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Abstract

We investigate Yang-Mills theory in 241 dimensions in the Schrodinger representation. Three
dimensional Yang-Mills theory is relevant on the one hand, because it is the lowest dimen-
sional Yang-Mills theory with propagating degrees of freedom, and on the other hand, be-
cause it provides the high temperature limit of four dimensional QCD. The Schrodinger
picture is interesting because it is well suited to explore properties of the vacuum state in
the non-perturbative regime. Yet, not much analytical work has been done on this sub-
ject, and even the topic of perturbation theory in the Schrodinger representation is not well
developed, especially in the case of gauge theories. In a paper by Hat eld [Phys. Lett. B
147, 435 (1984)] the vacuum wave functional for SU(2) theory was computed to O(e). In
the non-perturbative regime, the most sophisticated analytical approach has been developed
by Karabali et al. in a series of papers (see [Nucl. Phys. B 824, 387 (2010)] and references
therein). This thesis aims to put perturbation theory in the Schrodinger representation on
more solid ground by computing the vacuum wave functional for a general gauge group
SU(N,) up to O(e?), utilizing modi cations of these two methods. This is important since
it provides us with a tool for testing non-perturbative approaches, which should reproduce
the perturbative result in an appropriate limit.

Furthermore, regularization and renormalization are also not well understood in the
Schrodinger picture. The regularization method proposed by Karabali et al. leads to con-

icting results when applied to the computation of the vacuum wave functional with the
two di erent methods mentioned above. We aim to clarify how regularization should be
implemented and develop a new regularization approach, which brings these two expressions
into agreement, providing a strong check of the regularization employed. We argue that this
regularization procedure is not speci c to the cases studied here. It should be applied in the
same way to any quantum eld theory in any dimension in the Schrodinger picture. This is
the main result of the thesis.

We then go on to illustrate how physical observables can be computed in the non-
perturbative regime, using the trial wave functional proposed in [Nucl. Phys. B 824, 387
(2010)]. Among other observables, we compute the static potential at long distances, for
which we nd corrections not compatible with a linear potential.

Finally, we also discuss the possibility of extending this approach to 3+1 dimensions.
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Notation and Conventions

Throughout this thesis we use the acronyms QCD and QED for Quantum chromodynamics

and Quantum electrodynamics, respectively. We also use LO and NLO for leading order

and next-to-leading order, respectively, and VEV for vacuum expectation value. We use the

abbreviations Ref., Chap., Sec., App. and Eq. for reference, chapter, section, appendix and

equation, respectively, as well as the plural forms Refs., Chaps., Secs., Apps. and Eqgs. The

expressions Wilson line and string are used synonymously.

Furthermore we employ the following conventions:

v

We use units such that A = ¢ = 1.

The metric tensor in 2+1 dimensions is =diag( 1 +1 +1).
Greek indices label the components of vectors and tensors in 2-+1 space-
time dimensions and take the values 0 1 2, while Latin indices ¢ j k label their

spatial components only, taking the values 1 2. Spatial vectors are indicated by arrows,

e.g. x = (x1 xa).

Color indices in the adjoint representation area b ¢ and take the values 1 N2 1.

If not noted otherwise, the Einstein summation convention over repeated indices (space-

time as well as color) is employed.

The SU(N,) generators are 7%, with (T%),. = 4% in the adjoint representation, and
[T® T%] = ife%T*. The quadratic Casimir operators are C4 = N, in the adjoint and

Crp= NZ 11 the fundamental representation.

2N,
Color carrying eldsare A = iT°A* B= iT°B% J=J%" (sic)and = i *T°
Integration in position space is written as d?r, and in momentum space as
4k

X 7). Delta functions in momentum space are written as (k) (2 ) “W(k).

Typically d = 2, except for a small portion of Chap. 6, where d = 3.

The convention for the Fourier transformation for all elds is
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Chapter 1
Introduction

Yang-Mills theories, gauge theories based on an SU(N,) gauge group, are crucial to our
understanding of the physics of the fundamental forces that govern our world. They form
the basis of our description of the strong force (based on SU(3)), as well as of the uni ed
electroweak interaction (based on SU(2)  U(1)). Quantum chromodynamics (QCD) de-
scribes hadrons through elementary fermions (quarks and antiquarks) that carry an SU(3)
charge, called color, interacting via the interchange of gauge bosons, called gluons. In con-
trast to photons (the gauge elds of Quantum electrodynamics (QED), which is based on
the abelian group U(1)), the gauge bosons of a non-abelian theory also carry the charge of

the interaction, which implies that they are self-interacting.

In the case of the electroweak force the Higgs mechanism splits the gauge sector into
three massive self-interacting bosons and the massless photon. The latter does not interact
with itself, while the masses of the former tame the infrared behavior of the non-abelian
gauge theory. This makes it possible to compute observables in general, and the vacuum
state in particular, using weak coupling techniques. No such mechanism exists for the strong
interaction, however, where the gluons remain self-interacting and massless, and the strength
of the coupling increases towards lower energies, which is why the QCD vacuum is non-trivial,

and yet to be understood quantitatively.

This has several important consequences. One is color con nement, the fact that only
states that transform as a singlet under color transformations appear in experiments. In

particular, no free quarks, which are color triplets, or free gluons, which are color octets, are



Introduction

observed. Qualitatively this can be explained by the fact that the potential energy between
static color sources, unlike the gravitational or electromagnetic potential, increases linearly
with distance, due to the self-interaction of the gluons. In reality, quark-antiquark pairs
are created as the separation increases, which then hadronize, meaning that they form color
neutral ( white ) bound states. A quantitative description of this phenomenon, however, is
still lacking, making it one of the longest standing and most important problems in particle

physics.

Another consequence of self-interacting gauge bosons is the prediction of purely gluonic
bound states, which as of now remains to be experimentally con rmed. As color con nement
only allows color neutral states, there can be no free single gluon states, only singlets made
up of two or more gluons. In contrast to QED, where single photon states with a continuous
energy spectrum are possible, these bound states of gluons, called glueballs, have to have a

nite mass, but the precise mechanism for the generation of this mass remains unknown.

In the quest for a better understanding of QCD, an approach which considers the case of
a large number of colors N, has been studied (presented in Ref. [1]). In the limit N, :
gluons and quarks decouple; thus a good grasp of pure gluodynamics is crucial for a suc-
cessful application of this method. For all of these reasons, it is important (yet di cult) to
thoroughly investigate Yang-Mills theories, which describe the dynamics of the gauge bosons.
As up to now it has been impossible to solve them in the physical case of 3+1 dimensions,

one has to devise sensible simpli cations.

A common one is to consider the theory at weak coupling and to calculate observables
in perturbation theory. This approach has led to several major successes in the description
of electroweak and high-energy QCD events, but it does not provide an understanding of
low-energy QCD phenomena, in particular con nement. Since the strong coupling constant
is not small at low energies, perturbation theory breaks down in this limit, because all
orders in the perturbation series are important, and higher orders cannot be neglected.
Nevertheless, most of the time we will consider the weak coupling limit in this thesis. It is
important because perturbation theory provides us with a controllable tool for testing non-
perturbative approaches, which should reproduce the perturbative result in an appropriate
limit. Furthermore it allows us to address conceptual questions about the computational

method that we use, which are independent of the magnitude of the coupling constant.



Another, independent way to achieve simpli cation is to reduce the number of space-
time dimensions considered, and to try to draw information from these simpler cases on
how to approach the physical case of 341 dimensions. Yang-Mills theory in 14+1 dimen-
sions is exactly solvable (see Ref. [2]), but, since it has no dynamical degrees of freedom,
it is of limited informational value. In 241 dimensions the theory is more interesting, as it
does contain propagating degrees of freedom, while still being easier to handle, in partic-
ular because it is super-renormalizable. An introduction to this topic is given in Ref. [3].
Furthermore, 241 dimensional Yang-Mills theory is amenable to a non-perturbative analysis
devised by Karabali, Nair and collaborators in Refs. [4, 5, 6, 7, 8, 9] that makes extensive
use of two-dimensional conformal eld theory (which is very di erent from conformal eld
theory in any other dimension), thus making it an ideal testing ground for this approach.
While we hope to gain information about the 341 dimensional case by studying the lower
dimensional theory, Yang-Mills theory in 241 dimensions also has an important physical ap-
plication: High temperature QCD in 341 dimensions, which is needed for the description of
processes in the early universe and which can be tested with heavy ion collision experiments
that are performed at the RHIC and the LHC, can be approximated by Yang-Mills theory
in 3 euclidean dimensions ([10, 11]). Relevant observables in this regime, like the magnetic
screening mass, can thus be computed by way of analytic continuation from 2+1 dimensional
Yang-Mills theory. Most of the time in this thesis, we will work on Yang-Mills theory in 2+1
dimensions, but in Chap. 6 we will also give a brief glimpse of a possible extension to 3+1

dimensions of the methods applied here.

There are three equivalent representations of quantum eld theory (QFT): operator, path
integral, and Schrodinger representation. While the rst two are well known, the Schrodinger
representation, which makes use of wave functionals and functional di erential equations, is
less so. Nevertheless, all three approaches are equivalent, and they can bene t from each
other. For example, the quantum e ective action can be obtained from the vacuum wave
functional (see [12]). In practice, speci ¢ problems are often solved most conveniently in
one particular framework. In this thesis we will focus on the Schrodinger representation,
which is very well suited to obtain information about the Yang-Mills vacuum, in particular
because it allows for a straightforward way to go beyond perturbation theory, hence allowing

for computations outside of the weak coupling regime. Yet, not much analytical work has
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been done on this subject, and even the topic of perturbation theory in the Schrodinger
representation is not well developed, especially in the case of gauge theories. In a paper by
Hat eld (Ref. [13]) the vacuum wave functional for SU(2) theory was computed to O(e). In
the non-perturbative regime, the most sophisticated analytical approach is the one developed
in Refs. [4, 5, 6, 7, 8, 9]. This thesis aims to put perturbation theory in the Schrodinger
representation on more solid ground, utilizing modi cations of these two methods.
Furthermore, regularization and renormalization are also not well understood in the
Schrodinger picture. Here it proves advantageous to work in 2+1 dimensions: Since 2+1
dimensional Yang-Mills theory is super-renormalizable we do not need to worry about renor-
malization of the parameters of the theory. Regularization, however, must be addressed,
and doing this is one of the main parts of this thesis. In this work, we aim to clarify how

regularization in the Schrodinger representation should be implemented.

Because the Schrodinger representation is less well known we give a short introduction
to this topic in Chap. 2 in order to make this thesis self-contained. As all representations of
QFT are equivalent, the determination of the ground-state (or vacuum) wave functional of
Yang-Mills theory, [A], is tantamount to solving it, because any observable (for instance
the static potential or the spectrum of the theory) can then be obtained by the computation
of the expectation value of the corresponding operator, as we will see in Chap. 2. Even if the
exact solution is not known, properly chosen trial functions may give valuable information

on the vacuum via variational methods (see for instance [14]).

We are still far from obtaining the exact ground-state wave functionals of non-abelian
Yang-Mills theories. Even obtaining approximate expressions is very complicated. This is
also true in the weak coupling limit. One reason is due to the requirement that the wave
functional, in addition to satisfying the Schrodinger equation, has to be gauge invariant.
This constraint is imposed by the Gauss law. Therefore, one cannot use standard quantum-
mechanical perturbation theory in a straightforward manner. A procedure to overcome this
problem was devised in the case of SU(2), for 341 dimensions, and was applied to O(e) in
the weak coupling expansion, in Ref. [13]. This method (which we shall call method (A))
can also be applied to the 2+1 dimensional case and a general group SU(V,) without major

modi cations, and it can be used to compute the terms at higher orders. We do so in Chap. 3

4



and obtain the O(e?) expression for a general group SU(N,) in three dimensions.

A di erent approach (method (B)) which reformulates the Schrodinger equation in terms
of gauge invariant variables was worked out in Refs. [4, 5, 6, 7, 8, 9] in order to understand
the strong coupling limit and con nement in three dimensions. It can, however, be easily
reformulated to be used in a weak coupling expansion. This is done in Chap. 3 in order to
obtain the vacuum wave functional at O(e?).

Both approaches have their bene ts and drawbacks, so considering both is in some sense
complementary. The wave functionals found in the two ways should, however, be identical.
Due to the complexity of the expressions, comparing the two results is not an easy task,
and we have to develop a systematic scheme to accomplish this. We do this in Chap. 3 and

nd that up to O(e) they are identical, while at O(e?) they agree to a large extent but not

completely. The discrepancy is due to regularization issues, which we address in Chap. 4.

The regularization of the Schrodinger equation and the vacuum wave functional in QFT
is a complicated subject. Whereas some formal aspects have been studied quite a while
ago in Refs. [15, 16], there have not been many quantitative studies of the regularization
of the Yang-Mills vacuum wave functional. In three dimensions, the most detailed analyses
have been carried out using method (B) (see, for instance, the discussions in Refs. [7, 17], in
particular in the appendix of the last reference). While it might seem that in method (B)
regularization has already been completely taken into account, we nd in Chap. 4 that the
regularization procedure has to be modi ed to obtain the correct Yang-Mills vacuum wave
functional.

The result of Chap. 3 using method (A) was obtained without any regularization of the
functional Schrodinger equation at all. In Chap. 4 we carefully regularize the computation,

nding that also for this method a new contribution has to be added to the result. We then
compare these new, modi ed results of both methods and nd that they agree to O(e?).
This is a strong check of our computations and of the regularization method used.

Since this regularization method is independent of the speci c¢ theory, in Chap. 4 we actu-
ally give the general prescription for the implementation of regularization in the Schrodinger
representation for a general QFT. In brief, we nd that the regulator of the Hamiltonian in
the Schrodinger representation has to be included throughout the determination of the vac-

uum wave functional, since removing it too early may lead to the loss of contributing terms.



Introduction

The insight gained here can be generalized to other QFTs and also to the four dimensional
case.
In addition, the vacuum wave functional obtained in this way allows us to give an estimate

for the magnetic screening mass.

In Chap. 5 we move away from the perturbative regime. The true power of the Schrodinger
representation lies in its ability to easily incorporate resummation schemes and
non-perturbative terms, so it does not necessarily depend on a weak coupling expansion.
In Ref. [8] a strong coupling expansion for the vacuum wave functional was developed, which
relies on the fact that the potential term V of the Yang-Mills Hamiltonian, viewed as a
functional, is an eigenfunction of the kinetic operator 7. This is apparent in terms of the
variables used in method (B), but it seems to be wrong in terms of the original gauge elds
(method (A)) as long as only unregularized operators are considered. Once both the ki-
netic and potential operators are regularized, we nd in a perturbative expansion that also
in terms of gluon elds, V is an eigenfunction of 7. Nevertheless, we nd that the corre-
sponding eigenvalue depends on the regulator. This suggests that there may be a problem
with using this strong coupling expansion to obtain the vacuum wave functional.

Another expansion scheme was developed in Ref. [9], leading to a new proposal for the
vacuum wave functional, which is claimed to interpolate between the weak coupling and
the strong coupling regime, and to be a good approximation for all scales. It is given as

2 m (where m is a mass scale that appears in the computation), which

an expansion in e
corresponds to a resummation of a perturbative series. This expansion parameter is of O(1),
so its use can only be justi ed a posteriori. The vacuum wave functional derived from this
more general approach can be used to compute observables in all coupling regimes. In Chap. 5
we give estimates of the gluon condensate and of the correlator of the chromomagnetic eld.
In Ref. [9] this wave functional has been applied with great success to the computation of the
static potential between a quark and an antiquark, predicting a linearly increasing potential
at long distances from rst principles. While this is an impressive result, there are some
issues with it (in particular in light of the results of Chap. 4, which demand a modi cation
of the weak coupling limit of this vacuum wave functional), which we investigate in Chap. 5.

In order to have more control over the computation we reformulate the wave functional of

Ref. [9] in terms of the gauge elds. Computing the static potential with this trial functional,

6



however, we nd terms at next-to-leading order in e? m which are cubic in the separation.
This suggests either that e? m is not a good expansion parameter for the computation of the
static potential, or that the vacuum wave functional proposed in Ref. [9] should be modi ed

along the lines of the ndings of Chap. 4.

In Chap. 6 we investigate the possibility of extending the gauge invariant approach to
four dimensions. In Ref. [18], in analogy with method (B), a third formulation of the Hamil-
tonian approach was devised, which we shall call method (C). Like method (B), it employs
a reformulation in terms of gauge invariant variables, albeit di erent ones. In particular,
these new variables are real, thus avoiding the problem of laborious checks for reality of the
wave functional like the one we employ in Chap. 3. The main advantage of this method is,
however, that it may also be applied to 3+1 dimensional Yang-Mills theory. In Chap. 6 we
will rst introduce it in 2+1 dimensions and then extend it to the 341 dimensional case.
We propose a Hamiltonian which di ers from the one of Ref. [18], where a di erent regu-
larization scheme was employed and some terms were dropped because they were argued to
be subleading. Nevertheless, taking the results of Chap. 4 into account, it seems erroneous
to neglect these terms. Here, we hence give an example of how the 241 dimensional theory
can inform the theory in 341 dimensions, and why it is worthwhile to study it. The under-
standing of how QFT's in the Schrodinger representation should be regularized that we gain
in this thesis is independent of both the speci ¢ QFT and the dimensionality and can thus

be generalized.

As most calculations in this subject are very lengthy, this thesis is equipped with an

extensive set of appendices, in order to keep the chapters as clear as possible.






Chapter 2

The Schrodinger Representation of
Quantum Field Theory

In order to make this thesis self-contained (and to establish our conventions and notation) we
will give an introduction to the Schrodinger representation of QFT in this chapter, following
mainly the presentation in [19]. Another helpful introduction to the topic can be found in
[20]. The Schrodinger picture is well known from, and widely used in, ordinary quantum
mechanics: The time-dependence of observables is encoded in the states, while the operators
are time-independent. Canonical quantization is implemented by demanding commutation
relations for conjugated operators. In the coordinate representation, position operators are
represented by their eigenvalues, momentum operators by di erential operators, and states
by wave functions. The Schrodinger equation thus becomes a di erential equation whose
solutions represent the spectrum of the theory. This same picture can be applied to eld
theory: By using eld operators instead of position operators, whose eigenvalues are functions
instead of numbers, the states are represented by wave functionals and the Schrodinger
equation becomes a functional di erential equation. In the rst section we will explain the
formalism with the help of the simplest example of a QFT: the case of a real scalar eld
without interaction. In Sec. 2.2 we will deal with the complications that arise when working
with gauge theories. We start with the abelian (non-interacting) example, U(1) gauge theory,
which has physical relevance in describing the photon eld. Non-abelian (interacting) gauge

theories will then be the topic of the remainder of the thesis. Since this thesis is mostly



The Schrodinger Representation of Quantum Field Theory

concerned with 2+1 dimensional eld theory, all of our examples will be in this framework,

but the derivations in this chapter hold for general space-time dimensions D = d + 1.

2.1 Free scalar field theory

Using the metric
=diag( 1 +1 +1) (2.1)

the Lagrangian density of a free scalar eld in 241 dimensions is given by
1 2_2
L= 5( T T+ mr) (2.2)

and the conjugated momentum of the eld is

L

( om(z

(z) = 7" o7 () (2.3)

In order to quantize the eld we promote the eld to operator status and impose the equal

time commutator
[r(to ) (to y)] =i P(z ) (2.4)

while all other commutators vanish.

In the Schrodinger picture we now choose the states to be time-dependent and the oper-
ators to be time-independent. In the coordinate representation a basis of the Fock space is
chosen such that the (now time-independent) eld operator m(x) is diagonal. Analogously,
one can have a momentum representation, which we ignore here for reasons that will become
apparent later (see footnote 1 of Chap. 3).

Let 7 be an eigenstate of 7(z) with eigenvalue 7(z):

m(z)m =n(x)w (2.5)
then the coordinate representation of the (now time-dependent) states is given by the
wave functional

[m(2) t] = = (2.6)

10



a functional of the ordinary function 7(z), and we have the completeness relation

1= Drnm m:= dr, Ty To (2.7)

The commutator, Eq. (2.4), is realized by'

()= i @) (2.8)
and so the Hamilton operator?
M= % (@ @) i) (2.9)
turns into a functional di erential operator
H= L) : +  w(x)?+ m27r2(x)( (2.10)
2 72 (x)
and the Schrodinger equation i =H turns into a functional di erential equation.

Since H is time-independent, the time-dependence of the wave functionals can be separated
out

[r t]=e “Ft [n] (2.11)

leading to the time-independent functional Schrodinger equation:

) =00 +  7(z)? +m27r2(x)( [r]=FE [n] (2.12)

Note that for the ground state the energy can be normalized to zero by moving it to the

left-hand side of the equation and absorbing it in the 72 term as a counterterm.

Once the functional Schrodinger equation is solved, the vacuum expectation value (VEV)

of a general operator O can be computed by functionally integrating over all possible eld

lin terms of the coordinate basis: ¢ II(Z) ¢ = i&if) =0[o(y) oY)

2Here and in the following, we use the notation (d = 2): diz, K %, §(k)  (2m)%6 @D (k),

and so on.
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The Schrodinger Representation of Quantum Field Theory

con gurations, weighted by the ground-state functional:

o0 00 o  DiDr_ o7 TOm m™ _ _Drx om0  o[7] (2.13)

0 0 Dr om m o Dr 7] o[7]

Since in the Schrodinger representation the dynamics are in the states, in the case of
interacting theories, S-Matrix elements can be obtained by projecting the interacting initial

and nal states onto each other:

S = = Dr [n] [« (2.14)

Let us now solve the Schrodinger equation for the ground state, i.e. Eq. (2.12) with
vanishing right-hand side. Since we are talking of the ground state, we expect the wave
functional to be real and to have zero nodes. Therefore, it can be written as the exponential

of a well behaved functional F[r], meaning that it does not diverge for nite 7:

(7] = e L1 (2.15)

*Fla] ) _Fla](”
w2 (x) 7(x)

= 7(z) “+m? w(x) (2.16)

T

It is easiest to solve functional di erential equations in momentum space, so we take the

Fourier transforms

m(z) = % (k) = e 7 (2.17)
We will use this same convention for all elds and functional derivatives throughout this

thesis.

If we take F' to be quadratic in 7, the square of the rst derivative is so, too, and it can
then be matched to the right-hand side of Eq. (2.16). The second derivative is then a pure

number that can be absorbed in the ground-state energy, or, equivalently, in a counterterm.

12



Making the Ansatz
Flrl = w(k)x( k)g(k) (2.18)

and plugging it into the Fourier transformation of Eq. (2.16), leads to the algebraic equation
4% (k) = k* + m? (2.19)

and thus to

7] = exp.

1

5 (k) k2 +m2n( k)) (2.20)
k

We use the positive square root because it leads to a normalizable wave functional. From

here it is possible to move on to the wave functionals of excited states, but we will not

consider them in this thesis (see Sec. 10.1 of [19] for details on this topic), instead we will

now look at the vacuum wave functional of another, more physical theory.

2.2 Abelian gauge theory

Pure (non-interacting) photon eld theory, i.e. QED without fermions is described by a U(1)
gauge theory. Its Lagrangian density is

1 1
L= -F F =—-(E* B (2.21)
4 2
where e’ =[D D], D = +eA . The magnetic eld
1 1
B = B itk = B (AR RAj) =: A (2.22)
(where A B ;AiB; and i = 7') is a scalar eld in 2+1 dimensions (recall

that due to our convention for the metric there is no sign di erence between upper and lower
spatial indices). F' and hence the Lagrangian are invariant under gauge transformations of
the photon:

1

A) A =A@+ g (2:23)

It is a well known problem of canonical quantization that while the conjugate momenta

13



The Schrodinger Representation of Quantum Field Theory

of the gauge elds A; are

L
0444

the conjugate momentum of Ay vanishes identically:

L

0= m 0 (2.25)
which impedes the direct employment of the canonical commutation relations, Eq. (2.4).
This is solved by choosing a particular gauge in which to quantize the electro-magnetic eld.
One possibility is to use Coulomb gauge, which requires a modi cation of the commutators
and thus leads to directional functional derivatives, which are di cult to handle. In addition
this gauge breaks explicit Lorentz invariance. Another option is to work in Lorentz gauge, in
which both Lorentz invariance and the canonical commutation relations can be maintained.
This choice, however, has the disadvantage that the action has to be modi ed, leading to
a more complicated Hamiltonian. Furthermore one needs to carry along unphysical (scalar
and longitudinal) photons and the quantization requires a constraint. Here we opt for a

compromise and choose the temporal gauge
Ag=0 (2.26)

This has the advantage that we can keep a simple Hamiltonian and the canonical commuta-
tion relations, but, as it is only a partial gauge condition, we have to deal with longitudinal
photons and a constraint to keep the residual gauge freedom under control. Also in this case

we lose explicit Lorentz invariance.

In temporal gauge we work with the spatial components only, A = (A; Ay). We have

the equal time commutators
Ei(to x) Aj(to y) =iy Pz y) (2.27)

and the Hamiltonian
1
H=T+V=g E?(z) + B*(x) (2.28)

T

14



where we introduced the kinetic operator 7 and the potential V. In the coordinate represen-
tation we once again choose a basis of the Fock space in which A;(z) is diagonal. We then

represent A;(x) by its eigenfunction A;(z), and

(2.29)

is a di erential representation of the commutators Eq. (2.27). The Hamiltonian again be-
comes a functional di erential operator and the Schrodinger equation in momentum space®

reads

1

3 . Ak AR +(kE Ak)(E  A( k) [A] = FE [4] (2.30)
The temporal gauge is only a partial gauge, since gauge transformations with (g(z) = 0
leave Ap = 0 una ected, leaving us with a residual gauge freedom of the form of Eq. (2.23)
with time-independent g(x). Therefore, additionally to the Schrodinger equation we now
have to solve the so-called Gauss law constraint, which means that the generator of the
residual gauge transformations (called the Gauss law operator I) has to vanish on physical

states:
I = E =0 — [A] =0 (2.31)

This is equivalent to the request to only consider gauge invariant wave functionals.

When solving the Schrodinger equation, Eq. (2.30), for the vacuum wave functional, the
same arguments for a Gaussian functional as in the previous section apply, so we make the

Ansatz

[A] =exp G[A] =exp | ) Ai(k)A;( k;)gzj(k)) (2.32)

The tensor structure of g;;(k) can be xed by the Gauss law, Eq. (2.31), which for a free

eld theory in momentum space reads

—0 (2.33)

3The conventions for the Fourier transformation are the same as in Eq. (2.17)
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The Schrodinger Representation of Quantum Field Theory

It implies that g¢;j(k) can only depend on the transverse component of the momentum.

Therefore
9 (k) = g(k)Py;(k) (2.34)

where P;; = 4 kik; k? is the projector to the transverse component. We can now solve
Eq. (2.30) and determine g(k). As the equation is quadratic there are again two solutions,

of which we take the one that leads to a normalizable wave functional, which is

1 1
M=o g AW AC ) (2:35)
Kk Lok
where Fj, k. One can see that, even in the free- eld case, the implementation of the

Gauss law is not trivial.

One way from here towards interacting theories would be to include fermions. These
can be introduced in terms of Grassmann-valued elds. We will, however, follow a di erent
route, and study interacting (non-abelian) gauge theories. In contrast to the cases of non-
interacting eld theories considered in this chapter, we are still far from obtaining the exact
vacuum wave functionals of (non-trivial) interacting theories. Hence, we have to devise
sensible approximation schemes. We investigate two approaches in the following chapter. In
Sec. 3.2 we will extend the approach considered in this section to non-abelian gauge theories.
We are then forced to rely on perturbation theory and solve the Schrodinger equation order
by order. Also, the implementation of the Gauss law becomes tedious at higher orders.

Reformulating the Hamiltonian in terms of gauge invariant eld variables is an elegant
way to bypass the need for the Gauss law constraint. We will study such an approach in
Sec. 3.3.
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Chapter 3

Analysis of the Yang-Mills Vacuum
Wave Functional at O e?

The content of this chapter was published in Ref. [21].

3.1 Introduction

We compute the ground-state (or vacuum) wave functional of Yang-Mills theory in 2+1
dimensions in a weak coupling expansion up to O(e?). We use two di erent methods: (A)
One extends to O(e?) and to a general gauge group the computation performed in Ref. [13]
to O(e) for SU(2) (An alternative procedure has also been considered in Ref. [22] and worked
out to O(e)); (B) The other method is based on the weak coupling limit of the reformulation
of the Schrodinger equation in terms of gauge invariant variables [4, 5, 6, 7, 8], and on the
approximated expression obtained in Ref. [9] for the wave functional.

Method (A), outlined by Hat eld [13] was developed for four dimensions and SU(2), but
it can also be applied to the three dimensional case and a general group SU(N,) without
major modi cations. The O(e) result agrees with the expression obtained by transforming
the four dimensional result of Ref. [13] to the expected three dimensional counterpart. The
solutions obtained with this method satisfy the Schrodinger equation by construction but
not necessarily the Gauss law, though it can be explicitly shown that it does at O(e). We

then compute the O(e?) wave functional in what is a completely new result. Again, this
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Analysis of the Yang-Mills Vacuum Wave Functional at O (e?)

result satis es the Schrodinger equation by construction, but at this order it is not possible
to explicitly check the Gauss law, due to the complexity of the resulting expressions. The
resulting wave functional is explicitly real (as expected for the ground-state functional) and

we name it gz [A], where GL stands for the explicit use of the Gauss law.

The fact that gauge invariance can not be guaranteed in general is one important draw-
back of the previous method. The reason is that the Gauss law is only implemented partially
for some terms in some intermediate expressions. Moreover, even this partial implementation

of the Gauss law is di cult to automatize, as at each order it has to be tailored somewhat.

A possible solution to the previous problem is the reformulation of the Schrodinger equa-
tion in terms of gauge invariant variables. One such formulation was originally worked out
in Refs. [4, 5, 6, 7, 8] (for some introductory notes see [23]) and, more recently, in Ref. [9],
where a modi ed approximation scheme was devised. The authors use a change of eld
variables, which become complex, to simplify the problem. Even though the original moti-
vation of those works was to understand the strong coupling limit (the opposite limit we are
considering in this chapter), it is not di cult to see that the approximation scheme worked
out in Ref. [9] could be easily reformulated to provide with a systematic expansion of the
weak coupling limit. We use this reformulation to compute the ground-state wave functional
to O(e?). The vacuum wave functional is a function of the gauge invariant variables J
which we then transform to the original gauge variables A®. The resulting expression is
gauge invariant by construction and also satis es the Schrodinger equation by construction.
We name it g7[A] c1lJ(A)], where GI stands for the use of the gauge invariant degree
of freedom. However, the explicit expression has the very unpleasant feature of having a

non-trivial imaginary term.

We have then obtained two di erent expressions for the vacuum wave functional: g [A]
and  ¢r[A], which actually look completely di erent. At O(e) it is possible to show, after
several manipulations and using the symmetries of the integrals, that they are equal (hence,
both of them are real and gauge invariant at this order). Such brute force approach happens
to be unfeasible at O(e?) due to the complexity of the expressions. We need an organizing
principle for the comparison. The approach we follow is to rewrite ¢z[A] in terms of the
gauge invariant variable J and a gauge dependent eld . All dependent terms should

vanish if g [A] is going to satisfy the Gauss law, and we explicitly show that this happens.
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This means that both ¢p[A] and g7[A] are gauge invariant. We would then say that
they should be equal, since both satisfy the Schrodinger equation. We actually nd (after a
rather lengthy computation) that they are almost but not completely equal. The di erence
is proportional to a bilinear real term. This is puzzling but there is a reason behind it:

corlA] and  ¢r[A] satisfy di erent Schrodinger equations. ¢r[A] was obtained using
the unregularized Schrodinger equation, whereas ¢;[A] was obtained after the Schrodinger
equation in terms of J® variables was regularized. In this last case, regularization produces
an extra term in the Schrodinger equation, producing in turn an extra term in the wave

functional. We will follow up on this issue in Chap. 4.

Irrespectively of the above, this comparison allows to rewrite ;[A] in an explicitly real
form. This is by far non-trivial, as the initial g;[.J] was explicitly complex and dependent
on complex variables. In particular there is a delicate cancellation between terms such that,
after transforming this expression back to real variables, the wave function becomes real
(actually in our comparison we work the other way around and transform ¢y [A], which is
real, in terms of the complex variables). This is an important test of several parts of the

computation done in Ref. [9].

We believe that the weak coupling reformulation of the approach followed in Ref. [9]
can be helpful to understand the meaning of the partial resummations performed in the
approximation scheme used in this reference, though we do not explore this issue here. Our
O(e) or O(e?) wave functional can also be used to test di erent trial functionals in the
literature that claim to have the proper weak and strong coupling limit. Typically, they
reproduce the leading order weak coupling expansion but not the O(e) corrections. This is
certainly the case with covariantization approaches where the exponent of the wave functional
is approximated by a bilinear term in the B elds (see for instance [24, 25]). Therefore, our
results can hint to how those trial functions could be improved to correctly incorporate

corrections in the weak coupling limit.

The organization of this chapter is as follows: In Sec. 3.2 we apply method (A) and
obtain g [A] up to O(e?). Method (B) is applied in Sec. 3.3 where we compute ¢r[A4]
up to O(e?). We develop a comparison principle in Sec. 3.4 and use it to compare the two
wave functionals obtained in the two previous sections. In Sec. 3.5 we summarize the results

of this chapter. In order to keep the presentation clear we relegate lengthy calculations to
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Analysis of the Yang-Mills Vacuum Wave Functional at O (e?)

Apps. A and B.

3.2 Determination of Vg |A]

In Yang-Mills theory the gauge elds are matrix-valued (in particular they are SU(N,) ma-
trices) and the Lagrangian is a generalization of the U(1) Lagrangian, Eq. (2.21). It reads

1
L= ZG “‘G° (3.1)
where
G* = A A% efabe AP A° (3.2)
eG =[D D|,D = +eA, A = iI°A*, G = T°G,, T are the SU(N,)

generators (with (T%),. = if% in the adjoint representation), and [T® T°] = if2T*. The
quadratic Casimir operators are C'y = N, in the adjoint and Cr = %61 in the fundamental
representation.

As in Chap. 2 we will work in the Hamiltonian formalism and partially x the gauge
to Ag = 0. Under (residual) gauge transformations with a time-independent matrix-valued

function g(z) the elds transform as

1
A Al=gAig '+-gug ! (3-3)
The chromomagnetic eld is
1 e
B = 5 awl GA kA +elA; A = A+ §fabcf4b A° (3.4)

with B = iT°B® (recall that A B i;AiB; is a scalar, and that we use the metric
=diag( 1 +1 +1)).
In Ref. [13] the wave functional was computed to O(e) at weak coupling. It is possible to
generalize the method used in this reference. We do so here and compute the ground-state

wave functional to O(e?). The ground-state wave functional has to satisfy the Schrodinger
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equation’:

1 a a —
H GL[A] = 5 i Aa(x) Atl(x) —|—B (J])B (l’) GL[A] = E GL[A] (35)

which is the generalization of Eq. (2.30), and the Gauss law constraint, which in the non-

abelian case reads

I° GL[A] = (D E)a GL[A] = Z) 7 + efabcAb 7( GL[A] =0 (36)

a C

Again, because we are talking of the ground state, we expect the wave functional to be
real and to have zero nodes (see [3] for a thorough discussion). Therefore, it can be written

as the exponential of a functional F[A] that does not diverge for nite A:

arlA] = e Forldl — ¢ FGLUAl eFGLAL @FEIAI+O(E) (3.7)

and satis es the Gauss law

) - e abc _( _
1 +ef A n Far[Al =0 (3.8)

a C

In order to compute F', we will do a perturbative expansion in the coupling constant e,

assuming that it is smaller than any other scale that appears.

3.2.1 Order ¢

At lowest order the Schrodinger equation is

FQIAl FOIA] ) )
) Aol kR ARG ACR) (3.9)

L At this point it becomes clear why we work in the coordinate representation instead of the momentum
(E2) representation, even though E2 are gauge invariant fields: The potential contains terms of O(A4%), we
would thus have to solve a fourth order functional differential equation.

21



Analysis of the Yang-Mills Vacuum Wave Functional at O (e?)

which has to be solved together with the lowest order Gauss law:

(0)
Fold] (3.10)

Ac(k)

k =0

FéL) can be obtained in several ways. It is equivalent to solving the Schrodinger equation
of the free theory with the free Gauss law, in other words, N> 1 replicas of photon eld

theory, Eq. (2.35):
(3.11)

k%“" AR (kA% k)

N | —

FlA] =

3.2.2 Order e
At O(e) the Schrodinger equation splits into two equations (organized by powers of A):

FO1A] FQA) ’
GL[ ] GL[ ]:_ abe kz (kfl Aa(k‘l))(Ab(k‘z) Ac(kg)) (3‘12)
k ACL( k) Aa(k) 2 k1 ko k3 i=1
2F(1) A
cLl] =0 (3.13)
k A k) Ae(k)
and the Gauss law constraint reads?
F(l) A F(O) A
k GL[ ] — ifabc Ab(p1) GL[ ] (p1 pg—{—k‘)
Ae(k) P1 p2 A(p2)
- £aoc 1 (&
= if*™ —@p Ak p)p Ap) (3.14)
p
Using Eq.(3.11) the left-hand side of Eq. (3.12) can be rewritten as follows:
(1)
1 Fu A]
—p A() p —CE—
p P Ax(p)
1 Fi)[A Fi)A
= Lo oa Ll ), fald (3.15)
p P Ax(p) A(p)
2Note that ind=2: A( k §) p § A@) = 7 AF@ G A k ).
Other useful relations are (k A)(k B) (k A)(k B)=k*(A B)and €€kl = Oik0j1 0310k
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where the second term of the right-hand side is known because of the Gauss law.
We are now in the position to obtain F((;L) We pro t from the fact that the kernel can be
taken to be completely symmetric® under the interchange of any two elds A; 4, ,, A

jaj x;-

(1)
Therefore, the density of » P ) A%(p) I}‘TL(Z;]( can be related with the density of FélL) [A].

More speci cally, if for a functional F© A% (k) A% (k,) of n elds we have

p A%(p) ﬂg——kkmen A (k) (3.16)

then

FlA] = D A"(k) A% (k) (3.17)
ki ke k1 + + Ky,

With this we nally obtain

(1) — abe ’ ) 1 a b c
FGA - Ha(iﬁzﬁlA%MMm A(ks))
L ARk A (ks A(K))) (3.18)

(7 ki) ky ks

which is the three dimensional version of Hat eld s result (except for a di erent sign con-

vention for e).

