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Abstract

Shape representation and registration are two important problems in computer vision and

graphics. Representing the given cloud of points through an implicit function provides a

higher level information describing the data. This representation can be more compact more

robust to noise and outliers, hence it can be exploited in different computer vision applica-

tion. In the first part of this thesis implicit shape representations, including both implicit

B-spline and polynomial, are tackled. First, an approximation of a geometric distance is pro-

posed to measure the closeness of the given cloud of points and the implicit surface. The

analysis of the proposed distance shows an accurate estimation with smooth behavior. The

distance by itself is used in a RANSAC based quadratic fitting method. Moreover, since the

gradient information of the distance with respect to the surface parameters can be analytically

computed, it is used in Levenberg-Marquadt algorithm to refine the surface parameters. In a

different approach, an algebraic fitting method is used to represent an object through implicit

B-splines. The outcome is a smooth flexible surface and can be represented in different level

from coarse to fine. This property has been exploited to solve the registration problem in the

second part of the thesis. In the proposed registration technique the model set is replaced

with an implicit representation provided in the first part; then, the point-to-point registration

is converted to a point-to-model one in a higher level. This registration error can benefit from

different distance estimations to speed up the registration process even without need of corre-

spondence search. Finally, the non-rigid registration problem is tackled through a quadratic

distance approximation that is based on the curvature information of the model set. This ap-

proximation is used in a free form deformation model to update its control lattice. Then it is

shown how an accurate distance approximation can benefit non-rigid registration problem.
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Resum

Les representacions de forma i registre són dos problemes importants tant en la visió per

computador com en els gráfics. La representació d’un núvol de punts a través d’una funció

implı́cita proporciona major nivell d’informació alhora de descriure les dades. Aquesta rep-

resentació pot ser més compacta, més robusta al soroll i als outlier, pel que pot ser explotada

diferents aplicacions de visió per computador. La primera part d’aquesta tesi aborda repre-

sentacions de forma implı́cites que inclouen tant la representació mitjanant B-splines i poli-

nomials. Primer es proposa una aproximació per mesurar la distancia geomètrica entre un

núvol de punts i una superfı́cie implı́cita. L’anàlisi de la distancia proposada mostra una es-

timació acurada amb un comportament suau. Aquesta distància és usada en un algorisme

d’ajustament quadràtic basat en RANSAC. A més a més, atès que la informació de gradi-

ent de la distància respecte els paràmetres de la superfı́cie pot ser calculat analı́ticament, els

paràmetres de la superfı́cie poden ser refinats utilitzant l’algorisme de Levenberg-Marquadt.

Seguint un enfocament diferent, un algorisme d’ajustament algebraic es pot utilitzar per rep-

resentar un objecte a través de B-splines implı́cites. El resultat és una superfı́cie suau i flexible

que pot ser representada en diferents nivells de detall. Aquesta propietat ha estat explotada

per solucionar el problema de registració a la segona part de la tesi. En el mètode de regis-

tració proposat, el model és substituı̈t amb la representació implı́cita proposada en la primera

part, i desprès la registració punt a punt és converteix en una registració punt a model en un

nivell superior d’abstracció. Aquesta representació es pot beneficiar de diferents distancies

per accelerar el proces de registració sense haver de cercar correspondències. Finalment,

el problema de registre de models no rı́gids és abordat mitjanant d’una aproximació de la

distància quadrtica que està basada en la informació de la curvatura del conjunt de models.

Aquesta aproximació s’utilitza en un model Free Form Deformation (FFD) per actualitzar la

seva xarxa de control. Després és mostra com una aproximació acurada de la distncia pot

beneficiar el problema de registració no-rı́gida.
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Chapter 1

Introduction

Shape representation and registration are counted as two main problems in computer vision.

The first one focuses on different ways to describe a given cloud of points through some

parameters, while the second one is mainly about transforming two cloud of points in order

to move them closer to each other. The cloud (set) of points can be picked up from a 2D

boundary or 3D surface of an object. This process can be done by 3D scanners, stereo cameras

or time of flight cameras. Meanwhile in this process, some registration technique might be

required in order to put all clouds of points, obtained from different views, into a same cloud

of points. Moreover, depending on the acquisition method, the obtained set of points can be

disturbed by a percentage of noise or outliers. Then the main problem is how to describe

this cloud of points through the optimal set of parameters. This latter is studied in shape

representation.

These two problems, although somehow connected, have been separately studied in dif-

ferent communities like Computer Vision (CV), Computer Graphics (CG) and Computer-

Aided Design (CAD). In this thesis we firstly study both problems deeply and then try to

connect them together. The main concept that is common in both problems is the notion

of ”distance”. In other words, for both in shape representation and registration problems a

distance must be formulated to measure the closeness. In shape representation this closeness

is considered between the given cloud of points and the curve/surface to be reconstructed,

while in shape registration it is formulated to measure the closeness of the two given cloud of

points. This fact has been exploited during this thesis as a clue to find a unification between

these two problems.

1.1 Motivation

Object representation, in computer graphics and CAD, concerns with modeling and describ-

ing object through a set of parameters. Different varieties of tools, including NURBS and

Bezier surfaces have been provided by these communities to design and deform the model

of an object. In computer vision, on the other hand, object representation models are applied

1
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(a) (b) (c)

Figure 1.1: Different representations: (a) 3D cloud of points; (b) triangulated mesh; (c) im-

plicit functions.

to describe and analyze a given shape/image. This image can be a 3D cloud of point, for in-

stance. Then object representation techniques might be used to describe this cloud of points

by a set of parameters. This problem is also referred to as surface fitting (surface reconstruc-

tion) and it might be applied to reduce the effect of noise and outlier. The final output will be

a clean and compact surface that describe the object as a whole.

Triangular meshes can be mentioned as widely-used tools in computer graphics that pro-

vide quite fast representation tools. They are very simple and can be easily rendered just by

knowing the light and camera positions. Moreover, different textures can be easily projected

in each triangle, and then over the whole object. Therefore, the final rendering of a trian-

gular mesh may look quite realistic. Triangular meshes, though simple, require hundreds of

thousands triangles for a high resolution model. This problem makes it costly specially from

designing point of view. Variety of alternative representations have been proposed in CAD

and CG to design and model an object with fewer parameters. Bezier surfaces and NURBS,

for instance, provide flexible tool to model 3D surfaces through some control points. In

designing applications, this set of control points can be defined by the user through some

graphic interface. In computer vision, for surface reconstruction, the optimal control point

can be found through some optimization process.

Figure 1.1 illustrates three different ways of representing a 3D object. The left figure

corresponds to the point representation, containing 2899 3D points. Point representation is

the most simple visualization tool in computer graphics and vision. Rendering a 3D cloud of

points only requires the camera position and orientation plus the 3D coordinates of the points

to figure out their projection on a 2D plane. Although a point is an abstract entity, a circular

marker can be used instead to visualize it. Unfortunately the 2D projection (image) of the 3D

cloud of point is the most ambiguous representation, since no lighting effect is provided by

this tool.

Triangular mesh provides a richer alternative to represent a given 3D cloud of points.

In addition to the point coordinate this representation requires the connectivity between the

points. This information can be encoded in a table of triangles (or polygon in general) whose

rows contain the indices of triangles. This mesh of triangles provides the local information

about the surface that can be used to approximate the surface orientation (referred to as normal

vector). Moreover, each single triangle is a geometric entity occupying a physical space
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unlike a point in space. Hence, each triangle can be rendered independently. Assembling all

the triangles together results in a visualization of the whole 3D object. Figure 1.1(middle)
visualizes the 3D Bunny containing 2899 points and 5786 triangles. This representation does

not provide any smooth (differentiable) geometry although it can be visualized as a smooth

object by using some lighting tricks.

Implicit functions, on the other hand, provide a very strong tool to represent objects in

2D, 3D and even 4D (object morphing during the time). They can describe different objects

with complex topology through their zero set (the points where the implicit function reaches

zero). They can apply different functional space to maintain any continuity (e.g., belonging

to C∞ by using implicit polynomials). Implicit B-Splines (IBSs) and Radial Basis Functions

(RBFs) are among the common representation tools to describe objects implicitly. This rep-

resentation can be very compact like low degree implicit polynomial, or very flexible like a

high resolution implicit B-spline.

Figure 1.1(right) illustrates a middle-resolution IBS (a lattice of 20× 20× 20 of control

value) to represent the cloud of 2899 points shown in the left. This representation is obtained

by assembling cubic spline patches that result in a C2 continuity. In addition, this IBS pro-

vides a more compact representation compared to the triangular mesh. Moreover, it should be

mentioned that this IBS has 203 control parameters and only about 1600 of them are involved

to represent the zero set. While, on the other hand, the triangular mesh in Fig. 1.1(middle)
requires more than 26000 parameters for triangular mesh (2899 × 3 values as point coordi-

nates plus 5786×3 indices to recover the connectivity). Therefore, the IBS provides a smooth

representation with about 94% save in memory space in this typical example.

In addition to smoothness and compactness, implicit functions can easily represent the

object in different levels through controlling the regularization parameter. This parameter

control the rigidity of the implicit function over the space where object lies in. Higher regu-

larization parameter imposes more rigidity force, and results in a coarser representation (see

Fig. 1.2(a)). Lower regularization parameter, on the other hand, relaxes this force and results

in a more variating zero set (see Fig. 1.2(f)). Changing this parameter from high to low

produces in-between shapes as illustrated in Fig. 1.2 (b)− (e).

In the first part of this work implicit functions and distance metrics on these functions

are studied to represent 2D boundaries and 3D objects. Implicit polynomial and implicit B-

spline are the main two formats we apply to represent the object through the zero level set.

On the other hand distance approximations in geometric and algebraic frameworks have been

explored and some novel contributions have been proposed to the community.

In the second part of the thesis, the registration problem is tackled using the representation

tools provided in the first part. Point set registration is another main problem in Computer

Vision. It aims at finding the best set of transformation parameters to align two given sets of

points. The first given set is referred to as model set (target) and the second one as data set

(source). During the registration the data set moves toward the model set in order to minimize

the distance between these two sets. Depending on the application the transformation must

be restricted to some extends. For instance, in 3D scanners the transformation to assemble

two different views of an object must be restricted to Euclidean (rigid-body) motion, while

in other applications like medical imaging this transformation must be extended in order to

capture the deformation of organs.
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(a) (b) (c)

(d) (e) (f)

Figure 1.2: Different resolutions in implicit representation (the regularization parameter de-

creses from left-to-right and top-to-bottom).

Figure 1.3(a) illustrates data and model set as two cloud of points in 3D of the same

object. The data set and model set contain Nd points and Nm points respectively. The first

notion in the registration problem that needs to be defined first is the distance between the

two sets of points. This distance provides a reliable criterion to both handle registration and

measure the quality of the registration. In a very simple case, one can use the point-to-point

distance as a registration criterion. Then, a complexity of O(NdNm) must be spent to con-

sider different combinations to find the closest points. Moreover, the obtained distance might

not be reliable enough, specially when the point sets have different densities/distributions.

The notion of distance in registration has been considered in different frameworks like

probabilistic models and distance fields. In this thesis this concept is studied using the im-

plicit representations provided in the first part. Using implicit curves/surfaces to represent

the model set, the distance is converted from a point-to-point type to a point-to-model one.

Figure 1.3(b) illustrates the first step, when the model set is replaced with an implicit B-spline

surface. This implicit surface, as studied in the first part of the thesis, facilitates the distance

measurement.

We will study how adapting a fast algebraic criterion in the registration framework can

improve the distance measurement. The provided distance is robust to noise due to the fitting

stage, and behaves smoothly while we move a point in a local neighborhood. Moreover,

since its gradient information can be analytically extracted, it can be minimized through

any gradient-based optimization algorithm. The result of this point-to-model minimization

stage provides an accurate configuration for the previous point-to-point registration problem.

Figure 1.3(c) depicts the result of optimization stage that minimizes the distance between the
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(a) (b) (c) (d)

Figure 1.3: Using an interface for point sets registration: (a) Initial position of data (+) and

model (o) sets; (b) Data set (+) and model set represented by an IBS; (c) Registration result of

data set (+) and the IBS; (d) The same result but represented by using the model set (o) and

transformed data set (+).

data set and the implicit surface. For the sake of visualization the original model set, already

replaced with the implicit surface, is provided. Figure 1.3(d) highlights the fact that using

an implicit surface as an interface results in the optimal registration of the given clouds of

points.

In addition to the rigid registration, the non-rigid case has been casted as well. Non-

rigid deformation includes those transformations that cannot be captured by rigid rotation

and translation. Figure 1.4(a) shows two clouds of points, where the data cloud is a non-

rigid deformation of the model cloud. For a better visualization these two set are represented

through their triangular meshes. Figure 1.4(c) illustrates the result after rigid registration. It

can be understood from this figure that the data set is still far from the model set. Iterating

more rigid registration cannot vanish the distance between these two sets. Therefore, the

solution space containing the transformation parameter should be extended to capture more

deformation.

Deformation models, as studied in Chapter 2, include different types of transformations

that can be classified as: intrinsic (e.g. Laplacian deformation) and extrinsic (e.g. Thin

Plate Splines). The first category include those deformations only applied on the mani-

fold (curve/surface), while the second one include more general deformations applied on

the whole region (plane/space). In our work on non-rigid registration we apply Free Form

Deformation (FFD) to model non-rigid transformations. Figures 1.4(d) − (f) illustrate how

the distance between the two model and data sets decreases during the registration. Hence,

allowing more transformations to be captured may result in a significant decrease in the reg-

istration error.

1.2 Objective

In this thesis we tackle both representation and registration problems as well as their rela-

tionship. Our intention is to find different alternatives to represent a given cloud of points in

order to obtain a higher level of object representation. This strategy results in a representation

method that is robust to noise and outliers. In the second parts of the thesis we investigate
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(a) (b) (c)

(a) (b) (c)

Figure 1.4: Nonrigid registration of two cloud of points; the data set (pink) moves toward the

model set (dark blue) while the rigidity must be controlled during the registration; triangular

mesh is used to highlight the difference.



1.3. Thesis Outline 7

how such a representation equipped with a distance estimation can benefit the registration

problems. Our main objective in both part of the thesis can be summarized as follows:

• Reviewing reconstruction techniques: we study different reconstruction methods in

both computer graphics and computer vision communities. It includes different rep-

resentations from parametric to implicit, as well as different fitting techniques from

algebraic to geometric ones.

• Classifying registration methods: a comprehensive review of the literature is targeted

in order to study and classify different registration techniques. We study both rigid and

non-rigid registration methods using different criteria for error measurement. These

techniques vary from coarse to fine registration.

• Flexible representation: we aim at finding flexible representations that do not re-

quire any parametrization. For this purpose we explore implicit representations formed

by polynomials and B-splines. Curve/surface reconstruction in this domain can be

equipped with a fast algebraic fitting methodology.

• Distance approximation: working on the implicit functions can be facilitated by using

some distance metric. We study different techniques for obtaining accurate distance ap-

proximation. Moreover, we study how these approximations can be accelerated while

the accuracy is preserved.

• Rigid registration: in addition to reviewing state-of-the-art on registration methods,

we try to find a robust method that does not rely on point level computation. For this

purpose, we exploit implicit representations equipped with a fast distance estimation.

Merging these two results in a method in a higher level.

• Non-rigid registration: as the last part of the thesis non-rigid registration is explored

in order to expand the application of distance approximation on non-rigid registration.

We use a quadratic distance approximation that incorporate curvature information. Ap-

plying this distance can accelerate the convergence of the registration method.

1.3 Thesis Outline

Chapter 2 of this thesis reviews state-of-the-art techniques on both shape representation and

registration. In the first part different techniques on object representation are classified based

on the solution space and the fitting methodology. Solution space contains the set of all

possible parameters describing the object. It can be simple and contains the set of polynomial

coefficients, or can be more elaborated like radial basis functions. Fitting methodology is the

way the distance is defined. The distance provides a criterion to define the closeness of the

given set of points to a curve/surface to be constructed. Then an optimization algorithm can

be followed to find the best set of parameters in the solution space. The distance concept by

itself contains two categories referred to as geometric and algebraic distance. The first one is

quite accurate and measure the orthogonal distance between the point and surface, while the

latter is just a rough estimation of the real distance but quite fast instead.
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The second part of Chapter 2 reviews and classifies different registration techniques. Our

classification includes different deformation models and registration distances. Based on the

deformation model used during the registration, we classify state-of-the-art into affine group,

extrinsic and intrinsic deformations. The affine group is the simplest type of deformation

that includes rigid body motion, plus shearing and scaling. Non-rigid registration methods

can use either extrinsic or intrinsic deformation. In the earlier the whole region/space where

the object lies in can be deformed, while the latter deforms only the boundary/surface of the

object. In addition to deformation model, the registration distance provides another criterion

to classify state-of-the-art. We study different techniques including both coarse and fine

registration techniques. Coarse registration methods use either some general statistics of the

point set distribution (e.g., PCA) or use some point descriptors to match two sets of points

(e.g., shape context). Fine registration methods runs more accurate registration after some

initialization is provided. More detail on these techniques are explained and classified in

Chapter 2.

Chapter 3 and 4 construct the first part of the thesis, which deals with shape represen-

tation. The main objective is to describe a given set of points through an implicit function.

In our implementation two types of implicit functions are used: implicit polynomial as a

simple representation, and implicit B-spline as a complex one. The parameter vector in the

first case contains the coefficients of polynomial, and in the second one contains the control

value of implicit B-spline. Then, different techniques including both geometric and algebraic

approaches are hired to find the best parameters in the solution space. It should be mentioned

that all the fitting techniques proposed in these chapters are applicable for both implicit B-

spline and polynomial. So, our main focus is the fitting criterion used for finding the optimal

parameters.

In Chapter 3 curve and surface fitting using a geometric distance is tackled. This distance

is an approximation of the real distance of point to implicit function. In this approximation

a simplex between the point and implicit function is constructed first. This simplex is a tri-

angle in 2D or a tetrahedron in 3D whose edges continues along the axes from the point to

the implicit function. Then, the height of this simplex is chosen as an approximation of the

real distance. This approximation is exploited for both distance estimation and distance mini-

mization. As the first set of experiments, this distance estimation is used in a RANSAC-based

fitting method. In this framework, first a random set of points is chosen to interpolate the im-

plicit polynomial; then, the distance of the whole cloud of points to this function is estimated

using the proposed method. In the second set of experiments, this distance estimation is used

in a more elaborate optimization method (e.g., LMA) that exploits the gradient information

of the distance estimation.

Chapter 4 focuses on algebraic approaches for curve/surface fitting. Algebraic fitting

methods are less accurate but quite fast in comparison with the geometric ones. The algebraic

method we use, referred to as 3L algorithm, is based on the three levels comprising the data set

and its inside and outside offsets. Then, the optimal parameters can be easily found as a linear

least squares solution. In the first part of this chapter, we propose a technique to relax the

constraints in the original 3L algorithm. During the relaxation, the orientation compatibility

between the implicit function and the cloud of points is monitored. In the second part of

this chapter, implicit B-splines are explored and used for algebraic fitting. A simple and fast
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framework to reconstruct a flexible curve/surface is provided in the linear least squares form.

We show how this flexibility can be controlled to explore different levels of detail from coarse

to fine.

Chapter 5 and 6 construct the second part of the thesis, and focus on registration problem.

The main objective is to transform two given clouds of points to obtain a unified set. Based

on the transformation type, the method can be rigid or non-rigid registration that are studied

in Chapter 5 and 6 respectively. The initial idea of these chapters is to focus on the concept of

distance in registration problem. Unlike the two pervious chapters that deal with the distance

between points and implicit functions, Chapter 5 and 6 consider the distance between two

sets of points. One of the objective we follow in the second part of this thesis is to relate

these two concepts of distance, and then using this relationship in the registration.

In Chapter 5 a novel approach to rigid registration is introduced. This method exploits

implicit representations that are already presented in Chapter 3 and 4. In this algorithm one of

the given cloud of point (model) is described first by an implicit function. Then, the second

cloud of points (data) moves toward the zero set of this implicit function using a distance

metric. This distance is an algebraic estimation of the real distance between points and the

implicit functions; hence, it will be fast to compute the distance between the data and implicit

function instead of the distance between two cloud of points. In other words, an implicit

function is used as an interface to facilitate the distance estimation. All the formulation is

presented in a non-linear least squares form. Moreover, in our experiments both implicit B-

spline and polynomial are used as interface to represent the model set. This is to show the

independence of the method to the specific solution space used for representation.

Chapter 6 considers non-rigid registration of two clouds of points. The non-rigid defor-

mation is described by Free-Form Deformation (FFD) that is counted as an extrinsic defor-

mation. The registration distance we use is a quadratic approximation of the real distance that

incorporates curvature information in addition to orientation. This distance has been pervi-

ously proposed for rigid registration, but we extend it for capturing both rigid and non-rigid

deformation by just using a single framework. Since the local curvature information is in-

corporated in the distance formulation, the convergence is faster compared to state-of-the-art.

In Chapter 6 we present more detail about the formulation that is in the least squares form.

Finally in Chapter 7 a conclusion of this thesis and our contribution in different stages is

presented.
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Chapter 2

State of the art

In this chapter the related works are reviewed comprising two main tracks: representation and

registration. The first one includes the related work in both algebraic and geometric fitting

methods as well as different representation spaces, while the latter concerns of rigid and non-

rigid registration methods. Both categories are well studied and properly classified in order

to provide a better understanding of related work, and facilitate the referencing in following

chapters.

2.1 Representation

Object representation is an interesting and challenging problem in Computer Vision (CV),

Computer Graphics (CG) and Computer Aided Design (CAD). In computer graphics different

representations are used to provide a smooth description of the object to be rendered (e.g.,

MPU proposed by [95]). Representation model has been widely used in computer vision in

several applications like object modeling [158], 3D object reconstruction [151], large-scale

scene reconstruction [18], 3D object recognition using implicit functions [9], pose estimation

and object identification [140] to mention a few.

In this section the most relevant work in representation models are reviewed and classified

based on the solution space and the fitting methodology. The solution space determines the

domain where the shape parameters are defined. Moving on this space will change the shape

of zero set, and the objective of fitting is to find the best parameters. The goodness of fitting

is defined through the distance function that is explained in the second subsection.

11
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2.1.1 Solution Space

The main objective of fitting methods, in general, is to describe a given set of N points

Γ = {pi}N1 through a parameter vector. The parameter vector consists of values that control

the shape of the object. The point set can be extracted from an object’s surface [77], or can be

taken from the whole volume [76]. This cloud of points can be visualized through a triangular

mesh. It contains a table of vertex coordinates and a table of triangle indices. The triangles

can be easily rendered, and consequently the whole object can be visualized with lighting and

other details. Despite the simplicity, triangular meshes need too much memory space, so it

does not provide a compact representation.

Parametric representations are widely used in computer graphics as compact alternatives

of triangular meshes. Bezier, B-splines and NURBS are different parametric models to visu-

alize curves or surfaces. All these representations are smooth and linear with respect to their

parameters. The main problem of these methods is the parametrization; in other words, for

every 3D point in the given cloud of points, a parameter in 2D must be assigned, then the best

parameter will be found in order to have the minimum distance.

Implicit representations, unlike the parametric ones, avoid the parametrization problem,

and this property makes them useful for computer vision applications. Its capability to de-

scribe complicated boundaries/manifolds through its coefficient vector, and the nonexistence

of parametrization, has been exploited in fields such as: range image reconstruction [146],

pose estimation [87], point sets registration [97, 54, 141, 106], shape description [90], posi-

tion invariant object recognition [94], 3D image segmentation [157] and registration [155], to

mention a few.

Through this thesis implicit functions have been used for representation, since they do

not require any parametrization. Hence, this review of state-of-the-art is mainly focused

on this kind of representations. It should be noticed that implicit representations provide

more information compared to parametric ones, since they describe other part of region/space

where the object lies in. Its zero level set, specifically, describes the object; its other level sets

can describe the inner/outer part of the object. So it can be claimed that implicit functions

provide more general representation. In [152], for instance, implicitization of parametric

curves has been studied.

Implicit function describes the object through the zero set that is defined as the set of

points where the function reaches zero: Z(fc) = {x : fc(x) = 0}. The fitting procedure

seeks for the best parameter c defining the zero set that obtains the minimum distance between

the given points and its zero set. In this subsection we review some of the solution spaces

where the parameters are chosen from.

It should be mentioned that implicit representations and triangular meshes are somehow

connected. For instance, in order to visualize an implicit function, generally, a triangular

mesh through the marching cube algorithm is extracted in a grid of points. This grid can

be computed from the implicit function in any resolution. The marching cube algorithm

detects the patches of the zero set surfaces by considering eight neighbors in each cell; then,

it determines whether and how any polygon needs to be reconstructed.

An implicit polynomial (IP) is one of the simplest example to define the solution space.
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Figure 2.1: Fitting the Bunny data set containing 817 points; (left) result by using an implicit

polynomial [2]; (right) result by using IBS (in both cases the object triangular mesh is also

depicted to highlight the accuracy of the results).

IPs are generated through the linear combination of the monomials in the format of xiyjzk.

An implicit polynomial of degree n is represented as:

fc(x) =
∑

(i+j+k)�n

{i,j,k}�0

ci,j,k · xi · yj · zk (2.1)

where {ci,j,k} defines the IP coefficients. Following a common order for both coefficient

set {ci,j,k} and monomial set {xiyjzk} let us define each set as a vector. We can consider

both sets in the vector form, such that both are ordered in an increasing way of the degree

(i + j + k). This common order in both vectors helps to define the implicit function as an

inner product of two column vectors:

fc(x) = cTm(x) = m(x)Tc (2.2)

where m(x) is the vector of monomials and c is the polynomial coefficient vector. The

monomial m is a vector function depending on the point coordinates while the coefficient

vector c is a constant vector defining the shape through the zero set. Hence, the objective of

fitting is to find the best coefficient vector as a representative of the whole object.

Implicit polynomials offer a smooth and compact representation of object just through

a simple compact parameter vector [9]. Implicit polynomial compactness has been also an

attractive point to be exploited when a high level reasoning is needed (e.g., object recognition

[9], object modeling [158], [151], etc). They are defined linearly with respect to the parameter

vector, and this property makes them popular for linear fitting. On the other hand, each term
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Figure 2.2: Basis functions construct the solution space: (left) RBF ; (right) IBS.

of the monomial vector doesn’t have a compact support1. Consequently, any change in any

parameter can lead to a global change in the whole shape of the zero set. Figure 2.1(left)
shows how fitting with IP results in outliers around the zero set. This problem is reduced in

[110] for instance, through regularizing the IP coefficients. In order to address this problem

completely, the solution space should be defined through another representation different than

IP (e.g., [91], [68]).

A Radial Basis Function (RBF) is a class of functions defined through some special basis

functions called radial. The values of these radial functions only depend on the distance of

the given point to a fixed point xi referred to as control point [91]. Hence the values do not

change in a fixed radius of the control point:

f(x) = P (x) +

n∑
i=1

ciφ(‖x− xi‖) (2.3)

where P is a low degree IP, φ is the radial function, {xi} is the set of control points, and

c is the coefficient vector. A special radial basis function called Thin Plate Spline (TPS) is

defined as φ(r) = r2 log r. A linear combination of this function and its translations explore

the whole solution space. Figure 2.2(left) shows a basis function used to cast the whole

space. The authors in [28] use RBF to approximate the surface fitting the 3D range data.

