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Abstract

Foreground segmentation in video sequences is an important area of the image

processing that attracts great interest among the scientist community, since it makes

possible the detection of the objects that appear in the sequences under analysis,

and allows us to achieve a correct performance of high level applications which use

foreground segmentation as an initial step.

The current Ph.D. thesis entitled Parametric Region-Based Foreground Segmen-

tation in Planar and Multi-View Sequences details, in the following pages, the re-

search work carried out within this field. In this investigation, we propose to use

parametric probabilistic models at pixel-wise and region level in order to model

the different classes that are involved in the classification process of the different

regions of the image: foreground, background and, in some sequences, shadow. The

development is presented in the following chapters as a generalization of the tech-

niques proposed for objects segmentation in 2D planar sequences to 3D multi-view

environment, where we establish a cooperative relationship between all the sensors

that are recording the scene.

Hence, different scenarios have been analyzed in this thesis in order to improve

the foreground segmentation techniques:

In the first part of this research, we present segmentation methods appropriate

for 2D planar scenarios. We start dealing with foreground segmentation in static

camera sequences, where a system that combines pixel-wise background model with

region-based foreground and shadow models is proposed in a Bayesian classification

framework. The research continues with the application of this method to moving

camera scenarios, where the Bayesian framework is developed between foreground

and background classes, both characterized with region-based models, in order to

obtain a robust foreground segmentation for this kind of sequences.

The second stage of the research is devoted to apply these 2D techniques to

multi-view acquisition setups, where several cameras are recording the scene at the

same time. At the beginning of this section, we propose a foreground segmentation

system for sequences recorded by means of color and depth sensors, which combines
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different probabilistic models created for the background and foreground classes

in each one of the views, by taking into account the reliability that each sensor

presents. The investigation goes ahead by proposing foreground segregation meth-

ods for multi-view smart room scenarios. In these sections, we design two systems

where foreground segmentation and 3D reconstruction are combined in order to

improve the results of each process. The proposals end with the presentation of a

multi-view segmentation system where a foreground probabilistic model is proposed

in the 3D space to gather all the object information that appears in the views.

The results presented in each one of the proposals show that the foreground

segmentation and also the 3D reconstruction can be improved, in these scenarios,

by using parametric probabilistic models for modeling the objects to segment, thus

introducing the information of the object in a Bayesian classification framework.



Resumen

La segmentación de objetos de primer plano en secuencias de v́ıdeo es una im-

portante área del procesado de imagen que despierta gran interés por parte de la

comunidad cient́ıfica, ya que posibilita la detección de objetos que aparecen en las

diferentes secuencias en análisis, y permite el buen funcionamiento de aplicaciones

de alto nivel que utilizan esta segmentación obtenida como parámetro de entrada.

La presente tesis doctoral titulada Parametric Region-Based Foreground Segmen-

tation in Planar and Multi-View Sequences detalla, en las páginas que siguen, el

trabajo de investigación desarrollado en este campo. En esta investigación se pro-

pone utilizar modelos probabiĺısticos paramétricos a nivel de ṕıxel y a nivel de

región para modelar las diferentes clases que participan en la clasificación de las

regiones de la imagen: primer plano, fondo y en según que secuencias, las regiones

de sombra. El desarrollo se presenta en los caṕıtulos que siguen como una gener-

alización de técnicas propuestas para la segmentación de objetos en secuencias 2D

mono-cámara, al entorno 3D multi-cámara, donde se establece la cooperación de los

diferentes sensores que participan en la grabación de la escena.

De esta manera, diferentes escenarios han sido estudiados con el objetivo de

mejorar las técnicas de segmentación para cada uno de ellos: En la primera parte

de la investigación, se presentan métodos de segmentación para escenarios mono-

cámara. Concretamente, se comienza tratando la segmentación de primer plano para

cámara estática, donde se propone un sistema completo basado en la clasificación

Bayesiana entre el modelo a nivel de ṕıxel definido para modelar el fondo, y los

modelos a nivel de región creados para modelar los objetos de primer plano y la

sombra que cada uno de ellos proyecta. La investigación prosigue con la aplicación

de este método a secuencias grabadas mediante cámara en movimiento, donde la

clasificación Bayesiana se plantea entre las clases de fondo y primer plano, am-

bas caracterizadas con modelos a nivel de región, con el objetivo de obtener una

segmentación robusta para este tipo de secuencias.

La segunda parte de la investigación, se centra en la aplicación de estas técnicas

mono-cámara a entornos multi-vista, donde varias cámaras graban conjuntamente la

misma escena. Al inicio de dicho apartado, se propone una segmentación de primer
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plano en secuencias donde se combina una cámara de color con una cámara de

profundidad en una clasificación que combina los diferentes modelos probabiĺısticos

creados para el fondo y el primer plano en cada cámara, a partir de la fiabilidad

que presenta cada sensor. La investigación prosigue proponiendo métodos de seg-

mentación de primer plano para entornos multi-vista en salas inteligentes. En estos

apartados se diseñan dos sistemas donde la segmentación de primer plano y la recon-

strucción 3D se combinan para mejorar los resultados de cada uno de estos procesos.

Las propuestas finalizan con la presentación de un sistema de segmentación multi-

cámara donde se centraliza la información del objeto a segmentar mediante el diseño

de un modelo probabiĺıstico 3D.

Los resultados presentados en cada uno de los sistemas, demuestran que la seg-

mentación de primer plano y la reconstrucción 3D pueden verse mejorados en estos

escenarios mediante el uso de modelos probabilisticos paramétricos para modelar

los objetos a segmentar, introduciendo aśı la información disponible del objeto en

un marco de clasificación Bayesiano.



Resum

La segmentació d’objectes de primer pla en seqüències de v́ıdeo és una important

àrea del processat d’imatge que acull gran interès per part de la comunitat cient́ıfica,

ja que possibilita la detecció d’objectes que apareixen en les diferents seqüències en

anàlisi, i permet el bon funcionament d’aplicacions d’alt nivell que utilitzen aquesta

segmentació obtinguda com a paràmetre d’entrada. Aquesta tesi doctoral titula-

da Parametric Region-Based Foreground Segmentation in Planar and Multi-View

Sequences detalla, en les pàgines que segueixen, el treball de recerca desenvolupat

en aquest camp. En aquesta investigació es proposa utilitzar models probabiĺıstics

paramètrics a nivell de ṕıxel i a nivell de regió per modelar les diferents classes que

participen en la classificació de les regions de la imatge: primer pla, fons i depenent

de les seqüències, les regions d’ombra. El desenvolupament es presenta als caṕıtols

que segueixen com una generalització de tècniques proposades per a la segmentació

d’objectes en seqüències 2D mono-càmera, a l’entorn 3D multicàmera, on s’estableix

la cooperació dels diferents sensors que participen en l’enregistrament de l’escena .

D’aquesta manera, s’han estudiat diferents escenaris amb l’objectiu de millorar

les tècniques de segmentació per a cadascun d’ells: A la primera part de la inves-

tigació, es presenten mètodes de segmentació per escenaris mono-càmera. Concre-

tament, es comença tractant la segmentació de primer pla per a càmera estàtica,

on es proposa un sistema basat en la classificació Bayesiana entre el model a nivell

de ṕıxel per modelar el fons, i els models a nivell de regió creats per modelar els

objectes de primer pla i l’ombra que cada un d’ells projecta. La investigació con-

tinua amb l’aplicació d’aquest mètode a seqüències gravades mitjançant càmera en

moviment, on la classificació Bayesiana es planteja entre les classes de fons i primer

pla, ambdues caracteritzades amb models a nivell de regió, amb l’objectiu d’obtenir

una segmentació robusta per aquest tipus de seqüències.

La segona part de la investigació, es focalitza en l’aplicació d’aquestes tècniques

mono-càmera a entorns multi-vista, on diverses càmeres graven conjuntament la

mateixa escena. A l’inici d’aquest apartat, es proposa una segmentació de primer

pla en seqüències on es combina una càmera de color amb una càmera de profunditat

en una classificació que combina els diferents models probabiĺıstics creats per al fons
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i el primer pla a cada càmera, a partir de la fiabilitat que presenta cada sensor. La

investigació continua proposant mètodes de segmentació de primer pla per a entorns

multi-vista en sales intel·ligents. En aquests apartats es dissenyen dos sistemes on la

segmentació de primer pla i la reconstrucció 3D es combinen per millorar els resultats

de cada un d’aquests processos. Les propostes finalitzen amb la presentació d’un

sistema de segmentació multicàmera on es centralitza la informació de l’objecte a

segmentar mitjançant el disseny d’un model probabiĺıstic 3D.

Els resultats presentats en cada un dels sistemes, demostren que la segmentació

de primer pla i la reconstrucció 3D es poden veure millorats en aquests escenaris

mitjançant l’ús de models probabiĺıstics paramètrics per modelar els objectes a

segmentar, introduint aix́ı la informació disponible de l’objecte en un marc de clas-

sificació Bayesià.
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Chapter 1

Introduction

Foreground segmentation is the field of the image processing area that gathers all

the techniques used to achieve a correct separation of the foreground objects from

the background, for a certain video sequence under analysis. It is a fundamental

first processing stage for vision systems which monitor real-world activity, where

the output depends completely or partially on the visualization of the segmentation.

For instance, in videoconferencing once the foreground and the background are sep-

arated, the background can be replaced by another image, which then beautifies

the video and protects the user privacy. The extracted foreground objects can be

compressed to facilitate efficient transmission using object-based video coding. As

an advanced video editing tool, segmentation also allows people to combine multiple

objects from different video and create new artistic results. In video surveillance

tasks, foreground segmentation allows a correct object identification and tracking,

while in 3D multi-camera environments, robust foreground segmentation makes

possible a correct 3-dimensional reconstruction without background artifacts. The

current Thesis is defined in this framework: Parametric Region-Based Foreground

Segmentation in Planar and Multi-View Sequences with the main objective of de-

veloping foreground segmentation methods based on the probabilistic modeling of

the foreground objects and the background regions, for both, planar and multi-view

video sequences.

1.1 Motivation

Nowadays, the society is presenting an increasing use of technological devices that

interact with the users in order to make easier common tasks that appear in our

life. The challenge that present all these new tools is related to how these computer

systems can interact better with humans, allowing an intuitive communication be-
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tween both by means of the human communication channels: image, sound and

touch, to correctly detect and identify what is happening in the environment and

extract the semantic information of any situation. The necessity of the foreground

segmentation area to extract the information of the images recorded by camera

sensors is motivated in this context.

Foreground segmentation is a complex issue inside the image processing area

which has received a great deal of attention during the lasts years, mainly fostered

by the necessity of high level applications to detect, interpret and imitate humans’

actions and the technical possibility to carry out new systems in real time processing.

This area has suffered a great change since some decades ago, when the scientists

started with this research, trying to segment persons and objects that move over

static elements of the environment in order to achieve an automatic detection. The

constant increasing of the computational capacity, the improvement of the color

camera sensors, the appearance of new devices suitable for capturing the depth of

the scene and the reduction of the price in all these technical components, have

created this new context on the foreground segmentation area towards precise and

real-time detections.

In front of this scenario, there is a new trend to improve the reliability of the

computer vision systems based not only on improving the segmentation technique

used for single camera scenarios, but also, and central to the current foreground

segmentation systems, on developing new techniques to combine properly several

camera sensors, in order to take advantage of the data redundancy and improve

the final decision. Hence, to find scalable foreground segmentation techniques that

could be applied not only on a single planar camera, but also on a combination of

several camera sensors is currently a very interesting challenge in computer vision.

In this way, we propose this thesis as a foreground segmentation research from 2D

scenarios, where just one color camera sensor is recording the scene under analysis,

to a 3D framework, where several camera sensors are synchronized to record the

same scene from different positions. In the middle, we will analyze different type

of scenarios like static and moving camera sequences, as well as the combination of

color and depth sensor and multi-view scenarios.

In the following chapters we will explain how the parametric region-based prob-

abilistic models, used and proposed in this thesis, allow us to design a Bayesian

classification between classes for single and multi-sensor foreground segmentation

framework.
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1.2 Summary of contributions

• Foreground segmentation for 2D planar scenarios:

– Foreground segmentation for monocular static sequences using

pixel-wise background model with region-based foreground and

shadow models

We have developed a robust 2D foreground segmentation for monocular

static cameras where foreground and shadow classes are modeled in a

region based level to achieve non-rigid probabilistic modeling along the

scene.

– Foreground segmentation for 2D moving camera sequences us-

ing region-based foreground and background models

A foreground segmentation system for moving camera scenarios is pro-

posed in this contribution. The principles of this system are based on

the method designed for static cameras, but applied to two region-based

models defined to model the foreground and background classes.

• Foreground segmentation in multi-view sequences:

– Foreground segmentation in color-depth multi-sensor frame-

work

This approach combines two camera sensors that work in the color RGB

and depth Z domains. Specific models for each sensor to characterize the

foreground and background are defined. The probabilities obtained from

the models are combined via logarithmic opinion pool decision, weight-

ing the probabilities according to the reliability maps that each sensor

presents.

– Multi-view Foreground segmentation in smart-room scenarios

Smart-room environments present a characteristic that make them suit-

able for an overall multi-view analysis of the scene: All the cameras

are recording the scene at the same time from different points of view.

Hence we propose to exploit this spatial redundancy in order to improve

the segmentation obtained in each view:

∗ Reliability maps applied to robust SfS volumetric recon-

struction between foreground and background/shadow mod-

els

We compute the reliability maps of each sensor by means of the

similarity that the foreground model presents with respect to the

background and shadow models. We obtain this similarity measure

by computing the Hellinger distance between models and we use it

in order to achieve a robust SfS reconstruction.
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∗ Joint Multi-view Foreground Segmentation and 3D Recon-

struction with Tolerance Loop

A loop between cooperative foreground segmentation and 3D recon-

struction is proposed in this research line by updating the foreground

model, defined in each view, with the conservative 3D volume recon-

struction of the object. We exploit here the possibilities that the

3D reconstruction with tolerance to errors presents, in order to re-

duce the misses presented in the 2D foreground masks and the 3D

volumetric reconstruction.

∗ 3D Foreground probabilistic model

Our last approach consists in the design of a more robust and com-

plete foreground model designed in the 3D space. In this way, we

propose this object modeling to be shared by all the views, and

used for monocular 2D segmentation. With this approach, we try

to establish a novel method to compute the multi-view smart-room

segmentation.

A complete list of contributions of this thesis, as well as a list of publications

and collaborations in the image processing group of the UPC have been compiled

in the last chapter.

1.3 Thesis Outline

The manuscript is organized as follows: in the next Chapter 2, we state the prob-

lem that we want to address regarding the foreground segmentation, and its depen-

dence on the scenario characteristics and the acquisition setup utilized to record

the sequences. Chapter 3 is devoted to review the state of the art of the fore-

ground segmentation area, necessary to establish the background concepts required

to develop the proposals presented in this thesis. Part I and Part II gather the

chapters intended to present our proposals: Part I deals with foreground segmenta-

tion approaches for 2D planar scenarios, where Chapter 4 focuses on a foreground

segmentation system appropriate for static camera sequences, which combines pixel-

wise background model with parametric region-based foreground and shadow mod-

els, and Chapter 5 utilizes the principles of Chapter 4 to establish a foreground

segmentation framework suitable for moving camera sequences. Part II of this

thesis is devoted to explain the proposals for multi-view scenarios. In this part,

Chapter 6 deals with sequences recorded by means of color and depth sensors to

develop a foreground segregation system which combines, in a Logarithmic Opinion

Pool framework, the information provided by each sensor to determine the final

foreground segmentation mask. In Chapter 7 we propose a collaborative fore-
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ground segmentation and 3D reconstruction process which achieves a robust 3D

reconstruction of the object by defining and including the reliability maps of each

sensor in the 3D reconstruction. Multi-view Foreground Segmentation and 3D Re-

construction with Tolerance Loop is presented in Chapter 8 introducing a method

to improve the foreground models of the 2D views, by using the conservative 3D

volume of the object to update the 2D foreground models, thus improving the sub-

sequent volumetric reconstruction. In Chapter 9 we present the 3D foreground

model to develop a multi-view foreground segmentation by creating a foreground

model in the 3D space, and utilize the projection of this model to the 2D views,

to perform the planar foreground segmentation. Finally, the conclusions, list of

publications and future lines of work are presented in Chapter 10.





Chapter 2

Problem Statement

The segmentation of foreground objects in a video sequence, without having any

prior information about the nature of the objects, entails a big number of challenges

ranging from the camera sensor selected to record the scene, to achieve a precise

segmentation of the objects avoiding as far as possible false detection errors. But,

what is exactly a foreground object? One foreground object is an entity which

appears in a region under analysis and presents enough interest to the observer to

be classified and separated as a new detected object. This implies that foreground

objects, are those which contribute to give new important information to the scene

under analysis, and as a yin and yan they are always related to the concept of back-

ground, or what is equivalent, what we consider that does not give any additional

semantic information about the sequence to the observer. In order to show the fore-

ground segmentation concept, Figure 2.1 displays one example where the foreground

detection of the person under analysis appears in white color and the background

regions in black. As shown in the example, a correct foreground segmentation has

to present low percentage of false positive and false negative detections allowing a

precise segregation of the object under analysis.

Figure 2.1: Example of foreground segmentation inside a room. In the left: original RGB image.

In the right: foreground segmentation of the scene (white color represents the foreground pixels,

black color the background ones.
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Therefore, the segmentation of the foreground objects entails an initial learn-

ing about either the background of the sequence, or otherwise, which foreground

object we are going to segment, allowing in any case the correct separation of the

object from the background. We can now intuit that the quality of the foreground

segmentation will depend on the difference that both, foreground and background

classes present along the sequence, and this factor will be given, in a high manner,

by the characteristics of the sequences that we need to segment.

Hence, in order to identify the challenges to solve when detecting the foreground,

we can classify the sequences to analyze according to two criteria: the characteris-

tics of the scenario under analysis, and the configuration of camera sensors that are

recording the scene. It is obvious that these criteria follow a dependent relationship

one another, such that the characteristics of the scenario will define the kind of sen-

sors necessary to better analyze the scene, their number and position. All together

will impose some constraints to the design that will be used to segment the fore-

ground objects from the background regions, according to the difficulty that each

one presents. The following sections deal with an in depth study of both aspects.

2.1 Scenario Characteristics

Several factors that affect the foreground segmentation are grouped within this

point. One of the most important is whether the sensors are recording an inside or

outside region, which will define the so important illumination and meteorological

conditions (rainy, cloudy and windy situations) that can modify drastically the

performance of the scenario under analysis. Moreover, the configuration of the

scenario is central to the segmentation: is it a dynamic or static background, which

objects/people we are going to analyze or if it is a crowded or non-crowded scenario

among others.

Although there are many different situations that will influence in the fore-

ground segmentation process, there are three main problems that can appear in the

recordings, which difficult the foreground segregation process:

• Camouflage situation between foreground and background. This sit-

uation appears when foreground and background present regions with high

similarity in the analysis domain. We have to consider that camouflage often

appears in nature and real life, as we can see in the first row of Figure 2.2,

and it is necessary to deal with this characteristic in any segmentation system.

The video sequences that we are going to analyze, can present camouflage sit-

uations that affect the objects/people to segment, but in general, they will

be less strong than the ones presented in Figures 2.2(a) and 2.2(b). Figures
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2.2(c), 2.2(d) show examples of foreground-background camouflage situations

in indoor video sequences. As we can observe in both pictures, the upper

part of the person under analysis presents a RGB color very similar to the

background. Hence, to maintain a correct segmentation in these complicated

regions is a challenge in any image processing system.

(a) (b)

(c) (d)

Figure 2.2: Examples of camouflage situation. First row shows animal and insect camouflage in

the nature. Second row shows examples of camouflage regions that will appear in the sequences

under study.

• Illumination setup. When working with color camera sensors, the type of

illumination will define the color tonality of the objects. Moreover, shadow

and highlight phenomenons appear as a consequence of the illumination con-

figuration and their incidence over the foreground objects and in general, over

the scenario setup. Figure 2.3 shows an example of the illumination effects in

indoor scenarios. As we can observe, the two people projects its shadow in

the ground, while the highlights change the lightness of the regions affected by

this effect. Figure 2.4 shows and example of outdoor scenario in sunny/cloudy

conditions where the scenario changes drastically in few seconds due to the

effects of the clouds occluding the sun light. In order to understand better

the shadow and highlight effects, a brief explanation is written now:

– Shadows: the intensity, position and direction of the illumination source
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(a)

(b)

Figure 2.3: Examples of the illumination effect: Shadows and highlights in indoor scenarios.

can produce shadows over the scenario under analysis. Cast shadows

are the source of several false positive detections in foreground segmen-

tation tasks. It is well known that the detection of moving foreground

objects generally includes their cast shadow, as a consequence of the

background color and brightness modifications that the object produces

when it occludes the light source. The undesirable consequences that

shadow effect causes in the foreground segmentation are the distortion

of the true shape and color properties of the object. Hence, to obtain

a better segmentation quality, detection algorithms must correctly sepa-

rate foreground objects from the shadows they cast.

– Highlights: they are areas of exceptional lightness in an image, and de-

pend on the incidence angle of the light over the objects and the refractive

index of the materials. Many false detections appear in the foreground

segmentation process due to these effects. For instance, cluttered scenes

in the background such as trees should not be detected as new objects

when being illuminated by sun lights.

• Dynamic background. Preserving the background configuration is central

to achieve a correct foreground segregation along the scene under analysis.

Since foreground segmentation techniques are based on learning the back-

ground, all the modifications that appear in the scene, will impair the final

segmentation results by increasing the false positive detections. Dynamic
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(a)

(b)

Figure 2.4: Example of outdoor recording in a sudden change from sunny day to cloudy effect

due to meteorological conditions.

(a) (b) (c)

Figure 2.5: Example of outdoor recording with dynamic background. The water of the fountain

and the leaves of the trees give an special difficulty to this scenario, since the background is

constantly changing along the scene.

background appears when there are moving objects or surfaces behind the

objects of interest. For instance, the tree leaves, one flag moving on the wind

or the water of a fountain. Figure 2.5 shows an example where the water

of the fountain and the leaves of the trees produce a noisy background that

presents high difficulty to be modeled.

2.2 Configuration of the Camera Sensors

This point gathers some characteristics of the sensors that are central to the seg-

mentation issue:

• Type of sensors. Currently, there are several kind of camera sensors that

can be used to record the scene in different spaces like: color RGB, gray scale,
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depth, Infra Red and Thermal cameras. The most common are the color RGB

camera and the new depth sensors, being the Infra Red and Thermal cameras

used for some specific applications. Figures 2.6 displays one example of color

and depth images.

(a) (b)

Figure 2.6: Example of one image recorded with color camera and depth camera sensors. On the

right hand, the darker the pixel, the deeper the region according to the distance from the sensor.

• Movement of the sensors. The movement of the cameras during the record-

ing of the sequence will condition strongly the techniques to use for segmenting

the foreground. The three possible situations are: static camera, where the

camera is situated in a fixed position, moving camera with constrained mo-

tion, commonly used on surveillance scenarios where the camera performs a

repeated movement to control a wide area, and moving camera with free move-

ment, used when there is an object of interest which performs free movements

along the sequence and the camera is focusing on it.

• Position of the sensors. This factor is mainly related to the place and

position of the camera with respect to the objects that we want to segment.

The distance to the foreground objects under analysis and the angle of analysis

are the most important factors to take into account.

• Number of sensors. When using more than one sensor to record the same

scene from different positions, the foreground segmentation can be widely

improved by means of combining the information that all the sensors are giving

us about the region under analysis. In this case, the redundancy of the data

analyzed by each one of the sensors can results a more robust segmentation

than the one obtained using just one sensor.

– Single camera: can be either static or moving in indoor or outdoor sce-

narios. These characteristics, and the distance from the camera to the

region of interest, are important factors in order to identify the chal-

lenges that will appear in the sequence. Far distances are typical from

surveillance purposes. Close distances are commonly used for person

segmentation and behavior analysis.
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– Multi-camera: this framework is characterized for presenting more than

one camera sensor recording partially or completely overlapped regions

from different points of view. Multi-camera environment can be applied

to smart-room scenarios, where the camera sensors are calibrated in order

to obtain 3D reconstructions of the foreground objects.

2.3 Conclusions

The scenario characteristics and the type of sensors used to record the scene will

condition the type of foreground segmentation technology necessary to carry out a

correct foreground detection of the sequences.

Therefore, as we have seen, although the objective of the foreground segmen-

tation challenge can be easily recognized and explained, there are many possible

combinations of scene configurations and acquisition setups that make the fore-

ground segmentation solutions divided according to the specific necessities of each

situation. Hence, the solution to the foreground segregation problem is not unique

for all the cases and must be understood as a group of techniques specific for certain

setups.

In this thesis we deal with foreground segmentation techniques that improve the

state of the art in some specific scenarios. We will start analyzing the use of para-

metric models in single color camera for indoor scenarios, and we will extrapolate

the segmentation process to other acquisition setups and scenario characteristics

from 2-dimensional scenarios to multi-view 3-dimensional framework. In the next

chapter, we give an overview of the main state of the art methods devoted to the

foreground segmentation analysis.





Chapter 3

Reference Work

Foreground segmentation implies the definition and identification of the background

inside the image to achieve a correct foreground/background segregation. In such

a way, most foreground detection methods of the literature are based in one way or

another on learning the background of the scene under analysis in order to identify

the variations that appear along the sequence and consider them as candidates to

foreground objects. This is called exception to background analysis. Once the fore-

ground objects have been detected, some techniques propose to take into account

the objects information in order to improve the foreground detection, thus learning

the characteristics of the foreground objects as well. Therefore, an initial classifi-

cation of the foreground detection techniques is defined according to this criteria:

foreground segmentation methods that only use background learning or methods

that use both background and foreground learning.

The way that each system uses to represent or model each class (foreground and

background) can be used to establish the second classification. In the literature we

can recognize two big groups of proposals according to this:

• Use of pixel-wise model: these models consider each pixel as a separated

entity of the image, thus proposing and independent analysis for each one.

Pixel-wise modeling has been widely used to achieve a precise representation

of the static background, since it works at pixel resolution. In this case,

foreground pixels are detected by analyzing the differences between the input

value and the pixel model. Usually, classes modeled at pixel-wise level are

very sensitive to small variations that can appear due to illumination changes,

shadows or dynamic background.

• Use of region-based model: this model is used to achieve the joint charac-

terization of a group of pixels. Hence, the modeling of each pixel results less
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precise than the pixel-wise modeling, but it is less sensitive to small variations

of the image and it is more spatially flexible.

Table 3.1 displays this initial classification of the foreground segmentation sys-

tems.

In this chapter, we are going to analyze the state of the art methods according

to these criteria. We have organized this overview first, considering different acqui-

sition setups from 2D planar scenarios to multi-view 3D framework, and second,

grouping the techniques according to the scenario and the application where each

one is applied.

Table 3.1: General classification of the foreground segmentation methods

Kind of model Class where the model is applied

Pixel wise Background

Region Based Foreground

3.1 Foreground Segmentation Using One Camera

Sensor

Foreground segmentation using a single camera sensor (also called planar foreground

detection) is the most studied area in the foreground detection challenge. All the

techniques developed with this setup, can be used in many computer vision ap-

plications, such as automatic video surveillance (which could include tracking and

activity understanding), human-computer interaction, object oriented encoding as

in MPEG-4, etc. Moreover, they can be applied to other acquisition setups like

stereo or multi-view sensors to obtain, for instance, depth information or volumet-

ric foreground representations in the 3D space.

There are many different planar foreground segmentation approaches described

in the literature. These techniques can be grouped according to the Table 3.1 and

will be shown in the following subsections:

3.1.1 Foreground Segmentation Using Background Modeling

All the techniques grouped within this category are also called exception to back-

ground segmentation systems. They base the foreground detection process on ob-

taining an initial representation of the background and, for each frame of the se-

quence, analyze if the input pixel values belong or not to the background learned at
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the beginning. [Pic05] gives an overview of some foreground segmentation methods

based on background modeling.

The background modeling consists in creating statistical models of the back-

ground process of every pixel value, i.e., motion, color, gradient, luminance, etc.

Then, the foreground segmentation is performed at each pixel as an exception to

the modeled background [EHD00, HHD99, HHD02, SG00, WADP02].

Most of these techniques are thought for static camera devices since the staticity

can ensure the correct learning of the background, at pixel-wise level, and its stabil-

ity along the sequence under analysis. These methods usually share the following

work-flow:

• Training period: N frames free of foreground objects used to learn the back-

ground.

• Process the sequence frame by frame:

– Classify the pixels in foreground and background.

– Update the background model according to the classification obtained.

The main techniques of the state of the art are explained below:

3.1.1.1 Temporal Median Filter

Pixel-wise method proposed by Lo and Velastin in [LV02] for foreground (fg) seg-

mentation in static camera sequences. The approach consists in utilizing the median

of the intensity value for each pixel of the image to perform the background model

which in this approach, can be understood as a reference background (bg) image

Ibg. The system uses the N last frames of the sequence to obtain the median in-

tensity value of each pixel of the image i ∈ Ibg, hence, a FIFO (First In First Out)

buffer for every pixel of the image is needed in order to save the corresponding N

last color values ci = RGB where R=red, G=green and B=blue are the channels

of the image. The work-flow of the system is as follows:

• Initialization: Training period of N frames free of foreground objects. The

background reference image Ibg can be created by obtaining the median value

in each pixel:

cbg,i = median(ci, N), (3.1)

• Process the sequence frame by frame:
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– Classify the pixels in foreground and background. The pixels of the input

frame at time t, It,i, will be considered as foreground if they accomplish

the following criterion:

cbg,i − th < ci < cbg,i + th, (3.2)

where th denotes a threshold value defined by the user.

– Update the background model with the pixel value, only when the pixel

has been considered as background. Hence, we will include the pixel value

in the buffer in order to update the background image with progressive

changes that can affect the background.

The main disadvantage of a median-based approach is that its computation

requires a buffer with the recent pixel values. Moreover, the median filter does not

accommodate for a rigorous statistical description and does not provide a deviation

measure for adapting the subtraction threshold.

3.1.1.2 Running Gaussian Average

Foreground detection method proposed in [WADP02], appropriate for monocular

static camera sequences in the gray scale images, color RGB or chroma YUV do-

main. In this approach, the authors propose to model the background independently

at each pixel location i based on ideally fitting a multi-variate Gaussian probability

density function (pdf) on the last n pixel values. Considering color images with

c = RGB channels, the likelihood of the background model for the pixel i is:

P (ci|bg) = G(ci, µc,i, σc,i) =

=
1

(2π)3/2|Σc,i|1/2
exp

[
−1

2
(ci − µc,i)TΣ−1

c,i (ci − µc,i)
]
,

(3.3)

where ci ∈ R3 is the input pixel value in the color c ≡ {RGB} domain, µc,i ∈ R3

denotes the mean value of the Gaussian, and Σc,i ∈ R3×3 is the covariance matrix.

We introduce the subindex c in the formulation in order to denote that the model

parameters are working in the color domain. This notation will be useful in next

sections where probabilistic models will work in the spatial s and depth d domains

as well.

The approach proposes to simplify the model and to speed up the foreground

segmentation process by assuming uncorrelated RGB channels, thus defining Σc as:

Σc =


σ2
R σRG σRB

σGR σ2
G σGB

σBR σBG σ2
B

 =


σ2
R 0 0

0 σ2
G 0

0 0 σ2
B

 . (3.4)
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where σ2
x is the variance value for the x channel. Moreover, the background

model is even more simplified by considering equal variances for the three channels

so that, σ2
R = σ2

G = σ2
B = σ2, thus avoiding specific updates for each channel.

Having simplified the background model in such a way, in order to avoid fitting

the pdf from scratch at each new frame time, It, a running (or on-line cumulative)

average is computed instead for each pixel i as:

µt,i = ρ ct,i + (1− ρ)µt−1,i, (3.5)

where ρ is an empirical weight often chosen as a trade-off between stability and

quick update. Although not stated explicitly in [WADP02], the other parameter of

the Gaussian pdf, the standard deviation σ can be computed similarly:

σt,i = ρ σt,i + (1− ρ)σt−1,i, (3.6)

In addition to speed, the advantage of the running average is given by the low

memory requirement: for each pixel, this consists of the two parameters (µc,i, σc,i)

instead of the buffer with the last n pixel values.

• Initialization: Training period of N frames free of foreground objects. The

background model is initialized in the following way:

– Frame t = 0 : µt=0,i = ct=0,i ; σt=0,i = σinit, where σinit is an initial

value defined by the user.

– Next training frames: the background model is updated according to the

Equations 3.5, 3.6.

• Process the sequence frame by frame:

– Classify the pixels in foreground and background. The pixels of the input

frame at time t It,i will be considered as foreground if the next inequality

holds:

||ct,i − µt,i||2 > kσt,i, (3.7)

where ||.||2 is the euclidean distance. Considering that
||ct,i−µt,i||2

σt,i
is the

Mahalanobis distance, we are normalizing the euclidean distance between

the input pixel value ct,i and the mean value of the Gaussian that models

the pixel µt,i by the variance σ2
t,i of the model. Hence, k is a factor which

denotes the number of standard deviations tolerated in terms of distance,

to consider a pixel belonging to the background.

– Update the background model with the pixel value, just when the pixel

has been considered as background. [KWH+02] remarked that the model
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should be updated just in the case of background classification. For this

reason, they propose the model update as:

µt,i = Mµt−1,i + (1−M)(ρct,i + (1− ρ)µt−1,i), (3.8)

σt,i = Mσt−1,i + (1−M)(ρct,i + (1− ρ)σt−1,i), (3.9)

where the binary value M is 1 in correspondence of a foreground value,

and 0 otherwise, and ρ is the adaptation learning rate used, which

could be proportional to the probability G(ci, µc,i, σc,i) that the Gaus-

sian presents or, as it is proposed in the paper, by defining ρ = 0.01.

The equations work as a low-pass filter where past samples contribute

more to the final value than the last one, and reduce the computation to

provide the Gaussian updating. By updating the mean and the variance,

the system is allowed to adapt to slow illumination changes.

If real-time requirements constrain the computational load, the update rate of

either µ, or σ can be set to less than that of the sample (frame) rate. However, the

lower the update rate of the background model, the less a system will be able to

quickly respond to the actual background dynamic.

