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Introduccion

La nocion de édlgebra preproyectiva aparecié por primera vez a finales de los anos 70 de
la mano de Gelfand y Ponomarev en su trabajo [42] sobre teoria de representacién de
quivers finitos sin ciclos orientados. Esencialmente, dado un diagrama finito no orientado
A, el dlgebra preproyectiva asociada, usualmente denotada por P(A), se define a partir del
algebra de caminos obtenida al reemplazar cada uno de los ejes de A por un par de flechas
opuestas e identificando, posteriormente, todos y cada uno de los ciclos de longitud 2 en un
mismo vértice. Derivado de su estudio surgieron las primeras aplicaciones en problemas
de clasificacién de &lgebras de tipo finito ([22],[23]) y se establecieron conexiones con
otros tipos de dlgebras como las envolventes universales o las de conglomerado ([40], [41]).
Ademsds, al margen de dicha rama, las dlgebras preproyectivas estdn presentes en muchas
y distintas disciplinas de las Matematicas. Entre otras, cabe destacar que desempefian un
papel especial en la aproximacién de haces perversos a grupos cuanticos de Lusztig ([60],
[61]) v que han servido como herramienta para abordar problemas de geometria diferencial
[53] o estudiar deformaciones no conmutativas de singularidades de Klein [21].

Un hecho sobradamente conocido a dia de hoy es que, cuando el cuerpo base K es
algebraicamente cerrado, el dlgebra P(A) es finito dimensional inicamente en el caso en
que A es uno de los diagramas de Dynkin generalizados A,, D,,, Eg, E7, Eg 6 Ly,:

A,: e . o e . . (n>1)
D, : °
\. P o o (n > 4)
o/
E,: o . ® . ... . . (n=6,7,8)
L, C G ee— e (mx)

Histéricamente, en el ambito de las algebras finito dimensionales, el operador sigicia,
Qa, que asocia a cada A-mdédulo M el nicleo de su cubierta proyectiva Py(M) — M,
ha supuesto una herramienta muy ttil tanto para establecer relaciones entre los distintos
modulos como para obtener informacion sobre la estructura de la propia dlgebra. Por

iii



iv Introduccion

ejemplo, el hecho de que en un algebra A todos sus mdédulos simples sean 24-periddicos
implica que ésta es autoinyectiva, es decir, que las clases de médulos proyectivos e inyec-
tivos coinciden. Por médulo Q- peridédico entendemos cualquier A-médulo M para el que
existe un entero r > 0 tal que Q) (M) es isomorfo a M. En tal caso, llamamos periodo de
M al menor de los enteros positivos satisfaciendo la propiedad anterior. Dicho operador
pasa de ser 1til a resultar fundamental en el estudio de un tipo concreto de dlgebras finito
dimensionales contenidas en la clase de las autoinyectivas y conocidas como periddicas.
Se dice que un &lgebra A que es periddica cuando lo es como médulo sobre su algebra
envolvente A := A ® A°P, o equivalentemente, vista como A-bimoédulo. Una propiedad
comun que poseen las dlgebras preproyectivas de dimensién finita es que, salvo en el caso
de A = A1,P(A) es Q- periddica de periodo a lo sumo 6.

En toda disciplina matematica resulta natural y habitual tratar de generalizar con-
ceptos de manera que se conserven las propiedades mas relevantes. Con ese objetivo, K.
Erdmann y A. Skowroriski introdujeron en [29] una nueva clase de élgebras asociadas a
Diagramas de Dynkin que contiene a las preproyecitvas finito dimensionales y que han
suscitado un gran interés en los ultimos tiempos en el marco general de las algebras de
dimensién finita. Las llamaron algebras de malla m-fold y constituyen precisamente la
clase de algebras autoinyectivas A para las que Q?\ permuta las clases de isomorfia de los
modulos simples. Tomando como referencia el citado trabajo, si A es uno de los de quivers
de Dynkin A,, D, 6 E,, (n =6,7,8), un algebra de malla m-fold de tipo A es un cociente
B/G del algebra de malla B = B(A) de un quiver de translacién ZA por un grupo G de
automorfismos débilmente admisibles de ZA. Posteriormente, gracias a un resultado de
A. Dugas ([25] Teorema 3.1), se supo que las dlgebras de malla m-fold son ciertamente las
algebras de malla de quivers de translacion que resultan ser finito dimensionales. También
es conocido que, ademas de a las algebras preproyecivas finito dimensionales, esta clase
contiene a las dlgebras estables de Auslander de todas las dlgebras autoinyectivas estandar
de representacioén finita ([25]) y a las dlgebras de Auslander-Reiten estables de varias sin-
gularidades de hipersuperficie. Ademés, por [14] [Seccién 6] se sabe que estas dlgebras son
periddicas.

A finales de los afios 90, en su trabajo Triangulated categories and geometry, M. Kont-
sevich definié el concepto de dimensién de Calabi-Yau en el contexto de las catergorias
trianguladas Hom—finitas, es decir, sobre K-categorias trianguladas para las que el es-
pacio vectorial de morfismos entre dos objetos cualesquiera tiene dimensién finita. Bajo
estas hipétesis, decimos que la K-categoria 7 con funtor de suspensién > : T — T
es de Calabi-Yau si existe un cierto nimero natural n de manera que »." es un funtor
de Serre, o lo que es lo mismo, si existe un nimero natural n tal que DHomy (X, —)
y Homy(—,>." X) son naturalmente isomorfos como funtores cohomolégicos T —>
K — mod. De ser asf, al menor nimero natural m satisfaciendo que > es un funtor de
Serre se le llama dimensién de Calabi-Yau de 7 y escribimos CY-dim(7) = m. Las ca-
tegorias trianguladas de Calabi-Yau estan presentes en muchos campos de la Matematica
y la Fisica Tedrica. En La Teorfa de la Representacién de algebras, la nocion desempena
un papel muy significativo en el estudio de las dlgebras y las categorias de conglomerado

([55])-



Introduccion v

Cuando A es un dlgebra autoinyectiva finito dimensional y amod es su categoria de
modulos estable, entonces el funtor sicigia 25 : amod — amod es una equivalencia
de categorias y amod tiene estructura de categoria triangulada considerando Qxl como
funtor de suspensién. La condicién Calabi-Yau en esta categoria ha sido profundamente
estudiada (ver p.e. [12], [25], [28], [35], [50], [51], ...) e igualmente se ha relacionado con
el concepto de dlgebra de Calabi-Yau Frobenius, tal y como fue definido por C. Eu and T.
Schedler en [35]: se dice que el dlgebra A es de Calabi-Yau Frobenius cuando Q7 '(A)
es isomorfa a D(A) = Homg (A, K) como A-bimédulos, para algin entero r > 0. Nétese
que si el algebra A es Calabi-Yau Frobenius, entonces se tiene que amod es de Calabi-
Yau. Ademds, habida cuenta de que QX§*1®A? y QX’”fl son naturalmente isomorfos
como funtores ymod — pmod, la dimensién de Calabi-Yau de la categoria ymod es
menor o igual que el menor de los enteros r > 0 tal que Q.7 *(A) = D(A) como A-
bimédulos, nimero que llamaremos en lo que sigue dimensién de Calabi-Yau Frobenius
de A y denotaremos por CYF-dim(A). Sin embargo, en general, no se sabia si éstos dos
numeros coinciden.

Posterior a las investigaciones realizadas en [12] y [28], las dlgebras de Auslander
estables A de un dlgebra autoinyectiva de tipo de representacién finito cuya categoria de
médulos estable ymod es Calabi-Yau quedaron completamente determinadas en [25] y
[51] en funcién de su tipo. Inspirado por el trabajo de C. Riedtmann en [66], H. Asashiba
define en [6] el tipo del dlgebra de Auslander estable de un dlgebra autoinyectiva de tipo de
representacion finito, que es invariante salvo equivalencia derivada, como la terna (A, f,t)
donde A es el diagrama de Dynkin asociado, f es la frecuencia y ¢ es el orden de torsién.
En el primero de los trabajos mencionados ([25]), A. Dugas identifica tales algebras cuando
t=1 6 3 y en muchos de, pero no todos, los casos con ¢t = 2. Los casos restantes cuando t = 2
han sido determinados muy recientemente por S.0.Ivanov-Y.V.Volkow en [51]. Por tanto,
teniendo en cuenta de que las dlgebras de malla finito dimensionales son autoinyectivas,
de manera natural surgen entonces una serie de cuestiones:

Cuestion 1: ;Cuales son las dlgebras de malla finito dimensionales cuya categoria de
modulos estable es de Calabi-Yau? ;Cudles son Calabi-Yau Frobenius? Y finalmente,

i, cudl es la relacién entre ambas dimensiones?

En términos de bimoédulos, un algebra bésica finito dimensional A es autoinyectiva jus-
tamente cuando existe un isomorfismo de A-bimdédulos entre D(A) y el bimédulo torcido
1A, para algin automorfismo 1 de A. Dicho automorfismo estd univocamente determi-
nado, salvo automorfismo interior, y recibe el nombre de automorfismo de Nakayama de A.
Segun esto, el problema de decidir cuando A es Calabi-Yau Frobenius forma parte de un
problema méds general que consiste en determinar bajo qué condiciones . (A) es isomorfa
a un bimédulo torcido 1Ay, para algin automorfismo ¢ de A, que quedard entonces de-
terminado salvo automorfismo interior. Por un resultado debido a Green-Snachall-Solberg
([44]), esta tultima condicién sobre un dlgebra finito dimensional fuerza a la misma a ser
autoinyectiva. Es mas, observemos que cuando ¢ es la identidad, o un automorfismo inte-
rior, obtenemos precisamente la definicién de algebra peridédica. Determinar las algebras
autoinyectivas que son peridédicas es una cuestién, a dia de hoy, ampliamente abierta. No
obstante, hay un nimero considerable de trabajos en la literatura al respecto en donde
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varias algebras periddicas, entre ellas las dlgebras de malla finito dimensionales, han sido
identificadas (véase p.e. [14], [24], [29]). Sin embargo, aun incluso conociendo que un
algebra es periddica, el calculo explicito de su periodo resulta, habitualmente, una tarea
dura y complicada. En el contexto de las dlgebras de malla finito dimensionales se tienen
resultados sélo en un muy pocos casos. Mas concretamente, de los articulos [11], [32] y
[67] sabemos que el periodo es 6 para todas las algebras preprojectivas de diagramas de
Dynking generalizados siempre que Char(K') # 2. Asimismo, en [25], se obtiene el periodo
del dlgebra de Auslander estable de un dlgebra autoinyectiva de tipo de representacién
finito de tipo (A, f,t) igual a (Dy, f,3), (D, f,2) con n > 4y f > 1 impar, 6 (Eg, f,2).
De nuevo parece natural plantearse la siguiente cuestion:

Cuestion 2: ;Cudl es exactamente el periodo de un algebra de malla finito dimen-
sional?

Otro de los problemas que ha llamado especialmente la atencién el ambito de las
algebras autoinyectivas finito dimensionales consiste en caracterizar aquellas que son si-
métricas o débilmente simétricas. Decimos que un &dlgebra A es simétrica cuando es iso-
morfa a D(A) como A-bimédulo. Esto tiltimo equivale a decir que el funtor de Nakayama
DHomp(—,A) =2 D(A) @y — : A — Mod — A — Mod es naturalmente isomorfo al funtor
identidad. Si debilitamos la condicién sobre dicho funtor a que tnicamente conserve las
clases de isomorfia de los médulos simples obtenemos precisamente la definicién de algebra
débilmente simétrica. Dirigimos nuestra mirada entonces a responder las siguientes pre-
guntas:

Cuestion 3: ;Qué dlgebras de malla finito dimensionales son débilmente simétricas?
. Cudles de ellas son a su vez simétricas?

Desde que fuera introducida por G. Hochschild en 1945 en su trabajo [47], la teoria
de (co)homologia que recibe su propio nombre ha sido extensamente estudiada teniendo
una gran influencia, entre otros, en el campo de las algebras finito dimensionales. Si A es
un algebra finito dimensional, para cada ¢ > 0, llamamos i-ésimo grupo de cohomologia
de Hochschild al K-espacio vectorial HH*(A) := Ext’.(A, A). Ocurre entonces que, junto
con el producto de Yoneda, el K-espacio vectorial @;>oHH*(A) admite estructura de
K-algebra graduada-conmutativa comtinmente conocida como anillo de cohomologia de
Hochschild de A, usualmente denotado por HH*(A). Los grados més bajos de este anillo
tienen interpretaciones estrechamente relacionadas con estructuras clasicas del algebra y
también de la geometria algebraica. De hecho, HH°(A) y HH'(A) coinciden con el centro
y el espacio de derivaciones exteriores del algebra, respectivamente, mientras que H H?(A)
controla su teoria de deformacién: si éste es cero, entonces el dlgebra A resulta ser rigida.
En lo que respecta a su estructura multiplicativa, el anillo de cohomologia HH*(A) de un
algebra autoinyectiva y finito dimensional resulta tener un gran interés en conexién con
el estudio de variedades de médulos y con cuestiones sobre su relacién con el algebra de
Yoneda de A. Esta se define como el algebra graduada E(A) = Ext%(A/J,A/J) donde
J = J(A) denota el radical de Jacobson de A. De hecho, inspirados por la teoria de
representacion modular de grupos finitos donde, entre otros, Carlson ([18], [19]) y Ben-
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son [10] desarrollaron la teorfa de variedades de médulos, Snashall y Solberg ([68], véase
también [27]) iniciaron el estudio de variedades de mddulos sobre élgebras finito dimen-
sionales arbitrarias, reemplazando el anillo de grupo de cohomologia HH*(G, K) por el
anillo de cohomologia de Hochschild HH*(A) del élgebra en cuestién. Para la nueva teoria,
generalmente se requiere que A sea autoinyectiva y que satisfaga algunas condiciones de
generacién finita, las cuales siempre se da cuando A es periddica. Sin embargo, poco maés
sabe acerca del anillo de cohomologia de Hochschild HH*(A) de un élgebra finito dimen-
sional A salvo que, siempre y cuando A sea periddica, existe un isomorfismo de dlgebras
HH*(A)/N = K|x] donde N denota el ideal generado por los elementos nilpotentes y x es
un elemento homogéneo de HH*(A) cuyo grado coincide precisamente con el periodo de
A. Esta propiedad aparece por primera vez enunciada explicitamente en ([44], Proposicién
1.1). Sin embargo se trata de una aplicacién directa con A = A ® A’ y M = A, cuando
A es periddica, de un resultado més general debido a Carlson [17]. Dicho resultado nos
dice que cuando A = KG es un algebra de grupo siendo G finito, que es el prototipo de
algebras autoinyectivas finito dimensionales, y M es un A-mdédulo periédico de periodo g,
entonces Ext’ (M, M)/N = K[z] donde z € Ext%(M.M) y N es el ideal de Ext’ (M, M)
generado por los elementos nilpotentes. De hecho, el resultado es igualmente vélido para
cualquier algebra autoinyectiva finito dimensional.

Las cuestiones anteriores sugieren que encontrar patrones sobre el comportamiento
de las componentes homogéneas de HH*(A) con respecto al producto de Yoneda, en
casos particulares donde la estructura multiplicativa de H H*(A) sea computable, puede
ayudar a dar algunas claves acerca de cémo abordarlas. En lo que respecta a las algebras
preprojectivas finito dimensionales, la estructura del anillo de cohomologia de Hochschild
es conocida en el caso de tipo A,, sobre un cuerpo de caracteritica arbitraria ([30], [31]) y en
los casos DD, y [Eg cuando el cuerpo tiene caracteristica cero. Basdndonos en el concepto de
tipo extendido (A, m,t) de un dlgebra de malla finito dimensional, definido en el Capitulo
2 de esta memoria, resulta que las dlgebras preproyectivas anteriores son, ciertamente, las
algebras de malla de tipo extendido (A,1,1) donde A = A,,, D, 6 E¢. Un paso hacia
adelante en esta direccién seria considerar el caso en que A es un algebra de malla de tipo
(A,1,t) con t > 1, las cuédles se corresponden con las conocidas en tiempos modernos como
algebras preproyectivas generalizadas. En esta tesis abordaremos el caso A = A,,.

Cuestién 4: ;Cémo son los grupos de cohomologia de Hochschild HH!(A) de un
algebra preproyectiva genereralizada A de tipo A,7 ;Cudl es la estructura multiplicativa
del anillo de cohomologia asociado HH*(A)?

Esta monografia se articula en 6 capitulos relacionados entre si y que proporcionan la
respuesta a cada una de las preguntas anteriormente formuladas.

Capitulo 1

Este primer capitulo, que bien podria considerarse un capitulo preliminar, constituye
la base fundamental para desarrollar los contenidos propios del estudio en lo que se refiere
a la primera parte de la tesis. Situados en el contexto general de las dlgebras con sufi-
cientes idempotentes, los conceptos principales que se manejan son los de algebra graduada
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pseudo-Frobenius y sus correspondientes forma y automorfismo de Nakayama, todos ellos
introducidos en la Seccién 1.3 de este trabajo.

Diremos que un algebra graduada con suficientes idempotentes, débilmente basica y
localmente finito dimensional es pseudo-Frobenius si los objetos proyectivos finitamente
generados y los inyectivos finitamente cogenerados coinciden en su categoria de moédulos
graduados. Entre otros resultados, cabe destacar la caracterizacién que presentamos de
dichas algebras (Teorema 1.3.2). Las nociones pertinentes pueden encontrarse en dicha
seccion.

TEOREMA. Sea A = ®pcgAp un algebra graduada débilmente basica con
suficientes idempotentes. Consideremos las siguientes afirmaciones:

1. Las categorias de A-médulos graduados por la izquierda y por la derecha,
A — Gry Gr — A, son Frobenius.

2. D(4A) y D(A4) son A-médulos graduados proyectivos.
3. A es pseudo-Frobenius.

4. Existe una forma graduada de Nakayama (—,—) : B x B — K.

Entonces se verifica la siguiente cadena de implicaciones:
1) =2) = 3) <= 14).

Cuando A es localmente acotada graduada, se tiene ademdas que 4) = 2).
Finalmente, si A es localmente graduada Noetheriana, las cuatro afirmaciones
son equivalentes.

Cuando el algebra satisface la condicién 1 del teorema anterior se dice que es Quasi-
Frobenius. Como se puede intuir, las dlgebras pseudo-Frobenius son, en el marco de las
algebras graduadas con suficientes idempotentes, o equivalentemente, de las K—categorias
graduadas, el concepto andlogo al que representan las algebras autoinyectivas finito di-
mensionales en el contexto de las algebras asociativas unitarias. Seria entonces natural
preguntarse acerca de la existencia de un automorfismo del dlgebra A que jugase un papel
similar al del automorfismo de Nakayama para dlgebras finito dimensionales autoinyecti-
vas. En el siguiente resultado garantizamos dicha existencia ( Corolario 1.3.6):

COROLARIO. Sea A = ®pcyAp un dlgebra graduada pseudo-Frobenius y sea
(e;)ier una familia distinguida débilmente bésica de idempotentes ortogonales.
Si A es localmente acotada(graduada), entonces se satisfacen las siguientes
condiciones:

1. Existe un automorfismo (no graduado) de dlgebras n : A — A, que
permuta los idempotentes e; y conserva los elementos homogéneos tal que
14, es isomorfa a D(A) como A-bimédulos no graduados.
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2. Si la aplicacién grado h : I — H asociada a la forma de Nakayama
(—,—): Ax A — K toma un valor constante h, entonces n se puede
elegir para que sea graduado y tal que D(A) sea isomorfo a 1A,[h] como
A-bimédulos graduados.

El automorfismo 7 recibe el nombre de automorfismo de Nakayama de A.

A pesar de que no aportamos ideas genuinas en el proceso de pasar del contexto de las
algebras asociativas unitarias a las graduadas con suficientes idempotentes conviene senalar
que, hasta donde sabemos, el concepto de dlgebra pseudo-Forbenius y sus asociados, como
la forma de Nakayama y el automorfismo de Nakayama, no han sido desarrollados ante-
riormente y resultan claves para el resto de este trabajo.

En la Seccién 1.4 revisamos la teoria de cubrimientos desde el punto de vista de las
algebras graduadas con suficientes idempotentes con especial énfasis en el caso particular
en el que el funtor cubrimiento es del tipo F': A — A/G donde A es un algebra graduada
con suficientes idempotentes y G es un grupo de automorfismos de A de grado 0 que
permuta los idempotentes e;. En la segunda parte de dicha seccién estudiamos bajo qué
condiciones podemos garantizar la conservacién de la condicién pseudo-Frobenius via el
funtor de cubrimiento. Como se enuncia a continuacién (Proposicién 1.4.3), ésto siempre
ocurre cuando la forma de Nakayama asociada al dlgebra A en cuestién es lo que llamamos
G-invariante, es decir, cuando se satisface que (a%,b9) = (a,b) para cualesquiera a,b € A
yg€eQqG.

PROPOSICION. Sea A = PregAp un dlgebra graduada localmente acotada
y bésica (débilmente escindida), con (e;);e; como familia distinguida de idem-
potentes ortogonales homogéneos, y sea G un grupo que actia sobre A como
automorfismos graduados que permutan los e; y que actia libremente sobre los
objetos. Supongamos que A es pseudo-Frobenius graduada y que admite una
forma de Nakayama G-invariante (—,—) : A x A — K. Entonces A = A/G
es un algebra graduada localmente acotada (débilmente escindida) y pseudo-
Frobenius cuya forma graduada de Nakayama viene inducida por (—, —).

De hecho, aprovechamos para finalizar la seccién mostrando que, bajo las hipétesis de la
proposicién anterior, el automorfismo de Nakayama n de A induce a su vez el autormofismo
de Nakayama 77 de A/G (Corolario 1.4.5).

Capitulo 2

El segundo capitulo de esta memoria esta dedicado a profundizar y obtener informacién
clave sobre algunos aspectos del algebra de malla de un diagrama de Dynkin como es su
automorfismo de Nakayama. Si bien tal dlgebra no es el objeto principal de estudio de
esta tesis, nuestro interés en la misma reside en que el hecho de que toda algebra de malla
finito dimensional proviene en cierto sentido de un algebra de este tipo.
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Al inicio de este capitulo, concretamente en la Seccién 2.2, recordamos la definicién del
quiver de traslacion ZA de un diagrama de Dynkin A. A continuacién, en la Subseccién
2.3.1, introducimos la nocién de algebra de malla B = B(A). Dicha élgebra se define como
el algebra cociente KZA/I, donde I es el ideal homogéneo generado por unas relaciones
conocidas como relaciones de malla. Asimismo, presentamos una breve lista de propiedades
esenciales y bien conocidas de B (Proposicién 2.3.1). Ademds, cabe destacar el hecho de
que el algebra B es un &lgebra graduada con suficientes idempotentes que resulta ser
pseudo-Frobenius.

Seguidamente, en la Subseccion 2.3.2, mostramos la lista de las algebras de malla
finito dimensionales e introducimos la definicién de tipo extendido para tales algebras que
juega un papel fundamental en este trabajo. De hecho, todos los resultados principales
del Capitulo 3 de esta memoria sobre algebras de malla finito dimensionales estdn dados
en términos de su tipo extendido. Dicha nocion estd basada en el hecho de que cada
algebra de malla finito dimensional A es isomorfa a un algebra de 6rbitas B/G donde B
es el dlgebra de malla asociada a un cierto diagrama de Dynkin A y G es un grupo de
automorfismos débilmente admisibles de ZA vistos como automorfismos de B. Es mas,
es bien conocido el hecho de que A admite como cubierta de Galois a su correspondiente
de malla algebra B. Con la idea de simplificar algunos de los cédlculos , finalizamos la
Seccién 2.3 modificando ligeramente las relaciones de malla orginales. Bésicamente la idea
consiste en convertir cada una de las relaciones de malla, que inicialmente es una suma,
en una diferencia de caminos.

El resultado principal de este capitulo, que aparece en la Seccién 2.4, es el Teorema
2.4.2 donde definimos explicitamente, para cualquier eleccién de (A, G), un automorfismo
graduado de Nakayama 7 de B verificando la propiedad de ser G-invariante. Aqui G-
invariante significa que 1 conmuta con los elementos de G. Como consecuencia de este
resultado se deriva una férmula precisa para un automorfismo graduado de Nakayama de
cualquier algera de malla finito dimensional.

He aqui el Teorema mencionado:

TEOREMA. Sea A un quiver de Dynkin y sea G =< ¢ > un grupo de
automorfismos débilmente admisibles de ZA. Sin es el automorfismo graduado
de B que actiia como la permutacion de Nakayama v sobre los vértices y como
se indica en la siguiente lista sobre las flechas, entonces 7 es un automorfismo
de Nakayama de B tal que no g = g o, para todo g € G.

1. Cuando A = A, y ¢ es arbitrario, n(a) = v(«) para todo a € (ZA)y
2. Cuando A =Dy, 41:
(a) Sin+1>4yp=r71" entonces:
i. n(a) = —v(a), siempre y cuando « : (k,i) — (k,7 + 1) sea una
flecha hacia arriba con i € {2,...,n — 1}.
ii. n(a) = v(«), siempre y cuando « : (k,i) — (k+1,i— 1) sea una
flecha hacia abajo con i € {3,...,n}.
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iii. 7(g;) = (=1)'v(g;), para la flecha ¢; : (k,2) — (k,i) (i = 0,1),

iv.

n(el) = (=1)"y(el), para la flecha & : (k,i) — (k + 1,2)
(i =0,1).

(b) Sin+1>4y p=pr™ entonces:

i.

ii.

iii.

n(a) = —v(«), siempre y cuando « sea una flecha hacia arriba
como las anteriores o « : (k,i) — (k + 1,7 — 1) sea una flecha
hacia abajo como las anteriores tal que k = —1 (mod m).

n(a) = v(a), siempre y cuando « : (k,i) — (k+1,i—1) sea una
flecha hacia abajo tal que k # —1 (mod m)

Para las flechas restantes, si ¢ y r son el cociente y el resto que
resultan al dividir k entre m, entonces

n(e;) = (=14 (g;) (i = 0,1).

n(e;) = (1) w(e), cuandor # m—1, y n(e;) = (~1)7v(e;)
en otro caso.

(c) Sin+1=4y ¢ =pr™ (véase el convenio 2.3.7), entonces:

i.

ii.

n(e;) = v(€;), siempre y cuando ¢; : (k,2) — (k,7) (i =0,1,3)
n(e;) = —v(e}), siempre y cuando €, : (k,i) — (k+1,2)
(i=0,1,3).

3. Cuando A = Eg:

(a) Si = 71" entonces:

1.
ii.
iii.

iv.

(b) Si

1.
ii.
iii.
iv.

V.

n(a) = v(a) y n(a') = —v(a), donde o : (k,1) — (k,2) y o :
(k,2) — (E+1,1).
n(B) = v(B) y n(8) = —v(8), donde §: (k,2) —~ (k,3) y 8" :
(k,3) —» (K +1,2).
n(v) = v(y) y n(y) = —v(y), donde v : (k,3) = (k,4) y 7" :
(k,4) = (E+1,3)
n(d) = —v(8) y n(6) = v(d), donde 6 : (k,4) — (k,5) y & :
(k,5) = (k+1,4)
n(e) = —v(e) y n(e) = v(e), donde € : (k,3) — (k,0) y & :
(k,0) = (k+1,3)

o = pr™, (k,i) es el origen de la flecha considerada, ¢ y r son el
cociente y el resto que resultan al dividir k entre m, entonces:
n(a) = v(q).
(@) = —v(a’)
n(B) = (=1 (B)
n(8) = (=) v(8)
n(y) = (=1)v(y)
n(y) = v(v), donde 6 q es impar y r # m — 1 6 q es par y

vi.

vii.

viii.

)
r=m-1,y 77(7’) = —l/(’)//) en otro caso.
n(6) = —v(9)
n(@é)=v(d).
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ix. n(e) = —v(e)
x. n(e') = —v(e'), cuando r = m—1, and n(¢') = v(e') en otro caso.

4. Cuando A = E7, ¢ = 7™, y entonces:

i n(a) estd definida como en 3.(a) para cualquier flecha a contenida en
la copia de Eg.

it n(¢) =v(C) yn(¢) =-v((), donde ¢ : (k,5) = (k,6) y ¢ : (k,6) —
(k+1,5).

5. Cuando A = Eg, ¢ = 7™, y entonces:

i n(a) estd definida como en 4 para cualquier flecha a contenida en la

copia de E+.
i n(0) =v(0)yn@)=—-v@), donde 0 : (k,6) — (k,7)y 0 : (k,7) —
(k+1,6).

Capitulo 3:

Los resultados de este capitulo versan sobre las preguntas 1, 2 y 3. Comenzamos el
capitulo presentando dos resultados claves. El primero de ellos (Lema 3.2.1) sirve para
determinar cudndo dos automorfismos graduados G-invariantes de un algebra de malla B
inducen, salvo conjugacién, el mismo automorfismo del dlgebra de malla finito dimensional
A = B/G. El segundo (Proposicién 3.2.2) identifica el subrupo H de los enteros s tales que
el automorfismo y la permutaciéon de Nakayama de A, 77 y U respectivamente, coinciden,
salvo automorfismo interior, en su s-ésima potencia. Es decir, H estd formado por los
s € Z tales que 77°0~° es un automorfismo interior de A. El subgrupo H resulta crucial en
todas y cada una de las preguntas que se abordan en este capitulo.

Con los dos resultados previos como herramientas principales, pasamos a la Seccién
3.3 dedicada exclusivamente a responder la pregunta 3. El tinico teorema de dicha seccién
identifica completamente las dlgebras de malla finito dimensionales que son débilmente
simétricas o simétricas:

TEOREMA. Sea A un algebra de malla m-fold de tipo extendido (A, m,t),
siendo ca el numero de Coxeter de A. Si A es débilmente simétrica, entonces
t=16t=2y,cuando char(K) =26 A = A,, tal dlgebra es ademds simétrica.
Es maés, se verifican las siguientes afirmaciones:

1. Cuando t = 1, A es débilmente simétrica si, y solo se, A es Do, E7 6 g
y m es divisor de % — 1. Cuando char(K) # 2, tal dlgebra es simétrica
si, y sélo si, m es par.

2. Cuando t = 2y A # Ag,, A es débilmente simétrica si, y sélo si, m
divide a % — 1y, ademads, el cociente de la divisién es impar, en el caso
A = Ag,_1, y par, en el caso A = Dsy,.. Cuando char(K) # 2, tal dlgebra

es simétrica si, y solo si, A = As,,_1 & m es impar.

3. Cuando (A, m,t) = (Ag,,m,2), ie. A= Lﬁ”), el dlgebra es (débilmente)
simétrica si, y sélo si, 2m — 1 divide a 2n — 1.
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La Seccion 3.4 estd destinada a la determinacién del periodo y la dimension de Calabi-
Yau de un algebra de malla m-fold. En primer lugar, Subseccién 3.4.1, calculamos la
parte inicial de una resolucién proyectiva minimal y G-invariante de B como B-bimddulo
graduado (Proposicién). En particular, probamos un hecho ciertamente relevante para
nuestros propdsitos y es precisamente que QgBe (B) es siempre isomorfa a ,B; para un
cierto automorfismo graduado p de B que estd en el centralizador de G' y cuya férmula
describimos explicitamente (Proposicién 3.4.3). Como consecuencia de la G-invarianza de
los resultados anteriores obtenemos que el automorfismo inducido iz de A = B/G satisface
la propiedad de que Q3.(A) = ;A;. Esta propiedad resulta ser fundamental tanto en el
desarrollo de los contenidos como en la obtencién de los resultados.

Seguidamente, introducimos el concepto de automorfismo establemente interior que
se trata, en general, de una condicién més débil que la de automorfismo interior. Con-
cretamente, decimos que un automorfismo o de A es establemente interior si el funtor
o(—) =5 Ay ®7 — : A — mod — A — mod es naturalmente isomorfo al funtor identidad.
Sin embargo, en lo que se refiere a las dlgebras de malla m-fold, ambos conceptos coinciden
en una gran numero de casos. Por ejemplo, ésto siempre sucede cuando A es un algebra
de longitud de Loewy mayor o igual que 4 (véase el Lema 3.4.6).

Las respuestas a las cuestiones 1 y 2 planteadas en este capitulo aparecen en las Sub-
secciones 3.4.3 y 3.4.4. En la primera de ellas se calcula de forma explicita el periodo de
cualquier algebra de malla m-fold A, es decir, el menor de los enteros positivos r tales que
Q3.(A) es isormofa a A como A-bimédulo. Distinguimos primeramente el caso A = Ay
(Proposicién 3.4.8), donde el dlgebra tiene longitud de Loewy 2:

PROPOSICION. Sea A un algebra autoinyectiva y conexa con longitud de
Loewy 2. Entonces se verifican las siguientes afirmaciones:

1. Sichar(K) =26 A = Agm), i.e. |Qo| es par, entonces el periodo de A es
Qo

2. Sichar(K)#2y A= Lgm), i.e. |Qo| es impar, entonces el periodo de A
es 2|Qol.

Los restantes casos se recogen en el Teorema 3.4.12, cuyo enunciado para caracteristica
= 2 dice:

TEOREMA. Sea A un algebra de malla m-fold de tipo extendido (A, m,t),
donde A # Aj, Ay, denotemos por m = w(A) al periodo de A y, para cada
entero positivo k, denotemos por Oz (k) al mayor nimero natural r tal que 2"
divide a k. Cuando char(K') # 2, el periodo de A viene dado como sigue:

1. Si ¢t =1 entonces:

(a) Cuando A es A, Dg,_1 6 Eg, el periodo es m = %.
(b) Cuando A es Dy, E; 6 Eg, el periodo es 7 = —2"—— cuando m

mcd(m,%)’

es par, y m = 67mc_A), cuando m es impar.

med(m, 5
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2. Sit = 2 entonces:

6m

(a) Cuando A es Ag,—1, Dor—1 6 Eg, el periodo es med@mmt ) cuando
Oz(m) # O2(%), y m = IIIC(1(+T1+CTA) en otro caso.

(b) Cuando A = Dgy,, el periodo es mcd(g:‘n’%) = mcd(;i:f%_l).

(¢c) Cuando A = Agy, ie. A =L, el periodo es 7 = —0Cm=L)

mcd(2m—1,2n+1)
3. Sit =3 entonces m = 3m, cuando m es par, y 6m, cuando m es impar.

En la parte final del capitulo, donde se estudian las dimensiones de Calabi-Yau, resalta-
mos dos resultados. Por una parte, combinando las siguientes proposiciones, se identifica
la relacion precisa entre la dimensién estable de Calabi-Yau y la dimensién de Calabi-Yau
Frobenius de un algebra de malla m-fold mostrando que ambas dimensiones pueden diferir
cuando A = Ay pero siempre coinciden cuando A # A,., para r = 1,2.

PROPOSICION. Sea A un algebra autoinyectiva con longitud de Loewy 2.
Entonces A es siempre establemente Calabi-Yau y se verifican las siguientes
igualdades:

1. Sichar(K) =26 A = Agm), i.e. |Qo| es par, entonces CY — dim(A) =
CYF — dim(A) = 0.

2. Sichar(K)#2y A = }Lgm), i.e., |Qo| es impar, entonces CY —dim(A) =0
y CYF —dim(A) = 2m — 1 = |Qo.

PROPOSICION. Sea A un é&lgebra de malla m-fold de tipo de Dynkin A
distinto de A,., para r = 1,2,3. Entonces A es establemente Calabi-Yau si,

y sélo si, es Calabi-Yau Frobenius. En tal caso, se verifica la igualdad CY —
dim(A) = CYF — dim(A).

Para finalizar el capitulo y lo que seria la primera parte de esta tesis proporcionamos,
para las algebras de malla m-fold, un criterio para determinar cudndo son establemente
Calabi-Yau, junto con una identificacién en tal caso de la dimensién estable de Calabi-
Yau. El caso en el que K tiene caracteristica 2 se trata en el Corolario 3.4.18. Cuando
char(K') # 2, el resultado dice:

TEOREMA. Supongamos que char(K) # 2y que A es un algebra de malla m-
fold de tipo extendido (A, m,t), donde A # Aj, Ay. Adoptamos la convencién
de que si a, b, k son tres enteros fijados, entonces au = b (mod k) significa que
u es el menor entero positivo satisfaciendo la congruencia. El dlgebra es Calabi-
Yau Frobenius si, y sélo si, es establemente Calabi-Yau. Es maés, tenemos que
CYF —dim(A) = CY — dim(A) y se verifican las siguientes afirmaciones:

1. Sit =1 entonces

(a) Cuando A es A,, Dg,_1 6 Eg, el dlgebra es establemente Calabi-Yau
si, y sélo si, med(m, ca) = 1. Entonces CY —dim(A) = 6u+2, donde
cau = —1 (mod m).
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(b) Cuando A es Do,, E; 6 Eg, el dlgebra es establemente Calabi-Yau si,
y sblo si, med(m, %) = 1. Entonces:
i. CY —dim(A) = 3u + 2, donde %u = —1 (mod m), siempre y
cuando m sea par;
ii. CY — dim(A) = 6u + 2, donde cau = —1 (mod m), siempre y
cuando m sea impar;

2. Sit = 2 entonces

(a) Cuando A es Ag,_1, Do, or Eg, el dlgebra es establemente Calabi-
Yau si, y sélo si, med(2m,m + <) = 1. Entonces CY — dim(A) =
3u + 2, donde (m + ¢ )u = —1 (mod 2m).

(b) Cuando A = Dy,, el dlgebra es establemente Calabi-Yau si, y sélo si,
mced(m,2r —1) =1y m es impar. Entonces CY — dim(A) = 3u + 2,
donde (2r — 1)u = —1 (mod 2m).

(c) Cuando A = Ay, el dlgebra es establemente Calabi-Yau si, y solo si,
mcd(2m — 1,2n + 1) = 1. Entonces CY — dim(A) = 6u — 1, donde
(m+n)2u—1)=—1 (mod 2m — 1)

3. Sit = 3 entonces el algebra no es establemente Calabi-Yau.
Los resultados de los Capitulos 1, 2 y 3 aparecen en [5].
Capitulo 4:

Los tres tltimos capitulos de esta memoria abordan la cuestién 4 mencionada mas arri-
ba, es decir, el estudio del anillo de cohomologia de Hochschild de las dlgebras de malla
m-fold de tipo extendido (Agy, 1,2) y (Ag,—1,1,2) conocidas como algebras preproyectivas
generalizadas L,, y B,,, respectivamente. Comienza con un cuarto capitulo introductorio
donde se presentan brevemente los conceptos y resultados necesarios para abordar tal
problema. Asi, en una primera seccién se recuerda una nocién importante como es el
producto de Yoneda de extensiones y se define el concepto fundamental de anillo de coho-
mologia de Hochschild de un dlgebra A que se denotard por HH*(A). En un principio, A
serd un algebra considerada sobre un anillo conmutativo R, que ademads, se supone proyec-
tiva como R-mdédulo. Més adelante, se asumirda que R es un cuerpo y, para enfatizar este
hecho, escribiremos R = K en tal caso. En la Seccién 4.3 se introduce el anillo de coho-
mologia de Hochschild estable de un R-algebra A, que sea ademas Gorenstein proyectiva
como A-bimédulo, denotado por HH*(A). Cuando el dlgebra es simétrica, cosa que siem-
pre ocurre cuando A = L,, 6 A = B,, con n par, obtenemos que HH,(A) = D(HH*(A))
como HH*(A)-médulos. Ademads, en la Seccién 4.4 se prueba que, a parte de la gradua-
cién homolégica candnica, en la que HH™(A) es la componente homogénea de grado n, el
anillo HH*(A) hereda la graduacién inducida por la longitud de caminos del dlgebra de
caminos del quiver en cuestion, que se llamara en lo que sigue ”graduacién por longitud”,
dotando a HH*(A) de una estructura de R-algebra bigraduada (= Z x Z graduada). La
Seccién 4.5 esta dedicada a las dlgebras de Frobenius introducidas por Eu-Schedler en [35].
Merece la pena mencionar que cuando A es un dlgebra de Frobenius, entonces el anillo de
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cohomologia estable HH*(A) es graduado-conmutativo (Proposicién 4.5.2), ademéds de ser
una localizacién de su version cldsica (Proposicién 4.5.6). Finalmente se incluye la Seccién
4.6, dedicada especifcamente a las dlgebras autoinyectivas. Muchos de los resultados de
este apartado son sencillas aplicaciones de los resultados obtenidos en el capitulo 1 de esta
memoria sobre algebras pseudo-Frobenius.

Capitulo 5:

Los resultados de este capitulo, que trata sobre el estudio del anillo de cohomologia
de Hochschild del algebra preproyectiva generalizada IL,, sobre un anillo conmutativo R,
aparecen publicados en [3] y [4] para los casos de caracteristica distinta a 2 e igual a
2, respectivamente. Concretamente, describimos su estructura como algebra bigraduada
con el producto de Yoneda mediante una presentacién explicita dada por generadores
homogéneos y relaciones. Resulta importante tener en cuenta dos aspectos en lo que se
refiere al caso IL,,. Por una parte, nuestra estrategia para probar el resultado principal
consiste en abordar primero el caso en que R es un cuerpo y posteriormente deducir de
éste el resultado més general en el que R es un anillo conmutativo en el que 2 es invertible.
Por otra parte, conviene sefialar que los resultados de este capitulo fueron los primeros que
se obtuvieron y, por tanto, son anteriores al momento en que nos percatamos del cambio
de relaciones que facilitaba ciertos calculos y que se presenta en la Subseccion 2.3.3 de esta
memoria. Asi, a lo largo de este capitulo se consideraran las relaciones de malla originales,
que vienen dadas como sumas de caminos en lugar de diferencias.

Como suele ser habitual, se tratara separadamente el caso en el que el cuerpo tiene
caracteristica igual a 2 (véase la Seccién 5.5). La diferencia mas notable entre ambos
casos es que, cuando la caracteristica es distinta de dos, el algebra L,, tiene periodo 6
mientras que en el caso contrario, el periodo es exactamente 3. Como se menciona en
la primera parte de la introduccién, dicha periodicidad se traslada a su vez a los grupos
de cohomologia. En la Seccién 5.2 proporcionamos los elementos necesarios para nuestros
célculos: la seccidn se inicia con la definicién del dlgebra IL,, mediante su quiver y relaciones
y, a continuacion, se muestra una base dualizable de la misma, que sera la utilizada, cuya
existencia estd garantizada por el hecho de ser simétrica. Inmediatamente, se proporciona
una resolucion proyectiva minimal del algebra como bimdédulo sobre si misma que induce
a su vez el complejo de cocadena que se utiliza para calcular la cohomologia (Proposicién
3.4.2).

Con la informacién obtenida en la seccién anterior se procede al calculo de las di-
mensiones de los espacios de cohomologia y homologia de Hochschild, asi como las de los
espacios de homologia ciclica en caracteristica cero. En particular, tomando A := L,
se da una base canénica para cada HH*(A) formada por elementos homogéneos con res-
pecto a la graduacién por longitud (Proposicién 5.3.10). La técnica que se sigue consiste
en identificar previamente la estructura de cada HH*(A) como médulo sobre el centro
Z(A) = HHO(A).

El resultado principal de este capitulo, que aparece en la Seccién 5.4 y trata la es-
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tructura multiplicativa de HH*(A) es el Teorema 5.4.1, a partir del cudl obtenemos una
presentacién del anillo de cohomologia de Hochschild estable de A, HH*(A), dada por

generadores y relaciones.

TEOREMA. Sea A = L, el dlgebra preprojectiva generalizada IL, sobre un
anillo conmutativo R en el que 2 es invertible. Se verifican las siguientes
afirmaciones para el anillo de cohomologia de Hochschild HH*(A):

1. HH*(A) es la R-élgebra bigraduada-conmutativa dada por

a) Generadores: To,Z1,...,Tn,Ys21s-«-y2nst1,t2, .« tn_1,7,h

b) Relaciones:

i) z;§ =0 para cada ¢ =1,...,n y cada generador &.
i) 28 = y? = woz; = wot; =yt = titpy =0, for j=1,...,n 1,
E=1,...n—1)
i) zjzp = (—1)F 725 — 1)(n — k + 1)zp 1y, para 1 < j < k < n.
iv) zjy= (=1 (n—j+ 1)al 'h, para j = 1,...,n
v) v =z1h
Vi) yzi = (20 +1) X1 ey (F1 7RG = Bt + (17712 - Dy,
para j =2,...,mn
vil) zpt; = 5jkx8_1y'y, parak=1,....,n j=1...,n—1

viil) ¢y = 51jx871yh, paraj=1,...,n— 1.

. La graduacién homoldgica en HH*(A) viene determinada por las igual-
dades deg(z;) = 0, deg(y) = 1, deg(z;) = 2, deg(ty) = 3, deg(y) =4y

deg(h) = 6.

. La graduacién por longitud en H H*(A) viene determinada por las igual-

dades ldeg(zo) = 2, ldeg(x;) = 2n —1, para i # 0, ldeg(y) = 0, ldeg(z;) =

—2, ldeg(tx) = —2, ldeg(y) = —2n — 2 y ldeg(h) = —4n — 2.

. La multiplicacién por h induce un isomorfismo HH'(A) = HH H6(A),

para cada i > 0.

. Cada HH*(A) es un R-médulo libre, siendo la siguiente una lista de las
correspondientes bases (see Proposition 5.3.10):

(a) Para HHC(A): {:co,:cg,...,ngl,xl,...,:cn}.
(b) Para HH'(A) {y, woy, 23y, . .. xp 1y}

(c) Para HH?(A): {z1,..-,2n}

(d) Para HH3(A): {t1,. . th—1,9y21}.

(e) Para HH*(A): {zg™ Yy, 2oy, )

(f) Para HH(A):  {af "'y, ..., zoyy, v}

(g) Para HHS(A): {h,x0h, ..., 20 'h}.

En particular dim(HH°(A)) = 2n y dim(HH'(A)) = n, para todo i > 0,
donde dim(—) denota el rango como R-mddulo libre.



xviil Introduccion

Finalizamos el capitulo con la Seccién 5.5 donde se presenta el resultado analogo al
anterior cuando el cuerpo K tiene caracteriistica 2 (Teorema 5.5.1).

Capitulo 6:

En el sexto y ultimo capitulo de esta memoria se completa la respuesta a la cuestién
4 mediante el estudio del anillo de cohomologia de Hochschild del algebra preproyectiva
generalizada B,, sobre un cuerpo de caracteristica distinta de 2. En tal caso, gracias al
Teorema 3.4.12 se sabe que B,, tiene periodo 6 y, por consiguiente, los espacios de co-
homologia también tienen periodo 6. La estrategia utilizada en este ultimo capitulo es
considerablemente distinta a la del anterior. A diferencia del caso L,,, donde el dlgebra se
presentaba directamente mediante su quiver y relaciones sin atender a su relacién con el
quiver de traslacién ZAg,, B, si serd considerada como el dlgebra de érbitas ZAg, 1 /{p7)
siendo 7 y p la traslacién de Auslander-Reiten y el automorfismo dado por la reflexién
natural de ZAg,,_1, respectivamente, o equivalentemente, considerada como el algebra de
malla finito dimensional de tipo extendido (Ag,—1,1,2) (véase la Subseccién 6.5.1). La
ventaja en este caso es que se pueden utilizar los resultados obtenidos en los tres primeros
capitulos de esta memoria para conseguir informacién esencial para nuestros propodsitos.
Asi, en la Subseccién 6.5.2 y usando el Teorema 6.5.3, se calcula la matriz de Cartan de
B,. En la Subseccién 6.5.4, y a partir de la resolucién proyectiva del dlgebra de malla
B = B(Ag,_1) como B-bimédulo, se describe la de B, que induce, como se presenta
en la Subseccién 6.5.5, el complejo de cocadena que induce a su vez la cohomologia de
Hochschild. Se continda con la Seccién 6.6 en la que, considerando A = B,,, se identi-
fica la estructura de cada espacio de cohomologia HH*(A) como Z(A)-bimédulo y, como
herramienta necesaria, el ideal I = P(A,A) de Z(A) = Endp<(A) formado por todos los
endomorfismos de A como bimddulo que se factorizan a través de un bimédulo proyectivo.
Dicha descripciéon depende de hecho de la paridad de n, lo cudl se debe principalmente a
que el automorfismo de Nakayama es la identidad cuando n es par y 7 cuando n es impar.
Es decir, A es simétrica cuando n es par pero ni siquiera es débilmente simétrica cuando n
es impar. Para finalizar el capitulo y por tanto esta memoria, a lo largo de la Seccién 6.7
presentamos los dos resultados principales (para n impar y n par) que describen mediante
generadores y relaciones la estructura como algebra bigraduada del anillo de cohomologia
de Hochschild HH*(A) sobre un cuerpo de caracteristica # 2.

El Teorema 6.7.1 trata el caso n impar:

TEOREMA. Sea n impar y sea A el dlgebra preproyectiva generalizada B,, so-
bre un cuerpo de caracteristica # 2 y véase a HH*(A) como &lgebra bigradua-
da, donde bideg(r) = (hdeg(r),1deg(r)), para cualquier elemento homogéneo
r € HH*(A). Considérese los siguientes elementos de HH*(A):

a) T =) 3cicon 3Ci € HHY(A) = Z(A), donde ¢; es el ciclo de longitud 4
en 1;
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b) y € HH'(A) representado por 4 : Bac@iAei(a) ® eyyA —> A, donde
G(€i(a) ® eya)) = a, para todo a € Q1;

¢) h € HH®(A) representado por la aplicacién multiplicacién ®;eg,Ae; ®
eiA — A y

d) En caso que char(K) divida a n, el elemento v € HH?(A) representado
por v : @ierAer(i) ® e; A — A, donde é(eT(i) ® €;) = dinen, para todo
1 € o, siendo 9;,, el simbolo de Kronecker.

Entonces se tiene que bideg(z) = (0,4), bideg(y) = (1,0), bideg(h) = (6, —4n)
y bideg(v) = (5, —2n — 2) y se verifican las siguientes afirmaciones:

1. Si char(K) no divide a n, entonces HH*(A) es el dlgebra conmutativa con
generadores x, y, h, sujeta a las relaciones:

n+1 n—1

zz =0, x2y=0, 2" h=0 y y?=0.

2. Si char(K) divide a n, entonces HH*(A) es el dlgebra bigraduada con-
mutativa con generadores x, y, v, h, sujeta a las relaciones

n+tl n—1

z 2 =0, z 2 y=0, zv =0, y? =0 yw=0 'y v? =0.

Para n par el resultado es el siguiente (Teorema 6.7.10)

TEOREMA. Sea n par, sea A el dlgebra preproyectiva generalizada B,, sobre
un cuerpo de caracteristica # 2 y véase a HH*(A) como &lgebra bigraduada,
donde bideg(r) = (hdeg(r),ldeg(r)), para cualquier elemento homogéneo r €
HH*(A). Considérese los siguientes elementos de HH*(A):

a) T,21,...,T2,_1 en HHY(A) = Z(A) dados como se sigue:
(a) @ =) 3c<9, 3¢i, donde ¢; es el ciclo no nulo de longitud 4 en ;

(b) {x1,...,2n—2} donde zor, = wor v Tok—1 = Zle wor_1, para todo
0<k<3;
(¢) 1= Zlgkgg(wqu —Wan—2k+1)s Tn = Wn ¥ Ti = W; +Wapn—;, para
todon <7< 2n—1.
b) y € HH'(A) representado por 4 : @ac@iMei(a) @ eyyA — A, donde
U(€i(a) ® eya)) = a3
¢) z € HH?(A) representado por Z : @icq,Ae, ;) @e;A — A, donde Z(e,(;)®
ei) = Oinén;
d) t € HH?(A) representado por ¢ : Dieoer)y @eiA — A, donde f(eT(i) ®
ei) = OinWn;
e) u € HH*(A) representado por i = Bac@i Aer(i(a)) @ eya)A — A, donde
a(eT(i(a)) ® et(a)) - %(5(1,&11 Qn — 5a,ﬁn/8n—1);
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f) vi,...,vn—2 € HH?(A), donde cada uno de los v; estd representado por
0; = Die,Ae; ® e;A — A, donde:
(a) vj(e; ®e;) = (i — 0i2n—j)€i, siempre y cuando j sea par;
(b) v}(el & ei) = ((SU — (Sz‘,j_i_g — 5i,2n—j + 5i72n_j_2)ez~, siempre y cuando j
sea impar.

g) h € HHS(A) representado por la aplicacién multiplicacién @;eg,Ae; ®
eiA — AL

Los grados de longitud de estos elementos son ldeg(x) = 4, ldeg(x;) = 2n — 2,
ldeg(y) = 0, ldeg(z) = ldeg(t) = —2, ldeg(u) = —2n, ldeg(v;) = —2n -2y
ldeg(h) = —4n.

Ademas, como &lgebra, HH*(A) estd generada por estos elementos, sujeta a
las relaciones graduado-conmutativas con respecto a la graduacién homolégica
junto con las siguientes relaciones:

n
l.x2 =zz=at=2v;, =0

2. x;&€ = 0, para cada generador &, excepto enel caso i <n—2y & =v; 6

E=h

3. xv; = x%_lyu, para todo i < n — 2.

4. 2 =yt =0

5. Yyz = —nt

6. yvor = 4nxor_1h y yvop—1 = —4nzoph, para todo 1 <k < 3

7. 22 = —nzz "l

8. 2zt = x%_lyu

9. zv; =0, para todo j =1,...,n — 2
10. zu=0
11. t? = tu = tvj =0, para todo j =1,...,n — 2
12. w2 =0

13. uv; =0, para todo j =1,...,n — 2
14. vopv; = 4n62;§_17j:c%uh, paratodo 1 <k<gyj=12..,n-2.

Los capitulos 5 y 6 de la memoria muestran que se pueden observar diferencias en el
comportamiento del anillo de cohomologia de Hochschild HH*(A) para A = L, y B, v,
mas aun, entre los casos n impar y n par de B,,. Por ejemplo, para L,,, HH*(A) es siempre
conmutativa, como también lo es para B,,, cuando n es impar. Sin embargo, para B,, con
n par, y salvo que Char(K) divida a n, la estructura conmutiativa de HH*(A) se destruye
por completo.

Al final de la memoria hemos incluido una lista de las referencias bilbiograficas que
hemos manejado.
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The notion of preprojective algebra first appeared in the late 70s in the work of Gelfand
and Ponomarev [42] on the representation theory of finite quivers without oriented cycles.
Essentially, given a non-oriented graph A, the associated preprojective algebra, usually
denoted by P(A), is obtained from A by replacing each edge by a pair of two opposite
arrows and identifying, afterwards, all cycles of length 2 starting at the same vertex. They
found their first applications in classification problems of algebras of finite type ([22], [23])
and have been linked to universal enveloping algebras and cluster algebras ([40], [41]).
They also occur in very diverse parts of mathematics. For instance, they play a special
role in Lusztig’s perverse sheaf approach to quantum groups ([60], [61]) and have been used
to tackle differential geometry problems [53] or to study non-commutative deformations
of Kleinian singularities [21].

When R = K is an algebraically closed field, it is well known that P(A) is finite
dimensional if and only if A is a disjoint union of generalized Dynkin graphs, A,, D,, Eg,
E7, Eg or Ln:

A,: e R PO R . (n>1)
D, : °
\. o oo o o (n > 4)
o/
E,: e o LIEERERE o o (n=6,7,8)
L, C G eie—— e (m>)

Historically, in the context of finite dimensional algebras, the syzygy operator, (2j,
which assigns to every A-module M the kernel of its projective cover Py(M) — M, has
become a very useful tool to connect modules as well as to obtain information about the
structure of the algebra itself. For instance, if all the simple modules are 5-periodic,
then A is a self-injective algebra, that is, the class of projective and injective modules
coincide. By an Qx-periodic module we mean a module M satisfying that there exists an
integer r > 0 such that Q} (M) is isomorphic to M. In such case, the smallest natural

xx1
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number satisfying the previous property is called the period of M. This operator is not
only useful, but also fundamental, when studying a particular kind of finite dimensional
algebras contained in the class of self-injective algebras and known as periodic algebras.
An algebra A is called periodic when it is periodic as a module over its enveloping algebra
A¢ = A ® AP, or equivalently, as a A-bimodule. An important common feature of the
preprojective algebras of generalized Dynkin type is that, except for A = A;, P(A) is
(Q—)periodic of period at most 6.

In every mathematical discipline, it is natural and also usual to try to generalize
concepts in such a way that the most relevant properties are preserved. With this idea in
mind, K. Erdmann and S. Skowroniski introduced in [29] a new class of algebras associated
to Dynkin diagrams which contains the preprojective algebras and which has deserved a
lot of attention in recent times in the general context of finite dimensional algebras. They
were called m-fold mesh algebras and are precisely the self-injective algebras A for which
Qi permutes the isomorphism classes of simple modules. Following the aforementioned
work, if A is one of the Dynkin quivers A,,, D, or E,, (n = 6,7,8), an m-fold mesh algebra
of type A is a quotient B/G of the mesh algebra B = B(A) of a stable translation quiver
Z.A by a weakly admissible group of automorphisms G of ZA. Later, by a result of Dugas
([25] Theorem 3.1), it was known that the m-fold mesh algebras are precisely the mesh
algebras of stable translation quivers which are finite dimensional. This class of algebras
properly contains the stable Auslander algebras of all standard representation-finite self-
injective algebras (see [25]) and also the Auslander-Reiten algebras of several hypersurface
singularities (see [29][Section 8]). Moreover, by [14][Section 6], all the algebras in the class
are periodic.

In the late 90s, in his work entitled Triangulated categories and geometry, M. Kontse-
vich defined the notion of Calabi-Yau dimension for Hom finite triangulated K-categories,
that is, for triangulated K-categories for which the K-vector space of morphisms between
two any objects is finite dimensional. Under these hypotheses, the K-category T, with
suspension functor »_ : 7 — T, is called Calabi-Yau, when there is a natural number
n such that > " is a Serre functor, or equivalently, when there exists a natural number n
such that DHom7 (X, —)) and Homy(—,>." X) are naturally isomorphic as cohomologi-
cal functors 7% — K —mod. In such case, the smallest natural number m such that > "™
is a Serre functor is called the Calabi-Yau dimension of 7 and we write CY-dim(7") = m.
Calabi-Yau triangulated categories appear in many fields of Mathematics and Theoretical
Physics. In Representation Theory of algebras, the concept plays an important role in the
study of cluster algebras and cluster categories (see [55]).

When A is a self-injective finite dimensional algebra and amod is its stable module
category, then the syzygy functor Q2 : xmod — amod is an equivalence of categories
and pmod has a structure of triangulated category with the inverse of the syzygy functor,
Qxl, as suspension functor. The Calabi-Yau condition on this category has been deeply
studied (see, e.g., [28], [12], [35], [25], [50], [51],...) and it has been related with that
of Frobenius Calabi-Yau algebra, as defined by Eu and Schedler ([35]): the algebra A is
called Calabi-Yau Frobenius when Q7 !(A) is isomorphic to D(A) = Homg (A, K) as A-
bimodules, for some integer » > 0. Notice that if the algebra A is Calabi-Yau Frobenius,
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then A — mod is Calabi-Yau. Also, taking into account that 2, “lgx? and QX’”fl are
naturally isomorphic functors ymod — pmod, the Calabi-Yau dimension of ymod is
less or equal than the smallest integer r > 0 such that Q.7 *(A) is isomorphic to D(A)
as A-bimodules, a number which will be called from now on the Calabi-Yau Frobenius
dimension of A and will be denoted by CYF-dim(A). However, in general, it is not known
whether these two numbers are equal.

After earlier work in [12] and [28], the determination of the stable Auslander algebras
A of a representation-finite self-injective algebra such that ymod is Calabi-Yau is done in
[25] and [51] in terms of its type. Inspired by the work of Riedtmann ([66]), H. Asashiba
defined in [6] the type of an stable Auslander algebra of a self-injective algebra of finite
representation type, which is invariant under derived equivalence, as the triple (A, f,t)
where A is the associated Dynkin diagram, f is the frequency and t is the torsion order.
In the first of these two papers [25], A. Dugas identifies such algebras when ¢ is 1 or 3,
and also in many cases with ¢ = 2. The remaining cases for ¢t = 2 have been recently
settled by Ivanov-Volkow ([51]). Hence, bearing in mind that the m-fold mesh algebras
are self-injective, some natural questions arise:

Question 1: Which are the m-fold mesh algebras whose stable module category is
Calabi-Yau? Which are Calabi-Yau Frobenius? And finally, which is the relation between
both dimensions?

In terms of bimodules, a basic finite dimensional algebra A is self-injective precisely
when there is an isomorphism of A-bimodules between D(A) and the twisted bimodule
1A\, for some automorphism 1 of A. This automorphism is uniquely determined up to
inner automorphism and is called the Nakayama automorphism of A. According to this,
the problem of deciding when A is Calabi-Yau Frobenius is part of a more general problem
which consists of determining under which conditions €2}.(A) is isomorphic to a twisted
bimodule A, for some automorphism ¢ of A, which is then determined up to inner
automorphism. By a result of Green-Snashall-Solberg ([44]), this condition on a finite
dimensional algebra forces it to be self-injective. Moreover, observe that when ¢ is the
identity, or an inner automorphism, we precisely obtain the definition of periodic algebra.
The problem of determining the self-injective algebras which are periodic is, nowadays,
widely open. However, there is a lot of work in the literature where several classes of
periodic algebras, including the m-fold mesh algebras, have been identified (see, e.g.,
[14], [29], [24]). Nevertheless, even when an algebra A is known to be periodic, it is
usually difficult and hard to calculate explicitly its period. In the context of the m-fold
mesh algebras, the explicit calculation of their period has been done only in very few
cases. Concretely, from the papers [67], [32] and [11] we know that the period is 6 for all
preprojective algebras of generalized Dynkin type, whenever Char(K) # 2. In addition,
in [25], the period is calculated when A is the stable Auslander algebra of a standard
representation-finite self-injective algebra of type (A, f,t) equal to (D4, f,3), (D, f,2),
with n >4 and f > 1 odd, or (Eg, f,2). Again, a natural question arises:

Question 2: Which is the period of an m-fold mesh algebra?
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Another interesting problem that has attracted special attention in the context of self-
injective finite dimensional algebras is that of characterizing those which are symmetric or
weakly symmetric. We say that an algebra A is symmetric when it is isomorphic to D(A)
as A-bimodule. This is equivalent to saying that the Nakayama functor DHomp (—, A) =
D(A) ®py — : A — Mod — A — Mod is naturally isomorphic to the identity functor. If
we weaken the condition imposed to the functor in order to preserve the isomorphism
classes of simple modules we obtain precisely the definition of weakly symmetric algebra.

Therefore, one could ask:

Question 3: Which of the m-fold mesh algebras are weakly symmetric? Which of
them are in turn symmetric?

Since it was introduced by G. Hochschild in 1945 in his work [47], the (co)homology
theory which is known by his own name has been study in depth having a marked influence,
among others, in the field of the finite dimensional algebras. Given a finite dimensional
algebra A, for each i > 0, the K-vector space HH'(A) := Exti.(A,A) is called the i-th
Hochschild cohomology group. It turns out then that, with the Yoneda product, the K-
vector space ®;>0H H'(A) admits a structure of graded-commutative K-algebra commonly
known as the Hochschild cohomology ring of A and usually denoted by HH*(A). The
lowest degrees of this ring have very concrete interpretations closely related to classical
algebraic and geometric structures. For instance, HH°(A) and HH'(A) coincide with
the center and the space of outer derivations of the algebra, respectively, while HH?(A)
controls its deformation theory: if it is zero, then the algebra is rigid. Concerning the
multiplicative structure, the Hochschild cohomology ring HH*(A) of a self-injective finite
dimensional algebra is of great interest in connection with the study of varieties of modules
and with questions about its relationship with the Yoneda algebra of A. This is the graded
algebra E(A) = Ext)(A/J,A/J), where J = J(A) denotes the Jacobson radical of A.
Indeed, with inspiration from modular representation theory of finite groups, where the
theory of varieties of modules had been developed by Carlson ([18], [19]), Benson ([10])
and others, Snashall and Solberg ([68], see also [27]) started the study of varieties of
modules over arbitrary finite dimensional algebras, replacing the group cohomology ring
HH*(G,K) by the Hochschild cohomology ring HH*(A) of the considered algebra A.
For the new theory, one generally requires A to be self-injective and HH*(A) to satisfy
some finite generation conditions, which are always satisfied when A is periodic. However,
little else is known about the Hochschild cohomology ring H H*(A) of a finite dimensional
algebra A but the fact that, whenever A is periodic, there exists an isomorphism of algebras
HH*(A)/N = K[z] where N is the ideal generated by the nilpotent elements and z is
an homogeneous element of HH*(A) whose degree coincides with the period of A. This
property first appeared explicitly in ([44], Proposicién 1.1). Nevertheless, it is just a direct
application with A = A® A°? and M = A, when A is periodic, of a more general result by
Carlson [17]. Such result states that when A = KG is a group algebra of a finite group G,
which is the prototypical example of self-injective finite dimensional algebras, and M is a
periodic A-module of period ¢, then Ext¥ (M, M)/N = K[z] where z € Ext?,(M.M) and
N is the ideal of Ext¥ (M, M) generated by the nilpotent elements. Indeed, the result is
equally valid for any self-injective finite dimensional algebra.
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The former questions suggest that finding patterns of behavior of the homogeneous
elements of HH*(A) with respect to the Yoneda product, in particular cases where the
multiplicative structure of HH*(A) is computable, can help to give some hints on how to
deal with them. Regarding the finite dimensional preprojective algebras, the structure of
the Hochschild cohomology ring, when R = K is a field, is known for type A, in arbitrary
characteristic ([30], [31]) and, in the case of a field of characteristic zero, for types D,
and E [33]. Following the notion of extended type (A, m,t) of an m-fold mesh algebra,
introduced in Chapter 2, it turns out that the preprojective algebras mentioned before are
in fact the m-fold mesh algebras of extended type (A,1,1) where A = A,,D,, or Eg. A
step forward in that direction would be to consider the case when A is an m-fold mesh
algebra of extended type (A, 1,t) with ¢ > 1, which correspond to the algebras known
nowadays as generalized preprojective algebras. In this thesis we tackle the case A = A,,.

Question 4: How are the Hochschild cohomology groups HH!(A) of a generalized
preprojective algebra A of type A,,? Which is the multiplicative structure of the associated
Hochschild cohomology ring HH*(A)?

This thesis is organized in 6 chapters which are related between them and provide an
answer to the questions formulated above.

Chapter 1

This first chapter, which may be considered as a preliminary chapter, is the fundamen-
tal basis for developing the contents of the first part of this work. Placed in the general
context of algebras with enough idempotents, the main concepts we shall work with are
those of pseudo-Frobenius algebra and their associated Nakayama form and automorphism,
all of them introduced in Section 1.3.

We will say that a graded algebra with enough idempotents, weakly basic and locally
finite dimensional is pseudo-Frobenius if the finitely generated projective objects and the
finitely cogenerated injective objects coincide in its category of graded modules. Among
other results, it is worth mentioning the characterization presented of such algebras (The-
orem 1.3.2). The appropriated notions can be found in that section.

THEOREM. Let A = @y Ap be a weakly basic graded algebra with enough
idempotents. Consider the following assertions:

1. A— Gr and Gr — A are Frobenius categories

2. D(4A) and D(A4) are projective graded A-modules

3. A is graded pseudo-Frobenius

4. There exists a graded Nakayama form (—,—): B x B — K.

Then the following chain of implications holds:

1) = 2) = 3) <= 4).
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When A is graded locally bounded, also 4) = 2) holds. Finally, if A is graded
locally Noetherian, then the four assertions are equivalent.

When the algebra satisfies the condition 1 of the previous theorem, it is called Quasi-
Frobenius. As one can suspect, pseudo-Frobenius graded algebras with enough idempo-
tents are the analogue in the context of graded algebras with enough idempotents, or
equivalently graded K-categories, of what finite dimensional self-injective algebras are in
the context of associative unital algebras. Therefore, we may ask about the existence of
an automorphism of the algebra A playing a similar role to that of the Nakayama au-
tomorphism for self-injective finite dimensional algebras. The next result guarantees its
existence ( Corollary 1.3.6):

COROLLARY. Let A = ®pcyAp be a graded pseudo-Frobenius algebra and
let (e;)ier be a weakly basic distinguished family of orthogonal idempotents.
If A is graded locally bounded, then following assertions hold:

1. There is an automorphism of (ungraded) algebras n : A — A, which
permutes the idempotents e; and maps homogeneous elements onto ho-
mogeneous elements, such that 1 A, is isomorphic to D(A) as an ungraded
A-bimodule.

2. If the degree map h : I — H associated to the Nakayama form (—,—) :
A x A — K takes constant value h, then n can be chosen to be graded
and such that D(A) is isomorphic to 1A, [h] as graded A-bimodules.

The automorphism 7 is called the Nakayama automorphism of A.

Although there are no genuine new ideas in the process of passing from unital ungraded
algebras to graded algebras with enough idempotents, as far as we know, the concept of
pseudo-Frobenius algebras and its associated ones, like Nakayama form and Nakayama
automorphism, had not been developed before in such a generality and they are crucial
for the rest of the work.

In Section 1.4, we revisit covering theory from the point of view of graded algebras
with enough idempotents emphasizing the particular case where the covering functor is
of type F' : A — A/G where A is a graded algebra with enough idempotents and G
is a group of automorphisms of A of degree 0 which permutes the idempotents e;. In
the second part of this section we study under which conditions we can guarantee the
preservation of the pseudo-Frobenius condition via the usual covering functor. As stated
below (Proposition 1.4.3), this always occurs when the associated Nakayama form of A is
what we call G-invariant, that is, when it satisfies that (a%,b9) = (a,b) for any a,b € A
and g € G.

PROPOSITION. Let A = @pcgAp be a (split weakly) basic graded locally
bounded algebra, with (e;);cr as distinguished family of orthogonal homoge-
neous idempotents, and let G be a group which acts on A as graded automor-
phisms which permute the e; and which acts freely on objects. Suppose that
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A is graded pseudo-Frobenius admitting a G-invariant graded Nakayama form
(—,—):Ax A— K. Then A = A/G is a (split weakly) basic graded locally
bounded pseudo-Frobenius algebra whose graded Nakayama form is induced
from (—, —).

Moreover, we end the section by showing that, under the hypothesis of the previous
proposition, the Nakayama automorphism 7 of A induces in turn the Nakayama automor-
phism 77 de A/G (Corollary 1.4.5).

Chapter 2

The second chapter of this work is devoted to study in depth and obtain some useful
information about the mesh algebra of a Dynkin diagram as its Nakayama automorphism.
Despite of the fact that this algebra is not the main object of study of this thesis, our
interest lies in the fact that every m-fold mesh algebra arises in some sense from such an
algebra.

In the beginning of this chapter, concretely in Section 2.2, we recall the definition
of the stable translation quiver ZA of a Dynkin diagram A. Next, in Subsection 2.3.1,
we introduce the notion of the mesh algebra B = B(A). This algebra is defined as the
quotient algebra KZA/I, where I is the homogeneous ideal generated by the so-called
mesh relations. In addition, we present a short list of well known essential properties of
B (Proposition 2.3.1). It is worth mentioning that the algebra B is a graded algebra with
enough idempotents which turns out to be pseudo-Frobenius.

Then, in Subsection 2.3.2, we provide the complete list of the m-fold mesh algebras and
we introduce the definition of extended type for such algebras which plays a crucial role
throughout this work. Indeed, all our main results on m-fold mesh algebras in Chapter
3 are given in terms of their extended type. This notion is based in the fact that every
m-fold mesh algebra A is isomorphic to an orbit algebra B/G where B is the mesh algebra
associated to a Dynkin diagram A and G is a weakly admissible group of automorphisms
of ZA viewed as automorphisms of B. Moreover, it is a well known fact that A admits as a
Galois cover its corresponding mesh algebra B. With the idea of simplifying calculations,
we end Section 2.3 by performing a change of relations which, roughly speaking, transforms
sums of paths of length 2 into differences.

The main result of this chapter, which appears in Section 2.4, is Theorem 2.4.2 where
we explicitly define, for any choice of (A, G), a graded Nakayama automorphism 1 of B
satisfying the property of being G-invariant. Here G-invariant means that n commutes
with the elements in G. As a consequence, we derive a precise formula for the graded
Nakayama automorphism of any m-fold mesh algebra.

The aforemention Theorem is the following:

THEOREM. Let A be a Dynkin quiver with the labeling of vertices and the
orientation of the arrows of Subsection 2.3.1, and let G =< ¢ > be a weakly
admissible automorphism of ZA. If n is the graded automorphism of B which
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acts as the Nakayama permutation on the vertices and acts on the arrows as
indicated in the following list, then 7 is a Nakayama automorphism of B such
that nog=gomn, for all g € G.

1. When A = A, and ¢ is arbitrary, n(a) = v(a) for all a € (ZA);
2. When A =D, 11:
(a) If n+1>4 and ¢ = 7™ then:
i. n(a) = —v(«), whenever « : (k,i) — (k,i + 1) is an upward
arrow with ¢ € {2,...,n — 1}.
ii. n(a) = v(a), whenever « : (k,i) — (k+ 1,7 — 1) is downward
arrow with ¢ € {3,...,n}.
iii. 7(g;) = (=1)'v(g;), for the arrow ¢; : (k,2) — (k,i) (i =0, 1),
iv. n(el) = (=1)"* 1y (el), for the arrow & : (k,i) — (k +1,2)

(i=0,1).
(b) If n+1 >4 and ¢ = pr™ then:
i. n(a) = —v(«), whenever « is an upward arrow as above or « :
(k,i) — (k+ 1,7 — 1) is downward arrow as above such that
= —1 (mod m).

ii. n(a) = v(a), whenever « : (k,i) — (k + 1,7 — 1) is downward
arrow such that £k Z —1 (mod m)
iii. For the remaining arrows, if ¢ and r are the quotient and rest of
dividing k£ by m, then
n(e;) = (=1)""w(e;) (i =0,1).
n(e;) = (1) w(e), when r # m—1, and n(e;) = (=1) " v(e;)
otherwise
(¢) fn+1=4and ¢ = pr™ (see the convention 2.3.7), then:
i. n(e;) = v(e;), whenever ¢; : (k,2) — (k,i) (i =0,1,3)
ii. n(e}) = —v(e)), whenever €, : (k,i) - (k+1,2) (i =0,1,3).
3. When A = Eg:
(a) If ¢ = 7™ then:
i. n(a) = v(a) and n(a’) = —v(a’), where o : (k,1) — (k,2) and
o :(k,2) = (k+1,1).
ngﬁ) = v(B) and n(8') = —v(B'), where 3 : (k,2) — (k,3) and
B :(k,3) = (k+1,2).

ii.

iii. n/(’y) = v(y) and n(y') = —v(v), where v : (k,3) — (k,4) and
v 1 (k,4) — (k+1,3).

iv. n/(é) = —u(8) and n(¢') = v(0'), where § : (k,4) — (k,5) and
8 (k,5) — (k+1,4

(

)-

v. n(e) = —v(e) and n(e') = v(¢'), where € : (k,3) — (k,0) and

e (k,0) = (k+1,3).

(b) If ¢ = pr™, (k,i) is the origin of the given arrow, ¢ and r are the
quotient and rest of dividing k by m, then:
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i. n(a) =rv(a).
i. n(a’)=—-v(a).
iii. n(B) = (=1)7(5)
v n(8) = (=) w(5)
v. n(7) = (=1)7(7)
vi. (7)) = v(7'), when either ¢ is odd and 7 # m — 1 or q is even

vii. n(d) =
viil. n(6) =v(J).
ix. n(

x. n(e") = —v(e'), when r = m — 1, and n(¢') = v(¢') otherwise.

