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Abstract

The study of musical expressivity is an active field in sound and music comput-
ing. The research interest comes from different motivations: to understand or
model musical expressivity; to identify the expressive resources that character-
ize an instrument, musical genre, or performer; or to build synthesis systems
able to play expressively. To tackle this broad problem, researchers focus on
specific instruments and/or musical styles. Hence, in this thesis we focused on
the analysis of the expressivity in classical guitar and our aim is to model the
use of expressive resources of the instrument.
The foundations of all the methods used in this dissertation are based on
techniques from the fields of information retrieval, machine learning, and signal
processing. We combine several state of the art analysis algorithms in order
to deal with modeling the use of the expressive resources.
Classical guitar is an instrument characterized by the diversity of its timbral
possibilities. Professional guitarists are able to convey a lot of nuances when
playing a musical piece. This specific characteristic of classical guitar makes
the expressive analysis is a challenging task.
The research conducted focuses on two different issues related to musical ex-
pressivity. First, it proposes a tool able to automatically identify expressive
resources such as legato, glissando, and vibrato, in commercial guitar record-
ings.
Second, we conducted a comprehensive analysis of timing deviations in classi-
cal guitar. Timing variations are perhaps the most important ones: they are
fundamental for expressive performance and a key ingredient for conferring a
human-like quality to machine-based music renditions. However, the nature
of such variations is still an open research question, with diverse theories that
indicate a multi-dimensional phenomenon. Our system exploits feature ex-
traction and machine learning techniques. Classification accuracies show that
timing deviations are accurate predictors of the corresponding piece.
To sum up, this dissertation contributes to the field of expressive analysis
by providing, an automatic expressive articulation model and a musical piece
prediction system by using timing deviations. Most importantly, it analyzes
the behavior of proposed models by using commercial recordings.

vii





Resum

L’estudi de l’expressivitat musical és un camp molt actiu en la computació mu-
sical. El seu interès ve donat per diverses motivacions: entendre i modelitzar
l’expressivitat musical; identificar els recursos expressius que caracteritzen un
instrument, gènere musical o intèrpret; i construir sistemes de síntesi amb la
capacitat de reproduir música expresivament. Per abordar aquest problema
tan ampli, la literatura existent tendeix a focalitzar-se en instruments o gè-
neres musicals concrets. En aquesta tesi, ens hem focalitzat en l’anàlisi de la
expressivitat en la guitarra clàssica y el nostre objectiu serà modelitzar l’ús de
recursos expressius en aquest instrument.
Els fonaments de tots els mètodes utilitzats en aquesta tesi estan basats en
tècniques de búsqueda y recuperació de la informació, aprenentatge automàtic
y processament del senyal. Concretament, combinem diversos algorismes de
l’estat de l’art per fer una proposta de caracterització de l’ús dels recursos
expressius.
La guitarra clàssica és un instrument que es caracteritza per la diversitat de
les seves possibilitats tímbriques. Els guitarristes professionals són capaços de
transmetre molts matisos durant la interpretació d’una peça musical. Aquesta
característica específica de la guitarra clàssica fa que l’anàlisi d’aquest instru-
ment sigui una tasca difícil.
Dividim el nostre anàlisi en dues línies de treball principals. La primera lí-
nia proposa una eina capaç d’identificar automàticament recursos expressius
en el context d’una gravació comercial. Construim un model amb l’objectiu
d’analitzar i extreure automàticament els tres recursos expressius més utilit-
zats: legato, glissando i vibrato. La segona línia proposa un anàlisi integral
de desviacions de tempo en la guitarra clàssica. De les variacions, potser les
més importants siguin les variacions de tempo: són fonamentals per a la in-
terpretació expressiva i un ingredient clau per conferir una qualitat humana
a interpretacions basades en ordinador. No obstant, la naturalesa d’aquestes
variacions és encara un problema d’investigació que no ha estat resolt, amb di-
verses teories que apunten a un fenòmen multi-dimensional. El nostre sistema
utilitza tècniques d’extracció de característiques i aprenentatge automàtic. La
precisió de la classificació mostra que les desviacions de tempo són predictors
precisos de la peça musical corresponent.
Para recapitular, aquesta tesi contribueix al camp de l’anàlisi expressiu pro-
veint un model automàtic d’articulació expressiva i un sistema predictor de
peces musicals que analitza les desviacions de tempo. Finalment, aquesta tesi
analitza el comportament dels models proposats utilitzant gravacions comer-
cials.
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Resumen

El estudio de la expresividad musical es un campo muy activo en la compu-
tación musical. El interés en investigar ésta área tiene distintas motivaciones:
entender y modelar la expresividad musical; identificar los recursos expresivos
que caracterizan un instrumento, género musical, o intérprete; y construir sis-
temas de síntesis con la capacidad de reproducir música expresivamente. Para
abordar este problema tan amplio, la literatura existente tiende a enfocarse
en instrumentos o géneros musicales específicos. En esta tesis nos enfocaremos
en el análisis de la expresividad en la guitarra clásica y nuestro objetivo será
modelar el uso de recursos expresivos en este instrumento.
Los fundamentos de todos los métodos usados en esta tesis están basados en
técnicas de búsqueda y recuperación de la información, aprendizaje automático
y procesamiento de señales. Combinamos varios algoritmos del estado del arte
para lidiar con el modelado del uso de los recursos expresivos.
La guitarra clásica es un instrumento que se caracteriza por la diversidad
de sus posibilidades tímbricas. Los guitarristas profesionales son capaces de
transmitir muchos matices durante la interpretación de una pieza musical.
Esta característica específica de la guitarra clásica hace que el análisis de este
instrumento sea una tarea difícil.
Dividimos nuestro análisis en dos líneas de trabajo principales. La primera
línea propone una herramienta capaz de identificar automáticamente recur-
sos expresivos en el contexto de una grabación comercial. Construimos un
modelo con el objetivo de analizar y extraer automáticamente los tres recur-
sos expresivos más utilizados: legato, glissando y vibrato. La segunda línea
propone un análisis integral de desviaciones de tiempo en la guitarra clásica.
De las variaciones, quizás las más importantes sean las variaciones de tiempo:
son fundamentales para la interpretación expresiva y un ingrediente clave para
conferir una cualidad humana a interpretaciones basadas en ordenador. No
obstante, la naturaleza de tales variaciones es aún un problema de investiga-
ción que no ha sido resuelto, con diversas teorías que apuntan a un fenómeno
multi-dimensional. Nuestro sistema utiliza técnicas de extracción de caracte-
rísticas y aprendizaje de automático. La precisión de la clasificación muestra
que las desviaciones de tiempo son predictores precisos de la pieza musical
correspondiente.
Para recapitular, esta tesis contribuye al campo del análisis expresivo proveyen-
do un modelo automático de articulación expresiva y un sistema predictor de
piezas musicales que emplea desviaciones de tiempo. Finalmente, esta tesis
analiza el comportamiento de los modelos propuestos utilizando grabaciones
comerciales.
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"If I had to live my life again, I would have made a rule to read
some poetry and listen to some music at least once every week.
The loss of these tastes is a loss of happiness, and may possibly be
injurious to the intellect, and more probably to the moral character,
by enfeebling the emotional part of our nature."

- Charles Darwin





CHAPTER 1
Introduction

"Music is what feelings sound like"

- Anonymous

Motivation

Music is a complex human activity where multiple purposes are involved. First,
it is a communication act where some actors, the composer and the performers,
use specific tools, musical instruments, to transmit a message to an expected
audience. Music can be considered as an activity where the cultural and social
context play a preeminent importance. Moreover, music is one of the most
important human ways to express and convey feelings and emotions.
In western music, composers use the score as the way to codify and prescribe
the instructions to the performers. However, a musical score only codifies
partially the way performers must play. There are many of these instructions
that are implicit and that come from different origins such as the type of music
that is played, the instruments used, the piece interpretation of the performers,
or the emotional intention of the performers. Many of these implicit aspects
of music are known as musical expressivity.
Thus, designing computational tools able to help in this complex human activ-
ity require of the understanding and modeling of these “implicit” knowledge.
There are several studies focused on the understanding of musical expressivity
from the analysis of written compositions in the field of musicology and music
theory (Copland, 1939; Dahlhaus, 1989; Levy, 1970; Meyer, 1989). However,
computational expressive analysis of music is relatively a new field and there
are several questions that are waiting for their answers. In this work, we are
providing new computational tools to analyze the expressive resources used in
classical guitar.

1
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1.1 Musical Expressivity

People are using score to compose and play music for many years, but the
music that we hear when musicians play includes much more elements than
the written in the score. Then, scores codify only a small portion of the musical
experience (Saunders et al., 2004). For instance, if we convert the written score
into an audio form using a computer and listen the result, we will realize that
there is a lack of a lot of features such as phrase emphasis, lengthening and
shortening of notes, vibratos, glissandos, etc.
Related to this, we often say that a performer plays with great expression.
But, what exactly do we mean? What are the decisions a performer takes
when playing? Understanding these decisions is a broad research area in Music
Information Retrieval (MIR) community and the study of musical expressivity
is still an active field. The research interest comes from different motivations:

• Understanding and/or modeling musical expressivity.

• Identifing the expressive resources that characterize an instrument, mu-
sical genre, or performer.

• Building synthesis systems able to play expressively.

When different performers play the same score, the result is never the same
and the output is never a mechanical rendering of the score. Moreover, even
if the performer tries to play mechanically, the output has noticeable differ-
ences and variances (Begston & Gabrielson, 1980). Furthermore, different
performances of the same piece played by the same performer have noticeable
differences (Henderson, 1937). Thus, the study of this phenomenon has a high
research interest to understand the foundations of musical expressivity.
Expressivity can be described as the differences (deviations) between a musi-
cal score and its execution. According to the literature, these deviations are
mainly motivated by two purposes: to clarify the musical structure (Gabriels-
son, 1987; Palmer, 1996; Sloboda, 1983) and as a way to communicate affective
content (Gabrielsson, 1995; Juslin, 2001; Lindström, 1992). Moreover, these
expressive deviations vary depending on the musical genre, the instrument,
and the performer. Specifically, each performer has his/her own unique way
to add expressivity by using the instrument.
Gracthen (Grachten, 2006) analyzed different perspectives of older studies and
classified the definition of expressivity in to three main perspectives.

1. According to Repp, expressivity is everything that is not specified in
the score and named this definition as Expressivity as Microstruc-
ture (Repp, 1990). According to this definition score only represents
the macro elements of the music and does not give clue about the micro
elements.
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2. Another view conceive expressivity as the deviations from musical score
(Gabrielsson, 1987) and named as Expressivity as Deviation from
the Score. Different from the Expressivity as Microstructure, in this
definition expressivity is defined as the differences between the facts that
are defined in the written score in terms of, pitch, timbre, timing and
dynamics.

3. Last category of expressivity definition that Gracthen gave place in his
dissertation is Expressivity as Deviation within the Performance
(Timmers & Honing, 2002), which defines expressivity as a hierarchical
description of the musical piece. For example according to this definition
a beat duration can be related to the deviation of the duration of the
enveloping bar.

In the scope of these three different perspectives, what is clear is that expres-
sivity is a complex phenomenon that can be studied from different approaches.
Our position regarding expressivity is that is a a combination all of above. As
we will discuss in Chapter 3, although some expressive articulations are ex-
plicitly marked in the score, the addition of new ones is common phenomenon.
Furthermore, score does not give any clue how an expressive articulation should
be executed. This fact falls into the Expressivity as Microstructure definition.
In Chapter 4, we analyze the onset deviations from the score reference. We
will see that there are places in the score where performers tend to apply
the same kind of deviations whereas there are other places where they do not
agree. These findings fall into Expressivity as Deviation from the Score and
Expressivity as Deviation within the Performance.

1.2 Guitar

In our research guitar is selected as the instrument of the study because it is
one of the most popular instruments in western music, most genres include
guitars (such as classical, folk, flamenco, jazz) and is played in many cultures.
Although plucked instruments and guitar synthesis have been studied exten-
sively (Erkut et al., 2000; Janosy et al., 1994; Laurson et al., 1999; Norton,
2008; Traube & Depalle, 2003), expressive analysis from real guitar recordings
has not been fully tackled.

1.3 Objectives and Problem Definition

Our objective is to propose new methods in order to analyze musical expressiv-
ity with a focus on the classical guitar. Specifically, we focused our research on
expressive articulations and timing deviations, which we believe are the most
important building blocks of guitar expressivity.
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1.3.1 Expressive Articulations

In music, an expressive articulation is the manner in which the performer ap-
plies her technique to enrich the sounds or notes such as, vibrato, glissando
or legato. Expressive articulations are often described rather than quanti-
fied. Furthermore, in some cases they are not even described in the score.
In both cases there is room to interpret how to execute and where to exe-
cute each expressive articulation. Therefore, expressive articulations are one
of the key factors that makes each performance unique. Analysis of expressive
articulations is curial to understand the musical expressivity. The general de-
scription of expressive articulation in music that is agreed by several different
authors (Blatter, 1980; Chew, 2008; Duncan, 1980; Norton, 2008) is:

"The difference between the notation of music and its actual per-
formance".

More specifically for the guitar expressive articulation stands for:

"The term articulation refers in guitar music, to the manner in
which tones are attacked and released and is distinct from phras-
ing, which pertains more to how they are grouped for expressive
purpose" (Duncan, 1980).

Supporting the definition of Duncan, as a concrete example of how an expres-
sive articulation should be used in order to enrich the timbral performance of
the guitar, Aguado defines vibrato as:

"The left hand can prolong the sound using vibrato. If after
a string is stopped sufficiently firmly it is plucked and the finger
holding it down moves immediately from side to side at the point
of pressure, the vibration of the string and, consequently, its sound
is prolonged; but the finger must move as soon as the string has
been plucked in order to take advantage of the first vibrations which
are the strongest, maintaining at least the same degree of pressure
on the string. These movements should not be too pronounced nor
involve the left arm, only the wrist.

A successful vibrato does not depend so much on the amount of
the pressure as on how it is applied. The last joint must be pressed
perpendicularly down on the string, parallel to the frets, ensuring
that the weight of the hand on the point of pressure, offset by the
thumb behind, maintains and prolongs the vibrations better than
the excess pressure which may result if the arm is used." (Aguado,
1981)

In guitar playing, both hands are used. Some guitarists use the right hand to
pluck the strings whereas others use the left hand. For the sake of simplicity,
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in the rest of the dissertation we consider the hand that plucks the strings as
the right hand and the hand that presses the frets as the left hand.
Moreover, in the guitar strings can be plucked using a single plectrum called a
flat-pick or by directly using the tips of the fingers. The hand that presses the
frets is mainly determining the notes while the hand that plucks the strings
is mainly determining the note onsets and timbral properties. However, left
hand is also involved in the creation of a note onset or different expressive
articulations like legatos, glissandos, and vibratos.
In this thesis, we focus on three most-widely applied expressive guitar articula-
tions, legato, glissando and vibrato. Although all three of them share common
analysis methodologies, (see Chapter 3), they need significantly different ap-
proaches for further extraction and classification purposes.

1.3.2 Onset Deviations

Timing variations are perhaps the most important ones: they are fundamental
for expressive performance and a key ingredient for conferring a human-like
quality to machine-based music renditions. However, the nature of such vari-
ations is still an open research question, with alternative and sometimes con-
trasting theories that indicate a multi-dimensional phenomenon. We bring a
complementary view to the origin of timing variations, showing that sequences
of note onset deviations are robust and reliable predictors of the musical piece
being played, irrespective of the performer. In our study we are analyzing
well-known pieces from different eras of music. Moreover, we are analyzing
commercial recordings of famous virtuoso guitarists. In our approach, we take
10 different interpretations of 10 different pieces. By using machine learning
principles we formulate our study as a classification problem. We suggest that
onset deviations are reliable predictors of the musical pieces.

1.4 Outline of the Thesis

This thesis is structured as follows: Chapter 2, briefly talks about the current
state of the art. In Chapter 2, we choose to mention about the references
that has the most impact in the field of guitar and expressivity. We leave the
more detailed (specific) references to the corresponding chapters. The main
contribution of the thesis is described in Chapters 3, and 4. In the first part of
Chapter 3, Section 3.2, we describe our feature extraction methodology that
will be also exploited in Chapter 4. In the rest of Chapter 3, we explain our
methodology for extraction of expressive articulations and for their classifica-
tion. Chapter 4 presents our approach and experiments for the extraction and
analysis of onset deviations from commercial audio files. Finally, Chapter 5
discusses open issues and future work, as well as summarizes the contributions
of our research.





CHAPTER 2
State of the Art

General View

Musical expressivity rely on the intentional manipulation of sound properties
such as pitch, timbre, dynamics, or timing (Gabrielsson, 1999, 2003). Stud-
ies on musical expressivity go back to the early twentieth century. In 1913,
Johnstone (1913) analyzed piano performers. Johnstone’s analysis can be con-
sidered as one of the first studies focusing on musical expressivity. Recently,
advances in audio processing techniques risen the opportunity to analyze au-
dio recordings in a finer level (see Gouyon et al. (2008) for an overview). Up
to now, there are several studies focused on the analysis of expressivity of
different instruments (Bresin & Battel, 2000; Dobrian & Koppelman, 2006;
Grachten, 2006; Norton, 2008; Solis et al., 2007). Although the instruments
analyzed differ, most of them focus on analyzing monophonic or single instru-
ment recordings. For instance in his dissertation Norton, focused on jazz
saxophone, Grachten analyzed monophonic violin recordings and Bresin &
Battel focused on the articulation analysis of piano performances.
Musical expressivity has been studied from different perspectives. Although
each view has intersections with others and does not exist crisp borders, with
our best intention, we have tried to sum up studies related on musical ex-
pressivity in four main research areas: Physical Modeling, Symbolic Analysis,
Gestural Analysis, and Expressive Performance Analysis. Additionally, one of
the fields that have contributed to the study of musical expressivity is Arti-
ficial Intelligence. Interested readers can find a complete survey of computer
music systems based on Artificial Intelligence techniques in (de Mantaras &
Arcos, 2002). Other more recent studies combine machine learning techniques
(Giraldo & Ramirez, 2012; Grachten et al., 2006; López de Mántaras & Ar-
cos, 2012; Ramirez & Hazan, 2005) to model expressive jazz performances and
violin performance (Ramirez et al., 2010).
To introduce the studies having direct or indirect connection with musical
expressivity, we have follow a chronological order. Each section has connections
with each other, for instance symbolic analysis studies have models which are

7
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similar with physical modeling studies, or, since each study has connection
with expressivity, they could be thought as an expressive performance analysis.
However, we have organized the chapter presenting first the existing literature
in three main related studies such as physical modeling, gesture analysis, and
symbolic analysis. These approaches have been then usually used as low-level
models for the study of expressive performance analysis, the last main section
of this chapter.

2.1 Physical Modeling

One way to study musical expressivity is by means of the analysis and modeling
of the instruments and the physical laws associated to the generation of the
sound. That is, by indirectly extract musicians intentions from modeling their
instruments (e.g. resonance of the body, strings) or elements used by the
performers (such as the violin bow). In this scope, a lot of work was done in
the early 1980’s on modeling the string behavior. Karplus & Strong (1983)
presented a model of string vibrations based on their physical behavior which
was the basis for further work by Jaffe D. & Smith J. (1983). For deeper
knowledge we refer to McKay (2003) which is a detailed survey about classical
guitar string modeling between 1983 and 2001.
Researches on string analysis constructed a strong base for further and more
complete works which include the strings, the body, the finger action, and
the interactions between them (Cuzzucoli & Lombardo, 1999). The models
of Cuzzucoli & Lombardo include parameters that can influence the tonal re-
sponse, such as the body, the string characteristics, and the static and dynamic
parameters of fingers. In order to simulate the behavior of the instrument
quantitatively, Cuzzucoli & Lombardo evaluated a set of plausible values for
the instrument characteristics and for the finger parameters through a number
of simple experiments. Their system takes as input, the physical parameters
of each string, the resonator and the finger, together with a description of a
musical score that includes each position of the note on the guitar fret board.
The final output of the model is a sound file, which helps in evaluating the
effectiveness of the model.
Same year Laurson et al. (1999) developed a new notation package called Ex-
pressive Notation Package (ENP) to control the model-based synthesis engine.
ENP is written in Lisp and CLOS (Common Lisp Object System), Figure 2.1.
A real-time synthesis engine has been developed based on earlier results in
digital waveguide modeling. Laurson et al. also described an analysis of vi-
brato in acoustic guitar tones, which provides control information for realistic
synthesis.
Different from other instruments, such as piano, in guitar to produce sound,
player can pluck different places of the string (Traube & Depalle, 2003). Thus,
different timbres can be produced from the exact same guitar. Orio (1999),
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Figure 1. Musical excerpt with ENP expressions.

contain other objects, such as breakpoint functions.
The latter case is called a group-BPF. Macro
expressions generate additional note events
(tremolo, trills, portamento, rasgueado).

