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Abstract

Motion detection is widely used as the first step in many computer vision processes. Mo-
tion is usually related to interesting regions, for example cars, people, etc. Hence, it is a good
criterion to use these regions as initialization for other, more computationally demanding pro-
cesses such as classification and action recognition. This means that for the correct operation
of the overall system, it is very important to obtain the best segmentation possible in this first
step.

When the camera is not static, the motion produced by the camera hides the motion
present in the scene. Therefore, it is necessary to compensate the camera motion. In other
words, all frames must be aligned into a single coordinate system. As well as motion detec-
tion, by stitching all aligned frames we can generate a representation of the whole field of
view from the camera. This process is called mosaicing and the result is the mosaic image.

This work is focused on motion detection and mosaicing which are fields of study com-
monly used in video surveillance applications, where processing in real-time processing is
mandatory. Due to the restriction of computational time, we try to find a suitable compro-
mise between performance and accuracy.

We start this thesis by presenting a methodology for improvingmotion detection on static
cameras. The proposed method is based on combining the output of different motion de-
tectors through a Markov Random Field framework. In addition, we take advantage of the
nature of Markov Networks to add spatial and temporal consistency.

We then extend the previous method for the case of non-static cameras. The camera mo-
tion (caused by panning, tilting and zooming) is estimated using Multiple Kernel Tracking,
which it is extremely efficient in terms of computation time. In addition, we show how to
generate the mosaic image in real-time, with low memory requirements and robust to close
path camera movements.

Continuing to the mosaic generation, we go one step further by presenting an alignment
method that is efficient and also very precise. We call this method Direct Local Indirect
Global (DLIG). The key idea of the DLIG alignment is to divide the frame alignment prob-
lem into the problem of registering a set of spatially related image patches. Patch-based
registration allows us to prevent the most significant problems in mosacing by performing
multiframe registration, such as error accumulation or precise degeneration.

iii



iv

The last method proposed in this work is for mosaic generation when the camera has
translational movement. In this case, frame alignment is even more difficult, since the pres-
ence of parallax makes it impossible to use the previous alignment methods. However, this
presence of parallax allows us to generate mosaic images with a 3D effect for the viewer. We
perform the alignment in a space-time volume, where the alignment is depth invariant. Fur-
thermore, we present a novel stitching method to efficiently apply pyramid blending in video
mosaics. The proposed method (“Barcode Blending”) overcomes the complexity of building
pyramids for multiple narrow strips, combining all strips in a single blending step.

At the end of this work, we present the conclusions grouped by chapters, pointing out
the strongest and most important aspects of the proposed methods and the direction of future
work. Finally, we wish to remark that each chapter of this thesis is based on a published
article.
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Chapter 1

Introduction

Detecting motion of objects in a video sequence is the first step in many computer
vision applications, allowing for more complex processes. Regions with motion are
often the interest regions where actions takes place, for example a person walking

or a moving car. For this reason, those regions can be used, for example, as initialization for
tracking algorithms, to reduce the processing area of an image for classification algorithms,
etc. Therefore, obtaining a good segmentation for the proper operation of the overall process
becomes an important step.

In the literature, regions with motion are often called foreground and regions without mo-
tion are called background. Using the simile of a play, the set is the background, which does
not change during the whole performance, and the actors are the foreground. If we know how
the background looks, we can approach the problem by searching those regions that differ
from it. Using regular cameras (RGB or grayscale) the most common approaches to tackle
this problem are those methods based on background subtraction. Background subtraction
algorithms are based on subtracting pixel values between a frame and a representation of the
background, usually called the background image. Regions with a high difference, under
some measure, are considered to be the foreground. Approaching the problem in this way,
the main challenge becomes generating a descriptive background image that encompasses
the possible aspect changes the background might undergo (e.g. due to changing lighting
conditions) while effectively discriminating the foreground.

There are multiple algorithms to obtain a background image, such as directly using a
previous frame in the video sequence [24, 61, 79] or creating a generative model for the
intensity/rgb values of each pixel through a mixture of Gaussian [78, 46, 37]. However,
all background subtraction techniques assume that the video sequence is recorded using a
completely static camera. If we represent the video sequence as a space-time volume, image
features produce straight lines along the temporal axis. This situation is depicted in Fig. 1.1a,
which represents a sequence observed from a static point of view, so for example the three
tree tips form straight lines in the space-time volume. In particular, if we slice the space-time
volume in the x− t plane, the resultant image will consist of a set of vertical straight lines,
describing the pixel values over the time of the yth row (the cut position). These images are
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(a) (b)

Figure 1.1: Representation of a spatio-termporal associated to a static scene recorded from a
static (a) and a vibrating camera (b). The red lines represents epipolar lines connecting the three
tree tips present in the sequence. While the epipolar trajectories in (a) are completely straight,
in (b) they are distorted by the vibration of the camera.

called epipolar planes or EPI planes, and the straight lines along the temporal axis are called
epipolar lines. Therefore, the methodology used by the majority of background subtraction
algorithms to generate the background image can be seen as the study of the most common
pixel value over the epipolar lines defined by each pixel location.

Imagine the case of a camera vibrating due to strong wind or heavy vehicle traffic. In
such cases, there exists a 2D movement across frames that results in meaningless variations in
the pixel values over time. Fig. 1.1b illustrates the consequences of this 2D movement in the
space-time volume, where the same sequence is represented, but in this case the camera is not
completely static. In this case, the points (the tree tips) are not aligned. Therefore, the straight
lines defined by each pixel location in the space-time volume do not correspond to specific
regions in the physical scene, causing erroneous background images and consequently poor
motion segmentation. Therefore, before applying a background subtraction algorithm, it is
necessary to first restore the relation between pixel locations and regions in the scene. In
other words, we have to align the frames to convert the trajectories defined by specific points
of the scene to straight lines.

There are two main groups of alignment methods, direct or featureless methods [88], and
indirect or feature-based methods [13, 85]. Direct methods are those which use all the avail-
able frame pixels to compute an image-based error, which is then minimized to compute the
alignment. In contrast, indirect methods compute the alignment by using a discrete set of
frame locations. The point locations are selected to have representative local texture prop-
erties so that they are likely to be detected in corresponding image regions independently of
the camera movement. Finally, the transformation is computed to minimize the error in the
matching between the two sets of locations.
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To align all frames in a video sequence it is necessary to select a reference frame so that its
coordinates are used to dispose the rest of the frames. Usually the reference frame is the first
frame or, to avoid aligning using foreground regions, the background image. This process is
usually called motion compensation, because it is equivalent to compensating for the motion
produced by the camera.

In many cases it can be necessary to detect motion over a wide area. Using a wide field-
of-view (fish-eye) lens can be a partial solution, but these lenses cause large distortions in
the captured video sequence. In addition, image quality and detail are compromised when
a large area is captured. Another possible solution is to place multiple cameras in order to
cover the entire area. However, increasing the number of cameras increases the costs of the
system. Furthermore, in order to visualize the scene their fields-of-view have to be placed
in correspondence. For these reasons, it is very common to use non-static cameras. For
instance, robotic cameras like Pan-Tilt-Zoom cameras (PTZ), which are capable of rotating
over a fixed point and zooming are commonly used.

Again, if we want to detect motion in the captured scene, we have to compensate the
motion caused by the camera. However, in this case, aligning all frames with respect to a
single reference frame might not be enough, as the reference frame and the candidate frame
need to have a significant overlap in their field of view. For example, in the case of a camera
rotating 360◦ using the first frame as a reference frame will only be possible for the initial
frames. In this case, it is necessary to generate a representation of the whole captured area
by aligning and stitching all frames into a single image (called the mosaic image). This
process is called Mosaicing. Given an input from a moving camera, mosaicing allows, in
combination with a background subtraction algorithm, to generate a background image for
the whole scene. It is then possible to perform motion detection by puting a new frame
in correspondence with a subregion of the background mosaic, and using any background
subtraction technique that is used for static cameras.

Apart frommotion detection, videomosaicing also gives valuable information to a surveil-
lance system, such as the global localization of the current field of view within the global
scene covered by the camera. With video mosaicing the effectiveness of the surveillance sys-
tem is improved by presenting the information extracted by the camera to the operator in a
more natural form. This allows, for example, to integrate a summary of the events observed
by a camera over a time lapse in a single scene representation [39, 70, 66], or to perform
spatial measurements that can be useful to automatically analyze behaviour, e.g. finding sus-
picious trajectories of pedestrians along the scene [57] or for automatically describing the
most important actions in a soccer match [94]. In addition, video mosaicing can be used for
generating high resolution images [77, 54, 60], representations of terrains [30, 29, 59], or
video compression [40, 47] among other applications. Due to these reasons, construction of
robust and efficient mosaics under general conditions is a relevant field of study.

Video mosaicing becomes challenging in the presence of motion parallax. Motion paral-
lax is a depth cue that results from the camera motion. For example, in the case of a scene
recorded from a moving vehicle, objects that are close to the camera move faster across the
field of view than those that are further. In such a case, 2D image alignment methods cannot
handle 3D parallax, producing distorted mosaics. Computing the 3D camera motion in the
scene (egomotion), simplifies the mosaicing process, but it is a challenging problem when
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only using image analysis. In addition, the high number of degrees of freedom of the camera
makes the process very sensitive to errors. However, under limited camera motion, for exam-
ple when the camera has a constant translational movement perpendicular to its field of view,
or in other words, the camera has a constant velocity over a straight line parallel to the scene
in the x direction. It is observable that epipolar lines are straight, but instead of being vertical,
in this case, epipolar lines’ slope depend on the distance from the camera (the depth). The
farther the object is respect to the camera, the steeper the epipolar line is. Fig. 1.2a shows
an example of a video sequence of a man and a sun recorded using a camera with constant
translational movement perpendicular to its field of view. The sun is farther from the camera
and the epipolar line described by its center is stepper than the one defined by the man. In
this case, the mosaic image can be generated by slicing the space-time volume in the y− t
axis. Note that this procedure lets us generate different mosaic images depending on the x,
where we slice the volume. The different x positions correspond to specific regions on the
camera sensor, where the light arrives with a specific angle. Therefore, the different y− t
slices correspond to different view points of the scene. Then it is possible to generate 3D
stereo mosaics by selecting two y− t slices in correspondence with the left and right eyes.

When the camera motion is not constant, which is the most common case, epipolar
lines are no longer straight and the mosaics become distorted. Therefore, it is necessary to
straighten all epipolar lines in order to simulate constant camera motion. Shifting the frames
in the x or y axes is not enough, they are depth variant and the video sequence includes motion
parallax. However, the time-space representation can provide a depth invariant image align-
ment by resampling the t axis. This process is called time warping. An example of this can
be seen in Fig. 1.2b, where the video sequence of a man and a sun is recorded using a camera
with non-constant camera motion. In this case, the epipolar line described by the man’s hat
is not straight. However by resampling the t axis, the epipolar line is striagtened and at the
same time the epipolar line corresponding to the sun is not distorted. Note that by shifting the
frames in the x or y axis so that the man’s hat epipolar line is straight would distort the sun’s
epipolar line.

We have organized this thesis in six chapters where this introduction is the first one. In
chapter 2 we discuss the problem of detecting motion using static cameras. To this end,
an extensive description of the main background subtraction algorithms in the literature is
presented. Then we present our own background subtraction algorithm, which combines
different visual cues and uses a probabilistic graphical model to provide spatio-temporal con-
sistency to the background model. Our model represents each pixel as a random variable
with two states, background and foreground. Then, Markov Random Fields (MRF) is used to
describe the correlation between neighbouring pixels in the space-time volume. In addition,
we provide a general framework to combine different motion related information sources, in
order to increase the accuracy of the motion mask.

The next step is to target at the problem of detecting motion when the camera is not static,
which is dealt with at chapter 3. In particular, the case with no parallax is considered. This
is a common case as PTZ cameras or aerial perspectives do not produce motion parallax. We
propose to compensate for 2D affine transformations caused by the camera by using Multiple
Kernel Tracking, assuming that the major part of the frame belongs to the background. We
first introduce Multiple Kernel Tracking describing how it can be formulated for this particu-
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(a) (b)

Figure 1.2: Epipolar lines when the recorded sequences include motion parallax under lim-
ited camera motion. (a) and (b) are two video sequences of a scene of a man (close to the
camera) and the sun (far from the camera), represented in a time space volume. The bottom
figures represent the x− t epipolar plane of the sequence. The red and blue lines correspond to
two epipolar lines defined by the trajectories of the man’s hat and the center of the sun. The
video sequence of (a) is recorded using a camera that has a constant translational movement
perpendicular to its field of view, while (b) is recorded with a camera where the translational
movement is not constant. In (a) the two epipolar lines are completely straight and the slope of
these lines depends on the depth of the object. In the first figures of (b) the two epipolar lines
are not straight, because of the variations in the camera speed. Time warping is used in the last
two figures of (b) in order to straighten the red epipolar line without distorting the blue epipolar
line. Note, that shifting the frames in (b) to straighten the red epiploar line distorts the blue
epipolar line.
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lar purposes. Then the generation of the background mosaic is defined so it is adaptable over
time.

Chapter 4 presents a new frame alignment algorithm, the Direct Local Indirect Global
(DLIG), which compensates the 2D motion using a projective transformation. The key idea
of the DLIG alignment is to divide the frame alignment problem into the problem of reg-
istering a set of spatially related image patches. The registration is iteratively computed by
sequentially imposing a good local match and global spatial coherence. The patch registration
is performed using a tracking algorithm, so a very efficient local matching can be achieved.
We use the patch-based registration to obtain multiframe registration, using the mosaic co-
ordinates to relate the current frame to patches from different frames that partially share the
current field of view. Multiframe registration prevents the error accumulation problem, one
of the most important problems in mosaicing. We also show how to embed a Kernel Tracking
algorithm in order to obtain a precise and efficient mosaicing algorithm.

In chapter 5 we face the problem of generating mosaics when the recorded scene con-
tains motion parallax. We propose to align the video sequence in a space-time volume based
on efficient feature tracking, for what Kernel Tracking is used. Computation is fast as the
motion is computed only for a few regions of the image, yet still gives accurate 3D mo-
tion. This computation is faster and more accurate than the previous work that is based on
a direct alignment method. We also present Barcode Blending, a new approach for using
pyramid blending in video mosaics, which is very efficient. Barcode Blending overcomes the
complexity of building pyramids for multiple narrow strips, combining all strips in a single
blending step.

This thesis finishes with the conclusions and future work in chapter 6. We point out the
strongest and most important aspects of our work, and some of the most promising lines of
continuation of this work.



Chapter 2

Background Subtraction for Static
Cameras based on MRF

In this chapter we consider the problem of detecting motion using static cameras. When con-
sidering this problem at pixel-level, it involves classifying each pixel within a video sequence
into one of two classes: pixels belonging to moving regions (i.e. foreground pixels) or pixels
which belongs to static regions (i.e. background pixels). Such classification can be performed
using different cues, like pixel colour or scene edges, amongst others. However, it is possible to
constrain the problem by noting that neighbouring pixels tend to have the same class, specially
if no edges are present.
The main idea of this chapter is to combine different motion-related data and, together with the
spatial and temporal consistency between pixels, improve the motion detection accuracy. We
use a Markov Random Field (MRF) to build such a model, where each pixel is defined as a
node connected to its spatio-temporal neighbours. Finally, we optimise the model by using a
Belief Propagation algorithm, which has shown good convergence properties even in the case
of loopy graphs such as the one used in this chapter.

2.1 Introduction

This chapter is dedicated to motion segmentation using background subtraction. Re-
gions with motion are important because they are highly related to objects of interest.
Using the same example as in the introduction, consider the case of a person walking

or a moving car it is clear that these regions are more interesting than the asphalt or a wall.
As its name indicates, background subtraction algorithms subtract/compare a given frame
with a “background frame”, usually called the background image. The background image is
intended to be a representation of the recorded scene, which does not contain regions with
motion. Then, those regions with large differences (under some criteria) between the frame
and the background images indicate where the regions with motion are located. The final out-
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Figure 2.1: Pixel models of different background subtraction algorithms. In black is the his-
togram of a concrete pixel. In red is the estimated probability density function. (a) Threshold
centered on the mean. (b) Gaussian distribution. (c) Mixture of Gaussians. (d) Kernel Density
Estimator.

put is a binary mask (motion mask) indicating, for each pixel, if it is part of the foreground
or the background. Note that it is assumed that the video sequence is recorded using a com-
pletely static camera, otherwise the motion caused by the camera can not be distinguished
from the motion present in the scene.

There exists a large number of background subtraction techniques, which can be divided
into two main groups: Pixel-level and Frame-level methods. Pixel-level methods are based on
modelling each pixel independently in order to build a generative model of the background
image. Modelling each pixel independently can simplify the background construction and
speed up the process, but at the same time results in noisier motion masks. Therefore these
techniques are adequate when efficiency is needed and higher noise levels are acceptable.

The most naive pixel-level method is the inter-frame difference [24, 61, 79]. The back-
ground image is set as the previous frame of the video sequence. Then the motion mask is set
as those locations where the pixel difference is above a predefined threshold. The results of
inter-frame difference depends on the object structure and speed, the camera frame rate and
a global threshold, which makes this approach useless in most cases. Other basic methods
consist of generating the backgroundmodel depending on some statistics of the possible pixel
values; for example, the average or the median of each pixel for the last n frames [50, 22].
These methods are very fast and provide an improvement over the frame-difference approach,
although they still provide rather poor performance, and the storage of the previous n frames
increases the memory requirements.

Memory requirements for the average and median backgrounds images can be met by
computing the background image as the running average [15, 92] and the approximate me-
dian algorithm [56, 62]. When using such methods, the memory requirements are reduced
from n frames to only one frame. A necessary addition to this method is to use the running
average selectively. That is to say, a background image pixel will be updated only if the cor-
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responding pixel of the current frame was classified as part of the background. Note that the
methods described so far depend on a threshold applied for all frame pixels without distinc-
tion and that an explicit methodology to find the ideal threshold is not proposed, making it
difficult to set up the system. In Fig. 2.1a an example of the probability density function of
this kind of methods is shown.