3.1.1.3 Mixture of Gaussians

Over time, different background values are likely to appear at the same pixel loca-

tion. When this is due to a progressive change in the scene’s properties, the models

reviewed so far will, more or less promptly, adapt so as to reflect the value of the

current background object. However, sometimes the changes in the background

object are not permanent and appear at a rate faster than that of the background

update. A typical example is that of an outdoor scene with trees partially covering

a building: a same pixel location will show values from tree leaves, tree branches,

and the building itself. Other examples can be easily drawn from snowing, raining,

or watching sea waves from a beach. In these cases, a single-valued background is

not an adequate model.

In [SG00], Stauffer and Grimson (S&G) raised the case for a multi-valued back-

ground model able to cope with multiple background values. In this method, dif-

ferent multi-variate Gaussians are assumed to characterize color RGB appearances

in each pixel, and each one is weighted (ω) depending on how often the Gaussian

has explained the same appearance. Mixtures of Gaussians (GMM) have been also

used in the literature [HHD99, SG00] to ensure that repetitive moving background

can be represented by different probabilistic functions.
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Given the parameter set for each one of the pixels θbg,t ≡ {ωt,k, µt,k,c,Σt,k,c},
the likelihood of the model for the pixel i is defined as follows:

P (ct,i|θbg,t) =

Kbg∑
k=1

ωt,k Gbg(ct,i, µt,k,c, σt,k,c) =

=

Kbg∑
k=1

ωt,k
1

(2π)3/2|Σt,k,c|1/2
exp

[
−1

2
(ct,i − µt,k,c)TΣ−1

t,k,c(ct,i − µt,k,c)
]

(3.10)

where Kbg is the total number of Gaussians used in each pixel, and ωk is the prior

probability (often referred as the weights of the Gaussians) that a background pixel

is represented by a certain mode k of the mixture of Gaussians where
∑Kbg

k=1 ωt,k = 1.

In practical cases, Kbg is set to be Kbg = 3 or Kbg = 5.

Analogously to 3.1.1.2, Gaussians are multi-variate to describe the color c =

RGB channels. These values are assumed independent, so that the co-variance

matrix Σk,c simplifies to diagonal. In addition, if the standard deviation for the

three channels is assumed the same, it further reduces to a Iσk,c, where I is the

identity matrix.

The probabilistic model defined for each pixel describes both, the background

and the foreground classes. Hence, for each frame of the sequence, the pixels are

analyzed independently, checking if the input color c = RGB value of each pixel, ci,

matches any of the Gaussians of the model that represents the pixel. If so, the pixel

will result foreground or background according to the class that the Gaussian is

modeling. Otherwise, a new Gaussian is created and the least important Gaussian

of the model is deleted.

The distributions are ranked in descending order based on the ratio between

their weight ωk and their standard deviation σk: ηk = ωk

σk
. The assumption is that

the higher and more compact the distribution, the more likely it is to represent

the background, since the first few Gaussians in the list correspond to the ones

with more supporting evidence (high weight imply more times explaining incoming

pixels) at the lowest variance (explained incoming pixels are always very similar).

Then, the first B distributions in ranking order are accepted as background if

they satisfy:

B∑
i=1

ηi > T, (3.11)

with T an assigned threshold usually fixed as T = 0.6 .
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The matching criterion for each one of the Gaussians of the model in every pixel

i is defined analogously to the matching criterion proposed in the Running Gaussian

Average system (Equation 3.7):

||ct,i − µt,k,i||2 > 2.5 σt,k,i, (3.12)

where ||.||2 is the euclidean distance. The first in ranking order is accepted as

a match for ci. Furthermore, parameters θbg,t ≡ {ωt,k, µt,k,c,Σt,k,c} are updated

only for this matching distribution and by using simple on-line cumulative averages

similar to those of Equation 3.8 and 3.9. The weighting factor ω is updated for the

Gaussian that matches the input pixel as:

ωt,k,i = (1− α)ωt−1,k,i + α(Mt,k), (3.13)

where α stands for the updating factor, and Mk,t is 1 for the Gaussian that has

matched the input value, and 0 for the rest. α = 0.005 is a common value. Thus, the

more often a Gaussian explains an incoming pixel, the higher is its associated weight.

Note that this is a low-pass filter average of the weights, where last samples have

exponentially more relevance than older ones. The configuration of this updating

produces the static foreground objects, which remain static for a certain period of

time, to be integrated to the background model. Rather than a drawback, this

is a design choice of the authors which has to be taken into consideration before

employing the method without further modifications in any scenario.

If no match is found between the background Gaussians and the input value ci,

the last ranked distribution is replaced by a new one centered in ci, with low weight

and high variance.

Regarding the initialization of the model, a training period of N frames free of

foreground objects is used while running the algorithm.

3.1.2 Foreground Segmentation Using Background and Fore-

ground Modeling

As we have seen in the previous section, when there only exists a complete model

of the background class, the foreground segmentation task is a problem of one-class

classification [DR01, PR03] assuming the exception to background detection.

When a foreground model is also available, the foreground detection can be

proposed as a Bayesian classification process between foreground and background

classes. A Bayesian approach for foreground segmentation is important because it

provides a natural classification framework supported on probabilistic models. In
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[WADP02] and similar approaches, a Bayesian formulation is not possible since the

foreground process is not modeled or it is only partially modeled.

3.1.2.1 Bayesian Classifiers

A Bayesian classifier performs the classification task by using the probability that

a pixel sample belong to the foreground (fg) and background (bg) classes. If we

use the pixel probabilities in order to achieve the final labeling of the pixels of the

image, this can lead to a robust classification process since it utilizes the statistical

information of the objects under analysis, thus improving the decision process.

In order to introduce the more general Bayesian classification approach, both

foreground and background models (likelihoods) have to be available. Then, the

probability that a pixel i ∈ It belongs to one class l ∈ {fg,bg}, given the observation

It,i , can be expressed as:

P (l|It,i) =
P (It,i|l)P (l)

P (It,i)
, (3.14)

where P (l|It,i) is called posterior probability, P (It,i|l) is the likelihood of the

model, P (It,i) is the probability to observe the input data and P (l) is the prior

probability, which depends on the application. However, approximated values for

P (l) can be easily obtained for each application by manually segmenting the fore-

ground in some images, and averaging the number of segmented points over the

total.

Once the posterior probabilities have been obtained, a simple pixel classification

can be computed by comparing foreground and background probabilities. The pixel

i will be labeled as foreground if the following inequality holds:

P (fg|It,i) > P (bg|It,i), (3.15)

or what is equivalent, since P (It,i) is the same for both classes and thus, it can

be disregarded:

P (It,i|fg)P (fg) > P (It,i|bg)P (bg). (3.16)

If the inequality is not accomplished, the pixel will be classified as background.

As it has been previously mentioned, Bayesian classification [KS00a, MD03] can

only be performed when there exist explicit models of the foreground entities in the

scene. In order to create these models, an initial segmentation is usually performed

as an exception to the modeled background, and once there is sufficient evidence

that the foreground entities are in the scene, foreground models are created.
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Similarly as with background models, foreground models are Gaussian-based

in most of the cases. For instance, single-Gaussians have been used in [WADP02],

MoGs have been used in [KS00a, MRG99] and nonparametric models with Gaussian

kernels, in [EHD00, MD03]. On the other hand, foreground models can also be as

simple as a uniform pdf. Simple models are useful when there does not exist any

intention to model the foreground process or if the foreground is difficult to model

for any reason.

Most of these methods propose a pixel-based foreground modeling, but since

the foreground objects are constantly moving along the scene, some rotations and

displacements of the object produce that new foreground regions appear along the

scene, as well as other foreground regions can disappear due to occlusion situations.

Because of that, pixel-wise foreground models are difficult to build an update, and

region-based foreground models arise as a robust solution for these situations.

Foreground segmentation systems that work with uniform and region-based fore-

ground models are presented in the following sections.

3.1.2.2 Pixel-Wise Foreground Segmentation by Means of Foreground

Uniform Model and Background Gaussian Model

This is a pixel-wise foreground segmentation approach for monocular static se-

quences that combines background and foreground probabilistic modeling. In order

to obtain an accurate 2D foreground segmentation using a Bayesian framework,

[LP06a] proposes a pixel-wise Gaussian model to characterize the RGB color of the

background pixels, and a uniform statistical model to model the foreground.

Hence, given observations of pixel color value across time ci, a Gaussian proba-

bility density function is used to model the background color analogously to Section

3.1.1.2:

P (ci|bg) = G(ci, µbg,c,i, σbg,c,i) =

=
1

(2π)3/2|Σbg,c,i|1/2
exp

[
−1

2
(ci − µbg,c,i)

TΣ−1
bg,c,i(ci − µbg,c,i)

]
,

(3.17)

where ci ∈ R3 is the i-th input pixel value in the color c = RGB domain,

µbg,c,i ∈ R3 denotes the mean value of the background Gaussian that models the

color c of pixel i, and Σbg,c,i ∈ R3×3 is the diagonal covariance matrix with RGB

channels sharing the same variance value: Σbg,c,i = Iσbg,c,i.

The adaptation of the background model is the same proposed in [WADP02]

explained in Section 3.1.1.2.
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The foreground model is based on a uniform pdf to model the foreground process

in each pixel, which is in fact the probabilistic extension of classifying a foreground

pixel as an exception to the model. Since a pixel admits 2563 colors in the RGB

color space, its pdf is modeled as:

U(ci) =
1

2563
(3.18)

Once the foreground and background likelihoods of a pixel are introduced, and

assuming that we have some knowledge of foreground and background prior prob-

abilities, P (fg) and P (bg) respectively (approximate values can be obtained by

segmenting the foreground in some images, and averaging the number of segmented

points over the total), the classification of a pixel as foreground can be done when

the inequality presented in Equation 3.16 for color domain c is verified:

P (fg|ci) > P (bg|ci),

P (ci|fg)P (fg) > P (ci|bg)P (bg),

1

2563
P (fg) > G(ci, µbg,c,i, σbg,c,i)P (bg),

(3.19)

In practice this is very similar to the approach defined in Section 3.1.1.2 con-

sisting in determining background when a pixel value falls within 2.5 standard

deviations of the mean of the Gaussian.

3.1.2.3 Region-based Foreground Segmentation Based on Spatial-Color

Gaussians Mixture Models (SCGMM)

The system proposed in [YZC+07], is a good example of the SCGMM applica-

tion to the foreground segmentation task. This method presents an approach to

segment monocular videos recorded by static cameras, where both foreground and

background classes are modeled using spatial-color Gaussian mixture models. Fig-

ure 3.1 shows the spatial representation of the foreground and background models.

Hence, each pixel of the image is defined with five dimensional feature vector, i.e.,

z = RGB XY , representing the color c = RGB, and spatial s = XY coordinates

of the pixels. Then, the likelihood of a pixel i ∈ It belonging to the foreground or

background classes can be written as:
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Figure 3.1: Spatial representation of the SCGMM models. Each ellipse is the spatial repre-

sentation of each Gaussian of the models. Foreground SCGMM in red, background SCGMM in

green.

P (zi|l) =

Kl∑
k=1

ωl,kGl(zi, µl,k,Σl,k)

=

Kl∑
k=1

ωl,k
1

(2π)5/2|Σl,k|1/2
exp

[
−1

2
(zi − µl,k)TΣ−1

l,k (zi − µl,k)

]
,

(3.20)

where l ∈ {fg,bg} represents foreground or background, ωl,k is the prior weight

of the Gaussian component in the MoG. See Appendix A.3 for more information

about GMM.

It is commonly assumed that the spatial and color components of the SCGMM

models are decoupled, i.e., the covariance matrix of each Gaussian component takes

the block diagonal form,

Σk =

(
Σk,s, 0

0 Σk,c

)

where s and c stand for the spatial and color features respectively. With such

decomposition, each foreground Gaussian component has the following factorized

form:

Gfg(zi, µk,Σk) = G(si, µk,s,Σk,s) G(ci, µk,c,Σk,c), (3.21)

where si ∈ R2 is the pixel’s spatial information and ci ∈ R3 is its color value. The

parameter estimation can be reached via Bayes’ development, with the EM algo-

rithm [DLR+77]. For this estimation an initialization frame is needed, containing

a first segmentation of the foreground object. This initialization can be performed

with an exception to the background scheme.



3.1 Foreground Segmentation Using One Camera Sensor 27

Figure 3.2: Work flow of the system proposed in [YZC+07].

The foreground segmentation using this model is obtained finding the evolu-

tion of the foreground-background five dimensional SCGMM models for each video

frame, and deciding for each pixel, the one that maximizes the class probability.

3.1.2.3.1 Tracking Spatial Color Gaussian Mixture Models (SCGMM)

With this technique, the authors propose to combine the two SCGMMs into a

generative model of the whole image, and maximize the joint data likelihood using

a constrained Expectation-Maximization (EM) algorithm [DLR+77] (see Appendix

A.4).

Using spatial and color information to model the scene, SCGMM has better

discriminative power than color-only GMM widely used in pixel wise analysis.

The segmentation problem is solved by means of iterating the tracking-segmentation-

updating process shown in Figure 3.2.

The first frame of the sequence is used to initialize the foreground and back-

ground models by means of the EM algorithm in both models. Hence, an initial

classification into foreground and background pixels is needed. For each frame after

the first one, first the SCGMM of the foreground and the background are combined

and updated with the EM, thus performing a joint tracking of the foreground regions

and the background. Afterwards the image SCGMM model is split back into two

models, one describing the foreground, the other describing the background. Com-

ponents belonging to the foreground before tracking are placed in the foreground

SCGMM, and components belonging to the background before tracking are placed

in the background SCGMM. The two SCGMM models are then used to perform

graph cut segmentation (see Appendix B to extend the graph cuts information).

The segmentation results can be used for a post-updating of the models, where

the foreground and background SCGMMs are trained separately with the seg-
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mented pixels, which often provides better discriminative power for segmenting

future frames.

Considering that the foreground and background colors stay the same across

the sequence, a constrained update on the two models is performed. That is, apply

Expectation Maximization (EM) algorithm on the foreground or background region

to update the SCGMM models, forcing the color means and variances to be constant.

In this way, propagation errors due to color updates are avoided. The joint tracking,

energy minimization and updating steps are explained in the following sections.

3.1.2.3.2 SCGMM Joint Tracking

Given two SCGMM models, each one to characterize the l ∈ {fg,bg} foreground

and background classes, defined by a set of parameters θl,t ≡ {ωl,t,k, µl,t,k,Σl,t,k}.
Both models are learned during the system initialization period, in the first frame

t = 0, using the EM algorithm which maximizes the data likelihood (ML) of each

segment:

ML{θl,t=0} = arg max
θl,t=0

L(θl,t=0|It=0,l) =

= arg max
θl,t=0

∏
zi,l∈It=0,l

[P (zi,l|θl,t=0)] =

= arg max
θl,t=0

∏
zi,l∈It=0,l

[
Kl∑
k=1

ωl,kG(zi,l, µl,k,Σl,k)

]
,

(3.22)

where zi ∈ R5 is the input feature vector for pixel i in the z = RGB XY domain.

An Expectation Maximization algorithm can be formulated to find the maxi-

mizer of the likelihood function. The aim of this part of the process is to propagate

these SCGMM models over the rest of the sequence, since both foreground and

background objects can be constantly moving. For this purpose, the algorithm

looks for ways to obtain an approximate SCGMM model for the current frame be-

fore the graph cut segmentation. It is assumed that from time t− 1 to t, the colors

of the foreground and background objects do not change. Hence, the color parts of

the SCGMM models remain identical:

G(ci, µl,k,c,tΣl,k,c,t) = G(ci, µl,k,c,t−1Σl,k,c,t−1) (3.23)

The formulation of the updating scheme for the spatial parts G(si, µl,k,s,tΣl,k,s,t)

given the new input image It, is explained next:

Since we do not have a foreground/background segmentation on It, first a global

SCGMM model of the whole image is formed by combining the foreground and back-
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ground SCGMM models of the previous frame: θ0
I,t, where superscript 0 indicates

that the parameter set is serving as the initialization value for the later update.

The probability of a pixel of the image zi = (r, g, b, x, y) given the global model

θ0
I,t can be expressed as the combination of both foreground and background models:

P (zi|θ0
I,t) = P (zi|θfg,t−1) P (fg) + P (zi|θbg,t−1) P (bg) =

=

KI∑
k=1

ω0
k,t G(si, µ

0
k,s,t,Σ

0
k,s,t) G(ci, µk,c,t,Σk,c,t),

(3.24)

Denote KI = Kfg + Kbg as the number of Gaussian components in the com-

bined image level SCGMM model, where the first Kfg Gaussian components are

from the foreground SCGMM, and the last Kfg Gaussian components are from the

background SCGMM.

The Gaussian term over the color dimension is defined in Equation 3.23 and

remains fixed at this moment. The Gaussian component weights ω0
k,t, k = 1, ...,KI ,

are different from their original values in their individual foreground or background

SCGMMs due to P (fg) and P (bg):

ω0
k,t =

{
ω0

fg,k,t P (fg) if k ≤ Kfg

ω0
bg,k−Kfg,t

P (bg) if Kfg < k ≤ KI

(3.25)

where P (fg) and P (bg) are the prior probabilities for each class, and are obtained

by computing, in t− 1, the area covered by each class, normalized by the total area

of It. Thus, they satisfy P (fg) + P (bg) = 1.

Once foreground and background models have been combined, and for the cur-

rent frame It, the objective is to obtain an updated parameter set over the spa-

tial domain, which maximizes the joint data likelihood of the whole image, for all

k = 1, ...,KI , i.e.,

{ωk,t, µk,s,t,Σk,s,t} = arg max
ωk,t, µk,s,t, Σk,s,t

∏
zi,t∈It

P (zi,t|θI,t). (3.26)

The EM algorithm is adopted here to iteratively update the model parameters

from their initial values θ0
I,t. However, as it can be seen in Equation 3.26, unlike the

traditional EM algorithm, where all model parameters are simultaneously updated,

only the spatial parameters of the SCGMM models are updated in this phase, and

the color parameters are kept unchanged. This can be implemented by constraining

the color mean and variance to be fixed to their corresponding values in the previous

frame (see Equation 3.23).
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Such a restricted EM algorithm is shown below in Table 3.2. In the E-step,

the posteriori of the pixels belonging to each Gaussian component is calculated,

and in the M-step, the mean and variance of each Gaussian component in spatial

domain are refined based on the updated posteriori probability of pixel assignment

from E-step. In the literature this EM algorithm is called Expectation Conditional

Maximization [MR93].

Table 3.2: Expectation Conditional Maximization.

1.st E-step, calculate the Gaussian component assignment probability

for each pixel of the image i:

P (m)(k|zi) =
ω
(m)
k

G(si,µ
(m)
k,s

,Σ
(m)
k,s

) G(ci,µk,c,Σk,c)∑KI
k=1

ω
(m)
k

G(si,µ
(m)
k,s

,Σ
(m)
k,s

) G(ci,µk,c,Σk,c)
,

where m denotes the iteration and K is the number of mixture

components involved in the process.

2.nd M-step, update the spatial mean and variance, and the weight

component as:

µ
(m+1)
k,s =

∑
zi∈It

P (m)(k|zi)·si∑
zi∈It

P (m)(k|zi)
,

Σ
(m+1)
k,s =

∑
zi∈It

P (m)(k|zi)·(si−µ
(m+1)
k,s

)·(si−µ
(m+1)
k,s

)T∑
zi∈It

P (m)(k|zi)
,

ω
(m+1)
k =

∑
zi∈It

P (m)(k|zi)∑KI
k=1

∑
zi∈It

P (m)(k|zi)
,

3.1.2.3.3 Energy Minimization

After the joint foreground/background model have been combined into a gener-

ative model of the image, the model has been updated using EM, and split back

into foreground and background models, the segmentation problem is solved using

energy minimization. At any time instant t, let the feature vectors extracted from

the video pixels be zt,i, i = 1, ..., N where N is the number of pixels in each frame.

Denote the unknown label of each pixel as lt,i ∈ {fg(= 1),bg(= 0)}, and the label-

ing of the all the pixels of the image as lIt = {lt,1, lt,2, ...lt,i...lt,N}. In the following

discussions, we may ignore subscript t when it causes no confusion.

The energy-based function is formulated over the unknown labeling variables

of every pixel li, in the form of a fist-order Markov Random Field (MRF) energy

function:

E(lIt) = Edata(lIt) + Esmooth(lIt) =
∑
i∈It

Di(li) + λ
∑
{i,j}∈ψ

Vi,j(li, lj), (3.27)
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where ψ denotes the set of 8-connected pair-wise neighboring pixels, i ∈ It are

the set of pixels of the image under analysis. The role of λ is to balance the data

Di(li) and smooth cost Vi,j(li, lj). The above energy function can be efficiently

minimized by a two-way graph cut algorithm (See Appendix B), where the two

terminal nodes represent foreground and background labels.

The pair-wise smoothness energy term is modeled as:

Esmooth(lIt) =
∑
{i,j}∈ψ

Vi,j(li, lj) =
∑
{i,j}∈ψ

1

d(i, j)
exp

[
−||ci − cj ||

2

2σ2

]
, (3.28)

where ci ∈ R3 stands for the input color c = RGB of pixel i, ||ci − cj || is

the euclidean distance between input ci, cj RGB values, σ is the average distance

||ci− cj || between neighboring pixels in the image, and d(i, j) is the spatial s = XY

distance between two pixels i and j.

This favors the segmentation boundary along regions where strong edges are

detected.

The data energy term Edata(lIt) evaluates the posterior probability of each pixel

belonging to the foreground or background. Given the SCGMM models, the data

cost Edata(lIt) is defined as:

Edata(lIt) =
∑
i∈It

Di(li) =
∑
i∈It

− logP (li|zi), (3.29)

The posterior P (li|zi) can be calculated according to Bayes development (Equa-

tion 3.14).

3.1.2.3.4 Fg/bg GMM Parameter Updating in the Spatial Domain

Given foreground and background pixels It,fg, It,bg obtained from the Energy

Minimization step (Section 3.1.2.3.3), the objective is to obtain the updated pa-

rameter sets over the spatial domain θfg,s,t ≡ {ωfg,k,t, µfg,k,s,t,Σfg,k,s,t} and θbg,s,t ≡
{ωbg,k,t, µbg,k,s,t,Σbg,k,s,t}, which maximizes the data likelihood of each image re-

gion It,fg, It,bg:

θl,s,t ≡ {ωl,k,t, µl,k,s,t,Σl,k,s,t} = arg max
ωl,k,t, µl,k,s,t, Σl,k,s,t

∏
zt,i∈It

P (zt,i|θl,t), (3.30)

where l ∈ {fg,bg}.
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The spatial domain, mean and variances, are updated applying Expectation

Conditional Maximization algorithm (Table 3.2) for each foreground and back-

ground models separately, forcing the color means and variances to be constant

and using for each model It,fg, It,bg respectively instead of all pixels. After the up-

dating process, the work-flow shown in Figure 3.2 is executed again for each frame,

obtaining as a result the foreground segmentation of each frame of the sequence.

3.1.3 Shadows and Highlights Removal Techniques

The foreground segmentation techniques explained before have to deal with shadow

and highlight phenomenons in order to reduce the false positive and false negative

detections that these illumination effects produce. It is well known that the detec-

tion of foreground objects generally includes their cast shadow, as a consequence of

the background color and brightness modifications that the object produces when it

occludes the light source. The undesirable consequences that shadow effect causes in

the foreground segmentation are the distortion of the true shape and color proper-

ties of the object. On the other hand, highlights can also affect the scene depending

on the background materials and the illumination source, producing false detection

errors. Hence, in order to obtain a better segmentation quality, foreground seg-

mentation techniques usually adds a post-processing step to remove shadow and

highlight detections from the resultant foreground mask.

3.1.3.1 Brightness and Color Distortion Domain

One of the most exploited properties in shadow removal task is the consideration

that shadow regions reduce the luminance background values while maintaining the

chromaticity ones. Highlights removal algorithms are based on the same chromatic-

ity principle but, on the contrary, these regions increase the luminance background

values. A shadow is normally an area that is only partially irradiated or illuminated

because of the interception of radiation by an opaque object between the area and

the source of radiation. If we assume that the irradiation consists only of a white

light, the chromaticity in a shadowed region should be the same as when it is di-

rectly illuminated. Hence, a normalized chromatic color space, e.g. r = R /(R +

G + B), g = G /(R +G + B), is immune to shadows. However, lightness informa-

tion is unfortunately lost. Thus, the analysis of the color and brightness distortion

between foreground and background pixels will be useful in order to localize the

shadow regions.

Brightness distortion (BD) can be defined as a scalar value that brings expected

background close to the observed chromaticity line. Similarly, color distortion (CD)

can be defined as the orthogonal distance between the expected color and the ob-
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Figure 3.3: Distortion measurements in the RGB color space: Fore denotes the RGB value of a

pixel in the incoming frame that has been classified as foreground. Back is that of its counterpart

in the background.

Figure 3.4: Example of brightness distortion BD and color distortion CD domains. Values have

been normalized to allow their representation in a gray scale domain. The darker the BD and CD,

the smaller their values.

served chromaticity line. Both measures are shown in Figure 3.3 and formulated in

(3.31).

BD = arg minβ‖ci,in − βci,bg‖2,
CD = ‖ci,in − βci,bg‖.

(3.31)

Where ci,in ∈ R3 is the i-th input pixel’s value (i = 1, ..., N) in the RGB space.

ci,bg is that of its counterpart in the background.

Figure 3.4 shows a representation of the BD and CD domains in an indoor

scenario, where both values have been normalized to allow their representation in

a gray scale domain. The darker the BD and CD, the smaller are their values. As

we can observe, the shadow projected by the person on the ground, presents a BD

and CD values that make possible their detection.

3.1.3.2 Shadow/Highlight Detection Based on BD and CD Analysis Ap-

plied in Foreground Segmentation

Many shadow/highlight detection methods like [HHD99], are based on the color

and brightness distortion analysis. These shadow/highlight removal techniques are
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applied after the foreground segmentation process proposed in [WADP02] (in prac-

tice, any foreground detection system is valid). Then, they analyze the foreground

pixels and detect those that have similar chromaticity but lower brightness to the

corresponding region when it is directly illuminated, by computing Equations 3.31.

In order to do that the adaptive background reference image provides the desired

information.

Hence, brightness distortion values over 1.0 correspond to lighter foreground.

On the other hand, the foreground is darker when BD is below 1.0. The analysis

is done for each pixel i ∈ It,fg, and a set of thresholds are defined to assist the

classification into foreground, highlight or shadow pixel as shown in Algorithm 1

Algorithm 1 Thresholds for shadow and highlight detection

if CD < 10.0 then

if 0.5 < BD < 1.0 then SHADOW

else if 1.0 < BD < 1.25 then HIGHTLIGHT

end if

else FOREGROUND

end if

Other methods of the state of the art are also based on this principle: In [XLP05]

the authors try to avoid wrongly diagnosed foreground regions proposing the hybrid

shadow removal method that combines the shadow detection proposed in [HHD99],

with mathematical morphology reconstruction, which improves the false negative

ratio, although increasing false positive foreground detections.

In a statistical parametric framework, [PT05] proposes a pixel-wise multivariate

Gaussian model system. [HHCC03] uses a region model using a statistical para-

metric method via Spatial and Color Gaussian Shadow Model, and a pixel decision

based on threshold comparison, because a foreground model is not available, while

[LPAM+09] utilizes a bidimensional Gaussian distribution to model the Brightness

and Color distortion of each shadow pixel classifying each pixel using belief propa-

gation.

3.2 Multi-Sensor Foreground Segmentation

Multi-sensor foreground segmentation is becoming an important area in foreground

detection, since it allows a better segregation of the foreground objects with respect

to the background regions than the one obtained from a single camera sensor. The

reason of this improvement in the final results is based on the concept that when

using multiple (more than one) sensors to record the scene, the data redundancy
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that appears in their combination usually allows a better segmentation in difficult

regions that can appear in any camera i.e. camouflage, shadows, highlights... Hence,

we take a decision based on all the cameras that perform the acquisition setup, thus

allowing a better discrimination of the foreground from the background regions.

One of the possibilities when working on these scenarios consists in reconstruct-

ing the 3D shapes of the foreground elements that appear in the multi-view se-

quences captured by the multi-camera setting. This approach appears in opposition

to work in an image-based manner, using geometric relationships between pairs of

images described by epipolar constraints. Therefore, multi-view approaches can be

classified in:

• Image-based multi-view. The analysis is performed directly on the cap-

tured images and multi-view cues are exploited by considering epipolar con-

straints that can be computed from fundamental matrices.

• 3-dimensional reconstruction. Three-dimensional shapes are computed

from the multi-view data with several possibilities for their representation,

each providing different advantages and drawbacks, as will be seen below.

Both groups can be implemented by using sensors of the same type (i.e. color

RGB, depth Z...) or combining different ones in a multimodal analysis in order

to improve the final results by working on different domains of the scene under

analysis.

In order to combine the different camera sensors used to record the scene, a pro-

cess of camera calibration is necessary for each one of the cameras. This calibration

will be useful to achieve the 3D-2D correspondence.

In the following, we describe the camera model, which will be used in the rest of

the manuscript to get the 3D-2D correspondence between the pixels of the views,

and then we review the camera calibration method. Later on, since this thesis deals

with multi-view foreground segmentation combining color and depth sensors, and

smart-room 3D scenarios, we will explore both areas.

3.2.1 Pinhole Camera Model and Camera Calibration

A camera can be seen as an optical device which performs the projection from the

3-dimensional real world to the 2-dimensional image plane. In a simple model, the

camera center is behind the image plane, and 3D points are mapped to 2D where

the line joining the camera center and the 3D point meets with the image plane.

This model, which is called the pinhole camera model, is one of the most common

models used in color cameras.
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Figure 3.5: Pinhole projection model. A point s3D = (XY Z) in the real world coordinate system

(Xworld, Yworld, Zworld) is first referred to the camera coordinate system (Xcam, Ycam, Zcam) and

then projected into the image plane thus resulting in the s2D = s = (x̃, ỹ) pixel coordinates. Focal

length is noted as f .

Therefore, the conversion necessary to obtain the correspondence to 2-dimensional

coordinates (pixel positions) of the camera images from a 3-dimensional magnitude

(a 3D location) is the projection process where one dimension of the 3-dimensional

space is lost. Hence, this projection process, transforms 3-dimensional Euclidean co-

ordinates in the world reference frame into 2-dimensional coordinates in the camera

reference frame: R3 → R2.

Given a certain 3-dimensional point s3D ∈ R3 and the 2-dimensional spatial pixel

coordinates s2D,i = si ∈ R2, it is possible to establish the 2D-3D correspondence

by means of the Projection Matrix: P:

si = Pi s3D (3.32)

From Figure 3.5, we can express the projection model in homogeneous coordi-

nates (x̃ = fX
Z , ỹ = fY

Z ) in Equation 3.32 as:


x

y

z

 =


f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

1

 , (3.33)

where f is the focal length. The model may be generalized if the image coordi-

nates are not centered at the intersection of the optical axis with the retinal plane,

and if the scaling of each axis is different:
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
x

y

z

 =


fmx 0 x0

0 fmy y0

0 0 1︸ ︷︷ ︸
K

0

0

0




X

Y

Z

1

 , (3.34)

where mx and my are the scaling factors of the focal length in each dimension,

and x0 and y0 are offsets in each dimension. The matrix containing all the infor-

mation regarding the projective device (i.e. the camera sensor) is usually denoted

as the intrinsic parameters matrix K.

Usually, the coordinate system of the real world (Xworld, Yworld, Zworld) does not

coincide with the coordinate system associated with the camera (Xcam, Ycam, Zcam)

thus an affine transformation relating this two systems is required:


x

y

z

 =


fmx 0 x0

0 fmy y0

0 0 1


︸ ︷︷ ︸

K

[R|t]

︸ ︷︷ ︸
P


X

Y

Z

1

 , (3.35)

where R and t, are the 3×3 rotation matrix and 3×1 translation vector respec-

tively with respect to the real world coordinate system; and where P = K(R|t) is

the camera projection matrix.

Since real lens introduce non linear distortion effects, radial distortion rd is going

to be introduced in the formulation as the most noticeable distortion effect [HZ03].

The radial distortion model is expressed by the following equation:

rd
r

=
x̃d − x0

x̃− x0
=
ỹd − y0

ỹ − y0
, (3.36)

where (x̃d, ỹd) are the coordinates of a distorted image point.

Since the Taylor series expansion of Equation 3.36 with respect to r is 1+k1r
2 +

k2r
4 + · · · , then k1, k2, · · · are the unique values which are needed to obtain the

real image distorted points. Usually, a couple of terms are enough to achieve a

good approximation. Hence, the pixel coordinates of the distorted image can be

computed as:

x̃d = x0 + L(r)(x̃− x0), (3.37)

ỹd = y0 + L(r)(ỹ − y0), (3.38)
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r =

√(
x̃d − x0

fmx

)2

+

(
ỹd − y0

fmy

)2

, (3.39)

where r is the radius of distortion and L(r) = 1 + k1r
2 + k2r

4 .

3.2.1.1 Camera Calibration

Once we have defined the parameters necessary to characterize the camera sensors,

they can be obtained in practice by the calibration process. This process is based on

estimating the intrinsic (K, k1, k2) and extrinsic (R, t) parameters of the camera.

P has 12 entries, and (ignoring scale) only eleven degrees of freedom in homo-

geneous coordinates. Hence, it is necessary to have at least 11 equations (i.e., 11

3D/2D pairs of points) to solve P. In practice, more points are used, to minimize

a function of the error [HZ03]. All these calibration points may be obtained using

special calibration devices, such as a chessboard panel.

3.2.2 Image-Based Multi-View Foreground Segmentation

One of the most extended techniques to improve the foreground segmentation re-

sults in a certain scene, consists in combining information of several sensors that

are recording it from different positions. In this case, the improvement comes from

the different perspective that the camera sensors present. Otherwise, if we com-

bine different type of sensors in a multi-modal framework, for instance, combining

color RGB and depth camera sensors, the improvement will appear thanks to the

analysis of different domains. In these applications, to obtain the correspondence

of the pixels among views is necessary in order to correctly combine the informa-

tion between 2D images. In this section, we will focus on the multi-view analysis

combining color and depth sensors.