They present a regularization method for RBF that enable it to describe the object in different

resolution/order of smoothness. Despite being elegant and flexible, RBFs do not have the

basis functions with a compact support Consequently, they suffer the global control problem

as IPs, although they are more flexible.

The authors in [17] use implicit RBFs to reconstruct a surface from the given cloud of

points. They manage to reduce the number of radial basis functions by using a greedy crite-

rion. The optimal RBF coefficients are found through solving a linear system of equations. In

this system the regularization parameter is also contributed to control the rigidity of the final

implicit surface. Applying RBFs for representation has been extended in [142] by using a

global regularization and in [114] by using centers among the vertices of the Voroni diagram.

Fourier descriptor is another useful representation model that has been used for surface

1support of an implicit function is where it doesn’t vanish.
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reconstruction. In [149] the authors use a Fourier representation to formulate the object sur-

face through two-variables Fourier descriptor. The optimal surface is reconstructed directly

through the projection of a striped lighting system. Super-quadratic is used in [135] as a

lower degree surface to fit a surface to the 3D range data.

Implicit B-Splines (IBSs) offer a smooth and flexible representation, which can be locally

controlled. Its basis functions have compact supports (see Fig. 2.2 (right)); hence, each

parameter has a local contribution to the whole shape; in other words changing one parameter

only changes a local part of the zero set. Figure 2.1(right) depicts how an IBS presents a

more accurate and flexible representation than an IP. Indeed, IBS avoids outliers around the

object thanks to the local control property. Moreover, it is linearly defined with respect to

its parameter vector. This property makes it appropriate for linear fitting [68] as well as the

geometric distance based fitting [3], [153]. In addition, some regularization constraints can

be easily imposed in order to control the global shape of the object.

An implicit B-spline in 2D is defined as a combination of the tensor product basis func-

tions:

f(x) = f(x, y) =
M∑
i=1

N∑
j=1

ci,jBi(x)Bj(y) (2.4)

where Bi(x) and Bj(y) are the spline basis functions, and the matrix [ci,j ]M×N is the control

lattice that controls the shape of the IBS. For the sake of simplicity we consider M = N , then

the basis functions Bi(x) and Bj(y) have the same behavior but defined in different domains.

Similarly, the basis function in 3D is a tensor product of three spline basis functions. Since

each Bi has a compact support in 1D, the final tensor product will have a compact support in

a higher dimension.

In summary, IBSs are quite flexible representations to describe 2D boundaries and 3D

objects. They provide smooth implicit functions that can be locally controlled. IBSs have

been already used in computer graphics and CAD communities. For instance, [68] uses IBSs

for fitting a given set of points associated with normal vectors. The fitting process tries to

find an appropriate IBS whose gradient vectors have similar orientations to the given normal

vectors [133]. Moreover, it is shown in [31] how the implicit fitting result can be modified

by a parametric fitting in a dual evolution framework. A conversion of parametric curves to

implicit form is studied in [152] as well.

2.1.2 Fitting Methodology

Having confirmed the solution space, the fitting procedure seeks for the best solution based

on a fitting criterion. This criterion is called a distance function and it measures the close-

ness of the given point set to the obtained zero set. In general the fitting methodology can

be divided into two main categories referred to as: geometric and algebraic approaches. Al-

gebraic approaches are among the simple methods for approximating the distance between

a point and curve/surface, while in geometric ones a reliable approximation for the real dis-

tance (orthogonal distance) between the point and curve/surface is required. In this case the

distance between a point and the surface is usually defined as the shortest distance between

this point and its correspondence on the surface.



16 STATE OF THE ART

Geometric Approaches

In general, geometric fitting methods can be formulated as an optimization problem where

the best curve/surface parameter must be found:

Dist(Γ, fc) =
N∑
i=1

minp̂i
d2(pi, p̂i) (2.5)

where Γ0 = {pi}N1 is the given set of points and each p̂i is the corresponding foot-point to

pi on the zero set defined as Z(fc). Here we consider the l2 norm to calculate the distance d,

and consequently a non linear least squares optimization must be solved.

Theoretically, both unknown surface parameters and the correspondences must be found

simultaneously, but practically this problem is tackled by first assuming an initial surface, and

then refining it till convergence is reached. So, the fitting problem is split up into two stages:

i) point correspondence search; and ii) surface parameter refinement. The first stage deals

with the minimization of the individual summands in (2.5) with respect to the foot-point,

while the second one concerns the minimization of the whole summation with respect to the

surface parameters.

Regarding the first stage two different strategies have been proposed in the literature: (a)
finding the shortest distance by solving a non-linear system (e.g., [2], [3]); and (b) computing

an estimation of the shortest distance (e.g., [134], [19], [42]). Once the foot-points are ap-

proximately located, the second stage tries to update the parameter vector. This minimization

is usually an iterative process that can be solved by gradient-based algorithm like gradient

descent or Levenberg-Marquadt algorithm. In Chapter 3 more detail on this stage will be

provided, but now we only consider different techniques for estimating the foot-points.

In [2] Ahn et al. propose a method to find the correspondence on the surface, which is

based on its geometric properties. This foot-point, p̂, is somewhere on the surface satisfying

fc(p̂) = 0. Furthermore, the line connecting the data point with the foot-point must be

parallel to the ∇fc at the foot-point, where ∇ is the gradient operator. In other words, we

must have ∇fc × (p̂ − p) = 0. Merging these two conditions, the following system of

equations must be solved: (
fc

∇fc × (p̂− p)

)
= 0. (2.6)

This equation could be solved by the Newton–Rophson algorithm for non-linear system of

equations. Figure 2.3 illustrates how the foot-point is iteratively approximated by this geo-

metric fitting method. Although this method is precise enough, and even covers some well-

known method in the literature like [134] and [115], it is quite time-consuming due to the

iterations.

In [3] the orthogonal fitting is extended for general error functions, such as l1 and l∞
norm of the residual error instead of the common l2 norm. This highlights the importance of

the error function selection for the fitting process. The authors present the fitting algorithm

as an evolutionary process of a surface along its normal direction. They discuss and compare

their approach with other common error functions including the algebraic types.
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Figure 2.3: Orthogonal distance from a given point p computed by means of the iterative

approach [2].

Instead of computing the shortest distance through (2.6), [42] proposes to approximate it,

avoiding iterative approaches as a result. In that work, which is an extension of [19] for more

general surfaces, first a normal vector −→n p for each point p is computed by using principal

components analysis (PCA) in a small M ×M neighborhood centered at each point [49]. In

other words, −→n p = (n1, n2, n3) is defined as the eigenvector of the local covariance matrix

Σ associated with the smallest eigenvalue:

Σ =
1

s

s∑
i=1

(pi − p̄)(pi − p̄)T (2.7)

where p̄ = 1
s

∑s
i=1 pi is the vector showing the mean position of the neighboring points in

the M ×M region. Finally, p̂ is computed as the intersection of the surface fc(x) = 0 with

a line passing through p and parallel to −→n p :

x− xp

n1
=

y − yp
n2

=
z − zp
n3

. (2.8)

The intersection is used as an approximation for the foot-point p̂ in (2.5).

In [134], Taubin proposes an approximation for (2.5), which is based on the first order

Taylor expansion of the distance function. The distance could be computed through normal-

izing the algebraic distance by the gradient norm:

Dist(Γ, fc) =
N∑
i=1

( |fc(pi)|
||∇fc(pi)||

)2

. (2.9)

This approximated distance is used in an iterative weighted least squares method as well

as in a nonlinear optimization framework. In addition, a new constraint is imposed on the

coefficient vector, which is based on the data points as well as on the coefficients. The
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approximated distance proposed by Taubin [134] may not reach the correspondence point

lying on the zero set, which could affect the final fitting result. In fact, instead of considering

the zero set, the level set where the point is lying on is affected by this optimization process.

Finally, every point forces its level set to move in order to reach a lower accumulated distance,

and the best set of parameters is found.

Algebraic Approaches

Unlike the geometric fitting methods that seek for a reliable approximation to the orthogonal

distance, algebraic approaches are based on some simple and computationally efficient cri-

teria to measure the closeness of the given point set to the zero set [100], [30]. As a simple

criterion, the deviation of f(pi) from zero can measure the distance between the point pi and

the zero set Z(f). This criterion can be formulated in the least squares form:

Dist(Γ, fc) =

N∑
i=1

f2(pi) (2.10)

this accumulated residual error is a function of the parameter vector c in a linear least squares

form. This fact will be more clear when this error function is represented in the vector form.

Remember that each value f(pi) can be represented as the inner product of the parameter

vector and the monomial calculated in the given point: f(pi) = m(pi)
Tc. Putting each

m(pi)
T as a row in the monomial matrix MΓ leads to another representation:

Dist(Γ, fc) = ‖MΓc‖2 = cTMT
ΓMΓc (2.11)

which is a quadratic function of the parameter vector.

The least squares solution can be computed quite fast, but it is usually unstable. This

problem will disturb the shape of zero set as a consequence. There has been many works to

tackle this problem through proposing a better fitting criterion. For instance, as mentioned in

the previous subsection, [134] uses a first order distance approximation to formulate a least

square fitting function. Indeed, it considers the normalized form f/‖∇f‖ instead of f in

(2.10). This method is formulation in (2.9) as the first iteration of the geometric method to

find the foot-point. Figure 2.4 depicts the approximation accuracy of this metric in a simple

2D example.

The 3L algorithm is another fitting techniques that uses geometric clues in the fitting

function in order to obtain a more stable result [11]. In this method the original data is

supported by two additional offset, the inner and the outer ones. Then, the fitting procedure

considers these additional sets to find the optimal parameter. In more detail, it constructs two

additional offsets Γ+δ = {p+
i }N1 inside and Γ−δ = {p−i }N1 outside of the given boundary

Γ0. Then it can be formulated as a least squares form:

Dist(Γ, fc) =

N∑
i=1

fc(pi)
2 +

N∑
i=1

(fc(p
+
i )− ε)2

+

N∑
i=1

(fc(p
−
i ) + ε)2 (2.12)
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Figure 2.4: An algebraic criterion [134] is used to approximate the distance between a set of

points and the zero set.

where ±ε are the expected values of fc in the additional offsets. The 3L algorithm has been

originally proposed for IP fitting, and it will be detailed in Chapter 4.

In similar work, [132] and [133] consider the associated normal vectors in the least

squares formulations. The optimal function is found such that its gradient in the data set

is parallel to the normal vectors. Then, the zero set is hopefully more similar to the data set.

This method is referred to the Gradient-one in the literature, since it considers the normals

with the unit length. The 3L algorithm and the Gradient-one have been extended in [110] and

[45], both of them tackling the stability problem. In [110] a ridge regression method is pro-

posed to handle the instability problem related to the monomial matrix. In [45] the sensitivity

function of the zero set with respect to the parameter vector is analyzed, and two techniques

are proposed: Min-Max minimizes an upper bound of this function, while Min-Var tries to

minimize the variance of it.

The idea of using associated normal vectors in fitting algorithms is also used for implicit

B-spline fitting. Juttler in [67] provides a least squares framework to find the optimal alge-

braic spline curves with the help of normal vectors. The information of the associated normal

vectors helps the positional information of the given data set. Considering these constraints

as well as a global tension term results in a quadratic objective function, which is easily min-

imized by setting its derivative to zero. This idea is later generalized in [68] to reconstruct

algebraic surfaces as well.

Moving Least Squares (MLS) offers another class of techniques for shape representation

[5], [53]. MLS is based on a Weighted Least Squares (WLS) defined in a local neighborhood

of a fixed point. Solving this WLS, this point moves and another WLS will be considered.

The authors in [5] use a MLS formulation for finding a local map describing the object in a

neighborhood. In fact, it is used to project the points on the considered surface. The authors

in [43] extend this technique to increase the stability and the flexibility to describe corners

and sharp boundaries.
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Most of the abovementioned fitting techniques use least squares, or Levenberg-Marquadt

Algorithm (LMA) to find the optimal parameters. Trust region algorithm is another opti-

mization technique that can be used for surface reconstruction. Yang et al. [153] formulate

a geometric distance approximation to find the best implicit B-spline. They use trust region

to find the global optimal coefficient vector. In a different work Aigner et al. in [3] use a

geometric distance optimized by Gauss-Newton optimization techniques.

Distance field is another method to represent the given cloud of points in a different level

[21], [92]. This technique is used both in fitting and registration problems. In a couple of

continuous works, the authors in [97], [145] present a second order approximation of the

distance fields. This approximation is based on the curvature information of the data set. It is

used for parametric B-spline curves and surfaces fitting in the squared distance minimization

(SDM) scheme. Pottmann et al. [98] use SDM for parametric active B-spline curves and

surfaces. Moreover, SDM is used in [21] to fit subdivision surfaces. The control points of a

coarse mesh are adjusted through SDM in a fast converging method.

Multiple partition of unity (MPU) is a popular technique in computer graphics for ren-

dering a cloud of points [95], [88]. Generally speaking, MPU describes the object based on

a set of small patches attached together in a smooth way. In more detail, the whole set of

points is recursively subdivided to construct an octree structure. Each cell of the octree is

described by a low degree IP (e.g., quadratic) to capture the local structure of the point set

in the cell. Finally all these local approximations are integrated into a global approximation

through a partition of unity approach, which guarantees the continuity and smoothness. In

[88] the authors use the gradient one algorithm and ridge regression techniques to obtain a

better result for a local description in MPU.

Labatut et al. in [74] formulate the reconstruction problem in an energy minimization

framework. The optimal surface is explicitly described by a triangular mesh. Their proposed

energy function is based on the inside/outside labeling of Delaunay tetrahedra. In addition

to the surface quality, the visibility constraints are also considered in the formulation. In

addition to all the aforementioned methods, there have been other reconstruction techniques

including variational methods [77], finite-element method (FEM) [124], Bayesian surface

reconstruction [54], and Poisson formulations [69] that are not presented here.

2.2 Registration

Point set registration is an important problem in computer vision being tackled during last

three decades [86], [80]. Two sets of point referred to as data set (source) noted by P =
{pi}Nd

1 and model set (target) noted by Q = {qj}Nm
1 with Nd and Nm points, respectively,

are given. Then, the best transformation must be found to move the first set close to the

second one. The transformation can vary from rigid to non-rigid deformations to tackle 2D

image or 3D cloud of point registration.

Among the many applications of this topic we can mention: 3D scanning using multi-

view laser scans [27] or time-of-flight camera [121]; in-hand object modelling [147]; con-

sidering non-rigid deformation in 3D scanning [16]; 3D urban scene reconstruction [159];
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2D-3D fusion in 3D urban scene reconstruction [80]; large scale 3D modeling [46]; motion

capture using depth camera [82]; pose estimation from 2D images [48]; motion capture from

a set of 2D videos [40]; reassembling fractured objects from 3D scanned pieces [56].

In this section we review the most related work in image/cloud of points registration.

The state of art is classified in three main categories: i) the deformation model that de-

fines the solution space (e.g., Thin Plate Splines (TPS) [24]; Free Form Deformations (FFD)

[58]; Laplacian deformation [128]); ii) the distance used to measure the registration error

(e.g., point-to-point [10], point-to-quadratics [97], distance field [58]); iii) the optimization

techniques used to minimize the registration error (e.g., branch and bound [96], dynamic

programming [122] and LMA [34]).

2.2.1 Deformation Model

Affine Group

One of the simple transformation is rigid -transformation or Euclidian transformation, which

is functioning from Euclidian space to itself. It includes rotation and translation parameters,

and comprises only three parameters (one for rotation and two for translation) in 2D space and

six parameters (three for rotation and three for translation) in 3D case. This transformation is

formulated as follows:

T(p) = Rp+ t (2.13)

where R is the rotation matrix, and t is the translation vector. The rotation matrix must be

an orthonormal matrix (i.e., it is ortogonal: RTR = I, and its columns have unit length).

Otherwise the transformation is referred to as affine transformation, which is not distance-

preserving anymore.

The rotation matrix can be parametrized based on the amount of rotations. In 2D case the

rotation can be represented based on a single parameter θ referred to as rotation angle:

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (2.14)

The rotation matrix in 3D can be decomposed into three rotation matrices around x, y and z
axes (also referred to as yaw, pitch and roll). Each of these matrices are the extended form of

(2.14) in 3D. The rotation around the y axis, for instance, is formulated as follows:

R =

⎡
⎣ cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

⎤
⎦ . (2.15)

In addition to rotation matrices, kinematics and quaternion provide another ways of repre-

senting the rigid transformation [10].

In general, rigid transformations are Euclidean isometric. In other words, every rigid

transformation T preserves the distance between any pair of points:

d(T(p),T(q)) = d(p,q) (2.16)
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where d is the Euclidean distance (defined by L2 norm). It must be noticed that if the metric

d is defined on a manifold (not in R
2 space) then the transformation is called a geodesic

isometry.

Extrinsic Deformation

If the transformation is not a rigid body motion (i.e., Euclidean isometry) it is called a non-

rigid deformation. These deformation models can be divided into two main categories: the

intrinsic and the extrinsic models. The intrinsic deformations refer to those only applied

on the curve or surface manifolds (e.g., Laplacian deformation), while the extrinsic ones

consider the whole domain/volume the object lies in (e.g., Thin Plate Splines). The first

one is appropriate for 2D boundary or 3D manifold matching, while the latter one is mainly

suggested for image/volume matching. In this subsection we review and classify the most

representative deformation models, the intrinsic ones are presented next.

In a simple case, a non-rigid deformation can be modeled as a set of locally rigid transfor-

mations. In [6] the authors consider a 3× 4 affine matrix per data point. Therefore, they end

up with a 4Nd × 3 matrix containing the deformation parameters, where Nd is the number of

data points. The consistency of these local affine transformations is controlled by a stiffness

term.

Thin Plate Spline (TPS) is a well-known model for non-rigid deformations [12]. It pro-

vides a continuous mapping from R
k to R

k (where k = 2 for images and k = 3 for volume

deformations). This class of mappings is defined through radial basis functions introduced in

section 2.1.1:

T(x) = d.x+

n∑
i=1

ciφ(‖x−wi‖) (2.17)

where d represents the affine parameters, {wi} is the set of control points, and {ci} defines

the corresponding displacement vectors. The smoothness of T is controlled by the second

order tension term (known as thin plate spline):

L(T) =

∫∫ ∥∥∥∥∂2T

∂x2

∥∥∥∥
2

+ 2

∥∥∥∥ ∂2T

∂x∂y

∥∥∥∥
2

+

∥∥∥∥∂2T

∂y2

∥∥∥∥
2

dxdy. (2.18)

This term can be considered in the final energy function, and it can measure the stiffness of

TPS mapping.

Free Form Deformation (FFD) provides another region/volume based deformation [123].

Similar to TPS it is applied on a region in R
k and map it into R

k (k = 2 or 3 depending on the

case). FFD differs from TPS due to the basis functions it uses. In TPS radial basis functions

defined by φ(r) = r2 log r are applied. These functions do not have a compact support. It

means that any change in one coefficient parameter ci may leads to overall changes on the

whole mapping. This problem is sorted out in FFD since it uses B-spline basis functions.

FFD in 2D is defined as follows:

T(x) = T(x, y) =

M∑
i=1

N∑
j=1

ci,jBi(x)Bj(y) (2.19)
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Figure 2.5: FFD can deform the whole region/space through moving its control lattice.

where Bi(x) and Bj(y) are the B-spline basis functions as defined in section 2.1.1, and ci,j is

a 2D grid of control vector that control the amount of deformation in each local neighborhood.

Without loss of generality the FFD domain can be restricted to the unit square [0, 1]2 in 2D

case (see Fig. 2.5(top)) or unit cube [0, 1]3 in 3D case (see Fig. 2.5(bottom)).

FFD benefits from the B-spline properties; since each B-spline basis has a compact sup-

port, the FFD control vectors only affects a local neighborhood of the domain. Moreover,

FFD will be an identical mapping when the control grid is regularly distributed on a rectangle

covering the domain (refer to Chapter 6). So the deviation from the initial regular grid c0,

defined as δc = c − c0 can be used to describe the deviation from the original shape. The

resulting FFD defined by the incremental values δc is called Incremental FFD (IFFD) [58].

The smoothness term to measure the rigidity of IFFD, denoted by δF, is defined as:

L(T) =

∫∫ ∥∥∥∥∂δT∂x
∥∥∥∥
2

+

∥∥∥∥∂δT∂y
∥∥∥∥
2

dxdy. (2.20)

FFD and IFFD have been successfully applied for non-rigid image/volume registration. More-

over there are many extensions of FFD like Extended FFD that consider different structure

for control lattice [26] as well as hierarchical B-spline [150] and multi-level FFD [120] that

propose a coarse-to-fine grid refinement.

Igarashi et al. [60] propose another alternative to avoid setting skeleton or FFD domain
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before deformation. Their method is still an extrinsic model applied on the object triangu-

lar mesh. The criterion used in their method to be preserved during the deformation is the

proportion between the triangles’ edges in the original mesh. They provide a least squares

form to find the optimal vertex position gaining a similar proportion while some vertex are

imposed by the user. Moving least squares is another framework used in [118] for image

deformation. Their technique finds a local affine transformation for every point that devotes

more weights to closer points in the least squares problem. Each optimal affine transforma-

tion corresponding to the given point can be found in a closed form.

Triangular mesh representation, though simple, provides a good framework for modelling

both non-rigid deformation and registration. In [32] a coarse triangular polygon is used to

represent 2D objects. For 2D polygons without holes, these polygons are connected in a

tree structure. This special structure facilitate the object detection through using dynamic

programming. Statistical shape prior provides another useful tool for registration and object

recovery [4]. Salzmann et al. use triangular meshes to extract the statistical information of the

3D objects [113], [112]. This information is related to the angles between neighboring faces

in the given meshes while the edge length are preserved. This information is dimensionally

reduced by PCA. Afterwards the mean shape and the major variations obtained by PCA are

used to recover the 3D shape from 2D images. This method can be counted as extrinsic one

since the deformation is applied on the whole 2D domain. Among other extrinsic deformation

models we can refer to applying of mean value coordinate [66], harmonic coordinate [64],

and green coordinate [84].

Intrinsic Deformation

The intrinsic deformation models, on the other hand, consider only the curve/surface to be de-

formed, not the whole domain it lies on. Laplacian mesh deformation, for instance, provides

a deformation technique to deform the object boundary/manifold. It process the δ coordinate

or differential coordinates of every point, defined as difference between the point and the cen-

ter of mass of its neighbors (see Fig. 2.6). It is proved that the whole object can be retrieved

through its δ coordinate if only one point is given. Sorkine [128] uses these information in

a least squares form to deform the original shape by moving some of its boundary points.

An over-determined system of equations is proposed containing the constrains defined by δ
coordinates and the constraints imposed by the user.

Variational implicit functions provide another useful tool for shape transformation. Turk

and O’Berin [139] consider the shape (either curve or surface) evolution as an interpolation

problem in a higher dimension. More specifically they consider two given k-dimensional

shapes in two parallel (k + 1)-dimensional planes t = 0 for the first object and t = 1 for the

second one (see Fig. 2.7). Fitting the final N + 1 dimensional given points together with the

smoothness term, an implicit function will be found that hands over all the in between shapes

(for different value of parameter t ∈ [0, 1]).

Deformation as curve/surface evolution has been well-studied in both computer graphics

and computer vision communities [144]. Differential geometry provides a theoretical frame-

work to consider the shape evolution as moving from one point to another in the shape space

[71]. Kilian et al. [70] use Riemannian metric in the shape space to solve the shape evolution
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Figure 2.6: δ-coordinates are used to encode local geometric information (illustration from

[128]).

Figure 2.7: Shape transformation using variational implicit functions (illustration from [139]).
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as a point set interpolation in this space. They propose two different metrics to provide the

geodesic path (locally shortest path in the given metric sense) between two surfaces in the

shape space.

2.2.2 Registration Distance

Registration techniques can be divided into two main categories based on the initial config-

uration of two given sets. The coarse registration, on the one hand, refers to those cases

where the data set and model set are away, and no initial configuration is provided. The fine

registration, on the other hand, refers to the finer step to minimize the registration distance.

Coarse Registration

Principle Component Analysis (PCA) is one of the simplest coarse registration method. It is

a statistical method suggested when no correspondence is provided. It transform the data set

to align its origin and major axes with those of model set. Having constructed the covariance

matriices of data set and model set, their corresponding major axes can be found by eigen-

vectors of this matrix. PCA aligning methods find the best rotation based on the obtained set

of orthonormal axes [111].

PCA aligning technique, though quite simple, is unreliable especially for circular objects

and in presence of noise or outliers. Moreover, for partial overlap or occluded objects the

main axes is a wrong clue to align the data with model. In order to improve PCA many meth-

ods have been proposed in the literature. Singular Value Decomposition (SVD) is another

statistical method for coarse registration. In this method every data point is paired with its

correspondence in the model set, which could be its closest point in the simplest case. The

best parameters can be found by Singular Value Decomposition (SVD). This method con-

structs the cross-covariance matrix between the data and model sets, and then finds the best

rotation matrix through the decomposition outputs [7].

Finding the corresponding point for the given data point has been a challenging problem

in computer vision and pattern recognition [111]. In order to find a correspondence some

feature descriptor should be used meanwhile. Belongie et al. [8], for instance, propose a

robust descriptor referred to as shape context. It describes the local distribution of the given

point by considering log-polar histogram bins around it. Then, this information is later used

for bipartite graph matching that ends up in the best correspondence matching. The matching

result is later used to find the optimal rigid and non-rigid parameters (using TPS).

Coarse registration methods in 3D exploit different point descriptors to solve the matching

problem. Spin image is one the well known 3D descriptor used both for object recognition

and surface registration [63]. Spin image provides a 2D histogram in the given point on a

3D surface (see Fig. 2.8). It considers the tangent plane passing through this point, and then

projects the neighboring point on this plane to compute their distance to the tangent plane

β as well as their distance to the normal vector α. Then a table is generated to accumulate

the number of points in the neighborhood having different values of α and β as the table

coordinates.
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Figure 2.8: Spin images projects local neighboring points on the tangent plane (illustration

from [63]).

Figure 2.9: Volume integral descriptor can be used to find the feature points (illustration from

[41]).

Volume integral descriptor proposed by Gelfand et al. [41] is another 3D point descriptor

based on the local geometry on the surface. It considers different balls with different radius

centered at the given point, and then compute the integral volume of the inside surface by

discretizing the domain (see Fig. 2.9). The obtained value is normalized by dividing it

by the whole volume. Considering this simple descriptor at different scales, the authors in

[41] propose a method to find the feature points with unique properties. Among other 3D

descriptors we can refer to the tensor representation [89], isometry invariant descriptor [148]

and surface moment invariant [137].

In addition to point descriptor, which is more appropriate to find the feature points, there

must be some technique to measure the similarity between the data set and its matching in the

model set. Some local techniques like comparing the descriptor histograms are widely used

for matching. But for a global similarity measurement, we must consider the consistency of

matching in a geometric sense. Coordinate root mean squared error (cRMS) is a proper way

to measure the similarity [41]. In this metric the Euclidean distances between the transformed

data points and their correspondence is calculated as a measure; but it requires the best trans-

formation parameter to transform the data set. A better alternative could be the distance root
mean squared error (dRMS) as introduced in [41]. This metric is equivalent to cRMS but it

does not require any optimal transformation parameters. This metric compares all the internal

distances between any pairs in the data set with the distances of their correspondences in the

model set. Huber et al. [59] propose a geometric approach to rigid registration by checking
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the surface consistency. Further coarse registration techniques can be found in [109], [55],

[83] and [136].