3.2.3 Order &2

At O(e?) the Schrodinger equation leads to the following equality

1 2R RS RS RS FD) 1
- 2) GL GL — pabc rade Ab A€ Ad A€ =0 3.19
2 - ( A?)Q Aza A? A? A,? + 4 f f ( ) ( ) ( )

At this order FéQL) can have contributions with four, two and zero elds (there are no contri-
butions with three or one eld): FézL) = Fc(:2L4) + F((;zLQ) + FC(;QLO). There is no need to compute

FgLO), as it just changes the normalization of the state, which we do not x, or alternatively

3 Any term antisymmetric in any of the two indices will vanish when multiplied by the gauge fields. This
means that the kernel is not completely determined, as such terms can always be added.
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can be absorbed in a rede nition of the ground-state energy. Then, Eq. (3.19) can be split

into two terms with two and four elds respectively:

1 1 0 24
YRS RS RS

1 aoc faae C e
2 Ac Ao Ao ge T A AT A =0 (3.20)
and (24) © P22
1 *For 9 For Feor —0 (3.21)
2 . (A9)2 Ae Ar '

F((;OIZ and F, élL) have already been determined (see Egs. (3.11) and (3.18)) and can be inserted
into Egs. (3.20) and (3.21), but we still have to implement the Gauss law, which at this order

reads

For b b Fél
k —=5— = qf%° A’(p P pat+ k 3.22
20(0) / . (p1) A9(py) (p1 p2tk) (3.22)
722
—CGL_ = (3.23)
A (k)

One rst solves Eq. (3.20) and determines F((;2L4). Afterwards FéQLQ) is xed by Eq. (3.21).

) 21

The procedure to obtain FgL4 is similar to the one used for F((;L) The dependence on F;,

is encoded in the 2nd term of Eq. (3.20), which we rewrite in the following way

1 FEY1A]
Al GL
s b Ap) p = ®
1 F2Y1A] F2Y14]
_ 2 Ae GL Aa GL 3.24
3 P) — ey ® p Ap) P — ) (3.24)

Once again the second term on the right-hand side is given by the Gauss law, which allows
)

us to isolate Fgf . As above we use the fact that the kernel can be taken to be com-

pletely symmetric under the interchange of elds A4, ,, .,, which lets us relate the density of

(2,4)
D ) A%(p) FGL—W( with the density of Fé2L4) [A] and we nally obtain

P A*(p)

1 1 F) F.)
Fat = = GL. [k ky] — S g1 g
ot 2 p k1 k2 q1q ?( kz + q; ) Ag(p) A?( p)
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(1)
. . + F,
i e @ta D) an(q)) AP(g) —TGE [k k)
p ki k2 q1 g z( kz + q; ) q1 Ac(p)

( z(kz + )

1
+_fa1a20fb1bgc
8 k1 k2 q1 g2 Z(kz + Qi)

(A (k) A% (k) (A" (q1)  A™(g2))(3.25)

which explicitly reads

aoc pcae 1
Fi ) = febefed (k: + ;)
k1 k2 q1 g2 ; ki + ks + ¢ + @

1
20k + ke + ki +k) (g + 2+ a1+ ¢

1
1tk 2A% (k1) AP(ky)

) ( Alq)  Ag)

k k k k k
LERS k) ARk A(Ry) 4 R e
kQ kl k2

+(k1 A%k1)) (k1 + ko) Ab(k2)>

(k1 AR (@ AY@)) A'(k2) A%(qe)

+ (b A%(ky))(ky  A°(k))

o, ) B Ag) (AR AR A%a)

k1 ko q1 K2
1 I 1
+— (kb A"(k) (k1 + k2)  A(ks) — (i +q2)  A%@1) (g2 A%(g2))
1 2
2
+ Al + A° )
@+ % (¢ (Ch))((h ) (q2)
201+ @) @
ki +ky k1 1 @
2k1 ko

ki ke g1 +q @

m+;qﬁh-m%mh+m A(ko) (@2 AYg)) (g A%(gn))

QZJ“ Ak A0 AU Aw)

+% Atky)  A(ke)  AM¢)  A%(go)

(k1 A%k0)) (ki 4+ k2) Ak (g A%q)) (g2 A%(q2))

(ki A%(k1)) (k2 A'(k2))(@2 A%(@))(@z  A%(a2))
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1
Fi(qgn + ¢ + qa+q)
(@ AUq)) A(ks)  A%(qe)

(k A%kﬂ)(%(kwm) Ak) Aq) Aa)

k) AR e Al Aw)
A (2 A(k2))(@n A%(@))(g2  A%(g2))
m(’fﬁk&) A(ka)(g A%(q1))(92 Ae((h)))) (3.26)

Proceeding analogously for FgLQ) we obtain

(24)

ey L (p+ k1 + o) o et o) (3.27)

GL ok 2k T Taep) As(p) '
P R1 R2 i (4 )

A direct computation of this object turns out to be extremely cumbersome. We will need
to wait until Sec. 3.4, where we will be able to relate FgLQ) with a known term of FC(;QIQ). Its

explicit expression in terms of the A elds can be found in Eq. (3.94).

We have thus obtained the wave functional to O(e?) by extending the method rst devised
in Ref. [13] to the next order. The di erent contributions to gr[A] are summarized in
Egs. (3.11), (3.18), (3.26) and (3.94). This result satis es the Schrodinger equation by
construction. It is also explicitly real. On the other hand, we can not claim (a priori) that
the Gauss law is satis ed, as it has only been used in some intermediate computations.
At O(e) it is possible to directly check that the Gauss law is satis ed. A direct check at
O(e?) turns out to be extremely di cult to obtain, due to the complexity of the expressions
involved. In Sec. 3.4 we will devise a method to test the gauge invariance of the expression
obtained in this section. Finally we want to stress that the computation we have performed
in this section has been carried out without any regularization. The nal result happens to
be nite but formal manipulations have been performed on potentially divergent expressions.
We will come back to this issue in Sec. 3.4 and in more detail in Sec. 4.3, where we nd that

the implementation of regularization does not change FC(,(E, FSL) and Fc(;2L4)

section. FéQLQ), however, will have to be modi ed.

computed in this
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3.3 Determination of Vg;|A]

In the previous section we have been able to compute the ground-state wave functional at
weak coupling at O(e?). However, it is di cult to automatize the method. First, regular-
ization issues have been completely skipped in the previous computation and, second, the
Gauss law is implemented in a partial, and somewhat ad hoc, manner. This last problem
could be overcome by reformulating the Schrodinger equation in terms of gauge invariant
variables. One such formulation was originally worked out in Refs. [4, 5, 6, 7, 8]*. Here we
mainly follow Ref. [9], where a modi ed approximation scheme was devised. Even though
the original motivation of those works was to understand the strong coupling limit, it is not
di cult to see that the approximation scheme worked out in Ref. [9] could be reformulated
to provide with a systematic expansion of the weak coupling limit. We do so here and com-
pute the ground-state wave functional to O(e?). In order to arrive at the gauge invariant

elds, called J, a series of eld variable transformations has to be used. First one de nes

the holomorphic and anti-holomorphic gauge elds
1 , 1 .
A= 5 (Al + ZAQ) A= 5 (Al ZAQ) (328)

which makes it convenient to also change the space and momentum components to complex

variables in the following way (note that & and z are de ned with di erent signs):

z=x1 + 1T

N
I
8
~
8
[\

1 1
1 , 1 _ 1
:5(1+Z2) 25(1 i o) 21_12

A and A are still gauge-dependent degrees of freedom, so we de ne SL(N,C) matrices M
and M by
1 1
A= (MM ' and A=-M 'Y M) (3.30)
e

(&

4While in those references the regularization of the Schrodinger equation was also addressed, we will find
in Chap. 4 that a different regularization method is needed to achieve agreement between ¥y, and ¥qy.
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Analysis of the Yang-Mills Vacuum Wave Functional at O (e?)

which transform as
M gM and M M g (3.31)

under gauge transformations, Eq. (3.3). This allows us to de ne the gauge invariant eld
H=MM (3.32)
and the gauge invariant current®

2
J== HH ' =J'T" (3.34)

e

We will then use the following change of variables: (4; Ay) (A A) (J(A A) A(A A)),

where the relation between the variables is the following:

Av = A (3.35)

ac 2 a 1
J* = 2 M A+ (MM = = A"+ 0(e)
€

Inverting Egs. (3.30) yields (for a more compact expression see Eq. (5) of [6])
g 4 4 3
=1 e GryAy) +e®  Glr;2)A(2)G(z9)Ay) +O0()  (3.37)
) i2 A( A+ 0(e?) (3.38)

=lt+e GmyAly) +e*  Glz2)G(zyAy)Alz) +0(€)  (3.39)

Glo) Gl y):ix P )= (;i ljzeik(x y)%:l(az y()gz:c yi/)+ ;

>The anti-holomorphic current .J = %H ~19H is related to .J via a reality condition
oJ =H ' (0J)H , (3.33)

which implies that there is only one gauge invariant degree of freedom in 241 dimensions.
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G G 9=t 0w p= 0 Theearlo Lo
(3.41)
Also, a useful relation reads
l))lAa( Ab( = l)AalAb( +)1Aa()lAb( (3.42)
which can easily be checked in momentum space. We also need (Tp =1 2)
M “= iTr[TaM T°M ] (3.43)

F

and the analogue for M (note that M, ' = M,,). With this de nition one can easily check
the following identity

M, f" Myt = fYM,," (3.44)

More useful relations are:
D = +eAd=M M"* D= +eA=M ' M (3.45)
LU~ oy oM @), (3.46)

de eb

Aj(;d(%) = 6) %(w( febh)thl(x):e) %(y:r feanM,, ' (y) (3.47)

JUy) .
) 2iMy(y) (y ) (3.48)
R - 1 A b (o 0 o

With Eqgs. (3.32), (3.34), (3.46) and (3.47) we nd

My, (2)DL D 17 = My, (2) M(z) .M '(2) "M Y )G(z )M (z) “ (3.50)
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= H(2) .H '(2)G(z )M (z) “

= Gz 1) M) GG 2) JEM (2)

~ G w) Mda(a:)Jr%eG(z D)V I()M,(2)  (3.53)

or, more compact and for further reference:

d
TG o pate oM @) ™ (3.54)
A(z)
The Gauss law operator can be written in a compact form in terms of A and J:
: J(y) J(y) ( :
() = (D E)Y(z)—i ) Do D D 3.56
(ZL’) ( ) (ZE) ? , z Ab<l‘) + x Ab([E) Jc(y) +1 x Ab(l') ( )

Not surprisingly the dependence on J drops out, since it is possible to prove, using Egs. (3.48)
and (3.54) that

Je(y) J(y)
D Dab =0 3.57
S ) TP A (3:57)
Therefore we obtain

I*(z) = iD® (3.58)

Al (z)
for the Gauss law operator.

In Refs. [8, 9] the Hamiltonian was written as a pure function of J up to terms propor-
tional to the Gauss law, which vanish when applied to physical (gauge-invariant) states. If

we drop those terms the Hamiltonian reads®

2 1 1 a ar.y .
H = — T R ) ) +§ 5 Jz) JU=) : (3.59)
, Jé(w) e?Cy
LR L s O R e R R 29

which we split into H = H® + H;, where H® is the rst line and #; the second. It is

®Note that in Ref. [8] the normalization of J is different.
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important to note that the last term in Eq. (3.59) only appears after regularization of a

divergent integral. We will give a thorough derivation of this Hamiltonian in Sec. 4.4.1.

We can now obtain the vacuum wave functional in powers of e. We write
arlJ] = exp( FarlJ]) (3.60)

where (following the notation of [9])

e .
26ci[J] = fO (x wa) JU(21)® (x2) + 3 fO o (@r mo x5) J¥ (1) % (22) T (3)
2
(&
+ 7 Sittsaa (@1 @2 @5 ) T (1) (2) S (w5) S (2a) + (3.61)

and the kernels fg?m (x1 x9), ftgi)m:,,(xl X9 w3), etc., have the expansions

FO (@ m) = f5 0 (@1 m2) + E2f50 L (1 22) +
F8) (T o 1) = fés()mgag(ﬁfl Ty T3)+e f2(3[)11a2a3($1 Ty ¥3) + (3.62)
F) s (@1 T2 T3 1) = f(g4()11a2a3a4(x1 Ty T3 T4) +

Acting with the Hamiltonian of Eq. (3.59) onto this expansion of the wave functional and

equating terms of equal numbers of J s we obtain recursion relations for the kernels. These

read
e’Ca ,2) @) 0 (2)
2 9 falag(xl xQ) +4 fauz(x ZL’)( )ab(l' y)fba2<y 1'2) + Vab (363>
Ty
|
+e2 6 O @ a ) Ol y)+3 [ 2 y)( Daelr y x2>):o
Ty zy

for the term with 2 J s, while for the terms with p 3 J s the recursion relation is

pfa1 CLp n<p+2 n)fa(zl)an—la( O)ab b(gn ‘—7:7)

n=2

+ n(p + 1 )fal Ay — 1a< )abapf(gn n:pl 1

n=2
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+€2| (p+1)(p+2) f(p+2) ( O)ab+ (p—l—l) f(pJrl ( 1)abap>:0 (3.64)

2 a1 apab a1 ap—1ab

In these equations, we have used the abbreviations (following [9])

(Dalay) = w Gl y)
(Daele y2) = 5[ 9+ = )Gy
Valz y) = (2 7)) 2 (2 y) (3.65)

These equations are the same as the ones in Ref. [9] (which we have checked explicitly). Note
that the splitting into H® and H; was di erent there, since the last term in Eq. (3.59) was
included in H©

If one were able to solve the set of Egs. (3.63-3.64) exactly, one would obtain the exact
vacuum functional, without any truncation. Therefore, those equations are a good play-
ground on which to try di erent resummation schemes (as it was done in Ref. [9]). Here
we focus on the weak coupling expansion and solve those equations iteratively. There is a
caveat, though: In Chap. 4 we nd that a di erent regularization method should be em-
ployed, leading to the kinetic term given in Eq. (4.57), and therefore to di erent recursion
relations (see Eq. (4.87)). In order to test the proposal of Ref. [9] we will, however, continue
to work with Eqgs. (3.63-3.64) in this section.

At the lowest (zeroth) order in e, we have to solve Eq. (3.63) for fo alaz(ffl T9) with
e = 0. Note that this equation is quadratic in f®, thus it has two solutions. We take the

normalizable one, compatible with perturbation theory:

: 2 @) k?
- ( )(xl l’2) fO a1a2( ) E_ aiaz
2 k

(3.66)

2
f(g 21,10,2('171 1'2) = aia2

where B, = k.
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At higher orders it is better to work in momentum space. We de ne

3

féi)uag(fﬂl ) 1’3) = exXp 7 k‘l ZT; f(gf()zgag(kl kQ kg) (367)
k1 ks

féf212a3a4(x1 To T3 334) = exXp 7 k‘l ZT; fcgfzbza3a4(l{?1 kg k’g k’4) (368)

k1 ka i

The recursive solution of Egs. (3.63-3.64) to order e? gives the following lowest order expres-
sions for the cubic and quartic kernels:

fa1a2a3

IS as By ey keg) = o @ )2 (ky + ko + ks) g® (k1 ko ks) (3.69)
(4) falachbﬂ)gc 9 (4)
0 alag;b1b2<k1 ko g1 q2) = 1 (2 )" (ki +ke+q1+q) g7 (k1 kasqn q2) (3.70)

where 16 kika(ky ko)
g7k ks Fa) Ey,+ Ep,+ Eg, ( Ey, Ex, ey perm> (3.71)
1
D (ky ko —
g ( 1 R25q1 Q2) Ek1+Ek2+qu+Eq2
ki + k
Oky ky ki k) —2 ¢®
(9 (1 2 1 2)k1+k29 (Q1Q2 q1 CI2)

I (le + k2) kl (2k2 + k]_) kQ) 4 (3)(

g \q1 @2 G g2
Ekl Ekz k1+k2 )

4 1Ca+¢e)a 2e+aq)e
GV (ky ko ki K
g ( 1 K2 1 2) ot o qu qu
(3.72)

Note that the various f(™ are not xed completely, since they are multiplied by local
sources. Therefore, only the completely symmetric combination is determined, any anti-
symmetric term would vanish when multiplied by the sources, as they form a completely

symmetric function.
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Analysis of the Yang-Mills Vacuum Wave Functional at O (e?)

Using the expressions for £, £ in Eq. (3.63), the order e>-term in f® is given by

2 (k) = Ca K (14 N] (3.73)
2 ajaz aijaz 9 E2 .
k
where
E) dp 1 d*p p (
N==2 —= = gB(k k LWk Kk 74
2 39 pg(pp )+ pg(p, p) (3.74)

It is possible to perform this integration, albeit numerically. The potentially divergent

terms vanish after doing the integration over the phase of the complex number. We obtain

N = 0025999 (8 ) (3.75)

4) are complex functions.

Note that it is real. This is not trivial to predict a priori since g® (
As we will see this is a strong check of the computation. The kernels f, n 5, become

non-trivial only beyond O(e?).

Note that the results above are nothing but Taylor expansions of the analogous set of
equations in Ref. [9] to the appropriate order. In practice this means setting m = 0 in
their computation and adding the rst term in Eq. (3.73). This last term will play a very

important role in the comparison with the results of the previous section.

Once we have an (approximated) expression for ¢;[J] we can transform it back to the
original A variables: g/[J(A)] cr[4]. In principle, as it is a gauge invariant quantity, it
should be possible to write it in terms of the gauge covariant quantities B and D. However,
since we work order by order in e, we do not need this. On the other hand, rotational O(2)
symmetry is preserved explicitly.

We will use the following relation to transform J elds into A elds (where the derivatives
are in the adjoint representation: DB = B+ ¢[A BJ; and we have de ned J = J*T):

"J= iM (D" 'B)M * (3.76)

as well as Egs. (3.37) and (3.39).
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3.3.1 Order ¢

In this way at O(e”) we obtain

1

2FVA] = kfk<k AR (kA% k) (3.77)

which is the expected free- eld expression.

3.3.2 Order e

At O(e) we obtain

1
2k

FL)[A] = ifebe . | ki ( (b A%(k1))(A(ks)  AC(ks))

1 ki ko +iky ko ) . . )
ks k2 (ky + ky + ks ) ko +i (ky A%(k1)) (ke A°(k2)) (ks A(k3))
! k31k2<k1 A A0 AT) (3.78)

This term stems from a combination of f®) and f® terms, as we have to remember that
J has an expansion in e itself. Using the invariance of the integrals under interchange of
integration variables and the fact that the delta function allows to write one momentum in
terms of the other two, it is possible, however far from obvious, to show that the imaginary
term of Eq. (3.78) vanishes and that the real part is equal to Eq. (3.18). The details are
given in App. A.

3.3.3 Order ¢2

At O(e?) we obtain

R =24 (k AYK)(k A K)[1+ N] (3.79)

This term is associated with the f2(2) term.
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For the term with four gauge elds we obtain

JReFEY — (3.80)
1
_falachblb2c (kl + kQ +q1 + q2) A™ (k;l) Aa2(k2) Ab1 (Q1) Abz (QQ)
4 k1 k2 1 g2 1t ]{2
1 1 1
_|_fa1a20fb1b2c (lﬂl + k‘z +q1 + Q2)—2 o
k1 k2 q1 g2 k2 kl + kQ kl
(ki A% (ka)(ke A% (ko)) (A" (q1)  A™(g2))

4
1 1 1

faraze ibse ky S s (k1 A" (k1)) (ks Abl(k‘g))

kikaks ks g k1 + ko ks kyky

V(ky A%())(ke A(k)) (e A= (ke))(ke A% (k)

1
_l’_
ko (ks + kq)?k3

V(hy A () (ks + k) A%(k) (ks A% () + ko) A% (k) ()
4
+fa1a20fb1bgc k. kl k2
k1 ko k3 k4 i=1 <k1+/{32+k3+/€4)k1 l{?g
2 1

ks + ks ky i (ks + kq)?
(b A"(k1)) (ks A%(k2))(A™ (ks)  A%(ky))

4

2 foraze fhrbac ki (ki A%(k1)) (k2 A%(k2))(ks A" (k3))
k1 k2 k3 ks i=1

1 ) 1
(ki + ko + ks+ky) ke ks+ kg k3

(k1 A" (k1)) (k2 A" (k2))

ky A% (ky)

1 b, .
e G W A0 e (s k(A% ()
1
ko ks(ks A%(ka)) Ry ka(ks A% (Ka))
ko K2K2

1

bo by (
s Ko+ ke 202 ki ka(ks+ k) A%(ka) ko ks(ks +ka) A% (k)

4

foaaze fhbae A | ki (k1 A%(k) (ke A%(k)) (ks A% (ks)) (ks A"(ky))
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1
(s ki)(kt + ko + ks+Fky)( ks + ks + k14 ko) ki ks

k%Q% (kl k?Q)(Ch Q2)
ko ky (k1 +k2)2

ko 2) o1 2612 +1( +4(k‘1 ko)l @) | ks kit kit ke
kl + k’g a3 k‘%qg kl + k'2
S ) o0 4 +1( JJE R) e @) ks + ke Rt Ry )
k2 5 k3q3 k1 + ko
2ImFG" =
4
i feraze phibae ki (kr o A" (k1)) (ko A% (ko))(A™ (ks) A" (k)
k1 ko k3 k4 i=1
1 K242k ky KP4k ko s 1 1 )
(k1+k2+k1+k2)]€1 kQ k1+k2 kl k1+k22 ]{;22 k1+l€2 ]i]l
4
i feraze foibae ki (kr A" (k1)) (ko A%(ko))(ks A" (ks))(ka A" (k)
kikoksks g
1
2kTks ki + ko ky ky(ki+ke)® kT ks (ki + ko) + K ky (B + ko)?
(k%k%kg]@%(k3 N k‘4)2 1fvg vl 2 1 fhvg\ vl 2 1 3 1 2 1 2 1 2
+k? ky ks (ky + k)
) 1 ky (2kitho) ks ki kg ))
( ]Cl + k’g + ]{33 + k’4 ) kl k’g + k’4 k’gki ]Cg /C%k’i k‘z ]’Cg + ]{74 2]632)

4

i foro2e fhrbae A ki (ko A%(ky)(ka  A%(ko)) (ks A™(ks))(ks A"(ky))

1 1 1
- 2 S (K k3)>
ko (ks + ky)2ks (ki + ko + ks+ka) by ko ks+ kg 2k3
4

i foroae forbae ki (ke A%(ky))(ky  A%(ko)) (ks A™(ks)) (ks A"(ky))

k1 k2 k3 ka4 i=1
1

ko (ks + ka)?k3
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24 fo1e2¢ fhrbae ki (k1 A%(k) (ke A®(ko)) (ks A™(ks)) (ks A”(k))

k1 ko ks ks i1
1 1
(k1 + ko + ks+ky) by ko k‘3+k¢42]€§

4

24 foreae fhrbae . ki (k1 A%(k)) (ke A%(ko)) (ks A" (ks)) (ks  A"(k))

(k1 ks3)

| 2(k1 ko) ( ko ks (ks ki) ki ka®+ (ki +ke)? 2ks ka+ k3 >

( ki)(ki + ko + ks + ke ) (ks + ka + ko4 ko ) by k2 ks k2(ky + ky)?
2ky ko) 2%y ky+ k2

+
(ki + ko + ks+ka)( ks + kg + ki + ko) by k3 kg k2 ky + ko
1 2k k k k k k
< 2 1 1 3+ 1 3 )) (381)

+
(ky + ko + kz+ky) kg \ ks+ky K3k3 ko K3K3 ko ks + ky 2K2

The last two equations can be rewritten in several ways, yet, without an organizing

principle, their sizes remain more or less the same.

The resulting expression for the ground-state wave functional seems to have a non-
vanishing imaginary term. This is at odds with expectations, and with the result of Sec. 3.2.
The real part does not look at all like the result obtained in that section either. We discuss

this puzzling situation in the next section.

3.4 Comparison of the two approaches

If we compare the expressions we have found for the ground-state wave functional in Secs. 3.2
and 3.3 we see that they look completely di erent. Even more so, whereas ¢, is explicitly
real, gy has, a priori, a non-vanishing imaginary term. Only the O(e°) expressions are
trivially equal. Starting at O(e) we can get agreement between both expressions after quite

lengthy and non-trivial rearrangements.

At O(e?) a direct comparison by brute force turns out to be completely impossible. In
order to compare expressions we need an organizing principle to split the comparison into

pieces. The procedure we follow is to rewrite ¢ in terms of J and A (actually we will use
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the variable de ned below”). If 47 and 7 are going to be equal, all terms proportional
to A (or ) should vanish. Moreover, to a given order in e the polynomial in A is nite so
only a nite number of terms need to be compared.

In order to perform this comparison to O(e?) we need the following relations:

2

Mo & =l+e +5 240 (3.82)
M '=1 e +§ 24 0(e?) (3.83)
A= %M LM +%M LM
= 2 ST Jn)+ S T+gl [ +06) (38
1 1 B e e? 3
A:EM M = 5[. ]+§ [ ] +O§e) (3.85)
Aa(/{:) — %Ja(k‘)—i—ik a(k) +%fabc b(/{: q)JC(q> %fabc q b(k‘ q> C<q)
Vi pripien g () ()
%bewfdw "k q p (@) “(p)+0() (3.86)

A%(k) = ik (k) %f‘”’c q 'k q) “(q)

q

-2

g ke kd) Mk a p) @) @)+ OL) (3.87)
where = ¢ 7% and we de ne the Fourier transform of and J following the same
conventions as in Eq. (2.17).

For the O(e”) and the O(e) contributions of Fgy, it is possible to show that the terms
vanish and the rest agrees with Fg; in a direct fashion by just inserting the relations (3.86)
and (3.87) into Fé()L) and FgL) and summing coe cients of terms with equal numbers of J s
and s. This is, of course, not surprising, since we already showed in Eq. (A.16), that
Fc(:ll) [A] = Fc(:lL) [A]. However, for the O(e?) contributions, even after these simpli cations, a

brute force attack on the problem leads to expressions too large and complicated to directly

"The field € could be interpreted as a kind of generator of complex SL(N,C) gauge transformations, see
Ref. [8].
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show the equality of both expressions.

At this respect it is better to use some intermediate expressions of the 4 computation that
better agree with the structure of the ¢ result in terms of J. Particularly relevant for us
is Eq. (3.25), which relates Fé2L4) with ( Fgg) (A). We can write F((;IL)[J ] FgL)[A(J )]

in terms of ¢, Using

)
+ + (g q
e A M) T B Ty
1 . . 1 ) P (
=—( 1+ 2)(2 +=(1u 22 21— +
(i) (20 J(p) g L 1a) p Jep)  Ap)
+0(e) (3.88)
we have
Fy .
= qfime: ki + ez +
A?(p) f - 1 2 p

®3) (3) 2
L 9Pk Ry p) oy gk ke p) K a1(1.\ 7a2
((( i) Ry iy BB B ) e
+<

ky
. 1 kl ) p ( ay a2
(1 7 9) 1 p + k_l ]—)(lﬁ + ko) + ko ) J (k) (ko)
+<( it 21>2pk;k2 (o i 2282} o) () 5 0(e) (3.89)

With this we can write Fé2L4)[J ] as a second order polynomial in ¢g®®. This gives us the

guiding principle to try to reconstruct ¢, which is also a second order polynomial in ¢,

This term should be proportional to J* and we nd that indeed it is.

- r
ki+ke +q+aq2
As we need the gauge ( ) dependent terms to cancel with the corresponding terms from

In Eq. (3.25) one can see that all terms in Fé2L4)[J | have a prefactor of
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Fgg and Fgg, that don t have this prefactor, we nd a second guiding principle, which is

to rewrite the dependent terms of F((;Q;)[J ] in such a way, that this prefactor drops out

and then try to nd a form similar to the gauge dependent contributions of FC(;DL) and Fc(;l).
To do so we extensively use the Jacobi identity and the invariance of the integrals under
interchange of integration variables, as well as the delta function. We also use the fact that
the integration kernels can be taken to be completely symmetric under the interchange of
the variables of two equal elds (for instance J (ky)J*?(ky)). Still the computation is very

tedious and highly non-trivial, therefore we give the details in App. B. In the end we obtain

3

1 k2 k2
Fil =< —J(k)J( k) +e ki =2 fete (k) (k) T (ks)
2k k kikoks g ks
3
ki(kik kik
efabc kl 1( 173 1 3)Ja(k1) b(k,z) c(k’g)
ki ko ks i1 Ky
e? 2
- foaeac fhibee (ki) T (k1) “(k2)J" (q1) *(g2)
2 k1 k2 q1 g2 i
(k1 + k2)2 k_f
ki + ko kq
e faraac fhabac (ki @) J" (k1) “2(k2) "(q1) "(q2)
ky ks ay a, i
)Ll e )+ —— (@ + ) )(
3 y 1{F1G2 1492 0o+ a q1 T q2)\49291 4241
kok
2€2fa1a20fb1b20 (kz+q1> al(k'l) a2(k2) bl(ql) b2<q2) 2rR142q1
k1 k2 q1 g2 i ki + ko
+0(e?) (3.90)
’ O (ky ky k
Féll)/ _ fabc kz g ( ;6 2 3) Ja(kl)Jb(kQ)JC(kg)
k1 k2 k3 i=1
3 12
febe ki —=J%ky) "(k2)J (ks)
ki k2 k3 i=1 3
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2 ot B S o) 0(0y) (k)
k1 ka2 k3 i=1 1
e foro2¢ fhrbac (ki + @) T (k1) J* (k2)J" (q1) *(q2)
k1 k2 q1 g2
9(3)<7€1 ky Ky k2)
32
2
e fueac fhrbae (ki+ @) J™(ky)J(k2) " (1) *(q)
k1 k2 q1 g2 i=1
) en 9Pk ke ki k) @ K (
@+ q 16 (@1 + @) 2 ky
2
e for02¢ fhrbac (ki + @) J*(k1) “(k2)J" (q1) "(q2)
ki k2 q1 g2 i=1
(ky + ko)? k_%
k1 + ko k1
e foroae fhrbac (ki + @) J*(k1) (k) " (@) "(q2)
k1 k2 k3 q i=1
k ki +k
) L (kigs  kige) + 4MQ1Q2(
1 1+ Ko
ajazc rbibac ? al as b1 bo klk?qlq?
+defrecf (ki + ;) (k1) 2(k2) "(q1) "(q2)—
k1 k2 q1 g2 i Q1+ Q2
+0(e?) (3.91)
ajasc £b1bac 2
FC(¥2L4) = ! 512 (ki + @) 9P (ki kxiqr go)
k1 k2 q1 g2 i
T (k1) (k) ™ (1) T (q2)
falagcfblbgc 2
e (ki + @) ¢ (ky ky  ky k)
32 ki k2 q1 g2 i
J (k) J% (k) " (1) " (q2)
1 aiasc £bibac ’ a1 as by b2
+§f f (ki +qi)  J" (k1) ®(k2)J" (q1) 7 (q2)

k1 k2 q1 g2 i



(ki + k) K

k1 4+ ko ky
2
falaQCfbleC (kz + C]z‘) Jal(k1)<]a2(k2) bl(Ql) b2 (Q2)
k1 k2 q1 g2 i
age 9Pkt ko ki ko) @k
@+ q 16 G+ 2k,
g e e (it a) T ) () " (@) (@)
p ki k2 q1 q2 i
- ki 4+ ko ky
142 - -
ki 4+ ko kq
arasc £bibac klkquqQ a1 as by b
2fmecf (ki +q) ——— (k1) “(k2) "(q1) 7 (q2)
k1 k2 q1 g2 i kl + k2
—0—0(6) (3.92)

We now move to F, ng), which is associated to a one-loop computation. We have already

mentioned in Sec. 3.2 that its direct determination in terms of A elds is not feasible. Again,
we follow the strategy of rewriting FC(;QLQ) in terms of J and . For this we use Eq. (3.92),
which we plug into Eq. (3.27) after having rewritten the functional derivatives in terms of .J

and A using Eq. (3.88). The calculation simpli es a lot and we nd

C 1 ) 1 1p (
FGP = 22 ) Z®kp k p+=gDpk p k) JMKkJ( k) +O(e
A A )+ 50 LI k) + 0fe)
(3.93)
This result allows us to write Fg;) in terms of the gauge elds. It reads
(22) Ca 1 a a
Fgr' = N = kﬁ(k A*(R)(k A*( k) (3.94)

where N has been de ned in Eq. (3.74).

We can now combine all the di erent contributions (in an, again, not completely trivial
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computation). We obtain the following equalities

FarlA(J )] = FarlJ] + 0262 . :—22J“(k)J“( k) 4+ O(e?) (3.95)
or in terms of the gauge elds
Fall) = Fald] S5 L a0 a0+ (399

The r1st equality implies that Fgr[A] is gauge invariant to O(e?), the second that Fg;[J] is
real to O(e?). We stress that F((;OL), Fgg, and FC(¥2L4) are real, which is not evident at all as
written in Eqgs. (3.90), (3.91) and (3.92).

Overall we get complete agreement except for one bilinear real extra term in Fg;. Its
origin can be traced back to the appearance of the last term of the Schrodinger equation
in Eq. (3.59). In turn this term appears from an anomaly-like computation only after the
kinetic operator has been regularized. Note that Fg; was obtained without regularizing
the theory, working with formal expressions. The existence of very lengthy and complicated
expressions in the intermediate steps impedes in practice the identi cation of the divergences.
We expect these divergences to particularly a ect FgLQ), since we have functional derivatives
acting on the wave functional density (see Eq. (3.27)) that e ectively produce contractions
of elds and internal integrals over momenta. Therefore, even if the nal result was nite,
one could have missed contributions of this kind. For the other terms of F' we have got a

double check, which gives us strong con dence in our result.

3.5 Conclusions

We have computed the Yang-Mills vacuum wave functional in three dimensions at weak
coupling with O(e?) precision. We have used two di erent methods to solve the Schrodinger
functional equation: (A) One of them generalizes to O(e?) the method followed by Hat eld
at O(e) [13]. We have named the result ¢[A]. (B) The other uses the weak coupling
version of the gauge invariant formulation of the Schrodinger equation and the ground-state

wave functional followed by Karabali, Nair, and Yelnikov [9]. We have named the result
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cr[J]. Each method has its own strengths and weaknesses, and they are to some extent

complementary.

The computations performed with method (A) are relatively simple and the results are
explicitly real. The generalization to four dimensions of the O(e*) computation does not
present major conceptual problems. Note that this is the order at which we expect to
start to see the running of the coupling constant in D = 4. On the other hand, such a
computation has two major drawbacks. First, the implementation of the Gauss law is not
done in a systematic way, only partially in some intermediate steps. Therefore, we cannot
guarantee a priori that the nal result is gauge invariant. Since the results grow rapidly
in size and complexity, a direct check turns out to be unfeasible. Actually we were only
able to check the Gauss law with the help of method (B). The main drawback, however, is
that the computation has been performed with an unregularized kinetic operator. Whereas
all computations can formally be carried out obtaining a nite result, some terms may be

missed in this way.

The computations with method (B) are somewhat more involved. Rather lengthy ex-
pressions appear when we rewrite the wave functional in terms of the gauge elds A, which,
moreover, look complex. Trying to prove by brute force that the result is real turns out to be
impossible. Actually, we only manage to prove it after a careful comparison with the result
of method (A). Moreover, a possible generalization to four dimensions does not look trivial.
On the other hand, method (B) is particularly appealing, as it directly works with gauge-
invariant degrees of freedom. Therefore, the Gauss law is automatically satis ed and it is not
necessary to explicitly impose this constraint. Note also that the set of Egs. (3.63) and (3.64)
can be solved recursively. Therefore, it could be possible to automatize the computation and
obtain the wave functionals at higher orders with a combination of algebraic/numeric pro-
graming. Finally, and most importantly, the kinetic operator had been regularized. This

produced non-trivial contributions.

We have compared both results. It is impossible to show that they are equal in a direct
way. The strategy we follow helps a lot, yet it continues to be extremely complicated to
prove the equality of the two expressions. As we have already mentioned, this comparison
has allowed us on the one hand to prove that ¢ is indeed gauge invariant and on the other

hand that 7 is real. Most interestingly, the agreement between both results is almost
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complete except for one extra term that appears with method (B). This term shows up from
an anomaly-like computation once the theory is regularized. Such a contribution does not
show up in method (A). As we will show in the next chapter, this is due to the fact that
no regularization was used in this computation. This result is potentially very interesting
because it is precisely this term that produces the mass gap and a linearly rising potential
in the strong coupling limit in Ref. [8]. Therefore, it is important to understand how such
a term can be generated in a regularized version of the Schrodinger formalism in terms of
the gauge elds, as this contribution has not been checked with an independent method so
far. However, since regularization in the Schrodinger formalism with gauge variables is, to
a large extent, uncharted territory, this requires a dedicated study. We address this issue in
the following chapter and also revisit the regularization with method (B), with the aim of
resolving the discrepancy between the two wave functionals. In that analysis we nd new
contributions for both methods which bring them into agreement.

In this context, it may be worth mentioning that supersymmetric extensions of Yang-
Mills theory with A/ 2 do not have this term [26]. This is not completely unexpected,
as the introduction of supersymmetry improves the ultraviolet behavior of the theory. This
may lead to convergent integrals and the disappearance of the extra term.

Finally, we expect that the inclusion of matter elds in the theory will not produce major

changes to the general procedure.
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Chapter 4

Regularization of the Yang-Mills

Vacuum Wave Functional at @ ¢?

The content of this chapter was published in Ref. [27].

4.1 Introduction

In the previous chapter we computed the Yang-Mills vacuum wave functional in three di-
mensions at weak coupling to O(e?), using two di erent methods: (A) One extends the
computation performed in Ref. [13]; (B) The other uses the weak coupling limit of the
reformulation of the Schrodinger equation developed in [4, 5, 6, 7, 8, 9].

In the comparison between both results we obtained almost complete agreement, except
for one term. We concluded that this discrepancy could be due to regularization issues,
which had not been systematically addressed. In this chapter we 1l this gap and provide
with the complete expression of the Yang-Mills vacuum wave functional in three dimensions
with O(e?) precision for the rst time.

The regularization of the Schrodinger equation and the vacuum wave functional in quan-
tum eld theories is a complicated subject. Whereas some formal aspects have been studied
quite a while ago in Refs. [15, 16], there have not been many quantitative studies of the
regularization of the Yang-Mills vacuum wave functional. In three dimensions, the most

detailed analyses have been carried out using method (B) (see, for instance, the discussions
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in Refs. [7, 17], in particular in the appendix of the last reference). It is claimed in those
references that the regularization has been completely taken into account. According to this,
the result obtained in the previous chapter using method (B) (which corresponds to the weak
coupling limit of the approximated expression obtained in Ref. [9] for the wave functional)
should be the correct one. We will actually see that this is not so and that the regularization
procedure has to be modi ed to obtain the correct Yang-Mills vacuum wave functional in
three dimensions at weak coupling. This produces a new contribution that has to be added
to the result obtained in Sec. 3.3.

The result given in the previous chapter using method (A) was obtained without regular-
izing the functional Schrodinger equation. It directly works with the gauge variables A, but
it has the complication that the Gauss law constraint has to be implemented by hand. In the
intermediate steps potentially divergent expressions were found, which, nevertheless could
be handled formally (assuming that the symmetries of the classical theory survive) obtaining
a nite result. In this chapter we carefully regularize the computation using method (A).

Out of this analysis a new contribution has to be added to the result obtained in Sec. 3.2.

The new results obtained for the Yang-Mills vacuum wave functional in three dimensions
at weak coupling to O(e?) with the methods (A) and (B) agree with each other. This is a
strong check of our computations and of the regularization methods used here. On the other
hand our results imply that the weak coupling limit of the expression obtained in Ref. [9]

for the wave functional is not correct with O(e?) precision (though it is at O(e)).

