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Chapter 1
Adaptive Optics Imaging

Ground-based telescopes have followed a historical teryderincrease their collecting aperture size
in order to allow fainter objects to be detected. Hence, thendter of the primary mirror of such
telescopes has evolved from a few centimeters, for the fisused for astronomy Itmmei
), to over 10 meters, such as the Keck telescopes in &t&ea (Hawaii) or the Gran Telescopio
de Canarias in La Palma (Canary Islands). Unfortunateg/whvefront emitted by a distant point
source is disturbed during its transit through the atmosphehich limits the angular resolution.
Therefore, it is impossible to achieve the theoreticékaction limit 1/D of resolution that could be
achieved by the largest ground-based telescope, wiithing the observing wavelength abdthe
diameter of the aperture.

In order to overcome this limitation, current telescopeigies incorporate modern systems and
devices that control the mirror surface shape and parta@lyect distortions introduced by atmo-
spheric turbulence. Such systems include wavefront sendeformable mirrors, artificial guide stars

produced using laser beacons and complicated control aadtwhich allow to create astronomical
images with high angular resolutions. Furthermore, thessjible applications extend beyond as-
tronomy to a much broader range of disciplines such as ofphthagy, biology or defense. In this
chapter, some of the basics in this field are reviewed frorh batheoretical and a practical point
of view, as well as the current state of the art of the sciersréopmed with adaptive optics (AO)
systems.

1.1 Introductiontoimage degradation by atmospheric turbdence

The theory of the fects of atmospheric turbulence in perturbing star wavédranastronomy was

initiated byl_KQ.Lm.og.o.Ldvl.(_L?_AJa) aWW41); andHar developed b@ 61),
IELLQJ b&abl_J&dG) aAd_RQddiéL(_’L;{Bl). A clear mathematieatment is outlined ch

). In a nutshell, there are four classical areas ofysteldted to the influences of the atmosphere
on image formation:

e Atmospheric absorption or extinction, which is of great orance in photometry and site

selection l(.Léna.el.laL.lﬁQI&'_S.a.LalEm_ll992).

1




2 Roberto Baena Gallé. Universitat de Barcelona.

e Atmospheric refraction, which introduces positional esrafecting the astrometrical accuracy

of observations (Barlow & Bryan 1944: Mahan 1962).

e Atmospheric dispersion, which is simply thetdrential of atmospheric refraction with respect
to the dfective refractive index. It leads to the formation of an imagectrum in the direction

of the telescope altitud96).

e Atmospheric turbulence aeeingquality, which introduces variations in the refractive exd
caused by density variations which in turn are due to temiperalependence with height or
wind speed.

The last item on the list represents the most importantditimbh on image quality for sophisticated
ground-based telescop@?lmwg), because of itscatioins for the loss of spatial resolution;

it also determines many of the design parameters of AO systemch as aperture size and operating
wavelength, and site selection.

If a flat wavefront is arriving at a certain telescope throulgd atmosphere from a point-like
source, for example, a distant star, and assuming that thie’€atmosphere is not a homogeneous
static medium, but that it presents both spatial and tenip@argations, such a wavefront will be
distorted randomly by cells or bubbles of air witlffdrent indices of refraction. Severdtects can
be identified (Fig.I]1). Firstlyscintillation or the variation in brightness observed by the eye because
of differences in the wavefront energy per unit of time. Secoradjifationof the image in the focal
plane, which corresponds to variations in the angle of tl@eltangent to the wavefront. Finally,

smearingor loss of spatial coherence at the iupil, which leads to agersize that is larger than

would result from difraction alone 1).
l ! Incident _1_____ Incident l
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Figure 1.1: Effects of atmospheric turbulence on images —after Lend ¢1298).

Most of the descriptions of atmospheric turbulence aredasehe theory outlined MOV
). First, fluid flows are always turbulent if the wielown Reynolds number is larger than a

critical valué, which is always the case for the Earth’s atmosphere. Theriand outer scalds and

Lo can be defined as the size limits of a characteristic air edgeneral o is of the order of a few

IR = VL/u 2 Rer. WhereV is the flow velocity (for the Earth’s atmosphére= 1m/s), L is the length L ~ 15m) and
u the kinematic viscosity of the fluigu(= 15 x 10°%n?/s). For these valueR ~ 1(F.
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millimeters, below which value viscous heat dissipatiomotences; whereas typical valued gfare
round a few tens of meters. The Kolmogorov theory describegdurbulence strength in a simple
way as a function of the eddy size in the so-called inertiagjeabetweell, andL, by means of the
structure functiom,(r1, r2) = (x(r1) — X(r»)|?), which is basically the expected value of th&elience
between the values of a functiox,measured at two fferent points; andr,.

If the turbulence itself is assumed to be homogeneous atrdBo, which is a valid approxima-
tion in the rangdy < r < Ly, the structure function of the turbulent velocity field ¢an be written
as:

Dy(ra, r2) = (IM(r1) = V(r2)l?) = a - f(Irs = ral/B), (1.1)

wheref is a dimensionless function with dimensionless argumesitge the only two parameters
that determine the strength and spectrum of the Kolmogantutence are the rate of energy genera-
tion per unit massg, with the dimensiona¥s 3, and the kinematic viscosity, with the dimensions
m?s!; and considering that from equatibnllalmust have the dimensions of velocity squared and
B of length, it follows from dimensional analysis that= u/?¢¥2 andg = u®“e V4. In addition,
since heat dissipation does not play any role in the inediade, therD, must be independent of the
viscosity,u. This is only possible iff has the formf = K - (Jr; — r5|/8)%? thus eliminatingu from
equatior_LIL, witkK being a dimensionless constant:

Dy(r1,r2) = a- K- (Iry = ral/B)?3 = CZ - Jry — 1?3, (1.2)

whereC, = K - €23 describes the turbulence strength. Equdfioh 1.2 repeaantiversal descrip-
tion of the turbulence spectrum.

The velocity field (ed.I]12) mixes fierent layers of air, each of them withfiirent temperatures,
T, which must be in pressure equilibrium but havéfatient densities and therefore havéeatent
indices of refractionN. Consequently, the temperature fluctuations and refeatidex variations
must also follow Kolmogorov’s Law with parametet§ andC3:

Dr(r) = C7 - 1?7, (1.3)
Dn(r) = C§ - r?3. (1.4)

with Cy = (7.8 - 10°P[mbar]/T?[K]) - Cy andr = |r, — 15|, since a homogeneous and isotropic
random process is being considelje_d_(Q_u'LLLe.dllla.th 2006)atleqil4 contains a complete descrip-
tion of the statistical properties of the refractive indexctuations within the inertial range. This is

the so-called Kolmogorov-Obukhov “two-thirds IanL(.KleQmMJﬂAJJaI;Qb.ukh.HLlﬁhh_;lala.llski
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In addition,@(i@l) obtained the power spectraisdg, ®y, of the structural function
Dy as a function of the spatial frequenay, i.e., Kolmogorov’s Law for the spectral distribution
corresponding to equatignl.4:

D (k) = 0.0368C3« 3, (1.5)

which is also valid in the inertial range for the 1-dimensibcase, nameljj* > « > L;*. For
the more general 3-dimensional calsg(x) ~ kY3,

Now that the statistical properties of the refractive indlextuations have been obtained, it is
possible to derive the statistical behavior of a plane,zomtial and monochromatic wavefrog(x),
coming from a zenith star. Roddier’s approaM@l%hssumed: so the atmosphere is

considered to be still and homogeneous except for a turblager of thicknesgh at heighth. The
scalar vibrationy(x), can be expressed by its complex amplitude making use gfftase shiftg(x),
produced by the variations in the indices of refraction:

w(x) = ', (1.6)

h+6h
d(X) = kfh n(x, z)dz (1.7)

wherek = 2/ is the wavenumber corresponding to the observing wavetesngtn(x, 2) is the
index fluctuation within the layer at point at heighth. The layer thicknesgh, must be greater than
the individual eddies, so many independent variables wilitcbute tog allowing to approximate
it to a Gaussian distribution by means of the Central Limiedirem. In contrasijh must be small
enough for difraction dfects to be negligible within the layer.

BothlIala.G.ILil(_’LQ_dl) ar{d_RQ.ddi 81) introduced the séarder moment or coherence func-
tion of the wavefront after passing through the layer. This be expressed in terms of the phase
structure functionD,(r), by:

Bn(r) = (W(X)y " (x+1)) =
= (expi[¢(x) — p(x+1)]) =

- exp(—%<|¢(x) - plx+ r)|2>) - (L8)

= exp(—%D,p(r)) .

In equatior LB the relatiofexp(X)) = exp(—%<xz>) Is used, which is applicable to real Gaussian
variablesX with zero mean.
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In order to calculat®,(r), the covariancé,(r) is defined:

By(r) = (¢(X)¢"(x + 1)) =
h+sh  ~h+sh
. szh fh (N(x, Z)N(X +1,2))dzdz = (1.9)

h+sh h+sh-z;
:sz lef dzBu(r, 2),
h h—Z]_

wherez = z, — z; andB\(r, 2) is the covariance of the refractive index variations. Byer thick-
nessesoh, that are large enough compared to the correlation scateedfuctuations, the integration
can be extended to the infinite Iim 81):

B,(r) = k%h f ) Bn(r, 2)dz (1.10)

Sincer = |ry —r5|, itis easy to prove thdd,(r) = 2(Bx(0) — Bx(r)) _Q_uiLLenhadlILZO_(b&. Applying

this relation toD,(r), Dn(r, 2) andDy (0, 2) the following expression is obtained:

Dy(r) = 2[By(0) = By(r)] =

— 2k%sh fw [Bn(0, 2) — Bu(r, 2] dz=

oo (1.11)
- 26 [ [(Bu(0.0)~ Bu(r.2) - (Bn(0.0) - Bu(0.2)] dz-
= 2k?sh fm [Dn(r,2) - Dn(0, 2)] dz
Inserting equatiof 114 into equatibn.11 gives:
Dy(r) = k?6hC? foo r2+ 23— 12%3|dz=
o(1) T R G Rli w12

= 2.91425hC3r3,

which is the desired expression for the structure functigrhase fluctuations due to Kolmogorov
turbulence in a layer of thicknegh. Finally, inserting equatidn 1.1 2 into equationl1.8 andsidering
that the star which emitted the wavefront is not at the zeihiti a certain angular distance, Z, from
the zenith, and also considering that the turbulence egtaaass the whole depth of the atmosphere,
thusCZsh = [ CZ(h)dh, itis possible to obtain:

B(r) = exp[ l(2.914k2(cosZ)‘1r5/3fCﬁ,(h)dh)]. (1.13)

2
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EquationI. 1B is of fundamental importance for determirtimg efects of turbulence in long-
exposure images. From this expression the following cachs can be dedUCEId_(.L'en.a_eH_alJQQS):

e The phase is the only perturbed parameter in the vicinitheflayer, this results ismearing
andagitation (Fig[I:1). Further away, both the phase and the amplituffersvariations and
thenscintillation occurs. When the turbulence is not very large, the ampljtiyq#)|, can be
neglected.

e On leaving the layer, the correlation function has a complexlitude which determines the
random phase distribution. This function has an isotropidile, so the correlation lengtkx,
can be defined as:

<¢’“(gl;h (Xc‘;;;ff(x» ~ é = X, ~ (L457CCEoh) 5. (1.14)

Typical values ofx. are around a few tens of centimeters, which implies a sigmficeduction
in the spatial coherence of the incidental wave.

e The coherence length is highly dependent on the wavelergth 1%/°, (eqlIIH).

1.1.1 The Fried parameter

@ @E) represents the wavefront when it arrives im$aof a truncated sequence of polynomials
(closely related to Zernicke’s polynomials), each of whioh each group of which, represents a
specific geometric shape over the telescope pupil: a unifdrase change, a tilt change, defocus or
a hyperbolic change. In addition, the phase structure iom¢eglZI.IR) is expressed in terms of the
so-called “Fried parameter” which can be defined as follows:

-3/5
ro = [o.4231<2(coszr1 f Cﬁl(h)dh] , (1.15)

which transforms equatiofis 1113 dnd1.12 into:

r 5/3
B(r) = exp[—3.44(r—) ] (1.16)
0

r 5/3
Dy(r) = 6'88(6) : (1.17)

It should be noted that the dimensionrgfis length and that it is proportional t/°, thus it is
highly dependant on the wavelength of the incident lightisEtrong dependence makes telescopes
more coherent at infrared wavelengths than in the visibie gdfahe spectrumrg = 10cmat 0.5um
whereas, = 8.4mat 2Qum), i.e., given a certain diameter, a telescope will give igggloser to the

diffraction limit in the infrared than in the visible.
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In an additional publicatiorﬂm%ﬁered a new treatment in terms of the normalized
optical transfer functioh(OTF), S(f). The OTF can be divided into two terms, one corresponding to
the telescope and the other to the atmosphere. The lattessided by the Fourier transform of the
wavefront coherence function (EQ.J.13) and the former by:

T(f) = = fP(u)P*(u+ f)du, (1.18)
nD?

wheref is frequencyu is defined asi = x/4 andP(u) is a complex function which describes a
telescope aperture of a certain diaméeiConsequently, the total OTF is given by:

S(f) = B(f) - T(f). (1.19)

Finally, the resolving poweR, (which is inversely proportional to the angular resolajis given
§EEE;Q 1):

byd

REfS(f)df:fB(f)T(f)df. (1.20)

In the ideal case of the absolute absence of turbuleB(dg,can be assumed to be negligible; so
the resolving power would only be limited byftfaction:

2

1 7 (D
Ry = fT(f)df = — IPdu? = Z(ﬁ) . (1.21)

For an infinitely large telescope, the opposifieet would be experienced and the seeing-limited
resolving power could be obtained as:

R, = f B(f)df = f exp[—3.44(/:—;)5/3]df: %(%")2 (1.22)

wherer = Af has already been introduced in equafionll.16.

From a direct comparison of equatidns1.21 Bndl1.22, thefisignce of the Fried parameter is
clear LQ_LLi.LLeD.b.a.CHJ_ZQbGIhe resolution of seeing-limited images obtained througtaamosphere
with turbulence characterized by a Fried parametglig the same as the resolution offtction-

limited images observed with a telescope of diamejer r

Thereforeyg is a method by which to characterize the size of the turb@eedis, i.e., the Fried
parameter is the distance over which the wavefront is nosidenably perturbed. As was pointed
out previouslyrg is wavelength-dependent, giving better results at infravavelengths. It is also
site-dependent, at good seeing locations (such as Maunar@arro Paranal), is about 2@m at
500nm, which corresponds to an FWHM of®arcsec; even values of 1€/ have been reported at
2.2um. However, only whemy > D are the seeingfiects negligible; so even a value igf ~ 1m
would be too small for large-diameter telescopes such akQha Kecks.

2The Fourier transform of the telescope point spread fun¢®SF).
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1.1.2 Temporal evolution. Long- and short-exposure images

The Fried parameter models the size scale of the eddies logdelkescope pupil. However, it is
also necessary to consider the evolution of the turbuleogestime. A typical approximation is to
assume that the turbulence itself does not change overnteerteeded by the wind to blow it out
of the telescope pupil, i.e., temporal variations are dutheftransport ofrozenpatterns across the
aperture by the wind. This is the so-call&aylor hypothesis of frozen turbulenddence, the wind
speedy, in the layer is the parameter which defines the time evalutig of an eddy of size,:

To ~ Ig/V. (123)

Of course, just as fory, time evolution is also wavelength dependent, irg.pc 1%°. If Tay-
lor's hypothesis is valid, the spatial structure functieg[{.I¥) and its phase power spectrum can be
converted into their temporal counterparts:

t 5/3

D¢(r):6.88(—) : (1.24)
7o

@,4(f) = 0.077r,”*F 7573, (1.25)

These equations tell the residual phase error that can lez®gpto correct the turbulence with a
servo loop of a certain bandwidth.

Typical values ofv are around- 10m/s, which means values for the evolution time of just a few
milliseconds. Observations with exposure tinhes 7o, i.e., long-exposure images, average over the
random turbulent process. In contrast, short-exposurgesia < 7o, produce images via a single
instantaneous observation of the atmosphere with thedygiecklgattern (Fid.IR).

The number of speckles in each observation is approxim&gty and they contain consider-
able high-frequency spatial information close to th&rdction limit. Another image would result
in another set of speckles, but randomly displaced witheesio the previous onﬁ@ 97).
If numerous short exposures are taken and added togetherexuavalent long exposure is taken,
then all the speckles blend together to form a seeing diskidthw A/rq instead of multiple small
individual speckles of width- 1/D (Fig[L3). It is easy to verify that the larger the Fried paeger,
ro, the fewer the speckles; the longer the evolution tirgeand the better the angular resolution for a
long exposure.

The difraction-limit information contained in numerous specldas be recovered usingftérent
Fourier analysis techniques; such methodology is callextidp interferometry.l_La.b_a&ieL(_’Lﬂ?O)
established the possibility of recovering the object posyectrum from the autocorrelation function
of a large series of short-exposure frames; if they have beguoired over a time scale of less than
7o, the phase content of each frame can be considered stgtiandrtime-independent. Obtaining
information from the object is then relatively straighték@rd. For instance, for a binary system,
physical parameters such as separation, angular posihmagnitude dference can be retrieved
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[Léna et al.[(19d8). (1997).

by a weighted least-square methb_d_(.I:I.O.LQh_HLa.L_ll996).

Unfortunately, Labeyrie’s method removes the phase of bjecd, which must also be recovered
in order to obtain a diraction-limited image of the object. Berent techniques have been proposed
to recover the wavefront phase in speckle interferometitye most successful has probably been
the triple correlation analysis or bispectrum metHQ_d_(Lahme.t_a“_J&ElB) and its relaxation variant
(Meng et all 1990) (see FigufETl. 4).

There is a huge range of applications of speckle interfetgme science, either in the visible
or the infrared region of the spectrum. T&ey a brief overview, the following papers can be cited:

Hartkopf et al. [(2000}, Mason etlal. (2001) and Horch &t 410621 2012).

Figure 1.4: Upper left: Reconstruction of HIP 005674 as a binary systgm&ans of the bispectrum metheds 0.144
arcsecAm = 2.04 (562im), Am = 1.89 (692hm). Upper right: Reconstruction of HIP 11575l = 0.422 arcsecAm =
3.03(5621m), Am = 2.98 (69 m). Lower left: corresponding HIP 005674 specklegrams. Lroright: corresponding
HIP 115751 specklegrammoog).
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1.1.3 Angular anisoplanatism

The light from two stars separated by an arjéerives at the telescope pupil via twdferent optical
paths and, therefore, idfacted by diferent phase variations. Thisfect is the so-called angular
anisoplanatism and limits the field that can be correctedby@ system (see secti@nll.?2).

Two rays coming from two dierent stars are separatediifg) = h(cos2~16, whered is their
separationh is the height and is the zenital angle. At = 0, i.e., at the pupil, the two rays coincide.
To calculate the phase variance between the two rays thieesipn is inserted into equatibn1.12
(considering the zenital angle to B¢ and integrate over the heigtht,

5/3
H_h) dh=

2\ _ 2 -1 2
(o) = 2.914(cos) fCN(h) (cosZ

— 2.9143(cos2) 863 f C2(hh®3dh = (1.26)
~ E 5/3
e

where the isoplanatic angl@,, has been defined as the angle for which the variance of thves|
phase is tad?:

-3/5
905[2.914k2(0052)‘8/3 Cﬁ,(h)h5/3dh] . (1.27)

Equatior_T. 27 can be expressed in terms of the Fried parategieatior_L.16) as:

B = 0.314(cosZ)|r_|—0, (1.28)

whereH is defined as the meaiffective turbulence height:

(1.29)

[ c2hyhsedn)*®
( J C&(hydh J '

The isoplanatic angl#,, can be interpreted physically as the maximum angle by wiwolstars
can be separated to assume they both produce the same P&gtembiyy AO. In contrast, for long
exposures which represent averages over many observafiatraospheric turbulence, the PSFs are
almost identical for angles much larger tian EquatiorZL.2IB shows thag is most d@ected by high-
altitude turbulence. Furthermore, it also depends on thesleagth,1%°, and on the zenital angle,
Z, more strongly than ony. In general, the anisoplanatism is less severe for low &fagiquencies
which are corrected much better by AO systems than highapgegguencies are.
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1.1.4 The Strehl ratio

Astronomers compare seeing-limited anérdiction-limited images using the Strehl ratio (SR) de-

fined as the quotient of the intensity peak of an observed goiarce and the theoretical maximum

peak |ntenS|ty of a perfect i |ma%|nc system at thférdction limit. It can be expressed by the following
C

equation ( |_'L9_913|_I:|a.|’_d &8):
f f -

wherel(P) is the intensity of the seeing-limited image at the focahp® and |, is the inten-
sity in the absence of aberrations and turbulences (i.es,0). The wavefront aberration function

|(P)

SR= —~ = (1.30)

ﬂ.2

U(p, 0) refers to a circular aperture expressed in polar coordgandk is again the wavenumber
corresponding to the observing wavelength,

In the absence of aberration, the maximum in intensity valabthe Gaussian focus. If aberration
is present and large, there will be an intensity maximum atdifraction focus which cannot be
unique. However, if the aberration isfBaiently small, there will be a unique ftliaction focus with
a clearly defined intensity maximum. In such a case, equBii8f can be used as a parameter to
measure theftects of a small degree of aberration over the image qualitys oncept was first
introduced b@wl_(TQbZ).

In general, there is no explicit knowledge of the wavefrdograation functiony (o, 6) in equation
[L30. This is especially true in the case of AO where the ramdoors are usually described statisti-
cally. lB_QLn_&JALo.IJ _19_6;h) derives an expression to approxienequatiofi .30 to a more simple form
by expanding the aberration function by a Taylor’s series:

2

SR= | dode| . (1.31)

0L

Let y" be the average wavefront error of thth power ofy over the pupil, with respect to a

o |1+ iky(p, 0) + %[ikw(p, 0)]% +

reference sphere centered®n

_ "(p, 6)d d6'

o bk o0 f f P (o, 6)dodl. (1.32)
fo fo pdpdo

If the third and higher-order terms in equatfon1.31 are eegd, then the SR can be expressed

as:

SR~ |1+iky - = k2¢2 =1-K[y? - ). (1.33)

3In general, SR is expressed as a percentage.
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The mean-square wavefront error is defined®g)? = y2 — (%)% Finally, setting the standard
deviation of the phase as, = kAy, the SR can be approximated as:

SR~ 1-07. (1.34)

This expression is only valid for very small phase errorsmtaabout G6rad rms It tends to O
at a phase error ofrhd, which is clearly unrealisti : :(Ln_(_’l.b@mained a similar
expression for SR in the presence of small aberrations:

1 2
1- 50';] , (1.35)

which gives basically the same result as equafionl 1.34 flregaof o, of up to Q5rad rms
It tends to O at ¥lradrms An optical system can be considered well corrected wEéh>
0.8, which corresponds tcr?zs < 0.2 (eqI.34), corresponding to a wavefront erroripi4 or less.
Mﬁt&&hﬁL&_ELa.n.c.dr{(J&JSO) a )rld_(lb74) provide $amiesults. This criterion is acceptable
for fixed optical systems such as mirrors or lenses, but isssteely restrictive for AO systems. SRs
of up to 50% in theK-band are considered typical good values d.e.g..l:la;ma.r_dléﬂﬁlb Moreover,
SR values of~ 80% have been measured for thd-& Large Binocular Telescope in the H-band
.E&pgsjm_er_eu_m‘.lO).

EquationT.34 represents the first two terms of the Tayl@tges expansion of an exponential
function which yields an alternative expression for SR thdahe so-called éxtended Maréchal ap-
proximation :

SRx

SR~ e, (1.36)

This equation is valid over a larger range of phase errorstti@other two, up to 2ad rms and it
is one of the most frequent expression for SR in AO. It is clkat, in the ideal case of the absence of
atmospheric turbulencep, 6) = ctesoo, = 0 andS R= 1. Moreover, for strongly varying(p, 6),
SR« 1 and, in general, &8 SR< 1 (equatioi.T.30). For any giver{p, §), the SR tends to be larger
for longer wavelengthsi, i.e., for smaller wavenumberis,

It should be remarked that the SR is not the only valid param&hen it comes to obtaining
a measurement of the image quality in AO. Other possibleiosetire the 80% encircled energy
(EE), defined as the angular diameter containing 80% of tla¢eoergy, which has the advantatge of
relating two meaningful parameters: the sensitivity aredrésolution; however, it is dependant of the
wavelength. A second possible metric would be the full witkilf maximum (FWHM), which gives
the extent of the main PSF lobe (excluding wings) as tlieidince between the two extreme values
at which the PSF reaches half of its maximum value.

lDi.eﬂkal ..’I_%_JZ) compared thetects of spherical aberration in the presence of atmospheric
bulence on the 50% and 80% encircled energy with those orgthieadent SR and concluded that the
SR is far preferable as a quality criterion, since the forarernot very sensitive to the wavefront er-

rors introduced by the telescope its MWQ) reachnsimilar conclusion. Finall.@kx
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‘@) introduces the central intensity ratio (CIR) givertite quotient:

SR
CIR= SR’ (1.37)
whereS Ris the SR of the total system of atmosphere, telescope andl$ie paramete R is the
SR of the equivalent perfect telescope limited only b§réction,in the same turbulent atmosphere
The metric CIR is normalized to unity for the performance ofaderration-free, diraction-limited
telescope; so it is more practical in those cases wBdétgields very small values.
The CIR can be seen as the area under the modulation transfeidih (MTF) curve m
, FidZLb). This contains the same information as tHe; RSneasures the degradation of the

optical amplitude with frequency, just as if it were a filtenttion applied over some signal.

Diffraction limit

Short exposure NGS(Strehl ratio=0.64)

Short exposure LGS
(Strehl ratio=0.48)
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MTF (Strahl ratio=0.25)
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e
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Figure 1.5: Improvement of the MTF with respect to the SR —MM).

1.2 Adaptive optics systems

As has been shown in the previous section, atmospheric lantel limits the spatial resolution
achieved by ground-based telescopes. This limitation @emitigated by reducing the amount of
atmosphere over the telescope; that is, by building obt@iea atop high mountains, or launching
highly-expensive and technologically-restricted tetgss into orbit outside the Earth’s atmosphere.
However, Horace W. Babock was the first person to theorizeitaie applicability of an AO sys-
tem: if we had the means of continually measuring the deviatiaayd from all parts of the mirror,
and of amplifying and feeding back this information so asaoext locally the figure of the mirror

in response to the schlieren pattern, we could expect to easgie both for the seeing and for any
inherent imperfection of the optical figum\?). This theoretical system was first imple-

4This is the real part of the optical transfer function (OTGIELD)
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mented in the B-m telescope on mount Haleakala (Maui, Hawaii) in 1982,can80 years after
Babcock’s statement just quoted.

Figure[1.6 shows the basic scheme of an AO compensatinghsy#tevavefront sensor (WFS)
measures the deviations of the optical path from the flat \@adesends this information to a real-time
computer. After analyzing this information, the feedbawoyd is completed by modifying the shape
of a deformable mirror (DM) in order to correct the deviascend better concentrate the luminic
energy on one single image element.

AT T T
e e T
- tarbulent
e N
wavefront
corrected
beam
. wavefront
splitter
— e -
- camersa
/ ~, } .
- - high resolurien
/ deformable | image
mirror 1

wavefront
sensor

L |

control
system

Figure 1.6: A simple scheme for implementing adaptive optics using amheble mirror.

In practice, the phase variations of the wavefront are d@sttin terms of the so-called Zernicke
polynomials Z;(n, m), wheren is the degree of a radial polynomial ants the azimuthal frequency
of a sinusoidal term. Il 6) gives normalized versiohghe Zernicke polynomials. Table
L1 lists the low-order terms and explains their meaninge [t column in the table gives the mean
square residual amplitudag;, in the phase variations at the telescope entrance causéalinpgorov
turbulence after the removal of the fifjselements; the normalization factor &= (D/ro)*3. For
j > 10, the value of\; can be approximated by:

D 5/3
A, z0.2944j_0'866(r—) racf. (1.38)
0

By substituting the appropriate terms and taking the squat TabldLll yields the rms phase
variation for each mode of correction. When there is no abiva, the rms phase variation is
0.162([D/ro)°® waves, while after tip—tilt correction, the rms phase \#oiais reduced to 053D /r)*/®
waves. In accordance with this, in order to achieve an SRgisds 80% under typical seeing condi-
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tions, a huge number of terms must be corrected, which dbsiicglies a high degree of complexity
of the whole AO system.

Table 1.1: Modified Zernicke polynomials and the mean square residualitude for Kolmogorov turbulence
after removal of the firgtterms.

Z; n m Expression Description Aj/S

Z1 0 O 1 constant 20300
Z 1 1 2 sing x-tilt 0.5820
Z; 1 1 2 cosp y-tilt 0.1340
Z 2 1 V3(2r2 - 1) defocus 110
Zs 2 2 V6r2sin 2p 0° astigmatism  ®880
Zs 2 2 V6r2cos 2 4%° astigmatism 648
Z; 3 1 +8(3%-2r)sing X-coma 00587
Zg 3 1 +8(33-2r)cosp y-coma 00525
Zy, 3 3 V8r3sin 3p x-trifoil 0.0463
Zo 3 3 V8ricos 3 y-trifoil 0.0401
Zin 4 0 +5(6r*—6r2+1) third order spherical .0377

@l @4) performed several simulations to reprebenSR as a function of the telescope
diameter and the Fried parameter for a wide range of coddetens in the Zernicke polynomials
and number of actuators on the DM. He found that maximum asiatensity is achieved when the
telescope diameter is such that the actuator spacing i$ equer,. In contrast, the optimum value
of D/rq is equal to 179N, + 2.86, whereN; is the highest Zernike radial mode corrected.

Therefore, an AO system must be designed to correct as manicke polynomial terms as pos-
sible (Fig.[LY). This design is determined by the atmodplparameters derived from Kolmogorov's
theory, i.e., the Fried parametey, the isoplanatic anglé,, the time evolutionty, and in the case of
future 30- or 40-m telescopes such as ELT, the outer stglas well.

The AO feedback loop shown in Figurell.6 must be iteratedrakliendred times per second in
order to correct temporal variation in the optical path setd However, the number and size of the
WES resolution elements (subapertures) and the DM elen(&etisators) projected on the telescope
aperture must approximately matgh Finally, WFS makes use of a single star or artificial lasar st
measurements to record variations in the wavefront doactbuch a star must be separated from the
science object by a distance less than the isoplanatic aiggie order to diminish the dierences be-
tween the object and the calibrator PSFs across the fielgmiviFigurd_LIB shows Jupiter’s satellite
lo imaged with the 10-m AO Keck telescope.

Hence, an AO system is formed of the following elements:

1. WFS: this is designed to provide an electrical signal Wiian accurately describe the wave-
front shape. In general, bearing in mind that the wavefremaarly achromatic, wavefront
measurements are performed at visible wavelengths by seasitive optical devices with
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Figure 1.7: Efficiency of AO using a small number of modes. Lélttro = 2. Right: D/ro = 7. Curve A: no correction.
Curve B: correction up to teri;. Curve C: correction up to teri@y. Curve D: correction up to teris. Curve E: perfect
diffraction-limited performance —aﬁmmw).

low-noise and high-quantunffEiency photon detectors such as CCDs. Currently, three WFS
designs are in use. First, there is the Shack-Hartmann WHRhwemploys an array of lenses
which produces a corresponding array of spots whose positietermine the wavefront shape.
Second, there is a pyramid WFS, which makes use of a prismviatdehe aberrated ray to
different detectors. Thus, the intensity distributions in thatiple pupil images are a measure
of the ray’s slope. Lastly, a curvature WFS measures infeaisstributions in two diferent
planes on either side of the focus, corresponding to theatur® of the wavefront.

All these three types of WFS work with broad-band light, iyt difer in their dynamic range

Figure 1.8: Upper left: lo image taken with Keck adaptive optics; K-baB@um. Upper right: lo image based on
visible light taken with Galileo spacecraft orbiter. Loweft: o image taken with Keck adaptive optics; L-bandyan.
Lower right: lo image taken without Keck adaptive optics.
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and sensitivity. Nowadays, the pyramid WFS is consideredetdhe most suitable for AO

imaging, since its sensitivity hardly changes at any spaiguencies. The Sharck-Hartmann
and curvature WFS sensitivities degrade at low spatialieagies, this is especially so for the
latter; however, the curvature WFS exhibits better pertorog at high-spatial frequencies than

the Sharck-Hartmann WFIS.(Q.UJ!ID.D.beE.JOO?).

2. Wavefront reconstruction techniques (WRTSs): thesel¢attie calculation of the appropriate
correction vectory, which the DM must be provided with from the measurementorest
obtained by WFS. It consists of the resolution of the folllogviinear system:

Dv=s+n, (1.39)

whereD is the matrix which relates the WFS to the DM; am@ Gaussian uncorrelated noise.
v can be resolved from equatibnl.39 by obtaining a pseud@awersion oD, which is to be
multiplied bys. Unfortunately, this simple method provokes noise amglifan and techniques
of filtering, weighting and modal decomposition must therefalso be used in order to obtain

D! (Gendron & Léna 1994; Verinaud & Cassdlng 2001; Wallner?98

Moreover, the complexity of such techniques increases @tit), wheren is the number of
degrees of freedom of the system. Since the reconstructist lpe carried out everynis and
the delay between measurement and correction must be asashpossible< 1 time step),
the computational load becomes very high quickly. In ordeetiuce such complexity, several
approaches have been proposed including the FFT-basedstaacior |(Povneer et LL_deZ),

which scales witfO(nlog, n); the fractal iterative methoJLahi.é.b_am_&_'Ea.IN)_n_Zblomdathe

cumulative reconstruct I’_(Bo.s.e.nsﬂihe.r_iOll). Both ofdtter two scale wittO(n).

3. DM: this usually consists of an array of actuators whictode a thin optical surface by means
of contractions and expansions. The parameters which defhperformance are the number
of actuators, the spacing between them, the stroke andgspense time. Spacing and response
must be in accordance witly andtg, while the stroke and the number of actuators both scale
with the aperture diameter. Current DMs for typical 8- ormh@elescopes have several thousand
of actuators. The future 30- and 40-m telescopes will irsehis number by a factor of one
hundred.

There are three technologies available for building DMsstithe secondary mirror of the tele-
scope can be replaced by an adaptive secondary mirror. §dus lto large designs of 1-m di-
ameter with actuators separated by a few centimeters. Hawigey achieve high transmission
and low thermal emissivity by avoiding extra relay opticec@&nd, there is the medium-sized
piezo DM, which are smaller than the previous type but whiehafected by hysteresis and
thermal expansion. In this case the actuators are sepdnpi@few centimeters and they have
less stroke, although enough to perform suitable cornectibhird, micro-optical-electrical-

mechanical systems are significantly smaller with a spaecfregfew hundred microns. They
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are produced using semiconductor technologies and do ffet stom hysteresis; furthermore,
they have almost instantaneous response times. Howegerstioke is not very high and they
usually need a second larger stroke DM with only a few actsatehich flattens the wavefront
as a first, prior stage.

4. Laser guide star (LGS): if a suitable reference star adatl 1Bnagis not available in the field
of view (FOV), the AO system can not function. In such sitaas$, the system must be provided
with an “artificial star” using laser beams (Fig1.9). Thansists of emitting a pulsed laser
beam, tuned to the sodium wavelength B89 projected through the telescope and focused
at an altitude ot~ 92km which excites the so-called sodium layer in the upper attnesp
Resonance fluorescence in this layer produces a glowirficiadtistar. Another possibility is
to excite dense regions of the atmosphere at abad@km by Rayleigh scattering of the laser
beam. The use of an LGS was first proposed for astronor{J;Lb_)LElmmLLLla |(.’I.9§|5) and their
usage is now generalized.

Notwithstanding, an LGS also has considerable drawbaakpaced to natural reference stars.
First, due to the finite distance between the telescope a&nlddl$, the backscattered beam does
not sample the full aperture at the height of the turbuleygis. This focal anisoplanatism is
more severe for larger apertures and higher turbulentday®@econd, an LGS cannot be used
to measure the tip or tilt of the wavefront, since the contitn of the upward projection jitter
cannot be disentangled from the measurement.

Figure 1.9: A laser beam emerging from the28m Very Large Telescope at the European Southern Obseyvato
(ESO) in Cerro Paranal (Chile).
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Practical implementation of AO did not occur until more ttZihyears after Babcock’s work. AO
concepts were first proved and tested in the mid-7ds_hjilig.lan_et_ai.|.(191'}’g,b), who used a one-
dimensional, 6-element segmented mirror with segmenompisontrol; and b I 77)
andm 8), who used a two-dimensional, 21-actuatoticuous surface DM, combined with
a shearing interferometer WFS.

However, it was necessary to wait until the late 80s to seéittie of the first fully-operative AO
system for professional astronomy. The European Southbsei®@atory (ESO) was responsible for
building the first such AO system: the so-called, COME-ONdnsisted of a DM with 19 actuators
and a Sharck-Hartmann sensor. The COME-ON system wadlinigated on the 52-m telescope
at the Observatoire de Haute-Prover{ge_(BQ_ussdleLa.ll 199@3r, it was updated to 52 actuators
and a larger corrective bandwidth of 489in order to be installed in the.@m telescope at La Silla
(Chile) RjgauLel_dlLlQJ‘bl). After a simplification and thgeuof control computers, the name of
the system was changed to ADONIS. Simultaneously, a newiggé was being developed by the
National Optical Astronomy Observatory (NOAO). Rigaut ket ;@) successfully mounted
a curvature sensor in the Canada-France-Hawaii teles€ipldT) at the Mauna Kea Observatory
(Hawaii). That system, denominated PUEO, had a bimorphomigith 19 actuators and a servo
bandwidth of 1061z

After these developments, it became impossible to conadivelescopes with primary mirrors
larger than 3 or 4 m which do not incorporate their own AO systeTherefore, in 2003, the NAOMI
system was installed in the2tm Herschell telescope at the Instituto Astrofisco dedtias (IAC).
MACAO and NAOS were installed in the Very Large TelescopeTY/lat La Silla. The 3-m Shane
telescope at Lick Observatory was a pioneer in developinga® system. The ALTAIR AO system
was mounted in Gemini North (2002) replacing the Hokupa’asd&tem. More recently, theBm
Keck-1l, 8.2-m Subaru telescope and.420n GTC telescopes were initially designed to have their
own AO system too. Finally, AO is the basis on which the new®fahd 40-m telescopes, the Thirty
Meter Telescope (TMT) and the European Extremely Largestelge (E-ELT), will produce their
first images in the next decade.

1.3 Photometric sources of error in adaptive optics

AO systems are able to correct théeets of atmospheric turbulence that disturbs the light Wang
thus enabling to obtain images that are close to the theatdelescope diraction limit. How-
ever, since such correction is never perfect, errors in Hwgmetric estimations usually introduce
some bias into the astrophysical conclusions arrived an filoe observations. Some papers have
dealt with both the theoretical and the practical image igupkrformance of AO imaging systems

( 6|iess“=_r_1§97), although withoutuginog on the photometric quality. In
order to fill this gapLBﬁ.Llng.eL&_Edmudds_(lb%) provideseaoellent review of sources of error
and photometric performance in AO systems based on obgersaibtained at the ESO in La Silla
(Chile). The study reported there are assumed SR variabidnstween 0.15 and 0.3 in both isolated
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objects and crowded fields.

There are two principal photometric methods. First, aperphotometry; which consists of in-
tegrating the counts of light within a circle surrounding ttar being observed. The background
sky can be estimated within an annulus that is concentrils thit circle and then subtracted. The
annulus dimensions must be chosen so as to be close enolghapdrture circle so as to provide an
estimate of the same background in both, but large enougtsiare that there is no contribution from
the star. Second, PSF fitting; because aperture photonainotbe used in crowded fields, since it
is not possible to guarantee the presence of single stangweitery aperture circle. In this case, it is
possible to fit a model of the stellar image to the data by meaadeast-square algorithm, studying
several stars at the same time.

Nevertheless, both photometric methods make some assaamsptout the PSF, which are correct
in seeing-limited observations, but are not valid in AO.dfgmlly, they assume that almost a perfect
knowledge of the PSF is available, which is supposed to b@dmstable over time and constant over
the field of view (FOV). Photometrical sources of inaccuradyoduced by the use of AO systems

can be classified as foIIOV\js_(.BsL'Lng.el’_&_Edm.Lllhds_h998):

1. Global PSF variations over time.

2. Fluctuations in the halo surrounding the core of the PSF.
3. The presence of residual features in the PSF.

4. Variations in the PSF due to angular anisoplanatism.

5. Biases introduced by usingffiirent deconvolution methods.

6. Deconvolution performed with a badly determined PSF.

The first obstacle to accurate photometry in AO observatisrise global variation of the PSF
over time. Such variations have two main causes. First, hlapes of the PSF and its SR strongly
depend on the seeing conditions, which vary very rapidly tintroducing fluctuations on the PSF.
Second, even with constant seeing, noise coming from the 8¢R&ell as uncorrected variations in
the high-order spatial modes of the wavefront introduceptamal dependence into the PSF.

