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Abbreviation list 

ACC  Acetyl-CoA carboxylase 

ACS  Acyl-CoA synthetase 

Adipo R1,R2 Adiponectin receptor 1,2  

AHA  American Heart Association 

AKT  Protein kinase  

ALA   alpha linoleic acid 
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BMCP1  Brain mitochondrial carrier protein-1 
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CHD   Cardiovascular heart failure 
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COX-2  Cyclooxygenase-2 

CPT-1  Carnitine palmitoyltransferase I 

CVD  Cardiovascular disease 

DHA  Docosahexaenoic acid 

DM  Diabetes Mellitus 

Drp1  Dynamin-Related protein1 

ECC  Epicatechin 

ECG  Epicatechin gallate 

EGC  Epigallocatechin 

EGCG  Epigallocatechin gallate 

EPA  Eicosapentaenoic acid 
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Summary 

Overweight and obesity are markedly increasing, threatening population health in a growing number of countries. 

In order to develop a new therapeutic strategy against the obesity progression and related diseases, it have been 

studied the use of natural bioactive compounds to correct metabolic dysfunction associated with obesity. With 

this pretext, we want to see if the consumption of functional foods with a slight or no change in eating habits, 

avoiding behavioural problems associated with meal replacements, with the objective to be beneficial beyond 

obesity and their comorbidities such as heart disease, hypertension, insulin resistance and dyslipidemia. 

The aim of this thesis is to evaluate how bioactive compounds present in healthy diets, such as flavonoids, 

proanthocyanidins and omega-3 fatty acids, such as docosahexaenoic acid (DHA) and the combination of both, 

could improve or prevent the adverse effects of obesity and related diseases. Studies have focused on, skeletal 

muscle and adipose tissue, two important organs of body weight control and mitochondrial function, known as the 

key regulators of energy homeostasis. 

 To observe the beneficial effects, we evaluated the ability of the compounds to modulate mitochondrial activity in 

these tissues. First, we quantify the ability of epigallocatechin gallate (EGCG) and/or DHA modulate mitochondrial 

function in rat muscle cells; for further study in healthy rats, the effects of acute doses of grape seed 

proanthochyanidin extract (GSPE) and/or DHA-rich oil, combined with a lipid overload. Results indicate that both 

compounds improve metabolic flexibility and postprandial situation. Moreover, it has also been evaluated the 

chronic treatment of GSPE and/or DHA-rich oil in obese rats. In both cases there was an improvement of the 

altered parameters related to the high fat diet intake, improving both, insulin resistance and lipid plasma profile. 

In addition, there was an increase of fatty acid oxidation concomitant with an increase of mitochondrial oxidative 

capacity focused in skeletal muscle, and simultaneously with the overexpression of target genes related to β -

oxidation, thus improving metabolic flexibility. 

Overall, the results of this thesis, achieve the hypothesis, the main objectives, and provide a new opportunity for 

therapeutic strategy against obesity, with a small change in dietary habits trend and the lifestyle of modern 

society. 
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1.1 Obesity 

Obesity is defined as a phenotypic manifestation of the abnormal or excessive accumulation of adipose tissue, 

which alters health and increases mortality 
1
. The morbidity and mortality associated with being overweight or 

obese have been recognised by the medical profession for more than 2000 years. Hippocrates was the first to note 

a relationship between obesity and sudden death 
2
. Recently, data from the life insurance industry and 

epidemiological studies have proven that obesity plays a major role in the development of various conditions, such 

as cardiovascular disease (CVD), and thus increases the risk of death 
3
. The current obesity epidemic (Figure 1) 

results from the complex interactions between genetic, behavioural and environmental factors that correspond 

with chronic and social stays and lifestyles 
1
.  

 

Figure 1. Risk factors and adverse effects associated to obesity based on
1
 

A reduction in physical activity due to lifestyle changes, and/or an increase in energy intake due to the increased 

consumption of energy-dense foods, which result in a reduced satiety index, have led to body weight gain and 

obesity 
4
. Experts predict that the health detriments imposed on children by excess body fat may result in today’s 

youth being the first generation in more than 2 centuries to experience a reduction in life expectancy 
5
.  

Weight gain is primarily caused by a disruption in an individual’s energy balance. Energy balance is defined as 

equilibrium between energy intake and energy expenditure. Excess energy intake and reduced energy expenditure 

result in abnormal and excessive growth of adipose tissue, which can lead to the development of obesity
6
. The 

total energy intake is calculated as the sum of energy consumed in food, fluids and dietary supplements. By 

contrast, energy expenditure is the total energy utilised for basal metabolism, adaptive thermogenesis, food 

digestion, and activity 
7
. In summary, energy balance should be considered as a complex bio-behavioural 

phenomenon that is influenced by genetics, physiology, early-life, and the environment (Figure 2). 

 

Figure 2. Energy balance 
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As total body fat content is difficult to measure directly, and because it correlates with the total body mass divided 

by height squared (Body Mass Index = BMI), another important component in defining obesity is the pattern of fat 

distribution, which, concomitant with body weight, has been used as an indirect measure of the degree of 

adiposity 
3
. 

Several studies over the last two decades have aimed to metabolically characterise and quantify visceral adipose 

tissue, as opposed to subcutaneous adipose tissue. Studies show that in both men and women, the quantity of 

visceral adipose tissue is directly correlated with altered metabolic risk profiles, which precede metabolic 

disorders, such as diabetes and hypertension, as well as chronic diseases, such as stroke and sleep 
8
. The increased 

risk of developing such diseases can be largely attributed to obesity, specifically the effect of excess fat on 

cardiometabolic risk factors stemming from inflammatory processes 
5
. The link between obesity and inflammation 

was first proposed over a decade ago with the finding that the pro-inflammatory cytokine tumour necrosis factor–

alpha (TNF-α) was overexpressed in obese subjects. Subsequent studies have demonstrated elevated expression 

of other inflammatory factors as well. Adipose tissue is able to express many pro-inflammatory molecules in white 

adipose tissue (WAT), demonstrated and proposed as a potential source of production 
9
. 

Furthermore, obesity is strongly associated with metabolic syndrome, which is characterised by the presence of 

insulin resistance, hypertension, dyslipidemia and CVD, as mentioned above. A clustering of such factors has been 

referred to as metabolic syndrome, which is widely recognised as a major public health problem
6
. This syndrome 

has been found to increase the risk of cardiovascular morbidity and mortality by two- to three- fold 
5
. The 

molecular and cellular mechanisms underlying the relationship between obesity, metabolic syndrome and its 

associations (Figure 1) with increased cardiovascular risk are not yet entirely understood and have led to focused 

research on the function of adipose tissue 
9
. 

Preventing and treating excess weight gain is essential to promoting health, combating a rise in the prevalence of 

obesity and averting devastating CVD outcomes. Global strategies have focused on modifying dietary habits and 

lifestyle. The fundamental basis for any weight loss intervention, as well as the obvious first defensive action, is 

lifestyle modification aimed at increasing calories expended during physical activity and decreasing calories 

consumed from food. The history of success in weight loss interventions targeting diet and exercise has been 

modest and usually temporary. Lifestyle interventions, including exercise training and at least mild weight 

reduction via caloric restriction, have led to a nearly 60% reduction in the risk of developing diabetes mellitus 
10

. 

By contrast, pharmacological treatment of obesity has thus far yielded less-than-encouraging results.  

Recently, the ability of natural products to counteract obesity has been studied. The anti-obesity effects of these 

compounds are mediated by the regulation of various pathways, including lipid absorption, intake and 

expenditure of energy, increasing lipolysis and decreasing lipogenesis
1
. Nutritional genomics methods have the 

ability to determine which specific nutrients cause phenotypic changes that influence the obesity risk, as well as to 

establish which interactions are the most important.  

There are many different dietary patterns, including some that promote health and others that increase the risk of 

chronic disease. Despite cultural differences, some characteristics are common to most dietary patterns. Most 

notably, all diets feature fruits and vegetables, legumes, whole grains, and fish. All are high in fibre, relatively high 

in omega-3 fatty acids, and low in saturated fat, trans fat and dietary cholesterol. There is appreciable 

epidemiological evidence that demonstrates a protective role of diets high in fruits and vegetables, legumes, 

whole grains, and fish against different cancers and cardiovascular diseases 
11-14 

. 
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1.2 Polyphenols 

Polyphenolic compounds constitute one of the most numerous and ubiquitous groups of plant metabolites and 

take an integral part of both human and animal diets which differ between varieties of the same plants species
15, 

16
. Over 8000 phenolic compounds have been isolated from different natural products; they can range from simple 

molecules, such as phenolic acids, to highly polymerized compounds such as tannins
14, 16

. Polyphenols considered 

bioactive compounds, are receiving increasing interest from consumers and food manufacturers. Several 

epidemiological studies, that have examined the relationship between the extent of polyphenol-rich food 

consumption chronic disease support a protective effect of the compounds upon CVD and several diseases
15, 17

. 

Moreover in some observational studies, have also been shown an inverse association between the consumption 

of some classes of polyphenols and overall mortality 
18

. According to the recent studies the mechanism by which 

polyphenols express their beneficial properties appear to involve their interaction with molecular signaling 

pathways and related machinery that regulate cellular processes such as inflammation 
19

 insulin signaling pathway 
20

  and lipogenesis 
21

 that depend of the polyphenols chemical structure. 

Normally polyphenols are present naturally in small amounts in plant products. To understand their impact on 

human health, it is essential to know the nature of the main polyphenols ingested, their dietary origin, the 

amounts consumed in different diets, their bioavailability and the factors controlling their bioavailability 
15

 as it 

will we described below. 

1.2.1 Classification  

Polyphenols compounds possess one or more aromatic rings with one or more hydroxyl groups and generally are 

categorized as phenolic acids, flavonoids, stilbenes, ligands, and tannins 
14, 22

 (Figure 3).   

Flavonoids, also known as flavan-3-ols, represent the most common and widely distributed group of plant 

phenolics, such as monomers and oligomeric procyanidins 
16

. Their basic chemical structure consists of three 

phenolic rings referred to A, B and C rings. By the other hand flavanoids are further divided into subclasses based 

on the connection of the B ring to the C ring, as well as the oxidation state and functional groups of the C ring: 

flavones, flavonols, isoflavones, anthocyanins, flavanols, proanthocyanidins and flavanones (Figure 3) 
13, 14, 23, 24

.    

 

Figure 3. Polyphenols classification base on 
14, 25, 

1.2.2 Chemical structure 

Chemical structure of different polyphenols in function of the hydroxyl groups on aromatic rings (Figure 4). 
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Figure 4. Polyphenols chemical structure base on 
26 

 

1.2.3 Metabolism  

Bioavailability is the proportion of the nutrient that is digested, absorbed and metabolized through normal 

pathways. Bioavailability of polyphenols differs depending of the structure. Before the absorption, these 

compounds must be hydrolyzed by intestinal enzymes or by colonic microflora. During the course of absorption, 

polyphenols undergo extensive modification (Figure 5). In fact they are conjugated in intestinal cells and later in 

liver; as consequence the form reaching the blood and tissues differs from the dose present in food 
27

. For the 

majority of polyphenols, the maximum concentration in the plasma is apparent 1-2h after ingestion
23,28

 . 

1.2.3.1 Absorption 

Polyphenols metabolism occurs via common pathway 
15

. During the course of absorption, polyphenols are 

conjugated in the small intestine and later in the liver. Once ingested, polyphenols/flavonols have several possible 

fates, including absorption in the small intestine or colon digested into smaller phenolic structures by gut 

microflora, and/or excretion in the feces or urine. Polyphenols that are not absorbed in the small intestine can be 

metabolized by colonic microflora into aglycones and phenolic acids, in the ileum and cecum. The site and rate of 

absorption depend on the chemical structure, degree of glycosylation/acylation, conjugation of other phenolics, 

size and degree of polymerization 
28

. Deglycosilation of flavonoid glycosides has been proposed as the first stage of 

metabolism 
29

.  

In the small intestine, polyphenols/flavonols can enter the mucosa through passive diffusion; on attachment to a 

glycoside moiety, the hydrophilicity of the flavonoid molecule is increased, which reduces the possibility of passive 

transport 
29

.  

1.2.3.2 Distribution & Metabolism 

After absorption, circulating flavonoids are bound to albumin and transported to the liver via the portal vein, 

where are extensively metabolized 
30

.  Intestine and liver are the major implicated in the flavonoid metabolism. 

Flavonoids and their derivatives may undergo reactions such as hydroxylation, methylations and reductions. 

Conjugation reactions with glucuronic acid and/or sulfate seem to be the most common type of metabolic 

pathways 
28, 29

.  In recent years have been studied that flavanols and their metabolites also could be accumulate in 

several organs. Previous experiments have demonstrated the tissue distribution of flavanol metabolites that has 

been detected at nanomolar levels in tissues such as heart, lung, liver, adipose tissue and muscle 
31

 . 
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1.2.3.3 Excretion 

The last one, processes is a metabolic detoxication process common to many xenobiotics that restricts their 

potential toxic effects and facilitates their biliary and urinary elimination by increasing their hydrophilicity 
32

. 

Flavonoid glucoronides and sulfates are polar and water-soluble, excreted by mammals in the urine and bile. 

When are excreted in bile, are passed into the duodenum and metabolized by intestinal bacteria, which results in 

the production of fragmentation products and/ or hydrolysis of glucuronide-or sulfoconjugates. The resulting 

metabolites that are released may be reabsorbed and enter to the hepatic cycle. Flavonoids also are eliminated by 

renal excretion after conjugation in the liver 
29

. The proportion amount of excretion after a dietary intake can vary 

from 0.8-1.4% 
13, 29, 33

 . 

 

Figure 5. Polyphenols metabolism based on 
34

 

1.2.4 Food source, bioavailability and dietary intake 

Structural diversity of plant flavonoids, their wide distribution in foods, and variations in their content in a given 

food, are some of the factors that contribute to difficult estimation of dietary consumption. 

 

Polyphenols Source 
Quantity of 
polyphenol 

ingested (mg) 

Maximum 
concentration 

in plasma 

Urinary 
excretion 

(%of 
intake) 

Anthocyanins     

Cyanidine -3-

glucoside 

Orange juice (1L) 71 mg Cy-3-glc 0.002  - 

Malvidin 3-

glucoside 

Red wine (500mL) 68 mg Mal-3-glc 0.001  0.016 6h 

Flavanols     

Epigallocatechin 

gallate 

Green tea infusion 

( 5gr) 

105 mg 0.13-0.31  

Catechin Red wine (120mL) 34 mg 0.072  

Epicatechin Chocolate ( 80 g) 137 mg 0.26  

Catechin Pure compound 0.36 mg/kg bw 0.14-0.49 1.2-3 

Epigallocatechin 

Gallate 

Pure compound 50-1600 mg 0.28-7.4  

Epigallocatechin Green tea extract 110-328 mg 0.26-7.4  
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Table 1. Polyphenols bioavailability and food source based on 
26 

Table 1 presents the estimation of daily dietary intake of individual classes of polyphenols and their maximum 

concentration in plasma and the % of urinary excretion.  It appears that polyphenols intake depends on a large 

extent dietary habits and preferences. Most of data polyphenol content in food originates from scattered sources. 

The intake of flavonols, flavones and isoflavones is relatively low compared with that of phenolic acids and other 

flavonoids, such as proanthocyanidins, anothocyanins and oxidized polyphenols.  

Be should know that one of the richest food sources of flavonols are onions, curly kale, leeks, broccoli, apples, and 

blueberries 
14

,moreover red wine and tea can also contain a significant amount of flavonols 
33, 35

. The consumption 

of compounds such as quercetin and genistein does not exceed 2-4% of the total polyphenol dietary intake in 

Western diets 
15

.  By the other hand an average of 58 mg proanthocyanidin/day 
36

 is consumed by American 

population.  

1.2.5 Cardioprotective and anti obesity effects of dietary polyphenols 

In general terms, polyphenols are common constituents of the human diet, present in most foods and beverages 

of plaint origin. The assumption that polyhenols, has cardiovascular and anti obesity effects became originally 

from in vitro studies, showing the antioxidant properties, and posteriori with a number of epidemiological studies 

that related the beneficial effects of polyphenol consumption or polyphenol-rich foods with the risk of 

cardiovascular diseases and that a moderate wine consumption has consistently association with a reduced risk of 

cardiovascular diseases
26, 30, 37

. 

Although, the direct scavenging of free radicals by polyphenols, has often been suggested, that it is not the key 

mechanism explaining their effects on oxidative stress biomarkers and cardiovascular risk factors 
30

. In animal 

models, enrichment of food with polyphenols is effective against preadipocyte proliferation and adipocyte 

hypertrophy 
38

. The health benefits of consuming polyphenols have been mainly studied in 

anthocyanidins/anthocyanidines, flavanols and stilbenes (resveratrol) as a part of French Paradox 
39

. It could be a 

positive effect of these molecules to attenuate complications of obesity-induced oxidative stress such as chronic 

inflammation and insulin resistance, and thus to preserve public health in a therapeutic perspective 
40

, that 

interfere with a large number of biochemical signaling pathways and therefore with physiological and pathological 

processes 
30

. Flavonoids exert beneficial effects including anti inflammatory, antioxidant, and antiproliferative 

gallate 

Procyanidin B1 Grape seed 

extract 

18 mg 0.011  

Flavanones     

Hesperidin Orange juice 61 mg 0.48 4.1 

Naringenin Grape fruit juice 199 mg 5.99 30.2 

Hesperetin Pure compound 135 mg 2.7 3.8 

Flavonols     

Quercetin Apples 107 mg 0.3 3.5 

Quercetin 

4’glucoside 

Pure compound 100 mg 7.0 4.5 

Quercetin Buckwheat tea 200 mg 2.1 1.0 

Isoflavones     

Daidzein Soy milk 108 mg 0.47 37.3 

Genistein Soy milk 102 mg 0.41 20.2 

Daidzein Pure compound 50 mg 0.76  

Glycitein Pure compound 25 mg 0.72  
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effects. There is an evidence that daily intake of some fruits such as three apples or three pears, or grapefruit (as 

fresh grapefruit or grapefruit juice or grapefruit capsule), can significantly reduce body weight by 10 or 12 weeks 

in overweight and obese people independently of the fruit’s fiber amount. Moreover other  evidence suggest that 

a long-term (12 weeks) administration of tea catechins in a dose of 400-700 mg/day to Asian subjects reduced 

body fat and body fat parameters 
41

. Matsuyama et al. demonstrated that the daily consumption of 340 ml tea 

containing 576 mg catechins for 24 weeks reduced body fat ratio and waist circumference compared to control 

group, who had a daily consumption of 340 ml tea with 75 mg catechins 
41

. In our studies, concretely be will focus 

on epigallocatechin-3-gallate (EGCG) and grape seed proanthocyanidins extract (GSPE); their cardio protective 

effect will be detailed below. 

1.2.5.1 EGCG 

EGCG belongs to flavanols and flavonoid subclass. Flavonoids which exist in plants primarily in glucoside forms, as 

we mentioned above, flavanols are usually present in the aglycone form as monomers, oligomers or esterified 

with gallic acid to form epigallocatechin (EGC) epicatechin gallate (ECG), and EGCG 
33

. Catechin and epicatechin are 

present in fruit, whereas gallocatechin, epigallocatechin, and epigallocatechin gallate are found in certain seeds of 

leguminous plants, grapes and more importantly, in tea 
32

.   

Worldwide, tea is a widely consumed beverage which three principal types: green tea, oolong tea and black tea. 

Green tea contains high levels of polyphenols, which may have a number of positive health effects in the 

prevention of lifestyle-related diseases 
6
. Over the past 10 years, there have been a number of mostly small trials 

in humans showing favorable effects of green tea catechins (270 to 1200 mg/day) on body weight 
42

. Adipose 

tissue, skeletal muscle, intestine are target organs of green tea, median anti obesity effects 
43

. Habitual 

consumption of green tea extract has been reported to reduce body weight and body fat; this may occur via 

increased lipolysis in adipose tissue
44, 45

 and decreasing lipid blood levels 
43, 46

. Also, it was reported that green tea 

has physiologic effects in vivo, decreasing risk for obesity 
47, 48

. EGCG may control obesity-associated adipose tissue 

through mitochondrial remodeling 
49

, diabetes 
50

, hypetension 
51

, dyslipemia
52

 and CVD in several epidemiological 

in selected clinical trials 
53

. Green tea supplementation has been shown that significantly improves features of 

metabolic syndrome such as decreased abdominal adiposity 
54

, inhibition of inflammation, regulation of nitric 

oxide, stimulation of specific signal transduction pathways 
55

 and modulation of other cellular processes such as 

apoptosis 
56

. The antioxidant activities of EGCG are due to the presence of phenolic groups that are sensitive to 

oxidation and can generate quinine 
57

. The antioxidative capacity is further increased by the presence of the 

trihydroxyl structure in the D ring of EGC 
56

. By the other hand EGCG is a powerful radical scavangers, protects 

from the oxidative damage induced by a commonly used pro-oxidant such as tert-butylhydroperoxide 
58

. It had 

been reported that EGCG can reduced the cytotoxcity evoked by H2O2 and increase the levels of enzymes related 

to the oxidative stress 
59

. 

1.2.5.2 Proanthocyanidins  

Grapes and their sub products are consumed worldwide. GSPE is a combination of biologically active polyphenolic 

flavonoids including oligomeric proanthocyanidins. It is very difficult to value the proanthocyanidins content of 

foods because proanthocyanidins have a wide range of structure and molecular weights: for example in cider 

apples, the degree of polymerization ranges from 4 to 11.  Proanthocyanidins are responsible for the astringent 

character of fruit (grape, apples, berries, etc) and beverages (wine, cider, tea, beer, etc) and for the bitterness of 

chocolate. It is important to note that this astringency changes over the course of maturation and often 

disappears when the fruit reaches ripeness 
32

. 

 It has been demonstrated to exert novel spectrum of biological, pharmacological, therapeutic, and 

chemoprotective properties against oxygen free radicals and oxidative stress 
60, 61

.   Apart from that, It have been 

reported that promote health and decrease CVD risk referred at the French Paradox with red wine is consumed 
28, 

38
. Moderate red-wine consumption partially prevents body weight gain in rats fed hyperlipidic diet. By the other 
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hand there are many studies that reported also beneficial effects in anti-inflammatory diseases, insulin resistance 
20

, Alzheimer 
28, 62

 and lipid metabolism 
60, 63

. A diet rich in polymeric grape tannins proved to lower plasma total 

cholesterol, triacylglicerides (TGs), low density lipoprotein (LDL) cholesterol concentrations and tends to increase 

plasma high density lipoprotein (HDL) cholesterol levels in rats more than a diet rich in monomeric catechins cita 
64

.  

 

1.3 Polyunsaturated fatty acids (PUFAs) 

Omega-3 PUFAs are dietary compounds that have demonstrated benefit in health and cardiovascular system. 

Among populations in which total fat intake is considerably >30% of total energy consumed, where the primary 

soruce of fat consumed is fish and plant oil, mortality from CVD is low 
13, 65-67

. The interest of these fatty acids 

became when in the 1970s researched discover that the Greenland Eskimos consume diet high in fat and they had 

a low rate of coronary heart disease. Their research provided the impetus for numerous other studies that have 

resulted in major recommendations from some organizations to increase the intake of fish oil 
68, 69

. Since that it 

has been identified populations residing in Mediterranean regions by a longitudinal cohort and cross-sectional 

ecologic studies, that significant reductions in mortality due to myocardial infarction, ischemic heart disease, 

stroke, sudden cardiac death, and total CVD can be attributed to consumption of fish and other dietary sources 

omega-3 PUFAs 
65

. Epidemiologic studies have shown an inverse relation between the incidence of cardiovascular 

disease and the consumption of fish oil 
70

. Moreover omega-3 PUFAS exhibit anti-inflammatory, antithrombotic, 

antyarrhythmic and vasodilatory properties, and some of these effects are being modulated through 

prostaglandins and leukotriene metabolism 
71

. So, Interest in dietary intake of marine PUFAs, is due to, especially, 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).  

1.3.1 Classification  

Numerous fatty acids are synthesized by the human body, and these are known as nonessential fatty acids. 

Omega-3 PUFAs and omega-6 PUFAs must be obtained from diet because some of them cannot be synthesized de 

novo, called as essential fatty acids 
68, 72, 73

 .  

We should know that fatty acids have a carboxylic acid with a long aliphatic tail (the chain) could be either 

saturated or unsaturated. They could be classified depending on the double bond and the length of the chain fatty 

acids (Figure 6). Most naturally occurring fatty acids have a chain of an even number of carbon atoms, from 4 to 

28. The numbers refers to the location of the first double bond in these unsaturated fatty acids, counting from the 

carbon on the methyl end of the compound 
68,74

. As we can see in the Figure 6 saturated fatty acids derived from 

animal sources and monounsaturated fatty acids from vegetal oil sources as olive oil and canola oil.  

 

Figure 6. Classification of fat based on 
74 

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF MUSCLE ENERGY METABOLISM BY BIOACTIVE COMPOUNDS 
Ester Casanova Vallvé 
Dipòsit Legal: T.1562-2013 
 



 
Introduction 

 
 

 
9 

 

1.3.2 Chemical structure 

In the next table 2, we can see the chemical structure of the omega fatty acids and their precursors with their 

main biologic effects.  