Fig. 1 gives an ENP example— measures 25-28
from “Madroños” for guitar by Federico Moreno
Torroba—which includes both standard
instrumental expressions and non-standard ones.

2.2 Fine-tuning of Timing

ENP allows fine-tuning of timing with the help of
graphical tempo functions. In order to assure
synchronization of polyphonic scores, all tempo
functions are merged and translated internally into
a global time-map [3]. Tempo modifications are
defined by first selecting a range in the score where
the tempo change should occur. After this a group-
BPF is applied to the range. The group-BPF can be
opened and edited with the mouse. In order to
facilitate the edition process, the group-BPF editor
displays — besides the tempo function — the
selected music notation excerpt in grey-scale in the
background (see Fig. 2).

Figure 2. Edition of a tempo function.

Tempo function values are given in percentage
(i.e. 100 means ‘a tempo’, 200 twice as fast, 50
half tempo). For instance an accelerando from ‘a
tempo’ to ‘twice as fast’ is achieved with a ramp
that starts from 100 and that ends at 200.

 In addition to conventional accelerandi and
ritardandi, the user can apply special rubato effects
(“give and take”) to a group. This mode is
especially useful when the resulting tempo starts to
fluctuate too wildly. As in the previous case the
user starts with a selection in the score and applies
a tempo function to it. The difference is though
that the duration of the range is not affected by the
time modification. Time modifications are only
effective inside the selected range.

2.3 Performance Rules

Besides tempo functions, ENP supports user
definable performance rules which allow to modify
score information in a similar way as in the
Swedish “Rulle” system [4 and 5]. In Rulle,
performance rules are used to calculate timing
information, dynamics and other synthesis
parameters. The main difference is though that
ENP rules use a syntax which was originally
designed for PWConstraints (for more details see
[7 and 8]).

ENP rules are written in two parts: (1) a pattern-
matching part which is followed by (2) a Lisp code
part. The pattern-matching part checks when the
rule should be applied and also extracts relevant
note information which is used later by the Lisp
code part. The Lisp expression, in turn, executes
the actual alteration.

For instance a variant of the well known “notes
inégales” rule (“in a beat of two eighth-notes the
first note is made longer than the second one”) can
be translated into PWConstraints syntax as
follows:

;; 1. pattern-matching part
(* ?1 ?2  (rtm-match? (1 ((?1 1) (?2 1)))
;; 2. Lisp-code part
(?if (write-key ?1 :dr
        (+ (read-key ?1 :dr) 0.1))
     (write-key ?2 :dr
         (- (read-key ?2 :dr) 0.1)))))

The pattern-matching part (line 1.) states that if
two notes (?1 and ?2) are adjacent and form a two
eighth-note beat, then the first note (?1 ) is
lengthened by 0.1 s and the second one (?2)
shortened by 0.1 s.

2.4 Calculation of Control Data

The calculation of the control information for the
model-based synthesis engine is executed in two
main steps. In the first one, the note information
provided by the input score is modified by the
tempo functions and ENP performance rules.
Furthermore some instrument specific rules (in our
case the classical guitar) are applied which further
modify the input score.

In the second step, all notes of the input score
are scheduled. While the scheduler is running, each
note sends a special method to its instrument which
in turn starts other scheduled methods which
typically produce the final control data. These
methods are responsible for creating discrete
control data (such as excitation information) or

Figure 2.1: A view from Expressive Notation Package, ENP - Tempo editing. The
line on the top is for modifying the tempo. 100 means at that point tempo starts from
100% of the real tempo.

conducted a research in order to analyze the timbre space of the classical guitar
and its relationship with the different plucking techniques. The analysis were
done with 28 audio samples which were played by hand(using fingers or nails).
In each sample, player changed playing position on the string from 12th fret to
the bridge1. In each playing position player changed;

• Inclination between the finger and string.

• Inclination between the hand and string.

• The degree of the relaxation of the plucking finger.

After the recording sessions, two analyzes applied to recorded samples;

1. Time-frequency analysis : Each sample is divided in to 100ms sam-
ples beginning from the onset, in order to compare and see the evalu-
ation of the sample. They divided this analysis in to two measure of
the harmonics and attack time. The author concluded that in the case
of inclination (both finger and hand), normal position has a high pass
effect. In normal position attack time is also longer.

2. Psychoacoustical analysis : For this analysis two features were ex-
tracted from audio sample; Center of Gravity of the Spectrum (CGS)
and Irregularity of the Spectrum (IRR). CGS has a linear when the fin-
ger moves along the string and has a symmetric trend for the inclinations.
For the IRR, the relevance is when the finger is moved along the string.

1very end of the guitar body where the strings are attached
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Orio has enlightened the studies that focused on the detection of the plucking
point of the guitar string, (Traube & Depalle, 2003). In guitar the plucking
point is a key factor for controlling the timbre. The plucking point of a guitar
string affects the sound envelope and influences the timbral characteristics of
notes, Figure 2.2. For instance, plucking close to the guitar hole produces more
mellow and sustained sounds where plucking near to the bridge (end of the
guitar body) produces sharper and less sustained sounds. Traube & Depalle
proposed a method for estimating the plucking point on a guitar string by
using a frequency-domain technique applied to acoustically recorded signals.
They also proposed an original method to detect the fingering point, based on
the plucking point information.

Proc. of the 6th Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003
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ABSTRACT

This paper focuses on the extraction of the excitation point loca-
tion on a guitar string by an iterative estimation of the structural
parameters of the spectral envelope. We propose a general method
to estimate the plucking point location, working into two stages:
starting from a measure related to the autocorrelation of the sig-
nal as a first approximation, a weighted least-square estimation is
used to refine a FIR comb filter delay value to better fit the mea-
sured spectral envelope. This method is based on the fact that, in
a simple digital physical model of a plucked-string instrument, the
resonant modes translate into an all-pole structure while the initial
conditions (a triangular shape for the string and a zero-velocity at
all points) result in a FIR comb filter structure.

1. INTRODUCTION

Among the instrumental gesture parameters that contribute to the
timbre of a guitar sound, the location of the plucking point along
the string has a major influence. Plucking a string close to the
bridge produces a tone that is softer in volume, brighter and sharper.
The sound is richer in high-frequency components. This happens
when playing the guitar sul ponticello. The other extreme is play-
ing sul tasto, near or over the fingerboard, closer to the midpoint
of the string. In that case, the tone is louder, rounder, mellower,
less rich in high-frequency components.

2. PLUCKING A STRING AND COMB FILTERING

The plucking excitation initiates wave components travelling in-
dependently in opposite directions along the string. The resultant
motion consists of two bends, one moving clockwise and the other
counter-clockwise around a parallelogram [1]. In the ideal cases,
the output from the string (force at the bridge) lacks those harmon-
ics that have a node at the plucking point.

Figure 1: Plucking point at a distance p from the bridge and fin-
gering point at distance l from the bridge on a guitar neck.

The amplitude Ĉn of the nth mode of the displacement of an
ideal vibrating string of length l plucked at a distance p from the
bridge with an initial vertical displacement h is given by :

Ĉn(h, R) =
2h

n2π2R(1 − R)
sin(nπR) (1)

where R = p/l is the relative plucking position, defined as
the fraction of the string length from the point where the string
was plucked to the bridge [2]. Ĉn is considered here to be a model
of the amplitude, hence the hat (̂ ) while Cn represents measured
values or observed values.

The digital signal processing interpretation of the physical phe-
nomenon is the following: in a simple digital physical model of a
plucked-string instrument, the resonant modes translate into an all-
pole structure, while the initial conditions (a triangular shape for
the string and a zero-velocity at all points) result in a FIR comb fil-
ter structure. At a sampling rate fs, the magnitude of the frequency
response of such a filter is given by

|Hd(e
jΩ)| = 2 sin(Ωd/2) = 2 sin(π d f/fs) (2)

where the delay d can be a non-integer number of samples. This
delay corresponds to the time the wave needs to travel from the
plucking point to the fixed end of the string (the bridge or the nut)
and back (2p). As the fundamental period To corresponds to the
time the wave needs to travel along a distance that is two times the
vibrating length of the string (2l), we obtain the relation

D
To

=
2p
2l

= R (3)

where D = d/fs is the delay expressed in seconds. This relation-
ship between the comb filter delayD and the relative plucking po-
sition R is at the basis of the analogy between the physical model
(Eq. 1) and its digital signal processing interpretation (Eq. 2). In
fact, it is possible to verify that the arguments of the sine functions
in equations 2 and 1 are equivalent:

π d f/fs = πDf = πRTof = πR(f/fo) = nπR (4)

The comb filtering effect is illustrated on Figure 2 for a recorded
guitar tone plucked 12 cm away from the bridge on a 58 cm open
A-string (fundamental frequency = 110 Hz). The relative plucking
position R is approximately 1/5 (12 cm / 58 cm = 1.483). If it was
exactly 1/5 and if the string was ideal, all harmonics with indices
that are multiples of 5 would be completely missing.

DAFX-1

Figure 2.2: Plucking point distance representation of the guitar.

The guitar sound is complex as other instruments. In order to artificially
produce the guitar sound, nonlinearities should be examined (Bader, 2005).
According to Bader, there are three main types of nonlinearities; the coupling
of transversal and longitudinal vibrations in the guitar body, the complicated
guitar geometry and the coupling of the strings to the plate. In his research
all three factors were examined.
More recently, Lee N. & Smith J. (2007) proposed a new method for extrac-
tion of the excitation point of an acoustic guitar signal. Before explaining the
method, three state of the art techniques were examined in order to compare
with the new one. The techniques analyzed werematrix pencil inverse-filtering,
sinusoids plus noise inverse-filtering, and magnitude spectrum smoothing. Af-
ter describing and comparing these three techniques, Lee N. & Smith J. pro-
posed a new method in order to extract the excitation point of a acoustic guitar
signal. The proposed method, statistical spectral interpolation, is based on re-
moval of spectral peaks, followed by statistical interpolation to reconstruct the
excitation spectrum in frequency intervals occluded by partial overtones. After
comparing four methods, results show that the method presented outperforms
previous methods in removing tonal components in the resulting excitation
signal while maintaining a noise-burst like quality.
Research on physical modeling is very relevant for the analysis of musical ex-
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pressivity. First, it provides clues about the constraints and capabilities of
each instrument, i.e. the resources musicians have to convey musical expres-
sion and emotions. Second, it helps to bring closer low-level sound control
phenomena with the high level musical language, the knowledge level used by
humans when talk about the way to perform/understand music performances.

2.2 Gestural Analysis

Musical expressivity is directly related to the gestures performed by the musi-
cians when playing. These gestures are composed of several parallel movements
occurring a very diverse time scale. Specifically, these gestures may range from
the body movements of performer, and possible also movements of the instru-
ment, to micro gestures such as the fingering stress while producing a sound
or the choice of fingers position to play a guitar a chord. All these elements
have important effects on the generation and control of the sounds. Thus,
they have important effects on timing and timbral characteristics of the played
music. Therefore, many of these gestural movements fall into the definition of
expressivity as deviation from the Score, Section 1.1.
There have been several studies regarding the gestural information from differ-
ent aspects. Gestural information related to guitarists may refer from analysis
of the general movements of the guitar body (Quested et al., 2008) to the de-
tailed study of specific finger movements (Burns & Wanderley, 2006; Guaus
et al., 2010; Radicioni & Lombardo, 2007). Moreover there are studies that
combine gestural and audio analysis techniques (Heijink & Meulenbroek, 2002).
In the study of Heijink & Meulenbroek, audio and camera recordings of six
professional guitarists playing the same song were used to study the com-
plexity of the left hand fingering of classical guitar from the perspective of
behavioral point of view. In their music collection for the experiments, differ-
ent guitarists have performed the same song. They state that "The problem of
finding a suitable left-hand fingering for a note sequence is closely related to the
inverse kinematics problem that individuals continuously and effortlessly solve
in everyday motor tasks such as pointing, reaching, and grasping." Heijink
& Meulenbroek have briefly reviewed the different techniques of finding the
optimal fingering positions. Among these different techniques, authors have
focused on as they called, joint coupling and intrinsic movement dynamics.
They were trying to find optimal places and fingerings for the notes. Several
constraints were introduced to calculate cost functions such as; minimization
of jerk, torque change, muscle-tension change, work, energy and neuromotor
variance. As a result of the study, they found a significant effect on timing.
However, authors stated that, "while calculating the fingering of the left hand
not only the distance factor is considered but also acoustic dimensions should
be taken into account". But since in their study they were using simple scales,
they did not consider the acoustic dimensions, they have only focused on the
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left-hand fingering distance cost functions.
Burns & Wanderley (2006) proposed a method to visually detect and recognize
fingering gestures of the left hand of a guitarist by using affordable camera.
Burns & Wanderley conducted studies about the three important aspects of a
complete fingering system. First one was the finger tracking, second one was,
strings and frets detection, and the last one was the movement segmentation.
They used Hough Transform Theory in order to detect the position of the
finger tips, strings and frets Figure 2.3.

Figure 8. Fingertips detection using the circular Hough
transform algorithm

4. FINGER-TRACKING

The circular Hough transform algorithm used in this pa-
per was developed and tested in EyesWeb at the InfoMus
laboratory during a study on the development and evalua-
tion of diverse finger-tracking algorithms [2]. Among all
the tested algorithms, the circular Hough transform was
retained for the guitarist fingering problem due to several
interesting characteristics:

1. It demonstrated to have a high degree of precision
and accuracy;

2. It can be applied in complex environments and with
partial view of the hand;

3. It can work on edge-version of the images.

4.0.1. Circular Hough Transform

As illustrated in figure 8, the circular Hough transform
is applied on the binary silhouette image of the hand. An
edge image is obtained by applying the Canny edge detec-
tion algorithm [3] on the silhouette images (figure 9(a)).
The circular Hough transform algorithm makes use of the
fact that the finger ends have a quasi-circular shape while
the rest of the hand is more linearly shaped. In this al-
gorithm, circles of a given radius are traced on the edge-
images and regions with the highest match (many circles
intersecting) are assumed to correspond to the center of
the fingers’ ends (figure 9(b)).

5. STRING AND FRET DETECTION

By tracking the fingertips it is possible to know the lo-
cation of each finger is in space. In the case of finger-
ing on the guitar, this space can be defined in terms of
string and fret coordinates. The detection of strings and
frets in the image is consequently a crucial step. Figure
10 shows the string and fret detection algorithm. Prior to

(a) Edge image (b) Circular Hough image

Figure 9. Detection of maxima at the fingertips: (a)
Canny edge-image of the hand; (b) Circular Hough im-
age.

Figure 10. String and Fret detection using the linear
Hough transform algorithm

detection stage, the region of interest (in this case the gui-
tar neck) must be located in the image. Once the neck has
been located, the strings and frets are segmented from the
grayscale neck image by applying a threshold. A vertical
and a horizontal Sobel filter are applied on the threshold
image to accentuate the vertical and horizontal gradients.
A Linear Hough Transform is then computed on the two
Sobel images. The linear Hough transform allows detec-
tion of linearity in group of pixels, creating lines (figure
11). These lines are then grouped by proximity in order to
determine the position of the six strings and of the frets.
Once this is done, it is possible to create a grid of coordi-
nates to which fingertip positions can be matched.

6. MOVEMENT SEGMENTATION

Movement segmentation is essential in order to detect fin-
gering positions during the playing sequence. Further-
more, in order to save computer resources, this segmen-
tation is done early in the algorithm so that the subsequent
analysis steps are performed only on significant finger po-
sitions (see figure 13 line 3). Movement segmentation is

(a) Strings (b) Frets

Figure 11. Linearity detected in the string and fret re-
gions: (a) String regions; (b) Fret regions.

(a) Fingertips detection

Figure 8. Fingertips detection using the circular Hough
transform algorithm

4. FINGER-TRACKING

The circular Hough transform algorithm used in this pa-
per was developed and tested in EyesWeb at the InfoMus
laboratory during a study on the development and evalua-
tion of diverse finger-tracking algorithms [2]. Among all
the tested algorithms, the circular Hough transform was
retained for the guitarist fingering problem due to several
interesting characteristics:

1. It demonstrated to have a high degree of precision
and accuracy;

2. It can be applied in complex environments and with
partial view of the hand;

3. It can work on edge-version of the images.

4.0.1. Circular Hough Transform

As illustrated in figure 8, the circular Hough transform
is applied on the binary silhouette image of the hand. An
edge image is obtained by applying the Canny edge detec-
tion algorithm [3] on the silhouette images (figure 9(a)).
The circular Hough transform algorithm makes use of the
fact that the finger ends have a quasi-circular shape while
the rest of the hand is more linearly shaped. In this al-
gorithm, circles of a given radius are traced on the edge-
images and regions with the highest match (many circles
intersecting) are assumed to correspond to the center of
the fingers’ ends (figure 9(b)).

5. STRING AND FRET DETECTION

By tracking the fingertips it is possible to know the lo-
cation of each finger is in space. In the case of finger-
ing on the guitar, this space can be defined in terms of
string and fret coordinates. The detection of strings and
frets in the image is consequently a crucial step. Figure
10 shows the string and fret detection algorithm. Prior to

(a) Edge image (b) Circular Hough image

Figure 9. Detection of maxima at the fingertips: (a)
Canny edge-image of the hand; (b) Circular Hough im-
age.

Figure 10. String and Fret detection using the linear
Hough transform algorithm

detection stage, the region of interest (in this case the gui-
tar neck) must be located in the image. Once the neck has
been located, the strings and frets are segmented from the
grayscale neck image by applying a threshold. A vertical
and a horizontal Sobel filter are applied on the threshold
image to accentuate the vertical and horizontal gradients.
A Linear Hough Transform is then computed on the two
Sobel images. The linear Hough transform allows detec-
tion of linearity in group of pixels, creating lines (figure
11). These lines are then grouped by proximity in order to
determine the position of the six strings and of the frets.
Once this is done, it is possible to create a grid of coordi-
nates to which fingertip positions can be matched.

6. MOVEMENT SEGMENTATION

Movement segmentation is essential in order to detect fin-
gering positions during the playing sequence. Further-
more, in order to save computer resources, this segmen-
tation is done early in the algorithm so that the subsequent
analysis steps are performed only on significant finger po-
sitions (see figure 13 line 3). Movement segmentation is

(a) Strings (b) Frets

Figure 11. Linearity detected in the string and fret re-
gions: (a) String regions; (b) Fret regions.

(b) String and fret detection

Figure 2.3: Burns’ Algorithms

In guitar the same note can be played in different positions of the fretboard.
Finding the proper fingering position and the transition to the next note is an
ability that is gained by practice. Radicioni & Lombardo (2007) calculated the
weights of the finger transitions between finger positions by using the weights of
Heijink & Meulenbroek (2002). Furthermore, they defined different structures
for the explanation of their model such as; MEL as melody block, CHO
as chord block, HN as held note and MIX as mix of MEL, CHO or HN,
Figure 2.4. Authors also defined; comfortable span as, two fingers can press
their respective positions with minimum effort, and this effort must be valid for
both vertical and horizontal movements. Also the model computed the finger
strengths. Briefly, Radicioni & Lombardo (2007) calculated the weight of two
finger transposition. They were using three different variables for calculating
the general weight; finger movement, finger strength and neck anatomy of
the guitar. After calculating the all possible distances, directed acyclic graph
(DAG) was used for finding the possible minimum distance, starting from
the first note to the last note. They called this technique, relaxation. As
authors stated, for the MEL blocks, finding the shortest path was relatively
easy. However for the CHO and MIX block they have needed constraint based
approach.
Different from the left-hand fingering analysis studies (Burns & Wanderley,
2006; Guaus et al., 2010; Heijink & Meulenbroek, 2002; Radicioni & Lom-
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Figure 6: (a) The piece in input is parsed and segmented into MIX, MEL and
CHO blocks. (b) CHO and MIX passages are represented in the third dimension
of the graph. (c) Rectangular vertices correspond either to a vertical cluster
(CHO block), to individual vertices (MEL block), or to a vertical and horizontal
cluster (MIX block). Weights on the edges are omitted.

hand repositionings in order to satisfy the requirements for minimum efforts.
The weight (WEIGHT ) between two fingered positions p and q is the linear
sum of the two difficulties:

WEIGHT(p,q) = ALONG(p,q) + ACROSS(p,q) (1)

ALONG(p,q) = fret stretch(p,q) + locality(p,q)

ACROSS(p,q) = vertical stretch(p,q)

The difficulty estimation involves individuating for each finger pair a comfort-
able span for both vertical and horizontal movements (see also [25], for a similar
approach). Such comfortable span is defined as the distance at which two fingers
can press their respective positions with a minimum effort. Then, we compute
the horizontal and vertical components of the current pair of fingered positions
(respectively, fret stretch and vertical stretch), and evaluate how distant they
are from the comfortable spans. The more distant, the higher the weight we as-
sociate to current transition. Also, the model considers fingers’ relative strength.
E.g., little and ring are known to be the weakest fingers [15, 8], and then their
usage occurs under specific conditions. Another relevant factor is the locality of
the positions being considered: since going from the head of the neck towards

9

Figure 2.4: Plucking point distance representation of the guitar.

bardo, 2007; Radisavljevic & Driessen, 2004), Trajano et al. (2004) focused on
right hand. The approach that is used is similar to left-hand analysis. They
represented each chord as a 6-tuple with the finger names such as (x, T, F,
M, R, x). They used two cost function transition and application which were
highly similar to study of Radisavljevic & Driessen (2004). By using these
definitions and cost functions, optimal way of chord transition is calculated.
Quested et al. (2008) focused on note recognition of acoustical guitar. They
used a camera pointed at the performer rather than the mounted on the in-
strument. At the end they achieved to detect the performer location, guitar
neck location and fretting hand/finger location from the camera view. Results
can be seen on Figure 2.5 .
They were using non-negative matrix factorization.