To overcome the drawbacks of the previous methods, Wren et al. [89, 90], proposed a
generative approach to model the possible value of each pixel associated with the background
as a Gaussian distribution (see Fig. 2.1b). A heuristic can now be defined to select a good
thresholding value by just considering the Mahalanobis distance associated with each pixel’s
distribution.

Similar approaches were presented in [78, 46, 37], among others. In these articles, the
authors model each pixel by using a mixture of Gaussians, see Fig. 2.1c. Using a potentially
multimodal distribution allows the generative model to adapt to shadows, specularities, sway-
ing branches, computer monitors, among other equivalent real-world situations that cannot
be modelled by using a single Gaussian. In order to speed up the PDF estimation, it uses a
K-means approximation instead of an ExpectationMaximization algorithm. However, in this
approach the number of Gaussian distributions is arbitrarily pre-defined, the construction of
the PDF becomes difficult, and also requires substantial computational time.

In order to simplify the PDF construction and maintain the multi-modality, [25, 96] pro-
poses to model the background image using Kernel Density Estimation (KDE). KDE gen-
erates the PDF non-parametrically, so for each of the n most recent pixel intensity values
become the mean of a Gaussian kernel of pre-defined covariance(see Fig. 2.1d). This pro-
cedure decreases the computational requirements with respect to the GMMs. However, the
memory requirements are increased and the method is extremely sensitive to the kernel band-
width, leading in many practical cases to a poor estimate of the true PDF. An alternative to
the use of GMMs was presented in [34], where the authors use mean-shift to find the mode
of the PDF. This method is closely related to the previous one, as the Mean Shift method
is equivalent to computing the Maximum a Posteriori (MAP) of the PDF resulting from the
KDE. However, the full PDF does not need to be computed.

[72, 42] proposed a method to impose temporal consistency on the classification of each
pixel as background or foreground by using a Hidden Markov Model to model the transitions
between the two states. This is still a pixel-level method, as only the values of a given pixel
throughout the sequence are considered.

One common drawback of all pixel-level approaches is the lack of spatial consistency.
That is to say, they neglect the fact that the neighbours of pixels belonging to the background
are more likely to also be part of the background, and the same can be said about foreground
pixels (see Fig. 2.2b). There is a relation between each pixel and its neighbours that can be
used to improve the segmentation. Frame-level techniques are those that also use the spatial
information in order to improve the final segmentation.
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(a)

Foreground

Background

(b) (c)

Figure 2.2: Relation between adjacent pixels. (a) Shows a frame of a video sequence, with a
orange rectangle. (b) is the enlarged version of the pixels inside the orange rectangle. (c) shows
a graphical model describing the relations between pixels.

The first method exploiting the spatial relation between pixels was the Wallflower back-
ground subtraction, presented in [82]. This method processes images at various spatial lev-
els, pixel-level, region level and on the whole frame (frame-level), in order to have a better
approximation of the background. It uses pixel-level components to make probabilistic pre-
dictions of the expected background using a linear filter based on the recent history of pixel
intensity values. The region-level components fill in homogeneous regions of foreground ob-
jects, and the frame-level component detects sudden, global changes in the image in order to
choose the best approximation of the background.

The eigen-background [63, 73, 49], is another frame-level technique. It uses principle
component analysis (PCA) to model the background image. It generates a linear subspace by
using the last n frames. In order to reduce the dimensionality of the space and to reduce the
impact of noise, only the largest eigenvectors are kept. Note that moving objects do not have
a significant contribution to the model because they do not appear in the same location during
the n frames, whereas the background image can be accurately described as the sum of vari-
ous eigenvectors. The motion mask is then found by projecting the frame onto the eigenspace
and backprojecting. The regions which are not well described after backprojecting the image
are assigned to the foreground.

Finally, the last group of background subtraction methods reviewed in this work are those
methods based on graph models. More specifically, a Markov Random Field (MRF) is ap-
plied in these cases, as it perfectly matches the indirect nature of the relations between pixels,
and the Markov property allows for efficient inference. In these methods, the spatial and in
some cases temporal information is added to the output of pixel-level methods. For instance,
[93] uses an MRF to introduce spatial and temporal information to frame differencing and
[84] applies it for enforcing spatial consistency into the HMM-based method presented in
[72]. By using MRFs, spatial consistency can be modelled by assigning a random variable
with two states (background and foreground) to each pixel in the image, and connecting the
neighbouring variables through edges that contain statistical models of the relation with its
neighbours. This is depicted in Fig. 2.2c.
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Once the relations betweens pixels are modelled, inference over the network has to be
performed so that the optimal state for each node is obtained. Different techniques exist to
perform the inference, such as Graph Cuts [44, 17] or Belief Propagation (BP) [91, 86]. The
first one finds the best approximation of the optimum MRF state by repeatedly maximizing
the join probability using Max-flow / min-cut method. BP instead interactively propagates
the probability (belief) of each node to its neighbours.

The work presented in this chapter makes use of a MRF. In partciular, such a model is
used to combine different cues extracted from the image and, at the same time, adding spatial
and temporal consistency. This results in an improved motion segmentation. The different
sources of information proposed in this work are a pixel-level RGB-based cue, a shadow
detector, and an edge detector. The pixel RGB cue is obtained by fitting a 3-dimensional
Gaussian distribution to model the possible RGB values for each pixel location. Then for
a new pixel value corresponding to the new frame a thresholding is applied over the Maha-
lanobis distance yielded by the Gaussian distribution, and a value is assigned to the binary
label. The shadow detector is an implementation of the Sakbot system [21, 22], which uses
the background image given by the previous source as a basis to compare the variations in
the luminance and chrominance over the HSV color space. Finally, the edge detector is
computed as the result of applying the Sobel edge detector to the current image and then
removing the edges present in the background image. Note that all the sources are binary.
All of these methods constitute a current research direction and none of the solutions adopted
in this chapter are optimal. Instead, the research interest is on how to combine different and
complementary sources of information within a framework that also provide spatial and tem-
poral consistency. Each source of information can be considered an independent module and
could be replaced by a better algorithm, given that the output is comparable. Therefore, what
is important is to highlight the remarkable improvement obtained when using the fusion of
all modules with respect to the results obtained when using each method on its own.

The remainder of the chapter is as follows: we start by explaining in detail Markov Ran-
dom Fields and Belief Propagation (Sec. 2.2 and 2.3); then section 2.4 presents the proposed
background subtraction method; finally, section 2.5 describes the experimental results.

2.2 Markov Random Fields

Probabilistic graphical models are diagrammatic representations of probability distributions
used to provide a simple way to visualize the structure, provide insight into the properties
and abstract complex computations of probabilistic models. A graphical model is composed
of nodes, representing random variables, and edges, representing the probabilistic relation
between these variables [10, 11].



12 BACKGROUND SUBTRACTION FOR STATIC CAMERAS BASED ON MRF

(a) (b) (c)

Figure 2.3: Example of different graphical models. (a) is a directed graph, (b) is an undirected
graph and (c) is an undirected factor graph. (b) and (c) are equivalent Markov Random Field
networks, while (a) is a Bayesian network.

Graphical models can be divided into two main classes depending on the nature of the
edges. First of all, those graphicalmodels represented by directed graphs also calledBayesian
networks. In this class, the links between nodes have a particular directionality indicated by
arrows. This kind of graph is useful for expressing causal relationships between random
variables. For example, the equation:

p(a,b,c) = p(c|a,b)p(b|a)p(a) (2.1)

is the join probability of the direct graph shown in Fig. 2.3a, where nodes a, b and c are
related using arrows. Node c is pointed to by nodes a and b, while at the same time, node a
is pointing towards node b. Note that node a is not pointed at by any node and therefore its
probability is not conditioned to any other node.

The other major class is that of undirected graphs, which is the class ofMarkov Random
Fields. MRFs are graphical models where the edges do not have a direction and, therefore,
the relations are bidirectional. Undirected graphical models are better suited to expressing
soft constraints between random variables that do not correspond to causality. The visual
equivalent of the previous example (Fig. 2.3a) can be seen in Fig. 2.3b. In this case, the
relations do not have causal effect and therefore, the join probability can not be defined in
terms of conditional probabilities. Now it is possible instead to write the join probability in
terms of factors:

p(a,b,c) =
1
Z

^1(a,b)^2(a,c)^3(b,c) (2.2)

where Z is a normalization constant.

In this work, the edges encode the probabilistic relation between pixels. In such a case,
relationships are not causal, as the influence between related pixels goes in both directions.
Therefore, undirected graphs are the appropriate graphs to represent such relations.
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The main characteristic of MRFs, apart from the indirect nature of their edges, is that they
exploit the Markov property. This means that nodes are only affected by their neighbouring
nodes. That is to say, a node is independent from the rest of the graph once the value of its
neighbouring nodes is set. An example is shown in Fig. 2.4, where a fixed value is assigned
to node b of the graph, implying that p(a|c) = p(a) and p(c|a) = p(c). The Markov property
allows the decomposition of undirected graphs in terms of factors, each of which depends on
a reduced number of variables defined by what is called a clique.

Figure 2.4: Example of Markov property. Node b has a fixed value, so that nodes a and b are
mutually independent.

A clique is defined as a subset of nodes in a graph such that there exists a link between all
pairs of nodes within it [10]. In other words, it is a subset of nodes where all of the nodes are
fully connected. A maximal clique is defined as a clique such that it is not possible to include
any other node from the graph on the subset and still be a clique. An example of a clique and
a maximal clique can be found in Fig. 2.5, where a fully connected Markov Random Field
with four nodes is represented. In this example, the maximal clique is depicted in blue, while
another (non-maximal) clique is shown in red. Note that in this graph any combination of
nodes defines a clique.

Figure 2.5: A maximal clique is marked in blue and a clique in red.

If we denote a clique asC, then the join probability in a MRF is defined as:

p(x) =
1
Z �

C
^C(xC) (2.3)

where the normalization constant Z is also known as the partition function, and it is defined
by:
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Z =
ẍ
�
C

^C(xC) (2.4)

An alternative representation for a MRF is the factor graphs. Until now, MRFs were rep-
resented using nodes and edges, making conditional dependencies explicit, while factoriza-
tion properties were kept implicit. Factor graphs introduce a second type of node, the function
node, so that while the graph still has the same properties, its factorization is made explicit
within the graph topology. A factor graph equivalent to Fig. 2.3b is shown in Fig. 2.3c. Fac-
tor graphs belong to what are called bipartite graphs, as they consist of two distinct kinds of
nodes, and all links go between nodes of opposite type.

In this work we use the factor graph representation because when expressing the factoriza-
tion properties explicity, the correspondence between the intuition and the graph topology is
more direct. More formally, a MRF is defined as a graphical model that can be represented as
an undirected bipartite factor graphG=(X ,F,E), where each nodeXn ∈ X , n ∈ {1,2, ...,N}
represents an S discrete-valued random variable and xn represents the possible realizations of
that random variable [10, 91, 43]. Each factor node fm ∈ F , m ∈ {1,2, ...,M} is a function
mapping from a subset of variables {Xa,Xb, ...} ⊆ X , {a,b, ...} ⊆ {1,2, ...,N} to the factor
node fm, where the relation between them is represented by edges {e<m,a>,e<m,b>, ...} ∈ E
connecting each variable node {Xa,Xb, ...}.

The joint probability is then factorized as:

P(X1 = x1,X2 = x2, ...,XN = xN)≡ P(x) (2.5)

P(x) =
1
Z

M

�
m=1

fm(xm), (2.6)

where the factor fm has an argument xm that represents the relevant subset of variables from
X . The partition function is now defined as:

Z =
ẍ

M

�
m=1

fm(xm). (2.7)

It is importnat to note that it is assumed that functions fm are non-negative and finite so
P(x) is a well defined probability distribution.

While a graph allows the relations between different variables to be easily encoded, the
main aim of such modelling is to allow inference of such variables conditioned to an obser-
vation. This means to infer the most likely state for each of the unobserved nodes within the
graph. To this end, it is necessary to compute the marginal probability as:

Pn(xn) =
ẍ\xn

P(x) (2.8)
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where x\xn means all the realizations in the graph except the realizations for the node Xn.
Pn(xn) means the probability of the states of the random variable Xn and will denote the
marginal probability function obtained by marginalizing P(x) onto the random variable Xn.

However the complexity of this problem grows exponentially with the number of vari-
ables N and thus becomes computationally intractable. Approximation techniques have been
proposed in recent years. Examples of such algorithms are Graph Cuts and Belief Propa-
gation (BP), among others, which are often the most feasible in practice. In this work BP
has been chosen to perform inference. Section 2.3 contains a detailed description of the BP
algorithm.

2.3 Belief Propagation

Belief Propagation (BP) [53, 91, 86, 27] is an iterative algorithm for performing inference on
MRFs. Different approaches can be applied depending on the particularities of the problem.
For instance, the Max-Product BP algorithm is focused on finding the maximum posterior
probability for the whole graph and Sum-Product BP algorithm is focused on finding the
most probable state for each node.

In this work, we only study the Sum-Product BP algorithm, because our goal is to obtain
the most probable state for each pixel in the image. Therefore, it perfectly suits our needs.
We will explain in the following sections how we model the image pixels in more detail.

BP algorithms are based on passing messages around the graph. The sum-product version
uses two types of messages. The first type is those messages sent by random variable nodes
and received by factor nodes. These messages are defined as:

qn→m(xn) = �
m′∈M(n)\m

rm′→n(xn), (2.9)

whereM(n) is the set of factors in which variable Xn participates.

The second type of messages are those sent by factor nodes and received by random
variable nodes. These messages are defined as:

rm→n(xn) =
ẍm\n

(
fm(xm) �

n′∈N(m)\n
qn′→m(xn′)

)
, (2.10)

where N(m) is the set of variables connected to fm, the factor node.

In Fig. 2.6 an example of these two messages is shown. The blue arrows represent the
messages noted as q in Eq. 2.9, while the red arrows represent the r messages of Eq. 2.10.
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Figure 2.6: Messages involved in the belief propagation Sum-Product algorithm in a 1D graph
with two single nodes. The blue arrows are the messages from nodes to factors and the red
arrows the messages from factor to nodes.

To find the marginal probability of a node, all the incoming messages in that node are
multiplied. Then we obtain a belief bn(xn), which represents an approximation of the real
marginal probability Pn(xn). The belief is computed as:

bn(xn) =
1
Z �
m∈M(n)

rm→n(xn). (2.11)

The computation of the marginal probability as described before is an iterative process.
If the graph has a tree topology, the belief is guaranteed to converge to the marginal proba-
bility. In this case the process starts at the leaves and the messages are propagated according
to equations 2.11 and 2.10.

If the graph contains loops, there is no equivalent guarantee of convergence, as the node
is dependent on itself. For instance, any change in the node state affects the state of its neigh-
bours which at the same time affects again the node itself. However, there is significant large
empirical evidence that, even in the presence of loops, BP provides a good approximation of
the optimum state. It is therefore a common practice to use BP even in the presence of loops.

Figure 2.7: MRF with a lattice topology, where each node is connected to the nodes placed in
his left, right, up and down. This is a common topology for graphs in computer vision, as it can
represent the pixels in an image and reproduce their spatial layout.
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(a) Left (b) Up (c) Right (d) Down

Figure 2.8: Different directions of the 4 connected Markov Random Field.

In this work we use MRF in a lattice form (see Fig. 2.7), where a node has four con-
nections. In this case, BP can be computed by splitting the graph into the different edge
directions (up, down, left, right) and then messages are propagated separately. Fig. 2.8 shows
an example of a MRF split into its different edge directions. Finally all the split graphs are
merged by point-wise multiplication. This process is repeated until convergence. Note that
the computation of BP in this way enables a straightfoward parallelization that can drastically
reduce computation time.

After the network converges, the more feasible state for each node is selected. Different
criteria can be used for this purpose, depending on whether we are interested in theMaximum
a Posteriori (MAP) or the Minimum Mean Squared Error (MMSE).

• In the MAP case, the state xn with higher belief bn(xn) is directly selected as the in-
ferred state of the node [67],

xMAPn = argmaxxn(bn(xn)) (2.12)

• The MMSE is computed as a weighted mean of the different states, where the weight
is defined by the belief for each state. As the states of the node are typically discrete,
the closest state to the mean value is selected, so having the least squared error to the
weighted mean computed[93].

xMMSEn =
ẍn
xibn(xn) (2.13)

2.4 Our model

Our MRF is based on that used in [93, 84, 11], where each pixel in the image (i, j) is repre-
sented by a random variable X(i, j). The relations between neighbouring nodes is set through
factor nodes fm forming a lattice shape (see Fig. 2.7 for a visual depiction of this topology).
Factor nodes fm are also known as a compatibility function. X(i, j) nodes, are also related
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Figure 2.9: Bloc diagram of the proposed method. t indicates the frame index, BS is refers to
Background Subtraction. SD refers to Shadow Detector and ED refers to Edge Detector

to another type of random variables D(i, j) called observation data. The observation data
is extracted directly from the image and could be continuous or discrete depending on the
formulation. We define the local evidence h(i, j) as the factor node that converts D(i, j) into
a probability distribution over the states of X(i, j). For instance, an image where D(i, j) is the
pixel value in a gray scale image and where X(i, j) have two possible states representing white
and black, h(i, j) gives a probability to the state being white that is linearly correlated to the
value of D(i, j).

As we stated in the introduction, our model has three information sources, all of them bi-
narised to construct the input to theMRF. A pixel-level background subtraction method based
on the RGB value of the pixel is constructed based on modelling the historical values for that
pixel through a 3-dimensional Gaussian distribution. A shadow detector is used to provide
binarised information of whether a pixel is obscured by a shadow. The method employed is
called the Sakbot system [21], and uses the background image given by the previous source as
a basis to compare the variations in the luminance and chrominance in the HSV color space.
The last cue used results from applying the Sobel edge detector to the current image, and then
removing the edges detected in the background image using the same edge detection method.
Fig. 2.9 presents a block diagram of the whole system.

The most immediate graph structure for combining these three sources of information is
shown in Fig. 2.10a. In there, each source is connected independently through functions h1a,
h2a and h3a. The main drawbacks of this design is that the formulation becomes complex and
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(a) (b)

Figure 2.10: Graphical representations of the influence of the three different information
sources on the graph. (a) Shows the direct representation, where each source is connected
independently through three different functions. (b) The output of each binary source of infor-
mation is codified to generate a single function of each state. This is the representation used in
this section.

it is hardly scalable. To overcome these drawbacks, we propose to codify the output of our
three binary detectors into a code of eight states, corresponding to all possible permutations.
The resultant graphical model is shown in Fig. 2.10b, while table 2.1 shows the meaning of
the eight states.