The outline of this chapter is the following: In Sec. 4.2 we regularize the Schrodinger
equation. In Sec. 4.3 we compute the wave functional using the method (A) with O(e?)
precision. In Sec. 4.4 we rewrite the regularized version of the Schrodinger equation obtained
in Sec. 4.2 in terms of the gauge invariant variables, and compute the wave functional using
the method (B) with O(e?) precision. We also discuss the reason why the Schrodinger
equation used in Ref. [9] is not su cient to obtain the complete expression for the vacuum

wave functional to O(e?). Sec. 4.5 summarizes the results of this chapter.
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4.2 The regularized Schrodinger equation

In Chap. 3 we used the unregularized Schrodinger equation, Eq. (3.5), which reads

+ BYz)B%z) =0 (4.1)

N | —

@ Av(z)  Av(z)

In order to regularize the kinetic operator we separate the points at which the di erential
operators act. As we want to preserve gauge invariance, we do this by introducing a Wilson

line and a regularized delta function

2

(z v) = —e @ W7 (4.2)
such that after the removal of the regulator , one recovers the original expression:
T= 5 Tw= 5 (@0 (& v) (1.3
fry — re = - T v a r v .
2, Af(x) Af(x) o2, Ap(x) T A (w)

The rst functional derivative also acts on the Wilson line, which ensures that the regularized

kinetic operator is still hermitian.

The Wilson line is the path-ordered exponential of the gauge elds along a curve C:
(Cia v) = Pe ©JF @A) — pe ey ds# () Ai(x(5) (4.4)
where z(s) is the parametrization of C. The Wilson line transforms as

Gz v)  gle) (Cao)g (), (4.5)

under gauge transformations Eq. (3.3).

The physical results should be independent of the curve C. Nevertheless, for convenience,
we choose the Wilson line to be symmetric under the combined interchange of color indices
and endpoints:

w(Cix v) = p(Civ x) (4.6)

For the computations in perturbation theory we need an explicit realization of the Wilson
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(Uhxz) (11,1‘2)
> a

Cl A v CQ

(v1,v9) (x1,v9)

Figure 4.1: Curves Cy and Cy used to define o(x v) in Eqs. (4.7) and (4.8).

line. We choose the symmetric combination of two paths that go in straight lines (see
Fig. 4.1), so that up to O(e®) the Wilson line reads:

1
(@ v) = ( wCizv)+ p(Cyv 2)) (4.7)
2
) - g (
= b 5 dSQAQ(’Ul 52) -+ d51A1(81 .TQ)
e) U2v2 U1 o (ab
5 dSQAQ(JZl 82) + dSlAl(Sl UQ)
T2 1 ba
( 6)2) T2 52
+ 5 dsyAs(vy S9) dsyAs(v1 S5)
V2 v2
+ ds1Ai(s1 ) ds; A1(sy x2)
U1 U1
+ ds1Aq(s1 xa) dsg Ag (1 32)(
( 6)2) o v1 . v2 ab
+ 9 dSQAQ(ZL’l Sg) d82A2<I1 82)
U1 S1
+ dSlAl(Sl Ug) d81A1<Sl Ug)
x;}l a:;}Q (
+ dSlAl(Sl U2> dSQAQ(l‘l 82) +O(63)
T T2 ba

Note that A% = fo*A¢ and (A;4;)® = fodefae AL AC.

(3
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It is possible to write (2 v) in a more compact way using the Bars variables [28]:

(M ()M, vy @2) Ma(vy m2) M, ' (0))®
+(My(z) My (1 va) My (21 v2) M,y *(v))™ (4.8)

(T v) =

N —

where (no sum over repeated spatial indices in Eqgs. (4.9-4.15))
M;(z) = Pe ©Jwdzdi(2) (4.9)

represents the Wilson line for a straight spatial curve C with xed x; for j = ¢. This Wilson
line can be Taylor expanded in the standard way in terms of (path-ordered) one-dimensional
integrals (similarly as we have done in Eq. (4.7)), or in terms of (formal) two dimensional

integrals (see, for instance, Ref. [18]):

M) =1 ¢ GEAG) ¢ GEDACGEDAW (0
M) = e GlmAl) ¢ Giln A6 ) A
+é? . Gi(z;2)Ai(2)Gi(x;9) Ai(y) +
)< Glwal)+¢ GlrGaaeA@+ L @

where
Gi(zyy) Gi(z y)= (v1 1) (2 y2) and Go(wsy) G y)= (v1 1) (v2 y2)

(4.12)
M@ = 2Tr(T*M;T*M; ') is the Euclidean analogue of Eq. (3.43). With these de nitions

Note that Eqgs. (4.10-4.13) are the Euclidean versions of Eqgs. (3.36-3.41) and (3.30), respec-
tively, except for the fact that unlike G(z;y) and G(z;y), Gi(x;y) is not antisymmetric.
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Regularization of the Yang-Mills Vacuum Wave Functional at O (e?)

Variating Eq. (4.14) one nds (see App. C.1)

Mj(y) _ ijagab
Ax(z) M (2)Gi(y ) M;(y)Ty (4.15)

The functional derivative of A; acting on the Wilson line in Eq. (4.3) is ill-de ned if both the
derivative and the Wilson line are de ned at the same point. Therefore, we have to regularize

it, taking the coincidence limit only after the functional derivative has been applied:

L 7Y Ty @l ”)) A0)

Sl @) () wle e X) s ) s

(4.16)

This way of regularizing is analogous to the regularizations used in Eq. (3.24) of Ref. [7] and
in Egs. (100-101) of Ref. [18].

Using Eqs. (4.8) and (4.15) in Eq. (4.16) one nds

. (x v)l Yo ab(T v))% =0 (4.17)

such that the regularized kinetic operator Eq. (4.3) reduces to

(4.18)

This is shown in App. C.2 in detail.

Once we have regularized the kinetic operator we turn to the determination of the vacuum
wave functional. Realizing that the vacuum wave functional for the kinetic operator 7 alone

is the identity, one can write the complete wave functional as
=e 11 (4.19)

Therefore, instead of solving
H =(T+V) =0 (4.20)
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one can solve (see, for instance, Ref. [8])
HI =" (T +V)e F]1:)7'+V [TF]+%[[TF] F](]I:O (4.21)

since 7T contains at most two functional derivatives:

2

T ab

L, Y TG A (4.22)

where f(z) =0and $(zy)= 4 “(@y)= 34 (zy) wzy). Using this explicit

expression, Eq. (4.21) reads

a F ab 2F ab F F _
L am L, YR am L, Y A

In order to ensure that we restrict ourselves to gauge invariant states we also have to

demand that satis es the Gauss law constraint Eq. (3.6):

I = By =i — e, —( —g 4.24
b ) el — (420
Equations (4.23) and (4.24) will be our starting point for the determination of the vacuum

wave functional.

As in Chap. 3, in the following we will distinguish between methods (A) and (B), and
name their solutions 7 =e 9 and 7 =e ¢, respectively. The rst method consists
in directly solving Eqgs. (4.23) and (4.24), and will be addressed in the next section. The
second method consists in rewriting Eq. (4.23) in terms of the gauge invariant variables J*
de ned in Eq. (3.34). It will be addressed in Sec. 4.4. In both cases we will Taylor expand
F in powers of the coupling constant e, and solve the resulting equations iteratively, like
in Chap. 3. In this chapter the main focus will be on the novel aspects resulting from the

careful introduction of the regularization.
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4.3 Determination of Vg [A]

We expand Fgp = FO) + eFS) 4+ 2F) + O(e?) and

ab( @y) Daeyre Pay+e Dy +0E)
(4.25)

in powers of the coupling constant. Considering the contributions order by order in e yields

@) wlr )= 5

N | —

T y) =

the following equations:

At O(€?) we have

1 2F(0) F(O) F(O)
V ooy = TY) a GL___ 4 —CGL___GL 4.26
o g, UV e Ay T aE A 420
For this equation we can take the limit, reducing it to the standard unregularized
free eld equation, Eq. (3.9), the solution of which is Eq. (3.11):
(0) _ 1 1 a a
Ferld] = 5 k?(k AYk)) (k. A( k) (4.27)
= - (AW AW) (4.28)
4 LTy ! '
At O(e) we have
1 2F(1) F(U) F(l)
V O(e) + 3 (J} y) ab a GLb aGL bGL
2 4y Af(z) Ajly) — Af(x) Ay)
1 0 Fep Fap *Fgy
5 TY) (T Y . . =0 4.29
2, UV eV TRGTaG A AT 2

Both terms proportional to 2)) (x y) vanish (the second because of contraction of color
indices, for the rst see App. D.1). For the remaining terms we can take the limit

Therefore, this equation also reduces to the unregularized Schrodinger equation, Eq. (3.12).
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It is solved by Eq. (3.18):

M=k (ﬁuﬁ AR (k) AChy)

1
3
(7 ki)kr ks

(b AGk))ks  A'k))(ks  A“(ks)) (430)

At O(e?) we determine Fgg FgL) can have contributions with four, two and zero elds:
FéZL) = Fé2L4) + FéQLZ) + FC(fLO). As argued in Chap. 3 there is no need to compute FC(ELO), as

it only changes the normalization of the state, which we do not x, or alternatively can be

absorbed in a rede nition of the ground-state energy. F((;2L4) is determined by the following

equation:
1 Fyl  FG) Fgl FgY
Voe) 35 (T y) w —0 oy T2 b
2 4y Az(x) A (y) Az(x) A2(y)
(0) (0) (0) 1)
@) Fop F ) For  Fop
< 2 =0 (4.31
2L, T UG g P e Y e Ty 0 Y

The two terms in the second line vanish (see App. D.2). For the leftover we can take the
limit. Eq. (4.31) then reduces to its unregularized version, Eq. (3.20), which is solved
by Eq. (3.26). We quote it here for completeness:

1
F(2 4) — fabCfcde (kz + Qi)
GL k1 k2 q1 g2 i kl + kQ + q1 + q2
1
Alq)  A(q)
20kt + ko + i+ ke )(qn + 2 + Q1+QQ)<
1

7Rtk 2A%(ky)  A%(kp)

er(k1 + ko) A%(kp)(ky A°(Kp)) + (bt ka) s

ko ki ko

+(kr A%(k1)) (k1 + ko) Ab(kQ))

(k1 A%k1)) (ko A"(ky))

(ke AR (@ A% @) A(k2) A%(qe)
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+k1k ok, Ag) 2 % A(g) (b AR (R AY(R))a A%q))
+ki<k1 A%(ky)) (e + ko) Ab(kz)lq—t(erCD) A (@ A%(q)
2 d e
ol At A

201 +q¢) @
ki +ky By 1 g2
2k ks
ki ko ¢1 +q @

(k1 A%(k0)) (k4 ko) AR (g1 A%q)) (g2 A%(q2))

(k1 A%k)) (ks A(k2)) (@2 AN @) (2 A%(g2))

b ARk A AN Aw)
e A AR A)e Aw)
by AR AR A Aw)

1
Fi(gn + @+ a+a)
(@ Ad(fh)) Ab(k’2) A(q2)

(k1 + ko) A(k2)(r + @) Aa) (2 A%(q2))

(k A%))(%(mm Aky) A Ala)

91+ q2 G2
* @ 92 (a2 Ab(kz))((h Ad(Ql))(QQ A%(q2))
q1+—;q2(k:1 + ko) A(k2) (2 A%q))(ge Ae(%))) ) (4.32)

So far the regularization of the kinetic term has not produced any modi cation to the
results obtained in Chap. 3. This could have been expected. If we have to make an analogy of
this computation with the standard diagrammatic approach, the computations above would
correspond to tree-level-like diagrams, for which one can take the cuto to in nity. It is only
when one has internal loops, where the momentum can run to in nity, when regularization
e ects become important. In our approach those e ects are hidden in Fé2L2), where we
have an e ect similar to the contraction of two elds. We compute this term in the next

subsection.
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F((;2L2) is determined by the following equation:

) © 2P ) 2Fi) @) 2Fip
LY @ Y) e ey T a T Y e s s T e & Y) e s ey
L, Y e Ty T e U Ty g T Y ey A
0 222
2 O y) For Fop (_ (4.33)

In order to solve this equation it is convenient to rewrite it in momentum space. Then, the
last term of Eq. (4.33) reads

0 22
Fgp  Fo

N A T
a a F(QLZ) [A]
= 20 e Aw) p jl"(p)
. (22)
- 2 (p)% P AYp) FG#(K] p A(p) p % o

where (p) =e %2 is the Fourier transform of (2 y) and we used ;; w= w 4 jk a-
The Gauss law implies that the second term on the right-hand side of the last equality of
Eq. (4.34) vanishes, so Eq. (4.33) can be rewritten as

2214 , 4 2 fp(24)
2 (p)p  A%p) j#;)] — e Pre Y (g y)) abm
P Ty pq : ;
2l 2 (0) (
(1) GL (2) L
+ ab \ L _— 1 ab \T —
(= 9) Adp) Alq) (= y) As(p) Ab(q)

(4.35)

Before going on we need to compute the right-hand side of this equation (which again is
better handled in momentum space). The rst term corresponds to the regularized version
of the term that already appeared in Eq. (3.27). As we can see in Eq. (4.32), the explicit
expression of F é2L4) [A] is very lengthy and complicated. This made impossible a direct brute

2 s
force computation of W. The strategy we followed instead was to rewrite Fé2L4) [A]

57



Regularization of the Yang-Mills Vacuum Wave Functional at O (e?)

in terms of J and = *A4 + O(e) (see Eq. (3.92)), which allows for a cleaner arrangement

of the terms, in particular between gauge invariant and gauge dependent terms. Proceeding

in the same way and using (see Eq. (3.88))

’ 2 2
» AL p) Ap) =4 p% Jo( p) Ja(p)+2 pp “ p) Ja(p)—l—(’)(e) (4.36)
we obtain
pa, i ) S
ol ) A (4.37)
=4Cx e () %%gm(kp Eop) 6i4]1’_zg<4)(p N e
D)y, Pk Coopr p ok

=/ +

44 “p k+p plk+p)
1(k 2 1 k? k Kk
2—ﬂ+2—— P =5 pﬁ(J“(k:) “( k)
P k+p pk plk+tp) k k+pp

+k)? P + k + k
L PR p b P P P ey o k))
P p+k p D p+k p p+k D

This expression has an internal loop for the momentum p, the integral of which is regularized
by (p). If we naively take the limit and do formal manipulations (momentum shifts)
of the integrals, we nd the result obtained in Eq. (3.94):
C k? C 1
N 4

TR k)= N4

e etk ARG AT R) (4.38)

where N has been de ned in Eq. (3.74), whereas the terms proportional to J and 2 vanish.

Yet, this is not the whole story. The internal momentum of the loop is characterized by

two scales: p and p k , and taking the limit before integration neglects
contributions from the p region. Things change once the regularization is taken into
account, as the high energy modes p are now also included in the computation. The

loop result of the J? term is not modi ed by the introduction of the regularization, since the
contribution due to p is subleading. Therefore, Eq. (4.38) remains unchanged. Things

are di erent, however, for the J and 2 term. The 2 term can be simpli ed to the following
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expression

Fal k) 1 k kp  k
iC, e p(p + k) Lo g 2k R R

ok p+k 4 p+k p

“(k) *( k) (4.39)

The last term vanishes under p p and the rst and the third can be combined to yield

(note that the integral is dominated by p and that the p k region gives subleading
contributions)
bl Ca 2
Ca e w p+k p  Yk) Y k)= g = k< k) “( k)+01 ) (4.40)
pk k

We can deal with the J term of Eq. (4.37) in a very similar way (though with lengthier
expressions). As before, the integral is dominated by the p region, whereas the p k
region of momentum gives a subleading contribution'. Using

1

JUk) (k) JU k) Yk) = i/&“(k) AY( k) +2k (k) “( k) +O(e)(4.41)

we rewrite the result in terms of A and , and obtain

Ca

2 ) AYk) A"( k) + k2 (k) k:)( (4.42)

The bilinear terms in  in Eqgs. (4.40) and (4.42) cancel each other. Therefore, summing the
contributions from Eqs. (4.38), (4.40) and (4.42) we obtain

v i o P
e Pre MY (zy) — N (4.43)
Ty pg Af(p) A?(Q)
C, 1 C
N2 k?(k‘ AY(k) (kA% k))+8—A_ kA“(k:) A k)40 1

! Actually statements of this sort are not true in general, as finite momentum shifts in the integrals may
produce corrections from the p’ k region. Such shifts do not change the leading order contribution,
which in our case is of O(u) but may change the individual O(u°) contributions due to the 7 k and
P p regions (but in such a way that the total sum remains the same), which is the precision we seek.
Therefore, such statements should be understood for a specific routing of momenta.
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We now compute the second term of the right-hand side of Eq. (4.35)

e £ty
e Pre MY (xy) o (T Y) s

= %fabd (u v) ((Gl(u;y) Gi(vr ug;y) + Gi(ur v2;9) G1(U;y))AC1[(?/)

uvy kgp

+H(Ga(vr ugsy)  Galviy) + Go(usy)  Golw vg;y))Ag(y)>

ifabce ipu, iqu

k+p+
r <<q p AW LTk A

kE+p+ q
b AW — k) A(k))

1 1
+—(k ko A%k)) + ——
p k( q)( (k) 7 ,
(p1—q1)? 4 (p2—a2)? @
:% )eT em()eT+em(iA§(p)
2 Pq J4!
(p2—a2)? o (p1—a1)? 4
—i—)eT em()eT—i—e m(iA;(p))
P2
1 g p q
2q) A° 4 £ 1 A°
q+p+qp<<p 0 aCp LTy a(p)
Jlapn (v 9, (¢ p (( D) A p))
pqg p qp qq p
C C 1
= = A(p Ap) T 0 AT AE)+o !
p p

The third term of the right-hand side of Eq. (4.35) reads

v, i @) 2K
e e (o y) Do)
Ty pq ’ Af(p) A?(q)
1 1
- 9 . w ab
TR W) w (@ 0w (w )

(%fadcfdbe (Gi(u;2)  Gi(vy ue; 2)(Gi(zy)  Gi(v us;y))

+(Gi(ur v2;2)  Gi(v52))(Gi(zy)  Gi(viy)) Af(2)Af(y)

%f‘ldcfdbe (Ga(vr ug;z)  Ga(v32))(Ga(z;y)  Ga(viy))

Yz
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+H(Ga(u; 2)  Golur v2;2))(Galzy)  Galur va3y)) As(2)A5(y)

+1f“dcfdbe (Gi(usy)  Gr(vr ug;y))(Ga(vr uz;2)  Ga(v; 2))Af(y) A5(2)

2 )
LI (Gofrz) Gl v 2))(Galn vy) Calvr ) A5() 45 (0)
= SC—A— Ap) A p+0O ! (4.45)

p

Combining Eqgs. (4.43), (4.44) and (4.45) we obtain

(22)
Cwy ae) R = I U5 D e ) o

Note that the divergent term has disappeared on the right-hand side so we can take the
limit. This equation can be solved using Eqgs. (3.16) and (3.17). We obtain

(Ca 1

ST I A A) (1.47)

FEP1A] = ) N+
This concludes the computation of the wave functional with O(e?) precision. The complete
result is summarized in Eqgs. (4.28), (4.30), (4.32) and (4.47). Note that the result is di erent
from the one obtained in Sec. 3.2. The reason is that the prefactor of FéQLZ) has changed
from Eq. (3.93) to Eq. (4.47): N N + 1 8. This highlights the importance of doing the
regularization of the theory from the very beginning. The existence of very lengthy and
complicated expressions in the intermediate steps impedes in practice the identi cation of
the divergences. Therefore, one could easily miss some contributions (and yet get a nite

result) if formally manipulating the integrals as if they were nite before regularizing them.

4.4 Determination of Vg |J]

In Sec. 3.3 we reformulated the approximation scheme worked out in Ref. [9] to provide
with a systematic expansion of the weak coupling limit. This method uses a change of eld
variables to the gauge invariant variables .J, which has the great advantage that the Gauss

law constraint is trivially satis ed.
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4.4.1 Regularizing the kinetic term

One important consequence of this approach is that, since the vacuum wave functional is
gauge invariant, it only depends on J. It is also possible to obtain an explicit and compact
expression for the Hamiltonian in terms of J elds. This was done in Refs. [4, 5, 6, 7,
8, 9], starting with a regularized Hamiltonian. Interestingly enough, the regularization of
the kinetic operator produced a nite extra term in the Hamiltonian. Yet, the expression
found in those references will prove to be insu cient for our purposes. Therefore, since
the regularization is an important point for us, we will rederive the Hamiltonian in terms
of the J elds. In several aspects the derivation will be identical to the one carried out
in Refs. [4, 5, 6, 7, 8, 9], but we will see that we need to consider some extra terms. Our
starting point is the regularized kinetic operator 7., de ned in Eq. (4.18). We then write

the kinetic operator in terms of holomorphic and anti-holomorphic gauge elds®:

= = T v T v ) (
Temoq,, WO g T e e O

and transform it to J variables. The functional derivatives of the rst term can be rewritten

in the following way

_ 2iMy,(z) D D1 i) (  2) Aa(2)>l2iMcb(y) (y o) Jc<y)>

Yz

using the equalities of Sec. 3.3. Accordingly, we nd

A(z)  Je(w)
|

+4 w@v) LGz x) M, (z)+ Z;G(z x)fedfje(Z>Mfa($))Mcb(v)m

2In Refs. [4, 5, 6, 7, 8, 9] the second term of Eq. (4.48) is not incorporated, but trivially considered to be
equal to the first term. Yet, we find it illustrative to show their equality, as it is not evident from the actual
computation after the change of variables.

2
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2

2wl M) ST

(4.50)
The last term is proportional to the Gauss law operator [* = iD?—; = iM, "t My —5

(see Sec. 3.3), which vanishes on physical wave functionals. For the other two terms we have
to take care of the regularization. Using Eqgs. (3.44) and (3.47) we can rewrite the rst term

of Eq. (4.50) in the following way

2i g(z v) ]\j?(%) = 2ie u(z U)ﬁMbdl(U)dehMahl(x) (4.51)

= QiGVhd(l’ U)ﬁfddl (452)

where we de ned
VE(x v) = My, () (o v)M, H(v) (4.53)

We now turn to the second term of the regularized kinetic operator, Eq. (4.48):

) ) A
—ale ) 20000 & 9 )
| . e 1 eb
2iMy,(z) D D '°7 Jd(z)+ (v 2) Ab(g)) (4.54)

| @A)
+4 .Gz v) Ve r v) + %G(z ) fUJ(2) VI (2 v))

=20 gz v)M,,(x) (4.55)

Je(x) JU(2)
+4 u(x v) M, (x)

G(z v) Mg (v)

+2a( v)f@dfﬂ@be(”))JTz)

Again, the rst term is proportional to the Gauss law operator I®. After renaming v =
(which can be done under the integral) and using V" (v x) = V®(z v) the second term is

identical to the second term of Eq. (4.50). The third term, after application of the functional
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derivative, reduces to

2ie ap(r V)M, (2)G(z v)defob(v)— (4.56)

J4(x)

a

Since G( z) = G(x), this expression is identical to Eq. (4.51).

Therefore, we nd that both subterms of Eq. (4.48) are equal. Summing them up and

multiplying by 71; we obtain the completely regularized kinetic term to all orders in

perturbation theory

Tw= 2 @) (T Empeoe o v )

vz

Jz) Je¢(v)
(4.57)

ie z 0)Via(z 0)f"Gv =z

@ Vil PG )

This is a pure function of J, since Vi.(z v) is a gauge invariant object, which makes it
possible to rewrite it completely in terms of J. The easiest way to proceed is to rst consider

an in nitesimal path with small v x. By Taylor expansion one nds

Vie(z v) = a0 (v x)gjdc(:z) LO(z w?) (4.58)
where we used J;. = if%°J¢. By composition of these in nitesimal paths we obtain
Vielz v) = Pesled=/) (4.59)
dc

Note that the integration is over the holomorphic component only. Vi.(z v) depends on the
path, though physical results should not. For illustration, we show the explicit expression

for small x v for the speci ¢ combination of paths that we consider in this chapter:

Vielz v) = dc+§'(m U)Jdc<v)+% Jaw) + & ”)2“" v) Jdc@))
@) I+ Oz 07 (4.60)

The O(ex v ) and O(e?x v ?) terms are path independent but not the O(e z v ?)



The kinetic operator 7., admits a Taylor expansion in powers of e. We are only interested
in keeping the terms that may contribute to the wave functional to O(e?). We rst consider
the second term of Eq. (4.57). Inserting Eq. (4.60) in Eq. (4.52) we nd

M, (v) e2Ca

2i aw(z v) A0(2) = J@)+0Er v ez v) (4.61)

Note that regularization is crucial for obtaining a nite contribution, as the leading term from
the Wilson line (proportional to ;) vanishes. Therefore, the integration of the regularized
delta function times Eq. (4.61) over v gives

M, (v) e2Ca

(x )20 gz V) Ac(z) Jo(0) = $JC($> Je(x)

2 +0(* € )4.62)

v

This contribution to the kinetic operator has been generated by the regularization of the
theory, i.e. it is an e ect produced by the high-energy modes. It was rst obtained in Ref. [5],
and it has a nice interpretation in terms of an anomaly-like computation. This term has
played a major role in the strong coupling analysis carried out in Refs. [4, 5, 6, 7, 8, 9], where
it is argued to be responsible for generating the mass gap. Yet, we would like to remark, as
is clear from the analysis above, that this contribution is obtained from a pure perturbative
computation (as anomaly-like e ects are anyway ), arising from a Taylor expansion in powers
of e. The corrections to this expression are 1  suppressed, irrespectively of the power
of e (but starting at O(e?)). In general we may worry that such 1  suppression may be
compensated by divergences when applied to the wave functional. This is not the case for
this term, as there is a complete factorization between the momentum of the internal loop
and the momentum of the elds that will act on the wave functional. Therefore, we will not

consider these vanishing contributions explicitly any further (even though they are formally
of O(e?)).

We now move to the rst term of Eq. (4.57). The expansion of V' around v = z yields

| ie

2 .Gz x) % EG(Z x) f1°J¢(2) (4.63)
+%€(U r) .Gz ) feJ(x)
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i;fdeafecbjb<x) (U x)Q ZG(Z 3;’) Ja(SC)

+2(v 2)G(z @f@>)ﬁ§ﬁﬁ5

The third and fourth term are of O(e z v ) and O(e* z v ?) respectively, but when applied
to a functional they can give nite contributions. We have not included
O(ex v ?) terms in this expansion. In principle they may contribute to the wave functional
at O(e?). Nevertheless, as we will see in the following, only the O(e z v ) terms give nite
contributions at O(e?). Therefore, the O(e x v ?) terms would give, at most, O(e* )
corrections to the wave functional. In order to maintain the expressions in a manageable

way, we will neglect them in the following.

After this discussion we can approximate the kinetic operator by an expression suitable

to obtain the wave functional with O(e?) accuracy:

. EQCA a(y 2 1
T =5 SO T G o @) T
’ie abe ‘]C(w)
e T TR )
|
F o @i v LG v) [T

FEFP ) (o Gl o) )
2

Ve 06l DI G

J(y)
yzG(y 2) M, (y) JC(Z)I“(y)+C9(€31 ) (4.64)
= (z) Ja(x)+ o gzg(xvy)m+0(e31 ) (4.65)
= (z)* (@) 2
v eente Jente W vyt Gy s
+0@E* 1 ) (4.66)

where we dropped the term proportional to the Gauss law operator in the last two equalities,
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(0)

and we de ned /(z y) and ( )(x y) as the coe cients of the second and the third term of
)

1
ab
1 (2)

Eq. (4.64), respectively, while ,,/(x v y) is the coe cient of the third line and ,/(z v y)

is the coe cient of the fourth and {fth line.

Eq. (4.64) is di erent from the expression used in Ref. [9] (given in Eq. (3.59)). They
only coincide when we take the limit . In which case they agree to any order in
perturbation theory. Nevertheless, as we will see, this is not enough for our purposes, since

we will also have to keep some subleading terms in 1

4.4.2 Solving the Schrodinger equation

Once we have obtained the regularized kinetic operator we can compute ¢;[J]. After

changing to the J variables Eq. (4.23) reads in our case

Far *For Far  Fgr
Y “(x el v Y)—————— + S v =0
B T B A T 1 IR A v e W O
(4.67)
where .
V= 5 Jx) Jx) (4.68)

T

and “(z) and #(x v y) are de ned in Eq. (4.65). As before, we expand the exponent of

the vacuum wave functional in powers of the coupling constant
For = FY) + eFY) + 2FS) + 0(e?) (4.69)

and separate the Schrodinger equation order by order in the coupling constant.
At O(€?) we have
0 0 0
) 2Fei Fg Fgl 1

ab (T Y) To(z) J() To(x) T(y) =3 Jz) J%=2) (4.70)

Ty z

This, as before, is the unregularized lowest order Schrodinger equation. Its solution is the

leading order computed in Sec. 3.3 (see Eq. (3.66)). It corresponds to the weak coupling
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limit of the leading order of Ref. [9]:

1 k2 11
Fgl=5 'R K=5 @k AMR)E A( k) +0() (A7)
k k k k
= FGIAl+ Oe)
where E), k.
At O(e) we have
(0)(:17 y) QFC(JII) FC(T‘OI) FC(T‘II)
ey @ Jo(z) J(y) Jo(z) J(y)
0 0 0
(U(x y) QFC(JI) FC(JI) Fél)
ey @ Jo(z) Jy)  J(x) J(y)
2F(0) F(O) F(O)
(1)(x v y) GI GI GI -0 (4‘72)
eoy ¥ Jo(x) Jo(y)  Je(x) J(y)

The rst term of the last line vanishes under contraction of the color indices. The second
term is of O( ?2) (see App. D.3). So, as for the leading order, this equation reduces to the
unregularized version of Sec. 3.3. Thus, its solution is Eq. (3.69), which also corresponds to

the O(e) weak coupling limit of the solution shown in Ref. [9]:

1 ajazas
FY) = = / (k1 + ko + k3) g@ (k1 ko ks)J® (k1) J (ks)J (ks) (4.73)
4 ky ks ks 24
where 16 kika(ky ko)
(3) _ 1R2(K1 2 474
g7 (k1 ko k3) Fot Bt e, ( By By + cycl perm) (4.74)

At O(e?) we determine Fg[) As in the previous section, ng) can have contributions with
four, two and zero J s: Fgl) = FC(;QI4) + FC(;212) + FC(;QIO). Again, there is no need to compute
Fglo), as it only changes the normalization of the state, which we do not x, or alternatively
can be absorbed in a rede nition of the ground-state energy. Fc(;214) is determined by the

following equation (where g)) (x y) and ((12) (x v y) should be understood in a symmetrized
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way):

1 1 0 24
(0) (x y) FC(:I) Fél) + Fé]) Fc(:f :
“ Jo(z) J(y) Jo(z) J(y)

(0) (1) (0) (0)
(1) FGI FGI (2) FGI FGI

+2 o (T v Y) + ap (T U Y)
TUY ’ Ja(x) Jb<y) TUVY ’ Ja(x) ’]b(y)

+2 Yy

Ty

Ty

The last line vanishes for (see App. D.4), and again the equation reduces to the

unregularized equation with the solution

1 ajasc £b1bac
Fé214) -3 ! 64{ (k1 +ka+q1 + Q2)9(4)<k1 ko q2)
k1 k2 q1 g2
T (k1) (k)™ (1) T (q2) (4.76)
where
9(4)(k1 kas qu Q2> = !
E/ﬁ + Ek2+ Eq1 + EQ2
ki +k

Gk, k Lk Lk L 2 (3

(9 (k1 k2 2)k1+k29 (12 @ @)

(3) (

U (2ky + ko) k1 (2ke + k1) ko 4
ne O )

Ey, EL, ki + ko g

4 12u+e)a QCe+aq)e
Ok ky ki k !
g ( b ' 2) 1+ Q2 Eq1 EqQ >
(4.77)

Again, this term corresponds to the weak coupling limit of the the analogous expression in

Ref. [9], and to the expression already found in Chap. 3.

So far the regularization of the kinetic term has not produced any modi cation of the
results obtained in Sec. 3.3. The reason is the same as in the previous section, in the sense
that, so far, all computations we did were tree-level-like. Loop e ects (sensitive to the
hard modes) are hidden in FgIQ), where we have a kind of contraction of two elds. We

compute this term in the next subsection.
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4.43 F?

Fé2[2) is determined by the following equation

0 24 0 22
% J%(z) FC(:I) (0)(:)3 y) 2FC(JI ) FC(:I) Fé[ )
2 Jo(x) oy © Jo(x) J*(y) Jo(z) J(y)
QF(l)
ry (z) J*(y)
2 (1) 2 1-(0)
& For (2) For
(v y)a— (T v Y)——~ s =0 (4.78)
TUVY J (CL’) Jb(y) TUY J (I) Jb(y)
The last term vanishes in the limit (see App. D.5), the next-to-last term, however,
does not. With Eqs. (4.66) and (4.73) we nd
2 (1)
1 Fop
ab (L0 Y)
zvy Jo(x) J*(y)
C k (k+p)2
3G e SE ek g e B (4.79)
48 kp b

In order to compute the loop integral over the internal p momentum, we again factorize the
modes according to the two scales of the problem: p and p k . The integral is
dominated by p , while the p k region gives subleading contributions. Overall we

obtain (here is the angular component of k, such that k = % ke )

) 2F)
Ty —— 4.80
TVY ab( y) Ja(x) ‘]b(y) ( )
Ca 2 2 9 2 2 32 2
— % e % a a 1
622 ¢ , Te * k + e k JU k)JU(k) 4+ O( )
7C4 k?
= == ZJ k)JYk 1
s, ORI m o)

We now have all the ingredients to determine féfa?(k:) from Eq. (4.78), which now reads

% J(x) FC(T‘OI) + (‘D(m y) 2F6(¥21'4) Féol) FC(¥2I2)
2 Jo@) Ly Jo(x) Jy) Jx) J(y)
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) a a
+ w (@ —JY k)J*k)=0 4.81
e s, R (481)
(22) a1l as o CA p (4) a a
2 /ffaa()J ( k)J?(k)= -5 —g7(kp k pJ° k)JFk)
102 32 kpp
Ca 1
— - KYJY k)JYk
G kppg (kp p k)JC k)J*(k)
). T(Ca R
1 _ _ . a a
s 2 .k JU k)JU(k) (4.82)
and it is solved by
C 1( k2
ey Ca) LK
fa1a2 (k) 4 N + 8 k: 9 alaz (483)

where N = 0025999 (8 ) was de ned in Eq. (3.74). Therefore, €2Fé212) reads

2R3 _ )N+é(€4@‘ k%J“( k)7 (k) (4.84)
)y i S ACR)E A O (1

= F5Y + 0

This concludes the computation of the wave functional with O(e?) precision in terms of J

elds. The complete result is summarized in Eqs. (4.71), (4.73), (4.76) and (4.84). This
result di ers from the expression obtained in Sec. 3.3, and from the weak coupling limit of
the expression obtained in Ref. [9]. The reason is that the prefactor of Fglz) has changed
from Eq. (3.79) to Eq. (4.84): N +1 N + 1 8. This is important, as now the new
prefactors of Eqs. (4.47) and (4.84) agree with each other. This was the missing ingredient
to claim complete agreement between both computations, which now we do: The vacuum
wave functional computed with methods (A) and (B) agree with each other with O(e?)

precision (when written with the same variables, either J or A). In other words
FO) 4 eFG) + A(FSP + FGY) = FS) + eFS) + (PG + Fo ) + O(e®)  (4.86)
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Considering the recursion relations given in Chap. 3, the above result implies that
Eq. (3.63) should be replaced by

e2C
2 S )+ 4 S 2 ale 9) i)y w) + Vs
Ty
|
+e2 6 fU @ ar y)( Owlr ) +3 L 2 9 D@ y o)
Ty Ty
1
+3 fap(@1 @ 9 abas(T y 0 xz)>+0 et 1 =0 (4.87)
T Yyv
with
1 i abaso
( abay (T y v @2) = S f (v ) (4.88)

(z v)(x v) Gy v) (y )y v) Gl o)

while Eq. (3.64) remains valid up to O(e?). Note that Egs. (3.63-3.64) were taken to be
correct to all orders in Ref. [9], while here we only consider perturbation theory up to O(e?),
dropping terms that would modify Eqgs. (3.63-3.64) at higher orders.

Finally, let us note that the mass term Eq. (4.62), which is taken to be responsible for
generating the mass gap in a strong coupling analysis, is not a special term from the point of
view of weak coupling, as there are more terms in the Hamiltonian Eq. (4.64) that produce

identical terms to the wave functional (see, for instance, Eq. (4.80)).

4.5 Conclusions

We have obtained the complete expression for the Yang-Mills vacuum wave functional in three
dimensions at weak coupling with O(e?) precision. We have used two di erent methods to
solve the functional Schrodinger equation: (A) One of them generalizes to O(e?) the method
followed by Hat eld at O(e) [13]. We have named the result obtained g1[A]. (B) The other
uses the weak coupling version of the gauge invariant formulation of the Schrodinger equation
and the ground-state wave functional followed by Karabali, Nair, and Yelnikov [9]. We have
named the result obtained g;[J]. We addressed this computation in Chap. 3, obtaining

con icting results between both methods, because e ects associated to the regularization of
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the Hamiltonian were not studied. In this chapter we have carried out this study in full
detail. This has led in both cases to new (but di erent) contributions emanating from the
regularization of the theory. The nal results for both methods now agree with each other.
This is a very strong check of the computations and of the regularization procedure used
here. We can now claim that we have obtained the complete expression of the Yang-Mills
vacuum wave functional in three dimensions with O(e?) precision for the rst time. In terms
of the A elds the vacuum wave functional can be found in Eqgs. (4.28), (4.30), (4.32) and
(4.47), and in terms of the gauge invariant J variable in Egs. (4.71), (4.73), (4.76) and (4.84).
Both results are equal to O(e?). To our knowledge this is the rst time that a full edge
(including regularization) computation of the wave functional of a gauge theory has been

undertaken.

That the result obtained here di ers from the one obtained in Chap. 3 with method (A)
should not be so surprising, as the regularization of the kinetic operator was not considered
there. More surprising is the fact that a new term has been found using method (B), the
regularization of which had been studied in detail in the past (see, for instance, the discussions
in Refs. [7, 17], in particular in the appendix of the last reference). In those references an
intermediate cuto oo  was introduced in the wave functional, damping the modes with
energies greater than . This procedure eliminates the extra contribution we found with
method (B) in Sec. 4.4.3. However, if the same procedure is applied to method (A), it also
eliminates the mass term obtained in Sec. 4.3.1, producing the two incompatible results of
Chap. 3. Instead, we advocate doing the whole computation with a single cuto that
regularizes the kinetic operator and the ground-state wave functional (and all excitations)
at the same time. It is only after solving the Schrodinger equation that we can take the
cuto to in nity compared with any nite momentum of the system. In other words, the
momenta of the elds of the wave functional can be large. As one goes to higher orders in
perturbation theory, loops appear, whose integrals run up to in nity, and all of these modes
have to be taken into account, producing new contributions, as we have seen in Eq. (4.80). In
a di erent language, in order to be able to give meaning to the theory we need to regularize
the Hamiltonian. This de nes a (regularized) Hilbert space, in which both the Hamiltonian
and the states depend on the same regulator. Preserving unitarity requires all states to

be considered in the computation. In particular, cutting them o with a second regulator
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impairs the completeness relation.

