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Summary

We present here a brief, precise overview of the contents of this Thesis.
The main topic of the Thesis is the interplay between numerical invariants
of a projective complex variety (or more generally, compact Kähler) and
the properties of its fibrations over lower-dimensional varieties (if any). In
fact, we have restricted the problem to irregular varieties, that is, varieties
admitting non-zero holomorphic differential 1-forms. Because of this restric-
tion, Abelian varieties (in particular, the Picard and Albanese varieties) will
appear all along the memory.

Part I: Hodge numbers of irregular varieties

The first part of the Thesis deals with irregular varieties of arbitrary
dimension, giving numerical conditions on their Hodge numbers that imply
the existence of fibrations, or more generally, obtaining some inequalities
between the Hodge numbers of varieties admitting some special subspaces
of holomorphic forms.

In order to avoid unnecessary repetitions, if nothing is said explicitly X
will denote a smooth irregular variety, either complex projective or compact
Kähler, of dimension d and irregularity q = q (X) = dimH0 (X,Ω1

X).
It is known that some class of fibrations of an irregular variety X are

closely related to the cohomological support loci V i (X), which are the
closed subsets of Pic0 (X) defined as

V i (X) =
{
L ∈ Pic0 (X) |hi (X,ωX ⊗ L) 6= 0

}
.

The basic results about these loci can be summarized in the following

Theorem 1.3.2 ([19] Th. 0.1, [41]). Let W be an irreducible component of
some V i (X). Then

1. there exist a subtorus Z ⊆ Pic0 (X) and a torsion point β ∈ Pic0 (X)
such that W = β + Z, and

2. there exists a fibration f : X → Y onto a normal variety Y of dimen-
sion dimY ≤ d− i, such that (any smooth model of) Y is of maximal
Albanese dimension and Z ⊆ f ∗ Pic0 (Y ).

Hodge numbers of irregular varieties and fibrations 1



2 SUMMARY

Partial Euler characteristics

Our first family of results is inspired in the BGG complex introduced
by Lazarsfeld and Popa in [27]. By truncating the BGG complex after
some steps, and using the same techniques, we study the partial Euler
characteristics of X, which are defined as follows.

Definition 2.1.1. For any integer 0 ≤ i ≤ d, we define the i-th partial
Euler characteristic of X as

χi (X) = hi (X,ωX)− hi+1 (X,ωX) + · · ·+ (−1)d−i hd (X,ωX) .

To be precise, we obtain the following general inequalities.

Proposition 2.1.3. If X is any irregular variety, then

χk (X) ≥ 0 for every k ≥ d− dim albX (X) .

Theorem 2.1.4. Let k be an integer such that d− dim albX (X) ≤ k < d.
If X does not admit any irregular fibration f : X → Y with dimY < d− k,
or more generally, if OX is an isolated point of V i (X) for all i > k, then

χr (X) ≥ (q (X)− dimX) + r

for all k ≤ r < d.

Proposition 2.1.3 is also a consequence of the generic vanishing results
of Green and Lazarsfeld [18] and their relation with the exactness of the
derivative complexes studied also in [13], while Theorem 2.1.4 is analo-
gous to the higher-dimensional Castelnuovo-de Franchis inequality proved
by Pareschi and Popa in [31], and later by Lazarsfeld and Popa in [27]. In
fact, we prove Theorem 2.1.4 following the ideas of the latter.

After checking with some examples that these inequalities do not seem
to be sharp, we exploit the functorial behaviour of the BGG complex
to get much stronger inequalities for some varieties. Recall (Definition
2.1.12, taken from [35]) that an m-dimensional smooth subvariety Y ⊆ A
of an Abelian variety A is geometrically non-degenerate if the restriction
H0 (A,Ωm

A ) → H0 (Y, ωY ) is injective. We prove some general results about
these subvarieties that ultimately give the following

Corollary 2.1.16. Let X be a smooth n-dimensional irregular variety such
that its Albanese image Y = albX (X) is smooth of dimension m = dimY .
Assume moreover that OX ∈ V i (X) is isolated for every i > n − m and
that Y is geometrically non-degenerate. Then

χn−r (X) ≥

(
q (X)− 1

r

)
∀ r = 1, . . . ,m− 1.
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In particular, if X is primitive (hence of maximal Albanese dimension) and
its Albanese image is smooth and non-degenerate, then

χr (X) ≥

(
q (X)− 1

dim (X)− r

)
∀ r = 1, . . . , dimX − 1.

Higher-rank derivative complexes

Following the same stream of obtaining new inequalities between the
Hodge numbers of X, we introduce the following higher-rank generalization
of the derivative complex.

Definition 2.2.1. Fix integers r ≥ 1 and 0 ≤ j ≤ d, set n = min {r, d},
and fix a linear subspace W ⊆ H0 (X,Ω1

X). We define Cj
r,W as the complex

(of vector spaces)

0 −→ SymrW ⊗Hj (X,OX) −→ Symr−1W ⊗Hj
(
X,Ω1

X

)
−→ · · ·

· · · −→ Symr−iW ⊗Hj
(
X,Ωi

X

)
−→ · · ·

· · · −→ Symr−nW ⊗Hj (X,Ωn
X)

where the maps µji : Sym
r−iW ⊗Hj (X,Ωi

X) → Symr−i−1W ⊗Hj
(
X,Ωi+1

X

)

are given by

µji ((w1 · · ·wr−i)⊗ [α]) =
r−i∑

t=1

(w1 · · · ŵt · · ·wr−i)⊗ [wt ∧ α] .

It is worth noting that, although the complexes Cj
r,n,W above are gener-

alizations of the derivative complexes, they have not been obtained from a
“derivative construction”. In fact, they are defined directly as above.

The higher-rank derivative complexes can be seen as the result of ap-
plying the j-th cohomology functor to the complex of sheaves

Cr,W : 0 −→ SymrW ⊗OX −→ Symr−1W ⊗ Ω1
X −→ · · ·

· · · −→ Symr−iW ⊗ Ωi
X −→ · · · −→ Symr−nW ⊗ Ωn

X .

Following an approach inspired in Section 3 of [18], we study the ex-
actness of the Cj

r,W with the combined use of two spectral sequences, both
abutting to the hypercohomology of Cr,W . As in [18], one of the spectral
sequences degenerates at the second page (see Proposition 2.2.10), but the
other one is not so well behaved. In fact, the second spectral sequence de-
pends on the cohomology sheaves Hj of Cr,W , which can be computed in
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some cases with the help of Eagon-Northcott type complexes. Indeed, Cr,W
is dual to such a complex Er (φW ), which is constructed from the dual φW
of the evaluation map

evW : W ⊗OX −→ Ω1
X .

Eagon-Northcott complexes have been extensively studied (see for example
[14] Appendix A.6, [25] Appendix B, [8] or [1]), and their exactness depends
on the degeneracy loci of φ. For any positive integer i, let

Zi (W ) =
{
p ∈ X | rk

(
evW (p) : W −→ Ω1

X (p)
)
< i
}
,

the locus where the 1-forms in W do not span a subspace of dimension at
least i, and make the following

Definition 2.2.12 (Non-degenerate subspace). We say that a subspace
W ⊆ H0 (X,Ω1

X) is non-degenerate if

codimZi (W ) ≥ d− i+ 1 ∀ 1 ≤ i ≤ min {dimW, d} .

It turns out that, if W is non-degenerate, the Eagon-Northcott com-
plex Er (φ) is exact and the cohomology sheaves Hi of Cr,W = Er (φ)

∨ are
easy to compute (Lemma 2.2.14). Finally, using the two spectral sequences
mentioned above, we can prove the following general result.

Theorem 2.2.15. If W is non-degenerate, then the complex

Cj
r,W : 0 −→ SymrW ⊗Hj (X,OX) −→ · · ·

· · · −→ Symr−iW ⊗Hj
(
X,Ωi

X

)
−→ · · ·

· · · −→ Symr−nW ⊗Hj (X,Ωn
X)

is exact at least in the first d− dimW − j + 1 steps.

Subvarieties of Abelian varieties

In the case that X is a subvariety of an Abelian variety A such that
H0 (X,Ω1

X) = H0 (A,Ω1
A), there are non-degenerate subspaces of any di-

mension 1 ≤ k ≤ q (X) (Proposition 2.2.20). Hence Theorem 2.2.15 gives
in particular the following

Corollary 2.2.22. If X is a subvariety of an Abelian variety A such that
H0 (X,Ω1

X) = H0 (A,Ω1
A), and p, j ≥ 0 satisfy max{p, j} ≤ d+1− (p+ j),

then

hp,j (X) ≥

(
d+ 1− (p+ j)

p

)(
d+ 1− (p+ j)

j

)
.
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Improvements for h2,0 (X)
All the previous results are not directly related with the fibrations of

X. In fact, they depend on the existence of non-degenerate subspaces of
1-forms, with the further restriction that they must have dimension k ≤ d.
Fortunately, the complex C0

2,W is easy to study more or less by hand, and
much better results can be obtained.

Consider the wedge product map ψ2 :
∧2H0 (X,Ω1

X) → H0 (X,Ω2
X).

An element v ∈
∧2H0 (X,Ω1

X) has rank 2k if it can be expressed as

v = v1 ∧ v2 + · · ·+ v2k−1 ∧ v2k

for some linearly independent v1, . . . , v2k ∈ H0 (X,Ω1
X), and there is no such

a expression with fewer terms (Definition 2.3.1).
Consider also the Grassmannian variety Gm = Gr (m,H0 (X,Ω1

X)) of
m-dimensional subspaces of H0 (X,Ω1

X). It is possible to glue all the C0
2,W

into the following complex of vector bundles on Gm,

C0
2 : 0 −→ Sym2 S −→ S ⊗H0

(
X,Ω1

X

)
−→ OG ⊗H0

(
X,Ω2

X

)
,

where S is the tautological subbundle of Gm. In fact, this can be done for
any Cj

r,W , obtaining higher-rank analogues of the BGG complex.
With these notations, the main result concerning C0

2 is the following

Theorem 2.3.3. Fix a positive integer k ≤ q
2
. If every non-zero element in

kerψ2 has rank bigger than 2k, then the complex C0
2 on G2k is generically

exact.

Counting dimensions we obtain an inequality for h2,0 (X).

Corollary 2.3.4. If there is no non-zero element of rank 2k ≤ q in kerψ2,
then

h2,0 (X) ≥ 2rq −

(
2r + 1

2

)

for all 1 ≤ r ≤ k.

If X is not fibred, then all non-zero elements in kerψ2 have rank at least
2d (Lemma 2.3.7). Hence, taking the maximum of the right-hand sides of
the above inequalities for 1 ≤ r < d, we obtain the final

Theorem 2.3.9. Let X be an irregular variety without fibrations over
smaller-dimensional irregular varieties. Then it holds

h2,0 (X) ≥

{(
q(X)
2

)
if q (X) ≤ 2 dimX − 1

2 (dimX − 1) q (X)−
(
2 dimX−1

2

)
otherwise.
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This Theorem generalizes the Castelnuovo-de Franchis inequality to
higher dimensions, but in a different way than the works of Lazarsfeld,
Pareschi and Popa ([31, 27]). The case q ≤ 2d − 1 can be easily deduced
from the work [10] of Causin and Pirola. On the other hand, for the gen-
eral case q ≥ 2d, Theorem 2.3.9 improves several inequalities obtained by
Lombardi in [28] for d = 3, 4 (with slightly more restrictive hypothesis than
only the non-existence of fibrations).

Comparing the two methods

In the final section of the first part of the Thesis we consider a different
approach that could produce the same inequalities of Theorem 2.3.9, but
starting from the general Theorem 2.2.15. If this new method works, it
could be extended to other Cj

r and used to find stronger inequalities for
Hodge numbers other than h2,0 (X).

This new approach depends on general computations on the cohomol-
ogy algebra of Grassmannian varieties, which we have only been able to
carry out in some small cases. We have observed some regularities in these
computations that would give the desired result (see Conjecture 2.4.4 and
Proposition 2.4.5), but we have been unable to proof that they hold in the
general case.

Part II: Fibred surfaces

In the second part of the Thesis, the scope is restricted, with some
exceptions, to irregular surfaces fibred over a curve. The main objective is
to prove the following

Theorem 6.3.4. Let f : S → B be a fibration of genus g, relative irregu-
larity qf and Clifford index cf . If f is non-isotrivial, then

qf ≤ g − cf .

Recall that the genus and the Clifford index of a fibration are respec-
tively the genus and the Clifford index of a general fibre (Definitions 3.1.5
and 3.4.1), and that the relative irregularity qf = q (S)− g (B) is the differ-
ence between the irregularities of the total space S and the base B (Defini-
tion 3.1.6). Recall also that a fibration is isotrivial if all its smooth fibres
are isomorphic (Definition 3.1.4).

In order to reach such a result, we have previously studied some aspects
of infinitesimal deformations of smooth curves (Section 4.1), which we have
then extended to arbitrary one-dimensional families of curves (Section 4.3).
We have also developed some results about adjoint images (Chapter 5),
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which are a very useful tool to study both infinitesimal and local deforma-
tions of varieties of Albanese general type.

Infinitesimal deformations of smooth curves

In the first section of Chaper 4 we develop some ideas about infinites-
imal deformations of smooth curves introduced by Collino and Pirola in
[11], specially the concept of divisor supporting a deformation. Let C be a
smooth compact curve of genus g ≥ 2,

C −→ SpecC [ǫ] /
(
ǫ2
)

an infinitesimal deformation, and let ξ ∈ H1 (C, TC) be its Kodaira-Spencer
class. It is said (Definition 4.1.8) that ξ is supported on an effective divisor
D if and only if it belongs to the kernel of

H1 (C, TC) −→ H1 (C, TC (D)) .

We say furthermore that ξ is minimally supported on D if and only if it is
not supported on any other effective divisor E < D.

From another point of view, ξ corresponds to the extension of locally
free sheaves on C

ξ : 0 −→ N∨
C/C

∼= OC −→ Ω1
C|C −→ ωC −→ 0,

and it is supported on D if and only if the pull-back sequence ξD splits.

ξD : 0 // N∨
C/C

// FD
//

� _

��

ωC (−D) //
� _

��

rr ]_ace
0

ξ : 0 // N∨
C/C

// Ω1
C|C

// ωC // 0

In fact, this definition (in any of its equivalent forms) can be extended
to infinitesimal deformations of irregular varieties of any dimension (see
Definition 5.1.3).

In a more geometrical flavor, one can define the span 〈D〉 of D inside the

bicanonical space P
(
H0
(
C, ω⊗2

C

)∨)
= P (H1 (C, TC)) as the intersection of

all the hyperplanes schematically containing D. Then ξ is supported on D
if and only if the point [ξ] lies on 〈D〉.

The main result about infinitesimal deformations of smooth curves is
the following theorem (due to Ginensky [17]), which gives a lower-bound
on the rank of the cup-product map

∪ ξ : H0 (C, ωC) −→ H1 (C,OC)

(written rk ξ for short) in terms of some invariants of a divisor D minimally
supporting ξ.
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Theorem 4.1.17. If ξ is minimally supported on D, then

rk ξ ≥ degD − 2 dim |D| .

One dimensional families of curves

After a technical interlude to introduce the relative Ext sheaves Extif
(Section 4.2), we devote the last section of Chaper 4 to extend to arbitrary
(one-dimensional) families of curves some of the concepts and results known
for infinitesimal deformations. To be precise, let f : S → B be a fibration
from a smooth surface S onto an analytical smooth curve B (not necessarily
compact). Assume also that f is not isotrivial.

The role of the Kodaira-Spencer class of an infinitesimal deformation is
now played by the exact sequence

ξ : 0 −→ f ∗ωB −→ Ω1
S −→ Ω1

S/B −→ 0,

which serves as a definition of the sheaf of relative differentials Ω1
S/B.

We define the relative bicanonical space P as the projective bundle cor-
responding to the sheaf

E = Ext1f
(
Ω1
S/B, f

∗ωB
)
,

that is, P = ProjOB
(Sym∗ E∨). The extension ξ gives a section of E , which

is not identically zero because f is not isotrivial. Hence, it induces a section
γ : B → P, which sends a general point b ∈ B to the class of the infinitesimal
deformation of the fibre Cb = f−1 (b).

Given any subscheme Γ ⊂ S, we define its span PΓ ⊆ P (Definition
4.3.11) in such a way that over a general point b ∈ B it coincides with the
span of the divisor Γ ∩ Cb in the context of infinitesimal deformations. As
a consequence of the way we construct PΓ, it turns out to depend only on
the divisorial components of Γ dominating B (Corollary 4.3.15).

Let LΓ be the kernel of the composition

Ω1
S/B

α
→ ωS/B → ωS/B|Γ

(for more details about the relative canonical sheaf ωS/B = ωS ⊗ f ∗ω∨
B and

the map α see Section 3.2). Denote by ξΓ the pull-back sequence

ξΓ : 0 // f ∗ωB // FΓ
//

� _

��

LΓ
//

� _

��

0

ξ : 0 // f ∗ωB // Ω1
S

// Ω1
S/B

// 0
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One could be tempted to define ξ to be supported on Γ if and only if
LΓ splits. In general, this direct definition is too restrictive, so we have
introduced a slightly more relaxed one (Definition 4.3.13). Although we do
not reproduce it here because it is quite technical, we can informally say
that ξ is supported on Γ if for a general b ∈ B, the deformation of the fibre
Cb is supported on Γ ∩ Cb.

One of the main properties of this definition is that it also can be char-
acterized in terms of the span of Γ.

Proposition 4.3.14. The deformation ξ is supported on Γ if and only if
the image of γ : B → P lies in PΓ.

Also, in some cases, it can be characterized in terms of the splitting of
the pull-back ξΓ.

Lemma 4.3.17. Assume that Γdiv, the divisorial subscheme of Γ, satisfies

Γdiv · Cb < 2g − 2

for some smooth fibre Cb. Then ξ is supported on Γ if and only if the
pull-back sequence ξΓ splits.

Adjoint images

In order to prove Theorem 6.3.4, we will first need to produce a sub-
scheme supporting the fibration, or more generally, a subsheaf L ⊆ Ω1

S/B

such that the pull-back of ξ splits. This is accomplished using adjoint im-
ages.

Adjoint images were introduced by Collino and Pirola in [11] for in-
finitesimal deformations of curves, and then extended to higher dimensions
by Pirola and Zucconi in [34]. We devote the first sections of Chapter 5 to
give an overview of the basic definitions and known results (basically, the
Adjoint and Volumetric Theorems), which can be summarized as follows.

Let X → SpecC [ǫ] / (ǫ2) be an infinitesimal deformation of an irregular
varietyX of dimension d, and denote by ξ ∈ H1 (X,TX) its Kodaira-Spencer
class. Let W ⊆ H0 (X,Ω1

X) be a (d+ 1)-dimensional subspace contained in

Kξ = ker
(
H0
(
X,Ω1

X

) ∪ ξ
−→ H1 (X,OX)

)

= im
(
H0
(
X,Ω1

X|X

)
−→ H0

(
X,Ω1

X

))

with basis w1, . . . , wd+1. Define W d ⊆ H0 (X,ωX) as the image of
∧dW

by wedge product, and let DW be the base divisor of the induced sublinear
system of |ωX | (assuming W d 6= 0).
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By the definition of Kξ, we can choose some infinitesimal extensions

si ∈ H0
(
X,Ω1

X|X

)
of the wi. Their wedge product

σ = s1 ∧ · · · ∧ sd+1

belongs toH0
(
X,ωX|X

)
, which is isomorphic toH0 (X,ωX) by the Poincaré

residue map. The content of the Adjoint Theorem (Theorem 5.1.4) is that
σ ∈ W d if and only if ξ is supported on DW . In this case, it is said that the
adjoint class of W vanishes.

Our results about adjoint images concern only deformations of curves,
giving numerical conditions that guarantee the existence of subspaces with
vanishing adjoint class. We first deal with an infinitesimal deformation ξ of
a curve C of genus g.

Theorem 5.2.7. If V ⊆ Kξ has dimension dimV > g+1
2

, then there exists
some 2-dimensional subspace W ⊆ V with vanishing adjoint class.

In order to prove it we construct the adjoint map, a map of vector
bundles on the Grassmannian G of 2-dimensional subspaces of Kξ, which
vanishes at a point W ∈ G if and only if its adjoint image vanish. Then a
computation of Chern classes finishes the proof.

All the discussions so far consider only infinitesimal deformations, but
our setting is a global family of curves (over a compact curve B). Hence
we devote the final section of Chapter 5 to construct a global version of the
adjoint map. Since we need to consider 1-forms on every fibre that extend
infinitesimally, we take the vector space

V = H0
(
S,Ω1

S

)
/f ∗H0 (B,ωB) ⊆ H0

(
S,Ω1

S/B

)
,

which has dimension qf , and then consider vector subbundles of V ⊗OB of
rank 2. With a construction analogous to the case of infinitesimal deforma-
tions above, the global adjoint map, we can prove the second main result
concerning adjoint images.

Theorem 5.3.4. If

qf >
g + 1

2
,

then there exist a finite change of base π : B′ → B and a rank-two vec-
tor subbundle W ⊆ V ⊗ OB′ whose associated global adjoint map vanishes
identically.

Finally, after changing the base of the fibration by π, the Adjoint The-
orem implies (Proposition 6.3.7) that the subsheaf we are looking for is the
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image of the relative evaluation map

f ∗W −→ Ω1
S′/B′ .

In the language of supporting subschemes, this is equivalent to say that the
fibration is supported on the zero locus of the above map.

Isotriviality of fibrations

The final chapter of the Thesis contains the proof of Theorem 6.3.4, part
of which is based on the following structure result.

Theorem 6.3.1. Let f : S → B be a fibration of genus g and relative
irregularity qf ≥ 2. Suppose it is supported on an effective divisor D such
that D · C < 2g − 2 and h0

(
C,OC

(
D|C

))
= 1 for some smooth fibre C.

Then, after finitely many blow-ups and a change of base, there is a different
fibration h : S → B′ over a curve of genus g (B′) = qf . In particular S is a
covering of the product B×B′, and both surfaces have the same irregularity.

In fact, Theorem 6.3.1 can be considered as the most important result
in Chapter 6, giving a criterion for the isotriviality of fibred surfaces.

The proof of Theorem 6.3.1 relies on the following technical proposition,
whose proof is the content of Section 6.2. As a matter of language, we say
that a subsheaf L ⊆ Ω1

S/B lifts to Ω1
S if there is an injective map L →֒ Ω1

S

factoring the inclusion into Ω1
S/B (Definition 6.2.1). Equivalently, L ⊆ Ω1

S/B

lifts to Ω1
S if the pull-back sequence ξL is split.

Proposition 6.2.2. Assume that f : S → B is a fibration with reduced
fibres. If a rank-one subsheaf L →֒ Ω1

S/B satisfies deg
(
L|Cb

)
> 0 for some

smooth fibre Cb and lifts to Ω1
S, then there exists an effective divisor D on

S such that

1. the inclusions L →֒ Ω1
S/B and ωS/B (−D) →֒ ωS/B fit into the following

chain
L −֒→ ωS/B (−D) −֒→ Ω1

S/B

α
−֒→ ωS/B,

2. the injection ωS/B (−D) →֒ Ω1
S/B lifts to Ω1

S,

3. D · Cb < 2g − 2 for any fibre Cb,

4. D has no component contracted by f , and

5. the quotient Ω1
S/ωS/B (−D) is isomorphic to

f ∗ωB ⊗OS (D)⊗ IZ

for some finite subscheme Z ⊂ S, hence torsion-free.
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Roughly speaking, Proposition 6.2.2 says that from a supporting sub-
scheme Γ (or subsheaf of Ω1

S/B lifting to Ω1
S) which is not too big on a general

fibre, we can obtain a subdivisor D ⊂ Γ with much better properties and
still supporting the deformation.

Finally, we include an alternative proof of a case of Theorem 6.3.4 which
works also for local deformations (in fact, it is a local version of Theorem
6.3.1). It falls in the context of the Volumetric Theorem of Pirola and
Zucconi [34], assuming that there is a map from the fibration to a trivial
family of Abelian varieties. The precise statement is

Proposition 6.3.9. Suppose that f : S → B is a fibration where the base B
is a smooth, not necessarily compact curve. Assume that there is an Abelian
variety A of dimension a, and a morphism Φ : S → A × B respecting the
fibres of f and such that the image of any restriction to a fibre φb : Cb → A
generates A. Suppose also that the deformation is supported on a divisor
D ⊂ S such that h0 (Cb,OCb

(D)) = 1 for general b ∈ B. If a > g+1
2

, then
f is isotrivial.
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Introduction to Part I

In the classification of higher dimensional algebraic varieties, a first step
can be to decide whether the variety admits (or not) a fibration onto a
variety of lower dimension. If the answer is positive, then one can reduce
the problem to the study of the base and the fibres, which are of lower
dimension and, somehow, eaiser than the original variety. Therefore, it is
interesting to have any kind of criteria to decide the existence of fibrations
whose total space is the given variety, and in particular, it is useful to know
conditions on the numerical invariants of the variety (e.g. its Betti, Chern
or Hodge numbers) implying that it is (or not) fibred.

A paradigmatical example is the classical Castelnuovo-de Franchis the-
orem, which says that an irregular surface S admits a fibration onto a curve
of genus g ≥ 2 if and only if there are two holomorphic 1-forms whose wedge
product is zero. This theorem gives a numerical criterion in the spirit men-
tioned above: if the geometric genus pg (S) and the irregularity q (S) of the
surface satisfy

pg (S) ≤ 2q (S)− 4, (1)

then there exist two 1-forms wedging to zero, and therefore the variety is
fibred.

The Castelnuovo-de Franchis theorem suggests that, for an irregular va-
riety X, its higher irrational pencils (fibrations analogous to surfaces fibred
over curves of genus g ≥ 2) are closely related to some special property of
the algebra of holomorphic differential forms. In fact, let A = Alb (X) be
its Albanese variety, and a = albX : X → A its Albanese morphism. Since

a∗ : H0
(
A,Ω1

A

) ∼=
−→ H0

(
X,Ω1

X

)

is an isomorphism, and H0
(
A,Ωk

A

)
∼=
∧kH0 (A,Ω1

A), the pull-back maps
a∗ : H0

(
A,Ωk

A

)
→ H0

(
X,Ωk

X

)
are precisely the wedge product maps

ψk :
k∧
H0
(
X,Ω1

X

)
−→ H0

(
X,Ωk

X

)
.

Because of this interpretation, the maps ψk are very related to the geom-
etry of X. In particular, Catanese [9] and Ran [35] proved independently
the Generalized Castelnuovo-de Franchis theorem (Theorem 1.2.3), which
roughly speaking says that the higher irrational pencils of X correspond to

Hodge numbers of irregular varieties and fibrations 15
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the decomposable elements in the kernels of the ψk. As a consequence, one
obtains that a non-fibred irregular variety X must verify

hk,0 (X) > k (q (X)− k)

for every k = 1, . . . , dimX.
Beyond the existence of decomposable elements in its kernel, the case

k = 2 has been studied by Causin and Pirola in [10], proving in particular
that ψ2 is injective for q ≤ 2d − 1, and also by Barja, Naranjo and Pirola
in [2], where they focus on the consequences of the existence of elements of
rank 2d (what they call generalized Lagrangian forms) in the kernel of ψ2.

A completely different approach is followed by Green and Lazarsfeld
in [18, 19], where they introduced the derivative complexes and related
the higher irrational pencils to the positive-dimensional components of the
cohomological support loci of the variety. This alternative characterization
led to the following different generalization of the Castelnuovo-de Franchis
inequality (1) for varieties without higher irrational pencils:

χ (X,ωX) ≥ q (X)− dimX.

This inequality was first obtained by Pareschi and Popa in [31], using the
Fourier-Mukai transform and the Evans-Griffith Syzygy Theorem, and later
by Lazarsfeld and Popa in [27], using a completely different technique: the
BGG complex, which aggregates all the possible derivative complexes into
a complex of vector bundles on a projective space. Using a similar con-
struction (a BGG complex for the sheaves Ωp

X of holomorphic p-forms),
Lombardi obtained in [28] more inequalities involving the Hodge numbers
of varieties all whose 1-forms vanish at most at isolated points (a much
more restrictive hypothesis than the non-existence of fibrations). Follow-
ing the ideas in [27], we have used the BGG complex to obtain some new
inequalities for the partial Euler characteristics of the variety.

While the derivative and BGG complexes take into account only the mul-
tiplicative structure of the algebra ⊕d

p=0H
0 (X,Ωp

X) of holomorphic forms,
we have constructed some generalizations, the higher-rank derivative and
Grassmannian BGG complexes, that also capture some of the additive struc-
ture. Although we have not been able to directly relate the exactness of
our complexes neither to the existence of fibrations nor to the cohomologi-
cal support loci of the variety, we do have proved exactness in a few steps
in terms of the degeneracy loci of a subspace W ⊆ H0 (X,Ω1

X) (Theorem
2.2.15). This approach is based on some ideas used by Green and Lazars-
feld in [18] to prove a Kodaira-Nakano type generic vanishing theorem. As
an application, we obtain sharp lower bounds for some Hodge numbers of
subvarieties of Abelian varieties.
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The exactness of the higher-rank derivative complexes of X can also be
studied by means of the ψk. In fact, these maps give a natural morphism
of complexes from the higher-rank derivative complexes of A = Alb (X)
(which are exact because A is a complex torus) to those of X. Following
this approach, it is possible to strength some of our general results men-
tioned above. In fact, we have been able to characterize the exactness of
the shortest higher-rank derivative complex in terms of the kernel of ψ2

and, as a byproduct, we have obtained a stronger lower bound for the h2,0

of a variety without higher irrational pencils (Theorem 2.3.9). This new
inequality generalizes (1) in a different way than Lazarsfeld, Pareschi and
Popa, and also generalizes some inequalities proven by Lombardi [28] for
threefolds and fourfolds.





1Chapter One

PRELIMINARIES ON IRREGULAR
FIBRATIONS

In this chapter we summarize the main known results relating fibrations of
irregular varieties and inequalities between their Hodge numbers. We first
introduce in Section 1.1 the basic notation that will be used both in this
chapter and in Chapter 2. After that, we recall in Section 1.2 the Cas-
telnuovo-de Franchis theorems, both the original version (for surfaces) and
the general one (due to Catanese and Ran). Then, we devote Section 1.3
to the most basic results about generic vanishing theory and the structure
of the cohomological support loci. To close the chapter, we briefly recall in
Section 1.4 the construction of the BGG complex and the generalization of
the Castelnuovo-de Franchis inequality obtained from it.

1.1 Definitions and notation

In this first section we set de basic notation and definitions that will be
used along Part I.

Throughout Chapters 1 and 2, X will denote a complex smooth ir-
regular projective (or more generally, compact Kähler) variety of dimen-
sion d = dimX. Quite often, for the sake of brevity, we will denote by
V = H0 (X,Ω1

X) the space of holomorphic 1-forms on X.
Recall that the irregularity of X is the dimension of V , and it is denoted

by q (X) or simply by q. Note that q will always be assumed to be positive.
The Hodge numbers of X will be denoted by

hi,j = hi,j (X) = dimCH
j
(
X,Ωi

X

)
,

and sometimes by hp,j or hp,q when no confusion may arise between the
second superindex and the irregularity.

Hodge numbers of irregular varieties and fibrations 19
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More generally, if F is a coherent sheaf of OX-modules, we will write

hi(F) = hi(X,F) = dimCH
i(X,F)

for the dimesion of its i-th cohomology group.
We will denote the holomorphic Euler-Poincaré characteristic of X as

χ (X) = χ (X,ωX) = hd,0 − hd−1,0 + · · ·+ (−1)d .

The Albanese torus of X will be denoted by A = Alb (X), and the
Albanese morphism will be written as a = albX : X → A. Recall that A is
a q-dimensional complex torus, which is projective (i.e., an Abelian variety)
if X is projective too.

Definition 1.1.1. An irregular variety X is said to be of maximal Al-
banese dimension if dim a (X) = dimX i.e., if the Albanese morphism is
generically finite.

If furthermore a is not surjective, i.e. a (X) ( Alb (X), X is said to be
of Albanese general type.

These definitions can be extended to non-smooth varieties considering
any desingularization.

Equivalently, a variety is of Albanese general type if it is of maximal Al-
banese dimension and q (X) > dimX. For example, every irregular curve
(i.e. of genus g ≥ 1) is of maximal Albanese dimension, because the Al-
banese map is nothing but the Abel-Jacobi map. Moreover, the curves of
Albanese general type are exactly the curves of genus g ≥ 2.

For any k = 1, . . . , d, let

ψk :
k∧
H0
(
X,Ω1

X

)
−→ H0

(
X,Ωk

X

)

be the map induced by wedge product. Since a∗ : H0 (A,Ω1
A) → H0 (X,Ω1

X)
is an isomorphism and H0

(
A,Ωk

A

)
∼=
∧kH0 (A,Ω1

A), we can identify ψk
with the pull-back a∗ : H0

(
A,Ωk

A

)
→ H0

(
X,Ωk

X

)
of k-forms by the Al-

banese morphism.
We will now introduce some basic notions on fibrations of irregular vari-

eties. Recall that a fibration is a surjective proper flat morphism f : X → Y
of varieties which has connected fibres. If X is compact, we can remove the
properness from the definition, while if Y is a (smooth) curve, the flatness
is automatic.

When dealing with irregular varieties, one can consider some special
classes of fibrations.



1.1 - Definitions and notation 21

Definition 1.1.2. A fibration f : X → Y is called irregular if Y is irreg-
ular. If furthermore Y is of Albanese general type, then f is said to be a
higher irrational pencil (on X).

Note that irregular fibrations (resp. higher irrational pencils) are higher-
dimensional analogues to fibrations over non-rational curves (resp. curves
of genus g ≥ 2).

We will often deal with linear subspaces of V , hence with Grassmannian
varieties. For any positive integer k, we will denote by Gk = Gr (k, V ) the
Grassmannian of k-dimensional subspaces of V . Recall that Gk is natu-

rally a subvariety of the projective space Pk = P
(∧k V

)
via the Plücker

embedding.
In general, if E is any vector space and e ∈ E is a non-zero vector, we

will denote by P (E) the projective space of one-dimensional subspaces of
E, and by [e] ∈ P (E) the point corresponding to e. With this notation, the
Plücker embedding maps the subspace spanned by v1, . . . , vk ∈ V to the
point [v1 ∧ · · · ∧ vk] ∈ Pk.

Still about Grassmannian varieties, we will denote by S ⊂ Gk × V the
tautological subbundle of Gk, i.e., the vector bundle of rank k such that
SW = W for any W ∈ Gk. The tautological quotient bundle of Gk will be
denoted by Q = (Gk × V ) /S.

For some explicit computations in the cohomology algebra of Gk, we will
use the following notation for Schubert classes. Fixed a basis {v1, . . . , vq}
of V , and given a non-increasing sequence

λ = (q − k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0),

the set

Σλ = {W ∈ Gk | dim (W ∩ C 〈v1, . . . , vq−k+i−λi〉) ≥ i}

is a closed cycle of (real) codimension 2
∑

i λi = 2 |λ|, called the Schubert
cycle associated to λ and the chosen basis. Its cohomology class, which is
independent of the choice of the basis, will be denoted by

σλ ∈ H2|λ| (Gk,C) .

We will also use symmetric powers of vector spaces and vector bundles.
If E is a vector space (or a vector bundle over some smooth variety), we will
denote by Symr E its r-th symmetric power, which is a quotient of E⊗r.
We will denote elements in Symr E using multiplicative notation, so that if
e1, . . . , er ∈ E are arbitrary elements, we will denote by e1 · · · er ∈ Symr E
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the image of e1 ⊗ · · · ⊗ er, and by er1 the image of e⊗r1 = e1⊗
r
· · · ⊗e1. Since

the base field has characteristic zero, we can also identify Symr E with the
subspace of E⊗r of symmetric tensors.

At some point, secant varieties of Gk inside Pk will appear. In general,
if Z ⊂ P (E) is any projective variety, and r is any positive integer, we will
denote by Secr (Z) ⊆ P (E) the r-th secant variety of Z i.e., the closure of
the union of the (r − 1)-planes spanned by r independent points in Z. In
particular, Sec1 (Z) = Z and Sec2 (Z) is the usual secant variety of Z. More
explicitly, Secr (Z) is the closure of the set

{[e1 + · · ·+ er] | [e1] , . . . , [er] ∈ Z} .

Finally, we will often use the following definition for complexes of vector
spaces.

Definition 1.1.3. We say that a complex of vector spaces

0 −→ V0
φ0
−→ V1

φ1
−→ · · · −→ Vk

φk−→ · · ·

is exact in the first n steps if the truncated complex

0 −→ V0 −→ V1 −→ · · · −→ Vn

is exact, or equivalently, if the (co)homology groups H i = kerφi/ imφi−1

vanish for i < n.

1.2 Castelnuovo-de Franchis theorems

It is well known that some kind of fibrations of surfaces are closely related
to the structure of the algebra of differential forms, as the following result
(which goes back to Castelnuovo and de Franchis) shows.

Proposition 1.2.1 (Castelnuovo-de Franchis, [5] Prop. X.9, or [4] Prop.
IV.5.1). Let S be a compact surface having two linearly independent holo-
morphic 1-forms w1, w2 such that w1 ∧ w2 ≡ 0. Then there exist a fibra-
tion f : S → B onto a smooth curve B of genus g ≥ 2, and 1-forms
α1, α2 ∈ H0 (B,Ω1

B) such that wi = f ∗αi for i = 1, 2.

Looking at the numerical invariants of S, this proposition has the fol-
lowing

Corollary 1.2.2 (Castelnuovo-de Franchis inequality, [4] Prop. IV.5.2). If
S is a compact surface that does not admit any fibration onto a curve of
genus g ≥ 2, then

pg (S) ≥ 2q (S)− 3. (1.1)
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In higher dimensions, we can take the higher irrational pencils as ana-
logues to fibrations over curves of genus g ≥ 2. They are related to the
maps ψk (hence to the structure of the algebra of holomorphic forms) by
the following result, which was proven independently and with very dif-
ferent techniques by Catanese and Ran, and is clearly a generalization of
Proposition 1.2.1.

Theorem 1.2.3 (Generalized Castelnuovo-de Franchis, [9] Th. 1.14, or [35]
Prop. II.1). If w1, . . . , wk ∈ H0 (X,Ω1

X) are linearly independent 1-forms
such that ψk (w1 ∧ · · · ∧ wk) = 0, then there exists a higher irrational pencil
f : X → Y over a normal variety Y of dimension dimY < k and such that
wi ∈ f ∗H0 (Y,Ω1

Y ).

This result motivates the following

Definition 1.2.4. An irregular variety X is said to be primitive if it does
not admit any higher irrational pencil.

With this definition, Theorem 1.2.3 can be restated as “X is primitive
if and only if the maps ψk are injective in decomposable elements”.

As in the case of surfaces, Theorem 1.2.3 has consequences on the Hodge
numbers of a primitive variety X.

Corollary 1.2.5. If X is a primitive irregular variety of dimension d, then

hk,0 ≥ k (q (X)− k) + 1

for every k = 1, . . . , d.

Note that, indeed, for k = d = 2 we recover the inequality (1.1).

1.3 Generic vanishing theory

We recall now the basic concepts about generic vanishing theory. The main
objects are the cohomological support loci.

Definition 1.3.1. Let X be an irregular (smooth) variety of dimension d.
The cohomological support loci of ωX are the sets

V i (X) = V i (X,ωX) =
{
L ∈ Pic0 (X) |hi (X,ωX ⊗ L) 6= 0

}
,

where i = 1, . . . , d.
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The main result about the structure of these sets and their relation to
the geometry of X was proved by Green and Lazarsfeld, with an important
addition due to Simpson (the fact that the translations are given by torsion
elements).

Theorem 1.3.2 ([19] Th. 0.1, [41]). Let X be an irregular variety of di-
mension d, and let W be an irreducible component of some V i (X). Then

1. there exist a subtorus Z ⊆ Pic0 (X) and a torsion point β ∈ Pic0 (X)
such that W = β + Z, and

2. there exists a fibration f : X → Y onto a normal variety Y of dimen-
sion dimY ≤ d− i, such that (any smooth model of) Y is of maximal
Albanese dimension and Z ⊆ f ∗ Pic0 (Y ).

As a corollary, they obtained the following result, previously proved also
by Green and Lazarsfeld.