• Performer Location : Musician was located by using skin color and
movement detection techniques. For skin detection Gaussian Mixture
Models were used. Also Stauffer Grimson adaptive mixture model were
used in order to eliminate back ground.
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Our preliminary work achieves:

• performer location
• guitar neck location
• fretting hand/finger location

4.2.1. Performer location

The musician is located in the scene using skin colour
and movement detection techniques. Skin detection is
achieved using Gaussian Mixture Models (GMM) as de-
scribed in [10] together with the dataset as published in
that paper.

Foreground detection using Stauffer Grimson adaptive
mixture models [14] is used in order to eliminate the back-
ground where other skin coloured regions may cause dif-
ficulties to the skin colour detection process.

Using this combination of techniques it is possible with
most frames to divide the skin pixels into three regions
representing the face and hands of the musician. When a
frame failed to make a clear segmentation of these features
it was discarded.

(a) Input frame

(b) Segmentation into 3 regions: head, left-hand,right-hand

Figure 2. Segmentation of face and hands using fore-
ground detection and skin colour detection

4.2.2. Guitar neck location

The guitar neck is assumed to be somewhere around and
between the hands of the guitarist. Assuming the neck is

Figure 3. Searching for spatially localised cluster on the
guitar neck

the longest pair of parallel lines in this region it can be
found using computer vision line detection techniques

The frets are located on the normalised guitar neck im-
age again using line detection. These fret candidates are
used to estimate the bridge position. Then frets are com-
pared with their neighbours. Frets that are not the cor-
rect distance from a neighbour are rejected. Correctness
is assessed using the “seventeen rule” used by Luthiers.
The distance between two adjacent frets is the distance
between the furthest fret and the bridge divided by ap-
proximately seventeen. Equation 1 shows how to more
accurately calculate this distance, where F is the distance
from a fret to the bridge.

Fn/Fn+1 =
12
√

2 (1)

Of the remaining frets, an improved prediction of the
location of the bridge can be made.

4.2.3. Tracking

After an initialisation phase a tracker is used to improve
the reliability of locating the guitar neck.

Tracking is done by means of a particle filter [9]. The
parameters used for the tracker are the x and y co-ordinates
of top left corner the neck and the neck rotation in the
frame. The length and width of the neck are already es-
timated via a voting mechanism from the first n frames
using the neck detection described previously. For sim-
plicity, the particle transitions are just a random walk.

4.2.4. Fretting hand/finger location

The skin recognition GMM data set was adequate for lo-
cating the hands in the scene but was not good enough to
get an accurate contour of the hand on the neck of the gui-
tar for later processing. The original data set is used to
bootstrap the process but then Expectation Maximisation
(EM) is used to update the GMM parameters [11], using
the algorithm explained in [13]. To achieve this, an area
of pixels that are known to be skin is needed. Once the
neck is located the region is then cropped and searched
for skin pixels. This search looks for an RGB cluster that
is spatially localised.

Running the K-means algorithm on the RGB colour
values of the neck showed promising results. A binary
image is formed from the cluster. This can be used to find
the contour of the hand (after some cleaning-up) and sub-
sequently the pixels within the contour are used to update
the GMM via EM.

We are working on identifying fingertips from the de-
tected hand pixels to reduce the list of accessible notes.

(a) String and fret detection

Our preliminary work achieves:

• performer location
• guitar neck location
• fretting hand/finger location

4.2.1. Performer location

The musician is located in the scene using skin colour
and movement detection techniques. Skin detection is
achieved using Gaussian Mixture Models (GMM) as de-
scribed in [10] together with the dataset as published in
that paper.

Foreground detection using Stauffer Grimson adaptive
mixture models [14] is used in order to eliminate the back-
ground where other skin coloured regions may cause dif-
ficulties to the skin colour detection process.

Using this combination of techniques it is possible with
most frames to divide the skin pixels into three regions
representing the face and hands of the musician. When a
frame failed to make a clear segmentation of these features
it was discarded.

(a) Input frame

(b) Segmentation into 3 regions: head, left-hand,right-hand

Figure 2. Segmentation of face and hands using fore-
ground detection and skin colour detection

4.2.2. Guitar neck location

The guitar neck is assumed to be somewhere around and
between the hands of the guitarist. Assuming the neck is

Figure 3. Searching for spatially localised cluster on the
guitar neck

the longest pair of parallel lines in this region it can be
found using computer vision line detection techniques

The frets are located on the normalised guitar neck im-
age again using line detection. These fret candidates are
used to estimate the bridge position. Then frets are com-
pared with their neighbours. Frets that are not the cor-
rect distance from a neighbour are rejected. Correctness
is assessed using the “seventeen rule” used by Luthiers.
The distance between two adjacent frets is the distance
between the furthest fret and the bridge divided by ap-
proximately seventeen. Equation 1 shows how to more
accurately calculate this distance, where F is the distance
from a fret to the bridge.

Fn/Fn+1 =
12
√

2 (1)

Of the remaining frets, an improved prediction of the
location of the bridge can be made.

4.2.3. Tracking

After an initialisation phase a tracker is used to improve
the reliability of locating the guitar neck.

Tracking is done by means of a particle filter [9]. The
parameters used for the tracker are the x and y co-ordinates
of top left corner the neck and the neck rotation in the
frame. The length and width of the neck are already es-
timated via a voting mechanism from the first n frames
using the neck detection described previously. For sim-
plicity, the particle transitions are just a random walk.

4.2.4. Fretting hand/finger location

The skin recognition GMM data set was adequate for lo-
cating the hands in the scene but was not good enough to
get an accurate contour of the hand on the neck of the gui-
tar for later processing. The original data set is used to
bootstrap the process but then Expectation Maximisation
(EM) is used to update the GMM parameters [11], using
the algorithm explained in [13]. To achieve this, an area
of pixels that are known to be skin is needed. Once the
neck is located the region is then cropped and searched
for skin pixels. This search looks for an RGB cluster that
is spatially localised.

Running the K-means algorithm on the RGB colour
values of the neck showed promising results. A binary
image is formed from the cluster. This can be used to find
the contour of the hand (after some cleaning-up) and sub-
sequently the pixels within the contour are used to update
the GMM via EM.

We are working on identifying fingertips from the de-
tected hand pixels to reduce the list of accessible notes.

(b) Fingertips detection

Figure 2.5: Segmentation of face and hands using fore- ground detection and skin
colour detection

• Guitar Neck Location : Neck position was assumed between the hands
of the guitarist. Line detection techniques were used. Also Luthiers
seventeen rule was used in order to determine the bridge position.

• Fretting Hand/Finger Location : Skin recognition as described in
Performer Location section was good but not enough for accurate con-
tour. Expectation Maximization was used to update GMM. Once
the neck was located then within this area, skin pixels were searched and
after determining, it is cropped. This search is lies on RGB clusters.

One complete study about the gestural analysis of guitar performances is the
dissertation of Norton (Norton, 2008). His aim was to identify the gestures
required for the generation of each guitar sound and their analysis. Norton
used a motion capture system in order to capture the gestures. Specifically,
30 markers were placed on specific areas of the player, which were thumb,
fingers, wrist joints of the both hands, the elbows and the shoulders. Then,
the guitarist was asked to repeat each articulation four times at three different
separate dynamic levels. Norton contributions are very interesting to catalog
and characterize guitar expressive resources, but his work did not analyzed
their use in real musical pieces.

2.3 Symbolic Analysis

In guitar same note, and even the same chord, can be played in different
positions of the fretboard. Unless cited the explicit position, it is the personal
choice of the performer. As we explained in Section 2.1, together with the
plucking point, playing the same note at different places of the fretboard may
have important effects on the timbral characteristics of the note. Therefore, the
choice of the note places can be clearly considered as musical expressive choices.
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As an example, when designing systems for musical synthesis, determining the
finger places of the notes can help a lot in generating the appropriate sound
nuances.
In addition to standard notation, guitarist also use tablature notation. Tabla-
ture is a form of musical notation indicating instrument fingering rather than
musical pitches (see Figure 2.6). Tablature notation is mainly used in string
instruments. Each string of the instrument is represented with a line and
synchronously note positions are marked with the fret numbers.

Figure 2.6: Each line on the bottom of the standard notation corresponds to a string
in the guitar and each number corresponds to the fret position.

Since same note can be played in different positions of the fretboard, conversion
from a standard notation to tablature has its own constraints. Tuohy D. &
Potter W. (2005) conducted a study that produces tablature from the standard
notation. They used genetic algorithms (GA) in order to produce different
tablatures, Figure 2.7. As the fitness function, they used the finger position
complexities from the study of Heijink & Meulenbroek (2002).
One year later, in his master thesis Daniel R. Tuohy (Tuohy, 2006) in addition
to GA he also includes neural networks. He used a previously constructed
guitar tablature data set Classtab.org (2006). 75 classical guitar tablatures
were used in order to train the system. From this 75 pieces 1853 patterns were
created.
Similar to Tuohy D. & Potter W., Radisavljevic & Driessen (2004) investigate
the optimal fingering position for a given set of notes. Their method, path
difference learning, uses tablatures and AI techniques in order to obtain fin-
gering positions and transitions. However rather than using the cost function
of Heijink & Meulenbroek (2002), they defined two cost functions; transition
and static. Transition cost function defines the cost transition between dif-
ferent fingerings and static cost function computes the difficulty of alternative
fingerings, Figure 2.8.
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on which they were tested, but both have limitations. The
prototype from the University of Torino cannot account
for situations where more than one note needs to be played
simultaneously (a chord). The program from the Univer-
sity of Victoria appears to be a “lazy learner” which im-
proves its accuracy by requiring customized learning for
each piece. Our algorithm aims to be able to generalize to
any piece with a satisfactory degree of accuracy, though it
will be difficult to assess which algorithm produces more
desirable results. Another group from Doshisha Univer-
sity reports success in generating tablature superior to that
of commercial software, but once more the program is
limited to producing tablature for melodies without chords[6].
It should be noted that the former two approaches include
Left Handed Fingering notation, which instructs the player
on which specific fingers to use. Our approach does not
currently support this feature.

3. THE GENETIC ALGORITHM APPROACH
FOR TABLATURE GENERATION

3.1. The Genetic Algorithm

A Genetic Algorithm (GA)[7][8] is a stochastic search al-
gorithm that aims to find good solutions to difficult prob-
lems by applying the principles of evolutionary biology.
Evolutionary concepts such as natural selection, mutation
and crossover are applied to a “population” of solutions
in order to evolve a very good solution. Problems suited
for a GA are those whose number of possible solutions
(search space) is so large that finding good solutions by
exhaustive search techniques is computationally imprac-
tical. The genetic algorithm is also useful for tackling
search spaces with many scattered maxima and minima.
This property of GAs is essential in the search for tabla-
ture, as the search space can be quite large, generally on
the order of 3n where n is the number of notes.

3.2. Implementation

The population for our GA is a collection of tablatures
that are valid, though not necessarily desirable, for a given
piece of music. The initial population is generated ran-
domly. A tablature “chromosome” is defined as a sequence
of chords. A chord is a “gene” and consists of fretboard
positions for all the notes in that chord. A chord, in this
sense, is any combination of notes that are played simul-
taneously. Pieces are generally not evolved all at once, but
rather should be divided into logical excerpts and evolved
separately. Evolving an entire piece is generally undesir-
able as it would likely create a search space too large for a
GA to search effectively in a reasonable amount of time.
The parameters for the GA are those which have em-

pirically led to convergence on the most fit individuals and
were tuned manually. Our GA has a population size of
300 and uses binary tournament selection with two-point
crossover. The crossover rate is set at 60% and the muta-
tion rate (which mutates a single random chord) is set at
7%. To increase the overall performance of the program,
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Figure 2. Obtaining children from two parents. Music
from “Stairway to Heaven” by Jimmy Page and Robert
Plant[1].

we found it useful to run the GA several times for 100
generations and save all of the most fit individuals found.
We then run the GA once more with a population com-
posed predominately of these individuals. Very often this
final run will produce an individual more fit than any other
found so far. This is often the best individual ever found as
defined by our fitness function. The chance that this indi-
vidual is optimal varies with the length of the excerpt and
the complexity of the corresponding search space. This
“seeding” scheme is often necessary because of the de-
ceptive nature of the problem. Deception arises because
each piece of music has several globally competitive but
structurally divergent optima.

3.3. Fitness Function

Our function analyzes a tablature in many different ways
to assess its playability. This assessment is partially in-
formed by the analysis of finger-positioning complexity of
Heijink andMeulenbroek[5]. Unfortunately, it has proven
very difficult to accurately capture difficulty by simply
keeping track of the movement of individual fingers and
our approach is therefore significantly different from that
of other academic tablature generators. We acknowledge
that an approach that assesses difficulty as a function of
each finger’s movements is more elegant and potentially
more accurate, but we found implementation of such a
scheme to be impractical. We found it satisfactory, and
far simpler, to devise a set of heuristics that estimate diffi-
culty by defining general properties to which good tabla-
ture tends to adhere and measuring tablature against these.
The function can be thought of as calculating two separate
classes of tablature complexity, difficulty of hand/finger

Figure 2.7: Genetic algorithm schematic. Music from "Stairway to Heaven" by
Jimmy Page and Robert Plant.

Figure 1. An example of generating polyphonic fingering
alternatives for a single note set {C5,E4}. Symbols

correspond to fretboard graphics directly above. The
numbers located above each fret-string position identify the

finger used.

Given a list of choices at each stage k the transcription
process selects the fingering alternative from set Sk as
described in Section 1. To measure these criteria we define a
transition cost function Ct(i,j) and static cost function Cs(i).
The former defines the cost of transition between two
consecutive stages, i.e. from state i !Sk  to state j  Sk+1.
Static cost function takes a single state i as the argument.
The variables i and j are used as a more compact notation
for states taken from sets Sk. A fingering sequence incurs a
total path cost equal to the weighted sum of  static and
transition cost terms for the states occurring on the path (see
figure 2).  The  static cost term is a novel feature we
introduce primarily to model the varying static difficulty of
different fingering alternatives when multiple notes are
played simultaneously.

With cost functions specified we are now able to search
for the optimal path as illustrated in the state transition
graph (figure 2).  Dynamic programming algorithm
performs this search efficiently in a stage-by-stage manner
based on Bellman’s principle (Bertsekas 1987).  Exhaustive
search, by comparison, would require evaluation of all
possible paths through the transition graph. The dynamic
programming algorithm proceeds backward in a recursive
fashion according to the following equation,

),()( iCiJ sN !     NSi" (1)

),()}(),({min)( 1
1

iCjJjiCiJ sktSjk
k

##!      kSi"

0,...,2,1 $$! NNkfor (2)

where )(iJ k is the minimum cost from state i !Sk to the
terminal node. Retracing this path for )0(0J , i.e. from initial
state yields the globally optimal path.

Figure 2. The state transition graph. The number of states
will in general be different at each k.

3 Using Feature Representation for
Fingering Alternatives

From the definition of states G  we observe that there is
a large number of  possible polyphonic states achievable
within physical constraints of the left hand. Each
combination of up to 6 positions on a string-fret grid of
6x17 and each combination of associated fingers results in a
unique state.  The approach of assigning a static cost to each
state and a transition cost to all possible state transitions
results in prohibitive memory requirements, since
calculating transition cost directly in the state domain would
require a lookup table with an entry for each combination of
states (i,j). Instead we seek to extract features which contain
the information to discriminate between desired and
undesired states. Examples of transition features are
“number of frets traversed by a specific finger”, “finger
changes from used to unused”, etc. Example of static
features are “number of frets between consecutive fingers”,
“average fret location”, “number of empty strings ”, etc. The
cost functions can then be expressed in terms features
extracted from states as following,

ttt wjiFjiC %! ),(),( (3)

sss wiFiC %! )()( (4)
where feature extraction functions Ft(i,j) and Fs(i) result

in vectors of transition and static features respectively and
weights determine the “relative-importance” of individual
features. In the linear case expressed in (3),(4), the cost is
simply an inner product between feature vectors Ft , Fs and
the weight vectors wt ,ws  respectively. Since features nicely
describe important physical aspects of the fingering
alternatives they can be effectively used to reject impossible
states from the combinatorial expansion described in figure
1. This can further greatly reduce the DP search space.

4 Path Difference Learning
PD learning requires a training set which consists of an
input sequence of notes and the corresponding fingering
sequence selected by an expert guitarist. We shall refer to
the later as the desired path within the dynamic
programming transition graph. The desired path, which can
readily be obtained from guitar tablatures, represents a
playing style we seek to model by adjusting the weights of
the cost functions. The resulting weights determine the
relative importance of individual cost measures for this
playing style.  The goal of  this learning phase is to use the
trained system to generate transcriptions in the same
fingering style for other guitar compositions.
   The main idea behind PD learning is to adjust the cost
function weights until the desired path becomes optimal
within the dynamic programming search (1),(2). To achieve
this search in the cost function weight space it would be
convenient to apply some stochastic search method such as
simulated annealing (Kirkpatrick, Gelatt and Vecchi 1983)

Figure 2.8: Finding the optimal path. Each Gi is a state (note or set of notes)

Scholz & Ramalho (2008) proposed a new approach to recognize chords, from
symbolic guitar data, called COCHONUT (Complex Chords Nutting). As they
stated, there are more studies about symbolic guitar chord recognition, but in
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this study their challenge was to deal with non quantized data. Their test set
includes 270 hand label chords. More importantly, their system could be able
to recognize 7th, 9th and even 13th chords.
Costalonga & Miranda (2008) investigated what is intentional during a perfor-
mance and what is unintentional. Authors used biomechanical models. This
paper is a further study of Heijink & Meulenbroek (2002) by focusing the
symbolic information that was gathered from a MIDI guitar. Heijink & Meu-
lenbroek investigated the right hand positions only considering the single notes,
this time Costalonga & Miranda included chords. Five male guitarists were
used. Rather than a real guitar, experiments was done with Yamaha EZ-AG,
Figure 2.9.

Figure 2.9: Yamaha EZ-AG is an electronic guitar with lights in the frets and dif-
ferent sound options such as 8 different guitars, banjo, piano. Yamaha commercializes
this product as self-teaching instrument.

Each performer recorded a sequence of chords in the different positions of the
fretboard. They were trying the measure the speed of the change in chord
positions. Performers played the same chords in different positions of the
fretboard. For instance first position was between fret [1..4], second position is
[2..5], third position is [3..6] etc.They also determined starting reference points
for all the chord. After that, they measured the time from the last reference
point released to the final shape of the chord. This task was repeated for
ten chords, C, A, G, E, D, Am, Dm, F, D and Bm. The overall speed of
the chord shape was calculated as the mean of the three performers. At the
end Costalonga & Miranda (2008) came up with below results;

1. Bar chords longer to perform.

2. First position G chord is one of the slowest to perform.

3. The average time for performers to perform a chord is 350ms.

Recently Barbancho et al. proposed a system for the extraction of the tablature
of guitar musical pieces using only the audio waveform (Barbancho et al., 2012).
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Their model uses inharmonicity analysis to find the simultaneous string/fret
combinations used to play each chord.

2.4 Expressive Performance Analysis

There are recent studies, (Aho & Eerola, 2013), that investigate the similari-
ties between different expressive segments of audios by using audio alignment
tools, such as MATCH (Dixon & Widmer, 2006). However, our aim is to study
the expressive resources, the resources used by musicians to convey expressiv-
ity. As we defined in the introduction (see Chapter 1), expressivity can be
defined as the deviations from the actual score. However, these deviations
could be subjective. Therefore, in order to analyze and understand expressive
performances we need to find objective ways to measure them. Core expressive
resources in guitar can be grouped in two classes: expressive articulations and
timing deviations.