3.2.2.1 Foreground Segmentation Combining Color and Depth Sensors

Color RGB and depth sensors work with different technologies that can be used

together at the same time without suffering any interference between them, thus

presenting non-correlated errors each other:

-Color cameras are based on sensors like CCD or CMOS among others, which

allow us a more reliable representation of the scene with high resolution. The

segmentation using this kind of sensors results in more precise separation between

foreground and background if there are no color camouflage problems between both

classes.
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- Depth cameras are based on IR transmitter/receiver sensors. Despite new

precise sensors based on laser technologies are appearing nowadays, so far, the re-

sultant depth maps obtained using ToF (device that computes Time of Flight using

Infra Red light) and kinect (low cost sensor sold by Microsoft that uses structured

Infra Red light) are images with lack of precision on the definition of the objects

([KBKL09] gives an in-depth technical analysis of ToF limitations). The segmen-

tation using these devices is a more robust segmentation against color problems,

though errors with depth camouflage will be present.

Therefore, a correct combination of these sensors allow to improve the overall

performance of the system. For that, both camera sensors must be calibrated and

registered projecting the depth map onto the color image, allowing a color-depth

pixel correspondence. It should be noted that some problems of miss association

can appear due to:

• Camera centers are different and some blind regions appear for each one of

the sensors because of the projection process and the parallax computation

between cameras.

• The low resolution of the depth measurements produces that several color

pixels are associated to only one depth map value.

• The lack of precision of the depth sensor is more pronounced in the borders of

the objects, and produces many depth-color association errors in these regions.

Both color and depth sensors can be segmented separately by means of planar

foreground segmentation methods (Section 3.1.2). In order to show the limitations

of each sensor, Figure 3.6 shows an example of segmentation with a simple exception

to background analysis presented in [WADP02] and explained in section 3.1.1.2.

We can observe how color segmentation (Figure 3.6(c)) gives us a reduced false

positive detections in the segmentation although some false negative errors appear

due to the foreground-background color similarity. When using depth segmentation

(Figure 3.6(d)), robustness against color similarity is present, but some false positive

detections appear in the borders of the object due to the lack of precision of the

depth sensor. In the following section some methods of the state of the art which

combine the color and depth sensor information are explained in detail.

3.2.2.1.1 Combining Color and Depth Sensors by means of Trimap

Analysis

Since depth sensors present an important problem of precision in the borders of

the objects, these methods propose to analyze in a different manner the foreground

border regions, which are prone to errors, from the rest of the image. Some pro-

posals like [CTPD08, FFK11] are based on this idea. Hence, these methods require
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(a) (b)

(c) (d)

Figure 3.6: Foreground segmentation applied to color and depth sequences. From left to right.

a) Original color image. b) Original depth image in gray scale. The whiter the pixel, the closer to

the camera. c) Color segmentation via exception to background analysis. d) Depth segmentation

via exception to background analysis. Black pixels in foreground segmentation correspond to

background regions.

the approximate location of the edges of the objects to segment, which are defined

by a trimap.

In a trimap, the image under analysis is divided into three different regions:

foreground, background and unknown decision, and can be obtained from different

processes. A basic approach is explained next:

• An initial foreground segmentation using the depth information is applied

based on a thresholding plane defined by the user.

• After that, morphological operations, erosion and dilation, are performed over

the foreground silhouette F .

• Final trimap is defined as: Let F be the number of pixels detected as fore-

ground in the previous foreground detection, and B their counterpart in the

background, EF the binary image after erosion and DF the binary image after

dilation. The definitive foreground region is then defined as TF = EF . The

definitive background region is defined as TB = B −DF and the uncertainty

region as TU = DF ∩ EF

Figure 3.7 shows an example of the resultant trimap.
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Figure 3.7: Example of trimap segmentation among foreground (fg), background (bg) and un-

known regions.

Once the trimap is computed, a special analysis for the foreground segmenta-

tion is applied in the uncertainty area to correctly define the foreground and the

background pixels.

In [CTPD08], an alpha matting analysis is used. When assigning each pixel to

the foreground and background, its depth is compared to the threshold, and it is

assigned an alpha value of 1 or 0, which is recorded into what is called the alpha-

matte. These values are based on each pixel alone. A cross bilateral filter is then

applied to the sparse alpha-matte, using the color image as the guide for the range

filter (the bilateral filter was introduced to the computer vision field in [TM98] as

a method for smoothing grayscale images, we refer the reader to this publication to

have an in depth explanation). The idea is to preserve edges by taking a weighted

average of local pixels. In this system, the authors filter the alpha values and base

these weights on the distance in the grid lattice and the color space.

Hence, the refined estimate for the alpha value of each pixel, Ai, belonging to

the trimap uncertainty region i ∈ ITU
is:

Ai =
1

Ki

∑
j∈N,αj

αjf(‖i− j‖) g(‖ci − cj‖), (3.40)

where αj is the alpha value from the alpha-matte, f is the spatial kernel (a

Gaussian centered at i), g is the range filter kernel (also a Gaussian), ci = RGB

is the color value of pixel i, N is the neighborhood surrounding pixel Ii and K

is a normalizing factor, the sum of the product of filter weights defined as KJ =∑
j∈N,αj

f(‖i − j‖) g(‖ci − cj‖). The distance between colors is measured as a

Euclidean distance.

Other approaches like [FFK11], propose to construct a graph in the uncertainty

area TU in the color domain, and use the graph-cut segmentation technique to

classify all pixel in the unknown regions as foreground or background. The work-

flow of this system is:
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1. Create trimap of the image.

2. Using the definitive foreground and definitive background from all trimaps

in the batch two Gaussian mixture color models are created, one for the

foreground GMMfg and one for the background GMMbg.

3. Create the graph and apply the graph-cut algorithm to classify all pixels in

the unknown regions in foreground and background.

4. The color models are updated based on the pixel classification.

5. Steps 3 and 4 are repeated until a maximum number of iterations is reached.

3.2.2.1.2 Combining Color and Depth Sensors Using Probabilistic Mod-

els for Depth and Color Data

These approaches propose to create probabilistic models for each one of the sen-

sors. The influence of each sensor to the final labeling decision in foreground or back-

ground is evaluated according to the reliability that each camera sensor presents.

One example of this kind of segmentation methods is proposed in [SK11].

In [SK11], the authors propose to model the background by means of a GMM

in a four dimensional domain based of the color c = RGB ∈ R3 and depth D =

d ∈ R domains. Then, the reliability of each sensor is evaluated for each one of

the pixels according to the detection of discontinuities in the depth image. These

discontinuities are detected by analyzing the variance in the original depth image

v(x). Moreover, normalized color and depth differences ĉ and d̂ are computed for

each pixel as:

d̂(x) =
d(x)− dmin

dmax − dmin
ĉ(x) =

c(x)− cmin

cmax − cmin
, (3.41)

where d(x) = di − dbg and c(x) = ci − cbg are the depth and color differences

between the input value, and the mean value of the background Gaussian for the

pixel i. cmax, cmin and dmax, dmin are the minimum and maximum color and depth

distances of the image under analysis.

The variance in the depth image is also normalized (v̂(x)) between 0 and 1 to be

comparable to d̂(x) and ĉ(x). In areas in which the depth uncertainty is high, the

depth measurement will be considered unreliable. Therefore the normalized depth

difference d̂(x) is weighted with the uncertainty v̂(x), resulting in an uncertainty

filtered depth d̂v(x), which is scaled between zero and one depending on the uncer-

tainty. In contrast to that the color is more reliable if the depth uncertainty is high.

Therefore the color weight ĉs(x) is multiplied with the depth uncertainty d̂v(x) and

added to the color weight. The result is that if the depth uncertainty is high the
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color weight is weighted even higher while at the same time the uncertainty filtered

depth is weighted lower. The following equations detail this:

d̂v(x) = (1− v̂(x)) d̂(x),

ĉv(x) = (1 + v̂(x)) ĉ(x),

ŝ(x) =
1

2
(d̂v(x) + ĉv(x)),

(3.42)

where ŝ(x) is the resultant combined weighting image.

3.2.3 3-Dimensional Reconstruction

When we are interested in obtaining the final 3-dimensional volumetric represen-

tation of one foreground object, the more convenient strategy consists in using

multiple cameras sensors surrounding the object under study. This will allow us to

achieve enough information belonging to the foreground object, from all the points

of view, to correctly define the foreground object in the 3-dimensional space. Such

reconstruction will be more precise the more cameras observe the space where the

scene is located. In this way, it is necessary to achieve a correct calibration and

synchronization of the camera sensors to appropriately process the 2-dimensional

data flows recorded by each one of the sensors. Figure 3.8 displays an example of a

smart room, which is a common set-up used to record the multi-view sequences.

There are different approaches to obtain the volumetric reconstruction of the

foreground object in the literature. In all of them it is usually assumed that the

scene of interest is inside the convex hull of the cameras, i.e., it is visible by all the

cameras. From least to most accurate, the volumetric estimates are:

• Convex Hull (CH) The Convex Hull of an object in the 3D space is the

intersection of all the convex sets containing all the points of the object. In

the three-dimensional space, the Convex Hull is a convex polyhedron. Given

a number of 3D points, there have been several implementations to obtain

the Convex Hull. A review of some of these techniques can be found in

[FS77] and another proposal taking care of the technical aspects of a practical

implementation can be found in [Day90].

• Visual Hull (VH) A more refined object estimate is the Visual Hull [BL03,

Lau91, Lau94, Lau95]. The Visual Hull is obtained with the technique known

as Shape from Silhouette: For each frame of the muti-view sequence and each

one of the sensor frames, the foreground object is segmented, thus obtaining

binary foreground masks with the silhouette of the object of interest for each
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Figure 3.8: Example of smart-room setup. The cameras are placed surrounding the object of

interest so that, we achieve information of the object from all the points of view.

view. The volume estimate known as Visual Hull is obtained as the maximal

volume which could explain the observed silhouettes.

• Photo Hull (PH) It is the most accurate estimate of the real object. When

instead of binary silhouettes, color images captured by multi-camera settings

are used for reconstructing a scene, the photo hull is obtained. The process

is performed as a photo-consistency test of visible volumetric points with

respect to each image. The Photo Hull is defined as the maximum volume

that is photo-consistent, and Voxel coloring [SD97], Space Carving [KS00b]

and Energy minimization [SP05] are the methods used to obtain it.

If we assume that the different volume estimates, obtained by means of each

method, are free of errors, we can define a precision chain of the 3D reconstruction

of a real object volume Ψ as:

Ψ ⊆ PH(Ψ) ⊆ VH(Ψ) ⊆ CH(Ψ), (3.43)

Figure 3.9 shows a comparison between visual hull and photo hull. As we can

observe, both reconstruction methods have problems to reconstruct the exact shape

of the object due to the limitations of precision that the acquisition setup impose.

In spite of this, using the color information in the reconstruction process (in PH),

helps to improve the precision of the resultant volume.
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Figure 3.9: Tightness of the photo hull compared to the visual hull. On the left, the bold line

represents the visual hull of a 2D scene (in this case, the central occupied square) reconstructed

from a set of silhouettes (segments) available in a set of 1D cameras. On the right, the photo hull

is computed and represented by the bold line, resulting in a tighter reconstruction of the actual

shape, which is the colored square.

The choice of one method or another depends on the application and the compu-

tational load that can be processed. Although Photo Hull obtains the most accurate

volume estimate, it is not suitable for real-time operation. On the contrary, Visual

Hull can be computed by using Shape from silhouette techniques, which are suitable

for real-time processing while maintaining a correct precision of the volume. The

only requirement is the necessity of computing the foreground segmentation of each

one of the views, which can be obtained using the techniques presented in Section

3.1.

This thesis utilizes Shape from Silhouette (SfS) techniques in foreground de-

tection methods for multi-view scenario. Therefore, in the following section, SfS

reconstruction is explained in detail.

3.2.3.1 Shape from Silhouette

3-dimensional reconstruction based on SfS approach presents two main steps:

• Foreground segmentation in each one of the views in order to obtain the

foreground silhouettes of the object that we want to reconstruct.

• Intersection test. It is the main step of the SfS. Each point in the 2-dimensional

foreground silhouettes defines a ray in the 3D space that intersects the fore-

ground volume somewhere along the ray. The union of all the visual rays for

all the foreground points defines a conic ray where the entity is guaranteed to

lie. In SfS, the intersection of the visual cones associated with a set of cam-

eras defines the volume in which the object is guaranteed to lie. Figure 3.10

shows an example of the intersection of the conic rays, while in Figure 3.11

a graphical representation of the SfS operation is displayed. We can see how

SFS-based algorithms are not able to perform an accurate reconstruction of
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Figure 3.10: Example of visual hull with three views. The visual cones intersect further con-

straining the volume estimates of the foreground object.

Figure 3.11: Example of visual hull with four camera views C reconstructing a concave object O

from the silhouettes segmented in each view Sc. The resultant Visual Hull VH can not represent

the concavities of the objects.

concave objects, if the concavity shape is not detected by any camera sensor.

One of the main approaches to obtain the intersected volume is the voxel-based

SfS. Next section is devoted to explain it.

3.2.3.1.1 Voxelized Shape from Silhouette These techniques divide the

space into voxels, which is the volume elements representing values in the 3-dimensional

space (the pixel equivalents for 3D volume data) [CKBH00, LP06b, LP06a, MKKJ96,

MTG97]. Then, the system projects each voxel to the views belonging to the ac-

quisition setup, in order to detect if they are contained in every silhouette. This

process is carried out by using a projection test.

There are many possible projection tests. Some are faster, and others more

robust to noise. A simple Projection Test is the One Pixel Projection Test, which is

passed if the pixel corresponding to the projection of the center of the voxel belongs
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to a silhouette. Algorithm 2 shows the voxelized SfS considering any projection

test.

Algorithm 2 Voxelized SfS

Require: : Silhouettes: S(c), Projection Test: PT (voxel, silhouette)

1: for all voxel do

2: voxel ← Foreground

3: for all cameras do

4: if PT (voxel, S(c)) is false then

5: voxel ← Background

6: end if

7: end for

8: end for

As we can observe in Algorithm 2, Visual Hull is highly dependent on the 2D

foreground segmentation that is performed in each view. Just one false negative

error in one of the views is propagated to the 3-dimensional reconstruction, resulting

a false negative error in all the voxels projecting to false negative pixels.

Hence, the concept of Visual Hull (VH) is strongly linked to the one of sil-

houettes’ consistency: A set of silhouettes is consistent if there exists at least one

volume which exactly explains the complete set of silhouettes, and the VH is the

maximal volume among the possible ones. If the silhouettes are not consistent, then

it does not exist an object silhouette-equivalent, so that the VH does not exist.

Total consistency hardly ever happens in realistic scenarios due to inaccurate

calibration or wrong silhouettes caused by errors during the 2D detection process.

Because of that, some SfS methods have been designed in the past assuming that the

silhouettes can not be consistent, thus adding a tolerance to error (τ) in the number

of views necessary to consider a voxel as occupied. Hence, adding error tolerance

to the 3-dimensional reconstruction, the estimate of the visual hull is conservative

in the sense of assuming that τ foreground under-segmentation errors can occur.

Considering the tolerance to errors τ as the maximum number of cameras that

can detect background in the projection test and still consider the voxel as fore-

ground in the reconstruction process, the 3-dimensional reconstruction algorithm

is modified as appears in Algorithm 3, where num bg is the number of projection

tests detecting background.

This approach will lead to reduce the number of false negative errors although

losing precision in the final reconstructed volume. Figure 3.12 shows an example

of this effect, where one dancer in a 8-cam smart-room sequence is reconstructed

using the Visual Hull method (without tolerance) and the conservative Visual Hull

with tolerance τ = 2. As we can appreciate, normal VH presents some false neg-
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Algorithm 3 Voxelized SfS with tolorenace to errors

Require: : Silhouettes: S(c), Projection Test: PT (voxel, silhouette),

Tolerance: τ

1: for all voxel do

2: voxel ← Foreground

3: num bg ← 0

4: for all cameras do

5: if PT (voxel, S(c)) is false then

6: num bg ← num bg +1

7: end if

8: if num bg > τ then

9: voxel ← Background

10: break

11: end if

12: end for

13: end for

ative errors in the resultant volume, since just one false negative error in the 2D

foreground detection of one of the views, is propagated to the final volume. When

using conservative VH with τ = 2, the resultant volume estimates presents less

false negative errors, since for each pixel, we are allowing up to two background

detections in the silhouettes to decide that the voxel is occupied. The drawback of

conservative Visual Hull is that both true background detections and false negative

errors are treated the same way thus increasing the false positives errors in the re-

sultant volume, since inconsistencies in voxel occupancies increase drastically, and

consequently, the precision of the volume is reduced.

3.2.4 Multi-view Cooperative Foreground Segmentation Us-

ing 3-dimensional Reconstruction Methods

Classical 3-dimensional reconstruction methods are based on the Visual Hull com-

puted with the foreground segmentation masks obtained in a separated step for each

view. Similarly to the octree-based voxelization, [EBBN05] uses a finer resolution

in those regions where it is needed, accompanied by a post-processing aiming at

obtaining crack-free polygonal surfaces, using marching cubes [LC87].

Many authors have been working in 3-dimensional reconstruction techniques

that deal with the inconsistency of the silhouettes proposing SfS techniques with

enhance robustness. In these proposals, consistency tests between views and fur-

ther processing is applied in order to overcome the limitations in the silhouette

extraction.
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Figure 3.12: SfS of an 8-cam smart-room sequence. First column displays two of the eight-

view frames sequence. Second row shows the Visual Hull reconstruction without considering any

tolerance to errors. Third column depicts the conservative Visual Hull with τ = 2.

3.2.4.1 Correcting Shape from Silhouette Inconsistencies

The method proposed by [LP06a] is an example of this kind of techniques. It detects

inconsistencies in 2D silhouettes regions that can be detected by reconstructing

the VH using SfS methods and projecting it back to examine how the projections

match with the generative silhouettes. Then the shape can be reconstructed using a

different criterion when there are parts of the volume (Inconsistent Hull:IH) which

project to inconsistent regions in the silhouettes (Inconsistent Silhouettes:IS).

The IH is introduced as the volume where does not exist a shape which could

possibly explain the observed silhouettes. In order to estimate the IH, we need to

determine the unions of the inconsistent cones, similarly as SfS methods determine

the inter- sections of the visual cones. The concept of Shape from Inconsistent

Silhouette is introduced by using a voxel-based approach. The detailed process for

the IH voxelization is shown in Algorithm 4.

Therefore, IH contains all the volumetric points which cannot explain the sil-

houettes where they project. In terms of consistency, these points are candidates

of not having been classified as Shape by error, while all the points in the VH are

error-free.

3.2.4.2 Fusion 2D Probability Maps for 3D Reconstruction

There are several approaches of the literature where the final 3D reconstruction

is obtained by fusing not only the silhouettes of the foreground objects, but also

the probabilities that each pixel presents to belong to the background and the
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Algorithm 4 Voxelization of the IH

Require: : Silhouettes: S(c), Projection Test: PT (voxel, silhouette),

1: for all voxel do

2: VH(voxel) ← true

3: for all cameras do

4: if PT (voxel, S(c)) is false then

5: VH(voxel) ← false

6: end if

7: end for

8: end for

9: Project the VH to all the camera views: VHproj(c)

10: for all voxel do

11: IH(voxel) ← false

12: for all cameras so that PT(voxel,S(c)) is true do

13: if PT (voxel, S(c)) 6= PT (voxel, VHproj(c)) then

14: IH(voxel) ← true

15: end if

16: end for

17: end for

foreground classes, in the case of having a 2D probabilistic framework. In [FB05]

the authors propose a reference of the multi-view probability fusion.

In the paper ([FB05]), the authors use a space occupancy grid as a probabilistic

3D representation of scene contents, while considering each camera as a statistical

occupancy sensor. The goal of this framework is to infer the voxel occupancy

V in the position S3D = XY Z: VS3D
, given the set of input images from the

camera sensors I ′, the background models defined for each camera B, the foreground

silhouettes for each sensor F and the prior knowledge introduced to the model τ .

Where VS3D
∈ {fg,bg} fg ≡ 1 and bg ≡ 0 (free or occupied) respectively.

Modeling the relationships between the variables requires computing the joint

probability of these variables, P (VS3D
, I ′, B, F, τ) based on the statistical depen-

dencies expressed in Figure 3.13:

P (VS3D
, I ′, B, F, τ) = P (τ)P (B|τ)P (VS3D

|τ)P (F |VS3D
, τ)P (I ′|F,B, τ), (3.44)

Each component is defined as:

• P (τ), P (B|τ) are the prior probabilities of the parameter and of background

image parameters. These terms are set to uniform distribution since there is

not a priori reason to favor any parameter values.
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Figure 3.13: Dependency graph of the variables of the system. I′: observed images. B: back-

ground models. F foreground silhouettes. τ prior knowledge introduced to the model. VS3D
:

occupancy at voxel S3D.

• P (VS3D
|τ) is the prior likelihood for occupancy. This term is also set to

uniform distribution, since the authors choose not to favor any voxel location.

• P (F |VS3D
, τ) is the silhouette likelihood term. The dependencies considered

reflect that voxel occupancy in the scene explains object detection in images.

• P (I ′|F,B, τ) is the image likelihood term. Image colors are conditioned by

object detections in images, and the knowledge of the background color model.

Equation 3.44 can be developed considering a pixel-wise background model based

on a Gaussian distribution in the c = RGB domain, and a uniformly distributed

foreground model with no further assumptions of objects of interests. Once the joint

probability distribution has been fully determined, it is possible to use the Bayes’

rule to infer the probability distributions of the variable VS3D
given the value of

Known variables I ′, B, τ and marginalizing over unknown variable F :

P (VS3D
|I ′, B, τ) =

∑
F P (VS3D

, I ′, B, F, τ)∑
VS3D

,F P (VS3D
, I ′, B, F, τ)

=

=

∏
v,i

∑
Fv

i
P (F vi |VS3D

, τ)P (Ivi |F vi , Bvi τ)∑
VS3D

∏
v,i

∑
Fv

i
P (F vi |VS3D

, τ)P (Ivi |F vi , Bvi τ)
,

(3.45)

where v stands for the view under analysis and i is the index of pixel under

analysis.

The final expression (Equation 3.45) relates the voxel occupancy to all the pixel

observations. In practice, the inference product can then be computed over k × k
window of pixels centered at the image projection of voxel S3D in each image.

3.3 Conclusions

In this chapter we have reviewed the main techniques of the state of the art that use

the foreground segmentation process as a central step to achieve correct application

results. The references have been presented according to the acquisition setup
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utilized to record the scene under analysis as well as the application under study.

As we have seen, the strategy to follow to segment the foreground objects from

the scene, is not unique, and must be designed according to the characteristics

of the scenario, in order to avoid the influence of shadows, highlights and the so

common camouflage problem between foreground and background. Moreover, we

have also observed that redundancy between cameras can be applied to foreground

segmentation in multi-view scenarios, and can be useful to reduce the detection

errors that appear in some views.

In the following chapters we will explain the proposals developed in this thesis,

referencing this chapter when commenting some aspects and strategies of the state

of the art.



Part I

Proposals.

Foreground Segmentation in

2D Planar Sequences
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When considering a sequence where the foreground objects are close to the cam-

era sensor so that the color and shape of the object is clear enough to characterize

it along the frames, we can design a foreground segmentation framework which ex-

ploits all this information by means of probabilistic modeling. Hence, according to

the characteristics of the sequence, a Bayesian classification process can be defined

if we are able to correctly model the foreground (fg) and background (bg) data of

the sequence in order to establish a probabilistic processing.

As we have seen in the previous chapters, when we design a foreground segmen-

tation system for a certain sequence under study, the characteristics of the scenario

will determine the strategy to follow in order to reduce the false positive and false

negative detections. In this line, previous work has shown us that pixel-wise models

present more accuracy to model static regions, like the background in static cameras

sequences, since they allow us to represent them at pixel resolution. On the other

hand are the region-based models, which although modeling the regions with less

precision than the pixel-wise models, are more appropriate for modeling non-static

regions, since this kind of models adapts better to the motion changes that appear,

for example, in foreground objects, or in moving background scenarios.

Therefore, these principles are the bases of the proposals that we are going to

explain in this part of the dissertation, devoted to introduce two foreground seg-

mentation techniques suitable for 2-dimensional planar scenarios. We first explain

the foreground segmentation system that we have designed for static camera se-

quences, which combines in a Bayesian framework pixel-wise background modeling

with region-based foreground and shadow models. Next, we present a foreground

segmentation technique appropriate for moving camera sequences, which applies the

bases of the first approach to achieve a Bayesian classification between foreground

and background region-based models, in order to obtain a robust foreground detec-

tion system for these complicated scenarios.
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Chapter 4

Bayesian Foreground

Segmentation in Static

Sequences

4.1 Introduction

In this chapter we present a foreground segmentation system for monocular static

camera sequences and indoor scenarios that achieves correct foreground segmen-

tation results also in those complicated scenes where foreground and background

present similar color. In this system, we propose to combine pixel-wise probabilis-

tic modeling for the background class, with region-based foreground and shadow

probabilistic models, thus taking the most of each one to improve the foreground

segmentation results.

As we have seen in previous sections, pixel-wise modeling gives a precise rep-

resentation of the static background but it cannot be used to characterize moving

regions like the ones belonging to the foreground or shadow classes, since both are

constantly changing and moving along the scene and a probabilistic model at a

pixel-wise level is difficult to build and update. For them, region-based models are

the best option to achieve its probabilistic representation because they allow us to

obtain a correct adaptation to the shapes and new regions that can appear along

the sequence, while maintaining the performance of the probabilistic modeling.

Knowing this, this approach has to deal with two main aspects:

• Combine the region-based foreground and shadow models with the pixel-wise

background model in order to achieve a correct classification of the pixels of
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the image in foreground, background and shadow classes.

• Since we are going to use region-based probabilistic models to characterize

the foreground objects and their casts shadow regions, we need a logic system

to correctly deal with the foreground objects and their associated models like,

for example: accept a foreground detection as a foreground object, create the

foreground and shadow models of the object, remove objects that disappear

from the scene, etc.

The foreground segmentation system presented in this chapter solves both as-

pects by following a three steps work-flow: An initial foreground detection performs

a simple segmentation via Gaussian pixel color modeling and shadows removal.

Next, a tracking step uses the foreground segmentation for identifying the objects,

and tracks them using a modified Mean Shift algorithm [GPL08, CR03]. At the end,

an enhanced foreground segmentation step is formulated into a Bayesian Maximum

a Posteriori - Markov Random Fields (MAP-MRF) framework, which combines the

parametric models defined for each one of the classes.

This proposal is explained in detail in the following sections.

4.1.1 State of the Art

A brief overview of foreground segmentation techniques devoted to planar static

scenarios is presented in this section, with the objective to extend the survey pre-

sented in Section 3.1 and establish the context for the development presented in

this Chapter.

4.1.1.1 Techniques Based on Background Modeling

Over the recent years there have been extensive research activities in proposing new

ideas, solutions and systems for robust object segmentation and tracking to address

the foreground segmentation in indoor static sequences. Most of them adopt the

background subtraction as a common approach for detecting foreground moving

pixels, whereby the background scene structures are modeled pixel-wise by various

statistically-based learning techniques on features such as intensities, colours, edges,

textures, etc. A pixel is classified as background when its value is not correctly mod-

eled by the background model, in the so called exception to background analysis.

The models employed include mono-modal Gaussians ([JDWR00]), Gaussian Mix-

ture Model (GMM) ([SG00]), nonparametric Kernel density estimation ([EHD00]),

or simply temporal median filtering ([ZA01, LV02]).
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Figure 4.1: Work Flow. Bg stands for background, Fg for foreground and Sh for shadow.

Optionally, shadow removal techniques can be incorporated in the background

subtraction/modeling step to improve the segmentation removing the false positives

detections that illumination problems produce. [PMTC03] have presented an in-

depth survey of these algorithms while [XLP05] propose the hybrid shadow removal

method that we have used as the initial step for shadow modeling.

After foreground detection, a connected component analysis (CCA) is usually

performed in order to cluster and label the foreground pixels into meaningful ob-

ject blobs, from which some inherent appearance and motion features can be ex-

tracted. Finally, there is a blob-based tracking process aiming to find persistent blob

correspondences between consecutive frames. Several authors employ this kind of

solution ([PT03, GVPG03, CHB+05, XLL04]).

The main problem of these algorithms is that false negatives appear when fore-

ground and background present color similarities. False positives can also be ob-

served when an external agent modifies the configuration of the scene (illumination

changes, shadow effects or spatial alterations of the background objects configura-

tion). The trade-off between false positive and false negative detections, makes it

difficult to solve this problem using only the techniques explained above. Further-

more, none of these proposals uses feedback between the foreground detection and

the tracking process, to improve the updating of the models in order to avoid the

propagation of wrong detections along the sequence.

4.1.1.2 Techniques Based on Foreground Modeling

Background subtraction techniques only require the construction of a background

model. However, if a foreground model is available, a Bayesian approach for fore-

ground segmentation and tracking can be performed with the objective to improve

the segmentation of the foreground object. In order to create the models, an ini-

tial segmentation is usually performed using an exception to background method,

and once there is sufficient evidence that the foreground entities are in the scene,

foreground models are created.



60 Bayesian Foreground Segmentation in Static Sequences

Several foreground models have been proposed in the past for different purposes

including the foreground segmentation task ([KS00a, MD03, LHGT04]), or object

and person trackers where the foreground has been previously segmented ([MRG99,

EHD00]). As with background models, foreground models are Gaussian-based in

most of the cases. Different alternatives are: single-Gaussians ([WADP02]), GMM

([MRG99, KS00a]), and nonparametric models with Gaussian kernels ([MD03, SS05]).

In [KS00a] people are first segmented with the exception to background approach

and tracked by segmenting them into classes of similar color (initialized by Expec-

tation Maximization (EM) ([DLR+77]) ). Each pixel is assigned in the following

frames to the class that maximizes the probability of the pixel to belong to that

class (including a class for the background). Means and variances of the classes

are updated after classification. However, the partition of the object in regions

modeled by independent Gaussians is too rigid and prone to errors. The work in

[MRG99] uses a GMM to model the color distribution of the objects to track and

EM to update its distribution. Since the objective is to track a single object, a

background model is not used and thus a complete segmentation is not achieved.

In the proposal presented in Section 3.1.2.3 ([YZC+07]), a GMM for modeling both

the foreground and background, in spatial and color domains, is used. The models

are first initialized using a reference frame and the background and foreground mod-

els are adjusted using the EM algorithm. This kind of algorithms, with iterative

processes, present a high computational cost that doesn’t allow a real time sequence

analysis. Moreover, in case of a complex background, and even using a GMM with

a very high number of Gaussians, the foreground can occupy background regions

of similar color which become close to its position as the object moves along the

scene.

In the literature, none of these systems propose to combine this approach with

tracking methods, because it is assumed that foreground modeling allows a good

segmentation and tracking for itself. However, as it has been said above, there is

certain difficulty to correctly maintain a good foreground model in some scenarios

where foreground and background present color similarities.

Moreover, a specific model for the shadow of each object can be constructed

using the tracking information and an initial shadow detection. This allows to

make the foreground/background segmentation within a Bayesian framework, using

a background model and specific foreground and shadow models for each object and

its shadow.

The segmentation system that we propose, combining foreground detection with

an object tracking algorithm, follows the work flow of Figure 4.1. It consists of

three main blocks: Pixel-wise Foreground Segmentation, Objects Tracking, and

Foreground segmentation based on Spatial-Color models.
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4.1.2 Proposed Method

We propose a system that runs as a complex implementation of the simple concept

of surveillance: be aware for external changes, detect and track objects and refine

the object detection improving the knowledge about it and focusing the attention

in its region.

In this way, the goal of this system consists in taking the most of each block, using

the information available to facilitate the updating of the models and processes.

Hence, according to Figure 4.1 main blocks of the system are:

• Pixel-wise Foreground Segmentation: This initial step is used as a first

glance at the foreground objects that appear in the scene. It also segments

shadow pixels to create a shadow model for each detected object.

• Objects Tracking: It is used to detect and track those objects that appear

in the scene, matching the blobs detected in the first segmentation with the

objects that are being tracked. It assigns the detected blobs to objects with a

label that characterizes them along the time and brings us the valuable spatial

information about the position and size of the object in the scene. A Region

Of Interest (ROI) is obtained for each object to track, and it is used for ap-

propriate background and foreground models updating and for associating,

in the next step, each foreground model with its corresponding object. The

method proposed uses a classical Mean-Shift tracking method with the follow-

ing improvements: several connected components association to each object

(it avoids false positive detections when an object is segmented in several

connected components), detection and solving of objects occlusion (analyzing

the connected components detected in each frame), focus the position estima-

tion in those regions that belong to the foreground and incorporation to the

background of all the foreground detections, not belonging to the objects in

analysis, which appear outside the defined ROI.

• Foreground segmentation based on Spatial-Color model: Here a final

enhanced foreground segmentation of each object is obtained, combining in a

Bayesian framework spatial-color models of the foreground and shadows re-

gions with the pixel-wise color model of the background. The foreground and

shadow models are obtained using preliminary shadows and foreground masks,

the position of each object, and the background model, all obtained in the

previous two steps. The novelty of this approach resides in the combination

of a pixel-wise background model with foreground and shadow spatial models

within a MAP-MRF framework. We associate a spatial-color GMM fore-

ground and shadow models to each object that is being tracked in the scene,

assuming that the shadow effect that each object produces is an attribute
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of the object that produces the background color change. Novel updating

techniques for spatial-color GMM are also proposed in the color and spatial

domains, for correct evolution of the models along the scene, thus achieving

a precise final foreground segmentation.

These processes will be explained in the following sections:

Section 4.2 describes the initial pixel-wise foreground segmentation via color

Gaussian modeling. The Modified Mean-Shift based tracking system is explained

in Section 4.3. Section 4.4 is devoted to the enhanced foreground segmentation

proposed method, focusing on the foreground, shadow and background probabilistic

models and the final pixel classification. Finally, some results and conclusions are

presented in Section 4.5 and Section 4.6 respectively.

4.2 Initial Pixel-Wise Foreground Segmentation

As we can observe in Figure 4.1, an initial foreground segmentation is performed in

the first block. The aim of this initial segmentation is to obtain an initial estimation

of the foreground and shadow regions and a robust background model that is going

to be used for classification in the last foreground segmentation block of the system.

This initial foreground constitutes the input of the tracking system, and will be used

to initialize the foreground model for each object. The shadow pixel candidates will

also be used for creating or updating the shadow model of each object.