Shadow D. Edge D. Color D. Value
0

x 1
x 2
x x 3

x 4
x x 5
x x 6
x x x 7

Table 2.1: Codification of the different permutations of the detectors. D. means Detector.

Formally we define our model as a 4-partite graph G = (X ,D,F,H,E), corresponding to
two types of random variable nodes (X , D), two types of factors nodes (F , H) and the edges
between them (E). Each pixel (i, j) in a w× h frame is associated with two random vari-
ables, X(i, j) and D(i, j), which are related through a factor node h(i, j). X(i, j) represents a binary
discrete-valued random variable with two possible states, indicating whether the correspond-
ing pixel is assigned to the foreground or to the background. We define as x(i, j) the possible
realizations of X(i, j). In the same way we define d(i, j) as the possible realizations ofD(i, j), but
in this case D(i, j) has eight possible states.

The information regarding the spatial relations is obtained by relating each node X(i, j) to
its neighbouring nodes X(l,k)∀(l,k) ∈ {(i−1, j),(i+1, j),(i, j−1),(i, j+1)} through factor
nodes f<(i, j),(l,k)> ∈ F . In addition, our model has three layers that corresponds to three
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consecutive frames from t− 1 to t+ 1. This addition introduces temporal information and
results in a model that also imposes temporal consistency onto the predicted background im-
age. To distinguish the nodes in different temporal layers, a superindex indicating the frame
is introduced, so the variables are now notated as Xt(i, j) and D

t
(i, j). Each variable node is con-

nected by two relations with nodes at different time layers, i.e. node variables X p
(i, j) where,

p ∈ {t− 1, t+ 1}. This final structure is graphically represented in Fig. 2.11.

Figure 2.11: The left image corresponds to a representation of our model. Spheres represent
the variable nodes belonging to X, cylinders represent the variable nodes corresponding to D,
cubes represent factors from F and pyramids represent factors from H. The right image shows
all the connections of one node.

In order to simplify the notation, n is used to index all the pixels in the image and substi-
tutes the indexing by row and column. N is then defined as the the total number of pixels in the
image, which corresponds to the number of local evidence functions. For example, h(xn,dn)
is one of these functions, and xn represents all possible realizations of the corresponding vari-
able node Xn ≡ Xt(i, j) ∈ X and dn all possible realizations of the corresponding variable node
Dn ≡Dt(i, j) ∈ D. The factor nodes are represented by f (xo,xu), where xo and xu represent the
possible realizations of the neighbour variable nodes {Xo,Xu}≡ {Xt(i, j),X

p
(l,k)} ∈ X . Finally,

M is the total number of compatibility functions and fm(xm) is one of these functions. Simi-
larly, xm represent the possible realizations of two random variable nodes {Xt(i, j),X

p
(l,k)} ∈ X

and is equivalent to f (xo,xu).

Now the joint probability distribution is defined as:

P(X1 = x1, ...,XN = xN ,D1 = d1, ...,DN = dN)≡ P(x,d) (2.14)

P(x,d) =
1
Z

N

�
n=1

h(xn,dn)
M

�
m=1

fm(xm). (2.15)
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Note that the join probability function is like the MRF joint probability function, although
adapted to add the observation data.

The state for each variable node Dn is fixed by the observation data. Therefore, we have
to infer the optimal state for each variable node Xn. The sum-product BP equations are now
defined as:

qn→m(xn) = h(xn,dn) �
m′∈M(n)\m

rm′→n(xn) (2.16)

for messages from Xn to factor nodes fm and,

rm→n(xn) =
ẍm\n

(
fm(xm) �

n′∈N(m)\n
qn′→m(xn′)

)
(2.17)

for messages from factor nodes fm to variable nodes Xn. Finally the belief bn(xn) equation
becomes:

bn(xn) =
1
Z
h(xn,dn) �

m∈M(n)
rm→n(xn) (2.18)

where the normalization constant Z can be dropped.

We define the local evidence h(xn,dn) as:

h(xn,dn) =






[/0,1−/0]T i f Dn = 0
[/1,1−/1]T i f Dn = 1
[/2,1−/2]T i f Dn = 2
[/3,1−/3]T i f Dn = 3
[/4,1−/4]T i f Dn = 4
[/5,1−/5]T i f Dn = 5
[/6,1−/6]T i f Dn = 6
[/7,1−/7]T i f Dn = 7

(2.19)

and the compatibility matrix f (xo,xu) as:

f (xo,xu) =
{

V i f Xo = Xu
1−V otherwise (2.20)

To obtain all the parameters in our algorithm, /0,..,7 and V, we have made a probabilistic
study using n representative frames (I0,..,n−1) manually annotated. A binary mask Lk was
obtained for each of them, where non-null values represents foreground.
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/a = P(Xj = 1|Dj = a)
1−/a = P(Xj = 0|Dj = a) (2.21)

We say that /a is the prior probability of a pixel annotated as a, to being part of the
foreground. Therefore, we can use Bayes theorem to compute:

P(Xj = 1|Dj = a) =
P(Dj = a|Xj = 1)P(Xj = 1)

P(Dj = a)
(2.22)

P(Xj = 0|Dj = a) =
P(Dj = a|Xj = 0)P(Xj = 0)

P(Dj = a)
(2.23)

Let m be the number of pixels in an image and Dk
i the value of the observation data in

the pixel i on the frame k. We compute the marginals and the likelihood using the annotated
frames Lk.

P(Xj = 1) =
1

n ·m

n−1

k̈=0

m−1

ï=0
Lki (2.24)

P(Xj = 0) = 1−P(Xj = 1) (2.25)

P(Dj = a) =
1

n ·m

n−1

k̈=0

m−1

ï=0

∫ h

−h
I(a−Dk

i )dI (2.26)

P(Dj = a|Xj = 1) =
¨n−1
k=0¨m−1

i=0 Lki
∫ h
−h I(a−Dk

i )dI
¨n−1
k=0¨m−1

i=0 Lki
(2.27)

P(Dj = a|Xj = 0) = 1−P(Dj = a|Xj = 1) (2.28)

where I is the Kronecker delta function. Finally we can compute V as:

V =
1

n ·m

n−1

k̈=0

m

ï=1

¨l∈N(Lki )
∫ h
−h I(l−Lki )dI

Nk
i

(2.29)

where Nk
i is the number of neighbours and N(Lki ) is the set of neighbours of Lki .

2.5 Experimental results

As the computational cost of the inference process depends linearly on the number of itera-
tions of the BP, we have made an empirical study to determine the cost of setting an early con-
vergence based on the maximum number of iterations. To this end, several video sequences
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Figure 2.12: The left image shows the result of performing one iteration of BP. The center
image shows the result of performing five iterations. The right image shows the difference
between motion masks.

Figure 2.13: Motion segmentation using an IR sequence.

were analysed, for which the BP algorithm was allowed to run for as long as it took to con-
verge. Based on this analysis, all of the results presented hereafter use a maximum number of
five iterations, which is usually enough as to arrive to a convergence point. Fig. 2.12 shows
how the motion segmentation mask varies depending on the number of iteration inside the
BP algorithm (in this case from 1 to 5).

Even when only five iterations are used, our implementation works at 0.8 seconds per
frame. Therefore, it does not run in real time. However, our implementation is a combina-
tion of Matlab and C++. We estimate that transcoding the Matlab parts into C++ should be
enough to achieve a reduction of a factor of ten in terms of computation time. In addition,
BP is highly parallelizable allowing for the use of other frameworks like CUDA or OpenCL,
although these implementation tasks are outside the scope of this work.

We have tested our approach using video sequences of color and IR cameras. The IR se-
quences were recorded using thermal infrared cameras which captures electromagnetic bands
of 3− 5�m and 8− 12�m. In this case, the shadow detector is disabled, as there are no shad-
ows on thermal images. Some results using the IR camera are shown in Fig. 2.13.

Another test is presented in Fig. 2.14, which shows the output of each motion detector
(color, edges and shadows) and the result when combining all sources using the proposed
method. As it can be seen the resultant mask is much better than the others.
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Figure 2.14: The top images are the results of the color background subtraction (left) and the
edge detector (right). The bottom left shows the shadow detector result and on the right is the
result after combining all previous outputs using the proposed method.

Finally, the last test presented in this chapter demonstrates that our method can be used
to improve the motion mask provided by the main pixel-level background subtraction algo-
rithms present in the literature. We have replaced the color source present in our model by the
output of those methods and, as you can see in Fig. 2.15 and Fig. 2.16, the noise is reduced
and the segmentation is more accurate. It should be stated, that the shadow detector was
disabled again because the major part of the algorithms represents the background image in
gray scale values, which is incompatible with the HSV color space required by our shadow
detector.
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(a) Inter-Frame difference, using the previous frame.

(b) Median of the previous 11 frames for each pixel.

(c) Iterative Mean of the previous frames for each pixel.

(d) A Gaussian distribution for each pixel.

Figure 2.15: Comparison of different pixel-level background subtractions techniques, applied
to the same video sequence. The first image is the original frame, the second is the difference
or probability given by the algorithm, the third image is the output of the algorithm (motion
mask) and the last image is the output improved by our method.
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(a) A Mixture of 3 Gaussians for each pixel.

(b) Kernel Density Estimator.

(c) Mean Shift of 3 Gaussians for each pixel.

Figure 2.16: Comparison of Multi-modal background subtraction techniques at pixel-level,
applied to the same video sequence. The first image is the original frame, the second is the
difference or probability given by the algorithm, the third image is the output of the algorithm
(motion mask) and the last image is the output improved by our method.



Chapter 3

Background Subtraction for Non-static
cameras based on MKT

This chapter is dedicated to the problem of detecting motion in scenes recorded with non-
static cameras. In such cases, it is not possible to use a background subtraction algorithm
directly, as the motion produced by the camera can not be distinguished from the motion present
in the scene. We propose a method, based on Multiple Kernel Tracking (MKT), to estimate
the global motion of the video sequence. There are however some assumptions. The first
is that the majority of the image area belongs to the background. Secondly, the absence of
parallax is assumed. This is a typical scenario for PTZ cameras. In addition we show how
to incrementally generate the background image, in order to cover the whole field of view of
the camera. The proposed method is very undemanding in terms of computation time and in
memory requirements, and it can run comfortably in real time without resorting to complex
implementations.

3.1 Introduction

In the previous chapter we have seen how motion can be detected in a video sequenceusing background subtraction. The background image is intended to be a representation
of the elements of a recorded scene that do not contain objects in motion. Then, regions

with a large difference (under some criteria) between the frame and the background image
indicate where the objects in motion are located. In order to generate the background image,
all background subtraction techniques assume that the camera is completely static and there-
fore, the pixels forming the background image are relate directly to specific regions in the
scene.

However, in many practical cases it seldom happens that the camera is static. Even in the
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cases where cameras are supposed to be static, cameras can vibrate due to strong wind or due
to traffic of heavy vehicles for example. In such cases, pixel locations do not correspond to
the scene location, making it impossible to directly generate a correct background image. In
order to restore the relation between the pixel locations, it is necessary to first compensate
the camera movement or, in other words, it is necessary to align all the frames in the video
sequence in a common coordinate system.

When the camera motion is not very large, the alignment can be performed by selecting
a reference frame and aligning the rest with respect to it. Otherwise, alignment becomes
more complex and it is necessary to generate a representation of the whole scene. For in-
stance, video sequences recorded using robotic cameras like Pan-Tilt-Zoom cameras (PTZ)
are capable of generating larger 2D movement than the width of a single frame. Therefore,
using only a single reference frame to align all the video sequence becomes unfeasible, as
some frames do not have an image region in common. It is then necessary to stitch the newly
aligned regions to the reference frame. This process is called mosaicing and will be the basis
of the rest of this thesis. Note that when using the mosaic image as a background (referred
to as the background mosaic), and provided that the new frame is properly aligned with the
background image, then static background subtraction algorithms are directly applicable.

Multiple approaches exist in the literature targeting the use of mosaicing for detecting
motion. For example, [9] uses the alignment method proposed in [80] to find a set of point
correspondences between the current frame and a reference frame. Then an affine transfor-
mation is estimated with the least square error between the set of point pairs. In this case
the background mosaic is generated by simply computing the mean of each pixel. Another
work presented in [83] proposes to apply an affine transformation, computed using an Iter-
ated Re-weighted Least Squares method on a multi-resolution image pyramid. The authors
of [2, 7] propose a method also based on point correspondences. However, in these cases
the point correspondence is improved (in terms of computation time) by using phase corre-
lation. Again, the mean is used to model the background mosaic, but in this case the frames
are aligned using a projective transformation. In [95] the frame alignment is speeded up us-
ing the GPU to compute point correspondences and then the optimal alignment is computed
through RANSAC (RANdom SAmple Consensus [28]), making the result robust to outliers
and points that do not have a real correspondence. The optimal alignment can also be per-
formed by using the the MLESAC (m-estimator sample consensus) algorithm [81], which
is a robust estimator that improves the RANSAC algorithm, and is used in [36] to align the
frames. Finally, in [31] a probability density function, indicating the foreground regions,
is computed by examining the key point matching and failures between each frame and the
background mosaic (in this case a set of registered images, where each image corresponds to
a predefined position of the PTZ camera). Note that only the key points and its descriptors are
need to be keep. They use the SURF algorithm (Speeded Up Robust Features [6]), to obtain
a dense set of key points.

This chapter aims to extend the applicability of the work presented in the previous chapter
to cases where the cameras are not static. The background subtraction algorithm presented in
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the previous chapter is computationally expensive. Therefore, the computational complexity
of the alignment method has to be low enough to be executed well within real-time. To this
end, we use the Multiple Kernel Tracking framework, which is a well known, efficient and
accurate tracking algorithm. However, in our case, instead of tracking a region of interest, for
example a moving object, we propose to track the whole frame. The underlying assumptions
are that most of the frame will belong to the background and the scene does not contain par-
allax effects.

The remainder of the chapter is as follows. First, a detailed introduction to Kernel Track-
ing methods is presented in section 3.2. Section 3.3 describes the procedure to construct and
update the background mosaic over time. Finally, section 3.4 presents the experimental re-
sults for different video sequences.

3.2 Kernel Tracking

Kernel Tracking algorithms are based on the idea of representing the target region with a
color/intensity histogram, where the contribution of each pixel is spatially weighted by a ker-
nel function. Through the use of a kernel function, the representation incorporates spatial
information, which is lost when generating an unweighted histogram. A histogram represen-
tation is extremely efficient, as only a few bins are needed to represent a target; it is tolerant to
some degree of aspect variations, such as rotations, missalignments or scale variations. The
computation of a histogram boils down to the (weighted) addition of the pixel values within
an image area, therefore being very quick to compute.

In this section we will introduce in detail the two main Kernel Tracking algorithms. The
Mean Shift Tracking, which was the first Kernel based tracking algorithm and the Multiple
Kernel Tracking, which is the method used in this work.

3.2.1 Mean Shift Tracking

Comaniciu et al. introduced the first Kernel Tracking method in [19], when they adapted the
Mean Shift algorithm, previously used only for clustering, to the problem of tracking. The
localization estimation problem is solved by iteratively optimizing the similarity between a
target region q and a candidate region p using a gradient descent technique. The target region
is represented by a kernel-weighted histogram, q= (q1,q2, ...,qm)t and is computed as:

qu = N
n

ï=1
K(xi− c)I(b(xi, t),u), (3.1)

whereK(xi−c) = k(||xi−c||2) is a non-negative, non-increasing and piecewise differentiable
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isotropic kernel function centred at c, b(xi, t) represents the bin assigned to the pixel intensity
value at location x, I is the Kronecker delta function and N is a normalization constant that
implies ¨m

u=1qu = 1 and is defined as:

N=
1

¨n
i=1K(xi− c)

. (3.2)

Note that if the kernel function is normalized, i.e. ¨n
i=1K(i) = 1, then the resulting his-

togram is normalised as well and N can be discarded.

Following the notation later introduced by Hager et al. [33], we can rewrite equation 3.1
in a more compact form as:

q= UtK(c), (3.3)

where U = [u1,u2, ...,um] is a n by m sifting matrix and u is a sifting vector defined as ui =
ui(t) = I(b(xi, t),u). Similarly, the kernel function is re-defined as K = Ki(c) = K(xi− c).
In the same way, the candidate region p at time t ′ and centred about c is given by:

p(c) = UtK(c). (3.4)

The minimisation problem can be formulated as finding the location c∗ that minimizes
the error function between the two histograms. The Bhattacharyya coefficient is used in [19],
and it is defined as

√
p(c)√q, where the square root operator is applied component-wise to

the vector argument. Then using Taylor series to expand the Bhattacharyya coefficient about
p, we obtain the expression to maximize

O(c) = wtK(c), (3.5)

where w is defined as:

w= U
( √q√

p(c)

)
, (3.6)

where the division is again component-wise to the associated vectors. Then the similarity is
optimized by computing the gradient and setting it to zero. The final solution, written in the
form of weighted mean, is:

-c= ¨n
i=1(xi− c)wig(||xi− c||2)

¨n
i=1wig(||xi− c||2)

(3.7)

where-c= c∗ − c and g(x) =−k′(x).

For further details of this method, including the demonstration of why the Mean Shift
vector approximates the gradient of the function, can be found in [19].
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3.2.2 Multiple Kernel Tracking with SSD

Multiple Kernel Tracking with SSD (MKT) [33], introduces some improvements with re-
spect to the classical Mean Shift algorithm. In this approach the Bhattacharyya coefficient is
replaced by the sum of squared differences (SSD) error function:

O(c) = ||√q−
√
p(c)||2, (3.8)

So instead of maximizing the Bhattacharyya coefficient, our goal is to minimize the SSD
error. To optimize the objective function (Eq. 3.8), Hager et al. applied Taylor series to
expand the expression

√
p(c) giving the equation:

√
p(c+-c) =

√
p(c)+ 1

2
d(p(c))−

1
2UtJK(c)-c, (3.9)

where d(p(c)) denotes the matrix m×m (m number of bins) with p(c) in its diagonal and JK
is the Jacobian matrix of the kernel functionK, which is defined by:

JK =

[
yK
ycx

,
yK
ycy

]
=





!cK(x1− c)
!cK(x2− c)

...
!cK(xn− c),




(3.10)

By using the notation 1
2d(p(c))

− 12UtJK(c) asM, equation 3.9 can be written as:

√
p(c+-c) =

√
p(c)+M-c, (3.11)

Now, by substituting in SSD objective function and then equalling to zero, this results in
a standard least squares solution:

-(c) =M+(
√q−

√
p(c)), (3.12)

whereM+ is the pseudo-inverse matrix ((MtM)−1Mt ).