Theorem 1.3.3 ([18] Th. 1). For any irregular variety X of dimension d,

codimPic0(X) V
i (X) ≥ i− (d− dim a (X)) .

In particular, hi (L) = 0 for general L and i < dim a (X).

Clearly, the bigger the Albanese dimension of X, the stronger this result
is, giving the best results when X is a variety of maximal Albanese dimen-
sion. In this case, the V i (X) also satisfy the following chain of inclusions

Pic0 (X) ⊇ V 0 (X) ⊇ V 1 (X) ⊇ . . . ⊇ V d (X) = {OX} .

Finally, we want to recall that the cohomological support loci V i (X)
are also related to the exactness of a special Koszul-like complexes. For any
non-zero v ∈ H1 (X,OX), consider the complex

0 −→ H0 (X,OX)
∪ v
−→ H1 (X,OX)

∪ v
−→ · · ·

∪ v
−→ Hd (X,OX) −→ 0 (1.2)

given by cup-product with v.

Lemma 1.3.4 ([13] Th. 1.2(3)). With the above notations, if v is tangent
at OX to some component of V i (X), then both maps in

H i−1 (X,OX)
∪ v
−→ H i (X,OX)

∪ v
−→ H i+1 (X,OX)

vanish, whereas if v is not tangent to any component of V i (X), then the
complex (1.2) is exact at H i (X,OX).



1.4 - The BGG complex 25

1.4 The BGG complex

To close this first chapter of preliminaries, we want to say a few words
about the BGG complex, a complex of vector bundles on P (H1 (X,OX))
introduced by Lazarsfeld and Popa in [27].

For the sake of brevity, denote by P = P(H1(X,OX)) the projective
space of one-dimensional subspaces of H1 (X,OX). Over a point [v] ∈ P,
we can consider the complex (1.2) given by successive cup product with v.
Letting [v] vary in P, these complexes glue to give the linear complex

0 → OP (−d)⊗H0 (X,OX) → OP (−d+ 1)⊗H1 (X,OX) → · · ·

· · · → OP (−1)⊗Hd−1 (X,OX) → OP ⊗Hd (X,OX) . (1.3)

Definition 1.4.1. The complex (1.3) is called the BGG complex of X, and
it is denoted by BGG (X). The cokernel of the right-most map,

F = coker
(
OP (−1)⊗Hd−1 (X,OX) −→ OP ⊗Hd (X,OX)

)
,

is called the BGG sheaf of X.

The reason for this name is that it is quite related to the BGG corre-
spondence introduced by Bernštĕın, Gel′fand and Gel′fand in [6].

The exactness of BGG (X) turns out to be governed by the Albanese
map of X and its irregular fibrations

Theorem 1.4.2 ([27] Th. A). The complex BGG (X) is exact in the first
dim albX (X) steps. Moreover, if X admits no irregular fibration, then F
is a vector bundle on P of rank rkF = χ (X), and BGG (X) is a linear
resolution of F .

Amongst other applications, the BGG complex is used by Lazarsfeld
and Popa in [27] to prove the following higher-dimensional analogue of the
Castelnuovo-de Franchis inequality (1.1). The same result has been previ-
ously obtained by Pareschi and Popa in [31], using very different methods
(namely, the Fourier-Mukai transform and the Evans-Griffith Syzygy The-
orem).

Theorem 1.4.3 ([27] Th. C(iii)). If X is an irregular variety that does
not admit any irregular fibration, or, more generally, OX ∈ Pic0(X) is an
isolated point of V i(ωX) for every i > 0, then

χ(X) ≥ q(X)− dimX.

Note that this generalization is very different from Corollary 1.2.5 for
higher dimensions, but for dimX = 2 the classical inequality (1.1) is also
recovered.





2Chapter Two

GENERALIZATIONS OF THE
DERIVATIVE AND BGG COMPLEXES

In this chapter we develop different methods to obtain inequalities between
the Hodge numbers of a smooth, compact, irregular Kähler variety, assum-
ing suitable geometric hypothesis. In particular, we obtain some general-
izations to arbitrary dimensions of some inequalities known for surfaces,
threefolds and fourfolds without higher irrational pencils.

More precisely, in Section 2.1 we generalize the methods used by Lazars-
feld and Popa in [27] (mainly, the BGG complex), obtaining inequalities for
the partial Euler characteristics of irregular varieties that do not admit fi-
brations over Albanese general type varieties of low dimension. We also
study the functoriality of our constructions, obtaning inequalities for irreg-
ular varieties whose Albanese image is smooth and non-degenerate.

In the second section, we extend the construction of the BGG complex in
order to allow not only one-dimensional subspaces. The resulting complexes
are closely related to the complexes of Eagon-Northcott type (as the BGG
complex is related to the Koszul complex of a 1-form). With this modifica-
tion, we let the additive structure of the cohomology algebra of the variety
to play a role. This extra flexibility leads to more general inequalitites
between the Hodge numbers of the variety, but also need slightly stronger
hypothesis (the non-existence of higher irrational pencils is apparently not
enough).

Section 2.3 presents a different approach to study the shortest case of the
above-mentioned complexes. Therein we obtain much stronger inequalities
than with the general method, and they are valid for every irregular variety
without higher irrational pencils (and even more general varieties).

Finally, in the fourth section, we present some methods that could lead
to the inequalities of Section 2.3 using the results in Section 2.2. They
depend on some computations on the cohomology ring of Grassmannian

Hodge numbers of irregular varieties and fibrations 27
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varieties that we have carried out in some particular cases (see Appendix
A), but we have not been able to do in the general case. Hence, some parts
of this last section are quite conjectural.

2.1 Partial Euler characteristics

In this section we introduce a generalization of the methods used in [27]
(truncated BGG complexes) to obtain linear lower bounds on the partial
Euler characteristics of an irregular variety. Later on, we compute these
partial characteristics for some families of irregular varieties (suitable sub-
varieties of Abelian varieties), and we close the section with a study of
the functorial properties of the truncated complexes to strongly improve
the linear bounds for varieties whose Albanese image is geometrically non-
degenerate.

2.1.1 First definitions

Definition 2.1.1. Let X be any (compact, smooth) variety of dimension
d = dimX, and fix an integer 0 ≤ i ≤ d. We define the i-th partial Euler
characteristic of X as

χi = χi (X) = χi (X,ωX) =

= hi (X,ωX)− hi+1 (X,ωX) + · · ·+ (−1)d−i hd (X,ωX) .

Note that χ0 (X) = χ (X) is the usual holomorphic Euler-Poincaré char-
acteristic, and on the other extreme, χd (X) = 1 and χd−1 (X) = q (X)− 1.

In Section 1.4 we have recalled the construction and main properties of
the BGG complex of X: it is the linear complex BGG (X) of vector bundles

0 → OP (−d)⊗H0 (X,OX) → OP (−d+ 1)⊗H1 (X,OX) → · · ·

· · · → OP (−1)⊗Hd−1 (X,OX) → OP ⊗Hd (X,OX) ,

on P = PX = P (H1 (X,OX)) ∼= Pq−1, which over a point [v] ∈ P is given
by cup-product with v.

Definition 2.1.2. For any r = 0, . . . , d − 1 we define the r-th BGG sheaf
of X as

F r = coker
{
OP (−r − 1)⊗Hd−r−1 (X,OX) −→ OP (−r)⊗Hd−r (X,OX)

}

Note also that for r = 0 we recover the BGG sheaf introduced by Lazars-
feld and Popa.
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By Theorem 1.4.2, the complex

0 → OP (−d)⊗H0 (X,OX) → OP (−d+ 1)⊗H1 (X,OX) → · · ·

· · · → OP (−k)⊗Hd−k (X,OX) → Fk → 0 (2.1)

is exact for any k ≥ d − dim albX (X). It is possible to split the above
complex into the short exact sequences

0 → OP (−d)⊗H0 (X,OX) → OP (−d+ 1)⊗H1 (X,OX) → Fd−1 → 0
(2.2)

and
0 −→ F r+1 −→ OP (−r)⊗Hd−r (X,OX) −→ F r −→ 0 (2.3)

for r = k, k + 1, . . . , d− 2. The next result follows immediately.

Proposition 2.1.3. If X is any irregular variety, then

χk (X) = rkFk ≥ 0 for every k ≥ d− dim albX (X) .

In particular, we recover that χ (X) ≥ 0 for any variety of maximal
Albanese dimension.

2.1.2 Linear bounds

The third statement of Theorem 1.4.3 asserts that if X does not admit any
irregular fibration, or more generally, if OX is an isolated point of V i (X)
for every i > 0, then χ ≥ q (X)− d. This result is clearly an improvement
of Proposition 2.1.3 for k = 0, hence for X of maximal Albanese dimension.
We will now prove a similar result, using the same techniques, for all the
partial Euler characteristics starting from the dimension of the general fibre
of the Albanese map.

Theorem 2.1.4. Let k be an integer such that d− dim albX (X) ≤ k < d.
If X does not admit any irregular fibration f : X → Y with dimY < d− k,
or more generally, if OX is an isolated point of V i (X) for all i > k, then

χr (X) ≥ (q (X)− dimX) + r (2.4)

for all k ≤ r < d.

Remark 2.1.5. Let us consider the extremal cases of k.

1. For k = r = 0 we recover the result of Lazarsfeld and Popa (Theorem
1.4.3).
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2. The case r = d − 1 is automatically satisfied with equality, since by
definition

χd−1 (X) = q − 1 = (q − d) + (d− 1) .

Therefore, Theorem 2.1.4 has interest only for k ≤ d− 2.

Remark 2.1.6. In the recent work [30], Mendes-Lopes, Pardini and Pirola
prove (Theorem 1.2) that a smooth projective variety X of Albanese general
type, dimension d ≥ 3, irregularity q ≥ d+1, and without higher irrational
pencils satisfies

χ1 (X) ≥ q − 1.

This inequality improves Theorem 2.1.4 for k = 1, with the only extra
assumption that X does not admit a fibration by curves over an Albanese
general type variety.

Before proceeding with the proof, we need an auxiliary lemma. It is
analogous to a result used in [27] and proved explicitly in [28], but we
prefer to prove it here for the sake of completeness.

Lemma 2.1.7. For any integer r = d − dim albX (X) , . . . , d − 1 it holds
H i (F r (m)) = 0 for every m ∈ Z and every 0 < i < q − d+ r − 1.

Proof. For r = d − 1, the short exact sequence (2.2) (twisted by OP (m))
gives the exact sequence

H i (OP (−d+ 1 +m))⊕h
1(OX) → H i

(
Fd−1 (m)

)
→

→ H i+1 (OP (−d+m))⊕h
0(OX) ,

where the outer terms vanish as soon as 0 < i < i + 1 < q − 1, that is, if
0 < i < q− 2 = q− d+ r− 1. Therefore, we obtain that H i

(
Fd−1 (m)

)
for

all m ∈ Z and 0 < i < q − d+ r − 1, as wanted.
For the rest of the cases, the sequence (2.3) (again twisted by OP (m))

gives the exact sequence

H i (OP (−r +m))⊕h
d−r(OX) → H i (F r (m)) →

→ H i+1
(
F r+1 (m)

)
→ H i+1 (OP (−r +m))⊕h

d−r(OX) ,

where again the outer terms vanish if 0 < i < q−2. Hence, for 0 < i < q−2
there are isomorphisms

H i (F r (m)) ∼= H i+1
(
F r+1 (m)

)
,

and by descending induction over r, the rightmost cohomology group vanish
for 0 < i + 1 < q − d + r, so that H i (F r (m)) = 0 if 0 < i < q − d + r − 1
as claimed.
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As Lazarsfeld and Popa did, we will use the following result on vector
bundles on projective spaces (whose proof can be found, for example, in
[26], Example 7.3.10).

Theorem 2.1.8 (Evans-Griffith). Let E be a vector bundle of rank e ≥ 2
on Pn such that

H i (Pn, E (k)) = 0 for all 1 ≤ i ≤ e− 1 and every k ∈ Z. (2.5)

Then E is a direct sum of line bundles.

Proof of Theorem 2.1.4. First of all, by Lemma 1.3.4, if a tangent vector
v ∈ H1 (X,OX) ∼= TOX

Pic0 (X) is not tangent (at OX) to any component
of V r (X), then the sequence

Hr−1 (X,ωX)
∪ v
−→ Hr (X,ωX)

∪ v
−→ Hr+1 (X,ωX)

is exact, or equivalently,

Hd−r−1 (X,OX)
∪ v
−→ Hd−r (X,OX)

∪ v
−→ Hd−r+1 (X,OX)

is exact. Therefore, if OX is an isolated point of V r (X) for every r > k, the
sequence (2.1) is exact at every point, hence the differentials have constant
rank, as well as each of the BGG sheaves F r, r = k, . . . , d − 1, which are
thus locally free.

Now Lemma 2.1.7 says that for any r = k, . . . , d − 1, F r satisfies (2.5)
for every 1 ≤ i ≤ q − d + r − 2. Hence, if χr = rkF r ≤ q − d + r − 1,
Theorem 2.1.8 implies that F r is either a direct sum of line bundles or 0
(in case rkF r = 0, since F r is locally free). Therefore, it only remains to
check that none of the F r is either zero or a sum of line bundles.

Let r be the maximal integer between k and d− 1 such that

χr ≤ q − d+ r − 1, (2.6)

and thus F r is either zero or sum of line bundles (if there is no such r,
we are done). Note that χr ≥ 0 in any case, so that we may assume
q− d+ r− 1 ≥ 0. Moreover, since χd−1 = q− 1 = (q − d) + (d− 1), we can
also suppose r < d− 1.

The inequality (2.6) implies that H i (F s (r)) = 0 for every s > r and
every i ≥ 0. Indeed, for s = d − 1, taking cohomology on the short exact
sequence (2.2) twisted by OP (r) we obtain the exact sequence

H i (OP (−d+ r + 1))⊕h
1(OX) → H i

(
Fd−1 (r)

)
→

→ H i+1 (OP (−d+ r))⊕h
0(OX) ,
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where the outer terms vanish because −d + r + 1 < −d + s + 1 = 0 and
−d+r ≥ −q+1 > −q. For s < d−1 we proceed by descending induction (as
in the proof of Lemma 2.1.7) down to s = r+1. Again, taking cohomology
on the short exact sequence (2.3) twisted by OP (r), we get

0 = H i (OP (−s+ r))⊕h
d−s(OX) → H i (F s (r)) →

→ H i+1
(
F s+1 (r)

)
→ H1 (OP (−s+ r))⊕h

d−s(OX) = 0,

where the outer terms vanish because

−q ≤ −d+ r − 1 < −s+ r − 2 < −s+ r < 0.

Therefore we have isomorphisms H i (F s (r)) ∼= H i+1 (F s+1 (r)) for every
i ≥ 0, and the second group is zero by the induction hypothesis, so that
H i (F s (r)) = 0 for every i ≥ 0 and s = r + 1, . . . , d− 1, as claimed.

We will finally show that F r cannot be neither zero nor a direct sum of
line bundles.

The sequence (2.3) twisted by OP (r) gives the exact sequence

0 = H0
(
F r+1 (r)

)
−→ Hd−r (X,OX) −→

−→ H0 (F r (r)) −→ H1
(
F r+1 (r)

)
= 0,

so that H0 (F r (r)) = Hd−r (X,OX) and F r (r) is generated by global sec-
tions (by definition, OP ⊗Hd−r (X,OX) ։ F r (r)).

Therefore, in the case F r = 0 we would have Hd−r (X,OX) = 0, and
hence F r+1 = 0 (it is a subsheaf of OP (−r)⊗Hd−r (X,OX)). Analogously,
going back through the short exact sequences (2.2) and (2.3), we would get
0 = Hd−r−1 (X,OX) = . . . = H0 (X,OX), which is clearly impossible.

Suppose then that F r descomposes as
⊕χr

j=1 OP (aj), with χr > 0 and
a1 ≥ a2 ≥ . . . ≥ aχr

. Since F r (r) =
⊕χr

j=1 OP (aj + r) is globally generated,
it must hold that aj + r ≥ 0, that is to say, aj ≥ −r for every j = 1, . . . , χr.
If a1 > −r, the sequence (2.3) twisted by OP (r − 1) gives

0 = H0
(
OP (−1)⊗Hd−r (X,OX)

)
→

χr⊕

j=1

H0 (OP (aj + r − 1)) →

→ H1
(
F r+1 (−1)

)
= 0,

where the last term vanishes because of Lemma 2.1.7 (we have assumed
q − d + r > χr ≥ 1 > 0). But the central group is not zero, since at least
the first summand of F r (r − 1) has non-negative degree.
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Hence, the only remaining possibility is F r = OP (−r)
⊕χr . But in this

case the sequence (2.3) splits, so that F r+1 ∼= OP (−r)
⊕χr+1 . This implies

that χr+1 = 0 because 0 = H0 (F r+1 (r)) ∼= Cχr+1 , but the maximality of r
implies that χr+1 ≥ q − d + r + 1 > q − d + r − 1 ≥ 0, discarding this last
case and finishing the proof.

2.1.3 Examples

In this section we compute the partial Euler characteristics of some families
of irregular varieties, and we see that the inequalities provided by Theorem
2.1.4 do not seem to be sharp.

Complete intersections of ample divisors in Abelian varieties

As a first example, we will compute the Hodge numbers of type hp,0 (and
the partial Euler characteristics) of smooth complete intersections of ample
divisors in Abelian varieties. In the case the ambient Abelian variety is
simple, the hypothesis of Theorem 2.1.4 are trivially satisfied, so that we can
use this first family of varieties to test how sharp are the inequalities (2.4).
Indeed, we will see that they are very far from being sharp except in some
special cases, and in the next section a great improvement will be obtained
(Corollary 2.1.16) for varieties whose Albanese image is (geometrically) non-
degenerate (in particular, the intersections of ample divisors).

Let thus A be an Abelian variety of dimension g. Remember that its
Hodge numbers are hp,q (A) =

(
g
p

)(
g
q

)
, so that

hr (ωA) = hg,r (A) =

(
g

r

)
.

and the partial Euler characteristics of A, for r < g, are

χr (A) =

g∑

j=r

(−1)j−r
(
g

r

)
=

(
g − 1

r − 1

)
=

(
g − 1

g − r

)
.

Let now Θ1, . . . ,Θq−d ⊆ A be ample divisors such that the complete
intersection X = Θ1∩ . . .∩Θq−d is a smooth d-dimensional subvariety. The
next theorem computes the partial Euler characteristics of X.

Theorem 2.1.9. The partial Euler characteristics of X are

χk (X) =

(
g − 1

d− k

)
∀ k > 0,
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χ (X) =
∑

I⊆{1,...,g−d}
I 6=∅

(−1)g−d−|I| h0

(
A,OA

(∑

i∈I

Θi

))
.

Proof. Let F1 =
⊕g−d

i=1 OA (−Θi) and let

σ : F1 −→ F0 = OA

be the addition of all the inclusions OA (−Θi) →֒ OA. Clearly, the image of
σ is the ideal sheaf IX of X, so the cokernel of σ is precisely OX .

For any 1 ≤ r ≤ g − d denote by Fr =
∧r F1

∼=
⊕

|I|=rOA

(
−
∑

i∈I Θi

)

and let

K : 0 −→ Fg−d −→ Fg−d−1 −→ · · · −→ F1
σ

−→ F0 −→ 0

be the Koszul complex associated to σ, which is a locally free resolution of
OX (this can be taken as well known, but it is quite immediate to prove
using Theorem 2.2.9 in the next section, with φ = σ and r = 0).

Therefore, we have Hn (X,OX) = Hn (A,K), where the second term can
be computed for n < d by means of the spectral sequence

Ei,j
1 = Hj (A,Fg−d−i) =⇒ Hn (A,K) .

But since the Θi are ample, Ei,j
1 = 0 unless i = g − d = codimX or

j = g = dimA, and therefore Ei,j
∞ = Ei,j

1 = Hj (A,Fg−d−i) for all i+ j < d.
In fact, for fixed i+j = n < d, the only non-zero term is E0,n

1 = Hn (A,OA).
This means that

Hn (X,OX) = Hn (A,K) ∼= ⊕i+j=nE
i,j
∞ = Hn (A,OA) ,

so that h0,n (X) = h0,n (A) =
(
g
n

)
for all n < dimX, hence

χr (X) = χg−d+r (A) =

(
g − 1

g − d+ r − 1

)
=

(
g − 1

d− r

)

for every r > 0.
Finally, for r = 0, note that

χ0 (X) = χ (X,ωX) = (−1)d χ (X,OX) = (−1)d
g−d∑

r=0

(−1)r χ (A,Fr) ,
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and since all the Θi are ample,

χ (A,Fr) =
∑

|I|=r

χ

(
A,OA

(
−
∑

i∈I

Θi

))
=

= (−1)g
∑

|I|=r

χ

(
A,OA

(∑

i∈I

Θi

))
=

=

{
χ (A,OA) = 0 if r = 0,

(−1)g
∑

|I|=r h
0
(
A,OA

(∑
i∈I Θi

))
otherwise.

Let us check now whether the inequalities

χr (X) ≥ (q − d) + r

hold, distinguishing the cases r > 0 and r = 0.
The case r > 0 is straightforward, because

χr (X) =

(
q − 1

d− r

)
=

(
q − 1

q − d+ r − 1

)
=
q − d+ r

q

(
q

q − d+ r

)

equals q−d+r if and only if
(

q
q−d+r

)
= q, that is, if and only if q−d+r = 1

or q − d + r = q − 1. But since we are considering the case d ≥ r > 0, it
turns out that the only possible cases where equality can happen are

• either r = 1 and q = d, i.e. X = A is the whole Abelian variety, and
only happens for χ1 (A),

• or r = d − 1, which is automatic for any variety by definition of
χd−1 (X).

The case r = 0 is by far much more complicated, and we only consider
two simple cases:

• X = A is the whole Abelian variety. In this case, the equality always
happens because χ (A) = 0 and q (A) = dimA.

• X = Θ ⊂ A is an ample divisor. Now, Theorem 2.1.9 gives that
χ (X) = h0 (A,OA (Θ)), so the equality χ = q − d = 1 happens only
if X induces a principal polarization on A.



36 Generalizations of the derivative and BGG complexes

Symmetric products of curves

Another interesting family of irregular varieties are symmetric products of
curves. Let C be a curve of genus g ≥ 1, and let C(d) be its d-th symmetric
product. It is known ([29] Example 1.1) that hp,0

(
C(d)

)
=
(
g
p

)
, and thus

the partial Euler characteristics of C(d) are

χr
(
C(d), ωC(d)

)
=

(
g − 1

d− r

)
=

(
q − 1

d− r

)

since q
(
C(d)

)
= g (C). Therefore, we obtain the same thing we obtained

above (which is not a surprise, since for example C(g−1) is birational to a
Theta divisor in J (C)).

Threefolds.

We know that the equality χ0 (X) = q (X) − dimX is very difficult to
obtain, except in the cases q = d (Abelian varieties) and q = d + 1 (Theta
divisors). Therefore, from now on we will try to produce varieties satisfying
as many equalities χr = (q − d) + r as possible, assuming that it will not
be possible for r = 0. Since for r = d and r = d− 1 the equalities hold by
definition, the smallest dimensional cases of interest are threefolds.

The two equalities we want to be satisfied are

χ1 = (q − 3) + 1 and χ0 = q − 3.

The first one can be written as h2,0 = 2q − 3, analogous to the classical
Castelnuovo-de Franchis inequality. The second one, which we do not expect
to obtain except in the abovementioned known cases, can be written as
pg = h2,0 − 2.

We will consider the following construction. On the one hand, we will
take a double covering S of a principally polarized Abelian variety (A,Θ),
ramified over a smooth divisor D ∈ |2Θ|. On the other hand, we will take
C a double covering of a curve B of arbitrary genus. Both on S and C
there is an action of G = Z/2Z, so we can consider the diagonal action of
G in the product S×C. We consider X a desingularization of the quotient
(S × C) /G.

The Hodge numbers of X are

• q (X) = q (A) + g (B) = g (B) + 2,

• h0 (X,Ω2
X) = pg (A) + q (A) g (B) = 2g (B) + 1, and

• pg (X) = g (B) + (g (C)− g (B)) = g (C).
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Hence, on the one hand, the first partial Euler characteristic is

χ1 (X) = q (X)− 2 = (q (X)− 3) + 1,

so the wanted inequality always hold. On the other hand, the “complete”
Euler characteristic is

χ0 = pg (X)− χ1 = g (C)− g (B) ≥ g (B)− 1 = q (X)− 3,

where the inequality is a consequence of Hurwitz’s formula. Therefore, the
equality holds if and only if the double covering C → B is étale.

Sumarizing, we have obtained a family of 3-folds satisfying both equal-
ities χ1 (X) = (q (X)− 3) + 1 and χ0 (X) = q (X) − 3 for every irregu-
larity q (X) ≥ 3, that is, for every Euler characteristic χ0 ≥ 0. However,
if χ0 ≥ 1, these varieties are fibred over the curve B, which has genus
q (X)−2 = χ0 (X)+1 ≥ 2, so Theorem 2.1.4 does not apply and we do not
obtain any interesting example. Indeed, since X is fibred over the curve C
of genus g (C) ≥ 2g (B)− 1 ≥ 3, Theorem 2.1.4 does not apply for any k.

Fourfolds

We pass now to fourfolds, applying similar constructions to obtain varieties
satisfying the inequalities of Theorem 2.1.4. We will see, however, that
these constructions do not allow to obtain the equality for r = 2.

First construction

We will first try by substituting the surface S by a threefold T , which
will also be a double covering of a principally polarized Abelian threefold
(A,Θ). We take thus X a desingularization of (T × C) /G, where

• π : T → A is a double covering ramified over a smooth D ∈ |2Θ|,

• τ : C → B is a double covering of a curve of genus g (B) ≥ 1, and

• G = Z/2Z acts diagonally on the product T × C.

In this case, X has the following Hodge numbers

• q (X) = q (A) + g (B) = g (B) + 3,

• h0 (X,Ω2
X) = h2,0 (A) + q (A) g (B) = 3g (B) + 3,

• h0 (X,Ω3
X) = h3,0 (A) + h2,0 (A) g (B) = 3g (B) + 1, and

• pg (X) = g (B) + (g (C)− g (B)) = g (C).
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Let us now compute the partial Euler characteristics:

• χ2 (X) = h2,0 (X) − q (X) + 1 = 2q (X) − 5, which is greater than
(q (X)− 4) + 2 = q (X) − 2 if and only if q (X) > 3. This inequality
holds automatically since we have assumed g (B) ≥ 1. Therefore,
with this construction is impossible to achieve the equality in the
case r = 2.

• χ1 (X) = h3,0 (X)− χ2 (X) = g (B) = q (X)− 3 = (q (X)− 4) + 1, so
that the equality always hold for r = 1, as in the case of threefolds.

• χ0 (X) = pg (X) − χ1 (X) = g (C) − g (B) ≥ g (B) − 1 = q (X) − 4,
with equality if and only if the covering C → B is étale, as in the
three-dimensional case.

Thus, with this construction we get equalities for r = 1 and any irreg-
ularity q (X) ≥ 4, as well as for r = 0 if the covering of curves is étale.
However, also as in the case of threefolds, Theorem 2.1.4 does not apply
in this case because X is fibred over C, which has genus g (C) ≥ 2 if
χ0 (X) ≥ 1.

Second construction

In this second construction we will keep the first surface S and we will
change the curve C by a surface (also a double covering). More precisely,
we will consider X a desingularization of (S1 × S2) /G, where

• π : S1 → A is a double covering of a principally polarized Abelian
surface (A,Θ), ramified over D ∈ |2Θ|,

• τ : S2 → B is a double covering of a surfece B (still without any
further condition), and

• G = Z/2Z acts diagonally on the product S1 × S2.

The Hodge numbers of this second construction are

• q (X) = q (A) + q (B) = q (B) + 2,

• h0 (X,Ω2
X) = pg (A) + q (A) q (B) + pg (B) = pg (B) + 2q (B) + 1,

• h0 (X,Ω3
X) = 2pg (B) + q (S2), and

• pg (X) = pg (S2).

Consequently, the partial Euler characteristics are
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• χ2 (X) = h2,0 (X)− q (X) + 1 = pg (B) + q (B),

• χ1 (X) = h3,0 (X)− χ2 (X) = pg (B) + (q (S2)− q (B)), and

• χ0 (X) = pg (X)− χ1 (X) = (pg (S2)− pg (B))− (q (S2)− q (B)).

Firstly, it is evident that the only way to obtain the equality

χ2 (X) = (q (X)− 4) + 2 = q (B)

is to impose pg (B) = 0, which we will assume from now on.
Secondly, the equality

χ1 (X) = q (S2)− q (B) = q (X)− 3 = q (B)− 1

will hold if and only if q (S2) = 2q (B) − 1. Supposing that the covering
τ : S2 → B is given by a line bundle L ∈ Pic (B) and is ramified over
E ∈ |L⊗2|, then q (S2) = q (B) + h1 (B,L∨) = q (B) + h1 (B,ωB ⊗ L).

Therefore, if there exists a surface B with pg (B) = 0, and admitting a
line bundle L such that h1 (B,L∨) = q (B) − 1 and that H0 (B,L⊗2) 6= 0,
it is possible to obtain a fourfold X such that χi (X) = q (X) − 4 + i for
i = 1, 2.

2.1.4 Functoriality

We will now study the behaviour of the BGG complex with respect to mor-
phisms of varieties, and its consequences on the partial Euler characteristics.

Therefore, let f : X → Y be a morphism of smooth irregular varieties
of dimensions n = dimX and m = dimY . The map f induces pull-back
homomorphisms f ∗

k : Hk (Y,OY ) → Hk (X,OX), and in particular

f ∗
1 : H1 (Y,OY ) → H1 (X,OX) ,

which in turn induces a rational map

PY = P
(
H1 (OY )

)
։ P′

Y = P
(
f ∗
1

(
H1 (OY )

))
⊆ PX = P

(
H1 (OX)

)
.

For simplicity, we will assume from now on that f ∗
1 is injective, so that

we can identify H1 (Y,OY ) with a subspace H1 (X,OX), and the rational
map above is indeed an injective morphism that identifies PY with the linear
subspace P′

Y ⊆ PX .
The morphisms f ∗

k give rise naturally to morphisms of sheaves on PY

OPY
(−n+ k)⊗Hk (Y,OY ) −→ OPY

(−n+ k)⊗Hk (X,OX) .



40 Generalizations of the derivative and BGG complexes

These morphisms are compatible with cup-product, and thus induce a mor-
phism of complexes over PY :

f ∗ : BGG (Y )⊗OPY
(− (n−m)) −→ BGG (X)|PY

(note that, in order to make f ∗ into a morphism of complexes, it is necessary
to twist the BGG complex of Y in order to adjust the degrees).

On the other hand, since restriction to a subvariety is always right-exact
(it is the pull-back via the inclusion map), for every s we have

F s
X|PY

= coker
{
OPY

(−s− 1)⊗Hn−s−1 (OX) → OPY
(−s)⊗Hn−s (OX)

}
.

Hence, the pullback f ∗ induces morphisms

gr : F
m−r
Y (− (n−m)) −→ Fn−r

X|PY

obtained by completing the commutative diagram with exact rows

OPY
(−n+ r − 1)⊗Hr−1 (OY ) //

f∗

r−1

��

OPY
(−n+ r)⊗Hr (OY ) //

f∗

r

��

Fm−r
Y

(−n+m) //

gr

���
�

�
0

OPY
(−n+ r − 1)⊗Hr−1 (OX) // OPY

(−n+ r)⊗Hr (OX) // Fn−r
X|PY

// 0

Recall from the beginning of the section that for any positive integer
r ≤ dim albX (X) it holds χn−r (X) = rkFn−r

X (and analogously for Y ,
with m = dimY instead of n = dimX). Hence, whenever the following
conditions hold

1. r ≤ min {dim albX (X) , dim albY (Y )}, and

2. rkFn−r
X|PY

= rkFn−r
X ,

the morphism gr allows to relate the partial Euler characteristics χm−r (Y )
and χn−r (X). More precisely, in any situation implying that gr is injective,
it will hold in particular that χm−r (Y ) ≤ χn−r (X).

One easy way to guarantee the injectivity of some gr is imposing that
f ∗
r+1 : Hr+1 (Y,OY ) → Hr+1 (X,OX) is injective and that both BGG (Y )

and BGG (X)|PY
are exact in the first r + 1 steps. Indeed, in this case we

have the inclusions

Fm−r
Y (− (n−m)) −֒→ OPY

(−n+ r + 1)⊗Hr+1 (Y,OY )

and
Fn−r
X|PY

−֒→ OPY
(−n+ r + 1)⊗Hr+1 (X,OX) ,
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and gr is exactly the restriction of

f ∗
r+1 : OPY

(−n+ r + 1)⊗Hr+1 (OY ) −→ OPY
(−n+ r + 1)⊗Hr+1 (OX) .

We have thus obtained the following general result:

Theorem 2.1.10. Let f : X → Y be a morphism between smooth irreg-
ular varieties of dimensions n and m respectively, such that the pull-back
H1 (Y,OY ) →֒ H1 (X,OX) is injective. Let r be an integer such that both
BGG (Y ) and BGG (X)|PY

are exact in the first r + 1 first steps (from the
left), and assume also that f ∗

r+1 : H
r+1 (Y,OY ) →֒ Hr+1 (X,OX) is injective

and rkFn−r
X|PY

= rkFn−r
X . Then

χn−r (X) ≥ χm−r (Y ) .

Remark 2.1.11. Even in the case that both X and Y are varieties of
maximal Albanese dimension, the previous Theorem does not provide bounds
for the holomorphic Euler-Poincaré caracteristics except for very specific
cases:

• If m ≤ n, the maximal r for which the Theorem may apply is m− 1,
since BGG (Y ) is exact in the first m steps, and we would only obtain
inequalities for χ1 (Y ) , χ2 (Y ) , . . .

• If m ≥ n, the maximal r is now n in the case F0
X|PY

= 0. And in this
case, f ∗

n+1 would be injective only if Hn+1 (Y,OY ) = 0.

Let us now study some particular cases.

Morphisms such that f∗H1 (Y,OY ) = H1 (X,OX)

We will first focus on morphisms such that the pull-back induces an iso-
morphism H1 (Y,OY ) ∼= H1 (X,OX). The paradigmatical examples are the
Albanese morphisms.

In this case, PY ∼= PX . Therefore, there is no restriction of the com-
plex BGG (X) and the equality rkF r

X|PY
= rkF r

X is tautologically satis-
fied for every r = 0, . . . , n. Since BGG (X) (resp. BGG (Y )) is exact in
the first dim albX (X) (resp. dim albY (Y )) steps, it is possible to apply
Theorem 2.1.10 for any r < min {dim albX (X) , dim albY (Y )}, as long as
f ∗
r+1 : H

r+1 (Y,OY ) → Hr+1 (X,OX) is injective.

Definition 2.1.12. Let A be an Abelian variety, and X ⊆ A a (smooth)
subvariety of dimension d. If the set {a ∈ A |X + a = X} is discrete, X
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is said to be non-degenerate. Moreover, X is said to be geometrically non-
degenerate if the restriction induces an injection Hd (A,OA) →֒ Hd (X,OX)
(or equivalently H0

(
A,Ωd

A

)
→֒ H0 (X,ωX)).

Remark 2.1.13. Every geometrically non-degenerate subvariety is non-
degenerate.

Therefore, we can apply Theorem 2.1.10 to geometrically non-degenerate
subvarieties to obtain the following

Corollary 2.1.14. If X ⊆ A is a geometrically non-degenerate subvariety
of an Abelian variety A, with dimX = n and dimA = g, then

χn−r (X) ≥ χg−r (A) =

(
g − 1

r

)
, ∀ r = 0, . . . , n− 1.

Surjective morphisms

Suppose now that the morphism f : X → Y is surjective, so that in partic-
ular we have m = dimY ≤ dimX = n. This case includes fibrations and
(generically) finite morphisms.

Since the differential of such a morphism has generically maximal rank,
all the pull-back morphisms f ∗ : H0

(
Y,Ωk

Y

)
→ H0

(
X,Ωk

X

)
are injective

(consider the restriction of a holomorphic k-form on Y to the open set where
df is surjective). Conjugating, we obtain that

f ∗
k : Hk (Y,OY ) −֒→ Hk (X,OX)

is injective for every k = 0, . . . ,m.
On the other hand, by the functoriality of the Albanese map, one has

the following commutative diagram

X
albX // //

f
����

albX (X) � � //

Alb(f)
����

Alb (X)

Alb(f)
��

Y
albY

// // albY (Y ) � � // Alb (Y )

and taking into account that both f and albY : Y → albY (Y ) are surjective,
one concludes that the restriction Alb (f) : albX (X) → albY (Y ) is also
surjective. Therefore, dim albX (X) ≥ dim albY (Y ) and the only limitation
we have is r < dim albY (Y ).

Finally, we have to study the exactness of the complex BGG (X)|PY
,

since we want it to be exact in as many steps as possible (at least the first
dim albY (Y ) ones).
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It is known ([19], or the proof of Theorem 2.1.4) that if OX ∈ V i (ωX)
is an isolated point for every i > k, then BGG (X) is exact at every point
in the first n− k steps, and the restriction BGG (X)|PY

will be exact too.
So far, we have proved the following

Corollary 2.1.15. Let f : X → Y be a surjective morphism, denote by
n = dimX and m = dimY , and let r < dim albY (Y ) be any positive
integer such that OX ∈ V i (X) is isolated for every i > n− r + 1. Then

χn−r (X) ≥ χm−r (Y ) .

And combining this last result with Corollary 2.1.14 we obtain the final

Corollary 2.1.16. Let X be a smooth n-dimensional irregular variety such
that its Albanese image Y = albX (X) is smooth of dimension m = dimY .
Assume moreover that OX ∈ V i (X) is isolated for every i > n − m and
that Y is geometrically non-degenerate. Then

χn−r (X) ≥

(
q (X)− 1

r

)
∀ r = 1, . . . ,m− 1.

In particular, if X is primitive (hence of maximal Albanese dimension) and
its Albanese image is smooth and non-degenerate, then

χr (X) ≥

(
q (X)− 1

dim (X)− r

)
∀ r = 1, . . . , dimX − 1.

Remark 2.1.17. Note that these bounds are much stronger than the linear
ones provided by Theorem 2.1.4.

2.2 Higher-rank derivative complexes

In this section we expose a generalization of the derivative and BGG com-
plexes, obtaining stronger inequalities for the Hodge numbers of irregular
varieties X admitting non-degenerate subspaces W ⊆ H0 (X,Ω1

X). The
section begins with the basic definitions followed by a digression through
complexes of Eagon-Northott type. These are the technical tools that will
provide the main results presented next. The section is closed with the
particular case of subvarieties of Abelian varieties, showing that they admit
non-degenerate subspaces of any rank and hence it is possible to apply all
the preceding results (as well as some variants).



44 Generalizations of the derivative and BGG complexes

2.2.1 Definitions

We first explain the construction of our main tools, which we call higher
rank derivative complex and Grassmannian BGG complex. The reason of
the name is that they generalize the derivative and BGG complexes to the
case where more than one 1-form (or cohomology class v ∈ H1 (X,OX))
are put into the picture. However, we do not obtain them from a “deriva-
tive” setting, nor from a categorical analogue to the BGG correspondence.
Instead, we construct them directly and show that they coincide with the
previous ones in the case of one-dimensional subspaces.

As in the previous section, X will denote an irregular complex projective
or compact Kähler variety of dimension d.

Definition 2.2.1 (Higher-rank derivative complex). Fix integers r ≥ 1,
1 ≤ n ≤ min {r, d}, 0 ≤ j ≤ d, and a linear subspace W ⊆ V . We define
Cj
r,n,W as the complex (of vector spaces)

0 −→ SymrW ⊗Hj (X,OX) −→ Symr−1W ⊗Hj
(
X,Ω1

X

)
−→ · · ·

· · · −→ Symr−iW ⊗Hj
(
X,Ωi

X

)
−→ · · ·

· · · −→ Symr−nW ⊗Hj (X,Ωn
X) (2.7)

where the maps µji : Sym
r−iW ⊗Hj (X,Ωi

X) → Symr−i−1W ⊗Hj
(
X,Ωi+1

X

)

are given by

µji ((w1 · · ·wr−i)⊗ [α]) =
r−i∑

t=1

(w1 · · · ŵt · · ·wr−i)⊗ [wt ∧ α] .