In any case it is clear that regularization of the wave functional in the Schrodinger
formalism is still in its infancy, and more work is needed to put the formalism on more
solid ground. In this respect we would like to mention possible additional checks of our
wave functional. One could be a numerical study at short distances, similar to the ones
executed in Refs. [25] and [29], but it is unclear whether it is possible to obtain conclusive
results in this way, since one might not nd a su ciently large di erence between 4; of
Chap. 3 (i.e. the weak coupling limit of the wave functional proposed in [9]) and the fully
regularized wave functional given in this chapter. Another test, this one analytical, could
be the computation of the static potential in a weak coupling expansion up to O(e?) from
the expectation value of the Wilson loop, and subsequent comparison with known results
computed in other representations of QFT.

Finally, we cannot avoid making some considerations of the possible signi cance of the
mass-like term (4.84). Its mass prefactor is gauge independent. Following Refs.[4, 5, 6, 7, §]
one may argue about its relation with the magnetic screening mass. If we do so, we obtain

( CA€2 CA62

= 0 778426 Ca 2

=0 24778176 (4.89)

1
m:) 3 + (8 )0 025999

This value is in the same ballpark as the values obtained from some resummation schemes
of perturbation theory at one loop [30, 31, 32, 33]%. In particular, it is remarkably close to

the value quoted in Ref. [33]. It is also not far from the mass value proposed in Ref. [4]:

Cye?
2

m = , which was obtained from a strong coupling computation at leading order.

3 At two loops the result depends on the renormalization scale, see Table I of Ref. [34], but the agreement
is still reasonable.
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Chapter 5

Towards the Non-perturbative

Regime

5.1 Introduction

Solving the Schrodinger equation is of course not an end in itself. Once the vacuum wave
functional, or a suitable approximation, has been found, it can be used to compute observ-
ables, as discussed in Chap. 2. In particular it is possible to calculate the vacuum expectation
value of an operator O, using Eq. (2.13):

Dro[m]O ol

© = D[] ol7] (5.1)

Computations at weak coupling can obviously check results obtained with other represen-
tations, but it is in the non-perturbative regime, where the Schrodinger representation can
realize its full potential, since it allows for a straightforward way to go beyond perturbation
theory. In this chapter we will use a trial wave functional to illustrate how the Schrodinger
picture can be used to calculate relevant QQCD observables in the regimes beyond weak
coupling.

A very important quantity in QCD which in principle can be calculated from the Yang-
Mills vacuum wave functional is the static potential F; between two static color sources. This

object is at the center of the mechanism by which con nement takes place. So, an analytical
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Towards the Non-perturbative Regime

understanding of the static potential is crucial for a quantitative explanation of this process.
For sources in the fundamental representation (e.g. heavy quarks) it is assumed that the
static potential is linear at long distances, as long as there are no dynamical quarks in the
theory. This has not been proven analytically, but only con rmed numerically by lattice
calculations (see e.g. Refs. [35, 36]). If dynamical quarks are present, and also for sources in
the adjoint representation, on the other hand, we expect screening of the color charge of the

source, meaning that the potential should approach a constant at long distances.

In order to investigate the static potential at long distances (and possibly other non-
perturbative observables) a strong coupling expansion for the vacuum wave functional was
developed in Ref. [8]. It was based on an interesting fact, easy to see in the formulation
in terms of J elds: The potential term V of the Yang-Mills Hamiltonian viewed as a
functional is an eigenfunction of the kinetic operator 7. Remarkably enough the leading
order (LO) term of the vacuum wave functional in this expansion predicted a linear potential
at long distances. The proportionality coe cient €, called string tension, was also obtained,

nding agreement within one or two percent with lattice simulations, which obviously is an

outstanding result.

In Chap. 4, however, we found that the kinetic operator has to be modi ed in order to
incorporate the full regularization (see Eq. (4.57)). This raises the question whether the
eigenvalue equation is a ected by this change in the operator. In Sec. 5.2 we compute the
action of 7 on V in a perturbative expansion in terms of the original gauge elds. While
we can show that V is still an eigenfunction of 7, we also nd, however, that the eigenvalue
depends on the regularization used. This sheds some doubt on the straightforward use of

the eigenvalue equation in the determination of the vacuum wave functional.

Independent of this, because of other issues of the strong coupling expansion, and in
order to provide with an expression for the ground-state wave functional that interpolates
between the weak coupling and the strong coupling regimes, a new expansion scheme was
developed in Ref. [9]. The idea of which is to de ne

620A

5 (5.2)

m:

2

as a parameter independent from e and to perform an expansion in e m (note that e? m
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is of O(1), yet the success of the LO result may suggest that this is a good expansion).
With this, the Hamiltonian of Eq. (3.59) could be split in a way di erent from the splitting
used in Chap. 3, including the term with one derivative in H(® and only taking the O(e)
term as the perturbative Hamiltonian H;. Maintaining m as an independent parameter,
the Schrodinger equation was solved up to O (e€?), yielding a new vacuum wave functional,

kny|J], which can be considered a result from resummation of perturbation theory.! Using
this wave functional, a partial set of the O (e* m) corrections to the static potential were
computed in Ref. [9]. These corrections were still consistent with a linear potential, but there
are several points of concern for this result. First, it is not complete: not all of the O (e? m)
corrections were computed, since in the expansion scheme used there, it would require an
in nite number of diagrams. Moreover, some of the corrections were found to be ambiguous,
since they depend on the factorization scale (even though it was argued that the ambiguity
was small). Actually, in Ref. [24] the string tension was computed numerically using a gauge
invariant version of the leading order of g yy[J] in terms of the chromomagnetic elds and
covariant derivatives. The authors concluded that the string tension obtained from such a
functional would diverge in the continuum limit. A third point of concern regarding the
computation performed in Ref. [9] is that the ground state wave functional was assumed to
be real. Whereas this is true for both the exact result, and the approximate expressions in
the weak coupling limit (as we have shown in Sec. 3.4), the approximate expressions with m
as an independent parameter have a non-vanishing imaginary part. Finally, there may be
issues with the regularization of g yy[J]. As we have seen in Chap. 4, there are problems

in the weak coupling limit, and up to now it is unclear how this translates to other regimes.

Clarifying these questions is very important, since if it were possible to show that all
corrections to all orders are compatible with a linear potential, this would prove con nement
in three dimensions®. In order to shed light on them, we rewrite gyy[J] in terms of the
gauge elds, which allows us to compute all of the O(e? m) corrections. In view of the issues
mentioned above, in particular the fact that the weak coupling limit of g yy[J] does not
agree completely with the vacuum wave functional of Chap. 4, we do not claim that the wave

functional obtained in this way is the actual Yang-Mills vacuum wave functional, rather we

!The functional W [J] of Sec. 3.3 is the Taylor expansion up to @ e? (writing m as 622%‘) of ¥ ny[J].
2Provided that the sum of all contributions is different from zero.
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Towards the Non-perturbative Regime

use it as a trial functional to test the proposal of Ref. [9]. We nd, unsurprisingly, that at
LO a linear potential is predicted with the same coe cient as obtained in Refs. [8] and [9].
The next-to-leading order (NLO), however, includes terms of a cubic potential. We know
that when the potential is computed in perturbation theory, it contains terms of all powers,

while in the full expression all of these terms should add up to produce the linear potential:
Er(r)y =colnr +eir +eor? +esr® + "= er+0(1) (5.3)

Hence, higher order terms in the potential are not a problem per se, but they suggest that
either this resummation scheme is not su cient to prove con nement, or that the trial

functional does not have the correct long distance limit.

We investigate the strong coupling expansion of Ref. [8] in Sec. 5.2. In Sec. 5.3 we
explore the interpolating wave functional proposed in Ref. [9] and develop a method to
compute expectation values. As an illustration of the method, we calculate the correlator of
the chromomagnetic eld and the gluon condensate at LO in Sec. 5.4. We then perform the
computation of the static potential up to NLO in Sec. 5.5. We summarize the results of this

chapter in Sec. 5.6.

5.2 A strong coupling expansion: The Yang-Mills po-
tential as an eigenfunction of the kinetic operator
Considering the Yang-Mills Hamiltonian in the language of the currents J reveals an in-

teresting property: The potential term V viewed as a functional is an eigenfunction of the

kinetic operator. The potential term considered in Ref. [8] is

y = e Jx) Jx) (5.4)

T

and the kinetic operator is

_mCA 1 im abc JC(‘T)
Texn = my(y z)2 Jo(x) J“(y)+ xyf (y x) Joz) Jb(y)
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J () ——— 5.5
) s (55)
where m = 622& They are obtained from the Hamiltonian of Eq. (3.59) (which is the
limit of Eq. (4.57)) by a rescaling of the currents J* EQC—AJ“. The last term of Eq. (5.5)
counts the number of J elds in any functional it is applied to. When applied to Eq. (5.4),
the rst term of the kinetic operator produces an in nite constant and the second term

vanishes. Therefore

Ty :V i =2m:V: (5.6)

where we subtracted an in nite constant in the de nition of the normally ordered potential
: V :. Note that this equality is exact to all orders in perturbation theory. It was taken as
the starting point of a strong coupling expansion of the vacuum wave functional in Ref. [8],

in order to solve Eq. (4.21):
" ry_) 1 (
HL=e"(T+V)e "1="T+V [T F]+§[[T FI FI'1=0 (5.7)

For momentum modes k oo m (in the regime of ¢* — J) the potential can be treated

perturbatively, leading to
1
2m

F=_—-V+0O(m ? (5.8)

This is the opposite limit of what we considered in Chaps. 3 and 4, where we took e? co J.
The LO vacuum wave functional obtained in this way allowed for the prediction of a static

potential with a string tension within one or two percent of the results of lattice computations.

This is an impressive result, but it has been obtained with the kinetic operator in the
limit, while the momenta k of the potential term were taken to be & oo . In

Chap. 4, however, we found that the limit should only be taken at the end of the
computation. This raises the question whether this new regularization method changes the

property of V being an eigenfunction of 7 or, if not, whether it modi es the eigenvalue.

In Ref. [7] the computation was done with a di erently regularized kinetic operator
in terms of J variables (which after removal of the regulator reduces to Eq. (5.5)) and a
regularized potential, but maintaining the assumption that the momenta in V are much

smaller than . In this computation an eigenvalue was found which depends logarithmically
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Towards the Non-perturbative Regime

on the regulators. While it was argued that the regulator dependence could be xed in such
a way that the eigenvalue was 2m (reproducing the result of Eq. (5.6)), it is interesting to

see how this relates to the regularization method of Chap. 4.

To investigate these questions we turn to the formulation of the Yang-Mills Hamiltonian in
terms of the original gauge elds (method (A)). When looking at these expressions, however,
one nds that the action of 7 on V is ill-de ned as long as only unregularized operators
are considered. But when regularizing both the kinetic operator (Eq. (4.18))

1
7;'69 = =

(uv) aw(u v) (5.9)

w Af(u) AP(v)
and the potential term (where a Wilson line is necessary for gauge invariant point splitting,
and we use an independent cuto for the potential in order to keep the discussion as

general as possible)
1

Vreg = 5 /(ZL’ y)Ba(m) ab(x y>Bb(y) (510)

zy
we also nd that V.., is an eigenfunction of 7., at O(e?). The eigenvalue, however, is
di erent, and in particular it depends on the regulators. Note that Eq. (5.10) is di erent
from the regularized potential used in Ref. [7]. The computation goes as follows. We look

at the terms order by order in e. For this we split the chromomagnetic eld as
Bi= Ay g FPeAb  Ae = BO 4 eBM (5.11)

and we also expand the Wilson lines in both the potential and kinetic terms up to O(e?),
using Eqs. (4.8-4.11). With this we can write 7V up to O(e?):

Tl Woesl )= 3 (10) M o) s e 9B U E)
(5.12)
= T, 06 M B B
o, 00D (2 " mE @) B W)
b B D )BO(y)
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+0(e?) (5.13)

The term at O(e") is an in nite constant which we call ¢ and absorb in the de nition of the
normally ordered potential. Also, it can be checked easily, that the terms at O(e) vanish
under color symmetry. The terms at O(e?) however, turn out to be proportional to the
potential. The computation of these terms is lengthy but straightforward (see App. E for
details).

Treg( Wries( ) =

81



Towards the Non-perturbative Regime

T
4(321 42)4 (145(9)° + ( 241(1))?
e2Cy © )( 2 HAYy) Ay) 8(22+2 22)( Aa(y))2(

+O L4y0o e

Summing up all the terms one nds

2041
7;eg( )Vreg( ) =Cc+ 62 A§ B(O)a(y)B(O)a(y)

) ! 3 8 3 6 4
1+ +
2( 2+ 2)4 (2 2)3 2( 2+ 2)2
3 2 2
" po—t
(24 2)32 2 4
(5.15)

Since we used a gauge invariant regularization and 7ye; and Ve, are gauge invariant operators,

it was to be expected that TiegVieg would result in a gauge invariant object. That this would

be the potential, or any local quantity at all, however, was not obvious.

While we nd that Vie,( ) is also an eigenfunction of 7re.( ) in this formulation, its

eigenvalue depends on the regulators that are used. In particular the dependence is di erent
= , the eigenvalue equation

from the one found in Ref. [7]. In the case of equal regulators
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is

e2Cy

1 _
Treg( ) Vieg( )::3—2 37456 2 VY 4+0(e?) (5.16)
In the limit of — it reduces to
2
Treg( ) ¢ Vie( );:)2— 1+0( 1)( 62@‘ YV +0(e?) (5.17)

and it vanishes in the limit of —

The computation in Ref. [8] was done in the limit of — , which in our case leads to a
divergent eigenvalue. As TV is not a physical observable this is no fundamental problem, but
the discrepancy of this result with Eq. (5.6) and, more importantly, its regulator dependence,
suggest that the straightforward use of the eigenvalue equality in a strong coupling expansion
of Eq. (5.7) may be problematic.

Another problem with this expansion, which was already mentioned in Ref. [8], is the fact
that the contribution of momentum modes k > e? were completely neglected. This is not
justi ed, even if we were only interested in the long distance behavior of the static potential,
because the e ect of those modes is of the same order as the e ect already included in the
previous approximation, and could go from changing the value of the coe cient of the linear
potential to completely changing the asymptotic behavior of the potential at long distances.

In order to overcome this problem and to nd an expression for the vacuum wave func-
tional that interpolates between the weak and the strong coupling regimes, a new approach

was developed in Ref. [9], which we investigate in the following section.

5.3 An interpolating wave functional

Taking m = 622& as an independent parameter, in Ref. [9], the Hamiltonian of Eq. (3.59)

2 1
=V T wr ) ae " P
Je(w)
e e ) ) ) (5.18)
= HO+ 3,
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was split in a way di erent from the splitting used in Chap. 3, including the term with one
derivative in H® and only taking the O(e) term as H;. Using a double expansion of the
vacuum wave functional in e and the number of J elds (Egs. (3.61) and (3.62)), the authors
obtained the recursion relations Eqgs. (3.63) and (3.64) with 622& replaced by m. Maintaining
m as an independent parameter, the recursion relations were solved up to O(e?), yielding

the (resummed) vacuum wave functional

KNY[J] = eXP( FKNY[J]) (5-19)
e
2FxenylJ] = f5322<x1 w2) U (@) 2 (02) + 5 [y (1 w2 w5) T (@1) S () S (25)
+ — féi)maga‘l(xl T2 I3 IL‘4) Jal(ZEl)Ja2(IQ)JG3(JZ3)JQ4(J?4) + (520)
= 2 FI((O])VY[‘]] + eFI((lj)VY[‘]] + €2FI({2])VY[J] + (5.21)
féfﬂm(xl Tg) = fézc)uaz(xl ) +€2f2(2()11a2(«751 Ta) +
fa1a2a3 3 3
fO) (@ w2 a3) = exp 1 ki x ki g%k ko ks)
1a2a3 24 by ks i )
+0(e?) (5.22)
falagcfbleC 4 4
féﬂww‘l(wl Ty I3 374) = — exp 7 k'l ZT; kz g(4)(k1 /{?2;1{?3 ]{Z4)
64 kv ks i i
+0(e?) (5.23)
with 2
(2) _
f() (llllg(k) - m+ Ek aiaz (524)
1 Cy d*p 1 d*p p
f2(26)L1a2( ) = amEQ—) 3759(3)“? p p k) + 6 gk p; k P)(
K2 C
= ey 2AN+O(k2k2) (5.25)
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63 25 3(
N = ) — + —In—= 4 2
32—|— 1 n2 ox 0 565407 (5.26)
16 kiko(k1 ko)
®)(ky ky ks) = L eyl ) 5.27
J (1 2 3> Ek1+Ek2+Ek3 ((m+Ek1)(m+Ek2) cyet perm ( )
1
D (ks ko =
gk ks q1 q2) Eu,+ Ep,+ By, + By,

k1 + ko

(3)
o O

(9(3)(k1 ko Ky k2) q91 92 G Q2)

| (2K + ko) (2k2+—k1)k2) 1 o

m + Ej, mt By, )kt kg R0 @)

4 12a+@)a (Ce+aq)e
Ok by Kk k
g7 (ke ks ! 2) q1 + qo m+ By, m+ L,
(5.28)

where now in all of the above

Ep= m?+k? (5.29)

This vacuum wave functional was claimed to interpolate between the weak and the strong
coupling regimes, and to be a good approximation for all scales. In the strong coupling limit
it reduces to the wave functional proposed in Ref. [8]. We have seen in 5.2 that the latter
may be problematic conceptually, but on the other hand, it led to an impressive prediction
for the string tension. In the weak coupling limit xny vields® &7 of Chap. 3, which we
found to be correct up to O(e), but slightly di erent from the true vacuum wave functional
at O(e?). So, while there are issues with this proposal, we still think it is worthwhile to use

it as a trial functional to test it on di erent observables.

In order to do so, we again use Eq. (3.76):

"J= iM (D" 'B)M ' (5.30)

3Note that Eqgs. (3.66) and (3.71-3.73) are just the Taylor expansions of the above expressions to O(e?),
after setting m = 622% again.
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and Eq. (3.39):

M (z)=1+e G(z;y)Ay) + € G(z;2)G(z;9)Aly)A(z) + O(e?) (5.31)

Y yz

to transform J elds into A elds. We then obtain the trial functional

(0) (1) (2) :
trial [A] = e Ftrial[A] = e Ftrial[A] eFtrial[A] 62F‘trial[14]+(9(63)

— o FIA)] e U] EFE 1T(A)+0(e)

= KNy[J(A)] + 0(63) (532)

Up to O(e) we nd

o - Tr B(k)B( k
trial ) m+Ek r ( ) ( )
3
i1 ki |
2ie T T Ry A(R) ik Alk) Blks) B(kg))+0(62) (5.33)
kl kQ k3 (m + Eg)k%
and
3 .
eF) = 2¢ k; MRt R ) B(ky) Bk
ki ko ks g (S E)(m+ Ey)(m+ Es)k}
+0(e?) (5.34)

Hence there is a non-trivial imaginary part at O(e)

3
i=1 i ky ke

= S
O(e) ki ko ks (M + E3)k? (E1+ By + Ez)(m + E»)

ki A%k ke A(ky) ks A%(ks) [ (5.35)

which only vanishes in the limit of m 0 (as shown in App. A), and the same is true at
O(e?). The ground-state wave functional is real (see e.g. Ref. [3]), so it could be argued that
the non-vanishing imaginary part is an artifact of the expansion, which should drop out in

the complete expression. In any case, in Ref. [9]  was set to be real.
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In the method which we use to compute VEVs it is built in from the beginning that only
the real part of the wave functional is needed, as long as the operator whose expectation
value we want to compute does not contain any functional derivatives. In this case

DAIDAQ trial [A]O[A] trial [A] DA1DA26 (Fjrial [Al+Firia [A])O[A]

ol4] = _ : (5.36)
DAlpAZ trial[A] trial[A] DA1DA2€ (Firiar A+ Feriar[A])

The relevant terms are therefore

1
+F9 = 2 Tr B(k)B( k)

F )
rial L M + Ek

trial

3
1 |
die ki ———Tv ki A(k) B(ks) B(k3)>
k1 k2 k3 ka i=1 (m + E3)k%
1 1 ( 1
m+ Eiy  m+ Es k22k42

e? !
+§fa1a20fb1b2c kz ()
[ T
) by A" (k1)) (k2 A%(k2))(ks A" (ks)) (ks A% (k4))

(v A" (k) (ke A® (o)) (ks A" (K3)) (ks A”Q(/m))(
N 1
(m + Eg)(k‘g + k’4)2k’§

Vlky Ak + k) A%k (ks A" ()l + k) AR () )

(k1 A" (k1))(k2 A% (k2))

+0(e?) (5.37)

ROy ks ks Tr B(ki) Blks) Blks)
k1 k2 k3 i=1 ( iEi)(m"{'E?)(m_'_Ei’))k%

1
+4ze k;
[ (Brye + Es + Eyq)(m + E3)k3

20

trial

Trl B(ks) B(ka)
L) e
(m + Eyi0)k? ki kys A(ky) B(ks)
+((ks ko) ka) k1 A(k1) B(ko)
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+((ks ko) k4) k1 A(ky) B(ko) (
N 1
(m + E4)(]{31 + k‘2)2k%

)(k2 ka)((2ky ko + k) by Kkl ky)  A(ky) B(ky)

(ky  ka)((2ky ko + kD) by Kkl ky)  A(k)) B(ky) ())
—|—O<€2) (538)

and

F(2;1—|—F(2) _

tri trial —

N9 L BB B) + 00

g m?
4

kl k2 ]{?3 k?4 ’L:1
1

( BB+ By + E314) (B3 + By + Ergo)(m + Er)(m + E3)
| K2 (ki ko)(ks )
((m + Ey)(m + Ej) (k1 + k)2
+ k3 9 2k3 ky 1 4<k’1 ko)(ks  ky) 1 Es+Ey+ FEiyo
(m + Ey) k2 k22 m+ Eipo (K + k)2
(st ha® ki ke ok kU k) k)
(m + E3y4) k3 k3 k2k2
1 2E3+E4+E1+2 >
m+ L (ks + ky)?
+0O(e) (5.39)

where, for brevity, we use

2
E1+2 = m2 + kl + ]{?2 (540)

There is still a residual gauge freedom in ., which we x by going to the axial gauge

A; = 0, in order to be able to actually perform the calculation. For convenience, we shall
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then call A5 = A, which should not be confused with the holomorphic component.

In practice, the computation of a VEV in 241 dimensions in the Schrodinger picture
is then similar to a computation in the path-integral formalism with a complicated two

dimensional euclidean e ective action S[A] := (F, . [A] + Firial[A]) 4,20 45=a:

DA DA, (Ay)e FhialA+FualA) O] A DAe SAOIA
OlA] = 1DAy (Ay)e : O ]: e 0O[A4] (5.41)
DADA, (A))e FuimlAlHFualA]) DAe S

DAe SOU] esMA] 625(2)[A]+(9(€3)O[A]

B DAe SO SO 2SOMATO) (5.42)

DAe S"MIO[A] 1 eSWA]  2S@[A]+ £ SO[A] * 4+ O(e?)

- (
= DAe SOM] eSOA] 2SD[A10(e?) (5.43)

! N b A% () AP (k) (5.44)
2 - 1 2 m+Ek1 1 2 .

S — 9 W kP Wk ky
k1 k2 k3 i=1 m + E3 k% ( ?:1 El)<m + EQ)
A (ky) A (ko) AC(ks) (5.45)
0N
1

m2

C
@ = NZ ki + ko
k1 k2

P A (o)) A (k) + O(K*k?)

4

¥ B e A% () A% () A% (1) A% ()
kikoksks g

( ) 1 1 ( kél)kz(ll) k(Q)k(Q) ]{?(l)k‘(l)
m+E m+Ba R0
1 kYR
m + E2 (k’g -+ k4)2]€z
2 kRS k) | 1
Bt Bt B m+ By k2 (mt Bk + ko)

)(k2 k) (k1 ko + K2 KD B2 ED) + (ke k) ((2k1 ko + KD KPP K k§2>)(

D+ HORD 0+ KO

1

) 27.(1) (1 (2)()
(m £, 2)]@% 1hv4 (( 3 2) 4) 1 (( 3 2) 4) 1
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/{J(I)k(l)k(l)k(l)
1 2 3 4
(B (Er+ Ey 4 Espa)(Es + By + Evo)(m + Ev)(m + E)
| 1 kiks (ki ko)(ks  hka)
(m + Es)(m + Ey) (ky + ko)?
k; 5 2/{3 ky 1 4(/€1 ko)(ks  ky)
(m + Ey) k2 k2k2
1 Es+ Ey+ FEiyo
Mt Brs (ks k)
(ks ke Lk ke ks ke (k) K
(m + Esy4) k3 k3 k2k2

1 2E3 + By + By ))
m+ Eyo (ks + kq)?

_|_

(5.46)

and k](-i) indicates component ¢ of vector k;.

In terms of this e ective action the LO correlator of the A eld is thus

vy ab (5.47)

5.4 The magnetic field correlator and the gluon con-

densate at leading order
As a warm up we will calculate the correlator of the chromomagnetic eld
B(z) “(z y)B'(y) (5.48)
at leading order, which is a special case of the eld strength correlator
D (xy):= G (z) “(x y)G (y) (5.49)

This is an interesting object, since it appears in non-perturbative models of QCD (see
e.g. [37]), in the gluelump spectrum ([38]) and in the hybrid static potential ([39], [40]).

In order to compute the chromomagnetic eld correlator in the Schrodinger picture, we
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make use of Eq. (5.47). At leading order, where %(z y) = ? and in the 4; = 0 gauge,

the correlator reads
B%(x) ab(a: y)Bb(y) =77 ab Aa(a:)Ab(y) +0 &2m (5.50)

and with Eq. (5.47) this is computed to

e ™*(14+mz)
4 z3

(N2 1)+0 & m (5.51)

c

B(z) “(z y)B'(y) =

where z =2 y.

We can compare this to the leading order result of the eld strength correlator D (x y) =
D (z), calculated in the operator approach in Ref. [41]. From the Lorentz structure of

this object it is clear that it can be written as

D (z)=( )(Do(2%) + Di(2%))
+( zz zz 2z + zz )?Dl(z2) (5.52)

see Ref. [41] and references therein. There the LO in perturbation theory was computed in

D=4 2 dimensions. Taking % instead of 0, the 241 dimensional result is
N2 1
D z) = -
() = )y
3
+( 22z z z 2z +  zz) (N2 1)+ O(e) (5.53)

4 (22)2

With B* = % 7G¢;, and taking x and y at the same time, we can compare this to Eq. (5.51):
1 1

1 mDijri(20 =0 2) = m(Nc2 1)+0(e) (5.54)

B*(z) “(z y)B'(y) =
This is equal to the m 0 limit of Eq. (5.51).

The gluon condensate is the z 0 limit of D (%) and is also relevant for non-
perturbative QCD models ([42]). In three dimensions it appears in the computation of

the three dimensional static potential (see Ref. [40]) as well as in the computation of the
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thermodynamic pressure of four dimensional QCD, being hence relevant for the expansion

rate of the universe (see e.g. [43]). The chromomagnetic part of

2

G “(2)G" (z) = 2( E%(x) (B"“(x))z\/ (5.55)
can also be computed from Eq. (5.50) by rst taking the limit of = 0, and then doing
the integration over k, making use of dimensional regularization to eliminate the power

divergences:

a 1, d%k m3
(B%(z))? =3 B )d)m+ m2—|—k2< ) 2: K(ch D+0 e m  (5.56)

The VEV of the squared chromoelectric eld can be computed by taking the functional
derivative of the wave functional. In this case, one can set A; = 0 only after the derivative

has been taken:

2

2 DADA; (A1) yiw[A] (A2 trial [A]
(B *V/- z (5.57)
DAlDA2 (A1> trial[A] trial[A]
_ i(p+q) © (p Q) b1q1 A% (p) A%
= e p q 5.58
~ (mt Ey)(m+ E,) (p)A%(q) (5.58)
m3
= E(Nc2 D+0 & m (5.59)
Summing up both contributions leaves us with
m3
G “2)G* (x) = 3—(]\762 D+0 & m (5.60)

This has the same color structure and is numerically in the same ballpark as the nite term
of the result of Ref. [44].

92



5.5 The static potential at leading and next-to-leading

order

After this brief illustration we shall now come to the main point of this chapter: The com-
putation of the static potential up to NLO. The usual way to do this is by calculation of the
VEV of a rectangular Wilson loop W with sides of lengths r and T'. The static potential

at long distances r is then given by

1
Ei(r) = Tlim Tln Wh (5.61)

If the VEV of the Wilson loop satis es the famous area law, i.e.
Wn exp( €Ap) (5.62)

where A = r T is the area enclosed by the Wilson loop, then the potential is linear in  and
thus con ning. While a dependence on higher powers in r would still result in con nement,
it was shown in Ref. [45] that, in principle, the potential cannot rise faster than linearly in
the limit of r , and lattice calculations (see e.g. Refs. [35, 36]) con rm that this is the

actual behavior in 241 dimensions.

We will follow a di erent, but equivalent approach here. First it will be convenient to
consider one of the two euclidean dimensions as time, so we choose x5 = it purely imaginary.
We then add static fermionic sources in the (anti-)fundamental representation of color, which

can be thought of as heavy (anti-)quarks, to the gluonic action

Siot = Sstat| 0 A] + Sg[A] (5.63)
= (i 9+edy) +o,(i o eA))o. + FilAl + Fuial4] (5.64)
A1=0 A=A
= (i o4+ed) +o,(i 2 eAl)o.
1 2 kO %
- ab pa Ab
—|—2 . ki + ko o (k1) A®(k2)
+eSMA] + €28@)[4] (5.65)
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where is the Pauli spinor eld that annihilates the fermion and o, = Co (with C being
the charge conjugation matrix) is the Pauli spinor eld that annihilates the antifermion.
SWIA] and SP[A] are given in Eqgs. (5.45) and (5.46), respectively.

We create a color singlet state S(z;z ;t) depending on time t as well as (anti-)quark
positions z and x :

S(z;xst) = (v t) (xx)o(x t) o (5.66)

where (x x) is the Wilson line in the fundamental representation. We consider the time
evolution amplitude I(7T) of S:

I(T) = S(y;y:0) S(xs2;T) (5.67)

= S(y;y;0) e T S(z;2;0) (5.68)

= S(i;yi0) w W S(wiz;0)e FT (5.69)

b Syyi0) o o S(zsa;0) e T (5.70)

Since the sources are static, we can take * x = y vy =:7r and nd the static potential
as '
.1

Eq(r) = Thm fln I(T) (5.71)

This computation is equivalent to the approach using the VEV of a rectangular Wilson loop,
see Ref. [16].

Making use of the framework of potential non-relativistic QCD (pNRQCD), developed in
Ref. [47] (for a review see Ref. [48]), we will match this computation on an e ective theory
with

L=S5 (i o+ Ey(r))S (5.72)

We can compute the potential in momentum space order by order in e?. Since we are

interested in very long distances this is equivalent to very low (external) momentum ¢ 0.
This will simplify the computation, yet there are two momentum scales that have to be
considered in the loops: k ¢ (soft) and & m (hard).
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5.5.1 The leading order

At tree-level, there is only one diagram:

k i

a.

Figure 5.1: Tree-level gluon exchange.

In momentum space, at leading order in the exchanged momentum, the result is given
by

EP=—&%%+O@% (5.73)
1

which in position space becomes the sought after linear potential

e

@®:5m@w, (5.74)
with a string tension of
€4OACF
= —. 5.75
o yym (5.75)

Unsurprisingly, we just reproduced the result of Ref. [8], using a modified approach.
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5.5.2 The next-to-leading order

At NLO there is a variety of diagrams:

- - -

a) b) c)

k) 1) m) n)

Figure 5.2: Diagrams a) to n) of the NLO.

Except for diagram a), all of these diagrams have a hard (k ~ m) and a soft (k ~ q)
contribution. Once again, in order to keep the chapter uncluttered, we will give the actual

computations in the appendix (App. F), and only present the results here.

In diagram a) we insert the O(e?A?) term of the action (the first term of Eq. (5.46)) as

a 2-field vertex. We are only interested in the leading order in the exchanged momentum,
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which is why we already expanded the term in & m in Eq. (5.25). The result of this diagram

is thus
me?Cly

EWMe — 9oNe2Cp

s

+ 0(¢°) (5.76)

22 m
While this strongly modi es the numeric value of the leading order result (since 2N
1 1308), it maintains the linear dependence of the potential on the separation. This diagram
is equivalent to the correction found in Eq. (34) of Ref. [9]. The other diagrams cannot be
related in such a direct fashion to the computation done there.

Diagram b) does not contribute, neither in the hard nor in the soft regime, because the
3- eld vertex is proportional to f%¢, while the propagator in the loop is proportional to %,
hence the diagram vanishes:

EWMb =0 (5.77)

s

Diagram c) has to be evaluated in the soft and in the hard regime. In the hard regime

we nd | 42 20
EWe =0t KO 4 0 qo)e A 5.78
Fq% q% ( 1) 2 m ( )
with
1 E
K® = L (5.79)

2, (m+ Ey)(m + 2E)?
giving a non-linear contribution for the potential.

Diagram d) also has to be computed in both regimes. The contribution of the hard

regime is
| 4 m? e’C
EWd— 20,0 @ O A 5.80
with
(5.81)

o _ L m3 +3m?E, + mE}  E}  _2m3 + 4m*E), + mE} E,?)
2, 4E3(m + Ey)? (m + 2E,)2Ep(m + Ej)?

While K®) and K® are divergent quantities in d = 2, their divergences cancel once they

are added up and we obtain

2 +log(3 8)

K® 4+ @ —
" 16

(5.82)

97



Towards the Non-perturbative Regime

So we nd that the NLO term in the e? m expansion leads to terms of O ¢, *

3 .2
EWey pmd_ ezCF(2+10g(3 8)) m* e“Cy

m- 2
s s 1 A2 m +0 ¢ (5.83)

In position space this corresponds to a term cubic in the separation. This is in contradiction
to the result of Ref. [9], where only linear contributions were found at NLO. Moreover it
crushes our hope of computing the string tension from rst principles, at least with this
wave functional. The only remedy would be more terms of O ¢, * that cancel Eq. (5.83),
coming from the other diagrams. Unfortunately, however, this does not happen (see App. F
for details):

Both diagrams c) and d) are of O ¢, * in the soft regime.

The soft contribution of diagram e) is the iteration of the potential E (1) of Eq. (5.72)
and its hard contribution is of O (¢?).

Diagram f) vanishes in the soft regime, while in the hard regime it is of O (¢?).
Diagrams g) and h) are of @ ¢, ? in both the soft and the hard regime.
The same is true for diagrams i) and j).

Diagrams k) to n) are all of O ¢, ? in both the soft and the hard regime.

So we conclude that the €2 m correction to the static potential of Eq. (5.73) is of O ¢, * ,

or in position space, of O (r?):

| 2 2 92
E, = €QCF@2 1+€_)CAMW_2+@ qﬁ()+@ )e_(
i m 8 qi m
2 | 2 2 /2
Bo=Cmer 1 S 0 BEIEB8) sy 0 ()+0 )20 (5.80)
2 m 48 m

This is not a fundamental problem, as these higher order terms should combine in such a

way that the sum grows at most linearly for long distances. It could also be that they are

2

canceled by higher order terms in the expansion in e m, which as mentioned before is of
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O(1). The possible conclusions to be drawn from Eq. (5.84) are, however, either that the
expansion in €? m is not helpful in proving con nement, or that g xy[J] does not have the
correct long distance behavior. This last possibility is supported by our ndings of Chap. 4.

Of course, it is also possible that both explanations are true.

5.6 Conclusions

In this chapter we have explored the non-perturbative regime and we have illustrated how
observables can be computed from the vacuum wave functional. Mathematically the com-
putation is identical to a computation in the path integral formalism, where the action is
given by the exponent of the vacuum wave functional. E ectively the problem is reduced
to a calculation in two euclidean dimensions, the price to pay, however, is that it has to be
done with a very complicated action.

First we looked at the potential term V of the Yang-Mills Hamiltonian and found that
also in a perturbative expansion in terms of the gauge elds, it is an eigenfunction of the
kinetic term 7. Regularization of both terms is crucial for this property to exhibit itself. It
was used in Ref. [8] as the starting point of a strong coupling expansion of the vacuum wave
functional. We nd, however, that the eigenvalue depends on the regulators, which might
make its use in the determination of the vacuum wave functional problematic. This issue
should be clari ed before relying on a strong coupling expansion along these lines.

In a second step, we then used a trial wave functional obtained from gy |[J], which
was proposed in Ref. [9], via a transformation of the eld variables from gauge invariant
currents J* to gluon elds A“. This functional is claimed to be a good approximation at all
scales. It is given as a series with e m  (O(1) as expansion parameter, and it enables us
to estimate the correlator of the chromomagnetic eld, the gluon condensate, and the string
tension. At LO the result for the gluon condensate is in reasonable agreement with the result
of Ref. [44], and the string tension agrees exactly with the result of [9], which itself is in
very good agreement with results from lattice computations. At NLO, however, we run into
trouble. While the NLO computation of the static potential in Ref. [9] produced only terms
compatible with a linear potential, we do nd terms that are cubic in the separation. We

presume that this di erence is due to one or several of the problems of the calculation done
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there: First, not all contributions at NLO were computed, second, some of the contributions
were ambiguous, and third, the wave functional was assumed to be real, which is true for
the complete functional, but not for the individual terms of this approximation.

The failure to produce only linear terms at O (e* m) in this computation leads us to
two possible conclusions. The obvious one seems to be that € m is not a good expansion
parameter, given that it is of O(1). On the one hand this has the e ect that, like in ordinary
(non-resummed) perturbation theory, higher order terms appear which then should add up
to the linear potential. On the other hand, even if only linear terms were found, we could
never be sure of the numeric value of the string tension, as higher order terms might give
big contributions to it, so the justi cation for its use could only be given a posteriori, when
comparing with results obtained with lattice calculations. Still, given the success of the
LO result and the tantalizing outlook to compute the string tension analytically from rst
principles keeps us from dismissing this approach.

In light of our conclusions of Chap. 4, a second (not necessarily exclusive) explanation for
the appearance of the cubic term comes to mind: As we had to use a di erent regularization
for method (B) than the one used in Ref. [9] to obtain the correct vacuum wave functional
at weak coupling, this di erent regularization method will probably also modify the wave
functional in the non-perturbative regime. This would imply that in this chapter we did not
use a good approximation, and a di erent functional, obtained from the Hamiltonian (4.57)
might actually lead to a purely linear potential.

In order to determine the vacuum wave functional in the non-perturbative regime, while
incorporating the regularization method that we developed in Chap. 4, a possibility could
be to explore an approach proposed in Ref. [49]. The idea is to apply the background eld
method to the Schrodinger representation: splitting the elds into hard and soft modes,
treating the hard modes perturbatively and integrating them out. This then leads to an
e ective potential for the soft modes. This approach is particularly appealing, since its
validity in 341 dimensions is straightforward, given that the coupling constant is indeed
small for the hard modes, as long as the factorization scale is set high enough. In light of
this, a good choice of variables for this kind of calculation might be the real gauge invariant
currents, proposed by Freidel in Ref. [18], which can be extended to 3+1 dimensions without

conceptual problems. We will discuss them in the following chapter.
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Chapter 6

Towards Four Dimensions

6.1 Introduction

As we have seen, considering Yang-Mills theory in three dimensions and at weak coupling
is important, since it advances our understanding of the theory. In particular, in Chap. 4
the simpli cations provided by the weak coupling limit and the super-renormalizability of
the three dimensional theory enabled us to clarify how Yang-Mills theory in the Schrodinger
representation should be regularized. This knowledge translates to other dimensions and to
the strong coupling regime, as well as to other theories. Furthermore, it is an alternative
approach to compute observables in three dimensions in the weak coupling regime, but it
may also allow us to compute physically relevant objects in four dimensions like the magnetic
screening mass (see Eq. (4.89)). Possible extensions to the non-perturbative regime have been

explored in Chap. 5.