Furthermore, Hager et al. also introduced the use of multiple kernels in order to represent
the target. The representation in this case is based on a histogram concatenation. Each
kernel in our target is stacked in a single vector Q = (qt1,qt2, ...,qtl)t , where l is the number
of regions. The representation of the candidate region is constructed in the same way, so we
note P(C) = (p(c1)t ,p(c2)t , ...,p(cl)t)t , where C= {c1,c2, ...,cl} is the set of region centers
(or kernels center). Then equation 3.11 becomes:

√
P(C+-c) =

√
P(C)+W-c, (3.13)

where
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W=





M1
M2
...
Ml




(3.14)

is all target regionsM’s, stacked in a single matrix of 2×m∗ l and the SSD objective function
set to zero is again a standard least squares solution:

-(c) =W+(
√
Q−

√
P(C)). (3.15)

Now -(c) is related to the displacement over the x-axis and y-axis, which is in fact
-(c) = (-(cx),-(cy)). However, with multiple kernels it is possible to extend it to recover
richer models. In this work we extend this model to be able to estimate rotations V and
escalations Q. In such cases the target region is defined as:

q(cx,cy,V,Q) = UtK(cx,cy,V,Q). (3.16)

Following the same steps of the Taylor series, now the kernel Jacobian includes deriva-
tions with respect to V and Q,

JK =

[
yK
ycx

,
yK
ycy

,
yK
yV

,
yK
yQ

]
=
[
JKx ,JKy ,JKV ,JKQ

]
. (3.17)

Derivations with respect to V and Q are performed using the chain rule. V is defined as:

yK
yQ

=
yK

yc(x,y)
yc(x,y)

yV
(3.18)

and in the same way Q is defined as:

yK
yQ

=
yK

yc(x,y)
yc(x,y)

yQ
. (3.19)

In order to differentiate the kernel with respect to the angle, we first define the 2D rotation
as:

R(x,y) =
(

cos(V) −sin(V)
sin(V) cos(V)

)(
cx− Ix
cy− Iy

)
+

(
Ix
Iy

)
(3.20)

where (Ix, Iy) is the image center. Then, by deriving equation 3.20 with respect to V, we
obtain,
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yR(x,y)
yV

=

(
−sin(V) −cos(V)
cos(V) −sin(V)

)(
cx− Ix
cy− Iy

)
. (3.21)

Note that the presence of trigonometric functions makes it difficult to derive with respect
to V. By taking advantage of the iterative nature of theMulti Kernel Tracking, we can simplify
equation 3.21 by assuming that V ≈ 0. Therefore, sin(V)≈ 0 and cos(V)≈ 1. Then equation
3.21 becomes:

yR(x,y)
yV

=

(
0 −1
1 0

)(
cx− Ix
cy− Iy

)
=

(
-cy+ Iy
cx− Ix

)
. (3.22)

Finally by applying the chain rule we obtain the derivative of the kernel with respect to the
angle,

JKV =
[
JKx ,JKy

]( -cy+ Iy
cx− Ix

)
. (3.23)

The chain rule is applied similarly for the case of the scaling factor, so it is defined as:

S(x,y) =
(

Q 0
0 Q

)(
cx− Ix
cy− Iy

)
+

(
Ix
Iy

)
(3.24)

and its derivative as:

yS(x,y)
yQ

=

(
1 0
0 1

)(
cx− Ix
cy− Iy

)
=

(
cx− Ix
cy− Iy

)
(3.25)

Finally, by applying again the chain rule we get the final equation:

JKQ =
[
JKx ,JKy

]( cx− Ix
cy− Iy

)
. (3.26)

In the next section we explain how Multiple Kernel Tracking is applied in order to align
the frames.

3.3 Global Tracking Model and Maintenance

We assume that the recorded scene has a negligible parallax effect; for instance, when a PTZ
camera is used, or the scene is recorded from a large-enough distance. In addition, we expect
a higher proportion of background than foreground for each frame. Under this conditions, we
find the camera motion by tracking the whole frame using Kernel Tracking. Compensating
the camera motion allows us to apply the background subtraction method presented in the
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Figure 3.1: Target regions distributed in a uniform lattice over the frame. Target regions are
represented by green circles. The frame margin is indicated by the dashed rectangle.

previous chapter.

Selecting a single, large target region at the center of the frame is not a good solution. The
precision of the alignment and the computation time is proportional to the size of the target
region when using Kernel Tracking. In addition, we do not know a priori which parts of the
frame belong to the background and which ones belong to the foreground (it is possible that
the foreground is present at the center of the frame). For this reason, we propose to select
multiple target regions uniformly placed over the frame, so that the whole frame is covered.
Fig. 3.1 shows an example of how the target regions are distributed over a frame. In this
image the target regions are represented by circles and the dashed box indicates the margin
between the frame borders and the target regions. This margin is used to avoid placing target
regions outside the frame, which may cause errors.

The coordinates of target regions qu ∈Q are constant during the whole process and they
are relative to a reference frame fr, usually the first frame. Additionally, the coordinates of
candidate regions p(cu) ∈ P(c) over fi changes during the optimization. In other words, fr
is used to incrementally align the rest of frames fi in the video sequence. The initial camera
movement hypothesis, which defines where to initially place the target regions on frame fi,
is in the result of the previous optimization over fi−1. This is a simple assumption, and other
more sophisticated methods can be applied, by using an autoregressive model to improve the
convergence speed. Fig. 3.2 shows an example of background estimation when the camera
has motion caused by heavy traffic. Fig. 3.2a shows the result of compensating the camera
usingMKT, while in Fig. 3.2b the result when the camera is not compensated is shown. These
figures show the background model, the initial frame and its difference. It is possible to see
how, without compensating the image, the background is not generated correctly.

In order to deal with: target regions placed in the foreground; lighting variations in the
scene, like those caused by solar movement; and background changes. We continuously
update the target region histograms with the information obtained from each frame. To this
end, each bin q ju ∈ q j is represented by a Gaussian M j

u(�ju,X j
u). The Gaussian is estimated
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Figure 3.2: Video sequence recorded with a camera vibrating due to traffic. The right image
(b) shows the result of modelling the background image directly and the left (a) image shows
the result of modelling the background image using motion compensation. Each image is com-
posed of 16 pieces, with the same size, corresponding to the first frame in the video sequence
(F), the generated background model (M) and the difference between the first frame and the
background model (D). It can be seen that (a) correctly generates the background model, while
(b) generates a blurry background.

using an incremental procedure proposed in [45], which uses two learn factors F1 and F2,
whereF1.F2. F1 is used to update the bin value if the candidate regionfits with its Gaussian
and F2 is used otherwise. Using two learn factors minimizes the problem of learning from
the foreground. Then each bin is defined as:

�ju = �ju+(F1(1−Bt)+F2Bt)(p(c’ j)u−�
j
u) (3.27)

X j
u
2
= X j

u
2
+(F1(1−Bt)+F2Bt)((p(c’ j)u−�

j
u)
2−X j

u
2
) (3.28)

where c’ j is the center of the region j after applying MKT, and B is the mask that determines
if the bin fits into the model or not, which uses the Mahalanobis distance.

Until now, we have seen how to compensate the camera motion for small displacements
like camera vibrations. However, if the camera has larger displacements, using a single frame
to perform the alignment is not enough; for instance, a camera panning 360◦. In such a case,
some frames in the video sequence are not represented by any target region. That is to say,
no region of fr is present in those frames. For this reason, it is necessary to add new target
regions to our model Q in order to cover all new regions present in the scene. Note that
now it is necessary to select a subset Qi ⊆ Q to perform the Kernel Tracking optimization,
depending on the position of frame fi inside the space fr.

In order to select the target regions that fit inside fi, for all target regions qu ∈Q, we also
keep their coordinates with respect to the space fr. Those candidate regions that fit inside



36 BACKGROUND SUBTRACTION FOR NON-STATIC CAMERAS BASED ON MKT

Figure 3.3: Example of target region configuration. The red box represents the area occupied
by the current frame in the fr space, the dashed box is the margin (only target regions that
fit inside this box are selected), purple circles represent target regions of Q that are not se-
lected, green circles represent target regions selected to align the current frame (and they will
be updated) and white circles represent target regions that added toQ in this iteration.

the previous frame fi−1 aligned into the space fr are selected to generate the Qi set. Fig. 3.3
shows an example of how to perform that selection. Note that now the space fr is bigger than
the size of a single frame. After performing the alignment Qi is updated using the last Pi
and new target regions are added to Q if they cover unrepresented regions of the scene. New
target regions are generated by creating a uniform lattice of possible target regions over fi
and those regions which are not present in Q are added. Note that the memory requirements
are very low, because we only have to keep, for each target region, the relative position to fr
and, for each bin, the mean and the variance.

In order to increase the accuracy of our system we use a mask D that sets all bins to zero
that belong to target regions that have the sum of their bin variances greater than a threshold.
High variance means that the color values of those regions constantly change over the time.
Therefore, it is highly probable that these regions belong to the foreground. Using this mask,
only the more constant target regions are used. The final equation to estimate translations is:

-c=W+(
√
DQ′ −

√
DP′(c)) (3.29)

and if we want to add rotation and escalation it becomes:

-(c,V,Q) =W+(
√
DQ′ −

√
DP′(c,V,Q)). (3.30)
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3.4 Experimental Results

In order to prove the robustness and efficiency of our method, we have recorded different
video sequences of indoor and outdoor scenes, which include the typical movement of PTZ
cameras (Pan, tilt and zoom). These videos were recorded using a camera fixed on a tripod
and the camera movement was generated manually; therefore the camera movement is un-
predictable. The frame resolution used is 640× 480 pixels. In addition, it must be said that
the videos have a high interlacing effect.

Pre-loading a video into memory, we are able to align 150 frames per second using an
Intel Core 2 Duo at 2GHz. With such a high frame rate, the bottle neck is the capture time
of our camera. Note that we do not use threads, OpenCL or CUDA. Therefore, we think that
the frame rate can be increased significantly with a better implementation.

In Fig. 3.4 and Fig. 3.5 two examples are shown corresponding to indoor and outdoor
scenes. The top image show the background mosaic generated for this sequence. The bottom
images shows, from left to right: the original frame; the result obtained using a Gaussian
background subtraction; the motion mask once we have applied the Markov Random Field
background subtraction method proposed in the previous chapter; the motion mask over-
lapped with the frame. Using the same video sequences in Fig. 3.6 and Fig. 3.7 the result
obtained for a set of consecutive frames are shown. Note that it is possible to appreciate that
the background is moving in the same direction as the foreground.

Finally, in Fig. 3.8 and Fig. 3.9, two different states of our method (frame 923 and frame
2473) are shown in a long term video sequence. It is appreciable how our method has evolved
to describe new regions. The top figures are the target regions and their locations over the
mosaic image. The middle images are the Gaussian backgroundmosaic, where the left image
is the mean mosaic and the right image is the variance mosaic. Finally the bottom images
show, from left to right, the original frame, the motion mask obtained with the Gaussian
background subtraction and the result after using our Markov Random Field background
subtraction method proposed in the previous chapter.
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Figure 3.4: Example of an indoor scene. The top image shows the background mosaic gener-
ated for this sequence. The bottom images show, from left to right: the original frame; the result
obtained using a Gaussian background subtraction; the motion mask once we have applied the
Markov Random Field background subtraction method proposed in the previous chapter; and
the motion mask overlapped with the frame.

Figure 3.5: Example of an outdoor scene. The top image shows the background mosaic gener-
ated for this sequence. The bottom images show, from left to right: the original frame; the result
obtained using a Gaussian background subtraction; the motion mask once we have applied the
Markov Random Field background subtraction method proposed in the previous chapter; the
motion mask overlapped with the frame.
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Figure 3.6: Results obtained in a set of consecutive frames (indoor video sequence). Note that
the camera movement can be appreciated by comparing the foreground of the first and the last
frame in the sequence.

Figure 3.7: Results obtained in a set of consecutive frames (outdoor video sequence). Note
that the camera movement can be appreciated by comparing the foreground of the first an the
last frame in the sequence.
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Figure 3.8: State of frame 923 in a long term video sequence. The top figure is the target
regions and their locations over the mosaic image. The middle images are the Gaussian back-
ground mosaic, where the left image is the mean mosaic and the right image is the variance
mosaic. Finally, the bottom images show, from left to right, the original frame, the motion
mask obtained with the Gaussian background subtraction and the result after using our Markov
Random Field background subtraction method proposed in the previous chapter.
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Figure 3.9: State of frame 2471 in a long term video sequence. The top figure is the target
regions and their locations over the mosaic image. The middle images are the Gaussian back-
ground mosaic, where the left image is the mean mosaic and the right image is the variance
mosaic. Finally, the bottom images show, from left to right, the original frame, the motion
mask obtained with the Gaussian background subtraction and the result after using our Markov
Random Field background subtraction method proposed in the previous chapter.
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Chapter 4

DLIG: Direct Local Indirect Global
alignment for Video Mosaicing

In this chapter we present a framework for real-time mosaicing for video sequences recorded
from an uncalibrated PTZ camera based on multi-frame registration. To this end, a new frame
alignment algorithm, the Direct Local Indirect Global (DLIG), is presented. The key idea of
the DLIG alignment is to divide the frame alignment problem into the problem of registering a
set of spatially related image patches. The registration is iteratively computed by sequentially
imposing a good local match and global spatial coherence. The patch registration is performed
using a tracking algorithm, so a very efficient local matching can be achieved. We use the patch-
based registration to obtain multi-frame registration, using the mosaic coordinates to relate the
current frame to patches from different frames that partially share the current field of view.
Multi-frame registration prevents the error accumulation problem, one of the most important
problems in mosaicing. We also show how to embed a Kernel Tracking algorithm in order to
obtain a precise and extremely efficient mosaicing algorithm. Finally, we perform a quantitative
evaluation of our algorithm, including a comparison with other alignment approaches, and
studying its performance against interlaced videos and illumination changes.

4.1 Introduction

In the last chapter, we have seen how mosaicing can be used for detecting motion, whenthe camera is non static. However, as well as motion detection, mosaics are useful for
many other applications.

Classically, mosaics have been used for video compression. In [40], Irani et al. de-
scribe techniques of video compression for video-storage and video transmission applica-
tions, which involve generating the mosaic image of the scene from the video sequence and
encoding the residuals of the frames relative to the mosaic image. In [47], Lee et al. improve
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the video coding efficiency by exploiting the layered representation in the context of MPEG-
4. There, the mosaic image is a layer composed by the pixels in an object visible through the
entire scene, which is called a sprite.

More recently, mosaics have been used to generate a representation of the terrain using
videos recorded from the sky [16, 59] or underwater [30], for video indexing [39, 1] or for
video surveillance [35, 58, 18, 97]. Two recent applications built upon a mosaicing algo-
rithm are dynamic narratives [20] and dynamosaicing [69]. Dynamic narratives, depict the
motion of one or several actors over time and is designed to produce compact, coherent and
interactive narratives. In the case of dynamosaicing, the whole scene is summarized by au-
tomatically generating dynamic mosaics, ignoring the chronological order of the actions in a
video sequence and focusing on the actions themselves.

There are two basic elements of a mosaicing algorithm: alignment and stitching. In this
chapter we only focus on the first one. The process of frame alignment consists of estimating
the transformation that places each frame in correspondence with the frames already aligned
in a shared coordinate system. Depending on how the alignment is performed, it is possible to
categorize the mosaicing algorithms present in the literature according two different criteria.
First, they can be categorized with respect to the information used to estimate the alignment,
resulting in a division between direct or featureless methods, and indirect or feature-based
methods [13].

Direct methods are those which use all the available image pixels to compute an image-
based error, which is then optimized to compute the alignment. The results can be accurate,
but they require an already accurate initialization and typically result in high computation
costs. When the input is a video sequence, accurate initialization can be assumed by using
the previous alignment for initialization. In a video sequence, consecutive frames have a large
overlapping region. This means that the transformations that places two consecutive frames
into the mosaic are similar, which we call frame locality.

For instance, in [88] the author proposes to align the frames using an affine transforma-
tion obtained by an Iterated Re-weighted Least Squares method using all the pixels in the
frame, on a multi-resolution image pyramid. [5] presents an alignment method based on
decomposition of the frames by complex wavelet transform using the whole image. Finally,
in [87] the authors propose to align the frames using the XOR Correlation on image pyramids.

In contrast, indirect methods compute the alignment by using a set of image locations.
The point locations are selected to have representative local image properties so they are
likely to be detected independently of the point of view of the camera. Finally, the transfor-
mation is computed as the one maximizing the matching between both the set of locations
over the current frame and the set of locations over either another frame or the mosaic. Some
examples of this family are [13, 85]. Both extract a set of SIFT features from all the images
and then use algorithms for eliminating outliers and identifying the correspondences between
images. In particular, the first one uses a probabilistic model based on RANSAC while the
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second uses a geomorphic reverse measurement. In [38], instead of SIFT features they use
SURF, but again they find the optimal transformation using RANSAC.

Feature-based methods are very interesting since they provide good performance and can
estimate complex transformations. They are suited to mosaicing from a set of images that do
not necessarily belong to a video sequence, since they do not require initialization as direct
methods do. However, they lack accuracy. Furthermore, for the case of video mosaicing,
direct methods make better use of the frame locality property, transforming the frame align-
ment problem from global search to local estimation.

The second distinction between the existing mosaicing algorithms can be made in terms
of whether each frame is put in correspondence with the previous frame of the sequence or
directly with the mosaic. These approaches are called frame-to-frame alignment and frame-
to-mosaic alignment, respectively.

