
Numerical Solution of 3-D

Electromagnetic Problems in

Exploration Geophysics and its

Implementation on Massively

Parallel Computers

Jelena Koldan

Department of Computer Architecture

Universitat Politècnica de Catalunya

Thesis submitted for the degree of

Doctor of Philosophy in Computer Architecture

September, 2013

Supervisor: José Maŕıa Cela

mailto:jelena.koldan@bsc.es
http://docencia.ac.upc.edu/
http://www.upc.edu

Abstract

The growing significance, technical development and employment of electromagnetic

methods in exploration geophysics have led to the increasing need for reliable and fast

techniques of interpretation of 3-D electromagnetic data sets acquired in complex

geological environments. The first and most important step to creating an inversion

method is the development of a solver for the forward problem. In order to create an

efficient, reliable and practical 3-D electromagnetic inversion, it is necessary to have

a 3-D electromagnetic modelling code that is highly accurate, robust and very fast.

This thesis focuses precisely on this crucial and very demanding step to building a

3-D electromagnetic interpretation method.

The thesis presents as its main contribution a highly accurate, robust, very fast

and extremely scalable numerical method for 3-D electromagnetic modelling in geo-

physics that is based on finite elements and designed to run on massively parallel

computing platforms. Thanks to the fact that the finite-element approach supports

completely unstructured tetrahedral meshes as well as local mesh refinements, the

presented solver is able to represent complex geometries of subsurface structures

very precisely and thus improve the solution accuracy and avoid misleading arte-

facts in images. Consequently, it can be successfully used in geological environments

of arbitrary geometrical complexities. The parallel implementation of the method,

which is based on the domain decomposition and a hybrid MPI–OpenMP scheme,

has proved to be highly scalable – the achieved speed-up is close to the linear for

more than a thousand processors. As a result, the code is able to deal with ex-

tremely large problems, which may have hundreds of millions of degrees of freedom,

in a very efficient way. The importance of having this forward-problem solver lies

in the fact that it is now possible to create a 3-D electromagnetic inversion that

can deal with data obtained in extremely complex geological environments in a way

that is realistic for practical use in industry. So far, such imaging tools have not

been proposed due to a lack of efficient, parallel finite-element solutions as well as

the limitations of efficient solvers based on finite differences.

In addition, the thesis discusses physical, mathematical and numerical aspects and

challenges of 3-D electromagnetic modelling, which have been studied during my

research in order to properly design the presented software for electromagnetic field

simulations on 3-D areas of the Earth. Through this work, a physical problem for-

mulation based on the secondary Coulomb-gauged electromagnetic potentials has

been validated, proving that it can be successfully used with the standard nodal

finite-element method to give highly accurate numerical solutions. Also, this work

has shown that Krylov subspace iterative methods are the best solution for solv-

ing linear systems that arise after finite-element discretisation of the problem under

consideration. More precisely, it has been discovered empirically that the best it-

erative method for this kind of problems is biconjugate gradient stabilised with an

elaborate preconditioner. Since most commonly used preconditioners proved to be

either unable to improve the convergence of the implemented solvers to the desired

extent, or impractical in the parallel context, I have proposed a preconditioning

technique for Krylov methods that is based on algebraic multigrid. Tests for vari-

ous problems with different conductivity structures and characteristics have shown

that the new preconditioner greatly improves the convergence of different Krylov

subspace methods, even in the most difficult situations, which significantly reduces

the total execution time of the program and improves the solution quality. Fur-

thermore, the preconditioner is very practical for parallel implementation. Finally,

through this work, it has been concluded that there are not any restrictions in em-

ploying classical parallel programming models, MPI and OpenMP, for parallelisation

of the presented finite-element solver. Moreover, these programming models have

proved to be enough to provide an excellent scalability for it, as shown by different

large-scale tests.

Keywords: high-performance computing, parallel programming, 3-D electromag-

netic modelling, finite element, preconditioning, algebraic multigrid

To my parents.

Acknowledgements

First of all, I would like to thank my thesis advisor, José Maŕıa Cela, for accepting

me in his team in Barcelona Supercomputing Center and for proposing an inspir-

ing and exciting research path, along which he has supported me with patience and

understanding, as well as with complete readiness to share his broad knowledge.

I would also like to thank all my colleagues and office mates from BSC–Repsol

Research Center, who are not only great co-workers, but also wonderful people, for

all the help with different aspects of my work, as well as for creating a relaxed, pleas-

ant and cheerful working environment in the office 302 in Nexus I. I am especially

grateful to Josep de la Puente, who appeared just in time to significantly facilitate

my research, for sharing his knowledge as well as his clear and bright insights and,

maybe even more, for simply being always there for an inspiring discussion. Also,

he is the one of few people who patiently and thoroughly red my articles as well as

this thesis and I greatly appreciate his useful comments and ideas that helped me to

improve all my writings. I am also thankful to Vladimir Puzyrev for helping me a lot

in the past few years by working on the same project and for sharing with me all ups

and downs of the working process (and a few musical concerts, as well), Félix Rubio

Dalmau and Albert Farres for always being ready to save me from my occasional

struggles with computers and for being very good friends during all these years in

Barcelona, as well as Mauricio Hanzich, Jean Kormann, Oscar Peredo, Miguel Fer-

rer, Natalia Gutiérrez, Geńıs Aguilar and Juan Esteban Rodŕıguez for being such

a nice team. Here, I would also like to thank Repsol for financially supporting the

research whose result is the presented thesis.

Also, I am very thankful to all my colleagues from Computer Applications in

Science and Engineering department of Barcelona Supercomputing Center that

supported me during my research and shared with me their insight and expertise

on different aspects of the topic. I am especially grateful to Guillaume Houzeaux

for finding the time in his incredibly busy daily schedule to help me to cope with

the Alya system and Xavie Sáez for his valuable insights into parallelisation meth-

ods and issues as well as for being a great friend that is always ready to explore

different artistic and cultural events. I would also like to acknowledge all other

members of Barcelona Supercomputing Center that contributed in different ways

to my academic life in Barcelona. Here, above all, I have to thank Mateo Valero for

accepting me six years ago into this wonderful, stimulating and vibrant environment

and for giving me a chance to take up this exciting and life-changing academic jour-

ney. However, none of this would have happened if there had not been for Professor

Veljko Milutinović from University of Belgrade, who believed in me enough to give

me his recommendation which opened me the door to this new world of incredible

opportunities. Also, I would like to acknowledge former and current members of

the Serbian community in BSC (which is not small) that helped me to overcome

numerous practical difficulties that foreign students normally face as well as to feel

less homesick, thanks to which I was able to primarily focus on my research. Espe-

cially, I would like to thank Nikola Marković, Vesna Nowack, Ana Jokanović, Maja

Etinski, Srdjan Stipić and all Vladimirs for helping me at different points of my

academic and non-academic life in Barcelona to overcome some difficult times and

to find a way to carry on.

Outside BSC, there are people from other academic communities that I would like

to mention. First, I would like to thank Xavier Garćıa from Barcelona Center for

Subsurface Imaging (Barcelona-CSI) for sharing his knowledge of geophysical ex-

plorations with electromagnetic methods and for introducing me to the community

of electromagnetic geophysicists at the unforgettable workshop on magnetotelluric

3-D inversion, held in Dublin in March 2011, at which I have made a lot of valu-

able contacts, learned a lot and found inspiration to continue with my research, In

May 2012, I visited the leading scientist in the community, Gregory Newman, and

his famous group at the Geophysics Department in the Earth Sciences Division of

Lawrence Berkeley National Laboratory, Berkeley, CA, USA. I am extremely grate-

ful to Dr. Newman for his willingness to be my host and to share his incredible

knowledge of the topic. Also, I would like to express deep gratitude to Evan Um,

a great scientist and a wonderful person, for agreeing to share his office with me

during my visit as well as for helping me to improve my work by sharing his broad

knowledge and experience with unique patience and kindness.

Barcelona is a vibrant and fascinating city with many opportunities for young people.

Therefore, being a PhD student in it is both exciting and challenging. Luckily, I have

managed to dedicate myself to my research without losing too much of experiencing

life outside the office. I would like to thank Irina Blagojević, Jelena Lazarević,

Neda Kostandinović, Ognjen Obućina and Rade Stanojević for exploring this city

with me and for sharing some wonderful and unforgettable moments, as well as for

broadening my views by talking about other interesting topics from outside of the

worlds of computer architecture and geophysics. My greatest support and source

of strength and love in Barcelona during the past few years has been Vladimir

Gajinov, who shared with me the best and the worst moments and who helped me

to reorganise my priorities and to focus more efficiently on my research. For all of

that, and much more, I am deeply grateful to him.

I would also like to thank my whole wonderful family and all my friends in Serbia

and other places outside Barcelona that stayed close to me despite physical dis-

tances between us. Here, I would like to especially thank Sonja Veselinović, Tatjana

Dosković, Ljiljana Popović, Andjelija Malenčić, Dušica Čolović, Vesna Babić, Ana

Ljubojević, Maja Krneta, Tamara Tošić, Milica Paut, Bojana Vujin, Mina Ivović,

Sandra Knežević, Slavko i Danica Ivović, Maja i Mara Graorinov for regularly be-

ing on Skype or writing mails, as well as for always finding the time to meet me

whenever we found ourselves in the same city. Their friendship and support in every

situation is my most valuable non-academic achievement that I am extremely proud

of. Finally, I owe endless gratitude to my parents, my father Milenko and my mother

Desanka, as well as my aunt Jadranka Ivović and grandmother Ljubinka Koldan,

who loved me enough to let me go and who have been a priceless source of love,

strength and happiness that has always been there for me unconditionally.

Contents

Preface xii

1 Electromagnetic Modelling in Geophysics 1

1.1 3-D Electromagnetic Inversion . 4

1.2 3-D Electromagnetic Modelling . 6

1.2.1 Fundamental Electromagnetism . 7

1.2.2 Physical Problem in Exploration Geophysics 12

1.2.3 Numerical Solution . 13

2 Numerical Method for 3-D Electromagnetic Modelling 18

2.1 Physical Problem Formulation . 20

2.2 Finite-Element Analysis . 25

2.3 Iterative Solvers . 37

2.3.1 Krylov Subspace Methods . 38

2.4 Algebraic Multigrid . 41

2.4.1 Multigrid . 41

2.4.2 Algebraic Multigrid as a Solver . 44

2.5 Algebraic Multigrid Applied as Preconditioning 46

3 Parallel Implementation 49

3.1 Mesh Partitioning . 51

3.2 MPI Communication . 57

3.2.1 Synchronous Communication . 57

3.2.2 Asynchronous Communication . 62

3.3 Hybrid Parallelisation using OpenMP . 63

vii

4 Evaluation and Discussion 66

4.1 Accuracy Tests . 66

4.1.1 Two-Layer Model . 66

4.1.2 Flat Seabed Model . 70

4.1.3 Canonical Disc Model . 70

4.1.4 Complex Real-Life Synthetic Model . 72

4.2 Convergence of the Solvers . 76

4.2.1 Discussion . 79

4.3 AMG Evaluation . 79

4.3.1 Two-Layer Model . 80

4.3.2 Seven-Material Model . 83

4.3.3 Flat Seabed Model . 85

4.3.4 Tests for Insensitivity to the Maximal Size Ratio Between the Grid Elements 87

4.3.5 Tests for Grid-Independent Rate of Convergence 90

4.3.6 Complex Real-Life Synthetic Model . 91

4.3.7 Discussion . 91

4.4 Scalability Tests . 93

4.4.1 Scalability Using MPI Communication . 93

4.4.2 Scalability Using Hybrid MPI–OpenMP Scheme 100

4.4.3 Discussion . 102

5 Conclusions and Future Work 105

5.1 Conclusions . 105

5.2 Future Work . 107

5.3 Contributions of the thesis . 108

6 Publications on the Topic 110

References 119

viii

List of Figures

1.1 Marine EM . 3

2.1 Alya system . 20

2.2 Mesh slices . 30

2.3 Coarse Grid Correction . 43

3.1 Hybrid parallel scheme . 50

3.2 Element graph strategies . 52

3.3 Communication scheduling . 53

3.4 Decomposition of a domain into two sub-domains. 58

3.5 Local node numbering . 62

4.1 Two-layer model . 67

4.2 Comparison with the analytical solution I . 68

4.3 Comparison with the analytical solution II . 68

4.4 Comparison between results for unstructured and structured meshes 69

4.5 Results comparison for the flat seabed model . 71

4.6 Canonical Disk Model . 73

4.7 Results comparison for the canonical disc model 74

4.8 Complex real-life synthetic model . 75

4.9 Results for the complex real-life synthetic model 76

4.10 Convergence rate of BiCGStab and QMR solvers for the canonical disk model . . 77

4.11 Convergence rate of BiCGStab and QMR solvers for the real-life model 78

4.12 Convergence for the two-layer model.a . 82

4.13 Convergence for the two-layer model.b . 84

4.14 Seven-Material Model . 84

4.15 Convergence for the seven-material model . 85

4.16 Convergence for the flat seabed model . 86

ix

4.17 Convergence for the canonical disc model.a . 88

4.18 Convergence for the canonical disc model.b . 89

4.19 Convergence for the complex real-life synthetic model 92

4.20 Traces of processes with synchronous MPI communication 96

4.21 Scalability tests with synchronous and asynchronous MPI communication 98

4.22 Scalability test of the hybrid MPI–OpenMP scheme 101

4.23 Scalability test of LU factorisation with OpenMP 102

4.24 OpenMP thread traces for LU factorisation . 103

x

List of Tables

4.1 Results for the two-layer model with the small conductivity contrast. 81

4.2 Results for the flat seabed model. 87

4.3 Results for the quasi-uniform mesh for the canonical disk model. 88

4.4 Convergence and execution time for different refinement levels of the mesh used for the

two-layer model. 90

4.5 Convergence and execution time for different refinement levels of the mesh used for the

flat seabed model. 91

4.6 Convergence and execution time for different refinement levels of the mesh used for the

canonical disc model. 91

4.7 Execution analysis when using 2 CPUs and synchronous MPI 97

4.8 Execution analysis when using 4 CPUs and synchronous MPI 97

4.9 Execution analysis when using 8 CPUs and synchronous MPI 97

4.10 Execution analysis when using 16 CPUs and synchronous MPI 97

4.11 Execution analysis when using 32 CPUs and synchronous MPI 97

4.12 Execution analysis when using 2 CPUs and asynchronous MPI 99

4.13 Execution analysis when using 4 CPUs and asynchronous MPI 99

4.14 Execution analysis when using 8 CPUs and asynchronous MPI 99

4.15 Execution analysis when using 16 CPUs and asynchronous MPI 100

4.16 Execution analysis when using 32 CPUs and asynchronous MPI 100

xi

Preface

The presented PhD thesis is the result of the research that has been carried out at the Repsol-

BSC Research Center. The objective of the thesis is the development of an efficient, robust

and reliable numerical method for 3-D electromagnetic modelling in exploration geophysics.

Electromagnetic (EM) methods, such as magnetotellurics (MT) and controlled-source EM

(CSEM) methods, have been increasingly used for oil and gas exploration thanks to their grow-

ing significance and technical advancement. The spreading employment of EM methods in

exploration geophysics have led to the increasing need for reliable and fast techniques of inter-

pretation of 3-D EM data sets acquired in extremely complex geological environments. However,

due to the fact that industrial large-scale surveys need to collect immense amounts of data in

order to obtain realistic subsurface images of huge Earth areas, the solution of the 3-D EM

inverse problem is immensely challenging. Even with the very high level of modern computing

technology, the proper numerical solution of this problem still remains a computationally ex-

tremely demanding task. Consequently, there are very few efficient solutions to this problem

and only one practical, highly efficient, fully parallel 3-D CSEM inversion code, developed by

Newman & Alumbaugh (1997). Because of this, the industry normally employs 2.5-D, 2-D, or

even 1-D, programs to interpret responses arising from 3-D geologies, which naturally leads to

incomplete or false interpretations. Moreover, most of the existing solutions, including the one

of Newman & Alumbaugh (1997), are based on a numerical technique that cannot accurately

take into account complex subsurface geometries, which can lead to misinterpretations in many

situations. A lack of practical inversion schemes, due to enormously high computational re-

quirements, as well as the limitations of the most commonly used numerical approach, make

the main obstacles to wider and more frequent industrial applications of EM methods. This

was the motivation for Repsol to initiate and financially support the development of very fast

and reliable CSEM imaging tools that can deal with any situation faced in practical use.

The first and most important step to creating an inversion method is the development

of a solver for the forward problem. Namely, one of the reasons for the huge computational

demands of 3-D EM inversion is the expensive solution of the 3-D EM forward problem which

xii

is, in addition, solved many times within inversion algorithms to simulate the EM field. The

forward-problem solution is expensive because usually it is necessary to calculate hundreds of

millions of field unknowns. Also, normally it is needed to solve thousands forward problems

within an inversion algorithm just for one imaging experiment. It is clear that in order to

create an efficient, reliable and practical interpretation method for 3-D EM data acquired in

increasingly complex geological environments, it is necessary to have an accurate, very fast and

robust 3-D modelling. As already said, this thesis focuses precisely on this extremely important

and demanding step to building a 3-D EM interpretation method.

3-D EM modelling, i.e. EM field simulation on a 3-D area of the Earth, involves numerical

solution of the diffusive Maxwell’s equations in heterogeneous anisotropic electrically conductive

media. In order to create this solution, the first important decision that has to be made is the

choice of a numerical method for discretisation of the original continuous problem described by

partial differential equations. The most popular approach is finite difference (FD) and most of

the existing solvers are based on it. However, this method supports only structured rectangular

grids which can be a big limitation in many situations – e.g. complex geological structures that

affect measurements cannot be accurately modelled, which can lead to wrong interpretations.

Also, local grid refinements are not supported and, consequently, it is not possible to have

a finer mesh at some place without increasing the overall computational requirements. The

alternative to FD is the finite-element (FE) approach. The main advantage of this method is

that is supports completely unstructured meshes and thus is able to take into account arbitrary

complex and irregular geometries more accurately than other techniques, which is important

to avoid misleading artefacts in images. Also, it allows local mesh refinements, which means

that it is possible to have small elements just in the places where a better resolution is required,

without increasing already huge computational demands. The problem with this method is that

its classical nodal form cannot be applied for the natural problem formulation in terms of the

vector EM-field functions. Therefore, some modifications of the method are necessary. Because

of this, most researchers focused on overcoming this obstacle in order to create an accurate

and reliable FE EM forward-problem solver, and much less effort has been put in the efficiency

improvement. Consequently, there are no truly efficient, fast, parallel FE solutions that would

make 3-D FE inversion more realistic for practical use in industry. As previously commented,

the only completely parallel and very fast and efficient solver is based on finite differences. In

order to be able to accurately deal with arbitrary subsurface geometries, and not to be limited

by structured rectangular grids, I have decided to create a numerical method for 3-D CSEM

modelling based on finite elements. Due to the fact that the main purpose of this solver is to

be a critical part of an inversion method, the main focus of my research has been to find the

xiii

most efficient elements for the final numerical scheme as well as to improve the efficiency of that

scheme by its implementation on massively parallel computing platforms.

Having decided to use the FE approach, I have had to deal with the challenge that arises

from the necessity to modify the standard nodal version of the method. Therefore, my next task

has been to find a proper modification. Considering that I have decided not to modify the node-

based elements themselves, I have had to modify the formulation of the physical problem and

to use a formulation based on the so-called secondary Coulomb-gauged EM potentials. Having

chosen the numerical method and the proper problem formulation, the next step has been to deal

with the resultant system of linear equations that is a product of the discretisation of the original

problem by finite elements. Solution of this system is the most time-consuming part of the code

(∼ 90% of the overall execution time) and therefore demands a special attention. Obviously, it is

critical to find the most appropriate and most efficient numerical solver. It is well known that for

large-scale problems, such as the one under consideration, the best choice are iterative methods

because of their low memory requirements and more efficient parallelisation. The problem with

this group of linear solvers is that they are not generic and that there are no mathematical rules

that can tell us which particular method is the best choice for the problem. Therefore, it is

necessary to implement and test several different options in order to discover the most suitable

one. The most commonly used iterative solvers are Krylov subspace methods since they are

generally very efficient. Therefore, I have implemented three different Krylov methods that are

normally used for the problems of the same type as the one under consideration. The tests have

shown that the best choice for this problem is biconjugate gradient stabilised. However, Krylov

methods are known to converge quite badly in real large-scale applications. Furthermore, in this

particular problem, the convergence is normally very poor due to high conductivity contrasts in

models and big maximal size ratios of unstructured meshes. Therefore, it has been necessary to

add a preconditioner that improves the convergence of the solver, so that it can reach prescribed

precisions. Since tests have shown that usually employed preconditioners do not help in most

situations, I have had to find a more elaborate one in order to enable convergence of the solver

to needed precisions. In addition, this preconditioner has had to be practical in the parallel

context. During this research, I came across the idea that algebraic multigrid (AMG) can be a

very good preconditioner. Hence, I have implemented one simplified version of AMG that has

proved to be a very powerful preconditioning scheme able to improve the convergence of the

solver even in most difficult cases. This particular implementation has never been used in this

kind of applications. Also, it has proved to be effective within the parallel implementation of

the code.

xiv

Very efficient way to deal with immense computational demands that appear in practical

applications is to design the numerical scheme for running on massively parallel computers.

Since this has not been done before for 3-D CSEM solvers based on finite elements, I have

started my research with the classical parallel programming models – MPI and OpenMP. I have

developed a hybrid MPI–OpenMP parallel scheme based on the domain decomposition. The

results of large-scale tests have shown that this parallel implementation of the method is highly

scalable. Based on these results, I have concluded that these classical models work very well

for this kind of problems and that there is no need to search for other parallel solutions.

Organisation of the thesis

Chapter 1 of the thesis first discusses the importance of 3-D EM inversion in modern explo-

ration geophysics, as well as the importance of solving 3-D EM forward problem as efficiently as

possible. Then, starting from the fundamental EM theory, the physical aspect of 3-D EM mod-

elling, referred to as the physical problem in induction geophysics, is introduced. It is important

to emphasise that the thesis deals with 3-D EM problems that appear in real geophysical ex-

plorations. After this, I discuss general approach to numerical solution of this problem where

state-of-the-art numerical techniques used in the latest EM forward-problem numerical solvers

are presented.

In Chapter 2, a parallel nodal finite-element solver that I have developed is described. First,

I present a potential-based problem formulation that is used and validated in this work. Then,

I go step-by-step through the development process describing all the numerical components

that comprise the solver. This chapter also presents a novel elaborate preconditioning tech-

nique based on algebraic multigrid (AMG) which has been implemented in order to improve

convergence of Krylov subspace methods and thus increase accuracy and efficiency of the whole

numerical scheme.

Chapter 3 explains the parallel implementation of the presented numerical method. The

parallelisation strategy is based on the domain decomposition (mesh partitioning) technique

using the Message Passing Interface (MPI) programming paradigm for communication among

computational units. I have implemented both synchronous and asynchronous versions of MPI

communication. In addition to this, OpenMP is used for parallelisation inside of each compu-

tational unit. In this way I have created a hybrid MPI–OpenMP parallel scheme.

Chapter 4 presents results of different tests that have been carried out in order to evaluate

the presented numerical solver. First, I confirm its accuracy through a set of simulations on

different synthetic Earth models. I remark that I could not have used real data in this thesis

xv

since they are strictly confidential property of the company. Also, I have confirmed that the

method can be used for modelling different controlled-source and magnetotelluric problems

in anisotropic media. Due to the fact that it supports completely unstructured tetrahedral

meshes as well as mesh refinement, it is possible to represent complex geological structures very

precisely and thus improve the solution accuracy. Next, the AMG preconditioning scheme has

been validated through variety of tests. These tests have proved that the AMG preconditioner

improves convergence of Krylov subspace methods and increases both accuracy and efficiency

of the whole numerical scheme to a great extent. Finally, scalability tests on massively parallel

computers have shown that the code is highly scalable – the achieved speed-up is close to the

linear for more than a thousand processors.

In Chapter 5, I conclude that the presented finite-element solver is numerically stable and

gives highly accurate solutions. Also, its efficiency has been improved to a great extent by

designing the algorithm to run on massively parallel computing platforms and by developing

a new elaborate preconditioning scheme based on powerful algebraic multigrid. In this way,

I have developed an accurate, robust, highly scalable and very fast code that can cope with

extremely large problems, which may have hundreds of millions of degrees of freedom, in a very

efficient way. This chapter also discusses the future work that concerns the development of an

efficient and reliable 3-D EM inversion based on the described forward-problem solver.

Chapter 6 presents a list of publications on the topic.

xvi

Chapter 1

Electromagnetic Modelling in

Geophysics

Exploration geophysics is the applied branch of geophysics that uses various physical measure-

ments to obtain information about the subsurface of the Earth. By using surface methods,

geophysicists measure physical properties at the surface of the Earth in order to detect or infer

the presence and position of ore minerals, hydrocarbons, geothermal reservoirs, groundwater

reservoirs and other buried geological structures. The ultimate goal of a geophysical analysis, in

the context of geophysical exploration, is to build a constrained model of geology, lithology and

fluid properties based upon which commercial decisions about reservoir exploration, develop-

ment and management can be made. To achieve this, the Earth can be examined with a number

of tools, such as seismic methods, controlled-source electromagnetic methods, magnetotellurics,

well-logging, magnetic methods, gravity methods, etc. Each of these techniques obtains a cor-

responding data type that must be interpreted (inverted) within an integrated framework, so

that the resultant Earth model is consistent with all the data used in its construction.

Among all the above-mentioned methods, seismic ones have a special place. It is widely

accepted that seismic techniques are extremely powerful and generally applicable. They have

become the hydrocarbon industries’ standard method for obtaining high-resolution images of

structure and stratigraphy which can guide exploration, appraisal and development projects.

However, there are some situations in which seismic data fail to answer geophysical questions

of interest. In those cases, complementary sources of data must be used to obtain the required

information. For example, seismic methods are very effective at mapping geological reservoir

formations. On the other hand, seismic properties have extremely poor sensitivity to changes

in the type of fluids, such as brine, water, oil and gas. Because of this, in many situations it

is difficult, or even impossible, to extract information about fluids trapped in the subsurface

1

from seismic data. The fact that the established seismic methods are not good at recognising

different types of reservoir fluids contained in rock pores has encouraged the development of

new geophysical techniques that can be combined with them in order to image fluids directly. A

range of techniques, which have appeared recently and have shown a considerable potential, use

electromagnetic (EM) waves to map variations in the subsurface electric conductivity, σ (S/m),

or its reciprocal, 1/σ (Ωm), called electric resistivity, ρ, because conductivity/resistivity mea-

surements show a high degree of sensitivity to the properties and distribution of fluids in a

structure. For example, the resistivity of an oil-saturated region of a reservoir can be 1–2 or-

ders of magnitude higher than the resistivity of the surrounding water-saturated sediments.

Therefore, an increase in resistivity, in comparison with the resistivity values of the surrounding

geological strata, may directly indicate potential hydrocarbon reservoirs. If we take into account

this significant contrast between the resistivities of hydrocarbons and fluids like brine or water,

as well as the fact that EM methods allow remote mapping of the subsurface electric conduc-

tivity or resistivity, it is clear that these methods are very useful and desirable for detecting

hydrocarbon locations. In addition, the conductivity/resistivity information from EM surveys

is complementary to seismic data and can improve constraints on the fluid properties when

used in an integrated geophysical interpretation. This is just an example of why EM techniques

have come to exploration geophysics to stay, and furthermore, of why they have been gaining

increasing significance over the past decades.

In general, the use of EM exploration methods has been motivated by their ability to map

electric conductivity, dielectric permittivity and magnetic permeability. The knowledge of these

EM properties is of great importance since they can be used not only in oil and gas exploration,

but also in hydrological modelling, chemical and nuclear waste site evaluations, reservoir charac-

terisation, as well as mineral exploration. Nowadays, there is a great diversity of EM techniques,

each of which has some primary field of application. However, many of them can be used in a

considerably wide range of different fields. For example, EM mapping (Cheesman et al., 1987),

on land, produces a resistivity map which can detect boundaries between different types of rocks

and directly identify local three-dimensional targets, such as base-metal mineral deposits, which

are much more conductive than the host rocks in which they are found. This method is also

used as a tool in the detection of sub-sea permafrost, as well as as a supplementary technique

to seismic methods in offshore oil exploration. Furthermore, physical properties like porosity,

bulk density, water content and compressional wave velocity may be estimated from a profile of

the subsurface electric conductivity with depth.

The marine controlled-source electromagnetic (CSEM) method is nowadays a well-known

geophysical exploration tool in the offshore environment and a commonplace in industry (e.g.