Moreover, aperture photometry usually requires the olagenvs of a reference star for calibration
purposes. In general, these stars are not in the same FO\ abjérct of interest; hence, the cali-
bration star and the object must be observed fé¢int moments and therefore variations over time
affect them diferently, so the PSF changes slightly from one to the othethdrcase of PSF fitting,
this dfect is even more dramatic since the method requires penfiestikdge of the PSF. However,
when studying crowded fields, it is sometimesidult to find an isolated star which could provide an
independent PSF. Again this means that the calibratiomstigt be observed at afférent time and
therefore under dierent conditions.
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The second drawback mentioned above arises during the stddint companions or structures
around a bright main star. In general, the AO PSF is compos#tecsum of two terms. The first
one is a peak or central core which corresponds to thieadtion-limited corrected observation. The
second additional term corresponds to a surrounding halduged by the non-corrected high-order
modes of the wavefront or, in other words, the seeing-lichitecorrected part of the observation (see
Figure[1ID).

2000 6000 10000

Figure 1.10: Left: PSF from the 3-m. Shane telescope at the Lick Obsenyatixel size= 0.076 arcsecS R= 52%.
Right: PSF from the 5-m Hale telescope at the Palomar Obseyypixel size= 0.040 arcsecS R= 53%. Logarithmic
scales, standard colors.

The presence of the halo is a major problem in itself for thect®n of faint companions around
stars. Bearing in mind that the halo is dominated by the apimexsc turbulence, it varies greatly
with time. This means that faint structures of the PSF afierdint from frame to frame; a tendency
which is exaggerated by the presence of noise. Furtherraeea,if the halo was stable and constant,
it would still depend on the object brightness, its shagestectrum or its position in the sky; so it
would be diterent from one object to another in the same oifiecent FOV. Using longer integration
times and choosing the calibrator carefully (with a simflax to that of the object, in the vicinity,
only short delays between observations, etc.) can minisuza diferences but never eliminate them
completely. All these problems clearlytect the photometric accuracy of observations, especially i
the object is so faint that a brighter one must be used as sahgtuide star. The halo of such a bright
star may dominate the faint object and distort the photameteasurements.

The third problem is related to the presence of residualifeat speckles or holes in the halo of
the PSF; e.g., spikes due the secondary mirror supportpsiimthe difraction ring or faint artifacts
due to fixed residual aberrations in the AO systems. All tlieatres vary with the aforementioned
global fluctuations and halo variations, as well as with @oEherefore, they introduce a new source
of error into detection and photometric precision, esplaica faint companion around a bright star
lies directly over any such hole or speckle.

Angular anisoplanatism, or variation of the PSF with respeqosition in the FOV, also in-
troduces inaccuracies into the photometry. This is agartiqoéarly problematic for PSF fitting,
although it also fiects aperture photometry since the portion of light comtim an aperture circle
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will depend on position. In the case of PSF fitting, this peoblcould be overcome by dividing the
FOV into different zones and choosing a calibrator for each one. Evidéimg option multiplies the
problems related with correct choice of reference star.

Finally, although images obtained with AO systems can bdistudirectly with very good re-
sults thanks to the sharpness achieved in the PSF, it is als@gient to use éierent deconvolution
methods to fully exploit all the information present in thetal The deconvolution methods usually
provide good approximations to the true object. Howevesirthumerical results are strongly biased
by variations in the PSF, by a poor choice of reference PSkcfwik especially problematic in AO
since the PSF is never perfectly known) or by the deconwaiugigorithm employed. For example,
|Qh£ism_u_&_B_o.Da.QQ'u]1i|_(_’L&d6) used both linear and non-line&thods, including blind deconvolu-
tion, to calculate the dlierential magnitude between the two components of the datbtel Tauri
and the results obtained varied fron4@ to 185 magnitudes depending on the method umssier
_@) likewise reported variations from/@ to Q96 magnitudes, depending on the deconvolution al-
gorithm used, when estimatingfiéirential magnitude of a binary systelm._G_Ia.d;ﬁLIBLal_dDaﬁd
|B.a.ena£.a.lL?L&£La.d;LLzL{,ZQ|11) proposed a method to systeafigtistudy and compare algorithm
performance when estimating theffdrential magnitude of binary systems. The method consists o
two steps. Firstly, the accuracy is studied by measuringherone hand, the absolute departure of
the estimates from reality and, on the other hand, the meagmitoae diference in order to check
for possible over- or under-estimations. Secondly, théteces measured when averagingfeient
observations of the same binary system, but with each oasenvafected by diferent underlying
speckle structures introduced byfdrent PSFs.

1.4 Imaging techniques

Image processing techniques to extract/anoinprove physical information from datasets have devel-
oped over the last 50 yea,s_(An.dLaAE_&_I:IbnddﬂﬁLanJZOB\ﬂ)jently, AQ is not aloof from such
techniques and can take full advantage of them. Moreoveresa the approaches have been specifi-
cally designed for the special characteristics of AO adfjarssystems and in particular to overcome
poor knowledge of the PSF due to its temporal and spatiadit'varis.l_D_asLiﬁ_&_Kas.deL(ZQhZ), inan
excellent review of AO, divides the current post-procegsiethods into four classes: deconvolution;
model convolution; astrometry and photometry estimataog finally, speckle suppression.

1.4.1 Deconvolution

Deconvolution consists of the operation that creates amagir of the true objec(d) from the dataset
or image (). The intensity distribution in such an image can be modeakethe convolution of the
true object intensity with the instrument PSP.( In general, this operation is corrupted by additive
noise (N) yielding to the well-known expression for the image forioatprocess:

| =0®P+N, (1.40)
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where® denotes the convolution operator. Therefore, deconiusithe inverse operation which
allows to solve equationT 10 wiid as the variable of interest. Unfortunately, such an eqoaso
an ill-posed problem since, apart from the objegf,the noise N, is evidently an unknown term
too and, furthermore, it is impossible to have perfect kmalge of the instrument P (especially
in the case of AO, see subsection]1.3). In such conditiorigingpthe image formation equation
becomes an intricate task which has led to multiple algoriland approaches that aim to obtain the
closest estimate to the actual tt@eln general, since the PSF introduces some degree of smessthn
(in astronomical visual and infrared imaging) to the ohje¢lae deconvolution of the image yields
enhancement of low contrast features, in accordance wetktttistical nature of the noise.

It is well known that direct inversion of equati@n 140 in theurier domain amplifies the noise;
hence, in the presence of noise (which is the usual situatiastronomy) this simple method can-
not be used. The solution can be constrained by a regulianﬂlzparameterl_(llkh.QDmLeLHl_J_d87;

) in a linear scheme. However, this introduceadetdt between the resolution enhance-
ment achieved and the undesirable noise amplification,iwtaa yield excessively smooth solutions

(Starck et all. 2002).

This fact forces the use of non-linear approaches that theaproblem by means of statistical
estimation methods. The two most widely used approachethar®aximum Likelihood Estima-
tor (MLE) and the Maximum A Posteriori (MAP). The MLE apprdaconsists of maximizing the
likelihood function, which measures the resemblance betvtbe image and the projection of the
object estimation towards the image domain, in keeping thighstatistical nature of the object. The
Richardson-Lucy algorithm, which assumes a Poisson biigtan for the object, is probably the
most successful her ' dlZ:_“JQLIl974). Where soior information about the ob-
ject is added to the MLE scheme, such as positivity or ent(ﬁ'@a, it leads to the MAP
approach.

These approaches have been linked together in a commonviaiiéy means of Bayesian
methodology.(_M_oJina_e_LMLmbh.;Sla.LQk_eﬂaLZIOOZ) and theye proved theirféectiveness in prac-
tice due to the spherical aberration detected in the maironof the Hubble Space Telescope. More-
over, they are the typical algorithms used to deconvolvengdemited images from ground-based
telescope. FinalI‘JL_Sla.r_Qk_etl 02) describes sewéthkse linear and non-linear algorithms that
can be used to perform deconvolution from a multiresoluperspective, taking advantage of mul-

tiscalar transforms (e.‘;_Nﬂ.ﬁ.ez_&_LLaHﬂleb.S;QHizu_hQBe FMAPE and AWMLE algorithms),

such as wavelets (see Appendix D).

Unfortunately, typical non-linear approaches have to el and control several issues, apart
from noise amplification. One of them is edge gradient anggalifon, which poses serious problems
as in the case of Gibbs oscillations. Another, which is @uici AO, is the use of a static and non-
variable PSF when this does not strictly correspond to thktye This has moved the AO community
to develop and prefer myopic and blind deconvolution apgnea, which do not assume the PSF as
an “absolute truth” and estimate the PSF as well.

Therefore, the MISTRAL algorithnL(.MugnLe.r_e.L”al_Z(bO4) IS gapic restoration tool within the
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Bayesian framework. As an MAP approach, it maximizes a fonel with three terms: one related
to the likelihood or the fidelity to the data; a second whiclpri®r information about the object, in
particular, it introduces explicit terms to preserve thgeedroperties; and a third that is related to the
fidelity of the PSF solution to an initial estimate. The sg#nof MISTRAL lies in that it does not
assume perfect knowledge of the PSF, but it simultaneowtulates both the object and the PSF
while applying soft constraints to its properties. The AlBRyorithm kl:l.o.m.et.dll..ZO.(b?), in contrast,
is an extension of the previous algorithm that automatesdteilation of some parameters (which in

the case of MISTRAL have to be chosen manually by the user).
Finally, the IDAC aIgorithml(.JE.ed&.&&hﬂﬂaﬁS) is a practical implementation of tha-c

cept of multi-frame blind deconvolution, which is a methddterative blind deconvolution of multi-
frame data based on the minimization of a penalty functioiterdetting some logical constraints on

both the object and the PSF. The penalty function is formefdwf terms which account for: pos-
itivity, fidelity to the data in the Fourier space, preventaf wrong convergence to &function or

to the dataset itself, and a prior estimate of the objectisrieo modulus. The fact that IDAC does
not make assumptions about the PSF (although it can be gebwih an initial estimation) probably
makes it less robust than MISTRAL but, on the other hand,apiglicable when no PSF is available.
lEa.nlln.eLall.l.(ﬁld?) gives a full description of both the MIRBIL and IDAC algorithms.

€ I_(ZJJlZ) compares the performance of AWMALBSTRAL and IDAC, as well as

a new MLE multiresolution algorithm based on the curvel@bh&form kQandésleMOG), when de-
convolving images of Saturn and galaxy M100, observed ighb-m Hale telescope at the Palomar

Observatory. The results show that a static-PSF algorittith,the help of multiresolution support,
is better than the blindhyopic approaches for mismatched calibrators within a eamig8% in SR
and low-level noise conditions. At higher noise levels, peeformance of IDAC decreases dramati-
cally while AWMLE still offers 10-15% better results than MISTRAL. Objective commarsswere
performed by the typical mean squared error (MSE).

1.4.2 Model convolution

Model convolution is a variant of deconvolution. If the pesfles of the object can reasonably be
described by a set of parameters in a kind of molfgl(e.g., a binary system can be well described
with only three parameters: ftierential magnitude, angular separation and orientatitn@y that
model can be convolved with the PSF in order to obtain an inestjenationi = P ® M which can

be compared with the actual datasetterative improvements tt, leading to a solutioni, that is
closer tol, will let the assumption tha¥l ~ O. Since, in typical applications, only a few parameters
are needed to suitably construct the model, the solutiomgishhconstrained and does not lead to
noise amplification, unavoidable in the deconvolution stée.

This methodology allows to accurately estimate the unceits in the parameters since it is
very easy to measure the impact of changing them. In con@astajor weakness of this method
is its simplicity. First, the set of parameters must fit thggbal properties of the real object well,
i.e., complex structures in the object cannot be well dbsdriby the model and “disappear” in the
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reconstruction. Second, the method will be restricted tet@smodel families which meet the set of
parameters.

Model convolution is frequently applied to deep images stafit galaxies which are commonly
parametrized by the Sérsic function and have a poor sigrabise ratio. In order to overcome the
aforementioned Iimitationls__P_e_ng_e_[ MOIO) includedysbations in the form of Fourier modes in
the azimuthal shapes in galaxy profile fitting code GALFIT3.

Another typical application is in kinematics, where deaantion cannot be used because of the
interdependency imposed by the PSF between the observaubisity, velocity and dispersion. The
only chance for the latter would be to deconvolve each salaaiane of the original datacube bearing
in mind that the PSF varies from one plane to the next. Sucbrdetution can be guided by a
high-resolution imagé_(.EeLLujl_e.Lual_Z(bOO) and can be apdh extract the spectrum of a supernova
superimposed on a galaﬂ(.B.o.nga.mLelLaLiZOM).

1.4.3 Astrometry and photometry estimations of point-likesources

Images of binary stars or cluster fields only require the egasition and flux of each star, i.e., an
accurate astrometry and photometry measurement. In crbfiglds, this requires a good estimate
of the PSF with which to fit the sources (see Seclioh 1.3). B\@E it is also important to obtain
the false detection level beyond which it is not possibleistimguish real sources from artifacts or
speckles created by non-corrected high-order modes in@hsyatem.

In order to create maps of positions and fluxes from stell&isjéwo basic codes have been pro-
posed. Firstly, DAOPHO MW), in which the rafee2PSF is based on analytical fits to
several stars guided with a look-up table for small empliccarections. This code is able to handle
undersampled data as well as to accommodate some degreatiai spriation. Secondly, there is
StarFinderl_(.D_Lo_La.iI.Le.LdLZO_d)O), which was designed sjieadly to work on AO data with complex
PSF shapes. The algorithm derives a PSF template from thktést isolated stars. Subsequently,
a catalog of suspected stars is created by searching foelditeze maxima in the frame. In the fol-

lowing step, the images of the suspected stars are analgzexdier of decreasing luminosity, and
are accepted as real on the basis of the correlatiofficeat with the PSF template. The relative
astrometry and photometry of the source are determined ansnef a fit, taking into account the
contribution of the local non-uniform background and of sit@'s already detected. This 3-step pro-
cess is iterated until no sources can be reliably found ingbeluals. PSF-fitting, as it is applied in
the the StarFinder package, could be seen as an extensioe GLEAN algorithm BJ.%'M)
that has been successfully used by the radioastronomy caitynior decades.

Although those approaches do not account for anisoplanatecal PSFs can be extracted for
each isoplanatic region and applied independently. Furtbee, even though the PSF core can be

very narrow, high photometric precision requires that t&& s well determined up to 1 arcsec; so
the faint wings must also be properly characterized. Far isason, it may be convenient to apply
some deconvolution scheme in addition, but while takings a#rthe noise amplification, in order

to make the central core even narrower and brighter as wet esduce the strength of the wings
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(Schodel 2010).
|B.a.e.na_G_a.lLe_&£_La.d;LISLLZQI11) compare the !oerformance ofBider with a wavelet deconvo-

lution MLE algorithm, in particular AWMLE 1), teetermine the dferential photometry
of binary systems when the companion is contaminated by tingapy’s halo. This comparison is
performed for diferent angular separations with high and moderate levelsroéction in terms of
SR. The authors conclude that AWMLE vyields better resulenewhen the calibrator is not well
matched to the PSF. That study is generalizeld_lnﬁla.d;ﬁzl &Qlﬂla), where several approaches
are compared (including StarFinder, AWMLE, blind decomimn algorithms and temporal speckle
suppression techniques). In such a study, a static-PSFthalgds shown to provide results that are
comparable to those of the usual approaches in AO imaging.

1.4.4 Speckle suppression

Different speckle suppression techniques have been developgeheral, they consists of properly

characterizing the PSF in order to remove complex speclterpa that are present on the wings. For
such purposes, the methods usually impose new instrumemdabbservational requirements which
are mainly focused on the detection and characterizatidaimf companions, e.g., exoplanets. They
can be classified as follows:

1. Spatial: angular dlierential imaging was first proposed |b;LM.a.m.is_€ltla.L_dZ006$ based on
the fact that a major part of the quasi-static speckles a@ymed in the telescope and its instru-

mentation. Therefore, if the FOV is able to rotate with respe the telescope configuration, it
is possible to obtain datasets with real sources in the salagve positions while the speckles
move around the center of the view. Through appropriateyarsabf this sequence of images,
one can suppress artifacts and simultaneously enhanmbsl.(.LaIteni.é&eLlMO?).

2. Temporal:l_La.b_e;L&eI_(_’I_QbS) proposed a method which assuhs changes in the speckle
pattern will never reach their minimum level in locationsest there is emission from a real
source. Unfortunately, while this technique enables theafi®n of faint companions, it does
not allow to perform photometr MlOb) deped a statistical method to dis-
tinguish speckles from faint companions which also allowvegtimate the intensity of the real
source. The method is based on the fact that both the maiarsdathe companion share com-
mon parameters in the probability density functions (PDRheir respective observed peaks
of the AO-corrected PSF. However, the companion’s PDF i3 blsrred with the PDF of the
guasi-static speckles, and thus shows important morpluabdifferences with respect to the
PDF of the primary object. So, a 2-step algorithm was deeoffirst, least-square fitting of
the theoretical PDF of the bright star allows to obtain so@m&ameters which are common to
the companion; then these parameters are applied at thelvodthe companion and deblend
its PDF from that produced by the specklesft&iential photometry can then be produced by
converting the widths of the two distributions into a brigéss ratio of the two objects. This
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method has, however, a specific range of application to tle¢ophetric estimation of com-
panions that lie within the uncorrected halo of the AO PSHKtltarmore, the location of the
companion must also be known.

3. Chromatic: simultaneousftirential imagingl.(Ba.cln.&eLlMQQ) makes use of tifiemrint
spectral energy distributions of the star and its compar@re can then defineftierent narrow
bands that are close enough to each other in wavelengthtsonthalifferent image, the speckle
will be subtracted while the companion will not. Another med is the so-called spectral
deconvolutionl.(ﬁ.aa.tks_&_lﬂﬂ_d_ZdOZ). This takes advantageeofact that the radial separation
of the speckle is wavelength dependent while the positidgh@faint companion is fixed. So,
a datacube where every single image has been acquired fiegedi wavelength can be re-
scaled, thus aligning the speckles but making the planeenmthe center of the view with
increasing wavelength. Pixels through the datacube atahmeedocation are called spaxels.
When a planet crosses a spaxels on its journey to the centeeaites a bump; one can then
try to fit a low-order polynomial to the signal present in thpasels and subtract it. Since
the planet signal will not adequately fit the polynomial, ithnemain while speckles will not.

€ II_(ZQ|13) proposes the use of 1-D waveleti@yzing spectral datacubes in
the direct imaging of exoplanets. They simulatatient ELT scenarios, for EPICS instrument
ﬁ 0), yielding improvements of up tmagat a distance from 70mas
with respect to the classical polynomial fitting approach.

4. Polarimetric: this is based on the fact that at small aargadii, speckles will remain unpolar-
ized. Hence, if two images at orthogonal polarizations akern simultaneously, the speckles
will be subtracted out, while only the polarized light wikkbeft. This allows to detect scat-
tered light from a circunstellar disk or even the atmosphefeexoplanets. This technique has
proved its usefulness on the T Tauri star TW Hysz;LApa.LHm.le), who show the presence
of polarized disk emission betweerilCarcsec and.4 arcsec from the star. The authors also
derived the first Ks-band radial polarized intensity dizition.

5. Deep Suppression: it can be proved that a sinusoidal @tess the aperture produces two
symmetric speckles of light with respect to the center of /. The angular separation of
these speckles from the center increases with the spag@liéncy of the ripple. Since the
DM has a spatial frequency cuffalue to its finite number of actuators, it can only produce or
correct speckles up to a maximum angular separation; traalied the correction radius. In
order to suppress a coherent patch of light created by phasaraplitude aberrations inside
the correction radius, the DM just needs to create an aetiidp of the same amplitude but
with ar phase-shift at the same location. Unfortunately, therediserepancy ofr/2 between
the phase of the symmetric speckles created by the DM ane ttresited by an amplitude
sinusoid. Therefore, only one of the amplitude specklesbearemoved by an aperture plane
DM, while the other would be amplified. However, it is poseibd correct all the speckles in
the image over a certain wavelength range using a second Dkérént implementations have
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been proposed theoretlcall;L(ﬁlmn_eH_al_dd.Ol._G_u;LQdJ&.(ﬂd)) The practical application

of this technique has been demonstrated in the laborat 7).

1.5 Current science applications

In this final section, some examples are summarized in coddrdw how high-resolution images pro-
vided by AO systems have challenged astronomers to go ieatgrdepth in almost all the possible
lines of research in astronomy and astrophysics, from tlea sgstem, to galaxies; including stellar
fields and exoplanets, among others. Furthermore, AO imgdtas allowed astronomers to overcome
some of the limits of their knowledge and push them forwavebimls new goals and challenges. This
section is based on the manuscript outlineh_b;LD_axLi.esﬁ_ISlHﬂﬁHi), who in turn based their work
on what is by now the vast available AQO literature.

1.5.1 The solar system

e The Sun: daylight AO observations face additional requerts to those necessary for night-
time observations. In general, the corrected wavelengith tise visible part of the spectrum
and often at high airmass, typically in the G-band @3 thus angular resolution is lost due
to the observing frequency. There are no visible stars ibredé corrections, so the necessary
spots to close the feedloop must be created by cross-dcimretechniquesl_(Bimm.equﬁOO).
Nevertheless, the enhancement achieved in solar imagirgroent 1-m solar telescopes has
led to the birth of a new generation of 4-m designs. Largecsires of the sun are linked to
small scale dynamics, such as the pressure scale heightempthdoton mean free path, which

are both of the order of aboutl0arcsec. The first results reportedlbLG_o_o_d.eJe 2010)
achieved a resolution of up tal® arcsec with the .6-m aperture solar telescope at the Big
Bear Solar Observatory. They showed that the smallest phal®espheric magnetic field seems
to come in isolated points in the dark intergranular lanathar than the predicted continuous
sheets confined to the lanes, and the unexpected longe\thy diright points implies a deeper
anchoring than predicted.

e Planets and Satellites: atmospheres of planets and seddikve been studied in depth using
AO. One example is lo, which has been observed darkened ltgdsighadow in order to high-
light its volcanic activity; while Ganymede was used as tI@daIibratorl_d.e.Ea.LeLetJM04).
Titan and its thick atmosphere is another typical tallg_en(l.lullg_er_a"_zo_d _'_I:IiLtZ'Lg_eLHLZQbG).
|d.e|2a1er_et_illll_(20_|10) shows that Jupiter’s small surfacenstexhibit bright rings at/m, while
those with diameters above 12®@0do not. The authors propose that air is rising along the
center of a vortex, and descending around the outer peyiptieducing the pbm bright rings.
These downflows cannot exist at radii greater than 1-2 tihesRossby radius, since rota-
tional efects become as important as buoyartu‘,gc&s.l_B_a.en.a_G_all.é_e.LlalL_(Zd)lZ) use images of

Saturn to compare and show the performance Hédint deconvolution algorithms typical in
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AO imaging postprocessing. Neptune’s atmosphere andteflites have also been monitored
continuously l(Fry & Sromaovsky 2004; Marchis etlal. 2004) as ranusl(Sromovsky & Fry
2004).

Figure 1.11: Neptune observation with 10-m Keck telescope in the metband, with AO correction (left) and
without (right).

e Asteroids: The major contribution of AO to asteroid phydies been to show how massive
asteroids are extremely porous. In general, AO takes adgardf binary asteroid systems, us-
ing the moon as the calibrator, to produce high-resolutmmected images. Moreover, binary
systems are an easy way to measure the mass and density pétise sNowadays, more than
150 main belt binary asteroids are known, the first one wadeyed by Merline et al. (1999),
who showed a companion orbiting 45 Eugenia and revealedhatensity of such an asteroid
was only~ 20% greater than water. Marchis et al. (2005) discoveredBh&ilvia has indeed
2 moons. Asteroids 217 Kleopatra and 617 Patroclus havesiemmn to be highly elongated,
thus suggesting a catastrophic impact which provoked tmasg of large liquid masses giv-
ing them their characteristic shape._(Descamps & March@8P@roposed this catastrophic
scenario as a common rule for the formation of such asteroids

1.5.2 Star formation

e Stellar multiplicity: AO is now a key tool in assessing theltiplicity and characteristics of
stars! Close et al. (2003) and Siegler etlal. (2003) carnugadioe of the largest surveys of low-
mass stars to date. They observed 69 stars of spectral tyfat®60.5 by means the Hokupa’'a
AO system on Gemini North. They found 12 systems with veky-toass or brown dwarf com-
panions yielding a fraction of binaries 6f10%. The pairs in each binary have similar masses
and their separations are always below 15 AU. These chaisiats are significantly dierent
from the more massive G dwarfs for which the binary proportgaround 50% and they have
wide separations of 30 AU. Other studies (Dupuy & Liu 2011nKpacky et al. 2010) show a
preponderance of almost circular orbits and find at best antyarginal correlation between



30

Roberto Baena Gallé. Universitat de Barcelona.

eccentricity and period@t@w) explained these épsuncies by suggesting that older
field brown dwarfs are systems that have been ejected atspéadewkm s* from the clus-
ter in which they were formed. For very-low-mass stars, ah&/most tightly bound systems
survive at such a velocity, resulting in low multiplicitynall separation and low eccentric-
ities. This picture is even more complicate if measuremebtained b)lLLQﬁfL&LL\IL(ZdO?)
and_B.'LlLQLeLaJ. |(20_'I]1) are taken into account, who found yleang very-low-mass and brown
dwarf binaries can have wider separations of more than 100TAli$ could be explained by
establishing a dependency between the binary survivalaimdehow tightly bound they are as
well as the stellar density in the local environment.

In contrast, to determine the astrophysical propertiestohary system, correct calculation of

differential photometry is essentihﬁ@ﬁﬁtMlOdjﬂ&ﬂﬁﬁWﬂﬂM)

compare dierent approaches in the extraction ofeliential fluxes between the main star and
its companion when the latter is severefieated by the halo introduced by the former.

Circumstellar disks: Binary stars and planet system foionatcan be studied in their early
years by observing the disks around young stars. AO has filedhe picture with high-
resolved images in the near- and mid-infrared range whidp teededuce how such disks
evolve. The first circumstellar disk observed by AO wa®ic Q.O.IJ'DJ.OAASKL&L&JIL].&E‘B),
which revealed complex sub-structures in this disk at theUlséaIe.l_RQ_d.d.iﬂLeLlall_(J_ClI96)
andl.D_u.Qh.é.D.eheLlai__(Zd04) studied the binary T Tauri syst&rtds A-B indicating that larger
grains of dust tend to grow up faster in the midplane. Howeteer observations revealed that

this process is only one of several. Systems with similas ayibit diferent dust properties

thus showing dferent growth rates aymt settling timesl_(.D_us:h.é.n.e_e.t“al_Z(biQ:_M.QC.a.b.e_lEt al.

). Besides, further studies of GG Tau reveal that thie miigst be tilted with respect to

the system orbit, which can only be explained by hypothegithe existence of a companion.
Indeed, AO is now providing strong evidences that centré$a the disks are due to the

presence of a companion or giant planli.Ls_(.KLaus.“ELa.Ll IlZQMJLela.DH_ZOJZ).

Exoplanets: direct imaging of exoplanets is extremely dedirag. It requires high-contrast,
long-exposure, coronagraphic imaging, together witheptdd knowledge of the speckle pattern
as well as modern post-processing techniques (see sulrg&ciil). The first exoplanet directly
imaged was 2MASS 1207 b ll)yL_ha.mLLn_e laLdOOS), using thared WFS of VLFNACO.
This is a 9V; object orbiting a brown dwarf 5 times more massive, at a dteof 55 AU.
Moreover, the first multi-planet system discovered by propetion analysis was discovered

orbiting around HR8799, a.3M, A5V star. This system consists of 4 planets at distances of
14-68 AU and masses in the range of ML) all orbiting in the same directiom al.

). However, the mechanisms that rule the formation ohsystems are not yet well
known. While the 3 outermost planets could have been forngekddofragmentation of a disk of
dust and gas, this process is not possible for the innernnesbecause of the high temperature
and fast rotational speed of the disk at that distance. Aipitisg suggested for the- 9M;
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planetB Pic b, is a formation process via the agglomeration of grdihgortunately, although
several exoplanets have been directly imaged nowaday&ysio detect objects down to limits
of a few M; have failed|(Lafreniére et al. 2007; Kasper et al. 2007hceethe next generation
of planet imagers and imaging approaches are eagerly alwvéitéhis sense, Baena Gallé et al.
(2013) propose the use of 1-D wavelets to analyze spectratalaes acquired by the spectral
deconvolution technique, as was already mentioned in poimbei B of subsectidn1.4.4.

1.5.3 Galaxy studies

e The galactic center: The center of the galaxy provides alddtaiew of the physical processes
occurring in the nucleus of the Milky Way and around its cehiiack hole. This study can
be directly applied to the nuclei of other galaxies. Sphtiedsolving the stellar population
orbiting the center in order to study proper motions is ofcigenterest (Fig[L12).

The Galactic Center at 2.2 mi crons (without adaptive opti csh

Keck Adaptive Optics

Figure 1.12: Milky Way center observed from Keck atZ:m., with AO correction (right) and without (left).

Analysis of stellar motion shows that most of the stars indéetral parsec are old and have
randomly orientated orbits (Yelda et al. 2010). Howeveguwhhalf of the young stars in the
central 10-15 arcsec are confined to a warped clockwise didkraany of the remainder may
be in a second counter-clockwise disk (Bartko et al. 2010ef ail.. 2009). Combined datasets
from Keck Il and VLT are yielding precise measurements ofdiséance from the solar system
to the galactic center and the mass of its black hole, whiemaw assumed to be3& pcand
4.3 x 10°M,, (Genzel et &l. 2010).

e Stellar populations: resolving stellar populations sgibtiin nearby galaxies is an important
goal for future 30- and 40-m telescopes in order to enligktherstar formation history. AO is
the obvious solution to the evident crowding problem; hosveincreasing AO performance at
IR-wavelengths is somehow in contradiction with the beperformance of the current map-
ping of star color magnitude diagrams at shorter visibleel@vwgths. This encourages im-
provements in AO at such frequencies and means that curremd310-m telescopes are not
as competitive as HST in this field, for example. Despite, thisne good results have been
achieved when observing galaxy M31 (Olsen ét al. 2006) aratfdyalaxies|(Melbourne et al.
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M). In addition, galaxy NGC 3603, which is considered @aldemplate for the massive
star forming clusters, has also been widely obserlL&d.(EMélLl&Sbi_Hamama_el al.
|Zl0.€l3;|.B.asl'La.n_eL£LL20_|lO). Furthermore, resolving thdastelopulations also allows to study
the proper motion of stars, thus deriving the intrinsic knagics of clusters and galaxies, as
well as their global motion gA__(ZbOS) have shomat the young Arches Cluster,
which is only 3@c from the galactic center, has moved by @4 2.2masin a 43-year period.
Therefore, AO should be able to provide a proper motion piesiof 1Q:as yr in only three
or four years: equivalent tokn st at 10k pc with ELT _ILip.p_e_e.t_a”_ZO_’I|O).

Black hole masses: Measurements of black hole masses argiab® understand their evolu-
tion and growth as well as those for their host galaxies.dtaarly known that the velocity dis-
persion, mass and luminosity of the stellar spheroid ar@ubldck hole is directly related with
the hole’s own mast_LHa.Llng_&_EHx_deA:_EQLLaLes.e_&_HQ_Ld_bO@@ is of major importance
in this field since it brings together high resolution andjéacollecting areas, which allows the
study of faint galaxies, and integral field spectroscopyaﬂrnR.l_D_aMi.&s_eLilill_(ZQbG) proved
that it is possible to measure the mass of black holes in tyaetite galactic nuclei (AGN)
using spatially resolved stellar kinematics, providingamnplementary method of reverbera-

tion mapping which relies on tracking the temporal varigpif the broad Iinemm.
) derives a reverberation mass ab(¥ 1.7) x 10°M,, for galaxy NGC 3227, thus show-
ing lower values than previous estimates. In contrast, giséulges are created from secular

disk processes instead of merger events, which rule theattwmof classical bulges, hence
the former have dierent stellar populations with fiierent mass distributions, kinematics and
different physical relations with the black hole propertiesdekld, many local disk galaxies
have at least a pseudo-bulge component to their centrairrELUDMLa.k_el_a{l.l_LZQiO) used AO to
calculate black hole masses in such galaxies suggestitiipéra is no need to separate pseudo-
and classical bulge components to really understand thietewo of black holes and bulges.
Finally, for elliptical galaxieSI.ﬁ_e.b.ha.Ld.t_eﬂ 6|l_(2bll)rdnines AO integral field spectroscopy
with wider field data to arrive at a mass ofgé: 0.4) x 10°M,, for M87, which exceeds the mass
expected by twice its uncertainty. This suggests that tglk fmass end of the relation is poorly
constrained or its scatter is larger than expected.

Gas flows: Nearby AGNs make the study of the mechanisms thvat gias towards the central
black hole possible. Since they are close to each other, A€aded to resolve them to a scale of
afew parsecs. The combination of AO with integral field spesttopy is yielding the resolution
of their spatial distribution as well as the kinematics @irstand of molecular and ionized gas.
Such techniques have revealed inward flows of gas at low aédeg circumnuclear spiral arms
in a great number of galaxiels_LDaMLes_dll_al_id.Oﬁi_SﬁthlitdﬁlﬁLaJl.l.ZQlll). However, there
may be exceptions to this rule, such as galaxy NGC 1608 whergés appears to be streaming
almost directly towards the AGI‘II_(.M.LlLI.QLS_é.n.Qh.ez_EIII_a.LjDOIanOW gas is believed to be
associated with the circumnucleus dust structures that haen mapped in many active and
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inactive galaxies, thus showing that gas streaming is a camphmenomenon whose relation
with AGN accretion is still not understood well.

e Quasars and mergers: Due to their distance and the brightfidlse AGN with respect to the
host galaxy, QSOs provide a challenging image scenario k&péssue is to accurately deter-
mine the PSF in order to reveal the underlying host galaxyw(@iet al! 2006). The specific
role of mergers in fueling QSOs can be assessed by studyasg that exhibit double peaked
[Oy] lines, which could trace pre-coalescent dual AGNs. AO img@f such candidates re-
veals that only~ 35% have double nuclei on kiloparsec scales (Fulet al.|Z0&%afb et al.
2011) and their origin is not clear. It has been suggestddiibat QSOs might not be associ-
ated with gas-rich major mergers. One of the best known d@M#is NGC 6240 which has
been the goal of several AO observations. These have revealaerous massive young star
clusters around the nuclei which are undetected by HSTdE&lokt all 2007). The combination
of AO datasets at élierent IR-bands with X-ray and radio continuum data havellggted the
presence of two AGNs (Max etlal. 2007).

1.5.4 The high-redshift universe

Resolving internal structures and the study of the kinersadf stars which belong to galaxies at
z ~ 1.5 - 3 is an important aim of research for AO. These galaxies exberm approximately 1 to
2 arcsec and their light is redshifted so they are preferabBerved in near-IR. However, they are
usually chosen to avoid bright stars in the FOV and their lowiase brightness is often limited to
0.1 - 0.2 arcsecs. For these reasons, the number of targets for AWesety reduced. For example,
Forster Schreiber etial. (2009) applied AO on only 12 targeit of 63 which constituted the primary
survey. Other authors have seen their AO observations eeldiwcnumbers of around 10 (Law el al.
2009; Wright et al. 2009). Unfortunately, even when usind &%, the rate of suitable high-red-shift
galaxies that can be observed is only about 10%.

Clump A “I\“
Outflow

st [l Starformation
(~125Mglyr)  E

L L L L
- 1000 —500 Q 5800 1000
Relative velocity [km/s]

Figure 1.13: Data fromz ~ 2 galaxy ZC406690. Left: Velocity field indicates disk rasat Middle: Individual star-
forming clumps. Right: The blue wing traces the star foromatithe red profile traces an outflow, the green profile is
the sum of the previous two and is a fit of the observed spec(hlack profile) —aftet_Davies & Kasper (2012) and
Genzel et al.[(2011).

Despite these restrictions, AO has proved that abg@ibi such galaxies are in fact disks (Forster Schreiber!
2009). As shown in FigufleT1L3 for one of these objects, tiheyapidly forming stars, often in giant
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star-forming complexes or clumps having intrinsic velpdtspersions of 20-100n s*. Such dis-
persions are now suggested to be common in normal massivedugshift disks, and are connected
to the high gas accretion rates through cold flows at earlgnasmes, high gas fractions and global
instability to star formation. AO is fundamental becauds #ble to separate thel00.2 arcsec-sized
clumps from the inter-clump regions; which are blurred tbgein seeing-limited observations.

Using AO with integral field spectroscopy is revealing fingadls of individual clump properties
highlighting that they can drive strong winds, with outfloates that may even exceed their star
formation ratesl_(ﬁ_e_nze_l_e_thll). This has importanseqguences for the clump lifetimes and,
consequently, for galaxy formation. The use of AO and irdefeld spectroscopy has already led
to important advances in our understanding of galaxy ewwmiutdespite the diiculties of finding
suitable targets.
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Abstract

We propose to use the Bayesian framework and the waveletforam (WT) to estimate dieren-
tial photometry in binary systems imaged with adaptive acg(AO). We challenge the notion that
Richardson-Lucy-type algorithms are not suitable to AOeobations because of the mismatch be-
tween the target’s and reference star’s point spread fumetiUsing real data obtained with the Lick
Observatory AO system on then3Shane telescope, we first obtain a deconvolved image by means
of the Adaptive Wavelets Maximum Likelihood Estimator (AWWH) approach. The algorithm re-
constructs an image which maximizes the compound PoisstGanssian likelihood of the data. It
also performs wavelet decomposition which helps distigsigsignal from noise, and therefore it aides
the stopping rule. We test photometric precision of thareagh vs. PSF-fitting with the StarFinder
package for companions located within the halo created éytlght star. Simultaneously, we test
the susceptibility of both approaches to error in the refeeePSF, as quantified by theffdrence

in the Strehl ratio between the science and calibration P8¥sshow that AWMLE is capable of
producing better results than PSF-fitting. More importantle have developed a methodology for
testing photometric codes for AO observations.
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2.1 Introduction

Atmospheric turbulence imposes a limit on angular resoifutvhich could be reached by ground-
based telescopes. The arrival of astronomical adaptivesof®O) in the early 1990s heralded a new
era in which observers do not have to be content with se@mmiged observations from the ground.
One of the uses of AO is high-resolution imaging of closgigeed objects, e.g. binary stars or faint
companions such as exoplanets. Determinifigcgntial photometry and astrometry between the two
components of the system is essential for deducing the gdiysioperties of the components such as
mass or internal structurE(LLLga.n_e“al_ZblO). The use of Aldep by a suitably bright star brings
about a huge improvement, both for detection of objects anglhotometry. On the other hand,
AO introduces problems which are not usually encounteraetbimal photometry as mentioned by

Esslinger & Edmunds (1998):

1. The structure of the PSF has temporal variation due tege@iriability. These morphological
changes are tficult to model.

2. The AO long-exposure PSF in the medium- and high-cooeeggime shows long-lived quasi-
static speckles. Theseffiaction-limited “lumps” are due to residual aberrations sensed by
AO (for example non-common-path errors) and lie in the haloainding the core of the PSF.

3. The AO corrected PSF, and the associated angular resoloi the sky, depend on the posi-
tion of the science object relative to the AO guide star. A@pensates for the turbulence in
the direction of the guide star and when the science objegelsseparated from the AO line
of sight, the compensation $ears due to a dierent atmospheric volume. Thiffect is called
angular anisoplanatism, and its magnitude increases aAPensation increases.

Because of these factors, extracting quantitative infolondrom AO images is challenging. AO
improves the detectability of faint companions over sedimited observations for a given telescope.
When the companion is well separated, with a non-overlappiBF, aperture photometry takes care
of all the problems mentioned above. The problems occur weRSFs from each target overlap.
One of the first mentions of photometric ambiguity after AGnishe paper b al.