Nevertheless, it is of course of major importance to devise computationally useful schemes
that can be applied to the Schrodinger representation in the physical case of four dimensions.
A possible way to do this is to use real gauge invariant variables instead of complex ones:
Inspired by, and in order to pro t from, the computational power of the approach developed
by Karabali et al. in Refs. [4, 5, 6, 7, 8, 9], a modi ed approach was devised in Ref. [18].
The eld variables in this case are real, which has the advantage that any wave functional
obtained in this way is real and gauge invariant by construction. As we have seen in Chap. 3,

depending on the computational method, neither of these properties is necessarily evident.
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More importantly, this approach allows for a generalization to any dimension. We shall call
it method (C). We will begin in 241 dimensions and then see how this formulation can be
extended to 3+1 dimensions. For both cases we obtain the Hamiltonian in these variables.
It di ers from the one proposed in Ref. [18], because we employ the regularization developed
in Chap. 4.

6.2 Real gauge invariant variables

The principal idea of method (C) is that the variable transformation used by Karabali et
al. does not rely on the variables being complex. So instead of nding complex solutions
M and M for Eq. (3.30) one can also start with Eq. (4.13) (no sum over repeated spatial
indices in all of this chapter):

A = é MM (6.1)

which is the Euclidean analogue of Eq. (3.30). It is solved by the Bars variables (see Ref. [28]),
given in Eq. (4.9):
M;(z) = Pe ©Jedzidi?) (6.2)

where the integral is a straight spatial contour for xed z; for j = 7, explicitly

Mi(z) = 1+ (e Ai(ty zo)  Ay(t, xo)dty  dt,
= (e (Gid)"(z y) (6.3)
with
(G1A)* = Gi(z 2)A1(2)Gi(2 y)Ai(y) et (6.4)

z

and analogously for M;. The Green s functions are (see Eq. (4.12))

Gi(z;y) Gi(z y)= (1 w) (22 y2) and Gao(zy) G y)= (z1 wn) (2 y2)
(6.5)

Note that they are not antisymmetric under exchange of x and y.

Gauge transformations (3.3) act on the M; s like on their (anti-)holomorphic counterparts
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as
M;  gM; (6.6)

so one can de ne gauge invariant variables

H;; = M, 1Mj (6.7)
and currents .
JZ] = E( ]Hij)szl (6 8)

Note that H;; =1 and Hj; = H.'

v

There is a reality condition on the currents derivatives (analogous to Eq. (3.33)):
iJiy = Hi( i) Hji (6.9)

which in 2+1 dimensions just means that there is only one physical degree of freedom. We

choose to work with Jio. It is related to the magnetic eld by
B= M/( Jo)M,"* (6.10)

thus the potential term in terms of these new elds is

1
V= 2 1Jf2(x) 1Jf2($) (6-11)

T

It is somewhat more involved to nd the kinetic operator. To obtain the regularized

kinetic operator we start again from Eq. (4.18)

1
Ta= g, W el e aw) 12
with the Wilson line
(e v) = 5 LM, (0r 02)Mo(oy 2)My ' (0)"
+(My(2) M, * (2 vo) My (z1 va) M, (v))* (6.13)
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de ned in Eq. (4.8), and transform the elds (A; As) (A1 Ji2):

e J,(2) )
A(r) Aw) Lo\ Al@) A5(2) | Alw) Th(2)
| Ad(w) L T )
e AL (v) A?(zu)) A () Thw)
Af(z Jio (2
T A A T A3) Jfa(z))

| Ad(w) L _Ih(w) (w>)> (6.14)

Similar to Egs. (3.48) and (3.54) we nd

JC
A{% ~ DG ) M) (6.15)
J5 (2 e
Sl - M) ) (6.16)
IDS = 9 e €ch§ = 9 e + ejlj;fcef = (H12 2H21>Ce (617)

With these three equalities one can show that the Gauss law operator reads

I*(z) = iD® e (6.18)
— D (¢ ! 5 (y) i ab (. J55(y)
=PrE) e T, AW )" SO w1
= iD{(x) yIe) (6.20)

This reduces the kinetic operator to

1 T v 25 (2) T
T=5,,. ety et LT
1 (x U) o(x U) Jf2(z) Jldz(w) sz(z) Jij2<w)>
2 suzw ¢ Af(x) Ab(v) — As(x) AS(v) 7 Jhh(z) Jh(w)
(6.21)
= 1 [ 1 v)Y+ (v 2)”] (2 v)

TVZ
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fcef D{QQ(Z)GI(Z U) G1<z ;p) Dg(z)Gl(z I) Gl(SC U)fgfe m
i (@ D (o)

TVZW

[D5(2)G1(z )] Dh(w)Gi(w v) + “ I (z 2) (v w)

Jia(2) Jih(w)
(6.22)

where we dropped the terms proportional to the Gauss law operator in the second equality,

since it vanishes on physical wave functionals and, following [18], we de ned
1(1’ U) = ng(vl JZQ)HQl(’U) (623)

Note that § 1(z v) =0and ;(x x)=1. With some simpli cation we nd

To= 7 [i@or+ 2] @of D(2)Gi(z v) Gi(z @) Tt (2)
1 ce € d
2 . DBE GGG Y PRWGW v s
1 cd
5 1z w)* (2 w) J&(2) L (w) o2

where we introduced the regularized Greens function

(1+Erf[ (z; w1)]) —=e @2 w2 (6.25)

| —

Gz y)= (v w) (v2 )=

Note that this kinetic operator di ers from the 241 dimensional counterpart of the 3+1
dimensional one used in Ref. [18]. We will explain this discrepancy later when we discuss

the 341 dimensional Hamiltonian.

The main advantage of this approach is that it can be extended to 341 dimensions. In
order to do so, we generalize everything we did in this section. This provides no problems

for the M; and J;; elds. In particular we have

1
A3 — g 3M3M3 1 (626)
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and
1

1
J23 — g( 3H23>H231 J31 - g( 1H31)H311 (627)
While in theory we also have Ji3 and J33, these are not independent degrees of freedom, since
they are constraint by the reality condition Eq. (6.9). The generalizations of Egs. (6.15-
6.17) are

S DG 1) M) ©29)
JS (2

J((xi = Mj“(z) (x =2) (6.29)
jk((;; =0 i=jk (6.30)
ZDE; = J “ er‘Cje = j “+ ejij;‘fcef = (Hij jHji)ce (6.31)

The components of the chromomagnetic eld in 3+1 dimensions are given by
Bi= M i1Jivrive) M4 (6.32)

where addition in the indices is modulo 3. The potential operator in 3+1 dimensions in these

variables is hence

Vi=p  B@B@ =3 (@) @) (6.33)

i=1 i=1

In order to obtain the kinetic operator we rst compute

., Ar(z) Al(v)
7 J5(2) T (w)
T e M@ TR A i) (034
. ’ ) ce . ae ac (
= S Dii+1(Z)Gz(z x) Mi (x) JiciJrl(z) Mi 1(@ ($ Z)—ch 12(2)
DI, (w)Gi(w v) MY (v) MY, (v) (v w) (6.35)

JidiJrl(w) Jz’d i(w)
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i (eM? (@) M (v) D5 (2)Gi(z 2) fYC (w 2)Gilw v)

i=1 W Jz'di—l—l(w)
@MY () DL (G @) DY (w)Ciw v)
e d (r2) (v w ( i
* ( ) ( ) in+1(z) ‘]zdi—&-l(w)
) M (@) ML () (0 w) Dy (2)C(= )
DML (@ 2) D @)t ) ()

(6.36)

Generalizing the Wilson line of Eq. (4.8) we now move along the edges of a rectangular

hexahedron instead of a rectangle, leading to

1
22(.% U) = = M1<I>H12(U1 T I‘g)Hzg(Ul (%) 1’3>M3 1(7})

6
+M2($)H23<£L'1 (%) $3)H31(CC1 Vo Ug)Ml 1(/0)
+M3($)H31(.’L’1 i) U3)H12(U1 ) Ug)MQ 1(’U)
+M1(ZE)H13(U1 T2 Z‘g)H32(U1 ) ’U3)M2 1(’0)
+M2($)H21<l’1 (%) .CCg)ng(Ul (%) l’g)Mg 1(’0)
ab
+M3($)H32<I1 ) 1)3)H21(Z‘1 (%) Ug)Ml 1(’0) (637)
which equally satis es 3d(x v) = 34(v x). The Hamiltonian operator in terms of gauge
invariant variables in 341 dimensions is hence
Haq
3
1
B 5 . TV ZW (x U)
=1
ef
e M; H(z) *z v)Mi(v) ~ D5 (2)Gilz 2) fY (0 2)Gi(w v)—g——
S (w)
ef
+ M, Hz) Yz o) My(v)
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2

) Di51(2)Gi(z ) D?J;—&-l(w)Gi(w v) + Y (z2) (v w)( Jfipa(2) Jfia(w)

) M @) @ oM 0) T @ w) DELEIGHE 9

7

ce

) Yz v)Mia (v Tz de-’w‘wv( 2
i (@) Nz v)Mia(v) (2 2) Dy 1(w)Gia(w v) Jfira(2) Jidli(w))

by () T (@) (6:39)

While this is a complicated expression, it allows for the translation of method (B), and there-
fore for analytic computations in the non-perturbative regime, to 3+1 dimensions. Note that
it di ers from the Hamiltonian proposed in Ref. [18], where a di erent regularization was used
and the one derivative term was argued to be subleading. In light of the results of Chap. 4
we argue, however, that all terms should be maintained until the end of a computation and

only then should the regulator be removed.

6.3 Conclusions

In this chapter we have considered a modi cation of method (B), using real gauge invariant
currents instead of complex ones (method (C)). As demonstrated in Chap. 3, proving that the
wave functional 7 obtained with complex variables is actually real, is a tedious exercise,
and 4. of Chap. 5 even does have a non-trivial imaginary part. Using real currents from
the beginning guarantees a vacuum wave functional, which is both real and gauge invariant,
thus eliminating this problem right away. The main advantage of method (C), however, is
that it allows for the generalization to 341 dimensions. While this extension results in a
complicated expression for the Hamiltonian it is in principle possible and should be explored.

It is tempting to directly do computations in 3+1 dimensions where observables have
immediate physical relevance, but the Schrodinger representation, though promising, is still
not fully understood. We have seen in this thesis that conceptual questions, in this case
regularization, can be clari ed in 2+1 dimensions, and it seems worthwhile to fully under-
stand the Schrodinger representation before moving on to more complicated problems. Due

to its super-renormalizability and the less complicated Hamiltonian, 2+1 dimensional Yang-
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Mills theory proves to be an ideal testing ground for di erent approaches, which can then,

hopefully, be translated to other dimensions.
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Chapter 7
Conclusions

In this thesis we have investigated the Yang-Mills vacuum wave functional in 241 dimensions,
focusing mainly on the weak coupling regime. 2+1 dimensional Yang-Mills theory is relevant
because it is the lowest dimensional Yang-Mills theory with propagating degrees of freedom.
Put in another way, three is the lowest dimension in which the non-abelian nature of the
theory has an e ect. This allows us to draw information about the four dimensional case
from it. On the other hand, three dimensional Yang-Mills theory is important in its own
right because its euclidean version constitutes the high temperature limit of four dimensional
QCD. The framework of the Schrodinger representation, which we considered in this thesis,
is interesting because it allows for analytical computations in the non-perturbative regime.
Yet, it is rarely considered in the literature, and even perturbative computations are not well
developed. Moreover, regularization and renormalization are also not well understood in this
framework. In this thesis we aimed to put both perturbation theory and regularization in

the Schrodinger picture on more solid ground.

In Chap. 3 we computed the ground-state wave functional in a perturbative expansion to
O(e?), using two di erent methods. First we started from the usual gauge eld Hamiltonian
and computed the vacuum wave functional directly in perturbation theory, generalizing the
method developed in Ref. [13] (method (A)). We then compared this to the corresponding
result obtained from a weak coupling expansion of the wave functional proposed in Ref. [9]
(method (B)). Each method has its own advantages and drawbacks: The wave functional

obtained with method (A), which we called ¢, is explicitly real, but its gauge invariance
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cannot be guaranteed a priori. The result of method (B), called 7, on the other hand
is gauge invariant by construction, but it has a non-trivial imaginary part. Comparing the
results of the two approaches in a systematic fashion (as the expressions are too complicated
for a straightforward comparison) we were able to show in Chap. 3 that they agree up to a
real, gauge invariant term. This proves on the one hand the gauge invariance of ¢, and

on the other hand the reality of ;.

Still, as we found a di erence between the results of these two methods, and since reg-
ularization in the Schrodinger representation is not a well-developed subject, we had to
reconsider the regularization method used, and we did so in Chap. 4. No regularization was
used for method (A) in Chap. 3, and even though the result was nite, we found in Chap. 4
that without regularization some contributions were missed. Moreover, we found that the
regularization scheme for method (B), used in Ref. [9], also had to be modi ed. We devel-
oped a new regularization scheme in Chap. 4. Applying it in the same way to both methods
we found new contributions for both approaches, such that the new results are identical, as
expected. This is a strong check of our computation, and we therefore claim that the wave
functional given in Eqs. (4.28), (4.30), (4.32) and (4.47) in terms of the gauge elds A® (and
in Egs. (4.71), (4.73), (4.76) and (4.84) in terms of the gauge invariant variables J%) is the
correct Yang-Mills vacuum wave functional to O(e?), given here for the rst time. This is
one of the major results of this thesis. Using it, we were able to give an estimate of the
magnetic screening mass.

That the result for method (A) di ers from Chap. 3 to Chap. 4 is not very surprising, as
the regularization of the kinetic operator was not considered in Chap. 3. More surprising is
the fact that we had to modify the result of method (B), the regularization of which had been
studied in detail in the past. In Refs. [7, 17] an intermediate cuto oo was introduced
in the wave functional, damping the modes with energies greater than . This procedure
eliminates the extra contribution we found with method (B) in Sec. 4.4.3. However, if the
same procedure is applied to method (A), it also eliminates the mass term obtained in
Sec. 4.3.1, producing the two incompatible results of Chap. 3. Instead, we advocate doing
the whole computation with a single cuto that regularizes the kinetic operator and the
ground-state wave functional (and all excitations) at the same time. It is only after solving

the Schrodinger equation that we can take the cuto to in nity compared with any nite
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momentum of the system. In other words, the momenta of the elds of the wave functional
can be large. As one goes to higher orders in perturbation theory, loops appear, whose
integrals run up to in nity, and all of these modes have to be taken into account, producing
new contributions, as we have seen in Eq. (4.80). In a di erent language, in order to be
able to give meaning to the theory we need to regularize the Hamiltonian. This de nes a
(regularized) Hilbert space, in which both the Hamiltonian and the states depend on the
same regulator. Preserving unitarity requires all states to be considered in the computation.
In particular, cutting them o with a second regulator impairs the completeness relation.
This regularization procedure is not speci ¢ to Yang-Mills theory or to weak coupling or
to three dimensions. It should be applied in the same way to any QFT in the Schrodinger

picture.

In Chap. 5 we investigated the non-perturbative regime, which is where the Schrodinger
representation can develop its full power. In Ref. [8] it was found that the potential V of
the Yang-Mills Hamiltonian is an eigenfunction of the kinetic operator 7. We tested the
robustness of this result after regularization in perturbation theory. We found that V is still
an eigenfunction of 7, but the eigenvalue is di erent, and in particular, regulator-dependent.
This suggests that a strong coupling expansion along the lines of Ref. [8] may be problematic.

We then considered an interpolating trial functional, which was obtained by transforming
the proposed wave functional of Ref. [9] to gauge eld variables. This trial functional stems

2 m and is claimed to be a good approximation at all scales. As

from an expansion in e
a test, we used it to compute the correlator of the chromomagnetic eld at leading order,
which in the weak coupling limit agrees with the perturbative computation, and to estimate
the gluon condensate. We then turned our attention to the static potential. At leading order
we found a linear potential, but the next order in the €2 m expansion leads to contributions
cubic in the separation, contrary to what was found in Ref. [9], where all corrections were
compatible with a linear potential. This makes it impossible to compute the string tension
analytically from rst principles in this fashion. While it is perfectly possible that the cubic
terms are due to the fact that the e? m expansion is not the appropriate one to only contain
linear terms, another explanation might be that the trial functional does not have the correct
long distance behavior. As was shown in Chap. 4 (in particular in Eq. (4.80)), the crucial

mass term which led to the speci ¢ form of the vacuum wave functional of Ref. [9] is
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not the only term of this sort in the weak coupling regime: more terms in the Hamiltonian
Eq. (4.64) produce this type of terms in the wave functional. Taking these into account in the
non-perturbative regime probably leads to a di erent vacuum wave functional, which might
exhibit the desired behavior. In any case the consequences of the di erent regularization

method employed in Chap. 4 for the approximate resummation scheme analysis carried out
in Ref. [9] should be explored.

A third approach, the formulation of Yang-Mills theory in terms of real gauge invariant
variables developed in Ref. [18], was presented in Chap. 6. It combines the advantages
of having a vacuum wave functional which is both manifestly real and gauge invariant by
construction with the possibility of a straightforward extension to 3+1 dimensions. Following
our result of Chap. 4 we claim, however, that the correct Hamiltonian in this formulation is
not the one proposed in Ref. [18], but is given by Egs. (6.24) and (6.38) for 2+1 and 3+1
dimensions, respectively, since the regulator should only be removed after the determination

of the vacuum wave functional.

The main contribution of this thesis is that we clarify how regularization in the Schrodinger
picture should be implemented. We have demonstrated that it is worthwhile to investigate
theories outside of their physically relevant regime, since the resulting simpli cations can help
to understand conceptual problems, whose solutions, as in this case, may then be generalized

to other regimes.
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Appendix A

Comparison of V; and V7 at Ofe)

In this appendix we will show that 57 and g; are equal at O(e). At this order we obtain

in the gauge invariant approach Eq. (3.78):

3
. 1
FOA] = ifoe k ( (ke AR (AR) A(Ks)
kikoks g 2k
1 kl kg—l-i/ﬁ kQ . b
+1i (k AY (k) (k A%(k9)) (kK Ak
B (ki t ket k) ke (K1 (k1)) (k2 (k2)) (ks (k3))
1
+ (k1 A%(K)) (ks A”(Ka)) (ks AC(kB»))) (A1)
g K2
The imaginary part
’ bk 1
Im[F[A)) = i f ki et
kl kg k3 i=1 ( i kl )kl kQ kg kg kl
(kv A%k1))(k2  A(K2))(ks  A(ks)) (A.2)

vanishes identically as we now show. Because of the delta function we can write k; as ko k3

under the integral:

3 2
_ Z'fabc kz k2 ks k2 + 1
k1 ko k3 i=1 ( i k‘l )k’% ]{,’2 k’g ( i kz )k’% k‘z l{3 ]{?3 k’%
(kr  A%(k1)) (ke AP(ko))(ks  A%(ks)) (A.3)



Comparison of qr, and gy at O(e)

The second term vanishes when interchanging ky k3, hence

w

WmlFGA] =i m&<i5%m SR
(k1 A%(k1))(ky  A%(ko))(ks  A%(ks)) (A.4)
— jfete s 1 o
kika ks g (i ki)k ks (0 k)R
(ki A%(k1)) (ko AP(k2)) (ks A%(ks)) (A.5)
=0 (A.6)

The rst term vanishes under &£y k3, the second under ky  ks.

We now look at (the real part of) the second line of Eq. (A.1):

- rabc ) k?l k}g a . )
T L U Rk g O AR AR AR (AT
- rabe ’ ' 1 u ) .
= if o ki T (ky A%(ky))(ky  AP(ko))(ks  A°(ks)) (A.8)
+ifab6 k; ki ke (kl Aa(kl))(kg Ab(kz))(kd AC(/{3))

k1 ko k3 i=1 ( i kl )k% kQ kg

where we used i 1 = i ji i k- We again write ky as kp k3 and note that as above

the k3 ko term vanishes due to symmetry under ky  k3:

- rabc ) 1 a b c
= if o k; (k) ke h (ky A%(k1))(ka  A(k2))(ks  A°(k3))

- rabe ) /{:2 u ) .
Y izl’fz (kR k (k1 A%(ky))(ka  AP(k2)) (ks A(ks)) (A.9)

Plugging this back into Eq. (A.1) gives

1
2k

R i ka( (b AN A (k) A%(ks)) (A.10)
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(ky A%(ky)) (ko  A’(ko)) (ks A°(ks))

(5 ki) ko ks

1 1 ) b C
’ (g ki)ki ks +( ki k2 (b A%(k1))(ke  A’(k2))(ks A (kg)))

The last term vanishes under k, k3, and in the next-to-last we replace (ko  A%(ky))
(k1 + k3)  Ab(ky). Then we have

1
2k

RA=irt ok ( (o AR)A) ACR)

1
ko ks

(ky A%(k1))(ky  A’(ko)) (ks A%(ks))

(b A%(ky))(ky  AP(ko)) (ks A%(ks))

(ke Ak Ak AG)  (ALD)

Exchanging ky  kp in the next-to-last line and making use of
(k Ak B) (k Ak B)=Fk(A B) (A.12)

we nd

1
2k

Uitk ( (b A"(k))(A(ks)  A%(ks)

1

ky A'(ki)  A'(ka) (ks A%(Ky))

(b Ak (ks A(k))(ks A(Ry))) (A13)

3
= ifete i (1 (ki A%(k1))(A"(k2)  A%(ks))
ki ko ks i1 2k

ko + ks . , .
2Rl AR AR
1 ) b C
(k) kK (kv A%(k1)) (ks  A°(k2))(ks A (k’g))) (A.14)
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=3 abe ° A ; . , )
- Rikaks k: (2( Tk (k1 A%(k1))(A%(ky)  A%(ks))
1 . ) C
Tt A A AG) (A15)
- Pl (A.16)

This is FélL) [A] as found in Eq. (3.18), so ¢ and gy are equal at O(e).

120



Appendix B

Comparison of Uy and ¥y at O(e?)

In this appendix we will show that ¢ and g7 are equal at O(e2A*). In order to do so
we rewrite F((;(B[A] (Eq. (3.11)), F((;L)[A] (Eq. (3.18)), and F((;2L4) [A] (Eq. (3.26)) in terms of J

and

We 1st consider Fgg[J(A) (A)] at O(e%) in Sec. B.1, which allows us to compute
F((;2L4)[J ] in Sec. B.2 from Eq. (3.25):

1 1 F) F)
F(2 4) . GL ki k GL q q
GL 2 p ks k2 a2 22< ]{ZZ i % ) Ag (p) [ 1 2] A?( p) [ 1 2]
, + F)
Zflnbzc (QI q2 p) (Ch Ab1 <q1)) Abg <q2) GL [kl kg]
p ki ke qrq z( kz + G ) q1 Ac(p)
1 ajazc c 7 kl + i ay az 1 2
L g it AR ) A% (k) (A% ) A% (a2)) (B)

ki k2 q1 g2 Z(kz + Qi)

This we split up order by order in  and rewrite it in such a way that the prefactor

drops out. These expressions then give us guiding lines on the form
kv + ke + @1 + @2

in which we need to bring Fi'}[J ] at O(e), which we do in Sec. B.3, and Fio[J ] at O(e?)
(in Sec. B.4). We will then see, that adding up all the terms cancels the dependent terms,
while the independent term is equal to Fé214) []].
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Comparison of ¢r and g1 at O(e?)

We use Egs. (3.86) and (3.87):

AR) = DI ik R M ) S a ' 0) ()

Z.eQ bed rdea b c e
+ (k¢ p)J() “(p)

%fbc‘ifde“ "k q p)a @) ()

+O(63) | (B.Z)
A(k) = ik (k) %f””c g "k q) “(q)

q

%fbc‘ifd“’“ kg kg *(k g p) “(q) ‘()

qp

+0(e?) (B.3)
So the terms that actually appear in Fgj, are

ko AYk) = 2i(kAY(K) kA (k)

o) Lk Kt ke 9 (B.4)

k%fb“lfd“‘ "k q p)JM0) “(p)

q P

+Z§fabc (kq kq) "(¢) “(k q)

q

%fbcdfdea (k;q kq> b(k q p> c(q) e(p)+o(63>(

ko AY(k) = 2(kA%(k) + kA*(k))
) %k:J“(k) + 2ikk (k) + %f“"c k(k q)J)

+%€J‘“bc (kq+ka) (@) “(k  q)+O(e) (B-5)

q

pAE) = 2i(pA() pA°(R)

:22') %pja(k)—i—i(pk pk) (k) %ef“”c p 'k q)J)

122



S o) @t 9roe) @B
A%ky)  APky) = 2i(A%(ky) A% (ko) A%(k1)A%(Ky))
:ijf‘(kl)kZ b(kg) 1k a(kl)Jb(kQ) 2?(/61]62 kika) “(k1) b(kz)
+§J“(k1)f”“‘ g “(q) “(k2 q) %f“d q “(q) ‘(b1 q)J"(k2)

q q

ief* (ki q)Jq)ks (ko)

q

Fieky (k) (ke @) J%g) +O(e?) (B.7)
q
If k1 and ks can be interchanged such that interchanging a b gives a minus, this last
product becomes:
A (k) Al(ko) = fere <2ik2J“(k1) P(ky)  dikiks “(k1) "(k2)
kl kg kl k‘2

+ieJ" (k) f* g “(q) “(ka q)

q

dickaf™  Uky  q)J(q) "(ka) + O(D)  (BS)

q

B.1 F.[J(A) (A) at O(e)

We begin with Eq. (3.18):

3

RM =ik (ﬁ(k A (A ) (k)

1
3
(7 ki)kr ks

(b ARk A'k))(ks  A“(ks)) (B.9)

and use the above relations to rewrite it in terms of J and , nding

31 Bk,
i1 ki Ry ks

3
RV 1= k ( (k1) (k) I (k)
1 k2 k3 i=1
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Comparison of ¢r and g1 at O(e?)

k3 k1 kok
T )T ) Yhe) 2 () (R (k)
3 i=1 i
ksk kako)ks k
+2( 3 23 3k 2)}{3 1 (ky) b(@)]a(k;;)) + O(e) (B.10)
i=1 i h3

Note that the term cubic in J is FC(,II)[J], also note that there is no term cubic in

In the parenthesis of the last term, k3 and k3 can be replaced by  (k;+kq) and (k1 +k2)

respectively, where the kyks terms cancel:

’ 1 er k2
FQIT 1= ™ ko (— T (k) T (ko) T )
k1 ko ks i=1 i=1 l{?z ]{31 kg
k2 kikok
H =2 J (k) o (ks) P(ks) 25— J(Ky) P(ka) “(ks)

3 i=1 "
kik kiko)ks k

2( 1 23 1k 2)k3 1 a(k,l) b(kg)JC(k’g)> —|—O(€) (B.ll)
i=1 i N3

Renaming £y k3 in the last term results in

abc ’ 1 klk% a b c k% a c b )
= f ki 3 S (k1) " (ko) J(k3) + —=J*(k1)J(ks) *(k2)
k1 k2 k3 i=1 i=1 kl kl k3 k3
i ki k k
i=1""
2 fabe ————— [ kikoks —i@@h+—i@@h>ﬁ®g%@)%@)
K1 ko ks oy ki ky kq
(B.12)

+0O(e)

Renaming ky k3 in the 2nd term of the 2nd line gives a sum over momenta-moduli, thus
canceling the sum in the denominator.

abc ’ 1 klk% a b c k% a c b )
= f ki 3 J (k1) " (k2) (k) + —=J* (k1) J(k3) "(k2)
k1 k2 k3 i=1 i=1 k’L kl k3 k3

RUR2RS Ja k) Bky) “(ks) + OCe) (B.13)

1

2 fabc kz

k1 ko k3 i=1
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SFS)
047 (p)

B.1.1

We also transform the functional derivatives:

L A Tle) Fo o o
Qg2 A (p) Ab(q1) J(q2) Ab(q2)
F(l) 1 P F(l) F(l)
= (u+i2)2)—=E+=(u iy GL GL
R J(p) p (72 p Jup)  Ap)
+0(e) (B.14)
F(l) 1 P F(l) 1 F(l)
=5 (utin) @) 705+ (y i) 2-—0k4——0k
(ae 4 20) () Je(p) p L ) p Jp) ip “p)
+0(e) (B.15)
FC(JIL) 9(3)<k1 ka2 p)
— aala k k‘ Jal k JGQ k.
Ta(p) / - 1t R+ p 39 (K1) J* (ko)
L kik
v B S gy ea(gy) 4 P2 e “2(k2)> +0(e) (B.16)
Pk p
1) 2
I : k5 1
= jfoma ey A ko +p =2 =T (k) J%2(k
Aa(p> f 1 2 TP by D ( 1) ( 2)

kik kik
121_9+12

ki Pk )Ja1<k1) “(k2) + O(e) (B.17)

+27;faa1a2 kl + ]{72 + P (

Putting them together results in

= At ki + ko +p
Ai (p) ki k2
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Comparison of ¢r and g1 at O(e?)

. 9(3)(1€1 ko P)
((( 1+ 2Z)3—2

+( 1 0o2) 39 o ks
2 k2
+<( i+ 2i) LA
kq
. 1 kl)
(1 0 2) Zp‘f‘k—l
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From the above we can compute FC(;ZLLL)[J | using Eq. (B.1), and we do so, order by order in

B.2.1 Orders ' and

) #( 2-terrn

We shall use that

) (1i+i0)CP)+(nu i 2i)D(p)<) (147200 p)+ (1 1 2)D( p)(
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1 1
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2( p)g p 32
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Both of them together

The (A A)%-term is of O( ?), so
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q1 (lﬁ + ]{?2) k’g k?l Q1 + qz a1
Only order °
1
FG ocoy = oo fo® kit ket aqut g I (k) T2 (ka) T (1) 7% (g2)
512 k1 k2 q1 g2
1 ki +k
(3) L 2 (3)
g (lﬁ ky Ky kz) g (91 q2 q1 Q2)
kv + ko + ¢1 + @ k1 + ko
k2(2k2 + kl) ]Cl(Qk’l + k’g) 4 3)
. . Py (12 @1 )
2 2 4
o) eQeta) 6t 9O ke K k2)> +O()  (B.28)
42 41 a1+ q2



Comparison of ¢r and g1 at O(e?)

= Fi "]+ Ofe) (B.29)

which is what we expect.

Order

(k1 + k2 + 1 + ¢2)

kikeqige kK1 + ke + 1 + @

q ki + kK q1q 1 1 1
q1+ g2 +—1(Q1+C]2)1 2 2 ~ @1+ q +5q +—Q2(

1
FC(;2L4) O( ) — EfalaZCfbleC
q1 ki + ko q1 4 4 2
9(3)(k’1 ko Ky k?2)

+q2) k3 k3 k + @) kg
116 (@1 Q2)_2 + q1R3 (1 + @) + _1(611 q2) o4 )
q1 + q2 /{32 q1 (k‘l + k?g) ]{32 kl q1 + q2 ]{?1 a1

+0O(e) (B.30)

1 ki4+ ko +q +
_ 1_fa1a2<:fb1bzc ( 1 2T 1 Q2> Jal(kl)JQQ(kQ)Jbl(q1> bz(q2)
6 kikagiae k1 + ko + 1 + @

J (k) J? (k) " (1) (o)

o

1 1 1
<) 5914*6]2 +§Q1 +§Q2<9(3)(k51 ko ki ko)

2 2 2 2

116 k3 (ki ko) +( ki ko) ki q1k3 k@ ) + Oe) (B.31)
k‘g k’l k’g ]{?1 ]{?2 k?l a1 k’Q k‘l a1

(k1 + k2 + @1 + q2)

k1 k2 q1 g2 kfl + k2 + @ + g

Jn (kl)Ja2(k2)Jb1((]1) b2<q2)

1
— _— faiazc £bibac
16f /

2 2 2

1
+§ k’l + kz -+ ]ﬁ +k2 9(3)(l€1 kg /{1 /{2)

1 1 1
<) ~ 1 +q +-q +—Q2(g(3)(k?1 ke ki ko)

2 2 2
ik ok kg ) g (B.32)
kl ]{2 q1 k’g kl q1

(k1 + ks + 1 + @o)
k1 k2 q1 g2 kl + k2 + ¢ + ¢

+16

Jal(kl)Jaz(k‘g)Jbl(ql) bz<q2)

1
— _— faiazc £bibac
16f /

1
(5 ki + ke + ¢ + ¢ 9(3)(k1 ke k1 ko)

1

5 kl + kQ + ¢ g(g)Ufl k‘g Ch)) —|—O(€) <B33)
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1
:3_2fa1a20fb1b26 (ki +q) T (k1) (ko) I (@) ®(q2)g® (k1 ko ki ko)

k1 k2 q1 g2 i
11
@g fa1a26fb1b20+fblalcfagbgc+fa2b16fa1b26 (k_z +q1)
ki k2 q1 g2 i
kv + ko + " “
L T 0O by 1) (k)T (k) T (@) (a)  + Oe) (B.34)

ki + ke +q + g

The last equality is true because ¢© (k; ky q1) = g% (q1 ki ko) = g (ky ¢ k1). The sum

of the structure constants is the Jacobi-Identity, which vanishes, so

ajasc £b1bac
F o0y = A (ki +a) g9k ko ki ko)
32 k1 k2 q1 g2 i
T (k) 2 (k) J" (q1) *(g2) (B.35)

B.2.2 Order %
2
)
) %( -term
1 1
R
p Ai(p) AL D) o2

=4( i)?feez fontz kitke+p (@+a p)J" (k) (k)" (@) "(g)
k1 kaq1qzp
2 2
Pk ) 1 @) P ((
= £ D =p +— Z(q+q)+
( i (1 R p(q1 Q) + ¢ )
A( 4)? foeraz poinbe kithks+p (+a p)J"(k)J? (k) "(q1) "(q)
k1 k2q1q2p
9(3)(k71 ko P) 9 ( p>Q1Q2 2( p)QlQQ PQ(S)(kl ko ]9) k% >
32 (2) + » 32 +
P P D 2p ko
+0(e) (B.36)
= fome fabibz ki+ ke +q +aq JU(k1) 2 (ka) " (q1) " (g)
k1 k2 q1 g2
(k1 + ko)? K2
— — (¢1t+q q
( kit ks Ky (ate o )>
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Comparison of ¢r and g1 at O(e?)

faa1a2fab1b2 k‘l +k2+q1+q2 J“l(kzl)Jaz(kg) bl(ql) bz(qQ)
k1 k2q1q2p
4q1q2 k3
Ok by &y hy) DT RIDE 2 ) o B.37
(9 (1 2 1 2) 2 ¢ + ¢ nt+a@ k () ( )
(1)
) A %( -term
< rbibac (1 +q p) b b Fc(:lL)
i (1 A™(q1)) A”(q2) (k1 Kol
p k1 k2 q1q2 ,( kz + g ) q1 Ac<p)
Z‘fblbzt:falazc (Q1 + Q2 p) (kl + ko + p)

p ki k2 q1 g2 (kl + ke + 1 + QQ)Ql

) i @) +ia? @)+ i @l a0 Q) ()

A (go) ((( 4 Qi)M

32
(3) 2
o pg¥W ik p) | K ar (1. | Fas
+( 1 1 o2) ’ % + 2 ko J (ky)J% (ko)
2 k2
—l—(( i+ 2i) P
p k1
‘ 1 k
(15 12) =p +—1) B(k1+k¢2)+k‘2( )Jal(kl) (k)
4 k1 p
, kik ) kik a a
+<( 1511 21)2p; 2 (1 @ 2i>2p]1? 2) (k1) 2(k2)> (B.38)
_ ( Z')3fb1b20fa1agc (ql +q2 p) (kl + k2 +p)

p k1 k2 q1q2 (kfl + k2 + ¢ + QZ)ql
(@) @ ? "(q)

) (ky k ®)(ky k k2
<G”Wmiii—2@+wW@> po B lap)l B ) i) )

32 32 2]9 k)g
2 k2 1 k
+ 2Ab2 (q2) % ]{;—1 2Ab2 (QQ) Z p + ]{;_1) g(k‘l + kz) + ]fg( ) Jal (1{31) a2<k'2)
ki k
+ (2% ol 0()) “(k) (ks))
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+0(e) (B.39)
_ ( Z-)Sfblbgc]calagc <QI + q2 p) (kl + k2 +p)

p ki k2 q1 g2 (kl + ke + 1 + QQ)Ql

<( O +0(J)  a” "(q)2igz *(go) W

] Gk k k2
O( J)+ ¢ "™(q) 2igs *(qo) gg (b1 k2 p) + 2

JM (k)2 (k
) )

b 2 b . 1b . p P2 k%
+< " (@) o (@) (I () + 2 () — o
1
1

(017" (@) 2igp (@) +O( %) 7 +%) g(’f1+k2)+k2( ) I (k) ()

P ) D@20 ) ()
+O(JH +O0(J* )+ O(J *)+0( %)+ Ole)

(B.40)
With this we nd
. pbiboc (CJ1+Q2 p) b b FC(;ll)/
i f (1 A" (q1)) A™(q2) (k1 ko]
phikbaae J(k+ @) Ac(p) o( 2)
4k,
— fa1a20fb1bgc i
k1 k2 q1 g2 j ki
@ 4291  42q1 9(3)(/‘?1 ko Ky k2) q1 q2k§ i 2k1(k1 + kz)ﬁh%
a1 + g2 16 (k’l + kg) k’g k’l kl + k‘g
Jal(kl)t]ag(kz) bl(Ch) b2(¢]2)
2 2
+ ) q2 ZQqu( Uy + k) L —i-Q@)l]ﬁ—l—kz lkl(
q1 kl + kQ ]{31 q1 4 4
k) (k)T (@) ™ (a2) + Oe) (B.41)

(A A)(A A)-term

1 aiazc rbibac ( z(kl+qz))
TR

(A% (k1) A= (k2))(A™ (@) A™(o))
p k1 k2 q1q2 z(kl ‘|‘Qi)
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Comparison of ¢r and g1 at O(e?)

