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Chapter 1

Adaptive Optics Imaging

Ground-based telescopes have followed a historical tendency to increase their collecting aperture size

in order to allow fainter objects to be detected. Hence, the diameter of the primary mirror of such

telescopes has evolved from a few centimeters, for the first one used for astronomy by Galileo Galilei

(1610), to over 10 meters, such as the Keck telescopes in Mauna Kea (Hawaii) or the Gran Telescopio

de Canarias in La Palma (Canary Islands). Unfortunately, the wavefront emitted by a distant point

source is disturbed during its transit through the atmosphere, which limits the angular resolution.

Therefore, it is impossible to achieve the theoretical diffraction limitλ/D of resolution that could be

achieved by the largest ground-based telescope, withλ being the observing wavelength andD the

diameter of the aperture.

In order to overcome this limitation, current telescope designs incorporate modern systems and

devices that control the mirror surface shape and partiallycorrect distortions introduced by atmo-

spheric turbulence. Such systems include wavefront sensors, deformable mirrors, artificial guide stars

produced using laser beacons and complicated control software, which allow to create astronomical

images with high angular resolutions. Furthermore, their possible applications extend beyond as-

tronomy to a much broader range of disciplines such as ophthalmology, biology or defense. In this

chapter, some of the basics in this field are reviewed from both a theoretical and a practical point

of view, as well as the current state of the art of the science performed with adaptive optics (AO)

systems.

1.1 Introduction to image degradation by atmospheric turbulence

The theory of the effects of atmospheric turbulence in perturbing star wavefronts in astronomy was

initiated by Kolmogorov (1941a) and Obukhov (1941); and further developed by Tatarski (1961),

Fried (1965, 1966) and Roddier (1981). A clear mathematicaltreatment is outlined by Quirrenbach

(2006). In a nutshell, there are four classical areas of study related to the influences of the atmosphere

on image formation:

• Atmospheric absorption or extinction, which is of great importance in photometry and site

selection (Léna et al. 1998; Sarazin 1992).

1
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• Atmospheric refraction, which introduces positional errors affecting the astrometrical accuracy

of observations (Barlow & Bryan 1944; Mahan 1962).

• Atmospheric dispersion, which is simply the differential of atmospheric refraction with respect

to the effective refractive index. It leads to the formation of an image spectrum in the direction

of the telescope altitude (Wilson 1996).

• Atmospheric turbulence orseeingquality, which introduces variations in the refractive index

caused by density variations which in turn are due to temperature dependence with height or

wind speed.

The last item on the list represents the most important limitation on image quality for sophisticated

ground-based telescopes (Wilson 1999), because of its implications for the loss of spatial resolution;

it also determines many of the design parameters of AO systems, such as aperture size and operating

wavelength, and site selection.

If a flat wavefront is arriving at a certain telescope throughthe atmosphere from a point-like

source, for example, a distant star, and assuming that the Earth’s atmosphere is not a homogeneous

static medium, but that it presents both spatial and temporal variations, such a wavefront will be

distorted randomly by cells or bubbles of air with different indices of refraction. Several effects can

be identified (Fig.1.1). Firstly,scintillationor the variation in brightness observed by the eye because

of differences in the wavefront energy per unit of time. Secondly,agitationof the image in the focal

plane, which corresponds to variations in the angle of the plane tangent to the wavefront. Finally,

smearingor loss of spatial coherence at the pupil, which leads to an image size that is larger than

would result from diffraction alone (Roddier 1981).

Figure 1.1: Effects of atmospheric turbulence on images —after Léna et al.(1998).

Most of the descriptions of atmospheric turbulence are based on the theory outlined by Kolmogorov

(1941a,b). First, fluid flows are always turbulent if the well-known Reynolds number is larger than a

critical value1, which is always the case for the Earth’s atmosphere. The inner and outer scalesl0 and

L0 can be defined as the size limits of a characteristic air eddy.In general,l0 is of the order of a few

1R = VL/µ & Rcr. WhereV is the flow velocity (for the Earth’s atmosphereV = 1m/s), L is the length (L ≈ 15m) and
µ the kinematic viscosity of the fluid (µ = 15× 10−6m2/s). For these valuesR∼ 106.
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millimeters, below which value viscous heat dissipation commences; whereas typical values ofL0 are

round a few tens of meters. The Kolmogorov theory describes the turbulence strength in a simple

way as a function of the eddy size in the so-called inertial range betweenl0 andL0 by means of the

structure functionDx(r1, r2) ≡ 〈|x(r1)− x(r2)|2〉, which is basically the expected value of the difference

between the values of a function,x, measured at two different pointsr1 andr2.

If the turbulence itself is assumed to be homogeneous and isotropic, which is a valid approxima-

tion in the rangel0 ≪ r ≪ L0, the structure function of the turbulent velocity field (v) can be written

as:

Dv(r1, r2) ≡ 〈|v(r1) − v(r2)|2〉 = α · f (|r1 − r2|/β), (1.1)

wheref is a dimensionless function with dimensionless arguments.Since the only two parameters

that determine the strength and spectrum of the Kolmogorov turbulence are the rate of energy genera-

tion per unit mass,ǫ, with the dimensionsm2s−3, and the kinematic viscosity,µ, with the dimensions

m2s−1; and considering that from equation 1.1,α must have the dimensions of velocity squared and

β of length, it follows from dimensional analysis thatα = µ1/2ǫ1/2 andβ = µ3/4ǫ−1/4. In addition,

since heat dissipation does not play any role in the inertialrange, thenDv must be independent of the

viscosity,µ. This is only possible iff has the formf = K · (|r1 − r2|/β)2/3 thus eliminatingµ from

equation 1.1, withK being a dimensionless constant:

Dv(r1, r2) = α · K · (|r1 − r2|/β)2/3 = C2
v · |r1 − r2|2/3, (1.2)

whereCv = K · ǫ2/3 describes the turbulence strength. Equation 1.2 represents a universal descrip-

tion of the turbulence spectrum.

The velocity field (eq.1.2) mixes different layers of air, each of them with different temperatures,

T, which must be in pressure equilibrium but have different densities and therefore have different

indices of refraction,N. Consequently, the temperature fluctuations and refractive index variations

must also follow Kolmogorov’s Law with parametersC2
T andC2

N:

DT(r) = C2
T · r2/3, (1.3)

DN(r) = C2
N · r2/3. (1.4)

with CN = (7.8 · 10−5P[mbar]/T2[K]) · CT andr ≡ |r1 − r2|, since a homogeneous and isotropic

random process is being considered (Quirrenbach 2006). Equation 1.4 contains a complete descrip-

tion of the statistical properties of the refractive index fluctuations within the inertial range. This is

the so-called Kolmogorov-Obukhov “two-thirds law ” (Kolmogorov 1941a; Obukhov 1941; Tatarski

1961).
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In addition, Tatarski (1961) obtained the power spectral density,ΦN, of the structural function

DN as a function of the spatial frequency,κ; i.e., Kolmogorov’s Law for the spectral distribution

corresponding to equation 1.4:

ΦN(κ) = 0.0365C2
Nκ
−5/3, (1.5)

which is also valid in the inertial range for the 1-dimensional case, namelyl−1
0 ≫ κ ≫ L−1

0 . For

the more general 3-dimensional caseΦN(κ) ∼ κ−11/3.

Now that the statistical properties of the refractive indexfluctuations have been obtained, it is

possible to derive the statistical behavior of a plane, horizontal and monochromatic wavefront,ψ(x),

coming from a zenith star. Roddier’s approach (Roddier 1981) is assumed: so the atmosphere is

considered to be still and homogeneous except for a turbulent layer of thicknessδh at heighth. The

scalar vibration,ψ(x), can be expressed by its complex amplitude making use of thephase shift,φ(x),

produced by the variations in the indices of refraction:

ψ(x) = eiφ(x), (1.6)

φ(x) = k
∫ h+δh

h
n(x, z)dz, (1.7)

wherek ≡ 2π/λ is the wavenumber corresponding to the observing wavelength andn(x, z) is the

index fluctuation within the layer at pointx, at heighth. The layer thickness,δh, must be greater than

the individual eddies, so many independent variables will contribute toφ allowing to approximate

it to a Gaussian distribution by means of the Central Limit Theorem. In contrast,δh must be small

enough for diffraction effects to be negligible within the layer.

Both Tatarski (1961) and Roddier (1981) introduced the second-order moment or coherence func-

tion of the wavefront after passing through the layer. This can be expressed in terms of the phase

structure function,Dφ(r), by:

Bh(r) ≡ 〈ψ(x)ψ∗(x+ r)〉 =

= 〈expi[φ(x) − φ(x+ r)]〉 =

= exp

(

−1
2
〈|φ(x) − φ(x+ r)|2〉

)

=

= exp

(

−1
2

Dφ(r)

)

.

(1.8)

In equation 1.8 the relation〈exp(iX)〉 = exp
(

−1
2〈X

2〉
)

is used, which is applicable to real Gaussian

variablesX with zero mean.
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In order to calculateDφ(r), the covarianceBφ(r) is defined:

Bφ(r) ≡ 〈φ(x)φ∗(x+ r)〉 =

= k2

∫ h+δh

h

∫ h+δh

h
〈n(x, z1)n(x+ r, z2)〉dz1dz2 =

= k2

∫ h+δh

h
dz1

∫ h+δh−z1

h−z1

dzBN(r, z),

(1.9)

wherez≡ z2 − z1 andBN(r, z) is the covariance of the refractive index variations. For layer thick-

nesses,δh, that are large enough compared to the correlation scale of the fluctuations, the integration

can be extended to the infinite limit (Roddier 1981):

Bφ(r) = k2δh
∫ ∞

−∞
BN(r, z)dz. (1.10)

Sincer ≡ |r1− r2|, it is easy to prove thatDx(r) = 2(Bx(0)− Bx(r)) (Quirrenbach 2006). Applying

this relation toDφ(r), DN(r, z) andDN(0, z) the following expression is obtained:

Dφ(r) = 2[Bφ(0)− Bφ(r)] =

= 2k2δh
∫ ∞

−∞
[BN(0, z) − BN(r, z)] dz=

= 2k2δh
∫ ∞

−∞
[(BN(0, 0)− BN(r, z)) − (BN(0, 0)− BN(0, z))] dz=

= 2k2δh
∫ ∞

−∞
[DN(r, z) − DN(0, z)] dz.

(1.11)

Inserting equation 1.4 into equation 1.11 gives:

Dφ(r) = k2δhC2
N

∫ ∞

−∞

[

(r2 + z2)1/3 − |z|2/3
]

dz=

= 2.914k2δhC2
Nr5/3,

(1.12)

which is the desired expression for the structure function of phase fluctuations due to Kolmogorov

turbulence in a layer of thicknessδh. Finally, inserting equation 1.12 into equation 1.8 and considering

that the star which emitted the wavefront is not at the zenith, but a certain angular distance, Z, from

the zenith, and also considering that the turbulence extends across the whole depth of the atmosphere,

thusC2
Nδh⇒

∫

C2
N(h)dh, it is possible to obtain:

B(r) = exp

[

−1
2

(

2.914k2(cosZ)−1r5/3

∫

C2
N(h)dh

)]

. (1.13)
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Equation 1.13 is of fundamental importance for determiningthe effects of turbulence in long-

exposure images. From this expression the following conclusions can be deduced (Léna et al. 1998):

• The phase is the only perturbed parameter in the vicinity of the layer, this results insmearing

andagitation (Fig.1.1). Further away, both the phase and the amplitude suffer variations and

thenscintillation occurs. When the turbulence is not very large, the amplitude, |ψ(x)|, can be

neglected.

• On leaving the layer, the correlation function has a complexamplitude which determines the

random phase distribution. This function has an isotropic profile, so the correlation length,xc,

can be defined as:

〈ψh(x+ xc)ψ∗h(x)〉
〈|ψh(0)|2〉 ∼ 1

e
=⇒ xc ∼ (1.457k2C2

Nδh)−3/5. (1.14)

Typical values ofxc are around a few tens of centimeters, which implies a significant reduction

in the spatial coherence of the incidental wave.

• The coherence length is highly dependent on the wavelength,xc ∝ λ6/5, (eq.1.14).

1.1.1 The Fried parameter

Fried (1965) represents the wavefront when it arrives in terms of a truncated sequence of polynomials

(closely related to Zernicke’s polynomials), each of which, or each group of which, represents a

specific geometric shape over the telescope pupil: a uniformphase change, a tilt change, defocus or

a hyperbolic change. In addition, the phase structure function (eq.1.12) is expressed in terms of the

so-called “Fried parameter” which can be defined as follows:

r0 ≡
[

0.423k2(cosZ)−1

∫

C2
N(h)dh

]−3/5

, (1.15)

which transforms equations 1.13 and 1.12 into:

B(r) = exp















−3.44

(

r
r0

)5/3












, (1.16)

Dφ(r) = 6.88

(

r
r0

)5/3

. (1.17)

It should be noted that the dimension ofr0 is length and that it is proportional toλ6/5, thus it is

highly dependant on the wavelength of the incident light. This strong dependence makes telescopes

more coherent at infrared wavelengths than in the visible part of the spectrum (r0 = 10cmat 0.5µm

whereasr0 = 8.4m at 20µm), i.e., given a certain diameter, a telescope will give images closer to the

diffraction limit in the infrared than in the visible.
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In an additional publication, Fried (1966) offered a new treatment in terms of the normalized

optical transfer function2 (OTF),S( f ). The OTF can be divided into two terms, one corresponding to

the telescope and the other to the atmosphere. The latter is described by the Fourier transform of the

wavefront coherence function (eq.1.13) and the former by:

T( f ) =
1
πD2

∫

P(u)P∗(u+ f )du, (1.18)

where f is frequency,u is defined asu ≡ x/λ andP(u) is a complex function which describes a

telescope aperture of a certain diameterD. Consequently, the total OTF is given by:

S( f ) = B( f ) · T( f ). (1.19)

Finally, the resolving power,R, (which is inversely proportional to the angular resolution) is given

by (Roddier 1981):

R≡
∫

S( f )d f =
∫

B( f )T( f )d f. (1.20)

In the ideal case of the absolute absence of turbulence,B( f ) can be assumed to be negligible; so

the resolving power would only be limited by diffraction:

Rd =

∫

T( f )d f =
1
πD2
|P(u)du|2 = π

4

(D
λ

)2

. (1.21)

For an infinitely large telescope, the opposite effect would be experienced and the seeing-limited

resolving power could be obtained as:

Rs =

∫

B( f )d f =
∫

exp















−3.44

(

λ f
r0

)5/3












d f =
π

4

( r0

λ

)2

, (1.22)

wherer = λ f has already been introduced in equation 1.16.

From a direct comparison of equations 1.21 and 1.22, the significance of the Fried parameter is

clear (Quirrenbach 2006):the resolution of seeing-limited images obtained through an atmosphere

with turbulence characterized by a Fried parameter r0 is the same as the resolution of diffraction-

limited images observed with a telescope of diameter r0.

Therefore,r0 is a method by which to characterize the size of the turbulence cells, i.e., the Fried

parameter is the distance over which the wavefront is not considerably perturbed. As was pointed

out previously,r0 is wavelength-dependent, giving better results at infrared wavelengths. It is also

site-dependent, at good seeing locations (such as Mauna Keaor Cerro Paranal)r0 is about 20cm at

500nm, which corresponds to an FWHM of 0.6 arcsec; even values of 100cmhave been reported at

2.2µm. However, only whenr0 > D are the seeing effects negligible; so even a value ofr0 ∼ 1m

would be too small for large-diameter telescopes such as the10-m Kecks.

2The Fourier transform of the telescope point spread function (PSF).
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1.1.2 Temporal evolution. Long- and short-exposure images

The Fried parameter models the size scale of the eddies over the telescope pupil. However, it is

also necessary to consider the evolution of the turbulencesover time. A typical approximation is to

assume that the turbulence itself does not change over the time needed by the wind to blow it out

of the telescope pupil, i.e., temporal variations are due ofthe transport offrozenpatterns across the

aperture by the wind. This is the so-calledTaylor hypothesis of frozen turbulence. Hence, the wind

speed,v, in the layer is the parameter which defines the time evolution, τ0, of an eddy of sizer0:

τ0 ∼ r0/v. (1.23)

Of course, just as forr0, time evolution is also wavelength dependent, i.e.,τ0 ∝ λ6/5. If Tay-

lor’s hypothesis is valid, the spatial structure function (eq.1.17) and its phase power spectrum can be

converted into their temporal counterparts:

Dφ(r) = 6.88

(

t
τ0

)5/3

, (1.24)

Φφ( f ) = 0.077τ−5/3
0 f −8/3. (1.25)

These equations tell the residual phase error that can be expected to correct the turbulence with a

servo loop of a certain bandwidth.

Typical values ofv are around∼ 10m/s, which means values for the evolution time of just a few

milliseconds. Observations with exposure timest ≫ τ0, i.e., long-exposure images, average over the

random turbulent process. In contrast, short-exposure images,t ≪ τ0, produce images via a single

instantaneous observation of the atmosphere with the typical specklepattern (Fig.1.2).

The number of speckles in each observation is approximatelyD/r0 and they contain consider-

able high-frequency spatial information close to the diffraction limit. Another image would result

in another set of speckles, but randomly displaced with respect to the previous one (McLean 1997).

If numerous short exposures are taken and added together or an equivalent long exposure is taken,

then all the speckles blend together to form a seeing disk of width ∼ λ/r0 instead of multiple small

individual speckles of width∼ λ/D (Fig.1.3). It is easy to verify that the larger the Fried parameter,

r0, the fewer the speckles; the longer the evolution time,τ0, and the better the angular resolution for a

long exposure.

The diffraction-limit information contained in numerous specklescan be recovered using different

Fourier analysis techniques; such methodology is called speckle interferometry. Labeyrie (1970)

established the possibility of recovering the object powerspectrum from the autocorrelation function

of a large series of short-exposure frames; if they have beenacquired over a time scale of less than

τ0, the phase content of each frame can be considered stationary and time-independent. Obtaining

information from the object is then relatively straightforward. For instance, for a binary system,

physical parameters such as separation, angular position and magnitude difference can be retrieved
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Figure 1.2: Speckles. Note the different sizes of the vari-
ous elements represented: pupil, speckles, turbulence —after
Léna et al. (1998).

Figure 1.3: Long- and short-exposures profiles —after
McLean (1997).

by a weighted least-square method (Horch et al. 1996).

Unfortunately, Labeyrie’s method removes the phase of the object, which must also be recovered

in order to obtain a diffraction-limited image of the object. Different techniques have been proposed

to recover the wavefront phase in speckle interferometry. The most successful has probably been

the triple correlation analysis or bispectrum method (Lohmann et al. 1983) and its relaxation variant

(Meng et al. 1990) (see Figure 1.4).

There is a huge range of applications of speckle interferometry in science, either in the visible

or the infrared region of the spectrum. To offer a brief overview, the following papers can be cited:

Hartkopf et al. (2000), Mason et al. (2001) and Horch et al. (2009, 2012).

Figure 1.4: Upper left: Reconstruction of HIP 005674 as a binary system by means of the bispectrum method,ρ = 0.144
arcsec,∆m = 2.04 (562nm.),∆m = 1.89 (692nm.). Upper right: Reconstruction of HIP 115751,ρ = 0.422 arcsec,∆m =
3.03 (562nm.), ∆m = 2.98 (692nm.). Lower left: corresponding HIP 005674 specklegrams. Lower right: corresponding
HIP 115751 specklegrams. (Horch et al. 2009).
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1.1.3 Angular anisoplanatism

The light from two stars separated by an angleθ arrives at the telescope pupil via two different optical

paths and, therefore, is affected by different phase variations. This effect is the so-called angular

anisoplanatism and limits the field that can be corrected by an AO system (see section 1.2).

Two rays coming from two different stars are separated byr(d) = h(cosZ)−1θ, whered is their

separation,h is the height andZ is the zenital angle. Ath = 0, i.e., at the pupil, the two rays coincide.

To calculate the phase variance between the two rays this expression is inserted into equation 1.12

(considering the zenital angle to beZ) and integrate over the height,h:

〈σ2
φ〉 = 2.914k2(cosZ)−1

∫

C2
N(h)

(

θh
cosZ

)5/3

dh=

= 2.914k2(cosZ)−8/3θ5/3

∫

C2
N(h)h5/3dh=

=

(

θ

θ0

)5/3

,

(1.26)

where the isoplanatic angle,θ0, has been defined as the angle for which the variance of the relative

phase is 1rad2:

θ0 ≡
[

2.914k2(cosZ)−8/3

∫

C2
N(h)h5/3dh

]−3/5

. (1.27)

Equation 1.27 can be expressed in terms of the Fried parameter (equation 1.16) as:

θ0 = 0.314(cosZ)
r0

H
, (1.28)

whereH is defined as the mean effective turbulence height:

H ≡














∫

C2
N(h)h5/3dh

∫

C2
N(h)dh















3/5

. (1.29)

The isoplanatic angle,θ0, can be interpreted physically as the maximum angle by whichtwo stars

can be separated to assume they both produce the same PSF corrected by AO. In contrast, for long

exposures which represent averages over many observationsof atmospheric turbulence, the PSFs are

almost identical for angles much larger thanθ0. Equation 1.28 shows thatθ0 is most affected by high-

altitude turbulence. Furthermore, it also depends on the wavelength,λ6/5, and on the zenital angle,

Z, more strongly than onr0. In general, the anisoplanatism is less severe for low spatial frequencies

which are corrected much better by AO systems than high spatial frequencies are.
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1.1.4 The Strehl ratio

Astronomers compare seeing-limited and diffraction-limited images using the Strehl ratio (SR) de-

fined as the quotient of the intensity peak of an observed point source and the theoretical maximum

peak intensity of a perfect imaging system at the diffraction limit. It can be expressed by the following

equation3 (Wilson 1996; Hardy 1998):

S R≡ I (P)
I0
=

1
π2

∣

∣

∣

∣

∣

∣

∫ 1

0

∫ 2π

0
ρeikψ(ρ,θ)dρdθ

∣

∣

∣

∣

∣

∣

2

, (1.30)

whereI (P) is the intensity of the seeing-limited image at the focal point P and I0 is the inten-

sity in the absence of aberrations and turbulences (i.e.,ψ = 0). The wavefront aberration function

ψ(ρ, θ) refers to a circular aperture expressed in polar coordinates andk is again the wavenumber

corresponding to the observing wavelength,λ.

In the absence of aberration, the maximum in intensity will be at the Gaussian focus. If aberration

is present and large, there will be an intensity maximum at the diffraction focus which cannot be

unique. However, if the aberration is sufficiently small, there will be a unique diffraction focus with

a clearly defined intensity maximum. In such a case, equation1.30 can be used as a parameter to

measure the effects of a small degree of aberration over the image quality. This concept was first

introduced by Strehl (1902).

In general, there is no explicit knowledge of the wavefront aberration function,ψ(ρ, θ) in equation

1.30. This is especially true in the case of AO where the random errors are usually described statisti-

cally. Born & Wolf (1964) derives an expression to approximate equation 1.30 to a more simple form

by expanding the aberration function by a Taylor’s series:

S R=
1
π2

∣

∣

∣

∣

∣

∣

∫ 1

0

∫ 2π

0
ρ

[

1+ ikψ(ρ, θ) +
1
2

[ikψ(ρ, θ)]2 + . . .

]

dρdθ

∣

∣

∣

∣

∣

∣

2

. (1.31)

Let ψn be the average wavefront error of thenth power ofψ over the pupil, with respect to a

reference sphere centered onP:

ψn =

∫ 1

0

∫ 2π

0
ρψn(ρ, θ)dρdθ

∫ 1

0

∫ 2π

0
ρdρdθ

=
1
π

∫ 1

0

∫ 2π

0
ρψn(ρ, θ)dρdθ. (1.32)

If the third and higher-order terms in equation 1.31 are neglected, then the SR can be expressed

as:

S R≈
∣

∣

∣

∣

∣

1+ ikψ − 1
2

k2ψ2

∣

∣

∣

∣

∣

2

= 1− k2
[

ψ2 − (ψ)2
]

. (1.33)

3In general, SR is expressed as a percentage.
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The mean-square wavefront error is defined as (∆ψ)2 = ψ2 − (ψ)2. Finally, setting the standard

deviation of the phase asσφ = k∆ψ, the SR can be approximated as:

S R≈ 1− σ2
φ. (1.34)

This expression is only valid for very small phase errors of up to about 0.6rad rms. It tends to 0

at a phase error of 1rad, which is clearly unrealistic. Maréchal & Françon (1960)obtained a similar

expression for SR in the presence of small aberrations:

S R≈
[

1− 1
2
σ2
φ

]2

, (1.35)

which gives basically the same result as equation 1.34 for values ofσφ of up to 0.5 rad rms.

It tends to 0 at 1.41rad rms. An optical system can be considered well corrected whenS R ≥
0.8, which corresponds toσ2

φ ≤ 0.2 (eq.1.34), corresponding to a wavefront error ofλ/14 or less.

Maréchal & Françon (1960) and Welford (1974) provide similar results. This criterion is acceptable

for fixed optical systems such as mirrors or lenses, but is excessively restrictive for AO systems. SRs

of up to 50% in theK-band are considered typical good values (e.g. Hayward et al. 2001). Moreover,

SR values of∼ 80% have been measured for the 8.4-m Large Binocular Telescope in the H-band

(Esposito et al. 2010).

Equation 1.34 represents the first two terms of the Taylor’s series expansion of an exponential

function which yields an alternative expression for SR thatis the so-called “extended Maréchal ap-

proximation” :

S R≈ e−σ
2
φ . (1.36)

This equation is valid over a larger range of phase errors than the other two, up to 2rad rms, and it

is one of the most frequent expression for SR in AO. It is clearthat, in the ideal case of the absence of

atmospheric turbulence,ψ(ρ, θ) = ctesoσφ = 0 andS R= 1. Moreover, for strongly varyingψ(ρ, θ),

S R≪ 1 and, in general, 0≤ S R≤ 1 (equation 1.30). For any givenψ(ρ, θ), the SR tends to be larger

for longer wavelengths,λ, i.e., for smaller wavenumbers,k.

It should be remarked that the SR is not the only valid parameter when it comes to obtaining

a measurement of the image quality in AO. Other possible metrics are the 80% encircled energy

(EE), defined as the angular diameter containing 80% of the total energy, which has the advantatge of

relating two meaningful parameters: the sensitivity and the resolution; however, it is dependant of the

wavelength. A second possible metric would be the full widthhalf maximum (FWHM), which gives

the extent of the main PSF lobe (excluding wings) as the difference between the two extreme values

at which the PSF reaches half of its maximum value.

Dierickx (1992) compared the effects of spherical aberration in the presence of atmospherictur-

bulence on the 50% and 80% encircled energy with those on the equivalent SR and concluded that the

SR is far preferable as a quality criterion, since the formerare not very sensitive to the wavefront er-

rors introduced by the telescope itself. Brown (1979) reaches a similar conclusion. Finally, Dierickx
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(1992) introduces the central intensity ratio (CIR) given by the quotient:

CIR≡ S R
S R0

, (1.37)

whereS Ris the SR of the total system of atmosphere, telescope and site. The parameterS R0 is the

SR of the equivalent perfect telescope limited only by diffraction,in the same turbulent atmosphere.

The metric CIR is normalized to unity for the performance of an aberration-free, diffraction-limited

telescope; so it is more practical in those cases whereS Ryields very small values.

The CIR can be seen as the area under the modulation transfer function (MTF4) curve (Brown

1981, Fig.1.5). This contains the same information as the PSF; it measures the degradation of the

optical amplitude with frequency, just as if it were a filter function applied over some signal.

Figure 1.5: Improvement of the MTF with respect to the SR —after Wilson (1999).

1.2 Adaptive optics systems

As has been shown in the previous section, atmospheric turbulence limits the spatial resolution

achieved by ground-based telescopes. This limitation can be mitigated by reducing the amount of

atmosphere over the telescope; that is, by building observatories atop high mountains, or launching

highly-expensive and technologically-restricted telescopes into orbit outside the Earth’s atmosphere.

However, Horace W. Babock was the first person to theorize about the applicability of an AO sys-

tem: if we had the means of continually measuring the deviation ofrays from all parts of the mirror,

and of amplifying and feeding back this information so as to correct locally the figure of the mirror

in response to the schlieren pattern, we could expect to compensate both for the seeing and for any

inherent imperfection of the optical figure(Babcock 1953). This theoretical system was first imple-

4This is the real part of the optical transfer function (OTF, eq.1.19)
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mented in the 1.6-m telescope on mount Haleakala (Maui, Hawaii) in 1982, almost 30 years after

Babcock’s statement just quoted.

Figure 1.6 shows the basic scheme of an AO compensating system. A wavefront sensor (WFS)

measures the deviations of the optical path from the flat waveand sends this information to a real-time

computer. After analyzing this information, the feedback loop is completed by modifying the shape

of a deformable mirror (DM) in order to correct the deviations and better concentrate the luminic

energy on one single image element.

Figure 1.6: A simple scheme for implementing adaptive optics using a deformable mirror.

In practice, the phase variations of the wavefront are described in terms of the so-called Zernicke

polynomials,Zj(n,m), wheren is the degree of a radial polynomial andm is the azimuthal frequency

of a sinusoidal term. Noll (1976) gives normalized versionsof the Zernicke polynomials. Table

1.1 lists the low-order terms and explains their meaning. The last column in the table gives the mean

square residual amplitude,∆ j, in the phase variations at the telescope entrance caused byKolmogorov

turbulence after the removal of the firstj elements; the normalization factor isS = (D/r0)5/3. For

j > 10, the value of∆ j can be approximated by:

∆ j ≈ 0.2944j−0.866

(

D
r0

)5/3

rad2. (1.38)

By substituting the appropriate terms and taking the squareroot, Table 1.1 yields the rms phase

variation for each mode of correction. When there is no correction, the rms phase variation is

0.162(D/r0)5/6 waves, while after tip–tilt correction, the rms phase variation is reduced to 0.053(D/r0)5/6

waves. In accordance with this, in order to achieve an SR as high as 80% under typical seeing condi-
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tions, a huge number of terms must be corrected, which basically implies a high degree of complexity

of the whole AO system.

Table 1.1: Modified Zernicke polynomials and the mean square residual amplitude for Kolmogorov turbulence
after removal of the firstj terms.

Zj n m Expression Description ∆ j/S
Z1 0 0 1 constant 1.0300
Z2 1 1 2r sinφ x-tilt 0.5820
Z3 1 1 2r cosφ y-tilt 0.1340
Z4 2 1

√
3(2r2 − 1) defocus 0.1110

Z5 2 2
√

6r2 sin 2φ 0o astigmatism 0.0880
Z6 2 2

√
6r2 cos 2φ 45o astigmatism 0.0648

Z7 3 1
√

8(3r3 − 2r) sinφ x-coma 0.0587
Z8 3 1

√
8(3r3 − 2r) cosφ y-coma 0.0525

Z9 3 3
√

8r3 sin 3φ x-trifoil 0 .0463
Z10 3 3

√
8r3 cos 3φ y-trifoil 0 .0401

Z11 4 0
√

5(6r4 − 6r2 + 1) third order spherical 0.0377

Shellan (2004) performed several simulations to representthe SR as a function of the telescope

diameter and the Fried parameter for a wide range of corrected terms in the Zernicke polynomials

and number of actuators on the DM. He found that maximum on-axis intensity is achieved when the

telescope diameter is such that the actuator spacing is equal to ∼ 2r0. In contrast, the optimum value

of D/r0 is equal to 1.79Nr + 2.86, whereNr is the highest Zernike radial mode corrected.

Therefore, an AO system must be designed to correct as many Zernicke polynomial terms as pos-

sible (Fig. 1.7). This design is determined by the atmospheric parameters derived from Kolmogorov’s

theory, i.e., the Fried parameter,r0, the isoplanatic angle,θ0, the time evolution,τ0, and in the case of

future 30- or 40-m telescopes such as ELT, the outer scale,L0, as well.

The AO feedback loop shown in Figure 1.6 must be iterated several hundred times per second in

order to correct temporal variation in the optical path set by τ0. However, the number and size of the

WFS resolution elements (subapertures) and the DM elements(actuators) projected on the telescope

aperture must approximately matchr0. Finally, WFS makes use of a single star or artificial laser star

measurements to record variations in the wavefront direction. Such a star must be separated from the

science object by a distance less than the isoplanatic angle, θ0, in order to diminish the differences be-

tween the object and the calibrator PSFs across the field of vision. Figure 1.8 shows Jupiter’s satellite

Io imaged with the 10-m AO Keck telescope.

Hence, an AO system is formed of the following elements:

1. WFS: this is designed to provide an electrical signal which can accurately describe the wave-

front shape. In general, bearing in mind that the wavefront is nearly achromatic, wavefront

measurements are performed at visible wavelengths by phase-sensitive optical devices with
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Figure 1.7: Efficiency of AO using a small number of modes. Left:D/r0 = 2. Right:D/r0 = 7. Curve A: no correction.
Curve B: correction up to termZ3. Curve C: correction up to termZ4. Curve D: correction up to termZ6. Curve E: perfect
diffraction-limited performance —after Wilson (1999).

low-noise and high-quantum-efficiency photon detectors such as CCDs. Currently, three WFS

designs are in use. First, there is the Shack-Hartmann WFS, which employs an array of lenses

which produces a corresponding array of spots whose positions determine the wavefront shape.

Second, there is a pyramid WFS, which makes use of a prism to deviate the aberrated ray to

different detectors. Thus, the intensity distributions in the multiple pupil images are a measure

of the ray’s slope. Lastly, a curvature WFS measures intensity distributions in two different

planes on either side of the focus, corresponding to the curvature of the wavefront.

All these three types of WFS work with broad-band light, but they differ in their dynamic range

Figure 1.8: Upper left: Io image taken with Keck adaptive optics; K-band, 2.2µm. Upper right: Io image based on
visible light taken with Galileo spacecraft orbiter. Lowerleft: Io image taken with Keck adaptive optics; L-band, 3.5µm.
Lower right: Io image taken without Keck adaptive optics.
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and sensitivity. Nowadays, the pyramid WFS is considered tobe the most suitable for AO

imaging, since its sensitivity hardly changes at any spatial frequencies. The Sharck-Hartmann

and curvature WFS sensitivities degrade at low spatial frequencies, this is especially so for the

latter; however, the curvature WFS exhibits better performance at high-spatial frequencies than

the Sharck-Hartmann WFS (Guyon 2005, 2007).

2. Wavefront reconstruction techniques (WRTs): these tackle the calculation of the appropriate

correction vector,v, which the DM must be provided with from the measurement vector, s,

obtained by WFS. It consists of the resolution of the following linear system:

Dv = s+ n, (1.39)

whereD is the matrix which relates the WFS to the DM; andn is Gaussian uncorrelated noise.

v can be resolved from equation 1.39 by obtaining a pseudoinverse version ofD, which is to be

multiplied bys. Unfortunately, this simple method provokes noise amplification and techniques

of filtering, weighting and modal decomposition must therefore also be used in order to obtain

D−1 (Gendron & Léna 1994; Verinaud & Cassaing 2001; Wallner 1983).

Moreover, the complexity of such techniques increases withO(n2), wheren is the number of

degrees of freedom of the system. Since the reconstruction must be carried out every 1ms, and

the delay between measurement and correction must be as short as possible (∼ 1 time step),

the computational load becomes very high quickly. In order to reduce such complexity, several

approaches have been proposed including the FFT-based reconstructor (Poyneer et al. 2002),

which scales withO(n log2 n); the fractal iterative method (Thiébaut & Tallon 2010); and the

cumulative reconstructor (Rosensteiner 2011). Both of thelatter two scale withO(n).

3. DM: this usually consists of an array of actuators which deform a thin optical surface by means

of contractions and expansions. The parameters which defineDM performance are the number

of actuators, the spacing between them, the stroke and the response time. Spacing and response

must be in accordance withr0 andτ0, while the stroke and the number of actuators both scale

with the aperture diameter. Current DMs for typical 8- or 10-m telescopes have several thousand

of actuators. The future 30- and 40-m telescopes will increase this number by a factor of one

hundred.

There are three technologies available for building DMs. First, the secondary mirror of the tele-

scope can be replaced by an adaptive secondary mirror. This leads to large designs of 1-m di-

ameter with actuators separated by a few centimeters. However, they achieve high transmission

and low thermal emissivity by avoiding extra relay optics. Second, there is the medium-sized

piezo DM, which are smaller than the previous type but which are affected by hysteresis and

thermal expansion. In this case the actuators are separatedby a few centimeters and they have

less stroke, although enough to perform suitable correction. Third, micro-optical-electrical-

mechanical systems are significantly smaller with a spacingof a few hundred microns. They
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are produced using semiconductor technologies and do not suffer from hysteresis; furthermore,

they have almost instantaneous response times. However, their stroke is not very high and they

usually need a second larger stroke DM with only a few actuators, which flattens the wavefront

as a first, prior stage.

4. Laser guide star (LGS): if a suitable reference star of at least 15magis not available in the field

of view (FOV), the AO system can not function. In such situations, the system must be provided

with an “artificial star” using laser beams (Fig. 1.9). This consists of emitting a pulsed laser

beam, tuned to the sodium wavelength 589nm, projected through the telescope and focused

at an altitude of∼ 92km which excites the so-called sodium layer in the upper atmosphere.

Resonance fluorescence in this layer produces a glowing artificial star. Another possibility is

to excite dense regions of the atmosphere at about∼ 30kmby Rayleigh scattering of the laser

beam. The use of an LGS was first proposed for astronomy by Foy &Labeyrie (1985) and their

usage is now generalized.

Notwithstanding, an LGS also has considerable drawbacks compared to natural reference stars.

First, due to the finite distance between the telescope and the LGS, the backscattered beam does

not sample the full aperture at the height of the turbulent layers. This focal anisoplanatism is

more severe for larger apertures and higher turbulent layers. Second, an LGS cannot be used

to measure the tip or tilt of the wavefront, since the contribution of the upward projection jitter

cannot be disentangled from the measurement.

Figure 1.9: A laser beam emerging from the 8.2-m Very Large Telescope at the European Southern Observatory
(ESO) in Cerro Paranal (Chile).
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Practical implementation of AO did not occur until more than20 years after Babcock’s work. AO

concepts were first proved and tested in the mid-70s by Buffington et al. (1977a,b), who used a one-

dimensional, 6-element segmented mirror with segment piston control; and by Hardy et al. (1977)

and Hardy (1978), who used a two-dimensional, 21-actuator continuous surface DM, combined with

a shearing interferometer WFS.

However, it was necessary to wait until the late 80s to see thebirth of the first fully-operative AO

system for professional astronomy. The European Southern Observatory (ESO) was responsible for

building the first such AO system: the so-called, COME-ON. Itconsisted of a DM with 19 actuators

and a Sharck-Hartmann sensor. The COME-ON system was initially tested on the 1.52-m telescope

at the Observatoire de Haute-Provence (Rousset et al. 1990). Later, it was updated to 52 actuators

and a larger corrective bandwidth of 400Hz in order to be installed in the 3.6-m telescope at La Silla

(Chile) (Rigaut et al. 1991). After a simplification and the use of control computers, the name of

the system was changed to ADONIS. Simultaneously, a new technique was being developed by the

National Optical Astronomy Observatory (NOAO). Rigaut et al. (1997; 1998) successfully mounted

a curvature sensor in the Canada-France-Hawaii telescope (CFHT) at the Mauna Kea Observatory

(Hawaii). That system, denominated PUEO, had a bimorph mirror with 19 actuators and a servo

bandwidth of 100Hz.

After these developments, it became impossible to conceiveof telescopes with primary mirrors

larger than 3 or 4 m which do not incorporate their own AO systems. Therefore, in 2003, the NAOMI

system was installed in the 4.2-m Herschell telescope at the Instituto Astrofı́sco de Canarias (IAC).

MACAO and NAOS were installed in the Very Large Telescope (VLT), at La Silla. The 3-m Shane

telescope at Lick Observatory was a pioneer in developing anLGS system. The ALTAIR AO system

was mounted in Gemini North (2002) replacing the Hokupa’a AOsystem. More recently, the 8.2-m

Keck-II, 8.2-m Subaru telescope and 10.4-m GTC telescopes were initially designed to have their

own AO system too. Finally, AO is the basis on which the new of 30- and 40-m telescopes, the Thirty

Meter Telescope (TMT) and the European Extremely Large Telescope (E-ELT), will produce their

first images in the next decade.