2

Constable & Srnka, 2007; Li & Key, 2007; Constable, 2010; Weitemeyer et al., 2010). Marine

CSEM, also referred to as seabed logging (Eidesmo et al., 2002), explores the sub-seabed con-

ductivity structure by emitting a low-frequency EM wave from a high-powered source (normally

an electric dipole) which is connected to a vessel and towed close to the seabed. The trans-

mitted wave (primary field) interacts with the electrically conductive Earth and induces eddy

currents that become sources of a secondary EM field. The two fields, the primary and the

secondary one, add up to a resultant field, which is measured by remote receivers placed on the

seabed. Since the secondary field at low frequencies, for which displacement currents are neg-

ligible, depends primarily on the electric conductivity distribution of the ground, it is possible

to detect thin resistive layers beneath the seabed by studying the received signal. Operating

frequencies of transmitters in CSEM may range between 0.1 and 10 Hz, and the choice depends

on the dimensions of a model. In most studies, typical frequencies vary from 0.25 to 1 Hz, which

means that for source-receiver offsets of 10–12 km, the penetration depth of the method can

extend to several kilometres below the seabed (Andréis & MacGregor, 2008). Moreover, CSEM

is able to detect resistive layers that are very thin – only a few tens of meters thick. Fig. 1.1

shows the marine controlled-source electromagnetic method in combination with the marine

magnetotelluric (MT) method. The difference between CSEM and MT is that MT techniques

Figure 1.1: Marine EM.

use natural, airborne, transmitters instead of active, man-made, sources employed in CSEM.

Namely, in MT, the source origin is in the ionosphere and the input wave is a plane wave. Also,

CSEM is more sensitive to resistors while MT is sensitive to conductors. The marine CSEM

3

method has long been used to study the electric conductivity of the oceanic crust and upper

mantle. However, more recently, an intense commercial interest has arisen to apply the method

to detect offshore hydrocarbon reservoirs. This is due to the fact that CSEM works best in

deep water, where drilling is especially expensive. Also, the method has proven effective for

characterisation of gas hydrate-bearing shallow sediments. Moreover, during the last decade,

CSEM has been considered as an important tool for reducing ambiguities in data interpretation

and reducing the exploratory risk. The academic and industrial development of the method is

discussed in the review paper by Edwards (2005) and the recent paper by Key (2012).

1.1 3-D Electromagnetic Inversion

The growing significance of EM methods, such as CSEM and MT, has led to huge improvements

in both instrumentation and data acquisition techniques and thus to the increasing employment

of these methods in practice. With new and improved acquisition systems, it has become possi-

ble to acquire large amounts of high-quality EM data in extremely complex geological environ-

ments. Concurrently with this advance in data acquisition technology, a significant progress has

been made in data processing capabilities, as well. Thanks to all these advancements, EM sur-

veys are now designed to acquire data along several parallel profiles rather than along only one

or two like in traditional approaches. The use of multiple lines leads to much better delineation

of 3-D geological structures.

On the other hand, in parallel with these developments of EM methods, computer tech-

nology has undergone huge improvements of its own, especially in terms of speed and memory

capabilities. This has allowed the development of algorithms that more accurately take into

account some of the multi-dimensionality of the EM interpretation problem. For example, two-

dimensional EM inversion schemes that 10 years ago required a Cray computer for reasonable

computation times, now can finish execution in a few minutes up to an hour on standard desk-

top workstations and PCs. Also, computationally efficient algorithms have been developed that

either make subtle approximations to the 2-D problem (Smith & Booker, 1991; Siripunvaraporn

& Egbert, 2000) or use efficient iterative gradient algorithms (Rodi & Mackie, 2001) to produce

2-D images of geological structures.

In 3-D environments, 2-D interpretation of data is a standard practice due to its short

processing times as well as the fact that there are very few efficient 3-D EM modelling and

inversion schemes. However, in many 3-D cases, the use of 2-D interpretation schemes may give

images in which appear some artefacts that could lead to misinterpretation. Therefore, there

is a real and increasing need for reliable and fast techniques of interpretation of 3-D EM data

4

sets acquired in complex geological environments. In other words, it is extremely important to

develop efficient and robust 3-D inversion algorithms. However, EM interpretation process, also

referred to as EM inversion, is immensely challenging. Even with the very high level of modern

computing technology, the proper numerical solution of the 3-D inverse problem still remains a

very difficult and computationally extremely demanding task for several reasons. And precisely

those enormously high computational requirements make the main obstacle to wider and more

frequent industrial applications of EM methods.

One of the reasons for the huge computational demands of 3-D EM inversion is the expen-

sive solution of the 3-D EM modelling problem, which is, in addition, solved many times within

inversion algorithms to simulate the EM field. This is a consequence of the fact that, nowadays,

geophysical exploration with EM methods extend to extremely complex geological environments,

which requires a modelling solver to be able to correctly simulate the responses arising from re-

alistic 3-D geologies. However, the modelling grids designed to approximate large-scale complex

geologies, which include structures with complicated shapes and big contrasts in conductivities,

are usually enormous, and hence computationally too expensive to allow fast forward simula-

tions (normally, for realistic, smooth and stable 3-D reconstructions, it is necessary to solve up

to hundreds of millions of field unknowns in the forward problem). Moreover, in order to obtain

realistic subsurface images, which have a sufficient level of resolution and detail, of huge Earth

areas, industrial large-scale surveys need to collect vast amounts of data. Those huge data sets

require, in addition to massive modelling grids, a large number of forward-problem solutions in

an iterative inversion scheme. For example, present-day exploration with the CSEM technology

in search for hydrocarbons in highly complex and subtle offshore geological environments need

to employ up to hundreds of transmitter-receivers arrays, which operate at different frequencies

and have a spatial coverage of more than 1000 km2 (Commer et al., 2008). Also, industrial

CSEM data is usually characterised by a large dynamic range, which can reach more than ten

orders of magnitude. This requires the ability to analyse it in a self-consistent manner that

incorporates all structures not only on the reservoir scale of tens of metres, but also on the

geological basin scale of tens of kilometres. Besides this, it is necessary to include salt domes,

detailed bathymetry and other 3-D peripheral geology structures that can influence the mea-

surements. Typically, industrial CSEM data sets are so enormous that their 3-D interpretation

requires thousands of solutions to the forward problem for just one imaging experiment. Clearly,

the ability to solve the forward problem as efficiently as possible is essential to the strategies

for solving the 3-D EM inverse problem. Taking everything into account, the conclusion is that

3-D EM inversion needs a fast, accurate and reliable 3-D EM forward-problem solver in order

to improve its own efficiency and thus to be realistic for practical use in industry.

5

Consequently, great strides have been made in geophysical 3-D EM modelling using different

numerical methods. For example, approximate forward schemes (e.g. Zhdanov et al., 2000;

Habashy, 2001; Tseng et al., 2003; Zhang, 2003) may deliver a rapid solution of the inverse

problem, especially for models with low conductivity contrasts, but the general reliability and

accuracy of these solutions are still open to question. Also, there are quite efficient forward

solutions based on staggered 3-D finite differences (Yee, 1966; Druskin & Knizhnerman, 1994;

Smith, 1996; Wang & Hohmann, 1993; Newman, 1995). All of them employ some kind of

staggered finite-difference grid to calculate EM fields in both the time and/or frequency domain.

Nevertheless, even with these computationally efficient solutions, the complexity of models

that can be simulated on traditional serial computers is limited by the flop rate and memory

of their processors. Therefore, implementation of a 3-D inversion algorithm that uses these

solutions is not practical on such machines. However, with the recent development in massively-

parallel computing platforms, the limitations posed by serial computers have been disappearing.

This is due to the fact that the rate at which simulations can be carried out is dramatically

increased since thousands of processors can operate on the problem simultaneously. Thanks

to this tremendous computational efficiency, it is possible to propose an efficient and practical

solution of the 3-D inverse problem. Newman & Alumbaugh (1997) describe so far the only

massively parallel, and thus truly efficient and practical, 3-D CSEM inversion, which uses

parallel finite-difference forward-modelling code presented by Alumbaugh et al. (1996). This

inversion scheme has been successfully applied to various real data (Alumbaugh & Newman,

1997; Commer et al., 2008) which have been inverted in reasonable times. These works have also

reported the benefits from using massively-parallel supercomputers for 3-D imaging experiments.

1.2 3-D Electromagnetic Modelling

3-D EM modelling, i.e. EM field simulation on a 3-D area of the Earth, is used today not only

as an engine for 3-D EM inversion, but also for verification of hypothetical 3-D conductivity

models constructed using various approaches and as an adequate tool for various feasibility

studies. Some well-known EM methods used in exploration geophysics, such as CSEM and MT,

highly depend on a good understanding of EM responses in arbitrary 3-D geological settings.

In order to improve this understanding, it is essential to be able to model EM induction in

random 3-D electrically conductive media. In other words, it is necessary to have a tool that

can accurately and efficiently determine EM responses to CSEM or plane-wave excitations of a

3-D electrically conductive inhomogeneous anisotropic area of the Earth.

6

1.2.1 Fundamental Electromagnetism

In order to comprehend the bases and interpretative techniques of EM prospecting methods, it

is necessary to have some knowledge of EM theory (Nabighian, 1987).

Maxwell’s Equations in the Time Domain

Experiments have showed that all EM phenomena are governed by empirical Maxwell’s equa-

tions, which are uncoupled first-order linear partial differential equations (PDEs).

An EM field may be defined as a domain of four vector functions:

e (V/m) - electric field intensity,

b (Wb/m2 or Tesla) - magnetic induction,

d (C/m2) - dielectric displacement,

h (A/m) - magnetic field intensity.

As already mentioned, all EM phenomena obey Maxwell’s equations whose form in the time

domain is:

∇× e +
∂b

∂t
= 0, (1.1)

∇× h− ∂d

∂t
= j, (1.2)

∇ · b = 0, (1.3)

∇ · d = ρ, (1.4)

where j (A/m2) is electric current density and ρ (C/m3) is electric charge density. This is the

conventional general form of Maxwell’s equations.

Constitutive Relations

Maxwell’s equations are uncoupled differential equations of five vector functions: e,b,h,d and

j. However, these equations can be coupled by empirical constitutive relations which reduce

the number of basic vector field functions from five to two. The form of these relations in the

frequency domain is:

D = ε̃(ω,E, r, t, T, P, . . .) ·E, (1.5)

7

B = µ̃(ω,H, r, t, T, P, . . .) ·H, (1.6)

J = σ̃(ω,E, r, t, T, P, . . .) ·E, (1.7)

where tensors ε̃, µ̃ and σ̃ describe, respectively, dielectric permittivity, magnetic permeability

and electric conductivity as functions of angular frequency, ω, electric field strength, E, or

magnetic induction, B, position, r, time, t, temperature, T , and pressure, P . In general case,

each of these three tensors is complex and, consequently, the phases of D and E, of H and B

and of J and E are different.

It is very important to carefully choose the form of the constitutive relations that is suitable

to describe the Earth in the problem that we want to solve. For example, in problems that

arise in CSEM, it is normally assumed that the Earth is heterogeneous, anisotropic and with

electromagnetic parameters that are independent of temperature, time and pressure.

Maxwell’s Equations in the Frequency Domain

Maxwell’s equations in the frequency domain are obtained by applying one-dimensional Fourier

transformation on equations (1.1) and (1.2) and by using constitutive relations (1.5), (1.7) and

(1.6):

∇×E− iωµ̃H = 0, (1.8)

∇×H− (σ̃ − iωε̃)E = JS , (1.9)

where ω is the angular frequency of the field with assumed time-dependence of the form: e−iωt,

JS is the vector of the current density of a source, σ̃E is the ohmic conduction term and iωε̃E

is the term that describes displacement currents.

Potential Representations and Gauge Transformations

Many boundary-value problems can be solved in terms of the vector electric and magnetic field

intensity functions. However, a boundary-value problem is often difficult to solve in terms of the

vector field functions and is easier to solve using vector and/or scalar potential functions from

which the vector field functions may be derived. Several different sets of potential functions

appear in the literature.

Taking into account the fact that the divergence of the curl equals zero, ∇ · (∇ ×A) = 0,

equation (1.3) can be interpreted in such a way that vector function b, which describes the

8

magnetic field, is considered to be the curl of some other vector function a and therefore can

be derived from it:

b = ∇× a. (1.10)

This new vector function a is called vector potential.

By inserting equation (1.10) into equation (1.1), we obtain:

∇× (e +
∂a

∂t
) = 0. (1.11)

Since the curl of the gradient is zero, ∇×∇φ = 0, vector e +
∂a

∂t
can be represented as some

gradient:

e +
∂a

∂t
= −∇φ, (1.12)

where scalar function φ is called scalar potential.

From equation (1.12) follows:

e = −
(
∇φ+

∂a

∂t

)
. (1.13)

Consequently, both e and b can be represented using some potentials a and φ.

For any choice of a and φ, Maxwell’s equations (1.1) and (1.3) are fulfilled. The identity

e = −
(
∇φ+

∂a

∂t

)
= −

[
∇(φ− ∂Ψ

∂t
) +

∂(a +∇Ψ)

∂t

]
(1.14)

shows that substitutions

φ→ φ′ = φ− ∂Ψ

∂t
(1.15)

and

a→ a′ = a +∇Ψ (1.16)

generate equivalent potentials φ′ and a′ for representation of e and b, where Ψ is an arbitrary

function. Also, ρ and j, given by Maxwell’s equations (1.2) and (1.4), remain unchanged by

the above transformation. In other words, potentials φ and a are not unique. However, the

values of these potentials are not important. The important thing is that when differentiated

according to Maxwell’s equations, they result in the right fields e and b. Choosing a value for φ

and a is called choosing a gauge, and a switch from one gauge to another, such as going from φ

and a to φ′ and a′, is called a gauge transformation with generating function Ψ. From what has

been stated above, it is clear that the above gauge transformation leaves e, b, j and ρ invariant

for an arbitrary function Ψ.

9

For a given set of densities ρ and j, it is necessary to show the existence of potentials φ and

a which fulfil Maxwell’s equations (1.2) and (1.4). Inserting representations (1.10) and (1.12)

into (1.2) yields:

∇×∇× a +
1

c2

(
∂2a

∂t2
+∇∂φ

∂t

)
= µj (1.17)

and due to ∇×∇× = ∇∇ · −∆, follows:

1

c2

∂2a

∂t2
−∆a +∇

(
∇ · a +

1

c2

∂φ

∂t

)
= µj. (1.18)

Analogously, by insertion of (1.12) into (1.4), we obtain:

−
(

∆φ+∇ · ∂a

∂t

)
=
ρ

ε
(1.19)

or

1

c2

∂2φ

∂t2
−∆φ−

∂
(
∇ · a + 1

c2
∂φ
∂t

)
∂t

=
ρ

ε
(1.20)

Finally, it can be checked that the application of the gauge transformation transforms (1.18)

and (1.20) into:
1

c2

∂2a′

∂t2
−∆a′ +∇

(
∇ · a′ + 1

c2

∂φ′

∂t

)
= µj (1.21)

and

1

c2

∂2φ′

∂t2
−∆φ′ −

∂
(
∇ · a′ + 1

c2
∂φ′

∂t

)
∂t

=
ρ

ε
, (1.22)

i.e. both equations are gauge invariant.

At this point, the existence of solutions φ and a of coupled differential equations (1.18) and

(1.20), for a given set of ρ and j, cannot be guaranteed. However, using the freedom of gauge

transformations it can be showed that the equations can be transformed in a decoupled system

that is solvable. This implies that equations (1.18) and (1.20) are solvable too.

Coulomb Gauge

As already mentioned, a problem in resolving equations (1.18) and (1.20) is their coupling.

One way of decoupling them is by introducing an additional condition:

∇ · a = 0, (1.23)

i.e. term ∇ · a in equation (1.20) has to be removed by applying an appropriate gauge transfor-

mation.

Since the gauge transformation performs the following:

∇ · a→ ∇ · a + ∆Ψ, (1.24)

10

it is merely necessary to choose a generating function Ψ as a solution of:

∆Ψ = −∇ · a. (1.25)

This gauge transformation transforms equation (1.20) into:

1

c2

∂2φ′

∂t2
−∆φ′ − 1

c2

∂2φ′

∂t2
=
ρ

ε
(1.26)

or

∆φ′ =
ρ

ε
, (1.27)

which is the Poisson equation with well-known integral solution.

Therefore, φ′ is now a known function for the other equation which can be rewritten as:

1

c2

∂2a′

∂t2
−∆a′ = µj∗, (1.28)

where j∗ = j− ε∇∂φ
∂t is a known function.

Again, solution of the above equation in integral form is known.

Boundary Conditions

Boundary conditions on the vector field functions can be obtained from the straight-forward

application of the integral form of Maxwell’s equations:

Normal J: the normal component, Jn, of J is continuous across the interface separating

medium 1 from medium 2, i.e:

Jn1 = Jn2 . (1.29)

Strictly speaking, this applies only to direct currents. However, it can be accepted completely

if displacement currents may be neglected, like, for example, in the case of frequencies up to

105 Hz in the Earth materials.

Normal B: the normal component, Bn, of B is continuous across the interface separating

medium 1 from medium 2, i.e:

Bn1 = Bn2 . (1.30)

Normal D: the normal component, Dn, of D is discontinuous across the interface separating

medium 1 from medium 2 due to accumulation of surface charges whose density is ρs, i.e:

Dn1 −Dn2 = ρs. (1.31)

11

Tangential E: the tangential component, Et, of E is continuous across the interface separat-

ing medium 1 from medium 2, i.e:

Et1 = Et2 . (1.32)

Tangential H: the tangential component, Ht, of H is continuous across the interface sepa-

rating medium 1 from medium 2 if there are no surface currents, i.e:

Ht1 = Ht2 , Js = 0. (1.33)

1.2.2 Physical Problem in Exploration Geophysics

EM problems that arise in geophysical explorations when using methods like CSEM and MT

generally deal with a resultant EM field which appears as a response of the electrically conductive

Earth to an impressed (primary) field generated by a source. As already explained, the primary

field gives rise to a secondary distribution of charges and currents and, hence, to a secondary

field, and the resultant field is the sum of the primary and the secondary field. Each of the

fields must satisfy Maxwell’s equations, or equations derived from them, as well as appropriate

conditions applied at boundaries between homogeneous regions involved in the problem, e.g. at

the air-earth interface.

3-D CSEM modelling involves the numerical solution of Maxwell’s equations in heteroge-

neous anisotropic electrically conductive media in order to obtain the components of the vector

EM field functions within the domain of interest. Considering that one generally deals with

stationary regimes, Maxwell’s equations are most commonly solved in the frequency domain.

Also, it is not needed to solve the general form of the equations due to the fact that CSEM

methods normally use very low frequencies (∼1 Hz). Namely, at low frequencies, displacement

currents, iε̃ωE, can be neglected, since the electric conductivity of geological structures is much

larger than their dielectric permittivity, σ̃ � ε̃, and therefore the general Maxwell’s equations

simplify and reduce to the diffusive Maxwell’s equations:

∇×E = iµ0ωH, (1.34)

∇×H = JS + σ̃E, (1.35)

where µ0 is the magnetic permeability of the free space. In order to simplify the analysis, in most

geophysical EM problems, it is assumed that all media posses electric and magnetic properties

which are independent of time, temperature and pressure, as well as that magnetic permeability

is a scalar and equal to the permeability of the free space, i.e. µ = µ0. The assumption that

12

magnetic permeability is a constant can be made only if there are no metal objects in the

ground, which is usually the case in hydrocarbon explorations. In isotropic media, also electric

conductivity is taken as a scalar that is a function of all three spatial coordinates, σ(r). On the

other hand, in anisotropic cases, electric conductivity is described with a 3× 3 tensor, σ̃, whose

components also vary in all three dimensions. Here, the ohmic conduction term, σ̃E, describes

induced eddy currents inside the Earth.

1.2.3 Numerical Solution

In order to obtain a numerical solution to partial differential equations, it is necessary to dis-

cretise the equations, which are, by nature, continuous, using some discretisation technique.

There are several different approaches to acquiring a numerical solution to the PDEs (1.34) and

(1.35). The most commonly used ones are the finite-difference (FD) and finite-element (FE)

methods.

Finite-Difference Method

The finite-difference (FD) method is the most commonly employed approach: (e.g. Yee, 1966;

Mackie et al., 1994; Alumbaugh et al., 1996; Xiong et al., 2000; Fomenko & Mogi, 2002; New-

man & Alumbaugh, 2002; Davydycheva et al., 2003; Abubakar et al., 2008; Kong et al., 2008;

Davydycheva & Rykhlinski, 2011; Streich et al., 2011). In this approach, electric conductivity,

the vector EM field functions and Maxwell’s differential equations are approximated by their

finite-difference counterparts within a rectangular 3-D mesh of size M = Nx ×Ny ×Nz. This

transforms the original problem described by PDEs to a resultant system of linear equations,

AFD · x = b, where system matrix AFD is a large, sparse, complex and symmetric 3M × 3M

matrix, vector x is a 3M vector that contains the values of the EM field in the nodes of the mesh

and 3M -vector b represents the sources and boundary conditions. Weiss & Newman (2002) have

extended this approach to fully anisotropic media. In the time domain, FD schemes have been

developed by, for example, Wang & Tripp (1996), Haber et al. (2002), Commer & Newman

(2004). The main attraction of the FD approach for EM software developers is rather simple

implementation and maintenance of a code based on it, especially when compared with other

approaches. However, this method supports only structured rectangular grids, which may be a

substantial limitation in many situations. Namely, structures with complex geometry cannot be

accurately modelled with rectangular elements and some boundary conditions cannot be prop-

erly accommodated by their formulation. It is known that this may have a serious impact on

the quality of solutions, like, for example, in the case of seabed variations that also can greatly

affect EM responses (Schwalenberg & Edwards, 2004). Furthermore, local mesh refinements are

13

not possible in structured grids and therefore any mesh size adaptation has a large effect on the

overall computational requirements.

Finite-Element Method

The finite-element (FE) method has long been used in applied mathematics and solid mechanics.

In geophysics, however, it has been employed for only a few decades, since the FE modelling of

3-D EM induction in geophysical prospecting applications was until recently beyond the capa-

bilities of available computers. Nowadays, this task is easily performed on desktop workstations

thanks to the rapid development and extremely high level of the modern computing technology.

Consequently, many FE-based implementations of EM modelling have appeared (e.g. Zyserman

& Santos, 2000; Badea et al., 2001; MacGregor et al., 2001; Key & Weiss, 2006; Li & Key,

2007; Franke et al., 2007; Li & Dai, 2011). However, this approach is still not as widely used

as finite difference and a major obstacle for its broader adoption is that the standard nodal

FE method does not correctly take into account all the physical aspects of the vector EM field

functions. In FE, the components of the vector EM field functions are approximated by the sum

of some basic functions, which are usually polynomial functions. This decomposition produces

a resultant system of linear equations, AFE · x = b, where system matrix AFE is large, sparse,

complex and, in general, non-symmetric and vector x contains the coefficients of the polyno-

mials which are sought using the Galerkin method. The main attraction of the FE approach

for geophysicists is that it is able to take into account arbitrary geometries more accurately

than other techniques. Namely, the FE method has the advantage of supporting completely

unstructured meshes, which are more flexible in terms of geometry and therefore more precise

in modelling irregular and complicated shapes that often appear in the real heterogeneous sub-

surface geology (shapes of ore-bodies, topography, cylindrical wells, seabed bathymetry, fluid

invasion zones, etc.). This is important since imprecise modelling of complex shapes may result

in misleading artefacts in images. In addition, FE supports local mesh refinements, which allow

a higher solution accuracy without increasing the overall computational requirements. Namely,

with local mesh refinements, it is possible to have smaller grid elements, i.e. a finer grid, only at

places where a better resolution is required (around transmitters, receivers, target locations as

well as large conductivity contrasts). Otherwise, it would be necessary to refine the entire mesh,

which greatly increases the computational cost. As already said above, the main disadvantage

of this approach is that the standard nodal FE method (Burnett, 1987) has to be modified

in order to be used for EM problems. Namely, node-based finite elements cannot be used for

EM problems formulated in terms of the vector electric and/or magnetic field functions, E or

H, which is a natural and physically meaningful problem formulation. This is due to the fact

14

that the nodal FE method does not allow the discontinuity of the normal component of the

electric field at material interfaces. Also, node-based finite elements are not divergence free,

because of which some spurious purely divergent field components can appear in the solution.

One solution to these problems is to use a different problem formulation that is based on EM

potentials – coupled vector-scalar potential functions, A and Φ. Both the vector magnetic po-

tential function, A, and scalar electric potential function, Φ, are continuous across the interfaces

between different materials, which solves the problem of discontinuity. In order to prevent the

appearance of spurious purely divergent modes, it is necessary to apply an additional condition,

the Coulomb gauge condition, ∇ ·A = 0, that enforces zero divergence of the vector potential

function at element level. This potential-based formulation solves both problems and therefore

allows the use of nodal finite elements. The other possible solution are specialised vector (edge)

elements (Nédélec, 1986; Jin, 2002), which are used in some recent approaches to CSEM mod-

elling (Mukherjee & Everett, 2011; Schwarzbach et al., 2011; da Silva et al., 2012; Um et al.,

2012). In case of edge elements, the unknowns are the tangential components of the electric

field along the edges of elements. Consequently, these elements permit the normal component

of the electric field to be discontinuous across material interfaces. Also, vector elements are

divergence free by construction and hence cannot support spurious modes. Since edge elements

solve both problems, the direct vector field formulation can be used with these elements. More

about advantages and disadvantages of these two possible modifications of the FE method can

be found in the paper by Badea et al. (2001).

Linear Algebraic Solver

Regardless of which approach is employed, the initial EM forward problem is always reduced

to the solution of a system of linear equations:

Ax = b (1.36)

where A is the system matrix, x is the solution vector and b is the right-hand-side (RHS) vec-

tor. Namely, a discretisation of a differential equation, which is by nature continuous, produces

a system of linear algebraic equations with a finite number of unknowns. This resultant system

approximates the partial differential equation, hence its solution is an approximate, i.e. nu-

merical, solution to the original continuous problem. The system matrix, A, is normally very

sparse (its elements are primarily zeros) since it is a result of the discretisation of a differential

operator. Also, in real applications, this matrix is extremely large. Consequently, solving the

large-scale linear system is the most important and most expensive part of the overall numerical

15

method. Normally, it takes up to 90% of the whole execution time. Naturally, special attention

has to be put to this part of the code.

To solve the linear system, one can use some algebraic solver chosen taking into account

relevant characteristics of the system matrix. The properties of matrix A are determined

by the method applied to solve the forward problem (FD or FE). If the partial differential

equation is three-dimensional, or two-dimensional involving many degrees of freedom per point,

the derived linear system is, as already said, very large and sparse. Since the memory and

computational requirements for solving such a system may seriously challenge even the most

efficient direct solvers available today, the key lies in using iterative methods (Saad, 2003).

The main advantage of iterative methods is their low storage requirement, which resolves the

memory issue of direct methods. In addition, there is another very important benefit thanks

to which iterative methods can cope with huge computational demands more readily then

direct techniques. Namely, iterative methods are much easier to implement efficiently on high-

performance parallel computers than direct solvers. Currently, the most common group of

iterative techniques used in applications are Krylov subspace methods (Saad, 2003).

There are two important aspects regarding the discretisation of the initial continuous prob-

lem (Avdeev, 2005). The first one is how accurately the linear system represents Maxwell’s

equations. The second one is how well the system matrix, A, is preconditioned. The latter

issue arises from the fact that condition numbers, κ(A), of unpreconditioned system matrices

may be very large due to, for example, high conductivity contrasts in models. This is especially

true for matrices that appear in FE solvers because high element size ratios in unstructured

meshes considerably deteriorate their condition numbers. For such poorly conditioned systems,

Krylov methods converge extremely slowly, if they converge at all. In order to overcome this

problem, a variety of preconditioners have been designed and applied. The most popular pre-

conditioning schemes employed within FD and FE methods are Jacobi, symmetric successive

over-relaxation (SSOR) and incomplete LU factorisation (Saad, 2003). These preconditioners

work quite well for medium and high frequencies, providing convergence of Krylov iterations.

However, at low frequencies, more precisely, when the induction number is low,
√
ωµ0σ̃h � 1,

Maxwell’s equations degenerate, which leads to some difficulties in convergence (h is the char-

acteristic grid size). Therefore, some more elaborate preconditioners, which have proved to be

much more efficient than traditional ones, have been presented. For example, the low induction

number (LIN) preconditioner has been introduced and tested in Newman & Alumbaugh (2002)

and Weiss & Newman (2003). Also, there are multigrid preconditioners described and employed

in Aruliah & Ascher (2002), Haber (2004) and Mulder (2006).

16

Multigrid

Multigrid (Briggs et al., 2000) is a numerical approach to solving large, often sparse, systems

of equations using several grids at the same time. The essence of multigrid comes from two

observations. The first observation is that it is quite easy to determine the local behaviour of

the solution, characterised by oscillatory (high-frequency) components, while it is much more

difficult to find the global components of the solution, which are smooth (low-frequency) compo-

nents. The second observation is that the slowly varying smooth components can be accurately

represented with fewer points on a coarser grid, on which they become more oscillatory and

hence can be easily determined.

For a long time, multigrid (multilevel) methods (Trottenberg et al., 2001) have been de-

veloped concurrently, but quite independently of general-purpose Krylov subspace methods

and preconditioning techniques. However, recently, standard multigrid solvers have been very

often combined with some acceleration methods, such as Krylov subspace techniques (CG, BI-

CGSTAB, GMRES, etc.), in order to improve their efficiency and robustness. Several recent

applications of multigrid in different EM problems are discussed in Everett (2012). The simplest

approach is to employ complete multigrid cycles as preconditioners.