2.4.1 Analysis of Guitar Articulations

One of the most important steps when analyzing guitar expressivity is to iden-
tify and characterize the way notes are played, known as expressive articula-
tions. The analysis of expressive articulations has been previously performed
with image analysis techniques as we mentioned in the Section 2.2. One of
the few studies about guitar articulations, which we also cited in Section 2.2
is the dissertation of Norton. According to Norton (2008), guitar expressive
articulations can be divided into three main groups related to the place of
the sound where they act: attack, sustain, and release articulations. Besides
from Norton there is a recent study devoted on articulation analysis of gui-
tar (Migneco, 2012). As the Migneco titled his dissertation, Synthesis of the
expressive articulations of guitar, the main aim of study was to synthesize the
classical guitar sound rather than the articulations that Norton defined. Ma-
jority of the dissertation covers the audio synthesis techniques such as resonant
string response.
Except these two, in the Music Information Retrieval (MIR) literature there
are few studies about articulations as a whole. However, by its own, vibrato has
been analyzed in several studies. Rossignol et al. (1999a) proposed 5 different
algorithms for detection, estimation, extraction and modification of vibrato.
The methods proposed vary from spectral envelope to F0 trajectory analysis.
F0 trajectory approaches were tested with continuous excitation examples like
singing voice and flute. Järveläinen (2002) reported four listening experiments
for exploring the perception of vibrato and proposes rules for synthesizing
high-quality vibrato sounds. There are three main important features in vi-
brato: rate, extend, and intonation. Pang & Yoon (2005), used probability
modeling existence using vibrato rate, extend and intonation. Tested instru-
ments were of continuous excitation like oboe, trumpet, cello, or viola. In a
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similar direction, Verfaille et al. (2005) performed listening experiments where
different vibrato models are compared. Their generalized vibrato model com-
bines modulations of amplitude, frequency, and spectral envelope. Martens
& Marui (2006) analyzes the perception of vibrato, flange and chorus, which
are the three most often used digital audio effects. In their study, 25 listeners
were asked to make categorical judgments regarding their perception. More
recently, Wen & Sandler (2008) proposed and test several features to model vi-
brato. Their model contains two modules, analyzer and synthesizer. Analyzer
describes the frequency variations of a vibrato using a period-synchronized pa-
rameter set, and the accompanying amplitude variations using a source-filter
model. Synthesizer reconstructs a vibrato from a given set of parameters.

2.4.2 Timing Deviation

Timing is often considered to be the most important expressive resource, and
is perhaps the only variable over which any performer has practically complete
control, regardless of the instrument used (Gabrielsson, 2001). Timing gener-
ally refers to variations in note duration, onset delays, or onset anticipations,
introduced by a performer as compared to the strict adherence to tempo and
notated score values. Research on timing deviations has a long history, dating
back to the beginnings of the twentieth century (for pointers to such early
works we refer to (Gabrielsson, 1999)). Overall, the wealth of existing litera-
ture confirms that performers make "systematic and significant deviations from
strict metricality" but, at the same time, indicates that "it is hard to make
generalizations about the nature of [such] deviations" (Gabrielsson, 2001).
In the literature we find contrasting and complementary views on the origin
of timing deviations. There is evidence that timing deviations help the lis-
tener to clarify phrasing (Istók et al., 2013; Repp, 1998; Todd, 1992), metrical
accents (Sloboda, 1983), musical form (Liem et al., 2011), and harmonic struc-
ture (Palmer, 1996; Repp, 1990). Complementarily, different note patterns
or groups exhibit some common timing “tendencies” (Gabrielsson, 2001). All
these works point towards musical structure as a source for timing deviations,
what constitutes the basis of the so-called generative approach (Clarke, 2001).
However, to the best of our knowledge, there is yet no systematic, compelling,
and large-scale study in this direction (e.g., involving multiple pieces, perform-
ers, instruments, styles, and epochs). Moreover, timing deviations might not
arise solely from music structure. It has been also shown that they can be id-
iosyncratic of a performer’s style (Liem et al., 2011; Repp, 1990, 1992), to the
point that machines can identify such performers using automatically-extracted
timing information (Grachten & Widmer, 2009; Stamatatos & Widmer, 2005).
Emotional expression is also assumed to play an important role (Juslin &
Sloboda, 2001, 2013). Besides, we also find the so-called perceptual hypoth-
esis (Penel & Drake, 1998), in which some observed variations would be due
to functional constrains of the auditory system. This way, some time intervals
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would be heard shorter and thus played longer as a phenomenon of perceptual
compensation (Penel & Drake, 1998). Additionally, some timing deviations
may be shaped in accordance to patterns of biological motion (Juslin, 2003) or
instrument-related motion (Gabrielsson, 1999, 2003). Last, but not least, one
could always attribute timing deviations, to some extent, to random variabil-
ity (Goebl & Palmer, 2013; Juslin, 2003).
Chen et al. (2001) analyzes the human sensorimotor error with 8 human partic-
ipants. Each participant attempt to coordinate finger tapping with a computer
generated metronome. They made two types of experiments, synchronization
and syncopation. In each case error was defined as the timing difference be-
tween key press and the associated metronome onset. They presented that
for each case long-range correlations are exist. Delignieres et al. (2009) suc-
cessfully replicate the results of Chen et al. (2001) with two additional test
subjects. Moreover they further showed by ARFIMA/ARMA modeling that
in both synchronization and syncopation, series contained genuine long-range
correlation.
Hennig et al. (2011) analyzed deviations from metronome beat positions of
hand, feet and vocal performances by both amateur and professional perform-
ers. In their paper they show that these deviations are are not random and
long-range correlations are much more pleasing and preferable for listeners.
However in the scope of expressive analysis, their study cannot go beyond just
analyzing error of controlled studio recordings of performers who try to follow
an exact tempo.



CHAPTER 3
Expressive Articulation

Extraction

3.1 Introduction

Our research on musical expressivity aims at developing a system able to iden-
tify and analyze the expressive resources exploited by classical guitar perform-
ers. To achieve our goal, we have divided the process in three stages:

• Low-level feature extraction (onset, pitch, amplitude, periodicity etc.).

• Higher-level feature extraction models build on top of low-level features
(chroma, interpolation etc.).

• Analysis of the resources that we identified by using both low and high
level features.

In this chapter we focus the analysis on three of the most-widely applied ex-
pressive guitar articulations: legato, glissando, and vibrato. Specifically, we
present a system that combines several state of the art analysis algorithms
to identify and characterize guitar legatos, glissandos, and vibratos. Besides
from the analysis, we also propose a tool able to identify expressive resources
automatically in the context of real classical guitar recordings.
Although all three guitar articulations share common feature extraction method-
ologies (see extraction module in Figure 3.1), explained in Section 3.2, they
need significantly different approaches for further extraction and classification
purposes. Briefly, our method first distinguishes between non-articulated, vi-
brato, and legato or glissando. Further details will be provided all through
next sections.
After describing the components of our system, we report the experiments
conducted with recordings containing single articulations, short melodies per-
formed by a professional guitarist, and also commercial recordings of Villa
Lobos Prelude Number 4 performed by different guitarists.

21
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Figure 3.1: Main diagram for the proposed expressive articulation extraction and
classification methodology.

3.2 Feature Extraction

As we stated above, our aim is to extract, analyze and classify three main guitar
articulations: legato, glissando, and vibrato. For this purpose, our model
has two main modules: extraction and classification (see Figure 3.1). The
extraction module constructs a model according to our needs. After describing
the process of extraction of low level features such as onset detection (section
3.3.1), pitch detection (section 3.3.2), and detection of attack and release points
(section 3.3.3), a detailed description of the extraction module is provided in
Section 3.3. Each of these low-level extraction tasks is an area of research (Bello
et al., 2005; Brossier, 2006; de Cheveigné, 2005; de Cheveigné & Kawahara,
2002). Therefore, we did not aim to construct or propose new extraction
algorithms for any of the listed features. Rather, we come up with robust
optimization solutions by using existing algorithms according to our needs.

3.2.1 Onset Detection

Onset detection (or segmentation) is the process by which we can divide the
musical signal into smaller units of sound. Onset detection still is an active
area of research1.
In music information retrieval (MIR), onset detection is perhaps one of the
most important tools. It can be used as the core method for several high-level
systems, such as identifying the beats from a recording of polyphonic music
by looking for the drum onsets (Alghoniemy & Tewfik, 1999) or for melody
detection on a monophonic signal, to determine when an instrument is actually
playing (Thornburg et al., 2007) .
In music signal processing, there exist different techniques of varying the com-
plexity for automatic onset detection (Bello et al., 2005; Müller et al., 2011).
These techniques usually work on the time domain, the frequency domain,
or both (Bello et al., 2005; Brossier, 2006; Collins, 2005). More specifically,

1http://www.music-ir.org/mirex/wiki/2013:Audio_Onset_Detection

http://www.music-ir.org/mirex/wiki/2013:Audio_Onset_Detection
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Figure 3.2: Onset detection method.

there are approaches including finding abrupt changes in the energy enve-
lope (Dixon, 2001), in the phase content (Bello & Sandler, 2003), in pitch
trajectories (Rossignol et al., 1999b), in audio similarities (Foote & Cooper,
2000), in autoregressive models (Jehan, 1997), in spectral frames (Gouyon
et al., 2003), and using psychoacoustic knowledge (Klapuri, 1999). In addition,
there are also high-level techniques which combine different methods such as
neural networks (Bock et al., 2012) or hidden markov models (Abdallah &
Plumbley, 2003) .

Limitations

It is not expected that a single method or parameter combination should work
for any recording (Bello et al., 2005). In our research, as we stated previously,
we do not aim to come up with a new onset detection technique. Rather our
approach was aimed to find an appropriate function and tune its parameters
according to guitar characteristics. In order to be able to test several state
of the art methods we chose Aubio library (Brossier, 2006). It gave us all
the functionality by having different onset detection functions. However, con-
sidering that Aubio library has 7 different onset detection functions and each
function has 4 continuos parameters, choosing by trail and error was not an
option. Then, our approach was to exploit an optimization algorithm to find
the best fitting algorithm and parameters.
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Particle Swarm Optimization

For selecting the best algorithm and parameters we developed a particle swarm
optimization (PSO) algorithm (Kennedy & Eberhart, 2001) and tuned our
parameters according to PSO. PSO iteratively tries to improve a candidate
solution with regard to a given measure of quality. In a PSO algorithm there
are three main concepts: population (swarm), candidate solutions (particles)
and the cost function. In each iteration, for each particle pi, a fitness value is
computed from the cost function f(pi). The best position (according to the
fitness) of the particle is stored and called the personal best βi. Also best
of all personal bests is stored and called global best βglobal. The algorithm
starts by randomly assigning particles. These particles are moved around in
the search-space according to a pre-determined formula. The movements of
the particles are guided by their own personal best as well as the global best.
When improved fitnesses are being discovered, they are used to update particle
and global bests. The process is iterated many times with the goal, not fully
guaranteed, that a satisfactory solution will eventually be discovered. In our
case our optimum solution is the global best at the end of the PSO process.
Our problem was, not having an optimized algorithm and its parameters for
onset localization in commercial guitar recordings. Our ground truth was 6
commercial guitar recordings. Specifically, from a set of 12 commercial record-
ings, we selected 6 of them as training for PSO and use the rest of the pieces
for expressive articulation detection. We hand annotated the onset positions
of each recording. Our aim was to maximize the result of the Fitness Func-
tion. Each PSO implementation either needs a termination condition such as
a fitness threshold or maximum number of iterations. In our implementation
it was a pre-determined maximum number of iterations.
In our case a particle, pi, is a configuration in the solution space. Specif-
ically, each onset function and its corresponding parameters was modeled
as a dimension d1, d2, d3 . . . dn. Thus, a particle was represented as a tuple
pi = (d1, d2, d3 . . . dn). We had 5 dimensions and each dimension can take
values between 0 and 1. Actual names of the dimensions are summarized in
Table 3.1. As we stated previously, the PSO algorithm starts by randomly as-
signing the positions of each particle. Each particle pi owns a velocity vector,
~vi, which influences position updates according to a simple discretization of
particle motion:

pi(t+ 1) = pi(t) + ~vi(t+ 1) (3.1)

~vi(t+ 1) = χ(~vi(t) + Uφ(βg − pi(t)) + Uφ(βi − pi(t)) (3.2)

where pi, ~vi, and t are particle position, particle velocity, and time (iteration
counter) respectively; Uφ represents a vector of random numbers uniformly
distributed in [0, φ]; βi and βg are, respectively, particle best position and
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global best position; and χ and φ are constants that take the standard values
χ = 0.729843788 and φ = 2.05 (Clerc & Kennedy, 2000).

Dimension Name Actual Values PSO Range

d1 Algorithm

Complex Domain 0.0 - 0.14
High Frequency Content 0.14 - 0.28
Phase 0.28 - 0.42
Spectral Difference 0.42 - 0.56
Energy 0.56 - 0.70
Kullback Liebler 0.70 - 0.84
Modfied Kullback Liebler 0.84 - 1.00

d2 Window Size (ω)

128 0.00 - 0.14
256 0.14 - 0.28
512 0.28 - 0.42
1024 0.42 - 0.56
2048 0.56 - 0.70
4096 0.70 - 0.84
8192 0.84 - 1.00

d3 Hop Size

ω/4 0.00 - 0.25
ω/3 0.25 - 0.50
ω/2 0.50 - 0.75
ω/1 0.75 - 1.00

d4 Silence Threshold -90 - 0 0 - 1

d5 Peak-Picking Threshold 0 - 1 0 - 1

Table 3.1: Summary of each dimension and its corresponding PSO value.

We used out of sample audio files in PSO evaluation. If the onset that is
detected by the chosen algorithm is between the range of 100ms of the ground
truth onset, we marked this onset as a True Positive (TP), otherwise it is
marked as False Positive (FP). For each ground truth onset there can be only
one onset candidate. If there are more than one onset candidates that are in
the range of 100ms only the nearest one is considered and others are marked
as FPs:

f(pi) =
#TP (pi)

#GTOnsets
− #FP (pi)

#AllOnsets
(3.3)

Our fitness function takes values from -1 to 1. The complete PSO algorithm
for maximizing a fitness function f is summarized in Algorithm 3.2.1.
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// Initializations for each particle do
Randomly assign particle position pi Randomly assign a first
velocity vector, ~vi

end
while termination criterion reached do

for each iteration t do
for each particle i do

pi(t+ 1) = pi(t) + ~vi(t+ 1);
if f(pi(t+ 1)) > f(βi) then

βi = pi(t+ 1);
end
if f(pi(t+ 1)) > f(βg) then

βg = pi(t+ 1);
end

end
end

end
Algorithm 1: Implementation of the PSO algorithm. pi refers to each par-
ticle, βi refers to particle best, and βg refers to the best of all particles (global
best).

We run our PSO algorithm with 10 particles and 50 iterations. As shown in
Figure 3.3, at the end, according to our fitness function we reached a measure
of 0.98 with the Kullback-Liebler onset detection algorithm (Hainsworth &
Macleod, 2003), a window length of 1024 samples, a hop size of 512 samples, a
peak-picking energy threshold of 0.53, and a silence threshold of −67 dB. For
each audio the sampling rate was 44.1 KHz. For further explanations of the
parameters we refer to the Aubio documentation2 and also the dissertation
of Brossier (2006).

Kullback-Liebler Onset Detection Function

Kullback-Liebler onset detection function works on frequency domain (Hainsworth
& Macleod, 2003). Basically it computes the distance of the amplitudes of each
point between two consecutive frames by using the Kullback-Liebler distance
function:

DK−L(n) =

N
2
−1∑

k=0

(|Xn(k)|) log2

( |Xn(k)|
|Xn−1(k)|

)
(3.4)

2http://aubio.org/doc/onsetdetection_8h.html

http://aubio.org/doc/onsetdetection_8h.html
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4 Results
The eventual algorithm also used band-wise processing

to extract harmonic onsets from different bands: 30-300Hz,
300Hz-1kHz and 1-5kHz were chosen to represent bass, low-
mid and high-mid frequencies. Above 5kHz, some instru-
ments maintain clear harmonic power (e.g. trumpets) but in
many examples, the harmonic information at these frequen-
cies is unclear and hence ignored. Details of the algorithm
are as follows: an STFT frame length of 4096 samples was
used with histogramming performed over +/- 10 frames; the
smoothing kernel for detection was of length 20 frames; and
processing of long samples was broken into individual 10s
samples (mainly for computational purposes).

Figure 3 shows the results of the complete algorithm for
the choral example used throughout the paper. Only one true
change (at 3.9s) out of 20 is completely missed in all bands,
while there are no false detections. It should be noted that the
missed change was discarded by the 2nd detection stage in
this example.

This level of accuracy is maintained over examples from a
wide variety of styles with no extra adaption of the algorithm.
Often, these examples contain percussive onsets which would
be adequately detected using existing techniques. Though
this algorithm will sometimes detect these, if the underlying
harmonic structure does not change, often the second stage
of the detection algorithm will discard these purely percus-
sive changes. This means that the algorithm is a true detec-
tor of harmonic change. Further examples can be found at
http://www-sigproc.eng.cam.ac.uk/˜swh21.

5 Conclusions
This paper presents a number of methods for detecting

musical changepoints which are mainly harmonic in nature
as opposed to power transients. The proposed technique per-
forms very well with low computational cost and algorithmic
complexity. The output of this detector is intended to be used
alongside data from a transient locator in a beat detection al-
gorithm detailed in (Hainsworth and Macloed 2003).
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Figure 3.4: Kullback-Liebler distances of each frame of an example audio sample.

where Xn is the Short Time Fourier Transform of the nth frame of the data
with the length of N bins. An example is shown in Figure 3.4, where each
peak corresponds to an onset candidate in the example audio sample.

3.2.2 Pitch Detection

Estimating pitch or fundamental frequency from a signal is called pitch de-
tection. This detection technique is widely used in speech and music studies.
Computational studies for the understanding of pitch perception goes back to
1970’s (de Boer, 1976). There are two interesting studies for the readers who
are passionate about making progress in understanding state of the art pitch
detection algorithms (PDA). First one is the survey of de Cheveigné (2005), in
which he explains both the methodologies and practical uses of PDAs which
are published before 2005. Second one is shorter but one of the most recent
surveys upon the written date of this dissertation (Babacan et al., 2013). Both
surveys cite Yin algorithm as one of the most popular and accurate PDA.
Yin is an algorithm, which is presented for the estimation of the fundamental
frequency of speech or musical sounds (de Cheveigné & Kawahara, 2002). It
is based on the well-known autocorrelation method with a number of modifi-
cations that are combined to prevent errors. Yin algorithm has three outputs:
aperiodicity, fundamental frequency, and energy. Furthermore, its analysis pa-
rameters can be modified, with fields explained in Table 3.2. By this way Yin
algorithm can be tuned according to desired input.

3.2.3 Attack and Release Points

Sounds that are produced by musical instruments have a regular pattern that
repeats in time. Although these sounds are rather complex, they share a
common characteristic with sinusoids: the periodicity. This periodicity leads
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Parameter Explanation

Input

f0-min minimum expected F0 (default: 30 Hz)
f0-max maximum expected F0 in Hz
threshold threshold (default: 0.1)
relfag if 0, thresh is relative to min of difference function
window integration window size (defaut: SR/minf0)
hop hopsize((default: 32/sampling rate (P.sr)))
buffer size size of computation buffer (default: 10000)
sampling rate sampling rate (usually taken from file header)
low pass intial low-pass filtering (default: SR/4)
shift 0: shift symmetric, 1: shift right, -1: shift left (default: 0)

Output
f0 fundamental frequency
aperiodicty aperiodic content of the input
energy energy content of the input

Table 3.2: Input and output parameters of YIN algorithm

humans the perception of pitch (Goldstein, 2001). In other words, as the
sound gets more periodic, the pitch content increases as the aperiodic con-
tent decreases. In order to find the portion that contains the most of the pitch
content we need to find the portion that contains most of the periodic informa-
tion. Therefore, to find the sound fragment with the highest periodic content
between two onsets, we first find the fragments with the highest amount of
aperiodic content and omit these fragments. Previous to a detailed explana-
tion, improvement is exemplified in Figure 3.5. From top to bottom first graph
on Figure 3.5 is the audio fragment that we are analyzing, second graph is the
amplitude and third graph is the aperiodicity of this audio portion.
Before deciding to use aperiodicity, our first attempt was to use amplitude in
order to decide the attack and release points. However as shown in Figure 3.5,
what actually we were doing was omitting a useful portion because of a wrong
detection of attack finish point and also introducing more noise to the system
because of determining a late release start point.
As shown in the upper first graph in Figure 3.6, our aperiodicity data was
noisy. Therefore, our first attempts to determine attack-finish and release-
start points failed. We needed to clean our data. In order to avoid noise and
obtain a smoother data first we applied envelope approximation.