1.3 Photometric sources of error in adaptive optics

AO systems are able to correct the effects of atmospheric turbulence that disturbs the light wavefront,

thus enabling to obtain images that are close to the theoretical telescope diffraction limit. How-

ever, since such correction is never perfect, errors in the photometric estimations usually introduce

some bias into the astrophysical conclusions arrived at from the observations. Some papers have

dealt with both the theoretical and the practical image quality performance of AO imaging systems

(Wilson & Jenkins 1996; Tessier 1997), although without focusing on the photometric quality. In

order to fill this gap, Esslinger & Edmunds (1998) provides anexcellent review of sources of error

and photometric performance in AO systems based on observations obtained at the ESO in La Silla

(Chile). The study reported there are assumed SR variationsof between 0.15 and 0.3 in both isolated



20 Roberto Baena Gallé. Universitat de Barcelona.

objects and crowded fields.

There are two principal photometric methods. First, aperture photometry; which consists of in-

tegrating the counts of light within a circle surrounding the star being observed. The background

sky can be estimated within an annulus that is concentric with that circle and then subtracted. The

annulus dimensions must be chosen so as to be close enough to the aperture circle so as to provide an

estimate of the same background in both, but large enough to ensure that there is no contribution from

the star. Second, PSF fitting; because aperture photometry cannot be used in crowded fields, since it

is not possible to guarantee the presence of single stars within every aperture circle. In this case, it is

possible to fit a model of the stellar image to the data by meansof a least-square algorithm, studying

several stars at the same time.

Nevertheless, both photometric methods make some assumptions about the PSF, which are correct

in seeing-limited observations, but are not valid in AO. Essentially, they assume that almost a perfect

knowledge of the PSF is available, which is supposed to be smooth, stable over time and constant over

the field of view (FOV). Photometrical sources of inaccuracyintroduced by the use of AO systems

can be classified as follows (Esslinger & Edmunds 1998):

1. Global PSF variations over time.

2. Fluctuations in the halo surrounding the core of the PSF.

3. The presence of residual features in the PSF.

4. Variations in the PSF due to angular anisoplanatism.

5. Biases introduced by using different deconvolution methods.

6. Deconvolution performed with a badly determined PSF.

The first obstacle to accurate photometry in AO observationsis the global variation of the PSF

over time. Such variations have two main causes. First, the shape of the PSF and its SR strongly

depend on the seeing conditions, which vary very rapidly thus introducing fluctuations on the PSF.

Second, even with constant seeing, noise coming from the WFSas well as uncorrected variations in

the high-order spatial modes of the wavefront introduce temporal dependence into the PSF.

Moreover, aperture photometry usually requires the observations of a reference star for calibration

purposes. In general, these stars are not in the same FOV as the object of interest; hence, the cali-

bration star and the object must be observed at different moments and therefore variations over time

affect them differently, so the PSF changes slightly from one to the other. Inthe case of PSF fitting,

this effect is even more dramatic since the method requires perfect knowledge of the PSF. However,

when studying crowded fields, it is sometimes difficult to find an isolated star which could provide an

independent PSF. Again this means that the calibration starmust be observed at a different time and

therefore under different conditions.
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The second drawback mentioned above arises during the studyof faint companions or structures

around a bright main star. In general, the AO PSF is composed of the sum of two terms. The first

one is a peak or central core which corresponds to the diffraction-limited corrected observation. The

second additional term corresponds to a surrounding halo produced by the non-corrected high-order

modes of the wavefront or, in other words, the seeing-limited uncorrected part of the observation (see

Figure 1.10).

Figure 1.10: Left: PSF from the 3-m. Shane telescope at the Lick Observatory, pixel size= 0.076 arcsec,S R= 52%.
Right: PSF from the 5-m Hale telescope at the Palomar Observatory, pixel size= 0.040 arcsec,S R= 53%. Logarithmic
scales, standard colors.

The presence of the halo is a major problem in itself for the detection of faint companions around

stars. Bearing in mind that the halo is dominated by the atmospheric turbulence, it varies greatly

with time. This means that faint structures of the PSF are different from frame to frame; a tendency

which is exaggerated by the presence of noise. Furthermore,even if the halo was stable and constant,

it would still depend on the object brightness, its shape, its spectrum or its position in the sky; so it

would be different from one object to another in the same or a different FOV. Using longer integration

times and choosing the calibrator carefully (with a similarflux to that of the object, in the vicinity,

only short delays between observations, etc.) can minimizesuch differences but never eliminate them

completely. All these problems clearly affect the photometric accuracy of observations, especially if

the object is so faint that a brighter one must be used as a natural guide star. The halo of such a bright

star may dominate the faint object and distort the photometric measurements.

The third problem is related to the presence of residual features, speckles or holes in the halo of

the PSF; e.g., spikes due the secondary mirror supports, lumps in the diffraction ring or faint artifacts

due to fixed residual aberrations in the AO systems. All thesefeatures vary with the aforementioned

global fluctuations and halo variations, as well as with noise. Therefore, they introduce a new source

of error into detection and photometric precision, especially if a faint companion around a bright star

lies directly over any such hole or speckle.

Angular anisoplanatism, or variation of the PSF with respect to position in the FOV, also in-

troduces inaccuracies into the photometry. This is again particularly problematic for PSF fitting,

although it also affects aperture photometry since the portion of light contained in an aperture circle
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will depend on position. In the case of PSF fitting, this problem could be overcome by dividing the

FOV into different zones and choosing a calibrator for each one. Evidently, this option multiplies the

problems related with correct choice of reference star.

Finally, although images obtained with AO systems can be studied directly with very good re-

sults thanks to the sharpness achieved in the PSF, it is also convenient to use different deconvolution

methods to fully exploit all the information present in the data. The deconvolution methods usually

provide good approximations to the true object. However, their numerical results are strongly biased

by variations in the PSF, by a poor choice of reference PSF (which is especially problematic in AO

since the PSF is never perfectly known) or by the deconvolution algorithm employed. For example,

Christou & Bonaccini (1996) used both linear and non-linearmethods, including blind deconvolu-

tion, to calculate the differential magnitude between the two components of the doublestar T Tauri

and the results obtained varied from 1.46 to 1.85 magnitudes depending on the method used. Tessier

(1997) likewise reported variations from 0.74 to 0.96 magnitudes, depending on the deconvolution al-

gorithm used, when estimating differential magnitude of a binary system. Gladysz et al. (2010a) and

Baena Gallé & Gladysz (2011) proposed a method to systematically study and compare algorithm

performance when estimating the differential magnitude of binary systems. The method consists of

two steps. Firstly, the accuracy is studied by measuring, onthe one hand, the absolute departure of

the estimates from reality and, on the other hand, the mean magnitude difference in order to check

for possible over- or under-estimations. Secondly, the scatter is measured when averaging different

observations of the same binary system, but with each observation affected by different underlying

speckle structures introduced by different PSFs.

1.4 Imaging techniques

Image processing techniques to extract and/or improve physical information from datasets have devel-

oped over the last 50 years (Andrews & Hunt 1977; Pratt 2007).Evidently, AO is not aloof from such

techniques and can take full advantage of them. Moreover, some of the approaches have been specifi-

cally designed for the special characteristics of AO acquisition systems and in particular to overcome

poor knowledge of the PSF due to its temporal and spatial variations. Davies & Kasper (2012), in an

excellent review of AO, divides the current post-processing methods into four classes: deconvolution;

model convolution; astrometry and photometry estimation;and finally, speckle suppression.

1.4.1 Deconvolution

Deconvolution consists of the operation that creates an estimator of the true object (O) from the dataset

or image (I ). The intensity distribution in such an image can be modeledas the convolution of the

true object intensity with the instrument PSF (P). In general, this operation is corrupted by additive

noise (N) yielding to the well-known expression for the image formation process:

I = O⊗ P+ N, (1.40)
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where⊗ denotes the convolution operator. Therefore, deconvolution is the inverse operation which

allows to solve equation 1.40 withO as the variable of interest. Unfortunately, such an equation is

an ill-posed problem since, apart from the object,O, the noise,N, is evidently an unknown term

too and, furthermore, it is impossible to have perfect knowledge of the instrument PSFP (especially

in the case of AO, see subsection 1.3). In such conditions, solving the image formation equation

becomes an intricate task which has led to multiple algorithms and approaches that aim to obtain the

closest estimate to the actual trueO. In general, since the PSF introduces some degree of smoothness

(in astronomical visual and infrared imaging) to the object, the deconvolution of the image yields

enhancement of low contrast features, in accordance with the statistical nature of the noise.

It is well known that direct inversion of equation 1.40 in theFourier domain amplifies the noise;

hence, in the presence of noise (which is the usual situationin astronomy) this simple method can-

not be used. The solution can be constrained by a regularization parameter (Tikhonov et al. 1987;

Pratt 2007) in a linear scheme. However, this introduces a trade-off between the resolution enhance-

ment achieved and the undesirable noise amplification, which can yield excessively smooth solutions

(Starck et al. 2002).

This fact forces the use of non-linear approaches that treatthe problem by means of statistical

estimation methods. The two most widely used approaches arethe Maximum Likelihood Estima-

tor (MLE) and the Maximum A Posteriori (MAP). The MLE approach consists of maximizing the

likelihood function, which measures the resemblance between the image and the projection of the

object estimation towards the image domain, in keeping withthe statistical nature of the object. The

Richardson-Lucy algorithm, which assumes a Poisson distribution for the object, is probably the

most successful here (Richardson 1972; Lucy 1974). When some prior information about the ob-

ject is added to the MLE scheme, such as positivity or entropy(Frieden 1972), it leads to the MAP

approach.

These approaches have been linked together in a common framework by means of Bayesian

methodology (Molina et al. 2001; Starck et al. 2002) and theyhave proved their effectiveness in prac-

tice due to the spherical aberration detected in the main mirror of the Hubble Space Telescope. More-

over, they are the typical algorithms used to deconvolve seeing-limited images from ground-based

telescope. Finally, Starck et al. (2002) describes severalof these linear and non-linear algorithms that

can be used to perform deconvolution from a multiresolutionperspective, taking advantage of mul-

tiscalar transforms (e.g. Núñez & Llacer 1993; Otazu 2001, the FMAPE and AWMLE algorithms),

such as wavelets (see Appendix D).

Unfortunately, typical non-linear approaches have to dealwith and control several issues, apart

from noise amplification. One of them is edge gradient amplification, which poses serious problems

as in the case of Gibbs oscillations. Another, which is crucial in AO, is the use of a static and non-

variable PSF when this does not strictly correspond to the reality. This has moved the AO community

to develop and prefer myopic and blind deconvolution approaches, which do not assume the PSF as

an “absolute truth” and estimate the PSF as well.

Therefore, the MISTRAL algorithm (Mugnier et al. 2004) is a myopic restoration tool within the
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Bayesian framework. As an MAP approach, it maximizes a functional with three terms: one related

to the likelihood or the fidelity to the data; a second which isprior information about the object, in

particular, it introduces explicit terms to preserve the edge properties; and a third that is related to the

fidelity of the PSF solution to an initial estimate. The strength of MISTRAL lies in that it does not

assume perfect knowledge of the PSF, but it simultaneously calculates both the object and the PSF

while applying soft constraints to its properties. The AIDAalgorithm (Hom et al. 2007), in contrast,

is an extension of the previous algorithm that automates thecalculation of some parameters (which in

the case of MISTRAL have to be chosen manually by the user).

Finally, the IDAC algorithm (Jefferies & Christou 1993) is a practical implementation of the con-

cept of multi-frame blind deconvolution, which is a method of iterative blind deconvolution of multi-

frame data based on the minimization of a penalty function while setting some logical constraints on

both the object and the PSF. The penalty function is formed offour terms which account for: pos-

itivity, fidelity to the data in the Fourier space, prevention of wrong convergence to aδ-function or

to the dataset itself, and a prior estimate of the object’s Fourier modulus. The fact that IDAC does

not make assumptions about the PSF (although it can be provided with an initial estimation) probably

makes it less robust than MISTRAL but, on the other hand, it isapplicable when no PSF is available.

Pantin et al. (2007) gives a full description of both the MISTRAL and IDAC algorithms.

Baena Gallé et al. (2012) compares the performance of AWMLE, MISTRAL and IDAC, as well as

a new MLE multiresolution algorithm based on the curvelet transform (Candès et al. 2006), when de-

convolving images of Saturn and galaxy M100, observed with the 5-m Hale telescope at the Palomar

Observatory. The results show that a static-PSF algorithm,with the help of multiresolution support,

is better than the blind/myopic approaches for mismatched calibrators within a range of 8% in SR

and low-level noise conditions. At higher noise levels, theperformance of IDAC decreases dramati-

cally while AWMLE still offers 10-15% better results than MISTRAL. Objective comparisons were

performed by the typical mean squared error (MSE).

1.4.2 Model convolution

Model convolution is a variant of deconvolution. If the properties of the object can reasonably be

described by a set of parameters in a kind of model,M, (e.g., a binary system can be well described

with only three parameters: differential magnitude, angular separation and orientation),then that

model can be convolved with the PSF in order to obtain an imageestimationĨ = P ⊗ M which can

be compared with the actual datasetI . Iterative improvements toM, leading to a solution,̃I , that is

closer toI , will let the assumption thatM ∼ O. Since, in typical applications, only a few parameters

are needed to suitably construct the model, the solution is highly constrained and does not lead to

noise amplification, unavoidable in the deconvolution schemes.

This methodology allows to accurately estimate the uncertainties in the parameters since it is

very easy to measure the impact of changing them. In contrast, a major weakness of this method

is its simplicity. First, the set of parameters must fit the physical properties of the real object well,

i.e., complex structures in the object cannot be well described by the model and “disappear” in the
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reconstruction. Second, the method will be restricted to a set of model families which meet the set of

parameters.

Model convolution is frequently applied to deep images of distant galaxies which are commonly

parametrized by the Sérsic function and have a poor signal-to-noise ratio. In order to overcome the

aforementioned limitations, Peng et al. (2010) included perturbations in the form of Fourier modes in

the azimuthal shapes in galaxy profile fitting code GALFIT3.

Another typical application is in kinematics, where deconvolution cannot be used because of the

interdependency imposed by the PSF between the observed luminosity, velocity and dispersion. The

only chance for the latter would be to deconvolve each spectral plane of the original datacube bearing

in mind that the PSF varies from one plane to the next. Such deconvolution can be guided by a

high-resolution image (Ferruit et al. 2000) and can be applied to extract the spectrum of a supernova

superimposed on a galaxy (Bongard et al. 2011).

1.4.3 Astrometry and photometry estimations of point-likesources

Images of binary stars or cluster fields only require the exact position and flux of each star, i.e., an

accurate astrometry and photometry measurement. In crowded fields, this requires a good estimate

of the PSF with which to fit the sources (see Section 1.3). Moreover, it is also important to obtain

the false detection level beyond which it is not possible to distinguish real sources from artifacts or

speckles created by non-corrected high-order modes in the AO system.

In order to create maps of positions and fluxes from stellar fields, two basic codes have been pro-

posed. Firstly, DAOPHOT (Stetson 1987), in which the reference PSF is based on analytical fits to

several stars guided with a look-up table for small empirical corrections. This code is able to handle

undersampled data as well as to accommodate some degree of spatial variation. Secondly, there is

StarFinder (Diolaiti et al. 2000), which was designed specifically to work on AO data with complex

PSF shapes. The algorithm derives a PSF template from the brightest isolated stars. Subsequently,

a catalog of suspected stars is created by searching for the relative maxima in the frame. In the fol-

lowing step, the images of the suspected stars are analyzed in order of decreasing luminosity, and

are accepted as real on the basis of the correlation coefficient with the PSF template. The relative

astrometry and photometry of the source are determined by means of a fit, taking into account the

contribution of the local non-uniform background and of thestars already detected. This 3-step pro-

cess is iterated until no sources can be reliably found in theresiduals. PSF-fitting, as it is applied in

the the StarFinder package, could be seen as an extension of the CLEAN algorithm (Högbom 1974)

that has been successfully used by the radioastronomy community for decades.

Although those approaches do not account for anisoplanatism, local PSFs can be extracted for

each isoplanatic region and applied independently. Furthermore, even though the PSF core can be

very narrow, high photometric precision requires that the PSF is well determined up to 1 arcsec; so

the faint wings must also be properly characterized. For this reason, it may be convenient to apply

some deconvolution scheme in addition, but while taking care of the noise amplification, in order

to make the central core even narrower and brighter as well asto reduce the strength of the wings
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(Schödel 2010).

Baena Gallé & Gladysz (2011) compare the performance of StarFinder with a wavelet deconvo-

lution MLE algorithm, in particular AWMLE (Otazu 2001), to determine the differential photometry

of binary systems when the companion is contaminated by the primary’s halo. This comparison is

performed for different angular separations with high and moderate levels of correction in terms of

SR. The authors conclude that AWMLE yields better results even when the calibrator is not well

matched to the PSF. That study is generalized in Gladysz et al. (2010a), where several approaches

are compared (including StarFinder, AWMLE, blind deconvolution algorithms and temporal speckle

suppression techniques). In such a study, a static-PSF algorithm is shown to provide results that are

comparable to those of the usual approaches in AO imaging.

1.4.4 Speckle suppression

Different speckle suppression techniques have been developed.In general, they consists of properly

characterizing the PSF in order to remove complex speckle patterns that are present on the wings. For

such purposes, the methods usually impose new instrumentaland observational requirements which

are mainly focused on the detection and characterization offaint companions, e.g., exoplanets. They

can be classified as follows:

1. Spatial: angular differential imaging was first proposed by Marois et al. (2006). It is based on

the fact that a major part of the quasi-static speckles are produced in the telescope and its instru-

mentation. Therefore, if the FOV is able to rotate with respect to the telescope configuration, it

is possible to obtain datasets with real sources in the same relative positions while the speckles

move around the center of the view. Through appropriate analysis of this sequence of images,

one can suppress artifacts and simultaneously enhance realsources (Lafrenière et al. 2007).

2. Temporal: Labeyrie (1995) proposed a method which assumes that changes in the speckle

pattern will never reach their minimum level in locations where there is emission from a real

source. Unfortunately, while this technique enables the detection of faint companions, it does

not allow to perform photometry. Gladysz et al. (2010b) developed a statistical method to dis-

tinguish speckles from faint companions which also allows to estimate the intensity of the real

source. The method is based on the fact that both the main starand the companion share com-

mon parameters in the probability density functions (PDF) of their respective observed peaks

of the AO-corrected PSF. However, the companion’s PDF is also blurred with the PDF of the

quasi-static speckles, and thus shows important morphological differences with respect to the

PDF of the primary object. So, a 2-step algorithm was developed: first, least-square fitting of

the theoretical PDF of the bright star allows to obtain some parameters which are common to

the companion; then these parameters are applied at the location of the companion and deblend

its PDF from that produced by the speckles. Differential photometry can then be produced by

converting the widths of the two distributions into a brightness ratio of the two objects. This
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method has, however, a specific range of application to the photometric estimation of com-

panions that lie within the uncorrected halo of the AO PSF. Furthermore, the location of the

companion must also be known.

3. Chromatic: simultaneous differential imaging (Racine et al. 1999) makes use of the different

spectral energy distributions of the star and its companion. One can then define different narrow

bands that are close enough to each other in wavelength so that, in a different image, the speckle

will be subtracted while the companion will not. Another method is the so-called spectral

deconvolution (Sparks & Ford 2002). This takes advantage ofthe fact that the radial separation

of the speckle is wavelength dependent while the position ofthe faint companion is fixed. So,

a datacube where every single image has been acquired at a different wavelength can be re-

scaled, thus aligning the speckles but making the planet move to the center of the view with

increasing wavelength. Pixels through the datacube at the same location are called spaxels.

When a planet crosses a spaxels on its journey to the center, it creates a bump; one can then

try to fit a low-order polynomial to the signal present in the spaxels and subtract it. Since

the planet signal will not adequately fit the polynomial, it will remain while speckles will not.

Baena Gallé et al. (2013) proposes the use of 1-D wavelets for analyzing spectral datacubes in

the direct imaging of exoplanets. They simulate different ELT scenarios, for EPICS instrument

(Kasper et al. 2008, 2010), yielding improvements of up to∼ 1magat a distance from∼ 70mas

with respect to the classical polynomial fitting approach.

4. Polarimetric: this is based on the fact that at small angular radii, speckles will remain unpolar-

ized. Hence, if two images at orthogonal polarizations are taken simultaneously, the speckles

will be subtracted out, while only the polarized light will be left. This allows to detect scat-

tered light from a circunstellar disk or even the atmospheres of exoplanets. This technique has

proved its usefulness on the T Tauri star TW Hya by Apai et al. (2004), who show the presence

of polarized disk emission between 0.1 arcsec and 1.4 arcsec from the star. The authors also

derived the first Ks-band radial polarized intensity distribution.

5. Deep Suppression: it can be proved that a sinusoidal phaseacross the aperture produces two

symmetric speckles of light with respect to the center of theFOV. The angular separation of

these speckles from the center increases with the spatial frequency of the ripple. Since the

DM has a spatial frequency cut-off due to its finite number of actuators, it can only produce or

correct speckles up to a maximum angular separation; this iscalled the correction radius. In

order to suppress a coherent patch of light created by phase and amplitude aberrations inside

the correction radius, the DM just needs to create an anti-speckle of the same amplitude but

with aπ phase-shift at the same location. Unfortunately, there is adiscrepancy ofπ/2 between

the phase of the symmetric speckles created by the DM and those created by an amplitude

sinusoid. Therefore, only one of the amplitude speckles canbe removed by an aperture plane

DM, while the other would be amplified. However, it is possible to correct all the speckles in

the image over a certain wavelength range using a second DM. Different implementations have
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been proposed theoretically (Give’on et al. 2007; Guyon et al. 2010). The practical application

of this technique has been demonstrated in the laboratory byTrauger & Traub (2007).

1.5 Current science applications

In this final section, some examples are summarized in order to show how high-resolution images pro-

vided by AO systems have challenged astronomers to go into greater depth in almost all the possible

lines of research in astronomy and astrophysics, from the solar system, to galaxies; including stellar

fields and exoplanets, among others. Furthermore, AO imaging has allowed astronomers to overcome

some of the limits of their knowledge and push them forward towards new goals and challenges. This

section is based on the manuscript outlined by Davies & Kasper (2012), who in turn based their work

on what is by now the vast available AO literature.

1.5.1 The solar system

• The Sun: daylight AO observations face additional requirements to those necessary for night-

time observations. In general, the corrected wavelength isin the visible part of the spectrum

and often at high airmass, typically in the G-band (430nm), thus angular resolution is lost due

to the observing frequency. There are no visible stars to calibrate corrections, so the necessary

spots to close the feedloop must be created by cross-correlation techniques (Rimmele 2000).

Nevertheless, the enhancement achieved in solar imaging oncurrent 1-m solar telescopes has

led to the birth of a new generation of 4-m designs. Large structures of the sun are linked to

small scale dynamics, such as the pressure scale height and the photon mean free path, which

are both of the order of about 0.1 arcsec. The first results reported by Goode et al. (2010)

achieved a resolution of up to 0.12 arcsec with the 1.6-m aperture solar telescope at the Big

Bear Solar Observatory. They showed that the smallest scalephotospheric magnetic field seems

to come in isolated points in the dark intergranular lanes, rather than the predicted continuous

sheets confined to the lanes, and the unexpected longevity ofthe bright points implies a deeper

anchoring than predicted.

• Planets and Satellites: atmospheres of planets and satellites have been studied in depth using

AO. One example is Io, which has been observed darkened by Jupiter’s shadow in order to high-

light its volcanic activity; while Ganymede was used as the AO calibrator (dePater et al. 2004).

Titan and its thick atmosphere is another typical target (Hartung et al. 2004; Hirtzig et al. 2006).

dePater et al. (2010) shows that Jupiter’s small surface storms exhibit bright rings at 5µm, while

those with diameters above 12000kmdo not. The authors propose that air is rising along the

center of a vortex, and descending around the outer periphery, producing the 5µm bright rings.

These downflows cannot exist at radii greater than 1-2 times the Rossby radius, since rota-

tional effects become as important as buoyancy effects. Baena Gallé et al. (2012) use images of

Saturn to compare and show the performance of different deconvolution algorithms typical in
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AO imaging postprocessing. Neptune’s atmosphere and its satellites have also been monitored

continuously (Fry & Sromovsky 2004; Marchis et al. 2004) as has Uranus (Sromovsky & Fry

2004).

Figure 1.11: Neptune observation with 10-m Keck telescope in the methaneband, with AO correction (left) and
without (right).

• Asteroids: The major contribution of AO to asteroid physicshas been to show how massive

asteroids are extremely porous. In general, AO takes advantage of binary asteroid systems, us-

ing the moon as the calibrator, to produce high-resolution corrected images. Moreover, binary

systems are an easy way to measure the mass and density of the system. Nowadays, more than

150 main belt binary asteroids are known, the first one was discovered by Merline et al. (1999),

who showed a companion orbiting 45 Eugenia and revealed thatthe density of such an asteroid

was only∼ 20% greater than water. Marchis et al. (2005) discovered that 87 Silvia has indeed

2 moons. Asteroids 217 Kleopatra and 617 Patroclus have beenshown to be highly elongated,

thus suggesting a catastrophic impact which provoked the spinning of large liquid masses giv-

ing them their characteristic shape. (Descamps & Marchis 2008) proposed this catastrophic

scenario as a common rule for the formation of such asteroids.

1.5.2 Star formation

• Stellar multiplicity: AO is now a key tool in assessing the multiplicity and characteristics of

stars. Close et al. (2003) and Siegler et al. (2003) carried out one of the largest surveys of low-

mass stars to date. They observed 69 stars of spectral type M6.0 to L0.5 by means the Hokupa’a

AO system on Gemini North. They found 12 systems with very-low-mass or brown dwarf com-

panions yielding a fraction of binaries of∼ 10%. The pairs in each binary have similar masses

and their separations are always below 15 AU. These characteristics are significantly different

from the more massive G dwarfs for which the binary proportion is around 50% and they have

wide separations of 30 AU. Other studies (Dupuy & Liu 2011; Konopacky et al. 2010) show a

preponderance of almost circular orbits and find at best onlya marginal correlation between
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eccentricity and period. Bate (2009) explained these discrepancies by suggesting that older

field brown dwarfs are systems that have been ejected at speeds of a fewkm s−1 from the clus-

ter in which they were formed. For very-low-mass stars, onlythe most tightly bound systems

survive at such a velocity, resulting in low multiplicity, small separation and low eccentric-

ities. This picture is even more complicate if measurementsobtained by Close et al. (2007)

and Biller et al. (2011) are taken into account, who found that young very-low-mass and brown

dwarf binaries can have wider separations of more than 100 AU. This could be explained by

establishing a dependency between the binary survival timeand how tightly bound they are as

well as the stellar density in the local environment.

In contrast, to determine the astrophysical properties of abinary system, correct calculation of

differential photometry is essential. Gladysz et al. (2010a) and Baena Gallé & Gladysz (2011)

compare different approaches in the extraction of differential fluxes between the main star and

its companion when the latter is severely affected by the halo introduced by the former.

• Circumstellar disks: Binary stars and planet system formations can be studied in their early

years by observing the disks around young stars. AO has filledout the picture with high-

resolved images in the near- and mid-infrared range which help to deduce how such disks

evolve. The first circumstellar disk observed by AO wasβ Pic (Golimowski et al. 1993),

which revealed complex sub-structures in this disk at the 1 AU scale. Roddier et al. (1996)

and Duchêne et al. (2004) studied the binary T Tauri system GG tau A-B indicating that larger

grains of dust tend to grow up faster in the midplane. However, other observations revealed that

this process is only one of several. Systems with similar ages exhibit different dust properties

thus showing different growth rates and/or settling times (Duchêne et al. 2010; McCabe et al.

2011). Besides, further studies of GG Tau reveal that the disk must be tilted with respect to

the system orbit, which can only be explained by hypothesizing the existence of a companion.

Indeed, AO is now providing strong evidences that central holes in the disks are due to the

presence of a companion or giant planets (Kraus et al. 2012; Kraus & Ireland 2012).

• Exoplanets: direct imaging of exoplanets is extremely demanding. It requires high-contrast,

long-exposure, coronagraphic imaging, together with in-depth knowledge of the speckle pattern

as well as modern post-processing techniques (see subsection 1.4.4). The first exoplanet directly

imaged was 2MASS 1207 b by Chauvin et al. (2005), using the infrared WFS of VLT/NACO.

This is a 5MJ object orbiting a brown dwarf 5 times more massive, at a distance of 55 AU.

Moreover, the first multi-planet system discovered by proper motion analysis was discovered

orbiting around HR8799, a 1.5M⊙ A5V star. This system consists of 4 planets at distances of

14-68 AU and masses in the range of 7-10MJ, all orbiting in the same direction (Marois et al.

2010). However, the mechanisms that rule the formation of such systems are not yet well

known. While the 3 outermost planets could have been formed by the fragmentation of a disk of

dust and gas, this process is not possible for the innermost one because of the high temperature

and fast rotational speed of the disk at that distance. A possibility, suggested for the∼ 9MJ
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planetβ Pic b, is a formation process via the agglomeration of grains. Unfortunately, although

several exoplanets have been directly imaged nowadays, surveys to detect objects down to limits

of a few MJ have failed (Lafrenière et al. 2007; Kasper et al. 2007); hence, the next generation

of planet imagers and imaging approaches are eagerly awaited. In this sense, Baena Gallé et al.

(2013) propose the use of 1-D wavelets to analyze spectral datacubes acquired by the spectral

deconvolution technique, as was already mentioned in pointnumber 3 of subsection 1.4.4.

1.5.3 Galaxy studies

• The galactic center: The center of the galaxy provides a detailed view of the physical processes

occurring in the nucleus of the Milky Way and around its central black hole. This study can

be directly applied to the nuclei of other galaxies. Spatially resolving the stellar population

orbiting the center in order to study proper motions is of special interest (Fig. 1.12).

Figure 1.12: Milky Way center observed from Keck at 2.2µm., with AO correction (right) and without (left).

Analysis of stellar motion shows that most of the stars in thecentral parsec are old and have

randomly orientated orbits (Yelda et al. 2010). However, about half of the young stars in the

central 10-15 arcsec are confined to a warped clockwise disk and many of the remainder may

be in a second counter-clockwise disk (Bartko et al. 2010; Luet al. 2009). Combined datasets

from Keck II and VLT are yielding precise measurements of thedistance from the solar system

to the galactic center and the mass of its black hole, which are now assumed to be 8.3kpcand

4.3× 106M⊙ (Genzel et al. 2010).

• Stellar populations: resolving stellar populations spatially in nearby galaxies is an important

goal for future 30- and 40-m telescopes in order to enlightenthe star formation history. AO is

the obvious solution to the evident crowding problem; however, increasing AO performance at

IR-wavelengths is somehow in contradiction with the betterperformance of the current map-

ping of star color magnitude diagrams at shorter visible wavelengths. This encourages im-

provements in AO at such frequencies and means that current 8- and 10-m telescopes are not

as competitive as HST in this field, for example. Despite this, some good results have been

achieved when observing galaxy M31 (Olsen et al. 2006) and dwarf galaxies (Melbourne et al.
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2010). In addition, galaxy NGC 3603, which is considered a local template for the massive

star forming clusters, has also been widely observed (Eisenhauer et al. 1998; Harayama et al.

2008; Bastian el al. 2010). Furthermore, resolving the stellar populations also allows to study

the proper motion of stars, thus deriving the intrinsic kinematics of clusters and galaxies, as

well as their global motions. Stolte et al. (2008) have shownthat the young Arches Cluster,

which is only 30pc from the galactic center, has moved by 24.0± 2.2masin a 4.3-year period.

Therefore, AO should be able to provide a proper motion precision of 10µas yr−1 in only three

or four years: equivalent to 5km s−1 at 100kpc, with ELT (Trippe et al. 2010).

• Black hole masses: Measurements of black hole masses are essential to understand their evolu-

tion and growth as well as those for their host galaxies. It isclearly known that the velocity dis-

persion, mass and luminosity of the stellar spheroid arounda black hole is directly related with

the hole’s own mass (Häring & Rix 2004; Ferrarese & Ford 2005). AO is of major importance

in this field since it brings together high resolution and large collecting areas, which allows the

study of faint galaxies, and integral field spectroscopy at near-IR. Davies et al. (2006) proved

that it is possible to measure the mass of black holes in type 1active galactic nuclei (AGN)

using spatially resolved stellar kinematics, providing a complementary method of reverbera-

tion mapping which relies on tracking the temporal variability of the broad lines. Denney et al.

(2010) derives a reverberation mass of (7.6± 1.7)× 106M⊙ for galaxy NGC 3227, thus show-

ing lower values than previous estimates. In contrast, pseudo-bulges are created from secular

disk processes instead of merger events, which rule the formation of classical bulges, hence

the former have different stellar populations with different mass distributions, kinematics and

different physical relations with the black hole properties. Indeed, many local disk galaxies

have at least a pseudo-bulge component to their central region. Nowak et al. (2010) used AO to

calculate black hole masses in such galaxies suggesting that there is no need to separate pseudo-

and classical bulge components to really understand the evolution of black holes and bulges.

Finally, for elliptical galaxies, Gebhardt et al. (2011) combines AO integral field spectroscopy

with wider field data to arrive at a mass of (6.6±0.4)×109M⊙ for M87, which exceeds the mass

expected by twice its uncertainty. This suggests that the high mass end of the relation is poorly

constrained or its scatter is larger than expected.

• Gas flows: Nearby AGNs make the study of the mechanisms that drive gas towards the central

black hole possible. Since they are close to each other, AO isneeded to resolve them to a scale of

a few parsecs. The combination of AO with integral field spectroscopy is yielding the resolution

of their spatial distribution as well as the kinematics of stars and of molecular and ionized gas.

Such techniques have revealed inward flows of gas at low ratesalong circumnuclear spiral arms

in a great number of galaxies (Davies et al. 2009; Schnorr Müller et al. 2011). However, there

may be exceptions to this rule, such as galaxy NGC 1608 where the gas appears to be streaming

almost directly towards the AGN (Müller Sánchez et al. 2009). Inflow gas is believed to be

associated with the circumnucleus dust structures that have been mapped in many active and
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inactive galaxies, thus showing that gas streaming is a common phenomenon whose relation

with AGN accretion is still not understood well.

• Quasars and mergers: Due to their distance and the brightness of the AGN with respect to the

host galaxy, QSOs provide a challenging image scenario. Thekey issue is to accurately deter-

mine the PSF in order to reveal the underlying host galaxy (Guyon et al. 2006). The specific

role of mergers in fueling QSOs can be assessed by studying those that exhibit double peaked

[OIII ] lines, which could trace pre-coalescent dual AGNs. AO imaging of such candidates re-

veals that only∼ 35% have double nuclei on kiloparsec scales (Fu et al. 2011; Rosario et al.

2011) and their origin is not clear. It has been suggested that most QSOs might not be associ-

ated with gas-rich major mergers. One of the best known dual AGNs is NGC 6240 which has

been the goal of several AO observations. These have revealed numerous massive young star

clusters around the nuclei which are undetected by HST (Pollack et al. 2007). The combination

of AO datasets at different IR-bands with X-ray and radio continuum data have highlighted the

presence of two AGNs (Max et al. 2007).

1.5.4 The high-redshift universe

Resolving internal structures and the study of the kinematics of stars which belong to galaxies at

z ∼ 1.5 − 3 is an important aim of research for AO. These galaxies extend from approximately 1 to

2 arcsec and their light is redshifted so they are preferablyobserved in near-IR. However, they are

usually chosen to avoid bright stars in the FOV and their low surface brightness is often limited to

0.1− 0.2 arcsecs. For these reasons, the number of targets for AO is severely reduced. For example,

Förster Schreiber et al. (2009) applied AO on only 12 targets out of 63 which constituted the primary

survey. Other authors have seen their AO observations reduced to numbers of around 10 (Law et al.

2009; Wright et al. 2009). Unfortunately, even when using anLGS, the rate of suitable high-red-shift

galaxies that can be observed is only about 10%.

Figure 1.13: Data fromz ∼ 2 galaxy ZC406690. Left: Velocity field indicates disk rotation. Middle: Individual star-
forming clumps. Right: The blue wing traces the star formation, the red profile traces an outflow, the green profile is
the sum of the previous two and is a fit of the observed spectrum(black profile) —after Davies & Kasper (2012) and
Genzel et al. (2011).

Despite these restrictions, AO has proved that about 1/3 of such galaxies are in fact disks (Förster Schreiber et al.

2009). As shown in Figure 1.13 for one of these objects, they are rapidly forming stars, often in giant
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star-forming complexes or clumps having intrinsic velocity dispersions of 20-100km s−1. Such dis-

persions are now suggested to be common in normal massive high-red-shift disks, and are connected

to the high gas accretion rates through cold flows at early cosmic times, high gas fractions and global

instability to star formation. AO is fundamental because itis able to separate the 0.1-0.2 arcsec-sized

clumps from the inter-clump regions; which are blurred together in seeing-limited observations.

Using AO with integral field spectroscopy is revealing fine details of individual clump properties

highlighting that they can drive strong winds, with outflow rates that may even exceed their star

formation rates (Genzel et al. 2011). This has important consequences for the clump lifetimes and,

consequently, for galaxy formation. The use of AO and integral field spectroscopy has already led

to important advances in our understanding of galaxy evolution, despite the difficulties of finding

suitable targets.
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Abstract

We propose to use the Bayesian framework and the wavelet transform (WT) to estimate differen-

tial photometry in binary systems imaged with adaptive optics (AO). We challenge the notion that

Richardson-Lucy-type algorithms are not suitable to AO observations because of the mismatch be-

tween the target’s and reference star’s point spread functions. Using real data obtained with the Lick

Observatory AO system on the 3m Shane telescope, we first obtain a deconvolved image by means

of the Adaptive Wavelets Maximum Likelihood Estimator (AWMLE) approach. The algorithm re-

constructs an image which maximizes the compound Poisson and Gaussian likelihood of the data. It

also performs wavelet decomposition which helps distinguish signal from noise, and therefore it aides

the stopping rule. We test photometric precision of that approach vs. PSF-fitting with the StarFinder

package for companions located within the halo created by the bright star. Simultaneously, we test

the susceptibility of both approaches to error in the reference PSF, as quantified by the difference

in the Strehl ratio between the science and calibration PSFs. We show that AWMLE is capable of

producing better results than PSF-fitting. More importantly, we have developed a methodology for

testing photometric codes for AO observations.
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2.1 Introduction

Atmospheric turbulence imposes a limit on angular resolution which could be reached by ground-

based telescopes. The arrival of astronomical adaptive optics (AO) in the early 1990s heralded a new

era in which observers do not have to be content with seeing-limited observations from the ground.

One of the uses of AO is high-resolution imaging of closely-spaced objects, e.g. binary stars or faint

companions such as exoplanets. Determining differential photometry and astrometry between the two

components of the system is essential for deducing the physical properties of the components such as

mass or internal structure (Vigan et al. 2010). The use of AO guided by a suitably bright star brings

about a huge improvement, both for detection of objects and for photometry. On the other hand,

AO introduces problems which are not usually encountered innormal photometry as mentioned by

Esslinger & Edmunds (1998):

1. The structure of the PSF has temporal variation due to seeing variability. These morphological

changes are difficult to model.

2. The AO long-exposure PSF in the medium- and high-correction regime shows long-lived quasi-

static speckles. These diffraction-limited “lumps” are due to residual aberrations not sensed by

AO (for example non-common-path errors) and lie in the halo surrounding the core of the PSF.

3. The AO corrected PSF, and the associated angular resolution on the sky, depend on the posi-

tion of the science object relative to the AO guide star. AO compensates for the turbulence in

the direction of the guide star and when the science object iswell separated from the AO line

of sight, the compensation suffers due to a different atmospheric volume. This effect is called

angular anisoplanatism, and its magnitude increases as AO compensation increases.

Because of these factors, extracting quantitative information from AO images is challenging. AO

improves the detectability of faint companions over seeing-limited observations for a given telescope.

When the companion is well separated, with a non-overlapping PSF, aperture photometry takes care

of all the problems mentioned above. The problems occur whenthe PSFs from each target overlap.