Algebraic multigrid (AMG) methods (Stuben, 2001), originally designed for creating stan-

dalone solvers, can be very good preconditioners, as well. This is due to the fact that AMG

techniques, unlike other one-level preconditioners, work efficiently on all error components –

from low-frequency to high-frequency ones. Taking this into account, instead of building a

standalone AMG solver, which requires the very expensive set-up phase, it is generally more

efficient to use AMG as preconditioning by employing, for example, an aggressive coarsening

strategy. Also, AMG methods do not need any geometric information and thus can be used as

black-box preconditioners with different iterative schemes, which gives them a big advantage

over geometric multigrid techniques.

17

Chapter 2

Numerical Method for 3-D

Electromagnetic Modelling

In order to obtain a numerical solution to the 3-D electromagnetic (EM) forward problem,

it is necessary to discretise the governing equations, which are continuous partial differential

equations (PDEs), using some discretisation technique, as already explained in Chapter 1,

Subsection 1.2.3. The choice of the discretisation method is the first important decision that

has to be made in order to develop a numerical scheme that efficiently produces an accurate

solution to the problem. Two most commonly used discretisation techniques, finite difference

and finite element, are briefly presented in Subsection 1.2.3. The finite-difference (FD) method,

despite the disadvantage of not being able to precisely take into account complex geometries of

subsurface structures, which in some cases may significantly damage the quality of a solution,

is still the most widely employed discretisation scheme. Naturally, there are many successful

FD solutions for the 3-D EM forward problem, including the only practical, highly efficient

code, which is designed for running on massively parallel computing platforms and developed

by Alumbaugh et al. (1996). However, all of these solvers are limited by the fact that they

support only structured rectangular grids, which make them rather inadequate for situations in

which irregular and complicated geology, such as seabed bathymetry, has a significant influence

on measurements, because, in those cases, an imprecise representation of geological structures

produces artefacts in images that can lead to false interpretations. On the other hand, the finite-

element (FE) method supports completely unstructured tetrahedral meshes as well as mesh

refinements, due to which it is able to represent complex geological structures very precisely

and thus improve the solution accuracy. However, despite these very important advantages, the

FE method is still not as broadly used as finite difference. A major reason for this is that the

standard nodal form of the FE method cannot be used to discretise the governing equations in

18

terms of the vector EM field functions because it does not correctly represent all the physical

aspects of these vector functions. Consequently, most of the researchers who have employed

the FE approach for 3-D EM numerical modelling have been primarily focused on overcoming

this problem, as well as on solving other physical and numerical challenges, in order to obtain a

proper and accurate numerical solution. As a result of this effort, several successful FE solvers

for the 3-D EM forward problem have appeared. However, much less effort has been put into

the improvement of the efficiency of those FE codes despite the fact that the efficiency of a

forward-problem solver is critical for its use inside of an inversion algorithm. As a consequence,

a highly efficient, fully parallel FE implementation of 3-D EM numerical modelling still has not

been proposed.

Taking all of the above into account, I have decided to employ the FE method (Burnett,

1987) as the discretisation technique in order to develop a highly accurate and robust numerical

scheme for 3-D controlled-source electromagnetic (CSEM) modelling that is able to correctly

take into account geological structures of arbitrary geometrical complexity. Also, considering

that the main purpose of this forward-problem solver is to be a part of an inversion algorithm,

the efficiency of the numerical scheme and of its implementation is an extremely important

aspect, which has become the main focus of my research due to a lack of other truly efficient

FE codes. In order to develop a very fast FE CSEM forward-problem solution, it is necessary

to chose the best standard numerical components that ensure not only the accuracy, but also

the efficiency of the solver. Furthermore, more elaborate and more powerful numerical methods

have to be proposed and introduced in order to improve the efficiency of the overall scheme.

Finally, having a very efficient numerical method, it has to be translated into a code that is as

fast as possible, primarily by designing it to run on massively parallel computers.

To facilitate the task a bit, I have chosen to use the standard node-based FE method,

so that I can reuse a database of different nodal finite elements that already existed within

the Alya system. Alya system (Houzeaux et al., 2009) is a computational mechanics code,

which supports unstructured meshes made of different types of elements, developed in Barcelona

Supercomputing Center. It has a modular architecture that allows a new numerical solver to

be easily introduced in order to use some existing features and facilities of the system, such as

nodal finite elements. Also, Alya is designed since its inception for large scale supercomputing,

which allows parallelisation of any new solver. As already said, Alya architecture is modular.

It consists of a kernel, modules and services, as shown in Fig. 2.1. The kernel is the essence

of the system that starts and controls execution of a program. It contains functionalities used

by all the modules and services. A module solves a set of PDEs describing a physical problem.

A service is an utility that can be used by all the modules and the kernel. In order to build a

19

Figure 2.1: Architecture of the Alya system.

3-D CSEM solver, I had to create a new module for solving EM induction problems described

by the diffusive Maxwell’s equations (Helmoz module in Fig. 2.1). Also, I had to make some

changes in the kernel, as well, so that Alya can support complex numbers. In addition, I have

implemented new solvers and a new preconditioning scheme inside the kernel, so that they can

be used by other modules, as well. Furthermore, I introduced new functionalities in the parallel

service (Parall in Fig. 2.1) in order to build a more efficient parallel scheme, which is described

in details in Chapter 3.

2.1 Physical Problem Formulation

As explained in Chapter 1, Subsection 1.2.3, the standard nodal FE method cannot be used if

the EM problem, described by the diffusive Maxwell’s equations, (1.34) and (1.35), is formulated

in terms of the vector EM field functions, E and H. In order to be able to employ the node-

based version of the method, it is necessary to use a different problem formulation that is based

on some vector-scalar EM potential functions. In this work, the physical problem has been

formulated in terms of the secondary Coulomb-gauged EM potentials (Badea et al., 2001). This

formulation solves not only the already mentioned problems of the electric-field discontinuity and

spurious divergent modes, but also the problem of having singularities introduced by sources.

In addition, it is numerically very stable.

20

Coulomb-Gauged Electromagnetic Potentials

The diffusive Maxwell’s equations, (1.34) and (1.35), can be transformed if the EM field, (E,

H), is expressed in terms of a magnetic vector potential, A, and an electric scalar potential, Φ,

which are defined by:

B = ∇×A, (2.1)

E = iωA−∇Φ. (2.2)

More information about these potentials is given in Chapter 1, Subsection 1.2.1.

Using expressions (2.1) and (2.2) to substitute the vector EM field functions by the EM

potentials, equation (1.35) transforms into a curl-curl equation. The finite-element discretisa-

tion of this equation leads to asymmetric matrices which may cause numerical instabilities. In

order to avoid this problem, I have followed the approach of Biro & Preis (1989), which trans-

forms the curl-curl equation into the vector quasi-Helmholtz equation whose discretised form is

numerically very stable:

∇2A + iωµ0σ̃(A +∇Ψ) = −µ0JS , (2.3)

where Ψ is the reduced scalar potential given by Φ = −iωΨ. However, in order to keep all

physical conditions satisfied (a divergence-free current density), it is necessary to solve the

auxiliary equation:

∇ · [iωµ0σ̃(A +∇Ψ)] = −∇ · µ0JS (2.4)

simultaneously with (2.3). Let me remark that equation (2.4) is more general than the one

proposed by Badea et al. (2001) and it is valid for both inductively and directly coupled sources.

This means that this formulation takes into account electric dipoles, which are the most common

type of sources in geophysical applications. Equations (2.3) and (2.4) are valid inside the

whole solution domain and constitute the incompletely gauged coupled vector-scalar potential

formulation of Maxwell’s equations. Nevertheless, these two equations alone are not sufficient to

guarantee the uniqueness of the vector potential, A. Therefore, an additional condition, which

is the Coulomb-gauge condition:

∇ ·A = 0, (2.5)

must be applied in the whole solution domain. In order to apply this condition, it is enough to

enforce the zero Dirichlet condition on ∇ ·A along the boundary of the solution domain.

21

Secondary Potentials

In electromagnetism, sources introduce singularities in their close proximity. Normally, this

problem is solved by refining a mesh to a great extent around sources. However, this solution

is quite costly in terms of computational requirements. Another approach that can be used to

avoid singularities introduced by sources, and which is employed in this work, is the secondary

potential formulation of the problem. A similar technique is usually used to account for a base

state that does not belong to the finite-element space, and therefore cannot be represented

exactly by the method. Instead of having it explicitly in the problem formulation through its

current density, JS , a source of arbitrary shape, complexity and orientation can be introduced

by dening a set of known primary EM potentials, (Ap, Ψp). The primary potentials represent

responses of either the homogeneous or horizontally layered Earth to the primary EM field

transmitted by the source. They are normally determined by analytical expressions for EM

induction in a homogeneous formation of a constant electric conductivity, σp = const., or in

horizontally layered models. The secondary EM potentials, (As, Ψs), are defined by:

A = Ap + As, (2.6)

Ψ = Ψp + Ψs. (2.7)

Primary Potentials

Nowadays, the most commonly used CSEM sources are horizontal electric dipoles, typically

50–300 m long, which are often approximated as point dipoles (Streich & Becken, 2011). The

Coulomb-gauged primary potentials for a horizontal electric dipole have been derived from the

Lorentz-gauged potentials by Liu et al. (2010). For the case of a homogeneous medium described

by an uniform electric conductivity, σp, they are of the form:

Apx =
Idµ0

4π

∫ ∞
0

λ

α0
e−α0|z−zs|J0(λρ)dλ+

Id

4iπσpω

∫ ∞
0

λ

α0
e−α0|z−zs| ∂

2

∂x2
J0(λρ)dλ, (2.8)

Apy =
Id

4iπσpω

∫ ∞
0

λ

α0
e−α0|z−zs| ∂

2

∂x∂y
J0(λρ)dλ, (2.9)

Apz =
Id

4iπσpω

∫ ∞
0
−sign(z − zs)λe−α0|z−zs| ∂

∂x
J0(λρ)dλ, (2.10)

Ψp = 0, (2.11)

22

where a0j =
√
λ2 − k2

0j and ρ =
√
x2 + y2.

Slowly-convergent integrals of this type are usually calculated using Hankel transform filters

(Kong, 2007). Integrals 2.8 – 2.10 can be transformed into the so-called closed form using the

Sommerfeld identity and derivative relationships (see e.g. Ward & Hohmann, 1988; Chave &

Cox, 1982): ∫ ∞
0

λ

α0
e−α0|z−zs|J0(λρ)dλ =

eik0R

R
, (2.12)

∫ ∞
0

λ

α0
e−α0|z−zs| ∂

2

∂x2
J0(λρ)dλ =

∂2

∂x2

(
eik0R

R

)
, (2.13)

∫ ∞
0

λ

α0
e−α0|z−zs| ∂

2

∂x∂y
J0(λρ)dλ =

∂2

∂x∂y

(
eik0R

R

)
, (2.14)

∫ ∞
0

λe−α0|z−zs| ∂

∂x
J0(λρ)dλ =

∂

∂x

(
|z − zs|eik0R

R3
(1ik0R)

)
. (2.15)

By applying these expressions to integrals 2.8 – 2.10, the analytical expressions for the

primary potentials in the closed form has been derived:

Apx =
Idµ0

4π

eik0xR

R
− Id

4iπσpxω

eik0xR

R5
(x2(k2

0xR
2 + 3ik0xR− 3) +R2ik0xR

3), (2.16)

Apy = − Id

4iπσpyω

xyeik0yR

R5
(k2

0yR
2 + 3ik0yR3), (2.17)

Apz = − Id

4iπσpzω

x(z − zs)eik0zR

R5
(k2

0zR
2 + 3ik0zR3), (2.18)

Ψp = 0, (2.19)

where R =
√
x2 + y2 + (z − zs)2, k2

0j = iωµ0σ0j , I is current intensity and d is the dipole

length.

In more general cases, the calculation of primary potentials requires the calculation of Hankel

transforms, which is computationally expensive. The more efficient way to do it is to use Hankel

transform filters. However, one should keep in mind that these filters have some limitations on

the distance, though high-performance ones can evaluate fields very well within source-receiver

offsets typically used in CSEM (Kong, 2007). Formulas 2.16 – 2.18 have been tested for different

values of ρ, up to 20 skin depths, and proved to be precise.

The point source approximation may not represent a real source with necessary precision at

short distances. To obtain EM fields for a finite-length dipole, equations 2.8 – 2.10 should be

23

integrated along its length. However, while the actual source geometry is crucial in land CSEM

surveys that use kilometre-long source wires, in marine surveys the wire geometry has a small

impact on the responses (Streich & Becken, 2011). For these reasons, in this work, dipoles are

approximated as point sources and the values of Ap in each node of the mesh are calculated

using expressions 2.16 – 2.18.

Governing Equations

Finally, the governing equations, which have to be solved numerically, become:

∇2As + iωµ0σ̃(As +∇Ψs) = −iωµ0∆σ̃(Ap +∇Ψp), (2.20)

∇ · [iωµ0σ̃(As +∇Ψs)] = −∇ · [iωµ0∆σ̃(Ap +∇Ψp)], (2.21)

where ∆σ̃ = σ̃−σp is the difference between the conductivity distribution, σ̃(r), whose response

needs to be calculated and the background conductivity, σp, whose response is already known.

Considering that formations in marine environments are typically anisotropic and that ignor-

ing this fact severely affects CSEM modelling and inversion results, I consider an anisotropic

conductivity model. In particular, my code assumes transverse anisotropy, which corresponds

to many situations encountered in actual geologic basins (Newman et al., 2010) and for which

tensor σ̃ has the following form:

σ̃ =

∣∣∣∣∣∣
σh 0 0
0 σh 0
0 0 σv

∣∣∣∣∣∣ , (2.22)

where σx = σy = σh is the horizontal conductivity and σz = σv denotes the vertical conductivity.

The presented approach can be also used in the case of generalised anisotropy when the tensor

has six independent elements.

Boundary Conditions

The boundaries of a domain are assumed to be located far away from the transmitter – at a

distance where the EM field has negligible values. Therefore, for the secondary EM potentials,

homogeneous Dirichlet boundary conditions have been imposed on the outer boundary of the

domain, Γ:

(As,Ψs) = (0, 0) on Γ. (2.23)

Equations (2.20) and (2.21) together with the boundary condition (2.23) fully describe EM

induction caused by dipole or current-loop sources in anisotropic heterogeneous electrically

conductive media.

24

2.2 Finite-Element Analysis

The finite-element method (Burnett, 1987) is a computer-aided mathematical technique for

obtaining approximate numerical solutions to the abstract equations of calculus that predict

the response of physical systems subjected to external influences. The mathematical structure

of the FE approach identifies three principal operations that are present in every FE analysis:

construction of a trial solution, application of an optimising criterion and estimation of accuracy.

A physical problem to be solved has its corresponding mathematical formulation in terms

of differential equations and boundary conditions. This formulation contains an unknown func-

tion, denoted by X(x, y, z) for 3-D problems. For most practical problems it is impossible to

determine the exact solution to these equations, i.e. to find an explicit expression for X, in terms

of known functions, which exactly satisfies the governing equations and boundary conditions.

As an alternative, the FE method seeks an approximate solution, i.e. an explicit expression for

X, in terms of known functions, which only approximately satisfies the governing equations and

boundary conditions. Such an approximate solution is denoted by the letter X with a tilde over

it. Thus, X̃ denotes an approximate solution, whereas X denotes the exact solution.

The FE technique obtains an approximate solution by using the classical trial-solution pro-

cedure. This procedure forms the basic structure of every FE analysis. The trial-solution

procedure is characterised by three principal operations. These are, in the order of application:

1. Construction of a trial solution for X̃,

2. Application of an optimising criterion to X̃,

3. Estimation of the accuracy of X̃.

Construction of a Trial Solution

The first operation involves the construction of a trial solution X̃(x, y, z; x) in the form of a

finite sum of functions:

X̃(x, y, z; x) = φ0(x, y, z) + x1φ1(x, y, z) + · · ·+ xNφN (x, y, z), (2.24)

where x, y, z represent all the independent variables in the problem. φ0(x, y, z), φ1(x, y, z), . . . ,

φN (x, y, z) are known functions called trial (basis or shape) functions. Coefficients x1, x2, . . . , xN

are unknown parameters frequently called degrees of freedom (DOF) or, sometimes, generalised

coordinates. So, it is usual to say that X̃(x, y, z; x) has N DOFs.

The construction of a trial solution consists of building expressions for each of the trial

functions in terms of specific, known functions. From a practical standpoint, it is important

25

to use functions that are algebraically as simple as possible and also easy to work with – for

example, polynomials. One of the main attractions of FM is that it provides a systematic

procedure for constructing trial functions and the procedure can be automated on a computer.

Indeed, the very essence of the method lies in the special manner in which the trial functions

are constructed. Once that specific expressions for each trial function φi(x, y, z) have been

established, only parameters xi remain undetermined.

Application of an Optimising Criterion

The purpose of the optimising criterion is to determine specific numerical values for each of

parameters x1, x2, . . . , xN . A particular set of values for all xi uniquely defines a particular

solution, because then all xi and φi(x, y, z) in (2.24) are uniquely determined. Since each xi can

assume an infinity of possible values (−∞ < xi < +∞), there is an N -fold infinity of possible

solutions. It is the job of the optimising criterion to select from all these possibilities the best

(or optimum) solution, i.e. the best set of values for xi.

There are two types of optimising criteria that have played a dominant role historically as

well as in FE:

1. Methods of weighted residuals (MWR), which are applicable when the governing equations

are differential equations,

2. The Ritz variational method (RVM), which is applicable when the governing equations

are variational (integral) equations.

Methods of weighted residuals seek to minimise an expression of error in the differential

equation (not the unknown function itself). There are many different MWR criteria and the

four most popular ones are:

1. The collocation method,

2. The sub-domain method,

3. The least-squares method,

4. The Galerkin method.

When talking about MWR, a quantity called residual must be defined. Namely, if all terms

of the differential equation are transferred to the left-hand side, the right-hand side (RHS) will

be zero. This means that if the exact solution were substituted for X(x, y, z) on the left-hand

side, then the RHS would be identically zero over the entire domain. If any other function, such

26

as an approximate trial solution X̃(x, y, z; x), were substituted for X(x, y, z), the result would

be a non-zero function called the residual of the equation, denoted by R(x, y, z; x).

The central idea of all the MWR criteria is: find numerical values for x1, x2, . . . , xN which

will make R(x, y, z; x) as close to zero as possible for all the values of (x, y, z) throughout the

entire domain. Namely, the exact solution, by definition, is the function that satisfies the

differential equation over the entire domain and the boundary conditions on the boundary.

Any function that satisfies the differential equation over the entire domain must also make the

residual zero over the entire domain, and vice versa. If it is possible to find X̃(x, y, z; x) that

makes R(x, y, z; x) = 0 everywhere in the domain, and if the boundary conditions are also

satisfied exactly, then X̃(x, y, z) must be the exact solution, X(x, y, z). This conclusion is valid

for any reasonably well-posed problem for which exists only one exact solution. Therefore, if

a particular X̃(x, y, z; x) makes R(x, y, z; x) deviate only slightly form zero, then X̃(x, y, z) is

probably very close to X(x, y, z).

Application of an MWR criterion produces a set of algebraic equations and their solution

is the best set of numerical values for xi. This means that the original differential equation

is transformed into an approximately equivalent system of algebraic equations and that the

problem is converted from its calculus formulation to an algebraic formulation which is much

easier to solve. Each different MWR criterion will determine a different set of values resulting

in many different approximate solutions. However, in almost all FE applications, the Galerkin

method is used. In this method, for each parameter xi, it is required that a weighted average

of R(x, y, z; x) is zero over the entire domain. The weighting functions are the trial functions

φi(x, y, z) associated with each xi. In the end, a trial solution with N parameters yields a

system of N residual equations:∫∫∫
Ω
R(x, y, z; x)φ1(x, y, z) dv = 0, (2.25)

∫∫∫
Ω
R(x, y, z; x)φ2(x, y, z) dv = 0, (2.26)

...

∫∫∫
Ω
R(x, y, z; x)φN (x, y, z) dv = 0. (2.27)

Variational principles (sometimes referred to as extremum or minimum principles) seek

to minimise, or find an extremum in, some physical quantity, such as energy. The most popular

method of this kind is the Ritz variational method.

27

By applying one of these criteria to the trial solution X̃(x, y, z; x), the best set of values

for all xi is determined, which means that the best solution is obtained. This solution is called

an approximate solution since hopefully, and usually, it is a reasonable approximation to the

exact solution. However, since X̃(x, y, z) is only approximate solution, there are questions of

accuracy that naturally arise.

Estimation of the Accuracy

Without some indication of the closeness of the approximate solution X̃(x, y, z) to the exact

solution X(x, y, z), the solution is effectively worthless. The closeness may be expressed by the

error E(x, y, z), which is simply the difference between X(x, y, z) and X̃(x, y, z):

E(x, y, z) = X(x, y, z)− X̃(x, y, z). (2.28)

E(x, y, z) is also referred to as the pointwise error because it expresses the error at each point

(x, y, z) in the domain. However, equation (2.28) cannot be used to calculate E(x, y, z) since

it contains the exact solution which is generally unknown. In fact, it is impossible to calculate

E(x, y, z) exactly in an actual numerical problem. If it would be possible, then it would be

merely enough to add E(x, y, z) to X̃(x, y, z) to get X(x, y, z), in which case the error would

be zero. Therefore, E(x, y, z) should be estimated in some way. And there are some practical

ways to do that.

If after an error estimation it is found out that the magnitude of the estimated error is too

large to be acceptable, the error has to be decreased. Namely, we have to return to the first

operation and construct a different trial solution that contains more DOFs than the first one.

One way to do this is to add a few more trial functions (and hence DOFs) to the previous trial

solution. Repeating the second and third operations will then generate a second approximate

solution which hopefully will yield a lower error estimate. If the new estimate is still unaccept-

able, then the cycle can be repeated again and again with successively improved trial solutions

(more and more DOFs) until an acceptable error estimate is obtained.

In order to develop a node-based FE code that solves the 3-D CSEM induction problem

described previously in Section 2.1, I have followed the so-called ’12-step procedure’ (Burnett,

1987), which I have reduced to a slightly shorter version that has 10 steps.

10-step Finite-Element Procedure

The first five steps involve a theoretical pencil-and-paper manipulation of PDEs. The second

five steps involve numerical computations usually performed on a computer. In fact, the steps

6 through 10 describe the basic structure of the node-based FE program.

28

Preprocessing

Mesh Generation: At the very beginning of every node-based FE solution of a boundary-

value problem, the 3-D problem domain must be discretised into a mesh of non-overlapping

polyhedral elements with nodes at the vertices. Adjacent elements touch without overlapping

and there are no gaps between the elements. Meshing is very important part of the modelling

process since the properties and the quality of a mesh, as well as of its elements, greatly affect

numerical features of the FE linear system and, consequently, the convergence of employed

iterative methods. Also, the characteristics of the mesh have a considerable impact on the

quality and the accuracy of a solution.

In order to carry out the numerical tests, which will be presented later in Chapter 4, I have

used ANSYS ICEM CFD mesh-generation software to create the required meshes. Although

the program supports different types of elements, which makes it easy to shape very irregular

and complex geometries, I have limited myself to linear tetrahedra to build the meshes. ICEM

includes both the Octree and the Delaunay tetrahedral mesh-generation techniques (Fig. 2.2).

The proper size of the mesh elements is chosen by the skin depth criterion (Commer & Newman,

2008). In FE modelling, it is not necessary to create a fine mesh over the whole domain. It is

enough to make local mesh refinements in the regions where field gradients are large, as well as

in some parts of the domain in which it is preferable to obtain a solution of higher accuracy.

Therefore, the meshes that I have created for the tests have been refined in such places, for

example close to the source or receivers. However, at distances of a few skin depths, sizes of

tetrahedra can be quite large and keep growing towards the computational boundaries, which are

typically located far away to make the boundary effects negligible (Um et al., 2012). A series of

experiments have shown that adaptive refinements of a mesh near the regions of interest greatly

improve the quality of a solution compared with solutions obtained using simple uniform meshes.

Also, the tests have shown that the use of unstructured meshes has the advantage of greatly

optimising the number of elements in a mesh without affecting the solution accuracy. On the

other hand, unstructured meshes can slow the convergence rate. All this will be demonstrated

later in Chapter 4, Subsection 4.1.1.

In order to perform speed-up tests and study solver convergence on large meshes, I have

used in this work the mesh multiplication (MM) strategy discussed in Houzeaux et al. (2012).

The MM scheme consists of subdividing recursively the elements of the original mesh (referred

to as the zero-level mesh) in parallel. When using tetrahedra, new nodes are added only on

edges and faces and thus the number of elements is multiplied by 8 at each MM level. In the

29

(a) Slice of a marine CSEM mesh in the X-Z plane generated by

the Octree mesh-generation technique.

(b) Slice of a marine CSEM mesh in the X-Z plane generated by

the Delaunay mesh-generation technique.

Figure 2.2: Slices of marine CSEM meshes in the X-Z plane generated by ANSYS ICEM CFD mesh-

generation software.

30

previous reference, starting with a tetrahedral mesh that had 30 million elements, a 1.92 billion

element mesh was obtained in a few seconds after 2 MM levels.

Theoretical Development

Strong Problem Formulation: At the beginning of the theoretical development, I have

decomposed the vector quasi-Helmholtz equation into three scalar equations using the Cartesian

coordinate system. This makes the following calculations much easier. Consequently, instead of

one vector and one scalar PDE, I have been solving the set of four scalar equations representing

the strong formulation of the problem:

∇2Asx + iωµ0σx

(
Asx +

∂Ψs

∂x

)
= −iωµ0∆σxApx, (2.29)

∇2Asy + iωµ0σy

(
Asy +

∂Ψs

∂y

)
= −iωµ0∆σyApy, (2.30)

∇2Asz + iωµ0σz

(
Asz +

∂Ψs

∂z

)
= −iωµ0∆σzApz, (2.31)

iωµ0∇ · [σ̃As] + iωµ0∇ · [σ̃∇Ψs] = −iωµ0∇ · [∆σ̃Ap]. (2.32)

In these equations I have omitted the terms with primary scalar potential since for dipole and

loop sources Ψp = 0.

Step 1: Write the Galerkin residual equations for a typical element.

In order to obtain these equations, I have derived the expression for the residual, R(x, y, z; x),

of each governing equation that I have been solving. Having these expressions, I have obtained

four sets of n Galerkin residual equations:∫
Ω
R(x, y, z; x)φi(x, y, z) dv = 0, i = 1, 2, . . . , n (2.33)

where n is the number of nodes of a typical element. I have chosen a linear tetrahedron as

a typical element, so n = 4 in this case. φi(x, y, z) are known trial (shape) functions, each

of which is associated with the corresponding node i of the element. They are used for the

construction of a trial solution of an unknown function within the element. In this case, there

are four scalar unknown functions that have to be determined, three Cartesian components of

the vector magnetic potential and the scalar electric potential.

31

Step 2: Integrate by parts.

In this step, I have transformed the integrals that contain the highest derivative in equa-

tions (2.33). Namely, the four terms in the strong formulation that contain second-order deriva-

tives have been integrated by parts to reduce the order of the differentiation by one. Three

integration-by-parts formulas have been used. The first one is the Green’s first identity:∫
Ω
u∇2v dv = −

∫
Ω
∇v · ∇udv +

∮
Γ
u(∇v · n) ds, (2.34)

where
∮

Γu(∇v · n) ds is the surface term, Γ is the boundary of Ω region and n is the outward

pointing unit normal of a surface element ds. The second is the identity:∫
Ω
u∇ · [σ∇v] dv = −

∫
Ω
σ∇v · ∇udv +

∮
Γ
u(σ∇v · n) ds, (2.35)

where
∮

Γu(σ∇v · n) ds is the surface term. The third formula is:∫
Ω
u∇ · [σA] dv = −

∫
Ω
σA · ∇udv +

∮
Γ
u(σA · n) ds, (2.36)

where
∮

Γu(σA·n) ds is the surface term. It is obvious that this procedure transforms an integral

into two new terms: a boundary term (a surface term) and an integral of one lower order. As a

result, after substituting these new terms into the original equation, all loading terms, both in

the interior and on the boundary of a domain, pass to the right-hand-side (RHS). In this case,

the surface terms, which are 2-D integrals over the boundary of the domain, vanish because

trial functions φi are zero on the boundary.

After this step, I have got the so-called ’weak formulation’ of the problem:

−
∫

Ω
∇φi · ∇Asx dv + iωµ0

∫
Ω
σxφi

(
Asx +

∂Ψs

∂x

)
dv = −iωµ0

∫
Ω

∆σxφiApx dv, (2.37)

−
∫

Ω
∇φi · ∇Asy dv + iωµ0

∫
Ω
σyφi

(
Asy +

∂Ψs

∂y

)
dv = −iωµ0

∫
Ω

∆σyφiApy dv, (2.38)

−
∫

Ω
∇φi · ∇Asz dv + iωµ0

∫
Ω
σzφi

(
Asz +

∂Ψs

∂z

)
dv = −iωµ0

∫
Ω

∆σzφiApz dv, (2.39)

−iωµ0

∫
Ω
σ̃∇φi ·As dv − iωµ0

∫
Ω
σ̃∇φi · ∇Ψs dv = iωµ0

∫
Ω

∆σ̃∇φi ·Ap dv. (2.40)

The weak solution is unique and satisfies both the strong and the weak formulation of the

boundary-value problem. The equivalence of the weak and the strong solution is a fundamental

property of Euler-type second-order PDEs. From this point on, my main goal has become to

find the weak solution using FE approximations.