4. When A = E7, o = 7™, and then:

i n(a) is given as in 3.(a) for any arrow a contained in the copy of Eg.

i n(¢) = v(¢) and n(¢') = —v(¢), where ¢ : (k,5) — (k,6) and ¢ :
(k,6) — (k+1,5).

5. When A = Eg, o = 7™, and then:

i n(a) is given as in 4 for any arrow a contained in the copy of E7.
i n(0) = v(0) and n(@') = —v(0'), where 0 : (k,6) — (k,7) and 6 :
(k,7) = (k+1,6).

Chapter 3:

The results in this chapter deal with questions 1, 2 and 3. We start the chapter by
proving two key results. The first of them (Lemma 3.2.1) determines in particular when
two G-invariant automorphisms of the mesh algebra B induce, up to conjugation, the
same automorphism of the m-fold mesh algebra A = B/G. The second one (Proposition
3.2.2) identifies the subgroup H consisting of the integers s such that the Nakayama
automorphism and the Nakayama permutation of A, 77 and © respectively, coincide, up to
inner automorphism, in their s-th power. That is, H consists of the s € Z such that 7°0—*
is a inner automorphism of A. The subgroup H is crucial for our purposes in this chapter.

With all our tools in place, Section 3.3 is devoted to answer question 3. The only theo-

rem of this section identifies all symmetric and weakly symmetric m-fold mesh algebras:

THEOREM. Let A be an m-fold mesh algebra of extended type (A, m,t) and
ca be the Coxeter number of A. If A is weakly symmetric then ¢ = 1 or
t = 2 and, when char(K) = 2 or A = A,, such an algebra is also symmetric.
Moreover, the following assertions hold:

1. When ¢t = 1, A is weakly symmetric if, and only if, A is Ds,., E7 or Eg and
m is a divisor of % —1. When char(K) # 2, such an algebra is symmetric
if, and only if, m is even.
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2. When ¢t = 2 and A # Ag,, A is weakly symmetric if, and only if, m
divides % — 1 and, moreover, the quotient of the division is odd, in case
A = Ag,_1, and even, in case A = Dy,.. When char(K) # 2, such an

algebra is symmetric if, and only if, A = Ay, 1 or m is odd.

3. When (A,m,t) = (Agy,m,2), ie. A = L%m), the algebra is (weakly)
symmetric if, and only if, 2m — 1 divides 2n — 1.

In Section 3.4 we determine the period and the Calabi-Yau dimension of all m-fold mesh
algebras. First, in Subsection 3.4.1 we calculate explicitly the initial part of a ’G-invariant’
minimal projective resolution of B as a graded B-bimodule. We prove in particular that
Q% (B) is always isomorphic to ,Bj, for a graded automorphism u of B which is in the
centralizer of G and which is explicitly calculated (Proposition 3.4.3). As a consequence
of the G-invariance of our previous results, we get that the induced automorphism f of
A = B/G has the property that Q3.(A) 2 ;A1 and this is fundamental in the rest of the
work.

Next, we introduce the concept of stably inner automorphism which is, in general, a
weaker condition than the condition of inner automorphism. Concretely, we shall say that
an automorphism o of A is stably inner if the functor ,(—) &, A; ® — : A — mod —
A — mod is naturally isomorphic to the identity functor. However, regarding the m-fold
mesh algebras, both concepts coincide in many cases. For instance, when the algebra A
has Loewy length greater or equal than 4 (see Lemma 3.4.6).

We answer the questions 1 and 2 in Subsections 3.4.3 and 3.4.4. In the first one we
compute explicitly the period of every m-fold mesh algebra, that is, the smallest positive
integer r such that Q.(A) is isomorphic to A as a A-bimodule. We first distinguish the
case A = Ay (Proposition 3.4.8), where the algebra has Lowey length 2:

PROPOSITION. Let A be a connected self-injective algebra of Loewy length 2.
The following assertions hold:

1. If char(K) =2or A = Agm), i.e. |Qo|is even, then the period of A is |Qo|.

2. If char(K) # 2 and A = }Lgm), i.e. |Qol is odd, then the period of A is
2|Qol-

We deal with the remaining cases in Theorem 3.4.12, whose statement in characteristic
# 2 is the following:

THEOREM. Let A be an m-fold mesh algebra of extended type (A,m,t),
where A # Ay, Ag, let m = 7(A) denote the period of A and, for each positive
integer k, denote by Oz (k) the biggest of the natural numbers r such that 2"
divides k. When char(K) # 2, the period of A is given as follows:

1. If t =1 then:
(a) When A is A,, Dy, _; or Eg, the period is 7 = ——5™

ged(m,ca)®
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b) When A is Do,, E; or Eg, the period is 7 = —32—— when m is
ged(m, =)
72
even, and T = W”?%), when m is odd.
2. If t = 2 then:
(a) When A is Ag,_1, Do, or Eg, the period is WZL&%)’ when
OQ(m) # 02(%), and ™ = m otherwise.
. . 6 6
(b) When A = Ds,, the period is gcd(2:;,%) = gcd(2mn,12r—1)'
(c) When A = Agy, ie. A = L™, the period is 7 = %

3. If t = 3 then m = 3m, when m is even, and 6m, when m is odd.

At the end of the chapter, where we study Calabi-Yau dimensions, we emphasize two
results. On one hand, combining the following propositions, we find the precise relation
between the stable Calabi-Yau and the Calabi-Yau Frobenius dimensions of an m-fold
mesh algebra showing that both dimensions may differ when A = Ay but are always equal
when A # A, for r =1, 2.

PROPOSITION. Let A be a connected self-injective algebra of Loewy length
2. Then A is always a stably Calabi-Yau algebra and the following equalities
hold:

1. If char(K) = 2 or A = Agm), ie. |Qol is even, then CY — dim(A) =
CYF — dim(A) = 0.

2. If char(K) # 2 and A = L™ i.e., |Qo| odd, then CY — dim(A) = 0 and
CYF —dim(A) =2m — 1 = |Qo.

PROPOSITION. Let A be an m-fold mesh algebra of Dynkin type A different
from A, for r = 1,2,3. Then A is stably Calabi-Yau if, and only if, it is Calabi-
Yau Frobenius. In such case the equality CY —dim(A) = CY F'—dim(A) holds.

To end this chapter and also the first part of this thesis, we provide for the class
of the m-fold mesh algebras, a criterion to determine when they are stably Calabi-Yau
together with an identification in such case of the stable Calabi-Yau dimension. Corollary
3.4.18 deals with the case when K has characteristic 2. When char(K') # 2, we have the
following;:

THEOREM. Let us assume that char(K) # 2 and let A be the m-fold mesh
algebra of extended type (A, m,t), where A # Aq, As. We adopt the convention
that if a,b, k are fixed integers, then au = b (mod k) means that u is the
smallest positive integer satisfying the congruence. The algebra is Calabi-
Yau Frobenius if, and only if, it is stably Calabi-Yau. Moreover, we have
CYF —dim(A) = CY — dim(A) and the following assertions hold:

1. If t =1 then
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(a) When A is A,, D9, or Eg, the algebra is stably Calabi-Yau if, and
only if, gcd(m, ca) = 1. Then CY —dim(A) = 6u+2, where cau = —1
(mod m).

(b) When A is Dy,, E; or Eg, the algebra is stably Calabi-Yau if, and
only if, ged(m, %) = 1. Then:

i. CY —dim(A) = 3u + 2, where %¢u = —1 (mod m), whenever m
is even;

ii. CY —dim(A) = 6u+ 2, where caou = —1 (mod m), whenever m
is odd;

2. If t = 2 then

(a) When A is Ag,—1, Do,—1 or Eg, the algebra is stably Calabi-Yau if,
and only if, ged(2m,m + %) = 1. Then CY — dim(A) = 3u + 2,
where (m + % )u = —1 (mod 2m).

(b) When A = Ds,, the algebra is stably Calabi-Yau if, and only if,
ged(m,2r—1) = 1 and m is odd. Then CY —dim(A) = 3u+2, where
(2r — 1)u = —1 (mod 2m).

(¢) When A = Ay, the algebra is stably Calabi-Yau if, and only if,
ged(2m — 1,2n + 1) = 1. Then CY — dim(A) = 6u — 1, where
(m+n)2u—1) = -1 (mod 2m — 1)

3. If t = 3 then the algebra is not stably Calabi-Yau.

The results of Chapters 1, 2 and 3 appear in [5].
Chapter 4:

The three last chapters of this dissertation deal with the question 4 mentioned above,
that is, the study of the Hochschild cohomology ring of the m-fold mesh algebras of
extended type (Agy, 1,2) and (Ag,—1,1,2), known as the generalized preprojective algebras
L, and B,,, respectively. We start with the introductory Chapter 4, where we briefly
present the notions and results needed to approach the problem. Hence, in the first section
we recall the notion of the Yoneda product of extensions and we define the fundamental
concept of the Hochschild cohomology ring of an algebra A which will be denoted by
HH*(A). Initially, A will be an algebra over a commutative ring R that, in addition, it
is supposed to be projective as an R-module. Later in this work, we will assume that
R is a field and, in order to emphasize this fact, we will write R = K in such case. In
Section 4.3 we introduce the stable Hochschild cohomology ring of an R-algebra A, which
is also supposed to be Gorenstein projective as A-bimodule, denoted by HH*(A). When
the algebra is symmetric, for instance, when A = L, or A = B,, with n even, we obtain
that HH,.(A) = D(HH*(A)) as HH*(A)-modules. Also, in Section 4.4 we show that,
apart from the homological grading in which HH™(A) is the homogeneous component of
degree n, the ring HH*(A) inherits the grading by path length of A, making HH*(A)
into a bigraded (= Z x Z graded) R-algebra . In Section 4.5 we review the notion and
essential properties of Frobenius algebras, as introduced by Eu-Schedler in [35]. It is worth
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mentioning that when A is a Frobenius algebra, then the stable Hochschild cohomology
ring HH*(A) is graded-commutative (Proposition 4.5.2) and also a localization of its
classical version (Proposition 4.5.6). Finally, we include Section 4.6, which is devoted to
self-injective algebras. Most of the results given in this section are easy applications of the
results obtained in Chapter 1 on pseudo-Frobenius algebras.

Chapter 5:

The results in this chapter, concerning the study of the Hochschild cohomology ring of
the generalized preprojective algebra L,, over a commutative ring R, appear in [3] and [4]
for the cases when the characteristic is different and equal to 2, respectively. Specifically,
we describe its structure as a bigraded algebra under the Yoneda product by giving an
explicit presentation by homogeneous generators and relations. It is important to keep in
mind two considerations regarding the case L,,. On one hand, our approach to the proof
of the main theorem is to first prove it when R is a field, and then to deduce from this the
general statement when R is a commutative ring on which 2 is invertible. On the other
hand, we shall point out that the results of this chapter were obtained before we realized
about the change of relations that simplifies some calculations and which is presented in
Subsection 2.3.3 of this thesis. Thus, throughout this chapter we will consider the original
mesh relations, given as sums of paths instead of differences.

As usual, we separate the case when the field has characteristic 2 from the rest (see
Section 5.5). The most remarkable difference is that, when the characteristic is different
from 2, the algebra IL,, has period 6 while, on the contrary, the period is exactly 3 when
Char # 2. As we mentioned in the first part of the introduction, this periodicity is
translated to the cohomology groups. In Section 5.2 we provide the elements needed for our
calculations: we begin the section by introducing the definition of the algebra LL,, given by
its quiver and relations and then, since it is symmetric, we show the dualizable basis which
will be used. Next, we give the minimal projective resolution of the algebra as a graded
bimodule that induces the cochain complex calculating the cohomology (Proposition 3.4.2).

With all our tools in place, we proceed to calculate the dimensions of the Hochschild
(co)homology spaces, as well as the cyclic homology spaces in zero characteristic. In
particular, putting A := L,, we give a canonical basis of each HH'(A) consisting of
homogeneous elements with respect to the length degree (Proposition 5.3.10). This is done
by identifying previously the structure of each HH*(A) as a module over Z(A) = HHY(A).

The main result of this chapter, given in Section 5.4 and which shows the multiplicative
structure of de HH*(A), is Theorem 5.4.1, from which we obtain a presentation of the
stable Hochschild cohomology ring of A, HH*(A), given by generators and relations.

THEOREM. Let A be the generalized preprojective algebra L,, over a commu-
tative ring R on which 2 is invertible. The following assertions hold for the
Hochschild cohomology ring HH*(A):

1. HH*(A) is the commutative bigraded R-algebra given by
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a) Generators: o, X1, ..., Tn,YsZ1s---s2n,t1,t2, . tn1,7,h
b) Relations:
i) ;£ =0 for each i = 1,...,n and each generator &.

i) o0 = y? =xoz; = a0t =yt =titp, =0, (j=1,...,n i,k =
1,...n—1)

iii) 2z = (=P 725 — 1)(n — k+ D2 1y, for 1 <j <k <n.

iv) zjy = (=1 (n —j+ D)al th, for j =1,..,n

v) v =z1h

Vi) gz = 2n+ 1) X ey 1 (177G = B+ (177127 = Dy,
forj=2,...,n

vil) zpt; = 5jkx8_1y’y, fork=1,....n j=1...,n—1
viil) ¢y = 51jx871yh, forj=1,...,n—1.

2. The homological grading on HH*(A) is determined by the equalities
deg(z;) = 0, deg(y) = 1, deg(z;) = 2, deg(ty) = 3, deg(y) = 4 and
deg(h) = 6.

3. The length grading on H H*(A) is determined by the equalities ldeg(xo) =
2, ldeg(x;) = 2n —1, for i # 0, ldeg(y) = 0, 1deg(z;) = —2, ldeg(ty) = —2,
ldeg(v) = —2n — 2 and ldeg(h) = —4n — 2.

4. Multiplication by h gives an isomorphism HHi(A) — HH6(A), for
each ¢ > 0.

5. All HH(A) are free R-modules, and the following are bases for them (see
Proposition 5.3.10):

(a) For HHO(A): {IE(),IE(Q),...,56871,:61,...,.%”}.

(b) For HH'(A) {y, w0y, 23y, . .. xg_ly}.
(c) For HH?(A) {z1,...,2n}.

(d) For HH3(A): {t1,... th—1,y21}

(e) For HH*(A) {2g7 Yy, . 2o, )

(f) For HHP(A):  {zg ™ yy,. - 2oy, y7 )
(g) For HHO(A):  {h,zoh,..., x5 'h}.

In particular dim(HHY(A)) = 2n and dim(HH*(A)) = n, for all i > 0,
where dim(—) denotes the rank as a free R-module.

We end the chapter with Section 5.5 where we present the analogous result to the
previous theorem when the field K has characteristic 2 (Theorem 5.5.1).

Chapter 6:

In this final chapter we complete the answer to question 4 by the study of the Hochschild
cohomology ring of the generalized preprojective algebra B,, over a field of characteristic
different from 2. In such case, due to Theorem 3.4.12 we know that B,, has period 6 and,
consequently, the cohomology spaces have also period 6. The strategy used in this last
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chapter is rather different from the previous one. Unlike the case L,, where the algebra
was given by its quiver and relations with no mention to its relationship with the stable
translation quiver ZAg,, B,, will be considered as the orbit algebra ZAg,_1/(pT) where T
and p are the Auslander-Reiten translation and the automorphism given by the natural
reflection of ZAs, 1, respectively, or equivalently, considered as the m-fold mesh algebra
of extended type (Ag,—1,1,2) (see Subsection 6.5.1). The advantage in this case is that
we can use the results obtained in the first three chapters in order to get relevant informa-
tion for our purposes. In Section 6.5.2 and using Theorem 6.5.3, we compute the Cartan
matrix of B,,. In Subsection 6.5.4, and from the projective resolution of the mesh algebra
B = B(Ag,_1) as B-bimodule, we describe that of B,, which induces, as shown in Sub-
section 6.5.5, the cochain complex that induces in turn the Hochschild cohomology. We
continue with Section 6.6 where, putting A = B,,, we identify the structure of each coho-
mology space HH*(A) as Z(A)-bimodule and, as a necessary tool, the ideal I = P(A, A) of
Z(A) = Endpe(A) consisting of all endomorphisms of A as a bimodule that factor through
a projective bimodule. This description depends on the parity of n, which is basically due
to the fact that the Nakayama automorphism is the identity when n is even and 7 when n
is odd. That is, A is symmetric when n is even but it is not even weakly symmetric when
n is odd. To end the chapter, and therefore this thesis, throughout Section 6.7 we present
the two major results (for n odd and n even) which describe by means of generators and
relations the structure as a bigraded algebra of the Hochschild cohomology ring HH*(A)
over a field of characteristic # 2.

Theorem 6.7.1 deals with the case n odd:

THEOREM. Let n be odd and let A be the generalized preprojective algebra
B,, over a field of characteristic # 2 and let view H H*(A) as a bigraded algebra
(see Section 2). Consider the following elements of HH*(A):

a) T = Y acicon 3¢ € HHY(A) = Z(A), where ¢; is the nonzero cycle of
length 4 at 4;

b) y € HH'(A) represented by 7 : BaecQi Mej(a)@eqyA — A, where F(e;,)®
eya)) = a, for all a € Qy;

¢) h € HHC(A) represented by the multiplication map ®;cg,Ae;@e; A — A;
and

d) In case char(K) divides n, the element v € HH®(A) represented by o :
DieoMen) ® eih = Bieqoher)y ®eiA — A, where 0(e, ;) ® €;) = dinen,
for all ¢ € g, and §;;, is the Kronecker symbol.

Then we have bideg(z) = (0,4), bideg(y) = (1,0), bideg(h) = (6,—4n) and
bideg(v) = (5, —2n — 2) and the following assertions hold:

1. If char(K) does not divide n, then HH*(A) is the commutative bigraded
algebra with generators x, y, h, subject to the relations:
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n+1 n—1

z 2 =0, zzy=0, "5 h=0 and y? = 0.

2. If char(K) divides n, then HH*(A) is the commutative bigraded algebra
with generators x, y, v, h, subject to the relations

n+1 n—1 2

r 2 =0, z 2 y=0, zv =0, y* =0, yv =10 and v? =0.

When n is even, the result is the following (Theorem 6.7.10)

THEOREM. Let n be even, let A = B,, be the generalized preprojective
algebra over a field of characteristic # 2 and let view HH*(A) as a bigraded
algebra (see Section 2). Consider the following elements of HH*(A):

1) 2,21,...,29,1 of HH°(A) = Z(A) given as follows:
(a) & =) g-;<9,_3Ci, where ¢; is the nonzero cycle of length 4 at i;
(b) {x1,...,xn—2} given by xop = wor and wor_1 = Zle wor_1, for all

0<k<3;
(©) Tn1 = D cpen(Wab—1 = Wan—2k41), Tn = W and ; = wi + wan i,
foralln <i<2n-—1.

2) y € HH'(A) represented by 7 : DPac@i Aei(a)Deya) A — A, where j(e;(q)®@
et(a)) = a;

3) z € HH?*(A) represented by Z : @icq,Ae(j) @ e;A — A, where Z(e;) ®
€i) = Ginen;

4) t € HH3(A) represented by  : DieoMers) ® e;A — A, where f(eT(i) ®
€i) = dinWn;

5) u € HH*(A) represented by @ = Bac@iAer(i(a)) @ €ya)A — A, where
W(er(i(a)) @ €4a)) = 30aann — 30a,8,Bn1;

6) v1,...,un—2 € HH°(A), with each v; is represented by 0; = ®eq,Ae; ®
e;A — A, where:
(a) vj(e; ®e;) = (8i5 — 6i2n—j)es, whenever j is even;
(b) vj(e; ® €;) = (0ij — 0i j+2 — 0i2n—j + i2n—j—2)€;, whenever j is odd.

7) h € HHY(A) represented by the multiplication map h DicgoNe; ®
e, A — A

The length degrees of these elements are ldeg(x) = 4, ldeg(z;) = 2n — 2,
ldeg(y) = 0, ldeg(z) = ldeg(t) = —2, ldeg(u) = —2n, ldeg(v;) = —2n — 2 and
ldeg(h) = —4n.

Moreover, as an algebra, HH*(A) is generated by these elements, subject to

the graded commutativity relations with respect to the homological grading
plus the following relations:

w3

a) x2 =xz=uat=zv; =0



Introduction

2 o o

= D

o

1

J
k
1
m

n

)
) ®
)
)
)
)
h)
i)
)
)
)
)
)

XxXXVii
x;€ = 0, for each generator &, except incase i <n—2and { =v;or £ =h
gzt yu, for all i <n — 2.
y? =0
Yz = —nt
Yvo = dnwop_1h and yvgp_1 = —4nxgph, for all 1 <k < 3
2= —nz2ly
2t =x7" yu
zvj =0, forall j=1,...,n—2
zu =0
t? = tu=tv; =0, forall j=1,...,n—2
u? =0
wvj =0, forall j =1,...,n -2

VoRV;j = 4ndoy_ 1jx2uh forall 1<k < gandj=1,2,...,n—2.

e

Notice that Chapters 5 and 6 make clear differences in the behaviour of the Hochschild
cohomology ring HH*(A) for A = L, and B,,, and, moreover, between the cases n odd
and n even of B,,. For instance, for L,,, HH*(A) is always commutative, as it is for B,

when n is odd. However, for B,, with n even, and unless Char(K

HH*(A) is not commutative anymore.

We include at the end of this dissertation the reference list that we have used.

) divides n, the algebra
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Chapter 1

Pseudo-Frobenius graded algebras
with enough idempotents

1.1 Introduction

1.1.1 Motivation

As we mention in the introduction, any finite dimensional mesh algebra (i.e. m-fold mesh
algebra) comes from the mesh algebra of an infinite translation quiver, an algebra with
enough idempotents, which satisfies the property of being pseudo-Frobenius. It turns
out then that m-fold mesh algebras can be basically understood at the level of their
corresponding Galois covers. This motivates the study of the pseudo-Frobenius condition
on an algebra with enough idempotents, specially in the case when the algebra is also
endowed with a gradation.

1.1.2 OQutline of the chapter

In Section 1.2 we establish some notation and we briefly review the notion of graded
algebra, recalling that it is in correspondence with that of small graded K-category. We
will not provide proofs, but we will give classical references where it can be found. In
Section 1.3 we introduce and develop the concept of pseudo-Frobenius graded algebra
with enough idempotents. We characterize such algebras and, in addition, we guarantee
the existence of the so-called Nakayama automorphism. Section 1.4 is devoted to the study
of the preservation of the pseudo-Frobenius condition via the usual covering functor. In
particular, we give a necessary condition on the Galois cover of any m-fold mesh algebra
so that the associated covering preserves the pseudo-Frobenius condition. Furthermore,
under the previous hypothesis, we show that the Nakayama automorphism of the m-fold
mesh algebra is induced by the Nakayama automorphism of its Galois cover.

1.1.3 Notation

Throughout this chapter, K is a field and the term ’algebra’ will mean always an associative
K-algebra. Recall that such an algebra A is said to be an algebra with enough idempotents,

1



2 Chapter 1

when there is a family (e;);c; of nonzero orthogonal idempotents such that @;c;e;A = A =
@ierAe;. Any such family (e;);er will be called a distinguished family. From now on in
this chapter A is an algebra with enough idempotents on which we fix a distinguished
family of orthogonal idempotents.

All considered (left or right) A-modules are supposed to be unital. For a left (resp.
right) A-module M, that means that AM = M (resp. M A = M) or, equivalently, that
M = ®@;cre; M (resp. M = @;erMe;). We denote by A—Mod and Mod — A the categories
of left and right A-modules, respectively.

The enveloping algebra of A is the algebra A° = A ® AP, where if a,b € A we will
denote by a ® b° the corresponding element of A°. This is also an algebra with enough
idempotents. The distinguished family of orthogonal idempotents which we will work with
is the family (e; ® €7)(; jyerxs- A left A>~module M will be identified with an A-bimodule
by putting axb = (a ® b°)x, for all z € M and a,b € A. Similarly, a right A°-module is
identified with an A-bimodule by putting azb = (b ® a°), for all z € M and a,b € A. In
this way, we identify the three categories A°—Mod, Mod — A€ and A —Mod — A, where the
last one is the category of unitary A-bimodules, which we will simply name ’bimodules’.

1.2 Preliminaries

1.2.1 Graded algebras with enough idempotents

We start by fixing some notation and basic definitions concerning graded algebras with
enough idempotents. Let H be an abelian group with additive notation, fixed throughout
this paragraph. An H-graded algebra with enough idempotents will be an algebra with
enough idempotents A, together with an H-grading A = @®pcpyAp, such that one can
choose a distinguished family of orthogonal idempotents which are homogeneous of degree
0. Such a family (e;);er will be fixed from now on. We will denote by A — Gr (resp.
Gr — A) the category (H-)graded (always unital) left (resp. right) modules, where the
morphisms are the graded homomorphisms of degree 0. A locally finite dimensional left
(resp. right) graded A-module is a graded module M = @pcp M}, such that, for each i € [
and each h € H, the vector space e; M}, (resp. Mpe;) is finite dimensional. Note that the
definition does not depend on the distinguished family (e;). We will denote by A — [ fdgr
and [ fdgr — A the categories of left and right locally finite dimensional graded modules.

Given a graded left A-module M, we denote by D(M) the subspace of the vector space
Hompg (M, K) consisting of the linear forms f : M — K such that f(e;M},) = 0, for all
but finitely many (i,h) € I x H. The K-vector space D(M) has a canonical structure of
graded right A-module given as follows. The multiplication D(M) x A — D(M) takes
(f,a) ~ fa, where (fa)(z) = f(az) for all x € M. Note that then one has fe; = 0,
for all but finitely many i € I, and f = >, ; fe;. Therefore D(M) is unital. On the
other hand, if we put D(M)y, :={f € D(M) : f(My) =0, for all k € H\ {—h}}, we get a
decomposition D(M) = ®pegD(M);, which makes D(M) into a graded right A-modules.
Note that D(M)pe; can be identified with Hompg (e;M_p, K), for all (i,h) € I x H. We
will call D(M) the dual graded module of M.

Recall that if M is a graded A-module and k € H is any element, then we get a graded
module M[k| having the same underlying ungraded A-module as M, but where M|k];, =
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My p, for each h € H. If M and N are graded left A-modules, then HOM 4 (M, N) :=
OhregHomy g (M, N[h]) has a structure of graded K-vector space, where the homoge-
neous component of degree h is precisely HOM4 (M, N);, := Homa_g-(M,N|h]), ie.,
HOM4 (M, N)y, consists of the graded homomorphisms M — N of degree h. The follo-
wing is an analogue of classical results for associative rings with unit, whose proof can be
easily adapted (see, e.g., [8], Section I1.3 and [65], Proposition 1.2.14 et sqq.).

Proposition 1.2.1. The assignment M ~~ D(M) extends to an exact contravariant K-
linear functor D : A — Gr — Gr — A (resp. D : Gr — A — A — Gr) satisfying the
following properties:

1. The maps oy © M — D?*(M) := (D o D)(M), where op(m)(f) = f(m) for
allm € M and f € D(M), are all injective and give a natural transformation
o:la.gr— D?>:=DoD (resp. 0 :1g,-4 —> D?>:=Do D)

2. If M is locally finite dimensional then ops is an isomorphism

3. The restrictions of D to the subcategories of locally finite dimensional graded A-
modules define mutually inverse dualities D : A — [ fdgr &4 Ifdgr — A: D.

4. If M and N are a left and a right graded A-module, respectively, then there is an
isomorphism of graded K -vector spaces

nu,N : HOMA(M,D(N)) — D(N ®4 M),

which is natural on both variables.

When A = ®pcgAn and B = @y By, are graded algebras with enough idempotents,
the tensor algebra A ® B inherits a structure of graded H-algebra, where (A ® B); =
Dsrt=nAs ® By. In particular, this applies to the enveloping algebra A® and, as in the
ungraded case, we will identify the categories A° — Gr (resp. Gr — A°) and A — Gr — A
of graded left (resp. right) A-modules and graded A-bimodules. We will denote by A —
Ifgr — A the full subcategory of A — Gr — A consisting of locally finite dimensional graded
A-bimodules.

Remark 1.2.2. If M is a graded A-bimodule and we denote by D(4M), D(M,) and
D(4My), respectively, the duals of M as a left module, right module or bimodule, then
D(aMy) = D(aM)N D(My) and, in general, D(4M) and D(M,4) need not be the same
vector subspace of Homg (M, K'). However, they are equal if the following two properties
hold:

1. For each (i,h) € I x H, there are only finitely many j € I such that e;Mye; # 0

2. For each (i,h) € I x H, there are only finitely many j € I such that e;jMpe; # 0.

Remark 1.2.3. When H =0, we have A —Gr = A—Mod and D(M) ={f: M — K :
f(e; M) =0, for almost all i € I}.
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Definition 1. Let A = ®pcpyAp be a graded algebra with enough idempotents. It will be
called locally finite dimensional when the regular bimodule gA 4 is locally finite dimen-
sional, i.e., when e;Ape; is finite dimensional, for all (i,7,h) € I x I x H. Such a graded
algebra A will be called graded locally bounded when the following two conditions hold:

1. For each (i,h) € I x H, the set "M = {j € I: e;Ape; # 0} is finite

2. For each (i,h) € I x H, the set I(; 5y = {j € I : ejApe; # 0} is finite.

Remark 1.2.4. For H = 0, the just defined concepts are the familiar ones of locally finite
dimensional and locally bounded, introduced in the language of K-categories by Gabriel
and collaborators (see, e.g., [13]).

1.2.2 Graded algebras with enough idempotents versus
graded K-categories

In this subsection we remind the reader that graded algebras with enough idempotents
can be looked at as small graded K-categories, and viceversa.

A category C is a K-category if C(X,Y) is a K-vector space, for all objects X,Y,
and the composition map C(Y,Z) x C(X,Y) — C(X, Z) is K-bilinear, for all X,Y,Z €
Ob(C). If now H is a fixed additive abelian group, then C is a (H—) graded K -category
if C(X,Y) = ®reuCr(X,Y) is a graded K-vector space, for all X,Y € Obj(C), and the
composition map restricts to a (K-bilinear) map

Ch(Y7 Z) X Ck(va) — Cthk(Xv Z)

for any h,k € H. There is an obvious definition of graded functor (of degree zero) between
graded K-categories, namely, an additive functor which induces morphisms of graded
K-vector spaces at the level of morphisms.

The prototypical example of graded K-category is (K, H)—GR = K —GR. Its objects
are the H-graded K-vector spaces and, for the morphisms, we define Homg _gr(V,W) =
OregHompg g (V,W[h]), where Homg ¢, (V, Wh]) is the space of K-linear maps of de-
gree h from V to W. The grading on Homg_gr(V, W) is given by putting, for each h € H,
HomK_GR(V, W)h = HOHIK_G,«(V, W[h])

If A = ®regAp is a graded algebra with enough idempotents, on which we fix a
distinguished family (e;);cs of orthogonal idempotents of degree zero, then we can look at
it as a small graded K-category. Indeed we put Ob(A4) = I, A(i,j) = e;Ae;j and take as
composition map e;jAey X e;Ae; — e;Aey, the antimultiplication: bo a := ab.

Conversely, if C is a small graded K-category then R = ©x ycob)C(X,Y) is a graded
K-algebra with enough idempotents, where the family of identity maps (1x)xcob(c) is a
distinguished family of homogeneous elements of degree zero. We will call R the functor
algebra associated to C. Let GrFun(C, K — GR) denote the category of graded K-linear
covariant functors, with morphisms the K-linear natural transformations. To each object
F in this category, we canonically associate a graded left R-module M(F) as follows. The
underlying graded K-vector space is M(F) = ©cecobc)F(C). If f € IyRlx = C(X,Y)
and z € F(Z), then we define f -z = dxzF(f)(x), where dxz is the Kronecker symbol.
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Note that f -z is an element of F(Y), and if f and = are homogeneous elements, then f-x
is homogeneous od degree deg(f) + deg(x).

Conversely, given a graded left R-module M, we can associate to it a graded functor
Fyr: C — K — GR as follows. We define Fjy(X) = 1x M, for each X € Ob(C), and if
f€C(X,Y) =1y Rlx is any morphism, then Fy/(f) : Far(X) — Fpa(Y) maps  ~~ fx.

Given an object X of the graded K-category C, the associated representable functor is
the functor Home (X, —) : C — K — GR which takes Y ~» C(X,Y), for each Y € Ob(C).
With an easy adaptation of the proof in the ungraded case (see, e.g., [37][Proposition
I1.2]), we get:

Proposition 1.2.5. Let C be a small (H-)graded K- category and let R be its associa-
ted functor algebra. Then the assignments F ~~ M(F) and M ~ Fy extend to mu-

tually quasi-inverse equivalences of categories GrFun(CP?, K — Gr) <=3 R— Gr. These

equivalences restrict to mutually quasi-inverse equivalences GrFun(C?, K — lfdGR) &
R —1fdgr, where K —lfdGR denotes the full graded subcategory of K — GR consisting of
the locally finite dimensional graded K -vector spaces.

These equivalences identify the finitely generated projective R-modules with the direct
summands of representable functors.

Due to the contents of this subsection, we will freely move from the language of graded
algebras with enough idempotents to that of small graded K-categories and viceversa.
In particular, given graded algebras with enough idempotents A and B, we will say that
F : A — B is a graded functor if it so when we interpret A and B a small graded
K-categories.

1.3 Pseudo-Frobenius graded algebras

1.3.1 Definition and characterization

We still work with a fixed abelian additive group H and all gradings on algebras and
modules will be H-grading. For the convenience of the reader we start with the following
definition:

Definition 2. A locally finite dimensional graded algebra with enough idempotents A =
@Oner A, will be called weakly basic when it has a distinguished family (e;);er of orthogonal
homogeneous idempotents of degree 0 such that:

1. e;Age; is a local algebra, for each i €

2. e;jAe;j is contained in the graded Jacobson radical J9"(A), for all i,j € I, i # j.

It will be called basic when, in addition, e;Ape; C J9"(A), for all i € I and h € H \ {0}.
We will use also the term ’(weakly) basic’ to denote any distinguished family (e;)ier
of orthogonal idempotents satisfying the above conditions.

A weakly basic graded algebra with enough idempotents will be called split when
eiApei/e;J(Ap)e; = K, for each i € I.
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With the idea of extending the definition of finite dimensional self-injective algebras,
or more general, that of pseudo-Frobenius rings (cf. [36], V.24.32) to the present context,
it makes sense to define:

Recall that a graded module is finitely cogenerated when it is finitely generated and
its graded socle is essential as a graded submodule.

Definition 3. A weakly basic graded algebra with enough idempotents will be called
graded pseudo-Frobenius if the projective finitely generated objects and the injective
finitely cogenerated objects coincide in A — Gr (resp. Gr — A).

Once we have set a formal definition, it is natural to ask oneself if pseudo-Frobenius
graded algebras with enough idempotents behave similarly to finite dimensional self-
injective algebras. The answer is given throughout the rest of this subsection and, for-
tunately, as in the self-injective case, one can define and even guarantee the existence of
relevant notions as the Nakayama form and automorphism. We first need some prelimi-
naries.

Proposition 1.3.1. Let A = ®pcy Ay be a weakly basic locally finite dimensional algebra
with enough idempotents and let (e;) be a weakly basic distinguished family of orthogonal
idempotents. The following assertions hold:

1. J9"(A)g is the Jacobson radical of Ay.

2. Each indecomposable finitely generated projective graded left A-module is isomorphic
to Ae;lh], for some (i,h) € I x H. Moreover, if Ae;[h] and Ae;[k]| are isomorphic in
A — Gr, then i = j and, in case A is basic, also h = k.

3. Fach finitely generated projective graded left A-module is a finite direct sum of graded
modules of the form Ae;[h], with (i,h) € I x H

4. Fach finitely generated graded left A-module has a projective cover in the category
A—Gr

5. Each finitely generated projective graded left A-module is the projective cover of a
finite direct sum of graded-simple modules (=simple objects of the category A — Gr).

Moreover, the left-right symmetric versions of these assertions also hold.

Proof. 1) For each left ideal U of Ay one has AU N Ay = U. With this in mind, let m be
a maximal graded left ideal of A. Then my = Ay Nm is a proper left ideal of Aj since
Ag contains all the e;. But if my C U, for some proper left ideal U of Ag, then AU + m
is a proper graded left ideal of A for its 0-homogeneous component is U + mg = U. But
we have m C UA + m, which contradicts the maximality of m. It follows that U cannot
exist, so that my is a maximal left ideal of Ay. From the equality J9"(A)y = Nmmy,
where m varies on the set of maximal graded left ideals of A, we derive that J9"(A)g is
an intersection of maximal left ideal of Ag. It follows that J(Ap) C J9"(A)o.

We claim that this inclusion is actually an equality. Suppose not, so that we have
i,j € I such that e;J(Ag)e; € e;J9(A)oe;. If i # j then, by definition 2, we have
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e;Ape; = e;J9"(A)pe; so that we have e;J(Ag)e; C e;Apej. As in the case of associative
unital algebras, this implies that Ape; = Age; or, equivalently, the existence of x € e; Ape;
and y € e;Ape; such that zy = e; and yr = e;. Then the maps p, : Ae; — Ae;
and py : Ae; — Ae; are mutually inverse isomorphisms of graded left A-modules. This
contradicts assertion 2, which is proved below. Therefore we necessarily have ¢ = j. But
then the fact that e; Ape; is a local algebra forces the equality e; JJ9"(A)oe; = e;Age;, which
implies that J9"(A) contains the homogeneous idempotent e;. This is clearly absurd.

The proof of the remaining assertions is entirely similar to the one for semiperfect
(ungraded) associative algebras with unit (see, e.g., [52]) and here we only summarize
the adaptation, leaving the details to the reader. For assertion 2), suppose that there is
an isomorphism f : Ae;[h] = Aejlk] in A — Gr, with (i,h),(j,k) € I x H. The map
p:eAr_ne; — Homa_qgr(Ae;ilh], Aejlk]), given by p(x)(a) = ax, for all a € Ae;, is an
isomorphism of K-vector spaces, so that f = p,, for a unique x € e;A;_pe;. Similarly,
there is a unique y € ejAjy_ge; such that 1= py- We again get that yx = e; and vy = e;.
If ¢ # j, this is a contradiction since e;Ae; + e;Ae; C J9"(A). Therefore we necessarily
have i = j and, in case A is basic, we also have h = k for otherwise we would have that
yr = e; € J9"(A), which is absurd.

On the other hand, the map p : ¢;Ape; — Endg_g,(Ae;[h]) given above is an isomor-
phism of algebras. Therefore each Ae;[h] has a local endomorphism algebra in A — Gr.
Since each finitely generated graded left A-module is an epimorphic image of a finite direct
sum of modules of the form Ae;[h], we conclude that the category A — grproj of finitely ge-
nerated projective graded left A-module is a Krull-Schmidt one, with any indecomposable
object isomorphic to some Ae;[h]. This proves assertion 2 and 3.

As in the ungraded case, the fact that Ends_g,(Ae;[h]) is a local algebra implies that
J9"(A)e;[h] is the unique maximal graded submodule of Ae;[h]. If S; := Ae;/J9 (A)e;,
then S;[h| is a graded-simple module, for each h € H, and all graded-simple left modules
are of this form, up to isomorphism. Since the projection Ae;[h] — S;[h] is a projective
cover in A — Gr we conclude that each graded-simple left A-module has a projective cover
in A — Gr. From this argument we immediately get assertion 5, while assertion 4 follows
as in the ungraded case.

Finally, the definition of weakly basic locally finite dimensional graded algebra is left-
right symmetric, so that the last statement of the proposition also follows. U

We look at K as an H-graded algebra such that K = 0, for h # 0. If V = ®pegVh
is a graded K-vector space, then its dual D(V') gets identified with the graded K-vector
space ®pegHomp (Vy,, K), with D(V), = Homg(V_p,, K) for all h € H.

Definition 4. Let V = ®pcygVy and W = @pegWy, be graded K-vector spaces, where
the homogeneous components are finite dimensional, and let d € H be any element. A
bilinear form (—,—): V x W — K is said to be of degree d if (V},, W}) # 0 implies that
h +k = d. Such a form will called nondegenerate when the induced maps W — D(V)
(w~> (—,w))) and V. — D(W) (v ~ (v,—))) are bijective.

Note that, in the above situation, if (—,—) : V x W — K is a nondegenerate bilinear
form of degree d, then the bijective map W — D(V') ( resp V. — D(W)) given above

gives an isomorphism of graded K-vector spaces Wd] = D(V) (resp. V[d] = D(W)).
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The following concept is fundamental for us.

Definition 5. Let A = @,y A, be a weakly basic graded algebra with enough idempo-
tents. A bilinear form (—,—) : A x A — K is said to be a graded Nakayama form when
the following assertions hold:

1. (ab,c) = (a,bc), for all a,b,c € A

2. For each i € I there is a unique v(i) € I such that (e;A, Ae,;)) # 0 and the
assignment i ~ v(7) defines a bijection v : I — I.

3. There is a map h : I — H such that the induced map (—, —) : e;Ae; X ejAe, ;) —
K is a nondegenerated graded bilinear form degree h; = h(i), for all 4,j € I.

The bijection v is called the Nakayama permutation and h will be called the degree map.
When h is a constant map and h(i) = h, we will say that (—,—) : Ax A — K is a graded
Nakayama form of degree h.

Definition 6. A graded algebra with enough idempotents A = @pc g Ap will be called left
(resp. right) locally Noetherian when Ae; (resp. e;A) satisfies ACC on graded submodules,
for each ¢ € I. We will simply say that it is locally Noetherian when it is left and right
locally Noetherian.

Recall that a Quillen exact category £ (e.g. an abelian category) is said to be a
Frobenius category when it has enough projectives and enough injectives and the projective
and the injective objects are the same in &.

The following result characterizes the pseudo-Frobenius graded algebras with enough
idempotents.

Theorem 1.3.2. Let A = ®peygAp be a weakly basic graded algebra with enough idempo-
tents. Consider the following assertions:

1. A— Gr and Gr — A are Frobenius categories
2. D(4A) and D(AA) are projective graded A-modules
3. A is graded pseudo-Frobenius

4. There exists a graded Nakayama form (—, —) : Ax A — K.

Then the following chain of implications holds:
1) =2) = 3) <=14).

When A is graded locally bounded, also 4) = 2) holds. Finally, if A is graded locally
Noetherian, then the four assertions are equivalent.

Proof. 1) = 2) By Proposition 1.2.1, we have a natural isomorphism
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HOMA(?,D(A4)) 2 D(A®4?) : A— Gr — K — Gr,

and the second functor is exact. Then also the first is exact, which is equivalent to saying
that D(A4) is an injective object of A—Gr (see [65][Lemma 1.2.4]). A symmetric argument
proves that D(4A) is injective in Gr — A. Then both D(A4) and D(4A) are projective in
A — Gr and Gr — A since these are Frobenius categories.

2) = 3) The duality D : A — lfdgr &4 lfdgr — A : D exchanges projective and
injective objects, and, also, simple objects on the left and on the right. Since A is locally
finite dimensional all finitely generated left or right graded A-modules are locally finite
dimensional. Moreover, our hypotheses guarantee that each finitely generated projective
graded A-module P is the projective cover of a finite direct sum of simple graded modules.
Then D(P) is the injective envelope in A — [ fdgr of a finite direct sum of simple objects.
We claim that each injective object E of A—1fdgr is an injective object of A—Gr. Indeed
if U is a graded left ideal of A, h € H is any element and f : U[h] — E is morphism in
A — Gr, then we want to prove that f extends to A[h|. By an appropriate use of Zorn
Lemma, we can assume without loss of generality that there is no graded submodule V' of
Alh] such that U[h] C V and f is extendable to V. The task is then reduced to prove that
U = A. Suppose this is not the case, so that there exist ¢ € I and a homogeneous element
x € Ae; such that ¢ U. But then Az + U/U is a locally finite dimensional graded
A-module since so is Az. It follows that Ext4_; fdgT(U+TM[h], E) = 0, which implies that
f : Ulh] — E can be extended to (U + Az)[h], thus giving a contradiction. Now the
obvious graded version of Baer’s criterion (see [65][Lema 1.2.4]) holds and F is injective in
A — Gr. In our situation, we conclude that D(P) is a finitely cogenerated injective object
of A — Gr, for each finitely generated projective object P of Gr — A.

Conversely, if S is a simple graded right A-modules and p : P — D(S) is a projective
cover, then D(p) : S = DD(S) — D(P) is an injective envelope. This proves that the
injective envelope in A — Gr of any simple object, and hence any finitely cogenerated
injective object of A — Gr, is locally finite dimensional.

Let now E be any locally finite dimensional graded left A-module. We then get that
E is an injective finitely cogenerated object of A — Gr if, and only if, E = D(P) for some
finitely generated projective graded right A-module P. This implies that E is isomorphic
to a finite direct sum of graded modules of the form D(e;A[—h;]) = D(e;A)[h;], where
hi € H. We then assume, without loss of generality, that £ = D(e; A)[h], for some i € I
and h € H. Since e; A[—h] is a direct summand of A[—h] in Gr— A, assertion 2 implies that
E is a projective object in A — Gr. Then F is isomorphic to a direct summand of a direct
sum of graded modules of the form Ae;[h;]. From the fact that E has a finitely generated
essential graded socle we easily derive that E is a direct summand of ®1<i<,Ae;, [hi, ],
for some indices i, € I. Therefore each finitely cogenerated injective object of A — Gr is
finitely generated projective. The analogous fact is true for graded right A-modules.

On the other hand, if P is a finitely generated projective graded left A-module, then
D(P) is a finitely cogenerated injective objet of Gr — A and, by the previous paragraph,
we know that D(P) is finitely generated projective. We then get that P = DD(P) is
finitely cogenerated in A — Gr.

3) = 4) From assertion 3) we obtain its left-right symmetric statement by applying

the duality D : A — [fdgr &5 lfdgr — A : D, bearing in mind that an injective object in
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[fdgr — A is also injective in Gr — A. It follows that D(e;A) is an indecomposable finitely
generated projective left A-module, for each ¢ € I. We then get a unique index v(i) € I
and h; € H such that D(e;A) = Ae,;)[h;]. We then have a map v : I — I. Similarly,
for each i € I, we choose one h; € H such that D(e;A) = Ae,(;[hi] and, in this way, we
get the degree map h : I — H. By the same reason, given another j € I, we have that
D(Aej) = e,y Alk;], for a unique pu(j) € I and some k; € H. We then get

eiA = DD(eZA) = D(Aey(i) [hl]) = D(Aey(z))[—hz] e A[ky(z) — hz‘],

()

and, by Proposition 1.3.1, we conclude that puv(i) =i, for all ¢ € I. This and its symmetric
argument prove that the maps p and v are mutually inverse.

We fix an isomorphism of graded left A-modules f; : Ae, ) [h] =, D(e;A), for each
i € I. Then we get a bilinear map

e; A X Aey ) M—ff e;A x D(e;A) A K.

Note that we have (a,cb) = fi(ch)(a) = [cfi(b)](a) = fi(b)(ac) = (ac,b), for all (a,b) €
e;Ax Aey ;) and all ¢ € A. This bilinear form is clearly nondegenerate because e; A is locally
finite dimensional and, due to the duality D, the canonical bilinear form e; A x D(e; A) —
K is nondegenerate, and actually graded of degree 0 since D(e;A)r; = D(e;A_) =
Hompg (e;A_, K), for each k € H. On the other hand, if s,t € H and a € ¢; A5 and
b € Ate,(;) are homogeneous elements, then the degree of b in Ae,(;[hs] is t — h;. We get
that (a,b) # 0 if, and only if, s + (¢t — h;) = 0. This shows that the given bilinear form is
graded of degree h;.

We then define an obvious bilinear form (—, —) : Ax A — K such that (e; A, Ae;) =0,
whenever j # v(i), and whose restriction to e;A x Ae, ;) is the graded bilinear form of
degree h; given above, for each i € I. Since (a,b) = >, ;o (€ia,bej) = > e (eia, be, ),
we get that (ac,b) = (a,cb), for all a,b,c € A, and, hence, that (—,—) : Ax A — K is a
graded Nakayama form.

4) = 3) Let (—,—) : Ax A — K be a graded Nakayama form and let v : I — I and
h: I — H be the maps given in definition 5. We put h(i) = h;, for each ¢ € I. Since the
restriction of (—, —) : ;A X Ae,(;; — K is a nondegenerate graded bilinear form of degree
h;, we get induced isomorphisms of graded K-vector spaces f; : Ae,)[h;] — D(e;A) and
i+ ey Alhi] — D(Ae;), where f;(b) = (—,b) : * ~ (x,b) and g;(a) = (a,—) 1 y ~
(a,y). The fact that (ac,b) = (a,cb), for all a,b,c € A implies that f; is a morphism in
A—Gr and g; is a morphism in Gr — A. Therefore the projective finitely generated objects
and the injective finitely cogenerated objects coincide in A —1fdgr and [ fdgr — A. By our
comments about the graded Baer criterion, assertion 3 follows immediately.

3),4) = 2) We assume that A is graded locally bounded. The hypotheses imply
that the injective finitely cogenerated objects of A — Gr and Gr — A are locally finite
dimensional and they coincide with the finitely generated projective modules. But in this
case A is locally finite dimensional both as a left and as a right graded A-module. Indeed,
given i € I, one has e¢; A, = @jere;Ape;. By the graded locally bounded condition of A
almost all summands of this direct sum are zero. This gives that, for each (i,h) € I x H,
the vector spaces e; Ay, is finite dimensional, whence, that 4 A is in A—1[fdgr. Similarly, we
get that Ay € A—1fdgr. It follows that D(4A) and D(A4) are locally finite dimensional.



1.3. Pseudo-Frobenius graded algebras 11

We claim that D(A4) is isomorphic to @;erD(e;A) which, together with assertion 3, will
give that D(A4) is a projective graded left A-module. This plus its symmetric argument
will then finish the proof.

To prove our claim, note that, using the duality D, we know that D(A4) is the product
in the category A — [fdgr of the D(e;A). It is not clear in principle what this product is
since the category A — [fdgr is not closed under taking products in A — Gr. What we
shall do is to prove that there is an isomorphism of graded left A-modules [[;.; D(e;A) =
@icrD(e;A), where the product is taken in A — Gr. Note that, for each (j,h) € I x H,
we have that e;(®icrD(e;A))n = BicrejD(e;A)r, = @icrD(e;A_pej), and this is a finite
dimensional vector space due to the graded locally bounded condition of A. It will follow
that @;erD(e;A) is locally finite dimensional and is isomorphic to the product, both in
A — Gr and A —[fdgr, of the D(e;A). Our claim will be then settled.

The product of the D(e;A) in A — Mod is the largest unitary submodule of the carte-
sian product [[;c; D(e;A). Therefore it is @jer(ej [[;e; D(eiA)) = @jer [ ;e D(eiAey).
The product of the D(e;A) in A — Gr is then ®©pen(Bjer [Lie; D(eide))n) = Oren Sjer
[I;cr D(e;A_pe;)). The graded locally bounded condition of A implies that this last vector
space coincides with ®pepy ®jcr ®icrD(e;A_pej)). This is exactly @ierD(e;A), and so we
have an isomorphism [[,.; D(e;A) = ®ierD(e;A) in A — Gr.

3),4) = 1) We assume that A is graded locally Noetherian. Then A—Gr and Gr— A
are locally Noetherian Grothendieck categories, i.e., the Noetherian objects form a set
and generate both categories. Then each injective object in A — Gr or Gr — A is a direct
sum of indecomposable injective objects and each direct sum of injective objects is again
injective (see [37|[Proposition IV.6 and Theorem IV.2]). Since, by hypothesis, Ae; and e; A
are injective objects in A — Gr and Gr — A, respectively, we deduce that each projective
object in any of these categories is injective.

On the other hand, Ae; (resp. e;A) is a Noetherian object of A — Gr (resp. Gr — A),
which implies by duality that D(Ae;) (resp. D(e;A)) is an artinian object of [ fdgr — A
(resp. A — lfdgr), and hence also of Gr — A (resp. A — Gr). But we have D(Ae;) =
ey—1(i)Alhy-1(5)] (resp. D(e;A) = Ae,;)[hi]), where v is the Nakayama permutation. By
the bijectivity of v, we get that all Ae; and e;A are Artinian (and Noetherian) objects,
whence they have finite length. Therefore A — Gr and Gr — A have a set of generators of
finite length, which easily implies that the graded socle of each object in these categories is
a graded essential submodule. In particular, each injective object in A—Gr (resp. Gr—A)
is the injective envelope of its graded socle. But if {S; : ¢ € T'} is a family of simple objects
of A— Gr (resp. Gr — A) and ¢; : S; — E(S;) is an injective envelope in A — Gr (resp.
Gr — A), then the induced map ¢ := @er : Drer St — Drer E(Sy) is an injective envelope
in A—Gr (resp. Gr— A) since the direct sum of injectives is injective. Since each E(S;) is
finitely cogenerated, whence projective by hypothesis, it follows that each injective object
in A — Gr (resp. Gr — A) is projective. O

Definition 7. A weakly basic locally finite dimensional graded algebra satisfying condition
1 will be called graded Quasi-Frobenius.

Remark 1.3.3. The concepts of pseudo-Frobenius (PF) and Quasi-Frobenius (QF) asso-
ciative unital algebras (over a commutative ring and not just over a field) are classical (see,
g., [36], [58] and [69]). Such an algebra A is left PF when 4 A is an injective cogenerator
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of A—Mod while it is QF when A —Mod, or equivalently Mod — A, is what today is called
a Frobenius category. Pseudo-Frobenius algebras are the left and right PF algebras and
they are characterized by the fact that the finitely generated projective and the finitely
cogenerated injective objects coincide in A — Mod and Mod — A. Although not yet with
this name, pseudo-Frobenius algebras already appear in the original work of Morita ([64]).

Examples 1.3.4. The following are examples of graded pseudo-Frobenius algebras over
a field K:

1. When H = 0 and A = A is a finite dimensional self-injective algebra, which is
equivalent to saying that A is quasi-Frobenius.

2. When A is any finite dimensional split basic algebra and A = A is its repetitive
algebra, in the terminology of [46], then A is a (trivially graded) quasi-Frobenius
algebra with enough idempotents (see op.cit.[Chapter II]).

3. The Z-graded algebra A = K|z, 271y, z]/(3?, 2?), where deg(x) = deg(y) = deg(z) =
1. Given any integer m, we have a canonical basis B, = {z™, 2™ 1y, 2™ 12, 2™ 2y2}
of A,,. Consider the graded bilinear form A x A — K of degree m identified by
the fact that if f € A, and g € A,,_,, then (f,g) is the coefficient of 2™ 2yz in the
expression of fg as a K-linear combination of the elements of B,,. Then (—, —) is a
graded Nakayama form for A, so that A is graded pseudo-Frobenius.

The following result complements Theorem 1.3.2 and gives a handy criterion, in the
locally Noetherian case, for A to be graded Quasi-Frobenius.

Corollary 1.3.5. Let A = @pegAp be a weakly basic locally Noetherian graded algebra
with enough idempotents. The following assertions are equivalent:

1. The following two conditions hold:

(a) For eachi € I, Ae; and e; A have a simple essential socle in A—Gr and Gr—A,

respectively
A
(b) There are bijective maps v,v' : I — I such that Socg,(e;A) = %[hi]
Ae,r; .
and Socg, (Ae;) = W)éy)/(i)[hg], for certain h;, b, € H

2. A is graded Quasi-Frobenius

Proof. We only need to prove 1) = 2). By definition of weakly basic, A is locally finite
dimensional, so that Ae; and e; A are locally finite dimensional modules, for all i € I.
It then follows by duality that D(e;A) is an Artinian object of A — Gr, for all ¢ € I.
By the same reason, we get that D(e; A) has a unique simple essential quotient, meaning
that D(e;A) has a unique maximal superfluous subobject. By a classical argument, it
follows that D(e;A) has a projective cover in A — Gr, which is an epimorphism of the form
p: Aej[h] - D(e;A). It follows from this that D(e; A) is a Noetherian object, whence, an
object of finite length in A — Gr since it is a quotient of a Noetherian object. With this
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and its symmetric argument we get that all finitely cogenerated injective objects in A—Gr
and Gr — A have finite length, which implies by duality that also the finitely generated
projective objects have finite length.

The fact that Socy,(e;A) is simple-graded implies that the injective envelope of e;A in
A—Gris of the form ¢ : ;A — E = D(Ae;)[h], while the projective cover of E is of the form
p: e A[h'] = E. Then ¢ factors through p yielding a monomorphism u : e;A — e A[R].
But then the graded socles of e; A and e, A[h'] are isomorphic. By condition 1.b) and the
weakly basic condition, this implies that ¢ = k. By comparison of graded composition
lengths, we get that u is an isomorphism, which in turn implies that both p and ¢ are also
isomorphisms. Therefore all the e; A, and hence all finitely generated projective objects,
are finitely cogenerated injective objects of A —Gr. The left-right symmetry of assertion 1
implies that the analogous fact is true in Gr — A. Then, applying duality, we get that the
finitely generated projective objects and the finitely cogenerated injective objects coincide
in A— Gr and Gr — A. Then assertion 3 of Theorem 1.3.2 holds, which together with the
locally Noetherian hypothesis imply that A is graded Quasi-Frobenius.

O

Due to the previous characterization, we can derive the existence of an automorphism
n of the algebra A, not necessarily graded, which plays the role of the Nakayama auto-
morphism. That is, it satisfies the condition that D(A) = 1A, as A-bimodules. This
automorphism will be also called the Nakayama automorphism of A and it may be taken
to be graded under certain conditions, in which case, we will refer to it as the graded
Nakayama automorphism of A.

Corollary 1.3.6. Let A = @peg Ay, be a graded pseudo-Frobenius algebra and let (e;)icr
be a weakly basic distinguished family of orthogonal idempotents. If A is graded locally
bounded, then the following assertions hold:

1. There is an automorphism of (ungraded) algebras n: A — A, which permutes the
idempotents e; and maps homogeneous elements onto homogeneous elements, such
that 1 A, is isomorphic to D(A) as an ungraded A-bimodule.

2. If the map h : I — H associated to the Nakayama form (—,—) : Ax A — K
takes constant value h, then n can be chosen to be graded and such that D(A) is
isomorphic to 1 Ay[h] as graded A-bimodules.

Proof. Let first note that, by Remark 1.2.2, we have D(4A) = D(4Aa) = D(A4) in this
case.

1) Let us fix a graded Nakayama form (—,—) : A x A — K and associated maps
v:I— Tand h:I — H. The assignment b ~> (—,b) gives an isomorphism of graded A-

modules Ae,(; [hi] = D(e;A), for each i € I. By taking the direct sum of all these maps,
we get an isomorphism of ungraded left A-modules 4 A — @;c;D(e;A). But we have seen
in the proof of the implication 3),4) = 2) in last theorem that D(A) = ®;c;D(e;A) in
A—Gr. Therefore the assignment b ~ (—, b) actually gives an isomorphism 44 —s D(A).
Symmetrically, the assignment a ~» (a,—) gives an isomorphism A4 = D(A). Tt then
follows that, given a € A, there is a unique 7n(a) € A such that (a,—) = (—,n(a)). This
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gives a K-linear map n : A — A which, by its own definition, is bijective. Moreover,
given a,b,x € A, we get

(x,n(ab)) = (ab, z) = (a,bx) = (bx,n(a)) = (b, zn(a)) = (zn(a),n(b) = (x,n(a)n(b)),

which shows that n(ab) = n(a)n(b), for all a,b € A. Therefore n is an automorphism of
A as an ungraded algebra. Moreover if 0 # a € e;Ae;, then (a, —) vanishes on all ey Aej
except in e; Ae,(;). Therefore (—,7(a)) does the same. By definition of the Nakayama form,
we necessarily have n(a) € eu(i)Ae,(j)- We claim that if a € e;Ae; is an element of degree
h, then n(a) is an element of degree h+h; —h;. Indeed, let A’ € H be such that n(a)s # 0.
Then the (—,n(a)n) : ejAe, ;) — K is a nonzero linear form which vanishes on e; Aye, (;),
for all k # hj—h'. Let us pick up « € e; Ay, _pre, ;) such that (z,m(a)n ) # 0. Then we have
that (x,n(a)) = (z,n(a)w) # 0, due to the fact that (—, —) : ejAe, ;) X ey Aey ) — K
is a graded bilinear form of degree h;. We then get that 0 # (x,n(a)) = (a,z), which
implies that i + (hj — h’) = h;, which implies that b’ = h + (h; — h;). Then b’ is uniquely
determined by a, so that n(a) is homogeneous of degree h + h; — h; as desired.

Putting a = e; in the previous paragraph, we get that n(e;) € e,(; Ae,(;) has degree 0,
and then 7(e;) is an idempotent element of the local algebra e, ;) Aoe, ;). It follows that
n(ei) = ey, (), for each i € I

Finally, we consider the K-linear isomorphism f : A — D(A) which maps b ~~
(—,b) = (n71(b),—). We readily see that f is a homomorphism of left A-modules. More-
over, we have equalities

(a,bn (b)) = (ab,n(b')) = (', ab) = (V'a,b) = [f(b)V)(a),

which shows that f is a homomorphism of right A-modules A, — D(A). Then f is an
isomorphism 1 A, = D(A).

2) The proof of assertion 1 shows that if h(i) = h, for all i € I, then 7 is a graded
automorphism of degree 0. Moreover, the isomorphism f :1 4, = D(A) is the direct sum
of the isomorphisms of graded left A-modules f; : Ae,;[h] =, D(e;A) which map b ~~
(—,b). It then follows that f is an isomorphism of graded bimodules 1 A, [h] = D(A). O

To finish this subsection, we will see that if one knows that A is split graded pseudo-
Frobenius, then all possible graded Nakayama forms for A come in similar way. Recall
that if V = ®pegV), is a graded vector space, then its support, denoted Supp(V'), is the
set of h € H such that V}, # 0.

Proposition 1.3.7. Let A be a split pseudo-Frobenius graded algebra and (e;);cr a weakly
basic distinguished family of orthogonal idempotents. The following assertions hold:

1. All graded Nakayama forms for A have the same Nakayama permutation. It assigns
to each i € I the unique v(i) € I such that e;Socy.(A)e, ;) # 0.

2. If h; € Supp(e;Socg(A)), then dim(e;Socgr(A))n,) =1

3. For a bilinear form (—,—) : A x A — K, the following statements are equivalent:
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(a) (—,—) is a graded Nakayama form for A

(b) There exists an element h = (h;) € [[;c; Supp(eiSocy(A)) and a basis B; of
e;Ap;€ey (i), for each i € I, such that:

i. B; contains a (unique) element w; of e;Socy (A)p,

it. Ifa,be U” e;Ae; are homogeneous elements, then (e; Ay, Arej) = 0 unless
j=v(i) and h+k = h;

iii. If (a,b) € e;Ap X Ap,—ney(s), then (a,b) is the coefficient of w; in the ex-
pression of ab as a linear combination of the elements of B;.

Proof. 1) Let (—,—) : Ax A — K be a graded Nakayama form for A. We have seen in the
proof of the implication 4) = 3) in Theorem 1.3.2 that then D(e;A) = Ae,;)[h;]. Due to
conditions satisfied by the e;, we get that v(7) is independent of (—, —). Moreover, by dua-
lity, we get an isomorphism e; A = D(Ae,(;))[—h;], which induces an isomorphism between
the graded socles. But the graded socle of D(Ae;) is isomorphic to S; := e;A/e;J9"(A),
for each j € I. We then get that e;Soc?"(A)ej[—h] = Homa_g,(S;[h], e;iSoc?"(A)) = 0, for
all j #v(i) and h € H.

2) Let us fix h; € Supp(e;Soc?"(A))) and suppose that {x,y} is a linearly independent
subset of e;Soc?"(A))p,. We then have xA = yA since e;Soc?” (A)) is graded-simple. We
get from this that also x4y = yAy. By Proposition 1.3.1, we know that J(A4g) = J9"(A)o
and the split hypothesis on A implies that Ay = J(Ag) @ (®jerKe;). It follows that
Kz = z(®jerKej) = vA) = yAo = y(®jecrKej) = Ky, which contradicts the linear
independence of {z,y}.

3) b) = a) By assertion 1), the Nakayama permutation is completely determined
by A. The given element h is then interpreted as a map I — H, which will be our
degree function. It only remains to check that (ab,c) = (a,bc), for all a,b,c. This easily
reduces to the case when a,b,c are homogeneous and there are indices i, j, k such that
a = e;aej, b = ejbey, and ¢ = epce,(;y. But in this case, we have (a,bc) = (ab,c) = 0 when
deg(a) + deg(b) + deg(c) # h;. On the other hand, by condition b.iii), if deg(a) + deg(b) +
deg(c) = h; then (ab,c) and (a,bc) are both the coefficient of w; in the expression of abc
as linear combination of the elements of B;. So the equality (ab,c) = (a,bc) holds, for all
a,b,ce A.

a) = b) We first take a basis B? of Ay such that B® = {e; : i € I} U (BN J(4y))
and BY C UZ el e;Apej. The graded Nakayama form gives by restriction a nondegenerate
bilinear map

(=, =) eidoe; x e;Ape ) — K.

We choose as B; the basis of e;Ap e, ;) which is right orthogonal to e;B%; with respect to
this form. As usual, if b € e;B%;, we denote by b* the element of B; such that (c, b*) = Gy,
where dp. is the Kronecker symbol. We then claim that w; := €} is in e;Socg,(A). This
will imply that h; € Supp(Socg-(A)) and, due to assertion 2, we will get also that w;
is the only element of e;Socg(A)p, in B;. Indeed suppose that w; & e;Socg-(A). We
then have a € J9(A) such that aw; # 0. Without loss of generality, we assume that a
is homogeneous and that a = ejae;, for some j € I. Then 0 # aw; € ejAe,(;), which
implies the existence of a homogeneous element b € e;Ae; such that (b, aw;) # 0 since the
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induced graded bilinear form e; Ae; x ejAe, ;) — K is nondegenerate. But then we have
(ba,w;) # 0 and deg(ba) = 0 since the induced graded bilinear form e; Ae; x e; Ae, ;y — K
is of degree h;. But ba € ¢;J9"(A)ge; = e;J(Ag)e; and, by the choice of the basis B°, each
element of e;J(Ap)e; is a linear combination of the elements in B% N e;J(Ag)e;. By the
choice of w;, we have (c,w;) = 0, for all ¢ € B°Ne;J(Ap)e;. It then follows that (ba,w;) = 0,
which is a contradiction.

It is now clear that conditions b.i and b.ii hold. In order to prove b.iii, take (a,b) €
e;Ap X Ap,—ney)- We then have (a,b) = (e;,ab), where ab € e;Ap.e, ;. Put ab =
> ceB; A, Where A € K for each ¢ € B;. We then get (a,b) = (ei, ). Acc) = > . Acles, ) =
Aw;, 1.€., (a,b) is the coefficient of w; in the expression ab =) Acc. O

Definition 8. Let A = @Ay be a split pseudo-Frobenius graded algebra, with (e;)icr
as weakly basic distinguished family of idempotents and v : I — I as Nakayama permu-
tation. Given a pair (B3,h) consisting of an element h = (h;);cs of [[;; Supp(e;Socg-(A))
and a family B = (B;)ics, where B; is a basis of e;Aj,e,(;) containing an element of
eiSocgr(A), for each i € I, we call graded Nakayama form associated to (B,h) to the
bilinear form (—,—) : A x A — K determined by the conditions b.ii and b.iii of last
proposition. When h is constant, i.e. there is h € H such that h; = h for all ¢ € I, we will
call (—,—) the graded Nakayama form of A of degree h associated to B.

1.3.2 Graded algebras given by quivers and relations

Recall that a quiver or oriented graph is a quadruple @ = (Qo, Q1,1%,t), where Qy and @1
are sets, whose elements are called vertices and arrows respectively, and i,t : Q1 — Qg
are maps. If a € Q1 then i(a) and t(a) are called the origin (or initial vertez) and the
terminus of a.

Given a quiver @, a path in @) is a concatenation of arrows p = aias...a, such that
t(ag) = i(ags1), for all k =1,...,r. In such case, we put i(p) = i(a1) and t(p) = t(a,) and
call them the origin and terminus of p. The number r is the length of p and we view the
vertices of () as paths of length 0. The path algebra of @), denoted by K@), is the K-vector
space with basis the set of paths, where the multiplication extends by K-linearity the
multiplication of paths. This multiplication is defined as pg = 0, when ¢(p) # i(q), and pq
is the obvious concatenation path, when ¢(p) = i(q). The algebra K@ is an algebra with
enough idempotents, where Qg is a a distinguished family of orthogonal idempotents. If
1 € Qo is a vertex, we will write it as e; when we view it as an element of KQ.

Definition 9. Let H be an abelian group. An (H-)graded quiver is a pair (Q,deg), where
@ is a quiver and deg : Q1 — H is a map, called the degree or weight function. (Q,deg)
will be called locally finite dimensional when, for each (i,j,h) € Qo X Qo x H, the set of
arrows a such that (i(a),t(a),deg(a)) = (7,7, h) is finite.

We will simply say that @ is an H-graded quiver, without mention to the degree
function which is implicitly understood. Each degree function on a quiver () induces an
H-grading on the algebra K@), where the degree of a path of positive length is defined as
the sum of the degrees of its arrows and deg(e;) = 0, for all i € Q. In the following result,
for each natural number n, we denote by K(@Q)>,, the vector subspace of K@) generated by

the paths of length > n. For each ideal I of an algebra, we put I¥ = (1, ., I".
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Proposition 1.3.8. Let A = ®pegAp be a split basic locally finite dimensional graded
algebra with enough idempotents and let J = J9"(A) be its graded Jacobson radical. There
is an H-graded locally finite dimensional quiver () and a subset p C Uz‘,jer e KQ>2e;,
consisting of homogeneous elements with respect to the induced H-grading on KQ, such
that A/J“ is isomorphic to KQ/ < p >. Moreover Q is unique, up to isomorphism of
H-graded quivers.

Proof. 1t is an adaptation of the corresponding proof, in more restrictive situations, of the
ungraded case (see, e.g., [13]|[Section 2]). We give the general outline, leaving aside the
details.

Let (e;)icr be the basic distinguished family of orthogonal idempotents. The graded

e;Jej .
eiﬂej)’ we will

quiver @ will have Qo = I as its sets of vertices. Whenever h € Supp(

e;Jpe;
ei(J?)ne;

We will take as arrows of degree h from ¢ to j the elements of Q1(i, ),

select a subset Q1 (i, j)p, of e;Jpe; whose image by the projection e;Jpe; —
e;Jne;
ei(J?)ne;
and then Q1 = Uz‘,jer;he 1 @Q1(4,j)n. The so-obtained graded quiver gives a grading on
K@ and there is an obvious homomorphism of graded algebras f : KQQ — A which takes

e; ~ e; and a ~ a, for all i € Qp and a € Q.

gives a

basis of

We claim that the composition KQ L AL A/J¥ is surjective or, equivalently,
that Im(f) + J“ = A. Due to the split basic condition of A, it is easy to see that
A= (> ,cr Ke;) ® J and the task is then reduced to prove the inclusion J C Im(f) + J<.
Since e; Ape; is finite dimensional, for each triple (i,h,j) € I x H x I, there is a smallest
natural number m;;(h) such that e;(J")ne; = €;(J" e , for all n > my;(h). We will
prove, by induction on k > 0, that ei(Jmif(h)_k)hej C Im(f) + Jv, for all (i,h,j), and
then the inclusion J C Im(f) + J¢ will follow. The case k = 0 is trivial, by the definition
of mj;(h). So we assume that £ > 0 in the sequel. Fix any triple (i, h,j) € I x H x I and
put n :=m;;(h) —k. If v € ¢;(J")ne; then x is a sum of products of the form zizy- ...z,
where z, is a homogeneous element in ey Je;/, for some pair (i’,5') € I x I. So it is not
restrictive to assume that © = z1z9 - ... - z,. is a product as indicated. By definition of the
arrows of ), each x,, admits a decomposition x, = y, + z,, where ¥, is a linear combination
of arrows (of the same degree) and z, € J2. It follows that z = 3 + z, where y is a linear
combination of paths of length n and z € e;J"1e;. Then y € Im(f) and, by the induction
hypothesis, we know that z € Im(f) + J«.

Proving that Ker(po f) C K@Q>2 goes as in the ungraded case, as so does the proof of
the uniqueness of Q). We omit it. O

A weakly basic locally finite dimensional algebra A will be called connected when, for
each pair (i,7) € I x I there is a sequence i = ig, i1, ...,i, = j of elements of I such that,
for each k£ = 1,...,n, either e;,  Ae;, # 0 or e; Ae;, , # 0. If Q is a graded quiver, we
say that @ is a connected graded quiver when, for each pair (i,7) € Qg x Qo, there is a
sequence i = ig, i1, ..., i, = j of vertices such that there is an arrow iy_1; — i or an arrow
i, — ig—1, for each k =1,...,n.

Corollary 1.3.9. Let A = ®,>0A, be a split basic locally finite dimensional positively
Z-graded. Then there exists a positively Z-graded quiver Q, uniquely determined up to
isomorphism of Z-graded quivers, such that A is isomorphic to KQ/I, for a homogeneous
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ideal I of KQ such that I C KQ>2. If, moreover, A is connected locally bounded, with
Ao semisimple, and the equality A, = Ai- ™ -A1 holds for all n > 0, then the following
assertions are equivalent:

1. A is graded pseudo-Frobenius

2. There exists a graded Nakayama form (—,—) : A x A — K with constant degree
function.

In particular, the Nakayama automorphism n is always graded in this case.

Proof. The point here is that if z € J" is a homogeneous element, then deg(x) > n, which
implies that J“ does not contain homogeneous elements and, hence, that J* = 0. Then
the first part of the statement is a direct consequence of Proposition 1.3.8. Moreover, one
easily sees that the connectedness of A is equivalent in this case to the connectedness of
the quiver Q.

As for the second part, we only need to prove that if (—,—) : Ax A — K is a graded
Nakayama form, then its associated degree function is constant. The argument is inspired
by [63][Proposition 3.2]. We consider that A = KQ/I, where @ is connected. The facts
that Ag is semisimple and A, = A;- . -Aq, for all n > 0, then translate into the fact that
the degree function deg : Q1 — Z takes constant value 1, so that the induced grading on
KQ is the one by path length.

Let now 7 : A — A be the Nakayama automorphism associated to (—, —). Ifa : i — j
is any arrow in (), then from Corollary 1.3.6 we get that n(a) is a homogeneous element
in e,y Jey ) = ey(iyAey(j)- Since obviously deg(a) # 0, we get that deg(n(a)) > deg(a),
which implies that deg(n(z)) > deg(z), for each homogeneous element = € A. Let again
a:i— j be an arrow and put x = " !(a). We claim that  is homogeneous of degree 1.
Indeed, we have © = x1 + 9 + ... + x,,, with deg(zg) = k, so that a = n(z) = n(x1) +n(z’),
where 2’ = )", -, ¥ and, hence, 7(z’) is a sum of homogeneous elements of degrees > 2.
It follows that a = n(z1) and n(z’) = 0, which, by the bijective condition of 7, gives that
2’ = 0. Therefore x = 1 as desired.

The last paragraph implies that, for each pair (i,7) € Qo X Qo such that there is an
arrow ¢ — j in @, there is a vector subspace Vj; of e,-1(;KQ1e,-1(;) such that ny; :
Vij — eiKQ1e; is a bijection. Let now Q be the subquiver of  with the same vertices
and with arrows those a € @1 such that deg(n(a)) = 1. Then V;; C eyfl(i)K@eyfl(j)

and A = % is a subalgebra of A = KQ/I such that the image of the restriction map
Mi - A — A contains the vertices and the arrows (when viewed as elements of A in the
obvious way). Note that i is a homomorphism of graded algebras, which immediately

implies that it is surjective and, hence, bijective. But then necessarily A = A for n is
an injective map. We will derive from this that deg(n(a)) = deg(a), for each a € Q.
Indeed, if deg(n(a)) > 1, then n(a) = n(z), for some homogeneous element z € A of
degree deg(x) = deg(n(a)). By the injective condition of 1, we would get that a = =z,
which is a contradiction.

