x;v;z;w

�
�1(~x;~v)ef + �1(~v; ~x)fe

�
��(~x;~v)h

[Dce12(~z)G1(~z; ~x)]
h
Ddf12(~w)G1(~w;~v)

i
+ �ce�fd�(~x� ~z)�(~v � ~w)

i �

�J c12(~z)

�

�Jd12(~w)
;

(6.22)

where we dropped the terms proportional to the Gauss law operator in the second equality,

since it vanishes on physical wave functionals and, following [18], we de�ned

�1(~x;~v) := H12(v1; x2)H21(~v) : (6.23)

Note that @x1 �1(~x;~v) = 0 and �1(~x; ~x) = 1. With some simpli�cation we �nd

TC = �e
4

Z
x;v;z

[�1(~x;~v)eg + �1(~v; ~x)ge] ��(~x;~v)f cef
h
Dfg12 (~z)G1(~z;~v)

i
G1(~z; ~x)

�

�J c12(~z)

�1

2

Z
v;z;w

h�
Dce12(~z)�1(~z;~v)efG�

1(~z;~v)
� h
Ddf12(~w)G1(~w;~v)

ii �

�J c12(~z)

�

�Jd12(~w)
;

�1

2

Z
z;w

�1(~z; ~w)cd��(~z; ~w)
�

�J c12(~z)

�

�Jd12(~w)
; (6.24)

where we introduced the regularized Greens function

G�
1(~x; ~y) = ��(x1 � y1)��(x2 � y2) =

1

2
(1 + Erf[�(x1 � y1)])

�p
�
e��

2(x2�y2)2 : (6.25)

Note that this kinetic operator di�ers from the 2+1 dimensional counterpart of the 3+1

dimensional one used in Ref. [18]. We will explain this discrepancy later when we discuss

the 3+1 dimensional Hamiltonian.

The main advantage of this approach is that it can be extended to 3+1 dimensions. In

order to do so, we generalize everything we did in this section. This provides no problems

for the Mi and Jij �elds. In particular we have

A3 = �1

e
@3M3M

�1
3 (6.26)
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and

J23 =
1

e
(@3H23)H�1

23 ; J31 =
1

e
(@1H31)H�1

31 : (6.27)

While in theory we also have J13 and J32, these are not independent degrees of freedom, since

they are constraint by the \reality condition" Eq. (6.9). The generalizations of Eqs. (6.15-

6.17) are

�J cij(~z)

�Aai (~x)
=
�
Dceij (~z)Gi(~z; ~x)

�
Mae

i (~x) ; (6.28)

�J cji(~z)

�Aai (~x)
= �Mac

j (~x)�(~x� ~z) ; (6.29)

�J cjk(~z)

�Aai (~x)
= 0; i 6= j; k ; (6.30)

Dceij = @j�
ce � eJ ceij = @j�

ce + eJfijf
cef = (Hij@jHji)

ce : (6.31)

The components of the chromomagnetic �eld in 3+1 dimensions are given by

Bi = �Mi+1(@i+1Ji+1;i+2)M�1
i+1 ; (6.32)

where addition in the indices is modulo 3. The potential operator in 3+1 dimensions in these

variables is hence

V3+1 =
1

2

3X
i=1

Z
x

Ba
i (~x)Ba

i (~x) =
1

2

3X
i=1

Z
x

(@iJ
a
i;i+1(~x))(@iJ

a
i;i+1(~x)) : (6.33)

In order to obtain the kinetic operator we �rst compute

3X
i=1

�2

�Aai (~x)�Abi(~v)

=
3X

i;j;k=1

Z
z;w

�J cj;j+1(~z)

�Aai (~x)

�

�J cj;j+1(~z)

�Jdk;k+1(~w)

�Abi(~v)

�

�Jdk;k+1(~w)
(6.34)

=
3X
i=1

Z
z;w

)�
Dcei;i+1(~z)Gi(~z; ~x)

�
Mae

i (~x)
�

�J ci;i+1(~z)
�Mac

i�1(~x)�(~x; ~z)
�

�J ci�1;i(~z)

(

�
 h
Ddfi;i+1(~w)Gi(~w;~v)

i
M bf

i (~v)
�

�Jdi;i+1(~w)
�M bd

i�1(~v)�(~v; ~w)
�

�Jdi�1;i(~w)

!
(6.35)
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=
3X
i=1

Z
z;w

(
eMae

i (~x)M bf
i (~v)

�
Dcei;i+1(~z)Gi(~z; ~x)

� �
fdfc�(~w; ~z)Gi(~w;~v)

� �

�Jdi;i+1(~w)

+Mae
i (~x)M bf

i (~v)

)�
Dcei;i+1(~z)Gi(~z; ~x)

� h
Ddfi;i+1(~w)Gi(~w;~v)

i
+�ce�df�(~x; ~z)�(~v; ~w)

(
�2

�J ci;i+1(~z)�Jdi;i+1(~w)

�
)
Mae

i (~x)M bd
i�1(~v)�(~v; ~w)

�
Dcei;i+1(~z)Gi(~z; ~x)

�
+Mac

i (~x)M bf
i+1(~v)�(~x; ~z)

h
Ddfi+1;i�1(~w)Gi+1(~w;~v)

i( �2

�J ci;i+1(~z)�Jdi�1;i(~w)

)
(6.36)

Generalizing the Wilson line of Eq. (4.8) we now move along the edges of a rectangular

hexahedron instead of a rectangle, leading to

�3d
ab(~x;~v) =

1

6

�
M1(~x)H12(v1; x2; x3)H23(v1; v2; x3)M�1

3 (~v)

+M2(~x)H23(x1; v2; x3)H31(x1; v2; v3)M�1
1 (~v)

+M3(~x)H31(x1; x2; v3)H12(v1; x2; v3)M�1
2 (~v)

+M1(~x)H13(v1; x2; x3)H32(v1; x2; v3)M�1
2 (~v)

+M2(~x)H21(x1; v2; x3)H13(v1; v2; x3)M�1
3 (~v)

+M3(~x)H32(x1; x2; v3)H21(x1; v2; v3)M�1
1 (~v)

�ab
; (6.37)

which equally satis�es �3d
ab(~x;~v) = �3d

ba(~v; ~x). The Hamiltonian operator in terms of gauge

invariant variables in 3+1 dimensions is hence

H3+1

=
1

2

3X
i=1

Z
x;v;z;w

��(~x;~v)

�
(
e
�
M�1

i (~x)�3d(~x;~v)Mi(~v)
�ef �
Dcei;i+1(~z)Gi(~z; ~x)

�
fdfc�(~w; ~z)Gi(~w;~v)

�

�Jdi;i+1(~w)

+
�
M�1

i (~x)�3d(~x;~v)Mi(~v)
�ef
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�
)�
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3X
i=1

Z
x

(@iJ
a
i;i+1(~x))(@iJ

a
i;i+1(~x)) : (6.38)

While this is a complicated expression, it allows for the translation of method (B), and there-

fore for analytic computations in the non-perturbative regime, to 3+1 dimensions. Note that

it di�ers from the Hamiltonian proposed in Ref. [18], where a di�erent regularization was used

and the one derivative term was argued to be subleading. In light of the results of Chap. 4

we argue, however, that all terms should be maintained until the end of a computation and

only then should the regulator be removed.

6.3 Conclusions

In this chapter we have considered a modi�cation of method (B), using real gauge invariant

currents instead of complex ones (method (C)). As demonstrated in Chap. 3, proving that the

wave functional 	GI obtained with complex variables is actually real, is a tedious exercise,

and 	trial of Chap. 5 even does have a non-trivial imaginary part. Using real currents from

the beginning guarantees a vacuum wave functional, which is both real and gauge invariant,

thus eliminating this problem right away. The main advantage of method (C), however, is

that it allows for the generalization to 3+1 dimensions. While this extension results in a

complicated expression for the Hamiltonian it is in principle possible and should be explored.

It is tempting to directly do computations in 3+1 dimensions where observables have

immediate physical relevance, but the Schr•odinger representation, though promising, is still

not fully understood. We have seen in this thesis that conceptual questions, in this case

regularization, can be clari�ed in 2+1 dimensions, and it seems worthwhile to fully under-

stand the Schr•odinger representation before moving on to more complicated problems. Due

to its super-renormalizability and the less complicated Hamiltonian, 2+1 dimensional Yang-
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Mills theory proves to be an ideal testing ground for di�erent approaches, which can then,

hopefully, be translated to other dimensions.
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Chapter 7

Conclusions

In this thesis we have investigated the Yang-Mills vacuum wave functional in 2+1 dimensions,

focusing mainly on the weak coupling regime. 2+1 dimensional Yang-Mills theory is relevant

because it is the lowest dimensional Yang-Mills theory with propagating degrees of freedom.

Put in another way, three is the lowest dimension in which the non-abelian nature of the

theory has an e�ect. This allows us to draw information about the four dimensional case

from it. On the other hand, three dimensional Yang-Mills theory is important in its own

right because its euclidean version constitutes the high temperature limit of four dimensional

QCD. The framework of the Schr•odinger representation, which we considered in this thesis,

is interesting because it allows for analytical computations in the non-perturbative regime.

Yet, it is rarely considered in the literature, and even perturbative computations are not well

developed. Moreover, regularization and renormalization are also not well understood in this

framework. In this thesis we aimed to put both perturbation theory and regularization in

the Schr•odinger picture on more solid ground.

In Chap. 3 we computed the ground-state wave functional in a perturbative expansion to

O(e2), using two di�erent methods. First we started from the usual gauge �eld Hamiltonian

and computed the vacuum wave functional directly in perturbation theory, generalizing the

method developed in Ref. [13] (method (A)). We then compared this to the corresponding

result obtained from a weak coupling expansion of the wave functional proposed in Ref. [9]

(method (B)). Each method has its own advantages and drawbacks: The wave functional

obtained with method (A), which we called 	GL, is explicitly real, but its gauge invariance
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cannot be guaranteed a priori. The result of method (B), called 	GI , on the other hand

is gauge invariant by construction, but it has a non-trivial imaginary part. Comparing the

results of the two approaches in a systematic fashion (as the expressions are too complicated

for a straightforward comparison) we were able to show in Chap. 3 that they agree up to a

real, gauge invariant term. This proves on the one hand the gauge invariance of 	GL, and

on the other hand the reality of 	GI .

Still, as we found a di�erence between the results of these two methods, and since reg-

ularization in the Schr•odinger representation is not a well-developed subject, we had to

reconsider the regularization method used, and we did so in Chap. 4. No regularization was

used for method (A) in Chap. 3, and even though the result was �nite, we found in Chap. 4

that without regularization some contributions were missed. Moreover, we found that the

regularization scheme for method (B), used in Ref. [9], also had to be modi�ed. We devel-

oped a new regularization scheme in Chap. 4. Applying it in the same way to both methods

we found new contributions for both approaches, such that the new results are identical, as

expected. This is a strong check of our computation, and we therefore claim that the wave

functional given in Eqs. (4.28), (4.30), (4.32) and (4.47) in terms of the gauge �elds ~Aa (and

in Eqs. (4.71), (4.73), (4.76) and (4.84) in terms of the gauge invariant variables Ja) is the

correct Yang-Mills vacuum wave functional to O(e2), given here for the �rst time. This is

one of the major results of this thesis. Using it, we were able to give an estimate of the

magnetic screening mass.

That the result for method (A) di�ers from Chap. 3 to Chap. 4 is not very surprising, as

the regularization of the kinetic operator was not considered in Chap. 3. More surprising is

the fact that we had to modify the result of method (B), the regularization of which had been

studied in detail in the past. In Refs. [7, 17] an intermediate cuto� �0 ∞ � was introduced

in the wave functional, damping the modes with energies greater than �0. This procedure

eliminates the extra contribution we found with method (B) in Sec. 4.4.3. However, if the

same procedure is applied to method (A), it also eliminates the mass term obtained in

Sec. 4.3.1, producing the two incompatible results of Chap. 3. Instead, we advocate doing

the whole computation with a single cuto� � that regularizes the kinetic operator and the

ground-state wave functional (and all excitations) at the same time. It is only after solving

the Schr•odinger equation that we can take the cuto� � to in�nity compared with any �nite
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momentum of the system. In other words, the momenta of the �elds of the wave functional

can be large. As one goes to higher orders in perturbation theory, loops appear, whose

integrals run up to in�nity, and all of these modes have to be taken into account, producing

new contributions, as we have seen in Eq. (4.80). In a di�erent language, in order to be

able to give meaning to the theory we need to regularize the Hamiltonian. This de�nes a

(regularized) Hilbert space, in which both the Hamiltonian and the states depend on the

same regulator. Preserving unitarity requires all states to be considered in the computation.

In particular, cutting them o� with a second regulator impairs the completeness relation.

This regularization procedure is not speci�c to Yang-Mills theory or to weak coupling or

to three dimensions. It should be applied in the same way to any QFT in the Schr•odinger

picture.

In Chap. 5 we investigated the non-perturbative regime, which is where the Schr•odinger

representation can develop its full power. In Ref. [8] it was found that the potential V of

the Yang-Mills Hamiltonian is an eigenfunction of the kinetic operator T . We tested the

robustness of this result after regularization in perturbation theory. We found that V is still

an eigenfunction of T , but the eigenvalue is di�erent, and in particular, regulator-dependent.

This suggests that a strong coupling expansion along the lines of Ref. [8] may be problematic.

We then considered an interpolating trial functional, which was obtained by transforming

the proposed wave functional of Ref. [9] to gauge �eld variables. This trial functional stems

from an expansion in e2=m and is claimed to be a good approximation at all scales. As

a test, we used it to compute the correlator of the chromomagnetic �eld at leading order,

which in the weak coupling limit agrees with the perturbative computation, and to estimate

the gluon condensate. We then turned our attention to the static potential. At leading order

we found a linear potential, but the next order in the e2=m expansion leads to contributions

cubic in the separation, contrary to what was found in Ref. [9], where all corrections were

compatible with a linear potential. This makes it impossible to compute the string tension

analytically from �rst principles in this fashion. While it is perfectly possible that the cubic

terms are due to the fact that the e2=m expansion is not the appropriate one to only contain

linear terms, another explanation might be that the trial functional does not have the correct

long distance behavior. As was shown in Chap. 4 (in particular in Eq. (4.80)), the crucial

\mass term" which led to the speci�c form of the vacuum wave functional of Ref. [9] is
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not the only term of this sort in the weak coupling regime: more terms in the Hamiltonian

Eq. (4.64) produce this type of terms in the wave functional. Taking these into account in the

non-perturbative regime probably leads to a di�erent vacuum wave functional, which might

exhibit the desired behavior. In any case the consequences of the di�erent regularization

method employed in Chap. 4 for the approximate resummation scheme analysis carried out

in Ref. [9] should be explored.