Envelope Approximation

After obtaining a smoother data, an envelope approximation algorithm was
applied. The core idea of the envelope approximation is to obtain a fixed
length representation of the data, specially considering the peaks and also
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Figure 3.5: Comparison of different attack and release points.

Figure 3.6: Envelope approximation of Aperiodicity Graph of a Legato Note.
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avoiding small deviations by connecting these peak approximations linearly.
The envelope approximation algorithm has three parts: peak picking, scaling,
and linear interpolation. After the envelope approximation, all data regions
to be analized had the same length, i.e., regions were compressed or enlarged
depending on their initial size.

• Peak Picking
All the peaks higher than a pre-determined threshold were collected.
After a normalization step, the threshold applied was 0.1.

• Scaling
We scale all peak positions. For instance, imagine that our data includes
10000 bins and we want to scale this data to 1000. And lets say, our peak
positions are : 1460, 1465, 1470, 1500 and 1501. What our algorithm does
is to scale these peak locations dividing all peak locations by 10 (since
we want to scale 10000 to 1000) and round them. So they become 146,
146, 147, 150 and 150. Since after the scaling process we have 2 peaks in
146 and 150, we have to remove duplicates. In order to fix this duplicity,
we choose the ones with the highest peak value.

• Linear interpolation
After collecting and scaling peak positions, the peaks are linearly inter-
polated.

At the end of envelope approximation, we obtained a smother data as shown
in the middle graph in Figure 3.7. However, we were still introducing noise
because of the error in detection of release start point. In the last stage, what
we did was to apply smoothing with value of 50 bins. At the end, we obtained
a perfect estimation for the aperiodicity data, third graph in Figure 3.6, and
successfully determined attack finish and release start points.

3.3 Region Extraction

We have two main modules for the expressive articulation extraction, region
extraction, and classification. Differently from the classification modules, re-
gion extraction module is common for all the expressive articulation analysis
and extraction. Region extraction module also includes low level feature ex-
traction. We extract onsets, attack-release points, and pitch. The parameters
that we are using for each feature extraction method were explained in the
previous section (Section 3.2).

• Onset Detection
Vertical lines in Figure 3.9 represent the onset positions. Again in the
same Figure 3.9, in the bottom picture it can be observed that although
there are pitch changes both in the vibrato and legato part, we managed
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Figure 3.7: The bottom figure is an approximation of the top figure. As shown,
linear approximation helps the system to avoid consecutive small tips and dips.
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Figure 3.8: Main diagram for our expressive articulation extraction and first decision
methodology.

to optimize the parameters of our onset detection algorithm, enough less
sensitive for not considering these pitch changes as real onsets (More
details can be found in Section 3.2.1).

• Attack and Release Points Determination
Attack and Release Points are determined as explained in Section 3.2.3.

• Pitch Detection
After successfully determining the attack-finish and release-start points,
our second task was to analyze the sound fragment between these two
points. Specifically, we analyzed the sound fragment between attack end-
ing point and release starting point (because the noisiest part of a signal
is the attack part and the release part of a signal contains unnecessary
information for pitch detection (Dodge & Jerse, 1985)). Therefore, for
our analysis we take the fragment between attack and release parts where
pitch information is relatively constant.

We tuned our parameters as: minimum expected frequency 80Hz, max-
imum expected frequency 1500Hz window size 2048 bins, and hop size
1024 bins. Our silence threshold was −70db. According to our observa-
tions, other parameters have little effect on the outputs. Rather than
searching parameters for better Yin results, we designed pre-processing
techniques for cleaning the Yin outputs.

3.3.1 Pre-Processing

After feature extraction, in order to avoid octave errors and to analyze the
changes in notes rather than in frequency, we converted our pitch information
to its corresponding 12 step chroma representation. In this representation,
each step corresponds to a semitone. In guitar since each fret is separated
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Figure 3.9: Onsets and Pitch from the Extraction module.

with a semitone, each step corresponds to a fret. Therefore, this conversion
also makes the changes in semitones(frets) more abrupt. In the case of legatos
and glissandos in guitar, the change in 12 step chroma representation is always
greater than one step. So, after the 12 step chroma conversion, if the note
is legato or glissando, the pitch values should be represented by at least with
two different steps. If the note is a non-articulated or a vibrato note the pitch
values should be represented by a single step.
In Figure 3.10, each graph presents the bar representation of the chroma steps
occurrence percentage of the note. From left to right, first graph corresponds
to a non articulated note, second graph is a vibrato note, and third graph is
a legato or glissando note. As shown in Figure3.10, graphs one and two have
similar characteristics compared to third graph. The reason is that most of the
time the vibrato in the classical guitar falls in the same chroma step. In other
words, in the 12 step chroma representation, there are no distinctions between
a non-articulated note and a vibrato note.

First Decision

After obtaining the chroma occurrence percentages, for each note we search for
the peaks equal or greater than 80% . This means that, 80% of the frequency
frames of the note that is investigated corresponds to the same chroma step.
We classify these notes as non-articulated or vibrato notes. The rest are classi-
fied as Legato or Glissando notes. After this first decision we run two different
classification algorithms for both classes. Our Legato and Glissando classifi-
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Figure 3.10: Chroma representation of different notes. X-axis corresponds to 12-step
chroma value.

cation algorithm is going to be explained in Section 3.5. In the next section
we will explain our algorithm for differentiating between non articulated and
vibrato notes.

3.4 Vibrato Extraction

The two main characteristics of a vibrato are the vibrato amplitude; the range
of pitch oscillation, and the vibrato frequency ; the velocity of oscillation. Vi-
brato plays an important role in phrasing. Depending on the musical struc-
ture, vibrato varies in amplitude, frequency or dynamicity (Timmers & Desain,
2000).
Guitar sounds are unique, like other impulsive generated sounds, because their
overtones do not present an exact harmonicity relation. Moreover, because of
the complex resonances produced by the guitar body, the analysis of vibrato in
classical guitar present specific difficulties that are addressed in our proposal.
For instance, the periodicity of the vibrato is not regular. The behavior of
vibrato in guitar is much more different from the instruments that were inves-
tigated in previous studies. Therefore rather than trying to model the vibrato,
we check how the region is close to an ideal vibrato.
In this section we present the new capabilities of our system for vibrato detec-
tion. We propose the use of a 120 step chroma representation to analyze guitar
vibrato together with a measure of the distance to a model of perfect period-
icity on pitch oscillation. We will describe the complexity of vibrato detection
analyzing 10 different guitarists playing the beginning of Villa Lobos Prelude
Number 4 and a recording of Pepe Romero’s adaptation of a J. S. Bach Cello
Suite.
The structure of the section is as follows: Section 3.4.1 describes our method-
ology for vibrato determination. First we applied preprocessing techniques to
obtain clearer and smoother data for further analysis. Then we used descrip-
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Figure 3.11: Comparison of note extraction without chroma(top), and with chroma
features(bottom)
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Figure 3.12: Vibrato classification chart.

tors to classify the regions as vibratos. Section 3.4.4 focuses on the experiments
conducted to evaluate our system and summarizes current results.

3.4.1 Classification

In classification module we are using the output of region extraction module.
Therefore our input is either a non-articulated note or a vibrato note. Our
task is to differentiate between these two. To that purpose, we first apply a
pre-processing method and then we take a decision by using the descriptors
that we defined.

3.4.2 Pre-Processing

120 Step Chroma Representation

As shown in Figure 3.13, in twelve step chroma representation there are no
distinctions between non articulated and vibrato notes, hence we cannot rely on
twelve step chroma representation for differentiating between non articulated
and vibrato notes.
Although in Figure 3.13 there is significant visual distinction between frequency
representations of non-articulated and vibrato notes, tiny frequency deviations
in both cases cause false positive peak occurrences. Also in some cases, octave
errors can result in false positive peaks. In the case of vibrato, since we are
interested in the frequency deviations in the borders of a semitone, we came
up with a solution. We divided one semitone into 10 equal chroma steps. In
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Figure 3.13: Different F0 representations of a non-articulated and a vibrato note
with non-chroma, 12 step chroma and 120 step chroma, respectively.

this way we can only concentrate on the deviations one tenth of a semitone.
As a result of this, we obtained 120 step chroma representation.
After converting each note into 120 step chroma, we applied preprocessing
techniques. As shown in Figure 3.13, at the end of all graphs there is a leap.
As shown also in chroma representations this leap can not be avoided, thus it
is not an octave leap. We consider this frequency change as an error for our
system, because since we are analyzing between two onsets and we know that
the note is a candidate for either a non articulated or a vibrato note, there
should not be a frequency change more than one semitone. However neither
our system nor the guitar players are perfect, because of that, these changes
can be due to the beginning of the next note, a string buzz, a wrong estimation
of Yin etc. Therefore, we consider these changes as an error for our system.
According to our previous investigations, we know that the occurrence per-
centage of these errors are less than 5% all through the frequency bins. In
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Figure 3.14: Comparison of Vibrato.

order to clean these frequency leaps, we constructed the occurrence percentage
histograms of all the chroma bins, as we did in Figure 3.10, and cleaned the
ones that occur less than 5% frequency. After cleaning the errors, to obtain
the deviation in chroma, we simply calculated the average of all chroma bins
and subtracted from the 120 step chroma values. The before and after graphs
can be shown in Figure 3.14.

Peak Rearranging

All through our model, we used the chroma deviation values. Last prepro-
cessing that we applied to our data is Peak Rearranging. As shown in the left
graph in Figure 3.15, in some cases chroma deviation data could contain peaks
that are too close to each other. In order to determine and rearrange these
peaks, first we calculated the average distance between all peaks. Then we
determined the peaks which distance between them is lower than one fourth of
the average distance. Finally, we deleted those peaks and created a new one,
having an x coordiate value as the average of the deleted peaks and the value
for the y coordinate the corresponding value in chroma deviation values.
After the last preprocessing step, we may define our Descriptors (see diagram
in Figure 3.12). These descriptors are used to determine whether the audio
portion is a non-articulated or vibrato note.

3.4.3 Vibrato Detection Descriptors

In order to define vibrato, we need to understand and identify its behavior in
an audio content. For this purpose, we recorded basic exercises played on an
electric guitar. The reason to use an electric guitar is that we could record by
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Figure 3.15: Cleaning and rearranging the peaks.

using line signal which has the lowest artifacts like the resonance of the body,
reverberation and microphone character.
For our training set, we recorded basic chromatic exercises at three positions
as shown in Figure 3.17. Each position contains 6 mixtures of legato and
glissando and 6 vibrato notes. Since we repeated the exercise at three different
positions, we obtained 54 notes with 18 legato or glissando examples and 18
vibrato examples for our electric guitar test set. We used this training set for
initial understanding and the definition of the descriptors. Also we used the
training set to determine the values for Section 3.4.3. In this section we will
explain each descriptor we used for the classification of vibrato notes.

Peak Count
Our peak count feature contains two fields. Count of Maxima (red dots
in Figure 3.16) and also Minima (green dots in Figure 3.16). As we
will explain, minimum vibrato frequency for guitar is 4hz. Considering
this value, there needs to be a 4 full cycle deviation, for the perception
of vibrato. In other words there needs to be at least 4 peaks both in
Maxima and Minima.

In the case of Figure 3.16, Maxima Count is 7 and Minima Count is 7.
By the help of Peak Count feature, we can be sure that there are enough
positive and negative peaks for vibrato decision.

Peak Ratio
Peak ratio is the ratio of maxima to minima.

PeakRatio =
#Maxima

#Minima
(3.5)

For the perfect periodic deviation, there should be equal number of Max-
ima and Minima. Therefore, peak ratio value should be 1. However ac-
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cording our observation, considering the errors that we can not avoid,
the peak ratio can be between 0.3 and 3.

Deviation Threshold
As we stated in Section 3.4.2, in the means of F0 frequency deviation,
vibrato occurs between one semitone. Since we divided a semitone into
ten equal steps, in our analysis chroma deviation of a vibrato portion
should occur in the borders of -5 and +5. Therefore, we also check for
this deviation value.

Peak Deviation Percentage
In string instruments, the tonal variation of pitch in vibrato is between
0.7Hz and 3Hz, (Järveläinen, 2002). However our observations pointed
that the tonal variation value changes logarithmically as the perception of
notes. Therefore, rather than relying on directly the change in frequency,
we examined the change in 120 step chroma. According to 120 step
chroma scale we observed that the tonal variation is between 0.5 and 3
chroma steps.

In order to test tonal variation in an audio portion, we calculate the
occurrence percentage histogram of all peak values. Then, we sum the
percentage of values of the peaks that have values greater than 0.5. The
result provides a percentage estimation for the values of the peaks. For
instance, if the Peak Deviation Percentage value is 40%, it means that
from all the peaks, 40% percent of them have deviation values greater
than 0.5.

Peak Distance
Perception of vibrato relies on the periodic deviation of F0 (Järveläinen,
2002). In other words, in a vibrato note the deviation of F0 should be
evenly distributed all through audio portion. In this feature we are not
dealing with the amplitude of the deviation values. Our interest is only
the location of the peaks, which should be evenly distributed.

First we constructed a vibrato model with the peaks we gathered from
the audio portion. This model contains the peak positions of an optimal
vibrato that can occur with the number of peaks that we gathered. Then
we calculated the distance of each peak location with the closest peak
in the model. In Figure 3.16 green and red dots are the peaks that we
gathered from audio portion and dashed lines are the peak positions that
we construct. The Peak Distance value is;

d = abs(yrealPeak − ymodelPeak) (3.6)

PeakDistance =
PeakCount∑

i=1

di (3.7)
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Figure 3.16: Distances between real peaks and vibrato model peaks.

Vibrato Frequency
For string instruments, vibrato rate is typically 5Hz (Järveläinen, 2002).
However from to the analysis performed in our test set, in guitar vibrato
rate is between 4Hz and 14Hz. Therefore, in our model we took Vibrato
Frequency borders as 4Hz to 14Hz.

Decision

We are aware of that some features are correlated with other features. For
instance, if we know that Vibrato Frequency is higher than a given threshold,
we don’t need to count peaks or calculate peak ratios because in a lower level
Vibrato Frequency feature actually uses both the Peak Count and Peak Ra-
tio features. However, from a cost of computation point of view, calculating
Peak Count, Peak Peak Ration and Deviation Threshold features are much
cheaper than computing Peak Deviation Percentage, Peak Difference and Vi-
brato Frequency features. Therefore to increase our model’s performance first
we classify, whether the note is a vibrato candidate or not.

3.4.4 Experiments

The purpose of the experiments was to test the accuracy of the model that we
presented. We were interested in automatically detecting vibratos in context
which contains, non-articulated, legato or glissando and vibrato notes. Also
we tested our model both with chromatic exercises and real recordings.
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if Peak Count > 4 and 0.3 < Peak Ratio < 3 and Deviation Threshold
< 10 then

Note(i).type = vibrato candidate;
else

Note(i).type = non-articulated;
end
Then we test for computationaly more expensive features;
if Note(i).type == vibrato candidate and Peak Deviation Percentage >
40 and Peak Difference < 4000 and 4 < Vibrato Frequency < 14 then

Note(i).type = vibrato ;
end

Algorithm 2: Final Decision Algorithm. In this algorithm, in the first
step we can pick the obvious non-articulated notes from possible vibrato
candidates. In the second step we can run for our second set of features and
pick the vibrato notes.

Figure 3.17: Representation of our recording regions on a guitar fretboard.

Simple Exercises

Our chromatic exercises are the modified version of the Carlvaro’s guitar exer-
cises (Carlevaro, 1974). We recorded a collection of ascending chromatic scales
that contain non-articulated, legato or glissando and vibrato notes.
The performer was asked to play chromatic scales in three different regions of
the guitar fretboard. Specifically, we recorded notes from the first 12 frets of
the fretboard. As shown in Figure 3.17 we divided 12 frets into 4 fret equal
regions.
For our second set, again we recorded exercises at three positions. But this time
rather than mixing legato and glissando, first we recorded all three positions
with legato, vibrato and non-articulated notes and then recorded all three
positions with glissando, vibrato and non-articulated notes. At the end we
had 108 notes with 18 legato, 18 glissando and 36 vibrato examples.
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Classical Guitar Recordings
Recordings Legato Glissando Vibrato
Legato&Vibrato 18/17 | 18/10
Glissando&Vibrato | 18/18 18/10

Table 3.3: Performance of our model applied to second test set.

For the test set, for the legato & vibrato recordings we determined 17 legato
articulations out of 18. In addition to 17 we had one false positive result
for legato excerpts, which is a vibrato note classified as a legato. Also for
the glissando&vibrato recordings we had one false positive which is actually a
vibrato note. In the second set the correct hit rate of vibrato is lower than the
first set. The reason was that in the first set, the vibratos were much more
obvious and exaggerated.
The vibratos that we missed had a sonically less obvious vibrato character
than the ones that we determined correctly. The fact that the ones that we
missed have Vibrato Frequency value between 3 and 4, and Peak Deviation
value between 30% and 40% also proves our previous statement; our system
successfully determined the obvious vibratos.
Guitar strings have different tension strengths in the parts of the freeboard.
Parts that are closer to the neck and bridge have higher tension than to the
middle parts of the strings. So, in our case the string parts in first region have
the strongest tension value, second region has lighter and third region has the
lightest tension value. Therefore applying vibrato is harder in first section
compared the second and third sections. Our results are consistent with these
properties. In the first set we determine 3 out of 6 in first region and 10 out
of 12 in the second and third regions. In the second set, in legato&vibrato
recordings we determine 2 out of 6 in first region and 8 out of 12 in the second
and third regions. In glissando&vibrato recordings we determine 2 out of 6 in
first region and 8 out of 12 in the second and third regions.

Commercial Recordings

We also tested our model with commercial recordings. We used 7 different
professional guitarists’ recordings of first 9 bars of Villa Lobos Prelude Number
4. The recordings were stereo. Although in all of them guitars were recorded in
mono, because of the reverberation there was a big stereo field. Also most of the
recordings has noticeable amount of noise. Our first challenge was to decrease
reverb and noise as much as possible without harming the audio content. In
order not to introduce phase information, rather than summing two channels,
we used only the left channel. We applied -6db of noise reduction and a low
pass filter with cut off frequency of 8200Hz, and Q value of 0.71. By the help
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Figure 3.18: Villa Lobos’ Prelude Number IV.

of low pass filter we managed to decrease reverb in audio files.
Another difficulty that we faced was the polyphony of the guitar. Our model
is mainly builded for the analysis of melodies in the monophonic way. Because
of the polyphonic content in some cases our model failed. However in almost
all monophonic sections our model worked perfectly. Moreover, most of the
False Positives were in the polyphonic regions.
As shown in Figure 3.18, in the score, vibratos were not marked. Therefore
for each piece we annotated the places of the vibratos by hand. Although the
number of notes are constant in the score, the number notes that were played
by each performer also varied.

Villa Lobos 5 Preludes, Prelude IV
Performer #Notes #Vib. T.P. F.P.
Alvaro Pierri 28/61 2 2 1
Gerald Garcia 53/61 5 3 1
Joseph Bacon 63/61 5 2 2
Kevin McCormic 56/61 - - 2
Marcelo Kayath 58/61 6 4 3
Micheal A. Nigro 57/61 8 6 3
Pedro Ibanez 61/61 1 1 1

Table 3.4: Performance of our model applied to Villa Lobos’ Prelude Number IV

Another important observation was that the vibratos that we detected from
commercial recordings sound much more expressive than the ones that we de-
tected in basic exercises. The reason was that in the basic exercises, performer
played in an isolated studio environment by looking at the score that contains
basic chromatic exercises where the places of the vibratos were marked. How-
ever, in the commercial recordings, most likely the performer was mastered
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Figure 3.19: Places where performers applied vibrato.

the piece and also could apply vibrato where he/she thought appropriate, ex-
pressive etc. Second situation is much more comfortable than the first one,
also since when the vibratos are in the context of a melody or harmony, they
have much more meaning than the ones in a chromatic scale. In other words,
vibratos does not make sense without a context.

We realized that different performers applied vibratos in different places of the
melody. Figure 3.19 shows one melody from our test score. Each column rep-
resents the corresponding note in the melody and each row represents one per-
former. ’Check’ symbol means that corresponding performer applied vibrato
in the note above. We also realized that different performers applied different
kinds of vibratos. For instance, Kevin McCormic’s vibratos were faster (higher
vibrato frequency), than Gerald Garcias, or Pedro Ibanez started vibrato little
bit later than the other performers.