If now h : Qo9 — Z is the degree function associated to the graded Nakayama form, the
proof of Corollary 1.3.6 gives that h;,) = hy(q), for each a € Q1. Due to the connectedness
of (), we conclude that h is a constant function. O
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1.4 Covering theory and pseudo-Frobenius algebras

1.4.1 Covering theory of graded algebras

In this part we will present the basics of covering theory of graded categories or, equiva-
lently, of graded algebras with enough idempotents. It is an adaptation of the classical
theory (see [66], [39], [13]), where we incorporate more recent ideas of [20] and [7], where
some of the constraining hypotheses of the initial theory disappear.

Let A = ®pegAp and B = @y By, be two locally finite dimensional graded algebras
with enough idempotents, with (e;)icr and (€;) e as respective distinguished families of
homogeneous orthogonal idempotents of degree 0. Suppose that F': A — B is a graded
functor and that it is surjective on objects, i.e., for each j € J there exists ¢ € I such
that F'(e;) = ¢;. To this functor one canonically associates the pullup or restriction of
scalars functor FP : B— Gr — A — Gr. If X is a graded left B-module, then we put
eiF'P(X) = epyX, foralli € I, and if a € |, ;icy €;der and @ € FP(X), then ax := F(a)z.
It has a left adjoint F) : A — Gr — B — Gr, called the pushdown functor, whose precise
definition will be given below in the case that we will need in this work.

The procedure of taking a weak skeleton gives rise to a graded functor as above. Indeed,
suppose that A is as above and consider the equivalence relation ~ in I such that ¢ ~ 4’ if,
and only if, Ae; and Aey are isomorphic graded A-modules. If Ij is a set of representatives
under this relation, then we can consider the full graded subcategory of A having as objects
the elements of Ip. This amounts to take the graded subalgebra B = ®; yc,e;Ae;r, which
will be called the weak skeleton of A. If we denote by [i] the unique element of Iy such
that ¢ ~ [i], then there are elements ; € eiAoem and fl-_l S e[i]Aoei such that fifi_l =e;
and 5;1& = ep;. We fix §; and 5;1 from now on. By convention, we assume that {; = ey,
for each [i] € Iy. Now we get a surjective on objects graded functor F' : A — B which
takes i ~ [i] on objects and if a € e;Aey, then F(a) = & ta&y. If we take P = @jep e, A
then P is an H-graded B — A—bimodule and the pullup functor is naturally isomorphic
to the ’unitarization’ of the graded Hom functor, AHOMpg(P,—) : B— Gr — A — Gr
(see Subsection 1.2.1). It is an equivalence of categories and the pushdown functor F)
gets identified with P ® 4 — : A — Gr — B — Gr, which, up to isomorphism, takes
M ~ Dicr eiM.

Definition 10. Let A and B be as above. A graded functor ' : A — B will be called a
covering functor when it is surjective on objects and, for each (i,7,h) € I x J x H, the
induced maps

@z"eFfl(j)eiAhei’ — eF(i)Bhej
@i/eF—l(j)ei/Ahei — etheF(i)

are bijective.

We shall now present the paradigmatic example of covering functor, which is actually
the only one that we will need in our work. In the rest of this subsection, A = ®pcgAp
will be a locally finite dimensional graded algebra with a distinguished family (e;);er of
homogeneous orthogonal idempotents of degree 0, fixed from now on. We will assume that
G is a group acting on A as a group of graded automorphisms (of degree 0) which permutes
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the e;. That is, if Aut?"(A) denotes the group of graded automorphisms of degree 0 which
permute the e;, then we have a group homomorphism ¢ : G — Aut9"(A). We will write
ad = ¢(g)(a), for each a € A and g € G. In such a case, the skew group algebra A * G has
as elements the formal A-linear combinations geG g * g, With ag € A for all g € G.

The multiplication extends by linearity the product (ax ¢g)(bx ¢') = ab’ x g¢’, where
a,b € Aand g,¢ € G. The new algebra inherits an H-grading from A by taking (AxG);, =
ApxG={} cqag*g € AxG: a4 € Ay, for all g € G}. Then AxG is a graded algebra
with enough idempotents for which we fix the family of orthogonal idempotents (e; x 1);ecr
where 1 is the unit of G and, clearly, we have a canonical inclusion of H-graded algebras
t: A— AxG which maps a ~ a* 1.

Proposition 1.4.1. In the situation above, let A be the weak skeleton of A x G and

F: AxG — A the corresponding functor. Then the composition A S AxG A s
a covering functor. The corresponding pushdown functor F\ouvy: A—Gr — A — Gr is
ezact and takes Ae; ~~> Me, for each i € I.

Proof. The pullup functor is the composition A—Gr Ey axG-ar 4 A—Gr, so that the
pushdown functor is )\ or). We know that F), is an equivalence of categories. On the other
hand ¢ is naturally isomorphic to AxG®4 — : A—Gr — AxG — Gr since ¢ is the usual
restriction of scalars. The exactness of AxG ®4 — implies that of F oty and the action of
this functor on projective objects takes Ae; ~ (AxG)®4 Ae; = (A*xG)e; ~ FX((AxG)e;).
But this latter graded A-module is isomorphic to Aej; by the explicit definition of the
pushdown functor when taking a weak skeleton.

In order to check that F o is a covering functor we look at the definition of the weak
skeleton. In our case (A x G)e; = (A * G)e; if, and only if, there are x € €;(A x G)oe; =
©geceidoeyj)*g and y € e;(AxG)oe; = DgecejAoey(i) * g such that ry = e; and yz = e;.
This immediately implies that ¢ and j are in the same G-orbit, i.e., that e/ = ¢;, for some
g € G. The converse is also true for we have equalities e; x g = (e; x 1)(e; * g)(eg-1(;y x 1)
and eg-1(;) *xgl = (eg-1) * D(eg—10) *xg 1) (e; % 1), and also (e; * g)(eg-13;) *xg ) =eix1
and (eg—1(5) * g~ ') (ei *x g) = eg—1(;) * 1, which shows that (Ax G)e; = (Ax G)ey-1(; for all
geGandi€ I

What we do now is to take exactly one index ¢ € I in each G-orbit and in that way
we get a subset Iy of I. Up to graded isomorphism, we have A = @®; jer ei(A* G)e;. For
the explicit definition of F', we put {,(;y = €,4(;) x g and 5;(11.) =e;xg 1, for each i € Iy and
g€ G. Ifg, g € Gandi,j € Iy, then the map F' : ey (AxG)ey ;) — eile; = ei(AxG)e;
takes x ~ 5‘;(;)3359/0) = (e; x g_l)x(eg/(j) x ¢'). Then the composition

L F
eg(i)Aeg/(j) — eg(i)(A * G)eg/(j) — eiAej = ei(A * G)ej

takes a ~ (e;x g7 1) (a % 1)(ey(j) *g) = a? " xglg.
The proof that F o is a covering functor gets then reduced to check that if ¢, 5 € I
and h € H then the maps
-1
@gegeg(i)Ahej — eiAhej = ei(A* G)hej, (ag)ge(; ~ ZgGG ag *gil
SgeceiAney(y) — eilne; = e;(AxG)nej,  (bg)gec ~ Yo eqbg* g
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are both bijective. But this is clear since @geg(eg(i)AheJ’)fl *x gt = (A% G)pej =
@geceiAheg(j) *g. O
A

Definition 11. If A = ®pcgAp, G and A are as above, then the functor For: A —
will be called a G-covering of A.

If A and G are as in the setting, we say that G acts freely on objects when ¢(i) # 1,
for all i € I and g € G\ {1}. In such case we can form the orbit category A/G. The
objects of this category are the G-orbits [i] of indices ¢ € I and the morphisms from [i]
to [j] are formal sums > ;[ag], where [a,] is the G-orbit of an element ay € e;Aey;).
This definition does not depend on 4, j, but just on the orbits [i], [j]. The anticomposition
of morphisms extends by K-linearity the following rule. If a,b € |J; ;; €iAe; and [a], [b]
denote the G-orbits of a and b, then [a] - [b)] = 0, in case [t(a)] # [i(b)], and [a] - [b] = [abY],
in case [t(a)] = [i(b)], where ¢ is the unique element of G such that g(i(b)) = t(a). We
have an obvious canonical projection 7 : A — A/G with takes a ~» [a]. The following is
the classical interpretation of A and is implicit in [7].

Corollary 1.4.2. Let A, G and A be as in Proposition 1.4.1 and suppose that G acts

freely on objects. There is an equivalence of categories Y : A = A/G such that Yo Fou:
A — A/G is the canonical projection.

Proof. Let us fix a set Iy of representatives of the elements of I under the equivalence
relation ~ given by: i ~ j if, and only if, (A x G)e; = (A x G)e; are isomorphic as graded
(A% G)-modules. Then, by definition, A is the category having as objects the elements of
Iy and e;Aej = e;(A * G)e; = Bgecleidey(j) * g] as space of morphisms from i to j. The
functor T : A — A/G is defined as Y (i) = [i], for each i € Iy, and by Y(a x g) = [a],
when g € G and a € e;Aegy(;), with ¢, j € Ip.

The functor is clearly dense. On the other hand, if T(3_ cqag*g) = Y (3, e by * 9),
with ag, b, € eiAeg(j) for some i,j € Iy, then we have an equality of formal finite sums
of orbits > cclag] = > cilbg]. This implies that [ag] = [by], for each g € G, because if
there is an element o € G such that o(ay) and by, have the same origin an terminus, for
some h € H, then o = id due to the free action on objects. But the equality [a4] = [b,]
also implies that ay = by since i(ay) = i(by) = i. Therefore T is a faithful functor. Finally,
the orbit of any homogeneous morphism a in A contains an element with origin, say 4, in
Iy. Then, in order to prove that T is full, we can assume that [a] is the orbit of an element
a € ejAey(j, for some i,j € Iy and some g € G. But then a x g € ¢;(A x G)e;, and we
clearly have Y(a * g) = [a].

The equality of functor T o F' o = 7 is straightforward. O

1.4.2 Preservation of the pseudo-Frobenius condition

We start with the notion of G-invariant Nakayama form.

Definition 12. Let A = ®pc g Ay be a graded pseudo-Frobenius algebra and G be a group
acting on A as graded automorphisms. A graded Nakayama form (—,—): Ax A — K
will be called G-invariant when (a%,b9) = (a,b), for all a,b € A and all g € G.
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The following result is most important for us. It shows that the pseudo-Frobenius
condition is preserved via the pushdown functor F' : A — A/G, whenever the G-invariant
property is satisfied.

Proposition 1.4.3. Let A = ®peyAp be a (split weakly) basic graded locally bounded
algebra, with (e;);cr as distinguished family of orthogonal homogeneous idempotents, and
let G be a group which acts on A as graded automorphisms which permute the e; and which
acts freely on objects. Suppose that A is graded pseudo-Frobenius admitting a G-invariant
graded Nakayama form (—,—): Ax A — K. Then A = A/G is a (split weakly) basic
graded locally bounded pseudo-Frobenius algebra whose graded Nakayama form is induced

from (—,—).

Proof. We put 7 := F o, where F' and ¢ are as in Proposition 1.4.1. We then know that m
is surjective on objects and each (homogeneous) morphism in A is a sum of (homogeneous)
morphisms of the form 7(a), with a € |, ;¢ eiAej. We will put «(i) = [i] and 7(a) = [a],
for each i € I and homogeneous element a € (J; jc;eiAe;. Note that [i] and [a] can be
identified with the G-orbits of i and a (see corollary 1.4.2).

We first check that A is weakly basic whenever A is so. The functor F', which is an
equivalence of categories, gives an isomorphism of algebras e;(AxG)oe; = ef; Agey;), for each
i € I. But we have e;(AxG)oe; = @gegeidoey)*g. This algebra is finite dimensional due
to the graded locally bounded condition of A and the fact that G acts freely on objects.
Then all nilpotent elements of e;(A * G)pe; belong to its Jacobson radical. It follows that
m = e;J (Ag)e; ® (Bgz1eiAoey)*g) is contained in J(e;(AxG)oe;) since, due again to the
graded locally bounded condition of A and the free action of G, we know that m consists
of nilpotent elements. Since ei(A’f)oei o~ e:]i(é‘foe)iei is a division algebra, we conclude that
m = J(e;(A*x G)oe;) and that ejAgep) = e;(A x G)oe; is a local algebra. Moreover, we

have that 6[2[98{):)[2”] = :i’;](éfégg)eg) = e:}(‘?foe)iei, so that A is split whenever A is so.

We next prove that epApep;) C J9"(A) whenever [i] # [j]. But this amounts to prove
that e;(Ax G)e; C J9" (A G) whenever [i] # [j] since F' : Ax G — A is an equivalence
of graded categories. Let us take x € e;(A x G)pej. Recall that 2 € J9"(A x G) if, and
only if, e; — yz is invertible in ej(A x G)oe;, for each y € e;(Ax G)_pe;. Let us fix such
an = and assume that z € J9" (A x G). We then get y € e;(A « G)_pe; such that e; — yx
is not invertible in the algebra e;(A * G)ge;, which is local by the previous paragraph. It
follows that e; —yx € J(e;(A*G)oe;), so that yx is invertible in e;(AxG)pe;j. By suitable
replacement, without loss of generality, we can assume that yz = e; = e; x 1. We write
T=3ccagxgandy =73 by * g, where ay € e;Apeyjy and by € ejA_peg ;). From

yr = e; we get the equality deG bg71a371 = ej in A. But by-1 € ejAe,1(; C JI"(A)
because A is weakly basic and j # g~!(i). It then follows that e; € J97(A), which is a
contradiction. Therefore A is weakly basic.

Suppose that A is basic, and let us prove that A is also basic. The argument of
the previous paragraph is valid, by taking i = j and assuming h # 1. Using the fact
that e;Apeg-1) C J9"(A) whenever g € G and h € H \ {1}, the argument proves that
e Anep) C J9(A) whenever h # 1.

We pass to define the graded Nakayama form for A. We will define first graded bilinear
forms < —, — >: epAep;) ¥ epAey — K, for all objects [i], [j], [k] and [I] of A. When
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[7] # [k] the bilinear form is zero. In case [j] = [k], we need to define < w(a),m(b) >
whenever a € @y gecaeyi)Aeg ) and b € By geaeq)Aeqy ). We define < m(a), 7(b) >
when a,b € {J; creide;, with [t(a)] = [i(b)] = [j] and then extend by K-bilinearity
to the general case. Indeed we define < [a], [b] >= (a,b?), where g € G satisfies that
g(i(b)) = t(a). Note that g is unique since G acts freely on objects. It is routine to check
that < —, — >: e Aepj x epjjAepy is well-defined. The graded bilinear form < —, — >:
A x A — K is defined as the ’direct sum’ of the just defined graded bilinear forms.

We next check that it satisfies all the conditions of definition 5. We first check condition
2 in that definition. Let z,y € UMM ey Aep;) be such that < z,y ># 0. Then we know that
there is j € I such that t(x) = [j] = i(y). Fix such index j € I. Since the functor 7 : A —
A is covering it gives bijections @gegey(;)Ae; = epAey) and ©gegejAeym) = egj1\eq,
for all G-orbits of indices [j] and [k]. We then put x = > s 7(ag) and y =3 o m(by)
such that a4 € ey;)Ae; and by € ejAey(y), for all g € G. By definition of < —, — >, we
then have 0 #< z,y >= Zg,g’eG(a’g’ by'), which implies that there are g,¢" € G such that
(ag,by) # 0. This implies that ¢'(k) = v(g(i)), where v is the Nakayama permutation
associated to (—,—). But, due to the G-invariant condition of (—,—), we have that
v(g(i)) = g(v(i)). This shows that [k] = [v(i)]. It follows that < ejA, Aepy ># 0
implies that [k] = [v(7)]. Therefore assertion 2 of definition 5 holds, and the bijection
v:1/G =5 I/G maps [i] ~ [v(i)].

The G-invariance of (—,—) also implies that if h : | — H is the degree function
associated to (—,—), then h(g(i)) = h(i) Vi € I. As a consequence, the graded bilinear

form < —, — >t e A X Aep iy — K is of degree h; := h(i), for each i € I. Then the map
h:1/G — H, [i] ~ h;, is the degree function of < —, — >.

It remains to check that < zy,z >=< x,yz >, for all x,y,z € A. For that, it is not
restrictive to assume that = = [a], y = [b] and z = [¢], where a,b,c are homogeneous

elements in UZ jer ejAej. In such a case, note that if one member of the desired equality
< wxy,z >=< x,yz > is nonzero, then t(x) = i(y) and t(y) = i(z) or, equivalently,
[t(a)] = [i(b)] and [t(b)] = [i(c)]. If this holds, then we have

< ay,z >=<[a][b], [c] >=< [abl],[c] >= (abg,cgl),

where ¢, ¢’ € G are the elements such that g(i(b)) = t(a) and ¢'(i(c)) = g(t(b)). Note that
then (g7 1¢')(i(c)) = t(b) and, hence, we also have

< z,yz >=< ld], [b][c] >=< [a],[bcd 9] >= (a, (bt '9)9) = (a,b9¢7).

The equality < zy,z >=< x,yz > follows then from the fact that (—,—) : Ax A — K
is a graded Nakayama form for A. O

The following result completes the last proposition by showing how to construct G-
invariant graded Nakayama forms in the split case.

Corollary 1.4.4. Let A = ®peg Ay be a split basic graded pseudo-Frobenius algebra and
let G be a group of graded automorphisms of A which permute the e; and acts freely on
objects. There exist an element h = (h;)ier € [[;c; Supp(eiSocy(A)) and basis B; of
eiAyp,, for each i € I, satisfying the following properties:
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1. hi = hyy, for alli €]
2. g(B;) = By and B; contains an element of e;Socy.(A), for alli € I

In such case, letting B = J;c; Bi, the graded Nakayama form associated to the pair (B,h)
(see definition 8) is G-invariant.

Proof. We fix a subset Iy C I which is a set of representatives of the G-orbits of objects.
Then the assignment ¢ ~ [i] defines a bijection between [y and the set of objects of A =
A/G. For each i € Iy, we fix an h; € Supp(e;Socgr(A)) and a basis B; of e;Ap, containing
an element w; € e;Socg,(A), for each i € Iy. Note that g(e;Socy(A)) = ey Socy (A)
since G consists of graded automorphisms. It then follows that h; € Supp(eg;)Socy:(A)).
Given j € I, the free action of G on objects implies that there are unique elements i € I
and g € G such that g(i) = j. We then define h; = h; and B; = g(B;), whenever j = g(i),
with ¢ € Iyp. Note that B; contains the element g(w;) of e;Socgy-(A). It is now clear that
h = (hj)jer is in [[;c; Supp(ejSocgr(A)) and that B; is a basis of ejAp; containing an
element of e;Socg, (A), for each j € I. It is also clear that if B := J;c; B; then g(B) = B,
for all g € G.

By definition of the graded Nakayama form (—, —) : A x A — K associated to (B, h)
(see definition 8) and the fact that w; = g(w;) = wy(;), for all g € G and j € I, we easily
conclude that (—, —) is G-invariant. O

The following result states that, assuming that the Nakayama form of A is G-invariant,
the Nakayama automorphism of the algebra A/G is induced by the Nakayama automor-
phism of A. It is a direct consequence of Proposition 1.4.3, its proof and the definition of
the Nakayama automorphism.

Corollary 1.4.5. Let A = ®pecyAp be a weakly basic graded pseudo-Frobenius algebra and
let (—,—): Ax A — K be a G-invariant graded Nakayama. The following assertions
hold:

1. Ifn: A — A is the Nakayama automorphism associated to (—, —), then nog = gon,
forallge G

2. Let < —,— >: A x A — K be the graded Nakayama form induced from (—,—) and
let 7: A — A be the associated Nakayama automorphism. Then 7([a]) = [n(a)] for
each a € |J; ; e; Ae;.



Chapter 2

The mesh algebra of a Dynkin
diagram

2.1 Introduction

2.1.1 Motivation

The relevance of the Nakayama automorphism 7 of a finite dimensional self-injective al-
gebra A becomes clear, at least, in questions related to the symmetry and the Calabi-Yau
condition, due to the existence of the isomorphism of A-bimodules D(A) = 1A,. Despite
of the fact that we are actually interested in the class of the m-fold mesh algebras, we
approach the problem of determining the Nakayama automorphism of any algebra in this
class by investigating that of the corresponding universal Galois cover. In view of Lemma
1.4.5 and, in order to establish a suitable relationship between the associated Nakayama
automorphisms, the G-invariant condition has to be required. This turns out to be the
main reason for studying in depth the mesh algebra of a Dynkin diagram.

2.1.2 Outline of the chapter

In Section 2.2 we recall the general definition of a stable translation quiver paying special
attention to the most interesting example for our purposes, namely, the stable translation
quiver ZA associated to a Dynkin diagram A. Concerning Section 2.3, we first introduce
the notion and essential properties of the mesh algebra of a Dynkin diagram which is, by
definition, related to the stable translation quiver ZA, for some Dynkin quiver A. Next, we
exhibit the list of the m-fold mesh algebras, which arise as the orbit algebras of the mesh
algebras of Dynkin diagrams by factoring out a weakly admissible group of automorphisms
G and, for such class of algebras, we introduce the notion of extended type. Finally, we end
the section by performing a change of relations which, roughly speaking, transforms sums
of paths of length 2 into differences. In Section 2.4 we give the explicit formula, for any
choice (A, G), of a G-invariant Nakayama automorphism of the mesh algebra associated
to A.

25
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2.1.3 Notation

Throughout this chapter K will be a fixed field, A will be one of the Dynkin quivers A,
Dpt1 (n > 3) or E, (n =6,7,8), and ZA will be the associated translation quiver. Its
path algebra will be denoted by KZA and we will put B = K(ZA) for the mesh algebra.
The Nakayama automorphism of B will be denoted by 7.

2.2 Stable translation quivers

This section is devoted, only and exclusively, to introduce the notion of a stable translation
quiver and its associated mesh algebra.

We recall that a stable translation quiver is a pair (I',7), where I is a locally finite
quiver (i.e. given any vertex, there are only finite arrows having it as origin or terminus)
and 7 : I'g — T'y is a bijective map such that for any x,y € I'g, the number of arrows
from = to y is equal to the number of arrows from 7(y) to . The map 7 will be called
the Auslander-Reiten translation. Throughout the rest of the work, whenever we have a
stable translation quiver, we will also fix a bijection o : I'1(z,y) — T'1(7(y),x) called a
polarization of (', 7). Note that, from the definition of o, one gets that 7 can be extended
to a graph automorphism of T' by setting 7(a) = 0?(a) Va € T'y. If KT denotes the path
algebra of T', then the mesh algebra of T' is K(I') = KT'/I, where I is the ideal of KT
generated by the so-called mesh relations ry, where ro = 3" cp 0=y 0(a)a, for each
x € ['yg. Note that, when T' is viewed as a Z-graded quiver with all arrows having degree
1, then I is homogeneous with respect to the induced grading on KT'. Therefore K (I")
is canonically a positively (Z-)graded algebra with enough idempotents and 7 becomes a
graded automorphism of K (T).

The typical example of stable translation quiver is the following. Given a locally finite
quiver A, the stable translation quiver ZA will have as set of vertices (ZA)y = Z x Ay.
Moreover, for each arrow « : x — y in Ay, we have arrows (n,a) : (n,z) — (n,y) and
(n,a) : (n,y) = (n+ 1,2) in (ZA);. Finally, we define 7(n,z) = (n — 1,x), for each
(n,z) € (ZA)g, and o(n,a) = (n — 1, ) and o[(n,a)'] = (n,a).

In general, different quivers A and A’ with the same underlying graph give non-
isomorphic translation quivers ZA and ZA'. However, when A is a tree, e.g., when A
is any of the Dykin quivers A,,ID, 11, Eg, E7, Eg, the isoclass of the translation quiver ZA
does not depend on the orientation of the arrows.

A group of automorphism G of a stable translation quiver (I, 7) is a group of automor-
phisms of I' which commute with 7 and . Such a group is called weakly admissible when
zt N (gz)t =0, for each x € Ty and g € G\{1}, where 2™ := {y € Ty : T'1(z,y) # 0}.
In such a case, when G acts freely on objects, the orbit quiver I'/G inherits a structure
of stable translation quiver, with the AR translation 7 mapping [z] ~» [7(z)], for each
xz € ' UT'1. Moreover, the group G can be interpreted as a group of graded automor-
phisms of the mesh algebra K(I') and K(I')/G is canonically isomorphic to the mesh
algebra of I'/G.
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2.3 The mesh algebra of a Dynkin diagram

2.3.1 Definition and basic properties

Definition 13. Given a Dynkin diagram A, we will say that B = B(A) is the mesh
algebra of the Dynkin diagram A if it is the mesh algebra of the stable translation quiver
Z.A.

When A = Agy,—1, Eg or Dy, 41, with n > 3, the underlying unoriented graph admits a
canonical automorphism p of order 2. Similarly, Dy admits an automorphism of order 3.
In each case, the automorphism p extends to an automorphism of ZA with the same order.
In the case of A,, the canonical automorphism of order 2 of the underlying graph extends
to an automorphism of ZA, but this automorphism has infinite order. It is still denoted
by p and it plays, in some sense, a role similar to the other cases. This automorphism of
ZAs, is obtained by applying the symmetry with respect to the horizontal line and moving
half a unit to the right. Note that we have p?> = 7!, On the contrary, when A = E; or
Eg there is no automorphism p defined.

Although the orientation in A does not change the isomorphism type of ZA, in order
to numbering the vertices of ZA we need to fix an orientation in A. Below we fix such
an orientation, and then give the corresponding definition of the automorphism p of ZA
mentioned above.

1. IfA:AQn

1 P . Mm |
then p(k,i) = (k+i—n,2n+1—14)

2. f A = AZn—l :

1 P . m—1,
then p(k,i) = (k+i—mn,2n — 1)

3. A= ]D)n+12

0
29— ... o
1

with n > 3, then p(k,0) = (k,1), p(k,1) = (k,0) and p fixes all vertices (k, ), with
i 40,1,

4. IfA:]D4
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0

N

2—3

/

1
then p fixes the vertices (k,2) and, for k fixed, it applies the 3-cycle (013) to the
second component of each vertex (k,1).

o. IfA:EG

wW———=0O

then p(k,i) = (k+1i—3,6 — 1) for all ¢ # 0 and p(k,0) = (k,0)

6. If A =E7:

wW——=0O

7. IfA:Eg

w—->0

Following the definition of mesh algebra given in the previous section, we give bellow
the quiver and relations of the mesh algebra B = B(A) associated to the stable translation
quiver ZA, for A = A,,,D,, 41 and Eg.

a) If A = A, then ZA,, has quiver:
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/\ /\ /\ /\ /\

n—1 n—1

Letting p; :i — i+ 1 —idifori=0,..., n—landg:1—>i—1—ifori=1,..., n,

the relations are given by

Po=0=gn
pi+q =0fori=1,..., n—1

b) If A =D,1, then ZD,,;; has quiver:

/\ /\ /\ /\ /\

n_ _ n—1

ST N N TN TN
T N N N TN
NG NN NN
2/0\2/0\2/0\2/0\2/0\2
DN NZ NNz~

Weputu:2—0—2,v:2—1—2 w:2—3—2 p:0—2—0, and
pr:1l—2—71.

Then, the relations are:

gn =0 =po =p1
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c) If A =Eg, then ZEg has quiver

SNSNSN NN
\15151515/
VAWAWANWANVAN
NN NN SN S

Then, we have relations

po=p1=0=gs
pit+q=0Vi=24
ut+v+w=0

d) If A = E, then ZE; has quiver

NSNS\ N NS
SINSNSNN SN
\15151515/
VAW ANVANVANVAN
NN SN NSNS

Then, we have relations

po=p1=0=g¢s
u+v4+w=0

e) If A = Eg, then ZEg has quiver
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SN\ N
NSNS\ SN N S
NSNS\ N
NSNSNNSN S

VANWANVANVANVAN
NSNSNSN NS

Weputu:3—0—3,v:3—4—3, w:3—2—3,andpy:0—3 — 0.

Then, we have relations

po=p1=0=g¢qy
pi+qi:0Vi:2,4,5,6
u+v4+w=0

Dynkin diagrams are fundamental in the classification of simple Lie algebras (see [49)]).
The Weyl group of such an algebra is the subgroup of the isometry group of its root
system generated by the simple reflections. The product of these simple reflections is then
an element of the Weyl group which is uniquely determined, up to conjugacy. The order
of this element is called the Cozeter number of the corresponding Dynkin diagram. We
will not need to go through the theory of Lie algebras in this work, but we will need the
precise value ca of the Coxeter number, for each Dynkin diagram A = A, D11, Eg, Er
or Eg. It is included in the next result.

The following facts are well-known (cf. [15][Section 1.1] and [43][Section 6.5]).

Proposition 2.3.1. Let A be a Dynkin quiver, A be its associated graph, ca be its Coxzeter
number and B = K(ZA) be the mesh algebra of the translation quiver ZA. The following
assertions hold:

1. Fach path of length > ca — 2 in ZA is zero in B.

2. For each (k,i) € (ZA)o, there is a unique vertex v(k,i) € (ZA)g for which there is a
path (k,i) — ... = v(k,i) in ZA of length ca — 2 which is nonzero in B. This path
s unique, up to sign in B.

3. If (k,i) — ... = (m, j) is a nonzero path then there is a path q : (m,j) — ... = v(k,1)
such that pq is a nonzero path (of length ca — 2)

4. The assignment (k,i) ~ v(k,i) gives a bijection v : (ZA)g — (ZA)g, called the
Nakayama permutation.
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5. The vertex v(k,i) is given as follows:

(a) If A = A,, with r = 2n or 2n — 1, (hence ca = r + 1), then v(k,i) =
pri=n (ki) = (k+i— 1,7 +1—1)

(b) If A =Dy,4+1 (hence ca = 2n), then
i. v(k,i) = 77"(k,i) = (k+mn—1,i), in case n + 1 is even
i. v(k,i) = pri="(k,q), in case n + 1 is odd.

(c) If A = Eg (hence ca=12), then v(k,i) = pr—>(k,i).

(d) If A = E; (hence ca = 18), with any orientation, then v(k,i) = 77 5(k,i) =
(k4 8,1)

(e) If A = Eg (hence ca = 30), with any orientation, then v(k,i) = 77 14(k,i) =
(k + 14,1).

In the following result we prove that mesh algebra B is not only a pseudo-Frobenius
graded algebra, but also a Quasi-Frobenius graded algebra. This means, in particular,
that it admits a Nakayama automorphism being graded.

Corollary 2.3.2. B is a split basic graded Quasi-Frobenius algebra admitting a graded
Nakayama form whose associate degree function takes constant value | = ca — 2.

Proof. By last proposition, we know that Be( ;) and e ;) B are finite dimensional graded
B-modules. In particular, both are Noetherian, so that B is a locally Noetherian graded
algebra. Note that e ;) Be(q) = K, for each vertex (k,i) € I'g, and that J9"(B) = J(B)
is the vector subspace generated by the paths of length > 0. Therefore B is clearly split
basic. On the other hand, if v es the Nakayama permutation and we fix a nonzero path
Wk ¢ (k,i) = ... = v(k,i) of length [ = ca — 2, then last proposition says that w ;) is
in the (graded and ungraded) socle of e, ;) B.

By conditions 2 and 3 of Proposition 2.3.1, we have that dim(Soc(e ;) B)) = 1 and
that Soc(e(;,;)B) is an essential (graded and ungraded) submodule of e, ;) B). Note that
B°P is the mesh algebra of the opposite Dynkin quiver A°, which is again Dynkin of the
same type. Then also Be( ;) has essential simple (graded and ungraded) socle, which is
isomorphic to Syfl(k’z‘)[l] as graded left B-module. Then all conditions of Corollary 1.3.5
are satisfied, with v/ = v~ L.

By Corollary 1.3.9, we know that B admits a graded Nakayama form with constant
degree function and, by Proposition 1.3.7 and its proof, we have a unique choice, namely
h(k,i) = [ for all (k,i) € ['g, because the support of Socy, (e ) B) is {1} O

2.3.2 m-fold mesh algebras

With all our tools in place, we are ready to describe the class of the m-fold mesh algebras.
When I' = ZA, with A a Dynkin quiver, it is known that each weakly admissible automor-
phism is infinite cyclic (see [66], [1]) and below is the list of the resulting stable translation
quivers ZA /G that appear, where a generator of G is given in each case (see [25]). In each
case, the following automorphism p is always that of the list preceding Proposition 2.3.1:
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o A = ZA/(7™), for A = A, Dy, E,,.
o BY = ZAgn_1/(pr™).

o CiY = ZDy 1 /{pr™).

o F™) = ZEg/ (pr™).

o GU™ = 7D,/ (pr™).

o L™ = ZAo, /(pT™).

As shown by Dugas (see [25][Section 3]), they are the only translation quivers with
finite dimensional mesh algebras. These mesh algebras are isomorphic to A = B/G in
each case, where B is the mesh algebra of ZA. Abusing of notation, we will simply write
A =ZA/ < ¢ >. These algebras are called m-fold mesh algebras and are known to be
self-injective, a fact that can be easily seen by applying Proposition 1.4.3 since the cyclic
group G acts freely on the objects, i.e., on (ZA)g. They are also periodic (see [14]).

Note that, except for L%m), each generator of the group G in the above list is of the
form p7™, where p is an automorphism of order 1 (i.e. p =idza), 2 or 3. This leads us to
introduce the following concept, which will be used later on in this work.

Definition 14. Let A = ZA/ < pt™ > be an m-fold mesh algebra of a Dynkin quiver,
possibly with p = idza. The extended type of A will be the triple (A, m,t), where ¢ is the

order of p, in case A # Lﬁ{”’, and t = 2 when A = Lﬁ{”’.

It is well-known that the stable Auslander algebra of any representation-finite self-
injective finite dimensional algebra is an m-fold mesh algebra, but the converse is not true
(see [25] and [51]). The reader is warned that the commonly used type of such an stable
Auslander algebra (see [6], [25],[51]) does not coincide with the here defined extended type.

Examples 2.3.3. The following are the quivers of the m-fold mesh algebras of extended
type (A, 1,2) or (D4, 1,3), usually called generalized preprojective algebras.

B, :
n+1—>n+2—> e——=2n—2——=2n—1

XX

n—1—>n—2
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C, :
0
N\
Ny
4
1
Fy -
4——=5
V4
0—=3
N\
N
Go :
1
V4
0=—=3
N\
N,
L,:
61:22 .............. n—1=—n

2.3.3 A change of presentation

For calculation purposes, it is convenient to modify the mesh relations. We want that if
(k,i) € (ZA) is a vertex which is the end of exactly two arrows, then the corresponding
mesh relation changes from a sum to a difference. When A = D,,;; and we consider the
three paths (k,2) — (k,i) — (k+1,2) (¢ = 0,1,3), we want that the path going through
(k,3) is the sum of the other two. Finally, when A = E,, (n = 6,7,8) and we consider
the three paths (k,3) — (k,i) — (k+1,3) (i = 0,4) and (k,3) = (k+1,2) = (k+1,3),
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we want that the one going through (k,0) is the sum of the other two. This can be done
by selecting an appropriate subset X C (ZA); and applying the automorphism of KZA
which fixes the vertices and all the arrows not in X and change the sign of the arrows
in X. But we want the same phenomena to pass from B to A = B/G, for any weakly
admissible group of automorphisms G of ZA. This forces us to impose the condition that
X is G-invariant, i.e., that g(X) = X for each g € G.

Proposition 2.3.4. Let A be a Dynkin quiver, KZA be the path algebra of ZA, let I be
the ideal of KZ/A generated by the mesh relations and let G be the group of automorphisms
of ZA generated by p and T, whenever p exists, and just by T otherwise. Let X C (ZA);
be the set of arrows constructed as follows:

1. If A # Ao, _1,D4 and X' is the set of arrows given in the following list, then X 1is
the union of the G-orbits of elements of X':

(a) When A = Ag,, X' ={(0,i) = (0,i+1):1<i<n—1andi#n (mod 2)}.

(b) When A =Dy11, withn >3, X' = {(0,i) — (0,i+1):2<i<n—2andi=0
(mod 2)}.

(¢) When A =Eg, X' = {(0,2) — (0,3)}.

(d) When A = E, (n = 7,8), X' = {(0,2) — (0,3), (0,4) — (1,3), (0,6) —
(1,5)}.

2. If A =Dy and G =< 7™ >, then X is the union of the < T >-orbits of the arrows
(0,2) = (0,3)

3. If A = Ag,_1 and we denote by < — > the ‘subgroup generated by’, then:

(a) When G =< 7™ >, X is the union of the < T >-orbits of arrows in the set
X' ={(0,i) = (0,i+1):1<i<2n—3 and i # 0 (mod 2)}.

(b) When G =< pt™ >, with m odd, X is the union of all < pT >-orbits of arrows
in the set X' ={(0,7) = (0,i +1): 1 <i<n-—1}.

(c) When G =< pt™ >, with m even, X is the union of the < p,7% >-orbits of
arrows in the set X1 = {(0,7) — (0,i+ 1) : 1 <i <n —2} and the G-orbits of
arrows in the set X5 ={(2r,i) = (2r,i+1): 0<2r <m andi=n—1,n}.

When A #£ Ag,_1,Dy, the given set X is G-invariant, for all choices of the weakly ad-
miassible group of automorphisms G. When A = Ag,_1, X is G-invariant for the respective
group G.

Moreover, let s : X — Zo be the signature map, where s(a) = 1 ezactly when a € X,
and let ¢ : KZA — KZA be the unique graded algebra automorphism which fizes the
vertices and maps a ~ (—=1)*@a, for each a € (ZA)1. Then @(I) is the ideal of KZA
generated by the relations mentioned in the paragraph preceding this proposition.

Proof. The G-invariance of X is clear. In order to prove that ¢(I) is as indicated, note
that the mesh relation }_,,_ ;) o(a)a is mapped onto Zt(a):(k’i)(—1)5(0(“)“)0(@@, with
the signature s(p) of a path defined as the sum of the signature of its arrows. The result
will follow from the verification of the following facts, which are routine:
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i) If (k, %) is the terminus of exactly two arrows a and b, then the set XN{a,b,o(a),o(b)}
has only one element.

ii) When A = Dyy;, with n > 3, and a : (k- 1,3) — (k,2), b : (k —1,0) —
(k,2) and ¢ : (k —1,1) — (k,2) are the three arrows ending at (k,2), then X N

{av b,c, J(a)v U(b)v U(C)} = {U(a)}

iii) When A = E,, (n = 6,7,8) and a : (k,2) — (k,3), b : (k—1,0) — (k,3) and
c: (k—1,4) — (k,3) are the three arrows ending at (k,2), then s(o(b)b) # 1 =
s(o(a)a) = s(o(c)c).

O

Corollary 2.3.5. With the terminology of the previous proposition, the mesh algebra is
isomorphic as a graded algebra to B' := KZA/p(I) and, in each case, the ideal p(I) is
G-invariant. In particular, G may be viewed as group of graded automorphisms of B’ and

¢ induces an isomorphism B/G —s B'/G.

Proof. Since ¢ is a graded automorphism of the path algebra KZA it induces an isomor-
phism B = KZA/I = KZA/p(I) = B'. If we view G as a group of graded automor-
phisms of KZA, then the fact that X is G-invariant implies that @ o g = g o @, for each
g € G. From this remark the rest of the Corollary is clear. U

Remark 2.3.6. When A = DDy and G =< p7™ >, one cannot find a G-invariant set of
arrows X as in the above proposition guaranteeing that, each k € Z, the path (k—1,2) —
(k—1,3) — (k,2) is the sum of the other two paths from (k — 1,2) to (k,2). This is the
reason for the following convention.

Convention 2.3.7. From now on in this dissertation, the term 'mesh algebra’ will denote
the algebra KZA /p(I) given by Corollary 2.3.5, or just KZD4/I in case (A, G) = (D4, <
p7™ >). This 'new’ mesh algebra will be still denoted by B.

2.4 The Nakayama automorphism

In this section we focus our attention on the Nakayama automorphism of the mesh algebra
B. This is given by the only automorphism 71 of B satisfying that (a,b) = (b,n(a)), for all
a,b € B, where (—, —) denotes the graded Nakayama form associated to B.

First notice that the quiver ZA does not have double arrows and, hence, if a : x — y
is an arrow, then there exists exactly one arrow v(z) — v(y), where v is the Nakayama
permutation. This allows us to extend v to an automorphism of the translation quiver
ZA and, hence, also to an automorphism of the path algebra KZA. Moreover, due to the
(new) mesh relations (see Proposition 2.3.4 and the paragraph preceding it), we easily see
that if I is the ideal of KZA generated by those mesh relations, then v(I") = I’. Note also
from Proposition 2.3.1 that, as an automorphism of the quiver ZA, we have that v = 7%
or v = pr¥*, for a suitable natural number k. It follows that if G is any weakly admissible
automorphism of ZA, then vo g = gov for all g € G. All these comments prove:
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Lemma 2.4.1. Let A be a Dykin quiver, B be its associated mesh algebra and G be a
weakly admissible automorphism of ZA. The Nakayama permutation v extends to a graded
automorphism v : B — B such that vog = gov, for all g € G.

The following result, which provides an explicit formula for a G-invariant graded
Nakayama automorphism of any mesh algebra, is fundamental for us.

Theorem 2.4.2. Let A be a Dynkin quiver with the labeling of vertices and the orientation
of the arrows of Subsection 2.3.1, and let G =< ¢ > be a weakly admissible automorphism
of ZA. If n is the graded automorphism of B which acts as the Nakayama permutation on
the vertices and acts on the arrows as indicated in the following list, then n is a Nakayama
automorphism of B such that nog=gomn, for all g € G.

1. When A = A, and ¢ is arbitrary, n(a) = v(a) for all o € (ZA)

2. When A =Dypyq:

(a) If n+1>4 and o = 7™ then:
i. n(a) = —v(a), whenever « : (k,i) — (k,i + 1) is an upward arrow with
i€{2,..,n—1}
ii. n(a) = v(«a), whenever a: (k,i) — (k+ 1,7 — 1) is downward arrow with
i€{3,..,n}.
iii. m(e;) = (—=1)'v(g;), for the arrow &; : (k,2) — (k,i) (i =0,1),
. n(eh) = (1) v(el), for the arrow € : (k,i) — (k+1,2) (i=0,1).
(b) If n+1>4 and ¢ = pr™ then:
i. n(a) = —v(«), whenever « is an upward arrow as above or « : (k,i) —
(k+1,i—1) is downward arrow as above such that k = —1 (mod m).
it. n(a) = v(a), whenever a: (k,1) — (k+ 1,4 — 1) is downward arrow such
that k Z —1 (mod m)

i1i. For the remaining arrows, if ¢ and r are the quotient and remainder of
dividing k by m, then
77(5?) = (=1)"""v(e;) /(z =0,1). , o
n(e;) = (=) u(e), when r #m — 1, and n(g;) = (=1)4 v (g;) other-
wise

(c) Ifn+1=4 and ¢ = pt™ (see the convention 2.5.7), then:
i. n(e;) = v(e;), whenever g; : (k,2) — (k,i) (i=0,1,3)
ii. n(e}) = —v(e}), whenever € : (k,i) — (k+1,2) (i=0,1,3).
8. When A = Eg:

(a) If o = 1™ then:

i. n(a) = v(a) andn(a’) = —v(a), where o : (k,1) = (k,2) and o' : (k,2) —
(k+1,1).
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i. n(B) = v(B) andn(B') = —v(B'), where B : (k,2) — (k,3) and 8’ : (k,3) —
iii. n(y) = v(y) and n(y') = —v(v'), where v : (k,3) = (k,4) and ~" : (k,4) —

w. n(0) = —v(8) and n(8") = v(8'), where § : (k,4) = (k,5) and § : (k,5) —
(k+1,4).
v. n(e) = —v(e) and n(’) = v(e'), where e : (k,3) = (k,0) and € : (k,0) —
(k+1,3).
(b) If o = pt™, (k,i) is the origin of the given arrow, q and r are the quotient and
remainder of dividing k by m, then:

i. n(a) =rv(a).
i. nia') = —v(a).
i, () = (~1)7w(B)
iw. n(8) = (=) (8)
v. n(y) = (=1)7(v)
vi. (') = v(y), when either q is odd and r # m—1 or q is even and r = m—1,
and n(v") = —v(v') otherwise.
vii. 1n(8) = —v(9)
viii. 7(8) = v(d)
iz. n(e) = —v(e)
z. n(e) = —v(e), whenr=m —1, and n(e) = v(e') otherwise.

4. When A =E7, o =7™, and then:

i n(a) is given as in 3.(a) for any arrow a contained in the copy of Eg.

it n(¢) = v(¢) and 77(() = —V(C/), where ¢ : (k,5) — (k,6) and C/ : (k,6) —
(k+1,5).

5. When A =Eg, ¢ = 7™, and then:

i n(a) is given as in 4 for any arrow a contained in the copy of Er.
i n(0) = v(0) and n(0') = —v(0'), where 6 : (k,6) — (k,7) and 6" : (k,7) —
(k+1,6).

Proof. Let v be the Nakayama permutation of the ZA (see Proposition 2.3.1). By Corolla-
ry 2.3.2, we know that Socy,(e(; ;) B) = Soc(e( ) B) is one-dimensional and concentrated in
degree | = cao—2, for each (k,i) € ZAy. By applying Corollary 1.4.4, after taking a nonzero
element wyy, ;) € ey, Socy(B), for each (k,i) € (ZA)o, we can take the graded Nakayama
form (-, —) : Bx B — K of degree [ associated to B = (B i)) (r,i)eza, (see definition 8),
where B, ;) = {w,q)} is a basis of e, ;) Biey ki), for each (k,7) € ZAg. It is clear that the
so obtained graded Nakayama form will be G-invariant whenever B = U(k;,i)eZ Ao Bk,iy 18
G-invariant. Moreover, in such case the associated Nakayama automorphism n will satisfy
that nog = gomn, for all g € G (see Corollary 1.4.5). The canonical way of constructing
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such a G-invariant basis B is given in the proof of Corollary 1.4.4. Namely, we select a set
I' of representatives of the G-orbits of vertices and a element 0 # w, ;) € e(,)Socyr(B),
for each (k,i) € I'. Then B = {g(ww,)) : g € G, (k,i) € I'} is a G-invariant basis as
desired. However, note that if we choose B to be 7-invariant, then it is G-invariant for
G =< 7™ >. So, in order to construct B, we will only need to consider the cases ¢ = 7
and ¢ = p7™

To construct B when A = A, has no problem, for all paths of length | = ca — 2 from
(k,i) to v(k,i) are equal in B. So in this case the choice of w; ;) will be the element
of B represented by a path from (k,i) to v(k,i) and B = {w,) : (k,i) € (ZA)o} is
G-invariant for any choice of ¢. So, on what concerns the calculation of B, we assume
in the sequel that A is either D, 1 or E, (r = 6,7,8). For these cases, if ¢ = 7 we will
take I’ = S, where S := {(0,7) : i € Ag} is the canonical slice. The desired elements
w(o,i) € €(0,i)S0cgr(B) are the paths given below. If p = pr™ and A = Dy, 1, with n > 3,
we will take I' = {(k,i) : i € Ag and 0 < k < m} and we will put wg ;) = 7 F(w(g ),
for each (k,i) € I'. On the other hand, if ¢ = pr™ and A = Eg we will consider
the slice T' = {(0,4) : ¢ = 0,3,4,5} U{(1,2),(2,1)}, which is p-invariant, and then take
I' = {77%(r;i) : (r,;i) € T and 0 < k < m}. The paths wo,y (i = 0,3,4,5) will be as in
the case ¢ = 7, and we will define below the paths w(; oy and w(y ;) below. Then we will
take w k(. ;) = T‘k(w(m-)), for all (r,j) € T'and 0 < k < m.

When A = Dy and ¢ = p7™ (see the convention 2.3.7), we slightly divert from the
previous paragraph. We take wo ) = 1610 and w(g 2) = €ogpe1€]. Due to the fact that
all nonzero paths from (0,2) to v(0,2) = (2,2) are equal, up to sign, in B we know that
the action < p > on those paths is trivial. The base B will be the union of the orbits of
w(o,0) and w(g 2) under the action of the group of automorphisms generated by p and 7.

Suppose that A = D41, with n > 3 in case ¢ = pr™. To simplify the notation, we
shall denote by u, v and w, respectively, each of the paths of length 2

(r,2) = (r,0) = (r+1,2)
(r,2) = (r,1) = (r+1,2)
(r,2) = (r,3) = (r+1,2),

with no mention to 7. Then a composition of those paths (r,2) — (r+1,2) — ... = (r+i,2)

will be denoted as a (noncommutative) monomials in the wu, v, w.
We will need also to name the paths that we will use. Concretely:

L. Y, is the downward path (k,i) — ... — (k +1i — 2,2), with the convention that
Y(k,2) = €(k,2)-
2. O(m,j) 1s the upward path (m,2) — ... = (m,j), with the convention that §., ) =

e(m72).

’

3. €k, is the arrow (k,2) — (k,j) and €(r,j) 18 the arrow (k,j) — (k+1,2), for
j=0,1.

Our choice of the w(g ;) is then the following:

(a) w5 = Y(0,i)UVUV-..0(n—1,5) Whenever i = 2,...,n.



40 Chapter 2

(b) w,0) = 5’(070)vuvu...5y(0,0)
(c) w1y = 5’(071)uvuv...5y(0,1)

(note that, for j = 0, 1, the vertex v(0,7) depends on whether n 4 1 is even or odd).
If A =E, with n =6,7,8, we name the paths from (k, 3) to (k + 1,3) as follows:

u: (k,3) = (k,0) > (k+1,3)
v:(k,3) = (k,4) = (k+1,3)
w:(k,3)— (k+1,2) —» (E+1,3).
Then any path (k,3) — ... = (k +7,3) is equal in B to a monomial in w,v,w, with the

obvious sense of 'monomial’. With the abuse of notation of omitting k when showing a
vertex (k,7) in the diagrams below, we then take:

1. When A = E6

(a) w3 is the path

3 VWIWV 3

(b) wo,0) is the path

0 3 VWYW 3 0

(c) w(,2), in case ¢ = 7, and w(; 9), in case ¢ = pr™, is the path

4,

/

3 vWYwW 3

/

(d) w4 is the path

AN

3 wowv 3
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(e) w(,1), in case ¢ = 7, and w1, in case ¢ = pr™, is the path

/ 5
4
J——=3
2
1
(f) wo,5) is the path
) )
4
J——=3
2
1
2. When A = E7
(a) w(,3) is the path
3 VWVWIVWVW 3
(b) wo,0) is the path
0 3 VWVWIVWU 3 0

(¢) w,1) is the path
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(d) wo,2) is the path

(e) w4y is the path

(f) w(z5) is the path

(8) w(o,e) is the path

3. When A = Eg

VWIWIVWY

wrwrwvw

Chapter 2
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(a) w3 is the path

VW 7
3 (vw)
(b) wo,0) is the path
VW Gv
0 3 (vw)
(¢) w,) is the path
U2 wv 5
g v g
2
1
(d) wo,2) is the path
(% G'U
3 (vw)
2
(e) w4y is the path
4
\ wv Gw
3 (wv)
(f) w(z5) is the path
5
4

(8) w() is the path

43
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(h) w,7) is the path

Once the G-invariant basis B of Socg.(B) = Soc(B) has been described, the strategy
to identify the action of the associated Nakayama automorphism 7 on the arrows is very
simple. Given an arrow «, we take a path ¢ : t(a) — ... = v(i(«)) of length I — 1 such
that aq is a nonzero path. Then we have ag = (—1)“(0‘)101-(0[), so that, by definition of
the graded Nakayama form associated to B, we have an equality (a,q) = (—1)“(®). Since
the quiver ZA does not have double arrows we know that n(a) = Aa)v(a), for some
AMa) € K*. In particular we know that qv(a) is a nonzero path (of length [) because
(¢,n(a)) = (a,q) # 0. If we have an equality qv(a) = (—1)”(°‘)wt(a) in B, then it
follows that (—1)“(®) = (a,q) = (¢,n(a)) = AMa)(g, v(a)) = Ma)(=1)"®). Then we get
Ma) = (=1)®)=2(®) and the task is reduced to calculate the exponents u(a) and v(a) in
each case. Taking into account that we have no g = g on, for each g € G, it is enough to
calculate u(«) and v(«) just for the arrows starting at a vertex of I’.

We pass to consider the situation for each of the three Dynkin quivers:

1) A = A,: This is trivial and we have n(a) = v(«), for each a € (ZA);.

2) A= Dn—l—l:

We still use (x.i)s O(m,j)» E(k,5) and 5219,3‘) with the same meaning as above. We will use
the letter « to denote un upward arrow (k,i) — (k,7+ 1), with ¢ = 2,...,n — 1, and the
letter 8 to denote a downward arrow (k,i) — (k + 1,4 — 1) with ¢ = 3,...,n. We will also
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consider the arrows ; := e ;) @ (k,2) — (k,j) and €] := 5219,3‘) : (k,j) = (kE+1,2), for
j =0,1. In all cases we consider that the origin of each arrow is a vertex of I’. We will
now create a table, where, for each of these arrows a, the path p, will be a path of length
I —1 from t(a) to v(i(a)) such that ap, # 0 in B. Then, a routine verification shows that
u(a),v(a) will be elements of Zy such that ap, = (—1)“(“)wz~(a) and per(a) = (—1)”(“)wt(a).

a) For the cases when ¢ = 7" it is enough to consider that m = 1, for if no7 =701,
then no 7™ = 7™ on, for all m > 1. For ¢ = 7:

a Pa u(a) | v(a)
a:(0,3) = (0,i+1) | y0,i41)VuVU-. 014 | O 1
B:(0,4) = (1,i = 1) | ya,i—1)uvuv...dpm_1,) 0 0
gy : (0,0) — (1,2) VUVU...E,(0,0) 0 1
el :(0,1) — (1,2) UVUV.-..E,(0.1)) 0 0
eo:(0,2) — (1,0) EQUUD... 0 0
e1:(0,2) — (0,1) gluvu... 1 0

and assertion 2.a follows.

b) When ¢ = pr™ and n > 3, for the arrows a starting and ending at a vertex of I’,
we take p, as in the table above and u(a) and v(a) take the same values as in that table.
In the corresponding table for this case, it is enough to give only the data for the arrows
which start at a vertex of I’ but end at one not in I’:

a Pa u(a) | v(a)
B:(m—1,i) = (m,i—1) | Ym,i—)UVUV-- Ot 7—2.0) 0 1
gy (m—1,0) = (m,2) VUVU...E, (m—1,0) 0 0
el (m—1,1) = (m,2) UVUY...Ep(1m—1,1)) 0 1

These values come from the fact that w,, ;) = o7~ (W(0,i)) = V(m,i) VUVU---O(mn—1,i)
for each i = 2,...,n. It is now clear that assertions 2.b.i and 2.b.ii hold. As for 2.b.iii,
put I'(q) = {(k,i) : gm < k < (¢+ 1)m and i €€ Ag}, i.e., the set of vertices (k,) such
that the quotient of dividing k by m is ¢. If ¢ : (k,2) — (k,0) has origin (and end) in
I'(q), then p7~™(g¢) = &1 : (k+m,1) = (k+m,2). The symmetric equality is true when
exchanging the roles of 0 and 1. It follows that n(eg) = v(ego) (resp. n(e1) = —v(g9)) when
the origin of ¢ (resp. €1) is in I’(q), with ¢ even, and n(eg) = —v(eo) (resp. n(e1) = v(e1))
otherwise. That is, we have n(g;) = (—1)7 v (g;).

A similar argument shows that if k¥ # 1 (mod m) and €’ : (k,7) — (k +1,2), then we
have 7(e;) = (fl)q+j+1y(5;). Finally, if €% : ((¢ + 1)m — 1,5) = ((g + 1)m,2) we get that
n(e}) = (=1)7v(e’), which shows that the equalities in 2.b.iii also hold.

c¢) Suppose now that A = Dy and ¢ = p7™, where the mesh arrows are the original
ONES T'(k i) = D 4(a)=(k,i) O (@)a. Note that ife; : (k,2) — (k,i) and &} : (k, i) — (k+1,2), for
i =0,1,3, then we have w ;) = sgsp(i)s’p(i)ei and wg9) = 5i6;5p(l-)6;)(i) = —€,(:)€
for all + = 0,1,3. The corresponding table is then given as

/ o
p(i)€i

a Da u(a) | v(a)
& Ep(i)ff;;(i)gi 0

€ 6;5p(l-)6;)(i) 0 0
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3) A=E, (n=06,7,8):

For the sake of simplicity, we will write any path as a composition of arrows in
{a,a/,ﬁ,ﬁl,'y,'yl, 0, 5,(,(’,9,9’5,5} whenever they exist and assuming that each arrow
is considered in the appropriate slice so that the composition makes sense.

Also, we denote by u, w and v, respectively, each of the paths of length 2

(r,3) — (r,0) — (r +1,3)
(r,3) — (r+1,2) — (r+1,3)
(r,3) — (r,4) — (r+1,3)

with no mention to r. Then B/ 8 = w, 'y'y/ —vand e =u Itis important to keep in
mind that v = v+ w . Also notice that, as with D, 11, for the case when ¢ = 7™ it is not
restrictive to assume that m = 1. Then I’ = {(0,7) : i € Ag}.

1. If A = Eg, using the mesh relations, one gets, among others, the equalities u? =

?,Ug = ’U3 = 0, VWY = wWow, ’UU}2’U = —’UU}’U2 — ’l)2w’l) and vworwy = —wvwow.

Then, if ¢ = 7™, the table is the following:

a Pa u(a) | v(a)
a:(0,1) = (0,2) | Bviwyd 0 0
B£:(0,2) = (0,3) | vwowy 0 0
~v:(0,3) — (0,4) | ~Ywvwv 0 0
5:(0,4) — (0,5) | d'yYw?vB | 1 0
£:(0,3) = (0,0) | Evwow 1 0
o :(0,2) = (1,1) | aBviwy 1 0
8':(0,3) — (1,2) | Bowow 1 0
v :(0,4) = (1,3) | wowvp’ 0 1
8 :(0,5) — (1,4) | yYw?vp'a’ | 0 0
e’ :(0,0) — (1,3) VWVWE 0 0

From this table the equalities in 3.a follow.

Suppose now that ¢ = pr™ and recall that in this case we take I’ = {77(r,i) =
(k+r,i) : (r,i) € T and 0 < k < m}, where T = {(0,7) : i = 0,3,4,5}U{(1,2), (2,1)}.
Arguing as in the case of D, 11, we see that the values u(a) and v(a) are the ones in
the last table, when i(a),t(a) € I'. We then need only to give those values for the
arrows a with origin in I’ and terminus not in I’. We have the table:

a Pa )
a:(m+1,1) = (m+1,2) | Bv?wys
B:(m,2) = (m,3) VWVWY

v (m—1,4) = (m,3) wvwvﬂ’
& :(m—15 — (m4) |ywvpa
g (m—1,0) = (m,3) VWVWE

g
o|o|o|olola
i~
oo oy
N~—
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We have used in the construction of this table the fact that w0y = Svwvwy and
W4y = Y wvwvf, for all k € Z, while wy, 3y = vwvwy and w(g,41,3) = WvwVw,

Note that, with the labeling of vertices that we are using, we have that p(k,i) =
(k+1i—3,6—1) for each i« # 0 and p(k,0) = (k,0). For each q € Z, we put
I'(q) := (pr~™)%(I'). When passing from a piece I'(q) to I'(q + 1) by applying
pT~ ™, an arrow « is transformed in an arrow ¢’ and an arrow ¢’ in an arrow a.
From the last two tables we then get that n(a) = v(a) and n(§') = v(d), for all
arrows of the type a or ¢ in ZA.

The argument of the previous paragraph can be applied to the pair of arrows (v, )
instead of («, ") and we get from the last two tables that n(v) = v(v) (resp. 77( "=

—v(B’)) when v (resp. (') has its origin in I'(q), with ¢ even, and n(y) = —v(y)
(resp. n(B") = v(#')) otherwise. From this the formulas in 3.b concerning v and
are clear.

We apply the argument next to the pair or arrows (9, o) and get that n(d) = —v(9)
(resp. n(a’) = —v(’)), for all arrows of type ¢ or o in ZA.

An arrow of type £ (resp. €’) is transformed on one of the same type when applying
p7~ . It then follows that n(e) = —v(e), for any arrow of type . It also follows
that n(e’) = —v(¢’), when the origin of &' is (k,0) with & = —1 (mod m), and
(¢') = v(g') otherwise.

We finally apply the argument to the pair of arrows (3,7'). If we look at the two
pieces I'(0) and I’(1), then from the last two tables we see that if 8 : (k,2) — (k, 3),
with (k,3) € I'(0) U I'(1), then n(8) = v(B), when k € {1,2,....,m — 1,2m}, and
n(B) = —v(B), when k € {m,m+1,...,2m—1}. We then get that n(3) = (—1)%v(5),
where ¢ is the quotient of dividing k& by m. By doing the same with 4" : (k,4) —
(k + 1,3), we see that n(v') = —v(y'), when k € {0,1,...,m — 2,2m — 1}, and
n(y') =v(y'), when k € {m — 1,m,...,2m — 2}. If now k € Z is arbitrary, then that
n(y') = v(v') if, and only if, k ¢ Utez(%m —2,(2t +1)m — 1). Equivalently, when
gisoddand r #m — 1 or ¢ is even and r = m — 1.

2. If A = E7, then we have, among others, the equalities u? = w3

3

=0t =0, vwv =

wow — v°, and vwowv = —wvwvw. Since ¢ = 77 we get the following table:



48 Chapter 2

a Da u(a) | v(a)
a:(0,1) — (0,2) | Briwvwvs o 0 0
B:(0,2) = (0,3) | vwvwvwvf’ 0 0
v:(0,3) = (0,4) | Yy wvwvwow 0 0
§:(0,4) = (0,5) | &Y wv?wvwy | 0 1
¢:(0,5) = (0,6) | ('Y wvdwys | 0 0
£:(0,3) = (0,0) | wvwvwow 0 1
o :(0,2) = (1,1) | aBvwvwv?p’ 0 1
B :(0,3) — (1,2) | Bvwvwvwv 1 0
v :(0,4) = (1,3) | wowvwvwy 0 1
8 :(0,5) = (1,4) | Yw?vwowyd 0 0
¢":(0,6) — (1,5) | 0'yYwvw?y6C | 0 1
e :(0,0) = (1,3) | vwvwvwve 0 0

From this table the equalities in 4 follow.

3. If A = Eg, as in the previous case, ¢ = 7™ and, considering the equalities u? =

w? = v° = 0, vwv = wow — 3, (vw)? = (wv)? + vwvt — viww, (Vvw)’ = (W) +
(wv)3vwet — viwv?we?, and (vw)” = —(wv)”, we obtain the table below:
a o u@) [v(@)
a:(0,1) — (0,2) Bv?(wv)’ Ba 0 0
B:(0,2) — (0,3) (vw)bv 0 0
~v:(0,3) — (0,4) 7w (vw)© 0 0
d:(0,4) — (0,5) 8"y wv? (wv) wy 0 1
C:(0,5) = (0,6) | ¢'6'vwud(wv)3wys 0 0
0:(0,6) — (0,7) | 0'C'6'~ywotwv?w?~6¢ | 0 0
£:(0,3) — (0,0) e'w(vw)® 0 1
o :(0,2) — (1,1) aB(vw)’v?p 0 1
B :(0,3) — (1,2) B(vw)bv 1 0
v :(0,4) — (1,3) (wv)Swry 0 1
8 :(0,5) — (1,4) y'w? (vw)>6§ 0 0
¢":(0,6) = (1,5) 8"y w? (vw) wyd¢ 0 1
0" :(0,7) — (1,6) | ¢'6'ywvtwvw?~6¢0 0 1
e’ :(0,0) — (1,3) (vw)Ove 0 0

From this table the equalities in 5 follow.

O

Remark 2.4.3. When A = Eg and ¢ = pr, then ¢ = k and » = 0 in 3.b of the last propo-
sition. The explicit definition of n(v’) should be clarified. A follow-up of our arguments
shows that 1(y') = (—1)*v(v') in that case.
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m~fold mesh algebras

3.1 Introduction

3.1.1 Motivation

The study of the Calabi-Yau condition on a finite dimensional self-injective algebra has
become very popular in recent years (see e.g. [28], [12], [35], [25], [50], [51], ...). So far,
concerning the class of m-fold mesh algebras, the problem of determining those which
are Calabi-Yau has been solved only for the class of the stable Auslander algebras of a
representation-finite self-injective algebra (see [25] and [51]). Related to the Calabi-Yau
property, Eu and Schedler defined the notion of Frobenius Calabi-Yau algebra ([35]). It is
well known that any Frobenius Calabi-Yau algebra is always Calabi-Yau and, moreover,
the Calabi-Yau dimension is always less or equal than the Calabi-Yau Frobenius dimension.
However, it is not known, in general, if the equality holds.

On the other hand, although there are many examples of periodic algebras in the
literature, the explicit computation of the period turns out to be, in most of the cases,
a very hard task. Such was the case that, regarding the class of m-fold algebras, the
period has only been calculated for some of the stable Auslander algebras of a standard
representation-finite self-injective algebra.

Another homological property that is worth studying when dealing with finite dimen-
sional self-injective algebras is that of being symmetric or weakly symmetric.

The goal of this chapter is to give, for the class of m-fold mesh algebras, an answer to
the previous questions. Concretely, we provide:

1. An identification of all weakly symmetric and symmetric algebras in the class (Theo-
rem 3.3.1);

2. An explicit formula for the period of any algebra in the class (Proposition 3.4.8,
when A = Ay, and Theorem 3.4.12 for all the other cases).

3. An identification of the precise relation between the stable Calabi-Yau dimension
and the Calabi-Yau Frobenius dimension of an m-fold algebra, showing that both
dimensions may differ when A = Ay, but are always equal when A # A,., forr = 1,2
(Propositions 3.4.13 and 3.4.14)
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4. A criterion for an m-fold mesh algebra to be stably Calabi-Yau, together with the
identification in such case of the stable Calabi-Yau dimension (Proposition 3.4.7, for
the case A = Ao, Corollary 3.4.18, for characteristic 2, and Theorem 3.4.19 for all
other cases).

3.1.2 Outline of the chapter

In Section 3.2 we include two auxiliary results that will be frequently used in the rest of
the chapter. In Section 3.3 we identify all the symmetric and the weakly symmetric m-fold
mesh algebras. We start Section 3.4 by computing the initial part of a G-invariant minimal
projective resolution of B as B-bimodule from which we can deduce, in particular, that the
third syzygy of A as A-bimodule, Q3.(A), is isomorphic to a twisted bimodule of A, zA1,
induced by a an automorphism § whose formula we determine precisely. The role played
by the third syzygy turns out to be essential for the two major purposes of the last section.
Next we introduce the definition of stably inner automorphism and we proof that, in most
of the cases, the notions of inner and stably inner coincide. We then compute the period
of any m-fold mesh algebra. We shall distinguish the algebras having Loewy length 2 from
the rest. Finally, we deal with the question on Calabi-Yau dimensions. As in the previous
question, we first consider the algebras having Loewy length 2, which is actually the only
case where the stable and Frobenius Calabi-Yau dimensions do not coincide. Otherwise,
we show that both notions are equivalent, and moreover, their respective Calabi-Yau
dimensions are equal. We end the chapter by computing the stable Calabi-Yau dimension,
and hence, the Frobenius Calabi-Yau dimension, of any m-fold mesh algebra with Loewy
length different from 2.

3.1.3 Notation

Besides the notation fixed in the previous chapters, we still need to establish the following.

Given an algebra A and an automorphism o € Aut(A), it is well known that each
A-module M admits a twisted version ,M, where the underlying R-module is M and the
multiplication by elements of A is given by a-m = o(a)m, for all a € A and m € M. It is
also well-known that the assignment M — ,M defines an equivalence of categories acting
as the identity on morphisms 4Mod = AMod with quasi-inverse taking M to ,-1 M.

Suppose now that o,7 € Aut(A). Then we get an automorphism of the enveloping
algebra, 0 ® 7° : A® A? — A ® A, which takes a ® b° to o(a) ® 7(b)°. If M is a
A-bimodule, which we view as a left A°-module, the previous paragraph gives a new left
Af-module ,g:oM. In the usual way, we interpret it as a A-bimodule , M, and then the
multiplications by elements of A are given by a-m -b = o(a)m7(b). In particular, the
assignment M — , M, underlies an equivalence of categories 4Mod 4 =, AMod 4.

In addition, whenever G is a weakly admissible group of automorphisms of a mesh
algebra B and f is a G-invariant morphism of B, we will always write f for the induced
morphism of A = B/G via the pushdown functor.

All the results on m-fold mesh algebras will be given in terms of its extended type as
defined in 14.
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3.2 Two important auxiliary results

In this first section we present two results that will be very useful and will simplify our
task in the subsequent sections. Before, we remind the definition of an acyclic character
of a quiver.

Recall that a walk in a quiver ) between the vertices ¢ and j is a finite sequence
1 =19 > 11 ¢ ...lp—1 & 1, = j, where each edge 1;_1 <> i is either an arrow ix_1 — 9} or
an arrow iy — ix_1. We write such a walk as aj'...af", where o; are arrows and ¢; is 1 or
—1, depending on whether the corresponding edge is an arrow pointing to the right or to
the left.

We will need the following concept from [45]:

Definition 15. Let @ be a (not necessarily finite) quiver. An acyclic character of Q
(over the field K) is a map x : Q1 — K™ such that if p = af'...af” and ¢ = fl...ﬁgs

T
are two walks of length > 0 between any given vertices ¢ and j, then ngz‘gr x() =

ngjgs X(ﬁj)eg-

The following general result is the first of the two auxiliary lemmas. In particular, it
gives us a criterion to determine when two morphisms of the mesh algebra B induce, up
to conjugation, the same morphism of the m-fold mesh algebra A = B/G.

If A is a graded algebra with enough idempotents with the fixed family of orthogonal
idempotents (e;)icr, then, whenever a € e;Ae;, we will write i(a) =i and t(a) = j.

Lemma 3.2.1. Let A = ©,>0A4, be a basic positively Z-graded pseudo-Frobenius algebra
with enough idempotents such that e;Age; = K, for each i € I, let G be a group of graded
automorphisms of A acting freely on objects such that A = A/G s finite dimensional and
let f,h: A— A be graded automorphisms satisfying the following three conditions:

i) f and h permute the idempotents e;
ii) f(e;) = h(e;), foralliel
i1i)) fog=gofandhog=goh, forall g €G.
Then the following assertions hold:

1. The assignment [a] ~ [f(a)], with a € U, j¢;
phism f of A = A/G, and analogously for h.

ejAej, determines a graded automor-

2. For f and h as in assertion 1, the following assertions are equivalent:

(a) f~'h is an inner automorphism of A

(b) There is a map X\ : I — K* such that h(a) = A(f(i(a)))"'A(f(t(a)))f(a) (resp.
f(a) = Xi(a))"tX(t(a))h(a)), for all a € U jereiAej, and Ao g = A, for all
geqd
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Proof. Assertion 1 is clear. We then prove assertion 2:

a) =>b) Let A : I — K™ be any map and 1) : A — A be any graded automorphism.
If xn» : A — A is the (graded) automorphism which is the identity on objects and
maps a ~ A(i(a)) "' A(t(a))a, for each a € \U; ; eiAe;, then the composition x o4 (resp.
1 o xa) acts as ¢ on objects and maps a ~ A(¢(i(a))) A (¥ (t(a)))(a) (vesp. a ~
A(i(a)) "I A(t(a))p(a)), for each a € U, j eiAe;j, with the obvious interpretation of 1) as
permutation of the set I.

If now f and h are as in the statement, the goal is to find a map A as in the previous
paragraph such that xyoh = f (resp. hoxy = f) and Aog|; = A, for all g € G. Replacing
f by foh™! (resp. h™!o f) if necessary, we can assume, without loss of generality, that
h = id4 and that f acts as the identity on objects. The task is hence reduced to check
that if f : A — A is inner, then there is a map A : I — K* such that f = x, and
Aogir=A forall g€ G.

We know from Proposition 1.4.3 that A is a split basic graded algebra. So it is given
by a finite graded quiver with relations whose set of vertices is (in bijection with) the set
I/G ={]i] : i € I} of G-orbits of elements of I. From [45]|[Proposition 10 and Theorem 12]
we get amap A : I/G — K* such that the assignment [a] ~ A([i(a)]) "' A([t(a)])[a], where
a € |UJ; jes€idej, is a (graded) inner automorphism u of A such that u~l o f is the inner
automorphism ¢ = ¢1_, of A defined by an element of the form 1 — z, where x € J(A).
In our situation, the equality J(A) = @,>0A, holds, so that x is a sum of homogeneous
elements of degree > 0. But « = w o f is also a graded automorphism, so that we have
that t(A,) = (1 —2)A, (1 —2)~t = A,. If y € A, then the n-th homogeneous component
of (1—x)y(1—2)"tisy. It follows that ¢ is the identity on A, for each n > 0. Therefore
we have ¢ = id, so that f = u.

Let now 7 : A — A = A/G be the G-covering functor and let A be the composition

map I - I/G 2 K By definition, we have that Aog = A, for all g € G. As a
consequence, the associated automorphism x) : A — A defined above has the property
that [xa(a)] = u([a]) = f(la]) = [f(a)], for each a € U, ; €ide;. Since f is the identity on
objects we immediately get that f = x) as desired.

b) = a) The map A of the hypothesis satisfies that y, o h = f. It then follows that
Xaoh = f, where x) : A — A maps [a] ~ A(i(a)) "' A(t(a))[a], for each a € U; j eide;.
Note that x) is well-defined because Ao g = A, for all g € GG. It turns out that Y, is the
inner automorphism of A defined by the element ;¢ A(i) ey

O

The second result consists of an identification of a subgroup of the integers which is
crucial for our purposes.

Proposition 3.2.2. Let A be the m-fold mesh algebra of extended type (A,m,t) and let
H(A,m,t) be the set of integers s such that 7°v~% is an inner automorphism of A. Then
H(A,m,t) is a subgroup of Z and the following assertions hold:

1. If char(K) =2 or A = A, then H(A,m,t) =Z

2. If char(K) # 2 and A # A,, then H(A,m,t) = Z, when m + t is odd, and
H(A,m,t) = 27 otherwise.
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Proof. The fact that H(A,m,t) is a subgroup of Z is clear since the subgroup Inn(A) of
inner automorphisms is normal in Aut(A). For the explicit identification of this subgroup,
we use the G-invariant graded Nakayama form of the mesh algebra B given by Theorem
2.4.2 and follow the notation of this theorem to name the arrows. For each integer s > 0,
there is a map A : ZAg — K* such that n°(a) = )\i_(cll))\t(a)ys(a), for each a € ZA;.
This map is uniquely determined up to multiplication by an element of K*. According to
Lemma 3.2.1, the integer s will be in H(A,m,?) if, and only if, the equality Ao gjza, = A
holds, for all g € G.

If char(K) = 2 or A = A, Theorem 2.4.2 says that n = v is a graded Nakayama
form, and the result is clear in this case. We suppose in the sequel that char(K) # 2 and
A #£ A,

1) Suppose first that t = 1. Theorem 2.4.2 gives a formula n(a) = (—1)*“®v(a), where
u(a) € Zy for each a € ZA;. A careful examination of the u(a) shows that the following
properties hold in all cases:

i) u(o(a)) # u(a);
ii) If v(a) ;== u(a) +u(v(a)) then v(o(a)) = v(a),

for all a € ZA1. Let now X\ : ZAg — K* be the map mentioned above for s = 1. Then
we have )\;(Cll) AM(a) = (=1)"@ | for all a € ZA;. Together with property i) above, we then
get that )\’T(k‘,i) = _)‘(k,i)a for all (kj,l) S ZAO This implies that )\Tm(k‘,i) = (—1)m)\(k71)
Then s =1 is in H(A,m,t) if, and only if, m is even.