One of the first mentions of photometric ambiguity after AO isin the paper by Roggemann et al.

(1992). The authors analyze an AO image of bright binary starHR 6378. Previously reported param-

eters of this system are: separation 0.52′′ (corresponding to 5.8λ/D whereλ = 700nm,D = 1.6m)

and brightness ratio equal to 1.45. The image was deconvolved with the use of a pseudo-Wiener filter

and a modified inverse filter. Results showed a big difference depending on the filter used: estimated

differential photometry values were 1.66 and 2.05 for this relatively “easy” double star.

Esslinger & Edmunds (1998) provide an excellent introduction to the problem of AO photometry.

One of the issues discussed is the precision of photometry ondeconvolved images compared with

the PSF-fitting on “raw” AO data. Two of the most-widely used deconvolution algorithms were

tested, namely maximum entropy (Frieden 1972; Jaynes 1982)and Richardson-Lucy (Richardson
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1972; Lucy 1974). For PSF-fitting the DAOPHOT package (Stetson 1987) was employed. Extensive

testing on simulated faint companions showed that DAOPHOT performed consistently better than the

deconvolution methods, i.e. its photometric precision washigher compared to precision of aperture

photometry on the deconvolved images.

Historically, it has been conjectured that AO observationsshould be processed with “myopic”

deconvolution methods, instead of algorithms assuming perfectly known PSF (Pantin et al. 2007). In

the myopic framework the PSF could be only partially known, or completely unknown (blind decon-

volution). Usually, these algorithms have to be provided with some PSF estimate which is assumed

to be close to the truth and then they are allowed to iterate until a solution for both the object and

the PSF is found. Myopic deconvolution often uses regularization, for example by imposing ob-

ject priors which guarantee smoothness of the solution while preserving edges (Mugnier et al. 2004).

Jefferies & Christou (1993) developed an iterative blind deconvolution method which is guided by the

minimization of a penalty functional. One of the constraints they use, which is very relevant for AO

observations, is a mask penalizing frequency content of thePSF beyond the telescope’s diffraction-

limit. The package, called IDAC, does not produce photometry and astrometry directly but these

can be obtained by using aperture photometry on the restoredimage with a very small aperture, as

suggested by Esslinger & Edmunds (1998). In our work we follow this approach to photometry after

deconvolution.

When the observed (crowded) field is known to represent only point sources one can always re-

sort to traditional PSF-fitting. In this approach an analytic or empirical PSF is used together with a

fitting algorithm to match scaled-and-shifted copies of thePSF to the data. The StarFinder package

(Diolaiti et al. 2000) makes use of this concept. StarFinderwas developed for the specific purpose

of measuring relative photometry in AO-corrected stellar fields. The algorithm operates as follows:

firstly, it derives a PSF template from the brightest isolated stars, then a catalog of suspected stars is

created by searching for the relative maxima in the frame. Inthe following step the images of the

suspected stars are analyzed in order of decreasing luminosity, each suspected object is accepted on

the basis of its correlation coefficient with the PSF template and the relative astrometry and photom-

etry of the source are determined by means of a fit taking into account the contribution of the local

non-uniform background and of the already detected stars. The process of PSF-update, source detec-

tion, and PSF-fitting is iterated until no sources can be reliably found in the residuals. PSF-fitting,

as it is applied in the StarFinder package, could be seen as anextension of the CLEAN algorithm

(Högbom 1974) widely used by the radioastronomy community. The photometric and astrometric

precision of StarFinder was compared to results from blind deconvolution with the IDAC algorithm

by Christou et al. (2004). According to the authors, StarFinder and IDAC yield similar photometric

results but with a greater dispersion in the IDAC results forfainter stars.

In the case of binary stars, the reference PSF is often obtained by slewing from the target binary to

a known single star. Great care has to be taken when choosing this reference star: its flux should match

the flux of the primary in the binary system in both channels: the imaging path and the wavefront-

sensing path. Only then one can guarantee that the image-plane fluxes are comparable, and also that
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the level of AO compensation, which is related to the flux received by the wavefront-sensor, is kept

relatively constant. Additionally, zenith angle of the reference star should be close to the zenith angle

of the science observations. Otherwise, light from the reference star will traverse shorter or longer

path through the turbulence. Changing azimuth of the telescope might also lead to changes in the

open-loop seeing due to the differential wind-flow effects. These, and other secondary effects, make

the choice of a suitable reference PSF very difficult.

A recent review of modern approaches to AO photometry by Burke et al. (2009) demonstrated that

methods utilizing static, deterministic PSF should not be dismissed against more modern algorithms

like iterative blind deconvolution (ten Brummelaar et al. 2000). Therefore, we set out to test whether

a modern implementation of the Richardson-Lucy-type deconvolution conserves the flux when given

a mismatched AO PSF. The algorithm we tested, AWMLE, joins the Bayesian framework with the

wavelet transform (WT) and a probabilistic window to distinguish signal from noise. In this paper,

we focus on systems with relatively large brightness ratiosand small separations. The faint com-

panions we simulate are particularly difficult to analyze because of the speckle noise surrounding

them as can be appreciated in Figure 2.4. To our knowledge there have been no rigorous efforts to

test deconvolution algorithms on AO data given the ground truth image, as is routinely done in the

image-processing literature. Therefore the second, albeit not less important, aspect of our work was to

develop a sound methodology for testing deconvolution codes, in this case for photometric precision

on a simple object.

The paper is organized as follows. In section 2 the AWMLE algorithm is presented. In section

3 we reflect upon relevance of AWMLE for AO observations. Section 4 is intended to describe the

observations and the data reduction process. We present comparison of photometric accuracy of

AWMLE vs. StarFinder in section 5. Conclusions are presented in section 6.

2.2 Adaptive wavelet maximum likelihood estimator (AWMLE)

algorithm

AWMLE is fully described by Otazu (2001) and has been appliedto survey type data to increase

limiting magnitude and resolution by Fors (2006). The following ideas define the backbone of the

algorithm:

1. AWMLE performs a multichannel deconvolution where everychannel corresponds to a wavelet

plane. Therefore, AWMLE operates over the wavelet planes and not over the original image.

2. Signal features in an image spread its frequency content across the wavelet planes. This prop-

erty can be appreciated in Figure 2.1 where a typical AO PSF has been decomposed in its

wavelet coefficients. As a result, well-defined significance thresholds can be applied to each lo-

cation in each wavelet plane to selectively deconvolve statistically similar regions. This concept

is called multiresolution support or probability masks (Starck et al. 2002).
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3. Additionally, Poissonian and Gaussian noise contributions are mostly concentrated in the highest-

frequency planes (Starck et al. 1998). This allows to selectively deconvolve each plane as the

deconvolution process is guided by the global signal-to-noise ratio (SNR) of each wavelet plane.

AWMLE maximizes the likelihood between the dataset and the projection of a possible solution

through the optical system, considering a combination of the intrinsic Poissonian noise of the signal

and the read-out Gaussian noise of the detector.

Figure 2.1: Wavelet decomposition of the AO PSF obtained with the 3m Shane telescope. Leftmost panel: original shift-
and-add image of a single star (HD 143209), displayed on logarithmic plane, artificially saturated (99.5%). Successive
panels show images corresponding to wavelet planes with decreasing frequencies. The last panel shows the lowest-
frequency wavelet plane (the wavelet residual).

We use the notation of Núñez & Llacer (1993):p is the dataset,a is the object to be estimated,f

is the point spread function,b is the background,n is the read-out noise,C is the sensor sensitivity or

flatfield andh is the so-called direct projection, i.e. image of the objectprojected to the data domain

by means of the PSF. The process of shift-invariant image formation is described by:

h = f ∗ a+ b (2.1)

Where we also accounted for background noiseb. Both h andb are two-dimensional images

which will become multi-dimensional Poisson variables because of the light detection process. Equa-

tion (2.4) shows howh translates to a Poisson random variable.

The detector also introduces read-out Gaussian noise with mean zero and known standard devia-

tion. Therefore, the general equation that describes the whole process is the following:

p = f ∗ a+ b + n (2.2)

wheren is a multi-dimensional Gaussian random variable and PSFf already accounts for the flatfield

correctionC. This equation can be shown in the discrete form as follows:

p j =

B
∑

i=1

f ji

C j
· ai + bi + ni ; j = 1, ...,D (2.3)

Here D is the number of pixels in an image and B is the dimensionof the object domain. The

usual assumption is that every pixel in the image domain corresponds to the “same” pixel in the object

domain, soB = D. Most of the optical systems in astronomy can be described byequation (2.3), in
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particular, the charge-coupled devices or CCDs. The presence of noise means that direct inversion of

equation (2.2) leads to unacceptable amplification of that noise. Hence, non-linear methods must be

used, for example, the Bayesian approach (Molina et al. 2001).

We will now formalize the description of the light detectionprocess accounting for the two statis-

tical distributions governing the observed random variables. First, the realization of a Poisson random

variable with mean valueh j is detected at pixelj. The probability of obtaining a certain valuekj in

this process is given by the Poisson probability law:

P(kj |h j) = e−hj
h

kj

j

kj!
(2.4)

whereP(kj |h j) is the conditional probability of obtainingkj given h j. Strictly speaking, equation

(2.4) is true only ifh j is itself deterministic. Otherwise, the process is a “doubly-stochastic” random

process (Goodman 1985) and equation (2.4) must include the Mandel-Poisson transform (Mandel

1959). In practice, going to longer integrations dispenseswith the problem as the speckles in the

short exposures average out in the long exposures, and soh j is almost deterministic because turbulent

speckle average out. In this paper we work with integrationswhich are 10min long.

Secondly, the valuekj is read by the detector which introduces Gaussian read-out noise of zero

mean and standard deviationσ. Hence, the probability of obtaining a valuep j from kj at pixelj would

be:

P(p j |kj) =
1

σ
√

2π
· e

−(kj−pj )
2

2σ2 (2.5)

Combining both stages (2.4) and (2.5):

P(p j |h j) =
∞
∑

kj=0

1

σ
√

2π
· e

−(kj−pj )
2

2σ2 · e−hj
h

kj

j

kj!
(2.6)

In words, if the projectionh j is the mean value of intensity in pixelj one would get a valuep j with

a probability given by equation (2.6). Considering all the pixels of the detector we get the likelihood:

L = P(p|h) =
D

∏

j=1

∞
∑

kj=0

1

σ
√

2π
· e

−(kj−pj )
2

2σ2 · e−hj
h

kj

j

kj!
(2.7)

where
∏D

j=1 is the product over all the detector pixels. In the reconstruction process one wants to

find the objecta, which is equivalent to finding the projectionh (linked toa through equation (2.1)),

that most likely produced the noisy datap. Equation (2.7) is usually expressed in logarithms:

logL =
D

∑
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(2.8)

In order to maximize equation (2.8) we take the derivative ofit with respect toai (the value of

the objecta for pixel i) and set it to zero. Then, using Picard iteration (also knownas the method of
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successive approximations) we obtain the following expression:

a(n+1)
i = Ka(n)

i
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where:

p′j =
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kj=0 kje
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(2.10)

The parameterK =
∑D

i=0

p j − a j

D
is a constant to preserve the energy,qi =

∑

j
f ji

C j
is the total

detection probability for an emission at pixeli, andm is an acceleration parameter. Equation (2.9) was

first introduced for reconstructions of Poisson data in the presence of readout noise by Llacer & Núñez

(1990) and Núñez & Llacer (1993).

AWMLE adds to equation (2.9) two novelties: the decomposition of the datasetp by means of

WT and a probabilistic mask in order to adapt the level of reconstruction of each wavelet plane to the

automatically-inferred presence or absence of noise. By “level of reconstruction” we mean that the

effective number of reconstruction iterations within one wavelet plane does not have to be equal to

the number of iterations in another wavelet plane.

Extensive literature exists about WT and its applications (Chui 1992; Daubechies 1992; Meyer

1989). WT can be seen as an evolution of the Fourier transform. It gives not only the frequency

information of the signal, but also its spatial location or the place in the field of view where a specific

frequency is predominant. Awaveletis a wave-like function, i.e. it is an oscillation that decreases in

intensity. Figure 2.2 shows two harmonic functions vs. two wavelet functions with different periods

and positions.

Figure 2.2: Harmonic functions (two top rows) vs. wave-like functions (two bottom rows).

This characteristic of WT leads to some advantages in the treatment of information. For instance,

the noise will mainly appear in the high-frequency wavelet plane while broad shapes will appear in
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the low-frequency planes. This allows one to work independently with each plane, adopting different

strategies to the scales that are dominated by noise than to those that most likely contain signal.

Figure 2.3: a: Relationship between objecta, datap and their respective wavelet planes. b: Equivalence between
reconstructing each wavelet plane independently and reconstructing the datasetp. WT denotes the wavelet transform and

* is the convolution operation .

There are several algorithms to calculate WT of an image. AWMLE makes use of thèa trous

algorithm (Shensa 1992; Starck et al. 1994) which is considered one of the most powerful for imple-

menting WT (Starck et al. 1995). It createsN planes, each of them with the same number of coeffi-

cients as the number of pixels in the original image, so the representation is redundant. Obviously,

theà trousalgorithm is not suitable for compressing images.

By means of thèa trousalgorithm, the datasetp can be decomposed into several wavelet planes:

p = ωp
0 + ω

p
1 + ω

p
2 + ... + ω

p
N + cp

N (2.11)

whereωp
i is the i’th wavelet plane andcp

N is the residual wavelet plane where all the energy from

the original image is concentrated, i.e. the sum of all the pixels in eachωp
i is zero while the sum of

the pixels incp
N is equal to the sum of the pixels inp. This is due to the characteristics of the function

that is used to calculate the wavelet coefficients (themother-waveletfunction) which is designed to

have zero mean.

It is guaranteed in Otazu (2001) that if we decompose an object a in its wavelet coefficients,

convolve each plane with the PSFf and add all of them up, the result will be the datasetp. This is

illustrated in Figure 2.3 a). Additionally, one can obtain an estimate of the object in two equivalent

ways: by reconstructing the datasetp directly, or by reconstructing each wavelet plane independently

and adding them up as shown in Figure 2.3 b). As we will see, reconstruction of the wavelet planes has

the advantage that one can supervise the reconstruction process within one wavelet plane depending

on its noise content, as shown by equation (2.14).

Equation (2.9) can be re-written in the following way in order to include WT:

a(n+1)
i = Ka(n)
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(2.12)
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whereωp′ is the decomposition of the datasetp′ (Equation 2.10) in wavelets. In the Richardson-

Lucy scheme the comparison between the datasetp and the projection of the objecta adopts the

form of division, with the former in the numerator and the latter in the denominator. Although one

cannot compare each wavelet plane ofp with a corresponding plane of the object projectiona, the

decomposition ofp allows one to stop the reconstruction at each wavelet plane independently. In

order for this to happen the numerator and the denominator inequation (2.9) have to be equal. The

resulting value of unity will be multiplied by the current iteration in order to calculate the next one, so

a(n+1) = a(n). Such a mechanism would provide for convergence of the algorithm. Therefore, in order

to control noise suppression at each wavelet plane AWMLE provides for a mechanism that makes

equal, in equation 2.12, this particular plane of the dataset to the corresponding wavelet plane of the

reconstruction achieved until this moment. In other words,ω
p′

t,j = ω
h(n)
t,j . For instance, if we want to

stop the reconstruction in the first wavelet plane we would have:

a(n+1)
i = Ka(n)
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We now have a mechanism which allows us to control the level ofreconstruction of each plane.

The stopping rule is guided by the measurement of the level ofnoise in each plane. The algorithm

measures, at each plane, the standard deviation within a window and compares its value with the

standard deviation of the whole plane. If the local standarddeviation is equal or smaller than the global

standard deviation, we can conclude that within that windowthe probability of finding signal is small.

On the other hand, if the standard deviation within the window is higher than the global standard

deviation measured in this plane, we can assume that the information found inside the window is

probably due to the presence of a real source. The size of suchwindows must be changed according

to the wavelet plane one is working with at the moment, i.e. the window size is related to the wavelet

scale. Hence, the window will be smaller for the high-frequency scales and its size will increase as

the frequency of the wavelet plane decreases.

Several mathematical expressions have been proposed to quantify the probability of finding a real

source within the window. Here we use:

mi =
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(2.14)

with:

σi =

√

∑

j∈Φ(ωt, j)2

nf

whereσi is standard deviation within the windowΦ centered on the pixeli of the wavelet planeωt,

pixels within that window are indexed withj, nf is the number of pixels contained in the window,

σω is the global standard deviation in the corresponding wavelet plane. It can be approximated by
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decomposing in wavelet coefficients an artificial Gaussian noise image with standard deviation equal

to the dataset’s.

With the inclusion of the probabilistic mask in equation (2.12) the AWMLE expression becomes:

a(n+1)
i = Ka(n)
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If σi ≤ σω, that is if no significant signal is found within the window atsome position in wavelet

planet, thenmi will be zero and the numerator of equation (2.15) will beωh(n)

t, j , so the reconstruction

will be stopped at that plane since the algorithm no longer works with the datasetp, but with the

projectionh of the last reconstructiona(n). On the other hand, ifσi > σω thenmi will tend to one

and the numerator will be closer toωp′

t, j that is the wavelet plane of the datasetp. Therefore, the last

reconstructiona(n) would be still compared to the data and the reconstruction would continue in that

plane within that window.

Equation (2.15) was obtained with the assumption of Poissonnoise in the data. For high-light

level conditions the Poisson distribution approaches the Gaussian distribution and so equation (2.15)

can be considerably simplified in that case.

To summarize, AWMLE is fully described by equation (2.15). It maximizes the compound like-

lihood of the data being Poisson-distributed and the read-out noise being Gaussian. The datasetp is

decomposed by thèa trousalgorithm in order to enable independent operation within each wavelet

plane. AWMLE can automatically stop the reconstruction process at each plane by means of a proba-

bilistic mask which locally decides, comparing standard deviation within a window with the standard

deviation of the entire wavelet plane, if the presence of a real signal can be deduced.

2.3 Relevance for AO observations

Wavelet decomposition in AWMLE can be used to detect objectsof varying size in the object domain,

for example galaxies and stars, and separate these sources from noise when deconvolving. Addition-

ally, in the data domain, wavelet decomposition could guidethe stopping rule: iterative deconvolution

should be stopped at the smallest wavelet scale associated with the PSF. This is particularly useful for

AO observations which are known to possess two distinct scales: the diffraction-limit, λ/D, which

gives the core, the Airy rings, and the diffraction from the “spiders” , and the seeing-limited scale

which corresponds to the halo. This halo starts beyond the so-called “AO cut-off frequency” in

the PSF (location in the focal plane corresponding to wavefront scales smaller than twice the inter-

actuator spacing on the deformable mirror) and extends up toλ/r0, wherer0 is the so-called Fried

parameter or atmospheric coherence length. There is some controversy whether for closed-loop op-

eration this PSF scale stays constant or whether it increases (Hardy 1998; Cagigal & Canales 2000;

Tyler 2006). This ambiguity does not impact the effectiveness of PSF decomposition into the wavelet

scales because in our work we estimate the size of the halo directly from the images. In this paper

we deal with point sources only, and so the wavelet decomposition is not used to distinguish objects
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of varying size from noise. Rather, it is used to guide the reconstructions for the two characteristic

scales of the AO PSF.

2.4 Dataset description

Table 2.1: PSFs used to simulate images of binary stars
Science PSF SR mv mk Reference PSF SR mv mk

30% Strehl ratio
Matched PSF ............... NOMAD1 1297-0510182 29% 12.1 5.93 – 32% – –
Mismatched PSF ............... NOMAD1 1297-0510182 29% 12.1 5.93 HD 18009 35% 8.23 5.02

50% Strehl ratio
Matched PSF ............... HD 143209 54% 6.3 3.92 – 52% – –
Mismatched PSF ............... HD 143209 54% 6.3 3.92 HD 153832 48% 7.25 4.78

We have tested flux conservation of AWMLE on synthetic observations of binary stars constructed

from real AO images of point sources. Datasets were obtainedwith the Lick Observatory AO system

on the 3m Shane telescope (Bauman et al. 1999). Closed loop images of bright, single stars were

obtained using the high-speed subarray mode with size 64× 64 pixel for the 256× 256 pixel IRCAL

camera (Fitzgerald & Graham 2006). This corresponds to a field size of 4.864× 4.864′′, the pixel

size is 0.076′′. The subarray measurements were captured with typical exposure times of 22ms. All

data were obtained in K band (2.2µm) where the diffraction limit is 151mas, so that the data were

effectively Nyquist sampled. The individual 10000 short exposures were registered with subpixel

accuracy to produce shift-and-add (SAA) images. The registration algorithm locates the peak in each

of the images and estimates its sub-pixel position by computing the centroid of a 3× 3 pixel box

centered on the peak pixel. This box is big enough to contain the diffraction-limited core of the

AO PSF. Each frame is then shifted by computing its Fourier transform and applying a slope to the

Fourier phases corresponding to the offset of the sub-pixel peak location from the frame center, i.e.

pixel (32,32), and then computing the inverse Fourier transform. The procedure is repeated until

a tolerance of 0.02 pixels (2mas) is reached. The average Strehl Ratio (SR) of the SAA images

was around 40% (Strehl ratio: the ratio of the peaks of the observed PSF and the diffraction-limited

PSF). SR is the most-commonly used metric in AO imaging: SR of100% implies perfect correction.

Observed targets were very bright so the final stacked PSFs covered almost the entire field of view.

Therefore, readout noise and background were estimated from the individual short exposures. For

details of the observations and data reduction, see earlierpaper by Gladysz et al. (2006).

Artificial binaries, with differential magnitude of△m = 3.5, were created by scaling and shifting

the single-star SAA images. The low-Strehl-ratio case was constructed from a dataset corresponding

to the star bright in near-IR but whose flux in the visible was barely sufficient to drive the wavefront

sensor. Consequently the AO frame rate was only 55Hz, as opposed to the usual 500Hz for the other

targets. The resulting SR was low due to the temporal delay error (lag between wavefront sensor’s

measurement and evolution of the atmosphere).
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For each of the cases presented in Table 2.1 twenty four positions on the circle of radius 0.6′′ (8

pixels) were tested in order to minimize variations in results due to possible anisotropies in the PSF, as

can be appreciated in Figure 2.4. Another twenty four positions on the circle of radius 1.2′′ (16 pixels)

were also tested in order to study the more straightforward scenarios of almost-non-overlapping PSFs.

Here we come to the question of whether it is safe to assume theshift-invariant PSF for these images.

In wide-field AO images PSF generally changes depending on its proximity to the guide star, as stated

in section 1. The angular scale defining the region where the PSF can be assumed to be constant is

the so-called isoplanatic angle which, just like the coherence length, is bigger for longer wavelengths.

Christou & Drummond (2006) have measured this angle for the Lick site and at the same wavelength

as in our observations (2.2µm) and found the values in the range 14− 27′′. This confirms that our

methodology to simulate binary stars with the same PSF for angles< 1.5′′ is correct.

’’0.5

Figure 2.4: Leftmost panel: binary star simulated using a PSF with SR=50% (separation= 0.6′′). Central panel: binary
star simulated using a PSF with SR=30% (separation= 1.2′′). Note the speckles are more pronounced for SR=50%.
Logarithmic scale, inverted colors. Rightmost panel: positions where the companion was located with respect to the main
star.

We studied low (SR=30%) and relatively-high-compensation (SR=50%) cases with clearly dis-

tinct PSF structures. In the high-SR case quasi-static speckles are vividly pronounced, and in the

low-SR case the smooth halo is the dominant structure outside the first Airy ring. In the end, we

worked with four sets of twenty four binaries each.

Both AWMLE and StarFinder need an initial estimate of the PSFto work with. For the “matched-

PSF” cases we used the same stars observed ten minutes later.For the “mismatched-PSF” cases we

used stars of similar brightness observed on the same night,and also close to zenith. Variability of the

Strehl ratio between the science and calibration PSF is a direct consequence of the non-stationarity of

turbulence.

The StarFinder PSF-fitting algorithm was designed for the analysis of crowded stellar fields. Con-

sequently, the fitting algorithm can take advantage of many estimates of the PSF within the field of

view. The PSF template is also updated as StarFinder goes “deeper” into an image. In our work we

provide StarFinder with the PSF estimate, i.e. an image of a single star which remains static through-

out the analysis. StarFinder has also to be given an estimatefor the position of the companion and

we observed that this estimate has to be precise, otherwise the algorithm converged on the brightest

static speckle. This situation was treated as non-convergence. Additionally, if StarFinder converged
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on a position more than 0.5pixel away from the true position,the result was also discarded. This was

done in order to remove the photometric estimates affected by errors in astrometry. We checked that

up to 0.5pixel of astrometric error photometry obtained through PSF-fitting does not suffer, but above

that value, photometry (even when given a perfect PSF) exhibits a steep decrease in precision.

AWMLE is not a photometric package. It produces a deconvolved image which can be subse-

quently analyzed by an observer. However, atmospheric turbulence and optical imperfections of the

AO system usually produce speckles in AO images. These speckles can be confused with real sources

(Gladysz & Christou 2009). We checked the deconvolved images with the commonly-used GAIA-

sextractor software, and verified that the companion is detectable while the artefacts (speckles, or the

results of their propagation through the reconstruction software) are not detected.

StarFinder produces a list of detected objects, their fluxesand positions. For the AWMLE recon-

structions photometry was measured using a circle of 5-pixel diameter.

2.5 Results

In order to compare both algorithms, two different tests were performed. Firstly, we were interested

in theaveragephotometric accuracy which can be achieved with state-of-the-art algorithms for chal-

lenging AO data. By “challenging” we mean data produced by PSFs with complicated structures,

and with signal of the companion comparable to the speckles.Even though SNRs of the companions

were in the range 5-15 for the 8-pixel separations, accurateextraction of their photometry proved to

be difficult. The question we pose is therefore: given a clear detection, what is the accuracy of the

subsequent photometric measurement, and of the final physical characterization.

There are many papers on AO photometry (Roberts et al. 2005, 2007; Turner et al. 2008) but none

of them, except Esslinger & Edmunds (1998) and Burke et al. (2009), discuss the accuracy of algo-

rithms tested on simulated data. In this paper we present methodology for such tests and discuss

photometric accuracy which AO observers should expect for closely-separated binary stars with large

magnitude differences and with significant speckle noise.

Additionally, we performed another set of tests concerned with reliability (or repeatability) of the

results. In many astronomical observations several measurements are usually taken and the resulting

estimated quantities are averaged across the sample set. Wewanted to test what would be the scatter

of such photometric measurements, whether any single answer would be (statistically) close to the

truth, and whether the averaging process would actually bring the observer closer to the true value.

For these tests we averaged photometric estimates for each position and thus we averaged quantities

corresponding to the same scenario. By “scenario” we mean underlying speckle structure which,

for the PSFs used throughout this work, is spatially anisotropic and there are systematic photometric

errors depending on whether the companion was positioned ona speckle or on a “hole” . One of our

goals was to illustrate these systematic effects.

AWMLE was executed with two different probabilistic masks. The first one is described by equa-

tion (2.14) and is denoted in the tables and plots byσ-AWMLE, and the second one is the so-called
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deterministic-mask which includes information about the position of the companion, and is denoted

by DM-AWMLE in the tables and plots. The latter method rejects a possible false reconstruction of

speckles. This can be considered a similar situation with respect to StarFinder which needs to be

given a first estimate for the position of the companion.

In our work we dealt with companions with relatively low counts and therefore the Poisson law

expressed by equation (2.15) was preferred over the Gaussian-only version of AWMLE. A wavelet

decomposition with one plane plus a residual plane (p = ωp
0 + cp) was performed. The size of the first

wavelet scale was matched to the diffraction limit of the telescope (2 pixels) while the dominantscale

in the residual plane was roughly the diameter of the extended PSF halo. A maximum number of 100

iterations was enough to achieve the convergence in both planes. The acceleration parameterm was

set to 1 so it had no real effect on the results.

2.5.1 Accuracy test

This test was designed to measure the average photometric accuracy which we believe can be obtained

with state-of-the-art algorithms for barely-detectable companions (separation= 0.6′′, △m= 3.5, SNR

= 5-15 depending on the Strehl ratio), and clearly-visible companions (separation= 1.2′′, △m= 3.5,

SNR= 30-50). The algorithms were executed for the 24+24 images. Two metrics were computed for

the vectors of flux ratios resulting from the algorithms. First, the parameterp1 (Gladysz et al. 2010a):

p1 =
1
N

N
∑

j=1

|△mj − △mt| (2.16)

Where△mj is the estimated magnitude difference at positionj and△mt is the real magnitude

difference, i.e. 3.5. This metric gives an estimate of the photometric accuracy averaged over the

PSF’s anisotropies. Both algorithms were able to offer a solution for all positions in the SR=50%

situation. However, for the lower-SR case StarFinder did not converge in many of the positions as can

be seen in Table 2.3. In such situations we only computed the best AWMLE N results, whereN is the

number of successful runs for StarFinder.

Secondly, in order to check for possible over- or underestimation we computed the mean magni-

tude difference averaged over the number of successful (or most accurate, see above) runs:

m̄=
1
N

N
∑

j=1

△mj (2.17)

The corresponding standard deviation of magnitude differences was calculated as follows:

σm =
|σ+| + |σ−|

2
(2.18)

whereσ+ andσ− are “upper” and “lower” standard deviations expressed in magnitudes:

σ+ = 2.5 · log( f̄ ) − 2.5 · log( f̄ − σ f ) (2.19)
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σ− = 2.5 · log( f̄ ) − 2.5 · log( f̄ + σ f ) (2.20)

Due to the logarithmic character of the magnitude scale these two values are not exactly equal

but are very close. In the above equationsf̄ is the mean value of the measured flux ratios andσ f

is the standard deviation. The magnitude difference error bars had to be normalized to account for

StarFinder’s non-convergences. We chose to divideσm by
√

N, whereN is the number of StarFinder’s

convergences. This particular normalization is of course used to compute the standard deviation of

the mean (Taylor 1996) and, to be precise, it is only applicable if one measures the same quantity a

number of times in similar experimental conditions. This isnot the case here because each position

for the companion is endowed with its systematic error due tothe PSF’s anisotropies, as seen in

Figure 2.7, while equations (2.17)-(2.20) are averages over all locations. Nevertheless, we chose it

to represent somehow the scatter of the (successful) executions of the codes. Numerical results are

presented in Tables 2.2 and 2.3. They are also plotted in Figure 2.5.

Table 2.2: Accuracy test results for positions on a 1.2′′ circle
50% SR Matched PSF 50% SR Mismatched PSF 30% SR Matched PSF 30%SR Mismatched PSF
p1 m̄ σm/

√
N p1 m̄ σm/

√
N p1 m̄ σm/

√
N p1 m̄ σm/

√
N

σ-AWMLE ........ 0.0072 3.5008 0.0018 0.0247 3.5123 0.0053 0.0498 3.4926 0.0136 0.0721 3.5083 0.0195
DM-AWMLE ........ 0.0130 3.5079 0.0016 0.0383 3.5327 0.0046 0.0339 3.5043 0.0096 0.0794 3.5455 0.0173
StarFinder ........ 0.0140 3.5088 0.0009 0.0709 3.5657 0.0042 0.0782 3.4217 0.0100 0.1121 3.4740 0.0254

Looking at Figure 2.5 it is reassuring to find the general increase in average photometric error

(p1) when going from the “easiest” case (50% SR, matched PSF) to the most challenging one (30%

SR, mismatched PSF). For well separated binary stars photometry will be endowed with errors less

than 0.1mag for companions with low SNRs (5-15). For smallerseparations, approximately 0.5′′,

differential photometry will have an error less than 0.5mag, or 0.3mag when the StarFinder’s outlier

is ignored.

Table 2.3: Accuracy test results for positions on a 0.6′′ circle
50% SR Matched PSF 50% SR Mismatched PSF 30% SR Matched PSF 30%SR Mismatched PSF
p1 m̄ σm/

√
N p1 m̄ σm/

√
N p1 m̄ σm/

√
N p1 m̄ σm/

√
N

σ-AWMLE ........ 0.0510 3.5404 0.0073 0.1469 3.6418 0.0189 0.1537 3.3738 0.0329 0.3216 3.2625 0.0918
DM-AWMLE ........ 0.0609 3.5543 0.0068 0.1488 3.6436 0.0155 0.1162 3.4097 0.0258 0.2987 3.2967 0.0906
StarFinder ........ 0.0472 3.5421 0.0038 0.2074 3.7022 0.0130 0.4530 3.0418 0.0223 0.2746 3.4506 0.0935

(6 err) (12 err)

Locations of the three symbols for the scenario of separation 1.2′′, 30% SR, mismatched PSF,

reveal one important characteristic of thep1 metric which we also call “mean absolute deviation from

the truth” . For results which alternate between under- or over-estimating the truth, never getting

close to it, p1 will be relatively large, as is the case for StarFinder’sp1 here. On the other hand,

StarFinder’s mean value is actually relatively close to thetruth precisely because its results alternate

between under- or over-estimation. For the same scenario, AWMLE was on average closer to the truth

but it quite consistently over-estimated the flux ratio and so the resulting mean value is further away
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Figure 2.5: Upper panels: metricp1 and mean values calculated for the separation of 1.2′′. Lower panels: same metrics
computed for the separation of 0.6′′. The dashed line represents the true value, i.e. 3.5. Note the differences in vertical
scales between the plots. Numerical values are given in Tables 2.2 and 2.3. Symbols corresponding to the three approaches
were offset horizontally from their tick marks to reduce crowding.

from the truth than StarFinder’s. In general, one can see that AWMLE produces results with lower

photometric error compared to PSF-fitting. For the most challenging scenario (separation 0.6′′, 30%

SR, mismatched PSF) StarFinder produced accurate results but it converged in only half of all the 24

cases.

Figure 2.6 shows the reconstructions performed by AWMLE forone of the positions at the sep-

aration of 0.6′′ and the four situations we have considered, i.e. 30% and 50% SR with matched and

mismatched PSFs.

Figure 2.6: From left to right: a) Image of the synthetic binary star withcompanion at position “1” (50% SR), b)
AWMLE reconstruction for 50% SR and matched PSF, c) AWMLE reconstruction for 50% SR and mismatched PSF, d)
AWMLE reconstruction for 30% SR and matched PSF, e) AWMLE reconstruction for 30% SR and mismatched PSF.
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2.5.2 Repeatability test

Table 2.4: Repeatability test results for SR=50% and matched PSF

m̄ σm/
√

N m̄ σm/
√

N m̄ σm/
√

N m̄ σm/
√

N
Pos 1 Pos 2 Pos 3 Pos 4

σ-AWMLE ......... 3.5298 0.0190 3.5862 0.0213 3.5879 0.01773.4646 0.0250
DM-AWMLE ......... 3.5397 0.0187 3.5960 0.0197 3.6027 0.0165 3.4810 0.0232
StarFinder ......... 3.5301 0.0145 3.5607 0.0145 3.5689 0.0131 3.5099 0.0214

Pos 5 Pos 6 Pos 7 Pos 8
σ-AWMLE ......... 3.5392 0.0129 3.5694 0.0172 3.5508 0.01183.5442 0.0279
DM-AWMLE ......... 3.5536 0.0125 3.5817 0.0165 3.5638 0.0109 3.5575 0.0277
StarFinder ......... 3.5365 0.0081 3.5601 0.0160 3.5446 0.0097 3.5511 0.0244

For the purpose of this test eight out of the twenty four positions on the circle of radius 0.6′′

were chosen. Ten SAA images, comprising 1000 frames each, were created for each of these eight

positions. The mean values and standard deviations of the estimated magnitude differences were

calculated using equations (2.17) and (2.18). At each position, only the bestN results were considered

for AWMLE, whereN is the number of convergences for StarFinder. If StarFinderproduced results

for all the frames thenN = 10. When StarFinder was not able to converge for any of the 10 images

then all the results obtained by AWMLE were used, and againN = 10. Standard deviationσm was

divided by
√

N. This operation is now fully justified from the statistical point of view as the averaging

was performed for a uniform sample of experimental results (Taylor 1996). Results are presented in

Tables 2.4 - 2.7 and in Figure 2.7.

Table 2.5: Repeatability test results for SR=50% and mismatched PSF

m̄ σm/
√

N m̄ σm/
√

N m̄ σm/
√

N m̄ σm/
√

N
Pos 1 Pos 2 Pos 3 Pos 4

σ-AWMLE ......... 3.5284 0.0216 3.5796 0.0201 3.5411 0.01803.6464 0.03131
DM-AWMLE ......... 3.5427 0.0204 3.5940 0.0180 3.5608 0.0176 3.6556 0.0267
StarFinder ......... 3.6197 0.0166 3.6170 0.0167 3.6283 0.0140 3.7232 0.0265

Pos 5 Pos 6 Pos 7 Pos 8
σ-AWMLE ......... 3.7728 0.0186 3.8124 0.0223 3.6594 0.01793.7098 0.0313
DM-AWMLE ......... 3.7245 0.0149 3.7787 0.0173 3.6558 0.01519 3.7028 0.0280
StarFinder ......... 3.7709 0.0103 3.8123 0.0206 3.7290 0.0123 3.7439 0.0299

Except for the “easiest” case (50% SR, matched PSF) one can see that photometry of faint com-

panions can produce wildly varying results depending on whether the companion sits on a significant

speckle or not. Taking for example results from the upper-right panel in Figure 2.7, photometric error

can be as low as 0.03mag or as high as 0.3mag depending on the position of the companion within the

(anisotropic) speckle halo. One would expect these anisotropies to disappear for the observation time
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Table 2.6: Repeatability test results for SR=30% and matched PSF

m̄ σm/
√

N m̄ σm/
√

N m̄ σm/
√

N m̄ σm/
√

N
Pos 1 Pos 2 Pos 3 Pos 4

σ-AWMLE ......... 3.4587 0.0616 3.5271 0.0633 3.5634 0.09132.9352 0.0340
DM-AWMLE ......... 3.5334 0.0263 3.5764 0.0363 3.5616 0.0874 3.0269 0.0402
StarFinder ......... 3.2537 0.0380 3.2760 0.0175 3.4531 0.0200 2.9489 0.0344

(3 err) (4 err) (4 err) (3 err)

Pos 5 Pos 6 Pos 7 Pos 8
σ-AWMLE ......... 3.1761 0.0472 3.2570 0.0199 3.4449 0.03423.0010 0.0413
DM-AWMLE ......... 3.1979 0.0467 3.3501 0.0251 3.4585 0.0318 3.0309 0.0429
StarFinder ......... 3.1151 0.0667 3.1781 0.0618 3.1709 0.0641 – –

(1 err) (1 err) (1 err)

of approximately 10 minutes but the speckles we deal with here are the so-called “super speckles” or

“quasi-static” speckles which decorrelate very slowly (Hinkley et al. 2007). One of the goals of this

paper was to show this effect on photometry. All three approaches show the same trendsdictated by

the underlying noise variance. Somewhat surprisingly, thetrends are also visible for the 30%-SR PSF,

even though it has a much smoother halo compared to the 50%-SRPSF. On the other hand due to the

lower SR, the companions had lower SNRs in these inferior-quality observations and therefore the

photometric results were just as susceptible to (less visible) PSF anisotropies, especially “spiders” ,

as in the case of the better-quality images. We conclude thataveraging many values of differential

photometry in the presence of “quasi-static” speckles willnot necessarily bring the observer closer

to the truth.

Table 2.7: Repeatability test results for SR=30% and mismatched PSF

m̄ σm/
√

N m̄ σm/
√

N m̄ σm/
√

N m̄ σm/
√

N
Pos 1 Pos 2 Pos 3 Pos 4

σ-AWMLE ......... 4.5724 0.1855 4.4923 0.1607 4.2184 0.26313.0135 0.0507
DM-AWMLE ......... 4.0475 0.0908 3.9810 0.0766 3.8161 0.1247 3.0257 0.0515
StarFinder ......... 3.7636 0.1001 3.6873 0.0827 3.3635 0.2003 2.7597 0.0448

(1 err) (1 err) (6 err) (2 err)

Pos 5 Pos 6 Pos 7 Pos 8
σ-AWMLE ......... 3.0114 0.0538 3.2314 0.0501 3.5212 0.05305.2096 0.4612
DM-AWMLE ......... 2.8742 0.0472 3.1760 0.0380 3.4133 0.0442 4.3781 0.0986
StarFinder ......... – – – – – – – –



54 Roberto Baena Gallé. Universitat de Barcelona.

Figure 2.7: Mean values of estimated differential photometry and their standard deviations for eight positions on the
circle with radius 0.6′′. Upper-left panel: SR=50% and matched PSF. Upper-right panel: SR=50% and mismatched
PSF. Lower-left panel: SR=30% and matched PSF. Lower-right panel: SR=30% and mismatched PSF. The dashed line
represents the true value, i.e. 3.5. Note the differences in vertical scales between the plots. Numerical values are given in
Tables 2.4 - 2.7. Symbols corresponding to the three approaches were offset horizontally from their tick marks to reduce
crowding.