4.2.1 Background Model

For static backgrounds applications, a precise pixel model can be learned. Although

more complex models for each pixel could be used, a Gaussian distribution in the

RGB color space has proved to work efficiently in most of the considered scenarios

[WADP02].

P (ci|bg) =
1

(2π)3/2|Σc,i|1/2
exp

[
−1

2
(ci − µc,i)TΣ−1

c,i (ci − µc,i)
]
, (4.1)

where ci ∈ R3 is the i-th input pixel’s value (i = 1, ..., N) in the c = RGB domain,

µc,i ∈ R3 is the pixel mean value, Σc,i ∈ R3×3 is the covariance matrix and |Σc,i| is

its determinant. We first initialize each background Gaussian (µc,i and Σc,i) with

initial training values learned from a set of frames with no foreground. To simplify

the model, we assume non-correlated components (see Appendix A.2).

As we can observe in Figure 4.1, this model is updated at each frame with the

segmentation mask obtained after the final pixel classification. Background pixels
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(a) (b) (c) (d)

Figure 4.2: From left to right. a) Original image. b) Probabilistic image with P (ci|bg). Red

color denotes high probability, blue color denotes low probability. c) Shadow mask obtained via

Hybrid Shadow removal method [XLP05]. d) Foreground mask obtained via pixel-wise method

[XLP05]

are updated in order to adapt the model to progressive image variations, according

to the following equations:

µi,j,t = (1− ρ)µi,j,t−1 + ρci,j,t,

σ2
i,j,t = (1− ρ)σ2

i,j,t−1 + ρ(ci,j,t − µi,j,t)2.
(4.2)

Where j denotes the RGB color component, ρ is the update rate 0 ≤ ρ ≤ 1. The

resulting background model is used in the next step to obtain the foreground and

shadow candidates, and it is also used in the final Bayesian classification step.

Figure 4.2(b) depicts the background probabilistic image of a certain frame of

a smart room sequence. Pixels with high probability are depicted in red colors

and those with low probabilities with blue colors. We can realize that the region

occupied by the foreground object presents a low probability of being background.

Regions with shadows present also low probability and are those that produce false

foreground detections. Regions with foreground-background color similarity present

high background probability, and are those that produce false background detec-

tions.

4.2.2 Selection of Foreground and Shadow Candidates

In order to obtain probabilistic shadow and foreground models, we look for a group

of pixel candidates to initialize and update each one of the models before the fi-

nal pixel classification. Foreground candidates are used to initialize the foreground

model (the updating is done with the final pixel classification), and shadow candi-

dates are used to initialize and also update the shadow model.

The pixel-wise background model of the previous step is used to obtain the initial

group of foreground pixel candidates by means of exception to background analysis.

The si = XY ∈ R2 pixel spatial information, and the c = RGB color value ci ∈ R3

of these foreground candidates are used next to find the shadow candidates.
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Foreground pixel candidates through exception to background

A pixel is classified as foreground candidate if it doesn’t match the background

model. This classification is done according to the following equation ([WADP02]):

‖ci,j,t − µi,j,t‖2 > k2σ2
i,j,t, (4.3)

where ‖ · ‖ is the Euclidian distance, i stands for the pixel under analysis, j denotes

the RGB color component and k is the decision constant (usually fixed to 2.5).

Color based shadow candidates detection

A shadow is normally an area that is only partially irradiated or illuminated

because of the interception of radiation by an opaque object between the area and

the source of radiation. To assist the classification into foreground or shadow, the

Brightness Distortion (BD) and Color Distortion (CD) of each pixel are analyzed

according to the shadow removal method explained in the Section 3.1.3. Hence, a

set of thresholds on the Brightnes Distortion (BD) and Color Distortion (CD), as

defined in [XLP05] are applied. With this procedure we obtain an initial classifi-

cation of the pixels in foreground, background and shadow. The resulting shadows

and foreground masks are obtained with those pixels belonging to each class, re-

spectively. Figure 4.2(c) and 4.2(d) show examples of shadow segmentation mask

and foreground mask after shadow removal process.

4.3 Modified Mean-Shift Based Tracking System

This block of the system is in charge of managing the objects (detect and remove)

and obtaining certain ROIs for pixel-wise and spatial-color foreground segmentation

blocks:

• ROIanalysis to limit the next foreground segmentation into a specific region for

each object.

• ROIupdate for background model feedback.

To obtain these ROIs, we propose to use the tracking algorithm presented in

[GPL08]. This algorithm tracks the objects of the scene matching detected fore-

ground blobs and tracked objects using a modified Mean Shift tracking algorithm

([CR03]). The main modifications are the following: the foreground segmentation

from the previous block is used into the Mean Shift algorithm and the association

of several blobs to an object is allowed.

The necessary inputs for this system are the original image of the sequence

we are analyzing, and the foreground segmentation mask obtained in the previous
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block. This exception to background segmentation is suitable for this tracking sys-

tem, despite it presents a high number of false negatives when color similarities

between background and foreground appear. However, it allows a high speed seg-

mentation and reduces the false positives. This guarantees that the initialization

of the foreground model (explained in Section 4.4) will not model background or

shadow regions and that the ROIanalysis will be the minimum area needed to enclose

the object.

The main steps of this algorithm are:

Foreground objects detection. The foreground mask produced in the pixel-

wise foreground segmentation is filtered with a morphological area opening in order

to eliminate those connected components (denoted by CC) with an area smaller

than a given threshold. This threshold depends on the size of the objects we want

to detect. In order to label the connected components as objects, a correspondence

between the detected CCs at time t and the objects at time t−1 is needed. Hence, a

register for the objects (Θ = {θj,t}j=1,...,#objects) that maintains the updated infor-

mation for any detected Object (centroid position, size, color histogram and counter

of appearance and occlusion state) is used. Those CC that have not been associated

to any Objects, and have been tracked for a period of time previously defined, are

introduced in the corresponding registers as new Objects. Let us note that an object

might not be correctly detected by the simple exception to background algorithm

due to its similarity with the foreground (for instance, if the detected size is smaller

than the area threshold applied to the CC’s). However, the object can be recovered

in the successive frames if it moves into a different area of the scene, because the

detection of new objects is continuously applied at each frame.

Mean shift tracking of foreground Objects. The temporal correspondence

of the objects is performed using the adapted Mean Shift algorithm ([GPL08]).

This system proposes to restrict the information used by this algorithm to the

pixels belonging to the foreground. In this way, possible errors on the background

area are avoided. As a result of this algorithm we obtain an estimation for the

centroid of the object j at time t (θj,t), with the warranty that within the area of

θj,t at this position there are one or more CC.

The system also takes into account that in the foreground detection the objects

are often detected in more than one connected components, due for instance to the

similarity between the color of some parts of the object and the background that

breaks the connectivity of the foreground regions. Hence, this system associates

to an object all the foreground connected components that are included (totally

or partially) in a rectangle of the size of the object and centered in the Mean-

Shift position estimation. This prevents the appearance of new Objects due to

small errors in the foreground detection, which is common in connected components
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based tracking systems ([GVPG03]). The size, centroid position and histogram of

the Object θj,t is then updated in its corresponding register. If two or more objects

share the same connected components, we will enter an occlusion situation. In this

case, only the centroid position and the counter are updated, using the result of the

Mean Shift algorithm to estimate the position.

If an Object θj,t has no CC associated, a Lost Object counter will be increased.

When it reaches a given threshold , the Object θj,t is removed from the register.

After the tracking process the two Regions of Interest are created as input for

the other two blocks:

• ROIanalysis for the last segmentation block: If there is no occlusion in the

scene, this ROI is defined as all the pixels inside the bounding box of the

foreground objects. If there is occlusion, the tracking algorithm cannot ensure

the correct position of the bounding boxes of the occluded objects. To avoid

errors in these situations, this ROI will be the bounding box that contains the

different objects that take part in the occlusion.

• ROIupdate for background updating: It is the complementary of the ROIanalysis.

It is used to indicate background regions free of foreground objects in order

to update the background with all the progressive changes and foreground

detections that do not belong to the foreground objects.

4.4 Bayesian Foreground Segmentation Using Pixel-

Based Background Model and Region Based

Foreground and Shadows Models

This block of the system (identified as Region Fg segmentation in Figure 4.1) tries

to enhance the segmentation of each object that is being tracked. For this purpose,

we propose to follow the work-flow used in other works like [SS05] but with some

modifications added to reduce the computational cost, and remove the so common

false detections due to shadow effects.

That is, the classification is made in a Bayesian framework, introducing a prior

that contains neighborhood information. A graph cut is used to make the classifi-

cation in this context. For every frame It, the foreground, shadow and background

models are combined to achieve the segmentation. We propose to use the more

complete Gaussian Mixture Model in the joint color-space domain (SCGMM) for

the foreground regions ([SS05]), the Gaussian Model also in the color-space do-

main (SCGM) for the shadow regions, and to use the Gaussian pixel-wise color
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Figure 4.3: Spatial representation of foreground and shadow spatial models. In blue the fore-

ground SCGMM. In yellow, the shadow SCGM.

model (CGM), from the pixel-wise segmentation block, for background modeling,

which allows a very precise description of it and it is easy and computationally less

expensive to update.

We thus combine a pixel-wise background model with region based models. The

foreground and shadow models of each object are initialized when a new object is

detected and both models are updated based on the classification performed on the

current frame and in the ROIanalysis obtained from the tracking block. The Gaussian

model of every pixel assigned to background is updated recursively as it is explained

in Section 4.2. The updated models are then used for the classification of the

next frame It+1, which is performed by comparing the probabilities of foreground,

shadow and background of every pixel within the graph cut algorithm. Figure 4.3

shows a graphical representation of the foreground and shadow spatial models when

modeling a person (blue model) and the shadow projected to the ground (yellow

color).

4.4.1 Foreground Model

Once the tracking process detects a new object to track, a foreground model is

created and associated to it using the spatial and color information.

As commented before, since the foreground is constantly moving and changing,

an accurate model at a pixel level is difficult to build and update. For this reason, we

propose to use a Spatial Color Gaussian Mixture Model (SCGMM), as in [YZC+07],

because foreground objects are better characterized by color and position, and GMM

is a parametric model that describes accurately multi-modal probability density

functions. Thus, the foreground pixels are represented in a five dimensional space.

The feature vector for pixel i, zi ∈ R5, is a joint domain-range representation, where

the space of the image lattice is the domain, (XY ), and the color space, (RGB), is
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the range ([SS05]).

The likelihood of pixel i is then,

P (zi|fg) =

Kfg∑
k=1

ωkGfg(zi, µk, σk)

=

Kfg∑
k=1

ωk
1

(2π)5/2|Σk|1/2
exp

[
−1

2
(zi − µk)TΣ−1

k (zi − µk)

] (4.4)

where wk is the mixture coefficient, µk ∈ R5 and Σk ∈ R5×5 are, respectively, the

mean and covariance matrix of the k-th Gaussian distribution, |Σk| is the determi-

nant of matrix Σk. It is commonly assumed that the spatial and color components

of the SCGMM models are decoupled, i.e., the covariance matrix of each Gaussian

component takes the block diagonal form,

Σk =

(
Σk,s 0

0 Σk,c

)

where s and c stand for the spatial and color features respectively. With such

decomposition, each foreground Gaussian component has the following factorized

form:

Gfg(zi, µk, σk) = Gfg(si, µk,s,Σk,s) Gfg(ci, µk,c,Σk,c), (4.5)

where si ∈ R2 is the pixel’s spatial information and ci ∈ R3 is its color value.

4.4.1.1 Initialization

The initialization of the foreground model is done via Expectation Maximization

(EM) algorithm ([DLR+77]) in the overall five dimensional domain with the color-

spatial information obtained from all the pixels detected as foreground by the pixel-

wise foreground segmentation block, and located inside the object’s ROI obtained

from the tracking block. The number of Gaussians that will compound the model

should be slightly higher than the number of color-spatial regions of the object to

ensure that the object is correctly modeled with at least one Gaussian per region.

There are several manners to obtain this number of regions. In our case, we choose to

analyze the object’s RGB-histogram in the following way: Once the foreground and

background histograms are calculated, the number of bins used to define them are

examined to detect the N first bins with higher probability which gather together

the 70% of the color appearance probability. In each class, for each one of these

bins, a Gaussian will be added to the model.

In the next frames, after initialization, the object will be segmented via the

proposed Bayesian foreground segmentation analyzing only the ROIanalysis region

until its disappearance from the scene.
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Figure 4.4: Example of GMM initialization. From left to right: Input color frame, corresponding

mask of this frame, and the initial foreground SCGMM, where each ellipse corresponds to one

Gaussian of the foreground model, filled with the mean color that each one is modeling.

Figure 4.4 displays an example of the Gaussian’s initialization for a certain

frame. In this Figure, third image shows the representation of the foreground model,

where each ellipse is the spatial representation of one Gaussian of the model, and

each one is filled with the mean color that each it is modeling in the color c = RGB

domain. The axis of the ellipses are defined according to the eigenvalues of the

spatial covariance matrix (λ = λ1, λ2) as: axisi = 2
√
λi. This consideration will be

used in all the Gaussian’s spatial representations that will appear throughout this

Thesis.

4.4.1.2 Updating

While we assume a static background, the foreground objects usually perform a

displacement within the scene. In a normal situation, this displacement can be

accompanied by an object rotation, which could produce the appearance of new

color-spatial foreground regions belonging to the part of the object that was oc-

cluded to the camera until this moment. Thus, the spatial components of the

Gaussian Mixture and also, the color ones, need to be updated after the classifica-

tion in foreground, background or shadow of each frame.

The complete foreground updating in the spatial and color domains could lead

to False Positives error propagation if the foreground regions present similar colors

to the background and shadow ones.

Thus, we propose a two-steps updating for the foreground model. This updating

allows a correct spatial domain updating and a conditional color updating which

introduces new foreground color regions to the foreground model depending on the

degree of similarity between the foreground model and the background and shadow

ones. The two steps updating is as follows:

Spatial domain updating: the pixels classified as foreground form a mask that

is used for the updating. In this step, only the spatial components of the Gaussian

Mixture are updated. As it is proposed in [KS00a], we assign each foreground pixel
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(a)

(b)

Figure 4.5: Graphical representation of the Gaussian split criterion. a) shows the split in the

spatial domain where vmax is the eigenvector associated to the largest eigenvalue. b) depicts the

color updating; Gaussian Color updating on the left; on the right, color updating by means of the

creation of two Gaussians.

to the Gaussian k that maximizes:

P (k|zi, fg) =
ωkGfg(zi, µk, σk)∑
k ωkGfg(zi, µk, σk)

(4.6)

the denominator is the same for all the classes and can be disregarded.

Once each pixel has been assigned to a Gaussian, the spatial mean and covariance

matrix of each Gaussian are updated with the spatial mean and variances of the

region that it is modeling.

Also, in order to achieve a better adaptation of the model into the foreground

object shape, we propose a Gaussian split criterion according to the spatial size

of the Gaussian. The Gaussians that accomplish the following expression are split

into two smaller Gaussians in the direction of the eigenvector associated to the

largest eigenvalue, λmax: λmax > χ, where χ is a size threshold. In our tests,

χ = max(objectheight, objectwidth)/4 yields correct results.

Figure 4.5(a) displays a graphical example of the spatial updating.

Color domain updating: once the spatial components of the Gaussians have

been updated, we update the foreground model according to the color domain. For

each foreground Gaussian, we check if the data that it is modeling (according to

the pixels assigned to this Gaussian) follows a Gaussian distribution. The multidi-

mensional Kolmogorov-Smirnov test ([FF87]) can be used for this aim. Otherwise,

simple tests based on distances analogous to (Equation 4.3) can be applied to the

pixels assigned to a Gaussian in order to compute the percentage of these pixels

that are well described by the Gaussian.
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• If the data follows a Gaussian distribution, only one Gaussian is needed to

model these pixels. In this situation, we first analyze whether a color updating

is needed, comparing the Gaussian distribution in analysis with the Gaussian

distribution that better models the data. This comparison can be made via

Kullback-Leibler divergence ([Kul87]) or with simple tests that compare, each

component c = RGB of the mean values (µ1 and µ2) of the two distributions

in relation with their variances (σ2
1 and σ2

2),

‖µ1,c − µ2,c‖2 < min(k2σ2
1,c, k

2σ2
2,c), (4.7)

where k is a decision constant (we use k = 2.5). Index 1 and index 2 denote the

Gaussian distributions that we want to compare. In this case, index 1 denotes

the Gaussian distribution of the foreground model and index 2 denotes the

Gaussian distribution that better models the data. If the Gaussian in analysis

models correctly the data, no updating is necessary. Otherwise, the color

domain parameters of the Gaussian are replaced by the data ones.

• If not, it means that more than one Gaussian is needed to model these pixels.

Another Gaussian distribution is created, and we use the EM algorithm to

maximize the likelihood of the data in the spatial and color domains.

Figure 4.5(b) displays a graphical example of both color updating possibilities.

In order to increase the robustness of the system, color updating of the fore-

ground model is only performed if the Gaussian of the foreground model is different

enough in the color domain from the Gaussians of the background and shadow mod-

els that correspond to the same spatial positions. Again, we can apply Kullback-

Leibler divergence or compare the mean value of the distributions. For instance, we

consider that the foreground model can be updated if at least 70% of the pixels that

the new Gaussian represents have a background model that does not accomplish

(4.7).

Figure 4.6 displays an example of nine updating iterations starting from the

initialization presented on Figure 4.4. As we can see, if the model is correctly

initialized, the spatial and color updating can split the Gaussians to obtain a correct

modeling of the foreground object that we want to segment. If we don’t have any

spatial restriction defined by χ, the spatial updating can obtain a perfect modeling

of the object by using an elevated number of Gaussians, which is, in fact non

practical, due to the computational burden. Realize that at each iteration we are

doubling the number of Gaussians, increasing the likelihood of the overall model as

well as the computational cost of this processing. Figure 4.7 displays the likelihood

evolution associated to the foreground model at each iteration. In these graphs,

we can observe how doubling the number of the Gaussians of the model, the Log-



72 Bayesian Foreground Segmentation in Static Sequences

Figure 4.6: Example of foreground model updating. From left to right and from up to down,

foreground model updating iterations over the same frame presented in Figure 4.4. Each ellipse

corresponds to the spatial representation of the Gaussians of the model, colored with the mean

color that each one is modeling. The Gaussians adapt correctly to the real shape of the object

while increasing the number of Gaussians of the model at each iteration.

likelihood presents a linear improvement, which means an exponential evolution of

the foreground likelihood when doubling the number of Gaussians of the model.

4.4.2 Shadow Model

We propose a new system to remove the so common false positive detections that

shadow effects generate in foreground segmentation. As we have said in the intro-

duction, most segmentation methods that use foreground modeling do not take into

account the shadow effect despite it is a common source of errors. Our experiments

confirm that foreground modeling is not enough to avoid shadow effects in some

scenarios. We can observe it in Figure 4.8.

The fact that we consider a Bayesian framework between foreground and back-

ground models, like [SS05] leads us to incorporate a probabilistic model of the

shadow within the same framework. Hence, the use of a shadow model for each de-

tected object is proposed with the aim of including probabilistic information about

the kind of shadow effect that each object is generating. Therefore, we propose to

associate to each object a shadow model, together with the foreground model. Since
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Figure 4.7: Log likelihood graphs of the foreground model for each iteration displayed in Figure

4.6 with an image size of 1624x1224 pixels. a) depicts the color+spatial likelihood, b) and c) show

the spatial and color likelihood respectively.

the shadows are constantly moving and changing like the foreground, and in most

of the cases they can be described with only one spatial-color region, we propose to

use a Spatial Color Gaussian Model (SCGM), which presents similar benefits than

a more complex SCGMM (as verified in our tests), but significantly reducing the

computational cost.

The initialization of the shadow model is done analyzing the shadow pixels

(obtained from the pixel-wise segmentation block) that appear inside the ROI of

the object, obtaining its color-spatial mean and covariance matrix, and considering,

as in the foreground model, that space and color dimensions are decoupled.

For the next frames, spatial and color mean and variance are updated with the

detected shadow pixels. Mean is updated according to the following causal low-pass

filter equation:

µt = α
∑
i

Zsh,i + (1− α)µt−1, (4.8)
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(a) (b)

Figure 4.8: Example of foreground segmentation with false positive detections due to shadow

effects. a) Original image. b) Foreground segmentation using SCGMM fg model and pixel-wise

Gaussian bg model.

where α is a small time constant (we use a value of 0.2) and Zsh denotes all

pixels detected as shadow in the shadow detection step. Covariance matrixes Σs, Σc

are recalculated taking into account the new mean µt and the new pixels classified

as shadow.

As foreground regions normally overlap the shadow ones, these shadow regions

usually present different non-Gaussian real shapes along the scene in analysis.

Hence, the shadow Gaussian model can reach a high probability in those pixels

located close to the spatial mean with similar color to the shadow, despite they

could belong to the foreground.

To adapt the Gaussian spatial modeling to the real shadow area and improve the

shadow detection in those scenes where foreground and shadow have similar color,

the dependence between color and spatial domains is used via Bayes formulation.

Thus, we achieve a better representation of the shadow shape and avoid errors in

the pixels classification. Therefore, we define the likelihood of pixel i given shadow

as:

P (zi|sh) = P (xi|ci, sh) · P (ci|sh)

' ϕ(xi, ci, sh) Gsh,s ·Gsh,c,
(4.9)

where Gsh,s ≡ Gsh(xi, µs,Σs), Gsh,c ≡ Gsh(vi, µc,Σc) and ϕ(xi, ci, sh) gathers the

dependence between spatial and color domains:

ϕ =

{
0 < η < 1 if Gsh,c < Gsh,s

γ otherwise.
(4.10)

In this way, we penalize the shadow model in all those pixels where Gsh,c < Gsh,s,

i.e., we penalize the likelihood of those pixels that are closer, in the spatial sense

than in the color sense, to the shadow model. The scale factor η satisfies: 0 < η < 1

(in our experiments η = 0.2 yields correct results). Also, to maintain the p.d.f.

property
∑
i∈Ωd

P (xi|ci, sh) = 1, where Ωd denotes the discrete image domain, an
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(a)

(b)

Figure 4.9: Shadow spatial models reducing the probability in foreground regions.

increase of the probability of the rest of the pixels is proposed. Hence, a likelihood

scale factor γ is used in the shadow group of pixels that fulfill Gsh,c ≥ Gsh,s:

γ =
1−

∑
K ηP (xi|sh)∑

M P (xi|sh)

=
1−

∑
K ηGsh,s∑

M Gsh,s
,

(4.11)

where K is the set of pixels index where Gsh,c < Gsh,s and M is the set of re-

maining pixels. As we can observe in Figure 4.9, this likelihood adapts better the

shadow model to the shadow region, reducing the spatial probability in those pixels

belonging to the foreground we want to segment.

4.4.3 Background Model

Since we want to combine the range background model with the joint range-domain

foreground model, we need to extend the pixel-based model (Equation 4.1), ob-

tained from the first block of the system, to a five dimensional model by using a

SCGMM, analogously to the foreground model. For that, we use a mixture of N five

dimensional Gaussians, one representing each pixel in the image and thus having

equal mixture proportions,

P (zi|bg) =
N∑
k=1

1

N
Gbg(zi, µk,Σk) (4.12)

where

Gbg(zi, µk,Σk) = δ(xi − µk,s)P (ci|bg).
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Figure 4.10: Spatial color pixel probabilities. From right to left: Original frame. In red back-

ground probability. Foreground probabilities are represented in cyan color. Yellow shows shadow

probabilities.

Thus, we are using N Gaussians, each one centered (in space) at each pixel position

with a zero spatial variance. This is sufficient for indoor scenarios with a static

camera, although a small spatial variance can be used in order to allow for small

outdoor background motions or camera shaking.

4.4.4 Classification

Once the foreground, shadow and background models have been computed, at frame

t, the labeling can be done, assuming that we have some knowledge of foreground,

shadow and background prior probabilities, P (fg), P (shadow) and P (bg) respec-

tively, using a Maximum A Posteriori (MAP) decision. The priors can be approxi-

mated by using the foreground, background and shadow areas, computed as number

of pixels, in the previous frame, t− 1,

P (fg) =
Areafg|t−1

N
; P (bg) =

Areabg|t−1

N
;

P (sh) =
Areash|t−1

N
.

Figure 4.10 shows a graphical example of final pixel probability for each one of the

pixels of the image. As it can be seen, having a model for background, foreground

and shadow classes, pixels can be correctly modeled.

A pixel i may be assigned to the class l ∈ {foreground, background, shadow}
that maximizes P (li|zi) ∝ P (zi|li)P (li) (since P (zi) is the same for all classes and

thus can be disregarded).

To simplify the classification, and assuming that shadow and background pixels

will be treated in the same way for the final segmentation mask, we combine shadow

results into the background ones according to the following criterion:

P (bg|zi) = max(P (bg|zi), P (sh|zi)) (4.13)

Analogously to [SS05, YZC+07], we choose to additionally consider the spatial

context when taking the segmentation decisions, instead of making an individual

classification of the pixels. We consider for this aim a MAP-MRF framework in
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order to take into account neighborhood information defining a prior P (l) with two

terms: the class prior for each one of the pixels P (li) and the regularization term

that is computed using the neighborhood information. Then, if we denote by l

the labeling of all the pixels of the image: l = {l1, l2, ..., lN}, and by Nbi the four

connected neighborhood of pixel i we have:

P (l|z) ∝ P (z|l)P (l)

=
N∏
i=1

P (zi|li) ·
N∏
i=1

P (li) · exp

 N∑
i=1

∑
j∈Nbi

λ(lilj + (1− li)(1− lj))


=

(
N∏
i=1

P (zi|li) P (li)

)
· exp

 N∑
i=1

∑
j∈Nbi

λ(lilj + (1− li)(1− lj))

 ,

(4.14)

Taking logarithms in the above expression leads to a standard form of the energy

function that is solved for global optimum using a standard graph-cut algorithm

([BVZ01]). (See Appendix B for more information about energy minimization).

4.5 Results

We performed both qualitative and quantitative evaluation of our system. Quanti-

tative results are obtained analyzing the MUHAVI public Data Base ([Vo09]), which

is compound by a set of twelve sequences where one person performs some actions

(run, punch and kick) inside a smart room. The ground truth of each frame of the

sequences is available by means of manual segmentation, and it is used in order to

make the numerical evaluation. Qualitative results are obtained analyzing another

two different smart room settings in Figure 4.11 and Figure 4.13 to show a wide

range of possible scenarios. We compared the proposed method to three state of

the art pixel based background segmentation methods:

• The parametric Running Gaussian Average method ([WADP02]) (RGA) that

has proved to work efficiently in controlled indoor environments like smart

rooms.

• The combination of RGA method with the shadow removal method ([XLP05])

(RGA + sh.rem.), which shows an improvement of the RGA method, using

shadow removal techniques proposed in [HHD99] complemented with a mor-

phological analysis.

• The nonparametric background subtraction method Kernel Density Estima-

tion ([EHD00]) (KDE), which is also a well known and widely used foreground

segmentation technique.
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(a) Sequence 1 (b) Sequence 2

Figure 4.11: Qualitative results. Rows, from top to bottom: original sequence, pixel-based fg

detection ([XLL04]), region based fg detection ([YZC+07]) (green ellipses represent the spatial

domain of the Gaussians belonging to the bg model. Red ellipses are their counterpart in the fg

model), our results (red ellipses represent the Spatial fg model, white ellipse represents the Spatial

shadow model).

The technique proposed in [YZC+07] has been considered only in qualitative

results, because it is suitable for scenes where the object remains more static than

in the evaluation sequences. In this comparison, a complete analysis of our system is

performed testing it without shadow removal (Bayes.), and with the shadow removal

technique presented in this section (Bayes.+sh.rem.). In this way, we will be able to

see the positive effect of including the shadow model into the Bayesian framework.

In Table 4.1 quantitative results of MUHAVI database can be observed. The

metrics used in the evaluation are: Precision (P ), Recall (R) and fmeasure metrics,

formulated as follows:

P =
TP

TP + FP
; R =

TP

TP + FN
;

fmeasure =
2RP

R+ P
.

where TP, FP and FN are TruePositive, FalsePositive and FalseNegative

pixels detected in the evaluation: frame, sequence or set of sequences.

As it can be observed in Table 4.1, the basic Running Gaussian Average and Ker-

nel Density Estimation methods are those that achieve the lowest fmeasure, in part

due to the shadow effects and the vulnerability in front of foreground-background

color similarities. When RGA method is combined with an efficient Shadow re-

moval system, foreground segmentation quality improves in a wide range reaching

better precision and recall rates that allow an fmeasure of 0.82, but problems for
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Figure 4.12: Precision vs Recall Graph.

background-foreground color similarities still remain. Our Bayesian+shadow re-

moval system improves all these rates achieving an fmeasure of 0.90 solving segmen-

tation problems that shadow effects and foreground-background color similarities

produce. Bayesian system shows the results of our method without using the shadow

removal. As it can be observed, the proposed shadow removal system achieves a

Precision improvement of 8% that denotes how FP detections are reduced thanks

to the SCGM shadow modeling method proposed. Only a Recall decrease of 3%

is obtained because FN detections increase due to the shadow removal algorithm.

The results improvement that the Markov Random Field framework adds to the

overall proposal can be observed by comparing the Bayesian+shadow removal col-

umn with the Bayesian+shadow removal no MRF column. In this column, we show

the results obtained by our proposal using a simple P (fg|zi), P (bg|zi) and P (sh|zi)
pixel-wise comparison instead of the MRF framework. As it can be observed, using

the MRF classification, the system presents an fmeasure improvement of 5%, an 8%

in precision and a 1% in recall. Table 4.1 also shows the fmeasure increase percentage

(∆% fmeasure) of each method with respect to the RGA segmentation.

In Figure 4.12 we can observe a graphical Precision-Recall comparison between

all the methods tested in this evaluation where we can appreciate that our system

(Bayesian+shadow removal) is the best option according to precision-recall ratio.

Table 4.2 shows the fmeasure calculated for each one of the sequences. It is important

to highlight that the Bayesian method and the Bayesian+Shadow removal method

present similar values in some scenes. This occurs in those scenes without shadow

effects.

In Figures 4.11 and 4.13, a qualitative comparison can be observed. Smart-

room sequences not belonging to the MUHAVI data base, which performed poorly
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Figure 4.13: Qualitative results. Rows, from top to bottom: original sequence, pixel-based fg

detection proposed in [XLL04], our results.

using pixel-based methods ([WADP02, SG00]) have been selected. In particular,

two sequences are shown in this paper where the colors of the foreground objects

are in the same range than a part of the background. This generates many misses

in the foreground detection when only the background model is used.

Results can improve using a region based model ([YZC+07]). However, a high

computational load is required and some errors still appear. As it can be observed,

in the results of our system the segmentation is more robust, reducing the false

positive detections thanks to the proposed updating of the background model, and

also the false negatives are reduced thanks to the use of the foreground and shadow

spatial-color modeling. In the results some ellipses can be seen: the colored ones

correspond to the spatial domain of the GMM foreground model, and the white

one corresponds to the spatial domain of the Gaussian Shadow model (that appears

when shadows are present).

In Figure 4.11, we can see comparison results in two different smart room scenar-

ios where the problem of color similarity between fg and bg is present. In this figure,

our method is compared with a pixel-wise method ([XLL04]) and a region-based

method proposed in [YZC+07].

Figure 4.13 shows a sequence result where two people interact inside a smart

room. As well as the problem of color similarity, some false detections appear due

to the interaction with background objects and the dynamic background regions

like the one that is created by the TV screen.

In Figure 4.14, we can observe the segmentation of one person. The segmentation

obtained by our method (second row, second column), presents less false positive

and false negative detections than the segmentation obtained by using the pixel-

wise method proposed in [XLL04] (first row, second column), thanks to the correct
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Figure 4.14: Qualitative results. From top to bottom and from left to right: original sequence,

pixel-based fg detection ([XLL04]), foreground and shadow models (Gaussians are filled with the

mean RGB value that are modeling), shadows detected by [XLL04], our segmentation results with

the foreground and shadow models (fg Gaussians in red, sh Gaussian in white), our segmentation

showing foreground pixels with original colors.

probabilistic modeling achieved by foreground and shadow models (depicted in the

third column).

Figure 4.15, depicts one example of the MUHAVI data base results, where a

comparison with the method proposed by [XLL04] can be observed. Thanks to

the Bayesian approach between shadow, foreground and background models, our

method achieves a correct shadow removal avoiding most false positive and false

negative foreground detection that other methods present. Finally, Figure 4.14

shows a different smart-room scenario.

4.5.1 Computational Cost

There are two main processes that spend almost all the amount of time devoted

to the foreground segmentation: First, the evaluation of each Gaussian of the fore-

ground model over the pixels of the image, and second, the updating process to

adapt the model to the changes that appear in the object. Hence, the computa-

tional cost of the overall system depends on the size of the image that we want to

analyze, and the number of Gaussians utilized to model the foreground object. As

we have seen, if we increase the number of Gaussians of the foreground model, we

achieve a better characterization of the object, but the computational cost will be

also increased. Therefore, there is a trade-off between the processing time, the size

of the images and the number of Gaussians of the foreground model.

Figure 4.16, Figure 4.17 and Figure 4.18 display some graphs that show how the
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Figure 4.15: Qualitative results. Rows, from top to bottom are: original frames, foreground

segmentation obtained with [XLL04], foreground segmentation obtained with our method. Note

that gray regions that appear in the borders of the person, in the foreground segmentation mask,

are due to the interlacing effect present in the sequence, which produces white foreground lines

interlaced with black background lines.

time devoted to the decision and updating steps vary according to the resolution of

the images and the number of Gaussians used in the sequence presented at Figure

4.4. Three image resolutions are evaluated in these graphs: 406×306, 812×612 and

1624×1224, by using an Intel Xeon X5450 3.0GHz processor. As we can observe, the

processing time increases linearly as we increase the Gaussians of the foreground

model. In order to work at real-time, resolutions around 406x306 pixels, and a

foreground model performed by 10 to 100 Gaussian distributions have to be chosen.

With that framework, the system allows a speed of 0.44 frames/second, for a video

sequence of 406x306 pixels with one object in scene.

Table 4.1: Overall MUHAVI Data Base Comparison Results. In bold type the results

corresponding to the best scores.