1 . kz + q; a a
= e ARG ) ()T 1) (a2
p k1 k2 q1 g2 z( kz + q; )

+O(?) + O(e) (B.42)

All three together

ki + ke + a1+ @
FC(:2L4) O( 2) — faalagfablbg

kikzaraz ki + ko + 1 + o

1 (ki +k))? K?
Lotktkl Mo ) I (k) ()T (@) ()
2 k4 ks ky
1 (1 +@)ae  4age kK ) >
3) 2 al a2 b1 bo
+— ki k k k —= ) J" (k) J*?(k
2(9 ( 1 R2 1 2) 2 41 + ¢ QA+ o ( 1)J% (k) (Q1) (Q2)
b1b ?kl
+fa1a20f 102¢C I
ki k2 q1 g2 i k;
" @ @ gP (ki ke ko ko) o @ k3 42k, (k1 + k2)q1q2
qi + q2 16 (kl + kz) kg ]{Zl kl + /{ZQ

Jal(k1><]a2(k2) bl((h) bg(%)
agz( (k1 + ky)? k_%
a1 ]{31 + k’g k?l q1

Jal(k]_) aQ(k'g)Jbl(ql) b2(q2)>

+ ) q2 + 2

lfG«IGQCfbllDC ( (ki+a))
2 p k1 k2 q1 g2 z<kz + Qz‘)
ky+ ko +q1 + g2

_ fa1a20fb1b26 Jal(]ﬁ) a2(k2)Jbl(ql) b2(q2)
k1 k2 q1 g2 k1+k2+QI+QQ

kg2 ™ (k1) (k2) " (1) " (g2) + Oe)

1 (ki +ko)* K2 ki + ko)? k2
Lothth) b (n+a @) ) g pot( (it kel R
2 k1—|—l€2 kl q1 ]Cl—f—]{fg l{?l
1 k
law g o k)

2(]1 2
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- ki+ ke + a1+ a2 b b
+fa1a26f 1bac J" (kl)JQQ(kQ) I(Q1) Q(QQ)
kikearaz ki + ko + q1 + o

+ k2
<g<3)(k‘1 ky ko k2)<Q1 Q2)Q1Q2 9 Q142 Ry

4q+q @+ Gk

q2q91  92q1 9(3)(/€1 ky Ky kz)
1
a1+ q 16

k2 ki +k
G p———— + 2/%’1(]2—( L o)y > +
(kl + k?g) k’g kl kl + k?
- k1+k2—|—Q1+q2 b b
= faraze fhibse Jal(]ﬁ) a2(k52)(] 1(Q1) 2(@)
kikeaiaz  ky + ko + 1 + @

<1M’f_%) 01 (

O(e) (B.43)

G +q @ 2q +4—
2 k?1—|—k’2 k‘l ' ? ' ? q1

Fatz )
2

1k k
+§ﬁ (1 + g2 Q)
- ki+ka+ a1+ g b b
 fanaze phibse T4 (k1) %2 (k) " (q1) **(go)
kikearaz  ky + ko + 1 + @0

( o @142 k'_% k3 I (k1 + ko)

@ Qo + 2kig

Q1+CI2 kg ! 2<k1—|—]€2)k2 12k1 /{1+k2

G (ky ko K

1L (n+e « Q2)g (s b2y

k’g)
. 16 > + O(e) (B.44)

Manipulations of Fg;” at order 2

We now manipulate the obtained expression with the objective of getting rid of the

1

refactor.
(k1+k2+Q1+q2) p

We replace ¢ q1 ki ke in the 4%—term of the second line.

. ki + ks + ¢+ g b b
_ falach 1b2c J (lﬁ) a2<k2)J 1<Q1) Q(QQ)
kikequaz  ky 4+ ke + 1 + @
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Comparison of ¢r and g1 at O(e?)

L (hrh? R

Q1(/€1+/€2)(
Gt+e 2 2q¢ 44—
2 4k Ky e ' ?

q1
1 klkg k2q2
+2 " (1 + ¢ Q) 9 )
- ki + ks + ¢+ g b b
4 farazc ghibae Jal(k1>Ja2(k2) 1<Q1) Q(QQ)
kikearaz  ky + ko + q1 + o
k3 (ks + K Fat o)k
q2 ) qu 2( 1 2) ¢ 2 +92 lw(
ky + ko ko ki + ko ko ki ky+ ko
(3)
¢1G2 gk ks R kz))
O B.45
O+ (@1 +q T q ) 16 +0(e) ( )
1 (kg + k2)?
= foreze fhibee h+@+m+%(w%0”%ﬁﬁm0”@%LL—i
k1 k2 q1 g2 2 F1 + ks
- ki + ke + a1+ g b b
+fa1a20f 1b2c Jal(]ﬁ) aQ(k2)J 1<CI1) Q(QQ)
kikeqiae ki 4+ ke + 1 + ¢
1 (ky + ko)? ki +k
Lkt k) @l tk) (
2 k4 ke q
1 k2 ) q1 (k1 + k2) ( 1 kyks k2qo
i B 2 2 4 = B
+3 . q + T q2 “ T3 ko (ntae o) 2 )
- ki + ks + ¢+ g b b
4 faraac phibye T (k) T2 (k2) ' (q1) "(q2)
kikaqrae Kk + ko + Q1+ @
(3)
@ gk ky k1 ko)
k k ki+ k
i, + Ko + k1 + R 16
K2k k3
L@ ) oq iR2 k3 (
kl + /CQ k‘l ]fg k?2
(3)
01 gk ks R k2)>
O B.46
PR (@1 +q q1 q ) 16 +0(e) ( )
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— fauzzc]cblbzc

k1 k2 q1 g2

1 (ky + ko)?

ki + ko +aq1 + @ Jal(kl) aQ(k2)Jb1(Q1) bz(QZ)Q
ki + ko

- ky + ke +q1 + @
+fa1a20f1 2C

Jal(kl) a2<k2)Jb1<q1) b2<q2)
kikeqiae ki 4+ ke + 1 + @

1 1 k
( §(k;1+k;2)2 §(k1+k2)k:1+k2k—i

1 k2 ki + k
+——1) ante 20 2¢ 4M(
2k ¢
1 K1k kaqo
+2 b (g1 + ¢ ¢ ) 9 )
Gk, k k k
fCLlllQCfbleC kl + kg + ¢ + ¢ a1q2 g ( 1 2 1 2)
k1 k2 q1 g2 @+ G2 16
JO (k1) (k2) " (q1) ™ (q2)
- ki +ke+ a1+ b b
falach 1b2c Jau (kl)Jaz(kQ) l(ql) 2(q2)
kikeqiaz ki 4+ ke + q1 + ¢
42 ) kiks k3 (
2q + ¢ —" +0(e B.47
kl + k2 ' k’l ]{32 ' ]{?2 ( ) ( )
1(ky + ky)?
= foreze fhibae ki+ks+aq+aq JU(k) (k)" (q1) b2(Q2)—u
k1 k2 q1 g2 2 k1+k2
+ faraze foroae J (k) 2 (k2) I (q1) ™ (g2)
kikeaqiaz ki 4+ ke + 1 + @
1 1 k2 ) q1 (k1 + ko) ( 1 Eyko k?2CJ2>
—(ky+ k)2 +=—7 2 2 4 - —=
( 2( 1+ ko) +2 " T q2 “ > " 5
Gy ky ki ko)
ajazc rbibac ]C + k + q + q q1q92 g 1 h2 1 2
Jeecr ey, TRTaTE T G

T (k1) (ka) " (q1) ™ (go)
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Comparison of ¢r and g1 at O(e?)

- ki + ks + ¢+ g b b
foraze fhibec Jal(k1>°7a2(k2) 1<QI) 2(q2)
kikearaz  ky + ko + q1 + o
2 K2k k3
4192 ) 1% 201 2
k1 + ko ki ko @ ko

(. O(e) (B.48)

Using the Jacobi-Identity fo1ez¢fbibze — % faraze phibae - garbie fbraze - farbse fasbicjp the
second line, then renaming b, as, q1 ks in the second term; and b as, (o ko in

the third term leads to

1 (kg + k2)?
— fa1a20fb1bzc kl + kg + ¢ + 0 Jal (kl) az(kQ)Jln ((h) b2(q2)_< 1 2)
k1 k2 q1 g2 2 k1 + ko
1 - ki + ke +q1+ qo . .
+§fa1a2cf 102¢C Ja1 (kl) az(k2)J 1(q1> 2<q2>

kikzaraz  ky + ko + 1 + o

1 1 k2 ) ql(kl +k2)( 1k1k2 kQQZ
—(ky + ko> 4+ ==L/ 2 2 4 - ==
( 2(17L 2)+2k1 T 02 m 2k ¢ 2)

1 - ki + ko +aq1 + @ . b
5]1‘&1@26](‘ 201C JCbl (kl)JGQ(kQ) 1((]1) 2<qQ)
kikeqiaz ki 4+ ko + 1 + @

1 1 k? ka(k1 + q1) Lkiq q1q2

—(k 242 2k, 2 422 - L, 1%
( 2(1+Q1)+2k1 2 Q2 " 2 e 2 2)
§fa1a26f e J (k) *2(k2) I (q1) " (g2)

kikoqiaz  ky 4+ ke + 1 + @

1 1k} ) @k +q)(  lhig Q2/€2>

—(k )9 2ky 4 - ==
( 2( 1+ ¢2) T3 " T 2 7 2 ‘ 5

G (ky ky ki k
fa1a2Cfblbzc kl + k2 + ¢ + ¢ q1q92 g ( 1 h2 1 2)
k1 k2 q1 g2 @1+ q 16

I (k1) J® (k) " (q1) ™ (go)

ki +ky+aq1+ g2
faraze fbibee T (k1) J% (k2) " (q1) " (q2)
kikagiae Kk + ko + a1+ @
2 K2k k3
4192 ) 12 2q1 —2
k‘l + kQ kl k‘z q1 k2

(4 O(e) (B.49)
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1(ky + ky)?
_ fraoae e bttt T () (k) ) )
k1 k2 q1 g2 2 ki + ko
1 - ki + ks +aq1 + @ ) )
NS TART A J (k1) “(k2) I (q1) (qe)
kikeqiae ki 4+ ke + 1 + ¢
1 1 k7 ) (ki + ko) ( Lhiks kag
—(ky+ k)2 + =27 2 2 4 - —
( 2( 1+ ko) +2 " Q1 Q2 o 2k Q1 5
1 k2 ) @ (k1 + q2) ( 1 kigo G2k
—(k 24 -1/ 2 2ky 4———\ = -
(k1 + g2) +2k1 Q1 2 o 2 & ¢ 7 )
Gk, k k k
falaQCfbleC kl + kz + ¢ + ¢ a1q2 g ( 1 h2 1 2)
k1 k2 q1 g2 @+ G2 16

Ja1<k31)<]a2(/{52) b1(q1) bz(q2)

1 - ki + ks +aq1 + @ . b
L o e I (1) () ¥ (0) )
kikaaiae ki 4+ ko + 1 + @

( 4Q1QQ) kiks 19 k3 (

q
kl + k2 k‘l k‘g ' q1 kQ

1
AR ey aRUEe) ke aw) o0 )

2 ]{31 k2 2 kl ’ 2

1
(k 2
2( 1+ q1)

In the last term of the 5th line it was necessary to rename ¢;  ¢2. We now take (ki +¢o) =
(ko + 1) in the 4th line. In the last line there are several terms that are either independent

of q or k. These vanish under k; ks and q;  ¢q, respectively.

. ) . 1 (ky + ky)?
= forazc fhibe kit ke +q g J(k) (k) I (q1) bQ(%)_M
k1 k2 q1 g2 2 Fy + ky
1 - ki + ks +q1 + g2 b b
+§f{l1&2€f 1bac JM (]{71) aQ(kQ)J 1((]1) Q(QQ)
kikoaiaz  ky 4+ ko + 1 + @
1 1 k2 k
—(kf+2k1k2+k§)+——1) 4 2q2 2k sulh_a)(
2 2k @
1 1 ky(ke +
5(1@% + 2k1q2 + ¢5) §M 1 Q2/€2)
k1
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Comparison of ¢r and g1 at O(e?)

GV ky ke Kk k
fCLlCLQCfbleC k_l + k2 + 0 + 0 192 g ( 1 h2 1 2)
ki k2 q1 g2 41+ g2 16

Jal(kl)t]w(l@) bl(Ql) bQ(QQ)
ki + ko +aq1 + @

1
g forese e T (k)T () " (@) " (a2)
kikearaz  ky + ko + 1 + o
4 k2k k2 k2 2 1
ag ) kike oo B (o K oKk lha
k1+k2 k’l k’g a1 ]{'2 kl k’l kg 2 ]{31
+O(e) (B.51)

In the last line we combine the 1st term with the 5th and the 2nd with the 4th.

ajazc c a a 1(k +l€ 2
— f 102 fb1b2 kl +k2 +q1 + ¢ J 1(]€1) 2(k2)Jbl(Q1) bz(q2>_< 1 2)
k1 k2 q1 g2 2 ki + ko
1 - ki+ke+aq1+qo , ,
+§f{ll(12cf 102¢C J(ll (kl) a (k2)J 1(q1> 2(q2>
kikearaz ki + ke + 1 + @
1 k2 1 k
<§k_1 41 2q 2k + q §7€1Q1q—1
1 1 k2 1k
(22 + k1o + 2erks + 2hkagy + K2+ ¢2) + -~ gy + L g )
2 2 ky 2 Iy
Ok ky kK
f(ll(lQCfbleC kl + ]{32 + m + % q1q92 g ( 1 h2 1 2)
k1 k2 g1 g2 Q1+ g0 16

Ja1<l{31)Ja2(]€2) b1(q1> b2(q2)

1 - ki + ko +q1 + @ b b
§fa1a26f 1b2c J (kl)JaQ(kQ) 1((]1) 2<C]2)
kikeaiaz  ky 4+ ke + 1 + @

k2 ) Q2 ( kikoqy ) q2 ( 1kiqa
ki + —= 1+2 +2 ==/ 1+2—— +——k:)
( 1 k‘Q n kl + k2 kl ]{32 kl + k2 2 ]{?1 ?

+0\e) (B.52)

The last term of the third line cancels with the last term of the fourth line (after & ¢),

the next-to-last term in the fourth line goes into the parenthesis of the third line, and the
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$2k% term in the fourth line becomes %Qkf%, SO
1

1 (ky+ke)? K}
— fa1a20fb1b20 kl + k?g + ¢ +q2 - ( 1 2) v
k1 k2 q1 g2 2 kfl + k2 kl

Ja1(k1) az(kQ)Jln(ql) bz(q2>

1 - kit ke + a1 +q . b
Z]calazcjt 1bac Jal(kl) az(k?.)t] 1((]1) 2(QQ>
kikearaz  ky + ko + 1 + o

(2k1qo + 2k1ko + 2koqo + k; + qg)

GNky ky kK
fa1a20fblbgc kl + kg + ¢ + . d1q92 g ( 1 h2 1 2)
k1 k2 q1 g2 a1+ q2 16

Jal(kl)J@(k‘g) b1(q1) bz(qQ)

1 - ki + ke +qi+ o b b
§fa1ach 102C Jal(kfl)JQQ(kQ) ! (ql) 2((]2)
kikaaiaz ki 4+ ke + 1 + @

k3 @ Q kg o 1 | 1k
ki + —2 ¢ 421 + = ky ) +O(e B.53
< i ]CQ ! kl + k2 ]{31 kg kl + k2 2 1{31 ? ( ) ( )

We interchange k¢ in the rst and the last term of line 3 and write k; (ko @1 @)
in the second term. In the last line we interchange ¢, g2 in the 1st, 2nd, and 4th term,

nding

ky + ko) k2
= fonaze fhrbec ki +k+a+q 5 bt k) R
k1 k2 q1 g2 2 ki + ko kq

Jal(kl) “2(kz)Jb1(Q1) b2(q2)

1 - ki + ke +q1+ qo ) )
Z]calach 102C Jal(kfl) 2 (k2>J ! (ql) 2(q2)
k1 k2 q1 g2 k?l + kQ + ¢ + @

(2q1k‘2 + 2( ]{72 q1 QQ)]{ZQ + 2]{72(]2 + ng)

Gk by ki K
fa1a26fb1b2c kl + k?g + ¢ + ¢ d192 g ( 1 h2 1 2)
k1 k2 q1 g2 Q1+ Q2 16

Ja1(k1)Ja2<k2) bl(ql) bZ(C]Q)
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1 - kv + k2 + ¢+ ¢ b b
§fa1ach 1b2c J (k1) (k2) " (q1) 7 (qe)
kikearaz  ky + ko + 1 + o

1 kv +ky K31 e g Kkl@a @ kB ke «
“k + 2 (g +
(2 o @)= ky 2 (o + @) — Ky ko for + ko
1ki(k + &
Lkt k) a6 k2> +O(e) (B.54)

4 kq k1 + ko

1 k + k 2 kQ
= _ foreac fhibec ki+ko+ @+ g kit k) b
2 k1 k2 q1 g2 ky + ko ky
Jal(kl) a2(k2>Jbl(Q1) b2(Q2)
Ok ky ki Kk
fa1a26fb1b2c kl + k?g +q1 +q2 d192 g ( 1 h2 1 2)
k1 k2 q1 g2 Q1+ Q2 16

Jal(kl)Ja2<k2) bl(ql) bz(qQ)

, . kit ko + a1+ g A
St T4 (k1) %2 (ks) " (q1) **(go)
Eikaqiae kK + ko + a1+ Q@

1 k1 ko k% 2 1

(& Q2)

2k
5 Ky + @1 + ¢o + 1 2((]1 Q2)Q2 q1

ki+ky 2 ky kit ko ki ko ki + ko

kiko K E? k 1 ki(k k
1k2 K1 @2 1 iR @2 ¢ 1 (k1 4+ ko) i @ k:2> —|—(’)(e) (B.55)
4ky kit ko A4k ki+ky 4 k1 k1 + ko

The rst term of the 4th line vanishes under k; ks and the last term under ¢; qz. In
the last line we interchange k; ko in the two last terms (note the change from ¢;  ¢o to

¢2 @1 in the very last term).

1 (ky + ko)? ki
— _falaQCfbleC k + k + q + q 1
2 ki ka2 q1 g2 ' ’ : : ki + ko ky
T (k1) 2 (ka) " (1) *(go)
O ky ky Kk K
falagc]tbleC kl + kg + ¢ + % q192 g ( 1 h2 1 2)
k1 k2 q1 q2 a1+ g2 16

Ja1(k1)Ja2(k2) bl(Ch) b2(q2)

1 - ki+ko+q1+ @ b b
§fa1a20f 1ba2c J4 (k‘l)JGQ(k’Q) I(Ch) 2((]2)
k1 k2 q1 g2 k‘l + ]{?2 + ¢ + @
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k
2 ky K1+ ko Aky ki+ky  4dky kit ko

k2 kiko K k2 k
(2(12 q1 o+ @+ @ 1k2 kK1 G2 1 9 k1 @2 1

Lho(ki +k2) @2 @ >
+= k B.56
e o, (B.56)
1 (ky + k2)? K
— _fa1a26fb1b2c kl + kQ + ¢ + G N A .
2 k1 k2 q1 g2 kl + k2 kl
JU (k) (k)" (q1) ()
Gk k k k
falachblbzc kl + k2 + ¢ + ¢ 192 g ( 1 h2 1 2)
k1 k2 q1 g2 @+ 16
JU (k1) %2 (k2) " (q1) " (q2)
lfa1a20fb1bzc ki+ky+q +q k_%uJal(k )Jaz(k ) 171((] ) b2(q )
4 A 1 2 1 2 k2 k‘l + kQ 1 2 1 2
+0(e) (B.57)
So we can simplify Fg{g o( 2) to
24
Fir o )
= lfalCLQCfbleC ki 4+ ks +q1 + ¢o M k_%
2 k1 k2 q1 g2 ki + ko ky
JU (k) (k)" (q1) *(g2)
falachb1b2c ki + ko +q1 + g J“l(k’l)JaQ(kg) bl(q1> bz(q2>
k1 k2 q1 g2
qige ¢V (ki ke ki k) @ k3
142 1 h2 1 2 2 2 (B58)
G+ q 16 G+ q22 ky

B.2.3 Order °:

2
(1)
) F—GAL( -term
1 1
! ! FéL) (k1 kol éL) @1 o]
2 pki ke q1q z( kl -+ q; ) A?(p) Ag( p) o( 3)
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Comparison of ¢r and g1 at O(e?)

ki+ka+p (n+q¢ Dp)

4
— Tfa1a20fb1bgc Jal(k,l) ag(k2> b1(q1) b2<q2)
pki k2 q1qe ,( ki + %’)
2 2
P ki pug 1 ki) p ( pquh)
— — 2 -p +— —(ky + ko) + k 2——== B.59
<pk1<>p TR GRS RN BCED
- ki +ke+q1 4+ q ) )
— 4fa1a20f 102¢ Jal (kl) a2(k2) 1<q1) 2(q2)
p k1 k2 q1 q2 ,J( ki + Qi)
ky + ky)? k? 1
(k1 +k)® K (0 +@)ae N kit ke K (1 + @2)q12 (B.60)
ki + ko ky @+ G2 4 G+ @2
brb ilki + a:) b b
= 4 faraxe fbee J (k) 2 (k2) "(q1) 7 (q2)
p k1 k2 q1 g2 z( kz + Qi)
1 k¥ (ki + ko)qige 1 (1 + C]z)ChQQ)
(ki + k SR Y ky ~— = B.61
< 4( 1 2)61192 ey o+ o 1 1 2 1 @+ ( )
bib i(ki +4:) b b
= 4 foraae foroac J (k1) 2 (k2) " (q1) 7 (q2)
p k1 k2 q1q2 z( kz + Qi)
1 ke 1, (@1 @+ k)ag
~(qu + +L 222 4ok B.62
(Jm )0 ki, 1 +q 4 ' @+ G ) ( )

) A %( -term

. + F,
e bt D) () A(a) S k)
pkiksqiqe l( ki + g )aq Ac(p)

(n+aq p) (ki + ko +p)
p ki k2 q1 g2 (kl + ke + 1 + CIQ)Ch
i " (@) +iq® (@) +O(?)

www@w

2 2
. D k
+Cu+z@ = 2
P

- Z‘fb1b20fa1agc

ki

(1 i) ip +%) §<k1+k2)+k2( ) I (k) (k)
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k1 ko k1 ko

) “(k) “Q(kz)) +O(e) (B.63)

(1 1 2)2

+<( 11 2i)2

:( Z'>3fb1b20fa1agc (QI+q2 p) (k1+k2+p)
p ki k2 q1 g2 (/ﬁ + ko + q1 + Q2)Q1
e (@) @ ? "q)

<<2Ab2(Q2) PR gy Ly i) AR PRI

D ky 4 ky

+ <2Ab2<q2>21% 2Ab2<q2>2pk;k2) (k) ()
+O(J*)+ O )+ O(J* 2) + O(e) (B.64)
z(k’b + i)

— ( Z'>3fb1b20fa1azc
p k1 k2 q1 q2 Z(kz + Qi)
@ (@) @’ "(q)

1 . (k1 + k2)? K}
— [ (OT) + 2igs 22(q —_— . —
. (( )+ 2 () EEL D
] 1
2142 bQ(%)Z_L ky + ko kyo J (k1) “*(k2)
ki ko)kik
F(Cid(a) + 2igy (g2 P ik
ki + ko
) ki ko)kike) “
2iqs b2(92)2( 1Lkl 2) ' (k1) 2(k2))
ki + ko
+O(JY + O )+ O(J* ) + O(e) (B.65)
This gives us
- rbibac (1 +q p) b b FC(T‘IL)
if” (@ A™(q1)) A™(qa) (k1 Kol
p k1 ke q1q2 Z( kz + ¢ ) q1 Ac(p) o( 3)
bibac fajasc Z(kl—’_%) a a b b
= 2 friec foraz J (k1) “(k2) "(q1) 7 (q2)
p ki k2 q1 q2 l(kz + Qi)
(k1 + ko)? K2 1
S — ki +k k
<Q1Q2 ot o o Q1Q24 1+ Ko 1
ks (1 + @2) 0102 " 2&;{:2 (@1 + )14 QEk‘g (g + qQ)Q1Q2> + O(e) (B.66)
@1+ ¢ kq 1+ g2 k1 g1+ q2
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Comparison of ¢r and g1 at O(e?)

(A A)(A A)-term

lfamzcjclnbzc ( z( + q )) (Aal (kl) Aa2(/{}2))(14b1 (QI) Ab2 (q2))
8 k1 k2 q1 g2 z( ki + q ) o( 3)
= 2fa1a20fb1b26 ( z(k'l + Qz))

kaqrgo** (k1) “*(k2) bl(‘h) b2(Q2> + O(e) (B.67)
k1 k2 q1 g2 l( ki + %)

All three together

F(2 4) _ 2 blbgc ailazc /L(kl + qZ) Jal k a2 k, b1 b2
GL =2f"=0f (k1) “*(k2) "(q1) ™(qe)
o(3) p ki k2 q1 q2 l( ki + qi )
kP ke 1, (@1 @+ k)ae
+ +2L———= 4+ -k
<(Q1 )0 kL @ +q 2 ! @+ g2
k1 + ko)? k2 1
+ q1 2 M ! Q1 @2~ k1 + ko ky

Fit ks ko 4
k + k +
ks (1 + g2)q192 4 2_1]{2 (@1 + @) 01 2—1k2 (1 + @)
@t Ky @+ Q2 k1 @t g2

+k:2q1qQ> + 0(6) (B68)

Again, we now manipulate this term, in order to get rid of the m prefactor:

= 2 fhbac farazce J (k1) “(k2) (@) "(q) (B.69)
p ki1 k2 q1q2 z(kl +Qi)

k1q1q2+2k_% by 1, kg
ki i +q 2 g+t

ky+ ko) K2 ky+ ko) (ky + K ki k

+ @1 g2 R Vo a1 q2 by ko)(hy T Fa) ik
ki + ko k1 ki + ko k1
1 k k

) s +—k:1( (1 + @2)q14o +2_1k2(Q1+Q2)Q1612 2_1k2(Q1+612)CJ1(J2> O(e)

2 @1+ G2 k1 @1+ g2 ky @+ G2

bibac pajasc Z(kl_‘_ql)

— 2f 1b2 f 102

Jal(k’l) a2(k52) bl(Ch) bQ(QQ)
p k1 k2 q1 g2 z(kl ‘|‘Qi)
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@k + k) q1) q @k + k) @)
1
kl + kQ k'l + k2

( kiqiq2 + ¢
( (1 +@)ng

1
+k’1£(k1(b k1g2) ) ky + =k

k1 2 @+ ¢
k1q1q2
+2— /{31/{32 -+ klk'l k‘g(k‘l + kz) + kz(kl + kz) + 0(6) (B?O)
ki g1+ qo
bibac rajaszc Z(kl+%) a a b b
:2f12f12 Jl(kl) 2(l€2> 1((]1) 2<q2)

p k1 k2 q1q2 z(kl +Qi)

( kg +(q + ¢ )ﬂ(lﬁ—i-kz)
1+ Ko

1 +
‘H‘Cli(kIQQ k1g2) ) ks +§ ka ( —(Ch 02)014:

k‘l q1 +q2
k
o BB g4 ko, ) +O(e) (B.71)
ki g1+ q
bibac pajasc Z(kl_'_(h) a a b b
= 2 fiec fane J (k1) “(k2) (1) " (g2)

p k1 k2 q1 g2 z(kl +Qi)

Figie+ (a1 + g )ﬂ(/ﬁ + ko) + k’lﬂ(/ﬁCIz k1g2)
ki + ko ky

) 1 ( (k1 +ko)quge 1 k1 quge >
+/ ko +=k + = ki +k + 0O B.72
? 2 a1+ q2 2 1+ qo ! ? (€) ( )

bibac paiazc Z(kl_'_QI) a a b b
= 2fneefue J (k1) “(k2) " (q1) *(gq2)
pkikaq1qe z( ki + qi)

( Fiqige+ (@ + @2 + ko + k) jSh (k1 + k2) +k/‘1%(k1(b /ﬁCZz))
1 2 1
+0(e) (B.73)
— fhibee puraze (it @) —20 (ke + ko) T (k) (k) (1) *(a2)
p ki ke a1 g2 i ki + ko
bib i(ki +4) b b
42 frrvae fnaae J (k1) 2 (k2) " (q1) ™ (q2)
p ki k2 q1 g2 Z(kz +Qi)
( k1q1g2 kl%((% +ka)ge (g + k2)‘]2)> + O(e) (B.74)
1
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Comparison of ¢r and g1 at O(e?)

_ 2fb1b20fa1a20 (kz 4 Qz) 4241 (kl + k2>Ja1 (kl) a2(k2) by (Q1) ba (QQ)
p ki k2 q1 g2 i 1+ K2
bib i(hi + ;) b b
2 fo102e farae J (k1) “(k2) "(q1) ™(q2)
pki ke q1q2 Z( ki + Qi)
kiqige 1+ e + R /ﬁ&(kQQQ kQQQ)) + O(e) (B.75)
k1 k1 k1

We add and subtract the missing term.

ki 4+ ko k1
= beleCfamc (ki+aq¢) G1gg ———— —
pki ks q1 g2 i ki + ko k1
Jal(k'l) aZ(ké) bl(fh) 62(92)
brb ilhi + ;) b b
42 frrvae faaaze J (k1) 2 (k2) " (q1) 7 (q2)
p k1 k2 q1 g2 z<kl + Qi)
k
kigiga— kli(lﬁfh szz)) + O(e) (B.76)
k1 k1
ky + ko ky
= 2]‘:()11)26famC (ki+q¢) @@ —— —
pki k2 q1 g2 i ki + ko k1
Jal(]fl) az(/fz) bl(‘h) bZ(QQ)
bibac paiasc l(kl—i_%) a a b b
42 frr0e fne J (k) 2 (k2) "(q1) 7 (q2)
p k1 ke q1q2 z(kz + Ch')
k
(k—l(qwz ka gkt @ szh)) + O(e) (B.77)
1

Using the Jacobi-Identity fo1a2¢fbibze —  farbic fbraze  gaibse fazbic iy the second term then
renaming by as, q1 k2 in the (new) second term; and by as, (o k2 in the (new)

third term, we obtain

ki+k k
= beleCfamc (k’z + Qi) q192 -
pki ks q1 g2 i ki + ko k1

Jal(k‘l) a2(k‘2) b1<q1) b2(q2)
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z(kl + i)
p k1 k2 q1q2 z(kz + Qi>

k
(k_l(qwz ky  kaqie 1 k2t @ szz)) + O(e) (B.78)
1

+2fb1b20fa1agc

J (k) 2 (ks) (@) "(go)

The last term vanishes, so we nd

ky + ko k1
F3Y o sy = 2fhbac paraze (ki + ) @12 ————
ot < p k1 k2 q1 g2 i ki + ko k1

T (k1) 2 (kz) " (@) " (q2) + O(e)

B.2.4 Order *:

) #< 2—term

1 L £
2 o [k k] — (1 ]
2 pkkae J(k+ ) At (p) Ai( p)

)

o( %)
bib (ki + @) a a b b
=  faraac fiubac kikaqigz * (k1) “(k2) " (q1) " (g2) + O(e)B.80)
p k1 k2 q1 g2 z(kl + Qi)

)Aﬁ

" ( -term

(1)

. (1 +a »p) b b For
ifireee (1 A" (q1)) A™(qe)

p ki k2 q1 q2 l( ki + q ) q1 Ac(p)

_ ( Z')?)fblbgc]calazc (ql + Q2 p) (kl + k2 +p)
p k1 k2 q1q2 (k‘1+l€2+Q1+Q2)

kik kik
o @) <2A”2(q2>2]u 24P (gp)2P 1k

(k1 Ko

) “ (k1) *(k2) +O(e) (B.81)
z(kl + i)
mkaae (ki + a)

— ( Z’)?)fbleCfalaQC
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Comparison of ¢r and g1 at O(e?)

q bl(q1> <((9(J)+2iq2 bz(q2))2( ki ko)kiko
ky + ko

(b kz>k1k2) “ (k1) “(k2)

2iqo b2 <Q2)2

ki + ko
+O(JH+  +0(J 3+ 0(e) (B.82)
Thus
(1 +a p) F)
Z‘fblb2C (q Abl(Ql)) AbQ(Q) Gl [/ﬁ k2]
p ki k2 q1q2 l( kz + ¢ ) q1 Ac(p) o(4)
z(kl + Qi) +
= g fhabae pracac ka2 (ky) 2(ks) " (1) *(q2)
k1 k2 q1 g2 z< kz + qi) k1+k2
+0(e)
(A A)(A A)-term
1 . kz + { a a
& e it LB @) ) () (A% (@) 4%(@)
k1 k2 q1 g2 Z(kz + Qi)
j kl + i a a
— gfurene phave Ui 0y o o (k) (k) " (@) ™ (a2) + O(e) (B.83)

k1 k2 q1 g2 z( ki + %’)

All three together

(ki + )
(24) bibac pajasc v Q1+QQ
F O 4 :f12f12 k1k2q1q2 2 4— 2

“r = k1 k2 q1 g2 z( kz + Qi) ki + ko

k) (k) " (@) ®(q2) + O(e?) (B.84)
kik
= gfueacphibe (ki q) 2B a1y o2 (ky) Pi(g,) % (g) + O(e] B.85)
k1 k2 q1 g2 i kl + kQ
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B.2.5 All orders

Adding up Egs. (B.28), (B.35), (B.58), (B.79) and (B.85) we nd

2

1
Fo = gl (ki +a0) 0 i o)
512 k1 k2 q1 g2 i
Jal(k1>=]a2(/€2)t]b1 (Q1)Jb2(CI2)
2
1
o foraze fhrbac (ki + ) 9(3)(151 ke ki ko)
32 k1 k2 q1 g2 i

J (k1) J* (k) " (q1) (o)

2

1 k + k 2 k,2
+_fa1a20fb1bzc (kz +Qi) ( 1 2) o
2 ki k2 q1 g2 i ki + ko k1
T4 (ky) “2(k2)J" (1) *(go)
2
fouaze forvec (ki +q)  J% (k1) J®(k2) " (1) *(q2)
k1 k2 q1 g2 i
a2 9Pk ky ki ko) @ K2
Q1+ q 16 G+ 922k,
ki +k k
H2 e fatee (hi+a) qa ——o2 2L
pki k2 q1 g2 i ki + ko k1
JU (k1) “2(kg) "(q1) "(q2)
kik
2fa1a20fb1bzc (kz + Qz) LQIQQ al (kl) as (k’g) b1 ((h) b (QQ)
ki k2 q1 g2 i k1 + ko
+0(e) (B.86)

B.3 FV[J |at O

We now compute FéOL)[J ] at O(e?), split it by powers in  and bring it into a form similar
to Eq. (B.86):

Fi) = (k A%k)(k A% k) (B.87)

1
E k

N | —
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Comparison of ¢r and g1 at O(e?)

— 9 k%) %kja(k) %ef“bc Bk q)J(g)
c 2
ke Mk g p)Ie) ()
- q P
+%f””c (kg kq) *(q) “(k q)
Z'€2 bed pdea b c e (
< q p(kq kq) °(k q p) “(9) “(p)
S T R N
i€2 bed pdea b c e
k= 10 (k& q p)Jaq) “(p)
+%ef“”c (kg kq) "(q) °( k q)
i€2 bed pdea b c e (
< q p(kq kq) °( kg p) (9) “(p)
+0(e?) (B.88)

At O(e?) there are no terms with no or with exactly one .

B.3.1 Order ?2

1 k2
FS) o2 2y = LA A U PACY R QR ORI (B.89)
kqp k
1 bed pdea k2 a b a b c e
FA — JUE)°C kK q p)+J( K)°(k q p) J() “(p)
kqp k
1 bb (k1 + ko) K2
_ _ faiazc £0102e k + k + + e
2f f k1 k2 q1 g2 ' 2T T k1 + ko ky
J (k1) (ko) " (q1) *(q2) (B.90)
B.3.2 Order 3
1 /12 7
FO o= 2 (iemm)  Lpeipe g k) Mk g p) (@) )
ko2 6 qa p
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L ke )@ L (ke ke M) (ko)
L ke k) 0 G @) L Kk p)

L (kg k) ' 0w @) ) Sk w0 B

q p 2

_ 1l (?WWW%MM k) () Y kg p) “(a) “(p)

kqp

ﬁW%W%%W9kmb% 07 “®) (k)

-WWWW%@qkmk%w%kq>%k P)J*(p)

+%f“dfde“%(kq kok *(k q p) “(q) “(p)J* k)) (B.92)
= e e TR ) @) @)
lilﬁ(/ﬁ(h kiq2) + ! (1 + @2)(eq Q2CI1>> (B.93)
3k, a+ ¢ '

B.3.3 Order *

1 1
Fél o n =3/ (g ka)lkp kp) '@ (60 0)Ckop) (B9
kpaq
1
= §fabcfade (ki+a) (k1) “(k2) “(q1) “(q2)
ki k2 q1 g2 i
1
(kgkl k2k1)<<k2 + kl)ql (k’z —+ lﬁ)(]l) <B95)
ki + ko
. ajazc rbibac k2k1q2q1 ai a2 b1 b2
= 2f f (ki +qi) ———— “(k1) “(k2) (1) (q2)
k1 k2 g1 q2 i ki + ko
(B.96)

B.3.4 All orders

Summing the results of the previous subsections, we nd
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Comparison of ¢r and g1 at O(e?)

2

1 (/{31 + ]{?2)2 k?
FO oy = = faraze fhibae ki +q) 2 (B.97)
GL 0O(e?) 2 b b2 a1 @ i ( ) by + ko ey
T4 (k1) (ko) J" (1) **(go)
+fa1a20fb1bgc (kz+%) Ja1(k1) az(kZ) b1<q1) b2<q2)
ky ko 9, 9, i
V1L btk hue) + —— (@ + ) )
3 o 1\F1G2 192 o+ o g1 T q2){q2q1 921
ajasc c k k q q ai az 1 2
2 free fhit (ki) ———— “1(k1) “(ka) "(@1) "(a)

k1 k2 q1 g2 i ki + ko

B.4 FgL)[J ] at O(e)

Finally, we compute FélL)[J | at O(e), split it by powers in  and bring it in a form which

makes it possible to see the cancellation with the corresponding terms of Fé2L4) + FgE O(e2)-

R
_ g Yo (B A R) (A (k) A(k))
k1 k2 k3 i=1 2( kl + ]{32 + 1{33)
(k1 A%(k1)) (ks AP(ka)) (ks AC(’fs))) (B.98)
ki ks (ky + ko + k3)
3
= oif™ b (/ﬁAa(kl) k1A ()
ki k2 ks i=1 i=1 'V
AP(ky) A(ks)  AP(ky) A%(ks)
4
— i A%(ky) + k1 A%(Ky)  ksA%(ka) ks A%(ks) ks A*(ks)  ksA%(ks) ) (B.99)
1 3
s 1 ) i ie
= 2if ki —— <§k’1J“(lﬁ) Fhifre ke 9) " ()
k1 ko k3 i=1 i=1 k’L q

+%f“m (k1g kig) “(q) “(k Q)(

q
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)k:gjb(k;Q) °(k3)  2koks (ko) ©(ks)

"‘%Jb(kQ)dee q d(Q) “(ks  q) ~‘3k?:«:fbd6 d(k2 q)J(q) “(ks)

Fe M) (kg kea) “a) (ks o)

q

4 , 1
k:l kg ) 2’Lk1k’1 a(l{fl) 5]{31(](1(]{?1)
’i_@ ade k d k e E ade k k d e(k (
+5f Lk @)+ S (gt kig) Ya) (R g)
q q

: i
)z(kgkz kska) ®(kq) + 5/s?,Jb(/cQ)

Lk e @)+ (g ki) () PGk o)

q q
1 1 e
) §k3jc(k3) ngde ks “(ks  q)J%(q) +5f60102 (ksq  ksq) “(q) “(ks Q)()
q q
(B.100)
At O(e), there are no terms without -dependence.
B.4.1 Order
We need this term to cancel Eq. (B.35):
ajasc £bi1bac
FeY oy = 5 (ki+a) g9k k2 ki ko)
32 k1 k2 q1 q2 i
T (k1) T2 (k2) J™ (1) " (q2) (B.101)

We extract the O(e ) portion from Eq. (B.100) and bring it in the above form:

3

k2
Fi o ) = ki T () (k) [ =2 (ko)
k1 ko k3 i=1 k3
kik2 k2 4+ kiks + k3 K k . .
1h3 1 133 3 M M3 fbd d(k2 q)J (q)>
kl k2 k3 k2 i=1 kz kl k3 q
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Comparison of ¢r and g1 at O(e?)