 

 

 

 

 

 

 

 

 

 

Table 2. Chemical structures, precursors and biological effects of omega fatty acids based on 
65

 

 

The long chain 20- and 22-C fatty acids between each class, arachidonic acid (AA), eicosapentaenoic acid (EPA), 

and docosahexaenoic acid (DHA) are biologically more active than the 18-C fatty acids, as linoleic acid (LA) and α-

linolenic acid (ALA), which serve primarily as substrates for synthesis of the longer-chain, with more highly 

unsaturated counterparts.  

1.3.3 Metabolism 

Animals and human subjects cannot synthesize PUFAs which contains double bonds at C-6 and C-3 from the 

methyl end of the molecule. The metabolic utilization of omega-3 fatty acids differs from omega-6 fatty acid 

metabolism. Both types of fatty acids are substrates for lipid mediators and are incorporated as structural 

components, to form the lipid bilayers of cell membranes; however, the structural differences between these 

classes of fatty acids that determine the specific properties of the lipid mediators and cell membranes are 

associated with each 
65

. The primary precursors of omega-3 essential fatty acids are ALA; in the case of omega-6 

essential fatty acid is the LA 
68

 . 

Figure 7 shows the most significant steps processing LA and ALA to their higher unsaturated derivates (AA, EPA, 

DHA) by the consecutives desaturation and elongation reactions.  The conversion of ALA to EPA and DHA occurs 

primarily in the liver. LA and ALA compete for the enzyme ∆6 desaturase, which is required for further 

metabolism.  

Eicosanoids, are a class of bioactive molecules derived from omega-3 and omega-6 that include leukotrienes, 

prostanglandines and thromboxanes. Eicosanoids derived from omega-6 are generally proinflamatory and 

proaggretory and can also increase blood preasure, heart rate and immune response, whereas those derived from 

 Omega-6 Fatty acids Omega-3 Fatty acids  

Biologic Effects    

Lowers cholesterol 
  

 

Stearidonic acid 

(18:4) n-3   

 

1-Series 

prostaglandins (anti-

inflammatory)   

 

2-Series 

prostaglandins 4-

series leukotrienes  

(platelet 

aggregation, 

vasoconstriction, 

proinflammatory) 

 

 

 
 

 
 

 

 

 

 

 

 

ALA (α-Linolenic acid) (18:3 n-3) 

Stearidonic acid (18:4 n-3) 

20:4 n-3 

EPA (Eicosapentaenoic acid) 

(20:5 n-3) 

DHA (Docosahexaenoic acid) 

(22:6 n-3) 

LA (Linoleic acid) (18:2 n-6) 

ϒ-Linoleic acid (18:3 n-6) 

AA (Arachidonic acid) (20:4 n-6) 

Dihomo- ϒ- Linolenic Acid (20:3 n-6) 
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omega-3 are predominantly anti-inflammatory, inhibit platelet aggregation and have benefic effects, opposite to 

omega-6 
74,65,68

 (Figure 7). 

It is important a balance between omega-3 and omega-6 fatty acids intakes because compete for the same 

enzyme systems involved in elongation and desaturation to synthesize the long-chain, to unsaturated and more 

biologically active fatty acids. They also compete for cyclooxygenase, lipoxygenases involved in the production of 

prostaglandins and lekotrienes that mediate a range of cell functions important to cardiovascular function 
68

. 

 

.  

Figure 7. Metabolic pathway of omega-6 and omega-3 fatty acids based on 
74

 

Excessive intake of LA or ALA increase production of AA slows down the formation of EPA and DHA. Compensation 

for this imbalance can be achieved in part by increasing consumption of EPA and DHA, but this does not 

completely satisfy the biologic requirements for omega-3 fatty acids, indicating that ALA has important biologic 

effects that are independent, being a precursor for EPA and DHA. Each of these fatty acids have different 

metabolic role, with DHA preferentially, taken up by cell membranes and EPA utilized as a substrate for eicosanoid 

synthesis.  

So, it is very important to establish an appropriate quantity and ratio intake of omega-3 to omega-6 PUFAs in diet, 

because are determinant of human health. In modern Western diets, the ratio of omega-6/omega-3PUFA increase 

to 15:1 to 25:1,  which may have contributed  to the prevalence of the chronic diseases. Traditional diets beings 

involved on PUFA-rich diet in which the ratio of omega-6/omega-3PUFA is about 1-2:1 to promote brain 

evolution
72

. 

1.3.4 Food source, bioavailability and dietary intake 

The most prominent omega-6 fatty acids in the human diet are arachidonic AA (animal and meat) and LA (found in 

vegetable oils, seeds, and nuts) as we can see in table 3, which can be converted into AA acid by a desaturase 
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enzyme. Major dietary sources of omega-3 are fish containing EPA and DHA. By the other hand nuts, seeds, and 

vegetable oils have ALA, which can be converted to EPA, and then DHA by the same desaturase enzyme that 

converts LA acid to ARA acid 
74,68

. EPA and DHA can be produced by single celled marine organisms that fish and 

shellfish regularly consume in their diets. Also, some fish and shellfish, such as herring, mackerel, salmon, sardines 

or tuna content it. DHA sources, also, are being produced by some algal and fungal sources, that have been 

cultivated and commercialized.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tabla 3. Dietary sources of PUFAs selected food base on 
75 

 

Dietary sources of omega-6 PUFAs are abundantly present in liquid vegetable oils, including soybean, corn, 

sunflower, safflower oil, cotton seed oils, while linseed and canola oils are rich in omega-3 PUFAs (Table 3).  

Human’s studies recommended doses of 500 mg/day for individuals without underlying over CVD and at least 800-

1000 mg/day for individuals with known coronary heart disease (CHD) and heart failure 
67

 which is traduced with 

two oily fish meals per week. Recently, The Food and Drug Administration (FDA) approved omega-3 PUFAs at dose 

of 4 g/day to treat very high triglycerides (TGs) levels (≥500mg/dl) in aim to reduce 30% to 40% of blood levels 
76

. 

Different recommendations by American Heart Association (AHA) have been postulated dependent if population 

has documented CHD (Table 4).  

 

AHA suggest that suggests  that patients with CHD a supplementation in humans of 3 g/day of PUFAs fish oil may 

be appropriate at least with respect to its ability to modify the lipid profile and to incorporate these fatty acids 

into plasma phospholipids. Furthermore, patients without documented CHD, consumption of fatty fish at least 

twice a week would be optima (Figure 7).   

 

 

 

Product LA ALA AA EPA + DHA 

Omega-6 fatty acid rich food    

Corn oil 50000 900   

Soybean oil 53400 7600   

Sunflower oil 60200 500   

Margarine 17600 1900   

Lard 8600 1000 1070  

Bacon 6080 250 250  

Ham 2480 160 130  

Soya vean 8650 1000   

Peanut 13900 530   

Wallnut 34100 6800 590  

Omega-3 fatty acid rich food    

Canola oil 19100 8600   

Linseed oil 13400 55300   

Herring 150 61.66 36.66 1700 

Salmon 440 550 300 1200 

Trout 74  30 500 

Tuna 260 270 280 400 

Cod 4 2 3 300 

 Data reported as mg/100g 

 Content of omeg-6 and omega-3 fatty acids may slightly vary according to species, sources and 

analytical methods.  
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Table 4. Summary of American Heart Association recommendation for omega-3 fatty acid intake 
74

 

 

It is important to consider, that high levels of fish, or oily fish could contain contaminants, methyl mercury. FDA 

advised children and pregnant avoid fish with a potentially high content of mercury such as swordfish, tile fish, 

king mackerel, and shark. Salmon, sardines, trout, oysters and herring, are quite low in mercury. Although there 

are some pregnant studies with an excess of fish intake recommendation; by offspring have better cognitive and 

behavioral development that others who consumed less fish 
67

. The reason is because mercury is water soluble 

and protein bound, so mercury is present in the muscle of the fish but not in the oil. So, fish oil supplements 

should contain negligible amounts of mercury 
77

. 

1.3.5 Cardioprotective and anti obesity effect of dietary PUFAs 

Western diet has a greater risk for develop obesity and their associate’s diseases. Fat are essential nutrient, but 

also the type and amount of fat ingested can have dramatic effect on health, being important to control these 

terms. As we mentioned before, in most of the populations examined, reduction of CVD mortality have been 

associated with fish consumption. High intakes of omega-3 fatty acids are characteristic of fish-consuming 

populations, attention has largely focused on the benefits of EPA and  DHA to explain the protective effects on 

CVD risk improving  dyslipemia, insulin resistance, impaired glucose homeostasis, diabetes and obesity observed in 

several meta-analysis’s and interventional studies 
66-68, 71

.   The regular consumption of variety of omega-3 fatty 

acid sources- including fish oils, nuts and soybean oil, that provide concentrated amounts of purified EPA and DHA 

has been demonstrated to be inversely associated with CVD mortality or promoted significant reductions 30% to 

60% in CVD mortality 
65

. Focus in omega-3 tends to reduce fasting and postprandial triglyceride levels by 20% to 

35% by suppressing hepatic very low density lipoprotein-TG (VLDL-TG) production and accelerated clearance of 

chylomicron TGs. Also there is a slightly increase in HDL 
68

.Types of fat in the diet also, determine the relative 

composition of biomembranes, and PUFAs are indeed substrates for free radical reactions leading to 

lipidperoxidation 
78

. Lipidperoxidation is an important event for reactive oxidative species (ROS), oxidative 

metabolism and alterations in food constituents or fuel energy generation, may be related to oxidative stress. 

Therefore, oxidative stress not only may be associated with unsaturated fatty acid content in biomembranes, also 

may be dependent on metabolic pathways shifting for energy production 
70

. Although fatty acids are classically 

observed as an energy substrate, they are also endogenous ligand for peroxisoe proliferator activator receptors 

(PPARs) and regulate the expression of genes encoding key proteins controlling fatty acid uptake and metabolism 
67

. 

Population Recommendation 

  

Patients without documented 

CHD 

Eat a variety of (preferably fatty) fish at 

least twice a week. Include food and oils 

rich in ALA in your diet 

Patients with documented 

CHD 

Consume approximately 1 g of EPA + DHA 

(3g of fish oil) every day, preferably from 

fatty fish. EPA + DHA (fish oil) supplements 

could be considered in consultation with a 

physician. 
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The mechanism for the mentioned lipid lowering effects seems to involve activation of gene transcriptions via 

nuclear receptor such as PPARs, liver X receptors (LXRs) and sterol regulatory element binding protein (SREBP1c), 

controlling the expression of the genes involved in hepatic and skeletal muscle fatty acid oxidation, glucose 

metabolism and adipogenesis 
71

 such as carnitine palmitoyl trasnferase-1 (CPT1) acyl-CoA oxidase
7 9

, lipoprotein 

lipase (LPL), fatty acid syntase (FAS), acetyl-CoA carboxylase (ACC) and stearoyl-CoA desaturase-1 (SCD1) 
80

 

.Metabolic effects of PUFAs are mediated by stimulation of 5’-activated protein kinase (AMPK), a metabolic sensor 

controlling intracellular metabolic fluxes. Thus, omega-3 PUFAs modulate the functions of all major tissues 

involved in the development of metabolic syndrome in liver, adipose tissue, and skeletal muscle by multiple 

mechanism of action. In adipose tissue the incorporation of omega-3 PUFAs indicated an induction of 

mitochondrial biogenesis adipocytes, adiponectin secretion an amelioration of adipose tissue inflammation 
81

.  

The intake of omega-3 PUFAs apart from lower the risk to CVD and mortality, improve colorectal cancer and breast 

cancers, rheumatoid arthritis 
82

, neurosensory organs and depression 
83

. In addition, it has been proposed that 

omega-3 PUFAs must be involved in hormone (eicosanoid) production 
84

, and they are essential for normal growth 

and development
68,71

. In omega-6 PUFAs they are some concern over excess consumption of omega-6 PUFAs for 

their proinflammatory and proaggregatory effects 
79

, so for that reason has we mentioned before, it important 

establish optimal ratio of omega-3: omega-6 to promote healthy diet. 

1.3.5.1 DHA 

As we are going to focus our studies concretely in oil rich in DHA, a briefly description will be made. As we 

mentioned above, DHA is an essential fatty acid of omega-3 series, the chemical structure is made of 22 atoms of 

carbon, with 6 double bonds spread along the structure 
85

. It is the longest chain and most unsaturated fatty acid 

commonly found in biological systems. In mammalian species, a part from be available in reasonable quantities in 

fish, it could be available in ever greatened percentages in oils derived from these animals, and some micro-algae 

eaten by fish as we mentioned previously. Also, it can be found in small quantities in meat especially when the 

animals were fed with fish meal or linenseeds 
11

. 

It has been reported a variety of  positive effects in some human diseases:  cancer 
86

,  heart disease 
87

, brain 

development 
88

, reduce plasma TGs content, obesity 
89

, reduce risk of CVD 
76

. DHA has been shown to be rapidly 

incorporated into a variety of cells, primarily into phospholipids of the plasma membrane and mitochondria 
90

 and 

guaranties the permeability and functionality of cellular membranes 
85

 . 

1.4 Mitochondria 

Mitochondria are small, vesicular organelles involved in many metabolic processes. The main function of 

mitochondria is to transform the chemical energy derived from food and body stores into ATP by a process called 

oxidative phosphorylation (OXPHOS) via the electron transport chain (ETC) (Figure 8). Mitochondria are unique 

organelles with a two-layer membrane structure that separates the organelle into four compartments: the outer 

membrane, intermembrane space, inner membrane, and matrix. The internal aqueous compartment is called the 

matrix, which contains approximately two-thirds of the total protein in the mitochondria and is also the 

compartment in which the mitochondrial genome is contained. The matrix contains several enzymes involved in 

the tricarboxylic acid (TCA) cycle and is the site at which the majority of biochemical reactions occur
89

. The matrix 

is enclosed by a highly folded, insulating membrane called the inner membrane, which contains the enzymatic 

machinery of OXPHOS. The inner membrane is separated from the cytosol by a more permeable outer membrane, 

which is highly permeable to most molecules and contains proteins that perform OXPHOS, protein import and 

substance exchange. The aqueous compartment between the inner and outer membrane is called the 

intermembrane space
91

  which contains proteins that play major roles in mitochondrial energetic and apoptosis, 

most notably cytochrome c. Mitochondria possess their own genome, called mitochondrial DNA (mtDNA),that 

encodes the 37 genes necessary for the assembly of the OXPHOS machinery 
92

. Most of the approximately 1500 

other mitochondrial proteins are encoded by nuclear genes, translated in the cytoplasm and then imported into 
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the mitochondria. Mitochondrial function depends on the assembly, maintenance and dynamics of the organelle. 

Emerging evidence suggests that cellular events that occur outside of the mitochondria are tightly coupled to gene 

expression patterns within the organelle 
93

. The organelles move around the cell by means of the cytoskeleton, 

and they also continually undergo fission and fusion, which are intimately linked to apoptosis and the removal of 

dysfunctional mitochondria 
94

. 

Mitochondrial biogenesis and turnover are regulated and coordinated by multiple transcription factors and 

transcriptional coactivators, notably peroxisome proliferator-activated receptor-ϒ coactivator-1α (PGC-1α)
95

, 

which enable mitochondria to respond to long-term alterations in metabolic demands.  

 

 

 

Figure 8. Mitochondria 

The main reactions (Figure 9), included in the matrix are TCA cycle, and enzymes involved in fatty acid breakdown 

(β-oxidation). The TCA cycle oxidizes acetyl-coA to CO2, generating GTP, NADH and FADH2. Besides providing 

electron donors for OXPHOS, the TCA cycle is critical for several metabolic functions, where its intermediates are 

used as substrates for de novo synthesis of biomolecules:  Succinyl-CoA for synthesis, 2-oxoglutarate for the amino 

acids glutamate, glutamine, proline, and arginine, oxalacetate for the amino acids aspartate and asparagines and 

citrate for fatty acid synthesis. Also, TCA cycle serves a role in catabolism where amino acids are degraded to TCA 

cycle intermediates 
96, 97

. 

 

Figure 9. Main mitochondria reactions based on 
98
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1.4.1 Electron transport chain and Oxidative phosphorylation  

OXPHOS, is a key functional unit in mitochondria, and combine electron transport with cell respiration and ATP 

synthesis. It not only produces the base majority of cellular energy, but is also involved in radical production and 

apoptosis 
99

. In order to produce energy to the organism, mitochondria carried out to produce ATP through the 

oxidation of carbohydrates, fats and amino acids by the OXPHOS system. As we can see in the Figure 10, OXPHOS 

occurs via ETC, located within the mitochondria inner membrane and it is composed with 4 different complexes as 

we can see below; complex V that produce ATP it is not takes part of ETC, although is a component of OXPHOS 

system 
100

. 

- Complex I (NADH ubiquinone oxidoreductase) 

- Complex II (Succinate ubiquinone oxidoreducate) 

- Complex III (Ubiquinone cytochorme c oxidoreductase) 

- Complex IV ( cytochrome c oxidase) (COX) 

- Complex V (F1F0-ATP synthase) 

The electrons passed through the mitochondrial respiratory chain to drive ATP synthesis by oxidative 

phosphorylation or coupled respiration. The electron moves down energy gradient from NADH/FADH to oxygen, 

redox energy is conserved by pumping protons across the inner membrane to build up an electrochemical gradient 
89, 100

. OXPHOS activity is limited by the availability of the substrates for ATP synthesis, ADP and phosphate. Thus, 

OXPHOS activity increases when ATP utilization generates ADP and phosphate 
99

. 

 

Figure 10. OXPHOS system based on 
101

 

1.4.2 Efficiency 

Control of mitochondrial respiration and OXPHOS is fundamental for the maintenance of cellular homeostasis.  At 

cellular levels, mitochondria are the major determinant of energy transduction efficiency. The main determinant 

of OXPHOS efficiency is represented by the degree of coupling between oxygen consumption and ATP synthesis 
102

. 

TCA cycle and OXPHOS are critical for cellular metabolism, so different anabolic and catabolic functions of 

mitochondria must be tightly regulated in response to nutrients, such as carbohydrates, amino acids and fatty 

acids 
96

 to obtain energetic sources. Several requirements are essential to allow efficient OXPHOS; impermeability 

of the mitochondrial inner membrane to protons is a key condition to insure the coupling of the respiration to ATP 

synthesis. Nonetheless, it is known 
103

 that the inner membrane is at least partly permeable to protons, especially 

at high membrane potential. Free permeation of protons (proton leak) across the inner membrane decreases the 

proton availability for the ATP synthase, and thereby, affects the yield of ATP synthesis per oxygen consumed.  

So, the efficiency of the mitochondrial machinery depends on the presence of basal proton leak pathway and futile 

cycling protons across the inner mitochondrial membrane, which has been reported to account for about 20% of 

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF MUSCLE ENERGY METABOLISM BY BIOACTIVE COMPOUNDS 
Ester Casanova Vallvé 
Dipòsit Legal: T.1562-2013 
 



 
Introduction 

 
 

 
16 

 

resting metabolic rate in rats 
104

. Mitochondrial energy efficiency regulated in skeletal muscle plays a direct 

thermogenic role, based on fatty acid-induced mild uncoupling of mitochondrial oxidative phosphorylation
105

. 

Specific proteins present in the mitochondrial membrane such as uncoupling protein 3 (UCP3) that may facilitate 

back-leak-age of protons and thus decrease the efficiency of oxidative phosphorylation. UCP3 expression is 

increased during high fatty acids plasma levels conditions), such as during starvation or after high-fat diet 
106

. 

One way to reduce mitochondrial oxidation of energy substrates is to increase the efficiency of oxidative 

phosphorylation. A higher efficiency implies that less substrate is needed to burn and obtain ATP 
102

. The number, 

the structures and functions of mitochondria differ in animal cells and tissues, in relation to the energetic needs, 

and they can vary during development and differentiation in response to physiological or environmental 

alterations. Mitochondrial proliferation occurs in response to electrical muscle stimulation, following training 

exercise and during thermogenesis adaptation in rodent brown fat 
97

. The mitochondrial malfunctioning is related 

to aging and to the onset of many diseases, including cancer. 

Metabolic imbalance of nutrient signal input, energy production and/or oxidative respiration results in 

“mitochondrial dysfunction”, where WAT play the major role in regulating energy intake, energy expenditure, and 

insulin resistance 
107

. For example excessive energy substrates, typically occurring in situations of obesity and 

metabolic syndrome, may lead to mitochondrial dysfunction with consequential effects on lipid and glucose 

metabolism. Moreover abnormal mitochondria function through increased ROS production in adipocytes results in 

lipid accumulation and insulin resistance 
108

. 

1.4.3 Metabolic regulation via nuclear receptors  

Transcriptional regulation 

Several regulatory circuits might exist in response to different physiological stimuli or by the activation of different 

regulatory pathways for the expression of different groups of genes 
97

. 

The expression of many proteins of the OXHPOS complexes, like COX (the terminal component of mitochondrial 

respiratory chain), is regulated at transcriptional level through specific nucleus-encoded factors. The target genes 

of nuclear receptor factors (NRFs) encode subunits of the OXPHOS complexes or proteins involved in the 

expression, assembly, and function of the complexes. Moreover, NRF-1 seems to be related to the expression of 

mitochondrial cytosolic enzymes of the heme biosynthetic pathway, and with components of the protein import 

and assembly machinery, suggesting that it plays a role in nuclear-mitochondrial interactions. By the other hand 

NRF-2 regulates the transcription of mitochondrial encoded COX subunits 
109

.  The PGC1α family plays a critical 

role in the control of tissue specific biological processes and in the regulation of mitochondrial oxidative 

metabolism. PGC1α co-activators are highly versatile, interacting with different transcription factors that directly 

regulate the expression of certain nuclear genes for mitochondrial products, these include NRF-1 and NRF-2, 

whose genes, are themselves targets of PGC1α. By the other hand PGC1α and β stimulate biogenesis of 

mitochondria with different metabolic characteristics, by modulating the relative activity of these two 

coactivators, cells may achieve fine-tuning of mitochondrial function in response to specific metabolic needs 
97

. So, 

either transcriptional factors or the nuclear co activators goes head the programs of expression of both genomes, 

essential to cellular energetic, therefore they can be considered main players of the communication between 

nucleus and mitochondria. 

Post-transcriptional regulation 

Increasing evidences, demonstrate the importance of mRNA localization, stability, and translocation regulation in 

the control of gene expression. In both, developmental and differentiated cells, such regulation mostly relies upon 

the activity of RNA-binding proteins 
97

. 
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Different post-transcriptional mechanism operates in the regulation of mitochondrial biogenesis and activity. 

Future investigation efforts should be devoted to the understanding the relationship between the components of 

these regulation systems.  

1.4.3.1 PGC1α 

PGC1α is one of the three members of a gene family of transcriptional co-activators that modulate mitochondrial 

function by regulating cellular energy metabolism including mitochondrial biogenesis, thermogenesis 
110

, fatty acid 

oxidation 
111

, and also has been shown to exert profound effects on glucose metabolism, by upregulating 

mitochondrial biogenesis and muscle glucose transport 
112

. It has been reported that PGC1α is expressed in many 

tissues as liver, heart, kidney, white adipose tissue, and skeletal muscle 
113

, where mitochondria are abundant and 

oxidative metabolism is active. It is highly likely that PGC1α is involved in disorders such as obesity, diabetes and 

cardiomyopathy, in concretely in lipid metabolism 
114

.  

Although there are three members of PGC1 family (PGC1α, PGC1β, and PGC1 related coactivator) 
110

, there a 

special interest in PGC1α because there is strong evidence that is a potent regulator of energy metabolism under 

health and disease conditions 
115

. By the other hand PGC1α has two putative nuclear localization signals and 

located in the cell nucleus 
116

.  

Focusing in the adapatative thermogenesis, PGC1α was originally discovered as a cold-inducible transcription 

coactivator. Brown adipose tissue (BAT) and skeletal muscle are the two major organs involved in this process. The 

adapatative thermogenic program in both, involves the stimulation of mitochondria biogenesis, increase FA 

oxidation, and uncoupling of OXPHOS. By the other hand, an increase of PGC1α, induces the transcription of NRF-1 

and NRF-2 leading to the increased expression of mitochondrial transcription factor (mtTFA) 
113

.  In BAT, PGC1α 

also interacts with other nuclear hormone receptors such as PPARα, retinoic acid receptor, and thyroid receptor to 

enhance the expression of brown fat specific UCP1 increasing  heat production and rate of energy metabolism 
110

. 

1.4.3.2 PPARs 

PPARs are members of the nuclear receptor superfamily that function a master regulator of mitochondrial β-

oxidation 
111

 and fatty acid-activated transcription factors. There are three related PPAR family members: PPARα, 

PPARy and PPARδ with different ligand specificities, and tissue distributions. Evidence supports a link between 

PPARs, diabetes, obesity, dyslipemia and inflammation 
117

. 