2.6 Conclusions

We presented a systematic approach to testing of photometric approaches on challenging AO data.

The two codes we included in our work represent two opposite approaches to measuring photometry.

StarFinder is a PSF-fitting package and yields photometry directly, while AWMLE is a Richardson-

Lucy-type algorithm and has to be combined with aperture photometry.

Our first goal was to test the widely-accepted assumption that static-PSF codes, such as AWMLE,

are not suitable for the analysis of AO data. Historically, the “traditional” image reconstruction and

AO communities have not interacted much with each other and we believe this paper is one of the

first attempts at such collaborations.

Results of the testing show that AWMLE, and modern Richardson-Lucy-type algorithms in gen-

eral, is a suitable tool to measure differential photometry in AO images. The algorithm combines the

Bayesian framework, assuming Poisson plus Gaussian noise in the data, with the wavelet transform.

In this work, the wavelet decomposition is used to better separate PSF-induced features in the data

from noise. A probabilistic mask decides automatically when to stop the reconstruction process for

each wavelet plane. The use of a deterministic mask, tellingthe algorithm exactly where the stars

are, improves the results slightly because reconstructionof the speckles, which affects the final re-

constructed signals of the real sources, is rejected. We have shown that AWMLE combined with
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aperture photometry produces photometric estimates whichare comparable if not more accurate than

PSF-fitting.

We conclude that state-of-the-art photometric codes can have precisions ranging from 0.3mag for

very close binary stars, low SNRs of the companions, and mismatched PSFs; down to 0.01mag for

well separated systems, clearly visible companions and well-matched PSFs.

We are currently conducting a large study where we compare photometric precision of AWMLE,

StarFinder, multi-frame blind deconvolution, and the so-called “PDF deconvolution” (Gladysz & Christou

2009). Preliminary results were already presented in Gladysz et al. (2010a). Additionally, we believe

that AWMLE, as a reconstruction algorithm, could be used to deconvolve AO images of more com-

plex objects like asteroids or galaxies. Besides, other transforms could be considered for this purpose,

e.g. the curvelet transform (Candès et al. 2006).
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Chapter 3

Extended-object reconstruction in

adaptive-optics imaging: the multiresolution

approach
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Press here to download.

Abstract

We propose the application of multiresolution transforms,such as wavelets and curvelets, to recon-

struct images of extended objects that have been acquired with adaptive-optics (AO) systems. Such

multichannel approaches normally make use of probabilistic tools to distinguish significant structures

from noise and reconstruction residuals. We aim to check theprevailing assumption that image-

reconstruction algorithms using static point spread functions (PSF) are not suitable for AO imaging.

We convolved two images, one of Saturn and one of galaxy M100,taken with the Hubble Space Tele-

scope (HST) with AO PSFs from the 5m Hale telescope at the Palomar Observatory and added shot

and readout noise. Subsequently, we applied different approaches to the blurred and noisy data to

recover the original object. The approaches included multiframe blind deconvolution (with the algo-

rithm IDAC), myopic deconvolution with regularization (with MISTRAL) and wavelet- or curvelet-

based static PSF deconvolution (AWMLE and ACMLE algorithms). We used the mean squared error

(MSE) to compare the results. We found that multichannel deconvolution with a static PSF produces

generally better results than the results obtained with themyopic/blind approaches (for the images

we tested), thus showing that the ability of a method to suppress the noise and track the underlying

iterative process is just as critical as the capability of the myopic/blind approaches to update the PSF.

Furthermors, for these images, CT produces better results than WT, as measured in terms of MSE.
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3.1 Introduction

The distortions introduced into images by the acquisition process in astronomical ground-based ob-

servations are well known. Apart from the most common, such as vignetting, non-zero background

or bad pixels, which must be removed prior to any other analysis, atmospheric turbulence limits the

spatial resolution of an image, whereas the electronic devices used to acquire and amplify the signal

introduces noise. An image is also corrupted by Poisson noise from fluctuations in the number of re-

ceived photons at each pixel (Andrews & Hunt 1977). The classical equation that describes the image

formation process is

image= [PS F∗ ob ject]^noise, (3.1)

where∗ denotes the convolution operation. The symbol^ is a pixel-by-pixel operation that re-

duces to simple addition when noise is additive and independent of [PS F∗ob ject], while for Poisson

noise it is an operation that returns a random deviate drawn from a Poisson distribution with mean

equal to [PS F∗ ob ject]. It is well known that direct inversion of equation 3.1 in the Fourier domain

amplifies noisy frequencies close to the cut-off frequency. Hence, in the presence of noise, such a

simple method cannot be used.

Several deconvolution approaches have been proposed to estimate the original signal from the

seeing-limited and noise-degraded data. Since equation 3.1 is an ill-posed problem, with non-unique

stable solutions, one approach is to regularize the Fourierinversion to constrain possible solutions

(Tikhonov et al. 1987; Bertero & Boccacci 1998). This methodgenerally imposes a trade-off between

noise amplification and the desired resolution, which generally leads to smooth solutions. Bayesian

methodology (Molina et al. 2001; Starck et al. 2002) allows asolution compatible with the statistical

nature of the signal to be sought, leading to maximum likelihood estimators (MLE) (Richardson

1972; Lucy 1974) or maximum a posteriori (MAP) approaches ifprior information is used, e.g., the

positivity of the signal or entropy (Frieden 1978; Jaynes 1982).

All these methods can be enhanced through multichannel analysis by decomposing the signal in

different planes, each of them representative of a certain scaleof resolution. In such a decompo-

sition, fine details in an image are confined to some planes, whereas coarse structures are confined

to others. One of the most powerful ways to perform this decomposition is by means of the wavelet

transform (WT). In particular in the astronomical context,the undecimated isotropic à trous algorithm

(Holschneider et al. 1989; Shensa 1992; Starck & Murtagh 1994), also known as the starlet transform,

is often used. The WT creates a multiple representation of a signal, classifying its frequencies and,

simultaneously, spatially localizing them in the field of view. For the specific case of the starlet

transform, this can be expressed by

s= ωs
0 + ω

s
1 + ω

s
2 + ... + ω

s
N + r s

N , (3.2)

wheres is the signal that decomposed into wavelet coefficients,ωs
j is the wavelet plane at reso-
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lution j, andr s
N is the residual wavelet plane. We point out that equation 3.2provides a prescription

for direct reconstruction of the original image from all thewavelet planes and the residual plane. The

advantage of WT is that it allows for different strategies to be used for different wavelet planes, e.g.,

by defining thresholds of statistical significance.

Given the advantages of the multiresolution analysis, the aforementioned deconvolution approaches

have been adapted to work in the wavelet domain. The MLE was modified into a two-channel algo-

rithm (Lucy 1994) where the first channel corresponds to the signal contribution and the second to

the background. The wavelet transform has also been appliedto maximum-entropy deconvolution

methods (Núñez & Llacer 1998) to segment the image and apply different regularization parameters

to each region. Starck et al. (2001) generalized the method of maximum entropy within a wavelet

framework, separating the problem into two stages: noise control in the image domain and smooth-

ness in the object domain.

While WT has been widely used in astronomical image analysisand in deconvolution, the reported

use (in the same context) of multi-transforms with properties that improve on or complement WT is

scarce. Such methods include, among many others: waveatoms(Demanet & Ying 2007), which aim

to represent signals by textures; and curvelets (Candès etal. 2006), which introduce orientation as a

classification parameter together with frequency and position. Starck et al. (2003) used the curvelet

transform (CT) for Hubble Space Telescope (HST) image restoration from noisy data. They reported

enhanced contrast on the image of Saturn. Lambert et al. (2006) applied CT to choose significant

coefficients from astroseismic observations while Starck et al. (2004) used CT to detect non-Gaussian

signatures in observations of the cosmic microwave background. Because it is believed that CT is

more suitable for representing elongated features such as lines or edges, one of the goals of this paper

is to introduce CT into the Bayesian framework and show how itperforms on images of extended

objects.

The aforementioned methods work with static point spread functions (PSF), i.e., they do not up-

date the PSF of an optical system that is supplied by the operator. Nevertheless, in ground-based

imaging, whether with adaptive optics (AO) or without, there are always differences between science

and calibration PSFs (Esslinger & Edmunds 1998). These differences may result from changes in

seeing, wind speed, slowly varying aberrations due to gravity or thermal effects and, in AO imaging,

from differential response of the wavefront sensor to fluxes receivedfrom the science and calibration

objects. The quality of AO images is quantified with the Strehl ratio (SR), which is the ratio of the

measured peak value of a point-source image to that of the diffraction-limited PSF, often given in

percent. A perfect diffraction-limited image has an SR of 100% while a seeing-degraded image on a

large telescope can have an SR lower than 1%. In this paper we will use the SR to quantify the mis-

match between the target and calibration PSFs. This commonly occurring mismatch has prompted

optical scientists, especially those working on AO systems, to investigate blind and myopic image

restoration schemes (e.g. Lane 1992; Thiébaut & Conan 1995). A blind method works without any

information about the PSF, while a myopic approach relies onsome initial PSF estimate that is then

updated until a solution for both the object and the PSF is found.
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Conan et al. (1999) compared their myopic approach to a basic, “unsupervised” Richardson-Lucy

scheme and found, not surprisingly, that the myopic deconvolution is more stable. Nevertheless, to

our knowledge there have not been any thorough and fully fledged efforts to compare the performance

of modern, static-PSF approaches to blind/myopic methods in the context of AO imaging, and so the

preference for the latter algorithms still has to be justified. Our goal is to partially fill this gap. At

this stage we mention that this article is a companion paper to Baena Gallé & Gladysz (2011), where

we showed that a modern, static-PSF code is capable of extracting accurate differential photometry

from AO images of binary stars even when given a mismatched PSF. In the current paper we extend

the analysis to more complex objects and analyze the effect of noise as well as that of the mismatched

PSF. We show the importance of noise control, specifically how advanced noise suppression can set

off the lack of PSF-update capability for very noisy observations. More generally, we highlight the

opportunities for an exchange of ideas between the communities that prefer myopic and static-PSF

approaches.

The paper is organized as follows: in Section 2, the algorithms AWMLE, ACMLE, MISTRAL,

and IDAC are described. These algorithms represent different philosophies with regard to the de-

convolution problem. AWMLE and ACMLE perform a classical static-PSF deconvolution within the

wavelet or curvelet domain, MISTRAL is intended for myopic use, and IDAC can be used as a blind

or a myopic algorithm. Section 3 describes the datasets we used and how we applied each of the four

algorithms. A brief description of the mean squared error (MSE), together with concepts of error and

residual maps that we used to compare the reconstructed objects can be found in section 4. Section

5 presents the performance comparison of the four algorithms mentioned above in terms of noise and

PSF mismatch. Section 6 summarizes and concludes the paper.

3.2 Description of the algorithms

This section is not intended to describe the algorithms in detail but rather to offer a brief overview

of their characteristics and their historical uses and performances. We would also like to point out

that in the text to follow we do not keep the nomenclature originally used by the respective authors.

We make the following attempt at standardization: the object, or unknown, is represented witho, the

image or dataset isi, and the PSF ish. Upper-case notation is used for Fourier representation. The

two-dimensional pixel index isr, while f is spatial frequency. The index of a wavelet/curvelet scale

is represented withj, while a single frame in a multiframe approach is indexed with i. Finally, the

symbol .̂ is used for estimates.

3.2.1 AWMLE

The adaptive wavelet maximum likelihood estimator (AWMLE)is a Richarson-Lucy-type algorithm

(Richardson 1972; Lucy 1974) that maximizes the likelihoodbetween the dataset and the projection

of a possible solution onto the data domain, considering a combination of the Poissonian shot noise,

intrinsic to the signal, and the Gaussian readout noise of the detector. This maximization is performed
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in the wavelet domain. The decomposition of the signal into several channels allows for various

strategies to be used depending on a particular channel’s scale. This is a direct consequence of the

fact that in a WT decomposition the noise, together with the finest structures of the signal, will be

transferred into the high-frequency channels while coarsestructures will be transferred into the low-

frequency channels.

The general mathematical expression that describes AWMLE is

ô(n+1) = Kô(n)
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whereo is the object to be estimated,h+ is the PSF that projects the information from the object

domain to the image domain, whileh− is its reverse version performing the inverse operation, i.e.,

the projection from the image domain to the object domain. The so-called direct projectionoh is an

image of the object projected onto the data domain by means ofthe PSF at iterationn, it appears

in the numerator of equation 3.3 already decomposed in its wavelet representation. The parameter

K =
i

ô(n+1)
is a constant to conserve the energy.

The variablei′ is a modified version of the dataset, which appears here because of the explicit

inclusion of the readout Gaussian noise into the Richardson-Lucy scheme (Núñez & Llacer 1993).

This represents a pixel-by-pixel filtering operation in which the original dataset is substituted by this

modified version. It must be calculated for each new iteration by means of the following expression:

i′(r) =

∑∞
k=0(ke−(k−i(r))2/2σ2

[(oh(r))k/k!])
∑∞

k=0(e−(k−i(r))2/2σ2[(oh(r))k/k!])
, (3.4)

wherei is the original dataset,r is the pixel index, andσ is the standard deviation of the read-

out noise. In the absence of noise (σ → 0) the exponentials in equation 3.4 are dominant when

k = i(r) and theni′(r) → i(r), i.e., the modified dataset converges to the original one. We note that

by definition,i′ is always positive, whilei can be negative because of readout noise. Expression 3.4

introduces an analytical way to consider the joint Poisson plus Gaussian probabilities into the decon-

volution problem. This can also be performed in a straightforward way by means of the Anscombe

transform, as mentioned by Murtagh et al. (1995), who approximated Poissonian noise as Gaussian

(this approximation is of course only valid for relatively high values ofi).

In expression 3.3, the symbolsω
o(n)

h
j andωi′

j correspond to wavelet coefficients, in channelj, of

the multiscale representation of the direct projectiono(n)
h as well as that of the modified dataseti′,

respectively.

Of particular importance is the probabilistic maskM j , which locally determines whether a sig-

nificant structure in channelj is present or not. If the probability of finding a source in thevicinity

of a particular pixelr is considered to be high, thenM j will be close to 1 in this location, and so

the dataseti′ will be the only remaining term in the numerator and will be compared, at iterationn,

with the estimated object at that iterationo(n). If a signal in the vicinity of pixelr is considered to be

insignificant, thenM j will decrease to zero and the object will be compared with itself (by means of
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its projectiono(n)
h ), so the main fraction in equation 3.3 will be set to unity (atchannelj in the vicinity

of pixel r), which would stop the iterative process. Therefore, the probabilistic maskM j is used to

effectively halt the iterations in a Richardson-Lucy scheme. In other words, it allows a user to choose

from a wide range of the maximum number of iterations to be executed, where the reconstructions

corresponding to these different numbers will not exhibit significant differences between them, which

arise in the classic Richardson-Lucy algorithm due to the amplification of noise.

AWMLE in the wavelet domain was first introduced in Otazu (2001). Baena Gallé & Gladysz

(2011) presented the algorithm in the context of AO imaging and obtained differential photometry in

simulated AO observations of binary systems. The accuracy of aperture photometry performed on

the deconvolution residuals was compared with the accuracyof PSF-fitting, a classic approach to the

problem of overlapping PSFs from point sources (Diolaiti etal. 2000). It was proven that AWMLE

yields similar, and often better, photometric precision than StarFinder, independently of the stars’

separation. Even though AWMLE does not update the PSF as it performs deconvolution, it was

shown that the resulting photometric precision is robust tomismatches between the science and the

calibration PSF up to 6% in terms of difference in the SR, which was the strongest tested mismatch.

3.2.2 ACMLE

Equation 3.2 offers a direct reconstruction formula for the wavelet domain,i.e., the sum of all wavelet

planes (and the residual one) in which the original image hadbeen decomposed allows one to retrieve

that same original image. This explains the presence of summation
∑

j in the numerator of expression

3.3, where a combination of different wavelet coefficients, some belonging to the direct projection

of the object (oh) and some belonging to the modified dataset (i′), creates the correction term in this

Richardson-Lucy scheme.

In the curvelet domain, the reconstruction formula does nothave this simple expression. For the

forward and the inverse transforms, double Fourier inversions and complex operations with arrays are

required (Candès et al. 2006). Therefore, to extend equation 3.3 to the Curvelet domain, we decided

to work with the following expression:

ô(n+1) = Kô(n)
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whereCT andCT−1 mean the forward and inverse curvelet transforms, respectively. The mask

M is now calculated in the curvelet domain and combines coefficients fromoh and i′ to create a

new curvelet correction term that is inversely transformedto the spatial domain and compared with

the object estimate at each iteration. The curvelet transform used in equation 3.5 corresponds to

the so-called second-generation CT and is implemented in the software CurveLab1. This particular

implementation of the CT exhibits a robust structure based on a mother curvelet function of only

three parameters (scale, location, and orientation), which is faster and simpler to use than the first-

1http://www.curvelet.org
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generation CT based on a complex seven-index structure, which relies on the combined usage of the

starlet and the ridgelet transforms (Starck et al. 2010).

3.2.3 MISTRAL

The myopic iterative step-preserving restoration algorithm (MISTRAL) is a deconvolution method

within the Bayesian framework that jointly estimates the PSF and the object using some prior infor-

mation about both these unknowns (Mugnier et al. 2004). Thisjoint maximum a posteriori (MAP)

estimator is based on the following expression:

[ô, ĥ] = arg max[p(i|o, h) × p(o) × p(h)] =

= arg min[Ji(o, h) + Jo(o) + Jh(h)] ,
(3.6)

whereJi(o, h) = − ln p(i|o, h) is the joint negative log-likelihood that expresses fidelity of the

model to the data (i), Jo(o) = − ln p(o) is the regularization term, which introduces some prior knowl-

edge about the object (o) andJh(h) = − ln p(h) accounts for some partial knowledge about the PSF

(h). The symbolp in the above expressions corresponds to the probability density function of a

particular variable.

MISTRAL does not use separate models for the Poisson and the readout components of noise.

Instead, a nonstationary Gaussian model for the noise is adopted. This means that a least-squares

optimization with locally varying noise variance is employed,

Ji(o, h) =
∑

r

1
2σ2(r)

[i(r) − (o ∗ h)(r)]2 , (3.7)

wherer stands for pixel index. This prior facilitates computing the solution with gradient-based

techniques as compared to the Poissonian likelihood, whichcontains a logarithm. The Gaussian

assumption is typical (Andrews & Hunt 1977) and it can be considered a very good approximation

for bright regions of the image. The assumption can cause problems for low-light-level data recorded

with modern CCDs of almost negligible readout noise.

The prior probability,Jo(o), is modeled to account for objects that are a mix of sharp edges and

smooth areas such as those that we deal with in this article. The adopted expression contains an

edge-preserving prior that is quadratic for faint gradients and linear for steep ones. The quadratic part

ensures a good smoothing of the faint gradients (i.e., of noise), and the linear behavior cancels the

penalization of steep gradients (i.e., of edges). These combined priors are commonly calledL2 − L1

(Green 1990; Bouman & Sauer 1993). TheL2 − L1 prior adopted in MISTRAL has the following

expression:

Jo(o) = µδ2
∑

r

φ(∇o(r)/δ) , (3.8)

whereφ(x) = |x| − ln(1+ |x|) and where∇o(r) = [∇xo2(r)+∇yo2(r)]1/2. Here,∇xo and∇yo are the
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object finite-difference gradients alongx andy, respectively. Equation 3.8 is effectivelyL2−L1 since it

adopts the formφ(x) ≈ x2/2 whenx is close to 0 andφ(x)/|x| → 1 whenx tends to infinity. The global

factorµ and the thresholdδ are two hyperparameters that must be adjusted by hand according to the

level of noise and the object structure. Some steps toward semi-automatic setting of these parameters

were made by Blanco & Mugnier (2011).

The regularization term for the PSF, which introduces the myopic criterion into equation 3.6,

assumes that the PSF is a multidimensional Gaussian random variable. This assumption is justi-

fied when one deals with long exposures, which are, by definition, sums of large numbers of short-

exposures. As such they are Gaussian according to the central limit theorem. Adopting these condi-

tions,Jh(h) has the form

Jh(h) =
1
2

∑

f

|H( f ) − Hm( f )|2
E[|H( f ) − Hm( f )|]2

, (3.9)

This prior is expressed in the Fourier domain whereby upper-case notation denotes Fourier trans-

formation. The termHm( f ) = E[H] is the mean transfer function andE[|H( f )−Hm( f )|]2 is the associ-

ated power spectral density (PSD) withf denoting spatial frequency. This Fourier-domain prior bears

some resemblance to equation 3.7. Indeed, it also assumes Gaussian statistics and draws the solution,

in the least-squares fashion, toward the user-supplied mean PSF while obeying the error bars given by

the PSD (which give the variance at each frequency). The PSF prior leads to band-limitedness of the

PSF estimate because the ensemble average in the denominator, E[|H( f ) − Hm( f )|]2, should be zero

above the diffraction-imposed cut-off.

In practice, equation 3.9 relies on the availability of several PSF measurements. The mean PSF

and its PSD are estimated by replacing the expected values (E[.]) by an average computed on a PSF

sample. When such a sample of several PSFs is not available, as we have assumed in our work, then

Hm is made equal to the Fourier transform of the single suppliedPSF, andE[|H( f ) − Hm( f )|]2 is

computed as the circular mean of|Hm|2. These relatively large error bars are intentional: they account

for the lack of knowledge about the PSD when given only a single PSF measurement.

In the original MISTRAL paper (Mugnier et al. 2004) the code was presented mainly in the con-

text of planetary images, for which the object prior (equation 3.8) was developed. The experimental

data presented therein were obtained on several AO systems and covered a wide range of celestial ob-

jects such as Jupiters satellites Io and Ganymede and the planets Neptune and Uranus. MISTRAL was

applied to the study of the asteroids Vesta (Zellner et al. 2005) and 216-Kleopatra (Hestroffer et al.

2002), and was also used to monitor surface variations on Pluto over a 20-year period (Storrs & Eney

2010).

3.2.4 IDAC

Multiframe blind deconvolution (MFBD) (Schulz 1993; Jefferies & Christou 1993) is an image re-

construction method relying on the availability of severalimages of an object. In addition, many of

the MFBD algorithms rely on short exposures. This was originally dictated by the notion that in imag-
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ing through turbulence short-exposure images contain diffraction-limited information while the long

exposures do not (Labeyrie 1970). Before the advent of AO theonly way to obtain diffraction-limited

data from the ground was to record short exposures that couldthen be processed by one of several

“speckle imaging” methods (Knox & Thompson 1974; Lohmann etal. 1983). Therefore, MFBD was

originally proposed in the context of speckle imaging.

The MFBD code we used in this paper is called IDAC, for iterative deconvolution algorithm

in C 2, and is an extension of the iterative blind deconvolution (IBD) algorithm proposed by Lane

(1992). IDAC performs deconvolution by numerically minimizing a functional that is composed of

four constraints:

ǫ = Eim + Econv+ Ebl + EFm , (3.10)

where

Eim =
∑

r∈γ
[ô(r)]2 +

M
∑

i=1

∑

r∈γ
[ĥi(r)]

2 (3.11)

is the image domain error that penalizes the presence of negative pixels (γ) in both the object (o)

and the PSF (h) estimates. The subscripti refers to an individual data frame.

The so-called convolution error is

Econv=
1

N2

M
∑

i=1

∑

f

|I i( f ) − Ô( f )Ĥi( f )|2Bi( f ) , (3.12)

which quantifies the fidelity of the reconstruction (Ô) to the data (I ) in the Fourier domain. The

term Bi is a binary mask that penalizes frequencies beyond the diffraction-imposed cut-off, N2 is a

normalization constant whereN is the number of pixels in the image.

The third constraint is called the PSF band-limit error and is defined as

Ebl =
1

N2

M
∑

i=1

∑

f

|Ĥi( f )|2B′i ( f ) , (3.13)

It prevents the PSF estimates from converging to aδ function and the object estimate from con-

verging to the observed data. The termB′i is a binary mask that is unity for spatial frequencies greater

than 1.39 times the cut-off frequency and zero elsewhere.

The last constraint is the Fourier modulus error:

EFm =
1

N2

∑

f

[|Ô( f )| − |Oe( f )|]2Φ( f ) , (3.14)

whereOe is a first estimate of the Fourier modulus of the object obtained, e.g., from Labeyrie’s

speckle interferometry method (Labeyrie 1970), andΦ is a signal-to-noise (SNR) filter. Jefferies & Christou

2http://cfao.ucolick.org/software/idac/
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(1993) showed with several simulations that this constraint is especially important since it incorpo-

rates relatively high SNR information from a complete dataset formed by many frames. On the other

hand, the Fourier modulus of an object is only recoverable directly if one has a set of speckle images

of an unresolved source to be used as a reference. There are workarounds to this problem, most no-

tably reference-less approaches reported in Worden et al. (1977) and von der Lühe (1984), but these

solutions are applicable only to non-compensated imaging and could not be used in our tests.

While MFBD algorithms were initially proposed in the context of speckle imaging, there is noth-

ing preventing their application to long-exposure AO images that now contain diffraction-limited

frequencies. In principle, there are some inherent advantages of working withM frames instead of

using a single, co-added long exposure. The multiframe approach reduces the ratio of unknowns to

measurements from 2 : 1 in single-image blind deconvolutionto M + 1 : M in multi-frame decon-

volution. On top of the PSF band-limit constraint (equation3.13), concurrent processing of many

frames means that the PSF cannot converge to theδ function (this would have yielded an object equal

to the data, but the data are generally temporally variable while the object is assumed to be constant

in MFBD, which is a good assumption in the context of astronomical imaging on short time-scales).

MFBD algorithms are very successful in the case of strongly varying PSFs so that the target is easily

distinguished from the PSFs. On the other hand, the goal of AOis to stabilize the PSF. This implies

less PSF diversity from one observation to another, so that other constraints become more useful.

The code IDAC can be regarded as a precursor but also a representative of a wider class of MFBD

algorithms. We mention here the PCID code (Matson et al. 2009), which has the capability to estimate

the PSFs either pixel by pixel in the image domain or in terms of a Zernike-based expansion of the

phase in the pupil of the telescope. It has been shown that such a PSF re-parameterization leads to

object estimates that are less noisy and have a higher spatial resolution (Matson & Haji 2007).

IDAC was applied to speckle observations of the binary system Gliese 914, and in the process, the

secondary component was resolved into two stars (Jefferies & Christou 1993). Additionally, IDAC

was one of the five codes used in our study of photometric accuracy of image reconstruction algo-

rithms (Gladysz et al. 2010a).

3.3 Dataset description and methodology

3.3.1 Dataset description

The images we used to test the algorithms correspond to observations performed with the fourth

detector of the WFPC2 camera (Trauger et al. 1994) (the so-called planetary camera -PC-, with a

pixel size of 0.046′′) installed on the HST. These are pictures of Saturn with a dynamic range of up

to 975 counts, and galaxy M100 with a peak signal of 7400 counts. To obtain well-defined edges

and transitions between the object and the background, the image of Saturn was preprocessed so that

all pixels below a certain threshold were set to zero, thus enhancing the visibility of the Cassini and

Encke divisions. These images were considered representations of the true objects (figure 3.1).
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Figure 3.1: Top, far left: M100 galaxy “ground truth” image. Bottom, farleft: Saturn “ground truth” image. From left
to right: blurred simulated images using a science PSF with aStrehl ratio= 53% (far left panel in figure 3.2) plus additive
Gaussian noise with standard deviations equal to 1, 5, 10, 15, and 20. Linear scale.

The “ground truth” images were subsequently convolved withan AO PSF with an SR equal to

53% (see Table 3.1). This and the other PSFs used in this project were obtained with the 1024x1024

PHARO infrared camera (Hayward et al. 2001) on the 5-m Hale telescope at the Palomar Observatory

(Troy et al. 2000). Closed-loop images of single stars were recorded using the 0.040′′pixel−1 mode.

The images were cropped to size 150×150 pixels, which corresponds to a field of view (FOV) of 6′′.

The observations were acquired in the K band (2.2µm) where the diffraction limit is 0.086′′ so that

the data meet Nyquist-sampling requirements. The filter of the observations was Brackett Gamma

(BrG) and each of the PSFs in Table 3.1 corresponds to a sum of 200 frames, each with an exposure

time of either 1416 or 2832 ms. The individual frames were registered via iterative Fourier shifting

to produce shift-and-add images (Baena Gallé & Gladysz 2011).

Table 3.1: PSFs used for the simulated observations

Star SR exp. time (ms) Type
PSF1 53% 1416 Science PSF
PSF2 53% 2832 Reference PSF
PSF3 45% 2832 Reference PSF
PSF4 36% 1416 Reference PSF

The angular size on the sky over which the AO PSF can be assumedto be almost spatially invariant

is the so-called isoplanatic angle. This parameter becomeslarger at longer wavelengths. As specified

by Hayward et al. (2001), the isoplanatic angle is approximately 50′′ in K-band at Palomar. The

angular size of the Saturn and M100 images is 20.5′′, so we can assume that the PSF remains constant

throughout the FOV. The difference in pixel scales between those images and the PSFs fromPalomar

is very small (0.046′′ vs. 0.040′′) and therefore we did not re-bin the images to match their pixel

scales. The paper is devoted comparing image-restoration algorithms and not to the performance



3. Extended-object reconstruction in AO imaging 69

evaluation of the AO system at Palomar.

We used IDAC in the multi-frame mode. One of the goals of our work was to check the trade-

off between the diversity provided by more frames vs. SNR per frame. One can think of this as

an exposure-time optimization. For a constant total observation time per object one can use shorter

exposures and hope to exploit the PSF variability in subsequent image restoration with MFBD, or opt

instead to use fewer images with a better SNR per frame. Therefore, out of the original 200-frame

dataset we have produced datasets of 10, 20, 50, and 100 binned PSFs. These binned PSFs, together

with the original 200-frame dataset, were used as blurring kernels for the Saturn image. For AWMLE,

ACMLE, and MISTRAL, which are single-image restoration codes, we only used the summed PSF.

All PSFs were normalized to have a total power equal to unity before the convolution procedure.

The blurred observations were subsequently corrupted withnoise. We explored more than twenty

levels of noise: pure Gaussian readout noise of standard deviation ranging fromσ = 1 toσ = 20, and

shot noise plus readout noise of levelσ = 10. These levels correspond to the noise that was added

to the summed images. For MFBD with IDAC we worked with several images and decided to add to

each frame the amount of noise that would result in the same SNR per summed image had the images

been summed andthenprocessed, as in the case of the other three algorithms. Thismeans adding

pure Gaussian noise with levels from 1·
√

50 to 20·
√

50, and Poisson noise plus 10·
√

50 to the

50-frame dataset, for example. This way we aimed to test the benefits of exploiting PSF diversity vs.

higher noise per frame, as mentioned above.

One of the goals of the project was to test the susceptibilityof the algorithms to mismatch between

the science and calibration PSFs. Therefore, we used a matched PSF (SR=53%), a mismatched PSF

(SR=45%), and a highly mismatched PSF (SR=36%) as inputs to AWMLE, ACMLE, MISTRAL,

and MFBD. The last SR value corresponds to half of the maximumSR in K band (63%) predicted in

simulations for the AO system in Palomar (Hayward et al. 2001). Table 3.1 lists the PSFs used in the

tests. Differences in SR for the same star arise because of the changing seeing. All PSFs used in the

simulations are presented in Figure 3.2.

Figure 3.2: Far left: science PSF with the Strehl ratio (SR)= 53%. Middle left: reference PSF with SR= 53%. Middle
right: reference PSF with SR= 45%. Far right: reference PSF with SR= 36%. The far left PSF was used to blur the HST
images of Saturn and M100. The other three PSFs were used as reference PSFs for the algorithms. Logarithmic scale.
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3.3.2 Methodology

The four algorithms are very different and require different strategies to obtain the final result. For

AWMLE and ACMLE, it is convenient (although not mandatory) to perform an initial decomposi-

tion of the dataset, either in the wavelet or in the curvelet domain. This can give the user an idea

as to the number of planes to use during the deconvolution process. Additionally, this preliminary

decomposition could inform the user whether it is sensible to perform deconvolution in the highest-

frequency plane where the finest structures together with noise have been classified. When working

in these planes there is a trade-off between the benefit of recovering information from the finest

wavelet/curvelet plane and the undesirable reconstruction of non-significant structures. Both trans-

forms, WT and CT, can also be combined into a dictionary of coefficients (Fadili & Starck 2006),

although for the sake of simplicity we executed them independently.

The main difficulty when using a Richardson-Lucy-type algorithm is determining at which iter-

ation to stop the deconvolution process. In AWMLE and ACMLE,this problem is solved by prob-

abilistic masks. The mask can apply significance thresholdsto a given location in a given plane to

selectively deconvolve statistically similar regions. This concept is called multiresolution support

(Starck et al. 2002). Probabilistic masks are used to stop the deconvolution process automatically in

parts of the image where significant structures cannot be discerned. To estimate the value of the mask

at a particular location, a local window must be defined. Herewe used a window based on the local

standard deviation computed within that window:

mσ =























1− exp

{−A2 · (σi − σχ)2

2σ2
χ

}

i f σi − σχ > 0

0 i f σi − σχ ≤ 0 ,

(3.15)

with

σi =

√

∑

p∈Φ(χ j,p)2

nf
,

whereA is a coefficient for determining the applied threshold,σi is the standard deviation within

the windowΦ centered on pixeli of the planeχ j (pixels within that window are indexed withp),

nf is the number of pixels contained in the window, andσχ is the global standard deviation in the

corresponding wavelet or curvelet plane. The value forσχ can be determined by decomposing an

artificial Gaussian noise image, with standard deviation equal to that in the dataset, into wavelet or

curvelet coefficients. These windows are then shifted across all wavelet orcurvelet planes to build the

final probabilistic maskM (see equations 3.3 and 3.5).

Each of the wavelet planes has the same size as the original image (i.e., 512x512). For cases like

this, Otazu (2001) proposed to increase the size of the localwindow mσ with the wavelet scale. The
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lower the frequency of the representation, the larger the window. Therefore, the window size for the

highest-frequency scale was set to 5x5, next plane was analysed with a 7x7 window, and the third

one with a window of size 11x11. On the other hand, the curvelet transform decreases the scale, or

wedge size, with the scale of representation. For instance,wedges at the highest-frequency scale have

a size of 267x171 pixels, whereas wedges at a lower-frequency scale can have dimensions of 71x87,

according to the level of detail being represented. The ratio between dimensions in a given wavelet

plane and the corresponding curvelet wedge is between 2 and 3. To closely compare between WT and

CT, we kept the same ratio for the window sizes used at each scale for both ways of representation,

and a constant window size (3x3 pixels) was chosen for the CT. The residual wavelet and curvelet

scales were never thresholded, i.e., masks were set to 1 for these scales. Finally, parameterA was set

to 3/2 so the window was approximately equal to 1 whenσi −σχ = 2σχ, i.e., when coefficients above

twice the noise level are detected.

In our experiments we noticed that the results could be improved by changing the values ofA

and the window sizes, especially for CT. Improvement means here fewer elongated artifacts. On the

other hand, for the purpose of a clear and fair comparison between WT and CT, we preferred to keep

the values given above, bearing in mind the original decision adopted for AWMLE in Otazu (2001).

In our opinion, a more thorough study of the best choices for the parameters of the probabilistic

masks is necessary, and in particular, a study in which choices are better suited for a particular way

of representation.

The CurveLab software, which was used here to introduce the CT into ACMLE, can perform

digital curvelet decomposition via two different implementations. The first one is the so-called USFFT

digital CT and the second one is known as the digital CT via wrapping. Both differ in the way they

handle the grid that is used to calculate the FFT to obtain thecurvelet coefficients. This grid is not

defined in typical Cartesian coordinates, instead, it emulates a polar representation, more suited to the

mathematical framework defined in Candès et al. (2006). TheUSFFT version has the drawback of

being computationally more intensive than to the wrapping version, since the latter makes a simpler

choice of the grid to compute the curvelets (Starck et al. 2010). Hence, for reasons of computational

efficiency, the wrapping version was used in ACMLE.

The user has to provide CurveLab with the values of some parameters. In addition to the number

of curvelet scales, the number of orientations or angles of representation in the second scale is also

required as input from the user. This parameter will automatically set the number of angles for the rest

of the scales. Evidently, the higher the number of orientations, the longer the algorithm will need to

perform CT, the higher the overall redundancy and the higherthe computational cost for calculating

the probabilistic masks at each scale. We decided to set thisparameter to 16 as a trade-off between

having a complete representation of all possible orientations in the image and the total execution

time. Finally, a third parameter decides if the curvelet transform is replaced by an orthogonal wavelet

representation at the final scale, i.e., the highest-frequency scale. In our experiments we saw no

significant differences between results based on one choice for this parameter’s value or the other.

MISTRAL performs the minimization process of equation 3.6 by the partial conjugate-gradient
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method. The code requires that the user provides values for the hyperparametersµ andδ (see equation

3.8), which balance the smoothing imposed by too much regularization against noise amplification.

This has to be done by trial and error although the authors of the algorithm provide some suggestions

in the original MISTRAL paper, namely thatµ be set to around unity andδ be set to the norm of

the image gradient (‖∇i‖ = [
∑

p |∇i(p)|2]1/2). In practice, the user experiments with various values of

these parameters, centered on the values suggested in Mugnier et al. (2004), and chooses the image

reconstruction that is most visually appealing. In our tests we found thatµ = 10 andδ = 2 yielded

the best results. We let the code run for the maximum number ofiterations set to 103.

IDAC requires the user to provide the value of the diffraction-limit cut-off. Caution should be

taken here: the code requires that all supplied images are ofthe same dimensions. Therefore, when

one has a PSF image that is smaller in size than the target image, the PSF should be embedded in an

array of zeros. Subsequently, the diffraction-limit cut-off should be estimated from the zero-padded,

and not the original Fourier-transformed PSF (see Figure 3.3). Another parameter that should in

theory affect the restorations, a scalar quantifying user confidence in the supplied PSF, was found to

have negligible effect on the outputs.

Figure 3.3: Normalized power spectrum of the 53% SR PSF (Fig. 3.2 middle left). The diffraction- and noise-limited
cut-off frequency was determined to be approximately 230 pixels. The PSF was embedded in an array of zeros to match
the size of the science image (512×512 pixels).

As with MISTRAL, we let the code run for the maximum number of iterations set to 103. For

images with a high level of noise (Gaussianσ ≥ 10 and Poisson noise plus Gaussianσ = 10) it

converged quickly, after 15-20 iterations, which can be considered a good behavior because the noise

did not become amplified. For cases with low noise (σ ≤ 5) the algorithm converged after 50-100

iterations and produced generally sharper reconstructions.

3.4 Quality metrics and maps

One of the goals of this work was to compare the quality of reconstructions yielded by several

codes. Therefore, metrics were needed for image quality assessment. Here we have chosen the mean
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squared error (MSE), which is probably the most commonly used metric in image processing (e.g.

Mugnier et al. 2004) and one of the oldest and most often used metrics to evaluate the resemblance of

two images. It is defined as

MSE=
1
M

M
∑

j=1

(xj − yj)
2 , (3.16)

where, in this context,M is the total number of pixels in the image andx andy are pixel values

of the two images that are compared. It is also very common to use the related metric, the peak

signal-to-noise ratio (PSNR), defined as

PSNR= 10 log10

L2

MS E
, (3.17)

whereL is the dynamic range of the image. These metrics are very easyto compute and measure

the pixel-by-pixel departure between the reconstruction and the reference object. The MSE and PSNR

have a clear physical meaning: they quantify the energy of the error. Hence, they are well suited to

the task of estimating the absolute photometric error between the two images.