On the other hand, we have that n%(a) = 7((—1)“@v(a)) = (—1)“@+u#(@)2(g) =
(=1)¥@) 12(a), for each a € ZA;. Let now X : ZAg — K* be a map such that 1?(a) =
)\if(i))\t(a)ﬂ(a), for all a € ZA;. We then get that )\;(Cll))\t(a) = (—1)"@, Together with
property ii) above, we get that A ;) = A\(ri), and 80 Apm (g iy = A5y, for all (k,4) € ZAo.
It follows that s = 2 is in H(A,m,t), which proves that H(A, m,t) = 27 when m is odd.

2)Suppose that (A,t) = (A =Dy,41,2). For any integer k, we define the element
c(k) € Za to be 0, when k # —1 (mod m), and 1 otherwise. Theorem 2.4.2 gives that
n(a) = —v(a), when a : (k,i) — (k,i+ 1) is an upward arrow, and 7n(a) = (=1)*®v(a),
when a : (k,i) —» (k+1,i — 1) (: = 3,...,n) is a downward arrow. If X\ : ZAy — K*
is the map considered in the first paragraph of this proof for s = 1, then we get that
A1) = (—1)6(]“)“)\(;971-), for each i # 0,1. It follows from this that A, -m: =
Ahtmyi) = (=1)Y®+m where y(k) = > o<j<m ¢k + j). But y(k) = 1 since there is
exactly one summand which is nonzero. We then have A, -m ;) = (—1)m+1)\(k7i). This
shows that if s = 1 is in H(Dy41,m,2) then m is necessarily odd. We claim that the
converse is also true, so that H(D,1,m,2) = Z in this case. Indeed from Theorem 2.4.2
we get equalities 1(g;) = (—1)7"w(g;) and n(e}) = (=1)aHF1+eEy (el for i = 0,1. De-
noting by ¢(k) and q(k + 1) the quotients of dividing k£ and k + 1 by m, we then get that
Mer1i = (=1)P®)N 5 where ¢(k) = q(k) +i+ 1+ c(k) +q(k+1) +i. Let us view 1(k) as
an element of Zy and bear in mind that q(k+1) = ¢(k), unless k = —1 (mod m), in which
case q(k + 1) = q(k) + 1. We then see that, for k arbitrary, we always have (k) = 1. It
then follows:
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Apr=m (ki) = Ap(htmi) = —Atmi) = —(=1D™Awy = (=1 Ay = Mgy

since m is odd. Therefore the equality A -—m i) = Ax,s) holds, for all (k,i) € ZAy, so
that Ao gjza, = A for all g € G.

Still with the case A = D,+1, suppose now that m is even. Note that we have
n%(a) = v?(a), for each upward arrow. Let a : (k,i) — (k+1,i—1) be any downward arrow.
The arrows a and v(a) have origins in the slices k and k + (n — 1), respectively. It follows
that n?(a) = (—1)cW)+eb+=1),2(4). If now X : ZAg — K* is the usual map for s = 2,
then we get that A(y41,) = (—1)6(]“)*‘3(’”("*1)))\(M), for each i = 2,3, ...,n. It follows that
M-ty = Mrmay = (~L), where €(k) = Sgeclel + ) +c(k + 5 + (n — 1)] =
v(k) +v(k + (n — 1)), which is zero in Zg. This shows that A, —m ;) = A, whenever
i =2,3,...,n. On the other hand, taking into account the definition of v (see Proposition
2.3.1), if i = 0,1 we have:

1. When n + 1 is even: 12(g;) = n((=1)4F)+ip(g;)) = (—1)2k)+italbtn—1))+i 2 (o) =
(—1)a®B)talkt(n=1) 2 ().

2. when n + 1 is odd: 72(g;) = n((—1)1¥)+ip(g;)) = (—1)ak)Hitalktn—))+itl, 2oy —
(_1)(1(]{)4’(1(]{4’("71))4’1y2(€i)7

We then get A ;) = (—1)“(k’i))\(k72) , where u(k,i) = q(k) + q(k + (n — 1) in the first
case and u(k,i) = q(k) + q(k + (n — 1) + 1 in the second case. In both cases, we get that
A(k,0) = Ak,1). Suppose now that 7*(e}) = (—=1)*®D12(eh). Then we will have ANkt1,2) =
(—1)“(k’i)+”(k’i))\(k72) which, together with the equality A(11.9) = (—1)C(k)+c(k+("fl)))\(k72)
seen above, proves the equality in Za: v(k,i) = u(k,i)+c(k)+c(k+ (n—1)). We then get
A1y = (=1)oED (—1)ulk+tD N g o = (—1)XRDN g o where x(k, 1) = u(k, i) +u(k+1,4)+
c(k)+c(k+(n—1)). It follows from this that A,—m k) = Aktm,i) = (—1)”(k’i))\(k7i), where
o (k1) =D o<jem X(F+5,1) = X o<jemle(b +J) + (b + 7+ (n = 1)) + D<o [ulk, i) +
u(k+1,4)]. The first summand in the last member of this equality has already been shown
to be even. But we have an equality in Zo:

So<jemlull +5,1) + u(k +j +1,0)] =
2o<jemlt(E+7) +ak+j+n—1)]+20c;cmlak +145) +alk+1+j+(n—1))] =
2 0<jemld(k+7) +a(k+1+ 5]+ > 0<jcmlak+7+(n—1)) +qk+1+j+ (n—1))]

As has already been noted, the equality q(k + r) = ¢(k + 1 + r) holds, except when
k+r = —1 (mod m), in which case q(k+147) = q(k+r)+ 1. This comment proves that
each summand of the last member in the centered equality is equal to 1 in Zs. It follows
that o(k,7) = 0 in Zz and, hence, that A\,—m ) = Ax,i), for all (k,i) € ZAq. By the first
paragraph of this proof, we conclude that H(D,,41,m,2) = 2Z whenever m is even.

c¢) Suppose next that (A,t) = (Eg,2). If s > 0 is any integer, then, by Theorem 2.4.2,
we have n®(a) = v*(a), when a € {«,d'}, and n°(a) = (—1)*v*(a), when a € {o/,0}. If
A ZAg — K* is a map such that n®(a) = )\;(a))\t(a) v®(a), for each a € ZA, we then get
equalities: )\(k‘yg) = )\(;@1), A(k+1,4) = Ak,5) Ak+1,1) = (—1)8)\(k,2) and A 5) = (—1)8)\(k,4)-
It follows that A(11,4) = (—=1)*Ak,), for each (k,i) € ZAq such that i = 1,2,4,5.
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Note that we have n(e') = ( ey (€, Where c(k) is defined as in the case (A,t) =
(Dpy1,2). We then have that n?(e/) = (—1)°R)+ek+5),2(c") - Since we also have 7°(¢) =
(—1)%*v%(e) we get:

1 When s =1, Ay = (1) BN o
9 When s — 2, )‘(k-f—l,i) _ (_1)c(k)+c(k+5))\(l€’i)
for : = 0,3. We also have:

1. When s = 1, n(v) = (=1)%v(y) and n(8') = (=1)7"1v(8'), where ¢ = q(k) is the
quotient of dividing k by m;

2. When s =2, n?(y) = (—1)‘1(k)+‘1(k+5)+1u2(fy) and n2(8') = (—1)q(k)+q(k+5)+11/2(5’).

It follows from this that, in case s = 1, we have A4 = (=1)\3) and A(pq12) =
(—1)‘1*1)\(;9,3) and, hence, A 4) = —Apq1,2)- This, together with the equalities in the
previous paragraph, show that A\, = —A@g,), for all @« = 1,2,4,5. Therefore, when
s =1, we get:

Aprmki) = ~Alermi) = —(—1)™Agiy = (=1 A\, for i # 0,3,
and
Apr=m (ki) = Mtmyi) = (—1)V(k)+m)\( i = (=1)™H\ ), for i = 0,3, since

v(k) :ZO§j<m c(k+j)=1

By the first paragraph of this proof, we get that s = 1 is an element of H(Eg, m,2) if, and
only if, m is odd.

Suppose now that m is even and that s = 2. Then for the corresponding map A we have
that )‘(k,4) = (_1)q(k)+q(k+5)+1)\(k73) and )‘(k+1,2) = (_1)q(k)+q(k+5)+1)\(k73)’ from which we
get that A, = Ay, for all i € Ag. From the fact that Axy1,4) = A, for ¢ # 0,3,
and A(pq1,) = (—1)C(k)+c(k+5))\(k,i), for i = 0,3, we get:

Apr=m (ki) = Ahtm,i) = A(kyi)» for @ 7 0,3,
and
Apr=m(ii) = Ay = (—1)YEFVEDN G = (=1)2A(i) = Ak, for i = 0,3,
because v(k) = > o<, ¢(k+j) =1 for each integer k. Therefore, when m is even, s = 2
is an element of H (g, m,2), thus showing that this group is 2Z in such case.

d) Suppose finally that (A,t) = (Dy4,3). If s > 0 is an integer then n®(e;) = (&)
and n®(g}) = (—1)*v%(¢}) since v = 772 in this case. If A : ZAg — K* is the map such
that n°(a) = Ai;)At(a)ys(a), for each a € ZAj, then we easily get that A, = Ak

and )‘(/f-i-l,i) = (—1)5)\(;“), so that )\(m.m)—l(k@ = )\p27—m(k7i) = )‘(k+m,i) = (_Usm)\(k’i). It
follows that s = 1 is in H (D4, m, 3) if, and only if, m is even. On the other hand, when m
is odd, we have that 2 € H (D4, m, 3).

O
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3.3 Symmetric and weakly symmetric m-fold mesh algebras

The only result of this subsection identifies all the symmetric and weakly symmetric m-fold
mesh algebras. Recall that an algebra is weakly symmetric if, and only if, its Nakayama
automorphism acts as the identity on vertices. A weakly symmetric algebra is in addition
symmetric if, and only if, its Nakayama automorphism is inner.

Theorem 3.3.1. Let A be an m-fold mesh algebra of extended type (A,m,t). If A is
weakly symmetric thent =1 ort =2 and, when char(K) =2 or A = A,., such an algebra
s also symmetric. Moreover, the following assertions hold:

1. When t =1, A is weakly symmetric if, and only if, A is Do,., B7 or Eg and m is a
divisor of % — 1. When char(K) # 2, such an algebra is symmetric if, and only if,
m 1S even.

2. Whent =2 and A # Agy,, A is weakly symmetric if, and only if, m divides 5 —
and, moreover, the quotient of the division is odd, in case A = Aop_1, and even, in
case A = Dg.. When char(K) # 2, such an algebra is symmetric if, and only if,

A =Aqg,_1 orm is odd.

3. When (A,m,t) = (Agp,m,2), ie. A= Lﬁ{”), the algebra is (weakly) symmetric if,
and only if, 2m — 1 divides 2n — 1.

Proof. The algebra A is weakly symmetric if, and only if, the automorphism 7 : A — A
induced by v is the identity on vertices. We identify the vertices of the quiver of A as
G-orbits of vertices of ZAg, where G is the weakly admissible group of automorphism
considered in each case. If we take care to choose a vertex (k,i) which is not fixed by
p, then the equality v([(k,7)]) = [(k,7)] holds exactly when there is a ¢ € G such that
v(k,i) = g(k,i). But if G denotes the group of automorphisms generated by p and 7, then
G acts freely on the vertices not fixed by p. Since G C Gandv e G (see Proposition
2.3.1) the equality v(k,i) = g(k,i) implies that v = g. Therefore the algebra A is weakly
symmetric if, and only if, v belongs to G.

On the other hand, A is symmetric if, and only if, 7 : A — A is an inner automorphism.
By Lemma 3.2.1, this is equivalent to saying that A is weakly symmetric and 7 o 7~}
is an inner automorphism of A. That is, A is symmetric if, and only if, A is weakly
symmetric and H(A,m,t) = Z. As a consequence, once the weakly symmetric m-fold
mesh algebras have been identified, the part of the theorem referring to symmetric algebras
follows directly from Proposition 3.2.2.

If t = 3 then A = Dy, G =< p7™ >, with p acting on vertices as the 3-cycle (013),
and v = 772, It is impossible to have 772 € G and therefore A is never weakly symmetric
in this case.

If t = 1 then G =< 7™ >. If we assume that A # Dy, E7, Eg then v = pr!=", for some
integer n. Again it is impossible that v € G and, hence, A cannot be weakly symmetric.
On the contrary, suppose that A is one of Dy, E7,Eg. Then v = 717" with n = %,
and v belongs to G if, and only if, there is an integer r such that 7!=" = (™))", which
is equivalent to saying that n — 1 = —myr since 7 has infinite order. Then A is weakly
symmetric in this case if, and only if, m divides n — 1.
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Suppose now that ¢ = 2 and A # Ag,. Then G =< p7™ > and, except when A = Do,
we have that v = pr!™", where n = . Assume that A # Dy,. Then v is in G if, and only
if, there is an integer r such that p7'=" = (p7™)". Note that then r is necessarily odd. If
follows that A is weakly symmetric if, and only if, m divides n — 1 and the quotient ”W_l
is an odd number. But the condition that % be odd is superfluous when A = Dy, 1 or
Eg because n is even in both cases.

Consider now the case in which (A,t) = (Dy,,2). Then v = 717", where n = % =
2r — 1. Then v is in G if, and only if, there is an integer s such that 717" = (p7™)%. This
forces s to be even. We then get that A is weakly symmetric if, and only if, m divides
n — 1 and the quotient ”7_1 is even.

Finally, let us consider the case when the extended type is (Ag,,m,2). In this case
p? = 7 Vand v = pr!™. Then v is in G if, and only if, there is an integer r such
that pr'~" = (pr™)". This forces r = 2s 4+ 1 to be odd, and then pr—stm(zs+1) —
(p7™)25+L = pr1=" Then A is weakly symmetric if, and only if, there is an integer s such
that (2m — 1)s = 1 — m — n. That is, if and only if 2m — 1 divides m + n — 1, which is
equivalent to saying that 2m — 1 divides 2(m +n—1) — (2m — 1) = 2n — 1. O

3.4 The period and the stable Calabi-Yau dimension of an
m-~fold mesh algebra

3.4.1 The minimal projective resolution of the regular bimodule

We start this section by pointing out that, for any m-fold mesh algebra A = B/G, we can
always guarantee the existence of a basis of its corresponding mesh algebra B inducing,
via the pushdown functor, a basis of A.

Lemma 3.4.1. Let A be a Dynkin quiver and B be its associated mesh algebra. For any
weakly admissible group of automorphisms G of ZA, there is a basis B of B consisting of
paths which is G-invariant (i.e. g(B) =B for all g € G).

Proof. The way of constructing the basis B is entirely analogous to the way in which a
G-invariant basis of Soc(B) was constructed (see the initial paragraphs of the proof of
Theorem 2.4.2). The task is then reduced to find, for each vertex (k,) in the chosen slice,
S or T, a basis of e(; ;) B consisting of paths. Since the existence of this basis is clear the
result follows. O

Suppose that (—,—) : B x B — K is a G-invariant graded Nakayama form for B.
Given a basis B as in last lemma, its (right) dual basis with respect to (—, —) will be the
basis B* = U(k;,z‘)e(ZA)o B*ey ki), where B*e, ;. ;), is the (right) dual basis of e ;B with
respect to the induced graded bilinear form (—,—) : e B x Be,g) — K. By the
graded condition of this bilinear form, B* consists of homogeneous elements. By the G-
invariance of (—, —) and B, we immediately get that B* is G-invariant. On what concerns
the minimal projective resolution of B as a bimodule, we will need to fix a basis B as given
by last lemma and use it and its dual basis to give the desired resolution.
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Proposition 3.4.2. Let A be a Dynkin quiver, let X C (ZA)1 be the set of arrows given
by Proposition 2.3.4, which we assume to be the empty set when (A, G) = (Dy, < p7™ >),
and let s : (ZA);y — Zgy be the associated signature map. Denote by 7' the graded
automorphism of B which acts as T on vertices and maps a ~» (—1)%@+5(7@)r(a), for
each a € ZA)1. Up to isomorphism, the initial part of the minimal graded projective
resolution of B as a B-bimodule is given by

Q25015 Q% B o,

where:

1. The graded projective B-bimodules are Q° = (D k,iye@a) Bek,i @ e, B)[0],
Q7' = (Pacza), Beia) @ e B)[—1] and Q7% = (D(r.p)e@a), Ber(r.i) @ e B)[—2];
2. u s the multiplication map;

3. § is the only homomorphism of B-bimodules such that, for all a € (ZA)q,

3(€i(a) @ €t(a)) = a B €4(a) — €i(a) @ G

4. R is the only homomorphism of B-bimodules such that, for all (k,i) € (ZA)o,

Rlereyy @) = > (=1 “@D(0(a) @ er ) + er(r,) @ al
t(a)=(k,i)

where the signature of a path is the sum of the signatures of its arrows.

Moreover, if for each (k,i) € (ZA)g we consider the homogeneous elements of Q2
given by

oy = D (DM@ @

J?Ee(k’i)lg
then, ®kiyeznoBE(y ) = Ker(R) = @iezno€(y ) B-

Proof. Let B’ be the original mesh algebra, i.e., KZA/I, where I is the ideal generated by
T(ki) = Dt(a)=(k.i) O (@)a, with (k, i) € ZAg. By classical argument for unital algebras, also
valid here (see, e.g., [11] or [25]), we know that the initial part of the minimal projective
resolution of B" as a bimodule is

_ R/ o 5/ !
p2 L p1 5, pl Ly B 0,
where:

1. The graded projective B'-bimodules are P = (B 11eza),B'ek.i) © €w.nB)[0],
P! = (@ac@a), B'eia)®era)B)[~1] and P2 = (B(k.i)e(za)y B'er (ki) @e (ki) B') [—2];

2. ' is the multiplication map;
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3. ¢ is the only homomorphism of B’-bimodules such that, for all a € (ZA)4,
&' (€i(a) @ €x(a)) = @ ® €y(q) — €i(a) @ G;
4. R’ is the only homomorphism of B’-bimodules such that, for all (ki) € (ZA)y,

R(erhi) @ em)) = Z (0(a) @ ez + ergriy @ a)
t(a)=(k,3)

Consider now the canonical algebra isomorphism ¢ = ¢~ : KZA =K ZA, given in
Proposition 2.3.4, and denote by h the induced isomorphism of graded algebras B =B
and by f its inverse. We put B’ = h(B), where B is the G-invariant basis of B given
by the previous lemma. The mentioned classical arguments also show that the elements
Ehyi) = Zzee(k’i)B,(—1)deg($)7(:c) ® z*, with (k,i) € (ZA)y, are in Ker(R'). Note that
the argument which proves for unital algebras that the £ ;) generate Ker(R') cannot be
adapted in a straightforward way.

If (k,i),(m,j) € (ZA)o are any vertices then the induced map f ® f : Bleg ;) ®
e(m,j)B' — Be(i) ® € ;) B gives an isomorphism of (graded projective) B-bimodules
h(Ble(k,i) (%4 e(m,j)B,)h i) Be(m) & e(mJ)B. It follows that if y' : Ble(k,i) & e(mJ)B' —
B’ €(r.u) ®e(t,v)B’ is a morphism of graded projective B’-bimodules, then the corresponding
morphism of graded projective B-bimodules x : Be, ;@€ jyB — Be(, ) @€ ) B takes
a®@b~ (fo )X (fHa)® f~1(b))). From these considerations it easily follows that, up
to isomorphism, the initial part of the minimal projective resolution of B as a B-bimodule
is:

Q2 ot Qv B 0,
where:
1. The @ are as indicated in the statement
2. wu is the multiplication map;
3. ¢” is the only homomorphism of B-bimodules such that, for all a € (ZA)y,
8(€i(a) ® ex(a) = (—1)*(a @ eyay — €i(a) @ a);

4. R" is the only homomorphism of B-bimodules such that, for all (ki) € (ZA)oy,

R'(eriy ®eoy) = > (-1 Do(a) ® ey + (—1)"Dey i) @ al
t(a)=(k,i)

Let ¢ : @acza), Beia) ®€4(a) B —> Pacza), Bei(a) ® €4(a) B the only homomorphism of
B-bimodules mapping €;(,) ® €y(q) ~~ (=1)%@ €i(a) @ €y(a), for each a € (ZA);. Tt is clearly
an isomorphism and we have equalities § 0 ) = 6" and 1) o R” = R. Then
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0201 200 M B,

is also the initial part of the minimal projective resolution of B as a B-bimodule and
we have L := Ker(R) = Ker(R"). Moreover from the equalities f(7(z)) = 7/(f(z)) and
f(z*) = f(x)*, for all z € B, and the fact that f(B’) = B we immediately get that
fgk;,z‘) = ) = Zyee(k’%(—1)deg(y)7’(y) ® y*. Therefore the {E,w.) are elements of L.

If S(n,j) = Be(m,j)/J (B)e(m,j) is the simple graded left module concentrated in degree
zero associated to the vertex (m,j), then the induced sequence

Q72 XB S(m,]) @ Qil @B S(Tﬂ,]) @) QO ®B S(mJ) — S(mvj) —0

is the initial part of the minimal projective resolution of S, ;). It is easy to see that the
pushdown functor F) : B — Gr — A — Gr preserves and reflects simple objects When
applied to the last resolution, we then get the minimal projective resolution of the simple
A-module S|, jy, where A is viewed as the orbit category B/G (see Corollary 1.4.2) and
where [(mn, j)] denotes the G-orbit of (m,j). But we know that Q3 (S|, ;) is a simple
A-module (see, e.g., [25]). It follows that Q% (S ;) is a graded simple left B-module.
But we have an isomorphism Q72 ®p Sim.,j) = Ber(m,)[—2] in B — Gr. By definition of
the Nakayama permutation, we have that Socg,(Be () = Sy-17(m,j)[—ca + 2]. Then
we have an isomorphism Q% (S, ;)) = Sy-1r(m,jy[—cal, for all (m,j) € ZAg. Considering
the decomposition B/J(B) = @ j)eza,S(m,j), We then get that L/LJ(B) = L ®p %
is isomorphic to B/J(B)[—ca] as a graded left B-module. Due to the fact that J(B) =
J9"(B) is nilpotent, we know that every left or right graded B-module has a projective
cover. By taking projective covers in B — Gr and bearing in mind that L is projective on
the left and on the right, we then get that Lp = Bp[—ca]. With a symmetric argument,
one also gets that gL = pB[—ca]. In particular, gL = pQ%.(B) (resp. L = Q%.(B)p)
decomposes as a direct sum of indecomposable projective graded B-modules, all of them
with multiplicity 1.

Note now that we have equalities CTV—I(k’i)S;_l(k7Z-) = fl’/_l(m.) = 51’1_1(1671.)6(,{714), for

all (k,i) € ZAg. This gives surjective homomorphisms Be,, -1 ;)[—cal % Bgl’/_l(k h

and e, ) B[—cal A 5;}_1(k7i)B of graded left and right B-modules given by right and
left multiplication by fz//—l(k,i)' But p and A do not vanish on Socg,(Ber, 1) and
Socg,«(e(k,i)B), which are simple graded modules, respectively. It follows that p and A are
injective and, hence, they are isomorphisms. We then get that N := &1 ;)eza, sz,/—l(k-,z') =
@(kﬂ-)ezAOBgék,i) is a graded submodule of gL isomorphic to pB = gL and, hence, it is
injective in B — G since this category is Frobenius. We then get that N is a direct
summand of gL which is isomorphic to gL. Since Endp_g(Be,q)) = K for each vertex
(k,7), Azumaya’s theorem applies (see [2][Theorem 12.6]) and we can conclude that L =
N = @(kyi)emOngk,i) for otherwise the decomposition of gL & B as a direct sum
of indecomposables would contain summands with multiplicity > 1. By a symmetric
argument, we get that L = @(kyi)eZAoggm)B.

O
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Proposition 3.4.3. Let A be a Dynkin quiver, let G be a weakly admissible group of auto-
morphism of B and fix a G-invariant graded Nakayama form and its associated Nakayama
automorphism n (see Theorem 2.4.2). Assume that X is the G-invariant set of arrows
given in Proposition 2.3.4, which we assume to be the emptyset when (A,G) = (Dyg, <
pt"™ >) and with respect to which we calculate the signature of arrows. Finally, let k and
¥ be the graded automorphisms of B which fix the vertices and act on arrows as:

1. k(a) = —a

2. 9(a) = (~1) @)si@g,

for all a € (ZA);1. Let us consider = rkonor Lo, for any (A,G), or u=nor 1o
whenever (A, G) # (Agy, < pt™ >). Then pog=gopu, for all g € G, and there ezists an
isomorphism of graded B-bimodules Q%.(B) = ,B1[—cal.

~Y

Proof. We first put 4 = kono7 ! o4 in all the cases and will prove that Q%.(B)
uwBi]—cal, for any choice of (A, G). At the end, we will see that x can be 'deleted’ when
(A,G) # (Agn,< pt™ >). Note that, for any of the choices of the set X, the sum
s(c™(a))+s(o(a)) +s(77(a)) + s(a) in Zsg is constant when a varies on the set of arrows
ending at a given vertex (k,7) € (ZA)p. This implies that ¢ either preserves the relation
2 a):(kvi)(—1)5("(“)“)0(a)a or multiplies it by —1. Then ¢ is a well-defined automorphism
of B. Moreover, the G-invariant condition of the set of arrows X implies that the sum
s(t71(a)) + s(a) in Zg is G-invariant. This shows that ¥ o g = godJ, for all g € G. This
implies that po g = g o u since we have ko g =gok, for all g € G.

All throughout the rest of the proof, a G-invariant basis B of B consisting of paths
in ZA is fixed, with respect to which the gék,i) are calculated. We shall prove that
af;_l(t(a)) = 5;—1(1'@))“(“)’ for all a € (ZA);. Once this is proved, one easily shows
by induction on deg(b) that if b € U(k,i),(m,j)e(ZA)o €(k,iyBe(m,j) is a homogeneous ele-
ment with respect to the length grading, then the equality bf’T ) = f’T ~1(i(b)) (b)
holds. It follows from this that the assignment b ~» b¢/ “1(4(b)) extends to an isomor-

phism of B-bimodules 1B,,-1 =, L, which actually induces an isomorphism of graded
B-bimodules ,B;[—ca] = Q%.(B), when we view Q%.(B) as a graded sub-bimodule of

Q2 = (Qm.iye@n) Berki) @ ew,iB)[—2].
We have an equality:

ag;_l(t(a)) = Z$66771(t(a))8(—1)deg(z)a7./(x)  z*.
But we have /(77 1(a)) = (—1)50 " (@)+s(@) g 50 that
aT'(m) _ (—1)8(T_1(a))+5(a)7'/(7'_1(a))T’(:C) _ (—1)8(7_1(a))+8(a)7"(7'_1(a):c).

Note that we have 7~ !(a)r = D yce s(77Ha)z, y*)y from which we get the equality

(i(a))

aglfl(t(a)) - Zl‘eef—l(t(a))lg ZyEeT—l(i(a»B(_l)deg(gg)(_1)5”71(&)”8(&) (7'_1(@)33, y* )T (y)@x*
"
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On the other hand, a direct calculation shows that, for each a € (ZA)1, p(a) =
(—=1)tHs( @) +s(@) ( o 771)(a). Then we have another equality

& ian (@) = Lyee,_y i (CDIED (1) OO ) @ y* (0 771 (a).

But we have an equality

yimer (@) =YXoee 5@y om @)7" =0e. ,,  slay’n(rH(a)e" =
ZZEeT_l(t(a))B(T—l(a),xy*)x* = Zmeef_l(t(a))s(fl(a)"’“ay*)x*

using that (—,—) is a graded Nakayama form and that 7 is its associated Nakayama
automorphism. We then get

1 (i(ap @) =
ZyeeT_l(i(a))B, ZmEGT_I(t(a))B,(—1)deg(y)(_1)5(7*1(a))+5(a)+1 (T_l(a):c, y*)T'(y) ® z*
(I

Bearing in mind that deg(y) = deg(7!(a)z) = deg(z) + 1 whenever (77 !(a)z, y*) # 0 we
readily see that the second members of the equalities (!) and (!!) are equal. We then get
ag;,l(t(a)) = 5;,1(i(a))u(a), as desired.

Finally, suppose that (A, G) # (Ag,, < pr™ >) we put ¢/ := no7 o1 and we
shall define an isomorphism of bimodules ¢ : /By = uB1. To do that, note that it is
always possible to choose a map A : (ZA)y — K*, taking values in {—1,1}, such that
Ai(a) = —Aya), for all @ € (ZA)1 and Ao gza, = A, for all g € G. Indeed, when A # D, 1,
we define A(k,i) = (—1)* for each (k,i) € (ZA)g. When A = D,, 11, we put A(k,i) = (—1)°,
when 7 # 0, and A\(k,0) = —1. With this map at hand, the map ¢ : B — B taking
b ~ Ajp)b, for any homogeneous element b € U(k,i),(m,j)e(ZA)O €(k,i)B€(m.j), defines the
desired isomorphism 1 : By = uB1. It is clearly an isomorphism of right B-modules
and the verification that it is also a morphism of left B-modules reduces to check that
¥(p'(a)b) = p(a)ip(b), for all homogeneous elements a,b € U, 1) (m.j)e@za), €(k.i) Bem.j)-
We use the fact that Ay, = (—1)deg(a))\i(a) and p(a) = (—1)%8@ 1/ (q), for any such a.
Assuming that v(t(a)) = i(b), which is the only case that we need to consider, we get:

V(' (a)b) = (a)b = (- 1)deg A(tan i (@)b = (=1)98@ N 1/ (a)b =
[( 1)deg D! ()] - Nigpyb] = pla)p(b),

and the proof is finished. O

Remark 3.4.4. Note that, except when (A, G) = (Ag,_1, p7"™), the automorphism ¥ of
last proposition is the identity since X = 7(X)

Crucial for our goals is that what has been done in the last two propositions is G-
invariant’. As a consequence, we obtain the aforementioned identification of the third

Syzygy-



3.4. The period and the stable Calabi-Yau dimension of an m-fold mesh algebra 63

Corollary 3.4.5. Let A be a Dynkin quiver, B the corresponding mesh algebra, G a
weakly admissible group of automorphisms of ZA and let A = B/G be the associated m-
fold mesh algebra. If v is the graded automorphism of B of the previous proposition and
i A — A is the induced graded automorphism of A, then there is an isomorphism of
graded A-bimodules Q3. (A) = ;Ai[—ca], where ca is the Cozeter number.

Proof. We fix a G-invariant basis of B as in Lemma 3.4.1 and a G-invariant graded
Nakayama form (—,—) : B x B — K. If we interpret A = B/G as the orbit cate-
gory and [z] denotes the G-orbit of x, for each z € U(k,i),(m,j) e(k,i)Be(m,j), note that
the G-orbits of elements of B form a basis B of A consisting of homogeneous elements in
U[(k,i)},[(m,j)]e@Ao/G e[(k,i)]Ae[(m,jH- Moreover, if B* is the rightﬁdual basis of B with respect
(—,—), then B* = {[z*] : [z] € B} is the right dual basis of B with respect to the graded
Nakayama form < —, — >: A x A — K induced from (—, —) (see Proposition 1.4.3 and
its proof).

By taking into account the change of presentation of A and [25][Section 4], we see that
the initial part of the minimal projective resolution of A as a graded A-bimodule is of the
form

p2 Al pt L, po A,

where P~2 = O[(k,i)| €200/ GCr (ki) Ae[(k,i)) and we have equalities @[(k,i)}€ZAo/GAf_f(k,i)} =

Ker(R) = ®(k,i)eza0/G8|x, s Where (g o = Z[x}ee[(k,i)]g(—l)deg(z)[T’(ac)] ® [z*], for
each [(k,1)] € ZAy/G.

On the other hand, since pog = go u, for all g € G, we get an induced graded
automorphism i : A — A which maps [z] ~ [u(z)]. In case p = kono 77! od,
we get the equality [b]ng,(i(b))} = ng_l 0] a([b]), for each homogeneous element [b] €
U[(k,i)],[(m,j)]eZAo/G €[(k,i)) A€[(m,j)] from the corresponding equality in the proof of the pre-
vious proposition, just by replacing the homogeneous elements of B by their orbits. It then

follows that the assignment [b] ~ [b]{fT/(i(b))] gives an isomorphism of graded A-bimodules
Qie(/\) = 1Ap71[_0A] = *Al[—CA].

When (A,G) # (Ag,, < p™ >) and we take u’ = no7 ! o1, we have seen in
the proof of the last proposition that there is a map A : ZAg — K™ such that Ao

gzn, = A, for all g € G, and such that p(a) = )\Z(i))\t(a),u’(a), for all homogeneous

elements a € Uy ;) (m.j) €(k.i) Be( We then get from Lemma 3.2.1 that g~ 'f’ is an

m.j):
inner automorphism of A, so that also Q3.(A) = »A;.
U

3.4.2 Inner and stably inner automorphisms

~Y

Recall from [51] that an automorphism o of A is stably inner if the functor ,(—) =
oA ®y — ¢ A —mod — A — mod is naturally isomorphic to the identity functor. In
particular, each inner automorphism is stably inner.

Lemma 3.4.6. Let A = KQ/I be a finite dimensional self-injective algebra, where I is
a homogeneous ideal of KQ with respect to the grading by path length, and consider the
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induced grading on A. Suppose that the Loewy length of A is greater or equal than 4. A
graded automorphism of A is inner if, and only if, it is stably inner.

Proof. Let ¢ be a stably inner graded automorphism of A. Let [ be the Loewy length of
A If J = J(A) = J9"(A) is the Jacobson radical and Soc™(A) = Socg,(A) is the n-socle
of A (ie. Soc’(A) = 0 and Soc™"*(A)/Soc™(A) is the socle of A/Soc™(A), for all n > 0),
then we have J" = Soc!"(A) = @r>ng, for all n > 0.

We then have Soc?(A) C J2 since I > 4. By Corollary 2.11 of [51], we have a map
A Qo — K™ such that (a) =5 Ayaya € J(A)?, foralla € Q1. If we define  : A — A
as in the proof of Lemma 3.2.1, we get that y) is an inner automorphism of A such that
(poxy')(a) —a € J(A)? for all a € Q1. But pox,' is a graded automorphism since
so are ¢ and xy. It then follows that (¢ o x))(a) = a, for all a € @1, which implies that
poxx=1dp, and so ¢ = x) is inner. O

Recall that A is a Nakayama algebra if each left or right indecomposable projective
A-module is uniserial. We will need the following properties of self-injective algebras of
Loewy length 2.

Proposition 3.4.7. Let A = KQ/KQ>2 be a self-injective algebra such that J(A)* =0
and suppose that A does not have any semisimple summand as an algebra. The following
assertions hold:

1. A is a Nakayama algebra and QQ is a disjoint union of oriented cycles, with relations
all the paths of length 2.

2. A is a finite direct product of m-fold mesh algebras of Dynkin graph A = A,.
3. A graded automorphism ¢ of A is stably inner if, and only if, it fixes the vertices.

4. @ 1is inner if, and only if, it fizes the vertices and if ¢(a) = x(a)a, for each arrow
a € Q1, with x(a) € K*, then the induced map x : Q1 — K* is an acyclic character

of Q.

5. If the quiver Q is connected with n vertices (whence an oriented cycle with Qo = Zy,),
then Qpe(A) is isomorphic to the A-bimodule ;A1, where i is the automorphism
acting on vertices as the n-cycle (12...n) and on arrows as fi(a;) = —a;y1, where
a; 1 — 1+ 1 for each i € Z,.

Proof. Assertion 1 is folklore. But A(Qm) = ZAy/ < 7™ > is the connected Nakayama
algebra of Loewy length 2 with 2m vertices while }Lgm) = ZAs/ < pt™ > is the one with
2m — 1 vertices. Then assertion 2 is clear.

The only indecomposable objects in the stable category A —mod are the simple modu-
les, all of which have endomorphism algebra isomorphic to K. It follows that each additive
self-equivalence F' : A — mod iy - mod such that F(S) = S, for each simple module
S, is naturally isomorphic to the identity. Since each automorphism ¢ of A induces the
self-equivalence F' = ,(—), assertion 3 is clear.
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Assertion 4 follows directly from [45][Theorem 12], taking into account that the only
inner graded automorphism induced by an element 1 — z, with x € J, is the identity (see
the proof of Lemma 3.2.1).

Suppose now that @ is connected and has n vertices, so that A is an m-fold mesh
algebra of type Agm), and then n = 2m, or ]L(lm), and then n = 2m — 1. By the explicit
definition of the minimal projective resolution of A as a bimodule (see [25]), we get that
Qpe(A) is generated as a A-bimodule by the elements z; = a; ® €;41 — €; ® a; (i € Zy). But
we have @ez, Ax; = Qpe(A) = Diez, viA. Moreover, if i is the automorphism mentioned
in assertion 5 and x = ), x;, then we have yx = z/i(y), whenever y is either a vertex or
an arrow. It then follows that the assignment y ~~ yx gives an isomorphism of A-bimodules
1Az 5 Qpe(A).

O

3.4.3 The period of an m-fold mesh algebra

This section is devoted to compute the Q-period of an m-fold mesh algebra A. That is, the
smallest of the positive integers r such that Q}.(A) is isomorphic to A as a A-bimodule.
We need to separate the case of Loewy length 2 from the rest.

Proposition 3.4.8. Let A be a connected self-injective algebra of Loewy length 2. The
following assertions hold:

1. If char(K) =2 or A = Aém), i.e. |Qo| is even, then the period of A is |Qo].
2. If char(K) # 2 and A = ]L(lm), i.e. |Qo| is odd, then the period of A is 2|Qo].

Proof. By Proposition 3.4.7, we know that Qac(A) = ;A;, where fi is the automorphism
which acts on vertices as the n-cycle (12...n) and on arrows by a; ~ —a;4+1. The period
of A is then the smallest of the integers » > 0 such that g” is inner. But since inner
automorphisms fix the vertices each such r is multiple of n = |Qp|. When char(K) = 2 or
n is even, we have that p" fixes the vertices an maps a; ~ (—1)"a; = a;, for each i € Q.
Then " = idp and the period of A is n. However, when char(K) # 2 and n is odd, we
have that g™ is not inner, because the map @ Xy K* which takes constant value —1 is
not an acyclic character of @, but i>® = idy. It follows that the period of A is 2n in this
case. U

We will need the following;:

Lemma 3.4.9. Let A = B/G be an m-fold mesh algebra, with A # Ay, Ay, and let r >0
be an integer. The following assertions hold:

1. dim(e(A)) = dim(A) if, and only if, r € 37Z.

2. If n is a G-invariant graded Nakayama automorphism of B, then fo7 lon~lo7 is
an inner automorphism of A.
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Proof. 1) The if’ part follows from the fact that Q3. (A) = zA1, and hence, Q3. (A) = 4 Ay,
as A-bimodules. For the ’only if’ part, note that we have the following formulas for the
dimensions of the syzygies:

L dim(Q}(A)) = dim(DieqoAe; ® e;A) — dim(A) = >, dim(Ae;)(dim(e;A) — 1),
whenever r =1 (mod 3)

2. dim(Q)(A)) = dim(BieqoAer) @eiA) —dim(zA1) = 320, dim(Aer ) (dim(e;A) —
1) =3 icq, dim(Ae;)(dim(e;A) — 1), whenever 7 =2 (mod 3)

For r = 1,2 (mod 3) the equality dim(Q}.(A)) = dim(A) can occur if, and only if,
dim(e;A) = 2, for each ¢ € Qp. But this can only happen when the Loewy length is
2, which is discarded (see Proposition 3.4.7).

2) There is no loss of generality in assuming that 7 is the G-invariant graded Nakayama
automorphism of B given by Theorem 2.4.2. On the other hand, since v is either 7" or
p1", for some integer r, we know that v og = gowv, for all ¢ € G. Moreover, there is a
unique map v : ZA; — K* such that x(a) = (=1)“@aq, for all a € ZA;, and = v o x.
It then follows that xy o g = g o x or, equivalently, u(a?) = u(a), for all g € G.

Assertion 2 states that the images of 77 and 7~! by the canonical projection Aut(A) —

Out(A) = /?nl;t((//\x)) commute. Proposition 3.2.2 tells us that 77 and 7 have the same image
by this projection, whenever char(K) = 2, A = A, or m + t is odd, where (A, m,t) is
the extended type of A. So in these cases the assertion follows immediately since v and 7
commute.

In order to prove the assertion in the remaining cases, it is enough to prove that yo7~
and 7! o ¥ are equal, up to composition by an inner automorphism of A, because v and
71 commute. Note that n(a) = (v o x)(a) = (=1)“@v(a), for each a € (ZA);, and
hence the exponents u(a) are those of Theorem 2.4.2. We now apply Lemma 3.2.1, with
f=xo7r tand h = 77! oy, using the fact that both automorphisms of B act as 7
on vertices. We have f(a) = (—1)* " (@)7=1(g) and h(a) = (—=1)“@71(a), for each

a € ZAy. If X : ZAg — K* is a map such that f(a) = )\i’(i))\t(a)h(a), for all a € ZA,

then we have that A\, = (—1)“(a)+“(771(a)))\i(a). When t = 1 or t = 3, we have that
u(a) = u(r71(a)), so that Ay = (e, for all a € ZA;. It follows that A is a constant
map and it clearly satisfies that Ao gjza, = A, for all g € G. So we assume that ¢ =2, m
is even, and also that A # A, in the sequel.

Consider first the case when A = D, y1. Directly from Theorem 2.4.2 we get the
formulas in Zs:

1

1. u(a) +u(r71)(a) =1+ 1 =0, whenever a : (k,i) — (k,i + 1) is an upward arrow;

2. u(a) +u(r71(a)) = 0+ 0 = 0, whenever a : (k,i) — (k+1,i — 1) is a downward
arrow, with k # —2, —1 (mod m), and u(a)+u(7~(a)) = 1, for any other downward
arrow.

3. If i € {0,1}, & : (k,2) — (k,i) and ¢ is the quotient of dividing k by m, then
u(g;) +u(r71(g)) is equal to:

(a) (q+14)+ (g+1i) =0, when k £ —1 (mod m),
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(b) (¢g+1i)+(¢g+1+4i) =1, when k = —1 (mod m) since ¢ + 1 is the quotient of
dividing £+ 1 by m

4. It i € {0,1}, € : (k,i) — (k+ 1,2) and g is the quotient of dividing k by m, then
u(el) + u(r71(g})) is equal to:

(a) (q+i+1)+(¢+i+1) =0, whenever k # —2,—1 (mod m);
(b) (¢+i+1)+(¢+1¢) =1, whenever k = —2 (mod m);

(c) (g+i)+(g+1+4+i+1) =0, whenever k = —1 (mod m) since g + 1 is the
quotient of dividing k + 1 by m.

We then get that if i € {2,3,...,n} then A1) = Ag,), when k # —2,—1 (mod m), and
A1) = —Akyi)» When k = —2,—1 (mod m). For i = 0,1 we have that A\, ;) = Ap.y)
since the formula for u(g;) +u(771(g;)) does not depend on i. Moreover, from the equality
Mit1) = A Aeen Aiey M) Ay and the equalities 3 and 4 in the above list it follows
A(k+1,i) = A(kyi)» Whenever ¢ = 0,1. We then get A\jrmi) = Apam,i) = A,s), for all
(k,i) € ZAo, which shows that Ao gjza, = A, for all g € G.

Let finally assume that A = Eg. The value u(a) is constant on the 7-orbit of the arrow
a whenever a € {a,’,0,0',¢}. Then u(a) + u(r=*(a)) = 0 in Zy for any of these arrows.
We easily derived from this that A1) = )\(k,?, whenever ¢ £ 0,3. On the other hand, if
we take e’ : (k,0) — (k+1,3), then u(¢)+u(r~"(¢)) =0, when k # —2,—1 (mod m), and
u(e")+u(r71(e')) =1, when k = —2 or—1 (mod m). This together with the formula for ¢
imply that, for i = 0,3, the equality A(;41,4) = A(x,i) holds whenever k # —2, —1 (mod m),
and A(x41,7) = —A(r,;) otherwise. On the other hand, we have that u(y) + u(t7(y)) is
equal to ¢+ ¢ =0, when k # —1 (mod m), and is equal to ¢+ (¢ + 1) = 1, when k = —1
(mod m). We also have that u(8') + u(r=(8")) is equal to (¢ + 1) + (¢ + 1) = 0, when
k # —1 (mod m), and is equal to (¢ + 1)+ (¢+ 1+ 1) = 1, when £ = —1 (mod m). It
follows that there is a exponent e(k) € {0,1} such that Ay, 4 = (—1)5(’“))\(;@3) = Akt1,2)>
which shows that Ay 4) = A,1,4)- We easily derive from this and the earlier formulas that
)‘p(k,i) = )‘(k,i)’ for all (k,7) € ZAg. We then get that )‘pfr*m(k;,z‘) = )‘(ker,i) = )‘(k,i)a for all
(k,i) € ZAg, so that Ao giza, = A, for all g € G. O

By the previous lemma, we know that dim(Q}.(A)) # dim(A) whenever r ¢ 3Z.
Due to the existence of an automorphism fi of A satisfying that Q3.(A) =5 Ay as A-
bimodules (see Proposition 3.4.3), in order to calculate the (2-)period of A, we just need
to control the positive integers r such that " is inner. For the sake of simplicity, we shall
divide the problem into two steps. We begin by identifying the smallest u € N such that
(7 o7 H% = Idy , that is, the smallest u such that ji* acts as the identity on vertices.
This is the content of the next result.

Lemma 3.4.10. Let A = ZA/ < ¢ > be an m-fold mesh algebra of extended type (A, m,t)
and let us put v := min{r € Z* | (v o 771)" = Idp}. The following assertions hold:

1. Ift=1 then:

(a) u= gcdch)’ whenever A is A,., Do,_1 or Eg;
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(b) u= W, whenever A is Do, E7 or Eg.
)72

2. If t =2 then:

(a) u= gcd2771277:1+)’ whenever A is Aoy, 1, Dop_1 or Eg;

(b) u= m, whenever A is Dy, ;

2m—1 —
(c) u= ged@m—T,an¥1) when A= Ay

3. Ift =3 (hence A =ZDy/ < pt™ >), then u = m.

Proof. The argument that we did for v in the first paragraph of the proof of Theorem
3.3.1 is also valid for (v o77!)". Then (7 o 7~1)" = idy if, and only if, (vo 771" € G.
When A is Ag,—1, Dy, with n 4+ 1 odd, or Eg, the Nakayama permutation is v =
pr'™", where n = %. Then (v7~')" = p’r~™. If t = 1 this automorphism is in G
if, and only if, » = 2/ is even and 7" = 772" ig equal to (T"™)V = 7™ for some
v € Z. This happens exactly when 2nr’ € mZ and the smallest 7’ satisfying this is
u = m. We then get that v = 2u’ = gcd(277r7,2n) = gcdfgﬁ%). Suppose that t = 2.
Then (v771)" = p"77™ is in G =< pr™ > if, and only if, there is v € Z such that
v =r (mod 2) and —nr = mv. This is equivalent to saying that there is k € Z such that
—nr = m(r + 2k) or, equivalently, that (m + n)r € 2mZ. The smallest r satisfying this
2m 2m

property is u = Ed @) = ged@mmt )" This proves 1.a, except for A = Ao, and
2.a.
" wheren = <&

Suppose next that A is D,,41, with n+1 even, E; or Eg. Thenv =7 2,
so that (v7~1)" = 77", When t = 1, this automorphism is in G =< 7™ > if, and only if,
nr € m#Z. The smallest r satisfying this property is u = o dZ’Ln,n) p ( x5 On the other
hand, if t = 2 then 77" is in G =< p7™ > if, and only if, there is v = 2v € 27 such that

_ _ / . . . . _ 2 _ 2
—nr = mov = 2mv’. The smallest r satisfying this property is u = = d(;fn ) = ed (Q:n”’%
This proves 1.b and 2.b.

Let now take A = As,. Then v = pr!™" so that (v7~1)" = p'r7=™. Ift = 1,
this automorphism is in G =< 7™ > if, and only if, » = 2r’ is even and there exists
v € Z such that pz’"/szT”/ = 7= (@D ig equal to 7. This is equivalent to saying that

(2

1—-

(2n 4+ 1)1 € mZ. The smallest ' satisfying this property is v’ = Wm%ﬂ-l)' We then
get u = — d(rign ) T w d(QTZL,cA)’ which completes 1.a. When ¢t = 2, the automorphism

Pt is in G =< pr™ > if, and only if, there exists v € Z such that v = r (mod 2)
and p"77"" = pU7™". This is in turn equivalent to the existence of an integer k such that

prTT = pr 2k m(r+2k) _ = p'rFrmr42mk - That is, if and only if —nr = (2m — 1)k + mr.

This happens exactly when (m +n)r € (2m — 1)Z. The smallest r satisfying this property

128 uhzlw. But we have that ged(m +mn,2m —1) = ged(2m — 1,2n 4+ 1), so that
.c holds.

Finally, if ¢ = 3, and hence A = Dy, then v = 772, so that (v77!)" = 773 is in
G =< pr™ > if, and only if, there is v = 3v’ € 3Z such that —3r = 3mv’. This happens
exactly when r € mZ, which implies that u = m in this case. O
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Lemma 3.4.11. Let A be an m-fold algebra of extended type (A,,m,2) and let T be the
subgroup of Z consisting of the integers s such that i* and (v o 7=1) are equal, up to
composition by an inner automorphism of A. Then T = 27, when char(K) # 2, and
T = Z, when char(K) = 2.

Proof. We fix s > 0 all throughout the proof and will use Lemma 3.2.1, with f = u* and
h=(vor 1)s.

Suppose first that A = Ag, and let A : ZAy — K* be any map such that p®(a) =
)\;(i))\t(a)(y o7 1)*%(a). In this case 4 = k ov o7~ !, where  is as in Proposition 3.4.3
(see Remark 3.4.4), and this implies that p*(a) = (=1)*(v o 771)%(a), for each a € ZA;.
We then get that )‘icll))‘t(a) = (=1)°. It follows that A ;) = (=1)*A(j), whenever i Z j
(HlOd 2), and that )\’T(k‘,i) = )‘(k?-f—l,i) = (_1)28)‘(k,i) = )‘(k,i)’ for all (k‘,’L) S ZAO We then
get that Aprm i) = Apth—m,i) = Ah—mti-n2n+1—i) = (=1 Ak—mtion,i) = (=1)* A5y As
a consequence the equality A o gjza, = A holds, for all g € G =< pr™ >, if and only if
s € 27Z. That is, we have T' = 2Z in this case.

Suppose next that A = Ay, 1, wehaven = v = pr!™" and p = nor o) = vor—lod =
poT ™od. We also have (o7 1)s = 150775 = (pr17")577% = p* o 77", Let us fix from
now on a map A : ZAyg — K* such that (p77"9)%(a) = )\i_(cll))\t(a)psT_”S(a).

We first consider the case when m is odd. By the choice of the set X which defines the
signature of the arrows (see Proposition 2.3.4), we know that s(p7(a)) = s(a), for each a €
(ZA1). On the other hand, we have an equality s(771(a)) + s(a) = s(772(a)) + s(77(a))
in Zy. These two facts imply that ¢ commute both with pr~! and 7=!. Therefore
we have p® = (pr™09)* = pSr7m59%. Tt follows that (—1)ss@+s @) psr—ns(g) =
(P’ 7% (a) = pi(a) = Ai_(i))\t(a)/)sf"s(a)v so that Ayq) = (—1)sls(@+s(r (@) Aia)s
for all @ € ZA;. If (k,i) € ZAy and a is any arrow such that i(a) = (k,7), then
Alk41,0) = (—1)5[5(“”5(771(“)”5(“71(a))+5(771"71(‘1))})\(k,i) = (=1)*A(x,i since, by the choice
of X, we have s(a) + s(771(a)) + s(c7(a)) + s(t7to71(a)) = 1, for any a € ZA;. More-
over, for each arrow a which is either upward in the 'north hemisphere’ or downward in the
'south hemisphere’, we have that s(a)+s(7!(a)) = 0, and this implies that A ) = Ak.q),
for all 7 > n, and A(p4jn—j) = A(kn), for each 0 < j < n. It follows that A, ) = Ax,),
for all (k,i) € ZAo. We then get that A -—m@i) = Akgm,i) = (—1)*" Ak5)- The equality
Ao gza, = A, for all g € G, holds in this case if, and only if, s is even. That is, when m
is odd, we have T = 27Z.

Suppose now that m is even. Due to the choice of the set of arrows X which defines
the signature map (see Proposition 2.3.4), if Y denotes the set of arrows a such that
i(a) # (k,n) and t(a) # (k,n), for all k € Z, then we know that s(a) = s(772(a)) and
s(a) = s(p(a)), for all @ € Y. As a consequence, for all a € Y, we have equalities

(! 0 )(a) = (~1) @@ g) — (1) @@ ) — (90 7 ) a);
(po9)(a) = (=107 @) pla) = (=10 p(a) = (9 0 p)(a),

It then follows that
MS(G) _ (ps,]_—nsqgs)(a) _ (_1)s[s(a)+s(7'*1(a))] (psT—nS(a)) _ (_1)s[s(a)+s(fr*1(a))} (I/OT_l)S(a),

for each a € Y. We then get that, for all a € Y, Ay = (—1)5[5(“)“(771(“))})\i(a).
If (k,i) is a vertex, with i« # n, and a € Y is any arrow having (k,i) as its origin,
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then A(k;—f—l,z‘) — (_1)s[s(a)+s(7*1(a))+s(a*1(a))—f—s(T*lJ*l(a))])\(k’i) — (_1)5)‘(k,i) since 5(0,) +
s(77Ya)) + s(07(a)) + s(t7to1(a)) = 1 in Zy, for any arrow a € Y.

In order to deal with the vertices (k,n), it is convenient to introduce some terminology.
The k-th node will consist of the vertex (k,n) and the four arrows having it as origin or
terminus. As usual, we will denote by ¢ and r the quotient and rest of dividing k& by m.
Note that if £ is odd, then none of the four arrows in the node is in X. On the contrary,
if k is even either the two upward arrows are in X or the two downward ones are in X,
and exactly one of these two possibilities occurs. One then sees that if a has origin (k,n),
then s(a) + s(t7(a)) + s(c71(a)) + s(t7to71(a)) = 1, unless k = —2 (mod m), a case in
which s(a) +s(77(a)) +s(c"1(a)) + s(r7 1o~ 1(a)) = 0. This implies that if we take s = 1
and A is the associated map in this case, then A1) = —A(k,n), When k # —2 (mod m),
and A(x11,n) = Ax,n) otherwise. It follows then that Ayrmxn) = Armkn) = Ak—mm) =
(—1)’”*1)\(;@”) = —A(k,n) and hence 1 is not in the subgroup 7'

If s = 2 and a is again an arrow in the k-th node, it is convenient to rewrite the formula
for 9(a) as follows:

i) ¥(a) = (—1)9T1q, if a is upward and k Z —1 (mod m) or a is downward and k = —1
(mod m).

ii) ¥(a) = (—1)%a, if a is upward and k = —1 (mod m) or a is downward and k #Z —1
(mod m).

From these equalities we then get:

iii) (pr"9)(a) = (—1)7*(p77")(a), if a is upward and k #Z —1 (mod m) or a is down-
ward and k = —1 (mod m).

iv) (pr7"9)(a) = (—=1)4(p7~")(a), if a is upward and k = —1 (mod m) or a is downward
and k Z —1 (mod m).

In order to calculate the (p7—"9)2(a), for any integer r, we will denote by ¢(r) the
quotient of dividing r by m. We also put ¢(r) = 0, when r # —1 (mod m), and ¢(r) = 1,
when 7 = —1 (mod m). Direct calculation, using the formulas iii) and iv) above, gives
that #2(a) = (pr"9)2(a) = (—1)°@ (pr)%(a) = (~1)°®) (i o 7-1)2(a), where:

v) e(a) = (¢(k)+1)+q(k+n)+c(k)+c(k+n), when a is upward and k # —1 (mod m)
or a is downward and k = —1 (mod m).

vi) e(a) = (q(k) + (¢(k +n) + 1) + ¢(k) + ¢(k + n), when a is downward and k # —1
(mod m) or a is upward and k = —1 (mod m).

Therefore the exponent e(a) only depends on k and we put e(k) = e(a). We then get that
(pr"0)2(a) = (—1)c®)7=27(q), for all arrows a in the k-th node. If A : ZAg — K* is
the associated map for s = 2, we get that A1) = (—1)e(k)+e(k+1)A(k7n), for each k € Z.
Note that e(k) +e(k+1) = [¢(k) +qglk+n)+qk+1)+q(k+1+n)]+[c(k) +c(k+n)+
c(k +1) + c(k + 1+ n)] + 2 and that, for each integer r, one has > oo, c(r +j) = L.
It follows that Y i le(k + §) + ek + 5+ 1)] = Yoc;omla(k +§) + q(k + 1+ )] +
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>o<jemld(k + 5+ n) +q(k+1+j+n)] in Zy. But we always have ¢(r) = ¢(r + 1),
unless 7 = —1 (mod m), a case in which g(r + 1) = ¢q(r) + 1. It follows that the equality
ZO§j<m[Q(k+j) +qk+1+5)]=1= Zogj<m[Q(k3+j+”) +q(k+1+j+n)], and hence
also 3 o< iople(k+7) +e(k+j+1)] =0, is true in Zy. As a consequence, we have that
Apr=m(km) = Mhtmon) = (—1)20ﬁj<m[e(kﬂ)”(l‘;ﬂ“)})\(hm = Akn)- It follows that A is a
constant map, so that the equality Ao gza, = A holds, for all g € G. Therefore s =2 is in
the subgroup T

[l

We are now ready to describe explicitly the period of any m-fold mesh algebra.

Theorem 3.4.12. Let A be an m-fold mesh algebra of extended type (A, m,t), where
A # Ay, Ay, let m = w(A) denote the period of A and, for each positive integer k, denote
by Oo(k) the biggest of the natural numbers r such that 2" divides k. If char(K) = 2 then
m = 3u, where u is the positive integer of Lemma 3.4.10. When char(K) # 2, the period
of A is given as follows:

1. If t =1 then:
(a) When A is A, Do, or Eg, the period is m = %.
(b) When A is Do, E7 or Eg, the period is m = ﬁ, when m is even, and
)
™= W"f%), when m is odd.
2. If t =2 then:
(a) When A is Agy_1, Do,y or Eg, the period is WT@JF%A), when Oz(m) #
02(%), and m = ——2— otherwise.

gcd(2m,m+%)
(b) When A = Dy,, the period is

6m — 6m
QCd(Qm’CTA) ged(2m,2r—1) °

(c) When A = Ag,, i.e. A= Lﬁ{”), the period is m = %

3. If t = 3 then m = 3m, when m is even, and 6m, when m is odd.

Proof. Let u > 0 be the integer of Lemma 3.4.10. Then uZ consists of the integers r
such that " = 7", or equivalently (7 o 7~!)" = idy, as automorphisms of A. If 7 is the
period of A, then, by Lemma 3.4.9, we know that m = 3v, where v is the smallest of the
positive integers s such that p® € Inn(A). These integers s obviously form a subgroup
S = S(A,m,t) of Z, and then vZ = S. This subgroup is the intersection of uZ with
the subgroup 7T consisting of the integers r such that " and (7 o 771)" are equal, up to
composition by an inner automorphism of A. When (A, m,t) = (A,,m,2), by Lemma
3.4.11, we get that vZ = wZ N 2Z, when char(K) # 2, and vZ = uZ N Z = uZ, when
char(K) = 2. This automatically gives 2.c and the part of characteristic 2 in this case.
We claim that it also gives the formula in 2.a for A = As,_1. Indeed, by Lemma 3.4.10,

we have u = WM in this case. But the biggest power of 2 which divides 2m is a
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divisor of ged(2m, m +n) if, and only if, O2(m) = Oz(n). Then the equality 2.a for Ag,_1
follows automatically.

When (A, m,t) # (A,,m,2), by Proposition 3.4.3 and the subsequent remark, we can
take i = o7~ !. Then condition 2 of Lemma 3.4.9 implies that S consists of the integers
s such that 77° and 7° are equal, up to composition by an inner automorphism of A. We
then get that S = uZ N H(A,m,t) (see Proposition 3.2.2). Therefore Proposition 3.2.2
tells us that v = u, when either H(A,m,t) = Z or u is even, and v = 2u otherwise. We
next check that this fact together with Proposition 3.2.2 give all the remaining formulas
of the theorem and, obviously, it completes the assertion for characteristic 2.

For the quivers A in 1.a we always have that H(A, m,t) = Z when A = A,, and also
in the other two cases when m is even. But if m is odd then automatically u = %
is even.

For the quivers in 1.b, we always have that n = % is odd. Therefore u is even exactly
when m is even.

For the quivers in 2.a which are not Ag,_1, we have that H (A, m,t) = Z exactly when
m is odd. But < is even, so that Oz(m) # O2(%) in that case. As we did above in the

_ : _ 2m : :
case (A,m,t) = (Ag,—1,m,2), in case m even, we have that u = god@mam B is odd if,

and only if, Oz(m) = O2(%). Then the formula in 2.a is true also for the cases different
from Agnfl.
For 2.b, we have that <& is odd, which implies that u is always even, and then the
formula in 2.b is true.
Finally, when ¢ = 3, we have that H(A,m,t) = Z, exactly when m is even, and then
the formula in 3) is automatic.
O

3.4.4 The stable Calabi-Yau dimension of an m-fold mesh algebra

In case A is a self-injective algebra, the Auslander formula (see [8], Chapter IV, Section
4) says that one has a natural isomorphism DHom (X, —) = Ext}(—,7X), where 7 :5
mod —+4 mod is the Auslander-Reiten (AR) translation. Moreover, 7 = Q2N where
N = DHomp(—,A) = D(A) ®p — : pmod — amod is the Nakayama functor (see [8]).
Due to the fact that Ext}(—,Y) and Hom, (Q(—),Y) are naturally isomorphic functors
amod — pmod we have that DHom, (X, —) = Hom,(—, QNV(X)). Since ¥ = Q7! is
the translation functor of ymod as a triangulated category we conclude that X" = Q™"
is a Serre functor for ymod if, and only if, Hom, (—, QN (X)) = Hom, (—, 2 "(X)). By
Yoneda’s Lemma, this is in turn equivalent to saying that A(X) = Q- "*+D(X), via
isomorphisms which are natural on X. Bearing in mind that "= D(A) ® — = ;1A ®p

~Y

— = ;-1(—) as shown in [28], we derive that the stable category ymod has CY-dimension
71 (-)
(equivalently, QTH = -(—)) as triangulated functors ymod — amod, where 7 is the
Nakayama automorphism of A. We shall say that A is stably Calabi- Yau when A — mod
is a Calabi-Yau triangulated category. The minimal number m mentioned above will be
then called the stable Calabi-Yau dimension of A and denoted CY — dim(A).

Due to the fact the functor Qﬁi\ : A —mod — A — mod is naturally isomorphic to the
functor Q4.(A) ®a —, for all integers d, a sufficient condition for A to be stably Calabi-

m if and only if m is the smallest natural number such that Q" ! =~ N =
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Yau is that Qfgl(A) = ;A as A-bimodules. An algebra satisfying this last condition is
called Calabi-Yau Frobenius in [35] and the minimal d satisfying this property is called
the Calabi- Yau Frobenius dimension of A. We will denote it here by CY F — dim(A). We
always have CY — dim(A) < CYF — dim(A), but, in general, it is not known if equality
holds. We discuss now this problem for m-fold mesh algebras.

Note that, by [51][Theorem 1.8], the functor Q5! : A — mod — A — mod is naturally
isomorphic to 5(—) : A—mod — A—mod if, and only if, Qf‘\jl(A) and 451 are isomorphic
A-bimodules, for some stably inner automorphism ¢ of A.

We are now able to calculate the stable and Frobenius Calabi-Yau dimension of self-
injective algebras of Loewy length 2.

Proposition 3.4.13. Let A be a connected self-injective algebra of Loewy length 2. Then
A is always a stably Calabi-Yau algebra and the following equalities hold:

1. If char(K) =2 or A = Agm), i.e. |Qo| is even, then CY —dim(A) = CY F —dim(A) =
0.

2. If char(K) # 2 and A = }Lgm), i.e., |Qo| odd, then CY — dim(A) =0 and CYF —
dim(A) =2m — 1 =|Qo|.

Proof. By Proposition 3.4.7, we know that Q]f;fl(A) is isomorphic to gr+1Ag, for each
k > 0. Then CY — dim(A) is the smallest of the natural numbers k such that gFt'qp—!
is stably inner, which is equivalent to saying that z**'7~! fixes the vertices. Similarly,
CYF — dim(A) is the smallest of the k such that p**'f~! is inner. Due to the fact
that A is an m-fold mesh algebra of type As, a (graded) Nakayama automorphism of
Ais v = prt7! = p (see Theorem 2.4.2 and Proposition 2.3.1). It follows that the
graded Nakayama automorphism 7 of A maps i ~» i + 1 and a; ~> a;11, when we identify
Qo = Zy,. Tt follows that 157! fixes the vertices and, hence, it is stably inner. This shows
that CY — dim(A) = 0.

More generally, i*+1'77! fixes the vertices if, and only if, i + k+1 =i+ 1 (mod n),
for each ¢ € Z,. That is, if and only if k& € nZ. Suppose that this property holds
and consider the map y : Q; — K* taking constant value (—1)**!. We clearly have
P a;) = (=1)*1a; = x(a;)a,, for each i € Z,. But y is an acyclic character if,
and only if, either char(K) = 2 or [[,;<, x(a;) = (=1)**Y" is equal to 1. So, when
char(K) = 2, the automorphism @*t'5~! is inner for any value of k. In particular,
CYF — dim(A) = 0 in such case.

Suppose that char(K) # 2. By Proposition 3.4.7, we get that zFT'57! is an inner
automorphism if, and only if, (k + 1)n is even. This is always the case when n is even,
and in such case CY F —dim(A) = 0. If n = 2m — 1 is odd then & + 1 should be even and
the smallest k € nZ satisfying this property is k = n. Then CYF —dim(A) =n=2m —1
in this case.

O

As regards the algebras with Loewy length greater o equal than 4, we also have:
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Proposition 3.4.14. Let A be an m-fold mesh algebra of Dynkin type A different from
A, forr=1,2,3. Then A is stably Calabi- Yau if, and only if, it is Calabi- Yau Frobenius.
In such case the equality CY — dim(A) = CY F — dim(A) holds.

Proof. By Corollary 2.3.2, we know that the Loewy length of A is cA — 1, where ca is the
Coxeter number. The Dynkin graphs A = A,., with r = 1,2, 3, are the only ones for which
ca —1 < 3. So A has Loewy length > 4 in our case. Note that if Qf‘\jl(A) is isomorphic
to a twisted bimodule ,A;, then we have dim(Qf\ng(A)) = dim(A). By Lemma 3.4.9, we
know that then k£ + 1 € 3Z.

If there is a k such that Q5T (A) = _; A1, for some inner or stably inner automorphism
¢, then k = 3s — 1, for some integer s > 0. But we know that Q3.(A) & A1, where
fi is a graded automorphism of A. We then have that Q3%(A) & ,;Aq, for some stably
inner (resp. inner) automorphism ¢ if, and only if, z°7~! is a stably inner (resp. inner)
automorphism of A. The proof is finished using Lemma 3.4.6 since 7! is a graded
automorphism. O

The proof of last proposition shows that if A is not of type A, (r = 1,2), then the
algebra A will be stably Calabi-Yau (resp. Calabi-Yau Frobenius) if, and only if, there
exists an integer s > 0 such that fi*7 ! is stably inner (resp. inner). A necessary condition
for this is that i°7~! fixes the vertices. So, as a first step to characterize the stably Calabi-
Yau (resp. Calabi-Yau Frobenius) condition of A, we shall identify the positive integers s

such that ° and 1 have the same action on vertices.

Definition 16. Let A be an m-fold mesh algebra of type A # A1, Ao, with quiver Q. We
will define the following sets of positive integers:

1. Ney (A) consists of the integers s > 0 such that g® and 77 have the same action on
vertices.

I'is an inner automorphism.

2. NCY(A) consists of the integers s > 0 such that g°n~
Equivalently, it is the set of integers s > 0 such that Q3% (A) is isomorphic to ;A1 as

a A-bimodule.

Remark 3.4.15. Under the hypotheses of last definition, we clearly have Ngy(A) C
Ney (A). Moreover A is Calabi-Yau Frobenius if, and only if, Noy (A) # 0. In this latter
case we have CYF — dim(A) = 3r — 1, where » = min(N¢y(A)), and this number is
equal to CY — dim(A) when A # Aj. Note also that if Noy(A) = Neoy(A) # 0 then
CY — dim(A) = CYF — dim(A) since the fact that i*4~! be stably inner implies that
s € Ny (A).

We first identify Neoy (A) for any m-fold mesh algebra of Loewy length > 2.

Proposition 3.4.16. Let A be an m-fold mesh algebra of extended type (A, m,t), where
A £ Ay, Ay, The following assertions hold:

1. When t = 1, the set Ny (A) is nonempty if, and only if, the following condition is
true in each case:



3.4. The period and the stable Calabi-Yau dimension of an m-fold mesh algebra 75

(a) ged(m,ca) =1, when A is Ay, Da,—1 or Eg. Then Noy (A) = {s =2 +1,¢ >
0:cas’=—1 (mod m)}

(b) ged(m, <) =1, when A is Dy, E7 or Eg. Then Ngy (A) ={s > 0: % (s—1)
—1 (mod m)}.

2. When t = 2, the set Noy (A) is nonempty if, and only if, the following condition is
true in each case:

(a) ged(2m,m+ ) =1, when A is Aoy 1, Dgr—1 or Eg. Then Ney (A) = {s>0:

(m+)(s —1) = =1 (mod 2m)}, and this set consists of even numbers.
(b) ged(m,5) = ged(m,,2r — 1) = 1, when A = Dy,. Then Ney(A) = {s > 0:
(2r —1)(s — 1) = —1 (mod 2m)} and this set consists of even numbers.

(c) ged2m —1,2n+1) =1, when A = Ay,. Then Ny (A) ={s>0: (m+n)(s—
1) =—1 (mod 2m — 1)}.

3. If t =3 (and hence A =Dy), then Noy (A) = 0.

Proof. Note that fi acts on vertices as 77!, where v is the Nakayama permutation and 7
the Auslander-Reiten translation of B. Viewing the vertices of the quiver of A as G-orbits
of vertices in ZA, we get that s is in Noy (A) if, and only if, (27~ 1)*([(k,1)]) = v([(k,1)]),
equivalently 7°~17=%([(k,4)]) = [(k,1)], for each G-orbit [(k,4)]. Now the argument in the
first paragraph of the proof of Theorem 3.3.1 can be applied to the automorphism v~ 1775,
We then get that s € Noy (A) if, and only if, v*7177% € G. We use this to identify the set
Ney (A) for all possible extended types, and the result will be derived from that.

If t = 3 and so A = Dy, then we know that v = 772, It follows that s € Ngoy (A) if,
and only if, 7=2(5=1 775 = (pr™)4, for some ¢ € Z, where p is the automorphism of order
3 of Dy. By the free action of the group < p,7 > on vertices not fixed by p, necessarily
q € 3Z and 2 — 3s = mgq, which is absurd. Then assertion 3 follows.

Suppose first that A # Ag,. If A is Ag,_1, Dy._1 or Eg, then v = pr'™", where
n = %. Then v* 1775 = ps~lr(=ns=Dr=s = ps=lp=n(s=U+1 When ¢ = 1, we have
that G =< 7™ > and, hence, the automorphism v*~'7% is in G if, and only if, there is
q € Z such that p*~1r~["s=D+1] — (777)¢, This happens if, and only if, s — 1 = 25’ is even
and there is g € Z such that —2ns’ —1 = —n(s — 1) — 1 is equal to mq. Therefore s exists
if, and only if, ged(m,ca) = ged(m,2n) = 1. In this case Noy(A) = {s =25 +1>0:
2ns’ = —1 (mod m)} = {s =25’ +1: cas’ = —1 (mod m))}, which gives 1.a, except
for the case A = Ag,. On the other hand, if ¢ = 2, and hence G =< p7™ >, then the
automorphism v*~'77% is in G if, and only if, there is an integer ¢ such that ¢ = s — 1
(mod 2) and p*~ 7=+ = parma or equivalently, —n(s — 1) — 1 = mq. But this
happens if, and only if, there is k € Z such that —n(s — 1) — 1 = m(s — 1 + 2k), which
is equivalent to saying that (m + n)(s — 1) + 2mk + 1 = 0. Therefore s exists if, and
only if, ged(2m,m + %) = ged(2m,m + n) = 1. In this case Noy(A) = {s > 0 :
(m+%)(s—1) = —1 (mod 2m)} and this proves 2.a.

Suppose next that A is Dy, E7 or Eg, so that v = 77", where n = <. Then
vi-lrs = p(=n)(s=Dp—s — p=n(s=1)+1  When t = 1, this automorphism is in G =<
7™ > if, and only if, there is ¢ € Z such that —n(s — 1) — 1 = mgq. Then s exists if, and

1-n
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only if, ged(m, %) = ged(m,n) = 1. In this case Noy(A) = {s > 0: D (s - 1) = —1
(mod m), which proves 1.b. When t = 2, whence A = Dy,., the automorphism v*~ 177 is in
G =< pt™ > if, and only if, there is an even integer ¢ = 2¢’ such that —n(s—1)—1 = 2mg¢’.
Then s exists if, and only if, gcd(2m,n) = 1. But n = 2r — 1 is odd in this case. Then
ged(2m,n) = 1 if, and only if, gcd(m,2r — 1) = ged(m,n) = 1. On the other hand, note
that s — 1 is necessarily odd, which implies that Noy (A) C 2Z. This completes the proof
of 2.b.

Suppose now that A = Ay, so that p?> = 77!, Here v = pr and v
plr(A=n)(s—1)=s — ps—lp—[n(s—D)+1] YWhen ¢t = 1, this automorphism is in G =< 7 >
if, and only if, s — 1 = 2¢' is even and 7% 7~ (2»'+1) — (7™)4_ for some integer ¢q. That
is, s exists if, and only if, there are s’ > 0 and ¢ € Z such that mqg+ (2n+1)s’ +1 = 0.
Therefore s exists if, and only if, ged(m, ca) = ged(m,2n+1) = 1. In this case s = 25’ +1,
where s’ > 0 and cas’ = (2n +1)s’ = —1 (mod m). This completes 1.a. When ¢t = 2 the
automorphism v*~177% is in G =< pr™ > if, and only if, there is ¢ € Z such that ¢ = s—1
(mod 2) and p*~Lp—ln(s—D+) — pa7pma This is equivalent to the existence of an integer k
such that p* 17— [s=D+1] = ps—14+2kpm(s—142k) -~ Canceling p*~!, we see that the condition
is equivalent to the existence of an integer k such that —n(s—1)—1=m(s—1)+(2m—-1)k
or, equivalently, such that (m +n)(s —1) + (2m — 1)k + 1 = 0. Then s exists if, and only
if, ged(m +n,2m — 1) = 1, which is turn equivalent to saying that ged(2m —1,2n+1) =1
since (2m — 1) 4+ (2n + 1) = 2(m + n). This proves 2.c and the proof is complete. O

1. 1-n 5—17_—5 —

We now want to identify Ny (A). The following is our crucial tool.