In this section we presented a system to identify vibratos on classical guitar
recordings. We successfully determined the places of vibratos both from a
collection of chromatic exercises recorded by a professional guitarist and com-
mercial recordings. There are two main parts in our model, first one is the
region extraction, and second one is the decision.

Our two evaluation experiments, shows us that vibrato has different charac-
teristics according to context. Compared to chromatic exercises, vibratos in
Villa Lobos Prelude Number 4 were easier to determine.
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Figure 3.20: Our diagram for the legato and glissando analysis and automatic de-
tection.

3.5 Legato and Glissando Extraction

In this section, as we did in vibrato extraction, we are focusing on the classifi-
cation of legatos and glissandos. Specifically, we present an automatic classifi-
cation system that uses the output of the extraction region input. We propose
a new system able to determine and classify two expressive articulations from
audio files. For that purpose, we analyzed the regions that were identified
as candidates of expressive articulations by the extraction module (see Sec-
tion 3.3).
In both, legato and glissando, left hand is involved in the creation of the note
onset. In the case of an ascending legato, after plucking the string with the
right hand, one of the fingers of the left hand (not already used for pressing
one of the frets), presses a fret causing another note onset. Descending legato
is performed by plucking the string with a left-hand finger that was previously
used to play a note (i.e. pressing a fret).
The case of glissando is similar but this time after plucking one of the strings
with the right hand, the left hand finger that is pressing the string is slipped
to another fret also generating another note onset. When playing legato or
glissando on guitar, it is common for the performer to play more notes within
a beat than the stated timing enriching the music that is played. A powerful
legato and glissando can be differentiated between each other easily by ear.
However, in a musical phrase where legato and glissando are not isolated, it is
hard to differentiate among these two expressive articulations.
Figure 3.21 shows fundamental frequency values and right hand onsets. X-axis
represents the time domain bins and Y-axis represents the frequency. Also in
Table 3.5 F0 values are shown. In Figure 3.21, vertical lines depict the attack
and release parts respectively. In the middle there was a change in frequency,
which was not determined as an onset by the first module. Although it seems
an error, it was a success result for our model. Specifically, in this phrase there
was a glissando, which was a left hand articulation, and was not identified as
an onset.
In Figure 3.21, the first portion of the Figure 3.21 was zoomed. The first and
the last lines were the plucking onsets identified by onset detection algorithm.
The first line was the place where attack finishes. The second dashed line was
the place where release starts.
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Figure 3.21: Top Figure - Onsets that were detected in the plucking detection
section. Middle Figure - Features of the portion between two onsets. Middle
Figure - Example of a glissando articulation. Bottom Figure Difference vector of
pitch frequency values of fundamental frequency array.
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Note Start (ms.) Fundamental Frequency
0.02 130
0.19 130
0.37 130
0.46 146
0.66 146
0.76 146
099 146
1.10 146
1.41 174
1.48 116

Table 3.5: Output of the pitch-change detection module.

3.5.1 Classification

The classification module analyzes the regions identified by the extraction
module and labels regions as legato or glissando. A diagram of the classifi-
cation module is shown in Figure 3.22. In this section, first, we describe our
research to select the appropriate descriptor to analyze the behavior of legato
and glissando. Then, we explain the new two components, Models Builder and
Detection.

Selecting a Descriptor

After extracting the regions which contain legato or glissando candidates, the
next step was to analyze them. Because each one should present different
characteristics in terms of changes in amplitude, aperiodicity, or pitch (Norton,
2008), we focused the analysis on comparing these deviations.
Specifically, we built representations of these three features (amplitude, aperi-
odicity, and pitch). Representations helped us to compare different data with
different length and density. As we stated above, we were mostly interested in
changes: changes in fundamental frequency, changes in amplitude, etc. There-
fore, we explored the peaks in the examined data because peaks are the points
where changes occur.
As an example, Figure 3.23 shows, from top to bottom, amplitude evolution,
pitch evolution, and changes in aperiodicity for both legato and glissando.
As both figures show, glissando and legato examples, the changes in pitch
are similar. However, the changes in amplitude and aperiodicity present a
characteristic slope.
Thus, as a first step we concentrated on determining which descriptor could
be used. To make this decision, we built models for both aperiodicty and am-
plitude by using a set of training data. As a result, we obtained two models
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Figure 3.22: Classification module diagram.

(for amplitude and aperiodicity) for both legato and glissando as is shown in
Figure 3.23. Analyzing the results, amplitude was not a good candidate be-
cause the models behave similarly. In contrast, aperiodicity models presented
a different behavior. Therefore, we selected aperiodicity as the descriptor. The
details of this model construction will be explained in next section.

Preprocessing

Before analyzing and testing our recordings, we applied two different pre-
processing techniques to the data in order to make them smoother and ready
for comparison: Smoothing and Envelope Approximation.

Smoothing
As expected, the aperiodicity signal of the audio portion we are exam-
ining includes noise. Our first concern was to avoid this noise and to
obtain a nicer representation. In order to do that, first we applied a
50 step running median smoothing. Running median smoothing is also
known as median filtering. Median filtering is widely used in digital im-
age processing because under certain conditions, it preserves edges whilst
removing noise. In our situation since we were interested in the edges and
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Figure 3.23: From top to bottom, representations of amplitude, pitch and aperiod-
icty of the examined regions.

in removing noise, this approach fitted our purposes. By smoothing, the
peak locations of the aperiodicity curves become more easy to extract.
In Figure 3.7, the comparison between aperiodicity and smoothed ape-
riodicity graphs exemplify the smoothing process and shows the results
we pursue.

Envelope Approximation
We used the same implementation as we explained in Section 3.2.3.
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Figure 3.24: Models for Legato and Glissando
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Figure 3.25: Peak histograms of legato and glissando training sets.

In our case all the recordings were performed at 60bpm and all the notes in
the recordings are 8th notes. That is, each note takes half a second, and each
legato or glissando portion takes 1 second. We recorded with a sampling rate of
44100, and we did our analysis by using a hop size of 32 bins, i.e. 44100/32 =
1378 bins. We knew that this was our highest limit. For the sake of simplicity,
we scaled our x-axis to 1000 bins.

Building the Models

After applying the pre-processing techniques, we obtained equal length ape-
riodicity representations of all our legato and glissando portions. Next step
was to construct models for both legato and glissando by using these data. In
this section we describe how we constructed the models shown in Figure 3.24.
The following steps were used to construct the models: Histogram Calcula-
tion, Smoothing and Envelope approximation (explained in Section 3.2.3), and
finally, SAX representation.

Histogram Calculation
We used this technique to calculate the peak density of a set of data.
Specifically, a set of recordings containing 36 legato and 36 glissando ex-
amples (recorded by a professional classical guitarist) was used as train-
ing set. First, for each legato and glissando example, we determined the
peaks. Since we wanted to model the places where condensed peaks oc-
cur, this time we used a threshold of 30 percent and collect the peaks
with amplitude values above this threshold. Notice that the threshold is
different than we used in envelope approximation. Then, we used his-
tograms to compute the density of the peak locations. Figure 3.25 shows
the resulting histograms.

After constructing the histograms, as shown in Figure 3.25, we used our
envelope approximation method to construct the envelopes of legato and
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Figure 3.26: Final envelope approximation of peak histograms of legato and glis-
sando training sets.

Figure 3.27: SAX representation of legato and glissando final models.

glissando histogram models (see Figure 3.26).

SAX: Symbolic Aggregate Approximation
Although the histogram envelope approximations of legato and glissando
in Figure 3.26 were close to our purposes, they still included noisy sec-
tions. Rather than these abrupt changes (noises), we were interested in a
more general representation reflecting the changes more smoothly. SAX
(Symbolic Aggregate Approximation) is a symbolic representation used
in time series analysis that provides a dimensionality reduction while
preserving the properties of the curves (Lin et al., 2007). Moreover,
SAX representation makes the distance measurements easier. Then, we
applied the SAX representation to histogram envelope approximations.

As we mentioned in envelope approximation, Section 3.2.3, we scaled the
x-axis to 1000. We made tests with step sizes of 10 and 5. As we will
report in the experiments, Section 3.5.2, an step size of 5 gave better
results. We also tested with step sizes lower than 5, but the performance
clearly decreased. Since we were using an step size of 5, each step be-
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Figure 3.28: Peak occurrence deviation.

comes 200 bins in length. After obtaining the SAX representation of
each expressive articulation, we used our distance calculation algorithm
which we are going to explain in the next section.

Detection

After obtaining the SAX representation of glissando and legato models, we di-
vided them into 2 regions, a first region between bins 400 and 600, and a second
region between bins 600 and 800 (see Figure 3.28). For the expressive articula-
tion excerpt, we had the envelope approximation representation with the same
length of the SAX representation of final models. So, we could compare the
regions. For the final expressive articulation models (see Figure 3.27) we took
the value for each region and compute the deviation (slope) between these two
regions. We performed this computation for both legato and glissando models
separately.
We also computed the same deviation for each expressive articulation envelope
approximation (see Figure 3.29). But this time, since we did not have SAX
representation, for each region we did not have single values. Therefore, for
each region we computed the local maxima and took the deviation (slope) of
these two local maximas. After obtaining this value, we may compare this
deviation value with the numbers that we obtained from both final models of
legato and glissando. If the deviation value was closer to the legato model, the
expressive articulation would be labeled as a legato and vice versa.

3.5.2 Experiments

The goal of the experiments realized was to test the performance of our model.
Since different modules have been designed, and they work independently of
each other, we tested Extraction and Classification modules separately. Af-
ter applying separate studies, we combined the results to assess the overall
performance of the proposed system.
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Figure 3.29: Expressive articultion difference.

Figure 3.30: Legato Score in first position.

Legato and glissando could be played in ascending or descending intervals.
Thus, we were interested in studying the results distinguishing among these
two movements. Additionally, since in a guitar there are three nylon strings
and three metallic strings, we also studied the results taking into account these
two sets of strings.

Recordings

Borrowing from Carlevaro’s guitar exercises (Carlevaro, 1974), we recorded a
collection of ascending and descending chromatic scales. Legato and glissando
examples were recorded by a professional classical guitar performer3. The

3http://www.iiia.csic.es/guitarLab/gallery

http://www.iiia.csic.es/guitarLab/gallery


3.5. LEGATO AND GLISSANDO EXTRACTION 57

(a) Phrase1 (b) Phrase2 (c) Phrase3

(d) Phrase4 (e) Phrase5

Figure 3.31: Short melodies.

performer was asked to play chromatic scales in three different regions of the
guitar fretboard. Specifically, we recorded notes from the first 12 frets of the
fretboard where each recording concentrated on 4 specific frets. The basic
exercise from the first fretboard region is shown in Figure 3.30.
Each scale contains 24 ascending and 24 descending notes. Each exercise con-
tains 12 expressive articulations (the ones connected with an arch, Figure 3.30).
Since we repeated the exercise at three different positions, we obtained 36
legato and 36 glissando examples. Notice that we also performed recordings
with a neutral articulation (neither legatos nor glissandos). We presented all
the 72 examples to our system.
We also recorded a small set of 5-6 note phrases. They include different ar-
ticulations in random places (see Figure 3.31). As shown in Table 3.7, each
phrase includes different combinations of expressive articulations varying from
0-2. For instance, Phrase3 (see Figure 3.31c) does not have any expressive ar-
ticulation and Phrase4 (see Figure 3.31d) contains the same notes of Phrase3
but including two expressive articulations: first a legato and next a glissando.

Experiment Results

As explained in building the models section, we performed experiments ap-
plying different step sizes for the SAX representation. Specifically (see results
reported in Table 3.6), we may observe that a step size of 5 is the most appropri-
ate setting. This result corroborates that a higher resolution when discretizing
was not required and demonstrates that the SAX representation provides a
powerful technique to summarize the information about changes.
The overall performance for legato identification was 83.3% and the overall per-
formance for glissando identification was 80.5%. Notice that identification of
ascending legato reached a 85% of accuracy whereas descending legato achieved
only a 53.6%. Regarding glissando, there was no significant difference between
ascending or descending accuracy (58.3% versus 54.4%). Finally, analyzing
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Recordings Accuracy
Ascending Legato 85.0 %
Descending Legato 53.6 %
Ascending Glissando 58.3 %
Descending Glissando 54.4%
Legato Nylon Strings 68.0 %
Legato Metallic Strings 69.3 %
Glissando Nylon Strings 58.3 %
Glissando Metallic Strings 54.4 %

Table 3.6: Performance of our model applied to chromatic exercises.

Excerpt Name Ground Truth Detected
Phrase1 1 2
Phrase2 2 2
Phrase3 0 0
Phrase4 2 3
Phrase5 1 1

Table 3.7: Results of extraction module applied to short phrases.

the results when considering the string type, the results presented a similar
accuracy on both nylon and metallic strings.
We also tested the performance of our model with short melodies. Analyzing
the results, the performance of our model was similar to the previous exper-
iments, i.e. when we analyze single articulations. However, in two phrases
where a note was played with a soft right-hand plucking, these notes were
proposed as legato candidates (Phrase1 and Phrase4).
The final step of the model is to annotate the sound fragments where a possible
legato or glissando was detected. Specifically, to help the system’s validation,
the whole recording was presented to the user and the candidate fragments
to expressive articulations were colored. As example, Figure 3.32 shows the
annotation of Phrase2 (see score in Figure 3.31b). Phrase2 has two expressive
articulations that correspond with the portions colored in black.
Our proposal was to use aperiodicity information to identify the articulation
and a SAX representation to characterize articulation models. Applying a
distance measure to the trained models, articulation candidates were classified
as legato or glissando.
We conducted experiments to validate our proposal by analyzing a collection
of chromatic exercises and short melodies recorded by a professional guitarist.
Although we were aware that our current system might be improved, the re-
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Figure 3.32: Annotated output of Phrase2

sults showed that it was able to identify and classify successfully legatos and
glissandos. As expected, legato were more easy to identify to glissando. Specif-
ically, the short duration of a glissando was sometimes confused as a single note
attack.

3.6 Conclusion

In this chapter we presented a system that combines several state of the art
analysis algorithms to identify guitar left hand expressive articulations such
as legatos, glissandos, and vibratos. In the first part we explained our feature
extraction methodology. Then, by using the extracted features, we reported
experiments to validate our proposal in an initial set of chromatic exercises, in
a collection of short melodies recorded by a professional guitarist, and in a the
context of commercial recordings.





CHAPTER 4
Onset Deviation Analysis

Performance of a musical piece include several deviations from the written
score. One of the most common ones are the timing deviations, i.e. temporal
anticipations or delays of notes.

4.1 Introduction

In this chapter we study the analysis of musical expressivity from the per-
spective of timing variations in the context of classical guitar pieces. The
choice of guitar recordings represents an interesting test corpus, as almost no
studies (Aho & Eerola, 2012) on timing deviations consider this instrument.
The use of a semi-automatic approach to onset detection (see Section 3.2 and
Section 4.3.3) allows us to go from the analysis of single, experiment-specific
performances to medium-scale real-world music collections (see Section 4.3.1).
Since music has a structure, timing deviations can be analyzed at different
musical levels. We have analyzed deviations in two different levels. First one
is the analysis of onset deviations at note level. Second level is more global, the
analysis of onset deviations at a measure level. The results from each of the
two analyzed onset deviation levels suggest that the predictive power of onset
deviations are statistically significant than the chance. Moreover, analyses
(see Section 4.2), suggest that timing variations are reliable predictors of the
musical pieces.
By formulating our hypothesis as a classification problem and, thus, within
a strong statistical framework (Hastie et al., 2009; Mitchell, 1997; Witten
& Frank, 2005), we gain objective and quantitative evidence for the piece-
dependent nature of onset deviations. To show that the predictive power of
onset deviation sequences is generic and not biased towards a specific classi-
fication scheme, we consider five different machine learning principles (Hastie
et al., 2009; Mitchell, 1997; Witten & Frank, 2005): decision tree learning,
instance-based learning, linear regression, Bayesian learning, and support vec-
tor machines (for more details see Section 4.3.8).

61
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Figure 4.1: Methodology overview. The difference dric between notation and record-
ing onsets is computed, dric = {dr1, dr2, . . . dric}.

In our experiments we prove that onset deviations are characteristic of a given
composition, up to the point of allowing the automatic identification of the
musical piece they belong to. This hypothesis is validated at different levels of
onset deviation sequences used as the feature vector for the classifiers.

4.2 Levels of Onset Deviation

A music piece is structurally organized at different levels. With the purpose of
determining how different levels influence timing deviations, in our study we
consider two different levels. First level of analysis, as well as the most basic, is
the note level. Our second level of analysis is the measure. A musical measure
is a segment of time defined by a given number of beats, and constitutes one
of the basic regular structures in a given piece.
The simplest way of analyzing onset deviations in a sequence of notes is to
count them and compute their distributions, i.e. using histograms. We use
histograms because we believe that the distributions of the deviations provide
a simple and powerful summary of timing deviations. Furthermore, as a higher
level, we may consider pairs of adjacent consecutive n elements, i.e. N-Grams.
In our analysis we are using bigrams, i.e. n-grams with the n = 2. For a
brief understanding we refer to Figure 4.2. We will explain how we compute
histogram and bi-gram models for each audio file in Section 4.3.7.
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Figure 4.2: Levels of deviations. c is the composition, r is the performance of this
composition, d is the note level onset deviation and m is the musical measure level
onset deviation.

As a summary, we extract 2 different levels of deviations: note level (n) and
measure level (m) , see Figure 4.2. Furthermore each level includes 2 additional
cases: histogram and bi-gram models. So for each level, by counting the base
analysis we have 3 different models, n0, n1, n2, and m0,m1,m2. For instance,
for the note level deviations, n0 will be pure note deviations (see Figure 4.2,
{dric , dric+1, . . . d

r
ic+l
}), n1 will be histogram model, and n2 will be the bi-gram

model. Our aim was to analyze note deviations both from a micro and macro
level, with the purpose of determining how each approach enlightens new ways
of understanding onset deviations.

Note Level Deviations - n0
Our first level of analysis is the single note level. We conduct our analysis
with the set of consecutive note onsets. As shown in the top Figure 4.3,
each di represents the corresponding deviation value of a note. Then,
level n0 is the set of all deviation values represented as a time series,
dric = {dr1, dr2, . . . dric}.

Histogram Model - n1
After extracting the deviation values, we may construct a b-bin equal step
histogram from the these values. Each audio file in our music collection is
represented with a b-bin histogram. An example representation is shown
in top figure of Figure 4.3. The graph corresponds to the onset deviation
values of each note in the score. We divide y-axis (numerical values of
the deviations) into b equal steps. The histogram gathers the counts of
each onset deviation that fall into the corresponding bin. We call this
model as n1.

N-gram Model - n2
Each b-bin histogram is a representation of the onset deviation distribu-
tion.
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Figure 4.3: Methodology of all levels and models
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Since each onset deviation value di can be mapped to a bin value bi, we
can represent our onset deviation sequence, dric = {dr1, dr2, dr3, . . . dric} as
a sequence of their corresponding bin numbers, bric = {br7, br4, br1, . . . bric}.
Then, the sequences of bin values will be used to construct a matrix
gathering the bi-gram information. Specifically, since we have b-bins, we
have b× b transition possibilities for each bi-gram, i.e. a bi-gram matrix
of a given audio is modeled as follows:

(1,1) (1,2) (1,3) ... (1,b−2) (1,b−1) (1,b)
(2,1) (2,2) (2,3) ... (2,b−2) (2,b−1) (2,b)

...
...

...
...

...
...

(b−1,1) (b−1,2) (b−1,3) ... (b−1,b−2) (b−1,b−1) (b−1,b)
(b,1) (b,2) (b,3) ... (b,b−2) (b,b−1) (b,b)


Then, each cell (i, j) in the matrix will gather the number of consecutive
notes in the recording where first note presents a deviation i and second
note presents a deviation j. For instance, if in our sequence of note devi-
ations we have br7 followed by br4, in our bi-gram matrix we will increase
the count of (7, 4) by 1. A more complete example of the construction
of the n-gram model is shown in Figure 4.3. For instance, in our note
sequence n0 (top of the figure), first four notes are represented as 4, 4, 4
and 3. Thus, in our bigram matrix, for the first three steps we increase
the indexes of bi-gram cells (4, 4) by 2 and (4, 3) by 1. We proceed this
action by sliding one note in each step till to the end of the piece. So
if we had total number of n notes, in our bi-gram matrix we had n − 1
counts.