The frame-to-frame alignment approach consists of registering the current frame with the
previous one, obtaining its alignment by accumulating the inter-frame registration with the
previous alignment. This is the most common approach in the mosaicing literature, but it has
an important drawback. Since each inter-frame registration produces a small error, comput-
ing the alignment as the accumulation of inter-frame registrations results in an accumulation
of the error over time. This results in a bad alignment, which is especially important when
the camera has close paths in its trajectory. Some techniques, like [75, 41], use a graphical
model to deal with misalignments caused by the error accumulation. In these articles, nodes
represent frames and edges represent adjacency in time or space. The mosaic image is gener-
ated by finding the optimal path that minimizes the alignment error. However, this approach
is hardly applicable for real-time scenarios. First of all, complexity grows over time as new
frames are added, while the minimization has to be repeated regularly. Secondly, if the mo-
saic has to be visualized, re-estimating means warping and interpolating the entire mosaic.
Lastly, considering a reduced set of frames for lowering the computational cost might lead to
not considering frames that are spatially but not temporally related.

Another possible approach is frame-to-mosaic alignment, which consists of registering
the current frame directly with the mosaic image [74], or using instead a representation of the
mosaic (like pixel mean or pixel median for each aligned frame). The method proposed in
the previous chapter can be included in this category, where we represented the mosaic using
a set of weighted histograms. This approach received some attention as a solution for pre-
venting the error accumulation problem [88, 8]. Frame-to-mosaic alignment does not require
prohibitive memory storage nor excessive computation time, but the alignment accuracy is
affected. In this approach, either the frame has to be transformed to match with a mosaic
region or vice versa. Small errors in the registration over the frame coordinates can be mag-
nified when the registration is transformed into the mosaic coordinates. Similarly, using the
mosaic coordinates is not a solution either. This effect is what we call precision degeneration
(see section 4.2.2 for a more in-depth explanation). Furthermore, the computational draw-
back associated is twofold: the mosaic needs to be explicitly computed and the frame needs



46DLIG:DIRECT LOCAL INDIRECTGLOBALALIGNMENTFORVIDEOMOSAICING

to be warped before matching it with the mosaic. This also implies matching warped images
obtained through pixel interpolation.

The remainder of this chapter is structured as follows: section 4.2 provides an intuitive
overview of our method, explores the limitations of the related literature, and analyzes why
our method can overcome them. Section 4.3 provides a more detailed description of the
method, paying special attention to the DLIG alignment algorithm (section 4.3.2). Finally, in
section 4.5 we detail the experiments conducted, including a set of quantitative and qualita-
tive evaluations of the proposed algorithm.

4.2 Overview of the Proposed Method

4.2.1 Direct Local Indirect Global Alignment

We aim to achieve real-time video mosaicing. It is therefore natural to use the frame locality
property to reduce the computational cost. Frame alignment is defined as a problem of local
estimation -a similar approach to that of direct methods. But instead of computing the align-
ment of the whole image, which is computationally expensive, we compute the alignment
of a discrete set of image subregions. Each of the subregions is matched using a tracking
algorithm and an independent target model. Visual tracking is an important field of computer
vision, and many robust and efficient algorithms have been proposed, a fact we take advan-
tage of. However, the risk of errors during the tracking should be taken into account. For
this reason we also impose global consistency on the set of estimations. In an ideal scenario,
the local matchings should be consistent with a global image transformation. It should be
possible to compute it as in indirect methods, and the point matchings should be consistent
with the transformation. For this reason, we iteratively alternate the local alignment stage
with a global transformation estimation. This last step is used to correct erroneous trackings
and to impose global consistency with respect to the interframe transformation. This process
yields robust consistent interframe matchings. We call this methodology Direct Local Indi-
rect Global (DLIG) alignment method, since the local alignment is performed like in direct
methods, while the global transformation is computed as in indirect methods.

4.2.2 Multi-frame Matching

Our method performs multi-frame matching as a way to prevent error accumulation prob-
lems. We show that it is capable of doing so while preventing the problems of frame-to-
mosaic approaches. However, it is first necessary to provide a more in-depth explanation of
the problems associated with frame-to-mosaic approaches.

We referred in the introduction to the problem of error accumulation in the frame-to-
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frame alignment approach, and how multi-frame matching through the use of graphical mod-
els can make real-time applications unfeasible. Frame-to-mosaic approaches alleviate such
a problem, but present instead other drawbacks. First of all, the mosaic has to be computed
explicitly. Secondly, we match deformed images (i.e. interpolation). Last and most impor-
tantly, it suffers from what we called the precision degeneration problem. We now wish to
give a more insightful explanation of this last problem and to show how to prevent all of these
problems when performing multi-frame matching.

The precision degeneration problem happens when the coordinate system of the current
frame i is very different from the reference coordinate system. In this case the computation
of the alignment based on a set of matched points becomes unstable. If alignment Ti severely
distorts the matched frame, then it also distorts the errors of the matching. Therefore, a small
matching error in the mosaic can correspond to large matching errors in frame i or its recip-
rocal.

More formally, given two frame points so that x = x̄+!J, their distance in frame coordi-
nates is ‖!J‖, while the distance between their mosaic equivalents is ‖Ti(!J)‖. Since Ti is not
an Euclidean transformation, the same error ‖!J‖ at different frame locations can yield (very)
different errors in mosaic coordinates. Therefore, performing the estimation of alignment i in
mosaic coordinates or in frame coordinates can yield very different results.

This effect is shown in Fig. 4.1. In this figure, two points, x′1 and x′2, located in frame i are
shown, together with a set of locations (circled) placed at a distance J. When performingMSE
estimation, the euclidean distance is equivalent to the error, so the circles represent points pro-
ducing the same matching error. The problem arises when transforming these points of equal
error into mosaic coordinates, since they are transformed into distorted ellipses.

In order to prevent these performance issues, we instead perform multi-frame matching.
More precisely, we relate some locations typically belonging to different frames (called ref-
erence points for frame i) to a set of locations on the current frame i. The reference locations
are selected using the mosaic coordinate system, so we can guarantee that they are seen in the
current frame. We assume that we have an initial hypothesis of the current frame alignment
T̂ 0i . Then, we can project the reference points into the mosaic coordinate system using their
respective alignments, and then backproject them into the current frame through T̂ 0i . This
generates a set of current frame locations, which are dependent on T̂ 0i . Each of these points
is considered to be the center of an image patch, which will be used to perform the match-
ing. At this stage, we can use the DLIG alignment to refine this first hypothesis into a final
alignment. By following this methodology, the matching is performed using undistorted in-
formation from the frames to which the reference points belong. Since we do not use mosaic
aspect information, it is not necessary to explicitly build the mosaic, deforming and interpo-
lating patches for matching is avoided, and the precision degeneration problem is prevented.

It is important to note that this formulation is equivalent to considering the reference
points to lay on the mosaic, since alignments of previous frames are fixed. It is just necessary
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Figure 4.1: Precision degeneration. Euclidean distance is equivalent to point matching error.
The circles drawn around points x′1 and x

′
2 show points at equal distance to their central loca-

tions. The interframe distortion is almost non-existent. In contrast, when projected onto the
mosaic, they can suffer a great distortion, which hinders frame-to-mosaic alignment.

to take into account that the visual information used to perform their matching with points
at the current frame will be extracted from their original frames. For simplicity, we will say
these points lay on the mosaic.

As a final remark, note that this approach is only possible because we do not perform
the frame matching typical of direct methods, but instead we split the frame information into
parts that can be related to different frames. Since the mosaic efficiently summarizes the spa-
tial information of the scene, it is natural to take advantage of it in order to obtain the frames
spatially related to the current frame. But for the matching itself, we use the original frame
information.

4.3 Method Description

Given a sequence formed by frames { fi}i=1:N , and a reference frame fr, the aim is to compute
for each frame fi the alignment Ti that puts it in correspondence with the reference frame. We
compute alignment Ti by using two sets of points put in correspondence, one from the current
frame and another from the mosaic. In our work, Ti is restricted to be a 2D projective transfor-
mation, due to the good tradeoff provided between flexibility and simplicity on the alignment
estimation. Thus, given a set of points X ′ = {x′j} in fi coordinates and their corresponding
points X = {x j} in the mosaic coordinates, we compute a transformation Ti that puts these
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sets in correspondence (being in our case a 3x3 transformation matrix1).

In the reminder of this section we will first describe how we estimate correspondences
between frame points and mosaic points. Afterwards, the DLIG transformation estimation is
described in detail. Then, a summary of our algorithm is provided.

4.3.1 Local Point Correspondences using a Tracking Algorithm

Each of the reference points is positioned with respect to a point on the current frame by using
a template-based tracking algorithm. We consider each reference point to be the center of an
image patch. Such a patch is used to extract a target representation (the model) to be used
by the tracking algorithm. Then, this model is used to match the region against the current
frame, and the center of the matched region is positioned with respect to the reference point.
We use Ik(x j) to denote an image patch within frame k centered at point x j.

More precisely, given a patch representation O, matching a template within an image con-
sists of finding the ideal )p so that O(W (Ii,)p)) is the closest, under some criterion, to the
model O(Ik(x j)). Here, )p contains the parameters of a transformationW over Ii, defining
the patch from where the representation is computed, for example, its center and size. It is
important to note that the matching obtained depends on the type of transformation allowed.
)p can contain the parameters of, for example, a translation, an affine transformation, or a
projective transformation. It is also important to note that at each iteration of a tracking al-
gorithm, O(W (I,)p)) has to be computed. This generally implies computing the patch warp
W (I,)p), and its computational cost depends on the tracking algorithm.

In practice, it is possible to obtain a model for the template matching from the mosaic
image, and we would obtain a frame-to-mosaic alignment algorithm. However, to prevent
the problems associated with this approach, we compute the model representation directly
from frame information. More precisely, provided that x j is a reference point in mosaic
coordinates, we backproject it to its original frame, which we represent as o( j), and compute
the point representation using a subregion of fo( j) centered around T−1o( j)(x j). Therefore, the
representation used is formally defined as:

O(x j) = Ō
(
T−1o( j)(x j)

)
(4.1)

where Ō is an equivalent representation of O applied to a different image, and we simplify the
notation O(I(x j)) as O(x j).

1We use a 3 × 3 transformation matrix, since we only focus on 2D projective transformations. Nevertheless, the
method can be extended to other types of transformations, such as polymorphic or piecewise affine transformations,
despite the fact that that they cannot be modeled using a 3x3 transformation matrix. Note that since the alignment
includes translation, we use the homogeneous representation of points.
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The representation Ō depends on the tracking algorithm used. For example, it can be the
patch intensity values if we use correlation or a kernel-weighted histogram if kernel tracking
is used. Some other tracking algorithms are flexible with respect to the representation used
the representation used.

Each time a new part of the scene is observed, some new reference points are added to
the set of reference points and their representation is computed. The definition of the set of
reference points is incremental, which means that it is possible to add more, but those that
have been added are always kept.

Since the information stored is just a model representation for each reference point (typ-
ically a vector), the memory storage benefit of this approach is important with respect to
approaches requiring storage of the whole mosaic. Furthermore, at each new frame we are
using previously computed representations, so we do not need to recompute them at each
step, speeding up the process.

Finally, it is important to remark that the properties of the tracking algorithm used are
inherited by the mosaic. For example, a tracking algorithm incapable of coping with vary-
ing illumination will fail in such cases, while using a representation robust to illumination
changes will boost the performance. We will provide some examples in section 4.5, where
we show the performance of different tracking algorithms.

4.3.2 Direct Local Indirect Global Alignment Computation

We now describe the computation of alignment Ti using the DLIG algorithm. We need to
find, and put in correspondence, two sets of reference points: Xi, belonging to the mosaic;
and a set X ′i , belonging to frame i.

We rely on the region matching procedure described in the previous section. However,
we impose global consistency over the estimated matchings to prevent local mismatchings
that might arise from tracking errors, or from the content of the current frame, for example,
when moving objects are present. Algorithm 1 summarizes this process, and its details are
provided below.

We perform an iterative estimation of Ti, starting with T̂ 0i = Ti−1 as the initial guess2.
Given the set of mosaic points Xi, the first step consists of projecting them onto the current
frame coordinate system using the current estimate of the alignment, T̂ 0i , obtaining a set of
points X̄0i =

(
T̂ 0i
)−1Xi (line 3 of algorithm 1). Due to the frame locality property, the points

X̄0i are close to the as-yet-unknown X ′i , which we aim to estimate.

2It is possible to add a dynamic model to predict the evolution of Ti and obtain a better initial guess.
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The tracking algorithm is then applied to the locations X̄0i . However, instead of sequen-
tially performing a set of iterations, we just apply one (or a small predefined set of) iteration
of the tracking algorithm. Through this step, a new estimate of X ′i is obtained, denoted by
X̂0i (algorithm 1, line 4). Furthermore, it is possible to obtain the error associated with each
one of the estimates inherently given by the tracking algorithm. The particular form of such
error depends on the tracking algorithm. For example, it is possible to use the sum of square
differences between the target model and the representation of the estimated region.

We then combine the Direct Local step with an Indirect Global step. More precisely, the
Indirect Global step consists of obtaining a new estimate of alignment i by using the point
estimates provided by the Direct Local step. The transformation estimate is obtained by
weighting each of the local estimates (algorithm 1 line 5). We will define how to compute the
weightsWi in the following section, although the errors associated with each point matching
play an important role in such a definition. The weighted estimation is achieved by using
Weighted Mean Square Error minimization. The resulting alignment estimation is denoted
by T̂ 1i . By adding the Indirect Global step, the next iteration of the Direct Local step will be
performed over the set of points X̄1i =

(
T̂ 1i
)−1Xi instead of the points X̂0i . In this way, the

correctly estimated locations help computing the alignment estimate, and the alignment esti-
mate is used to back-projecting the mosaic points onto the current frame, correcting possible
errors obtained on the Direct Local step.

Algorithm 1: DLIG Alignment Computation
1 T̂ 0i = Ti−1;
2 for t← 0 to Until Convergence do
3 X̄ti =

(
T̂ ti
)−1Xi;

4 X̄ti → X̂ti using a tracking step;
5 X̂ti →Wt

i ;
6

(
X̂ti ,Wt

i
)
→ T̂ t+1i using WMSE;

7 Ti = T̂ endi ;

Fig. 4.2 contains an example showing the robustness of our method to moving objects
and a changing background. In this sequence, the regions to be matched with moving objects
yield high errors and are correctly assigned with a low weight when computing the alignment.

4.3.3 Mosaic Construction using the DLIG Algorithm

Here we provide the remaining details of our algorithm. First of all, the mosaic is initialized
as the first frame of the sequence. Therefore, the first alignment is the identity, T1 = I3. After-
wards, a set of reference points are created using f1 at locations placed over a regular lattice.
This means a set of locations {x j} j=1:N1 from the mosaic are selected, and their representa-
tions O(x j) are computed.
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Figure 4.2: Green squares are patches centered at X̄ ti . The intensity of the color reflects the
weights used by the WMSE. Those regions over the moving car have consistently low weight
and therefore have a low impact on the alignment computation. The upper images are 4 con-
secutive frames; the lower image represents the corresponding mosaic.



4.3. Method Description 53

For frame i, a subset of the reference points {xij} j=1:Ni are selected. Alignment i− 1 is
used to select them, and to initialize the computation of alignment i. Thus, when projected
onto frame i, the selected reference points produce a set {x′j} j=1:Ni = {T−1i−1(x

i
j)} j=1:Ni . Now,

the DLIG alignment is computed as described by algorithm 1.

In our case, we use two criteria to define the weights used. The first one is the error
yielded by the Direct Local step, denoted by {J j}, and its particular form depends on the
type of tracking algorithm used. The second criterion is based on the number of times the
reference point has been successfully used, denoted by as Y j . The resulting form of their
computation is:

wj =C2 ·
Y j ·M j

¨N
k Yk¨N

k Mk

where M j =C1 · e
−

NJ j
¨Nk Jk

(4.2)

where C1 and C2 are normalization factors. This definition of the weights makes the estima-
tion robust with respect to moving objects in the scene, reflected by a high error (implying
low M j) and to unstable image regions, reflected in the value of Y j .

This process is iterated until convergence. Again, any convergence criterion can be used.
We set two different criteria. The first one consists of a maximum number of iterations, im-
posed to prevent excessive computational cost. The lack of convergence can be produced
by poor estimates of the DLIG algorithm, but also due to natural image situations such as
moving objects or regions with low texture. We impose a second criterion based on the lack
of change in successive iterations, which is a typical convergence criterion.

This process finally results in the estimation of alignment Ti. Once Ti is computed, we
update all the reference point models in order to adapt them to the new conditions of the
video (e.g. changes in illumination). Any updating strategy can be used. We opt for up-
dating the model as a linear combination of the current model and the performed estimation
[55]. Furthermore, we compute the variance of the model in all the cases it was observed in a
frame. This value can be used to lower the weight of badly conditioned reference points, for
example, those placed in a region with a varying aspect (e.g. a tree, a part of the image with
a lot of movement, etc.).

The pseudocode of our mosaicing algorithm using DLIG alignment is presented in algo-
rithm 2.
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Algorithm 2: Mosaic construction using DLIG alignment. RP stands for reference
points
Data: Video Sequence F = { fi}i=1:N
Result: Mosaic imageM

1 begin
2 • T1 = I3; RP=∅; M = f1;
3 • RP← Generate RP using f1;
4 for i← 2 to N do
5 • RP′ ← Select a subset of RP fitted by Ti−1;
6 • DLIG alignment as depicted in algorithm 1;
7 • Update the RP′ models using fi;
8 • Update the mosaicM using fi;
9 • RP← Add new RPs from fi if they belong to new parts of the mosaic;

4.4 Description of the tracking algorithms considered in this
work

The different tracking algorithms considered to perform the direct local step are the follow-
ing: Normalized Cross Correlation (NCC) based tracking [48], Lucas-Kanade (LK) [52, 4],
SIFT [13], and Kernel Tracking (KT) [33]. They are selected to be representative of different
approaches to tracking and for having been applied to already-existing mosaicing algorithms.
NCC is used as a comparison baseline. LK is the basis of a large number of mosaicing algo-
rithms, and it is a widely extended tracking paradigms as well. In the case of SIFT, despite
not being by nature a tracking algorithm, it can be used to find correspondences between
frames. We include it since SIFT features have shown to be very effective when applied to
mosaicing. Finally, KT has some properties which make it especially suited for mosaicing
purposes. It is robust to small changes in the target aspect, as those produced by lightning
and small target deformations, and it is computationally very efficient.