We preferred to use PSNR rather than MSE to quantify differences between images, since the

former has the more intuitive behavior of setting higher values to better reconstructions. We set

L = 975 in equation 3.17 to match the dynamic range of the “groundtruth” Saturn object, and

L = 7400 to match the maximum value present in the original imageof M100, which corresponds to

the galaxy core. A difference in 1dB in PSNR implies an approximate difference between 150 and

250 in MSE depending on the object.

Below we also plot the so-called error and residual maps. When one obtains a certain reconstruc-

tion after solving the main image formation equation (eq. 3.2)

i = h ∗ o+ n −→ ô , (3.18)

where ô is the reconstruction or solution found with a certain algorithm, the error map is the

exact difference between the “ground truth” object and the reconstruction, i.e.,e = o− ô. It offers a

detailed, pixel-by-pixel or structure-by-structure, view of the algorithm’s performance. Unfortunately,

in practical situations the real object is not available, sothe reconstruction error measurement is

usually made in the image domain by transferring the solution ô into the image domain by means of

the PSFh, and subtracting it from the data. Hence, the normalized residual map is computed as

r =
(h ∗ ô− i)2

h ∗ ô
, (3.19)

In the case of static-PSF approaches,h is the input calibrator, whereas for myopic- and blind- ap-

proachesh is the PSF estimate found in the last iteration. The residualmap is a graphical comparison

in the image domain meant to show how close, from a mathematical point of view, the reconstruction

and the data are to each other. On the other hand, the error mapis a more truthful comparison, from

a physical point of view, of the solution and the (usually unknown) reality.
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3.5 Results and discussion

The tests were conducted decomposing Saturn and M100 datasets into three wavelet/curvelet planes

plus a wavelet/curvelet residual. As mentioned before, three levels of mismatch between the science

and calibration PSF were analyzed, as well as more than twenty levels of noise, including readout and

shot noise. All outputs were analyzed by means of the PSNR metric.

Figure 3.4: PSNR evolution of M100 reconstructions with respect to the level of noise. Blurred simulated images were
corrupted with Gaussian noise with standard deviations ranging fromσ = 1 to σ = 20. All reconstructions used the
SR=45% PSF as the calibrator. Pink squares: ACMLE. Blue crosses: AWMLE. Green diamonds: MISTRAL. Black
triangles: MFBD.

Figures 3.4 and 3.5 show the evolution of the PSNR metric withrespect to the level of noise when

a mismatch of∼ 8% in SR exits between the science and the reference PSF. Apart from the logical

conclusion that reconstruction quality decreases as the noise increases, we can point out that firstly,

despite of being designed for detecting elongated structures, ACMLE performs reasonably well in

low-noise-level conditions for an image where many point-like sources are present such as M100 (Fig.

3.4). Only when the noise level reaches a value ofσ ∼ 8 and the correlation of information along lines

and edges has significantly deteriorated, its performance becomes comparable to that of AWMLE.

This effect does not happen for the Saturn image (Fig. 3.5) where almost all information is distributed

along elongated features and the curvelet transform is moreresistant against noise. Secondly, myopic-

and blind-PSF algorithms show a more evident deteriorationof performance with the increasing level

of noise. For MISTRAL, its performance for low-level-noiseconditions is extremely good for Saturn,

whereas it becomes similar to static-PSF algorithms with noise control at a level ofσ = 12. This is

basically due to its good behavior at the edges of the planet thanks to theL2 − L1 prior included in

the code. The rest of algorithms exhibit evident Gibbs oscillations in the high transitions between the

planet limits and the background. When these edges were not considered in the computation of PSNR,

MISTRAL’s performance evolution for Saturn with respect toother algorithms has a similar behavior

to that shown for galaxy M100 in figure 3.4. It has to be mentioned, though, that MISTRAL was

developed specifically in the context of imaging planetary-type bodies and its prior is not very suitable

for galaxies or stellar fields, for which a white spatial prior, which assumes independency between
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pixels, is more advisable (Ygouf et al. 2013). On the other hand, including these regularization terms

could potentially improve results obtained with MFBD and AW(C)MLE.

Figure 3.5: PSNR evolution of Saturn reconstructions with respect to the level of noise. Blurred simulated images were
corrupted with Gaussian noise with standard deviations ranging fromσ = 1 to σ = 20. All reconstructions used the
SR=45% PSF as the calibrator. Pink squares: ACMLE. Blue crosses: AWMLE. Green diamonds: MISTRAL. Black
triangles: MFBD.

As mentioned in Section 3.3.1, datasets of 10, 20, 50, and 100binned images, together with the

original 200-frame dataset, were used as input for IDAC to test the trade-off between the (implied)

PSF diversity and SNR per frame. We tried to shed some light onthe question which of the follow-

ing strategies is better: deconvolving a long-exposure image with a relatively high SNR (AWMLE,

ACMLE and MISTRAL algorithms), or tackling the problem by dividing the dataset into more (di-

verse) frames at the expense of reducing the SNR for each frame (MFBD). It was found that the

original 200-frame set yielded significantly poorer results than the smaller sets. Specifically, the 50-

frame dataset proved to be the best input to IDAC although thedifferences between its output and

those of the 10- and 20-frame sets were small. For the data sets we used, there is no evidence that the

higher diversity provided by more frames yields better results. Therefore, we conclude that (assum-

ing constant total observation time) using very short frameexposure times is not the best solution for

MFBD because high frame diversity does not offset the high level of relative noise per frame. Figures

3.4 and 3.5 show that MFBD behaves in a similar way as the otheralgorithms for low-noise-level

conditions, but its performance is highly affected as the noise per frame increases.

Figures 3.6 and 3.7 reveal how the algorithms behave with respect to the mismatch between the

calibrator and the science PSFs for different levels of noise (σ = 1, 10 and 20 as well as shot noise plus

read-out noise ofσ = 10). In general, static-PSF approaches yield better results than myopic/blind-

codes when the two PSFs agree well. For M100 the advantage of ACMLE with respect to MISTRAL

is around 3− 5dB, while it is higher than 5dB with respect to IDAC for noiselevels aboveσ = 10.

For the Saturn image the results are similar except for low-noise-level conditions whereL2 − L1 prior

gives MISTRAL an advantage. A mismatch of∼8% in SR does not lead to large differences in the

results of the algorithms (Figs. 3.6 and 3.7, middle rows), with respect to those obtained with a well-

matched reference PSF (same figures, top rows). A reference PSF withS R= 36%, which implies
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Figure 3.6: Each plot shows the mean value and standard deviation of the PSNR metric calculated from M100 results
obtained with ACMLE (pink squares), AWMLE (blue crosses), MISTRAL (green diamonds), and MFBD (black trian-
gles). Deconvolution was performed with three PSFs to represent different levels of miscalibration. Top row: dataset was
deconvolved with a matched PSF (SR=53%). Middle row: dataset was deconvolved with a mismatchedPSF (SR=45%)
Bottom row: dataset was deconvolved with a highly mismatched PSF (SR=36%).

a mismatch of∼ 17% SR, can be seen to have a more noticeable effect on the static-PSF codes and,

surprisingly, MFBD than on MISTRAL (Figs. 3.6 and 3.7, bottom rows). The reconstruction quality

for MISTRAL is more uniform for the PSF mismatch, which is logic since this algorithm is designed

to deal with large differences between the science and the reference PSFs. At this level of mismatch

there is a visible qualitative difference between the PSFs (Fig. 3.2, leftmost and rightmost panels),

which affects the performance of static-PSF codes. We stress that, although MISTRAL is very reliable

for the PSF mismatch, its advantages become highly attenuated as the noise level increases. This can

be seen in figure 3.6, bottom row, noise level ofσ = 20. This shows that the ability of a method to

control the noise is as critical as its capability to update the PSF.
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Figure 3.7: Each plot shows the mean value and standard deviation of the PSNR metric calculated from Saturn results
obtained with ACMLE (pink squares), AWMLE (blue crosses), MISTRAL (green diamonds), and MFBD (black trian-
gles). Deconvolution was performed with three PSFs to represent different levels of miscalibration. Top row: dataset was
deconvolved with a matched PSF (SR=53%). Middle row: dataset was deconvolved with a mismatchedPSF (SR=45%)
Bottom row: dataset was deconvolved with a highly mismatched PSF (SR=36%).

Figures 3.8 and 3.9 show the reconstructions of M100 achieved by the algorithms for the noise

levels ofσ = 5 andσ = 15 and a mismatch of∼ 8% in SR. ACMLE yielded the sharpest reconstruc-

tion, although some elongated artifacts start to become visible atσ = 15 as a result of an incorrect

identification of the coefficients. Compared to MISTRAL, both ACMLE and AWMLE are able to

enhance and de-blend from the surrounding cloud more individual point-like sources. MFBD recon-

structions are still almost as smooth as the starting image.Figures 3.10 and 3.11 show the results for

Saturn. Here, similar conclusions can be formulated, i.e.,noise amplification is better controlled by

AW(C)MLE thanks to the multiresolution support. AWMLE and ACMLE exhibit the best results in

the planet’s body (in terms of the achieved resolution and noise attenuation), and also in the back-
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Figure 3.8: Column A: M100 original image. Column B: Degraded and corrupted image with Gaussian noise (σ = 5).
Column C: ACMLE reconstruction. Column D: AWMLE. Column E: MISTRAL. Column F: MFBD. Top row: whole
view. Bottom row: view of representative detail. Reconstructions were performed with a reference PSF at SR=45%.
Linear scale from 0 to 1000.

Figure 3.9: Column A: M100 original image. Column B: Degraded and corrupted image with Gaussian noise (σ = 15).
Column C: ACMLE reconstruction. Column D: AWMLE. Column E: MISTRAL. Column F: MFBD. Top row: whole
view. Bottom row: view of representative detail. Reconstructions were performed with a reference PSF at SR=45%.
Linear scale from 0 to 1000.
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Figure 3.10: Column A: Saturn original image. Column B: Degraded and corrupted image with Gaussian noise (σ = 5).
Column C: ACMLE reconstruction. Column D: AWMLE. Column E: MISTRAL. Column F: MFBD. Top row: whole
view. Bottom row: view of representative detail. Reconstructions were performed with a reference PSF at SR=45%.
Linear scale from 0 to 1000.

Figure 3.11: Column A: Saturn original image. Column B: Degraded and corrupted image with Gaussian noise (σ =

15). Column C: ACMLE reconstruction. Column D: AWMLE. Column E: MISTRAL. Column F: MFBD. Top row:
whole view. Bottom row: view of representative detail. Reconstructions were performed with a reference PSF at SR=45%.
Linear scale from 0 to 1000.



80 Roberto Baena Gallé. Universitat de Barcelona.

ground space between Saturn’s body and the innermost ring, which is a measure of a given algorithm’s

ability to suppress noise. This effect is also visible in Cassini’s division. Furthermore, Encke’s divi-

sion is barely visible in MISTRAL’s and MFBD’s reconstructions for high noise level ofσ = 15. On

the other hand, AWMLE, ACMLE, and MFBD show the typical ringing effect associated with strong

transitions or edges (very visible at the limits of Saturn’sbody), whereas MISTRAL’sL2 − L1 edge-

preserving prior attenuates these effects considerably. Nevertheless, this prior must be responsible for

the excessive attenuation of some elongated features present in Saturn’s inner ring that were detected

with ACMLE, AWMLE, and MFBD, although over-reconstructed by the former and noise-distorted

by the latter two. We stress that such features are not visible in the blurred and corrupted image.

Finally, we show in figures 3.12 and 3.13 the error and residual maps. For the Saturn image,

one can see that ACMLE’s and AWMLE’s results have values closer to the truth in all pixels of the

object (planet’s body, space between the body, and the innermost ring), except in the pixels at the

edges of the main planet body and the rings, which show poor numbers. For these pixels,L2 − L1

object prior implemented in MISTRAL is working impressively well, while MFBD, ACMLE, and

AWMLE’s values strongly depart from the real object. In general, the latter three algorithms have

the tendency to over-reconstruct bright sources and brightstructures of the image, while MISTRAL

exhibits the opposite behavior, i.e., it does not reach the correct photometric value for these regions.

Noise amplification or lack of noise suppression is evident for MFBD and MISTRAL, whereas some

elongated artificial structures are visible in ACMLE’s result, thus showing an incorrect coefficient

identification at some orientations. This suggests that theprobabilistic mask should not be applied to

each curvelet wedge and scale independently, as we do in thiswork, but creating some mechanism to

exchange information among them. There are no significant differences in the residual maps obtained

by ACMLE and MISTRAL (Fig. 3.13) apart of those already mentioned, although here they are not as

evident as in the error maps. This suggests that updating thePSF in MISTRAL yields a mathematical

solution that is compatible with the data as in the case of AW(C)MLE. However, when the noise

increases, the regularization term in MISTRAL does not provide as good results as the AW(C)MLE,

even if MISTRAL updates the PSF.

3.6 Conclusions

We have introduced a way of using the multiresolution support, applied in the wavelet and curvelet

domain, in the post-processing of adaptive-optics images to help control the process of noise ampli-

fication. One of the most important goals of this research wasto devise an objective check of the

typical assumption (within the AO astronomical community)about the supposed poor performance

of static-PSF approaches with respect to the blind/myopic methods. For the dataset we used, the

Richardson-Lucy scheme, which is controlled over the wavelet- or curvelet domain by aσ-based

mask, provided a very competitive performance against the more well-known approaches like MFBD

or regularized deconvolution (MISTRAL). Specifically, it yielded 3-5dB better results (in terms of

PSNR) than IDAC and MISTRAL for a mismatch in the PSF of up to 8%in terms of the Strehl ratio.
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Figure 3.12: Error maps for the reconstructions obtained from data sets corrupted with Gaussian noise withσ = 5.
Reconstructions were performed with a reference PSF at SR=45%. Column A: ACMLE. Column B: AWMLE. Column
C: MISTRAL. Column D: MFBD. Linear scale from -100 to 100.

On the other hand, performance of MISTRAL was photometrically better for the highly mismatched

PSF of SR=36% (mismatch of 17% in SR) was employed as calibrator.

We showed that probabilistic masks can control noise amplification in a Richardson-Lucy scheme,

and also that curvelet transform (CT) performs better than wavelet transform (WT) for low-noise-level

conditions, when elongated structures and edges still keeptheir bidimensional characteristics above

the noise level.

The observed poor performance of IDAC, which can be visuallyappreciated in Figures 3.9-3.11,

can be explained in the following way. Multiframe approaches rely on diverse PSFs to separate the

blurring kernel from the object and to make the blind problemmore tractable (less under-determined).

Having more images helps when one has truly diverse PSFs. Butthis is not always the case with AO

imaging. In fact, AO will stabilize the PSF and no number of new frames can then supply new

information for MFBD. The standard deviation of the Strehl ratio value across the 200 frames used

as input for IDAC was only 2%. For all datasets that we had (tenstars), the standard deviation across

200 frames rarely exceeded 5%. It seems that single-image codes like MISTRAL or AW(C)MLE

have an advantage in the case of stable AO observations.

Several lines of research are still open. It would be possible to study other types of masks,

such as those based on the quadratic distance between related zones in consecutive wavelet planes

(Starck & Murtagh 1994) or image segmentation (or wavelet plane segmentation) by means of neural

networks to link and classify significant zones in the image (Núñez & Llacer 1998). Furthermore, the

use of other wavelet transforms, such as the undecimated Mallat trasform with three directions per

scale, and many other multitransforms should be studied andcompared, e.g., shearlets (Guo & Labate
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Figure 3.13: Residual maps for the reconstructions obtained from data sets corrupted with Gaussian noise withσ = 5
(top row) andσ = 15 (bottom row). Reconstructions were performed with a reference PSF at SR=45%. Columns A and
C: ACMLE. Column B and D: MISTRAL. Linear scale from 0 to 1.

2007) or waveatoms (Demanet & Ying 2007), to name only two.

Much more important, in our opinion, is studying how multitransform support or probabilistic

masks can be included into blind and myopic approaches to improve their performance in terms of

controlling the noise reconstruction inherent to every image reconstruction algorithm. This will be

the topic of our future research.
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Abstract

The next decade will see the birth of the 39-m European extremely large telescope (E-ELT). Among

many other science programmes, the exoplanet imaging camera and spectrograph (EPICS) is a pro-

jected instrument to directly observe and characterize extra-solar planets with E-ELT. It will produce

integral field spectroscopy (IFS) datacubes that can be analyzed with the so-called spectral decon-

volution (SD) technique to make out the presence of faint objects orbiting around bright stars. This

research is aimed to test if the inclusion of multiscalar transforms, such as the wavelet transform

(WT), in the analysis of the IFS datacubes produces some improvement in detection of faint sources

with respect to the performance obtained with the classicalSD approach. The 1D undecimated WT

is used to decompose, at different levels of resolution, the spectral signal at each particular location

of the FOV. Then, the classical SD technique is used at each wavelet scale to create maps which are

representative of the frequency information. Different simulations with the presence of fake compan-

ions are analyzed with both approaches, i.e., with and without wavelets. Several cases of interest for

EPICS are studied, e.g., suppression of the diffraction with the APLC chronograph and an apodized-

only solution at Talbot lengths equal to 1 and 10, and different contrast magnitude differences between

the main star and the companions ranging from 1× 10−5 to 1× 10−9, at angle separations between

∼ 20 and∼ 180mas. A general improvement of one order of magnitude contrast isobserved when

the wavelet analysis is used. Wavelets allow APLC performance to be comparable to that obtained

with the apodized-only solution for contrasts up to 1× 10−8 at angle separation from∼ 70mas.

83
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4.1 Introduction

The 39-m European extremely large telescope (E-ELT) is designed to increase both the collecting

power and the angular resolution with respect to the current10-m telescopes. One of the most impor-

tant science programme to be performed will be the discoveryand spectral characterization of planets

outside the Solar system. While young and hot exoplanets arethe primary targets for the SPHERE

(Boccaletti et al. 2008) and the Gemini planet imager (GPI, Marois et al. 2008) instruments, E-ELT

will be geared towards the detection of old and cold planets,similar to the ones in the Solar System.

These targets are significantly more challenging. The contrasts to be expected are between 10−7 and

10−10 , depending on the size of the planet and its physical distance from the star. Old planets do not

emit any significant own light in the near IR, they dominantlyreflect light generated by the stars. The

planet/star flux ratio,Fp/Fs , is (Brown 2004):

Fp

Fs
= p(λ)Φ(β)

(R
r

)2

, (4.1)

where p is the geometric albedo of the planet, which depends on wavelength,R stands for its

radius,r is its separation from the star, andΦ(β) is the phase function of the planet which depends on

the phase angleβ (angle at the planet between star and observer):

Φ(β) =
sin(β) + (π − β) cos(β)

π
. (4.2)

Assuming an optimistic case of a planet observed at op-position (Φ(β) = 1) and a near-IR albedo

of 0.3 we get for Jupiter (R = 0.00048AU, r = 5.2AU) an expected contrast of 2.53× 10−9 . For

Earth we get 5.45× 10−10 . In both cases we assumed distances between planets and their parent star

identical to the ones in our system. For smaller stars the habitable zone is expected to be found closer

(Selsis et al. 2007). For M-type stars it could be located as close as 0.1AU. Assuming the same spatial

scaling applies to other, heavier planets in this hypothetical planetary system around an M-type star,

we get contrasts of 2.53× 10−7 for “Jupiter” and 5.45× 10−8 for “Earth”. Planets with masses up to

ten times greater than the Earths mass (i.e., “Super-Earths”) would have contrasts around 2.6×10−7 in

this M-type star’s system. The instrument designed to develop such programme will be the exoplanet

imaging camera and spectrograph (EPICS). Detailed sciencecases and overall requirements of the

instrument are given in Kasper et al. (2008, 2010).

In a nutshell, EPICS will observe in both the visible and the near infrared range of the light being

equipped with an integral field spectrograph (IFS) for the former and with a differential polarimeter

(EPOL) for the latter (Verinaud et al. 2010). EPICS wavefront control is composed by two loops and

calibration stages. The first one is a single conjugate adaptive optics (SCAO) that corrects for the

largest part of the telescope jitter and “low order” aberrations until the range of the second loop.

Its wavefront sensor (WFS) is a modulated pyramid sensor sensitive to a spectral range between

600− 900nm, 84× 84 subapertures and a frame rate of 1KHz. The second calibration stage is a

extreme adaptive optics (XAO) system that uses a high density deformable mirror (DM), a second

fast tip-tilt mirror and a second wavefront sensor. The spectral range is between 700− 900nm, it
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consists in 210× 210 subapertures and a frame rate of 3KHz. Non-common path aberrations are

measured off-line before observations and are applied to the XAO WFS pathto attain Strehl ratios

(SR) larger than 85%. Simulations of the EPICS AO system are presented by Korkiakoski & Verinaud

(2010).

Figure 4.1: The two diffraction suppression concepts considered. Top: Apodized Lyot Chronograph (APLC case).
Bottom: Diffraction rejection through apodization only and central core of star image attenuated at entrance of IFS
(APOD case). —after Verinaud et al. (2010).

The diffraction suppression concept is a very important subsystem of any high contrast imaging

instrument. The apodized pupil Lyot chronograph (APLC, Soummer 2005) is one of the best consid-

ering the compromise between starlight rejection and throughput given the E-ELT aperture geometry.

It has an apodizing mask in the first pupil-conjugate plane after XAO. This mask suppresses the Airy

rings in the sub-sequent focal plane, and scatters non-coherent light outside the next pupil-conjugate

plane where the stop is located. That is why for the APLC chronograph the stop is not undersized

in opposition to the non-apodized Lyot chronograph. However, it suffers from chromatic properties

impairing the speckles intensity and position correlationwithin the IFS spectral range, especially

at medium and small angular separation. Suppressing diffraction with an “apodizer-only” solution

(hereinafter APOD), which consists in an apodizer close to the pupil, a focal mask in the entrance

of IFS without a Lyot stop, leads to only a moderate loss in throughput and light rejection, mainly

because of the small angular resolution of the E-ELT. This solution is very simple and is intrinsi-

cally fully achromatic. The technology chosen for the development of this apodizer is based on the

microdots technique (Antichi et al. 2010). A prototype has been developed for the Fresnel-free exper-

iment for EPICS (Martinez et al. 2009). We have chosen to testthe apodizer-only solution for EPICS

because it is a simple concept and enables to conserve the speckles spatio-spectral correlation proper-

ties over the largest spectral bandwidth. Both APLC and APODoptical configurations are shown in

figure 4.1.

Direct imaging of faint exoplanets from the ground requiresdifferential techniques to remove

the speckle noise. There are two basic methods that performssuch task. Firstly, the simultaneous

differential imaging (Racine et al. 1999), and its generalization for IFS datacubes, the spectral de-

convolution (SD) technique (Sparks & Ford 2002). These approaches exploit that speckles position
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and intensity at two different wavelengths are highly correlated, i.e., the speckleangular separation

from the center of the FOV is directly proportional to wavelength and to the spatial frequency of the

corresponding perturbation. Secondly, the angular differential imaging (Marois et al. 2006) takes into

account that speckles position and intensity at two different observing times can be correlated because

of the quasi-static nature of the instrument optical disturbances. Therefore, field rotation will affect

differently off-axis point sources and speckles.

The efficiency of angular differential technique depends very strongly on the stability of the wave-

front errors and it requires to freeze the telescope optics with respect to the instrument. The difficulty

of an optical derotator implementation and the uncertaintytoday of the future segmented E-ELT

wavefront error temporal stability has privileged the use of SD as a main technique for speckle rejec-

tion for EPICS. Nevertheless, Mesa et al. (2011) proves withsimulations for SPHERE IFS datacubes

(Beuzit et al. 2008) that angular differential imaging improves in a factor of two or three the contrast

attained when applied together to SD.

Another important reason to prefer SD is that the speckle chromatic elongation will be very large

on E-ELT. Therefore, the use of the large speckles position variation with wavelength to disentangle

them from a point source will be very efficient and calls for the largest spectral bandwidth possible.

Finally, the wavelet transform (WT) for unidimensional data analysis has been widely used in as-

tronomy (e.g. Szatmáry et al. 1994; Foster 1996; Polygiannakis et al. 2003) to differentiate noise-like

components from real signals, or to obtain significant parameters of period series, like the amplitude,

the phase or the period itself, which can be representative of light variations from variable stars.

Otazu et al. (2002, 2004) proposed the WT for period determination of sine- and burst-like signals

superimposed with a low-frequency sinusoidal function. The search for periodic signals is common in

many areas of astronomy and reveals the presence of different physical processes, e.g., variable stars,

pulses, eclipses in two-body systems or occultations by a precessing accretion disk. Classical methods

for period detection lie into two categories. First, epoch-folding methods (PDM: Stellingwerf 1978)

which are based on the analysis of the dispersion of the different light curves produced by folding the

data over a range of trial periods. These methods tend to failwhen more-than-one periodic signal are

present in the dataset, specially for low signal-to-noise ratio (SNR). Second, Fourier-based methods

(CLEAN: Roberts et al. 1987) that use the FT in combination with deconvolution techniques to deal

with the data sampling function. Their behavior in the presence of noise is better with respect to

PDM but they fail in the detection of non-sinusoidal signals, e.g., a pulse emission over an orbital

period. Otazu et al. (2002, 2004) decomposed in wavelet scales the temporal signal and applied PDM

and CLEAN to each of them to create a sort of wavelet-based period analysis method, i.e., WPDM

and WCLEAN. The authors proved that the performance of wavelet-based algorithms was always

better with respect to their non-wavelet-based equivalentat high-noise levels, as well as the numerical

accuracy of the detected periods.

Another interesting application of 1D wavelet decomposition is found in lunar occultations (LO)

programs (Fors et al. 2008). This technique takes advantageof the relative Moon movement to ob-

tain stellar high angular resolution with ground-based observations. When the lunar limb interposes
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between a star and the observer, because of the ondulatory nature of light, the disappearance of the

object is not immediate. During a short but measurable period of time the variation of the source

intensity is described by a characteristic diffraction pattern of fringes and a decreasing light profile.

The analysis of such intensity evolution in time offers the possibility to calculate the physical param-

eters of a binary system or to deduce the presence of an accretion disk surrounding the main star. In

order to do this, accurate determination of the instant whenthe occultation event occurs is essential.

Fors et al. (2008) empirically found that such instant is calculated with higher precision from the sev-

enth wavelet scale in which the original dataset can be decomposed. Once this event time is obtained,

the stellar and the background intensities are easily deduced from the fifth wavelet scale. This pro-

cedure allows to design an automatic pipeline to analyze large sets of data, with the corresponding

reduction of the time needed for an initial preprocessing task.

4.2 Spectral deconvolution

Spectral deconvolution (SD) was first proposed by Sparks & Ford (2002), who applied this technique

to detect faint companions in simulated IFS 571-frames datacubes of a 2-m telescope with a Lyot

chronograph. SD makes use of the fact that the radial location of the speckles and residuals of the

Airy pattern are proportional to the wavelength, while the location of a companion with respect to

the star is fixed. Re-scaling all individual images of an integral field spectrograph (IFS) datacube,

proportional to its wavelength, by Fourier interpolation to fit a common grid, aligns the speckles but

makes the planet move inwards with increasing wavelength (see figure 4.2). Speckles are now well

fitted by a smooth (e.g. a low-order polynomial) function to each spaxel1 while the planet produces

a narrow bump when travelling through the pixel at a certain wavelength range. Since this bump is

badly fitted by the smooth function, the subtraction of the fitremoves most of the speckles and leaves

the planet.

Figure 4.2: Planet moving from the initial position (blue arrow) to the final position (red arrow) in the scaled datacube.

The SD procedure is shown in figure 4.3. After the first fitting step, any outliers at the 2-σ

level (possible planets) are removed from the spaxel, and this procedure is repeated until no value in

the sample exceeds the fit by two standard errors. Once the fit is not skewed anymore by possible

signals, it is subtracted from the spaxel under consideration. This step removes most of the stellar

modulation, but leaves possible planetary signal intact. The resulting images are then re-scaled to

1spaxel: all the pixels at the same location within a IFS datacube, i.e., a one-pixel-size datacube containing the spectral
information at this location.
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the original grid, so that now a planet would be aligned on thesame pixel again. Finally, the cube

is collapsed to produce one final image. Changes in the PSF morphology, which naturally occur

for a wide wavelength range where the Strehl ratio changes significantly, are ignored. Nevertheless,

these changes are smooth when one considers many channels, as we do here, and can be fitted with

a moderately smooth polynomial. Spectral deconvolution isapplied to the IFS datacube to typically

increase the contrast by two or three orders of magnitude.

Figure 4.3: Polynomial fitting process in a particular spaxel/location. Left: first fit trial. Middle: final fit. Right:
residual. Black curve: signal present through the spaxel. Green curve: low-order polynomial fit. Blue curves: 2-σ levels.
Note how either the planet signal (centered at 1.05µm.) and a higher order chromatic modulation (centered at 1.35µm.)
have been recovered.

From figure 4.3 (right panel), one can see that only a small portion of the planetary signal will

not be taken into consideration, on the other hand, the low-order fitting will leak through significant

modulation induced by the chronograph. Therefore, the polynomial fitting approach can leave out

significant residuals (the small bump on the right of the planet). Hence, classical SD has two main

problems. First, it cannot remove PSF features which do not scale spatially with wavelength. Un-

fortunately, a chronograph produces non-trivial modulation of the residuals close to the axis and, in

this region, SD is not as effective as further out. Second, speckles that are close to theoptical axis

do not move significantly over the entire wavelength range. Conversely, in the numerically rescaled

datacube, close-in planets “dwell” on single spaxels and can be “killed” by the traditional approach

(see figure 4.4).

The classical iterative SD method can be summarize as follows:

1. Scale spatially, by Fourier interpolation, each image inthe IFS datacube to fit a common grid.

Now, the Airy rings are aligned while planets positions change through the datacube: they get

closer to the star with increasing wavelength (see figure 4.2).

2. Fit a 3rd-order polynomial to the signal present in the spaxel and reject all those points above

2σ. Repeat this process until no outliers are found (see figure 4.3, leftmost and middle panels).

3. Remove the final fit to the signal present in the spaxel (see figure 4.3, rightmost panel).

4. Re-scale the datacube to the original grid. Planets wouldbe aligned over the same pixel again.

5. Collapse the cube to produce a single image.
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Thatte et al. (2007) make use of SD to extract H- and K-band spectra of the faint close-in source

AB Doradus C, observed with SINFONI instrument (Thatte et al. 1998) at VLT. AB Dor C is a M

dwarf companion orbiting around K dwarf AB Dor at separation∼ 200mas., with a contrast magni-

tude in K-band of 5mag.

Figure 4.4: Polynomial fitting process for a close-in planet. The low order polynomial “fits” correctly to the planet
signal thus subtracting the planet contribution and avoiding its detection.

4.3 The 1D Wavelet transform

The wavelet transform (WT) is one of the most successful mathematical tools to perform a multires-

olution decomposition of a signal or image. Such decomposition is based on the local frequency

content, hence, each one of the resolution channels contains a representation of a certain frequency

range. The WT is an intermediate representation between theFourier (FT) and the temporal one (or

spatial one for 2-D data). Since wavelets are defined within atight frame (i.e., they are strongly local-

ized in time or space), they give us a combined idea of both thelocal content of the frequencies and

their temporal/spatial location, as opposed to the FT, which only is able to offer a global view of the

frequency content of the signal.

Given a signalf (t) (wheret is any physical variable indexing the X-axis, e.g., like time or wave-

length in the case of IFS datacubes) a sequenceFm[ f (t)] of approximations off (t) can be constructed.

EachFm[ f (t)] is specific for the representation of the signal at a given scale or resolution and repre-

sents the projection off (t) from the signal spaceS onto subspaceSm. The differences between two

consecutive scalesm andm+ 1 are the corresponding multiresolution wavelet signal:

ωm[ f (t)] = Fm[ f (t)] − Fm+1[ f (t)]. (4.3)

This wavelet signal can also be expressed as:

ωm[ f (t)] =
∑

l

Wm,l( f )ψm,l(t), (4.4)
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where coefficientsWm,l( f ) are given by the direct wavelet transform of the signalf (t):

Wm,l( f ) =
∫ +∞

−∞
f (t)ψm,l(t)dt. (4.5)

The coefficientsWm,l( f ) are called the wavelet coefficients of f (t) and they correspond to fluctu-

ations of the signalf (t) near the pointl at resolution levelm. Equation 4.5 represents the expansion

of the signalf (t) in the set of basis functionsψm,l(t). These basis functions are scaled and translated

versions of the so-calledmother wavelet functionψ(t). Therefore, all the basis functionsψm,l(t) have

the same profile, i.e., the mother wavelet function profile. The WT describes at each resolution step

the difference between the previous and the current resolution representation. By iterating the process

from the highest to the lowest resolution level we obtain a pyramidal representation of the signal.

Unlike the FT, which spreads the noise across all the frequencies, the WT confines the noise

contribution only to the highest frequency wavelet signal.

4.3.1 The “à trous” algorithm

Both Otazu et al. (2002) and Fors et al. (2008) obtained a discrete wavelet decomposition by means

of the well-known Starlet transform or “à trous” algorithm(Shensa 1992; Starck & Murtagh 1994;

Starck et al. 2010) for one-dimensional signals. Therefore, given a signalp(t) the following sequence

of approximations can be constructed:

F1(p) = p1, F2(p1) = p2, F3(p2) = p3, . . . (4.6)

The algorithm performs successive convolutions with a low-pass filter, which is designed by

means of the so-calledfather wavelet functionor scaling functionφ(t). For abinary scalingrep-

resentation, in which each scale expresses a double resolution with respect to the previous one, that

convolution is written as:

pi(τ) =
1
2i
< p(t), φ

(t − τ
2i

)

> . (4.7)

In our work, we use a scaling function which has the main-lobeprofile of the functionsinc2(t),

in coherence with the shape of the planet signature through the spaxel. This leads to a convolution

with a 5-element normalized mask. The sequencepi are versions of the original signalp at different

resolution levels,

Therefore, the wavelet signals are computed as differences between two consecutive approxima-

tions pi−1(τ) and pi(τ), i.e., ωi(τ) = pi−1(τ) − pi(τ) (i = 1, 2, ..., n), being p0 = p. It also can be

expressed as:

ωi(τ) =
1
2i
< p(t), ψ

( t − τ
2i

)

>, (4.8)
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whereψ is the aforementioned mother wavelet function and it is defined as:

1
2
ψ

( t
2

)

= φ(t) − 1
2
φ
( t
2

)

, (4.9)

thus highlighting its band-pass nature. The inverse reconstruction formula can be written as:

p =
n

∑

i=1

ωi + pr , (4.10)

whereωi are the multiresolution wavelet signals andpr is the residual wavelet signal (indeed,

n = r, but we explicitly substituten by r to enhance the concept ofresidual). Many other wavelet

decomposition algorithms usually reduce the number of points (typically by a factor of 2) when going

through decreasing resolutions (increasing scales). Suchprocess is called by the name ofdecimation.

However, one of the advantages of the Starlet transform is precisely the rejection of the decimation

process, i.e., the “á trous” algorithm isundecimated. Therefore, all thosepi (and subsequently all the

ωi as well) have the same number of points than the original signal p0. This allows to work directly

in the temporal space (wavelength space in the case of IFS datacubes) with the frequency content of

the wavelet signal, instead of working on the decimated wavelet space.

4.3.2 Proposed algorithm

The use of the aforementioned binary decomposition is very typical in wavelet analysis. Hence, the

original signalp0 has double resolution with respect top1, such signalp1 has double resolution with

respect top2, and so on. In our particular case, if the spectral datacube is formed byN = 100

wavelength-points (i.e., there are 100 channels, each one at a particular wavelength) and our highest

frequency scale is determined by a scaling functionφ(t) sampled with 5 points, then the minimum

resolution accepted forp0 would be 5,p1 would have a resolution of 10,p2 of 20, p3 of 40 and so

on. In other words, the wavelet planeω0 would contain the frequencies representative of a resolution

until 5 points,ω1 those frequencies representative of a resolution between 5and 10,ω2 from 10 and

20, etc. Hence, a total frame of 100 wavelength-points wouldbe completely decomposed in 5 wavelet

planes plus 1 residual.

A difficulty arises when taking into account the slowly varying component present through the

spaxel. Basically, this means that the initial wavelength always exhibits a value much larger than the

one showed by the final one. The WT we used is based on the symmetric convolution of the signal

of interest with the scaling function, which means that the extremes of the signal affect each other’s

result. In other words, points close to 0 are used to calculate the wavelet response at points close

to N − 1 and vice versa. If the user is interested in the analysis of acertain periodP, assumingP

is an odd number, only points fromP2 until N − P
2 are really usable, e.g., ifN = 100 andP = 20,

then only frames from 10 to 90 are numerically representative of the real frequency content of the

signal, since the rest of wavelet coefficients at the edges of the wavelength series are highly skewed

by the slow variance along the spaxel. This is specially dramatic when one is interested in working at
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low-frequency values, i.e.,P ∼ N or when a planet signal is close to the spaxel extremes.

However, Otazu et al. (2002) based his work on ondulatory signals with several periods around

a constant value, hence, there always were more than one complete period further out of the time

series edges; whereas Fors et al. (2008) tried to search a point (the LO event time) between two well-

localized energetic-constant signals, i.e., the one before the LO which is dominated by the star flux,

and the one after the LO which is dominated only by the background. Furthermore, and depending

on the observation, the point in-between could be easily placed in the middle of the time scale in most

of the cases. Indeed, Fors et al. (2008) reported some cases where his wavelet method failed because,

due to certain observing conditions, it was not possible to center the LO event in the middle of the

time scale, being displaced to the edges.

In order to partially alleviate this problem, we propose to extrapolate the signal beyond its real

values. Therefore, point number “−1” , instead of pointN − 1, would be used to calculate the wavelet

coefficients from point 0, while point “N”, instead of point 0, would be used to calculate the wavelet

coefficients until pointN − 1. Such extrapolation creates a sort ofpaddingalong the spectral line to

“protect” the real values belonging to the signal. If such values belong to a left- or right-side planet

signature, we would be extrapolating the planet signature itself.

We have tried several methods to perform such extrapolation, e.g., fitting a low-order polynomial

to the first and the last 5 or 10 wavelength points. However, wefound our best results simply extending

the signal by means of a straight line with the same slope shown by the first and the last 5 or 10 points.

Finally, we add to the extrapolated points an estimation of the high frequency variations present in the

real signal to avoid the creation of false high-frequency wavelet coefficients in the transitions between

the real points and the extrapolated ones.

Of course, it must be admitted that this extrapolation is oneof the main weaknesses of the wavelet

analysis for SD, the lower is the frequency of analysis the more importance it is, since more extrap-

olated points, together with real values, would be used to calculate the wavelet coefficients. It would

be necessary a deep inspection of, first, the best way of performing such extrapolation and, second, its

consequences over the final reconstructed image. On the other hand, the price to pay for not using it

is the rejection of real observed wavelength values throughthe spaxel, i.e., the lower is the frequency

of analysis the larger the number of rejected values would be.

Finally, the proposed wavelet SD algorithm is outlined as follows:

1. Scale spatially, by Fourier interpolation, each image inthe IFS datacube to fit a common grid.

Now, the Airy rings are aligned while planets positions change through the datacube: they get

closer to the star with increasing wavelength (figure 4.2).

2. Decompose all the spaxels, using the 1D Starlet transform, at the desired resolution levels with

the corresponding scaling function (figure 4.5).

3. Fit a low order polynomial to the wavelet representation of the spaxel and reject all those points

above 2σ. Repeat this process until no outliers are found.

4. Remove the final fit to the signal present in the wavelet signal.
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Figure 4.5: Wavelet decomposition of the planet signal through the spaxel. Uppermost left panel: original signal and
residual wavelet (red dashed curve). The sum of all the wavelet plots plus the residual is equal to the original signature.

5. Re-scale the datacube to the original grid. Frequency components from the planet at the spaxel

would be aligned over the original planet pixel.

6. Collapse the cube to produce a single image, which is representative of the spaxels frequency

content at this resolution level.