Fine Registration

For the fine registration a coarse initialization is provided that put the data set close to the

model set. Hence, fine registration techniques seek for the best deformation parameters that

minimize the distance between the given sets. In order to define or estimate the registration

distance different tools can be exploited, e.g., point-to-point distance, distance fields, im-

plicit functions and probabilistic models. These classes of techniques are briefly described as

follows.

Point-to-point distance: the Iterative Closest Point (ICP) algorithm is one of the classical

registration approaches that iterates a two-step scheme till convergence [10], [20]. In the

first step it considers every data point and finds its correspondence as the closest point in

the model set. Then, in the second step, ICP tries to find the best rotation and translation

parameters (deformation parameter in non-rigid case [6]) to move the data points close to

their correspondences. Given the data set P = {pi}Nd
1 and the model set Q = {qj}Nm

1 , the

registration distance in ICP can be formulated as follows:

ϕ(Θ) =

Nd∑
i=1

‖Rpi + t− qj(i)‖2 (2.21)

where Θ is the vector of rigid parameters (including rotation and translation), and j(i) is

the model point index corresponding to data point i. The best parameters can be found by

either SVD or a quaternion-base algorithm as proposed by the authors in [10]. This two-step

process (finding the correspondences first and the optimal deformation parameters after) is

iterated till convergence is reached.

ICP algorithm is based on a point-to-point distance, which makes it inaccurate especially

when the data and model sets have different densities, and the data points and their corre-

spondence do not coincide. Chen and Medioni [20] propose a point-to-plane distance instead.

This registration distance measures the distance from a point to the tangent line/plane in the

correspondence:

ϕ(Θ) =

Nd∑
i=1

[
(Rpi + t− qj(i)).nj(i)

]2
(2.22)

where nk is the normal vector at the model point qk. This distance gives a better estimation

of the real distance between the given sets, and using that in ICP algorithm speeds up the

optimization convergence. In addition to distance criteria in ICP algorithm, different variants

of this algorithm consider the way to assign the correspondence to every data point [108].

Some extensions of ICP like Trimmed ICP [23] either improves the optimization step or like

non-rigid ICP [6] extends the deformation space.

Robust Point Matching (RPM) proposed by [24] considers the ICP corresponding assign-

ment as a soft-assignment problem. In other words, the authors consider all the model points
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Figure 2.10: Distance field of a 2D bunny point set and its derivatives along two coordinate

axes.

as potential correspondences instead of devoting only one:

ϕ(Θ) =

Nd∑
i=1

Nm∑
j=1

mij‖Rpi + t− qj‖2 (2.23)

where mij is the fuzzy coefficient showing the importance of model point j as a correspon-

dence for data point i such that mij ∈ [0, 1] and
∑Nm

j=1 mij = 1 for all i = 1...Nd. Note that

in a normal ICP algorithm mij is assigned either 0 or 1. Using this formulation the authors in

[24] propose an EM-like algorithm comprising two steps: first, updating the correspondences

mij , and then optimizing the transformation parameters. For the second step they simplify

the formula by considering a new estimation as the correspondence, which is a linear combi-

nation of other model points. Then, their formula is similar to (2.21) with qi =
∑Nm

j=1 mij as

a virtual correspondence for pi.

Distance Field: this representation has been widely used to approximate a robust registration

error in both rigid and non-rigid domains [85]. The approach as presented in [34] does not

require any point-to-point correspondence, and overcomes the non-differentiable nature of

ICP by using a derivable distance transform—Chamfer distance. The error function derived

from that distance field is a smooth function, and its derivatives can be analytically computed;

hence, it can be minimized through LMA to find the optimal registration parameters. Using

the distance transform speeds up the ICP like algorithms:

ϕ(Θ) =

Nd∑
i=1

wiD(Rpi + t)2 (2.24)

where wi is the weight of data point i and D(x) = minj ε(‖x−qj‖) is the distance transform

that can be computed before running the algorithm. Once the distance field and its gradients

are computed (see Fig. 2.10), the registration algorithm does not require any correspondence

computation. The main disadvantage of [34] is the precision dependency on the grid reso-

lution, where the Chamfer distance transform and discrete derivatives are evaluated. Hence,

this technique cannot be directly applied when the point set is sparse or unorganized.

Huang et al. [57], and [58] measure the registration error by comparing the distance fields
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Figure 2.11: (left) A local quadratic approximation of the distance field using the curvature

information. (right) A 3D presepective of this local approximation (illustration from [99]).

induced by data set and model set. They measure the similarity between two distance fields

by accumulating the difference between the distance values over the whole region. This ac-

cumulation is encoded in the form of double integral that makes the method computationally

expensive. They used FFD to capture the non-rigid deformation and the gradient descent

algorithm to find its best parameters. This method is later extended by Taron et al. [131] to

consider the uncertainty of the point sets encoded in the covariance matrix. Vector Distance

Field (VDF) has been also used as an extension of distance field to solve the registration

problem [29], [22].

The distance field used in [34] is a discrete field and its derivatives used in LMA are not

precise enough. Holzer et al. [48] use distance transform for 3D pose estimation. In [99]

the authors present a local quadratic approximation of the distance function based on the

curvature information (see Fig. 2.11). These local approximations define the distance field

of the model points, and reformulate the registration problem as an optimization problem

that can be solved by Newton’s method. This distance approximation has been also used in

L1 norm and minimized through linear programming [37]. Since the approximated distance

needs curvature information of the point set, it is computationally expensive and sensitive to

noise.

Implicit function: it provides another framework to represent a set of points in 2D/3D. As

mentioned in section 2.1.2 there are different fitting methods to find an optimal implicit func-

tion to describe a set of points. The outcome of fitting procedure is a smooth interpolating

function that is robust to noise. This representation can be exploited to deal with the registra-

tion problem beyond the point level. Claes et al. [25] tackled the 3D-3D registration problem

as a 3D-model registration. Their method is based on a Variational Implicit Surface (VIS)

to describe the model set. After finding the optimal RBF interpolating the model point, they

develop an algebraic distance to measure the registration error. This distance is a non-linear

function of six rigid parameters, which is minimized through a conjugate gradient method.
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This idea is later on extended to tackle the multi-view fine registration. RBF has been also

used in [146] to tackle both the registration problem and the surface reconstruction.

Following a similar approach, [156] proposes a fast registration method based on solv-

ing an energy minimization problem derived from an implicit polynomial fitted to the given

model set [158]. This IP is used to define a gradient flow that drives the data set to the model

set without using point-wise correspondences. The energy functional is minimized by means

of a heuristic two step process. Firstly, every point in the given data set moves freely along

the gradient vectors derived from the IP. Secondly, the outcome of the first step is used to

define a single transformation that represents this movement in a rigid way. These two steps

are alternately repeated until convergence is reached. The weak point of this approach is the

first step that lets the points move independently in the proposed gradient flow. Furthermore,

the proposed gradient flow is not precise, specially close to the boundaries. Implicit poly-

nomials have been also used in [130] to represent both the data set and model set, and then

register two IPs based on their moment information. Similarly, Lee and Lai [75] use MPUs to

describe both data and model sets in registration problems, and then reformulate the problem

as a registration of two MPUs.

Probabilistic Models: Kernel Correlation (KC) proposed by Tsin an Kanade [138] formu-

lates the registration problem in a different way. The authors define the registration error as a

kernel correlation between two sets:

ϕ(Θ) = −
Nd∑
i=1

Nm∑
j=1

KC(Rpi + t,qj) (2.25)

where KC is the kernel correlation between two points. When KC is chosen as a Gaussian

kernel correlation it can be easily computed as:

KC(pi,qj) = (2πσ2)−D/2 exp(−‖pi − qj‖2/2σ2) (2.26)

which is a function of point entropy as well. Then, the author of [138] show how maximizing

the kernel correlation results in an optimal registration parameters.

Jian and Vemuri [61] present a probabilistic model for point set registration. They de-

scribe both data set and model set by Gaussian Mixture Models (GMMs), and the problem

is treated as an alignment problem between two density functions. This modeling provides

a more robust method for non-rigid registration through TPS [62]. This method has been

pursued in [14] to tackle the 3D rigid registration. Although the formulation they provide

avoids the correspondence search like the ICP kind algorithm ([10], [20]), and the gradient

information can be explicitly derived and exploited in an optimization stage, it considers all

the combinations between the data points and the model points, which is quite expensive.

Probabilistic approaches based on mixture models are highly dependent on the number

of mixtures used for modelling the sets. This problem is generally solved by assuming a

user defined number of mixtures or as many as the number of points. The former scheme

needs the points to be clustered, while the latter one results in a very expensive optimiza-

tion problem that cannot handle large data sets or could get trapped in local minimum when

complex sets are considered. Generally speaking, although these methods do not require any

correspondence search, all points in the model set are implicitly considered as a potential

correspondence for each single point in the given data set.
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Instead of formulating the problem as aligning two mixture models, the authors in [13]

presents a continuously differentiable energy function based on Gaussian Fields. They pro-

pose an intuitive physical interpretation of the registration problem in terms of Gaussian force

fields that are made by the model set to attract the given data set. The proposed differentiable

cost function directly relates the point coordinates with the registration parameters. Thus,

the registration parameters are obtained by means of gradient based optimization techniques.

Similarly to the probabilistic approaches presented above, the main problem of [13] lies on

the optimization step, which can result in a non-linear complex function. Even though no

correspondence search is required for these methods, all the model points are implicitly con-

sidered as a potential correspondence for each single point in the given data set.

Ho et al. in a recent work [47] present an algebraic method to find the optimal affine reg-

istration parameters. First they consider two point set distributions, and then they find the best

affine matching of two moments up to the third degree. Other probabilistic techniques like

maximum likelihood [14], [126], Expectation Maximization (EM) algorithm [50], Expecta-

tion Conditional Maximization [50], Coherent Point Drift (CPD) [93] and other statistical

modelling of shapes [131] have been explored in the literature.

Distance in Shape Space: Differential geometry provides a theoretical framework for shape

analysis and shape similarity measurement [65]. The authors in [73] propose a distance func-

tion between two surfaces that is invariant to rigid motions and re-parametrization. They use

a special representation for the surface referred to as q-map. The distance invariance to re-

parametrization is obtained by considering different basis elements for the tangent space to

generate the most common surface parametrization. Then the distance is defined as the mini-

mum value over the whole set of possible parametrization. Curve/surface distance definition

in the shape space is further studied in [38] and [15].

2.2.3 Optimization Method

In this section the optimization frameworks used to solve the aforementioned registration

techniques are briefly described. Moreover, these techniques are classified based on coarse

or fine registrations. The first category usually ends up with a combinatorial technique (e.g.

branch and bound), while the latter uses a continuos optimization framework (e.g., gradient

based).

Coarse Registration

Branch and bound is a well known algorithm in discrete optimization; it has been widely

used for registration problems, specially for coarse rigid registrations. Gelfand et al. [41]

after proposing a descriptor to find the feature points apply a branch and bound algorithm

to find the correspondences in two sets of 3D points. Their method starts with a greedy

algorithm to initialize the lower bound to restrict the search. Then, the branch and bound

algorithm is applied to considered those combinations with a matching error less than the

bounds. Those branches (combinations) with matching error exceeding the bounds will be

pruned, otherwise they will be recursively branched to consider more possible combinations
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for matching. Finding a global optima in coarse registration problems has been studied in

[96] and [78].

Dynamic Programming is another discrete optimization technique that breaks the prob-

lem to smaller subproblem, and then finds the main solution by solving these subproblems.

This technique has been used in registration problems [122]. Felzenszwalb [32] successfully

uses this technique thanks to a tree structure used for the representation. Sebastian et al. pro-

pose this optimization framework to align two given 2D curves. Among other optimization

techniques we may refer to graph matching techniques [154], Hungarian method for bipartite

graph matching [8], shortest path algorithms [119], particle filtering [116], particle swarm

optimization [79], least trimmed squares [23], and genetic algorithm.

Fine Registration

Most of the objective functions defined for fine registration have nonlinear form with respect

to the registration parameters. The gradient descent method is one of the simplest techniques

proposed to optimize these function forms. The authors in [58] propose an energy function

to find the optimal FFD parameters. This function includes a data fitting part for checking

the compatibility of two implicit distance fields and an external energy term for controlling

the rigidity of FFD deformation. Their optimization technique is the gradient descent, which

simply use the gradient information of the energy term with respect to FFD control parame-

ters. An extended version of gradient descent algorithm, referred to as Adaptive Stochastic

Gradient Descent (ASGD), has been recently used in [72] for image registration. Quadratic

programming is another useful method to optimize the registration error while some con-

straints must be met [81]. Linear programming and second order cone programming are

among the suggested method in [37] to minimize the registration error defined in L1 norm.

Non-linear least squares form is one of the typical error terms in registration problems.

Gauss Newton Algorithm (GNA) and Levenberg-Marquadt Algorithm (LMA) are among the

techniques especially designed for these types of forms. Fitzgibbon in [34] proposes a non-

linear least squares function based on distance field formulation, and LMA is consequently

suggested to solve this objective function. Gauss-Newton type has been also proposed in [97]

for minimizing the registration error in rigid case.
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Chapter 3

Geometric Fitting

This chapter presents a geometric fitting method for implicit polynomial fitting. We propose a

simple distance estimation to approximate the orthogonal distance of a point from an implicit

curve/surface. It is computed as the height of a simplex built between the point and surface

(i.e., a triangle in 2D or a tetrahedron in 3D), which is used as a coarse but reliable estimation

of the orthogonal distance. This distance can be described as a function of the coefficients

of the implicit polynomial. Moreover, it is differentiable and has a smooth behavior. Hence,

it can be used in any gradient based optimization. Furthermore, the use of this distance in

a Levenberg-Marquardt framework is shown, which is specially devoted for nonlinear least

squares problems. The proposed estimation is a generalization of the gradient based distance

estimation, which is widely used in the literature. Experimental results, both in 2D and 3D

data sets, are provided. Comparisons with the state of the art are presented, showing the ad-

vantages of the proposed approach.

3.1 Problem Formulation

The two major approaches in implicit polynomial fitting—algebraic and geometric—are

briefly presented here to show the motivations of the proposed approach. Implicit polyno-

mial fitting aims at finding the best polynomial that describes a given set of points by means

of its zero set. In other words, the value of the polynomial should reach zero at the location

of the given data points. Let fc(x) be an implicit polynomial of degree d represented as:

fc(x) =
∑

(i+j+k)�d

{i,j,k}�0

ci,j,k · xi · yj · zk (3.1)

35
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or, in a vector form:

fc(x) = mTc (3.2)

where c = [c0,0,0, c1,0,0, ...c0,0,d]
T is the column vector of polynomial coefficients hav-

ing as many components as the combination of (d + 3) taken 3 at a time without rep-

etitions: Cd+3
3 = (d+3)!

d!3! ; and m is the column vector of monomials: m = m(x) =
[x0y0z0, x1y0z0, ...x0y0zd]T ; the fitting problem consists of first defining a criterion—or

residual error—for measuring the closeness of the zero set, Zf = {x : fc(x) = 0}, to the

given data set, and then minimizing this criterion to find the best coefficient vector c.

Let P = Γ0 = {pi}N1 be the set of given data points with coordinates x (picked up from

object boundaries in 2D or surfaces in 3D); then the fitting problem is defined as:

ĉ = argmincDist(P, fc) (3.3)

where argminc stands for the polynomial coefficient vector c where the Dist expression

attains its minimum value; there are two different approaches to find that best coefficient

vector ĉ as detailed next.

In the geometric fitting approaches the distance between a point and the surface is usually

defined as the shortest distance between this point and its correspondence on the surface (i.e.,

orthogonal distance). Thus, in the general case of geometric methods, we have the following

optimization problem:

Dist(P, fc) =

N∑
i=1

minp̂i
d2(pi, p̂i) (3.4)

where each p̂i is the correspondence of pi on the surface. Here we consider the l2 norm to

calculate the distance d, and consequently a non linear least squares optimization must be

solved.

Theoretically, both unknown surface parameters and the correspondences must be found

simultaneously, but practically this problem is tackled by first assuming an initial surface,

and then refining it till convergence is reached. So, the fitting problem is split up into two

stages: i) point correspondence search; and ii) surface parameter refinement. The first stage

deals with the summands in (3.4), while the second one concerns about (3.3).

Point correspondence search: Regarding the first stage two different strategies have been

proposed in the literature: (a) finding the shortest distance by solving a non-linear system

(e.g., [2, 3]); and (b) computing an estimation of the shortest distance (e.g., [134, 19, 42]).

Surface parameter refinement: As a result from the previous stage the set of points

{p̂i}ni=1, corresponding to every pi in the given data set has been found. Afterward, it must

be followed by an optimization framework to refine the surface parameter. Although differ-

ent optimization algorithms could be used (e.g., Genetic Algorithm (GA) [42], Trust region

[44], Quasi-Newton method [145], Particle Swarm [1]) in the current work the Levenberg-

Marquardt algorithm (LMA) [36] has been chosen since it exploits gradient information pro-

vided by the proposed distance estimation. LMA, in some sense, interpolates between the

Gauss–Newton algorithm and the gradient descent (more details about LMA are given in

Section 3.3).
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Figure 3.1: Simplex used for estimating the geometric distance: (a) 2D case; (b) 3D case.

In this chapter a novel geometric approach is presented to tackle IPs fitting through an

estimation of the orthogonal distance. In spite of being focussed on the geometric frame-

work, the polynomial coefficients can be firstly initialized by using some algebraic fitting

algorithms (e.g., the 3L algorithm [11]). This initialization process is intended for speeding

up the convergence of the algorithm; other strategies, for instance starting with the smallest

bounding circle/sphere can be used. The proposed geometric approach consists of two stages.

First, the residual error from the given set of points to the initial IP coefficients is estimated by

means of the proposed approach. Then, the IP coefficients are accordingly updated through

LMA. The two stages are repeated till convergence is reached; they are detailed next.

3.2 Approximated Residual Error

The first contribution of the current work lies in a direct approach to estimate the orthogonal

distance. It works as follows. First a simplex is constructed through each point and its in-

tersections along the coordinate axis. A simplex is a triangle in 2D and a tetrahedron in 3D,

as depicted in Fig. 3.1(a) and Fig. 3.1(b) respectively. Without loss of generality, the 3D

case is considered here. In this case, having constructed the tetrahedron, its height segment

is considered as an approximation of the geometric distance. This tetrahedron is defined by

the given point and three intersections satisfying fc(x, yi, zi) = 0, fc(xi, y, zi) = 0 and

fc(xi, yi, z) = 0, where p = pi(xi, yi, zi) is the given point. In the particular case tackled

in this work, since the fitted curve/surface is defined by the implicit polynomial (3.1), the

intersecting points are found by computing the closest root of a one dimensional function to

the data point.

Once the intersecting points have been obtained, a direct formula is used to estimate the

geometric distance. Let r, s and t be the three intersections with the current surface, which

create a triangular planar patch (see Fig. 3.1(b)). Since the volume of the tetrahedron is

defined as the product of the area of each base by its corresponding height, three sets of

expressions lead us to the same value. Hence, the height of the tetrahedron, dTH , could
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(a) (b) (c) (d)

Figure 3.2: Contour of constant distance for: (a) Orthogonal distance; (b) algebraic distance;

(c) [134]; (d) proposed distance estimation.
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easily be computed from the following relationship:

dTH = (|pr|.|ps|.|pt|)/|�rs× �rt| (3.5)

=
|pr|.|ps|.|pt|√

(|pr|.|ps|)2 + (|pr|.|pt|)2 + (|ps|.|pt|)2

where × refers to the cross product operator between two vectors. Similar relationship can

be obtained in the 2D case by using the triangle area instead of the tetrahedron volume. More

details can be found in [117].

As presented above, in order to estimate the distance, the intersections of the curve/surface

along the coordinate axis must be found at first. In the quadric case these intersections can be

directly found ([117]). However, for higher degree cases, an iterative method should be used

to find the roots. In the current implementation Newton’s method has been used [129]. In

case the first iteration is considered, an approximation of the root can be obtained through the

first order Taylor expansion. For instance, the expansion along the x axis can be expressed as

follows:

f(x, yi, zi) � f(xi, yi, zi) + fx(xi, yi, zi) · (x− xi) (3.6)

where fx corresponds to the partial derivative in the x direction and x = r is the intersection

of the surface with the line passing through p in the x direction. Hence, the segment |pr| can

be easily estimated as:

|pr| � −f(pi)/fx(pi) (3.7)

considering similar approximations for the other two intersections, the proposed distance for

the point pi could be approximated as follows:

dTH � |f/fx|.|f/fy|.|f/fz|
f2

√
(1/fx.fy)2 + (1/fx.fz)2 + (1/fy.fz)2

=
|f |

||∇f || (3.8)

thus, the proposed distance is a generalization of the Taubin’s method when the intersections

are approximated.

The preciseness of the proposed distance is presented for two examples in Fig. 3.2 and

compared with other approximated distances as well as the orthogonal one. The first row

of the figure shows the iso-contours 1 of the set {(x, y) : xy = 0}, which consists of

two intersecting lines, and the second row shows iso-contours of a regular curve {(x, y) :
8x2 + (y2 − 4)2 − 32 = 0}. As illustrated in last two columns, our method and Taubin’s

behave similarly in the linear case (when the Jacobian matrix is linear with respect to the

point coordinates). In the second example our method outperforms compared with other ap-

proximations and have a quite similar result to the iso-contours obtained by the orthogonal

method.

1Contours with the same distance from the zero set.
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3.3 Implicit Polynomial Fitting

As a result from the previous stage the distance from each single data point to the current

curve/surface has been found. The accumulation of all these distances provides a good criteria

for curve surface fitting:

Dist(P, fc) =

N∑
i=1

d2TH(pi). (3.9)

This distance is in the least squares form where each term is non-linear with respect to the

coefficient vector c. It provides a straightforward method to approximate the orthogonal

distance. Hence it can be used in an appropriate optimization algorithm to find the best pa-

rameters describing the given set of points. We already used this distance in a RANSAC

based framework to find the quadratic surface parameters [117]. Other optimization tech-

niques, like Genetic Algorithm (GA) [42] or Quasi-Newton method [145], have been already

used in surface fitting.

The current work not only propose a simple and fast distance estimation approach but

also, as a second contribution, it shows how this estimation can be used in a non-linear frame-

work. In the current work, the Levenberg-Marquardt algorithm (LMA) has been used [36]

to optimize the distance (3.9) with respect to the curve/surface parameters. LMA is specifi-

cally designed for non-linear functions in the least squares form, which is the case in (3.9). It

starts from an initial coefficient vector c0 = c, obtained by some algebraic fitting technique

(as mentioned above the result from the 3L algorithm has been used as initialization). LMA

updates these parameters iteratively as follows:

ct+1 = ct + β�c,
(JTJ + λdiag(JTJ))�c = JTD (3.10)

where β is the refinement step; �c represents the refinement vector for the surface param-

eters; λ is the damping parameter in LMA; J is the Jacobian matrix of D; and the vector

D = (d1(c), ..., dn(c))T corresponds to the distances (di(c) = dTH(pi)), whose l2 norm

must be minimized. Parameter refinement (3.10) must be repeated till convergence happens.

Each iteration of LMA contains two stages: 1) distance estimation; and 2) Jacobian matrix

computation. In the first stage all the intersections along the coordinate axis must be found.

For this purpose Newton’s method is applied to find the root of the parametric function f(pi+
td), which is a one dimensional function with respect to t. The direction vector d is set to

e1 = (1, 0, 0)T , e2 = (0, 1, 0)T and e3 = (0, 0, 1)T for each axis. Having computed all the

intersections along the coordinate axis the terms: |pr|, |ps| and |pt|, and consequently the

distance (3.5), can be estimated. As mentioned above, it should be noticed here that if we

stop the Newton’s method after one iteration, the proposed distance will be computed easily

through (3.8) which is the same as [134].

In order to handle LMA, the value of the functional (3.9) and its partial derivatives, which

are used to build the Jacobian matrix, should be provided. These values show the sensitivity

of each di in (3.5) with respect to the parameter vector c. The Jacobian matrix could be
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directly derived through the differentiation rules as follow:

Jij = ∂j(di) = [|�rs× �rt|.∂j(|pr|.|ps|.|pt|)
−(|pr|.|ps|.|pt|).∂j |�rs× �rt|]/|�rs× �rt|2 (3.11)

where ∂j = ∂/∂cj is the differentiation operator with respect to parameters. Since the inter-

section r, s, and t lies on the surface, |�rs× �rt|, |pr|, |ps| and |pt| can be implicitly expressed

as a function of the surface parameters. In order to calculate each term of (3.11), the implicit

differentiation rule must be used for each intersection. For instance, for a given point pi, the

term |pr| is computed just by considering its x-component: |pr| = (rxi − pxi ) and its partial

derivatives as follows:

∂j |pr| =
drx

dcj
= − ∂f/∂cj

∂f/∂rx
= −mj(r)

fx(r)
(3.12)

where mj(r) is the j-th monomial component calculated in the intersection. The term |�rs×�rt|
can be expressed based on the intersections as mentioned in (3.5). Then its partial derivatives

can be computed based on the other single terms.

Having estimated the geometric distance (3.5) and its Jacobian matrix through (3.11)

the LMA algorithm iterates equations (3.10) till convergence is reached. In the current work

convergence criteria has been defined using the deviation between the IP normal and the local

normal at each point (see illustration in Fig. 3.3). This criteria, on the one hand is easy to

be computed; and on the other hand, it is robust enough to be used with different geometries.

Note that the local normal at each data is already computed during the initialization stage (the

3L algorithm). So the only required computation is regarding the angle estimation:

θi = cos−1( ni.∇f(pi)
‖∇f(pi)‖ ) (3.13)

additionally, since cos−1|[0,1]→[0,pi/2] is monotonic, just the absolute value of the inner ex-

pression, without calculating the cosine inverse, is considered. Therefore the criterion used

for measuring the goodness of the current fitting result is:

ξ(c) =
1

N

N∑
i=1

1− | ni.∇f(pi)
‖∇f(pi)‖ | (3.14)

where N is the number of points in the original data set. LMA iterates while (3.14) decreases

more than a user defined threshold Δξ = ξt − ξt−1 or a maximum number of iterations is

reached.

3.4 Experimental Results

Our experiments with the proposed distance estimation comprises two part. In the first part

we study the accuracy of this distance for error approximation. This is shown to be useful

for RANSAC based approaches to estimate the optimal curve/surface parameters in a ran-

dom scheme. In the second part we apply the proposed distance estimation in a non-linear

optimization framework (LMA) to find the parameters in an iterative scheme.
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pi

ni

ƒ(pi )

Figure 3.3: Convergence criteria defined as the deviation between the IP normal and the local

normal is each point.
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Figure 3.4: Estimated normal vectors for raw data points by using different approaches. (a)

PGD approach. (b) Based on PCA in a local neighborhood. (c) Proposed approach (THI

direction).