32

Step 3: Substitute general forms of element trial solutions into the interior integrals in

the residual equations. The resultant formal expressions are the element equations.

The general forms of the element trial solutions are:

Ãs(x, y, z;Asx, Asy, Asz) =

n∑
i=1

(Asxiφi(x, y, z)~x+Asyiφi(x, y, z)~y +Asziφi(x, y, z)~z) (2.41)

and

Ψ̃s(x, y, z; Ψs) =

n∑
i=1

Ψsiφi(x, y, z), (2.42)

where φi(x, y, z) are already described linear nodal basis functions of the element, while (Asxi,

Asyi, Aszi, Ψsi) are unknown coefficients in node i of the element that have to be found by the

FE analysis. For the element with n nodes, there are 4n coefficients, which are the unknown

values of the secondary EM potentials in the element nodes. After the substitution of these

expressions into the residual equations, I have obtained a set of 4n element equations. The

abbreviated matrix notation of this set is:

A(e)x(e) = b(e), (2.43)

where matrix A(e) is the element matrix of coefficients that multiply the vector of unknown

parameters, x(e). The matrix is usually referred to as the stiffness matrix. Vector x(e) contains

the unknown secondary EM potentials in the nodes of the element that are stored in the following

way:

x(e) = [x1,x2, . . . ,xn]T xi = [Asxi, Asyi, Aszi,Ψsi]
T . (2.44)

The vector of loading terms on the RHS, b(e), is usually referred to as the load or force vector,

since it represents the source contribution to the FE linear system of equations.

The element system of equations has the following matrix form:
A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann




x1

x2
...

xn

 =


b1

b2
...

bn

 . (2.45)

The element FE matrix is a 4n× 4n complex block matrix composed of 4× 4 sub-matrices, Aij

(i, j = 1, . . . , n), of the following form:

Aij =

(
γijI33 iωµ0

∫
Ωσ̃φi∇φj dv

[iωµ0

∫
Ωσ̃∇φiφj dv]T −iωµ0

∫
Ωσ̃∇φi · ∇φj dv

)
, (2.46)

where I33 is the 3×3 identity matrix and γij is the scalar function:

γij = −
∫

Ω
∇φi · ∇φj dv + iωµ0

∫
Ω
σ̃φiφj dv. (2.47)

33

The electrical conductivity is assumed to be constant over each element, which simplifies the

calculation of the presented element integrals. The entries of the load vector are of the form:

bi = −iωµ0

[∑
k Apxkζikx

∑
k Apykζiky

∑
k Apzkζikz −

∑
k(Apxkθikx +Apykθiky +Apzkθikz)

]T
,

(2.48)

where

ζikx =

∫
Ω

∆σxφiφk dv, ζiky =

∫
Ω

∆σyφiφk dv, ζikz =

∫
Ω

∆σzφiφk dv,

θikx =

∫
Ω

∆σx
∂φi
∂x

φk dv, θiky =

∫
Ω

∆σy
∂φi
∂y

φk dv, θikz =

∫
Ω

∆σz
∂φi
∂z

φk dv.

Coefficients (Apxi, Apyi, Apzi) are values of the EM primary potentials in the element nodes.

These values are calculated in the preprocess using appropriate analytical expressions that

depend on the source type.

Step 4: Develop specific expressions for the element trial functions.

Each type of elements has nodal basis functions of a certain specific form. This form is the

same for all the shape functions of one element. The trial functions are polynomials, i.e. linear

functions, because it is essential that they are algebraically as simple as possible and easy to

work with.

Therefore, I have used the 3-D polynomial functions that correspond to a linear tetrahedron

(Jin, 2002). These functions have the following property:

φi(x, y, z) = δij =

{
1 i = j
0 i 6= j

(2.49)

and furthermore, φi(x, y, z) vanishes when the observation point is at the surface of the tetra-

hedron opposite to the jth node. As a result, the inter-element continuity is guaranteed.

Step 5: Substitute the element trial functions into the element equations and transform

the integrals into a form appropriate for numerical evaluation.

The integrals have been evaluated numerically using the Gauss quadrature rule of integra-

tion.

34

Numerical Computation

Step 6: Specify numerical data for a particular problem.

In this step, the program has to read geometric data, as well as the physical properties

and information about sources for a problem to be solved. Therefore, it is necessary to create

some files that contain the sizes, shapes and locations of the elements, the coordinates of the

nodes, as well as the assigned numbers to each node and element. This means that in these

files both nodes and elements of the mesh are defined. Node definition means specification of

the coordinates of each node and assignment of a number to each node. Element definition

means specification of the node numbers associated with each element, i.e. construction of a

connectivity table that lists node numbers associated with each element. As for the physical

properties and the sources, they are given in a separate file together with a desired numerical

treatment of the problem. This file should be filled in directly by a user for each specific problem.

Step 7: Evaluate the interior terms in the element equations for each element and assemble

the terms into the system equations.

In this step, the program numerically evaluates all the interior (non-boundary) terms in

the element equations for each element and then assembles those sets of element equations

to form the system equations. Numerical evaluation is performed in the following way: for

each element, substitute the actual node numbers from the connectivity table into the element

equations and then substitute the coordinate values. The next step is to apply one of the two

inter-element boundary conditions (IBCs), the so-called ’essential IBC’, which ensure continuity

of the unknown functions. The only way to apply this condition is to constrain the trial

functions themselves. This leads to the constraint equations, of the general form xi = xj ,

which considerably simplify the system equations. Thanks to them, some of the columns of the

stiffness matrix and corresponding equations can be combined (added) leading to the assembled

system equations. Namely, if a constraint equation is xi = xj , then rows i and j and columns

i and j in the stiffness matrix, as well as rows i and j in the RHS vector, are simply combined,

i.e. added. This procedure of applying the essential IBC to the element equations is called

assembly. Stated more formally, assembly is the enforcement of continuity between the element

trial solutions.

The resultant system equations have the stiffness matrix, A, in which most of the terms are

zero, which means that the matrix is sparse. This is a direct consequence of the fact that each

of the assembled trial functions is non-zero over only one or two elements and zero over all the

remaining elements (the sparsity of matrix A is determined by the mesh node connectivity – the

35

integrals in (2.46) are zero if node i is not connected to node j through an edge). The sparsness

of the stiffness matrix is an important characteristic of the FE method making it feasible and

economical to solve very large problems involving tens, and even hundreds, of thousands of

equations.

If there are N nodes in the interior of the mesh, the FE system matrix, A, obtained at this

point is a symmetric 4N × 4N sparse complex block matrix composed of 4 × 4 sub-matrices,

Aij (i, j = 1, . . . , N), of the form (2.46).

Step 8: Apply the boundary conditions, including the natural inter-element boundary

conditions, to the system equations.

In this step, the program applies the boundary conditions and the natural IBCs to the

assembled system equations. The natural IBCs express continuity of the flux across the inter-

element boundary.

Step 9: Solve the system equations.

Considering that, in this case, the matrix of the resultant linear system is large, sparse,

complex and non-Hermitian, I have made a selection of appropriate iterative techniques that

can handle a system with such characteristics. I have implemented three different right-

preconditioned Krylov subspace methods to solve the system: the biconjugate gradient stabilised

(BiCGStab) (Van der Vorst, 1992), quasiminimal residual (QMR) (Freund & Nachtigal, 1991)

and generalised minimal residual (GMRES) (Saad & Schultz, 1986). The condition number of

A strongly depends on the particular problem with many factors affecting it, for example high

conductivity contrasts in the model (especially the presence of air) or big element size ratios

in unstructured grids. The solution of the system is discussed in more detail in the following

Section 2.3.

Step 10: Postprocess the solution and estimate its accuracy.

The presented FE code computes the secondary EM potentials, (As,Ψs), from which the

physically significant vector EM field functions have to be derived, (Es,Hs). To do this, it is

necessary to perform a numerical differentiation. I have followed the approach of Badea et al.

(2001) and have implemented the Moving Least Squares (MLS) interpolation scheme, which

allows numerical differentiation of the FE-computed potentials. As the weighting function, the

Gaussian function (Alexa et al., 2003) has been chosen:

θ(d) = e−
d2

h2 . (2.50)

36

In order to validate the MLS interpolation and the calculation of the primary potentials,

the result of the numerical differentiation has been compared with the fields computed by the

analytical formulas (Ward & Hohmann, 1988). For the tests described later, spatial derivatives

of the EM potentials were obtained from their FE-computed values at n = 50 nearest nodes to

a test point. This parameter, as well as h in the weighting function, controls the smoothness

of the result, choosing between a local approximation and smoothing out sharp features for a

more global approximation. Both parameters have been determined empirically.

2.3 Iterative Solvers

As already described, the discretisation of a partial differential equation leads to a very sparse

and usually extremely large system of linear algebraic equations:

Ax = b. (2.51)

This system has a huge, but finite, number of unknowns and it approximates the partial dif-

ferential equation. It is solved using some algebraic solver that is chosen taking into account

characteristics of the system matrix. There are two big groups of methods for solving linear

algebraic systems (Saad, 2003):

1. Direct methods are factorisation methods derived from Gauss elimination. In these

techniques, the initial matrix A is transformed by the method, so that, in the end, a completely

different matrix is obtained. The main advantage of direct solvers is that they are very robust

and predictable. However, on the other hand, they have very big memory and computational

requirements, which are due to the increase of the number of non-zero elements. Namely, the

number of non-zero elements in a factorised matrix (a matrix gained from the sparse matrix)

depends on the shape of the initial matrix and can be largely increased compared to the number

of non-zeros in the original sparse matrix. Consecutively, direct methods have problems when

dealing with large-scale problems. The most efficient ones can successfully manage problems

that have up to 10 million unknowns. Taking into account that realistic problems under con-

sideration in this work normally have hundreds of millions of unknowns, it is clear that direct

methods are not the right choice for the numerical scheme that has to deal with such enormous

problems.

2. Iterative methods are techniques in which the initial matrix A is not transformed. There

are many different methods of this kind, but all of them have in common a main iteration loop

and inside it three basic operations:

37

1. q = Ap (matrix-vector multiplication),

2. < q,p > (scalar (dot) product of two vectors),

3. p = αp + βq (linear combination of vectors).

Iterative methods for solving general large sparse linear systems have been gaining popularity in

many areas of scientific computing. Until recently, direct solution methods were often preferred

to iterative methods in real applications because of their robustness and predictable behaviour.

However, a number of efficient iterative solvers have been discovered and the increased need

for solving very large linear systems triggered a noticeable and rapid shift towards iterative

techniques in many applications.

Compared to direct methods, iterative techniques have the advantage of low storage re-

quirements. Also, they can be parallelised much more efficiently than direct methods, thanks to

which they are able to deal with huge computational demands of large-scale realistic problems.

A problem with iterative solvers is that they are not as robust as direct ones and also they are

not generic. Namely, while direct methods guarantee that all matrices, except singular ones,

can be solved, iterative techniques cannot be applied to all matrices. Moreover, there is not any

mathematical rule that can tell us which iterative solver is the best and most efficient choice for

our particular problem. It is true that the choice of the solver depends on some characteristics

of the system matrix, but this can only narrow down the list of choices. In order to find the most

suitable iterative method for a certain problem, it is necessary to implement different options

and to test them empirically.

Considering that the problems under consideration in this work are normally enormous

(hundreds of millions of unknowns) and that efficiency is imperative, it is clear that iterative

methods are much more suitable for solving the resultant linear system within the 3-D CSEM

FE solver that is presented here. Currently, the most practical and common group of iterative

techniques used in applications are Krylov subspace methods.

2.3.1 Krylov Subspace Methods

Krylov subspace methods (Saad, 2003) are extensively employed for achieving iterative solu-

tions to sparse linear systems arising from discretisation of PDEs in different application areas.

These techniques are based on projection processes, both orthogonal and oblique, onto Krylov

subspaces, which are subspaces spanned by vectors of the form p(A)v, where p is a polyno-

mial. In short, these techniques approximate A−1b by p(A)b, where p is a ’good’ polynomial.

There are two groups of these methods – methods derived from, or related to, the Arnold

orthogonalisation and methods based on Lanczos bi-orthogonalisation.

38

As already discussed, it has not been clear which Krylov method is the best choice for the

problem that I have been solving and therefore it has been necessary to implement several

options and to test them in order to chose the most suitable one. The system of the form

(2.51) is characterised by the matrix, A, which is of a very large dimension and, in most

cases, extremely sparse, as well as by the given RHS vector, b. The properties of the system

matrix, A, determined by the discretisation technique, dictate which particular technique should

be employed for solving the system. Therefore, since the system matrix in the case under

consideration is complex and non-Hermitian (not self-adjoint), I have implemented GMRES,

QMR and BiCGStab algorithms, which are probably the most widely used Krylov subspace

methods for the solution of this kind of systems.

These three methods differ in storage requirements, number of calculations in each iteration

and robustness. GMRES is a well-known Arnoldi-based method proposed by Saad & Schultz

(1986). This method generates a non-increasing sequence of residual norms and, consequently,

it always guarantees smooth and monotonically decreasing convergence, which, however, is not

necessarily the fastest one. Also, it performs only one matrix-vector multiplication in one itera-

tion. The main disadvantage of pure GMRES is its large storage requirement since the method

stores all previously-generated Arnoldi vectors. As an alternative, one can use restarted or trun-

cated GMRES (see e.g. Baker et al., 2005). QMR (Freund & Nachtigal, 1991) and BiCGStab

(Van der Vorst, 1992) are two different Lanczos-based approaches. These methods have low re-

quirements for storage capacity, which is, in addition, fixed throughout a linear iteration. The

number of iterations that QMR and BiCGStab need for convergence can be approximately the

same as for GMRES, but each iteration requires two matrix-vector multiplications. Moreover,

the original QMR requires transpose matrix-vector multiplications (although a transpose-free

modification exists (Freund, 1993)). Those additional calculations make QMR and BiCGStab

computationally more demanding compared to GMRES. Also, these methods produce residu-

als whose norms oscillate – sometimes quite a lot. For more details about the advantages of

these methods, as well as considerations on their practical implementations, convergence and

breakdown possibilities, the reader is referred to the book of Saad (2003) and the review paper

of Simoncini & Szyld (2007).

The results of convergence tests that have been carried out in order to determine which of

the implemented solvers is the best choice for the problem under consideration are presented in

Chapter 4, Subsection 4.2.

39

Preconditioning

Although Krylov subspace methods have many advantages, when it comes to very large sparse

linear systems, which appear in typical real applications, all of them quite often converge ex-

tremely slowly. In general, the convergence of Krylov subspace methods heavily depends on

the condition number of the matrix. Matrices with small condition numbers tend to converge

rapidly, while those with large ones converge much slower. And real-life linear systems nor-

mally have huge condition numbers. In addition, as already said, the main weakness of iterative

solvers in general, compared to direct ones, is lack of robustness (Saad, 2003). The solution

to these problems lies in preconditioning. A good preconditioning technique can substantially

improve both the efficiency and robustness of an iterative method. Moreover, generally, the

reliability of iterative solvers, when dealing with various applications, depends much more on

the quality of the preconditioner than on the particular Krylov subspace method that is used.

Preconditioning assumes a transformation of the original system (2.51) into a new one, which

is called a preconditioned system, by applying some preconditioning matrix, M, in one of three

possible ways. The first one is so-called split preconditioning, which leads to a preconditioned

system of the following form:

M−1
1 AM−1

2 y = M−1
1 b, y = M2x (2.52)

where M1 and M2 are factors of M (M = M1M2). If M2 = I, preconditioner M is applied

to the left (left preconditioning). And finally, for M1 = I, the preconditioner is applied to the

right (right preconditioning).

Preconditioning matrix M can be defined in many different ways but it must satisfy a

few critical requirements. First, matrix M should be close to matrix A in some sense. More

precisely, M should be a non-singular matrix whose inverse is a good approximation to A−1

(M−1 ≈ A−1). Thanks to this, a right-preconditioned matrix, AM−1, for example, is as close as

possible to the identity matrix, I, and therefore the preconditioned system is better conditioned

than the original one: 1 ≈ κ(AM−1) � κ(A). Also, matrix M should be such that linear

systems of the form Mx = y are inexpensive to solve. Furthermore, M should be cheap to

construct and apply. More details about preconditioning techniques and their applications to

iterative methods can be found in (Saad, 2003).

When used for solving systems that appear in 3-D CSEM FE solvers, Krylov methods

converge very slowly. The main reasons for the bad convergence are unstructured grids that

have big element size ratios and high conductivity contrasts in models (especially if the air

layer is included). In order to improve performance of the three chosen Krylov methods, I have

implemented their right-preconditioned versions, in which all the calculations are performed in

40

double complex arithmetic. If instead of the original linear system (2.51), an iterative method

needs to solve a right-preconditioned system:

AM−1Mx = b⇐⇒ A′x′ = b′ (2.53)

the algorithm of the solver has to be changed. The change of the system matrix, A′ = AM−1,

affects the operation of matrix-vector multiplication, which is one of the basic operations in

every Krylov subspace method. In a right-preconditioned Krylov method, matrix-vector multi-

plication, Ap = q, transforms into the following operations:

M−1p = p′ Ap′ = q′ (2.54)

Also, the new system has a different vector of unknowns, x′ = Mx. Therefore, the final result,

x, must be derived from x′:

x = M−1x′ (2.55)

As a preconditioning technique, I have used Jacobi (diagonal) and SSOR preconditioning

(Saad, 2003). Very popular preconditioning based on incomplete LU factorisation has not

been used because of its rather inefficient parallelisation, which makes it impractical to be

incorporated in the fully parallel scheme. The experiments that have been carried out for

different Earth models have shown that in many cases, especially more realistic ones, the used

preconditioning schemes are not effective enough to ensure convergence to an approximation of

desired precision. In order to overcome this problem, I have started a search for a better and

more powerful preconditioner that is able to improve the convergence of all three implemented

Krylov methods, even in the most challenging cases, and that is also practical for the parallel

implementation. During this research, I came across the idea that algebraic multigrid can be

very good preconditioner, as already mentioned in Chapter 1, Subsection 1.2.3. After having

explored this subject in more depth, I have implemented a more elaborate preconditioning

scheme based on algebraic multigrid.

2.4 Algebraic Multigrid

2.4.1 Multigrid

Multigrid is not a single method, not even a group of methods, but a whole approach to solving

large and demanding computational problems. There are no ready-to-use multigrid algorithms

and recipes. Instead, there are simply concepts and ideas, and some basic strategies, which can

lead us and help us to create our own multigrid schemes. Here, I give just a brief overview of

41

some basic concepts and ideas that are the heart of multilevel methods, and for more information

on the topic I refer the reader to Briggs et al. (2000) and Trottenberg et al. (2001).

The idea of multigrid is based on two principles. The first one is the so-called smoothing

principle. Many classical basic iterative methods (relaxation schemes), when applied to discre-

tised elliptic problems, have a strong smoothing effect on the error of any approximation to

the exact solution. Namely, during the first several iterations (relaxations), the error decreases

rapidly. This is due to the fact that the standard iterations eliminate oscillatory (high-frequency)

modes of the error quite efficiently. On the other hand, these iterations are very slow to remove

smooth (low-frequency) modes of the error. Therefore, the basic relaxation schemes converge

very quickly as long as the error has high-frequency modes, but after removing these modes,

the convergence slows down and the entire scheme begins to stall due to the slower elimination

of the smooth components. Clearly, the low-frequency components of the error degrade the

performance of standard relaxation methods.

The second principle is known as coarse-grid principle. The idea is that any term which

is smooth on one grid can be well approximated on some coarser grid (a grid with double the

characteristic grid size h, for example) without any essential loss of information. What’s more,

only low-frequency components on a fine mesh are visible on a coarser one. In addition to this, a

smooth wave on a fine grid looks more oscillatory on a coarse grid. Consequently, it can be said

that in passing from a fine to a coarse grid, the low-frequency modes become high-frequency

ones.

These two principles lead to the following idea: when a relaxation method begins to stall,

which means that smooth modes have become dominant in the error, it may be useful to move

to a coarser grid and perform the basic iterations on it. Namely, since the smooth modes appear

more oscillatory on a coarse mesh, the relaxation scheme can eliminate them more efficiently.

In this way, some standard relaxation on different grid levels reduces the corresponding high-

frequency components very quickly and, if this process covers all frequencies, the overall error

can be eliminated quite rapidly. In addition, any coarse-grid procedure is much less expensive

(fewer grid points) than the same procedure on a fine grid.

The described idea has given rise to so-called coarse-grid correction (CGC) strategy, which is

the essence of multigrid methods. CGC schemes also incorporate the idea of using the residual

equation to iterate on the error directly. The residual equation of the linear system (2.51):

Ae = r, (2.56)

describes a crucial relationship between the error, e = x − x′, and the residual, r = b −Ax′

(where x′ is an approximation to the exact solution, x). In addition, it shows that the error

42

satisfies the same set of equations as the unknown x when b is replaced by the residual, r. Taking

this into account, it is clear that a relaxation on the original equation (2.51) with an arbitrary

initial guess x0 is equivalent to iterations on the residual equation (2.56) with the specific initial

guess e = 0, which makes the idea of CGC valid. The CGC procedure is described in Fig. 2.3.

Figure 2.3: Coarse Grid Correction procedure.

The integers n1 and n2 are parameters in the scheme that control the number of iterations

before and after the coarse grid correction. The given procedure shows that, first, a relaxation

method performs n1 iterations on a fine grid. The idea, as already described, is to let the

relaxation method to iterate as long as it is efficient, i.e. until the convergence stalls. In practice,

n1 is often 1, 2 or 3. After n1 iterations, one has an approximation to the solution that is used to

calculate the residual. Since the residual is determined for the fine grid, it has to be transferred

to a coarse-grid vector using some restriction operator, I2h
h . Having the coarse-grid residual, it

43

is possible to solve the residual equation on this coarse grid and obtain the coarse-grid error.

According to the procedure, the exact solution of the residual equation on the coarse grid

should be obtained. However, if this is not possible, one should approximate the coarse-grid

error. When either the exact coarse-grid error or its approximation is determined, the next step

is to transfer it to the fine-grid vector by some interpolation operator, Ih2h. This fine-grid error

is then used to correct the fine-grid approximation that is obtained after n1 iterations. In the

end, the relaxation method performs n2 additional fine-grid iterations.

A very important feature of this procedure is that its functions are complementary to each

other. Namely, the relaxation on the fine grid eliminates the oscillatory components of the error

and leaves an error that is relatively smooth. This error is determined by solving the residual

equation on the coarse grid and by interpolation of the resultant coarse-grid error. Since the

error is smooth, interpolation works very well and the error can be represented accurately on

the fine grid. In cases when it is not possible to get the exact solution of the residual equation,

it is good idea to approximate it using the relaxation scheme with initial guess equal to zero.

This is due to the fact that the error produced on the fine grid, which is quite smooth, appears

oscillatory on the coarse grid and therefore is quickly reduced by the relaxation. Having the

described CGC procedure as the starting point, one can create a great variety of multilevel

methods since each function and element of the procedure can be implemented in numerous

different ways.

Another significant characteristic of multigrid techniques is that, unlike in other methods,

the number of iterations required to obtain a prescribed accuracy is independent of the mesh

size. In this sense, multigrid methods are optimal. On the other hand, a multigrid scheme

needs not only the system matrix and the RHS vector, but also a sequence of coarser grids.

This makes the implementation of a multigrid technique more challenging than that of some

single-grid iterative method. In addition to this, unstructured, irregular grids are especially

complicated for multigrid methods. For a given unstructured grid, it is usually not difficult to

define a sequence of finer grids, but it may be difficult to define a sequence of reasonable coarser

grids that are necessary for multigrid. Therefore, for problems defined on unstructured grids,

it is much better to employ algebraic multigrid methods, because these methods construct a

hierarchy of coarse grids automatically using only algebraic information contained in the matrix

of the resultant linear system.

2.4.2 Algebraic Multigrid as a Solver

Algebraic multigrid (AMG), unlike geometric multigrid, does not require a given problem to

be defined on a grid. This is due to the fact that AMG operates directly on the linear sparse

44

system of algebraic equations. Taking this into account and changing some terminology ac-

cordingly, AMG can be described in formally the same way as geometrically based multigrid.

Coarse-grid discretisations used in geometric multigrid methods to reduce low-frequency error

components correspond to certain systems of equations of reduced dimensions in AMG schemes.

However, there are some important conceptual differences. The most significant one is that ge-

ometric schemes employ fixed grid hierarchies and hence obtain desirable efficiency by choosing

appropriate smoothing processes, while, on the other hand, AMG uses some simple relaxation

scheme, such as Jacobi or Gauss-Seidel, as the fix smoother and gains efficiency by selecting

suitable coarser levels and transfer operators. In other words, geometric multigrid needs to

know a grid hierarchy in advance, while AMG does not have this requirement. In fact, the

construction of a hierarchy, which is problem-dependent, is part of an AMG algorithm and is

completely automatic. This is possible because the hierarchy construction, which includes the

coarsening process itself, the transfer operators as well as the coarse-grid operators, is based

completely on algebraic information contained in the given system of equations. Thanks to the

fully automatic coarsening process, AMG is quite flexible to adapt to specific requirements of

the given problem, as well as very robust in solving large classes of problems despite using very

simple smoothers. Furthermore, AMG methods can be designed as black-box solvers, which

gives an attractive advantage to this approach. Nonetheless, all these advantages naturally

come at a price. Namely, AMG methods distinguish a set-up phase and a solution (cycling)

phase. The set-up phase, in which the given problem is analysed and the coarse levels, as well

as all the operators, are constructed, has to finish before the solution phase can start. Also,

this phase is normally rather costly. Consequently, it introduces significant overhead, which

is one of the reasons why AMG is usually less efficient than geometry-based multigrid. How-

ever, when it comes to efficiency, AMG should not be regarded as a competitor of geometric

multigrid. The strengths of AMG are its robustness, its applicability in cases with complex

geometries, which demand unstructured meshes, as well as its applicability to solving problems

which cannot be treated using geometric multigrid (non-geometric problems). Therefore, AMG

may be considered to be a good alternative to geometric multigrid whenever the latter one is

either too difficult to apply or cannot be used at all. Furthermore, AMG can be an efficient

alternative to standard numerical methods, such as Krylov subspace methods. In addition to

this, as already stated, AMG can be used to create a very efficient preconditioner. Actually,

very often, some simplified AMG versions used as preconditioners are better than more complex

ones implemented as standalone solvers.

45

2.5 Algebraic Multigrid Applied as Preconditioning

In this subsection, I present a novel more elaborate preconditioning scheme based on AMG.

The AMG preconditioner is based on a very simple coarsening procedure as well as a specific

implementation of the one-level coarse-grid correction strategy, which corresponds to M−1 in

the standard preconditioning approach that uses some preconditioning matrix, M. Namely, in

preconditioners based on AMG, there is no preconditioning matrix M. Therefore, in each matrix-

vector multiplication, A′p = AM−1p, in order to obtain vector z = M−1p, instead of doing

multiplication employing explicitly M−1, system Az = p is solved using AMG. Considering

that AMG, as a complex preconditioning technique, introduces significant overheads in each

iteration of the outer Krylov subspace solver, it is important to reduce its cost as much as

possible without losing its effectiveness. This is why only one level of CGC is used in this

particular preconditioner. Also, the set-up phase is normally extremely expensive part of AMG

and therefore it is good idea to implement a simple and fast coarsening algorithm in order to

reduce additional costs introduced to the outer iterative solver by AMG preconditioning. In

the presented preconditioning scheme, coarsening is based on groups of the mesh nodes that

are divided into these groups according to a simple levelisation algorithm based on the spatial

distance among the nodes.

The one-level coarse-grid correction (CGC) procedure is implemented in the following way:

• Do p basic relaxations on the original system, Az = p, with the initial guess z0 = 0, and

get an approximation zp.

• Find the residual: rp = p−Azp.

– Project rp on a coarse space: r̃p = WT rp.

∗ Solve a coarse-space residual system: Ãẽp = r̃p.

– Project back ẽp on the fine space: ep = Wẽp.

• Correct the fine-space approximation: zp = zp + ep

• Do p basic relaxations on the original system, Az = p, with the initial guess z0 = zp, and

get the final, i.e. preconditioned, approximation.

As a smoother, it is possible to use one of three basic relaxation methods that I have imple-

mented: Jacobi, Gauss-Seidel and symmetric successive over-relaxation (SSOR). The number of

basic iterations n1 = n2 = p is usually 1, 2 or 3. For transferring vectors between the fine and a

coarse space, projection matrix W is used, where the restriction operator, I2h
h , is the transpose

46

of the matrix, WT , and the interpolation operator, Ih2h, is the matrix itself, W. Matrix W is

also used to build the coarse-system matrix, Ã = WTAW. Since the coarse residual system

normally has a very small dimension (in the order of 102–103), a direct method based on LU

factorisation is used to solve it.