A third approach, the formulation of Yang-Mills theory in terms of real gauge invariant

variables developed in Ref. [18], was presented in Chap. 6. It combines the advantages

of having a vacuum wave functional which is both manifestly real and gauge invariant by

construction with the possibility of a straightforward extension to 3+1 dimensions. Following

our result of Chap. 4 we claim, however, that the correct Hamiltonian in this formulation is

not the one proposed in Ref. [18], but is given by Eqs. (6.24) and (6.38) for 2+1 and 3+1

dimensions, respectively, since the regulator should only be removed after the determination

of the vacuum wave functional.

The main contribution of this thesis is that we clarify how regularization in the Schr•odinger

picture should be implemented. We have demonstrated that it is worthwhile to investigate

theories outside of their physically relevant regime, since the resulting simpli�cations can help

to understand conceptual problems, whose solutions, as in this case, may then be generalized

to other regimes.
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Appendix A

Comparison of ΨGL and ΨGI at O(e)

In this appendix we will show that 	GL and 	GI are equal at O(e). At this order we obtain

in the gauge invariant approach Eq. (3.78):

F
(1)
GI [ ~A] = ifabc

Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!(
1

2j~k1j
(~k1 � ~Aa(~k1))( ~Ab(~k2)� ~Ac(~k3))

� 1

j~k3j~k2
1

 
~k1 � ~k2 + i~k1 � ~k2

(j~k1j+ j~k2j+ j~k3j)j~k2j
+ i

!
(~k1 � ~Aa(~k1))(~k2 � ~Ab(~k2))(~k3 � ~Ac(~k3))

+
1

j~k3j~k2
1

(~k1 � ~Aa(~k1))(~k2 � ~Ab(~k2))(~k3 � ~Ac(~k3))

)
: (A.1)

The imaginary part

Im[F
(1)
GI [ ~A]] = ifabc

Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

! 
~k1 � ~k2

(
P

i j~kij)~k2
1j~k2jj~k3j

+
1

j~k3j~k2
1

!
(~k1 � ~Aa(~k1))(~k2 � ~Ab(~k2))(~k3 � ~Ac(~k3)) (A.2)

vanishes identically as we now show. Because of the delta function we can write ~k1 as �~k2�~k3

under the integral:

= ifabc
Z
=k1; =k2; =k3

=�

 
3X
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~ki

! 
~k2

2

(
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(~k1 � ~Aa(~k1))(~k2 � ~Ab(~k2))(~k3 � ~Ac(~k3)) : (A.3)
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The second term vanishes when interchanging ~k2 $ ~k3, hence

Im[F
(1)
GI [ ~A]] = ifabc

Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!
1

(
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i j~kij)~k2
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X
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= 0 : (A.6)

The �rst term vanishes under ~k1 $ ~k3, the second under ~k2 $ ~k3.

We now look at (the real part of) the second line of Eq. (A.1):

ifabc
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where we used �ij�kl = �ik�jl � �il�jk. We again write ~k1 as �~k2 � ~k3 and note that as above

the ~k3 � ~k2 term vanishes due to symmetry under ~k2 $ ~k3:
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Plugging this back into Eq. (A.1) gives

F
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The last term vanishes under ~k2 $ ~k3, and in the next-to-last we replace (~k2 � ~Ab(~k2)) !
�(~k1 + ~k3)� ~Ab(~k2). Then we have
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Exchanging ~k2 $ ~k1 in the next-to-last line and making use of

(~k � ~A)(~k � ~B)� (~k � ~A)(~k � ~B) = ~k2( ~A� ~B) (A.12)

we �nd
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= F
(1)
GL[ ~A] : (A.16)

This is F
(1)
GL[ ~A] as found in Eq. (3.18), so 	GL and 	GI are equal at O(e).
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Comparison of ΨGL and ΨGI at O(e2)

In this appendix we will show that 	GL and 	GI are equal at O(e2A4). In order to do so

we rewrite F
(0)
GL[ ~A] (Eq. (3.11)), F

(1)
GL[ ~A] (Eq. (3.18)), and F

(2;4)
GL [ ~A] (Eq. (3.26)) in terms of J

and �.

We �rst consider F
(1)
GL[J( ~A); �( ~A)] at O(e0) in Sec. B.1, which allows us to compute

F
(2;4)
GL [J; �] in Sec. B.2 from Eq. (3.25):
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This we split up order by order in � and rewrite it in such a way that the prefactor
1

j~k1j+ j~k2j+ j~q1j+ j~q2j
drops out. These expressions then give us guiding lines on the form

in which we need to bring F
(1)
GL[J; �] at O(e), which we do in Sec. B.3, and F

(0)
GL[J; �] at O(e2)

(in Sec. B.4). We will then see, that adding up all the terms cancels the � dependent terms,

while the � independent term is equal to F
(2;4)
GI [J ].
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We use Eqs. (3.86) and (3.87):
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a(~k1)J b(~k2)� 2i(k1
�k2 � �k1k2)�a(~k1)�b(~k2)

+
ie

2
Ja(~k1)f bcd

Z
=q

�q �c(~q)�d(~k2 � ~q)�
ie

2
facd

Z
=q

�q �c(~q)�d(~k1 � ~q)J b(~k2)

�iefacd
Z
=q

�c(~k1 � ~q)Jd(~q)�k2�
b(~k2)

+ie�k1�
a(~k1)f bcd

Z
=q

�c(~k2 � ~q)Jd(~q) +O(e2) : (B.7)

If ~k1 and ~k2 can be interchanged such that interchanging a $ b gives a minus, this last

product becomes:Z
k1;k2

fabc ~Aa(~k1)� ~Ab(~k2) =

Z
k1;k2

fabc
(

2i �k2J
a(~k1)�b(~k2)� 4ik1

�k2�
a(~k1)�b(~k2)

+ieJa(~k1)f bde
Z
=q

�q �d(~q)�e(~k2 � ~q)

�2ie�k2f
ade

Z
=q

�d(~k1 � ~q)Je(~q)�b(~k2) +O(e2)

)
: (B.8)

B.1 F
(1)
GL[J( ~A); �( ~A)] at O(e0)

We begin with Eq. (3.18):

F
(1)
GL[ ~A] = ifabc

Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!(
1

2(
P3

i j~kij)
(~k1 � ~Aa(~k1))( ~Ab(~k2)� ~Ac(~k3))

� 1

(
P3

i j~kij)j~k1jj~k3j
(~k1 � ~Aa(~k1))(~k3 � ~Ab(~k2))(~k3 � ~Ac(~k3))

)
(B.9)

and use the above relations to rewrite it in terms of J and �, �nding

F
(1)
GL[J; �] = �fabc

Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!(
1P3

i=1 j~kij
�k1

�k2
3

j~k1jj~k3j
Ja(~k1)J b(~k2)J c(~k3)
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+
�k2

3

j~k3j
Ja(~k1)J c(~k3)�b(~k2)� 2

�k1k2
�k3P3

i=1 j~kij
Ja(~k1)�b(~k2)�c(~k3)

+2
(k3

�k2 � �k3k2)�k3j~k1jP3
i=1 j~kijj~k3j

�a(~k1)�b(~k2)J c(~k3)

)
+O(e) : (B.10)

Note that the term cubic in J is F
(1)
GI [J ], also note that there is no term cubic in �.

In the parenthesis of the last term, k3 and �k3 can be replaced by �(k1 +k2) and �(�k1 +�k2)

respectively, where the �k2k2 terms cancel:

F
(1)
GL[J; �] = �fabc

Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!(
1P3

i=1 j~kij
�k1

�k2
3

j~k1jj~k3j
Ja(~k1)J b(~k2)J c(~k3)

+
�k2

3

j~k3j
Ja(~k1)J c(~k3)�b(~k2)� 2

�k1k2
�k3P3

i=1 j~kij
Ja(~k1)�b(~k2)�c(~k3)

+2
(k1

�k2 � �k1k2)�k3j~k1jP3
i=1 j~kijj~k3j

�a(~k1)�b(~k2)J c(~k3)

)
+O(e) : (B.11)

Renaming ~k1 $ ~k3 in the last term results in

= �fabc
Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!(
1P3

i=1 j~kij
�k1

�k2
3

j~k1jj~k3j
Ja(~k1)J b(~k2)J c(~k3) +

�k2
3

j~k3j
Ja(~k1)J c(~k3)�b(~k2)

)

�2fabc
Z
=k1; =k2; =k3

=�
�P3

i=1
~ki

�
P3

i=1 j~kij

(
�k1k2

�k3 �
j~k3j
j~k1j

k3
�k2

�k1 +
j~k3j
j~k1j

�k3k2
�k1

)
Ja(~k1)�b(~k2)�c(~k3)

+O(e) : (B.12)

Renaming k2 $ k3 in the 2nd term of the 2nd line gives a sum over momenta-moduli, thus

canceling the sum in the denominator.

= �fabc
Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!(
1P3

i=1 j~kij
�k1

�k2
3

j~k1jj~k3j
Ja(~k1)J b(~k2)J c(~k3) +

�k2
3

j~k3j
Ja(~k1)J c(~k3)�b(~k2)

)

�2fabc
Z
=k1; =k2; =k3

=�

 
3X
i=1

~ki

!
�k1k2

�k3

j~k1j
Ja(~k1)�b(~k2)�c(~k3) +O(e) : (B.13)
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B.1.1
δF

(1)
GL

δAai (~p)

We also transform the functional derivatives:

�F
(1)
GL

�Aai (~p)
=

Z
q

�Ab(~q)

�Aai (~p)

�F
(1)
GL

�Ab(~q)
+

Z
q

� �Ab(~q)

�Aai (~p)

�F
(1)
GL

� �Ab(~q)

=

Z
q1;q2

�Ab(~q1)

�Aai (~p)

�J c(~q2)

�Ab(~q1)

�F
(1)
GL

�J c(~q2)

+

Z
q1;q2

� �Ab(~q1)

�Aai (~p)

 
�J c(~q2)

� �Ab(~q1)

�F
(1)
GL

�J c(~q2)
+ �(~q1 � ~q2)

�F
(1)
GL

� �Ab(~q2)

!

=
1

2
(�1i + i�2i) (2i)

�F
(1)
GL

�Ja(~p)
+

1

2
(�1i � i�2i)

 
�2i

p

�p

�F
(1)
GL

�Ja(~p)
+

�F
(1)
GL

� �Aa(~p)

!
+O(e) (B.14)

=
1

2
(�1i + i�2i) (2i)

�F
(1)
GL

�Ja(~p)
+

1

2
(�1i � i�2i)

 
�2i

p

�p

�F
(1)
GL

�Ja(~p)
+

1

i�p

�F
(1)
GL

��a(~p)

!
+O(e) : (B.15)

�F
(1)
GL

�Ja(~p)
= �faa1a2

Z
=k1; =k2

=�
�
~k1 + ~k2 + ~p

�(g(3)(~k1; ~k2; ~p)

32
Ja1(~k1)Ja2(~k2)

+

 
�p2

j~pj �
�k2

1

j~k1j

!
Ja1(~k1)�a2(~k2) + 2

�pk1
�k2

j~pj �
a1(~k1)�a2(~k2)

)
+O(e) : (B.16)

�F
(1)
GL

� �Aa(~p)
= �ifaa1a2

Z
=�
�
~k1 + ~k2 + ~p

� �k2
2

j~k2j
1

�p
Ja1(~k1)Ja2(~k2)

+2ifaa1a2
Z
=�
�
~k1 + ~k2 + ~p

�(
�

�k1
�k2

j~k1j
p

�p
+

�k1k2

j~k1j

)
Ja1(~k1)�a2(~k2) +O(e) :(B.17)

Putting them together results in

�F
(1)
GL

�Aai (~p)
= �ifaa1a2

Z
=k1; =k2

=�
�
~k1 + ~k2 + ~p

�
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((
(�1i + i�2i)

g(3)(~k1; ~k2; ~p)

32

+(�1i � i�2i)

 
�p

�p

g(3)(~k1; ~k2; ~p)

32
+

�k2
2

2�pj~k2j

!)
Ja1(~k1)Ja2(~k2)

+

(
(�1i + i�2i)

 
�p2

j~pj �
�k2

1

j~k1j

!

�(�1i � i�2i)

 
1

4
j~pj+

�k1

j~k1j

)
�p

�p
(�k1 + �k2) + k2

(!)
Ja1(~k1)�a2(~k2)

+

(
(�1i + i�2i)2

�pk1
�k2

j~pj � (�1i � i�2i)2
pk1

�k2

j~pj

)
�a1(~k1)�a2(~k2)

)
+O(e) : (B.18)

B.2 F
(2;4)
GL [J; �]

From the above we can compute F
(2;4)
GL [J; �] using Eq. (B.1), and we do so, order by order in

�.