PPARα was the first PPAR to be identified, is highly expressed in liver, BAT, kidney and skeletal muscle, where 

controls peroxisomal and mitochondrial fatty acid catabolism as a result of upregulation of genes involved in lipid 

transport, fatty acid β-oxidation, and ketogenesis 
117

. For example it has been shown that obese mice treated with 

PPARα agonist also improved insulin resistance, and decreased the fasting blood glucose level 
118

. Furthermore 

PPARα could be activated by endogenous long-chain saturated and unsaturated fatty acids ligands. In particular 

DHA and EPA from fish oil, whose beneficial effects had been well studied, including enhancement of fatty acid 

oxidation throughout a PPARα stimulated process 
119

, and suppression of hepatic lipogenesis via suppression of 

nuclear abundance, and expression of SREBP-1c 
120

.  Moreover, preclinical data suggest a role for PPARα in body 

weight control, supporting the use of PPARα against obesity treatment 
117

. 

PPARy is abundant in adipose tissues, as a key transcriptional factor for adipogenesis, although it is also expressed 

in skeletal muscle, liver, pancreatic β-cells, heart, colon, retina, placenta and immune systems 
119

. PPARy, also 

plays an indispensable role in the regulation of adipocyte differentiation, lipid storage, glucose metabolism, and 

the transcriptional regulation of a number of genes involved in the metabolic processes 
121

. Moreover, PPARy 

agonist attenuates hyperlipidemia-induced elevation due to circulating free fatty acids (FFA), the lipotoxic 

accumulation of lipid in peripheral tissues and insulin resistance. Promoting increased FFA for storage in WAT, 

reduce ectopic lipid accumulation particularly in liver and skeletal muscle, and regulate the expression of the 
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adipokines and inflammatory cytokines that impact hepatic and skeletal muscular glucose metabolism and whole-

body insulin sensitivity 
122

.  

There are two isoforms of PPARϒ1, PPARϒ2 present in colon, retina, spleen, hematopoietic cells, liver and skeletal 

muscle, and PPARϒ2 present also in adipose tissue. Both of them can respond to the same signals: LPL, acyl-CoA 

synthetase (ACS) and cluster of differentiation (CD36). In muscle the loss of PPARϒ had 80% reduction insulin-

stimulated glucose disposal rates, that did not improved with thiazolidinedione treatment
119

. 

PPARδ is expressed in many tissues including liver, kidneys, cardiac and skeletal muscle, colon and BAT 
123

. In 

rodents treatments with potent agonist, attenuated body weight gain, insulin resistance, and intracellular 

accumulation of lipid TG in skeletal muscle, liver and adipose tissue increasing expression of skeletal muscle genes 

involved in lipid catabolism, mitochondrial uncoupling and fatty acid β-oxidation 
124

 . 

1.4.3.3 Nuclear respiratory factors (NRFs) 

NRF-1 was first identified as a factor binding of the cytochorme c promoter, and NRF-1 binding sites are found in 

the promoters of multiple genes encoding mitochondrial proteins, including most subunits of the respiratory chain 

complexes 
96

. Little is known whether NRF-1 functions as a link between nutrient availability and mitochondria 
96, 

111
. In mammals, NRF-1 and NRF-2 are not the only factors that are targeted by PGC1α for their effect on 

mitochondria. The nuclear receptor ERRα (estrogen related receptor alpha) plays an additional important role to 

control mitochondria, in response to external stimuli.ERRα is co-activated by PGC1α through direct binding. 

Moreover, ERRα and NRF-2 were shown to function in a double positive-feedback loop: Both factors were induced 

by PGC1α expression, and ERRα stimulated NRF-2 expression and vice versa. Strikingly, it had been demonstrated 

that ERRα inhibitor could counteract the PGC1α effect on mitochondria, demonstrating a functional link between 

the two proteins 
96, 111

. 

1.4.4 AMP-activated protein kinase (AMPK) 

AMPK is present in all tissues as a heterotrimeric complex consisting with a catalytic α subunit, regulatory β and γ 

subunits. Both β and γ are required for optimal activity of α-catalytic subunit 
125-127

. Depending on the muscle fiber 

type composition, multiple mammalian isoforms of the three subunits exist; all subunits are differentially 

expressed in rodent and human skeletal muscle 
126

. In the case of human skeletal muscle, the majority AMPK 

complexes contain both α2 and β2 subunits 
128

. 

Reversible phosphorylation at Thyrosine (Thr172) within the activation loop of the α-subunit is the most potent 

activator of AMPK 
125, 128

 . 

 

Figure 11. AMPK activators  based on 
129

 

A number of hormones and natural compounds have been reported to activate AMPK by an indirect manner 

(Figure 11). Changes in mitochondrial uncoupling and cellular energy state could account for mechanism leading to 

cellular AMPK activation 
129

. 
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Signaling cascade is sensitive to many stimuli, such as cell stress, oxidative damage, hypoxia, glucose deprivation, 

AMP/ATP ratio increased 
128

, adipokines, exercise and pharmacological substances. Once activated, AMPK induces 

an up-regulation of ATP-generating systems (fatty acid oxidation, glycolisis and mitochondrial biogenesis) and 

stimulate mitochondria biosynthesis, while simultaneously down-regulate process that consumes energy (fatty 

acid synthesis and gluconeogenesis). AMPK signaling pathway exerts beneficial effects against diseases, such as 

diabetes, obesity, cardiac hypertrophy and cancer 
130

. Previous research had been shown that AMPK regulates 

numerous proteins including Sirtuin (SIRT), Ciclooxigenase-2 (COX-2), SREBP, PPAR, Protein kinase B (Akt), UCPs 
126

 

associated with diseases. 

 

Figure 12. Schematic diagram of lipid metabolism and regulation of AMPK pathway 
129

 

 

In general terms AMPK, carries out its function as a pleiotropic regulator of cell metabolism by regulating a large 

number of processes (Figure 12): 

- AMPK is expressed and functions as an intracellular fuel sensor activated by depletion of high energy 

phosphorylation 
127

. Phosphorylation plays a key role in regulating the activity of AMPK regulating cellular 

energy levels 
131

. Activation is induced in response to diverse stimuli that disturb the energy balance of 

the cell either by inhibiting ATP generation or accelerating ATP expenditure, resulting in an increase in the 

AMP/ATP ratio 
126

. 

 

- AMPK activation increases cellular NAD
+
 levels and enhances SIRT 1 activity, resulting in the deacetylation 

and activation of PGC1α 
129

. Concomitant with an increase of mitochondrial genes in skeletal muscle, in 

turn stimulate the expression of genes that contribute to ATP generation, such as those that function in 

fatty acid oxidation, glicolysis and mitochondrial biogenesis 
126

.   

 

- AMPK is also modulated by many adipose-derived factors (Adipokines) that regulate whole-body energy 

metabolism, such as leptin, adiponectin and resistin. Leptin and adiponectin induce muscle glucose 

uptake and fatty acid oxidation by AMPK activation 
129

, whereas resistin which inhibits AMPK, appears to 

have opposite effects 125, 131, 132 .  

 

- AMPK phosphorylation, also increase phosphorylation of ACC 
129, 133

. The AMPK-dependent 

phosphorylation of ACC reduces the conversion of acetyl-coA into malonyl- CoA as we can see in Figure 

12. Malonyl-CoA an important precursor for lipid synthesis is reduced concomitant with a decrease fatty 

acid synthesis, and also inhibits fatty acid oxidation, with an increase of mitochondrial ATP formation. By 

the other hand, fatty acid are mainly transported and stored as TGs.  
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- Activated AMPK and increased PGC1α have been suggested to mediate the regulatory effects of 

adiponectin on mitochondrial biogenesis and function. These results demonstrate that adiponectin plays 

an indispensible role in regulating mitochondrial biogenesis and function 
129, 133

. 

 

- AMPK stimulates the translocation of the glucose transporter (GLUT4) to plasma membrane, where it 

facilitates the entry of glucose in skeletal muscle and heart cells.  

 

There are some natural products that have effects in AMPK activation. EGCG, resveratrol, quercetin, catechin, 

berberine had been shown that accelerates significantly AMPK phosphoryaltion and is successfully employed in 

the prevention and treatment of variety diseases 
125, 129 

. Concretely EGCG, a main catechin of green tea, 

suppressed hepatic gluconeogenesis by AMPK activation mediated by CaMKK. By the other hand, berberine 

caused inhibition of mitochondrial function which increases AMP/ATP ratio, followed by the activation of the 

AMPK pathway 
129

.  Interestingly, like physical activity, some of the antidiabetic drugs used are known to activate 

AMPK, which may promote beneficial effects, including glucose uptake into skeletal muscle and promoting insulin 

sensitivity 
126

. 

 

1.5 Mitochondrial dynamics 

The overall processes of mitochondrial fusion and fission have not yet been thoroughly defined; however, the 

relevant molecular mechanisms mediated by genes controlling mitochondrial dynamics that promote 

mitochondrial fusion and fission, in addition to the posttranscriptional regulation of these genes, have been 

elucidated 
134

. 

Changes in mitochondrial morphology may be relevant with regard to obesity and related cardiovascular diseases. 

Mitochondrial dynamics are controlled by the activity of a group of guanosine triphosphatases (GTPases) related 

to a dynamin family (Figure 13). Remodelling of the mitochondria and their ultrastructures and crests can be 

observed in transitions between respiratory states or during apoptosis 
135

.  

It has been well established that mitochondria are highly dynamic organelles; their distribution and activity can be 

altered by fusion and fission events, which are essential in mammals and are implicated in multiple functions, 

including the maintenance of mitochondrial morphology, mtDNA stability, respiratory capacity, apoptosis, and the 

response to cellular stress. Thus, mitochondria take on a variety of shapes, ranging from long, interconnected 

networks to individual, small spheres 
137, 138

. All of these characteristics are involved in mitochondrial dynamics and 

are thus very important for maintaining an equilibrium that is appropriate for the mitochondrial quality. It is also 

important that fusion and fission events remain in balance for the maintenance of healthy mitochondria 
139, 139

. 

 

Figure 13. Mitochondrial dynamics and Mfn, OPA1, Drp1 and Fis1 localitzation. Mfns and Fis1 anchored in the 

outer membrane. Drp1 is a soluble cytosolic protein that binds to Fis1
136

. Mitofusin (Mfn); optic atrophy 1 (OPA1); 

Dynamin-Related Protein 1(Drp1), Fission 1 (Fis1) 
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1.5.1 Fusion 

1.5.1.1 Mitofusins 

In mammals there are 2 mitofusins homologues, Mitofusin 1 (Mfn1) and Mitofusin 2 (Mfn2), located in the 

mitochondrial outer membrane, where they can initiate the interaction of different mitochondrias 
134, 137

. Both 

molecules are necessary otnormal levels of mitochondrial fusion and have similar biochemical activities. So, they 

may interact with each other to coordinate fusion of the external mitochondrial membrane of opposing 

mitochondria 
135

. When mitofusins are overexpressed, cause aberrations in mitochondrial morphology. When 

mitochondrial fusion is reduced, mitochondrial population is fragmented into short tubules or small spheres 
139, 140

. 

Mfn2 has relevance in the activity in distinct key cellular functions such as oxidative metabolism, cell cycle, cell 

death, and mitochondrial axonal transport involved in some pathologies 
134

. So, the action in these proteins could 

help to reverse some pathology.  It has been shown that the overexpression of Mfn2 directly increases the activity 

of respiratory complexes, mitochondrial oxidation, and glucose utilization 
135

. 

1.5.1.2 Optic atrophy 1 

Optic atrophy 1 (OPA1) are dynamin family GTPases, located within the mitochondrial intermembrane space and 

are associated with the inner membrane 
134

. OPA1 participates in the remodeling of mitochondria crests and the 

approach and fusion of the internal mitochondrial membrane 
134, 135

. OPA1 deficiency leads to cellular defects, 

including reduction and disorganization of cristae membranes, severely reduced respiratory capacity, reduce 

oxygen consumption and sensitivity to apoptosis 
134

. So, the decrease in the concentration of OPA1 protein leads 

to the development of fragmented mitochondria with a lower oxygen uptake and lower mitochondrial membrane 

potential 
135, 137

.  

1.5.1.3 Mechanism Fusion 

Mitochondrial fusion is necessary for respiration function cells 
137

. In the mechanism of fusion 2 distinct membrane 

fusion events occur. The outer and inner membranes, which delineate a mitochondrion, merge with the 

corresponding membranes on another mitochondrion 
139, 141

.  

Three GTPases are essential for mitochondria fusion (Figure 14.): Mitofusins (Mfn1 and Mfn2) which are 

transmembrane GTPases, and OPA1, which is a dynamin related GTPases associated with the mitochondrial inner 

membrane or intermembrane space 
135, 138

. Mitochondrial fusion is necessarily with multistep process, because 

mitochondria have double membranes. To profusion protein located in the inner mitochondrial membrane (OPA1) 

and the pro-fusion proteins located in the outer membrane (mitofusins) are detected in the same complex, so 2 

steps are co regulated or coordinated. When any of this GTPases are depleted, the mitochondria fusion is reduced 
139

. The single disruption of Mfn or OPA1 is sufficient to stop the mitochondrial fusion process 
136

.  

In this event there are a mixing of the membranes, the intermembrane space and matrix.  It is assumed that outer 

and inner membrane fusion is tightly coordinated 
137

. With mitochondrial fusion, the contents of the organelles 

are intermittently homogenized, and therefore the mitochondria could operate as a coherent population. When 

mitochondrial fusion is disrupted, the loss of content mixing may be responsible for many of the functional defects 

such as mtDNA instability or reduced respiratory capacity 
139

. 

1.5.2 Fission 

1.5.2.1 Dynamin-Related Protein 1 

Dynamin-Related Protein 1 (Drp1) is a key component of the mitochondrial fission machinery. Large amount of 

Drp1 is located in the cytosol, but a subpool is located on mitochondria tubules 
137

. 

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF MUSCLE ENERGY METABOLISM BY BIOACTIVE COMPOUNDS 
Ester Casanova Vallvé 
Dipòsit Legal: T.1562-2013 
 



 
Introduction 

 
 

 
22 

 

This protein is essential for most types of mitochondrial fission. The role of Drp1 in mediating mitochondrial fission 

is thought to be similar to that of dynamin, in scission of endocytic vesicles 
139

. The inhibition of Drp1, leads to 

increase length and interconnectivity of mitochondrial tubules, secondary to inhibition of fission 
137

 and results in 

very elongated mitochondria.  

1.5.2.2 Fisssion 1 & Mitochondrial Fission Factor 

Fission 1 (Fis1), is a key component of fission events. It is a small protein located in the outer membrane of 

mitochondria, although most of the protein faces in cytosol 
137

. It is not yet well studied his mechanism actions, 

but possibly Fis1 may play an essential role in mitochondrial fission in only specific cell types. In other cell types 

other molecules such as mitochondria fission factor (Mff), may plan a dominant role which is the best established 

receptor for Drp1 
139

.  

1.5.2.3 Mechanism Fission 

Mitochondrial fission process usually occurs in all cells in normal conditions or in conditions of metabolic stress, as 

well as autophagy, and apoptosis 
135

. Components of fission machinery, Drp1 and Fis1, are the central players of 

the mammalian mitochondrial fission
135, 137

. Although little known about their molecular mechanism of action. 

Mitochondrial fission likely is coordinated with other cellular processes. Fission generally results in daughter 

mitochondria that each contains at least one nucleotide, even in cells with highly fragmented mitochondrial. The 

fission may also be linked to the cell cycle.  Therefore, cell may differe their mitochondria to facilitate segregation 

during cell division 
137

. 

 

 

Figure 14. Mitochondrial dynamics: factors that regulate mitochondrial morphology in fusion and fission events 
135

 

1.5.3 Cell biology of fusion and fission events 

Mitochondrial function is involved in certain pathological conditions 
139

. In mammals, rats and humans, there are 

several alterations in mitochondrial dynamics implicated in energy metabolism (Table 5). Mitochondrial size is 

reduced in the skeletal muscle of obese and type 2 diabetic patients compared to lean subjects. This alteration is 

correlated with a repression of the mitochondrial fusion protein Mfn2 in skeletal muscle 
136

. 

The morphology of mitochondria depends on the balance between the opposing processes of fusion and fission. 

Unbalanced fission leads to fragmentation, whereas unbalanced fusion leads to elongation. In a normal 

physiological state, the control of these processes can alter the shape of mitochondria to suit a particular 

developmental function
137

. Changes in mitochondrial dynamics can allow cells to adapt to certain types of stress. 

The control of mitochondrial shape, fusion and fission are important in mitochondrial bioenergetics. Whereas 

mitochondrial fission often plays a proapoptotic role, mitochondrial fusion tends to protect cells from cell death. 

Mitochondrial fusion is reduced following the induction of apoptosis, and the overexpression of mitofusins results 

in poor cell growth
137

. 

Fission Fusion 
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When mitochondrial fusion is reduced, the mitochondria become fragmented due to unbalanced fission; however, 

mitochondrial tubules can be restored by the simultaneous inhibition of fission 
137

. By contrast, if mitochondrial 

fission is reduced, the mitochondria become elongated and excessively interconnected due to unbalanced fusion. 

As such, these opposing processes work in concert to maintain the appropriate shape, size, and number of 

mitochondria
139

.  

In cells lacking mitofusins or OPA1, mitochondrial function is greatly diminished and manifests as a reduction in 

glucose oxidation and oxygen consumption, which causes a reduction in membrane potential in the presence of 

several substrates 
142

. Cells with low Mfn2 activity rely on anaerobic glycolysis to generate energy. Alterations in 

OPA1 expression also affect mitochondrial metabolism, and its depletion causes a reduction in both basal 

respiration and the capacity to enhance oxygen consumption in the presence of uncoupling proteins, as well as in 

the absence of Mfn 
135, 142

. Mitochondrial fusion can also protect cells from the detrimental effects of mtDNA 

mutations by allowing functional complementation of mtDNA gene products 
137

.  

In summary, mitochondrial dynamics are important not only for the control of mitochondrial shape but also for 

mitochondrial function.  

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

Protein Metabolic effects 

↑Mfn2 
High mitochondrial membrane potential 
increased glucose oxidation 

↑Mfn2Δ602-757 

No fusion activity 
High mitochondrial membrane potential 
Increase glucose metabolism 

↓Mfn2 

Low mitochondrial membrane potential 
Reduction of oxygen consumption 
Decrease in glucose and palmitate oxidation 
Low activity of respiratory complexes 

↓OPA Low mitochondrial membrane potential 
Reduction of oxygen consumption 
Low activity of respiratory complexes 

Table 5. Mitochondrial fusion proteins in cell metabolism 
142

 .Gain of function (↑) and/or loss of function (↑) 

studies have revealed a regulatory role of Mfn2 and OPA1 on cell metabolism. 

 

1.6 Energetic homeostasis in different tissues  

1.6.1 Adipose tissue 

In mammals, adipose tissue develops in many different sites through the body, and generally occurs in areas of 

loose connective tissue, such as subcutaneous layers between muscle and dermis 
143

.  In general terms, there are 

two types of adipose tissue: WAT and BAT. The adipose tissue functionality is a key for the energy homeostasis of 

the organism and is considered a metabolically active storage tissue for lipids while BAT is considered a 

thermogenic adipose tissue with higher oxidative capacity. Experimental evidence suggests a link between adipose 

tissue malfunctioning, obesity and their related diseases 
144

. 

BAT is well accepted as an important metabolically organ in small mammals (rats, mice) and predominate in 

interscapular area. From years was thought that in humans BAT was present mainly in the neonatal period for 

thermoregulation but was scarce in adults. Recent studies, evidenced that significant amount of BAT is also 
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present in adult humans in neck and around clavicles, extending in some people into the supraclavicular and 

thoracic region 
145, 146

 and take importance to be metabolically significant in adult human’s tissues. These discover 

was obtained by positron emission tomography and could be a useful way to avoid obesity and also prevent the 

side effects of associated diseases 
108

. 

1.6.1.1 White adipose tissue 

WAT is a metabolic organ that specializes in energy storage in TGs containing intracellular droplet. It represents 

around 10% of total body weight in lean adults, but can achieve >50% in obese subjects, disrupting whole-body 

energy homeostasis inducing changes in WAT mitochondria 
108. 

Adipose tissue grows by hypertrophy (cell size increase) and hyperplasia (cell number increase). When energy 

intake exceeds energy expenditure, energy continues with the storage in adipocytes leading to hypertrophy and 

weight gain. Although adipocyte hyperplasia is not necessary to directly promote adiposity, the adiposity number 

set during childhood and adolescence is likely to have a dominant role in determining the lipid-storing capacity of 

adipose tissue and fat mass in adults 
147

. 

Mitochondria in adipose tissue play an important role in lipogenesis by providing key intermediates for TGs 

synthesis; in adipocytes, mitochondria is also involved in the regulation of lipolysis. Fatty acids resulting from 

lipolysis can be oxidized by the fatty acids β-oxidation pathway into the mitochondria matrix compartment, with 

the objective to  prevent lipotoxicity that induce insulin resistance in other organs such as liver, muscle or β- cells 
107, 108,

. The imbalance between lipid storage and lipid utilization predisposes to adipocyte dysfunction and 

promote the proinflammatory response and ROS production involved in severe metabolic disorders 
148

. 

WAT besides affecting multiple biological systems also affect the immune system, with the secretion of hormones 

that regulate energy balance as adipokines (the leptin, adiponectin and resistin) 
143, 147, 148

;  it is also capable of 

emitting signals to regulate food intake and energy expenditure and thereby to orchestrate changes in energy 

balance and whole body nutritional status .It is believed that modulation of cellular and molecular events in 

adipogenesis could serve as an effective means to control body-weight gain and obesity 
147

. 

1.6.1.2 Brown adipose tissue 

Brown fat cells are characterized by a polyglonal shape with multilocular lipid droplets and an increased number of 

large and spherical mitochondria, which give their brown coloration 
108. In contrast to lipid storage function in 

WAT; BAT provides heat via dissipation of energy, known as thermogenesis, possessing the ability to transfer 

directly, energy from food into heat, maintaining the appropriate balance between energy storage and 

expenditure.  The main part of cellular thermogenesis comes from mitochondria where a large part of the 

mitochondrial respiration energy can be dissipated spontaneously as heat. 

There are different thermogenesis mechanisms; cold environment, energy oversupply stimulated by 

catecholamines that activates thyroid hormones, and also activated by lipase to release FFA from TGs. So, FFA and 

thyroid hormones are activators of the inner mitochondrial membrane UCP1 that uncouples mitochondrial 

respiration from ATP production by causing protons to leak across the inner membrane, enabling energy 

dissipation as heat 
149

.  

UCP1 allows protons to move down their electrochemical gradient, by passing ATP synthase and therefore ATP 

production (Figure 15). So, uncouples aerobic respiration from substrate oxidation by producing heat instead of 

ATP.  As the results brown adipocytes, oxidizes their own fat stores and circulating substrates at a fast rate, thus 

releasing heat 
150

 apart from circulating lipids and glucose. 

This observation thus highlights BAT thermogenesis as an attractive therapeutic anti- obesity target in the 

regulation of body weight 
108, 148, 150, 151

. There are studies that demonstrate rodents feed cafeteria diet activates 
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and expands BAT 
152

. This effect could be in response to the hypercaloric diet for defense excess of energy supply 

by dissipating part of the energy excess and thus reducing body weight gain and also its comorbilities 
150

. 

 

Figure 15. Mitochondrial functionality in brown adipose tissue 

1.6.1.3 Regulation of brown adipogenesis 

Brown adipogenesis is regulated with grown transcription factors. At trancriptional level, several proteins enhance 

or inhibit brown fat development, Bone morphogenetic proteins (BMPs) are main regulators, but also PGC1α, 

PPARy and UCP1 
108

. PPARy, and ccaat-enhancer-binding protein (C/EBP) family, that in combination with proteins 

such as PGC1α have a critical role to determine brown adipogenesis. PGC1α with their expression is a key gene, 

involved in BAT development that plays a critical role in the mitochondrial biogenesis and oxidation in metabolic 

pathways 
150

.  The high oxidative capacity of BAT is due to its high mitochondrial density, expression of fatty acid 

oxidation enzymes and respiratory chain components, similarly to the muscle. 