Metrics Foreground Segmentation Technique

RGA KDE RGA+ Bayes. Bayes.+ Bayes.+

sh. rem. sh. rem. sh. rem

no MRF

precision 0.52 0.69 0.80 0.80 0.88 0.80

recall 0.86 0.76 0.84 0.94 0.91 0.90

fmeasure 0.65 0.72 0.82 0.87 0.90 0.85

∆% fmeasure - 11.77 26.72 33.93 38.83 31.41

f.p.s 11.02 0.24 7.50 0.50 0.44 0.46
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Figure 4.16: Computational cost of the probability computation and the classification steps.

Processing time is analyzed according to the number of Gaussians of the foreground model and

the resolution of the image.

4.6 Conclusions

This chapter presents a system for enhanced foreground objects segmentation pur-

pose. In this system we combine successfully three techniques: initial pixel-wise

foreground segmentation, tracking system based on MeanShift and final foreground

segmentation based on Bayesian framework via pixel-wise background modeling and

foreground spatial-color modeling. Each of these blocks has a specific function, and

has been configured to implement the surveillance concept: be aware for external

changes, detect and track the objective, and refine the detection. Also, a new tech-

nique for shadow removal into the specific Bayesian framework has been presented

and used into the overall system to avoid the so common errors that shadow effects

produce. The results show that the proposed system improves the foreground seg-

mentation obtained with other pixel-wise methods, reducing the false positives, and

false negatives detections also in those complicated scenes where similarity between

foreground and background colors appears. In future work we will consider to im-

prove the computational cost under the assumption that it can be easily reduced
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Figure 4.17: Computational cost of the updating step. Processing time is analyzed according to

the number of Gaussians of the foreground model and the resolution of the image.

via parallel processing using multi-threading, and programming some algorithms

under CUDA GPU programming.
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Figure 4.18: Computational cost graph of the of the probability computation, classification

and updating steps. Processing time is analyzed according to the number of Gaussians of the

foreground model and the resolution of the image.

Table 4.2: MUHAVI Data Base fmeasure Comparison Results. In bold type the results

corresponding to the best scores.

Sequence Person & Camera Foreground Segmentation technique

RGA KDE RGA+ Bayes. Bayes.+ Bayes.+

sh. rem. sh. rem. sh. rem

no MRF

RunStop

P1Cam3 0.50 0.74 0.83 0.86 0.90 0.87

P1Cam4 0.69 0.78 0.85 0.83 0.88 0.85

P4Cam3 0.61 0.68 0.81 0.82 0.87 0.82

P4Cam4 0.70 0.78 0.85 0.83 0.86 0.84

Punch

P1Cam3 0.64 0.63 0.80 0.86 0.92 0.87

P1Cam4 0.74 0.79 0.84 0.92 0.93 0.87

P4Cam3 0.62 0.66 0.77 0.86 0.91 0.85

P4Cam4 0.75 0.88 0.85 0.90 0.90 0.82

Kick

P1Cam3 0.62 0.58 0.77 0.88 0.92 0.87

P1Cam4 0.70 0.84 0.88 0.90 0.91 0.87

P4Cam3 0.63 0.66 0.80 0.87 0.90 0.84

P4Cam4 0.78 0.88 0.89 0.91 0.90 0.85





Chapter 5

Bayesian Foreground

Segmentation for Moving

Camera Scenarios

5.1 Introduction

Objects segmentation and tracking in moving camera scenarios is of main interest

on several high level computer vision applications like human behavior analysis or

video sequence indexation among others, where a specific segmentation of the object,

previously determined by the user, is needed. This kind of scenarios are common

in video recordings, but present a special challenge for objects segmentation due

to the presence of relative motion concerning the camera observer point and the

foreground object to segment, which causes a non-stationary background along

the sequence. Therefore, this scenario differs from fixed camera ones, where an

exact background can be learned at a pixel-wise level [WADP02, SG00] and fixed

camera with constrained motion scenarios, typical of surveillance cameras with a

programmed camera path, which can be considered as a static mosaic from the

dynamic scenes [IB98]. Instead, moving camera scenarios present a more difficult

framework due to the impossibility of applying well known pixel-wise techniques for

computing the background subtraction, and it has led to the publication of several

new proposals that addresses this topic in the last few years. [CFBM10] presents a

review of the most recent background segmentation systems within this area.
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5.1.1 State of the Art

The different techniques proposed in previous works can be grouped into three

classes:

-Techniques based on camera motion estimation. These methods compute cam-

era motion and, after its compensation, they apply an algorithm defined for fixed

camera. [AMYT00] uses frame differencing and active contour models to compute

the motion estimation. In [SA02], the authors apply background subtraction using

the background obtained through mosaicing numerous frames with warping trans-

forms, while [JTD+08] proposes a multi-layer homography to rectify the frames and

compute pixel-wise background subtraction based on Gaussian Mixture Model.

-Methods based on motion segmentation. In these methods the objects are

mainly segmented by analyzing the image motion on consecutive frames. [SB02]

proposes to use image features to find the optic flow and a simple representation of

the object shape. [GT01] proposes a semi-automatic segmentation system where,

after a manual initialization of the object to segment, a motion-based segmenta-

tion is obtained through region growing algorithm. In [CPV04] an approach based

on a color segmentation followed by a region-merging on motion through Markov

Random Fields is proposed, while in [VM08] the authors propose a Mean Shift seg-

mentation and tracking applied to face recognition that relies on a segmentation of

the area under analysis into a set of color-homogenous regions. In this proposal, the

use of regions allows a robust estimation of the likelihood distributions that form the

object and background models, as well as a precise shape definition of the object be-

ing tracked. This accurate object definition allows the object model to be updated

through the tracking process, handling variations in the object representation.

-Based on probabilistic models: the objects to segment are modeled using prob-

abilistic models that are used to classify the pixels belonging to the object. [LLR08]

proposes a non parametric method to approximate, in each frame, a pdf of the ob-

jects bitmap, estimating the maximum a posteriori bitmap and marginalizing the

pdf over all possible motions per pixel.

The main weakness of the systems based on motion estimation is the difficulty

to estimate the object or camera motion correctly and the impossibility of subtract-

ing the background when dynamic regions are present, which produces many false

positive detections. On the other hand, proposals based on using foreground object

probabilistic models present a more robust segmentation, but can lead to segmen-

tation errors when the close background presents similar regions to the object.

In this chapter we propose a new technique for object segmentation in moving

camera scenarios that deals with the last group of segmentation methods based on

probabilistic models. We propose to use the region-based probabilistic model, the
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Spatial Color Gaussian Mixture Model (SCGMM) to model not only the foreground

object to segment, but also the close-background regions that appear surrounding

the object, allowing, in this manner, a more robust classification of the pixels into

foreground and background classes. The use of this technique achieves a correct

segmentation of the foreground object via global MAP-MRF framework for the

foreground (fg) and background (bg) classification task.

5.2 Proposal

The main strategies of the state of the art to achieve the segmentation of a certain

object in a moving camera scenario, focus on analyzing two main factors: the scene

motion between frames and the object characteristic features. These proposals are

based on the principle that this kind of sequences present two different motions

corresponding to the camera and to the object to segment.

We propose to extend the framework presented in the previous chapter to solve

the segmentation problem in moving camera scenarios. This proposal was devel-

oped with the collaboration of Montse Solano who, carrying out her bachelor project

[Pal11], contributed in testing the algorithm in different scenarios. Consider a mov-

ing camera sequence, where the camera performs some movements of translation,

rotation and zoom and the object to segment is also moving inside the scene, chang-

ing also its orientation and making some rotations.

We will consider that the camera translation and rotation effects, together with

the object orientation and translation changes are equivalent to consider a back-

ground motion behind the object to segment.

Therefore, using a dynamic region of interest, centered in the object detection

obtained in the previous image, we will be able to consider that the background is a

plane located behind the object to segment, which suffers some spatial modifications

along the sequence and where new background regions appear in the limits of the

image (usually due to camera displacements). Figure 5.1 shows an example of this

dynamic region of interest.

To perform the segmentation we will use two probabilistic models: One to model

the foreground object to segment, and another to model the background that is

surrounding the object, with the objective that the background model assumes

the new background regions that appear close to the object, achieving a robust

classification process of the pixels among the two classes. Both models must also

be flexible to assume possible camera zoom and object rotations that occur along

the sequence.

The scene under analysis can suffer several spatial transformations: camera
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Figure 5.1: Example of ROI. d′ is a predefined size proportional to the object area that allows

all possible movements of the object, so as to achieve a correct segmentation.

zoom, foreground object rotations and background rotation and translation. We

propose a segmentation system that allows us to overcome all these situations,

which consists of two separated parametric models to model the foreground object

to segment and the close background that envelopes the object. For this purpose,

we will use the Spatial Color Gaussian Mixture models (SCGMM). The work-flow

of the system, shown in Figure 5.2, is as follows:

At the beginning, the system needs an input mask of the object that we want

to segment. This region mask can be obtained via manual segmentation or using

any segmentation tool, and it is used to:

• Define the dynamic Region of Interest of the object, defined as the bounding

box that encloses the object with a percentage of close background.

• Initialize the foreground and the close background SCGMM that appear inside

the already defined objects’ ROI.

For each frame of the sequence, there is a three steps process: Classification of

each pixel inside the bounding box according to the foreground and background

models defined from the previous frame, updating of each model using the results

obtained from the classification step and redefinition of the ROI according to the

resultant foreground object segmentation. The details of this segmentation system

will be explained in the following sections.

5.2.1 Dynamic Region of Interest

In order to achieve the segmentation of the foreground object, we make a local fore-

ground object segmentation. We define the background model within a dynamic
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Figure 5.2: Work flow of the proposed system.

Figure 5.3: Dynamic Region of interest over the initialization mask. The T-shirt is the object

under segmentation.

bounding box surrounding the foreground object. This neighborhood is defined ac-

cording to some constraints of computational cost, and accuracy in the background

modeling.

The bounding box has to present a certain size that allows the background

model to achieve a correct close background representation in all the boundaries

of the object, allowing all possible movements of the object to segment, but it has

to be small enough to allow a reduced computational cost when updating models

or calculating pixel probabilities. The model used has to be flexible enough to

incorporate new parts of the background that appear around the object as the

camera or the object move along the scene.

Thus, the bounding box will be centered at the geometric center of the object,

with the limits of the object to segment plus an offset d that we define as a percentage

of the largest axis of the ellipse that envelopes the object. 20% yields correct results

in most considered scenarios. Figure 5.3 shows a graphical example of this bounding

box.
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5.2.2 Probabilistic Models

A good segmentation of foreground objects can be achieved if a probabilistic model

for the foreground and also for the close background are constructed. Hence, we

classify the pixels in foreground (fg) and background (bg) classes. Since in this kind

of sequences the foreground and background are constantly moving and changing,

an accurate model at a pixel level is difficult to build and update. For this reason, we

use the region based Spatial Color Gaussian Mixture Model (SCGMM), as presented

in the previous chapter, because foreground objects and background regions are

better characterized by color and position, and GMM is a parametric model that

describes accurately multi-modal probability.

Thus, the foreground and background pixels are represented in a five dimensional

space. The feature vector for pixel i, zi ∈ R5, is a joint domain-range representation.

The likelihood of pixel i is then,

P (zi|l) =

Kl∑
k=1

ωkGl(zi, µk,Σk)

=

Kl∑
k=1

ωk
1

(2π)5/2|Σk|1/2
exp

[
−1

2
(zi − µk)TΣ−1

k (zi − µk)

] (5.1)

where l stands for each class: l = {fg,bg}, ωk is the mixture coefficient, µk ∈
R5 and Σk ∈ R5×5 are, respectively, the mean and covariance matrix of the k-th

Gaussian distribution. As presented in the previous chapter, the spatial and color

components of the SCGMM are considered decoupled, i.e., the covariance matrix of

each Gaussian component takes the block diagonal form. With such decomposition,

each foreground Gaussian component has the following factorized form:

Gl(zi, µk,Σk) = G(si, µk,s,Σk,s) G(ci, µk,c,Σk,c), (5.2)

where si ∈ R2 is the pixel’s spatial information and ci ∈ R3 is its color value. The

parameter estimation can be reached via Bayes’ development, with the EM algo-

rithm [DLR+77]. For this estimation an initialization frame is needed, containing

a first segmentation of the foreground object.

5.2.2.1 Initialization and Updating

Once we have defined the Bounding box where the foreground and background

models will work, the initialization of both models is done according to the object

mask that is required as an input.

As in the previous chapter, the number of Gaussians that will compound each

model should be slightly higher than the number of color-spatial regions of the

foreground and background regions that appear within the ROI, to ensure that both
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classes are correctly modeled with at least one Gaussian per region. We choose to

analyze the RGB-histogram as explained in Section 4.4.1.1. Hence, we obtain a

model with the correct number of Gaussians to represent the foreground object and

the close background regions.

Once the number of Gaussians of each model is defined, we propose a fast two-

steps initialization process that consists in:

• First, place the Gaussian distributions of the foreground and background mod-

els uniformly over the spatial region that corresponds to each model.

We initialize the spatial and color domain of the Gaussians with the values

of the pixels that are located within the region assigned to each Gaussian.

Figure 5.4 displays a graphical and self-explicative example.

• Next,for each class, we use the Expectation Maximization (EM) algorithm

([DLR+77]) in the overall five dimensional domain with the color-spatial in-

formation obtained from all the pixels belonging to the class we are analyzing,

and located inside the ROI. This algorithm helps us to adjust the parameters

of each Gaussian Mixture Model in the color and spatial domain, µc,s and Σc,s

of each model obtaining iteratively a maximization of the likelihood. Thanks

to the spatially uniform distribution of the Gaussians, the initialization re-

quires a few EM iterations to achieve the convergence of the algorithm and

therefore, a correct representation of the foreground and background regions.

A fix number of iterations equal to 3 yields correct results. Figure 5.4 shows

the resultant initialization of the Gaussians in the spatial domain.

Figure 5.4: Initialization process. From left to right: spatially uniform distribution of the Gaus-

sians, Foreground Gaussians after EM iterations and Background Gaussians after EM iterations.

The spatial domain representation of the foreground Gaussians is in red color, background Gaus-

sians are in green color.

Once each model has been correctly initialized, and for the next frames of the

sequence, each model is updated with the foreground and background regions ob-

tained from the previous segmentation according to the updating explained in Sec-

tion 4.4.1.2. We assume a scene with moving background, moving foreground object

as well as possible zoom effects of the camera, where new color-spatial regions of

background and foreground classes inside the Region of Analysis appear in each
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Figure 5.5: Example of foreground and background models. From left to right: input frame

under analysis, background model and foreground model. Each ellipse represents one Gaussian of

the SCGMM, colored with the mean color that each one is modeling.

frame. Thus, the spatial components of each Gaussian Mixture and also, the color

ones, are updated after the classification in foreground and background of each

frame. Figure 5.5 shows an example of foreground and background models for a

frame under analysis, where one person is being segmented. As we can observe, the

foreground and background models achieve a correct representation of the regions

that each class is modeling.

5.2.3 Classification

Once the foreground and background models have been computed at frame t− 1, a

Bayesian labeling between foreground and background can be done for the frame t

as proposed in Chapter 4.4.4, also by means of the energy functions that is solved

for global optimum using a standard graph-cut algorithm [BVZ01].

5.3 Results

This section shows some tests to evaluate the quality and robustness of the pro-

posed system. For this purpose, qualitative and quantitative evaluations have been

performed. Quantitative results are obtained analyzing the cVSG public Data Base

[TEBM08], which has been created by means of a chroma key, combining people

to segment with different kind of background scenarios. We have compared it with

the method proposed in [VM08]. Qualitative results are obtained analyzing another

three different video sequences with different difficulty degree.

In Figure 5.6 the shirt of a running girl has been segmented. These results

show how the shirt is correctly detected along the sequence despite the variability

of the background regions. Moreover, in this sequence the evolution of the spatial

foreground and background models along the sequence can be observed. Each ellipse

is the graphical representation of each Gaussian distribution.

In Figure 5.7 the foreground segmentation of an skier can be observed. This
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Figure 5.6: Results. Girl sequence. From left to right: original image, resultant mask with the

Gaussians corresponding to spatial representation of the foreground model (red) and the back-

ground model (green), spatial representation of the background model (each Gaussian is colored

with the mean color that it is modeling), spatial representation of the foreground model(each

Gaussian is colored with the mean color that it is modeling), resultant foreground object mask.

sequence presents the following motion: object rotation, camera traveling and sim-

ilarity between foreground and background regions. As it can be observed, the

results show a correct definition of the foreground object segmentation despite the

variability of the background regions, which are correctly assumed to the back-

ground model.

Figure 5.8 shows the results obtained in a F1 sequence that presents special

difficulty due to object translation and rotation and the presence of other similar

F1 cars within the area of analysis. It can be observed how the proposed system

achieves a correct and robust object segmentation over these conditions, and adapts

well to all these new regions that appear within the Dynamic Region of Analysis

in each frame. Thanks to background model color and spatial updating, new back-

ground regions that appear in each frame, are incorporated into the background

model before they affect the foreground model.

Table 5.1 shows the quantitative results using cVSG public database [TEBM08].

This database presents several sequences with different difficulty degree, depending

on the background characteristics and the foreground to segment. We have used

the full length of each sequence to compute the numerical results. The metrics used

in the evaluation are: Precision (P ), Recall (R) and fmeasure metrics.

As it can be observed, the system proposed (Bayesian) achieves a high fmeasure

score in the overall data base although moving and dynamic background are present.

Regarding the computational cost, the system allows a speed of 1 frames/second,

for a video sequence of 720x576 pixels with one object in scene, and using an Intel

Xeon X5450 3.0GHz processor.
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Table 5.1: Quantitative Results using cVSG Public Data Base [TEBM08]. In bold type

the results corresponding to the best fmeasure scores.

Sequence Proposal Precision Recall fmeasure

Dancing (v.1 girl)
Bayesian 0.934 0.992 0.962

[VM08] 0.933 0.975 0.954

Dancing (v.1 boy)
Bayesian 0.942 0.988 0.965

[VM08] 0.953 0.987 0.969

Dangerous race
Bayesian 0.958 0.994 0.975

[VM08] 0.935 0.935 0.935

Exhausted runner
Bayesian 0.986 0.985 0.986

[VM08] 0.958 0.984 0.971

Bad manners
Bayesian 0.978 0.991 0.984

[VM08] 0.931 0.891 0.910

Teddy bear
Bayesian 0.916 0.981 0.948

[VM08] 0.953 0.939 0.946

Hot day
Bayesian 0.980 0.985 0.983

[VM08] 0.959 0.958 0.958

Playing alone
Bayesian 0.997 0.984 0.990

[VM08] 0.943 0.947 0.945

5.4 Conclusions

This chapter presents an application of the Bayesian region-based segmentation

(presented in previous chapter) between foreground and background classes for mov-

ing camera scenarios, based on the use of the region-based spatial-color GMM to

model the foreground object to segment and moreover, the close background re-

gions that surrounds the object. We have proposed a framework for this kind of

sequences that has allowed us to consider the probabilistic modeling of these close-

background regions to achieve the classification of the pixels inside the ROI into

the foreground and background classes within a MAP-MRF framework. The results

show that the proposed system achieves a correct object segmentation reducing the

false positives, and false negatives detections also in those complicated scenes where

camera motion, object motion and camera zoom are present, as well as similarity

between foreground and background colors.
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Figure 5.7: Results. Skier sequence. From left to right: original image, resultant mask with the

ellipses corresponding to spatial representation of the foreground model (red) and the background

model (green), the resultant mask colored with the original colors.

Figure 5.8: Results. F1 sequence. From left to right and from top to bottom: original image

and the resultant object mask.
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When we use more than one camera sensor to record the scene under analysis, the

foreground segmentation process, and in consequence the posterior high level steps,

can be improved by combining the camera sensors information thus, exploiting the

redundancy that appears and is shared by the cameras. This redundancy depends

on several factors, like for instance, the number of sensors that are recording the

scene, their position and the kind of devices utilized in the acquisition set-up. How

to exploit this extra-information, obtaining collaborative foreground segmentation

methods is a non-trivial task, and has involved the work of many researchers along

the years. In this part of the thesis we present some proposals developed to deal

with this kind of sequences, in order to enhance the final segmentation results. Four

proposals are presented in the following chapters:

• Foreground segmentation task in color c = RGB + depth d = Z multi-view

sequences. In this chapter, a foreground segmentation system that combines

these two sensors in a Bayesian Logarithmic Opinion Pool Decision framework

is presented, in order to combine the probabilistic models used to characterize

the foreground and the background classes for each one of the sensors.

• Multi-view foreground segmentation in smart-room scenarios:

– Reliability maps applied to robust SfS volumetric reconstruction be-

tween foreground and background/shadow models.

In this chapter, we use the the reliability maps of each sensor by comput-

ing the Hellinger distance between foreground and background/shadow

models. The 2D reliability maps are used to obtain a robust SfS recon-

struction.

– Joint Multi-view Foreground Segmentation and 3D Reconstruction with

Tolerance Loop.

A loop between foreground segmentation and 3D reconstruction is pro-

posed in this research line by updating the foreground model, defined in

each view, with the conservative 3D volume reconstruction of the object

in an iterative way.

– 3D Foreground probabilistic model.

A foreground model designed in the 3D space is proposed in this chapter.

Monocular 2D segmentation projecting the 3D model to each 2D view is

used in order to obtain the 2D foreground masks.
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Chapter 6

Foreground Segmentation in

Color-Depth Multi-Sensor

Framework

6.1 Introduction

New devices suitable for capturing the depth of the scene, which have been devel-

oped in the recent years, are creating a new trend on the foreground segmentation

area towards the new available depth information of the scenes. ToF and struc-

tured light depth cameras are an example of this kind of devices that have offered

an alternative to the stereo systems and their complex problems in the disparity

estimation. In this chapter we propose a system to combine color and depth sen-

sors information, in a probabilistic framework between foreground and background

classes, in order to improve the foreground segmentation results taking advantage

of the possibilities that each one of the sensors offers.

6.2 State of the Art

For several years, many authors have been working in foreground segmentation

using static color camera devices. We have seen some examples of these proposals in

previous chapters. Despite foreground modeling methods improve the performance

of the color foreground segmentation, all these methods present problems when

foreground objects have similar color to the background, the camouflage problem,

or when lighting or shadow affect the foreground and background.
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Depth data allows a more robust segmentation of the object of interest to-

wards the color camouflage problem than the systems based on color segmentation:

[GLA+08, SS11] use a pixel-wise exception to background segmentation using MoG

background model, while [XCA11] defines a depth region growing in a depth thresh-

olding condition.

Nevertheless, as seen in Chapter 3, all these systems present other problems

concerning the segmentation with depth sensors: lack of precision in the segmen-

tation due to the noisy and low resolution depth maps obtained by the sensors,

and presence of camouflage errors when foreground and background present similar

depth. How to solve these problems combining both color and depth sensors is an

important topic in order to achieve a precise and robust objects segmentation that

uses the best characteristics of each sensor, avoiding, as far as possible, color and

depth camouflage problems. Some authors have proposed some solutions in this

research line combining depth thresholding segmentation and detection refinement:

In the method explained in Section 3.2.2.1.1 ([CTPD08]), the authors propose a

simple depth thresholding segmentation followed by a color-depth trimap analysis

to improve the precision of the segmentation in the borders of the object. In the

proposal reviewed in the same section ([FFK11]), the authors use a thresholding

technique to separate foreground from the background in multiple planes, and a

posterior trimap refinement to reduce the artifacts produced by the depth noise.

In [WBB08] the depth thresholding segmentation allows to automatically obtain a

pentamap that is used to make a more efficient color graph cut regularization.

These kind of methods allow to obtain correct results under limited constraints

on the scenario set and the depth thresholding, but present some segmentation

errors in presence of difficult situations provided by depth camouflage problem.

Other authors have addressed the problem trying to combine the color and depth

sensors in a more robust framework:

In [BW09] the authors propose a color-depth Mean Shift segmentation system,

of the overall image, based on the depth noise analysis in order to weight the depth

reliability, while the proposal reviewed in Section 3.2.2.1.2 ([SK11]) uses a pixel-wise

probabilistic background model in color-depth domain, to perform a more complete

exception to background segmentation. Although these kind of methods present

a more robust and general framework in front of camouflage situations than the

thresholding approaches, they still present some problems for correctly combining

the color and depth sensors information when camouflage situations appear because

of the lack of foreground objects information to detect it and thus, to improve the

final segmentation results. In this way, [WZYZ10] proposes a probabilistic fusion

framework between foreground and background classes for color and depth cues,

which achieve correct results in close-up sequences. The probabilistic models of each



6.2 State of the Art 105

one of the classes are combined according to the foreground-background histogram

similarity.

Combining different sensors for foreground segregation is an important topic

in order to achieve a precise and robust objects segmentation. In this area, [PL04]

propose a sensor fusion combination based on Multi Bayesian utility functions, while

several authors in statistics have well addressed the fusion of information provided

by several sensors in a Bayesian framework ([SA99, Kun04]).

In this Chapter, we present a foreground segmentation system that belongs to

the last group of proposals. We propose a system that combines in a probabilistic

framework both, color and depth sensors information to perform a more complete

Bayesian segmentation between foreground and background classes. The system,

suitable for static color-depth camera sequences in a close-up and long-shot views,

achieves a correct segmentation results taking into account the spatial context of the

models showing a combination of color-spatial and depth-spatial region-based mod-

els for the foreground and a color and depth pixel-wise models for the background

in a Bayesian Logarithmic Opinion Pool decision model. In order to improve the

foreground segmentation precision, we add a final segmentation refinement based

on a trimap analysis.

All the sequences used in this chapter has been recorded by means of the kinect

sensor, developed by Microsoft, combined with the OpenNI SDK configured with

the factory calibration presets, in order to obtain the synchronized and registered

color and depth maps of the sequences under analysis.

6.2.1 Proposed System

We propose a segmentation system that exploits the advantages of each sensor

type. With this aim we present an algorithm where parametric foreground models

in color-space and depth-space domains are evaluated against pixel-wise color and

depth background models. The improvements of the proposed method in the seg-

mentation process are twofold: first, we combine probabilistic models of color, space

and depth, in order to obtain a correct pixel classification according to the color

and depth sensors and in a posterior step, we correct the errors of precision that

the depth sensor introduces to the overall process and are converted into some false

positive detections in the borders of the foreground object. Once the approximate

position of the borders in the current image is known, it is better to disregard the

depth information at those positions where the color sensor provides enough dis-

crimination. The reliability of the sensors, based on the Hellinger distance ([Ber77])

between foreground and background models is used in both stages.
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Figure 6.1: Work flow of the system.

Figure 6.1 shows the overall work-flow of the system. The main modules are:

• Foreground and background models initialization (Section 6.3): Automatic

initialization of the foreground and background models is used by means of a

simple exception to background segmentation in the depth domain.

• Logarithmic Opinion Pool sensor fusion and Bayesian pixel classification (Sec-

tion 6.4 and Section 6.5) respectively: If we consider that the informations of

each sensor are not correlated between them, we can assume a sensor fusion

system where team members are allowed to exchange sensor information. In

order to achieve a correct combination of the color, spatial and depth domains

of each class, Logarithmic Opinion Pool sensor fusion is used. We propose to

test the reliability of the information that each sensor can add to the overall

team posterior probability, in order to fuse them, by using the Hellinger dis-

tance to evaluate the distance between foreground and background models in

each sensor, thus maximizing the reliability of the final decision.

• Improve the precision of the segmentation using a trimap approach (Section

6.6): A final correction step is proposed in order to reduce the errors that the

depth sensor generates in the borders of the object. After the pixel classifica-

tion step into foreground and background classes, a trimap segmentation of

the pixels of the frame in analysis is defined as background, foreground and

unknown. We define the unknown region as all the pixels that appear inside

a boundary of the object to segment, which can present segmentation errors.
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• Foreground and background models updating, (Section 6.3): After the final la-

beling, we adapt the foreground and background models to the variations that

appear in the object’s movements and the background regions respectively.

The remainder of the Chapter is organized as follows: Section 6.3 describes the

foreground and background probabilistic models. The Logarithmic Opinion Pool

decision model used for color and depth sensor fusion is explained in Section 6.4.

Section 6.5 is devoted to the Bayesian pixel classification. Section 6.6 addresses

the proposed trimap correction to solve the false positive detections that the depth

sensor produces. Finally, some results and conclusions are presented in Section 6.7

and Section 6.8 respectively.

6.3 Probabilistic Models

Since we want to achieve a correct foreground segmentation in static color-depth

sequences, specific probabilistic models are used to represent the foreground and

background classes for the color and depth sensors. We use two pixel-wise Gaussian

models for the background: one for the color and another for the depth domains,

and two region based models for the foreground: Spatial-Color GMM and Spatial-

Depth GMM for the foreground. Therefore, for each frame of the sequence It,

our objective is to obtain for each class an updated model parameter set θ that

maximizes the data likelihood:

θl = arg max
θl

∏
xi,l∈It,l

[P (xi,l|θl)] , (6.1)

where l stands for classes {fg,bg} and xi ∈ R6 is the input feature vector for pixel

i in the x = (RGB XY Z) domain. Hereinafter we refer to the color, spatial and

depth domains as: c = RGB ∈ R3, s = XY ∈ R2 and d = Z ∈ R respectively.

6.3.1 Background Model

A spatially precise background model is used in order to obtain a description in

color and depth domains. The model consists of two independent Gaussians per

pixel, one in the RGB domain and the second one in the Z domain.

The likelihood of the color Gaussians is defined as:

P (ci|bg) = Gbg(ci, µc,i,Σc,i)

=
1

(2π)
3
2 |Σc,i|

1
2

exp

[
−

(ci − µc,i)TΣ−1
c,i (ci − µc,i)

2

]
,

(6.2)
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where ci ∈ R3 is the input vector of the i-th pixel, µc,i ∈ R3 and Σc,i ∈ R3×3

are, respectively, the mean and covariance matrix of the Gaussian distribution.

For the depth domain, the likelihood of the Gaussian is defined as:

P (di|bg) = Gbg(di, µd,i, σd,i)

=
1

(2π)
1
2 σd,i

exp

[
− (di − µd,i)2

2σd,i

]
,

(6.3)

where di ∈ R is the input depth value of the i-th pixel, µd,i ∈ R and σd,i is the

standard deviation.

Analogously to Chapter 4, we extend the pixel-wise background models, to a

region based model in color and depth domains in order to make comparable the

background models with the foreground:

P (ci, si|bg) = δ(si − µs,i) Gbg(ci, µc,i,Σc,i),

P (di, si|bg) = δ(si − µs,i) Gbg(di, µd,i, σd,i),
(6.4)

where δ denotes the Kronecker delta and therefore, we are using one Gaussian per

pixel centered in space at the pixel position (µs,i) with a zero spatial variance.

Initialization The color and depth pixel-wise models are initialized in a learning

step by using a short sequence free of foreground objects.

Updating

When a pixel value is classified as background, its model is updated, in color

and depth domains, in order to adapt it to progressive image variations.

Both initialization and updating processes follow the Running Gaussian average

model ([WADP02]),

6.3.2 Foreground Model

We use two parametric region-based foreground models that combine color, space

and depth domains. We propose the Spatial Color Gaussian Mixture Model (SCGMM)

and the Spatial Depth Gaussian Mixture Model (SDGMM) in order to obtain a re-

liable probabilistic representation of the foreground pixels for the color and depth

sensors respectively. The likelihood of pixel i for the color sensor is then:

P (ci, si|fg) =

Kfg∑
k=1

ωkGfg(ci, si, µk,c,s,Σk,c,s), (6.5)

For the depth domain the likelihood is defined as:

P (di, si|fg) =

Kfg∑
k=1

ωkGfg(di, si, µk,d,s,Σk,d,s), (6.6)
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where ωk is the mixture coefficient of the k-th Gaussian distribution. In order to

simplify the design, we impose both models to have the same number of Gaussians

(Kfg) with the same spatial distribution. We assume that the spatial component is

decoupled from the color and depth domains thus, we will be able to speed up the

computational problem designing a parallel implementation.

With such decomposition, each color and depth foreground Gaussian component

has the following factorized form:

Gfg(ci, si, µk,c,s,Σk,c,s) = Gfg(si, µk,s,Σk,s) Gfg(ci, µk,c,Σk,c),

Gfg(di, si, µk,d,s,Σk,d,s) = Gfg(si, µk,s,Σk,s) Gfg(di, µk,d,Σk,d),
(6.7)

where Gfg(ci, µk,c,Σk,c) and Gfg(di, µk,d,Σk,d) are defined as in the equations

6.2, 6.3 respectively, and

Gfg(si, µk,s,Σk,s) =
1

2π|Σs,i|
1
2

exp

[
−

(si − µk,s,i)TΣ−1
k,s,i(si − µk,s,i)
2

]
, (6.8)

where si ∈ R2 is the input vector of the i-th pixel, µs,i ∈ R2.

6.3.2.1 Initialization

Analogously to Chapter 4, the initial parameter estimation can be reached via

Bayes’ development with the EM algorithm ([DLR+77]). An initial segmentation

of the foreground object is required in order to initialize the foreground model.

We propose to use an initial exception to background segmentation in the depth

domain to achieve this first detection of the object because it is more robust to

color camouflage problems, which are more common than the depth ones. Once

one foreground connected component is detected, it has to present a minimum

size and some temporal correspondence along the sequence to be considered as

an object and continue with the foreground model initialization. Next, we estimate

how many Gaussians are needed for correctly modeling the object to segment in the

color domain. Analogously to the method proposed in Chapter 5, Section 5.2.2.1,

we analyze the color histogram for this purpose and initialize it in a fast way, first

distributing the Gaussians uniformly in the spatial domain within the foreground

object and later, using few iterations of the EM algorithm in the z = RGB XY

domains. Once the Color Spatial Gaussians are correctly initialized, we initialize the

SDGMM taking the same number of Gaussians and Spatial distribution than the

SCGMM, and assigning to each Depth Gaussian the mean and variance depth of the

spatial region that this Gaussian is modeling. The advantages of this configuration

is twofold: it is useful to achieve a correct spatial distribution of the depth model

in order to adapt well the model to the different parts of the object and their

movements, thus reducing the false positive errors, and to speed up the process
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using just one spatial initialization and updating processes for both color and depth

models.