Lemma 2.2.2. The maps µji are well defined and indeed make Cj
r,n,W into

a complex.

Proof. In order to see that the µji are well defined, consider first the linear
map

µ̃ji : W
⊗(r−i) ⊗Hj

(
X,Ωi

X

)
−→ Symr−i−1W ⊗Hj

(
X,Ωi+1

X

)

defined as

µ̃ji ((w1 ⊗ · · · ⊗ wr−i)⊗ [α]) =
r−i∑

t=1

(w1 · · · ŵt · · ·wr−i)⊗ [wt ∧ α] .

Clearly, µ̃ji satisfies

µ̃ji
((
wσ(1) ⊗ · · · ⊗ wσ(r−i)

)
⊗ [α]

)
= µ̃ji ((w1 ⊗ · · · ⊗ wr−i)⊗ [α])
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for any permutation σ : {1, . . . , r − i} → {1, . . . , r − i}, and hence it factors
through the quotient

W⊗(r−i) ⊗Hj
(
X,Ωi

X

)
−→ Symr−iW ⊗Hj

(
X,Ωi

X

)

and a map

Symr−iW ⊗Hj
(
X,Ωi

X

)
−→ Symr−i−1W ⊗Hj

(
X,Ωi+1

X

)

which is precisely µji .
Once we know that the µji are well defined, it is an straightforward

computation to check that µji+1 ◦ µ
j
i = 0. Indeed

µji+1

(
µji ((w1 · · ·wr−i)⊗ [α])

)
=

=
r−i∑

t=1

µji+1 ((w1 · · · ŵt · · ·wr−i)⊗ [wt ∧ α]) =

=
r−i∑

t=1

(
t−1∑

s=1

(w1 · · · ŵs · · · ŵt · · ·wr−i)⊗ [ws ∧ wt ∧ α] +

+
r−i∑

s=t+1

(w1 · · · ŵt · · · ŵs · · ·wr−i)⊗ [ws ∧ wt ∧ α]

)
=

=
∑

1≤s<t≤r−i

(w1 · · · ŵt · · · ŵs · · ·wr−i)⊗([ws ∧ wt ∧ α] + [wt ∧ ws ∧ α]) = 0

since obviously

[ws ∧ wt ∧ α] + [wt ∧ ws ∧ α] = [ws ∧ wt ∧ α− ws ∧ wt ∧ α] = 0.

Since for every 1 ≤ n′ < n the complex Cj
r,n′,W is a truncation of Cj

r,n,W ,
we may assume that n is the greatest possible, that is n = min{r, d}, and
denote the complex simply by Cj

r,W .
Note that in the case of a 1-dimensional W , generated by w, we have

SymrW ≡ C 〈wr〉 ∼= C, and Cj
d,C〈w〉 is nothing but the complex

0 −→ Hj (X,OX)
∧w
−→ Hj

(
X,Ω1

X

) ∧w
−→ . . .

∧w
−→ Hj (X,ωX) ,

which is (complex-conjugate to) the derivative complex studied by Green
and Lazarsfeld in [18].
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Our main aim is to study the exactness of Cj
r,W . More precisely, we look

for conditions on W which guarantee that Cj
r,W is exact in some (say m)

of its first steps, (i.e., Cj
r,m,W is exact), because this exactness will provide

several inequalities between the Hodge numbers hp,j (X).
At some points, we will need to consider different subspaces W . Hence,

we “glue” all the complexes (2.7) with fixed k = dimW as follows. Denote by
G = Gk = Gr (k, V ) the Grassmannian variety of k-dimensional subspaces
of V , and by S ⊆ V ⊗OG the tautological subbundle, the vector bundle of
rank k whose fibre over a point W ∈ G is precisely the subspace W ⊆ V .

Definition 2.2.3 (Grassmannian BGG complex). For any integers r ≥ 1
and 0 ≤ j ≤ d, the (r, j)-th Grassmannian BGG complex (of rank k) of X
is the complex of vector bundles on Gk

Cj
r : 0 −→ Symr S ⊗Hj (X,OX) −→ Symr−1 S ⊗Hj

(
X,Ω1

X

)
−→ · · ·

· · · −→ Symr−i S ⊗Hj
(
X,Ωi

X

)
−→ · · ·

· · · −→ Symr−n S ⊗Hj (X,Ωn
X)

where n = min{r, d} and over each point W ∈ Gk it is given by (2.7). Let
F j
r,n denote the cokernel of the last map in Cj

r,n, the (n, r, j)-th Grassman-
nian BGG sheaf (of rank k) of X.

Remark 2.2.4. If k = 1, then G = P = P (H0 (X,Ω1
X)), S = OP (−1) and

Symr S = OP (−r). So taking k = 1 and r = d, the above complex is pre-
cisely (the complex-conjugate of) the BGG complex introduced by Lazarsfeld
and Popa in [27]. More generally, fixing only k = 1 and r < d we obtain
all the complexes considered in the first section of this chapter (suitably
twisted). In this way, the Grassmannian BGG complexes can be seen as
generalizations of the former complexes, with the new feature that they cap-
ture also the additive structure of the cohomology algebra of X, and the
sheaves F j

r,n generalize the BGG sheaves introduced in Definition 2.1.2.

The interest of studying these complexes is that, whenever they are
exact at some point W ∈ G, they provide some inequalities involving the
Hodge numbers hi,j (X) = hj (X,Ωi

X). These inequalities are much stronger
when the complex is exact at every point, so that the cokernel sheaves of
the maps µji are vector bundles and a deeper study of them is feasible (as
we will do in Section 2.4). For example, the proof of the higher-dimensional
Castelnuovo-de Franchis inequality given by Lazarsfeld and Popa in [27] is
based on the fact that the BGG sheaf (the cokernel of the last map of C0

d

with k = 1) is an indecomposable vector bundle on Pq−1.
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2.2.2 Eagon-Northcott complexes

In order to study the exactness of the higher rank derivative complexes, we
will strongly use some results of commutative algebra concerning a gener-
alization of the Koszul complexes: the complexes of Eagon-Northcott type.
In this section we will give an overview of them, exposing their main prop-
erties and focusing on those that will be useful for our purposes. For more
detailed explanations, we refer to the books [8, 14] and the article [1].

Consider a ring R (commutative, with identity and Noetherian) and a
map φ : G→ F of finitely generated free R-modules, of ranks n = rkG and
k = rkF . For any integer r ≥ 0, denote by Cr (φ) the complex

Cr (φ) : 0 −→
r∧
G⊗ Sym0 F

∂
−→

r−1∧
G⊗ Sym1 F

∂
−→ · · ·

· · ·
∂

−→
1∧
G⊗ Symr−1 F

∂
−→

0∧
G⊗ Symr F −→ 0,

where

∂ (g1 ∧ · · · ∧ gm ⊗ f) =
m∑

j=1

(−1)j+1 g1 ∧ · · · ∧ ĝj ∧ · · · ∧ gm ⊗ (φ (gj) f)

for every g1 . . . gm ∈ G, f ∈ Symr−m F .
If n ≥ k and 0 ≤ r ≤ n − k, then the R-dual complex (Cn−k−r (φ))

∨

(where (−)∨ = HomR (−, R)) and Cr (φ) can be spliced by a map

νr :
n−k−r∧

G∨ =

(
n−k−r∧

G⊗ Sym0 F

)∨

−→
r∧
G⊗ Sym0 F =

(
r∧
G∨

)∨

which is constructed as follows: choose two orientations γ :
∧k F∨

∼=
→ R

and δ :
∧nG∨

∼=
→ R, define α =

(
∧kφ∨

)
(γ−1 (1)) (where

∧kφ∨ :
k∧
F∨ −→

k∧
G∨

is the induced map), and set

(νr (x)) (y) = δ (x ∧ y ∧ α) ∀ x ∈
n−k−r∧

G∨, y ∈
r∧
G∨.
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The resulting complex is

Dr (φ) : 0 −→

(
0∧
G⊗ Symn−k−r (F )

)∨

∂∨
−→ · · ·

· · ·
∂∨
−→

(
n−k−r∧

G⊗ Sym0 (F )

)∨

νr−→
r∧
G⊗ Sym0 (F )

∂
−→ · · ·

· · ·
∂

−→
0∧
G⊗ Symr (F ) −→ 0.

Note that different choices of orientations lead to different νr differring
only by multiplication by an invertible element.

The exactness of the complexes Cr (φ) and Dr (φ) depends on the ideals
Ii (φ) ⊆ R generated by the i× i minors of φ.

For the case k ≤ n, the main results are the following theorems.

Theorem 2.2.5 ([8] Th. 2.16). With the previous notations, suppose k ≤ n
and 0 ≤ r ≤ n− k. If depth (Ik (φ)) = n − k + 1, then the complex Dr (φ)
is a free resolution of R/Ik (φ) if r = 0, and of Symr (coker (φ)) if r > 0.

Theorem 2.2.6 ([14] Th. A.2.10). With the previous notations, assume
also that k ≤ n and r ≥ n − k + 1. If depth (Ii (φ)) = n − i + 1 for every
max{1, n − r + 1} ≤ i ≤ k, then the complex Cr (φ) is a free resolution of
Symr (coker (φ)).

On the other hand, for the case k ≥ n it holds an analogous result.

Theorem 2.2.7 ([1] Prop. 3.(3)). With the previous notations, if k ≥ n
and depth (Ii (φ)) ≥ n− i+ 1 for every 1 ≤ i ≤ n, then the complex Cr (φ)
is a free resolution of Symr (coker (φ)) for every r > 0.

We will now translate the previous algebraic constructions and results
into geometry. Consider a map of vector bundles φ : G→ F over a smooth
(or at least Cohen-Macaulay) variety X. As above, denote by n = rkG and
by k = rkF . The case n ≥ k has been studied in [25] App. B, but as far
as the author is aware, the case n < k has not been written anywhere, and
this is the reason why we include this discussion.

For any r ≥ 0, one can construct complexes of vector bundles Cr (φ)
and Dr (φ), whose stalks over a point p ∈ X are the Cr (φp) and Dr (φp)
associated to the map of OX,p-free modules φp : Gp → Fp. More explicitly,
they have the shape

Cr (φ) : 0 →
r∧
G →

r−1∧
G ⊗ F · · · → G ⊗ Symr−1 F → Symr F
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and, if r ≤ n− k (in case k ≤ n),

Dr (φ) : 0 →
n∧
G⊗

k∧
F∨ ⊗ Symn−k−r F∨ →

→
n−1∧

G⊗
k∧
F∨ ⊗ Symn−k−r−1 F∨ · · · →

k+r+1∧
G⊗

k∧
F∨ ⊗ F∨ →

→
k+r∧

G⊗
k∧
F∨ νr→

r∧
G→

r−1∧
G⊗ F → · · · → G⊗ Symr−1 F →

→ Symr F.

The maps

i∧
G⊗ Symr−i F −→

i−1∧
G⊗ Symr−i+1 F

are given by

(g1 ∧ · · · ∧ gi)⊗ f 7→
i∑

j=1

(−1)j−1 (g1 ∧ · · · ∧ ĝj ∧ · · · ∧ gi)⊗ (φ (gj) f) ,

the maps

n−i+1∧
G⊗

k∧
F∨ ⊗ Symr−i+1 F∨ −→

n−i∧
G⊗

k∧
F∨ ⊗ Symr−i F∨

are the duals of the previous ones twisted by the line bundle
∧nG⊗

∧k F∨

(so that there is no need to choose the orientations γ and δ, which by the
way, may not exist globally), and the maps

νr :
k+r∧

G⊗
k∧
F∨ −→

r∧
G

are induced by
∧k φ :

∧kG→
∧k F .

Definition 2.2.8. For the sake of simplicity, define

ENr (φ) =

{
Dr (φ) if r ≤ n− k, or

Cr (φ) if r ≥ n− k + 1.

We call these complexes the Eagon-Northcott complexes associated to φ.
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In this geometric setting, the exactness of these complexes is governed
by the degeneracy loci of φ. For any positive integer i, denote by

Zi = Zi (φ) = {p ∈ X|rk (φ (p) : G⊗ C (p) → F ⊗ C (p)) < i}

the locus where φ has rank smaller than i. Locally at a point p ∈ X, the
Zi are (set-theoretically) the zero loci of the ideals Ii (φp), and since X is
smooth (or at least Cohen-Macaulay) we have the equality

codimp Zi = depth Ii (φp) .

Therefore, we can translate Theorems 2.2.5, 2.2.6 and 2.2.7 into the
following

Theorem 2.2.9. With the preceding notations, assume that

1. either k ≤ n and

• codimZk = n− k + 1 if r ≤ n− k, or

• codimZi ≥ n − i + 1 for every i = max{1, n − r + 1}, . . . , k if
r ≥ n− k + 1,

2. or k ≥ n and codimZi ≥ n− i+ 1 for all i = 1, . . . , n.

Then ENr (φ) is a locally free resolution of Symr (cokerφ) for every r ≥ 1,
and of OZk

if r = 0 and k ≤ n.

2.2.3 Exactness of C
j
r,W

We will now use the previous results on Eagon-Northcott complexes to study
the exactness of the complexes Cj

r,W . The approach we follow is analogous
to the method used by Green and Lazarsfeld in Section 3 (A Nakano-type
generic vanishing theorem) of [18], suitably adapted to subspaces of rank
k > 1.

So fix a k-dimensional subspace W ⊆ H0 (X,Ω1
X), and consider the

following complex of sheaves on X,

Cr,W : 0 −→ SymrW ⊗OX −→ Symr−1W ⊗ Ω1
X −→ · · ·

· · · −→ Symr−iW ⊗ Ωi
X −→ · · · −→ Symr−nW ⊗ Ωn

X ,

where the maps µi : Sym
r−iW ⊗ Ωi

X → Symr−i−1W ⊗ Ωi+1
X are defined as

in Definition 2.2.1, and we also assume n = min {r, d}. Clearly, its global
sections form the complex C0

r,W , and in general, Cj
r,W = Hj (X, Cr,W ) is the
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complex obtained by applying the j-th sheaf cohomology functor. Denote
by Ki = Symr−iW ⊗ Ωi

X the i-th term of Cr,W , and by Hi = Hi (Cr,W ) its
i-th cohomology sheaf.

There are two spectral sequences, ′E and ′′E, both abutting to the
hypercohomology of Cr,W , starting at

′E
i,j
1 = Hj

(
X,Ki

)
= Symr−iW ⊗Hj

(
X,Ωi

X

)
and ′′E

i,j
2 = H i

(
X,Hj

)
,

(2.8)
respectively. Note that the rows of ′E1 are precisely the complexes Cj

r,W

whose exactness we want to determine. Hence, the combined study of these
two spectral sequences will lead to some results in the wanted direction.

We start with a generalization of Proposition 3.7 in [18], whose proof is
analogous (but notationally more complicated).

Proposition 2.2.10. For any W ∈ Gk, the spectral sequence ′E degener-
ates at ′E2, i.e. ′E2 =

′E∞.

Proof. We will denote by Ai,j (X) the vector space of C∞ differential forms
of type (i, j), and will identify each cohomology class [b] ∈ Hj (X,Ωi

X) with
its only harmonic representative b ∈ Ai,j (X). We will also use the following
result ([42] Proposition 6.17): if b ∈ Ai,j (X) is both ∂- and ∂̄-closed, and
either ∂- or ∂̄-exact, then b = ∂∂̄c = −∂̄∂c for some c ∈ Ai−1,j−1 (X).

Fix a basis {w1, . . . , wk} of W , so that any b ∈ Symr−iW ⊗Hj (X,Ωi
X)

may be uniquely written as

b =
∑

|J |=r−i

wJ ⊗ [bJ ]

where J = {1 ≤ j1 ≤ j2 ≤ · · · ≤ jr−i ≤ k}, wJ = wj1 · · ·wjr−i
∈ Symr−iW

and bJ ∈ Ai,j (X) is harmonic.
Firstly, we will show that the differential d2 of ′E2 vanishes on every

′Ei,j
2 . By definition, any class in ′Ei,j

2 is represented by some

b =
∑

|J |=r−i

wJ ⊗ [bJ ] ∈ kerµji

that is, such that

∑

|J |=r−i

r−i∑

s=1

wJ−{js} ⊗ [wjs ∧ bJ ] =
∑

|J ′|=r−i−1

wJ ′ ⊗

[
k∑

j=1

wj ∧ bJ ′∪{j}

]
= 0

where J−{js} and J ′∪{j} should be understood as operations on multisets.

This last sum is zero if and only if all the classes
[∑k

j=1wj ∧ bJ ′∪{j}

]
vanish
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in Hj
(
X,Ωi+1

X

)
∼= H i+1,j

∂̄
(X) (viewed as Dolbeault’s cohomology), so we

can assume that all the
∑k

j=1wj ∧ bJ ′∪{j} are ∂̄-exact. Since they are also
both ∂ and ∂̄-closed (because so are the wj and the bJ), there exist forms
c1,J ′ ∈ Ai,j−1 (X) such that

k∑

j=1

wj ∧ bJ ′∪{j} = ∂̄∂c1,J ′ , (2.9)

and d2 (b) is represented by

µj−1
i+1


 ∑

|J ′|=r−i−1

wJ ′ ⊗ ∂c1,J ′


 =

∑

|J ′|=r−i−1

r−i−1∑

s=1

wJ ′−{j′s} ⊗
(
wj′s ∧ ∂c1,J ′

)
=

=
∑

|J ′′|=r−i−2

wJ ′′ ⊗

(
k∑

j=1

wj ∧ ∂c1,J ′′∪{j}

)
.

Therefore, in order to see that d2 (b) = 0, we only need to check that all the
aJ ′′ =

∑k
j=1wj ∧ ∂c1,J ′′∪{j} are ∂̄-exact (thus representing the zero class in

H i+2,j−1

∂̄
(X) ∼= Hj−1

(
X,Ωi+2

X

)
). On the one hand, note that

aJ ′′ = −∂

(
k∑

j=1

wj ∧ c1,J ′′∪{j}

)
,

so they are ∂-exact, and hence ∂-closed. On the other hand, using equation
(2.9) we obtain

∂̄aJ ′′ = −
k∑

j=1

wj∧∂̄∂c1,J ′′∪{j} = −
∑

1≤j<l≤k

(wj ∧ wl + wl ∧ wj)∧bJ ′′∪{j,l} = 0,

so aJ ′′ = ∂̄∂c2,J ′′ for some c2,J ′′ ∈ Ai+1,j−2 (X). In particular, it is ∂̄-exact
and hence d2 (b) = 0, as wanted.

Now we have to show that all the subsequent differentials dm also vanish.
Assume inductively that for any 2 ≤ l < m we have dl = 0, and that for
any b as above we can find differential forms cl,Jl ∈ Ai+l−1,j−l (X) such
that ∂̄∂cl,Jl =

∑k
j=1wj ∧ ∂cl−1,Jl∪{j} for every multisubset Jl of {1, . . . , r}

of cardinality r − i − l. Then, as before, the image dm (b) is the class in
′Ei+m,j−m+1

m = ′Ei+m,j−m+1
2 of

∑

|Jm|=r−i−m

wJm ⊗

(
k∑

j=1

wj ∧ ∂cm−1,Jm∪{j}

)
.
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As above, the forms
∑k

j=1wj ∧ ∂cm−1,Jm∪{j} are ∂-exact and ∂̄-closed, so
there exist forms cm,Jm as in the induction hypothesis, and in particular
dr (b) = 0 because they are ∂̄-exact.

Suppose now that there is some integer N such that Hj = 0 for all
j < N , or more generally ′′Ei,j

2 = H i (X,Hj) = 0 for i + j < N . Then, by
(2.8), we would have Hm (X, Cr,W ) = 0 for m < N . Looking at the other
spectral sequence, it must hold ′Ei,j

∞ = ′Ei,j
2 = 0 for all i+ j < N . But ′Ei,j

2

is precisely the cohomology of Hj (Cr,W ) = Cj
r,W at the i-th step, so we get

that Cj
r,W is exact in the first N − j steps. In particular, C0

r,W would be
exact in the first N steps.

Therefore, we will next try to answer the next

Question 2.2.11. Fixed N , under which hypothesis on W can we assure
H i (X,Hj) = 0 for i+ j < N?

For this purpose, we will first try to identify the sheaves Hj. Consider
the map

φ : TX =
(
Ω1
X

)∨
−→ W∨ ⊗OX

dual to the evaluation map ev : W ⊗OX → Ω1
X , and denote K = coker (φ).

For any i = 1, . . . , k, let

Zi = Zi (W ) = {p ∈ X | rk (φ (p) : TX ⊗ C (p) → W∨) < i} =

=
{
p ∈ X | rk

(
ev (p) : W → Ω1

X ⊗ C (p)
)
< i
}

be the locus where the forms in W span a subspace of dimension < i of the
cotangent space, or where the kernel of the evaluation map has dimension
greater than k − i. Clearly, K is supported on Zk, the locus where φ is not
surjective.

Definition 2.2.12 (Non-degenerate subspace). We say that a subspace
W ⊆ H0 (X,Ω1

X) is non-degenerate if

codimZi ≥ d− i+ 1 ∀ 1 ≤ i ≤ min {k, d} .

Remark 2.2.13. We can define W to be non-degenerate in degree r if

• codimZk = d− k + 1 in the case r ≤ d− k, or

• codimZj ≥ d− j + 1 for j = max{1, d− r + 1}, . . . ,min {k, d} in the
case r ≥ d− k + 1.
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Equivalently, W is non-degenerate in degree r if φ satisfies the hypothesis
of Theorem 2.2.9 for the fixed r. Therefore, a non-degenerate subspace is
non-degenerate in every degree, but not conversely.

Although this definition is more precise and could lead to better results
in some cases, we prefer the original one because of its simplicity.

The motivation of Definition 2.2.12 (or its generalization of Remark
2.2.13) is that Theorem 2.2.9 allows to identify the cohomology sheaves Hi

of Cr,W for non-degenerate W .

Lemma 2.2.14. Fix any r ≥ 1, and assume that W is non-degenerate (at
least in degree r). Then Hi (Cr,W ) = ExtiOX

(SymrK,OX) for all 0 ≤ i < r.

Proof. Consider the r-th Eagon-Northcott complex ENr (φ) associated to
φ, whose last r steps look like

ENr (φ) : . . . −→ (Ωr
X)

∨ −→
(
Ωr−1
X

)∨
⊗W∨ −→ · · ·

· · · −→
(
Ω1
X

)∨
⊗ Symr−1W∨ −→ OX ⊗ SymrW∨.

By Theorem 2.2.9, the non-degeneracy of W implies that ENr (φ) is (the
beginning of) a locally free resolution of Symr K, so we can compute

ExtiOX
(SymrK,OX) = Hi (HomOX

(ENr,OX)) .

But clearly the first r steps of HomOX
(ENr,OX) form the complex Cr,W ,

and the claim follows.

We now focus on the case k ≤ d, where some well-known properties of
the Ext sheaves lead to a first result:

Theorem 2.2.15. If W is non-degenerate, then the complex

Cj
r,W : 0 −→ SymrW ⊗Hj (X,OX) −→ · · ·

· · · −→ Symr−iW ⊗Hj
(
X,Ωi

X

)
−→ · · ·

· · · −→ Symr−nW ⊗Hj (X,Ωn
X)

is exact at least in the first d− k − j + 1 steps.

Proof. For a general coherent sheaf F on X we have (see [23] Prop. 1.6.6)

ExtiOX
(F ,OX) = 0 ∀ i < codimSuppF .

Since Supp SymrK = SuppK = Zk has codimension at least d − k + 1
because W is non-degenerate, we obtain

Hj (Cr,W ) = ExtjOX
(SymrK,OX) = 0
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for all j ≤ d− k. Therefore, the second spectral sequence in (2.8) satisfies
′′Ei,j

2 = 0 for all i and all j ≤ d− k. Since ′′Ei,j
2 abuts to the hypercohomol-

ogy of Cr, this implies that Hn (X, Cr,W ) = 0 for all n ≤ d−k. Recalling that
the first spectral sequence ′Ei,j

1 degenerates at ′E2 (Proposition 2.2.10), and
it also abuts to the hypercohomology of Cr,W , this implies that ′Ei,j

2 = 0 for
all i+ j ≤ d− k. But ′Ei,j

2 is precisely the cohomology of the complex Cj
r,W

at the i-th step, so the claim follows.

Some examples and results of the next section suggest that the complex
Cj
r,W should be exact under weaker hypothesis, and even for some k > d.

To obtain such a result we should study the cohomology of the sheaves
Hi = ExtiOX

(Symr K,OX), which may vanish even if the sheaves do not.
For instance, in general, the kernel of the first map of C0

r,W ,

µ0
0 : Sym

rW −→ Symr−1W ⊗H0
(
X,Ω1

X

)

is H0 (X,Hom (Symr K,OX)), which must always vanish because µ0
0 is al-

ways injective. Furthermore, according to Theorem 2.3.3, ′E1,0
2 vanishes

for generic W and even k if X is not fibred over an Albanese general type
variety of dimension at most k

2
(more generally, if X has no generalized

Lagrangian form of rank k
2
).

Moreover, as the following example shows, the spectral sequence ′′E2 is
not degenerated in general. Therefore, even if the cohomologies ′′Ei,j

2 of Hi

do not vanish, the limit groups ′′Ei,j
∞ might anyway vanish, so the previous

Theorem is not sharp.

Example 2.2.16. Consider C1, C2 ⊂ P2 two smooth plane curves of degree
4 (hence of genus 3) intersecting transversely in 16 points p1, . . . , p16, and
let X = C1 × C2 with projections πi : X → Ci. Fix a basis {η1, η2, η3} of
H0 (P2,OP2 (1)) and denote by αi and βi its restrictions to C1 and C2 respec-
tively, which can be thought as differential forms since ωCi

∼= OCi
(1) by ad-

junction. Finally, let wi = π∗
1αi + π∗

2βi ∈ H0 (X,Ω1
X), let W ⊂ H0 (X,Ω1

X)
be the vector space spanned by the wi, and consider the case r = 2:

C2,W : 0 −→ Sym2W ⊗OX −→ W ⊗ Ω1
X −→ ωX −→ 0. (2.10)

The situation is explicit enough to compute most of the objects above. An
immediate computation shows that Z1 = ∅ and Z2 = {P1, . . . , P16}, where
Pi = (pi, pi), so W is non-degenerate. Moreover, a complete description of
the first spectral sequence ′E1 can be carried out to find that ′Ei,j

2 = 0 for
all i, j except for ′E0,2

2
∼= C37, ′E1,1

2
∼= C18 and ′E1,0

2
∼= C3. This implies that

H1 (X, C2,W ) ∼= C3, H2 (X, C2,W ) ∼= C55, and all the other hypercohomology
groups vanish.
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As for the second spectral sequence, we start computing the cohomology
sheaves Hi of (2.10). The last map is surjective, hence H2 = 0. H1 is
supported on Z2, and the transversality of C1 and C2 implies that each stalk
H1
Pi

is a three-dimensional vector space, so that H0 (X,H1) ∼= C48 and the
rest of the cohomology groups are zero. This computation is enough to show
that ′′E2 is not degenerate, since if it was, the group H0 (X,H1) ∼= C48

would be a summand of H1 (X, C2,W ) ∼= C3, which is clearly impossible.

Remark 2.2.17. The previous example also shows that there is no obvious
relation between the exactness of the complexes C0

r,W and the transversality
of W to the cohomological support loci V i (X,ωX), which in this case are
V 1 = π∗

1 Pic
0 (C1) ∪ π

∗
2 Pic

0 (C2) and V 2 = {OX}.

We now turn to the numerical consequences of Theorem 2.2.15.

Corollary 2.2.18. If X admits a non-degenerate subspace of dimension
k (≤ d), then

p∑

i=0

(−1)p−i
(
r − i+ k − 1

k − 1

)
hi,j (X) ≥ 0 (2.11)

for every p ≤ min {d− k − j + 1, r}. In particular

hp,j (X) ≥

p−1∑

i=0

(−1)p−i−1

(
p− i+ k − 1

k − 1

)
hi,j (X)

for every p+ j ≤ d− k + 1.

Proof. The first inequality is a direct consequence of Theorem 2.2.15, and
the second one is the particularization to the case r = p.

And computing a little bit more we find the next (more explicit) result.

Corollary 2.2.19. If X admits a non-degenerate subspace of dimension
k ≤ d, then

hp,j (X) ≥

(
k

p

)
h0,j (X)

for every p ≤ k and p ≤ d− k − j + 1, and therefore

hp,j (X) ≥

(
k

p

)(
k

j

)

if p, j ≤ k and p+ j ≤ d− k + 1.
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Proof. It is a consequence of the identity

min{A,B}∑

n=0

(−1)B−i

(
A

n

)(
A+B − n− 1

B − n

)
=

{
1 if B = 0

0 otherwise
(2.12)

which holds for any non-negative integers A,B and can be easily proved by
looking at the coefficient of xB in the expansion of the right-hand side of

1 =
(1 + x)A

(1 + x)A
=

(
A∑

n=0

(
A

n

)
xn

)(∑

m≥0

(−1)m
(
A+m− 1

m

)
xm

)
.

Indeed, denote by Mp,j =
∑p

i=0 (−1)p−i
(
p−i+k−1
k−1

)
hi,j (X), the right-hand

side of (2.11) with r = p, and compute

p∑

i=0

(
k

p− i

)
Mi,j =

=

p∑

i=0

(
k

p− i

) i∑

m=0

(−1)i−m
(
i−m+ k − 1

k − 1

)
hm,j (X) =

=

p∑

m=0

(
p∑

i=m

(−1)i−m
(

k

p− i

)(
i−m+ k − 1

i−m

))
hm,j (X) = hp,j (X) ,

where the last equality follows from (2.12) because

p∑

i=m

(−1)i−m
(

k

p− i

)(
i−m+ k − 1

i−m

)
=

=

p−m∑

n=0

(−1)p−m−n

(
k

n

)(
p− n−m+ k − 1

p− n−m

)

and p−m ≤ p ≤ k. Therefore,

0 ≤

p∑

i=1

(
k

p− i

)
Ai,j = hp,j (X)−

(
k

p

)
M0,j = hp,j (X)−

(
k

p

)
h0,j (X) ,

as wanted. The second statemet follows at once from the first statement
applied to h0,j (X) = hj,0 (X).
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2.2.4 Subvarieties of Abelian varieties

We now focus on subvarieties of Abelian varieties, showing that in this case
generic subspaces W ⊆ H0 (X,Ω1

X) are non-degenerate (Proposition 2.2.20)
and then applying the preceding results. After that, we expose a different
approach by considering the case W = H0 (X,Ω1

X).

Proposition 2.2.20. Let X be a smooth subvariety of an Abelian variety A
such that V = H0 (X,Ω1

X)
∼= H0 (A,Ω1

A). Then, for every k = 1, . . . , q (X),
the non-degenerate subspaces W ∈ Gr (k, V ) form a non-empty Zariski-open
subset.

Proof. Since non-degeneracy is an open condition, we only need to con-
struct a non-degenerate subspace of any dimension k. We will proceed by
induction over k.

A one-dimensional subspace W = C 〈w〉 is non-degenerate if and only if
codimZ1 ≥ d. Since Z1 = Z (w) is the set of zeroes of any generator w, W
is non-degenerate if and only if w vanishes (at most) at isolated points. To
prove that generic elements w ∈ V satisfy that, let us consider the incidence
variety

I = {(x, [w]) ∈ X × P (V ) |w (x) = 0} ⊆ X × P (V ) .

The first projection makes I into a projective bundle of fibre Pq−d−1 (where
as usual, d = dimX and q = q (X)). Indeed, the fibre over any x ∈ X
is (the projectivization of) the set of 1-forms vanishing at x. Since the
tangent space TX,x injects into TA,x, the set of 1-forms vanishing at x is the
annihilator T⊥

X,x inside T∨
A,x

∼= V , which has dimension q− d. In particular,
I is irreducible of dimension (q − d− 1) + d = q − 1.

Consider now the second projection I → P (V ). It is clear that the fibre
over a point [w] is the zero set Z (w), so we want to see that a general fibre
has dimension at most 0. If I dominates P (V ) ∼= Pq−1, the general fibre has
dimension (q − 1) − (q − 1) = 0. If otherwise I does not dominate P (V ),
the general fibre is empty (that is, a generic 1-form does not vanish at any
point). In any case, we are done.

For the inductive step, note first that if we have two nested subspaces
W ′ ⊆ W ⊆ V , then Zi (W ) ⊆ Zi (W

′) for every i = 1, . . . , dimW ′. There-
fore, if W ′ is non-degenerate and k = dimW = dimW ′ + 1, then

codimZi (W ) ≥ codimZi (W
′) ≥ d− i+ 1

for every i = 1, . . . , k − 1, and W will be non-degenerate as soon as
codimZk (W ) ≥ d− k + 1.
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Fix a non-degenerate subspace W ′ of dimension k − 1 (it exists by the
induction hypothesis), so that in particular codimZk−1 (W

′) ≥ d−k+2, and
let X ′ = X −Zk−1 (W

′) be the open set where the evaluation W ′ → T∨
X,x is

injective. For any x ∈ X ′ denote by W ′
x ⊆ T∨

X,x the image of the evaluation,
and by Ex ⊆ TX,x the subspace of tangent vectors annihilated by W ′

x, which
has dimension dimTX,x − dimW ′

x = d− k + 1. Consider the new incidence
variety

Ik = {(x,W ) | x ∈ X ′,W = W ′ + C 〈w〉 , Ex ⊆ kerw (x)} ⊆ X ′×P (V/W ′) .

Note that the condition Ex ⊆ kerw (x) is independent of the choice of the
complement C 〈w〉 of W ′ in W , so Ik is well defined. As for k = 1, the first
projection makes Ik into a Pq−d−1-bundle, so Ik is irreducible of dimension
q − 1. Indeed, the fibre over a point x ∈ X ′ is the projectivization of

{w +W ′ ∈ V/W ′ |Ex ⊆ kerw} =

= {w ∈ V |Ex ⊆ kerw} /W ′ = E⊥
x /W

′ ∼= Cq−d,

where the annihilator E⊥
x is taken in V , that is, it is the kernel of the

restriction map V ։ E∨
x , the map dual to the composition of inclusions

Ex ⊆ TX,x ⊆ TA,x = V ∨.
As for the second projection, the fibre over W = C 〈w〉+W ′ ∈ P (V/W ′)

is the set

{x ∈ X ′ |Ex ⊆ kerw (x)} = {x ∈ X ′ |w (x) ∈ W ′
x} =

= Zk (W ) ∩X ′ = Zk (W )− Zk−1 (W
′) ,

and for W generic its dimension is either zero (if the second projection is
not dominant) or

dim Ik − dimP (V/W ′) = (q − 1)− (q − (k − 1)− 1) = k − 1.

Since the dimension of Zk−1 (W
′) is at most k − 2, we can conclude that

dimZk (W ) ≤ k − 1 for W generic containing W ′, finishing the proof.

Remark 2.2.21. Note that the only property we have used is that the tan-
gent spaces TX,x inject into the tangent space of the Abelian variety at every
point. Therefore, the same result holds true for étale coverings of subvari-
eties of Abelian varieties.

Therefore we can apply Corollaries 2.2.18 and 2.2.19 for any k ≤ d to
obtain in particular the next inequality.
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Corollary 2.2.22. If X is a subvariety of an Abelian variety A such that
H0 (X,Ω1

X) = H0 (A,Ω1
A), and p, j ≥ 0 satisfy max{p, j} ≤ d+1− (p+ j),

then

hp,j (X) ≥

(
d+ 1− (p+ j)

p

)(
d+ 1− (p+ j)

j

)
.

If X is a subvariety of an Abelian variety A such that the restriction
induces an equality H0 (X,Ω1

X) = H0 (A,Ω1
A) as in the hypothesis of Propo-

sition 2.2.20, it is also useful to consider the extremal case k = q, that is,
W = H0 (X,Ω1

X) is the whole space of holomorphic 1-forms. In this case,
the cokernel K of the previous section is simply the normal bundle NX/A.
Since it is a vector bundle, so is SymrK, and hence ExtiOX

(Symr K,OX) = 0
for every i > 0. Therefore, the second spectral sequence ′′E is degenerate at
′′E2, and its only possibly non-zero terms are ′′Ei,0

2 = H i
(
X, SymrN∨

X/A

)
.

This leads to the following

Proposition 2.2.23. Let X ⊆ A be a subvariety of an Abelian variety
such that H0 (X,Ω1

X) = H0 (A,Ω1
A). If for some positive integers r,N the

normal bundle NX/A satisfies H i
(
X, SymrN∨

X/A

)
= 0 for all i < N , then

for every j < N the complex

0 −→
(
SymrH0

(
X,Ω1

X

))
⊗Hj (X,OX) −→ · · ·

· · · →
(
Symr−iH0

(
X,Ω1

X

))
⊗Hj

(
X,Ωi

X

)
→ · · ·

· · · −→
(
Symr−N+j H0

(
X,Ω1

X

))
⊗Hj

(
X,ΩN−j

X

)

is exact.

Proof. Let V = H0 (X,Ω1
X). By the previous discussion, since SymrNX/A

is locally free, the spectral sequence

′′E
i,j
2 = H i

(
X, ExtjOX

(
SymrNX/A,OX

))
⇒ Hn (X, Cr,V )

is degenerate and gives Hi (X, Cr,V ) = H i
(
X, SymrN∨

X/A

)
= 0 for any

i < N . These vanishings, combined with Proposition 2.2.10, imply the
vanishing of ′Ei,j

2 for all i + j < N . Recalling that ′Ei,j
2 is the cohomology

of Cj
r,V at the i-th step, the claim follows directly.

Corollary 2.2.24. If X, r and N are as in the above Proposition, then
p∑

i=0

(−1)p−i
(
r − i+ q (X)− 1

q (X)− 1

)
hi,j (X) ≥ 0 (2.13)

for all p ≤ N .
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The main drawback of Proposition 2.2.23 is the difficulty to check the

vanishing of H i
(
X, SymrN∨

X/A

)
.

Example 2.2.25. Let D1, . . . , Dc ⊆ A be ample divisors on an Abelian
variety such that the partial intersections Xi = D1 ∩ . . . ∩ Di are smooth,

and let X = Xc. Then H i
(
X, SymrN∨

X/A

)
= 0 for every positive r and

i < dimX = q (A)−c, and X satisfies with equality all except one (the case
p = dimX) of the inequalities of Corollary 2.2.24.

In fact, using a double induction (both on c and r) it is possible to show
more generally that

H i
(
X,
(
SymrN∨

X/A

)
(−D)

)
= 0

for any positive r and i < dimX, where D is either zero or an ample divisor
on A. For the induction step one only needs to take cohomology on the exact
sequences

0 −→
(
SymrN∨

Y/A|X

)
(−D) −→

(
SymrN∨

X/A

)
(−D) −→

−→
(
Symr−1N∨

X/A

)
(−Dc −D) −→ 0

and

0 −→
(
SymrN∨

Y/A

)
(−Dc −D) −→

(
SymrN∨

Y/A

)
(−D) −→

−→ SymrN∨
Y/A|X −→ 0,

where Y = Xc−1.
On the other hand, also by induction on c, combining the cohomologies

of the exact sequences

0 −→ Ωi
X −→ Ωi

Y |X −→ Ωi−1
X (−Dc) −→ 0

and
0 −→ Ωi

Y (−Dc) −→ Ωi
Y −→ Ωi

Y |X −→ 0

with the Kodaira-Nakano vanishing theorem, one obtains

hi,j (X) = hi,j (A) =

(
q (A)

i

)(
q (A)

j

)

as long as i+ j < dimX. Substituting these values in the left-hand side of
(2.13) one obtains 0 (after applying the identity (2.12)).
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2.3 Improved bounds for h2,0 (X)

In this section we consider the Grassmannian BGG complex

C0
2 : 0 −→ Sym2 S −→ S ⊗H0

(
X,Ω1

X

)
−→ OG ⊗H0

(
X,Ω2

X

)
(2.14)

over a Grasmannian variety of even-dimensional subspaces of H0 (X,Ω1
X),

and use it to obtain lower bounds on h2,0 (X). In particular we improve
the results of the previous sections for varieties without higher irrational
pencils, improving some results of Lazarsfeld and Popa [27] and Lombardi
[28] for threefolds and fourfolds.