B.2.1 Orders �0 and �:)
�F

(1)
GL

�A

(2

-term

We shall use that)
(�1i + i�2i)C(~p) + (�1i � i�2i)D(~p)

()
(�1i + i�2i)C(�~p) + (�1i � i�2i)D(�~p)

(
= 2C(~p)D(�~p) + 2D(~p)C(�~p) : (B.19)

=)
Z
p

�F
(1)
GL

�Aai (~p)

�F
(1)
GL

�Aai (�~p)

= � 1

16
faa1a2fab1b2

Z
=k1; =k2; =q1; =q2;p

=�
�
~k1 + ~k2 + ~p

�
=� (~q1 + ~q2 � ~p) Ja1(~k1)Ja2(~k2)J b1(~q1)J b2(~q2)(

g(3)(~k1; ~k2; ~p)

)
�q2
2

2(��p)j~q2j
� p

�p

g(3)(~q1; ~q2;�~p)
32

(
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+

 
�k2

2

2�pj~k2j
� p

�p

g(3)(~k1; ~k2; ~p)

32

!
g(3)(~q1; ~q2;�~p)

)
�2faa1a2fab1b2

Z
=k1; =k2; =q1; =q2;p

=�
�
~k1 + ~k2 + ~p

�
=� (~q1 + ~q2 � ~p)( 

�p2

j~pj �
�k2

1

j~k1j

!)
�q2
2

2(��p)j~q2j
� p

�p

g(3)(~q1; ~q2;�~p)
32

(
Ja1(~k1)�a2(~k2)J b1(~q1)J b2(~q2)

+

)
�p2

j~pj �
�q2
1

j~q1j

( �k2
2

2�pj~k2j
� p

�p

g(3)(~k1; ~k2; ~p)

32

!
Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2)

)
(B.20)

+
1

16
faa1a2fab1b2

Z
=k1; =k2; =q1; =q2;p

=�
�
~k1 + ~k2 + ~p

�
=� (~q1 + ~q2 � ~p)(

g(3)(~k1; ~k2; ~p)

)
1

4
j~pj+ �q1

j~q1j

)
�p

�p
(�q1 + �q2) + q2

((
Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2)

+g(3)(~q1; ~q2;�~p)
 

1

4
j~pj+

�k1

j~k1j

)
�p

�p
(�k1 + �k2) + k2

(!
Ja1(~k1)�a2(~k2)J b1(~q1)J b2(~q2)

)
+O(�2) +O(e)

= � 1

256
faa1a2fab1b2

Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
Ja1(~k1)Ja2(~k2)J b1(~q1)J b2(~q2) 

16
�k2

2

(��k1 � �k2)j~k2j
� k1 + k2

�k1 + �k2

g(3)(~k1; ~k2;�~k1 � ~k2)

!
g(3)(~q1; ~q2;�~q1 � ~q2)

�1

8
faa1a2fab1b2

Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2))

(�q1 + �q2)2

j~q1 + ~q2j
� �q2

1

j~q1j

( 
�16

�k2
2

(�k1 + �k2)j~k2j
� k1 + k2

�k1 + �k2

g(3)(~k1; ~k2;�~k1 � ~k2)

!
+

1

8
faa1a2fab1b2

Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2)

g(3)(~k1; ~k2;�~k1 � ~k2)

)
1

4
j~q1 + ~q2j+

�q1

j~q1j
(�(q1 + q2) + q2)

(
+O(�2) +O(e) : (B.21)

)
~A � �F

(1)
GL

� ~A

(
-term

�if b1b2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)P
i(j~kij+ j~qij)j~q1j

(~q1 � ~Ab1(~q1))

 
~Ab2(~q2) � �F

(1)
GL

� ~Ac(~p)
[~k1; ~k2]

!
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= �i2f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)=�(~k1 + ~k2 + ~p)

(j~k1j+ j~k2j+ j~q1j+ j~q2j)j~q1j
�(�i�q1J

b1(~q1) + ij~q1j2�b1(~q1))Ab2i (~q2)(�i)((
(�1i + i�2i)

g(3)(~k1; ~k2; ~p)

32
+ (�1i � i�2i)

 
�p

�p

g(3)(~k1; ~k2; ~p)

32
+

�k2
2

2�pj~k2j

!)
Ja1(~k1)Ja2(~k2)

+(�1i + i�2i)

 
�p2

j~pj �
�k2

1

j~k1j

!
Ja1(~k1)�a2(~k2) + (�1i � i�2i)O(�)

)
+O(e) (B.22)

= (�i)3f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)=�(~k1 + ~k2 + ~p)

(j~k1j+ j~k2j+ j~q1j+ j~q2j)j~q1j
�
�q1J

b1(~q1)� j~q1j2�b1(~q1)
�

((
2Ab2(~q2)

g(3)(~k1; ~k2; ~p)

32
+ 2 �Ab2(~q2)

 
�p

�p

g(3)(~k1; ~k2; ~p)

32
+

�k2
2

2�pj~k2j

!)
Ja1(~k1)Ja2(~k2)

+2Ab2(~q2)

 
�p2

j~pj �
�k2

1

j~k1j

!
Ja1(~k1)�a2(~k2)

)
+O(�2) +O(e) (B.23)

= (�i)4f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)=�(~k1 + ~k2 + ~p)

(j~k1j+ j~k2j+ j~q1j+ j~q2j)j~q1j
�
�q1J

b1(~q1)� j~q1j2�b1(~q1)
�
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(J b2(~q2)� 2q2�

b2(~q2))
g(3)(~k1; ~k2; ~p)

32
� 2�q2�

b2(~q2)

 
�p

�p

g(3)(~k1; ~k2; ~p)

32
+

�k2
2

2�pj~k2j

!)
�Ja1(~k1)Ja2(~k2)

+J b2(~q2)

 
�p2

j~pj �
�k2

1

j~k1j

!
Ja1(~k1)�a2(~k2)

)
+O(�2) +O(e) (B.24)

=
1

32
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�(~k1 + ~k2 + ~q1 + ~q2)�k1

(j~k1j+ j~k2j+ j~q1j+ j~q2j)j~k1j
g(3)(~q1; ~q2;�~q1 � ~q2)

Ja1(~k1)Ja2(~k2)J b1(~q1)J b2(~q2)

+
1

16
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�(~k1 + ~k2 + ~q1 + ~q2)

j~k1j+ j~k2j+ j~q1j+ j~q2j
Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2)(

1

2
j~q2jg(3)(~k1; ~k2;�~k1 � ~k2) +

�q1

j~q1j

)
�q2 + �q2

k1 + k2

�k1 + �k2

(
g(3)(~k1; ~k2;�~k1 � ~k2)

+16
�q1

j~q1j
�q2

�k2
2

(�k1 + �k2)j~k2j
+ 16

�k1

j~k1j

)
(�q1 + �q2)2

j~q1 + ~q2j
� �q2

1

j~q1j

()
+O(�2) +O(e) : (B.25)

Both of them together

The (A� A)2-term is of O(�2), so
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F
(2;4)
GL = �1

2

Z
=p; =k1; =k2; =q1; =q2

1P
i(j~kij+ j~qij)

 
�F

(1)
GL

�Aai (~p)

!
[~k1; ~k2]

 
�F

(1)
GL

�Aai (�~p)

!
[~q1; ~q2]

�if b1b2c
Z
=p; =k1; =k2; =q1; =q2
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~Ab2(~q2) � �F
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[~k1; ~k2]
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+O(�2) +O(e) (B.26)

= � 1
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fa1a2cf b1b2c
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1

j~q1j

()
+O(�2) +O(e) : (B.27)

Only order �0

F
(2;4)
GL jO(�0) = � 1
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j~k2j
�

�k1(2�k1 + �k2)

j~k1j

!
4

�k1 + �k2

g(3)(~q1; ~q2;�~q1 � ~q2)

+

)
�q2(2�q2 + �q1)

j~q2j
� �q1(2�q1 + �q2)

j~q1j

(
4

�q1 + �q2

g(3)(~k1; ~k2;�~k1 � ~k2)

)
+O(e) (B.28)
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= F
(2;4)
GI [J ] +O(e) ; (B.29)

which is what we expect.

Order �

F
(2;4)
GL jO(�) =

1

16
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�(~k1 + ~k2 + ~q1 + ~q2)

j~k1j+ j~k2j+ j~q1j+ j~q2j
Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2)()

�1

4
j~q1 + ~q2j+

�q1

j~q1j
(�q1 + �q2)

k1 + k2

�k1 + �k2

� �q1q2

j~q1j
� 1

4
j~q1 + ~q2j+

1

4
j~q1j+

1

2
j~q2j
(

�g(3)(~k1; ~k2;�~k1 � ~k2)

+16

 
(�q1 + �q2)

j~q1 + ~q2j
�k2

2

j~k2j
+

�q1
�k2

2

j~q1j(�k1 + �k2)j~k2j
(�q1 + �q2) +

�k1

j~k1j
(�q1 + �q2)2

j~q1 + ~q2j
�

�k1

j~k1j
�q2
1

j~q1j

!)
+O(e) (B.30)

=
1

16
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�(~k1 + ~k2 + ~q1 + ~q2)

j~k1j+ j~k2j+ j~q1j+ j~q2j
Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2)()

�1

2
j~q1 + ~q2j+

1

2
j~q1j+

1

2
j~q2j
(
g(3)(~k1; ~k2;�~k1 � ~k2)

+16

 
�k2

2

j~k2j
(��k1 � �k2)

j � ~k1 � ~k2j
+

(��k1 � �k2)2

j � ~k1 � ~k2j
�k1

j~k1j
� �q1

�k2
2

j~q1jj~k2j
�

�k1

j~k1j
�q2
1

j~q1j

!)
+O(e) (B.31)

=
1

16
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�(~k1 + ~k2 + ~q1 + ~q2)

j~k1j+ j~k2j+ j~q1j+ j~q2j
Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2)()

�1

2
j~q1 + ~q2j+

1

2
j~q1j+

1

2
j~q2j
(
g(3)(~k1; ~k2;�~k1 � ~k2)

+
1

2

�
j~k1j+ j~k2j+ j~k1 + ~k2j

�
g(3)(~k1; ~k2;�~k1 � ~k2)

+16

 
�

�k2
1
�k2

j~k1jj~k2j
� �q1

�k2
2

j~q1jj~k2j
�

�k1

j~k1j
�q2
1

j~q1j

!)
+O(e) (B.32)

=
1

16
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�(~k1 + ~k2 + ~q1 + ~q2)

j~k1j+ j~k2j+ j~q1j+ j~q2j
Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2)(

1

2

�
j~k1j+ j~k2j+ j~q1j+ j~q2j

�
g(3)(~k1; ~k2;�~k1 � ~k2)

�1

2

�
j~k1j+ j~k2j+ j~q1j

�
g(3)(~k1; ~k2; ~q1)

)
+O(e) (B.33)
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=
1

32
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2)g(3)(~k1; ~k2;�~k1 � ~k2)

� 1

32

1

3

�
fa1a2cf b1b2c + f b1a1cfa2b2c + fa2b1cfa1b2c

� Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
j~k1j+ j~k2j+ j~q1j

j~k1j+ j~k2j+ j~q1j+ j~q2j
g(3)(~k1; ~k2; ~q1)Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2) +O(e) : (B.34)

The last equality is true because g(3)(~k1; ~k2; ~q1) = g(3)(~q1; ~k1; ~k2) = g(3)(~k2; ~q1; ~k1). The sum

of the structure constants is the Jacobi-Identity, which vanishes, so

F
(2;4)
GL jO(�) =

fa1a2cf b1b2c

32

Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
g(3)(~k1; ~k2;�~k1 � ~k2)

Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2) : (B.35)

B.2.2 Order �2:)
�F

(1)
GL

�A

(2

-term

Z
p

�F
(1)
GL

�Aai (~p)

�F
(1)
GL

�Aai (�~p)

����
O(�2)

= 4(�i)2faa1a2fab1b2
Z
=k1; =k2; =q1; =q2;p

=�
�
~k1 + ~k2 + ~p

�
=� (~q1 + ~q2 � ~p) Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)( 

�p2

j~pj �
�k2

1

j~k1j

!
(�1)

)
1

4
j~pj+ �q1

j~q1j

)
�p

�p
(�q1 + �q2) + q2

(()
4(�i)2faa1a2fab1b2

Z
=k1; =k2; =q1; =q2;p

=�
�
~k1 + ~k2 + ~p

�
=� (~q1 + ~q2 � ~p) Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)(

g(3)(~k1; ~k2; ~p)

32
(�2)

(�p)q1�q2

j~pj + 2
(��p)q1�q2

j~pj

 
�p

�p

g(3)(~k1; ~k2; ~p)

32
+

�k2
2

2�pj~k2j

!)
+O(e) (B.36)

= faa1a2fab1b2
Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)( 

(�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!
(j~q1 + ~q2j � j~q1j)

)
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�faa1a2fab1b2
Z
=k1; =k2; =q1; =q2;p

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)(

g(3)(~k1; ~k2;�~k1 � ~k2)
(q1 + q2)q1�q2

2j~q1 + ~q2j
� 4q1�q2

j~q1 + ~q2j
�k2

2

j~k2j

)
+O(e) : (B.37)

)
~A � �F

(1)
GL

� ~A

(
-term

�if b1b2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)P
i(j~kij+ j~qij)j~q1j

(~q1 � ~Ab1(~q1))

 
~Ab2(~q2) � �F

(1)
GL

� ~Ac(~p)
[~k1; ~k2]

!

= �if b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)=�(~k1 + ~k2 + ~p)

(j~k1j+ j~k2j+ j~q1j+ j~q2j)j~q1j)
�i�q1J

b1(~q1) + ij~q1j2�b1(~q1) + if b1de
Z
=l

(q1
�l + �q1l)�

d(~l)�e(~l + ~q1)

(
(�i)

Ab2i (~q2)

((
(�1i + i�2i)

g(3)(~k1; ~k2; ~p)

32

+(�1i � i�2i)

 
�p

�p

g(3)(~k1; ~k2; ~p)

32
+

�k2
2

2�pj~k2j

!)
Ja1(~k1)Ja2(~k2)

+

(
(�1i + i�2i)

 
�p2

j~pj �
�k2

1

j~k1j

!