1.6.2 Skeletal muscle  

In healthy humans, skeletal muscle accounts for 40-45% of the total body mass and is a major determinant of 

resting energy expenditure, accounting for 40-50% of the variability in basal metabolic rate and for up to 75% of 

total muscle glucose disposal 
153

. Additionally, in terms of metabolic health, skeletal muscle physiology plays a role 

in the body’s overall nutrient balance, characterised by the capacity to utilise either lipid or carbohydrate fuels and 

to effectively transition between these fuels. Thus, skeletal muscle is essential for the maintenance of whole-body 

energy homeostasis under a wide range of physiological conditions 
154

. Skeletal muscle accounts for the majority 

of insulin-stimulated glucose utilisation and is therefore the major site of insulin resistance in patients with obesity 

and type 2 diabetes mellitus (DM). Obesity and type 2 DM, in addition to insulin resistance, affect the composition 

of skeletal muscle by increasing the lipid content within and around muscle fibres, manifesting inflexibility in the 

transition between lipid and carbohydrate fuels 
155

 (Figure 16). Increases in intramyocellular lipids in the form of 

diacylglycerol and ceramides, as well as increases in acylcarnitines (due to incomplete mitochondrial fatty acid 

oxidation), adipocytokines associated with inflammation, branch chain amino acids and ROS, have all been 

implicated as potential causes of defects in insulin signalling. There is also evidence to suggest that OXPHOS is 

decreased. Skeletal muscle rapidly increases its rate of energy consumption in the form of ATP in situations where 

explosive contractions are required. There are two metabolic pathways, namely, anaerobic and aerobic 

metabolism 
156

.  
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Figure 16.Defects in muscle metabolism by metabolic syndrome based on 
157

 

1.6.2.1 Skeletal muscle and glucose metabolism 

Glucose, which is hydrophilic enters the cytoplasm by a process of facilitates transport. To date, 13 isoforms of 

GLUTs have been identified. The variety in their maximal rates of glucose transport and sensitivity to hormonal 

regulations 
158

 GLUT1 and GLUT4 are the main glucose transporters in skeletal muscle 
159

. In addition GLUT1 is 

predominantly responsible for glucose transports under basal conditions and GLUT4 mediates the effect of insulin 

on promoting glucose uptake in skeletal muscle, a process that accounts for about 75% of whole-body insulin-

stimulated glucose uptake 
160

. 

1.6.2.2 Skeletal muscle and fatty acid oxidation 

Skeletal muscle has a limited capacity to store lipids; there are two pools of fatty oxidative metabolism in skelta 

muscle: circulating TGs and intramyocellular TGs. LPL act as a door keeper in tissue fatty acid metabolism by 

hydrolyzing blood TGs 
133

. 

Membrane transport of long chain fatty acids (LCFA) is tightly regulated to prevent intramuscular lipid 

accumulation. Fatty acid transport in skeletal muscle is regulated at the plasma and mitochondrial membranes via 

both common and distinct mechanism. Uptake of LCFA by the expression of activity of carrier proteins including 

fatty acid translocase/cluster differentiation 36 (FAT/CD36), plasma membrane fatty acid binding protein 

(FABPpm) and fatty acid transport proteins (FATPs )
161

 .Transport of LCFA is considered as the rate limiting step in 

fatty acid oxidation. Once fatty acids are inside cytosol, could be esterified and metabolized to lipid or β-oxidized 

in mitochondria by CPT system. CPT1 located on the outer mitochondrial membrane facilitates the binding of 

carnitine to long chain acyl-CoA 
161

. 
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Figure 17 Cell metabolism in mycyte: key factors in pathogenesis of fat-induced muscular insulin resistance
30

  

By the other hand malonyl-CoA, first intermediate in lipogenesis, regulated CPT1 system as alloesteric inhibitor. 

When ACC, that control synthesis of malonyl-CoA, is inhibited by phosphorylation, the reduction in malonyl-CoA 

synthesis, release the inhibition of CPT1, and transport of LCFA into the mitochondrial increases, being the rate 

limiting step in mitochondria fatty acids oxidation as we mentioned above  So, fatty acid carriers and CPT1 may be 

important, under conditions in which there is a demand increase of fatty acid oxidation including during exercise 

or muscle contraction 
162

 (Figure 17). 

1.6.3 Hormonal control of adipose and muscle energy metabolism 

Adipose tissue acts as an endocrine organ, and plays an important substantial role in the pathogenesis and 

complications of obesity and CVD.  Adipose tissues and obesity have clued adiponectin, which has antidiabetic and 

antiarteriosclerotic effects, and leptin, which has regulatory effects on feeding. In addition, adipokines with 

undesirable properties have also been identified, such as TNF-α which causes diabetes and artherioscleroisis 
122

. 

Specifically, obesity results as a pro-inflammatory state with increased visceral fat deposits and alteration of 

adipokine secretion (insulin, leptin and adiponectin), concomitant with insulin resistance 
9
.   

1.6.3.1 Insulin 

Insulin is a peptide hormone, synthesized in β-cells of the pancreatic islets of Langherhans; it is the pivotal 

hormone regulating cellular energy supply and macronutrient balance. Insulin stimulates glucose uptake, 

promotes lipogenesis while suppressing lipolysis, and hence, free fatty acid flux into the bloodstream 
163

 directing 

anabolic processes of fed state. Insulin is essential for the intra-cellular transport of glucose into insulin-dependent 

tissues such as muscle and adipose tissue 
164

. Glucose is the principal stimulus for insulin secretion, through other 

macronutrients, hormones, humoral factors and neural input, which may modifies this response. Insulin together 

with its principal counter-regulatory hormone glucagon regulates blood glucose concentrations 
165

.  

Insulin in muscle glucose uptake is essential and dependent via GLUT4; muscle accounts for about 60-70% of 

whole-body insulin mediated uptake. In the fed state insulin promotes glycogen synthesis via activation of 

glycogen synthase 
166

. Insulin therefore promotes glucose entry to enables oxidations, recycling lactate, 

synthesizes and stores glycogen, and also lipid synthesis in muscle cells, while suppressing lipolysis and 

gluconeogenesis from muscle amino acid 
164

. A decrease in insulin sensitivity to skeletal muscles induces an 

increase in basal insulin plasma levels. 

By the other hand, in adipose tissue intracellular glucose transport into adipocytes in postprandial state is insulin 

dependent via GLUT4; it is estimated that adipose tissue accounts that whole body glucose uptake is stimulated 

about 10% by insulin. Ingestion of lipid may also modify the insulin response to glucose by effects on 
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gastrointestinal hormones and gastric empting 
167

. In carbohydrate metabolism facilitated diffusion of glucose into 

fat and muscle cells via GLUT 4 modulation
168

.  

In general terms, insulin modifies the supply of nutrients to muscle through a direct vasodilatory effect and reduce 

arterial metabolites concentrations of glucose, amino acids and NEFAs due to the inhibition of hepatic 

gluconeogenesis, coupled with inhibition of lipolysisis and stimulation of lipogenesis in adipose tissue 
169

. 

 

1.6.3.2 Leptin 

Leptin appears to be an important adipokine, performing a significant role in the regulation of food intake and 

energy homeostasis in peripheral tissues such as liver and muscle 
147

, with body weight regulation particularly 

related with CVD 
10

. 

The synthesis and secretion of leptin are regulated by numerous factors, including insulin, steroid hormones, β-

adrenergic stimulation, growth hormone, glucocorticoids and nutrients such as glucose, leucine and some 

polyunsaturated fatty acids 
170

. Leptin secretion is positively associated with fat mass content. After a meal, leptin 

is secreted by adipose tissue and goes through specific areas of the hypothalamus to regulate signal satiety.  By 

the other hand it has been reported that leptin stimulates phosphoyrlation and activation of the α2 catalyic 

subunit of AMPK in skeletal muscle increasing fatty acid oxidation. Moreover in neuron decrease the release of 

orexigenic neuropetides with regulatory effects on food intake 
132

.  

Acute leptin treatment rapidly activates fatty acid oxidation by increasing the AMP/ATP ratio, which in turn 

activates AMPK by phosphorylation
171

. Chronic leptin treatment effects on muscle fatty acid oxidation via rapid 

and longer term mechanisms and were related to increase mRNA levels of medium-chain-acyl-CoA dehydrogenase 

(MCAD), CPT1 and UCP2 
172

. 

1.6.3.3 Adiponectin 

Adiponectin was initially identified as an adipocyte derived hormone secreted from adipose tissue and served as 

an anti-inflammatory adipokine that regulates energy homeostasis by increasing insulin sensitivity. Plasma 

adiponectin levels are negatively correlated to fat mass 
172

 .Two adiponectin receptors are known: Adiponectin 

receptor (Adipo R)1 and Adipo R2. Adipo R1 is expressed in skeletal muscle, and Adipo R2 is mostly expressed in 

liver 
133

.  Adiponectin is also known as a target of AMPK activity to decrease gluconeogenesis, increase glucose 

uptake and improve oxidative metabolism of fatty acid oxidation liver and muscle, through its own receptors and 

downstream signaling, resulting in ameliorating insulin sensitivity 
133, 173

. 

The effect of adiponectin on mitochondrial biogenesis and fatty acid oxidation is dependent of AMPK and 

phospho38 mitogen activated protein kinase (p38MAPK) signaling pathways (Figure 18). The effect of adiponectin 

on AMPK and p38MAPK activation in fact is linked. Adiponectin activates AMPK which in turn activates p38MAPK, 

and then PGC1α and PPARα ultimately, resulting in increased mitochondrial biogenesis and function 
172

. The 

increased of fatty acid oxidation was in part the result of increased β-oxidation enzyme expression and gene 

expression of genes encoding proteins involved in fatty acid transport as CD36, acyl-CoA oxidase, UCPs and LPL 

activity which should provide fatty acids as a substrates for oxidation 
133

, resulting in enhanced fatty combustion 

and energy expenditure 
174

. Replenishment of adiponectin might represent a novel treatment strategy for insulin 

resistance and type 2 DM. In addition, adiponectin has potential anti-inflammatory properties that might prevent 

or retard atherogenesis 
175

.  
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1.6.4 UCPs homolegs 

UCPs are anion carriers across the mitochondrial inner membrane, which bring protons back into the 

mitochondrial matrix .Mitochondrial uncoupling is mediated by UCPs, among those UCP1 was  the first protein to 

be identified in brown adipose tissue which, dissipates redox energy and provides heat to the animal. UCP1 is 

followed by its four homologs: UCP2, which is widely expressed in several tissues of the body (e.g brain, pancreas, 

spleen, macrophages, stomach, skeletal muscle, lung) 
176

; UCP3 expressed at high levels in skeletal muscle, heart 

as well as BAT; UCP4and brain mitochondrial carrier protein 1 (BMCP1) or UCP5 are predominantly expressed in 

the central nervous system
177-179

.  

In general terms, these novel uncoupling proteins have several hypothesized functions including thermogenesis in 

certain tissues, neuroprotection, export of fatty acids, mediation of insulin secretion, protection from ROS and   

preventing obesity and diabetes 
180,181

, these mechanism actions are illustred in Figure 18. 

  

Figure 18. UCps analogs functions 

 

1.6.4.1 UCP2 & UCP3 

The amino acid sequence of UCP1 is 59% and 57% identical to the sequence of UCP2 and UCP3, respectively 
182

. 

While UCP1 is responsible of thermogenesis, as already discussed in the section of brown adipose tissue, proteins 

UCP2 and UCP3 are usually not considered thermogenic proteins, but nonetheless they might be significantly 

thermogenic when is fully activated by endogenous or exogenous environmental factors 
182

. 

 UCP3 is activated by fatty acids when thermogenesis is required, suggesting that the activation of UCP3 by 

physiological activators might cause significant thermogenesis under certain conditions 
183

 . By the other hand, it 

has been reported that lack of UCP3 in mice has a tendency to accumulate fat compared with wild type mice 
184

. 

So the  

Furthermore, skeletal muscle plays an important role in energy expenditure by activation of UCPs. It has been 

suggested that UCP3 expression could be upregulated by diet fish oil and DHA 
185

  and also with oleic acid 
186

 

promoting benefits in lipid metabolism and prevention of obesity and diabetes 
187, 188

.  

UCP2 is involved in a wide range of functions including satiety signaling, insulin release, and immune cell functions; 

also has been implicated in physiological and pathological processes related to glucose and lipid metabolism 
189

. It 

has also been proposed that UCP2 may serve as the enigmatic calcium uniporter 
190

. Previous data suggest that 

function as uncoupler when activated by superoxide and other metabolites of lipids and peptides 
191, 192

 by 

increasing proton leak, decreasing ROS production and protecting against oxidative stress 
193-195

 . 
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The mechanism of fatty acids to induce uncoupling, may involve PUFAs in activating UCP2 and uncoupling activity. 

The PUFAs, their hydroperoxides, and hydroxyl fatty acids derivatives originated from lipoperoxidation can be 

cleaved off by phospholyphase A and may activate UCP2 instantly. Such activation may present a downregulating 

feedback mechanism of ROS formation 
192, 195, 196

. Moreover it has been shown that dietary fat is influenced in the 

expression of UCP2 and UCP3 
176, 197

. The expression of both UCPs are elevated in fasting conditions or other 

states, including high fat diets, were circulating fatty acids are elevated and there are a shift between 

carbohydrate and lipid oxidation. Although the expression depends on strain and tissue type, the upregulation by 

high fat diet of UCP3 also occurs in human skeletal muscle 
198

.  

In vitro studies support the idea that UCP2 and UCP3 can be activated by fatty acids and inhibited by purine 

nucleotides. UCPs in general have a purine nucleotide binding site located into the intermembrane space. The 

purine nucleotides ATP, ADP, GTP and GDP are inhibitors of uncoupling activity 
199

 . 

1.6.4.2 UCP4&UCP5 

UCP4 and UCP5 have the characteristic structure of other UCPs. UCP4 is mainly expressed in the central nervous 

system
199

 and was the first identified in humans as novel member of the UCP family in 1999 by Mao et al.
177

.By the 

other hand UCP5, is strongly expressed in amygdale, dorsomedial hypothalamic nucleus, mediodorsal thalamic 

nucleous, and vetromedial hypothalamus in mice 
200

. Thus UCP4 and UCP5 perform the essential function of an 

uncoupler of oxidative phosphorylation accompanied by a reduction of oxidative stress 
201

 . UCP4 and UCP5 play a 

role in apoptosis in the brain 
202

.  

A part from the mentioned mechanism of UCPs; it is thought that also they can act as fatty acid anion flipases 

causing the outward movement of the fatty acid anion head groups across the inner membrane (Figure 18), once 

on the outer surface, the fatty acids pick up a proton and then flip-flops rapidly will be back into the matrix. Thus, 

UCPS des not conduct protons per se; movement rather it enables fatty acids to behave as cycling protonophores 
91

. 

 

1.7 Oxidative stress  

ROS are used to describe a variety of molecules and free radicals (chemical species with one unpaired electron) 

derived from the metabolism of molecular oxygen. In living cells, the major site of nonezymatic production of ROS 

is the mitochondrial respiratory chain 
180

. The 0.2% to 2% of oxygen consumed by cells is incomplete metabolized; 

such that when an electron is accepted from the ETC, superoxide anions (O2
-.
) are generated as obligatory 

byproducts, with complexes I and III, the major ROS generation in mitochondrial respiratory chain, being the 

primary source of ROS 
107, 180,

. Recent work suggests that other mitochondrial enzymes are also involved in ROS 

generation, as succinate dehydrogenase (Complex II) 
203

.  

High levels of ROS are associated with significant cell damage and mitochondrial dysfunction in a process known as 

oxidative stress, usually associated by with a etiology of obesity, insulin resistance and type 2 DM
108

. Oxidative 

stress occurs in cells as a consequence of an imbalance between the prooxidant/antioxidant systems, which could 

be produced with the feeding of high/fat/high sucrose diet. This oxidative stress cause damage to cellular 

macromolecules such has nucleic acids, proteins, structural carbohydrates and lipids, increase mutation in mtDNA 

and apoptosis 
204

.  The peroxidation of lipids is particularly negative because the formation of lipid peroxidation 

products leads to a simple propagation of free radical reactions 
107, 108, 205

, with fluidity and permeability changes, 

inhibition of metabolic processes, and alterations of ion transport. The damage on mitochondrial induced by lipid 

peroxidation can lead to further ROS generation 
180

 .  

Antioxidants could reduce ROS-mediated damage to mitochondrial macromolecules. However, an alternative 

approach would be modulate mitochondrial function, with the aim of producing less ROS in the first place while 
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maintaining adequate ATP production 
206

.The natural antioxidant system could be classified into two main groups: 

enzymes and low molecular weight antioxidants. The enzymes scavenging ROS includes superoxide dismutase 

(SOD), catalase, and glutathione peroxidase. The low molecular weight antioxidants include ascorbate, glutathione 

(GSH), phenolic compounds and tocopherols. In mitochondria, superoxide anions are converted to H2O2 by 

manganese superoxide dismutase (MnSOD) (present in the matrix and intermembrane space), converted 

subsequent to water by the glutathione peroxidase enzyme. Alternatively, hydrogen peroxide can diffuse from the 

mitochondria into the cytoplasm 
180

. 

It has been showed that skeletal muscle insulin resistance development in response to a high fat diet could be 

prevented by specifically inhibiting ROS emission with a mitochondrial-targeted antioxidant 
172

. So, targeting 

natural antioxidants in mitochondria could be a good choice to prevent ROS damage. 

1.7.1 Mild uncoupling 

Apart from use antioxidant compounds to decrease ROS products, another way for the prevention of ROS exces, 

bases on the observation that there is a possible physiological role of UCPs to attenuate this damaged caused by 

mitochondrial ROS 
180

 (Figure 18). Proton motive force is a key factor influencing free radical production at 

complexes I and III, the mild mitochondrial uncoupling and dissipation of mitochondrial gradient could be a 

strategy to scavenge ROS 
206

. 

Adenine nucleotide translocase (ANT) and the UCPs 1 to 3, represent the most well described proteins involved in 

proton leak, although proton leak mechanism by ANT are not well understood. Proton leak through UCP2 and 

UCP3 is statistically associated, and activated by ROS or their lipid by products, such as 4-HNE 
183

 to decrease 

mitochondria ROS emission 
207

 . 

The interrelationship between cellular fuel oxidation, mitochondrial bioenergetics and ROS signaling has been 

improved. It has been proposed that one function of both, UCP2 and UCP3 is to mildly uncouple respiration 

allowing a more rapid electron flux (Figure 19), thus reducing membrane potential resulting in reduced ROS 

production. Since even mild uncoupling, has a large effect on reducing ROS production, this hypothesis has strong 

support, and now is generally accepted 
149, 181

. The ability of UCP2 and UCP3 to modulate the frequency and 

duration of ROS emission by mitochondria could have profound physiological effects protecting against ROS 

production and tissue oxidative damage 
207, 208

. 

 

Figure 19. UCPs and ROS accumulation based on 
148
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1.8 Metabolic flexibility  

The availability of substrates is a major determinant in energy metabolism of skeletal muscle. Fat overload may 

represent a metabolic challenge for many individuals, even in energy balance conditions, who may indeed fail to 

appropriately upregulate skeletal muscle lipid oxidation, producing intracellular lipid accumulation and insulin 

resistance. 

So, the ability of a system to adjust fuel oxidation to fuel availability is known as metabolic flexibility 
209, 210

. The 

switch in fuel oxidation will depend on the type of amount of nutrient available for oxidation at the cellular level 
154

. In response to fuel oversupply, anabolic pathways are activated. The ability to change substrate oxidation in 

response nutritional status will depend on the genetically determined balance between cellular oxidation and 

storage capacities 
161

. For example during an overnight fast or in response to a high fat diets switch from 

carbohydrate to lipid oxidation should also be part of the assessment of metabolic flexibility (Figure 20). A 

consequence the oxidative capacity for skeletal muscle may be of utmost importance to boost lipid oxidation to 

the level of lipid supply and therefore modulate insulin sensitivity.  

 

 

Figure 20. Schematic overview of metabolic fluxes of fatty acids and glucose between organs, in healthy subjects 

during (a) fasting and (b) postprandial phase, in the same conditions 
30

 

It will be important to test whether whole body or skeletal muscle metabolic flexibility are affected by muscle 

mitochondrial characteristic such as density, morphology and activity because mitochondrial abnormalities may be 

a primary cause of metabolic inflexibility raised 
211

, although probably metabolic flexibility also depends on the 

ability of adipose tissue to handle fatty acids, apart from the rate at which nutrients are available to the cells, as 

we mentioned above.  

 

 

 

 

 

 

 

(a) (b) 
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Obesity is the outcome of a long-term imbalance between energy intake (calories obtained from food) and energy 

expenditure (calories expended in basal metabolism, growth, development and physical activity) and manifests an 

increase in adipocyte number and size due to increased TGs storage in white adipose tissue. Obesity is a 

multifactorial disorder that results from complex and largely unknown interactions between genes, food intake 

and physical activity, which together determine body weight and fat distribution. Obesity is also a systemic 

phenomenon involving the interplay of multiple organs, such as white adipose tissue, brown adipose tissue, 

muscle and liver. 

Certain dietary patterns and specific food components have been associated with a lower prevalence of 

cardiovascular diseases within the population. In this context, the traditional Mediterranean diet, characterised by 

a high intake of fibre, low-glycaemic index carbohydrates, unsaturated fats (monounsaturated oleic acid from olive 

oil and omega-3 PUFAs from nuts and sea fish), vitamins and antioxidant polyphenols, has been linked to a lower 

incidence of cardiovascular diseases, obesity and type 2 DM. Metabolic syndrome patients following a 

Mediterranean diet exhibit significant reductions in total weight, insulin resistance, and inflammation markers, as 

well as ameliorated endothelial function.  

Proanthocyanidins, which comprise the oligomeric forms of (+)-catechin and (-)-epicatechin, in addition to their 

glycosylated and gallated derivatives, are found in wine, grapes, berries, apples, nuts, and chocolate. Numerous 

population and intervention studies have demonstrated that proanthocyanidin-rich diets reduce the risk of 

cardiovascular diseases. Studies using animal models have demonstrated the benefits of proanthocyanidins in 

terms of preventing and ameliorating obesity, diabetes, atherosclerosis, and hypertension. Because oxidative 

stress and subsequent inflammation represent a common backdrop to these diseases, the beneficial effects of 

proanthocyanidins have been largely attributed to their well-known antioxidant activities. Proanthocyanidins have 

also been shown to interact with plasma membrane and nuclear receptors, functioning as signalling agents and 

eventually modulating gene expression and cell metabolism. A similar effect has been described for the green tea 

polyphenol EGCG. Proanthocyanidins and EGCG repress proinflammatory NFҠβ-dependent gene expression in a 

wide range of cell types, including macrophages.  

Green tee catechins, including EGCG, initially attracted attention as anti-inflammatory and anti-tumour 

compounds and have recently been recognised as potential therapeutic agents to treat and prevent obesity and 

diabetes. Intervention studies have shown the potential of green tea catechins to reduce human body weight, 

blood pressure and plasma low density lipoprotein (LDL)-cholesterol in obese patients. In animals, EGCG 

supplementation prevents diet-induced obesity, while reducing postprandial plasma levels of glucose, TGs and 

leptin, as well as lipogenesis in white adipose tissue; furthermore, EGCG is able to reverse established diet-induced 

obesity.  

The diet of the Inuit population in arctic Canada is also correlated with a very low incidence of CVD, a 

phenomenon that has been ascribed to its high content of unsaturated fatty acids of sea fish origin. Numerous 

epidemiological studies and clinical trials have shown that unsaturated FAs (both polyunsaturated and 

monounsaturated) reduce the incidence of CVD and type 2 DM. Two natural omega-3 PUFAs, namely EPA (20:5n-

3) and DHA (22:6n-3), which are abundant in sea fish, prevented the development of obesity and insulin resistance 

in rodents fed a high-fat diet. Studies in obese humans demonstrated a reduction in adiposity following 

supplementation with omega-3 PUFAs. These FAs act as hypolipidemlipidemics, reduce cardiac events, and 

decrease the progression of atherosclerosis. The hypolipidemic and anti-obesity effects of omega-3 PUFAs likely 

depend on the suppression of lipogenesis and an increase in FA oxidation in the liver, inhibiting carbohydrate-

responsive element-binding protein (CHREBP) and SREBP-1c expression and activation, as well as on the enhanced 

mitochondrial biogenesis and β-oxidation of FA in white adipose tissue. 

Current obesity treatments based on caloric restriction and physical exercise are not sufficient to combat the 

obesity epidemic; in addition, the available pharmacological options have shown very limited results and tend to 

cause undesirable side effects. Therefore, there is an evident societal need for new strategies to combat obesity. 
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Following this rationale, our approach to developing new therapeutic strategies against the development and 

progression of obesity and its associated diseases has focused on the use of natural bioactive food components, 

which have the potential to be used as food additives to create functional foods and nutraceuticals. Hence, these 

components may be consumed by people with minor or no changes in their dietary habits, thereby avoiding the 

behavioural problems associated with meal replacements.  

For this study, we have selected food ingredients that are characteristic of healthy diets, have documented 

beneficial effects on obesity or cardiovascular disease risk-factors in human studies and have no adverse effects on 

human health; these include the plant polyphenols EGCG and proanthocyanidins, as well as the sea fish omega-3 

PUFAs and DHA. These compounds act through a variety of mechanisms, and therefore, we expect them to display 

additive and/or synergistic effects when used in appropriate combinations, thereby reducing the quantity of each 

individual compound needed to attain beneficial effects in vivo. 

Thus, the global goal of the present thesis is the development of a new preventative and therapeutic strategy that 
is simultaneously effective against obesity and its major associated diseases, specifically insulin resistance. Societal 
trends continue to favour the intake of calorie-dense foods, as well as a sedentary lifestyle, and behavioural 
interventions have shown little success in combating the obesity epidemic; thus, we are pursuing a new anti-
obesity strategy that requires only minor modifications of dietary habits.  