3.4.1 Residual Error Approximation

This section provides results obtained with synthetic and real data points. Synthetic data

points are used as ground truth for evaluating results of the proposed approach when noisy

data are considered. Real data points have been obtained with the K2T structured light camera

system at the University of South Florida and are used for empirically validating the proposed

approach.

Synthetic Data: In this section results from 2D and 3D synthetic data points are pre-

sented. The first illustration correspond to a set of 50 noisy 2D data points, randomly dis-

tributed over a circle. Fig. 3.4 presents normal vectors −→n 0 estimated by using different

approaches. An outer, and concentric, circle is just depicted for highlighting these orienta-

tions. Fig. 3.4 (a) shows the orientations obtained by using the PGD criterion [19]; since

the shortest distance along {(1, 0), (0, 1)} is selected, the estimated −→n 0 is parallel to one of

the axes. Fig. 3.4 (b) presents normal vectors estimated by using the approach presented in

[42]. Since this approach is based on a PCA analysis in a small neighborhood centered at

each point, it is easily affected by noisy data. It can be appreciated that some estimations are

completely wrong. On the contrary, results obtained with the proposed approach are robust

to noisy data (see Fig. 3.4 (c)). In most of the cases estimated normal vectors are correctly

oriented towards the center of the circle.
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Figure 3.5: Accumulated error by using different approaches as a function of noise standard

deviation.

Fig. 3.5(top) presents results obtained with a set of 3D data points uniformly distributed

over the surface of a sphere. An accumulated real orthogonal distance (RGD), from the whole

set of 3D data points to an outer and concentric sphere, is used as ground truth. Estimated

distances, also accumulated over the whole set of points, are computed by using the three dif-

ferent approaches (i.e., PGD [19], PCA [42] and THI). The experiment has been repeated by

increasing the standard deviation of the noise added to the set of 3D points. It can be seen that

the proposed approach behaves quite similar to the real orthogonal distance independently of

the added noise. On the contrary, as it was expected, results obtained with the PCA based

approach are easily biased when the noise standard deviation grows. Similar results have

been obtained by using 3D data points uniformly distributed over the surface of a cylinder

(Fig. 3.5(bottom)). In this case, distances to an outer and concentric cylinder are considered.

The real orthogonal distance, accumulated through the whole set of points, is used as ground

truth. It can be appreciated that the distances estimated with the proposed approach (THI) are

very similar to the real values; on the other hand values computed with the proposed approach

are not affected by noisy data.

Real Data: The objective of this section is to show the viability of the proposed approach

by analyzing surfaces fitted using different metrics. A simple RANSAC-based [33] fitting

approach has been used for finding the best set of quadric surface parameters in each case;

developing a novel fitting technique is out of the scope of current work. The prior knowledge

about the geometry of the surface to be fitted and a 3D data preprocessing step are used

to reduce the size of active parameters in c. The preprocessing step consists in rotating

and translating the set of 3D data points in order to place the world coordinate system at

the centroid of the set of points and to orient it according to the main axis of the 3D data.

Once data have been transformed to the new coordinate system the RANSAC-based fitting

approach is used for computing the surface parameters (parameter vector2 b).

Table 3.1 shows the original images (left column) as well as the patches extracted for

fitting (second column) that only contains 3D data points from a quadric surface. Surface

parameters have been obtained through the RANSAC-based fitting by using three different

estimations of the orthogonal distance. Results are presented on columns 3 to 5 of Table

3.1. The fastest results were obtained by using the PGD estimation; however, as presented in

2It is defined according to the kind of surface to be fitted—e.g., cylinder: (b = {b2 = b3, b8, b9}).
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Table 3.1: Surfaces fitted by using different metrics; Rad: radius; C: center; AEr: Accumulated

Error according to the used metric; CPU time in sec.

3D Data to be Fitted PGD [19] PCA [42] THI: Prop. Ap.
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the synthetic case, this distance estimation is not accurate and could leads to a biased result.

Note that in the real data case it is not possible to judge the goodness of obtained results

since there are not ground truth values for the surface parameters. In spite of that, it can

be appreciated that in most of the cases the surface parameters obtained with PCA based

approach are very similar to the ones computed using the proposed approach. In other words,

it could be assumed that PGD based approach results in a more inaccurate set of surface

parameters. Finally, although the proposed approach gives similar results to the PCA based

approach, it should be highlighted that it runs up to eleven times faster. Furthermore, recall

that PCA based approach needs the right tuning for the neighbor point selection.

3.4.2 Implicit Polynomial Fitting

The proposed method, which belongs to the geometric fitting category, is implemented and

compared with the most important methods in the literature, both algebraic and geometric.

The results presented in this section are evaluated using the fitting error (FE) computed for

every single points with [2]. It is used to obtain a quantitative criterion for comparison, which

is referred to as Accumulated Fitting Error (AFE): AFE=
∑N

i=1 FEi. In all the cases the

given data points are centralized and scaled between [-1,1]. The parameters of initialization

(3L algorithm), optimization (LMA) and stoping criterion are empirically set up as presented

in Table 3.2. The same initialization and stopping criterion have been used once the proposed



3.4. Experimental Results 45

approach is compared with other approaches.

Table 3.2: Parameters set up.

Initialization (the 3L alg.) Optimization (LMA) Stopping criterion

δ ε λ β Δξ # iteration

0.1 1 0.01 0.5 <0.1 <25

In the two dimensional case, different sets of points picked from quadric contours sampled

with non-uniform distributions have been fitted with the proposed approach and compared

with other approaches. Fig. 3.6(a) depicts the result of the proposed method when a non-

uniformly distributed 2D data set is fitted. Both algebraic and proposed method converge to

a similar result, but problems arise when noise is added to the points. Fig. 3.6(b) highlights

the robustness of the proposed method to noise; whereas the algebraic one misses the elliptic

structure of the data, and fits the patch as a split hyperbola. Fitzgibbon et al. [35] propose

a fitting method just for 2D elliptic cases based on algebraic approaches. From this simple

example, one can understand the hardship for algebraic methods when the function space is

bigger than the quadratic one.

(a) (b)

Figure 3.6: Fitting a set of points from an ellipse. (a) Without noise: Algebraic (dotted line)

and proposed method (solid line). (b) Noisy data case: Algebraic (dotted line) misses the

elliptic structure, while the proposed approach (solid line) reaches a good result.

The proposed approach is also implemented for fitting higher degrees IPs. Figure 3.7

shows 2D contours fitted by fifth and sixth degree IPs (depending on the shape complexity)

using: the 3L algorithm (Fig. 3.7(a)); the approach proposed in [134] (Fig. 3.7(b)); the

proposed approach (Fig. 3.7(c)); and a non-linear orthogonal distance based approach [2]

used as a ground truth (Fig. 3.7(d)). The fitting error, computed over the whole set of points

with [2], is used as a quantitative criterion for comparison. In all the cases the accuracy

obtained with the proposed approach considerably improves the one obtained with the 3L

algorithm, and in most of the cases gives better results than [134]; actually, it is comparable

(in one case better since the stopping criteria has been reached, see fourth row) to the results



46 GEOMETRIC FITTING

AFE = 3.263 AFE = 0.739 AFE = 0.752 AFE = 0.714

AFE = 8.803 AFE = 4.498 AFE = 2.839 AFE = 0.718

AFE = 4.823 AFE = 1.158 AFE = 1.121 AFE = 1.027

AFE = 5.706 AFE = 0.595 AFE = 0.603 AFE = 0.764

AFE = 8.815 AFE = 3.366 AFE = 2.225 AFE = 1.101

(a) (b) (c) (d)

Figure 3.7: 2D contours fitted by fifth (1st and 2nd rows) and sixth (3rd, 4th and 5th rows)

degree IPs, results from: (a) the 3L algorithm; (b) [134]; (c) proposed approach; (d) [2],

which is used as ground truths. AFE shows the accumulated fitting error respectively. The

fourth row shows a case where [2] stops due to the maximum iteration criterion.
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(a) (b)

Figure 3.8: Fitting two concentric ellipses. (a) Result from the 3L algorithm. (b) Result from

the proposed approach.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: Synthetic data sets fitted with the proposed approach.
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(a) (b)

Figure 3.10: Solid surface representing a fourth degree IP; wire frame is used to visualize given

data points. (a) IP obtained from the 3L algorithm. (b) Result from the proposed approach

(note the similarity between wire frame and the surface from the computed IP).

Table 3.3: Synthetic data set: AFE corresponding to the illustrations presented in Fig. 3.9.

IP 3L alg. Orthogonal Prop.

degree [11] fitting [2] approach

Fig. 3.9(a) second 9.58 5.56 5.39
Fig. 3.9(b) second 2.42 1.32 1.20
Fig. 3.9(c) fifth 1.89 0.69 0.68
Fig. 3.9(d) third 1.93 1.73 1.69
Fig. 3.9(e) fifth 2.67 1.28 1.03
Fig. 3.9(f) third 3.80 1.29 1.31

Fig. 3.9(g) fourth 2.20 0.50 0.51

Fig. 3.9(h) third 1.17 0.42 0.40

obtained when the non-linear approach is used. Although out of the scope of the current

work, it should be mentioned that in the 2D case the proposed approach is about ten times

faster than [2]. Finally, another challenging 2D shape defined by two concentric ellipses has

been fitted by a fifth degree IP using the proposed approach; Figure 3.8(a) shows the result

from the 3L algorithm used as initialization of the proposed approach. The final result is

depicted in Fig. 3.8(b).

The proposed approach has been also evaluated with 3D data sets, both synthetic and real

data sets were fitted with low and high degree IPs. On average, in the 3D case, the proposed

approach is not as good as in the 2D case, but it is about twice faster than [2]. Figure 3.9 shows

eight different results obtained with the proposed approach; in all the cases the results are

quite similar to the ones obtained with [2], and considerably better than those obtained with

[11]. Table 3.3 presents the Accumulated Fitting Error obtained with the different approaches

for a quantitative comparison. Note that these results were obtained once the stopping criteria
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Table 3.4: Data set from AIM@SHAPE: AFE corresponding to the illustrations presented in

Fig. 3.11.

IP 3L alg. Orthogonal Prop.

degree [11] fitting [2] approach

Fig. 3.11(a) fourth 8.17 5.31 5.37

Fig. 3.11(b) seventh 6.17 5.76 5.85

Fig. 3.11(c) seventh 1.07 0.56 0.63

Fig. 3.11(d) seventh 3.28 1.51 1.68

Fig. 3.11(e) sixth 3.30 2.32 2.27
Fig. 3.11(f) fourth 4.57 1.90 1.88
Fig. 3.11(g) sixth 3.41 2.92 2.94

Fig. 3.11(h) sixth 7.60 6.61 6.62

has been reached; if larger number of iterations are allowed, [2] achieves better results. The

proposed algorithm has been tested with a more challenging 3D data set with a different

topology; Figure 3.10 presents results from both the 3L algorithm (AFE=0.06), which is

used as an initialization of proposed approach, and the final result obtained after 10 iterations

(AFE=1.00× 10−4). In this case a fourth degree IP has been used (solid surface); given data

points are represented by means of a wire frame just for a visual comparison.

In addition to the synthetic objects, a data set from AIM@SHAPE3 has been used for

evaluating the proposed approach. Figure 3.11 shows eight illustrations of fourth, sixth and

seventh degree IPs obtained with the proposed approach. Table 3.4 presents the Accumulated

Fitting Error obtained with the different approaches for a quantitative comparison. Figure

3.12 illustrates the independence to initial guess by using a sphere covering the given data

set as an initialization (see Fig. 3.12(a)). First, second and third iterations of the proposed

approach are shown in Fig. 3.12(b), (c) and (d) respectively; result obtained after 25 it-

erations is already depicted in Fig. 3.11(a). Surface parameter refinements through these

iterations are depicted in Fig. 3.13. Figure 3.13(a) corresponds to the evolution of the 35 IP

coefficients, while Fig. 3.13(b) shows how the AFE decreases with the iterations. Finally,

Fig. 3.13(c) depicts the accumulated angle (3.13) used as a convergence criteria. It should

be mentioned that this criteria has a similar behavior than Fig. 3.13(b) but its complexity is

considerably lower.

3.5 Conclusions

This chapter presents a novel geometric approach for 2D/3D implicit polynomial fitting,

which is based on a fast geometric distance estimation. Despite other geometric estimations,

which are based on a single direction to find the foot-point associated to each data point, the

proposed one is based on two or three directions (depending on the data dimension). The

3http://shapes.aimatshape.net/
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.11: Data set from AIM@SHAPE fitted with the proposed approach.

(a) (b)

(c) (d)

Figure 3.12: (a) Fitting with a rough initialization. (b), (c) and (d) First, second and third

iterations respectively.
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Figure 3.13: Parameter evolution of Fig. 3.12 along 25 iterations: (a) IP coefficient values;

(b) AFE; (c) accumulated angle used as convergence criteria.

smoothness and accuracy of the proposed distance have been shown. Additionally, the im-

plicit connection between this distance and the IP coefficients has been presented and shown

to be differentiable. This property allows the use of any gradient based optimization tech-

niques. In the current work the Levenberg-Marquardt algorithm is applied to find the best set

of surface parameters in an iterative way. Comparisons with state of the art techniques are

presented. Moreover, the proposed distance is proved to be a generalization of the distance

presented in [134].
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Chapter 4

Algebraic Fitting

This chapter presents a linear fitting method based on the implicit B-spline representation.

IBS is a flexible representation capable to describe complex objects both in 2D and 3D. In

this paper a novel IBS fitting is presented in the 3L framework that is linearly solved based

on least squares formulation. All the computations are based on the blending functions,

which are couples of simple quadratic or cubic patches. We show how the regularization

term and additional constraints can be considered in the proposed framework. The proposed

method is efficiently implemented acquiring a low complexity. Experimental results show

the flexibility and accuracy of the proposed algorithm to describe different boundaries and

objects. Comparisons with other fitting methods both in algebraic and geometric frameworks

highlight the advantage of the proposed approach.

This chapter focuses on the algebraic distance based approaches. These methods are com-

putationally fast, but less accurate compared to the geometric ones. Instead of considering

the orthogonal distance, they try to find the optimal parameters through imposing some alge-

braic constraints on the zero set defined by the parameters. The minimization formulations

of these methods are in the linear least squares form that can be efficiently solved in a single

step without iteration.

The fitting algorithm used in this chapter is based on the 3L algorithm [11] originally

proposed for IP fitting. This algorithm belongs to algebraic fitting methods that use some

geometric clues. It uses two additional offsets, inside and outside of the original data Fig.

4.1(left). Then, it tries to trap the zero set between these additional offsets, and somewhere

close to the original data set. In the first part of this chapter a method for relaxing the original

3L algorithm is proposed to make it more flexible. It adapts the expected values to be obtained

in the inner and outer offsets using some geometric information. This process is continued

while some consistency criteria is met.

In the second part we extend the 3L algorithm for Implicit B-Spline (IBS) fitting. This

method results in a flexible and accurate enough representation. In addition the proposed

53
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Figure 4.1: The proposed efficient 3L-IBS method for fitting; (left) three level sets; (right)
the active control points.

framework allows to consider additional constraints imposed by user. These constraints can

control either the position or the orientation of the zero set in some specific points defined

by the user. All these formulations are presented in a unified framework that will be referred

to as 3L-IBS. Moreover, for the sake of simplicity, all the formulations are presented based

on the blending functions, which are couple of quadratic or cubic patches that assemble to-

gether. This methodology helps the reader to implement all the presented idea. As the final

contribution, a modification of the proposed 3L-IBS algorithm is provided, which is compu-

tationally efficient. This technique defines the optimization on the active parts of the control

lattice, hence a lower solution space will be considered instead. For instance Fig. 4.1(right)
illustrates the active control lattice that contains around 11k parameters instead of 125k.

4.1 Problem Formulation

In the algebraic fitting domain, least squares formulation is a simple and common frame-

work for curve/surface fitting, as previously mentioned. Since the objective function E =
cTMTMc in (2.11) is quadratic with respect to the parameter vector, it can be linearly mini-

mized. But minimizing this term might lead to the trivial answer c = 0, thus there must be an

additional constraint to avoid this solution. One of the techniques, to regularize the solution

space, is to force the coefficient vector to satisfy
∑

i ci = 1.

Although simple and computationally efficient, this least squares solution might lead to

unstable results, since the presented algebraic metric does not use geometric clues of the data

set. Hence the metric should be strengthen in order to approximate the orthogonal distance

between the zero set and the given point set. Moreover, some additional constraints with
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Figure 4.2: Computing the normal vector: (left) using the principal component analysis;

(right) using the neighboring triangle orientations in the triangular mesh.

geometric meaning could be imposed to have a better description.

The 3L algorithm is an algebraic method addressing this problem [11]. This method is

originally proposed for fitting IPs. It generates an inner offset Γ−δ and an outer one Γ+δ at the

distance ±δ from the original data set Γ0. These sets are generated along the normal vectors

that can be obtained either through the triangular mesh [110] or through the PCA applied

in each local neighborhood. Figure 4.2 illustrates these two techniques to compute the local

normal vector. Moreover, Fig. 4.3(b) depicts how the additional offsets are supporting a data

set in 2D.

Having provided all the three level sets: {Γ−δ,Γ0,Γ+δ}, the 3L algorithm1 tries to find

the optimal function reaching +ε inside, −ε outside, as well as zero for the original data

set. This set of constraints can be formulated as an over-determined system of equations

M3Lc = b where

M3L =

⎡
⎣ MΓ−δ

MΓ0

MΓ+δ

⎤
⎦ , b =

⎡
⎣ −ε

0
+ε

⎤
⎦ (4.1)

M3L is a block matrix of MΓ0
,MΓ+δ

, and MΓ−δ
containing the monomials calculated in

the original data set, the inner and the outer offsets. This over-determined system of equation

can be seen as a summation of squared form (see (2.12)).

The column vector ±ε in (4.1) contains the expected value of f in the additional offsets.

Since the shape of the zero set is the same for c and κc for any constant κ, we can fix the

value ε = 1 without disturbing the final zero set.

The overdetermined system proposed by the 3L algorithm can be considered as a mini-

mization of an energy function:

E(c) = ‖M3Lc− b‖2 = (M3Lc− b)T (M3Lc− b)
= cTMT

3LM3Lc− 2cTMT
3Lb+ bTb

(4.2)

13L stands for 3 Levels considered in the algorithm.
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(a) (b)

(c) (d)

Figure 4.3: Fitting a set of 2D points: (a) cat silhouette [127] (b) data set and additional

offsets; (c) the fitting result by using a degree 30th implicit polynomial (496 coefficients) [2];

(d) the fitting result from the proposed algorithm using a 30×30 IBS (391 active coefficients).
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It must be mentioned that this least squares problem does not have any trivial solution, hence

there is no need for any extra constraint. This function is quadratic with respect to the coeffi-

cient vector. Using matrix calculus the derivative of this function with respect to vector c can

be easily derived:

∂F/∂c = (MT
3LM3L)c+ (MT

3LM3L)
T c− 2MT

3Lb (4.3)

Then, the least squares solution for c is obtained by setting the derivative equal to zero:

c = M†
3Lb = (MT

3LM3L)
−1MT

3Lb (4.4)

where M†
3L denotes the pseudoinverse of M3L.

The 3L algorithm is fast and more stable compared to other algebraic fitting techniques.

It finds the solution directly from the monomial matrix without any iterative computation.

The monomial matrix is easily computed in the given set of data point. In spite of being

computationally efficient it suffers from some problems as detailed bellow.

The first problem is regarding the numerical instability problem which is common in

linear least squares method. In [110] a ridge regression (RR) method is presented to increase

the stability by adding a regularization term to (4.2). This regularization term is in the form

of
∑

c2i = cT c, and its effect is controlled by the regularization parameter μ. This term

is quadratic, and it can be generalized to cTDc where D is a diagonal matrix containing

different weights for each coefficient. The optimal coefficient can be still found as a least

squares solution similarly to (4.4):

c = (MT
3LM3L + μD)−1MT

3Lb. (4.5)

The diagonal matrix D can be easily chosen as the identity matrix, or more elegantly chosen

in proportion to the diagonal of MT
3LM3L. The authors in [110] impose some conditions on

the diagonal matrix in order to obtain an algebraic invariant result. Although more stable, the

RR method leads to a coarser result.

The second problem is due to the generating additional offsets. For this purpose, a normal

direction should be approximated first through a triangular mesh or PCA. Then the problem

is how to determine the value δ which shows the distance of the offsets to the original set. The

authors in [11] choose δ as a percentage of the object size. Moreover, it depends on the point

density, the complexity of the object and the degree of IP. The 3L algorithm might be affected

by noise when a small value for δ is chosen, and might be inaccurate for larger values.

The third problem is how to chose the value ε that shows how the implicit function be-

haves in the additional offset. It should be noticed that the additional offsets are used in

order to guarantee the stability of the final result. But insisting on these additional constraints

affects the accuracy of the final result. Our experiments show the values obtained by the

optimal IP in the additional offset are not equal everywhere, and might change from point to

point. Hence a varying ε should be considered in different points. In [105] a technique to

adjust these values proportionally is presented.

The final problem considered in the current work is the limitation of implicit polynomials

to define the solution space of the 3L algorithm. Increasing the IP degree helps us to describe
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more complex objects, but increases the instability as well. In the current work implicit B-

splines are used as a flexible representation. In this article it is shown how to produce a more

flexible implicit representation, which is stable at the same time.

4.2 Relaxed 3L-IP Fitting

As mentioned in the pervious section the 3L algorithm is based on the construction of two

additional data sets (level sets) that are determined from the original data set. Although the

algorithm produces a result within one pass and no iterative computations are required, it has

three major problems as detailed below.

First of all, like other algebraic methods, the 3L algorithm has also numerical instability

problems. In a recent work, [110] proposes a statistical approach to increase the global sta-

bility of the 3L algorithm. This method is based on the ridge regression (RR), which is a way

to regularize the block matrix M3L. RR improves the condition number of the block matrix

by adding a diagonal matrix as mentioned in (4.5).

Moreover, in [110] a diagonal matrix is introduced such that the Euclidean invariant property

is maintained. Unfortunately, this method leads us to a coarser fitting result than the original

3L algorithm, although more stable.

Second, the accuracy of the fitting result depends on the δ value used for computing the

two additional level sets. In the original paper [11] the authors propose to define these offsets

as a percentage of the object size; however there is no rule for setting the right value. Actually,

in [11] the authors present some experiments showing the variability of the results depending

on that value (varying these offsets from 0.5 percent till 20 percent of the object size).

Third, it should be noticed that the whole set of points contained in the three level sets

{Γ−δ,Γ0,Γ+δ} defining the block matrix M3L are equally considered when the least squares

solution is obtained (4.5). On the other hand, the initially given problem only contains the

level set Γ0. Hence, it is easy to conclude that the constraints added for stabilizing the fitting

solution could affect the accuracy of the result.

Regardless to the pros and cons of these improvements, none of them pay attention to the

expected values of the additional data in (4.1). Indeed, forcing the IP reaching +c inside and

−c outside could lead us to a biased result. However, changing the value of c will give the

same zero set. What makes the fitting result biased is the constant proportion considered for

all the inner and outer additional data points. Figure 4.4(c) depicts an illustration where the

perfect result2 would only be obtained after relaxing the expected values for the inner and

outer offsets, while keeping them to zero for original data. This figure shows the original data

and the expected height for the supplementary offsets; and it also illustrates how these values

change from point to point. The main contribution of the current work is to estimate these

expected values in order to reach a more accurate fitting.

In the next section the last two problems mentioned above are tackled looking for a more

2This result corresponds to the fitting of the given data points computed with [2] (see Section 2.1.2), inner and

outer data sets are not considered.
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Figure 4.4: (a) Level sets: original data (Γ0), outer offset (Γ−δ) and inner offset (Γ+δ). (b)
A 3D illustration of the original 3L algorithm. (c) The best fitting polynomial obtained by [2],

showing that the values in the inner and outer sets should be relaxed.

accurate result. A strategy for relaxing the additional constraints is proposed to decrease the

fitting error while maintaining the structural shape of the object. The proposed approach

consists of two stages as detailed below.

4.2.1 Relaxing additional constrains

As mentioned earlier, the 3L algorithm tries to encode the geometric information of the data

by adding two supplementary sets supporting the original one. In the original work [11], it is

suggested to have an equal value for the whole inner and outer offsets. However, as shown

in Fig. 4.4(c), the perfect fitting result could be only reached by means of different values

for each point in the inner and outer data sets. In other words, the right hand values in (5)

(constant vectors ±c) should be relaxed in order to obtain the most accurate fitting result. In

the current work a novel idea to adjust these values for offsets, based on the position of the

point and the approximated IP at the current iteration, is proposed.

Lets f(x) be the IP at the current iteration; pi = (xi, yi) a given data point3; si and ti its

inner and outer offset respectively. As mentioned above these two points are obtained along

the unit normal ni = (nx
i , n

y
i ) from the local PCA based approximation. Moving on the

surface from si to ti can be parameterized as follow:

g(t) = f(xi + nx
i t, yi + ny

i t) (4.6)

where f shows the value of the fitted IP (see (2.2)). The expected value for g(0) = f(xi, yi)
is zero, but its value in si and ti must be estimated.

Based on the above definition, g(δ) and g(−δ) show the value of the IP achieved in si
and ti respectively. Considering the function g at these two points a fair proportion for next

iteration could be obtained, instead of using the fixed values ±c in (4.1). For this purpose a

first order Taylor approximation, around t = 0, of (4.6) could be computed as:

g(±δ) ≈ [nx
i fx(xi, yi) + ny

i fy(xi, yi)]δ. (4.7)

3Without loss of generality, and only to make clear its understanding, this discussion is presented for the 2D case,

but it could be extended to the 3D case.
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(a) (b)

Figure 4.5: (a) Coarse approximation used as an initialization of the proposed approach (δ
= 10 percent of the object size, AFE= 0.1989). (b) Fitting result obtained with the proposed

approach (four iterations, AFE=0.1288).

However, this value could be approximated again by considering an approximation of the nor-

mal vectors by means of the implicit function (i.e., ni ≈ ∇f(pi) = (fx(xi, yi), fy(xi, yi))
T ):

g(±δ) ≈ ±‖∇f(pi)‖2δ (4.8)

so the next expected value for the given point should be [0, g(δ), g(−δ)] for the original set

and the inner and outer one respectively. This process is applied for every given point and

then vector b in (4.1) updated. Then, the least squares method (4.5) is used for computing the

new IP coefficients. Note that this least squares solution is obtained just after a matrix mul-

tiplication, since the pseudoinverse matrix in (4.5) is computed only once, at the beginning.

The whole procedure is iterated till convergence is reached as explained in the next section.

4.2.2 Convergence criteria

Stoping the above iteration represents a key point. On the one hand it should be something

easier to compute; on the other hand it should be robust enough to be used with different

geometries.

In the proposed method, a coarse fitting from the 3L algorithm is chosen as an initial-

ization, and in each iteration the total angle between the gradient vector at each data and its

approximated unit normal ni, from local PCA (see Section 2.1.2), is measured. It should

be mentioned that the approximated normal is already calculated when computing the two

additional level sets. So the only required computation is regarding to the angle estimation:

θi = cos−1( ni.∇f(pi)
‖∇f(pi)‖ ) (4.9)
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additionally, since cos−1|[0,1]→[0,pi/2] is monotonic, just the absolute value of the inner ex-

pression, without calculating the cosine inverse, is considered. Therefore the criterion used

for measuring the goodness of the current fitting result is:

ξ(a) =

N∑
i=1

1− | ni.∇f(pi)
‖∇f(pi)‖ | (4.10)

where N is the number of points in the original data set. The process iterates while (4.10)

decreases.