6.3.2.2 Updating

As in previous chapters, in order to adapt the foreground models to these displace-

ments, we propose to update the components of the Gaussian Mixtures in the color,

space and depth domains in a two-steps updating:

Spatial domain updating: We use the pixels classified as foreground to up-

date only the spatial components of the Gaussian Mixtures. We assign each pixel

to the Gaussian k that maximizes:

P (k|xi, fg) =
P (xi|fg, k)∑
k P (xi|fg, k)

=
P (xi|fg, k)

P (xi|fg)
, (6.9)

where P (xi|fg) is the likelihood that the color and depth sensors combination present

for the pixel i (will be defined in Section 6.4 ), and P (xi|fg, k) is the likelihood of

both sensors given by the Gaussian k. Once each pixel has been assigned to a

Gaussian, the spatial mean and covariance matrix of each Gaussian are updated

with the spatial mean and variances of the region that it is modeling.

Also, in order to achieve a better adaptation of the model into the silhouette of

the object, we apply a Gaussian split criterion according to the spatial size of the

Gaussian (Section 4.4.1.2).

Color domain updating: once the spatial components of the Gaussians have

been updated, we update the foreground SCGMM according to the color domain.

For each foreground Gaussian, we check if the data that it is modeling (according

to the pixels assigned to this Gaussian) follows a Gaussian distribution. Otherwise,

a new Gaussian is created to correctly model this region.

Depth domain updating: In order to adapt the foreground model to the depth

variations of the object, we perform a complete depth updating of each Gaussian

of the SDGMM with the mean and variance depth that the region assigned to this

Gaussian presents. When regions without depth information appear in the depth

map due to sensor errors in the depth detection process, we identify these non

reliable pixels, thus avoiding to use this information in the updating process and in

the next classification step.
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6.4 Sensor Fusion Based on Logarithmic Opinion

Pool

Given the set of sensors J ≡ {color,depth} that are recording different data from the

scene, our aim is to correctly combine the information that we receive from each

one in order to maximize the robustness of the foreground segmentation in each

one of the frames, resolving the possible inconsistencies that can appear among

them. In this way, we design a Logarithmic Opinion Pool framework for combining

the sensors’ information, extensible to any kind of image capturing sensors ([SA99,

Kun04]). The task of this decision maker is, in the first instance, to combine

probabilistic information from all the sources and then to make decisions based on

the global posterior. According to the Bayesian theory and assuming that we have

some knowledge of foreground, and background prior probabilities, P (fg) and P (bg)

respectively, we can define the global posterior of the color and depth sensors as:

P (l|xi) =
P (xi|l)P (l)

P (xi)
∝ P (xi|l)P (l), (6.10)

where l ∈ {fg,bg} and i ∈ It stands for the pixel in analysis. The normalizing

denominator is the same for foreground and background and, thus, can be disre-

garded.

How to combine the different likelihoods P (xi|l) of each one of the sensors is

the most important part of the combiner. A basic product formulation of the

likelihoods has the drawback that a single close to zero probability in one of the

sensors leads to the cancellation of the overall combination. In order to avoid this

zero probability problem, which could lead to important misclassification errors,

we use the Logarithmic Opinion Pool that matches with the Consensus theory

([Kun04]). Hence, we can formulate the global multi-sensor likelihood as follows:

P (xi|l) = P (ci, si|l)αc,i · P (di, si|l)αd,i , (6.11)

where αc,i ∈ R and αd,i ∈ R are the weighting factors for the color and depth

likelihoods for the i-th pixel and accomplish αc,i + αd,i = 1.

Taking logarithms in the above expression leads to the following log-likelihood

expression:

logP (xi|l) = αc,i logP (ci, si|l) + αd,i logP (di, si|l), (6.12)

As we can observe, the definition of the weighting factors is central to the correct

working of the sensor fusion system.



112 Foreground Segmentation in Color-Depth Multi-Sensor Framework

6.4.1 Weighting Factors

We define the weighting factors according to the reliability that each one of the

sensors presents. For that, we propose to analyze the similarity between foreground

and background classes for each one of the sensors, assuming that:

-High similarity implies that both classes are modeling the same space in a

camouflage situation, and thus, the decision is not reliable.

-Small similarity implies classes separated enough to achieve a correct decision.

Hence, for each one of the image pixels xi ∈ It, we propose to compute the

Hellinger distance ([Ber77]), to detect the degree of similarity between foreground

and background models that the sensors present in the color and depth domains:

Hj
i (qjfg,i, q

j
bg,i) =

√
1− BCji , (6.13)

where 0 6 H(qjfg,i, q
j
bg,i) 6 1, qjfg,i and qjbg,i are the p.d.f.’s that model the i-th

pixel of the jth-sensor color or depth for the foreground and background classes

respectively. BC is the Bhattacharyya Coefficient, which is formulated, for a mul-

tivariate Gaussian distribution, as follows:

BCji =
1(
|Σj

i |√
|Σj

fg,i||Σ
j
bg,i|

) 1
2

exp

[
−

(µjfg,i − µ
j
bg,i)

T (Σji )
−1(µjfg,i − µ

j
bg,i)

8

]
, (6.14)

where 0 6 BCji 6 1, Σjfg,i and Σjbg,i are the covariance matrices of the models

associated to the i-th pixel, for the jth-sensor of the foreground and background

classes respectively. µjfg,i and µjbg,i are the mean vectors of each class, and Σji =
Σj

fg,i+Σj
bg,i

2 .

Note that H(qjfg,i, q
j
bg,i) = 0 means that foreground and background models are

equal, and thus, strong camouflage situation is present in this pixel, and otherwise

H(qjfg,i, q
j
bg,i) = 1 implies that both models are completely different and there is not

similarity between them.

Since we are working in the foreground class with the color and depth foreground

models (SCGMM and SDGMM), µjfg,i and Σjfg,i will be chosen according to the

Gaussian k that maximizes the probability of the i-th pixel under analysis (equation

(6.9) ). In the case of the background class, since we have defined a pixel-wise model,

µjbg,i and Σjbg,i will be directly obtained from the background Gaussians associated

to this pixel.

Hence, we design the αji weights as:

αji =
H(qjfg,i, q

j
bg,i)∑

j∈J H(qjfg,i, q
j
bg,i)

, (6.15)
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As we can observe, sensors that present a high degree of similarity between fore-

ground and background classes, will have a close to zero αji weight that will be

equivalent to inhibit the sensor from the decision maker, thus avoiding misclassifi-

cation errors in front of camouflage problems.

The Hellinger distance present two main characteristics that are very interest-

ing for this application: Unlike the Bhattaharyya Distance (BD), or the Kullback-

Leibler divergence (KL) ([Kul87]), which give us a similarity distance bounded

between [0,∞), the Hellinger distance allows us to achieve a normalized distance

among models bounded between [0, 1]. Moreover, unlike the Kulback-Leibler diver-

gence, the Hellinger distance is symmetric and thus, H(qfg, qbg) = H(qbg, qfg).

6.5 Pixel Classification

Once the combined likelihoods for each class and sensor has been decided in each

pixel of the image, a Bayesian pixel classification between foreground and back-

ground classes is used to obtain the resultant foreground segmentation. In each

frame It, a pixel i may be assigned to the class l = {fg,bg} that maximizes

P (l|xi) ∝ P (xi|l)P (l),

where P (xi|l) is obtained from the Logarithmic Opinion Pool decision (Section

6.4), and foreground and background prior probabilities P (l) are calculated accord-

ing to the percentage of the image that each class present in frame t− 1.

Analogously to previous chapters, we introduce the spatial context in the seg-

mentation decision by using the graph-cut algorithm for the pixel labeling.

6.6 Trimap Analysis

The depth sensor presents a lack of precision in the depth estimation that causes

many false positive detection errors in the contours of the object. In this final step,

we propose to correct this specific error, by applying a trimap correction in these

areas. Since color segmentation presents a more precise segmentation, we propose to

define an uncertainty area that contains the contour region of the object, susceptible

of presenting these detection errors, and try to apply a more precise color foreground

detection to correct them.

Therefore, given S, the number of pixels labeled as foreground in the previous

classification step, we obtain the subgroup Su corresponding to the uncertainty

pixels of the contour as:
Su = S ∩ dil(S̄,D), (6.16)
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Figure 6.2: Image segmentation into a trimap among Foreground (fg), Background (bg) and

Unknown regions.

where dil operator refers to a morphological dilation, D is the 8x8 structuring

element, and S̄ denotes the complementary region of S and thus, the background

detection.

We consider a trimap where background regions are outside of the uncertainty

area, and the foreground region is the area inside it. Figure 6.2 shows an example

of the uncertainty area.

Once the uncertainty area is defined, a new labeling classification in this region is

applied according to the reliability of the color sensor, which will allow us to correct

the errors generated by the depth sensor. Hence, for all the pixels of this region,

we will use only the color sensor information when it presents no color camouflage

between foreground and background, according to:

Hi,c(qfg,i,c, qbg,i,c) > Hth max, (6.17)

where Hth max are the thresholds used to determine if the sensor is reliable. In our

experiments, Hth max = 0.7 yield correct results since it ensures that the foreground

and background color models present enough distance each other to consider the

pixel as reliable.

Figure 6.3 shows a graphical example of the final uncertainty regions that will

be analyzed in order to improve the precision of the final segmentation. As we can

observe, the uncertainty area is only taken into account when foreground and back-

ground do not present any color similarity. Otherwise, the uncertainty is removed

to maintain the original segmentation.

Note that the spatial updating of the foreground model help us to obtain a

precise model of the object at the contours, achieving a better color decision in the

borders.
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(a)

(b)

Figure 6.3: Example of unknown region. a) shows an example where foreground and background

present color similarity. b) displays another example without foreground-background similarity.

6.7 Results

Qualitative and quantitative results have been obtained in order to evaluate the

proposed system. We have analyzed our own database, which consists of nine single

person sequences, recorded with a kinect device, to show depth and color camouflage

situations that are prone to errors in color-depth scenarios.

Quantitative results are obtained analyzing the nine sequences of our own database.

Qualitative results have been obtained analyzing three difficult sequences from this

database.

In these results, we present a comparison between the proposed method (de-

noted as ’LogPool’ in the Figures) with the Running Gaussian Average pixel-wise

segmentation method proposed in [WADP02] and applied to the RGB color domain

(RGA-RGB) and the depth domain (RGA-DEPTH). Moreover, in order to evalu-

ate the improvement against a region based system, we evaluate the color domain

segmentation presented in [GPH09] (SCGMM) in our comparison. Finally, we also

analyze the results obtained using the segmentation system that has been described

in Section 3.2.2.1.2 ([SK11]) (Schiller) that combines color and depth information.

Since this method is based on the ToF sensor, and its effects over the borders of the

objects, we adapt it to the kinect sensors by using the uncertainty area that the we
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Figure 6.4: Qualitative results of sequence 1. From left to right: original sequence recorded by

the color and depth sensor, pixel-based fg detection in the depth domain [WADP02], pixel-based fg

detection in the color domain, region-based foreground segmentation using the method proposed

in Chapter 4, color and depth segmentation obtained using [SK11] and the results obtained by our

proposal by combining color and depth sensors.

obtain in the borders of the object to apply the segmentation technique.

The metric used in the quantitative evaluation is the fmeasure, which gives us

the relationship between the Precision (P ) and Recall (R) results for each frame.

Figure 6.4 shows the results where depth camouflage problems appear when the

person of interest sits down in a chair. As we can observe in the third column,

pixel-wise segmentation in the depth domain obtains some false positive detections

due to the lack of precision and the projection problems of the depth sensor. More-

over, when the person sits on the chair, camouflage depth problem arises and the

segmentation of the object is completely lost. When using color segmentation in

an exception to background framework and in the region-based approach (fourth

and fifth column respectively), some false negatives appear due to the color cam-

ouflage problem. Despite of this, the segmentation is not lost in front of depth

camouflage problems. Our approach (last column) improves the results resolving

the camouflage depth situation and reducing the false negative detections that each

one of the sensors adds to the segmentation. Quantitative results for each one of

the frames are displayed in Figure 6.5. As we can observe, the pixel-wise method in

the depth domain (RGA-DEPTH) presents a high number of False negative errors

when the person sits down on the chair ( region ’A’). In region ’B’, the RGA-RGB

and RGA-DEPTH segmentation increases the number of false positive and false

negative detections since the person interacts with the background, modifying the

setup. Unlike pixel-wise methods, the region based system SCGMM allow us to

obtain a more robust segmentation in the color domain thanks to the presence of a

foreground model in the segmentation. The results obtained by the Schiller method

present some false positive and negative errors when the person sits on the chair,

but unlike other pixel-wise approaches, it maintains the robustness of the segmen-

tation in this depth camouflage situation. Our proposal can overcome the depth

camouflage problem that appear in this sequence thanks to the robust combination
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Figure 6.5: Quantitative results of sequence displayed in Figure 6.4. The sequence presents

a depth camouflage situation in the frames surrounding the region ’A’ and region ’B’, and a

background setup modification in region ’B’.

of both color and depth sensors, which detects the depth camouflage situation and

then omits the depth sensor decision for those frames.

Figure 6.8 displays the results obtained in a smart-room sequence where depth

camouflage problems appear when the person of interest is close to the wall getting

its depth value. As we can observe in the second column, depth pixel-wise segmen-

tation fails in this situation completely losing the object detection. When using

pixel-wise color segmentation in third column, some false detections appear due to

illumination variations, while in region based color segmentation (fourth column),

small false positive detections appear due to these illumination changes and shad-

ows. The segmentation obtained by the Schiller method, in fifth column, achieves

a segmentation result that also presents these some false positive detections in the

contours of the object. Sixth column shows the results obtained by our system. As

we can see, we improve the segmentation of the object, taking the most of each

sensor, avoiding depth camouflage errors and illumination variations. Note that

some spurious detections that can appear in the segmentation process can be easily

removed by using a simple area filtering. The quantitative evaluation showed in

Figure 6.6, show us that the system based only on the depth segmentation presents

a fmeasure close to 0.3 in the frames involving the depth camouflage situation (Re-

gion ’A’), while our method maintains the segmentation quality along the sequence
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with fmeasure values between 0.85 and 0.97.

Figure 6.9 shows a sequence where foreground and background present similar

color. As we can see, methods based only on color segmentation present many false

negative errors due to the difficulty of correctly classifying between both foreground

and background classes (third and fourth columns). When using only depth seg-

mentation (second column), the detection of the object is correct, although some

false positive errors still appear in the segmentation, especially in the borders of the

object. The method proposed by Schiller (fifth column), segments the uncertainty

area in the contours of the object analyzing only the color information and because

of that it presents many false negative errors in this area. Our results (Sixth col-

umn), achieves a segmentation that correctly solves the color camouflage problem

and improves the precision in the borders of the object thanks to the trimap en-

hancement step, thus maintaining the correct detection of the object. Figure 6.7

shows the quantitative evaluation along the sequence.

In order to observe the effects of the trimap refinement over the contours of

the object, Figure 6.10 displays the segmentation results of two frames before and

after applying the trimap analysis. As we can observe, the trimap enhancement

improves the precission of the final segmentation mask by removing the false positive

detections generated by the depth detection errors due to the characteristics of the

acquisition setup.

Finally, Table 6.1 shows the quantitative results according to the fmeasure score

obtained in the nine sequences of our database. As we can observe, pixel-wise meth-

ods RGA-RGB and RGA-DEPTH give in general low scores due to camouflage

situations of the sequences and the noisy illumination environment. The SCGMM

method gives correct results when the foreground model can be correctly initial-

ized in sequences with low foreground-background similarity. The Schiller method

achieves low scores, in general, due to the simple pixel-wise segmentation method

used for the color and depth domains. Moreover, this method can not reach an ef-

fective borders correction in those sequences where the color camouflage is present,

but it achieves stable results around 0.86 for all kind of camouflage situations. In

the other hand, our system achieves high scores in both color and depth camouflage

situations allowing a robust segmentation for these kind of scenarios.

Regarding the computational cost, our system allows a speed of 0.3 frames/sec-

ond, segmenting a kinect video sequence of 640x480 pixels with one object in the

scene, and using an Intel Xeon X5450 3.0GHz processor. It uses 300 MB of RAM

without implementing any memory optimization. Parallel CUDA or OPENCL im-

plementation can be used to improve the speed rates.
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Figure 6.6: Quantitative results of the sequence displayed in Figure 6.8. Frames surrounding ’A’

present a depth camouflage situation between foreground and background.

6.8 Conclusions

We have presented in this chapter a foreground segmentation system that com-

bines color and depth sensors information in a Bayesian Logarithmic Opinion Pool

framework. We propose a Spatial Color GMM and a Spatial Depth GMM to model

the foreground, and two pixel-wise Gaussian models to model the color and the

depth background domains. Those models are combined by using the Logarithmic

Opinion Pool and the Hellinger distance in order to achieve a correct and robust

classification of the pixels of the scene. Our system is robust in front of color and

depth camouflage problems between the foreground object and the background,

and also improves the segmentation in the area of the objects’ contours by reducing

the false positive detections that appear due to the lack of precision of the depth

sensors.

Since we are using a probabilistic region-based model to model the color and

depth information of the object, the quality of the foreground segmentation will

depend on its correct initialization and the correct modeling of all the regions of the

object. Therefore, both, the initialization and the updating processes are of main

importance in order to ensure that the foreground model adapts correctly to the

changes and movements of the object along the sequence.
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Figure 6.7: Quantitative results of the sequence depicted in Figure 6.9. Color similarity between

foreground and background classes is present along the sequence.

The complexity of the foreground model in terms of number of Gaussian dis-

tributions is another important factor that will condition the quality of the final

segmentation of the object. The number of Gaussians is determined by the number

of color-spatial regions of the object, and the updating process. Therefore, we can

improve the precision of the foreground segmentation correctly adapting the spatial

model to the silhouette of the object, which means the use of high number of fore-

ground Gaussian distributions. Since the computational cost is related with this

number of Gaussians, there is a trade-off between the resolution of the foreground

model and the frame-rate of the system. We can control the number of foreground

Gaussians by changing the Gaussian split threshold presented in Section 6.3.2.2.

We propose to give the same resolution in number of Gaussians to the color

and depth foreground models because this spatial configuration achieves a correct

spatial modeling of the object to avoid false positive detections. Moreover, the fact

that both color and depth models share the same spatial distribution, allow us to

speed up the spatial model initialization and updating processes.

Shadow effects need also a special comment. The region based foreground model

that we use to model the color information of the object presents high tolerance to

the shadow effects and avoids many false negative errors. Moreover, since the depth

sensor is not affected by the shadows, the system can avoid its effects under normal
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Figure 6.8: Qualitative results of sequence 2. From left to right: original sequence recorded by

the color sensor, pixel-based fg detection in the depth domain [WADP02], pixel-based fg detection

in the color domain, region-based foreground segmentation using the method proposed in Chapter

4, color and depth segmentation obtained using [SK11] and the results obtained by our proposal

by combining color and depth sensors.

Figure 6.9: Qualitative results of sequence 3. From left to right: original sequence recorded by

the color sensor, pixel-based fg detection in the depth domain [WADP02], pixel-based fg detection

in the color domain, region-based foreground segmentation using the method proposed in Chapter

4, color and depth segmentation obtained using [SK11] and the results obtained by our proposal

by combining color and depth sensors, and the foreground SCGMM model.

circumstances. Hence, the main errors produced by the shadows can be basically an

increase of the false positive detections when the foreground depth model present

low reliability, this is: in depth camouflage situations and in the boundaries of the

object, where we are refining the foreground detection with the trimap analysis just

with color information.

Finally, in this chapter we present a proof of concepts about how to combine

color and depth sensors information. Hence, this method can be adapted to other

kind of segmentation systems better designed to other setups and special circum-

stances with minimal modifications. For instance, the background model that we

use is appropriate for indoor scenarios with stable illumination and background con-

figuration but other kind of background models like the adaptive pixel-wise GMM

proposed by [SG00] can be used for color and depth domains in outdoor or noisy

scenarios.
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Figure 6.10: Effects of the trimap refinement step. From left to right: original sequence recorded

by the color sensor, the results obtained by our proposal without applying the trimap refinement

step, and the results obtained by our proposal after using it.

Table 6.1: Data Base fmeasure Comparison Results. In bold type the results corresponding

to the best scores.

Sequence Foreground Segmentation technique

RGA-RGB RGA-DEPTH SCGMM Schiller LogPool

office1 0.82 0.83 0.92 0.92 0.93

office2 0.62 0.91 0.84 0.90 0.94

sroom1 0.87 0.83 0.87 0.86 0.89

sroom2 0.61 0.87 0.93 0.84 0.94

sroom3 0.65 0.89 0.95 0.88 0.96

sroom4 0.88 0.88 0.94 0.85 0.93

sroom5 0.78 0.87 0.83 0.84 0.92

sroom6 0.62 0.66 0.77 0.86 0.91

sroom7 0.72 0.89 0.94 0.88 0.95



Chapter 7

Reliability Maps Applied to

Robust Shape From

Silhouette Volumetric

Reconstruction

7.1 Introduction

3-dimensional reconstruction from multiple calibrated planar images is a major

challenge in the image processing area in order to obtain a realistic volumetric

representation of the objects and people under study. In this field, Shape from

Silhouette (SfS) gather all the techniques to reconstruct the 3-dimensional structure

from a set of segmentation masks obtained from multi-view smart-room scenarios.

Many of the SfS proposals are based on the Visual Hull concept presented by [Lau91]

and based on the 3-dimensional geometric modeling, first introduced by [Bau74].

As explained in Section 3.2.3.1, the Visual Hull (VH) is defined as the largest

solid volume equivalent to the real object that explains the silhouettes of each one

of the views, obtained as the geometric intersection of all visual cones explaining the

projection of a silhouette in each corresponding view. Therefore, the quality of the

3-dimensional reconstruction will depend on the configuration of the acquisition

setup used to record the scene: number of camera sensors, their position in the

smart room, the kind of sensors utilized in the recording and their calibration.

Moreover, since the Visual Hull is based on the intersection of the rays that 2D

foreground points in each view define in 3D space, these methods are also highly
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dependent on the quality and consistency of the silhouettes obtained in each one

of the views since a miss in a view propagates this error into the 3D volume re-

construction. Even if we assume a correct configuration and calibration of the set

of cameras that performs the acquisition setup, these errors in silhouettes consis-

tency can arise due to the foreground-background configuration of the scene. Most

common errors appear due to the presence of shadows and camouflage situations

between foreground and background regions. Therefore, there is a clear depen-

dency of the 3D reconstruction with respect to the foreground segmentation, which

makes foreground segmentation central to the problem of obtaining an automatic

volumetric reconstruction.

In this chapter we focus on multi-view smart-room sequences recorded by means

of an acquisition setup composed of M static color cameras used for a posterior 3-

dimensional reconstruction. We will use the improvements presented in previous

chapters, regarding 2D foreground segmentation and sensor reliability analysis, in

3D SfS systems. Our objective is to establish a more complete communication

between the foreground segmentation process and the 3-dimensional reconstruction

in order to obtain an enhanced 3D object volume.

7.1.1 State of the Art

Since Shape from Silhouette techniques are based on 2-dimensional foreground

masks, previous work in this area can be presented as the foreground segmentation

techniques suitable for 2-dimensional smart-room scenarios, SfS proposals focused

on the 3-dimensional reconstruction algorithms, and those techniques that try to

enhance the final 3-dimensional volume by improving the communication between

both steps. In addition to the techniques presented in 3.2.3.1, this section will ex-

tend the previous work knowledge, by introducing other important methods of the

literature.

7.1.1.1 Foreground Segmentation

A common approach for segmenting the foreground objects in multi-view smart-

room sequences consists in defining individual strategies for each one of the views,

which can lead to waste memory resources and robustness in the overall segmen-

tation process, since these techniques are not taking into account the redundant

information that appear among views. In this kind of sequences, this redundancy is

strongly present in the data available to define the foreground objects to segment,

and thus, it can be utilized to improve the foreground segmentation in each one of

the views.
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7.1.1.2 Shape from Silhouette

Recently, some SfS proposals have been presented in order to improve the resultant

3D volumetric reconstruction. [FB03, LFP07, MBM01] worked with Polyhedral Vi-

sual Hull techniques, which computes the 3D surface of the visual hull and describes

it as a polygon mesh, while, more recently, [FLB07] proposed a polygonized Visual

Hull.

7.1.1.3 Shape from Silhouette with Enhanced Robustness

Many authors have been working in 3-dimensional reconstruction techniques that

deal with the inconsistency of the silhouettes proposing SfS techniques with en-

hance robustness. In these proposals, consistency tests between views and further

processing is applied in order to overcome the limitations in the silhouette extrac-

tion. [AP09] uses techniques based on minimization of energy functions including

functionals based on the local neighborhood structures of three-dimensional ele-

ments and smoothing factors. Algorithms based on graph cuts allow to obtain a

global minimum of the defined energy function ([KZ02]) with great computational

efficiency. The method explained in Section 3.2.4.2 ([FB05]) proposed the Space

occupancy grids where each pixel is considered as an occupancy sensor, and the vi-

sual hull computation is formulated as a problem of fusion of sensors with Bayesian

networks, while the system introduced in 3.2.4.1 ([LP06a]), worked with the Shape

from Inconsistent Silhouette for cases where silhouettes contain systematic errors,

by combining the probabilities of each one of the pixel. [DMMM10] proposed a

Shape from silhouette using Dempster-Shafer theory which takes into account the

positional relationships between camera pairs and voxels to determine the degree

in which a voxel belongs to a foreground object.

Although these techniques increase the computational cost, the results obtained

overcome the simple systems that consider the foreground segmentation and the

3-dimensional reconstruction as separated steps. In spite of this, many of these

methods uses probabilistic modeling of the background and the foreground classes

with simple models, which can lead to decision errors in the final volume recon-

struction.

7.1.2 Proposed Method

We propose a Shape from Silhouette system that matches the SfS with Enhanced

Robustness proposals, and follows the work-flow displayed in Figure 7.1:

Foreground segmentation: We propose to use the Bayesian region-based fore-

ground segmentation method for each one of the views explained in Chapter 4,
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Figure 7.1: Work-flow of the proposed shape from silhouette system.

which combines pixel-wise background model with region-based spatial color Gaus-

sian Mixture Model for the foreground and region-based spatial color Gaussian

Model for the shadow regions. Hence, we achieve a correct modeling of the fore-

ground object that will improve the final foreground segmentation masks in each

view.

Reliability maps: The advantages of the foreground segmentation method is

two-fold, it achieves a correct foreground detection of the objects and, moreover, it

allows us to compute the reliability map of each view by comparing the probabilistic

models of the foreground, background and shadow classes one another. According

to the development presented in Section 6.4.1, and for each pixel, we compute the

Hellinger distance [Ber77] between the foreground model and the background and

shadow models. This distance will give us a [0,1] bounded value which will be used

as a reliability value.

3-dimensional volumetric reconstruction: We compute the Visual Hull recon-

struction based on the intersection of the rays that 2D foreground points in each

view define in 3D space, but using only the pixels of each view that present enough

reliability to be taken into account in the process. That is, working only with those

pixels where foreground model is separated in the color domain from the back-

ground and shadow models, thus, dealing with inconsistent silhouettes obtained in

foreground-background camouflage situations.

Update probabilistic models: Since we use the 2D planar segmentation proposed

in Chapter 4, the updating of the probabilistic models used for the foreground,

background and shadow classes will be performed according to this method by

using the segmentation obtained in previous frame t− 1.
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This system allows a reconstruction which automatically defines the optimal tol-

erance to errors for each one of the voxels of the volume, in order to obtain a robust

3D volume of the object, improving the traditional Shape from Silhouette recon-

struction obtained by defining a fixed tolerance for the overall volume (tolerance to

errors reconstruction was introduced in Section 3.2.3.1.1).

The chapter is organized as follows: Section 7.2 explains the Bayesian foreground

segmentation method utilized in each view. Section 7.3 is devoted to explain the

reliability maps while Section 7.4 describes the robust 3-dimensional reconstruction.

Finally, Section 7.5 and Section 7.6 focus on the results and conclusion respectively.

7.2 Multi-View Foreground Segmentation

Specific probabilistic models are used to represent the foreground and background

classes for each one of the color sensors. Analogously to Section 4, we use one pixel-

wise Gaussian model in the color domain for the background, and two region based

models for the foreground and shadow classes: Spatial-Color Gaussian Mixture

Model (SCGMM) and Spatial-Color Gaussian Model (SCGM) respectively. All

the processes concerning the 2D planar foreground segmentation: initialization,

classification and updating, are based on the development carried out in Chapter

4. We refer the reader to this chapter in order to extend this information.

7.3 Reliability Maps

Analogously to the development proposed in Chapter 6, we obtain the reliability

maps of each camera view γCj , by analyzing the similarity between the foreground

and the background classes, but in this approach, we also compute the similarity

between the foreground and the shadow classes in order to take into account the

shadow effects as well. Hence, for each one of the image pixels zi = RGB XY ∈ It,
in each camera view Cj , we compute the Hellinger distance ([Ber77]) in the color

domain, to detect the degree of similarity between foreground and l ∈ {background,

shadow} models that each one of the camera sensors J ≡ {C1, . . . Cj , . . . CM}
presents in the color c = RGB domain:

H
Cj

i (q
Cj

fg,i, q
Cj

l,i ) =

√
1− BC

Cj

i , (7.1)

where 0 6 H(q
Cj

fg,i, q
Cj

l,i ) 6 1, q
Cj

fg,i and q
Cj

l,i are the p.d.f.’s that model the i-th pixel

for the foreground and l class respectively in the Cj view. BC is the Bhattacharyya
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Coefficient, which is formulated, for a multivariate Gaussian distribution, as shown

in Chapter 6, Equation (6.14).

Since the 2D foreground classes are modeled by means of SCGMMs, q
Cj

fg,i will

be chosen according to the Gaussian k that maximizes the probability of the i-th

pixel under analysis for each view:

P (k|zi, fg) =
ωkGfg(zi, µk, σk)∑
k ωkGfg(zi, µk, σk)

(7.2)

In the case of the background, since we have defined a pixel-wise model, q
Cj

bg,i

will be directly obtained from the background Gaussians associated to this pixel.

For the shadow class, q
Cj

sh,i is the SCGM used to model the shadow projected by

the person. The foreground-shadow reliability will be utilized only over the spatial

region modeled by the shadow Gaussian, since it is the only region affected by the

shadow effects.

Therefore, for each one of the pixels of the camera sensors, we will obtain the final

reliability value γ
Cj

i , according to the comparison between foreground-background

and foreground-shadow models. The final reliability maps for each camera, γCj , is

obtained according to:

γ
Cj

i =


min

(
H
Cj

i (q
Cj

fg,i, q
Cj

bg,i), H
Cj

i (q
Cj

fg,i, q
Cj

sh,i)
)
→ shadow model region

H
Cj

i (q
Cj

fg,i, q
Cj

bg,i) → otherwise

(7.3)

where the most restrictive distance between H
Cj

i (q
Cj

fg,i, q
Cj

bg,i), H
Cj

i (q
Cj

fg,i, q
Cj

sh,i) is

chosen in the regions belonging to the spatial shadow models, and H
Cj

i (q
Cj

fg,i, q
Cj

bg,i)

in the rest of the image.

7.4 Robust 3-Dimensional Reconstruction

The concept of Visual Hull (VH) is strongly linked to the one of silhouettes’ consis-

tency. Total consistency hardly ever happens, due to errors in the 2D segmentation

process, and tolerance to errors (τ) can be used in the 3D reconstruction process.

This approach will lead to reduce the number of false negative errors although losing

precision in the final reconstructed volume.

We propose a SfS reconstruction method based on the silhouette reliability

principle. Our system validates the reliability of the background regions of the

silhouettes, since they are the ones which propagate misses to the 3D volume re-
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construction, and uses these reliable background pixels of each view to compute the

robust Visual Hull of the object, thus dealing with 2D errors. Since we are using a

foreground, background and shadow modeling, we use, for each pixel i in each view

Cj , the reliability γ
Cj

i explained in the previous section, according to the similarity

that the foreground model presents with respect to the background and shadow

probabilistic models.

The robust shape from silhouette algorithm that we propose is shown in Algo-

rithm 5.

Algorithm 5 Reliable Shape from Silhouette algorithm

Require: : Silhouettes: S(c), Reliability Test: RT(voxel, camera),

Projection Test: PT (voxel, silhouette)

1: for all voxel do

2: voxel ← Foreground

3: for all cameras do

4: if PT (voxel, S(c)) is false and RT(voxel, camera) > Rth then

5: voxel ← Background

6: end if

7: end for

8: end for

The projection test (PT) consists in testing the central pixel within the splat

of the voxel in camera Cj , which is, in fact, the pixel placed in the centroid of the

number of pixels under the projection of the voxel in the j-th view.

Once the projection Test has been carried out, we can use the voxel-pixels corre-

spondence to check the reliability that each one of the pixels present. The Reliability

Test (RT) is based on the analysis of the reliability value for each one of the pixels

that appear in the voxel’s projection for each one of the views, (γ
Cj

i ), which is [0,1]

bounded.

We define the Reliability threshold Rth as a value 0 < Rth < 1 which will

determine the minimum reliability value to consider the background pixels in the

final reconstruction process. In our experiments, we have tested that a reliability

factor Rth = 0.7 yields correct results in the final reconstruction process.

This 3-dimensional reconstruction is equivalent to define an optimal error toler-

ance value τ for each one of the voxels of the image, improving the precision of the

volume in those regions where no tolerance is necessary, while reducing the false

negative errors in regions with reliable misses.
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7.5 Results

We have evaluated our proposal by analyzing four multi-view sequences, of the

database presented in [INR], which present strong difficulties to achieve a correct

3-dimensional reconstruction due to the similarity between some foreground regions

and the background. These sequences have been recorded with different acquisition

setups in order to better analyze the effect of the errors tolerance in the volumetric

reconstruction:

• Baton sequence, recorded with 16 cameras. 180 frames.

• Dancer sequence, recorded with 8 cameras. 250 frames.

• Karate sequence, recorded with 16 cameras. 150 frames.

• Open arms sequence, recorded with 18 cameras. 300 frames.

The sequences are used to carry out a qualitative and quantitative evaluation

of the proposal presented in this chapter. Qualitative results are obtained by com-

puting the overall sequences and selecting some representative frames, while the

quantitative results are obtained by comparing the results, in the first camera view

of each sequence, with the ground truth for ten equally-distributed frames of each

one.

The evaluation is obtained by processing each sequence using our proposal (Ro-

bust3D) and we have compared the volumetric reconstruction results with the ones

obtained by using the Visual Hull reconstruction with different tolerance to errors

(τ) in order to achieve a conservative volume of the objects (Tol=0, Tol=1 and

Tol=2).