Our work focused on the mitochondrial function of skeletal muscle, a major player in the body’s overall nutrient 

balance, and adipose tissue, which is the key to energy homeostasis in the organism affected by obesity and 

related diseases, with the purpose to study the follow hypothesis: Proanthocyanidins and omega-3 PUFAs oil rich 

in DHA may modulate metabolic flexibility and ameliorate the obesity dysfunction.  

The validity of this hypothesis was evaluated using the following main objectives:  

Objective 1: 

To understand the mitochondrial physiology, dynamics and target genes of the oxidative phosphorylation system 

through in vitro experiments in L6 myocytes, using pure polyphenols and polyunsaturated fatty acid molecules, 

such as EGCG and DHA, respectively.  

Objective 2: 

To study the postprandial effects of an acute dose of proanthocyanidins from GSPE and omega-3 PUFA oil rich in 

DHA combined with a fatty acid overload in vivo in healthy rats. We are interested in evaluating metabolic 

flexibility by studying the key interactions in gene expression related to lipid metabolism of adipose tissue and 

skeletal muscle, concomitant with the study of mitochondrial functionality. 

Objective 3: 

To characterise both the anti-obesity effects of dietary proanthocyanidins from GSPE and omega-3 PUFAs oil rich 

in DHA, concomitant with a high-fat diet, and the capacity to improve metabolic flexibility in vivo in obese rats. We 

focused primarily on determining the role of skeletal muscle in energy metabolism, particularly in lipid catabolism. 

 

The research conducted towards the completion of this doctoral thesis has been supported by a predoctoral grant 

from the Universitat Rovira i Virgili and funded by Project AGL2008-00387 from the Ministerio de Economía y 

Competitividad (MEYC) of Spain. This work was performed in the Nutrigenomics Group at the Universitat Rovira i 

Virgili, as well as at the Academy of Sciences of the Czech Republic’s Department of Adipose Tissue Biology during 

a 3-month stay supported by a grant from the MEYC. 
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Abstract 

Skeletal muscle is a key organ of mammalian energy metabolism, and its mitochondria are multifunction 

organelles that are targets of dietary bioactive compounds. The goal of this work was to examine the regulation of 

mitochondrial dynamics and functionality and cell energy parameters using docosahexaenoic acid (DHA), 

epigallocatechin gallate (EGCG) and a combination of both in L6 myocytes. Compounds (at 25 μM) were incubated 

for 4 hours. Cells cultured with DHA displayed higher intracellular reactive oxygen species (ROS) levels, a higher 

ADP/ATP ratio, and higher intracellular calcium levels when calcium was added to the culture media. The 

mitochondrial membrane potential was lower; Ucp2, Ucp3, and Mnsod were upregulated; and Cox and Ant1 were 

downregulated. Myocytes cultured with DHA consumed less oxygen and had a higher mitochondrial mass and a 

higher proportion of large and elongated mitochondria, whereas the fission genes Drp1 and Fis1 and the fusion 

gene Mfn2 were downregulated. In myocytes co-incubated with DHA and EGCG, ROS levels and the ADP/ATP ratio 

were similar to untreated myocytes, whereas the intracellular calcium level was still higher. The mitochondrial 

membrane potential and MnSod, Cox and Ant1 expression were similar to untreated cells; however, Ucp2 and 

Ucp3 were upregulated similar to the DHA-treated cells. When EGCG was co-cultured with DHA, the myocytes 

consumed less oxygen, had a higher mitochondrial mass, and had reduced Drp1, Fis1 and Mfn2 levels similar to 

the DHA-treated cells. However, the mitochondrial network was restored. The addition of EGCG to DHA returned 

the cells to the control conditions in terms of mitochondrial morphology and the energy and redox status, which 

were unbalanced in the DHA-treated myocytes. 

Keywords:  

Docosahexaenoic acid, Epigallocatechin gallate, Skeletal muscle, Mitochondria, Reactive oxygen species, 

Antioxidants 

 

Abbreviations: Ant, adenine nucleotide translocase 1; Cox, cytochrome C oxidase subunit V;Cs, citrate synthase; 

DCFH-DA,  2’,7’-dichlorofluorescin diacetate; DHA, docosahexaenoic acid; Drp1, dynamin-related protein 1;EGCG, 

Epigallocatechin-3-gallate; ETC, Electron transport chain; ETS, Electorn transport capapcitu ; FCCP, carbonyl 

cyanide 4-(trifluoromethoxy)phenylhydrazone; Fis1, mitochondrial fission 1 protein; Mfn2, mitofusin 2; MMP, 

mitochondrial membrane potential; Mnsod, manganese superoxide dismutase;mtDNA, mitochondrial DNA; nDNA, 

nuclear DNA; Opa1, optic atrophy 1; PUFAs polyunsaturated fatty acids; Rhodamine 123, Rhd123; ROS, reactive 

oxygen species; ROX, residual oxygen consumption; Ucp2, uncoupling protein 2; Ucp3, uncoupling protein 3. 

Introduction 

Mitochondria are ubiquitous organelles in eukaryotic cells whose primary functions are to generate energy, 

regulate the cellular redox state, calcium homeostasis, and initiate cellular apoptosis [1]. In addition, mitochondria 

are the main intracellular source and immediate target of reactive oxygen species (ROS), which are continuously 

generated as byproducts of aerobic metabolism in mammalian cells. Thus, mitochondria play a pivotal role in the 

determination of the life and death of the mammalian cell [2]. The size, shape, and abundance of mitochondria 

vary dramatically in different cell types and may change under different energy demands and physiological 

environmental conditions [3]. In many cell types, especially muscle fibres, mitochondria form tubular structures or 

networks [4]. Mitochondria are highly dynamic organelles with constant fusion and fission events mediated by 

conserved cellular machineries. The frequencies of these fusion and fission events are balanced to maintain the 

overall morphology of the mitochondrial population [5] and to control mitochondrial energy metabolism, 

protecting cells from mitochondrial damage [6, 7]. 

 Mitochondria are recognised as major targets of bioactive compounds, such as omega-3 polyunsaturated fatty 

acids (PUFAs) and flavonoids, which are found in healthy diets. The current data support a role for omega 3 PUFAs 

supplementation, particularly docosahexaenoic acid (DHA), which is strongly associated with changes in and the 

remodelling of mitochondrial phospholipid composition, fluidity, plasticity and organisational domains [8-13]. 

Although DHA is a likely target for oxidation [14-16], its health benefits are largely derived from DHA (22:6n-3) 
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incorporation in place of other fatty acids into biological membranes and its cell signalling mechanisms. 

Incorporation of 22:6n-3 influences membrane structure and function [17], increasing membrane permeability 

[18] and, altering conformational states with their acyl chains, which are extremely flexible [12], and influences 

the physical properties of biological membranes, thereby altering protein function and fusion [12, 19]. In addition 

to being susceptible to lipid peroxidation, DHA could decrease mitochondrial function simply as a result of the 

accumulation of oxidised products [20], altering the lipid bilayer and decreasing bioenergetic activities due to 

membrane perturbations [18]. In mitochondria, PUFAs play a role in several mitochondrial processes, including 

mitochondrial calcium homeostasis, gene expression, and respiratory function, and act as protonophores to 

reduce mitochondrial ROS production through uncoupling protein (UCP)-mediated decreases in mitochondrial 

membrane potential [16]. 

Mitochondria can also be regarded as important intracellular targets of agents that protect from the undesirable 

action of ROS, such as polyphenols, which prevent against many pathological states involving oxidative cell 

damage [21]. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol isolated from green tea and is 

widely studied because it promotes cardiovascular and metabolic health by acting as a potent antioxidant that 

may have therapeutic applications in the treatment of many disorders. EGCG has antioxidant properties [22-24] 

with powerful radical scavengers. These antioxidant activities are due to the presence of phenolic groups that are 

sensitive to oxidation and are increased by the presence of the trihydroxyl structure in the D ring in EGCG [25]. 

Therefore, the presence of antioxidants jointly with omega 3 PUFAs would prevent possible oxidative 

deterioration. 

Taking into account that skeletal muscle tissue is a major determinant of whole-body energy metabolism, the aim 

of this study was to examine how EGCG and DHA, alone or in combination, affect cell energy, mitochondrial 

morphology, oxidative phosphorylation, ROS generation and calcium homeostasis in L6 myocytes. 

 

Materials and Methods 

Chemicals  

(-) Epigallocatechin-3-gallate (EGCG) from green tea, cis-4,7,10,13,16,19-docosahexaenoic acid (DHA), fatty acid-

free BSA, 2’,7’-dichlorofluorescin diacetate (DCFH-DA), DMSO, Bradford reagent, carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone (FCCP), oligomycin, rotenone, antimycin A, rhodamine 123 (Rhd123), ethanol, 

succinate and Fluo-3 acetoxymethyl ester (Fluo-3 AM) were obtained from Sigma-Aldrich (Madrid, Spain), and the 

MitoTracker FM was obtained from Molecular Probes (Eugene, Oregon, USA). Dulbecco’s Modified Eagle’s 

Medium (DMEM), glutamine, fetal bovine serum (FBS), penicillin and streptomycin were obtained from 

BioWhittaker (Verviers, Belgium).  

Cell culture 

L6 myocyte cells (kindly supplied from Dr Manuel Portero-Otín) were routinely cultivated in DMEM supplemented 

with 2 mM glutamine, 10% FBS, 1% penicillin (126.6 U/mL) and 1% streptomycin (0.126 mg/mL) at 37ºC in an 

atmosphere of 5% CO2. The cells were grown to approximately 80% confluence and then induced to differentiate 

into myotubes in DMEM supplemented with 2% FBS. After 7 days, myotube differentiation was complete, and the 

experimental procedure was initiated. L6 cells were serum-starved for 4 hours before the assay. All experiments 

were performed in triplicate in 3 independent experiments.  

Cell treatment 

To study the effects of EGCG, DHA and the combination of both compounds on mitochondrial function, 

metabolism and morphology, L6 myocyte cells were treated with the vehicle control, 25 µM EGCG, 25 µM DHA, or 

25 µM EGCG + 25 µM DHA. Both compounds were dissolved in ethanol and added to the culture media. The 

medium used during the treatment was serum-free DMEM containing 2% BSA. The experiments were performed 
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in triplicate and with 3 different passages. The final concentration of ethanol in the media was 0.05%, a nontoxic 

percentage. After 4 hours, the cells were used for the different analysis.  

 

Cell citotoxicity assay using the lactate dehydrogenase (LDL) method  

LDH is released into the culture media following loss of membrane integrity. Therefore, membrane integrity was 

assessed by estimating the amount of LDH present in the media. The assay was performed according to the 

manufacturer’s instructions for the LDH kit (QCA; Amposta, Spain). Cell cytotoxicity (%) was normalised to the 

control group. 

Measurement of intracellular ROS generation using the DCFH assay 

The levels of intracellular ROS were quantified using the fluorescent probe 2’,7’-dichlorofluorescein-diacetate 

(DCFH-DA) [26]. A stock solution (10 mM) of DCFH was prepared in DMSO. Cells (2 × 10
6
 per well) were incubated 

in black 24-well plates with clear bottoms. DCFH-DA diffuses into cells and becomes trapped inside the cell after 

being cleaved by intracellular esterases. 

After treatment, the cells were washed twice with warmed PBS, and 10 µM of DCFH diluted in PBS was then 

loaded into the wells for 30 minutes at 37ºC in the dark. The cells were then gently washed twice in PBS to remove 

the excess dye and resuspended in 0.5 mL of PBS per well. The fluorescence intensity was recorded over 4 hours 

as a measure of the degree of cellular oxidative stress. Intracellular ROS production was measured using an FLx800 

Multi-Detection Microplate Reader (BioTek, Winooski, USA) at an excitation wavelength of 485 nm and an 

emission wavelength of 530 nm (37ºC). The measured fluorescence values are expressed as a percentage of 

fluorescence with respect to the control group. 

 

ADP/ATP ratio 

The total ADP/ATP ratio in the muscle cells was determined after 4 hours of treatment using the APosensor
TM

 

ADP/ATP ratio Assay kit (Biovision, Mountain View, CA, USA) following the manufacturer’s instructions. 

 

Oxygen consumption in intact cells 

In vivo measurements of oxygen consumption with intact cells were performed using a high-resolution oxygraph 

(Oroboros Instruments, Innsbruck, Austria) to quantify the respiration states. L6 myocytes were treated in 6-well 

plates and removed from culture dishes through trypsinisation (0.05% trypsin-EDTA). After 5 minutes of 

centrifugation at 200 g (room temperature), the cells were resuspended in warmed respiration medium (DMEM 

without fetal bovine serum) and transferred to the corresponding respiration chamber at a concentration of 4-6 × 

10
6
 cells/mL. Analyses of respiration rates were performed in 2 mL of respiration medium at 37ºC with stirring at 

750 rpm. When the oxygen concentration was stabilised, basal respiration was recorded (Routine state) to control 

the levels of respiration and phosphorylation in a physiologically coupled state, which was supported by 

exogenous substrates in the culture media. Following stabilisation of the Routine state, ATP synthesis was 

inhibited with 2 µg/mL oligomycin, and the nonphosphorylating or resting state (Leak state) was recorded. 

Subsequently, 10-12 µM FCCP was added to stimulate respiration maximally at a level flow, measuring the 

electron transport capacity (ETS) in the noncoupled state (ETS state). In sum, respiration was blocked with 2.5 µM 

rotenone and 2.5 µM antimycin, representing the residual oxygen consumption (ROX) state that remains after 

electron transport chain (ETC) inhibition. The results are expressed as oxygen flow per number of cells (pmol 

oxygen/10
6
 cells*s). All results were corrected using the ROX state capacity. Oxygen consumption was calculated 

using DataGraph Software from Oroboros Instruments (Innsbruck, Austria). 

Mitochondrial membrane potential (MMP) 

MMP was monitored using Rhd123 dye fluorescence with an excitation wavelength of 525 nm and an emission 

wavelength of 485 nm using an FLx800 Multi-Detection Microplate Reader (BioTek; Winooski, USA) at 37ºC. 

Rhd123 is a membrane-permeant cation that is strongly sequestered in mitochondria due to their negative 
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membrane potential. If mitochondria become depolarised, Rhd 123 is redistributed from the mitochondria to the 

cytosol, where it becomes diluted and, as a consequence, the fluorescence increases. Therefore, a decrease in 

fluorescence corresponds to an increase in MMP. To perform the analysis, cells (2 × 10
6
 per well) were incubated 

in black 24-well plates with clear bottoms. Rh123 was dissolved in ethanol as a 0.5 mM stock solution. After 

treatment, the cells were washed 3 times with warm PBS and permeated with a permeating solution (0.5 µg/mL 

digitonin, 250 mM sucrose, 1 mM EDTA, 50 mM KCl, 2 mM KH2PO4, 25 mM Tris-HCl (pH 7.4)). To initiate the assay, 

6 mM of succinate and 0.5 µg/ml Rhd 123 were added to the wells. Fluorescence was recorded after the addition 

of 2 µg/mL oligomycin to inhibit the ATP synthase, and 10 µg/mL of FCCP was then added to visualise the 

complete depolarisation. The results are expressed as a % compared to the control group.  

Intracellular Ca
2+

 levels 

Intracellular Ca
2+

 was measured using the fluorescent calcium indicator Fluo-3 AM. This dye is a fat-soluble 

reagent, is not fluorescent and is membrane permeate. Intracellular esterases break down the Fluo-3 AM ester 

into acetoxymethyl and Fluo-3, which can then combine with free intracellular calcium ions. The intensity of the 

fluorescence is dependent on the free calcium concentration. L6 cells were treated in 24-well black plates with 

clear bottoms. After treatment, the cells were washed three times in standard medium (141 mM NaCl, 4.7 mM 

KCl, 1.8 mM CaCl2, 1.2 mM MgSO4, 10 mM glucose, 10 mM HEPES (pH 7.4)). The cells were loaded with Fluo-3 AM 

(5 µM) for 45 minutes (37ºC) in the dark in the standard medium. The cells were then washed again to allow for 

the cleavage of the acetoxymethyl esters and resuspended in the standard medium or Ca
2+

-free solution (the same 

as the standard medium except for the addition of calcium). Fluorescence was measured after 30 minutes using an 

FLx800 Multi-Detection Microplate Reader (Biotek, Winooski, USA) with an excitation wavelength of 503 and 

emission wavelength of 526 (37ºC). The Ca
2+

 level is expressed as a percentage of the fluorescence intensity 

relative to the control group’s fluorescence intensity. 

RNA extraction and quantitative real time PCR (qRT-PCR) analysis 

Total RNA was obtained from L6 cells using a RNeasy Mini kit (Qiagen; Valencia,Spain) according to the 

manufacturer’s protocol. RNA (4 µg) was reverse transcribed to complementary DNA from the total RNA using a 

reverse transcription reagent kit (Applied Biosystems; Madrid, Spain). Gene expression was analysed by qRT-PCR 

amplification using TaqMan Universal 2X PCR Master Mix (Applied Biosystems; Madrid, Spain) and a PCR 7300 

system (Applied Biosystems; Madrid, Spain) according to the manufacturer’s instructions.  

The thermal cycling consisted of an initial step at 50°C for 2 minutes, followed by a polymerase activation step at 

95°C for 10 min and a cycling step with the following conditions: 40 cycles of denaturation at 95°C for 15 s and 

annealing at 60°C for 1 min. Specific TaqMan assay-on-Demand probes were used to amplify the cDNA:  

Cyclophilin peptidylprolyl isomerase A (Ppia) (Rn00690933_m1) (used as an endogenous control gene), 

cytochrome C oxidase subunit V (Cox5a) (Rn 00821806_m1), citrate synthase (Cs) (Rn00756225_m1), ATP5A1 

(ATPase) (Rn01527025_m1), adenine nucleotide translocase 1 (Ant1) (Rn 00821477_g1), uncoupling protein 3 

(Ucp3) (Rn00565874_m1), uncoupling protein 2 (Ucp2) (Rn00571166_m1), manganese superoxide dismutase 

(MnSod) (Rn00566942_g1), mitochondrial fission 1 protein (Fis1) (Rn01480911_m1), dynamin-related protein 1 

(Drp1) (Rn00586466_m1), mitofusin 2 (Rn00500120_m1 (Mfn2), optic atrophy 1 (Rn_00592200_m1) (Opa1). The 

expression levels were normalised to cyclophilin using a comparative (2
-∆∆Ct

) method. 

 

mtDNA content using quantitative real-time PCR 

Total DNA was extracted from cells using a Qiamp DNA mini kit (Qiagen; Valencia, Spain) according to the 

manufacturer’s instructions. The relative mitochondrial DNA (mtDNA) levels were measured by real-time PCR 

using the PCR 7300 system (Applied Biosystems, Madrid, Spain) and normalised by simultaneous measurement of 

the nuclear DNA (nDNA),  (mtDNA/nDNA ratio). Primers and probes for quantitative PCR (qPCR) were designed 

using Primer Express (Applied Biosystems, Madrid, Spain): Nd3 mitochondrial gene (forward: 5’-

cttatcttttatcctcatttcaattgca-3’, reverse: 5’- gtagtgggtattggttgtttgaatcgctc-3’) and Gadph as a nuclear gene (forward: 

5’-ccagaacatcatccctgcat-3’; reverse: 5’-gttcagctctgggatgacctt-3’). PCR conditions were 95ºC for 15 min, followed by 

40 cycles of 95ºC for 15 s, and 60ºC for 60 s. The threshold cycle number (Ct) values for Nd3 and Gadph were 
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determined. The results were calculated from the difference in threshold cycle (∆Ct) values for mtDNA and 

nuclear-specific amplification. 

Mitochondrial morphology and mass 

To determine the mitochondrial morphology of individual cells, L6 myocytes were grown on coverslips inside 6-

well collagen-treated plates filled with the appropriate culture medium. After treatment, the media was removed 

from the dish, and the cells were washed 3 times with prewarmed PBS. A concentration of 400 nM MitoTracker 

Green FM was added in PBS. The cells were incubated at 37ºC for 30 minutes. The solution was then replaced with 

fresh media, and the cells were coverslipped for fluorescence microscopy to examine their morphology. Confocal 

images were obtained using a confocal laser-scanning microscope (NIKON TE-2000; Tokyo, Japan) with a 60× 

objective. MitoTracker Green FM preferentially accumulates in mitochondria regardless of the mitochondrial 

membrane potential and provides an accurate assessment of mitochondrial mass.  

Statistical Analysis 

The results are expressed as the mean ± SEM of 6 animals. SPSS Statistics version 19 software (SPSS Inc., Chicago, 

IL, USA) was used for statistical analyses. Significant differences were analysed using one-way analysis of variance 

(ANOVA) followed by Tukey’s post-hoc test. A p-value ≤ 0.05 was considered statistically significant. 

 

Results  

EGCG reverses the increase of intracellular ROS caused by DHA treatment 

The selected physiological concentration of 25 µM for EGCG and DHA was non-toxic to  

L6 cells. The treatment with 25 µM DHA for 4 hours significantly increased (150%) the intracellular ROS levels 

(Figure 1) compared to the control and EGCG groups. In contrast, treatment with 25 µM DHA concomitant with 25 

µM EGCG attenuated and reversed the increase in ROS levels induced by DHA.  

 
Figure 1. ROS levels in L6 cells treated with EGCG, DHA or EGCG+DHA. Cells were incubated with 25 µM EGCG, DHA or EGCG + 

DHA for 4 hours. ROS production was then measured using the DCFH assay. The results are expressed as the mean ± SEM of 

triplicate measurements and are representative of three independent experiments. Different letters indicate statistically 

significant differences (p≤0.05) among the different groups.  

 

DHA increases the ADP/ATP ratio in addition to lowering oxygen consumption in intact L6 cells even when 

combined with EGCG  

Figure 2 presents the changes in oxygen consumption caused by the different treatments in Routine, Leak and ETS 

states. The Routine state (Figure 2a) controls physiological respiration through the cellular energy demand and is 

supported by the substrates in the culture media. Here, in the Routine state, treatment with DHA or DHA+EGCG 

for 4 hours significantly reduced the oxygen consumption of the L6 cells, whereas there were no significant 

differences in oxygen consumption between the EGCG and control groups. By measuring the respiration rate in 

the presence of oligomycin, an ATPase inhibitor that is a direct measure of uncoupled respiration (Leak state) in 

situ (Figure 2b), it has been shown that in the DHA and EGCG + DHA groups, oxygen consumption was significantly 
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decreased. In the ETS state (Figure 2c), in the presence of FCCP, an uncoupler and a strong indicator of potential 

mitochondrial dysfunction, a decrease in the DHA and EGCG + DHA groups compared to the control and EGCG 

groups was evident, though not statistically significant. The reduction in oxygen consumption (approximately 69%) 

in the Leak state compared to the routine conditions of the EGCG+DHA group differs slightly compared to the 

remaining groups, with the DHA group having a reduction in oxygen consumption of 59%, similar to the control 

group, whereas, in the EGCG group, there was a reduction of approximately 50%.  

 

 
Figure 2. Oxygen consumption of L6 cells under different treatments Cells were incubated with 25 µM EGCG, DHA or EGCG + 

DHA for 4 hours. In vivo oxygen consumption was then measured using high-resolution respirometry and different intact cell 

states: A. Routine state, B. Leak state, C. ETS state. D. Oxygen consumption trace in the chamber. The results are expressed as 

the mean ± SEM of triplicate measurements and are representative of three independent experiments. Different letters 

indicate statistically (p≤0.05) 

 

Figure 2d presents a representative trace for the oxygen concentration in the chamber. This chart shows the 

differences between the groups in terms of the oxygen consumed in the different states and dependent on the 

treatment used. It clearly indicates that the DHA group tends to consume less oxygen during all recording states, 

especially in ETS states. Moreover, the ADP/ATP ratio (Figure 3) was significantly higher in the DHA group and 

significantly lower in the EGCG group, whereas in the EGCG+DHA group, the ADP/ ATP ratio was similar to that of 

the control group. 

 
Figure 3. ADP/ATP ratio in L6 cells treated with EGCG, DHA or DHA+EGCG.. Cells were incubated with 25 µM EGCG, DHA or 

EGCG + DHA for 4 hours. The ADP/ATP ratio was then measured using an Aposensor kit. The results are expressed as the mean 

± SEM of triplicate measurements and are representative of three independent experiments. Different letters indicate 

statistically significant differences (p≤0.05) among the different groups. 

 

DHA decreases mitochondrial membrane potential simultaneously with an increase of intracellular Ca
2+

 levels  

Figure 4 shows the results for the MMP measurements. When oligomycin was added, there was a significant 

increase in arbitrary fluorescence units (AFU) values for the DHA treatment with respect to the control conditions, 
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indicating a decrease in the membrane potential. By the other hand intracellular calcium was elevated in DHA 

treatment in the presence of Ca 
2+

 in the medium (Figure 5a). This elevation was not produced when a Ca
2+

-free 

solution was used (Figure 5b). 

 
Figure 4.  Mitochondrial membrane potential in L6 cells treated with EGCG, DHA or DHA+EGCG. Cells were incubated with 25 

µM EGCG, DHA or EGCG + DHA for 4 hours. The mitochondrial membrane potential was then measured using: A. oligomycin 

and B. the FCCP condition. The results are expressed as the mean ± SEM of triplicate measurements and are representative of 

three independent experiments. Different letters indicate statistically significant differences (p≤0.05) among the different 

groups. Arbitrary fluorescence units (AFU). 