The main result is Theorem 2.3.3, which shows that the exactness of
(2.14) at a general point is related to the existence of bivectors of small
rank in the kernel of ψ2 :

∧2H0 (X,Ω1
X) → H0 (X,Ω2

X). We start defining
such notion.

Definition 2.3.1. Let V be any vector space. An element v ∈
∧2 V is said

to have rank 2k if it can be written as

v = v1 ∧ v2 + · · ·+ v2k−1 ∧ v2k

for some linearly independent elements v1, . . . , v2k ∈ V .

Remark 2.3.2. If we represent v as an antisymmetric q × q matrix A
with respect to some fixed basis of V , then the rank of v coincides with the
rank of A (which is always even). In particular, any element v ∈

∧2 V
has rank at most q, and the elements of rank 2 are precisely the (non-zero)
decomposable elements. More generally, the set of bivectors of rank at most
2m is the cone over Secm (Gr (2, V )) ⊆ P

(∧2 V
)
.

We present now our main result.

Theorem 2.3.3. Fix a positive integer k ≤ q
2
. If every non-zero element in

kerψ2 has rank bigger than 2k, then the complex (2.14) on G2k is generically
exact.

Proof. Set V = H0 (X,Ω1
X). By the previous remark, the hypothesis is

equivalent to P (kerψ2) ∩ Seck (G2) = ∅. In this case, the rational map
π = P (ψ2) : P

(∧2 V
)
99K P (H0 (X,Ω2

X)) restricts to a morphism

πk = π| Seck(G2)
: Seck (G2) −→ P

(
H0
(
X,Ω2

X

))

which is finite onto its image. Indeed, if it is not the case, then there exists
a curve C ⊆ Seck (G2) such that π (C) = p is just a point. Such a curve
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is thus contained in the linear space π−1 (p), which contains P (kerψ2) as a
hyperplane, and hence C should intersect it, contradicting the fact that πk
is defined everywhere in Seck (G2).

Now suppose that the complex (2.14) is not exact at a point W ∈ G2k,
i.e. the complex of vector spaces

C0
2,W : 0 −→ Sym2W

µ00−→ W ⊗H0
(
X,Ω1

X

) µ01−→ H0
(
X,Ω2

X

)
(2.15)

is not exact. Fix {w1, . . . , w2k} any base of W . Since

µ0
0 (wiwj) = wi ⊗ wj + wj ⊗ wi

for every i, j, and the elements {wi ⊗ wj}
2k
i,j=1 are linearly independent in

W ⊗H0 (X,Ω1
X), µ

0
0 is clearly injective, identifying Sym2W with the sub-

space of W ⊗H0 (X,Ω1
X) spanned by

{wi ⊗ wi}1≤i≤k ∪ {wi ⊗ wj + wj ⊗ wi}1≤i<j≤k.

Therefore, the lack of exactness of (2.15) must come from the central
term, that is, there exist some 1-forms α1 . . . α2k ∈ H0 (X,Ω1

X) such that∑2k
i=1wi ⊗ αi 6∈ imµ0

0 but

µ0
1

(
2k∑

i=1

wi ⊗ αi

)
= ψ2

(
2k∑

i=1

wi ∧ αi

)
= 0.

By substracting a suitable element from µ0
0

(
Sym2W

)
, we can assume fur-

thermore that αi 6∈ C 〈w1, . . . , wi〉 for every i. In particular, we may assume
that α2k 6∈ W .

Consider now the arc of curve C ⊆ Seck (G2) parametrized by

γ (t) = [(w1 − tα2) ∧ (w2 + tα1) + · · ·+ (w2k−1 − tα2k) ∧ (w2k + tα2k−1)],

with t varying in an open neighbourhood of 0 ∈ C. Let

p = γ (0) = [w1 ∧ w2 + . . .+ w2k−1 ∧ w2k].

The tangent vector to C at p (to the branch of C given by the image of a
neighbourhood of t = 0) is the class of

v =
2k∑

i=1

wi ∧ αi
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in TP(
∧2 V ),p =

(∧2 V
)
/C 〈w1 ∧ w2 + . . .+ w2k−1 ∧ w2k〉 . Since α2k 6∈ W ,

this class is clearly non zero. However, its image by the differential or πk is
precisely the class of

ψ2

(
2k∑

i=1

wi ∧ αi

)
= 0

in TP(H0(X,Ω2
X)),π(p)

= H0 (X,Ω2
X) /C 〈ψ2 (w1 ∧ w2 + . . .+ w2k−1 ∧ w2k)〉, so

πk is ramified at p. Since the general point of P
(∧2W

)
is of the form

[w1 ∧ w2 + . . . + w2k−1 ∧ w2k] for some basis of W , we see that πk ramifies
at every point in P

(∧2W
)
.

To finish the proof, note that Seck (G2) is the union of all the P
(∧2W

)

as W varies in G2k, so if (2.14) were not exact for a general (and hence for
any) W ∈ G2k, then πk would be ramified all over Seck (G2), contradicting
the fact that it is finite.

Now an easy dimension count gives our inequality.

Corollary 2.3.4. If there is no non-zero element of rank 2k ≤ q in kerψ2,
then

h2,0 (X) ≥ 2rq −

(
2r + 1

2

)

for all 1 ≤ r ≤ k.

Proof. By Theorem 2.3.3, for every 1 ≤ r ≤ k, the complex (2.14) over any
G = G2r is generically exact. Let W ∈ G2r be such that

0 −→ Sym2W −→ W ⊗H0
(
X,Ω1

X

)
−→ H0

(
X,Ω2

X

)

is exact. The cokernel of the last map has dimension

dimH0
(
X,Ω2

X

)
− dim

(
W ⊗H0

(
X,Ω1

X

))
+ dim

(
Sym2W

)
=

= h2,0 (X)− 2rq +

(
2r + 1

2

)
,

which must be non-negative, giving the desired inequality.

Remark 2.3.5. The case k = 1 is the classical Castelnuovo-de Franchis
inequality. The case k = 2 has been already considered in [2] and [27],
where the same inequality is obtained.

Remark 2.3.6. From the proof of Theorem 2.3.3 we deduce that C0
2,W is

exact (where dimW = 2k) if and only if the image of
∧2W by ψ2 is not

contained in the ramification locus of

P (ψ2)| Seck(G2)
: Seck (G2) −→ P

(
H0
(
X,Ω2

X

))
.
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The existence of low-rank elements in the kernel of ψ2 can be related to
the existence of higher irrational pencils on X, and this will give us a more
geometric hypothesis to apply Corollary 2.3.4.

Lemma 2.3.7. If v ∈ kerψ2 has rank 2k > 0, k < d, then there exists a
higher irrational pencil f : X → Y with dimY ≤ k.

Proof. The proof relies on Theorem 1.2.3. By this theorem, it suffices to
find a decomposable element v1 ∧ · · · ∧ vk+1 in the kernel of ψk+1. Writing
v = v1∧v2+ . . . v2k−1∧v2k with the vi linearly independent, it is immediate
that the element v1 ∧ v3 ∧ . . . ∧ v2k−1 ∧ v2k, obtained by wedging v with
v1 ∧ v3 ∧ . . . ∧ v2k−3, maps to zero by ψk+1 because ψ2 (v) = 0.

We immediately obtain the next

Corollary 2.3.8. If X does not admit any irrational pencil, then

h2,0 (X) ≥ 2rq −

(
2r + 1

2

)

for all 1 ≤ r ≤ min
{
q
2
, dimX − 1

}
.

Proof. Simply observe that Lemma 2.3.7 allows us to apply Corollary 2.3.4
for any k ≤ dimX − 1.

And taking the maximum over all the possible r, we get the final result.

Theorem 2.3.9. Let X be an irregular variety without higher irrational
pencils. Then it holds

h2,0 (X) ≥

{(
q(X)
2

)
if q (X) ≤ 2 dimX − 1

2 (dimX − 1) q (X)−
(
2 dimX−1

2

)
otherwise.

(2.16)

Remark 2.3.10. The inequality in the case q ≤ 2d − 1 was already ob-
tained by Causin and Pirola in [10], while the case q ≥ 2d is new for high
dimension (although for d = 2 it is nothing but the classical Castelnuovo-de
Franchis inequality for surfaces without irrational pencils, and for d = 3
it coincides with a bound given in [27]). Furthermore, it says that for
fixed dimension and big irregularity, h2,0 behaves asymptotically at least as
2 (d− 1) q. For threefolds, this bound coincides with the one proven (with
slightly more restrictive hypothesis) by Lombardi in [28], but improves his
results in dimension four.
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2.4 Comparison of the two methods

In this final section we compare the results of Sections 2.2 and 2.3. After a
first insight, we make a break to talk about computation of Chern classes
of symmetric powers of vector bundles. Finally, we compute some explicit
cases and check whether the first intuition was right or not.

2.4.1 A first (naive) approach

In the previous section we proved (Theorem 2.3.3) that if X does not admit
any higher irrational pencil, then the complex

0 −→ Sym2W −→ W ⊗H0
(
X,Ω1

X

)
−→ H0

(
X,Ω2

X

)
(2.17)

is exact for a generic even-dimensional subspace W ⊆ H0 (X,Ω1
X), of di-

mension dimW = 2k′ < 2 dimX, and this exactness gives the inequalities
(Corollary 2.3.8)

h2,0 (X) ≥ 2k′q (X)−

(
2k′ + 1

2

)
∀ k′ < d. (2.18)

Using Theorem 2.2.15 for the case r = 2, j = 0, one only obtains the
exactness of (2.17) if W is non-degenerate of dimension k ≤ d− 1.

The first thing we would like to mention is that the hypothesis used
in the two sections are quite different. Indeed, if the Albanese map of the
variety is ramified, there is no obvious relation between existence of non-
degenerate subspaces and the non-existence of fibrations over varieties of
Albanese general type.

As for the inequalities, if q (X) ≥ 2 dimX, the best inequality of (2.18)
is obtained for k′ = d−1, hence k = 2d−2. Such an inequality is impossible
to obtain with Theorem 2.2.15, since it requires k ≤ d − 1, which is very
far away from k = 2d− 2.

However, it seems possible to obtain a better bound with stronger hy-
pothesis. Suppose that Theorem 2.2.15 holds for r = 2, j = 0 and every
W ∈ G = Gr (k,H0 (X,Ω1

X)) for some k ≤ d − 1. In this case, the Grass-
mannian BGG complex on G

0 → Sym2 S → S ⊗H0
(
X,Ω1

X

)
→ H0

(
X,Ω2

X

)
⊗OG → F0

2,2 → 0 (2.19)

is everywhere exact, so the cokernel F = F0
2,2 is also a vector bundle. If we

were able to compute the (total) Chern class of F , c (F), we would obtain
estimates on rkF which in turn will give lower bounds on

h0,2 (X) = rk (F) + kq −

(
k + 1

2

)
.
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Suppose for a moment that the Chern class of degree dimG = k (q − k)
of F was non-zero. This would imply that F has rank at least k (q − k),
and therefore

h2,0 (X) ≥ k (q − k) + kq −

(
k + 1

2

)
= 2kq −

(
k2 +

(
k + 1

2

))
, (2.20)

which has the same asymptotic behaviour as (2.16). Furhtermore, since
k2 +

(
k+1
2

)
<
(
2k+1
2

)
, we would obtain a slightly stronger bound.

The problem is now reduced to compute the Chern class

c (F) =
c (H0 (X,Ω2

X)⊗OG) c
(
Sym2 S

)

c (S ⊗H0 (X,Ω1
X))

= c
(
Sym2 S

)
c (Q)q , (2.21)

(since c (S)−1 = c (Q)), which turns out to be very complicated in general.
Indeed, although the power c (Q)q is easy to describe in terms of the Schu-
bert classes of G, the formula for the Chern class of a symmetric power of
some vector bundle E depends on the rank of E, and we do not know of
any explicit computation even in the (rather concrete) case of tautological
bundles over a Grassmannian.

In Appendix A.2 we will compute the Chern classes ci (F) for some low
values of k and q. Unfortunately, the maximal Chern class vanishes in all
these cases, so the bound (2.20) is not true at all. However, we will observe
the particularly surprising fact that the lower bounds for h2,0 (X) obtained
by this new method coincide with (2.18) with k′ = k.

2.4.2 Chern Classes of Symmetric Powers

We make now a break to say a few words about symmetric powers of a
vector bundle, and more precisely, about the computation of their Chern
classes from the Chern classes of the original bundle. Hence, let M denote
any complex manifold, and E a vector bundle on M of rank k = rkE with
Chern classes ci = ci (E). The problem we are concerned with is to find the
universal formulas Pi (k, r, c1, . . . , ck, . . .) such that

ci (Sym
r E) = Pi (rkE, r, c1, c2, . . .) .

For fixed rank k and exponent r, it is easy (though very tedious) to
obtain the explicit formulas. Indeed, one only has to express a symmetric
polynomial in k variables as a polynomial in the elemenatary symmetric
polynomials, and there are plenty of software packages that can help with
this computation. However, we would like to have general formulas valid
for (at least) arbitrary k, and it is very desirable to have results also for
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arbitrary r. Unfortunately, we have not find any such results in the liter-
ature, probably because the hidden combinatorics is very complicated. In
order to illustrate the difficulty of the general computation, we include a
proof of the simplest case.

Proposition 2.4.1. For any r ≥ 1 and any vector bundle E it holds

c1 (Sym
r E) =

(
rkE + r − 1

r − 1

)
c1 (E) ,

that is, P1 =
(
rkE+r−1

r−1

)
c1.

Proof. By the splitting principle, we know that if the total Chern class of
E is c (E) =

∏k
i=1 (1 + xi), the Chern class of Symr E is

c (Symr E) =
∏

1≤i1≤...≤ir≤k

(
1 +

r∑

j=1

xij

)
.

Therefore, taking the parts of degree 1 we obtain

c1 (Sym
r E) =

∑

1≤i1≤...≤ir≤k

(
r∑

j=1

xij

)
,

which is clearly a symmetric polynomial in the x1, . . . , xk, hence it is a
multiple of the elementary symmetric polynomial x1 + · · · + xk = c1 (E).
To find the scalar A such that

∑

1≤i1≤...≤ir≤k

(
r∑

j=1

xij

)
= A (x1 + · · ·+ xk)

one only has to find the sum of all the coefficients of the xi. That of the
right-hand side is clearly kA, while the sum of the coefficients of the left-
hand side is r times the number of summands, which is

(
k+r−1
k−1

)
. Hence we

have

A =
r

k

(
k + r − 1

k − 1

)
=

(
k + r − 1

k

)
,

as claimed.

The approach of the preceding proof does not work so easily for higher
Chern classes. For example, only for c2 one would have

c2 (Sym
r E) =

∑

I 6=J

(∑

i∈I

xi

)(∑

j∈J

xj

)
=

= A

(
k∑

i=1

xi

)2

+B

(∑

i<j

xixj

)
= Ac21 +Bc2, (2.22)
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where I and J denote multisets of size r with elements in {1, . . . , k}.
The sum of the coefficients of the first term of the second row of (2.22)

is k2A +
(
k
2

)
B, which must equal r2 (the sum of the coefficients of each

summand in the first row) times the number of couples of multiindices
{I 6= J}. That is,

k2A+

(
k

2

)
B = r2

((k+r−1
r

)

2

)
, (2.23)

which is not enough to determine A and B, and we have not found any
other easy equality involving A,B, r and k.

However, we do not really need such general formulas, since we are only
concerned with the cases r = 2 and r = 3 (the latter will be useful at
the very end of the chapter). Fixing r, the size of the multisets I, J , does
actually simplify the underlying combinatorial problem (although we still
have an arbitrary number k of indeterminates). Indeed, let us continue the
last computation with r = 2.

Proposition 2.4.2. For any vector bundle E of rank k it holds

c2
(
Sym2E

)
=

(k + 2) (k − 1)

2
c1 (E)

2 + (k + 2) c2 (E) .

Proof. We first rewrite (2.22) as

c2 (Sym
r E) = Ac21 + Bc2 = A

(
k∑

i=1

x2i

)
+ (2A+ B)

(∑

i<j

xixj

)
.

Since we are considering r = 2, the multisets of indices are of the form
I = {1 ≤ i1 ≤ i2 ≤ k} , J = {1 ≤ j1 ≤ j2 ≤ k}.

Let us first compute A as the number of times the monomial x21 appears
in

∑

I 6=J

(∑

i∈I

xi

)(∑

j∈J

xj

)
. (2.24)

Hence we must consider all multiindices containing at least one 1, and take
into account the multiplicity of the 1.

• The first case is I = J = {1 ≤ 1}, which must be discarded because
we need I 6= J .

• The second case is I = {1 ≤ 1} and J = {1 ≤ j} with j > 1. In this
case the summands are

(∑

i∈I

xi

)(∑

j∈J

xj

)
= 2x1 (x1 + xj) ,
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hence each one contributes with 2 monomials x21, and there are k − 1
of them (as many as indices j satisfying 1 < j ≤ k). Therefore, the
total contribution is 2 (k − 1).

• The last case is I = {1 ≤ i} and J = {1 ≤ j} with 1 < i < j.
Each summand contributes with exactly one x21, and there are

(
k−1
2

)

of them.

Hence, adding up all the contributions, we finally obtain

A = 2 (k − 1) +

(
k − 1

2

)
=

(k + 2) (k − 1)

2
,

We can now compute B with equation (2.23), but we want to expose an
explicit computation (requiring much more subcases than the case of A)
which gives an idea on how the code in Appendix A.1 works. We first
calculate 2A+ B as the number of times x1x2 appears in (2.24):

• I = {1 ≤ 1} , J = {1 ≤ 2}. There is only one summand contributing
with 2 monomials.

• I = {1 ≤ 1} , J = {2 ≤ 2}. There is only one summand contributing
with 4 monomials.

• I = {1 ≤ 1} , J = {2 ≤ j} with j > 2. There are k − 2 summands,
each contributing with 2 monomials. Hence the total contribution is
2 (k − 2).

• I = {1 ≤ 2} , J = {1 ≤ j} with j > 2. There are k−2 such summands,
each contributing with one monomial. Total: k − 2.

• I = {1 ≤ 2} , J = {2 ≤ 2}. Only one summand contributing with 2
monomials.

• I = {1 ≤ 2} , J = {2 ≤ j} with j > 2. There are k − 2 summands,
each contributing with one monomial.

• I = {1 ≤ i} , J = {2 ≤ 2} with i > 2. There are k − 2 summands,
each contributing with 2 monomials.

• I = {1 ≤ i} , J = {2 ≤ j} with i, j > 2. There are (k − 2)2 such
summands, each contributing with only one monomial.

Adding up all the contributions, we obtain

2A+ B = (k − 2)2 + 6 (k − 2) + 8 = k2 + 2k.

Hence B = k + 2 and the proof is done.
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It is clear from the previous proof that the computations become more
and more complicated when the exponent r or the degree i of the Chern
class grow. With the help of a computer program in Singular (see Appendix
A.1) we have computed the smallest cases:

Proposition 2.4.3. Let E be a vector bundle of rank k. Then the following
formulas hold

c1
(
Sym2E

)
= (k + 1) c1 (E)

c2
(
Sym2E

)
=

(k + 2) (k − 1)

2
c1 (E)

2 + (k + 2) c2 (E)

c3
(
Sym2E

)
=

(k + 3) (k − 1) (k − 2)

6
c1 (E)

3 +

+
(
k2 + 2k − 4

)
c1 (E) c2 (E) + (k + 4) c3 (E)

c1
(
Sym3E

)
=

(
k + 2

2

)
c1 (E)

c2
(
Sym3E

)
=

(k + 2) (k − 1) (k2 + 5k + 8)

8
c1 (E)

2 +

(
k + 3

2

)
c2 (E)

c3
(
Sym3E

)
=

(k − 1) (k5 + 10k4 + 37k3 + 40k2 − 84k − 192)

48
c1 (E)

3 +

+
(k + 3) (k3 + 5k2 + 6k − 16)

4
c1 (E) c2 (E) +

+
(k + 3) (k + 6)

2
c3 (E)

2.4.3 Bounds from non-vanishing of Chern classes

We go now back to the specific case of (2.21). The computation is carried
out in the cohomology of the Grassmannian variety G = Gr(k, q) of k-
dimensional subspaces of V = H0 (X,Ω1

X)
∼= Cq. Fixed a basis {v1, . . . , vq}

of V and given a non-increasing sequence λ = (q− k ≥ λ1 ≥ · · · ≥ λk ≥ 0),
the set

Σλ = {W ∈ G | dim (W ∩ C 〈v1, . . . , vq−k+i−λi〉) ≥ i}

is a closed cycle of (real) codimension 2
∑

i λi = 2 |λ|, called the Schubert
cycle associated to λ and the chosen basis.

Let σλ ∈ H2|λ| (G,C) denote its cohomology class, which is independent
of the choice of the basis. Then it is known (see for instance [20] pp. 410–
411) that

c (S) = 1− σ1 + σ1,1 − · · ·+ (−1)k σ1,...,1

k
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and
c (Q) = 1 + σ1 + σ2 + · · ·+ σq−k.

Since we do not know a closed formula for every ci
(
Sym2 S

)
, we cannot

compute the total Chern class c
(
Sym2 S

)
unless we fix k = rkS. Moreover,

although it is possible to give a quite explicit expression of the power c (Q)q

as a linear combination of Schubert classes valid for any q, we have not
found a way to carry out the product c

(
Sym2 S

)
c (Q)q and look for which

coefficients vanish and which ones do not.
Therefore, we have been forced to make explicit computations fixing

both k = 2, 3, 4 and q = k + 1, . . . , 12, the complete results of which are
included in Appendix A.2. From these computations, it is clear that the
Chern classes of F of highest degree vanish, hence the bounds (2.20) are out
of reach with this last method. Furthermore, there is some pattern in the
Schubert classes whose coefficient is non-zero, which leads us to formulate
the following

Conjecture 2.4.4. Let µ = (q − k − 1, q − k − 2, q − k − 3, . . . , q − 2k)
(or (q − k − 1, q − k − 2, . . . , 1, 0, . . .) if q < 2k). The coefficient in c(F)
of the Schubert class σλ is zero for every λ not contained1 in µ, while the
coefficient of σµ is non-zero.

The computations in Appendix A.2 prove this Conjecture for small k
and q, but we do not know of any method to prove it for all the possible
values.

Proposition 2.4.5. If the Grassmannian BGG complex (2.19) of an irreg-
ular variety X is everywhere exact and Conjecture 2.4.4 holds, then

h2,0 (X) ≥

{(
q
2

)
if q ≤ 2k,

2kq −
(
2k+1
2

)
if q ≥ 2k.

Proof. Computing the codimension of σµ we obtain

rk (F) ≥

{(
q−k
2

)
if q ≤ 2k,

k(2q−3k−1)
2

if q ≥ 2k,

and adding it to kq −
(
k+1
2

)
we obtain precisely the bound

h2,0 ≥

{(
q
2

)
if q ≤ 2k,

2kq −
(
2k+1
2

)
if q ≥ 2k.

1We say that a partition (λ1 ≥ . . . ≥ λk) is contained in (µ1 ≥ . . . ≥ µk) if λi ≤ µi

for all i.
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Remark 2.4.6. The above bound is exactly the lower bound of Theorem
2.3.9, but obtained in a very different way.

2.4.4 Bounds from positivity of Chern Classes

We close both this section and the chapter exploring a different approach to
obtain inequalities among the Hodge numbers of certain irregular varieties.
Although the method can be used with any of the complexes Cj

r , we will
focus on the case C0

3 , since it leads to more inequalitites involving h = h2,0

and q which we can compare with the previous ones.
Consider thus the complex C0

3 over the Grasmannian Gk for some k,

C0
3 : 0 → Sym3 S → Sym2 S ⊗H0

(
X,Ω1

X

)
→

→ S ⊗H0
(
X,Ω2

X

)
→ H0

(
X,Ω3

X

)
⊗OG → G = F0

3,3 → 0, (2.25)

and assume that it is exact as a sequence of sheaves on G. As in the
previous discussion, we do not know of better (geometric) hypothesis to be
put directly on the variety X and guaranteeing the exactness of (2.25) (in
the flavor of Theorem 1.4.2).

Since G is generated by global sections (it is a quotient of a trivial
bundle), all its Chern classes must be represented by effective cycles, and
this gives some inequalities involving h, q and k (the rank of S).

Without using the global generation, one can truncate the complex after
S⊗H0 (X,Ω2

X) and use that the cokernel must have non-negative rank. This
gives

kh−

(
k + 1

2

)
q +

(
k + 2

3

)
≥ 0,

or equivalently

h ≥
1

k

(
q

(
k + 1

2

)
−

(
k + 2

3

))
=
k + 1

2
q −

(k + 2)(k + 1)

6
. (2.26)

This inequality is better than h ≥ kq −
(
k+1
2

)
(the one obtained from the

exactness of some C0
2,W ) if and only if q < 2

3
(k + 1). Since k ≤ q by

definition, q < 2
3
(k + 1) implies 3k < 2k+2 and hence k < 2. Furthermore,

for k = 1, (2.26) is equivalent to h ≥ kq −
(
k+1
2

)
= q − 1, so we do not get

any improvement by considering only the ranks.
In order to use the global generation, we compute the lower terms of

c (G) =
c
(
Sym2 S

)q

c (S)h c
(
Sym3 S

) .
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Writing Ai = ci(Sym
2 S), Bi = ci(Sym

3 S), and denoting by Di the compo-
nent in H i(G,C) of ci(Sym

3 S)−1, we have

c (Q) = 1 + σ1 + σ2 + σ3 + · · ·

c
(
Sym2 S

)
= 1 + A1 + A2 + A3 + · · ·

c
(
Sym3 S

)
= 1 + B1 + B2 +B3 + · · ·

c
(
Sym3 S

)−1
= 1 +D1 +D2 +D3 + · · ·

and

c (G) = (1 + σ1 + σ2 + · · · )h (1 + A1 + A2 + · · · )q (1 +D1 +D2 + · · · ) .
(2.27)

From the identity (1 + B1 + B2 + B3 + · · · )(1 +D1 +D2 +D3 + · · · ) = 1
we can recover recursively the Di from the Bi as

Di = −Bi −Bi−1D1 −Bi−2D2 − · · · −B1Di−1 ∀ i ≥ 1.

Denote also by aλ, bλ, dλ, gλ ∈ Q[k] the coefficients of the Schubert class
σλ in c

(
Sym2 S

)
, c
(
Sym3 S

)
, c
(
Sym3 S

)−1
and c (G), respectively. Then,

the family of inequalities we want to describe as explicitly as possible is
{gλ ≥ 0}.

Inequality from c1(G) ≥ 0

From the formula (2.27) we obtain

c1 (G) = hσ1 + qA1 +D1 = (h+ qa1 + d1) σ1

so g1 = h + qa1 + d1, and the first inequality we obtain is h ≥ −qa1 − d1.
Our objective now is to determine a1 and d1.

From Proposition 2.4.3, we obtain

c1
(
Sym2 S

)
= (k + 1) c1 (S) = − (k + 1) σ1

and

c1
(
Sym3 S

)
=

(
k + 2

2

)
c1 (S) = −

(
k + 2

2

)
σ1.

Hence, a1 = − (k + 1) and d1 = −b1 =
(
k+2
2

)
, so that we obtain the inequal-

ity

h ≥ −qa1 − d1 = q(k + 1)−

(
k + 2

2

)
. (2.28)

Note that this inequality is the same that we would have obtained from
the exactness of C0

2,W for someW of dimension k+1. Hence, the assumption
of exactness for every subspace of a certain dimension gives the same result
that the exactness for only one subspace of bigger dimension.



2.4 - Comparison of the two methods 75

Inequality from c2(G) ≥ 0

From the formula (2.27) we obtain

c2(G) = hσ2 + qA2 +D2 +

+

(
h

2

)
σ2
1 +

(
q

2

)
A2

1 + hqσ1A1 + (hσ1 + qA1)D1 =

= (h+ qa2 + d2)σ2 + (qa1,1 + d1,1)σ1,1 +

+

((
h

2

)
+

(
q

2

)
a21 + hqa1 + (h+ qa1)d1

)
σ2
1 =

=

(
h+ qa2 + d2 +

(
h

2

)
+

(
q

2

)
a21 + hqa1 + (h+ qa1)d1

)
σ2 +

+

(
qa1,1 + d1,1 +

(
h

2

)
+

(
q

2

)
a21 + hqa1 + (h+ qa1)d1

)
σ1,1

(because σ2
1 = σ2 + σ1,1). Therefore,

g2 = h+ qa2 + d2 +

(
h

2

)
+

(
q

2

)
a21 + hqa1 + (h+ qa1)d1

and

g1,1 = qa1,1 + d1,1 +

(
h

2

)
+

(
q

2

)
a21 + hqa1 + (h+ qa1)d1.

We now have to determine a2, a1,1, d2 and d1,1.
Using the formulas of Proposition 2.4.3 we obtain

c2(Sym
2 S) =

1

2
(k + 2)(k − 1)c1(S)

2 + (k + 2)c2(S) =

=
1

2
(k + 2)(k − 1)σ2

1 + (k + 2)σ1,1 =

=
1

2
(k + 2)(k − 1)σ2 +

(
1

2
(k + 2)(k − 1) + (k + 2)

)
σ1,1.

Therefore, a2 = 1
2
(k + 2)(k − 1) and a1,1 =

(
k+2
2

)
.

The same computation for Sym3 S gives

c2(Sym
3 S) =

1

8
(k + 2)(k − 1)(k2 + 5k + 8)c1(S)

2 +

(
k + 3

2

)
c2(S) =

=
1

8
(k + 2)(k − 1)(k2 + 5k + 8)σ2

1 +

(
k + 3

2

)
σ1,1 =

=
1

8
(k + 2)(k − 1)(k2 + 5k + 8)σ2 +

+

(
1

8
(k + 2)(k − 1)(k2 + 5k + 8) +

(
k + 3

2

))
σ1,1.
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Simplifying a bit more, we get

b2 =
1

8
(k + 2)(k − 1)(k2 + 5k + 8)

and

b1,1 =
1

8
(k + 2)(k + 1)(k2 + 3k + 4) =

((k+2
2

)
+ 1

2

)
.

Finally, D2 = −B2 −B1D1 implies that

d2σ2 + d1,1σ1,1 = −(b2σ2 + b1,1σ1,1)− (b1σ1)(d1σ1) =

= −(b2 + b1d1)σ2 − (b1,1 + b1d1)σ1,1,

and therefore

d2 = −(b2 + b1d1) =
1

8
(k + 3)(k + 2)(k2 + k + 4)

and

d1,1 = −(b1,1 + b1d1) = 3

(
k + 3

4

)
.

Summing up all the results so far we obtain the inequalities

g2 =
1

2
h2 −

(
q(k + 1)−

(
k + 2

2

)
−

1

2

)
h+

+

((
q

2

)
(k + 1)2 −

1

2
q (k + 2)

(
k2 + k + 2

)
+

+
1

8
(k + 3) (k + 2)

(
k2 + k + 4

))
≥ 0

and

g1,1 =
1

2
h2 −

(
q(k + 1)−

(
k + 2

2

)
+

1

2

)
h+

+

((
q

2

)
(k + 1)2 − qk

(
k + 2

2

)
+ 3

(
k + 3

4

))
≥ 0.

Viewing g2 and g1,1 as quadratic polynomials in h, we can compute their
roots formally, which are (for g2 and g1,1 respectively)

α± =

(
q(k + 1)−

(
k + 2

2

)
−

1

2

)
±

1

2

√
8(q − k)− 15
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and

β± =

(
q(k + 1)−

(
k + 2

2

)
+

1

2

)
±

1

2
.

First of all, note that β± are consecutive integers, so g1,1 ≥ 0 holds for any
integers h, k, q and it does not give any inequality at all.

Secondly, the roots α± are not defined if 8(q − k) − 15 < 0, which is
equivalent to k ≥ q−1 (both q and k are integers). Therefore, for k ≥ q−1
we again do not obtain any inequality. Assuming k ≤ q − 2, g2 ≥ 0 implies
that either h ≥ α+ or h ≤ α−. But since α− < q(k + 1) −

(
k+2
2

)
and

we already know that h ≥ q(k + 1) −
(
k+2
2

)
(inequality (2.28)), the option

h ≤ α− is impossible, and we only obtain

Proposition 2.4.7. If X is an irregular variety and k ≤ q (X)− 2 is such
that (2.25) is an exact sequence of sheaves on Gk, then

h2,0 (X) ≥ q(k + 1)−

(
k + 2

2

)
+

1

2

(√
8q − (8k + 15)− 1

)
. (2.29)

Remark 2.4.8. In the case k = 1, the inequality (2.29) concides with the
results of Lombardi [28] for threefolds.





AAppendix One

EXPLICIT COMPUTATIONS

A.1 Computing cn (Symr E) for E of ar-

bitrary rank.

In this first section of the Appendix we present a code in Singular that helps
to express the Chern classes of Symr E as polynomials

cn (Sym
r E) = Pn (rkE, r, c1, . . . , ck, . . .)

in the Chern classes ci = ci (E).
More precisely, if we denote by x1, . . . , xk the formal Chern roots of

E, the cn (Sym
r E) are symmetric polynomials in the xi, hence they admit

unique expressions as polynomials in the monomial symmetric polynomials

m(α1,...,αk) (x1, . . . , xk) =
1

Nα

∑

σ∈Sk

x
ασ(1)

1 · · · x
ασ(k)

k ,

where α = (α1 ≥ α2 ≥ . . . ≥ αk) is any non-increasing sequence such that
n =

∑k
j=1 αj, Sk is the symmetric group of permutations of k letters, and

Nα is the number of permutations σ such that ασ(i) = αi for all i.
The following code computes the coefficient of a givenmα in cn (Sym

r E).
After that, it is easy to express cn (Sym

r E) as a polynomial in the elemen-
tary symmetric polynomials, i.e., the Chern classes ci (E).

The code needs the library "general.lib", and works over any ring of
characteristic 0 with at least the variable k (e.g. ring R=0,k,dp).

The main procedure is coe. The inputs are Exp and r, the non-increasing
sequence α of exponents and the exponent r of the symmetric power, respec-
tively. The output is the corresponding coefficient of mα in cn (Sym

r E).
For example, if we call coe(intvec(2),2) and coe(intvec(1,1),2),

we obtain the polynomials 1
2
(k + 2) (k − 1) and k2 + 2k, which are respec-

tively the coefficients of m2 =
∑k

i=1 x
2
i and m1,1 =

∑
i<j xixj in c2

(
Sym2E

)

found in the proof of Proposition 2.4.2.

Hodge numbers of irregular varieties and fibrations 79
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proc coe(intvec Exp, int r){

int i,j;

int n=size(Exp);

int d=sum(Exp);

list C;

for(i=1;i<=n;i=i+1){

for(j=1;j<=Exp[i];j=j+1){

C=C+list(i);

}

}

matrix M[d][n];

intvec V=0:r;

V[r]=1;

poly res=c_rec(poly(0),C,poly(1),M,d,r,n,V);

for(i=1;i<=n;i=i+1){

for(j=2;j<=Exp[i];j=j+1){

res=res/j;

}

}

return(res);

}

proc c_rec(poly res, list C, poly aux, matrix M, int rrow,

int r, int n, intvec lrow){

if(rrow==0){

poly A=perm(M,C);

return(res+A*aux);

}

if(lrow[1]==-1){

return(res);

}else{

int i,j,m,s;

poly aux2;

for(i=rrow; i>=0; i=i-1){

for(j=0; j<i; j=j+1){

for(m=1; m<=n; m=m+1){

M[rrow-j,m]=0;

}

for(m=1; m<=r; m=m+1){

if(lrow[m]!=0){
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M[rrow-j,lrow[m]]=M[rrow-j,lrow[m]]+1;

}

}

}

s=r;

for(j=1;j<=r;j=j+1){

if(lrow[j]!=0){

s=s-1;

}

}

aux2=binom(binom(k-n+s-1,s),i);

res=c_rec(res,C,aux*aux2,M,rrow-i,r,n,next_seq(lrow,n));

}

return(res);

}

}

proc perm(matrix M, list C){

int R=size(C);

if(R==0){

return(poly(1));

}else{

poly aux=0;

for(int i=1; i<=R; i=i+1){

aux=aux+M[R,C[i]]*perm(M,delete(C,i));

}

return(aux);

}

}

proc binom(poly p, int m){

if(m==0){

return(poly(1));

}else{

return(p*binom(p-1,m-1)/m);

}

}
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proc next_seq(intvec V, int n){

int r=size(V);

int i=r;

int a;

while(i>0){

if(V[i]==n){

i=i-1;

}else{

a=i;

i=-1;

}

}

if(i==0){

return((-1):r);

}else{

i=a;

V[i]=V[i]+1;

for(int j=i+1;j<=r;j=j+1){

V[j]=V[i];

}

return(V);

}

}

A.2 Computations of c (F2,2)

This second part of the Appendix contains the explicit computations of
the total Chern class of the sheaf F = F2,2 appearing in Section 2.4. We
present them here in order to support Conjecture 2.4.4. As we said, we have
computed only the cases q = 2, 3, 4 and k = q+ 1, . . . , 12, which we believe
are more than enough to illustrate the vanishing of the higher Chern classes
of F . The computations have been carried out with Macaulay2, using the
package SchurRings.



A
.2

-
C

om
putations

of
c
(F
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k = 2

In this case,
c
(
Sym2 S

)
= 1 + 3c1 (S) + 2c1 (S)

2
+ 4c2 (S) + 4c1 (S) c2 (S) = 1− 3σ1 + (6σ1,1 + 2σ2)− 4σ2,1.

And multiplying by the powers of c (Q) we obtain

c
(
Sym2 S

)
c (Q)

3
=1

c
(
Sym2 S

)
c (Q)

4
=1 + σ1

c
(
Sym2 S

)
c (Q)

5
=1 + 2σ1 + (σ1,1 + 2σ2) + σ2,1

c
(
Sym2 S

)
c (Q)

6
=1 + 3σ1 + (3σ1,1 + 5σ2) + (6σ2,1 + 5σ3) + (3σ2,2 + 63,1) + 6σ3,2

c
(
Sym2 S

)
c (Q)

7
=1 + 4σ1 + (6σ1,1 + 9σ2) + (17σ2,1 + 14σ3) + (14σ2,2 + 28σ3,1 + 14σ4) + (28σ3,2 + 24σ4,1) + (14σ3,3 + 28σ4,2)+

+ 14σ4,3

c
(
Sym2 S

)
c (Q)

8
=1 + 5σ1 + (10σ1,1 + 14σ2) + (36σ2,1 + 28σ3) + (40σ2,2 + 78σ3,1 + 42σ4) + (110σ3,2 + 120σ4,1 + 42σ5)+

+ (84σ3,3 + 180σ4,2 + 120σ5,1) + (168σ4,3 + 180σ5,2) + (84σ4,4 + 168σ5,3) + 84σ5,4

c
(
Sym2 S

)
c (Q)

9
=1 + 6σ1 + (15σ1,1 + 20σ2) + (65σ2,1 + 48σ3) + (90σ2,2 + 171σ3,1 + 90σ4) + (306σ3,2 + 333σ4,1 + 132σ5)+

+ (300σ3,3 + 648σ4,2 + 495σ5,1 + 132σ6) + (810σ4,3 + 990σ5,2 + 495σ6,1) + (594σ4,4 + 1320σ5,3 + 990σ6,2)+

+ (1188σ5,4 + 1320σ6,3) + (594σ5,5 + 1188σ6,4) + 594σ6,5

c
(
Sym2 S

)
c (Q)

10
=1 + 7σ1 + (21σ1,1 + 27σ2) + (106σ2,1 + 75σ3) + (175σ2,2 + 326σ3,1 + 165σ4) + (700σ3,2 + 748σ4,1 + 297σ5)+

+ (825σ3,3 + 1771σ4,2 + 1375σ5,1 + 429σ6) + (2706σ4,3 + 3388σ5,2 + 2002σ6,1 + 429σ7)+

+ (2475σ4,4 + 5643σ5,3 + 5005σ6,2 + 2002σ7,1) + (6600σ5,4 + 8580σ6,3 + 5005σ7,2)+

+ (4719σ5,5 + 10725σ6,4 + 8580σ7,3) + (9438σ6,5 + 10725σ7,4) + (4719σ6,6 + 9438σ7,5) + 4719σ7,6



8
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com
putations

c
(
Sym2 S

)
c (Q)

11
=1 + 8σ1 + (28σ1,1 + 35σ2) + (161σ2,1 + 110σ3) + (308σ2,2 + 561σ3,1 + 275σ4) + (1408σ3,2 + 1474σ4,1 + 572σ5)+

+ (1925σ3,3 + 4092σ4,2 + 3146σ5,1 + 1001σ6) + (7315σ4,3 + 9152σ5,2 + 5577σ6,1 + 1430σ7)+

+ (7865σ4,4 + 18018σ5,3 + 16588σ6,2 + 8008σ7,1 + 1430σ8) + (25168σ5,4 + 34034σ6,3 + 24024σ7,2 + 8008σ8,1)+

+ (22022σ5,5 + 51909σ6,4 + 50050σ7,3 + 24024σ8,2) + (58201σ6,5 + 78650σ7,4 + 50050σ8,3)+

+ (40898σ6,6 + 94380σ7,5 + 78650σ8,4) + (81796σ7,6 + 94380σ8,5) + (40898σ7,7 + 81796σ8,6) + 40898σ8,7

c
(
Sym2 S

)
c (Q)

12
=1 + 9σ1 + (36σ1,1 + 44σ2) + (232σ2,1 + 154σ3) + (504σ2,2 + 903σ3,1 + 429σ4) + (2583σ3,2 + 2652σ4,1 + 1001σ5)+

+ (4004σ3,3 + 8424σ4,2 + 6370σ5,1 + 2002σ6) + (17160σ4,3 + 21294σ5,2 + 12948σ6,1 + 3432σ7)+

+ (21021σ4,4 + 48048σ5,3 + 44460σ6,2 + 22386σ7,1 + 4862σ8)+

+ (77077σ5,4 + 105248σ6,3 + 77922σ7,2 + 31824σ8,1 + 4862σ9)+

+ (78078σ5,5 + 186186σ6,4 + 188760σ7,3 + 111384σ8,2 + 31824σ9,1)+

+ (245388σ6,5 + 348348σ7,4 + 272272σ8,3 + 111384σ9,2) + (208208σ6,6 + 501930σ7,5 + 510510σ8,4 + 272272σ9,3)+

+ (546546σ7,6 + 758472σ8,5 + 510510σ9,4) + (379236σ7,7 + 884884σ8,6 + 758472σ9,5)+

+ (758472σ8,7 + 884884σ9,6) + (379263σ8,8 + 758472σ9,7) + 379236σ9,8

k = 3

In this case

c(Sym2 S) = 1−4σ1+(10σ1,1 + 5σ2)− (20σ1,1,1 + 15σ2,1 + 2σ3)+(30σ2,1,1 + 10σ2,2 + 6σ3,1)− (20σ2,2,1 + 12σ3,1,1 + 4σ3,2)+8σ3,2,1.