Figure 7.2 and Figure 7.3 display the results obtained in these four sequences

recorded with 16 cameras (first and third sequences), 8 cameras (second sequence)

and 18 cameras (fourth sequence). Some representative views of the overall multi-

view sequence have been selected in each case.

Figure 7.2, shows the volumetric reconstruction results in each one of the se-

quences. The segmentation masks used in all these reconstructions are the ones

obtained thanks to the segmentation system proposed in Chapter 4, and are dis-

played on the first row, in second column. As we can observe, some false negative

errors are present in some of the views, due to the foreground-background camou-

flage problem and the presence of shadows, which reduces the recall of the results

increasing the false negative detections.

In the first row-third column of Figure 7.2, we can see the spatial representation

of the foreground model. Each ellipse represents one Gaussian of the foreground
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model, and is colored with the mean color that each distribution is modeling.

From second to fifth row, we can observe the different volumetric reconstructions

that we can obtain using the Visual Hull reconstruction with different tolerance to

errors. When we do not use any tolerance to errors (τ = 0) (second row), any false

negative error that appears in the 2D segmentation is propagated to the final 3D

volume, thus generating critical false negative errors in the resultant reconstruction.

When using tolerance to errors (third and fourth rows), we reduce significantly the

propagation of the false negative errors to the 3D space, although losing precision in

the volumetric reconstruction, thus obtaining a coarse representation of the object.

Our system (fifth row) achieves a 3-dimensional reconstruction that only applies

the tolerance to errors in those background pixels where the reliability between

foreground and background and shadow classes is low, thus reducing the propagation

of those errors to the 3D space. As we can see, our system achieves an object

reconstruction that presents similar precision than the Visual Hull reconstruction

without tolerance (τ = 0), but solving a high percentage of false negative errors.

Figure 7.3 shows more qualitative results obtained by projecting the resultant

volumes to the view under analysis. Second column of this figure shows the vol-

umetric reconstruction obtained by our proposal where, voxels computed with a

volumetric reconstruction without tolerance to errors (tol=0) are displayed in white

color, voxels that present tol=1 are colored in red and finally, voxels obtained by

means of a tol=2 reconstruction are depicted in green color. As we can observe, the

volumetric reconstruction obtained by means of the method presented in this chap-

ter, achieves a better reconstruction of the volume thanks to the different tolerance

to errors that each one of the voxels present according to the reliability of the the

pixels in each view.

Finally, quantitative results of these sequences are displayed in Figure 7.4, Figure

7.5, Figure 7.6 and Figure 7.7. As we can see, the method that we propose, achieves

a volumetric reconstruction that adapts better to the circumstances of the sequence

under analysis than the reconstructions with fixed tolerance. Our method maintains

a high fmeasure value for the sequences under study, maintaining the precision of

the volumetric reconstruction while reducing the false negative detections.

Since this system utilizes the foreground segmentation method proposed in

Chapter 4, the computational cost of our system depends on the number of Gaus-

sians of the model and the sizes of the images. Considering a parallel processing for

computing the foreground segmentation and reliability maps in each camera sensor,

the system achieves a speed of 0.3 frames/second analyzing a standard sequence

and using an Intel Core2 Duo 3GHz processor and 20 GB RAM.
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7.6 Conclusions

In this chapter, we have introduced a novel multi-view segmentation and 3D recon-

struction system. To this end, we have proposed a robust Visual Hull reconstruction

that uses the reliability of the pixels to avoid those views where the pixels detected as

background, present high similarity between foreground, background and shadows

models. Although the system is highly dependent on the foreground segmentation

model and how it represents the foreground object in each one of the views, our

approach achieves better accuracy of the reconstructed volume while reducing the

critical misses that appear in a direct 3D reconstruction with τ = 0, and reducing

the false positive regions that appear if we decide to use a direct τ = 1 or τ = 2

reconstruction.
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(a) Baton sequence (b) Dancer sequence

(c) Karate sequence (d) Open arms sequence

Figure 7.2: Qualitative foreground segmentation and 3D volume reconstruction results. First

row shows from left to right: original view; Bayesian foreground segmentation proposed in the

paper: Color ellipses correspond to the Gaussians of the projected foreground model, white ellipse

corresponds to the spatial representation of the shadow model; Foreground model projected to

the view. The ellipses correspond to the foreground model projected to this view and they are

colored with the mean color that are modeling. Next rows are: the projected volume computed

with tolerance τ = 0; volume with τ = 1; volume with τ = 2; Robust 3D reconstruction using our

method.
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Figure 7.3: Qualitative 3D reconstruction results. Projection of the 3D reconstructed volume

over the 2D view under analysis. From left to right: original view; robust 3D reconstruction using

our method; the projected volume computed with tolerance τ = 0; volume with τ = 1; volume

with τ = 2. In second column, white voxels are the ones belonging to the tol=0 reconstruction,

red voxels come from tol=1, and green voxels are their counterpart for tol=2.
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Figure 7.4: Quantitative evaluation of baton sequence (corresponding to Figure 7.2(a)).
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Figure 7.5: Quantitative evaluation of dancer sequence (corresponding to Figure 7.2(b)).



136
Reliability Maps Applied to Robust Shape From Silhouette Volumetric

Reconstruction

6 0 6 2 6 4 6 6 6 8 7 0

0 . 9 2

0 . 9 4

0 . 9 6

0 . 9 8

f_m
ea

su
re

f r a m e s

 R o b u s t 3 D
 T o l = 0
 T o l = 1
 T o l = 2

(a)

6 0 6 2 6 4 6 6 6 8 7 0

0 . 8 6

0 . 8 8

0 . 9 0

0 . 9 2

0 . 9 4

0 . 9 6

0 . 9 8

Pre
cis

ion

f r a m e s

 R o b u s t 3 D
 T o l = 0
 T o l = 1
 T o l = 2

(b)

6 0 6 2 6 4 6 6 6 8 7 0
0 . 9 3

0 . 9 4

0 . 9 5

0 . 9 6

0 . 9 7

0 . 9 8

0 . 9 9

1 . 0 0

Re
ca

ll

f r a m e s

 R o b u s t 3 D
 T o l = 0
 T o l = 1
 T o l = 2

(c)

Figure 7.6: Quantitative evaluation of karate sequence (corresponding to Figure 7.2(c)).
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Figure 7.7: Quantitative evaluation of open arms sequence (corresponding to Figure 7.2(d)).



Chapter 8

Joint Multi-view Foreground

Segmentation and 3D

Reconstruction with

Tolerance Loop

8.1 Introduction

In this chapter we present a foreground segmentation and 3D reconstruction system

for multi-view scenarios based on a different principle than the method presented in

the previous chapter. This proposal was developed jointly with Dr. Jordi Salvador

Marcos, expert in 3D objects reconstruction, in order to achieve a cooperative

framework between the foreground segmentation and 3D reconstruction processes.

In this system, we introduce the spatial redundancy of the multi-view data into the

foreground segmentation process by combining segmentation and 3D reconstruction

in a two steps work-flow. First, the segmentation of the objects in each view uses

a monocular, region-based foreground segmentation in a MAP-MRF framework for

foreground, background and shadow classes. Next, we compute an iterative volume

reconstruction in a 3D tolerance loop, obtaining an iteratively enhanced SfS volume.

Foreground segmentation is improved by updating the foreground model of each

view at each iteration. The results presented in this chapter show the improved

foreground segmentation and the reduction of errors in the reconstruction of the

volume.
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Figure 8.1: Work-flow of the proposed system.

8.1.1 Proposed System

We propose a system for foreground segmentation and 3D reconstruction that com-

bines foreground segmentation with volumetric reconstruction, better exploiting the

spatial data redundancy in multi-view scenarios. The system is based on the prin-

ciple that improved planar foreground segmentation of each view also improves the

3D reconstruction. Hence, we propose an iterative loop involving both processing

steps for each frame of the sequence where foreground segmentation in each view is

performed by means of SCGMM foreground modeling presented in Chapter 4 and

Visual Hull reconstructions help, in turn, to improve the segmentation, as shown in

the overview of the system work-flow in Figure 8.1.

As commented in previous chapters, the volumetric reconstruction is very sen-

sitive to the presence of foreground detection errors in any view. A miss in a view

propagates this error into the 3D volume reconstruction. In this chapter, we present

an enhanced Conservative Visual Hull reconstruction with error tolerance to achieve

volumetric reconstruction avoiding the propagation of silhouette misses. The result-

ing 3D volume, which will initially show more false positives, will be projected in

some iterations for the spatial updating of the foreground model. This projection is

also used to increase the prior foreground probability of the pixels belonging to the

projected volume, with the aim of recovering foreground object regions that were

not correctly modeled by the foreground model of each view. Afterwards, a new

segmentation will be obtained for each view. This refined planar foreground segmen-

tation is then used again for reconstructing the Visual Hull iteratively decreasing

the tolerance to errors until we reach a zero tolerance Visual Hull reconstruction.

The final 3D volume improves the performance of a Visual Hull reconstruction ob-

tained with tolerance 2, reducing false positives, and the one obtained directly with

tolerance 0, improving the completion of the volume by reducing false negatives.

This chapter is organized as follows: foreground segmentation system is ex-

plained in Section 8.2. Section 8.3 is devoted to the proposed 3D reconstruction

technique. Section 8.4 defines the 3D reconstruction feedback. Finally, results and
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Figure 8.2: Proposed 3D reconstruction. From left to right, conservative visual hull; smoothed

surface after 10 iterations of low-pass mesh filtering; and resulting surface after fitting and one

step of low-pass mesh filtering.

conclusions are presented in Section 8.5 and Section 8.6 respectively.

8.2 Planar Foreground Segmentation

As in the previous chapter, we use the foreground segmentation based on the work

presented in Chapter 4 , that combines background, foreground and shadow models

into a MAP-MRF framework. We use a probabilistic pixel-wise background model

in the RGB color domain to obtain initial foreground and shadow pixels via excep-

tion to background analysis that are used to initialize the region-based foreground

and shadow models. For each frame, a Bayesian pixel classification is done among

the background, the foreground, and the shadow models. Finally, this classification

is used to update the foreground, shadow and background models.

8.3 3D Reconstruction Technique

We use a technique to extract an accurate surface which is robust to inconsistent

silhouettes presented in [SM11]. The method consists in the concatenation of: (1)

a conservative estimate of the visual hull, with tolerance to silhouette segmentation

errors and spatial smoothness constraints; (2) an iterative low-pass surface filtering

for extracting a smooth surface with consistent vertex normals and limited curvature

from a mesh with correct topology extracted with marching cubes; and (3) a surface

fitting that provides a more accurate surface estimate. Surfaces obtained after each

of these three stages are shown in Figure 8.2, using 16 views from [INR].

8.3.1 Conservative Visual Hull

Voxel occupancy is defined by the minimization of an energy function, represented

as a bidirectional graph, with a data term determined by a conservative consistency

test and a constant regularization term for spatial smoothness.
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The bidirectional graph is built as follows. The data term –graph node– is set

to 1 when a voxel’s center projects onto pixels classified as foreground in a number

of views at least equal to the number of frusta in which it is included minus an

error tolerance (τ). It is set to 0 otherwise. The estimate of the visual hull is

conservative in the sense of assuming that τ foreground under-segmentation errors

can occur. The regularization term –graph link– is set to a constant smoothing

constraint λ ∈ [0.25, 0.5] between each pair of 8-neighbor voxels. The max-flow

algorithm [BVZ01] obtains the minimum cost graph-cut, which results in the final

labeling of each voxel as occupied or empty.

8.3.2 Iterative Low-Pass Mesh Filtering

Marching cubes [LC87] is applied to the resulting volume, resulting in a topologically

correct triangle mesh of its surface. Due to limited volumetric sampling, it lacks

accuracy with respect to the original silhouettes when re-projected onto the original

viewpoints. A per-vertex fitting of the surface can improve its accuracy, but it

requires a robust estimate of per-vertex normals.

Therefore, a smoothed version of the input mesh is obtained through the iterative

application of a local filter. This filter consists in setting each vertex’s new position

as the midpoint between its old position and the average of its adjacent vertexes.

After a number of 10 iterations, vertex normals can be estimated by averaging the

normals of the adjacent faces to each vertex.

8.3.3 Surface Fitting

This stage fits the surface to the input silhouettes, using a modification of the

dynamic surface extraction algorithm in [SSC10]. It consists in a per-vertex dilation

by a distance rd –set to the voxel size– followed by an erosion along its inverted

normal, in search of its optimal location. The following method is applied to each

vertex xi:

1. Define a virtual segment, which joins xi’s dilated position xdi := xi + rdn̂i

and its eroded position xei := xi − rdn̂i

2. Shrink the virtual segment by displacing the dilated position xdi towards xei .

Along this path, store the closest position to xi, namely xsi , at which the

moving extreme crosses the limit of the conservative visual hull

3. If xsi is found, set it as the new position xi := xsi

The rd parameter can be set to the same value as the voxel size used for the voxelized

estimate of the conservative visual hull, delivering correct results in most cases. The
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rest of the parameters are equivalent to those in the shape-from-silhouette stage.

Finally, in order to improve the visual quality, a single-pass smoothing like the

one in Section 8.3.2 is applied on the mesh, resulting in an accurate conservative

estimate of the visual hull.

8.4 3D Reconstruction Feedback

Once the volume reconstruction is computed with the corresponding tolerance value,

the feedback between the 3D reconstruction and the planar foreground model of

each view is performed. The 3D volume of the object is projected to each view,

obtaining a projection mask that contains robust information about the foreground

segmented in the other views. The projection mask will be taken into account for

updating the foreground model of the object in each view, and for increasing the

prior probability of the foreground class.

8.4.1 Spatial Foreground Model Updating

At each tolerance loop iteration, we propose to update the foreground model of

each view with the projection of the 3D volume, but only in the spatial domain and

not in the color domain. This is done in order to reduce error propagation due to

false positives appearing at the tolerance loop iterations. And we follow the spatial

updating proposed in Chapter 4, Section 4.4.1.2, assigning each pixel belonging to

the volume projection to the Gaussian k that maximizes:

P (k|zi, fg) =
ωkGfg(zi, µk, σk)∑
k ωkGfg(zi, µk, σk)

(8.1)

the denominator is equal for all classes and can be disregarded:

P (k|zi, fg) ∝ ωkGfg(zi, µk, σk) (8.2)

Once each pixel has been assigned to a Gaussian, the spatial mean and covariance

matrix of each Gaussian are updated with the spatial mean and variances of the

region it is modeling. The Gaussians not modeling any pixel are removed from the

model. In order to achieve a better adaptation of the model into the foreground

object shape, we propose a Gaussian split criterion according to the spatial size of

the Gaussian.

8.4.2 Prior Foreground Probability

After the foreground model updating, a new foreground segmentation is computed

with the new configuration of the spatial foreground model. For this new segmenta-
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Figure 8.3: Qualitative foreground segmentation and 3D volume reconstruction results of dancer

and open arms sequences. From left to right: original view; pixel-wise foreground segmentation as

proposed in [WADP02]; foreground segmentation with the presented Bayesian method; tolerance

loop iterations showing the projected volume computed with tolerance τ = 2, τ = 1 and τ = 0;

3D reconstruction: initial τ = 0; 3D reconstruction after first loop iteration (τ = 2) and final 3D

reconstruction τ = 0 after tolerance loop with 3 iterations.

tion at each loop iteration, we propose to increase the prior foreground probability

of the pixels that belong to the projection mask. A constant proved enough in our

tests as a factor for scaling the foreground prior probability of the model, thus im-

proving the segmentation in those regions where foreground and background model

present similar probability by using the information of the other cameras. Hence,

the final foreground probability is defined as follows:

P (fgi|zi) ∝ P (zi|fgi)P (fgi) (8.3)

where i is the pixel belonging to the volume projection in the view under analysis,

P (zi|fgi) is the foreground probability of the planar fg model and P (fgi) is the

planar prior probability scaled with the constant factor at each loop iteration.

8.5 Results

We test our proposal with the sequences published in [INR] and with the same data

set introduced in Section 7.5. Figure 8.3 displays results obtained in two different

scenarios (open arms and dancer) with 18 cameras (top) and 8 cameras (bottom).

Two representative views of the overall multi-view sequence have been selected in

each case. We have processed each sequence using our system with 3 iterations of
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the tolerance loop: τ = 2, τ = 1 and τ = 0. The third column shows the Bayesian

foreground segmentation that we obtain before the tolerance loop iteration. Despite

some false negatives, this segmentation gives us a foreground mask with less misses

than the classical pixel-wise segmentation method [WADP02] in the second column.

The projections of the volume achieved at each tolerance loop iteration are shown

at columns four, five and six. We can see how the volume projection adjusts better

to the actual shape of the object at each iteration, reducing the false positives due

to the tolerance effect while correcting false negatives of the initial foreground seg-

mentation. Also the spatial domain of the foreground model is represented at each

iteration (red coloured ellipses) to observe the updating process of the 3D recon-

struction feedback. Finally, 3D reconstruction results are shown in the last three

columns to illustrate the system improvement. Column seven shows the volume

obtained with τ = 0 without using the tolerance loop, column eight shows the vol-

ume obtained using τ = 2 -also without tolerance loop- and the last column shows

the results obtained by the overall system with three tolerance loop iterations. As

we can observe, our method achieves better accuracy of the reconstructed volume

reducing the critical misses that appear in a direct 3D reconstruction with τ = 0,

and reducing the false positive regions that appear if we decide to use a direct τ = 2

reconstruction.

More qualitative results are displayed in Figure 8.4, where the resultant 3D vol-

ume obtained by using our proposal (Tol. loop, in second column), is compared

with the volumetric reconstruction obtained by computing the Visual Hull recon-

struction with different tolerance to errors (τ) (Tol=0, Tol=1 and Tol=2). In this

Figure, we have projected the 3D object reconstruction to the view under analysis

for each one of the sequences (baton, dancer, karate and open arms). As we can see,

the 3D reconstruction obtained by means of the method presented in this chapter,

achieves a correct reconstruction of the volume by computing the tolerance loop

for the detection-3D reconstruction process, thus reducing the false negative errors

that can appear in the sequence which are not consistent with more than two views.

Finally, quantitative results of these sequences are displayed in Figure 8.5, Figure

8.6, Figure 8.7 and Figure 8.8. In these Figures, the resultant 3D volumes, projected

to each view, are analyzed in terms of Precision, Recall and fmeasure. The system

proposed in this Chapter achieves a volumetric reconstruction that reduces the false

negative errors that appear in the detection of the object, thus maintaining a correct

rate between False negative and False positive errors along the four sequences.

Although some false positive detections can appear in the boundaries of the object,

our method maintains a high fmeasure value for the sequences under study, improving

the results obtained by the 3D reconstruction methods with tolerance to errors.

Regarding the computational cost of the overall system, the iterative process
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carried out in the tolerance loop, makes the time consumption three times higher

than the one required to develop a direct foreground detection and 3D volumetric

reconstruction.

8.6 Conclusions

In this chapter, we have presented a novel system for multi-view foreground seg-

mentation and 3D reconstruction. By combining both steps in a tolerance loop

reconstruction, it improves planar foreground segmentation and, consequently, 3D

reconstruction. An iterative 3D reconstruction and foreground segmentation loop

allows exploiting the redundancy in the multiple views for correcting the misses

of the foreground segmentation of each view, without increasing the false positive

errors. The results show how the system outperforms direct 3D reconstruction with

τ = 0, reducing the misses of the resulting volume, and with τ = 2, increasing the

precision of the volume.
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Figure 8.4: Qualitative 3D reconstruction results. Projection of the 3D reconstructed volume

over the 2D view under analysis. From left to right: original view; 3D reconstruction using our

method; the projected volume computed with tolerance τ = 0; volume with τ = 1; volume with

τ = 2.
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Figure 8.5: Quantitative evaluation of baton sequence.
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Figure 8.6: Quantitative evaluation of dancer sequence.
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Figure 8.7: Quantitative evaluation of karate sequence.
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Figure 8.8: Quantitative evaluation of open arms sequence.





Chapter 9

Multiview Foreground

Segmentation Using 3D

Probabilistic Model

9.1 Introduction

As we have seen in previous chapters, it is possible to establish a collaboration be-

tween views in order to increase the robustness of the overall system (foreground

segmentation + 3D reconstruction). The proposals presented so far, have an inde-

pendent processing for each one of the views, and try to improve the final results by

combining the reliability in each view (Chapter 7) or by using the back projection

of the resultant 3D reconstructions (Chapter 8). In this chapter, we explain the

last proposal of the manuscript that leads us toward the complete integration of

the multi-view smart-room segmentation and 3D reconstruction. We propose to

define a 3-dimensional modeling of the foreground object under analysis in order

to centralize the probabilistic information of the object, for all the views, in the

3-dimensional space, thus giving robustness to the process. This model will be used

to achieve the objects’ segmentation in each view, preserving the robustness of the

model in those views where foreground and background present high similarity and

also, it can be exploit to achieve 3D information of the object’s movements.

In this system, we define a probabilistic 3D model of the foreground object,

where the 3D spatial-color Gaussian Mixture Model (3D SCGMM) is defined to

model the probabilistic information of the foreground object to segment in the

v = RGB XY Z domains. This model will be used as a non-rigid characterization

of the object. Therefore, in order to correctly define this model, the 3-dimensional
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reconstruction of the object under analysis and the texture that this object presents

in the multi-view sequence are necessary. Figure 9.1 shows an example of the 3D

reconstruction, and the projection of the colors in each one of the voxels.

(a) (b)

Figure 9.1: Example of colored voxels. a) is the ground truth. b) shows the voxelized 3-dimesional

reconstruction with colorized .

Since this chapter deals with 3-dimensional object models as well as the multi-

view foreground segmentation, next section is devoted to extend the state of the art

presented in previous chapters by reviewing approaches related with 3D models.

9.1.1 State of the Art

In the recent years, there have been special interest in monitoring the human ac-

tivities and movements in order to obtain a semantic information of the scene.

Hence, approaches based on rigid human body models have been proposed in the

literature to deal with this analysis. Human motion capture has been extensively

studied, [MG01, MHK06, SBB10] give and in-depth survey of the literature. In

[GRBS10], the multi-layer framework is proposed by means of particle-based op-

timization related to estimate the pose from silhouette and color data. The ap-

proaches in [BS10, LE10, SBF00] require training data to learn either restrictive

motion models or a mapping from image features to the 3D pose. In [SHG+11] the

authors propose a rigid human body model that comprises a kinematic skeleton and

an attached body approximation modeled as a Sum of Gaussians where 58 joints

work together to model a detailed spine and clavicles. In [GFBP10] shape and mo-

tion retrieval are detected by means of EM framework to simultaneously update a

set of volumetric voxel occupancy probabilities and retrieve a best estimate of the

dense 3D motion field from the last consecutive frame set.
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Figure 9.2: Work-flow of the proposed system.

9.1.2 Proposal

Figure 9.2 shows the work-flow of the system. The main steps of this work-flow are:

Create 3D model: Once all the cameras of the multi-view system have detected

and segmented the object under analysis, the foreground 3D SCGMM can be cre-

ated with the 3D reconstruction obtained from the 2D silhouettes. Although any

SfS technique can be used to perform the volumetric reconstruction, we utilize a

conservative Visual Hull reconstruction with tolerance τ = 1 in order to reduce the

possible misses without increasing too much the false positive detections. Moreover,

the voxels of this volume are colorized with the object colors in order to obtain a

realistic volume reconstruction, by obtaining the average color that the pixels be-

longing to the voxel’s projection present in each view. The voxels spatial and color

information will be used to initialize the foreground 3D SCGMM by means of the

EM algorithm [DLR+77]. Next frames of the sequence will utilize the 3D model in

the segmentation process.

Foreground segmentation: Foreground segmentation is computed by means of

the system proposed in Chapter 4, thus combining in a Bayesian MRF-MAP frame-

work pixel-wise background model with SCGMM and SCGM foreground and shadow

models respectively.

3-dimensional volumetric reconstruction: As in the 3D model creation, conser-

vative Visual Hull reconstruction with tolerance τ = 1 is used in order to obtain

the 3D reconstruction of the foreground object that will result the output of the

system.
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Figure 9.3: Example of foreground 3D SCGMM from different points of view. Each ellipsoid is

the spatial representation of the 3D SCGMM.

Spatial updating of the 3D model: The 3D object reconstruction will be used

to update the 3D foreground model in order to adapt it to the movements that

the foreground object performs at each frame. If the model is correctly initial-

ized in the color and spatial domains, only a spatial updating will be necessary to

achieve a correct characterization of the object since, unlike the 2D SCGMM, the

3D reconstruction does not present regions occluded to the camera.

Projection of the 3D SCGMM to 2D views: The final step of this work-flow

consists in projecting the 3D SCGMM to each one of the views, in order to use the

3D model in the 2D foreground segmentation. Therefore, for each camera sensor,

the 2D foreground model will be composed by the projection of the 3D Gaussians

that model voxels which present direct visibility from the camera sensor.

The chapter is organized as follows: Section 9.2 describes the 3D foreground

model. Section 9.3 explains the projection of the 3D SCGMM to the 2D views.

Finally, some results and conclusions are presented in Section 9.4 and Section 9.5

respectively.

9.2 3D Foreground Model

In order to utilize the data redundancy that appear among views, we propose to

characterize the foreground object by defining a 3D spatial probabilistic model. This

model will gather all the information of the object under analysis, thus increasing

the robustness of the multi-view segmentation process.

Since the foreground objects that appear in scene are constantly moving and

changing along the sequence, we propose the 3D SCGMM at region based level to

model the spatial (XY Z) and color (RGB) domains of the 3D object volume

Therefore, at each time t of the multi-view sequence, our objective is to obtain

an updated model parameter set:

θ ≡ {ω̂, µ̂, Σ̂} ≡ {(ω1, µ1,Σ1) . . . (ωk, µk,Σk) . . . (ωK3D
, µK3D

,ΣK3D
)}, that maxi-
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mizes the foreground volume (Vt) data likelihood:

θVt
= arg max

θVt

∏
vi∈Vt

[P (vi|θVt
)] , (9.1)

where vi ∈ R6 is the input feature vector for voxel i in the v = (RGB XY Z) domain

and P (vi|θVt
) is the likelihood of voxel i formulated as follows:

P (vi|θVt) =

K3D∑
k=1

ωkGfg(vi, µk,Σk), (9.2)

where K3D is the total number of Gaussians that belong to the foreground 3D

SCGMM model and Gfg(vi, µk,Σk) denotes the pdf of the k-th Gaussian formulated

as:

Gfg(vi, µk,Σk) =
1

(2π)3|Σi|
1
2

exp

[
−

(vi − µk)TΣ−1
k (vi − µk)

2

]
, (9.3)

where µk ∈ R6 is the mean of the 3D Gaussian and Σk ∈ R6×6 denotes its

Covariance matrix.

Figure 9.3 displays an example of the 3D foreground model. As we can observe,

the 3D SCGMM presents a non-flexible 3D modeling, thanks to the free movement

that the 3D Gaussians present, thus adapting well to the real shape of the object

without having any movement restrictions.

9.2.1 Initialization

An initial segmentation of the foreground object in each view is required in order

to achieve its first 3D reconstruction. In order to achieve it, we use the planar

foreground segmentation system proposed in Chapter 4 in each one of the views.

Once the foreground object has been initialized and segmented in all the views,

we use conservative Visual Hull reconstruction with tolerance τ = 1, in order to

achieve the voxelized 3D volume. This volume is colorized assigning to each voxel

belonging to the surface of the volume, the color of the 2D pixels correspondent to

the voxel projection.

Given this initial colored volumetric reconstruction, the foreground model pa-

rameter estimation can be reached via Bayes’ development with the EM algorithm

([DLR+77]) in the RGB XY Z domains. For this aim, we use only the surface

voxels of the volume, since they are the only ones with useful information for the

multi-view segmentation analysis, and thus, this will speed up the process.

We estimate how many Gaussians are needed for correctly modeling the object

analogously to the proposal presented in Section 4.4.1.1, i.e. by analyzing the color

histogram for this purpose.
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After the initialization of the 3D SCGMM, next frames of the sequence will be

processed by projecting this 3D foreground model to each one of the views. Hence,

in frame t, we will use the projection of the model obtained from t− 1, to carry out

the 2D planar detection in each view. These planar foreground masks will make

possible to achieve the 3D SfS reconstruction for frame t, which will be used, in

turn, to update the 3D SCGMM before analyzing the next frame of the sequence.

9.2.2 Updating

Analogously to the previous chapters, the foreground objects perform some dis-

placements and rotations along the scene that makes necessary the model updating

at each frame. Since the probabilistic model works in the 3D XY Z domain, and the

color of the object is correctly modeled from the initialization in the overall volume,

only spatial updating is the necessary along the frames. We propose to update

the components of the 3D Gaussian Mixture in the spatial domain, for frame t, in

a two-steps updating, by using the 3D volumetric reconstruction obtained in the

previous step.

9.2.2.1 Spatial Domain Updating

We use the color and spatial information of the voxels classified as foreground to

update only the spatial components of the Gaussian Mixtures. Similarly to the

initialization step, we will work with the surface voxels of the 3D volume. Hence,

we assign each voxel to the Gaussian k that maximizes:

P (k|vi, θVt) =
P (vi|θVt , k)∑
k P (vi|θVt

, k)
=
P (vi|θVt , k)

P (vi|θVt
)
, (9.4)

where P (vi|θVt) is the likelihood of the foreground model for the voxel i (defined in

Equation 9.2), and P (vi|fg, k) is the likelihood given by the Gaussian k. Once each

voxel has been assigned to a Gaussian, the spatial mean and covariance matrix of

each one are updated with the spatial mean and variances of the surface voxels that

each one is modeling.

Regularization of the Gaussians displacements:

Once each Gaussian has been spatially updated, we regularize the displace-

ments that each one suffers in the 3D space by using the information obtained

from the neighbor Gaussians, thus achieving a more homogeneous spatial evolu-

tion of the 3D SCGMM. Hence, given the foreground parameter set θVt−1 before

the spatial updating, and the parameter set after the updating: θVt
, we calculate

the spatial displacements ds=x,y,z = (dx, dy, dz) of the Gaussian k by computing:

ds,k = (µs,k,t − µs,k,t−1).
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Figure 9.4: Example of neighborhood and connectivity between Gaussians that belong to the

3D foreground model. In blue color, the overlapped volume regions between the ellipsoid a under

analysis, and the neighbor Gaussians.

We define this neighborhood according to the connectivity that each one presents

in the surface of the volume with respect to the rest of the Gaussians. If we establish

the 3D spatial representation of each Gaussian, as an ellipsoid whose axis (ε) are

defined by the three eigenvalues of its spatial covariance matrix (λ1, λ2, λ3) as:

εi = 2
√
λi, then two Gaussians will be connected if both present an overlapped

region of their spatial ellipsoids (formulated in Cartesian coordinates as: (x−µX)2

ε1
+

(y−µY )2

ε2
+ (z−µZ)2

ε3
= 1 ). Figure 9.4 shows an example of this connectivity where

the Gaussian under analysis presents some overlapped regions with the rest of the

Gaussians.

Hence, we propose a convolution between the set of displacements that the

Gaussians suffer in the spatial updating ds, and a Gaussian kernel (GK), thus

smoothing the spatial evolution of the foreground Gaussians along the sequence

obtaining the set of displacement vectors d̂s.

d̂s,k =

Nb∑
i1,i2,i3

GK(i1, i2, i3) · d(x+ i1, y + i2, z + i3), (9.5)

where Nb is the neighborhood utilized in the Gaussian k smoothness. Hence,

we maintain the consistency of the foreground model, in order to give robustness

to the overall system.

Also, in order to achieve a better adaptation of the model into the silhouette

of the object, we apply a Gaussian split criterion presented in Chapter 4 (Section

4.4.1.2) according to the spatial size of the Gaussian. Gaussians with big area are

split into two smaller Gaussians in the direction of the eigenvector associated to the

largest eigenvalue (λmax).

9.3 Projecting 3D Foreground Model to 2D

The 3D foreground model gathers all the information of the foreground object that

we want to segment and reconstruct. In order to use it for 2D foreground seg-

mentation in each view, we need to project the 3D Gaussians to each one of the

cameras according to the visibility that the surface voxels present from every view.
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Figure 9.5: 3D SCGMM projected to the 2-dimensional views.

Figure 9.6: Visibility test. Graphical representation.

Figure 9.5 shows a graphical representation of the 3D SCGMM projection. Hence,

a R3 → R2 projection is proposed in each camera sensor Cj :

First, a visibility test of the surface voxels is performed for each one the views.

We consider only the foreground voxels that are visible from camera Cj thus reject-

ing all those foreground voxels that appear occluded by the visible ones. As we can

observe in Figure 9.6, the visibility test consists in obtaining the distance from the

sensors to each one of the foreground voxels, thus obtaining the minimum distance

dmin in each projection line corresponding to the closer voxel to the camera. Ap-

plying this to each one of the camera sensors, we obtain the bag of visible voxels ν

for each view: νCj .

Next, we assign each voxel vi ∈ νCj to the 3D Gaussian k that maximizes the

Equation (9.4), thus obtaining the group of Gaussians that model visible voxels

from each one of the views ζCj .

Therefore, for each one of the views Cj , we project the visible Gaussians belong-

ing to ζCj according to the projection matrices and focal length that each camera
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sensor presents. These Gaussians will be used in the 2D planar foreground segmen-

tation for each camera according to the proposal of Chapter 4.

9.4 Results

We have evaluated the multi-view segmentation system presented in this chapter

by analyzing four multi-view sequences of the database published in [INR] recorded

by means of different acquisition setups. The data set used for this evaluation is

the same data set used in Chapter 7 and Chapter 8, and has been presented at the

beginning of Section 7.5. In these tests we want to evaluate the viability of the 3D

SCGMM to represent the foreground object in the 3-dimensional space, and the

subsequent 2-dimensional foreground segmentations that take place in each view by

means of the 3D model projection to the 2D images. Hence, we will show in this

section qualitative and quantitative results of the current proposal.

For each one of the sequences, the work-flow presented in Figure 9.2 has been

applied in order to obtain the 3D SCGMM of the objects under analysis. Figure

9.7 displays the spatial representation of the models created in each one of the se-

quences. We can observe how these models adapt well to the shape of the objects

achieving a complete 3D characterization. Analogously to the 2D SCGMM, the

number of Gaussians of the model determines the precision of the modeling: the

higher the number of Gaussians of the model, the better the definition of the 3D

SCGMM, but the computational cost will increase proportionally. In this evalu-

ation, around one hundred Gaussians have been used for each model in order to

achieve a correct characterization of the foreground object.