Finally, it should be mentioned that in spite of the iterative nature of the proposed ap-

proach, it is more related to algebraic approaches than to the Euclidean based ones, where

at every iteration the shortest distance between every single point and the current fitted IP

should be computed [30]. Figure 4.5(a) shows the coarse fifth degree fitting from the 3L al-

gorithm used as an initialization of the proposed approach; the final fitting result is obtained

after four iterations (Fig. 4.5(b)).

4.3 3L-IBS Fitting Method

In this section the main contributions of this article are presented. First of all, the 3L algorithm

is adopted for IBS fitting, which is more flexible for shape description. We use a simple

definition of IBS based on the blending functions. All the computations in this article are

based on this definition, resulting in a method easy to implement. In addition to the 3L-IBS

algorithm, different extensions are also presented including global shape regularization and

constraint imposing. Moreover, the proposed technique is modified to be computationally

efficient. Without loss of generality, and only to make clear its understanding, the whole

discussion in this section is presented for the 2D case, but it could be easily extended to the

3D case.

4.3.1 3L-IBS

This subsection we explains how the 3L algorithm can be extended for IBSs. For the sake of

simplicity in implementation, the IBS definition is based on a couple of blending functions,

which are small assembling patches. These functions blend together in different scales and

transformations to make the B-spline basis functions. This section shows how to construct

the monomial matrix for the 3L algorithm.

Since a square control lattice is considered, both sets of basis functions behave similarly.

Having considered a row-by-row order, we can represent the control lattice and the basis

functions in a vector form:

f(x) = cTm(x) = m(x)T c (4.11)

where c and m(x) are the vector form of the control values [ci,j ] and the monomials [Bi(x)Bj(y)];
as in (2.4) Bi(x) and Bj(y) are the spline basis functions:

ck = ci,j , mk(x, y) = Bi(x)Bj(y). (4.12)
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Note that the indices of both vectors (i.e., c and m) must refer to the same element. For

instance, in our case the kth element of these vectors should preserve the following relation

with the indices:

i = 
k/N�+ 1, j = k − 
k/N�N. (4.13)

The way in which the value of basis functions is computed is based on the blending

functions that are defined on [0, 1]. Without loss of generality, through this paper a cubic

B-spline formulation is used made out of the following patches:

b0(u) = (1− u)3/6, b1(u) = (3u3 − 6u2 + 4)/6,
b2(u) = (−3u3 + 3u2 + 3u+ 1)/6, b3(u) = u3/6.

(4.14)

Using these cubic patches leads to a C2 continuity. Figure 4.6 shows how a B-spline is defined

out of these blending functions. In order to have N basis functions in the interval [0, 1] the

step of the knot4 sequence is chosen as Δ = 1/(N − 3) (see Fig. 4.6(top)).

The definition of B-spline presented in (2.4) can be computed directly based on the blend-

ing functions:

f(x) = f(x, y) =

3∑
r=0

3∑
s=0

ci+r,j+sbr(u).bs(v) (4.15)

where the indices start from:

i = 
x/Δ�+ 1, j = 
y/Δ�+ 1 (4.16)

and the given coordinates in XY will be mapped in UV as:

u = x/Δ− 
x/Δ�, (4.17)

v = y/Δ− 
y/Δ�.

This definition provides us with the computational efficiency useful for calculating the mono-

mial matrix and the regularization presented in next section. In order to adapt the IBS solu-

tion space in the 3L formulation, the monomial matrix M3L must be constructed for the IBS

case. Actually, as in (4.1), it contains the monomial vectors computed in the original data

set, the inner and outer offsets. The monomial vector for a given point in M3L is computed

through the definition in (4.15). Note that the value br(u)bs(v) corresponds to the monomial

of Bi+r(x)Bj+s(y) and will be used to fill in entry k according to (4.13). Once the M3L is

constructed, the optimal control lattice can be directly computed in the least squares form:

c = M†
3Lb = (MT

3LM3L)
−1MT

3Lb. (4.18)

4.3.2 Regularization

The matrix (MT
3LM3L)

−1 in (4.18) is a highly sparse matrix, which could be singular leading

to more than one optimal solution. Actually, some of the control parameters do not have any

4knot: position where two blending functions join.
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Figure 4.6: Cubic B-spline basis functions: (top) 2D basis functions made out of blending

functions; (bottom) a tensor product 3D basis functions defined on the unit square.

contribution during the least squares optimization. Hence, they are not considered during the

minimization, whiche leads to a subspace of solutions.

In order to avoid such a kind of singularity problems, Ridge Regression (RR) could be

used. RR is a widely used method for regularizing ill-posed problems [110]. In this technique

the monomial matrix is added by a diagonal matrix in order to obtain a nonsingular one:

c = (MT
3LM3L + λ.diag)−1MT

3Lb. (4.19)

The diagonal matrix, diag, could be either an identity matrix or the diagonal matrix of

MT
3LM3L or a combination of both of them.

In the current work a global tension term is considered to regularize the control parameters

[68]. This term is computed by measuring the curvature of f over the whole domain:

T (c) =

∫∫
XY

f2
xx + 2f2

xy + f2
yydxdy (4.20)

which will be added to the objective function:

E(c) = ‖M3Lc− b‖2 + μT (c) (4.21)

where μ controls the regularization smoothness. This term is the same one used as a bending

energy in Thin Plate Spline (TPS) for deformations. Figure 4.7 illustrates the effect of regu-

larization term on the rigidity of the implicit function. In other words, a high regularization
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Figure 4.7: Illustrations of the fitted IBS with different regularization parameters (μ in (4.22));

resulting zero sets are highlighted.
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parameter results in a more rigid function (Fig. 4.7(left)), while a low one leads to a more

relaxed implicit function (Fig. 4.7(right)).

It must be emphasized that this term can be analytically computed for the given control

parameters. This is due to the linear definition of IBS, and the linearity of the integral oper-

ator. Furthermore, since it is a quadratic term, its derivative will be still linear, and the final

solution could be solved through a linear system of equations [68]. In Section 4.3.4 more

details are presented to simplify this term in the form of T (c) = cTHc, where matrix H
is a N2 × N2 symmetric matrix including the integral of basis functions’ derivatives. The

regularization matrix H is a sparse matrix as illustrated in Fig. 4.10. In section 4.3.4 more

detail about the computation of this matrix is presented.

The regularization matrix H is a sparse matrix, and its entries are repetitive since a reg-

ular knot is used for IBS. Therefore it can be calculated very fast before running the algo-

rithm. Once this matrix is computed, the optimal IBS coefficient vector can be found linearly

through the least squares solution:

c = (MT
3LM3L + μH)−1MT

3Lb. (4.22)

This formula is easily derived by considering the first derivative of the energy term defined

in (4.21):

∂F/∂c = 2(MT
3LM3L)c− 2MT

3Lb+ 2μHc. (4.23)

4.3.3 Additional constraints

As already mentioned, in algebraic fitting approaches the fitting function is sought in order to

satisfy a set of constraints. The more geometric meaningful constraints are the more accurate

result will be obtained, and this is the motivation of the 3L algorithm and the Gradient-one

method. In addition to the data sets used by these methods, the user may like to force the

shape to pass through some additional specific points (referred to as positional constraint)
or to obtain a determined orientation in some specific points (referred to as orientational
constraint).

Lets us to consider the problem as minimizing E(c) in (4.21), such that the zero set of

the optimal f passes through some specific points: {q1, ...,qk}, defining the positional con-

straints. In other words gi = f(qi) = wT
i c = 0, where wi = m(qi) is the monomial vector

calculated in the point qi. These monomial vectors wT
1 , ...,w

T
k construct the monomial ma-

trix W defined for the positional constraint. Hence these constraints can be reformulated as

Wc = 0. So the constrained problem can be formulated as:

mincE(c) = ‖M3Lc− b‖2 + μcTHc
s.t.
Wc = 0.

(4.24)

In order to solve this constrained minimization problem, the Lagrange multiplier method

can be used [11]. The Lagrange function defined for this problem can be easily shown in the
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Figure 4.8: Positional constraints can be applied for the proposed 3L-IBS method. (left) the

original point and fitted IBS; (right) the constrained IBS passing through the three user-defined

points.

matrix form as follows:

Λ(c, λ) = E(c)−
k∑

j=1

λjw
T
j c (4.25)

= E(c)− λTWc. (4.26)

Since all the terms are either linear or quadratic, it is easy to compute the derivatives. Based

on the Lagrange method, derivative of the above mentioned function, must be set to zero.

Derivative with respect to λ leads to the positional constraints Wc = 0, while with respect

to c will result in:

2(MT
3LM3L)c− 2MT

3Lb+ 2μHc = WTλ. (4.27)

As a result the optimal control lattice c for the constrained 3L-IBS method can be easily

computed as:

c = A[MT
3Lb+ 1/2WTλ] (4.28)

where A = (MT
3LM3L + μH)−1 and the Lagrange multiplier λ is still unknown. It can be

easily found by multiplying (4.28) by W from left; then, since Wc = 0, due to the positional

constraints we have:

λ = −2(WAWT )−1WAMT
3Lb. (4.29)

Figure 4.8(left) shows an illustration where the fitting curve does not interpolate some

data points. This is due to the low accuracy of the least squares defined in the 3L-IBS for-

mulation in (4.22). This problem can be easily solved thanks to the constrained 3L-IBS

technique proposed in (4.28). Figure 4.8(right) shows three positional constrained defined
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Figure 4.9: Computationally efficient: (left) the active control points are highlighted; (right)
the efficient algorithm considers only a narrow strips around the active control points.

by the user. As illustrated the fitted IBS perfectly interpolates these three user-defined points.

It must be mentioned that the constrained 3L-IBS formulation can be easily extended for the

orientational constraints as well.

4.3.4 Efficient 3L-IBS Algorithm

The 3L-IBS algorithm presented above is a precise fitting method that can describe an object

through a set of control values. The 3L-IBS algorithm is fast since it is an algebraic formula-

tion, and it is flexible since it uses IBS to represent 2D/3D objects. For instance the 3D object

in Fig. 2.1(right) uses an IBS with a control lattice of 20 × 20 × 20. Hence, to show such

an object in a moderate resolution, 8000 control values must be optimized. Even though the

proposed 3L-IBS algorithm uses a fast algebraic framework, solving a system of equations

with 8000 unknowns will be really expensive. Moreover, if the point cloud contains only 1k
points in the 3D space, the block matrix M3L in (4.1) of size 3000 by 8000 and the regular-

ization matrix H of size 8000 by 8000 must be constructed. Hence a memory of 8.8 × 107

cells must be allocated to keep the values of floating point format.

The problem regarding the memory usage can be handled, since the matrices M3L and

H are highly sparse. However the problem of the high dimension unknown space remains

unsolved. In this work we consider a lower dimensional space to find the optimal IBS. We

exploit the fact that only a part of the control lattice is engaged with the fitting algorithm,

and the rest of them follows the engaged ones through the regularization term. Figure 4.9

illustrates how the proposed 3L-IBS is efficient. In Fig. 4.9(left) a 40 × 40 IBS is used to

fit a 2D silhouette of cat [127]. In our efficient case around 680 control points are considered

as active ones, hence the optimization part will be much faster (around 8 times faster). The

efficiency of the proposed algorithm will be highlighted more for the 3D case, where out
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Figure 4.10: The images log(H) of the regularization matrix H for a cubic control lattice of

size N = 15; (left) when all the control points are considered (3375× 3375); (right) when

the proposed efficient algorithm is used (889× 889)

method is much faster and more practical than normal 3L-IBS. In this section we explain the

detail of our efficient fitting method.

Figure 4.10 illustrates the regularization matrix H of the cubic control lattice of size

N = 15 for the Bunny data set. Indeed, the logarithm of entries is illustrated to depict the non-

zero values. Figure 4.10(left) shows the log(H) when the whole control lattice is considered

in the 3L-IBS algorithm. Figure 4.10(right) instead shows a smaller regularization matrix,

which is only calculated for the active control points. The first regularization matrix is more

than 3 times bigger than the second matrix, though both are sparse.

The regularization term in (4.21) is an important part of the IBS fitting, which controls the

solution rigidity in a high dimensional solution space. This term is quadratic as mentioned

in section 4.3.2. In this section we show how the regularization matrix H can be computed

for the efficient 3L-IBS. First of all assume that ĉ is the active control vector and m̂ is the

corresponding monomial vector, which contains the tensor products of B-spline functions. It

must be indicated that the order of data in both vectors should be the same. Then, for the

points in active region: cTm(x) = ĉT m̂(x).

In the efficient 3L-IBS method we propose to consider the regularization term on the

active region. Then, using the vector form defined in (4.11) we have fxx(x) = cT m̂xx(x)
due to the linear definition of B-spline. Therefore:

T (ĉ) = ĉTHĉ
= ĉT

[∫∫
XY

m̂xxm̂
T
xx + 2m̂xym̂

T
xy + m̂yym̂

T
yydx.dy

]
ĉ

(4.30)

where H is a N2×N2 symmetric matrix including the integral of basis functions’ derivatives.
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In this section we show how the regularization matrix H can be efficiently constructed

based on the monomial vectors. For any k, l ∈ {1, 2, ..., N2}, the couples (ik, jk) and

(il, jl) can be found from found from the table that is constructed when the active control

points are detected and sorted (when the whole control lattice is considered these indices can

be set based on (4.13)). Hence, based on the definition, the kth entry of mxx is equal to

(B′′ik(x).Bjk(y)) (similarly for the lth entry), thus we have:[∫∫
XY

mxxm
T
xxdxdy

]
(k,l)

=
∫∫

XY
(mxx)k.(mxx)ldxdy

=
∫∫

XY
(B′′ik(x)Bjk(y)).(B

′′
il
(x)Bjl(y))dxdy

=
∫
X
B′′ik(x)B

′′
il
(x)dx.

∫
Y
Bjk(y)Bjl(y)dy

therefore, the double integral on the whole XY domain is converted to two single integrals on

X and Y domains; by applying a similar analysis on the other terms in (4.30) the following

compact terms are obtained:

Π(k)
m,n =

∫
X

B(k)
m (x).B(k)

n (x)dx (4.31)

where B(k) refers to k-th derivative of B and m,n ∈ {0, 1, ..., N}. These matrices are

N ×N , and we can compute the entries of H through them:

Hk,l = Π
(2)
ik,il

Π
(0)
jk,jl

+ 2Π
(1)
ik,il

Π
(1)
jk,jl

+Π
(0)
ik,il

Π
(2)
jk,jl

. (4.32)

Thus, in order to compute the N2 ×N2 matrix H, we must compute three N ×N matrices

Π(0), Π(1) and Π(2). Now the objective is to compute the entries of these matrices based on

the blending function. For this purpose we consider three 4×4 matrices considering different

combinations of the blending functions:

π(k)
r,s =

∫ 1

0

b(k)r (u).b(k)s (u)du (4.33)

π(1)
r,s =

∫ 1

0

b′r(u).b
′
s(u)du

π(2)
r,s =

∫ 1

0

b′′r (u).b
′′
s (u)du

where b(k) refers to k-th derivative of b and r, s ∈ {0, 1, 2, 3}. Then, we start moving on the

region, and accumulating those values of π(0), π(1) or π(2) that contribute in that subregion.

Note that we use a special property of the B-spline basis functions: when they are considered

in a subregion (with the length of Δ) they are shrunk versions of one of the cubic patches.

Once the regularization matrix H is computed, the optimal IBS coefficient vector can

be found linearly through the least squares solution in (4.22). Figure 4.11 depicts how the

regularization term benefits the smoothness of the IBS zero set. In all these cases the efficient

version of the regularization matrix is used, which is smaller than the normal cases.
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(a) (b) (c) (d)

Figure 4.11: The efficient 3L-IBS method to reconstruct the Bunny data set containing only

817 points; (a) the offset of Bunny (δ = 1%); (b)-(d) different settings for the regularization

parameter λ = 1, 102, 103 respectively.
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Figure 4.12: Complexities of the 3L-IBS and its efficient version for Bunny data set containing

10k points: (left) the size of the optimization problems; (right) the CPU-time spent for

finding the optimal control lattice.
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Automatic setting: As mentioned in the pervious section the regularization term controls

the rigidity of the implicit function. A high regularization term results in a more stable and

rigid result but less accurate. The amount of rigidity can be automatically adjusted. In our

implementation we start from high regularization term (e.g., λ = 104 for the 3D case) and

then we decrease it slowly while some condition is still valid.

In this paper we check out the compatibility of the gradient vectors of the implicit function

with the normal vector of point set. While the gradient vectors are close to normals we

continue, but once it has started disturbing we stop. The approximated unit normal ni, is

already calculated through local PCA or the triangular mesh. It should be mentioned that

the approximated normal is already calculated when computing the two additional level sets.

Hence the only required computation is regarding to the angle estimation similar to (3.13).

4.4 Experimental Results

Experimental results are presented to compare the for relaxing 3L-IP and 3L-IBS fitting meth-

ods with the state of art. The comparisons are applied for both 2D and 3D data sets, which are

either public ([52], [127]) or obtained through a 3D scanner (i.e. Konica Minolta Vivid 9i).

The comparisons are based on the CPU time the geometric accuracy. The latter is computed

through some approximation of the geometric distance from the point set to their correspond-

ing foot-points on the curve/surface. This distance is denoted by AFE (accumulated fitting

error) through the whole section. More detail about the foot-point computation can be found

in Section 2.1.2.

4.4.1 Relaxed 3L-IP Fitting Results

2D and 3D data sets. Several data sets have been fitted with the proposed approach and

compared with the best results obtained with the 3L algorithm. Furthermore, the results

obtained with [2] are provided. Figure 4.13 shows 2D contours fitted by sixth degree IPs

using the 3L algorithm (Fig. 4.13(a)), the proposed approach (Fig. 4.13(b)) and a non-

linear orthogonal distance based approach [2] (Fig. 4.13(c)). In all the cases the accuracy

obtained with the proposed approach improves considerable the one obtained with the 3L

algorithm (see Table 3.2); moreover, it is comparable to the results obtained when the non-

linear approach is used. Although out of the scope of the current work, it should be mentioned

that the proposed approach is about ten times faster than [2].

Figure 4.14(left) depicts the fitting results obtained with the three approaches when 3D

data points are considered; note that although similar AFEs are obtained the geometry com-

puted with proposed approach is more similar to the ground truth than the one obtained with

the 3L. Finally, Fig. 4.14(right) presents results obtained after fitting a set of real data points

corresponding to a partial view of a sphere. In this case not only qualitative better results are

obtained with the proposed approach but also quantitatively.

Zero set. In order to force that the fitted IP pass through particular data points, known as

positional control points, [11] proposes to incorporate additional linear constraints. Figure
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(a) (b) (c)

Figure 4.13: (a) Results from the 3L algorithm. (b) Results from the proposed approach. (c)
Results from [2] used as ground truths.
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Figure 4.14: (left) Non-uniform synthetic noisy data from an ellipsoid (127 points), fitted

with the 3L algorithm (δ = 10%, AFE=4.3376), the proposed approach (AFE=3.1234) and [2]

(AFE=3.2441). (right) 3D data points obtained with a structured light camera from a sphere;

outer mesh correspond to the result obtained with the 3L algorithm (AFE=242.6154) while

inner spheres show the results from the proposed approach (AFE=85.1591) and the ground

truth (AFE=85.4815).

Table 4.1: Accumulated fitting errors to compare the results obtained by different approaches

(3L: the 3L algorithm [11]; GO: the Gradient One [133]; MM: Min-Max [45]; MV: Min-Var

[45]; PA: Proposed Approach; GA: Geometric Approach [2]).

3L GO MM MV PA GA

Fig. 4.13(1) 5.70 13.24 13.76 13.75 1.59 0.84

Fig. 4.13(2) 4.82 13.96 3.91 10.48 1.65 0.96

Fig. 4.13(3) 8.36 16.50 10.96 15.82 4.11 3.75

Fig. 4.13(4) 7.98 10.04 5.91 8.04 2.74 3.95

Fig. 4.16(1) 13.70 30.13 8.76 22.71 1.22 0.55

Fig. 4.16(2) 3.40 10.33 5.47 8.80 0.73 0.84

4.15(a) shows the best fitting result obtained with the 3L algorithm. It has been achieved

after trying different δ values and it corresponds to a δ = 4 percent of the object size. Fig-

ure 4.15(b), (c) and (d) depict results from the 3L algorithm after incorporating additional

constraints, as proposed in [11], to force that two, three and four points respectively be-

long to the zero set. It can be concluded that increasing the number of positional constraint

does not result in a reduction of the AFE. The result of the proposed approach (see Fig.

4.5(b))(AFE=0.1288) is quite similar to the values obtained after manually tuning δ in the 3L

algorithm or after adding positional control points.

Non-uniform sampling and open boundaries. Two particular challenges for fitting algo-

rithms arise when data points are non-uniformly distributed or when they correspond to an

open contour/surface. Figure 4.16 presents two illustrations obtained when the 3L algorithm,

the proposed approach and [2] were used. Note that the results obtained with the proposed

approach (AFE) are quite similar to the ones obtained by using [2] (see Table 4.1), but they
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Constraints
Positional

(a) (b)

Constraints
Positional

Constraints
Positional

(c) (d)

Figure 4.15: (a) Best result from the 3L algorithm obtained by setting δ = 4 percent of

the object size (AFE=0.1285). Results after incorporating: (b) two positional constraints

(AFE=0.1179); (c) three positional constraints (AFE=0.1068); and (d) four positional con-

straints (AFE=0.1105).
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Figure 4.16: Non-uniform sampling and open boundary cases: (left) Results from the 3L

algorithm; (middle) Results from the proposed approach; (right) Results from an orthogonal

distance based approach [2], non-linear fitting.

were generated almost ten times faster. A fourth degree IP was fitted in the open contour

case (Fig. 4.16(right)) while a fifth degree IP was considered for the non-uniform point

distribution case (Fig. 4.16(left)).

Quantitative Comparisons. Table 4.1 shows the AFE for five different methods as well

as the proposed one. It should be noticed that the last column corresponds to [2] that is

obtained by solving a nonlinear optimization, and needs more computation. As mentioned

above it is used as a ground truth. All other methods belong to the algebraic category, which

are solved by a simple least squares method. The proposed algorithm has obtained similar

results to the geometric one, while is much faster. The Min-Max and Min-Var methods

[45] are similar to the Gradient-One algorithm [133], which incorporates orientation in the

optimization framework. All these methods try to obtain more stable fitting results while

neglecting the accuracy. Fig. 4.17 shows how the Gradient-One algorithm fails to describe

the corners. Even though the normal directions are preserved, but the zero set is away from

the original data.

4.4.2 3L-IBS Fitting Results

2D data sets. Several data sets have been fitted with the proposed approach and compared

with the best results obtained with the original 3L algorithm [11], and the Gradient-one [133,

68]. Figure 4.18(1st column) illustrates six data sets with different complexities. In the

second column the zero sets of the optimal IPs obtained by the original 3L algorithm are
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(a) (b)

Figure 4.17: (a) The result obtained by the Gradient-One algorithm [133]. (b) An enlargement

showing how the fitting algorithm ignores the positional constraint, the gradient vectors have a

similar length and orientation though.

presented (the IP degrees can be understood from Table 4.2). The third and forth columns

correspond to the optimal IBS obtained by the Gradient-one and the proposed algorithm. The

results obtained though IPs (2nd row) suffers from outliers and inaccuracies. This problems

gets worse when the object gets more complex.

The problem of IP solution space is the global support of IP monomials. In other words,

none of the IP monomials vanish in infinity. Hence all the IP coefficients will be active for

every point in the space. This problem is solved when IBS is used instead to describe the

solution space. The cubic IBSs meet C2 continuity and have compact supports. As illustrated

in the 3rd and 4th rows of Fig. 4.18 the optimal IBSs have smooth zero set without any

outlier. Moreover, as stated in Table 4.2, the optimal IBSs achieve lower error than IPs.

Table 4.2: Size of solution spaces and accumulated fitting errors (AFEs) to compare the re-

sults obtained by different approaches (3L: 3L algorithm [11]; GO: Gradient One [133]; PA:

Proposed Approach.

3L GO PA

Figure Size AFE Size AFE Size AFE

Fig. 4.18-(oni) 231 1.0148 400 0.9957 190 0.2788

Fig. 4.18-(dude) 351 1.0612 625 1.3362 305 0.6183

Fig. 4.18-(fish) 231 2.1222 400 0.8979 178 0.7475

Fig. 4.18-(homer) 496 1.2625 900 0.5797 303 0.2546

Fig. 4.18-(camel) 861 2.6782 1600 1.1398 603 0.7668

Fig. 4.18-(hand) 1081 6.2209 2500 0.8444 865 0.4000

The Gradient-one algorithm, like the 3L algorithm, uses the normal information that is

locally estimated in each data point. In our implementation we used a Gradient-one tech-
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Figure 4.18: (1st col) original 2D data sets. Results obtained by: (2nd col) 3L-IP [2]; (3rd
col) Gradient-one algorithm; (4th col) the proposed 3L-IBS.
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(a) (b)

Figure 4.19: (left) The result obtained by the Gradient-one algorithm [133]. (right) An

enlargement showing how the fitting algorithm ignores the positional constraint, the gradient

vectors have a similar length and orientation though.

nique applied in IBS solution space. As illustrated in Fig. 4.18 the result from Gradient-one

algorithm has a similar accuracy than the proposed 3L-IBS algorithm. But since our method

is more based on the point set positions than their orientation, the final zero set is closer to the

data set. Figure 4.19, for instance, illustrates that the final zero set does not interpolates some

data points though the orientations at these points are compatible with the local normals.

In addition to high accuracy, the proposed method is much faster in comparison. As stated

in Table 4.2 the size of the parameter space in the proposed algorithm is smaller than the

Gradient-one. Actually, as depicted in Fig. 4.12 the parameter size increases quadratically

with respect to the control lattice resolution N , while in the Gradient-one it increases in a

cubic growth. Hence in our case the least squares is optimized in a smaller parameter space,

and this is why our algorithm is much faster. This point is even more highlighted when it

comes to the 3D case (see CPU time in Table 4.2).

The results in 3D case are presented in two different classes. First, as depicted in Fig.

4.20 different techniques are applied to reconstruct the surface from a low density point set.

The data size and other information is listed in Table 4.3. For all of these examples low

degree IPs (e.g, degree 10 ∼ 20) and low resolution IBS (N ≈ 20) are used. As illustrated

in the second column, using IPs usually leads to lots of outlier around the data set, but when

IBSs are used the results are more stable. In fact the results by IPs are less stable than the

ones by IBS, and the IP coefficients corresponding to higher monomials can disturb the final

result. In the IBS cases, the degree of monomials do not exceed the cubic degree. In addition

to the visual superiority of IBS results, Table 4.4 shows that the accuracy in the proposed

techniques is higher than others.