And multiplying by the powers of c (Q) we obtain

c
(
Sym2 S

)
c (Q)

4
=1

c
(
Sym2 S

)
c (Q)

5
=1 + σ1
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c
(
Sym2 S

)
c (Q)

6
=1 + 2σ1 + (σ1,1 + 2σ2) + σ2,1

c
(
Sym2 S

)
c (Q)

7
=1 + 3σ1 + (3σ1,1 + 5σ2) + (σ1,1,1 + 6σ2,1 + 5σ3) + (2σ2,1,1 + 3σ2,2 + 6σ3,1) + (σ2,2,1 + 2σ3,1,1 + 3σ3,2) + σ3,2,1

c
(
Sym2 S

)
c (Q)

8
=1 + 4σ1 + (6σ1,1 + 9σ2) + (4σ1,1,1 + 17σ2,1 + 14σ3) + (12σ2,1,1 + 14σ2,2 + 28σ3,1 + 14σ4)+

+ (12σ2,2,1 + 20σ3,1,1 + 28σ3,2 + 28σ4,1) + (4σ2,2,2 + 24σ3,2,1 + 14σ3,3 + 20σ4,1,1 + 28σ4,2)+

+ (8σ3,2,2 + 12σ3,3,1 + 24σ4,2,1 + 14σ4,3) + (4σ3,3,2 + 8σ4,2,2 + 12σ4,3,1) + 4σ4,3,2

c
(
Sym2 S

)
c (Q)

9
=1 + 5σ1 + (10σ1,1 + 14σ2) + (10σ1,1,1 + 36σ2,1 + 28σ3) + (39σ2,1,1 + 40σ2,2 + 78σ3,1 + 42σ4)+

+ (55σ2,2,1 + 87σ3,1,1 + 110σ3,2 + 120σ4,1 + 42σ5)+

+ (30σ2,2,2 + 155σ3,2,1 + 84σ3,3 + 135σ4,1,1 + 180σ4,2 + 120σ5,1)+

+ (90σ3,2,2 + 126σ3,3,1 + 255σ4,2,1 + 168σ4,3 + 135σ5,1,1 + 180σ5,2)+

+ (90σ3,3,2 + 150σ4,2,2 + 252σ4,3,1 + 84σ4,4 + 255σ5,2,1 + 168σ5,3)+

+ (30σ3,3,3 + 180σ4,3,2 + 126σ4,4,1 + 150σ5,2,2 + 252σ5,3,1 + 84σ5,4) + (60σ4,3,3 + 90σ4,4,2 + 180σ5,3,2 + 126σ5,4,1)+

+ (30σ4,4,3 + 60σ5,3,3 + 90σ5,4,2) + 30σ5,4,3

c
(
Sym2 S

)
c (Q)

10
=1 + 6σ1 + (15σ1,1 + 20σ2) + (20σ1,1,1 + 65σ2,1 + 48σ3) + (95σ2,1,1 + 90σ2,2 + 171σ3,1 + 90σ4)+

+ (170σ2,2,1 + 306σ3,2 + 333σ4,1 + 132σ5)+

+ (125σ2,2,2 + 600σ3,2,1 + 300σ3,3 + 515σ4,1,1 + 648σ4,2 + 495σ5,1 + 132σ6)+

+ (480σ3,2,2 + 640σ3,3,1 + 1290σ4,2,1 + 810σ4,3 + 770σ5,1,1 + 990σ5,2 + 495σ6,1)+

+ (655σ3,3,2 + 1065σ4,2,2 + 1750σ4,3,1 + 594σ4,4 + 1980σ5,2,1 + 1320σ5,3 + 770σ6,1,1 + 990σ6,2)+

+ (330σ3,3,3 + 1840σ4,3,2 + 1320σ4,4,1 + 1650σ5,2,2 + 2860σ5,3,1 + 1188σ5,4 + 1980σ6,2,1 + 1320σ6,3)+

+ (990σ4,3,3 + 1485σ4,4,2 + 3025σ5,3,2 + 2640σ5,4,1 + 594σ5,5 + 1650σ6,2,2 + 2860σ6,3,1 + 1188σ6,4)+

+ (990σ4,4,3 + 1650σ5,3,3 + 2970σ5,4,2 + 1320σ5,5,1 + 3025σ6,3,2 + 2640σ6,4,1 + 594σ6,5)+

+ (330σ4,4,4 + 1980σ5,4,3 + 1485σ5,5,2 + 1650σ6,3,3 + 2970σ6,4,2 + 1320σ6,5,1)+

+ (660σ5,4,4 + 990σ5,5,3 + 1980σ6,4,3 + 1485σ6,5,2) + (330σ5,5,4 + 660σ6,4,4 + 990σ6,5,3) + 330σ6,5,4
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c
(
Sym2 S

)
c (Q)

11
=1 + 7σ1 + (21σ1,1 + 27σ2) + (35σ1,1,1 + 106σ2,1 + 75σ3) + (195σ2,1,1 + 175σ2,2 + 325σ3,1 + 165σ4)+

+ (420σ2,2,1 + 626σ3,1,1 + 700σ3,2 + 748σ4,1 + 297σ5)+

+ (385σ2,2,2 + 1757σ3,2,1 + 825σ3,3 + 1474σ4,1,1 + 1771σ4,2 + 1375σ5,1 + 429σ6)+

+ (1771σ3,2,2 + 2277σ3,3,1 + 4543σ4,2,1 + 2706σ4,3 + 2739σ5,1,1 + 3388σ5,2 + 2002σ6,1 + 429σ7)+

+ (2981σ3,3,2 + 4774σ4,2,2 + 7623σ4,3,1 + 2475σ4,4 + 8778σ5,2,1 + 5643σ5,3 + 4004σ6,1,1 + 5005σ6,2 + 2002σ7,1)+

+ (1925σ3,3,3 + 10384σ4,3,2 + 7260σ4,4,1 + 9394σ5,2,2 + 16038σ5,3,1+

+6600σ5,4 + 13013σ6,2,1 + 8580σ6,3 + 4004σ7,1,1 + 5005σ7,2)+

+ (7315σ4,3,3 + 10802σ4,4,2 + 22209σ5,3,2 + 19503σ5,4,1 + 4719σ5,5+

+14014σ6,2,2 + 24453σ6,3,1 + 10725σ6,4 + 13013σ7,2,1 + 8580σ7,3)+

+ (9779σ4,4,3 + 16170σ5,3,3 + 29425σ5,4,2 + 14157σ5,5,1 + 34034σ6,3,2+

+31746σ6,4,1 + 9438σ6,5 + 14014σ7,2,2 + 24453σ7,3,1 + 10725σ7,4)+

+ (4719σ4,4,4 + 27412σ5,4,3 + 22022σ5,5,2 + 25025σ6,3,3 + 48048σ6,4,2+

+28314σ6,5,1 + 4719σ6,6 + 34034σ7,3,2 + 31746σ7,4,1 + 9438σ7,5)+

+ (14157σ5,4,4 + 22022σ5,5,3 + 45045σ6,4,3 + 44044σ6,5,2+

+14157σ6,6,1 + 25025σ7,3,3 + 48048σ7,4,2 + 28314σ7,5,1 + 4719σ7,6)+

+ (14157σ5,5,4 + 23595σ6,4,4 + 44044σ6,5,3 + 22022σ6,6,2 + 45045σ7,4,3 + 44044σ7,5,2 + 14157σ7,6,1)+

+ (4719σ5,5,5 + 28314σ6,5,4 + 22022σ6,6,3 + 23595σ7,4,4 + 44044σ7,5,3 + 22022σ7,6,2)+

+ (9438σ6,5,5 + 14157σ6,6,4 + 28314σ7,5,4 + 22022σ7,6,3) + (4719σ6,6,5 + 9438σ7,5,5 + 14157σ7,6,4) + 4719σ7,6,5
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12
=1 + 8σ1 + (28σ1,1 + 35σ2) + (56σ1,1,1 + 161σ2,1 + 110σ3) + (357σ2,1,1 + 308σ2,2 + 561σ3,1 + 275σ4)+

+ (896σ2,2,1 + 1308σ3,1,1 + 1408σ3,2 + 1474σ4,1 + 572σ5)+

+ (980σ2,2,2 + 4304σ3,2,1 + 1925σ3,3 + 3530σ4,1,1 + 4092σ4,2 + 3146σ5,1 + 1001σ6)+

+ (5208σ3,2,2 + 6510σ3,3,1 + 12840σ4,2,1 + 7315σ4,3 + 7644σ5,1,1 + 9152σ5,2 + 5577σ6,1 + 1430σ7)+

+ (10311σ3,3,2 + 16296σ4,2,2 + 25375σ4,3,1 + 7865σ4,4 + 29120σ5,2,1+

+18018σ5,3 + 13650σ6,1,1 + 16588σ6,2 + 8008σ7,1 + 1430σ8)+

+ (8008σ3,3,3 + 42112σ4,3,2 + 28600σ4,4,1 + 37856σ5,2,2 + 63336σ5,3,1+

+25168σ5,4 + 53144σ6,2,1 + 34034σ6,3 + 19656σ7,1,1 + 24024σ7,2 + 8008σ8,1)+

+ (36036σ4,3,3 + 52338σ4,4,2 + 107562σ5,3,2 + 92664σ5,4,1 + 22022σ5,5 + 69888σ6,2,2+

+120393σ6,3,1 + 51909σ6,4 + 77168σ7,2,1 + 50050σ7,3 + 19656σ8,1,1 + 24024σ8,2)+

+ (58344σ4,4,3 + 96096σ5,3,3 + 173316σ5,4,2 + 82940σ5,5,1 + 206661σ6,3,2 + 192192σ6,4,1+

+58201σ6,5 + 101920σ7,2,2 + 177450σ7,3,1 + 78650σ7,4 + 77168σ8,2,1 + 50050σ8,3)+

+ (35035σ4,4,4 + 201344σ5,4,3 + 161876σ5,5,2 + 188188σ6,3,3 + 362934σ6,4,2 + 220220σ6,5,1+

+40898σ6,6 + 305760σ7,3,2 + 291720σ7,4,1 + 94380σ7,5 + 101920σ8,2,2 + 177450σ8,3,1 + 78650σ8,4)+

+ (132132σ5,4,4 + 205920σ5,5,3 + 429000σ6,4,3 + 433290σ6,5,2 + 156156σ6,6,1 + 280280σ7,3,3+

+552552σ7,4,2 + 357500σ7,5,1 + 81796σ7,6 + 305760σ8,3,2 + 291720σ8,4,1 + 94380σ8,5)+

+ (174174σ5,5,4 + 291291σ6,4,4 + 559416σ6,5,3 + 312312σ6,6,2 + 656656σ7,4,3 + 704704σ7,5,2+

+312312σ7,6,1 + 40898σ7,7 + 280280σ8,3,3 + 552552σ8,4,2 + 357500σ8,5,1 + 81796σ8,6)+

+ (81796σ5,5,5 + 487487σ6,5,4 + 416416σ6,6,3 + 450450σ7,4,4 + 912912σ7,5,3+

+624624σ7,6,2 + 156156σ7,7,1 + 656656σ8,4,3 + 704704σ8,5,2 + 312312σ8,6,1 + 40898σ8,7)+

+ (245388σ6,5,5 + 390390σ6,6,4 + 800800σ7,5,4 + 832832σ7,6,3+

+312312σ7,7,2 + 450450σ8,4,4 + 912912σ8,5,3 + 624624σ8,6,2 + 156156σ8,7,1)+

+ (245388σ6,6,5 + 408980σ7,5,5 + 780780σ7,6,4 + 416416σ7,7,3 + 800800σ8,5,4 + 832832σ8,6,3 + 312312σ8,7,2)+

+ (81796σ6,6,6 + 490776σ7,6,5 + 390390σ7,7,4 + 408980σ8,5,5 + 780780σ8,6,4 + 416416σ8,7,3)+

+ (163592σ7,6,6 + 245388σ7,7,5 + 490776σ8,6,5 + 390390σ8,7,4) + (81796σ7,7,6 + 163592σ8,6,6 + 245388σ8,7,5)+

+ 81796σ8,7,6
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k = 4

In this case

c(Sym2 S) = 1− 5σ1 + (15σ1,1 + 9σ2)− (35σ1,1,1 + 34σ2,1 + 7σ3) + (70σ1,1,1,1 + 84σ2,1,1 + 35σ2,2 + 28σ3,1 + 2σ4)−

− (168σ2,1,1,1 + 105σ2,2,1 + 70σ3,1,1 + 35σ3,2 + 8σ4,1) + (210σ2,2,1,1 + 70σ2,2,2 + 140σ3,1,1,1 + 105σ3,2,1 + 14σ3,3 + 20σ4,1,1 + 10σ4,2)−

− (140σ2,2,2,1 + 210σ3,2,1,1 + 70σ3,2,2 + 42σ3,3,1 + 40σ4,1,1,1 + 30σ4,2,1 + 4σ4,3)+

+ (140σ3,2,2,1 + 84σ3,3,1,1 + 28σ3,3,2 + 60σ4,2,1,1 + 20σ4,2,2 + 12σ4,3,1)− (56σ3,3,2,1 + 40σ4,2,2,1 + 24σ4,3,1,1 + 8σ4,3,2) + 16σ4,3,2,1.

And multiplying by the powers of c (Q) we obtain

c
(
Sym2 S

)
c (Q)

5
=1

c
(
Sym2 S

)
c (Q)

6
=1 + σ1

c
(
Sym2 S

)
c (Q)

7
=1 + 2σ1 + (σ1,1 + 2σ2) + σ2,1

c
(
Sym2 S

)
c (Q)

8
=1 + 3σ1 + (3σ1,1 + 5σ2) + (σ1,1,1 + 6σ2,1 + 5σ3) + (2σ2,1,1 + 3σ2,2 + 6σ3,1) + (σ2,2,1 + 2σ3,1,1 + 3σ3,2) + σ3,2,1

c
(
Sym2 S

)
c (Q)

9
=1 + 4σ1 + (6σ1,1 + 9σ2) + (4σ1,1,1 + 17σ2,1 + 14σ3) + (σ1,1,1,1 + 12σ2,1,1 + 14σ2,2 + 28σ3,1 + 14σ4)+

+ (3σ2,1,1,1 + 12σ2,2,1 + 20σ3,1,1 + 28σ3,2 + 28σ4,1)+

+ (3σ2,2,1,1 + 4σ2,2,2 + 5σ3,1,1,1 + 24σ3,2,1 + 14σ3,3 + 20σ4,1,1 + 28σ4,2)+

+ (σ2,2,2,1 + 6σ3,2,1,1 + 8σ3,2,2 + 12σ3,3,1 + 5σ4,1,1,1 + 24σ4,2,1 + 14σ4,3)+

+ (2σ3,2,2,1 + 3σ3,3,1,1 + 4σ3,3,2 + 6σ4,2,1,1 + 8σ4,2,2 + 12σ4,3,1) + (σ3,3,2,1 + 2σ4,2,2,1 + 3σ4,3,1,1 + 4σ4,3,2) + σ4,3,2,1
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10
=1 + 5σ1 + (10σ1,1 + 14σ2) + (10σ1,1,1 + 36σ2,1 + 28σ3) + (5σ1,1,1,1 + 39σ2,1,1 + 40σ2,2 + 78σ3,1 + 42σ4)+

+ (20σ2,1,1,1 + 55σ2,2,1 + 87σ3,1,1 + 110σ3,2 + 120σ4,1 + 42σ5)+

+ (30σ2,2,1,1 + 30σ2,2,2 + 45σ3,1,1,1 + 155σ3,2,1 + 84σ3,3 + 135σ4,1,1 + 180σ4,2 + 120σ5,1)+

+ (20σ2,2,2,1 + 85σ3,2,1,1 + 90σ3,2,2 + 126σ3,3,1 + 70σ4,1,1,1 + 255σ4,2,1 + 168σ4,3 + 135σ5,1,1 + 180σ5,2)+

+ (5σ2,2,2,2 + 60σ3,2,2,1 + 70σ3,3,1,1 + 90σ3,3,2 + 140σ4,2,1,1+

+150σ4,2,2 + 252σ4,3,1 + 84σ4,4 + 70σ5,1,1,1 + 255σ5,2,1 + 168σ5,3)+

+ (15σ3,2,2,2 + 60σ3,3,2,1 + 30σ3,3,3 + 100σ4,2,2,1 + 140σ4,3,1,1+

+180σ4,3,2 + 126σ4,4,1 + 140σ5,2,1,1 + 150σ5,2,2 + 252σ5,3,1 + 84σ5,4)+

+ (15σ3,3,2,2 + 20σ3,3,3,1 + 25σ4,2,2,2 + 120σ4,3,2,1 + 70σ4,4,1,1+

+60σ4,3,3 + 90σ4,4,2 + 100σ5,2,2,1 + 140σ5,3,1,1 + 180σ5,3,2 + 126σ5,4,1)+

+ (5σ3,3,3,2 + 30σ4,3,2,2 + 40σ4,3,3,1 + 60σ4,4,2,1 + 30σ4,4,3+

+25σ5,2,2,2 + 120σ5,3,2,1 + 70σ5,4,1,1 + 60σ5,3,3 + 90σ5,4,2)+

+ (10σ4,3,3,2 + 15σ4,4,2,2 + 20σ4,4,3,1 + 30σ5,3,2,2 + 40σ5,3,3,1 + 60σ5,4,2,1 + 30σ5,4,3)+

+ (5σ4,4,3,2 + 10σ5,3,3,2 + 15σ5,4,2,2 + 20σ5,4,3,1) + 5σ5,4,3,2
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c
(
Sym2 S

)
c (Q)

11
=1 + 6σ1 + (15σ1,1 + 20σ2) + (20σ1,1,1 + 65σ2,1 + 48σ3) + (15σ1,1,1,1 + 95σ2,1,1 + 90σ2,2 + 171σ3,1 + 90σ4)+

+ (74σ2,1,1,1 + 170σ2,2,1 + 260σ3,1,1 + 306σ3,2 + 333σ4,1 + 132σ5)+

+ (144σ2,2,1,1 + 125σ2,2,2 + 206σ3,1,1,1 + 600σ3,2,1 + 300σ3,3 + 515σ4,1,1 + 648σ4,2 + 495σ5,1 + 132σ6)+

+ (135σ2,2,2,1 + 516σ3,2,1,1 + 480σ3,2,2 + 640σ3,3,1 + 411σ4,1,1,1+

+1290σ4,2,1 + 810σ4,3 + 770σ5,1,1 + 990σ5,2 + 495σ6,1)+

+ (55σ2,2,2,2 + 525σ3,2,2,1 + 568σ3,3,1,1 + 655σ3,3,2 + 1116σ4,2,1,1 + 1065σ4,2,2+

+1750σ4,3,1 + 594σ4,4 + 616σ5,1,1,1 + 1980σ5,2,1 + 1320σ5,3 + 770σ6,1,1 + 990σ6,2)+

+ (220σ3,2,2,2 + 736σ3,3,2,1 + 330σ3,3,3 + 1170σ4,2,2,1 + 1560σ4,3,1,1 + 1840σ4,3,2 + 1320σ4,4,1+

+1716σ5,2,1,1 + 1650σ5,2,2 + 2860σ5,3,1 + 1188σ5,4 + 616σ6,1,1,1 + 1980σ6,2,1 + 1320σ6,3)+

+ (330σ3,3,2,2 + 396σ3,3,3,1 + 495σ4,2,2,2 + 2073σ4,3,2,1 + 1188σ4,4,1,1 + 990σ4,3,3 + 1485σ4,4,2 + 1815σ5,2,2,1+

+2552σ5,3,1,1 + 3025σ5,3,2 + 2640σ5,4,1 + 594σ5,5 + 1716σ6,2,1,1 + 1650σ6,2,2 + 2860σ6,3,1 + 1188σ6,4)+

+ (220σ3,3,3,2 + 935σ4,3,2,2 + 1188σ4,3,3,1 + 1683σ4,4,2,1 + 990σ4,4,3 + 770σ5,2,2,2 + 3410σ5,3,2,1 + 2376σ5,4,1,1+

+1650σ5,3,3 + 2970σ5,4,2 + 1320σ5,5,1 + 1815σ6,2,2,1 + 2552σ6,3,1,1 + 3025σ6,3,2 + 2640σ6,4,1 + 594σ6,5)+

+ (55σ3,3,3,3 + 660σ4,3,3,2 + 770σ4,4,2,2 + 1188σ4,4,3,1 + 330σ4,4,4+

+1540σ5,3,2,2 + 1980σ5,3,3,1 + 3366σ5,4,2,1 + 1188σ5,5,1,1 + 1980σ5,4,3 + 1485σ5,5,2+

+770σ6,2,2,2 + 3410σ6,3,2,1 + 2376σ6,4,1,1 + 1650σ6,3,3 + 2970σ6,4,2 + 1320σ6,5,1)+

+ (165σ4,3,3,3 + 660σ4,4,3,2 + 396σ4,4,4,1 + 1100σ5,3,3,2 + 1540σ5,4,2,2+

+2376σ5,4,3,1 + 1683σ5,5,2,1 + 660σ5,4,4 + 990σ5,5,3 + 1540σ6,3,2,2+

+1980σ6,3,3,1 + 3366σ6,4,2,1 + 1188σ6,5,1,1 + 1980σ6,4,3 + 1485σ6,5,2)+

+ (165σ4,4,3,3 + 220σ4,4,4,2 + 275σ5,3,3,3 + 1320σ5,4,3,2 + 770σ5,5,2,2 + 792σ5,4,4,1 + 1188σ5,5,3,1+

+330σ5,5,4 + 1100σ6,3,3,2 + 1540σ6,4,2,2 + 2376σ6,4,3,1 + 1683σ6,5,2,1 + 660σ6,4,4 + 990σ6,5,3)+

+ (55σ4,4,4,3 + 330σ5,4,3,3 + 440σ5,4,4,2 + 660σ5,5,3,2 + 396σ5,5,4,1+

+275σ6,3,3,3 + 1320σ6,4,3,2 + 770σ6,5,2,2 + 792σ6,4,4,1 + 1188σ6,5,3,1 + 330σ6,5,4)+

+ (110σ5,4,4,3 + 165σ5,5,3,3 + 220σ5,5,4,2 + 330σ6,4,3,3 + 440σ6,4,4,2 + 660σ6,5,3,2 + 396σ6,5,4,1)+

+ (55σ5,5,4,3 + 110σ6,4,4,3 + 165σ6,5,3,3 + 220σ6,5,4,2) + 55σ6,5,4,3
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12
=1 + 7σ1 + (21σ1,1 + 27σ2) + (35σ1,1,1 + 106σ2,1 + 75σ3) + (35σ1,1,1,1 + 195σ2,1,1 + 175σ2,2 + 325σ3,1 + 165σ4)+

+ (204σ2,1,1,1 + 420σ2,2,1 + 626σ3,1,1 + 700σ3,2 + 748σ4,1 + 297σ5)+

+ (483σ2,2,1,1 + 385σ2,2,2 + 670σ3,1,1,1 + 1757σ3,2,1 + 825σ3,3 + 1474σ4,1,1 + 1771σ4,2 + 1375σ5,1 + 429σ6)+

+ (574σ2,2,2,1 + 2065σ3,2,1,1 + 1771σ3,2,2 + 2277σ3,3,1 + 1596σ4,1,1,1+

+4543σ4,2,1 + 2706σ4,3 + 2739σ5,1,1 + 3388σ5,2 + 2002σ6,1 + 429σ7)+

+ (315σ2,2,2,2 + 2695σ3,2,2,1 + 2790σ3,3,1,1 + 2981σ3,3,2 + 5397σ4,2,1,1 + 4774σ4,2,2 + 7623σ4,3,1+

+2475σ4,4 + 2982σ5,1,1,1 + 8778σ5,2,1 + 5643σ5,3 + 4004σ6,1,1 + 5005σ6,2 + 2002σ7,1)+

+ (1540σ3,2,2,2 + 4720σ3,3,2,1 + 1925σ3,3,3 + 7336σ4,2,2,1 + 9432σ4,3,1,1 + 10384σ4,3,2 + 7260σ4,4,1 + 10479σ5,2,1,1+

+9394σ5,2,2 + 16038σ5,3,1 + 6600σ5,4 + 4368σ6,1,1,1 + 13013σ6,2,1 + 8580σ6,3 + 4004σ7,1,1 + 5005σ7,2)+

+ (2946σ3,3,2,2 + 3325σ3,3,3,1 + 4270σ4,2,2,2 + 16584σ4,3,2,1 + 9150σ4,4,1,1 + 7315σ4,3,3+

+10802σ4,4,2 + 14497σ5,2,2,1 + 19926σ5,3,1,1 + 22209σ5,3,2 + 19503σ5,4,1 + 4719σ5,5+

+15561σ6,2,1,1 + 14014σ6,2,2 + 24453σ6,3,1 + 10725σ6,4 + 4368σ7,1,1,1 + 13013σ7,2,1 + 8580σ7,3)+

+ (2667σ3,3,3,2 + 10524σ4,3,2,2 + 12726σ4,3,3,1 + 17540σ4,4,2,1 + 9779σ4,4,3 + 8505σ5,2,2,2+

+35592σ5,3,2,1 + 24660σ5,4,1,1 + 16170σ5,3,3 + 29425σ5,4,2 + 14157σ5,5,1 + 21658σ6,2,2,1 + 30420σ6,3,1,1+

+34034σ6,3,2 + 31746σ6,4,1 + 9438σ6,5 + 15561σ7,2,1,1 + 14014σ7,2,2 + 24453σ7,3,1 + 10725σ7,4)+

+ (1001σ3,3,3,3 + 10353σ4,3,3,2 + 11516σ4,4,2,2 + 17255σ4,4,3,1 + 4719σ4,4,4+

+28203σ5,3,3,1 + 47900σ5,4,2,1 + 18018σ5,5,1,1 + 27412σ5,4,3 + 22022σ5,5,2+

+12740σ6,2,2,2 + 54600σ6,3,2,1 + 40170σ6,4,1,1 + 25025σ6,3,3 + 48048σ6,4,2 + 28314σ6,5,1+

+4719σ6,6 + 21658σ7,2,2,1 + 30420σ7,3,1,1 + 34034σ7,3,2 + 31746σ7,4,1 + 9438σ7,5)+

+ (4004σ4,3,3,3 + 7722σ4,4,4,2 + 14462σ4,4,3,2 + 8580σ4,4,4,1 + 23058σ5,3,3,2 + 31602σ5,4,2,2+

+48440σ5,4,3,1 + 36036σ5,5,2,1 + 14157σ5,4,4 + 22022σ5,5,3 + 34944σ6,3,2,2 + 43680σ6,3,3,1+

+78260σ6,4,2,1 + 36036σ6,5,1,1 + 45045σ6,4,3 + 44044σ6,5,2 + 14157σ6,6,1 + 12740σ7,2,2,2+

+54600σ7,3,2,1 + 40170σ7,4,1,1 + 25025σ7,3,3 + 48048σ7,4,2 + 28314σ7,5,1 + 4719σ7,6)+

+ · · ·
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· · ·+ (6006σ4,4,3,3 + 9009σ5,3,3,3 + 40719σ5,4,3,2 + 24024σ5,5,2,2 + 22734σ5,3,2,2 + 25740σ5,4,4,1 + 39039σ5,5,3,1+

+14157σ5,5,4 + 35763σ6,3,3,2 + 51688σ6,4,2,2 + 79625σ6,4,3,1 + 72072σ6,5,2,1 + 18018σ6,6,1,1 + 23595σ6,4,4 + 44044σ6,5,3+

+22022σ6,6,2 + 34944σ7,3,2,2 + 43680σ7,3,3,1 + 78260σ7,4,2,1 + 36036σ7,5,1,1 + 45045σ7,4,3 + 44044σ7,5,2 + 14157σ7,6,1)+

+ (4004σ4,4,4,3 + 17017σ5,4,3,3 + 23166σ5,4,4,2 + 33033σ5,5,3,2 + 25740σ5,5,4,1 + 4719σ5,5,5 + 14014σ6,3,3,3+

+66976σ6,4,3,2 + 48048σ6,5,2,2 + 42900σ6,4,4,1 + 78078σ6,5,3,1 + 36036σ6,6,2,1 + 28314σ6,5,4 + 22022σ6,6,3+

+35763σ7,3,3,2 + 51688σ7,4,2,2 + 79625σ7,4,3,1 + 72072σ7,5,2,1 + 18018σ7,6,1,1 + 23595σ7,4,4 + 44044σ7,5,3 + 22022σ7,6,2)+

+ (1001σ4,4,4,4 + 12012σ5,4,4,3 + 14014σ5,5,3,3 + 23166σ5,5,4,2 + 8580σ5,5,5,1 + 28028σ6,4,3,3 + 38610σ6,4,4,2+

+66066σ6,5,3,2 + 24024σ6,6,2,2 + 51480σ6,5,4,1 + 39039σ6,6,3,1 + 9438σ6,5,5 + 14157σ6,6,4 + 14014σ7,3,3,3+

+66976σ7,4,3,2 + 48048σ7,5,2,2 + 42900σ7,4,4,1 + 78078σ7,5,3,1 + 36036σ7,6,2,1 + 28314σ7,5,4 + 22022σ7,6,3)+

+ (3003σ5,4,4,4 + 12012σ5,5,4,3 + 7722σ5,5,5,2 + 20020σ6,4,4,3 + 28028σ6,5,3,3 + 46332σ6,5,4,2+

+66066σ7,5,3,2 + 24024σ7,6,2,2 + 51480σ7,5,4,1 + 39039σ7,6,3,1 + 9438σ7,5,5 + 14157σ7,6,4)+

+ (3003σ5,5,4,4 + 4004σ5,5,5,3 + 5005σ6,4,4,4 + 24024σ6,5,4,3 + 14014σ6,6,3,3 + 15444σ6,5,5,2 + 23166σ6,6,4,2+

+8580σ6,6,5,1 + 20020σ7,4,4,3 + 28028σ7,5,3,3 + 46332σ7,5,4,2 + 33033σ7,6,3,2 + 17160σ7,5,5,1 + 25740σ7,6,4,1 + 4719σ7,6,5)+

+ (1001σ5,5,5,4 + 6006σ6,5,4,4 + 8008σ6,5,5,3 + 12012σ6,6,4,3 + 7722σ6,6,5,2+

+5005σ7,4,4,4 + 24024σ7,5,4,3 + 14014σ7,6,3,3 + 15444σ7,5,5,2 + 23166σ7,6,4,2 + 8580σ7,6,5,1)+

+ (2002σ6,5,5,4 + 3003σ6,6,4,4 + 4004σ6,6,5,3 + 6006σ7,5,4,4 + 8008σ7,5,5,3 + 12012σ7,6,4,3 + 7722σ7,6,5,2)+

+33033σ6,6,3,2 + 17160σ6,5,5,1 + 25740σ6,6,4,1 + 4719σ6,6,5 + 28028σ7,4,3,3 + 38610σ7,4,4,2+

+ (1001σ6,6,5,4 + 2002σ7,5,5,4 + 3003σ7,6,4,4 + 4004σ7,6,5,3) + 1001σ7,6,5,4
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Introduction to Part II

In the classification of smooth algebraic surfaces it is natural to study its
possible fibrations over curves, trying to relate the geometry of the surface
to the properties of the fibres and the base. For varieties of small Kodaira
dimension there are canonical fibrations (e.g. Mori and Iitaka fibrations),
and for surfaces S satisfying pg (S) ≤ 2q (S)− 4 one can consider the fibra-
tion provided by the classical Castelunovo-de Franchis theorem. In general,
up to birational equivalence, every algebraic surface admits a fibration be-
cause it has an algebraic function (resolve its indeterminacy and then take
the Stein factorization).

In this Thesis we focus on the relations between the isotriviality of a
fibration and its numerical invariants. Denote from now on by f : S → B
a fibration from a compact surface S to a compact curve B, that is, a mor-
phism with connected fibres. Denote also by F a general fibre of f . The
first invariants one can consider are the Hodge numbers of S,B and F : the
genus of B and F , the geometric genus and the irregularity of S, and also
h1,1 (S), which is not a birational invariant. Frome these “primary” invari-
ants, one can define other ones (see Chapter 3 for the precise definitions):
the relative irregularity qf , the relative (topological and holomorphic) Eu-
ler characteristics ef and χf , the self-intersection of the relative canonical
divisor K2

f ,...
There are some direct relations between these invariants and the isotriv-

iality of f . For example, it always holds

χf ≥ 0,

with equality if and only if f is isotrivial and smooth (i.e. locally trivial).
In another direction, Beauville showed in its Appendix to [12] that

0 ≤ qf ≤ g,

and the equality qf = g holds if and only if S is birational to B × F (f is
trivial).

As a consequence of the work of Serrano [40] (Corollary 6.1.4), non-
trivial isotrivial fibrations verify

qf ≤
g + 1

2
.

Hodge numbers of irregular varieties and fibrations 95



96 Introduction to Part II

Xiao conjectured that this last equality holds also for non-isotrivial fibra-
tions, but he was able to prove that only in the case B = P1 ([44]). In fact,
the conjecture is false, because Pirola gave a counterexample in [33]. In the
general case, Xiao proved in [43] the weaker inequality

qf ≤
5g + 1

6
.

In fact, he obtained this inequality after proving the slope inequality

λf ≥ 4−
4

g
,

where the slope λf = K2
f/χf is defined for any non-locally trivial fibration.

Another invariant of a fibration, introduced by Konno in [24], is the
Clifford index of f , defined simply as the Clifford index of a general fibre
(which is in fact the maximum of the Clifford indexes of the smooth fibres).
By using this new invariant, Konno, and more recently Barja and Stoppino
in [3], obtain some strengthenings of the original slope inequality.

From a different point of view, Serrano studies the properties of the
sheaf Ω1

S/B of relative differentials and its double dual ∆S/B. In fact, in [38]
he obtains an explicit description of ∆S/B in terms of the relative canonical
sheaf ωS/B and the singular fibres, which allows him to study its Zariski
decomposition and to relate the isotriviality of f to the Iitaka dimension of
∆S/B. In his later work [39], Serrano shows that if f is relatively minimal
and non-isotrivial, then S is birational to

Proj

(⊕

n≥0

H0
(
S,∆⊗n

S/B

))
,

the canonical model of the pair
(
S,∆S/B

)
as defined by Sakai in [36].

A third, different approach to study fibred surfaces (and particularly
the abovementioned conjecture posed by Xiao) is followed by Pirola in [33].
In this work, Pirola considers the Albanese map of S, which in fact is a
map from S to a locally trivial family of Abelian varieties A over B with
fibre the kernel A of the induced map Alb (S) → J (B). With this setting,
he characterizes the failure of Xiao’s conjecture by the non-constancy of
the generalized Abel-Jacobi map from B to the primitive first intermediate
Jacobian of A.

In this second part of the Thesis we use tools from all the previous
approaches, as well as the adjoint images introduced by Collino and Pirola
in [11], to prove the following inequality for non-isotrivial fibrations.
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Theorem 6.3.4. Let f : S → B be a fibration of genus g, relative irregu-
larity qf and Clifford index cf . If f is non-isotrivial, then

qf ≤ g − cf .

Meanwhile, we extend to global families some constructions and results
about infinitesimal deformations of smooth curves (Chapter 4), and obtain
an structure result for some special fibrations (Theorem 6.3.1). All these
new concepts and results seem to be generalizable to one-dimensional fami-
lies of irregular varieties of any dimension, but we have not explored yet this
more general possibility because it exceeds the scope of our initial objective
(the study of Xiao’s conjecture).





3Chapter Three

PRELIMINARIES ON FIBRED
SURFACES

In this chapter we recall some of the most basic definitions and results
concerning fibrations of complex algebraic varieties, paying special atention
to the case of an irregular surface fibred over a non-rational curve.

In the first section we introduce the fundamental definitions and the
most general results. The second section is devoted to study the relation-
ship between the sheaf of relative differentials and the relative canonical
bundle of a fibred surface, which will be very useful in Chapters 4 and 6.
The third section focuses on how a fibration of irregular varieties behaves
under the Albanese functor, and the last section is a summary on numerical
invariants that will not be used in the sequel, but are strongly related to
the isotriviality of a fibred surface.

3.1 Basic preliminaries

We start with the fundamental definitions.

Definition 3.1.1. A fibration, or fibre space, is a surjective, flat, proper
morphism f : X → Y with connected fibres, where X and Y are smooth
varieties such that dimX > dimY .

• The variety X is called the total space of the fibration, and Y is the
base.

• The fibration is called Kähler (resp. projective) if the total space X
is Kähler (resp.projective).

• The fibre over a point y ∈ Y is the subscheme

Xy = X ×Y SpecC (y) ,

which is always proper.

Hodge numbers of irregular varieties and fibrations 99
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• A point x ∈ X is regular if the differential dfp : TX,x → TY,f(x) is
surjective. Otherwise, x is called critical.

• A point y ∈ Y is called a regular value if all the points in f−1 (x) are
regluar. Otherwise, if y is the image of some critical point, it is called
a critical value.

Remark 3.1.2. If the base Y is a smooth curve, any surjective morphism
is automatically flat, hence we can drop this condition from the definition
of a fibration.

If the total space X is compact, the morphism is automatically proper.

We now collect some basic results about fibrations, which are well sta-
blished in the literature.

Theorem 3.1.3. 1. (Regular value theorem) The fibre Xy is smooth if
and only if y ∈ Y is a regular value.

2. (Generic smoothness) The critical values form a proper Zariski-closed
subset of Y .

3. For any smooth fibre F = Xy, the normal bundle NF/X = (TX|F )/TF
is trivial, of rank dimY . More intrinsically, NF/X

∼= TY,y ⊗OF is the
trivial bundle with fibre the tangent space of Y at y.

4. (Ehresmann’s theorem) Locally over the regular values, the fibration f
is differentiably trivial. In particular, all the smooth fibres are diffeo-
morphic.