We do not describe Kernel Tracking in this chapter, since a detailed description can be
found in chapter 3.

4.4.1 Normalized Cross-Correlation

Cross Correlation is an exhaustive template matching algorithm based on minimizing the
squared Euclidean distance between pixels.

The squared Euclidean distance is defined as:
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d2f ,t(u,v) =
ẍ,y
[ f (x,y)− t(x−u,y− v)2] (4.3)

where the sum is over x,y; f is an image; and t is a template positioned at u,v. By expanding
d2, we get:

d2f ,t(u,v) =
ẍ,y
[ f 2(x,y)−2 f (x,y)t(x−u,y− v)+ t2(x−u,y− v)2] (4.4)

Note that ¨x,y t2(x− u,y− v) is constant and if we consider ¨x,y f 2(x,y) to be approximately
constant, then we can simplify the equation to a more efficient form as:

c(u,v) =
ẍ,y
f (x,y)t(x−u,y− v) (4.5)

where, in this case, our goal is to find the location that maximizes this similarity function.
This similarity function has several disadvantages: ¨x,y f 2(x,y) is not constant and varies
with position and the range of c(u,v) varies depending on the size of the template and it is
not robust to changes in light conditions.

Normalized Cross Correlation (NCC) [48] overcomes these drawbacks by normalizing
the image and the template to the unit length, giving us a cosine-like correlation coefficient,
defined as:

L(u,v) =
¨x,y[ f (x,y)− f̄u,v][t(x−u,y− v)− t̄]√

¨x,y[ f (x,y)− f̄u,v]2¨x,y[t(x−u,y− v)− t̄]2
(4.6)

where t̄ is the template pixel mean and f̄u,v is the frame mean of the region under the feature.

4.4.2 Lucas Kanade

There exist multiple versions of the Lucas Kanade algorithms. In this work we have imple-
mented the most common ones, in order to determine the best approach for the DLIG align-
ment. The different four algorithm implemented are: Lucas Kanade Addive/Compositional
and Lucas Kanade Inverse Additive/Compositional. In addition, for each algorithm, we have
implemented two version, one for estimating only translations and another for estimating
affine transformations.

In Fig. 4.3 and 4.4 show the comparison of the different algorithms proposed. The pre-
sented results, were obtained by tracking 8000 points on 10 different datasets of 10 synthetic
images each. Fig. 4.3 shows the error histogram based on Euclidean distances (in pixels) with
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respect to the algorithm output and a ground truth. Besides, fig. 4.4, shows the histogram of
iterations needed to converge for each point. Note that the values are shown in percentages
in order to simplify the evaluation.

In the next subsections we describe in detail the Lucas Kanade methods implemented in
this work.

Lucas Kanade Additive

Lucas Kanade Additive, presented in [52], was the first tracking algorithm of this kind. In
this work, we follow the notation and description presented in [4]. The goal of the Lucas
Kanade algorithm is to minimize the sum of squared error between two images, a template T
and an image I warped back onto the coordinate frame of the template:

ẍ
[I(W(x;p))−T(x)]2, (4.7)

where x = (x,y)T is the pixel coordinates andW(x;p) is the warping function (which could
be a transformation matrix) applied in the point x with parameters p.

Lucas Kanade assumes that p is known and iteratively minimizes equation 4.7, for incre-
ments of-p:

p= p+-p. (4.8)

and equation 4.7 becomes:

ẍ
[I(W(x;p+-p))−T (x)]2, (4.9)

The Lucas Kanade algorithm uses Taylor series to optimize the non-linear expression in
equation 4.9. By performing a first order Taylor expansion on the warping function, we get:

ẍ
[I(W(x;p))+1I yW

yp -p−T(x)]
2, (4.10)

where 1I = ( yI
yx ,

yI
yy ) is the image gradient evaluated at W(x;p) and yW

yp is the Jacobian of
the warp, computed as:

yW
yp =

( yWx
yp1

yWx
yp2

· · · yWx
ypn

yWy
yp1

yWy
yp2

· · · yWy
ypn

)
. (4.11)
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Figure 4.3: Histogram of error produced (Euclidean distance in pixels) with respect to the
algorithm output and a ground truth. This graphic was made by tracking 8000 points in ten
different synthetic images.
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Figure 4.4: Histogram of iterations needed to converge for each Lucas Kanade-based algo-
rithm. The results were obtained by tracking 8000 point in ten different synthetic images.
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where n is the number of parameters of our warping model. In this case p has only 2 param-
eters, translation on x and y, giving us:

yW
yp =

(
1 0
0 1

)
. (4.12)

Setting equation 4.10 equal to zero and solving gives the closed form solution:

-p= H−1
ẍ
[I(W(x;p))]T [T (x)− I(W(x;p))], (4.13)

where H is the n× n (Gauss-Newton approximation to the) Hessian matrix:

H =
ẍ
[I

yW
yp ]T [I

yW
yp ]. (4.14)

which is in this case is a 2× 2 matrix.

The affine version of this algorithm only differs by the warping function. In this case, it
has six parameters corresponding to Affine transformations. Then yW

yp becomes:

yW
yp =

(
x 0 y 0 1 0
0 x 0 y 0 1

)
. (4.15)

and the Hessian H is now a 6× 6 matrix. The rest of the algorithm is the same.

The Lucas Kanade Additive algorithm is less demanding in terms of computation time
with respect to the NCC. However, Lucas Kanade Additive needs an accurate initialization to
find a proper solution. If the misalignment between the template and the image is bigger than
a half of the size of the template, finding a good solution becomes impossible. In addition,
this algorithm requires a lot of iterations to converge.

Lucas Kanade Compositional

In this case the alignment proposed in sec. 4.4.2, is improved by updating the warping func-
tion using the compositional method proposed in [76]. In this case, the warping function
is:

W(x;p) =W(x;p)◦W(x;-p)≡W(W(x;-p);p). (4.16)

and can be computed easily in a matrix form,
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W(W(x;-p);p) =



1+ p1 p3 p5
p2 1+ p4 p6
0 0 1








1+-p1 -p3 -p5
-p2 1+-p4 -p6
0 0 1



−




−1 0 0
0 −1 0
0 0 1



 (4.17)

Note that when estimating only translations the additive and compositional methods are
equivalent. The compositional version reduces the number of iterations in the Lucas Kanade
algorithm.

Lucas Kanade Inverse Additive

Lucas Kanade Inverse Additive was presented in [32]. This algorithm increase the efficiency
by switching the role of the image and the template. In this case, the inverse compositional
algorithm minimizes:

ẍ
[T (W(x;-p))− I(W(x;p))]2, (4.18)

with respect to-p and then updates the warp:

W(x;p) =W(x;p)−W(x;-p). (4.19)

After performing first order Taylor expansion on equation 4.18, this gives:

ẍ
[T (W(x;0))+1T yW

yp -p− I(W(x;p))]2, (4.20)

where T (W(x;0)) is the identity warp. Finally, setting equation 4.20 to zero and solving
gives the closed form solution:

-p= H−1
ẍ
[1T yW

yp ]T [I(W(x;p))−T (x)], (4.21)

where the Hessian H is in this case defined as:

H =
ẍ
[T

yW
yp ]T [T

yW
yp ]. (4.22)

In this approach the gradient, the Jacobian and the Hessian can be precomputed since they
do not depend on p. Therefore, this approach is very convenient for improving the overall
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computation time.

The affine version only differs in the Jacobian function and it is computed as in equation
4.15.

The rest of the alignment algorithm is the same as the one presented in sec. 4.4.2.

Lucas Kanade Inverse Compositional

This version of the Lucas Kanade algorithm was presented in [23, 3]. In this case, the param-
eters are updated using the compositional method:

W(x;p) =W(x;p)◦W(x;-p)−1 ≡W(W(x;-p)−1;p). (4.23)

the only difference from the update in the forwards compositional algorithm in equation
refeq:compositional is that the incremental warp is inverted before it is composed with the
current estimate. It can be computed easily in a matrix form:

W(W(x;-p)−1;p) =



1+ p1 p3 p5
p2 1+ p4 p6
0 0 1








1+-p1 -p3 -p5
-p2 1+-p4 -p6
0 0 1




−1

−




−1 0 0
0 −1 0
0 0 1



 (4.24)

Again we want to remark that when the warping model only covers translations the com-
positional and additive versions are equivalent.

We have used the results obtained with this approach to present the experimental results
in the next section, since the accuracy is similar to Lucas Kanade Affine Additive with a no-
table reduction in computational time and number of iterations.

Feature method based on SIFT

Feature based methods find the point correspondences by first selecting a set of locations in
both images. The points are selected to have representative local image properties so they are
likely to be detected independently of the point of view of the camera. Then for each point
a descriptor is extracted, which could be color, gradients, etc. Finally, the transformation
is computed as the one maximizing the matching between both the set of locations over the
current frame and the set of locations over either another frame or the mosaic. In this work
we use a similar approach to [13, 85]. Both extract a set of SIFT features from all the images
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and then use algorithms for eliminating outliers. In our case we use RANSAC. We have used
the OpenCV implementation of the SIFT algorithm.

4.5 Experimental Results

In this section we have 3 main aims. The first one is to evaluate the performance of our
method using different types of tracking algorithms. Secondly, we deal with the perfor-
mance of the DLIG alignment with frame-to-frame and frame-to-mosaic alignment strate-
gies. Thirdly, we select the best performing tracking algorithm and show some performance
examples. We include in our evaluation interlaced videos and changes in illumination, since
they are very common in practical applications.

4.5.1 Description of the test videos

In order to evaluate the performance of the different mosaicing algorithms, we generated a
set of synthetic video sequences from large real images, simulating different camera move-
ments. We use synthetically created videos because it is otherwise very difficult to obtain a
ground truth allowing a quantitative performance evaluation. More precisely, these videos
are generated by applying a transformation pattern to 2363x1073 static images of different
characteristics and then cropping a 640x480 patch from the center of the transformed image.
We have generated two different transformation patterns. The first one is defined by equation
4.25. It contains a projective warp and a translation.

Ti =




1 0 −10i
0 1 0
0 0 1








cos(Fi) 0 sin(Fi)
0 1 0

−sin(Fi) 0 cos(Fi)



 (4.25)

where Fi = −0.001Ui
180 . The second pattern is defined by equation 4.26. It contains an affine

transformation, including scaling, rotation and translation.

Ti =




0.99icos(Gi) −0.99isin(Gi) 5i
0.99isin(Gi) 0.99icos(Gi) 5i

0 0 1



 (4.26)

where Gi = iU
180 .

The final sequences consist of 35 frames obtained by incrementally applying the transfor-
mation patterns and another 35 frames consisting of the reverse of the first 35 frames. This
results in 70 frames per sequence, where the first frame and the last frame match. Fig. 4.5
shows a scheme of how these videos are generated.



4.5. Experimental Results 63

���
�

�����
�����
�

��


�

��������

��
�

����������	�������

����
�

����
�

Figure 4.5: The top half shows a scheme of how the video sequences are generated (projective
pattern on the left, affine one on the right). On the bottom, the images used to generate the 16
test sequences.
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Additionally, we created an interlaced version of each of these sequences in order to eval-
uate the algorithm performance in such conditions. It is important to note that the minimum
error to expect in interlaced videos is dependent on the camera movement. The first frame of
the sequences is not interlaced and when compared to the rest of frames, which are already
interlaced, an error is naturally produced and propagated over all the process (our error mea-
sure is an average of pixel position errors). Therefore, the objective in interlaced videos is not
to have no error but instead to not accumulate further error throughout the sequence. Fig. 4.6
shows a comparison between the progressive and the interlaced version of a frame. In total
we have 16 different video sequences for quantitative testing purposes.

4.5.2 Implementation details and results obtained

Each test is initialized using a set of reference points placed on a regular 7x5 lattice, using
patches of 70x70 pixels to construct their representation.

The results of comparing the different tracking algorithms considered, together with a per-
formance comparison with respect to the different alignment approaches, are shown in table
4.1. To quantitatively evaluate the mosaicing error, we compute for each pixel the Euclidean
distance between its location through the estimated transformation and its real location. We
provide the mean and variance of these errors in the first columns. This table also includes
graphics summarizing the evolution of the error along the sequence; for example it is possible
to see the error accumulation phenomenon for the case of frame-to-frame alignment. These
graphics are composed of 70 concatenated vertical histograms (one per frame), where the x-
axis represents frame number (from 1 to 70) and the y-axis shows the error in pixel distance
(from 0 to 20). Each of these histograms is constructed by considering the error for each pixel
in the corresponding frame for all the test videos. Darker tones of a bin represent high density
of pixels having an error corresponding to this bin. We also show over the graphics the mean
error using red dots. Note that the errors computed refer to the accumulated estimations and
do not refer to interframe errors.

It is possible to see from the evaluation that the performance of the DLIG alignmentis consis-
tently superior. One important aspect is that the error is not accumulated over the sequences.
In contrast, the frame-to-frame approach presents consistent error accumulation problems.
For the case of frame-to-mosaic approaches, NCC and LK perform well, but the error again
increases with the sequence. For the case of frame-to-mosaic, we use a frame-to-mean-
mosaic approach.
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Progressive Videos
Aligment Tracker F.T. � px X px Error/Frame D.

NCC – 3.555 2.406

Frame to LK – 25.94 15.85

Frame SR 1 12.10 17.05

KT – 2.781 2.170

NCC – 3.162 2.180

Frame to LK 2 4.794 2.367

Mosaic SR 6 – –

KT – 225.5 195.5

NCC – 1.486 0.944

DLIG LK – 3.952 1.8849

Aligment SR – 1.240 0.841

KT – 1.186 0.810

Table 4.1: Alignment error comparison. SR stands for SIFT + RANSAC and KT for Kernel
Tracking. The graphics show in the x-axis the frame number, from 1 to 70, and on the y-axis
(ranging from 0 to 20) the computed error in terms of mean for the frame pixels (red) and their
quantized distribution (grey). See text for details on the graphic construction. Error/Frame D.
means Error/Frame Distribution.
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Interlaced Videos
Aligment Tracker F.T. � px X px Error/Frame D.

NCC 1 18.78 27.10

Frame to LK 1 26.52 14.97

Frame SR 8 – –

KT 8 – –

NCC 8 – –

Frame to LK 8 – –

Mosaic SR 8 – –

KT 8 – –

NCC 1 5.532 3.459

DLIG LK – 6.259 3.582

Aligment SR 8 – –

KT – 4.646 1.386

Table 4.2: Alignment error comparison. SR stands for SIFT + RANSAC and KT for Kernel
Tracking. The graphics show in the x-axis the frame number, from 1 to 70, and on the y-axis
(ranging from 0 to 20) the computed error in terms of mean for the frame pixels (red) and their
quantized distribution (grey). See text for details on the graphic construction. Error/Frame D.
means Error/Frame Distribution.
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Figure 4.6: A progressive frame from a test sequence (left), and the same frame of the inter-
laced version of the video sequence (right).

Since the DLIG alignment relies on the tracking performance, it is safe to say that the
final mosaicing algorithm inherits the properties and limitations of the tracking algorithms.
The most illustrative case is the performance with interlaced videos for SIFT and kernel
tracking. Whereas they perform very similarly for deinterlaced videos, SIFT completely fails
with the interlaced ones. This is due to the nature of the SIFT descriptor, based on orienta-
tion of edges, which are completely distorted in interlaced videos. In contrast, kernel tracking
performs very well with interlaced videos. The representation used in kernel tracking, kernel-
weighted histograms, is well known for being very robust against blurring. In practice, for
kernel tracking the representations of the interlaced and deinterlaced version of the same re-
gion are very similar.

Given the results of the performance evaluation, we adopt the kernel tracking as the most
reliable, both in interlaced and progressive videos. It is also the less computationally de-
manding.