�(�1i � i�2i)

 
1

4
j~pj+

�k1

j~k1j

)
�p

�p
(�k1 + �k2) + k2

(!)
Ja1(~k1)�a2(~k2)

+

(
(�1i + i�2i)2

�pk1
�k2

j~pj � (�1i � i�2i)2
pk1

�k2

j~pj

)
�a1(~k1)�a2(~k2)

)
(B.38)

= (�i)3f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)=�(~k1 + ~k2 + ~p)

(j~k1j+ j~k2j+ j~q1j+ j~q2j)j~q1j�
�q1J

b1(~q1)� j~q1j2�b1(~q1)
�((

2Ab2(~q2)
g(3)(~k1; ~k2; ~p)

32
+ 2 �Ab2(~q2)

 
�p

�p

g(3)(~k1; ~k2; ~p)

32
+

�k2
2

2�pj~k2j

!)
Ja1(~k1)Ja2(~k2)

+

(
2Ab2(~q2)

 
�p2

j~pj �
�k2

1

j~k1j

!
� 2 �Ab2(~q2)

 
1

4
j~pj+

�k1

j~k1j

)
�p

�p
(�k1 + �k2) + k2

(!)
Ja1(~k1)�a2(~k2)

+

(
2Ab2(~q2)2

�pk1
�k2

j~pj �O(�)

)
�a1(~k1)�a2(~k2)

)
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+O(e) (B.39)

= (�i)3f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)=�(~k1 + ~k2 + ~p)

(j~k1j+ j~k2j+ j~q1j+ j~q2j)j~q1j((�
O(J2) +O(�J)� j~q1j2�b1(~q1)2iq2�

b2(~q2)
� g(3)(~k1; ~k2; ~p)

32

�
�
O(�J) + j~q1j2�b1(~q1) 2i�q2�

b2(~q2)
� 
�p

�p

g(3)(~k1; ~k2; ~p)

32
+

�k2
2

2�pj~k2j

!)
Ja1(~k1)Ja2(~k2)

+

(�
�q1J

b1(~q1)� j~q1j2�b1(~q1)
�

(�iJ b2(~q2) + 2iq2�
b2(~q2))

 
�p2

j~pj �
�k2

1

j~k1j

!

�(�q1J
b1(~q1) 2i�q2�

b2(~q2) +O(�2))

 
1

4
j~pj+

�k1

j~k1j

)
�p

�p
(�k1 + �k2) + k2

(!)
Ja1(~k1)�a2(~k2)

+�q1J
b1(~q1)(�i)J b2(~q2)2

�pk1
�k2

j~pj �
a1(~k1)�a2(~k2)

)
+O(J4) +O(J3�) +O(J�3) +O(�4) +O(e) : (B.40)

With this we �nd

�if b1b2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)P
i(j~kij+ j~qij)j~q1j

(~q1 � ~Ab1(~q1))

 
~Ab2(~q2) � �F

(1)
GL

� ~Ac(~p)
[~k1; ~k2]

!����
O(�2)

= fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�
�P4

i
~ki

�
P4

i j~kij( 
j~q1j

q2�q1 � �q2q1

�q1 + �q2

g(3)(~k1; ~k2;�~k1 � ~k2)

16
� j~q1j�q2

�k2
2

(�k1 + �k2)j~k2j
+ 2

�k1(�k1 + �k2)q1�q2

j~k1jj~k1 + ~k2j

!
�Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)

+

()
j~q2j � 2

�q1q2

j~q1j

( 
(�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!
+ 2

�q1�q2

j~q1j

)
1

4
j~k1 + ~k2j �

1

4
j~k1j
()

�Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

)
+O(e) : (B.41)

(A� A)(A� A)-term

1

8
fa1a2cf b1b2c

Z
=p; =k1; =k2; =q1; =q2

=�(
P

i(
~ki + ~qi))P

i(j~kij+ j~qij)
( ~Aa1(~k1)� ~Aa2(~k2))( ~Ab1(~q1)� ~Ab2(~q2))
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= �1

2
fa1a2cf b1b2c

Z
=p; =k1; =k2; =q1; =q2

=�(
P

i(
~ki + ~qi))P

i(j~kij+ j~qij)
�k2 �q2J

a1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

+O(�3) +O(e) : (B.42)

All three together

F
(2;4)
GL jO(�2) = faa1a2fab1b2

Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
�
j~k1j+ j~k2j+ j~q1j+ j~q2j

�
(
� 1

2

 
(�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!
(j~q1 + ~q2j � j~q1j) Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

+
1

2

(
g(3)(~k1; ~k2;�~k1 � ~k2)

(q1 + q2)q1�q2

2j~q1 + ~q2j
� 4q1�q2

j~q1 + ~q2j
�k2

2

j~k2j

)
Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)

)

+fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�
�P4

i
~ki

�
P4

i j~kij( 
j~q1j

q2�q1 � �q2q1

�q1 + �q2

g(3)(~k1; ~k2;�~k1 � ~k2)

16
� j~q1j�q2

�k2
2

(�k1 + �k2)j~k2j
+ 2�k1

(�k1 + �k2)q1�q2

j~k1jj~k1 + ~k2j

!
Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)

+

(
�
)
�j~q2j+ 2

�q1q2

j~q1j

( 
(�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!
+ 2

�q1�q2

j~q1j

)
1

4
j~k1 + ~k2j �

1

4
j~k1j
()

Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

)
�1

2
fa1a2cf b1b2c

Z
=p; =k1; =k2; =q1; =q2

=�(
P

i(
~ki + ~qi))P

i(j~kij+ j~qij)
�k2 �q2J

a1(~k1)�a2(~k2)J b1(~q1)�b2(~q2) +O(e)

= fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
�
j~k1j+ j~k2j+ j~q1j+ j~q2j

�Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

(
� 1

2

 
(�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!
(j~q1 + ~q2j � j~q1j)�

)
�j~q2j+ 2

�q1q2

j~q1j

( 
(�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!

+
1

2

�q1�q2

j~q1j
�
j~k1 + ~k2j � j~k1j

�
�

�k2 �q2

2

)
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+fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
�
j~k1j+ j~k2j+ j~q1j+ j~q2j

�Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)

(
g(3)(~k1; ~k2;�~k1 � ~k2)

(q1 + q2)q1�q2

4j~q1 + ~q2j
� 2

q1�q2

j~q1 + ~q2j
�k2

2

j~k2j

+j~q1j
q2�q1 � �q2q1

�q1 + �q2

g(3)(~k1; ~k2;�~k1 � ~k2)

16

�j~q1j�q2

�k2
2

(�k1 + �k2)j~k2j
+ 2�k1�q2

(�k1 + �k2)q1

j~k1jj~k1 + ~k2j

)
+O(e) (B.43)

= fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
�
j~k1j+ j~k2j+ j~q1j+ j~q2j

�Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

(
� 1

2

 
(�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!)
j~q1 + ~q2j � j~q1j � 2j~q2j+ 4

�q1q2

j~q1j

(
+

1

2

�k1
�k2

j~k1j
(j~q1 + ~q2j � j~q1j)�

�k2 �q2

2

)

+fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
�
j~k1j+ j~k2j+ j~q1j+ j~q2j

�Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)

(
� 2

q1�q2

j~q1 + ~q2j
�k2

2

j~k2j
� j~q1j�q2

�k2
2

(�k1 + �k2)j~k2j
+ 2�k1�q2

(�k1 + �k2)q1

j~k1jj~k1 + ~k2j

+
q1�q2

�q1 + �q2

(j~q1 + ~q2j � j~q1j � j~q2j)
g(3)(~k1; ~k2;�~k1 � ~k2)

16

)
+O(e) : (B.44)

Manipulations of F
(2;4)
GL at order �2

We now manipulate the obtained expression with the objective of getting rid of the
1

(j~k1j+j~k2j+j~q1j+j~q2j)
prefactor.

We replace q2 ! �q1 � k1 � k2 in the 4 q̄1q2j~q1j -term of the second line.

= fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
�
j~k1j+ j~k2j+ j~q1j+ j~q2j

�Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)
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(
� 1

2

 
(�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!)
j~q1 + ~q2j � 2j~q1j � 2j~q2j � 4

�q1(k1 + k2)

j~q1j

(
+

1

2

�k1
�k2
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In the last term of the 5th line it was necessary to rename ~q1 $ ~q2. We now take (~k1 + ~q2) =

�(~k2 +~q1) in the 4th line. In the last line there are several terms that are either independent

of ~q or ~k. These vanish under ~k1 $ ~k2 and ~q1 $ ~q2, respectively.
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Comparison of 	GL and 	GI at O(e2)
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In the last line we combine the 1st term with the 5th and the 2nd with the 4th.
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The last term of the third line cancels with the last term of the fourth line (after ~k $ ~q),

the next-to-last term in the fourth line goes into the parenthesis of the third line, and the
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We interchange ~k $ ~q in the �rst and the last term of line 3 and write �k1 ! (��k2� �q1� �q2)

in the second term. In the last line we interchange ~q1 $ ~q2 in the 1st, 2nd, and 4th term,

�nding
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� q1�q2

�q1 + �q2

g(3)(~k1; ~k2;�~k1 � ~k2)

16

Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)
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Comparison of 	GL and 	GI at O(e2)

�1

2
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
�
j~k1j+ j~k2j+ j~q1j+ j~q2j

�Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)

(
1

2
�k1(�q1 � �q2)

�k1 + �k2

�k1 + �k2

+
�k2

2

j~k2j
1

2
(j~q1j+ j~q2j)

�q2 � �q1

�k1 + �k2

+
�k2

1
�k2(q1 � q2 � k1 � k2)

j~k1jj~k2j
�q2 � �q1

�k1 + �k2

+
1

4

�k1(�k1 + �k2)

j~k1j
�q1 � �q2

�k1 + �k2

j~k2j
)

+O(e) (B.54)

=
1

2
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

� (�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!
Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

�fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

� q1�q2

�q1 + �q2

g(3)(~k1; ~k2;�~k1 � ~k2)

16

Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)

�1

2
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
�
j~k1j+ j~k2j+ j~q1j+ j~q2j

�Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)

(
1

2
(�q1 � �q2)

�k1
�k2

�k1 + �k2

+
�k2

2

2j~k2j
�q2 � �q1

�k1 + �k2

�
j~k2j+ j~q1j+ j~q2j

�
+

�k2
1
�k2(q1 � q2)

j~k1jj~k2j
�q2 � �q1

�k1 + �k2

�
�k1

�k2j~k1j
4j~k2j

�q2 � �q1

�k1 + �k2

�
�k2

1j~k2j
4j~k1j

�q2 � �q1

�k1 + �k2

+
1

4

�k1(�k1 + �k2)

j~k1j
�q1 � �q2

�k1 + �k2

j~k2j
)

+O(e) : (B.55)

The �rst term of the 4th line vanishes under ~k1 $ ~k2 and the last term under ~q1 $ ~q2. In

the last line we interchange ~k1 $ ~k2 in the two last terms (note the change from �q1 � �q2 to

�q2 � �q1 in the very last term).

=
1

2
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

� (�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!
Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

�fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

� q1�q2

�q1 + �q2

g(3)(~k1; ~k2;�~k1 � ~k2)

16

Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)

�1

2
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
�
j~k1j+ j~k2j+ j~q1j+ j~q2j

�Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)
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( �k2
2

2j~k2j
�q2 � �q1

�k1 + �k2

�
j~k2j+ j~q1j+ j~q2j

�
�

�k1
�k2j~k1j
4j~k2j

�q2 � �q1

�k1 + �k2

+
�k2

2j~k1j
4j~k2j

�q2 � �q1

�k1 + �k2

+
1

4

�k2(�k1 + �k2)

j~k2j
�q2 � �q1

�k1 + �k2

j~k1j
)

(B.56)

=
1

2
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

� (�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!
Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

�fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

� q1�q2

�q1 + �q2

g(3)(~k1; ~k2;�~k1 � ~k2)

16

Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)

�1

4
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

� �k2
2

j~k2j
�q2 � �q1

�k1 + �k2

Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)

+O(e) : (B.57)

So we can simplify F
(2;4)
GL jO(�2) to

F
(2;4)
GL jO(�2)

=
1

2
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

� (�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!
Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

�fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)(

q1�q2

�q1 + �q2

g(3)(~k1; ~k2;�~k1 � ~k2)

16
� �q2

�q1 + �q2

�k2
2

2j~k2j

)
(B.58)

B.2.3 Order �3:)
�F

(1)
GL

�A

(2

-term

�1

2

Z
=p; =k1; =k2; =q1; =q2

1P
i(j~kij+ j~qij)

 
�F

(1)
GL

�Aai (~p)

!
[~k1; ~k2]

 
�F

(1)
GL

�Aai (�~p)

!
[~q1; ~q2]

����
O(�3)
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= ��4

2
fa1a2cf b1b2c

Z
=p; =k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~p

�
=� (~q1 + ~q2 � ~p)P

i(j~kij+ j~qij)
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)( 

�p2

j~pj �
�k2

1

j~k1j

!
(�2)

�pq1�q2

j~pj �
 

1

4
j~pj+

�k1

j~k1j

)
�p

�p
(�k1 + �k2) + k2

(!
2
��pq1�q2

j~pj

)
(B.59)

= 4fa1a2cf b1b2c
Z
=p; =k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

�
P

i(j~kij+ j~qij)
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)( 

(�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!
(q1 + q2)q1�q2

j~q1 + ~q2j
+

1

4

�
j~k1 + ~k2j � j~k1j

� (�q1 + �q2)q1�q2

j~q1 + ~q2j

)
(B.60)

= 4fa1a2cf b1b2c
Z
=p; =k1; =k2; =q1; =q2

=�
�P

i(
~ki + ~qi)

�
P

i(j~kij+ j~qij)
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)(

� 1

4
(�k1 + �k2)q1�q2 +

�k2
1
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(k1 + k2)q1�q2

j~q1 + ~q2j
+

1

4

�
j~k1 + ~k2j � j~k1j

� (�q1 + �q2)q1�q2

j~q1 + ~q2j

)
(B.61)

= 4fa1a2cf b1b2c
Z
=p; =k1; =k2; =q1; =q2

=�
�P

i(
~ki + ~qi)

�
P

i(j~kij+ j~qij)
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)(

1

2
(�q1 + �q2)q1�q2 +

�k2
1

j~k1j
k2q1�q2

j~q1 + ~q2j
+

1

4
j~k1j

(��q1 � �q2 + �k1)q1�q2

j~q1 + ~q2j

)
: (B.62)

)
~A � �F

(1)
GL

� ~A

(
-term

�if b1b2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)P
i(j~kij+ j~qij)j~q1j

(~q1 � ~Ab1(~q1))

 
~Ab2(~q2) � �F

(1)
GL

� ~Ac(~p)
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!
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�
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1
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)
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+
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pk1

�k2
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)
�a1(~k1)�a2(~k2)

)
+O(e) (B.63)
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This gives us
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(A� A)(A� A)-term
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All three together
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Again, we now manipulate this term, in order to get rid of the 1∑
i(j~kij+j~qij)

prefactor:
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)
+O(e) (B.73)

= 2f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
�q2q1

j~k1 + ~k2j
(�k1 + �k2)Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

+2f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�
�P

i(
~ki + ~qi)

�
P

i(j~kij+ j~qij)
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)(

� �k1q1�q2 � �k1
j~q1j
j~k1j

((q1 + k2)�q2 � (�q1 + �k2)q2)

)
+O(e) (B.74)
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= 2f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
�q2q1

j~k1 + ~k2j
(�k1 + �k2)Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

+2f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�
�P

i(
~ki + ~qi)

�
P

i(j~kij+ j~qij)
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)(

� �k1q1�q2

 
1 +
j~q1j
j~k1j

+
j~q2j
j~k1j

!
� �k1

j~q1j
j~k1j

(k2�q2 � �k2q2)

)
+O(e) : (B.75)

We add and subtract the missing term.