7. Go back to 2 if different wavelet resolution levels are desired.

Note that the final image will only have those frequency components present along the spaxels

considered by a particular choice of a level of resolution. The user can build as many of such single

images as he wishes, all of them containing a particular interval of frequencies along the spaxels of

the scaled datacube. We also want to stress the fact that the fitting of a low-order polynomial at point

3 is only a particular choice motivated by the need of a pure comparison between the classical SD and

the wavelet-based approach. On the other hand, this fitting also helps to remove residual modulations

not really belonging to real sources, which can be introduced during the decomposition process.

The WT offers more versatility and possibilities to analyze the signal which results at each of

the wavelet scales, e.g., it would be possible to search for maxima that would be representative of

the presence of planets. It would also be possible to decompose each spaxels at different wavelet

scale depending on the angle separation, i.e., bearing in mind that planet signatures further out are

narrow bumps, while close-in planets can cover the whole wavelength series, one could think in using

high-frequency resolution levels for the former and low-frequency one for the latter. However, we

consider a better strategy to create several images decomposing all the spaxels of the FOV using the
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same frequency resolution at each one. In that way, it can be ensured that all the information along the

spaxels will be classified at some of the final images, while otherwise we assume the risk of loosing

information due to a bad choice of the frequency level at a particular angle separation. Preliminary

results of the joint use of WT with SD were presented by Gladysz et al. (2011) for simulations with

HARMONI instrument (Thatte et al. 2010) and Lyot chronograph for E-ELT.

4.4 Simulations

The simulations we used to test both the classical and the wavelet spectral deconvolution (SD) tech-

niques have been designed to evaluate the limiting contrastof detection as a function of the angle

separation. Furthermore, we also want to test the performance of the algorithms with respect to

the type of chronograph and chromatic aberrations introduced in the light wave by the Talbot effect

(Talbot 1836).

Fourier transform of the field after the Lyot stop gives the electric field in the detector plane, and

the squared modulus of this quantity yields the final on-axisinstantaneous PSF. For the images of the

test planets the electric field is propagated only through the Lyot stop and the apodizer for APLC,

giving the off-axis PSF. For the APOD case there is not a different optical path for the light coming

from the main star and the companions. We scale and shift thisPSF (off-axis PSF for APLC) to

simulate eight planets located at angle separations of 30, 58, 111, and 184mas. At each of these

positions two planets are placed to enhance their presencesin the contrast curves calculated from

the reconstruction. Therefore, each dataset is composed of8 planets. Dataset are polychromatic and

covers the near IR range from 950 to 1650nmin 110 channels to calibrate and subtract residual stellar

contribution after AO and diffraction suppression. The spectral range was pre-determined by the

additional objective of this project: a cross-check with the EPICS simulation results. Originally, the

0.9− 1.7µm range was chosen by the EPICS team because it contains the most interesting molecular

bands:O2, CO2, H2O, andCH4. It should also be mentioned that the planet finder instrument for the

Very Large Telescope (VLT), i.e., SPHERE, will have an IFS working in the similar spectral range

(Fusco et al. 2006).

All the 8 planets have the same contrast difference with respect to the main star. To evaluate the

detection limit the 8 planets magnitude is changed to cover arange of contrasts from 1× 10−6 to

1× 10−9, i.e., we have created 4 simulations with 8 planets each, allof them with the same contrast.

In such way we can verify, for example, if planets with contrast difference of 1× 10−7 or 1× 10−8

are detectable at angle separations between 58 and 111mas, e.g., if the companion of 1× 10−8 is

reconstructed at the position of 111masbut it is not at 58mas, whereas the planet of 1× 10−7 it is,

then, it is possible to ensure that the limit of detection forsources at angle separations of 111masis a

contrast of 1× 10−8.

In all our simulations we assume an IFS is present but we do notsimulate spectra (we assume a flat

exoplanet spectrum) to keep a certain simplicity, which is more convenient to show the performance

of the WT over IFS datacubes. Besides, we do not have a detailed model of light propagation through
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a spectrograph. Such a model depends on the design of an IFS (BIGRE or TIGER configuration,

see Antichi et al. (2009)) and is certainly outside the scopeof this work. On the other hand, we

have decided to model Fresnel propagation, which depends onthe number and relative separations of

optical surfaces within an instrument (Marois et al. 2008).A useful quantity to evaluate the impact

in terms of Fresnel diffraction of an optical element is the distance of the optic to apupil conjugate

expressed in characteristic Talbot length units. The characteristic Talbot lengthLT is defined as:

LT =
2Λ2

λ
, (4.11)

whereΛ is the smallest aberration spatial period considered (thisperiod corresponds to the highest

spatial frequencies the AO can correct, projected on the considered optical element) andλ is the largest

light wavelength to be considered. Therefore, simulationsinclude chromatic aberrations at 1 and 10

Talbot lengths from the pupil.

Finally, all these simulations have been also replicated for 23, 43, 73, and 146masto increase the

range of angle separations.

Figure 4.6: APOD case, Talbot length equal to 1. Planet contrast 1× 10−8. Peak planet within the larger red circle has
been used as normalization reference. Green square is used to calculate the statistics shown at tables 4.1 and 4.2.

Figure 4.6 shows the resulting image after applying the SD technique to the wavelet signal scale

number one, in the case of planet contrast of 1× 10−8, APOD case with Talbot length equal to 1.

Because, in the first place, the main star flux is generally affected by the use of masks, secondly,

the behavior of either the classical SD and the wavelet SD in the center of the FOV is very different

and, finally, we are more interested in how bright is the reconstructed source with respect to the

surrounding background, for all these reasons we have decided that reconstructions obtained from

the classical SD or from the wavelet SD are normalized using the maximum peak of their particular

recovered planet within the larger red circle at 184mas, which is always the reconstructed planet less

affected by chromatic aberrations, and further from the centerof the FOV. Pixels within the green

square, also at 184mas, are used to devise some statistical quantities of the background.
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Figure 4.7: APOD case, Talbot length equal to 1. Top row: planet contrast1×10−9, linear scale from 0 to 1. Bottom row:
planet contrast 1× 10−8, linear scale from 0 to 0.1. Left column: image obtained from spaxels wavelet scales number 1.
Middle column: image obtained from spaxels wavelet scales number 2. Right column: image obtained from the classical
spectral deconvolution approach, polynomial fitting orderequal to 3. All images have been normalized with respect to the
maximum peak of the planet present at position (451,538) —red larger circle at figure 4.6 —.

Figure 4.8: APOD case, Talbot length equal to 10. Top row: planet contrast 1× 10−9, linear scale from 0 to 5. Bottom
row: planet contrast 1× 10−8, linear scale from 0 to 0.5. Left column: image obtained from spaxels wavelet scales
number 1. Middle column: image obtained from spaxels wavelet scales number 2. Right column: image obtained from
the classical spectral deconvolution approach, polynomial fitting order equal to 3. All images have been normalized with
respect to the maximum peak of the planet present at position(451,538) —red larger circle at figure 4.6 —.
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4.5 Results

The final reconstruction achieves high dynamic range through three functionalities. Firstly, Image

sharpening through turbulence compensation XAO. Secondly, diffraction suppression through APLC

chronograph or apodization-only (APOD case) and, in the third place, we implement the SD technique

with and without WT to remove the residual stellar light fromthe spectral data cube. It should be

mentioned here that efficient chronographic starlight suppression is helped by reducing the image to

a narrow spot with AO, i.e. the second step in our simulationsis intrinsically linked to the first. If

AO works as expected the diffraction-limited spot hits the focal-plane mask and most of the light is

blocked.

Figures from 4.7 to 4.10 show reconstructions when SD techniques are applied over the original

signal present at the spaxel and the three first wavelet scaleit can be decomposed, when both APOD

and APLC diffraction suppression solutions are used, with Talbot lengths equal to 1 and 10. In

general, the use of wavelets increases the detection limit in one order of magnitude from 73mas.

Limiting contrast for the APOD case, Talbot length equal to 1(figure 4.7) is established at 1× 10−9

between 111 and 184mas, and at 1× 10−8 between 73 and 111mas, where wavelet coefficients, at

scales one and two, belonging to the planets are clearly visible beyond the background level. These

detection limits must be increased until 1× 10−8 and 1× 10−7 when SD is applied over the whole

original signals at each spaxel. An increase in the Talbot length from 1 to 10 affects the results (figure

4.8). Sources at contrast 1× 10−9 are not visible anymore, whereas at contrast 1× 10−8 are barely

visible at 73mas.

For APLC chronograph (figures 4.9 and 4.10), results are similar in terms of the gain obtained

when WT is used with respect the classical approach, i.e., one order of magnitude from 73mas, being

the limit of detection at 1× 10−8 between 111 and 184mas, and at 1× 10−7 between 73 and 111mas.

The increment of the Talbot length does not imply a big modification of those values. Indeed, the

classical approach results are more affected by the Talbot length, whereas high-frequency wavelet

reconstructions appear to be almost insensitive to this parameter. It must be said that the further away

optical elements are from a pupil conjugate, the larger the Fresnel diffraction impact on the speckles

spatio-spectral correlation (see equation 4.11). In orderwords, to reduce the influence of the Fresnel

diffraction, all optical elements in the common path must be conjugated to a distance close to the

pupil. This distance must not be larger than one characteristic Talbot length at the longest wavelength

as defined for the highest spatial frequency of the aberrations (projected on the optical element) to be

considered for a given FOV. Hence, reducing the Talbot length is one of the key points in the optical

design of EPICS (Verinaud et al. 2010).

Tables 4.1 and 4.2 show the statistics within a 20× 20 pixel square centered at 184mas(figure

4.6). Noise level in this square is measured in terms of the standard deviation beyond which a real

source should be detected. Wavelet reconstructions from spaxel signal scales one and two always

show better values than the corresponding one for the classical SD approach, around twice smaller

standard deviation for APOD and between four and seven timessmaller, depending on the Talbot

length, for APLC. This is, in our opinion, one of the most important results from this paper, i.e., the
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Figure 4.9: APLC case, Talbot length equal to 1. Top row: planet contrast1×10−8, linear scale from 0 to 1. Bottom row:
planet contrast 1× 10−7, linear scale from 0 to 0.1. Left column: image obtained from spaxels wavelet scales number 0.
Middle column: image obtained from spaxels wavelet scales number 1. Right column: image obtained from the classical
spectral deconvolution approach, polynomial fitting orderequal to 3. All images have been normalized with respect to the
maximum peak of the planet present at position (451,538) —red larger circle at figure 4.6 —.

Figure 4.10: APLC case, Talbot length equal to 10. Top row: planet contrast 1× 10−8, linear scale from 0 to 1. Bottom
row: planet contrast 1× 10−7, linear scale from 0 to 0.1. Left column: image obtained from spaxels wavelet scales
number 0. Middle column: image obtained from spaxels wavelet scales number 1. Right column: image obtained from
the classical spectral deconvolution approach, polynomial fitting order equal to 3. All images have been normalized with
respect to the maximum peak of the planet present at position(451,538) —red larger circle at figure 4.6 —.
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use of wavelets allows APLC chronograph to obtain similar results than APOD at angle separations

from ∼ 70mas. When wavelets are not used, noise level for APOD and APLC (Talbot length equal

to 1) are, respectively, 0.0213 vs. 0.2106, i.e., ten times larger for APLC, whereas this difference is

only three times larger for reconstructions obtained from the wavelet scale number 1, e.g., 0.0113 vs.

0.0323. For Talbot length equal to 10 these values are of the same order of magnitude, e.g., 0.0649

vs. 0.0696. This shows that the wavelet post-processing SD is ableto classify planet frequency

contribution and chromatic aberrations introduced by APLCin different wavelet scales, preserving in

such way real sources frequency content, at those angle separations.

Talbot length= 1 Talbot length= 10
Minimum Maximum Mean Standard deviationMinimum Maximum Mean Standard deviation

plane w0 -0.1256 0.0123 -0.0563 0.0261 -0.2306 0.1880 -0.0038 0.0704
plane w1 -0.0391 0.0295 0.0033 0.0113 -0.1507 0.1876 0.0024 0.0649
plane w2 -0.0230 0.0268 0.0037 0.0090 -0.2257 0.1959 0.0051 0.0863

no wavelets -0.0441 0.0865 0.0128 0.0213 -0.2275 0.4509 0.0758 0.1084

Table 4.1: Statistics from green square. APOD case. Planet contrast= 1× 10−8.

Contrast curves for these reconstructions are shown in figures 4.11 and 4.12. They have been

calculated, at each angle separation, as the value which is five times above the standard deviation of

the background. High-contrast imaging community use thesecurves to show the detection limit of

their planet recovery methods. In general, the community states that “any real source which is, at

certain angle separation, above the value shown from these curves can be detected” . However, such

statement does not take into account the effect of the particular method over the real planet flux. In

other words, classical SD tends to completely subtract the flux from the planets that are very close

to the center of the FOV, since the planet signature covers the whole wavelength range through the

spaxel (see figure 4.4). Hence, a contrast curve that shows a detection value of 1× 10−5 at such

positions would not be representative since, to reach this level, the planet is also removed from the

reconstruction. In the case of wavelets a similar problem appears. The total planet flux is distributed

along all the wavelet scales, i.e., to obtain the total flux for a certain signal all the wavelet scales and

the wavelet residual must be considered (see equation 4.10). This means that a contrast curve of a

certain wavelet scale is not really representative if the planet frequency content is not contributing

to this scale. Furthermore, wavelet signals can also suffer from real flux removal, as the classical

approach does. For these reasons, we have opted to calculatecontrast curves keeping the presence

of the planets so their real contribution can also be somehowvisible. Besides, for the sake of clarity,

contrast curves have been calculated from the non-normalized original reconstructions, and excluding

the spider vanes contribution.

Talbot length= 1 Talbot length= 10
Minimum Maximum Mean Standard deviationMinimum Maximum Mean Standard deviation

plane w0 -0.1213 0.0522 -0.0345 0.0300 -0.2727 0.1472 -0.0070 0.0648
plane w1 -0.1284 0.0683 -0.0071 0.0323 -0.2238 0.2311 0.0005 0.0696
plane w2 -0.3395 0.1826 -0.0110 0.0801 -0.3461 0.4160 0.0008 0.1213

no wavelets -0.5679 0.8914 0.1543 0.2106 -0.4991 0.9795 0.1425 0.2394

Table 4.2: Statistics from green square. APLC case. Planet contrast= 1× 10−8.



4. High contrast exoplanet imaging using spectral deconvolution and the wavelet transform.101

Figure 4.11: Contrast curves, APOD case. Top row: Talbot length equal to 1. Bottom row: Talbot length equal to
10. Left column: planet contrast equal to 1× 10−8. Right column: planet contrast equal to 1× 10−9. Note that bumps
at 25 and 60masin the black solid line (classical technique), for Talbot length equal to 1 (top row), and at 25, 50, and
80masfor Talbolt length equal to 10 (bottom row) do not correspondto real sources, but to wrong artificial modulation
reconstructions.

Therefore, contrast curves confirm results we have previously shown, i.e., the detection limit for

APOD, Talbot length equal to 1, is 1× 10−9 (figure 4.11, top right panel) at angle separation 184mas,

where the signatures from the planets are clearly visible inthe wavelet contrast curves at such angle

separation, and 1× 10−8 for Talbot length equal to 10 (figure 4.11, bottom left panel), at the same

angle separation. In the case of APLC the detection limit is 1× 10−8 for both Talbot lengths (figure

4.12) from∼ 100mas. We want to stress that it does not really matter if some of thecontrast curves

reach a value of 1× 10−10. To verify if a real source can be detected at such positions is necessary

to really place a source and explicitly detect it to test if the recovery method is not affecting its flux

contribution to the reconstruction.

As explained in section 4.2, classical SD is based in producing along the spaxel, by scaling all

the frames of a IFS datacube to a common Fourier grid, a planetsignal that is larger in amplitude

than the signal produced by the quasi-static speckles. Hence, a low order polynomial fits well to
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Figure 4.12: Contrast curves, APLC case. Top row: Talbot length equal to 1. Bottom row: Talbot length equal to 10.
Left column: planet contrast equal to 1× 10−7. Right column: planet contrast equal to 1× 10−8. Note that the bump at
50masin the red short dashed line (wavelet scale number 0), for both Talbot length equal to 1 (top row) and 10 (bottom
row) do not correspond to real sources, but to a wrong artificial modulation reconstruction.

this speckle signal allowing its removal and preserving theplanet signature. However, higher order

chromatic aberrations that are introduced into the spaxelscan also be reconstructed (see figure 4.3).

Since each wavelet scale is representative of a particular frequency content through the spaxel, and

since the planet signature is different of these aberrations, not only in amplitude but also inwidth, the

WT is a powerful tool for increasing/differentiating some planet frequency components with respect

to the high-order chromatic aberrations components at the same scale, thus facilitating the planet

identification.

Unfortunately, for angle separations closer to the center of the FOV, planets and aberrations fre-

quency contents are shifted to low frequencies. They can even exceed the wavelength limits of the

spaxel covering the whole range of channels (see figure 4.4).Since planets, speckles and other ar-

tifacts are not longer different in frequency, the benefits of WT are diminished. Results at these

separations are shown in figures 4.13 and 4.14, where four planets with contrasts from 1× 10−7 to

1× 10−5 lie at 30 and 58maspositions.
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Figure 4.13: APOD case, Talbot length equal to 1. Top row: planet contrast1× 10−7, linear scale from 0 to 1. Bottom
row: planet contrast 1× 10−6, linear scale from 0 to 0.1. Column A: image obtained from spaxels wavelet scales number
2, polynomial fitting order 3. Column B: image obtained from spaxels wavelet scales number 3, polynomial fitting order
3. Column C: image obtained from the classical spectral deconvolution approach, polynomial fitting order equal to 3.
Column D: image obtained from spaxels wavelet scales number2, no polynomial fitting. Column E: image obtained
from spaxels wavelet scales number 3, no polynomial fitting.Column F: image obtained from the classical spectral
deconvolution approach, polynomial fitting order equal to 5(one iteration). All images have been normalized with respect
to the maximum peak of the planet present at position (451,538) —red larger circle at figure 4.6 —. White arrows point
to the outer Airy disk, not planets themselves, of real sources placed at 30mas.

Figure 4.14: APLC case, Talbot length equal to 1. Top row: planet contrast1× 10−6, linear scale from 0 to 2. Bottom
row: planet contrast 1× 10−5, linear scale from 0 to 0.2. Column A: image obtained from spaxels wavelet scales number
2, polynomial fitting order 3. Column B: image obtained from spaxels wavelet scales number 3, polynomial fitting order
3. Column C: image obtained from the classical spectral deconvolution approach, polynomial fitting order equal to 3.
Column D: image obtained from spaxels wavelet scales number2, no polynomial fitting. Column E: image obtained
from spaxels wavelet scales number 3, no polynomial fitting.Column F: image obtained from the classical spectral
deconvolution approach, polynomial fitting order equal to 5(one iteration). All images have been normalized with respect
to the maximum peak of the planet present at position (451,538) —red larger circle at figure 4.6 —.
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Figure 4.4 shows how the low-order polynomial fitting removes the planet signal avoiding its cor-

rect detection. Probably, the iterative mechanism explained in section 4.2 is not the most convenient

for closer angle separations. Hence, we have also opted to check a different algorithm that consists

in fitting a 5th-order polynomial only for one iteration. We chose a 5th-order as a good trade-off

between fitting chromatic aberrations and not removing too much information from the planet. In

this situation, there is no need to fit any kind of polynomial to the wavelet spaxel signals, since the

WT in itself provides a natural way to remove the energy component that is always associated to the

presence of speckles. Since planets are now represented by wider sinc2 functions, their frequency

content is classified to the low-frequency wavelet scales. Therefore, figures 4.13 and 4.14 show the

reconstructions obtained from the wavelet scales number two and three.

Polynomial fitting order 3 No polynomial fitting
plane w2 plane w3 no waveletsplane w2 plane w3 no wavelets

Contrast 1× 10−7 planet 1 0.2364 0.6854 0.4985 0.3037 0.9793 0.2937
planet 2 0.2469 0.7357 0.5064 0.3464 1.1920 0.2913

Contrast 1× 10−6 planet 1 0.2686 0.7202 0.5333 0.3135 0.8868 0.2958
planet 2 0.2678 0.7381 0.5336 0.3174 0.9045 0.2962

Table 4.3: Maximum peak for close-in sources. APOD case (figure 4.13). Talbot length= 1.

In general, WT scale number three always has the brightest maximum peak with respect to the

surrounding background, for planets placed from 43 to 58mas. The APOD case shows an improve-

ment of one order of magnitude with respect to the results obtained by APLC. It is even possible to

indirectly deduce the presence of planets at separations from 23 to 30masby means of the detection

of the outer Airy rings, pointed by white arrows in some of thepanels in figure 4.13.

Polynomial fitting order 3 No polynomial fitting
plane w2 plane w3 no waveletsplane w2 plane w3 no wavelets

Contrast 1× 10−6 planet 1 0.3341 0.8165 0.5817 0.2363 0.4705 0.4453
planet 2 0.3530 0.9538 0.4835 0.2460 0.5202 0.4465

Contrast 1× 10−5 planet 1 0.2915 0.7635 0.5416 0.3226 0.8765 0.3251
planet 2 0.2888 0.7493 0.5280 0.3232 0.8815 0.3246

Table 4.4: Maximum peak for close-in sources. APLC case (figure 4.14). Talbot length= 1.

Tables 4.3 and 4.4 show the maximum peak values for the two planets reconstructed in figures

4.13 and 4.14. Since all the images are normalized with respect to the reconstruction of the source

at 184mas, and all the planets at each dataset have the same contrast, that point of value equal to 1

can be used as flux reference. For close-in planets we have preferred this method for our comparison

due to the different nature and large number of artifacts created during the reconstructions, by the

different algorithms at such positions. The departure from the value of 1 represents the planet lies

over a speckle bump or hole, and/or a certain level of bias caused by the reconstruction method, e.g.,

flux subtraction due to the polynomial fitting or different flux contributions to the same wavelet scale

due the difference of the planet width because of the angle separation. Results from tables 4.3 and 4.4

show that planets from wavelet scale number three are a 35− 50% brighter than those obtained from
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the classical SD approach for APOD, and around a 30% brighterfor APLC. The fact that there is no

need to fit any polynomial to the wavelet signal to remove the speckle signal seems to be an advantage

since the brightest maximum peaks are generally obtained when a polynomial fitting is not applied.

4.6 Conclusions

We have used the unidimensional wavelet transform (WT) to decompose integral field spectroscopy

(IFS) spaxel signals at different scales of resolution, each of them representative of acertain frequency

content, to improve the detectability of faint companions directly imaged with EPICS instrument,

which will be installed in E-ELT. We have shown that the use ofWT allows an improvement in faint

companion detectability of one order of magnitude contrastfrom angle separations equal to 73mas,

in comparison with the results obtained with the classical spectral deconvolution (SD) approach.

Furthermore, APLC performance becomes similar to that obtained with APOD for these separations.

Close-in planets detectability, around 43− 58mas, also benefits from the application of wavelets.

In this work, we have used a dyadic and binary wavelet decomposition based on a 5-pointsinc2(t)

father scaling function, which allows us to decompose a 110-wavelength-point spaxel signal in 5

wavelet scales plus 1 wavelet residual. There is no need to work only with one father scaling function.

We believe that the use of a dictionary of father scaling functions with different widths would be very

beneficial, especially for the photometric estimation of the sources at closer angle separations, since

in that way the resolution of representation of the spaxel could be increased.

In other words, a 5-point scaling function, where for IFS datacubes each point is a wavelength

channel, can classify the frequency content of the signal from widths up to 5 points within wavelet

planeω f 5
0 , from widths of 5 to 10 points within planeω f 5

1 , from 10 to 20 within planeω f 5
2 , from 20 to

40 within planeω f 5
3 , from 40 to 80 within planeω f 5

4 , and from 80 to 110 within the residual wavelet

plane. With this decomposition it is not possible to differentiate, e.g., frequency content from 20 to 30

with respect to that from 30 to 40 points, since all of them areclassified together in the wavelet plane

ω
f 5
3 . However, using a second 30-point scaling function allows us to classify the frequency content

from widths up to 30 at wavelet planeω f 30
0 . Therefore, a simple subtraction between different wavelet

planes produced by different scaling function will provide the exact frequency information we are

requiring:

ω20÷30 = ω
f 30
0 − (ω f 5

0 + ω
f 5
1 + ω

f 5
2 ), (4.12)

whereω20÷30 is the signal representative of the spaxel content with frequency information from 20

to 30 points width. The study and application of this sort of dictionary will be the topic of our future

research. We expect that the increment of the spaxel resolution in such way yields an improvement in

the photometric estimation of companions, as well as in their spectral characterization.
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Chapter 5

Summary and Conclusions

Adaptive optics (AO) systems are used to increase the spatial resolution achieved by ground-based

telescopes, which are limited by the atmospheric motion of air layers above them. Therefore, the real

cut-off frequency is extended closer to the theoretical diffraction limit of the telescope thus allowing

more high-frequency information from the object to be present in the image (chapter 1).

Nevertheless, although the goal of image reconstruction and deconvolution algorithms is basically

the same (i.e., to recover a “real” diffracted limit image, free of noise, from the object), and since the

correction of AO is not complete (i.e., the effective cut-off frequency achieved by AO is still below

the theoretical diffraction limit), the simultaneous use of such deconvolutionalgorithms over dataset

acquired with AO is possible and desirable to further enhance their contrast (chapter 1, sections 1.3

and 1.4.1).

Furthermore, multiresolution tools like the wavelet transform (WT) have been historically in-

corporated into multiple deconvolution schemes improvingtheir performance with respect to their

non-wavelet counterparts. The ability of such transforms to separate image components depending

on their frequency content results in solutions that are generally closer to the real object (Starck et al.

(2002) and appendix D). On the other hand, AO community generally states that, due to the high

variability of AO PSFs is necessary to update the PSF estimate during the reconstruction process.

Hence, the use of blind and myopic deconvolution algorithmsshould be unavoidable and yields to

better results than those obtained by the static-PSFs codes(Pantin et al. 2007).

Therefore, being the aforementioned paragraphs the current state-of-art of AO imaging, the main

conclusions of the present thesis are outlined as follows:

1. The static-PSF algorithm AWMLE has been applied over binary systems simulated for the 3-m

Shane telescope to evaluate the photometric accuracy of thereconstruction. Its performance

is compared with the PSF-fitting algorithm StarFinder, commonly used by the AO community.

Results shown that AWMLE is able to produce better results than StarFinder (chapter 2).

2. In addition, AWMLE has been tested together with several other algorithms and approaches,

like FITSTAR, PDF deconvolution and IDAC, for the same purpose of differential photomet-

107
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ric precision, resulting in very competitive results, especially for high Strehl ratios (SR) and

matched PSFs (appendix A).

3. A new methodology for statistically testing the photometry of these codes has been designed for

AO observations. It consists of a double test which measuresthe average photometric accuracy

and the repeatability of the results (chapter 2, section 2.5).

4. A new deconvolution algorithm called ACMLE, which is based on the curvelet transform (CT)

and a maximum likelihood estimator (MLE), has been designedfor the reconstruction of ex-

tended and/or elongated objects (chapter 3, section 3.2.2).

5. ACMLE has been tested together with AWMLE and blind/myopic codes such as MISTRAL

and IDAC over Saturn and galaxy simulated images for the 5-m Hale telescope. It is shown that

the performance in the presence of noise of the multiresolution static-PSF algorithms is better

than myopic and blind algorithms; thus showing that the control of noise is as important as the

update of the PSF estimate during the reconstruction process (chapter 3, section 3.5).

6. In the challenging context of horizontal path, several Richardson-Lucy algorithms, including

AWMLE (static-PSFs approaches), have been tested with MISTRAL (myopic-PSF), showing

comparable results (appendix B).

7. A unidimensional WT, based on asinc2 father scaling function, has been applied in the spectral

deconvolution of integral field spectroscopy (IFS) datacubes for direct imaging of exoplan-

ets with EPICS instrument, which will be installed at the forthcoming 39-m E-ELT telescope.

When this approach is compared with the classical non-wavelet one, an improvement of 1mag

from angle separations equal to 73masis devised. Besides, detection of close-in planets, be-

tween 43 and 58masalso benefit from the application of wavelets (chapter 4).

8. The use of wavelets allows the APLC chronograph to obtain similar results with respect to the

apodizer-only solution, especially with increasing Talbot length, thus showing that WT classify

planet frequency components and chromatic aberrations at different scales (chapter 4, section

4.5).

9. Preliminary results for HARMONI spectrograph are also described (appendix C).

A list with all the publications present in this work is shownas follows:

Baena Gallé, R. & Gladysz, S. Estimation of differential photometry in adaptive optics observations

with a wavelet-based maximum likelihood estimator. 2011, Publications of the Astronomical

Society of the Pacific, 123(905), 865-878. Press here to download.

http://www.jstor.org/stable/info/10.1086/661186
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Gladysz, S., Baena Gallé, R., Christou, J.C. & Roberts, L.C. Differential photometry in adaptive

optics imaging. 2010, Proceedings of AMOS Technical Conference (Maui, Hawaii), E24.

Press here to download.

Baena Gallé, R., Núñez, J. & Gladysz, S. Extended object reconstruction in adaptive-optics imaging:

the multiresolution approach. 2013, Astronomy and Astrophysics, 555(A69). Press here to download.

Gladysz, S., Baena Gallé, R. Comparison of image restoration algorithms in the context of horizontal-

path imaging. 2012, Proceedings of the International Society for Optics and Photonics SPIE.

Infrared Imaging Systems: Design, Analysis, Modeling, andTesting XXIII. ed: Gerald C.

Holst, Keith A. Krapels, Proceedings Vol. 8355, 83550X. Press here to download.

Baena Gallé, R., Gladysz, S., Verinaud, C. & Kasper, M. Highcontrast exoplanet imaging using

spectral deconvolution and the wavelet transform. Application to EPICS instrument. 2013,In

preparation.

Gladysz, S., Thatte, N.A., Salter, G., Baena-Gallé, R., Clarke, F., Tecza, M. & Jolissaint, L. High-

contrast, adaptive-optics simulations for HARMONI. 2nd International Conference on AO for

ELT (Victoria, Canada). 2011. Press here to access the abstract on the official Conference website.

5.1 Future work

This thesis opens several lines of research that will be addressed in future:

• The world of multiresolution transforms is extremely huge and has produced dozens of new

mathematical tools. Among many other, it is worth to mentionthe shearlet transform, which is

an extension/improvement of CT, and the waveatom tool, which is intended to classify textures

in the image. They should be studied and compared to establish their best performance and

their best field of application over AO images.

• Blind and myopic algorithms have proved their ability for large mismatches between the “real”

PSF that has created the image and the PSF that is used as a firstestimate in the reconstruction

process. However, their performance in the presence of noise is highly affected. Hence, it

is convenient to investigate if it is possible to introduce (and how to do it) multiresolution

transforms into these algorithms to improve their behavior.

• For the study of IFS datacubes, other father scaling functions with different shapes could be

proposed, in particular, it can be considered a “dynamic” scaling function with the ability to

modulate its shape according to the low frequency signal to be removed from the spaxel. This

could potentially improved the final photometry of the detected faint source.

http://www.amostech.com/TechnicalPapers/2010.cfm
http://www.aanda.org/articles/aa/abs/2013/07/aa19489-12/aa19489-12.html
http://spie.org/x648.html?product_id=936362
http://ao4elt2.lesia.obspm.fr/spip.php?article586
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• Besides, the design of a dictionary of wavelets, which increase the decomposing resolution

across the spaxel, instead of a single dyadic decomposition, can improve the photometric accu-

racy of detected planets as well as their spectral characterizations, taking full advantage of the

information contained in the IFS datacubes.
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Differential Photometry in Adaptive Optics

Imaging

Published in Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Con-

ference (AMOS Conference). 2010, ed.: S. Ryan, The Maui Economic Development Board., p.E24.

Press here to download.

Abstract

One application of adaptive optics (AO) is high-resolutionimaging of closely-spaced objects.

Determining differential photometry between the two or more components of a system is essential for

deducing their physical properties such as mass and/or internal structure. The task has implications

for (i) Space Situational Awareness, such as the monitoringof fainter microsatellites or debris nearby

a larger object, and (ii) astronomy such as the observationsof close stellar faint companions. We

have applied several algorithms to the task of determining the relative photometry of point sources

with overlapping point spread functions in images collected with adaptive optics. These algorithms

cover a wide range of approaches in the field of image processing. Specifically we have tested: PSF-

fitting, multi-frame and single-frame blind deconvolution, maximum-likelihood approach combined

with wavelet decomposition, and a novel one-dimensional deconvolution technique which separates

signal and speckle statistics rather than integrated intensities. We present results from applying these

algorithms to synthetic close binary stars for different observing conditions.
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A.1 Introduction

Atmospheric turbulence imposes a limit on angular resolution which could be reached by ground-

based telescopes. The application of astronomical adaptive optics (AO) during the last couple of

decades has allowed diffraction-limited images, rather than seeing-limited, to beobtained with large

ground-based telescopes. One of the uses of AO is high-resolution imaging of closely-spaced objects,

e.g. binary stars or faint companions such as exoplanets. Determining the differential photometry and

astrometry between the two components of the system is essential for deducing the physical prop-

erties of the components such as mass or internal structure (Vigan et al. 2010). AO, with a suitably

bright guide star, improves the detectability and photometric accuracy but also introduces problems

which are not usually encountered in conventional seeing-limited photometry (Esslinger & Edmunds

1998):

1. The structure of the PSF has temporal variation due to seeing variability. These morphological

changes are difficult to model.

2. The AO long-exposure point spread function (PSF) in the medium- and high-correction regime

shows long-lived quasi-static speckles. These diffraction-limited “lumps” are due to residual

aberrations not sensed by AO (for example non-common-path errors) and lie in the halo sur-

rounding the core of the PSF.

3. 1.The AO corrected PSF, and the associated angular resolution on the sky, depend on the posi-

tion of the science object relative to the AO guide star. AO compensates for the turbulence in

the direction of the guide star and when the science object iswell separated from the AO line

of sight, the compensation suffers due to a different atmospheric volume. This effect is called

angular anisoplanatism.

Because of these factors, extracting quantitative information from AO images is challenging. AO

improves the detectability of faint companions over seeing-limited observations for a given telescope.

When the companion is well separated with a non-overlappingPSF, aperture photometry takes care

of all the problems mentioned above. The problems occur whenthe PSFs from each target overlap.

Esslinger & Edmunds (1998) provide an excellent introduction to the problem of AO photome-

try. One of the issues discussed is the precision of photometry on deconvolved images compared

with the PSF-fitting on the “raw” AO data. Two of the most-widely used deconvolution algorithms

were tested, namely maximum entropy (Frieden 1972) and Richardson-Lucy (Richardson 1972; Lucy

1974). For PSF-fitting the DAOPHOT package (Stetson 1987) was employed. Extensive testing

on simulated faint companions showed that DAOPHOT performed consistently better than the de-

convolution methods, i.e. its photometric precision was higher compared to precision of aperture

photometry on the deconvolved images.
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It has been suggested that AO observations should be processed with “myopic” deconvolution

methods because the PSF is not well known for most AO observations (Pantin et al. 2007). For

myopic deconvolution, it is assumed that the PSF is only partially known. In some cases the PSF

is unknown and this is the regime for “blind” deconvolution.Typically these algorithms require an

initial PSF estimate. This estimate is assumed to be close tothe truth and the algorithm iterates

this estimate until a common solution for both the object andthe PSF is found. Myopic and blind

deconvolution techniques often use regularization, e.g. by imposing object priors and PSF constraints

(Mugnier et al. 2004). Jefferies & Christou (1993) developed an iterative blind deconvolution method

guided by the minimization of a penalty functional. An important component for AO observations is

the penalization of spatial-frequencies beyond the diffraction-limit of the observations. This package

(IDAC) restores a “clean” image from which relative photometry and astrometry can be obtained

by using aperture photometry with a very small aperture (Esslinger & Edmunds 1998), or by model

fitting. IDAC is one of the algorithms we have tested in our work.

PSF-fitting algorithms are applicable for crowded fields where the target comprises only point

sources. In this approach an analytic or empirical PSF is used together with a fitting algorithm to

match scaled-and-shifted copies of the PSF to the data. One such package suitable for AO imaging

is StarFinder (Diolaiti et al. 2000) which yields relative photometry and astrometry in AO-corrected

crowded stellar fields. A PSF model is constructed from the brightest stellar images in the field.

The algorithm iteratively uses this model to locate faintersources which it then fits to extract the

relative photometry and astrometry. There are three degrees of freedom: the total flux, andx andy

positions for each component. The photometric and astrometric precision of StarFinder applied to

crowded fields has been compared to results from blind deconvolution with the IDAC algorithm by

Christou et al. (2004). We also test StarFinder’s photometric accuracy in this paper.

A recent review of modern approaches to AO photometry (Burkeet al. 2009) has demonstrated

that methods utilizing static, deterministic PSF should not be dismissed against more modern algo-

rithms like iterative blind deconvolution (ten Brummelaaret al. 2000). Thus in our set of methods

to test we have included a new implementation of a Richardson-Lucy type deconvolution. This al-

gorithm, Adaptive Wavelets Maximum Likelihood Estimator -AWMLE- (Otazu 2001), calculates an

image that maximizes the compound Poisson and Gaussian likelihood of the data. It also performs

wavelet decomposition that helps distinguish signal from noise which is important for improving the

stopping rule. Unlike myopic or blind deconvolution AWMLE does not update the PSF so that it

could be more dependent upon the initial PSF estimate.

A novel approach for measuring photometry of faint companions in AO imaging has been re-

cently proposed (Gladysz & Christou 2009; Gladysz et al. 2010b). In this method traditional 2-D

image deconvolution is replaced by a 1-D time-series deconvolution. The algorithm is based on the

observation that the statistical distribution of the peak of AO-corrected PSF is morphologically dif-

ferent from that of the off-axis light, i.e. the quasi-static speckles. This morphological difference

between the two probability density functions (PDF) is usedto constrain a one-dimensional, “blind”,

iterative deconvolution at the position of a faint companion to a star. Separation of the signal and
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speckle PDFs yields the differential photometry. The method (“PDF deconvolution”), has been suc-

cessfully applied to medium-, and very-high-resolution AOobservations (Gladysz & Christou 2009;

Gladysz et al. 2010b). We note that this PDF deconvolution has a rather narrow range of applications

as opposed to the other algorithms discussed here (it only produces photometry for AO observations

of companions which lie within the uncorrected halo structure of the AO PSF). This algorithm re-

quires the companion’s location to be known. This can be obtained with a matching reference-less

astrometric method (Gladysz & Christou 2009) which then takes full-advantage of the self-calibrating

nature of PDF deconvolution.

The goal of this paper is to focus on the description and usageof existing codes, and to compare

their photometric precision after application to AO data ina “blind”test. We do not discuss all the

issues pertaining to computing photometry in AO observations. Discussions which go into great depth

on these subjects can be found in the literature (Esslinger &Edmunds 1998; Roberts et al. 2005).

A.2 Methods

In this chapter we compare results from the following algorithms, all of which were discussed above:

1. StarFinder: A PSF-fitting algorithm where the user-supplied PSF is iteratively fitted to the data

assuming a double-delta object.

2. AWMLE: A Richardson-Lucy type approach with a static PSF.

3. IDAC: Multi-frame blind deconvolution.

4. FITSTARS: A single-frame iterative blind deconvolution.

5. PDF deconvolution: Using speckle statistics.

We have analyzed these algorithms for different AO correction scenarios. The AO correction is

typically described by the Strehl ratio (SR). This is the peak of the AO-corrected PSF normalized

to that of an ideal PSF for the same pupil. There are four scenarios: low vs. medium SR and

“matched” vs. “mismatched” PSF. For the matched cases, the initial PSF has a similar SR to that

of the observation and for the mismatched cases the initial PSF has SR with a difference of 6%. A

detailed description of the data is given in Section A.3.