Considering that the linear system of equations under consideration is mesh-based, the

easiest way to define projection matrix W is by using the points of the mesh. Namely, the

nodes of the fine mesh are divided into sub-domains or groups, which are represented by one

variable in the coarse space. In theory, W is a N ×m matrix, where N is the dimension of the

fine system and m is the dimension of the coarse system. Each column of W represents one

group of nodes, and the entries in one column are ones for the points that belong to the assigned

group and zeroes for all other points. In practice, the matrix W is not explicitly constructed,

as the clustering process is very simple. Let me say that lgrou(ipoin) is the array defining to

which group, igrou, each node, ipoin, belongs and that npoin is the total number of nodes.

Special attention must be paid to the nodes where Dirichlet boundary conditions are applied.

One way of dealing with this issue is to assign a null group to these nodes, i.e. lgrou(ipoin) =

0. Then, assuming for the sake of clarity that both the fine and the coarse matrices are dense,

the construction of the coarse matrix is carried out as follows:

A_coarse = 0

do ipoin = 1,npoin

igrou = lgrou(ipoin)

if(igrou > 0) then

do jpoin = 1,npoin

jgrou = lgrou(jpoin)

if(jgrou > 0) then

A_coarse(igrou,jgrou) = A_coarse(igrou,jgrou) + A_fine(ipoin,jpoin)

end if

end do

end if

end do

The restriction, i.e. the projection of a fine vector x fine onto a coarse one x coarse, is per-

formed as:

x_coarse = 0

do ipoin=1,npoin

igrou = lgrou(ipoin)

if(igrou > 0) then

47

x_coarse(igrou) = x_coarse(igrou) + x_fine(ipoin)

end if

end do

And the inverse operation is given by:

do ipoin=1,npooin

igrou = lgrou(ipoin)

if(igrou > 0) then

x_fine(ipoin) = x_coarse(igrou)

else

x_fine(ipoin) = 0

end if

end do

Mesh partitioning into groups of nodes can be performed using METIS (Karypis & Kumar,

1995), which is normally employed in practice. Although I have included this possibility in the

presented code, I have also implemented the so-called wave-front algorithm to define these

groups. Namely, starting from a prescribed point, neighbouring nodes are added into a group

until a specified number of points per group is reached. The last set of nodes that are added

is used as a starting point for the next group. The procedure is repeated until all points are

assigned to some group. In spite of the fact that it is quite simple, this algorithm shows quite

good performance, which is in some cases slightly better than that achieved using METIS.

I have designed the presented AMG preconditioner as a black box, so that it can be employed

by different iterative methods without any additional modifications of the solver’s algorithm.

In other words, if there is a preconditioned version of some iterative method, it can use this

AMG preconditioner simply by calling a preconditioning subroutine and choosing it among all

other available preconditioners.

48

http://glaros.dtc.umn.edu/gkhome/views/metis

Chapter 3

Parallel Implementation

In real industrial applications, solution of the three-dimensional electromagnetic (EM) forward

problem is computationally extremely demanding – normally, hundreds of millions of EM field

unknowns have to be determined. If we take into account that this time-consuming task is a

crucial part of any inversion algorithm, it is clear that a highly efficient implementation of 3-D

EM modelling is critical for creating a practical interpretation method for 3-D EM data. This

desired efficiency can be obtained by parallel computing, which is nowadays widely accepted

as a means of handling very large computational tasks. As mentioned in Chapter 2, the only

truly efficient 3-D EM modelling code, developed by Alumbaugh et al. (1996), is fully parallel.

However, this solver is based on the finite-difference (FD) method, which puts some limitations

on its applicability. Namely, in situations in which structures that have complex, irregular

geometries have to be taken into account, FD cannot guarantee high quality of a solution, which

can lead to incorrect interpretations (as explained more elaborately in Chapter 1, Subsection

1.2.3). In order to overcome the limitations of the FD approach, one can employ the finite-

element (FE) method. However, despite all the advantages of the FE approach (presented in

Chapter 1, Subsection 1.2.3), there are still no fast, parallel FE schemes for 3-D EM modelling.

This is the reason why a big portion of my research has been focused on the development of a

highly efficient parallel scheme for the 3-D CSEM FE solver presented in this work.

The employed parallelisation strategy is based on the domain decomposition (mesh par-

titioning) technique using the Message Passing Interface (MPI) programming paradigm for

communication among computational units. In addition to this, I have used OpenMP for par-

allelisation inside of each computational unit. In this way, I have created a powerful hybrid

parallel scheme, schematically shown in Fig. 3.1, that accelerates the execution of the forward-

problem code to a great extent. The idea is to partition the original problem domain, which

normally consists of a huge number of elements, into smaller sub-domains. Thanks to this

49

Figure 3.1: Hybrid parallel scheme used for parallelisation of the 3-D CSEM FE solver.

partitioning, many computations can be done simultaneously, i.e. in parallel, which may reduce

the total execution time of the program substantially. The mesh partitioning inside the code

is performed using METIS (Karypis & Kumar, 1995), a set of serial programs for partitioning

graphs and FE meshes that can provide very good volume to surface ratios and well-balanced

domains for arbitrary meshes, which is the paramount for efficient parallel executions of FE

simulations.

In order to perform calculations concurrently, it is necessary to have multiple parallel tasks

(processes) – one for each sub-domain. The number of tasks must be specified before the

beginning of a program execution. When a system initialises the given number of processes,

it assigns to each of them their own unique identifiers. These identifiers, called ranks or task

IDs, are sequential integers starting at zero. The process of the rank zero is assigned to be the

master while all the other tasks have the role of a slave. The master performs all sequential parts

of the code. This means that it reads a mesh and problem parameters, performs partitioning

of the mesh into sub-domains, sends the sub-domains and their supplementary data to the

corresponding slaves, launches the simulation and writes output files. Slaves, on the other

hand, do all time-consuming calculations in parallel. They build element matrices and right-

hand-side (RHS) vectors that are then assembled into local system matrices and RHS vectors

50

http://glaros.dtc.umn.edu/gkhome/views/metis

for each sub-domain. These local matrices and RHS vectors are in fact parts of the global

system matrix and RHS vector. This means that each slave creates only one part of the global

system matrix that corresponds to the sub-domain assigned to it. After this, the slaves solve

the resultant global linear system in parallel by executing some iterative method. Since the

master does not have any sub-domain assigned to it, it does not perform any computations in

the iterative linear solver – it only controls the process and writes in output files after each step.

3.1 Mesh Partitioning

As already mentioned, mesh partitioning is performed using METIS (Karypis & Kumar, 1995).

METIS is a family of multilevel partitioning algorithms, i.e. programs for partitioning un-

structured graphs and hypergraphs, as well as for computing fill-reducing orderings of sparse

matrices. The underlying algorithms used by METIS are based on a state-of-the-art multilevel

paradigm that has been shown to produce high quality results and scale to very large problems

(http://glaros.dtc.umn.edu/gkhome/views/metis).

The main input data for METIS are the element graph of a mesh and weights of the vertices

of the graph. For building an element graph, two options are possible. A straightforward option

is to consider all the elements that share a node with an element e to be its adjacent elements,

i.e. neighbours (Fig. 3.2a). However, such a graph is normally extremely demanding in terms

of memory – especially in the case of 3-D meshes. For example, for a mesh of hexahedra that

has 50 million elements, the element graph based on node connectivity, which means that every

internal element has 26 neighbours, would occupy 5.0 GB (if using four-byte integers). The

second strategy, which has shown good load balance results so far, is to take as the adjacent

elements to e only the elements that share a face, in the case of 3-D elements, or a side (an

edge), in the case of a 2-D mesh, with the element e (Fig. 3.2b). This strategy requires much

less memory – for the 50-million-hexahedra example, every inner element has 6 neighbours and

thus the element graph occupies 1.3 GB. Considering that meshes used in practice are generally

huge (thousands of millions of elements), it is the strategy based on face connectivity that is

used in this work. As for the vertex weights, there are also two options. Weights of the vertices

of the graph, where a vertex in the graph represents an element in the mesh, can be equal to

either 1 or the number of Gauss points of the corresponding element.

As previously said, mesh partitioning is performed by the master. The master is the one

who reads data that describe the mesh (geometric information on the elements and nodes of the

mesh placed in files automatically created after mesh generation). Having this information, the

master is able to compute the element graph of the mesh using node or face connectivity. After

51

http://glaros.dtc.umn.edu/gkhome/views/metis

(a) Adjacency based on node sharing. (b) Adjacency based on face sharing.

Figure 3.2: Two possible strategies for creating the element graph of a 3-D mesh.

creating the graph, it computes weights of the vertices of the graph. In this way, it obtains

all the necessary input data for METIS. Having this, it performs graph partitioning by calling

a proper METIS function. The output of METIS is simply an array saying for each element

to which sub-domain it belongs. This, however, is not enough information for the slaves to

perform their parts of the job, let alone to do it efficiently. Therefore, the master has to do

some additional computations and to create some new data structures which will be sent to

the slaves together with the sub-domains themselves. So, after getting the output array from

METIS, the master performs the following operations:

Determine a communication strategy

Communication scheduling is an extremely important aspect that affects efficiency of com-

munication among slaves. Fig. 3.3 illustrates the significance of communication scheduling on

a simple example. In this example, each sub-domain has to communicate with all others. In

the upper part of the figure, we can observe the consequences of a bad communication strategy,

for which communication is carried out in five steps. For example, during the first step, sub-

domain 2 cannot communicate with sub-domain 3 until the latter has finished communication

with sub-domain 1. In order to optimise communication, which means to reduce the number of

communication steps as much as possible, it is necessary that every sub-domain is able to com-

municate in each communication step. The bottom part of the figure illustrates the optimum

scheduling for the given example. Applying this strategy, communication is performed in three

steps.

In this work, communication scheduling is done by the master using a colouring strategy.

The idea is to schedule communication by colouring the edges of the sub-domain graph (a graph

52

Figure 3.3: Simple illustration of communication scheduling. (Top) Bad communication scheduling in

five steps. (Bot.) Optimum communication scheduling in three steps.

in which neighbouring sub-domains are those that communicate among themselves) in such a

way that, in the end, communication is performed in as few steps as possible. The strategy is

implemented in the following way.

First, the master creates a half-matrix that shows which are neighbouring sub-domains

(sub-domains that share some mesh nodes). This matrix, neighDom(i,j), which has only the

bottom half and the main diagonal, stores for i 6= j, i.e. in the bottom half, the number of

mesh nodes shared by sub-domains i and j and for i = j, i.e. on the main diagonal, the total

number of shared (interface) mesh nodes of sub-domain i. Using this matrix, an additional

array is created. This array, lneig par(i), stores the number of neighbours of sub-domain i.

Furthermore, a sub-domain interconnection graph is built using the half-matrix. This graph is

stored in two arrays: adjDom, which is an adjacency array, and xadjDom(i), an array of pointers

that show for each sub-domain where the list of its neighbours starts in vector adjDom.

The next step is to create a dual graph for the sub-domain interconnection graph. The

dual graph is obtained from the original one in the following way: the edges of the original

graph, which represent connections between neighbouring sub-domains, become nodes in the

new graph; these nodes in the new graph are connected if they share a node in the original

graph, i.e. if they present different connections of the same sub-domain.

After the dual graph is created, the master applies a colouring algorithm to it. Namely, it

assigns a colour to every graph node, using the minimal possible number of colours, in such a

way that none of the nodes has the same colour as its neighbouring nodes.

Having done colouring, a communication table called lcomm par(i,j) is constructed. The

idea of the colouring strategy is that the dual-graph nodes with the same colour represent

communications that can be done at the same time. Therefore, less colours mean fewer com-

munication steps. Also, this is why neighbouring nodes cannot have the same colour. Namely,

they present different connections of the same sub-domain and hence cannot be performed at

53

the same time. The communication table contains the information on which sub-domains are

connected with communication for each colour, i.e. which sub-domains can communicate at

the same time. In ideal case, there are very few colours, i.e. communication steps, and every

sub-domain is able to communicate in each of these steps.

Create additional data structures

Starting from the output array of METIS, the master makes some additional data structures

that will be sent to the slaves in order to provide them with all the necessary information for

their share of the work.

First, the master creates lnpar par(i) array, where i represents a node of the mesh. This

array stores either the number of a sub-domain, if i is an internal node of that sub-domain, or

zero, if i is a shared (interface) node. At first, this array tells which mesh nodes are internal

ones, specifying to which sub-domain each of them belongs, and which are shared nodes. The

next step is the distribution of interface nodes between adjacent sub-domains, after which array

lnpar par(i) is able to say to which sub-domain each shared node belongs. This means that

for each interface node, instead of zero, the negative number of the sub-domain to which the

node is assigned is placed in the array. Also, npoin par(i) array is created. This array has the

size of the number of partitions and stores the total number of nodes that each partition has.

This number includes all the internal nodes that a partition has, as well as all the interface nodes

that the partition shares with all its neighbouring sub-domains – not only those interface nodes

assigned to it, called own interface nodes, but also those assigned to all its neighbours, called

others’ interface nodes. This means that every interface node will appear in all sub-domains

that share it. Furthermore, npoin total, which is the sum of total numbers of nodes of all

sub-domains, is calculated.

Having these data structures, the master is able to separate internal and interface nodes

for each sub-domain (here, interface nodes are just those assigned to a sub-domain, i.e. own

interface nodes). So, for each sub-domain, it creates permutation and inverse vectors for internal

nodes, permI(i) and invpI(i), as well as for interface nodes, permB(i) and invpB(i). The

permutation vectors are of size which is equal to the total number of nodes in the original mesh,

but for each sub-domain only those places that belong to its internal/interface nodes are filled

with temporary local numbers (numbers in the sub-mesh) of these nodes. The inverse vectors of

a sub-domain are of size that equals the number of internal/interface nodes in the sub-domain

and they store global numbers (numbers in the original mesh) of these nodes. Also, nbNodInter,

i.e. the number of internal nodes in a sub-domain, and nbNodBound, i.e. the number of interface

nodes assigned to the sub-domain, are calculated.

54

Furthermore, for each sub-domain, the master creates a sub-graph which describes adjacency

for internal nodes. These sub-graphs are used as inputs for a METIS function that renumbers

the interior nodes of a sub-domain in order to reduce cache misses during gathering operations.

For example, when an element system is calculated, the nodes of the corresponding element

are observed under their local numbering within the element. However, there is a necessity for

some ’sub-global’ information on the nodes (’sub-global’ means at the level of a sub-mesh). That

is why it is needed to perform a gathering operation in order to connect the local (element-

level) numbers of the nodes with their ’sub-global’ (sub-mesh-level) numbers and to obtain

necessary data from ’sub-global’ data structures. Also, gathering is crucial in system matrix

assembly, when the entries of an element matrix have to be placed in the system matrix of the

corresponding sub-domain. Node renumbering helps in such a way that, after it, neighbouring

mesh nodes are closer to each other in ’sub-global’ data structures, so a cache miss rate in

accessing those structures becomes considerably lower. The output of the METIS function is

reordered permutation vector permR(i), which has the size of nbNodInter.

Using these structures, two new vectors are created: node permutation vector lnper par(i)

and vector of inverse node permutation lninv par(i), both of length that equals the total

number of nodes in the mesh, npoin. These vectors are created in the following way:

offsetI = 0

offsetB = inter

do ipart = 1, npart_par

! Number interior nodes

do ii = 1, nbNodInter

kk = invpI(ii)

jj = permR(ii) + offsetI

lnper_par(kk) = jj

lninv_par(jj) = kk

end do

offsetI = offsetI + nbNodInter

! Number interface nodes

do ii = 1, nbNodBound

kk = invpB(ii)

jj = ii + offsetB

lnper_par(kk) = jj

lninv_par(jj) = kk

end do

offsetB = offsetB + nbNodBound

end do

55

Vector lninv par(i), which is the most important one, contains the global numbers of the

internal nodes of sub-domain 1, followed by the global numbers of the internal nodes of sub-

domain 2, and so on for all the sub-domains. After all the internal nodes of all sub-domains,

the interface nodes assigned to sub-domain 1 begin, then the own interface nodes of sub-domain

2 follow, and so on for all the sub-domains.

Finally, having lninv par(i) array, vectors lninv loc(i) and xlnin loc(i) are created.

The first one is a vector of inverse node permutation, but unlike lninv par(i), which has npoin

elements, it is of size npoin total. This array places the global numbers of all the nodes of

all sub-domains in the following order: first all the nodes of sub-domain 1 are placed, then the

nodes of sub-domain 2, and so on. The nodes of each sub-domain are organised in such a way

that first go the internal nodes followed by all the interface nodes (own interface nodes and

others’ interface nodes) of the sub-domain. The other array, xlnin loc(i), whose number of

elements is equal to the number of sub-domains plus one, stores a pointer for each sub-domain

which shows where the nodes of that sub-domain begin in lninv loc(i) array. The last element

of this array stores a pointer to the location after the last node of the last sub-domain. In order

to be able to deal with shared nodes in lninv loc(i) vector, some additional structures are

created:

• slfbo par(i), an array of size that equals the number of sub-domains, stores for each

sub-domain a pointer that shows where its own interface which has nbNodBound nodes

begins.

• bdom(i), an array of size (npoin total − the total number of all internal nodes in all

sub-domains), contains the list of sub-domains to which interface nodes belong.

• bpoin(i), an array of size (npoin total − the total number of all internal nodes in all

sub-domains), contains the local numbering of interface nodes in each of the sub-domains

to which they belong.

As for the mesh elements, there are a few data structures created for them, starting from

the METIS output:

• nelem par(i), an array of size that equals the number of sub-domains, stores the number

of elements in every sub-domain.

• leinv par(i), an array of size that equals the total number of elements in the mesh, is a

vector of inverse element permutation.

56

• leper par(i), an array of size that equals the total number of elements in the mesh, is

an element permutation vector.

Vector leinv par(i), the most important one, contains for every sub-domain the global num-

bers of its elements. First, the elements of sub-domain 1 are stored, then the elements of

sub-domain 2, and so on. There is leind par array of pointers which point to the beginning

of the element list for every sub-domain. Also, there is one more pointer for the first location

after the leinv par(i) array’s end. The code for creating these arrays is:

leind_par(1) = 1

do domai = 1, npart_par

leind_par(domai+1) = leind_par(domai) + nelem_par(domai)

end do

do ielem = 1, nelem

domai = lepar_par(ielem) ! The METIS output

jelem = leind_par(domai)

leinv_par(jelem) = ielem

leper_par(ielem) = jelem

leind_par(domai) = leind_par(domai) + 1

end do

Finally, having prepared all the additional data, the master sends them together with the

sub-domains to the corresponding slaves, which then solve the problem in parallel getting exactly

the same result like in a sequential execution.

3.2 MPI Communication

3.2.1 Synchronous Communication

Having all the necessary data, slaves can perform their tasks in parallel in the following way:

• System assembly – this part of the code is perfectly parallel, which means that each slave

can perform its part of the work completely independently from all other slaves – without

needing to communicate with anyone.

– Each slave computes element matrices and RHS vectors for each element that belongs

to the assigned sub-domain.

– Each slave assembles the element matrices and RHS vectors into the local system

matrix and RHS vector of the corresponding sub-domain.

57

• Iterative linear algebraic solver – in order to perform two out of three basic operations

that comprise every iterative method, slaves have to communicate among themselves in

order to exchange necessary data.

– At the very beginning, before starting the main loop of iterations, each slave ex-

changes partial interface node values of local RHS vectors with all its neighbouring

sub-domains. This exchange is performed using MPI Sendrecv. Having all contribu-

tions from all the neighbours, a slave sums them up and gets global RHS values in

shared nodes.

– Each slave performs matrix-vector multiplications locally and then exchanges and

adds contributions in shared nodes using MPI Sendrecv, so that each slave has global

product values in these nodes.

– Each slave performs scalar vector products locally and then the master assembles

and sums contributions from all the slaves using MPI Allreduce, so that each slave

has the global value of the calculated dot product of two vectors.

– Each slave calculates linear combination of vectors, which is done locally without

any communication. This operation is perfectly parallel.

It is clear that, in a FE implementation, only two kinds of communication between sub-

domains are necessary. The first type of communication appears when matrix-vector multi-

plication is performed and consists of exchanging arrays between neighbouring sub-domains

using MPI Sendrecv. The necessity of this kind of communication can be explained through the

principles of the domain decomposition technique on a simple example. Let me consider some

domain Ω which is divided into two disjoint sub-domains Ω1 and Ω2 with the interface Γ3, as

shown in Fig. 3.4. After the mesh partitioning, which is based on the elements of the mesh,

Figure 3.4: Decomposition of a domain into two sub-domains.

58

the nodes of the mesh can be renumbered according to the performed partition. In this way,

the internal nodes of each sub-domain, as well as the interface nodes that are shared between

the sub-domains, are grouped together within the global resultant linear system. In this simple

case, as a result of renumbering, the internal nodes of sub-domains Ω1 and Ω2 have sub-indexes

1 and 2, respectively, while the interface nodes have sub-index 3. Thanks to this renumbering,

the global system matrix, A, can be rewritten as:

A =

A11 0 A13

0 A22 A23

A31 A32 A33

 , (3.1)

where sub-matrices A11 and A22 represent all connections among the internal nods of sub-

domains Ω1 and Ω2, respectively, sub-matrices A13,A23, A31, A32 describe how the internal

nodes are connected to the interface nodes and sub-matrix A33 represents interactions between

the nodes on the interface. Considering that in the FE context the entries of A33 reflect the

values of the test functions of all the elements that share the nodes on the interface, this sub-

matrix can be split into A
(1)
33 and A

(2)
33 , which are contributions from sub-domains Ω1 and Ω2,

respectively, so that:

A33 = A
(1)
33 + A

(2)
33 . (3.2)

Now, if each sub-mesh is given to a different process, Ω1 to a process 1 and Ω2 to a process

2, matrix assembly will be carried out in parallel. As a result, each process will create the

corresponding part of the global resultant system matrix. These parts are, respectively:

A(1) =

[
A11 A13

A31 A
(1)
33

]
A(2) =

[
A22 A23

A32 A
(2)
33

]
. (3.3)

In this way, the global matrix is assembled locally in the sub-domains. It is clear that this part of

the code is perfectly parallel and that, consequently, there is not any communication. Now, let

me examine what happens when an iterative algebraic solver is executed. Every iterative solver

performs matrix-vector multiplication, which is one of the basic operations of any algebraic

iteration. When using the renumbered global system matrix, a generic matrix-vector product,

y = Ax, is obtained as follows:y1

y2

y3

 =

A11 0 A13

0 A22 A23

A31 A32 A33

x1

x2

x3

 , (3.4)

y1

y2

y3

 =

 A11x1 + A13x3

A22x2 + A23x3

A31x1 + A32x2 + A33x3

 . (3.5)

59

On the other hand, when an iterative method is executed in parallel, each process uses its local

system matrix to perform matrix-vector multiplication, y(1) = A(1)x(1) and y(2) = A(2)x(2):[
y1

y
(1)
3

]
=

[
A11x1 + A13x3

A31x1 + A
(1)
33 x3

] [
y2

y
(2)
3

]
=

[
A22x2 + A23x3

A32x2 + A
(2)
33 x3

]
. (3.6)

The interface nodes appear in both equations because they are repeated in each sub-domain,

which is a consequence of the fact that mesh partitioning is based on the elements of the mesh.

The idea of the domain decomposition is to recover the global result obtained in (3.5) each time

the matrix-vector operation is performed. From (3.5) and (3.6), as well as A33 = A
(1)
33 + A

(2)
33 ,

follows that:

y3 = y
(1)
3 + y

(2)
3 . (3.7)

Hence, in order to have the same result in the interface nodes in Ω1 as in the global case (3.5),

contributions of Ω2 in these nodes have to be added to y
(1)
3 . In the distributed memory context,

this operation can be carried out by sending a massage that contains y
(2)
3 from Ω2 to Ω1. The

same thing stands for Ω2. Therefore, the exchange of local shared node values can be carried

out using MPI Sendrecv between Ω1 and Ω2:

Ω2
y
(2)
3−→ Ω1 =⇒ Ω1 : y

(1)
3 ⇐ y

(1)
3 + y

(2)
3 (3.8)

Ω2
y
(1)
3←− Ω1 =⇒ Ω2 : y

(2)
3 ⇐ y

(2)
3 + y

(1)
3 (3.9)

Taking all the above-mentioned into account, communication itself is performed in the following

way. If two sub-domains share n nodes (interface nodes), they have to exchange arrays of size

n. Namely, each of them has to send its local values in these nodes to the other one. The other

one, after receiving the local values of its neighbour, adds these values to its own local values

in shared nodes. In order to perform this communication, permutation arrays have to be used.

These arrays find interface nodes in a vector, thanks to which the corresponding vector entries

(values in shared nodes) are extracted in order to be sent. The same arrays are used when

received values have to be added.

The second type of communication is global and of reduce type. This means that it is

performed among all the slaves with MPI Reduce. It is used to compute the scalar product of

two vectors, which is one of the basic operations in iterative solvers. When calculating a scalar

product, as well as the 2-norm (Euclidean norm) of a vector, each slave computes its portion

of the final result, i.e. of the final sum. Every slave performs calculations for its internal nodes,

as well as for its own interface nodes. After all the slaves have calculated their part of the

60

sum, communication is carried out with MPI AllReduce, where the operation to be performed

is MPI SUM.

The second kind of communication is also used when managing a coarse system in alge-

braic multigrid (AMG) preconditioning. In the parallel context, when a distributed-memory

machine is used, several techniques to deal with a coarse system exist (see e.g. Ramamurti

& Löhner, 1996). In this work, there is only one, global, coarse matrix, although each slave

contributes only to some of its entries. The global coarse matrix is obtained by simply carrying

out MPI AllReduce with MPI SUM operation. This means that all the slaves have the complete

coarse matrix and they all perform its factorisation. Then, when solving the coarse algebraic

system, an additional MPI AllReduce is required to assemble the complete RHS of the coarse

system.

Speaking of inter-slave communication, a very important aspect that should be considered

is the local node numbering of sub-meshes. In order to perform efficient data exchange, local

nodes are divided into three categories, as illustrated in Fig. 3.5:

• Internal nodes – these nodes are not shared with another sub-domain. They are numbered

using a METIS function that computes fill-reducing orderings of sparse matrices.

• Interface nodes – these nodes are shared with other sub-domains. Local values in these

nodes must be exchanged among all the neighbouring sub-domains and summed up when

computing the RHS vector or the matrix-vector product. Interface nodes are repeated

over all the sub-domains that share them. Therefore, each sub-domain divides its interface

nodes in Own and Others’:

– Own interface nodes are those for which the sub-domain itself is responsible. This

is useful, for example, for computing scalar products, so that products in interface

nodes are calculated only once before performing addition of contributions from all

the sub-domains with MPI AllReduce.

– Others’ interface nodes are those for which the neighbouring sub-domains are re-

sponsible.

The results of scalability tests with synchronous MPI communication are presented in Chap-

ter 4, Subsection 4.4.1.

61

Figure 3.5: Local node numbering. From light to dark: internal nodes, interface nodes assigned to other

sub-domains and own interface nodes.

3.2.2 Asynchronous Communication

When performing matrix-vector multiplication, slaves need to communicate in order to ex-

change values of the product vector in the nodes that they share. When synchronous MPI

communication is used, matrix-vector multiplication is performed in the following way:

• First, each slave performs the complete matrix-vector multiplication by executing a loop

that iterates through all the nodes (internal and interface nodes) that belong to the

corresponding assigned sub-domain. As a result, each slave obtains the whole product

vector with calculated values in both the interior and interface (shared) nodes. However,

the values in the shared nodes are only partial, because of which it is necessary to add to

them the results obtained by the corresponding neighbours.

• After obtaining the product vector, each slave exchanges the calculated values that belong

to the shared nodes with the corresponding neighbours. For this, synchronous (blocking)

MPI Sendrecv function is used.

• Finally, after receiving and summing up all contributions from the neighbours, each slave

has the complete resultant vector that can be used for further computations.

62

When asynchronous MPI communication is employed, matrix-vector multiplication is performed

in the following way:

• First, each slave performs only one part of matrix-vector multiplication by executing a

loop that iterates only through the interface (shared) nodes. As a result, each slave obtains

only a part of the product vector that corresponds to the shared nodes. These calculated

values are only partial and need to be exchanged among the corresponding neighbours

and summed up.

• After obtaining one part of the resultant vector that has to be exchanged, each slave

initiates asynchronous communication with the corresponding neighbours employing non-

blocking MPI Isend and MPI Irecv functions.

• While communication proceeds, each slave continues to perform the rest of matrix-vector

multiplication and obtains the part of the product vector that corresponds to its internal

nodes, whose values do not need to be exchanged. To do this, each slave performs a loop

that iterates through the internal nodes.

• After this, it is necessary that each slave waits for all the requested contributions to arrive

from the corresponding neighbours – at this point MPI WAITALL is used for synchronisation

– before summing them up with the values calculated by the slave itself at the beginning

of the procedure.

• Finally, all the slaves have complete resultant vectors that can be used for further com-

putations.

The results of scalability tests with asynchronous MPI communication are presented in

Chapter 4, Subsection 4.4.1.