= 2f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
q1�q2

 
�k1 + �k2

j~k1 + ~k2j
�

�k1

j~k1j

!
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

+2f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�
�P

i(
~ki + ~qi)

�
P

i(j~kij+ j~qij)
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)(

�k1q1�q2
j~k2j
j~k1j
� �k1

j~q1j
j~k1j

(k2�q2 � �k2q2)

)
+O(e) (B.76)

= 2f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
q1�q2

 
�k1 + �k2

j~k1 + ~k2j
�

�k1

j~k1j

!
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

+2f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�
�P

i(
~ki + ~qi)

�
P

i(j~kij+ j~qij)
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)( �k1

j~k1j
(q1�q2j~k2j � j~q1jk2�q2 + j~q1j�k2q2)

)
+O(e) : (B.77)

Using the Jacobi-Identity fa1a2cf b1b2c = �fa1b1cf b2a2c � fa1b2cfa2b1c in the second term then

renaming b1 $ a2, ~q1 $ ~k2 in the (new) second term; and b2 $ a2, ~q2 $ ~k2 in the (new)

third term, we obtain

= 2f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
q1�q2

 
�k1 + �k2

j~k1 + ~k2j
�

�k1

j~k1j

!
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)
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+2f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�
�P

i(
~ki + ~qi)

�
P

i(j~kij+ j~qij)
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)( �k1

j~k1j
(q1�q2j~k2j � j~k2jq1�q2 � j~q1jq2

�k2 + j~q1j�k2q2)

)
+O(e) : (B.78)

The last term vanishes, so we �nd

F
(2;4)
GL jO(�3) = 2f b1b2cfa1a2c

Z
=p; =k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
q1�q2

 
�k1 + �k2

j~k1 + ~k2j
�

�k1

j~k1j

!
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2) +O(e) (B.79)

B.2.4 Order �4:)
�F

(1)
GL

�A

(2

-term

�1

2

Z
=p; =k1; =k2; =q1; =q2

1P
i(j~kij+ j~qij)

 
�F

(1)
GL

�Aai (~p)

!
[~k1; ~k2]

 
�F

(1)
GL

�Aai (�~p)

!
[~q1; ~q2]

����
O(�4)

= 2fa1a2cf b1b2c
Z
=p; =k1; =k2; =q1; =q2

=�
�P

i(
~ki + ~qi)

�
P

i(j~kij+ j~qij)
k1

�k2q1�q2 �
a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2) +O(e) :(B.80)

)
~A � �F

(1)
GL

� ~A

(
-term

�if b1b2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)P
i(j~kij+ j~qij)j~q1j

(~q1 � ~Ab1(~q1))

 
~Ab2(~q2) � �F

(1)
GL

� ~Ac(~p)
[~k1; ~k2]

!

= (�i)3f b1b2cfa1a2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)=�(~k1 + ~k2 + ~p)

(j~k1j+ j~k2j+ j~q1j+ j~q2j)�
�j~q1j�b1(~q1)

�(
2Ab2(~q2)2

�pk1
�k2

j~pj � 2 �Ab2(~q2)2
pk1

�k2

j~pj

)
�a1(~k1)�a2(~k2) +O(e) (B.81)

= (�i)3f b1b2cfa1a2c
Z
=k1; =k2; =q1; =q2

=�
�P

i(
~ki + ~qi)

�
P

i(j~kij+ j~qij)
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�
�j~q1j�b1(~q1)

�(
(O(J) + 2iq2�

b2(~q2))2
(��k1 � �k2)k1

�k2

j~k1 + ~k2j

�2i�q2�
b2(~q2)2

(�k1 � k2)k1
�k2

j~k1 + ~k2j

)
�a1(~k1)�a2(~k2)

+O(J4) + : : :+O(J�3) +O(e) : (B.82)

Thus

�if b1b2c
Z
=p; =k1; =k2; =q1; =q2

=�(~q1 + ~q2 � ~p)P
i(j~kij+ j~qij)j~q1j

(~q1 � ~Ab1(~q1))

 
~Ab2(~q2) � �F

(1)
GL

� ~Ac(~p)
[~k1; ~k2]

!����
O(�4)

= �4f b1b2cfa1a2c
Z
=k1; =k2; =q1; =q2

=�
�P

i(
~ki + ~qi)

�
P

i(j~kij+ j~qij)
k1

�k2q1�q2
j~q1j+ j~q2j
j~k1 + ~k2j

�a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

+O(e) :

(A� A)(A� A)-term

1

8
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�(
P

i(
~ki + ~qi))P

i(j~kij+ j~qij)
( ~Aa1(~k1)� ~Aa2(~k2))( ~Ab1(~q1)� ~Ab2(~q2))

= �2fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�(
P

i(
~ki + ~qi))P

i(j~kij+ j~qij)
k1

�k2q1�q2�
a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2) +O(e) :(B.83)

All three together

F
(2;4)
GL jO(�4) = f b1b2cfa1a2c

Z
=k1; =k2; =q1; =q2

=�
�P

i(
~ki + ~qi)

�
P

i(j~kij+ j~qij)
k1

�k2q1�q2

 
2� 4

j~q1j+ j~q2j
j~k1 + ~k2j

� 2

!
�a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2) +O(e2) (B.84)

= �2fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
k1

�k2q1�q2

j~k1 + ~k2j
�a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2) +O(e) :(B.85)
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B.2.5 All orders

Adding up Eqs. (B.28), (B.35), (B.58), (B.79) and (B.85) we �nd

F
(2;4)
GL = � 1

512
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�

 
2X
i

(~ki + ~qi)

!
g(4)(~k1; ~k2; ~q1; ~q2)

Ja1(~k1)Ja2(~k2)J b1(~q1)J b2(~q2)

+
1
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fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�

 
2X
i

(~ki + ~qi)

!
g(3)(~k1; ~k2;�~k1 � ~k2)

Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2)

+
1

2
fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�

 
2X
i

(~ki + ~qi)

! 
(�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!
Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

�fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�

 
2X
i

(~ki + ~qi)

!
Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)

�
 

q1�q2

�q1 + �q2

g(3)(~k1; ~k2;�~k1 � ~k2)

16
� �q2

�q1 + �q2

�k2
2

2j~k2j

!

+2fa1a2cf b1b2c
Z
=p; =k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
q1�q2

 
�k1 + �k2

j~k1 + ~k2j
�

�k1

j~k1j

!
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

�2fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
k1

�k2q1�q2

j~k1 + ~k2j
�a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

+O(e) : (B.86)

B.3 F
(0)
GL[J; �] at O(e2)

We now compute F
(0)
GL[J; �] at O(e2), split it by powers in � and bring it into a form similar

to Eq. (B.86):

F
(0)
GL =

1

2

Z
=k

1

j~kj
(~k � ~Aa(~k))(~k � ~Aa(�~k)) (B.87)
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= �2

Z
=k

1

j~kj

)
i

2
�kJa(~k)� ie

2
fabc

Z
=q

�k�b(~k � ~q)J c(~q)

��k
ie2

4
f bcdfdea

Z
=q

Z
=p

�b(~k � ~q � ~p)J c(~q)�e(~p)

+
ie

2
fabc

Z
=q

(k�q � �kq) �b(~q)�c(~k � ~q)

�ie
2

6
f bcdfdea

Z
=q

Z
=p

(k�q � �kq)�b(~k � ~q � ~p)�c(~q)�e(~p)
(

�
)
i

2
�kJa(�~k)� ie

2
fade

Z
=p

�k�d(�~k � ~p)Je(~p)

��k
ie2

4
f bcdfdea

Z
=q

Z
=p

�b(�~k � ~q � ~p)J c(~q)�e(~p)

+
ie

2
fabc

Z
=q

(k�q � �kq) �b(~q)�c(�~k � ~q)

�ie
2

6
f bcdfdea

Z
=q

Z
=p

(k�q � �kq)�b(�~k � ~q � ~p)�c(~q)�e(~p)
(

+O(e3) : (B.88)

At O(e2) there are no terms with no or with exactly one �.

B.3.1 Order �2

F
(0)
GLjO(e2�2) =

1

2
fabcfade

Z
=k;=q;=p

�k2

j~kj
�b(~k � ~q)J c(~q)�d(�~k � ~p)Je(~p) (B.89)

�1

4
f bcdfdea

Z
=k;=q;=p

�k2

j~kj

�
Ja(~k)�b(�~k � ~q � ~p) + Ja(�~k)�b(~k � ~q � ~p)

�
J c(~q)�e(~p)

=
1

2
fa1a2cf b1b2e

Z
=k1; =k2; =q1; =q2

=�
�
~k1 + ~k2 + ~q1 + ~q2

� (�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!
Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2) : (B.90)

B.3.2 Order �3

F
(0)
GLjO(e2�3) = �2

Z
=k

1

j~kj

(
i

2
�kJa(~k)

)
� i

6
f bcdfdea

Z
=q

Z
=p

(k�q � �kq)�b(�~k � ~q � ~p)�c(~q)�e(~p)
(
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� i
2
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Z
=q

�k�b(~k � ~q)J c(~q)
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Z
=q

(k�q � �kq) �b(~q)�c(�~k � ~q)
(

+
i
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fabc

Z
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)
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2
fade

Z
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�k�d(�~k � ~p)Je(~p)
(
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6
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Z
=q

Z
=p

(k�q � �kq)�b(~k � ~q � ~p)�c(~q)�e(~p)
)
i

2
�kJa(�~k)

()
(B.91)

= �1

2

Z
=k;=q;=p

(
1

3
f bcdfdea

1

j~kj
�k(k�q � �kq)Ja(~k)�b(�~k � ~q � ~p)�c(~q)�e(~p)

+fabcfade
1

j~kj
�k(k�p� �kp) �b(~k � ~q)J c(~q)�d(~p)�e(�~k � ~p)

+fabcfade
1

j~kj
(k�q � �kq)�k �b(~q)�c(~k � ~q)�d(�~k � ~p)Je(~p)

+
1

3
f bcdfdea

1

j~kj
(k�q � �kq)�k �b(~k � ~q � ~p)�c(~q)�e(~p)Ja(�~k)

)
(B.92)

= fa1a2cf b1b2c
Z
=k1;=k2;=q1;=q2

=�

 X
i

(~ki + ~qi)

!
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)(

1

3

1

j~k1j
�k1(k1�q2 � �k1q2) +

1

j~q1 + ~q2j
(�q1 + �q2)(q2�q1 � �q2q1)

)
: (B.93)

B.3.3 Order �4

F
(0)
GLjO(e2�3) =

1

2
fabcfade

Z
=k;=p;=q

1

j~kj
(k�q � �kq)(k�p� �kp) �b(~q)�c(~k � ~q)�d(~p)�e(�~k � ~p) (B.94)

=
1

2
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Z
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!
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1

j~k1 + ~k2j
(k2

�k1 � �k2k1)((k2 + k1) �q1 � ( �k2 + �k1)q1) (B.95)

= �2fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2
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 X
i

(~ki + ~qi)

!
�k2k1 �q2q1

j~k1 + ~k2j
�a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2) :

(B.96)

B.3.4 All orders

Summing the results of the previous subsections, we �nd
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F
(0)
GLjO(e2) =

1

2
fa1a2cf b1b2e
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i

(~ki + ~qi)
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(B.97)

Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

+fa1a2cf b1b2c
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B.4 F
(1)
GL[J; �] at O(e)

Finally, we compute F
(1)
GL[J; �] at O(e), split it by powers in � and bring it in a form which

makes it possible to see the cancellation with the corresponding terms of F
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(B.100)

At O(e), there are no terms without �-dependence.