). The authors analyze an AO image of bright binaryldRu6378. Previously reported param-
eters of this system are: separatioB@ (corresponding to .8B1/D whered = 700nm,D = 1.6m)
and brightness ratio equal to 1.45. The image was decorgelitd the use of a pseudo-Wiener filter
and a modified inverse filter. Results showed a bitpdence depending on the filter used: estimated
differential photometry values were 1.66 and 2.05 for thisikelgt“easy” double star.

4_(_’I.Qb8) provide an excellent introdarctd the problem of AO photometry.
One of the issues discussed is the precision of photometgecanvolved images compared with
the PSF-fitting on “raw” AO data. Two of the most-widely useekcdnvolution algorithms were

tested, namely maximum entrod;L(.ELLeH.en_idlZ'_\lfngsJ M)Richardson-Lchmon
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|19_Z:IZ;|.LU.QJ_19_Z|4). For PSF-fitting the DAOPHOT packw) was employed. Extensive

testing on simulated faint companions showed that DAOPH@Topmed consistently better than the

deconvolution methods, i.e. its photometric precision higger compared to precision of aperture
photometry on the deconvolved images.

Historically, it has been conjectured that AO observatishsuld be processed with “myopic”
deconvolution methods, instead of algorithms assumintppily known PSF ' 07). In
the myopic framework the PSF could be only partially knowngampletely unknown (blind decon-

volution). Usually, these algorithms have to be providethwsome PSF estimate which is assumed
to be close to the truth and then they are allowed to iteratié aiisolution for both the object and
the PSF is found. Myopic deconvolution often uses reguddion, for example by imposing ob-
ject prlors which guarantee smoothness of the solutionengriégserving edgemﬁl 04).
[(1953) developed an iterative blind deoduvon method which is guided by the

minimization of a penalty functional. One of the constraititey use, which is very relevant for AO
observations, is a mask penalizing frequency content oP®ie beyond the telescope’stdaction-
limit. The package, called IDAC, does not produce photoynatrd astrometry directly but these
can be obtained by using aperture photometry on the restorage with a very small aperture, as
suggested lis_(_‘l]998) In our work we Yotluis approach to photometry after

deconvolution.

When the observed (crowded) field is known to represent ooilytsources one can always re-
sort to traditional PSF-fitting. In this approach an analyti empirical PSF is used together with a
fitting algorithm to match scaled-and-shifted copies of B8 to the data. The StarFinder package
iolaiti ) makes use of this concept. StarFindas developed for the specific purpose
of measuring relative photometry in AO-corrected stellelds. The algorithm operates as follows:
firstly, it derives a PSF template from the brightest isaladtars, then a catalog of suspected stars is
created by searching for the relative maxima in the framethénfollowing step the images of the
suspected stars are analyzed in order of decreasing luityinesch suspected object is accepted on
the basis of its correlation ciecient with the PSF template and the relative astrometry &odgon-
etry of the source are determined by means of a fit taking iotownt the contribution of the local

non-uniform background and of the already detected stdms.pfocess of PSF-update, source detec-
tion, and PSF-fitting is iterated until no sources can balbd)i found in the residuals. PSF-fitting,
as it is applied in the StarFinder package, could be seen astansion of the CLEAN algorithm

) widely used by the radioastronomy communiiye photometric and astrometric
precision of StarFinder was compared to results from bliecbdvolution with the IDAC algorithm
ble.hLi&LQu_et_all.l_(ZO_(b4). According to the authors, StadBmand IDAC yield similar photometric
results but with a greater dispersion in the IDAC resultddanter stars.

In the case of binary stars, the reference PSF is often autdoy slewing from the target binary to
a known single star. Great care has to be taken when chodssmgterence star: its flux should match
the flux of the primary in the binary system in both channdi& itnaging path and the wavefront-
sensing path. Only then one can guarantee that the image-filxes are comparable, and also that
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the level of AO compensation, which is related to the flux nese by the wavefront-sensor, is kept
relatively constant. Additionally, zenith angle of theaedfnce star should be close to the zenith angle
of the science observations. Otherwise, light from therezfee star will traverse shorter or longer
path through the turbulence. Changing azimuth of the tef@senight also lead to changes in the
open-loop seeing due to thefldirential wind-flow &ects. These, and other seconddiges, make
the choice of a suitable reference PSF vefiidilt.

Arecent review of modern approaches to AO photometII;Lb;LE_EMﬁ.l. |(20_d9) demonstrated that
methods utilizing static, deterministic PSF should not isenissed against more modern algorithms
like iterative blind deconvolutior{_(_Len_B_Lumm_ela.aLeItIﬂOJi). Therefore, we set out to test whether
a modern implementation of the Richardson-Lucy-type decltion conserves the flux when given
a mismatched AO PSF. The algorithm we tested, AWMLE, joiresBlayesian framework with the
wavelet transform (WT) and a probabilistic window to digitssh signal from noise. In this paper,
we focus on systems with relatively large brightness ratingd small separations. The faint com-
panions we simulate are particularlyffitbult to analyze because of the speckle noise surrounding
them as can be appreciated in Figlrd 2.4. To our knowledge trese been no rigorousferts to
test deconvolution algorithms on AO data given the grounthtimage, as is routinely done in the
image-processing literature. Therefore the second,taibeless important, aspect of our work was to
develop a sound methodology for testing deconvolution spiehethis case for photometric precision
on a simple object.

The paper is organized as follows. In section 2 the AWMLE atgm is presented. In section
3 we reflect upon relevance of AWMLE for AO observations. #ect is intended to describe the
observations and the data reduction process. We presemtacimon of photometric accuracy of
AWMLE vs. StarFinder in section 5. Conclusions are preskitesection 6.

2.2 Adaptive wavelet maximum likelihood estimator (AWMLE)

algorithm
AWMLE is fully described bm 1) and has been appl@edurvey type data to increase
limiting magnitude and resolution 06). The falilog ideas define the backbone of the
algorithm:

1. AWMLE performs a multichannel deconvolution where evergnnel corresponds to a wavelet
plane. Therefore, AWMLE operates over the wavelet plandshan over the original image.

2. Signal features in an image spread its frequency conteoss the wavelet planes. This prop-
erty can be appreciated in Figurel2.1 where a typical AO PSFblean decomposed in its
wavelet coéficients. As a result, well-defined significance thresholdsbeaapplied to each lo-
cation in each wavelet plane to selectively deconvolvessteally similar regions. This concept
is called multiresolution support or probability maSIKSjﬁ.k_et_a”_ZOdZ).
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3. Additionally, Poissonian and Gaussian noise contrimgtiare mostly concentrated in the highest-

frequency planesL(Sla.LQk_etl lal_lb98). This allows to selelgtdeconvolve each plane as the
deconvolution process is guided by the global signal-tsenatio (SNR) of each wavelet plane.

AWMLE maximizes the likelihood between the dataset and tlogeption of a possible solution
through the optical system, considering a combination efitirinsic Poissonian noise of the signal

and the read-out Gaussian noise of the detector.

l

200 600 1000 140C

Figure 2.1: Wavelet decomposition of the AO PSF obtained with the 3m Bitelescope. Leftmost panel: original shift-
and-add image of a single star (HD 143209), displayed onrittgaic plane, artificially saturated (99.5%). Successive
panels show images corresponding to wavelet planes wittedsiog frequencies. The last panel shows the lowest-
frequency wavelet plane (the wavelet residual).

We use the notation J)LNILﬁ_ez_&_LLaI:JLL(JJBQIB)is the dataseta is the object to be estimated,
is the point spread functiob,is the backgroundj is the read-out nois&; is the sensor sensitivity or
flatfield andh is the so-called direct projection, i.e. image of the obpojected to the data domain
by means of the PSF. The process of shift-invariant imagedtion is described by:

h=fxa+b (2.1)

Where we also accounted for background ndiseBoth h andb are two-dimensional images
which will become multi-dimensional Poisson variablesadaese of the light detection process. Equa-
tion (Z.4) shows hown translates to a Poisson random variable.

The detector also introduces read-out Gaussian noise vadmrmero and known standard devia-
tion. Therefore, the general equation that describes tladengrocess is the following:

p=fxa+b+n (2.2)

wheren is a multi-dimensional Gaussian random variable and P&Feady accounts for the flatfield
correctionC. This equation can be shown in the discrete form as follows:

B
f..
pi= )Y —a+b+n ; j=1,.,D (2.3)
= Ci
Here D is the number of pixels in an image and B is the dimensfahe object domain. The
usual assumption is that every pixel in the image domairesponds to the “same” pixel in the object

domain, sdB = D. Most of the optical systems in astronomy can be describeghbration[Z1B), in
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particular, the charge-coupled devices or CCDs. The poesefnoise means that direct inversion of
equation[[ZR) leads to unacceptable amplification of tb&en Hence, non-linear methods must be
used, for example, the Bayesian appro&h.(.M.o.llna.“ﬂ.a.Ll)ZOOl

We will now formalize the description of the light detectiprocess accounting for the two statis-

tical distributions governing the observed random vadabFirst, the realization of a Poisson random
variable with mean valub; is detected at pixgl The probability of obtaining a certain vallkgin
this process is given by the Poisson probability law:

ki

P(kih;) = e-hJF (2.4)

where P(kjlh;) is the conditional probability of obtainink; given h;. Strictly speaking, equation

Z3) is true only ifh; is itself deterministic. Otherwise, the process is a “dgtgibchastic” random
rocessl_(QQ_o_deanSS) and equationl (2.4) must include dred®l-Poisson transfor@del
). In practice, going to longer integrations dispernsiis the problem as the speckles in the

short exposures average out in the long exposures, amdsalmost deterministic because turbulent
speckle average out. In this paper we work with integratiwhiseh are 10min long.

Secondly, the valug; is read by the detector which introduces Gaussian readaseé of zero
mean and standard deviation Hence, the probability of obtaining a valpefrom k; at pixelj would
be:

~(j-p))?

1
P(pilk;) = .e 2 2.5
(pjlk;) Vo (2.5)
Combining both stageE{2.4) alld{2.5):
k.
=1 ~(k-py)? h.’
P(pjlh;) = e 2 e L (2.6)

In words, if the projectiot; is the mean value of intensity in pixebne would get a valup; with
a probability given by equatiof(2.6). Considering all tiveefs of the detector we get the likelihood:

D o 2
1 i
L = P(plh) = 1_[ > e e hJW_J! 2.7)

WhereHjD=l is the product over all the detector pixels. In the recomsion process one wants to
find the object, which is equivalent to finding the projectidn(linked toa through equatiof{211)),
that most likely produced the noisy dagaEquation[[Z17) is usually expressed in logarithms:

P? h
logL = Z —log(c V2r) — h+|ogZe e L (2.8)

J

In order to maximize equatiof{2.8) we take the derivativé @fith respect tog; (the value of
the objecta for pixel i) and set it to zero. Then, using Picard iteration (also knes/the method of
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successive approximations) we obtain the following exgioes

(n+1) K (n) 1 ZD: fJI p’J ) (2 9)
g =Ka | = -
i =1 Z|B:1 fj| a1(”) + Cjbj
where:
- 62D T (ho)K
ij =0 kJe 2 [( kjj)! ]
= 2.10
p] - ’(kj’pj)z (hj)kj ( )
2k=0€ 27 [T]
_ oD Pj—8j. _ fii
The parameteK = }, is a constant to preserve the energy,= }; c s the total

detection probability for an emission at pixendmis an acceleration parameter. Equat[onl(2.9) was

s,

first introduced for reconstructions of Poisson data in ties@nce of readout noise nez

1990) and Nifez & Llacet (1993).
AWMLE adds to equation{219) two novelties: the decompositf the datasgb by means of
WT and a probabilistic mask in order to adapt the level of nstauction of each wavelet plane to the

automatically-inferred presence or absence of noise. 8yetlof reconstruction” we mean that the
effective number of reconstruction iterations within one wet/plane does not have to be equal to
the number of iterations in another wavelet plane.
Extensive literature exists about WT and its applicati(]mhuj |J_9_9.]2;|_D_aub.e(;hiH$_ldd2.'_Melyer

). WT can be seen as an evolution of the Fourier transfdtrgives not only the frequency
information of the signal, but also its spatial locationloe place in the field of view where a specific

frequency is predominant. Wwaveletis a wave-like function, i.e. it is an oscillation that desses in
intensity. FiguréZl2 shows two harmonic functions vs. tvavelet functions with dferent periods
and positions.

W

N

0 2 4 6 8 10

Figure 2.2: Harmonic functions (two top rows) vs. wave-like functiohsq bottom rows).

This characteristic of WT leads to some advantages in tla¢ntient of information. For instance,
the noise will mainly appear in the high-frequency wavelahp while broad shapes will appear in
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the low-frequency planes. This allows one to work indepetigavith each plane, adoptingfterent
strategies to the scales that are dominated by noise thange that most likely contain signal.

a) b)
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Figure 2.3: a: Relationship between objeat datap and their respective wavelet planes. b: Equivalence betwee
reconstructing each wavelet plane independently and staaring the datasgt WT denotes the wavelet transform and
*is the convolution operation

There are several algorithms to calculate WT of an image. AlNhakes use of tha trous
algorithm k&hﬂnita_l&blz:ﬁlamk_eu.al_]b%) which is comsitlene of the most powerful for imple-
menting WT kSla.mk_et_ilaLlQbS). It creatlisplanes, each of them with the same number oficoe
cients as the number of pixels in the original image, so tpeesentation is redundant. Obviously,
thea trousalgorithm is not suitable for compressing images.

By means of thé trousalgorithm, the dataset can be decomposed into several wavelet planes:

— P p p p P
P =wy+w) +w,+..+wy+Cy (2.11)

wherew{’ is the i'th wavelet plane ancﬁl is the residual wavelet plane where all the energy from
the original image is concentrated, i.e. the sum of all tixelgiin eachuip is zero while the sum of
the pixels inck, is equal to the sum of the pixels n This is due to the characteristics of the function
that is used to calculate the wavelet fiments (themother-wavelefunction) which is designed to
have zero mean.

It is guaranteed i.@z@on that if we decompose an bhjéc its wavelet cofficients,
convolve each plane with the P$Fand add all of them up, the result will be the datgsef his is
illustrated in Figuré=Z]3 a). Additionally, one can obtamestimate of the object in two equivalent
ways: by reconstructing the datapadirectly, or by reconstructing each wavelet plane indepetig
and adding them up as shown in Figlird 2.3 b). As we will seentgcuction of the wavelet planes has
the advantage that one can supervise the reconstructiceggavithin one wavelet plane depending
on its noise content, as shown by equatlon{.14).

Equation[[Z.B) can be re-written in the following way in ardeinclude WT:

1 & fj thtp’- ;
(n+1) _ (n) ol
a7 =Ka a 0 - (2.12)
o2 2 fia + Gy
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wherew’ is the decomposition of the dataget(Equatior’Z10) in wavelets. In the Richardson-
Lucy scheme the comparison between the datpsmtid the projection of the objeet adopts the
form of division, with the former in the numerator and thddatin the denominator. Although one
cannot compare each wavelet planepoivith a corresponding plane of the object projectarthe
decomposition op allows one to stop the reconstruction at each wavelet plagependently. In
order for this to happen the numerator and the denominateqiration [[ZP) have to be equal. The
resulting value of unity will be multiplied by the curren¢ration in order to calculate the next one, so
a™b = aM. Such a mechanism would provide for convergence of the itihgor Therefore, in order
to control noise suppression at each wavelet plane AWMLKEiges for a mechanism that makes
equal, in equationZ1 2, this particular plane of the datistihne corresponding wavelet plane of the

reconstruction achieved until this moment. In other womﬁ,: '™

Nae For instance, if we want to

stop the reconstruction in the first wavelet plane we woulgtha

D . (" P m
1 fi(wg; +wy; +-)

(1) _ kg™ |= i (2.13)
i o 2 ZE1 fia” + Cib;

| J:l

We now have a mechanism which allows us to control the levedodnstruction of each plane.
The stopping rule is guided by the measurement of the levebide in each plane. The algorithm
measures, at each plane, the standard deviation within dowirand compares its value with the
standard deviation of the whole plane. If the local standaxdation is equal or smaller than the global
standard deviation, we can conclude that within that wintteprobability of finding signal is small.
On the other hand, if the standard deviation within the wimd® higher than the global standard
deviation measured in this plane, we can assume that thamafmn found inside the window is
probably due to the presence of a real source. The size ofvemclows must be changed according
to the wavelet plane one is working with at the moment, i.e.window size is related to the wavelet
scale. Hence, the window will be smaller for the high-fregmiescales and its size will increase as
the frequency of the wavelet plane decreases.

Several mathematical expressions have been proposedritifgulae probability of finding a real
source within the window. Here we use:

Y52 _ 52
m 1—exp{%} if oi—0,>0
= O'w

0 if oj—0,<0

(2.14)

with:

_ Zje(l)(wt,j)z
i = 4 /—
Ny

whereo; is standard deviation within the windod centered on the pixelof the wavelet planey,
pixels within that window are indexed with ns is the number of pixels contained in the window,
o, is the global standard deviation in the corresponding vevahne. It can be approximated by
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decomposing in wavelet ciients an artificial Gaussian noise image with standardatievi equal
to the dataset’s.
With the inclusion of the probabilistic mask in equatifilf?). the AWMLE expression becomes:

D f. h(m (0 Ry T
(1) _ g™ 1 fl' 2t (wt,j + mtal(wt,j Wy ))
A" =Ka”| > )

- (2.15)
Qi =1 Z|B=1 fj| a1( ) + Cjbj

If oy < o, that is if no significant signal is found within the windowsaime position in wavelet
planet, thenm; will be zero and the numerator of equati@n (2.15) Will<bi§”), so the reconstruction
will be stopped at that plane since the algorithm no longerks/avith the datasep, but with the
projectionh of the last reconstructioa™. On the other hand, i > o, thenm will tend to one
and the numerator will be closer mfj that is the wavelet plane of the datapetTherefore, the last
reconstructiora™ would be still compared to the data and the reconstructiamaveontinue in that
plane within that window.

Equation [Z.15) was obtained with the assumption of Poisense in the data. For high-light
level conditions the Poisson distribution approaches thesSian distribution and so equatibn(2.15)
can be considerably simplified in that case.

To summarize, AWMLE is fully described by equatidn{2.13)mlaximizes the compound like-
lihood of the data being Poisson-distributed and the redadioise being Gaussian. The datgset
decomposed by tha trousalgorithm in order to enable independent operation witlsichewavelet
plane. AWMLE can automatically stop the reconstructiorcpss at each plane by means of a proba-
bilistic mask which locally decides, comparing standardat&on within a window with the standard
deviation of the entire wavelet plane, if the presence obhsignal can be deduced.

2.3 Relevance for AO observations

Wavelet decomposition in AWMLE can be used to detect objeictarying size in the object domain,
for example galaxies and stars, and separate these sotogesdise when deconvolving. Addition-
ally, in the data domain, wavelet decomposition could gtirgestopping rule: iterative deconvolution
should be stopped at the smallest wavelet scale associdtethevPSF. This is particularly useful for
AO observations which are known to possess two distincescdahe difraction-limit, 1/D, which
gives the core, the Airy rings, and theffdgaction from the “spiders”, and the seeing-limited scale
which corresponds to the halo. This halo starts beyond thealted “AO cut-df frequency” in
the PSF (location in the focal plane corresponding to wawvefscales smaller than twice the inter-
actuator spacing on the deformable mirror) and extends wgrg whererg is the so-called Fried
parameter or atmospheric coherence length. There is son®eersy whether for closed-loop op-
eration this PSF scale stays constant or whether it incselmml_lQQSLC_agjgaI&_QaﬂaNﬁ_ZbOO;
EM). This ambiguity does not impact theeetiveness of PSF decomposition into the wavelet
scales because in our work we estimate the size of the haotlgifrom the images. In this paper
we deal with point sources only, and so the wavelet decormipnss not used to distinguish objects
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of varying size from noise. Rather, it is used to guide th@mnstructions for the two characteristic
scales of the AO PSF.

2.4 Dataset description

Table 2.1: PSFs used to simulate images of binary stars

Science PSF SR m, m ReferencePSF SR m, mg
30% Strehl ratio
Matched PSF  ............... NOMAD1 1297-0510182 29% 12.1935 - 32% - —
Mismatched PSF ............... NOMAD1 1297-0510182 29% .1125.93 HD 18009 35% 8.23 5.02
50% Strehl ratio
Matched PSF~ .............. HD 143209 54% 6.3 3.92 - 52% - -
Mismatched PSF ............... HD 143209 54% 6.3 3.92 HDBB23 48% 7.25 4.78

We have tested flux conservation of AWMLE on synthetic obaons of binary stars constructed
from real AO images of point sources. Datasets were obtaindthe Lick Observatory AO system
on the 3m Shane telescod_e_(_B_aum.a.n_HLal._ll999). Closed loagesrof bright, single stars were
obtained using the high-speed subarray mode with size @4 pixel for the 256« 256 pixel IRCAL
cameral.(.E'Ltzg.eLa.I.d_&ﬁ_La.th;n_Zd)OG). This corresponds to d $iele of 4864 x 4.864’, the pixel
size is 0076’. The subarray measurements were captured with typicalsexpdgimes of 22ms. All
data were obtained in K band.g&m) where the diraction limit is 151mas, so that the data were
effectively Nyquist sampled. The individual 10000 short expes were registered with subpixel
accuracy to produce shift-and-add (SAA) images. The negieh algorithm locates the peak in each
of the images and estimates its sub-pixel position by comguhe centroid of a X 3 pixel box

centered on the peak pixel. This box is big enough to contanditraction-limited core of the
AO PSF. Each frame is then shifted by computing its Fourgmgform and applying a slope to the
Fourier phases corresponding to théset of the sub-pixel peak location from the frame center, i.e
pixel (32,32), and then computing the inverse Fourier fians. The procedure is repeated until
a tolerance of 0.02 pixels (2mas) is reached. The averaghlS®atio (SR) of the SAA images
was around 40% (Strehl ratio: the ratio of the peaks of thewesl PSF and the ftliaction-limited
PSF). SR is the most-commonly used metric in AO imaging: SRO0OP6 implies perfect correction.
Observed targets were very bright so the final stacked PSFkseambalmost the entire field of view.
Therefore, readout noise and background were estimatedtfie individual short exposures. For
details of the observations and data reduction, see epdjszr b)LG_Ia.d;ﬁz_elJaL(ZdOG).

Artificial binaries, with diferential magnitude okm = 3.5, were created by scaling and shifting
the single-star SAA images. The low-Strehl-ratio case veasitucted from a dataset corresponding

to the star bright in near-IR but whose flux in the visible wasdly suficient to drive the wavefront
sensor. Consequently the AO frame rate was only 55Hz, assepdo the usual 500Hz for the other
targets. The resulting SR was low due to the temporal delay dag between wavefront sensor’s
measurement and evolution of the atmosphere).
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For each of the cases presented in Tablk 2.1 twenty fourigasion the circle of radius.6” (8
pixels) were tested in order to minimize variations in résdue to possible anisotropies in the PSF, as
can be appreciated in Figure.4. Another twenty four paséton the circle of radius2’ (16 pixels)
were also tested in order to study the more straightforwegdarios of almost-non-overlapping PSFs.
Here we come to the question of whether it is safe to assunehifieanvariant PSF for these images.
In wide-field AO images PSF generally changes dependingsqaximity to the guide star, as stated
in section 1. The angular scale defining the region where 8fe ¢an be assumed to be constant is
the so-called isoplanatic angle which, just like the coheedength, is bigger for longer wavelengths.
|QhLislo.u_&_D_u.me.0.n|d|_(20£|)6) have measured this angle for thk $ite and at the same wavelength
as in our observations @:m) and found the values in the range 427’. This confirms that our
methodology to simulate binary stars with the same PSF fglear: 1.5” is correct.

. 0]

0.5"

Figure 2.4: Leftmost panel: binary star simulated using a PSF with-S0®0 (separatios 0.6”). Central panel: binary
star simulated using a PSF with SBO% (separatior= 1.2”). Note the speckles are more pronounced foeSE%.
Logarithmic scale, inverted colors. Rightmost panel: poss where the companion was located with respect to tha mai
star.

We studied low (SR30%) and relatively-high-compensation (S50%) cases with clearly dis-
tinct PSF structures. In the high-SR case quasi-statickigeare vividly pronounced, and in the
low-SR case the smooth halo is the dominant structure autsie first Airy ring. In the end, we
worked with four sets of twenty four binaries each.

Both AWMLE and StarFinder need an initial estimate of the RS&ork with. For the “matched-
PSF” cases we used the same stars observed ten minute§tattére “mismatched-PSF” cases we
used stars of similar brightness observed on the same aigthalso close to zenith. Variability of the
Strehl ratio between the science and calibration PSF iseatdionsequence of the non-stationarity of
turbulence.

The StarFinder PSF-fitting algorithm was designed for tradyesis of crowded stellar fields. Con-
sequently, the fitting algorithm can take advantage of matiynates of the PSF within the field of
view. The PSF template is also updated as StarFinder goepédeinto an image. In our work we
provide StarFinder with the PSF estimate, i.e. an image ofgesstar which remains static through-
out the analysis. StarFinder has also to be given an estiimatee position of the companion and
we observed that this estimate has to be precise, othemaesagorithm converged on the brightest
static speckle. This situation was treated as non-conaeggeAdditionally, if StarFinder converged
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on a position more than 0.5pixel away from the true positibe result was also discarded. This was
done in order to remove the photometric estimatéscéed by errors in astrometry. We checked that
up to 0.5pixel of astrometric error photometry obtainedtigh PSF-fitting does not fer, but above
that value, photometry (even when given a perfect PSF) églalsteep decrease in precision.

AWMLE is not a photometric package. It produces a deconwiweage which can be subse-
guently analyzed by an observer. However, atmosphericikemioe and optical imperfections of the
AO system usually produce speckles in AO images. These gsechkn be confused with real sources
9). We checked the deconvolved irmagéh the commonly-used GAIA-
sextractor software, and verified that the companion isctigde while the artefacts (speckles, or the
results of their propagation through the reconstructidtwaoe) are not detected.

StarFinder produces a list of detected objects, their flaxelspositions. For the AWMLE recon-
structions photometry was measured using a circle of S-direneter.

2.5 Results

In order to compare both algorithms, twdfdrent tests were performed. Firstly, we were interested
in theaveragephotometric accuracy which can be achieved with statdefart algorithms for chal-
lenging AO data. By “challenging” we mean data produced bi$®ith complicated structures,
and with signal of the companion comparable to the speckEesn though SNRs of the companions
were in the range 5-15 for the 8-pixel separations, accadraction of their photometry proved to
be dificult. The question we pose is therefore: given a clear detecivhat is the accuracy of the
subsequent photometric measurement, and of the final @ty$iaracterization.

There are many papers on AO photomeImL(Ro_b_eHs“ﬂ_a.IJ h(omﬂ |2Eum.er_61_6u_20_(b8) but none
of them, excedI_EssLLng.eL&_Edmuﬁds_(lb%) eLﬂD_i)?, discuss the accuracy of algo-
rithms tested on simulated data. In this paper we presertadetogy for such tests and discuss
photometric accuracy which AO observers should expectlfmety-separated binary stars with large
magnitude diferences and with significant speckle noise.

Additionally, we performed another set of tests concernild gliability (or repeatability) of the
results. In many astronomical observations several measants are usually taken and the resulting
estimated quantities are averaged across the sample setafted to test what would be the scatter
of such photometric measurements, whether any single ansawdd be (statistically) close to the
truth, and whether the averaging process would actualhgtiie observer closer to the true value.
For these tests we averaged photometric estimates for eadiop and thus we averaged quantities
corresponding to the same scenario. By “scenario” we mederlying speckle structure which,
for the PSFs used throughout this work, is spatially anigitrand there are systematic photometric
errors depending on whether the companion was positionedspeckle or on a “hole”. One of our
goals was to illustrate these systematieets.

AWMLE was executed with two dierent probabilistic masks. The first one is described by-equa
tion (ZI3) and is denoted in the tables and plotsbWMLE, and the second one is the so-called
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deterministic-mask which includes information about tlesipon of the companion, and is denoted
by DM-AWMLE in the tables and plots. The latter method regegtpossible false reconstruction of
speckles. This can be considered a similar situation wispaet to StarFinder which needs to be
given a first estimate for the position of the companion.

In our work we dealt with companions with relatively low casimnd therefore the Poisson law
expressed by equation (2115) was preferred over the Gausslg version of AWMLE. A wavelet
decomposition with one plane plus a residual plane (ug + c”) was performed. The size of the first
wavelet scale was matched to thédiction limit of the telescope (2 pixels) while the dominscdle
in the residual plane was roughly the diameter of the ext@®R&F halo. A maximum number of 100
iterations was enough to achieve the convergence in botteplarhe acceleration parametewas
setto 1 so it had no reatfect on the results.

2.5.1 Accuracy test

This test was designed to measure the average photometni@ayg which we believe can be obtained
with state-of-the-art algorithms for barely-detectaldenpanions (separation0.6”, Am = 3.5, SNR

= 5-15 depending on the Strehl ratio), and clearly-visiblepanions (separatioa 1.2”, Am = 3.5,
SNR= 30-50). The algorithms were executed for the-24 images. Two metrics were computed for
the vectors of flux ratios resulting from the algorithms sEithe parametgr, _G_La.d;ﬁz_e.t_dl._zm.ba):

1 N
pr= 5 D lam; - am| (2.16)
-1

Where am; is the estimated magnitudefidirence at position and Am is the real magnitude
difference, i.e. 3.5. This metric gives an estimate of the phetomaccuracy averaged over the
PSF’s anisotropies. Both algorithms were able fi@oa solution for all positions in the Sf$0%
situation. However, for the lower-SR case StarFinder diccnaverge in many of the positions as can
be seen in Table.3. In such situations we only computededbeAWMLE N results, wherd\ is the
number of successful runs for StarFinder.

Secondly, in order to check for possible over- or underestion we computed the mean magni-
tude diference averaged over the number of successful (or mostzdecaee above) runs:

m =

2|~

N
Z AM; (2.17)
=1
The corresponding standard deviation of magnitudedinces was calculated as follows:

lo*| + 1o |
Om= 5
wherec* ando~ are “upper” and “lower” standard deviations expressed igmtades:

(2.18)

o =25-log(f) — 2.5 log(f — o¢) (2.19)
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o =25-log(f) — 25 log(f + o¢) (2.20)

Due to the logarithmic character of the magnitude scaleetis values are not exactly equal
but are very close. In the above equatidﬁifs; the mean value of the measured flux ratios and
is the standard deviation. The magnitud&etence error bars had to be normalized to account for
StarFinder’s non-convergences. We chose to diwigey VN, whereN is the number of StarFinder’s
convergences. This particular normalization is of courseduto compute the standard deviation of
the mean 6) and, to be precise, it is only apple#lbne measures the same quantity a
number of times in similar experimental conditions. Thisnat the case here because each position
for the companion is endowed with its systematic error duth&oPSF’s anisotropies, as seen in
Figure[2ZY, while equation§ {211 T)-(2120) are averages alvdocations. Nevertheless, we chose it
to represent somehow the scatter of the (successful) eaasudf the codes. Numerical results are
presented in Tablés2.2 and]2.3. They are also plotted iné¢lb.

Table 2.2: Accuracy test results for positions on &1 circle

50% SR Matched PSF 50% SR Mismatched PSF 30% SR Matched PSF  SBO#smatched PSF
P1 m O'm/\/N P m O'm/\/N P m U'm/‘/N P m O'm/‘/ﬁ

oc-AWMLE ... 0.0072 3.5008 0.0018 0.0247 3.5123 0.00530498 3.4926 0.0136 0.0721 3.5083 0.0195
DM-AWMLE ........ 0.0130 3.5079 0.0016 0.0383 3.5327 08040.0339 3.5043 0.0096 0.0794 3.5455 0.0173
StarFinder ... 0.0140 3.5088 0.0009 0.0709 3.5657 0420 0.0782 3.4217 0.0100 0.1121 3.4740 0.0254

Looking at FigurdZl5 it is reassuring to find the generalease in average photometric error
(p1) when going from the “easiest” case (50% SR, matched PSRetabst challenging one (30%
SR, mismatched PSF). For well separated binary stars pledtpmvill be endowed with errors less
than 0.1mag for companions with low SNRs (5-15). For smalegarations, approximatelysd,
differential photometry will have an error less than 0.5mag, ®m@g when the StarFinder’s outlier
is ignored.

Table 2.3: Accuracy test results for positions on &0circle

50% SR Matched PSF 50% SR Mismatched PSF 30% SR Matched PSF  SRO#smatched PSF
P m ‘Tm/\/N P m O'm/\/N P m O'm/‘/N P m O'm/‘/N

o-AWMLE ... 0.0510 3.5404 0.0073 0.1469 3.6418 0.01891587 3.3738 0.0329 0.3216 3.2625 0.0918

DM-AWMLE ........ 0.0609 3.5543 0.0068 0.1488 3.6436 08150.1162 3.4097 0.0258 0.2987 3.2967 0.0906

StarFinder ... 0.0472 3.5421 0.0038 0.2074 3.7022 1300 0.4530 3.0418 0.0223 0.2746 3.4506 0.0935
(6 err) (12 err)

Locations of the three symbols for the scenario of separdti?’, 30% SR, mismatched PSF,
reveal one important characteristic of ghemetric which we also call “mean absolute deviation from
the truth”. For results which alternate between under- @ar-@stimating the truth, never getting
close to it, p; will be relatively large, as is the case for StarFindgs;shere. On the other hand,
StarFinder’'s mean value is actually relatively close totthéh precisely because its results alternate
between under- or over-estimation. For the same scenaN®/JILE was on average closer to the truth
but it quite consistently over-estimated the flux ratio aodre resulting mean value is further away
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Figure 2.5: Upper panels: metrip; and mean values calculated for the separation2f.1Lower panels: same metrics
computed for the separation oféd. The dashed line represents the true value, i.e. 3.5. Netdiffierences in vertical
scales between the plots. Numerical values are given iredghP anf[213. Symbols corresponding to the three appreache
were dfset horizontally from their tick marks to reduce crowding.

from the truth than StarFinder’s. In general, one can seeAWAVILE produces results with lower
photometric error compared to PSF-fitting. For the mostlehging scenario (separatior60, 30%
SR, mismatched PSF) StarFinder produced accurate restiitscbnverged in only half of all the 24
cases.

Figure[Z®6 shows the reconstructions performed by AWMLEdioe of the positions at the sep-
aration of 06” and the four situations we have considered, i.e. 30% and FR% i matched and
mismatched PSFs.

Figure 2.6: From left to right: a) Image of the synthetic binary star withmpanion at position “1” (50% SR), b)
AWMLE reconstruction for 50% SR and matched PSF, ¢) AWMLEoretruction for 50% SR and mismatched PSF, d)
AWMLE reconstruction for 30% SR and matched PSF, e) AWMLBorestruction for 30% SR and mismatched PSF.
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2.5.2 Repeatability test

Table 2.4: Repeatability test results for S¥80% and matched PSF
m O'm/\/N m O'm/\/N m O'm/\/N m O'm/\/N

Pos 1 Pos 2 Pos 3 Pos 4
oc-AWMLE ... 3.5298 0.0190 3.5862 0.0213 3.5879 0.0173.4646 0.0250
DM-AWMLE ......... 3.5397 0.0187 3.5960 0.0197 3.6027 ®1 3.4810 0.0232
StarFinder  ......... 3.5301 0.0145 3.5607 0.0145 3.56890P131L 3.5099 0.0214

Pos 5 Pos 6 Pos 7 Pos 8
o-AWMLE ... 3.5392 0.0129 3.5694 0.0172 3.5508 0.01185442 0.0279
DM-AWMLE ......... 3.5536 0.0125 3.5817 0.0165 3.5638 091 3.5575 0.0277
StarFinder ... 3.5365 0.0081 3.5601 0.0160 3.544809F. 3.5511 0.0244

For the purpose of this test eight out of the twenty four pos# on the circle of radius.6”
were chosen. Ten SAA images, comprising 1000 frames eadle, aveated for each of these eight
positions. The mean values and standard deviations of titaaged magnitude éfierences were
calculated using equatioris{2117) and(P.18). At eachiposiinly the besN results were considered
for AWMLE, whereN is the number of convergences for StarFinder. If StarFipdeduced results
for all the frames theN = 10. When StarFinder was not able to converge for any of thenE@es
then all the results obtained by AWMLE were used, and aghia 10. Standard deviatiosr,, was
divided by VN. This operation is now fully justified from the statisticalipt of view as the averaging
was performed for a uniform sample of experimental resM@). Results are presented in

TabledZM E2]7 and in Figute®.7.

Table 2.5: Repeatability test results for Sf80% and mismatched PSF
m O'm/‘/N m O'm/‘/N m U'm/‘/N m O'm/‘/N

Pos 1 Pos 2 Pos 3 Pos 4
o-AWMLE ... 3.5284 0.0216 3.5796 0.0201 3.5411 0.01886464 0.03131
DM-AWMLE ......... 3.5427 0.0204 3.5940 0.0180 3.5608 (U®1 3.6556 0.0267
StarFinder ... 3.6197 0.0166 3.6170 0.0167 3.628314D. 3.7232 0.0265

Pos 5 Pos 6 Pos 7 Pos 8
oc-AWMLE ... 3.7728 0.0186 3.8124 0.0223 3.6594 0.01727098 0.0313
DM-AWMLE ......... 3.7245 0.0149 3.7787 0.0173 3.6558 6GD4 3.7028 0.0280
StarFinder  ......... 3.7709 0.0103 3.8123 0.0206 3.729M123 3.7439 0.0299

Except for the “easiest” case (50% SR, matched PSF) one eathaephotometry of faint com-
panions can produce wildly varying results depending ontiadrehe companion sits on a significant
speckle or not. Taking for example results from the uppgntrpanel in FigurE2]7, photometric error
can be as low as 0.03mag or as high as 0.3mag depending orsitierpof the companion within the
(anisotropic) speckle halo. One would expect these awig@s to disappear for the observation time
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Table 2.6: Repeatability test results for Si80% and matched PSF
m O'm/‘/N m O'm/\/N m O'm/‘/N m O'm/‘/N

Pos 1 Pos 2 Pos 3 Pos 4
oc-AWMLE ... 3.4587 0.0616 3.5271 0.0633 3.5634 0.09139352 0.0340
DM-AWMLE ......... 3.5334 0.0263 3.5764 0.0363 3.5616 @J4€8 3.0269 0.0402
StarFinder ... 3.2537 0.0380 3.2760 0.0175 3.45310200. 2.9489 0.0344
(3 erm) (4 err) (4 err) (3 err)

Pos 5 Pos 6 Pos 7 Pos 8
oc-AWMLE ... 3.1761 0.0472 3.2570 0.0199 3.4449 0.03420010 0.0413
DM-AWMLE ......... 3.1979 0.0467 3.3501 0.0251 3.4585 @83 3.0309 0.0429

StarFinder  ......... 3.1151 0.0667 3.1781 0.0618 3.1709D64L - -

(2 err) (L er) (2 err)

of approximately 10 minutes but the speckles we deal witk hee the so-called “super speckles” or
“quasi-static” speckles which decorrelate very SIO\IlLl.)LE(HE;LQLa.“_ZO_dU. One of the goals of this
paper was to show thigtect on photometry. All three approaches show the same taintiged by

the underlying noise variance. Somewhat surprisinglytréreds are also visible for the 30%-SR PSF,
even though it has a much smoother halo compared to the 50®%SEROnN the other hand due to the
lower SR, the companions had lower SNRs in these inferiatityuobservations and therefore the
photometric results were just as susceptible to (lesslejsPSF anisotropies, especially “spiders”,
as in the case of the better-quality images. We concludeatfexaiging many values of féirential

photometry in the presence of “quasi-static” speckles moll necessarily bring the observer closer
to the truth.

Table 2.7: Repeatability test results for SiB80% and mismatched PSF
m O'm/\/N m U'm/‘/N m U'm/\/ﬁ m O'm/\/N

Pos 1 Pos 2 Pos 3 Pos 4
oc-AWMLE ... 45724 0.1855 4.4923 0.1607 4.2184 0.263.0135 0.0507
DM-AWMLE ......... 4.0475 0.0908 3.9810 0.0766 3.8161 @742 3.0257 0.0515
StarFinder  ......... 3.7636 0.1001 3.6873 0.0827 3.36332008 2.7597 0.0448
(1 err) (L err (6 err) (2 err)

Pos 5 Pos 6 Pos 7 Pos 8
oc-AWMLE ... 3.0114 0.0538 3.2314 0.0501 3.5212 0.0531®2096 0.4612
DM-AWMLE ......... 2.8742 0.0472 3.1760 0.0380 3.4133 @24 4.3781 0.0986

StarFinder  ......... — — — _
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Figure 2.7: Mean values of estimatedftirential photometry and their standard deviations for tgpgisitions on the
circle with radius 06”. Upper-left panel: SR50% and matched PSF. Upper-right panel:=5B% and mismatched
PSF. Lower-left panel: SR30% and matched PSF. Lower-right panel:=3R% and mismatched PSF. The dashed line
represents the true value, i.e. 3.5. Note tHEedénces in vertical scales between the plots. Numericakgare given in
TabledZH E2]7. Symbols corresponding to the three appesasere fiset horizontally from their tick marks to reduce
crowding.