3.3 Hybrid Parallelisation using OpenMP

In addition to MPI, which is used for communication among processes, I have employed OpenMP

for parallelisation within each process. In this way, a hybrid parallel scheme has been created.

In order to perform OpenMP parallelisation, I have used compiler-directive-based OpenMP

programming model, which means that OpenMP – multi-threaded, shared-memory – parallelism

has been specified by the use of compiler directives which are embedded in the source code.

As explained in Chapter 2, Section 2.5, when using AMG preconditioning, it is necessary to

create a coarse system. When slaves execute an iterative solver preconditioned with AMG, they

have to compute the coarse matrix of the system as well as to factorise it using LU factorisation

63

before the main loop of iterations. In the previous section, Subsection 3.2.1, it is told that, in

this work, there is only one, global, coarse matrix that exists in each computational unit. This

means that each slave has the whole coarse matrix and performs its complete LU factorisation.

However, LU factorisation is rather time-consuming part of the code, depending on the size

of the coarse matrix. The bigger the matrix is, the more time is needed for its factorisation.

For example, LU factorisation of a coarse matrix whose size is 40,000×40,000, which means

that it is created from 10,000 groups, takes 75% of the total execution time. Also, for other

normally used sizes of the coarse matrix, this part of the code is dominant in terms of execution

time. Therefore, in order to reduce its time of execution, I have employed OpenMP for its

parallelisation within each computational unit.

OpenMP parallelisation of LU factorisation of a complex sparse matrix stored in the com-

pressed sparse row (CSR) format has been performed in two steps:

• The first step is symbolical factorisation, which computes the structure of L and U ma-

trices. This routine is a single-thread routine.

• The second step is numerical factorisation, which computes the entries of L and U matrices.

This routine is a multiple-thread routine.

– In the sequential version, the main factorisation loop iterates through the rows of the

matrices. However, in the parallel, multi-threaded, version, the outer loop iterates

through the packets of rows – which are created using the elimination tree of the

factorisation. Iterations of this outer loop are then distributed dynamically among

the threads – one iteration (packet of rows) at a time.

– In order to determine the execution order of iterations of the factorisation loop in the

multi-threaded version of numerical factorisation, the following steps are performed:

∗ First, the elimination tree of the factorisation (Gilbert & Liu, 1993) is computed.

The nodes of this tree represent rows of the matrix, while their connections show

row dependencies during the factorisation.

∗ Then, blocks (packets) of nodes (rows) are created. The number of packets is

equal to the number of threads. The algorithm tries to make these blocks as big

as possible, but at the same time equally balanced. The rest of the nodes, which

are not packed in the created blocks, are packed in packets of only one node. In

this way, each node belongs to some packet.

∗ After these packets of nodes (rows) have been created, they can be distributed

among the threads so that each thread executes iterations connected to the rows

64

(nodes) that belong to the assigned packets. The algorithm assigns dynamically

one packet of nodes at a time by distributing iterations of the outer loop among

threads using:

#pragma omp for schedule(dynamic,1)

for (bb= 0; bb< number_of_packages; bb++)

{

numerical factorisation

}

The results of scalability tests when the hybrid MPI–OpenMP scheme is employed are

presented in Chapter 4, Subsection 4.4.2.

65

Chapter 4

Evaluation and Discussion

4.1 Accuracy Tests

I have performed several tests in order to check the accuracy of the presented finite-element

method. All models that I have used in the tests demonstrated here are synthetic, due to the

fact that I am not allowed to present real data since they are strictly confidential property of

oil companies.

4.1.1 Two-Layer Model

The first model, given in Fig. 4.1a, is the one-dimensional (1-D) model of a two-layer geo-

electrical structure proposed by Badea et al. (2001). The source is a horizontal finite current

loop, whose radius is 0.01 m, placed at 1.5 m below the interface that separates two conductive

materials. The source carries an electric current of 1010 A that oscillates at 2.5 MHz. I remark

that this case is a borehole problem and thus the frequency is considerably large compared

to frequencies normally used in CSEM. The skin depth in the lower, less conductive, half-

space, which contains the source, is zs0 =
√

2
σ0µ0ω

[m]. Expressions for the primary potentials

associated to this kind of source located in a homogeneous medium can be found in Badea et al.

(2001).

The problem domain is a cylinder whose radius is 9 m and length is 20.35 m. The mesh that

has been generated for this model has a strong refinement near the source and on the z-axis,

along which the electric field varies rapidly. A slice of the mesh in the X–Y plane at z = 1.5 m

is shown in Fig. 4.1b. This mesh has 543,319 elements and 93,406 nodes, which means that the

system to be solved has 373,624 unknowns.

The numerical results obtained at the symmetry axis of the model have been compared with

the analytical solution to the problem (Ward & Hohmann, 1988).

66

(a) Model of a two-layer geo-electrical structure with

a horizontal finite current loop as the source.

(b) Slice of the mesh in the X-Y

plane.

Figure 4.1: Two-layer model and a slice of the mesh generated for it

Small Conductivity Contrast

For the first test, the conductivities of the lower and the upper half-space are σ0 = 0.1 S/m

and σ1 = 1 S/m, respectively, which means that the conductivity contrast in this case is quite

modest: σ1/σ0 = 10.

The vertical component of the magnetic field numerically calculated along the z-axis, Hz, has

been compared to the corresponding analytical solution (Ward & Hohmann, 1988) in Fig. 4.2.

It is clear that the numerical solution is in agreement with the analytical one to a great extent.

Big Conductivity Contrast

Secondly, I have performed the same test, using the same mesh, for a much bigger conductivity

contrast: σ1/σ0 = 105.

Fig. 4.3 illustrates that obtained numerical results very precisely match the analytical ones,

which proves that presented approach is able to deal with strong conductivity contrasts that

often appear in realistic models.

Mesh With Local Refinements vs. Uniform Mesh

Furthermore, I have compared the results obtained using a mesh that has two levels of refinement

with the results acquired when an uniform mesh without refinements has been employed. The

refined mesh has one level of refinement in the ellipsoidal region defined by 0 ≤ r ≤ 2.5 m and

67

Figure 4.2: Comparison of the FE solution with the analytical one. The solid lines represent real (light

line) and imaginary (dark line) parts of the analytical solution. The numerical solution is marked with

circles.

Figure 4.3: The same as Figure 4.2, but for the conductivity contrast of 105.

68

−4.5 ≤ z ≤ 4.5 m, while the other refinement level is in the region described by 0 ≤ r ≤ 1.0 m

and −3.0 ≤ z ≤ 3.0 m. This mesh has 287,152 nodes and 1,677,390 elements whose sizes vary

from 0.5 m, near the edges of the domain, to 0.1 m, near the centre. The uniform mesh has

489,239 nodes and 2,935,432 elements of size equal to 0.25 m. These meshes have been created

in such a way that the average size of the elements is almost the same in both cases.

The solutions for these two meshes are marked in Fig. 4.4 with circles and diamonds, respec-

tively, while the complex analytical solution is represented by the solid (real part) and dashed

(imaginary part) curves. It can be clearly seen that the results for the mesh with local refine-

ments are much more precise near the source (z = 1.5 m) and at the peaks near the interface

(z = 0 m) compared with the results for the uniform tetrahedral mesh with the smaller element

size in the whole domain, but without refinements in the centre. The least-square distance

between the analytical solution and the solution for the refined mesh is 5.2 times smaller than

the distance for the uniform mesh. For the uniform mesh, convergence is achieved in 70 itera-

Figure 4.4: Comparison of the solutions for the mesh with two levels of refinement (circles) and for the

uniform mesh (diamonds).

tions and total (sequential) CPU time of execution is 820 s. Using the mesh with two levels of

refinement, the program converges in 160 iterations and total execution time is 399 s.

This experiment shows the influence of a mesh on the quality of a solution, numerical features

of a solver as well as efficiency of the whole program. The conclusion is that a non-uniform mesh

with local refinements has less elements, produces highly precise results, but causes a slower

convergence, while an uniform mesh without refinements has more elements, generates less

69

accurate results, but produces a faster convergence. However, despite the slower convergence,

non-uniform meshes normally provide faster code executions since they have less elements and

consequently each iteration is less costly.

4.1.2 Flat Seabed Model

The next numerical example is the flat seabed model described by Schwarzbach et al. (2011).

Similarly to the two-layer, this model also has a simple geometry. It consists of two half-

spaces, which represent seawater (σ0 = 3, 3 S/m) and sediments (σ1 = 1, 0 S/m), separated

by a planar interface. Unlike the previous case, the source here is an x-directed horizontal

electric dipole that radiates with frequency of 1 Hz and is placed 100 m above the seabed.

The dipole strength (the product of dipole peak current and dipole length) is 1 Am. For a

finite dipole whose length is small compared to the source-receiver separation, this parameter

is proportional to the amplitude of the field detected by the receivers. The computational

domain, ω = {−2 km ≤ x, y ≤ 2 km;−1.5 km ≤ z ≤ 2.5 km} , has been chosen according to

Schwarzbach et al. (2011) in order to compare my results with those reported in the paper. The

background conductivity model has been considered homogeneous with the conductivity of the

seawater, σ0 = 3.3 S/m. This is a common setup for marine CSEM.

The mesh created for this model has 3,121,712 elements and 533,639 nodes, and hence the

system to be solved has 2,134,556 degrees of freedom. The average size of the elements ranges

from 6 m, near the source, to 100 m, at the boundaries of the domain.

The numerically obtained absolute values and phases of non-vanishing secondary electric-

and magnetic-field components in the X–Z plane at y = 0 are shown in Fig. 4.5. These results

are remarkably similar to those presented in Fig. 5 by Schwarzbach et al. (2011) (these results

are also given in Fig. 4.5). The other three components, Hx, Ey and Hz, should vanish along an

in-line profile through the centre of the model because of the symmetry. Obtained results for

these components contain only numerical noise, which is 3–4 orders of magnitude lower than

the values given in Fig. 4.5.

4.1.3 Canonical Disc Model

In this subsection, simulations for the canonical disc model proposed by Constable & Weiss

(2006) are presented. This model was recently studied by Schwarzbach et al. (2011), who

compared the results of their FE simulation with those of the Weiss’s finite-volume code FDM3D.

Also, they added an air half-space in the model in order to analyse the air-wave effect. The

canonical disc model, shown in Fig. 4.6a, consists of two half-spaces, which represent 1.5 km

deep seawater (σ0 = 3.3 S/m) and sediments (σ1 = 1.0 S/m), and a disc which is a simplified

70

(a) Absolute values of non-vanishing secondary field components in the X-Z plane.

(b) Phases of non-vanishing secondary field components in the X-Z plane.

Figure 4.5: Obtained solution for the flat seabed model compared to the solution published by

Schwarzbach et al. (2011). 71

model of a hydrocarbon reservoir (σ2 = 0.01 S/m). The disc, whose radius is 2 km and hight

is 100 m, is located at 1 km beneath the interface. The transmitter is a horizontal electric

dipole oriented in the x-direction. The dipole is placed at the spot with coordinates (−3000,

0, −100) and operates at the frequency of 1 Hz. The model with the air half-space, shown in

Fig. 4.6b, has the same characteristics, except that the thickness of the water layer is 1 km and

the computational domain is much larger. As noted by Schwarzbach et al. (2011), the results

are largely influenced by the choice of the background conductivity model for the primary field.

Therefore, I also have chosen a homogeneous model in order to be able to compare the results.

The model responses obtained using the presented FE method are presented in Fig. 4.7a.

The EM-field values have been calculated along an in-line profile through the centre of the

model for four different scenarios. Namely, for both versions of the model – with and without

the air half-space – two simulations have been performed – with the hydrocarbon reservoir

and without it (σ2 = σ1). Due to the fact that the EM field decays rapidly in a conductive

medium, the secondary field usually is much smaller than the primary one. In many cases,

this leads to the situation in which the difference between the results of simulations with and

without a hydrocarbon reservoir is quite small and the target field is partially hidden in the

background field. Fig. 4.7a, just like Fig. 9 published by Schwarzbach et al. (2011) (here given in

Fig. 4.7b), shows that these fields are indistinguishable for transmitter-receiver distances smaller

than 2.5 km. Further comparison with the results obtained by Schwarzbach et al. (2011) shows

that both numerical solutions are in agreement to a great extent. Namely, in both cases, the

fields decay slower if the resistive disc is included in the model. Also, all three non-vanishing

field components are the same for offsets smaller than 3 km. Moreover, the presence of the

air half-space has a small effect on the vertical electrical component. However its influence is

significant for the horizontal field components at offsets larger than 4.5 km. Both meshes used

for simulations with and without the air half-space have approximately 3 million elements and

0.5 million nodes (2 million degrees of freedom).

4.1.4 Complex Real-Life Synthetic Model

In order to test possibilities of the presented FE approach to deal with arbitrarily complex

geological structures, a large realistic synthetic test case that includes seabed bathymetry, shown

in Fig. 4.8, has been created. If not taken into account, bathymetry effects can produce large

anomalies on the measured fields. Therefore, it is extremely important to have an accurate

seabed representation in this case. The dimensions of the model are 15×12×6.2 km and the

water depth varies from 1,050 to 1,200 m. The subsurface has 5 different anisotropic conductivity

structures with σh ranging from 0.1 to 1.5 S/m and σv varying from 0.12 to 1.0 S/m. The

72

(a) Canonical disk model without the air layer.

(b) Canonical disk model with the air layer.

Figure 4.6: Canonical disk model consisting of two half-spaces and a disk, which represents a hydro-

carbon reservoir, with a x-oriented horizontal electric dipole as the source, without and with the air

layer.

73

(a) Obtained non-vanishing secondary field components.

(b) Non-vanishing secondary field components published by Schwarzbach et al. (2011).

Figure 4.7: Obtained solution for the canonical disc model compared to the solution published by

Schwarzbach et al. (2011).

74

(a) Seabed bathymetry.

(b) A X-Z slice.

Figure 4.8: Complex real-life synthetic model.

75

Figure 4.9: Secondary fields for the complex synthetic model: absolute values (top) and values normal-

ized by the background results (without the reservoir)(bottom).

hydrocarbon reservoir is located at 1000 m below the seabed and has the conductivity σh =

σv = 0.01 S/m. The transmitter is a horizontal electric dipole operating at the frequency of

1 Hz. In order to accurately represent the complex geology and seabed bathymetry, A mesh

that has 512,651 nodes and 2,996,017 elements, whose sizes vary from 6 to 400 m, has been

created. Also, in order to analyse the importance of the quality of a mesh, another, smaller,

mesh that has 1.3 million elements ranging from 10 to 400 m has been made.

The model responses along an in-line profile are presented in Fig. 4.9. The upper row shows

the absolute values of the secondary fields, while the bottom row demonstrates secondary electric

and magnetic field magnitudes normalised by the corresponding results of the simulation without

the reservoir. It is clear that the results for the two meshes are of a similar order of magnitude.

However, the results obtained with the finer mesh do not include numerical oscillations that

appear in the results achieved with the coarse mesh.

4.2 Convergence of the Solvers

In this section, I study the performance of the implemented solvers – the right-preconditioned

BiCGStab, QMR and GMRES – with the Jacobi (diagonal) preconditioner in order to compare

their behaviour for the EM problem under consideration and to determine which one is the best

choice in this case. This is due to the fact that different linear solvers can compete in terms of

76

convergence rate, computational cost of each iteration and memory requirements. To perform

the convergence tests, I have used the meshes created for the models described in Section 4.1.

In all tests, the convergence criterion is a reduction of the relative residual norm to a value in

the order of 10−8. It is important to emphasise that QMR minimises the norm of the quasi-

residual (Simoncini & Szyld, 2007) instead of the residual norm that is directly generated in

case of GMRES and BiCGStab. This means that the convergence criterion is applied to this

quasi-residual and not to the real one, which is important and relevant for fair comparisons

to the other methods. Therefore, real QMR residual norms have to be calculated in order to

evaluate its true convergence. Also, the number of iterations has been limited by the maximum

value of 1,000.

The convergence plot in Fig. 4.10 shows the residual norms generated by BiCGStab and

QMR versus the iteration number for the mesh created for the model without the air-layer

described in Subection 4.1.3 which has 2,993,420 elements and 512,060 nodes (2,048,240 degrees

of freedom). Fig. 4.10 shows the norms of both real and quasi- residuals generated by QMR in

order to compare its convergence to the one of BiCGStab. The convergence plot in Fig. 4.11

Figure 4.10: Convergence rate of BiCGStab and QMR solvers for the mesh of 2 million degrees of

freedom created for the canonical disk model without the air.

shows the norms of the BiCGStab residuals and QMR real and quasi- residuals versus the

77

iteration number for the big mesh created for the model described in Subection 4.1.4 which

has 2,996,017 elements and 512,651 nodes (2,050,604 degrees of freedom). We can see that in

Figure 4.11: Convergence rate of BiCGStab and QMR solvers for the mesh of 2 million degrees of

freedom created for the real-life synthetic model.

both cases BiCGStab has more dramatic oscillations, however, its overall convergence is faster

and it can reach lower residual norms after the same number of iterations: in the first case,

it reaches 10−4 vs. 10−2 of QMR, while in the second case, BiCGStab reaches 10−4 and QMR

10−3 after 1,000 iterations. Also, the convergence of both methods in both examples is quite

poor since neither of the methods can reach the given precision of 10−8 in 1,000 iterations

using only diagonal preconditioner. Namely, due to the big sizes of the domains, both meshes

have large aspect ratios of the elements, which results in bad convergence rate. This is quite

common situation in practice where problem domains are huge and in order not to have too

many elements and to obtain an accurate solution unstructured meshes are refined in the vicinity

of a source and receivers and aspect ratios of the elements is usually very big which causes slow

convergence rate. It can be concluded that a more elaborate and more powerful preconditioning

technique for complex Helmholtz-type equation systems instead of the simple diagonal one is

essential for improving the convergence rate. More tests have confirmed the results presented

here, as well as that QMR, quite popular solver in the community, can reach BiCGStab after

78

several hundreds or thousands of iterations, though at the beginning its convergence rate is

much worse. Thus, for the problem under consideration, BiCGStab appears to be a better

choice.

The residual norm of GMRES without restarts decreases monotonically and the convergence

is smooth, however BiCGStab with its oscillations performs better or equal. Due to the large

memory requirements of GMRES, there seems to be no reason to use it in real simulations.

4.2.1 Discussion

Since linear systems arising from the EM problem under consideration are huge, GMRES has

proved to be highly impractical because of its large demands for memory. Also, the experiments,

which I have carried out to test the performances of the implemented solvers for these systems,

have shown that BiCGStab produces norms of the residuals that oscillate significantly, but are

smaller in value than the ones of GMRES and QMR. Therefore, for this class of problems I

suggest using BiCGStab in combination with a proper preconditioner.

4.3 AMG Evaluation

In order to evaluate the presented AMG preconditioning scheme, I have performed various tests

for several Earth models described above. I have chosen models with different conductivity

contrasts – from small ones, in the order of 10, to quite high contrasts, in the order of 105.

It is important to test a preconditioning scheme for cases with high contrasts between elec-

trical conductivities since solvers normally have convergence problems when dealing with such

conductivity structures. Also, in different tests, employed frequencies have different values –

from low frequencies (∼1 Hz), which CSEM surveys usually use, to high frequencies (∼106 Hz).

Furthermore, in some tests, the source is a current loop, while in others, it is an electric dipole.

In all the following experiments, I have used the right-preconditioned BiCGStab method

to solve linear systems that are results of the FE discretisation. This iterative solver has been

chosen because the earlier tests, which have been carried out in order to examine the behaviour

of the implemented solvers, have shown that, for the EM problem under consideration, the

norms of the residuals produced by BiCGStab oscillate quite a lot, but are smaller than the

ones of GMRES and QMR. The convergence criterion for all BiCGStab iterations is a reduction

of the relative residual norm to a value in the order of 10−10. Also, the number of iterations has

been limited by the maximum value of 3,000. All the execution times have been obtained by

running the program in parallel on the MareNostrumIII supercomputer using 32 processes.

79

http://www.bsc.es/marenostrum-support-services/mn3

To inspect the benefits of the new preconditioning scheme, the performances of several

preconditioning strategies have been compared:

1. Jacobi (diagonal) preconditioning

2. SSOR preconditioning with over-relaxation parameter equal to 0.1

3. AMG preconditioning with Jacobi smoother (AMG-J)

4. AMG preconditioning with SSOR smoother (AMG-SSOR)

The AMG preconditioner has been tested with different parameters:

• number of basic iterations at the beginning and at the end of the CGC procedure: 1, 3

• number of groups, i.e. size of the coarse system: 100, 500, 1000, 5,000, 10,000

4.3.1 Two-Layer Model

The first model is the 1-D model described in Subsection 4.1.1.

Small Conductivity Contrast

First, I analyse the case when the model has a quite small conductivity contrast, σ1/σ0 = 10, as

given in Subsection 4.1.1. For this case, I present the results for both AMG-J and AMG-SSOR,

and for all combinations of the AMG parameters given above. Table 4.1 shows the convergence,

given in number of iterations, of the preconditioned BiCGStab solver, as well as the total

execution time of the code, expressed in seconds, when employing AMG-J and AMG-SSOR

preconditioning with different parameters.

Looking at these results, some conclusions can be drawn. First, it can be noticed that if the

number of basic iterations at the beginning and at the end of the CGC procedure is increased,

the convergence of the solver improves. Also, if more groups are created, the solver converges

faster. Furthermore, it is clear that the choice of smoother affects the solver’s convergence

rate. It can be seen that, in this test, SSOR smoothing gives the smallest achieved number

of iterations, 138, which is reached for the largest used number of basic iterations (3) and the

largest used number of groups (5,000), while Jacobi smoothing leads to the better convergence

on the average (392.5 vs. 712.6 iterations).

However, the presented results show that if the convergence is improved by increasing AMG

parameters, it does not mean that the execution time of the code will be reduced. Namely, one

AMG-preconditioned iteration is quite costly and each increment of any parameter makes it even

more expensive. In addition, SSOR iterations are more computationally expensive than Jacobi

80

No. of SSOR 3+3 3+3 3+3 3+3 1+1 1+1 1+1 1+1

iterations

No. of groups 100 500 1000 5000 100 500 1000 5000

Convergence 1309 499 291 138 1694 874 725 171

(No. of iterations)

Total execution 77.44 32.83 22.81 46.57 79.18 30.01 32.54 47.35

time (sec.)

No. of Jacobi 3+3 3+3 3+3 3+3 1+1 1+1 1+1 1+1

iterations

No. of groups 100 500 1000 5000 100 500 1000 5000

Convergence 482 387 306 215 733 421 381 215

(No. of iterations)

Total execution 26.34 23.31 21.53 61.64 20.96 14.37 16.99 55.81

time (sec.)

Table 4.1: Results for the two-layer model with the small conductivity contrast.

81

iterations. Therefore, care has to be taken when choosing the AMG parameters in order to get

the best possible performance. Sometimes, it is necessary to chose more expensive elements in

order to make the solver converge to a desired precision. On the other hand, sometimes, it is

necessary to select a cheaper version which provides the fastest solution, although it may not

give the best convergence. Considering this model, for example, the shortest execution time of

14.37 s is obtained using 1+1 Jacobi iterations and 500 groups.

In Fig. 4.12, I compare the convergence of the solver without any preconditioner and with

different preconditioning schemes, including the AMG-J preconditioner with 1+1 basic itera-

tions and variant number of groups. The chart shows relative norms of the residuals generated

by BiCGStab iterations, ‖r‖/‖b‖ (where ‖b‖ is the Euclidean norm of the RHS vector), as a

function of the number of iterations.

Figure 4.12: Convergence of BiCGStab without preconditioning (black), with diagonal preconditioning

(blue), with SSOR preconditioning whose over-relaxation parameter is 0.1 (cyan) and with AMG-J

preconditioning with 1+1 basic iterations and 100 groups (yellow), 500 groups (magenta), 1,000 groups

(green), 5,000 groups (red), for the two-layer model with the small conductivity contrast.

Fig. 4.12 clearly shows that the BiCGStab solver without any preconditioning cannot reach

the prescribed precision after 3,000 iterations. It has the same problem when using only simple

Jacobi preconditioning. If the solver employs SSOR preconditioning, it converges after 2,823

iterations and the execution time of the code is 145.04 s. The results obtained with AMG

82

preconditioning are given in Table 4.1. It is obvious that, for this model, the presented pre-

conditioner improves convergence of the solver, as well as execution time of the code to a great

extent and for all the parameter configurations used. Namely, compared to SSOR precondition-

ing, AMG can reduce the number of iterations by two orders of magnitude and execution time

by one order of magnitude.

Big Conductivity Contrast

Next, I consider the case when the model has a big conductivity contrast, σ1/σ0 = 105, as defined

in Subsection 4.1.1. The results have shown that AMG-J preconditioning cannot help the solver

to converge to the desired precision in this case. Not even when using 3+3 basic iterations and

10,000 groups. However, the SSOR smoothing scheme can improve the convergence so that the

solver can reach the expected precision. In order to provide a good convergence, the solver needs

to employ AMG-SSOR preconditioning either with 3+3 basic iterations and at least 500 groups,

or with 1+1 basic iterations and at least 1,000 groups. The conclusion is that this model with

high conductivity contrast is more challenging and, hence, requires more expensive versions of

the AMG preconditioner. Fig. 4.13 shows the convergence reached when the BiCGStab does

not use any preconditioner and when it uses different preconditioning schemes, including the

AMG-SSOR preconditioner with 3+3 basic iterations and a varying number of groups.

The chart in Fig. 4.13 shows that, in this case, BiCGStab reaches the prescribed precision in

less than 3,000 iterations only when preconditioned with the AMG-SSOR preconditioner that

has 3+3 basic iterations and 500 or more groups. When there are 500 groups, the solver con-

verges in 2,060 iterations and the execution time is 130.63 s. For 1,000 groups, the convergence

is reached after 1,303 iterations and the execution time is the shortest achieved for this case:

94.37 s. And for 5,000 groups, the solver needs only 781 iterations to reach the desired precision,

while the code needs 179.63 s to finish execution.

4.3.2 Seven-Material Model

The second model, presented in Fig. 4.14, is a completely artificial one, made with the sole pur-

pose of testing the preconditioning scheme for quite a complex conductivity structure featuring

extremely large conductivity contrasts. In this way, I want to simulate what may appear in real

geological structures and what is usually a source of numerical problems. The values of conduc-

tivities are: σ1 = 0.1 S/m, σ2 = 1.0 S/m, σ3 = 10.0 S/m, σ4 = 100.0 S/m, σ5 = 1000.0 S/m,

σ6 = 50.0 S/m, σ7 = 500.0 S/m. Clearly, the conductivity contrasts vary from 10 up to 104.

The mesh and the source are the same as in the two-layer model.

83

Figure 4.13: Convergence of BiCGStab without preconditioning (black), with diagonal preconditioning

(blue), with SSOR preconditioning whose over-relaxation parameter is 0.1 (cyan) and with AMG-SSOR

preconditioning with 3+3 basic iterations and 100 groups (yellow), 500 groups (magenta), 1,000 groups

(green), 5,000 groups (red), for the two-layer model with the high conductivity contrast.

Figure 4.14: Model of a conductivity structure composed of seven different conductive materials with

a horizontal finite current loop as the source.

84

This model has proved to be quite difficult for all the tested preconditioning techniques. As

expected, taking into account the results for the two-layer model with the high conductivity

contrast, the AMG-J preconditioner is rather helpless in this case, so that AMG-SSOR is

the only scheme that helps the solver to converge. However, in order to achieve the desired

convergence, it is necessary to employ very expensive versions of the AMG-SSOR preconditioner.

Namely, the proper convergence is reached only when using at least 5,000 groups. With 3+3

basic iterations and 5,000 groups, the convergence is reached in 1,650 iterations, while execution

time is 359.89 s. For 10,000 groups, the solver converges after 933 iterations and the code is

executed in 495.35 s. Fig. 4.15 presents the solver’s convergences for different preconditioning

schemes, including the AMG-SSOR preconditioner with 3+3 basic iterations, which is more

efficient than the 1+1 AMG-SSOR version, and different number of groups.

Figure 4.15: Convergence of BiCGStab without preconditioning (black), with diagonal preconditioning

(blue), with SSOR preconditioning whose over-relaxation parameter is 0.1 (cyan) and with AMG-SSOR

preconditioning with 3+3 basic iterations and 500 groups (yellow), 1,000 groups (magenta), 5,000 groups

(green), 10,000 groups (red), for the seven-material model.

4.3.3 Flat Seabed Model

The next numerical example is the model described in Subsection 4.1.2. Since this model is not

very challenging numerically, employment of any of the tested preconditioners can significantly

85

improve the convergence of the solver so that it is able to give a suitable approximation rather

easily. Therefore, the question for the proposed AMG preconditioning is how much faster it can

be compared to the other schemes that are less demanding in terms of computational require-

ments inside of one solver iteration. Considering that any combination of AMG parameters can

ensure a good convergence, the best idea is to use the computationally cheapest parameters.

Taking this into account, I compare the convergences obtained using AMG-J with 1+1 basic

iterations and different number of groups (up to 5,000) with the convergences generated by the

other schemes, Fig. 4.16.