= forazc fhibac (k1 + ko + qu + q2) J* (k1) T (ko) "2(q2) I (q1)
k1 k2 q1 g2
fuk Bebbel ko B}
ki g1+ q ko G+ (kb +a+e + k) Kk ko
where in the second equality we renamed: ¢ 1, ks g1+ qo; ks ko.
__ raiazc fbibac a1 a2 b1 bo 1
=f f (ki +qi) J* (k1) J* (ko) I (1) ™ (q2)
k1 k2 q1 g2 k1+k2+kl+k2
2 2 2 3 2 2 2 2 3
ki + ko ko ki ki + ko ki ko ki + ko kg ki + ko ko
= e phiae (it ) % (k)™ (k) (@) ™ (a2)
k1 k2 q1 g2
1 klkg ki)’ + k%kz . k%kg + 2k1k% + kg’) (B.104)
k?1—|-k’2+k‘1+k72 k‘l ]{52 k1+l€2 ]{?1 ]{?1+]€2 k’g
= foaec fhibee (ki 4+ @) T (k1) J% (k) T (1) " (g2)
k1 k2 q1 g2
1 kK2 k EE? ko( K ko)?
ki + ko + k1 + ks \ k1 ko ki + ko ky ki + ko ko
Gk, k k k
— falaQCfbleC (kz +Qz) g ( 1 232 1 2) Jal (kl)Jaz(k2>Jb1 (Ch) b2(q2)
k1 k2 q1 g2
= F3Y o) (B.106)

B.4.2 Order 2

We want this term to cancel Egs. (B.58) and (B.90).

F&Y o( 2y + FL) o 2)

1 ajasc C k: + k 2 k;2 a a
= L oane pu it gy B R gy ) ) ()
2 k1 k2 q1 g2 kl + kQ kl
fa1a20fb1bzc (kz + Qi) Jo (kll)Jaz(k’Q) b1 (Ch) bo (QQ)
k1 k2 q1 g2
age 9O (k1 ko ki ko) @ k2
41+ q 16 Q1+ 4G22 ks
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1 ajasc 102€e
—|—§€2f ! fb b (kz -+ q@')

k1 k2 q1 g2 ky + ko ky
T (ky) (ko) J" (q1) *(q2) (B.107)
ki +ko)? k2
= o e o) R B e ) ) ) )
k1 k2 q1 g2 ky + ko ky
foaaze phabee (ki +qi) T (k)T (k) " (@) *(q2)
k1 k2 q1 g2
OV ky ky Kk k k2
©ge g7 (kL ke B k) L 2 (B.108)
q1 + g2 16 G+ 422 ky
We extract the O(e ?) portion from Eq. (B.100) and bring it in the above form:
FS) o 2
Sk
1 abc i=1" a b cde d e
=f —— kg (k1) ] (k2) [ “(a) “(ks @)
2 k1 k2 ks q i=1 kz
3
abc =1 kl a bde d e c
f ————kiksJJ (k1) [ (k2 q)J(q) “(k3)
k1 k2 k3 q i=1 ki
’ 1
fobe poaea ki+q (k1 + q)ks (k1) J%(q) )" (ka) (ks)
ki ka ks q i—1 ki+q + ky + k3
?:1 ki
abe
+8f 3
ki kaksq ;- ki ki ks
2 k2
(é_l ky 2 a(kl)Tg Jb(l@)f“le d(k?, Q) +Jc(k3)fbde d(kz CI) Je(Q)
1 k
§/€1Ja(k?1)(k?3k2 k3k‘2) b(k2)73f6de d(ks Q)J€<Q)
1 k
§k31Ja(k’1)ZS(k3Q ksq) J(k2) 2 (q) (ks q) + J(ks) [ "(q) (ks q)
1 k
ki f U Q)T @)(Raky  Rska) *(he) T I (ks)
1 k2
I g+ ) ) e ) I(k) (B.109)
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Comparison of ¢r and g1 at O(e?)

In the last ve lines we shift k3 k3 + ¢, except for the two terms that are (ks ¢), there
ks ks + q, and the very last line, there k&1 k1 + q.

2

kv k
— f(llaQCfbleC (kz+%) 172 Jal(k1> ag(kQ)Jln(ql) bz(qQ)
kikaksqg ki + ke + 1+ @
2
ki + k
e pt (i) R o) (i) ) (g
ki k2 q1 g2 i—1 ki+ke + ¢ + @

k1+k2+k3+q

+fabc
kikeksg (ki + ko + ks+q) ki ks+q

( b ? (k) (ks + 02T (k) P (k) J(0)

2k (k1) (ks + @)ks (ks + q)ka) (ko) (ks + @) f% “(k3)J(q)
k@ (ky) (ks + @) (ksq  ksq) (ko) f1 “(q) *(ks)

+2(ks + q) [ Uks) T (q) (kaks  Kaks) b(/f2)/f1<]c(/fl)>

k1+k2+q+k3

fabc kQak k2jck fbdedk Jeq
kikoksq (ki + ko 4+q + ks ) ky ks 17 (k)R (ks) (k2)J(q)

Fh o (e kalksg k) T (ks 2% P (g) (k)

, ki +q+ ko + k3 d( )2
+ [ fU(k1q + ki1g + 2qq) ks
kikaksg (k1 +q + ko + k3 ) ki +q ks

Uq) (k1) (ka) T (ks) (B.110)

Interchanging k; ¢ and d e in the last line eliminates the kiq + k1q part:

2
— falaQCfblbzc (kz + qz) k1k2 + (ql + Q2)k2

k1 k2 q1 g2 i=1 @ +q + ki + R
2
z’:l(/{?z‘ + Qi) ) 1]€ . kq (q1 + QQ>((]2(]1 Qqu)
- 141
mkeae ki + ke + @+q@ 2 ki ¢1+q

kyko(k k 1 k2q 2
I 1 2( 241 QQI) +§ 2 q1 (Jal(kl)Ja2<k2) bl(ql) b2(QZ)
k1 ko k2 ¢+ g

Jm(kl) az(kQ)Jbl(ql) bz<q2)

+fa1a20fb1bgc
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2
i1 (ki + @) ko 2(q1 + ¢2)?

+fa1a20fb1b2€ Jal(kl) a2(k2)Jb1(Q1) b2(q2)
kikaksq K1 + ko + @1+ q2 ka g1+ @2
2k1((q1 + @)k (1 + @2)k2) (@1 + o) n 2(q1 + @2)(krka  kiko)ks . ko 21{7%)
ki g1+ g ki g1+ q2 ko ki
(B.111)
e i S ) ) e
— 1a2¢ 102¢C al a2 9 1 ql 2 q2
kikoqige k1 + ko + ki + ko '
) 1k . (1 + @) . 2q5q1 1Ry + ko)? n (1 + q2) kika(koqn  Koqn)
—K1q1
2 (ot @) (a+a@) k btk (@+a) ki ks
+2k§Q1( @ ki k) (
ko ki -+ ko
+J (k1) (ko) J" (q1) P (qo)
Aki(kiks  kiko)(ky + K k? ky + ky)?
)( k1 + g+ go)ko 1(kike  Kiko) (ki + ko) 4ok, L (k1 + ko)* () (B.112)
ki ki + ko k1 ki + ko
2
— fa1a20fb1b26 Jal(kl)Jaz(kQ) bl(q]_) bQ(q2)
kikoqige k1 + ko + ki + ko
)1 kgt 2021 k(K1 + kp)” n ¢ kiky @’ kkd

1
2 (1 +q) (¢ +q) ki ki + ko (1 +q2) 4 k1 41 + ¢2) ki ko
©a kil (@te) 2kea | (6t e) 2kalate)(
(1 +q2) ky ke (@ +@) ky ki+ks (@ +0) ko ki + ko
Aky(kyky  ky(ko + ko ko)) (R + kQ) K (ki k) (
ki Ky + ko ki ki + ks

T k) 2 (ke) I (01) "(a2) (B.113)

+> k‘f (k1 + k32)2

The terms % that would have appeared in the second line vanish under symmetry.

2
i1 (ki + q:)
— fa1agcfb1b2c ! (Jal(kl)JGQ(kQ) bl(ql) b2(q2)

kikeqr g2 K1+ ko + ki + ko
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Comparison of ¢r and g1 at O(e?)

) 2q2q1 Ka(ki + ko)? L _20n k3( ki ko) L% kiks
@+ @) ko kith (@+®R) khkhthk  (@T@) &k
1 kgt @& kik Qg kaiks n 1 kg ki + ks (
2(+q) (+aq) 4k (1 + @) Ky ky (1 + ¢q2) 2 ko
ki (k1 + k2)? N k3 k1 + ko ok ko (it ke)? (
ki + ko Ky ky k1 + ko

T (k) (k) T (1) ™ (q2)) (B.114)

+) k% (k1 + k2)2

— fa1a20fb1b2(: ?:l(ki + ql) Jlll (kl)Jag(kQ) b1 (CI1) bg(q2)
kikoqrge k1 + ko + ki + ko
) 2q2q1 Ka(ki + ko)? L _20n k3( ki ko) L _20n kiks
(@1 +a2) ky ky+ky  (@+@) ky ky+ky  (@+@) kK
©a Kk 1 kg n G ki ke
(B +@) k ke 2@+@) (+a) 4k

2 2
G @ ki k) kiky bk k3 (
(QI + 92) k?l k‘g (QI + CI2) 2 ]{52
k2 by +k k2 ki + ko)?
ﬁk%_Li—i+kri-(m+k2+m+@ﬁi—il(
kl kl kl + k2
T (k1) 2 (ka) J" (q1) "2(q2)> (B.115)
— f“lachblbzc 2 (k + qz) 2l 9(3)(k1 ko k2)
k1 k2 q1 g2 i=1 ' ' Q1+ q 16
J (k)T (k) bl(fh) bz(Q2>
ajazc £bibac 12:1(]@4—%) a a b b
- fraze forie J (k1) J* (k2) " (q1) ™(g2)
k1 k2 q1 g2 kl + k2 + kl + k2
) ©q kik . 1 kg n G ki
a1 7 492) ky ko q1 T g2 q1 T g2 1
(@1 +@) ky ky 2@+a@) (a+ae)4k
Qg kakd L@ ko K3 Q1 kiky Ky byt kg 22 k3 (
(1 +q2) ky Ky (1 + @) 4k, (1 +a@) 4k (1 +q2) 2 ky
2
alasc C k _'_ k 2 kz a a
orese it it q) R B e ) )0 (q) )
ki k2 q1 g2 i—1 ki + ko k1

(B.116)
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The last line is already correct to cancel the rst line of Eq. (B.108), while the rst line
cancels the rst term of the last line of Eq. (B.108).

’ O (ky ks k k
— fa1achb1bzc (kl + qz) 2% 9 ( 1 "2 1 2) (B117)
kikagiga g @t 16
T4 (k1) % (ka) " (q1) **(go)
bib i2zl (ki + i) b b
o frrae fortee S (k) J* (k) " (q1) " (g2)
k1 k2 q1 g2 kl + k2 + kl + k2

1 k¢? 2 ki k kiks k 1 k2
)_ 1497 X q1 12+ Q1 1R2 K2 >—k1—|—k’1+k2(L 2(

2(1+q) (1 +aq2) 4 k1 (1 +q2) 4 k1 2 (1 +q2) 2 ko

2
ajazc c ki + K 2 k2 a a
feoe foree (bt Rl R ey ) m(g) B(e)
ki k2 q1 g2 i—1 ki + ko k1
2
— fa1a20fb1b2c (kz + qZ) q2q1 9(3)(k1 k2 kl k2)
k1 k2 q1 g2 i=1 01+ g2 16

Jal(kl)Ja2<k2) bl(ql) bZ(C]Q)

ajagc rbibac ?zl(kz—i_qz) a a b b
4 faraze fove J (k1) J* (ko) " (q1) " (g2)
kikoqige k1 + ko + ki + ko

1 kig? k2 k ki k 1 k2
1 Rigq q1 ) 4192 1 2 ) Skt Kyt ke ( 42 2 (
2+ q) (+@)dk (@+@)dk 2 (@1 +a2) 2 ky

2 (b + ko)® K2

fa1a26fb1b2c (kz + qz)
ki k2 q1 qo i—1 ki + ko k1

Jal(kl) a2(k2>Jb1(q1) b2(q2)

(B.118)

q1q2 :
The (o term vanishes under symmetry.

— fa1a2cfblb2c 2 (k + q-) el 9(3)<k1 ko k2>

ki k2 q1 g2 i=1 41+ @2 16
T (k1) I (k2) " (a1) *(go)

2
§ foree e : <Ja1<k1>ﬂ2<k2> (@) ™ (a2)

k1 k2 q1 g2 kl + k2 + k1+k2
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Comparison of ¢r and g1 at O(e?)

) 1 kg 42 k3 (
L PRI PHEY . C
2 (¢ + q2) ' ! ? (1 + @) 2 ky
2
falaQCfblbzc (k:z + ql) (kl + k2)2 k_%
ki k2 q1 g2 i=1 ki + ko 3}
T (ky) 22 (k) J* (q1) *(g2) (B.119)
? (k) ky ki k
_ fa1a20fb1bzc (kz +Qz) q2q91 g ( 1 216 1 2)
k1 k2 q1 g2 i=1 Q1+ q

T (k1) J% (k) " (q1) " (q2)
le(ki + ;)
k1 k2 q1 g2 kl + k2 + kl"’kQ

+fa1a20fb1b20 (Jal (kl)Jaz(kQ) b (ql) b2 (QQ)

1k k k k2
)_ 1q1( ks 2 Q2) ki 4kt G2 3 (
2 (1 + q2) (@1 + @) 2 ky
2
fa1a2Cfblb20 (kz + Qi) (k’l + k’2)2 k’_%
ki k2 qi qo i—1 ki + ko k1
T4 (ky) 2 (k) J* (q1) *(g2) (B.120)
The %— term and the (gjf%)— term vanish under symmetry, so
2
FC(T‘lL) O 2) = falllQCfb1b2C (kz 4 Qz) Ja1 (kl)Jaz(k.Z) b1 (q1) bo (QQ)
k1 ka2 q1 a2 i=1
) g 9Pk ke R k) Q@ k3 (
91+ q 16 (@1 +a2) 2 ky
2
ki + ko)? k2
e e (hi+q) (R B
k1 k2 q1 a2 i=1 kl + kQ k?l
T (k1) (ko) " (a1) **(go) (B.121)
= Fc(;2L4) o(?) Fc(;(? O(e? 2) (B.122)

B.4.3 Order °

We want this term to cancel Egs. (B.79) and (B.93).
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Y o( 3+ FS) O(e? 3)

ki +k k
= 2 fhbac faraze (ki +a) @192 —= £
pki ks q1 g2 i ki + ko k1

Jm(kl) az(k,Q) b1(q1) bz(qz)

A foaac frbac (ki + i) J (k1) 2 (k2) (1) "(q2)

ky ko 9, 95 i

11 1
<__k1(k1@ k1g2) + (@1 + ¢2)(2q 612(11)) (B.123)

3 ky @1+ q

We extract the O(e 3) portion from Eq. (B.100) and bring it in a similar form:

1
ZfabC (ki + ¢i) ki(kaq  k2q)
k1 k2 k3 q i=1 k1+k2+k3+q
J(ky) (k) f% Uq) “(ks)
1
+2 (k1 + q)kaks f21% “1(ky)J™(q) "(k2) “(ks)
ki+q + ky + ks

1
4 foeies (kg kiq)ks “(q) 02(]{71)Jb(k2) CU%))
ki+q + ko + ks

1 1

k?l k?g ]{71 + k2+q + k3
1 1

+
k:1+q ]{?3 k1+q+k2+k3
Uq) (k) (ko)
2 ki 2((ks + @)ks (ks + q)k2)
kl k3+q k1+k2+k3+q

1 1
+ ky (ks + q) “(k1)J" (k2)
kl kg +q lﬁ + kz + kg +q

Der((ks + ks (ks + Qo) T*(ky) P(k) [ (koq aq) “(q) “(ks)) )
+O()+  +0( Y (B.124)

ky 2(ksq  kaq) “(ka) f%2 b1(q) *2(ky)

i (kgﬂkg)

F%(2k1q + 2kiq + q ) (ksky  k3ko)

(ks +q) “(k1) *(ka) fo* “(ks)T%(q)
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Comparison of ¢r and g1 at O(e?)

The rst two terms in line 4 cancel under ¢;

1
(ki + a:) ki(keqr  kaqn)
k1 k2 k3 q i=1 ki + ko + ¢1+qo
1 1
2 (k1 + ko)q1q2 + (21 @2q1)k2
kFi+ky + ¢ + @ G +q@ + ki o+ ke
1 1
ko 2(k1Q1 /ﬁCh)kl
kg k‘l k2+Q1+C]2+k1
1 1
(2¢2q1 + 221 + @1 2)(k?1k’2 k1ko) ks
G+q@ ki o g+q + ke + K
2 1
¢ 2((ka + k1)ge (ko + k1)g2) (k1 + ko)
G ki+ke g + g + kit ke
1 1
ko *(o + 1) (en 1)
ky ¢t +q ko + k1 + q1+q
1 1
2 Ei((qr + @)k (@1 + @2)k2)(2n qqu)>
ki ¢i+q2 ki + ke + q1 +q
fereze foze Jou (k) 2 (ky) "(q1) " (qe) (B.125)

q2, use the delta function in the 5th and the

last line.
1
= (ki + a:) ki(keqn  kaqn)
kikaksg g ki + ks + @1+ ¢
1 1
2 (k1 + ko)q1q2 + (21 @2q1)k2
Fi+ky + ¢ + @ G +q + k4 ke
1 1
+ ko 2(k1Q1 kiqi)ks
]Cg k’l ICQ + Q1+(]2 + kl
1 1
Chz(klkz klkz)kl
G+q@ ko g+q + ke + k
2 1 )
¢ (12 a1g2)(k + ko)
G ki+ke g1 + @+ kit ks
1 1
ko 2o + 1) (2n q2qn)
ky ¢t +q ko + k1 + ¢1+q
1 1
+2 ki(kiky  kiks)(q2qu Q2Q1))
ki ¢i+q2 ki + ks + 1 +q
feaeze filae yo (k) 2 (ky) "(q1) " (go) (B.126)
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(kl+q2) fa1a20fb1b20Ja1(k1) a2(k2) b1(q1) b2<q2) (B127)

k1 k2 k3 g i=1

1
ki(koqn  koq1) + (eqr  qu)ko
kv + ke + g1+ q
1
+ ko 2(/f1q1 ki), ——— ¢ 2(/761/7{?2 k1ko) ks
ko ki G+ q ki
1 1
——————— ket a)ea  @n)+2—————ki(kiks  kiko)(gq qqu))
ky q1 + @2 ki a1+ q
2 ! (k1 + k2)q1q2 + ; a1 2(6116]2 G1q2) (k1 + kﬁz)) )
ki+ks + ¢ + g Q1 k1 + ke

(ki+(]i) falagcfbleCJal(kl) ag(k,z) bl((h) bg(q2)

k1 ko k3 q i=1

1
ki(keqr  koqu) + (21 qeq1)ke
Fi + ke + ¢ +q
1

+ ko 2(751611 kipp)kiy ——— ¢ 2(1€1]€2 k1ka)kq

]{72 k’l a1 +QQ kl

1 1

— bk 2(Q2 + Q1)(Q2Q1 Q2Q1) + 2—k1(/€1k2 k1k2)(Q291 92611))

ko q1 + g2 ki ¢+ q

ki + k
2Mq1q2> (B.128)

ky + ko

(ki+q) freeefrr=egm (k) (ka) " (1) "(g2)

k1 k2 k3 q i=1

1
k1(kaqi + k2q2)  2qoq1 ks
ki + ko + @1 + @
k
2 (kg krg)k 4A(k‘1k2 k1ko)ky
k1 G+ q kb
ko + b Fy+ b
2ky up—— 4 N> k1 (k1Ko k1k2)> QQ%(&) (B.129)
ki + ko ki g1+ @ ki + ko

k1 k2 k3 g i=1

(k) oo e o () (k) (1) b2<q2><

165



Comparison of ¢r and g1 at O(e?)

1

ki + ke + 1+ g2

k
k_2(k16b k1Q2)k1

1

(’fl(( ki ¢ @)a+( ki @ @) 20k

ko + k + + ki +k
2 1 Ch(Ql C]2) key ko + 4 Q1(Q1 Q2) k12k2)> 2( 1 2)q1q2)(B.130)
k1 + ko @+ G2 ki ¢ +q ki + ko

= (ki 4 @) [ 2o g (ky) “(ke) " (q) bQ(Q2)<

2 ks q1q0

k1 k2 k3 q i=1
1
ki + ke + ¢+ g

k
( ki(kiqn + k1g2) k—z(lﬁ(& k1g2) k1

1
ko + Ky (g1 + q2)
ky + ko G+ q ki

+ ki +k
ki ¢+ q ki + ko

- (ki 4 @) o2 g (k) “(ke) " (@) "(q2)

k1 ko2 k3 g i=1

(2k1+ky +2ky + k1 )1ge 4kiki( kv @)

(B.131)

1 k
I+ —= (lﬁfh k192)k1 wklz

Ei + ke + ¢1+q2 ky 1

2k +ky +2ky + k1 )q1g h2 + g (@ ki k)+ D, Ch)

ki + ko @1+ q @1+ q

ki+k
QM(]ND) (B.132)

ki + ko

= (ki 4 @) oo 2o go (k) (k) " (@) "(q2)

k1 k2 k3 q i=1

1 k +
14+ —= (k1g2  kig2)k1 + EER EF k‘12
ki + ke + @1+ @2 1 1
ko + k1 192 ¢ )

2k +ky +2ky +2k k + k

( 1 2 2 1)Q1Q2 Ky + ko o+ 142 0+ o 14q1

k k
Uik 2)q1q2) (B.133)

ki + ko
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Again, we add and subtract what is missing.

= (ki @) oo oo (ky) (k) "(q) *(q2)

ki k2 k3 g i=1

ky ko + kq
—(/f1Q2 ]ﬁCIQ) 21—
( ky k1 + ko
1 + 2
n g2 q1 + g2 keoker + @17 (2 + q1) k )
ki + ko + g1+ o Ky @+ ¢
(k1 + k2)
2———quq B.134
— ) (B.134)
_ (kfz + qz) falagcfbleCJal (kl) as (kZ) b1 <Q1) ba <q2)
k1 k2 k3 q i=1

1 hate  ettaepta’
Yk + ks + 1+ (@1 + ¢2)

k ki+k
k_l(k1Q2 k1Q2) 4M

1 1+ K2

q1q2> +O0()+  +0( % (B.135)

The second line vanishes under ¢; ¢, so

F ofe ) = (ki +a)  Foeeefooe o (k) “(ks) (1) *(q2)
k1 ko k3 g i=1
k ki+k
— (k@2 k1g2) 4—( : 2>C]1Q2> (B.136)
kl kl + k2
Adding this to Eq. (B.123) we obtain
Fi” o( 5+ F3) o 5 + F&l ole ®)
= o phte (it a) T (k) (k) " @) *(a2)
ky ko q, 4, i
2 k k
( gk_i(kléh k1Q2) Qk_iquh) (B-137)
= 2fhbacpmaz (ki +q) T (k1) “(k2) "(q1) "(gq2)
k1 k2 1 g2 i
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Comparison of ¢r and g1 at O(e?)

k 1

k_l) Q192 §((’£’2 +q1)ge (ko + C]1)C]2)( (B.138)
1

2
B §fb1b2cf‘““20 (ki +q) T (k1) “(k2) "(q1) "(g2)
k1 k2 q1 g2 i

ky

. Qg2 k2qe + kago (B.139)
1

Using the Jacobi-Identity fo1a2¢fbibze —  farbic fbaze  gaibse fazhic iy the second term then
renaming by as, q1 k2 in the (new) second term; and by as, o k2 in the (new)

third term this reduces to

2
- §fb1b2cf‘““20 (ki +q) T (k1) (k) " (q1) *(g2)
k1 k2 q1 g2 i
k1
o Gd ae Gok2 + k2qo (B.140)
1
=0 (B.141)

B.4.4 Order *

We want this term to cancel Egs. (B.85) and (B.96).

F&Y o4+ FSp o 1)

aiasc 102¢C kqu ai a2 1 2
= 2fmacfhib (ki + ) ——2 (k1) (k) "(q1) *(go)

k1 k2 q1 q2 i ki + ko

kok
g ferae fhibac (ki + i) LI () ax(ky) 2 (gy) 2 (go)
k1 k2 q1 g2 i ki + ko
kok

Y e (ki + i) BT () o2(ky) %1 (gr) *(go)B.142)

k1 k2 q1 q2 i ki + ko

We extract the O(e *) portion from Eq. (B.100) and bring it in this form:



e 1
= 2'Lf b kl 3
k1 k2 k3 q i=1 i=1 ki
21
(Tfacm(/ﬁq kiq) “(q) (kv q)koks (ko) (k3)
4
ki ks

kiky “(k1)(ksky  ksks) b(kz)%fcclcQ(k:’)q ksq) “(q) (ks Q)) (B.143)

2

1
= gfmazcfhbee (ki +a) (k1) “2(k2) "(q1) *(g0)
ki ka q1 g2 i1 G +q + ki + ky

k
((QQCh q2q1)k1ko . +1q (g2 + q)k2 (g2 + q1)k2) (21 CJ2Q1)> (B.144)
1+ @

k1k
— 4fa1a20fb1bgc (k?z ‘|‘Qi) ay (kl) a2(l€2) by (QI) bz(q2)quqZ (B145)
k1 k2 q1 q2 ; q1 + G2

= FC(¥2L4) oY F((;(Q O(e? 4) (B.146)

B.4.5 All orders

Adding up Egs. (B.106), (B.121), (B.136) and (B.145) we nd

9Ok ky ki ko)

F§l ow = froefite (ki + ) 32

k1 k2 q1 g2

Ju (kl)Jm(kg)Jbl (Q1> b2(q2>

+fa1a20fblbgc (kz +qi) Ja (kl)Ja2(k;2) bl(ql) b2(Q2)

k1 k2 q1 g2 i=1
) @ea g¥ (ki ke ki k) & K
41+ q 16 (1 +a2) 2 ky
2
ki + kp)? K2
falagc]cblbgc (kz + qz) ( 1+ 2) "M
k1 k2 q1 g2 i=1 ki + ko k1

Jal(k?l) a2(k2)<]b1(Q1) 62((12)
foaaze fhbee (ki + ) T (k1) “2(k2) "(q1) "(q)

k1 k2 k3 q i=1
k ki +k
) — (g Fago) + 4th%(

1 1+ Ko
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Comparison of ¢r and g1 at O(e?)

2

kik
_|_4fa1achb1b2c (kz + QZ) 1724142
ki k2 q1 g2 ; G+ G2

W k) 2 (ka) " (q1) " (g2) (B.147)

B.5 Conclusion

From Egs. (B.28), (B.106), (B.122), (B.141), and (B.146) (or equivalently: from summing
up Egs. (B.86), (B.97) and (B.147)) we nd

0 1 24 24
Fapld Jow + Farld Tow + Far'l T ow) = Fap 1] (B.148)
This, together with Eqgs. (3.77) and (A.16) means that

Fap + eFg) + ¢ Fgp = FG) + eFgl + @FGY + 0(¢)

170



Appendix C

Hermiticity of the regularized

Hamiltonian

C.1 Functional derivative of M,

Starting from the adjoint version of Eq. (4.14) (No sum over repeated spatial indices in this

appendix)
DP(y)M“(y) = (7 ef™Al(y)M{*(y) = 0 (C.1)

we can compute the functional derivative of this object with respect to Aj;:

M}“(y)

D?byMibcy = efabe ij \Y "L‘Mibcy +D3by . =0 C.2
() (y)M;“(y) i v 2)M(y) <)A§(x) (C.2)
Mzbc(y) 1 ba rafe fc

o) —=e ] D, v fYe 5 (0 x)M!(2) (C.3)
= e y[Mi(y)Gily  «)M, ()] fM]*(x) (C.4)
— e ;M (y)Gily @) f*" M () (C.5)
In the fundamental representation the derivative of M, is given by
M;(y) . d ed
A?([E) = 1€ sz](y)T Gz(y ‘r)Mz (l’) (C6>



Hermaticity of the regularized Hamiltonian

This can easily be checked by plugging it into the de nition of M (see Eq. (3.43)).

C.2 Functional derivative of the string

We use Eq. (C.6) to compute

3 (x v) A () a(T v))m (C.7)

This is actually an ill-de ned quantity, so we have to regularize it. We do this by moving the

derivative an in nitesimal step X away from the point x and introduce a new regularized

delta function and a second string. We then take the limit for nite
2l (£ 0) (X) wlez+X) (x v)
— lim ) w(T — w(zw
2 . avX Al(x + X) ’ A} (v)
1
:th (x v) (X) a(zr z+X)
|
At X) Mi(2) My H(v1 w2) Ma(vr @2) M,y *(v)
ab
FML)M, o )1 ) 0)) ©3)

:Zlim (x v) (X) wl(r z+X)

a M (2)Gr (- X) fOr M (2 4 X)[My H(on @) Ma(vr a2) My H(0)]
[My ()M, Mo 22)]% a M (v 22)Gi((vr @) @ X)f" M (@ + X))
(M, M vy 22) Ms(vy w9) My (0)]
H[Mi ()M, (o x9)]
oMy (v 22)Gs((0n ) & X) O My (@ + X)[M, *(0)]®
[My ()M, (o1 @2) Mo (01 w9) M, ' (v)]
pM3?(0)Ga(v @ X) O My (@ + X)[M, * (0)]?
+ o M?(2)Go( X) [ Mg" (@ 4+ X)[My M2y va) Mi(a1 v2) My ()]
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[M(2) My (21 v2)]% oM (21 v3)Ga((21 va) 2 X)f9PMI" (2 + X)
[My (w1 v2) My(z1 vg) M, (v)]
H[Ma(2) My (1 )]
aMP (2 0)Gi((z1 va) @ X) MM+ X)[M, ()]
(M () My (21 va) My (1 vo) M, H(v)]™
MG o XM o XD 0]

A (v)
8
=: lim T; (C.9)
i=1
In the third, fourth, seventh and and eighth term we can take the limit of without
problems. With ,,.(x x) =  and after integrating the delta functions inside the Green s

functions we nd for these terms:

hm (Tg —+ T4 -+ T7 + Tg)

S8 w) L@, @ M) O, (5 )"
(M) My ) Mal) My (0]
cg v Vs To gdh ézh T ) 1 1 Uy db
P o0 PPN e ) Voo
VO )= DM, @M ) 0 M )M, (o))"
(M) My ) M ()M )]
Mlcg(v) (Ul J}1>fg M{L (l’)[Ml (’Ul Ig)] )m C].O)
=0 (C.11)

All of these terms vanish under color contraction. We are thus left with

1.

g B 0wl s X) s )

= lim <T1+T2—|—T5—|—T6)

:Zlim ; a@z+X) (xov) (X) (X)) (u = Xp) ( Xy)
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Hermaticity of the regularized Hamiltonian

M9 () f" M (2 4+ X)[M,y Hvy @) M (vy 22) My ' (v)]

e AR (v)
Him et X) @y (0 (X)) (X)) (@ ow X)
My () fo My (2 + X)[My (21 v2) M (21 wa) My H(0)] 0] (C.12)
:Elim o wl@ 2+ X) o (z0) (X)— ( X)) (0 @1 X))
M) NG a4 X )My (0 22) Ma(on )My ()]s
+7 lim o w@ Tt ) w0 @) ()= (X)) (0w X)
M () f9P M (2 9+ Xo)[My *(z1 vo) My (21 v2) M, L(v)]® (C.13)

With Eq. (4.8):

“lu v) = %(Ml(U)M1 Hor ug) Mo (vy u) My M (v) + Ma(u) My M (uy va) My(uy va) My *(v))®

(C.14)
this is
:Zlim le(Ml(:c)Mll(leer ) (zv) (X)— (X)) (n m X))
MY () f9" M7 (2 + Xy 29) [My M (01 m9) Ma(v1 9) My H(0)]? A00)
+7 lim X2$U(M2(x)M21($1 P+ X)) () (X)— ( Xa) (02 1 X»)
M9 () 9 My (21 9 + Xo)[My (1 va) My (21 v2) M, M(v)] 0 (C.15)
:an L@y = (X)) m X
P o )Mo )My ()]s
+7 lim Loy (= (X)X
o 9 [\, Ly va) My (1 v2) M, L (0)] e (C.16)
_0 (C.17)



Again, these terms vanish under color contraction. Hence we conclude that

1
Ta= gL, U aw o awm T 2, Y el e )
(C.18)
to all orders in perturbation theory. This con rms that Eq. (4.18) is Hermitian. Finally,
as a check, we have also performed the above computation, using the explicit form of the

string, to O(e?).
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Appendix D

Computation of the vanishing terms

of the regularized Hamiltonians

D.1 Of(e) correction to the gauge field Hamiltonian,

Eq. (4.29)
1 wv) Y v Fg? Fg)L)
2 L, e ) T )
- 4 v @) Yo L ay)( Aw) (D)
wvyw u Yy v w
= ) KPGU+e 5 G o Vatw )

Uvzyw

+Gi(Ur+or o2 y2) Gi(v y))
+A5(Y)(Ga(vy  yn Us vy y2) Gav  y)

+G(U+v y) Go(Ui+vr 1 v y2))(

2 42 . X
(A Aw)
iabc ? ar bw
= Ut A Aw)

(Ul(Ai(vl Us + 02) + A5(0) + UalAS(0) + A5(U1 + 01 02))

177



Computation of the vanishing terms of the reqularized Hamiltonians

2

e O e ot A A

(U1(G2(U1 Us +visy)  Ga(v;y)) 145(y)

UG (U + 01 vy Gr(vig) 2AS(w)) (D2)

Except for  (U), we Taylor expand this expression in powers of U. The rst integral up to
4th order, the other two up to 2nd order.

- %fﬂbc ww) v 1x2(v ?) Ac(v)jL% AC(U)< v xlv w
(AE Aw)
S () Ab<w>>< LB R0),
s aE) Ab<w>>(o)+0< ) 0.3)
= G (@) A AW)+O(?) (D)
—o( ) 05)

The O( 9) term vanishes under combined interchange of =z w a b .

D.2 O(e?A?) corrections to the gauge field Hamiltonian,
Eq. (4.31)

Vanishing of the rst term:

1 (2) Fo)  FY)
o ) (O TR TR )
N wo) Do) ———L ( apy Aw) (D6
8 2 uvrw e ab u T v w ’
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(A A(w))

— 4_]'2fadt:fdbe (U U)

UVTWY 2 u rv w

< Gr(u:2) Galwn u2)(Grlx59) Grlor uai)

F(Gi(ur va;2)  Gi(v;2))(Gilzry)  Gilviy)) Af(2)AL(y)
+ (Ga(vr ug;z)  Ga(v52))(Ga(z3y)  Ga(v;y))

+H(Ga(us ) Ga(ur v2;2))(Ga(z3y)  Galur v23y)) A5(2)A5(y)
+(Gi(u;y)  Gi(vr ug;y))(Ga(vr uziz)  Ga(v; 2))Af(y) A5(2)
HGa(i2) Gl vi2))(Crlur vmig)  Galosy) A5(2)AS(w)

T i (A Aw) (w)

UVTWY Z u rv w

<<u1 o) (Galvr uziz)  Galv;2))(Galzsy)  Galviy))
(LA AS(y) + A5(2) 1 A5()
F(Gh(wy) Gr(vn usiy))(Galor usiz)  Galus ) AS(y) 1A45()

Fr w) (Gilw vsi2) G2 (Gi(sy) i)
(LA AL ) + A5(2) 245 ()
(Cauiz) Gl vy ) (Calun vaiy)  Grlvig))AS() 2As(y) ()

L pade pane — L (AW Aw) (uw)

16 2 wvrwe T U W

<(G2(Ul us; z)  Ga(v;2))Af(u) 145(2)  (Ga(us2)  Ga(ur va;2)) 1A5(2)A7(v)

+H(Gi(ur vo;2)  Gi(v;2))As(u) 247(2)  (Gi(u;2)  Gi(vr ug;2)) 2AT(2)A§(U)>

2

T (A Aw) ()

<(u1 vl)> (G1(u;2)  Gi(vg ug;2))AS (v u)Af(2)
+(Gr(ur v2;2)  Gi(v;2))Af(v)AT(2)
+(Ga(vr ug; 2)  Ga(v;2))Af(v1 u2)A5(2) + (Ga(u;2)  Ga(w 0252))145(2)14?(“)(
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Computation of the vanishing terms of the reqularized Hamiltonians

+ (g Ug)) (Ga(u;2)  Go(ug vy 2))A5(uy v9)AS(2)
+(Ga(v1 ug; 2)  Ga(v;2))As(v)A5(2)
+(Gi(ug vo;2)  Gi(v;2))A5(uy v2)AL(2) + (Gi(u; 2)  Gi(vg ug;z))Ag(v)Af(z)()

bt (A Aw) (o)
( AS ) A5y ua) + A5 A 02) ) D7)
R e = RGP A”(w))<Ai(2)Ai(y)+A§(Z)A3(y)>
g A ) ALRA5() + A5(2)45(2)
gt L e A (A4S + A5 A5 ()
+0( %)
=0+0( ?) (D.8)

This vanishes for

Vanishing of the second term:

u v () u v
( ) ab( ) A‘?(u) A?(U)

u v (2

B (u v) (D.9)

kikagp uvy

((G1(U§y) Gi(v1 ugsy) + Gi(ur vasy)  Gi(viy))AS(y)

(Galor uny)  Galviy) + Galusy)  Galur vsiy))AS(y))

quU, ipu 1 A® kl +k2+q 1
e e el A ) (2

p (A" (k) A% (k2))
]{31 + k’g + q
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P g

+(k A" (k1))p A (ka) (k2 A" (K1))(k2 A" (k2))

q ko
k
PR G A AR 2L (b AR A% (k)
ky ko ki q
1
— 5falagbfabc (p kl ]{?2 T’)
ki kapr
p2 ) 2 p2 2
() . ﬁ . (k1,1;22,1) ( ) . 4%2 e (k1,2:;;2,2) ( lA‘{(rr)
™
+) . %_{_e (’91,147;’;2,1> ()6 % . (k1,2;;’;2,2) ( iAg(r)>
T
Lo A ) ! Ly b+ k) (A () A (k)
p ki + ko + ki + ko 2 b ! ?
ki +k
P ARy A% (k) + 2 BER) G ey, A (k)
ki + ko ko
k
+ 22 (ke AT (k) (ks A% (k)
1 k2
ki +k u "
M(kl A () (ky + k) A 2(/@)) (D.10)
ki ki + ko
There is no loop momentum, so we can take . In this limit the expression vanishes.