2.6 Conclusions

We presented a systematic approach to testing of photanagiproaches on challenging AO data.
The two codes we included in our work represent two oppogipecaches to measuring photometry.
StarFinder is a PSF-fitting package and yields photometgctly, while AWMLE is a Richardson-
Lucy-type algorithm and has to be combined with aperturaghetry.

Our first goal was to test the widely-accepted assumptidrstatic-PSF codes, such as AWMLE,
are not suitable for the analysis of AO data. Historicaltg ttraditional” image reconstruction and
AO communities have not interacted much with each other amdbelieve this paper is one of the
first attempts at such collaborations.

Results of the testing show that AWMLE, and modern Richamdsacy-type algorithms in gen-
eral, is a suitable tool to measurdfdrential photometry in AO images. The algorithm combines th
Bayesian framework, assuming Poisson plus Gaussian notke data, with the wavelet transform.
In this work, the wavelet decomposition is used to betteasstp PSF-induced features in the data
from noise. A probabilistic mask decides automatically whe stop the reconstruction process for
each wavelet plane. The use of a deterministic mask, tethegalgorithm exactly where the stars
are, improves the results slightly because reconstructidhe speckles, whichfiects the final re-
constructed signals of the real sources, is rejected. We Bhaown that AWMLE combined with
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aperture photometry produces photometric estimates verelsomparable if not more accurate than
PSF-fitting.

We conclude that state-of-the-art photometric codes cae peecisions ranging from 0.3mag for
very close binary stars, low SNRs of the companions, and atigmed PSFs; down to 0.01mag for
well separated systems, clearly visible companions andmaiched PSFs.

We are currently conducting a large study where we compaw&ptetric precision of AWMLE,
StarFinder, multi-frame blind deconvolution, and the stied “PDF deconvolution”l_(ﬁ_la.d;ﬁz_&&htisllou
M). Preliminary results were already presentéd.lnﬁadla'.kml_(ba). Additionally, we believe
that AWMLE, as a reconstruction algorithm, could be useddoathvolve AO images of more com-
plex objects like asteroids or galaxies. Besides, othastoams could be considered for this purpose,

e.g. the curvelet transforrlJ_(_C_a.n.d_‘es_elLalJZOOG).
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Chapter 3

Extended-object reconstruction in
adaptive-optics imaging: the multiresolution
approach

Published in Astronomy and Astrophysics (AA). Year 2013uwae 555, article A69, pages 1-15.
Press here to download.

Abstract

We propose the application of multiresolution transforswg;h as wavelets and curvelets, to recon-
struct images of extended objects that have been acquitbdadaptive-optics (AO) systems. Such
multichannel approaches normally make use of probalilistls to distinguish significant structures
from noise and reconstruction residuals. We aim to checkptkegailing assumption that image-
reconstruction algorithms using static point spread fionst (PSF) are not suitable for AO imaging.
We convolved two images, one of Saturn and one of galaxy MthB@n with the Hubble Space Tele-
scope (HST) with AO PSFs from therbBHale telescope at the Palomar Observatory and added shot
and readout noise. Subsequently, we appligfkint approaches to the blurred and noisy data to
recover the original object. The approaches included frauttie blind deconvolution (with the algo-
rithm IDAC), myopic deconvolution with regularization (iRiMISTRAL) and wavelet- or curvelet-
based static PSF deconvolution (AWMLE and ACMLE algorithnWe used the mean squared error
(MSE) to compare the results. We found that multichannebdealution with a static PSF produces
generally better results than the results obtained withmtliepigblind approaches (for the images
we tested), thus showing that the ability of a method to seggpthe noise and track the underlying
iterative process is just as critical as the capability efriiyopigblind approaches to update the PSF.
Furthermors, for these images, CT produces better rebatsWT, as measured in terms of MSE.
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3.1 Introduction

The distortions introduced into images by the acquisitimtpss in astronomical ground-based ob-
servations are well known. Apart from the most common, sichignetting, non-zero background
or bad pixels, which must be removed prior to any other amglgsmospheric turbulence limits the
spatial resolution of an image, whereas the electroniccgeviised to acquire and amplify the signal
introduces noise. An image is also corrupted by Poissorerfosn fluctuations in the number of re-
ceived photons at each pixle_l_(An_dLems_&_I:".mLJb??). The @assquation that describes the image
formation process is

image= [PS Fx objec{¢noise, (3.1)

wherex denotes the convolution operation. The symbak a pixel-by-pixel operation that re-
duces to simple addition when noise is additive and indepetaf [PS Fx ob jec{, while for Poisson
noise it is an operation that returns a random deviate dramm & Poisson distribution with mean
equal to PS F= objeci. It is well known that direct inversion of equatiénB.1 iretRourier domain
amplifies noisy frequencies close to the ctitfoequency. Hence, in the presence of noise, such a
simple method cannot be used.

Several deconvolution approaches have been proposedinmagsthe original signal from the
seeing-limited and noise-degraded data. Since equaflbis an ill-posed problem, with non-unique

stable solutions, one approach is to regularize the Foimkersion to constrain possible solutions
(T Ll&dtBﬂLL&LOﬁ_B_QmHQQE*QS). This methederally imposes a tradéfbetween
noise amplification and the desired resolution, which gaheleads to smooth solutions. Bayesian
methodologyl(.M.QIilla_et_ELLZQbh.;_Sla.LQk_eHaLjOOZ) allove®hution compatible with the statistical
nature of the signal to be sought, leading to maximum lileth estimators (MLE)Mon
|.’L9_ZZIZ;|_Lu.Q ) or maximum a posteriori (MAP) approachgwiibr information is used, e.g., the

positivity of the signal or entrop)l'_(_ELLedJln_LJaJL&_.la._ 9
All these methods can be enhanced through multichanneysiaddy decomposing the signal in

different planes, each of them representative of a certain e€aésolution. In such a decompo-
sition, fine details in an image are confined to some planesre@s coarse structures are confined
to others. One of the most powerful ways to perform this dgmmsition is by means of the wavelet
transform (WT) In particular in the astronomical contéle undecimated isotropic a trous algorithm
b...S.h.eHsa.J]dﬂZ_Sla.LQk_&_MulJta.glzd)L%so known as the starlet transform,
is often used. The WT creates a multiple representation ajreak classifying its frequencies and,
simultaneously, spatially localizing them in the field oewi For the specific case of the starlet
transform, this can be expressed by

_ S S S S S
S=wy+w] +wy+ ... +wy+Iy, (3.2)

wheres is the signal that decomposed into waveletfﬁo'ﬂants,cujS is the wavelet plane at reso-
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lution j, andr, is the residual wavelet plane. We point out that equdiigipBoRides a prescription
for direct reconstruction of the original image from all thavelet planes and the residual plane. The
advantage of WT is that it allows for fiierent strategies to be used foffdrent wavelet planes, e.g.,
by defining thresholds of statistical significance.

Given the advantages of the multiresolution analysis, fimeeentioned deconvolution approaches
have been adapted to work in the wavelet domain. The MLE watifrad into a two-channel algo-
rithm dm ) where the first channel corresponds to ifpeas contribution and the second to

the background. The wavelet transform has also been applisthximum-entropy deconvolution

methods .(.Nﬂﬁ.ez_&_LLadiLIBbS) to segment the image andyapfierent regularization parameters
to each regionljla.r_ek_etlaL(Z(l)Ol) generalized the methodagimum entropy within a wavelet

framework, separating the problem into two stages: noisérabin the image domain and smooth-
ness in the object domain.

While WT has been widely used in astronomical image anafysilin deconvolution, the reported
use (in the same context) of multi-transforms with progarthat improve on or complement WT is
scarce. Such methods include, among many others: waveADm.n.et.&an.;]ﬂld?), which aim

to represent signals by textures; and curve ; ), which introduce orientation as a
classification parameter together with frequency and iumsiiSla.LQk_el_dl.l_(ZO_(bS) used the curvelet
transform (CT) for Hubble Space Telescope (HST) image rastm from noisy data. They reported
enhanced contrast on the image of SatLLLLL_La.m_b_ed Gll_aldl%hblied CT to choose significant
codficients from astroseismic observations WI]il.e_Sla.LQK.lebQQh) used CT to detect non-Gaussian

signatures in observations of the cosmic microwave backgio Because it is believed that CT is
more suitable for representing elongated features sudhessdr edges, one of the goals of this paper
is to introduce CT into the Bayesian framework and show hoperforms on images of extended
objects.

The aforementioned methods work with static point spreadtfans (PSF), i.e., they do not up-
date the PSF of an optical system that is supplied by the tyerdlevertheless, in ground-based
imaging, whether with adaptive optics (AO) or without, taa@re always dierences between science
and calibration PSFﬁli_(_Ess.Ijng.e.l’_&_Edm.LJl{I.ds_i998). Thefferdhces may result from changes in
seeing, wind speed, slowly varying aberrations due to gravithermal &ects and, in AO imaging,
from differential response of the wavefront sensor to fluxes recéivedthe science and calibration
objects. The quality of AO images is quantified with the Stratio (SR), which is the ratio of the
measured peak value of a point-source image to that of tfi@action-limited PSF, often given in
percent. A perfect diiraction-limited image has an SR of 100% while a seeing-akgtamage on a
large telescope can have an SR lower than 1%. In this paperlillvgse the SR to quantify the mis-
match between the target and calibration PSFs. This conynomalurring mismatch has prompted
optical scientists, especially those working on AO systamsnvestigate blind and myopic image
restoration schemes (elg_LH.nﬂdQZ;th'eha.uL&ﬂJmad)lggblind method works without any
information about the PSF, while a myopic approach reliesame initial PSF estimate that is then
updated until a solution for both the object and the PSF iadiou
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|C_o.n.a.n_e.t_dl.|_(19§9) compared their myopic approach to a Jasisupervised” Richardson-Lucy
scheme and found, not surprisingly, that the myopic dedoitiom is more stable. Nevertheless, to
our knowledge there have not been any thorough and fully éédgjorts to compare the performance
of modern, static-PSF approaches to hlimgopic methods in the context of AO imaging, and so the
preference for the latter algorithms still has to be judifi®©ur goal is to partially fill this gap. At

this stage we mention that this article is a companion paﬂEaBLLa_G.a.LLi&_G_La.d;LISLCZdll) where
we showed that a modern, static-PSF code is capable of eryaccurate dierential photometry
from AO images of binary stars even when given a mismatchéd lARShe current paper we extend
the analysis to more complex objects and analyze fiteeteof noise as well as that of the mismatched
PSF. We show the importance of noise control, specifically advanced noise suppression can set
off the lack of PSF-update capability for very noisy observatioMore generally, we highlight the
opportunities for an exchange of ideas between the comrasriiat prefer myopic and static-PSF
approaches.

The paper is organized as follows: in Section 2, the algostAWMLE, ACMLE, MISTRAL,
and IDAC are described. These algorithms represdiwrént philosophies with regard to the de-
convolution problem. AWMLE and ACMLE perform a classicatst-PSF deconvolution within the
wavelet or curvelet domain, MISTRAL is intended for myopseyuand IDAC can be used as a blind
or a myopic algorithm. Section 3 describes the datasets @ arsd how we applied each of the four
algorithms. A brief description of the mean squared erro8B)| together with concepts of error and
residual maps that we used to compare the reconstructect®lsgn be found in section 4. Section
5 presents the performance comparison of the four algositiientioned above in terms of noise and
PSF mismatch. Section 6 summarizes and concludes the paper.

3.2 Description of the algorithms

This section is not intended to describe the algorithms maitlbut rather to &er a brief overview
of their characteristics and their historical uses andgoerénces. We would also like to point out
that in the text to follow we do not keep the nomenclatureioglly used by the respective authors.
We make the following attempt at standardization: the db@cunknown, is represented with the
image or dataset is and the PSF ib. Upper-case notation is used for Fourier representatitve. T
two-dimensional pixel index is, while f is spatial frequency. The index of a wavétetrvelet scale
is represented with while a single frame in a multiframe approach is indexedwitFinally, the
symbol " is used for estimates.

3.2.1 AWMLE

The adaptive wavelet maximum likelihood estimator (AWMLE& g Richarson-Lucy-type algorithm
R.IQh.ﬁ.I’.dS.QMLlei_Lu.H;LlQ'74) that maximizes the likelihbetliveen the dataset and the projection
of a possible solution onto the data domain, consideringabaeation of the Poissonian shot noise,
intrinsic to the signal, and the Gaussian readout noisesod#tector. This maximization is performed
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in the wavelet domain. The decomposition of the signal ireesal channels allows for various
strategies to be used depending on a particular channals.sthis is a direct consequence of the
fact that in a WT decomposition the noise, together with thedi structures of the signal, will be
transferred into the high-frequency channels while coansectures will be transferred into the low-
frequency channels.

The general mathematical expression that describes AWMLE i

Ogn) i O(hn)
Yilw" +Mj(w] —w")

An+l) _ A -
0 = Ko™ [h™ = ) ;

(3.3)

whereo is the object to be estimatel’ is the PSF that projects the information from the object
domain to the image domain, white is its reverse version performing the inverse operati@n, i.
the projection from the image domain to the object domaine 3t+called direct projection, is an
image of the object projected onto the data domain by meantiseoPSF at iteratiom, it appears
in the numerator of equatidn_3.3 already decomposed in itel@arepresentation. The parameter

[
K= - is a constant to conserve the energy.
0(n+1)
The variable’ is a modified version of the dataset, which appears here beaauthe explicit
inclusion of the readout Gaussian noise into the Richardsmy schemel_(_NiLﬁ.ez_&_LLade]';r_lé93).
This represents a pixel-by-pixel filtering operation in ahthe original dataset is substituted by this

modified version. It must be calculated for each new itereltip means of the following expression:

Sico(ke 27 (0n(r))¥ /K1)
Sico(e kO [(on(r))k/K1])
wherei is the original dataset, is the pixel index, andr is the standard deviation of the read-
out noise. In the absence of noise (~ 0) the exponentials in equatiGn B.4 are dominant when
k = i(r) and then’(r) — i(r), i.e., the modified dataset converges to the original one.ndle that
by definition,i’ is always positive, whilé can be negative because of readout noise. Expressibn 3.4
introduces an analytical way to consider the joint Poisdas Baussian probabilities into the decon-
volution problem. This can also be performed in a straigitéod way by means of the Anscombe
transform, as mentioned II);LMuLta.ghﬁk Ial_(_’||995), who apprated Poissonian noise as Gaussian
(this approximation is of course only valid for relativeligh values of).

In expressiol_313, the symbalﬁo(“n) and “’IJ correspond to wavelet cfiients, in channgj, of
the multiscale representation of the direct projectinﬁﬁ as well as that of the modified dataset
respectively.

Of particular importance is the probabilistic magk, which locally determines whether a sig-
nificant structure in channglis present or not. If the probability of finding a source in thenity
of a particular pixelr is considered to be high, thev; will be close to 1 in this location, and so
the dataseit will be the only remaining term in the numerator and will berqEared, at iteration,
with the estimated object at that iteratiof). If a signal in the vicinity of pixel is considered to be
insignificant, therM; will decrease to zero and the object will be compared wittlfitdy means of

i'(r) = (3.4)
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its projectionof]”)), so the main fraction in equati@nB.3 will be set to unitydlaannej in the vicinity
of pixel r), which would stop the iterative process. Therefore, thababilistic maskM; is used to
effectively halt the iterations in a Richardson-Lucy schemether words, it allows a user to choose
from a wide range of the maximum number of iterations to becetezl, where the reconstructions
corresponding to theseftirent numbers will not exhibit significantfterences between them, which
arise in the classic Richardson-Lucy algorithm due to thpldization of noise.
AWMLE in the wavelet domain was first introduced [Lnﬂ.tlaku_(ﬂpd.ﬁaﬂna_ﬁau&&ﬁla.dﬂsz

) presented the algorithm in the context of AO imagind abtained dferential photometry in
simulated AO observations of binary systems. The accurdaperture photometry performed on
the deconvolution residuals was compared with the accuwBBBF-fitting, a classic approach to the
problem of overlapping PSFs from point sourd&s_(_D_i.o.La.i.Ei.IHEOQb). It was proven that AWMLE
yields similar, and often better, photometric precisioarttStarFinder, independently of the stars’
separation. Even though AWMLE does not update the PSF agfiirpes deconvolution, it was
shown that the resulting photometric precision is robushismatches between the science and the
calibration PSF up to 6% in terms offférence in the SR, which was the strongest tested mismatch.

3.2.2 ACMLE

Equatior 3P fers a direct reconstruction formula for the wavelet domiain, the sum of all wavelet
planes (and the residual one) in which the original imageliesh decomposed allows one to retrieve
that same original image. This explains the presence of saatran}’; in the numerator of expression
B3, where a combination of fierent wavelet cdécients, some belonging to the direct projection
of the object ¢) and some belonging to the modified datas@t ¢reates the correction term in this
Richardson-Lucy scheme.

In the curvelet domain, the reconstruction formula doeshaot this simple expression. For the
forward and the inverse transforms, double Fourier inegisand complex operations with arrays are
required k&and_es_eLlMOG). Therefore, to extend emp[EiB to the Curvelet domain, we decided

to work with the following expression:

CT(CT(o”) + M (CT() - CT(o{"))

A(n+1) _ A -
0 = Ko™ |h™ = ——)

, (3.5)

whereCT andCT~! mean the forward and inverse curvelet transforms, resfetiThe mask
M is now calculated in the curvelet domain and combinedtfmients fromo,, andi’ to create a
new curvelet correction term that is inversely transforrteethe spatial domain and compared with
the object estimate at each iteration. The curvelet transigsed in equatioh 3.5 corresponds to
the so-called second-generation CT and is implementeckisdftware CurveLab This particular
implementation of the CT exhibits a robust structure base@ enother curvelet function of only
three parameters (scale, location, and orientation), lwisi¢aster and simpler to use than the first-

Ihttpy//www.curvelet.org
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generation CT based on a complex seven-index structurehwelies on the combined usage of the
starlet and the ridgelet transforrwlls_(s.ta.mk_&ll_al_b010).

3.2.3 MISTRAL

The myopic iterative step-preserving restoration algonifMISTRAL) is a deconvolution method
within the Bayesian framework that jointly estimates thé-R®d the object using some prior infor-
mation about both these unknowhs.(.MugaLe.deLalJZOO@. Jond maximum a posteriori (MAP)
estimator is based on the following expression:

[0, ] = arg maxp(ilo, h) x p(o) x p(h)] =

. (3.6)

= arg minfJi(o, h) + Jo(0) + Jn(h)] ,
where Ji(o,h) = —Inp(ilo, h) is the joint negative log-likelihood that expresses figetf the
model to the data), J,(0) = — In p(0) is the regularization term, which introduces some priawi

edge about the objeobv) and J,(h) = —In p(h) accounts for some partial knowledge about the PSF
(h). The symbolp in the above expressions corresponds to the probabilitgityefunction of a
particular variable.

MISTRAL does not use separate models for the Poisson ancetout components of noise.
Instead, a nonstationary Gaussian model for the noise igtedo This means that a least-squares
optimization with locally varying noise variance is empdaoly

3o = Y 570 - N, 3.7

wherer stands for pixel index. This prior facilitates computing tolution with gradient-based
techniques as compared to the Poissonian likelihood, wbicttains a logarithm. The Gaussian
assumption is typical_(An_dLaALs_&_H.LIIIJL]_dW) and it can be @ered a very good approximation
for bright regions of the image. The assumption can caudagres for low-light-level data recorded
with modern CCDs of almost negligible readout noise.

The prior probability,J,(0), is modeled to account for objects that are a mix of shargedad
smooth areas such as those that we deal with in this artichee abopted expression contains an
edge-preserving prior that is quadratic for faint gradseamid linear for steep ones. The quadratic part

ensures a good smoothing of the faint gradients (i.e., af@)piand the linear behavior cancels the
penalization of steep gradients (i.e., of edges). Thesduuwed priors are commonly calldg — L,

.QLQ&hLJ&dOLB_Quman_&ﬁaLELLbQB). The- L, prior adopted in MISTRAL has the following

expression:

3o(0) = us” ) (Vo(r)/s) (38)

whereg(x) = [x| — In(1 + |x|) and whereVo(r) = [V0?%(r) + V,0%(r)]*?. Here,V 0 andV,o are the



3. Extended-object reconstruction in AO imaging 65

object finite-diterence gradients alongandy, respectively. Equatidn 3.8 isfectivelyL,—L; since it
adopts the forng(x) ~ x2/2 whenx s close to 0 and(x)/|x| — 1 whenx tends to infinity. The global
factoru and the threshold are two hyperparameters that must be adjusted by hand augaodthe
level of noise and the object structure. Some steps towandaetomatic setting of these parameters
were made bLBla.nm_&_MugnjelL(Zdll).

The regularization term for the PSF, which introduces thepity criterion into equatiofi 3.6,
assumes that the PSF is a multidimensional Gaussian randdabke. This assumption is justi-

fied when one deals with long exposures, which are, by definisums of large numbers of short-
exposures. As such they are Gaussian according to the Icemitaheorem. Adopting these condi-
tions, Jy(h) has the form

[IH(f) = Hu(F)]*’

This prior is expressed in the Fourier domain whereby uppse notation denotes Fourier trans-
formation. The ternH,(f) = E[H] is the mean transfer function aid|H (f)—Hm(f)[]? is the associ-
ated power spectral density (PSD) witlilenoting spatial frequency. This Fourier-domain prionbea
some resemblance to equationl 3.7. Indeed, it also assunussi@a statistics and draws the solution,
in the least-squares fashion, toward the user-supplied R8& while obeying the error bars given by
the PSD (which give the variance at each frequency). The Pi8Fleads to band-limitedness of the
PSF estimate because the ensemble average in the denandii¢f) — Hm(f)[]%, should be zero
above the diraction-imposed cut{b.

In practice, equation—3.9 relies on the availability of sal/®SF measurements. The mean PSF
and its PSD are estimated by replacing the expected valijd} lfy an average computed on a PSF
sample. When such a sample of several PSFs is not availabh® have assumed in our work, then
H., is made equal to the Fourier transform of the single supd8&, ande[|H(f) — Hn(f)[]? is
computed as the circular mean|dif,|>. These relatively large error bars are intentional: theyaat
for the lack of knowledge about the PSD when given only a sipF measurement.

In the original MISTRAL paped_(.Mug.aLe.r_e.LHl_Zd04) the codasiypresented mainly in the con-
text of planetary images, for which the object prior (equall8.8) was developed. The experimental
data presented therein were obtained on several AO systelhtogered a wide range of celestial ob-
jects such as Jupiters satellites lo and Ganymede and thetpldeptune and Uranus. MISTRAL was

applied to the study of the asteroids Ve 2@nd 216-Kleopatr .
), and was also used to monitor surface variations dio Biter a 20-year perio ey

2010).

3y = Ly HO) - Hali) 59)
f

3.2.4 IDAC

Multiframe blind deconvolution (MFBD)MMQE;&MB&LL@S) is an image re-

construction method relying on the availability of sevenahges of an object. In addition, many of
the MFBD algorithms rely on short exposures. This was oaliyrdictated by the notion that in imag-
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ing through turbulence short-exposure images contdfraedtion-limited information while the long
exposures do no@h&_ﬁﬂm. Before the advent of A@tieway to obtain diraction-limited
data from the ground was to record short exposures that ¢baldbe processed by one of several
“speckle imaging” methodﬂ&mx&lhamp&b.n.lblﬁd&hm&n&lﬂl%ﬁ). Therefore, MFBD was
originally proposed in the context of speckle imaging.

The MFBD code we used in this paper is called IDAC, for itematdeconvolution algorithm
in C 2, and is an extension of the iterative blind deconvolutid() algorithm proposed b,;L_LaIﬂe
). IDAC performs deconvolution by numerically minzimg a functional that is composed of

four constraints:

€ = E|m + Econv+ Eb| + EFm y (3.10)

where

Eim = Y [0(N)]? + Z I (3.11)

rey i=1 rey
is the image domain error that penalizes the presence ofinegaxels ) in both the objectd)
and the PSFh) estimates. The subscriptefers to an individual data frame.
The so-called convolution error is

Econe= 11 D, D IH(H) ~ O(OR(DPB() (3.12)
i=1 f

which quantifies the fidelity of the reconstructidd)(to the datal() in the Fourier domain. The
term B; is a binary mask that penalizes frequencies beyond tfieclion-imposed cutf, N? is a
normalization constant whei¢ is the number of pixels in the image.

The third constraint is called the PSF band-limit error andefined as

M
Eu = e 2 3 OPB(D). (3.13)

It prevents the PSF estimates from converging &ofanction and the object estimate from con-
verging to the observed data. The teBris a binary mask that is unity for spatial frequencies greate
than 139 times the cut4 frequency and zero elsewhere.

The last constraint is the Fourier modulus error:

Eim = g 00(DI - O, (3.14)

whereQg is a first estimate of the Fourier modulus of the object ole@djre.g., from Labeyrie’s
speckle interferometry methMQ?O), drid a signal-to-noise (SNR) filt '

2httpy/cfao.ucolick.orgsoftwargidag
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‘@) showed with several simulations that this constrigiespecially important since it incorpo-
rates relatively high SNR information from a complete datdsrmed by many frames. On the other
hand, the Fourier modulus of an object is only recoveralbykectly if one has a set of speckle images
of an unresolved source to be used as a reference. There de@raumnds to this problem, most no-

tably reference-less approaches reporteld_'LnAALQ.Ld.ed Jﬂt&ﬂ.’l’ﬁ anClJLQ.D_d.QLLi.lHL(.l.d84), but these

solutions are applicable only to non-compensated imagmdgcauld not be used in our tests.

While MFBD algorithms were initially proposed in the contex speckle imaging, there is noth-
ing preventing their application to long-exposure AO immadgeat now contain diraction-limited
frequencies. In principle, there are some inherent adgastaf working withM frames instead of
using a single, co-added long exposure. The multiframecaubr reduces the ratio of unknowns to
measurements from 2 : 1 in single-image blind deconvolutioM + 1 : M in multi-frame decon-
volution. On top of the PSF band-limit constraint (equafafi3), concurrent processing of many
frames means that the PSF cannot converge t6 tinection (this would have yielded an object equal
to the data, but the data are generally temporally variabiéewhe object is assumed to be constant
in MFBD, which is a good assumption in the context of astroiahimaging on short time-scales).
MFBD algorithms are very successful in the case of stronglyimg PSFs so that the target is easily
distinguished from the PSFs. On the other hand, the goal oisA@ stabilize the PSF. This implies
less PSF diversity from one observation to another, so thatr @onstraints become more useful.

The code IDAC can be regarded as a precursor but also a repatge of a wider class of MFBD
algorithms. We mention here the PCID colie_(.M.amQ.n.u‘.La.Ll)Z@ﬂﬁich has the capability to estimate
the PSFs either pixel by pixel in the image domain or in terfng dernike-based expansion of the
phase in the pupil of the telescope. It has been shown thatalRSF re-parameterization leads to
object estimates that are less noisy and have a higher lsgsidution k.Ma.Lsan.&.H.zleLZOd?).

IDAC was applied to speckle observations of the binary sysgdiese 914, and in the process, the
secondary component was resolved into two S{a.lﬁerﬁ_&_QhLisLQLLLQdS). Additionally, IDAC

was one of the five codes used in our study of photometric acgusf image reconstruction algo-

rithms (Gladysz et al. 2010a).

3.3 Dataset description and methodology

3.3.1 Dataset description

The images we used to test the algorithms correspond to \a@tsers performed with the fourth
detector of the WFPC2 camellm(ll:a.ug_euleLal._llg%) (the Bedcplanetary camera -PC-, with a
pixel size of 0046") installed on the HST. These are pictures of Saturn with adya range of up

to 975 counts, and galaxy M100 with a peak signal of 7400 couiib obtain well-defined edges
and transitions between the object and the backgroundnthge of Saturn was preprocessed so that
all pixels below a certain threshold were set to zero, thimeaing the visibility of the Cassini and
Encke divisions. These images were considered represergalf the true objects (figufe=B.1).
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Figure 3.1: Top, far left: M100 galaxy “ground truth”image. Bottom, fieft: Saturn “ground truth” image. From left
to right: blurred simulated images using a science PSF watrehl ratio= 53% (far left panel in figurEZ312) plus additive
Gaussian noise with standard deviations equal to 1, 5, 1&rb20. Linear scale.

The “ground truth” images were subsequently convolved &ithAO PSF with an SR equal to
53% (see Table3.1). This and the other PSFs used in thiscprege obtained with the 1024x1024
PHARO infrared camera (Hayward etlal. 2001) on the 5-m Héésotepe at the Palomar Observatory
(Troy et al. 2000). Closed-loop images of single stars wecended using the.040’ pixel* mode.
The images were cropped to size X380 pixels, which corresponds to a field of view (FOV) 6f 6
The observations were acquired in the K ban@yg&) where the dtraction limit is Q086” so that
the data meet Nyquist-sampling requirements. The filtehefdbservations was Brackett Gamma
(BrG) and each of the PSFs in Tablel3.1 corresponds to a su®0df2mes, each with an exposure
time of either 1416 or 2832 ms. The individual frames weresteged via iterative Fourier shifting
to produce shift-and-add images (Baena Gallé & GladysAp01

Table 3.1: PSFs used for the simulated observations

Star SR exp. time (Mms) Type
PSF1 53% 1416 Science PSF
PSF2 53% 2832 Reference PSF
PSF3 45% 2832 Reference PSF
PSF4 36% 1416 Reference PSF

The angular size on the sky over which the AO PSF can be assirbedlmost spatially invariant
is the so-called isoplanatic angle. This parameter becdangsr at longer wavelengths. As specified
by IHayward et &l.1(2001), the isoplanatic angle is approkeigab0’ in K-band at Palomar. The
angular size of the Saturn and M100 images i$200 we can assume that the PSF remains constant
throughout the FOV. The fference in pixel scales between those images and the PSF&&omar
is very small (0046” vs. Q040’) and therefore we did not re-bin the images to match thekelpix
scales. The paper is devoted comparing image-restoralgomnitams and not to the performance
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evaluation of the AO system at Palomar.

We used IDAC in the multi-frame mode. One of the goals of ourkweas to check the trade-
off between the diversity provided by more frames vs. SNR pendraOne can think of this as
an exposure-time optimization. For a constant total oladem time per object one can use shorter
exposures and hope to exploit the PSF variability in subseigmage restoration with MFBD, or opt
instead to use fewer images with a better SNR per frame. Tdrereout of the original 200-frame
dataset we have produced datasets of 10, 20, 50, and 10@d#8tes. These binned PSFs, together
with the original 200-frame dataset, were used as blurrergdls for the Saturn image. For AWMLE,
ACMLE, and MISTRAL, which are single-image restoration esgdwe only used the summed PSF.
All PSFs were normalized to have a total power equal to urefgie the convolution procedure.

The blurred observations were subsequently corruptednuitte. We explored more than twenty
levels of noise: pure Gaussian readout noise of standardtaevranging frono- = 1 too = 20, and
shot noise plus readout noise of level= 10. These levels correspond to the noise that was added
to the summed images. For MFBD with IDAC we worked with selenages and decided to add to
each frame the amount of noise that would result in the sanke 8 summed image had the images
been summed anithenprocessed, as in the case of the other three algorithms. nfiéass adding
pure Gaussian noise with levels from %50 to 20- V50, and Poisson noise plus 16/50 to the
50-frame dataset, for example. This way we aimed to testenefiis of exploiting PSF diversity vs.
higher noise per frame, as mentioned above.

One of the goals of the project was to test the susceptilofitige algorithms to mismatch between
the science and calibration PSFs. Therefore, we used a ethRBF (SR53%), a mismatched PSF
(SR=45%), and a highly mismatched PSF (3%%) as inputs to AWMLE, ACMLE, MISTRAL,
and MFBD. The last SR value corresponds to half of the maxirS&in K band (63%) predicted in
simulations for the AO system in Palomar (Hayward et al. 30Table[31 lists the PSFs used in the
tests. Diterences in SR for the same star arise because of the chamegiimg sAll PSFs used in the

simulations are presented in Figlrel3.2.

0.6 21 a1 6.7 10.2 14.8 20.9 29.1 40,0 54.4 73.0 98.3 1318 1763

Figure 3.2: Far left: science PSF with the Strehl ratio (SR$3%. Middle left: reference PSF with SR53%. Middle
right: reference PSF with SR45%. Far right: reference PSF with SR36%. The far left PSF was used to blur the HST
images of Saturn and M100. The other three PSFs were usefteenee PSFs for the algorithms. Logarithmic scale.
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3.3.2 Methodology

The four algorithms are very fierent and require tfierent strategies to obtain the final result. For
AWMLE and ACMLE, it is convenient (although not mandatorg)gerform an initial decomposi-
tion of the dataset, either in the wavelet or in the curvetehdin. This can give the user an idea
as to the number of planes to use during the deconvolutioceged Additionally, this preliminary
decomposition could inform the user whether it is sensiblperform deconvolution in the highest-
frequency plane where the finest structures together wierttave been classified. When working
in these planes there is a trad@-between the benefit of recovering information from the finest
wavelefcurvelet plane and the undesirable reconstruction of mgmifecant structures. Both trans-
forms, WT and CT, can also be combined into a dictionary oftoments k_Ea.dej_&_S_ta.LdlLZOII)6),
although for the sake of simplicity we executed them indelpetly.

The main dificulty when using a Richardson-Lucy-type algorithm is deiaing at which iter-
ation to stop the deconvolution process. In AWMLE and ACMItl&s problem is solved by prob-
abilistic masks. The mask can apply significance thresholdsgiven location in a given plane to
selectively deconvolve statistically similar regions. iS'lboncept is called multiresolution support
‘.Sla.LQk_et_aJILZO_dZ). Probabilistic masks are used to steplétonvolution process automatically in
parts of the image where significant structures cannot lmedied. To estimate the value of the mask
at a particular location, a local window must be defined. Heseused a window based on the local

standard deviation computed within that window:

A2 (o — 0,)?
1-—
exp{ 27

0 if oj—0, <0,

m, = } if oj—0,>0

(3.15)

with

_ Zped)()(j,p)z
Oy = \|——/———,
\J Ny

whereA is a codficient for determining the applied threshotd,is the standard deviation within
the window® centered on pixel of the planey; (pixels within that window are indexed with),
n; is the number of pixels contained in the window, andis the global standard deviation in the
corresponding wavelet or curvelet plane. The valuedfpican be determined by decomposing an
artificial Gaussian noise image, with standard deviatiamaétp that in the dataset, into wavelet or
curvelet coéficients. These windows are then shifted across all wavelirwelet planes to build the
final probabilistic masiM (see equatioris3.3 ahdB.5).

Each of the wavelet planes has the same size as the origiageifne., 51512). For cases like
this,@lml) proposed to increase the size of the Wicalow m, with the wavelet scale. The
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lower the frequency of the representation, the larger tmelaw. Therefore, the window size for the
highest-frequency scale was set bbnext plane was analysed with &77window, and the third
one with a window of size 1411. On the other hand, the curvelet transform decreases#he ®r
wedge size, with the scale of representation. For instamegges at the highest-frequency scale have
a size of 26xX171 pixels, whereas wedges at a lower-frequency scale candm@ensions of 7487,
according to the level of detail being represented. The tagtween dimensions in a given wavelet
plane and the corresponding curvelet wedge is between 2.afadcdosely compare between WT and
CT, we kept the same ratio for the window sizes used at eadé &oaboth ways of representation,
and a constant window size X3 pixels) was chosen for the CT. The residual wavelet andeteirv
scales were never thresholded, i.e., masks were set to iefee scales. Finally, parametewas set
to 3/2 so the window was approximately equal to 1 wher o, = 20, i.€., when cofficients above
twice the noise level are detected.

In our experiments we noticed that the results could be ingatdy changing the values éf
and the window sizes, especially for CT. Improvement meane fewer elongated artifacts. On the
other hand, for the purpose of a clear and fair comparisomndet WT and CT, we preferred to keep
the values given above, bearing in mind the original denisidopted for AWMLE ir@@l).
In our opinion, a more thorough study of the best choices tiergarameters of the probabilistic
masks is necessary, and in particular, a study in which elsaace better suited for a particular way
of representation.

The CurvelLab software, which was used here to introduce théen@ ACMLE, can perform
digital curvelet decomposition via twoftierent implementations. The first one is the so-called USFFT
digital CT and the second one is known as the digital CT vigopirag. Both difer in the way they
handle the grid that is used to calculate the FFT to obtairctineelet coéficients. This grid is not
defined in typical Cartesian coordinates, instead, it etasla polar representation, more suited to the
mathematical framework defined lln_Qa.nd.és_JatLa.L_dZOOG). U8EFT version has the drawback of
being computationally more intensive than to the wrappiesion, since the latter makes a simpler

choice of the grid to compute the curvelells_(SLa.mk_HJ_aldXOHience, for reasons of computational
efficiency, the wrapping version was used in ACMLE.

The user has to provide CurvelLab with the values of some pateas In addition to the number
of curvelet scales, the number of orientations or anglegpfasentation in the second scale is also
required as input from the user. This parameter will autacaly set the number of angles for the rest
of the scales. Evidently, the higher the number of orieatestj the longer the algorithm will need to
perform CT, the higher the overall redundancy and the higieecomputational cost for calculating
the probabilistic masks at each scale. We decided to sep#ngneter to 16 as a tradé-between
having a complete representation of all possible oriematin the image and the total execution
time. Finally, a third parameter decides if the curveletsfarm is replaced by an orthogonal wavelet
representation at the final scale, i.e., the highest-frecquscale. In our experiments we saw no
significant diferences between results based on one choice for this pamsweiue or the other.

MISTRAL performs the minimization process of equationl 3y6the partial conjugate-gradient
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method. The code requires that the user provides valuelsddmnyperparametersands (see equation
[3:8), which balance the smoothing imposed by too much regatson against noise amplification.
This has to be done by trial and error although the authortseoélgorithm provide some suggestions
in the original MISTRAL paper, namely that be set to around unity anglbe set to the norm of
the image gradient|Vill = [X,IVi(p)“]/?). In practice, the user experiments with various values of
these parameters, centered on the values suggeslled_lnﬂlﬂgal. .,ZO_dA), and chooses the image
reconstruction that is most visually appealing. In ourdes¢ found thai: = 10 andé = 2 yielded
the best results. We let the code run for the maximum numbiéerattions set to 10

IDAC requires the user to provide the value of thérdiction-limit cut-df. Caution should be
taken here: the code requires that all supplied images arecdfame dimensions. Therefore, when
one has a PSF image that is smaller in size than the targeeittagPSF should be embedded in an
array of zeros. Subsequently, théfdiction-limit cut-df should be estimated from the zero-padded,
and not the original Fourier-transformed PSF (see FiguB® 3Another parameter that should in
theory dfect the restorations, a scalar quantifying user confidamteei supplied PSF, was found to
have negligible fect on the outputs.
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Figure 3.3: Normalized power spectrum of the 53% SR PSF (Eig 3.2 midaft IThe difraction- and noise-limited
cut-of frequency was determined to be approximately 230 pixele HBF was embedded in an array of zeros to match
the size of the science image (54212 pixels).

As with MISTRAL, we let the code run for the maximum number @frations set to 0 For
images with a high level of noise (Gaussian> 10 and Poisson noise plus Gaussiar= 10) it
converged quickly, after 15-20 iterations, which can bestgred a good behavior because the noise
did not become amplified. For cases with low noiseq 5) the algorithm converged after 50-100
iterations and produced generally sharper reconstrigtion

3.4 Quality metrics and maps

One of the goals of this work was to compare the quality of mstmictions yielded by several
codes. Therefore, metrics were needed for image qualigsassent. Here we have chosen the mean
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squared error (MSE), which is probably the most commonlydusetric in image processing (e.g.
4) and one of the oldest and most often ustdas to evaluate the resemblance of

two images. It is defined as

1 & )
MSE = MjZ‘(xj —y)?, (3.16)

where, in this contextM is the total number of pixels in the image an@ndy are pixel values
of the two images that are compared. It is also very commorséothe related metric, the peak
signal-to-noise ratio (PSNR), defined as

L2
PSNR= 1010,y ez (3.17)

wherelL is the dynamic range of the image. These metrics are veryteagmpute and measure
the pixel-by-pixel departure between the reconstructiahthe reference object. The MSE and PSNR
have a clear physical meaning: they quantify the energyegttior. Hence, they are well suited to
the task of estimating the absolute photometric error betviee two images.