Figure 4.16: Convergence of BiCGStab without preconditioning (black), with diagonal preconditioning

(blue), with SSOR preconditioning whose over-relaxation parameter is 0.1 (cyan) and with AMG-J

preconditioning with 1+1 basic iterations and 100 groups (yellow), 500 groups (magenta), 1,000 groups

(green), 5,000 groups (red), for the flat seabed model.

Although AMG preconditioning greatly improves the convergence of the solver, the gain in

execution time of the code is not so spectacular. This is demonstrated in Table 4.2.

The values in the table show that AMG can reduce the number of iterations six times,

compared to the SSOR preconditioner, or seven times, compared to diagonal preconditioning.

On the other hand, the biggest reduction in execution time is around four times, compared to

SSOR. And compared to diagonal preconditioning, the execution time can be reduced only 1.3

times. Although it is not significant, clearly there is some improvement obtained by employing

86

AMG with AMG with AMG with AMG with

Preconditioner Diagonal SSOR 1+1 Jacobi & 1+1 Jacobi & 1+1 Jacobi & 1+1 Jacobi &

100 groups 500 groups 1000 groups 5000 groups

Convergence 1397 1273 298 274 264 209

(No. of iterations)

Total execution 55.21 159.35 45.58 43.25 44.97 80.61

time (sec.)

Table 4.2: Results for the flat seabed model.

AMG preconditioning for this model, as well.

4.3.4 Tests for Insensitivity to the Maximal Size Ratio Between the Grid

Elements

FE grids normally have extremely large size ratios between the elements due to local refinements.

This is usually a reason for the poor convergence of a solver (Koldan et al., 2011). Having this

in mind, I have performed tests to see if this preconditioning scheme can reduce the sensitivity

of an iterative solver to a big size difference between the biggest to the smallest element in a

mesh.

Two meshes of almost the same sizes have been created, but with very different local refine-

ments and hence significantly different ratios between the sizes of the elements for the canonical

disc model described in Subsection 4.1.3.

First mesh is quasi-uniform since it has a very small and simple refinement: the size of the

largest element is only two times bigger than the size of the smallest one. It is quite easy to create

such a mesh because it is not necessary to put much effort into the refinement process. This

mesh has 2,993,420 elements and 512,060 nodes (2,048,240 degrees of freedom). Although with

very simple refinement, this mesh has proved to have enough elements to provide a sufficiently

accurate solution approximation in this case. Namely, the quality of approximations to the EM

field vectors is almost the same for both meshes.

The results for this mesh have shown that the solver converges to the given precision with

any of the tested preconditioning schemes. Fig. 4.17 shows that the AMG-J preconditioner

with 1+1 basic iterations and a variant number of groups performs much better than other

preconditioners. It reduces the number of iterations up to 11 times compared to the diagonal

preconditioner, and up to 8 times when compared to SSOR.

When comparing execution times, Table 4.3 shows that AMG-J can be almost 2 times faster

than diagonal preconditioning, and 5.5 times faster than SSOR.

87

Figure 4.17: Convergence of BiCGStab without preconditioning (black), with diagonal preconditioning

(blue), with SSOR preconditioning whose over-relaxation parameter is 0.1 (cyan) and with AMG-J

preconditioning with 1+1 basic iterations and 100 groups (yellow), 500 groups (magenta), 1,000 groups

(green), 5,000 groups (red), for the quasi-uniform mesh for the canonical disc model.

AMG with AMG with AMG with AMG with

Preconditioner Diagonal SSOR 1+1 Jacobi & 1+1 Jacobi & 1+1 Jacobi & 1+1 Jacobi &

100 groups 500 groups 1000 groups 5000 groups

Total execution 103.92 306.89 96.74 64.19 55.25 84.09

time (sec.)

Table 4.3: Results for the quasi-uniform mesh for the canonical disk model.

88

The second mesh used for simulations greatly exploits the power of FE method having huge

local refinements around the source and receivers, as well as in the centre of the model. The ratio

of the size of the biggest element to the size of the smallest one is 100:1. However, it is necessary

to have a powerful mesh generator to create a high-quality mesh with such big refinements. This

mesh has 2,991,478 elements and 511,020 nodes, which means 2,044,080 degrees of freedom.

The results for the second mesh have shown that convergence to the desired precision can

be reached only when using AMG preconditioning. Since any combination of the tested AMG

parameters gives good convergence, the computationally least demanding version of the precon-

ditioner should be chosen. Therefore, in Fig. 4.18, where is given the comparison of the solver’s

performances when preconditioned with different schemes, I present the results obtained by

AMG-J with 1+1 basic iterations and variant number of groups. The best execution time of

45.35 s is gained when using 1+1 Jacobi iterations and 1,000 groups.

Figure 4.18: Convergence of BiCGStab without preconditioning (black), with diagonal preconditioning

(blue), with SSOR preconditioning whose over-relaxation parameter is 0.1 (cyan) and with AMG-J

preconditioning with 1+1 basic iterations and 100 groups (yellow), 500 groups (magenta), 1,000 groups

(green), 5,000 groups (red), for the very refined mesh for the canonical disc model.

Generally, any local refinement of a mesh produces a deterioration in a solver’s convergence.

However, this set of tests has demonstrated that the AMG preconditioner can considerably

improve the convergence of the solver no matter how big local refinements of the mesh are.

89

Furthermore, if the results in Fig. 4.17 and Fig. 4.18 are compared, it can be seen that the solver

with any version of AMG preconditioning converges to the desired precision after almost the

same number of iterations for both meshes. It may be concluded that the AMG preconditioned

solver is quite insensitive to the maximal size ratio between grid elements.

4.3.5 Tests for Grid-Independent Rate of Convergence

In order to prove a grid-independent rate of convergence of the BiCGStab solver when precon-

ditioned with AMG, I have performed experiments using the automatic mesh refinement that is

built in Alya code to create larger meshes. As already described in Chapter 2, Subsection 2.2,

at each subsequent level of the refinement, each tetrahedron of the current mesh is divided into

8 new tetrahedra. Clearly, this leads to a new mesh that is 8 times bigger than the preceding

one. Due to the size of the new mesh, it is necessary to create 8 times more groups than for the

lower-level mesh. In this way, the relative reduction of the fine-space dimension, i.e. dimension

of the linear system, to a coarse-space dimension stays the same.

In all tests, I have performed automatic refinement up to the second level because of the

enormous sizes of the meshes. This means that in each case there are three meshes for com-

parison, which is enough to show how the convergence of the solver preconditioned with AMG

is (un)affected by the increase in number of elements, i.e. number of unknowns. The results

of these tests for the two-layer model, flat seabed model and canonical disc model are given in

Tables 4.4, 4.5 and 4.6, respectively.

Level of Number of Number of Number of Time of

refinement elements (106) nodes (103) iterations execution (sec.)

0 0.5 93.4 1,309 75.95

1 4.3 734.3 1,148 505.08

2 34.8 5,800.0 1,063 3,731.32

Table 4.4: Convergence and execution time for different refinement levels of the mesh used for the

two-layer model.

It can be observed that the convergence is quite independent of the mesh size in all cases.

This means that the scheme really does guarantee convergence for extremely large meshes (∼ 200

million elements). However, while the number of iterations almost does not change with the

size, the execution time grows nearly linearly. This is due to the fact that for bigger meshes it

is necessary to create more groups, which means a bigger coarse system and more time for its

factorisation and solution. Because of this drawback of the scheme, it is preferable to use as

few groups as possible for the original mesh. In the presented tests, I have used 100 groups for

90

Level of Number of Number of Number of Time of

refinement elements (106) nodes (106) iterations execution (sec.)

0 3.1 0.5 476 41.40

1 25.0 4.2 514 333.61

2 199.8 33.5 597 3,049.46

Table 4.5: Convergence and execution time for different refinement levels of the mesh used for the flat

seabed model.

Level of Number of Number of Number of Time of

refinement elements (106) nodes (106) iterations execution (sec.)

0 2.99 0.5 1,812 145.42

1 23.9 4.0 1,897 1,147.84

2 191.5 32.0 1,764 8,302.98

Table 4.6: Convergence and execution time for different refinement levels of the mesh used for the

canonical disc model.

the first mesh. Consequently, 800 groups have been created for the first and 6,400 groups for

the second level of refinement.

4.3.6 Complex Real-Life Synthetic Model

The presented AMG preconditioning scheme has been also tested for the model described in

Subsection 4.1.4. In these tests, the convergence criterion for all BiCGStab iterations is a reduc-

tion of the relative residual norm to a value in the order of 10−8, while the number of iterations

has been limited by the maximum value of 1,000. In Fig. 4.19, the convergence of the solver

for different preconditioning schemes is compared. Fig. 4.19 shows that BiCGStab converges to

the desired precision in less than 1,000 iterations only when using AMG preconditioning. The

results have shown that any reasonable combination of AMG parameters gives good conver-

gence, so, Fig. 4.19 presents the results obtained by AMG-J with 1+1 basic iterations, which is

computationally the least demanding version of the preconditioner. For this case, the shortest

total execution time is 37 s.

4.3.7 Discussion

A series of experiments for several models with different characteristics have been performed to

test the performance of the proposed AMG preconditioning technique when combined with the

BiCGStab method. The results have shown that the AMG preconditioner greatly improves the

91

Figure 4.19: Convergence of BiCGStab with different preconditioners for the original problem (2 million

degrees of freedom) for the complex real-life synthetic model.

convergence of the solver for all tested cases. The convergence becomes better with the increase

of the number of basic iterations, as well as the size of the coarse system. However, these

increases introduce additional computational costs that slow down the execution of a single

iteration. Therefore, it is important to carefully find the right balance of all the parameters in

order to obtain the best possible performance. The choice of parameters is not a trivial task

and there are no straightforward rules for it. However, I have drawn some conclusions from

the tests I have performed that can help to create a rough general strategy for choosing AMG

parameters. The experiments have shown that, in most cases, the best results are achieved

when using only 1+1 Jacobi iterations and 500− 1, 000 groups. But, if a model is very complex

and has high conductivity contrasts, it will be probably necessary to create up to 5,000 groups

and to have more basic iterations. Similarly, SSOR relaxations have proved to be more efficient

in dealing with high contrasts between conductivities than Jacobi iterations. In the described

examples, the systems that have been solved have between 0.5 and 2 million unknowns, which

means that numbers of groups that proved to be the most efficient choices are three or four

orders of magnitude smaller. I remark that these ratios may be used as guidance when choosing

the number of groups.

Compared to other preconditioning schemes, such as diagonal and SSOR, the AMG pre-

conditioner has proved to be especially useful in cases with big conductivity contrasts, high

92

frequencies employed and/or large maximal size ratio between the mesh elements. In these

situations, in which the other preconditioners have problems to ensure the desired convergence,

there is always at least one version of AMG preconditioned solver that is able to converge to

the prescribed precision in less than 3,000 iterations. Furthermore, in situations when other

preconditioning techniques work very well, computationally cheap versions of the AMG precon-

ditioner can improve the performance of the solver even more. Namely, despite the extra cost

per iteration, if the right combination of parameters is chosen, AMG is always able to reduce

the solution time compared to the other preconditioning schemes.

Tests have shown that the presented AMG preconditioner ensures the convergence of a

Krylov subspace method which does not depend on the size of a mesh. This means that one can

increase the size of a grid and the solver will converge after almost the same number of iterations.

However, for a bigger mesh it is necessary to create a larger number of groups, which introduces

an additional computational overhead that increases the execution time almost linearly. This

drawback could be overcome to some extent by parallelisation of the AMG procedure. In

addition to this, it has been shown that the preconditioner improves both the convergence and

the execution time for simple (quasi-)uniform meshes as well as for complex ones with huge local

refinements. Moreover, the convergence of the AMG preconditioned solver is rather unaffected

by the ratio between the sizes of the grid elements.

AMG has been implemented as a black-box preconditioner, so that it can be easily used

and combined with different iterative methods. However, this has not been completely obtained

yet since a user has to choose AMG parameters in order to achieve the best performance. For

having a perfect black-box preconditioner, it is necessary to build in the code an automatic way

of choosing optimal AMG parameters. One of possible ways to do this is to employ a suitable

machine learning algorithm.

4.4 Scalability Tests

4.4.1 Scalability Using MPI Communication

The scalability of the code when using only MPI communication has been tested by running the

same problem for different numbers of CPUs working in parallel. I have measured the total time

spent on the construction of the system matrix and RHS vector and on solving the system. The

first part takes approximately 1% of the total time, which means that most of the CPU usage

goes to the linear-system solver. All simulations have been carried out on MareNostrumIII

supercomputer (http://www.bsc.es).

93

http://www.bsc.es

MareNostrumIII is a supercomputer based on Intel SandyBridge processors, iDataPlex Com-

pute Racks, a Linux Operating System and an Infiniband interconnection. Its peak performance

is 1 Petaflops. It has 48,448 Intel SandyBridge-EP E5-2670 cores with a frequency of 2.6 GHz,

grouped into 3,028 computing nodes, 94.625 TB of main memory (32 GB/node), 1.9 PB of disk

storage as well as infiniband and gigabit ethernet interconnection networks. The computing

nodes are the last generation of IBM System X servers: iDataPlex dx360 M4. These nodes

are based on Intel Xeon (R) technology, and they offer high performance, flexibility and power

efficiency. Each computing node has two 8-core Intel Xeon processors E5-2670 with a frequency

of 2.6 GHz and 20 MB cache memory.

It is important to emphasise that all the models presented here are synthetic and hence

much smaller and simpler than real ones, which cannot be presented in this work. Namely, the

employed test models have approximately 3 million elements and 0.5 million nodes (2 million

degrees of freedom), while real ones normally have thousands of millions of elements and tens and

even hundreds of millions of nodes and degrees of freedom. Therefore, I have used the automatic

mesh refinement of the second level that is built in the code to create very large meshes that

are of sizes of those used in real industrial applications. In this way, the scalability of the code

can be evaluated in a way that is relevant for real industrial purposes. For the following tests, I

have used the realistic complex model described in Subsection 4.1.4 and the mesh created for it

that has 2,996,017 elements and 512,651 nodes (2,050,604 degrees of freedom). The second level

of the automatic mesh refinement has created a big mesh that has 191.7 million elements and

32.1 million nodes (128.4 million degrees of freedom), which is close to sizes of real industrial

meshes. Simulations for this big second-level mesh require at least 32 slaves due to its huge

memory demands. Therefore, these tests have been performed on 32, 64, 128, 256, 512 and

1024 CPUs, using all 16 cores per node.

Synchronous MPI Communication

First set of tests has been carried out using synchronous MPI communication described in

Chapter 3, Subsection 3.2.1.

Fig. 4.21 shows speed-ups obtained with synchronous MPI communication (marked with

triangles) for up to 1024 CPUs for the second-level mesh (191.7 million elements and 128.4

million degrees of freedom).

The achieved scalability is almost linear for up to 256 processors. From this number on,

the scalability stops its near-linear growth and slowly begins to saturate since the execution

becomes dominated by exchange of messages between the processes. However, the speed-ups

94

keep growing constantly and significant improvements in execution time for more than thousand

processors has been observed.

In order to perform a more thorough analysis of the parallelisation with synchronous MPI, I

have carried out another series of executions on 2, 4, 8, 16 and 32 CPUs using the original mesh

that has 3 million elements. Since the mesh is rather small, all the effects that appear with

the increase of the number of processes can be noticed much earlier. Fig. 4.20 shows traces of

these program executions. It can be seen that matrix assembly (dark blue part framed with red

line), which is small (1% of the total execution time), perfectly parallel part of the code, quickly

disappears with the increase of the number of processes. However, iterative solver (yellow part),

which is dominant and expensive part of the code, requires communication and therefore does

not have the ideal linear scaling. Taking this into account, it is clear that the overall speed-up

depends on the behaviour of the solver in the parallel context. Tables 4.7 – 4.11 give more

insights into what happens when the number of CPUs is increased and explain why the speed-

up starts saturating at some point of this increase. These tables present the minimal, maximal

and average time that processes have spent on performing useful computations, i.e. running

(dark blue colour in Fig. 4.20). Also, they show the minimal, maximal and average time that

has been spent on communication – group communication with MPI Allreduce (orange parts

in Fig. 4.20) as well as inter-neighbouring communication with MPI Sendrecv (yellow colour in

Fig. 4.20). Finally, they demonstrate the percentages of time that each of these events have

taken within the execution. Analysing these results, it is easy to notice that the computation

time has been reduced by increasing the number of processes – around 8 times when increasing

the number of CPUs from 2 to 32. On the other hand, the time spent on communication has

been increased with the number of used CPUs – around 4.5 times when increasing the number

of processes from 2 to 32. In other words, when using 2 CPUs, computation takes 98% of the

overall time and communication only 2%, while when using 32 CPUs, communication becomes

dominant with 52% of the overall time compared to 48% that goes to computation. It is clear

that communication becomes dominant with the increase of the number of processes, because

of which the speed-up begins to saturate and moves away from the linear curve. Also, it can be

seen that the difference between minimal and maximal computation time is smaller for fewer

processes. If there are more processes, this difference becomes larger. This observation indicates

that it is more difficult to create well-balanced partitions for a bigger number of CPUs. Due

to this load-balance difference, the scalability of the computational part becomes worse when

having more processes. However, this effect is never too large and therefore it is not a crucial

factor for deterioration of the scalability. The main problem lies in the growing communication

costs.

95

(a) Traces of 2 MPI processes.

(b) Traces of 4 MPI processes.

(c) Traces of 8 MPI processes.

(d) Traces of 16 MPI processes.

(e) Traces of 32 MPI processes.

Figure 4.20: Traces of processes with synchronous MPI communication.

96

Time Running Group communication Send/Receive

Minimal (s) 305.051 5.249 0.513

Maximal (s) 305.053 5.462 0.716

Average (s) 305.052 5.356 0.614

Percentage (%) 98.01 1.76 0.23

Table 4.7: Execution analysis when using 2 CPUs and synchronous MPI communication.

Time Running Group communication Send/Receive

Minimal (s) 159.363 7.599 0.587

Maximal (s) 163.617 7.896 4.57

Average (s) 161.547 7.751 2.501

Percentage (%) 92.92 4.48 2.60

Table 4.8: Execution analysis when using 4 CPUs and synchronous MPI communication.

Time Running Group communication Send/Receive

Minimal (s) 90.17 5.561 1.235

Maximal (s) 109.451 10.087 18.4

Average (s) 100.245 7.053 9.299

Percentage (%) 79.35 7.31 13.34

Table 4.9: Execution analysis when using 8 CPUs and synchronous MPI communication.

Time Running Group communication Send/Receive

Minimal (s) 44.423 7.833 3.006

Maximal (s) 75.082 14.074 34.486

Average (s) 68.31 10.597 11.795

Percentage (%) 60.72 11.38 27.90

Table 4.10: Execution analysis when using 16 CPUs and synchronous MPI communication.

Time Running Group communication Send/Receive

Minimal (s) 24.57 9.212 4.527

Maximal (s) 43.103 21.028 25.403

Average (s) 38.633 14.158 12.441

Percentage (%) 48.14 23.49 28.37

Table 4.11: Execution analysis when using 32 CPUs and synchronous MPI communication.

97

Figure 4.21: Scalability tests for the mesh with two levels of automatic refinement (128.4 million degrees

of freedom) when synchronous (marked with triangles) and asynchronous (marked with squares) MPI

communication is used.

Asynchronous MPI Communication

Previously, it has been shown that communication is the main source of the scalability deteri-

oration. In order to reduce the impact of communication costs that grow with the increasing

number of used CPUs, I have employed asynchronous MPI communication, described in Chap-

ter 3, Subsection 3.2.2, which makes possible to overlap computation and inter-neighbouring

communication. Here, the results of tests that have been carried out using asynchronous MPI

communication are presented.

Fig. 4.21 shows speed-ups obtained with asynchronous MPI communication (marked with

squares) for up to 1024 CPUs for the second-level mesh (191.7 million elements and 128.4 million

degrees of freedom).

The scalability in this case behaves very similarly as the scalability in the case when syn-

chronous communication is used. However, there is an improvement of up to 10% when asyn-

chronous communication is employed.

In order to do a better analysis of the parallelisation with asynchronous MPI, I have carried

out a series of executions on 2, 4, 8, 16 and 32 CPUs using the original mesh that has 3 million

elements, like in the case of synchronous MPI communication. The results are given in Tables

98

4.12 – 4.16. It is clear that the influence of communication between neighbouring sub-domains

has been considerably reduced. By overlapping this communication with computation, it has

been obtained that bigger number of processes does not lead to the increase of time spent on

inter-neighbouring communication. Moreover, this time is always almost negligible. However,

the overall communication time still grows with the increase of the number of CPUs. This is due

to the fact that group communication has not been reduced by asynchronous communication

and therefore has become dominant communication component that grows with the increasing

number of processes. Also, it stays the main source of the scalability decay. Nevertheless, the

increase in communication time is considerably smaller when using asynchronous communica-

tion. For example, when increasing the number of processes from 2 to 32, communication time

grows around 2 times in asynchronous case and 4.5 times with synchronous communication.

Time Running Group communication Send/Receive

Minimal (s) 310.465 4.877 0.003

Maximal (s) 349.176 4.947 0.015

Average (s) 329.821 4.912 0.009

Percentage (%) 98.60 1.40 0.00

Table 4.12: Execution analysis when using 2 CPUs and asynchronous MPI communication.

Time Running Group communication Send/Receive

Minimal (s) 161.261 4.948 0.005

Maximal (s) 165.069 5.302 0.009

Average (s) 162.752 5.116 0.007

Percentage (%) 96.88 3.11 0.01

Table 4.13: Execution analysis when using 4 CPUs and asynchronous MPI communication.

Time Running Group communication Send/Receive

Minimal (s) 99.071 8.699 0.014

Maximal (s) 115.961 16.223 1.533

Average (s) 105.443 11.106 0.357

Percentage (%) 86.72 12.13 1.15

Table 4.14: Execution analysis when using 8 CPUs and asynchronous MPI communication.

99

Time Running Group communication Send/Receive

Minimal (s) 45.347 7.367 0.033

Maximal (s) 73.749 11.848 0.343

Average (s) 67.927 8.944 0.138

Percentage (%) 85.81 13.79 0.40

Table 4.15: Execution analysis when using 16 CPUs and asynchronous MPI communication.

Time Running Group communication Send/Receive

Minimal (s) 24.703 7.596 0.25

Maximal (s) 44.736 17.189 0.638

Average (s) 38.279 10.29 0.47

Percentage (%) 71.50 27.48 1.02

Table 4.16: Execution analysis when using 32 CPUs and asynchronous MPI communication.

4.4.2 Scalability Using Hybrid MPI–OpenMP Scheme

In order to evaluate the scalability of the code when employing the hybrid MPI–OpenMP

scheme, I have performed a series of tests for a fixed number of processes and different num-

bers of OpenMP threads used by each process. These simulations have been carried out on

MareNostrumIII supercomputer. Fig. 4.22 shows the results obtained with 32 processes us-

ing 1, 2, 4, 8 and 16 OpenMP threads for a case in which the coarse matrix is created from

10,000 groups and has the size of 40, 000×40, 000. Each process has been running on one entire

node of the machine. Since each node consists of two 8-core Intel Xeon processors E5-2670, the

maximal number of physical threads that can be employed in one node is 16. Fig. 4.22 also

shows the maximal speed-ups that can be obtained with 2, 4, 8 and 16 threads according to

Amdahl’s law, which says that if P is the proportion of a program that can be made parallel

and (1−P) is the rest of the code that remains serial, then the maximum speed-up that can be

achieved by using N processors is:

S(N) =
1

(1− P) + P
N

. (4.1)

When processes do not use threads, LU factorisation of the 40, 000×40, 000 matrix takes 75% of

the execution time. According to Amdahl’s law, the maximal speed-up that could be obtained

for P=75% tends to 4 when N tends to infinity. Therefore, 4 is the upper limit for speed-

ups in this case. Looking at Fig. 4.22, it can be seen that for up to 4 threads, the obtained

speed-ups for the observed example are the same as the maximal ones. However, for a bigger

number of threads, the speed-ups become smaller than their theoretical maximum. In order to

100

http://www.bsc.es

Figure 4.22: Speed-ups gained employing the hybrid MPI–OpenMP parallelisation scheme, when 32

MPI processes and different numbers of OpenMP threads within each process are used, for a case in

which LU factorisation of a 40, 000× 40, 000 matrix is performed.

understand and explain this deterioration of the overall scalability, I have tested the scalability

of LU factorisation alone by running it for different numbers of OpenMP threads.

In order to test the scalability of LU factorisation, I have performed several tests for different

meshes and for different sizes of coarse matrices. All simulations have been carried out on the

MareNostrumIII supercomputer with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16

threads. Fig. 4.23 shows with squares the speed-ups for a coarse matrix whose size is 20,000.

This coarse matrix has been created when a mesh of 3 million elements and 0.5 million nodes

(2 million degrees of freedom) has been divided into 5,000 groups of nodes. With triangles,

Fig. 4.23 presents the speed-ups for a coarse matrix whose size is 40,000 and that has been

created from 10,000 groups generated from a mesh of 3 million elements and 0.5 million nodes

(2 million degrees of freedom). Also, Fig. 4.23 shows the speed-ups for a coarse matrix whose

size is 40,000 and that has been created from 10,000 groups generated from a mesh of 192

million elements and 32 million nodes (128 million degrees of freedom), which are marked with

crosses.

It can be seen that in all cases the achieved speed-up is almost linear for up to 5 threads.

After this number of threads, the speed-up stops its near-linear growth and slowly begins to

saturate since it becomes more difficult to find enough parallelism for a bigger number of threads

in elimination trees of relatively small coarse matrices that have been considered here. However,

101

Figure 4.23: Speed-ups gained by OpenMP parallelisation of LU factorisation for: a coarse matrix

created from 5,000 groups of a 0.5 million node mesh (squares), a coarse matrix created from 10,000

groups of a 0.5 million node mesh (triangles) and a coarse matrix created from 10,000 groups of a 32

million node mesh (crosses).

the speed-up keeps growing constantly and significant improvements in execution time for up

to 16 threads can be observed.

Fig. 4.24 shows traces of execution when 2, 4, 8 and 16 threads are used. Dark blue colour

means that a thread is running doing some useful calculations, light blue colour marks that a

thread is idle and yellow parts are scheduling and fork/join operations. Dark blue parts that

are framed represent tasks that can be performed fully in parallel. The traces show that with

the increase of the number of threads, these parts become smaller, so that, when 16 threads are

used, these parts are extremely tiny. This demonstrates what already has been commented – it

becomes more difficult to find enough parallelism in the graphs of coarse matrices for a larger

number of threads.

4.4.3 Discussion

The meshes built for the models presented in this work are quite small compared to real in-

dustrial meshes. However, also for this rather small meshes, the parallelisation scheme shows

very good scalability for up to 1024 CPUs. In order to evaluate what might be achieved in real

applications, I have used the automatic mesh refinement in order to build really big meshes –

close to ones that are used in practice and which have thousands of millions of elements and

102

(a) Traces of 2 OpenMP threads. (b) Traces of 4 OpenMP threads.

(c) Traces of 8 OpenMP threads. (d) Traces of 16 OpenMP threads.

Figure 4.24: Traces of OpenMP threads used for parallel execution of LU factorisation.

103

hundreds of millions of nodes. Tests for these large meshes have shown extremely good scala-

bility when using MPI communication. Up to 256 CPUs the speed-up is almost linear. After

this number of processors, there is a slight decrease in speed-up due to small sub-domains and

MPI communication predominance, but there is still a constant growth and quite big gain for

up to 1024 CPUs. Also, the use of asynchronous MPI communication can improve the achieved

speed-up up to 10%.

If an iterative solver employs AMG preconditioning, which includes time-consuming LU

factorisation, it is possible to use the hybrid MPI–OpenMP parallel scheme in order to accelerate

the execution of the code to a greater extent. However, the speed-up that can be obtained by

OpenMP is bounded by the theoretical maximum that can be calculated according to Amdahl’s

law. Also, the scalability of LU factorisation alone deteriorates with number of threads, because

for a bigger number of threads it is more difficult to find enough parallelism in the graphs of

relatively small coarse matrices that appear in AMG.

104

Chapter 5

Conclusions and Future Work

5.1 Conclusions

I have developed a nodal finite-element solver for three-dimensional electromagnetic numeri-

cal modelling in geophysics involving active sources, either current loops or arbitrary dipoles.

The finite-element (FE) approach supports completely unstructured meshes, which makes the

geological and bathymetric complexity of simulated models irrelevant. Thanks to this, the nu-

merical scheme has a very broad range of applicability for real case scenarios. The employed

CSEM problem formulation in terms of the secondary Coulomb-gauged electromagnetic (EM)

potentials has been validated through numerous tests on different Earth models and has proved

to ensure highly accurate and numerically very stable nodal finite-element solutions. Also,

the presented method correctly supports electric anisotropy, which in many cases has a heavy

impact on the inversion process. In addition, explicit and closed expressions for the primary

electromagnetic potentials for dipole point sources, which are the most important source class

in CSEM, have been developed and successfully employed for the accurate and rapid calculation

of these potentials.