Lemma 3.4.17. Let A be a Dynkin quiver different from A1, Ao, B be its associated mesh
algebra, A = B/G be an m-fold mesh algebra of extended type (A, m,t) and let n be a
G-invariant graded Nakayama automorphism of B. If s is an integer in Noy (A), then the
following assertions are equivalent:

1. s is in Noy (A) (see definition 16).

2. There is a map A : ZAg — K* such that:

a) p*(a) = X 2 \an(v* 1 77%(a)), for all a € (ZA)y, where p is the graded auto-
i(a)”t(a)
morphism of Proposition 3.4.3.

(b) Aogiza, = A, for all g € G.
If (A,m,t) # (Agyn—1,m,2), then these conditions are also equivalent to:

3. Thereis amap X : ZAg — K* satisfying condition 2.b and such that (—1)*n°~!(a) =

)\;(i) Ai(ayr*~ Ha), for all a € (ZA);.

If (At) # (A,,2) then the conditions are also equivalent to
4. s—1isin H(A,m,t) (see Proposition 3.2.2).

Proof. The first paragraph of the proof of Proposition 3.4.16 says that s € Ney (A) if,
and only if, v*177% € G. The goal is to give necessary and sufficient conditions on
such an integer s so that j* and 7 = nvs—17—5 are equal, up to composition by an inner
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automorphism of A. But the actions of u* = (konor to¥)* and nov* o775 on (ZA)g
are equal. By Lemma 3.2.1, we then get that assertions 1 and 2 are equivalent.

When (A,m,t) # (Az,—1,m,2), what we know is that ¥ = idp and, by Lemma
3.4.9, we know that 7 and 7~ commute, up to composition by an inner automorphism
of A. Then s is in Ncy(A) if, and only if, k*7°7~° and fp*~'7~% are equal up to
composition by an inner automorphism of A. By Lemma 3.2.1, this last condition is
equivalent to saying that there is a map A : ZAy — K™ satisfying 2.b such that
(=1)*n*(r%(a)) = )\i}t))\t(a)n(u“’*%*s(a)), for each a € (ZA);. Putting b = 77%(a)
and defining X : (ZA)g — K* by the rule A(i) = A(7%(i)), we get that (—1)%7°~1(b) =
5\;(;) S\t(b) v~1(b), for all b € (ZA);. Then assertions 2 and 3 are equivalent.

Finally, when (A,t) # (A,,2), Proposition 3.4.3 says that we can choose yp =no7~
since ¥ is the identity map. Then the proof of the equivalence of assertions 2 and 3, taken
for k = idp, shows that assertion 2 holds if, and only if, there is a map A : ZAy — K*
satisfying condition 2.b and such that n*~!(b) = )\Z._(;))\t(b)usfl(b), for all b € (ZA);. This
equivalent to saying that s — 1 € H(A,m,t). O

1

The following is now a consequence of Proposition 3.4.16 and the foregoing lemma.

Corollary 3.4.18. Let A be an m-fold mesh algebra over a field of characteristic 2, with
A #£ Ay. The algebra is stably Calabi- Yau if, and only if, it is Calabi- Yau Frobenius. When
in addition A # Ag, this is in turn equivalent to saying that Noy (A) # (. Moreover, the
following assertions hold:

1. When the Loewy length of A is < 2, i.e. A = As, the algebra is always Calabi-Yau
Frobenius and CY — dim(A) = CYF — dim(A) = 0.

2. When A # Ay, we have CY — dim(A) = CYF — dim(A) = 3m — 1, where m =
min(Ney (A)) (see Proposition 3.4.16).

Proof. The case of Loewy length 2 is covered by Proposition 3.4.13. So we assume A # Ao
in the sequel. If A is stably Calabi-Yau, then Ney (A) # 0. But, when char(K) = 2, the
G-invariant graded Nakayama automorphism of Theorem 2.4.2 is n = v. In addition, the
automorphisms ¥ and k of Proposition 3.4.3 are the identity. Then, in order to prove the
equality Ncy(A) = Ny (A), one only need to prove that if s € Neoy (A) then condition 2
of last lemma holds. But this is clear, by taking as A any constant map. O

We are now ready to give, for Char(K) # 2, the precise criterion for an m-fold mesh
algebra to be stably Calabi-Yau, and to calculate CY — dim(A) in that case.

Theorem 3.4.19. Let us assume that char(K) # 2 and let A be the m-fold mesh algebra
of extended type (A, m,t), where A # Ay, Ay. We adopt the convention that if a,b, k are
fized integers, then au = b (mod k) means that u is the smallest positive integer satisfying
the congruence. The algebra is Calabi- Yau Frobenius if, and only if, it is stably Calabi-
Yau. Moreover, we have CYF — dim(A) = CY — dim(A) and the following assertions
hold:

1. Ift=1 then
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(a) When A is A,, Do._1 or Eg, the algebra is stably Calabi-Yau if, and only if,
ged(m,en) = 1. Then CY — dim(A) = 6u + 2, where cau = —1 (mod m).

(b) When A is Dy, E; or Eg, the algebra is stably Calabi-Yau if, and only if,
ged(m, ) = 1. Then:

i. CY — dim(A) = 3u + 2, where %0u = —1 (mod m), whenever m is even;
it. CY — dim(A) = 6u + 2, where cau = —1 (mod m), whenever m is odd;
2. If t =2 then

(a) When A is Ag,_1, Dop—q or Eg, the algebra is stably Calabi-Yau if, and only
if, ged(2m,m 4 %) = 1. Then CY — dim(A) = 3u + 2, where (m + 5 )u = —1
(mod 2m).

(b) When A = Dy, the algebra is stably Calabi-Yau if, and only if, ged(m,2r—1) =
1 and m is odd. Then CY — dim(A) = 3u+2, where (2r—1)u = —1 (mod 2m).

(¢) When A = Ay, the algebra is stably Calabi- Yau if, and only if, gcd(2m—1,2n+
1) =1. Then CY —dim(A) = 6u—1, where (m+n)(2u—1) = —1 (mod 2m—1)

3. If t = 3 then the algebra is not stably Calabi- Yau.

Proof. By Proposition 3.4.14, we know that, when A = Aj, the algebra A is stably Calabi-
Yau if, and only if, it is Calabi-Yau Frobenius and the corresponding dimensions are
equal. From our arguments below it will follow that, when A = Aj, we always have
Ney(A) = Neoy(A), and then CY — dim(A) = CYF — dim(A) also in this case (see
Remark 3.4.15).

Our arguments will give an explicit identification of N cy (A) in terms of Noy (A). Then
CY — dim(A) will be 3v — 1, where v = min(Ngy (A)).

From Propositions 3.4.16 and 3.4.14, we know that, when ¢t = 3, the algebra is never
stably Calabi-Yau. So we assume in the sequel that t # 3.

Suppose first that (A, m,t) # (A,,m,2). Then Lemma 3.4.17 tells us that NCY(A) =
Ney(A) N (H(A,m,t) + 1), where HA,m,t)+1={se€Z:s—1¢€ H:=H(A,m,t)}.
By Proposition 3.2.2, we get in these cases that the equality Noy (A) = Neoy (A) holds
whenever m + t is odd. We now examine the different cases:

l.a) If A=A, then H =7. When A is Dy, or Eg, the Coxeter number ca is even.
If Noy (A) # 0 then ged(m,ca) = 1, so that m is odd and H = 27Z. But then Noy (A) =
Ney (A) N (2Z + 1), which is equal to Neoy (A) due to Proposition 3.4.16. So A is stably
Calabi-Yau if, and only if, gcd(m,ca) = 1. Then CY — dim(A) =32u+1) — 1 = 6u + 2,
where 2u + 1 = min(Negy (A)).

1.b) We need to consider the case when m is odd. In this case Noy (A) = Noy (A) N
(2Z + 1) is properly contained in Noy (A). However, we claim that if Ny (A) # () then
Ncy(A) # 0, which will prove that A is stably Calabi-Yau if, and only if, ged(m, %) = 1
using Proposition 3.4.16. Indeed, we need to prove that if ged(m, %) = 1, then there is
an integer v’ > 0 such that 2u’ + 1 € Ngy (A) or, equivalently, that < (2u' +1—1) = —1
(mod m). But this is clear for if m is odd then also ged(m,ca) = 1. Now the formulas in
1.b.i) an 1.b.ii) come directly from putting s = u+1 and s = 2u+ 1 and use the fact that
% (s—1)=—1 (mod m).
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2.a) Suppose first that A is Dy,_1 or Eg. In this case % is even. Then ged(2m,m +
%) = 1 implies that m is odd and, hence, that H = Z. So in this case Ney (A) = Ny (A)
and the formula for C'Y" — dim(A) comes from putting s = 1 + u, where (m + % )u = —1
(mod 2m).

Suppose next that (A,m,t) = (Agy,_1,m,2), ie. A = IB%%m). Here n = v. Then
condition 2 of Lemma 3.4.17 can be rephrased by saying that i and (7o7~!)® are equal, up
to composition by an inner automorphism of A. This proves that NCY(A) = Ney(A)N2Z
due to Lemma 3.4.11. But Proposition 3.4.16 tells us that then Noy (A) = Ny (A). The
formula for CY — dim(A) is calculated as in the other two quivers of 2.a.

2.b) If Noy (A) # 0 then ged(m,2r — 1) = 1. If m is odd then H = Z. If m is even,
then H = 27 which implies that Noy (A) = Noy (A) N (2Z + 1). But this is the empty
set due to Proposition 3.4.16. The formula for CY — dim(A) in the case when m is odd
follows again from putting s — 1 = u and (2r — 1)u = —1 (mod 2m).

2.c) It remains to consider the case (A,m,t) = (Ag,,m,2), ie. A = ]L%m). We use
condition 3 of Lemma 3.4.17. If X\ : ZAg — K* is any map such that (—1)*n*"!(a) =
)\i_(cll))\t(a)l/sfl(a), then )‘z'_(i))‘t(a) = (=1)® since n° " (a) = v*"(a), for all a € (ZA);. Tt
follows that Aq) = (=1)°A(xj), whenever i # j (mod 2), and that A ;) = At =
(—1)25)\(]971-) = )‘(k,z’)’ for all (k,7) € ZAg. We then get that )\me(kﬂ-) = )‘p(ker,i) =
Alktmti—n2nt1—i) = (_1)8)‘(k,i)- As a consequence the equality Aogjza, = A holds, for all
g€ G =<pr™ >, ifand only if s € 2Z. It follows that Noy (A) = Ney (A) N2Z. We claim
that if Noy (A) # 0 then Noy (A) # 0, which implies that A is stably Calabi-Yau exactly
when ged(2m—1,2n+1) = 1, using Proposition 3.4.16. Indeed, using the description of this
last proposition, we need to see that the diophantic equation (m+n)(2z—1)+(2m—1)y+1
has a solution. But this is clear since ged(2(m + n),2m — 1) = 1. The formula for
CY — dim(A) is now clear. O
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Chapter 4

Hochschild cohomology of finite
dimensional self-injective algebras

4.1 Introduction

4.1.1 Motivation

The aim of this chapter is to gather the background on algebras over a commutative
ring and finite dimensional self-injective algebras that will be needed in the subsequent
chapters. Some of the contents concerning self-injective finite dimensional algebras can be
directly derived from the results given in Chapter 1 for pseudo-Frobenius graded algebras
by considering the grading group H = 0. Also, we introduce the notion and essential
properties of the Hochschild cohomology ring.

4.1.2 Outline of the chapter

In Section 4.2 we remind the definition of the Yoneda product of extensions and, parti-
cularly, we introduce the notion of the Hochschild cohomology ring, denoted by HH*(A),
of an algebra A over a commutative ring R. Then, in Section 4.3, and whenever the
algebra is in addition Gorenstein projective as A-bimodule, we include the definition of
the stable Hochschild cohomology ring, HH*(A). In Section 4.4 we describe the structure
as a bigraded (Z x Z-graded) algebra induced by the canonical homological grading as well
as by what we call the length grading on A. As regards Section 4.5, we show that if A is
a periodic Frobenius algebra, in the sense of [35], then the stable Hochschild cohomology
ring is a graded-commutative which turns out to be a localization of the classical one.
Finally, in Section 4.6 we revisit some results concerning self-injective finite dimensional
algebras and we also introduce the concept of dualizable basis and give conditions for its
existence.

4.1.3 Notation

Throughout this chapter we fix a commutative ground ring R and all algebras are taken
over R. For simplicity, we will assume in addition that these algebras are projective as
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R-modules, although this assumption is not necessary in some of the statements. Later in
the chapter R will be a field and, in order to emphasize that, we will put R = K in that
case.

The prototypical example of algebras that we should keep in mind is that of an algebra
given by quiver and relations. Suppose that @ is a quiver. If Qg is finite, then the
associated path algebra R(@ is unital and it is free as an R-module. We are interested
in quotients A = RQ/I where I is a two-sided ideal of RQ contained in the (free) R-
submodule RQ)>2 of R(Q) generated by the paths of length > 1, and having a direct sum
complement in RQ as an R-module. We shall only consider quotients of path algebras of
this form. Note that 1 = Zier e;, where e; is the idempotent associated to i.

The convention and notation of the Subsection 1.1.3 are also followed here, but with
K replaced by R. In particular, unadorned tensor products are taken over R.

4.2 The Yoneda product of extensions

For the convenience of the reader we recall the definition of HH*(A) and of the Yoneda
product. By the classical theory of derived functors, for each pair M, N of A-modules, one
can compute the R-module Ext} (M, N) as the n-th cohomology R-module of the complex
Homp (P°®, N), where
p—1d7 ™ —1d Y 5o
pt.. P — P" .. —P —P >M-=0

is a projective resolution of M.

Suppose that L, M, N are A-modules, that P® and Q°® are projective resolutions of
L and M, respectively, and that m,n are natural numbers. If § € Ext}(L, M) and
€ € ExtT(M, N), then we can choose a & € Homa(P~", M), belonging to the kernel of
the transpose map (d-""1)* : Homp(P™", M) — Homa (P~ 1 M) of the differential
dn=t . p7n=1 5 P~ of P*®, which represents J. Similarly, we can choose an é €
Homp(Qm, N) which represents e. Due to the projectivity of the P, there is a (non-
unique) sequence of morphisms of A-modules 6% : P~"=% — Q=% (k= 0,1,...,) making
the following diagram commute:

e pm—k___ ... pn-l____ p-n PO L 0
= I N
ka L. Qfl QO M 0

Then the composition €06~ : P~""" — N is in the kernel of (d~"~")* and, thus,
it represents an element of Ext}'*"(L, N). This element is denoted by €5 and does not
depend on the choices made. It is called the Yoneda product of € and §. It is well-known
that the map

Ext®(M,N) x Ext (L, M) — Ext"™(L,N)  ((€,6) — €d)
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is R-bilinear.

When M = N in the above setting, the R-module Ext} (M, M) = @;>oExt} (M, M)
inherits a structure of graded R-algebra, where the multiplication of homogeneous elements
is the Yoneda product. In this thesis we are interested in the particular case where A is
replaced by A® and M is replaced by A, viewed as A°-module (i.e. as a A-bimodule).
Then HH(A) := Ext}.(A,A) is called the i-th Hochschild cohomology R-module, for each
i > 0. The corresponding graded algebra Ext}.(A,A) is denoted by HH*(A) and called
the Hochschild cohomology ring (or algebra) of A. By a celebrated result of Gerstenhaber
([43]), we know that HH*(A) is graded commutative. That is, if e € HH(A) and § €
HHI(A) are homogeneous elements, then 5 = (—1)%de.

4.3 Stable and absolute Hochschild (co)homology

In this section, we recall some concepts which allow us to extend Hochschild homology
and cohomology to negative degrees.

Definition 17. Let A be an algebra and let CA denote the category of (cochain) complexes
of A-modules. An object X*® of CA is called a totally acyclic complex when it is acyclic
and the complex of R-modules Homy4(X*®, Q) is acyclic, for each projective A-module Q.

An A-module M is said to be Gorenstein projective (see [26]) when there is a totally
acyclic complex

o d2%2 _1dt? d° dt
pP.... sp2i,ptf,pt fpt P2 ..

in CA such that each P™ is a projective A-module and Z' := Ker(d') = M. In that case
P* is a called a complete projective resolution of M and its module of (1 — n)-cocycles
Z17" will be called the Gorenstein n-syzygy of M and denoted by Q7% (M), for each n € Z.
It is uniquely determined, up to isomorphism, in the stable category modulo projectives
and, for n > 0, it coincides with the usual syzygy.

We summarize in the following proposition a few known properties of Gorenstein pro-
jective modules (see [9][Section 4]).

Proposition 4.3.1. Let A be an algebra. The following assertions hold:

1. The complete projective resolution of a Gorenstein projective A-module is unique, up
to isomorphism, in the homotopy category HA

2. The full subcategory A — GProj of aMod consisting of the Gorenstein projective A-
modules is a Frobenius exact category (in the sense of Quillen) on which the injective
(=projective) objects are the projective A-modules

3. The stable category A — GProj = A=GProj 4 ¢ triangulated category on which the

AProj
suspension functor takes M to Q;‘lM .

4. Assigning to each M € A — GProj its complete projective resolution induces a fully
faithful triangulated functor A — GProj — HA.
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Definition 18. Let M, N be left A-modules and X be a right A-module, and suppose that
M is Gorenstein projective, with P® as complete projective resolution. For each i € Z, we
put

1. Exty(M,N) = H'(Homa(P*,N))
2. Tord (X, M) = H (X @4 P*),
where H'(—) denotes the i-th homology R-module of the given complex.

We call Exty(—, —) and Tor(—, —) the stable Ext and the stable Tor, respectively.
Their definition does not depend on the complete resolution P® that we choose.

We clearly have Exty(M,N) = ExtY (M, N) and Tor (X, M) = Tor(X, M), for all
i > 0. In particular, we have canonical homomorphisms of graded R-modules

. by .
Ext’ (M, N) = @;50BExty (M, N) "2 &;czExt)y (M, N) =: Ext’y (M, N)
and

X, M A

Tor (X, M) = @;ezTor (X, M) =3 @;5oTor (X, M) = Tor (X, M)

where Ker(Ayz,n) and Coker(ups,v) are concentrated in degree 0. Actually, Ker(Ay n) =
P(M,N) = {f € Homa(M,N) = Ext (M, N) | f factors through a projective A-module}
and Coker(px n) is isomorphic to the image of the morphism 1x ® jy : X @ M —
X ®4 PY, where j : M = Z' — P! is the inclusion of 1-cocycles into 1-cochains. Finally,
note that Ext’ (M, N) = Hom 4(Q% (M), N) for all i € Z where Hom 4(?,?) denotes the
Hom bifunctor in A— Mod. In particular, for M = N we get a structure of graded algebra
on Ext* (M, M) induced from that of @;czHom 4(Q% (M), M), which is defined by the rule

whenever f € HomA(Q{L‘(M),M) and g € Hom 4(QY (M), M). In particular, the multi-
plication on Ext% (M, M) extends the Yoneda product defined in Section 4.2. Then, the
next result follows in a straightforward way.

Proposition 4.3.2. Let M, N be left A-modules and suppose that M is Gorenstein pro-
jective. The R-module Ext’y(M, M) has a canonical structure of graded algebra over which
Eaxt’y (M, N) is a graded right module. Moreover, the map
A : Bxty (M, M) — Exty (M, M)

1s a homomorphism of graded algebras, and the following diagram is commutative, where
the horizontal arrows are the multiplication maps:

Ext'y (M, N) ® Extsy(M, M) By, (M, N)

l)\M,N®/\M,M l)\M,N
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Consider the graded R-module Tor?, (X, M) which has the same underlying R-module
as mf(X , M) but with the grading inverted. If now P = P*® is a fixed totally complete
projective resolution of M, then P is canonically a differential graded (dg) A-module,
i.e., an object in CgqyA, using the terminology of [54]. Then B = Endc,,(P) is a dg
algebra which acts on X ®4 P in the obvious way, making X ®4 P into a dg left B-
module. As a consequence, H*(X ®4 P) = Tor?, (X, M) is a graded left module over the
cohomology algebra H*B = @®,czHomya(P, P[n]), where HA is the homotopy category
of A (see [54]). But, due to Proposition 4.3.1(4), we have canonical isomorphisms of
graded algebras H*B = @,czHom 4 (M,Q," M) = Ext (M, M). It, then, follows that
Tor?, (X, M) has the structure of a graded left Ext* (M, M)-module, as desired.

If we now take the non-negatively graded subalgebra

M%O(M, M) = @nZOMZ(M7 M)7

of Ext% (M, M), then
m—>O(X7 M) - @]<0m](X7 M)

Tor?, (X, M)
Tor? ) (X,M)’
which is isomorphic to mf( <0) (X, M) as a graded R-module, is a graded left @%O (M, M)-
module. That is, ®;>oTor (X, M) has a canonical structure of graded left M%O(M , M)-
module, where Tor' (X, M) is the component of degree —i, for all i > 0. Since we have a
surjective morphism of graded algebras Ext* (M, M) — Ext5"(M, M), we get a structure
of graded left Ext’ (M, M)-module on Mf‘(«)) (X, M).

We can now provide Tor?, (X, M) (i.e., just TorZ2(X, M), but with Tor{(X, M) in
degree —i, for all i > 0) with a structure of graded left Ext (M, M)-module of which
mf‘( <0) (X, M) is a graded submodule. Indeed, we have that the product ExtY (M, M) -

TorA(ij)(X, M) = Exty (M, M) -mf(ij)(X, M) is given by the preceding product using
the isomorphism Torf(—,—) = mj‘(—,—) when j > 0 and ¢ < j, together with the

is a graded Ext=°(M, M)-submodule of Tor?, (X, M), and the quotient

natural map mﬁi(—, -) = Tor3.4ﬂ<(—7 —). If i > j, this product is zero. For j = 0 we
put

Ext?y(M, M) - Tory (X, M) = 0 if i > 0,
and for ¢ = 0 the multiplication is given by the following diagram,
Ext9 (M, M) x Tor{{(X, M) — Tor§' (X, M)

| |

EndA(M)X(X®AM) X ®a M,

where the bottom horizontal arrow is the canonical map (f,z ®@ m) — x ® f(m).
These comments prove the following analogue of Proposition 4.3.2 for Tor.

Proposition 4.3.3. Let X and M be a right and a left A-modules, respectively, and
suppose that M is Gorenstein projective. Then Tor,(X, M) (resp. Tor? (X, M)) has a
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canonical structure of graded left Exthy (M, M)- (resp. Exzty(M,M)-)module. Moreover,
the following diagram is commutative:

Ext? (M, M) x Tor®, (X, MYMM X By t% (M, M) x Tor?. (X, M), Tord (X, M)

1 X px,m WX, M

Ext’ (M, M) x Tor?, (X, M) Tor”, (X, M)

mult.

We are especially interested in the particular case of the two previous propositions
in which A = A® = A ® AP, where A is an R-algebra which is Gorenstein projective
as A-bimodule and M = A viewed as A°-module. In that case, we put HH"(A,N) =
ExtR.(A,N) and HH, (A, N) = Tor’® (A, N) and call them the n-th stable Hochschild
cohomology and homology R-modules of A with coefficients in N, respectively. Putting
HH* (A’ N) = @HGZMTL(A’ N)’ HH* (A) = M*(A’ A)’ M*(A’ N) = @HEZMTL(A’ N)’
and HH,(A) = HH, (A, A), we have the following straightforward consequence of Propo-
sitions 4.3.2 and 4.3.3.

Corollary 4.3.4. In the situation above, HH*(A) (resp. HH*(A)) has a canonical
structure of graded algebra over which HH*(A,N) (resp. HH*(A,N)) is a graded right
module and HH_,(A,N) (resp. HH_.(A,N)) is a graded left module. Moreover, the
graded algebra structure on HH*(A) and the graded module structures on HH*(A, N) and
HH_.(A,N) are determined by their stable analogues, except in degree zero.

4.4 Bigrading on the stable and absolute
Hochschild (co)homology

Suppose that A admits a positive grading A = @®,>0A4, such that each A, is finitely
generated (projective) as an R-module. We denote by A — Gr the category of (Z-)graded
modules and, for each n € Z and each M € A — Gr, we denote by M[n| the graded
A-module which has the same underlying A-module as M, but with grading given by
Mi{n]; = M4, for all i € Z.

With the obvious adaptation, recall from Subsection 1.2.1 that if M and N are ob-
jects of A — Gr, then HOMs(M,N) = ®&pezHoma—_gr.(M, N[n]) is a graded R-module
and we have an inclusion HOMA(M,N) C Homu(M,N). This inclusion is an equali-
ty when M is finitely generated (see [65], Section 1.2). We then get an induced functor
Homa(—,N): A—gr — R — Gr, where A — gr denotes the full subcategory of A — Gr
whose objects are the finitely generated graded modules. Note that we have an isomor-
phism Homa(M[—n|,N) = Homu(M,N)[n] in R — Gr.
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If we assume that M has a projective resolution P® in A — Gr consisting of finitely
generated terms (e.g. if A and M are finitely generated projective as R-modules), then
Hom(P~",N) is a graded R-module, for each r > 0, and the differentials of the complex
Homy(P®, N) are morphisms of graded R-modules. As a consequence, Ext’y (M, N) inhe-
rits a structure of graded R-module. Then Ext’ (M, N') becomes canonically a bigraded (=
Z x Z-graded) R-module where the homogeneous component of bidegree (m, n) is precisely
Ext"} (M, N),.

We call a complex of projective graded A-modules P*® totally acyclic when it is totally
acyclic as a complex of ungraded A-modules. Then a complete graded projective resolution
of M € A— Gr is just a totally acyclic complex P*® of graded projective A-modules such
that Z' = M. The scheme of the preceding paragraph can be essentially copied so that,
when M, N € A— Gr and M admits a complete graded projective resolution consisting of
finitely generated terms, the R-module Ext* (M, N) is bigraded.

It is not hard to see that when M, N,T are graded A-modules and M and N admit
(complete) projective resolutions with finitely generated terms, then the Yoneda products

Ext’ (N,T) x Ext}y(M,N) — Ext%(M,T) and

are compatible with the bigrading, i.e., if bideg(e) = (m,n) and bideg(d) = (p,q), then
bideg(ed) = (m + p,n + q) whenever €d # 0, where bideg denotes the bidegree. It follows
that the algebras Ext% (M, M) and Ext% (M, M) are bigraded and that Ext* (M, N) and
Ext’ (M, N) are bigraded right modules over them, respectively.

The particular case that is most interesting for us is the one in which A = A® = AQ AP
is the enveloping algebra of a graded algebra A = @,>0A, which admits a complete
projective resolution as a graded A-bimodule whose terms are finitely generated, with
Aso = ®p>oA, nilpotent and Ay isomorphic as an algebra to a finite direct product of
copies of R. In that case A = A® inherits a grading A4, = @1 s—nl, @ A satisfying
the requirements of the preceding paragraphs. Now taking M = A, with its canonical
structure of left A°-module, we see that it is graded. We conclude that HH*(A) and
HH*(A) are bigraded algebras and that, whenever N is a graded A-bimodule, HH*(A, N)
and HH*(A, N) are bigraded right modules over them, respectively.

If @ is a finite quiver, then its path algebra R(@Q has a natural grading, where the
degree of each path is its length. If in the above setting A = RQ/I is a quotient of a path
algebra, where I is homogeneous with respect to this grading of RQ, then the induced
grading on A will be called the length grading and the same term will be used to name the
induced grading on HH*(A) or on each HH™(A) (resp. on HH*(A) or HH™(A), when A is
also Frobenius). Sometimes we use the term homological grading for the canonical grading
HH*(A) = ©p>0HH"(A) (resp. HH*(A) = @pezHH"(A)) in order to distinguish it from
the length grading.

4.5 Frobenius algebras (following Eu and Schedler)

In this section we introduce a class of algebras studied by Eu and Schedler [35], which
generalize the class of self-injective finite dimensional algebras and to which, with the



88 Chapter 4

suitable adaptation, one can apply some of the results of chapter 1. We will give a brief
account of the results of [op.cit] which are more useful to us in this paper.

Definition 19. An algebra A is a Frobenius algebra if it is finitely generated projective as
an R-module and admits a nondegenerate R-bilinear form (—, —) : Ax A — R satisfying:

i) (a,bc) = (ab,c), for all a,b,c € A
ii) The map A — D(A) := Hompg(A, R), b — (—,b), is bijective.

In such a case, if P®* = (P*®,d®) is any acyclic complex of finitely generated projective
A-modules with the property that each map P — Im(d’) is a retraction (=split epi-
morphism) of R-modules, then it is totally acyclic. Each finitely generated A-module M
which is projective as an R-module is the module of 1-cocycles of such an acyclic complex,
and, hence, it is Gorenstein projective (see [35]).

In the particular case when R = K is a field, a Frobenius algebra is just a self-injective
finite dimensional algebra (see Example 4.5.1 below), and then ’acyclic’ and 'totally acyclic’
are synonymous terms for complexes of (arbitrary) projective A-modules. Each A-module
is Gorenstein projective in this case.

When A is a Frobenius algebra, it is of common use to denote by A — mod (resp.
mod — A) the category of left (resp. right) A which are finitely generated projective as
R-modules. These modules turn out to be Gorenstein projective, so that the homological
theory of the previous subsections apply to them. The category A — mod is Frobenius
exact category, although it need not be abelian. By [46], Chapter I, we then know that
the associated stable category A—mod is a triangulated category with the cosyzygy functor
Qxl : A —mod — A —mod as suspension. The contravariant functor Hompg(—, R) clearly

induces an ’involutive’ duality D : A — mod &% mod — A.

Example 4.5.1. If R = K is a field, then one easily sees, using Theorem 1.3.2 with the
grading group H = 0, that the following assertions are equivalent for a K-algebra A:

1. A is a Frobenius K-algebra in the sense of [35]
2. A is Quasi-Frobenius
3. A is pseudo-Frobenius and finite dimensional

4. A is self-injective and finite dimensional

In such case A — mod is the category of all finitely generated A-modules.

As shown by Eu and Schedler, many developments of Chapter 1 apply to Frobenius
algebras. If (—,—) : A Xx A — R is an R-bilinear form as in Definition 3, which we will
call Nakayama form in the sequel, then there is a unique automorphism 7 of A, called
the Nakayama automorphism, such that (a,b) = (b,n(a)) for all a,b € A, and hence D(A)
is isomorphic to 1A, as A-bimodule. Conversely, any isomorphism f : 1A, = D(A) of
A-bimodules, where 7 is an automorphism of A, gives rise to a Nakayama form for A given
by (a,b) = f(b)(a), for all (a,b) € A x A.
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An important consequence of Definition 19 is that if A and B are Frobenius algebras,
then also A ® B is a Frobenius algebra. Indeed it is clear that A ® B is projetive as an
R-module. Moreover, if (—,—)4: AX A — R and (—,—)p: B® B — R are Nakayama
forms, then the map < —, — >: (A® B) x (A ® B) — R identified by the equality
<a®bad @b >= (a,a’) - (b,V) is a Nakayama form for A ® B. In particular, if A is
our Frobenius algebra, then its enveloping algebra A® = A ® A° is a Frobenius algebra
and, since A is finitely generated and projective over R, we have that A is Gorenstein-
projective. In particular, the stable Hochschild cohomology ring HH*(A) is well-defined.
The following fact was proved in [Eu-Schedler, Theorem 2.1.15] and gives the ’'missing
point’ of Corollary 4.3.4.

Proposition 4.5.2. If A is a Frobenius algebra, then HH*(A) is graded-commutative.

In the context of Frobenius algebras, some of the concepts studied in chapters 2 and
3 for the m-fold mesh algebras or for arbitrary self-injective finite dimensional algebras
are similarly defined. For instance A is said to be periodic when Q}%(A) is isomorphic
to A as a A-bimodule, for some integer m > 0, and the smallest of these m is called the
period of m. When A — mod is Calabi-Yau, we will say that A is stably Calabi-Yau (of
CY-dimension m) when A —mod is a Calabi-Yau triangulated category (of dimension m).
We will say that A is Calabi- Yau Frobenius (of dimension m) when there is an integer
7 > 0 such that Q.7 *(A) is isomorphic to D(A) in the stable category A® — mod (and
m is the smallest such r). For our purposes it is worth noting that if A is a symmetric
periodic Frobenius algebra of period m, then it is Calabi-Yau of CY-dimension < m — 1.

Remark 4.5.3. The definition of Calabi-Yau Frobenius algebra given above is the one
given in [35]. In case K = R is a field, so that A is a self-injective finite dimensional algebra,
the category A°® — mod = A — mod — A of finitely generated A-bimodule is Krull-Schmidt
(i.e., each object is a finite direct sum of objects with local endomorphism rings). Moreover,
each object has a minimal (complete) projective resolution. Tt follows that Q37 '(A) is
uniquely determined in A—mod—A, up to isomorphism, when using the minimal projective
resolution of A. As a consequence, whenever A does not have semisimple direct summands,
there is an isomorphism Q7 "*(A) 2 D(A) in A—mod — A if, and only if, that isomorphism
exists in the stable category A — mod. Therefore the concept of Calabi-Yau Frobenius
algebra agrees with the one that we have used in Chapter 3.

Remark 4.5.4. If B = ®;czB; is a graded commutative algebra, then any graded left
B-module V' = ®;czV; may be viewed as a graded right B-module by defining vb =
(—1)deg(b)deg(”)bv7 for all homogeneous elements b € B and v € V. In particular, we shall
view in this way HH_ (A, M) as graded right HH*(A)-module, for each A-bimodule M.
We proceed similarly with HH (A, M) over HH*(A).

Remark 4.5.5. The following holds, for each A-bimodule M in the latter subcategory:
1. HH_,(A,M) = D(HH"(A,D(M))) as graded HH"(A)-modules.

2. HH_,(A,M) = D(HH*(A,D(M))) as graded HH*(A)-modules.
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Indeed, note that if Q and M are a projective and an arbitrary A-bimodule, then
D(Q ®pe M) = Hompe(Q,D(M)) by adjunction. If now P = P*® is a complete pro-
jective resolution of A as a bimodule (equivalently, as a right A°~-module) which consists
of finitely generated terms, then we have an isomorphism of complexes D(P ®pe M) =
Hompe(P, D(M)) = Home,,xe(P, D(M)), using the convention that D(T)" = D(T") for
each complex (or each graded R-module) T and each i € Z. It is straightforward to see
that the last isomorphism preserves the structures of right dg modules over the dg algebra
B := Endc, (P, P).

In the following definition sMod, = % denotes the stable category modulo pro-
jectives of the category of A-bimodules.

In case H is a graded commutative ring and f € H is a homogeneous element which is
not nilpotent, we will denote by Hy the localization of H with respect to the multiplicative
subset {1, f, f2,...}. It is a graded commutative ring where deg(fin) = deg(g) —n-deg(f),
for all homogeneous elements g € H and all n > 0. If M is a graded H-module, we will
denote by My the localization of M at {1, f, 2.0}

Proposition 4.5.6. Let us assume that 2 is invertible in R, let A be a Frobenius R-
algebra which is periodic of period s and let h € HH?*(A) be any element represented by an
isomorphism Qi (A) 5 A in xMod,. Suppose that M is a A-bimodule. The following
assertions hold:

1. HH*(A,M) =2 HH*(A,M)[s] and HH_,(A,M) = HH_ (A, M)[s] as graded
HH*(A)-modules.

2. h is an element of HH*(A) which is not nilpotent and HH*(A) is isomorphic, as a
graded algebra, to HH*(A) ).

3. HH*(A, M) is isomorphic to HH*(A, M) as a graded HH*(A)-module.

Proof. We have already seen in the previous comments that HH*(A) is isomorphic to the
graded algebra @,czHom . (2} (A, A)), where the multiplication of homogeneous elements
on this algebra is given by g - f = g o QRc(f). If now h: Q5(A) — A is an isomorphism
representing h, then )7 (h=1) - Q.S(A) — A represents an element b’ € HH °(A).
But then A’ - h = 1 since h’' - h is represented by QXS(Tl_l) o QXS(TL) = QXf(iAflﬁ) =
Qye(las, (n) = 1a-

The above paragraph shows that h is invertible (of degree s) in HH*(A), from which
it follows that the multiplication by h gives an isomorphism Y — Y[s], for each graded
HH*(A)-module Y (here we have used that, when HH°(A) = Z(A)/P(A, A) is a ring of
characteristic # 2, in particular when 2 is invertible in R, the period s is even, cf. [35]
Theorem 2.3.47]).

Since the multiplication of homogeneous elements of degree > 0 is the same in H H*(A)
and in HH*(A) and h in invertible in the latter algebra, it follows that A is not nilpotent
in HH*(A). On the other hand, the universal property of the module of quotients gives a
unique morphism of graded H H*(A)-modules

®: HH*(A, M)y — HH*(A, M)
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which takes the fraction ;% to h/"n, where A’ is the inverse of h in HH*(A). It is clear
that the homogeneous elements of degree > 0 are in the image of ®. On the other hand,
if ¢ € HH7(A), with j > 0, then there is a k > 0 such that ks > j. Fixing such a
k, we have that 7 := h*¢ € Mks_j(A, M) = HH*J(A, M) and, clearly, the equality
®(75) = & holds. Therefore ® is surjective. Moreover, Ker(®) consists of those fractions
7 such that h/"n = 0 in HH*(A,M). This is, in turn, equivalent to saying that n = 0
in HH*(A, M) for b/ is invertible in HH*(A). That is, 7 is in the kernel of the canonical
map Ay : HH*(A,M) — HH*(A,M). Hence, we get that n € P(A,M) = {f €
Homp (A, M) : f factors through a projective A-module}, which implies that hn = 0 in
HH*(A,M). It follows that ;& = % = 0, and so ® is also injective. Finally, in case

A = M, the map ® is a homomorphism of graded algebras, and the proof is complete. [

The following is a result by Eu and Schedler ([35], Theorem 2.3.27):

Theorem 4.5.7. (Eu-Schedler) Let A be a Calabi-Yau Frobenius algebra of dimension m
and let M be any A-bimodule. There are isomorphisms of graded right HH*(A\)-modules:

2. HH*(A, M) = D(HH"(A, D(M)))[=m] = D(HH" (A, D(M))[m])
3. HH*(A) = D(HH"(A))[-2m — 1] = D(HH"(A)[2m + 1])
In particular HH*(A) is a pseudo-Frobenius graded algebra.

Note that, if A is symmetric, then A is periodic of period s exactly when it is (s — 1)-
Calabi-Yau Frobenius. However, we remind the reader that, with the convention of [35],
when A is symmetric but not periodic, it is said to be (—1)-Calabi-Yau Frobenius.

Corollary 4.5.8. If A is a symmetric periodic algebra of period s and M is a A-bimodule,
then:

1. The multiplicative structure of HH*(A) is determined by that of HH*(A).

2. The structures of HH* (A, M) and HH _, (A, M) as graded HH*(A\)-modules and the
structure of HH_.(A, M) as graded HH*(A)-module are determined by the structure
of HH*(A, M) as graded HH*(A)-module.

Proof. Since A is CY Frobenius, the two assertions are a direct consequence of the theorem
and of Proposition 4.5.6. O

The following result was given in [35] for A = HH*(A), when A was a the (classical)
preprojective algebra of a Dynkin quiver, i.e., a m-fold mesh algebra of extended type
(A,1,1). According to Theorem 4.5.7 it also applies to the stable Hochschild cohomology
ring of any Calabi-Yau Frobenius algebra over a field.

Lemma 4.5.9. Let A = ®,cz4A, be a connected Z-graded pseudo-Frobenius algebra over a
field admitting a graded Nakayama form (—,—) : Ax A — K of constant degree function
m. Suppose that A is graded commutative and let a,b,c € A be any homogeneous elements.
The following equalities hold:
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(ab, ¢) = (—1)2e9®)deg(c) (g, b) = (—1)des(@)deg(b)+deg(e)] (pe, q).

Proof. Note that since A is connected and graded commutative the only nonzero homo-
geneous idempotent is 1. Then we have {1} as distinguished family of orthogonal homo-
geneous idempotents in the sense of subsection 1.2. Suppose now that =,y € A are two
homogeneous elements such that deg(x) + deg(y) = m. Then, using the properties of the
graded Nakayama form and the graded commutativity of A, we have an equality

(z,y) = (1,zy) = (1, (—1)de8@deeW)yy) = (—1)desl@)desv)(1, yz) = (—1)dee@dee) (y, 7).

When deg(a) 4+ deg(b) + deg(c) # m, the three terms in the proposed equalities are
zero and there is nothing to prove. We then assume that deg(a) + deg(b) + deg(c) = m.
We then have equalities:

(ab, ¢) = (a,b) = (a, (—1)*EOdE)ch) = (~1)deaC1IE() (g, ch) = (—1)s)e=() (ac, b)
and
(ab,c) = (a,bc) = (—1)dee(@deebe) (pe q) = (—1)des(a)ldeg(®)+deg(e)] (pe @),

4.6 Some facts on self-injective algebras

Throughout this Section we will assume that R = K is a field and, for simplicity, we will
assume that the algebra A = KQ/I is a finite dimensional quotient of the path algebra
of a finite quiver ), with I C K@>2. By Example 4.5.1, we can apply to A the results
about Frobenius algebras from the previous subsection and also the results of chapter 1
on graded pseudo-Frobenius algebras, simply by assuming that the grading abelian group
is H=0.

Given a Nakayama form (—,—) : A x A — K and any basis B of A, one obtains a
right (resp. left) dual basis B* = {b* : b € B} (resp. *B = {*b: b € B}) identified by the
property that (b,c*) = dp. (resp. (¢*,b) = dep), for all b,c € B, where 0. is the Kronecker
symbol.

Taking H = 0 and I = @), the following is a straightforward consequence of Proposi-
tion 1.3.7:

Proposition 4.6.1. Let A be a self-injective algebra which contains no nonzero semisimple
summand as an algebra, and let (—,—) : A X A — K be a bilinear form. The following
assertions are equivalent:

1. (—,—) is a Nakayama form

2. There is a basis B = Ui,jEQo eiBej of A which contains the vertices and also contains
a basis {w; : i € Qo} of Soc(A) such that (x,y) =3 e, Ai for allz,y € A, where \;
1s the coefficient of w; in the expression of xy as a linear combination of the elements
of B.
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Given a basis B C |J; jeq, containing the idempotents e; and an socle element w; €
Soc(e;A), for each i € @, adapting the terminology from chapter 1, the bilinear form
given by condition 2 in last proposition is called the Nakayama form associated to B

Definition 20. A basis B as above is called dualizable when its associated Nakayama
form is symmetric.

We look now at the case when I is a homogeneous ideal of K'Q with respect to the length
grading on K and consider the induced length grading A = @®,>0A,. The following
lemma gives a handy criterion for a basis to be dualizable.

Lemma 4.6.2. Let A = KTQ be a length graded self-injective algebra such that its Nakayama
permutation is the identity. Let B be a basis of A consisting of paths and negatives of paths
and which contains the vertices and also contains a basis {w; : i € Qu} of Soc(A), with
w; € e;\ for eachi € Qo. If (—,—) : A x A — K is the Nakayama form associated to B,
consider the following assertions:

1) a*a = wyy), for all a € Q1.
2) b** =b, for each b € B.

3) (—,—) is symmetric, i.e., B is a dualizable basis.

Then 2) and 3) are equivalent and they always imply 1). Moreover, if we have that
dim(e;Anej) <1, for alli,j € Qo and all natural numbers n, then the three conditions are
equivalent.

Proof. 2) <= 3)) Given any finite basis B for a vector space V with a nondegenerate
bilinear form, then the form is symmetric if, and only if, (¢',b*) = (b*,¥) for all b,V € B.
But the latter condition is equivalent to b = b** for all b € B and thus, 2 <= 3 = 1).

1) = 2) To show that 1) implies 2), assume that dim(e;Ane;) < 1, for all 4,5 € Qo
and all natural numbers n.

First observe that our hypotheses guarantee that the nonzero homogeneous elements
in UZ €0 eiAe; are precisely the scalar multiples of the elements of B. We denote by H
the set of these nonzero homogeneous elements. Therefore, an alternative description of
b* is that it is the unique element of H such that bb* = w;;). We can extend (—)* to a
bijective map (—)* : H — H so that h* is the unique element of H such that hh* = w;).
It is then clear that (Ah)* = A~1h*, for all h € H and A € K*.

Observe that if hy, hy € H are such that hiha(hiho)* = Wi(hy)> then ha(h1ha)* = hy.

We next prove that if a € @ and h € H are such that ah # 0, then (ah)*a = h*.
We proceed by induction on deg(h). The case deg(h) = 0 is a direct consequence of the
hypothesis. Since h is a scalar multiple of an element of B, we can assume without loss of
generality that h is a path in @, say, h = aq - - - ;. Then we have

hl(ah)*a]l = a1 - ap(acy - ap)*a = a1 - ap_q[ap(aag -+ - 1) la =

e A IR ar_l(aal e ar_l)*a
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By the induction hypothesis, the last term is equal to oy -+ a1 (g -+ - @p_1)* = Wi(h)-
It follows that (ah)*a = h*.

We finally prove by induction on deg(h) that h*h = wyy,) for all h € H which implies
that h** = h for all h € H. This will complete the proof. The cases of deg(h) = 0,1
are clear. So we assume that deg(h) > 1 and, again, assume that h = a; - - -, is a path
(r >1). Then

h*h = [al(a2 .. .a’r‘)]*ala2 .. .a,r = (a2 .. 'a'r')*a2 .. .ar’

and, by the induction hypothesis, the last term is equal to wy(4,) = wy(p)- ]



Chapter 5

The Hochschild cohomology ring
of L,

5.1 Introduction

5.1.1 Motivation

As mentioned in detail in the introduction, the Hochschild cohomology ring HH*(A) of a
self-injective finite dimensional algebra A is of great interest in connection with the study
of varieties of modules and with questions about its relationship with the Yoneda algebra
of A. Also, a related intriguing open problem is that of determining whether Q-periodicity
of A/J as a A-module, where J denotes the Jacobson radical of A, implies the periodicity
of A.

The aim of this chapter is to determine the structure of the classical and stable
Hochschild cohomology rings of the generalized preprojective algebra L, over any com-
mutative ring where 2 is invertible, as well as the structure of the classical and stable
Hochschild homology groups as graded modules over the respective Hochschild cohomo-
logy rings. We warn the reader that the algebra L, is also known as the preprojective
algebra of generalized Dynkin type L,. A very well-known fact, which is proved in fact in
Theorem 3.4.12, is that L,, has (2—) period 6 (here €2 denotes Heller’s syzygy operator)
and, consequently, the Hochschild cohomology spaces also have period 6. Our approach to
the proof of the main theorem is to first prove it when R is a field, and then to deduce from
this the general statement. Also, let us point out that the results given here were obtained
before the first part of this thesis and, hence, we use the original mesh relations as defined
in Chapter 2, Section 2.2. The results in this chapter appear in [3] and [4] for the cases
when the characteristic of the field K is different from 2 or equal to 2, respectively.

5.1.2 Outline of the chapter

We start with Section 5.2 where we study the generalized preprojective algebra A = L,
over a filed K. By Theorem 3.3.1, we know that A is symmetric. We explicitly give a
dualizable basis of A. We then give a minimal projective resolution of A as a A-bimodule
which induces in turn the concrete cochain complex of graded K-vector spaces which

95
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computes the Hochschild cohomology. In Section 5.3 we explicitly calculate the dimensions
of the Hochschild cohomology and homology spaces and also those of the cyclic homology
spaces in characteristic zero. We finally give a canonical basis of each HH?(A) consisting
of homogeneous elements with respect to the length grading. This is done by identifying
previously the structure of each HH?(A) as a module over Z(A). Section 5.4 studies the
multiplication in H H*(A) and, at the end of it, we give the proof of the main theorem , first
over a field of characteristic # 2 and then in the general case. We also derive a presentation
of the stable Hochschild cohomology ring of A, HH*(A), by generators and relations. In
the final Section 5.5 we deal with the case when the base field is of characteristic = 2.

Remark 5.1.1. After we had developed the contents of this chapter, we learnt about the
preprint [34], where the multiplicative and the Batalin-Vilkovisky structure of HH*(A) is
calculated over a field of characteristic zero (actually over the complex numbers). Note
that Eu uses the term ’type T instead of 'type L’. We do not look at the Gerstenhaber
bracket in this chapter. Regarding the multiplicative structure, in the case of a ground
field, the techniques used in our work are valid for all characteristics # 2 and detect
a subtle difference of behavior between the cases when Char(K) divides 2n + 1 or not,
where n is the number of vertices. We will comment throughout the text on similarities
and dissimilarities between our work and [34].

5.1.3 Notation

In this chapter, unless otherwise stated, A will be the generalized preprojective algebra
L,, over a field K. We will follow the notation and terminology given in Chapter 4.

5.2 The generalized preprojective algebra L,

generalized preprojective algebra

5.2.1 Definition

We start by defining explicitly the generalized preprojective algebra IL,,. Recall that it was
already introduced in Chapter 2, Subsection 2.3.2 as an orbit algebra of the mesh algebra
associated to the Dynkin diagram As,,. The quiver quiver @ of L,, is

and the relations are €2 +aya; = 0, a;a; +a@;_1a;—1 =0 (i = 2,...,n—1) and @, _1a,_1 = 0.
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5.2.2 A dualizable basis

In [11] the authors used the fact that A is self-injective to prove that A is a periodic
algebra. Note that the path algebra K@ admits an obvious involutive anti-isomorphism
(=) : KQ — KQ (z — z) which fixes the vertices and the arrow ¢ and maps a; to a;
and a; to a;, for all i = 1,...,n — 1. It clearly preserves the relations for A, and hence, it
induces another involutive anti-isomorphism (=)~ : A — A. We shall call it the canonical
(involutive) antiautomorphism of A. The next proposition shows that we can apply to A
the results of the previous chapter. It also fixes the basis of A, with which we shall work
throughout the chapter.

Proposition 5.2.1. Let A be the generalized preprojective algebra L, and put B =
U, ; eiBej, where

a) e;Be; = {e1,¢,€%,...,e2" 71}
b) e1Bej ={a1---aj_1,€ea - aj_1,62a1 C G, ,e2(n=i)+1g, . ceaj_1}in case j # 1
c) eiBe; = {ai S 1, GOy ey Qg Q10— " -C_Lj}U

{Gi—1 - arear - aj_1,@i—1 - ar€3ar - ajq, .. .,
(—1)8”6@_1 e a1€2(n7])+1a1 e a/j—l}
. . i(i—1 . .
where s;; = 0 for i # j and s; = Z(Z2 ), whenever 1 < i < j < n (here adopt the
convention that a;...a;—1 = e; in case i = j).

d) e;Be; ={b: b€ e;Be;} in case i > j,
Then B is a dualizable basis of A.

Proof. Note that e;Be; contains, at most, one element of a given degree. In order to
see that B is a basis we just need to prove that all paths in e;Be; are nonzero and that
they generate e;Ae; as a K-vector space. If so, we will get that dim(e;Ae;) < 1, for all
1,7 € Qo and all natural numbers &k, and Lemma 4.6.2 can be applied. Let then assume
that 7,5 € Qo and @ < j. The antiautomorphism (—)~ given before guarantees that if
e;Bej is a basis of e;Ae;, then a basis e;Be; of ejAe; is obtained by adding bars to the
monomials in e; Be;.

Observe that for each vertex i # 1 we have, up to sign, a unique cycle of minimum
length, namely a;a;. However for the vertex i = 1 we do not only have the cycle a;a; = —€2,
but also the loop e.

Let 0 # b be a monomial of a fixed length starting at ¢ and ending at ¢ + s. The
previous comment tells us that b contains either an even number or an odd number of
arrows of type e.

In the first case, the equality (Gj—1a;—1)a; - airs—1 = (=1)%a; - ajrs—1(Qitsits)
shows that b has at most n — ¢ non-bar letters and n — (s + i) bar letters. Thus we can
set as a basis element the non-zero path b = a; - - - iy s4jGitstj - Gits (j <n—1—1i—s),
that is, where all the bar letters are to the right.

On the contrary, if b contains and odd number of e-arrows, we have that
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2t—1

b= (a;ia;)(@i—1 - a1€" a1 Aiys—1) = (_1)i(&i71 eaettlay - Aigs—1)

which is, up to sign, equal to

Aj_1--" &16(a1 e atdt e élal e a’Z'JrS*l)

But notice that the arrows between brackets form a path with an even number of € arrows
which is in time, up to sign, equal to aj---@tyits—10t4its—1---Girs . Hence, we can
conclude that a;_1 - - - aje aj -+ aiys—1 is a nonzero path if and only if 0 < ¢ < n—(s+1).
Thus, the sets given in the statement are in fact a basis of A.

It remains to prove that B is a dualizable basis. This task is reduced to prove that

a*a = wy(), for each a € Q1. We have w;) = €21 hence ¢* = €22 and we clearly have
€fe = wi(e).
For a; (i=1, ..., n-1) we have

2(n—i—1)+1 2(n—i)+1

az[dléle a’l"'a/ifl] — (—1)1&1716116 ai:-- Qi1 =

i(i—1) i(i+1) i(i+1)

(D=1 "z wi=(-1)" 2 wi=(-1)"2 W
Then a] = (_1)1-(1-;1) i -a 2=+, o g1 and therefore

G g
afa; = (—1)" 2 @ @it

i ar - Qi—10; = Wi+l = Wi(q,)

The argument is symmetric for the arrows a; and, therefore, the basis B is dualizable.

O
Remark 5.2.2. Notice that if one modifies the basis B of Proposition 5.2.1, by putting
W; = Gj_q - - a2+l ay---aj_1, for all ¢ = 1,...,n, then the resulting basis is no

longer dualizable. Indeed, the proof of the lemma shows that, in the new situation,
CL;( = (—1)%71,@'671,@',1 cee &162(”_1_1)“@1 ---a;_1, and then aZ‘ai = (—1)’wi+1.

By [11] (see also Corollary 3.4.5), we know that the third syzygy of A as a bimodule is
isomorphic to 1A, for some p € Aut(A) such that p? = idy. Our emphasis on choosing
a dualizable basis on A comes from the fact that it allows a very precise determination of
. In fact, combining results of [11] and [32], we know that if B is a dualizable basis, then
the initial part of the minimal projective resolution of A as a bimodule is:

0—NSPLo L p Ao,

where P = @z‘EQeri X eiA7 Q = 69(16Q1Aei(a) & et(a)A and N = @iEQoAfi = @iEQogiAv
where §; = > .. p(—1)%8@)y @ 2* where B is any given basis of A consisting of paths
and negative of paths which contains the vertices, the arrows and a basis of Soc(A). Here
¢ is the inclusion, u is the multiplication map and R and J are as in Proposition 5.2.7
below.

The following result was proved in [11].
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Lemma 5.2.3 (see [11], Proposition 2.3). Let B be a dualizable basis of A, let N be the
A-bimodule mentioned above and let yu € Aut(A) be the only automorphism of A such that
ule;) = e; and p(a) = —a, for all i € Qo and a € Q1. There is an isomorphism of
A-bimodules ¢ : 1A, =N mapping €; to &, for each i € Q.

Remark 5.2.4. The dualizable basis hypothesis does not appear in the statement of
Proposition 2.3 in [11]. However, it is implicitly used in the proof of [11][Lemma 2.4].
From our work with examples it seems that, without that extra hypothesis, the element
ZmEeiB(—l)deg(m):c ® x* need not be in Ker(R).

The dualizable hypothesis seems to be implicitly used also in the argument of [34], Sec-
tion 7.1, where the corresponding result (with the automorphism g conveniently modified)
is proved. In both cases, the crucial point is to guarantee that if z € B is a homogeneous
element of the basis B of degree > 0, then, for any arrow a € @1, the element ax* (resp.
x*a) should again be of the form y*, for some y € B, whenever the product is nonzero.
This follows immediately in case one has a(ya)* = y* and (ay)*a = y, for all y € B
and a € Q1. This is precisely the statement of Lemma 2.4 in [11] and is implicit in the
argument of [34][Section 7.1].

Essentially, by the proof of our Lemma 4.6.2, we see that the mentioned crucial point
is tantamount to require that B is a dualizable basis and that (—,—) is its associated
Nakayama form. If, as in the spirit of [34][Section 6.3], one has a symmetric Nakayama form
(—,—) from the very beginning and finds a basis B consisting of homogeneous elements
which contains the vertices and has the property that the dual elements {w; := €} :i € Qo}
(in B*) belong to BN Soc(A), then one readily sees that B is dualizable and (—, —) is its
associated Nakayama form.

In the rest of the chapter, the basis B will always be that of Proposition 5.2.1. The
following properties can be derived in a routine way. We will omit the proof.

Recall that the Cartan matriz of a finite dimensional algebra A is given by the Q¢ x Qg
matrix Cy := (ci;), where ¢;; = dimy(e; Ae;).

Corollary 5.2.5. Let i,j € Qo be vertices. The following holds:

1. The set of degrees of the elements in e;Be; is

(=i j—i+2j—i+d,....j—i+2n—j)=2n—(i+j)}
UG +i—1j+i+1,5+i+3,....j+i+2n—max(ij) — 1}

2. Ifa;_1--- arekay - a;j_1 is a nonzero element of A, then k <n —i—j+1.

iG=1) o,
3. aq S Q1051 Q1 = (—1)]]2 201 forj=2,...,n.

4. Q11051 = (—1)j_162a1 ce Q2

5. Giai...a; = (=1)7""a; 1. .a;41G511 whenever i < j < n (using the convention that
an =0).
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6. dim (Hompe(P,A)) =31 | dim (e;Ae;) =Y 0 ([2(n —i) + 2] =n?+n

7. dim (Hompe(Q,N)) = dim (e1Aer) +2 37 NeiAeiyr) = 2n+23 0 2(n—i— 1) +
1] = 2n?

8. The Cartan matriz of A is given by:

on | 2(n-1) 2(n-2) - 2
2(n-1
o - (.)
: C]Ln—l
2

where

(172

Its determinant is det(Cr, ) = 2" (see Remark 3.3 in [48]).

5.2.3 The minimal projective resolution

As we will do in Chapter 6 with B,,, this projective resolution can be derived from Propo-
sitions 3.4.2 and 3.4.3. However, due to the fact that we are using the original mesh
relations in this chapter, we prefer to give the explicit argument adapted to this case.

Let us first denote by F : n\Mody i),\ Modp the equivalence taking M to 1M,. We
will need an alternative description of the self-equivalence of categories induced by F:- on
the full subcategory p Proja of n\Mody consisting of the projective A-bimodules. We still

denote by F, : AProjx — aProja the mentioned self-equivalence.

Lemma 5.2.6. Let A = RQ/I be a quotient of path algebra, let T € Aut(A) be an automor-
phism which fixes the vertices, and consider the R-linear functor G : AProja — aProja
identified by the following data:

1. G:(P) = P, for each projective A-bimodule P
2. G, preserves coproducts

3. If f : Ae; @ ejA — Aep, ® e A is a morphism in yProja, then fr := G (f) is
the only morphism of A-bimodules f; : Ae; ® ejA — Aep ® e A taking e; @ e;
t0Y 1 <pcm Ar ® 771(b,), where f(e; ® ej) = > 1<k<r Or @ by

Then G is naturally isomorphic to the self-equivalence Fr = 1(—); : AProjx —> pAProja.

Proof. Due to the fact that each projective A-bimodule is isomorphic to a direct summand
of a coproduct of bimodules of the form Ae; ® e;A, the given conditions determine a
unique R-linear functor G, : AProja — aProjx. In order to give the desired natural
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isomorphism 1 : G- = F., it will be enough to define it on A-bimodules of the form
P = Ae; ® e;A. Indeed, for such a P, we define ¢p : G-(P) = P — 1 P- = F(P) by the
rule ¥p(a ®b) = a ® 7(b). It is clear that ¢p is an isomorphism of A-bimodules. Finally,
it is straightforward to verify that, if f : P = Ae; ® e;A — Q = Aej, ® ;A is a morphism
of A-bimodules, then

FT(f)pr =fO¢P :onfT ZonGr(f%
which shows that the 1p define a natural isomorphism v : G =, F; as desired. [l

We are now ready to give all the modules and maps of the minimal projective resolution
A =1L, as a length-graded bimodule. We remark that the automorphism g is involutive,
which implies that ,A; = 1A,. Recall from Section 4.4 the definition of the shifted graded
module M[n], which is used in the next result.

Proposition 5.2.7. Let A be the generalized preprojective algebra LL,,, let B be the duali-
zable basis of Proposition 5.2.1 and let p € Aut(A) be the algebra automorphism that fizes

—2
the vertices and satisfies that p(a) = —a, for all a € Q1. The chain complex ... P2 L

-1
Pl py MA 0 identified by the following properties is a minimal projective

resolution of A as a length-graded bimodule:

a) P77 =Q = @,cq, Mia) ® €a)A if T =1 (mod 3) and P~ = P 1= P, o, Aei @ ;A

otherwise, as ungraded A-bimodules.

b) u is the multiplication map, d™ = (d"), whenever m —r = £3 and the initial diffe-
rentials d™' =: 5, d=? =: R and d=3 =: k are the only homomorphisms of A-bimodules
satisfying:

i) 6(€i(a) @ €ya)) = a @ €ya) — i(a) D @
ii) R(e; @ e;) = Zatei(a):i Ci(a) @ A+ a® ej(q)
7,7,7,) k;(el X el-) = ZeriB(_l)deg(m)x ® z*

foralla € Q1 and i € Q.

c) When P and Q are given their canonical length grading, then, as graded A-bimodules,
the equalities P=3*~t = P[—(2n+1)k—t], fort = 0,2, and P~3~1 = Q[-(2n+1)k—1],
hold for all k > 0.

Proof. By Lemma 5.2.3 (see [11], Prop. 2.3), we have an exact sequence of A-bimodules:

0— A, -LP Q5P A0,

where the map j satisfies that j(e;) = ZzEeiB(—l)deg(’”)x ® a* for each i € Q.
Applying the self-equivalence F), : \Mody — pMody,, which acts as the identity on
morphisms, and bearing in mind that u? = 1,, we get an exact sequence

0—>Ai>1pui>1QMi>1P5i>lAu—>0
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By Lemma 5.2.6, we then get an exact sequence of A-bimodules

~ R 6 ~
0—ALP5Q 5P A, —0,
where, if ¢ : G, = F,, denotes the natural isomorphism of Lemma 5.2.6, then u =
uotp:a®br au(b) and j = 1/)131 o j which takes e; to —>_ .. sz ® 2"
eriB(—l)deg(x)x ® x* and, hence,
coincides with the morphism k given in the statement. Finally, the composition P —

A L5 P takes e; @ e; to — S weesT® 2% =3 e g(—1)¥EOr @ p(a*) = kule; ® e;).

The composition P Ll A, 5 P takes ¢; @ ¢; >

Therefore we have the equality j o u = k,, from which the exactness of the cochain
complex P* follows.

We finally see that P® can be made into a (minimal) projective resolution in the
category of length-graded A-bimodules, using the grading determined by condition c) in
the statement. Indeed, when considering each P~" with its canonical length grading, the
differential d=" is a graded morphism of degree 1, when r = 1,2 (mod 3), and of degree
2n-1, when » = 0 (mod 3). It follows that if we shift the gradings and put P~3¢—t =
P[—(2n + 1)k — t], for t = 0,2, and P31 = Q[-(2n + 1) — 1], for all k > 0, then all
the differentials in P® become graded maps of degree 0, i.e. morphisms in the category
of graded A-bimodules. It follows that the resulting complex is a (minimal) projective
resolution of A in this category. O

Remark 5.2.8. The action of ,,, R, and k, is given as follows:
i) 5M(ei(a) ® et(a)) = a® €q) t €j(a) ¥ a
i) R,(e; ®e;) = Zatei(a):i(a ® €j(a) — €i(a) ® @)

i) kule;®e) == cogt @

for all @ € Q1 and 7 € Q.

5.2.4 A cochain complex giving the Hochschild cohomology

Note that if M is a graded A-bimodule and r is any integer, then we have an isomorphism of
graded K-vector spaces Hompe(M[—r], A) = Hompe (M, A)[r] (see Section 4.4 for further
details). In the particular case that M = Ae; ® e;A, the grading on e;Ae; derived from
the isomorphism Hompe(Ae; ® e;A, A) = e;Ae; and the length grading on Ae; ® e;A is just
the usual length grading.

If f: @7 Ae;, ®ej, A[—1] — BY_ | Aeg, ® e, A[—m] (is, js, ke, It € Qo) is a morphism
of projective graded A-bimodules, an application of the contravariant functor Homae( A) :
AModpy — Mod gives a morphism of graded K-vector spaces

5 Hompe (BF_  Aek, @ ep,, A)m| — Hompe (DI, Ae;, @ ej A, A)[r].
Using the isomorphism mentioned in the previous paragraph, we get an induced morphism,
still denoted the same f*: @Y ep, Aey, [m] — @ e; Aej, [r].
As usual, we will also denote by J = J(A) the Jacobson radical of A. With this
terminology, we get:
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Proposition 5.2.9. Let A be taken with its length grading and consider the complex of
K -vector spaces

° 6* R* k*
ve....0 — @iEQoeiAei — @ateei(a)Aet(a) — @iEQoeiAei — @iereiAei

i} @aEQlei(a)Aet(a) i @iEQoeiAei i @iEQoeiAei i> @QEQlei(a)Aet(a) to
where VO = Zz’er e;Ne; and V™ =0 Vn < 0. We view V* as a complex of graded K-
vector spaces by putting V¥t = @, eihe;[(2n + 1)k + 1], when t = 0,2, and V3! =
Bac@: Ci(a)Ner(a) [(2n+1)k+1], for all k > 0. Then HH"(A) is the n-th cohomology graded
K -vector space of V*, for each n > 0.

Moreover, viewing @icq,eile; and Bae, €i(a)Aet(a) as subspaces of A, the differentials
of V* act as follows, for each oriented cycle ¢ at i and each path p:i(a) — - — t(a) :

a) 6*(c) = aj—1c — caj—1 + a;c — ca;
b) R*(p) = pa+ap
c) k*(¢) =0 (i.e. k* is the zero map)

d) 5;;(0) = a;—1C+ ca;—1 + a;c + ca;

e) R} (p) =pa—ap
f) k() =0if c € e;Je;, and kj(e;) = =3 icq, dim (eiej)w;

using the convention that ag = ag = € and a, = a, =0

Proof. HH"™(A) is the n-th cohomology graded space of the complex obtained by applying
Hompe( —,A) to the minimal projective resolution of A as a graded A-bimodule. The
graded K-vector spaces of that complex are precisely those of V'*® (see the comments
preceding this proposition) and the only nontrivial part is the explicit definition of its
differentials.

We have two canonical isomorphisms of k-vector spaces:

DjcqoeiNe; AN Hompe(@jeq,Nej @ e; A, A)

Bacq; i(a) Ner(a) — Hompe (Bacq, Aej(a) @ eya) A, A)

The first one identifies a nonzero oriented cycle ¢ at ¢ with the morphism of A-bimodules
Djeqoe; ®ejA —<5 A taking e; ® ej to d;;c, where 0 is the Kronecker symbol. Similarly,
a nonzero path p : i(a) — --- — t(a) is identified by the second isomorphism with the
morphism of A-bimodules @peq, Ae;p) @eypyA — A taking ;) @eq ) to dgpp. Using these
identifications, it is straightforward to verify that the given formulas for the differentials
are correct. We only give a few sample computations:
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a) 6*(c) is the element of ®peq, €i(p) Aey(r) identified with cod € Hompe(Doeg, Aejp) @
eywy A, A). Then

5 (e) =Y _(E0d)(eir) @ ep) = D>, &b ® eyp) — € @ b) =
beQ1 beQn

> [beler) @ ep)) — Elesyy @ ep)bl = Y be - > b=

beQ1 beQy,t(b)=i beQ1,i(b)=i

a;—1¢c+ a;c — ca; — ca;_q

c) k*(c) is the element of @ ;cq,e;jAe; identified with ok € Hompe(®jcq,Ae;j®e;A, A).
Then

k*(c) = Z (Cok)(ej ®ej) = Z é( Z (—1)3e8@) g @ 2*) = Z Z (—1)de8(®) e

JE€Qo Jj€EQo xEe;B JEQo x€e;Be;

But zcz® = 0 in case deg(c) > 0 because then deg(zcz*) > 2n—1 = ca —2. In case c = ¢;
we have k*(ej) = 30, ZerjBei(—l)deg(“)xx*. Bearing in mind that za* = w; for each
x € ejBe; and that the number of elements in e;Be; with even degree is the same as the
number of those with odd degree, we conclude that also k*(e;) = 0. Since k* vanishes on
all nonzero oriented cycles it follows that k* = 0.

f) Arguing similarly with k7, we get that

ky,(c) = 0 if deg(c) > 0 and

k;:(e'l) - - ZjGQO Z:L‘Eejsei xx* == ZjGQO dim (e]Ael)w] O

Remark 5.2.10. With the adequate change of presentation of the algebra, the complex
V'* should correspond to the sequence of morphisms in [34][Section 7.4], although the
differentials defined there do not seem to make it into a complex.

Corollary 5.2.11. A is a symmetric periodic algebra of period 6 and P(A,A) = Soc(A)
when we view the isomorphism HH®(A) = Z(A) as an identification.

Proof. By Proposition 3.3.1, we know that A is symmetric, and, by Proposition 3.4.12, A
is periodic of period 6.

To see that the isomorphism HH?(A) = Z(A) identifies P(A,A) with Soc(A) =
Soc(Z(A)), note that from Proposition 5.2.7, with the same terminology, one obtains a
complete projective resolution of A as a length-graded A-bimodule, by putting P—3F~t =
P[—(2n + 1)k —t],if t = 0,2, and P31 = Q[-(2n + 1)k — 1], for all k € Z,

op2 Ly ptdpo &opt &2
and the differentials are given by d™ = (d"), whenever m = n (mod 3) and d~! = 4,

d=? = R and d=3 = k. It follows that HH*(A) is the cohomology of the complex

_o BL 4 K] 5* R*
Ly Byt Byt 2yt Ly
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where V= V6 for all i € Z. In particular, we have HH(A) = Ker(0h) By Ker(6*) =

Im(k;j)
HH°(A) = Z(A) while Im(k},) = Soc(A) since the Cartan matrix of A is invertible. Note
that the isomorphism Z(A) = Endj<(A) identifies Im(k};) with P(A, A). O

Corollary 5.2.12. There are isomorphisms of graded HH™(A)-modules:

HH*(A) = HE*(A)[6]

HH_,(A) = D(HH*(A)) = HH*(A)[5]

and isomorphisms of graded HH*(A)-modules HH_,(A) = D(HH*(A)).
Moreover, HH*(A) is a pseudo-Frobenius graded algebra admitting a graded Nakayama
form of constant degree function equal to 5.

Proof. HH*(A) = HH*(A)[6] since A is periodic of period 6. On the other hand, A is
5-CY Frobenius and, by Theorem 4.5.7, we have

D(HH"(A)) = HH"(A)[11]

HH_,(A) = HH"(A)[5]

Then, the isomorphisms in the statement follow. The graded pseudo-Frobenius condi-
tion of HH*(A) also follows from Theorem 4.5.7 and the isomorphism D(HH*(A)) =
HH*(A)[5] imply that we can choose a graded Nakayama form for HH*(A) of constant
degree function equal to 5.

On the other hand, due to Remark 4.5.5 and the fact that D(A) = A, we have an
isomorphism HH_,(A) = D(HH*(A,D(A))) = D(HH*(A)). O

5.3 The Hochschild cohomology spaces

Except in the last section, we assume that Char(K) # 2.

In this section we will use the complex V'*® of Proposition 5.2.9 to calculate the dimen-
sion and an appropriate basis of each space HH'(A). In the proof of the following lemma
and in the rest of the chapter, the matrix of a linear map is always written by columns.

Lemma 5.3.1. The equality Im(R*) = @icqyeiJe; holds and Im(R},) is a subspace of
codimension n in ®icq.eiJe;. In particular, we have:

dim (Im(R*)) = n?

dim (Im(R},)) = n? —n.
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Proof. We put V' = @acq; €i(a)Aés(q) and W = @Bjeq,eiJe; for simplicity and view R* and
R}, as K-linear maps V' — W. For each 0 < k < 2n we denote by Vi (resp. Wj) the
vector subspace consisting of the elements of degree k. Since both R* and R}, are graded
maps of degree 1 we have induced K-linear maps

R*,RZ : Vk—l — Wk

fork=1,...,2n— 1.

It is important now to notice that the canonical anti-automorphism of A, x + Z, is the
identity on W. Moreover, we have equalities R*(p) = R*(p) and R}, (p) = —Rj(p). We then
get R*(p) = R*(p) and R};(p) = — R}, (p). This tells us that the images of the maps R*, R}, :
V — W are the same as those of their restrictions to V* =V ﬂ(@;:& €i(a;)Nei(a;)) (Using
the convention that ag = €). Those images are in turn the direct sum of the images of the
induced maps

R R : VI, — W, (k=1,...2n—1).

These are the ones that we shall calculate.

Let us denote by b! the only element in e; Be; of degree t.

We start by considering the case when & = 2m is even (1 < m < n —1). In
that situation, a basis of Wa,, is given by {b3™ b3™ ... mem} while a basis of VQm 1
is {Ve,Vays .-+ Va,_,, } where v = 2™ 1 and vy, = a; Qipm—1Gitm—1- -Gy for i =
1,...,n —m. In particular dim (V;5 ) =n —m+ 1 and dim (Wa,,) = n — m. Direct
computation, using Remark 5.2.5, shows that

i) R*(ve) = 2b3™, R (v) =0

m+1)m

ii) R*(va,) = (=1) bi™ + (—1)"b3™

(m+1)m

) =
Ry(vay) = (=1) 2 bi™ 4 (=1 1p3m
iii) R*(vq,) = b7™ + (=1)"07}}

R} (va,) = b2 + (=1)" 162

(using the convention that b?m =0ifj>n—m)

Then in the matrices of R* and R}, with respect to the given bases of Vztmq and Wop,,
which are both of size (n—m) x (n—m-1), the columns from the 2"? to the (n—m-+1)—th
are linearly independent. Therefore, we get that the maps R*, R: : Vomo1 — W, are
both surjective for each m =1,...n — 1.

We now deal with the case when k& = 2m — 1 is odd, in which case a basis of Woy,,_1
is {b2™71 .. p2™=1}. On the other hand, a basis of V, _, is given by {v, ! (/P

Am—1
where v. = e2m=2 and vai = Q;_1- aleQ(m )= Yay---a; for i = 1,...,m — 1. Direct

calculation, using again Remark 5.2.5, shows the following:

i) R*(v;) =261, Ry(v)) =0
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ii) If m # n then
R () = (1
R (0f,) = (~121 -2

iii) If m = n then

(i+1)i B (i+1)i _ (i+1)i

R*(v;,) = (1) 2 b7+ (—1) 2 b?ﬁl P=(-1) "2 (wi +wit1)
GHDi o (i+1)i _ (i+1)i

Ri(vp) = (=1) "2 b" = (=) b = (1) (wi — wig)

Therefore, the square matrices of R* and R}, with respect to the given bases of V2—7t172 and
Wom—1 are upper triangular. In the case of R* all its diagonal entries are nonzero while
in the case of R}, only the entry (1,1) is zero. It follows:

a) The map R* : Voo — Woy,—1 is surjective for all m =1,...n.

b) The image of the map RZ : Voyu—o — Woy—1 has codimension 1 in Wy,,_o for all
m=1,...,n.

The final conclusion is that the map R* : V' — W is surjective while the image of
Rj, 1 V. — W has codimension exactly the number of odd numbers in {1,2,...2n — 1}.
That is, dim (W) — dim (Im(R},)) = n. O

Remark 5.3.2. The proof of Lemma 5.3.1 gives that if w; is viewed as an element of
Ker(k};) Vj € Qo, then wj —w;1 € Im(R},) Vi =1,2,...,n — L.