We preferred to use PSNR rather than MSE to quantifiecences between images, since the
former has the more intuitive behavior of setting highemesl to better reconstructions. We set
L = 975 in equationi=317 to match the dynamic range of the “graumath” Saturn object, and
L = 7400 to match the maximum value present in the original intdd@100, which corresponds to
the galaxy core. A dference in 1dB in PSNR implies an approximat&atence between 150 and
250 in MSE depending on the object.

Below we also plot the so-called error and residual maps.Vdime obtains a certain reconstruc-
tion after solving the main image formation equation (&) 3.

i=hxo+n—0, (3.18)

where© is the reconstruction or solution found with a certain aldpon, the error map is the
exact diterence between the “ground truth” object and the recornstryd.e.,e = o — 0. It offers a
detailed, pixel-by-pixel or structure-by-structure,wief the algorithm’s performance. Unfortunately,
in practical situations the real object is not available tls® reconstruction error measurement is
usually made in the image domain by transferring the saiudimto the image domain by means of
the PSFh, and subtracting it from the data. Hence, the normalizedwasmap is computed as

_(hx0-iy

r =
h*0

(3.19)

In the case of static-PSF approachess the input calibrator, whereas for myopic- and blind- ap-
proaches is the PSF estimate found in the last iteration. The resichagd is a graphical comparison
in the image domain meant to show how close, from a matheatgtint of view, the reconstruction
and the data are to each other. On the other hand, the erroismaapore truthful comparison, from
a physical point of view, of the solution and the (usually nokn) reality.



74 Roberto Baena Gallé. Universitat de Barcelona.

3.5 Results and discussion

The tests were conducted decomposing Saturn and M100 taiateethree wavelgturvelet planes
plus a wavelgturvelet residual. As mentioned before, three levels ofmaish between the science
and calibration PSF were analyzed, as well as more thanywerdls of noise, including readout and
shot noise. All outputs were analyzed by means of the PSNRanet
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Figure 3.4: PSNR evolution of M100 reconstructions with respect to ével of noise. Blurred simulated images were
corrupted with Gaussian noise with standard deviationginanfromo = 1 to o = 20. All reconstructions used the
SR=45% PSF as the calibrator. Pink squares: ACMLE. Blue cros8&8MLE. Green diamonds: MISTRAL. Black
triangles: MFBD.

Figured3¥ anl3 5 show the evolution of the PSNR metric regpect to the level of noise when
a mismatch ot~ 8% in SR exits between the science and the reference PSR fAmarthe logical
conclusion that reconstruction quality decreases as tlse mucreases, we can point out that firstly,
despite of being designed for detecting elongated stresfukCMLE performs reasonably well in
low-noise-level conditions for an image where many poike-sources are present such as M100 (Fig.
B4). Only when the noise level reaches a value ef 8 and the correlation of information along lines
and edges has significantly deteriorated, its performaecernes comparable to that of AWMLE.
This dfect does not happen for the Saturn image (Eid. 3.5) wheresalationformation is distributed
along elongated features and the curvelet transform is nasistant against noise. Secondly, myopic-
and blind-PSF algorithms show a more evident deterioraifgrerformance with the increasing level
of noise. For MISTRAL, its performance for low-level-noisenditions is extremely good for Saturn,
whereas it becomes similar to static-PSF algorithms wiitkenoontrol at a level of- = 12. This is
basically due to its good behavior at the edges of the pldnaetkss to thd., — L; prior included in
the code. The rest of algorithms exhibit evident Gibbs t&wns in the high transitions between the
planet limits and the background. When these edges wer@nsidered in the computation of PSNR,
MISTRAL's performance evolution for Saturn with respecbtber algorithms has a similar behavior
to that shown for galaxy M100 in figufe_B.4. It has to be merdg@hrthough, that MISTRAL was
developed specifically in the context of imaging planetype bodies and its prior is not very suitable
for galaxies or stellar fields, for which a white spatial priwhich assumes independency between
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pixels, is more advisablla_(_Y_g_o_uI_e_tl E.L_Zbl?»). On the othedhancluding these regularization terms
could potentially improve results obtained with MFBD and ASYMLE.
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Figure 3.5: PSNR evolution of Saturn reconstructions with respectédefiel of noise. Blurred simulated images were
corrupted with Gaussian noise with standard deviationgingnfromo = 1 to o = 20. All reconstructions used the
SR=45% PSF as the calibrator. Pink squares: ACMLE. Blue cros8&#MLE. Green diamonds: MISTRAL. Black
triangles: MFBD.

As mentioned in Sectidn3.3.1, datasets of 10, 20, 50, anditd@d images, together with the
original 200-frame dataset, were used as input for IDAC b tiee trade-fi between the (implied)
PSF diversity and SNR per frame. We tried to shed some lighhemuestion which of the follow-
ing strategies is better: deconvolving a long-exposuregenaith a relatively high SNR (AWMLE,
ACMLE and MISTRAL algorithms), or tackling the problem bwialing the dataset into more (di-
verse) frames at the expense of reducing the SNR for eachef(M&BD). It was found that the
original 200-frame set yielded significantly poorer resdittan the smaller sets. Specifically, the 50-
frame dataset proved to be the best input to IDAC althougldifierences between its output and
those of the 10- and 20-frame sets were small. For the dataveatised, there is no evidence that the
higher diversity provided by more frames yields better itssurherefore, we conclude that (assum-
ing constant total observation time) using very short fraxgosure times is not the best solution for
MFBD because high frame diversity does nfiset the high level of relative noise per frame. Figures
B4 and3b show that MFBD behaves in a similar way as the atlgarithms for low-noise-level
conditions, but its performance is highlffected as the noise per frame increases.

Figured3b anfi3 7 reveal how the algorithms behave witego the mismatch between the
calibrator and the science PSFs fatelient levels of noisex = 1, 10 and 20 as well as shot noise plus
read-out noise of- = 10). In general, static-PSF approaches yield better sethdin myopithlind-
codes when the two PSFs agree well. For M100 the advantagéML& with respect to MISTRAL
is around 3- 5dB, while it is higher than 5dB with respect to IDAC for noiegels abover = 10.
For the Saturn image the results are similar except for loweilevel conditions where, — L, prior
gives MISTRAL an advantage. A mismatch 8% in SR does not lead to largefidirences in the
results of the algorithms (Fige._B.6 dndl3.7, middle rowsth wespect to those obtained with a well-
matched reference PSF (same figures, top rows). A referé8EeMth SR = 36%, which implies
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Figure 3.6: Each plot shows the mean value and standard deviation ofSh&RRmetric calculated from M100 results
obtained with ACMLE (pink squares), AWMLE (blue crosses)SVMIRAL (green diamonds), and MFBD (black trian-
gles). Deconvolution was performed with three PSFs to seprediterent levels of miscalibration. Top row: dataset was
deconvolved with a matched PSF (S58%). Middle row: dataset was deconvolved with a mismatd?®d (SR-45%)
Bottom row: dataset was deconvolved with a highly mismaddP8F (SR-36%).

a mismatch ok 17% SR, can be seen to have a more noticeabdeteon the static-PSF codes and,
surprisingly, MFBD than on MISTRAL (Fig$d_3.6 aldB.7, battoows). The reconstruction quality
for MISTRAL is more uniform for the PSF mismatch, which isiogince this algorithm is designed
to deal with large dterences between the science and the reference PSFs. Aavidli®f mismatch
there is a visible qualitative fierence between the PSFs (Hg.] 3.2, leftmost and rightmosipa
which dfects the performance of static-PSF codes. We stress ttiatuigh MISTRAL is very reliable
for the PSF mismatch, its advantages become highly attedaatthe noise level increases. This can
be seen in figurE=3.6, bottom row, noise levebot 20. This shows that the ability of a method to
control the noise is as critical as its capability to updateRSF.
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Figure 3.7: Each plot shows the mean value and standard deviation ofShN&RMnetric calculated from Saturn results
obtained with ACMLE (pink squares), AWMLE (blue crosses).SVMIRAL (green diamonds), and MFBD (black trian-
gles). Deconvolution was performed with three PSFs to seprediterent levels of miscalibration. Top row: dataset was
deconvolved with a matched PSF (S58%). Middle row: dataset was deconvolved with a mismatd?® (SR-45%)
Bottom row: dataset was deconvolved with a highly mismaddP8F (SR-36%).

Figured 3B anfi’3 9 show the reconstructions of M100 actibyethe algorithms for the noise
levels ofo- = 5 ando- = 15 and a mismatch of 8% in SR. ACMLE vyielded the sharpest reconstruc-
tion, although some elongated artifacts start to becomibleiato = 15 as a result of an incorrect
identification of the coficients. Compared to MISTRAL, both ACMLE and AWMLE are able to
enhance and de-blend from the surrounding cloud more ithg@tipoint-like sources. MFBD recon-
structions are still almost as smooth as the starting imaigeired3.TI0 and_3.1L1 show the results for
Saturn. Here, similar conclusions can be formulated, n@se amplification is better controlled by
AW(C)MLE thanks to the multiresolution support. AWMLE andCMLE exhibit the best results in
the planet’s body (in terms of the achieved resolution andenattenuation), and also in the back-
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Figure 3.8: Column A: M100 original image. Column B: Degraded and cotedimage with Gaussian noise & 5).
Column C: ACMLE reconstruction. Column D: AWMLE. Column E:ISTRAL. Column F: MFBD. Top row: whole
view. Bottom row: view of representative detail. Reconstians were performed with a reference PSF a:85%6.

Linear scale from 0 to 1000.
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Figure 3.9: Column A: M100 original image. Column B: Degraded and cotedpmage with Gaussian noise & 15).
Column C: ACMLE reconstruction. Column D: AWMLE. Column E:ISTRAL. Column F: MFBD. Top row: whole
view. Bottom row: view of representative detail. Reconstians were performed with a reference PSF at:85%.

Linear scale from 0 to 1000.
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Figure 3.10: Column A: Saturn original image. Column B: Degraded andwated image with Gaussian noise € 5).
Column C: ACMLE reconstruction. Column D: AWMLE. Column E:ISTRAL. Column F: MFBD. Top row: whole
view. Bottom row: view of representative detail. Reconstians were performed with a reference PSF at85%.
Linear scale from 0 to 1000.
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Figure 3.11: Column A: Saturn original image. Column B: Degraded andwated image with Gaussian noise €

15). Column C: ACMLE reconstruction. Column D: AWMLE. Colunk: MISTRAL. Column F: MFBD. Top row:
whole view. Bottom row: view of representative detail. Restuctions were performed with a reference PSF ai45R6.

Linear scale from 0 to 1000.
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ground space between Saturn’s body and the innermost rimghws a measure of a given algorithm’s
ability to suppress noise. Thigfect is also visible in Cassini’s division. Furthermore, kgis divi-
sion is barely visible in MISTRAL's and MFBD's reconstruatis for high noise level af = 15. On
the other hand, AWMLE, ACMLE, and MFBD show the typical ringigfect associated with strong
transitions or edges (very visible at the limits of Satubmgly), whereas MISTRAL$, — L; edge-
preserving prior attenuates theskeets considerably. Nevertheless, this prior must be resplefor
the excessive attenuation of some elongated featurespiasgaturn’s inner ring that were detected
with ACMLE, AWMLE, and MFBD, although over-reconstructeyg the former and noise-distorted
by the latter two. We stress that such features are not eigilthe blurred and corrupted image.

Finally, we show in figureE2312 aid 3113 the error and resichaps. For the Saturn image,
one can see that ACMLE’s and AWMLE's results have valuesezlts the truth in all pixels of the
object (planet’s body, space between the body, and thernmostrring), except in the pixels at the
edges of the main planet body and the rings, which show poambeus. For these pixels, — Ly
object prior implemented in MISTRAL is working impressiyakell, while MFBD, ACMLE, and
AWMLE's values strongly depart from the real object. In gextethe latter three algorithms have
the tendency to over-reconstruct bright sources and bsighttures of the image, while MISTRAL
exhibits the opposite behavior, i.e., it does not reach tneect photometric value for these regions.
Noise amplification or lack of noise suppression is evidenMFBD and MISTRAL, whereas some
elongated artificial structures are visible in ACMLE’s riésthus showing an incorrect cfigcient
identification at some orientations. This suggests thaptbbabilistic mask should not be applied to
each curvelet wedge and scale independently, as we do iwdhks but creating some mechanism to
exchange information among them. There are no significéii@rdnces in the residual maps obtained
by ACMLE and MISTRAL (Fig.[3.IB) apart of those already mentd, although here they are not as
evident as in the error maps. This suggests that updating$kan MISTRAL yields a mathematical
solution that is compatible with the data as in the case of BWILE. However, when the noise
increases, the regularization term in MISTRAL does not gleas good results as the AW(C)MLE,
even if MISTRAL updates the PSF.

3.6 Conclusions

We have introduced a way of using the multiresolution supgplied in the wavelet and curvelet
domain, in the post-processing of adaptive-optics imagéelp control the process of noise ampli-
fication. One of the most important goals of this research wadevise an objective check of the
typical assumption (within the AO astronomical commun#yput the supposed poor performance
of static-PSF approaches with respect to the wmabpic methods. For the dataset we used, the
Richardson-Lucy scheme, which is controlled over the wetvedr curvelet domain by a-based
mask, provided a very competitive performance against e nvell-known approaches like MFBD
or regularized deconvolution (MISTRAL). Specifically, iteyded 3-5dB better results (in terms of
PSNR) than IDAC and MISTRAL for a mismatch in the PSF of up toi@%erms of the Strehl ratio.
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Figure 3.12: Error maps for the reconstructions obtained from data smtsipted with Gaussian noise with = 5.
Reconstructions were performed with a reference PSF adS%. Column A: ACMLE. Column B: AWMLE. Column
C: MISTRAL. Column D: MFBD. Linear scale from -100 to 100.

On the other hand, performance of MISTRAL was photometydagtter for the highly mismatched
PSF of SR-36% (mismatch of 17% in SR) was employed as calibrator.

We showed that probabilistic masks can control noise aroatitin in a Richardson-Lucy scheme,
and also that curvelet transform (CT) performs better thavebhet transform (WT) for low-noise-level
conditions, when elongated structures and edges still #tempbidimensional characteristics above
the noise level.

The observed poor performance of IDAC, which can be visugdigreciated in Figurds3[9-3111,
can be explained in the following way. Multiframe approaihely on diverse PSFs to separate the
blurring kernel from the object and to make the blind probhaore tractable (less under-determined).
Having more images helps when one has truly diverse PSFghBuUs not always the case with AO
imaging. In fact, AO will stabilize the PSF and no number ofvnieames can then supply new
information for MFBD. The standard deviation of the Stredtio value across the 200 frames used
as input for IDAC was only 2%. For all datasets that we had ¢tars), the standard deviation across
200 frames rarely exceeded 5%. It seems that single-imagesdike MISTRAL or AW(C)MLE
have an advantage in the case of stable AO observations.

Several lines of research are still open. It would be possiblstudy other types of masks,
such as those based on the quadratic distance betweerdretates in consecutive wavelet planes
.Slamk.&.Muﬂa.gJ’LlQ.d@ or image segmentation (or wavelabelsegmentation) by means of neural
networks to link and classify significant zones in the im&'ﬂf(ﬂL&_Lla.chJ_QdS). Furthermore, the
use of other wavelet transforms, such as the undecimateliMiglsform with three directions per
scale, and many other multitransforms should be studied¢amgared, e.g., shearIGMiate




82 Roberto Baena Gallé. Universitat de Barcelona.

0.02 0.04 0.0610.081 0.1 0.12 0.14 016 0.18 0.2 0.22 0.24 0.26 0.29 0.31 033 0.35 0.37 0.39 0.41 0.43 0.45 0.47 0.49 051 0.53 0.55 0.57 0.59 0.61 0.63 0.65 0.67 0.69 0.71 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Figure 3.13: Residual maps for the reconstructions obtained from dasaceerupted with Gaussian noise with= 5
(top row) ando- = 15 (bottom row). Reconstructions were performed with aresfee PSF at SR15%. Columns A and
C: ACMLE. Column B and D: MISTRAL. Linear scale from 0 to 1.

2007) or waveatoms (Demanet & Yihg 2007), to name only two.

Much more important, in our opinion, is studying how muéisform support or probabilistic
masks can be included into blind and myopic approaches toowvegheir performance in terms of
controlling the noise reconstruction inherent to everygmaeconstruction algorithm. This will be
the topic of our future research.



Chapter 4

High contrast exoplanet imaging using
spectral deconvolution and the wavelet
transform. Application to EPICS instrument.
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Abstract

The next decade will see the birth of the 39-m European exgelarge telescope (E-ELT). Among
many other science programmes, the exoplanet imaging eaamer spectrograph (EPICS) is a pro-
jected instrument to directly observe and characterizeesdlar planets with E-ELT. It will produce
integral field spectroscopy (IFS) datacubes that can be/zedlwith the so-called spectral decon-
volution (SD) technique to make out the presence of faineéctisjorbiting around bright stars. This
research is aimed to test if the inclusion of multiscalangfarms, such as the wavelet transform
(WT), in the analysis of the IFS datacubes produces someoweprent in detection of faint sources
with respect to the performance obtained with the clasS&abhpproach. The 1D undecimated WT
is used to decompose, aff@irent levels of resolution, the spectral signal at eachiquéat location

of the FOV. Then, the classical SD technique is used at eavbletascale to create maps which are
representative of the frequency informationfiBrent simulations with the presence of fake compan-
ions are analyzed with both approaches, i.e., with and with@velets. Several cases of interest for
EPICS are studied, e.g., suppression of tiatition with the APLC chronograph and an apodized-
only solution at Talbot lengths equal to 1 and 10, arftedent contrast magnitudeffirences between
the main star and the companions ranging from 10> to 1 x 107, at angle separations between
~ 20 and~ 180mas A general improvement of one order of magnitude contrasbserved when
the wavelet analysis is used. Wavelets allow APLC perfocean be comparable to that obtained
with the apodized-only solution for contrasts up t& 10°8 at angle separation from 70mas
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4.1 Introduction

The 39-m European extremely large telescope (E-ELT) isgdesi to increase both the collecting
power and the angular resolution with respect to the cut@nh telescopes. One of the mostimpor-
tant science programme to be performed will be the discomedyspectral characterization of planets
outside the Solar system. While young and hot exoplanettharprimary targets for the SPHERE
.B_OL:.QaLeILLeLdILZO_(b& and the Gemini planet imager (dE_Ea.LcIZZE_e_LaH_ZO_dS) instruments, E-ELT
will be geared towards the detection of old and cold plarstsilar to the ones in the Solar System.
These targets are significantly more challenging. The astgrto be expected are between’ldnd
101, depending on the size of the planet and its physical disténoen the star. Old planets do not
emit any significant own light in the near IR, they dominaméftect light generated by the stars. The
planetstar flux ratio,Fp/Fs, is JM ):

2

22 = oo (5) @.1)

where p is the geometric albedo of the planet, which depends on wagéh, R stands for its
radiusr is its separation from the star, afgg) is the phase function of the planet which depends on
the phase angle (angle at the planet between star and observer):

O(p) = sin@8) + (m - B) cosﬁ)'
T

Assuming an optimistic case of a planet observed at opipogi®(8) = 1) and a near-IR albedo
of 0.3 we get for JupiterR = 0.00048AU, r = 5.2AU) an expected contrast of33x 10° . For
Earth we get 315x 1072 . In both cases we assumed distances between planets anpbttegit star
identical to the ones in our system. For smaller stars thadizlb zone is expected to be found closer
_S_elsis_el_a{LZO_dﬂ). For M-type stars it could be located@secas ALAU. Assuming the same spatial
scaling applies to other, heavier planets in this hypothéplanetary system around an M-type star,
we get contrasts of.23x 1077 for “Jupiter” and 545 x 1078 for “Earth”. Planets with masses up to
ten times greater than the Earths mass (i.e., “Super-Epvtbsid have contrasts aroundgx 10~/ in
this M-type star’s system. The instrument designed to agvelich programme will be the exoplanet
imaging camera and spectrograph (EPICS). Detailed sciessmes and overall requirements of the
instrument are given bﬁ__iOlO).

(4.2)

In a nutshell, EPICS will observe in both the visible and teamnfrared range of the light being
equipped with an integral field spectrograph (IFS) for thenfer and with a dterential polarimeter
(EPOL) for the latter ' 10). EPICS wavefrmmmtrol is composed by two loops and
calibration stages. The first one is a single conjugate aaapptics (SCAO) that corrects for the
largest part of the telescope jitter and “low order” abeora until the range of the second loop.
Its wavefront sensor (WFS) is a modulated pyramid sensasithento a spectral range between
600 - 900nm, 84 x 84 subapertures and a frame rate &fHz. The second calibration stage is a
extreme adaptive optics (XAO) system that uses a high dedsibrmable mirror (DM), a second
fast tip-tilt mirror and a second wavefront sensor. The Bpécange is between 700 900nm it
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consists in 210« 210 subapertures and a frame rate BHz Non-common path aberrations are
measured fi-line before observations and are applied to the XAO WFS patkttain Strehl ratios
‘SR% larger than 85%. Simulations of the EPICS AO system @asgmted bLLKQ.LkLa.kQﬁkL&MQL'LLLaLd
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APODIZER | LyoT sTOP
FOCAL = e |
w = - — ___‘___:—::;___J
= =5 N
— == _—
— __——/‘gy S
I
FOCAL
e _ MASK| | Focal mask:
= F stop or neutral

=l B filter

Figure 4.1: The two difraction suppression concepts considered. Top: Apodized Chronograph (APLC case).
Bottom: Diffraction rejection through apodization only and centralecof star image attenuated at entrance of IFS
(APOD case). —aﬂm 10).

The dffraction suppression concept is a very important subsysteanyohigh contrast imaging
instrument. The apodized pupil Lyot chronograph (APLQ_IﬁmeHZOQI'S) is one of the best consid-
ering the compromise between starlight rejection and gjiinput given the E-ELT aperture geometry.
It has an apodizing mask in the first pupil-conjugate plater aAO. This mask suppresses the Airy
rings in the sub-sequent focal plane, and scatters norreohigght outside the next pupil-conjugate
plane where the stop is located. That is why for the APLC cbgoaph the stop is not undersized
in opposition to the non-apodized Lyot chronograph. Howevesuffers from chromatic properties
impairing the speckles intensity and position correlatathin the IFS spectral range, especially
at medium and small angular separation. Suppressifigclion with an “apodizer-only” solution
(hereinafter APOD), which consists in an apodizer closénopupil, a focal mask in the entrance
of IFS without a Lyot stop, leads to only a moderate loss intlghput and light rejection, mainly
because of the small angular resolution of the E-ELT. Thiatgm is very simple and is intrinsi-
cally fully achromatic. The technology chosen for the depehent of this apodizer is based on the
microdots techniuna (Antichi etM 10). A prototype hasmdeveloped for the Fresnel-free exper-
iment for EPICSl.(.M.a.LL'Ln.eZ_eLHLZdOQ). We have chosen taltesapodizer-only solution for EPICS
because it is a simple concept and enables to conserve ttldespspatio-spectral correlation proper-
ties over the largest spectral bandwidth. Both APLC and ARipiical configurations are shown in
figure[4.

Direct imaging of faint exoplanets from the ground requidé&erential techniques to remove
the speckle noise. There are two basic methods that perfeusistask. Firstly, the simultaneous
differential imagingl_LRa.Q'Ln_e_e.tJeh_lé99), and its generabrafor IFS datacubes, the spectral de-
convolution (SD) techniqu&(ﬁ.p.a.tks_&_EHLd_ZbOZ). These @pghes exploit that speckles position
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and intensity at two dierent wavelengths are highly correlated, i.e., the spemk¢pilar separation
from the center of the FOV is directly proportional to wavejéh and to the spatial frequency of the

corresponding perturbation. Secondly, the anguledintial imaging ' 06) takes into
account that speckles position and intensity at twWiedent observing times can be correlated because
of the quasi-static nature of the instrument optical distnces. Therefore, field rotation wilffact
differently df-axis point sources and speckles.

The dficiency of angular dferential technique depends very strongly on the stabifiti@wave-
front errors and it requires to freeze the telescope optitsnespect to the instrument. Theittulty
of an optical derotator implementation and the uncertaiotiay of the future segmented E-ELT
wavefront error temporal stability has privileged the us8D as a main technique for speckle rejec-
tion for EPICS. Nevertheles]s__MmAt E.L_dOll) proves sitttulations for SPHERE IFS datacubes
.B_euzi.t_eLa”_ZO_d8) that angularfiérential imaging improves in a factor of two or three the castt
attained when applied together to SD.

Another important reason to prefer SD is that the specklerohatic elongation will be very large
on E-ELT. Therefore, the use of the large speckles positaiation with wavelength to disentangle
them from a point source will be veryfeient and calls for the largest spectral bandwidth possible

Finally, the wavelet transform (WT) for unidimensional @analysis has been widely used in as-

tronomy (e.g&mmmwhedwmlbods) to diierentiate noise-like

components from real signals, or to obtain significant patans of period series, like the amplitude,

the phase or the period itself, which can be representativght variations from variable stars.

blamﬂdl.k&di_&b@ proposed the WT for period deteatiun of sine- and burst-like signals
superimposed with a low-frequency sinusoidal functione $earch for periodic signals is common in

many areas of astronomy and reveals the presencétefeht physical processes, e.g., variable stars,
pulses, eclipses in two-body systems or occultations bgegsising accretion disk. Classical methods

for period detection lie into two categories. First, epdaliing methods (PDI\/i;j.LelIingmlal'_f_lﬂl78)
which are based on the analysis of the dispersion of tfierdint light curves produced by folding the

data over a range of trial periods. These methods tend te/fe@h more-than-one periodic signal are
present in the dataset, specially for low signal-to-no&mr(SNR). Second, Fourier-based methods
(CLEAN: lRQ.b_e.Lts_eLal,_miW) that use the FT in combinatiothwlieconvolution techniques to deal
with the data sampling function. Their behavior in the preseof noise is better with respect to

PDM but they fail in the detection of non-sinusoidal sigh&g., a pulse emission over an orbital
period.thaLu_el_ilill_(Zbe_ZdO@ decomposed in wavelet¢stiae temporal signal and applied PDM
and CLEAN to each of them to create a sort of wavelet-basedganalysis method, i.e., WPDM
and WCLEAN. The authors proved that the performance of veasMedsed algorithms was always
better with respect to their non-wavelet-based equivatehigh-noise levels, as well as the numerical
accuracy of the detected periods.

Another interesting application of 1D wavelet decomposiiis found in lunar occultations (LO)
programsmo& This technique takes advambte relative Moon movement to ob-
tain stellar high angular resolution with ground-basedeobetions. When the lunar limb interposes
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between a star and the observer, because of the ondulating iwd light, the disappearance of the
object is not immediate. During a short but measurable desictime the variation of the source
intensity is described by a characteristiéfidiction pattern of fringes and a decreasing light profile.
The analysis of such intensity evolution in tim@ays the possibility to calculate the physical param-
eters of a binary system or to deduce the presence of aniaccditk surrounding the main star. In
order to do this, accurate determination of the instant wtheroccultation event occurs is essential.
IEO.B_eLai.l_(ZO_dS) empirically found that such instant isakted with higher precision from the sev-
enth wavelet scale in which the original dataset can be dposed. Once this event time is obtained,
the stellar and the background intensities are easily dmtfrom the fifth wavelet scale. This pro-
cedure allows to design an automatic pipeline to analyzgelaets of data, with the corresponding
reduction of the time needed for an initial preprocessisg.ta

4.2 Spectral deconvolution

Spectral deconvolution (SD) was first proposet]i_b;LS.pa.Lks_d @).OJZ), who applied this technique
to detect faint companions in simulated IFS 571-framesatidias of a 2-m telescope with a Lyot

chronograph. SD makes use of the fact that the radial latatidhe speckles and residuals of the
Airy pattern are proportional to the wavelength, while thedtion of a companion with respect to
the star is fixed. Re-scaling all individual images of an gné field spectrograph (IFS) datacube,
proportional to its wavelength, by Fourier interpolatiorfit a common grid, aligns the speckles but
makes the planet move inwards with increasing wavelength figurd4PR). Speckles are now well
fitted by a smooth (e.g. a low-order polynomial) function &zle spaxélwhile the planet produces

a narrow bump when travelling through the pixel at a certa@velength range. Since this bump is
badly fitted by the smooth function, the subtraction of thesiihoves most of the speckles and leaves
the planet.

Figure 4.2: Planet moving from the initial position (blue arrow) to thedi position (red arrow) in the scaled datacube.

The SD procedure is shown in figure14.3. After the first fittingps any outliers at the &-
level (possible planets) are removed from the spaxel, asgtbcedure is repeated until no value in
the sample exceeds the fit by two standard errors. Once trerfidtiskewed anymore by possible
signals, it is subtracted from the spaxel under considaratirhis step removes most of the stellar
modulation, but leaves possible planetary signal intadte fiesulting images are then re-scaled to

Ispaxel: all the pixels at the same location within a IFS da#taci.e., a one-pixel-size datacube containing the sgectr
information at this location.
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the original grid, so that now a planet would be aligned onddime pixel again. Finally, the cube
is collapsed to produce one final image. Changes in the PSpholagy, which naturally occur
for a wide wavelength range where the Strehl ratio changgsfantly, are ignored. Nevertheless,
these changes are smooth when one considers many chamnets da here, and can be fitted with
a moderately smooth polynomial. Spectral deconvolutiapiglied to the IFS datacube to typically
increase the contrast by two or three orders of magnitude.

1.2 4 o
Wavelength [micron] Wavelength [micron

Figure 4.3: Polynomial fitting process in a particular spaj@tation. Left: first fit trial. Middle: final fit. Right:
residual. Black curve: signal present through the spaxede@curve: low-order polynomial fit. Blue curvesov2evels.

Note how either the planet signal (centered @5im.) and a higher order chromatic modulation (centered 2f.m.)
have been recovered.

From figure[ZB (right panel), one can see that only a smatigroof the planetary signal will
not be taken into consideration, on the other hand, the lalerditting will leak through significant
modulation induced by the chronograph. Therefore, thermotyial fitting approach can leave out
significant residuals (the small bump on the right of the ptanHence, classical SD has two main
problems. First, it cannot remove PSF features which do calesspatially with wavelength. Un-
fortunately, a chronograph produces non-trivial modaolabf the residuals close to the axis and, in
this region, SD is not asflective as further out. Second, speckles that are close toptieal axis
do not move significantly over the entire wavelength rangenv@rsely, in the numerically rescaled
datacube, close-in planets “dwell” on single spaxels amdoea“killed” by the traditional approach
(see figurg¢Zla).

The classical iterative SD method can be summarize as fsilow

1. Scale spatially, by Fourier interpolation, each imagtenlFS datacube to fit a common grid.
Now, the Airy rings are aligned while planets positions agpathrough the datacube: they get
closer to the star with increasing wavelength (see fifute 4.2

2. Fit a 3rd-order polynomial to the signal present in thexepand reject all those points above
20-. Repeat this process until no outliers are found (see flgid,deftmost and middle panels).

3. Remove the final fit to the signal present in the spaxel (geedid.B, rightmost panel).
4. Re-scale the datacube to the original grid. Planets woeilaigned over the same pixel again.

5. Collapse the cube to produce a single image.
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IIh.a.Lt&eLdl.l_(ZO_d?) make use of SD to extract H- and K-bandtspef the faint close-in source
AB Doradus C, observed with SINFONI instrumebL(IhalL&Hﬂ.ﬁB.%lB) at VLT. ABDor Cisa M
dwarf companion orbiting around K dwarf AB Dor at separatio200mas, with a contrast magni-
tude in K-band of fhag
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Figure 4.4: Polynomial fitting process for a close-in planet. The lowesrdolynomial “fits” correctly to the planet
signal thus subtracting the planet contribution and awngjdlis detection.

4.3 The 1D Wavelet transform

The wavelet transform (WT) is one of the most successful erattical tools to perform a multires-
olution decomposition of a signal or image. Such decompusis based on the local frequency
content, hence, each one of the resolution channels csraai@presentation of a certain frequency
range. The WT is an intermediate representation betweeRdteer (FT) and the temporal one (or
spatial one for 2-D data). Since wavelets are defined withighd frame (i.e., they are strongly local-
ized in time or space), they give us a combined idea of botltotted content of the frequencies and
their temporgkpatial location, as opposed to the FT, which only is ableffer @ global view of the
frequency content of the signal.

Given a signalf (t) (wheret is any physical variable indexing the X-axis, e.g., likegior wave-
length in the case of IFS datacubes) a sequénfé(t)] of approximations off (t) can be constructed.
EachF [ f(t)] is specific for the representation of the signal at a givaalesor resolution and repre-
sents the projection off(t) from the signal spac& onto subspacé&,,. The diferences between two
consecutive scalemandm + 1 are the corresponding multiresolution wavelet signal:

wn[ (O] = Fm[ f(O] = Fmea[ F(0)]. (4.3)

This wavelet signal can also be expressed as:

wnl FO] = ) Wou(F)yrmi (1), (4.4)
|
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where coéficientsWy,(f) are given by the direct wavelet transform of the sigh@):

wmn:[mumem (4.5)

(%)

The codficientsWy,(f) are called the wavelet cizients off (t) and they correspond to fluctu-
ations of the signaf (t) near the point at resolution levein. Equatiorf4b represents the expansion
of the signalf (t) in the set of basis functions,(t). These basis functions are scaled and translated
versions of the so-callehother wavelet function(t). Therefore, all the basis functiogs,,(t) have
the same profile, i.e., the mother wavelet function profilee WT describes at each resolution step
the diference between the previous and the current resolutioeseptation. By iterating the process
from the highest to the lowest resolution level we obtain @pydal representation of the signal.

Unlike the FT, which spreads the noise across all the fregjagenthe WT confines the noise
contribution only to the highest frequency wavelet signal.

4.3.1 The “atrous” algorithm

Both |Qta1u_el_éll.|_(20_<|)2) al{d_EQ.rs_el Ja.L_dOOS) obtained aetsevavelet decomposition by means
of the well-known Starlet transform or “a trous” aIgorithﬁh&ns]Mi;Slamk.&.MuﬂdM%;

|Sla.LQk_eLzJI|._20_’lO) for one-dimensional signals. Therefgiken a signap(t) the following sequence
of approximations can be constructed:

Fi(p) = p1,  Fa(p) =p2,  Fa(p2) =ps, ... (4.6)

The algorithm performs successive convolutions with a p@ags filter, which is designed by
means of the so-callethther wavelet functiomr scaling functiony(t). For abinary scalingrep-
resentation, in which each scale expresses a double nesolith respect to the previous one, that
convolution is written as:

p() = 5 < p(0.0( ) > (@.7)

In our work, we use a scaling function which has the main-lptufile of the functionsinc(t),
in coherence with the shape of the planet signature througlspaxel. This leads to a convolution
with a 5-element normalized mask. The sequencae versions of the original signplat different
resolution levels,

Therefore, the wavelet signals are computed &eminces between two consecutive approxima-
tions pi_1(r) and pi(7), i.e., wi(r) = pi_i(r) — pi(r) (i = 1,2,...,n), beingpy = p. It also can be
expressed as:

@) =5 < pO.u () > 8)
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wherey is the aforementioned mother wavelet function and it is eefias:

g s0- )

thus highlighting its band-pass nature. The inverse réoactson formula can be written as:

n
p=> w+p, (4.10)
i=1

wherew; are the multiresolution wavelet signals apdis the residual wavelet signal (indeed,
n = r, but we explicitly substitute by r to enhance the concept mdsidua). Many other wavelet
decomposition algorithms usually reduce the number oftpdtgpically by a factor of 2) when going
through decreasing resolutions (increasing scales). fuodess is called by the named#cimation
However, one of the advantages of the Starlet transformeisigely the rejection of the decimation
process, i.e., the “a trous” algorithmusdecimatedTherefore, all thosg; (and subsequently all the
wj as well) have the same number of points than the originabsigy This allows to work directly
in the temporal space (wavelength space in the case of IE8uwas) with the frequency content of
the wavelet signal, instead of working on the decimated Vedspace.

4.3.2 Proposed algorithm

The use of the aforementioned binary decomposition is wgrigél in wavelet analysis. Hence, the
original signalpy has double resolution with respectg such signap; has double resolution with
respect top,, and so on. In our particular case, if the spectral datacsdermed byN = 100
wavelength-points (i.e., there are 100 channels, eachtamearticular wavelength) and our highest
frequency scale is determined by a scaling funcig@) sampled with 5 points, then the minimum
resolution accepted fgoy, would be 5,p; would have a resolution of 1@, of 20, p; of 40 and so
on. In other words, the wavelet plang would contain the frequencies representative of a reswiuti
until 5 points,w; those frequencies representative of a resolution between 3.0,w, from 10 and
20, etc. Hence, a total frame of 100 wavelength-points wbaldompletely decomposed in 5 wavelet
planes plus 1 residual.

A difficulty arises when taking into account the slowly varying poment present through the
spaxel. Basically, this means that the initial wavelendiags exhibits a value much larger than the
one showed by the final one. The WT we used is based on the symmic@tvolution of the signal
of interest with the scaling function, which means that tkigeznes of the signalféect each other’s
result. In other words, points close to 0 are used to caleulsd wavelet response at points close
to N — 1 and vice versa. If the user is interested in the analysisadr&in periodP, assuming?
is an odd number, only points fror% until N — g are really usable, e.g., N = 100 andP = 20,
then only frames from 10 to 90 are numerically represergativthe real frequency content of the
signal, since the rest of wavelet ¢beients at the edges of the wavelength series are highly skewe
by the slow variance along the spaxel. This is specially dtaomvhen one is interested in working at



4. High contrast exoplanet imaging using spectral deconvation and the wavelet transform. 93

low-frequency values, i.eB ~ N or when a planet signal is close to the spaxel extremes.
However,WlMZ) based his work on ondulatonyadggwith several periods around
a constant value, hence, there always were more than oneletengeriod further out of the time
series edges; where|as_EQLs_€I:t[a.l_dZOO8) tried to searcmia(ffa@ LO event time) between two well-
localized energetic-constant signals, i.e., the one bdfue LO which is dominated by the star flux,

and the one after the LO which is dominated only by the baakglo Furthermore, and depending
on the observation, the point in-between could be easilygalan the middle of the time scale in most
of the cases. Indeeld._B)_Ls_eL laLdOOS) reported some casge s wavelet method failed because,
due to certain observing conditions, it was not possiblestater the LO event in the middle of the
time scale, being displaced to the edges.

In order to partially alleviate this problem, we propose xtr&olate the signal beyond its real
values. Therefore, point number1”, instead of pointN — 1, would be used to calculate the wavelet

codficients from point 0, while pointN”, instead of point 0, would be used to calculate the wavelet
codficients until pointN — 1. Such extrapolation creates a sorpafldingalong the spectral line to
“protect” the real values belonging to the signal. If suchuea belong to a left- or right-side planet
signature, we would be extrapolating the planet signataedfi

We have tried several methods to perform such extrapolagign, fitting a low-order polynomial
to the first and the last 5 or 10 wavelength points. Howevefpwed our best results simply extending
the signal by means of a straight line with the same slope sltiogywthe first and the last 5 or 10 points.
Finally, we add to the extrapolated points an estimatioheftigh frequency variations present in the
real signal to avoid the creation of false high-frequencyeliet codficients in the transitions between
the real points and the extrapolated ones.

Of course, it must be admitted that this extrapolation isafrtbe main weaknesses of the wavelet
analysis for SD, the lower is the frequency of analysis theenmmportance it is, since more extrap-
olated points, together with real values, would be used ltutste the wavelet cdicients. It would
be necessary a deep inspection of, first, the best way ofrparfg such extrapolation and, second, its
consequences over the final reconstructed image. On thelathd, the price to pay for not using it
is the rejection of real observed wavelength values thrahgtspaxel, i.e., the lower is the frequency
of analysis the larger the number of rejected values would be

Finally, the proposed wavelet SD algorithm is outlined dotes:

1. Scale spatially, by Fourier interpolation, each imagthenlFS datacube to fit a common grid.
Now, the Airy rings are aligned while planets positions apathrough the datacube: they get
closer to the star with increasing wavelength (fiduré 4.2).

2. Decompose all the spaxels, using the 1D Starlet transfarrthe desired resolution levels with
the corresponding scaling function (figlirel4.5).

3. Fitalow order polynomial to the wavelet representatibiine spaxel and reject all those points
above 2r. Repeat this process until no outliers are found.