Definition 3.1.4. A fibration f : X → Y is isotrivial if all the smooth
fibres are isomorphic. If furthermore X is birational to the product Xy × Y
(where Xy is any smooth fibre), f is called trivial. An isotrivial fibration
whose fibres are all smooth is called either a fibre bundle or a locally trivial
fibration. A non-isotrivial fibration is strongly non-isotrivial if the smooth
fibres are not even birationally equivalent.

We are mostly concerned about fibred projective surfaces. Therefore,
from now on, S (resp. B) will denote a smooth projective complex surface
(resp. curve), and f : S → B will be a surjective morphism with connected
fibres. By all the previous considerations, f is automatically a fibration
(flat and proper). Since the fibres are curves, we will denote them by Cb
(instead of Sb), for any b ∈ B. Also, since two smooth curves are birational
if and only if they are isomorphic, fibred surfaces are strongly non-isotrivial
if and only if they are non-isotrivial. Furthermore, the general fibres are
diffeomorphic compact Riemann surfaces, hence they have the same genus.
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Definition 3.1.5. The genus of the fibration is g = g (Cb), the genus of
any smooth fibre Cb.

The genus is one of the basic numerical invariants of the fibration, but
not the only one we consider.

Definition 3.1.6. The relative irregularity of f is

qf = q (S)− g (B) ,

the difference between the irregularities of S and B.

Since f is surjective, the pull-back of 1-forms is an injection

f ∗ : H0 (B,ωB) −֒→ H0
(
S,Ω1

S

)
,

and the relative irregularity is the dimension of the quotient space

V = Vf := H0
(
S,Ω1

S

)
/f ∗H0 (B,ωB) .

Lemma 3.1.7. For any smooth fibre C, the composition

H0
(
S,Ω1

S

)
−→ H0

(
C,Ω1

S|C

)
−→ H0 (C, ωC)

factors through an injective map V →֒ H0 (C, ωC).

In particular, rk f∗Ω1
S = dimH0

(
C,Ω1

S|C

)
≥ qf .

Corollary 3.1.8. Any fibration satisfies the inequalities

0 ≤ qf ≤ g.

Lemma 3.1.7 also implies that “V gets bigger under base change”. More

precisely, let B′ → B be a finite morphism, S ′ = ˜S ×B B′ the minimal
desingularization of the fibre product, and f ′ : S ′ → B′ the induced fi-
bration. The pull-back morphism H0 (S,Ω1

S) → H0 (S ′,Ω1
S′) clearly sends

f ∗H0 (B,ωB) into (f ′)∗H0 (B′, ωB′), so there is a natural pull-back map

V −→ V ′ := H0
(
S ′,Ω1

S′

)
/ (f ′)

∗
H0 (B′, ωB′) . (3.1)

Corollary 3.1.9. The map (3.1) is injective.

Proof. Let b′ ∈ B′ be a point where π is not ramified, and let b = π (b′),
so that Cb and Cb′ are isomorphic. Clearly, the inclusion V →֒ H0 (Cb, ωCb

)
factors as V → V ′ →֒ H0

(
Cb′ , ωCb′

)
, hence V → V ′ must be injective.
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Another immediate consequence of Lemma 3.1.7 concerns the infinites-
imal deformations of the smooth fibres induced by f .

Definition 3.1.10. For any regular value b, let ξb ∈ H1 (Cb, TCb
) be the

class of the extension

0 −→ N∨
Cb/X

∼= OCb
−→ Ω1

S|Cb
−→ ωCb

−→ 0.

Denote by ∂ξb the connecting homomorphism

H0 (Cb, ωCb
) −→ H1 (Cb,OCb

) ,

which can be identified with the cup-product with ξb.

Corollary 3.1.11. For any smooth fibre C = Cb, the vector space V is
contained in the kernel of ∂ξb.

From Theorem 3.1.3 we deduce that the general fibres of a fibration
are smooth, but the finitely many possible singular fibres can behave very
badly (they can have several irreducible components, some of them even
non-reduced). However, after finitely many blowing-ups and a change of
base, we can make things slightly better.

Lemma 3.1.12 ([4] Th. III.10.3). Let f : S → B be any fibration. There
always exists a composition of blow-ups π : S1 → S and a finite morphism
B′ → B such that f ′ : S ′ = ˜S1 ×B B′ → B′ has reduced fibres.

Remark 3.1.13. The composition of blow-ups π of Lemma 3.1.12 can be
chosen to be an isomorphism over the regular points of f . Equivalently,
the necessary blow-ups are performed at the critical points of f and the
subsequent exceptional divisors.

We have seen in Part I that some kinds of fibrations can be recognized
from properties of the algebra of cohomology of the total space. We close
this section with a version of the Generalized Castelnuovo-de Franchis The-
orem specially adapted to our case.

Theorem 3.1.14 (Castelnuovo-de Franchis, [9] 1.9). Let S be a compact
complex surface, and α1, . . . , αk ∈ H0(S,Ω1

S) linearly independent holomor-
phic 1-forms such that αi ∧αj = 0 for every 1 ≤ i, j ≤ k. Then there exists
a fibration f : S → B over a curve such that α1, . . . , αk ∈ f ∗H0(B,ωB),
and hence g(B) ≥ k.
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3.2 Ω1
S/B and ωS/B

In this section we focus on the properties of the sheaves Ω1
S/B and ωS/B,

which will frequently appear in all the following chapters.
As a first observation, the surjectivity of f implies that the dual

f ∗ωB −→ Ω1
S (3.2)

of the tangent map of f is an injection of sheaves. This allows us to make
the following

Definition 3.2.1. The cokernel of the map (3.2) is the sheaf of relative
differentials of f , and it is denoted by Ω1

S/B.
Its dual (that is, the kernel of the tangent map) is called the relative

tangent sheaf, and it is denoted by TS/B.
Define also the Jacobian ideal sheaf of f as

J := im (Tf : TS −→ f ∗TB)⊗ f ∗ωB ⊆ OS.

It is the ideal of a subscheme Z supported on the critical points of f . Denote
by Zd the divisorial component of Z, and by Zp the subscheme supported on
points.

It is immediate to see that both Ω1
S/B and TS/B are locally free away

from Z, and that their restrictions to any smooth fibre C are precisely the
canonical and tangent bundles of C, respectively.

Remark 3.2.2. In [38], Serrano defined a sheaf (also denoted by J) which
is essentially our Jacobian ideal sheaf, but without the twisting by f ∗ωB.

Next we introduce the second sheaf mentioned in the title of the section.

Definition 3.2.3. The line bundle ωS/B = ωS ⊗ (f ∗ωB)
∨ is the relative

canonical sheaf of the fibration.

The adjunction formula says that the canonical sheaf of any smooth
curve C contained in S is

ωS (C)|C = ωS ⊗OC (C) = ωS ⊗NC/S.

In the case C = Cb is a smooth fibre, the normal bundle is trivial, isomorphic
to TB,b ⊗OC , which turns out to be (f ∗ωB)

∨
|C . Therefore, the restriction of

ωS/B to C is also naturally the canonical sheaf of C.
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Remark 3.2.4. The sheaves Ω1
S/B, TS/B and ωS/B can be analogously de-

fined for any fibration, but some of the properties we list below may not have
an analogous version in higher dimensions.

We summarize now the main properties relating Ω1
S/B, TS/B, J and ωS/B,

but we need a little bit more of notation. Let {Ei} be the set of irreducible
components of the singular fibers, and let νi be the multiplicity of Ei as a
component of the corresponding singular fibre.

Lemma 3.2.5 ([38] Lemma 1.1). Some properties of J , Ω1
S/B and TS/B.

1. The relative tangent sheaf TS/B is an invertible sheaf, whose inverse
is

(
Ω1
S/B

)∨∨
= T∨

S/B
∼= ωS/B

(
−
∑

i

(νi − 1)Ei

)
.

2. J∨∨ ∼= OS (−
∑

i (νi − 1)Ei). Therefore Zd =
∑

i (νi − 1)Ei and

J = J∨∨ ⊗ IZp
= IZp

(
−
∑

i

(νi − 1)Ei

)
.

3. OZp
∼= J∨∨/J has length

c2 (S) + c1
(
TS/B

)
c1 (J

∨ ⊗ f ∗ωB) .

Lemma 3.2.6. The sheaves Ω1
S/B and ωS/B fit into the exact sequence

0 −→ (f ∗ωB (Zd))|Zd
−→ Ω1

S/B
α

−→ ωS/B −→ ωS/B|Z −→ 0.

In particular, if all the fibres are reduced, then Z = Zp, α is injective and
Ω1
S/B

∼= ωS/B ⊗ J is torsion-free. In general, ωS/B ⊗ J is the quotient of
Ω1
S/B by its torsion subsheaf.

Proof. Let us first recall the construction of the map α : Ω1
S/B → ωS/B.

Twisting by f ∗ωB the exact sequence defining Ω1
S/B one gets

0 −→ (f ∗ωB)
⊗2 −→ f ∗ωB ⊗ Ω1

S −→ f ∗ωB ⊗ Ω1
S/B −→ 0.

Wedge product induces a map β̃ : f ∗ωB ⊗ Ω1
S → ωS that sends (f ∗ωB)

⊗2

to zero. Therefore, β̃ induces a map β : f ∗ωB ⊗ Ω1
S/B → ωS. The map α is
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β twisted by (f ∗ωB)
∨. Denoting by α̃ the corresponding twist of β̃, we get

the following diagram with exact rows:

0 // f ∗ωB //

��

Ω1
S

//

α̃

��

Ω1
S/B

//

α

��

0

0 // ωS/B // ωS/B // 0

The snake lemma says that cokerα = coker α̃ and kerα = (ker α̃) /f ∗ωB,
so it is enough to study the map α̃. But α̃ is exactly the tangent map Tf
twisted by ωS, so by the definition of J , Z and Zd we get

ker α̃ = ker (Tf )⊗ ωS = TS/B ⊗ ωS/B ⊗ f ∗ωB = f ∗ωB (Zd)

and
coker α̃ = coker (Tf )⊗ ωS = (OS/J)⊗ ωS/B = ωS/B|Z .

To conclude, just note that the inclusion f ∗ωB →֒ ker α̃ is induced by the
natural map OS →֒ OS (Zd), so

kerα = f ∗ωB ⊗ (OS (Zd) /OS) = (f ∗ωB (Zd))|Zd
.

Remark 3.2.7. Taking global sections on the exact sequence

0 −→ f ∗ωB −→ Ω1
S −→ Ω1

S/B −→ 0

we obtain that there is a natural inclusion V →֒ H0
(
S,Ω1

S/B

)
. Hence V

can be seen as a subspace of the global sections of either Ω1
S/B or f∗Ω1

S/B.
Restricting the evaluation map we obtain

V ⊗OB −→ f∗Ω
1
S/B,

which composed with f∗α gives

V ⊗OB −→ f∗ωS/B.

Over a general regular value b ∈ B, both maps agree with the inclusion of
Lemma 3.1.7, and are therefore injective maps of sheaves.

Since the base of our fibration is a curve, ωS/B has some specially nice
properties. First of all, it works as a relative dualizing sheaf.
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Lemma 3.2.8 ([4] Th. III.12.3). The relative canonical sheaf ωS/B is the
relative dualizing sheaf, that is, for every locally free sheaf F on S, there is
a natural isomorphism

f∗
(
F∨ ⊗ ωS/B

) ∼=
−→

(
R1f∗F

)∨
.

Another good property of ωS/B follows from the work [15] of Fujita,
where the direct image of the relative canonical sheaf is studied. The most
interesing results for our purposes are the next ones.

Theorem 3.2.9 ([15] Th. 3.1). Let f : X → B be a Kähler fibration over
a curve. Then

f∗ωX/B ∼= O⊕h
B ⊕ E ,

where

• h = h1 (B, f∗ωX), and

• E is locally free and such that H1 (B, E ⊗ ωB) = 0.

Corollary 3.2.10 (of the proof of Theorem 3.2.9). In the case that X = S
is a surface, the trivial part O⊕h

B is precisely the image of the inclusion

V ⊗OB −֒→ f∗ωS/B,

in Remark 3.2.7. In particular, h = qf .

3.3 The irregular case

We devote this section to discuss some facts about the morphism on Al-
banese varieties induced by a fibration between irregular varieties, and their
implications on the fibration itself.

Given any fibration f : X → Y , the universal property of the Albanese
map gives a morphism between the respective Albanese varieties

af = Alb (f) : Alb (X) → Alb (Y ) .

Moreover, if Xy is any smooth fibre, the inclusion ιy : Xy →֒ X induces
another morphism ay : Alb (Xy) → Alb (X), which fits with the previous
one into the following commutative diagram

Xy
� � ιy //

aXy

��

X
f // //

aX
��

Y

aY
��

Alb (Xy)
ay //

h

66
Alb (X)

af // // Alb (Y )
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(where the vertical arrows are the corresponding Albanese morphisms).
Of course, the composition h = af ◦ ay is the constant map to the

point aY (y). Therefore, the image ay (Alb (Xy)) is contained in (a suitable
translate of) the kernel of af , and the rigidity of Abelian subvarieties implies
that all these images are isomorphic.

Let us focus now in the case of a fibred surface f : S → B. If C = Cb is
a general (smooth) fibre, the above diagram looks now like

C
� � ιb //

� _

aC ��

S
f // //

aS
��

B� _

aB��
J (C)

ab //

h

77
Alb (S)

af // // J (B)

By the above discussion, the image ab (J (C)) of the Jacobian variety of C
is contained in a−1

f (aB(b)) ∼= A := ker af . In fact, ker af is connected, so it
is an Abelian variety of dimension qf . Furthermore, Lemma 3.1.7 implies
that the map J (C) → A is surjective, because its cotangent map at any
point is precisely the inclusion V →֒ H0 (C, ωC).

Let us consider the extremal cases of the inequalities 0 ≤ qf ≤ g. On the
one hand, if qf = g, then all the Jacobian varieties J (Cb) are isogenous to
A. Since the set of Abelian varieties isogenous to A is discrete, all the J (Cb)
must be isomorphic. In fact, with a little of care, Beauville showed that
also the principal polarizations coincide, hence f is isotrivial by Torelli’s
theorem. This is the starting point of the proof of a much stronger result
(Lemma in the Appendix of [12]), which asserts that a fibration with qf = g
is in fact trivial (birational to a product).

On the other hand, if qf = 0, then af is an isogeny, but since it has also
connected fibres, it is indeed an isomorphism and f is simply the Albanese
map of S.

As for the remaining cases, the inequalities 0 < qf < g imply that the
maps J (Cb) → A are not zero and have positive-dimensional kernel, hence
the Jacobian varieties J (Cb) are not simple. This restricts the possible
fibres of such a fibration to the union of countably many closed subvarieties
of the moduli space Mg of curves of genus g.

To close this section, note that the Albanese image aS(S) is contained
in A := a−1

f (aB(B)), which is a trivial fibre bundle over aB(B) ∼= B, with
constant fibre A. In this way, taking any contractible open subset U ⊂ B,
we can trivialize AU and obtain a map

Φ : f−1(U)
aS−→ AU

∼= A× U
p

−→ A
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from any “tubular” open set of S to the Abelian variety A. This is the
setting of the Volumetric Theorem ([34] Th. 1.5.3), which will appear a few
times in the forthcoming chapters.

3.4 More numerical invariants

We have already introduced the genus g and the relative irregularity qf of
a fibration f : S → B. In this section we introduce a few more numerical
invariants, summarizing their main properties and their relations with the
isotriviality of a fibration of genus g ≥ 2. Denote by C any smooth fibre.

From a topological point of view, we can consider the relative Euler
characteristic

ef := e (S)− e (B) e (C) = e (S)− 4 (g (B)− 1) (g − 1) .

It is always non-negative, and can be written as a sum of non-negative
quantities associated to the singular fibres ([5] Prop. X.10). Therefore
ef = 0 if and only if f has no singular fibres (i.e. f is smooth).

Taking into account the complex structure, we can first consider the
self-intersection of the relative canonical sheaf,

K2
f := c1

(
ωS/B

)2
= K2

S − 8 (g (B)− 1) (g − 1) .

As ef , it is always non-negative , and moreover, ifK2
f = 0 then f is isotrivial.

We can also define the relative holomorphic Euler characteristic as

χf := χ (OS)− χ (OB)χ (OC) =

= χ (OS)− (g (B)− 1) (g − 1) = deg f∗ωS/B.

This three invariants satisfy a relative version of the Noether’s formula:

K2
f + ef = 12χf .

Hence, χf ≥ 0, and the equality implies that f is smooth and isotrivial (i.e.,
f is a fibre bundle).

In the case that f is not a fibre bundle, Xiao introduced in [43] the slope
of f , defined as

λf :=
K2
f

χf
.

In the same work, Xiao proved the so called slope inequality

λf ≥ 4−
4

g
(3.3)
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for a non-locally trivial fibration f of genus g ≥ 2. This inequality had been
proven before by Horikawa and Persson for hyperelliptic fibrations, and by
Cornalba and Harris for semistable fibrations.

The last invariant we want to introduce is the Clifford index of a fibra-
tion, which plays a central role in the main result of this part of the Thesis
(Theorem 6.3.4).

Definition 3.4.1 ([24] Def. 1.1). Given a fibration f : S → B, its Clifford
index is defined as

cf = max{Cliff (Cb) |Cb = f−1 (b) is smooth},

which is attained for b ranging in a non-empty Zariski-open set.

The Clifford index allows to obtain several improvements of the inequal-
ity (3.3), for example, as those obtained by Konno in [24] and by Barja and
Stoppino in [3].





4Chapter Four

DEFORMATIONS OF SMOOTH
CURVES

In this chapter we deal with several aspects of deformations of (smooth)
compact curves. In the first section we explore the relation between non-
trivial infinitesimal deformations of a curve and its bicanonical embedding.
The second section is simply a summary of the definition and main prop-
erties of the relative Ext sheaves, extracted from the first chapter of [7]
(which is in turn taken from [21]). Finally, in the third section we use the
relative Ext sheaves as a tool to construct global analogues of some concepts
of the first section, considering arbitrary (local, compact) one-dimensional
families of deformations (possibly with singular fibres).

4.1 Infinitesimal deformations

As mentioned above, we devote this section to study the relation between
a non-trivial infinitesimal deformation of a smooth curve and the geometry
of its bicanonical embedding. More precisely, we introduce the notion of a
deformation being supported on an effective divisor, which is closely related
to the span of the divisor in the bicanonical space. We also give upper
and lower bounds for the rank of a deformation in terms of the numerical
invariants of a supporting divisor (degree and dimension of the associated
complete linear series), finding some relations with the Clifford index of the
curve.

Almost all the definitions in this section are taken from [11], and most
of the results (as well as some ideas of the proofs) already appeared in [17].
However, the latter contains some unaccuracies, hence we have preferred to
include new versions of the results that are useful to our situation, adapting
also some definitions and rewriting some proofs.

Hodge numbers of irregular varieties and fibrations 111
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Let C be a smooth curve of genus g ≥ 2. An infinitesimal deformation
of C is a proper flat morphism C → ∆ over the spectrum of the dual
numbers ∆ = SpecC [ǫ] / (ǫ2), such that the special fibre (over SpecC (ǫ))
is isomorphic to C.

Since the conormal sheaf N∨
C/C is trivial with fibre T∨

∆,0, the exact se-
quence

0 −→ N∨
C/C −→ Ω1

C|C −→ ωC −→ 0 (4.1)

determines an extension class ξ ∈ H1 (C, TC)⊗T
∨
∆,0, which is nothing but the

Kodaira-Spencer class of the deformation. Indeed, by choosing a generator
of T∨

∆,0
∼= C, we can (and will very often do) think of ξ as an element of

H1 (C, TC).
Throughout all the section we will assume that the deformation is not

trivial, that is C 6∼= C ×∆, or equivalently, ξ 6= 0.
Denote by

P = P
(
H0
(
C, ω⊗2

C

)∨)
= P

(
H1 (C, TC)

)

the bicanonical space of C, and by φ2 : C →֒ P the bicanonical embedding
of C. Since ξ 6= 0, it determines a point [ξ] ∈ P, which is in fact well
defined, independently of the chosen isomorphism T∨

∆,0
∼= C.

Cup-product with ξ induces a map

∂ξ = ∪ ξ : H0 (C, ωC) −→ H1 (C,OC)

which coincides with the connecting homomorphism in the exact sequence
of cohomology obtained form (4.1).

Definition 4.1.1. We define the rank of ξ as the rank of ∂ξ, and denote it
as

rk ξ = rk ∂ξ.

Remark 4.1.2. If C is non-hyperelliptic, the map

H1 (C, TC) // Hom (H0 (C, ωC) , H
1 (C,OC))

ξ � // ∂ξ

is injective, hence no information is lost when considering ∂ξ instead of ξ.
However, if C is hyperelliptic, the above map is not injective, hence we may
have rk ξ = 0 even if ξ 6= 0. This exception is a manifestation of the failure
of the infinitesimal Torelli Theorem for hyperelliptic curves.
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From now on, until the end of the section, D =
∑k

i=1 nipi will be an
effective divisor on C, of degree d = degD =

∑k
i=1 ni. We will also denote

by r = r(D) = h0 (C,OC (D)) − 1 the dimension of its complete linear
series. The divisor D induces the exact sequences

0 −→ OC −→ OC (D) −→ OD (D) −→ 0 (4.2)

and
0 −→ TC −→ TC (D) −→ TC (D)|D −→ 0, (4.3)

with connecting homomorphisms

∂O,D : H0 (D,OD (D)) −→ H1 (C,OC)

and
∂T,D : H0

(
D,TC (D)|D

)
−→ H1 (C, TC) .

We will denote their images as

σD = im ∂O,D = ker
(
H1 (C,OC) −→ H1 (C,OC (D))

)

and
τD = im ∂T,D = ker

(
H1 (C, TC) −→ H1 (C, TC (D))

)
.

Lemma 4.1.3. Keeping the above notations,

1. dim σD = d− r and

2. if d < 2g − 2, then dim τD = d.

Proof. 1. From the exact sequence of cohomology of (4.2) and the defi-
nition of σD, the sequence

0 −→ H0 (OC) −→ H0 (OC (D)) −→ H0 (OD (D)) −→ σD −→ 0

is exact. Then

dim σD = h0 (OD (D))− h0 (OC (D)) + 1 = d− r.

2. The beginning of the cohomology sequence of (4.3) is

0 −→ H0 (TC) −→ H0 (TC (D)) −→ H0
(
TC (D)|D

)
∂T,D

−→ H1 (TC) .

Since deg TC ≤ deg TC (D) = 2−2g+d < 0, the first two terms vanish
and the connecting homomorphism ∂T,D is injective. Therefore

dim τD = h0
(
TC (D)|D

)
= h0(OD) = lengthOD = degD = d.
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Remark 4.1.4. If D = p consists of a single point, then both σp and τp are
one-dimensional, and the maps p 7→ σp ∈ P

(
H0 (C, ωC)

∨) and p 7→ τp ∈ P
are precisely the canonical and bicanonical maps, respectively.

Definition 4.1.5. With the above notations, define the span of D as

〈D〉 = P (τD) ⊆ P.

The next lemma is quite elementary (almost immediate), but will clarify
the construction of the global analogue of 〈D〉 ⊆ P.

Lemma 4.1.6. The ideal sheaf JD ⊂ OP of 〈D〉 is the image of the map

H0
(
C, ω⊗2

C (−D)
)
⊗OP (−1) −→ OP.

Proof. Since 〈D〉 is a linear variety, its ideal sheaf is generated by linear
forms, so we only need to see that the space H0 (P,JD (1)) of linear equa-
tions defining 〈D〉 is H0

(
C, ω⊗2

C (−D)
)
. From the structural sequence

0 → JD → OP → O〈D〉 → 0

of 〈D〉 we obtain the exact sequence

0 → H0 (JD (1)) → H0 (OP (1)) ∼= H0
(
C, ω⊗2

C

)
→ H0

(
O〈D〉 (1)

)
∼= τ∨D.

The last map is the dual of the inclusion τD →֒ H1 (C, TC), and therefore

H0 (P,JD (1)) ∼=
(
H1 (C, TC (D))

)∨ ∼= H0
(
C, ω⊗2

C (−D)
)

because H1 (C, TC) → H1 (C, TC (D)) is surjective.

Remark 4.1.7. One interpretation of the previous lemma is that 〈D〉 is
the intersection of all the hyperplanes in P that cut out on C at least the
divisor D, which justifies the name span. In symbols:

〈D〉 = 〈φ2 (D)〉 =
⋂

H∈P∨

φ∗2(H)≥D

H

We now relate the divisor D and the deformation ξ, starting with a basic
definition.

Definition 4.1.8. We say that the deformation ξ is supported on D if and
only if ξ ∈ τD.

Furthermore, if ξ is not supported on any strictly smaller effective divisor
D′ < D, we say that ξ is minimally supported on D.
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Remark 4.1.9. The reason for the name is double. On the one hand,
ξ ∈ τD means that there is a Laurent tail of a meromorphic vector bundle

η ∈ H0
(
D,TC (D)|D

)
supported on D, such that ξ = ∂T,D (η). On the

other hand, ξ ∈ τD if and only if [ξ] ∈ 〈D〉, that is, if [ξ] is supported on
the span of D in P.

Remark 4.1.10. Observe that if D has the smallest degree among the divi-
sors supporting ξ, then ξ is minimally supported on D, but not conversely.
Indeed, ξ being minimally supported on a divisor D means that it is not pos-
sible to remove some point of D and still support ξ, but there is no reason
for D to have minimal degree.

Remark 4.1.11. One could equivalently define ξ to be supported on the
divisor D if and only if the top row in the following pull-back diagram is
split.

ξD : 0 // N∨
C/C

// FD
//

� _

��

ωC (−D) //
� _

��

rr ]_ace
0

ξ : 0 // N∨
C/C

// Ω1
C|C

// ωC // 0

Indeed, τD is the kernel of the map H1 (C, TC) → H1 (C, TC (D)), which
can be identified with the pull-back

Ext1OC
(ωC ,OC) // Ext1OC

(ωC (−D) ,OC)

ξ � // ξD

However, for non-infinitesimal deformations (specially when the base is a
compact curve) the splitting of the analogous pull-back is not always equiv-
alent to the natural extension of Definition 4.1.8 (see Definition 4.3.13,
Proposition 4.3.14 and Lemma 4.3.17).

Lemma 4.1.12. Suppose ξ is supported on D. Then

1. H0 (C, ωC (−D)) ⊆ ker ∂ξ, and

2. im ∂ξ ⊆ σD.

Proof. Any 1-form w ∈ H0 (C, ωC) induces (in fact, it is equivalent to) a
map

w∪ : TC −→ OC ,
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and its restriction to D, w|D ∈ H0
(
D,ωC|D

)
, induces

w|D ∪ : TC (D)|D −→ OD (D) ,

such that the diagram

H0
(
D,TC (D)|D

)
∂T,D //

w|D ∪

��

H1 (C, TC)

w∪

��
H0 (D,OD (D))

∂O,D // H1 (C,OC)

is commutative.
Now, as we said in Remark 4.1.9, ξ is supported on D if and only if

there is η ∈ H0
(
D,TC (D)|D

)
such that ξ = ∂T,D (η). Taking such an η,

we can compute

∂ξ (w) = w ∪ ξ = w ∪ (∂T,D (η)) = ∂O,D
(
w|D ∪ η

)
(4.4)

Since σD = im ∂O,D, the second claim follows immediately.
As for the first claim, w ∈ H0 (C, ωC (−D)) if and only if w|D = 0, which

by (4.4) implies ∂ξ (w) = 0 and the proof is done. Alternatively, the fact
that ξD is split implies that all the sections of ωC (−D) lift to sections of
Ω1

C|C , and hence belong to the kernel of ∂ξ.

Remark 4.1.13. Lemma 4.1.12 implies that if ξ is supported on a divisor
D, the value of ∂ξ (w) depends only on the restriction w|D. Furthermore,
the proof shows that ∂ξ can be factored as

H0 (C, ωC)
restD−→ H0

(
D,ωC|D

) ∪ η
−→ H0 (D,OD (D))

∂O,D

−→ H1 (C,OC) ,

where η ∈ H0
(
D,TC (D)|D

)
is a preimage of ξ by ∂T,D.

Corollary 4.1.14. If ξ is supported on D, then rk ξ ≤ degD − r (D).

Proof. It follows immediately from the facts that im ∂ξ ⊆ σD (Lemma
4.1.12) and dim σD = d− r (Lemma 4.1.3).

After these preliminary results, we give the main Theorem of the section,
which gives a lower bound for the rank of a deformation in terms of a
supporting divisor.

Definition 4.1.15. Given any divisor D, we define its Clifford index as

Cliff (D) = degD − 2r (D) .
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Remark 4.1.16. With the above definition, the Clifford index of the curve
C is

Cliff (C) = min
{
Cliff (D) |h0 (OC (D)) , h1 (OC (D)) ≥ 2

}
.

The following is essentially the main statement of Theorem 2.5 in [17],
with a slightly modified proof.

Theorem 4.1.17. If ξ is minimally supported on D, then

rk ξ ≥ degD − 2r (D) = Cliff (D) .

Proof. Let η ∈ H0
(
D,TC (D)|D

)
be such that ∂T,D (η) = ξ. From the

factorization of Remark 4.1.13, and decomposing the restriction restD as

H0 (C, ωC) −։ W = H0 (C, ωC) /H
0 (C, ωC (−D)) −֒→ H0

(
D,ωC|D

)
,

we obtain the following commutative diagram

H0 (ωC)
∂ξ //

����

H1 (OC)

W

ψ
22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee� � //

ψ̃

44
H0
(
ωC|D

) ∪ η // H0 (OD (D))

∂O,D

OO

Claim: If ξ is minimally supported on D, then ∪ η is an isomorphism.
Assuming the claim for a moment, the proof finishes as follows. Clearly,

rk ξ = rkψ = dimW − dimkerψ. On the one hand, by Riemann-Roch,
dimW = d− r. On the other hand, since ∪ η is injective

kerψ ∼= ker
(
∂O,D| im ψ̃

)
⊆ ker ∂O,D,

and hence dimkerψ ≤ dimker ∂O,D = r. Summing up, we finally obtain

rk ξ ≥ (d− r)− r = d− 2r.

Proof of the Claim: Let D =
∑k

i=1 nipi, with pi 6= pj for i 6= j, and for each
i let zi be a local coordinate centered at pi. Then OD

∼=
⊕k

i=1 C [zi] / (z
ni

i ),
and therefore

H0
(
D,TC (D)|D

)
∼=

k⊕

i=1

C [zi]

(zni

i )

〈
1

zni

i

∂

∂zi

〉
∼=

k⊕

i=1

ni⊕

j=1

C
〈

1

zji

∂

∂zi

〉
.
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Hence, there exist scalars ηij ∈ C such that

η =
k∑

i=1

ni∑

j=1

ηij
1

zji

∂

∂zi
,

and the minimality of D implies that ηini
6= 0 for all i = 1, . . . , k. Indeed,

ξ is supported on D′ =
∑k

i=1mipi < D if and only if it can be written as
ξ = ∂T,D′ (η′) for some

η′ =
k∑

i=1

mi∑

j=1

η′ij
1

zji

∂

∂zi
.

But the map TC (D′)
+(D−D′)
−→ TC (D) induces a commutative diagram

H0
(
D′, TC (D′)|D′

)
∼=
⊕k

i=1
C[zi]

(zmi
i )

〈
1
z
mi
i

∂
∂zi

〉

α

��

∂T,D′
**VVVVVVVVVVVVVVVVVV

H1 (C, TC)

H0
(
D,TC (D)|D

)
∼=
⊕k

i=1
C[zi]

(zni
i )

〈
1
z
ni
i

∂
∂zi

〉
∂T,D

44hhhhhhhhhhhhhhhhhh

where

α

(
1

zmi

i

∂

∂zi

)
= zni−mi

i

(
1

zni

i

∂

∂zi

)
=

1

zmi

i

∂

∂zi
.

Therefore, if ηini
= 0 for some i, then ξ would be supported on D − pi,

contradicting the minimality of D.
Let us now compute the expression of ∪ η in these coordinates to show

that ηini
6= 0 for all i implies that it is an isomorphism. H0

(
D,ωC|D

)
and

H0 (D,OD (D)) can be written explicitly as

H0
(
D,ωC|D

)
∼=

k⊕

i=1

C [zi]

(zni

i )

〈
dzi|D

〉
∼=

k⊕

i=1

ni−1⊕

j=0

C
〈
zji dzi|D

〉
, (4.5)

and

H0 (D,OD (D)) ∼=

k⊕

i=1

C [zi]

(zni

i )

〈
1

zni

i

〉
∼=

k⊕

i=1

ni⊕

j=1

C
〈

1

zji

〉
. (4.6)

Since (
zlidzi|D

)
∪

(
1

zmi

∂

∂zi

)
=

(
1

zm−l
i

)
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(which is zero if l ≥ m) and
(
zlidzi|D

)
∪
(

1
zmj

∂
∂zj

)
= 0 for i 6= j, we have

(
zlidzi|D

)
∪ η =

ni−l∑

j=1

ηi,j+l
1

zji
.

Hence, in the basis of (4.5) and (4.6), ∪ η is given by a matrix of the form




M1 0 . . . 0
0 M2 . . . 0
...

...
. . .

...
0 0 . . . Mk


 ,

where each block Mi has the form

Mi =




ηi1 ηi2 . . . ηini

...
... . .

. ...
ηi,ni−1 ηini

. . . 0
ηini

0 . . . 0


 .

It is now clear that ∪ η is an isomorphism if and only if ηini
6= 0 for every

i, and the theorem is proved.

4.2 Relative Ext sheaves

Since they will play a central role in the next section, we wish to recall
the definition and some of the main properties of the relative Ext sheaves,
which can be found in the first chapter of [7].

Definition 4.2.1 (Relative ext sheaves, [7] Def. 1.1.1). Given a morphism
of schemes (or more generally, of ringed spaces) f : X → Y , and an OX-
module F , we define Extpf (F ,−) as the p-th right derived functor of the
left-exact functor f∗HomOX

(F ,−).

Example 4.2.2 ([7], Def.-Remark 1.1.2). Some particular cases:

1. If Y = SpecC is a point, then Extpf (F ,−) = ExtpOX
(F ,−), the global

Ext functor. If furthermore F = OX , Extpf (OX ,−) = Hp (X,−) is
the usual sheaf cohomology.

2. If f is the identity (hence Y = X), then Extpf (F ,−) = ExtpOX
(F ,−)

is the usual local Ext functor.
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3. If F = OX , then f∗ HomOX
(OX ,−) = f∗ is the usual push-forward

functor, so that Extpf (OX ,−) = Rpf∗ are the higher-direct image func-
tors.

Theorem 4.2.3. Some properties:

1. ([7] Th. 1.1.3) For any OX-modules F ,G, Extf (F ,G) is the sheaf
associated to the presheaf

U 7→ ExtpO
f−1(U)

(
F|f−1(U),G|f−1(U)

)
.

In particular, for any open subset W ⊆ Y ,

Extpf (F ,G)|f−1(W )
∼= Extpf

(
F|f−1(W ),G|f−1(W )

)
.

2. ([7] Th. 1.1.4) If L and N are locally free sheaves of finite rank on
X and Y , respectively, then

Extpf (F ⊗ L,−⊗ f ∗N ) ∼= Extpf (F ,−⊗ L∨ ⊗ f ∗N ) ∼=
∼= Extpf (F ,−⊗ L∨)⊗N .

3. ([7] Th. 1.1.5) If 0 → F ′ → F → F ′′ → 0 is an exact sequence of
OX-modules, and G is another OX-module, then there is a long exact
sequence

· · · −→ Extp−1
f (F ′,G) −→

−→ Extpf (F
′′,G) −→ Extpf (F ,G) −→ Extpf (F

′,G) −→

−→ Extp+1
f (F ′′,G) −→ · · ·

4. (Local to global spectral sequence, [7] Th. 1.2.1) Suppose g : Y → Z is
another morphism, and denote h = g ◦ f . For any OX-modules F ,G
there is a spectral sequence

Ep,q
2 = Rpg∗ Ext

q
f (F ,G) ⇒ Extp+qh (F ,G) .

5. (Coherence, [7] Th. 1.3.1) If f is projective and F , G are coherent
OX-modules, then Extpf (F ,G) is a coherent OY -module.
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4.3 Global constructions

In this last section we consider a non-isotrivial fibration of a smooth sur-
face over a smooth (not necessarily compact) curve, considered as a one-
dimensional family of curves. We extend some of the constructions of Sec-
tion 4.1 in order to obtain geometric tools to study the family, and more
explicitly, to develop the notion of supporting divisor (or subscheme, more
generally). As mentioned in the previous section, relative Ext sheaves are
an essential tool, as well as some results of Chapter 3 relating the sheaf of
relative differentials and the relative dualizing sheaf.

Let f : S → B be a non-isotrivial fibration of a smooth surface S over a
smooth curve B. For any b ∈ B, let Cb = S ×B SpecC (b) be the fibre over
b. Denote by Bo ⊆ B the open set of regular values, so that Cb is smooth
if and only if b ∈ Bo, and denote also by So = f−1 (Bo). We will assume
that the generic (smooth) fibres have genus g ≥ 2.

For every smooth fibre C = Cb, the fibration f induces an infinitesimal
deformation, whose Kodaira-Spencer class ξb ∈ H1 (C, TC) ⊗ T∨

B,b is the
extension class of

0 −→ N∨
C/S = OC ⊗ T∨

B,b −→ Ω1
S|C −→ ωC −→ 0,

obtained by restricting the sequence

ξ : 0 −→ f ∗ωB −→ Ω1
S −→ Ω1

S/B −→ 0 (4.7)

defining the sheaf of relative differentials Ω1
S/B.

Since the fibration f is not isotrivial, ξb 6= 0 for general b ∈ Bo and hence
we can consider the point [ξb] ∈ Pb := P (H1 (Cb, TCb

)). Furthermore, if
D ⊂ S is any divisor, we can also ask whether ξb is supported on Db = D|Cb

,
and if the answer is positive, what consequences for the fibration f does it
have.

The aim of this section is to glue the constructions of Section 4.1 to
the case of a smooth surface fibred over a curve (that is, a one-dimensional
family of curves), extending them also to the singular fibres. Some of the
ideas used here also appear in [37].

The first object to globalize is the ambient space: the vector space
H1 (C, TC) ∼= H0

(
C, ω⊗2

C

)∨
and its projectivization.

Definition 4.3.1. Let E be the sheaf on B defined as

E = Ext1f
(
Ω1
S/B, f

∗ωB
)
∼= Ext1f

(
Ω1
S/B,OS

)
⊗ ωB,

and let
P = ProjOB

(Sym∗ E∨)
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be the associated projective bundle, with projection π : P → B.

Note that E∨ is torsion free over a smooth curve, hence it is locally free
and P is actually a projective bundle.

Recall that the relative tangent sheaf is defined as

TS/B =
(
Ω1
S/B

)∨
= HomOS

(
Ω1
S/B,OS

)
.

Lemma 4.3.2. There is an injection

R1f∗TS/B ⊗ ωB −֒→ E

which is an isomorphism over Bo. In particular, for any regular value
b ∈ Bo there is a natural isomorphism

E ⊗ C (b) ∼= H1 (Cb, TCb
)⊗ T∨

B,b.

Proof. The injection is obtained directly from the local-global spectral se-
quence

Rpf∗ Ext
q
OS

(
Ω1
S/B, f

∗ωB
)
=⇒ Extp+qf

(
Ω1
S/B, f

∗ωB
)
,

since the beginning of the corresponding five-term exact sequence is

R1f∗
(
HomOS

(
Ω1
S/B, f

∗ωB
))

−֒→ Ext1f
(
Ω1
S/B, f

∗ωB
)
,

and clearly

R1f∗
(
HomOS

(
Ω1
S/B, f

∗ωB
))

∼= R1f∗
(
TS/B ⊗ f ∗ωB

)
∼= R1f∗TS/B ⊗ ωB

by the projection formula.
As for the statement about the regular values, Lemma 3.2.6 implies

that Ω1
S/B|So

∼= ωS/B|So and
(
Ω1
S/B|So

)∨
= TS/B|So are both locally free.