The following result describes the structure of the center Z(A) of A, .

Proposition 5.3.3. The center of A is isomorphic to M, where I is the ideal of
Klzg,1,. ..z, generated by i and all the products x;x; with (i,7) # (0,0). In particular,
dim (HH°(A)) = 2n.

Proof. 1t is well-known that Z(A) C @;cq,eilAe;, that J(Z(A)) = Z(A)(J(A) and % =
K-1=K(e;+---ep). Since A is graded, one readily sees that the grading on A gives by
restriction a grading on Z(A).

We claim that if z € Z(A)ay,—1 is an element of odd degree 2m —1, then m = n and z is
a linear combination of the socle elements wy, ..., wy. Indeed, we have z =Y, )\ib?mfl,
with A\, # 0, for some integer 1 < r < m. If r < n then \.b?" la, = za, = a,2 = 0, and
hence 0 = b%m_lar = Qp_1""" dleQ(m_r)Hal -+ ap_106.. This only happens when m = n,
in which case b2~ = b2"~! = w,. On the other hand, if r = n then n = m and we are
also over in this case.

The previous paragraph shows that Z(A)pgq = ®m>0Z(N)am—1 = Zier Kw; =
Soc(A) since w; € Z(A)gy—1 for each i € Qp. We now want to identify Z(A)Z,,, =
Bm>0Z(N)2m. One easily checks that zg = S (—=1)'a;a; = b3 + Y20 (—1)7b? is an
element of Z(A)s. Moreover, (b?)™ # 0 if and only if 1 <4 < n —m and m < n. In this
case we necessarily have an equality (b?)™ = (—1)%b?™, for some integer exponent t;. In
particular z{’ # 0 and z{* = > " )\ib%m, with scalars A; all nonzero. We claim that if
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0 # 2z € Z(A)am and we write it as a K-linear combination z = Y1 ™ p;b2™, then p; # 0
forall¢ =1,...,n—m. Suppose that it is not the case. We first prove that if ;1; = 0 then
w; = 0 for each ¢ < j. For that purpose, we can assume j > 1 and then we have

2m 2m
0= ujaj,lbj == aj,lz == Zaj,1 = ujflbj_lajfl

But b?Tlaj_l #0since j <n—m<n—-1andso j—1<n—m. It follows that j1;_1 =0
and, by iterating the process, that p; =0 Vi < j.

We can then write z = Yo ™ p;b?™ for some 1 < 7 < n—m and p; # 0 Vi =
r,...,n —m. We prove that r = 1 and our claim will be settled. Indeed, if 7 > 1 then we
have

2m
prar—1b." = ar_12 = za,_1 =0

which implies that u, = 0 since ar_lb%m # 0. This is a contradiction.

Once we know that if z € Z(A)9,\0} and 2z = Y™ p;b2™ then p; #0Vi=1,...n—
m, we easily conclude that any such z is a scalar multiple of z*. Then Z(A)g,, = Kaf)',
for each m > 0.

Putting now z; = w; Vi = 1,...,n we clearly have that g, x1,...x, generate Z(A) as
an algebra and they are subject to the relations zj = 0 and x;2; = 0 for (4, 5) # (0,0). O

We are now ready to prove the main result of this section which provides the dimension
of each Hochschild cohomology space HH"(A) as a K-vector space:
)

Theorem 5.3.4. Let us assume that Char(K) # 2 and let A be the generalized preprojec-
tive algebra L, over K. Then dim (HH°(A)) = dim (HHy(A)) = 2n and dim (HH*(A)) =
dim (HH;(A)) =n for all i > 0.

Proof. By the isomorphism HH_,(A) = D(HH*(A)) (see Remark 4.5.5), it is enough to
calculate the dimensions of the Hochschild cohomology spaces.
On the other hand, by Corollary 5.2.12, we have and isomorphism HH*(A) = HH*(A)[6].
We then get isomorphisms of K-vector spaces
HHM(A) = HH(8) = 55 = 66
HHS*(A) = HHY(A),

forall k >0andi=1,2,3,4,5.
By the same corollary, we have an isomorphism D(HH*(A)) = HH*(A)[5], which gives
isomorphisms of K-vector spaces:

D(HH"(A)) = HH5(A)
D(HH'(A)) = HH*(A)
D(HH?(A)) = HH?(A).

Bearing in mind Lemma 4.3, the proof is reduced to check that

dim (Ziy) = dim (HH'(A)) = dim (HH2(A)) = n.
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That dim (Siéé\/z)) = n follows directly from Proposition 5.3.3 and its proof. Moreover,

we have two exact sequences

* R*
0 — Ker(R") = ©ac, i(a)Aet(a) — DieqoeiJei — 0

0 — Z(A) = ®icg_eiNe; — Im(6*) — 0

From the first one we get dim (Ker(R*)) = 2n? — n? = n?, using Lemma 5.3.1 and
Corollary 5.2.5. From the second sequence we get dim (Im(6*)) = (n? +n) —2n = n? —n,
using Lemma 5.3.3. Tt follows that dim (HH!(A)) = n.

We also have that HH?(A) 2 Coker(R*) since k* = 0. But Im(R*) = @;eq,eifei by
Lemma 5.3.1. It follows that dim (HH?(A)) = dim (©;eq, 45%) = n. O

e;Je;

Once we have computed the dimensions of the Hochschild (co)homology spaces of A, we
can do the same for its cyclic homology spaces in characteristic zero, denoted by HC;(A)
following the notation used in [59]. We start by recalling the following fact about graded
algebras.

Proposition 5.3.5. Suppose Char(K) = 0 and let A = &;>04; be a positively graded
algebra such that Agy is a semisimple algebra. The following assertions hold:

0 if i is odd

Ay if i is even

1. As K-vector spaces, HC;(Ap) = {

2. Connes’ boundary map B induces an exact sequence

0 — Ay — HHy(A) 2 HH(A) 25 HHy(A) — - -

such that the image of B : HH;(A) — HH;1(A) is isomorphic to 55"((2))), for all
n > 0.

Proof. Assertion 1 is well-known, and is a direct consequence of Connes’ periodicity exact
sequence ([59], Theorem 2.2.1) and the fact that HH;(Ay) = 0, for all ¢ > 0.

On the other hand, by [59], Theorem 4.1.13, we know that Connes’ periodicity exact
sequence gives exact sequences:

HCi—1(4) B, HHi(A) 1, HGCi(A)
for all « > 0. Since HH;(Ap) = 0, for i > 0, we get an induced K-linear map B o [ :

HH;(A) — HH;1(A) such that Tm(B o I) = Im(B) = 5. O

—0

00—

Corollary 5.3.6. If A is the generalized preprojective algebra L, then

0 ifiis odd

2n if i is even

dim HC;(A) = {
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Proof. Put B* := Im(H H;(A) 5, HH;;1(A)) where B is Connes’ map. From the previous
theorem, we have

dim (B°) = dim HHy(A) — dim (KQp) =2n—n=n

and

dim (B') = dim HH;(A) — dim (B"™") =n - dim (B"™"),

for all 7 > 0.
It follows that dim (B?) = n, when i is even and zero otherwise.
Then we have

. . n ifiis even
dim HC;(A) — dim HC;(KQo) :{ 0 ifiis odd

From this the result follows using the foregoing proposition. U

Remark 5.3.7. In [34][Section 7.5] the author calculates the reduced cyclic homology
spaces HC';(A) using Connes’ sequence (see Proposition 5.3.5(2)) and, as a byproduct, he
also calculates the absolute cyclic homology spaces. However, he states that the equality

HC;(A) = HC;(A) holds, for all i > 0. This is not true since HC;(A) = 58((/\/?)’ for all

i > 0. Therefore, the description of the HC;(A) in [34], page 22, is not correct.

Remark 5.3.8. Due to the fact that A is a A°~ Z(A)-bimodule, for each A-bimodule M,
the K-vector space Hompe(M,A) inherits a structure of Z(A)-module. In particular, via
the isomorphisms,

PBico.eile; — Hompe (P, A)

BacQ i) Ner(q) — Hompe(Q, )

both ©icq,eile; and Dqeq, €i(a)Aey(a) have a structure of Z(A)-modules. It is easy to see
that these structures are given by the multiplication in A and that the differentials of the
complex V'* in Proposition 5.2.9 are all morphisms of Z(A)-modules.

Next, we identify the structure of each HH*(A) as a module over the center of A.
Lemma 5.3.9. We view Soc(A) as an ideal of Z(A). The following assertions hold.
1) Soc(AMHHI(A) =0 for all j > 0.

2) HHI(A) is a semisimple Z(\)-module for all j = 2,3 (mod 6)

3) HHI(A) is isomorphic to SZO((:?/Q) as a Z(A)-module for all 7 >0, j # 2,3 (mod 6)

Proof. 1) is a direct consequence of the fact that P(A,A) = Soc(A) and HH’(A) =
Hom . (). (A), A) for all j > 0.
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2) If xp = 3.7 (—=1)'a;a; as in Proposition 5.3.3, then xoHH/(A) = z¢ - (244%) = 0

e;Je;

when j =2 (mod 6) and xoH H’(A) = 2 - Soc(A) = 0 when j =3 (mod 6).

3) We clearly have an isomorphism HH/(A) =2 HH/T6(A) for all j > 0, so we only need
to prove the claim for j = 1,4,5,6.

From Corollary 5.2.12 and the fact that HomK(LA) K) = &= as Z(A)-modules

Soc(A)?
we get

HH°(A) = HH(A) = D(HH°(A)) = D(HH®(A))
HH*(A) = HH*(A) = D(HH'(A)) = D(HH'(A))

Then, the proof reduces to check the cases j = 1, 6.
. _ » Ker(8*) _ Z(A) .
For j = 6, we take h = 1 + Im(k};) € Tm(kz) — Soc(A) and one obviously has that

Z(M)h = g2iids = HHO(A).

For j = 1 we take the element 7§ = Za€Q1 a € Bacq; €i(a)Ney(a)- In a routine way, one

can check that R*(7) = 0. We then get an element y = 7+Im(6*) € HH'(A) = %.

We now take the induced morphism of Z(A)-modules
Klzo] o Z(A)

@p) - Soc(n) 2

T — Ty

Its kernel is an ideal of I((z[g()ﬂ, and, hence, it is of the form gg;, for some k < n.

Klzo]
(=g)

We claim that if k& < n then zfy # 0. That will imply that =~ Z(A)y so that

Z(AN)y = HH'(A) by a dimension argument.

Suppose that k < n and yx§ = 0. Then yz§ € Im(§*). Since 6* is a graded map of
degree 1 (with respect to length grading) we will have an element x = Z;Zf b2k of
length-degree 2k in ®;eqg,e;Ae; such that §*(z) = yzk. Since this element belongs to
Dac €i(a)Nei(a) We can look at its e-component:

0 (x)e = ex — ex = p1eb? — pb¥Fe =0

(gjxl{j)e = \ebk,
where A is the coefficient of b?k in the expression xl{j = Z?;lk )\ib?k. We know from
the proof of Proposition 5.3.3 that A\; # 0, which gives a contradiction since eb?* =
€2k‘+1 ?é 0.

O
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The following result is now a consequence of Corollary 5.2.12 and Lemma 4.5.9
If

P d peitl L pe1 AT po ua g

is the minimal projective resolution of A (see Proposition 5.2.7) then, by definition, we

have HH!(A) = ngézj)l*))*) - mf(lz;)i;*) for each i > 0. Thus, any element n € HH'(A)
is of the form 1 = 7 + Im((d~%)*), for some 7 € Hompe(P~% A) such that jod~*"1 = 0.
We will say that 7 represents n or that 7 is represented by 7.

In the statement of the following result we denote by ldeg(—) the length-degree of any

element in HH(A).

Proposition 5.3.10. The following are bases of the HH'(A) consisting of homogeneous
elements with respect to the length grading, for each i =0,1,...,6:

1. For HH(A) = Z(A): {zo,23,..., 20 2y,..., 2, }, where zg = Z?;ll(—l)iai&i
and x; = w;, with ldeg(xg) = 2 and ldeg(x;) =2n — 1, foralli=1,...n

2. For HH'(A) = };:((g ; {y, woy, 22y, ... 20 'y}, where y = > aco, @+ Im(6™)
and ldeg(y) = 0.

The element y is represented by the only morphism ¢ : Q — A such that, for each
a € Q1, J(€i(a) ® eya)) = a -

3. For HH?*(A) = ]I(ni?(;:)) {#z1,...,2n}, where z;, = e, +Im(R*) and ldeg(zx) = —2,

for each k € Q.

The element zy, is represented by the only morphism Zy, : P — A such that, for each
1€ QQ, Zk(ei ® ei) = 0;p€k-

4. For HH3(A) = Ke?(lf*)) —

for each k € Q.

Ker(dy,): {t1,...,tn}, where ty = wy and ldeg(ty) = -2,

The element t;, is represented by the only morphism t, : P — A such that, for each
i € Qo ti(e; ® €;) = Opwg-

5. For HH*(A) = Ker((g)). {25 Yy, ... 20,7}, wherey = e1+Im(0;,) and ldeg(~y) =

—2n — 2.

The element v is represented by the only morphism 4 : Q — A such that, for each
a€ @, ”?(ei(a) & et(a)) = Ol -

6. For HE®(A) = 3ogt: {25~y aoyr,uv}-

7. For HHS(A) = ]I(;T((,f:)): {h,z0h, ..., 2§ 'h}, where h = 1+ 1Im(k},) and ldeg(h) =
W
—4n — 2.

The element h is represented by the multiplication map h = u : Dicqo,Nei®e; A — A
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Proof. We leave for the end the part of the assertions concerning the length degree. Omi-
tting that part, we have that assertion 1 follows from Proposition 5.3.3 and its proof.
Assertions 2 and 7 follow from the proof of Lemma 5.3.9. Assertion 3 follows from Lemma
5.3.1 and the fact that k* = 0 (see Proposition 5.2.9). Assertion 4 follows from the fact
that Soc(A) C Ker(d,*) and dimHH3(A) = n = dim(Soc(A)) (see Theorem 5.3.4).

To check that in assertion 5 the given set is a basis of HH*(A), note that R (e;) = eje—

eeq = 0 and that §%(c) = 0y,(c), which implies that &7 (z) = 0, (z) for z € @ieq,eie;. We
proceed as in the proof of the case j = 1 of Lemma 5.3.9, and check that if zfe; € Im(dy,)
and k < n then k = n. Indeed, if xlgel = ¢k ¢ Im(éﬁ) then there is 1 < r < k and
f1y -5 pr € K, with g, # 0, such that 8% (35, uib?k_l) = e2k. We look now at the a,-
component of both members of the equality (i.e. at their image by applying the projection
@ac@: Ci(a)yNei(a) — €i(a,)Nei(a,)). Therefore, we get b2k~1a, = 0, which is only possible
in case r = n, and hence k = n. As in the proof of Lemma 5.3.9, we conclude that

HH*(A) = Iiz((f*‘*‘)) = Z(A), where v := e +1Im(d},). Then {v,z07,... , 701y} is a basis
m

of HH*(A).

We will prove now that the map ¢, : HH*(A) — HH5(A), given by f — yf, is
bijective. This will imply that the set of assertion 6 is a basis of HH®(A). We just
need to check ¢, is injective since dimHH*(A) = dimHH?(A). Note that HH°(A) =

Z(A)

Soc(d) has {z§ : k = 0,1,...,n — 1} as a basis. Fix now any graded Nakayama form
(=)

HH*(A) x HH*(A) —~ K of constant degree function equal to 5. If now f € HH*(A),
then, using Lemma 4.5.9 and the relation between the multiplications in HH*(A) and
HH*(A) (see Section 2.1.3), we have that yf = 0 if and only if 0 = (yf,zk) = («ky, f),
for all k =0,1,...,n — 1. From assertion 2 and the nondegeneracy of (—,—) we conclude
that f = 0 and, hence, ¢, is injective.

It remains to calculate the length-degrees of the given elements. For that, we look at
their explicit definition and take into account the gradings of the V" in the complex V*®
of Proposition 5.2.9. Just as a sample, note that each a € ()1 is an element of degree 0
in V! = ©acQ: €i(a)yAeéy(q)[1], which implies that ldeg(y) = 0. Similarly each socle element
wy, has degree —2 in V3 = @®;c,e;Ae;[2n + 1], which implies that ldeg(t;) = —2, for each
k=1,2,...,n. It is routine to check the remaining cases. [l

The bases of the HH*(A) given in the above proposition will be called canonical bases.

Remark 5.3.11. In [34] the author uses the length grading on A and looks at the minimal
projective resolution of A in the category of graded A-bimodules. Then, he calculates
this graded structure in terms of three seminal graded vector spaces R, U and K (see
Theorems 4.0.13 and 4.0.14 in [34]). In our terminology, R = K@y (concentrated in
degree 0), U = Si((:/(\/i) [2] (with the length grading on Si((:/(\/i)) and K = HH?(A)[2], which
is concentrated in degree 0 since HH?(A) is concentrated in degree —2.

His strategy to prove the mentioned theorems is based on the use of Connes’ exact
sequence (see Proposition 5.3.5(2)) and the description of the graded structure of each
HH;(A) and, using dualities between the Hochschild homology and cohomology graded
spaces obtained in [35], the author also gets the graded structure of each HH'(A).
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Due to the fact that the dimension of R, U and K is n, the dimensions of the H H;(A)
and the HH*(A) can be read off from the mentioned Theorems 4.0.13 and 4.0.14 of [34],
even if they were not explicitly stated in a proposition or corollary. After that and before
calculating the ring structure of HH*(A), Eu gives explicit bases of the HH'(A) using the
corresponding of our complex V*® (see Section 8 in [34]).

Recall from Proposition 1.3.7 and Definition 8 that the graded Nakayama form of
HH*(A) associated to the basis Bs = {2 'y, ..., yv,yy} of HH(A) acts on pairs of
homogeneous elements as follows:

Proposition 5.3.12. The basis {1, ¢, ...,z "} of HH°(A) and the bases of the HH'(A) =
HHY(A) given in Proposition 5.3.10, for i # 0, are orthogonal by pairs with respect to the
restrictions

(—,—): HHY(A) x HH*{(A) — K

of the graded Nakayama form. More specifically, we have:

e e
(zh, 20" Tyy) = @by, 20" 7)) = (20, t5) = iy,

where 6y; is the Kronecker symbol.

Proof. If we have i = 6m-+j, with j € {0,1,...,5}, then the pairing HH*(A)x HH"*(A) —
K is completely determined by the corresponding pairing with ¢ replaced by j. Due to this
and the graded commutativity of HH*(A), the proof is reduced to check the equalities in

the statement. By our definition of the graded Nakayama form, it is clear that we have
(mlg,xg_l_jy’y) = (:clgy,xg_l_]'y) = 0y, forall k,j =0,1,...,n — 1.

It only remains to check that zt; = 5ij871y'y, for all k,j = 1,...,n. Consider
the projective A-bimodules P and @ of Proposition 5.2.7(a). We consider the following
morphisms of A-bimodules:

a) gj =1, : P — P, identified by the equality g;(e; ® €;) = 26;j(w; ® j + €; @ w;), for
all 4,5 € Q.

b) f;j: Q@ — @, identified by the following rules:

In case (j,a) # (1,¢), we have:
0 if j & {i(a), t(a)}

fileia) ® eya)) = 3€i(a) @wi(ay if j = t(a)

—LWia) ® ey if j =1i(a)

and, for (j,a) = (1,¢), we have:

1
Fileie) ® exe) = 5(€i(e) @ Wi(e) — Wi(e) @ €x(e))
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¢) Z;: P — A as in Proposition 5.3.10.

It is easy to check that the following diagram is commutative:

Ry

4
Pt

N

P @—==

It follows that the element z,t; € HH(A) is represented by the composition

P2 p A

Due to the fact that g;(e; ®e;) = 0 for i # j and g;(Ae; ®e;A) C Aej ®e;A, we readily
see that Zj o g; = 0 when j # k. Moreover, in case j = k, we have

B 1
(Zjogj)lei ®e;) = §5z"(wj + wj) = dijw;

From Remark 5.3.2 we know that, when we view w; as an element of Ker(k};) = Soc(A),
we have wj +Im(R}) = wy + Im(R},) = "' + Im(R%) for all j = 2,...,n— 1. Therefore
we have that zt; = 0g; (2" + Im(R},)).

We now check the equality zj 'yy = €271 + Im(R}) in HH®(A) which will end
the proof. Note that if ¥ :  — A is as in Proposition 5.3.10, then a lifting of it is
the morphism of A-bimodules 4 : Q@ — P taking e;q) ® €yq) — dae€1 ® €1. If now
g : P — @ is the morphism of A-bimodules which vanishes on all e; ® ¢;, for ¢ # 0, and
takes €1 ®e1 —> €j(c) ®ey(c), we readily see that Yo R, = dog, where R, and ¢ are the maps
in the minimal projective resolution of A (see Proposition 5.2.7). The definition of the
Yoneda product implies that the element 3y of HH®(A) is represented by the composition
P 25 P Y5 A. This composition vanishes on e;®e;, for i # 1, and takes e;®e; — €. Then
we have yy = € + Im(R},), and hence zy tyy = 2 e+ Im(R})) = €22 (e + Im(R})) =
"1 + Im(R,).

O

5.4 The ring structure of the Hochschild cohomology ring

The main result of the chapter is the following, from which we deduce the structure of all
other objects of interest, namely, the stable Hochschild cohomology as well as the stable
and classical Hochschild homology (see Corollaries 5.2.12 and 5.4.9 and Remark 5.4.10).

Theorem 5.4.1. Let A be the generalized preprojective algebra IL,, over a commutative ring
R on which 2 is invertible. The following assertions hold for the Hochschild cohomology
ring HH*(A):

1. HH*(A) is the commutative bigraded R-algebra given by

a) Generators: To,T1,...,Tn,YyZ1y---s2n,t1,to, . tn1,7,h
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b) Relations:
i) ;& =0 for each i =1,...,n and each generator &.
i) x8:y2:xozj =zt =yt;=titx, =0, (G=1,....,n ,k=1,...n—1)
iii) zjz, = (~D)F (25 = 1)(n —k + Dally, for 1 <j <k <n.
w) zjy= (=1 (n—j+Daf th, forj=1,...,n
v) v? = z1h
vi) yzj = (2n+1)Z1gk§j—1(_1)j_k(j—k)tk+(—1)j_1(21—1)yzl; Jorj=2,..,n
vit) zit; zéjkngly'y, fork=1,....n j=1...,n—1
viii) tiy = dyap tyh, forj=1,....,n— 1.

2. The homological grading on HH*(A) is determined by the equalities deg(x;) = 0,
deg(y) =1, deg(zj) = 2, deg(ty) = 3, deg(y) = 4 and deg(h) = 6.

3. The length grading on HH*(A) is determined by the equalities ldeg(xo) = 2, ldeg(x;) =
2n — 1, for i # 0, ldeg(y) =0, ldeg(z;) = —2, ldeg(ty) = —2, ldeg(y) = —2n — 2 and
ldeg(h) = —4n — 2.

4. Multiplication by h gives an isomorphism HH'(A) = HH™5(A), for each i > 0.

5. AllHH'(A) are free R-modules, and the following are bases for them (see Proposition
5.8.10):

2 n—1
{0, 25, 2y ", 21,...,%n}.

(a) For HH°(A):

(b) For HH(A): {y,xoy,xgy,...xg_ly}.

(¢c) For HH?(A): {#z1,...,2n}.

(d) For HH3(A): {t1,.. ., th—1,y21}.

(e) For HH*(A): {zg7 Yy, 20,7}
()
()

(f) For HH*(A):  {z{ 'yy,...,moyy,y7}-
(g9) For HHS(A): {h,xoh,...,nglh}.

In particular dim(HH°(A)) = 2n and dim(HH*(A)) = n, for alli > 0, where dim(—)
denotes the rank as a free R-module.

Remark 5.4.2. Note that if R is a field (of characteristic # 2) in the above theorem, then
2n+1 is either zero or an invertible element. If R is a commutative ring as in the theorem
satisfying either of these two conditions, the description of HH*(A) by generators and
relations simplifies. First, if char(R) divides 2n 4 1 then the relations vi) become

vi')  yz = (=1)771(2j — 1)yz, for j =2,...,n.
If 2(2n + 1) is invertible in R, then we can express each t; (i = 1,....,n — 1) as a R-

linear combination of the yz;, using the relations vi). Then the following is an immediate
consequence of the theorem.
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Corollary 5.4.3. Let R be a commutative ring on which 2(2n + 1) is invertible. If A is
the generalized preprojective R-algebra LL,,, then HH*(A) is the commutative algebra given

by
a) Generators: To,T1,...Tn, Yy 21, -« 2n, Y, h with

b) Relations:

i) x;& =0, for each i =1,...,n and each generator &.
i) o =y? =x02; =0 (j =1,...,n)
iii) zjzp = (—1)F (25 — 1)(n — k 4+ Daf~ty for 1 < j <k <n.
w) zjy = (1) (n—j+Dazg th (j=1,...,n)
v) v = z1h
on which the homological grading is determined by the equalities deg(x;) = 0, deg(y) =1,
deg(z;) = 2, deg(y) = 4 and deg(h) = 6, while the length grading is determined by the

equalities ldeg(xo) = 2, ldeg(x;) = 2n — 1 (i #0), ldeg(y) = 0, ldeg(z;) = —2, ldeg(y) =
—2n — 2 and ldeg(h) = —4n — 2

The rest of the chapter, except the last section, is devoted to give a proof of the theorem
stated above.

5.4.1 When the ground commutative ring is a field

Throughout this subsection, we assume that the ground commutative ring is a field K of
odd characteristic.

We start by studying the map ¢, : HH?(A) — HH?(A) given by ¢,(u) = yu for all
u € HH?(A)

Lemma 5.4.4. If C = (Cy;) is the matriz of ¢, with respect to the canonical bases of
HH?*(A) and HH?(A), then the following conditions hold:

1) C is a symmetric integer matriz.

2) Cjr = (—1)F=9T1(25 — 1)(n — k + 1) whenever 1 < j <k <n.

3) rank(C) = n, when Char(K) does not divide 2n + 1, and rank(C) = 1, when Char(K)
divides 2n + 1.

Proof. Let x = oy --- oy (r > 0) be any path in e; KQej, which does not belong to the
ideal I. We put

hm:al...ar_l®x*+a1...ar_2®arx*+...+ej®a2...arx*7

which is an element of ©acq,Aejq) ® €yq)A. In case j = k we put he, = 0 and if

(=1
= hy; (recall that w; =

pj = Ezj_l...élez("*j)“al...aj_l we also define h,, = (—1)
(_1)j(j71)

p;)- In this way, we have defined h, for each = € e;jBej and for all j,k € Q.
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Direct calculation shows that d(h,) = v ® 2* — e; ® w;, and hence

(Y (D Oh) = 3 (DO @er g ew)= Y. (1) EPrear,

x€e;Bey, x€e;Bey, x€ejBey

bearing in mind that in e; Bey, there are exactly the same number of elements of odd and
even length-degree.

Now consider Z; : P — A as in Proposition 5.3.10. It is clear that the morphism of
A-bimodules 2;, : P — P determined by the rule Z;(e; ® €;) = direr @ ey, is a lifting of Zj,
(i.e. Zx =wuo Z).

If now fi : P — @ is the morphism of A-bimodules determined by the rule f(e; ®
ej) = Zx&jgek(—l)deg(m)hz, then we have a commutative diagram

pP-t.p
fkl lék
Q—2-P

and hence yzp is represented by the morphism

gofr:P— A, (ej®ej — Z (—1)deg(z)deg(x)wj.

x€e;jBey,

That means that if we put Cj;, = Zm@jgek(—l)degmdeg(m) for all j,k € Qo, then we
have yzi, = > e, Cjt;j (notation as in Proposition 5.3.10). Therefore, C':= (Cjg) is the
matrix of ¢, : HH?(A) — HH?(A) with respect to the canonical bases of HH?(A) and
HH3(A).

That C is a symmetric integer matrix is clear since the anti-isomorphism z +— Z gives
a bijection between e;Bey and e;Be;, which preserves the term (—1)3°8@)deg(x). We then
proceed to calculate the entries of this matrix. To do that, we should recall the possible
degrees of elements in e;jBej (see Remark 5.2.5), for 1 < j < k < n. There are two
possibilities.

i) k=j (mod 2): Then the sum of even degrees is [(kfj)Jr(k*jH;("*k)}(nfkﬂ) = (n—

J)(n — k + 1), while the sum of odd degrees is [(kﬂ_l”(kﬂ_gw(n_k)}(”_kH) = (n+
j—1)(n—Fk+1). Therefore, we have Cj, = (n—j)(n—k+1)—(n+j—-1)(n—k+1) =
(1—2j)(n —k+1)

i) £ # j (mod 2): In this case Cjj is the negative of the number above, ie., Cj;, =
(25 —1)(n—k+1).

It finally remains to calculate rank(C'). We view each n x m matrix as a n-tuple,
whose components are its rows. By elementary row transformation one passes from C' =

(Cl,...,Cn) to

O = (Cl,CQ +3Ch,... ,Cj + (—1)j(2j — 1)01, o, Cp + (—1)”(277, - 1)01)
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so that rank(C) = rank(C’). We look at the j-th row C} = Cj + (-1)7(25 — 1)Cy of C".
It is straightforward to check that for j < k, one has C]’-k = 0, and for j > k, one has
Cly = (1) (k — j)(2n + 1).

Therefore, in case Char(K) divides 2n + 1, all rows of C” except the first one are zero.
On the other hand, we have C},, = C1,, = (=1)"" (2.1 -1)(n—n+1) = (-1)". It
follows that rank(C') = 1 in case Char(K)/2n+1. In case Char(K') does not divide 2n+1,
if we apply the n-cycle (1 n m—1--- 2) to the rows of C’, we obtain a lower triangular

matrix with diagonal entries Cy, C3y, ..., C;, 1, C,.

We have C_ = (=)D (k— (k4+1))(2n+1) = —(2n+1) for k=2,...,n and
Ci,, = (=1)™. Tt follows that det(C) = det(C') = (=1)*""1(2n + 1)"~! #£ 0. Therefore,
rank(C) = n in this case. 0

Remark 5.4.5. Given a graph I'" without double edges, its adjacency matriz D = Dr is
the symmetric matrix D = (d;;); jer, having d;; = 1, in case there is an edge i — j, and
d;j = 0 otherwise. In particular, for the graph L,, one has diy = 1, d; 41 = diy1;, = 1
for i = 1,...,n — 1, and d;; = 0 otherwise. Direct computation shows that the matrix
C of Lemma 5.4.4 satisfies the equality —C(2I,, + D) = (2n + 1)I,,, where I, is the
identity n x n matrix. Therefore, when char(K) does not divide 2n + 1, an alternative
description of the matrix C' is C = —(2n + 1)(2I, + D)~!. Up to signs forced by the
different presentation of A and the different choice of the exceptional vertex of L,, the
last equality is that of [34][Proposition 9.3.1] (see also [34][Theorem 4.0.16]).

Taking into account also the case when Char(K) divides 2n + 1 is fundamental for the
difference of presentations in our two main theorems and is the part of our work where
the arguments of [34] cannot be applied.

Lemma 5.4.6. The following equalities hold in the ring HH*(A):
1. HH*TY(A) - HH**Y(A) = 0, for all integers r,s

tiy = 51jx871yh, where 015 is the Kronecker symbol

v =2h

zjy = (=1)(n — j + g~ 'h.

e e

Proof. 1) From Eu-Schedler formula (see Lemma 4.5. 9), using the nondegenerancy of
(= —) : HH*(A) x HH*(A) — K, we get that HHY(A) - HH’(A) = 0 if, and only
if, HH'(A) - HH>~"7(A) = 0. This gives that HH'(A) - HH'(A) = 0 if, and only if,
HHl( )- HH ( ) = 0. Similarly, it gives that HH3(A) - HH3(A) = 0 if, and only if,
HH3(A) - HH™Y(A) = 0 which, by the 6-periodicity of HH*(A), is equivalent to saying
that HH3(A) - HH?(A) = 0. But, by Proposition 5.3.10, we have an equality HH'(A) -
HH*(A) = HH5(A). These considerations together with the fact that H H*(A) is periodic
of period 6 imply that, in order to prove assertion 1, we just need to check that HH(A) -
HH'(A) = 0, for which it is enough to see that y?> = 0. But this follows by considering
length-degrees since the length-degree of any nonzero homogeneous element of HH?(A) is
—2 while ldeg(y?) = 0.
2) We consider the following diagram, for each j € Qo:
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where f; and g; = t are as in the proof of Proposition 5.3.12 and hj and [; are the only
morphisms of A-bimodules satisfying the following properties:

a) hj(el- &® 61') = %5@'(@]' Qwj —wj & ej)

b) In case (j,a) # (1,€) we have

0 if j ¢ {i(a),t(a)}
Li(eia) @ era)) = 3€ia) @ wi(e) if j = t(a)
$Wila) ® €ya) if J =i(a)

and, in case (j,a) = (1,¢€), we have:

1
li(eie) ® eg(e)) = 5(€ie) @ We) + Wie) @ €y(e))
2

It is routine to check that the two squares on the left of the diagram are commutative,
which will imply that the whole diagram is commutative.

Graded commutativity of HH*(A) gives that t;y = vt; and the element vt; € HH(A)
is represented by the composition

00 5 A

Note that [j(e;) ® eya)) € Aej(q) @ €4(q)AA, from which we deduce that 7 ol; = 0 for
Jj € Qo/{1}. And for j = 1 we have

0 if a#e
(:Y © ll)(ei(a) ® et(a)) -

1

s(w1 +wi) =wy =€

if a=c¢

But, due to the identification HH'(A) = HHT(A), which is just multiplication by h, and
the proof of Proposition 5.3.12, we know that a:g_lyh is precisely the element €21 +
Im(0*) € Iiﬁf((g)). Therefore, we get t;jy = vt; = 6124 ‘yh, for all j € Qp.

3) By Lemma 4.5.9, we have (v2,¢t;h~1) = (yt;h~1,~)). By the equality 2 and the
graded commutativity of HH*(A), we then have

(v, 1Y) = 815(xy yhh ™t ) = 61(20 Y, 7).
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By definition of (—,—) and by Proposition 5.3.12, we then have (72,¢t;h™!) = &; =
(21,t;) = (z21h,tjh™1), for all j = 1,..,n. It follows that v*> = z1h since {t;h~1 : j =
1,...,n} is a basis of HH 3(A) and the form (—, —) is nondegenerate.

4) By Lemma 4.5.9, we have that (z;v,z5yvh™1) = (ahyy*h™1, 2;), using also the
graded commutativity of HH*(A). Now, by the equality 3, we get that (2,7, zfyyh™1) =
(zhyz1hh™1, 2;) = (zhyz1,2)). Note that zhyz; = 0, for r > 0, because HH3(A) is a
semisimple Z(A)-module (see Lemma 5.3.9). On the other hand, by Lemma 5.4.4, we
have yz1 = Y p_; ckitr and, by Proposition 5.3.12, we get an equality (z;7v,yyh™!)
S0kt (ths 25) = Sy Okjers = i1 = (—1)3(n — j + 1). Therefore (237, ahyrh~!) =
when r > 0, and (z;7,yvh ') = (=1)7(n — j + 1).

On the other hand, by definition of (—, —), we also have the equality

0,

gy = (aghyagyyhTag "y, forallr =0,1,.n — 1.

This shows that (zf~'h,afyyh™") = 0, for 7 > 0, and (z " *h,yyh~') = 1. Taking into
account that {zhyyh™1:r =0,1,..,n — 1} is a basis of HH ' (A), the nondegeneracy of
(—,—) gives that 2y = (=1)7(n — j + 1)zp~ ' h.

O

We are now ready to give:
PROOF OF THEOREM 5.4.1 WHEN R = K IS A FIELD:

Assertion 4 follows from Corollary 5.2.12 and assertions 2, 3 and 5 follow from Propo-
sition 5.3.10.

To prove assertion 1, note that any graded commutative algebra admitting, apart from
the graded commutativity ones, the given list of relations, is necessarily commutative since
the product of generators of odd degree is always zero.

With the notation used until now, we know from Proposition 5.3.10 that the set

{xO)xla"'axn)yazla'-')Zn)tla"'tn)’y’h}

generates HH*(A) as an algebra.

We now look at Lemma 5.4.4. The coordinate vector of yz; with respect to the canoni-
cal basis {t1,...,t, } of HH3(A) is precisely the j-th column of the matrix C' = (cx;). It fo-
llows in particular that {t1,...,t,_1,%21} is a basis of HH?(A) because ¢, = c1, = (—1)".
Therefore, we can delete t,, from the given list of generators.

On the other hand, bearing in mind that C is symmetric, we also get from the proof
of Lemma 5.4.4 that the coordinate vector of yz; + (—1)7(2j — 1)yz; with respect to the
canonical basis is the j-th column of the transpose C'T of the matrix C’ considered there,
for each 5 = 2,...,n. But that column is precisely the j-th row of C’, which has entry
iy =0, for k> j, and ¢ = (=1)7 "1 (k—j)(2n+1) = (=1)7F(j = k)(2n+ 1), for k < j.
Then, for each j > 1, we get an equality

Yz + (_1)j(2j —Dyz = (2n+1) Z1gk§j71(_1)jfk(j — k)t
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from which the relations vi) follow.

From the fact that Soc(A)HH’(A) = 0 Vj > 0 one readily obtains the relations in i).
From lemmas 5.3.3, 5.3.9 and 5.4.6(1) we obtain all the relations in 7).

The relations in iv), v) and viii) are included in lemma 5.4.6.

From the equalities in Proposition 5.3.12 and the definition of the Nakayama form
(—,—) the relations vii) follow. We use them to prove that also the relations in ii7)
hold. Note that the proof of Proposition 5.3.10 gives an isomorphism of Z(A)-modules
¢y HHY(A) = HH5(A) (f — yf). What we shall prove is the equality

zi(yzr) = (1IN 25 — 1) (n — k + 1)zg 'y,

from which the desired equality will follow.
Indeed, by Lemma 5.4.4, we have that yz, = >, ; cit; and hence z;(yz;) = Y, cwziti.
Now, using the relations vii), we get

zj(yzr) = cjpzit; = (—1)k_j+1(2j —(n—k+ 1)30871?/7

The previous paragraphs show that there is a surjective homomorphism of bigraded
algebras from the commutative algebra given by the mentioned generators and relations
to the algebra HH*(A). By looking at the dimensions in each homological degree, it is
not difficult to see that the homomorphism is actually an isomorphism.

Remark 5.4.7. In [34][Section 9] the graded ring structure of HH*(A) was calculated
taking C as ground field. However, the arguments and calculations appear to be valid
whenever Char(K) # 2 and Char(K) does not divide 2n + 1. Then, with the suitable
changes derived from the different presentations of the algebra, Corollary 5.4.3 could be
derived from Eu’s work.

Eu’s methods use sometimes direct calculation of the products HH'(A) - HHI(A),
other times the graded condition of the minimal projective resolution of A (see 9.2) and,
on other occasions, the matrix Hilbert series Hx(t) (see Definition 2.5.2) together with the
equality Hy(t) = (1 +t*"T1)((1 +*)I,, — Dt)~! proved in [62], where D is the adjacency
matrix of L,, (see the proof of Lemma 9.3.3 and Section 6.2 in [34]).

We have not used the matrix Hilbert series in this work. We have directly calculated all
products HH'(A)- HH’(A), using Lemma 4.5.9 and working with the bases of Proposition
5.3.10, in which some products have already been included.

5.4.2 The general case

In this final subsection, we assume that R is any ground commutative ring on which 2 is
invertible. We shall derive the main theorem from the particular case when R is a field,
which was done in the previous subsection. The crucial point is the following result of
Commutative Algebra.

Lemma 5.4.8. Let R be a reduced commutative ring, M be a finitely generated R module,
B = {z1,...,x,} be a finite set of elements of M and, for each p € Spec(R), denote by
k(p) the residue field at p. The following assertions hold:
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1. If the image of B by the map fp : M — M ®pr k(p), m = m ® 1, is k(p)-linearly
independent in M®rk(p), for each p € Spec(R), then B is an R-linearly independent
subset of M.

2. B generates M as an R-module if, and only if, fo(B) generates M @pg k(p) as a
k(p)-vector space, for each p € Spec(R).

3. B is a basis of M as a free R-module if, and only if, fp(B) is a basis of M ®@p k(p)
as a k(p)-vector space, for each p € Spec(R).

Proof. 1) If a1, ...,a, € R are elements such that ) , ., a;x; = 0, then the hypothesis
says that the image of each a; by the canonical ring homomorphism up : R — k(p) is
zero, for each p € Spec(R). Fix i and put a := a; to simplify the notation. When the
tensor functor ? ®@p k(p) is applied to the exact sequence

0 —- Ra — R — R/Ra — 0,

we get an exact sequence

Ra®p k(p) - k(p) — R/Ra ®p k(p) — 0.

This shows that the support of R/Ra, which is V(Ra) = {p € Spec(R) | Ra C P}, is all
Spec(R). Thus is equivalent to saying that Ra is contained ﬂpespec( ) P or, equivalently,
that a is nilpotent (see [57][Propositions II1.4.6 and 1.4.5]). By the reduced condition of
R, we get a = 0. Therefore, B is R-linearly independent.

2) The ’only if’ part of the assertion is clear. For the ’if’ part, note that if N =
Y i<i<p Rxzi and ¢ : N — M is the inclusion, then the hypothesis implies that map
L ® 1) : N ®@g k(p) — M ®g k(p) is surjective or, equivalently, that % ®rk(p) =0,
for all p € Spec(R). Then, the support of M/N is empty and, hence, we have M /N = 0.

3) This assertion follows from 1) and 2). O

PROOF OF THEOREM 5.4.1: We first prove that if R = Z[3] is the localization of
7. at the multiplicative subset {2]g : k=0,1,..}, and A =L, is the associated R-algebra,
then the following conditions hold:

a) The subset B of Proposition 5.2.1 is a basis of A as an R-module

b) The complex P*® of Proposition 5.2.7 is still a graded projective resolution of A
and the canonical map P~" — Q).(A) is a retraction (=split epimorphism) in the
category of R-modules

¢) The complex V* of Proposition 5.2.9 has as cohomology R-modules the HH(A).
Moreover the kernels of its differentials and the HH*(A) are free R-modules of finite
rank.

Condition a) follows immediately from the previous lemma and, as a consequence, Ae;,
ejA and e;Ae; are free R-modules of finite rank, for all 4, j € Q.
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To prove b), note that the differentials make sense over R, and then it immediately
follows that P* is again a complex. Now we put P! = A and prove, by decreasing induction
on i < 1, that the complex is exact at P! and that the surjective map P'~! — Ker(d")
splits as a morphism of R-modules. Indeed, in the pass from i+ 1 to i, one has the R-split
exact sequence

0 — Ker(d') — P — Ker(d'*1) — 0,

which implies Ker(d?) is finitely generated projective as an R-module and that, for each
p € Spec(R), the kernel of the differential d' ® 1 : P’ ®@g k(p) — P! @g k(p) is
Ker(d") ® k(p). From that it easily follows that IE‘ZZ(Z-CZ)) ®r k(p) = m, which
is zero since, by Proposition 5.2.7, we know that P* ®p k(p) is the minimal projective
resolution of A ®g k(p). It follows that Ker(d")/Im(d~!) is finitely generated R-module
with empty support and, hence, it is zero.

c) If P is a finitely generated projective A-bimodule, then Hompe (P, A) is projective
as an R-module and, as a consequence, the canonical map

Hompe (P, A) KR k‘(p) — Hom(A@)Rk(p))e (P KR k‘(p), A®pg kj(p))

is bijective, for all p € Spec(R). Note that the complex V* of Proposition 5.2.9 is also
isomorphic to Hompe(P®, A) in our case, where P*® is as in Proposition 5.2.7. Therefore
HY(V®) = HH(A) (resp. H'(V®* ®g k(p)) = HH'(A ®g k(p))) as a graded R-module
(resp. k(p)-vector space), for each ¢ > 0.

On the other hand, according to condition b, the canonical epimorphism 7; : P~% —
Q4. (A) = Ker(d~"*1) is a retraction in the category of R-modules. It follows that the
induced map Hompe( Q4. (A),A) — Hompe(P ™% A) is a section (=split monomorphism)
in the category of R-modules. This implies that the kernel of each differential §° : V¢ —
Vitl of the complex V* is a direct summand of V?, thus finitely generated projective, as an
R-module. It follows that each H H(A) is a finitely generated R-module, and Lemma 5.4.8
can be applied. Moreover, the application of the functor ? ® g k(p) gives an isomorphism
HHY(A) ®g k(p) = HHY (A ®g k(p)) due to the fact that this functor keeps exact all the
(R-split) exact sequences

0 — Ker(6') — V — Im(d%) — 0.

Using Proposition 5.3.10 and lemma 5.4.8, we then get that all the HH*(A) are free
R-modules with bases as indicated in that proposition.

We finally prove that the relations i)-viii) of Theorem 5.4.1 also hold over R. Indeed,
each prime ideal of R is of the form pR and its residue field is k(p) = R/pR = F),
where p # 2 is a prime integer. This implies that if v € HH?(A) is in the kernel of the
canonical map HH'(A) — HH'(A ®g k(p)) & HH'(A) ®g k(p), for all p € Spec(R),
then v € (), pHH(A). But this implies that v = 0 since HH*(A) is a free R-module of
finite rank. We apply this argument to each relator (=substraction of the two members
of a relation) in the list i)-viii).

The last paragraph provides a morphism of bigraded R-algebras g : H — HH*(A),
where H is the algebra given by generators and relations as in the statement of Theorem
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5.4.1. Moreover g ® lyp) : H ®@r k(p) = HH*(A) @r k(p) = HH*(A ®g k(p)) is an
isomorphism, for each p € Spec(R), because the statement of the theorem is true for
fields. It follows that g is an isomorphism of graded R-algebras since the homogeneous
components with respect to the homological grading, H and HH*(A), are both finitely
generated, and HH*(A) is free, as R-modules.

We finally consider the general case, in which R is an arbitrary commutative ring on
which 2 is invertible. Then we have a structural ring homomorphism Z[1] — R making
R into a Z[]-module. But conditions a), b) and c) proved above for Z[;] are kept when
applying the functor ? ®gz 1 R. Denoting now by AZ[ 1 and Apr the respective generalized
preprojective algebras of type L, we have an isomorphism AZ[%} ®Z[%] R = Ap, which
induces an isomorphism of graded algebras HH" (A 1 1) ®g 1 R = HH*(AR). It follows
that the presentation by generators and relations is also valid for Ag.

Corollary 5.4.9. Let us fix the presentation of HH*(A) given by Theorem 5.4.1. A
presentation of HH*(A) is obtained from it by doing the following:

1. Replace the generators x1,...,x, by a new generator h' of degree —6
2. Replace the relations i) in the list by a new relation hh' = 1.
3. Leave the remaining generators and relations unchanged.

Proof. 1t is clear that the commutative algebra given by the just described generators and
relations is isomorphic to HH*(A)), therefore isomorphic to HH*(A) (see Proposition
4.5.6). O

Remark 5.4.10. Using a process of passing from a ground field of Char(K) # 2 to
a ground commutative R on which 2 is invertible, similar to the one used in the proof
Theorem 5.4.1, it follows that Corollary 5.2.12 is also true over such a ring R. In particular
all HH;(A) and HH;(A) are free R-modules and the formulas of Theorem 5.3.4 still hold,
where dim(—) denotes the rank as free R-module.

5.5 Case when char(K) =2

In this final section we complete the results given in the previous section by dealing with the
classical and stable Hochschild cohomology ring of the generalized preprojective algebra
L, over a field of characteristic 2. We also study the structure as graded modules over it
of the classical and stable Hochschild homology.

Throughout this section, K will be an algebraically closed field of characteristic 2. and
A will be the generalized preprojective algebra L, over K.

All the desired structures are obtained from the following main result:

Theorem 5.5.1. Let us assume that Char(K) = 2 and A = L,,. Then HH*(A) is the
commutative bigraded algebra, given by:

a) Generators: o, X1, ..., Tn, Yo, Y1y 22, -« - Zn, .
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b) Relations (given in ascending degree):

i) xf =xix; =0 (1,7 =0,...,n and (i,j) # (0,0))
ii) miyo = dnxg 'y
ziyr =0
i) wize = 0Tl Yoy
woyg = 0= yi
w) yg =nah th
Yoy = iy (n — g+ Dajh
yozk = (n— k4 1)zg'h
Yizi = D _j_1(n —maz(j, k) + 1)z ;h
v) 2xz = (n —maxz(l, k) + 1)zh~ tyoh,

where i = 1,...,n and k,l = 2,...,n in the relations ii)-v).

¢) The homological grading on HH*(A) is determined by the equalities deg(x;) = 0,
deg(y;) =1, deg(z;) = 2 and deg(h) = 3.

d) The length grading on HH*(A) is determined by the equalities ldeg(xo) = 2, ldeg(x;) =
2n — 1, for i # 0, ldeg(yo) = —1, ldeg(y1) = 0, ldeg(z) = —2 and ldeg(h) = —2n — 1.

5.5.1 Preliminaries

We will follow the notation used in the previous sections. For the convenience of the reader
we restate the needed results with the shape they take in characteristic 2.

The following is a re-statement of Proposition 5.2.1. It fixes the basis of A with which
we shall work throughout this section.

Proposition 5.5.2. Let A be the generalized preprojective algebra L, and put B =
U ; eiBej, where

2 2n—1
a) egBey = {e1, e, e, ..., e}
L — . . 2 . 2(n—j)+1 . ; ;
b) e1Bej ={a1---aj_1,€a1---aj_1,€a1 - Qj_1,...,€ (n=4) ai---aj_1}in case j # 1
c) e;iBe; = {ai i1, GOy ey Qg Q10 —1 ---C_Lj}U
- - - ~ 3 - ~ 9(n—j)+1
{az—l PEEEEY a/lea/l PEEEEY a/]_17 a’Z—l ... 0/16 a/l ... a/]_17 e ’a/l—l o . ale (n J)+ a/l ... a/]—l}

(here we convene that a;...aj—1 = €; in case i = j).
d) e;Be; ={b: b€ e;Be;} in case i > j,
then B is a basis of A such that B = B* and b** = b, for all b € B.

Using the above basis and adapting the statement of Proposition 5.2.7, we have the
following description of a minimal projective resolution of A as a bimodule.
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—2

Proposition 5.5.3. Let B be the basis of Proposition 5.5.2. The chain complex ... P~2 L
-1

p1 Py = A — 0 identified by the following properties is a minimal projective res-

olution of A as a length-graded bimodule:

a) PF=Q:= Docq, Aeia)®eya)A if k= —1 (mod 3) and PF=p:.= Dicq, Aei®eiA
otherwise.

b) u is the multiplication map, d™ = d" whenever m = n (mod 3) and the initial diffe-
rentials d™' =: 5, d=? =: R and d=3 =: k are the only homomorphisms of A-bimodules
satisfying:

i) 6(€i(a) @ €ya)) = a @ €yq) t €i(q) ® @

it) R(e; ® €;) =3 4eqi(a)=i Cia) ® @+ a ® €i(q)
ii1) k(e; ®@e;) =) e pT @ T
for alla € Q1 and i € Qq.

¢) When P and Q are given their canonical length grading, then, as graded A-bimodules,
the equalities P31 = P[—(2n+1)k—t], fort = 0,2, and P31 = Q[—(2n+1)k—1],
hold for all k > 0.

Finally, we re-state Proposition 5.2.9:

Proposition 5.5.4. Let A be taken with its length grading and consider the complex of
K -vector spaces

° 6* R* k*
ve....0 — @iEQoeiAei — @ateei(a)Aet(a) — @iEQoeiAei — @iereiAei

5 R* k* 5
— DaeQ: i) Nera) — Bicoeilei — Bicpeilei — Bac; Ci(a)Mei(a) * -

where V0 = Zz’er e;Ne; and V™ =0 Vn < 0. We view V* as a complex of graded K-
vector spaces by putting V¥ = @, eihe;[(2n + 1)k + t], when t = 0,2, and V3! =
Bac@: Ci(a)Ner(a) [(2n+ 1)k +1], for all k > 0. Then the space HH"(A) is isomorphic, as a
(length)graded K -vector space, to the n-th cohomology space of the complex V*, for each
n > 0.

Moreover, viewing ©icq_oeiAe; and Gacq, €i(q)Aei(q) as subspaces of A, the differentials
of V* act as follows for each oriented cycle ¢ at i and each path p :i(a) — -+ — t(a) :

a) 6*(c) = aj—1c+ caj—1 + a;c + ca;
b) R*(p) = pa +ap
c) k*(¢) =0 (i.e. k* is the zero map)

where we convene that ag = ag = € and a, = @, =0
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As a consequence we get that HH"3(A) = HHY(A) Vi > 0 via an isomorphism
h: Q3.(A) = A. Note that the isomorphism HH°(A) & HH3(A) is due to the fact
that k* = 0 and hence HH3(A) = Ker(6*) = HH°(A). This is contrast to the case of
Char(K) # 2, where HH(A) % HHS(A).

The following result gives us the description of the structure of the classical and stable
Hochschild in terms of the Hochschild cohomology.

Corollary 5.5.5. There are isomorphisms of graded HH*(A)-modules:

HH*(A) = HH*(A)[3]

HH (A= D(HH*(A))
and isomorphisms of graded HH*(A)-modules HH_.(A) = D(HH*(A)).

Proof. HH*(A) =2 HH*(A)[3] since A is periodic of period 3. On the other hand, A is
2-CY Frobenius and using a result by Eu and Schedler (see [35] and also Theorem 4.5.7
of this thesis), we have

D(HH"(A)) = HH*(A)[5]

HH_,(A) = HH"(A)[2]

Then the isomorphisms in the statement follow. The graded Frobenius condition of
HH*(A) follows from the theorem mentioned before.
On the other hand, due to the fact that D(A) = A, we have an isomorphism HH_,(A) =
D(HH*(A,D(A))) 2 D(HH*(A)) .
O

5.5.2  The ring structure of HH*(A)

In this subsection we determine explicitly the dimension and appropriate basis of each
space HH'(A) using the complex V'* given above. We start with two lemmas which are the
correspondents of Lemma 5.3.1 and Proposition 5.3.3 for the case when Char(K) = 2. The
proof is identical, with the suitable adaptation. For instance Rj, = R* and zo = Z?:_ol a;a;
in the new situation.

Lemma 5.5.6. Im(R*) is a subspace of codimension n in ®;cqyeiJe;. In particular, we
have:

dim(Im(R*)) = n* —n.

Proposition 5.5.7. The center of A is isomorphic to M, where I is the ideal of
Klzg,21,. ..z, generated by x and all the products x;x; with (i,7) # (0,0). In particular,
dim(HH°(A)) = 2n.

We are now ready to give the dimension of all cohomology spaces. Note the difference
with respect to case of characteristic # 2.
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Proposition 5.5.8. The equality dim(HH'(A)) = dim(HH;(A)) = dim(HH’(A)) =
dim(HH ;(A)) = 2n holds for alli >0 and j € Z.

Proof. Using Corollary 5.5.5, the computation of the dimensions of the Hochschild homo-
logy spaces can be directly deduced from the computation of the Hochschild cohomology
spaces.

On the other hand, the proof of Corollary 5.2.11, which is still valid in characteristic 2,
shows that P(A, A) = Im(k},). Since kj, = k* = 0 in our case, we conclude that P(A,A) =0
and hence HH'(A) = HH'(A) for every i > 0. Since HH'(A) = HH'™(A), for every
integer i € Z, it is enough to prove that dim(HH*(A)) = 2n, for i = 0,1, 2.

By the previous lemma, dim(HH°(A)) = 2n. To deal with HH'(A) we consider

0 — Ker(R") — ©aeq; €i(a)Aet(a) ELN Im(R*) — 0

0 — Z(A) = ®icqoeile; — Im(6*) — 0
Since HH'(A) = 5261 we then get that dim(HH(A)) = dim(®acq, €i(a)Aera) —
dim(Im(R*)) — (dim(®eq,eile;) — dim(Z(A))) = [2n? — (n? — n)] — [(n? +n) — 2n] =
(n? +n) — (n? —n) = 2n, using Corollary 5.2.5 for the formulas for the dimensions of
Hompe(P,A) and Hompe(Q, A) which are still valid here.
Finally, HH?(A) = Coker(R*) & EBZIGQ%;/)\Q and thus dim(HH?(A)) =n? +n — (n? —
n) = 2n.
U

We next identify the structure of the HH*(A) as Z(A)-modules. In the statement and
proof the elements x; which appear are as in Proposition 5.5.7.

Proposition 5.5.9. As Z(A)-modules, HH’(A) is isomorphic to HH/*3(A) for all j > 0.
In particular HH?*(A) is a free Z(A)-module of rank 1, for all k > 0. Moreover:

1. The Z(A)-module HH(A) has two generators yo and yi, subject to the relations
1Yo = :cgflyl and x;y; =0, fori=1,...,n, j=0,1 and (i,7) # (1,0).

2. The Z(A)-module HH?(A) has n+ 1 generators z, 21, ..., zn, subject to the relations
vz =0, xoz; = 0 and xj2; = 5Z~jx8_1z, foralli,j =1,...,n (here 6;; is the Kronecker
symbol).

Proof. The initial statement is a direct consequence of Proposition 5.5.4 and the equality
HHY(A) = Z(A).

In order to prove assertion 1, we put yo = e; + Im(6*),y; = € + Im(6*) € HH'(A).
Viewing Soc(A) as an ideal of Z(A), we have Soc(A)y; = 0 (equivalently z;y; = 0 for all
i=1,...,n) since Soc(A)e = 0. Then the assignment a ~» ay; gives a surjective morphism

I((x[g‘;] = sfé(% — Z(N)y1 of Z(A)-modules. We shall prove that it is injective. Note that

the equality zXy; = 0 is equivalent to saying that ¢2**! € Tm(6*). So the injectivity will
follow from something more general that we shall prove, namely that e;)Aey) NIm(6*) =

0. Indeed take the projection ©aeq, €i(a)Ae4(a) LN ei(e)Aéy(¢) and consider the composition
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o* Te
Bicoeiei — Bac:Ci(a)Neta) — €ie)Aey(e)

This map vanishes on e;Ae;, for i # 1, and takes ¢ ~ ec + ce, for each cycle at 1. But
ec + ce = 0 since ey Ae; is a commutative algebra and Char(K) = 2.

On the other hand, since x; = w; we readily get that z;yp = 0 for i # 1. As for
i =1 we have 21y9 = "' + Im(6*) = 2§ 'y;. Tt follows that the Z(A)yo + Z(A)y
is generated as a K-vector space by B := {yo, zoyo, - - - ,xg_lyo} U {y1, zoys, - ..xg_lyl}.
But if ZO§k<n )\kxl(‘jyo + ZO§l<n ,ul:cloyl = 0, with \g,py € K, then ZO§k<n ek +
> o<ien i€l € Im(6*) and the previous paragraph shows that then > ., _, A\pe?® +
Y 0<i<n et = 0. This can only happen if \y = 0 = gy, for all 0 < k, 1 < n. It
follows that B is a basis of Z(A)yo + Z(A)y1 and, by Proposition 5.5.8, we then have
Z(N)yo + Z(M)yr = HH'(A).

We finally prove assertion 2. We freely use the part of the proof of Lemma 5.3.1
concerning I, which is valid here for R* since R* = R}, in characteristic 2. By Lemma
5.5.6, we have a chain

Im(R*) C ®icqpeidei S ®icgoeillei,

with each term of codimension n in the next. This implies that a basis of HH?(A) =
Iﬁﬁz(lg)) = EBiIErf(‘);i/)\ei is given by B’ = {e; + Im(R*) : i € Qo} U B, where B” is a basis of
Bicqqeite
TIm(RY)

By looking at the proof of Lemma 5.3.1, we know that the matrix of the induced

map R* = R} : V;g%z — Wap—1 with respect to the there given bases is an upper
triangular square matrix whose first column is zero. This implies that €2~ ¢ Im(R*),
for all m = 1,...,n. Furthermore, due to the fact that R* is a graded map, it implies that

{e+Tm(R*),é + Im(R"), ..., 2" + Im(R*)} =: B is a basis of ZE20sc

We now put z = e+ Im(R*), and then ¢2™ ! +Im(R*) = 20z in HH?*(A). We also put
zi = ¢; + Im(R*). Then B’ = {z1,...,2,} U {2,202, ...,25 'z} is a basis of HH?(A). We
immediately get that z;z = 0 since w;e = 0in A. On the other hand z;2z; = w;e;+Im(R*) =
0, unless j = i, a case in which we have z;2; = w;+Im(R*) = w;+Im(R*) = 2"~ +Im(R*)
(see Remark 3.2 of [1]). But we have €2"~! +Tm(R*) = 2§ 'z so that 2,2; = d;;z5 'z, for
all 4,7 € {1,...,n}.

Finally, the induced map R* = R, : Vop—1 —> Wy is surjective, for all k > 0, which
implies that 25z; = (a;a;)* +Im(R*) = 0+ Im(R*), and hence z§z; = 0, for all i = 1,...,n
and k£ > 0. O

Remark 5.5.10. The following diagrams depict the structure of HH'(A) and HH?(A)
as Z(A)-modules:
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HH(A):
Yo 1
ZoYo Zoy1
| T
T 1yo Ty 1y1
HH?(A):
Z\

Toz

21 z2 “ee ZTZ

We have now the following correspondent of Proposition 5.3.10, which is an immediate
consequence of the proof of the previous lemma:

Proposition 5.5.11. The following are bases for the HH*(A) (i = 0,1,2):

1. For HH°(A) = Z(A): {1, 20, o0, @0 Y U {1, ey 0}, where 29 = Z?:_Ol a;a; and
T =wg, forallk=1,...,n.

2. For HH'(A) = %: {40, 200, -, T Yo }ULY1, Toy1, -, T L1}, where y =
e* + Im(6*) (convening that € = eq).

The element y;. is represented by the only morphism of A-bimodules g5 : Q@ — A
such that Ji(eiq) ® et(a)) = Sac€”.

3. For HH?*(A) = %: {z,xoz,...,nglz} U{z1,...,2n}, where the z = e +

Im(R*) (k=1,...,n) and z = €+ Im(R*). In this case:

(a) The element zj is represented by the only morphism Z : P — A such that
Zr(e; ® €;) = direx, for all i € Q.
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(b) The element z is represented by the only morphism Z : P — A such that
Z(e; ® e;) = 0y4€, for all i € Q.

The above bases will be called the canonical bases of the HHJ(A), for j = 0,1,2.
Given the ’equality’ HH3(A) = HH°(A) = Z(A), we denote 1 € Z(A) by h when view it
as an element of HH?3(A). With that notation, multiplication by h* in HH*(A) gives an
isomorphism HHJ(A) —s HH3*+3(A) for j = 0,1,2. The canonical basis of HH3*J will
be, by definition, the image of the canonical basis of HH?(A) by this isomorphism.

Lemma 5.5.12. In the algebra HH*(A), we have equalities

Y=z yoy=2z yi=0.
Moreover, multiplication by y1 gives an epimorphism of Z(A)-modules p : Z(A)yo — Z(A)z
whose kernel is Kx1yo.

Proof. The morphism gy : ©ae@, Aei(a) @ eya)A — DicqoAe; ® ;A determined by the
rule gi(€i(q) @ eya)) = Sea€® ® e satisfies that w o g}, = i, for k = 0,1. The equalities in
the statement will follow from commutativity of the next diagram:

where ay : DicgoAei @ €A — Bac, Aej(q) @ €yq) A is the only morphism of A-bimodules
which takes e; ® e; to §;1€* ® e;. Then y% is represented by the composition

@ierAei ® e; A =9, @ateAei(a) & et(a)A o A

But we have gy o ag(e; ® €;) = di1e1 = Z1(e; ® €;), for each i € Qp, and so y% = 2.

Similarly we get that yiyg is represented by morphism of A-bimodules g1 o ag :
@iEQOAei ® e; A —> A, which acts as g1 o ao(ei ® 61') = gjl(éil(el X 61)) = ;1€ while
y? is represented by the only morphism 9; o a1 @ @ieg,Ae; @ ;A — A which acts as
g1oai(e; ®e;) = G16i1€(e; ® e;) = d;1€2. The first one is clearly represents z € HH?(A),
so that y190 = 2, while y? = 0 since €2 € Im(R*) by the proof of Lemma 5.3.1.

The existence of the epimorphism p of the final statement follows from the equality
Yoy1 = z. From the proof of Lemma 5.5.9 we know that dim(Z(A)z) = n while a basis
of Z(A)yop as K-vector space is {yo, ZoYo, ...,xg_lyo,xlyo}. Since p(z1y0) = p(xg_lyl) =
zp~1y? = 0 it follows that Ker(p) = Kz1yo. O

Lemma 5.5.13. The following equalities hold in the ring HH*(A):

n n

Yoz = Z(n —Jj+Dxjh yozy=(n—k+ 1):66“1h Y12k = Z(n —max(k,j) + 1)z;h.
j=1 j=1
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Proof. The morphism Zzj, : ®jcq,Ae; ® ;A — Bicg,Ae; ® e;A given by Zp(e; ® €;) =
dir(ex, @ ey) satisfies that wo zy = Zi, for k = 1,...,n. Bearing in mind that Char(K) = 2,
the proof of Lemma 5.3.9 gives a commutative diagram:

P P
fkl lgk
Q P

where fi(e; ® e;) = ZeriBek hy for all k,i € Qo, where h, = 0, for all : € Q9. Here the
h, are as in the proof of Lemma 5.4.4

k
> ;

—_—
1

Since g is a graded map of degree 0 we get that goo fx(e; ®¢;) is a linear combination
of elements of degree 2n — 2 in e;Ae;. This implies that gg o fr(e; ® ¢;) = 0 Vi # 1. On
the contrary, for i = 1 we note that if * = ¢/ay...ar_; € e;Bey, then §o(hy) = je? 2. It
follows that

2(n—k)+1

)
Gofr(er ® e1) = go( Z hy) = Z Jo(hy) = Z jen=2)
=1

r€ey Bey x€e1 Bey

= (n—k+1)]20n—k)+ 1172 = (n — k4 1)),

If we now consider 7, it is clear that for each x € e;Bey, y1(h;) = mw; where m is
the number of times that € appears in . On one hand, if ¢ = 1 then, arguing as in the
foregoing paragraph, we have 3 . p. ¥1(hs) = (n — k + 1)wi. On the other hand, if
i # 1, then

n—max(i,k) n—max(i,k)

> dilhe) = gi(ha, ,.a € ay - ap_y) = (2t + 1)w; =

x€e; Bey,

~+
Il
o
~+
Il
o

(n —max(i, k) + 1)w;.
Therefore we conclude that

yozr = (n —k+1)2f 'h  and  y1z = Z(n —max (i, k) + 1)z;h.
i=1

Finally, the lat equality together with Lemma 5.5.12 give

n

Yoz = ygy1 = 2101 =z = »_(n—i+ Dah.
i=1

We are now ready to prove the main theorem of the paper.
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PROOF OF THE THEOREM 5.5.1: Proceeding as in the last paragraph of Proposition
5.3.10, one easily sees that the length degrees of the proposed generators are as indicated.
On the other hand, "graded commutativity” and ”commutativity” are synonymous in
characteristic 2. Moreover, since A is periodic of period 3 it follows that HH*(A) is
generated as an algebra by (Ug<;<o HH(A)) U {h}, where h € HH3(A) is the element

given by a fixed isomorphism QiQ (A) =, A. From these comments and Proposition
5.5.9 we get that {xg,z1, ..., Tn, Yo, Y1, 2, 21, ..., 2n, I} is a set of homogeneous generators of
HH*(A) as an algebra. But, due to Lemma 5.5.12, we can drop z and z; from the list. In
that way, one gets the set of generators and their degrees as in the statement.

By Proposition 5.5.7 and Proposition 5.5.9, the generators satisfy the relations in i)
and ii). Also Proposition 5.5.9 and Lemma 5.5.12 give the relations in iii). On the other
hand, using this latter lemma and Lemma 5.5.13, we see that

3 1
Yo = 210 = nxy h

and
Yoy = 211 = Y121 = Z (n—j+1)xjh.
1<j<n
The other two relations in iv) follow from Lemma 5.5.13.

It remains to check the relations in v), the rest of the proof is routine. From Lemma
5.5.9, we easily get that Soc(HH'(A)) = Kﬂ:gflyo—f—Kxg*lyl = Knglyo—f—leyo (socle as
Z(A)-module). This implies that Soc(HH*(A)) = Ka§~ 'yoh+Kx1yoh. We claim that this
socle contains every product zjz;, for which it will be enough to see that z;z;2; = 0 for all
indices 4, k,[. This is a direct consequence of Proposition 5.5.9 except, perhaps, for the case
i = k = [. But in this case, this same proposition gives xjzizr = :cgflzzk = nglzkz =0.

We put N =3 5 <, K2r2. We shall prove that (N+ Kzl yoh)NKx1yoh = 0. For
that we need to give a morphism of A-bimodules representing each product zz; € HH*(A).
Following the notation of the proof of Lemma 5.5.13, we consider the commutative diagram

k

Q- -p k.

P

lgk lf}e l/gk
that is needed to compute z;zx. Although we do not know gj explicitly, recall that fi(e; ®
€)= ZmEeiBek h., so that fr is a graded map of degree 2n — 2. Since § and R are both
graded maps of degree 1 and the left square is required to be commutative we can choose
gk to be graded of degree 2n — 2, so that gi(ejq) @ €yq)) = Z?Zl vj @ p; where 7; € ey A
and j1; € Aey,) are elements such that deg(vy;) + deg(y;) = 2n — 2.

Since the product z;z; will be represented by the composition

69a€Q1A€z‘(a) ® et(a)A S DicgoAe; @ e;A A

we have 2 o gr(eiq) ® €sa)) = D_i—1 ViZi(€i(y;) @ €i(u;)) 5, Which is a linear combination
of paths of length 2n — 2 in e;4)Aey,). Therefore, it is zero whenever a # €. Putting
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vkl = (21 0 gk)(€i(e) ® €y()), Which is an element of degree 2n — 2 of ejAer, we get the
equality
Z AizZL2 + )\nglyoh = Z MoVt + Ae2772 4 Tm(6*)

2<k,l<n 2<k,I<n

n 71;?5((6}?)) = HH*(A), for all \y; and X in K. That implies that Z2§k,l§n Akizrzr +
)\g;gflyoh = v + Im(d*), for some element v € e;Aey of degree 2n — 2.
On the other hand, for any p € K, we have pz1yoh = pe?” 1 + Im(6*). If we have an
equality
> Aazwa + Ay yoh = pmayoh,
1<k,i<n

then the element v — ue?*~! € Im(6*). Since §* is a graded map and v and pe"~! are

homogeneous elements of different length degree it follows that v € Im(6*) and pue?"~! €
Im(6*). The latter is equivalent to saying that pxiyoh = 0 in HH?*(A), which can only
happens if g = 0. This proves the desired equality (N + Kﬂ:gflyoh) N Kz1yoh = 0.

The last two paragraphs together with Lemma 5.5.12 and the canonical isomorphism
HH(A) = HH*(A) show that if p : Z(A)yoh — Z(A)zh is the epimorphism of Z(A)-
modules given by u ~~ yiu, then the composition

pi N+ Kal lyoh = Z(Myoh > Z(A)zh

is a monomorphism. But, using the commutativity of HH*(A), Lemma 5.5.13 and Propo-
sition 5.5.9, we have an equality

p(zrzr — (n— max(k,1) + )2l tyoh) = y1zrzr — (n — mazx(k,1) + D)al ™ yoyrh
= Z (n — max(j, k) + 1)a;hz; — (n — maz(k,1) + 1)z 2h
1<j<n

= Z (n — mazx(j, k) + V)a;zh — (n — maz(k,1) + 1)z zh

1<j<n
= (n —mazx(l,k) + 1)al ' 2h — (n — max(k,1) + 1)zp = zh = 0.

It follows that 22 — (n —max(k,1) + 1)z yoh = 0, for all k,1 = 1, ...,n, from which the
relations v) in the statement follow.

Corollary 5.5.14. Let us fix the presentation of HH*(A) given by Theorem 5.5.1. A
presentation of HH*(A) is obtaining from it by doing the following:

1. Add a new generator h' of degree —3 and the relation hh' = 1.
2. Leave all the other generators and relations unchanged.

Proof. 1t is immediately seen that the graded commutative algebra given by the just
described generators and relations is isomorphic to HH *(A)(h), whence isomorphic to
HH*(A) (see Proposition 4.5.6, which is also valid when Char(K) = 2). O
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Chapter 6

The Hochschild cohomology ring
of B,

6.1 Introduction

6.2 Motivation

We conclude this dissertation by describing the multiplicative structure of the Hochschild
cohomology ring HH*(A) of the generalized preprojective algebra A = B,, over a field of
characteristic # 2. This algebra together with the algebra L,,, studied in the previous
chapter, form the generalized preprojective algebras of type A,. Thus, the results in
the present chapter complete the problem of determining the multiplicative structure of
HH*(A) for the preprojective and generalized preprojective algebras A of type A,,.

As for L,,, it is known and follows from Theorem 3.4.12 that B,, has (2 -)period 6 and,
hence, the Hochschild cohomology spaces also have period 6.

Our results show the surprisingly different behavior of HH*(A) when n is odd and
when n is even. In case n is odd, many Hochschild cohomology groups vanish and, when
char(K') does not divide n, the ring HH*(A) can be generated by just three elements.
The situation is rather different in case n is even, where a minimal set of generators of
HH*(A) involves all the degrees from 0 to 6. Moreover, when n is odd, HH*(A) is always
commutative, while, when n is even, it is only commutative when char(K) divides n.

6.3 Outline of the chapter

The organization of this chapter is similar to that of Chapter 5. However, unlike the
previous chapter, we will use here the full strength of covering theory and the results
from Chapters 1-3. In Section 6.5 we look at the generalized preprojective algebra B,.
We begin this section by providing some more information of the mesh algebra B of the
stable translation quiver ZAo,_;. Specifically, we provide a combinatorial criterion to
determine when e, ;) Be(y, jy # 0, for any two given vertices (k,i) and (m, j) of ZAg, 1.
In the rest of this section we study the algebra A = B,, and, in particular, we provide the

137
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cochain complex of graded K-vector spaces which is later used to compute the Hochschild
cohomology of B,. In Section 6.6 we give the structure of the Hochschild cohomology
spaces HH'(A) as modules over Z(A) = HH°(A). Finally, Section 6.7 is devoted to
compute the structure of the Hochschild cohomology ring H H*(A) as a bigraded algebra
over a field of characteristic # 2 by means of generators and relations, distinguishing the
cases when n is either even or odd.

6.4 Notation

In this chapter, unless otherwise stated, A will be the generalized preprojective algebra
B,, over a field K with characteristic # 2. We will follow the notation and terminology
given in Chapter 4.

6.5 The generalized preprojective algebra B,

6.5.1 The mesh algebra B of ZA,, ;

In this section we present some results on the Galois cover of B,,, that is, the mesh algebra
B of the stable translation quiver ZAs,, 1. For its definition and basic properties the reader
is referred to Chapter 2, Section 2.3. We also point out that in this chapter we will use the
change of relations given in Chapter 2, Section 2.3.3. Then, the mesh algebra B of ZAs, 1
is given by the stable translation quiver ZAy,_1 and, for each vertex (k,i) € (ZAa,—1)o,
we have a relation r, ;) where

r(ki) =Y (1)@ (a)a
Ha)=(k.)

and s is the corresponding signature map (see Chapter 2, Section 2.3.3) From now on in
this chapter these r(k,i) will be the mesh relations for us. Our next goal is to identify
those pairs [(k, 1), (m, j)] of vertices of ZAg,, 1 for which e, ;) Be,, ;) # 0, identifying the
dimension of this space. Notice that when (k,7), (m, j) € (ZAg,—_1)o are any two vertices,
if there are any paths between them, they all go in just one direction and have the same
length. For that reason, it is appropriate to call distance between the two vertices, denoted
d[(k,i),(m,j)], to the common length of those paths, when they exist. In what follows,
the orientation of the arrows is the one given in Subsection 2.3.1. That is, the canonical
k-slice of ZAgy, 1 is (k,1) — (k,2) — -+ — (k,2n — 1).