Three different Krylov subspace methods that are suitable for matrices that arise due to the

FE discretisation of CSEM problems have been implemented. The tests that have been carried

out in order to evaluate their convergence rates and resource requirements have shown that, for

the problems under consideration, the BiCGStab method outperforms the other techniques in

terms of convergence and/or memory consumption. The experiments have also shown that the

iterative solvers converge rather poorly when employed alone or with diagonal preconditioning.

Therefore, I have implemented a more elaborate preconditioning scheme for Krylov subspace

methods to improve their performance and thus reduce the execution time of the whole numer-

ical scheme, as well as to improve the accuracy of a solution. This new preconditioner is based

105

on algebraic multigrid (AMG) that uses different basic relaxation methods as smoothers and the

wave-front algorithm to create groups, on which generation of coarse spaces is based. The AMG

preconditioner has proved to be very well suited for systems that arise in 3-D CSEM numer-

ical modelling. Namely, it has been shown that AMG preconditioning dramatically improves

the convergence of Krylov subspace methods, even in the most difficult situations. The more

challenging the problem is in terms of conductivity contrasts, element size ratios in a mesh

and/or frequency, the more benefit is obtained by using this preconditioner. For all models

shown, at least one version of the AMG preconditioner requires less computational time than

other preconditioners – in some cases, the speed-up can reach an order of magnitude. Although

there is no strict rule for obtaining an optimal AMG parameter set, the results vary mildly

in all performed tests, making the AMG a quasi-black-box approach that can be attached to

different iterative methods. Also, this preconditioner is rather practical in the parallel context.

Therefore, the gain obtained by AMG preconditioning together with fully parallel solvers can be

crucial in allowing EM inversion schemes to reach accurate solutions for complex 3-D scenarios

in a reasonable time. Taking all the advantages and disadvantages into account, it may be

concluded that, for relatively modest programming effort, I have obtained a powerful tool that

can greatly improve the performance of an EM modelling scheme, which is critical for pushing

EM methods towards a more common use in industry.

The presented numerical method for 3-D CSEM modelling has been implemented very effi-

ciently on massively parallel computers. Thanks to a good parallel program design as well as

the use of parallel Krylov subspace solvers and preconditioners, the scheme is able to deal with

extremely large problems in a very efficient way, which makes it practical for real industrial

use. The tests have shown that huge reductions in execution time can be achieved using MPI

programming model – it is possible to obtain great, almost linear, scalability for more than

a thousand processors. The hybrid MPI–OpenMP scheme, which has been developed for the

cases in which time-consuming AMG preconditioning is used, is able to reduce the overhead

introduced by AMG and thus accelerate the execution of the whole code even more. Through

this work, it has been shown that there are no restrictions in employing any of the classical

parallel programming models – MPI and OpenMP. Moreover, the fact that these standard pro-

gramming models ensure great improvements in terms of the execution time of the code leads

to the conclusion that it is enough to use these tools, without a need to search for some other

up-to-date parallel programming models.

Finally, the conclusion is, what has been demonstrated with examples, that the presented

parallel numerical method is very well suited to solve extremely large and complex CSEM

forward problems in a very accurate, robust and highly efficient way. In addition, it is the

106

first 3-D CSEM solver based on finite elements that is fully parallel and highly scalable, and

therefore extremely efficient.

5.2 Future Work

This thesis presents an efficient, reliable and robust numerical solution to the 3-D electromag-

netic (EM) forward problem that I have successfully developed. Although this solver of the EM

partial differential equations (PDE) can be used as a stand-alone solver in some applications,

its main purpose is to be incorporated as a crucial part in a 3-D EM inversion algorithm, which

is the final goal. Namely, in order to exploit CSEM data acquired in areas of complex geology

for practical applications, it is important to create a reliable and efficient solver for the 3-D EM

inverse problem. Therefore, the next development steps concentrate on creating such inversion

method that is based on the modelling scheme presented in this work. The goal is to resolve

the EM inverse problem using PDE-constrained optimisation algorithms that can exploit the

features of the modern technologies. The discrete adjoint method, also known as ’first discretise

then optimise’, is a versatile and powerful technique to obtain gradients in this kind of problems.

It is based on the resolution of an adjoint linear system using information from the discretised

PDE. This property motivates its study and implementation using a parallel PDE solver in

order to profit from the parallelisation scheme already implemented in it.

The discrete adjoint method solves the problem of finding derivatives with respect to design

variables (parameters of the PDE) of a cost functional in an infinite-dimensional optimisation

problem (PDE-constrained optimisation) by applying discretisation schemes in order to convert

it into a finite-dimensional problem. After that, adjoint variables are spawned and the final

expression of the derivatives is obtained by applying matrix-vector operations between those

variables and explicit derivatives taken in the discretised constraints and the discretised cost

functional. The adjoint variables are obtained by solving an adjoint problem. This problem

has the same dimension of the forward problem (the discretised PDE) and in some cases uses

the same left-hand side. The right-hand side is replaced by explicit derivatives of the cost

functional with respect to the state variables (the main unknown in the PDE). Concerning the

implementation issues of this method, as well as the fact that a very fast forward-problem code

has been developed, a novel way to solve the adjoint system with the existing PDE solver,

which re-uses the already assembled matrix combined with transposed parallel iterative linear

system solvers, is created. Therefore, in order to compute one gradient, the following algorithm

is executed for each source:

107

1 INPUT: γ, d := d(γ)

2 u← solve(K(d), f(d))

3 λ← solve(K(d)T ,D(u− uobs))

for nodei = 1 : N do

if nodei ∈ Region-Of-Interest then

4 assemble
(
∂K
∂di

, ∂f∂di

)
5

∂r
∂di

= ∂K
∂di

u− ∂f
∂di

6
∂j
∂γi

= −2<
{
λ
T ∂r
∂di

}
∂di
∂γi

else

7
∂j
∂γi

= 0

end

end

8 OUTPUT: ∇γj(d)

It can be seen that for each source (shot), it is necessary to execute the forward-problem

solver two times. If we take into account that normally there are hundreds, even thousands,

sources used in real industrial surveys, it is clear that there are hundreds or thousands executions

of the modelling code to compute only one gradient. After obtaining one gradient, a linear

search is performed, where in each step of this search, it is necessary to run the forward solver

once. This linear search usually contains ten steps, which means ten more modelling code

executions after computing each gradient. All in all, depending on the size of a problem and its

configuration, the inversion problem can require extremely large number of executions of the

forward-problem solver. Therefore, it is very important that a fast and robust solver has been

developed, so that it can be efficiently incorporated in the inversion algorithm.

In addition to this, I acknowledge the fact that inverting a single data type in hydrocarbon

exploration could result in ambiguities in interpretation. Therefore the goal for the future is to

integrate different geophysical data sets, e.g. seismic and EM, in order to reduce the uncertainty

in the characterisation of subsurface properties.

5.3 Contributions of the thesis

In the end, I would like to explicitly summarise the contributions of the presented thesis.

The main contribution of this work is a highly accurate, robust, very fast and extremely

scalable numerical method for 3-D electromagnetic modelling in geophysics that is based on

108

finite elements and designed to run on massively parallel computing platforms. Namely, before

the beginning of my research, there were no such highly efficient, fully parallel finite-element 3-D

EM forward-problem solutions that would enable the development of 3-D EM inversion methods

which can be used for data acquired in the environments of arbitrary geometric complexity and

which are at the same time fast enough for practical use in industry. The only completely

parallel and very fast code for 3-D EM modelling that existed is based on finite differences,

which can lead to misinterpretations in geological environments that contain complex, irregular

shapes of the structures. Now, having this new finite-element 3-D EM solver, it is possible to

create a very efficient, reliable and practical 3-D interpretation method for EM data acquired

in extremely complex geological environments.

In addition, this thesis discusses physical, mathematical and numerical aspects and chal-

lenges of 3-D electromagnetic modelling which have been studied during my research in order

to properly design the described software for EM field simulations on 3-D areas of the Earth.

Through this work, a physical problem formulation based on the secondary Coulomb-gauged

EM potentials has been validated, proving that it can be successfully used with the standard

nodal FE method to give highly accurate numerical solutions. Also, this work has shown that

Krylov subspace iterative methods are the best solution for solving linear systems that arise

after the FE discretisation of the problem under consideration. More precisely, it has been

discovered empirically that the best iterative method for this kind of problems is biconjugate

gradient stabilised with an elaborate preconditioner. Since most commonly used precondition-

ers proved to be either unable to improve the convergence of the implemented solvers to the

desired extent, or impractical in the parallel context, I have proposed a preconditioning tech-

nique for Krylov methods that is based on algebraic multigrid. Different test have shown that

this preconditioner is very powerful and highly effective in improving the convergence of the

solvers, even in the most difficult situations, and also quite practical for parallel implementa-

tion. Finally, through this work, it has been concluded that there are not any restrictions in

employing classical parallel programming models, MPI and OpenMP, for parallelisation of the

presented FE solver. Moreover, these programming models have proved to be enough to provide

an excellent scalability for it. Namely, the tests have shown that the achieved speed-up is close

to the linear for more than a thousand processors.

109

Chapter 6

Publications on the Topic

Journals:

• Koldan, J, Puzyrev, V, de la Puente, J, Houzeaux, G. & Cela, J.M. Alge-

braic Multigrid Preconditioning within Parallel Finite-Element Solvers for 3-D Electro-

magnetic Modelling Problems in Geophysics. Submitted to Geophysical Journal Interna-

tional (2013).

• Puzyrev, V, Koldan, J, de la Puente, J, Houzeaux, G, Vazquez, M. & Cela,

J.M. A Parallel Finite-Element Method for Three-Dimensional Controlled-Source Elec-

tromagnetic Forward Modelling. Geophysical Journal International , Oxford University

Press (2013).

Conferences:

• Koldan, J, Puzyrev, V. & Cela, J.M. Algebraic Multigrid Preconditioner for Numer-

ical Finite-Element Solutions of Electromagnetic Induction Problems. SIAM Conference

on Mathematical & Computational Issues in the Geosciences – GS13 , Padua, Italy (2013).

• Koldan, J, Puzyrev, V. & Cela, J.M. Algebraic Multigrid Preconditioning for Finite-

Element Methods for 3-D Electromagnetic Modelling in Geophysics. 75th EAGE Confer-

ence & Exhibition incorporating SPE EUROPEC , London, England (2013).

• Koldan, J, Puzyrev, V. & Cela, J.M. Parallel Finite-Element Method for 3-D Elec-

tromagnetic Modelling in Geophysics. 5th International Symposium on Three-Dimensional

Electromagnetics – 3DEM-5 , Sapporo, Japan (2013).

110

• Koldan, J, Cela, J.M, de la Puente, J. & Garcia, X. Development of FE Methods

for CSEM Problems and Their Application to Massively Parallel Computers. 7th Interna-

tional Marine Electromagnetics conference – MARELEC , La Jolla, San Diego, CA, USA

(2011).

• Puzyrev, V, Koldan, J, de la Puente, J. & Cela, J.M. Parallel Finite-Element

Modeling of 3-D Electromagnetic Problems Using Potentials. 8th International Marine

Electromagnetics conference – MARELEC , Hamburg, Germany (2013).

• Puzyrev, V, Koldan, J, de la Puente, J. & Cela, J.M. A Parallel Finite-Element

Approach to CSEM Forward Modeling Problems. 75th EAGE Conference & Exhibition

incorporating SPE EUROPEC , London, England (2013).

• Peredo, O, Puzyrev, V, Koldan, J, Houzeaux, G, Vazquez, M, de la Puente,

J. & Cela, J.M. Inverse Modelling of 3D Controlled-Source Electromagnetics Using a

Parallel Discrete Adjoint Method. 5th International Symposium on Three-Dimensional

Electromagnetics – 3DEM-5 , Sapporo, Japan (2013).

Workshops:

• Koldan, J, Puzyrev, V, Cela, J.M, de la Puente, J. & Ortigosa, F. A Par-

allel Finite-Element Method for 3-D Marine Controlled-Source Electromagnetic Forward

Modeling. International Workshop on Gravity, Electrical & Magnetic Methods and their

Applications – GEM , Beijing, China (2011).

• Puzyrev, V, Koldan, J, de la Puente, J, Houzeaux, G. & Cela, J.M. A Massively

Parallel Nodal 3D Finite-Element Approach to CSEM Problems. AGU Fall Meeting , San

Francisco, CA, USA (2012).

111

References

Abubakar, A., Habashy, T., Druskin, V., Knizhnerman, L. & Alumbaugh, D. (2008).

2.5 d forward and inverse modeling for interpreting low-frequency electromagnetic measure-

ments. Geophysics, 73, F165–F177. 13

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D. & Silva, C. (2003).

Computing and rendering point set surfaces. Visualization and Computer Graphics, IEEE

Transactions on, 9, 3–15. 36

Alumbaugh, D. & Newman, G. (1997). Three-dimensional massively parallel electromagnetic

inversionii. analysis of a crosswell electromagnetic experiment. Geophysical Journal Interna-

tional , 128, 355–363. 6

Alumbaugh, D., Newman, G., Prevost, L. & Shadid, J. (1996). Three-dimensional

wideband electromagnetic modeling on massively parallel computers. RADIO SCIENCE-

WASHINGTON-, 31, 1–24. 6, 13, 18, 49

Andréis, D. & MacGregor, L. (2008). Controlled-source electromagnetic sounding in shal-

low water: Principles and applications. Geophysics, 73, F21–F32. 3

Aruliah, D. & Ascher, U. (2002). Multigrid preconditioning for Krylov methods for time-

harmonic Maxwell’s equations in three dimensions. SIAM Journal on Scientific Computing ,

24, 702–718. 16

Avdeev, D. (2005). Three-dimensional electromagnetic modelling and inversion from theory

to application. Surveys in Geophysics, 26, 767–799. 16

Badea, E., Everett, M., Newman, G. & Biro, O. (2001). Finite-element analysis of

controlled-source electromagnetic induction using Coulomb-gauged potentials. Geophysics,

66, 786–799. 14, 15, 20, 21, 36, 66

112

Baker, A., Jessup, E. & Manteuffel, T. (2005). A technique for accelerating the conver-

gence of restarted GMRES. SIAM Journal on Matrix Analysis and Applications, 26, 962–984.

39

Biro, O. & Preis, K. (1989). On the use of the magnetic vector potential in the finite-

element analysis of three-dimensional eddy currents. Magnetics, IEEE Transactions on, 25,

3145–3159. 21

Briggs, W., Henson, V. & McCormick, S. (2000). A multigrid tutorial , vol. 72. Society

for Industrial Mathematics. 17, 42

Burnett, D. (1987). Finite element analysis: from concepts to applications, vol. 324. Addison-

Wesley Reading, MA. 14, 19, 25, 28

Chave, A. & Cox, C. (1982). Conductivity beneath the oceans. Journal of geophysical re-

search, 87, 5327–5338. 23

Cheesman, S., Edwards, R. & Chave, A. (1987). On the theory of seafloor conductivity

mapping using transient electromagnetic systems. Geophysics, 52, 204–217. 2

Commer, M. & Newman, G. (2004). A parallel finite-difference approach for 3D transient

electromagnetic modeling with galvanic sources. Geophysics, 69, 1192–1202. 13

Commer, M. & Newman, G.A. (2008). New advances in three-dimensional controlled-source

electromagnetic inversion. Geophysical Journal International , 172, 513–535. 29

Commer, M., Newman, G., Carazzone, J., Dickens, T., Green, K., Wahrmund, L.,

Willen, D. & Shiu, J. (2008). Massively parallel electrical-conductivity imaging of hydro-

carbons using the ibm blue gene/l supercomputer. IBM Journal of Research and Development ,

52, 93–103. 5, 6

Constable, S. (2010). Ten years of marine csem for hydrocarbon exploration. Geophysics, 75,

75A67–75A81. 3

Constable, S. & Srnka, L. (2007). An introduction to marine controlled-source electromag-

netic methods for hydrocarbon exploration. Geophysics, 72, WA3–WA12. 3

Constable, S. & Weiss, C. (2006). Mapping thin resistors and hydrocarbons with marine

EM methods, Part II–Modeling and analysis in 3D. Geophysics, 71, G321–G332. 70

113

da Silva, N., Morgan, J., MacGregor, L. & Warner, M. (2012). A finite element

multifrontal method for 3d csem modeling in the frequency domain. Geophysics, 77, E101–

E115. 15

Davydycheva, S. & Rykhlinski, N. (2011). Focused-source electromagnetic survey versus

standard csem: 3d modeling in complex geometries. Geophysics, 76, F27–F41. 13

Davydycheva, S., Druskin, V. & Habashy, T. (2003). An efficient finite-difference scheme

for electromagnetic logging in 3d anisotropic inhomogeneous media. Geophysics, 68, 1525–

1536. 13

Druskin, V. & Knizhnerman, L. (1994). Spectral approach to solving three-dimensional

maxwell’s diffusion equations in the time and frequency domains. Radio Science, 29, 937–

953. 6

Edwards, N. (2005). Marine controlled source electromagnetics: Principles, methodologies,

future commercial applications. Surveys in Geophysics, 26, 675–700. 4

Eidesmo, T., Ellingsrud, S., MacGregor, L., Constable, S., Sinha, M., Johansen,

S., Kong, F. & Westerdahl, H. (2002). Sea bed logging (sbl), a new method for remote

and direct identification of hydrocarbon filled layers in deepwater areas. First break , 20,

144–152. 3

Everett, M. (2012). Theoretical developments in electromagnetic induction geophysics with

selected applications in the near surface. Surveys in Geophysics, 33, 29–63. 17

Fomenko, E. & Mogi, T. (2002). A new computation method for a staggered grid of 3d em

field conservative modeling. Earth Planets and Space, 54, 499–510. 13

Franke, A., Börner, R. & Spitzer, K. (2007). Adaptive unstructured grid finite element

simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topog-

raphy. Geophysical Journal International , 171, 71–86. 14

Freund, R. (1993). A transpose-free quasi-minimal residual algorithm for non-Hermitian linear

systems. SIAM Journal on Scientific Computing , 14, 470–482. 39

Freund, R. & Nachtigal, N. (1991). QMR: A quasi-minimal residual method for non-

Hermitian linear systems. Numerische Mathematik , 60, 315–339. 36, 39

Gilbert, J.R. & Liu, J.W. (1993). Elimination structures for unsymmetric sparse lu factors.

SIAM Journal on Matrix Analysis and Applications, 14, 334–352. 64

114

Habashy, T. (2001). Rapid numerical simulation of axisymmetric single-well induction data

using the extended born approximation. Radio Science, 36, 1287–1306. 6

Haber, E. (2004). Quasi-Newton methods for large-scale electromagnetic inverse problems.

Inverse Problems, 21, 305. 16

Haber, E., Ascher, U., Oldenburg, D., Shekhtman, R. & Chen, J. (2002). 3-d

frequency-domain csem inversion using unconstrained optimization. In 2002 SEG Annual

Meeting . 13

Houzeaux, G., Vázquez, M., Aubry, R. & Cela, J. (2009). A massively parallel fractional

step solver for incompressible flows. Journal of Computational Physics, 228, 6316–6332. 19

Houzeaux, G., de la Cruz, R., Owen, H. & Vázquez, M. (2012). Parallel uniform mesh

multiplication applied to a Navier-Stokes solver. Computers & Fluids, In Press. 29

Jin, J. (2002). The finite element method in electromagnetics. 15, 34

Karypis, G. & Kumar, V. (1995). Metis-unstructured graph partitioning and sparse matrix

ordering system, version 2.0. 48, 50, 51

Key, K. (2012). Marine electromagnetic studies of seafloor resources and tectonics. Surveys in

geophysics, 33, 135–167. 4

Key, K. & Weiss, C. (2006). Adaptive finite-element modeling using unstructured grids: The

2d magnetotelluric example. Geophysics, 71, G291–G299. 14

Koldan, J., Puzyrev, V., Cela, J., de la Puente, J. & Ortigosa, F. (2011). A parallel

finite-element method for 3-d marine controlled-source electromagnetic forward modeling. In

Global Meeting Abstracts, International Workshop on Gravity, Electrical & Magnetic Methods

and their Applications, 15, 12. 87

Kong, F. (2007). Hankel transform filters for dipole antenna radiation in a conductive medium.

Geophysical Prospecting , 55, 83–89. 23

Kong, F., Johnstad, S., Røsten, T. & Westerdahl, H. (2008). A 2.5 d finite-element-

modeling difference method for marine csem modeling in stratified anisotropic media. Geo-

physics, 73, F9–F19. 13

Li, Y. & Dai, S. (2011). Finite element modelling of marine controlled-source electromagnetic

responses in two-dimensional dipping anisotropic conductivity structures. Geophysical Journal

International , 185, 622–636. 14

115

Li, Y. & Key, K. (2007). 2d marine controlled-source electromagnetic modeling: Part 1an

adaptive finite-element algorithm. Geophysics, 72, WA51–WA62. 3, 14

Liu, C., Mark, E., Lin, J. & Zhou, F. (2010). Modeling of seafloor exploration using electric-

source frequency-domain csem and the analysis of water depth effect. Diqiu Wuli Xuebao, 53,

1940–1952. 22

MacGregor, L., Sinha, M. & Constable, S. (2001). Electrical resistivity structure of the

valu fa ridge, lau basin, from marine controlled-source electromagnetic sounding. Geophysical

Journal International , 146, 217–236. 14

Mackie, R., Smith, J. & Madden, T. (1994). Three-dimensional electromagnetic modeling

using finite difference equations: The magnetotelluric example. Radio Science, 29, 923–935.

13

Mukherjee, S. & Everett, M. (2011). 3d controlled-source electromagnetic edge-based finite

element modeling of conductive and permeable heterogeneities. Geophysics, 76, F215–F226.

15

Mulder, W. (2006). A multigrid solver for 3D electromagnetic diffusion. Geophysical Prospect-

ing , 54, 633–649. 16

Nabighian, M.N. (1987). Electromagnetic Methods in Applied Geophysics: Volume 1, Theory ,

vol. 1. SEG Books. 7

Nédélec, J. (1986). A new family of mixed finite elements in 3. Numerische Mathematik , 50,

57–81. 15

Newman, G. (1995). Crosswell electromagnetic inversion using integral and differential equa-

tions. Geophysics, 60, 899–911. 6

Newman, G. & Alumbaugh, D. (1997). Three-dimensional massively parallel electromagnetic

inversioni. theory. Geophysical journal international , 128, 345–354. xii, 6

Newman, G. & Alumbaugh, D. (2002). Three-dimensional induction logging problems, Part

2: A finite-difference solution. Geophysics, 67, 484–491. 13, 16

Newman, G., Commer, M. & Carazzone, J. (2010). Imaging csem data in the presence of

electrical anisotropy. Geophysics, 75, F51–F61. 24

Ramamurti, R. & Löhner, R. (1996). A parallel implicit incompressible flow solver using

unstructured meshes. Computers & Fluids, 25, 119–132. 61

116

Rodi, W. & Mackie, R. (2001). Nonlinear conjugate gradients algorithm for 2-d magnetotel-

luric inversion. Geophysics, 66, 174–187. 4

Saad, Y. (2003). Iterative methods for sparse linear systems. Society for Industrial and Applied

Mathematics. 16, 37, 38, 39, 40, 41

Saad, Y. & Schultz, M. (1986). GMRES: A generalized minimal residual algorithm for

solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing ,

7, 856–869. 36, 39

Schwalenberg, K. & Edwards, R. (2004). The effect of seafloor topography on magnetotel-

luric fields: an analytical formulation confirmed with numerical results. Geophysical Journal

International , 159, 607–621. 13

Schwarzbach, C., Börner, R. & Spitzer, K. (2011). Three-dimensional adaptive higher

order finite element simulation for geo-electromagnetics–a marine CSEM example. Geophys-

ical Journal International , 187, 63–74. 15, 70, 71, 72, 74

Simoncini, V. & Szyld, D. (2007). Recent computational developments in Krylov subspace

methods for linear systems. Numerical Linear Algebra with Applications, 14, 1–59. 39, 77

Siripunvaraporn, W. & Egbert, G. (2000). An efficient data-subspace inversion method

for 2-d magnetotelluric data. Geophysics, 65, 791–803. 4

Smith, J. (1996). Conservative modeling of 3-d electromagnetic fields, part i: Properties and

error analysis. Geophysics, 61, 1308–1318. 6

Smith, J. & Booker, J. (1991). Rapid inversion of two-and three-dimensional magnetotelluric

data. Journal of Geophysical Research, 96, 3905–3922. 4

Streich, R. & Becken, M. (2011). Electromagnetic fields generated by finite-length wire

sources: comparison with point dipole solutions. Geophysical Prospecting , 59, 361–374. 22,

24

Streich, R., Becken, M. & Ritter, O. (2011). 2.5 d controlled-source em modeling with

general 3d source geometries. Geophysics, 76, F387–F393. 13

Stuben, K. (2001). An introduction to algebraic multigrid. Multigrid , 413–532. 17

Trottenberg, U., Oosterlee, C. & Schüller, A. (2001). Multigrid . Academic Pr. 17, 42

117

Tseng, H., Lee, K. & Becker, A. (2003). 3d interpretation of electromagnetic data using a

modified extended born approximation. Geophysics, 68, 127–137. 6

Um, E., Harris, J. & Alumbaugh, D. (2012). An iterative finite element time-domain

method for simulating three-dimensional electromagnetic diffusion in earth. Geophysical Jour-

nal International . 15, 29

Van der Vorst, H. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG

for the solution of nonsymmetric linear systems. SIAM Journal on scientific and Statistical

Computing , 13, 631–644. 36, 39

Wang, T. & Hohmann, G. (1993). A finite-difference, time-domain solution for three-

dimensional electromagnetic modeling. Geophysics, 58, 797–809. 6

Wang, T. & Tripp, A. (1996). Fdtd simulation of em wave propagation in 3-d media. Geo-

physics, 61, 110–120. 13

Ward, S. & Hohmann, G. (1988). Electromagnetic theory for geophysical applications. Elec-

tromagnetic methods in applied geophysics, 1, 131–311. 23, 37, 66, 67

Weiss, C. & Newman, G. (2002). Electromagnetic induction in a fully 3-d anisotropic earth.

Geophysics, 67, 1104–1114. 13

Weiss, C. & Newman, G. (2003). Electromagnetic induction in a generalized 3D anisotropic

earth, Part 2: The LIN preconditioner. Geophysics, 68, 922–930. 16

Weitemeyer, K., Gao, G., Constable, S. & Alumbaugh, D. (2010). The practical ap-

plication of 2d inversion to marine controlled-source electromagnetic data. Geophysics, 75,

F199–F211. 3

Xiong, Z., Raiche, A. & Sugeng, F. (2000). Efficient solution of full domain 3d electromag-

netic modelling problems. Exploration Geophysics, 31, 158–161. 13

Yee, K. (1966). Numerical solution of initial boundary value problems involving maxwell’s

equations in isotropic media. Antennas and Propagation, IEEE Transactions on, 14, 302–

307. 6, 13

Zhang, Z. (2003). 3d resistivity mapping of airborne em data. Geophysics, 68, 1896–1905. 6

Zhdanov, M., Fang, S. & Hursán, G. (2000). Electromagnetic inversion using quasi-linear

approximation. Geophysics, 65, 1501–1513. 6

118

Zyserman, F. & Santos, J. (2000). Parallel finite element algorithm with domain decompo-

sition for three-dimensional magnetotelluric modelling. Journal of Applied Geophysics, 44,

337–351. 14

119

	Preface
	1 Electromagnetic Modelling in Geophysics
	1.1 3-D Electromagnetic Inversion
	1.2 3-D Electromagnetic Modelling
	1.2.1 Fundamental Electromagnetism
	1.2.2 Physical Problem in Exploration Geophysics
	1.2.3 Numerical Solution

	2 Numerical Method for 3-D Electromagnetic Modelling
	2.1 Physical Problem Formulation
	2.2 Finite-Element Analysis
	2.3 Iterative Solvers
	2.3.1 Krylov Subspace Methods

	2.4 Algebraic Multigrid
	2.4.1 Multigrid
	2.4.2 Algebraic Multigrid as a Solver

	2.5 Algebraic Multigrid Applied as Preconditioning

	3 Parallel Implementation
	3.1 Mesh Partitioning
	3.2 MPI Communication
	3.2.1 Synchronous Communication
	3.2.2 Asynchronous Communication

	3.3 Hybrid Parallelisation using OpenMP

	4 Evaluation and Discussion
	4.1 Accuracy Tests
	4.1.1 Two-Layer Model
	4.1.2 Flat Seabed Model
	4.1.3 Canonical Disc Model
	4.1.4 Complex Real-Life Synthetic Model

	4.2 Convergence of the Solvers
	4.2.1 Discussion

	4.3 AMG Evaluation
	4.3.1 Two-Layer Model
	4.3.2 Seven-Material Model
	4.3.3 Flat Seabed Model
	4.3.4 Tests for Insensitivity to the Maximal Size Ratio Between the Grid Elements
	4.3.5 Tests for Grid-Independent Rate of Convergence
	4.3.6 Complex Real-Life Synthetic Model
	4.3.7 Discussion

	4.4 Scalability Tests
	4.4.1 Scalability Using MPI Communication
	4.4.2 Scalability Using Hybrid MPI–OpenMP Scheme
	4.4.3 Discussion

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work
	5.3 Contributions of the thesis

	6 Publications on the Topic
	References