A.2.1 StarFinder

StarFinder was developed to measure astrometry and photometry in crowded fields imaged with AO

(Diolaiti et al. 2000). The algorithm operates as follows. Firstly, it derives a PSF template from the

brightest isolated field stars and generates a catalogue of presumed objects by searching for the relative
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intensity maxima in the frame. Secondly, the images of the candidate stars are analyzed in order of

decreasing peak intensity and each candidate is accepted onthe basis of its correlation coefficient

with the PSF template. The relative astrometry and photometry of each source are determined by

means of a least-squares fit, taking into account the contribution of the local non-uniform background

and of the already detected stars. These steps are repeated until no sources can be reliably found in

the residuals. A thorough description of the algorithm, theIDL routines, GUI interface and excellent

documentation can be found on the StarFinder’s website1. For the results presented here, we used

neither the graphical interface nor the capability of StarFinder to extract PSF from the data. Instead

the algorithm was supplied with the observation, a “known” PSF (a single star observed after the

target) and approximate positions of the two sources in the image via the FITSTARS.pro subroutine2.

A.2.2 AWMLE

AWMLE (Otazu 2001; Fors 2006) uses (i) Bayesian maximum-likelihood approach, (ii) wavelet

transform -WT- (Daubechies 1988), and (iii) multi-resolution support (Starck & Murtagh 1994). The

first maximizes the likelihood between the dataset and a possible solution by considering a combi-

nation of the intrinsic Poisson noise of the signal and the read-out Gaussian noise of the detector as

well as describing the optical path by a static PSF that remains constant throughout the reconstruction

process. The second decomposes the dataset into wavelet scales by means of the à trous algorithm

(Shensa 1992). The WT lets any signal or image be representedin N scales. This leads to simultane-

ous representation in both the measurement and frequency spaces. In general, the noise will mainly

appear in the high spatial-frequency wavelet plane while broad shapes will appear in the low spatial-

frequency planes. For AO observations, this permits differentiation between the diffraction-limited

features (given byλ/D) and the seeing-limited scale (given byλ/r0). An example of wavelet decom-

position applied to an AO PSF is shown in Figure A.1. The thirdanalyzes each wavelet scale in order

to find significant WT coefficients that can be associated with real signal in an image. The standard

deviation of intensity within a local window (whose size depends on the wavelet scale we are ana-

lyzing) is compared with the standard deviation of the wholeplane. Their difference allows one to

deduce the presence of a real source. This also helps to automatically stop reconstruction of the image

at each wavelet scale independently. AWMLE was applied to the datasets using one wavelet scale plus

a residual wavelet scale. A maximum number of 100 iterationswere enough to achieve convergence

in both scales. Note that AWMLE is not a photometric package.It produces a deconvolved image

which can be subsequently analyzed by an observer. After reconstruction, aperture photometry, with

a circle of five pixels in diameter, was used to extract the brightness of each component.

1http://www.bo.astro.it/ giangi/StarFinder/
2Not to be confused with the FITSTARS blind deconvolution code discussed later
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Figure A.1: Wavelet decomposition of the AO PSF. Left-to-right: AO PSF;three wavelet planes with decreasing spatial
frequency and the lowest-frequency wavelet plane (the wavelet residual). Displayed on a logarithmic scale.

A.2.3 IDAC

IDAC is a multi-frame blind deconvolution (MFBD) algorithm3. Basically, it is an iterative least

squares algorithm using a number of constraints to solve forboth the common object (target) in-

tensity distribution and also the corresponding PSFs for multiple observations of the same target

(Jefferies & Christou 1993; Christou et al. 2004). MFBD algorithms are very successful in the case

of strongly varying PSFs such as the pure speckle imaging case so that the target is easily distin-

guished from the PSFs. For AO data, the goal is to stabilize the PSF. This implies less PSF diversity

from one observation to another so that other constraints become more useful.

In general, the algorithm makes no assumption of the target’s intensity distribution and extent and

the deconvolved image is computed for the full image plane. However, for the synthetic observations

described in this paper, we have the prior knowledge that thetarget comprises two point sources and

we also know their locations. What we do not know is the relative brightness between the two. In

order to constrain the target to a binary star model, the initial target estimate comprises two narrow

symmetric Gaussians centered on the pixel locations of the two targets, each having a FWHM= 1.75

pixels. This takes into account potential sub-pixel locations of the components and permits the algo-

rithm to “shift” the component locations in order to obtain the best common fit. The initial intensity

ratio of the two Gaussians is estimated from the corresponding pixel values in the observations and the

initial PSF estimate was the “known” PSF described in Section A.3. The PSF band-limit is typically

measured from the data and read-noise limit was determined from “sky” regions of the observations.

For this application ten independent observations were used for the multi-frame constraint. The algo-

rithm was allowed to converge for∼ 100 iterations from the initial start-ups sharpening the Gaussian

distributions of the two components and, more importantly,adjusting the relative amplitudes of both

to allow the reconstructed target to match the ten individual data frames.

Like AWMLE, IDAC produces a final image from which photometric and astrometric measure-

ments are made. For the binary cases here, the reconstructedobject was fit by two Gaussians using

a least squares method after a further Gaussian smoothing. This smoothing reduced the pixelation

allowing for an improved fit. The free parameters for the fits were the amplitudes, elliptical Gaussian

widthsσx andσy, the position angle orientation of the ellipse and thex andy locations of each Gaus-

sian - a total of 12 parameters in all. The intensity ratio wasobtained from the ratio of the Gaussian

3http://cfao.ucolick.org/software/idac/
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volumes, (i.e.Vn = Inσxσy).The advantage of the fitting is that it allows an uncertainty measurement

for each of the intensity ratio.

A.2.4 FITSTARS

FITSTARS (ten Brummelaar et al. 2000) is a single-frame iterative blind deconvolution algorithm

optimized for binary stars by defining the object distribution as twoδ-functions:

o(x, y) =
2

∑

i=1

Aiδ(x− xi , y− yi), (A.1)

where (x− xi , y−yi) is the location of the ith component andAi its intensity so that there are a total

of six object variables to fit. These binary parameters are solved for by using least squares fitting to the

observations using the initial target and PSF estimates. Once an initial estimate of these variables is

obtained, an updated PSF estimate for each component is computed by differencing the measurement

to the model for the other component and a new PSF estimate is then computed from the weighted

average of these two individual component estimates (ten Brummelaar et al. 1996). This process is

repeated until the results converge. Results using this algorithm have been compared to those obtained

by speckle interferometry (Horch et al. 2001) and are in goodagreement.

A.2.5 PDF deconvolutions

PDF deconvolution uses the analytical forms of the PDFs of the on-axis and off-axis intensity in an

AO PSF (Gladysz et al. 2010b). The instantaneous Strehl ratio has a distribution characterized by

two parameters (i) number of independent cells in the AO-corrected wavefront, and (ii) the theo-

retical long-exposure Strehl ratio, which is related to thestatistical phase variance via the extended

Marchal approximation (Hardy 1998). When the companion is located within the isoplanatic patch,

both components of a binary star are produced by almost the same wavefront. Thus, the two param-

eters mentioned above are common for the PDFs of the peak intensity of the star and its companion.

However, at the location of the companion, the speckle and signal intensities add, and their PDFs are

convolved. The distribution of the signal (i.e. the “raw” peak intensity) has the same form as the

Strehl ratio PDF (Gladysz et al. 2010b) but is “blurred” by the speckle kernel. PDF deconvolution

blindly estimates both the signal and the speckle PDFs from avector of intensity measurements at the

location of the companion.

This 1-D deconvolution problem has five parameters to solve for but can be very easily constrained

by observing that two parameters are common for both objects, i.e. those of the instantaneous SR.

These are obtained from a least-squares fit of the theoretical PDF to the on-axis statistics for the bright

star so that, at the location of the companion, the algorithmonly searches for the three remaining

parameters. After successful separation of signal from speckle statistics differential photometry can

be obtained by comparing flux parameters estimated for the two objects.

PDF deconvolution relies on multi-frame observations of the object. The other inputs are the
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estimated Strehl ratio of the observations, and the position of the companion (assumed to be known

from astrometry). Figure A.2 illustrates how the method works. First, the theoretical on-axis PDF

is fit to the measured on-axis histogram (left panel), and then the convolution of two PDFs is fit to

the measured histogram at the location of the companion (right panel). The ratio of the widths of the

two distributions of interest (red curve in the first panel and green curve in the second panel) can be

converted to brightness ratio of the two objects.

Figure A.2: PDF deconvolution. Left: fit of the theoretical on-axis PDF to the measured histogram. Right: separation
of the PDFs at location of a companion. PDFon is the on-axis distribution; PDFoff is the speckle distribution. Symbol∗
denotes convolution. This plot corresponds to a typical case encountered in tests on the Lick data, as described in Section
A.3.

In this work the PDF deconvolution algorithm is supplied with the known positions of the com-

panions which it does not update. When the peak of the companion’s PSF is at a sub-pixel location,

the method is given a non-integer location of the companion and it spatially interpolates the measured

pixel values to extract the intensity time series for the PDF.

A.3 Description of the data

We used single-star data sets, obtained with the Lick Observatory AO system on the 3m Shane tele-

scope to generate synthetic binary stars. AO images of bright stars were obtained using the high-speed

sub-array mode (64×64 pixels), for the 256×256 pixels IRCAL camera, which corresponds to a field

size of 4.8 × 4.8 arcsec. The sub-array measurements were captured with typical exposure time of

22ms. Each data set comprised 10000 images. All data were obtained in K band (2.2µm) where the

diffraction limit is 151masand the data were effectively Nyquist sampled (two pixels perλ/D). The

individual short exposures were registered with sub-pixelaccuracy to produce shift-and-add (SAA)

images. The average Strehl ratio of these SAA images was∼ 40%. All data were sky-subtracted and

the residual background was then subtracted too.

Simulated binary star data sets were created by scaling and shifting the PSF datacubes yielding

synthetic observations of a binary star with a brightness ratio of 25 (magnitude difference,∆m= 3.5)

which was chosen to create challenging scenarios, with 5< S NR< 15 for the companion. We

placed the companion at one of eight different positions in order to minimize variations in results due
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to possible anisotropies in the PSF. The positions were∼ 0.6 arcsec (4λ/D) from the center of an

image (see Figure A.3) with four positions in a cross 8 pixelsaway horizontally or vertically from the

bright star, and four diagonally (7 pixels horizontally and4 pixels vertically). The difference between

the “straight” and “diagonal” separations is 0.062 pixel. The mean photometric error was computed

based on the results from these eight positions.

1’’

Figure A.3: SAA image of a synthetic binary star with separation of 4λ/D. Left: High SR (∼ 50%) showing the
eight locations for the artificial companion. The companionis located within the larger circle. Right: SAA image of the
synthetic binary star for SR∼ 30%. Note the presence of significantly greater residual speckle structure for SR∼ 50%
whereas the SR∼ 30% shows a more uniform halo structure. The images are displayed on logarithmic scale.

All algorithms were supplied with re-centered images. PDF deconvolution used a 10000 frame

datacube, IDAC used 10 data cubes, each comprising 1000 co-added frames, while the other codes

used single SAA images of all 10000 frames. All methods, except PDF deconvolution, rely on a PSF

estimate. For the matched-PSF cases we used the same stars observed ten minutes later (Strehl ratio

mismatch= 2 or 3%). For the mismatched-PSF cases we used stars of similar brightness observed

the same night, and also close to zenith (Strehl ratio mismatch= 6%; for the case of∼ 30% SR the

calibrator had higher SR than the target while the reverse situation was tested for 50% SR). Variability

of the Strehl ratio between the science and calibration PSF is a direct consequence of either non-

stationarity of turbulence (if the same star was used for target and calibration datasets), or change in

response of the AO system due to lower or higher photon flux coming from the calibrator, as compared

to the target. Table A.1 summarizes the grid of scenarios we have investigated.

Table A.1: PSFs used to simulate images of binary stars. The SR= 29% data refers to the 30% Strehl ratio
case, and the SR= 54% data to the Strehl ratio= 50% case in the text.

Science PSF SR mv mk Reference PSF SR mv mk

30% Strehl ratio
Matched PSF ............... NOMAD1 1297-0510182 29% 12.1 5.93 – 32% – –
Mismatched PSF ............... NOMAD1 1297-0510182 29% 12.1 5.93 HD 18009 35% 8.23 5.02

50% Strehl ratio
Matched PSF ............... HD 143209 54% 6.3 3.92 – 52% – –
Mismatched PSF ............... HD 143209 54% 6.3 3.92 HD 153832 48% 7.25 4.78
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Figure A.4: Mean relative intensity ratio error for the five algorithms (equation A.3). Left: PSF well-matched to the
observations. Right: mismatched PSF. The results for PDF deconvolution are identical in both panels because this method
does not rely on a PSF estimate. Thep2 value for FITSTARS in the 50% SR, matched-PSF case was very high (∼ 10000)
and we omitted it from the plot in order to have the y-axis scale which better shows differences between the other methods.

In order to determine the efficacy of each algorithm we used a metric of photometric precision

which measured the mean absolute deviation from the truth (Burke et al. 2009):

p1 =
1
8

8
∑

j=1

|I j − truth| , (A.2)

whereI j are the individual intensity ratio measurements and the truth was equal to 25. This metric

was then converted to percent relative error:

p2 =
p1

truth
× 100% , (A.3)

This metric shows the relative strength of the average departure from the true intensity ratio. In

Figure A.4 we plotp2 for the scenarios of well matched and mismatched PSF and in Table A.2 we

give numerical values of this metric.

Figure A.4 illustrates relative precision of various algorithms. In order to discuss possible biases

(systematic over-, or under-estimation of the truth) and dispersions of results, we plot means and

standard deviations in Figure A.5 and we give numerical values of these metrics in Table A.3.

Table A.2: Percentage photometric precision of the algorithms, as quantified by the metricp2.

FITSTAR AWMLE IDAC StarFinder PDF deconvolution
30% SR, matched PSF ............... 116 20 21 31 4
50% SR, matched PSF ............... 10848 5 6 5 7
30% SR, mismatched PSF ............... 80 75 77 25 4
50% SR, mismatched PSF ............... 284 14 8 22 7
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A.4 Summary and discussion

We compared photometric measurements of various algorithms for a case of a very close binary star

with a relatively large intensity ratio. This is a particularly challenging case in that the companion is

25 times fainter than the primary and lies well within the PSFmorphology of the primary (∼ 4λ/D).

This is where the speckle contribution is non-negligible and the best photometric precision (Figure

A.4) is on the order of couple of percent relative to the truth. For each observing case there were

eight different realizations with the companion located in a different region of the primary’s PSF and

the dispersion in the results reflect the sensitivity of the algorithms to measure the photometry with

differing speckle backgrounds and morphology.

Figure A.5: Means and standard deviations of the measured brightness ratios. The dashed line corresponds to the true
value of 25. The values for FITSTARS in the matched-, and mismatched-PSF cases for 50% SR were very high and we
omitted them from the plots in order to emphasize differences between the other methods. The PDF deconvolution, being
self-calibrating was independent of the PSF and therefore it produced the same results for the matched and mismatched
PSFs. (Note the differences in the vertical scales).

Looking at the results in Figure A.5 and Table A.3, one notices that for the SR=50% case, the

mean IDAC, StarFinder and AWMLE results are very similar to each other and consistently give a

larger intensity ratio by∼ 4% for the matched PSF and by∼ 7% for the mismatched PSF. Note the

overlap of the standard deviations. For the PDF deconvolution, which is independent of any separate

PSF information, the results are< 4% smaller than the true intensity ratio. However, for FITSTARS,

the results are∼ 100 and 4 times larger. For these data, FITSTARS had problems. For the SR=30%

data, IDAC, StarFinder and AWMLE underestimate the intensity ratio ∼ 20% for the matched PSF,
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and IDAC and AWMLE overestimate by∼ 40%, whereas StarFinder yields the correct value, for

the mismatched PSFs. PDF deconvolution underestimates thetruth by ∼ 4% in both cases. It is

interesting to note that FITSTARS yields significantly improved results for these data overestimating

by∼ 1.5. Finally we note that the dispersions increase in the majority of mismatched PSF cases.

Table A.3: Means and standard deviations of brightness ratios obtained with the discussed methods.

FITSTAR AWMLE IDAC StarFinder PDF deconvolution
30% SR, matched PSF ............... 54.0± 10.0 20.6± 4.7 21.9± 6.5 17.1± 0.9 24.4± 1.8
50% SR, matched PSF ............... 2737.0± 4275.0 26.1± 1.0 26.4± 1.0 26.2± 0.5 24.1± 2.1
30% SR, mismatched PSF ............... 38.9± 34.5 36.1± 22.6 34.6± 29.6 25.0± 8.6 24.4± 1.8
50% SR, mismatched PSF ............... 96.0± 124.2 28.6± 2.5 27.1± 1.3 30.5± 2.1 24.1± 2.1

So, why do these algorithms differ so much in their results? Non-linear deconvolution algorithms,

such as AWMLE and IDAC, have a tendency to overestimate intensity ratios when the intensity ratio

is large to begin with. This has been shown by Christou et al. (2004). This is essentially due to

the reduced SNR of the fainter sources. Also some of the algorithms compute the astrometry of the

target jointly with the photometry and when the astrometricerrors are large, so are the photometric

errors. For example, StarFinder converged for only four of the eight realizations for the SR=30%

mismatched PSF case and FITSTARS converged for six of the eight realizations for the SR=30%,

matched PSF case. PDF deconvolution is not influenced by astrometric errors as the true binary

component locations are used. In addition, not all algorithms are well matched to these data. For

example FITSTARS assumes that the reconstructed PSF is symmetric after a certain radius which

could well affect the results here, because of the binary star separation relative to the size of the

extended PSF. The different algorithms also use the data in different ways. FITSTARS, StarFinder

and AWMLE used a single SAA image obtained from the original 104 data frames while IDAC used

ten 103 SAA images to take advantage of the MFBD approach and PDF deconvolution used the

104 frames for the statistical distributions. We have not yet investigated the repeatability of these

algorithms by breaking the data into smaller subsets to investigate how that affects the mean results.

Another difference to note is that the binary parameters themselves are estimated differently for

each of the PSF calibration algorithms. Aperture photometry, centered on the component locations,

is used for the AWMLE result. For the SR=30% case there is greater speckle contamination of the

companion thus affecting the results. The presence of a deterministic mask using the component lo-

cations should improve the results by rejecting the speckles. StarFinder jointly estimates the relative

astrometry and photometry parametrically and it was found that if the initial estimate of the com-

panion’s location was more than 0.5 pixels away from its true location, then the algorithm would not

converge. FITSTARS also jointly estimates the binary parameters directly and is sensitive to the as-

trometric positions. IDAC estimates an object intensity distribution and the use of an initial Gaussian

model centered on the component locations ensured that thiswas limited to the correct locations. The

binary parameters were obtained by fitting the final Gaussianresult where the formal error of the

least squares fit for the intensity ratio was∼ 2%, substantially smaller than the results for the eight

different realizations. For the SR=30% mismatched PSF case, the asymmetric nature of the PSF led
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to increased speckle contamination in the results for a couple of the realizations so that the mean was

skewed and the standard deviation was increased.

By comparison to the PSF calibration algorithms, PDF deconvolution is self-calibrating and relies

on how well the speckle statistics are determined in order toestimate the relative intensities. The

ability to determine the statistics of the intensity is directly related to the number of samples, i.e. the

number of frames. How well such an algorithm will work with a small number of frames is yet to be

determined as is the maximum exposure time per frame before the central-limit theorem dominates

producing indistinguishable Gaussian statistics.

We have presented preliminary results of the algorithms’ application to these challenging data.

Future studies will investigate the sensitivity of the PSF calibration methods to different initial PSF

estimates, the repeatability of all techniques and the sensitivity of the multi-frame algorithms, IDAC

and PDF deconvolution, to the number of frames.
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Abstract

We have looked at applying various image restoration techniques used in astronomy to the prob-

lem of imaging through horizontal-path turbulence. The input data comes from an imaging test over

a 2.5kmpath. The point-spread function (PSF) is estimated directly from the data and supplied to the

deconvolution algorithms. We show the usefulness of using this approach, together with the analytical

form of the turbulent PSF due to D. Fried, for reference-lessimaging scenarios.
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B.1 Introduction

The performance of optical systems is degraded by atmospheric turbulence when observing verti-

cally (e.g. astronomy) or horizontally (e.g. surveillance, military reconnaissance). This degradation

can be alleviated in software (Huebner 2011; Aubailly et al.2009) or hardware (Marchi & Scheifling

2011; Vdovin et al. 2012). Until now, in horizontal-path imaging the software solution has been more

successful because adaptive optics (AO) systems are generally only capable of correcting very small

fields of view. In single-conjugated AO systems, i.e., ones that measure and correct atmospheric dis-

tortions in one direction, the usable field-of-view is determined by the so-called isoplanatic angle,

θ0. It describes the angle out to which optical path variationsdeviate by less than one radian rms

phase aberration from each other. Given a certain correction direction,θ0 gives the maximum angular

separation from this direction at which reasonably good correction can be expected. In conventional

AO systems, correctable field-of-view is of size 2θ0 and in this case the most-often employed solution

to spatially-varying blur is simply to have a detector subtend a small angle. In astronomical imaging,

θ0 is typically of the order of a few tens rad at visible wavelengths and strongly depends on the height

distribution of the turbulent layers. In horizontal-path imaging,θ0 is typically of the order of 100µrad

and this implies that, with a conventional AO system lookingthrough 1km of turbulence, one can

obtain sharp images of a 10cmobject but not of a person.

In the post-processing solution this problem is dealt with in the following manner: firstly, the geo-

metric distortions corresponding to isoplanatic patches are estimated and the patches are re-assembled

into their original positions (“de-warping”), subsequently deconvolution is performed (“de-blurring”)

(Huebner 2011). The software approach allows for sharpening arbitrarily large fields of view and

therefore it has an advantage over AO for imaging scenarios (in other applications, e.g. directed en-

ergy propagation, field of view does not play a significant role). Ideally, one would perform local

motion compensation in patches of size equal to the “tilt isoplanatic angle” (Louthain & Schmidt

2008) which is larger than the (phase) isoplanatic angle. Inany case, in this paper we concentrate

on the deconvolution operation (image restoration, “de-blurring”). As such, this work follows some

ideas already laid out before (van Iersel & van Eijk 2010), namely a proposition to extract the point-

spread function (PSF) directly from the data, albeit here weactually follow through with this idea in a

rigorous way. Subsequently, we analyze strengths and weaknesses of various deconvolution methods

and their sensitivity to mismatch of the PSF (wrong kernel).

B.2 Methods

The imaging operation corresponds to (discretized) convolution of the focal-plane representation of

the true objecto(x) with the PSFh(x), giving the (discretely sampled) recorded imagei(x) with the

unavoidable addition of noisen(x):

i(x, y) = [o(x) ⊗ h(x)]^n(x), (B.1)
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where the symbol̂ is a pixel-by-pixel operation which reduces to the simple addition in the case

when noise is additive and independent of [o(x) ⊗ h(x)], while for Poisson noise it is an operation

which returns a random deviate drawn from a Poisson distribution with mean equal to [o(x) ⊗ h(x)].

The symbolx corresponds to two-dimensional focal-plane coordinate.

In the context of astronomical image processing two approaches to estimating the true objecto(x)

have been widely accepted, namely Richardson-Lucy deconvolution (Richardson 1972; Lucy 1974),

which leads to the maximum-likelihood solution in the presence of Poisson noise, and maximum-

entropy (Frieden 1972). Both approaches make use of non-linear techniques to seek an object estimate

iteratively. The Richardson-Lucy scheme is expressed as follows:

ôk+1(x) = ôk(x) ◦
{

h(−x) ⊗
[

i(x)
h(x) ⊗ ôk(x)

]}

, (B.2)

wherek denotes the current iteration number,a ⊗ b denotes the pixel by pixel product of two

equally-sized arraysa, b, anda/b denotes their pixel by pixel quotient.

The R-L algorithm has the interesting property of non-negativity: if the first estimate is non-

negative, the further estimates will also be non-negative.The problem with the R-L method is “know-

ing when to stop”, i.e., how to obtain the best trade-off between the desired spatial resolution enhance-

ment against the unavoidable noise amplification. The usersusually rely on their visual judgment and

stop the algorithm manually. When the algorithm is allowed to iterate eventually noise present in

the data will get amplified. We illustrate this effect in Figure B.1 using the data from the experiment

(Section B.3) and the “un-supervised” R-L scheme.

Figure B.1: Illustration of the noise amplification effect in Richardson-Lucy deconvolution. Pictures correspond to data
collected in the experiment described in Section B.3. Left:summed image before deconvolution. Centre: result of RL
deconvolution after 100 iterations. Right: result after 1000 iterations.

Solutions to this problem fall into the regularization category (Tikhonov 1963; Mugnier et al.

2004), or some other form of noise control (Baena Gallé et al. 2013; Starck & Murtagh 1994). Reg-

ularization involves introducing additional informationabout the object in order to solve an ill-posed

problem. This information is usually presented in the form of a penalty for a class of less-likely ob-

jects. Restrictions on object gradients or entropy are common. Alternatively, one example of noise
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control is through the use of probabilistic masks: local windows which determine whether a signifi-

cant structure is present or not at a given location in the data, at iterationk (Starck & Murtagh 1994).

The mathematical expressions for these masks aim at representing the probability of finding a source,

or part of an object, within the window. For example, local standard deviation relative to the global

standard deviation, or local correlation between two images that are deconvolved simultaneously are

two candidates for a probabilistic mask (Baena Gallé et al.2013). If the presence of a signal within

the mask is considered to be insignificant, the iterative process should stop. This is the premise of the

AWMLE algorithm described in Section B.2.1.

Another problem with the R-L method is that its convergence is very slow compared to e.g.

conjugate-gradient optimization (Thiébaut 2005). To alleviate this problem several acceleration schemes

have been proposed, of which we will mention two. One is “multiplicative relaxation” (Llacer & Núñez

1990), which boils down to replacing the iteration of Equation B.1 by

ôk+1(x) = ôk(x) ◦
{

h(−x) ⊗
[

i(x)
h(x) ⊗ ôk(x)

]}α

, (B.3)

whereα is an acceleration parameter (usually larger than 1). Another approach is “linear relax-

ation”and it can be written in the form (Prato et al. 2012)

ôk+1(x) = ôk(x) − λkôk(x) ◦
{

1− h(−x) ⊗
[

i(x)
h(x) ⊗ ôk(x)

]}

, (B.4)

whereλk > 1 (for λk = 1 the R-L algorithm is re-obtained) and1 is an array with all entries

equal to 1. This modification of Equation B.1 produces a scaled gradient method with a scaling given

by object estimate at iterationk and a gain factor. We have therefore obtained a form suitablefor

optimization by minimizing an objective function. The algorithm SGP-RL (scaled gradient projection

Richardson-Lucy) which is based on Equation B.1 is described in Section 2.2.

The aforementioned methods work with static PSFs, i.e. theydo not update the PSF of an optical

system which is supplied by the operator. They have been verysuccessful in reconstructing pristine

images from the Hubble Space Telescope before the first servicing mission which fixed the aberrated

PSF. Nevertheless, in ground-based imaging, whether looking up (e.g. astronomy) or sideways (e.g.

surveillance or military reconnaissance), the assumptionof perfectly-known PSF is rarely justified.

In astronomy, a calibration PSF is often obtained by observing a single star after the target or by

extracting an isolated star as PSF if the field of view is large. In surveillance, obtaining a PSF from a

beacon is a very difficult task, as we will show in Section 4. This has led to development of the “blind”

deconvolution paradigm. A blind method works without any information about the PSF. When some

information is available, for example in the form of a statistical prior on the PSF, then a “myopic”

method can be used. One such algorithm, called MISTRAL, is described in Section B.2.2.

B.2.1 AW(C)MLE

The Adaptive Wavelet/Curvelet Maximum Likelihood Estimator (AW(C)MLE) (Baena Gallé et al.

2013) is a Richardson-Lucy-type algorithm which maximizesthe likelihood between the dataset and
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the projection of a possible solution onto the data domain, considering a combination of the Poisso-

nian shot noise, intrinsic to the signal, and the Gaussian readout noise of the detector. This maximiza-

tion is performed either in the wavelet domain -AWMLE- (Shensa 1992) or in the curvelet domain

-ACMLE- (Candès et al. 2006). The decomposition of the signal into several channels allows for var-

ious strategies to be used depending on a particular channels scale. This is a direct consequence of the

fact that in the wavelet or curvelet decomposition the noise, together with the finest structures of the

signal will be transferred into the high-frequency channels while coarse structures will be transferred

into the low-frequency channels. An illustration of wavelet decomposition of the summed image

collected as part of the experiment is shown in Figure B.2.

Figure B.2: Wavelet decomposition of the experimental data described in Section B.3. Wavelet planes, from the finest
to the coarsest, are shown from left to right.

Additionally AW(C)MLE is equipped with two probabilistic masks which can be employed sepa-

rately or together. For this project we have used the local-correlation mask applied to two images that

are deconvolved simultaneously (but independently). The two images are sums of the first, and the

second half of the target observations. The correlation mask measures, at each iteration, the similarity

between the same region in the two images and, if noise amplification is detected (in the sense that

the local correlation is reduced), the algorithm is stoppedfor that region. The expression for the mask

is based on normalized covariance between the two samples.

B.2.2 SGP-RL

Scaled gradient projection (SGP) is another method based onthe Richardson-Lucy iteration (Prato et al.

2012). It is based on Equation B.4. The algorithm contains several stopping rules from which the user

can choose. We have used the following rule:

||ôk+1(x) − ôk(x)||
||ôk+1(x)|| ≤ δ, (B.5)

whereδ is user-specified tolerance (we usedδ = 10−6). Basically, this rule stops the algorithm

when change in the solution becomes very small. For our data,the code stopped automatically after

20-30 iterations.
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B.2.3 MISTRAL

The Myopic Iterative STep-preserving Restoration ALgorithm (MISTRAL) is a deconvolution method

within the Bayesian framework that jointly estimates the PSF h and the object o using some prior in-

formation about both these unknowns (Mugnier et al. 2004). This joint Maximum A Posteriori (MAP)

estimator is based on the following expression:

[ô, ĥ] = arg max[p(o, h|i)] =
= arg max[p(i|o, h) × p(o) × p(h)] =

= arg min[Ji(o, h) + Jo(o) + Jh(h)] ,

(B.6)

whereJi(o, h) = ln p(i|o, h) is the joint negative log-likelihood that expresses fidelity of the model

to the data,Jo(o) = ln p(o) is the regularization term, which introduces some prior knowledge about

the object, like positivity, andJh(h) = ln p(h) accounts for some partial knowledge about the PSF.

The symbolp in the above expressions corresponds to the probability density function of a particular

variable.

MISTRAL uses a nonstationary Gaussian model for the noise, which is a common approximation

for high-level light conditions, as the ones we are dealing with here. What this means is that a least-

squares optimization with locally-varying noise varianceis employed:

Ji(o, h) =
∑

r

1
2σ2(r)

[i(r) − (o⊗ h)(r)]2 , (B.7)

This prior makes it easier to compute the solution with gradient-based techniques as compared

to the Poissonian likelihood which contains a logarithm. The prior probability,Jo(o), is modelled

to account for objects which are a mix of sharp edges and smooth areas. The adopted expression

contains an edge-preserving prior that is quadratic for small gradients and linear for large ones. The

quadratic part ensures good smoothing of the small gradients (i.e., of noise), and the linear behaviour

cancels the penalization of large gradients (i.e., of edges). Such combined priors are commonly

calledL2 − L1 (Green 1990; Bouman & Sauer 1993). The PSF priorJh(h) assumes that the PSF is a

multidimensional Gaussian random variable (which is a goodassumption for long exposures or sums

of short exposures). The criterion draws the solution, in the least-squares fashion, towards the user-

supplied first-guess PSF while obeying the error bars given by the squared optical transfer function

(Fourier transform of the PSF).

B.2.4 Summary of the employed methods

The properties of the codes are summarized in Table B.1. We note here that in our tests we used

AWMLE with no acceleration (α = 1 in Equation B.3) hence relatively long execution times of this

algorithm, but acceleration is of course possible when one changes the value ofα.
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Table B.1: Information on methods used to process experimental data.

static PSF/ Blind stopping rule number of iterations
RL .......... static-PSF no 100 (fixed)
SGP-RL .......... static-PSF yes 20-30
AWMLE .......... static-PSF no 100 (fixed)
MISTRAL .......... blind/myopic yes ∼ 750 (matched PSF)

∼ 1600 (mismatched PSF)

B.3 Experiment

The experiment was conducted in Ettlingen, Germany, on the 27th of March 2012 between 4pm and

6pm. The object, a cross made of blackboard on a 20cm lamp (Figure B.3, left panel), was viewed

from a distance of 2.5kmusing an 18cmtelescope. Both, the emitter and the receiver, were positioned

at a height of approximately 20m. The telescope was mounted on an optical table inside the Adaptive

Optics Laboratory and it was fully protected from the weather outside. Therefore, in contrast to other

experiments (van Iersel & van Eijk 2010), we believe we can obtain turbulence measurements from

our images and these measurements will not be affected by motion of the setup (Section B.3.2). The

lamp was emitting white light but a filter before the sensor allowed only 600 to 700nmwavelengths.

The pixel scale of the detector was chosen by adjusting the focal length of the last lens to conform

to the Nyquist sampling requirement (λ/2D = 1.8rad, pixel scale= 1.3rad). We collected 1000

images of the 20cm lamp at 300f ps, and also 100 images of another lamp a 1cm “point source” at

30f ps(Figure B.3, right panel). The “point source” images were recorded 25 minutes after the target

observations. They were collected as a PSF reference. All images were saved in the uncompressed

FITS format.

Figure B.3: Left: schematic drawing of the object used in the experiment. Right: sum of 100 images of the small lamp,
after background removal this image was used as PSF in some ofthe reconstruction trials described in Section B.4.
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The unique aspect of this experiment was that a BLS900 boundary layer scintillometer from Scin-

tec was mounted right above the telescope. The scintillometer was collecting data continuously and

recordingC2
n, r0 and transverse wind speed estimates every minute. From these measurements we

know that turbulence was rather modest and stable during theexperiment (Figure B.4). The values of

C2
n rarely exceeded 10−14 m−2/3. Serendipitously, the values ofC2

n recorded during the target and PSF

observations were very similar: 5.37× 10−15 m−2/3 and 5.47× 10−15 m−2/3, respectively.

Figure B.4: Turbulence strength, quantified byC2
n, measured by the scintillometer around the time of the experiment.

The first red dot denotes the time when the target images were recorded, and the second red dot on the right corresponds
to the PSF measurements.

B.3.1 Pre-processing

Before any attempts at image reconstruction the data has to be pre-processed. In our case the follow-

ing procedures have been carried out on the raw target frames:

• cropping of the images,

• background removal,

• registration (via up-sampled cross-correlation with the best frame). This operation removed

global image motion.

The frames were summed and these summed images were then supplied to the deconvolution

algorithms. In the case of AWMLE two images were used (corresponding to the first and the second

half of the target observations).
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B.3.2 Turbulence estimates from the images

There are several ways to estimate strength of the turbulence directly from the images. In ground-to-

ground scenarios, methods based on image motion are most commonly used (Sasiela & Shelton 1993;

Belen’kii et al. 2001; Zamek & Yitzhaky 2006). In (solar) astronomy, the “spectral-ratio” method is

preferred (von der Lühe 1984). Because in our case the sensor was shielded from wind-induced

vibrations and temporal power spectra of image motion did not exhibit any artificial peaks (Figure

B.5), we decided to employ the motion-based approach (alternatively called the angle-of-arrival AOA

approach).

Figure B.5: Temporal power spectral densities of AOA fluctuations measured in the central part of the target images.
Left: vertical direction. Right: horizontal direction.

The relationship between the single-axis AOA variance, within some isokinetic patch (Zamek & Yitzhaky

2006), and the coherence length of the turbulence the so-called Frieds parameterr0 is:

r0 =
3.15

(

D1/3σ2
αk2

)3/5
, (B.8)

whereD corresponds to the telescope diameter,k is the wavenumber and spherical-wave approx-

imation was used. The effect of finite outer scale was neglected. The significance of the Frieds

parameter is that it completely specifies the long-, and short-exposure PSF in the widely adopted the-

ory due to Fried (1966). In this theory, the optical transferfunction OTF, i.e., the Fourier transform

of the PSF, for the two cases of long exposures and registered(tip-tilt corrected) short exposures is

given by:

OTFL(~ν) = OTF0(~ν) ×OTFLE(~ν) , (B.9)

OTFS(~ν) = OTF0(~ν) ×OTFS E(~ν) , (B.10)

whereOTFLE(~ν) represents the average long-exposure OTF of the atmosphere, OTFsE(~ν) is the

average short-exposure OTF of the atmosphere,OTFL(~ν) andOTFS(~ν) are the overall long- and short-
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exposure average OTFs (including the effect of the telescope diffraction). Besides, for a diffraction-

limited circular aperture of diameter D we have:

OTF0(~ν) =
2
π


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whereν = |~ν|, λ̄ is the average wavelength, andz is the distance from the exit pupil to the image

plane. Fried developed expressions forOTFLE(~ν) andOTFS E(~ν):

OTFLE(~ν) = exp
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OTFS E(~ν) = exp
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whereα is a parameter that varies between 1/2 when there are both intensity and phase variations

across the collecting aperture and 1 when only phase distortions are present. For our purposes we used

Equation B.12 with Equations B.9 and B.11 for deconvolution. This is because the object being

imaged covered several tilt-isoplanatic patches (or isokinetic patches) as can be appreciated from

Figures B.6-B.9. Global motion compensation did not removewarping from the images. Looking at

Equations B.9-B.13 one can notice that having an estimate ofr0 translates to an estimate of the PSF at

the time of the observations, as posited above. As a side remark we will mention that there is a very

simple relationship between the Frieds parameter and the refractive index structure constantC2
n, a

parameter which is more often used to describe the turbulence strength in ground-to-ground imaging:

r0 = 3.0(C2
nLk2)−3/5 , (B.14)

whereL is the distance between the object and the sensor and spherical-wave approximation was

used, again (Tyson 1998).

We measured AOA variance in the central part of our images andtranslated it to the value of r0

with the help of Equation B.8. Subsequently, using Equations B.9, B.11, B.12, and the fast Fourier

transform, we generated a synthetic PSF corresponding to the observations. In the experiment with

the point source (1cm lamp), whereby the turbulence-induced object motion is most definitely iso-

planatic, we obtained very good agreement with the scintillometer measurement: 2.79cmvs. 2.91cm

(both values normalized to 500nmwavelength). For the target observations, which accordingto the

scintillometer measurements experienced similar strength of turbulence as the point-source observa-

tions (Figure B.4), the values were in disagreement: 2.26cmvs. 2.94cm. Nevertheless, we will show

that turbulence estimates obtained directly from the data proved to be closer to the truth than estimates

from the scintillometer.

As a final remark we want to mention that the isoplanatic angle(not the tilt isoplanatic angle) is

related tor0 (Tyson 1998):
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θ0 ≈ 0.6r0/L , (B.15)

where constantC2
n along the propagation distanceL was assumed, as is usually done. We have

calculated thatθ0 was around eight times smaller than the target (the 20cmlamp). Therefore, we were

working in anisoplanatic conditions.

B.4 Results

In this section we will present results of image reconstruction based on different algorithms and dif-

ferent PSFs. In Figures B.6-B.9 the caption “fast RL” corresponds to the SGP-RL algorithm, and

the caption “MAP” corresponds to the MISTRAL algorithm. Thecaption “data” corresponds to the

summed target image which was supplied to the deconvolutioncodes.

1. Case one, using the synthetic PSF estimated from AOA fluctuations: this is the nominal case.

Here, PSF was computed as described in Section B.3.2. The results were better at least visually

compared to the trials where other PSFs were used. The results are presented in Figure B.6.

2. Case two, using a smaller synthetic PSF (from AOA fluctuations artificially reduced by a factor

of 0.8): here we wanted to check how good our PSF estimate from image motion actually is.

The results are presented in Figure B.7. The figure shows generally worse image quality as

compared to Figure B.6 indicating that our initial PSF estimate was close to the truth. Similar

results were obtained when AOA fluctuations were scaled by a factor of 1.2.

3. Case three, using synthetic PSF from motion of the “point source”: as the scintillometer mea-

surements indicated that the target and the PSF observations should have similar level of aberra-

tions, and because estimation of AOA fluctuations from point-source images is trivial compared

to estimation performed on the target data, we also used a synthetic PSF based on motion of the

point source. The results, presented in Figure B.8, were again worse than in the nominal case.