In the second class of experimental results in 3D, high density cloud of points are consid-

ered. Figure 4.21 shows five different objects from the public data set in [52]. The number
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Figure 4.20: (1st col) original 3D data sets. Results obtained by: (2nd col) 3L-IP [2]; (3rd
col) Gradient-one algorithm; (4th col) the proposed 3L-IBS.
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Table 4.3: Low resolution 3D data sets; (POL: the size of polynomial basis; DAT: number of

data points; LAT: size of control lattice; ACT: size of active control lattice.

Name DAT POL LAT ACT

Fig. 2.1 Bunny 817 1771 8000 1461

Fig. 4.20(1) Knot 240 816 8000 1484

Fig. 4.20(2) Duck 745 1771 8000 151

Fig. 4.20(3) Mannequin 639 816 3375 749

Fig. 4.20(4) Homer 585 3654 27000 1453

Fig. 4.20(5) Squirrel 1717 2925 27000 3253

Table 4.4: CPU times (in sec.) spent for the optimization and accumulated fitting errors (AFEs)

to compare the results obtained by different approaches (3L: the 3L algorithm [11]; GO: the

Gradient One [133]; PA: Proposed Approach.

3L GO PA

Figure CPU AFE CPU AFE CPU AFE

Fig. 2.1 1.181 5.185 3.137 3.894 0.219 3.230

Fig. 4.20(1) 0.078 0.334 2.643 0.130 0.183 0.050

Fig. 4.20(2) 0.554 2.032 2.898 1.698 0.257 1.314

Fig. 4.20(3) 0.143 3.369 0.697 3.916 0.102 2.718

Fig. 4.20(4) 2.369 3.158 34.829 2.040 0.246 1.692

Fig. 4.20(5) 2.532 7.778 29.437 3.470 0.784 2.856
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Table 4.5: High resolution 3D data sets; (DAT: number of data points; LAT: size of control

lattice; ACT: size of active control lattice; CPU: the CPU time (in sec.) spent for optimization).

Name DAT LAT ACT CPU

Fig. 4.21-(1st) Kitten 11039 30 2554 1.46

Fig. 4.21-(2nd) Hand 16519 40 3649 2.37

Fig. 4.21-(3rd) Bimba 8857 40 6013 6.64

Fig. 4.21-(4th) Armadillo 8229 50 8316 16.13

Fig. 4.21-(5th) Cow 10850 50 5003 4.62

Fig. 4.22 Bunny 10680 50 10479 13.89

Fig. 4.23(top) Face1 12000 60 9383 3.29

Fig. 4.23(bot.) Face2 12000 60 15391 15.14

of data points to be fitted is between 8k to 12k, as presented in Table 4.5. The IBS control

lattice resolution varies between N = 30 to N = 50 based on the object complexity. The

second column of Fig. 4.21 illustrates how the flexibility of the proposed 3L-IBS technique

allows to describe the details in the 3D objects. Moreover, it must be emphasized that the

CPU-time spent for the optimization part is only few seconds (see Table 4.5). Figure 4.22

illustrates a high resolution IBS for a high density cloud o points of Bunny. The fitted surface

is also magnified to give a better contrast between the object mesh and the fitted IBS, which

has been obtained through the proposed 3L-IBS reconstruction technique.

Finally, the proposed surface reconstruction technique is applied on a cloud of 3D points

of a face obtained by a 3D scanner (Konica Minolta Vivid 9i). The obtained point set is

noisy, and it misses some points that are invisible to the 3D scanner. The original data set

contains 168k points; we only consider 12k points randomly selected to save memory. Figure

4.23 depicts how a moderate resolution IBS (N = 60 with around 15k active control points)

results in a smooth surface (with at least C2 continuity), which compensate the missing parts.

4.5 Conclusion

This chapter tackled the algebraic fitting methods to reconstruct 2D curves/3D surfaces from

the given cloud of points. In the first part an algebraic method based on the adaptive 3L

algorithm is presented that makes the original one more flexible. In the second part a fast

and flexible fitting technique based on IBS is presented. The flexibility of the method is due

to the use of implicit B-splines to define the solution space, and the use of a fast algebraic

fitting technique to define the objective function to be minimized. The proposed technique is

referred to as the 3L-IBS algorithm since it uses 3L level sets to find the best IBS parameters.

Thanks to the local control property of IBS, the optimal control lattice obtained by the 3L-

IBS can be edited after running algorithm. Furthermore, the proposed technique is modified

in order to only consider the active part of control lattice. It makes the proposed method

much faster, while the flexibility is kept. Experimental results are provided for different 2D

and 3D public data sets as well as for real 3D clouds of points obtained by a 3D scanner.
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Figure 4.21: (left) Original high resolution 3D data sets. (right) Results obtained by the

proposed 3L-IBS.
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Figure 4.22: (left) The efficient 3L-IBS method for fitting a dense set of points. (right)
Enlargement of a region of the surface.

The comparisons with different algebraic techniques with different solution space show the

superiority of the proposed algorithm in both CPU time and fitting error.
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Figure 4.23: (left) Triangular meshes of a face. (right) Optimal implicit surface obtained

through our efficient 3L-IBS fitting method.



Chapter 5

Rigid Registration

This chapter presents a novel formulation, which derives in a smooth minimization problem,

to tackle the rigid registration between a given point set and a model set. Unlike most of

the existing works, which are based on minimizing a point-wise correspondence term, we

propose to describe the model set by means of an implicit representation. It allows a new def-

inition of the registration error, which works beyond the point level representation. Moreover,

it could be used in a gradient-based optimization framework. The proposed approach consists

of two stages. Firstly, a novel formulation is proposed that relates the registration parameters

with the distance between the model and data set. Secondly, the registration parameters are

obtained by means of the Levengberg-Marquardt algorithm. Experimental results and com-

parisons with state of the art show the validity of the proposed framework.

5.1 Introduction

Registration problem has been largely studied in the computer vision community since the

last two decades (e.g., [10], [20], [101], [138], [13]). It aims at finding the best transfor-
mation that places both the given data set and its corresponding model set into the same

reference system as close as possible. Hence there are two main concepts in this definition

to be clarified. The first concept is transformation model, which could varies from rigid to

non-rigid deformation model. The second one is regarding the definition of closeness, and

how a distance between the model set and data set can be defined. In this chapter we focus

on rigid registration methods using different distance definition.

In rigid registration the transformation space is restricted to rigid body motions. In other

words the only parameters to be found are related to rotation and translation. Therefore,

the optimization problem that finds the best parameter is defined in a low dimensional space

(3 parameters in 2D and 6 parameters in 3D). The different rigid registration approaches

proposed in the literature can be broadly classified into two categories, depending on whether

85
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an initial information is required (fine registration) or not (coarse registration); see [111] for

a detailed survey.

Coarse rigid registration refers to methods that transform the data set based on a rough

criterion. These methods are usually non-iterative, and can be used as an initialization for

fine registration. Principal Component Analysis (PCA), for instance, is a coarse registration

technique that aligns principal directions. It constructs the covariance matrix between the

data and model sets, and then finds the best rotation based on the eigenvectors of this matrix.

The best translation moves the data centroid to the model centroid. This method is based on

the first order statistics and does not measure the distance between two sets. Hence it may fail

to register finely specially when the point density is non-uniform or two sets have a partial

overlap.

Fine registration approaches, in general, find the best rigid transformation by iterating

two steps. The first step defines the correspondences between the points of the given data

set and the points in the model set. They are used to compute the registration residual error.

Then, the second step computes the best set of parameters by minimizing this residual error.

These steps are repeated until some convergence criteria is reached. The Iterative Closest

Point (ICP) algorithm is one of the classical registration approaches following this two-step

scheme. It has been originally presented in ([10], [20]); different improvements have been

proposed in the literature looking for more efficient and robust solutions (e.g., [125], [160],

[47]). Note that in all these approaches the correspondence search step affects the whole

registration, which is tackled as a discrete evolution problem.

Some effort to link the registration with the representation problem has been made by us-

ing high level representations in order to avoid the correspondence search problem. Implicit

polynomials have been used in [130] to represent both the data set and model set. Probabilis-

tic representations have been also used to describe both data set and model set (e.g., [143],

[61], [13]). In [34], [99] and [156] the point-wise problem is avoided by using a distance field

of the model set. More details about all these approaches are given in next section.

In order to avoid the correspondence search in the first stage, different techniques have

been proposed in the literature: i) Implicit polynomials have been used in [130] to represent

both the data set and model set. Then an accurate pose estimation is computed through

constructing two covariants. ii) Probabilistic representations have been used to describe both

data set and model set (e.g., [143], [61], [13]). iii) In [34] the point-wise problem is avoided

by using a distance field of the model set; the value and behavior of this distance field is

computed in a discrete domain. iv) In [99] the behavior of the distance field is approximated

analytically based on the curvature information. v) An implicit polynomial is used in [156]

to fit the distance field, which later defines a gradient field leading the data set towards that

model set.

Object representation and point set registration are common problems in the computer vi-

sion community. In general, they are tackled as standalone problems and studied separately.

The current work places a bridge that connects both problems looking for an efficient solu-

tion. Being inspired by the Computer Graphics (CG) and Computer Aided Design (CAD)

communities a compact object representation is adopted to reformulate the registration prob-

lem in a unified representation-registration framework.
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The object representation field focuses on developing compact models that allow to deal

with large amount of data. Nowadays, due to the improvement in 3D scanners, we are sur-

rounded by a high amount of raw data as a 2D or 3D cloud of points, and having a smooth

and compact representation is one of the important objectives that benefit computer vision

applications. In the current work we exploit one of the most flexible representations to tackle

the registration of two clouds of points.

The current work proposes a novel and fast formulation that exploits a compact and

smooth representation as an interface for the registration. It consists of two main stages:

in the first stage, an implicit representation is provided for the model set, which is based on

an Implicit B-Spline (IBS). The proposed fitting method is in the least squares form, hence

it is quite fast. In the second stage, we use an approximated distance to define the residual

error in registration. This distance is induced by the IBS fitted in the first stage. The final

registration distance is differentiable with respect to the registration parameters and allows

solving the registration problem through a gradient based optimization algorithm. Due to the

compactness of the proposed representation the whole scheme can be used in a coarse-to-fine

framework. The rest of this paper is organized as follows. Section 5.2 presents both the

proposed representation and registration approaches. Experimental results and comparisons

with state of the art are presented in Section 5.3. Finally, conclusions are given in Section

5.4.

Let us consider two sets of points, referred to as data set P = {pi}Nd
1 , and model set

Q = {qi}Nm
1 (Fig. 5.1(a)). In the rigid case, the registration problem aims at finding the best

rotation and translation in order to take the data set as close as possible to the model set. For

this purpose many point-to-point comparisons must be done to measure the closeness. For

the non-structured case it will take O(NdNm) just for obtaining the distance measurement.

Although more elaborated solutions using data structure have been introduced, our proposal

is to replace the model set with a proper interface that facilitates the distance measurement

(Fig. 5.1). Then the optimal configuration can be found through measuring the distance to

this interface.

In order to work with an interface instead of point set a proper geometric model should

be used. Triangle meshes and parametric NURBS are among the common tools in these

domains, but they suffer either the geometry limitation or the parametrization problem. Im-

plicit functions, on the contrary, provide a flexible representation without any parametrization

problem. They describe objects in 2D/3D through the zero set {x : f(x) = 0}. Implicit Poly-

nomial (IP) [11] is one of the simple choices for f . IPs can describe a given object through a

set of coefficients, but they are not flexible due to outliers. Radial Basis Function (RBF) [28]

provides another solution space for implicit representations. They are smooth and flexible,

but small changes in the coefficient vector can lead to a global change in the whole object.

In this work Implicit functions (IPs or IBSs) are used to represent the model set. These

functions propose a smooth and flexible representation without any need of parametrization

[3]. Moreover IBS is constructed out of B-spline basis functions, which have compact sup-

ports. Hence they have local control (i.e, changes in one coefficient will change a part of the

object). Figure 5.1(b) illustrates the flexibility of IBSs to describe a complex 3D shape. In

the current work the optimal IBS is easily obtained by means of the 3L algorithm [11], which

is a fast algebraic fitting method in the linear least squares form.
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(a) (b) (c) (d)

Figure 5.1: Using an interface for point sets registration: (a) Initial position of data (+) and

model (o) sets; (b) Data set (+) and model set represented by an IBS; (c) Registration result of

data set (+) and the IBS; (d) The same result but represented by using the model set (o) and

transformed data set (+).

Once the model set has been described by an IBS or IP the registration problem can

be tackled in a point-to-model scheme, which leads to a correspondence free registration

method. Firstly, the model set is described with an implicit function, and then the approxi-

mated distance between the data set and the fitted polynomial is minimized to find the best

rigid transformation. Figure 5.1(b) shows an implicit B-spline that is considered instead of

the model set. It should be mentioned that this implicit function is just used as an interface

to tackle the registration problem. For instance, in the extreme case, when the data set P is

a rigid transformation of the model set Q and fc is the best polynomial fitting the model set,

then it could be proved that:

minR,tDist(RP+ t, fc) = Dist(Q, fc)

where Dist refers to the orthogonal distance of a set of points to the implicit polynomial; and

[R, t] refers to the rotation and translation of the rigid transform.

The remainder of this chapter is organized as follows. Section 5.2 presents the proposed

registration approach based on a non-linear minimization of the distance between the given

data set and an implicit representation of the model. Experimental results and comparisons

with state of the art are presented in Section 5.3. Finally, conclusions and future work are

given in Section 5.4.

5.2 Proposed Approach

The proposed approach consists of two main steps. The first step formulates the registration

error based on the approximated distance between the current data set and the implicit func-

tion used for representing the model set. This formulation relates the error function with the

registration parameters. The second step finds the optimal rigid parameters that minimize the

proposed registration error through its gradient information. Before running the aforemen-

tioned two steps an implicit fitting techniques is applied to describe the model set. It should

be noticed that the proposed formulation is valid for any implicit representation (e.g., IPs,

implicit RBFs and B-splines).
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5.2.1 Distance Formulation

The registration process seeks for the best transformation parameter Θ which contains rota-

tion R = Rθ and translation t = [tx, ty]
T in rigid case. The optimal parameter moves the

data set P = {pi}N1 , in a rigid way, as close as possible to the model fc(x):

Θ̂ = argminΘ

(
N∑
i=1

Dist2(Rpi + t, fc)

)
(5.1)

for this purpose, the distance function, Dist, between the data set and the model should

be approximated. In the current work, the estimation of the orthogonal distance proposed

in [134] is used. This approximation is based on the first order Taylor expansion of the

distance function. It has some interesting properties including: i) independence of the zero

set representation; and ii) invariance to rigid body transformation. It is computed through

normalizing the algebraic distance by the gradient norm:

Dist(p, fc) ≈
|fc(p)|

||∇fc(p)||
(5.2)

using this approximation in (5.1) the registration parameters can be found by minimizing the

following function:

DistΘ =

N∑
i=1

(
fc(Rpi + t)

‖ ∇fc(Rpi + t) ‖

)2

(5.3)

=

N∑
i=1

(wifc(Rpi + t))2 =

N∑
i=1

d2i

where:

di = wifc(Rpi + t), (5.4)

wi = 1/‖ ∇fc(Rpi + t) ‖

show the distance of each item and the weight to approximate this distance. Thus the point-

to-point registration will be done in a higher level using a curve or surface as an interface. It

will provide a rich structure as well as many advantages like robustness to noise and missing

data. Figure 5.2 illustrates how the implicit functions provides a good approximation of the

registration distance through its gradient vectors.

5.2.2 Distance Optimization

The distance presented above provides a correspondence free formulation for the registration

problem, which is directly related to rigid parameters. This relation could be exploited in

many optimization algorithms. Here we use gradient based algorithms like gradient descent

and Levenberg−Marquardt algorithm (LMA). The gradient information shows the sensitivity

of distance with respect to rigid parameters as illustrated in Fig. 5.3.
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Figure 5.2: The level curves of the IBS is used to approximate the distance. In addition, the dis-

tance sensitivity with respect to small changes in rotation and translation can be approximated

as well.

LMA is a well-known technique in non-linear optimization [36], which is particularly

proposed for functions in the form of sum of squared residuals as the case in (5.3). This

method proposes a tradeoff between two well known methods in nonlinear optimization:

the Gauss−Newton algorithm and the gradient descent algorithm. In order to handle LMA,

the value of the function (5.3) and its partial derivatives, which are expressed in a Jacobian
matrix J , should be provided. Since LMA uses the gradient information of the objective

function, the first order distance approximation in (5.3) captures this information; hence,

better approximations would not benefit the result of LMA. Figure 5.3 illustrates how the

proposed registration distance provides the distance sensitivity with respect to registration

parameters. It should be mentioned that the derivatives of (5.3) must be calculated with

respect to the parameters Θ = [θ tx ty]
T, where θ, tx and ty capture the three degrees

of freedom of the rigid registration. Hence, the first column of the Jacobian matrix can be

computed as follow:
J(i, 1) =

∂di
∂θ

= (∂wi/∂θ)fc(Rpi + t) + wi
∂fc(Rpi + t)

∂θ
(5.5)

since the implicit function fc is a smooth function, wi could be considered as a constant

weight, then the first term could be ignored:

J(i, 1) = wi(R
′
θpi.∇fc(Rpi + t)) (5.6)

where R′θ is the derivative of the rotation matrix w.r.t. the rotation angle, and ∇fc is the

gradient with respect to (x, y) components. Similarly, other columns of the Jacobian matrix

can be calculated as:

J(i, 2) =
∂di
∂tx

= wi
∂

∂x
fc(Rpi + t), (5.7)

J(i, 3) =
∂di
∂ty

= wi
∂

∂y
fc(Rpi + t).

For the 3D case the Jacobian matrix includes six columns corresponding to three rotation

and three translation parameters. As a general formula each entry of this matrix could be

computed as:
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Figure 5.3: (left) Sensitivity of the distance with respect to small changes in rotation. (right)
Sensitivity of the distance with respect to the translation along y axis.

J(i, j) = wi

(
∂

∂Θj
(Rpi + t)

)
.∇f(Rpi + t) (5.8)

where Θj is the jth parameter of Θ = [θ, φ, ψ, tx, ty, tz].

Having estimated the proposed distance (5.3) and its Jacobian matrix through (5.5), (5.6)

and (5.7) it is easy to perform LMA in order to refine the rigid parameters Θ:

Θk+1 = Θk + β�Θ,

(JTJ + λdiag(JTJ))�Θ = JTD (5.9)

where β is the refinement step; diag(JTJ) is the diagonal matrix containing the elements

of (JTJ); �Θ represents the refinement vector for the rigid parameters; λ is the damping

parameter in LMA; and the vector D is a column vector containing Dist(Rpi + t, fc), R
and t are the current rotation and translation respectively. In the current implementation they

are initialized as θ = 0, tx = 0 and ty = 0; more evolved initializations, such as using

simple SVD based techniques, could be used since we are tackling the rigid registration case.

Parameter refinement (5.9) must be repeated till convergence is reached.

Figure 5.4 shows an illustration of the convergence region of the proposed registration

framework. This region corresponds to the 2D bunny shape case study and its fitting IBS

shown in Fig. 5.10(top). The axes on this plot correspond to [θ, tx, ty] parameters. This

figure depicts that the proposed registration method converges to the optimal parameter (the

point shown in the center) independent of the initialization in the region (relative position of

data and model sets). Different layers in this 3D plot correspond to level surfaces with the

same distance (5.3). Our experimental results show that the regularization parameter used in

IBS fitting has impact on the convergence region. Indeed a larger regularization parameter

leads to a low resolution IBS, and a wider convergence region as a consequence.
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Figure 5.4: Convergence region of the proposed approach with respect to [θ, tx, ty] for the 2D

object and IBS in Fig. 5.10(top).

5.3 Experimental Results and Comparisons

The experimental results are presented for the proposed registration distance using different

implicit functions. The first part considers simple IPs to represent the model sets. Despite

the simplicity of the representation the obtained registration results are quite promising. In

the following section this representation is promoted to IBSs that provide more accurate and

richer representations.

5.3.1 Registration using IPs

The proposed approach has been evaluated using different data sets and model sets. Addi-

tionally four techniques (i.e., [61], [34], [156] and [99]) from the state of the art, together

with the classical ICP [10], have been implemented for a comparative study in the 2D and 3D

cases. Each techniques iterates till one of the stopping criteria is reached: maximum number

of iterations (#Iter=30) or relative registration error smaller than a given threshold. The rela-

tive registration error is defined as: ε = |Et−Et−1|/Et, where Et refers to the error between

the model and data set at iteration t. In our implementation (ε < 0.001) has been used.

On the contrary to the relative registration error, which is an internal measure, an Accu-
mulated Residual Error (ARE) is used during the comparisons. It is computed by measuring

the accumulated error, in a point-wise manner, from the data set to a reference set. This refer-

ence set corresponds to a highly detailed description of the model set. It contains the model

set and on average is defined by a set of points ten times larger than the model set. Each

residual error is computed by finding the nearest point in between the registered data set and

the reference set.

Figure 5.5 shows initial configurations for four different data and model sets. The first

row corresponds to closed contours with a full overlap. Data sets have been obtained by

rotating and translating the corresponding model set, and by adding Gaussian noise to study

the robustness of all the techniques. Accuracy and number of iterations are provided in Table
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Figure 5.5: Initial positions of data sets and model sets for noisy (top) and partial overlap

(bottom) examples registered with the different approaches.

5.1 and Table 5.2 respectively. It should be highlighted that the proposed approach converges

in all the cases and most of the time with the smallest error and lowest number of iterations, in

spite of the noise in the data set. In these examples IPs of degree six have been used for fitting

the model sets. The IP degree could be automatically determined through the algorithm in

[158], which is based on the QR decomposition of the monomial matrix. Figure 5.5 (bottom)

presents two examples where data set partially overlaps the corresponding model set; data

and model sets correspond to uniform sampling of different boundaries. Model sets have

been fitted by sixth degree IPs in both cases. Both of them have been registered using the

proposed technique and the five aforementioned ones; the obtained registration accuracy is

given in the third and fourth rows of Table 5.1, as well as the number of iterations when one

of the stopping criteria is reached.

Figure 5.6 presents challenging situations where model sets and data sets contain different

densities of points. Fig. 5.6(left) shows the initial configurations while Fig. 5.6(right)
depicts the results obtained by using the proposed approach. Quantitative results from these
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Figure 5.6: Model sets and data sets containing different density of points. (left) Initial

configurations. (right) Final results from the proposed approach.

two examples are presented in Table 6.2. The challenge in these examples lie on the non-

existence of any point to point correspondence, although both clouds of points correspond to

the same contour. The proposed approach, since the model set is represented by a unified IP,

is robust in this kind of situations.

In addition to 2D cases presented above, 3D real objects from public data sets ([52] and

[51]) have been registered with the proposed approach and compared with state of the art

techniques. The illustration presented in Fig. 5.7(left − 1st) corresponds to a data set de-

fined by 811 points. The model set contains 926 points and is represented by means of a sev-

enth degree IP. The result obtained with the proposed approach is shown in Fig. 5.7(right).
Quantitative information about the registration process, as well as comparisons with other

approaches are provided in Table 5.3; the stopping criteria considered in Table 5.1 is also

used here.

Figure 5.7 presents three additional experimental results using 3D real data sets; Figure
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Table 5.1: Comparisons of registration results for 2D cases (ICP: Iterative Closest Point [10];

GMM: Gaussian Mixture Models [61] ; DT: Distance Transform [34]; GF: Gradient Flow

[156]; DA: Distance Approximation [99]; PA: Proposed Approach).

ICP GMM DT GF DA PA

Fig. 5.5(top-left) 1.62 2.32 1.65 1.64 1.65 1.59
Fig. 5.5(top-right) 1.41 1.34 1.42 1.42 1.40 1.32
Fig. 5.5(bot.-left) 0.91 5.11 4.00 0.98 0.92 0.53
Fig. 5.5(bot.-right) 0.52 1.75 0.20 0.29 0.35 0.18
Fig. 5.6(top) 0.26 0.89 0.39 0.48 0.42 0.19
Fig. 5.6(bottom) 1.54 2.48 0.57 1.92 1.22 0.34

Table 5.2: Number of iterations of different registration methods for 2D cases.

ICP GMM DT GF DA PA

Fig. 5.5(top-left) 13 13 25 27 11 4
Fig. 5.5(top-right) 10 7 28 15 9 6
Fig. 5.5(bot.-left) 7 10 30 16 10 9
Fig. 5.5(bot.-right) 13 18 27 20 17 15
Fig. 5.6(top) 14 10 29 12 13 11
Fig. 5.6(bottom) 16 13 30 28 12 13

Table 5.3: Comparisons of registration results for 3D cases (ICP: Iterative Closest Point [10];

GMM: Gaussian Mixture Models [61] ; DT: Distance Transform [34]; GF: Gradient Flow

[156]; DA: Distance Approximation [99]; PA: Proposed Approach).

ICP GMM DT GF DA PA

Fig. 5.7(1) 77.19 147.19 85.05 75.71 77.32 75.72
Fig. 5.7(2) 63.69 112.55 63.71 61.61 64.14 61.52
Fig. 5.7(3) 53.45 108.21 52.70 42.39 53.90 42.75
Fig. 5.7(4) 49.25 124.58 53.15 46.49 48.14 46.09
Fig. 5.8(1) 456.64 139.77 109.29 1364.6 146.54 7.40
Fig. 5.8(2) 42.20 185.28 36.09 32.01 47.80 29.30

5.7(left) shows initial position of data and model sets both represented by means of trian-

gular meshes to highlight the details. Figure 5.7(middle) depicts IPs describing model sets

together with the points of their corresponding data sets. A seventh degree IP is used in the

(top) row to represent the 745 points of the model set, while the data set contains 609 points.

A fifth degree IP is used in the (middle) row, in this case the data set contains 625 points

while the model set is defined by 639 points. Finally, a sixth degree IP is used to describe

the 817 points of the model of the example presented in the (bottom) row; in this case the

data set contains 724 points. Figure 5.7(right) presents the registration obtained with the

proposed approach. Statistics about their registration process and comparisons with state of

the art techniques are presented in Table 5.3.
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Table 5.4: Number of iterations of different registration methods for 2D cases.

ICP GMM DT GF DA PA

Fig. 5.7(1) 20 30 14 26 13 10
Fig. 5.7(2) 16 30 6 11 14 8
Fig. 5.7(3) 26 30 9 29 15 10
Fig. 5.7(4) 24 30 15 28 18 13
Fig. 5.8(1) 30 30 30 30 30 27
Fig. 5.8(2) 30 30 30 30 30 30

Finally, two cases where model sets and data sets are partially overlapped are presented in

Fig. 5.8. The (top) row shows a simple example where the data set (860 points) and model set

(835 points) are picked from the same ellipsoid, which is described by a second degree IP in

the presented approach. These two sets are partially overlapped (about 40%) as shown in the

last column. Despite the simplicity of the problem, none of the techniques presented in Table

5.3, except our approach, converge to the right configuration. All these registration techniques

are trapped in a local minimum, while our approach exploits the extrapolation provided by the

fitted surface. The (bottom) row presents another illustration of partial overlap. In this case,

although all the techniques have similar behavior, the proposed approach has the smallest

ARE.

The evolution of ARE for registering Fig. 5.7(bottom) is illustrated in Fig. 5.9. It can

be appreciated that the proposed approach has the smallest ARE and the fastest convergence.