Proposition 6.5.1. Suppose that (k,i), (m,j) are any two vertices in ZAg,_1. Then,
there is a path (k,i) — ... = (m,j) in ZAsy_1 if, and only if, maz{0,i — j} < m — k.
Moreover, in this case, d[(k,i),(m,j)] =2(m — k) + (j — ).

Proof. Let p = (k,i) — ... = (m,j) be a path in ZAy, 1. We prove by induction on its
length | that max{0,i — j} < m — k. For [ = 0 it is clear, so we assume that [ > 0.
Since there are at most two arrows starting at (k,), namely (k,i) — (k,i + 1) and
(k,i) — (k+1,i—1), we can consider that there are either a path (k,i+1) — ... — (m, )
or a path (k+1,7i—1) — ... = (m,j), each one of length [ — 1. The induction hypothesis



6.5. The generalized preprojective algebra B, 139

says that max{0,7+1— j} < m — k, in the first case, and max{0,i — 1 —j} <m—k—1,
in the second one. From both of them it follows that max{0,i — j} < m — k, and hence
this inequality follows from the existence of the path p.

Conversely, the inequality max{0,7 — j} < m — k is equivalent to say that k£ < m and
either : < jor¢ > jand i —j < m — k. We then assume that £k < m. If ¢ < j then we
have an obvious path (k,i) — ... = (k,j) = ... = (m,j). Ilf i > jand i —j < m — k,
then we have a path (k,i) - (k+1,i—1) > ... = (k+i—4,j) = ... = (m,]), because
k+i— j < m. Moreover, either one of these two paths has length 2(m — k) + (j —¢) and,
hence, this is the distance between (k,7) and (m, j).

O

Definition 21. Let us look at A = Ay,_; as asubquiver of AZ:... - -1 —-0—=>1— ...
and, hence, at ZA as a subquiver of ZAZ%. Given (k,1), (m,j) € (ZA)g such that there is a
path in ZA from (k,7) to (m,j) (i.e. max{0,i —j} < m —k), we call imaginary rectangle
based on (k,i) and (m, j) to the rectangle in ZAZ with vertices (k,7), (m,k—m+1), (m,J)
and (k,m —k+ j). We will say that the top (resp. bottom) of the rectangle can be built in
ZAsg, 1 when the vertex (k,m —k+ j) (resp, (m,k —m+1)) is in ZAg, 1. That is, when
m—Fk+7<n (resp. k—m+i>1). We will say that the rectangle can be constructed
within ZAs, 1 when the top and the bottom of the imaginary triangle can be built in
LAz, 1.

The following lemma admits a symmetric one. Both proofs are very easy and we will
omit them.

Lemma 6.5.2. Letq: (k,i) — (k+1,i—1) — ... = (m,k—m+i) andp : (m,k—m+1i) —
.. = (m,j) paths in T' = ZAg,_1 of positive length consisting of downward arrows and
upward arrows, respectively. The following assertions are equivalent:

1. The product qp is nonzero in the mesh algebra B = KT'/I

2. The top of the rectangle based on (k,i) and (m,j) can be built in ZAg,_1

In that case, all paths from (k,i) to (m,j) in T' are equal modulo the mesh relations.

The following result is a criterion to determine when there exists a path between any
two given vertices in B. Moreover, in such case, the path is unique up to sign, in B.

Theorem 6.5.3. Let A = Ay, 1, let I' = ZA its associated translation quiver and B the
associated mesh algebra. Let (k,i) and (m,j) be vertices in T'. Then, the space e, 3 Be(m,j)
is nonzero if, and only if, maz{0,i — j} < m —k < min{i — 1,2n — 1 — j}. In this case
one has dim(e, 3 Be(y, ;) = 1.

Proof. Given any two vertices (k,i), (m,j) € Iy, any path from (k,%) to (m,j) in ZA is a
product of paths qip1...q,p,, where the g; consist only of downward arrows, the p; consist
only of upward arrows, and one has length(p;) > 0, for i = 1, ..., — 1, and length(g;) > 0,
for 5 = 2,...,r. If such a path exists then, by Proposition 6.5.1, max{0,i — j} < m — k.
On the other hand, by using the previous lemma and its symmetric, we see that if the
path is nonzero in B then the imaginary rectangle based on (k,7) and (m,j) can be built
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in ZAs, 1. Then we have m — k+ j <2n —1 and kK — m + ¢ > 1, which is equivalent to
say that m — k < min{i — 1,2n — 1 — j}. Therefore we get that max{0,i —j} <m —k <
min{i — 1,2n — 1 — j}.

Conversely, if max{0,7 — j} < m —k < min{i — 1,2n — 1 — j} then we have a path
(k,i) = ... = (m,j) in ZA, due to Proposition 6.5.1. Moreover, by definition 21, the
imaginary rectangle based on (k,7) and (m,j) can be built in ZAs, 1. By Lemma 6.5.2,
we get a path (k,7) — ... = (m, j) which is nonzero in B and is unique modulo the mesh
relations.

O

6.5.2 Definition of B,

In the sequel, A will be generalized preprojective algebra B,, over a field K of characte-
ristic different from 2, and @)y and ()1 will denote the sets of vertices and arrows in A,
respectively. We will see A as the orbit algebra A = B/ < pt > where B, p and 7 are the
mesh algebra and the automorphisms of ZAs, 1 described in Chapter 2, Section 2.3.1.
We will divert from the notation in [25] and we will put ¢ = [(1,7)], for n < i < 2n —1,
and i = [(14+n—14,i)], for 1 <i < n, where [(k, )] denotes the pr-orbit of the vertex (k,1).
Then, the generalized preprojective algebra B, is the finite dimensional algebra given, up
to isomorphism, by the quiver

Qnt+1

a2n—2
n-+ 2 2n—2——=2n-—1

n

N

and subject to all the commutativity relations and the monomial relations of length 2
ending at the extreme vertices 1 and 2n — 1.

Recall from [25] that the quiver @ of A is also a translation quiver whose AR translation
and polarization are induced from those of ZAs, 1. Precisely, the action of the Auslander-
Reiten translation of A, also denoted by 7, is given by 7(i) = 2n — ¢ for all i € Q. As
for the arrows, it is given by 7(;) = aon—1-; and 7(8;) = Pap—1—; for all i € Qp. In
regard to the polarization o, we have that o(«;) = 5; and o(8;) = agp—1—; for all i € Q.
Observe then that the equality 0?(a) = 7(a) holds for each arrow a € Q1. Also note that
if X C (ZAg,_1)1 is the set of arrows defining the signature map, then its image X by the
pushdown functor B — A consists of the arrows in @ that appear in the ’crossing path’

n—2 2 1
n—2 (631

n+1
(0773
%1 Bt Bn_2 Ban—2 A1
\n_l
Bn
n—1 o

n—-1—-2—-2n—-3—=---—=n—-1—=n when n is odd
and

l1-2n—-2—=3—>---—>n—-1—>n when n is even
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However, for unification purposes (see for instance Lemma 6.5.9 and Proposition 6.5.10),
whenever n is even we will consider 7(X) instead of X and, in such case, X consists of
the arrows appearing in the following path

n—-1=-2=-2n-3—=--=n+l1l-—=n

Notice that, also for the new considered X, the relations for A are those of the form
Zt(a):i(—1)5("(“)“)0(0,)@. Up to sign, they are exactly the commutativity relations plus
the zero relations o, o9, 9 and fiaq. For the sake of simplicity, the arrows 3; will be
called crossing arrows and the arrows «a; will be called noncrossing arrows.

Recall from Proposition 3.4.3 and Corollary 3.4.5 that, with their canonical gradings,
both B and A are graded pseudo-Frobenius and we have isomorphisms of graded bimo-
dules D(B) = 1By[2n — 2| and D(A) = 1A,;[2n — 2], where 7 is the respective Nakayama
automorphism in each case. In particular, we get:

Remark 6.5.4. In the above setting, if A is either B or A, then the duality isomorphism
D(A) = 1A,[2n — 2] gives an isomorphism of K-vector spaces

eiAgn_g_den(j) = (& (1An[2n — 2])7d 6]' = eZ-D(A)_dej = D(ejAdei),

for all vertices ¢, j € I'g and natural number d.

6.5.3 The Cartan matrix

Due to the fact that B is the universal Galois covering of A, if (k,4) and (m, j) are vertices
of ZAg,—1 and d is a natural number, then e ;) Adem ) # 0 if, and only if, there is a
(unique) integer r such that d[(p7)"(k, 1), (m, j)] = d and e, i) Be(m,j) # 0. We then
introduce the following rather useful sets of integers.

Definition 22. Let i,j € Qo be vertices. If 4, > n, the set X (4,5) (resp. X~ (4,7)) will
consist of the integers s such that e(,)2s(1 4 Be(, ;) # 0 (resp. €(pry2s+1 (1) Be(,j) # 0).

Similarly, if ¢ > n > j then Z*(i,5) (vesp. Z~(i,7)) will denote the set of integers s
such that e,r)2s (1,5 Be(14n—jj) # 0 (resp. €(pry2st1(1,5 Be14n—jj) # 0)-

Lemma 6.5.5. Let i,j € Qg be vertices and d be a natural number. The following asser-
tions hold:

1. When i,j > n, the inequality e;Aqej # 0 holds if, and only if, d = 4s + (j — i), for
some integer s € X1 (i, ), or d =4s+ 2+ (j — 1), for some integer s € X~ (i,5). In
particular, the dimension of e;Ae; is | X T (i,7)| + | X~ (4,7)|, where | —| denotes the
cardinal of a set.

2. Wheni>n > j, the inequality e;Age; # 0 holds if, and only if, d = 4s+ (2n—i—j),
for some integer s € Z(i,5), ord = 4s+2+(2n—i—j), for some integer s € Z~ (i, j).
In particular the dimension of e;Aej is |Z7(i,7)| + |2~ (4, 7))

Proof. Recall that we have the equality p7(k,i) = (k47 —mn —1,2n — ). Bearing in mind
that (p7)?* = 725, we readily check the following two formulas:
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(p7)?%(k, 1) = (k — 2s,1)
and (p7)2*t (ki) = (k+i—25s—n—1,2n — 1),

for all s € Z.

A direct calculation shows that we have the following formulas for the distance between
two vertices of ZAs,_1, whenever there is a path in ZAs,,_1 between the indicated vertices
(see Proposition 6.5.1). If 4,5 > n then d[p7)"(1,7),(1,j)] =2r + (j — i), and if i >n > j
then d[prm)"(1,7),(1 +n—74,7)] =2(n+7r) — (i + 7).

For assertion 1, suppose that i, > n, so that we have i = [(1,4)] and j = [(1,)]. Then
eiAge; # 0 if, and only if, there is an integer r € Z such that e,y Beq,;) # 0 and
dlpT)"(1,4), (1,5)] = d. But e(yryr(1,yBeq j) # 0 if, and only if, r € 2X (4, j)U(2X (4, 5)+
1).

2) Bearing in mind that j = [(1+n — j,7)], whenever j < n, a similar argument works
when ¢ > n > j, replacing Xt (4,) and X~ (i,5) by Z*(i,5) and Z~ (i, ), respectively.

For the formulas of the dimensions of e;Aej, note that if (k,i),(m,j) € ZAg,_1 are
any two vertices then dim(e(,ryr (k) Be(m,j) is either 0 or 1 since all paths from (p7)"(k, 1)
to (m, j) are equal modulo the mesh relations. If now [(k,4)] and [(m,j)] denote their pr-
orbits, viewed as vertices of @, then dim(e((,5)])Ada€[(m,j)) is 1 or 0, depending on whether
there exists an integer r such that e(,r)rxiBem,j) # 0 and d[(p7)"(k, ), (m,j)] = d, or
not. The formula for dim(e;Ae;) is now clear. O

We next include a technical lemma which will be very useful.

Lemma 6.5.6. The following assertions hold:
1. Ifi,j > n then:

(a) s is in X (i,7) if, and only if, maz{0, Z%j} <s<n-— %;

(b) s is in X~ (i,5) if, and only if, =21 < s < min{Z52, ”*2;”*]'}_

2. Ifi > n>j then:

(a) s is in Z+(5.5) if, and only if, ‘5% < s < min{ 5=t 251}
2

. N . it _om—1 i
(b) s isin Z~(i,j) if, and only if, max{—%,zﬂ%} <s < L

Proof. We use the formulas for (p7)"(k,i) given in the first paragraph of the proof of
Lemma 6.5.5. Also, we will denote by v the Nakayama permutation of ZAs, 1 (see
Proposition 2.3.1).

1) By Theorem 6.5.3, we have the following chain of double implications for an integer

ENS X+(’L,j) <~ 6(1_25’i)B€(1’j) ?é 0= o ‘
maX{O,i—j}§2s§min{i—1,2n—1—j}:2n—1—j@max{o,%}gsgn—%,

and similarly, by using the formula of (p7)2**! and the duality D of B (see Remark 6.5.4),
we get:
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s € X7 (i,]) <= e(i—2s—n2n—i)Bej) # 0 = e j)Bey(i—2s—n2n—i) # 0 =
e1,5)Be(n—2s—1,i) # 0 == max{0,j —i} <n—25s-2<min{j—-1,2n—-1—i} =2n—1—1i

e min{n —2,i —j+n—2}>25>i—1—n <= 501 <5 <min{252, 22

2) We use an analogous argument. We have a chain of double implications:

s € Z7(i,j) <= eq—2s3)Be(14n—jj) # 0 =
i —j = max{0,i — j} §n+25—j§min{i—1,2n—1—j} —

i—-n<2s<min{i+j—n—1n-1} < 5 <s < min{H5nL ool

and similarly:

8 € Z7(i,§) == eprzsti (1 Bean—jj) # 0 = € 2s-nan—i)Be(1in_jj) #0 &
e(14n—jj)Beu(i-2s—n2n—i) 7 0 <= €1 yn_jj) Be(n-2s—1,) 7 0 <
0=max{0,j —i} <j—2s—2<min{j—1,2n — 1 —i} <

j—22>2s>max{-1,i+j—2n— 1} <= max{5, HL20—1} < s < 122,

0

We conclude this section by describing the Cartan matric Cx of A. This is the
|Qo| x |Qo| matrix whose entry (i,7) is ¢;; = dimg (Homa(Ae;, Aej)) = dimp(e;Aey).
To describe C in an easy-to-remember way, given a vertex i € g, the distance to the
extremes of ¢ will be the number d(i) = min{i, 2n — i}.

Proposition 6.5.7. The Cartan matriz Ca = (cij) of A is given as follows:

1. If n is even, then:

(a) cij = min{d(i),d(j)}, if either i or j is even;
(b) cij = min{d(i),d(j)} — 1, if both i and j are odd and exactly one of i,j is < n;
(¢) cij = min{d(i),d(j)} + 1 otherwise.

In this case the rank of Cy isn + 1.

2. If nis odd and & : Qo x Qo — Qo X Qo 1is the bijection given by (i,7) ~ (j,2n —
i), then Cy is the only integer (2n — 1) x (2n — 1)-matriz satisfying the following
conditions:

(a) Cij = Cj2n—i, fOT’ all i,j < QQ
(b) ¢ij = min{d(i),d(j)}, when i and j are either both even or both odd

(c) cij = min{d(i),d(j)} + 1, whenever (i,7) € U,cn & (X), where X consists of
those pairs (k,l) such that k is even, [ is odd and n < k <

(d) cij = min{d(i),d(j)} — 1 otherwise.
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Proof. First step: We calculate the entry c;j = dim(e;Aej), for each pair (i,7) € Qo % Qo
such that ©,7 > n.

Note that once this is done, we will have calculated all the entries of Cp, in case
n is odd, and all the entries ¢;; with the property that either 7,57 > n or 7,5 < n, in
case n is even. For the case of n being even, this is clear since we have an equality
cij = dim(e;Aej) = dim(7(e;Ae;)) = dim(e,;Aer(j)) = can—i2n—j- Let then assume that
n is odd in the rest of the paragraph. By applying the successive powers of the bijection
€(i,7) = (4,2n — i) to the set Y = {(4,5) € Qo X Qo: i,j > n}, we get the whole set
Qo x Q. The Nakayama automorphism is n = 7 (see Proposition 6.5.10), which acts on
vertices as 7(i) = 2n — i. Therefore, by applying the duality D, we get an equality

¢ij = dim(e;Ae;) = dim(D(e;Ae;)) = dim(ejAean—i) = ¢jon—i,

and an iteration of this formula starting with a pair (i,j) € Y gives all the entries of
C = C\.

By Lemma 6.5.5, we know that ¢;; = | X7 (4,5)| + | X~ (4,7)|. Then, by using Lemma
6.5.6, we get the following two tables, distinguishing the case when n < i < j (and n
arbitrary) from the case when n is odd and n < j <.

Casen<i<j | X+, )] | |1 X(4,7)] Cij
i =n (mod 2); j odd n—% —% 2n-j
i=n (mod 2);jeven | n—3% n—1% 2n-j
i#n (mod 2); jodd | n— % n— % 2n-j+1
i#n (mod2);jeven | n—12 n—3% 2n-j
Case (nodd; n <j <) | | XT(i,5) | [ X~ (65| | ¢y
1, J even -3 n—z 2n-i
i odd; j even n— % n— % 2n-i-1
i even; j odd n—g n—gz 2n-i
1, 7 odd n—% n—% 2n-i

From the first table we get that if n is even and n <+ < j, then ¢;; = ¢j; =2n — j =
min{d(i),d(7)}, except in the case when i and j are both odd. In this latter case, one has
¢ij = ¢j; = min{d(i),d(j)} +1. Note that ¢;; = dim(e;Ae;) = dim[7(e;Ae;)] = ean—_iAea,—;j
and that d(2n — i) = d(i) for every i € Q9. We conclude that if n is even and either
i,j > nori,j <n, then ¢;; = min{d(i),d(j)}, when at least one of ¢ and j is even, and
c;j = min{d(7),d(j)} + 1, when i and j are both odd.

For the case in which n is odd, the first table says that if n < i < j, then ¢;; =
min{d(i),d(j)}, except when i is even and j is odd. In this latter case, one has c¢;; =
min{d(i),d(j)} + 1. On the other hand, the second table says that, when n is odd and
n < j < i, the entry ¢;; is equal to 2n — i = min{d(i),d(j)}, except when 7 is odd and j
is even. In this latter case ¢;; = min{d(¢),d(j)} — 1. This complete the identification of
cij, for all pairs (4,7) € Y, and, by the comments above, also the identification of all the
entries of C in case n is odd. It is an easy exercise to check that C' is the unique integer
(2n — 1) x (2n — 1)-matrix satisfying the conditions of assertion 2.

Second step: calculation, for n even, of the entries c;;, for i >mn > j:
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Note that once this step is completed, using the equality c¢;; = c2,,—; 20—, we will have
identified all the entries of C for the case in which n is even. Here we have i = [(1,4)] and
J=[14+n—-4,7)]=[(1-47)] and it is enough to calculate c¢;; when j > 2n — i (so that
min{d(i),d(j)} = 2n —i). Indeed, if j < 2n — ¢ then the symmetric condition of C' gives
an equality ¢;; = can—ion—j = Can—jan—i, and the pair (2n — j,2n — 4) has the property
that 2n —j >n > 2n —id and 2n —i > 2n — (2n — j).

So, from now on in this second step, we assume that ¢ > n > j and j > 2n —i. We
know from Lemma 6.5.5 that ¢;; = |Z7 (i, j)|+ |Z7 (4, j)|. Using now Lemma 6.5.6, we get
the following table

Case (neven; j >2n—14) | |ZT(4,5)] | 1Z7(4,5)] | ¢
i, j even n—g n—g3 2n-i
i even; j odd n—z3 n—g3 2n-i
1 odd; j even n— % n— % 2n-i
i, j odd n—St [ pn—Sd [onil

Then ¢;; = 2n —i = min{d(i), d(j)}, except when ¢ and j are both odd. In this latter case
¢;ij = min{d(i),d(j)} — 1. Considering the first and second step for n even, we see that C
is the matrix given in assertion 1.

Third step: calculation of the rank of C in case n is even:

Let So,—1 be the symmetric group on 2n — 1 indices and, by considering its action
on vertices, let us interpret the AR translation 7 as an element of Sy,_1. Then 7 is the
product of the transpositions (i,2n —¢) (i = 1,...,n — 1). Let P = P; be the associated
permutation matrix, i.e., we have p;;;) = 1 and p;; = 0, for j # 7(i). The fact that
Cij = Cn—i2n—j) = Cr(i)r(j), for all ¢, j € Qo, implies that PC = C'P. For simplicity, let
us denote by f (resp. g¢) the K-linear map V := K?*~! — V which takes a column-
vector v to Cv (resp. Pv). If B = {v1,...,v9,—1} is the canonical basis of V, then
{v1 +V2n—1, ey Un—1 + Unt1, v} and {v1 —vop_1, ..., Vy—1 — Vp41} are linearly independent
sets of eigenvectors of g associated to the eigenvalues 1 and —1, respectively. Then we
have a decomposition V = Ker(g—1y ) ®Ker(g+1y), where both summands are invariant
by f due to the equality go f = f o g.

We then get a decomposition Ker(f) = (Ker(f)NKer(g—1y))® (Ker(f)NKer(g—1y)).
We claim that Ker(f)NKer(g—1y) = 0. Indeed, let us take v € Ker(f)NKer(g—1y ), so that
we have scalars ay, ..., a, € K such that v = a1 (v1 +von—1)+ ...+ an—1(Vn—1+Vnt1) +anvy.
We apply f to this equality and get an equality of column-vectors

a(Ct+C" N+ 4 an (CH+ O +a,C =0, (%)

where C7 denotes the j-th column of C. Note that if i, < n then assertion 1 gives that
¢ij = Cipn—j = min{d(i),d(j)}, in case either i or j is even, and that {c;;,cion—;} =
{min{d(7),d(5)} + 1, min{d(7),d(j)} — 1}, when i and j are odd. It follows that if we put
mi; = min{d(i),d(j)}, then we always have c;j + ¢;2,—j = 2m;;. For later use, note also
that if 4,5 < n then ¢;; — ¢;2,—; = 0, when either i or j is even, and ¢;; — ¢;2n—j = 2
otherwise.
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Taking the i-th component of the vector equality (*), for each i = 1,2,...,n we get an
equality 1,1 2mija; +ia, = 0. It follows that the column-vector (a1, ..., an—1, an)’
is a solution of the homogeneous system of linear equations with associated n X n-matrix

2 2 2 2 1

2 4 4 4 2

2 46 6 3
Xn =

246 .. .2n-1 n-1

2 46 2(n—1) n

By substracting the first row from all the others, we get a block decomposition of the
form <g X* ), from which we get that det(X,,) = 2det(X,,—1) and, by induction, that
n—1

det(X,) = 27!, It follows that X, is invertible and, hence, that (ay,...,a,) = (0, ...,0)
and that v = 0. This proves our claim.

We then have Ker(f) = Ker(f) N Ker(g + 1y). In particular, each v € Ker(f) can
be written in the form v = bi(vi — vap—1) + ... + bp—1(vn—1 — V2p—1), with b; € K for
j=1,...,n—1. By applying f to this equality, we get a second equality of column-vectors

bl(Cl _ C2n71) N bn_l(cnfl _ Cn+1) = 0. (**)

When taking the i-th component and the (2n — i)-th component in this equality, we see
that the first members of the two equalities are equal up to sign. It follows that Ker(f)
is isomorphic to the subspace of K"~! consisting of those (n — 1)-tuples (b, ..., b,_1) such
that 21§j<n bj(cij — Cioan—j), for i = 1,2,...,n. By comments made above about the
difference ¢;; — ¢; 2,—j, these (n —1)-tuples are precisely the ones which satisfy the equality

2b1 + 2b3 + ...+ an_l = 0,

which form a hyperplane in K"~1. Tt follows that dim(Ker(f)) = n — 2, and so rank(C) =
2n—1)—(n—2)=n+1. O

Remark 6.5.8. The calculation of rank(C') in the proof of last proposition also gives an
explicit basis of Ker(f), namely {vor — vop—or: k = 1,...,§ — 1} U {vop—1 — Von—ok41 —
Vo1 + Vop—ok—1: kK =1,..., 5 — 1}.

6.5.4 The minimal projective resolution

In Theorem 2.4.2 we explicitly gave a graded Nakayama automorphism np of the mesh
algebra B = KZAs, 1 such that npog = gonpg, for all g € G =< pr >. Also, in
Proposition 3.4.3, we gave a graded automorphism pp of B such that Q%.(B) =5 B
and pupog = go upg, for all g € G =< pr >. Since A may be viewed as the orbit
category of B under the action of the group G, we then get induced graded automorphisms
n:=1np:AN=B/G— B/G=Aand u:=jp:A=B/G— B/G=A. The first one is
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a graded Nakayama automorphism of A and the second one has the property that Q3. (A)
is isomorphic to ,A; as a bimodule.

Lemma 6.5.9. The following assertions identify n and p:

1. When n is even, n is the identity map. In this case, the automorphism u acts as T
on vertices and crossing arrows, and maps a ~ —7(a), for each noncrossing arrow

a € Q.

2. When n is odd, we have n = 7. In this case, the automorphism u fizes the vertices
and the crossing arrows, and changes the sign of the noncrossing arrows.

Proof. We start by considering the change of signs given by the original set of arrows X.
Since G =< prp > it follows that p and 75 induce the same automorphism p =75 : A —
A. Clearly, this automorphism is induced by the canonical symmetry of the quiver (). We
will denote it also by 7.

By Theorem 2.4.2, we have that ng = v, where v = ,07'113_”. When n is even, we have
ph ™ = (prp)'™™ € G and then 7 = id, since it acts as the identity on G-orbits. When
n is odd pTllg_” = p(pTp)}~". This automorphism acts as p = 7 on G-orbits and, hence,
we have n = 7 in this case.

On the other hand, by Proposition 3.4.3, if ¥ : B — B is the automorphism which fixes
the vertices and acts on arrows as ¥(a) = (—1)*("s 1(“))+s(a>a, and « is the automorphism of
B which fixes the vertices and changes the sign of the arrows, then up = konpo7y Loy,
Bearing in mind that 72 = idy, we easily get that pu acts as n7~' = n7 on vertices,
and maps a ~ (—1)1+5(@)+s@) (5 o 7)(a), for each a € Q1. Here the signature map
5: Q1 — Zg is the one induced by the set X (see Subsection 2.3.3). It is then clear that
the sum 1+ s(7(a)) + s(a) is zero in Zy if, and only if, the arrow a is crossing.

Finally, observe that the arguments given above also follows when considering the set
X as fixed in the beginning of Subsection 6.5.2. O

We are ready to give the minimal projective resolution of A as a graded bimodule. To
do that, we fix a basis B of A consisting of paths, and w; will denote the only nonzero path
from ¢ to v(i), which is an element of B. Recall that Soc(e;A) = Kw; and we have a graded
Nakayama form (—,—) : A x A — K of degree 2n — 2 defined as follows. It vanishes on
eilMej x e, Aeg, whenever either j # r or s # v(i), and the induced graded bilinear map
(=, —) : eiAej x ejAe, ;) — K vanishes on all pairs (a,b) of homogeneous elements such
deg(a) 4 deg(b) # 2n — 2. If instead (a,b) € e;Ae;j x ejAe, ;) and deg(a) +deg(b) = 2n —2,
then one has (a,b)w; = ab. We will denote by B* the right dual basis with respect to
this Nakayama form. Note that if x € B is any element, then the number on noncrossing
arrows in any path in ) which represents x only depends on .

In the following result we derive a minimal projective resolution of A as a A-bimodule
from that of B as a B-bimodule.

Proposition 6.5.10. The minimal projective resolution of A as a graded bimodule has
the property that Q8.(A) is isomorphic to A[—4n] as a graded A-bimodule. Its initial part
s given by:
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@iEQo Aei X eiA[—4n] M—k> @iEQern(i) [ eiA[—Qn — 2] LR)
4 k
@aEQlAeu(i(a)) & et(a)A[—Qn — 1] L @Z‘EQOAe“(i) ® eiA[—Qn] —
Bicgoler) ® eih[~2] 5 Bocq, Meia) @ exayAl—1] = Bicgohe; ® ;A 5 A — 0,

where the maps are the only morphisms of graded A-bimodules determined by the following
facts:

1. w s the multiplication map;
2. 5(ei(a) ® et(a)) =0 & €y(q) ~ Cj(a) X a;
3. Rlerq) ®@ei) = Zt(a)zi(—l)s(a(a)a) [o(a) ®e; + eq;) @ al;

4 k(e ® €)= Zern(i)B(—l)C(x)T(:c) ® x*, where c(x) is the number of noncrossing
arrows in x;

5. ub(eu(i(a)) ® eya)) = (@) @ eya) — €uia)) ® 0
6. uR(eniy @ ei) = 20y (=177 [u(0(a)) ® e + ey © al;

,U«k(ei ® Ci) = ZmEen(i)B 77(:6) ® QE*.

=

Proof. The minimal projective resolution of A as a graded bimodule is obtained from that
of B by replacing elements of B by G-orbits, as indicated in the proof of Corollary 3.4.5.
Let us also point out that, regarding this resolution, the only difference when considering
the new set X instead of the original one is that the map R (and hence the map ,R)
becomes —R (resp. —,R) which is a fact that certainly can be ignored.

Alternatively, one can adapt the argument in [25|[Section 4], bearing in mind the
change of relations. In either way, one gets that the initial part of the minimal graded

projective resolution of A is P2 Ny NI N 0, where the graded modules
are PV = ®;cq,Ae;@e;A, P71 = Baec@, Mej(a)Deya)A[—1] and P2 = BicoMer (i) @e;A[—2]
and the maps are given as in the statement of this proposition.

From Subsection 3.4.1 we see that Q3.(A) = Ker(R) is generated, both as a left and as a
right A-module, by the elements &, = ZmEeis(—l)deg(:p)T’(m)®x*, where 7/ : A — A is the
graded automorphism acting as 7 on vertices and mapping a ~ (—1)5(T71(a))+5(a)7'(a), for
each a € 1. Then 7/(a) = 7(a), when a is a noncrossing arrow, while 7/(a) = —7(a), when
a is a crossing one. If z € B, then the number of crossing arrows in (any path representing)
z is exactly deg(x) — ¢(z). It then follows that & = ZeriB(—l)c(x)T(m) ® z*, for each
1 € Q. It was also proved in Corollary 3.4.5. that the assignment b ~~ bf; “1(4(0) gives an

isomorphism of graded bimodules 1A,,-1[—2n)] = Q3.(A). This in turn implies that the
assignment a ~- ,ufl(a)f;_lu_l(t(a)) gives an isomorphism h : ;,Aq[—2n] = Q3. (A). But
note that 7=1u=1(i) = n=1(i) = n(i), for all i € Qq, because u? = idy = n*. Due to this
involutive condition of y, there is a unique morphism of graded A-bimodules ©;eq,Ae, ;) ®
eiA[—2n] — ,A1[—2n] which maps e,;) ® ¢; ~ e;. Composing this morphism with h, we
get a morphism of graded A-bimodules k : ©;cq,Ae ;) ® e;iA[—2n] — Bicq,Aer) @ €,



6.5. The generalized preprojective algebra B, 149

which maps e,,;y ® e; ~ 57’7@) = Zme%(i)g(—l)c(m)T(m) ® z* and whose image is Ker(R) =
Q3c(A).

Once the differentials 6, R and k are known, one easily obtain the differentials ,0
and ,R, by applying the canonical equivalence ,(—)1 : AGra =, AGra, where AGrp
is the category of graded A-bimodules, and taking into account that, for all i,5 € Qo,
we have an isomorphism Ae,;) ® e;A = u(Ae; ® ejA)y of graded A-bimodules which
maps a ® b ~» p(a) ®b. We can apply the same argument to obtain ,k from k, but it is
convenient to use the formula k(e,;) ®e;) = Zern(i)B(—l)deg(x)T’(x)®x* which is another
form of expressing the element 57’7 (@) Indeed from the equality up = konp o7y Lo of
automorphisms of B one obtains the equality o7’ = kono7’ o7’ = Kon of automorphisms
of A, where & is the identity on vertices and changes the sign of all arrows of ). It then
follows that (—1)8®) ' (z) = (=1)9e@)(F o p(z)) = (—1)des@+desm@) () = p(x).
With this in mind one easily gets the desired formula ,k(e; ® e;) = Zx@nm s n(7) ® z*.

O

6.5.5 The complex which calculates the Hochschild cohomology

Proposition 6.5.11. Consider the complex V' of graded K -vector spaces, concentrated
in degrees > 0, given as follows:

1. For each i > 0, the differential Vit6 — V7 s obtained from the differential
Vi — VL by applying the shift equivalence ?[4n] : K — Gr — K — Gr.

2. The initial part of the complex is:

o* R* k*
..0— @iereiAei — @ateei(a)Aet(G) [1] — @iereT(i)Aei [2] —

o* R k
@iereu(i)Aei [2’0] LN @aGQleu(i(a))Aet(a) [Qn + 1] 2 EBieren(i)Aei [271 + 2] 2

6*
@iEQoez’Aei [4’0] — ey

where the differentials are:

(a) If ¢ is a cycle at i, then 6" (c) = 3 4= AC — 3 oj(0)=; CO
(b) If p:i(a) — t(a) is a path, then
R*(p) = (_1)s(o(a)a)0(a)p + (_1)s(aa_1(a))pafl(a)
(c) When n is even, k* is the zero map. When n is odd, k*(e,) = w, and k*
vanishes on (Dizneri)Ae;) © end(N)ey,
(d) If p: (i) — i is a path, then 16" (p) = 344y M(@)P = D j(q)=i PO
(e) If p: p(i(a)) — t(a) is a path, then
pB () = (=17 p(o(a))p + (—1)* @Dpo~!(a)
(f) The map ,k* satisfies the following properties:
i. When n is even, ,k*(ej) =
vanishes on Gicqqeid (A)e;.

€0 dim(e;Aej)w;, for each j € Qo, and ,k*
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i. When n is odd, ,k*(en) = nwp and ,k* vanishes on (@izneysAe;) @
end(Neny,

Then HH"™(A) is isomorphic, as a (length-)graded K -vector space, to the n-th cohomology
space of the complex V', for each integer n > 0. Moreover, V' is a complex of Z(A)-
modules.

Proof. Except for k* and ,k*, the formulas for the other differentials are easily derived
by applying the contravariant functor Hompe(—,A) : A\Grn — K — Gr to the minimal
projective resolution of A given in Proposition 6.5.10, and by using the isomorphism of
graded K-vector spaces Hompe(Ae; @ e;A[—k], A) = eiNejlk] (f ~ f(e; ®ey)), for all
1,7 € Qo and k € Z.

Applying the same contravariant functor to k, we see that if p : 7(j) — j is any path,
then k*(p) = > ico, er%(i)&j(—1)0(90)7-(3:)]9:6*. Whenever length(p) > 0 the product
T(z)px* is zero for its length degree exceeds 2n — 2 = ca — 2. But if length(p) = 0, then
7(j) = j and, hence, necessarily j = n. On the other hand, if x € e,;)Be,, p = en
and the product 7(z)pz* = 7(x)z* is nonzero, then necessarily i = n, which shows that
K*(en) = oo, (1) DT @)2" = Xoce pon (~ 120" = (Cpeen o (— 1)@, By
Lemma 6.5.5, we know that the elements of e,,Be,, have even degrees 0, 2, ..., 2n — 2. Since
each element of e, Be,, is a power of the cycle of length 2 at n we get that ¢(z) = deg(),
for each = € e, Be,. The sum (Zze%Ben(—l)c(l‘)) is then 0 or 1, depending on whether n
is even or odd.

A procedure similar to that of the previous paragraph is followed for ,k*. If p : n(j) — j
is any nonzero path, then, by the usual method, we get ,k*(p) = Zz‘er Zwéen(i)[ﬁ’ej n(x)px*.
We clearly have ,k*(p) = 0 when length(p) > 0. On the other hand, if length(p) = 0 then
we necessarily have 7(j) = j. When n is odd, this implies that j = n, while j can be
arbitrary when n is even (see Proposition 6.5.10). We distinguish the two situations:

a) When n is odd, the comments above show that ,k* vanishes on (@i;ﬁnen(i)/\ei) @
end(A)en. On the other hand, we have ,k*(e,) = >0, Zzeen(i)sen n(x)z*. As for k*, we
see that if the product n(x)z* is nonzero, then i = n and so ,k*(en) = > c. e, N(T)T".
But we have n(z) = 7(x) = z, for each x € e,Be,, and this implies that ,k*(e,) =
> e, Be, Tr* = dim(e,Ae, )w, = nw, (see Proposition 6.5.7).

b) When n is even, we have n = idy. Then, when p = e; is of zero length, we have:

Mk*(ej) - ZiGQo eren(i)sej xx* = ZiEQO ZzeeiBej fI,'fI,'* = ZiEQO dlm(eZAe])wZ

Finally, bearing in mind that A is a A® — Z(A)-module, we have that, for each A-
module M, the K-vector space Hompe(M,A) is in fact a Z(A)-module. Now, using the
isomorphism e;Ae; = Hompe(Ae; ® ejA,A), it is clear that, Vi,j € Qo, e;Ae; has a
structure of Z(A)-module given by the multiplication in A. But then, it is easy to check
that the differentials involved in the complex V" are also morphisms of Z(A)-modules.

]
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6.6 The Hochschild cohomology spaces

With all our tools in place, we move on to study the structure as a Z(A)-module of each
cohomology space HH!(A). Note that each term of the complex of Proposition 6.5.11 is
a graded vector subspace of A, when this algebra is considered with its canonical length
grading. Given a natural number d and any term V" of the mentioned complex, we will
need to calculate the dimension of the homogeneous component V. The following is a
first result in this direction.

Proposition 6.6.1. Let d € N be a natural number. There exists a vertex i € Qg such
that e;Age; # 0 if, and only if, d is even and d < 2n — 2. In such a case the following
holds:

1. If d=0 (mod 4), then dim(®icq,eildei) =2n —d — 1.
2. If d=2 (mod 4), then dim(®;cq,eilgei) =d+ 1.

In particular, the dimension of ®icqyeilNaei 15 n? +n, when n is even, and n?, when n is
odd.

Proof. Since the maximal length of a nonzero path is 2n—2, if e;Agze; # 0, for some i € Qo,
then d < 2n — 2. By Lemma 6.5.5, we also know that d is even. Conversely, consider an
even natural number d < 2n — 2. Then either d = 4s, with s < ”T_l, or d = 4s + 2, with
s < ”T_2 Due to Lemma 6.5.6, we know that in the first case s € Xt (n,n), while in the
second case s € X~ (n,n). Then, Lemma 6.5.5 tells us that e, Agze,, # 0 in both cases.

In the rest of the proof we assume that d < 2n — 2 is an even natural number. Suppose
first that d = 0 (mod 4) and put d = 4s, with s € N. Given a vertex i > n, the Lemmas
6.5.6 and 6.5.5 give the following chain of double implications

eilge; 70 <> s € XT(i,i) = s<n—-F = i<2n—2s—1.

By applying the symmetry 7, we conclude that e;Age; # 0 if, and only if, 2s + 1 < i <
2n — 2s — 1. There are exactly 2(n —2s — 1)+ 1 =2n—4s — 1 = 2n — d — 1 vertices in
this list, and that is precisely the dimension of ®;cq,eiAqe;.

Suppose now that d = 2 (mod 4) and put d = 4s + 2, with s € N and s < ”T_Q The
two mentioned lemmas yield a chain of double implications for a vertex ¢ > n:

eilge; #0 <> s € X (i,i) &= "2 <s <= i<n+2s+1.

Arguing as in the other case, we get that dim(®;cq,eiAdei) =2(2s +1) +1=d+ 1.

For the global formulas, we put d, = dim(©g=, (mod 1) Picqo ¢ilaei), for 7 = 0,2. In
case n is even, we have that 2n — 2 =2 (mod 4) and then {d e N:d <2n —2and d=0
(mod 4)} ={0,4,...,2n —4} ={4s: 0< s < § — 1}, while {de N:d <2n—2 and d =2
(mod 4)} = {2,6,....,2n — 2} = {45+ 2: 0 < s < § — 1}. We then get equalities:

+1
0 = Socecn 1 (2n—1—4s) = (20— 1)§ =4 ¥ on_ s = “EH
and
(n+1)

02 = Zogsgg_1(48 +3) =33+ 4ZOSS§%_1 =
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It follows that dim(®;cq eile;) = 6o + 02 = n2+n.

In case n is odd, we have that 2n—2 =0 (mod 4), so that {d e N:d <2n—2 and d =0
(mod 4)} = {0,4,...,2n —2} = {45 : 0 < s < 251} while {d € N: d < 2n —2 and d = 2
(mod 4)} = {2,6,...,2n —4} = {4s +2: 0 < s < %2}, We then get:

1
B0 = Tpescns (2n =1 —ds) = (2n = I — 43 oy s = 205D
and
— -1
(52 = ZOSSSnT—s(ZLS + 3) = 3"71 +4ZO§3§"T_3 § = n(n2 )

Therefore we have dim(®;cq,eiAe;) = dg + 02 = n? in this case.

We are ready to identify the center of A.

Proposition 6.6.2. Let us consider A = By,. For eachi € Qq, let w; be a nonzero element
in Soc(e;\), and let us put x =) 5,9, _5¢i, where ¢; is the (unique up to relations) cycle
of length 4 at i. The following assertions hold:

1. If n is odd then the center Z(A) is the subalgebra of A generated by x and it is

isomorphic to K[x]/(:chH) In particular, the dimension of Z(\) is 24+

2. If n is even, then Z(A) is the subalgebra generated by x and the w;. It is isomorphic
to the commutative algebra with generators x,yi, ..., Yyon—1 Subject to the relations:

(a) 22 =0
(b) xy; =0, fori=1,2,....2n — 1
(c¢) yiy; =0, forall i,j5 =1,2,...,2n — 1.

, , , .5
In particular, the dimension of Z(A) is %5 —

Proof. When n = 2, we have ¢; = 0, for each i € g, and hence x = 0. Then, the result
in this case is that Z(A) = K & Soc(A).

We assume in the sequel that n > 2. Let i € @)y be such that n < ¢ < 2n — 3. By
Lemma 6.5.5, we have e;A4e; # 0 because s = 1 € X1 (i,4) (see Lemma 6.5.6). Then, up
to relations, there is a unique nonzero cycle of length 4 at i. By applying 7, the same is
true for each ¢ € Qg such that 3 <i <mn.

We next claim that the following sets of arrows in ) coincide:

(1) The set U of arrows a such that e;,yAseyq) 7 0

(ii) The set V' of arrows a such that 3 <i(a),t(a) < 2n — 3.

To check our claim we distinguish the noncrossing and the crossing arrows. Let first
do the noncrossing ones. Note that, due to the symmetry 7, it is enough to check that the
arrows «; : 1 — ¢ + 1, with ¢ > n, which are in U coincide with those in V. This amount
to prove, for a vertex i > n, that e;Ase;41 # 0 if, and only if, ¢ < 2n — 4. By Lemma
6.5.5, the inequality e;Ase;+1 # 0 holds if, and only if, 1 € X+ (4,7 + 1). By Lemma 6.5.6,



6.6. The Hochschild cohomology spaces 153

we know that 1 € X (4,4 + 1) if, and only if, 1 <n — %, which is equivalent to say that
1, < 2n — 4.

We next check our claim for crossing arrows. Again, by the symmetry 7, we can
assume that i(a) > n. Then our task consists in proving that if ¢ > n then the inequa-
lity e;Asean—i+1 # 0 holds if, and only if, ¢ < 2n — 3. By Lemma 6.5.5, we have that
eilNsean—i+1 # 0 holds if, and only if, 1 € Z7(i,2n — i+ 1). By Lemma 6.5.6 this happens
exactly when 1 < % or, equivalently, when ¢ < 2n — 3. So our claim is settled.

Once we know that the sets of arrows U and V coincide, we easily see that x =
Y a<i<on—s Ci is in Z(A). Note that we just need to prove that xa = ax, for each a € Q1.
Indeed we have that za = 0 if, and only if, « ¢ U = V if, and only if, ax = 0. By
negation, we have that za # 0 if, and only if, az # 0. But za = ¢;,)a and ax = acy(,) are
then nonzero elements of e;(,)As€s(q). They are both equal in A since all paths of a given
length between two vertices are the same modulo relations. It follows that za = ax, for
all a € Q.

Note now that z' =>4 o, 5 i, for each integer ¢ > 0. It follows that z* # 0 if, and
only if, 4t < 2n — 2. This is because ¢!, is a cycle at n of length < length(w,) = 2n — 2.
Then the subalgebra of A generated by z is isomorphic to K [z]/(2™), where m = £ in
case n is odd, and m = 3, in case n is even.

We denote by A the subalgebra of A generated by x. We shall prove that each homo-
geneous element in Z(A) of degree 4t is a scalar multiple of a power of x. We first claim
that ¢! # 0 if, and only if, 2¢ + 1 <14 < 2n — 2t — 1. Note that, due to the symmetry 7, it
is enough to prove that if i > n then ¢! # 0 exactly when i < 2n — 2¢ — 1. Using Lemmas
6.5.5 and 6.5.6, we get the following chain of double implications:

A0 = ehye; #0 = te X (i,i) = t<n-2l —=i<2m-2-1

and the claim is settled.

We then get that any element in Z(A)4 can be written as a linear combination of the
form y = >0, 1 <icon_oi_1 Aich, with A; € K for all i. We have ¢/_; # 0 # ¢i. We claim
that then c!_;a; # 0 # a;_1c!, for which we just need to prove that e;_1As+1€; # 0. But
this is a consequence of Lemma 6.5.5 and the fact that t € X (i—1,i) (see Lemma 6.5.6).

Since y is in the center we have an equality

¢ _ _ _ ¢
Nic1C_ 1041 = Yoy—1 = Q1Y = N1,

from which we get that A\;—1 = X;. It follows that A\, = A\y11 = ... = Agp_2—1 and,
by applying the symmetry 7, also that Aoy = ... = Ap—1 = A We then get that
Y=Y opi1<icon_oi_1 € = Aat, for some A € K.

Since the degrees of homogeneous elements in ®;cg,e;Ae; are all even, in order to finish
de proof, it will be enough to check that if 4t + 2 < 2n — 2 then Z(A)442 = 0. Indeed,
if this is proved then the case in which n is odd will be settled, because 2n — 2 € 47Z
and then we will have Z(A) = @©4>0Z(A)y. By the previous paragraph, we conclude
that Z(A) is the subalgebra of A generated by z. On the other hand, if n is even, then
BicQoeil\an—2ei = Soc(A) C Z(A), thus showing that Z(A) = Soc(A) & (Br>0Z(A)ar).
From the previous paragraphs assertion 2 of the theorem follows easily by taking y; = w;,
for all 7 € Q.
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Let us finally prove that if 4¢ + 2 < 2n — 2 then Z(A)442 = 0. Given a vertex i > n,
by Lemma 6.5.5 and Lemma 6.5.6, we have the following chain of double implications:

eilgioe; #0 =t € X (i,i) & 0= <t <22 = i<n+2t+ 1.

The last double implication is due to the fact that we are assuming that 4t + 2 < 2n — 2,
ie., that t < ”T_Q By using the symmetry 7, if ¢ < n then we get that e;Agy40e; # 0 if,
and only if, ¢ > n — 2t — 1. So we get, for any vertex i € Qq:

eilgpq06; 0= n—-2t—-1<i<n+2t+1.

For any such vertex i, we fix a nonzero cycle z; at ¢ of length 4¢ 4+ 2. Then any element of
Z(A)4t4+2 will be a linear combination of the form z = Zn—Qt—1§i§n+2t+1 Aiz;, with the \;
in K. Suppose that there is a vertex n < j < n+ 2t 41 such that A\; # 0 and choose this
j to be maximal. Note that n+4 2t + 1 < 2n — 1 because we are assuming 4t + 2 < 2n — 2.
This implies that the arrow a; : j — j + 1 exists and we have \jzja; = za; = ajz = 0.
But the fact that 4t + 2 < 2n — 2 implies that 4t + 2 < 2n — 4 or, equivalently, that
t < ”T_3 It follows that ¢t € X~ (4,7 + 1) (see Lemma 6.5.6) and, by Lemma 6.5.5, we get
that ejA4y3ej41 # 0. As a consequence, we have that z;a; # 0 and, hence, that A\; = 0.
This contradicts our choice of j. U

We now continue with the calculation of the dimensions of the spaces V" of Proposition
6.5.11.

Proposition 6.6.3. Let d € N be a natural number. There is an arrow a € Q)1 such that
i) Naeyay # 0 if, and only if, d < 2n — 2 and d is odd. In such a case, the following
holds:

1 Ifd=1 (mod 4) then dim(@ueq, €i(a)AdCi(a)) = 4n — 2d — 2;
2. If d =3 (mod 4) then dim(Dacq; €i(a)Nalt(a)) = 2d + 2.

In particular, the dimension of ©aeq, €i(a)Nei(q) 5 equal to 2(n% —n), when n is even, and
to 2(n? — 1), when n is odd.

Proof. We first prove the last assertion, assuming that the formulas for the dimensions
of the space @queq,€i(a)Nd€(a) are correct. For simplification, call a natural number d
efficient when e;q)Ageyq) # 0, for some a € Q1. Suppose first that n is even. Then we
have 2n —3 =1 (mod 4), so that {1,5,...,2n — 3} is the set of efficient natural numbers d
such that d =1 (mod 4). Then we have an equality, putting in the last part d = 4s + 1:

1= 3 a=1 (mod 4),ac@) TM(€i(a) Adee(a) = 2og=1 (mod 4),1<d<on—s(4n —2d —2) =
Zogsggfl(lm —8s —4) =n?.

On the other hand, if d is efficient and d = 3 (mod 4) then d < 2n—5, and so {3,7,...,2n—
5} is the set of these efficient natural numbers. Then we have an equality:

d3 7= 2 a=3 (mod 4).0eQs M (€i(a) Md€r(a)) = 2a=3 (mod 4)3<d<2n—5(2d +2) =
8416+ ... + (4n — 8) = 8[1 + 2+ ... + (& — 1)] = n® — 2n.
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It follows that dim(®acq, €i(a)Aei(a)) = 2(n? —n) in case n is even.

Suppose next that n is odd. Then 2n—3 = 3 (mod 4). It follows that a natural number
d such that d =1 (mod 4) is efficient if, and only if, it is in the set {1,5,...,2n — 5}. The
formula for dy in this case is:

1= 2421 (mod ).ac@r FM(€i(a) Aa€r(a)) = Da=1 (mod 4)1<d<2n—5 (40 — 2d = 2) =
Zogsg%?’(‘ln —8s—4)=n?-1.

On the other hand, {3,7,...,2n — 3} is the set of efficient natural numbers d such that
d =3 (mod 4). The formula for ds is in this case:

d3 1= 2 4=3 (mod 4),aeQr M(€i(a)AaCi(a) = Da=3 (mod 4)3<d<2n—3(2d +2) =
8+16+..+(4n—4)=8[1+2+..+ (&) =n?—1.

It follows that dim(®acq, €i(a)Aei(a)) = 2(n? — 1) in case n is odd.

We now pass to prove the initial part of the proposition. Due to the symmetry 7,
one readily sees that a natural number d is efficient if, and only if, d < 2n — 2 and
e;Ngeir1 # 0, for some vertex i > n, or e;Agesn—ir1 # 0, for some i > n. But due to
Lemma 6.5.5, we know that in such a case d is odd and, as a consequence, d < 2n—2. From
the same lemma we get that e,Age,t1 # 0 if, and only if, either d € 4X " (n,n+ 1)+ 1 or
d € 4X (n,n+ 1)+ 3. Looking at Lemma 6.5.6, we see that:

1. 4Xt(n,n+1) +1 = {1,5,....,2n — 3}, when n is even, and 4Xt(n,n +1) +1 =
{1,5,...,2n — 5}, when n is odd;

2. 4X (n,n+1)+3 =1{3,7,....,2n — 5}, when n is even, and 4X (n,n+ 1) + 3 =
{3,7,...,2n — 3}, when n is odd.

We then see that each natural number d < 2n — 2 is efficient, which proves the first
assertion of the proposition.

Let us now fix an efficient natural number of the form d = 4s + 1. Note that we
have that dim(®qeq, €i(a)Adei(q)) is equal to the number of elements in the set {a € Q1 :
€i(ayAdey(a) # 0}. Using the symmetry 7 and Lemma 6.5.5, we then have:

dim(@ateei(a)Adet(a)) = 2’143‘ + 2’35’,

where Ag = {i > n: e;Agsr1ei41 # 0} ={i >n:s€ X(i,i+1)} and Bs = {i > n :
eilMgst1ean—it1 #0} ={i>n:s€ Z (i,2n — i+ 1)}. Using Lemma 6.5.6, we see that,
for i > n, one has that i € A, if, and only if, i < 2n — 2s — 2. Similarly, for ¢ > n, one has
that ¢ € By if, and only if, i < 2n —2s—1. It follows that |As| = |Bs| = n—2s—1, so that

dim(Dae; €i(a) Ndli(a) = 4(n —2s —1) =4dn —8s —4 = 4n — 2d — 2.

Suppose now that d is an efficient natural number of the form d = 4s+3. An argument
analogous to that of the previous paragraph shows that if ¢ > n then e;Aysy3e;41 # 0 if|
and only if, s € X~ (i,i + 1), while if ¢ > n then e;A4s13€9,—i41 # 0 if, and only if,
s+1e€ Zt(i,2n—i+1). PuttingCs={i >n:se€ X (i,i+1)}and Dy ={i >n:s+1¢€
Z7*(i,2n—i+1)} and applying Lemma 6.5.6, we readily see that Cs = {n,n+1,...,n+2s+1}
and Dg ={n+1,n+2,...,n+ 2s+ 2}. It follows that



156 Chapter 6

dim(Dae; €i(a) Adli(a)) = AM(Bacq, €i(a)Ns+3€1(a)) = 2(|Cs| + |Ds|) =
2[(2s +2)+ (2s+2)] =2(4s +4) = 2d + 2.

O

Proposition 6.6.4. Let d € N be a natural number. There is a vertex © € Qg such that
er@iAae; # 0 if, and only if, d < 2n—2 and d is even. In such a case, the following holds:

1. Ifd=0 (mod 4) then dim(®ieqyers)Aaei) =d+1;

2. If d=2 (mod 4) then dim(Dicq,eru)Aaei) =2n —d — 1.

In particular, the dimension of ®icqyer@)Ae; is equal to n? —n, when n is even, and to
n?, when n is odd.

Proof. The proof goes along the lines of that of the foregoing proposition. We readily see
that e, Agen = enAge, # 0, for each even number 0 < d < 2n — 2. Bearing in mind that
7(i) = 2n —i =14 (mod 2), the first assertion of the proposition follows now directly from
Lemma 6.5.5.

Let us fix an even natural number 0 < d < 2n — 2 in the rest of the proof. If i > n
and d = 4s then, by Lemma 6.5.5 again, we know that e;Age.-1(;) = e;Agean—; # 0 if, and
only if, s € Z*(i,2n — 4). Then we have:

{i>n:elge.1 #0F={n,n+1,..,n+2s},

which implies, by applying the symmetry 7, that {i € Qo : e;Age,—1;) # 0} = {n —
2s,..,n—1,n,n+1,..,n+2s}. It follows that

dim(@ieqoer(iAaci) =4s +1=d+ 1.

On the other hand, if ¢ > n and d = 4s 4+ 2 then, by Lemma 6.5.5, we get that
eilgean—i # 0 if, and only if, s € Z7(i,2n — ¢). Then we have:

{izn:ehge1) #0} ={n,n+1,..,2n — 25 - 2}.
An argument similar to the one in the previous paragraph shows that then
dim(@ieqoer(iyAaci) =2(n —25—2) +1=2n—-d - 1.

When n is odd, using Remark 6.5.4 and Lemma 6.5.9, we get that D(e,;Aqge;) =
e; Moy, _o_ge;. Then the formula for dim(@ieQO)eT(i)Aei) follows from Proposition 6.6.1 in
this case. Suppose that n is even in the rest of the proof. We have 2n —2 =2 (mod 4) so
that we have the following equalities of sets:

{d € N: e,;Age; # 0, for some i € Qo and d =0
(mod 4)} ={0,4,...,2n —4} ={d e N:d=4s, with0 < s < § — 1}
and
{d € N: e ;Age; # 0, for some i € Qo and d =2 (mod 4)} = {2,6,...,2n — 2}.

It follows that
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_ ’I’L27’I’L

dim(@jeQq,d=0 (mod 4)€7() Aaei) = Pp<scn_1(4s +1) =5
and .
dim(®;eqq,a=2 (mod 4)67(i)Ad€i) = (2n—3)+(2n—7)+...+5+1 = ZOStS%71(4t+1) — nlon

Therefore, when n is even, we have dim(®;eq,e,)Ae;) = n? —n.

0

Remark 6.6.5. The global formulas given in Propositions 6.6.3 and 6.6.4, that is, the
formulas for dim(@aecq, €i(a)Aey(q)) and dim(Dieq e (;)Aei) can be alternatively obtained
from the Cartan matrix, which has been identified in Proposition 6.5.7.

The dimension of the last space of codimensions in V" that we need to calculate is the
following.

Proposition 6.6.6. Let n be even and let d be an odd natural number such that 0 < d <
2n — 2. The following assertions hold:

1. Ifd=1 (mod 4) then dz’m(@ateeT(i(a))Adet(a)) =2d+2
2. If d =3 (mod 4) then dim(Dacq, er(i(a))NdCi(a)) = 41 — 2d — 2.
In particular, the dimension of ©aeqQ, €r(i(a))Net(a) S 2(n? —n).

Proof. Throughout the proof, fix an odd natural number d such that 0 < d < 2n — 2. If
i <nand a = «a;, then 7(i(a)) = 7(i + 1) = 2n — ¢ — 1 while ¢(a) = i. But, using Remark
6.5.4, we get that eon—i—1M\q€; 7& 0 <= ejNop_qg—92€on—i—1 7& 0.

Note that 1 = i(ﬁzn,ifl) and 2n — i —1 = t(,@gn,ifl) and that By, ;1 = O'_l(al').
Let us denote by Qf and )] the subsets of (1 consisting of the non-crossing arrows and
of the crossing arrows, respectively. The previous comments together with an application
of the symmetry 7 shows that the bijection o~! : Qf — Q] has the property that
eT(z‘(a))Adet(a) 75 0 if, and only if, Ci(a—l(a))Agn_Q_dCt(o.—l(a)) 75 0.

On the other hand, if i > n and a = B; then 7(i(a)) = i + 1 = t(a;) = t(o~(a))
and t(a) = i = i(c"(a)). An argument as in the previous paragraph shows that also
the bijection 0=! : Q7 — Q7 has the property that er(i(a))Na€i(a) # 0 if, and only if,
61‘(071(a))A2n—2—d€t(071(a)) # 0.

Frow the two last paragraphs and Proposition 6.6.3 the result follows immediately. [

We are ready to calculate the dimension of the kernel and image of R* in each degree.

Proposition 6.6.7. Let d be an odd natural number such that d < 2n — 3. The following
assertions hold:

a) If f : Daeqi i) Nalt(a) — DicQoer(iyAdr1€i is either the restriction of R* or, when
n 1s odd, the restriction of ,R*, then f is surjective.

b) If n is even, d =1 (mod 4) and h : Gaecq, er(i(a))Ndi(a) — Dicqocilariei is the
restriction of ,R*, then Im(h) has codimension 1 in its codomain.

Moreover, the following formulae hold:
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1. Ifd=1 (mod 4), then dim(Ker(f)) =2n—d
2. If d =3 (mod 4), then dim(Ker(f)) =d

3. If n is even and d =1 (mod 4), then dim(Ker(h)) =d+ 1.

In particular, we have Im(R*) = e, J(A)en © (DizneryAei) and, when n is odd, also
Im(,R*) = enJ (N)en © (DiznergyAei).

Proof. If f is surjective then the two formulae for the dimension of Ker(f) follow from
Propositions 6.6.3 and 6.6.4. On the other hand, we have that enJ(A)en@(@#neT(i)Aei) =
©1<d<2n-3, d odd (BieQoer(i)Adr1€i). From the surjectivity of f, we get that e,J(A)e, ®
(Bigner@Aei) € Im(R*) and, when n is odd, that e, JJ(A)e, © (Dizneri)Ae;) C Im(,RY).
The converse inclusions are clear. On the other hand, if Im(h) has codimension 1 in its
codomain, then the equality dim(Ker(h)) = d+1 follows from Propositions 6.6.1 and 6.6.6.

We next prove that f is surjective. Suppose first that d =1 (mod 4) and put d = 4s+1,
with s € N. From the proof of Proposition 6.6.3 we get that e;q)Ages(q) # 0 if, and only
if, a = o; or a = B;, for some index ¢ such that 2s + 1 < i < 2n — 2s — 2. On the
other hand, from the proof of Proposition 6.6.4 we get that e,;Agy1€; # 0 if, and only if
2s +2<1<2n—2s—2.

When d = 3 (mod 4), and hence d = 4s + 3, we get corresponding conclusions to
those in the last paragraph. Concretely, from the proof of Proposition 6.6.3 we get that
ei(a)Naeia) # 0 if, and only if, @ = a; or a = B;, for some index i such that n —2s —2 <
i <n+2s+ 1. Bearing in mind that d+ 1 = 4(s + 1), we get from the proof of 6.6.4 that
er(i)Aar1e; # 0 if, and only if, n — 25 —2 <i <n+2s + 2.

We fix d < 2n — 2 odd in the sequel. Whenever e;,)Ageyq) # 0, we fix a path p, of
length d from i(a) to t(a), so that e;q)Ageyq) = Kpa. Analogously, if e;)Agr1e; # 0 we
fix a path ¢; of length d + 1 from 7(i) to i, so that e, Agy16; = Kg;. We now look at the
action of f on the p,. Note that if a € Q; then (—1)*“(®) and (—1)5(“0_1(“)) are equal,
when a is crossing, and are opposite to each other when a is noncrossing. Since changing
the sign of a column in a matrix does not alter the rank of the matrix we can assume,
without loss of generality, that:

1. When f is the restriction of R*: i) f(pa) = o(a)pa + pao~t(a) = Qt(a) t Gr(i(a))s
when a is crossing; ii) f(pa) = o(a)ps — pao~t(a) = Qt(a) — Gr(i(a))> When a is
noncrossing.

2. When n is odd and f is the restriction of ,R*, then f(a) = o(a)ps — pao~'(a) =
Qt(a) — Qr(i(a))> for all a € Q1.

Suppose first that d = 4s + 1 = 1 (mod 4). For each j = 2s+ 1,...,2n — 2s — 2,
the induced map f : G~92s+1§i§2n—23—2Kpﬁi — @254_23152”_23_2[((]1‘ = eT(i)Aei takes
Pp; ~* qj + qj+1, when [ is the restriction of R*, and, with an appropriate change of signs
if necessary, it maps pg, ~ ¢; — ¢j+1, when f is the restriction of ,R*. Here we adopt the

convention that gasy1 = 0 = gop—2s—1. The matrix of f with respect to the obvious bases
of its domain and codomain is then of size m x (m + 1), where m = 2(2n —2s —2) + 1.
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The submatrix obtained from it by deleting the first column is lower triangular with 1 in
all its diagonal entries. Therefore f , and hence f, is surjective in this case.

Suppose now that d = 4s+3 = 3 (mod 4). We consider V' = (®n—2s—2<i<n+2s+1KDg,)®
Kpa,, ,, , and denote by g : V — @p_2s—2<i<n+2s+2K ¢ = er(;)Agr16; the restriction of
f. The matrix of g, denoted (\;;) in the sequel, is now of size r x r, where r = 2(2542)+1.
Suppose that 1 < j < r and let us look at its j-th column. When f is the restriction of
R*, we have \j; = A\jy1; = 1 and A\;; = 0, for i # 7,5 +1. When f is the restriction of
¥, after changing the sign of the column if necessary, we have \;j; = —A;411; = 1 and
Aij = 0, for ¢ # j,j + 1. Finally, both when f is the restriction of R* and when it is the
restriction of ,R*, we have that f(pa,_ 2. ») = @n—2s—2 — @n+2s+1, 50 that the last column
has A, =1, Ap—1,, = =1 and A\;; = 0, for all 4 # 1,7 — 1. Direct calculation using the fact
that r is odd, shows that the determinant of this matrix is 2. Therefore g, and hence, f
is also surjective in this case.

It remains to check that Im(h) has codimension 1 in its codomain. Put d = 4s + 1.
From the proof of Proposition 6.6.6, for any arrow a, we have that e (;(q))Adeyq) # 0 if,
and only if, €;(;-1(q))A2n—2-d€i(o-1(a)) # 0. Putting £ := § —s—1 and looking at the proof
of Proposition 6.6.3, we then get:

er(i(a)) NCi(a) 7 0 <= €i(o-1(a)) Matt1€4(0-1(a)) # 0 <= 0 (a) € {a;, B; :
204+1<i<2n -2t -2} <= a€{a;,[i:2t+1<i<2n—-2t -2} <= a € {a;,bi:
n—2s—2<i<n+2s+1}.

On the other hand, by the proof of Proposition 6.6.1, we know that e;Ag41e; # 0 if, and
only if, n —2s—1<i<n+2s+1.

For any arrow a € {a;,3; : n —2s —2 < i < n + 2s + 1}, denote by u, a path
of length d from 7(i(a)) to t(a), and, for any vertex n —2s — 1 < i < n + 2s + 1,
denote by ¢; a cycle of length d + 1 at <. We then have that V := @ueq, €7(i(a)) Aa€i(a) =
On—2s—2<i<nt2s+1(Kua, ® Kug,) and W 1= @icq,eiMar16i = On2s—1<i<nt2s+1K¢; are
the domain and codomain of h, respectively.

Arguing as in the case of f, we can assume without loss of generality that h(u,) =
7(0(a))ua — U0~ (a) = Ca) — Cr(i(a))- This gives:

1. h(uq;) = ¢iy1 — Con—i, when ¢ > n, and h(uqa,) = ¢; — con—i—1, when i < n;
2. h(ug,) = ¢; — ¢it1, when i > n, and h(ug,) = ¢i+1 — ¢;, when i < n.

It follows from this that all the cycles ¢; (n —2s — 1 <i < n+ 2s+ 1) are equal modulo
Im(h), but none of them is in Im(h). Hence Im(h) has codimension 1 in W.
U

Lemma 6.6.8. Let d < 2n — 2 be an even natural number and let us consider that
It @DicqoCui)Nai — Dac@iCu(i(a))Nd+1€1(a) 15 the restriction of ,0*. Then [ is injective
and Ker(,,6) = Soc(A) N (DicqoeuiyAei) = Kwy,.

Proof. Note first that if n is even, then p(i) = 7(i), for all i € Qp, and then Soc(A) N

(DieqoeuiyAei) = Soc(A) N (DiegoeriyAei) = Kwy. On the other hand, if n is odd then

p(i) =14, for all i € Qo, and then Soc(A)N(Dicqqeui)Aei) = Soc(A)N(Dicqyeilei) = Kwy,.
We have an exact sequence of A-bimodules
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é
@aeQrAeu(i(a)) & et(a)A £ @Z‘EQOAe“(i) R e; A — pAl — 0.

By applying the contravariant functor Hompe(—, A), we get that Ker(,6*) = Homnpe (, A1, A).
But this is a graded vector space isomorphic to W := {z € Bicoeu(Nei pt(a)z =
zaforalla € Q1} = {z € Dicqoey@Ne: : pla)r = zaforalla € Q1}. Let then
T € @iereM(i)Adei, where d < 2n — 2 is an even natural number. We have that
icq, NiCi, where, for all i € Qo, Ay € K and ¢; is either the (possibly zero) cy-
cle at 7 of length d when n is odd, or the (possibly zero) path 7(i) — -+ — 4 of length
d when n is even. We get that xa = X\j(4)Ci(0)a@ = Ai(q)Pa, Where p, is either the (po-
ssibly zero) path of length d + 1 from i(a) to t(a) when n is odd, or the (possibly zero)
path of length d + 1 from 7(i(a)) to t(a) when n is even. By Lemma 6.5.9, we also have

r=3

p(a)r = Aya)Pa, When a is a crossing arrow, and p1(a)r = —Ay(4)Pa, When a is noncrossing.
It follows that if p, # 0 or, equivalently, if €,;(q))Ad+1€4(0) 7 0, then Aj,) = Ay(q), when a
is crossing, and A;(,) = —Ay(,), when a is noncrossing.

Note that, regardless of whether n is either even or odd, for a € {a,_1, B}, we know
that Pa 75 0 . It follows that )\n = )‘i(oznfl) == —)\n,1 = _)\t(anfl) while )\n = )\t(ﬂn) =
An—1 = Ai(g,)- It then follows that A\, = A1 = 0 and, by an easy induction argument,
one gets that \; = 0 for all ¢ such that ¢; # 0. Hence, we get that Ker(f) = 0.

Due to Propositions 6.6.1 and 6.6.4, the previous paragraph shows that Ker(,0%) lives
in (length) degree 2n — 2. But we have @;eq,eu(i)Aon—26i = Kw, and ,6*(w,) =0. O

We are now able to give the structure of the Hochschild cohomology spaces as modules
over Z(A) = HH(A). Recall that, due to the 6-periodicity of A, we have that H H%(A) =

HHO(A) = 228 for all k> 0, and HHSi(A) = HH(A), for all i > 0 and k > 0.

Remark 6.6.9. We will adopt the following convention. Suppose that d* : Vi — Vit!
is the differential of the complex V" of Proposition 6.5.11. Considering A with its usual

grading and looking at V* as a graded subspace of A, for each d € N, we denote by Ker(d*)4
L. . . . i Ker(di)

the kernel of the restriction of d* to V; and pgt HH'(A)y = ern(zdi—l)' The reader

is warned that, generally, an element x € HH"(A)y does not have length degree equal to

d.

Theorem 6.6.10. Let A be the generalized preprojective algebra B, over a field K with
char(K) # 2. The following assertions hold:

1. When n is even, we have isomorphisms of Z(A)-modules:

(a) HH'(A) = Z(A)/I, for all i > 0 and i = 0 (mod 6), where I is the subspace
of Z(A) generated by the set {w; + wop—; : 1 < i < n} U {w,} U {v}, with
U= Z1§k§%(w2k—1 — Won—2k41);

(b) HH'(A) = Z(A)/Soc(A), for alli =1 or 4 (mod 6);

(¢c) HHY(A) = Z(A)/J(Z(A)) = K, for alli =2 or 3 (mod 6);

(d) HH*(A) = D(Z(A)/I), for all i =5 (mod 6);

2. When n is odd, we have isomorphisms of Z(A)-modules:
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(a) If char (K) does not divide n, then:

i. HHY(A) = ﬁ for alli>0 and i =0 or 1 (mod 6);

i. HHY(A) = 0 otherwise.
(b) If char (K) divides n, then:
i. HHY(A) =2 Z(A ) for all i =0 (mod 6);
ii. HH'(A) = m, for alli=1 (mod 6);
ii. HHY(A) = Z ( )/J(Z(A)) =K, for alli =5 (mod 6);
iv. HH'(A) otherwise.

2

Proof. If HH*(A) is the stable Hochschild cohomology ring then, in case n is even, we
know from Eu-Schedler [35] that we have a correspondent of Corollary 5.2.12 and, hence,
that there is an isomorphism of graded HH*(A)-modules D(HH*(A)) = HH*(A)[5]. This
and the 6-periodicity of A yield isomorphisms of modules over HH°(A) = Z(A)

HHS(A) = HHO(A)

D(HH®(A)) = HH5(A)
D(HH'(A)) = HH*(A)
D(HH?(A)) = HH?(A).

On the other hand, the Z(A)-module Z(A)/Soc(A) is isomorphic to K[z]/(z%), with
the terminology of Proposition 6.6.2. Then we have an isomorphism D(Z(A)/Soc(A)) =
Z(A)/Soc(A) and, of course, we have another one D(Z(A)/J(Z(A))) = Z(A)/J(Z(A))
since % = K. Then, in order to prove assertion 1, we just need to prove 1l.a and, in
1.b and 1.c, just the cases i = 1 and ¢ = 2, respectively.

We know that if ¢ > 0 and ¢ = 0 (mod 6), then there is an isomorphism of Z(A)-

modules HH'(A) = HH(A) = 5. Since A = Q3. (A), we readily get that P(A, A) =

m(,k*). In case n is odd, Proposition 6.5.11 gives that P(A,A) = Kw, when char(K)
does not divide n and that P(A,A) = 0, when char(K') divides n. Then the formulas 2.a.i
and 2.b.i, when ¢ = 0 (mod 6), are automatic since Z(A) N Soc(A) = Kw,, in this case.

In case n is even, using again Proposition 6.5.11, we can assume without loss of ge-
nerality that ,k* is a map K Qo — Soc(A) whose associated matrix with respect to the
canonical bases of KQo and Soc(A) is the Cartan matrix Cx. Following the calculation
of rank(Cy) done in the proof of Proposition 6.5.7, we put f = ,k* and V = KQq for
simplicity. It was shown in that proof that the induced map Ker(7 — 1y) — Ker(7 — 1y/)
is bijective. Then {w; + wop—; : 1 < i < n}U{w,} is a basis of f(Ker(r — 1y)).

On the other hand, also in the proof of Proposition 6.5.7, it is shown that the restriction
of f to Ker(7 + 1y) has a kernel of codimension 1 in Ker(7 + 1y). Then f(Ker(r + 1y))
has dimension 1. From the mentioned proof it follows that f(eox—1) — f(eon—okt1) =
f(el) — f(egnfl), for all k£ = 1 . 2, because (61 — €2n71) — (egk_l — egn_2k+1) is always
in the kernel of f (see Remark 6. 5 8). But f(e1) — f(ean—1) = D 1<j<an_1(Ci1 — Cian—1)wi,
and by Proposition 6.5.7 we have o
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0 if 7 1s even
Ci1 — Ci,Qn—l = 2 if 7 1s odd and ¢ S n
—2 if 4 isoddand i>n

It follows that f(el) — f(egnfl) = 221Sk§%(w2k_1 — wgn_2k+1). From this and the
previous paragraph we get 1.a.

We next find the structure as a Z(A)-module of the space HH'(A). For that we
consider HH'(A) as a graded vector space, by using length degrees, and look at the exact
sequence

0= Z(A)g — @icqoeiMaei — Im(6*) g1 — 0,

for any even degree 0 < d < 2n—2. Recall from the proof of Proposition 6.6.2 that if d = 2
(mod 4) then Z(A)g = 0, which implies that dim(Im(6*)g41) = dim(®icq,eilaei) = d+1
(see Proposition 6.6.1). On the other hand, by Proposition 6.6.7 we get dim(Ker(R*)g411) =
d+ 1. Tt follows that HH'(A), = 0 whenever 0 < e < 2n —2 and e = 3 (mod 4).