B.4.1 Order �

We need this term to cancel Eq. (B.35):
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(2;4)
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32
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We extract the O(e�) portion from Eq. (B.100) and bring it in the above form:
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; (B.102)

where in the second equality we renamed: q ! q1, k2 ! q1 + q2 ; k3 ! k2.
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= fa1a2cf b1b2c
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B.4.2 Order �2

We want this term to cancel Eqs. (B.58) and (B.90).
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We extract the O(e�2) portion from Eq. (B.100) and bring it in the above form:

F
(1)
GLjO(e�2)

=
1

2
fabc

Z
=k1; =k2; =k3;=q

=�
�P3

i=1
~ki

�
P3

i=1 j~kij
�k1�qJa(~k1)J b(~k2)f cde�d(~q)�e(~k3 � ~q)

�fabc
Z
=k1; =k2; =k3;=q

=�
�P3

i=1
~ki

�
P3

i=1 j~kij
�k1

�k3J
a(~k1)f bde�d(~k2 � ~q)Je(~q)�c(~k3)

�fabcfaa1a2
Z
=k1; =k2; =k3;=q

=�

 
3X
i=1

~ki + ~q

!
1

j~k1 + ~qj+ j~k2j+ j~k3j
( �k1 + �q)�k3�

a1(~k1)Ja2(~q)J b(~k2)�c(~k3)

+8fabc
Z
=k1; =k2; =k3;=q

=�
�P3

i=1
~ki

�
P3

i=1 j~kijj~k1jj~k3j(
2

4
j~k1j2�a(~k1)

��k2
3

4

�
J b(~k2)f cde�d(~k3 � ~q) + J c(~k3)f bde�d(~k2 � ~q)

�
Je(~q)

�1

2
�k1J

a(~k1)(k3
�k2 � �k3k2)�b(~k2)

��k3

2
f cde�d(~k3 � ~q)Je(~q)

�1

2
�k1J

a(~k1)
�k3

4
(k3�q � �k3q)

�
J b(~k2)f cc1c2�c1(~q)�c2(~k3 � ~q) + J c(~k3)f bb1b2�b1(~q)�b2(~k2 � ~q)

�
+

1

2
�k1f

ade�d(~k1 � ~q)Je(~q)(k3
�k2 � �k3k2)�b(~k2)

�k3

2
J c(~k3)

+
1

2
fade(k1�q + �k1q) �

d(~q)�e(~k1 � ~q)
�k2

3

4
J b(~k2)J c(~k3)

)
: (B.109)

157



Comparison of 	GL and 	GI at O(e2)

In the last �ve lines we shift k3 ! k3 + q, except for the two terms that are �(k2 � q), there

k2 ! k2 + q, and the very last line, there k1 ! k1 + q.
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Interchanging ~k1 $ ~q and d$ e in the last line eliminates the k1�q + �k1q part:
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The terms / q̄1q̄2
q̄1+q̄2

that would have appeared in the second line vanish under symmetry.
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The last line is already correct to cancel the �rst line of Eq. (B.108), while the �rst line

cancels the �rst term of the last line of Eq. (B.108).
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(B.118)

The q̄1q̄2
(q̄1+q̄2)

- term vanishes under symmetry.
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Comparison of 	GL and 	GI at O(e2)
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Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2) (B.119)
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Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2) : (B.120)

The q̄1q̄2
(q̄1+q̄2)

- term and the k̄1k̄2
(q̄1+q̄2)

- term vanish under symmetry, so
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Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2) (B.121)

= �F (2;4)
GL jO(�2) � F (0)

GLjO(e2�2) : (B.122)

B.4.3 Order �3

We want this term to cancel Eqs. (B.79) and (B.93).
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We extract the O(e�3) portion from Eq. (B.100) and bring it in a similar form:
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Comparison of 	GL and 	GI at O(e2)
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The �rst two terms in line 4 cancel under ~q1 $ ~q2, use the delta function in the 5th and the

last line.
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j~k1j

�k1
2

�(2j~k1 + ~k2j+ 2j~k2j+ 2j~k1j)q1 �q2

�k2 + �k1

j~k1 + ~k2j
� q1 �q2

j~q1 + ~q2j
j~k1j �q2 +

q1 �q1

j~q1 + ~q2j
j~k1j �q1

)
�2

( �k1 + �k2)

j~k1 + ~k2j
q1 �q2

)
: (B.133)
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Again, we add and subtract what is missing.

=

Z
=k1; =k2; =k3;=q

=�

 X
i=1

(~ki + ~qi)

!
fa1a2cf b1b2cJa1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)(

�
�k1

j~k1j
(k1�q2 � �k1q2)� 2q1 �q2

�k2 + �k1

j~k1 + ~k2j

+
1

j~k1j+ j~k2j+ j~q1 + ~q2j

(
+

�q2j~q1 + ~q2j
j~k1j

k1
�k1 +

�q1
2(q2 + q1)

j~q1 + ~q2j
j~k1j
)

�2
( �k1 + �k2)

j~k1 + ~k2j
q1 �q2

)
(B.134)

=

Z
=k1; =k2; =k3;=q

=�

 X
i=1

(~ki + ~qi)

!
fa1a2cf b1b2cJa1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)(

1

4

j~k1jj~q1 + ~q2j
j~k1j+ j~k2j+ j~q1 + ~q2j

�q2
2 + �q1 �q2 + �q1

2

( �q1 + �q2)

�
�k1

j~k1j
(k1�q2 � �k1q2)� 4

( �k1 + �k2)

j~k1 + ~k2j
q1 �q2

)
+O(J3) + : : :+O(�4) : (B.135)

The second line vanishes under ~q1 $ ~q2, so

F
(1)
GLjO(e�3) =

Z
=k1; =k2; =k3;=q

=�

 X
i=1

(~ki + ~qi)

!
fa1a2cf b1b2cJa1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)(

�
�k1

j~k1j
(k1�q2 � �k1q2)� 4

( �k1 + �k2)

j~k1 + ~k2j
q1 �q2

)
: (B.136)

Adding this to Eq. (B.123) we obtain

F
(2;4)
GL jO(�3) + F

(0)
GLjO(e2�3) + F

(1)
GLjO(e�3)

= fa1a2cf b1b2c
Z
=k1;=k2;=q1;=q2

=�

 X
i

(~ki + ~qi)

!
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)(

� 2

3

�k1

j~k1j
(k1�q2 � �k1q2)� 2

�k1

j~k1j
q1�q2

)
(B.137)

= �2f b1b2cfa1a2c
Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)
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�k1

j~k1j

)
q1�q2 �

1

3
((k2 + q1)�q2 � (�k2 + �q1)q2)

(
(B.138)

= �2

3
f b1b2cfa1a2c

Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

�k1

j~k1j
�
q1�q2 � k2�q2 + �k2q2

�
: (B.139)

Using the Jacobi-Identity fa1a2cf b1b2c = �fa1b1cf b2a2c � fa1b2cfa2b1c in the second term then

renaming b1 $ a2, ~q1 $ ~k2 in the (new) second term; and b2 $ a2, ~q2 $ ~k2 in the (new)

third term this reduces to

= �2

3
f b1b2cfa1a2c

Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

�k1

j~k1j
�
q1�q2 � q1�q2 � q2

�k2 + �k2q2

�
(B.140)

= 0 : (B.141)

B.4.4 Order �4

We want this term to cancel Eqs. (B.85) and (B.96).

F
(2;4)
GL jO(�4) + F

(0)
GLjO(e2�4)

= �2fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
k1

�k2q1�q2

j~k1 + ~k2j
�a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

�2fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
�k2k1 �q2q1

j~k1 + ~k2j
�a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

= �4fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
�k2k1 �q2q1

j~k1 + ~k2j
�a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2) :(B.142)

We extract the O(e�4) portion from Eq. (B.100) and bring it in this form:

F
(1)
GLjO(e�4)
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= �2ifabc
Z
=k1; =k2; =k3;=q

=�

 
3X
i=1

~ki

!
1P3

i=1 j~kij(�2i

2
fac1c2(k1�q � �k1q) �

c1(~q)�c2(~k1 � ~q)k2
�k3�

b(~k2)�c(~k3)

� 4

j~k1jj~k3j
k1

�k1�
a(~k1)(k3

�k2 � �k3k2)�b(~k2)
2i3

2
f cc1c2(k3�q � �k3q) �

c1(~q)�c2(~k3 � ~q)
)

(B.143)

= �2fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�

 
2X
i=1

(~ki + ~qi)

!
�a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

1

j~q1 + ~q2j+ j~k1j+ j~k2j(
(q2 �q1 � �q2q1)k1

�k2 �
j~k1j
j~q1 + ~q2j

((q2 + q1) �k2 � ( �q2 + �q1)k2)(q2 �q1 � �q2q1)

)
(B.144)

= 4fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�

 X
i

(~ki + ~qi)

!
�a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

k1
�k2q1 �q2

j~q1 + ~q2j
(B.145)

= �F (2;4)
GL jO(�4) � F (0)

GLjO(e2�4) : (B.146)

B.4.5 All orders

Adding up Eqs. (B.106), (B.121), (B.136) and (B.145) we �nd

F
(1)
GLjO(e) = �fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�
�X

(~ki + ~qi)
� g(3)(~k1; ~k2;�~k1 � ~k2)

32

Ja1(~k1)Ja2(~k2)J b1(~q1)�b2(~q2)

+fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�

 
2X
i=1

(~ki + ~qi)

!
Ja1(~k1)Ja2(~k2)�b1(~q1)�b2(~q2)

�
)

�q2q1

�q1 + �q2

g(3)(~k1; ~k2;�~k1 � ~k2)

16
� �q2

(�q1 + �q2)

�k2
2

2j~k2j

(
�fa1a2cf b1b2c

Z
=k1; =k2; =q1; =q2

=�

 
2X
i=1

(~ki + ~qi)

! 
(�k1 + �k2)2

j~k1 + ~k2j
�

�k2
1

j~k1j

!
Ja1(~k1)�a2(~k2)J b1(~q1)�b2(~q2)

�fa1a2cf b1b2c
Z
=k1; =k2; =k3;=q

=�

 X
i=1

(~ki + ~qi)

!
Ja1(~k1)�a2(~k2)�b1(~q1)�b2(~q2)

�
) �k1

j~k1j
(k1�q2 � �k1q2) + 4

( �k1 + �k2)

j~k1 + ~k2j
q1 �q2

(
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+4fa1a2cf b1b2c
Z
=k1; =k2; =q1; =q2

=�

 
2X
i

(~ki + ~qi)

!
k1

�k2q1 �q2

j~q1 + ~q2j
�a1(~k1)�a2(~k2)�b1(~q1)�b2(~q2): (B.147)

B.5 Conclusion

From Eqs. (B.28), (B.106), (B.122), (B.141), and (B.146) (or equivalently: from summing

up Eqs. (B.86), (B.97) and (B.147)) we �nd

F
(0)
GL[J; �]jO(e2) + F

(1)
GL[J; �]jO(e) + F

(2;4)
GL [J; �]jO(e0) = F

(2;4)
GL [J ] : (B.148)

This, together with Eqs. (3.77) and (A.16) means that

F
(0)
GL + eF

(1)
GL + e2F

(2;4)
GL = F

(0)
GI + eF

(1)
GI + e2F

(2;4)
GI +O(e3) :
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Appendix C

Hermiticity of the regularized

Hamiltonian

C.1 Functional derivative of Mi

Starting from the adjoint version of Eq. (4.14) (No sum over repeated spatial indices in this

appendix)

Dab
i (~y)M bc

i (~y) = (@yi �
ab � efabdAdi (~y))M bc

i (~y) = 0 (C.1)

we can compute the functional derivative of this object with respect to Aj:

�

�Aej(~x)
Dab
i (~y)M bc

i (~y) = �efabe�ij�(~y � ~x)M bc
i (~y) +Dab

i (~y)
�M bc

i (~y)

�Aej(~x)
= 0 (C.2)

() �M bc
i (~y)

�Aej(~x)
= e

Z
z

�
D�1
i

�ba
yz
fafe�ij�(~z � ~x)M fc

i (~z) (C.3)

= e�ij[Mi(~y)Gi(~y � ~x)M�1
i (~x)]bafafeM fc

i (~x) (C.4)

= e�ijM
bg
i (~y)Gi(~y � ~x)f gchM eh

i (~x) : (C.5)

In the fundamental representation the derivative of Mj is given by

�Mj(~y)

�Aai (~x)
= ie�ijMj(~y)T dGi(~y; ~x)M ed

i (~x) : (C.6)
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Hermiticity of the regularized Hamiltonian

This can easily be checked by plugging it into the de�nition of Mab
i (see Eq. (3.43)).

C.2 Functional derivative of the string

We use Eq. (C.6) to compute

1

2

X
i

Z
x;v

��(~x;~v)

∣
�

�Aai (~x)
�ab(~x;~v)

)
�

�Abi(~v)
(C.7)

This is actually an ill-de�ned quantity, so we have to regularize it. We do this by moving the

derivative an in�nitesimal step ~X away from the point ~x and introduce a new regularized

delta function and a second string. We then take the limit � !1 for �nite �.

1

2
lim
�!1

X
i

Z
x;v;X

��(~x;~v)��( ~X)�ar(~x; ~x+ ~X)

"
�

�Ari (~x+ ~X)
�ab(~x;~v)

#
�

�Abi(~v)

=
1

4
lim
�!1

X
i

Z
x;v

��(~x;~v)��( ~X)�ar(~x; ~x+ ~X)

� �

�Ari (~x+ ~X)

∣
M1(~x)M�1

1 (v1; x2)M2(v1; x2)M�1
2 (~v)

+M2(~x)M�1
2 (x1; v2)M1(x1; v2)M�1

1 (~v)

)ab
�

�Abi(~v)
(C.8)

=
e

4
lim
�!1

X
i

Z
x;v

��(~x;~v)��( ~X)�ar(~x; ~x+ ~X)

�
∣
�i1M

ag
1 (~x)G1(� ~X)f gchM rh

1 (~x+ ~X)[M�1
1 (v1; x2)M2(v1; x2)M�1

2 (~v)]cb

�[M1(~x)M�1
1 (v1; x2)]ac�i1M

cg
1 (v1; x2)G1((v1; x2)� ~x� ~X)f gdhM rh

1 (~x+ ~X)

�[M�1
1 (v1; x2)M2(v1; x2)M�1

2 (~v)]db

+[M1(~x)M�1
1 (v1; x2)]ac

��i2M cg
2 (v1; x2)G2((v1; x2)� ~x� ~X)f gdhM rh

2 (~x+ ~X)[M�1
2 (~v)]db

�[M1(~x)M�1
1 (v1; x2)M2(v1; x2)M�1

2 (~v)]ac

��i2M cg
2 (~v)G2(~v � ~x� ~X)f gdhM rh

2 (~x+ ~X)[M�1
2 (~v)]db

+�i2M
ag
2 (~x)G2(� ~X)f gchM rh

2 (~x+ ~X)[M�1
2 (x1; v2)M1(x1; v2)M�1

1 (~v)]cb
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�[M2(~x)M�1
2 (x1; v2)]ac�i2M

cg
2 (x1; v2)G2((x1; v2)� ~x� ~X)f gdhM rh

2 (~x+ ~X)

�[M�1
2 (x1; v2)M1(x1; v2)M�1

1 (~v)]db

+[M2(~x)M�1
2 (x1; v2)]ac

��i1M cg
1 (x1; v2)G1((x1; v2)� ~x� ~X)f gdhM rh

1 (~x+ ~X)[M�1
1 (~v)]db

�[M2(~x)M�1
2 (x1; v2)M1(x1; v2)M�1

1 (~v)]ac

��i1M cg
1 (~v)G1(~v � ~x� ~X)f gdhM rh

1 (~x+ ~X)[M�1
1 (~v)]db

)
�

�Abi(~v)

=: lim
�!1

8X
i=1

Ti : (C.9)

In the third, fourth, seventh and and eighth term we can take the limit of � ! 1 without

problems. With �ar(~x; ~x) = �ar and after integrating the delta functions inside the Green's

functions we �nd for these terms:

lim
�!1

(T3 + T4 + T7 + T8)

=
e

4

Z
x;v2

�p
�
��(x2 � v2)