Although GF [156] reaches the same optimal ARE its convergence is slower; the oscillation

in DT [34] is due to the discrete approximation of the distance field, which is not the case of

the proposed approach that has a smooth behavior.

5.3.2 Registration using IBSs

The proposed approach has been evaluated using different 2D and 3D data sets and model sets

from public repositories ([52] and [51]). In all the 2D examples, just to visually appreciate the

result, the same set of points is used as data and model sets. Notice that the proposed approach

does not consider the points in the model set during the registration, despite that after the

registration the data points appear on the model points. Figure 5.10 shows illustrations of the

proposed approach using these 2D cases. In the example presented in the first row each set

contains 115 points. The contours in the other four rows are defined by 167, 174, 148 and

164 points respectively. It should be highlighted that the obtained result is independent of the

accuracy of the IBS used to represent the model set. This can be appreciated in the examples

presented in the first and third rows. In these cases, even though the IBSs do not fit the model

sets accurately, the optimal registration parameters are obtained.

In addition to the qualitative evaluation presented with 2D contours 3D real objects have

been registered with the proposed approach and compared with four techniques (i.e., [61],

[34], [156] and [99]) from the state of the art, together with the classical ICP [10]. Each

techniques iterates till the maximum number of iteration (#Iter=40) is reached or the relative
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Table 5.5: Points in data and model sets of the 3D examples [52] presented in Fig. 5.11.

Figure Name Data set Model set

Fig. 5.1 Knot 240 pts. 240 pts.

Fig. 5.11(1strow) Kitten 1286 pts. 1557 pts.

Fig. 5.11(2ndrow) Armadillo 1007 pts. 1151 pts.

Fig. 5.11(3rdrow) Bimba 811 pts. 926 pts.

Fig. 5.11(4throw) Bunny 724 pts. 817 pts.

Fig. 5.11(5strow) Hand 1256 pts. 1412 pts.

registration error is smaller than the given threshold (ε < 0.005); relative registration error

is defined as: ε = |Et − Et−1|/Et, where Et refers to the registration error between the

model and data set at iteration t. The registration error is used as a quantitative value for the

comparisons and it is computed by accumulating the residual error, in a point-wise manner,

from data set to a reference model set. The reference model set corresponds to a highly

detailed description of the model set (it contains on average ten times the number of points

in the model set). Residual errors are computed by finding the nearest point in between the

registered data set and the reference model set.

Figure 5.11 presents five experimental results obtained with the proposed approach when

3D real data sets are considered. All the information regarding the number of points in data

and model sets is provided in Table 5.5. These sets are obtained from the same surface but

not necessarily containing the same points. Like in the 2D cases, some of the points in data

and model sets are the same, which allow us to visually evaluate the accuracy of proposed

approach. Figure 5.11(left) presents the initial position of data and model sets. Figure

5.11(middle) shows the IBSs representing the different model sets together with the data

sets. Finally, Fig. 5.11(right) presents the registration results obtained with the proposed

approach; IBS surfaces used to represent model sets are kept just to facilitate the visualization.

Note how in the cases of the ”Hand” even though the IBS used for representing the model set

is not accurate (Fig. 5.11(bottom−middle)) the proposed approach get the best result (see

Table 5.6); in Fig. 5.11(bottom − right) a more accurate IBS is depicted just to facilitate

the visualization. Table 5.6 and Table 5.7 presents the registration error and the number of

iterations, respectively, for all the algorithms tested during the comparisons. In all the cases

the proposed approach finds the optimal parameter quite precisely, and in less number of

iterations. The novel approach presented in this paper tackles the noise and outliers, specially

those affecting the model set, thanks to the fitting algorithm used in the first stage. It could

also handle situations where data and model sets contain different densities.

5.4 Conclusions and Future Work

In this chapter a flexible implicit representation is exploited to tackle the registration prob-

lem. As the first contribution IBSs are used to describe cloud of points. The optimal IBS is

obtained through a linear least squares formulation; furthermore its smoothness can be easily
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Table 5.6: Comparisons of IBS registration results for 3D cases (ICP: Iterative Closest Point

[10]; GMM: Gaussian Mixture Models [61]; DT: Distance Transform [34]; GF: Gradient Flow

[156]; DA: Distance Approximation [99]; PA: Proposed Approach).

ICP GMM DT GF DA PA

Fig. 5.1 8.51 13.77 5.54 1.52 5.63 0.06
Fig. 5.11(1strow) 3.67 36.87 4.10 3.67 3.68 3.67
Fig. 5.11(2ndrow) 2.66 49.83 2.90 5.50 2.73 2.75

Fig. 5.11(3rdrow) 18.60 33.89 3.23 3.36 3.04 3.06
Fig. 5.11(4throw) 2.49 22.95 2.82 3.72 2.59 2.48
Fig. 5.11(5throw) 4.86 87.09 5.46 9.24 4.88 4.85

Table 5.7: Number of iterations of different registration methods for 2D cases.

ICP GMM DT GF DA PA

Fig. 5.1 14 30 7 30 15 11
Fig. 5.11(1strow) 22 30 3.67 15 22 8
Fig. 5.11(2ndrow) 12 30 8 28 12 9
Fig. 5.11(3rdrow) 30 30 11 30 19 8
Fig. 5.11(4throw) 15 30 8 19 13 8
Fig. 5.11(5throw) 29 30 12 30 30 12
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controlled by the regularization parameter. As the second contribution we use the flexibility

of IBS to propose a registration distance. The resulting distance and its gradient information

can be easily computed and it fits the requirement of any gradient based optimization algo-

rithm. Experimental results and comparisons are provided showing both fast convergence

and robustness in challenging situations. It should be mentioned that this work is mainly

focuses on the registration distance approximation. However the transformation domain is

only restricted to the rigid class. As a future work the proposed registration distance will be

considered in a non-rigid deformation space.
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Figure 5.7: Real data sets (from [52] and [51]) registered with the proposed approach and state

of the art techniques. (left) Initial set up of the given data and model sets represented by

means of triangular meshes to highlight details. (middle) IPs representing model sets and data

points. (right) Results of the proposed registration approach represented through triangular

meshes to make easier a visual evaluation.
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Figure 5.8: Partial overlap cases. (left) Initial set up of data sets and model sets to be regis-

tered. (middle) IPs representing model sets and data points from the data sets. (right) Results

from the proposed approach.
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Figure 5.9: Evolution of ARE of different registration algorithms along 30 iterations.
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(a) (b) (c) (d)

Figure 5.10: (a) Initial positions of data (+) and model (o) sets. (b) Data (+) sets and IBSs

representing the models. (c) Final results of registered data (+) sets and IBSs. (d) The same re-

sult but represented by using the model (o) sets and transformed data (+) sets with the proposed

approach.



5.4. Conclusions and Future Work 103

Figure 5.11: 3D cases corresponding to real data sets registered with the proposed approach

and state of the art techniques: (left) Initial positions of data (+) sets and model (o) sets.

(middle) Data (+) sets and model sets represented by IBSs; (right) Final results of registered

data (+) and model (o) sets with the proposed approach.
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Chapter 6

Non-Rigid Registration

This chapter proposes a non-rigid registration formulation capturing both global and local

deformations in a single framework. This formulation is based on a quadratic estimation of

the registration distance together with a quadratic regularization term. Hence, the optimal

transformation parameters are easily obtained by solving a liner system of equations, which

guarantee a fast convergence. Experimental results with challenging 2D and 3D shapes are

presented to show the validity of the proposed framework. Furthermore, comparisons with

the most relevant approaches are provided.

6.1 Introduction

The shape registration problem has been largely studied in the literature and represents a fun-

damental problem in different computer vision and image processing applications. It aims

at recovering a set of transformation parameters that brings a given data set as close as pos-

sible to the corresponding model set. In the rigid case, also known as shape alignment, it

involves rotations and translations. While in the non-rigid shape registration case, in addition

to the rotation and translation parameters it includes a deformation stage. The development

of formulations able to tackle the non-rigid registration case are attracting the interest of the

research community. They are capable of handling situations with shape distortions due to

deformation, noise or missing parts (e.g., [58], [16], [29]).

In general, most of the approaches proposed for non-rigid shape registration follow a

two step scheme, where first a global rigid alignment is performed and then a local process

deforms the shape of data set towards the given model set. The differences between the

methods in the literature mainly lie in the way they formulate these two steps (most relevant

approaches are summarized in the next section). Variations to this global-rigid/local-non-

rigid strategy have been also proposed in the literature. For instance, an alternative has been

recently introduced in [39], where shape rigidity is firstly considered locally and then a global

105
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(a) (b) (c) (d)

Figure 6.1: The proposed method (SD-FFD): (a) initial configuration of the data set (blue) and

the model set (red); (b) result with λ = 105 (at iteration 15); (c) result with λ = 1 (at iteration

22); (d) the optimal FFD control lattice results in a very dense correspondence, not only on the

boundary but over the whole space.

shape deformation process is performed.

On the contrary to previous approaches, the current work proposes to use a single for-

mulation to tackle both, global and local alignment and deformation. The main contributions

of current work are as follow: (i) a robust distance approximation based on local curvature

information is used for non-rigid registration; (ii) the proposed objective function is in the

linear least squares form, hence it can be solved by a linear system of equations; (iii) the

proposed method captures all deformation from rigid to non-rigid by the same framework;

there is no need to use different steps to capture global and local deformations separately;

(iv) unlike the sign distance field, the proposed function is not discretely approximated.

The rest of the paper is organized as follows. The proposed technique is presented in

Section 6.2. Section 6.3 gives experimental results using 2D and 3D shapes; additionally

comparisons with state of the art are presented. Finally, conclusions and future work are

detailed in Section 6.4.

As mentioned in Chapter 2 there have been different approximations of the distance be-

tween model and data sets. Choosing a proper error term leads to a precise and fast regis-

tration algorithm. Most of the methods previously reviewed result in a non-linear error term,

which must be iteratively optimized. In the current work we exploit a quadratic distance ap-

proximation in the non-rigid registration problem. The presented objective function is in the

linear least squares form and can handle both rigid and non-rigid deformations with the same

framework. Figure 6.1 illustrates how the proposed method handles both the rigid alignment

(Fig. 6.1(b)) and the non-rigid deformation (Fig. 6.1(c)) just by relaxing the regularization

term. This term controls the rigidity of deformation during the evolution. Thanks to the pro-

posed objective function each iteration is linearly solved. Hence, the whole framework has

a fast convergence. Furthermore, the optimal deformation provides a dense correspondence

between the given data and model set.
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6.2 Non-rigid Registration

This section presents the main elements of the proposed framework. Firstly, in Section 6.2.1,

the approximation error used to estimate the distance between the current data set and model

set is presented. This distance is a quadratic term based on the curvature information of

the points in the model set. Our contribution is to use this distance to capture both rigid

and non-rigid deformations by means of the Free Form Deformation. In Section 6.2.2 this

deformation space is defined. Finally, Section 6.2.3 details how both rigid and non-rigid

registration problems can be solved in the same framework. In this section we propose a

novel objective function to find the deformation parameters. This function is in the least

squares form, and it can be easily optimized by solving a linear system of equations.

6.2.1 Registration Error (SD)

All the registration methods seek for the best transformation parameters to move the given

data set (Source shape) S = {si}Nd
1 close to the model set (Target shape) T = {ti}Nm

1 .

As mentioned in the previous Section, all registration methods can be classified based on

the distance used to measure the closeness, the transformation to move the data set, and

the optimization method that finds the best transformation parameters. The first and most

important matter is how to choose a proper and precise distance to define the registration

error term.

Approaches using the precise geometric distance between model and data sets have been

proposed in the literature. For instance, a well known example is the Iterative Closest Point

(ICP) algorithm. It moves the data set in each iteration based on a simple criterion: for

the given data point it searches for the closest corresponding model point (or foot-point).
Therefore, the distance used by ICP is a point-to-point distance, and ICP performs a point

distance minimization (PDM) in each iteration to find the best transformation parameters.

Figure 6.2(a) illustrates a simple case where ICP is stuck in a local minima. Some of the data

points in the figure lie on the curve passing through the model set; hence their distance to the

model set must be quite low, but ICP devotes a quite high distance to these points since the

model set is quite sparse. If there could be a better approximation for the distance, the ICP

would devote more weights to the data point which are still far from the model point. More

elaborated approaches have been also proposed using ICP philosophy [108]; in [20] ICP is

used in a tangent distance minimization (TDM) framework.

Implicit descriptions like distance fields provide another metric to measure the distance

between the data and model sets. In these techniques both model set and data set [58], or

only the model set [34], are described by signed distance fields at first. Then, the registration

error is measured through these distance fields instead of the point sets. Unfortunately, these

methods require expensive computation to build the distance fields over the whole region. In

addition, since the distance fields are made discretely, the precision is up to a specific point.

Finally, using distance fields for non-rigid registration results in a non-linear optimization

function, which is usually solved by a gradient descent algorithm.

In this paper we use a quadratic approximation of the geometric distance in order to define
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(a) (b)

Figure 6.2: (a) Illustration of a point-to-point distance based approach (e.g., ICP [20]). (b)
Local quadratic approximation [99] used in current work.

the registration error term in the least squares form. This distance is based on the curvature

information in the model sets. Consider the data point si with its closest corresponding model

point tj . Then the Squared Distance (SD) of si to the whole model set T can be approximated

as follows:

SD(si, T ) =
d

d− ρ
[(si − tj).Tj ]

2 + [(si − tj).Nj ]
2 (6.1)

where Tj and Nj are the unit tangent and unit outer normal, respectively, defined in the

Frenet frame at tj . The value ρ is the curvature radius at the model point tj and d is the

signed distance between the data point si and the model point tj . The sign of d is positive if

si and Nj lie on the same side, and is negative otherwise [99].

The distance approximation in (6.1), know as SD, works with the Frenet frame at the

foot-point tj . It project the data point on the normal and tangent vectors firstly, and the

final approximation will be quadratic with respect to these projection. This final property

of SD is very important and fits our need, since it results in a least squares form. In the

special case, where the data point is along the normal at the foot-point, the first quadratic

term vanishes, and the distance will be equal to |si − tj |2, which is the squared point to

point distance. In another special case, where the curvature of model set at tj is zero, the

first quadratic term vanishes again, and the projection of the data point on the normal will

be the SD approximation of quadratic distance. Figure 6.2(b) shows an illustration depicting

quadratic approximations for a few points of a given 2D shape.

6.2.2 Deformation Space (FFD)

Rigid transformation is able to align the global appearance of the objects. Hence, in order

to capture the local deformation we should use a more flexible family of transformation. In

the current work we propose to use a Free Form Deformation (FFD) to describe any transfor-

mation from global (rigid) to local (non-rigid). FFD has been already used in the computer

vision and graphics communities in the form of iFFD (incremental FFD); in other words,
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they were considered only for capturing local deformation. In this work, thanks to the metric

selected in Section 6.2.1, a single framework is used to apply FFD to describe the deforma-

tion space; without loss of generality let us consider the 2D case, where the FFD describes a

deformation field by means of the control lattice {Pij}M×N in 2D:

L(x, y) =
M∑
i=1

N∑
j=1

Pi,jBi(x)Bj(y) (6.2)

where {Bi(x)Bj(y)} are cubic spline basis functions to guarantee C2 continuity. In our

implementation we use a square control lattice (M = N ) covering the unit square [0, 1]2.

The B-Spline knot sequence is uniform with a step of Δ = 1/(N − 3).

Since we consider a square control lattice, both sets of basis functions behave similarly.

Having considered a row-by-row order, we can represent the control lattice and the basis

functions in a vector form:

L(x, y) =

[
pT
xm(x, y)

pT
y m(x, y)

]
=

[
pT
x

pT
y

]
m(x, y) (6.3)

where m(x) is the vector form of the monomials {Bi(x)Bj(y)}, and px, py are the vector

form of the x and y components of control lattice.

The FFD definition in (6.2) can be simplified through the blending functions which are

cubic patches on [0, 1], which builds up the B-Spline basis function by assembling together:

b0(u) = (1− u)3/6, b1(u) = (3u3 − 6u2 + 4)/6,
b2(u) = (−3u3 + 3u2 + 3u+ 1)/6, b3(u) = u3/6.

(6.4)

Then an equivalent definition of FFD will be achieved that is computationally useful:

L(x, y) =

3∑
r=0

3∑
s=0

Pi+r,j+sbr(u)bs(v) (6.5)

where the indices start from:

i = 
x/Δ�+ 1, j = 
y/Δ�+ 1 (6.6)

and the given coordinates in XY will be mapped in UV as:

u = x/Δ− 
x/Δ�, (6.7)

v = y/Δ− 
y/Δ�.

This definition provides us with the computational efficiency useful for calculating the

monomial matrix. Note that the value br(u).bs(v) will be accumulated in the proper cell of

the monomial m(x, y) corresponding to Bi+r(x).Bj+s(y).

The Free Form Deformation in (6.2) has 2N2 degrees of freedom due to the free move-

ment of the control lattice. It should be indicated that this movement should be controlled in
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order to have a meaningful deformation. Otherwise we will have only a 2D to 2D mapping.

Moreover, using this FFD formulation together with the SD may leads us to a singularity

problem in the least squares solution presented in the next section. In order to avoid these

problems a regularization term must be considered as well.

In the current work a global tension term is considered to regularize the control lattice.

On the contrary to the conventional regularization term used in iFFD, which measure the first

order changes of iFFD, we use a second order term. This term, similarly to [3], is computed

by measuring the curvature of L over the whole domain:

T (P) =

∫∫
XY

‖Lxx‖2 + 2‖Lxy‖2 + ‖Lyy‖2dxdy. (6.8)

Since the vector field L(x, y) is a linear function of P, the whole regularization term will

be a quadratic function of P. Using the vector form of L in (6.3) the regularization term can

be simplified as follows:

T (P) = pT
xHpx + pT

y Hpy (6.9)

where matrix H is a N2 × N2 symmetric matrix including the integral of basis functions’

derivatives:

H =

∫∫
XY

mxxm
T
xx + 2mxym

T
xy +myym

T
yydxdy. (6.10)

This matrix can be analytically constructed once the size of control lattice is known. Hence

it can be computed off-line, and be use during the algorithm.

6.2.3 SD-FFD: A Novel Non-Rigid Registration

So far the registration error (SD) as well as the transformation model (FFD) are defined,

where the first one defines the fitting term to measure the external energy and the second

one defines the solution space to describe the deformation. Assembling these two terms will

result in a novel non-rigid registration method:

ϕ(P) =

Nd∑
i=1

SD(L(si), T ) + λT (P). (6.11)

Our proposed registration function is a function of the control lattice P consisting of the data

fitting term and the regularization term. As defined in the pervious Section, the regularization

term T (P) is quadratic with respect to P. In addition, since SD is quadratic with respect to

the given coordinates, and L(si) is linear with respect to P, the whole registration function

in (6.11) is linear in terms of the control lattice coordinates.

Thanks to vector form representation our proposed registration distance can be reformu-
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lated as follows:

ϕ(px,py) =

Nd∑
i=1

ωi[(

[
pT
x

pT
y

]
m(si)− tj).Tj ]

2

+

Nd∑
i=1

[(

[
pT
x

pT
y

]
m(si)− tj).Nj ]

2 + λ(pT
xHpx + pT

y Hpy). (6.12)

It is now clear that the function ϕ is quadratic with respect to px and py; hence vanishing

the partial derivatives ∂ϕ
∂px

and ∂ϕ
∂py

result in two linear system of equations Axpx = bx and

Aypy = by where:

Ax = λH+

Nd∑
i=1

(ωiT
x
j
2 +Nx

j
2)m(si)m(si)

T (6.13)

bx =

Nd∑
i=1

(ωiT
x
j
2 +Nx

j
2)(txj )m(si).

Similarly, the coefficient matrix Ay and the right hand vector by corresponding to the y
coordinate of the control lattice can be obtained.

Therefore, our proposed method, SD-FFD, finds the optimal control lattice through solv-

ing two linear system of equations in each iteration. In order to converge to the global mini-

mum, we can start with a high regularization parameter λ and decrease it gradually. It must be

mentioned that SD-FFD, unlike other methods, neither uses implicit distance field, which is

computationally expensive, nor relies on the single corresponding foot-point point. SD-FFD

uses the local curvature information around the foot-point and use this information to build

up a quadratic function.

6.3 Experimental Results

The performance of the proposed approach has been evaluated and compared with state of the

art algorithms. Several 2D and 3D shapes, obtained from public databases ([52], [127] and

[51]), have been registered. In all the cases the data set corresponds to a deformed shape of

the model set; as an exception, Fig. 6.3(bottom) shows the result when shapes from different

objects are registered together—data set corresponds to a Donkey 2D shape, while model set

to a Cat 2D shape. Figure 6.3 shows seven illustrations of 2D shapes registered with the

proposed approach. Figure 6.3(a) presents the initial configurations where not only defor-

mation but also rotations and translations between model and data sets can be appreciated.

In the current implementation the regularization parameter (λ), which somehow represents

the registration rigidity, was automatically tuned. It starts with a high regularization value

(λ = 105, see illustrations in Fig. 6.3(b)), which is mainly devoted to tackle the alignment

problem. Once the ratio of registration error between consecutive iterations is below a given

threshold λ is divided by 10; this relaxation is performed till λ = 1. Figure 6.3(c) depicts

intermediate results, while Fig. 6.3(d) presents results after convergence is reached.
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Table 6.1: Points in data and model sets of the 3D examples [52] presented in Fig. 6.1 and Fig.

6.3.

Figure Name Data set Model set

Fig. 6.1 Bunny 341 pts. 341 pts.

Fig. 6.3(1strow) Dude 415 pts. 361 pts.

Fig. 6.3(2ndrow) Fish 297 pts. 293 pts.

Fig. 6.3(3rdrow) Rabbit 272 pts. 253 pts.

Fig. 6.3(4throw) Bird 376 pts. 299 pts.

Fig. 6.3(5throw) Misk 545 pts. 529 pts.

Fig. 6.3(6throw) Camel 598 pts. 535 pts.

Fig. 6.3(7throw) Cat 485 pts. 361 pts.

All the 2D examples presented above (Fig. 6.1 and Fig. 6.3) have been used to compare

the results from the proposed approach with two state of the art algorithms (i.e., [58] and

[39]). Additionally, the performance of the proposed framework is evaluated by using a

point wise based approach. In other words, instead of using the quadratic approximation of

the geometric distance (Section 6.2.1) a precise point-to-point distance is considered. This

second approach is only implemented for comparisons and will be referred to as ICP-FFD.

This ICP-FFD has been chosen since it is simple and can be drive from SD-FFD as a special

case. During the comparisons, the techniques iterate till the maximum number of iterations

(#Iter=50) is reached or the relative registration error is smaller than a given threshold (in

the current implementation ε < 0.001); relative registration error is defined as: ε = |Et −
Et−1|/Et, where Et refers to the registration error between the model and data set at iteration

t. The registration error is used as a quantitative value for the comparisons and it is computed

by accumulating the residual error, in a point wise manner, from data set to a reference model
set. The reference model set corresponds to a highly detailed description of the model set

(it contains on average ten times the number of points in the model set). Residual errors are

computed by finding the nearest point in between the registered data set and the reference

model set. Table 6.2 depicts the number of points in the data set (Nd), the number of points

in the model set (Nm), the registration error (Error) and the number of iterations (#Itr) for

all the algorithms tested during the comparisons. It should be highlighted that the proposed

approach reaches the best registration in the lowest number of iterations.

Finally, the proposed approach has been evaluated using 3D shapes [52]. Figure 6.4

presents three examples of model sets, together with their corresponding deformed data sets,

which were registered with the proposed approach (SD-FFD). Data sets were obtained by de-

forming the given model sets. In the case of the hand Fig. 6.4(top), the data set was obtained

by opening the model set using a Laplacian deformation [128]; the data set corresponding to

the eight-like shape Fig. 6.4(middle) has been obtained by twisting and deforming the model

set’s shape; finally, in the case of Bunny [51], the data set corresponds to a Laplacian defor-

mation that moves down both ears and several distortions of body’s parts from the model set

(mainly on the back side). Figure 6.4(a) shows the initial configurations where data sets are

rotated and translated from the model set, in addition to the deformations mentioned above.

Intermediate results, obtained with λ = 104 and λ = 102 are presented in Fig. 6.4(b) and
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(a) (b) (c) (d) (e)

Figure 6.3: Registration results of 2D shapes ([52], [127]) using the proposed approach (SD-

FFD) (a) initial configurations of data sets (blue) and model sets (red); (b) results with λ =
105; (c) results with λ = 102; (d) results with λ = 1; (e) the optimal FFD control lattice

results in a very dense correspondence, not only on the boundary but over the whole space.
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Table 6.2: Comparisons of non-rigid shape registration algorithms.

Huang et Fujiwara et Comp.: Prop. App.:

al. [58] al. [39] ICP-FFD SD-FFD

Figure Error #Itr Error #Itr Error #Itr Error #Itr

Fig. 6.1 2.15 47 3.77 42 1.84 28 1.67 21
Fig. 6.3(1strow) 3.31 41 2.23 39 2.44 27 1.89 15
Fig. 6.3(2ndrow) 2.45 35 3.80 35 1.25 33 1.22 18
Fig. 6.3(3rdrow) 3.51 42 3.77 38 1.50 31 1.11 21
Fig. 6.3(4throw) 2.49 49 2.95 43 1.82 38 1.72 28
Fig. 6.3(5throw) 4.65 41 4.09 35 1.46 42 1.37 32
Fig. 6.3(5throw) 3.73 50 2.98 48 1.55 29 1.26 21
Fig. 6.3(6throw) 3.62 48 3.45 45 3.32 35 2.65 35
Fig. 6.3(7throw) 4.16 50 3.54 41 3.34 45 2.15 39

Fig. 6.4(c) respectively. Final registration results are depicted in Fig. 6.4(d). The accuracy of

the registration from the proposed approach (SD-FFD) can be appreciated from the blending

of the two surfaces.

6.4 Conclusions

This chapter presents a novel formulation to tackle the non-rigid shape registration problem.

It is based on both a quadratic estimation term, which measures the registration distance, and

a quadratic regularization term, which controls the deformation of the data set towards the

model set. The whole formulation can be solved in a single least squares framework. In

summary, in this work: (i) a robust distance approximation based on local curvature infor-

mation is used for non-rigid registration; (ii) the proposed objective function can be solved

by a linear system of equations; (iii) all deformation from rigid to non-rigid are captured

by the same framework; there is no need to use different steps to capture global and local

deformations separately. Experimental results and comparisons with challenging 2D and 3D

shapes are provided showing the validity of the proposed approach as well as the speed of

convergence.
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(a) (b) (c) (d)

Figure 6.4: Registration results of 3D shapes using the proposed approach (SD-FFD). (a)
initial configurations of data sets (green) and model sets (red); (b) results with λ = 104; (c)
results with λ = 102; (d) Final registration results showing the blending of the two shapes

(data & model).
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Chapter 7

Conclusions

In this thesis we review and contribute in two important problems in computer vision and

graphics. In the first part of the thesis, shape representation is studied from a general perspec-

tive, and state-of-the-art on this field has been reviewed and classified properly. Then, we

contribute in both geometric and algebraic approaches for curve/surface fitting. In the second

part, shape registration is tackled, and its state-of-the-art has been classified. Our contribu-

tions in this problem cast both rigid and non-rigid registration. In this chapter a summary of

the thesis and our contributions are presented.