 
Figure 5. Intracellular calcium levels in L6 cells treated with EGCG, DHA or DHA+EGCG. 

Cells were incubated with 25 µM EGCG, DHA or EGCG + DHA for 4 hours. Intracellular calcium levels were then measured in 

different medium conditions: A. Calcium-free medium and B. Calcium-replete medium. The results are expressed as the mean ± 

SEM of triplicate measurements and are representative of three independent experiments. Different letters indicate 

statistically significant differences (p≤0.05) among the different groups. 
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DHA downregulates genes related to mitochondrial function, upregulates MnSod in parallels with UCPs, which 

maintained upregulation with EGCG cotreatment 

The effects of DHA, EGCG and DHA+EGCG on the mRNA gene expression of marker enzymes of mitochondrial 

functionality are shown in Table 1. As in the respiration analyses, treatment with 25 µM EGCG did not induce a 

change in mitochondrial gene expression. In the case of 25 µM DHA treatment, Cs and ATPase gene expression did 

not differ between the groups. In contrast, Cox and Ant1 gene expression were downregulated compared to the 

control group; however, Cox and Ant1 were not downregulated when the cells were treated with DHA 

concomitant with EGCG. Both uncoupling protein genes (Ucp2 and Ucp3) are expressed in muscle cells and were 

significantly upregulated in the DHA and EGCG + DHA groups. In examining the antioxidant system of the 

mitochondria, MnSod gene expression was significantly upregulated by DHA treatment compared to the control, 

but not in the co-treatment group. 

 

Table 1. mRNA expression indicating mitochondrial function in L6 cell treated with DHA, EGCG or DHA+EGCG 

  Control EGCG 25µM DHA 25µM 
EGCG 25µM+ 

DHA 25µM 

Cox 1.00±0.03a 0.99±0.09ab 0.82±0.03b 0.77±0.08ab 

Cs 1.00±0.03a 0.92±0.07a 1.02±0.06a 0.92±0.06a 

Atpase 1.00±0.02a 1.04±0.03a 1.01±0.05a 0.85±0.08a 

Ant1 1.00±0.02a 0.89±0.07ab 0.86±0.03b 0.89±0.04ab 

Ucp3 1.23±0.15a 1.32±0.28a 2.51±0.29b 2.03±0.37b 

Ucp2 1.05±0.16a 1.22±0.12a 2.48±0.07b 2.11±0.37b 

Mnsod 1.00±0.052a 1.21±0.16ab 1.18±0.17b 1.13±0.01ab 

 

Cells were incubated with 25 µM EGCG, DHA or EGCG + DHA for 4 hours. Different mRNA levels associated with the OXPHOS 

system were then analysed using real-time qRT-PCR. The results are expressed as the mean ± SEM of triplicate measurements 

and are representative of three independent experiments. Different letters indicate statistically significant differences (p≤0.05) 

among the different groups. 

 

DHA and EGCG+DHA increase mtDNA and downregulate enzymes involved in mitochondrial dynamics 

As shown in Figure 6, the relative amount of mtDNA undergoes a 58% increase in the DHA-treated cells compared 

to the control group. Moreover, in the EGCG+DHA group, there was also an increase of approximately 61% 

compared with the control group.  

 

 
Figure 6.  Mitochondrial mass of L6 cells treated with EGCG, DHA or DHA+EGCG. 

Cells were incubated with 25 µM EGCG, DHA or EGCG + DHA for 4 hours. The mitochondrial mass: mtDNA/nDNA ratio 

(ND3/GADPH by real time PCR) was then analysed. The results are expressed as the mean ± SEM of triplicate measurements 

and are representative of three independent experiments. Different letters indicate statistically significant differences (p≤0.05) 

among the different groups. 
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Dynamin-related GTPases mediate the fission and fusion of mitochondrial membranes. In the outer membrane, 

Mfn1and Mfn2, are involved in the dynamic formation of the mitochondrial network. Similarly, OPA1, which is in 

the inner membrane, controls mitochondrial membrane fusion, whereas Drp1 triggers fission events [27]. 

Table 2.   mRNA expression for mitochondrial dynamics in L6 cells treated with DHA, EGCG or DHA+EGCG  

 

 

 

 

 

 

 

 

Cells were incubated with 25 µM EGCG, DHA or EGCG + DHA for 4 hours to analyse different mRNA levels associated with the 

mitochondrial dynamics system, which were analysed using real-time qRT-PCR.  The results are expressed as the mean ± SEM 

of triplicate measurements and are representative of three independent experiments. Different letters indicate statistically 

significant differences (p≤0.05) among the different groups. 

 

The results of how EGCG and/ or DHA compounds modulated the expression of genes implicated in mitochondrial 

dynamics are shown in Table 2. The results revealed that fission genes were downregulated, specifically Fis1 

(located in the outer membrane) and Drp1, in the DHA treatment compared to the control and EGCG groups. 

Likewise, Mfn2 was significantly downregulated with the DHA treatment compared to the control group; however, 

in terms of Opa1 expression, there were no significant differences between the groups.  

 

Mitochondrial morphology and mass after the DHA and EGCG treatments 

To investigate whether EGCG and DHA directly alter mitochondrial dynamics, a morphological analysis was 

performed using fluorescence microscopy with the mitochondrial mass marker MitoTracker Green, which 

provided information about the mitochondrial organisation and dynamics in L6 myocytes. Figure 6a shows that the 

L6 control cells exhibited tubular networks with round and stubby mitochondria. After EGCG treatment (Figure 

7b), the mitochondrial morphology was similar to the control groups, with round spheres and large shapes. In 

contrast, the mitochondrial morphology after DHA treatment (Figure 7c) was shifted toward a fragmented and 

tubular discontinuous network with a higher proportion of large and elongated mitochondria. Co-treatment with 

EGCG (Figure 7d) reversed the mitochondrial fragmentation, restoring the mitochondrial network with elongated 

and interconnected myotubes. 

 

Figure 7.  Mitochondrial morphology of L6 cells treated with EGCG, DHA or DHA+EGCG. Cells were incubated with 25 µM 

EGCG, DHA or EGCG + DHA for 4 hours. The visual mitochondrial network and morphology were then visualised using 

MitoTracker Green FM staining and a confocal microscope. A. Control, C. 25 µM EGCG, C. 25 µM DHA and D. EGCG + DHA (25 

µM each). 

  Control EGCG 25µM DHA 25µM 
EGCG 25µM+ 

DHA 25µM 

Fiss1 1.00 ± 0.01a 0.96 ± 0.04a 0.67 ± 0.04b 0.71 ± 0.04b 

Drp1 1.00 ± 0.03a 0.90 ± 0.05ab 0.77 ± 0.0b 0.72 ± 0.02b 

Mfn2 1.00 ± 0.03a 0.92 ± 0.0a 0.76 ± 0.01b 0.85 ± 0.05ab 

Opa1 1.01 ± 0.05a 1.05 ± 0.05a 0.93 ± 0.08a 0.90 ± 0.04a 
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Discussion 

In aerobic organisms, approximately 85–90% of cellular oxygen is consumed by mitochondria to produce energy in 

the form of ATP molecules, concomitant with the formation of ROS.  ROS induce chemical modifications in other 

molecules, generating oxidative damage, regulating signal transduction components, and acting as second 

messengers for various physiological and pathological stimuli [28]. 

for 4 hours led to an increase (150%) in intracellular ROS production without causing lost of cell viability. This 

result is in agreement with the interaction or incorporation of added DHA into the cell membrane phospholipid 

composition [29, 30] and the susceptibility of most polyunsaturated n-3 fatty acids to produce oxidative damage in 

cells [31]. In addition, many lipid peroxidation products are themselves very potent ROS producers that can induce 

considerable damage to other biological molecules [32]. The increased ROS levels in the DHA group led to MnSod 

overexpression, which is one of the primary antioxidant responses to elevated ROS production [33, 34].  

Mitochondrial respiration was also deregulated by the DHA treatment. The results from the in vivo oxygen 

consumption assay indicate that substrate oxidation was altered, decreased in the Routine and Leak state, by the 

DHA and EGCG+DHA treatments. In addition, DHA-treated cells clearly consumed less oxygen during the entire 

recording protocol. A few studies have used dietary fish oil to investigate the influence of omega 3 PUFAs on 

mitochondrial respiration and have reported either no change or decreases during some measurements of various 

substrates [18, 32]. Here, with the decrease in mitochondrial respiration, mitochondrial functionality was also 

affected. DHA may have contributed as a potent deregulator of O2 consumption and oxidative phosphorylation 

with the decreasing bioenergetic activities being, in part, due to the result of membrane perturbations caused by 

DHA [18]. Thus, DHA treatment lowered mitochondrial functionality through ETC and OXPHOS system disruptions, 

concomitant with Cox downregulation, the increased ADP/ATP ratio and Ant1 downregulation, which blocked the 

exchange of ADP and ATP across the mitochondrial inner membrane. The impairment in mitochondrial 

functionality was reversed in the EGCG+DHA group, whereas the ROS levels remained at the same levels as the 

control cells, which is consistent with the role of EGCG as a potent antioxidant [35] and as an uncoupler-like [36] 

compound, decreasing ROS production. The polyphenol structure of EGCG facilitates its capacity to penetrate 

membranes, resulting in ROS scavenging between the mitochondrial membrane and matrix [37]. Moreover, Cox 

and Ant1 expression were unaltered, and the ADP/ATP ratio was similar to the control cell value. Furthermore, 

Ucp3 was overexpressed with DHA treatment. The role of Ucp3 overexpression during DHA treatment is to protect 

myocytes from ROS; as already described, Ucp3 overexpression neutralises oxidative stress in mouse myotubes 

[38]. It is important to emphasise that the overexpression of Ucp2 and Ucp3 was maintained in the DHA+EGCG 

group because, despite the antioxidant effects of EGCG, DHA was still present in the culture media. 

Furthermore, as mitochondria participate in intracellular Ca
2+

 homeostasis via several Ca
2+

 uptake and release 

pathways, ROS production could affect Ca
2+ 

homeostasis due to the deterioration of membranes that contain the 

intracellular Ca
2+

 stores [39, 40]. The results from the present study reveal that the DHA group displayed higher 

intracellular Ca
2+

 levels when Ca
2+ 

was added to the culture media. However, if calcium was not supplemented, 

this increase was not observed. Accordingly, it appears that the high levels of ROS produced by DHA incorporation 

or through alterations of the cell membrane phospholipid composition induced a calcium influx of external calcium 

that was not from mitochondria or other calcium stores.  

It appears that the respiratory activity of ETC is linked to mitochondrial morphology because metabolic changes 

could be produced by variations in membrane fatty acid composition [32], as described above. The 

downregulation of fission (Fis1) and fusion (Mfn2) gene expression during DHA treatment is a mechanism to 

compensate for mitochondrial function and to restore mitochondria tubules [7], in accordance with the low 

respiratory capacity, low oxidative phosphorylation, decreased MMP and the incapacity to increase respiration 

upon the addition of FCCP shown in the DHA group, as other authors have reported [41-43]. Another 

compensatory mechanism is the higher mtDNA/nDNA ratio of the DHA-treated cells, suggesting that endogenous 

and exogenous oxidative stress are factors involved in the increase of the mitochondrial abundance and mtDNA 

copy number in human and animal cells [3], resulting from a feedback response that compensates for defective 

mitochondria, hallmarks of an impaired respiratory chain or mutated mtDNA [44]. The Fis1 and Mfn2 gene were 

also downregulated in the EGCG+DHA group, in which endogenous respiration in the Routine state was also low 
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and concomitant with altered mitochondrial morphology and cellular bioenergetic dynamics [45-47], as in the DHA 

group, due to the PUFA-containing mitochondrial membranes [43] that led to the oxidative damage. In addition, 

Drp1 was also downregulated in the L6 cells treated with DHA and after the EGCG+DHA treatment. It has 

previously been demonstrated that Drp1 downregulation in HeLa cells leads to slower cell growth, ETC uncoupling, 

decreased cellular respiration and increased ROS levels [45], as occurred here in L6 myocytes after DHA treatment. 

The imbalance in mitochondrial architecture by the decreased fusion and fission gene expression levels revealed 

that the majority of mitochondria were shorter, more elongated and tubular, and sometimes fragmented, as 

described in 3T3-L1 adipocyte studies [48, 49]. In addition, this deregulated mitochondria morphology might lead 

to dysfunctions in oxidative phosphorylation [7, 50] in cells treated with DHA, as mentioned above. After 

EGCG+DHA treatment, the mitochondria were more rounded with a reticulum network [4, 51], developing 

functional machineries and restoring mitochondrial tubules [52]; however, Fis1 and Mfn2 were still down 

regulated. In addition to possessing the antioxidant and uncoupling abilities mentioned above, polyphenols, 

specifically EGCG, also influence mitochondrial morphology [36]. Thus, ROS generation produces a downregulation 

in gene expression levels implicated in ETC complexes due to DHA membrane incorporation with a rapid alteration 

in mitochondrial fusion/fission gene expression levels, fragmented and elongated mitochondrial tubule networks, 

an unbalanced mitochondrial morphology, and increased mtDNA level to compensate for mitochondrial 

dysfunction. 

 Despite the few changes observed in the L6 myocytes when treated only with EGCG, co-administration with DHA 

reduced DHA intracellular ROS overproduction, altering the ADP/ATP ratio and expression of Cox and Ant1 to 

control levels, restoring mitochondrial morphology. In conclusion, the combination of DHA+EGCG could be a good 

choice for avoiding and correcting the possible deleterious effects of DHA.  
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Abstract 

Background: Obesity has become a worldwide epidemic. The cafeteria diet (CD) induces obesity and oxidative 

stress-associated insulin resistance. Polyunsaturated fatty acids and polyphenols are dietary compounds that are 

intensively studied as products that can reduce the health complications related to obesity by counteracting 

metabolic inflexibility.  

Objective: To evaluate the effects of 21 days of supplementation with grape seed proanthocyanidins extract 

(GSPE), docosahexaenoic-rich oil (DHA-OR) or both compounds (GSPE+DHA-OR) on skeletal muscle metabolism in 

diet-obese rats.   

Methods: Wistar rats were allowed free access to a standard diet (STD) or a cafeteria diet, which was composed of 

STD plus highly palatable, energy-dense foods, for 10 weeks.   

Results: The supplementation with different treatments for 21 days did not reduce body weight. All groups used 

more fat as fuel, particularly when both products were co-administered; muscle β-oxidation was activated and the 

mitochondrial oxidative capacity was higher. In addition to these outcomes shared by all treatments, GSPE 

reduced insulin resistance, reduced food intake, corrected oxidative stress and improved muscle status. DHA-OR 

upregulated manganese superoxide dismutase (MnSod) gene expression to neutralize increased reactive oxygen 

species (ROS) production. GSPE+DHA-OR counteracted ROS production and improved muscle status. All of these 

treatments increased 5’-AMP-activated protein kinase (AMPK) phosphorylation. AMPK activation by GSPE was 

consistent with higher plasma adiponectin levels. AMPK activation by DHA-OR correlated with an upregulation of 

peroxisome proliferator-activated receptor alpha (Pparα) gene expression, and with an upregulation of uncoupling 

protein 2 (Ucp2) gene expression by GSPE+DHA-OR.   

Conclusion: Although the body weight of CD-fed rats did not change, GSPE and DHA increased fat burning and 

activate mitochondrial functionality and fatty acid FA oxidation in skeletal muscle. These effects are mediated, at 

least in part, through the AMPK signaling pathway. Thus, modifications at the cellular and molecular levels 

improved muscle status and could counterbalance the deleterious effects of obesity.  

Keywords: obesity, docosahexaenoic acid, proanthocyanidins, skeletal muscle, mitochondria, β-oxidation  

 

 

Introduction 

Obesity is a complex, multifactorial disease characterized by increased body weight or, more specifically, an 

increase in adipose tissue. It is prevalent in both developed and developing countries and affects children as well 

as adults (1). Obesity produces adverse health consequences, such as dyslipidemia, insulin resistance, 

hypertension, type 2 diabetes and cardiovascular disease. Traditional anti-obesity strategies focus on reducing 

food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy 

expenditure may be an attractive alternative therapy (2). Skeletal muscle has an important role in the overall 

utilization and oxidation of fatty acids (FAs). Specifically, skeletal manifests reduced reliance upon FA oxidation in 

obesity compared to skeletal muscle of lean individuals. Biochemical marker levels are consistent with these 

findings, Carnitine palmitoyl translocase (CPT) 1 expression is diminished in obesity, with reduced capacity for FA 

oxidation (3). Obesity may also interfere with mitochondrial bioenergetics by affecting cellular respiratory 

functions and oxidative pathways. In addition, there is a chronic elevation of circulating FA levels, a reduction in 

the expression of genes involved in mitochondrial biogenesis, an increased production of reactive oxygen species 

(ROS), and impaired mitochondrial biogenesis and function in skeletal muscle (4, 5). The decreased capacity for 

fuel usage, the impaired capacity to increase fat oxidation upon increased FA availability, and with reduced 

mitochondrial oxidation and phosphorylation activity is a fundamental characteristic of metabolic inflexibility in 

metabolic syndromes (1). The cafeteria diet (CD) is a robust model of human metabolic syndrome compared to 
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traditional lard-based high-fat diets (6). In this model, animals are fed with a standard diet (STD) and are 

concurrently offered highly palatable, energy-dense foods ad libitum. This diet promotes voluntary hyperphagia 

that results in rapid weight gain and increases fat pad mass and prediabetic parameters, such as glucose and 

insulin intolerance and dyslipidemia (6).  

The use of dietary compounds that reduce health complications related to these pathologies is appearing as a new 

approach. Previous reports have raised the possibility that polyphenols and omega-3 polyunsaturated fatty acids 

(PUFAs) are good dietary compounds for reducing obesity-induced metabolic syndrome (7-10). Treatment of 

rodents with different polyphenols, such as resveratrol, genistein and epigallocatechin gallate, results in the 

upregulation of genes related to oxidative phosphorylation, the electron transport chain (ETC) and ATP synthesis 

(11). Furthermore, mitochondrial FA oxidation genes are upregulated (12), whereas FA synthesis genes are 

downregulated (13). Likewise, omega-3 PUFAs are involved in a variety of mitochondrial processes. Particularly, 

docosahexaenoic acid (DHA) consumption stimulated genes related to mitochondrial functionality, FA oxidation 

and inhibited genes involved in FA synthesis (14). Moreover, they are natural ligands of peroxisome proliferator-

activated receptors (PPARs); such as  PPARα that is activated by several PUFAs (15, 16), with eicosapentaenoic acid 

(EPA) and DHA as the predominantly active biological components (17, 18).  

Some studies show a synergistic effect between polyphenols and omega-3 PUFAs (19). In the present study, we 

considered the possibility that intake of grape seed proanthocyanidins extract (GSPE) and/or DHA-rich oil (DHA-

OR) concomitant with a CD could influence muscle, fat and carbohydrate oxidation rates, while improving the 

metabolic inflexibility associated with obesity-induced metabolic syndrome. Our hypothesis was that the 

consumption of GSPE and DHA-OR could increase mitochondrial oxidative capacity in skeletal muscle and that this 

could be a strategy to combat the adverse effects of obesity. Thus, we evaluated the effect of individual or 

simultaneous administration of GSPE and DHA-OR by analyzing the respiratory quotient (RQ) ratio (using indirect 

calorimetry (IC)), mitochondrial bioenergetics (by measuring oxygen consumption of mitochondria isolated from 

skeletal muscle), expression of key mitochondrial genes, and enzymatic activities.  

Material and Methods 

Grape seed proanthocyanidins extract 

GSPE was provided by Les Dérives Résiniques et Terpéniques (Dax, France) and its composition was described 

previously by Casanova et al.(20)  

Oil rich in docosahexaenoic acid 

The DHA-OR was provided by Market DHA
Tm

-S (Columbia, MD, USA). The nutritional composition of the oil derived 

from marine alga, Schizochytrium sp., a rich source of DHA (38.8 %), was described previously by Casanova et al. 

(20)  

 

Animals and diets 

Male Wistar rats weighing 200±50 g were supplied by Charles River Laboratories (Barcelona, Spain). The animals 

were housed in a 12 h light-dark-cycle at 21-23ºC. Following adaptation week, animals were divided into five equal 

groups (7 rats/group) and housed individually to control the food intake. One group was the STD group, fed with 

standard chow diet (Panlab 04, Barcelona, Spain) ad libitum, and the remaining 4 groups were fed with STD plus 

CD as a hypercaloric diet, composed of 34.50 % carbohydrate, 37 % fat and 11.50 % protein. Animals were allowed 

free access to standard chow and water in addition to CD ad libitum. The CD consists of cookies, cheese portions, 

bacon, foie-gras, sugary milk, cupcakes and carrots. During the day, food was removed. Food consumption and 

weight gain were monitored weekly for 10 weeks until animals were 20 % overweight compared with the STD 

group. Subsequently, different treatments were administered jointly with the CD for 21 days. One group 

(CD+GSPE) was supplemented with 25 mg /kg body weight GPSE dissolved in 5 % Arabic gum (Sigma-Aldrich, 

Madrid, Spain).  The second group was supplemented with 500 mg oil-rich DHA (38.8 %/) / kg body weight 

dissolved in 5 % of gum Arabic (CD+DHA-OR). The third group received GSPE (25 mg/kg body weight) plus 500 mg 
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oil-rich DHA (38.8 %)//kg body weight dissolved in 5 % of gum arabic (CD+GSPE+DHA-OR)). All groups received the 

same volume of gum arabic. The rats were treated in the afternoon, and then allowed free  access to fresh 

portions of chow and/or CD during the night. On day 21 of treatment, all rats were fasted for 3 hours before being 

anesthetized using 50 mg/kg body weight of sodium pentobarbital (Fagron Iberica, Terrasa, Spain) and sacrificed 

by abdominal aorta exsanguination. Blood was collected using heparin (Deltalab, Barcelona, Spain). Plasma was 

obtained by centrifugation (1500 x g, 15 min, 4ºC) and stored at -80ºC until the subsequent plasmatic parameter 

analysis. Gastrocnemius skeletal muscles were excised, weighed, immediately frozen in liquid N2 and stored at -

80ºC until further analysis. Portions of the gastrocnemius skeletal muscle were also placed on ice and used to 

isolate mitochondrial fractions for enzymatic assays. The remaining gastrocnemius muscle was rapidly utilized for 

mitochondrial isolation to study mitochondrial functionality. All procedures were approved by the Animal Ethics 

Committee of our university. 

 

Plasmatic Parameters 

Creatine Kinase (CK) was measured using an enzymatic colorimetric kit (QCA, Barcelona, Spain). Adiponectin and 

Leptin levels were quantified using specific EIAs according to the manufacturer’s instructions (Biosource 

International, Inc, USA). 

 

Indirect calorimetry 

Assessment of respiratory metabolism and dates of analysis were performed in a ventilated hood system (Panlab 

Harvard Apparatus, Barcelona, Spain). RQ values (VO2 / VCO2) were recorded by IC measurements at 10 and 20 

days of treatment during 6 hours of the postprandial period (9.00 h – 15.00 h).  

 

Mitochondrial respiration by high-resolution tracking 

A piece of gastrocnemius muscle was rapidly excised, weighed and placed in ice-cold homogenization medium 

buffer (100 mM sucrose, 50 mM KCl, 20 mM  K
+
-TES, 1 mM EDTA and 0.2 % (w/w) FA free-BSA (Sigma-Aldrich, 

Madrid, Spain) for mitochondrial respiratory assays. Fresh skeletal muscle mitochondria used for respiratory 

assays were isolated by differential centrifugations as described by Hoeks, J. (21).   

Mitochondrial functionality was measured ex vivo and recorded at 37ºC by a polarographic oxygen sensor in a 

two-chamber Oxygraph (OROBOROS ® Instruments, Innsbruck, Austria). The oxygen flux was expressed in nmol O2 

per mg mitochondrial protein per minute. 

To view the bioenergetics in freshly prepared mitochondria, we modulated oxidative phosphorylation (OXPHOS) 

function in the following ways:  basal state (State2), the OXPHOS coupling effect (State3) stimulated with + 450 

µM ADP (Sigma-Aldrich, Madrid, Spain), non-phosphorylating respiration (State4) with the inhibition of ATP 

synthesis by the addition of 1 µg/ml oligomycin, and OXPHOS non-coupling effect (StateU) with + 0.5 µM 

trifluoromthoxyphenylhydrazone (FCCP) (Sigma-Aldrich, Madrid, Spain)  addition to obtain the maximal respiratory 

capacity. The measurement of the OXPHOS system and the operation of the tricarboxylic acid cycle (TCA) were 

carried out using 3 different sets of substrates: 5 mM pyruvate + 2.5 mM malate (glycolytic substrates) to show 

the functionality of the pyruvate dehydrogenase enzyme and tricarboxylic acid cycle (TCA) functionality; 10 mM 

glutamate (complex I substrate) +  10 mM succinate (complex II substrate) were used in combination of 0.5 µM of 

rotenone to inhibit complex I in order to study complex II capacity alone;  2 mM L-carnitine + 50 µM palmitoyl-CoA 

(FA substrate to induce β-oxidation). Briefly, 0.2 mg (pyruvate / glutamate + succinate sets) or 0.5 mg (carnitine + 

palmitoyl-CoA set) of freshly isolated mitochondria were incubated in 2 ml respiration buffer. 