∣
[M1(~x)M�1

1 (~x)]acM cg
2 (~x)�(0)f gdhMah

2 (~x)[M�1
2 (x1; v2)]db

�[M1(~x)M�1
1 (~x)M2(~x)M�1

2 (~v)]ac

�M cg
2 (~v)�(v2 � x2)f gdhMah

2 (~x)[M�1
2 (x1; v2)]db

)
�

�Ab2(x1; v2)

+
e

4

Z
x;v1

��(x1 � v1)
�p
�

∣
[M2(~x)M�1

2 (~x)]acM cg
1 (~x)�(0)f gdhMah

1 (~x)[M�1
1 (v1; x2)]db

�[M2(~x)M�1
2 (~x)M1(~x)M�1

1 (~v)]ac

�M cg
1 (~v)�(v1 � x1)f gdhMah

1 (~x)[M�1
1 (v1; x2)]db

)
�

�Ab1(v1; x2)
(C.10)

= 0 (C.11)

All of these terms vanish under color contraction. We are thus left with

1

2
lim
�!1

X
i

Z
x;v;X

��(~x;~v)��( ~X)�ar(~x; ~x+ ~X)

"
�

�Ari (~x+ ~X)
�ab(~x;~v)

#
�

�Abi(~v)

= lim
�!1

(T1 + T2 + T5 + T6)

=
e

4
lim
�!1

Z
X;x;v

�ar(~x; ~x+ ~X)��(~x;~v)��( ~X)
h
�(�X1)� �(v1 � x1 �X1)

i
�(�X2)
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Hermiticity of the regularized Hamiltonian

Mag
1 (~x)f gchM rh

1 (~x+ ~X)[M�1
1 (v1; x2)M2(v1; x2)M�1

2 (~v)]cb
�

�Ab1(~v)

+
e

4
lim
�!1

Z
X;x;v

�ar(~x; ~x+ ~X)��(~x;~v)��( ~X)�(�X1)
h
�(�X2)� �(v2 � x2 �X2)

i
Mag

2 (~x)f gchM rh
2 (~x+ ~X)[M�1

2 (x1; v2)M1(x1; v2)M�1
1 (~v)]cb

�

�Ab2(~v)
(C.12)

=
e

4
lim
�!1

Z
X1;x;v

�ar(~x; ~x+ ~X)jX2=0��(~x;~v)��(X1)
�p
�

h
�(�X1)� �(v1 � x1 �X1)

i
Mag

1 (~x)f gchM rh
1 (x1 +X1; x2)[M�1

1 (v1; x2)M2(v1; x2)M�1
2 (~v)]cb

�

�Ab1(~v)

+
e

4
lim
�!1

Z
X2;x;v

�ar(~x; ~x+ ~X)jX1=0��(~x;~v)��(X2)
�p
�

h
�(�X2)� �(v2 � x2 �X2)

i
Mag

2 (~x)f gchM rh
2 (x1; x2 +X2)[M�1

2 (x1; v2)M1(x1; v2)M�1
1 (~v)]cb

�

�Ab2(~v)
: (C.13)

With Eq. (4.8):

�ab(u; v) =
1

2
(M1(u)M�1

1 (v1; u2)M2(v1; u2)M�1
2 (v) +M2(u)M�1

2 (u1; v2)M1(u1; v2)M�1
1 (v))ab

(C.14)

this is

=
e

4
lim
�!1

Z
X1;x;v

(M1(~x)M�1
1 (x1 +X1; x2))ar��(~x;~v)��(X1)

�p
�

h
�(�X1)� �(v1 � x1 �X1)

i
Mag

1 (~x)f gchM rh
1 (x1 +X1; x2)[M�1

1 (v1; x2)M2(v1; x2)M�1
2 (~v)]cb

�

�Ab1(~v)

+
e

4
lim
�!1

Z
X2;x;v

(M2(~x)M�1
2 (x1; x2 +X2))ar��(~x;~v)��(X2)

�p
�

h
�(�X2)� �(v2 � x2 �X2)

i
Mag

2 (~x)f gchM rh
2 (x1; x2 +X2)[M�1

2 (x1; v2)M1(x1; v2)M�1
1 (~v)]cb

�

�Ab2(~v)
(C.15)

=
e

4
lim
�!1

Z
X1;x;v

��(~x;~v)��(X1)
�p
�

h
�(�X1)� �(v1 � x1 �X1)

i
�ghf gch[M�1

1 (v1; x2)M2(v1; x2)M�1
2 (~v)]cb

�

�Ab1(~v)

+
e

4
lim
�!1

Z
X2;x;v

��(~x;~v)��(X2)
�p
�

h
�(�X2)� �(v2 � x2 �X2)

i
�ghf gch[M�1

2 (x1; v2)M1(x1; v2)M�1
1 (~v)]cb

�

�Ab2(~v)
(C.16)

= 0 (C.17)
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Again, these terms vanish under color contraction. Hence we conclude that

Treg = �1

2

Z
x;v

��(~x;~v)
�

�Aai (~x)
�ab(~x;~v)

�

�Abi(~v)
= �1

2

Z
x;v

��(~x;~v)�ab(~x;~v)
�

�Aai (~x)

�

�Abi(~v)
:

(C.18)

to all orders in perturbation theory. This con�rms that Eq. (4.18) is Hermitian. Finally,

as a check, we have also performed the above computation, using the explicit form of the

string, to O(e2).
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Appendix D

Computation of the vanishing terms

of the regularized Hamiltonians

D.1 O(e) correction to the gauge field Hamiltonian,

Eq. (4.29)

�1

2

Z
u;v

��(~u;~v)�
(1)
ab (~u;~v)

�F
(0)
GL

�Aai (~u)

�F
(0)
GL

�Abi(~v)

= � 1

8�2

Z
u;v;y;w

@ui@vi

�
��(~u;~v)�

(1)
ab (~u;~v)

� 1

j~u� ~yj
1

j~v � ~wj(
~r� ~Aa(~y))(~r� ~Ab(~w)) (D.1)

= � e

4�2
fabc

Z
U;v;x;y;w

��(~U)

)
Ac1(~y)(G1(~U + ~v � ~y)�G1(v1 � y1; U2 + v2 � y2)
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Except for ��(~U), we Taylor expand this expression in powers of ~U . The �rst integral up to

4th order, the other two up to 2nd order.
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The O(�0) term vanishes under combined interchange of f~x$ ~w; a$ bg.

D.2 O(e2A4) corrections to the gauge field Hamiltonian,

Eq. (4.31)
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This vanishes for �!1.

Vanishing of the second term:
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There is no loop momentum, so we can take �!1. In this limit the expression vanishes.

D.3 O(e) correction to the gauge invariant Hamilto-

nian, Eq. (4.72)
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Expanding 1
j~x�~zj around ~x = ~v, we obtain
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Integration over ~x vanishes for the �rst two orders (note that (x�v)2 is only the holomorphic

component), while the next order is already O(��2).

D.4 O(e2J4) corrections to the gauge invariant Hamil-

tonian, Eq. (4.75)
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Again, there is no loop momentum, so we can take � ! 1. In this limit the expression

vanishes.
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Vanishing of the second term:Z
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This also vanishes for �!1.

D.5 O(e2J2) corrections to the gauge invariant Hamil-

tonian, 2nd term of Eq. (4.78)

We look at the di�erent parts of ~
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This vanishes under integration of the angular component of ~q.

The �G(y � x) term

Z
x;v;y

��(~x;~v) �G(y � v)f ebfJe(~y)(x� v)f cfaJ c(~v)
�2F

(0)
GI

�Ja(~y)�J b(~x)

/
Z
=k;=q

Ja(~k)Ja(�~k)e
� ~q2

4µ2
2�k�q3

�2j~qj(�q2 � �k2)
(D.22)

/ 1

�

Z
=k

�k2Ja(~k)Ja(�~k) (D.23)

This vanishes for �!1.
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Appendix E

Computation of T V at O(e2) in terms

of gauge fields

We give the details of the computation of T V at O(e2) in terms of the gauge �elds, Eq. (5.14):
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E.1 Computation of the first term
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If both derivatives act on two �elds at the same point (~x or ~y) this will vanish due to color

contraction, so we can only have the derivatives acting on �elds at di�erent points. There

are eight terms of this type and they can all be combined in one (due to color symmetry and

the symmetry of ��):
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We can expand the �rst �eld around ~x = ~y up to second order, as higher orders will vanish
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E.2 Computation of the second term
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Again, if both derivatives act on B(1) this vanishes, as does one derivative acing on B(0) and

one acting on �cd, due to fada = 0. As interchange of ~u and ~v is possible in ��(~u� ~v) we let
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Computation of T V at O(e2) in terms of gauge fields
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This becomes (where we de�ned ~X = ~x� ~v, ~Z = ~z � ~v, and ~U = ~u� ~v, ~V = ~v � ~x)
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While the expansion in ~Z cannot be justi�ed a priori, as only ~X can be considered a small

variable, it turns out a posteriori that it is correct: In the AiAi terms, because the ��( ~X)

turns into a ��(~Z), after integration over X, and in the A1A2 terms because it turns out that

in an expansion to n =1 only the Z1Z2 terms survive the �; �0 !1 limits.
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E.3 Computation of the third term
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We consider these three subterms individually.
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Computation of T V at O(e2) in terms of gauge fields

E.3.1 First subterm
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We can also rename ~x$ ~y:
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E.3.2 Second subterm
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where ~Z = ~z � ~y, ~U = ~u� ~v, ~V = ~v� ~y and again the justi�cation for the expansion in ~Z is

a posteriori, as higher order vanish in the limits of �; �0 !1. This results in

=
e2CA

4

Z
y

(
Ac1(~y)

� 2�4�02

� (�2 + �02)2 � 4
�6�02

� (�2 + �02)3

+
� �4�02

4� (�2 + �02)3 � 4
3�6�02

16� (�2 + �02)4

�
@2

1

�
Ac1(~y)

+Ac2(~y)
� 2�4�02

� (�2 + �02)2 � 4
�6�02

� (�2 + �02)3 +
� �4�02

4� (�2 + �02)3 � 4
3�6�02

16� (�2 + �02)4

�
@2

2

�
Ac2(~y)

+Ac1(~y)
� �4�02

4� (�2 + �02)3 � 4
3�6�02

16� (�2 + �02)4

�
@1@2A

c
2(~y)

191



Computation of T V at O(e2) in terms of gauge fields

+Ac1(~y)
� �4�02

4� (�2 + �02)3 � 4
3�6�02

16� (�2 + �02)4

�
@1@2A

c
2(~y)

)
+O

�
��1
�

(E.20)

E.3.3 Third subterm
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After partial integration and renaming ~y $ ~x in some terms and de�ning ~Z = ~z � ~x,

~Y = ~y � ~v, ~V = ~v � ~z, we can write this as
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After expansion this can be integrated to
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E.4 Computation of the fourth term
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E.5 Computation of the fifth term
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We consider the two subterms individually.

E.5.1 First subterm
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In the �rst integral we de�ne ~X = ~x� ~y, ~Y = ~y � ~z, then shift ~X ! ~X � ~Y . In the second

and third integral we de�ne ~Z = ~z � ~w, ~X = ~x� ~y, ~Y = ~y � ~w:
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E.5.2 Second subterm
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We de�ne ~Z = ~z � ~y, ~U = ~u� ~y, ~V = ~v � ~u and expand the �elds:
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d
1(~y)

+2�2V2

�
G1(~U � ~Z)�G1(V1 + U1 � Z1; U2 � Z2)

+G1(U1 � Z1; V2 + U2 � Z2)�G1(~V + ~U � ~Z)
��

1 + Z1@1 + Z2@2

�
Ad1(~y)

+2�2V2

�
G2(V1 + U1 � Z1; U2 � Z2)�G2(~V + ~U � ~Z)

+G2(~U � ~Z)�G2(U1 � Z1; V2 + U2 � Z2)
��

1 + Z1@1 + Z2@2

�
Ad2(~y)

)
+
e2CA

4

Z
y;U;V;Z

B
(0)
d (~y)��(~V )��′(U)

�(G2(�U1 � V1;�V2)�G2(�~U � ~V ) +G2(�~V )�G2(�V1;�U2 � V2))
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�
(

(G2(~U � ~Z)�G2(U1 � Z1; V2 + U2 � Z2))@1A
d
2(~y)

+2�2V1

�
G1(~U � ~Z)�G1(V1 + U1 � Z1; U2 � Z2)

+G1(U1 � Z1; V2 + U2 � Z2)�G1(~V + ~U � ~Z)
��

1 + Z1@1 + Z2@2

�
Ad1(~y)

+2�2V1

�
G2(V1 + U1 � Z1; U2 � Z2)�G2(~V + ~U � ~Z)

+G2(~U � ~Z)�G2(U1 � Z1; V2 + U2 � Z2)
��

1 + Z1@1 + Z2@2

�
Ad2(~y)

)
�e

2CA
4

Z
y;U;V

��(�~V )��′(~U)B
(0)
d (~y)(2 + 2U1@1 + 2U2@2 + V1@1)Ad2(~y)

(G1(�~V )�G1(�U1 � V1;�V2) +G1(�V1;�U2 � V2)�G1(�~U � ~V ))

+
e2CA

4

Z
y;U;V

��(�~V )��′(~U)B
(0)
d (~y)(2 + 2U1@1 + 2U2@2 + V2@2)Ad1(~y)

(G2(�U1 � V1;�V2)�G2(�~U � ~V ) +G2(�~V )�G2(�V1;�U2 � V2))

+O
�
��1
�
: (E.38)

= �e
2CA
4

Z
y

B
(0)
d (~y)

(
�2

2��2 + 2��02
@2A

d
1(~y)�

�2�0
�
��0 +

p
�2 + �02

�
2� (�2 + �02)2 @2A

d
1(~y)

�
�2
�

2�2 + �0
�
�0 �

p
�2 + �02

��
2� (�2 + �02)2 @1A

d
2(~y)

)

+
e2CA

4

Z
y

B
(0)
d (~y)

(
�2

2��2 + 2��02
@1A

d
2(~y)�

�2
�

2�2 + �0
�
�0 �

p
�2 + �02

��
2� (�2 + �02)2 @2A

d
1(~y)

�
�2�0

�
��0 +

p
�2 + �02

�
2� (�2 + �02)2 @1A

d
2(~y)