4. Case four, using “point source” image as the PSF: here we wanted to test the suitability of bea-

con PSF (Figure B.3, right panel) for the task of image reconstruction of the target data. This

is the “mismatched”-PSF case in Table B.1. The results were significantly worse compared to

the nominal case. Only MISTRAL was able to perform satisfactory image reconstruction, thus

showing the power of the blind/myopic approach. The results are shown in Figure B.9.
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Figure B.6: Results of image reconstruction based on PSF computed from the AOA variance.

Figure B.7: Results of image reconstruction based on PSF computed from the AOA variance but with AOA fluctuations
artificially reduced by a factor of 0.8.

Figure B.8: Results of image reconstruction based on PSF computed from the AOA variance in the point-source data.

Figure B.9: Results of image reconstruction based on a “real” PSF (Figure B.3, right panel).



138 Roberto Baena Gallé. Universitat de Barcelona.

B.5 Summary

We have compared theoretical PSF estimates with in-situ measurements and with the estimates based

on the scintillometer output. It is clear that target-data-based estimates are closer to the truth than

estimates based on the auxiliary data. A number of codes, each representing different philosophy in

attacking the problem, were employed for the task of image reconstruction. It was shown that when

a carefully estimated PSF is available, the classic, non-blind Richardson-Lucy approach can perform

very well. This is important as this approach can be summarized in approximately ten lines of code,

and the execution of such code, when limited to only several iterations and preferably accelerated,

should not last longer than 0.1son a modern desktop PC.



Appendix C

High-contrast, adaptive-optics simulations

for HARMONI

Poster presented in the 2nd International Conference on adaptive optics for extremely large telescopes,

held in Victoria B.C. (Canada) on the 25-30th of April, 2011.

Press here to access the abstract on the official Conference website.

Abstract - HARMONI is a proposed visible and near-infrared integral field spectrograph for the

European Extremely Large Telescope. We are exploring the potential of using HARMONI for high-

contrast science, e.g., observations of exoplanets. Although HARMONI is not fed by extreme adap-

tive optics we show that substantial contrasts can be achieved by combining single-conjugate AO

with coronagraphy and post-processing of the hyperspectral data cube using spectral deconvolution.

HARMONI will be well suited for follow-up spectroscopy of planets detected by 8 m. class instru-

ments, emphasizing their characterisation. We implement models of telescope aberrations: due to

wind buffeting on M1, due to windshake on M2, due to rolled segment edges, as well as the ones

resulting from M1 phasing and individual segment warping affected by thermal and gravity effects.

Additionally, we investigate the impact of post-AO differential aberrations. We also look at possible

improvements to spectral deconvolution which is our methodof choice for data post-processing. Fi-

nally, we make predictions of achievable contrast which translates to the ability to characterise various

types of exoplanets in detail.
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142 Roberto Baena Gallé. Universitat de Barcelona.



Appendix D

The Wavelet Transform.

The wavelet transform (WT) is now a well-known tool with hundreds of practical applications in

physics, mathematics and engineering. Its theoretical support was developed more than 20 years ago

and a wide bibliography is available nowadays (Chui 1992; Daubechies 1992; Meyer 1993; Kaiser

1994; Vetterli & Kovacevic 1995). WT is related to thesparsityconcept or sparse representation

of a signal, which consists of transforming the data or imagein such a way that the information is

represented by only a few non-zero coefficients. In other words, a signalf (x) = f [1], ..., f [N] is said

to be sparse if most of its entries are equal to 0, i.e.,f (x) is a k-sparse signal of cardinalityk ≪ N

if it is a signal for which exactlyk samples have a non-zero value. If a signal is not sparse, it can be

sparsifiedin the appropriate transform domain, e.g., the wavelet domain.

D.1 A brief excursion into wavelets

WT was designed to overcome the limitations observed with the Fourier transform (FT), which is well

suited to the study of stationary signals or non-time-dependent data. FT describes signals by means

of basis functions that consist of a combination of sine and cosine functions; hence, their frequency

content is time-independent or, in other words, the description provided by FT is complete in the

frequency domain. However, many signals or datasets in reallife are only non-zero for a short period

of time, e.g.: a voice signal imparts information in both thetime and frequency domains; or important

features of an image, such as edges, are highly spatially localized. Such signals do not resemble

any of the Fourier basis functions so FT cannot represent them appropriately. Therefore, WT aims to

provide the advantage of combining the information in both the frequency domain and the time/spatial

domain simultaneously.

In WT, as with FT, a signal is described by means of a finite basis function, named themother

wavelet, which is scaled and translated in order to create a set of basis functions. In one dimension, it

can be expressed as follows:

ψa,b(x) =
1
√

a
ψ

(

x− b
a

)

, (D.1)

143
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wherea > 0 andb are real numbers. The variablea reflects the scale whileb specifies position

along thex-axis.ψ(x) is the mother wavelet and must satisfy the admissibility criterion (Chui 1992):

Cψ =

∫ ∞

−∞

|ψ(s)|2
|s| ds< ∞. (D.2)

Due to the presence ofs in the denominator, it is necessary that:

ψ(0) = 0⇒
∫ ∞

−∞
ψ(x)dx= 0. (D.3)

That is, the mother wavelet has zero mean and, as a consequence, so do all its translations and

scalings. Sinceψ(∞) = 0 too, the frequency response of the mother wavelet is similar to a band-pass

filter; indeed, any band-pass filter impulse response with zero mean that decays to zero fast enough

with increasing frequency can be used as the mother wavelet and, as a consequence, they are said to

havecompact support. Figure D.1 shows different examples of typical mother wavelet functions.

Figure D.1: Different examples of mother wavelet functions. Left: Mexican hat function. Middle: Morlet function.
Right: Meyer function.

The continuous wavelet transform (CWT - first introduced by Grossman & Morlet (1984)) of a

signal f (x) with respect to a waveletψ(x) is defined as an inner product:

Wf (a, b) =< f , ψa,b >=

∫ ∞

−∞
f (x)ψa,b(x)dx, (D.4)

The original signalf (x) can be recovered by:

f (x) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
Wf (a, b)ψa,b(x)db

da
a2
. (D.5)

CWT has the properties of:

1. a linear transformation, i.e., for any scalarα1 andα2, if f (x) = α1 f1(x)+α2 f2(x) thenWf (a, b) =

α1Wf1(a, b) + α2Wf2(a, b),

2. covariance under translation, iff0(x) = f (x− x0) thenWf0(a, b) =Wf (a, b− x0),

3. covariance under dilation, iffs(x) = f (sx) thenWfs(a, b) = 1√
s
Wf (sa, sb).
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In contrast, as with FT, it is possible to define a wavelet series expansion by specifying the scalings

and translations by integer numbers instead of real ones. Furthermore, if the scaling is shrunk by a

factor of 2 (binary scaling) and the translation is a shift ofk/2 j (dyadic translation), wherek is

translation andj determines the scaling, both of which are integer numbers, and if we restrictf (x) as

well as the mother wavelet to functions that are 0 outside theinterval [0, 1], then the family of basis

functions can be indexed by a single indexn = 2 j + k (for j = 0, 1, ... andk = 0, 1, ..., 2 j − 1). It

will be orthonormal if the set{ψn(x)} forms an orthonormal basis ofL2(R) (Chui 1992; Castleman

1996). Under such conditions, we have created a compactdyadic waveletdescribed by the following

equations:

ψn(x) = 2 j/2ψ(2 j x− k), (D.6)

cn =< f , ψn >= 2 j/2

∫ ∞

−∞
f (x)ψ(2 j x− k)dx, (D.7)

f (x) =
∞
∑

n=0

cnψn(x), (D.8)

wherecn are the wavelet coefficients. The redundancy of CWT is thus dramatically reduced;

indeed, if only one of theψn(x) is similar to f (x), then the series can be truncated to a few terms with

no appreciable error.

Lastly, the discrete wavelet transform (DWT) is the most useful for image compression, analysis

and processing. It can also be calculated as an inner product, however, obtaining the mother function

is more complicated. In a nutshell, there are three basic techniques for calculating DWT (Castleman

1996): filter bank theory, multiresolution or time-scale analysis and subband coding.

• Filter bank theory consists of filtering the signal through aset of ideally non-overlapping band-

pass filters in order to analyze its frequency content independently. Thus, the signal is convolved

by a certain number of filter transfer functions. Since such filters are designed to be real and

even, both in time and frequency, the reflection in the convolution integral has no effect and it

can be seen as a simple inner product. In the real case, the band-pass filters are designed to have

smoothed edges and it is not possible to avoid a certain amount of overlapping between them.

Filter bank theory offers a convenient means of representing signals composed of oscillatory

components; however, it is not well suited to image analysissince, in general, the localized

components of interest are not oscillatory but only includeone cycle or part of a cycle, like

edges, lines or spots. The objects in an image are observed tooccur at different size scales, e.g.,

a spot can be a single pixel or several of them, an edge can be a clear transition from black to

white or it can occur gradually along a certain distance. Themultiresolution approach to image

analysis tries to exploit this idea.

• One of the most common ways to implement multiresolution theory is by means of pyramidal

algorithms. This consists of successively reducing the size of the image by a factor of 2, by
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averaging 2x2 pixel blocks each time discarding every second row and column of pixels, and

analyzing the resulting image by, for instance, a 3x3 edge detection operator. In this way, if we

analyze a 1024x1024 image, we will be able to find small edges in the original image, larger

ones in the following 512x512 image, even larger ones in the 256x256, etc.

Burt & Adelson (1983) introduced a pyramid code based on the Gaussian function. The image

f0(i, j) is low-pass filtered with a Gaussian impulse response and the result is subtracted from

the original image. The high-frequency detail in the image is retained in this difference image.

Then, the low-pass filtered image can be subsampled without loss of detail. The process is

illustrated in Figure D.2. The basic equations that describe the process are:

f1(i, j) = [ f0 ∗ g](2i, 2 j) and h1(i, j) = f0(i, j) − [ f0 ∗ g](i, j). (D.9)

Images are decoded in the reverse order. Each subsampled image fk(i, j), beginning with the

last one, is scaled to its previous sizek− 1 by inserting zeros as necessary and interpolated by

convolution withg(i, j). The result is then added to the previous imagefk−1(i, j) and the process

is repeated on the resulting image until the original image is recovered. This reconstructs the

original image without error. The similarity between the multiresolution and filter bank theories

is evident and they have been unified under WT.

Figure D.2: The Laplacian pyramid coding scheme. —After Castleman (1996) —.

• Finally, subband coding seeks to decompose a signal or imageinto narrow-band components

by band-pass filtering and to represent those components, without redundancy, in such a way

as for it to be possible to reconstruct the original signal without error (Woods & O’Neill 1986).

The signalf (t) is uniformly sampled, with spacing equal to∆t, to form f (i∆t). This sampled

signal is then low-pass filtered to yield the low-resolutionsignalg0(i∆t), which retains the basic

shape off (i∆t) but without the details. Therefore,g0(i∆t) can be sampled, with spacing as large

as 2∆t, without introducing aliasing. This process is calledsubsamplingor decimation.

In contrast, the originalf (i∆t) signal can be filtered with a half-band band-pass filter in order to

isolate the frequencies that were removed in the previous stage. A high-frequency sampled ver-

siong1(i∆t) is then created. Thus,g0(i∆t) andg1(i∆t), taken together, contain all the information
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present inf (i∆t).

f (i∆t) = g0(i∆t) + g1(i∆t). (D.10)

Two-channel subband coding only requires filteringf (i∆t) through two filtersh0(i∆t) andh1(i∆t)

(Fig. D.3) yielding:

g0(k∆t) =
∑

i

f (i∆t)h0((−i + 2k)∆t), (D.11)

g1(k∆t) =
∑

i

f (i∆t)h1((−i + 2k)∆t). (D.12)

Figure D.3: 2-channel subband coding.

And the reconstruction formula:

f (i∆t) = 2
∑

k

[

g0(k∆t)h0((−i + 2k)∆t) + g1(k∆t)h1((−i + 2k)∆t)
]

, (D.13)

in the Fourier domain:

F(s) = 2

[

1
2

G0(s)H0(s) +
1
2

G1(s)H1(s)

]

=

= 2

[

1
2

F(s)H0(s)H0(s) +
1
2

F(s)H1(s)H1(s)

]

=

= F(s)
[

H2
0(s) + H2

1(s)
]

,

(D.14)

and the two filters must satisfy the condition:

H2
0(s) + H2

1(s) = 1 f or 0 ≤ |s| ≤ sN =
1

2∆t
. (D.15)

In order to obtain the rest of the scales, we can proceed in thesame way with the output of

the resulting low-pass filtered signals at each resolution level (Fig. D.4). Therefore, since

H2
1(s) = 1− H2

0(s), a well-selected low-pass filter is all that is needed to design DWT. Such a

filter must be symmetrical in order for equation D.15 to hold.The impulse response of such a
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filter is called thescaling vector h0(k), from which we can generate the related scaling function

φ(t) and, from these, we can also generateh1(k) = (−1)kh0(−k+1), and the mother waveletψ(t),

as well as their respective scaled and translated orthonormal versions:

φ(t) =
∑

k

h0(k)φ(2t − k) =⇒ φ j,k = 21/2φ(2 jt − k) j = 0, 1, ... k = 0, 1, ..., 2 j − 1 (D.16)

ψ(t) =
∑

k

h1(k)φ(2t − k) =⇒ ψ j,k = 21/2ψ(2 j t − k) j = 0, 1, ... k = 0, 1, ..., 2 j − 1 (D.17)

Figure D.4: N-channel subband coding.

The scaling function can be built as a weighted sum of half-scale copies of itself, usingh0(k) as

the weights. If the scaling vector has a finite number of non-zero entries, thenφ(t) andψ(t) and

the resulting wavelets will all have compact support (Daubechies 1988). Finally, given the set

of orthonormal wavelets, DWT of the sampled functionf (i∆t) of f (t) is:

cj,k =
∑

i

f (i∆t)ψ j,k(i∆t) and f(i∆t) =
∑

j,k

cj,kψ j,k(i∆t). (D.18)

A special case is the biorthogonal WT, which uses two different wavelet basis,ψ(t) andψ̃(t),

one for decomposition and the other for reconstruction. Thetwo wavelets can be considered to

be dual and they are biorthogonal if:

< ψ j,k, ψ̃l,m >= δ j,lδk,m. (D.19)

Then we would have two different sets of coefficients for the decomposition:

cj,k =< f (x), ψ̃ j,k(x) > and dj,k =< f (x), ψ j,k(x) >, (D.20)
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whereas for the reconstruction:

f (x) =
∑

j,k

cj,kψ j,k(x) =
∑

j,k

d j,kψ̃ j,k(x). (D.21)

Biorthogonal wavelets allow us, for instance, to build wavelet mother functions that only consist

of odd or even functions (Castleman 1996).

WT now has a wide range of applications in different branches of applied science, including

astronomy, seismology, biology and medical imaging. Furthermore, applications in image processing

cover image compression, image fusion, deconvolution, etc.

D.2 The B3-splineà trous algorithm

While biorthogonal WTs are suitable for image compression,results are not so good for image anal-

ysis or restoration, such as denoising, deconvolution and detection, which are typical applications

in astronomy. This is due to the loss of the translation-invariance property in DWT, which leads to

the presence of artifacts when the wavelet coefficients are modified (Starck et al. 2010). In contrast,

the loss of visual resolution at low frequency scales when the decimated WT is applied, is not very

practical for visually inspection of any kind of image.

For these reasons, the astronomy community has preferred the use ofundecimatedWTs, where all

the scales keep the original resolution. Of course, the amount of information grows with the number

of scales, increasing the number of wavelet coefficients and, consequently, the computational costs.

However, this drawback is assumed to be of less importance and easily overcome.

In order to do this, the filter bank construction is kept by creating fast and dyadic algorithms

where the decimation step is eliminated. A very efficient way to implement this approach is the à

trous algorithm (Holschneider et al. 1989; Shensa 1992). Hence, coefficientscj+1[k] andω j+1[k] can

be defined as:

cj+1[k] = (g( j) ⋆ cj)[k] =
∑

l

g[k]cj[k + 2 j l], (D.22)

ω j+1[k] = (h( j) ⋆ cj)[k] =
∑

l

h[k]cj[k+ 2 j l], (D.23)

whereh( j) andg( j) are, respectively, the high-pass and low-pass filters and⋆ denotes for the dis-

crete convolution operator. The filterg( j) is identified with even points, i.e.:

g( j)[k] =















g[k] i f k/2 j is an integer

0 otherwise
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Since there is no decimation there is no need to meet the de-aliasing condition either. This leads

to a higher degree of freedom when designing synthesis prototype filter banks in the same way as, for

instance, with non-orthogonal filter banks (Starck et al. 2010).

On the other hand, if filters are symmetric, i.e., they are equal to their time-reversed versions, and

if they are also isotropic for two or more dimensions, and so too are the mother and scaling functions,

then they will be well adapted for the analysis of most astronomical data, since such data are more

or less isotropic in most cases (Starck & Murtagh 2006). Therefore, we will have built the so-called

isotropic undecimated wavelet transform (IUWT), also calledstarlet wavelet transform(Starck et al.

2010) because of its close relationship to the astronomicalcontext, or better-known as theB3-spline

à trous wavelet transform (Starck & Murtagh 1994), since the historical scaling function used for its

implementation is aB3-spline, which resembles a 2-D Gaussian function, thus fitting a stellar profile.

The most important properties of the à trous algorithm are (Starck et al. 1995):

1. reasonable computational requirements,

2. easy to program,

3. in 2-D, the transform is nearly isotropic,

4. compact scaling functions can be used,

5. the reconstruction is trivial,

6. the transform is known at each pixel, allowing detection with no interpolation and no error,

7. the evolution of the transform can be followed from one scale to the next,

8. it is invariant under translation.

The à trous algorithm is based on the discrete scalar product at k pixels of the functionf (x) with

the scaling functionφ(x), which corresponds to a low-pass filter. The result of this product is the

sampled datac0(k):

c0(k) =< f (x), φ(x− k) > . (D.24)

The scaling function must satisfy the dilation equation:

1
2
φ(

x
2

) =
∑

l

g(l)φ(x− l), (D.25)
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whereg is a discrete low-pass filter associated with the scaling functionφ. The distance between

scales is increased by a factor of 2, so the transform is dyadic. The smoothed datacj(k) at a given

resolutionj and at a certain positionk is given by the scalar product:

cj(k) =
1
2 j
< f (x), φ(

x− k
2 j

) >, (D.26)

which is obtained by:

cj(k) =
∑

l

g(l)cj−1(k+ 2 j−1l). (D.27)

Therefore, the wavelet coefficients at resolutionj are given by the difference:

ω j(k) = cj−1(k) − cj(k), (D.28)

which can be expressed as a scalar product too:

ω j(k) =
1
2 j
< f (x), ψ(

x− k
2 j

) > . (D.29)

This is DWT for a resolutionj. The wavelet functionψ is defined by:

1
2
ψ(

x
2

) = φ(x) − 1
2
φ(

x
2

). (D.30)

A B-spline of degree 3 is used for the scaling functionφ(x). The coefficients for a convolution

mask in one dimension are (1
16

1
4

3
8

1
4

1
16

), from which a 5x5 mask for 2 dimensions can easily

be devised :





















































1
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1
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1
256

1
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1
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3
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1
16

1
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9
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1
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1
16

1
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1
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1
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3
128

1
64

1
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



















































There are several ways to handle the boundaries, the most general is probably to considerc(k +

N) = c(N − k). Other methods, such as periodicityc(k+ N) = c(k) or continuityc(k+ N) = c(N) can

be used.

Finally, the original imagec0 can be expressed in terms of its wavelet coefficients as a series

expansion:

c0(k) = cp +

p
∑

j=1

ω j(k), (D.31)

where the last smoothed arraycp(k) must be added to all the wavelet coefficients, corresponding

to all the scales of representation, in order to obtain a reconstruction formula of the original data.
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At each scalej we obtain a wavelet plane represented by the set of wavelet coefficients{ω j}, which

has the same number of pixels as the original image and, consequently, this WT is not very suitable

for image compression purposes. The steps involved in the àtrous algorithm can be summarized as

follows:

1. Setj to 0 and start with datacj(k).

2. Incrementj, and carry out the discrete convolution of the datacj−1(k) using the filterg. The

distance between the central pixel and the adjacent ones is 2j−1.

3. Wavelet planej is given by the differencecj−1(k) − cj(k).

4. If j is less than the numberp of resolutions we want to achieve, then go to step 2.

5. The final setW = {ω0, ..., ωp, cp} is the wavelet representation of the data.

Image D.5 shows a wavelet decomposition of galaxy M100 usingthe à trous algorithm. All the

wavelet images{ω j} have the same size as the original image (subpanel A). It is possible to observe

how fine details (e.g., noise, faint stars, etc.) have been classified into high-frequency wavelet planes

(subpanels B and C) whereas wide structures (e.g., galaxy core) are represented in low-frequency

planes (subpanels E and F). It is interesting to compare thisimage with figure E.8, corresponding to

the curvelet decomposition of the same galaxy.

Figure D.5: Decomposition of a 256x256 image of galaxy M100 in 4 wavelet planes and 1 residual smoothed array. A)
original image, B)ω0, C)ω1, D) ω2, E)ω3 and F) final smoothed arraycp. Images are represented in zscale.



Appendix E

The Curvelet Transform.

The curvelet transform (CT) was designed by Candès & Donoho(2001, 2002) to generalize the

wavelet transform (WT) as well as to overcome some of its drawbacks. WT performs very well

at representing point-like singularities and isotropic features at all scales and locations; however, it

does not properly describe highly anisotropic elements, such as lines or curves, since wavelets are

non-geometrical and not sensitive to the regularity of edges. Following this reasoning, CT was pro-

posed as an effective model that not only considers a multiscale time-frequency local partition, but

also makes use of the direction of features. Furthermore, inthe two-dimensional case, CT allows

an almost optimal sparse representation of objects. Although CT has been used in the astronomical

context for different purposes, such as contrast enhancement of or artifactremoval from Saturn im-

ages (Starck et al. 2003), the study of stellar oscillations(Lambert et al. 2006) and the detection of

non-Gaussian signatures in cosmic microwave background observations (Starck et al. 2004), its use

is far from being as general as that of WT.

CT belongs to the family of multiscale directional transforms that whose aim is to identify geo-

metric features. Other members of this family go by the namesof: ridgelet (Candès & Donoho 1999),

contourlet (Do & Vetterli 2005), shearlet (Guo & Labate 2007), beamlet (Donoho & Huo 2002), ban-

dlet (Mallat & Peyré 2007), platelet (Willett & Nowak 2003), surfacelet (Lu & Do 2007), wedgelet

(Donoho 1999), grouplet (Mallat 2009), directionlet (Velisavljevic et al. 2006) and directional wavelet

transforms (Fernandes et al. 2003). A useful review and summary of CT is outlined by Ma & Plonka

(2010).

E.1 The Continuous Curvelet Transform

The continuous CT (CCT) is described by Candès & Donoho (2003a,b). A curvelet family of complex-

valued waveforms is constructed in the frequency domain using polar coordinates by defining the

windowUa(r, ω):

Ua(r, ω) := a3/4W(ar)V

(

ω
√

a

)

0 < a ≤ 1 (E.1)
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whereV(t) andW(r) are the so-called angular and radial windows, respectively, which can be

defined by means of scaled Meyer windows (Daubechies 1992):

V(t) =



























1 i f |t| ≤ 1/3,

cos[ π2ν(3|t| − 1)] i f 1/3 ≤ |t| ≤ 2/3,

0 otherwise,

(E.2)

W(r) =







































cos[ π2ν(5− 6r)] i f 2/3 ≤ r ≤ 5/6,

1 i f 5/6 ≤ r ≤ 4/3,

cos[ π2ν(3r − 4)] i f 4/3 ≤ r ≤ 5/3,

0 otherwise,

(E.3)

andν(x) is a smooth function that must satisfyν(x) + ν(1− x) = 1, as well as:

ν(x) =















0 i f x ≤ 0,

1 i f x ≥ 1.

(E.4)

Some examples ofν(x) are provided by Ma & Plonka (2010) (e.g.,ν(x) = x, x ∈ [0, 1]). TheUa

support is a polar wedge that depends on the W and V supports (Fig. E.1 fora = 1 and Fig. E.2 for

a = 1/2 anda = 1/8). It is possible to observe the effect of scaling:Ua becomes longer and thinner

for decreasinga.

Figure E.1: Left: windowU1(ξ). Right: the corresponding support. —After Ma & Plonka (2010) —.

A basic curvelet element is then given by the Fourier transform of the windowUa. Let ϕa,0,0 ∈
L2(R2):

ϕ̂a,0,0(ξ) := Ua(ξ), (E.5)
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and the whole family is generated by rotation and translation of the basic element:

ϕa,b,θ(x) := ϕa,0,0(Rθ(x− b)), (E.6)

with the translationb ∈ R2, and whereRθ =















cosθ − sinθ

sinθ cosθ















is the 2x2 rotation matrix with

angleθ. Thus, the curvelet functionϕa,b,θ is a 3-parameter function: the scalea ∈ (0, 1], the location

b ∈ R2 and the orientationθ ∈ [0, 2π).

It should be noted that rotation in the spatial domain through an angleθ corresponds to rotation in

the frequency domain, also with angleθ since

ϕ̂a,b,θ(ξ) = e−i〈b,ξ〉ϕ̂a,0,0(Rθξ) = e−i〈b,ξ〉Ua(Rθξ). (E.7)

The curvelet functionsϕa,b,θ are complex and have the following properties:

1. Support in the frequency domain: the ˆϕa,b,0 support can be seen in Figures E.1 and E.2 forθ = 0

and for different values ofa. Forθ > 0, this support is rotated clockwise byθ.

Figure E.2: Supports of the windowsU1/2(ξ) (gray) andU1/8(ξ) (light gray). —After Ma & Plonka (2010) —.

2. Support in the time domain and oscillation properties: since ϕ̂a,b,θ has compact support, the

curvelet functionϕa,b,θ cannot have compact support in the time domain. From Fourieranal-

ysis, it is known that the decay ofϕa,b,θ(x) for large |x| depends on the smoothness of ˆϕa,b,θ

in frequency domain. The smoother ˆϕa,b,θ, the faster the decay. By definition, ˆϕa,0,0 is sup-

ported away from the vertical axisξ1 = 0 but near the horizontal axisξ2 = 0. Hence, for

small a ∈ (0, 1] the functionϕa,0,0 oscilates less in thex2-direction (with a frequency of ap-

proximately
√

a) and oscillates much more in thex1-direction (with frequencies of approxi-

mately 1/2a). The essential support of the amplitude spectrum ofϕa,0,0 is a rectangle of size

[−π/2a, π/2a] × [−π/
√

a, π/
√

a], and the decay ofϕa,0,0 away from this rectangle depends on

the smoothness ofUa with respect to the functionν. From equation E.6 we can clearly see that

the essential support ofϕa,b,θ(x) is the rectangle rotated through the angleθ and translated a

distanceRθb.

3. Vanishing moments: since the support of ˆϕa,b,θ is away from (0, 0), the functionsϕa,b,θ have a
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mean value of zero. Furthermore, ˆϕa,b,θ have infinite directional moments, i.e., for all bivariate

polynomialsp(x) with x ∈ R2 of arbitrary degree and for all anglesθ we find that:

∫

R2
p(Rθb)ϕa,b,θ(x)dx= 0, (E.8)

where againRθ denotes the rotation matrix with angleθ. This observation is a direct conse-

quence of the smoothness ofϕa,b,θ.

Finally, the CCTΓ f of f ∈ L2(R2) is given by an inner product:

Γ f (a, b, θ) := 〈ϕa,b,θ, f 〉 =
∫

R2
ϕa,b,θ(x) f (x)dx. (E.9)

The curvelet coefficients〈ϕa,b,θ, f 〉 contain all the information aboutf if its Fourier transform

vanishes for|ξ| < 2, in which case,f can be recovered with the following Calderón-like formula

(Candès & Donoho 2003b):

f (x) =
1

(ln 2)

∫ 2π

0

∫

R2

∫ 1

0
Γ f (a, b, θ)ϕa,b,θ(x)

da
a3/2

db
a1/2

dθ
a
. (E.10)

This formula is valid for high-frequency scales and is generalized for all frequencies by Candès & Donoho

(2003b).

E.2 The Discrete Curvelet Transform

The first implementation of the discrete CT (DCT) was performed as a combination of the WT and

the ridgelet transform (RT). Since the ridgelet transform is better suited to straight lines than curves

or edges (Starck et al. 2010), the idea was to analyze different scales of representation locally in order

to approximate possible curvatures as straight lines. Hence, the image was decomposed by means

of WT, in order to obtain different scales of resolution, and each one of the wavelet planes was then

divided into blocks (whose size depended on the resolution)which could be analyzed independently

by RT. This was the so-called first generation of curvelets (Candès & Donoho 2002). However, such

curvelet construction presented a complicated seven-parameter structure and was computationally

very expensive.

In contrast, the second generation (Candès & Donoho 2004; Candès et al. 2006) exhibit a simpler

index structure with only three parameters and much lower redundancy, yielding faster algorithms.

Hence, DCT can be obtained by conveniently sampling the three parameters that define the scale,

location and orientation. We therefore have:

• the scalesa j := 2− j , j ≥ 0;

• the sequence of rotation anglesθ j,l := πl2⌈ j/2⌉

2 , with l = 0, 1, ..., 4 ·2⌈ j/2⌉−1, where⌈x⌉ denotes

the smallest integer greater than or equal to x;
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• the positionsb j,l
k = b j,l

k1,k2
:= R−1

θ j,l

(

k1
2j ,

k2

2j/2

)T
, with k1, k2 ∈ Z, and whereRθ denotes the rota-

tion matrix with angleθ.

For example, forj = 0 we consider the anglesθ0,l = πl/2, with l = 0, 1, 2, 3 and the positions

b j,l
k ∈ Z2. For j = 4, the anglesθ4,l = πl/8, with l = 0, ..., 15 and, depending on the anglesθ4,l, eight

different grids for translation are considered, where rectangles of size 1/16× 1/4 are rotated byθ4,l,

with l = 0, ..., 7 (Fig. E.3). In particular, the choice of positions yields aparabolic scaling of the grids

with the relationshiplength≈ 2− j/2 andwidth≈ 2− j.

Figure E.3: Grid for θ4,0 = 0 and forθ4,1 = π/8. —After Ma & Plonka (2010) —.

As for CCT, we can define the scaled windows in polar coordinates:

U j(r, ω) := 2−3 j/4W(2− jr)V

(

2 · 2⌈ j/2⌉ω
π

)

= 2−3 j/4W(2− jr)V

(

ω

θ j,1

)

, j ∈ N0, (E.11)

where bothW(r) andV(ω) are smooth, nonnegative and real-valued. The basic curvelet is defined

by:

φ̂ j,0,0(ξ) := U j(ξ), (E.12)

and the family of curvelet functions is given by:

φ j,k,l(x) := φ j,0,0(Rθ j,l (x− b j,l
k )). (E.13)

In the frequency domain, the curvelet functions

φ̂ j,k,l(ξ) = e−i〈bj,l
k ,ξ〉U j(Rθ j,lξ) = e−i〈bj,l

k ,ξ〉2−3 j/4W(2− jr)V

(

ω + θ j,l

θ j,l

)

, (E.14)

are supported inside the polar wedge with radius 2j−1 ≤ r ≤ 2 j+1 and angle2−⌈ j/2⌉π(−1−l)
2 < ω <

2−⌈ j/2⌉π(1−l)
2 . Theφ̂ j,k,l support does not depend on the positionb j,l

k . For example,̂φ2,k,l(r, ω) is supported

inside the wedge with 2≤ r ≤ 8 and (−1−l)π
4 ≤ ω ≤ (1−l)π

4 , for l = 0, ..., 7 (Fig. E.4).

Every function f ∈ L2(R2) can be represented as a curvelet series. The curvelet coefficients are

obtained from the inner productcj,k,l( f ) := 〈 f , φ j,k,l〉:

cj,k,l( f ) :=
∫

R2
f (x)φ j,k,l(x)dx=

∫

R2
f̂ (ξ)φ̂ j,k,l(ξ)dξ. (E.15)
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Figure E.4: Maximal supports of̂φ2,k,0 and φ̂2,k,5 (dark gray); ofφ̂3,k,3, φ̂3,k,6 and φ̂3,k,13 (light gray); and ofφ̂4,k,0 and
φ̂4,k,11 (mid gray). SupportsV ⊂ [−1, 1] andW ⊂ [−1/2, 2]. —After Ma & Plonka (2010) —.

where equation E.15 makes use of Plancherel’s theorem (j ≥ 0). This construction implies that

curvelets exhibit an oscillatory pattern in the direction perpendicular to their orientation.

Therefore, the discrete transform takes as its input data that are defined on a Cartesian grid, and

it outputs a collection of coefficients. The continuous-space definition of the CT uses coronae and

rotations that are not especially adapted to Cartesian arrays. Hence, it is desirable to replace these

concepts by their Cartesian counterparts, i.e., concentric squares instead of concentric circles and

shears instead of rotations (Fig. E.5).

Hence, it would be necessary to substitute the angular and radial windows by their Cartesian

equivalents:

Ũ j(ξ) := 2−3 j/4W̃j(ξ1)V j(ξ) = 2−3 j/4W̃j(ξ1)V

(

2⌈ j/2⌉ξ2

ξ1

)

, (E.16)

whereW̃j can be a window based on the subtraction of low-pass filters, i.e., with a band-pass filter

profile (see Candès et al. (2006) for some examples), andṼ j remains the same. The frequencies are

then determined in the trapezoid:

{(ξ1, ξ2) : 2 j−1 ≤ ξ1 ≤ 2 j+1;−2−⌈ j/2⌉ · 2
3
≤ ξ2/ξ1 ≤ 2−⌈ j/2⌉ · 2

3
}. (E.17)

The windowŨ0 is presented in Figure E.6, which is the Cartesian equivalent of Figure E.1.

Now we define a set of equispaced slopes instead of equidistant angles:

tanθ j,l := l2−⌈ j/2⌉, l = −2⌈ j/2⌉ + 1, ..., 2⌈ j/2⌉ − 1. (E.18)
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Figure E.5: Left: Continuous curvelet frequency tiling. A wedge is obtained as the product of the radial window
(annulus shown in a lighter shade) and the angular window (darker area). It’s dimensions are shown as 2J by 2j/2. Right:
Discrete curvelet frequency tiling. The window̃U j(ξ) isolates the frequency near a trapezoidal wedge such as those shown
in light gray. —After Starck et al. (2010) —.

Which means that the curvelet-like functions are given by:

ˆ̃φ j,0,0 := Ũ j(ξ), (E.19)

φ̃ j,k,l(x) := φ̃ j,0,0

(

ST
θ j,l

(x− b̃ j,l
k )

)

, (E.20)

which is the Cartesian counterpart of equation E.13, with the shear matrixSθ =















1 0

− tanθ 1















and wherẽb j,l
k := S−T

θ j,l
(k12− j , k22−⌈ j/2⌉). The set of curvelets̃φ j,k,l needs to be completed by symmetry

and by rotation through±π/2 radians in order to obtain the whole family. Furthermore, it is neces-

Figure E.6: Left: window Ũ0(ξ). Right: the corresponding support. —After Ma & Plonka (2010) —.
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sary to consider suitable corner elements to connect the four cones (north, west, south and east) as

well as extending this support to coarse curvelet elements for low frequencies, as was done for CCT

(Ma & Plonka 2010).

The digital implementation of DCT, whose coefficients are now given by:

cj,k,l( f ) := 〈 f , φ̃ j,k,l〉 =
∫

R2
f̂ (ξ)Ũ j(S

−1
θ j,l
ξ)ei〈b̃j,l

k ,ξ〉dξ, (E.21)

can be evaluated by the following steps for discrete data:

1. Compute the 2-D FFT to get̂f .

2. Form the windowed frequency dataf̂ Ũ j.

3. Apply the inverse Fourier transform.

However, the last step needs to evaluate the FFT at the sheared grid Sθ−T
j,l

, for which the classical

FFT algorithm is not valid. Candès et al. (2006) proposes two possible implementations, essentially

differing in the way in which they handle the grid. The first is called unequispaced-FFT (USFFT) and

consists of a tilted grid closely aligned with the axes ofŨ j. This implementation uses a nonstandard

interpolation and the inverse transform uses conjugate gradient iteration to invert the interpolation

step, which has its computational cost.

Alternatively, the wrapping-based DCT uses a grid aligned with the Cartesian input grid, so it

makes for a simpler choice of the spatial grid to translate the curvelets. The curvelet coefficients are

approximated usingkj = (k12− j , k22−⌈ j/2⌉)T instead of̃b j,l
k with values on a rectangular grid. However,

a difficulty arises again because the windowŨ j does not fit in a rectangle of size 2j × 2 j/2, to which

an inverse FFT could be applied. The wrapping consists of periodizing the windowed frequency data

f̂ Ũ j and reindexing the sample array by wrapping it around an approximate 2j × 2 j/2 rectangle cen-

tered on the origin (Fig. E.7).

The algorithm to compute DCT via wrapping contains the following steps:

1. Apply the 2-D FFT and obtain the Fourier coefficients f̂ (ξ).

2. For each scalej and orientationl:

• form the productf̂ Ũ j;

• wrap this product around the origin;

• apply the inverse 2-D FFT to the wrapped data to get curvelet coefficientscj,k,l.
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Figure E.7: Wrapping data in a parallelepiped by periodicity. Here the angleθ is in the range (π/4, 3π/4). The parallel-
ogram is the tile that contains the curvelet frequency support. The rectangle is centered on the origin. The wrapped ellipse
appears broken but this is not an issue in the periodic rectangle where opposite edges are identified. —After Candès et al.
(2006) —.

Image E.8 shows the curvelet coefficients at each scale of galaxy M100 transferred to the im-

age domain. Although it is more convenient to work with the coefficients in the curvelet domain,

where all the capabilities of CT can be fully exploited, it isanyway interesting to compare this im-

age with Figure D.5 to see differences in the classification process between curvelets andwavelets

(Baena Gallé & Núñez 2010). Notice that the visual information associated with the galactic cloud

hardly appears in the high-frequency curvelet planes (Fig.E.8 subpanels B and C) whereas its contri-

bution to the corresponding wavelet plane is significant (Fig. D.5 subpanels B and C).

Figure E.8: Decomposition of a 256x256 image of galaxy M100 in 4 curveletplanes (transferred to the image domain)
and 1 residual smoothed array. A) original image, B)c0, C) c1, D) c2, E) c3 and F) final smoothed array. Images are
represented in zscale.
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Baena Gallé, R., Núñez, J. & Gladysz, S. Extended object reconstruction in adaptive-optics imag-

ing: the multiresolution approach. 2013, Astronomy and Astrophysics, 555(A69).
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Duchêne G., McCabe, C., Pinte, C., Stapelfeldt, K.R., Ménard, F., Duvert, G., Ghez, A.M. et al.

Panchromatic observations and modeling of the HV Tau C edge-on disk. 2010, The Astro-

physical Journal, 712(1), 112-129.

Dupuy, T.J. & Liu, M.C. On the distribution of orbital eccentricities for very low-mass binaries.

2011, The Astrophysical Journal, 733(2), article id. 122 (14pp).

Eisenhauer, F., Quirrenbach, A., Zinnecker, H. & Genzel, R.Stellar content of the galactic star-

burst template NGC 3603 from adaptive optics observations.1998, The Astrophysical Journal,

498, 278-292.

Esslinger, O. & Edmunds, M.G. Photometry with adaptive optics: A first guide to expected per-

formance. 1998, Astronomy and Astrophysics Supplements Series, 129, 617-635.

Esposito, S., Riccardi, A., Fini, L., Puglisi, A.T., Pinna,E. et al. First light AO (FLAO) system

for LBT: final integration, acceptance test in Europe, and preliminary on-sky commissioning

results. 2010, Proceedings of the SPIE, 7736, 773609-773609-12.
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Lühe, O. von der. Estimating Fried’s parameter from a time series of an arbitrary resolved object

imaged through atmospheric turbulence, 1984, Journal of the Optical Society of America A,

1, 510-519.

Ma, J. & Plonka, G. The Curvelet transform: A review of recentapplications. 2010, IEEE Signal

Processing Magazine, 27(2), 118-133.

Mahan, A.I. Astronomical refraction. Some history and theories. 1962. Applied Optics, 1(4), 497-

511.
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