Musical Measure Level Onset Deviations - m0

The second level of deviations considered is the measure level, m. In
order to extract measure level deviations we used our validated hand-
annotations of measure starting positions (see ??). In this level, rather
than analyzing each note’s deviation, we model the deviation of each
single musical measure. We use clustering techniques to model measure
level deviations. We will explain the technical details in a specific section,
Section 4.3.7, but basically we define k different deviation behaviors and
we map each measure to its corresponding deviation behavior. As a
final representation, we represent each measure with it’s corresponding
cluster index. Specifically, first we represent each audio file as Comprk =
{m1,m2,m3, . . .mk}, see Figure 4.2, where Comp is the composition, r
is the performance of this composition, and each m is the onset deviation
vector of the corresponding notes inside the measure. These vectors are
used as input of a clustering step to obtain a clustering index for each
measure , Comprk = {C1, C4, C6, . . . }.

Histogram Model - m1

After representing each measure with it’s corresponding cluster index, we
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applied the same analysis approach we performed at note level. However,
at a measure level we have a discrete number of values, k, that cannot
be interpreted as numerical values. They are only the names of cluster
indices. Therefore, we could not treat the vector of clustering indexes of
a composition, Comprk = {C1, C4, C6, . . . } as a time-series as we did in
n0. Thus, the histogram represents the frequency of occurrence of each
cluster index.

Bi-gram Model - m2

Similarly to the note level, bi-gram models at the measure level can
be constructed by analyzing pairs of consecutive measures. Specifically,
since the clustering process provides k-measure patterns, there are k ×
k transition possibilities for the bi-gram representation at the measure
level. That is:

(1,1) (1,2) (1,3) ... (1,b−2) (1,k−1) (1,k)
(2,1) (2,2) (2,3) ... (2,k−2) (2,k−1) (2,k)

...
...

...
...

...
...

(k−1,1) (k−1,2) (k−1,3) ... (k−1,k−2) (k−1,k−1) (k−1,k)
(k,1) (k,2) (k,3) ... (k,k−2) (k,k−1) (k,k)


For instance, from the measure sequence m0 in Figure 4.3 (bottom of
the figure), where first two measures are represented as C04 and C09, in
the bi-gram matrix the index of (4, 9) is increased by 1. This process is
repeated by sliding one measure in each step till to the end of the piece.

4.3 Experiment Setup

The purpose of the experiments is to analyze the predictive power of onset
deviations at the different representation levels. Up to now we explained briefly
our different levels of onset deviations. In this Section we will go deeper and will
explain how we construct our setup for the experiments. Before the detailed
explanation of the experiment setup, we will describe first the music collection
used in the experiments. Furthermore, at the end of this section, we will present
the classification algorithms used in the experiments and the methodology
adopted to analyze the results.

4.3.1 Music Collection

In our music collection we have 10 different compositions, and each composi-
tion is performed by 10 different guitar players, thus yielding a total of 100
recordings. However, some performances of different compositions have been
interpreted by the same player. In total, we have 82 different guitar players,
with some of them playing between 2 and 5 pieces (a Table with player and
recording details can be seen in Appendix B - Music Collection Details). The
collection includes well-known guitar players such as Andrés Segovia, John
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Figure 4.4: Information about music collection. In our music collection there
10 compositions, C01,C02...,C10 and each composition has 10 different performance,
X-axis, P01,P02,...,P10. Each color represents a composition and each circle represents
a performance.

Williams, Manuel Barrueco, Rey de la Torre, Robert Westaway, and Stanley
Myers. In order to encompass different epochs, we chose compositions spanning
four different periods: baroque, classical, romantic, and modern (Table 4.1).
Recording years go from 1948 to 2011, Figure 4.4, and the number of onsets
per score measure varies between 1 and 16 Table 4.1.
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ID Composition Composer Composition Historical Tempo Number Shortest Longest
year period of notes note note

C01 BWV 999 J.S. Bach 1720 Baroque Allegretto 505 1/4 3
C02 BWV 1007 J.S. Bach 1720 Baroque Andante 641 1/4 2
C03 La Catedral, Prelude A. Barrios 1921 Modern Lento 379 1/4 2
C04 C minor Prelude A. Barrios 1920 Modern Moderato 361 1/6 1
C05 Cavatina S. Myers 1970 Modern Andante 515 1/8 3
C06 Romance Anonymous ca. 1800 Classical Andante 680 1/3 2
C07 Adelita F. Tarrega ca. 1880 Romantic Moderato 173 1/4 2
C08 Lagrima F. Tarrega ca. 1880 Romantic Andante 219 1/8 2
C09 Moonlight Sonata L.V. Beethoven 1801 Classical Adagio 794 1/3 4
C10 Etude B minor F. Sor 1828 Romantic Allegretto 27 9 1/2 2

Table 4.1: Information about compositions.

4.3.2 Audio-Score Synchronization

In our study we hand annotated1 measure positions of all audio files in our
music collection. By this way we could synchronize each corresponding score-
measure position with the audio-measure position. The reason of not using
audio-score synchronization tools was, although they are working with an ac-
ceptable accuracy (Devaney & Ellis, 2009), they our onset imputation process
and measure-level onset deviation extraction systems are based on measure po-
sitions and, even little accuracy looses, can cause exponential growth of error
rates in experiments. Moreover, false-positive measure positions could cause
wrong analysis outcomes as we will discuss in the next section. Therefore, we
decided to hand annotate all measure starting positions in all recordings.

4.3.3 Refined Onset Detection

After detecting the onsets in our collection using the algorithm and parameters
that we obtained from PSO (Section 3.2.1), we refined our onset detection by
adding an additional step. For that purpose, we again used the manually an-
notated measure positions (see Section 4.3.2). This way, we could synchronize
each measure in the audio file with the corresponding measure positions in
the written score, and check whether there were missing onsets (Fig. 4.5). If a
score onset ôric did not match an audio onset oric , we imputed the temporal loca-
tion corresponding to 7 milliseconds before the highest audio signal magnitude
(absolute values) closest to ôric and within a short-time window. Each onset
detection function marks onsets in different implementations. Some of them
annotate onsets as the highest peak as the transient reach, and some define
the starting point of the transient as the onset. In our case Kullback-Liebler
(K-L) algorithm, see Section 3.2.1, marks the transient starting point as the
onset position. Therefore, after detecting the amplitude peak we need to go

1A most probable future study is to propose an automatic Audio-Score synchronization
algorithm. If so, all the process could be automatic and we can run our analysis with bigger
corpus of data.
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Figure 4.5: A) After synchronizing the audio with the score we have matches for all
score onsets except ôr4 and ôr9. (B) For these two, we look at possible onset candidates
inside the green windows

back and find the transient starting point. In order to find this point, we man-
ually checked 360 correct onsets detected by K-L and calculated the distance
between the transient start and maximum peak. 7 milliseconds correspond to
the median of this distance. We used a window centered at ôric whose length
corresponded to the 90th percentile value of the composition’s note durations.

4.3.4 Onset Validation

To check the accuracy of the obtained oric , we manually validated 223 random
onsets from the whole data set. Specifically, we annotated the temporal differ-
ences between what we considered to be the true onset location and the one
determined by our approach (Fig. 4.7A). The vast majority of the inspected
onsets were at their correct locations. Using a threshold evaluation strategy
to determine the percentage of correct onset placements (Brossier, 2006), we
estimated that only a 6.7% of them were not placed on the exact location
they should be. This number drops down to 2% if we consider a threshold
of 150 milliseconds (Fig. 4.7B). Also we validated the additional amount of
accuracy that we obtained with our refined onset detection method, (see Fig-
ure 4.6). This validation was also appropriate for musical measure positions.
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Figure 4.7: Semi-automatic onset detection accuracy. (A) Histogram of onset
temporal differences. (B) Onset deviation error rate as a function of a threshold (see
text).

Besides from manual validation of each measure position, we also considered
them as onset positions and while choosing random onsets, measure positions
were also likely to be chosen.

4.3.5 Onset Deviation Extraction

After extracting onset positions oric , we follow an approach as we did in Refined
Onset Detection, Section 4.3.3. This time we synchronized audio with score in
the window of 4 measures rather than 1. The reason of using 4 measures rather
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C01 C02 C03 C04 C05 C06 C07 C08 C09 C10
Mean 0.043 -0.004 0.031 0.031 -0.004 0.014 0.038 0.018 0.024 0.024
Standard deviation 0.164 0.220 0.192 0.182 0.124 0.148 0.259 0.232 0.260 0.259
Maximum anticipation -0.420 -2.584 -0.947 -0.597 -1.288 -0.621 -1.401 -0.975 -1.220 -1.217
Maximum delay 2.225 0.864 1.616 1.360 0.573 1.026 0.950 1.262 1.636 1.363

Table 4.2: Summary statistics for onset deviations for all performances of a given
composition. Each C refers to a musical composition. For the names of the composi-
tions see Table 4.1. All values are given in seconds.

than 1 was that, due to the manual synchronization of each score measure with
the audio signal, in 1-measure synchronization the first onset of each measure
would result in dric = 0, i.e. loosing several meaningful onset deviations. After
the synchronization we defined the theoretical onset positions that should be
played in this audio fragment. To calculate the theoretical onset positions we
were using the MIDI information. In MIDI protocol, starting point of each
note is defined according to specified tempo (bpm) value. We scaled all MIDI-
onsets inside the synchronized 4-measure and we slid this 4-measure window
by 1-bar in each iteration. After calculating the theoretical positions of the
onsets we computed the arithmetic difference between the recording onsets
and the theoretical onsets in each iteration. At the end, with the exception
of the onsets at the beginning and end of the piece, dric would be obtained as
the average over four deviation values, (see Figure 4.2). However, we made a
further refinement and avoided the extremes, i.e., the maximum and minimum
values, and compute the average between the two central ones.

Onset deviations were computed as in Eq. 4.1, obtaining a sequence dric =
{dr1, dr2, . . . drnc}, for a composition with nc note onsets. All compositions pro-
vided similar numbers for the statistics of raw onset deviation values dric (Ta-
ble 4.2).

dric = ôric − oric , (4.1)

Additionally, we confirmed that maximal anticipations/delays generally corre-
sponded to full cadences, usually ritardandos found in piece endings or strong
structural locations (cf. Grachten & Widmer (2009); Liem et al. (2011); Palmer
(1996); Repp (1990)). For instance, in the middle of the twenty-first measure
of C02 (J.S. Bach, BWV 1007), for all performances, we observed a long pause
between 0.5 and 1 seconds, which does not correspond to any existing annota-
tion in the written score. Also, in C03 (A. Barrios, La Catedral–Prelude), the
notes corresponding to the melody in the arpeggios are significantly delayed in
most of the performances.
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4.3.6 Onset Deviation Pre-Analysis

In pre-analysis, we inspected whether the onset deviations could be inferred
somehow from score notation. Specifically, we are investigating two main ques-
tions:

1. Is there a correlation between pitch intervals and relative note durations
with onset deviations ?

2. What is the distribution of the onset deviations ?

The results suggested that the considered onset deviations are rather inde-
pendent of their associated relative note duration, expressed with relation to
the beat (e.g., 1/2 beat, 1/3 beat, 1/4 beat) or their associated pitch interval
size, expressed in semitones (e.g., +1 semitone, +2 semitones, −3 semitones).
Very low, marginal, non-significant correlations were found (Figs. 4.8 and 4.9).
Overall, we found no compelling evidence of the relation between onset de-
viations and the most fundamental short-time score elements, i.e., the single
notes.
We also observed that the distribution of onset deviations conforms to a
stretched Gaussian (Fig. 4.10A), an aspect that, as far as we know, had not
been formally assessed yet. Interestingly, such distributions seem to quali-
tatively agree with data from neurological interval timing studies (Buhusi &
Meck, 2005). A further interesting aspect that relates the obtained onset de-
viations with existing literature is the observation of long-range correlations
(Fig. 4.10B). The fact that there exist long-range temporal correlations sug-
gests that, as with the case of basic rhythm tapping (Hennig et al., 2011), onset
deviation sequences of l > 1 can be characterized as memory processes (Badde-
ley, 2003), and thus may have the potential to contain non-trivial information
of their context.

4.3.7 Data Structuring

As we explained in Section 4.2, we were analyzing onset deviations by using
different levels of data. In this section we will explain how we formed our
feature vectors for the classifiers. Mainly, we analyzed 2 musical levels and 3
models of each level.

Note Level Onset Deviations, n0

Our first level is the note level onset deviations, n0. We are constructing
our feature vector as consecutive note onset deviations (see Figure 4.1, dr =
{dr1, dr2, . . . drnc}). Each di corresponds to a feature for the classifiers. For the
note level onset deviation analysis we choose different subsequences from the
whole onset deviation sequence. For each composition c (the one to which the
r-th recording corresponds to), an integer note index ic is uniformly chosen, ic ∈
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Figure 4.8: Scatter plot of relative note durations from the score δ versus onset
deviations d (sample of 50 values per performance; different colors correspond to dif-
ferent scores). Kendall τ rank correlation coefficients between δ and d were low across
all possible 10 × 10 comparisons between score and performance: τ ∈ (−0.24, 0.24),
p̄ = 0.41± 0.42.

[1, nc− l]. This, together with a predefined length l, determines a subsequence
d̄ric:l = {d̄ric , d̄ric+1, . . . d̄

r
ic+l
}. The final data D that serves as input for the

classifier consists of the union of feature sequences plus the composition labels
across all recordings. Formally,

D =
100⋃
r=1

{
d̄ric:l, c

}
, (4.2)

where
⋃

denotes the union operator and, as mentioned, c indicates the com-
position index of the r-th recording. Notice that, due to the random choice
of ic ∈ [1, nc − l] and the fact that nc ≥ 170 (Table 4.1), the ic for each com-
position might be different. However, notice also that ic is the same for every
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Figure 4.9: Scatter plot of note intervals from the score ∆ versus onset deviations d
(sample of 50 values per performance; different colors correspond to different scores).
Kendall τ rank correlation coefficients between ∆ and d were low across all possible
10×10 comparisons between score and performance: τ ∈ (−0.11, 0.1), p̄ = 0.49±0.30.

recording of composition c. Hence, the same subsequence position is taken for
each composition.
The entire sequences dr = {dr1, dr2, . . . drnc} for each recording r are normalized
to have zero mean and unit variance, d̄r = (dr − µ)/σ, where µ and σ corre-
spond to the mean and standard deviation of all nc values in dr (recall that
nc is the number of note onsets deviations for a given composition c, Eq. 4.1).

Musical Measure Level Onset Deviations - m0

The second level of analysis is the measure level, m. In each measure there is n
number of notes, so there are n number of deviation values. Our intention is to
model onset deviations of a composition in the unit of a musical measure. Each
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Figure 4.10: (A) Examples of onset deviation distributions P (d). The visual aid cor-
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α

, where a is a constant,
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malized frequency, and β is the power law exponent. Frequencies f are linearly scaled
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CXXPYY, where XX corresponds to composition number, XX ∈ [1, 10], and YY corre-
sponds to performance number, YY ∈ [1, 10].
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musical composition has different number of notes in each measure. However,
we model the general onset deviation behavior of performers in each musical
measure (see Section ??), independent of the number of notes. Briefly, our
task is to find a representation to make each performance be comparable with
the rest of the performances. In this sense, our principal components of the
methodology are:

1. Represent onset deviation of each musical measure with an equal number
of data units, i.e. data re-sampling.

2. Represent similar structures (musical measures) with the same represen-
tation by using clustering techniques, specifically, k-means clustering.

Data Re-Sampling: Onset deviations of a musical measure were represented
by the onset deviation of notes inside each measure. We could interpret this
note onset deviations as data points of it’s corresponding measure. By having
different number of data units, first, it was not possible to compare measures
with each other, and second, it was not possible (most of the cases) to apply
any kind of data analysis techniques. Therefore, we needed to represent each
measure with equal number of data units.
Given that each performance representation contained k number of measures
and each measure mj has nj number of notes, i.e. nj number of onset de-
viations, each measure could be represented as consecutive onset deviation
values di, from 1 to nj . Then, a musical measure mj could be represented
as mj = {d1, d2, d3, . . . dn} and each rth performance of a compostion, Cr

k,
with k number of measures, could be represented as consecutive measures
Cr
k = {m1,m2,m3, . . .mk}, see Figure 4.2.

In order to re-sample onset deviation values inside each musical measure to a
matching number, first we up-sampled all the onset deviation values of each
measure, mj = {d1, d2, d3, . . . dn}, of all performances to the least common
multiple of all the measure onset deviation values. After that, we down-sampled
to 100 data units, see Figure 4.11. For instance, if we had different number of
notes in different measures such as {2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 16} this leads
to a least common multiplier of 55440. Furthermore, since we had k measures
for each performance, we would have 55440×k data unit feature vector. In the
sense, any kind of further computation (clustering, classification etc.) 55440×k
data units could be unnecessary and too big to compute. Therefore, we down-
sampled it to 100 data units. To summarize our approach for the data re-
sampling, first each measure is up-sampled to 55440 data units and then each
one down-sampled to 100 data units.
K-Means Clustering: With the clustering process we were interested in
grouping measures with a similar deviation behavior. That is, measures with a
similar deviation behavior will be clustered together and can be identified with
as a single index unit. Specifically, given a set of observations {x1, x2, . . . , xn},
where each observation is a f-dimensional real vector, xi = {d1, d2, d3, . . . , df},
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Figure 4.11: Re-Sampling of data units.

k-means clustering aims to partition the n observations into k sets (k ≤ n). In
our case observations were measures and dimensions were the data units inside
each measure (see Data Re-sampling).
After clustering, we obtained k number of centroids Ck = {C1, C2 . . . , Ck} that
represented deviation behavior of all the measures in the music collection.
Thus, we could model each measure with its nearest cluster centroid, see Fig-
ure 4.12. Moreover, we could represent a performance as consecutive cluster
indexes. The outcome of the clustering procedure is illustrated in the bottom
picture of Figure 4.3.
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Figure 4.12: A - In each graph blue line represent a centroid. The red cloud around
the red lines are the members of the corresponding cluster. For the visualization we
only included 10 members. B - distribution of the cluster members
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Data models for classification

From the multiples data representations of onset deviations introduced pre-
viously, we can evaluate the predictive power of each of them or evaluate a
combination of features from them. Specifically, in the experiments we evalu-
ated also the combinations of them. That is, the representation levels evaluated
were:

n0 : Note level onset deviations. For the note level onset deviation analysis
we chose different sub-sequences from the whole onset deviation sequence
(see Section 4.3.7 - Note Level Onset Deviations).

n1: Note level onset deviations distribution. We represent distributions as 10
bin histograms. Each bin value serves as a feature, i.e. it has b = 10
features plus the composition labels.

n2: Bi-gram of note onset deviations. The D consists of all the elements of the
bi-gram matrix. There are b × b, 100 features plus the the composition
labels.

n12: Combination of n1 and n2. There are 10 + 100 = 110 features plus the
the composition labels.

m1: Measure level cluster count distributions. In k-means clustering, we used
10 clusters. The probability distribution of belonging to each cluster
serves as a feature. Thus, there are k = 10 features plus the the compo-
sition labels (see Figure 4.13 for an example).

m2 : Bi-gram of the cluster index representation. The D consists of all the
elements of the bi-gram matrix. There are k × k, 100 features plus the
the composition labels.

m12: Combination of m1 and m2. There are 10 + 100 = 110 features plus the
the composition labels.

nm12: Combination of n12 and m12. There are 110 + 110 = 220 features plus
the the composition labels.

Both histogram and bi-gram feature vectors are normalized separately in order
to avoid over-fitting.

4.3.8 Classification

Since we have 10 different compositions in our music collection (see Section 4.3.1)
for the each level of analysis we cast the problem of identifying the piece from
its onset deviations as a 10-class classification problem (Hastie et al., 2009;
Mitchell, 1997; Witten & Frank, 2005).
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Figure 4.13: Feature Vectors
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We investigated whether different levels of onset deviations are related to the
musical piece, i.e., whether onset deviations have some predictive power of the
composition being interpreted. Notice that, in the case of relative note dura-
tions, and in contrast to onset deviations, there will be no differences between
performances, (see Section 4.3.6). This makes it a specially strong competitor
against which the predictive power of onset deviations can be compared.
To show that the predictive power of the considered feature sequences is
generic and not biased towards a specific classification scheme, we employ
basic algorithms exploiting five different machine learning principles (Hastie
et al., 2009; Mitchell, 1997; Witten & Frank, 2005): decision tree learning,
instance-based learning, logistic regression, probabilistic learning, and sup-
port vector machines. The implementations we use come from the weka java
libraries2(Hall et al., 2009; Witten et al., 1999) and, unless stated other-
wise, their default parameters are taken. Since our focus is on assessing the
predictive power of onset deviation sequences rather than obtaining the highest
possible classification accuracies, we make no tuning of the classifiers’ param-
eters. In total for the note level sequences, n0 we use 7 and for the rest of the
models we use 5 (except NN-D and LR) implementations (Hastie et al., 2009;
Mitchell, 1997; Witten & Frank, 2005) plus a random classifier:

• NN: k-nearest neighbor classifier. We use the Euclidean distance (NN-E)
and dynamic time warping similarity (NN-D). For dynamic time warping
we use a standard implementation with a global corridor constraint of
10% of the sequence length (Gusfield, 1997). The number of neighbors
is arbitrarily set to k = 1.