4. Remove the final fit to the signal present in the waveletadign
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Spaxel signal and wavelet residual (APOD, Talbot parameter = 1, source 10~-7)
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Figure 4.5: Wavelet decomposition of the planet signal through the spaippermost left panel: original signal and
residual wavelet (red dashed curve). The sum of all the weapdbdts plus the residual is equal to the original signature

5. Re-scale the datacube to the original grid. Frequencypooents from the planet at the spaxel
would be aligned over the original planet pixel.

6. Collapse the cube to produce a single image, which is septative of the spaxels frequency
content at this resolution level.

7. Go back t@R if diferent wavelet resolution levels are desired.

Note that the final image will only have those frequency congmis present along the spaxels
considered by a particular choice of a level of resolutiohe Tser can build as many of such single
images as he wishes, all of them containing a particularvatef frequencies along the spaxels of
the scaled datacube. We also want to stress the fact thattthg @if a low-order polynomial at point
B is only a particular choice motivated by the need of a puregarison between the classical SD and
the wavelet-based approach. On the other hand, this fitthoghelps to remove residual modulations
not really belonging to real sources, which can be introdutiging the decomposition process.

The WT dtfers more versatility and possibilities to analyze the digvtach results at each of
the wavelet scales, e.g., it would be possible to search &otinmma that would be representative of
the presence of planets. It would also be possible to deceenpach spaxels atftérent wavelet
scale depending on the angle separation, i.e., bearingnd that planet signatures further out are
narrow bumps, while close-in planets can cover the wholeslesngth series, one could think in using
high-frequency resolution levels for the former and loeguency one for the latter. However, we
consider a better strategy to create several images desomgpall the spaxels of the FOV using the
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same frequency resolution at each one. In that way, it cans&@red that all the information along the
spaxels will be classified at some of the final images, whifetise we assume the risk of loosing
information due to a bad choice of the frequency level at #iqdar angle separation. Preliminary
results of the joint use of WT with SD were presented_b;LG_Iz.(BlﬂI. kZQlIl) for simulations with
HARMONI instrumentl(lhal&et.ﬂLZQllO) and Lyot chronodrémr E-ELT.

4.4 Simulations

The simulations we used to test both the classical and theleiaspectral deconvolution (SD) tech-
niques have been designed to evaluate the limiting conbfagétection as a function of the angle
separation. Furthermore, we also want to test the perfarenah the algorithms with respect to
the type of chronograph and chromatic aberrations intreduic the light wave by the Talbotfect

).

Fourier transform of the field after the Lyot stop gives thectic field in the detector plane, and

the squared modulus of this quantity yields the final on-aétantaneous PSF. For the images of the
test planets the electric field is propagated only throughlLiyot stop and the apodizer for APLC,
giving the df-axis PSF. For the APOD case there is notféedéent optical path for the light coming
from the main star and the companions. We scale and shifi8Fs (dt-axis PSF for APLC) to
simulate eight planets located at angle separations of 80151, and 18dhas At each of these
positions two planets are placed to enhance their presemdbgs contrast curves calculated from
the reconstruction. Therefore, each dataset is composgglahets. Dataset are polychromatic and
covers the near IR range from 950 to 168&fin 110 channels to calibrate and subtract residual stellar
contribution after AO and diraction suppression. The spectral range was pre-detedniipehe
additional objective of this project: a cross-check wita EPICS simulation results. Originally, the
0.9 — 1.7umrange was chosen by the EPICS team because it contains théeossting molecular
bands:O,, CO,, H,0O, andCH,. It should also be mentioned that the planet finder instrurfwerthe
Very Large Telescope (VLT), i.e., SPHERE, will have an IFSkuag in the similar spectral range
6).
All the 8 planets have the same contrasfedence with respect to the main star. To evaluate the
detection limit the 8 planets magnitude is changed to cova@nge of contrasts from % 107 to

1x 107, i.e., we have created 4 simulations with 8 planets eaclof atlem with the same contrast.
In such way we can verify, for example, if planets with costrdifference of 1x 10-" or 1 x 1078
are detectable at angle separations between 58 anddslg.g., if the companion of ¥ 1078 is
reconstructed at the position of Ihésbut it is not at 58as whereas the planet ofx2 1077 it is,
then, it is possible to ensure that the limit of detectionsiources at angle separations of dibkis a
contrast of 1x 10°8.

In all our simulations we assume an IFS is present but we dsimatlate spectra (we assume a flat
exoplanet spectrum) to keep a certain simplicity, which eserconvenient to show the performance
of the WT over IFS datacubes. Besides, we do not have a detadelel of light propagation through
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a spectrograph. Such a model depends on the design of an IBREBor TIGER configuration,
seel Antichi et al.[(2009)) and is certainly outside the scopthis work. On the other hand, we
have decided to model Fresnel propagation, which depentteearumber and relative separations of
optical surfaces within an instrument (Marois et al. 2008)useful quantity to evaluate the impact
in terms of Fresnel dliraction of an optical element is the distance of the optic pwujil conjugate
expressed in characteristic Talbot length units. The dhariatic Talbot length.t is defined as:

2A2
7’

whereA is the smallest aberration spatial period considered (fi®d corresponds to the highest
spatial frequencies the AO can correct, projected on thsidered optical element) ands the largest
light wavelength to be considered. Therefore, simulationkide chromatic aberrations at 1 and 10
Talbot lengths from the pupil.

Ly = (4.11)

Finally, all these simulations have been also replicate@30 43, 73, and 146asto increase the
range of angle separations.

APOD: Talbot parameter = 1 &

&
L 2T}
Lol
-

Figure 4.6: APOD case, Talbot length equal to 1. Planet contrastlD®. Peak planet within the larger red circle has
been used as normalization reference. Green square isaisalttilate the statistics shown at talfles 4.1[and 4.2.

Figure[46 shows the resulting image after applying the SBrtiejue to the wavelet signal scale
number one, in the case of planet contrast of 108, APOD case with Talbot length equal to 1.
Because, in the first place, the main star flux is generdfigceged by the use of masks, secondly,
the behavior of either the classical SD and the wavelet Shercenter of the FOV is very fierent
and, finally, we are more interested in how bright is the retmicted source with respect to the
surrounding background, for all these reasons we have el dltht reconstructions obtained from
the classical SD or from the wavelet SD are normalized ugiegriaximum peak of their particular
recovered planet within the larger red circle at &% which is always the reconstructed planet less
affected by chromatic aberrations, and further from the cesfténe FOV. Pixels within the green
square, also at 184as are used to devise some statistical quantities of the lbaakg.
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Figure 4.7: APOD case, Talbot length equal to 1. Top row: planet confragi0°, linear scale from 0 to 1. Bottom row:
planet contrast ¥ 1078, linear scale from 0 to.Q. Left column: image obtained from spaxels wavelet scalgsber 1.
Middle column: image obtained from spaxels wavelet scalesber 2. Right column: image obtained from the classical
spectral deconvolution approach, polynomial fitting orelgmal to 3. Allimages have been normalized with respectdo th
maximum peak of the planet present at position (451,538)dHenegyer circle at figurEZ416 —.

Figure 4.8: APOD case, Talbot length equal to 10. Top row: planet confras10-°, linear scale from 0 to 5. Bottom
row: planet contrast ¥ 1078, linear scale from 0 to 6. Left column: image obtained from spaxels wavelet scales
number 1. Middle column: image obtained from spaxels wad\sglales number 2. Right column: image obtained from
the classical spectral deconvolution approach, polynbiittiag order equal to 3. All images have been normalizedhwit
respect to the maximum peak of the planet present at po¢iteh538) —red larger circle at figure .6 —.
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45 Results

The final reconstruction achieves high dynamic range thrdbgee functionalities. Firstly, Image
sharpening through turbulence compensation XAO. Secodiifyaction suppression through APLC
chronograph or apodization-only (APOD case) and, in the thliace, we implement the SD technique
with and without WT to remove the residual stellar light frdhe spectral data cube. It should be
mentioned here thafiécient chronographic starlight suppression is helped byagrd the image to
a narrow spot with AO, i.e. the second step in our simulatisnstrinsically linked to the first. If
AO works as expected thefthiaction-limited spot hits the focal-plane mask and mosteflight is
blocked.

Figures fronTZl7 t€4.10 show reconstructions when SD teglas are applied over the original
signal present at the spaxel and the three first wavelet #a@e be decomposed, when both APOD
and APLC diffraction suppression solutions are used, with Talbot lengtjual to 1 and 10. In
general, the use of wavelets increases the detection lmone order of magnitude from s
Limiting contrast for the APOD case, Talbot length equal tdigure[4T) is established atx110°
between 111 and 184as and at 1x 1078 between 73 and 1has where wavelet cdécients, at
scales one and two, belonging to the planets are clearlglgibeyond the background level. These
detection limits must be increased untik110® and 1x 10" when SD is applied over the whole
original signals at each spaxel. An increase in the Talbiggtlefrom 1 to 10 &ects the results (figure
F8). Sources at contrast<110°° are not visible anymore, whereas at contrast 108 are barely
visible at 73nas

For APLC chronograph (figurds—4.9 and4.10), results arelainm terms of the gain obtained
when WT is used with respect the classical approach, i.e.potter of magnitude from T3as being
the limit of detection at &k 1078 between 111 and 184as and at 1x 10~’ between 73 and 1hias
The increment of the Talbot length does not imply a big modifan of those values. Indeed, the
classical approach results are mofteeted by the Talbot length, whereas high-frequency wavelet
reconstructions appear to be almost insensitive to thepeater. It must be said that the further away
optical elements are from a pupil conjugate, the larger tlesriel difraction impact on the speckles
spatio-spectral correlation (see equaflon¥.11). In ondeds, to reduce the influence of the Fresnel
diffraction, all optical elements in the common path must beugated to a distance close to the
pupil. This distance must not be larger than one charattefialbot length at the longest wavelength
as defined for the highest spatial frequency of the abemafjprojected on the optical element) to be
considered for a given FOV. Hence, reducing the Talbot keigyone of the key points in the optical
design of EPICS (Verinaud etlal. 2010).

Tabled 4]l an@™4].2 show the statistics within 2P0 pixel square centered at ¥84s(figure
H.8). Noise level in this square is measured in terms of thedstrd deviation beyond which a real
source should be detected. Wavelet reconstructions frare$gignal scales one and two always
show better values than the corresponding one for the clsSD approach, around twice smaller
standard deviation for APOD and between four and seven tsnesdler, depending on the Talbot
length, for APLC. This is, in our opinion, one of the most imamt results from this paper, i.e., the
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Figure 4.9: APLC case, Talbot length equal to 1. Top row: planet contrastO3, linear scale from 0 to 1. Bottom row:
planet contrast X 1077, linear scale from 0 to.Q. Left column: image obtained from spaxels wavelet scalgsler 0.
Middle column: image obtained from spaxels wavelet scalesber 1. Right column: image obtained from the classical
spectral deconvolution approach, polynomial fitting orelgmal to 3. Allimages have been normalized with respectdo th
maximum peak of the planet present at position (451,538)dHeneger circle at figurEZ416 —.

Figure 4.10: APLC case, Talbot length equal to 10. Top row: planet cohfras1078, linear scale from 0 to 1. Bottom
row: planet contrast ¥ 1077, linear scale from 0 to.Q. Left column: image obtained from spaxels wavelet scales
number 0. Middle column: image obtained from spaxels wasales number 1. Right column: image obtained from
the classical spectral deconvolution approach, polynbiittiag order equal to 3. All images have been normalizedwit
respect to the maximum peak of the planet present at pogitteih 538) —red larger circle at figure .6 —.
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use of wavelets allows APLC chronograph to obtain similaules than APOD at angle separations
from ~ 70mas When wavelets are not used, noise level for APOD and APL@¢Tdength equal
to 1) are, respectively,0213 vs. 2106, i.e., ten times larger for APLC, whereas thi$adence is
only three times larger for reconstructions obtained fromwavelet scale number 1, e.gQD13 vs.
0.0323. For Talbot length equal to 10 these values are of the sader of magnitude, e.g.,0549
vs. Q0696. This shows that the wavelet post-processing SD is tabbdassify planet frequency
contribution and chromatic aberrations introduced by ARbGifferent wavelet scales, preserving in

such way real sources frequency content, at those anglessieps.

Talbot length= 1 Talbot length= 10
Minimum Maximum Mean Standard deviatigriMinimum Maximum Mean  Standard deviation
plane w0 -0.1256 0.0123  -0.0563 0.0261 -0.2306 0.1880 -0.0038 0.0704
plane wil -0.0391 0.0295 0.0033 0.0113 -0.1507 0.1876 0.0024 0.0649
plane w2 -0.0230 0.0268 0.0037 0.0090 -0.2257 0.1959 0.0051 0.0863
no wavelets| -0.0441 0.0865 0.0128 0.0213 -0.2275 0.4509 0.0758 0.1084

Table 4.1: Statistics from green square. APOD case. Planet contrast 1078,

Contrast curves for these reconstructions are shown inefs§drlll an@C412. They have been
calculated, at each angle separation, as the value whicreisiriies above the standard deviation of
the background. High-contrast imaging community use tloesees to show the detection limit of
their planet recovery methods. In general, the communéiestthat “any real source which is, at
certain angle separation, above the value shown from thesescan be detected”. However, such
statement does not take into account tifect of the particular method over the real planet flux. In
other words, classical SD tends to completely subtract theffom the planets that are very close
to the center of the FOV, since the planet signature coversvtivle wavelength range through the
spaxel (see figureE4.4). Hence, a contrast curve that shoveseatibn value of & 10°° at such
positions would not be representative since, to reach ¢visl | the planet is also removed from the
reconstruction. In the case of wavelets a similar problepeaps. The total planet flux is distributed
along all the wavelet scales, i.e., to obtain the total flinafaertain signal all the wavelet scales and
the wavelet residual must be considered (see equiaiioh. 4TH)§ means that a contrast curve of a
certain wavelet scale is not really representative if trenet frequency content is not contributing
to this scale. Furthermore, wavelet signals can alstesfrom real flux removal, as the classical
approach does. For these reasons, we have opted to calcotdtast curves keeping the presence
of the planets so their real contribution can also be somefisivie. Besides, for the sake of clarity,
contrast curves have been calculated from the non-norethdidginal reconstructions, and excluding

the spider vanes contribution.

Talbot length= 1 Talbot length= 10
Minimum Maximum Mean Standard deviatigriMinimum Maximum Mean  Standard deviation
plane w0 -0.1213 0.0522  -0.0345 0.0300 -0.2727 0.1472  -0.0070 0.0648
plane wil -0.1284 0.0683  -0.0071 0.0323 -0.2238 0.2311 0.0005 0.0696
plane w2 -0.3395 0.1826  -0.0110 0.0801 -0.3461 0.4160 0.0008 0.1213
no wavelets| -0.5679 0.8914 0.1543 0.2106 -0.4991 0.9795 0.1425 0.2394

Table 4.2: Statistics from green square. APLC case. Planet contrast 1078,
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Figure 4.11: Contrast curves, APOD case. Top row: Talbot length equal t8dttom row: Talbot length equal to
10. Left column: planet contrast equal to<110-8. Right column: planet contrast equal to<110~°. Note that bumps
at 25 and 6fasin the black solid line (classical technique), for Talbatdéh equal to 1 (top row), and at 25, 50, and
80masfor Talbolt length equal to 10 (bottom row) do not corresptmdeal sources, but to wrong artificial modulation
reconstructions.

Therefore, contrast curves confirm results we have prelyi@mwn, i.e., the detection limit for
APOD, Talbot length equal to 1, isx1107° (figure[Z11, top right panel) at angle separationrh84
where the signatures from the planets are clearly visibteenwvavelet contrast curves at such angle
separation, and % 1078 for Talbot length equal to 10 (figuie4]11, bottom left panet)the same
angle separation. In the case of APLC the detection limitxs1D8 for both Talbot lengths (figure
H132) from~ 100mas We want to stress that it does not really matter if some ottirdrast curves
reach a value of ¥ 1071°. To verify if a real source can be detected at such positemecessary
to really place a source and explicitly detect it to test & tecovery method is notfacting its flux
contribution to the reconstruction.

As explained in sectiof’4.2, classical SD is based in produalong the spaxel, by scaling all
the frames of a IFS datacube to a common Fourier grid, a pkgeal that is larger in amplitude
than the signal produced by the quasi-static speckles. djentow order polynomial fits well to
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Figure 4.12: Contrast curves, APLC case. Top row: Talbot length equal tBdttom row: Talbot length equal to 10.
Left column: planet contrast equal ta<110~7. Right column: planet contrast equal to<110°8. Note that the bump at
50masin the red short dashed line (wavelet scale number 0), fdr Balbot length equal to 1 (top row) and 10 (bottom
row) do not correspond to real sources, but to a wrong asifinodulation reconstruction.

this speckle signal allowing its removal and preservingglaaet signature. However, higher order
chromatic aberrations that are introduced into the spaagisalso be reconstructed (see fiduré 4.3).
Since each wavelet scale is representative of a partictdguéncy content through the spaxel, and
since the planet signature igl@irent of these aberrations, not only in amplitude but alswidth, the

WT is a powerful tool for increasindifferentiating some planet frequency components with respect
to the high-order chromatic aberrations components at dhgesscale, thus facilitating the planet
identification.

Unfortunately, for angle separations closer to the centéneFOV, planets and aberrations fre-
guency contents are shifted to low frequencies. They can exeeed the wavelength limits of the
spaxel covering the whole range of channels (see figuie &ice planets, speckles and other ar-
tifacts are not longer ¢lierent in frequency, the benefits of WT are diminished. Resailtthese
separations are shown in figules4.13 Bndl4.14, where fooetslavith contrasts from & 10~ to
1x 10°° lie at 30 and 5aspositions.
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Figure 4.13: APOD case, Talbot length equal to 1. Top row: planet confrast0’, linear scale from 0 to 1. Bottom
row: planet contrast X 1078, linear scale from 0 to.Q. Column A: image obtained from spaxels wavelet scales rumb
2, polynomial fitting order 3. Column B: image obtained fropagels wavelet scales number 3, polynomial fitting order
3. Column C: image obtained from the classical spectral maation approach, polynomial fitting order equal to 3.
Column D: image obtained from spaxels wavelet scales nutdpeo polynomial fitting. Column E: image obtained
from spaxels wavelet scales number 3, no polynomial fitti@plumn F: image obtained from the classical spectral
deconvolution approach, polynomial fitting order equal {oiBe iteration). All images have been normalized with respe
to the maximum peak of the planet present at position (48),53ed larger circle at figule4.6 —. White arrows point
to the outer Airy disk, not planets themselves, of real sesipdaced at 3@as

Figure 4.14: APLC case, Talbot length equal to 1. Top row: planet contrasiil0®, linear scale from 0 to 2. Bottom
row: planet contrast X 10°°, linear scale from 0 to.@. Column A: image obtained from spaxels wavelet scales rumb
2, polynomial fitting order 3. Column B: image obtained fropagels wavelet scales number 3, polynomial fitting order
3. Column C: image obtained from the classical spectral mlamation approach, polynomial fitting order equal to 3.
Column D: image obtained from spaxels wavelet scales nutdpeo polynomial fitting. Column E: image obtained
from spaxels wavelet scales number 3, no polynomial fitti@plumn F: image obtained from the classical spectral
deconvolution approach, polynomial fitting order equal {oiBe iteration). All images have been normalized with respe
to the maximum peak of the planet present at position (48) ;53 ed larger circle at figule4.6 —.
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FigurelZ2 shows how the low-order polynomial fitting remstiee planet signal avoiding its cor-
rect detection. Probably, the iterative mechanism expthin sectiofi.4]2 is not the most convenient
for closer angle separations. Hence, we have also optedettk @hdfferent algorithm that consists
in fitting a 5th-order polynomial only for one iteration. Whase a 5th-order as a good trad&-o
between fitting chromatic aberrations and not removing teehmnformation from the planet. In
this situation, there is no need to fit any kind of polynomeathie wavelet spaxel signals, since the
WT in itself provides a natural way to remove the energy conapo that is always associated to the
presence of speckles. Since planets are now representedibysinc functions, their frequency
content is classified to the low-frequency wavelet scaldwrdfore, figureE4.13 afd 4114 show the
reconstructions obtained from the wavelet scales numbeatwl three.

Polynomial fitting order 3 No polynomial fitting
plane w2 plane w3 nowaveleisplane w2 plane w3 no wavelefs
planet1|| 0.2364  0.6854 0.4985 | 0.3037 0.9793 0.2937
planet 2| 0.2469 0.7357 0.5064 | 0.3464 1.1920 0.2913
planet 1| 0.2686 0.7202 0.5333 | 0.3135 0.8868 0.2958
planet 2| 0.2678 0.7381 0.5336 | 0.3174  0.9045 0.2962

Contrast 1x 107/

Contrast 1x 10°°

Table 4.3: Maximum peak for close-in sources. APOD case (fiurel4.18pok length= 1.

In general, WT scale number three always has the brightesinmaan peak with respect to the
surrounding background, for planets placed from 43 tm&8 The APOD case shows an improve-
ment of one order of magnitude with respect to the resultainbtl by APLC. It is even possible to
indirectly deduce the presence of planets at separations 28 to 3@nasby means of the detection
of the outer Airy rings, pointed by white arrows in some of gamels in figur€4.13.

Polynomial fitting order 3 No polynomial fitting
plane w2 plane w3 nowaveleisplane w2 plane w3 no wavelefs
planet 1|| 0.3341 0.8165 0.5817 | 0.2363 0.4705 0.4453
planet 2| 0.3530 0.9538 0.4835 | 0.2460 0.5202 0.4465
planet 1|| 0.2915 0.7635 0.5416 | 0.3226 0.8765 0.3251
planet 2| 0.2888 0.7493 0.5280 | 0.3232 0.8815 0.3246

Contrast 1x 10°°

Contrast 1x 10°°

Table 4.4: Maximum peak for close-in sources. APLC case (figurel4. 1dlodt length= 1.

Tabled 4B an41.4 show the maximum peak values for the tweefdaeconstructed in figures
H13 andZ14. Since all the images are normalized with otgpehe reconstruction of the source
at 184mas and all the planets at each dataset have the same cortiegpoint of value equal to 1
can be used as flux reference. For close-in planets we hafesreckthis method for our comparison
due to the dferent nature and large number of artifacts created duriegebonstructions, by the
different algorithms at such positions. The departure from #heevof 1 represents the planet lies
over a speckle bump or hole, @nda certain level of bias caused by the reconstruction ntethg.,
flux subtraction due to the polynomial fitting orfidirent flux contributions to the same wavelet scale
due the diference of the planet width because of the angle separatesuliR from tablesS 4.3 ahd#.4
show that planets from wavelet scale number three are-a588% brighter than those obtained from
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the classical SD approach for APOD, and around a 30% brigbtexPLC. The fact that there is no
need to fit any polynomial to the wavelet signal to remove flekle signal seems to be an advantage
since the brightest maximum peaks are generally obtaineshatpolynomial fitting is not applied.

4.6 Conclusions

We have used the unidimensional wavelet transform (WT) tmagose integral field spectroscopy
(IFS) spaxel signals atfierent scales of resolution, each of them representativeatain frequency
content, to improve the detectability of faint companiom®ctly imaged with EPICS instrument,
which will be installed in E-ELT. We have shown that the us®\6F allows an improvement in faint
companion detectability of one order of magnitude contirash angle separations equal torids

in comparison with the results obtained with the classipactral deconvolution (SD) approach.
Furthermore, APLC performance becomes similar to thatiobtewith APOD for these separations.
Close-in planets detectability, around 43%8mas also benefits from the application of wavelets.

In this work, we have used a dyadic and binary wavelet decsitipo based on a 5-poisinc(t)
father scaling function, which allows us to decompose a Wa®elength-point spaxel signal in 5
wavelet scales plus 1 wavelet residual. There is no needioevidy with one father scaling function.
We believe that the use of a dictionary of father scaling fisms with diferent widths would be very
beneficial, especially for the photometric estimation & $lources at closer angle separations, since
in that way the resolution of representation of the spaxeldtbe increased.

In other words, a 5-point scaling function, where for IFSadabes each point is a wavelength
channel, can classify the frequency content of the sigmah fwidths up to 5 points within wavelet
planew(f)S, from widths of 5 to 10 points within plartef, from 10 to 20 within plane);’, from 20 to
40 within planew®, from 40 to 80 within planev;”, and from 80 to 110 within the residual wavelet
plane. With this decomposition it is not possible t@elientiate, e.g., frequency content from 20 to 30
with respect to that from 30 to 40 points, since all of themdassified together in the wavelet plane
wéS. However, using a second 30-point scaling function allows$auclassify the frequency content
from widths up to 30 at wavelet plaméf’o. Therefore, a simple subtraction betweefiietent wavelet
planes produced by filerent scaling function will provide the exact frequencyoimmhation we are
requiring:

f30 f5 f5 f5
w0:30 = Wy — (W™ + W +w,"), (4.12)

wherew,g. 30 IS the signal representative of the spaxel content withueegy information from 20
to 30 points width. The study and application of this sortictidnary will be the topic of our future
research. We expect that the increment of the spaxel resoiatsuch way yields an improvementin
the photometric estimation of companions, as well as irr gectral characterization.
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Chapter 5
Summary and Conclusions

Adaptive optics (AO) systems are used to increase the $pasialution achieved by ground-based
telescopes, which are limited by the atmospheric motionrdégers above them. Therefore, the real
cut-of frequency is extended closer to the theoreticfitaction limit of the telescope thus allowing
more high-frequency information from the object to be pnesethe image (chaptéi 1).

Nevertheless, although the goal of image reconstructidrdaconvolution algorithms is basically
the same (i.e., to recover a “real”fitacted limit image, free of noise, from the object), and sitie
correction of AO is not complete (i.e., thé&ective cut-df frequency achieved by AO is still below
the theoretical diraction limit), the simultaneous use of such deconvoluéitgorithms over dataset
acquired with AO is possible and desirable to further enbaheir contrast (chapt&l 1, sectidns 1.3
andl.41).

Furthermore, multiresolution tools like the wavelet tfansy (WT) have been historically in-
corporated into multiple deconvolution schemes improuimgr performance with respect to their
non-wavelet counterparts. The ability of such transformsedparate image components depending
on their frequency content results in solutions that areegaly closer to the real objem al.

) and appendiXID). On the other hand, AO community gelyestates that, due to the high
variability of AO PSFs is necessary to update the PSF estimdating the reconstruction process.

Hence, the use of blind and myopic deconvolution algoritistmsuld be unavoidable and yields to
better results than those obtained by the static-PSFs (dﬁd.em_el_dll._zo_(b?).

Therefore, being the aforementioned paragraphs the dwstae-of-art of AO imaging, the main
conclusions of the present thesis are outlined as follows:

1. The static-PSF algorithm AWMLE has been applied overtdyisgstems simulated for the 3-m
Shane telescope to evaluate the photometric accuracy eetoastruction. Its performance
is compared with the PSF-fitting algorithm StarFinder, caniy used by the AO community.
Results shown that AWMLE is able to produce better resulia BtarFinder (chaptEl 2).

2. In addition, AWMLE has been tested together with sevetia¢oalgorithms and approaches,
like FITSTAR, PDF deconvolution and IDAC, for the same pupof diferential photomet-

107
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9.

ric precision, resulting in very competitive results, esplly for high Strehl ratios (SR) and
matched PSFs (appendiX A).

. Anew methodology for statistically testing the photorpef these codes has been designed for

AO observations. It consists of a double test which meaghesaverage photometric accuracy
and the repeatability of the results (chajider 2, se€figh 2.5

. A new deconvolution algorithm called ACMLE, which is belsmn the curvelet transform (CT)

and a maximum likelihood estimator (MLE), has been designedhe reconstruction of ex-
tended anfbr elongated objects (chapfér 3, secflon3.2.2).

. ACMLE has been tested together with AWMLE and bJmgopic codes such as MISTRAL

and IDAC over Saturn and galaxy simulated images for the 5ate kelescope. It is shown that
the performance in the presence of noise of the multiresolstatic-PSF algorithms is better
than myopic and blind algorithms; thus showing that the i@mf noise is as important as the
update of the PSF estimate during the reconstruction psdcesptef13, sectidn3.5).

. In the challenging context of horizontal path, severalh@rdson-Lucy algorithms, including

AWMLE (static-PSFs approaches), have been tested with RFST(myopic-PSF), showing
comparable results (appendik B).

. Aunidimensional WT, based onsinc father scaling function, has been applied in the spectral

deconvolution of integral field spectroscopy (IFS) datasubor direct imaging of exoplan-
ets with EPICS instrument, which will be installed at thetfieoming 39-m E-ELT telescope.
When this approach is compared with the classical non-waeele, an improvement ofriag
from angle separations equal tori&sis devised. Besides, detection of close-in planets, be-
tween 43 and 58asalso benefit from the application of wavelets (chapler 4).

. The use of wavelets allows the APLC chronograph to obtamfia results with respect to the

apodizer-only solution, especially with increasing Tallemgth, thus showing that WT classify
planet frequency components and chromatic aberrationgtateht scales (chaptEr 4, section

A3).

Preliminary results for HARMONI spectrograph are alssalibed (appendixIC).

A list with all the publications present in this work is shoas follows:

Baena Gallé, R. & Gladysz, S. Estimation oftdrential photometry in adaptive optics observations

with a wavelet-based maximum likelihood estimator. 201uiblieations of the Astronomical
Society of the Pacific, 123(905), 865-878. Press here to tiagh
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Gladysz, S., Baena Gallé, R., Christou, J.C. & Roberts, Diferential photometry in adaptive
optics imaging. 2010, Proceedings of AMOS Technical Canfee (Maui, Hawaii), E24.
Press here to download.

Baena Gallé, R., Nufiez, J. & Gladysz, S. Extended obgactirstruction in adaptive-optics imaging:
the multiresolution approach. 2013, Astronomy and Astysjits, 555(A69)._Press here to download.

Gladysz, S., Baena Gallé, R. Comparison of image restoratgorithms in the context of horizontal-
path imaging. 2012, Proceedings of the International $pdéte Optics and Photonics SPIE.
Infrared Imaging Systems: Design, Analysis, Modeling, dedting XXIIl. ed: Gerald C.
Holst, Keith A. Krapels, Proceedings Vol. 8355, 83550X. f_rkere to download.

Baena Gallé, R., Gladysz, S., Verinaud, C. & Kasper, M. Hightrast exoplanet imaging using
spectral deconvolution and the wavelet transform. Apfgibceto EPICS instrument. 2018
preparation.

Gladysz, S., Thatte, N.A., Salter, G., Baena-Galle, Rarkd, F., Tecza, M. & Jolissaint, L. High-
contrast, adaptive-optics simulations for HARMONI. 2nt¢eimational Conference on AO for
ELT (Victoria, Canada). 2011. Press here to access theaabsin the fficial Conference websiie.

5.1 Future work

This thesis opens several lines of research that will beesded in future:

e The world of multiresolution transforms is extremely hugel das produced dozens of new
mathematical tools. Among many other, it is worth to menttmshearlet transform, which is
an extensiofimprovement of CT, and the waveatom tool, which is intendecldssify textures
in the image. They should be studied and compared to edtabksr best performance and
their best field of application over AO images.

¢ Blind and myopic algorithms have proved their ability forga mismatches between the “real”
PSF that has created the image and the PSF that is used a®atiimstte in the reconstruction
process. However, their performance in the presence otnsibighly dfected. Hence, it
is convenient to investigate if it is possible to introduemd how to do it) multiresolution
transforms into these algorithms to improve their behavior

e For the study of IFS datacubes, other father scaling funstisith diferent shapes could be
proposed, in particular, it can be considered a “dynamicilisg function with the ability to
modulate its shape according to the low frequency signaéteemoved from the spaxel. This
could potentially improved the final photometry of the dédedaint source.


http://www.amostech.com/TechnicalPapers/2010.cfm
http://www.aanda.org/articles/aa/abs/2013/07/aa19489-12/aa19489-12.html
http://spie.org/x648.html?product_id=936362
http://ao4elt2.lesia.obspm.fr/spip.php?article586
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e Besides, the design of a dictionary of wavelets, which iaseethe decomposing resolution
across the spaxel, instead of a single dyadic decompostionmprove the photometric accu-
racy of detected planets as well as their spectral charaatens, taking full advantage of the
information contained in the IFS datacubes.
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Differential Photometry in Adaptive Optics
Imaging

Published in Proceedings of the Advanced Maui Optical aret&Burveillance Technologies Con-
ference (AMOS Conference). 2010, ed.: S. Ryan, The Maui &cdn1Development Board., p.E24.
Press here to download.

Abstract

One application of adaptive optics (AO) is high-resolutioraging of closely-spaced objects.
Determining diterential photometry between the two or more components ygtem is essential for
deducing their physical properties such as masgaaniaternal structure. The task has implications
for (i) Space Situational Awareness, such as the monitafriginter microsatellites or debris nearby
a larger object, and (ii) astronomy such as the observatibrtose stellar faint companions. We
have applied several algorithms to the task of determirtiegrélative photometry of point sources
with overlapping point spread functions in images colldatgth adaptive optics. These algorithms
cover a wide range of approaches in the field of image pracgsSipecifically we have tested: PSF-
fitting, multi-frame and single-frame blind deconvolutjonaximum-likelihood approach combined
with wavelet decomposition, and a novel one-dimensionabdeolution technique which separates
signal and speckle statistics rather than integrated sittea. We present results from applying these
algorithms to synthetic close binary stars foftelient observing conditions.
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A.1 Introduction

Atmospheric turbulence imposes a limit on angular resotutvhich could be reached by ground-
based telescopes. The application of astronomical adapptics (AO) during the last couple of
decades has allowedfffaction-limited images, rather than seeing-limited, tmb&ined with large
ground-based telescopes. One of the uses of AO is highatesolmaging of closely-spaced objects,
e.g. binary stars or faint companions such as exoplanetsrmming the diferential photometry and
astrometry between the two components of the system is tessien deducing the physical prop-
erties of the components such as mass or internal strukﬂg&t{.e_t_a.”_ZOJJO). AO, with a suitably
bright guide star, improves the detectability and photemeiccuracy but also introduces problems

which are not usually encountered in conventional seemgdd photometryl.(.Esstng.er_&_Edm.LuLds
Eéél%)

1. The structure of the PSF has temporal variation due tege@iriability. These morphological
changes are flicult to model.

2. The AO long-exposure point spread function (PSF) in thdiom- and high-correction regime
shows long-lived quasi-static speckles. Thed&alition-limited “lumps” are due to residual
aberrations not sensed by AO (for example non-common-patinsg and lie in the halo sur-
rounding the core of the PSF.

3. 1.The AO corrected PSF, and the associated angular tiesotun the sky, depend on the posi-
tion of the science object relative to the AO guide star. A@pensates for the turbulence in
the direction of the guide star and when the science objetgtlisseparated from the AO line
of sight, the compensation ars due to a dierent atmospheric volume. Thiffect is called
angular anisoplanatism.

Because of these factors, extracting quantitative infoiondrom AO images is challenging. AO
improves the detectability of faint companions over sedimited observations for a given telescope.
When the companion is well separated with a non-overlappiBg, aperture photometry takes care
of all the problems mentioned above. The problems occur weRSFs from each target overlap.

|EssJing.er_&_Edmun.<|isL(_’L9_b8) provide an excellent introdarcto the problem of AO photome-
try. One of the issues discussed is the precision of photynoet deconvolved images compared
with the PSF-fitting on the “raw” AO data. Two of the most-wlglesed deconvolution algorithms
were tested, namely maximum entro@@l&ﬁ) ancHRﬁleImn-Lucyl.(Bj.Qh.a.LdsH_n_lS.iZ:_Llllcy

). For PSF-fitting the DAOPHOT packag_e_(S_Lth_o.n_ll987S) eraployed. Extensive testing
on simulated faint companions showed that DAOPHOT perfdrcensistently better than the de-
convolution methods, i.e. its photometric precision waghbr compared to precision of aperture
photometry on the deconvolved images.
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It has been suggested that AO observations should be peatesth “myopic” deconvolution
methods because the PSF is not well known for most AO obs'sensatEa.nan.eLellLZlb?). For

myopic deconvolution, it is assumed that the PSF is onlyigdgrtknown. In some cases the PSF
is unknown and this is the regime for “blind” deconvolutiofypically these algorithms require an
initial PSF estimate. This estimate is assumed to be closketdaruth and the algorithm iterates
this estimate until a common solution for both the object #rePSF is found. Myopic and blind
deconvolution techniques often use regularization, eygmiposing object priors and PSF constraints
(Mugnier et all 2004). Jeries & Christoul(1993) developed an iterative blind dectution method
guided by the minimization of a penalty functional. An imgzott component for AO observations is
the penalization of spatial-frequencies beyond tigattion-limit of the observations. This package
(IDAC) restores a “clean” image from which relative photdngeand astrometry can be obtained
by using aperture photometry with a very small apertureli 8), or by model
fitting. IDAC is one of the algorithms we have tested in our kvor

PSF-fitting algorithms are applicable for crowded fields kehihe target comprises only point
sources. In this approach an analytic or empirical PSF id tsgether with a fitting algorithm to
match scaled-and-shifted copies of the PSF to the data. @epackage suitable for AO imaging
is StarFinderl_(_D_iQ_La.ilLeLalebO) which yields relativegiometry and astrometry in AO-corrected
crowded stellar fields. A PSF model is constructed from thghibest stellar images in the field.
The algorithm iteratively uses this model to locate fairgeurces which it then fits to extract the
relative photometry and astrometry. There are three degrefreedom: the total flux, andandy
positions for each component. The photometric and astrn@tecision of StarFinder applied to
crowded fields has been compared to results from blind detaton with the IDAC algorithm by
|Qhr;is].o.u.et.all.|_(20_d4). We also test StarFinder’s photoimatrcuracy in this paper.

A recent review of modern approaches to AO photomw.l.ﬂ)ﬂb) has demonstrated
that methods utilizing static, deterministic PSF shoultllm® dismissed against more modern algo-
rithms like iterative blind deconvolutiorll_(.LeLLB.Lumm.eLM.rall.l.ZOQb). Thus in our set of methods
to test we have included a new implementation of a Richardismy type deconvolution. This al-
gorithm, Adaptive Wavelets Maximum Likelihood Estimat&W¥YMLE- ( @Il), calculates an
image that maximizes the compound Poisson and Gaussidindikd of the data. It also performs
wavelet decomposition that helps distinguish signal frams@ which is important for improving the
stopping rule. Unlike myopic or blind deconvolution AWMLEbes not update the PSF so that it
could be more dependent upon the initial PSF estimate.

A novel approach for measuring photometry of faint compasim AO imaging has been re-
cently proposedl_(ﬁ_la.d;ﬁz_&_c.hﬂsj( d&_G_La.d;Lsz_laLal.Lﬂ)l In this method traditional 2-D
image deconvolution is replaced by a 1-D time-series dematien. The algorithm is based on the
observation that the statistical distribution of the pe&l©-corrected PSF is morphologically dif-
ferent from that of the fi-axis light, i.e. the quasi-static speckles. This morpgaal difference
between the two probability density functions (PDF) is ugedonstrain a one-dimensional, “blind”,
iterative deconvolution at the position of a faint companio a star. Separation of the signal and
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speckle PDFs yields theftierential photometry. The method (“PDF deconvolution™)s baen suc-
cessfully applied to medium-, and very-high-resolution éﬁservationsl_(_G_Ia.d;ﬁz_&_QhLis“)_LLZI)OQ;
LZO_’LSbb). We note that this PDF deconvoluti@ehather narrow range of applications
as opposed to the other algorithms discussed here (it oauges photometry for AO observations
of companions which lie within the uncorrected halo stroetaf the AO PSF). This algorithm re-

quires the companion’s location to be known. This can beiobtawith a matching reference-less

astrometric methoJL(_G_La.d;ﬁL&_QhLiﬁHQ_u_Zb09) which theesdill-advantage of the self-calibrating

nature of PDF deconvolution.

The goal of this paper is to focus on the description and uefggisting codes, and to compare
their photometric precision after application to AO dataaifblind’test. We do not discuss all the
issues pertaining to computing photometry in AO observati®iscussions which go into great depth

on these subjects can be found in the Ilterawmﬂmm 05).

A.2 Methods

In this chapter we compare results from the following algjornis, all of which were discussed above:

1. StarFinder: A PSF-fitting algorithm where the user-siggplPSF is iteratively fitted to the data
assuming a double-delta object.