Therefore, using Theorem 4.2.3 we get

Ext1f
(
Ω1
S/B|So ,OSo

)
⊗ ωBo

∼= Ext1f
(
OSo , TS/B|So

)
⊗ ωBo

∼=
∼=
(
R1f∗TS/B|So

)
⊗ ωBo =

(
R1f∗TS/B ⊗ ωB

)
|Bo .

Finally, TS/B|Cb
= TCb

for any smooth fibre, and since the relative di-
mension of f is 1, the base-change map E ⊗ C(b) → H1 (Cb, TCb

) ⊗ T∨
B,b is

an isomorphism for every b ∈ Bo.

By the previous Lemma, the fibres of P over the regular values are
isomorphic to the bicanonical spaces of the fibres, as wanted. The twisting
by ωB (or T∨

B,b) may seem strange, but it is indeed absolutely natural, as
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mentioned at the beginning of Section 4.1. Moreover, although we could
forget about the ωB because of the isomorphism P (E) ∼= P (E ⊗ TB), it is
convenient to keep it in order to simplify the next construction.

We define now a morphism γ : B → P (in fact, a section of π : P → B),
which maps every regular value b ∈ Bo to [ξb]. Recall that the fibration

f : S → B defines an element ξ ∈ Ext1OS

(
Ω1
S/B, f

∗ωB

)
(the extension class

of (4.7)). Now, the spectral sequence

Ep,q
2 = Hp

(
B, Extqf

(
Ω1
S/B, f

∗ωB
))

=⇒ Extp+qOS

(
Ω1
S/B, f

∗ωB
)

(4.8)

gives the map

ρ : Ext1OS

(
Ω1
S/B, f

∗ωB
)
−→ H0

(
B, Ext1f

(
Ω1
S/B, f

∗ωB
))

= H0 (B, E) .

Lemma 4.3.3. The map ρ is an isomorphism.

Proof. By the five-term exact sequence associated to the spectral sequence
(4.8), we have

ker ρ = H1
(
B, f∗ HomOS

(
Ω1
S/B, f

∗ωB
))

and
coker ρ ⊆ H2

(
B, f∗ HomOS

(
Ω1
S/B, f

∗ωB
))
.

Since dimB = 1, it is clear that coker ρ = 0. It remains to show that

ker ρ = 0, and we will directly show that f∗ HomOS

(
Ω1
S/B, f

∗ωB

)
= 0.

Indeed,
f∗ HomOS

(
Ω1
S/B, f

∗ωB
)
∼=
(
f∗TS/B

)
⊗ ωB.

Since TS/B is torsion-free, so is f∗TS/B, and since the base B is a curve,
f∗TS/B is a vector bundle of rank h0

(
Cb, TS/B|Cb

)
for general b ∈ B. In

particular, if b ∈ Bo is a regular value, then TS/B|Cb
∼= TCb

, which has no
sections because we are assuming g (Cb) ≥ 2. Therefore, f∗TS/B = 0 and
the proof is done.

Because of Lemma 4.3.3, we can identify ξ with a section ρ (ξ) of E , which
by construction maps any regular value b ∈ Bo to the Kodaira-Spencer class
ξb of the deformation of Cb. Since we assumed the fibration f to be non-
isotrivial, ρ (ξ) does not vanish identically and induces the wanted section
γ : B → P.

Remark 4.3.4. We can construct γ : B → P more formally as follows.
Consider the evaluation of ρ (ξ)

C 〈ρ (ξ)〉 ⊗ OB
∼= OB −→ E ,
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and let M ⊆ OB be the image of its dual E∨. According to [22], Proposition
II.7.12, the surjection E∨

։ M corresponds to a map γ : B → P such that
γ∗OP (1) = M, and it is easy to see that it is the section we want.

The next step is to construct (up to blowing-up some points of S con-
tained in the singular fibres) a B-morphism φ : S → P (i.e. such that
π ◦ φ = f) inducing the bicanonical map on the smooth fibres. Following
Proposition II.7.12 in [22] as in the previous remark, it must correspond
to a line bundle Lφ on S and a map f ∗E∨ → Lφ, surjective at least on
So = f−1 (Bo).

Lemma 4.3.5. There is a natural morphism of sheaves on S

f ∗E∨ −→
(
Ω1
S/B

)∨∨
⊗ ωS/B ⊗ f ∗TB,

which is surjective on So and induces the bicanonical map on any smooth
fibre.

Proof. We have seen above (Lemma 4.3.2) that there is an injective map of
sheaves R1f∗TS/B ⊗ ωB →֒ E . Dualizing we get a map

E∨ −→
(
R1f∗TS/B ⊗ ωB

)∨ ∼= f∗

((
Ω1
S/B

)∨∨
⊗ ωS/B

)
⊗ TB, (4.9)

where in the last isomorphism we have used relative duality together with
the fact (Lemma 3.2.8) that ωS/B is the relative dualizing sheaf. Moreover,
Lemma 4.3.2 also implies that the map (4.9) is an isomorphism on Bo.
Pulling back this map to S and composing with the “relative evaluation
map”

f ∗
(
f∗

((
Ω1
S/B

)∨∨
⊗ ωS/B

)
⊗ TB

)
−→

(
Ω1
S/B

)∨∨
⊗ ωS/B ⊗ f ∗TB,

we obtain the map we wanted:

f ∗E∨ −→ Lφ :=
(
Ω1
S/B

)∨∨
⊗ ωS/B ⊗ f ∗TB. (4.10)

Since Ω1
S/B|So

∼= ωS/B|So (Lemma 3.2.6), it holds Ω1
S/B|Cb

∼= ωS/B|Cb
∼= ωCb

,

hence it is immediate that Lφ|Cb
∼= ω⊗2

Cb
⊗TB,b. Finallly, since the bicanonical

sheaf of a smooth fibre is globally generated, the map (4.10) is surjective
on So, so that the induced rational map φ is defined on every smooth fibre
and restricts to its bicanonical embedding.

Remark 4.3.6. Note that in this construction it has appeared an “ex-
tra” f ∗TB. This happens because of the choice of the sheaf E instead of
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Ext1f

(
Ω1
S/B,OS

)
, which has the same associated projective bundle, but with

different tautological sheaf O (1). The only important consequence of this
extra factor is that for any regular value b ∈ Bo,

φ∗
bOPb

(1) = ω⊗2
Cb

⊗ TB,b

instead of simply the bicanonical sheaf (where Pb = π−1 (b) is the fibre of P
over b, and φb = φ|Cb

: Cb → Pb).

Finally, we present a way to globalize the span of a divisor on a fibre.
Instead of considering only divisors on the surface, we will start from a more
general point of view, taking into account any closed subscheme Γ ⊂ S.
Recall the natural map α : Ω1

S/B → ωS/B of Lemma 3.2.6.

Definition 4.3.7. For any closed subscheme Γ ⊂ S with ideal sheaf IΓ,
define

LΓ = α−1
(
ωS/B ⊗ IΓ

)
= ker

(
Ω1
S/B −→ ωS/B −→ ωS/B|Γ

)
,

and
EΓ = Ext1f (LΓ, f

∗ωB) .

The inclusion LΓ ⊆ Ω1
S/B induces maps of sheaves

E −→ EΓ and its dual E∨
Γ −→ E∨. (4.11)

Lemma 4.3.8. The map E∨
Γ → E∨ is injective. Moreover, if Γ2 ⊆ Γ1 are

two nested closed subschemes, then the induced map E∨
Γ1

→ E∨
Γ2

is injective.

Proof. By replacing B by some open subset (removing the singular fibres
and those containing isolated or embedded points of Γ), we may assume
that Ω1

S/B = ωS/B and that Γ = Γdiv is an effective divisor. Then the map
E∨
Γ → E∨ is simply the natural map

(
f∗ω

⊗2
S/B (−Γ)

)
⊗ TB −→

(
f∗ω

⊗2
S/B

)
⊗ TB,

which is clearly injective.
Going back to the original (complete) fibration, the kernel of E∨

Γ → E∨

must be supported on a closed subset, hence it is a torsion sheaf. But E∨
Γ

is torsion-free, so the kernel is zero and the claim is proved.
As for the second asertion, just note that the map E∨

Γ1
→֒ E∨ factors

through E∨
Γ1

→ E∨
Γ2

.
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Using the sheaf EΓ we construct now a subvariety PΓ ⊆ P with the
property that ρ (ξ) belongs to the kernel of H0 (E) → H0 (EL) if and only
if the image of γ is contained in PΓ. In this way, we generalize the notion
of a deformation being supported on a divisor on a smooth fibre.

Composing the pull-back of E∨
Γ → E∨ by π with the natural surjection

π∗E∨ → OP(1) we obtain a map

µΓ(1) : π
∗E∨

Γ −→ OP(1).

Definition 4.3.9. We define P̃Γ ⊆ P as the closed subscheme whose sheaf
of ideals JΓ is the image of

µΓ : π∗E∨
Γ ⊗OP(−1) −→ OP.

The subscheme P̃Γ is a first generalization of the span of a divisor on
a fibre. However, it is not fine enough for us, since it may contain several
irreducible components which do not dominate B and hence cannot contain
the curve of deformations γ (B).

Lemma 4.3.10. P̃Γ contains a unique irreducible component PΓ dominating
B. The fibre of PΓ over a general point b ∈ Bo is precisely the span of Γ|Cb

(in the sense of Definition 4.1.5). Moreover, if Γ′ ⊆ S is another subscheme
with the same components as Γ dominating B, then PΓ′ = PΓ.

Proof. Let D ⊂ S be the union of the (divisorial) components of Γ that
dominate B, and let U ⊆ Bo be the open set such that Γ|f−1(U) = D|f−1(U)

(the complement in Bo of the image of the components of Γ not dominating
B). Then, as we have shown in the proof of Lemma 4.3.8,

LΓ|f−1(U)
∼=
(
ωS/B(−D)

)
|f−1(U)

.

and
E∨
Γ|U

∼= f∗

(
ω⊗2
S/B(−D)

)
|U

⊗ TU .

Let V ⊆ U be the open set where the function b 7→ h0
(
Cb, ω

⊗2
Cb

(−Db)
)

is
constant. For any b ∈ V , the base-change map gives an isomorphism

E∨
Γ ⊗ C (b)

∼=
−→ H0

(
Cb, ω

⊗2
Cb

(−Db)
)
⊗ TB,b.

Therefore, the map µΓ restricts to

µΓ|Pb
: H0

(
Cb, ω

⊗2
Cb

(−Db)
)
⊗ TB,b ⊗OPb

(−1) −→ OPb
,
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which coincides with the map in Lemma 4.1.6 (the twisting by TB,b is ex-
plained in Remark 4.3.6). This shows that the fibres of P̃Γ over any b ∈ V
are the spans of Db = Γb and all of them have the same dimension. Hence
P̃Γ ∩ π

−1 (V ) is irreducible, and we define PΓ to be its closure in P.
The last assertion follows because PΓ is determined by the components

of Γ dominating B.

Definition 4.3.11 (Span of a subscheme). Given a subscheme Γ ⊂ S, we
define its span as the subvariety PΓ of Lemma 4.3.10.

Remark 4.3.12. 1. By Lemma 4.3.10, the span of a subscheme is de-
termined only by its divisorial components not contained in fibres.

2. Because of this reason, the span of Γ may not contain its image φ (Γ)
by the relative bicanonical map.

Definition 4.3.13. Analogously to the case of an infinitesimal deformation,

we say that the extension ξ ∈ Ext1OS

(
Ω1
S/B, f

∗ωB

)
∼= H0 (B, E), or also the

fibration f , is supported on a subscheme Γ ⊂ S if it is mapped to zero by
the map

H0 (B, E) −→ H0 (B, EΓ)

associated to (4.11).

As in the infinitesimal case, being supported on a subscheme Γ is related
to its span in the bicanonical embedding.

Proposition 4.3.14. The deformation ξ is supported on Γ if and only if
the image of γ : B → P lies in PΓ.

Proof. Since PΓ is the only component of P̃Γ dominating B, and γ(B) dom-
inates B, the statement is equivalent to prove that ξ is supported on Γ if
and only if γ(B) ⊆ P̃Γ. To this aim, consider the commutative diagram

Ext1OS

(
Ω1
S/B, f

∗ωB

)
ι∗ //

ρ

��

Ext1OS
(LΓ, f

∗ωB)

ρΓ

��
H0 (B, E)

ι̃∗ // H0 (B, EΓ)

where the vertical maps are given by the corresponding local-global spectral
sequences, and the horizontal ones are induced by the inclusion of sheaves
ι : LΓ →֒ Ω1

S/B.
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We want to show that γ(B) ⊆ P̃Γ if and only if the section

ξ̃Γ := ρΓ(ι
∗(ξ)) = ι̃∗(ρ(ξ)) ∈ H0 (B, EΓ)

is zero. Recall that the morphism γ : B → P was defined by the evaluation
of ρ (ξ), so that (see Remark 4.3.4)

γ∗OP(1) ∼= M = im (E∨ −→ OB) ⊆ OB.

Recall also that the ideal sheaf JΓ of P̃Γ is the image of the composition

π∗E∨
Γ (−1) −→ π∗E∨(−1) −→ OP,

so γ∗JΓ(1) is generated by the image of the composition

E∨
Γ −→ E∨ −→ M −֒→ OB.

But this composition is dual to the composition of the evaluation of ρ (ξ)
and the map E → EΓ, which is precisely the evaluation of ξ̃Γ.

Therefore, ξ̃Γ = 0 if and only if the map E∨
Γ → M vanishes. By the

previous discussion, this is equivalent to the vanishing of γ∗JΓ → OB,
which means precisely that the image of γ is (schematically) contained in
P̃Γ, finishing the proof.

Corollary 4.3.15. If Γ,Γ′ ⊂ S are two subschemes with exactly the same
components dominating B, then ξ is supported on Γ if and only if it is
supported on Γ′.

Proof. It is a consequence of Proposition 4.3.14, since PΓ = PΓ′ because of
Lemma 4.3.10.

We will also need to take care of changes of base.

Lemma 4.3.16. Let p : B′ → B be a finite morphism, let S ′ be the minimal
desingularization of S×BB

′, and consider the induced commutative diagram

S ′
p′ //

f ′

��

S

f

��
B′

p // B

Suppose that ξ is supported on a divisor D. Then the extension class ξ′

corresponding to the fibration f ′ is supported on D′ = (p′)∗D.
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Proof. Denote by E ′,P′ and P′
D′ the obvious analogues of E ,P and PD at-

tached to the fibration f ′ and the divisor D′.
Let b′ ∈ B′ be a point such that p is not ramified at b′. Then there

is an analytic open neighbourhood U ′ ⊆ B′ of b′ such that p|U ′ gives an
isomorphism with an open subset U ⊂ B. Furthermore, the restrictions of
f ′ and f to (f ′)−1 (U ′) and f−1 (U) respectively are naturally isomorphic,
hence

ξ′|U ′ = p∗ξ|U

as sections of E ′
|U ′

p∗

∼= E|U , and also P′
D′|U ′

p∗

∼= PD|U . Since ξ is supported on
D, it follows that ξ′|U ′ is supported on D′

|U ′ . To finish, note that the union
of the U ′ (as b′ ranges over the points where p is not ramified) is a Zariski
open subset of B′.

Proposition 4.3.14 shows that Definition 4.3.13 is the correct geometric
analogue to the infinitesimal one (Definition 4.1.8). However, ξ being sup-
ported on Γ is not in general equivalent to the splitting of the pull-back
sequence

ξΓ : 0 −→ f ∗ωB −→ FΓ −→ LΓ −→ 0. (4.12)

Therefore, the global analogue of Remark 4.1.11 is not equivalent to Defi-
nition 4.3.13 for a general subscheme Γ. Fortunately, the two notions are
equivalent in some cases, as the following Lemma shows, and these cases
are more than enough for our purposes.

Lemma 4.3.17. If Γdiv ·Cb < 2g− 2 for some fibre Cb, then ξ is supported
on Γ if and only if the pull-back sequence (4.12) splits.

Proof. In this case, the beginning of the five-term exact sequence associated
to the local to global spectral sequence is

0 −→ H1 (B, f∗ Hom (LΓ, f
∗ωB)) −→ Ext1OS

(LΓ, f
∗ωB)

ρΓ−→ H0 (B, EΓ)

By definition, ξ is supported on Γ if and only if ξΓ ∈ Ext1OS
(L, f ∗ωB)

belongs to the kernel of ρΓ. Therefore, it is enough to show that

H1 (B, f∗ Hom (LΓ, f
∗ωB)) = 0.

Indeed, analogously to the proof of Lemma 4.3.3, we will show that the
sheaf f∗ Hom (LΓ, f

∗ωB) is zero.
First of all, f∗ Hom (LΓ, f

∗ωB) = (f∗L
∨
Γ) ⊗ ωB, so it will be enough to

prove that f∗L∨
Γ = 0. The dual L∨

Γ is torsion-free, so its direct image f∗L∨
Γ

is also torsion-free, hence it is a vector bundle. Therefore, we will be done
if we see that (f∗L

∨
Γ)⊗ C(b) = 0 for general b.
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As in the proof of Lemma 4.3.10, for a general smooth fibre Cb we have
LΓ|Cb

=
(
ωS/B ⊗ IΓ

)
|Cb

= ωCb
(−Γ|Cb

) and

(f∗L
∨
Γ)⊗ C(b) = H0

(
Cb, TCb

(Γ|Cb
)
)
.

To finish, the second term vanishes because the hypothesis Γ · Cb < 2g − 2
is equivalent to deg

(
TCb

(Γ|Cb
)
)
< 0.

Remark 4.3.18. It is very likely that almost all the constructions and re-
sults of this section (except the relative bicanonical map of Lemma 4.3.5)
can be generalized with minor changes to one-dimensional families of vari-
eties of any dimension.



5Chapter Five

ADJOINT IMAGES

The main topic of this chapter are adjoint images, which have proved to be
a useful tool to study both infinitesimal and local deformations of irregu-
lar varieties. They were introduced in the study of curves by Collino and
Pirola in [10], and then extended to higher-dimensional varieties by Pirola
an Zucconi in [34]. The aim of this chapter is to construct a further general-
ization of adjoint images to the case of arbitrary (one-dimensional) families
of irregular varieties, which in particular allows us to deal with compact
surfaces fibred over curves.

The first section of the chapter is devoted to introduce the main defi-
nitions and known results about adjoint images, which will be used in the
sequel. In the second section we extend a construction made in section
1.3 of [10], which gives us the existence of subspaces with vanishing ad-
joint class under suitable numerical hypothesis. Most of the definitions and
results appearing therein are valid for infinitesimal deformations of irregu-
lar varieties of any dimension (sometimes the restriction that they have no
higher-irrational pencils is needed), but we have restricted ourselves to the
case of curves because it is our primary interest. Finally, the third (and
last) section deals with the global setting, where the base of a family is a
compact curve B.

5.1 Adjoint images and infinitesimal de-

formations

In this section we introduce the theory of adjoint images. Although in the
rest of the chapter we basically deal with curves, some of the forthcoming
constructions and results also work for higher dimensions. Hence, we have
choosen to present adjoint images in their most general form, for varieties
of arbitrary dimension. We start recalling the basic definitions (generaliz-
ing also Definition 4.1.8 to higher-dimensional varieties) and the two main
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results: the Adjoint Theorem (Theorem 5.1.4) and the Volumetric Theo-
rem (Theorem 5.1.5). The Adjoint Theorem was first proven by Collino
and Pirola for curves ([10] Th. 1.1.8), and then it was generalized to arbi-
trary dimensions by Pirola and Zucconi ([34] Th. 1.5.1). The Volumetric
Theorem concerns local families of varieties (it is not valid for infinitesimal
deformations), and was proven by Pirola and Zucconi ([34] Th. 1.5.3).

Let X be a smooth projective variety of dimension d. For any integer
k = 1, . . . , d we consider the map

ψk :
k∧
H0
(
X,Ω1

X

)
−→ H0

(
X,Ωk

X

)

given by wedge product (for k = 1 it is simply the identity). Given a linear
subspace W ⊆ H0 (X,Ω1

X), we define

W k = ψk

(
k∧
W

)
⊆ H0

(
X,Ωk

X

)
.

In particular, for k = d, W d ⊆ H0 (X,ωX). Hence, if W d 6= 0, it induces
a linear subsystem

∣∣W d
∣∣ ⊆ |ωX | of the canonical linear series. In this case,

denote by DW the common components to all divisors in
∣∣W d

∣∣, that is, the
base divisor of the linear series.

Consider now an infinitesimal deformation X → ∆ of X (where as usual
∆ = SpecC [ǫ] / (ǫ2) is the spectrum of the dual numbers). As in the case
of curves, considered in the previous chapter, the deformation is equivalent
to the class ξ ∈ Ext1OX

(
Ω1
X ,OX ⊗ T∨

∆,0

)
∼= H1 (X,TX)⊗T∨

∆,0
∼= H1 (X,TX)

of the extension

0 −→ N∨
X/X = OX ⊗ T∨

∆,0
∼= OX −→ Ω1

X|X −→ Ω1
X −→ 0.

The corresponding connecting homomorphism

∂ξ = ∪ ξ : H0
(
X,Ω1

X

)
−→ H1 (X,OX)⊗ T∨

∆,0

is given by cup-product with ξ. Denote by

Kξ = ker ∂ξ = im
(
H0
(
X,Ω1

X|X

)
−→ H0

(
X,Ω1

X

))

the subspace of 1-forms on X that are liftable to the infinitesimal deforma-
tion X , and assume dimKξ ≥ d+ 1 (in particular, q (X) ≥ d+ 1).

Consider now d + 1 linearly independent 1-forms B = {η1, . . . , ηd+1} in
Kξ, and let W ⊆ Kξ be the linear subspace spanned by the ηi. Taking any
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liftings si ∈ H0
(
X,Ω1

X|X

)
, the wedge product s1∧· · ·∧sd+1 gives a section

of
d+1∧

Ω1
X|X = ωX|X

∼= ωX ⊗ T∨
∆,0

∼= ωX .

The composed isomorphism is the Lie contraction with ∂
∂ǫ

, a chosen gen-
erator of T∆,0, somehow analogous to the Poincaré residue. The image
w = wB ∈ H0 (X,ωX) of s1 ∧ · · · ∧ sd+1 is called an adjoint image of the
ηi. This definition clearly depends on the choice of the liftings si, but the
difference between any two adjoint images is a linear combination of the
d-fold wedge products

ζi = η1 ∧ · · · ∧ η̂i ∧ · · · ∧ ηd+1 ∈ H0 (X,ωX) .

Therefore, the class [w] of w modulo the linear subspace W d ⊆ H0(X,ωX) is
actually well-defined, and we call it the adjoint class of B = {η1, · · · , ηd+1}.

Furthermore, if we take a different basis of W or a different generator
of T∆,0, the two adjoint classes will differ by the product of a non-zero
scalar (the determinant of the change of basis), so the notion which is truly
intrinsical of the subspace W is the vanishing of the adjoint class:

Definition 5.1.1 (Vanishing adjoint image of a subspace). Given a (d+ 1)-
dimensional subspace W ⊆ Kξ, we say that its adjoint image vanishes if
[w] = 0 for some (hence any) choice of basis of W .

Remark 5.1.2. If the adjoint class of B = {η1, . . . , ηd+1} is zero, it is

possible to find representatives si ∈ H0
(
X,Ω1

X|X

)
such that

s1 ∧ · · · ∧ sd+1 = 0 ∈ H0
(
X,Ωd+1

X|X

)
,

and not only is a linear combination of the

σi = s1 ∧ · · · ∧ s̃i ∧ · · · ∧ sd+1.

Indeed, if the adjoint class of B is zero, there exist scalars ai ∈ C such that

s1 ∧ · · · ∧ sd+1 = dǫ ∧

(
d+1∑

i=1

aiσi

)

(where dǫ is a generator of T∨
∆,0). Defining new liftings as s̃i = si+(−1)i aidǫ

it is immediate that
s̃1 ∧ · · · ∧ s̃d+1 = 0.
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We will now relate the adjoint images of a subspace to some properties
of the infinitesimal deformation.

As in the case of curves, an effective divisor D on X induces the exact
sequence

0 −→ TX −→ TX (D) −→ TX (D)|D −→ 0

and the connecting homomorphism

∂T,D : H0
(
D,TX (D)|D

)
−→ H1 (X,TX) .

Following the analogy with curves, one can make the following

Definition 5.1.3. We say that the deformation ξ is supported on D if and
only if

ξ ∈ im (∂T,D) = ker
(
H1 (X,TX) −→ H1 (X,TX (D))

)
,

or equivalently, if the pull-back sequence

ξD : 0 // OX
// FD

//
� _

��

Ω1
X (−D) //

� _

��

0

0 // OX
// Ω1

X|X
// Ω1

X
// 0

splits.

We are now ready to state the main known result concerning adjoint
images:

Theorem 5.1.4 (Adjoint Theorem, [34] Th. 1.5.1, [10] Th. 1.1.8 for
curves). Let W ⊆ Kξ ⊆ H0(X,ωX) be a (d+ 1)-dimensional subspace such
that W d 6= 0, and let D = DW be the base locus of the corresponding linear
series |W d| ⊆ |ωX |. If the adjoint image of W vanishes, then ξ is supported
on D, i.e.

ξ ∈ ker
(
H1(X,TX) −→ H1(X,TX(D))

)
.

While all the previous considerations concern infinitesimal deformations,
we give now another result of Pirola and Zucconi (the Volumetric Theorem,
[34] Th. 1.5.3) about local families of irregular varieties.

Let thus B be an open analytic curve (e.g. the unit disk), and let
π : X → B be a smooth family of d-dimensional varieties. Assume also
that the varieties Xb = π−1 (b) (for b varying in B) are not birational (such
a family is called strongly non-isotrivial in [34]).
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Furthermore, let A be an Abelian variety and suppose there is a mor-
phism Φ : X → A × B such that p2 ◦ Φ = π (where p2 : A × B → B
is the projection onto the second factor). We can think of such a Φ as a
family of morphisms φb : Xb → A from the fibres of π to the fixed Abelian
variety A. Given a (d+ 1)-dimensional subspace W ⊆ H0 (A,Ω1

A), denote
by Wb = φ∗

bW ⊆ H0
(
Xb,Ω

1
Xb

)
its pull-back to Xb, and by [wb] one of the

adjoint classes of Wb.

Theorem 5.1.5 (Volumetric Theorem, [34] Theorem 1.5.3). Keep the above
notations and assume still that the family π is strongly non-isotrivial. Sup-
pose also that for some b0 ∈ B, φb0 : Xb0 → A is birational onto its image Y ,
and that Y generates A as a group. Then for generic (d+ 1)-dimensional
W ⊆ H0 (A,Ω1

A) and generic b ∈ B, the adjoint class [wb] does not vanish.

We would like to give a sketch the proof of the Volumetric Theorem
5.1.5, since some ideas contained in it have inspired some results of the
next chapter.

First of all, after taking an infinite, étale covering ρ : X ′ → X it is
possible to define a map

X ′ −→ H0
(
A,Ω1

A

)∨
.

Furthermore, if W ⊆ H0 (A,Ω1
A) is a generic subspace of dimension d + 1,

then the composition Ψ : X ′ → W∨ of the above map with the projection
H0 (A,Ω1

A)
∨
→ W∨ is one-to one on every fibre.

Take now a basis {w1, . . . , wd+1} ofW , and denote by Ψi the components
of Ψ with respect to that basis. Let ηi = Ψ∗wi = dΨi ∈ H0 (X ′,Ω1

X ′) denote
the pull-backs of the basis to X ′, so that (up to shrinking B) the restrictions

ηi|X′
b
∈ H0

(
X ′
b,Ω

1
X′

b

)
form a basis of ρ∗Wb for all b.

In this setting, if the generic adjoint class [wb] vanishes, then (up to
shrinking B again if necessary) the aidǫ of Remark 5.1.2 glue to give holo-
morphic 1-forms ai (t) dt on B, where t is a coordinate on B. Modifying the
ηi as

η̃i = ηi + (−1)i ai (t) dt ∈ H0
(
X ′,Ω1

X ′

)

we obtain d + 1 forms on the total space X ′ whose wedge product is zero.
But this wedge product is the pull-back of a volume form on W∨ by the
modified morphism Ψ̃ : X ′ → W∨, whose coordinates are given by

Ψ̃i = Ψi + (−1)i ai.

This implies that the image Y of Ψ̃ has dimension d (one less than X ′),
and the rest of the hypothesis of the Theorem imply that every fibre X ′

b
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maps birationally to Y . To finish, a monodromy argument shows that the
isotriviality of the étale covering X ′ implies the isotriviality of X .

5.2 The case of curves

Consider now an infinitesimal deformation ξ of a smooth curve C of genus
g ≥ 2. The aim of this section is to give a numerical condition on ξ that
guarantees the existence of a 2-dimensional subspace W ⊆ Kξ ⊆ H0 (C, ωC)
with vanishing adjoint image. Some of the definitions and results of this
section are inspired by the study of special deformations carried out by
Collino and Pirola in [10], Section 1.3.

In order to do that, we define a vector bundle A on G = Gr (2, Kξ)
together with a section ν ∈ H0 (G,A), which we call the adjoint bundle
and adjoint map respectively. The main issue is to show that if Kξ is big
enough, then ν vanishes at some point W ∈ G.

We first write down more precisely and intrinsically the construction of
the adjoint images. For the sake of simplicity, denote by K = Kξ. Given

any subspace W ⊆ K, denote by W̃ ⊆ H0
(
C,Ω1

C|C

)
its preimage, so that

we have the following exact sequence

0 −→ T∨
∆,0 −→ W̃ −→ W −→ 0,

from which we obtain the presentation

T∨
∆,0 ⊗ W̃

∧
−→

2∧
W̃ −→

2∧
W −→ 0.

Wedge product induces also a map
2∧
W̃ −→ H0

(
C,Ω2

C|C

)
∼= T∨

∆0
⊗H0 (C, ωC) ,

and it is clear that the image of T∨
∆,0 ⊗ W̃ maps precisely to T∨

∆,0 ⊗ W .
Hence, there is a well-defined map

νW :
2∧
W −→ T∨

∆,0 ⊗
(
H0 (C, ωC) /W

)
(5.1)

completing the diagram below.

T∨
∆,0 ⊗ W̃ //

����

∧2 W̃ //

��

∧2W //

νW

���
�

�
0

T∨
∆,0 ⊗W � � // T∨

∆,0 ⊗H0 (C, ωC) // T∨
∆,0 ⊗ (H0 (C, ωC) /W ) // 0

(5.2)
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Definition 5.2.1. We call the map νW in (5.1) the adjoint map associated
to W .

Remark 5.2.2. Note that this construction is valid for any subspace W of
dimension at least 2. If we restrict ourselves to the case dimW = 2, then
the choice of a basis B = {w1, w2} of W gives a generator eB = w1 ∧ w2 of∧2W , and the adjoint class [wB] defined in the previous section is precisely
νW (eB).

Remark 5.2.3. The above construction can be easily generalized to higher-
dimensional varieties, giving a map

νW :
d+1∧

W −→ T∨
∆,0 ⊗

(
H0 (X,ωX) /W

d
)

for any subspace W ⊆ Kξ of dimension at least d+ 1.

Let us now focus on the case dimW = 2. Let G = Gr (2, K) be the
Grassmannian variety of 2-dimensional subspaces of K. For any vector
space E, denote by EG = E⊗OG the trivial vector bundle with fibre E. As
customary, denote by S ⊆ KG and Q = KG/S the tautological subbundle
and quotient bundle. Note that since K ⊆ H0 (C, ωC), the tautological
subbundle S injects in H0 (C, ωC)G and the quotient is also a vector bundle
(of rank g − 2).

Lemma 5.2.4. The adjoint maps νW depend holomorphically on W ∈ G.
More precisely, there exists a map of vector bundles

ν :
2∧
S −→ T∨

∆,0 ⊗
(
H0 (C, ωC)G /S

)
.

such that ν ⊗ C (W ) = νW .

Proof. The proof is quite immediate. One only has to mimick the construc-
tion of the νW replacing W by the tautological subbundle S.

Denote by S̃ ⊆ H0
(
C,Ω1

C|C

)
G

the preimage of S ⊆ KG by the natural

projection π : H0
(
C,Ω1

C|C

)
→ K, which is a vector bundle of rank 3 and

fits into the exact sequence

0 −→ T∨
G −→ S̃ −→ S −→ 0,

(where T = T∨
∆,0). The analogue to the diagram (5.2) is

T∨ ⊗ S̃ //

����

∧2 S̃ //

��

∧2 S //

ν

���
�

�
0

T∨ ⊗ S
� � // T∨ ⊗H0 (C, ωC)G

// T∨ ⊗ (H0 (C, ωC)G /S)
// 0
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where the central vertical arrow is also given by wedge product and the
isomorphism Ω2

C|C
∼= T∨ ⊗ ωC . It is immediate to check that the map ν

gives the adjoint map νW at any point W .

Definition 5.2.5. We call the map ν constructed in the previous Lemma
simply the adjoint map of the deformation ξ. It can be seen as a section of
the vector bundle

A = T∨
∆,0 ⊗

2∧
S∨ ⊗

(
H0 (C, ωC)G /S

)
,

which we call the adjoint bundle.

Remark 5.2.6. Unlike the adjoint map associated to a fixed subspace,
the extension of Definition 5.2.5 to higher-dimensional varieties is not so
straightforward. We can consider the Grassmannian G = Gr (d+ 1, Kξ)
and its tautological subbundle S. Then the adjoint map should go from the
line bundle

∧d+1 S to something like T∨
∆,0 ⊗

(
H0 (X,ωX)G /S

d
)
, where Sd

has to be understood as the image of
∧d S in H0 (X,ωX)G by the wedge

product map ψd.
The problem arises with this last object, since it is not necessarily a

vector bundle. However, if X does not admit a higher irrational pencil,
the construction carries over without any problem. Indeed, the Generalized
Castelnuovo-de Franchis Theorem (Theorem 1.2.3) implies that the map

d∧
S −→ H0 (X,ωX)G

is everywhere injective, so
∧d S ∼= Sd and the quotient H0 (X,ωX)G /S

d is
a vector bundle of rank pg (X)− (d+ 1).

We are now ready to state and prove the main result of this section.

Theorem 5.2.7. If V ⊆ Kξ has dimension dimV > g+1
2

, then there exists
some 2-dimensional subspace W ⊆ V such that νW = 0.

Proof. Let GV = Gr (2, V ) ⊆ G be the subvariety of G consisting of the 2-
dimensional subspaces ofK contained in V , which is in turn a Grassmannian
variety. Furthermore, the tautological subbundle SV of GV is the restriction
of S, and the adjoint map ν restricts to

νV :
2∧
SV −→ T∨ ⊗

(
H0 (C, ωC)GV

/SV
)
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(as above, we have simplified T = T∆,0) which is a section of

AV = T∨ ⊗
2∧
S∨
V ⊗

(
H0 (C, ωC)GV

/SV
)
= A|V .

Denoting by Z = Z (ν) ⊆ G the zero locus of ν, and by ZV the zero locus
of νV , it is clear that ZV = Z ∩GV .

With these notations, the theorem says that ZV 6= ∅. In order to prove
that, we will compute the top Chern class of AV and show that it does not
vanish. This is enough, since if a vector bundle admits a nowhere vanishing
section, then its top Chern class is zero.

First of all, our only hypothesis is equivalent to dimV ≥ g
2
+ 1. Hence

rkAV = g − 2 ≤ 2 (dimV − 2) = dimGV ,

so it is indeed possible that cg−2 (AV ) 6= 0.
Secondly, up to the trivial twisting by T∨, AV is the globally generated

bundle
G = H0 (C, ωC)GV

/SV

twisted by the line bundle
∧2 S∨

V
∼= OGV

(1), which is the very ample line
bundle inducing the Plücker embedding.

Therefore, we can use the formula (see [16] Remark 3.2.3.(b))

ck (E ⊗ L) =
k∑

i=0

(
r − k + i

r − k

)
ck−i (E) c1 (L)

i

to compute the Chern classes of a vector bundle E of rank r twisted by a
line bundle L (on any variety), which for k = r reduces to

cr (E ⊗ L) =
r∑

i=0

cr−i (E) c1 (L)
i .

Summing up, since all the Chern classes of G are represented by zero or
effective cycles (because it is globally generated), we obtain

cg−2 (AV ) =
r∑

i=0

cr−i (G) c1 (OGV
(1))i =

= c1 (OGV
(1))g−2 + (effective classes) 6= 0

because OGV
(1) is very ample.
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Corollary 5.2.8. If V ⊆ Kξ has dimension greater than g+1
2

, then there
exists a two-dimensional subspace W ⊆ V whose adjoint class vanishes.

Remark 5.2.9. It is possible to get similar results for higher-dimensional
varieties without higher irrational pencils (see Remark 5.2.6). The same
proof goes over as soon as the rank of the adjoint bundle is not greater than
the dimension of the Grassmannian variety. In symbols, we need

pg − (d+ 1) ≤ (d+ 1) (dimV − d− 1) ,

which in particular implies (since dimV ≤ q)

pg ≤ (d+ 1) (q − d) .

For higher dimensions this inequality becomes a quite restrictive condition
(combined with the non-existence of higher irrational pencils). For example,
the only surfaces to which this method could be applied are those satisfying

2q − 3 ≤ pg ≤ 3 (q − 2) ,

where the first inequality is the Castelnuovo-de Franchis inequality.

5.3 Global adjoint

In this last section we extend the previous constructions to the case of a
fibration over a compact curve. As in the previous sections, we stick to the
case when the fibres are curves, though some constructions and results can
be carried over to some cases with higher-dimensional fibres.

Therefore, let f : S → B be a fibration of a surface S over a curve B,
and denote by

V = Vf = H0
(
S,Ω1

S

)
/f ∗H0 (B,ωB) ,

which has dimension qf , the relative irregularity of f .
According to Lemma 3.1.7, V naturally injects into H0 (C, ωC) for any

smooth fibre C of f . Furthermore, if ξ ∈ H1 (C, TC) is the infinitesimal
deformation of C induced by f , then V is contained in the kernel Kξ of the
cup-product map

∪ ξ : H0 (C, ωC) → H1 (C,OC) .

In the previous section we constructed the adjoint map associated to
any subspace of Kξ. We restrict now to a slightly less general version,
considering only subspaces W of V .
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All the injections V ⊆ H0 (C, ωC) for smooth fibres glue together into
an inclusion of vector bundles

VB = V ⊗OB −֒→ f∗ωS/B (5.3)

whose cokernel G is locally free (see Theorem 3.2.9 and Corollary 3.2.10,
due to Fujita). The results of Fujita [15] say moreover that the inclusion
splits (so f∗ωS/B ∼= VB⊕G) and G has some good cohomological properties,
but we will not use them in the sequel.

The inclusion (5.3) can be alternatively constructed as follows. First of
all, wedge product gives a natural map H0 (S,Ω1

S) ⊗ ωB → f∗ωS. Clearly
(f ∗H0 (B,ωB))⊗ ωB maps to zero, so there is an induced map

V ⊗ ωB −→ f∗ωS =
(
f∗ωS/B

)
⊗ ωB.

Since it is injective over a generic b ∈ B, it is everywhere injective (as a map
of sheaves), and cancelling the twist by ωB we obtain the inclusion (5.3).

Denote now by G = Gr (2, V ) the Grassmannian of 2-planes of V , and by
SV ⊆ V ⊗OG the tautological subbundle. Consider the product Y = B×G,
and denote by p1 : Y → B and p2 : Y → G the natural projections. The
variety Y is the Grassmann bundle of 2-dimensional subspaces of VB, and
S = p∗2SV is the corresponding tautological subbundle. Clearly, S is a
vector subbundle1 of VY = V ⊗OY = p∗1VB, hence also of p∗1f∗ωS/B.

Denote by S̃ ⊆ H0 (S,Ω1
S)⊗OY the natural preimage of S, so that

0 −→ H0 (B,ωB)
f∗

−→ S̃ −→ S −→ 0

is an exact sequence of vector bundles on Y . Therefore, we obtain the
following presentation of

∧2 S,

S̃ ⊗H0 (B,ωB) −→
2∧
S̃ −→

2∧
S −→ 0 (5.4)

The wedge product
∧2H0 (S,Ω1

S) → H0 (S, ωS) = H0 (B, f∗ωS) and the
evaluation map H0 (B, f∗ωS) ⊗ OY

∼= H0 (Y, p∗1f∗ωS) ⊗ OY → p∗1f∗ωS give
a map of vector bundles on Y

ν̃ :
2∧
S̃ −→ p∗1f∗ωS.