• Tree: classification and regression tree classifier. We use the Gini coef-
ficient as the measure of node impurity and arbitrarily set a minimum
number of 2 instances per leaf.

• NB: naive Bayes classifier. We employ a Gaussian function to estimate
the likelihood of each onset deviation.

• LR: logistic regression classifier. We use L2-regularized logistic regression
with automatically-scaled intercept fit.

• SVM: support vector machine. We consider a linear kernel (SVM-L) and
a radial basis function kernel (SVM-R).

• Random: random classifier. We additionally consider a random classifier
as the baseline. It outputs a randomly selected class from the pool of all
available training labels.

For each data set D we performed standard 10-times, 10-fold, out-of-sample
cross-validation Hastie et al. (2009); Mitchell (1997); Witten & Frank (2005).

2Version 3.6.9: http://www.cs.waikato.ac.nz/ml/weka/index.html

http://www.cs.waikato.ac.nz/ml/weka/index.html
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We not only applied classification to whole music collection but also all pos-
sible subsets of our music collection, [2, 3, 4, 5, 6, 7, 8, 9, 10] and for our music
collection with 10 composition the number of possible music collection subsets
for each pair would be [45, 120, 210, 252, 210, 120, 45, 1] respectively. We have
a total of 1003 possible sub-music collection possibilities. With 10-times, 10
fold cross validation we needed to run our classifiers 1003× 10× 10 = 100300
times. With our hardware, each run computationally cost around 1 minute
(we are not considering the previous k-means clustering cost) and 100300 min-
utes corresponded around 69 days. In order to decrease this time complexity
and also represent each sub-music collection with equal number, we randomly
chose 25 unique pairs from all possible sub-music collection combination. We
also forced each subset to be represented with balanced number of elements.
Such as in our 2 pair sub-music collection, 25 pairs included equal number of
elements for each composition.

Even if our music collection was already balanced (10 performances per piece),
we forced internal training and testing data sets to be balanced as well. Hence,
we train with 9 performances per piece and test with 1. We additionally force
that all classifiers see the same training/testing sets. As different selections of
ic could affect the results, we repeated the whole process 100 times, in order
to obtain a reliable estimation of all possible accuracies (not only for average
accuracies and their standard deviations, but also for having an proper idea of
maximum/minimum values and reliably assessing statistical significance). In
summary with for single pair in the sub-music collection, with 10-times 10-fold,
we generated 100 data sets D1,D2, . . .D100 and test each classifier with them.
This yields a total of 100× 7 accuracy values computed from 10× 10 folds for
each pair element in pair-subsets. For the 10 pair set we had only one possible
combination, all the compositions, thus it has 100× 7× 1 accuracy values. For
the rest, we have balanced sets with the 25 elements, yielding 100 × 7 × 25
accuracy values.

4.3.9 Statistical Tests

As we use matched samples Di in all our models, we assessed statistical sig-
nificance with the well-known Wilcoxon signed-rank test (Hollander & Wolfe,
1999). The Wilcoxon signed-rank test is a non-parametric statistical hypothe-
sis test used when comparing two matched samples (or related samples, or re-
peated measurements) in order to assess whether their population mean ranks
differ. It is the natural alternative to the Student’s t-test for dependent samples
when the population distribution cannot be assumed to be normal (Hollander
& Wolfe, 1999). We use as input the accuracy values obtained for one classifier
and the random baseline.
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4.4 Results

We report our results into two main sections. The experiments that we have
done with note onset deviation sequences, n0, and the others (combination
of the different models). Note level sequence experiments showed that have
a higher predictive power than other tests. It could be expected since with
histograms and bi-grams we were analyzing the distribution regardless of the
time information. However, even these distributions have higher classification
accuracies than the random classifier. Unless stated, we only used the default
parameters of the classifiers (see Section 4.3.8). Our aim is to demonstrate
the predictive power of different levels of onset deviations rather than reaching
the highest classification accuracies. However, even with default parameters in
all classifiers, in all levels and models we achieved accuracies clearly above the
random classifier.

4.4.1 Note Onset Deviation Model

If we plot the classification accuracies Ψ as a function of l we see that all classi-
fiers perform on a similar range, with NB and SVM-R generally achieving the
best accuracies (Fig. 4.14). As expected, NN-E and NN-D perform relatively
similarly, thus indicating that no strong sequence misalignments (Gusfield,
1997) were present, thanks to the semi-automatic measure-based synchroniza-
tion between score and recordings mentioned before (see Section 4.3.2). Trees
achieved the lowest accuracies and seem to had some difficulties in learning
from the considered sequential information. Nevertheless, for l > 5, all ob-
tained accuracies lie far beyond the random baseline, always increasing with l.
Importantly, we saw that statistically significant accuracies could be reached
with very short sequences dric:l (Fig. 4.15). Specifically, it turns out that a
single sample dric:1 = {dric} was sufficient for characterizing a piece statisti-
cally significantly beyond the random baseline, but with a low accuracy (l = 1,
Fig. 4.15A). This difference increases with l, until no single accuracy across 100
trials goes below the ones achieved by the baseline (l = 5, Fig. 4.15B). Obvi-
ously, the longer the deviation sequence, the better (e.g., l = 170, Fig. 4.15C).
To check whether the predictive power of onset deviation sequences was robust
with respect to the size of the music collection, we could plot the accuracies
Ψ as a function of the number of compositions m (Fig. 4.16). With this we
observed that the obtained accuracies decrease at a much lower rate than the
ones provided by our random baseline, independently of l (see also Fig. 4.16).
This shows that Note Level sequences can be a reliable predictor of a musical
piece. Additionally, we confirm that accuracies are balanced across compo-
sitions, with no exceptional confusion between pairs of them (Fig. 4.17). In
fact, we see that confusions substantially depend on the classifier. This sug-
gests that a specific confusion may not be largely due to the onset deviations
themselves and, furthermore, that a strategy based on the combination of clas-
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Figure 4.14: Average classification accuracy as a function of the length of
the onset deviation sequence. The error bars correspond to the standard deviation
and the shaded area denotes the range of all possible values (including minimum and
maximum). The visual aid corresponds to a straight line of the form Ψ(l) = a + bl,
where a is the intercept, b is the slope of the straight, and l is the sequence length. In
the plot a = 75 and b = 0.1.

sifiers could potentially increase the overall accuracy. As our objective here is
more focused on showing the predictive power of onset deviations rather than
achieving very high accuracies on a music classification task. Interestingly, the
best performing classifiers, NB and SVM-R, were also the ones where such dif-
ference was more clearly observable. Notice that, as mentioned above, relative
note durations were found to be independent of onset deviations. (Figures 4.8
and 4.9).

4.4.2 Alternative Onset Deviation Models

We have 7 alternative configurations of onset deviation models, n1, n2, n12,
m1, m2, m12, nm12, (see Section 4.3.7). For the sake of computation we run
with only 5 different classifiers, omitting NN-D and LR. Experiments with al-
ternative models performed with less classification accuracy and more variance
compared to model n0 (see Figure 4.21). Similar to n0, we reached relatively
better accuracies with with NB and SVM-R. As in note sequence classification,
trees achieved the lowest accuracies (Figures 4.18, 4.19 and 4.20). We reached
statistically significant accuracies with all the different levels. For each level
as the number of features in the feature vector increases, SMV-R reaches bet-
ter accuracies. For instance, among the note level experiments the order of
SVM classification accuracy was, n12 > n2 > n1 and m12 > m2 > m1, (see
Figure 4.21). As we did for n0, we could plot the accuracies Ψ as a function
of the number of compositions m for each level of analysis (Figures 4.18, 4.19
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Figure 4.15: Box plot of classification accuracies using different sequence
lengths. These are l = 1 (A), l = 5 (B), and l = 170 (C). The labels in the
horizontal axis correspond to classification algorithms: Random (0), NN-E (1), NN-D
(2), Tree (3), NB (4), LR (5), SVM-L (6), and SVM-R (7). In all plots, all medians
are statistically significantly higher than the random baseline (p < 0.01).

and 4.20). With these figures we observe that the obtained accuracies decreased
at a lower rate than the ones provided by our random baseline, independently
of the model.
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Figure 4.16: Average classification accuracy as a function of the number
of compositions. Results obtained using a sequence length l = 120 . The error
bars correspond to the standard deviation and the shaded area denotes the range of
all possible values (including minimum and maximum). The visual aids correspond
to a power law of the form Ψ(m) = b/mβ , where b is a constant, m ∈ [2, 10] is the
number of compositions, and β is the power law exponent. The upper one is plotted
with b = 128 and β = 0.12, and is associated with classification accuracies. The lower
one is plotted with b = 80 and β = 1, and corresponds to the random baseline. The
exponent associated with classification accuracies is much smaller than the one for the
random baseline, what suggests that the absolute difference between the two increases
with the number of considered compositions and, therefore, with the size of the data
set.
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Figure 4.17: Confusion matrices for two different classifiers. These are NB
(A) and SVM-R (B). The color code indicates average accuracy per composition (the
higher, the darker). Compositions 7, 8, and 10 seem to be generally well-classified.
For NB, compositions 2 and 3 attract many of the confusions while, for SVM-R,
composition 1 takes that role.
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Figure 4.18: Average classification accuracy as a function of the number of
compositions. The error bars correspond to the standard deviation.
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Figure 4.19: Average classification accuracy as a function of the number of
compositions. The error bars correspond to the standard deviation.
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Figure 4.20: Average classification accuracy as a function of the number of
compositions. The error bars correspond to the standard deviation.

4.5 Conclusions & Discussions

The obtained results show that:

1. All models of onset deviations are a powerful predictor of the musical
piece being played. However, with less variance and higher medians,
note level onset deviation sequences have far better predictive power
compared to other levels.

2. Note level onset deviation sequences, n0, are at least as powerful as direct
music score information corresponding the relative note durations, if not
better.

3. Predictive power is robust to classification scheme choices, to different
levels of models, to the size of the considered data set and to the length
of the considered sequences.

4. Even very short note level onset deviation sequences and basic deviation
distributions provide statistically significant accuracies.

5. The obtained raw onset deviations conform and complement recent find-
ings reported in the literature (Hennig et al., 2011).

In the light of these quantitative results, and re-taking the multi-dimensional
perspective on onset deviations, we can now open some qualitative discus-
siosn. First, evidence suggests that randomness is a very minor component of
the considered onset deviations. Indeed, if we substitute the onset deviations
by random noise, the accuracies dramatically drop down to the considered
baseline.
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Figure 4.21: Box plot of classification accuracies using different models of
analysis for the 10 pair data set. The labels in the horizontal axis correspond
to classification algorithms: Random (1), NB (2), Tree (3), NN (4), SVM-L (5), and
SVM-R (6). Black line is the random base line. n all plots, all medians are statistically
significantly higher than the random baseline (p < 0.01).
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Second, we can conjecture that the effect of performer-specific deviations on the
raw onset sequences must be small, compared to the effect of other dimensions.
As mentioned, the considered music collection contains a number of recordings
of different pieces by the same performer. Hence, if performer-specific devia-
tions dominated the raw onset sequences, we would expect much worse piece
identification accuracies, as recordings would tend to cluster around perform-
ers and not around pieces. As some works indicate, performer-specific aspects
may be better studied after subtracting a global, average performance tem-
plate (Grachten & Widmer, 2009; Liem et al., 2011; Stamatatos & Widmer,
2005).
Third, a similar but weaker argument could potentially hold for emotional-
specific onset deviations. If among the 10 different recordings of a piece we
had many contrasting emotional expressions which were directly determining
the magnitude of raw onset deviations, we would not be able to classify pieces
with the accuracies obtained here (‘emotional clusters’ would be present). Of
course, this leaves us with the possibility that all performers could adhere
to similar emotional expressions for a given composition. Thus, one could
argue that those emotional expressions may be, to some extent, ‘dictated’
by the composition itself (Juslin & Sloboda, 2013). Moreover, there exists
the possibility that other performance resources different than timing are the
responsible of such emotional expressions (Juslin & Sloboda, 2001). In this
sense, a more holistic study involving multiple musical facets is needed.
The previous discourse leave us with two hypotheses regarding the origin of
onset deviations: that onset deviations may be due to biological or instrument-
related motion, and that they may respond to the musical piece structure and
its psycho-perceptual consequences for interpretation. Assessing the first hy-
pothesis would require a different collection containing recordings of the same
piece played with different instruments. In the present study, we wanted to
focus on classical guitar, as this is an unexplored area. Nevertheless, from our
point of view, the second hypothesis seems to be the responsible for most of
the variations in onset location. As mentioned, there is evidence that phrasing,
metrical accents, musical form, and harmonic structure can determine timing
deviations. However, no quantitative and deterministic rules are yet able to
explain all available case studies (cf. (Gabrielsson, 2001)). In our experiments,
mixing different compositions and their interpretations, we found scarce ev-
idence for the dependence of onset deviations on individual score elements.
Specifically, no clear analogies could be drawn between onset deviations and
note durations or intervals. It is true that the existence of long-range tempo-
ral correlations (Hennig et al., 2011) suggests that note or interval sequences
may provide a more deterministic character to onset deviations. However, the
power law decay of such temporal correlations indicates that dependencies are
exponentially weaker with time. Finally, the fact that onset deviations per-
form similarly or slightly better than relative note durations, combined with
the fact that the former were independent and uncorrelated with the latter,
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suggests that onset deviations could encapsulate information that goes beyond
duration/temporal aspects of the score.
Apart from contributing to the discussion on the origins of note onset devia-
tions, and as a main objective, we want to provide a new and fresh view to
such a topic. We believe that by taking quantitative medium-scale approaches,
considering real-world commercial recordings, and different instruments apart
from piano is a necessary step towards a better understanding of it.



CHAPTER 5
Conclusion

5.1 Summary of the Thesis

At the outset of the thesis, two questions were posed that shaped the direction
of the research. First one was, what is expressivity in guitar music? In a
general view, as we argued in Chapters 1 and 3, musical expressivity can be
conceived as the difference between the written, defined, and quantified music
with the actual music that we finally listen. Thus, musical expressivity can be
studied by analyzing additions and deviations performers apply to the written
score. Our second questions was, how to extract and characterize musical
expressivity in guitar music? For this purpose, we have proposed and applied
feature extraction mechanisms, optimization techniques, and machine learning
models. In this thesis we have explored two types of expressive resources:
expressive articulations and timing deviations.
In Chapter 3, we designed a system able to identify the most used three ex-
pressive articulations of classical guitar: legato, glissando, and vibrato. Also,
we reported experiments to validate our proposal by analyzing a collection of
chromatic exercises and short melodies recorded by a professional guitarist.
Although we are aware that our current system may be improved, the results
showed that it was able to identify and classify successfully the defined expres-
sive articulations.
Chapter 4 provides a new and fresh view on the topic of music timing variations.
We believe that by taking quantitative medium-scale approaches, considering
real-world commercial recordings, and a different instrument apart from piano
is a necessary step towards a better understanding of timing deviations. In
Chapter 4, the focus was on the utility of onset deviation sequences as musical
piece signatures, and on the predictive power of those sequences from different
levels of analysis. Hence, our analysis showed that all levels of onset deviations
have predictive power.
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5.2 Discussion

We chose to spread the description of existing literature through the thesis
rather than concentrating all in the state of the art chapter. Our aim was to
provide a general perspective of the field in the state of the art chapter and
to introduce more specific literature in the chapters where we describe our
proposals. By this way, we believe that readers could establish the connections
among the previous work and our study more properly.
In Chapter 3 we proposed a system that automatically classifies guitar expres-
sive articulations. We started our model by analyzing legato and glissando
articulations. After that, we conducted vibrato analysis. To the best of our
knowledge there were no studies that have worked on automatic legato and
glissando detection on classical guitar. Our biggest challenge was to propose
a model to differentiate between legato and glissando. For humans it is very
hard to differentiate them, if not specified in the score. The key feature that
we have used to differentiate them was aperiodicity. We realized that legato
includes a small finger punch on fingerboard. Therefore, during the transi-
tion moment the periodic content drastically decreases compared to glissando,
where aperiodic content increases (see Chapter 3 for a detailed description).
Although the conclusions we reached in Chapter 4 sound intuitive, to the best
of our knowledge there were no studies working on that big number of commer-
cial recordings. We know that a musical collection with 100 performances is far
beyond enough to come up with universal conclusions about timing deviations.
But we believe that our onset deviation extraction methodology enlightens new
paths in order to analyze classical recordings which were recorded without a
metronome. Furthermore, our analysis of different levels of onset deviations
brings up new discussions for the performance analysis.

5.3 Contributions

This thesis contributes to the understanding of the musical expressivity. It
contributes to the field of expressive analysis which is a sub-field of music
information retrieval and general data analysis:

• It is, to the best of author knowledge, the first thesis that is entirely
devoted to the topic of expressive analysis of guitar by using real-world
commercial audio recordings.

• It makes a strong link with music information retrieval and current data
analysis approaches.

• It demonstrates a multi-model approach to expressive analysis. In partic-
ular, it is shown that by combining the existing low-level algorithms but
with a high-level of understanding, an effective analysis could be done.
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• It shows how to successfully use machine learning algorithms for the
classification and optimization.

Although guitar is chosen as the instrument of analysis, all the techniques
and analysis could be easily applicable to other instruments. For instance,
similar feature extraction algorithms were used in a completely different Ney
instrument (Özaslan et al., 2012).
The outcomes of the research carried out in this thesis have been published in
the form of several papers in international peer reviewd conferences, a journal
and a book chapter. The full list of the author’s publications are provided in
annex to this thesis (Appendix B).

5.4 Limitations and Future Directions

The analysis of musical expressive is far from being solved. Musical expres-
sivity is a so complex phenomenon which understanding still requires years of
research. We may think about how a student learns to play an instrument
and how after many years of hard training she becomes the master of her
instrument. Mastery is the point where written notes become music. To be
able understand this unique human creativity activity, we need more robust
algorithms, much more data, and better understanding of interactions between
performers.

Better feature extraction algorithms. As we discussed in Chapter 3,
most of the MIR algorithms, such as source separation, onset detection,
instrument identification are still hot research topics. There is a big
amount of room for the improvement. As researchers, we know that
we need better accuracies and results from existing low-level feature ex-
traction algorithms such as onset detection to be able analyze high-level
phenomenon such as expressivity. Nevertheless, we showed in our study
that with existing algorithms and with the careful choice of optimization
methods, it is possible to obtain acceptable results.

More data, much more data. We are in a era of data. By analyzing
big amounts of data even simple, most primitive Machine Learning al-
gorithms can come up with accurate findings. As Anand Rajaraman, a
data mining professor in Stanford University stated ’more data usually
beats better algorithms’ 1. Of course this statement does not falsify our
previous point. Furthermore, first we need accurate algorithms and then
we need data. As Rajaraman pointed out, having more data gives bet-
ter understanding compared to improving the algorithms. The perfect
circumstances about music study is that we have the data, we have huge
amount of recorded performances and each moment we are producing

1http://anand.typepad.com/datawocky/2008/03/more-data-usual.html
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more content. However, as a future direction of MIR, we need tools and
techniques to be able to analyze this big amount of data.

Performer interaction There are some attempts for not analyzing in-
teraction but creating interaction by using supervised learning (Pachet,
2003). However, analysis of interaction between performers is, to the best
of author knowledge, not investigated due to the limitations of current
state of the art signal analysis and source separation techniques. As a
future direction, the improvement of source separation algorithms could
lead to the analysis of interaction between performers during recording
sessions and live performances. It can provide important insights about
human decisions and as of expressivity.

5.5 Final Thoughts

I believe that expressive analysis will be an important field in music information
retrieval. However now our biggest obstacle is to find techniques that we can
run with big amounts of data. From the perspective of a performer, in the
end all that matters is the time that she spends with her instrument, the
experience. In the sense of computers this experience means data. As the field
advances, we will be able to analyze big amounts of performances and this
will be the point where we will be able to understand this incredible creative
human input to music, expressivity. I would be more than happy, with this
thesis, if I could put a brick to the progress of expressive analysis.



"It is good to have an end to journey toward; but it is the journey
that matters, in the end."

- Ernest Hemingway





Tan Özaslan, Berlin, October 13, 2013.
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