2. AWMLE: A Richardson-Lucy type approach with a static PSF.
3. IDAC: Multi-frame blind deconvolution.
4. FITSTARS: A single-frame iterative blind deconvolution

5. PDF deconvolution: Using speckle statistics.

We have analyzed these algorithms foffelient AO correction scenarios. The AO correction is
typically described by the Strehl ratio (SR). This is thelpe&the AO-corrected PSF normalized
to that of an ideal PSF for the same pupil. There are four smalow vs. medium SR and
“matched” vs. “mismatched” PSF. For the matched cases,nibialiPSF has a similar SR to that
of the observation and for the mismatched cases the iniB&l Pas SR with a elierence of 6%. A
detailed description of the data is given in Secfion A.3.

A.2.1 StarFinder

StarFinder was developed to measure astrometry and phtitoimerowded fields imaged with AO
D_Lo.La.LI'.l_e.t_a.I“_ZO_Qb) The algorithm operates as followss#y, it derives a PSF template from the
brightestisolated field stars and generates a cataloguesimed objects by searching for the relative
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intensity maxima in the frame. Secondly, the images of tmelickate stars are analyzed in order of
decreasing peak intensity and each candidate is acceptdtedrasis of its correlation céicient
with the PSF template. The relative astrometry and photgnateach source are determined by
means of a least-squares fit, taking into account the canitoiibof the local non-uniform background
and of the already detected stars. These steps are repedtetbisources can be reliably found in
the residuals. A thorough description of the algorithm,lke routines, GUI interface and excellent
documentation can be found on the StarFinder's websker the results presented here, we used
neither the graphical interface nor the capability of StadlEr to extract PSF from the data. Instead
the algorithm was supplied with the observation, a “knowr8FRa single star observed after the
target) and approximate positions of the two sources inrttagje via the FITSTARS.pro subroutfne

A.2.2 AWMLE

AWMLE (b_taztlll.ZO_Qll;l_EoHs_ZOJbG) uses (i) Bayesian maximurelifiood approach, (ii) wavelet
transform -WT- |(_D_aub_e_(;hju§_l§88), and (iii) multi-resdﬂutsupportl(_Sla.Lck_&_MuLtaﬂh_lﬂb4). The
first maximizes the likelihood between the dataset and ailplessolution by considering a combi-

nation of the intrinsic Poisson noise of the signal and tlael+eut Gaussian noise of the detector as
well as describing the optical path by a static PSF that nesn@nstant throughout the reconstruction
process. The second decomposes the dataset into wavéést Bganeans of the a trous algorithm

2). The WT lets any signal or image be represenbédcales. This leads to simultane-
ous representation in both the measurement and frequeacgspin general, the noise will mainly
appear in the high spatial-frequency wavelet plane whiie@rshapes will appear in the low spatial-
frequency planes. For AO observations, this permiféeckntiation between the filiaction-limited
features (given byl/D) and the seeing-limited scale (given bjry). An example of wavelet decom-
position applied to an AO PSF is shown in FiglrelA.1. The thindlyzes each wavelet scale in order
to find significant WT cofficients that can be associated with real signal in an image.sfdndard
deviation of intensity within a local window (whose size dagds on the wavelet scale we are ana-
lyzing) is compared with the standard deviation of the whmne. Their diference allows one to
deduce the presence of a real source. This also helps to atitaity stop reconstruction of the image
at each wavelet scale independently. AWMLE was applieddattasets using one wavelet scale plus
a residual wavelet scale. A maximum number of 100 iteratvagiee enough to achieve convergence
in both scales. Note that AWMLE is not a photometric packdg@roduces a deconvolved image
which can be subsequently analyzed by an observer. Aftensdaiction, aperture photometry, with
a circle of five pixels in diameter, was used to extract thghiriess of each component.

Ihttpy//www.bo.astro.jtgiangjStarFindet
2Not to be confused with the FITSTARS blind deconvolutionediscussed later
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Figure A.1: Wavelet decomposition of the AO PSF. Left-to-right: AO P8fge wavelet planes with decreasing spatial
frequency and the lowest-frequency wavelet plane (the lstxesidual). Displayed on a logarithmic scale.

A.2.3 IDAC

IDAC is a multi-frame blind deconvolution (MFBD) algorithin Basically, it is an iterative least
squares algorithm using a number of constraints to solvddbin the common object (target) in-
tensity distribution and also the corresponding PSFs foltiple observations of the same target
' ' i_C.hLism.u_et”al_Zd)M). MFBD algorithare very successful in the case
of strongly varying PSFs such as the pure speckle imaging saghat the target is easily distin-
guished from the PSFs. For AO data, the goal is to stabilied”®F. This implies less PSF diversity
from one observation to another so that other constrairtsrbe more useful.

In general, the algorithm makes no assumption of the targegnsity distribution and extent and
the deconvolved image is computed for the full image plarmvéver, for the synthetic observations
described in this paper, we have the prior knowledge thataifygeet comprises two point sources and
we also know their locations. What we do not know is the redalirightness between the two. In
order to constrain the target to a binary star model, thelirtdrget estimate comprises two narrow
symmetric Gaussians centered on the pixel locations oftbéargets, each having a FWHM1.75
pixels. This takes into account potential sub-pixel lcwasi of the components and permits the algo-
rithm to “shift” the component locations in order to obtaetbest common fit. The initial intensity
ratio of the two Gaussians is estimated from the correspguikel values in the observations and the
initial PSF estimate was the “known” PSF described in Sed. The PSF band-limit is typically
measured from the data and read-noise limit was determioed‘sky” regions of the observations.
For this application ten independent observations were fegehe multi-frame constraint. The algo-
rithm was allowed to converge fer 100 iterations from the initial start-ups sharpening thei$3&an
distributions of the two components and, more importasitijysting the relative amplitudes of both
to allow the reconstructed target to match the ten indiMidaga frames.

Like AWMLE, IDAC produces a final image from which photometand astrometric measure-
ments are made. For the binary cases here, the reconstnljead was fit by two Gaussians using
a least squares method after a further Gaussian smoothimg.simoothing reduced the pixelation
allowing for an improved fit. The free parameters for the fiessethe amplitudes, elliptical Gaussian
widthsoy andoy, the position angle orientation of the ellipse and tlandy locations of each Gaus-
sian - a total of 12 parameters in all. The intensity ratio wlasined from the ratio of the Gaussian

Shttpy/cfao.ucolick.orgsoftwargidag
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volumes, (i.eV, = lnoxoy).The advantage of the fitting is that it allows an uncertameasurement
for each of the intensity ratio.

A.2.4 FITSTARS

FITSTARS kLe.n_B.Lumm.ela.a.r_e.tJeh_deO) is a single-frameatiee blind deconvolution algorithm

optimized for binary stars by defining the object distribatas twas-functions:

2
0(x.Y) = D AG(X—%.Y =¥, (A1)

where k- X, y—V;) is the location of the ith component aAdits intensity so that there are a total
of six object variables to fit. These binary parameters dreddor by using least squares fitting to the
observations using the initial target and PSF estimatese@n initial estimate of these variables is
obtained, an updated PSF estimate for each component isutedipy diferencing the measurement
to the model for the other component and a new PSF estimaternscomputed from the weighted
average of these two individual component estim 1L19_b6). This process is
repeated until the results converge. Results using thasighgn have been compared to those obtained
by speckle interferometry lal_ZbOl) and are in gagr@éement.

A.2.5 PDF deconvolutions

PDF deconvolution uses the analytical forms of the PDFs efaifiraxis and fb-axis intensity in an
AO PSF kﬁla.d_)ﬁz_eLLLZO_‘IJOb). The instantaneous Streld hats a distribution characterized by
two parameters (i) number of independent cells in the AQemed wavefront, and (ii) the theo-
retical long-exposure Strehl ratio, which is related to stegtistical phase variance via the extended

Marchal approximatior{_(_l:l_a.r_IE98). When the companiodcaied within the isoplanatic patch,
both components of a binary star are produced by almost the savefront. Thus, the two param-
eters mentioned above are common for the PDFs of the peaisity®f the star and its companion.
However, at the location of the companion, the speckle agrbintensities add, and their PDFs are
convolved. The distribution of the signal (i.e. the “raw” gkeintensity) has the same form as the
Strehl ratio PDFl.(Q_la.d;Lsz_e_tHl_ZCL{Ob) but is “blurred” b #peckle kernel. PDF deconvolution
blindly estimates both the signal and the speckle PDFs frgactor of intensity measurements at the

location of the companion.

This 1-D deconvolution problem has five parameters to salwbdt can be very easily constrained
by observing that two parameters are common for both objeetsthose of the instantaneous SR.
These are obtained from a least-squares fit of the thedrB@fato the on-axis statistics for the bright
star so that, at the location of the companion, the algoritimhy searches for the three remaining
parameters. After successful separation of signal frorsldpestatistics dterential photometry can
be obtained by comparing flux parameters estimated for tbehjects.

PDF deconvolution relies on multi-frame observations & ¢bject. The other inputs are the
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estimated Strehl ratio of the observations, and the paosdfdhe companion (assumed to be known
from astrometry). FigurEAl2 illustrates how the method kgorFirst, the theoretical on-axis PDF
is fit to the measured on-axis histogram (left panel), and the convolution of two PDFs is fit to
the measured histogram at the location of the companioht(pignel). The ratio of the widths of the
two distributions of interest (red curve in the first panedl @meen curve in the second panel) can be
converted to brightness ratio of the two objects.

0.0013F . 0.025 — PDF,
oy — measured histogram P — PDF
E n.ooloF — fitted on-axis PDF . E 0.020 off ]
g z —— PDF.,* FDF,,
E 0.0008 ] E 0.015 7
., 0.0008 . 5
B E 0.010 ]
E 0.0004 - - E 0,005
& o.0002F 3 Mo ]

G.0000 . . .00 . .

3000 4000 5000 BG0D 7000 AOOD 0 100 200 300 400 5H00 800
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Figure A.2: PDF deconvolution. Left: fit of the theoretical on-axis P@Rte measured histogram. Right: separation
of the PDFs at location of a companion. PRIS the on-axis distribution; PO is the speckle distribution. Symbel
denotes convolution. This plot corresponds to a typica @xountered in tests on the Lick data, as described indBecti

A3

In this work the PDF deconvolution algorithm is suppliedwihe known positions of the com-
panions which it does not update. When the peak of the corapar?SF is at a sub-pixel location,
the method is given a non-integer location of the companmhispatially interpolates the measured
pixel values to extract the intensity time series for the PDF

A.3 Description of the data

We used single-star data sets, obtained with the Lick Obsanyw AO system on ther3 Shane tele-
scope to generate synthetic binary stars. AO images oftsighs were obtained using the high-speed
sub-array mode (6464 pixels), for the 25& 256 pixels IRCAL camera, which corresponds to a field
size of 48 x 4.8 arcsec. The sub-array measurements were captured witdaltygxposure time of
22ms Each data set comprised 10000 images. All data were obtaine band (22um) where the
diffraction limit is 15Inasand the data werdffectively Nyquist sampled (two pixels pgfD). The
individual short exposures were registered with sub-piagluracy to produce shift-and-add (SAA)
images. The average Strehl ratio of these SAA imagesww43%. All data were sky-subtracted and
the residual background was then subtracted too.

Simulated binary star data sets were created by scalinghafithg the PSF datacubes yielding
synthetic observations of a binary star with a brightness od 25 (magnitude dference Am = 3.5)
which was chosen to create challenging scenarios, with SNR < 15 for the companion. We
placed the companion at one of eighffeient positions in order to minimize variations in resulie d
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to possible anisotropies in the PSF. The positions we@6 arcsec (4/D) from the center of an
image (see Figuile”Al.3) with four positions in a cross 8 piggay horizontally or vertically from the
bright star, and four diagonally (7 pixels horizontally ahdixels vertically). The dference between
the “straight” and “diagonal” separations i©62 pixel. The mean photometric error was computed
based on the results from these eight positions.

Figure A.3: SAA image of a synthetic binary star with separation af@. Left: High SR ¢ 50%) showing the
eight locations for the artificial companion. The compari®located within the larger circle. Right: SAA image of the
synthetic binary star for SR 30%. Note the presence of significantly greater residuatidpestructure for SR 50%
whereas the SR30% shows a more uniform halo structure. The images areagisglon logarithmic scale.

All algorithms were supplied with re-centered images. PREahvolution used a 10000 frame
datacube, IDAC used 10 data cubes, each comprising 1008d=sdrames, while the other codes
used single SAA images of all 10000 frames. All methods, pkB®F deconvolution, rely on a PSF
estimate. For the matched-PSF cases we used the same stangeaolten minutes later (Strehl ratio
mismatch= 2 or 3%). For the mismatched-PSF cases we used stars of sbrigatness observed
the same night, and also close to zenith (Strehl ratio midmat%,; for the case of 30% SR the
calibrator had higher SR than the target while the revetsatson was tested for 50% SR). Variability
of the Strehl ratio between the science and calibration BSEdirect consequence of either non-
stationarity of turbulence (if the same star was used fgetaand calibration datasets), or change in
response of the AO system due to lower or higher photon fluxregifnrom the calibrator, as compared
to the target. Table“Al1 summarizes the grid of scenariosave mvestigated.

Table A.1: PSFs used to simulate images of binary stars. The-2R% data refers to the 30% Strehl ratio
case, and the SR 54% data to the Strehl ratie 50% case in the text.

Science PSF SR m, m ReferencePSF SR m, my
30% Strehl ratio
Matched PSF  ............... NOMAD1 1297-0510182 29% 12.1935 - 32% - —
Mismatched PSF ............... NOMAD1 1297-0510182 29% .115.93 HD 18009 35% 8.23 5.02
50% Strehl ratio
Matched PSF ~ .............. HD 143209 54% 6.3 3.92 - 52% — -

Mismatched PSF ............... HD 143209 54% 6.3 3.92 HDBB23 48% 7.25 4.78
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Figure A.4: Mean relative intensity ratio error for the five algorithnegj¢atiofAB). Left: PSF well-matched to the
observations. Right: mismatched PSF. The results for P@Brd®lution are identical in both panels because this ntktho
does not rely on a PSF estimate. Tgevalue for FITSTARS in the 50% SR, matched-PSF case was vginy(t 10000)
and we omitted it from the plot in order to have the y-axissedhich better shows flerences between the other methods.

In order to determine thefficacy of each algorithm we used a metric of photometric pi@tis
which measured the mean absolute deviation from the I]nmljs@el_a”_zo_d%:

1 8
P = 5;“1 —truthy, (A.2)

wherel; are the individual intensity ratio measurements and tte tmas equal to 25. This metric
was then converted to percent relative error:

= pl
truth

P2 x 100% , (A.3)

This metric shows the relative strength of the average deqgafrom the true intensity ratio. In
Figure[A4 we plotp, for the scenarios of well matched and mismatched PSF andhile [[e2 we
give numerical values of this metric.

Figure[A3 illustrates relative precision of various aigfums. In order to discuss possible biases
(systematic over-, or under-estimation of the truth) argpeisions of results, we plot means and
standard deviations in Figure’A.5 and we give numericalesbf these metrics in Talle"A. 3.

Table A.2: Percentage photometric precision of the algorithms, astdieal by the metrigo,.
FITSTAR AWMLE IDAC StarFinder PDF deconvolution

30% SR, matched PSF ~ ............... 116 20 21 31 4
50% SR, matched PSF  ............... 10848 5 6 5 7
30% SR, mismatched PSF ............... 80 75 77 25 4
50% SR, mismatched PSF ............... 284 14 8 22 7
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A.4 Summary and discussion

We compared photometric measurements of various algasitbna case of a very close binary star
with a relatively large intensity ratio. This is a particdjechallenging case in that the companion is
25 times fainter than the primary and lies well within the RS&rphology of the primary~ 41/D).
This is where the speckle contribution is non-negligibld #me best photometric precision (Figure
[A4) is on the order of couple of percent relative to the truftor each observing case there were
eight different realizations with the companion located inféedéent region of the primary’s PSF and
the dispersion in the results reflect the sensitivity of tlypathms to measure the photometry with
differing speckle backgrounds and morphology.

30% SR, matched PSF 50% SR, matched PSF
70 E 28

60 FITSTARS © 27
AWMLE /
26 Jf

IDAC
StarFinder X
40 PDF deconvolution * OE

24 x

23

Measured brightness ratio
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30% SR, mismatched PSF 50% SR, mismatched PSF
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Figure A.5: Means and standard deviations of the measured brightni&ss. rihe dashed line corresponds to the true
value of 25. The values for FITSTARS in the matched-, and ratshred-PSF cases for 50% SR were very high and we
omitted them from the plots in order to emphasiz@adences between the other methods. The PDF deconvoluéimg b
self-calibrating was independent of the PSF and therefgm®duced the same results for the matched and mismatched
PSFs. (Note the ffierences in the vertical scales).

Looking at the results in Figufe“A.5 and Table]A.3, one natitteat for the SR50% case, the
mean IDAC, StarFinder and AWMLE results are very similar &ote other and consistently give a
larger intensity ratio by 4% for the matched PSF and by7% for the mismatched PSF. Note the
overlap of the standard deviations. For the PDF deconwasiutivhich is independent of any separate
PSF information, the results are4% smaller than the true intensity ratio. However, for FIRRB,
the results are 100 and 4 times larger. For these data, FITSTARS had problEorgshe SR30%
data, IDAC, StarFinder and AWMLE underestimate the intignsitio ~ 20% for the matched PSF,
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and IDAC and AWMLE overestimate by 40%, whereas StarFinder yields the correct value, for
the mismatched PSFs. PDF deconvolution underestimatesutieby ~ 4% in both cases. It is
interesting to note that FITSTARS yields significantly iroped results for these data overestimating
by ~ 1.5. Finally we note that the dispersions increase in the nigjof mismatched PSF cases.

Table A.3: Means and standard deviations of brightness ratios olotaiith the discussed methods.

FITSTAR AWMLE IDAC StarFinder PDF deconvolution
30% SR, matched PSF ... .54 10.0 206+4.7 219+65 171+09 244+ 1.8
50% SR, matched PSF ... 2742750 261+10 264+1.0 262+05 241+21
30% SR, mismatched PSF ............... .B834.5 361+226 346+296 250+86 244 +1.8
50% SR, mismatched PSF ............... .(B36124.2 286+25 271+13 305+21 241+21

So, why do these algorithmsftér so much in their results? Non-linear deconvolution atbors,
such as AWMLE and IDAC, have a tendency to overestimate sitratios when the intensity ratio
is large to begin with. This has been shownl_b;LC_hLisLo.LJ.lebﬂ.Ol). This is essentially due to
the reduced SNR of the fainter sources. Also some of the ighgas compute the astrometry of the
target jointly with the photometry and when the astromegriors are large, so are the photometric
errors. For example, StarFinder converged for only fourhef ¢ight realizations for the SRB80%
mismatched PSF case and FITSTARS converged for six of the s#glizations for the SR30%,
matched PSF case. PDF deconvolution is not influenced bgnastric errors as the true binary
component locations are used. In addition, not all algorgtare well matched to these data. For
example FITSTARS assumes that the reconstructed PSF is elyrorafter a certain radius which
could well dfect the results here, because of the binary star separatiative to the size of the
extended PSF. The fierent algorithms also use the data iffelient ways. FITSTARS, StarFinder
and AWMLE used a single SAA image obtained from the origiré tlata frames while IDAC used
ten 103 SAA images to take advantage of the MFBD approach &re deconvolution used the
104 frames for the statistical distributions. We have ndtigeestigated the repeatability of these
algorithms by breaking the data into smaller subsets tcstnyate how thatféects the mean results.

Another diference to note is that the binary parameters themselvestmeaeed diferently for
each of the PSF calibration algorithms. Aperture photoynegntered on the component locations,
is used for the AWMLE result. For the SB0% case there is greater speckle contamination of the
companion thusféecting the results. The presence of a deterministic masiguke component lo-

cations should improve the results by rejecting the speci¢arFinder jointly estimates the relative
astrometry and photometry parametrically and it was founad if the initial estimate of the com-
panion’s location was more tharbpixels away from its true location, then the algorithm wbobt
converge. FITSTARS also jointly estimates the binary patans directly and is sensitive to the as-
trometric positions. IDAC estimates an object intensistalbution and the use of an initial Gaussian
model centered on the component locations ensured thavaisiimited to the correct locations. The
binary parameters were obtained by fitting the final Gaussaunlt where the formal error of the
least squares fit for the intensity ratio was2%, substantially smaller than the results for the eight
different realizations. For the S80% mismatched PSF case, the asymmetric nature of the PSF led
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to increased speckle contamination in the results for alecfghe realizations so that the mean was
skewed and the standard deviation was increased.

By comparison to the PSF calibration algorithms, PDF declution is self-calibrating and relies
on how well the speckle statistics are determined in orderstonate the relative intensities. The
ability to determine the statistics of the intensity is dihg related to the number of samples, i.e. the
number of frames. How well such an algorithm will work withraal number of frames is yet to be
determined as is the maximum exposure time per frame bdferedntral-limit theorem dominates
producing indistinguishable Gaussian statistics.

We have presented preliminary results of the algorithmpliegtion to these challenging data.
Future studies will investigate the sensitivity of the P@klration methods to tlierent initial PSF
estimates, the repeatability of all techniques and theitbatysof the multi-frame algorithms, IDAC
and PDF deconvolution, to the number of frames.
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Abstract

We have looked at applying various image restoration teghes used in astronomy to the prob-
lem of imaging through horizontal-path turbulence. Theuingiata comes from an imaging test over
a 25kmpath. The point-spread function (PSF) is estimated diydaim the data and supplied to the
deconvolution algorithms. We show the usefulness of usirsggpproach, together with the analytical
form of the turbulent PSF due to D. Fried, for reference-lessging scenarios.
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B.1 Introduction

The performance of optical systems is degraded by atmosptuebulence when observing verti-
cally (e.g. astronomy) or horizontally (e.g. surveillangelitary reconnaissance). This degradation
can be alleviated in softwarle.(.l:lu_edb.e.LZICll;Aub.aithHmD:b) or hardwareL(.M.a.Lth_&_S_Qh_eiﬂihg
M;MQMLD.&LAILZO_E). Until now, in horizontal-path igiag the software solution has been more
successful because adaptive optics (AO) systems are dgreariy capable of correcting very small
fields of view. In single-conjugated AO systems, i.e., oted imeasure and correct atmospheric dis-

tortions in one direction, the usable field-of-view is detared by the so-called isoplanatic angle,
0. It describes the angle out to which optical path variatidegiate by less than one radian rms
phase aberration from each other. Given a certain corredtrection,f, gives the maximum angular
separation from this direction at which reasonably goodemion can be expected. In conventional
AO systems, correctable field-of-view is of siz& 2nd in this case the most-often employed solution
to spatially-varying blur is simply to have a detector subta small angle. In astronomical imaging,
6y is typically of the order of a few tens rad at visible wavelgrsgand strongly depends on the height
distribution of the turbulent layers. In horizontal-patieging.f, is typically of the order of 10@rad
and this implies that, with a conventional AO system lookihgpugh km of turbulence, one can
obtain sharp images of a @object but not of a person.

In the post-processing solution this problem is dealt witthie following manner: firstly, the geo-
metric distortions corresponding to isoplanatic patclie®atimated and the patches are re-assembled
into their original positions (“de-warping”), subsequgmteconvolution is performed (“de-blurring”)

llﬁll). The software approach allows for shargeaihitrarily large fields of view and

therefore it has an advantage over AO for imaging scenainostiier applications, e.g. directed en-
ergy propagation, field of view does not play a significane)olldeally, one would perform local

motion compensation in patches of size equal to the “tilplaoatic angle” [(LQulha.Ln_&j_thJdt

) which is larger than the (phase) isoplanatic angleanihcase, in this paper we concentrate
on the deconvolution operation (image restoration, “defbig”). As such, this work follows some
ideas already laid out befOIJ&(Ma.n_I_eLS_eI_&ALa.n_&uk_jOlO}naly a proposition to extract the point-
spread function (PSF) directly from the data, albeit herewtaally follow through with this idea in a
rigorous way. Subsequently, we analyze strengths and vesaks of various deconvolution methods

and their sensitivity to mismatch of the PSF (wrong kernel).

B.2 Methods

The imaging operation corresponds to (discretized) cartiai of the focal-plane representation of
the true objecb(x) with the PSF(x), giving the (discretely sampled) recorded image with the
unavoidable addition of noisgXx):

(X, y) = [0(X) ® h(x)]on(X), (B.1)
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where the symbab is a pixel-by-pixel operation which reduces to the simplditon in the case
when noise is additive and independent ofx) ® h(x)], while for Poisson noise it is an operation
which returns a random deviate drawn from a Poisson digtobwvith mean equal tog(x) ® h(x)].
The symbok corresponds to two-dimensional focal-plane coordinate.

In the context of astronomical image processing two appresito estimating the true objemti)
have been widely accepted, namely Richardson-Lucy detainwo (Richardsamn 1972; Lugy 1974),
which leads to the maximum-likelihood solution in the prese of Poisson noise, and maximum-
entropy (Frieden 1972). Both approaches make use of neasliechniques to seek an object estimate
iteratively. The Richardson-Lucy scheme is expressed|ks\vis:

Br1(X) = B(X) o {h(—x) ® [L]} , (B.2)

h(X) ® 6(X)

wherek denotes the current iteration numbarg b denotes the pixel by pixel product of two
equally-sized arraya, b, anda/b denotes their pixel by pixel quotient.

The R-L algorithm has the interesting property of non-niegsgt if the first estimate is non-
negative, the further estimates will also be non-negaiite. problem with the R-L method is “know-
ing when to stop”, i.e., how to obtain the best tradébetween the desired spatial resolution enhance-
ment against the unavoidable noise amplification. The ussrally rely on their visual judgment and

stop the algorithm manually. When the algorithm is allowedtérate eventually noise present in
the data will get amplified. We illustrate thigfect in Figurd Bl using the data from the experiment
(SectiorB.B) and the “un-supervised” R-L scheme.

Figure B.1: lllustration of the noise amplificationffect in Richardson-Lucy deconvolution. Pictures corresitordata
collected in the experiment described in Secfiod B.3. Lsefimmed image before deconvolution. Centre: result of RL
deconvolution after 100 iterations. Right: result afte®Qterations.

Solutions to this problem fall into the regularization caigy (Tikhonovi 1963| Mugnier et al.
2004), or some other form of noise control (Baena Gallé.é2@l13;| Starck & Murtagh 1994). Reg-
ularization involves introducing additional informatiabout the object in order to solve an ill-posed
problem. This information is usually presented in the forina penalty for a class of less-likely ob-
jects. Restrictions on object gradients or entropy are comnAlternatively, one example of noise
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control is through the use of probabilistic masks: localdaws which determine whether a signifi-
cant structure is present or not at a given location in the, dtiteratiork ( 4).

The mathematical expressions for these masks aim at repirggéne probability of finding a source,
or part of an object, within the window. For example, locangtard deviation relative to the global

standard deviation, or local correlation between two insafat are deconvolved simultaneously are
two candidates for a probabilistic maJik_(_B_a.ena_G_a.lLel ). If the presence of a signal within
the mask is considered to be insignificant, the iterativegse should stop. This is the premise of the
AWMLE algorithm described in Sectidn B.2.1.

Another problem with the R-L method is that its convergerseery slow compared to e.g.
conjugate-gradient optimizatimmOOS). Te\walte this problem several acceleration schemes
have been proposed, of which we will mention two. One is “iplittative relaxation” kLLac_e.L&JNﬂﬁ.éz

), which boils down to replacing the iteration of EqaafB.1 by

i(X) ¢
h(X) ® Ok(x)]} ' (8.3)

wherea is an acceleration parameter (usually larger than 1). Asradpproach is “linear relax-
ation”and it can be written in the ford].(ELﬂJ.Q.&H.&LZIOlZ)

maw:QMoﬁww®

i(x)
el IE .

where A, > 1 (for A« = 1 the R-L algorithm is re-obtained) aridis an array with all entries
equal to 1. This modification of EquatibnB.1 produces a stgtadient method with a scaling given
by object estimate at iteratidnand a gain factor. We have therefore obtained a form suitable
optimization by minimizing an objective function. The atlgbm SGP-RL (scaled gradient projection
Richardson-Lucy) which is based on Equafion]B.1 is desdrib&ection 2.2.

The aforementioned methods work with static PSFs, i.e. doayot update the PSF of an optical
system which is supplied by the operator. They have beenswagessful in reconstructing pristine
images from the Hubble Space Telescope before the firstcaggvnission which fixed the aberrated
PSF. Nevertheless, in ground-based imaging, whetherrigakp (e.g. astronomy) or sideways (e.g.
surveillance or military reconnaissance), the assumpifqrerfectly-known PSF is rarely justified.

Bk (X) = B(X) — ABK(X) © {1 “h(=X) ®

In astronomy, a calibration PSF is often obtained by obsgra single star after the target or by
extracting an isolated star as PSF if the field of view is lafgesurveillance, obtaining a PSF from a
beacon is a very élicult task, as we will show in Section 4. This has led to develept of the “blind”
deconvolution paradigm. A blind method works without anfprmation about the PSF. When some
information is available, for example in the form of a sté@l prior on the PSF, then a “myopic”
method can be used. One such algorithm, called MISTRAL, ssrileed in Sectioh B.21.2.

B.2.1 AW(C)MLE

The Adaptive Wavel¢€Curvelet Maximum Likelihood Estimator (AW(C)MLEL(.B_a.en.aa.{ELeI_aJ.
) is a Richardson-Lucy-type algorithm which maximitteslikelihood between the dataset and
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the projection of a possible solution onto the data domainsitiering a combination of the Poisso-
nian shot noise, intrinsic to the signal, and the Gaussiathoet noise of the detector. This maximiza-
tion is performed either in the wavelet domain -AWML@@Z) or in the curvelet domain
-ACMLE- (IQa.n.d.és_el_Eu_ZQbG). The decomposition of the aigmto several channels allows for var-
ious strategies to be used depending on a particular chascede. This is a direct consequence of the
fact that in the wavelet or curvelet decomposition the ndisgether with the finest structures of the
signal will be transferred into the high-frequency chasnethile coarse structures will be transferred
into the low-frequency channels. An illustration of waveliecomposition of the summed image
collected as part of the experiment is shown in Fidure B.2.

Figure B.2: Wavelet decomposition of the experimental data describ&kctioB.B. Wavelet planes, from the finest
to the coarsest, are shown from left to right.

Additionally AW(C)MLE is equipped with two probabilistic asks which can be employed sepa-
rately or together. For this project we have used the localetation mask applied to two images that
are deconvolved simultaneously (but independently). Weeimages are sums of the first, and the
second half of the target observations. The correlatiorknmesasures, at each iteration, the similarity
between the same region in the two images and, if noise angtidn is detected (in the sense that
the local correlation is reduced), the algorithm is stopjpedhat region. The expression for the mask
is based on normalized covariance between the two samples.

B.2.2 SGP-RL

Scaled gradient projection (SGP) is another method bas#tedRichardson-Lucy iteratiom al.
). Itis based on EquatibnB.4. The algorithm contaimerse stopping rules from which the user
can choose. We have used the following rule:

16+ 1(X) = O(X)ll
10k 1 (Xl
wheres is user-specified tolerance (we usee 107°). Basically, this rule stops the algorithm
when change in the solution becomes very small. For our ta¢azode stopped automatically after
20-30 iterations.

<4, (B.5)
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B.2.3 MISTRAL

The Myopic Iterative STep-preserving Restoration ALdarnt(MISTRAL) is a deconvolution method
within the Bayesian framework that jointly estimates thé&mMPSand the object o using some prior in-
formation about both these unknoleS.(.MugaLe.uHLaLIZOOHDS jbint Maximum A Posteriori (MAP)
estimator is based on the following expression:

[6, h] = arg maxp(o, hli)] =
= arg maxp(ilo, h) x p(o) x p(h)] = (B.6)
= arg minJi(o, h) + Jo(0) + Jn(h)] ,

whereJ;(o, h) = In p(ilo, h) is the joint negative log-likelihood that expresses figyadif the model
to the data,J,(0) = In p(0) is the regularization term, which introduces some prianiiedge about
the object, like positivity, andy,(h) = In p(h) accounts for some partial knowledge about the PSF.
The symbolp in the above expressions corresponds to the probabilitgiyeianction of a particular
variable.

MISTRAL uses a nonstationary Gaussian model for the nois&lwis a common approximation
for high-level light conditions, as the ones we are dealinttp Wwere. What this means is that a least-
squares optimization with locally-varying noise variamcemployed:

Ho.h) = Y 5 i) - (08 NP (B.7)

This prior makes it easier to compute the solution with ggatibased techniques as compared
to the Poissonian likelihood which contains a logarithm.e Tmior probability,J,(0), is modelled
to account for objects which are a mix of sharp edges and dnmmets. The adopted expression
contains an edge-preserving prior that is quadratic fodlggnadients and linear for large ones. The
guadratic part ensures good smoothing of the small gragl{eat, of noise), and the linear behaviour
cancels the penalization of large gradients (i.e., of edg&ich combined priors are commonly
calledL, — L, Q.L&&Hl&)ﬁd:_&o_wmn_&_s.augub%). The PSF piigi) assumes that the PSF is a
multidimensional Gaussian random variable (which is a gasslimption for long exposures or sums
of short exposures). The criterion draws the solution, el#ast-squares fashion, towards the user-
supplied first-guess PSF while obeying the error bars giyethé squared optical transfer function
(Fourier transform of the PSF).

B.2.4 Summary of the employed methods

The properties of the codes are summarized in Tablke B.1. W lmere that in our tests we used
AWMLE with no accelerationq = 1 in EquatiorLB.B) hence relatively long execution timeshié t
algorithm, but acceleration is of course possible when tra@ages the value of.
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Table B.1: Information on methods used to process experimental data.

static PSKF Blind stopping rule number of iterations
RL . static-PSF no 100 (fixed)
SGP-RL  .......... static-PSF yes 20-30
AWMLE .......... static-PSF no 100 (fixed)
MISTRAL .......... blindmyopic yes ~ 750 (matched PSF)

~ 1600 (mismatched PSF)

B.3 Experiment

The experiment was conducted in Ettlingen, Germany, on Tile & March 2012 between 4pm and
6pm. The object, a cross made of blackboard on@®amp (Figurd BB, left panel), was viewed
from a distance of Bkmusing an 18mtelescope. Both, the emitter and the receiver, were positio
at a height of approximately 2@ The telescope was mounted on an optical table inside thptAda
Optics Laboratory and it was fully protected from the weathéside. Therefore, in contrast to other
experiments|(van lersel & van Eijk 2010), we believe we cataiobturbulence measurements from
our images and these measurements will notffected by motion of the setup (SectionBl3.2). The
lamp was emitting white light but a filter before the senstve¢d only 600 to 700mwavelengths.
The pixel scale of the detector was chosen by adjusting tted fength of the last lens to conform
to the Nyquist sampling requirement/@D = 1.8rad, pixel scale= 1.3rad). We collected 1000
images of the 2€mlamp at 300G ps and also 100 images of another lamp canl'point source” at
30f ps(FigurelB.3B, right panel). The “point source” images werrded 25 minutes after the target
observations. They were collected as a PSF reference. Aljésnwere saved in the uncompressed
FITS format.

Figure B.3: Left: schematic drawing of the object used in the experimRight: sum of 100 images of the small lamp,
after background removal this image was used as PSF in sothe oéconstruction trials described in Secfion B.4.
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The unique aspect of this experiment was that a BLS900 bayager scintillometer from Scin-
tec was mounted right above the telescope. The scintillenveds collecting data continuously and
recordingC?2, ro and transverse wind speed estimates every minute. Frora theasurements we
know that turbulence was rather modest and stable duringdberiment (FigurEBl4). The values of
C2 rarely exceeded 18 m~%3, Serendipitously, the values 6f recorded during the target and PSF
observations were very similar:3& x 101> m2/® and 547 x 1071° m~%/3, respectively.

Cn2

1,20E-14
1,00E-14 -
8,00E-15 -
6,00E-15
4,00E-15
2,00E-15

0,00e+00 —F/——r—1r———r———————r——r—r—r—r—————————————————
SET P L I LTSS PSSP QQ 0° QQ QQ ®
CASCLIC T LU AU g U '\',\
Figure B.4: Turbulence strength, quantified B¢, measured by the scintillometer around the time of the énysant.

The first red dot denotes the time when the target images weogded, and the second red dot on the right corresponds
to the PSF measurements.

B.3.1 Pre-processing

Before any attempts at image reconstruction the data haspoebprocessed. In our case the follow-
ing procedures have been carried out on the raw target frames

e cropping of the images,
e background removal,

e registration (via up-sampled cross-correlation with tlestidrame). This operation removed
global image motion.

The frames were summed and these summed images were thdiedupphe deconvolution
algorithms. In the case of AWMLE two images were used (c@wading to the first and the second
half of the target observations).
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B.3.2 Turbulence estimates from the images

There are several ways to estimate strength of the turbeléinectly from the images. In ground-to-

ground scenarios, methods based on image motion are mostamﬂmusedl.(s_a.sj.ela_&_&h.e.lu)ﬂﬂQE
wmw& In (solar) emtomy, the “spectral-ratio” method is
preferred l(A&D_d_QLLL]j‘ILL]_d84). Because in our case the seves shielded from wind-induced
vibrations and temporal power spectra of image motion didexbibit any artificial peaks (Figure

B.1), we decided to employ the motion-based approach fatieely called the angle-of-arrival AOA
approach).

PSD of image motion in the horizontal direction
— Ty T — T

n N | " ol ] L L L L
0.1 1.0 10.0 10000 0.1 1.0 10.0 100.0
Hz Il

Figure B.5: Temporal power spectral densities of AOA fluctuations measin the central part of the target images.
Left: vertical direction. Right: horizontal direction.

The relationship between the single-axis AOA variancehiwisome isokinetic patch_(Za.m.ek_&lLtzh.Jlky
), and the coherence length of the turbulence the $eddalieds parametey is:

o 3.15
0 (D1/3a§k2)3/5 ’
whereD corresponds to the telescope diamekes, the wavenumber and spherical-wave approx-

imation was used. Theffect of finite outer scale was neglected. The significance efRiieds
parameter is that it completely specifies the long-, andtsix@osure PSF in the widely adopted the-
ory due t@d 6). In this theory, the optical trandtarction OTF, i.e., the Fourier transform
of the PSF, for the two cases of long exposures and regis(gpetilt corrected) short exposures is
given by:

(B.8)

oT FL(I_/)) =0T Fo(l_/)) x OT FLE(V) ) (Bg)
OT Fs(7) = OT Fo(#) X OT Fs(¥) , (B.10)

whereOT F_g(¥) represents the average long-exposure OTF of the atmasgDEFe(V) is the
average short-exposure OTF of the atmospl@Te;, (¥) andOT Fs(¥) are the overall long- and short-
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exposure average OTFs (including tHEeet of the telescope fiiraction). Besides, for a flraction-

limited circular aperture of diameter D we have:

2 S(ZZV) Azv (IZV)Z
arccoy — |- —\/1-|—=

OTFy(?) = - 515 5| (B.11)

wherey = |7, 4 is the average wavelength, anés the distance from the exit pupil to the image
plane. Fried developed expressions@r F g(v) andOT Fsg(V):

Py 5/3
OTFe() = exp[—3.44(/lr—zv) ] : (B.12)
- 5/3 Yy 1/3
OTFsg(V) = exp{—3.44(%) ll -« (/lr_iv) ” : (B.13)

wherea is a parameter that varies betweg2 When there are both intensity and phase variations
across the collecting aperture and 1 when only phase d@terare present. For our purposes we used
EquationBIP with EquatiorisB.9 abd Bl11 for deconvolutidinis is because the object being
imaged covered several tilt-isoplanatic patches (or rsetic patches) as can be appreciated from
FiguredB.H-B.P. Global motion compensation did not remeaeping from the images. Looking at
Equation§ BH-B. T3 one can notice that having an estimatgtadnslates to an estimate of the PSF at
the time of the observations, as posited above. As a siderkan@awill mention that there is a very
simple relationship between the Frieds parameter and fractiee index structure consta@g, a
parameter which is more often used to describe the turbelstnength in ground-to-ground imaging:

ro = 3.0(C2Lk?)3°, (B.14)

wherelL is the distance between the object and the sensor and sph&eee approximation was
used, agairMQS).

We measured AOA variance in the central part of our imagesr@amglated it to the value of r0
with the help of EquatioiBI8. Subsequently, using Equaliel,[B-T1 [BIP, and the fast Fourier
transform, we generated a synthetic PSF correspondingetolibervations. In the experiment with
the point source @m lamp), whereby the turbulence-induced object motion istrde$initely iso-
planatic, we obtained very good agreement with the scimtidter measurement:78cmvs. 291cm
(both values normalized to 5@thwavelength). For the target observations, which accortbrthe
scintillometer measurements experienced similar streafjturbulence as the point-source observa-
tions (FigurdB.}), the values were in disagreemergzé@nvs. 294cm Nevertheless, we will show
that turbulence estimates obtained directly from the dateqal to be closer to the truth than estimates
from the scintillometer.