When 0 < d <2n—2and d =0 (mod 4), we know from the proof of Proposition 6.6.2
that dim(Z(A)q) = 1. It then follows that dim(Im(6*)g441) = dim(Bieqeildei)—1 = (2n—
d—1)—1=2n—d—2. Moreover, from Proposition 6.6.7 we get that dim(Ker(R*)g41) =
2n — (d+1) = 2n — d — 1. It follows that dim(HH'(A).) = 1 whenever 0 < e < 2n — 2
and e = 1 (mod 4). We will now pick up an element 0 # y € HH'(A); and will prove
that the induced morphism of Z(A)-modules Z(A) — HH(A) (a ~ ay) vanishes on

Z(A) N Soc(A) and induces an isomorphism of Z(A)-modules ﬁ = HH'(A).
The formula 1.b for ¢ = 1 (mod 6) and the formula 2.b.ii will immediately follow from
this.

Fix a natural number d such that d = 0 (mod 4) and d < 2n — 2. Extending the
notation of the proof of Proposition 6.6.7, we denote by p, the possibly zero (unique up to
relations) path of length d + 1 from i(a) to t(a). Note that the element vo11 =3 0, Pa
is in Ker(R*). Indeed R*(v4y1) = ZGGQI[(—US(J(“)“)U(G)% + (=15 @)y o1 (a)].
Let now i € Qo and i > n be any vertex such that e, Agi2¢; # 0 and denote by
¢g; the (unique up to relations) nonzero path of length d 4+ 2 from 7(i) to i. Due to
the equalities ¢; = Bi—1Pa;, 1 = PB;_1¥i-1 = Pas, i 1Bi = an—i—1pg, and the fact that
s(a) = 0, for each noncrossing arrow a, we see that ¢; in the last summatory appears
with coefficient [(_1)8(&'710&71) + (_1)8(52'71041‘71) + (_1)8(04271471&') + (_1)8(0127172'71&')] —
[(—1)sBi-1) 4 (—1)5Bi-) 4 (—1)5(8) 4 (—1)5(8) . This coefficient is zero because exactly
one of the arrows §;_1, 3; is in X and, hence, s(Bi—1) # s(B;). A similar argument shows
that g, appears with coefficient (—1)5(n—1) 4 (=1)5(n-1) 4 (=1)*(Bn) 4 (—1)5Fn) = 0 and,
by application of the symmetry 7, we conclude that the coefficient of ¢; in the summatory
is zero, for all i € Qg such that e.;Agyoe; # 0. Therefore we have R*(vgy1) = 0.

On the other hand, we claim that v441 & Im(d). To see that, note that the proof of
Proposition 6.6.1 shows that if ¢; denotes the cycle of length d at ¢, for each i € Q)g, then
{ei:254+1<i<2n—2s—1}is a basis of ®icq,eiNgei, where 4s = d. If vg4q € Im(6*)
then there is a linear combination u = 5.\  ico, 9, 1 Aic; such that 6*(u) = vgi1.
Note that the arrows a such that p, # 0, equivalently those for which e;q)Agt1€4q) # 0,
are precisely the ones such that i(a),t(a) € {i € Qo : 2s+1 < i < 2n —2s — 1} (see
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the proof of Proposition 6.6.3). Denoting this set of arrows by H, we readily see that
6" (u) = X aer(At(a) — Ai(a))Pa- The equality 6*(u) = vgy1 gives that the coefficient of p,,
in this expression is A,41 — A, = 1 while the coefficient of pg, , is A, — A,y1 = 1. This is
absurd.

We write Ugy1 = vay1 + Im(6*) € HHY(A)g11 and put y = v, € HH'(A);. Taking
the element z € Z(A) as in Proposition 6.6.2 and putting d = 4s, we readily see that
the equality v4,1 = 2%y holds in HH'(A) since the multiplication by elements of Z(A) is
induced by the multiplication in A. It then follows that [Z(A)ylq = HH'(A)g41, for all
natural number d = 0 (mod 4). But then we have HH'(A) = Z(A)y since HH(A) =

Bd=0 (mod 4)HH1(A)d+1. It is clear that Soc(A) N Z(A) C anng,)(y), so that HH'(A)

has a canonical structure of module over Z(A) = ﬁ% But Z(A) is isomorphic

to K[z]/(x2) or K[x]/(x%), depending on whether n is even or odd. If s is a natural
number such that s < ”T_l then, both when n is even and when n is odd, we have that
%Yy = Vgs4+1, which is nonzero since 4s + 1 < 2n — 3. It follows that the morphism
Z(A) — HH'(A) which takes a ~ ay gives an isomorphism % ~ HH(A), as
desired.

From Propositions 6.5.11 and 6.6.7 we immediately get the formula in 1.c and the fact
that HH?(A) = 0 when n is odd.

Since the proof of assertion 1 is now complete, we assume in the rest of the proof
that n is odd. Then combining both Lemma 6.6.8 and Proposition 6.5.11, we then have
Ker(,6*) = Im(k*) and so HH3(A) = 0.

Lemma 6.6.8 shows that, if d < 2n — 2, the induced map ,0* : @ieqyeilaei =
@iEQoeu(i)Adei — Dac, ei(a)Ad+1et(a) = ®a€Q1eu(i(a))Ad+1et(a) is injective. Putting r =
d + 1 and using Proposition 6.6.1, we then have that dim(Im(,0*),) = dim(®;eq,eiAqei)
is equal to 2n —d — 1 = 2n — r, when r = 1 (mod 4), and equal to d +1 = r, when
r =3 (mod 4). By Proposition 6.6.7, we conclude that Ker(,R*), = Im(,0*),, for all odd
natural number r < 2n — 3. We then get HH*(A) = 0.

Finally, from Propositions 6.5.11 and 6.6.7, we easily get that HH®(A) = 0, when
char(K) does not divide n, and HH5(A) is 1-dimensional when char(K) divides n. Then
the proof is complete. O

As a straightforward consequence, we get:

Corollary 6.6.11. The following are the dimensions of the HH'(A) as K-vector spaces:

1. When n is even:

(a) dim(HH°(A)) =22 — 1.

(b) dim(HH'(A)) =22 —2 for alli >0 and i=0 or5 (mod 6).
(c) dim(HH'(A)) =% for alli>0 andi=1 or 4 (mod 6).

(d) dim(HH(A)) =1 for alli >0 and i =2 or 3 (mod 6).

2. When n is odd, dim(HH°(A)) = 2 and, for i >0, we have

(a) If Char(K) does not divide n, then:
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dim(HH'(A)) = 251, when i =0 or 1 (mod 6).
dzm(HH (A)) = 0 otherwise.
(b) If Char( ) divides n, then:

i. dim(HH'(A)) =" for alli=0 (mod 6).
i. dim(HH'(A)) = 251 for alli=1 (mod 6).
iii. dzm(HHZ(A)) 1 for alli=5 (mod 6).
. dim(HH'(A)) = 0 otherwise.

6.7 The ring structure of the Hochschild cohomology ring

Finally, in this section we compute the structure of the Hochschild cohomology ring
HH*(A) of the generalized preprojective algebra A = B,, as a bigraded algebra over a
field of characteristic different from 2. As done in Chapter 4, we will follow a convention
for the statements of the two main theorems. Let us denote by P": ..P™™ — ... — P~1 —
PY — A — 0 the minimal projective resolution of A as a graded bimodule (see Proposition
6.5.10). In the statement of the theorems, if a generator g is in HH™(A), we will give
a morphism of A-bimodules g : P~ — A such that § is in the kernel of the transpose
map (d~""1)* : Hompe (P7",A) = (P7")* — (P 1)* = Hompe (P71, A) and g is the
image of § by the canonical projection Ker(d=""1)* — HH"(A). We will say that g is
represented by ¢ and ¢ will be identified simply by its action on the canonical generators
e; X €; of P77,
We start with the simplest case: when n is odd.

6.7.1 When n is odd

Theorem 6.7.1. Let n be odd and let A be the generalized preprojective algebra B, over
a field of characteristic # 2 and let view HH*(A) as a bigraded algebra (see Section 2).
Consider the following elements of HH*(A):

a) T =7 3 icon 3Ci € HHY(A) = Z(A), where c; is the cycle of length 4 at i;

b) y € HH'(A) represented by i : Baec@i Aei(a) @eya) A — A, where (e;q) Deyq)) = a,
for all a € Qq;

c) h € HHS(A) represented by the multiplication map DicqoNe; ® ;A — A; and

d) In case char(K) divides n, the element v € HH(A) represented by ¥ : Dieqo ey @
eil = DicoAer) @ eih — A, where D(eq(;) @ €;) = Oinen, for all i € Qo, and &;y,
is the Kronecker symbol.

Then we have bideg(z) = (0,4), bideg(y) = (1,0), bideg(h) = (6,—4n) and bideg(v) =
(5, —2n — 2) and the following assertions hold:

1. If char(K) does not divide n, then HH*(A) is the commutative bigraded algebra with
generators x, y, h, subject to the relations:
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n+1 n—1

z 2z =0, z 2z y=0, 2" T h=0 and  y*> =0.

2. If char(K) divides n, then HH*(A) is the commutative bigraded algebra with gene-
rators x, y, v, h, subject to the relations

z 2z =0, z 2z y=0, zv =0, y =0, yv =10 and  v? =0.

Proof. We know that y is the image of Zate a by the projection Ker(R*) — HH(A).
But the length degree of >, @ in ©qeq, €i(a)Aet(a)[1] 18 equal to 0, so that bideg(y) =
(1,0). On the other hand h is the image of 1 by the projection Ker(d*) —» HHS(A). But the
length degree of 1 in @;cq,e;Ae;[4n] is —4n, so that bideg(h) = (6, —4n). When char(K)
divides n, we have that v is the image of e, by the projection Ker(,k*) - HH®(A). But
the length degree of e, in @, ;)Ae;[2n + 2] is —2n — 2, so that bideg(v) = (5, —2n — 2).

By the multiplicative structure of the center (see Proposition 6.6.2), we know that
) By Theorem 6.6.10 and its proof, we know that the map Z(A) — HH'(A)
(a ~» ay) is surjective with kernel Soc(A) N Z(A), which is the ideal of Z(A) generated by
w, = 2"T . We also know that the map Z(A) — HHS(A) (a ~ ah) is surjective, with
zero kernel in case char(K) divides n, and with kernel Soc(A)NZ(A) = K 2”2 otherwise.
Moreover, we have y*> = 0 because HH?(A) = 0. When char(K) does not divide n, this
together with periodicity and the fact that HH3(A) = 0 = HH?(A) imply that HH*(A)
is a commutative algebra since all products of homogeneous elements of odd homological
degree are zero. We conclude that, when char(K) does not divide n, the bigraded algebra
HH*(A) is given by generators and relations as indicated in the statement of the theorem.

Suppose in the rest of the proof that char(K) divides n. Then v? = 0 since v? €
HH(A) = 0. That v = 0 follows easily from taking bidegrees. Indeed HH®(A) is 1-
dimensional and its nonzero elements are all scalar multiples of v, thus of bidgree (5, —2n—
2), while if we had zv # 0 we would have bideg(zv) = (0,4) + (5, —2n —2) = (5, —2n +2).
Note that we cannot apply an analogous argument to prove that yv = 0 since bideg(yv) =
bideg(an_lh) and 2”7 h =# 0. Instead, given i € @)y and a nonzero element 0 # z €
er#)Aen which is equal in A to a path from 7(i) to n, we fix such a path, say ajaz...a,,
where the a; are arrows. We now imitate an argument used in the proof of Lemma 5.4.4
and take the element

& =7(ar)..7(ar—1) ® 2" + 7(a1)...7(ar—2) ® 7(ar)2" + ... + 7(a1) ® 7(a3)...7(ar)z" + €; ®
T(ag)...7(a,)z*.

Note that &, is an element of ©ue,Aejq) @ €q)/A which depends on the path chosen to
represent z. However, direct computation shows that §(§,) = 7(2) ® z* — e; ® 7(2)2*, and
this element does not depend on that choice. When i # n, we always have 7(z)z* = 0 in
A, so that 6(§.) = 7(2) ® z*. Fixing now a basis e.(;Bey, of e ;) Ae, consisting of paths,
we get that 5(22667@)8% &) = ZZEG.,-(i)Ben 7(2z) ® z*. But for i = n, with the convention
that &, = 0 and so 0(&,) = en, @ wy, — €, ® wy,, we also get:

5(22667—(71)8571 52) = ZzeenBen [T(Z) & Z* — €n ® wTZ] = (ZzeenBen T(Z) ® Z*) -
dim(enAen)(en ® 'U)n) - (ZzeenBen T(Z) ® Z*) - n(en & wn) = ZzeenBen T(Z) ® 2*7
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because dim(e,Ae,) = n (see Proposition 6.5.7) and char(K) divides n.

We now explicitly calculate the product yv in HH*(A). The morphism @ : ©ieq,Aer(;®
e;A — A, which represents v, admits an obvious lifting ¥ : @®egoAery) @ ;A —
Bic@oAe; ® e;A, which is the unique morphism of A-bimodules which maps e, ;) ® e; ~
Oinén ® e,. Bearing in mind that n = 7 in this case, we then get

(’0 o uk‘)(ei %) Gi) = @(ZZEGT(Z')B T(Z) X Z*) — ZZEGT(i)Ben T(Z) X A 6(22667(i)85n gz)

This implies that if we take the unique morphism ®;cq,e;Ae; i> Dacr Mei(q) @ () of
A-bimodules which maps e; ® ¢; ~ > 2€er(s)Ben §., then the composition ®;cq,eiAe; L
Bac, Aej(a)@ei(a) A %, A represents the product yv. One readily sees that (o f)(e;®e;) =

0, for all vertices ¢ # n. On the other hand, if z € e,Be,, then §({,) = length(z)7(2)z* =
length(z)w,,. It follows that

(Gof)len®en) =D ce, Be, length(2)w, = (0+2+4+ ...+ (2n — 2))w, = n(n — L)w, = 0.
Then we have yv = 0 in HH*(A). O

6.7.2 When n is even

In the rest of the thesis, we assume that n is even. We will adopt the convention of Remark
6.6.9.

Lemma 6.7.2. Let n be even and d be an odd natural number such that 0 < d <
2n — 2. Then HH*(A)y # 0 if, and only if, d = 1 (mod 4). In such a case one has
dim(HH*(A)g) = 1.

Proof. By Proposition 6.6.7, we know that the kernel of the map , R : ©aeq; €7 (i(a)) Nd€i(a)

— @ieQo€iNa+16€; has dimension d + 1. On the other hand, from Lemma 6.6.8 we
know that ,0* : @ieQoer(i)Ad-1€i — BacCr(i(a))NdCt(a) 15 injective. Then we have the
equalities dim(Tm(,,0*)) = dim(Deq,er(5)Aa—1€:) = d (see Proposition 6.6.4). It follows
that dimH H*(A)g = 1. Using Corollary 6.6.11, we then get:

5 = dim(HH'(A)) > 3 dim(HH*(A)a) = 5
d<2n—2,d=1 (mod 4)
From this the result follows immediately.
O

Lemma 6.7.3. For each i,j € Qo, let G;j be the set of natural numbers d such that
eilNge; # 0 and put T;; = ZdeGM d— ZeeGi ,._. € The following assertions hold:

J

1. Ifi,5 < n then:

(a) If either i =mn or j =n ori and j are both even, then Y;; =0
(b) If both i and j are odd, then Y;; =2n — 2
(c) If i is odd and j is even, then:
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i. Tij = =27, wheni>j
ii. Yij = 2(n —j), when i < j

2. The following relations hold:

(a) Yij = Yon_ion—;j
() —Yion—j="Tij=—"on_i;
(¢) Yi; = =7 ;; whenever i or j is even

(d) Y;j =4n —4 — Yj; whenever i and j are both odd and smaller than n.

Proof. We first prove assertion 2). The equality 2.a follows from the fact that, due to the
symmetry 7, one has that G;; = G2p—; 2n—j. By definition of T;; and T; 2,,—;, we get that
T;j = —T;2,—;. But then, using 2.a, we get that T;; = —Y,_; ; and so 2.b follows.

We next prove 2.c and 2.d at once. By Remark 6.5.4, we have that d € Gjy; if, and
only if, 2n — 2 — d € Gj;. This together with the equality of sets Ga,—_;; = G 2,—; gives:

Ti; = ZdeG d— Zeer on_j € Zd/eG ( -2-d)—- Ze/eng_],,i(2n —2—-¢)=
(2n — 2)[Gji| — (20— 2)|Gjnni] — Tji = (2 —2)(cji — ciomi) — T
From Proposition 6.5.7 and its proof we know that c;; — ¢j2n,—; = 0, when ¢ or j is even,
and c¢j; — ¢j2n—; = 2, when i and j are both odd and smaller than n.
We clearly have that T;, = 0, and from 2.c we also get Y,; = 0. In order to prove the
rest of assertion 1, let us note that, by Lemma 6.5.5, we have the formula:

TZ] = ZS€X+(Z ])[48 + (.] - /L)] + ZseX (4, ])[48 + 2 + (j - /L)] ZtEZ+(Z 2n— j)[4t + (
2)] ZtEZ (4,2n— ])[4t +2+ (-7 - ’L)] - 40’” + 4bU + 2uZ] + (-] ’L)’UU’

where ai; = Y icxr(ij)S — 2otez-(on—j) b Vs = Dsex—()5 — Dtez+(ian—j) b Uij =
| X~ (i,5)| — |27 (3,2n — j)| and v;; = ¢;j — ¢i2n—;. Here Cp = (¢;5) is the Cartan matrix.
In order to exploit the formula above, let us recall (cf. Lemma 6.5.6), that if 7,5 > n then
we have set equalities:

X*(i,7) = {s € N: maz(0, 5
Z=(i,2n — j) = {t € N: max(0,
X~ (i,j) ={s e N: =2
Z*(i,2n —j)={eN

Using these equalities and Proposition 6.5.7, we then get the following table, whenever
n<i<j:

Condition a,ij bij uij ’Uz‘j
i and j even 0+1 0 (n—%)—(n—%J)rl:O 0
iand j odd | n— L= st n—I)—(n-hH=1] 2
i odd, j even 0 —X@Hl=—m=-%)] m=%)-m—-%)=0 |0
7 even, 7 odd n—# —nfij-l (n—%)—(n—%)zo 0
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From this table, using 2.a, we get immediately 1.a and 1.b. Finally note that, by 2.a
again, proving l.c is equivalent to proving that if ¢,j > n, with ¢ odd and j even, then
Tij = —2(2n—j), when i < j, and Y;; = —2(n — j), when i > j. The first equality follows
immediately from the pre-last row of the table. The second formula follows from the last
row of the table, by using 2.c.

O

Notation 6.7.4. Given vertices i,j € (g, we shall denote by N(j,4) the set of natural
numbers d such that ejAge ;) # 0 # e;Aa,—2-q€; or, equivalently, such that e;Age, ;) #
0 # ejAqge;. We then put B = Umer ejBeT(Z-), where ejBeT(i) denotes the subset of
ejAe.(;) consisting of the classes z modulo relations of paths from j to 7(i) such that
deg(z) € N(j,7). Finally, for each x € ej[;’eT(i), we shall denote by z° the class modulo
relations of any path from i to j of length 2n — 2 — deg(z).

In the following lemma, for each j € Qo, we shall denote by x(j) and y(j) the shortest
paths from j to n and from n to j, respectively, which we view as elements of A. Note
that both of them have length |n — j|.

Lemma 6.7.5. Let i,j € Qo be any vertices. The following assertions hold:

1. N(j3,i) = N(4,2n —i) = N(2n — j,i) = N(2n — j,2n — i) and the assignment
d ~ 2n — 2 — d defines a bijection N(j,1) =, N(i,j).

2. If 1,5 > n the set N(j,i) is nonempty exactly when i + j < 3n — 1. In such case
ejBeriy = {x(j)c"y(r(i)) : 0 <r < 3n —1— (i + j)}, where c is the cycle of length
2 at n.

3. If j # n then, for each pair (0,0) # (A\,u) € (K x {0}) U ({0} x K), there is a
unique map h : ;B — K such that (h(x(j)), h(x(j)an-1)) = (A, p) and h satisfies
the following three conditions, for each x € e;B:

(a) h(za) = h(z), whenever a is a crossing arrow # Bn_1 and a € e;B

(b) h(za) = —h(zx), whenever a is a noncrossing arrow # an,—1 and xa € e;B

(c) If a € {an-1,Bn-1} and xza € ej[;’, then ezactly one of the values h(x) and
h(za) is nonzero.

4. If j#mn, h: ejB~ — K is the map satisfying the conditions 3.a-c) and x,xc € ejli’,
then exactly one of h(x) and h(xc) is nonzero. If, in addition, also xc?

is 1 e; B,
then h(x) = h(xc?).

Proof. 1) This assertion is a direct consequence of the definition of N(j,i) and of the
isomorphisms D(ejAger) = D(epAon—2—qej) and ejAger = ean—jAge2,—k, which hold for
all 7,k € Q.

2) Let d be any natural number. From Lemma 6.5.5 we know that e;jAges,—; # 0
(resp. ejAge; # 0) if, and only if, there is a s € Z1(j,2n — i) (resp. = € X1(j,1))
such that d = 4s +1i — j or there is a s € Z7(j,2n — i) (resp. = € X (j,7)) such that
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d=4s+2+ 11— j. It follows that d € N(j,1) if, and only if, either d = 4s + i — j, with
se Xt(j,i)NZ*(j,2n —i),ord =4s+2+ i —j, with s € X (j,4) N Z(j,2n —14). By
Lemma 6.5.6, we have the following set equalities:

XT(j,i))NZ*(j,2n—i)={seN: ]Tlgsgn_i%lz}
X (,))NZ (4,2n—1)={s € N: n SSSTL—%}

It follows that N(j,7) consists of the natural numbers d such that d=i—jord =i—j+2
(mod 4) and i +j —2n < d < 4n — 2 — (i + 7). This set is nonempty precisely when
i+j—2n <4n—2— (i + j), which is equivalent to saying that i + j < 3n — 1.

Note that we have actually proved that N(j,i) ={i+j—2n+2r:r=20,1,...,3n —
1—i—7j}. But the elements of this set are precisely the lengths of the paths z(j)c" y( (1)),
which proves that ejBe ={z()y(r(i)): 0<r<3n—-1—(i+j)}.

3) We first suppose that = 0. By assertions 1 and 2, each x € ejB can be written in
the form x = z(j)c"y(i), for uniquely determined vertices i,j € Qo and natural number
r, where r is bounded above by a formula depending on 7,5 (e.g. if 4,5 > n then 0 < r <
3n —1— (i +4)). We define the map h : ;B3 — K as follows:

i) If either i > n and r is odd or ¢ < n and r is even, we put h(z) = 0;
ii) If i > n and 7 is even, we put h(z) = (—1)""");

iii) If i < n and r is odd, we put h(z) = (=1)"="F1)\.

Let us check that this map satisfies the required conditions. On one hand, we clearly
have (h(z(7)), h(z(j)an—1) = (A,0) = (A, ). On the other hand, let a be a noncrossing
arrow, with a # a,,_1, such that also za € e;B. Then we have i(a) = i. If i > n then
a = «; and y(i)a = y(i + 1), so that za = z(j)c"y(i + 1). It follows from this that
h(za) = —h(z) and a similar argument works in case i < n.

Suppose that a is a crossing arrow such that xza € ej[;’. We do the case when i > n,
leaving to the reader the case ¢ < n. We then get that a = f2,—; and, by the relations,
we have an equality y(i)fon—i = cn—1...Q2n—i+1 = cy(2n —i + 1). We then get za =
z(5)c"y(2n — i + 1). By the definition of h, if 7 is odd then we have h(x) = 0 = h(za).
If r is even then h(z) = (—1)"""\, while h(za) = (—=1)P~Cr=#DIFIN " Tt follows that
h(za) = h(x).

If za,—1 € B, which implies that i = n and 2 = z(j)¢", then h(za,_1) is equal to 0
or A, depending on wether 7 is even or r is odd. But in the first case h(z) # 0 while in the
second case h(x) = 0. It then follows that exactly one of h(z) and h(xa,_1) is nonzero.
Suppose finally that z3,_1 € ejB, which implies that ¢ = n + 1 and x = z(j)c"a,. Note
that then 83, 1 = z(j)c"t1. If r is even,then we have h(x) = —h(z(j)c") = —~A # 0 =

h(zBn_1) = h(z(j)c"™t). On the contrary, if r is odd then we have h(z) = —h(z(j)c") =
0 # h(z(j)c") = h(zB,_1). We then have that exactly one of h(x) and h(zf,_1) is
nonzero.

We now prove that h is unique. Indeed, suppose that b’ : ejl’;’ — K is a map such
that h' # h and I’ satisfies the requirements. Note that ejB admits the divisibility partial
order. That is, < y if and only if there is a homogeneous element z € A such that zz = y.
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We choose zg € e, such that & (o) # h(zo) and z¢ is minimal with this property. By the
properties of h and k', we know that x¢ & {x(j), z(j)an—1}. But, due to the relations, any
element in e; B\ {2(j),2(j)an_1} can be written in the form za, where = € ¢;B and a is
an arrow different from «,,_1 and B,_1. In particular, we can write g = xa. We then get
h(xz) = h(xza) # W (xa) = h/(x), when a is crossing, and h(z) = —h(za) # —h/(xa) = b/ (z),
when a is noncrossing. In both cases, we get that h(z) # h'(x), which is a contradiction
since x < xg.

With a very similar argument, the reader will have no difficulty in checking that if
(A, ) = (0, ), then the desired map h is given as follows:

i) If either 4 > n and 7 is even or ¢ < n and 7 is odd, then h(z) = 0;
ii) If i > n and r is odd, then h(z) = (—1)""u;

iii) If i < n and r is even, then h(z) = (—1)""" 1y,

4) This assertion follows immediately from the explicit definition of h given in the
proof of assertion 3. O

Definition 23. Let us put B = U icQo ejB. Then we call the coefficient map, denoted in
what follows by h, the map h : B — K identified by its restriction to the ejl’g’ as follows:

1. If x € e,B = e,8 and we put x = ¢"y(i), where y(i) denotes the shortest path from

. —1)deg(y(4) . _1ydeg(y(i))—1
n to i, then h(z) = 1) 4g . when i > n, and h(z) = (DT iy

, when ¢ < n.
2. When either j > n and j is odd or 5 < n and j is even, h\e]-z%’ : ej[;’ — K is the

1

unique map such that (h(z(j), h(z(j)an—1)) = (0,5

Lemma 6.7.5 ;

) and satisfies conditions 3.a-c of

3. When either j < n and j is odd or 5 > n and j is even, h‘ e, is the unique map such
that (h(z(j), h(z(j)an—1)) = (3,0) and satisfies conditions 3.a-c of Lemma 6.7.5

Lemma 6.7.6. Let a and j be an arrow and a vertex in Q, respectively, and let us denote
by x(j) and y(j) the shortest paths from j to n and from to n to j, respectively. Then the
following assertions hold:

1. Ifx € ejEeT(t(a)) is such that xo(a) ® x° # 0, then x° € o~ (a)A unless a = f3;,
x® = z(t(a))y(j) and one of the following three conditions is satisfied:

(a) j=n
(b) i is odd and eitheri,j >mn ori<n<j

(c) i is even and either i,j <n orj<n <1

Moreover, in the last two cases and whenever i # n, the coefficient map satisfies that
h(z) = 0.
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2. Ify € ejéei(a) is such that y @ o1 (a)y® # 0, then y € Ao(a) unless a = oy,
y =xz(j)y(i(a)) and one of the following three conditions is satisfied:

(a) j=n
(b) j is odd and eitheri,j >mn ori,j <mn
(c) j is even and either i <n <jorj<mn<i

Moreover, in the last two cases and whenever i # n — 1, the coefficient map satisfies

h(y) = 0.

Proof. We shall deal with the last statement of both assertions 1) and 2) at the end of the
proof. We then begin with the first part of each of them.

1) We know from Lemma 6.7.5 that z° = z(t(a))c’y(j) where s € N. Due to the
symmetry 7, there is no loss of generality in assuming that either a = ;1 : i1 —1 — ¢
withi>n+lora=p;:2n—1i—1— i with i > n.

Suppose first that a = a;—1 with ¢ > n + 1, so that, ° = x(i)c*y(j). But then, it is
clear that the first arrow of x(i) is precisely Bon_; = 0~ !(ay_1) and we immediately get
that 2° € o7 1(a)A.

Suppose next that a = ; : 2n —i — 1 — @ with ¢ > n. Then 2° = z(i)c°y(j) where
x(i) = Pon—ifBi—2 - Bn—20y if i is even and (i) = Bop—ifi—2 - Pnt+1Pn—1 if 7 is odd. Note
that if i is even we get that z(i)c = Bon—iBi—2- - Pn-2Bnnfn-1 = @ifon—i—1-"" PBns1
while if 7 is odd we obtain that x(i)c = Bop—ifi—2* * Brnt+18n—10n—10n = @iBon—i—1- " Pn.
Therefore 2° € o~ 1(8;)A = ;A whenever s > 1. We know assume that s = 0, that
is, #° = x(i)y(j). It is clear that if j = n, since y(j) = e;j, we have that z° = z(i) ¢
a;A. Now suppose that j # n. Following the description of x(i) we distinguish two
cases. First, let us assume that ¢ is odd. Then, if j > n we have that z(i)y(j) =
Bon—ifi—2* Bny1Pn-10n-1- - j = iffon—i—1"* Bpn_20p_2---a; which belongs to a;A.
The result for the case when i is even is very similar to that of when 7 is odd so it is left
to the reader. For the case when ¢ = n and, consequently, ° = y(j), we obviously have
that the first arrow of y(j) is 0~ (8,) = ay, if, and only if, j > n.

2) We proceed similarly to assertion 1). Once again, due to Lemma 6.7.5 we know
that y = z(j)c®y(i(a)) for some s € N and that we can assume without loss of generality
that either a =y :i — i+ 1withi>nora=0;:2n—i—1— ¢ with ¢ > n.

We first suppose that a = f; : 2n—i—1 — i with ¢ > n and then, y = z(j)c®y(2n—i—1)
with i > n and Ao(a) = Aag,—;—1. This is equivalent to saying that y = x(j)c*y(i) with
i <n and Ao(a) = Aa;. But notice that y(i) = ap—100,—2 -+ @ € Aavj, so we are done.

Finally suppose that a = a; — ¢ + 1 with ¢ > n and hence, y = z(j)c’y(i) for
some s € N. Since i > n, we get that y(i) = a,---a;—1 (here ay, -~ ;—1 = e; in case
i = n) which implies that cy(i) = ap—18n0n - Q-1 = Qp—1 -+ aop—i—15;i € Ao(a;) = AB;.
Therefore we can assume that s = 0, in which case, y = z(j)y(i). If j = n we obviously
obtain that y = y(i) € AB;. So, from now on, assume that j # n. Note that the last arrow
of z(j) is Bp—1 if, and only if, either j < n and j is even or j > n and j is odd. Otherwise,
the last arrow of x(j) is the arrow 3,. But, since y(i) € ap,Aif i #nand y(i) =¢; ifi =n
we clearly have that y = x(j)y(i) € AB; if, and only if, the last arrow of x(j) is f,—1, or
equivalently, if, and only if, either j < n and j is even or j > n and j is odd.
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It only remains to deal with the statements involving the coefficient map h. We first
look at the one given in assertion 2). Using definition 23 and the explicit definition of
h|e‘7_§ given in the proof of Lemma 6.7.5, we readily see that if j # n and y = x(j)c"y(4) is

an element of ejéei, then coefficient map vanishes on y if, and only if, the triple (7,7, j)
satisfies one of the conditions of the following table:

i r j

>n | even | odd >n or even <n
>n | odd | odd <n or even >n
<n|even | odd <n or even >n
<n | odd | odd >n or even <n

Taking now a = a; with ¢ # n — 1, the reader will have no difficulty in deducing from
this table that if y = z(j)y(i(a)) satisfies conditions 2(b) and 2(c), then h vanishes on y.
This finishes assertion 2). N

On the other hand, note that if x = x(j)c"®)y(r(i)) is an element of e; B such that
x® = x(i)y(j), then the equality deg(x) + deg(z®) = 2n — 2 gives that r(i,j) =n —1—
|7 — n| — |i — n| which is clearly congruent with i 4+ j + 1 (mod 2). If now a € Q) is any
arrow and z = z(j)c" @)y (7(t(a))), then we deduce from the last table that h vanishes
on x exactly when one of the conditions in the following table holds:

J t(a)
>n | even <n
>n | odd >n
<n |even >n
<n| odd <n

If now a = f3; is a crossing arrow with 7 # n and x is such that z° = z(t(a))y(j) with
j # n and satisfying one of the conditions 1(b) or 1(c), then a simple verification shows
that it satisfies some of the conditions in the last table and, hence, h(z) = 0. This finishes

the proof.
O

Lemma 6.7.7. The following diagrams of morphisms of A-bimodules are commutative:

1.
Lk WR
BicqoAei ® e A ——— Dicqo i @ eiA ———— Daec@, Aer(i(a)) @ €a) A
| i ¥
Dieqoer() @ eil —> Dac@i Aei(a) ® eya) A — Dicohei ® e;A
2.

DicqoNer) @ e k. Dicqoer) @ e — Dac@r Mei(a) @ eya)A

lg X X

Dicqoler() ® eih —> Dac Aeia) @ er(a) A — DiegoAei @ e A
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R 5
Dicqoe; ® e\ Bac@i Aer(i(a)) @ €ra) A —= BiegoAeri) @ el

w iw v

DieoAer() ® eih ——> Baci Aei(a) @ €ya) A —— DicoAei @ e

where the wvertical morphisms are determined by their action on the generators of the
domain as follows:

1. @(GT(Z'(@)) @ €4(a) )= %( a,0nn ® 0 — 00,6, Bn1 @ €n), 77(531‘ ®e;) = %61'”(‘% ® B +
an_1®ey) and &(e; ®ej) = Zmeqs h(z)x ® x°, where h : B — K s the coefficient
map;

2. jeia)®era) = 3(a®e)tei@®a),  flern®e) = =5 Y aymi(— )s U(a)a)(a(a)@’

ei—ey®@a)  and  glerpy @ei) = Y en5(— 1)) deg(a)T(x) @ ¥, where ¢(x)
denotes the number of noncrossing arrows in x;

3. Uer(y®€) = Oinen@wn,  @(€ri(a)) @€t(a) = Bapn +6an_1)r(i(a)) @Wn  and
'Lﬂ(ei X 61‘) = Oinen @ Wy,.

Proof. 1) We first prove that 6 o = @ o ,R. An easy direct computation shows that
(dom)(e;®e;) = %(an 16n ®en —en @ 0pm_10y). It will be convenient to write ,R(e; ®e;) =
> acQ, Tal(i), With z4(i) € Aer(ia)) ® eyq)A, for all a € Q1. One readily sees from the
definition of ,R that z,(i) = (—1)*“@9y(0(a)) ® €ya), When t(a) = i, that z,(i) =
(—1)5(@ oM a)e (i(a)) ® 0~ !(a), when i(a) = 7(i), and that (i) = 0 otherwise. But, due
to the fact that 4 vanishes on Ae,(;(q)) @eyq)A, for a # an, By, we get that (io,R)(e;®e;) =
Zate (ma(z)) = W(xa, (1)) + U(xs,(i)). But one has {t(ay),t(Bn)} = {n + 1,n} while
{i € Qo:7(i) € {i(an),i(Bn)}} = {n,n + 1}. It follows that (@ o ,R)(e; @ e;) = 0, for all
vertices i 75 n,n+ 1.

For i = n+ 1, we have 2o, (n+1) = (—1)@)on) (5 () @ Chlan) = T(Bn) @ ent1 =
Bn—1®e€nt1 and zg, (n+1) = (—1)8(6"071(6”))CT(i(Bn))®O'_1(ﬁn) = ept1Qay, using Lemma
6.5.9 and the fact that s(a,) = s(5,) = 0. It follows that

(ﬁ © MR)(en-i-l o2y en-‘,—l) = ﬁ(ﬁn—l o2y en+1) + '&(en—i—l & an) = %571—1 & oy — %571—1 ® ap = 0.

On the other hand, we have the equality zq, (n) = (—1)5@ne™ (an))e (i(am)) @ o Han) =

(_1)S(Oén6n71)6n ® B’I’L*l = —e, ® /anla Whlle xﬁn(n) ( )S(O’(Bn Bn)ﬂ( (ﬁn)) ® et(ﬁn) =
(=1)*@n=18n)[—7(a,_ 1) ® €, = —ay @ ey, using again Lemma 6.5.9 and the fact that
0= s(ayn) = s(an-1) = s(Bn) # s(Bn-1). We then get

(ﬁ o MR)(en ® en) - _a(an X en) - (en 02y /Bn 1) Qan/@n 1 ® €n — %en X anﬁn—l-

This proves the desired equality 6 on = @ o , R since a, 8,1 = ap—18y in A.
We next prove the equality no ,k = Ro&. Again, an easy direct computation shows
that (no .k)(e; ®e;) = 3 ZerJ_Ben (x ® Ppa* + xap—1 @ x*). On the other hand, we have:
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(R ° 5)(% ® ej) - R(ZZEQO Zzeejé h(:C)x ® xo) =
ZméejBeT(i) h(w)x[zt(@:i(—1)3("(“)“) (o(a) @ e+ erq) @ a)]z® =
ZaEQl ZméejéeT(t(a)) (—1)*@@D) p(z)(zo(a) ® 2° + 2 ® az®).

This is an element of ®qe, Aejq) ® eyq)A. Given b € Q1, the component of this element
along the summand Ae;p) @ ;) A is

Vo) = Yee,Ber g (~1) O h(@)zo(b) @ 2 +
> yeeyfeny ("D Dh(y)y @ a7 (0). (*)

Note that if z € ej[;’ef(t(b)), then zo(b) ® 2° € ejAgr1€,3ib)) @ eyp)Aan—2-a€j, Where
d = deg(z). If vo(b)®x° # 0 is such that z° € 0~ 1(b)A, we will have that 2° = o=1(b)z, for
some nonzero path z from 7(i(b)) to j. But, putting y := xo(b), we necessarily have that
y® = z, so that zo(b)®2° = y®c~!(b)y°. This means that zo(b)®x° appears in the second
summation Wy(5), although with coefficient h(xo(b)). A symmetric argument shows that
if y® o71(b)y® # 0 is such that y € Ac(b), then y ® o~ 1(b)y°® also appears in the first
summation of the expression. So, under these hypothesis, the coefficient of zo(b) ® z° =
(zo (b)) @ o= 1(b)(za(b))® in Wy(5) will be (—1)5@®D) p(z) 4+ (=1)5C O p (2o (b)) ().
Moreover, notice that (—1)5®?) and (—1)5te"'(®) are equal, when b is a crossing arrow,
and opposite to each other, when b is noncrossing. Then , whenever b # «,_1, Bn, the
expression is zero, because the map h satisfies the conditions 3.a and 3.b of Lemma 6.7.5,
even when j = n.

We claim that Wy(5) = 0 for all j € Qo and b € Q1\{an—1,0n}. Assume first that b
is a noncrossing arrow # a1 in the formula (*). Then Lemma 6.7.6 tells us that the
argument of the last paragraph works for any element = € ejéef(t(b)) and any element
Yy € ejéei(b) except when y = x(j)y(i(b)) and one of the three conditions 2(a), 2(b) or
2(c) in Lemma 6.7.6 is satisfied. Note that when j = n, we have that y = y(i(b)) and
y®0o~1(b)(y)® = 0 since o1 (b)(y)° = 0. Hence, also in this case it is true that any nonzero
term of the form y ® o~1(b)y°, with y € enéei(b), is equal to one of the form zo(b) ® z°.
But, if we assume that j # n and y = z(5)y(i(b)) # 0 satisfies one of the conditions 2(b)
or 2(c) then, using Lemma 6.7.6 (2), we have in both cases that h(y) = 0. This means
that the summand h(y)y ® o~ (b)y® is zero and hence it follows that W¥,(j) = 0 for any
j € Qo and any noncrossing arrow b different from ay,_1.

Suppose next that b is a crossing arrow # [, in the formula (*). Then, by Lemma
6.7.6, we know that each nonzero term y ® o~1(b)y® in the formula of W;(j) is of the form
zo(b) ® z°. Proceeding as in the previous paragraph, we see that the only case in which a
term xo(b) ® 2° is not of the form y ® o~ (b)y® is precisely when z° = z(¢(a))y(j) and one
of the conditions 1(b) or 1(c) is satisfied. But then Lemma 6.7.6 tells us that h(z) = 0.
Therefore we also have ¥;(j) = 0 in this case.

We next deal with the cases b = «,_1 and b = 5,,. Let us consider first that b = a1
and assume that j # n. Given x € ej§6n+1 such that zo(a,—1) ® z° # 0, we will need
to know the pair (h(z), h(zo(apn—1)) = (h(x), h(xBy—1). Putting z = z(j)c" 41, we have
that 23,1 = x(j)c" 1. Looking at definition 23 and the explicit definition of h|ej 5 given
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in the proof of Lemma 6.7.5, and putting a := s(8,—10,—1) and b := s(a,—15,),we have
the following table:

Condition v | (h(z),h(@Bn-1) | (=1)%h(z) + (=1)°h(2xBn_1))
j>mnoddorj<neven | even (0,3%) 2
j>mnoddorj<mneven | odd (—%,0) >
j<noddorj>neven | odd (0,3%) >
j<noddorj>neven | even (—2,0) >

By Lemma 6.7.6, we know that any nonzero summand in (*) of the form ro(a,—1) ®@2°
with 2 € e;Bey,41 is of the form y ® o7 (ay,)y® = y ® Buy* for some y € ejéen. That
summand appears then with coefficient (—1)%Fn—10n-1)p(z) 4 (—1)(@n-1B) (26, 1) = :
in ¥,, ,(j). However, if y = z(j) and one of the conditions 2.a or 2.b in Lemma 6.7.6 is
satisfied, then the summand y®o ! (ay,_1)y® is not of the form zo(ay,_1)®2z°. Note that in
this case either j < n and j odd or j > n and j even, which implies that h(y) = h(z(j)) =

%, by definition 23. We then conclude that ¥, ,(j) = %Zyeejéen y® o Hoan1)y® =

% ZyeejBen Y ® /Bny*

To finish the case when b = «,,—1, suppose finally that j = n. If y = x(n) = e,, which
is not in A3, _1, then e, @0 (a,_1)ed, = €, @ Bpwy, = 0 and there is nothing left to prove.
On the contrary, any zo(ay,—1) ® z° with = € enBen1 is of the form y ® o Y an_1)y°
for some y € enéen, and viceversa. So we can write = ¢"a,, and z8,_1 = ¢" 7! and the
definition of h implies that (h(z), h(zB,—1)) = (—1, 1). It follows that if y € e, Be, \ {en},
then we always have a decomposition y = x3,,_1, with = € enl’;’enﬂ, and the coefficient of
y® 0o Hap_1)y* = zo(an_1) ®2° in the expression of Uy, (n) is —h(z) + h(zBn-1) = 3.
Then we have U, ,(n) =1 > ycenBen Y © Bny”

Finally suppose that b = 3,, and consider that j # n. By Lemma 6.7.6, we know that if
y € ejBe,_1 and the tensor y @0~ (8,_1)y° = y @ a_1y° is nonzero, then we always have
y = x0(Bn) = xay_1, for some z € e;jBe,. It follows that the term y ® o1 (B)y° of the
formula (*) is equal to one of the form zo(8,) ® x°. Lemma 6.7.6 says that the converse
is also true, except in case z° = z(t(a))y(j) = x(n)y(j) = y(j) and conditions 1.b or 1(c)
in the mentioned lemma are satisfied. But condition 1(b) is discarded since n is even and,
hence, this exceptional situation appears exactly when j < n and z° = y(j). We next put
x = z(j)c", and so zo(By) = z(j)c"an—1. Using the explicit definition of h and putting
¢ := s(ap—10y) and d := s(Bpa,), we have the following table in the non-exceptional cases,
when j # n:

Condition r | (h(z)
j>mnoddorj<neven | even
j>mnoddor j <neven | odd
j<mnoddorj>neven | odd
j <mnoddor j>neven | even

>

(zon—1) | (=1)°h(z) + (=1)?h(zan_1))

~—

O olH O ol
~— | — |~ —

~| =]~
rolH O polH O

NI NI NI NI

which shows that, except for the case when j < n and z® = y(j), the coefficient of
T

z0(B,) ® 2° in Vg, (4) is 3. But, when z° = y(j) and j < n, we have that z = z(j)c",
where r = n —1—|n — j|. It is clear that » = j + 1 (mod 2). Looking again at the
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explicit definition of h, we get that h(z) = 3 in this case. It follows that g (j) =

2 Zzee]BeT(t(B xa(ﬁn) ® x° -2 Zer Be,, TAn—1 ® z*

Still with b = By, suppose now that j = n. Each nonzero term y ® o= 1(3,)y°
Ug (n) is of the form zo(f,) ® 2°. The converse is also true because the only possible
exceptional case would be when z° = y(n) = e,, in which case zo(3,) = wy,a,—1 = 0.
Then the coefficient of a nonzero tensor zo(f,) ® x° is h(x) + h(za,—1). Note that we
have z = ¢ and zo(8,) = "ap—1, where 0 < r < n — 1. By definition 23, we have
that (h(z), h(zan_1) = (3,3), for each = € €,B\ {wn}. We then get that ¥g (n) =
1

2 ZzeenBen Tap—1 @ T".
From all the previous paragraphs we get that, for any j € (g, the following equality
holds:

(Ro&)(ej ®ej) =3 e, Yo(i) = Va,_, (1) + ¥5,(j) =
% ZerjBen T ,an* + % ZerjBen TOp—1 @ z* = (n o Mk)(ej ® ej)'
This ends the proof of the commutativity of the first diagram in the statement.

2) It is easy to check the commutativity of the right square in the second diagram. For
the left square, note that we have:

(f o k)( ® eZ) Z]EQO ZzeeZBe] )C(x)T(x)f(eT(j) ® ej)x* =
—3 X jeQo ZerlBej( D (@) [y (— )S(U(a)a) (0(a) @ ej —er(jy ®a)lz™ =
—5(Xaeqy 5T, a) = Yoeq, ST(0a)) = —5 X peq, [ST(4,0) = S™(5,07 (a)),

where

St(i,a) = ZeriBet(a)(—1)c(m)+s(o(a)a)T(;C)a(a) ®z*
S~ (i,a) = Zmquet(a)(—1)0(90)‘*‘8(0(0)“)7-(:6) ® ax*,
for each i € Qo and a € Q1. Let us fix a € @1 and let z € ¢;Be;q) be an element
such that 7(z)o(a) ® z* # 0. If we put y = xo~'a then o~ !(a)y* = 2* and we have

T7(y) @0~ (a)y* = 7(x)o(a) ®z*. This element appears then with nonzero coefficient both
as a summand of S*(i,a) and as a summand of S~ (7,07 1(a)). It then follows that

St(iya) — S~ (i,0 a)) =
ZmEeiBet(a) [(—1)c(m)+s(a(a)a) — (—1)c(ma*1(a))+s(aa*1(a))]T(x)U(a) ® z*,

and hence

(fok)(erw ®ei) =
—1 -1 "
_% Zate ZmEeiBet(a)[(—1)C(x)+s(a(a)a) — (—1)0(000 (a))+s(ao (“))]T(x)a(a) ® z*.
We use the definition of c¢(x) and the fact that s(o(a)a) = s(ac~!(a)), for a crossing,

and s(o(a)a) # s(ac—'(a)), when a is noncrossing, to see that (—1)c@+s(@(@a) anq
(=1)clzo™ (@) +s(ao"(a)) glways have opposite signs. Then we get:

(f © k)(eT(l) Y ei) - - ZaEQl ZzeeiBet(a) [(_1)c(x)+s(o'(a)a)7_(x)a(a) ® z*.
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On the other hand, we have

(Rog)ery@e) = D Y (1) @deg(a)7(z)R(er(j) ® ej)z" =

JEQo €€ Be;

> Y () degla)r(@) 3 (<1 (0(a) D +eryy @ a)la” =

JEQo x€e;Be; t(a)=j

S THia)+ Y T (ha)= Y (TF(a)+ T (i,07'(a)),

a€Q1 a€Q1 a€Q1

where

T"(i,a) = Zmeﬁlget(a)(—1)0($)+5(0(a)a) deg(z)1(z)o(a) ® x*
T (i,a) = ZeriBet(a)(—1)0(5”)“(0(@)@)deg(x)T(x) ® ar*.

Proceeding as in the case of the S(i,a), we get

T (iya) + T~ (i,0 ' (a) =
Y aceiBeyy (1) D) deg(z) + (—1)clee @D tslar™ @) deg(wo~ (a))]r(x)o (a) @ o
= Zzeeisetm[(—1)C(x)+s(a(a)a)deg(w)—i—(—l)C(za*l(a))Jrs(aa*l(a))(deg(x)_i_l)]T(x)U(a)@x* —

= ZeriBet(a)(—1)0(230—1((I))+S(aa—1(a))7—(‘r)a(a) @ x*,

because (—1)c@+s(@(@)a) and (—1)‘3(:”"71(a))+s(a”71(“)) have opposite signs. But this same
reason proves the equality

(Ro g)(eT(i) ®e;) = ZaEQ (T (i,a) + Tﬁ(’i,afl(a)) _
1 *
ZaEQl ZmEeiBet(a)( 1)c(xa (a))+s(ac™ (a))T(x)a(a) Rz =
_ Zate ereil?et(a) [(—1)0(1) s(o(a)a)T(x)U(a) @x* = (fok)(eri) ® ),

which gives the desired commutativity of the left square of the diagram.

3) In order to prove the commutativity of the third diagram, note that (fo M(S)(eT(i(a)) ®
€t(a)) = t(p(a) ® €i(a)) — (eT( (a)) ® a) has its second summand equal to zero, due to the
definition of £. Then (£0,8)(er(i(a)) ® €4(a)) # 0 implies that ¢(a) = n, whence, that a = §,
or a = B,_1. An easy computation shows that (f o uo)(e 7(i(8n)) @ et(ﬁn)) = Bp_1 ® wy
while (£ o 1) (€ri(Ba_1)) @ €(Bn_r)) = Bn ® wy. On the other hand, by definition of ¢,
we know that & o ¢ vanishes on e, (j4)) ® €4(q), for all arrows a # Bp, 8,—1. Moreover,
(600)((er(i(8,)) De(8n)) = (ent1@Wn) = (Bn-1Q€ys, )= €i(Bp_1)DPn—1)Wn = Bn_1@wy.
An analogous argument for 3,1 shows that (6 0 ©)((€r(i(8,_1)) @ €x(8u_1)) = Bn ® wy and,
hence, the right square of the diagram above is commutative.

For the commutativity of the left square, note that ¢ o ,R vanishes on e; ® ¢;, for
i # n, and an easy computation using Lemma 6.5.9 shows that (p o ,R)(e, ® e,) =
—Qp ® Wy, + ap—1 @ wy,. On the other hand, R o also vanishes on all e; ® e;, with ¢ #£ n,
and we have an equality
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(Rot)(en ®en) = Rlen @ wn) = R(ef(n) ® en)wp = [Zt(a):n(_l)s(g(a)a) (o(a) ®en) +
en ® a)|wy, = (=1)5@n-18)q, | @ w, + (=1)3@ bV, @ w, = ap_1 @ wy — ap @ wy.

O

From our results given in Chapter 4, we know that HH*(A) is a graded pseudo-
Frobenius algebra admitting a graded Nakayama form whose degree function takes cons-
tant value 5.

In Proposition 1.3.7 there was given an explicit form of constructing a graded Nakayama
form for HH*(A). Note that, due to the graded commutativity, the only nonzero idempo-
tent of HH*(A) is 1 and so we apply the mentioned proposition of [op.cit.] with I = {1}
and v = id;. Let By be a basis of HH®(A) = HH®(A) containing a nonzero element, say w,
of Soc,, (HH*(A)), the homogeneous component of (homological) degree 5 of the graded
socle of Socg(HH*(A)). Then the graded Nakayama form associated to Bs is the graded
bilinear form (—,—) : HH*(A) x HH*(A) — K which acts on pairs of homogeneous
elements as follows:

1. (f,9) = 0 whenever deg(f) + deg(g) # 5

2. (f,g) is the coefficient of w in the expression of fg as a K-linear combination of the
elements of Bs, whenever deg(f) + deg(g) = 5.

Lemma 6.7.8. Let us put & = x + Im(,R*), for each x € ®icqyeile;. The following
assertions hold:

1. If ¢ is the cycle of length 2 at the verter n and x is as in Proposition 6.6.2, then
c € Ker(,k*) and 2716 =y # 0 in HH®(A), for all i € Qq. If this element is
denoted by 1 then Socy.(HH*(A))? = K.

2. Let us consider the elements

(a) vor, = éof — €2n—2k

(b) vVop—1 = €ap—1 — €2k41 — €an—2kt1 + €2n—2k—1,

for all 0 < k < 5. Then v; € HH®(A), for all j = 1,..n — 2, and Bs =
{x%_lé,...,xé,é, V1, ey Un_o} is a basis of HH?(A).

3. Let us put wop = wop + 1 and wop_1 = Y cpcpWor—1 + I, for all0 < k < %, and
let (—,—): HH*(A) x HH*(A) — K be the graded Nakayama form associated to
Bs. Then By = {1,z,...,x2 Y x1,...,xn_2} is a basis of HH(A) = Z(A)/I which is
dual of Bs with respect to restriction of (—, —) to HH°(A) x HH(A).

Proof. 1) and 2): By Proposition 6.5.11, we know that ¢ € Ker(,k*), and then z2 7 =y,
since multiplication by elements of Z(A) is done as in A. Bearing in mind that w; = ¢; is
the cycle of length 2n — 2 at 4, in the last part of the proof of Proposition 6.6.7 it has been
proved that w; —w; € Im(,R*), for all 7,5 € Qo, and that none of the w; is in Im(,R*).
Note that we have proved also that z"¢ # 0 in HH°(A), for each integer 0 < r < 5
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On the other hand, we have ,k*(ea, — e2n—21) = Zier Ci2k — Ci 2n—2k, Where ¢;; is the
(i, 7)-entry of the Cartan matrix of A. By Proposition 6.5.7, we know that eg — €9, o €
Ker(,k*). On the other hand, as mentioned in the proof of the same proposition, we have
that ¢;or—1 — Cign—ok+1 = 2, forall i € Qp and 0 < k < §. We then get ,k*(eap—1 —
€2k+1 — €2n—2k+11 + €2n—2k—1) = ZZ‘GQO(CZ‘,%;—l — Ci2k+1 — Ci2n—2k+1 + Cian—2k—1) = 0.
Then the vj (j = 1,2,...,n — 2) are well-defined elements of HH5(A).

Note now that the degrees of c and e; as elements of the graded vector space ®;eq,eiAe;
[2n+2] are —2n and —2n—2, respectively. Then, with respect to the induced length degree
in HH*(A), we get that ldeg(z"¢) = 4r — 2n, for all 0 < r < 5, and ldeg(v;) = —2n — 2,
for all 1 < j < n — 2. Since these degrees are all different, in order to prove the linear
independence of Bj it is enough to prove that {v1,...,v,—2} is linearly independent. But
this is clear since Im(,R*) C @®;cq,€iJ (A)e; and non-trivial linear combination of the e;
can be in J(A). That Bs is a basis of HH?(A) follows then from Corollary 6.6.11.

3) That By is a basis of HH(A) follows directly from theorem 6.6.10 and proposition
6.6.2. On the other hand, the length degrees of 2"v; and x;x"¢ do not coincide with the
length degrees of the elements of B5, which implies that 2"v; = 0 = x;2"¢, and hence that
(z",vj) = 0 = (xj,2"¢) due to the definition of the graded Nakayama form associated to
Bs (see the lines preceding this lemma). Moreover, if 0 < 7,5 < % then the coefficient of
@ = z27¢ in the expression of z” (x%¢) = x"T5¢ as a linear combination of the elements
of Bs is the Kronecker symbol 6107%,1,8, which shows that (z",2%¢) = 6107%,1,8.

In order to end the proof, we just need to check that (x;,v;) = ;;, for which it is enough
to check that z;v; = 0, when ¢ # j, and z;v; = w for all j = 1,...,n—2. Since multiplication
by elements of Z(A) (and in particular by elements of Soc(A)) is done as in A, we clearly
have that x;v; = 0, when 4 and j are neither both odd nor both even. Moreover, if i
and j are even, then we have z;v; = 0;;W; = 0;;w. Finally, the product wor_jv—1 is
clearly zero when t # k,k — 1. Moreover, we have zop_1v9;_3 = Wop_3 — Wor_1 = 0 and
Tok—1V2k—1 = Wa—1 = W.

O

In the sequel, we just use the graded Nakayama form associated to the basis Bs given
by last lemma. As shown in Lemma 4.5.9, the following result holds.

Lemma 6.7.9. Let f, g and h be homogeneous elements of HH*(A) such that their
homological degrees satisfy that deg(f) + deg(g) + deg(h) = 5. Then the following formula
holds:

(fg,h) = (_1)deg(g)deg(h)(fh’g) - (_1)deg(f)(deg(g)+deg(h))(gh’ ).
We are ready to give the multiplicative structure of HH*(A) when n is even.

Theorem 6.7.10. Let n be even, let A be the generalized preprojective algebra B, over a
field of characteristic # 2 and let view HH*(A) as a bigraded algebra (see Section 2). Let
w; be the cycle of length 2n — 2 at i, viewed as an element of Soc(e;N), for each i € Qo,
and consider the following elements of HH*(A):

1) z,21, ..., 29,1 of HH°(A) = Z(A) given as follows:
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(a) T =D 5-;<9,_3Ci, where ¢c; is the nonzero cycle of length 4 at i;
(b) zok = wok and Tog—1 = Y 1<) War—1, for all 0 <k < 3;

(c) {Tn-1,Tn, ..., Tan—1} is any basis of the subspace I of A generated by {w; +wap—; :
1<i<n}U{wn}U{v}, with v =73 cpcn(war—1 — wan—2k41)-

2) y € HH' (M) represented by 7 : Baci Aei(a) @ eya)A —> A, where §(ejq) @ eya)) = a;
3) z € HH?(A) represented by 7 : DicoMers) ® eih — A, where Z(e,;y ® €;) = dinen;
4) t € HH3(A) represented by t @icoery @ eiA — A, where f(eT(i) ® €;) = OinWn;

5) uw € HH*(A) represented by @ = Pac@i Mer(i(a) DeyayA — A, where U(er(i(a)) Rei(a)) =
%5(1,&” Qp — %5&5”571—1;

6) V1y .o, Vp—2 €€ HHO(A), with each vj is represented by 0 = @icq,\e; @ e;A — A,
where:

(a) vj(e; ® e;) = (8ij — 0i2n—j)ei, whenever j is even;

(b) 2}}(61 ® ei) = (51] — 6i,j+2 — 51‘72”,]' + (272",]',2)6@', whenever j is odd.
7) h € HHS(A) represented by the multiplication map h: BicqoNe; ® ;A — A

The length degrees of these elements are ldeg(x) = 4, ldeg(x;) = 2n — 2, ldeg(y) = 0,
ldeg(z) = ldeg(t) = —2, ldeg(u) = —2n, ldeg(v;) = —2n — 2 and ldeg(h) = —4n.

Moreover, as an algebra, HH*(A) is generated by these elements, subject to the graded
commutativity relations with respect to the homological grading plus the following relations:

n
2

a) r2 =xz=at =21, =0

b) x& =0, for each generator £, except in case i <n —2 and & =v; or £ =h

¢) ziv; = 22 yu, for alli < n—2.
d) y* =yt =0
e) yz = —nt

f) yvar, = 4nxor_1h and yvo_1 = —4nxoih, for all 1 <k < 3
g) 22 =—nz2"u

h) zt =22 lyu

i) zv; =0, forall j=1,...,n—2

Jj) zu=0

k) t? =tu=tv; =0, forallj=1,...,n —2

) u2=0



6.7. The ring structure of the Hochschild cohomology ring 181

m) uwv; =0, forallj=1,....,n—2
n) voRv; = 4n52k,17jx%uh, foralll1<k<§andj=12,..,n—2.

Proof. Let P be the minimal graded projective resolution of A. One gets the zero map
when composing any of the morphisms ¢, Z, , #; (i = 1,...,n — 2) and h with the corres-
ponding differential of P. Then y, z, ¢, v; (i = 1,...,n—2) and h are well-defined elements
of HH*(A), which are easily seen to be nonzero. As for u, note that a, € €,3i(a,)) Aet(an)
while 5,—1 € eu(i(ﬁn))l\et(ﬁn), so that a,, — Bp—1 € @ateeH(i(a))Alet(a). We then have:

1
WF (5 = 1)) =
%[(_1)8(571&”)”(/871)@71 + (_1)s(anﬁn_l)an/8n—1_
(—1)3(@n=160) (1 1) — (—1)*Pnen) B, ] =

%[ﬁnflan - O‘nﬁnfl] - %[_anﬁnfl + anlan] =0

Then 3(an—Bn—1) € Ker(,R*) and so 1 (a,—B,—1)+Im(,,6*) is an element of HH*(A)q,
which clearly coincides with u. Moreover, it is a nonzero element since, by definition of ,6*
(see Proposition 6.5.11), the image of the induced map 6" : ©icqyeri)Aoei = Ke, —
@acQ1€r(i(a)) Mey(a) is the vector space generated by ;6% (en) = p(Ba-1) + p(Bn) — an —
an_1 = Bpn_1+ Bn — ap — a,_1, which does not contain %(an — Bn—1)-

Arguing as in the initial part of the proof of Theorem 6.7.1, one easily gets that the
length degrees of the proposed generators are as indicated. In order to see that they
generate HH*(A) as an algebra, we first give a canonical basis B; for each space HH'(A)
(1=0,1,...,6):

n
-1
1. BO = {1,1‘, X2 7,2, ...,.%'Qn_l}

2. By={a*y:k=0,1,..,2 — 1}

3. BQ == {Z}
4. By = {t}
5. By —{x%_lu,...,xu,u}

6. Bs = {nglé, oo, xé, ¢} U v, ..., Up—2}, where é = ¢+ Im(,R*) and c is the cycle of
length 2 at n

7. Be={afh:k=0,1,...,2 —1}U{z;h:i=1,..,n—2}.

Indeed, by Proposition 6.6.2, we know that By is a basis of HH°(A) and, by lemma ,
that Bs is a basis of HH®(A) since the v; are exactly those in that lemma. From this
same lemma and the isomorphism HH°(A) =y HH 6(A) given by multiplication by h, we
also get that Bg is a basis of HHS(A). That By, By and B3 are bases of the respective

spaces follows from Theorem 6.6.10 and its proof. On the other hand, once we know that
u € HH*(A)1, this same theorem plus Lemma 6.7.2 give that By is a basis of HH*(A).
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Once we have the bases B; at hand, the 6-periodicity of H H*(A) implies that {z, z1, ...,
Ton—1,Y, 2, U, V1, ..., Un—2, C, h} is a set of homogeneous generators of HH*(A) as a bigraded
algebra. We claim that ¢ = yu, and this will prove that the proposed set of generators
given in the statement is a valid one. Indeed, by the commutativity of the diagram
in 6.7.7(1), we get that the element yu of HH°(A) is represented by the composition

DicqoNe; ® e A SN BacQoNei(a) ® €p(a)A s A. Clearly, ¢ o n vanishes on all e; ® e;, for
i # n, and takes e, ® e, ~> an_10, = c. It then follows that yu = ¢, as claimed.

We are now in a position to verify the relations. Note that By = {nglyu, < TYU, YU, V1,

<oy Un—2 } .

Relations in a), b) and c):

Since the x; are linear combinations of the socle elements {wq, ..., w,—2}, the relations
in b) follow immediately. As for the relations in a), the equality z2 = 0 follows from
Proposition 6.6.2 and zt = 0 is clear. On the other hand, we have zz = ¢, + Im(R*),
where ¢, is the cycle of length 4 at n. By Proposition 6.6.7, we get that xz = 0 in HH?(A).
Moreover, by the condition of dual bases of By and Bs (see Lemma 6.7.2), we immediately
get that xv; = 0 and that z;v; = x%_lyu, foralli=1,...,n — 2.

Relations in d), k) and 1): All follow by taking length degrees. Indeed, in all cases the
length degree of the element in the first member of the desired equality is different of the
length degrees of the elements in the basis B; of the corresponding HH*(A).

Relation in e): From the commutative diagram in 6.7.7(2) we get that yz = zy is

represented by the composition @®;eq,Aer ;) @ e;A AN Bicoler() ® e\ N A, where ¢
is as in that diagram.
Then we have

(Zog)(eri) @ ) = (X jeqy Lacesse, (—1)Wdeg(2)7(z) @ 2%) =
ZeriBen( 1)6( deg( ) ((L‘) (en®en)x —Zzeei[gen(—1)C(x)deg(x)7(x)x*

since Z(e,(j) ® ;) = 0, for all j # n. We then get (Z o g)(e;;) ® e;) = 0, for i # n,
and (200)(ery ©€n) = Srce, e, (~D I den(@)rr" = (5,5, (~1)des(a)u, sinee
7(z) = =, for each z € e,Be,. Note that each x € e,Be, is a power of the cycle of
length 2 at n, which implies that c(z) = deg(z) and, hence, that ¢(z) =0 (mod 2), when
deg(z) =0 (mod 4), and ¢(z) =1 (mod 2), when deg(z) =2 (mod 4). We then get:

(Zog)(en ®e,) = (Zogk<%(4k3) - Zogk<g(4k3 +2))wn = —25wn = —nwp.

This gives the relation e).

Relations in f) and n): We put them together because the relations n) follow from
those in f). To see that, let us calculate the products v;v;. Due to length grading, we
have Vv = )\Uam uh for some )\;; € K. On the other hand, we have (x%_lu,y) =1
since 22 'yu = w (see Lemma 6.7.2 and the proof of the relations in c)). Then, in case
the relations in f) are assumed to be true, the graded Nakayama form of HH*(A) and
Eu-Schedler formula (see Lemma 6.7.9) give:

Aok j = (Nag o2 1, y) = (Nggja2 ™ uh hly) = (varvs, hly) = —(varh ™y, v5) =
(yvarh ™, v;) = (4nwop_1hh ™1 v;) = An(zokp_1,v;) = 4ndok_1,;
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We then prove the relations in f). Let us consider the only morphism of A-bimodules
’l~)2k : @iEQeri X eiA — A identified by the fact that 'D2k(ei ® ei) = (5i,2k — (51‘72”,2]9)6@',
where 0,5 denotes the Kronecker symbol. It represents vy, and an obvious lifting of it
is the morphism g, : ®icgoAe; ® eiA — Dicg,Aei ® e;A such that Og(e; @ e;) =
(0i2k — Oi2n—2k )€ @ €.

As in the proof of (]3], Lemma 5.1), we consider, for each path z = a;...a, with origin
i = i(z), the element h, € Gueq, Aejq) ® eyq)A given by

hy =a1..0p—1 Qz* +a1...0p—2 Q @p_12* + ... + €; @ ag...a,x*.

By fixing a path representing each = € e;5, we consider the only morphism of A-bimodules
Par + Bieolei ® 6N —> Daei Aei(a) ® €y(q)A such that por(e; ® €;) = 3 co e, Mo —
ZZEGiBeQn_% h,. It is easy to see that §(h;) = 2 ® z* — ¢; ® ¢; and from this and the fact
that ¢;2r = ¢j2n—k, one readily sees that 09 0 4k = 0 0 por. Then the element yvgy of
HHS(A) is represented by the morphism @;cq,Ae; @ e; A P2k Bac@iMei(a) @ eya)A 5 A
Note that §(h,) = deg(w)rr* = deg(x)w;(,) and, hence, we get that (7 o par)(e; ® €;) =

Multiplication by h gives an isomorphism of Z(A)-modules Z(A)/I =y HH 6(A). The
last paragraph says that yvep = . T; orw;h, where w; = w; + I. By Lemmas 6.7.3
and 6.7.2, we then have

1€Qo

Yook = D 1<pn Tor—1,2k(W2r—1 — Wan—2r41)h =
r - U2p—1 — W2p— r<n al— U2r—1 — Wop— =
D i<r<k 2(n — 2k)(Wor—1 — Won—ar+1)h + 3 5y 1< <z 2(—2k)(war—1 — Wan—2r+1)h
(2n = 4k)h D2 g (Wor—1 = Wan—2r41) = 4D 41 <pcn (War—1 — Wan—2r11)-

Bearing in mind that ZKK%(wgk,l — Wop_ok—1) € I, we get:

yvor = (2n — 4k)h Zlg,ngk(u?gr,l — Wop_o9r41) + 4kh Zlgrgk(ﬂhrﬂ — Domarr1) =
2nh Y 1 cpep, (W2r—1 — Won—2741).

But we have that wy,_1 = —Wa,—2,41, because wa,_1+wop 9,41 € I (see Theorem 6.6.10).
Then, by the definition of zo;_1, we get the desired equality:

Yyvop, = 2nh Zlgrgk(ZLDQT*l) = 4nh Zlgrgk Wor_1 = 4nhxop_1 = 4nxop_1h.

We next calculate yvg,_1, where 1 < k < 5. The proof follows the lines of the
calculation of ywvy;. In this case the morphism 9,1 : @i, Ae; ® ;A — A is identified
by the fact that 27%_1(6@- ® 61') = (6i,2l<;—1 — 6i,2n—2k+1 — 6i,2l<;+1 + 6i,2n—2k—1)ei’ so that the
obvious lifting ®;cq,Ae; ® ;A — Bicg,Ae; ® e;A maps e; ® e; ~ (0 2p—1 — 0 2n—2%k+1 —
i 2k+1 + i 2n—2k—1)e; ® ;. Then the role of ¢y in the case of yvy; will be played here by

the morphism vox—1 : @icq,Ae; @ €A — Bac, Aei(a) ® €4(q) A\, identified by the equality:

'¢2k71(ei ® ei) = ZeriBe%A ha — erei862n72k+l ha — ZI€€i3€2k+1 ha - 2166236271721%1 ha.
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Then we have that the element ywvoi_; is represented by the composition ®;cq,Ae; ®

e;\ wﬁl @ateAei(a) & et(a)A AN A, which maps e; ® e; ~» (T;2p—1 — Y 2x+1)w;. Using

2.b of Lemma 6.7.3, it follows that yvop_1 = Zl§r<% (Tgr’gk_l — T2T72k+1)(w2r — @angr)h
since Y; 951 — Y 2x+1 = 0 when i is odd. The fact that Wy, = —Wap—2, in Z(A)/I implies
that yvae—1 = > 1<pcn 2(Yoror—1 — Tor2e41)Warh.

We look now at the term Yo, 951 —T2, 2x41. By Lemma 6.7.3, we know that Yo, 0,1 =
—Yok—1,2,- This is equal to 2r, when 2r < 2k — 1, and to —2(n — 2r), when 2r > 2k — 1.
Similarly, we have Yo, op41 = 2r, when 2r < 2k+1 and Yo, 9541 = —2(n—2r). We then get
that Yo, 0p—1 — Yor k41 = 0, except for r = k. In this case we have Yoy op—1 — Yop 2k41 =
—Yor—126 + Yort1,2c = —2(n — 2k) — 2(2k) = —2n. From this and the definition of 9 it
follows that yvor_1 = —4nworh = —4nxzaph.

Relations in g) and h): The relation in g) follows from those in e) and h). Indeed, the

length degree of z? is —4 which is also the length degree of 22 'y, and this is a the only
element in By with that length degree. Then one gets 2% = Az2z "y, for some A € K. On
the other hand, by the relations in e) and h), we get that —nx%_lyu = —ntz = y2? =
Az2 " lyu, which implies that A = —n since z2 ~'yu #0.

We then prove the relation in h). Using the commutative diagram in Lemma 6.7.7(3),
we get that the element 2t of HH?(A) is represented by the composition ®;co,Ae; ®

e\ N Bicoler) ® eiA 25 A where 1 is as in that diagram. This composition maps
e; ® €; ~+ dipwy, which proves that 2t = w, + Im(,R*) = w = a:gflyu.

It remains to prove the relations i), j) and m), for which it is enough to check j).

Indeed, if we had zv; # 0, we would have that ldeg(zv;) = ldeg(z2 'yh) = —2n — 4 and
there is no other element in the basis {z"yh : 7 = 0,1,..., 2 — 1} of HH"(A) with length
degree —4n — 2. It follows that, for each j = 1,...,n — 2, there is a unique \; € K such
that zv; = )\jnglyh. Then Eu-Schedler formula gives the equality:

(uvy, h_lz) = (vjh_lz,u) = (zvjh_l,u) = ()\j:cgflyhh_l,u) = )\j(azgfly,u) =),

from which we get that uv; = Ajth, bearing in mind that ldeg(th) = —4n — 2 = ldeg(uv;).
Finally, we have ldeg(zu) = —2n — 2 = ldeg(z;h), for all j = 1,...,n — 2, and there is
no other element in Bg of length degree —2n — 2. It follows that zu = Zl§j§n72 pixih.
Using Eu-Schedler formula, we then get:

Aj = (Njreyhh~hu) = (zv;h 7t u) = (W2, 05) = (X1cjen g tiwihh ™ vj) =
Zlgign72 1i(is vj) =

It follows that zu = > .;<, o Ajw;h. If we prove the relation in j) it will follow that
Aj =0, forall j =1,..,n—2, and then the relations in i) and m) will come automatically.

In order to calculate zu, we use the first commutative diagram of Lemma 6.7.7 and the
fact that multiplication by & yields an isomorphism of Z(A)-modules HH®(A) = @ =
HHS(A). By the mentioned diagram, we know that the element zu is represented by

morphism of A-bimodules ©;cq,Ae; ® e;A LN Bicqoler() @ €A %5 A. Since # vanishes
on each summand Ae; ;) @ e;A, with i # n, we get that
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(206)(e; ®¢)) = Yoo M2 = Ty o, h@)2a* = (S, b))y,

for all j € Qg. Note that w, € I, and so we only need to deal with the cases when
Jj # n. Note also that any element = € e;Be,, is of the form « = z(j)c¢", where z(j) is
the shortest path from j to n and r € N. By looking at the explicit definition of h (see
definition 23), we see that if j > n then h(z(j)c") = %, when 7 +j = 0 (mod 2), and
h(z(j)c") = 0 otherwise. Similarly, if j < n, then h(z(j)c") = 3, when r+j # 0 (mod 2),
and h(z(j)c") = 0 otherwise. Bearing in mind that 0 <r <3n—-1—(n+j) =2n—1-7j,
when j > n, and that 0 <r <3n—1—[(2n —j) +n] = j — 1, when j < n, we get the
following table:

Condition Value of }_ ¢, g, h(z)
j >mn and j even L—7
j >mnand j odd %—%
j <nand j even 4
7 <n and j odd %

Suppose that j < n in the rest of the proof. Recall that w; + wo,_; € I, for all j < n.
Denoting w = w + I, for any socle element w, we see that zu = Zl<j<n pijw;h, where

Wi = i— (3 — 2”4_j] = 0, when j is even, and p; = %— [5 —%] = % = %, when
j is odd. But we also have that w,_1 = _Z1<k<g Wok—1 (see Lemma 6.7.2), so that

U = %(Zlgkgg QIJQk,l)h = 0.

What we have done so far proves that if A = @, n)ezxzA(@m,n) 18 the bigraded algebra
given by homogeneous generators and relations as indicated in the statement, we have a
canonical surjective homomorphism of bigraded algebras A — HH*(A). It is easy to see
that the homogeneous components have the same dimension, so that A and HH*(A) are
isomorphic. [l

As a final consequence of the two main theorems of this section, we get:

Corollary 6.7.11. Let n > 1 be an integer, put A = B,, and suppose that char(K) # 2.
The algebra HH*(A) is commutative if, and only if, either i) n is odd; or ii) n is even
and char(K) divides n.

Proof. By Theorem 6.7.1, we know that HH*(A) is commutative when n is odd. On the
other hand, by the graded commutativity relations and the relations f) and n) of Theorem
6.7.10, we know that, when n is even, the algebra HH*(A) is commutative exactly when
n=0in K. [l
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