1By a vector subbundle of a vector bundle V we mean a locally free subsheaf whose

quotient is also locally free.
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Clearly, this map sends the image of S̃ ⊗ H0 (B,ωB) into the subsheaf
S ⊗p∗1ωB. Hence, according to equation (5.4), ν̃ induces a well-defined map
of vector bundles on Y :

ν :
2∧
S −→ (p∗1f∗ωS) / (S ⊗ p∗1ωB) . (5.5)

Definition 5.3.1 (Global Adjoint Map). We call the map ν in (5.5) the
global adjoint map of the fibration f .

Remark 5.3.2. It is clear from the construction that if C = f−1 (b) is
a smooth fibre of f , the restriction ν|{b}×G coincides with the adjoint map
constructed in Definition 5.2.5, restricted to the Grassmannian subvariety
Gr (2, V ).

To close both this section and the chapter, we give a result analo-
gous to Theorem 5.2.7 and Corollary 5.2.8. Instead of 2-dimensional vec-
tor subspaces W ⊆ Kξ, we will consider vector subbundles of rank two
W ⊆ V ⊗OB. Such a vector subbundle defines a section

ηW : B −→ Y

of p1, such that ηW (b) is the subspace W ⊗ C (b) ⊆ V . Conversely, given
any section η : B → Y of p1, it defines the vector subbundle

Wη = η∗S −֒→ η∗ (V ⊗OY ) = V ⊗OB.

Clearly, the assignations W 7→ ηW and η 7→ Wη are mutually inverse,
giving a one-to-one correspondence between the sets of vector subbundles
of V ⊗OB of rank 2 and the sections of p1 : Y → B.

Now, given a vector subbundle W as above, we can consider the restric-
tion νW of the adjoint map ν to the curve ηW (B) ∼= B, which can be seen
as a map of vector bundles on B:

νW :
2∧
W −→ (f∗ωS) / (W ⊗ ωB) . (5.6)

Definition 5.3.3 (Global Adjoint Map associated to a subbundle). We
call the map νW in equation (5.6) the global adjoint map associated to the
subbundle W.

We are now ready to state the wanted global result.
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Theorem 5.3.4. If

qf >
g + 1

2
,

then there exist a finite base change π : B′ → B and a rank-two vector
subbundle W ⊆ V ⊗OB′ whose associated global adjoint map vanishes iden-
tically.

Proof. Let Z ⊆ Y be the zero set of the global adjoint map ν, which is
an analytic subvariety. By Remark 5.3.2, for any regular value b, the set
Zb = Z ∩ ({b} ×G) is the vanishing set of the adjoint map of Cb, which
is non-empty by Corollary 5.2.8. Therefore, there is a component of Z
dominating B, hence it is possible to choose a curve B̃ ⊆ Z dominating
B. Let µ : B′ → B̃ be the normalization of B̃, and define the covering
π as the composition p1 ◦ µ : B′ → B. As for the vector subbundle,
let η : B′ → B′ ×B Y ∼= B′ × G be the section induced from the map
B′ → B̃ → Y , and let W = Wη. Since the image of η is contained in the
zero locus of the adjoint map associated to the fibration S ′ = S×BB

′ → B′,
(see next remark), it is almost tautological that the globa adjoint map
associated to W vanishes identically.

Remark 5.3.5 (Global Adjoint Maps and base change). Consider any fi-

nite base change π : B′ → B. Denote by f ′ : S ′ = ˜S ×B B′ → B′ the
resulting fibration, and by V ′ = Vf ′ = H0 (S ′,Ω1

S′) / (f ′)∗H0 (B′, ω′
B) the

corresponding space of relative 1-forms. Define also G′ = Gr (2, V ′) and
Y ′ = B′ ×G′, and let ν ′ be the global adjoint map of f ′.

According to Corollary 3.1.9, V injects into V ′. Therefore, B′ × G is
naturally a subvariety of Y ′. Furthermore, the pull-back (by π× idG) of ν is
the restriction to B′ ×G of ν ′. Hence, the zero locus of ν ′ always contains
the preimage of the zero locus of ν.





6Chapter Six

ON A CONJECTURE OF XIAO

In this last chapter we prove the main results of the second part of the
Thesis. The first one is Theorem 6.3.1, a structure result for some fibred
surfaces that seems to be generalizable to higher-dimensional fibrations over
a curve. As an application, we prove Theorem 6.3.4. We postpose the
proofs to Section 6.3, starting the chapter with a summary of the main
known results concerning the triviality and isotriviality of a fibration on a
surface, and their implications to the relative irregularity and the genus of
the fibres (Section 6.1). After that, Section 6.2 contains a technical result
that will simplify the final proofs, allowing us to write them more neatly.

Through the whole chapter, f : S → B will denote a fibration from a
smooth surface S to a smooth curve B. We will denote by g = g (C) the
genus of any smooth fibre C, and qf = q (S) − g (B) denote the relative
irregularity of the fibration. In Sections 6.2 and 6.3 we assume furthermore
that g ≥ 2.

6.1 State of the art

In this section we expose a summary of the main known results relating the
numerical invariants g and qf to the isotriviality of the fibration. We also
motivate Xiao’s conjecture and the correction proposed after it was shown
to be false.

To begin with, a fundamental result relating the numerical invariants of
a fibration and its isotriviality was given by Beauville in his appendix to
[12]. It gives a first restriction on the relative irregularity of any fibration,
and characterizes those fibrations that are birational to a product.

Theorem 6.1.1 ([12], Lemma in the Appendix). Any fibration f : S → B
satisfies

0 ≤ qf ≤ g.

Hodge numbers of irregular varieties and fibrations 145
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Futhermore, the equality qf = g holds if and only if S is birational to a
product B × C, and in particular the fibration is isotrivial.

Therefore, non-trivial fibrations must satisfy 0 ≤ qf < g. A more de-
tailed analysis of the isotrivial case is carried out by Serrano in [40], which
has as a consequence that non-trivial isotrivial fibrations satisfy an inequal-
ity much stronger than qf < g.

Theorem 6.1.2 ([40] 1.1). If f : S → B is an isotrivial fibration with gen-
eral fibre C, then there exist a smooth curve B′ and a finite group G acting
algebraically both on B′ and C, such that S is birational to (B′ × C) /G
(with the diagonal action), B ∼= B′/G, and the diagram

S
∼ //______

f

��

(B′ × C) /G

��

B
∼= // B′/G

commutes.

Proposition 6.1.3 ([40] Prop. 2.2). If S is birational to a quotient (B′ × C) /G
as in the above theorem, then

q (S) = g (B′/G) + g (C/G) .

Corollary 6.1.4. If f : S → B is a non-trivial isotrivial fibration, then

0 ≤ qf ≤
g + 1

2
.

Proof. With the notation of Theorem 6.1.2, Proposition 6.1.3 implies that
qf = g (C/G). Since the fibration is not trivial, |G| ≥ 2 and hence the map
C → C/G has degree at least 2. This immediately implies that

qf = g (C/G) ≤
g (C) + 1

2
=
g + 1

2
.

For non-isotrivial fibrations, the only general upper bound for qf is given
by Xiao in [43].

Theorem 6.1.5 ([43] Section 3, Cor. 3). If f : S → B is a non-trivial
fibration, then

qf ≤
5g + 1

6
. (6.1)
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However, according to some comments made by Xiao in his later work
[44], there is little hope for the inequality (6.1) to be sharp, since the meth-
ods used to prove it are not very accurate. In fact, in [44] he consider the
special case in which the base is B ∼= P1, obtaining the same lower-bound
known for non-trivial isotrivial fibrations:

Theorem 6.1.6 ([44] Th. 1). If f : S → P1 is a non-isotrivial fibration,
then

q (S) = qf ≤
g + 1

2
.

In view of this result, Xiao conjectured that the same bound should hold
for every non-trivial fibration, and he provided several examples attaining
the equality. However, the conjecture was shown to be false by Pirola. In
fact, in [33], Theorem 2, he provided a non-isotrivial fibration with fibres of
genus g = 4 and relative irregularity qf = 3 6≤ 5

2
= g+1

2
. The same method

can be applied to other cases, giving different counterexamples for even g
and satisfying

qf =
g

2
+ 1 =

g + 1

2
+

1

2
.

The fact that the only known counterexamples fail by just 1
2

motivates
the following version of the conjecture.

Conjecture 6.1.7. For any non-trivial fibration f : S → B one has

qf ≤
g

2
+ 1,

or equivalently

qf ≤

⌈
g + 1

2

⌉
.

Remark 6.1.8. Note that for odd values of g, Conjecture 6.1.7 is equivalent
to the original conjecture posed by Xiao.

Note also that for g ≤ 1, the conjecture and all the theorems above are
trivially satisfied, since they are all equivalent to Theorem 6.1.1. Hence we
shall assume from now on that the fibration f has genus g ≥ 2.

6.2 A technical result

Before going through the proof of the main theorems, we need a technical
result (Proposition 6.2.2) about inclusions L →֒ Ω1

S/B or L →֒ ωS/B lifting
to Ω1

S (see Definition 6.2.1 below). It will allow us to improve the properties
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of any subscheme supporting a global deformation, relating the liftings to
Ω1
S with the framework of Section 4.3.

Since this notion will appear very often through the rest of the section,
we make first the next

Definition 6.2.1. We say that a rank-one subsheaf L of Ω1
S/B (resp. ωS/B)

lifts to Ω1
S if the inclusion can be factored as an injection L →֒ Ω1

S followed
by the natural projection Ω1

S → Ω1
S/B (resp. the same projection composed

with α : Ω1
S/B → ωS/B).

Recall the natural map α : Ω1
S/B → ωS/B defined in Lemma 3.2.6, which

is injective if and only if f has reduced fibres. More generally, it is an iso-
morphism over the open set of regular points of f . Recall also the notation

LΓ = ker
(
Ω1
S/B → ωS/B|Γ

)

introduced in Definition 4.3.7 for any subscheme Γ ⊆ S.
As we have done repeatedly in the previous chapters, we denote by

ξ ∈ Ext1OS

(
Ω1
S/B, f

∗ωB

)
the extension class of the sequence

0 −→ f ∗ωB −→ Ω1
S −→ Ω1

S/B −→ 0.

More generally, if L →֒ Ω1
S/B is any subsheaf, ξL ∈ Ext1OS

(L, f ∗ωB) will
denote the extension class of the pull-back sequence

0 // f ∗ωB // FL
//

� _

��

L //
� _

��

0

0 // f ∗ωB // Ω1
S

// Ω1
S/B

// 0

In the case L = LΓ for some subscheme Γ, we simply write ξΓ (resp. FΓ)
instead of ξLΓ

(resp. FLΓ
).

We are now ready to state the announced

Proposition 6.2.2. Let f : S → B be a fibration with reduced fibres. If
a rank-one subsheaf L →֒ Ω1

S/B lifts to Ω1
S and satisfies deg

(
L|Cb

)
> 0 for

some smooth fibre Cb, then there exists an effective divisor D on S such
that

1. the inclusions L →֒ Ω1
S/B and ωS/B (−D) →֒ ωS/B fit into the following

chain
L −֒→ ωS/B (−D) −֒→ Ω1

S/B

α
−֒→ ωS/B,
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2. the injection ωS/B (−D) →֒ Ω1
S/B lifts to Ω1

S,

3. D · Cb < 2g − 2 for any fibre Cb,

4. D has no component contracted by f , and

5. the quotient Ω1
S/ωS/B (−D) is isomorphic to

f ∗ωB ⊗OS (D)⊗ IZ

for some finite subscheme Z ⊂ S, hence torsion-free.

Proof. We proceed in several steps.

Step 1: Obtaining a first divisor E satisfying 1, 2 and 3.

We first show that the double dual L∨∨ still injects into Ω1
S/B and

lifts to Ω1
S. Indeed, on the one hand, the lifting L →֒ Ω1

S induces an
injective map L∨∨ →֒ Ω1

S. On the other hand, L also injects in ωS/B
because α is injective, hence there is a second injection L∨∨ →֒ ωS/B.
Both injections fit into the commutative diagram

L∨∨
nN

||zz
zz

zz
zz

z � _

���
�
�

� r

$$JJJJJJJJJ

Ω1
S

// // Ω1
S/B

α // ωS/B

so that the composition L∨∨ →֒ Ω1
S → Ω1

S/B must still be injective, as
claimed, and it clearly lifts to Ω1

S by construction.

Therefore, we have the sequence of nested sheaves

L −֒→ L∨∨ −֒→ Ω1
S/B

α
−֒→ ωS/B.

But L∨∨ is a locally free (reflexive of rank one) subsheaf of ωS/B,
hence of the form ωS/B (−E) for a unique effective divisor E. As for
the inequality E ·Cb < 2g−2 for some (any) fibre Cb, it follows directly
from the hypothesis deg

(
L|Cb

)
> 0.

Step 2: Removing the vertical components.

As a previous step, we see that ξ is supported on E. To this aim,
consider the pull-back diagram

ζE : 0 // f ∗ωB // F̃E
//

� _

��

ωS/B (−E) //
lL

λ

zzuuuuuuuuuu � _

��

0

ξ : 0 // f ∗ωB // Ω1
S

// Ω1
S/B

// 0
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where the diagonal arrow λ is the lifting. Since F̃E is the pullback of

ωS/B (−E)
� _

��

Ω1
S

// // Ω1
S/B

the universal property implies that λ factors through an injective map
ωS/B (−E) →֒ F̃E, hence ζE splits. Now, completing the diagram with
exact rows

0 // LE //

���
�

�
Ω1
S/B

//
� _

α
��

ωS/B|E

0 // ωS/B (−E) // ωS/B // ωS/B|E

we obtain an injective map ιE : LE →֒ ωS/B (−E), and

ξE : 0 −→ f ∗ωB −→ FE −→ LE −→ 0

is the pull-back of ζE by ιE. Therefore, ξE is split, and thus ξ is
supported on E (recall Definition 4.3.13).

Denote by E ′ ≤ E the divisor obtained by removing from E the
components contracted by f . Corollary 4.3.15 says that ξ is also
supported on E ′. Furthermore, since E ′ ·Cb = E ·Cb < 2g− 2 for any
fibre Cb, Lemma 4.3.17 implies that

ξE′ : 0 −→ f ∗ωB −→ FE′ −→ LE′ −→ 0

is also split. Hence LE′ →֒ Ω1
S/B lifts to Ω1

S, and analogously as we
showed in Step 1, L∨∨

E′ →֒ Ω1
S/B also lifts to Ω1

S. To finish, we prove
that L∨∨

E′
∼= ωS/B (−E ′), so that E ′ will satisfy conditons 1 through

4. Indeed, the injection ιE′ : LE′ →֒ ωS/B (−E ′) and its double dual
ι∨∨E′ : L∨∨

E′ →֒ ωS/B (−E ′) are isomorphisms away from the critical
points of f . But the critical points form a set of codimension 2 because
f has reduced fibres, hence ι∨∨E′ is an isomorphism, as wanted.

Step 3: Removing the torsion of the cokernel.

Up to now, we have an effective divisor E ′ satisfying conditions 1
through 4. In particular, ωS/B (−E ′) lifts to Ω1

S. Denote by M0 ⊆ Ω1
S

its image, and by K̃ the quotient Ω1
S/M0. Let T be the torsion
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subsheaf of K̃, and K = K̃/T its torsion-free quotient. Finally, let
M be the kernel of the composition of surjections Ω1

S ։ K̃ ։ K.
We want to see that M is isomorphic to ωS/B (−D) for some divisor
0 ≤ D ≤ E ′.

We first show that M is locally free. Clearly, it is torsion-free, and
the inclusion M →֒ Ω1

S factors as M →֒ M∨∨ →֒ Ω1
S. Consider now

the exact diagram

0

��

0

��
0 // M //

��

M∨∨ //

��

G // 0

0 // Ω1
S

��

Ω1
S

//

��

0

0 // G // K //

��

F //

��

0

0 0

where we have used the snake lemma to identify the cokernel of the
first row and the kernel of the last row. On the one hand, both M
and M∨∨ have rank one, so G is a torsion sheaf and, on the other
hand, G is torsion free since K is. Therefore G = 0 and M ∼= M∨∨ is
locally free.

To finish, the composition

M −֒→ Ω1
S −→ ωS/B

is injective. Indeed, the image M̃ is of rank 1 because M0 ⊆ M
and the image of M0 is ωS/B (−E ′), so the kernel of M → ωS/B is a
rank-zero subsheaf of a torsion-free sheaf, hence zero. Therefore,

M ∼= M̃ = ωS/B (−D)

with D ≤ E ′ because by construction ωS/B (−E ′) ⊆ M̃.

For the other asertion about K = Ω1
S/ωS/B (−D), we first compute

the Chern class

c1 (K) = c1
(
Ω1
S

)
− c1

(
ωS/B (−D)

)
= c1 (f

∗ωB ⊗OS (D)) .
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Since K is torsion-free, this means that K ∼= f ∗ωB ⊗OS (D)⊗L⊗ IZ
for some finite subscheme Z ⊂ S and some L ∈ Pic0 (S).

Consider now the diagram of exact rows

0 // ωS/B (−D) // Ω1
S

��

// K //

��

0

0 // ωS/B (−D) // ωS/B // ωS/B|D // 0

(6.2)

Since f has reduced fibres, the map α : Ω1
S/B → ωS/B is injective and

its cokernel is supported on the finite subscheme Z ′ of critical points
of f (Lemma 3.2.6). Hence the central map in (6.2) has kernel f ∗ωB
and cokernel ωS/B|Z′ , and the snake lemma leads to the exact sequence

0 −→ f ∗ωB −→ K −→ ωS/B|D −→ ωS/B|Z′ −→ 0.

The first map corresponds to a section

σ ∈ H0 (S,OS (D)⊗ L⊗ IZ) ⊂ H0 (S,OS (D)⊗ L)

whose zero scheme is D. Indeed, the zero scheme Z (σ) is contained in
D, and coincides with it outside the finite subscheme Z ′. This implies
that L ∼= OS and we are done.

Remark 6.2.3 (About Step 3 in the proof of Proposition 6.2.2). If a sub-
sheaf of the form M0 = ωS/B (−E ′) ⊆ ωS/B lifts to Ω1

S, there is an easy
geometric interpretation of the support of the divisor E ′: it is the locus
where M0 ⊆ Ω1

S is not transverse to f ∗ωB, that is

SuppE ′ =
{
p | im

(
(f ∗ωB ⊕M0)p → Ω1

S,p

)
6= Ω1

S,p

}

=
{
p | im

(
(f ∗ωB ⊕M0)⊗ C (p) → Ω1

S ⊗ C (p)
)
6= Ω1

S ⊗ C (p)
}
.

The failure of the transversality at some regular point p ∈ E ′ may occur
either because the images of M0 ⊗ C(p) and (f ∗ωB) ⊗ C(p) in Ω1

S ⊗ C (p)
coincide, or because M0 ⊗ C(p) maps to zero in Ω1

S ⊗ C(p). The first
case means that not all local sections of M0 vanish at p, but their values
are proportional to pull-backs of 1-forms on B, while the second case means
that all local sections of M0 vanish at p. An immediate computation in local
coordinates shows that if the second case happens along some components
E ′

0 of E ′, the quotient sheaf Ω1
S/M0 would have torsion supported on E ′

0.
The last step in the proof of Proposition 6.2.2 replaces E ′ by D = E ′ −E ′

0.



6.3 - Main results 153

6.3 Main results

This is the very last section in the Thesis, and it is devoted to prove The-
orems 6.3.1 and 6.3.4 about the isotriviality of fibred surfaces. The first
one is a general result, while the second one is an inequality for the rela-
tive irregularity of a fibred surface in terms of its Clifford index. We have
included several different proofs for some parts, using different techniques
and generalizable to different situations.

Theorem 6.3.1. Let f : S → B be a fibration of genus g and relative
irregularity qf ≥ 2. Suppose it is supported on an effective divisor D such
that D · C < 2g − 2 and h0

(
C,OC

(
D|C

))
= 1 for some smooth fibre C.

Then, after finitely many blow-ups and a change of base, there is a different
fibration h : S → B′ over a curve of genus g (B′) = qf . In particular S is a
covering of the product B×B′, and both surfaces have the same irregularity.

Proof. By Lemma 3.1.12, after blowing-up some points and a change of
base, we can assume that f has reduced fibres and still satisfies the rest
of the hypotheses. Also, the new fibration is isotrivial if and only if the
original one was.

Now, deg
(
LD|C

)
= 2g − 2 − (D · C) > 0 for a general fibre C because

D · C < 2g − 2. The same inequality gives, by Lemma 4.3.17, that the
inclusion LD →֒ Ω1

S/B lifts to Ω1
S. Applying Proposition 6.2.2, we can replace

D by a subdivisor (still called D for simplicity) and assume that ωS/B (−D)
lifts to Ω1

S, D has no component contracted by f and that the cokernel
K = KD of the lifting is torsion-free, isomorphic to f ∗ωB ⊗OS (D)⊗ IZ for
some finite subscheme Z ⊂ S. Since we have replacedD by a subdivisor, the
fact that h0

(
C,OC

(
D|C

))
= 1 for some smooth fibre C does not change.

Claim: h0
(
S, ωS/B (−D)

)
≥ qf . Indeed, it follows from the exact sequence

0 −→ ωS/B (−D) −→ Ω1
S −→ K −→ 0

that h0
(
ωS/B (−D)

)
≥ h0 (Ω1

S)−h0 (K) = q (S)−h0 (K), so it is enough to
prove that h0 (K) = g (B).

Since f has reduced fibres, Ω1
S/B is a subsheaf of ωS/B (Lemma 3.2.6)

and the sequence
0 −→ f ∗ωB −→ Ω1

S −→ ωS/B

is exact. Applying the snake lemma to the diagram of exact rows

0 // ωS/B(−D) // Ω1
S

//

��

K //

��

0

0 // ωS/B(−D) // ωS/B // ωS/B|D // 0
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we get that the kernel of K → ωS/B|D is also f ∗ωB. Therefore, taking direct
images, we obtain the following exact sequence of sheaves on B

0 −→ ωB −→ f∗K −→ f∗ωS/B|D.

Since K ∼= f ∗ωB ⊗ OS (D) ⊗ IZ is torsion-free and D|C is rigid for a
general fibre C,

f∗K = ωB ⊗ f∗ (OS(D)⊗ IZ)

is a vector bundle (torsion-free over a curve) of rank one. Therefore, the
cokernel of the injection ωB →֒ f∗K must be a torsion subsheaf of f∗ωS/B|D.
But the latter is torsion-free because D has no component contracted by f
(see Lemma 6.3.2 below), so the injection ωB →֒ f∗K is in fact an isomor-
phism, and

h0(S,K) = h0(B, f∗K) = h0(B,ωB) = g(B),

finishing the proof of the claim.
Since the lifting of ωS/B (−D) to Ω1

S is a line bundle L, the wedge product
of any two of its sections is zero. Therefore, since we have just seen that
h0 (L) ≥ qf ≥ 2, the Castelnuovo-de Franchis Theorem 3.1.14 implies the
existence of the fibration h : S → B′ over a curve B′ of genus g (B′) ≥ qf .

It remains to show that g (B′) = qf , which follows from the last struc-
tural statement. In fact, the two fibrations give a covering π completing
the diagram

S
f

{{wwwwwwwwww
h

$$HHHHHHHHHH

π
���
�

�

B B ×B′oo // B′

Since π is surjective, q (S) ≥ q (B × B′) = g (B)+g (B′), hence g (B′) ≤ qf ,
and the proof is finished.

Lemma 6.3.2. If f : S → B is any fibration, D is an effective divisor on
S without components contracted by f , and L is any line bundle on S, then
f∗
(
L|D

)
is a torsion-free sheaf on B.

Proof. We have to show that, given any open subset U ⊆ B and any non-
zero section α ∈ H0

(
U, f∗

(
L|D

))
= H0

(
f−1 (U) , L|D

)
, the condition

φα = 0 ∈ H0
(
U, f∗

(
L|D

))
= H0

(
f−1 (U) , L|D

)

for some φ ∈ H0 (U,OB) implies that φ = 0.
Let p ∈ D ∩ f−1 (U) be any point, R = OS,p and T = OB,f(p) the local

rings at p and f (p), and mR and mT the corresponding maximal ideals.
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Recall that both R and T are factorial rings because S and B are smooth
varieties, and also that f induces an injection f ∗ : T →֒ R (because it is
surjective).

Let d ∈ mR be a local equation for D near p, which has no factors in
f ∗
mT because D has no component contracted by f . Let

α̃ ∈ Lp ∼= R

be a germ of section of L at p that restricts to the germ of α in

L|D,p
∼= R/ 〈d〉 .

The condition φα = 0 means that (f ∗φp) α̃ ∈ 〈d〉. But the factoriality of
R and the fact that d has no factors in f ∗

mT imply that either α̃ ∈ 〈d〉 or
f ∗φp = 0. But the first condition cannot happen for every p ∈ D∩ f−1 (U),
since it would imply that α = 0. Hence we obtain that for some p we have
φp = 0, and therefore φ = 0, as wanted.

Remark 6.3.3. If the generalizations pointed out in Remark 4.3.18 do ac-
tually work, it is also very reasonable to expect higher-dimensional analogues
of Proposition 6.2.2 and Theorem 6.3.1, obtaining some extra structure for
one-dimensional compact families of irregular varieties such that the fibre-
wise deformations are supported on rigid divisors.

We use Theorem 6.3.1 to prove the following result. Recall (Definition
3.4.1) that the Clifford index of the fibration is defined as

cf = max {Cliff (Cb) |Cb is smooth} .

Theorem 6.3.4. Let f : S → B be a fibration of genus g, relative irregu-
larity qf and Clifford index cf . If f is non-isotrivial, then

qf ≤ g − cf .

Remark 6.3.5. Theorem 6.3.4 can be interpreted as the most general case
of Conjecture 6.1.7. In fact, a general curve of genus g has Clifford index⌊
g−1
2

⌋
. Hence if the fibres are general in moduli, Theorem 6.3.4 says that

the fibration satisfies

qf ≤ g −

⌊
g − 1

2

⌋
=

⌈
g + 1

2

⌉
,

which coincides with the bound predicted in Conjecture 6.1.7.
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Observe that if f is not trivial and qf > 0, the fibres cannot have very
general moduli. Indeed, in this case, the fibres must have decomposable
Jacobian varieties, and such curves form a countable union of closed subsets
Z in the moduli space Mg. Anyway, the locus of curves with maximal
Clifford index is open in Mg, hence it intersects all but (at most) finitely
many of the components of Z and Conjecture 6.1.7 holds for general non-
isotrivial fibrations.

In order to improve Theorem 6.3.4, it would be interesting to study the
incidence relations between the components of Z and the strata of Mg given
by the Clifford index.

Remark 6.3.6. Although in general our bound is better than the general
one (6.1) proved by Xiao, for small cf our Theorem is worse. As a extremal
case, if the general fibres are hyperelliptic, cf = 0 and Theorem 6.3.4 has
no content at all. But in this special case we can prove that the strong
inequality qf ≤

g+1
2

holds using the rigidity results of Pirola in [32].

In order to prove Theorem 6.3.4, we first need to produce (modulo
change of base) a subsheaf L →֒ Ω1

S/B admitting a lifting to Ω1
S. Using

Theorem 5.3.4, we may obtain a rank-two vector bundle W ⊆ V ⊗ OB

with vanishing adjoint map. We show now in Proposition 6.3.7 how such a
W leads to the existence of the wanted subsheaf L, giving two essentially
different proofs. In the first proof we use the Adjoint Theorem 5.1.4 and
the results on global deformations of Section 4.3, while in the second one
we directly construct the lifting L →֒ Ω1

S along the ideas in the proof of the
Volumetric Theorem 5.1.5.

Recall from Section 4.3 the projective bundle π : P → B associated

to the sheaf Ext1f
(
Ω1
S/B, f

∗ωB

)
, the subvariety PΓ ⊆ P associated to any

subscheme Γ ⊂ S, and the section γ : B → P, which is defined for any
non-isotrivial fibration and a generic value b ∈ B to the class of ξb. Recall
also that ξ is supported on Γ if and only if the image of γ lies on PΓ.

Proposition 6.3.7. If W ⊆ V ⊗OB is a rank-two vector subbundle whose
associated adjoint map vanishes, then the subsheaf

L = im
(
f ∗W → Ω1

S/B

)
⊆ Ω1

S/B

lifts to Ω1
S and deg

(
L|C

)
> 0 for a general fibre C.

First proof of Proposition 6.3.7. If f is isotrivial, then the sequence

ξ : 0 −→ f ∗ωB −→ Ω1
S −→ Ω1

S/B −→ 0
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is split and there is nothing to prove. Hence, we may assume from now on
that f is not isotrivial.

There exist an effective divisor D ⊂ S and a non-empty open subset
U ⊆ B of regular values such that

L|f−1(U)
∼= ωS/B (−D)|f−1(U) .

Indeed, the image sheaf

L̃ = im
(
L −֒→ Ω1

S/B
α

−→ ωS/B

)
⊆ ωS/B

is of the form L̃ = ωS/B ⊗ IΓ for some subscheme Γ ⊂ S. Then it is enough
to take D to be the divisorial part of Γ, and U to be the complement in B
of the image of the critical points of f and the embedded or isolated points
of Γ.

Then, for any b ∈ U we have that Cb is smooth and L|Cb
∼= ωCb

(−Db)
(where Db = D|Cb

). Furthermore, by construction, Db is the base locus of
the linear subsystem |Wb| ⊆ |ωCb

| of the canonical system of Cb given by
Wb ⊆ H0 (Cb, ωCb

), the fibre of W over b. This implies in particular that
degDb < 2g − 2, hence deg

(
L|Cb

)
> 0.

Now, by the Adjoint Theorem 5.1.4, the deformation ξb is supported on
Db. Since this happens for b varying on a non-empty subset of B, it implies
that γ (B) is contained in PD, that is, ξ is supported on D (by Proposition
4.3.14). According to Corollary 4.3.15, ξ is also supported on Γ, and by
Lemma 4.3.17, the pullback ξΓ is split and LΓ ⊆ Ω1

S/B lifts to Ω1
S.

Finally, since the composition L →֒ Ω1
S/B → ωS/B|Γ vanishes by def-

inition, there is an inclusion L ⊆ LΓ and hence L →֒ Ω1
S/B also lifts to

Ω1
S.

Second proof of Proposition 6.3.7. The fact that deg
(
L|C

)
> 0 for a general

fibre C follows, as above, from the fact that L|C →֒ ωC is generated by two
linearly independent 1-forms on C.

Recall the injection of sheaves on B

V ⊗OB −֒→ f∗Ω
1
S/B (6.3)

introduced in Remark 3.2.7. We now construct an injective map of vector
bundles W →֒ f∗Ω

1
S completing the diagram

W
� � //

���
�

�
V ⊗OB� _

��

f∗Ω
1
S

// f∗Ω
1
S/B
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in such a way that the image of the composition f ∗W →֒ f ∗f∗Ω
1
S → Ω1

S is a
sheaf L0 of rank 1. In fact, we construct a subsheaf G →֒ f∗Ω

1
S isomorphic to

W and satisfying the last property. We build G giving its sections over any
sufficiently small affine open subset U ⊆ B, which will be a free H0 (U,OB)-
module of rank 2. More precisely, let U ⊂ B be any open affine subset
where W is trivial, and let s1, s2 ∈ H0 (U,W) be two sections giving the
isomorphism O⊕2

U
∼= W|U . Let W̃ ⊆ H0 (S,Ω1

S)⊗OB be the preimage of W
by the natural projection H0 (S,Ω1

S)⊗OB → V ⊗OB, and let

s̃i ∈ H0
(
U, W̃

)
⊆ H0

(
U,H0

(
S,Ω1

S

)
⊗OB

)

be any preimages of the si.
The vanishing of the adjoint map of W means that the image of

∧2 W̃
in f∗ωS lies in the subsheaf W ⊗ ωB. This implies that the wedge product
s̃1 ∧ s̃2 belongs to H0 (U,W ⊗ ωB) ∼= H0 (U, ωB)⊗C C〈s1, s2〉, and therefore
there are uniquely determined βi ∈ H0 (U, ωB) such that

s̃1 ∧ s̃2 = s̃1 ∧ f
∗β2 − s̃2 ∧ f

∗β1,

or equivalently
(s̃1 − f ∗β1) ∧ (s̃2 − f ∗β2) = 0. (6.4)

Define σi = s̃i − f ∗βi, and let G|U ⊆ (f∗Ω
1
S)|U be the subsheaf generated by

σ1, σ2. The uniqueness of the βi implies that the σi are independent of the
choice of the s̃i. Furthermore, if s′1, s

′
2 is another pair of trivializing sections

of W|U , the σ′
i obtained imposing (6.4) will be OB (U)-linear combinations

of the σi. Therefore, G|U is well-defined. Moreover, if U ′ is another open
affine subset trivializing W , the definitions of G|U and G|U ′ must agree on
U ∩U ′ by uniqueness, so there is a well defined locally free sheaf G →֒ f∗Ω

1
S

of rank two, and it is clearly isomorphic to W , as wanted.
Furthermore, since local sections of G wedge to zero, clearly the subsheaf

L0 ⊆ Ω1
S generated by f ∗G is of rank one.

We finally show that L0 maps isomorphically to L. It is obvious by
construction that there is a surjective map L0 ։ L. But this map must
also be injective, since both sheaves have the same rank and L0 is torsion-
free (it is a subsheaf of a locally free sheaf).

We can now proceed with the

Proof of Theorem 6.3.4. Suppose, looking for a contradiction, that the fi-
bration f : S → B is non-isotrivial and that qf > g − cf . If f ′ is the
fibration obtained after finitely mainy blow-ups at points and a change of
base, it is still non-isotrivial, and Corollary 3.1.9 gives that qf ′ ≥ qf . Hence
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we may apply Lemma 3.1.12 and assume in addition that f has reduced
fibres.

Since in general it holds that cf ≤
g−1
2

, our assumptions imply in partic-
ular that qf >

g+1
2

. Hence, by Theorem 5.3.4 we may assume (possibly after
another change of base) that there exists a vector subbundle W ⊆ V ⊗OB

of rank 2 and with vanishing adjoint map. Now Proposition 6.3.7 gives a
subsheaf L ⊆ Ω1

S/B such that the inclusion lifts to Ω1
S. By Proposition 6.2.2,

we may assume that L ∼= ωS/B (−D) for some effective divisor D such that
d = D · C < 2g − 2 for any fibre C.

We consider now two cases:

Case 1: The divisor D is relatively rigid, that is h0 (C,OC (D)) = 1 for
some smooth fibre C = Cb. In this case we can apply Theorem 6.3.1
to obtain a new fibration h : S → B′ over a curve of genus g (B′) = qf
(after a change of base). Let φ : C → B′ be the restriction of h to the
smooth fibre C. Applying Riemann-Hurwitz we obtain

2g − 2 ≥ deg φ (2qf − 2).

But we have from the beginning that qf >
g+1
2

, so that 2qf−2 > g−1,
and thus

2(g − 1) > deg φ (g − 1).

It follows that deg φ = 1 (recall that we have assumed g ≥ 2 from the
beginning), so every smooth fibre is isomorphic to B′ and hence f is
isotrivial.

Case 2: The divisor D moves on any smooth fibre, i.e. h0 (Cb,OCb
(D)) ≥ 2

for every regular value b ∈ B.

After a further change of base, we may assume that D consists of d
sections of f (possibly with multiplicities), and the new fibration is
still supported on D (Lemma 4.3.16). Then we can replace D by a
minimal subdivisor D′ ≤ D such that ξ is still supported on D′. Since
D is composed by sections of f , this implies that for general b ∈ B, the
deformation ξb is minimally supported on D|Cb

. Note that this might
not be true if the supporting divisors were not a union of sections, as
different points of D|Cb

lying on the same irreducible component of D
may be redundant.

If this new D is relatively rigid, the proof finishes as in Case 1. Oth-
erwise, if still h0 (Cb,OCb

(D)) ≥ 2 for generic b ∈ B, we may use
Theorem 4.1.17 to obtain

rk ξb ≥ Cliff
(
D|Cb

)
= cf . (6.5)
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But V ⊆ ker ∂ξb = Kξb , so that rk ξb = g − dimKξb ≤ g − qf , and the
inequality (6.5) implies that

g − qf ≥ cf ,

which contradicts our very first hypothesis.

Remark 6.3.8. Note that, whenever we can produce a relatively rigid divi-
sor D supporting the fibration, the inequality qf >

g+1
2

is enough (together
with the structure Theorem 6.3.1) to prove that the fibration f is isotrivial,
while the stronger inequality qf > g − cf is used only if it is impossible
to find such a D (allowing arbitrary changes of base). Hence, all possi-
ble counterexamples to Xiao’s original conjecture must fall into this second
case.

We wish to close this final section with Proposition 6.3.9, which gives an
alternative proof of Case 1 in the proof of Theorem 6.3.4. This Proposition
uses the Volumetric Theorem 5.1.5 instead of Theorem 6.3.1, hence applies
for non-necessarily compact families. On the contrary, the compactness of
the surface is crucial in Theorem 6.3.1, since it uses the Castelnuovo-de
Franchis Theorem.

Proposition 6.3.9. Suppose that f : S → B is a fibration where the base B
is a smooth, not necessarily compact curve. Assume that there is an Abelian
variety A of dimension a, and a morphism Φ : S → A × B respecting the
fibres of f and such that the image of any restriction to a fibre φb : Cb → A
generates A. Suppose also that the deformation is supported on a divisor
D ⊂ S such that h0 (Cb,OCb

(D)) = 1 for general b ∈ B. If a > g+1
2

, then
f is isotrivial.

Remark 6.3.10. If we start from a fibration with compact B, we may take
A to be the kernel of af : Alb (S) → J (B), which has dimension a = qf .
After replacing B by an open disk, the Albanese map gives a morphism Φ
as above (for more details, see Section 3.3). Hence, Proposition 6.3.9 gives
indeed a new proof of the first case in the proof of Theorem 6.3.4 above.

Proof of Proposition 6.3.9. Take any b ∈ B such that Cb is smooth, and
let C̃b be the image of φb : Cb → A. Since C̃b generates A, it has genus
g′ ≥ dimA = a > g+1

2
. This implies, by Riemann-Hurwitz, that φb is

birational onto its image for any regular value b ∈ B.
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If f is not isotrivial, the Volumetric Theorem 5.1.5 implies that, for a
general fibre C = Cb, the adjoint class of a generic 2-dimensional subspace

W ⊆ V := H0
(
A,Ω1

A

)
⊆ H0 (C, ωC)

is non-zero.
However, we show now that, for every fibre, the adjoint class of every

2-dimensional subspace of V vanishes, which finishes the proof. Fix any
regular value b ∈ B and denote by C = Cb the corresponding fibre, by ξ = ξb
the infinitesimal deformation induced by f , and by D = D|C the restriction
of the global divisor. Let also K = Kξ be the kernel of ∂ξ. Since ξ is
supported on D, Lemma 4.1.12 gives the inclusion H0 (C, ωC (−D)) ⊆ K,
which is in fact an equality. Indeed, on the one hand we have

dimH0 (C, ωC (−D)) = g − degD

because D is rigid, while on the other hand it holds

dimK = g − rk ξ = g − degD

because of the combination of Corollary 4.1.14 and Theorem 4.1.17. There-
fore, V ⊆ K = H0 (C, ωC (−D)).

Now, according to Remark 4.1.11, the upper sequence in

ξD : 0 // OC
// FD

//
� _

��

ωC (−D) //
� _

��

rr ]_ace
0

ξ : 0 // OC
// Ω1

S|C
// ωC // 0

is split, giving a lifting ωC (−D) →֒ Ω1
S|C such that every pair of elements

of H0 (C, ωC (−D)) ⊆ H0
(
C,Ω1

S|C

)
wedge to zero (they are sections of the

same sub-line bundle of Ω1
S|C), which finishes the proof.

Remark 6.3.11. In the above proof, to show that the images C̃b are all
isomorphic it is only necessary to use the Volumetric Theorem 5.1.5. The
inequality a > g+1

2
is only used, combined with Riemann-Hurwitz, to show

that the maps φb are birational. Therefore, if we drop the inequality a > g+1
2

from the hypothesis (but still keep that the deformations are supported on
rigid divisors), the same proof shows that the fibres Cb are coverings of a
fixed curve C̃b.
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