As a final remark we want to mention that the isoplanatic abe the tilt isoplanatic angle) is
related torg _m):
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6y ~ 0.6ry/L (815)

where constan€? along the propagation distantewas assumed, as is usually done. We have
calculated thafiy was around eight times smaller than the target (ther2@mp). Therefore, we were
working in anisoplanatic conditions.

B.4 Results

In this section we will present results of image reconstamcbased on dierent algorithms and dif-
ferent PSFs. In Figurds B[6-B.9 the caption “fast RL” copasls to the SGP-RL algorithm, and
the caption “MAP” corresponds to the MISTRAL algorithm. Teeption “data” corresponds to the
summed target image which was supplied to the deconvolatides.

1. Case one, using the synthetic PSF estimated from AOA ftiotus: this is the nominal case.
Here, PSF was computed as described in SeliionIB.3.2. Thlésregre better at least visually
compared to the trials where other PSFs were used. Thegesalpresented in Figure B.6.

2. Case two, using a smaller synthetic PSF (from AOA fluctuettiartificially reduced by a factor
of 0.8): here we wanted to check how good our PSF estimate fromamagion actually is.
The results are presented in FiglrelB.7. The figure showsrggneorse image quality as
compared to FigureBl.6 indicating that our initial PSF estienwas close to the truth. Similar
results were obtained when AOA fluctuations were scaled lagi@f of 12.

3. Case three, using synthetic PSF from motion of the “paaotee”: as the scintillometer mea-
surements indicated that the target and the PSF obsersationld have similar level of aberra-
tions, and because estimation of AOA fluctuations from pemirce images is trivial compared
to estimation performed on the target data, we also usedthetymPSF based on motion of the
point source. The results, presented in Figuré B.8, wermagase than in the nominal case.

4. Case four, using “point source” image as the PSF: here weddo test the suitability of bea-
con PSF (FigurEBI3, right panel) for the task of image retranson of the target data. This
is the “mismatched”-PSF case in TablelB.1. The results wigréficantly worse compared to
the nominal case. Only MISTRAL was able to perform satigfgctmage reconstruction, thus
showing the power of the blirichyopic approach. The results are shown in Figure B.9.



B. Comparison of image restoration algorithms in horizontd-path imaging 137

Figure B.6: Results of image reconstruction based on PSF computed re®®A variance.

Figure B.7: Results of image reconstruction based on PSF computed fre®®A variance but with AOA fluctuations
artificially reduced by a factor of.8.

Figure B.8: Results of image reconstruction based on PSF computed frea@A variance in the point-source data.

Figure B.9: Results of image reconstruction based on a “real” PSF (E[, right panel).
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B.5 Summary

We have compared theoretical PSF estimates with in-sitisamrements and with the estimates based
on the scintillometer output. It is clear that target-dagsed estimates are closer to the truth than
estimates based on the auxiliary data. A number of codeh, repecesenting dlierent philosophy in
attacking the problem, were employed for the task of imagenstruction. It was shown that when
a carefully estimated PSF is available, the classic, nordiRtichardson-Lucy approach can perform
very well. This is important as this approach can be sumredriz approximately ten lines of code,
and the execution of such code, when limited to only sevégghtions and preferably accelerated,
should not last longer thanX1& on a modern desktop PC.



Appendix C

High-contrast, adaptive-optics simulations
for HARMONI

Poster presented in the 2nd International Conference gitisdaptics for extremely large telescopes,
held in Victoria B.C. (Canada) on the 25-30th of April, 2011.
Press here to access the abstract on thea Conference websiie.

Abstract - HARMONI is a proposed visible and near-infrarategral field spectrograph for the
European Extremely Large Telescope. We are exploring ttengal of using HARMONI for high-
contrast science, e.g., observations of exoplanets. AdthtH1ARMONI is not fed by extreme adap-
tive optics we show that substantial contrasts can be agtiiby combining single-conjugate AO
with coronagraphy and post-processing of the hypersgetdta cube using spectral deconvolution.
HARMONI will be well suited for follow-up spectroscopy of gihets detected by 8 m. class instru-
ments, emphasizing their characterisation. We implemesteats of telescope aberrations: due to
wind bufeting on M1, due to windshake on M2, due to rolled segment €da®e well as the ones
resulting from M1 phasing and individual segment warpifigeed by thermal and gravityfects.
Additionally, we investigate the impact of post-ACi@rential aberrations. We also look at possible
improvements to spectral deconvolution which is our methiochoice for data post-processing. Fi-
nally, we make predictions of achievable contrast whichglates to the ability to characterise various
types of exoplanets in detail.
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High-contrast, adaptive-optics simulations for HARMONI

Szymon Gladysz !, Niranjan A. Thatte2, Graeme Salter 3, Roberto Baena Gallé*, Fraser Clarke?,
Matthias Tecza?, Laurent Jolissaint®

I Technion - Israel Institute of Technology
2University of Oxford
3 University of New South Wales
#University of Barcelona

SaquilAOptics

Abstract: HARMONI is a proposed visible and near-infrared integral field spectrograph for the

European Extremely Large Telescope. We are exploring the potential of using HARMONT for high-

contrast science, e.g. observations of exoplanets. Although HARMONI is not fed by extreme adaptive

optics we show that substantial contrasts can be achieved by combining single-conjugate AO with

coronagraphy and post-processing of the hyperspectral data cube using spectral deconvolution.

Context: HARMONI will most likely by the first-light instrument on
the E-ELT. It is an integral field spectrograph with the following
parameters:

+ wavelength range: 0.47 - 2.45um

* spectral resolving powers: 4000, 10000, 20000

* 32000 simultaneous spectra per FoV

« four spaxel scales of 40, 20, 10 and 4 milli-arcseconds/ spaxel

Simulations: For high-contrast science HARMONI will be used in
conjunction with a Lyot coronagraph. The SCAO system employs a
Hartmann-Shack wavefront sensor with 85 X 85 subapertures.
The other parameters of the simulations are:

wavelength range: 1.65 — 2.45um

bright star: m = 4.7

Strehl ratios: 65 - 85%

seeing: 0.85arcsec @ 0.5pm

zenith angle: 30°

total differential refraction of 50mas

coronagraph: Lyot setup, focal-plane mask size = 54/D @ 2.45um

.

.

100 spectral channels

post-AO aberrations: 30nm rms
integration time: 1 minute

Poisson, background and readout noise

Spectral deconvolution: Even with high-quality data post-processing is
usually necessary to reach contrasts expected from exoplanetary
systems. We implement a method called “spectral deconvolution”
which relies only on optical phenomena and not on the physical
characteristics of exoplanets. The method utilizes the fact that post-
coronagraphic image residuals scale spatially with wavelength while
a planet would stay in a fixed position.

Results: Fig. 1 shows the contrast curve scaled from 60 seconds to
8 hours.
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Fig. 1. Contrast after spectral deconvolution expected for an integration time of 8 hours.

Wavelets: “Traditional” spectral deconvolution has two problems:

+ It cannot remove PSF features which do not scale spatially with
wavelength. A coronagraph produces non-trivial modulation of
the residuals close to the axis and in this region spectral
deconvolution 1s not as effective as further out.

Speckles close to the optical axis do not move significantly over
the entire wavelength range. Conversely, in the numerically
rescaled data cube close-in planets “dwell” on single spaxels and
can be “killed” by the traditional approach.

For these two reasons we decided to combine spectral deconvolution
with wavelets. We are helped by two facts:

+ Shape of the planetary response in one spaxel of the re-scaled
cube 1s deterministic (cross-section of the Airy pattern).
* The dependence of the width of this planetary response on

separation from the star is also deterministic.

We designed a set of one-dimensional wavelet scales specifically for our
problem.

Results: Figs. 2 and 3 illustrate the advantage of putting deterministic
knowledge about the expected spatial scales into the method of spectral
deconvolution.
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Fig. 2. Left: Data cube collapsed after traditional spectral deconvolution with
polynomials. Right: wavelet-based approach. False color, inverted scale.
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Fig. 3. Gain in contrast provided by wavelets.
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Appendix D

The Wavelet Transform.

The wavelet transform (WT) is now a well-known tool with hueds of practical applications in
physics, mathematics and engineering. Its theoreticgi@tipvas developed more than 20 years ago
and a wide bibliography is available nowad MMJWMMMMSH
M;hﬂt&tﬁ.&.&mamdd.l&d&. WT is related to tlsparsityconcept or sparse representation
of a signal, which consists of transforming the data or imagguch a way that the information is
represented by only a few non-zero ffagents. In other words, a signé(x) = f[1], ..., f[N] is said

to be sparse if most of its entries are equal to 0, i.€x) is ak-sparse signal of cardinality < N

if it is a signal for which exactlk samples have a non-zero value. If a signal is not sparse; bea
sparsifiedin the appropriate transform domain, e.g., the wavelet doma

D.1 A brief excursion into wavelets

WT was designed to overcome the limitations observed wélFturier transform (FT), which is well
suited to the study of stationary signals or non-time-ddpandata. FT describes signals by means
of basis functions that consist of a combination of sine asgine functions; hence, their frequency
content is time-independent or, in other words, the desonpprovided by FT is complete in the
frequency domain. However, many signals or datasets irifeare only non-zero for a short period
of time, e.g.: a voice signal imparts information in both tinee and frequency domains; or important
features of an image, such as edges, are highly spatialfized. Such signals do not resemble
any of the Fourier basis functions so FT cannot represent tppropriately. Therefore, WT aims to
provide the advantage of combining the information in bb#hftequency domain and the tiyspatial
domain simultaneously.

In WT, as with FT, a signal is described by means of a finitedbasiction, named themother
wavelef which is scaled and translated in order to create a set ¢f hagctions. In one dimension, it
can be expressed as follows:

1 (x-Db
Yan(X) = %lﬁ(T), (D.1)
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wherea > 0 andb are real numbers. The varialdeeflects the scale whille specifies position

along thex-axis. y/(x) is the mother wavelet and must satisfy the admissibilitdon l ):
00 2
C, = f "”l(;)' ds< oo. (D.2)

Due to the presence @afin the denominator, it is necessary that:

¥(0)=0= fo w(x)dx = 0. (D.3)

That is, the mother wavelet has zero mean and, as a consegsendo all its translations and
scalings. Sincg(c) = 0 too, the frequency response of the mother wavelet is sitaila band-pass
filter; indeed, any band-pass filter impulse response with reean that decays to zero fast enough
with increasing frequency can be used as the mother wavadetsa a consequence, they are said to
havecompact supportFigurelD shows diierent examples of typical mother wavelet functions.

Figure D.1: Different examples of mother wavelet functions. Left: Mexicahfanction. Middle: Morlet function.
Right: Meyer function.

The continuous wavelet transform (CWT - first introduced_h;aﬁma.n_&_MQLI.eI:tl.(J&ﬁ)) of a

signal f (X) with respect to a wavel@t(x) is defined as an inner product:

Wi(a,b) =< f. s >= f T (Wan(9dx (D.4)

The original signalf (x) can be recovered by:

(=g [ [ Wilabuasxb (0.5)
v Jo J- a
CWT has the properties of:

1. alinear transformation, i.e., for any scalaranda,, if f(X) = ay f1(X)+ a2 f2(X) thenWs (a, b) =
a1Wr,(a, b) + a2Wy,(a, b),

2. covariance under translation,ff{(x) = f(x — Xo) thenW;,(a, b) = W;(a, b — xp),

3. covariance under dilation, f§(x) = f(sX thenW¢(a, b) = %swf(sa, sb).
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In contrast, as with FT, itis possible to define a waveleessgkpansion by specifying the scalings
and translations by integer numbers instead of real oneshdtmore, if the scaling is shrunk by a
factor of 2 pinary scaling and the translation is a shift &/2) (dyadic translatiof), wherek is
translation angl determines the scaling, both of which are integer numbaeisjfave restrictf (x) as
well as the mother wavelet to functions that are O outsiderttezval [Q 1], then the family of basis
functions can be indexed by a single index 2/ + k (for j = 0,1,...andk = 0,1,....21 — 1). It
will be orthonormal if the sefy,(X)} forms an orthonormal basis &f(R) _C_h_uj hQ&lZ;LQaleean

). Under such conditions, we have created a contyactic waveletlescribed by the following
equations:

Un(x) = 222X - k), (D.6)
o =< fn>= 2% [ f9u(@x -k ©.7)
00 = > cam(¥), (D.8)

n=0

wherec, are the wavelet cdicients. The redundancy of CWT is thus dramatically reduced,;
indeed, if only one of thé,(X) is similar to f (x), then the series can be truncated to a few terms with
no appreciable error.

Lastly, the discrete wavelet transform (DWT) is the mosfuiser image compression, analysis
and processing. It can also be calculated as an inner prdtweever, obtaining the mother function
is more complicated. In a nutshell, there are three basimtgues for calculating DW@an

). filter bank theory, multiresolution or time-scal@bysis and subband coding.

e Filter bank theory consists of filtering the signal througdeaof ideally non-overlapping band-
pass filters in order to analyze its frequency content indeeetly. Thus, the signal is convolved
by a certain number of filter transfer functions. Since sulter§i are designed to be real and
even, both in time and frequency, the reflection in the camuamh integral has noféect and it
can be seen as a simple inner product. In the real case, tdegdass filters are designed to have
smoothed edges and it is not possible to avoid a certain anodorerlapping between them.

Filter bank theory fiers a convenient means of representing signals composestitiitory
components; however, it is not well suited to image analgsise, in general, the localized
components of interest are not oscillatory but only inclode cycle or part of a cycle, like
edges, lines or spots. The objects in an image are obsereedo at diferent size scales, e.g.,
a spot can be a single pixel or several of them, an edge can learam@nsition from black to
white or it can occur gradually along a certain distance. Mmadiresolution approach to image
analysis tries to exploit this idea.

e One of the most common ways to implement multiresolutiomthés by means of pyramidal
algorithms. This consists of successively reducing the eizthe image by a factor of 2, by
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averaging 2x2 pixel blocks each time discarding every se#cow and column of pixels, and
analyzing the resulting image by, for instance, a 3x3 edgectien operator. In this way, if we
analyze a 1024x1024 image, we will be able to find small edgéisa original image, larger
ones in the following 512x512 image, even larger ones in 86x256, etc.

IB.LLI’.L&_Ad.QI.S.QI]I tl&&b) introduced a pyramid code based on thesSian function. The image
fo(i, J) is low-pass filtered with a Gaussian impulse response andegult is subtracted from

the original image. The high-frequency detail in the imageetained in this dierence image.
Then, the low-pass filtered image can be subsampled witlosstdf detail. The process is
illustrated in FiguréDl2. The basic equations that desdtile process are:

fi(i,)) =[fo=dl(2i.2)) and  h(,]) = foli, j) - [fo = g](i, ). (D.9)

Images are decoded in the reverse order. Each subsamplgd fria j), beginning with the
last one, is scaled to its previous ske 1 by inserting zeros as necessary and interpolated by
convolution withg(i, j). The result is then added to the previous iméggi, j) and the process

is repeated on the resulting image until the original imagecovered. This reconstructs the
original image without error. The similarity between theltmasolution and filter bank theories

is evident and they have been unified under WT.

F1CH)) £

)

foli) * gi) !

hyGif) hy(if) hy(ij)
Figure D.2: The Laplacian pyramid coding scheme. —After Castlérhanf)99.

e Finally, subband coding seeks to decompose a signal or imég@arrow-band components
by band-pass filtering and to represent those componerttgutiredundancy, in such a way

as for it to be possible to reconstruct the original signahaut errorlﬂALOQ_ds_&Q_’N.eillLleG).
The signalf (t) is uniformly sampled, with spacing equal A, to form f(iAt). This sampled
signal is then low-pass filtered to yield the low-resolutstgmalgg(iAt), which retains the basic
shape off (iAt) but without the details. Thereforgg(iAt) can be sampled, with spacing as large
as 2At, without introducing aliasing. This process is calfethsamplingr decimation

In contrast, the original (iAt) signal can be filtered with a half-band band-pass filter deoto
isolate the frequencies that were removed in the previagestA high-frequency sampled ver-
siong,(iAt) is then created. Thugg(iAt) andg, (iAt), taken together, contain all the information
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present inf (iAt).

f(IAL) = go(iAt) + ga(iAb). (D.10)

Two-channel subband coding only requires filterfrfg\t) through two filterdg(iAt) andhy (iAt)
(Fig.[D3) yielding:

do(KA) = > F(iADho((—i + 2K)AL), (D.11)

gu(KAD) = > FIADhy((—i + 2K)AY). (D.12)

—»{ g[n]

x[n] ——| h[n] —b@—b Detail coefficients

Approximation coefficients

Figure D.3: 2-channel subband coding.

And the reconstruction formula:

F(iAD) = 2') " [go(KADho((—i + 2K)AL) + gy (KADhy((—i + 2K)AD)] (D.13)
k

in the Fourier domain:

F(s) = 2[%GO(S)H0(S) + %Gl(s)Hl(s)] =
= 2[%F(S)HO(S)H0(S) + %F(s)Hl(s)Hl(s)] = (D.14)
= F(9) [H3(9) + Hi(9)|.
and the two filters must satisfy the condition:

1
H3(9) +Hi(s)=1 for O<|d<sy==—. (D.15)
In order to obtain the rest of the scales, we can proceed isdhe way with the output of
the resulting low-pass filtered signals at each resolutamell (Fig. [D.4). Therefore, since
H2(s) = 1 - Hi(s), a well-selected low-pass filter is all that is needed tagleBWT. Such a
filter must be symmetrical in order for equation .15 to haltie impulse response of such a
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filter is called thescaling vector k(K), from which we can generate the related scaling function
#(t) and, from these, we can also genetatg) = (—1)hy(—k+ 1), and the mother wavelg(t),
as well as their respective scaled and translated orthcaamensions:

o(t) = Z ho(K)p(2t — k) = ik = 2¥%(2't-k)  j=0,1,.. k=0,1,..,21-1 (D.16)
k

y(t) = Z h(K)p2t — k) = i = 2%t -k)  j=0,1,.. k=0,1,..,2 -1 (D.17)
k

y

D
Level 3
coefficients

bfn] |—>(42)—>

5 ol Nl _.@_. Level 2
gln] &’ [n] coefficients
.( :) > Level 1
h[n] coefficients

Figure D.4: N-channel subband coding.
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The scaling function can be built as a weighted sum of halfescopies of itself, usingy(k) as
the weights. If the scaling vector has a finite number of nero 2ntries, them(t) andy(t) and
the resulting wavelets will all have compact supp ' ). Finally, given the set
of orthonormal wavelets, DWT of the sampled functiiinAt) of f(t) is:

Cik= ). FADyiA)  and (AL = ) cjk(iAt). (D.18)
j.k

A special case is the biorthogonal WT, which uses twiedent wavelet basis;(t) andy(t),
one for decomposition and the other for reconstruction. tWeewavelets can be considered to
be dual and they are biorthogonal if:

< Yk Yim >= 6}10km. (D.19)

Then we would have two ffierent sets of cdicients for the decomposition:

Cj,k =< f(X), I,Zj,k(X) > and q,k =< f(X), l,[/j,k(X) >, (DZO)
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whereas for the reconstruction:

f(x) = Z Cixtik(X) = Z dj k(%) (D.21)
j-k ik

Biorthogonal wavelets allow us, for instance, to build watvenother functions that only consist

of odd or even functioni_(ﬁ.alee.nHa.n_lb96).

WT now has a wide range of applications infdrent branches of applied science, including
astronomy, seismology, biology and medical imaging. Farrtiore, applications in image processing

cover image compression, image fusion, deconvolution, etc

D.2 The B3-splinea trous algorithm

While biorthogonal WTs are suitable for image compressiesillts are not so good for image anal-
ysis or restoration, such as denoising, deconvolution atdction, which are typical applications
in astronomy. This is due to the loss of the translation+ilawece property in DWT, which leads to
the presence of artifacts when the waveletfioents are modifiecl_(_S_ta.r_(;k_e.tl Ia.LZblO). In contrast,
the loss of visual resolution at low frequency scales whenddgcimated WT is applied, is not very

practical for visually inspection of any kind of image.

For these reasons, the astronomy community has prefeedeoluindecimatedVTs, where all
the scales keep the original resolution. Of course, the atnafunformation grows with the number
of scales, increasing the number of waveletfioents and, consequently, the computational costs.
However, this drawback is assumed to be of less importarteasily overcome.

In order to do this, the filter bank construction is kept byatirey fast and dyadic algorithms
where the decimation step is eliminated. A veffiagent way to implement this approach is the a

trous algorithml(Holschneider etal. 1989; Shensa 1992icblecogicientsc;,1[k] andw;.1[k] can

be defined as:

Calk] = (@ x ¢))[K] = ) alKl;[k + 2], (D.22)
|

wialk = (0 % c)[K = > hiKcj[k + 2], (D.23)
|

whereh) andg() are, respectively, the high-pass and low-pass filterssaddnotes for the dis-
crete convolution operator. The filtgt) is identified with even points, i.e.:

GOk = glk] if k/2'j is an integer
0 otherwise
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Since there is no decimation there is no need to meet theagray condition either. This leads
to a higher degree of freedom when designing synthesistypedilter banks in the same way as, for

instance, with non-orthogonal filter ban 0
On the other hand, if filters are symmetric, i.e., they areaétputheir time-reversed versions, and
if they are also isotropic for two or more dimensions, andosodre the mother and scaling functions,
then they will be well adapted for the analysis of most asiroical data, since such data are more
or less isotropic in most casels.LSlamk.&MudMOOG). éfoze, we will have built the so-called
isotropic undecimated wavelet transform (IUWT), alsoedditarlet wavelet transforer.
) because of its close relationship to the astronommatext, or better-known as thg-spline

a trous wavelet transforrh_(_S.ta.LQk_&_M.uLthbh_lb94), sinaehistorical scaling function used for its

implementation is 8;-spline, which resembles a 2-D Gaussian function, thusdjt stellar profile.

The most important properties of the a trous aIgorithmlﬁL&tCk.et.dlLlQﬁbS):

1. reasonable computational requirements,

2. easy to program,

3. in 2-D, the transform is nearly isotropic,

4. compact scaling functions can be used,

5. the reconstruction is trivial,

6. the transform is known at each pixel, allowing detectiothwo interpolation and no error,
7. the evolution of the transform can be followed from ondestathe next,

8. itis invariant under translation.

The a trous algorithm is based on the discrete scalar pt@adugixels of the functionf (x) with
the scaling functior(x), which corresponds to a low-pass filter. The result of thizdpct is the
sampled datay(K):

co(k) =< F(X), p(x—K) > . (D.24)

The scaling function must satisfy the dilation equation:

1 X
50(5) = Z 9()o(x 1), (D.25)



D. The Wavelet Transform. 151

whereg is a discrete low-pass filter associated with the scalingtfan ¢. The distance between
scales is increased by a factor of 2, so the transform is dyaihe smoothed daig (k) at a given
resolutionj and at a certain positidnis given by the scalar product:

—k
6K = 5 < 1006057 > (D.26)
which is obtained by:
ci(k) = Z g()ci_y(k + 271). (D.27)
|

Therefore, the wavelet cieients at resolutiopare given by the dierence:

wi(K) = ¢i-1(k) — ¢(K), (D.28)
which can be expressed as a scalar product too:
1
— <
2i
This is DWT for a resolutiof. The wavelet functiony is defined by:

—k
Wi = 5 < T00.9(5) > (D.29)

1 x 1 x
Elﬁ(z) = ¢(X) - §¢(§)- (D.30)

A B-spline of degree 3 is used for the scaling functigx). The codficients for a convolution

mask in one dimensionarex 1 3 2 i) fromwhicha5x5 mask for 2 dimensions can easily
be devised :

There are several ways to handle the boundaries, the mostajés probably to considexk +
N) = c(N — k). Other methods, such as periodiaifk + N) = c(k) or continuityc(k + N) = ¢(N) can
be used.

Finally, the original images, can be expressed in terms of its waveletfiornts as a series
expansion:

p
co(k) = €+ ) wj(K), (D.31)
j=1

where the last smoothed array(k) must be added to all the wavelet ¢deients, corresponding
to all the scales of representation, in order to obtain arrgitaction formula of the original data.
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At each scalg¢we obtain a wavelet plane represented by the set of wavediiaients{w;}, which
has the same number of pixels as the original image and, goesdy, this WT is not very suitable
for image compression purposes. The steps involved in theua algorithm can be summarized as
follows:

1. Setj to 0 and start with date;(K).

2. Incremeny, and carry out the discrete convolution of the dgta(k) using the filterg. The
distance between the central pixel and the adjacent onés'is 2

3. Wavelet plang¢is given by the dierencec;_;(k) — c;(k).
4. If j is less than the numberof resolutions we want to achieve, then go to step 2.

5. The final seW = {wy, ..., wp, Cp} is the wavelet representation of the data.

Image[D.b shows a wavelet decomposition of galaxy M100 uiega trous algorithm. All the
wavelet imagesw;} have the same size as the original image (subpanel A). Itssiple to observe
how fine details (e.g., noise, faint stars, etc.) have beassifled into high-frequency wavelet planes
(subpanels B and C) whereas wide structures (e.g., galaey ece represented in low-frequency
planes (subpanels E and F). It is interesting to comparerttage with figurd E18, corresponding to
the curvelet decomposition of the same galaxy.

Figure D.5: Decomposition of a 256x256 image of galaxy M100 in 4 wavelehgs and 1 residual smoothed array. A)
original image, B)wo, C) w1, D) w2, E) ws and F) final smoothed array. Images are represented in zscale.



Appendix E

The Curvelet Transform.

The curvelet transform (CT) was designed [bLQa.Dd.as_&_D_dr{QMJH_Z(ﬂZ) to generalize the

wavelet transform (WT) as well as to overcome some of its demks. WT performs very well
at representing point-like singularities and isotropiatéees at all scales and locations; however, it
does not properly describe highly anisotropic elementsh &s lines or curves, since wavelets are
non-geometrical and not sensitive to the regularity of eddg®llowing this reasoning, CT was pro-
posed as anfiective model that not only considers a multiscale timedey local partition, but
also makes use of the direction of features. Furthermor#&ernwo-dimensional case, CT allows
an almost optimal sparse representation of objects. AGhdLIT has been used in the astronomical
context for diferent purposes, such as contrast enhancement of or aréfaowval from Saturn im-
ages l(Sla.mk_eLHl_ZjOS), the study of stellar oscillatidhmnbﬂn_eLalle_(bG) and the detection of

non-Gaussian signatures in cosmic microwave backgrouselrmationsl.(Sla.LQk_eLHl_ﬁiO4), its use

is far from being as general as that of WT.

CT belongs to the family of multiscale directional transfisrthat whose aim is to identify geo-
metric features. Other members of this family go by the nanftesdgelet }Candés & DonoH_o_19,99),
contourlet'(Do & Vetter“_ZO_dS) shearlelt (Guo & Lal“a]_e_zlmweamlethDonoho & Hle_ZO_bZ) ban-

dlet (Mallat & Peyrd 2047), platelet (Willett & Nowdk 200urfacelet/(Lu & Dd 2007), wedgelet
Donoht! 1999), grouplet bﬁil@w) directionlet (delilievic et all. 2006) and directional wavelet

transforms 03). A useful review and sampof CT is outlined b‘Ma

2010)

E.1 The Continuous Curvelet Transform

The continuous CT (CCT) is describedl.by&.a.n.d.és_&_D_th.h.QﬁHl). A curvelet family of complex-

valued waveforms is constructed in the frequency domaingupblar coordinates by defining the

window Uy(r, w):
Ua(r,w) = a /4W(ar)V( \/5) 0O<a<l1 (E.1)

153
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whereV(t) andW(r) are the so-called angular and radial windows, respegtivdhich can be
defined by means of scaled Meyer windo{A&;_(.D_a.u.b.eHLh.i.ﬁ 1992):

1 if Jt<1/3,
V() =1 cod5v(3It| - 1)] if 1/3<t]<2/3,
0 otherwise
(E.2)
cogZv(5 - 6r)] if 2/3<r<5/6
W(r) = 1 ?f 5/6 <r <4/3,
coqZv(3r —4)] if 4/3<r<5/3
0 otherwise
(E.3)
andv(x) is a smooth function that must satisffx) + v(1 — x) = 1, as well as:
if <
wo=1 o =D
1 if x>1
(E.4)

Some examples of(x) are provided b LM&&.ED&“(MO) (e.g(X) =%, x€[0,1]). TheU,
support is a polar wedge that depends on the W and V suppagtdEEl fora = 1 and Fig.[ER for
a=1/2 anda = 1/8). It is possible to observe théect of scaling:U, becomes longer and thinner

for decreasing.

Window U 5

[} 0.5 1 1.5 2

Figure E.1: Left: windowU;(¢). Right: the corresponding support. —After Ma & Plonka (2P

A basic curvelet element is then given by the Fourier tramsfof the windowU,. Let a0 €
L2(R?):

$a00(&) = Ua(é). (E.5)
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and the whole family is generated by rotation and transtatfdhe basic element:

ans(X) = paoo(Ro(X - b)), (E.6)

cosd -sind

with the translatiorb € R?, and whereR, = ( ) is the 2x2 rotation matrix with

sind  cosd
angled. Thus, the curvelet functiop,, is a 3-parameter function: the scae (0, 1], the location

b € R? and the orientatiof € [0, 2r).
It should be noted that rotation in the spatial domain thioaig angle corresponds to rotation in
the frequency domain, also with anglsince

Pano(©) = €9 0a00(Reé) = € POUL(Ry). (E.7)

The curvelet functiong,, ¢ are complex and have the following properties:

1. Support in the frequency domain: thg,; support can be seen in FiguEesiE.1 E.?2fer0
and for diferent values o&. For6 > 0, this support is rotated clockwise By

1 162

Figure E.2: Supports of the windows1/»(£) (gray) andJyg(€) (light gray). —AfterlMa & Plonkhal(2010) —.

2. Support in the time domain and oscillation propertiesicsis,,o has compact support, the
curvelet functionp, ¢ cannot have compact support in the time domain. From Foanal-
ysis, it is known that the decay a@f,,4(X) for large|x| depends on the smoothnessygh, o
in frequency domain. The smoothes,y, the faster the decay. By definitiopg oo IS Sup-
ported away from the vertical axt§ = O but near the horizontal axés = 0. Hence, for
smalla € (0, 1] the functiong, oo Oscilates less in th&-direction (with a frequency of ap-
proximately 4/a) and oscillates much more in the-direction (with frequencies of approxi-
mately J/2a). The essential support of the amplitude spectrump.@b is a rectangle of size
[-n/2a, /28] x [-n/ v/a, 7/ v/a], and the decay ap, o away from this rectangle depends on
the smoothness &f, with respect to the function. From equatiofi El6 we can clearly see that
the essential support @f,4(X) is the rectangle rotated through the angland translated a
distanceR,b.

3. Vanishing moments: since the supporigfq is away from (00), the functionsp, ¢ have a
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mean value of zero. Furthermorig,,, have infinite directional moments, i.e., for all bivariate
polynomialsp(x) with x € R? of arbitrary degree and for all anglésve find that:

fRZ P(Ryb)pape(X)dx = 0, (E.8)

where agairR, denotes the rotation matrix with angle This observation is a direct conse-
guence of the smoothnesswfy, .

Finally, the CCTTs of f € L?(R?) is given by an inner product:

Fi(@b.0) 1= (v ) = [ ans0T0x E9)

The curvelet coicients(ga,pg, f) contain all the information abodut if its Fourier transform

vanishes for¢| < 2, in which casef can be recovered with the following Calderon-like formula
¢ b):

1 2 ! da db do
f(x) = mfo fszO It(a b, 6’)90ab,9(x)@mg- (E.10)
This formula is valid for high-frequency scales and is gahieed for all frequencies d;LC_a.D.d.é_S_&_D_QD})hO

E.2 The Discrete Curvelet Transform

The first implementation of the discrete CT (DCT) was perfednas a combination of the WT and

the ridgelet transform (RT). Since the ridgelet transfosrbeétter suited to straight lines than curves
or edgesl.(.S.tamk.eLl*lﬂlO), the idea was to analyfZerdnt scales of representation locally in order
to approximate possible curvatures as straight lines. élethe image was decomposed by means

of WT, in order to obtain dferent scales of resolution, and each one of the wavelet plaae then
divided into blocks (whose size depended on the resolutidngh could be analyzed independently
by RT. This was the so-called first generation of curvekmms_&_llo.n.oﬂb_zo_ 2). However, such
curvelet construction presented a complicated sevenyea structure and was computationally
very expensive.
In contrast, the second generatib.n_(_C_a.n.d.és_&_Ddllm.hd IlEMES_eLELLZOJB) exhibit a simpler

index structure with only three parameters and much lowéundancy, yielding faster algorithms.
Hence, DCT can be obtained by conveniently sampling theetpegameters that define the scale,

location and orientation. We therefore have:
o the scales; :=27J, j>0;

e the sequence of rotation anglgs := ”'2;”2], with 1 =0,1,...,4-21/21—1 where[x] denotes

the smallest integer greater than or equal to X;
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L - T .
o the positionsy)' = bﬂ(’l"kz ‘= Jll(% %) . with ki, k» € Z, and whereR, denotes the rota-

tion matrix with angle.

For example, forj = 0 we consider the angleg; = nl/2, with| = 0,1, 2,3 and the positions
bﬂ(" € 72 For j = 4, the angle®,, = nl/8, with| = 0, ..., 15 and, depending on the anglas, eight
different grids for translation are considered, where rectsnofl size 116 x 1/4 are rotated by,
with | =0, ..., 7 (Fig.[EB). In particular, the choice of positions yieldsaaabolic scaling of the grids
with the relationshipength~ 2712 andwidth ~ 271,

il

Figure E.3: Grid for 640 = 0 and foré, 1 = n/8. —AfteriMa & Plonkh (2010) —.

As for CCT, we can define the scaled windows in polar coorémiat

w

. . 2.20/21,, _ . i
Ui(r,w) = 2‘3”4W(2"r)v(—) = 27314W(27Ir)V (9 ) j € N, (E.11)
T

j,1
where bothW(r) andV(w) are smooth, nonnegative and real-valued. The basic airgadefined

by:

i00(€) = Uj(&), (E.12)

and the family of curvelet functions is given by:

$ixi(X) = di00(Ry, (x — b)) (E.13)

In the frequency domain, the curvelet functions

(E.14)

w + 9“
b
jil

b (@) = € OU Ry, 6) = e‘i<bjk’"f>2-3”“W(2"'f>V(
are supported inside the polar wedge with radiiid Z r < 21*! and angle®—2 < ¢, <
% Thecfﬁj,kJ support does not depend on the posiﬁ#)h For exampleg.,,(r, w) is supported
inside the wedge with 2 r < 8 and 5 < w < & for| = 0,..., 7 (Fig.[E3).
Every functionf € L?(R?) can be represented as a curvelet series. The curvelgicteats are
obtained from the inner producfy(f) := (f, ¢j):

cya(f) = [ 1097090k [ F@Fa(@rcs (E15)
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Figure E.4: Maximal supports o020 anddaxs (dark gray); ofgay s, daxe anddsy 1z (light gray); and ofgsxo and
¢4x11 (Mid gray). Support¥ c [-1, 1] andW c [-1/2,2]. —Afteribﬁm é)ﬁib) —.

where equatioB EZ15 makes use of Plancherel’s theojem(). This construction implies that
curvelets exhibit an oscillatory pattern in the directi@mgendicular to their orientation.

Therefore, the discrete transform takes as its input datiaaite defined on a Cartesian grid, and
it outputs a collection of cd&cients. The continuous-space definition of the CT uses eaa@md
rotations that are not especially adapted to Cartesiaysariidence, it is desirable to replace these
concepts by their Cartesian counterparts, i.e., coneestjuares instead of concentric circles and
shears instead of rotations (FIg_E.5).

Hence, it would be necessary to substitute the angular atidl raindows by their Cartesian
equivalents:

g -3j/4yf -3j/4F 217,
0,() = 29/, &)V, (@) = 2 wj(fov( - ) (E.16)

whereW; can be a window based on the subtraction of low-pass filtersyiith a band-pass filter

profile (seé_C_a.n.d.B_eda{L_(Zd)OG) for some examples),\7amdmains the same. The frequencies are
then determined in the trapezoid:

(£, &) 27 < gy < 20t 27Ti/A g < &p/é < 2712 §}~ (E.17)

The windowUy is presented in FigufeB.6, which is the Cartesian equivalefigure[E1.
Now we define a set of equispaced slopes instead of equitiesstgtes:

tang; ;= 12702, | = 202 1 oA g (E.18)
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Figure E.5: Left: Continuous curvelet frequency tiling. A wedge is dbeal as the product of the radial window
(annulus shown in a lighter shade) and the angular windovkédarea). It's dimensions are shown d$g 2/2. Right:
Discrete curvelet frequency tiling. The windawy(¢) isolates the frequency near a trapezoidal wedge such ss ghown

in light gray. —After| Starck et all (2010) —.

Which means that the curvelet-like functions are given by:

$i00 = U@, (E.19)
i (¥) = dj00 (ng,l (X - Bﬂgl)), (E.20)

L . . . 1 0
which is the Cartesian counterpart of equafion k.13, withghear matrixg, = ( ang 1 )
—tan

and whereBIj(’I = S;J,T(klz‘j, kp2711/21). The set of curvelets,, needs to be completed by symmetry
and by rotation throughrn/2 radians in order to obtain the whole family. Furthermotés neces-

Window Up

0 0.5 1 1.5 2

Figure E.6: Left: window Uo(¢). Right: the corresponding support. —After Ma & Plonka (@p—.
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sary to consider suitable corner elements to connect thecfmes (north, west, south and east) as

well as extending this support to coarse curvelet elementei frequencies, as was done for CCT
(IQ; é E|55§1a| Eg;ib)

The digital implementation of DCT, whose d&eients are now given by:

Cira(F) 1= (F, ) = f f(©0(s716)e% 9z, (E.21)

can be evaluated by the following steps for discrete data:

1. Compute the 2-D FFT to gdt
2. Form the windowed frequency daffEJj.

3. Apply the inverse Fourier transform.

However, the last step needs to evaluate the FFT at the shgadég_r for which the classical
FFT algorithm is not valldl_C;a.n.d_as_etl Al_(ZbOG) proposeasnssible |mplementatlons essentially
differing in the way in which they handle the grid. The first isedllnequispaced-FFT (USFFT) and
consists of a tilted grid closely aligned with the axestlpf This implementation uses a nonstandard
interpolation and the inverse transform uses conjugatdigmaiteration to invert the interpolation
step, which has its computational cost.

Alternatively, the wrapping-based DCT uses a grid alignéith whe Cartesian input grid, so it
makes for a simpler choice of the spatial grid to translagectirvelets. The curvelet ctheients are
approximated using; = (k;27, k,2° /2T instead 0153(" with values on a rectangular grid. However,
a difficulty arises again because the windﬂwdoes not fit in a rectangle of sizeé R 2//2, to which
an inverse FFT could be applied. The wrapping consists abgieing the windowed frequency data
ﬂjj and reindexing the sample array by wrapping it around ancxppiate 2 x 2//? rectangle cen-
tered on the origin (Fid_E.7).

The algorithm to compute DCT via wrapping contains the fwifgg steps:

1. Apply the 2-D FFT and obtain the Fourier ¢beientsf(¢).
2. For each scalgand orientatior:

o form the product U;;
e wrap this product around the origin;

e apply the inverse 2-D FFT to the wrapped data to get curvekicientscy;.
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Figure E.7: Wrapping data in a parallelepiped by periodicity. Here thgl@d is in the rangex/4, 3r/4). The parallel-
ogram is the tile that contains the curvelet frequency suppe rectangle is centered on the origin. The WraEEegli
appears broken but this is not an issue in the periodic rg#tavhere opposite edges are identified. —, etal

) —.

Image[EXB shows the curvelet d¢heients at each scale of galaxy M100 transferred to the im-
age domain. Although it is more convenient to work with thefioients in the curvelet domain,
where all the capabilities of CT can be fully exploited, itisyway interesting to compare this im-
age with Figurd D5 to seeftierences in the classification process between curveletsvanelets
: fla |LZQ|10). Notice that the visual infatiobn associated with the galactic cloud
hardly appears in the high-frequency curvelet planes [E§.subpanels B and C) whereas its contri-
bution to the corresponding wavelet plane is significarg.(BL3 subpanels B and C).

Figure E.8: Decomposition of a 256x256 image of galaxy M100 in 4 curvelanhes (transferred to the image domain)
and 1 residual smoothed array. A) original image,cB)C) ci1, D) c;, E) c3 and F) final smoothed array. Images are
represented in zscale.
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