We made some further performance evaluations to establish the optimal parameters of the
representation for kernel tracking. More precisely, we selected the optimal number of kernels
and whether isotropic or anisotropic kernels should be used. We tested kernel-weighted rep-
resentations formed by 1, 4 and 9 kernels (see Fig. 4.7). The experimental results are shown
for progressive videos in table 4.3 and for interlaced videos in table 4.4, where is highlighted
in bold the best configuration. It can be seen that there is an improvement in the perfor-
mance between using 4 kernels compared to using just 1. Using 9 kernels leads to almost no
performance improvement, while the computational cost grows with the number of kernels.
The use of anisotropic kernels further improves the performance (1.186 vs. 1.015 average
error respectively). In order to match the same scene region seen in two different frames, it
would be necessary to consider projective transformations. Therefore, the kernels responsi-
ble for creating the patch representation should undergo the same transformation, leading to
anisotropic kernels. However, it is possible to approximate them using isotropic kernels, as
depicted in Fig. 4.7. It is therefore reasonable that the obtained results are less accurate. But



68DLIG:DIRECT LOCAL INDIRECTGLOBALALIGNMENTFORVIDEOMOSAICING

Progressive Videos
Tracker � (px) X (px) Error/Frame Distribution

Kernel Tracking with 1
Isotropic Kernel 1.3952 1.1139

Kernel Tracking with 4
Isotropic Kernels 1.1864 0.8101

Kernel Tracking with 9
Isotropic Kernels 1.1384 0.72221

Kernel Tracking with 1
Anisotropic Kernel 1.1258 0.94817

Kernel Tracking with 4
Anisotropic Kernels 1.0148 0.59686

Kernel Tracking with 9
Anisotropic Kernels 0.98805 0.54936

Table 4.3: DLIG alignment accuracy depending on the Kernels Tracking configuration on
progressive videos

Figure 4.7: Left images: Region representation using different number of kernels (1, 4 or 9).
Right: a projective deformation of a region produces anisotropic kernels. It can be approxi-
mated using isotropic kernels

anisotropic kernels present a computational drawback, since the growth in computational cost
is significant. When using isotropic kernels instead, it is possible to generate look-up tables.
A look-up table is a large set of precomputed kernels at different scales, so whenever a kernel
suffers a scaling, it is only necessary to look for it on the table instead of computing its values
again. This is possible when the kernels are isotropic, since only the scale can change. For
anisotropic kernels instead, the variability is too high, since an anisotropic kernel is defined
by 3 parameters instead of the 1 required for isotropic kernel. If the computational cost is not
a restriction, the use of anisotropic kernels would fit best. In our case we use isotropic kernels
because of the real-time requirement.
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Interlaced Videos
Tracker � (px) X (px) Error/Frame Distribution

Kernel Tracking with 1
Isotropic Kernel 5.0203 2.1828

Kernel Tracking with 4
Isotropic Kernels 4.6457 1.3862

Kernel Tracking with 9
Isotropic Kernels 4.6198 1.3052

Kernel Tracking with 1
Anisotropic Kernel 5.0694 2.3921

Kernel Tracking with 4
Anisotropic Kernels 4.6938 1.52

Kernel Tracking with 9
Anisotropic Kernels 4.6414 1.3439

Table 4.4: DLIG alignment accuracy depending on the Kernel Tracking configuration on in-
terlaced videos

Global
I.V. Error

I.V. Range F � X � X Error/Frame

[-5,5] – 2.47 1.46 2.77 3.79

[-10,10] 4 5.15 2.82 2.33 2.43

[-15,15] 3 7.54 4.27 3.89 5.46

[-20,20] 6 – – 11.1 14.9

Table 4.5: Kernel Tracking DLIG mosaicing accuracy under two illumination change patterns.
I.V. stands for intensity variation. F stands for failed mosaics. The graphics are constructed as
in table 4.1 (see text for further explanation)
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Block
I.V. Error

I.V. Range F � X � X Error/Frame

[-5,5] – 2.48 1.44 1.65 1.60

[-10,10] 2 5.00 2.88 2.19 2.28

[-15,15] 2 7.52 4.30 3.72 4.25

[-20,20] 3 10.1 5.75 5.50 7.11

Table 4.6: Kernel Tracking DLIG mosaicing accuracy under two illumination change patterns.
I.V. stands for intensity variation. F stands for failed mosaics. The graphics are constructed like
in table 4.1 (see text for further explanation)

In order to test the capability of the DLIG algorithm to resist illumination changes, we de-
signed a modification of the 8 synthetic test videos described before. For each of these frames,
a random illumination variation pattern was added. The results of this experiment are shown
in tables 4.5 and 4.6. We performed two different experiments depending on the illumination
pattern added (numbers refer to a scale of [0,255]). In the first one, uniform global noise was
added to the frame, where the value of the illumination change was randomly selected within
an interval following a uniform distribution. These results are shown on the left part of the
table. It is important to note that having an interval of [-10,10] means the illumination change
between two consecutive frames might be up to 20. The second pattern used divided the im-
age into 16 blocks, and each of them was transformed using a uniform illumination pattern,
again with a value randomly selected using a uniform distribution within a range. It is worth
mentioning that these tests are performed without applying any illumination normalization to
the frames, which would be recommended for the final application.

It is possible to see that for the block illumination pattern the results are better than for
the global illumination one. Since the intensity of the variation is random, it is expected that
some of the 16 blocks have a smaller illumination change. In these cases, the alignment can
rely more on such regions.

The robustness of the alignmentmethod to illumination changes depends on the properties
of the tracking algorithm. For these experiments we used 12-bin kernel-weighted histograms.
In practice, the bin width is of about 20. This implies robustness against illumination changes
smaller than the width of the bin (like for those changes within the [-5,5] range), while for
comparable or larger illumination changes the matching becomes unstable.

We also tested the performance of our method on a large sequence with slow changes
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Frame di!erence

Frame di!erence

Frame di!erence

Frame di!erence

Frame 37.000

Frame 37.000

Frame 37.000

Frame 37.000

Frame 150

Frame 150

Frame 150

Frame 150

Figure 4.8: Comparison of light changes in a long interlaced sequence recorded using a
Sony handycam DCR-PC110E. The blocks building the image correspond to frame 150, frame
37000, and their difference. It is important to note the color change, which produces some
differences when subtracting the frames.
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in the illumination, so the performance depends to a large degree on the ability to adapt the
model to the ongoing changes. In Fig. 4.8, we combine blocks of frame 150, frame 37000,
and their difference. It is possible to see the precision of the matching performed, even when
there are 36850 frames in-between, which at 25 fps adds more than 25 minutes. Again, no
illumination normalization was used in this sequence.

In order to provide a qualitative vision of the performance of our method, we show some
experiments obtained with real sequences. The first experiment shows that our method does
not accumulate error when building a mosaic from a large sequence. The obtained result is
shown in Fig. 4.9. We used a sequence containing a typical surveillance situation, where the
camera rasterizes a scene, with mostly but not only panning movement. The trajectory of
the camera is shown over the mosaic. The sequence is composed by 2200 interlaced frames
recorded using a Sony handycam DCR-PC110E with a resolution of 640x480 pixels, and the
video is interlaced. The experiment consists of showing regions of different frames which
share the same mosaic coordinates. If the mosaic is perfect these regions should be equal
(except for illumination changes or moving objects). For example, frames 733, 979 and 1762
have a significant overlap, and the difference between the overlapping parts is shown. The
same is done with frames 407, 1223 and 1367. The difference between these frames is small,
even taking into account that the video is interlaced. Only regions with moving objects show
a significant difference.

Some more qualitative examples are shown in Fig. 4.10 and 4.11. The figure shows the
mosaics obtained and summarizes the field of view evolution within the sequences.

4.5.3 Memory requirements and computational cost

Our algorithm is capable of performing real-time video mosaicing, considering that the mo-
saic is not explicitly computed nor visualized. In order to achieve real time also for these
functionalities, it is necessary to use multithreaded programming. For example, [51] achieve
it by using CUDA language and two parallel threads.

We have built a C++ single-threaded implementation of this algorithm capable of running
in real time for videos with high resolution. For example, we are capable of processing a
720x512 resolution video, excluding frame load, at 48,04 frames per second using a PC with
a Core i7 920 (2,66Ghz) CPU, or at 28,98 frames per second on a laptop with a Core 2 Duo
T7200 (2Ghz) CPU. Another important property is that the computational cost remains con-
stant with time.

The memory storage requirements are very small. The amount of stored data grows lin-
early with respect to the extent of the mosaic, since only the representation of the reference
points has to be stored, with each of these representations being just a vector.
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Figure 4.9: The figure shows the mosaic generated with the entire sequence (2200 frames). The
green line shows the camera’s trajectory and the dots mark the point of view each 10 frames.
The color code indicates the frame, where the yellow color is used for the first frames, and the
red ones for the last. The comparisons result from subtracting frame 733 from 979, and from
1762 (two differences on the left) and 407 from 1223 and 1367 (the two on the right).
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Figure 4.10: This example shows a 256-frame interlaced video, recoded from an UAV with a
resolution of 720x576 pixels. A trapezoid is plotted every 10 frames showing the FOV, while
the color of the trapezoid indicates time, where yellow marks the first frame and red the last
one.
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Figure 4.11: This example shows a 1000-frame progressive video, recorded using a hand-held
photo camera (Cannon ixus 750) with a resolution of 640x480 pixels. A trapezoid is plotted
every 10 frames showing the FOV, while the color of the trapezoid indicates time, where yellow
marks the first frame and red the last one.
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Chapter 5

Real-Time Stereo Mosaicing using
Feature Tracking

Until now, we have seen that by computing the 2D motion between frames it is possible to
align the frames in a video sequence. However, the creation of multi-view stereo mosaics
requires more accurate 3D motion computation. Fast and accurate computation of 3D motion
is challenging in the case of unstabilized cameras moving in 3D scenes, which is always the
case when stereo mosaics are used. Efficient blending of the mosaic strip is also essential.
Most cases of stereo mosaicing satisfy the assumption of limited camera motion, with no for-
ward motion and no change in internal parameters. Under these assumptions, uniform sideways
motion creates straight epipolar lines. When the 3D motion is computed correctly, images
can be aligned in space-time volume to give straight epipolar lines, a method which is depth-
invariant.
We propose to align the video sequence in a space-time volume based on efficient feature
tracking, and in this chapter we used Kernel Tracking. Computation is fast as the motion is
computed only for a few regions of the image, yet giving accurate 3Dmotion. This computation
is faster and more accurate than the previously used direct approach.
We also present Barcode Blending, a new approach for using pyramid blending in video mo-
saics, which is very efficient. Barcode Blending overcomes the complexity of building pyra-
mids for multiple narrow strips, combining all strips in a single blending step.
The entire stereo mosaicing process is highly efficient in computation and in memory, and can
be run on mobile devices.

5.1 Introduction

In the previous chapters, we have presented techniques for mosaic construction for videosequences with negligible parallax effect. In such cases, only 2D motion is necessary to
align the frames in a video sequence. However, when the camera has translational move-
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ment, computing a 2D motion is not enough. In this chapter, we study the motion parallax
caused by translational motion of the camera in order to create stereo mosaics using a single
camera.

Stereo mosaics (or stereo panoramas) from a single camera are created by stitching to-
gether the video frames into at least two mosaic images that can create a 3D effect for the
viewer. The 3D effect can be generated only when the captured scene has depth differences,
and when the motion includes translation to create motion parallax.

Stereo mosaics from a single camera were first introduced in [64], [65], and were gen-
erated in two steps. The first step computed image translation and rotation between video
frames, and the second step was mosaic stitching. Left eye mosaics were stitched from strips
taken from the right side of the frames, and right-eye mosaics were generated from strips
taken from the left side of the video frames. Generation of any number of views has been
described in [68].

Computing a global image motion, e.g. a global rotation and translation between frames,
results in distorted stereo mosaics, as relevant scenes have 3D parallax that can not be de-
scribed by global parametric motion. The accuracy of motion computation can be increased
when observing that the motion used for stereo mosaicing is limited: there is no forward mo-
tion, and there is no change in internal parameters. This observation was used in [71], [68]
to propose depth invariant image alignment of the video sequence in an x− y− t space-time
volume, see Fig. 5.1.

The concept of Time Warping has been introduced based on the EPI (epipolar) planes
described in [12]. Paper [12] observed that when the camera motion is constant, the lines
generated by the trajectory of features in the EPI planes (epipolar lines) are straight lines
(see Fig. 5.2a). In this case, by “slicing” the space-time volume we can generate a mosaic.
However, in most of the cases the camera has variations in its motion, affecting the epilines’
trajectories and resulting in distorted mosaics. Time Warping was a resampling of the t axis
in order to make the epipolar lines straight, simulating a constant velocity (see Fig. 5.2b).
The method proposed in [71, 68] uses Lucas Kanade [52] over the entire image, making it
computationally expensive.

As in [71, 68] we propose to align the video sequence using the x− y− t space-time vol-
ume, but using efficient feature tracking instead of using Lucas Kanade. In chapter 4, Kernel
Tracking has been demonstrated as a very efficient and accurate technique for moasicing pur-
poses. With our novel approach, only a few regions of each frame are needed in order to
obtain the epipolar lines, resulting in real-time 3D alignment. All the alignment parameters
can be computed in a single step using a Newton-style approximation, taking advantage of
the character of the Kernel Tracking.

Another contribution in this chapter is the introduction of a new pyramid blending scheme
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Figure 5.1: (a) Every region of the image sensor corresponds to a different viewing direction.
(b) Stereo mosaics are generated by creating the left-eye mosaic from strips taken from the
right side of the video frames, and the right-eye mosaic is created from strips taken from the
left side of the video frames. (c) Stacking the video frames in an x− y− t space-time volume.
Creating a stereo mosaic can be seen as “slicing” the space-time volume by two y− t planes.
One on the left side and one on the right side.

(a) (b)

Figure 5.2: Resulting epilines when the camera has constant motion and when the camera
has variations in its motion. In figure (a) an example of a sequence recorded camera that has
constant motion is shown. While in figure (b) the same sequence is shown, but in this case the
camera has variations in its motion. By resampling the t, Time Warping is able to straighten
the epilines.
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[14] for video mosaicing, overcoming the difficulty in blending together multiple narrow
strips. The new blending, Barcode Blending, blends all strips in a single blending step.

The remainder of this chapter is structured as follows: Section 5.2 provides a detailed
description of our image alignment approach, and section 5.3 presents mosaic generation and
Barcode Blending. Finally, in section 5.4 the experiments conducted are described.

5.2 3D Motion Computation

In stereo mosaicing, when creating multiple views of a 3D scene, 2D image alignment is not
appropriate. Computation of the 3D camera motion is needed for the creation of undistorted
stereo mosaics. Following [71, 68], we align frames in the space-time volume so that EPI
lines [12] become straight.

The alignment parameters of each frame fi are <i = {ti,yi,Vi}, placing the frame fi in
the x− y− t space-time volume such that the epipolar lines become straight. Parameters
{ti,yi,Vi} correspond to the time, the vertical displacement, and the rotation angle of frame
fi. We refer to this alignment as the Time Warping motion model.

In the next sections, we will first describe in detail our Time Warping approach. After-
wards, a summary of our algorithm will than be provided.

5.2.1 Time Warping Motion Model

Following [12], EPI lines in a video sequence are trajectories of feature points in (x,y, t) 3D
space, where t is the time of each frame. When the camera undergoes translation in a constant
velocity in a static scene, all EPI lines are straight lines (see Fig. 5.3). The slope of each line
represents the depth of the corresponding feature point, where very far feature points will
create lines almost perpendicular to the x− y planes, while closer feature points will create a
smaller angle with the x− y planes. If we assume that the camera motion is a purely constant
horizontal translation, the location of the feature point moves by a constant x displacement
m between successive frames, where m corresponds to the depth of the point (the smaller m,
the more the deep point). Formally, the EPI lines in the x− y− t space-time volume can be
recursively defined in a matrix form as:





xi
yi
ti
1



=





1 0 0 m
0 1 0 0
0 0 1 1
0 0 0 1









xi−1
yi−1
ti−1
1



 , (5.1)
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Figure 5.3: Scheme of how tracking a target can describe an EPI line in the x−y−t space-time
volume. The red line represents an EPI line, and the rectangles represents frames of a video
sequence panning from left to right. The red circle represents the target.

where m is the slope of the EPI line in the (x, t) axis and i is the frame number. We use
homogeneous coordinates since the transformation involves displacements. In this case, if
we “slice” the space-time volume with a y− t plane we get a reasonable mosaic image of the
scene. But in most cases the motion of a hand-held camera is not constant and has rotations
and vertical displacements. In such a cases, EPI lines can be defined recursively in a matrix
form as:





xi
yi
ti
1



=





cos(-Vi) −sin(-Vi) 0 m
-ti

sin(-Vi) cos(-Vi) 0 -yi
0 0 1 -ti
0 0 0 1









xi−1
yi−1
ti−1
1



 , (5.2)

where-ti,-yi and-Vi represent the motion parameters of frame fi: the horizontal transla-
tion of the camera, the vertical image displacement, and the image rotation about the optical
axis. These parameters are identical for all tracked feature points in image fi, and represent
the increments of these parameters with respect to the previous image. Our goal is to compute
the parameters -ti, -yi and -Vi (three parameters for each image) such that the EPI lines
become straight, and Eq. 5.2 is satisfied. This is equivalent to compensating for the vertical
displacements and rotations of the image, and compensating for the horizontal translation of
the camera by Time Warping.

Following the previous chapter of this thesis, we optimize the motion parameters using
Kernel tracking with SSD, which was introduced in chapter 3. As a reminder, in Kernel
Tracking the center c of the Kernel function was defined in terms of x and y coordinates and
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was optimized to minimize the Matusita metric, which is defined as:

O(c) = ||√q−
√
p(c)||2. (5.3)

We would now like to optimize equation 5.3 in terms of t, y and V. We use equation 5.2
to find the center of the kernel function c in the image frame and the Jacobian of the Kernel
Function, which is computed from the gradients of the Time Warping parameters as follows:

JK =

[
yK
yt

,
yK
ycy

,
yK
yV

]
=
[
JKt ,JKy ,JKV

]
. (5.4)

where JKt and JKV can be computed using the chain rule as:

yK
yQ

=
yK

yc(x,y)
yc(x,y)

yt
=

yK
ycx

m (5.5)

yK
yV

=
yK

yc(x,y)
yc(x,y)

yV
=

yK
ycx

(y−Cy)−
yK
ycy

(x−Cx) (5.6)

where (Cx,Cy) is the frame center. In this case the output of Kernel Tracking becomes-c=
(-t,-y,-V).

5.2.2 3D Alignment by Time Warping

Our algorithm is based on two alternating steps. In the first step we use Kernel Tracking to
track L target regions which are distributed over the frame as described in chapter 3. The
paths of these tracked regions, {k j} j=1:L, are used to estimate straight EPI lines by comput-
ing the global mj slope for each track. The global slopes mj are computed using an iterative
mean of the target velocity in the x− y− t space-time volume, (-x j-ti ).

The second step (Sec. 5.2.1) consists of computing the Time Warping motion parameters
using the estimated slopes of the EPI lines as computed in the previous step.

It is important to maintain a uniform distribution of tracked target regions during the
alignment process in order to get accurate motion estimation. We do this by dividing the
frame into sections, requiring that one target will be selected from each section. If a section
contains two or more targets, only a single target is used. In our implementation we used the
target region belonging to the longest track. In addition, new targets are selected for those
sections having no targets.

Targets giving inaccurate trajectories are also removed. This includes targets placed on
uniform regions, targets with a high SSD error after alignment, or targets that overlap the
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Figure 5.4: Evolution of some target regions in a video sequence. Each circle represents a
target and the color its state. From green to red the SSD error (green less error) is represented.
The targets detected on flat regions are pink, targets out of bounds are black and new targets
white.
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image boundaries. Targets with a high SSD error or targets overlapping the image boundaries
are trivial to detect. Targets placed on flat regions are detected using PS(MTM) (see Eq. 5.7),
where in [26] it is demonstrated that the Schatten norm of the matrixMTM is related to the
accuracy of the estimation. When PS(MTM) is above a certain threshold it means that the
target region is placed on a flat region. Note that this process is performed in the first step
of the proposed algorithm where only x and y parameters are estimated, therefore the matrix
MTM is a 2×2 symmetric and positive definite. In such a case PS(A) can be easily computed
as:

PS(A) =
(a11+a22)2

a11a22−a12a21
. (5.7)

A summary of the proposed algorithm is shown in algorithm 3 and an example of the
evolution of the tracks in the fist step is shown in Fig. 5.4.