)

�e
2CA
4

Z
y

B
(0)
d (~y)

�
2
�2
�
�2 + �0

�
�0 +

p
�2 + �02

��
2��0 (�2 + �02)3=2

@1 �
�2

2��2 + 2��02
@1

�
Ad2(~y)

+
e2CA

4

Z
y

B
(0)
d (~y)

�
2
�2
�
�2 + �0

�
�0 +

p
�2 + �02

��
2��0 (�2 + �02)3=2

@2 �
�2

2��2 + 2��02
@2

�
Ad1(~y)

+O
�
��1
�
: (E.39)
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Computation of T V at O(e2) in terms of gauge fields

E.6 Computation of the sixth term

�e
2

4

Z
u;v;x;y

��(~u� ~v)��′(~x� ~y)�
(2)
ab (~u;~v)

�2

�Aai (~u)�Abi(~v)
B(0)
c (~x)�cdB

(0)
d (~y) (E.40)

=
e2CA

4

Z
u;v;y;z

��(~u� ~v)(4�02 � 4�04(~u� ~v)2)��′(~u� ~v)(�
(G1(~u; ~z)�G1(v1; u2; ~z))(G1(~z; ~y)�G1(v1; u2; ~y))

+(G1(u1; v2; ~z)�G1(~v; ~z))(G1(~z; ~y)�G1(~v; ~y))
�
Ac1(~z)Ac1(~y)

+
�

(G2(v1; u2; ~z)�G2(~v; ~z))(G2(~z; ~y)�G2(~v; ~y))

+(G2(~u; ~z)�G2(u1; v2; ~z))(G2(~z; ~y)�G2(u1; v2; ~y))
�
Ac2(~z)Ac2(~y)

+(G1(~u; ~y)�G1(v1; u2; ~y))(G2(v1; u2; ~z)�G2(~v; ~z))Ac1(~y)Ac2(~z)

+(G2(~u; ~z)�G2(u1; v2; ~z))(G1(u1; v2; ~y)�G1(~v; ~y))Ac2(~z)Ac1(~y)

)
(E.41)

De�ne ~U = ~u� ~v, ~Z = ~z � ~y, ~V = ~v � ~z

=
e2CA

4

Z
y;U;V;Z

��(~U)(4�02 � 4�04~U2)��′(~U)(�
(G1(~U + ~V )�G1(V1; U2 + V2))(G1(~Z)�G1(V1 + Z1; U2 + V2 + Z2))

+(G1(U1 + V1; V2)�G1(~V ))(G1(~Z)�G1(~V + ~Z))
�
Ac1(~Z + ~y)Ac1(~y)

+
�

(G2(V1; U2 + V2)�G2(~V ))(G2(~Z)�G2(~V + ~Z))

+(G2(~U + ~V )�G2(U1 + V1; V2))

�(G2(~Z)�G2(U1 + V1 + Z1; V2 + Z2))
�
Ac2(~Z + ~y)Ac2(~y)

+(G1(~U + ~V + ~Z)�G1(V1 + Z1; U2 + V2 + Z2))

�(G2(V1; U2 + V2)�G2(~V ))Ac1(~y)Ac2(~Z + ~y)

+(G2(~U + ~V )�G2(U1 + V1; V2))

�(G1(U1 + V1 + Z1; V2 + Z2)�G1(~V + ~Z))Ac2(~Z + ~y)Ac1(~y)

)
(E.42)

=
e2CA

4

Z
y

(
2Ac1(~y)

�2�4�04 � �2�06

� (�2 + �02)3 �
�4�04

� (�2 + �02)3

202



+
�2�4�04 � �2�06

4� (�2 + �02)4 �
3�4�04

8� (�2 + �02)4

�
@2

1

�
Ac1(~y)

+2Ac2(~y)
�2�4�04 � �2�06

� (�2 + �02)3 �
�4�04

� (�2 + �02)3

+
�2�4�04 � �2�06

4� (�2 + �02)4 �
3�4�04

8� (�2 + �02)4

�
@2

2

�
Ac2(~y)

+Ac1(~y)
�
� �2�06

4� (�2 + �02)4 �
�2�06

4� (�2 + �02)4 +
�4�04

4� (�2 + �02)4

�
@1@2A

c
2(~y)

+Ac1(~y)
�
� �2�06

4� (�2 + �02)4 �
�2�06

4� (�2 + �02)4 +
�4�04

4� (�2 + �02)4

�
@1@2A

c
2(~y)

)
+O

�
��1
�
: (E.43)
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Appendix F

Diagrams of the static potential at

next-to-leading order

The e�ective action used to compute the static potential is Eq. (5.64)

Seff =

Z �
 y(i@2 + eA2) + σyc(i@2 � eAT2 )σc

�
+
�
F ytrial[

~A] + Ftrial[ ~A]
� ����

A1=0;A2=A

(F.1)

=

Z �
 y(i@2 + eA) + σyc(i@2 � eAT )σc

�
+

1

2

Z
=k1; =k2

=�
�
~k1 + ~k2

� 2
�
k(1)
�2

m+ Ek1
�abAa(~k1)Ab(~k2) + eS(1)[A] + e2S(2)[A] ; (F.2)

where S(1)[A] and S(2)[A] are given in Eqs. (5.45) and (5.46), respectively.

With these rules we can compute the diagrams of Sec. 5.5.2 and match them onto the

e�ective theory, Eq. (5.72):

L = Sy(i@2 + Es(r))S : (F.3)
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Diagrams of the static potential at next-to-leading order

F.1 Diagram c)

We write this as an effective bilinear term e2CAA
a(�q)Aa(−�q)K(3)(�q) and find

K(3)(�q) =
1

2

∫
/k

m+
√
m2 + �k2

2 (k(1))
2

m+

√
m2 + (�q + �k)2

2 (q(1) + k(1))
2

×
(
s(3)(�k, �q,−�k − �q) + s(3)(−�k − �q,�k, �q) + s(3)(�q,−�k − �q,�k)

−s(3)(�q,�k,−�k − �q)− s(3)(−�k − �q, �q,�k)− s(3)(�k,−�k − �q, �q)
)

×
(
s(3)(�k, �q,−�k − �q) + s(3)(−�k − �q,�k, �q) + s(3)(�q,−�k − �q,�k)

)
, (F.4)

where

s(3)(�k1,�k2,�k3) = 2i
1

m+ E3

k
(1)
2 k

(1)
3

�k2
1

(
k

(2)
1 −

k
(1)
1
�k1 × �k2

(
∑ 3

i=1 Ei)(m+ E2)

)
. (F.5)

As we first take the limit T →∞, we can take �q = (q, 0).

In the hard regime (k ∼ m � q) expansion to the leading order in q gives:

K
(3)
hard(�q) = −1

2

∫
/k

Ek −m
(m+ Ek)(m+ 2Ek)2

+O(q2) . (F.6)

The correction to the potential is thus:

δẼ(1),c
s = e2CF

m

q2
K(3) 4πm2

q2

e2CA
2πm

(F.7)

In the soft regime (k ∼ q � m) the combination of s(3) ’ s in the first parenthesis of

Eq. (F.4) cancels the first term of Eq. (F.5), making this parenthesis O(m−3) and K
(3)
soft(�q)
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is therefore of O(m−2). The potential thus has to be

∝ e4m
2

q4

q2

m2
= O(q−2) , (F.8)

and therefore may contribute to the linear term of the potential, but it cannot compensate

the cubic terms.

F.2 Diagram d)

Analogously, we also write this diagram as an effective two field vertex

e2CAA
a(�q)Aa(−�q)K(4)(�q), finding

K(4)(�q) =

∫
/k

m+
√
m2 + �k2

2 (k(1))
2

(
s(4)(�k, �q;−�k, �q)− s(4)(�k, �q;−�q,−�k)

−s(4)(�q,�k;−�k,−�q) + s(4)(�q,�k;−�q,�k)
)
, (F.9)

with

s(4)(�k1,�k2;�k3,�k4)

=

{
−
(

1

m+ E4

− 1

m+ E3+4

)
k

(1)
2 k

(1)
4

�k2
1
�k2

3

(
k

(2)
1 k

(2)
3 − k(1)

1 k
(1)
3

)
− 1

m+ E2

k
(1)
1 k

(1)
2

(�k3 + �k4)2�k2
4

(
(k

(2)
3 + k

(2)
4 )k

(2)
4 − (k

(1)
3 + k

(1)
4 )k

(1)
4

)
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Diagrams of the static potential at next-to-leading order

+
2

(E1+2 + E3 + E4)(m+ E3)

k
(1)
2 k

(1)
3 k

(1)
4

~k2
1

∣
1

(m+ E4)(~k1 + ~k2)2~k2
2

�
)

(~k2 � ~k4)((2~k1 � ~k2 + ~k2
2) k

(1)
1 � ~k2

1 k
(1)
2 )

+(~k2 � ~k4)((2~k1 � ~k2 + ~k2
2) k

(2)
1 � ~k2

1 k
(2)
2 )

(
+

1

(m+ E1+2)~k2
4

)
� ~k2

1k
(1)
4 + ((~k3 � ~k2) � ~k4)k

(1)
1 � ((~k3 � ~k2)� ~k4)k

(2)
1

()
+

k
(1)
1 k

(1)
2 k

(1)
3 k

(1)
4

(
P

iEi)(E1 + E2 + E3+4)(E3 + E4 + E1+2)(m+ E1)(m+ E3)∣
1

(m+ E2)(m+ E4)

~k2
1
~k2

3 � (~k1 � ~k2)(~k3 � ~k4)

(~k1 + ~k2)2

+
~k2

2

(m+ E2)

 
�2

 
2
~k3 � ~k4

~k2
4

+ 1

!
� 4

(~k1 � ~k2)(~k3 � ~k4)

~k2
2
~k2

4

!

�
 

1

m+ E1+2

� E3 + E4 + E1+2

(~k3 + ~k4)2

!

+
(~k3 + ~k4)2

(m+ E3+4)

  
2
~k1 � ~k2

~k2
2

+ 1

! 
2
~k3 � ~k4

~k2
4

+ 1

!
� 4

(~k1 � ~k2)(~k3 � ~k4)

~k2
2
~k2

4

!

�
 

1

m+ E1+2

� 2
E3 + E4 + E1+2

(~k3 + ~k4)2

!))
; (F.10)

In the hard regime we expand to the leading order in q and obtain

K(4)(~q) =

Z
=k

)
Ek

4k2m
�
(

Ek
4mk2

+
k2(m� Ek) + 3m2(m+ Ek)

Ek(2k2 + 3m(m+ Ek))2

)
�0 +

k2m+ 2m3 � k2Ek + 2m2Ek
8E3

k(m+ Ek)2

(
+O(q2) : (F.11)

The correction to the potential coming from this diagram in the hard regime is thus:

� ~E(1);d
s = e2CF

m

q2
K(4) 4�m2

q2

e2CA
2�m

(F.12)

In the soft regime the �rst and second line of (F.10) vanish and cancel in Eq. (F.9),
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respectively. Hence K
(4)
soft(�q) is of O(m−2) and the correction to the potential is

∝ e4m
2

q4

q2

m2
= O(q−2) . (F.13)

F.3 Diagram e)

In the soft regime, this is the iteration of the potential.

In the hard it is

∝
∫
/k

m+
√
m2 + �k2

2 (k(1))
2

1

k(2) + iε

m+

√
m2 + (�k − �q)2

2 (k(1) − q(1))
2

1

−k(2) + iε
(F.14)

∝
∫
/k

(
m+

√
m2 + �k2

2 (k(1))
2

) 2

1

k(2) + iε

1

−k(2) + iε
+O(q2) , (F.15)

so it neither contributes to the linear potential, nor to the cubic term.

F.4 Diagram f)

In the hard regime, this is beyond our accuracy, by the same reasoning used in the

previous diagram.
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Diagrams of the static potential at next-to-leading order

In the soft regime it is

∝
∫
/k

m+
√
m2 + �k2

2 (k(1))
2

1

−k(2) + iε

m+

√
m2 + (�k + �q)2

2 (k(1) + q(1))
2

1

−k(2) + iε
, (F.16)

because we take the limit q(2) → 0 (due to T →∞). The integral over k(2) is the residue:

∝
∫

/k(1)
Res

m+
√
m2 + �k2

2 (k(1))
2

m+

√
m2 + (�k + �q)2

2 (k(1) + q(1))
2

(
1

−k(2) + iε

) 2 ∣∣∣∣
k(2)=iε

= 0 . (F.17)

F.5 Diagrams g) and h)

This diagram is in both regimes

∝
∫
/k

m+
√
m2 + �k2

2 (k(1))
2

1

−k(2) + iε

1

−k(2) + q(2) + iε

m+
√
m2 + �q2

2 (q(1))
2

= O
(
q−2
)
, (F.18)

since q(2) → 0. So it cannot compensate the q−4 terms.

The same holds true for the inverted diagram (diagram h)).
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F.6 Diagrams i) and j)

This diagram is

∝ fabcTr[[T a, T b]T c]
m+

√
m2 + �q2

2 (q(1))
2

∫
/k

m+
√
m2 + �k2

2 (k(1))
2

1

−k(2) + iε

m+

√
m2 + (�k + �q)2

2 (q(1) + k(1))
2

×
(
s(3)(�k, �q,−�k − �q) + s(3)(−�k − �q,�k, �q) + s(3)(�q,−�k − �q,�k)

−s(3)(�q,�k,−�k − �q)− s(3)(−�k − �q, �q,�k)− s(3)(�k,−�k − �q, �q)
)

(F.19)

In the hard regime we expand to the leading order in q:

∝ e4CA(N2 − 1)
m

q2

∫
/k

1

(k(1))2
(
m+ 2

√
m2 + �k2

)= O(q−2) (F.20)

In the soft regime, again the leading order terms of the s(3) terms cancel, thus the diagram

has to be

∝ e4m

q2

1

m
= O(q−2) , (F.21)

and therefore may contribute to the linear term of the potential, but it cannot compensate

the cubic terms.

The same holds true for the inverted diagram (diagram j)).
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Diagrams of the static potential at next-to-leading order

F.7 Diagrams k), l), m), and n)

The loop only modifies the overall coefficient, not the momentum transfer, so this diagram

and all its permutations are of O(q−2).
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