D.3 Of(e) correction to the gauge invariant Hamilto-

nian, Eq. (4.72)

Vanishing of the second term:

W F(O) F(O)
ey TR )
(@)@ v) LGy v) [fT()
L DR )T (D.11)

TVYW=ZIZTrS
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Computation of the vanishing terms of the reqularized Hamiltonians

1 1

—— (D) »I) (D.12)

(0 0) 2 o) — 1

J(s) (D.13)

rvzs

Expanding ﬁ around x = v, we obtain

(2 v) 2@ ) [T (0) T (2) ] (s)

rvzSs

=0( ? (D.14)

Integration over x vanishes for the rst two orders (note that (z v)? is only the holomorphic

component), while the next order is already O( ?).

D.4 O(e?J?Y) corrections to the gauge invariant Hamil-

tonian, Eq. (4.75)

Vanishing of the rst term:

FO - pO
(@ v ) e
TVY Ja(x) ‘] (y)

2

fabe (.T U)(l‘ U)geiq (y v)Je(l>€ilv e ipx+eipx p_Ja(p>

zvy kikalpgqg q p

eilbitha)y parasb G (b ko ey k) JY (k)% (k) (D.15)

1 (k1 +k2+0% oy + k ki + ko +1)3

I o IR o AR D o gy )

ki ko 1 ki + ko ki 4+ ko +1

ot gB (k) ke ki k)T (k)T (ko) (D.16)

Again, there is no loop momentum, so we can take . In this limit the expression

vanishes.
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Vanishing of the second term:

F(O) F(O)
(@ v ) e
Je(x) J(y)

1, ' ' '
(iL’ v)fbecjteadaezq (y v) (l’ U)quzlv 27/(3;, ,U)elly Jc(l)Jd<7~)el7“v

zvy klpgr

, . . 2 p?
e kw4 gk o ipy 4 ipy ?Ja(k)—Jb(p) (D.17)
p
1 2k k> P’
_fbec]z'ead e 22 —Jd r)— Jo(k —Jb p
: eI W)

s r+k 40w 1 R+I(p r+R+I(p T k)

2(J(p r+k) Jp r kK+J(p r+k) J(p r k) (D.18)

This also vanishes for

D.5 O(e*J?) corrections to the gauge invariant Hamil-

tonian, 2™ term of Eq. (4.78)

We look at the di erent parts of ((121)) (x v y)% separately:
The ,G(y =) term
2 £l
T v Gly v) (z ) (JW)JW))apb—————
cuy ( ) Y ( ) ( )( ( ) ( )) b Ja(y) Jb(ilj')
deb 2 d 2Fc(;01)
ferefee T v Gly v) (x v)JM0W)JW)—"—— D.19
cuy ( ) Y ( ) ( ) ( ) () Ja(y) Jb(l‘) ( )
fcbefdeb (l’ U)(SL’ ’U)2
2
]_?eip (z v)Jc(kl)Jd(k2)ei(k1+k2)vq_ e iq zeiqx +€iqze iqx (D20)
pkykyq p 2 q
FR) I WAL
= (k)J( k)=——e (D.21)
kq q
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Computation of the vanishing terms of the reqularized Hamiltonians

This vanishes under integration of the angular component of q.

The G(y x) term

eb e cfa 7C 2F(OI)
- (z v)Gly o) fY Iy (= )T (U)ch]b@
u “ . % 2kq3
qu (k)J*( k) —2q D) (D.22)
E2J(k)J( k) (D.23)

This vanishes for

184



Appendix E

Computation of 7V at O(e?) in terms
of gauge fields

We give the details of the computation of TV at O(e?) in terms of the gauge elds, Eq. (5.14):

O(e?)

G ob ? (o cdp)
= T, O I T TR
ab 0 (1) (1)
+2 A Af(v)Bé)(@ o (T ¥) B3 (y)

+ @ A% (u) Ab(v)Béo)(l’) (@ v)BY(y)
(1) ? 0 cd (1)
+2 4 (u v) A?(ug Af(v)Bg)(m) B, ()
+ o (uv) A (u) Ab(v)BEO)(x) G (@ y)BY ()
+ z(jy)(u )A“(u) Ab(v)Bé())(I) CdB(g())(y))
eCa ) _ 2% ey ga
= 2Ay(2+ 2)A(y)A(y)
DL (1A% (W)* + ( 245()* + ( 1A45(1))* + ( 247(y))” (
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Computation of TV at O(e?) in terms of gauge fields

>, 2)2A“(y) A(y) (7 2)3( A(y))?
+BO(y) B (y) 5 j+ SADY| 2j )4 2+2 2)? (
) ponOn) 14 1
‘2 2 2 a a ? 2 § a 2
+(2+ % ( )A(y)(A(y) S(77 2)( A%(y))
1 N 4
§ A (y) ( 2 2)2

2( 2:42)3( R 22+42>3( 0
T A )
e A+ (s
+4(321 42)4 (1AL + ( 2A%(y))?
LBOR( Ay) % 2: : % 2 2+(221) 2)z+ 2 (
FSE o (7 a0 0) (A
o (B.1)
E.1 Computation of the first term
% . @ o) oz ) amemc@) wd B () (E.2)
- z ) o D A AW A A E



If both derivatives act on two elds at the same point (x or y) this will vanish due to color
contraction, so we can only have the derivatives acting on elds at di erent points. There
are eight terms of this type and they can all be combined in one (due to color symmetry and
the symmetry of ):
620,4
= (w v) (z y) (w x)(y v)A%x) A%y) (E.4)

2 UV ITY

We can expand the rst eld around z = y up to second order, as higher orders will vanish

in the limit of

€QCA

= = (X) (X)
y X
1—|—X1 X1+X2 X, T ); X1—|—X1X2 X X2—|—% 3(2 Aa(X—l—y) Aa(y) (E5)
X=0
B €20y ) 2 2 2 2 ) , ( . .
T2, (Pt ) a2y 2 M A+ AW)
+0 ! (E.6)
E.2 Computation of the second term
2
DL ) s B e G p)eB ) (.7
1 2
T2, O Y A ()
( )£ (Guw2) Gilan i)+ il wiz) Gl ) A5(2)

HGalr 72:2)  Calyi )+ Galasz)  Galer s A5 SPAT) A(y)

Again, if both derivatives act on B this vanishes, as does one derivative acing on B(®) and

one acting on ¢, due to f2% = (. As interchange of u and v is possible in  (u  v) we let
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Computation of TV at O(e?) in terms of gauge fields

7y Act on BW and ey Act on B© < and multiply by a factor 2:
2262
= 5 (uw v) (z )

UV Y2

(%cruwmmN&@m Giyr 72 ) + Galmn wi2) Galys ) AS(2)
HGaln mi2) Galyi2) + Galwi) Galar v ) A5 PAL) i (v 0)
FBOR(@) ) (Gr(w2) Gilys ai2) +Gilon 1i2) Ghl(yio) w (= w)
HGalp 22) Galyi )+ Golws2) Golar o)) (5 )l

Fla) (g ) (E:9)
This becomes (where we de ned X =z v, Z=2 wv,andU=u v,V =v x)

= €20, X A%(0) + XoA2(v) (X)) (X)) 2

)( (Xo Z1) (Xo Zo) ( Z41) (X Zo)+ (Xi Zh) (Z2)  ( Z41) (Z2))

VA
1+ 2y 20+ 2 ZQ+71 S+ Z1Zs 7, 7, +

72 %, ANZ +v)
+( (Z1) (Xo Z2)  (4) ( Z2)+ (Xi Z1) (Xo Z2) (X Zi) ( Z2))

ZZ% 2 23% 2 a (
1+2Zy 7, + 2 ZQ+7 7ot 212y 7, 2, o Z A3 (Z +v)
Z=0

e2Cy
2 UV

V(v t)(v ) () (Ve U+ (Vi ) ()

BO(x) (U) (V)

( Ul) (U2)> 1+Vi Vl_'_‘/? Va Ag(v—i_x)

() (Vo Uy (Ul)(Uz)Jr(VleQl)(Vz Us)
(Vi U () 14V w4ley A5V (E.10)

V=0
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While the expansion in Z cannot be justi ed a priori, as only X can be considered a small
variable, it turns out a posteriori that it is correct: In the A;A; terms, because the (X)
turns into a  (Z), after integration over X, and in the A; A5 terms because it turns out that

in an expansion ton =  only the Z;Z5 terms survive the limits.

4 2 4 2 4 2

24 2)2+4(2+ 2)31
4 2

A (0) T ey 1 2 Al

= eQCA (Acll(’l}) (

4 2

+Af(v) (2+ 2)3 12 Aj(v)

4 2 4 2 , 4 2 ) )
+A5(v) (¥ 2)2+8 (2+ 2)3 1+4 (24 2)3 5 Aj(v)
2 2 2 2
€20y e + + + .
5 mB (z) 9 (24 2)3 2 1 Aj(x)
2 24+ + 2402
2 A‘;@)) +0 ! (E.11)

= ez (u v) /(1’ y) amego)(x) Sl)(ff y)Bc(zO)(y) (E.12)
=G e () g Senl s @R

2BO@)BP(y) (o

A ey Y
B ()B(y) ) SN
+2 Y0 00 @z y) ) (E.13)

We consider these three subterms individually.
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Computation of TV at O(e?) in terms of gauge fields

E.3.1 First subterm

Noting that mz‘hz‘lz = 0 and making use of the fact that one can rename u v

under the integral, we nd

i

4 uv Ty

2
Spa ( ) (x 9BOE)BOW)

uv Ty

<<G1<x;u> Crlyn ) (Cr(use)  Crlyn 2:0)
+(Gi(zy yosuw)  Gily;w)(Gi(usv)  Gi(y;v))
+(Gayr wo5u)  Ga(y;u))(Ga(usv)  Ga(y;v))
HGolmw)  Goler yw)(Galusv)  Galmr 1iv)) (E.14)

We can also rename z  y:

620,4

; (w ) o »BO@BEOW)

uvzTy

<<G1<x;u> Ch(r 730)(Calws0)  Galys w30))

F(Cals wiw)  Caly;w)(Galys w230)  Galyiv)) (E.15)
ZGQSA Bﬁo)(y)Béo)(w( LS S S
o (E.16)

E.3.2 Second subterm

¢ BY(@)BY (W)

4 Wy (w ) (z y) A% (u) A;(v) ((:d)(x y) (E.17)
e2C Y
=, (e )

(Gi(u;2)  Gi(or ug; 2))(Gilzy)  Gilor ugiy))
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+(Gi(ur v2;2)  Gi(v52))(Gi(zy)  Gi(viy)) Af(2)Af(y)
+ (Ga(v1 ug;2)  Ga(v;2))(Ga(zy)  Ga(vsy))
+(Ga(u; 2)  Galur v2;2))(Gazy)  Ga(ur va3y)) As(2)A5(y)

+H(Gi(u;y)  Gi(vr ugy))(Gavr ug;2)  Ga(v;2))Af(y)A5(2)
—I—2(G2(U; z)  Go(ur v9;2))(Gr(ur va3y)  Gi(v;y))AS(2)AT(y) (E.18)
ST w armen) ) W)
yUVZ

( (Ua+ Vo Zo)( (Li+Vi Zh) (i Z0))( (4) (Z2) (Vi) (Uz+Va))
+ Va Z)((h+WVi Z1) (Vi Z20)) (Z41) (Z2) (V1) (Vo))
Ai(y) 1+Z1 1+ZQ 2+%le %+2122 1 2+%ZZQ % AT(Z/)
+ Vi Z)( U+ Vo Zy) (Vo Z))( (Z1) (Z2) (Vi) (Va))
+ Ui+ Z)( U+ Vo Zo) (Vo Z))( (Z1) (Za)  (Ul+Vi) (Vo))
AS(y) 1+ 21 1+ Zy ﬁ%zf P+ 2175 2+%Z§ 5 As(y)
+ (Ua+ Vo) (Vi Zy)( (U + V1) (VIO (Us+ Vo Zy) (Vo Zy))
Ally) 1+ 2y 1+ 2, 2+EZ12 P+ 217 2+1Z22 3 As(y)

2 2
+ (Ui +Vi Zy) (Vo)( (Ua+ Ve Zy) (Vo Zo))( (Ui +W1) (\1))
1 1
Aly) 1+ 21 1+ 2y 2+§le AV 2+§Z§ 3 A;(y)> +0 ! (E.19)

where Z =2 y,U=u v,V =v yand again the justi cation for the expansion in 7 is

a posteriori, as higher order vanish in the limits of . This results in
€20 . 9 4 2 6 2
= Al(y) 2 4 3
i, (v 7 (2 )
4 2 36 2 ,
T it 2 16 (2+ 2t ! Aily)
9 4 2 6 2 4 2 3 6 2 ,
+A5(y 4 + 4 As(y
2( ) ( 2+ 2)2 ( 2+ 2)3 4 ( 2+ 2)3 16 ( 2_'_ 2)4 2 2( )
) 4 2 36 2 .
+Ai(y) (24 2)3 416 (24 2)4 1 245(y)
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Computation of TV at O(e?) in terms of gauge fields

4 2 362

+A5(y) NEr: 416 i 2Ag(y)) +0 ! (E.20)
E.3.3 Third subterm
e ey PR ) s B ) (E.21)
- WG y><<Gl<x;v> Galyn a2 0)(Gr(0:2)  Galn a2 2)
+(Gi(z1 y2;0)  Gi(y;v)(Gilviz)  Gilysz) Af(z)  © A%z) (5 (v w)
+ (Gi(z;2)  Gi(yr 22;2))(Gi(zv)  Gi(yr 223v))
+(Gi(z1 y2i2)  Gi(y:2))(Gilziv)  Gilysv) Af(2)( 5 (@ w) ¥ A%y)
+ (Ga(yr 223v)  Ga(y;0))(Ga(viz)  Go(y;2))
+(Ga(z30)  Ga(mr y230))(Ga(viz)  Galzn yo32)) Aj(z) 0 A%x) 1 (y w)
+ (Gao(yr 22;2)  Ga(y;2))(Ga(z5v)  Ga(y;v))
+(Ga(x;2)  Gazr y2;2))(Ga(zv) Gz yosv)) Af(2) 7 (@ w) ¥ A%(y)
+(Gilxv)  Gi(yr 220))(Ga(yn 2232)  Ga(y;2))A3(2) 7 A%z) (5 (y w)
+HGi(z;2)  Gilyr 22:2))(Ga(yr z230)  Ga(y;v)AL(2) ¥ (z w) ¥ A%y)
H(Ga(z;2)  Gamr y2;2))(Gilzr y2v)  Giy;v)A3(2)( 5 (@ w) ¥ A%y)
+(Ga(z30)  Ga(zr y230))(Gilar y232)  Gily;2)Al(z)  © A%z) | (y )) (E.22)
After partial integration and renaming y  « in some terms and de ning Z = »
Y=y v, V=uv =z wecan write this as
_ esz“ wyzz 2(Y) (Y+V+2) A%(z)
(YQ G 2 V) G Z V)G Gih+Vi Z)
+HGi( Z1 Vi Yo) Gi(Y)(Gi(V) Gi(Y +V))
G +V) Gi( Zi Ya+ Vo)) (Gi( V) Gi( Z1 Wi Ya))
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HGEM+Vi Zo) Gi( 2)(Gi( V) Gi( Z2 V) Al(Z +x)
Vi (Go(Yi Zo Vo) Ga(Y))(Ga(V)  Ga(Y +V))
+HGao Z V) Ga( Zv Vi Vo)) (Go(V) Gl Zy Yo+ Va))
(G2 21 Yo+ Va) Go( 2))(Go( V) Gao( Z V)
HG(Y +V)  GaolYs + Vi (Go( V) Goi Zo Va) ANZ +2)

—
N ~—

Zs))
+2Y, (Gi( 2 V) G Zy Vo)) (Ga(Mi+ Vi Zo) Go(Y +V)) A3(Z +x)
23/1 (Gl(Y+V) Gl( Zl E-F%))(Gg( Zl ‘/1 Yé) GQ( Z V)) A%(Z—i—x))

o (E.23)

After expansion this can be integrated to

= 0 W@ 2R ) (Z) ()

2, ( Zv+Y1) M) ( (Y2 Z)(1+ 21 1+ 22 2)A5(2)

o AW 2 o) M) (2

2V, (Y1 Z1) (Yo)  ( Za+Ya) 1+ 21 1+ 29 9)A}(2)+O 1 (E.24)
- T A(y) = 2>2+0 (E.25)

E.4 Computation of the fourth term

T oy 0 D D0 8O B (E20)
:% (u U) /(J} y)

UVTYZ

) (Gr(u;2)  Gi(vy ug;2) + Gr(uy vas2)  Gi(v;2))AL(2)

+(Ga(vy ug;2)  Ga(v;2) + Go(u;2)  Ga(ug vz;z))Ag(z)(
wm (@ wWALY) (v v) (E.27)
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Computation of TV at O(e?) in terms of gauge fields

=c'Cy UZ(U1A?(U)+U2AS(U)) o) * (U)

)(Gl(U Z) Gi( Z1 Uy Zy)+Gi(Un Zy Zy) Gi( 2))

1 1
14+21 1+ 2 2+§Zf 2+ 207 2+§Zg2 5 AYZ +v)
Z=0

+H(Gao Z1 Uy Zy) Go( Z2)+Go(U  Z) Go(Un Zy Zy))

1 1
1+21 1+ 2 2+§Zf%+212212+522222AS(Z"‘U) (
Z=0

E.5 Computation of the fifth term

BO(x) &z v)BY(y)

uvzTy

[

1 (u v) (z y) 4 (u U)W

=5 e e

2B (2)BP(y)
A¢(u) Ab(v)

B (z) (xy)
A(w)  Ab(v)

(z y)+4 Bg”(y)) (E.30)

We consider the two subterms individually.

E.5.1 First subterm

¢ 0o e ) Oy o B@B W)
( ) ( y) ab( ) Ag(u) A?(U) cd( y)
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- Oy

TYzZwW

((Gm@s;z) Oy NAL() (Calys 7232)  Galr i 2))A%(2)
G2y 252)  Ga(y yg;z))Ag(z))

<4 "oy ) IGa(ww) A% (w)
(2 2G1(y z23w) a1 {Gi(z1 Y23 w)) AT (w)

+( 2 5Ga2(y1 o3 w) a 1Ga(zy y2;w))A§(w)(

T2 4 A ) Gulew) Culysw))A%(w)
(Gl(yl fz;w) Gl(ﬂﬁl y2;w))A(f(w)
(Caly wsw) Galer gosw)) A3(w)) (E.31)

R

TYzZwW

( (Crly2) Crle) + Crlys wi2) Gulan yas 2)A%(:)
(Gay;2)  Golws2)  Ga(yr w25 2) + Ga(y y2§z))A;(Z))

(4 ) WG mw) Gilae)] 24w
(1 y)l (@1 yosw) + (25 w)]
+(@2 ) (1 z25w) + (730)]
( )

Ai(w)
A3(w)
v 9)[Galer i) Galwsw)] 1 AS(w)

) (Glgw) Grlesw) + Crlyn asw)  Grler yosw) Al(w)

L(Galgsw) Galwiw)  Galys waiw) + Galay yosw)A3w) ) (£:32)
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Computation of TV at O(e?) in terms of gauge fields

620,4

TY 2z

<<G1<y;z> Cr(wi2) + Chln waiz) Caler o) ) [ Ao o) + AS(@)]AS(=

T ) )
+Gi(y;2)  Giz;2) + Gilyr w232)  Gi(zr yo;2))(z2 y2)[AS(y1 2) + A5(2)] AT (2)
+(Galy; 2)  Ga(ms2)  Ga(yr x5 2) + G2y Y25 2)) (22 y2)[AS(y1 x2) + AS(2)]AS(2)
HGa(y;2)  Gal;2)  Ga(yr w95 2) + Galy y2;2))(z1 y1)[AT (21 32) +Aa(l’)]A§(2))
GQSA o (z y) (z y)

<<G1<y;z> Gilwi2) + Gilys a2i2) Galon DA ® 4 Y )
(Gi(y;w)  Gi(zsw) + Gi(yn v5w)  Gia yosw)) AT(2) AT (w)

+(Gily;2)  Gu(w;2) + Gilyr m252)  Ga(my yo32))(4 2 4 Yz wi)?)
(Ga(y;w)  Gazsw)  Ga(yr 25w) + Gar yosw)) AT (2) A (w)

+(Galy;2)  Galw;z)  Galyr w232) + Galxy Y3 2))(4 2 4 Yo u)?)
(Go(y;w)  Ga(z;w)  Goyr z2;w) + Ga(z1 yo; w)) Ag(2) A (w)

+H(Ga(y;2)  Ga(w;2)  Galyr w2;2) + Ga(wr y2;2))(4 2 4 o w)?)
(Gily;w)  Gi(z;w) + Gi(yr 223w)  Gi(x y2;w))A3(z)A?(w)>

U ey e

TYzw

<<G1<y;z> Ch(e:2) + Galys 7232) Gl i 2))A%()
F(Caly:z) Galw:z) Galys 7:2) + Galan 13 2))AS(2))
<4 2) (352 y2)[G1(y1 332;w) Gl(l’Sw)] 2Al1l(w)

Fan )Galer gsw)  Galasw)] 1Asw)) (E:33)
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In the rst integral wede ne X =2 vy, Y =9y 2z, thenshift X X Y. In the second

and

(

[

third integral wede ne Z =2 w, X =2 y, Y=y w:
2C

Ay 2 (X Y) (X V)

8 XYz

(G1(Y) Gi(X)+Gi(Y1 X2) Gi(Xy Y9))(Xa  Y1)Af(2)

|2+2X1 L+ (X +Y2) 2+§X12 f+%(X§+Y22) 24+ XXy 1 o+ X1 2)A§‘(Z)
+HG1(Y) Gi(X)+Gi(Y1 Xa)  Gi(Xy Y2)) (X2 Yo)Af(z)

|2+(Y1+X1) 1+2X, 2+%(Y12+X12) 12+§ SR (P.CIRTPE D P C 2)A§(Z)
+H(Go(Y)  Ga(X)  Ga(Y1 Xo) + G2(Xy Y2))(Xa  Y2)A5(2)

|2+(Y1+X1) 142X, 2+%(Y12+X12) 12+§ 234Xy 1 2o+ X1 X 2)A§(z)
+H(Go(Y)  Ga(X)  Ga(Y1 Xo) + G2(Xy Y2))(X1 Y1)A3(2)

|2+2X1 L4 (X 4 Y2) 2+§X12 f+%(X§+Y22) 2+ X1 Xo 1 2+ X1 2>A‘f(z)>
w0

GIY Z) GiX+Y 2))

+Gi(Yr Z1 Xo+Ys Zy) Ghi(Xa+Y1 41 Yy Z))
(4% 4 YXT+X3)(GY) GiX+Y)+Gi(V1 Xa+Ys) Gi(X1+Y1 Y2))

1 1
1+2Zy 1+ 2 2+§Zf R SVAVAR 2+§Z§ 3 AUZ +w)Af(w)

+(G(Y Z) Gi(X+Y 2)
+Gi(Yr Z1 Xo+Ys Zy) Gi(Xa+Y1 41 Yy, Z))
(4 2 4 YXTHXDGAY) Ga(X+Y) Go(Yi Xo+Ya) +Go(X1 4+ Y1 Va))

Z=0

1 1
1+2Zy 1+ Zy 2+§Zf 242075 2+§Z§ 3 AYZ 4+ w)As(w)
Z=0
+H(GY Z) G X+Y 2)
Go(Yr Zy Xo+4Ys Z)+G(Xa+Yr Z1Ys Zy))

(4 2 4 YXZ2+XD))(GaY) Ga(X+Y) Gao(Y1 Xo+Ys) +Go(X, 4+ Y] Y3))
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Computation of TV at O(e?) in terms of gauge fields

1 1
14+ 27 1+ 2 2+§Zf 2+ 2175 1 2'1“5222 3 AYZ + w)Ag(w)
Z=0

+(Go(Y Z) Gy(X+Y 2)
Go(Y1 Zh Xo+Ys Zo)+G(Xa+Yr Z1 Yy 1))
4 2 4 (X +X)GY) GIX+Y)+Gi(Yi Xp+Ye) Gi(X1+Y) Y3))
1+ 2y 1+ Zy 2+%Zf RV 2+%Z§ 5 AYZ + w)Af(w) H)
e?Cy
8 wXYZ

(G (Y 2Z) GiX+Y 2D+GCi(Yi Zy Xo+Ys Zs)

(X) (X)

Gl(Xl—i_}/l Zl }/2 ZQ)) 1+Zl 1+Z2 2 A?(Z-'-U})
+HG(Y Z) Go(X+Y Z) Gy(Yv Zy Xo+Ys Zy)
+G(Xi+Y1 41 Yy 7)) L+2Zy 1+ 2y o AS(Z + w))

(4 2) XolG1(Y1 Xo4+Ys) Gi(X+Y)] A% (w)

SXGX AN YY) Ga(X 1)) A3 )

+0 ! (E.34)

_*Cy azl 2 22 22 22 2 21 22 AP

= (A1) TR Ty T R e 2)Al()
+A) EO] AY(z)

a 2 22 21 22 2 22 22 2 ) ga(,
+43(2) 72 En 2)2+ 22 (21 2 IR L 2>A2()
+A3() 0] 42(2))

eQCA " 2( ) 4( + )
8 w<A1(“’) 4
2 4( 2 2 2) ) 2 4( 2 2 2) ) Aaw
(24 2)4 1T (2+ 2)4 {(w)

+ 0 Af(w)As(w)
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) 2 a
+ ( ) ( 2+ ) + ( 2+ 2) ( 2+ 2) ( )
+ 0 Ag(w)Ail(w))
e2Cy 2 4 2 4
QA(II w QA(ll w 3 1A(21 w 1Ag w
3 ( A ) s (A3 450
+0 (E.35)

E.5.2 Second subterm

4e?

e ey Q) Pl e Dy
- 2w 0 e )
((Gxu;z) Gi(vr i 2) + Gl vi2) Gl ) AL(2)
+(Ga(vy ug;2)  Gao(vy2) + Ga(u;z)  Gao(ug vgz))A%(z))
( (o w)(Galusn) Grlyr wiv) +Galun yv)  Galysv)
Hur 0)(Galn usi0)  Galyio) + Gawiv)  Galur yaiv))) BY(w)
e R Iy
(<G1<u;z> Grlor 13 2) + Galur v32)  Galv; 2)A%2)
HGalor u5i2) Gl 2) + Galwiz)  Galur ;) A%(2))
((Gl(u;v) Gilus w3 ) + Galts i) Galyiv))
HGal wiv) Galyso) +Ga(wv)  Galur yiv)) 1) BY(y) (E.30)
-2 ey

((G’l(u; z)  Gi(v ug;2) + Gi(ug va;2)  Gi(v;2))Af(2)
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Computation of TV at O(e?) in terms of gauge fields

+(Go(vy ug;2)  Ga(v;2) + Ga(u;2)  Gauy vgz))A%(z))
( i w)(Grui) Gl waie) + Grlan aiv)  Gr(azv)

+(ur v)(Ga(yr ug;v)  Gao(y;v) + Ga(uy;v)  Gao(us yg;v))> Béo)(y)

0 G Gl )+ Gl i) Galyin)
2 (Gi(u:2)  Gilvn uzi2)) 24(2) B (v)

T 0 (@) Giln )+ Gl win) i)
(A w) + Aw@)B W)

T ) )Gl i) Galyi) + Gafue) Gl i)
A+ Al w)B W)

I ) )(Galn war) Galyie) + Galuv) Gl )

uUvVY 2z

(Galu;2)  Ga(ur vp;2)) 1A%(2)BY (y) (E.37)

Wede neZ=2 y,U=u y,V=v wuandexpand the elds:

e2C
= B () (V) ()
yUvz

(Gi( V) Gi( Uy Vi Vo)+Gi( Vi Uy Vo) Gi( U V))
(GiU  Z) Gi(Vi+ Uy Zy Uy Zy)) 2A%(y)

+2 2V, G(U  2) Gi(Vi+U, Z, Uy Zy)

+G1(U1 Z1 Vo + U, ZQ) Gl(v—i-U Z) 1+72, 1+ 25 9 Acll(y)
+2 WV, Go(Vi+ UL Z Uy Zy) Gy(V+U  Z)

+Go(U  Z) Go(Uy Zy Va+Us Zo) 142y 1+ 2 » A;’(y>>

62CA
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(Go(U  Z) Gy(Uy

+2 %V, GL(U  Z2)

Zy Vo + Uy

Gi(Vi+ U

+G (U, Zy Va+ Uy

+2 2V; Go(Vi + U,

Zz)

Zy Uy

Zz)

Zy Uy

G(V+U 2)

Z)) 145(y)

Zg)

G,(V+U 2)

+Go(U  Z) Go(Uy 2y Va+Us Zy) 142y 1+ 75 5 A%(y))

620A

4 yUV

(Gi( V) Gi( U W

o)+ Gi( Vi

U Va) Gl

(V) (U)BOW)2+20, 1+ 20U, 2+ Vi 1)ALy)

v v))

e2C
7 (V) (U)BY )2 +201 1 +20s 2+ Vs 2)Al(y)
yUV
(Go( Un Vi Vo) Go( U V)+Ga( V) Go( Vi U V3))
+0 !
2 2 2
lon © 2 4 + + 4
4 de (y) 9 2,9 2 2 AT (y) 2 (24 2>2 2 A7 (y)
2 (24 2 44)
2 2 2 2
€20y © 2 2 “+ +
B - Al
v <y><2 oy A T
2 + 2+ 2 ; >
2 (24 2 W)
2 2 2 2
20y B(O)( ) ) + + + 2 A
Y 2 (24 2°° B EET R
2 2 2 2
20, B(O)( ) ) + + + 2 A
4 ydy 2 (24 2?2 29 249 2271
+0 !

L+ 2y 1+ Zy 5 Ady)

(E.38)
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Computation of TV at O(e?) in terms of gauge fields

E.6 Computation of the sixth term

62 2

1 W 0 o) W) e BOW BN (E40)
uvzxy (] 1

éCﬁ

uvVY 2

(Gi(u;2)  Gi(vr ug; 2))(Gilzy)  Givr ug;y))

VN

+(Gi(ur v2;2)  Gi(v:2))(Gi(zy)  Gilviy)) Af(2)AL(y)
+ (Ga(vr ug;2)  Ga(v;2))(Galz3y)  Ga(v;y))

+(Ga(u;2)  Galur vo;2))(Ga(2;y)  Galur vasy)) As(2)A5(y)
HGi(wsy)  Gi(vr ug;y))(Galvr ug;z)  Ga(v;2))A7(y)As(2)
HGawi2) Galw o 2)(Grlm vny) Gl A5()AL)  (BAY)

DeneU=u v, Z=2 y V=0v =z

86@
4 yUVZ

(GLU+V) Gi(Vy Uy+ W) (G1(Z) Gi(Vi+ Zy Uy + Vao+ Zy))

)4 * 4 'U*) ()

+(GU+ Vi Vo) Gi(V))(Gi(Z2) GV + 2)) A(Z +y)Ai(y)
+ (Go(Vi Uz +Va)  Ga(V))(Ga(Z)  Ga(V + 2))
+(G(U+V) Go(Up + V7 Vo))
(Go(Z)  Go(Ur +Vi+ 2y Va+ Z3)) AS(Z +y)AS(y)
HGU+V+2Z) Gi(Vi+ 2 Uz + Vot 23))
(G2(Vi U+ Va)  Ga(V))AL(y)AS(Z +y)
+(Go(U+V)  Go(Uy+ Vi Vo))
(Gi(Uh+Vi+ 2y Vo+2Z5) G1(V + 2))A5(Z + y)Af(y)) (E.42)

€2CA 244 2 6 4 4

Aj 3 3
4 y<2 %) (24 2) (24 2)
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2 4 4 2 6 3 4 4 )
+ 4 ( 2+ 2)4 ] ( 2+ 2)4 1 Al(y>
2 4 4 2 6 4 4
+2A5(y
W Ty Ty
2 4 4 2 6 3 4 4 ) .
+ 4 ( 2+ 2)4 ] ( 2+ 2)4 2 A2<y>
2 6 2 6 4 4
+AS +
WGy Ty iy
2 6 2 6 4 4
A +
1(y) ( 2+ 2)4 4 ( 2+ 2)4 4 ( 2+ 2)4
+0 !

2

2

(¥)
)

(E.43)
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Appendix F

Diagrams of the static potential at

next-to-leading order

The e ective action used to compute the static potential is Eq. (5.64)

S (i o +edy) +0.(i 2 eAD)o. + FulAl + FualA] (F.1)
A1=0 A=A

= (i 9+eA) +o,(i o eAl)o,

1 9 kM 2
1= by + ko

ab pe b &y 2.0(2)
2 m+ Er A%(k1) A (ko) + eSW[A] + e2S®[A]  (F.2)

where SW[A] and SP[A] are given in Egs. (5.45) and (5.46), respectively.

With these rules we can compute the diagrams of Sec. 5.5.2 and match them onto the
e ective theory, Eq. (5.72):
L=S5 (i o+ Es(r))S (F.3)
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Diagrams of the static potential at next-to-leading order

F.1 Diagram c)

We write this as an effective bilinear term e2C4 A%(q)A*(—§)K®)(g) and find

/m2 +
K(3)(q_’): /m+\/m2+k2m+ m

k@ 2 1>+k
x (s (F,q k- )+ s<3>(—15— q,;%,q) +5(q, —k — 4, k)
—sO(G k= §) = sV (k= G,3.F) = s (K, ~F - 7.9))

$ (8O G~k = @) + s (K = @ F.0) + 5@~k - @ F)) (F.4)
here
" Lo 1 kOED (4, KVE x ks
s@ (ky, kg, ks) = 2i A E L —_— . (F.5)
m+ By kg (Xiy Ei)(m + Eb)

As we first take the limit 7" — oo, we can take ¢ = (¢, 0).

In the hard regime (k ~ m > q) expansion to the leading order in ¢ gives:

1 Ek —m
K® () = ——/ O(¢?) . F.6
hard(@ 9 p (m+Ek)(m+2Ek)2 + (q ) ( )
The correction to the potential is thus:
SEWe = 20 K<3>4WT “Ca (F.7)
q? q* 2mm

In the soft regime (k ~ ¢ < m) the combination of s®)’

Eq. (F.4) cancels the first term of Eq. (F.5), making this parenthesis O(m™3) and Ks(ff)t(*)

s in the first parenthesis of
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is therefore of O(m™~2). The potential thus has to be
x et =0, (F8)

and therefore may contribute to the linear term of the potential, but it cannot compensate

the cubic terms.

F.2 Diagram d)

I3

Analogously, we also write this diagram as an effective two field vertex
e2C AN AY(—) KW (§), finding

—sO(g. K =k, —q) + s (q. K —q. K)) (F.9)

1 1
_ { _ ( 1 1 ) CRON RIS
- o 7 1 ™3 1 3
m+E;  m+Eza) k22

1 YR
m + EZ (Eg, + E4)2E2

(7 + KPP — 7 + )
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Diagrams of the static potential at next-to-leading order

2 ks kS k| 1
Evp+ Es+ E))(m+ Es)  f2 (m + Ey)(ky + ka)2k3

)tk k(2 kot B KD 12 KD)

T

(ke k)((2ky ko + KD KD K2 k§2>)(

1

L) O (ks k) kR (B By kR )
(mt Bra)k? ke + (ks ko) k)b’ ((ks k2)  ka)ky
kil)kél)kél)kin

( BB+ By + E3pq) (B3 + By + Erye)(m + Ey)(m + Es)
| 1 K2k2 (ky ko)(ks k)

(m + Eg)(m + E4) (kl + k2)2

. k3 5 2]{:3 ka 4 4(k‘1 ko)(ks  ky)

(m + Es) k2 k22
1 Es+ Ey+ Eqyo
m+ Eyo (ks + ky)?

2
(ks + k4) 2k1 ko 1 2k53 ky 1 4(k31 ko)(ks  k4)
(m + Esiq) k3 k3 k2k2
1 2E3 + By + By )>
m + E1+2 (1{53 + ]{54)2

+

(F.10)

In the hard regime we expand to the leading order in ¢ and obtain

KW (g) =
W= Tem Tz T B0k 1 3m(m £ By

E*m +2m3  K’E, + 2m?E), (
SE3(m + Ey )2

0+ + O(¢%) (F.11)

The correction to the potential coming from this diagram in the hard regime is thus:

4 m?e*Cy

? 2 m

EW = 2Cpl KW (F.12)
q

In the soft regime the rst and second line of (F.10) vanish and cancel in Eq. (F.9),
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respectively. Hence Ks(sf)t(q_) is of O(m™2) and the correction to the potential is

2 2
xet L — 0. (F.13)

q4 m?2

F.3 Diagram e)

I3

In the soft regime, this is the iteration of the potential.
In the hard it is

mAvVmEeRe 1 meymr+ (k-9 1
x : (F.14)
¥

m2
(kW) k@ tie 2k — ) —k® 4ie

= 2
m+ vV m?+ k? 1 1
O(¢ F.15
oc/k( 2 (k(D)? )k(2)—|—ie—k(2)—|—ie+ (@) (F-15)

so it neither contributes to the linear potential, nor to the cubic term.

F.4 Diagram f)

In the hard regime, this is beyond our accuracy, by the same reasoning used in the

previous diagram.
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Diagrams of the static potential at next-to-leading order

In the soft regime it is

m+\/m2+lz2 ]_ m+\/m2+<g+q_)2 1 (F16>
2(M)* kP 4ie  2(kD 4 gm)*  —k® fie’ ‘

because we take the limit ¢ — 0 (due to T — 00). The integral over k® is the residue:

/ m+\/m2+k2m+\/m2 k’+(f)2< 1 >2
x
kD

—k® + e

2 (kM + ¢)? k) —ie
0. (F.17)
F.5 Diagrams g) and h)
This diagram is in both regimes
m+ Vm?2 + k2 1 1 m+ \/m?+ ¢
M)*  —k® tie k@ + ¢ +ie  2(g)?
~0(¢?), (F.18)

since ¢ — 0. So it cannot compensate the ¢~* terms.

The same holds true for the inverted diagram (diagram h)).
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F.6 Diagrams i) and j)

This diagram is

m+ +/m? + ¢?
2(gM)”
mevVmirk 1 mAym?+ (k+§)?
/k 2 (kM) —k@ +ie (g0 4 k1)
x (8O, G =K = @) + 5Ok = @ K@) + 59(G —K = 4. F)

-,

—sO(GF,—k — ) = sV (~k — ,q.F) = 5D (F, ~F - 4.0)) (F.19)

o fabcTI_ [ [Ta7 Tb] Tc]

In the hard regime we expand to the leading order in ¢:

1
o e*Cy(N? — 1)@2

T J§ (kW)2 (m +2vVm? + E2>

— 0(¢?) (F.20)

In the soft regime, again the leading order terms of the s terms cancel, thus the diagram
has to be

xe'=—=0(?), (F.21)

and therefore may contribute to the linear term of the potential, but it cannot compensate

the cubic terms.

The same holds true for the inverted diagram (diagram j)).
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F.7 Diagrams k), 1), m), and n)

7%

The loop only modifies the overall coefficient, not the momentum transfer, so this diagram

and all its permutations are of O(g™?).
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