 

Mitochondrial enzymatic activity  

For the enzymatic activity assays, pieces of gastrocnemius tissue were weighed and placed on ice for subsequent 

mitochondrial fraction isolation to analyze cytochrome c oxidase (COX), citrate synthase (CS) and ATPase activities 
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according to the methods of Fuster et al. (22), Srere (23) and Bergmeyer (24), respectively, as we have detailed 

previously (25).  

 

Determination of mitochondrial ROS produced in isolated mitochondria 

To monitor mitochondrial ROS production, 2’,7’-dichlorofluorescein diacetate (DCFH-DA) (Sigma-Aldrich, Madrid. 

Spain) was used (26, 27). Isolated mitochondria (0.1 mg protein/ml) were obtained as described in the 

mitochondrial respiration method, and incubated at 30ºC in phosphate-buffered saline (PBS). DCF fluorescence 

intensity was measured by  spectrofluorometry using 507 nm excitation and 530 nm emission wavelengths 

(FLx800 Multi-Detection Microplate Reader, Biotek, USA) following the addition of 10 µM DCFH-DA to the 

mitochondrial suspension. Gastrocnemius mitochondrial ROS levels were normalized to total protein content and 

expressed as relative units of fluorescence intensity (%). 

 

Lipid peroxidation in skeletal muscle-Malondialdehyde (MDA) Assay 

Malondialdehyde (MDA), a lipid peroxide product, is an indicator of oxidative stress, and was measured using an 

assay kit according to the manufacturer’s instructions (Oxford Biomed, Barcelona, Spain).  

 

RNA extraction and quantitative real-time PCR (qRT-PCR) analysis  

Total RNA was isolated from the gastrocnemius skeletal muscle tissue as detailed previously by Casanova et al. 

(20). Specific Taqman Assay-on-Demand Probes were used: Peroxisome proliferator activated receptor alpha 

(Pparα) (Rn00566193_m1), Carnitine palmitoyltransferase 1b (Cpt1b) (Rn005664242_m1), Uncoupling protein 3 

(Ucp3) (Rn00565874_m1), Uncoupling protein 2 (Ucp2) (Rn00571166_m1), ATP synthase 5a1 (Atpase) 

(Rn01527025_m1), Manganese Superoxide dismutase (Mnsod) (Rn00566942_g1), Lipoprotein Lipase (Lpl) 

(Rn00561482_m1), FA translocator CD36 (Cd36) (Rn00580728_m1). Cyclophilin peptidylprolyl isomerase A (Ppia) 

was used as an endogenous control gene (Rn00690933_m1). The relative mRNA expression levels were calculated 

using the 2
-∆∆Ct

 method. 

 

Western Blot (WB) analyses 

Protein was extracted from the frozen gastrocnemius skeletal muscle  in RIPA lysis buffer (150 mM Tris-HCl, 1 % 

Triton x-100, SDS 0.1 %, 167 mM NaCl, 0.5 % Na-deoxycholate) with a protease inhibitor cocktail 1/1000 (Sigma –

Aldrich St. Louis, MO, USA), PMSF 1/100 (FLUKA-Biochemika, Switzerland) and a phosphatase inhibitor cocktail: 

cocktail II 1/100, cocktail III 1/100  (Sigma-Aldrich St.Louis, MO, USA). Total protein levels were determined using 

the Bradford method (28). Proteins were loaded and run on a 10 % SDS-polyacrylamide gel. Samples were 

transferred to PVDF membrane (Bio-Rad, Hercules, CA, USA) using a transblot apparatus (Bio-Rad, Hercules, CA, 

USA) and subsequently blocked at room temperature with 5 % (wt/vol) non-fat milk in TBS-T buffer (Tris-Buffered 

saline, 0.5 % Tween-20). Primary antibodies were incubated overnight with shaking at 4ºC: rabbit AMPKα primary 

antibody, phospho AMPK α primary antibody (Cell Signaling Technology, Beverly, MA, USA), or rabbit α-tubulin 

(Sigma- Aldrich St. Louis, MO, USA). Blots were washed in TBST buffer and incubated with peroxidase-conjugated 

anti-rabbit secondary antibody (GE Healthcare, Buckinghamshire, UK) for 1 hour. Immunoreactive proteins were 

visualized as previously detailed by Castell-Auví et al.(29). The results were expressed as the relative intensity of p-

AMPK/AMPK. 

 

Statistical Analysis 

The results are expressed as the mean ± SEM of seven animals. SPSS Statistics version 19 (SPSS Inc., Chicago, IL, 

USA) was used for statistical analysis. Significant differences were analyzed by one-way ANOVA followed by the 

Tukey post-hoc test. A p-value ≤ 0.05 was considered statistically significant. 
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Results 

GSPE treatment produced a tendency towards decreased body weight and food intake over 21 days  

CD significantly increased body weight as compared to STD at 2 weeks. The difference was more pronounced at 10 

weeks (STD: 439.14±10.35; CD: 518.50±6.97), concomitant with significantly lower RQ values in CD respect to STD 

group (STD: 1.00±0.01; CD: 0.88±0.01), which indicated a preference for lipid oxidation. 

Figure 1A and Figure 1C show that the CD+GSPE group tended towards a decrease in body weight with respect to 

CD group beginning at 10 days of treatment and continuing through the end of testing. Figure 1B shows the food 

intake of each group during the entire treatment. Importantly, at day 5 of treatment, the CD+GSPE+DHA-OR group 

increased their food intake significantly compared to the control CD group. Although there is a trend through the 

last 5 days of treatment, after 21 days (Figure 1D), food intake was decreased significantly in the CD+GSPE group 

compared to CD group.  

 

Figure 1. Effect of proanthocyanidins and/or DHA supplementation on energy metabolism in obese rats.A. Increase of body 

weight during the treatment. B. Food intake during the entire treatment. C. Increase in body weight at 21 day of treatment. D. 

Food intake at 21 days of treatment. E. RQ values at 10 days of treatment. F. RQ values at 20 days of treatment. Rats were fed 

cafeteria diet (CD) or standard diet (STD) for 10 weeks. After 10 weeks, rats were treated orally with  vehicle (CD), 25 mg 

GSPE/kg body weight (CD+GSPE), 500 mg DHA/kg body weight (CD+DHA-OR) or 25 mg GSPE/kg body weight + 500 mg DHA/kg 

body weight (CD+GSPE+DHA-OR) for 21 days, concomitant with CD. Body weight, indirect calorimetry during 6 hours in 

postprandial state, and food intake were monitored regularly during the experiment. Data are means ± SEM; seven animals per 

group. Symbols denote a significant difference between groups by ANOVA analysis (p< 0.05). A, B:   * difference with respect to 

all treated groups; C, D : * difference between CD+GSPE group and all groups; E,F: * difference with respect to all treated 

groups; ϯ difference between CD+GSPE+DHA-OR and all groups; ¥ difference between CD+DHA-OR and all groups; δ difference 
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between CD and all groups; Ϩ difference of CD and CD+DHA-OR  between CD+GSPE and CD+GSEP+DHA-OR; ϕ difference 

between CD+GSPE and CD+DHA-OR and CD+GSPE+DHA-OR. The dashed line indicates the baseline values on the standard diet. 

GSPE+DHA-OR administration with CD decreased RQ values significantly at 10 days of treatment.  

At 10 days of treatment (Figure 1E), RQ values from the CD group were significantly higher throughout the 

postprandial period compared to the treated groups. In contrast, the CD+GSPE+DHA-OR group had significantly 

decreased RQ values starting at 2 hours of treatment. The RQ values from this treatment group were lower than 

those of the STD group values, marked as a dashed line. Figure 1F shows that the differences in RQ values 

between the CD groups are decreased at 20 days of treatment. During the first 2 hours, there were significant 

differences between the CD+DHA-OR group and the remaining groups. However, the RQ values were significantly 

lower in the CD+GSPE+DHA-OR group compared to the remaining groups at the end of the measurement (5-6 

hours).  

Table 1. Effect of proanthocyanidins and/or DHA supplementation on oxygen consumption by skeletal muscle mitochondria 

in obese rats 

   
CD CD+GSPE CD+DHA-OR 

CD+GSPE+DHA-
OR 

Oxygen consumption flux (nmols O2 / mg*min)    

protocol pyruvate-malate     

State 2 (+Pyr)  48.7 ± 31.2a 55.3 ± 4.4a 67.4 ± 6.4a 40.9 ± 7.6a 

State 3 (+ADP)  72.3 ± 35.9a 103.6 ± 43.7a 604.7 ± 100.0b 173.6 ± 9.3a 

State 4  +oligomycin)  18.4 ± 7.6a 33.3 ± 7.4ab 73.2 ± 8.5b 44.5 ± 4.6ab 

State U (+FCCP)  47.5 ± 22.8a 154.2 ± 60.0b 623.4 ± 75.3b 291.7 ± 40.3b 

protocol GMS(r)         

State 2 (+GM)  28.7  ±3.9a 34.0 ± 9.3ab 77.1 ± 0.9b 32.6 ± 6.4a 

State 3 (+ADP)  33.3 ± 20.6a 107.7 ± 12.9a 182.1  ±25.0b 150.6 ± 37.3ab 

State 3 (+rot)  17.4 ± 7.2ab 24.9 ± 3.5a 47.5 ± 6.5b 20.9 ± 5.6a 

State 3 (+Succ)  64.9 ± 22.7a 102.7 ± 17.4ab 181.8 ± 18.4b 82.0 ± 16.0a 

State 4 (+oligomycin)  56.9 ± 20.2a 74.0 ± 10.0a 136.2 ± 11.1b 48.4 ± 8.2a 

State U ( +FCCP)  43.6 ± 12.9a 63.5 ± 9.1a 167.4 ± 12.2b 54.5 ± 11.4a 

protocol Palmitoyl-CoA           

State 2 (+C)  8.7 ± 2.3a 42.4 ± 10.9ab 57.1 ± 9.1b 21.1 ± 8.4ab 

State 2  (+CPCoA)  10.0 ± 6.5a 85.8 ± 27.9b 64.1 ± 10.2ab 27.6 ± 6.3a 

State 3 (+ ADP)  9.0 ± 6.3a 150.2 ± 45.8ab 231.2 ± 29.8b 39.6 ± 12.5a 

State 4 (+oligomycin)  2.7 ± 1.1a 76.9 ± 23.6b 97.8 ± 17.7ab 28.3 ± 6.3a 

State U (+FCCP)   2.0 ± 1.1a 103.5 ± 53.5b 243.3 ± 60.7c 60.0 ± 33.3b 

Abbreviation: Pyr, pyruvate; GM, Glutamate-Malate; rot, rotenone; succ, succiante; c, carnitine; CPCoA, carnitine + palmitoyl-

CoA. Data are means ± SEM of seven animals per group. a and b denote  significant differences between groups by ANOVA 

analysis (p< 0.05). 

 

GSPE and DHA-OR administration with CD improved mitochondrial respiration compared to the obese group. 

The results of assessing the functionality of the OXPHOS system are described in Table 1Animals fed with CD+DHA-

OR had higher rates of respiration in all states compared to the other groups (Table 1) using three different sets of 
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substrates. The CD+DHA-OR group had higher rates in State3 and the respiratory maximum capacity was present 

in StateU, which increased ATP production and the maximum respiratory capacity. 

Palmitoyl-CoA oxidation was increased by CD+GSPE, CD+DHA-OR and CD+GSPE+DHA-OR treatment. Furthermore, 

maximum respiratory capacity was increased significantly by GSPE and/or DHA-OR. 

 

AMPK phosphorylation was activated by GSPE or DHA-OR treatments in skeletal muscle. 

Figure 2 shows that the administration of either GSPE or DHA-OR activated AMPK phosphorylation and 

significantly increased the ratio of phosphorylated/unphosphorylated AMPK compared to CD and STD. 

 

Figure 2. Effect of proanthocyanidins and/or DHA supplementation on AMPK phosphorylation in the skeletal muscle of 

obese rats. p-AMPK/AMPK protein levels. Experimental details as in figure 1.  Data are means ± SEM of seven animals per 

group. a, b, and c denote a significant difference (p< 0.05) between groups by ANOVA analysis. The dashed line indicates the 

baseline values on the standard diet. 

Both GSPE and DHA-OR administration affected the expression of genes related to FA oxidation in skeletal muscle. 

Figure 3 shows that CD+DHA-OR treatment significantly increased Pparα, Cd36, Lpl and Cpt1b expression in muscle 

compared to the CD group. Additionally, CD+GSPE treatment significantly increased Lpl, Cd36 and Cpt1b gene 

expression. For the CD+GSPE+DHA-OR group, Ucp2, Lpl and Cpt1b were significantly overexpressed. 

It is important to note that Ucp3 mRNA levels in rats fed with CD were  higher than in those on the STD diet, 

although there were no differences between treated groups. None of the treatments altered ATPase or Mnsod 

gene expression.  

GSPE administration increased ATPase activity, while GSPE and DHA-OR coadministration increased CS activity. 

COX activity showed no difference between groups. However, ATPase activity was higher in the CD+GSPE group 

compared with the other groups. CS activity in the CD+GSPE+DHA group was significantly elevated compared to 

the CD group (Table 2). 
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Figure 3. Effect of proanthocyanidins and/or DHA supplementation on gene expression in the skeletal muscle of obese 

rats.mRNA gene expression of A. Pparα. B. ATPase. C. Ucp3. D. Mnsod. E. Ucp2. F. Cpt1b. G. Lpl. H. Cd36. Experimental details 

as in figure 1.  Data are means ± SEM of seven animals per group. a, b, and c denote a significant difference  between groups by 

ANOVA analysis (p< 0.05). The dashed line indicates the baseline values on the standard diet. 

 

 

 

GSPE administration decreased CK plasma values and inhibited DHA-OR-induced ROS production, whereas DHA-OR 

increased lipid peroxidation. 

CK, an indicator of muscle damage, was significantly decreased by CD+GSPE administration with respect to the CD 

group, and also when administered concomitantly with DHA-OR. CK levels in both groups appeared to be restored 

to levels comparable to that in the STD group (Table 2). However, CD+DHA-OR or CD+GSPE+DHA-OR treatment 

induced lipid peroxidation and significantly increased MDA levels in muscle compared to the CD group (Table 2). 

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF MUSCLE ENERGY METABOLISM BY BIOACTIVE COMPOUNDS 
Ester Casanova Vallvé 
Dipòsit Legal: T.1562-2013 
 



 
R&D│ Manucsript III 

 
 

 
91 

 

Moreover, ROS produced in mitochondria isolated from muscle were significantly increased in CD+DHA-OR-

treated rats compared to the CD group and were decreased when GSPE was administered (Table 2). 

 

Table 2: Effect of proanthocyanidins and/or DHA supplementation on the mitochondrial enzymatic activities and oxidative 

parameters of the muscle and mitochondria of obese rats  

                                                       CD                 CD+GSPE        CD+DHA-OR    CD+GSPE+DHAOR 

Mitochondrial enzymatic activities (µmols/min*mg protein) 

cytochrome c oxidase 
(COX) 18.7 ± 4.4a 19.5 ± 11.7a 10.1±3.3a 12.6±4.9a 

citrate synthase (CS) 65.7 ± 24.0a 122.9 ± 4.8ab 130.6 ± 17.1ab 181.9±40.9b 

ATPase   5.6 ± 1.3ab 8.8± 2.7b 4.8 ± 0.5a 5.1±1.1ab 

Mitochondrial and muscle oxidative parameters    

ROS (%)  100.5 %±0.1a 128.2 %±0.4ab 182 %±0.4b 110.1 %±0.2a 

CK (U/L)  261.5±17.3a 159.4±27.1b 208.0±36.2ab 145.6±22.3b 

mM MDA / g muscle 71.5±3.7a 82.9±5.1ab 93.2±5.5b 88.0±3.7b 

 

Measurement of markers of muscle damage and lipid peroxidation in the skeletal muscle of treated obese rats. A. CK plasma 

values. B. MDA values corresponding to lipid peroxidation. Experimental details as in figure 1. Data are means ± SEM of seven 

animals per group. a and b denote a significant difference (p< 0.05) between groups by ANOVA analysis.  

 

 

 

 

CD+GSPE administration increased adiponectin levels, whereas CD+GSPE+DHA-OR treatment significantly 

increased leptin levels. 

Adiponectin levels were significantly increased by CD+GSPE administration compared to the CD group, but no 

significant differences were found in the other treatment groups (Figure 4A).  Moreover, leptin levels (Figure 4B) 

were significantly increased after CD+GSPE+DHA-OR administration compared to the other treatments.  

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF MUSCLE ENERGY METABOLISM BY BIOACTIVE COMPOUNDS 
Ester Casanova Vallvé 
Dipòsit Legal: T.1562-2013 
 



 
R&D│ Manucsript III 

 
 

 
92 

 

 

Figure 4. Effect of proanthocyanidins and/or DHA supplementation on adipocytokine and plasma glucose, and insulin 

profiles in obese rats. A. Adiponectin B. Leptin. C. Glucose concentration D. Insulin E. HOMA index Experimental details as in 

figure 1. Data are means ± SEM of seven animals per group. a and b denote a significant difference between groups by ANOVA 

analysis (p< 0.05). The dashed line indicates the baseline values on the standard diet. 

GSPE administration reversed insulin resistance induced by CD 

Glucose plasma values did not differ between the CD and treated groups although all of them were increased 

compared to the values for the  STD group (Figure 4C). Plasma insulin was decreased significantly in the CD+GSPE 

group, approaching the STD group values (Figure 4D). The HOMA index (Figure 4E) was significantly decreased in 

the CD+GSPE group compared to the CD+DHA-OR group, and was similar to STD group values.  

 

Discussion 

Due to its high palatability, CD allows rodents to become hyperphagic by reducing their control over their food 

intake. As a result of 10 weeks of eating the hypercaloric CD ad libitum, Wistar rats become obese, showing a 20 % 

increase in body weight with higher mesenteric, perirenal and epididymal adipose tissue weights, and an adiposity 

index approximately twice that of STD-fed rats (data not shown). Furthermore, CD rats were hypertriglyceridemic, 

hypercholesterolemic, hyperinsulinemic, and hyperleptinemic, with a higher HOMA index than SD rats (30, 31).  

After 10 weeks of consuming CD, GSPE, DHA-OR or a combination of both were added to the CD for 21 days. None 

of these treatments significantly changed body weights or the adiposity index of CD rats (data not shown), and 

food intake was reduced only in the CD+GSPE group at the end of period. Additionally, leptin plasma levels did not 

change during CD+GSPE treatment, which correlated with the extent of the TG stores. Obesity is associated with 

leptin production and high concentrations of plasma leptin (32). Occasionally, the rise in leptin was unable to 

prevent weight gain in obese humans. This apparent “leptin resistance” may result from a decrease in brain 

transport or attenuation of leptin signaling in the hypothalamus and other central nervous system targets (33). 

However, the addition of GSPE to the CD lowered insulinemia and the HOMA index, thus improving the insulin 

resistance shown by CD rats apart from their decreased TGs plasma levels observed in previous studies (20, 30, 34, 

35). 

The CD also induced oxidative stress (36). Considering that treatment with GSPE and/or DHA-OR increased 

mitochondrial oxidative capacity and FA oxidation, it was expected that these compounds affected the redox 
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status of skeletal muscle because excess  ROS are produced in mitochondria when FA β-oxidation accounts for the 

bulk of mitochondrial respiration (4, 37). GSPE in particular, due to its antioxidant capacity, can counteract the 

production of toxic substances induced by the high fat diet and prevent the deleterious effects of ROS. It has been 

shown that proteins of the OXPHOS system and DHA in mitochondrial membranes are key targets of ROS (38). The 

antioxidant properties of GSPE are shown here to reduce the plasma CK values, thus preventing muscle damage. 

Furthermore, CD+DHA-OR treatment clearly triggered a decrease in ROS production. When GSPE was not present, 

significantly elevated transcript levels of Mnsod were found in CD+DHA-OR-fed rats to counteract the excessive 

ROS production. Nonetheless, GSPE did not reduce the production of MDA in the same way as ROS. This increase 

in MDA levels in CD+DHA-OR and CD+GSPE+DHA-OR treated groups could be due to the substantial influence of 

DHA on membrane structure/function (39). Curiously, muscle status was also improved by CD+GSPE treatment 

despite the fact that ROS and MDA levels were similar to those associated with the CD.  Likewise, although no 

differences were found in Ucp3 gene expression between any of the treated groups, Ucp3 mRNA values were 

elevated compared to the values for the STD group. Other authors have reported that UCP3 plays an important 

role in facilitating the transport of FA anions that cannot be oxidized from the mitochondrial matrix, thereby 

protecting against lipid-induced mitochondrial damage by attenuating the production of free radicals and 

mitigating the effects of ROS produced by macronutrients of the diet (40).  

At 10 days of treatment, while rats fed CD used mainly carbohydrates as fuel throughout the postprandial period 

(6 h), CD+GSPE and CD+DHA-OR rats used a higher percentage of fat, and CD+GSPE+DHA-OR rats used essentially 

only FAs as fuel. At 20 days of treatment, the CD rats did not predominantly use glucose; like CD+GSPE and 

CD+DHA-OR-treated rats, they used more FAs as fuel and had a lower RQ ratio than at 10 days.  Meanwhile, 

CD+GSPE+DHA-OR rats, in spite of an RQ ratio closer to the other groups, fuelled essentially on only FAs at the end 

of treatment. This enhanced fat combustion is consistent with the significantly elevated transcript levels of Lpl, 

Cd36 and Cpt1b in the skeletal muscle of CD+GSPE, CD+DHA-OR or CD+GSPE+DHA-OR-treated rats. 

In the case of CD+GSPE rats, the significantly elevated transcript levels of Lpl, Cd36, Cpt1b and higher ATPase 

activity, concomitant with the reduced TG levels in plasma, was in accord with the role of GSPE in redirecting 

circulating TGs to skeletal muscle for fat oxidation and ATP synthesis. In a study with a similar obesity model in 

rats, GSPE improved both lipidemia and the fat content in the liver (9). The increase in FA oxidation following 

CD+GSPE treatment was substantiated by the high-resolution respirometry outcomes. Higher oxygen consumption 

in State2 and State4 of the palmitoyl-CoA oxidation pathway rather than in the pyruvate and 

glutamate/malate/succinate pathways demonstrated the increase of FA oxidation rates in ex vivo isolated 

mitochondria. Moreover, there is a high facility to increase the maximum respiratory capacity, StateU, in extreme 

conditions by pyruvate/malate and palmitoyl-CoA pathways in CD+GSPE rats. Our results indicate that GSPE 

modulates mitochondrial function in skeletal muscle, increases the oxidative capacity and has a potential role to 

adapt the OXPHOS system in special conditions by increasing FA oxidation in CD rats, as Pajuelo et. al. 

demonstrated in white adipose tissue and brown adipose tissue (25). All of these changes were consistent with the 

high circulating adiponectin levels in the CD+GSPE group, because adiponectin increases the expression of 

molecules involved in FA transport (CD36) or combustion  (acyl-coenzyme A oxidase) in skeletal muscle (32). In our 

experiment, we observed that adiponectin may also stimulate ß-oxidation via AMPK (41), which reduces the levels 

of circulating free FAs and prevents insulin resistance (42, 43).  

In a previous study in which healthy rats were given an acute dose of DHA-OR plus a high fat overload (20), the 

results show that CD+DHA-OR facilitates the entry and uptake of long-chain FAs in skeletal muscle via Lpl and Cd36 

overexpression, and increases the flux of FA oxidation to mitochondria by Cpt1b overexpression, as found in the 

present study. This is likely to occur through upregulation of Pparα, but may also be due to activated AMPK. It has 

been shown that the PPARα agonist omega-3 PUFA could efficiently activate AMPK-α1 mRNA expression in 

skeletal muscle (44).  Mitochondrial respiratory capacity was significantly increased in the CD+DHA-OR group using 

different substrates and protocol sequences. Thus, DHA-OR, apart from increasing the β-oxidation in skeletal 
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muscle, is also capable of increasing mitochondrial OXPHOS functionality with a maximum functional 

mitochondrial capacity. 

In terms of muscle energy homeostasis and oxidative capacity, the effects of CD+GSPE+DHA-OR were similar to 

those of each separate compound. Again, gene expression of key markers of β-oxidation, Lpl and Cpt1b was 

significantly upregulated, increasing the functionality of mitochondrial capacity. Furthermore, the combination of 

both compounds caused the highest burning of fat overload. Once again, these effects occur through AMPK 

activation, which was concomitant with significantly elevated transcript levels of Ucp2. UCP2 acts as a sensor of 

mitochondrial oxidative stress and its function is an important component of local feedback mechanisms 

controlling the production of mitochondrial ROS (45). Pecqueur et. al. (46) showed that UCP2 promotes 

mitochondrial FA oxidation while limiting mitochondrial catabolism of pyruvate, suggesting that the metabolic and 

proliferative alterations triggered by UCP2 are distinct from uncoupling. 