Algorithm 3: Stereo Mosaic construction using Feature Tracking
Data:
Video Sequence F = { fi}i=1:N
Trackers K = {k j} j=1:L
Alignment Parameters<0 = {0,0,0}
Result:
Stereo Mosaic imageM

1 begin
2 for i← 1 to N do
3 Step 1. Track K;
4 Step 2. Compute Time Warping <i;
5 ∀k j ∈ K update mj;
6 ∀k j ∈ K replace if is necessary;
7 Update the mosaicM using fi−1 and <i−1;

5.3 Mosaic Construction

Once the video sequence is aligned, the mosaic image is generated by concatenating strips
from different frames. Each strip si ∈ fi is generated by cutting a region surrounding the
intersection Ii = fi

⋂
Py−t between a frame fi and a plane Py−t in the x− y− t space-time

volume (see Fig. 5.7(a)). The width of strip si depends on the image alignment and is defined
as:

si = {x ∈ fi|[Ii−
di
2
, Ii+

di+1
2

]}, (5.8)

where di = �m)ti, and �m is the mean of all EPI lines slopes mj (see Fig. 5.7(b)). Simple
stitching of the strips produces visible misalignments caused by the parallax effect, and strip



5.3. Mosaic Construction 85

blending is needed.

In this work we present Barcode Blending, a novel blending method which is based on
Pyramid Blending, but only a single blending step is required for blending all strips. This
process is much faster and gives better results when compared to the traditional approach of
blending each strip separately.

First of all we will introduce the Multi-Band Blending and then we will describe, in detail
the Barcode Blending.

5.3.1 Multi-Band Blending

Usually when two images are stitched, the edge between them is visible. The mean of the
overlapped regions removes the edge but can blur the result. Another possible solution is to
add a transition function to either boundary sides. This function, weighs the contribution of
each image depending on the distance. Adding a transition function can improve the visual
perception, but in many cases this results in blurry regions over the boundary. If the transition
function is very steep then the edge is visible and if the transition function has little slope,
then the image becomes blurry. In Fig. 5.5a shows the resultant image after stitching two im-
ages using a transition function with a high slope, while in Fig. 5.5b shows the result by using
a function with lower slope. Note that in the first figure, the edge between them is clearly
visible, while in the next image it is not. However, the image becomes more blurry (see the
rocks in the lower part of the image). Therefore, it is mandatory to select an appropriate
slope in order to maximize the transition. However, this is practically impossible, because
the image is formed by different frequencies and while high frequencies require high slopes,
low frequencies require low slopes.

Multi-Band Blending [14], proposes to decompose the images into different frequency
bands, in order to apply the transition function that better suits for each case. Once we have
stitched each frequency band together the image is recomposed. To decompose the image
into different bands, a set of low-pass filters are applied to generate a sequence of images in
which the band limit is reduced from image to image in one-octave steps. Then the different
frequency bands can be obtained by simply subtracting each low-pass image from the previ-
ous image in the sequence.

The low-pass filtered images G0,G1, ...,GN can be obtained by repeatedly convolving a
Gaussian function and down sampling the image in order to get a new image with a half of
the size. Burt et al.[14] defines this procedure as:

Gi = REDUCE[Gi−1]. (5.9)

The resultant set of low-pass filters is called a Gaussian Pyramid, because the size of each
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Figure 5.5: Comparison between three different blending functions. The top images show the
results after applying the transition functions that are shown in the bottom figures, where the
red line is the function applied to the left image and the blue line is the function applied to
the right image. (a) shows the results of applying a transition function with high slope. As
can be seen, the edge between the two images is visible. (b) is the result of stitching the same
images using a transition function with lower slope. Note that in this case, the edge between
the two images is no longer visible. However, the image becomes more blurry ( see the rocks in
the lower part of the image ). Finally, in figure (c) shows the result after applying Multi-Band
Blending. In this case it is not possible to detect that this image is formed from two different
images. The blending function, in this case, is composed of multiple transition functions, one
for each pyramid level. High image frequencies are stitched together using high slopes, while
lower image frequencies are stitched together using lower slopes.
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low-pass filter decreases at each iteration, forming an inverted pyramid. Note that, G0 is the
original image.

On the other hand, the different image frequency bands Li are generated by subtracting
two consecutive low-pass filters Gi and Gi−1. Note that Gi−1 has half of the size of Gi and
this makes it necessary to interpolate new pixels.
This process is defined as:

G′i−1 = EXPAND[Gi−1], (5.10)

and is performed by copying the values of Gi−1 to even positions of a matrix of twice its size.
Then the pixel values of the rest of the positions are interpolated by convolving the image
by the same Gaussian function used in the REDUCE operation. The resulting equation to
compute the frequency bands is:

Li = Gi−EXPAND[Gi−1], (5.11)

and the set of L0,L1, ...,LN is called the Laplacian Pyramid.

Finally, the image is recomposed by adding all the Laplacian, by iteratively applying the
EXPAND function and adding the result to the superior level in the pyramid. Fig. 5.6, shows
a scheme of the different elements of this method. The left column can be seen the Gaussian
pyramid and the right column shows the Laplacian pyramid. In addition, in Fig. 5.5c shows
the result of applying Multi-Band Blending on the example presented in the first part of this
section.

5.3.2 Barcode Blending

Since Multi-Band Blending is great to stitch together two images with high overlapping re-
gions, it becomes complex and inefficient when it is applied directly to stitch multiple and
small images. Multi-Band Blending requires big overlapping regions, because at each pyra-
mid level the image size is reduced. In addition, the need for generating a pyramid level
for each aligned frame increases the cost significantly. Furthermore, applying Multi-Band
Blending on stereo mosaicing is especially difficult, because mosaics are generated by multi-
ple and very small strips.

Barcode Blending is designed to simplify the mosaic construction using Multi-Band
Blending and at the same time reduce the computational requirement. It starts with the gen-
eration of two different mosaics without blending, one from the odd frames and another for
the even frames. Strips in the odd mosaic are defined as:

sOdd2k+1 = {x ∈ f2k+1|[I2k+1−d2k+1, I2k+1+d2k+2]}, (5.12)
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Figure 5.6: Example of Gaussian Pyramid and Laplacian pyramid. The first column of images
(Gaussian pyramid) are subtracted to the second column (Expanded Gaussian pyramid) giving
as a result the third column (the Laplacian pyramid).

and strips in the even mosaic are defined as:

sEven2k = {x ∈ f2k|[I2k−d2k, I2k+d2k+1]}, (5.13)

where k ∈ [0,N−1]. The number of strips in each of these two mosaics is half of the number
of strips in the final mosaic image, and each strip has double the width. The final mosaic will
be generated by pyramid blending from these two mosaics using a binary mask which defines
which part of the final mosaic is taken from the odd mosaic and which is taken from the even
mosaic. The mask therefore looks like a barcode whose strips have the same widths as the
strips in the final mosaic, and is defined as,

smaski =






[1, di2 ] =

{
0 ⇐ i Odd
1 ⇐ i Even

[ di2 ,di] =

{
1 ⇐ i Odd
0 ⇐ i Even

, (5.14)

Fig. 5.7(c) shows the Barcode Blending process.

Once we have generated the odd mosaic, the even mosaic, and the mask, we blend the
two mosaics according to the mask using a simple pyramid blending. Some results are shown
in Fig. 5.8 and Fig. 5.9. It is important to note that generating the two mosaics and the mask
is a trivial and fast process, and that pyramid blending is used only once.



5.4. Experimental Results 89

X 

Tim
e

Y
 

f1

f2

f3

f4

f5

X 

T
im

e

Blending 

f5

f4

f3

f2

f1
�m�t2

�m�t3

�m�t4

�m�t5

O
dd Fram

es 

Even Fram
es 

M
ask �

m �t2
�
m �t3

�
m �t4

�
m �t5

I1

X 

T
im

e

a) b) c)

Figure 5.7: (a) Mosaic construction as slicing the x− y− t space-time volume. Five frames
of a video sequence are shown in an aligned space-time volume. The generated mosaic is the
blue plane Py−t . Each frame is represented by a different color. (b) Image strips around the
intersection of P, with each image are pasted onto P. In order to simplify the scheme, we
assume that the slope of the epipolar lines �m = 1. (c) Odd, even and mask mosaics generation,
in order to compute Barcode Blending.

5.4 Experimental Results

In all the examples we used a uniform lattice of 12×12 tracked features. The use of anaglyph
glasses will enable the reader to appreciate the 3D effect.

Fig. 5.10 used a video captured from a river boat. A small area is shown from different
mosaics to emphasize the parallax effect between the different mosaic images.

The mosaics in Fig. 5.11 were made from video recorded by a hand held iPhone 4. The
resolution of the captured sequences is 1280×720.

We have implemented the proposed method in C++, and tested it by tracking 144 features
(on a 12×12 lattice) on three HD video sequences (1280×720) running on a Mac Book Pro
15’ 2.66GHz Core i7. The alignment frame rate was ≈18 fps, with implementation not fully
optimized, no hardware acceleration, and using a single thread. The most costly step was the
tracking of 144 features, each of size 31×31 pixels, running at ≈30 fps. The 3D alignment
is computed at a frame rate of ≈45 fps.

Furthermore, we have developed an iPhone/iPad and Android1 application called Snapily3D;
a screen shot of the application, can be seen in Fig. 5.12. The application can be downloaded
here http://itunes.apple.com/us/app/snapily3d/id473670116?mt=8.

1It is under development.
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Odd Frames Mosaic

Even Frames Mosaic

Mask Mosaic

Blend Mosaic

Figure 5.8: Example of odd, even and mask mosaic and the resultant mosaic when Barcode
Blending is applied.
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Figure 5.9: Comparison between mosaic regions with and without Barcode Blending. The top
images belong to a mosaic image generated without any blending and the bottom images are
generated using Barcode Blending.
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Figure 5.10: An anaglyph stereo mosaic generated from a video sequence of 450 frames cap-
tured from a river boat. The bottom images show the same regions as they appear in the different
mosaics, showing different points of view generated using the same aligned volume.
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Figure 5.11: Anaglyph stereo mosaics generated from videos recorded by a hand held iPhone
4, with resolution of 1280×720 pixels.
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Figure 5.12: Snapily3D iPhone application developed using the technology presented in this
chapter.



Chapter 6

Conclusions and Future Work

In this chapter we summarize the main contributions of each chapter with a discussion ofthe key features of our work. In addition, we present a list of open lines of research for
future work.

This chapter is structured as follows, the conclusions of each chapter are presented in
different sections, starting by chapter 2. Finally at the end of this chapter is presented the
lines of research for a future work.

6.1 Background Subtraction for Static Cameras based on
MRF

This thesis starts by solving the problem of motion detection though background subtrac-
tion. The majority of background subtraction algorithms present in the state of the art have
been described and we have seen how these methods can be divided into two main groups:
pixel-level and frame-level. The main difference of these two groups is the use of spatial
information (frame-level uses it and pixel-level does not). The results show that the spatial
information improves the final segmentation; however, the computational cost is increased
substantially. For these reasons the two groups are perfectly valid and the use of one ap-
proach or other depends on the problem.

The work presented in this chapter, is focussed on extending a frame-level background
subtraction method based on Markov Random Fields (MKF). Markov networks, configured
as a uniform lattice connecting adjacent pixels, perfectly suits on the problem of background
subtraction since it can be used to directly add spatial information to pixel-level methods.
The results presented show that, in all the pixel-level methods studied, MKF improves the
final mask. The main problem is the important increase of computational cost. The optimal

95
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state of each node in the network was computed using an approximation of the belief prop-
agation algorithm, which could be the main cause of the growth of the computational cost.
The possibility of using other methods such as graph cuts could be a possible future study.

The main contribution in this chapter is to provide a framework for combining differ-
ent sources of information using an adapted version of the MKR formulation. To this end,
we generate a single discrete function converts the inputs of different binary detectors to a
probability of being background or foreground. Using a single discrete function instead of
multiple functions for each binary detector has a significant impact into the formulation, since
it becomes general and scalable for more complex models. If the only presence of a MKF
improves the final segmentation, the use of multiples sources of information gives even bet-
ter results. The main challenge of our approach is to select the correct information sources,
which are complementary for improving the final motion mask. And again, the computa-
tional cost is increased, since it is necessary to compute the output of each detector.

6.2 Background Subtraction for Non-static cameras based
on MKT

The main limitation of the method presented in chapter 2, and in general for all background
subtraction methods, is the lack of robustness when the camera is not static. For instance,
when the video sequence is recorded using PTZ cameras. In such a case, it is necessary to
compensate for the motion induced by the camera movement, before applying background
subtraction. Otherwise, the background image becomes blurry.

We have shown that it is possible to compensate the camera motion by tracking the whole
frame, when the major part of it belongs to the background. The method proposed is based
on Multiple Kernel Tracking, which lets us compute the 2D camera motion with high effi-
ciency and accuracy. In this chapter, we show how to optimize two different motion models:
a translational model, which can compute displacements on the X and Y axis; and an affine
motion model, which adds rotation and escalations to the previous motion model. Multiple
Kernel tracking has low memory requirements, since the target regions are represented by
histograms (in our case, histograms of 12 bins). In addition, the computation is extremely
fast and converges to a solution in a few iterations (from 5 to 10). This fact is remarkable
since other methods, like Lucas Kanade tracking, need to store all the pixel values of the
target region and require an average of 60 iterations to converge.

We have also shown that it is not sufficient to use the coordinates of a single frame to com-
pute the background image on PTZ-like cameras. Since motion detection can only be applied
to those regions present in the background image (as in this case) the major part of the scene
is not represented. To overcome this problem, we use the background mosaic, which is the
result of incrementally adding to the background image the regions without representation.
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The main drawback of the method proposed is the 2D motion model used (translational
and affine). Aligning frames using these motion models produces misalignments, since a flat
plane tilted with respect to the camera requires projective transformations.

6.3 DLIG: Direct Local Indirect Global alignment for Video
Mosaicing

The main aim in chapter 4 was to increase the accuracy when constructing the mosaic image.
To this end, we have presented DLIG alignment, a new alignment method which combines
the precision of direct methods with the simplicity of estimating complex transformations of
indirect methods.

In addition, we have shown how to deal with the two main problems that arise when con-
structing the mosaic image: the error accumulation and the precision degeneration. The first
is caused by accumulating error when computing the 2D motion over the video sequence.
Even having an alignment method with high accuracy, a small error is produced, which accu-
mulates with the other errors produced by each frame in the video sequence produces huge
misalignment, especially when the camera has circular paths. We have shown how to mini-
mize this problem by computing the alignment using regions from multiple frames (not only
the previous one).

On the other hand, the precision degeneration is caused by aligning warped frames, where
the error produced when aligning patches on different parts of the frame depends on the
amount of deformation produced by the warp. This problem is typically produced when the
mosaic image is used to align the frames. We have shown that keeping an unwrapped rep-
resentation of the the mosaic let us to reduce the precision degeneration due to the frame
locality property.

Additionally, we take benefit from the frame locality property to embed a tracking algo-
rithm, to compute the direct local part of the DLIG alignment. We have also shown that it is
possible to deal with incorrect matching by using weighted alignment estimation, and how to
deal with background changes using a model update strategy.

We have tested different tracking algorithms, concluding that Kernel Tracking is the most
suitable. It can deal with lighting changes in progressive and interlaced videos with high
accuracy and low computational cost and memory requirements.

The main drawback of our approach is that it does not work with low resolution images,
as fewer regions used to track the less accurate the alignment becomes. DLIG alignment uses
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regions which are considerably large compared to other methods. However, nowadays most
of the cameras are HD. The minimumworking resolution for the DLIG alignment is 640x480
(VGA), but it is recommended to use a resolution of at least 800x600.

6.4 Real-Time Stereo Mosaicing using Feature Tracking

We end this thesis by exploring the case of generating mosaics, when the camera has transla-
tional movement. In such case, presence of parallax let us create multiple views of the same
scene. Then a stereo mosaic can be generated by selecting two views corresponding to the
right and left eyes.

The main contribution of chapter 5 is to estimate epipolar lines by tracking different re-
gions over the video sequence into the space-time volume representation. Once we have
multiple epipolar lines we estimate a transformation to straighten its trajectories.

The presented stereo mosaicing method is faster and more accurate than previous ap-
proaches. In our case, the 3D alignment is based on feature tracking, which allows us to
process HD video sequences with low computational cost and memory requirements. In this
chapter we proposed to use Kernel Tracking, but any other feature tracking can be used.

In addition we have presented a new blending method, the Barcode Blending, that per-
fectly fits the problem of blendingmultiple frame strips. Barcode Blending is based on multi-
band blending but presents a substantial improvement in speed and memory when used for
mosaic blending, since only one Laplace of Gaussian Pyramid is needed. Furthermore, it is
trivial to implement and results are better than traditional mosaic blending.

Finally, we have shown that this algorithm can be used in mobile phones, through to the
implementation of an iPhone and an Android applications.

6.5 Future Work

As a future study, we propose to implement the presented algorithm using CUDA, OpenCL
or OpenGL shaders (GLSL). Due to the nature of the GPU it is possible to process a huge
number of task in parallel. This property perfectly suits the algorithms presented in this work,
since they are highly parallelizable. For instance, in the first chapter the process can be paral-
lelized at pixel-level and for the other chapters the regions can be also tracked also in parallel.
Initial tests confirms that a GPU implementation can be 100 times faster.
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Another future line of study is to increase the accuracy of Kernel Tracking by combining
its result with a Lucas Kanade approach. When Lucas Kanade has a close initialization to its
final position, it becomes much more accurate than Kernel Tracking.

Dealing with flat regions is also problematic in the proposed mosaicing methods, we tried
Kalman filters to deal with this, but was not always effective. It should be interesting to work
on this problem in the future.

Mosaicing can be used for many purposes and in this thesis we only deal with some of
them. It could be very interesting to use the frames aligned into a space-time volume to
summarize surveillance video sequences. There is some published work dealing with this
problem using static cameras, but none yet for PTZ cameras.
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