7.1 Summary

This thesis reviews state-of-the-art in two important problems in computer vision. In Chap-

ter 2 the most relevant work in both shape representation and registration has been provided

in two sections. In the first section shape representation techniques are summarized. We

classify these methods based on the solution space they define and the fitting methodology

they use. Solution space contains the set of parameters that define the curve/surface. In our

review different solution space including implicit polynomials, implicit B-splines and radial

basis functions have been considered. Implicit polynomials and implicit B-splines have been

widely used during this thesis due to their simplicity, compactness and flexibility. Afterwards,

different fitting methodologies, including both geometric and algebraic approaches are pre-

sented. Orthogonal distance and PCA based distance approximation are some examples of

the first type, while the 3L and gradient-one algorithms, moving least squares and distance

field based fitting are among the second type of fitting method.

In the second part of Chapter 2, state-of-the-art on shape registration is reviewed and

classified based on the deformation models and the registration distances they apply. Defor-

mation models can be simply chosen as rigid body motion or affine transformation. More

elaborated models include those define non-rigid deformations. These models are classified

into intrinsic and extrinsic ones. Intrinsic deformation only apply on the curve/surface being

studied, while the extrinsic ones deform the whole region/space the shape is located on. We

117



118 CONCLUSIONS

explain different intrinsic deformation models including Laplacian deformation, shape evo-

lution and those using variation implicit functions. The extrinsic deformation models include

free form deformation, thin plate splines and those based on mean value coordinates or green

coordinates. During this thesis rigid transformation and free form deformation have been

used in Chapter 6 and 7 to describe the rigid and non-rigid deformations respectively.

In addition to the deformation models, different distance metrics measuring the regis-

tration error are reviewed and briefly explained. These methods are classified into coarse

and fine registration techniques. PCA based, shape context, spin image and volume inte-

gral descriptors are instances of common tools in coarse registration. In fine registration,

we review point-to-point registration distances including the iterative closest point, point-to-

tangent, quadratic distance approximation and robust point matching. Probabilistic models

are also reviewed as a widely used techniques in point set registration. This class includes the

methods using gaussian mixture models, kernel correlation and coherent point drifts.

Chapter 3 of the thesis tackle the implicit function reconstruction using geometric dis-

tances. In this chapter a novel distance estimation is proposed to measure the closeness of a

point to the implicit curve/surface. First a simplex (triangle/tetrahedron) is constructed be-

tween the point and implicit curve/surface. It is made by moving from the point along the

coordinate axes till intersecting the zero set. Then, the height of this simplex is chosen as an

estimation of the point to zero set distance. This distance estimation is quite fast and accu-

rate, and can be in optimization algorithm to find the optimal curve/surface parameters. As a

first application we exploit this distance estimation in a RANSAC based approach to find the

best quadratic parameters describing the given set of points. The proposed algorithm picks

enough number of points randomly to interpolate the quadratic surface, then this distance

estimation is used to to measure the quality of this interpolation.

The proposed distance estimation has been also used in a more elaborated optimization

algorithm to find the best surface parameters. This estimation approximates the distance be-

tween each point and the implicit surface. So, the final estimation is related to the implicit

surface parameters. This relationship, as formulated in Chapter 3, provides analytical infor-

mation about the sensitivity of the proposed distance with respect to the surface parameters.

This sensitivity information can be provided for each point in the given cloud of points. Con-

sidering all the points and all the surface parameters, this sensitivity information construct the

Jacobian matrix that is defined for non-linear leas squares form. Then, Levenberg-Marquadt

algorithm, as detailed in Chapter 3, is applied to update the surface parameters to reach a

better description. These two steps, distance estimation and surface parameter refinement,

are iterated till convergence is reached.

Geometric distance estimation, though accurate, is still computationally expensive since

it requires distance estimation for every single point at each iteration. Chapter 4 focuses on

algebraic fitting approaches that are quite fast for curve/surface reconstruction. As a first

contribution in this approach a relaxing technique is proposed to improve the results of the

3L algorithm. The 3L algorithm uses three levels including the data and its inside and outside

offsets, where the optimal implicit function must obtain zero at the data points, +ε inside

and −ε outside. The optimal function satisfying this system of equations can be found using

the least squares solution. The additional levels, though help the stability of the least squares

solution, are somehow restrictive. In our proposed technique we use local information in
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every data points to refine the values of ε inside and outside of the set.

In the second part of Chapter 4 a more practical solution space is used for surface recon-

struction. Implicit B-splines provide a flexible representation that benefit from some proper-

ties like smoothness and local control. We reformulate the 3L algorithm for implicit B-splines

through a simple patch-based approach. The optimal surface parameter is still obtained using

least squares formulation. Hence, the proposed method is quite fast and more practical since

it use IBS with controlled regularity. Moreover, the proposed 3L-IBS has been efficiently

implemented by considering only the active part of control lattice. The regularization term

that controls the regularity of the IBS is also refined to cover the active control values.

Chapter 5 focuses on a different problem: shape registration. In this chapter a novel

method for registering two clouds of points is presented. As an application of the shape reg-

istration in previous chapters, we solve the rigid registration problem using implicit functions

to facilitate the distance computation during registration. In fact, the model set is replaced

with an implicit function fitting this cloud of points. Then, instead of computing the point-

to-point distance a point-to-model distance can be computed. As studied in the previous

chapters, using an implicit interface induces many fast distance estimations. In Chapter 5

we reformulate the registration error based on one of these fast estimations. The final error

is in the non-linear least squares form, and LMA can be used for optimization as a conse-

quence. In the experimental results we used both implicit polynomials and implicit B-splines

as interface, and it comes out that even using a rough representation can handle the rigid

registration.

Finally in Chapter 6 non-rigid registration between two clouds of points is tackled. Dur-

ing the registration the data set is transformed based on a free form deformation, referred to

as FFD, that belongs to extrinsic deformation models. This deformation is locally controlled

by a control lattice, and its rigidity can be controlled by a tension term that is quadratic with

respect to control parameters. Regarding the registration error, a quadratic distance approxi-

mation has been used. This approximation is based on the normal and curvature information

estimated at each foot-point. As a novel contribution we use this distance approximation to

find the optimal FFD control lattice. Since both the tension term and the registration error are

in quadratic forms, our final formulation can be solved using least squares solution. Hence,

we end up with a fast non-rigid registration method that is quite accurate due to the quadratic

distance approximation it uses.

7.2 Contrributions

Our contributions have been proposed to the community in two different problems: shape

representation and shape registration. The main contribution and the outcome can be sum-

marized as indicated bellow:

• Geometric distance estimation: A novel technique to estimate the distance of a point

to the implicit curve/surface is proposed in Chapter 3. In order to compute this distance a

simplex must be constructed first. Then, the height of this simplex is chosen as an estimation

of the real distance. This distance estimation is accurate enough and can be computed quite
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fast. The accuracy of this estimation as well as its relationship with the previous methods has

been studied in [102]. Moreover, we exploit this estimation in a RANSAC based method to

find the best implicit surface describing the given cloud of points [117].

• Geometric surface fitting: The proposed distance estimation provides us with more in-

formation that can be used to analytically compute the distance sensitivity with respect to

the curve/surface parameters. This information, encoded in the Jacobian matrix, can feed any

gradient based optimization. We apply this information in the Levenberg-Marquadt algorithm

to find the best quadrics [103]. Then, we extend this method for general implicit polynomial

fitting [104].

• Relaxed 3L-IP algorithm: Our contribution also cast the algebraic approaches for implicit

fitting. The 3L algorithm has been adapted in [105] in order to relax the additional constraints

imposed on the inner and outer offsets. Moreover, a criterion is presented to check out the

consistency of normals and gradients during the process. The obtained method outperforms

the original 3L algorithm, while it still belongs to the algebraic fitting class.

• 3L-IBS algorithm: As a more practical representation, we use implicit B-splines for sur-

face reconstructions. These functions inheritate the smoothness and local control properties

of parametric B-splines, while do not require any parametrization. We propose a new alge-

braic fitting method, referred to as 3L-IBS, to find the optimal IBS parameters using the 3L

algorithm [107]. Moreover, this method has been accelerated by considering only the active

part of control lattice.

• Rigid registration: In a different work, we tackle shape registration, another main problem

in computer vision. In our proposed technique, the model set of points is replaced with

an implicit function that describes the model set. Hence, the point-to-point registration is

solved as a point-to-model registration problem. Then, we exploit a fast distance estimation

to propose a fast registration method that does not require any correspondence [106]. In our

experiments we apply both implicit B-splines and polynomials to show the independence to

the representation.

• Non-rigid registration: As our last contribution, the non-rigid registration problem is con-

sidered. Choosing FFD as a deformation model, we use a quadratic distance approximation

that is based on the curvature information. Then, a non-rigid registration method is proposed

to find the optimal FFD parameters. The optimization step is quite fast since the whole for-

mulation is in the linear least squares form. The experimental results show the benefits of

incorporating the curvature information during non-rigid registration.

7.3 Future work

In this thesis two different problems have been tackled and their relationship has been studied

as well. Our contributions include surface reconstruction techniques (both algebraic and

geometric) and shape registration (both rigid and non-rigid). Our future work comprises

short-term challenges and long-term goals.

Surface reconstruction: the reconstruction techniques proposed in this thesis include both

geometric and algebraic approaches. In the first category we proposed a fast distance approx-
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imation that is quite accurate, and in the second category we presented an implicit B-spline

fitting that is quite fast. The flexibility and power of implicit B-spline is proved in computer

graphics and vision. As a short term challenge we apply the geometric distance approxima-

tion to improve the algebraic implicit B-spline fitting results.

Non-rigid registration: the proposed method in Chapter 7 can be improved to speed up

the registration process. Since the distance approximation needs the curvature information in

each foot-point in the model set, and this model set is not moving, the distance approximation

can be computed before running the registration algorithm. As another short term task, the

whole distance field can be computed in different area using a quad tree structure. Then,

the distance field can be precomputed roughly for the area far from the model set, and more

accurately for the area close to the model set.

Single-view reconstruction: the implicit B-spline used in this thesis provide a powerful tool

to describe the real object. We managed to use this tool for reconstructing a surface from

a cloud of points. Moreover, this representation is equipped with a quadratic regularization

term that can be exploited to reconstruct a smooth surface when the data is sparse are partially

missed. As a long term plan we study the possibility of using this representation to reconstruct

the surface from a single view.

Object recognition: in the second part of the thesis an application of the shape representation

has been explored in shape registration. The main idea was to use a high level representation

in order not to work in the point level. Implicit functions provide compact representations that

handle noise, outliers and missing data. We believe that these properties of implicit functions

can be exploited in object recognition both in 2D and 3D.
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[83] Y. Lipman and T Funkhouser. Möbius voting for surface correspondence. ACM Trans.
on Graphics, 28(3), 2009.

[84] Y Lipman, D. Levin, and D. Cohen-Or. Green coordinates. ACM Trans. on Graphics,

27(3), 2008.

[85] M-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa. Fast directional chamfer

matching. In IEEE Conference on Computer Vision and Pattern Recognition, pages

1696–1703, 2010.



BIBLIOGRAPHY 129

[86] B.D. Lucas and T. Kanade. An iterative image registration technique with an applica-

tion to stereo vision. In IJCAI, pages 674–679, 1981.

[87] G. Marola. A technique for finding the symmetry axes of implicit polynomial curves

under perspective projection. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 27(3):465–470, 2005.

[88] B. Mederos, M. Laje, S. Arouca, F. Petronetto, L. Velho, T. Lewiner, and H. Lopes.

Regularized implicit surface reconstruction from points and normals. J. Braz. Comp.
Soc., 13(4):7–16, 2007.

[89] A.S. Mian, M. Bennamoun, and R.A. Owens. A novel representation and feature

matching algorithm for automatic pairwise registration of range images. International
Journal on Computer Vision , 66(1):19–40, 2006.

[90] F. Mokhtarian and A. Mackworth. A theory of multiscale, curvature-based shape repre-

sentation for planar curves. IEEE Trans. on Pattern Analysis and Machine Intelligence,

14(8):789–805, 1992.

[91] B. Morse, T. Yoo, D. Chen, P. Rheingans, and K. Subramanian. Interpolating implicit

surfaces from scattered surface data using compactly supported radial basis functions.

In Shape Modeling International, pages 89–98, 2001.

[92] P. Mullen, F Goes, M. Desbrun, D. Cohen-Steiner, and P. Alliez. Signing the un-

signed: Robust surface reconstruction from raw pointsets. Comput. Graph. Forum,

29(5):1733–1741, 2010.

[93] A. Myronenko and X.B. Song. Point set registration: Coherent point drift. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 32(12):2262–2275, 2010.

[94] C. Oden, A. Ercil, and B. Buke. Combining implicit polynomials and geometric fea-

tures for hand recognition. Pattern Recognition Letters , 24(13):2145–2152, 2003.

[95] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H. Seidel. Multi-level partition of unity

implicits. ACM Trans. on Graphics, 22(3):463–470, 2003.

[96] C. Olsson, F. Kahl, and M. Oskarsson. Branch-and-bound methods for euclidean

registration problems. IEEE Trans. on Pattern Analysis and Machine Intelligence,

31(5):783–794, 2009.

[97] H. Pottmann and S. Leopoldseder. A concept for parametric surface fitting which

avoids the parametrization problem. Computer Aided Geometric Design, 20(6):343–

362, 2003.

[98] H. Pottmann, S. Leopoldseder, and M. Hofer. Approximation with active b-spline

curves and surfaces. In Pacific Conference on Computer Graphics and Applications,

pages 8–25, 2002.

[99] H. Pottmann, S. Leopoldseder, and M. Hofer. Registration without ICP. Computer
Vision and Image Understanding , 95(1):54–71, 2004.



130 BIBLIOGRAPHY

[100] V. Pratt. Direct least-squares fitting of algebraic surfaces. In SIGGRAPH, pages 145–

152, 1987.

[101] A. Restrepo-Specht, A. Sappa, and M. Devy. Edge registration versus triangular mesh

registration, a comparative study. Signal Processing: Image Communication, 20(9-

10):853–868, November 2005.

[102] M. Rouhani and A. Sappa. Implicit polynomial representation through a fast fitting

error estimation. IEEE Trans. on Image Processing, 21(4):2089–2098, 2012.

[103] M. Rouhani and A.D. Sappa. A novel approach to geometric fitting of implicit

quadrics. In Advanced Concepts for Intelligent Vision Systems, pages 121–132, Bor-

deaux, France, Sep 2009.

[104] M. Rouhani and A.D. Sappa. A fast accurate implicit polynomial fitting approach. In

IEEE International Conference on Image Processing, pages 1429–1432, 2010.

[105] M. Rouhani and A.D. Sappa. Relaxing the 3L algorithm for an accurate implicit poly-

nomial fitting. In IEEE Conference on Computer Vision and Pattern Recognition, San

Francisco, USA, June 2010.

[106] M. Rouhani and A.D. Sappa. Correspondence free registration through a point-to-

model distance minimization. In International Conference on Computer Vision, pages

2150–2157, 2011.

[107] M. Rouhani and A.D. Sappa. Implicit b-spline fitting using the 3l algorithm. In IEEE
International Conference on Image Processing, pages 893–896, 2011.

[108] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm. In IEEE In-
ternational Conference on on 3-D Digital Imaging and Modeling, Quebec, Canada,

2001.

[109] Y. Sahillioglu and Y. Yemez. 3d shape correspondence by isometry-driven greedy

optimization. In IEEE Conference on Computer Vision and Pattern Recognition, pages

453–458, 2010.

[110] T. Sahin and M. Unel. Fitting globally stabilized algebraic surfaces to range data. In

International Conference on Computer Vision, pages 1083–1088, Washington, DC,

USA, 2005. IEEE Computer Society.

[111] J. Salvi, C. Matabosch, D. Fofi, and J. Forest. A review of recent range image registra-

tion methods with accuracy evaluation. Image and Vision Computing , 25(5):578–596,

2007.

[112] M. Salzmann and P. Fua. Linear local models for monocular reconstruction of

deformable surfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence,

33(5):931–944, 2011.

[113] M. Salzmann, J. Pilet, S. Ilic, and P. Fua. Surface deformation models for non-

rigid 3d shape recovery. IEEE Trans. on Pattern Analysis and Machine Intelligence,

29(8):1481–1487, 2007.



BIBLIOGRAPHY 131

[114] M. Samozino, M. Alexa, P. Alliez, and M. Yvinec. Reconstruction with voronoi cen-

tered radial basis functions. In Symposium on Geometry Processing, pages 51–60,

2006.

[115] P D Sampson. Fitting conic sections to very scattereda data: An iterative refinement

of the bookstein algorithm. Computer Graphics and Image Processing,, 18:97–108,

1982.

[116] R. Sandhu, S. Dambreville, and A. Tannenbaum. Point set registration via particle

filtering and stochastic dynamics. IEEE Trans. on Pattern Analysis and Machine In-
telligence, 32(8):1459–1473, 2010.

[117] A.D. Sappa and M. Rouhani. Efficient distance estimation for fitting implicit quadric

surfaces. In IEEE International Conference on Image Processing, pages 3521–3524,

Cairo, Egypt, November 2009.

[118] S. Schaefer, T. McPhail, and J.D. Warren. Image deformation using moving least

squares. ACM Trans. on Graphics, 25(3):533–540, 2006.

[119] F.R. Schmidt, D. Farin, and D. Cremers. Fast matching of planar shapes in sub-cubic

runtime. In International Conference on Computer Vision, pages 1–6, 2007.

[120] J. Schnabel, D. Rueckert, M. Quist, J. Blackall, A. Castellano-Smith, T. Hartkens,

G. Penney, W. Hall, H. Liu, C. Truwit, F. Gerritsen, D. Hill, and D. Hawkes. A

generic framework for non-rigid registration based on non-uniform multi-level free-

form deformations. In MICCAI, pages 573–581, 2001.

[121] S. Schuon, C. Theobalt, J. Davis, and S. Thrun. Lidarboost: Depth superresolution for

tof 3d shape scanning. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 343–350, 2009.

[122] T.B. Sebastian, P.N. Klein, and B.B. Kimia. On aligning curves. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 25(1):116–125, 2003.

[123] T.W. Sederberg and S.R. Parry. Free-form deformation of solid geometric models. In

SIGGRAPH, pages 151–160, 1986.

[124] A. Sharf, T. Lewiner, G. Shklarski, S. Toledo, and D. Cohen-Or. Interactive topology-

aware surface reconstruction. ACM Trans. on Graphics, 26(3):43, 2007.

[125] G. Sharp, S. Lee, and D. Wehe. ICP registration using invariant features. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 24(1):90–102, 2002.

[126] G. Sharp, S.W. Lee, and D.K. Wehe. Maximum-likelihood registration of range im-

ages with missing data. IEEE Trans. on Pattern Analysis and Machine Intelligence,

30(1):120–130, 2008.

[127] D. Sharvit, J. Chan, H. Tek, and B Kimia. Symmetry-based indexing of image

databases. Journal of Visual Communication and Image Representation, 9(4):366–

380, 1998.



132 BIBLIOGRAPHY

[128] O. Sorkine. Differential representations for mesh processing. Computer Graphics
Forum, 25(4):789–807, 2006.

[129] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, third edition,

2002.

[130] Jean-Philippe Tarel, Hakan Civi, and David B. Cooper. Pose estimation of free-form

3d objects without point matching using algebraic surface models. In Proceedings of
IEEE Worshop Model Based 3D Image Analysis, pages 13–21, Mumbai, India, 1998.

[131] M. Taron, N. Paragios, and M. Jolly. Registration with uncertainties and statistical

modeling of shapes with variable metric kernels. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 31(1):99–113, January 2009.

[132] T. Tasdizen, J. Tarel, and D. Cooper. Algebraic curves that work better. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 2035–2041, 1999.

[133] T. Tasdizen, J. Tarel, and D. Cooper. Improving the stability of algebraic curves for

applications. IEEE Trans. on Image Processing, 9(3):405–416, 2000.

[134] G. Taubin. Estimation of planar curves, surfaces, and nonplanar space curves defined

by implicit equations with applications to edge and range image segmentation. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 13(11):1115–1138, November

1991.

[135] D. Terzopoulos and D. Metaxas. Dynamic 3d models with local and global deforma-

tions: Deformable superquadrics. IEEE Trans. Pattern Anal. Mach. Intell., 13(7):703–

714, 1991.

[136] A. Tevs, M. Bokeloh, M. Wand, A. Schilling, and H-P. Seidel. Isometric registration

of ambiguous and partial data. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1185–1192, 2009.

[137] M. Trummer, H. Suesse, and J. Denzler. Coarse registration of 3d surface triangula-

tions based on moment invariants with applications to object alignment and identifica-

tion. In International Conference on Computer Vision, pages 1273–1279, 2009.

[138] Y. Tsin and T. Kanade. A correlation-based approach to robust point set registration.

In European Conference on Computer Vision, pages 558–569, 2004.

[139] G. Turk and J.F. O’Brien. Shape transformation using variational implicit functions.

In SIGGRAPH, pages 335–342, 1999.

[140] M. Unel and W. Wolovich. Pose estimation and object identification using complex

algebraic representations. Pattern Anal. Appl., 1(3):178–188, 1998.

[141] C. Unsalan. A model based approach for pose estimation and rotation invariant object

matching. Pattern Recognition Letters , 28(1):49–57, 2007.

[142] C. Walder, B. Schölkopf, and O. Chapelle. Implicit surfaces with globally regularised

and compactly supported basis functions. In NIPS, pages 273–280, 2006.



BIBLIOGRAPHY 133

[143] H. Wang, Q. Zhang, B. Luo, and S. Wei. Robust mixture modelling using multivariate

t-distribution with missing information. Pattern Recognition Letters , 25(6):701–710,

2004.

[144] J. Wang and K. Chan. Shape evolution for rigid and nonrigid shape registration and

recovery. In IEEE Conference on Computer Vision and Pattern Recognition, pages

164–171, Miami, USA, 2009.

[145] W. Wang, H. Pottmann, and Y. Liu. Fitting b-spline curves to point clouds by

curvature-based squared distance minimization. ACM Trans. on Graphics, 25(2):214–

238, 2006.

[146] Y. Watanabe, T. Komuro, and M. Ishikawa. High-resolution shape reconstruction from

multiple range images based on simultaneous estimation of surface and motion. In

International Conference on Computer Vision, pages 1787–1794, 2009.

[147] T. Weise, B. Leibe, and L. Van Gool. Accurate and robust registration for in-hand

modeling. In IEEE Conference on Computer Vision and Pattern Recognition, 2008.

[148] H-Y. Wu, H. Zha, T. Luo, X. Wang, and S. Ma. Global and local isometry-invariant

descriptor for 3d shape comparison and partial matching. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 438–445, 2010.

[149] M-F. Wu and H-T. Sheu. Representation of 3d surfaces by two-variable fourier de-

scriptors. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(8):858–863,

1998.

[150] Z. Xie and G.E. Farin. Image registration using hierarchical b-splines. IEEE Trans.
Vis. Comput. Graph., 10(1):85–94, 2004.

[151] R. Xu and M. Kemp. Fitting multiple connected ellipses to an image silhouette hierar-

chically. IEEE Trans. on Image Processing, 19(7):1673–1682, July 2010.

[152] H. Yalcin, M. Unel, and W. Wolovich. Implicitization of parametric curves by matrix

annihilation. International Journal on Computer Vision , 54(1-3):105–115, 2003.

[153] Z. Yang, J. Deng, and F. Chen. Fitting unorganized point clouds with active implicit

b-spline curves. Visual Computing, 21(1):831–839, 2005.

[154] Y. Zeng, C. Wang, Y. Wang, X. Gu, D. Samaras, and N. Paragios. Dense non-rigid sur-

face registration using high-order graph matching. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 382–389, 2010.

[155] B. Zheng, R. Ishikawa, T. Oishi, J. Takamatsu, and K. Ikeuchi. A fast registration

method using ip and its application to ultrasound image registration. In IPSJ Transac-
tions on Computer Vision and Applications, pages 209–219, September 2009.

[156] B. Zheng, R. Ishikawa, T. Oishi, J. Takamatsu, and K. Ikeuchi. A fast registration

method using IP and its application to ultrasound image registration. IPSJ Transactions
on Computer Vision and Applications, 1:209–219, 2009.



134 BIBLIOGRAPHY

[157] B. Zheng, J. Takamatsu, and K Ikeuchi. 3d model segmentation and representation

with implicit polynomials. IEICE Transactions, 91-D(4):1149–1158, 2008.

[158] B. Zheng, J. Takamatsu, and K. Ikeuchi. An adaptive and stable method for fitting

implicit polynomial curves and surface. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 32(3):561–568, March 2010.

[159] Q. Zheng, A. Sharf, G. Wan, Y. Li, N.J. Mitra, D. Cohen-Or, and B. Chen. Non-local

scan consolidation for 3d urban scenes. ACM Trans. on Graphics, 29(4), 2010.

[160] T. Zinßer, J. Schmidt, and H. Niemann. A refined ICP algorithm for robust 3-d corre-

spondence estimation. In IEEE International Conference on Image Processing, pages

695–698, 2003.



List of Publications

This dissertation has led to the following communications:

Journal Papers
• Rouhani M. and Sappa A., Implicit Polynomial Representation through a Fast Fitting

Error Estimation,IEEE Transactions on Image Processing, April 2012, volume 21(4)

pp 2089-2098.

Conference Papers
• Rouhani M. and Sappa A.D., Correspondence Free Registration through a Point-to-

Model Distance Minimization, IEEE Int. Conf. on Computer Vision (ICCV), Barcelona,

Spain, November 2011, pp. 2150-2157.

• Sappa A.D., Gernimo D., Dornaika F., Rouhani M. and Lpez A., Moving object de-

tection from mobile platforms using stereo data registration, chapter in Computational

Intelligence paradigms in advanced pattern classification, Ed. ek R. Ogiela and Lakhmi

C. Jain, Springer-Verlag’s Book Series, 2012, pp. 25-37.

• Rouhani M. and Sappa A.D. ”Implicit B-spline fitting using the 3L algorithm, IEEE Int.

Conf. on Image Processing (ICIP), Brussels, Belgium, September 2011, pp. 893-896.

• Rouhani M. and Sappa A.D., A Fast Implicit Polynomial Fitting Approach, IEEE Int.

Conf. on Image Processing (ICIP), Hong Kong, September 2010, pp. 1429-1432.

• Rouhani M. and Sappa A.D., Relaxing the 3L Algorithm for an Accurate Implicit Poly-

nomial Fitting, IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR),

San Fransisco, June 2010, pp. 3066-3072.

• Sappa A.D. and Rouhani M., Efficient Distance Estimation for Fitting Implicit Quadric

Surfaces, IEEE Int. Conf. on Image Processing (ICIP), Cairo, Egypt, November 7-11,

2009, pp. 3521-3524.

• Rouhani M. and Sappa A.D., A Novel Approach to Geometric Fitting of Implicit

Quadrics, IEEE Int. Conf. on Advanced Concepts for Intelligent Vision Systems

(Acivs), Bordeaux, France, September 2009; pp. 121-132.

135