In conclusion, although no changes in body and adipose weights were observed, GSPE, DHA-OR and the 

combination of the two improved the metabolic inflexibility shown by CD-fed rats, implying that AMPK regulation 

was present in all of the treatment groups. 
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Overweight and obesity are growing threats to the overall health of populations in an increasing number of 

countries. The fundamental cause of the epidemic obesity and its increased prevalence is an energetic imbalance 

due to a sedentary lifestyle and high-fat, energy-dense diet, which is the result of societal trends. The problem 

appears to have increased rapidly in both children and adults; however, the actual, long-term health 

consequences will only be fully apparent in the future. Despite the substantial progression of the obesity epidemic 

in recent years, now we have begun to identify the neurohumoural mechanisms underlying obesity, whereas 

nonsurgical obesity treatments have improved little over the years. If obesity involves the biological defence of an 

elevated level of body fat, as current evidence suggests, advice to simply “eat less, move more” cannot be 

expected to resolve the problem. Interventions that reduce body fat stores without simultaneously decreasing the 

level of fat mass, elicit compensatory responses that promote the recovery of lost fat and are difficult to 

consciously override.  

Our approach to developing new therapeutic strategies that combat the development and progress of obesity and 

related diseases has focused on the utilisation of functional foods with natural bioactive compounds able to 

correct the metabolic dysfunction associated with obesity. People may consume functional foods while making 

only minor or no changes to their dietary habits, thus avoiding the behavioural problems associated with meal 

replacements. The consumption of these bioactive compounds may also have beneficial effects beyond 

counteracting obesity and its comorbidities, which include coronary heart disease, hypertension, insulin 

resistance, and dyslipidemia.  

The natural bioactive compounds selected for this study –EGCG, proanthocyanidins and omega-3 PUFAs oil rich in 

DHA – are characteristic of healthy diets and have well-documented beneficial effects with regard to obesity and 

CVD. Previous studies have suggested that proanthocyanidins act on mitochondria through skeletal muscle, brown 

adipose tissue and the liver by partially correcting mitochondrial dysfunction linked to obesity
1-3

 positively 

modulating oxidative stress
4,5

 and correcting dyslipidemic parameters in different situations
6,7

.  EGCG has 

antioxidative properties
8
 and has been shown to increase fat oxidation in skeletal muscle 

9
. Oil rich in DHA has the 

capacity to influence mitochondrial physiology via the upregulation of genes that promote fatty acid oxidation by 

PPARs activation 
10

 and the repression of lipid synthesis
11

. 

 

While it has been demonstrated that these compounds participate in a variety of mechanisms that can partially 

correct the metabolic dysfunction associated with obesity, our hypothesis suggests that these compounds could 

potentially display additive or synergistic effects when used in appropriate combinations, thus increasing their 

potential to completely correct the dysfunction. 

This doctoral thesis focuses on skeletal muscle and adipose tissue, both key organs in the control of body weight, 

as well as on the study of mitochondrial function, known as a key regulator of energy homeostasis. 

We studied how proanthocyanidins, EGCG and omega-3 PUFAs oil rich in DHA could modulate metabolic flexibility 

and ameliorate the metabolic dysfunction associated with obesity in three different experimental models:  

 

i) In vitro studies using L6 myocytes to assess the response of mitochondrial physiology and dynamics 

to a short treatment with EGCG and DHA. 

 

ii) In vivo studies on healthy rats fed a diet overloaded with saturated fatty acid, concomitant with an 

acute oral intake of proanthocyanidins and omega-3 PUFAs oil rich in DHA, to evaluate the short-

term effects on metabolic flexibility in skeletal muscle and adipose tissue.  
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iii) In vivo experiments involving obese rats overfed a high-fat diet, concomitant with 21 days of 

treatment with proanthocyanidins and/or omega-3 PUFAs oil rich in DHA, to assess the improvement 

of altered metabolic responses related to energetic metabolism via skeletal muscle studies.   

 

First, an in vitro experiment was conducted (manuscript I) using EGCG and/or DHA at physiological concentrations 

of 25 μM, over a short time period of 4 hours. In this experiment, the DHA treatment considerably increased the 

intracellular ROS production, as expected based on their structural composition and their ability to be oxidised. 

The mitochondrial antioxidant defence gene, Mnsod, is thus overexpressed to avoid this oxidative stress. In 

addition, the concomitant administration of EGCG, a potential antioxidant polyphenol, reversed this effect. 

In analysing the ETC marker gene, we found that DHA reduced the expression of the Cox and Ant1 genes. 

Importantly, neither EGCG nor DHA were influenced by markers of TCA functionality, as no changes in Cs mRNA 

expression were shown. Perhaps the increase in intracellular ROS production caused by DHA interferes with 

mitochondrial functionality by way of the ETC and OXPHOS systems; such interference is likely produced by 

variation in the membrane fatty acid composition, which facilitates ROS production followed by a decrease in 

mitochondrial function, although cell viability is maintained.  

 

 

 
Figure 21. Main effects of a) DHA and b) DHA + EGCG combination on L6 myocytes in 4 hours of treatment. 

 

In vivo mitochondrial respiration in intact L6 myocytes indicates that substrate oxidation is altered, decreasing the 

routine and LEAK states following DHA treatment, even in combination with EGCG. This decrease in oxygen 
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consumption due to DHA treatment is a result of the decrease in Cox gene expression and the increase in the 

ADP/ATP ratio, as DHA is a potent deregulator of O2 consumption and oxidative phosphorylation. Moreover, the 

decrease in oxygen consumption is accompanied by the overexpression of the uncoupled proteins Ucp2 and Ucp3, 

as well as a decrease in the mitochondrial membrane potential. Overexpression may be due to the production of 

ROS, which could stimulate mitochondrial uncoupling, also leading to a dissipation of the proton gradient 

generated by the respiratory chain and reduced oxygen consumption. To compensate for this decline in 

respiratory function, mtDNA is increased in response to the oxidative stress produced by DHA treatment.  

The disruption of mitochondrial membranes by DHA also alters mitochondrial dynamics via the deregulation of the 

genes involved in the fusion and fission process, indicating that despite the high mitochondrial mass due to 

treatment with DHA, the mitochondria remain inactive. The decrease in fusion and fission genes simultaneously 

balance the function of the mitochondria. Furthermore, the mitochondria are restored when EGCG and DHA are 

added simultaneously. Therefore, the reduction in endogenous respiration by DHA could be attributed to the 

downregulation of fission and fusion events, due to the influence of mitochondrial morphology and dynamics 

through OXPHOS and cellular bioenergetics.  

Although intracellular ROS decreased following treatment with the combined products, the membrane fatty acid 

composition and the oxidised products were not sufficiently reduced to maintain the mitochondrial dynamism and 

functionality in EGCG+DHA-treated cells. It is likely that 4 hours of treatment is not sufficient to restore 

mitochondrial functionality, even though the levels of mitochondrial mass are increased and mitochondrial 

morphology is typically restored by the combined treatment with EGCG+DHA. 

Second, we studied the in vivo postprandial (5 hours) effects of an acute dose of proanthocyanidins from GSPE 

(250 mg/Kg bw) and omega-3 PUFAs oil rich in DHA (250 mg/Kg bw), combined with a challenge fatty acid 

overload test (2.5 mL lard oil/Kg bw), in healthy rats (manuscript II). The objective was to determine if these 

ingredients could modulate metabolic flexibility – via the interactions of expressed genes related to lipid 

metabolism and mitochondrial functionality – simultaneously in skeletal muscle and adipose tissue, thus 

counteracting the metabolic dysfunction associated with obesity. 

 

Figure 22.Main effects of 250 mg GSPE/kg*bw or 250 mg DHA-OR/kg*bw in skeletal mucle, adipose tissue and 
plasma (Acute dose-Manuscript II) 
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In this study, we showed that the administration of oil rich in DHA upregulates gene expression of Lpl and Cd36 in 

skeletal muscle, aiding the entrance of fatty acid into the cell. A simultaneous upregulation of Cpt1b expression 

increases the flux of FA oxidation through mitochondria. Although the activities of TCA and ETC are neither altered 

nor increased, there is a clear increase in ETC functionality mediated by Atpase and Ant1 overexpression, 

indicating a higher exchange of ADP and ATP. Furthermore, Ucp3 is also upregulated, which correlates with 

increased ETC functionality and which also involves a mild uncoupling that could reduce ROS production in skeletal 

muscle following treatment with oil rich in DHA. 

Moreover, oil rich in DHA appears to improve insulin sensitivity, as we noted a decrease in plasma insulin levels 

with no change in plasma glucose levels, indicating that the expression of Glut4 could be a result of the altered 

membrane phospholipids. By contrast, in adipose tissue, although it appears that neither fatty acid oxidation nor 

fatty acid uptake increase, the tissue remains functional with regard to oxidative capacity and uncoupling due to 

increases in CS activity and Pparα and Ucp2 gene expression, respectively.  

Chiefly, these results indicate that treatment with GSPE and oil rich in DHA, concomitant with a fatty acid 

overload, tends to improve metabolic flexibility in various ways. The addition of oil rich in DHA increases insulin 

sensitivity and redirects fatty acid oxidation from the diet towards skeletal muscle by Lpl, Cd36 and Cpt1b 

overexpression. The addition of GSPE improves adipose tissue mitochondrial functionality by activating 

mitochondrial biogenesis and uncoupling by Ucp2 overexpression. GSPE causes lipid accumulation and oxidation in 

adipose tissue, thereby decreasing lipidemia and preventing muscle damage and ROS production. When GSPE + oil 

rich in DHA is combined with a fatty acid overload, nearly all of the aforementioned effects are maintained, 

though attenuated. 

 

 

Figure 23.Main effects of 250 mg GSPE/kg*bw and 250 mg DHA-OR/kg*bw in skeletal muscle, adipose tissue and 

plasma (Acute dose-Manuscript II) 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF MUSCLE ENERGY METABOLISM BY BIOACTIVE COMPOUNDS 
Ester Casanova Vallvé 
Dipòsit Legal: T.1562-2013 
 



 
Global discussion 
 
 

 
106 

 

Although GSPE and oil rich in DHA activate different pathways, when combined with a lipid overload, both 

improve metabolic flexibility. In an effort to determine whether these effects are maintained in an obesity profile, 

healthy Wistar rats were overfed a high-fat caloric diet, namely a cafeteria diet (Manuscript III). Our aim was to 

achieve a robust obesity model to test our bioactive compounds and their potential to improve obesity-related 

diseases.   

For 21 days, obese rats were given proanthocyanidins (25 mg GSPE/ kg bw) and/or omega3-PUFAs rich in DHA 

(500 mg DHA-OR/ Kg bw), concomitant with a cafeteria diet. The metabolic effects were studied in the skeletal 

muscle, which has a major role in the overall utilisation of mitochondrial energy and fatty acid oxidation. 

 

Figure 24. Main effects of 25 mg GSPE/kw*bw or 500 mg DHA-OR/kg*bw in skeletal muscle, plasma and energy 
balance control (Chronic dose-Manuscript III) 

 

Both GSPE and oil rich in DHA cause significant overexpression of Lpl, Cd36 and Cpt1b, in addition to enhanced fat 

combustion. In the case of GSPE administration, Lpl mediates TG clearance from the circulatory system. 

Additionally, Cd36 overexpression increases the rate of fatty acid transport to the muscle and, concomitant with 

Cpt1b overexpression, the mitochondrial fatty acid oxidation in the muscle is increased. Interestingly, AMPK 

phosphorylation is also increased in both groups, indicating an increase in lipid metabolism.  

In the DHA group, Pparα, which promotes fatty acid catabolism and the upregulation of genes involved in fatty 

acid metabolism and mitochondrial β-oxidation, is overexpressed. These results regarding lipid metabolism were 

reaffirmed when elevated respiration was studied in isolated mitochondria. Both compounds increase the 

maximal respiratory capacity in obese rats; this result is more prominent, however, in the group administered oil 

rich in DHA. 

The two compounds were tested together to determine whether the observed metabolic changes are 

reproducible. Our results showed that although AMPK phosphorylation does not change, there is a tendency to 

maintain high levels of AMPK phosphorylation. Such a tendency is accompanied by an upregulation of the β-

oxidation marker Cpt1b, concomitant with an upregulation of Lpl and Ucp2, which increase fatty acid uptake, thus 

promoting a role in lipid metabolism transport. Additionally, an increase in the TCA cycle, via elevated citrate 

synthase activity, and in mitochondrial respiration was determined by ex vivo measurements. 
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Figure 25. Main effects of 25 mg GSPE/kw*bw and  500 mg DHA-OR/kg*bw in skeletal muscle, plasma and energy 
balance control (Chronic dose-Manuscript III) 

 

Considering that GSPE and oil rich in DHA increase the oxidative capacity and fatty acid oxidation by the different 

markers mentioned above, the antioxidant capacity of GSPE was studied. Our results showed a reduction in ROS 

produced by DHA in the group treated with both compounds. In a similar manner, the CK values were also reduced 

by GSPE when administered in the combination treatment, thus reversing the muscle damage induced by the high-

fat diet. 

No significant differences with regard to body weight and food intake were found between the groups receiving 

treatment with oil rich in DHA and treatment with GSPE. GSPE, however, has a tendency to cause reductions in 

body weight and food intake at the end of the course of treatment. Interestingly, in the group where the two 

compounds were tested together, the respiratory quotient ratios were significantly decreased on the 10th day of 

treatment and maintained until the end of the treatment regime, with a more pronounced profile between 5 and 

6 h of postprandial measure. This result indicates a preference for fatty acid catabolism, although this preference 

is not reflected in the organisms’ body weight. The complementary effects of these compounds enable them to 

increase the maximal oxidation capacity of mitochondria and to increase lipid catabolism, thus improving the 

lipidemia profile and metabolic flexibility, with the objective of reducing excessive fatty acid in the diet. 

Overall, the study of energetic metabolism in the skeletal muscle showed that the interactions of GSPE in different 

situations tend to decrease ROS production in the muscle tissue, thus protecting against oxidative stress produced 

by the dietary intake of fatty acids, including saturated and polyunsaturated fatty acids, concomitant with muscle 

damage protection. Moreover, lipidemia profiles improve as plasma TGs decrease due to increased uptake, 

associated with LpL overexpression, in muscle tissue. Additionally, fatty acid oxidation in the mitochondria 

increases due to the increase in AMPK phosphorylation. Cpt1b and Cd36 overexpression leads to increased 

mitochondrial maximal respiration capacity following chronic treatment with a high-fat diet profile; furthermore, 

increased biogenesis and respiratory chain uncoupling are observed following acute treatment, concomitant with 

a high-fat overload, due to lipogenesis in adipose tissue, which avoids lipotoxicity in other tissues. Pure DHA and 

oil rich in DHA increase mitochondrial fatty acid oxidation by increasing the expression of Lpl, Cpt1b and Cd36; this 

increase is reflected in the increase in maximal respiratory function in isolated mitochondria of skeletal muscle, 

concomitant with increased expression of the natural ligand Pparα in both chronic and acute treatment. 
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Additionally, an increase in the expression of uncoupling proteins and biogenesis genes in adipose tissue is 

observed following acute treatment. These metabolic changes affect mitochondrial morphology over a short 

period of time by disrupting the mitochondrial membrane in in vitro studies using myocytes. 

Based on our results, we can conclude that this thesis achieved the main hypothesis and objectives, thus 

presenting a new therapeutic strategy to combat obesity, which involves only minor changes in societal trends 

with regard to dietary habits and lifestyle. 
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1. Myocytes treated with 25 µM EGCG concomitant with 25 µM DHA exhibit decreased ROS production. 

Additionally, the myocytes treated  with 25 µM DHA uncouples mitochondrial respiration via Ucp2 and 

Ucp3 overexpression, thus increasing the ADP/ATP ratio and decreasing oxygen consumption and 

membrane potential, concomitant with a reduction in ETC functionality by Cox and Ant1 downregulation. 

 

2. Myocytes treated with 25 µM DHA display an increase of mitochondrial mass with an increased ROS 

production and Mnsod overexpression, concomitant with a decrease in the occurrence of fission and 

fusion events, to preserve minimum mitochondrial functionality. Additionally, the treatment with 25 µM 

DHA, also causes disruption in mitochondria morphology which is reversed when 25 µM DHA + 25 µM 

EGCG were combined in the same treatment maintaining the Ucp2 and Ucp3 overexpression. 

 

3. Acute treatment with 250 mg oil rich DHA/Kg bw or 250 mg GSPE/kg bw simultaneously with saturated 

fatty acid overload, improves metabolic flexibility in the postprandial period. Oil rich in DHA increases 

insulin sensitivity, redirects fatty acid towards the skeletal muscle and increases the capacity to regulate 

fatty acid oxidation. This treatment improves adipose mitochondrial functionality and uncoupling by Ucp2 

overexpression. 

 

4. Acute treatment with 250 mg GSPE/kg bw, in tandem with saturated fatty acid overload, activates lipid 

accumulation and oxidation in adipose tissue, activating mitochondrial biogenesis and lipogenesis and 

thereby decreasing lipidemia and preventing muscle damage and ROS production. 

 

5. Obese rats fed a cafeteria diet and simultaneously treated with 25 mg GSPE/kg bw for 21 days show an 

improvement of energy homeostasis, lipid metabolism and insulin resistance induced by the cafeteria 

diet, which increases adiponectin levels, AMPK phosphorylation, mitochondrial β-oxidation and ATPase 

activity in skeletal muscle. 

 

6. Obese rats fed a cafeteria diet and simultaneously treated with 500 mg oil rich in DHA/kg bw for 21 days 

display increased AMPK phosphorylation, concomitant with Pparα overexpression, increased 

mitochondrial β-oxidation and maximal respiratory capacity in the skeletal muscle.  

 

7. Obese rats fed a cafeteria diet and simultaneously treated with 25 mg GSPE/kg bw plus 500 mg oil rich in 

DHA/kg bw for 21 days have decreased respiratory quotient ratio in postprandial period, concomitant 

with an increase of CS activity and  fatty acid oxidation in skeletal muscle. 

 

8. Treatment with chronic (25 mg GSPE/kg bw for 21 days) or acute doses of GSPE (250 mg GSPE/kg bw for 5 

hours) decreases CK plasma levels while avoiding muscle damage and ROS accumulation. 

 

 

. 
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Resum 

El sobrepès i l’obesitat estan incrementant de forma desmesurada, amenaçant la salut de la població en un 

nombre cada cop més gran de països. Per tal de desenvolupar una nova estratègia terapèutica en contra del 

desenvolupament i la progressió de l’obesitat i les malalties relaciones, s’ha estudiat la utilització de components 

bioactius naturals per corregir la disfunció metabòlica associada a l’obesitat.  Amb aquest pretext, doncs, es vol 

veure si consumint aliments funcionals amb un lleu o sense cap canvi en els hàbits alimentaris, evitant així 

problemes de comportament associats als substituts d’àpats, hi ha un efecte beneficiós més enllà de l’obesitat i les 

seves comorbiditats com la malaltia coronaria, la hipertensió, la resistència a la insulina i la dislipemia. 

L’objectiu d’aquesta tesis és avaluar com compostos bioactius presents en dietes saludables, i la combinació 

d’ambdós, com els flavonoids, tal com les proantocyanidines i els àcids grassos omega-3, tal com l’àcid 

docosahexaenoic (DHA), poden prevenir o millorar els efectes adversos de l’obesitat i les malalties relacionades. 

Els estudis s’han centrat tant en múscul esquelètic com en teixit adipós, dos òrgans importants en el control del 

pes corporal i en l’estudi de la funció mitocondrial, coneguda com a reguladora clau en l`homeòstasis energètica.  

 Per  tal de veure els efectes beneficiosos, es va avaluar la capacitat que tenen els compostos en modular l’activitat 

mitocondrial en els teixits esmentats. En primer lloc, vam quantificar si epigallocatechin gallate (EGCG) i DHA, tan 

sols com combinats, tenen la capacitat de modular la funcionalitat mitocondrial en cèl·lules musculars de rata, per 

posteriorment estudiar en rates sanes com una sobrecàrrega lipídica i dosis agudes tan de proanthochyanidines 

provinents d’extracte de llavor de raïm (GSPE) com oli ric en DHA, i la seva combinació,  afecta a la flexibilitat 

metabòlica i millora la situació postprandial.  Per altra banda, també s’ha avaluat com el tractament crònic de 

rates obeses amb GSPE i oli ric en DHA podria millorar els efectes adversos de la obesitat. En ambdós casos s’ha 

observat una millora dels paràmetres que es veuen alterats degut a la ingesta d’una  dieta alta en greixos, 

millorant tant la resistència la insulina com el perfil lipídic en plasma quant els animals han estat tractats amb 

GSPE. A més a més, s’observa un augment de l’ oxidació d’àcids grassos en múscul, en incrementar-se la capacitat 

oxidativa de la mitocòndria, simultàniament amb la sobreexpressió de gens diana relacionats amb la β-oxidació, 

millorant així la flexibilitat metabòlica quant aquestes rates han estat tractades tant amb GSPE com amb oli ric en 

DHA i la seva combinació.  

De forma global els resultats d'aquesta tesi, assoleixen la hipòtesi i els objectius principals i donen una nova 

oportunitat en l'estratègia terapèutica contra l'obesitat, amb un petit canvi en la tendència de la societat actual 

amb els hàbits alimentaris i l'estil de vida. 
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Conclusions 

1. En miòcits tractats amb 25 µM EGCG conjuntament amb 25 µM DHA disminueix la producció de ROS. 

Addicionalment els tractats amb 25 µM, DHA  desacoblen la respiració mitocondrial mitjançà la 

sobreexpressió de Ucp2 i Ucp3, augmentant el ràtio ADP/ATP i disminuint el consum d’oxigen i el 

potencial de membrana conjuntament amb la reducció de la funcionalitat de la cadena de transport 

d’electrons en relació amb la repressió dels gens Cox i Ant1. 

 

2. Miòcits tractats amb 25 µM DHA sofreixen un increment de la massa mitocondrial amb un augment de la 

producció de ROS, conjuntament amb la disminució dels esdeveniments de fusió i fissió de la mitocòndria 

per tal de preservar la mínima funcionalitat mitocondrial. A més a més 25 µM DHA causa una disrupció de 

la morfologia mitocòndria que és reverteix  quan els miòcits són tractats amb la combinació de 25 µM 

DHA+25 µM EGC mantenint la sobreexpressió dels gens UCp2 i Ucp3.  

 

3. El tractament agut amb 250 mg per kg de pes corporal  d’oli ric amb DHA o 250 mg per kg de pes corporal 

de GSPE, simultàniament amb una sobrecarrega d’àcids grassos saturats, millora la flexibilitat metabòlica 

en període postprandial. L’oli ric en DHA augmenta la sensibilitat a la insulina i redirigeix els àcids grassos 

cap a múscul esquelètic i n’activa la capacitat de regular l’oxidació d’àcids grassos. Aquest tractament 

millora la funcionalitat mitocondrial de teixit adipós i en desacobla la respiració amb la sobreexpressió de 

la Ucp2. 

 

4. El tractament agut amb 250 mg per kg de pes corporal  d’oli ric amb DHA o 250 mg per kg de pes corporal 

de GSPE, simultàniament amb una sobrecarrega d’àcids grassos saturats, activa l’acumulació lipídica i la 

seva oxidació en teixit adipós activant la biogènesis mitocondrial  i lipogènesis,  

disminuint així la lipidèmia, prevenint el dany muscular i la producció de ROS a múscul. 

 

5. En rates obeses alimentades amb dieta de cafeteria i tractades durant 21 dies amb 25 mg GSPE per kg de 

pes corporal  millora la homeòstasi energètica i el metabolisme lipidic, així com la millora de la resistència 

a l’insulina alterat per la dieta de cafeteria. Conjuntament amb un increment de nivells de adiponectina 

en plasma, augmentant la fosforilació d’AMPK, β-oxidació i l’activitat ATPase mitocondrial en múscul 

esquelètic.  

 

6. En rates obeses alimentades amb dieta de cafeteria i tractades durant 21 dies amb 500 mg DHA per kg de 

pes corporal, la fosforilació d’AMPK es augmentada, conjuntament amb la sobreexpressió de PPARα, 

augmentant la β-oxidació i la capacitat respiratòria màxima  en múscul esquelètic. 

 

7. En rates obeses alimentades amb dieta de cafeteria i tractades durant 21 dies amb 25 mg GSPE més 500 

mg oli ric en DHA per kg de pes corporal disminueix  el ràtio de coeficient respiratori en període 

postprandial conjuntament amb un augment de l’oxidació d’àcids grassos en múscul esquelètic. 

 

8. El tractament crònic 25 mg GSPE per kg de pes corporal durant 21 dies o dosis agudes 250 mg GSPE per 

kg de pes corporal durant 5 hores disminueix nivells plasmàtics de CK  evitant el dany muscular i l’excés 

de ROS. 
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