Complete qualitative results are displayed in Figure 9.9 and Figure 9.10, where

four frames of each sequence are displayed. In second column we can observe the

projection of the 3D SCGMM to the view under analysis. Here, the Gaussians of the

3D model are projected to the view only if they model any of the visible voxels ob-

tained for each camera νCj . Each Gaussian is drawn with the mean RGB color that

each one is modeling, and we can observe how the 2D spatial-color representation

adjust correctly to the real shape of the object.

In the third column we can see the 2D foreground segmentation obtained by

using the 3D probabilistic model(depicted in second column) in the Bayesian MAP-

MRF foreground segmentation explained in Chapter 4. This segmentation achieves

correct results also in those regions where foreground and background present cam-

ouflage situations. The robustness added by the 3D modeling avoids independent

2D errors to be propagated in consecutive frames.

Fourth column shows the 3D volumetric reconstruction with Tolerance to errors
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Figure 9.7: Resultant foreground 3D SCGMM. Each ellipsoid represents one Gaussian of the

foreground model projected to one 2D view.

τ = 1, computed with all the 2D silhouettes of the multi-view sequence and pro-

jected to the views under analysis. We can observe that the final reconstruction

presents correct results since we reduce the percentage of errors in the 2D silhou-

ettes. In order to depict the color modeling that the foreground 3D SCGMM is

applying to the 3D object, fifth column shows the volumetric reconstruction of the

object where each foreground voxel is colored with the RGB color of the Gaussian

that better represents it, according to the Equation 9.4. Hence, we can realize that

the 3D SCGMM achieves a correct color-spatial representation of the object along

the sequence.

Some quantitative results are displayed in Figure 9.11, where we have analyzed

the resultant 2D foreground segmentation computed in the first view of each one of

the sequences (Third column of Figure 9.9 and Figure 9.10). The data set utilized is

the same as the one presented in Section 7.5, where ten representative and equally-

distributed frames of each sequence have been used to compare the results with

the ground truth segmentation. We have computed the fmeasure metric in order

to compare the 2D foreground segmentation obtained by the method presented in

this chapter (3D SCGMM), with the foreground segmentation system presented in

Chapter 4 (Bayes+sh.rem.).
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As we can observe, when 3D foreground segmentation model is correctly initial-

ized, the results present a very low percentage of false positive and false negative

errors, very similar to the results obtained by the method presented in Chapter 4

when the 2D model represents correctly the object to segment. Using the 3D model,

the effects of false positive and false negative errors in the sequences are less strong

than analyzing a single view, since the information of the rest of the views helps to

maintain the robustness of the foreground model in each one, thus allowing to over-

come these situations faster. We can see an example of this in Figure 9.11(d), where

in frame 480 a difficult situation in the object detection, leads the Bayes+sh.rem.

system to loose 0.03 points of fmeasure from 0.955 to 0.92.5, while the 3D SCGMM

method present a reduction of 0.015, from 0.95 to 0.94.

The results obtained in Figure 9.11 are summarized in Table 9.1, where the Pre-

cision, Recall and fmeasure results of the frames compared with the ground truth are

displayed for each one of these sequences. Again, we can see how the overall results

are very similar to the ones obtained by means of method Bayes+sh.rem., since,

when the models are correctly initialized, both approaches present similar features.

Note that only strong false negative errors in the 3D volumetric reconstruction could

lead to errors in the 3D probabilistic modeling, which could propagate the errors to

next frames of the sequence, thus producing a degeneration of the 3D SCGMM.

Finally, Figure 9.8 depicts an example of the effects produced by the regular-

ization of the Gaussians displacements in the spatial updating process. As we can

see, this part of the spatial updating helps to maintain the robustness of the fore-

ground model when false negative regions appear in the 3D reconstruction. Since

the 3D foreground model is updated with the projection of the volumetric recon-

struction to the view under analysis, if no regularization is applied (Figure 9.8(b)),

the Gaussians of the model are spatially displaced to the foreground regions, thus

propagating false negative errors to the next frames of the sequence. On the other

hand, when applying the regularization process (Figure 9.8(c)), strong variations of

the model, due to false negative regions, are smoothed, thus maintaining the spatial

structure of the model.

Regarding the computational cost, each one of the processes that appear in

the work-flow of Figure 9.2 spends an important part of the overall time: If we

implement the 2D foreground segmentation in a parallel structure, we can obtain

a computational cost according to the tables presented in Chapter 4 for this step.

The 3D volumetric reconstruction is computed with a SfS technique, by means

of a real-time processing. The projection of the 3D SCGMM to the 2D views

can also be implemented, in a parallel way by computing all the views at once,

thus reducing the computational burden. The 3D SCGMM updating presents an

important computational burden since the number of voxels to analyze can be high

and thus, computationally expensive to work with. With these requirements, and
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considering a foreground model with no more than 100 Gaussians, we approximate

a computational cost of 0.08 frames/second, analyzing a standard sequence and

using an Intel Core2 Duo 3GHz processor and 20 GB RAM. Since the objective

of this research was only to propose a new framework for multi-view foreground

segmentation and 3D reconstruction, no optimization work has been carried out in

order to reduce this number. Hence, this computational cost can be improved by

developing more efficient algorithms which could work over GPU.

Table 9.1: Quantitative results

Sequences Method Precision Recall fmeasure

Stick
3D SCGMM 0, 98 0.97 0.98

Bayes+sh.rem. 0, 97 0.94 0.96

Dancer
3D SCGMM 0.96 0.96 0.96

Bayes+sh.rem. 0.94 0.97 0.95

Karate
3D SCGMM 0.97 0.97 0.97

Bayes+sh.rem. 0.98 0.98 0.98

Open arms
3D SCGMM 0.92 0.97 0.95

Bayes+sh.rem. 0.95 0.95 0.95

9.5 Conclusions

We have presented in this chapter of the manuscript a foreground segmentation

system for multi-view smart-room scenarios that uses a parametric non-rigid prob-

abilistic model to characterize the object under analysis in the 3D space. We have

called this model 3D SCGMM and, as in the case of the SCGMM explained in

Chapter 4 and utilized in all the developments presented in this thesis, it is per-

formed by color-space Gaussians but applied, in this framework, to the 3D XY Z

space. Hence, we have proposed this new technique to develop a multi-view fore-

ground segmentation system, which combines the information obtained from each

one of the views to define the 3D SCGMM for the 3D volumetric representation of

the object under analysis.

As we have seen in this chapter, this probabilistic modeling of the object achieves

a robust representation of the foreground object, which is projected to each view

to perform a Bayesian foreground segmentation (introduced in Chapter 4). This

system achieves correct results, by reducing the false positive and false negative

errors in sequences where some camera sensors can present camouflage situations

between foreground and background. Since the foreground segmentation process,

and in general, all the work-flow of the system is based on the probabilistic modeling

of the object, the initialization step must be correct in order to avoid errors in the
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object modeling. Moreover, since at each frame the probabilistic model is updated

with the final 3D object reconstruction, errors in final reconstruction could lead to

errors in the color-spatial representation of the object which could be propagated

to next frames of the sequence.

Finally, we would like to introduce the possibilities that this model could repre-

sent in objects recognition or human activity understanding. Figure 9.12 shows an

example of the evolution of the model in consecutive frames for the sequence dancer.

In this figure, we can observe how the Gaussians of the model perform a movement

along the sequence according to the real one performed by the object. Although

the model is non-rigid, and the Gaussians are not spatially linked one another, the

evolution of the model is soft and progressive (thanks to the regularization of the

Gaussians displacements) and the Gaussians of the model are associated to the real

regions of the object, which are, in fact, the regions that each one is better mod-

eling. Therefore, as we show in Figure 9.12, and similarly to other approaches of

the state of the art like [GFBP10] new direction in dense geometric and temporal

3D analysis can be exploited by using the 3D SCGMM probabilistic modeling in

multi-view foreground segmentation and 3D reconstruction analysis.

(a) Original image the 3D volume projection to the view under analysis. A

false negative error appear in the 3D object reconstruction.

(b) (c)

Figure 9.8: Example of the effect of the Gaussians displacements regularization. Figure 9.8(a)

shows the 3D reconstruction with a false negative region when reconstructing the arm of the

person under analysis. b) displays the updating results of the 3D SCGMM without applying the

regularization of the Gaussians displacements. c) depicts the updating results when applying the

regularization of the Gaussians displacements.
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(a) Stick sequence. 16 cameras.

(b) Dancer sequence. 8 cameras.

Figure 9.9: Qualitative results. In the first column, the original frames. Second column shows

the 3D SCGMM projection to the view under analysis, where each ellipse represents one Gaussian

of the model with the mean color that each one is modeling. Third column is the 2D foreground

segmentation obtained by means of the model depicted in second column. Fourth column displays

the 3D reconstruction projected to the view under analysis, obtained by means of the foreground

segmentation of each view. Fifth column is the 3D reconstruction where each voxel is colored

with the mean RGB color value of the 3D Gaussian that better represents the voxel (according to

Equation 9.4).
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(a) Karate sequence. 16 cameras.

(b) Open arms sequence. 18 cameras.

Figure 9.10: Qualitative results. In the first column, the original frames. Second column shows

the 3D SCGMM projection to the view under analysis, where each ellipse represents one Gaussian

of the model with the mean color that each one is modeling. Third column is the 2D foreground

segmentation obtained by means of the model depicted in second column. Fourth column displays

the 3D reconstruction projected to the view under analysis, obtained by means of the foreground

segmentation of each view. Fifth column is the 3D reconstruction where each voxel is colored

with the mean RGB color value of the 3D Gaussian that better represents the voxel (according to

Equation 9.4).
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(a) Stick sequence
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(b) Dancer sequence
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(c) Karate sequence
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(d) Open arms sequence

Figure 9.11: Quantitative results.

Figure 9.12: Tracking Gaussians for human activity understanding. The 3D SCGMM of four

consecutive frames of the sequence are depicted together in order to represent the evolution of the

3D Gaussians. Red arrows are hand made to represent the evolution of the movement that each

Gaussian performs.



Chapter 10

Conclusions and Future

Work

In the development of this thesis entitled Parametric Region-Based Foreground Seg-

mentation in Planar and Multi-View Sequences, novel proposals for foreground seg-

mentation in monocular and multi-view sequences have been presented with the

objective to improve the existing techniques of the state of the art in this image

processing area. After an in-depth study of the main reference work of the litera-

ture, summarized in Chapter 3, we detected the weakness and necessities present

in each one of the specific frameworks, according to the characteristics of the sce-

nario and the acquisition setups, and we developed new techniques to solve them in

order to improve the resultant foreground segmentation. The consequence of this

research has been explained in this manuscript organized as a research work starting

from static 2D planar foreground segmentation systems, and the generalization of

these methods to the multi-view foreground segmentation and 3D reconstruction

techniques. In this thesis we have demonstrated that the use of region-based para-

metric models for modeling the classes, provides a correct color-spatial modeling of

the regions that can be used to improve the foreground segmentation results in 2D

planar scenarios as well as in multi-view setups.

10.1 Contributions

Each one of the chapters presented in this thesis, belonging to the research Part

I and Part II, deals with one specific scenario where foreground segmentation is

necessary, and each one contributes to improve the state of the art on that area.

The contributions of this thesis are listed below:
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10.1.1 Contributions to Foreground Segmentation in 2D Pla-

nar Scenarios

The research carried out in Part I is devoted to this scenario. In Chapter 4, we have

presented a complete foreground segmentation system that combines in a Bayesian

MAP-MRF framework, a pixel-wise background model (Gaussian pixel model) with

parametric region-based foreground (SCGMM) and shadow models (SCGM). All

the system runs as an implementation of the simple concept of surveillance: be

aware for external changes, detect new objects that appear in the scene, and focus

on the new objects by improving the information about it. The system has proved

to achieve correct results also in those regions where foreground and background

present camouflage problems. The contributions to the state of the art resides on:

• Work-Flow design. The work-flow of the system, which proposes the com-

bination of an exception to background analysis with a tracking system to

perform the detection and management of new objects that appear in the

scene. Once a new object is detected, foreground and shadow region-based

models are created and associated to it in order to achieve a correct charac-

terization.

• Shadow model. The creation of the region-based SCGM to model the

shadow regions that each object projects on the scenario. This model is as-

sociated to each foreground object as well as the foreground model, in order

to remove the shadow regions locally, without creating false negative errors

inside the shape of the object due to false shadow detections.

• Probabilistic models. The combination of pixel-wise background model

with region-based foreground and shadow models is also an important part

of the overall system, since the difference of dimensionality made it a diffi-

cult task to solve. Also, the Bayesian classification step between foreground,

shadow and background models in a MAP-MRF framework has supposed a

real improvement to the final results.

• Foreground SCGMM updating. In order to achieve a correct updating

of the foreground SCGMM, and speed up the process, we have proposed an

alternative to the EM algorithm to update the Gaussian model in the color and

spatial domains. This updating not only updates the Gaussians parameters

to the new foreground detection obtained at each frame, but also updates the

number of Gaussians of the foreground model in order to adapt well to the

real shape of the object along the sequence.

The system proposed in this chapter have been used in the following ones as an

starting point for other improvements of the state of the art.
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In Chapter 5 we have proposed an application of the principles proposed in

Chapter 4 to those sequences recorded by means of moving camera, where one

object of interest must be segregated from the background. In this system, we

combine two SCGMM for the foreground and background inside a Region of Interest

(ROI) in a MAP-MRF classification framework. The ROI is designed in order

to achieve the foreground model to be in the middle of the ROI, surrounded by

the background one. Supposing stationarity of foreground and background regions

during the classification process, and that new background regions are modeled

first by the background model, the approach of Chapter 5 offers correct foreground

segmentation for moving camera sequences and an alternative to other reference

methods.

10.1.2 Contributions to Foreground Segmentation in Multi-

View Scenarios

Part II of this thesis gathers all the research developed for multi-view scenarios. In

this part, four proposals have been presented with the consequent contributions:

Chapter 6 presents a foreground segmentation system for sequences recorded by

means of color RGB + depth Z sensors. This system allows us to achieve a correct

foreground segmentation also when camouflage problems arise in one of the sensors.

The contributions of this system are:

• Probabilistic models. We define foreground SCGMM and background

pixel-wise color Gaussian model for the color camera, and foreground SDGMM

and background pixel-wise depth Gaussian model, thus resulting four proba-

bilistic models.

• Combine probabilities with Logarithmic Opinion Pool. For each class,

we combine the probability provided by each sensor by means of the logarith-

mic opinion pool technique. This technique consists in the sum of the weighted

log-likelihood probabilities obtained from each sensor in order to obtain a

mixed probability according to the reliability that each sensor presents.

• Reliability maps using Hellinger distance. We propose to use the

Hellinger distance in order to achieve the reliability maps for each sensor.

Hence, we compute this distance between foreground and background models

in the color RGB and depth Z domain to obtain the final weight for each

sensor.

Chapter 7 shows the first proposal of collaborative foreground segmentation

and 3D reconstruction in multi-view smart-room scenarios with the objective to
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achieve a reliable 3D volumetric reconstruction based on SfS. The system achieves

a conservative 3D reconstruction of the object under analysis by applying tolerance

to errors only when the sensors present a non-reliable detection. Results displayed

in Chapter 7 show how the robust 3D reconstruction improves the results of the

conservative reconstructions with fixed tolerance to errors. The contributions of

this chapter are:

• Use reliability maps in the 3D reconstruction step. For each camera

sensor, we apply the foreground segmentation system proposed in Chapter 4

in order to obtain the 2D silhouettes of the object to segment. We propose to

obtain the reliability maps of each camera computing the Hellinger distance

between foreground and background in the RGB domain. The reliability

of each pixel in each sensor is taken into account in the Visual Hull recon-

struction, thus avoiding the cameras where the pixel under analysis detect

background and present low reliability.

Chapter 8 is devoted to explain the second proposal of collaborative foreground

segmentation and 3D reconstruction. Since the 3D volume reconstruction can be

interpreted as the combination of the information shared by all the camera sensors,

in this chapter, we propose to use the 3D volume reconstruction in order to up-

date the 2D foreground models defined in each camera sensor. Tolerance to error

reconstruction is used to carry out this updating in an iterative way according to

the tolerance to error used in the reconstruction. The results obtained with this

system, shows that the foreground segmentation and the 3D reconstruction can be

improved implementing this feedback between processes. The main contribution of

this system is:

• Iterative volume reconstruction in a 3D tolerance loop. As in the

previous approach, for each camera sensor, we apply the foreground segmen-

tation system proposed in Chapter 4 in order to obtain the 2D silhouettes of

the object to segment. Since 3D reconstruction with tolerance to errors avoids

the propagation of silhouette misses, we propose a loop based on enhanced

conservative Visual Hull reconstruction with error tolerance to update the

foreground segmentation. At each iteration, the 2D foreground models are

updated with the projected 3D volume and a new foreground segmentation is

performed with less misses, which is used to iteratively achieve a more precise

and robust foreground segmentation and 3D reconstruction.

Finally, Chapter 9 shows the third proposal in 2D-3D cooperative systems. In

order to achieve a more general multi-view foreground segmentation, we propose the

3D SCGMM to model the foreground object in the 3D XY Z space, instead of main-

tain a separated foreground model for each one of the camera sensors. This system
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achieves a more robust framework for foreground modeling, since we centralize the

foreground model in the 3D space, updating it with the 3D reconstruction obtained

by all the camera sensors. The results of this system show how this proposal can be

a good alternative to develop multi-view segmentation systems avoiding updating

errors in cameras where foreground and background present color similarity. The

contribution of this chapter is:

• 3D model for multi-view foreground segmentation. We propose the

3D SCGMM to model the volumetric reconstruction of the object in the

RGB XY Z space. Once the model is created with an initial object reconstruc-

tion, for next frames, it is projected to each camera in order to perform the 2D

foreground segmentation and the subsequent 3D volume reconstruction. The

model is updated in the spatial domain with the resultant 3D volume, and

smoothed in order to avoid misses. This model can also be used to perform a

geometry or temporal 3D analysis over the objects under analysis.

10.2 Publications and Collaborations

Part of these contributions have been published in journal and conference papers:

• Conference papers

– Gallego, J., Pardas, M., Haro, G. Bayesian foreground segmenta-

tion and tracking using pixel-wise background model and re-

gion based foreground model. Proc. IEEE Int. Conf. on Image

Processing, 2009, pp. 3205-3208.

– Gallego, J., Pardas. Enhanced Bayesian foreground segmentation

using brightness and color distortion region-based model for

shadow removal. Proc. IEEE Int. Conf. on Image Processing, 2010,

pp. 3449-3452.

– Gallego, J., Salvador, J., Casas, J.R., Pardas, M. Joint multi-view

foreground segmentation and 3d reconstruction with tolerance

loop. Proc. IEEE Int. Conf. on Image Processing, 2011, pp. 997-1000.

– Gallego, J., Pardas, M., Solano, M. Foreground objects segmenta-

tion for moving camera scenarios based on SCGMM. Lecture

Notes in Computer Science: Computational Intelligence for Multimedia

Understanding, 2012, pp. 195-206.
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• Journal papers

– Gallego, J., Pardas, Haro, G. Enhanced foreground segmentation

and tracking combining Bayesian background, shadow and fore-

ground modeling. Pattern Recognition Letters, Springer, num. 33,

2012, pp. 1558-1568.

– Gallego, J., Pardas. Region based foreground segmentation com-

bining color and depth sensors via logarithmic opinion pool

decision. Journal of Visual Communication and Image Representation,

Elsevier, 2013.

Parts of the contributions and investigations conducted in this dissertation

have been undertaken in answer to the challenges raised by some of the projects

where the Image Processing Group of the UPC has been involved. In particu-

lar, this work has been developed within the framework of the Spanish projects

HESPERIA (Homeland sEcurity: tecnoloǵıaS Para la sEguridad integRal en espa-

cIos públicos e infrAestructuras), Vision (Comunicaciones de Vı́deo de Nueva Gen-

eración), i3media (Management of multimedia content) and the European project

FASCINATE (Format-Agnostic SCript-based INterAcTive Experience).

10.3 Future work

The work presented in this manuscript can be continued by following several re-

search lines that can improve the performance of the systems proposed in previous

chapters. These research lines are:

• In planar foreground segmentation, the updating process of the models is

carried out by means of the segmentation obtained in the current frame. Hard

foreground detection errors can appear and, in these situations, the updating

could lead to a wrong modeling of the object, with the consequence of possible

errors propagation in next frames. Although this situation rarely appears,

one possible research line could focus on the updating processes and the hard

errors detection in the segmentation in order to control better the evolution

of process.

• In multi-view foreground segmentation, the position of the cameras in the

acquisition setup can be also studied and incorporated in the analysis methods

in order to improve the collaboration between sensors. Therefore, when using

the robust SfS, the 3D reconstruction should not consider only the reliability

maps, but also the relative position of the cameras in order to combine better

the sensors’ information.
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• The use of energy minimization techniques to regularize the resultant masks

could be improved by using also, in the global optimization, the information

belonging from the previous frames, thus adding robustness to the classifi-

cation process, by taking into account the evolution of the masks along the

sequence.

• Other color spaces can be incorporated in the foreground segmentation pro-

cess, in order to develop parallel segmentations in different domains, which

could help to improve the foreground detection process.

• In multi-view foreground segmentation and 3D reconstruction, the 3D model

research can be continued in order to use it for activity recognition, object

identification or object’s geometry analysis. A possible line of research could

be the combination of the foreground model with existent human body models

to improve the performance of the system.

• Real-time implementation of some proposals can be addressed in the future

by means of parallel processing over GPU.





Appendix A

Parametric Model GMM

Foreground segmentation methods based on parametric models like Gaussian distri-

butions are widely used in foreground/background classification. In this thesis, we

propose to use the parametric Gaussian Mixture Model to probabilistically model

the regions under analysis. In this Chapter we are going to see an in depth analysis

of this kind of probabilistic models.

The use of parametric models to approximate probability density functions is a

common technique utilized in classification problems where either we cannot obtain

an analytical description of the real one, or despite we have it, is too complex to

work with. Therefore, in order to simplify the mathematical operations implied

in the classification process, the approximation of each class by using parametric

models will give us a reliable framework that will speed-up all the related processes.

The parametric models are a family of distributions that can be described using

a finite number of parameters. These parameters are usually collected together to

form a single n-dimensional parameter vector Θ = {θ1, θ2, θ3, ..., θn}. The model is

formulated as:

P =
{
Pθ
∣∣ θ ∈ Θ

}
(A.1)

One of the most prominent parametric models is the Gaussian Distribution.

This distribution is present in a huge number of natural processes, and arises from

the central limit theorem, which states that given general conditions, the mean of

a sufficiently large number of independent random variables, each with finite mean

and variance, will be approximately normally distributed, irrespective of the form

of the original distribution. This gives it exceptionally wide application in several

areas like machine learning and classification.
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A.1 Gaussian Distribution

The Gaussian distribution, is a bell-shaped unimodal continuous probability distri-

bution that belongs to the exponential family. It is parametrized by Θ = (µ, σ),

where µ ∈ R is the mean (location of the peak), and σ > 0 is the standard deviation

as well as σ2 is the variance (the measure of the width of the distribution). This

function is used as a simple model for complex phenomena. The distribution has a

probability density function formulated as follows:

P (v|µ, σ) =
1

σ
√

(2π)
exp

[
− (v − µ)2

2σ2

]
, (A.2)

where v ∈ R is the input data.

The factor 1

σ
√

(2π)
in this expression works as a normalization factor, and ensures

that the total area under the Gaussian curve is equal to one.

The exponent factor (v−µ)
σ corresponds to the Mahalanobis distance, which is an

euclidean distance normalized by the standard deviation of the distribution, thus

obtaining a distance in terms of standard deviations to the center of the distribution.

The 1/2 in the exponent makes the ”width” of the curve (measured as half the

distance between the inflection points) equal to σ.

A.2 Multivariate Gaussian Distribution

When working with multi-dimensional spaces, we will need to use the Multivariate

Gaussian distribution, which is a generalization of the one-dimensional (univariate)

Gaussian distribution to higher dimensions. It is parametrized by Θ = (µ,Σ),

where µ ∈ Rn is the mean, and Σ ∈ Rn×n is the covariance matrix. The probability

density function is written as:

P (v|µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

[
−1

2
(v − µ)TΣ−1(v − µ)

]
, (A.3)

where v is the n-dimensional input data vector.

The covariance matrix Σ deserves special attention because it gives us infor-

mation about the linear dependence that appears among the different domains of

the Gaussian distribution and, therefore, will determine its shape. The covariance

matrix is symmetric positive semidefinite.
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If the n dimensions are independent, the Covariance Matrix will present a diag-

onal form: 
σ2

1 0 · · · 0

0 σ2
2 · · · 0

...
. . .

...

0 0 · · · σ2
n

 (A.4)

we can express the Multivariate Probability Density Function as the product of

n independent univariate Gaussian distributions with mean µi and variance σ2
i :

P (v|µ,Σ) =
1

σ1

√
(2π)

exp

[
− (v1 − µ1)

2σ1

]2

· 1

σ2

√
(2π)

exp

[
− (v2 − µ2)

2σ2

]2

· · · ·

· 1

σn
√

(2π)
exp

[
− (vn − µn)

2σn

]2

,

(A.5)

A.3 GMM Formulation

When we need to model a complex multi-modal distribution, one Gaussian function

is not sufficient to give enough fidelity to the model. One possible option to achieve a

representation of the multi-modal surface consists in using a Combination of several

Gaussian distributions. This approach is called Gaussian Mixture Model (GMM).

A Gaussian Mixture Model (GMM) is a parametric probability density function

represented as a weighted sum of Gaussian component densities. The pdf of the

overall model is formulated as follows:

P (v|Θ) =
K∑
k=1

ωkGfg(v, µk,Σk)

=
K∑
k=1

ωk
1

(2π)n/2|Σk|1/2
exp

[
−1

2
(vk − µk)TΣ−1

k (vk − µk)

]
,

(A.6)

where K is the number of Gaussian distributions that compound the model, wk

is the mixture coefficient of the k-th Gaussian distribution where
∑
wk

= 1, µk ∈
Rn and Σk ∈ Rn×n are, respectively, its mean and covariance matrix, |Σk| is the

determinant of matrix Σk.

GMM parameters can be estimated from training data using the iterative Expectation-

Maximization (EM) algorithm or Maximum A Posteriori (MAP) estimation from a

well-trained prior model.
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A.4 Expectation Maximization

Expectation-Maximization algorithm (EM) [DLR+77] is a well established maxi-

mum likelihood algorithm for fitting a mixture model to a set of given data. EM is

an iterative algorithm that requires an a priori configuration to define the number of

K components to be incorporated into the model. Often a suitable number may be

selected by a user, roughly corresponding to the number of distinct colors appearing

in an object to be modeled. The EM iteration alternates between performing an ex-

pectation (E) step, which creates a function for the expectation of the log-likelihood

evaluated using the current estimate for the parameters, and a maximization (M)

step, which computes parameters maximizing the expected log-likelihood found on

the E step. These parameter-estimates are then used to determine the distribution

of the latent variables in the next E step. The algorithm is defined as follows:

1.- E step: calculate the Gaussian component assignment probability for each

pixel z:

P (i)(k|v) =
ω

(i)
k · P (v|θ(i)

k )∑K
k=1 ω

(i)
k P (v|θ(i)

k )
, (A.7)

where i denotes the number of iteration, K is the number of mixture components

involved in the process and θk = {µk,Σk}.

2.- M step: update the spatial and color means and variances, and the weight

of each Gaussian component as:

µ
(i+1)
k =

∑
V P

(i)(k|v) · v∑
V P

(i)(k|v)
, (A.8)

Σ
(i+1)
k =

∑
V P

(i)(k|v) · (v − µ(i+1)
k ) · (v − µ(i+1)

k )T∑
V P

(i)(k|v)
, (A.9)

ω
(i+1)
k =

∑
V P

(i)(k|v)∑K
k=1 P

(i)(k|v)
, (A.10)

where V denotes all the input data samples under analysis.



Appendix B

Energy Minimization Via

Graph Cuts

Many vision problems, especially in early vision, can naturally be formulated in

terms of energy minimization. The classical use of energy minimization is to solve

the pixel-labeling problem, which is a generalization of such problems as stereo,

motion, and image restoration . The input is a set of pixels I = {I1, I2, ...Ii...IN}
and a set of labels l. The goal is to find a labeling f (i.e., a mapping from I to l)

which minimizes some energy function [SS05].

Hence, for a video sequence taken by a fixed camera, the foreground segmenta-

tion can be formulated as follows [SS05, GPS89].

Each frame image contains N pixels. Let S be the set of indices referring to each

of the N pixels. Given a set of pixels I, S of current frame at time-step t, the task

of object detection is to assign a label li ∈ {background(= 0), foreground(= 1)} to

each pixel i ∈ S, and obtain l = {l1, l2, . . . li . . . lN}.

In most of the work in the literature, object detection was attempted by first

modeling the conditional distribution P (Ii|li) of feature value Ii at each pixel i

independently. The model used can be either parametric [WADP02, SG00] or non-

parametric [EHD00, SS05] based on a past window of observed feature values at

the given pixel. The background and foreground model will be detailed presently.

Assume the observed feature value of image pixels are conditionally independent

given l, thus:

P (I|l) =
N∏
i=1

P (Ii|li). (B.1)
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However, it is clear that neighboring labels are strongly dependent on each other.

The neighborhood consistency can be modeled with a Markov Random Field prior

on the labels:

P (l) ∝
N∏
i=1

∏
j∈=εi

ψ(i, j), (B.2)

ψ(i, j) = exp [λ (lilj + (1− li)(1− lj))] , (B.3)

where λ determines the pair-wise interaction strength among neighbors and εi

neighborhood of pixel i.

Given the Markov Random Fields prior and the likelihood model above, moving

object detection in a given frame reduces to maximum a posterior P (l|I) solution.

According to the Bayes rule, the posterior is equivalent to:

P (l|z) =
P (z|l)P (l)

P (I)
=

=

∏N
i=1 P (zi|li) ·

∏N
i=1 P (li) · exp

[∑N
i=1

∑
j∈Nbi λ(lilj + (1− li)(1− lj))

]
P (I)

=

=

(∏N
i=1 P (zi|li) P (li)

)
· exp

[∑N
i=1

∑
j∈Nbi λ(lilj + (1− li)(1− lj))

]
P (I)

,

(B.4)

where P (I) is the density of I which is a constant when I is given.

Finally, the MAP estimate is the binary image that maximizes the following

Equation:

arg max
l
P (I|l)P (l) = arg min

l
[−ln(P (I|l)P (l))] =

= arg min
l

[−ln(P (I|l))− ln(P (l))] ,
(B.5)

The discrete cost function (Equation B.6) leads to an standard form of the

energy function that can be solved for global optimum using standard graph-cut

algorithms [MJDW00]:

E(f) = Edata(f) + Esmooth(f) =
∑
p∈P

Di(fp) + λ
∑
{p,q}∈ψ

Vp,q(fp, fq), (B.6)
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where ψ is a defined neighborhood in pixels. Di(fp) is a function derived from

the observed data that measures the cost of assigning the label fp to the pixel p

(How appropriate a label is for the pixel). Vp,q(fp, fq) measures the cost of assigning

the labels fp, fq to the adjacent pixels p, q and is used to impose spatial smoothness.

The role of λ is to balance the data Di(fp) and smooth cost Vp,q(fp, fq).

At the borders of objects, adjacent pixels should often have very different labels

and it is important that E not over-penalize such labeling. This requires V to be a

non-convex function of |fp − fq| . Such an energy function is called discontinuity-

preserving.

Energy functions like E are extremely difficult to minimize, however, as they are

non-convex functions in a space with many thousands of dimensions. They have

traditionally been minimized with general-purpose optimization techniques (such

as simulated annealing) that can minimize an arbitrary energy function. As a con-

sequence of their generality, however, such techniques require exponential time and

are extremely slow in practice. In the last few years, however, efficient algorithms

have been developed for these problems based on graph cuts.

B.1 Graph Cuts

Suppose χ is a directed graph with non negative edge weights that has two special

vertices (terminals), namely, the source s and the sink t. An s − t-cut (which we

will refer to informally as a cut) C = S;T is a partition of the vertices in Y into

two disjoint sets S and T such that and s ∈ S and t ∈ T . The cost of the cut is the

sum of costs of all edges that go from S to T :

c(S, T ) =
∑

u∈S,v∈T,(u,v)∈ε

c(u, v), (B.7)

The minimum s-t-cut problem is to find a cut C with the smallest cost. Due to

the theorem of [FF56], this is equivalent to compute the maximum flow from the

source to sink. There are many algorithms that solve this problem in polynomial

time with small constants.

It is convenient to note a cut C = S, T by a labeling f mapping from the set of

the vertices Y − {S, T} to {0, 1}, where f(v) = 0 means that v ∈ S and f(v) = 1

means that v ∈ T .

Note that a cut is a binary partition of a graph viewed as a labeling; it is a

binary-valued labeling. While there are generalizations of the minimum s − t-cut

problem that involve more than two terminals (such as the multi-way cut problem),
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such generalizations are NP-hard.

B.2 Energy Minimization Via Graph Cuts

In order to minimize E using graph cuts, a specialized graph is created such that the

minimum cut on the graph also minimizes E (either globally or locally). The form

of the graph depends on the exact form of V and on the number of labels. In certain

restricted situations, it is possible to efficiently compute the global minimum. This

is also possible for an arbitrary number of labels as long as the labels are consecutive

integers and V is the L1 distance.

However, a convex V is not discontinuity preserving and optimizing an energy

function with such a V leads to over-smoothing at the borders of objects. The

ability to find the global minimum efficiently, while theoretically of great value,

does not overcome this drawback.

Moreover, efficient global energy minimization algorithms for even the simplest

class of discontinuity-preserving energy functions almost certainly do not exist. Con-

sider Vp,q(fp, fq) = T [fp 6= fq], where the indicator function T [·] is 1 if its argument

is true and otherwise 0. This smoothness term, sometimes called the Potts model,

is clearly discontinuity-preserving.

However, graph cut algorithms have been developed that compute a local mini-

mum in a strong sense. These methods minimize an energy function with non-binary

variables by repeatedly minimizing an energy function with binary variables.
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