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Chapter 1

Introduction

Process intensification, understood as a significant reduction in the size of process units and
the enhancement of their versatility and efficiency is one of the main chemical engineering
purposes. This increment of efficiency must arise as a consequence of novel designs of pro-
cess equipment that adapt dynamically the mixing in its interior to each kind of application
regarding the demand of heat or mass transfer.

Chemical and environmental engineering, biotechnology, and pharmaceutical industries
widely use process catalysts. The chemical reactions that occur in such processes take place
on catalyst surfaces or pellets. Examples of important processes where catalytic reactions are
involved are the isomerization of glucose and fructose to produce fructose rich syrups [1], lac-
tose hydrolysis to produce commercial infant milk formulas or low lactose milk products [2],
cellulose produced by bacteria to use in medicine and cosmetics [3], or hydroformylation of
olefins to aldehydes to manufacture products such as detergents, surfactants or plasticiz-
ers [4], among many different kind of reactions and applications.

Immobilized catalysts have been preferred over dissolved or suspended ones in stirred
reactors since immobilization facilitates catalyst reutilization and avoids catalyst recovery
and purification processes [5, 6]. In a typical reactor fluid system, when immobilized cata-
lysts are attached to an impermeable solid support, molecules are convected from the bulk
of fluids into the vicinity of the catalyst surface and then transported to the catalyst active
sites by molecular diffusion. This is the reason why mixing is a very important issue in
many applications since the substrate has to be brought into contact with the active sites
of catalysts. In many cases, mass transfer resistances are strongly dependent on substrate
diffusivity, porosity of catalyst carrier and reactor hydrodynamic conditions.

Traditionally, stirred tank reactors have been used since they favour a good distribution
of substrate over the catalyst and it is possible to attain homogeneous conditions over, for in-
stance, the cell cultures in bioreactions, by regulating the degree of agitation. When mixing is
provided by an impeller, convection can be very fast and the process is then controlled either
by the rate of molecular diffusion or by the rate of reaction. Different authors, have analyzed
the influence of the mass transfer resistance on the efficiency of different kind of chemical
reactors. For example, Justen et al. [7], studied the dependence of penicillium chrysogenum
growth and productivity in fed-batch fermentations (to produce penicillin) on impeller type
and agitation intensity. They found that for a given impeller the growth rates and the overall
biomass concentrations increased with agitation intensity, establishing that higher agitation
intensities appeared to cause more fragmentation which could have led to increased forma-
tion of new growing tips. They also suggested that the total power input and the choice of

1
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2 CHAPTER 1. INTRODUCTION

impeller geometry determine the mechanical forces that might affect microorganisms in a
fermentor, thereby influencing growth or production. Sánchez Pérez et al. [8] analyzed the
shear rate in a stirred tank reactor motivated by the fact that microorganisms and other
suspended solids are susceptible to damage depending on the prevailing shear rate, which
they show is a function of the rotational speed of the impeller. Han et al. [9], performed the
numerical simulation on micromixing of viscous fluids in a stirred tank reactor. They found
better micromixing is achieved with a fluid of lower viscosity and a higher agitation speed,
as a result the formation of side products is disfavored and the reaction rates are accelerated.

Thus, when impellers are used, it may be attained high levels of shear in the vicinity of
the impeller blades. This may cause for example cell damages and changes in their morpho-
logical state, which would decrease reaction yield in a given reactor. Accordingly, there is the
need to find equipment which does not use any kind of stirrers, without hindering efficiency.
Given that it is crucial to search for alternatives to traditional agitated systems, the aim of
this work is the design of flow systems that improve mixing considering elimination of any
mechanical mixing accessories. We focus our investigation in the device of highly efficient
and compact configurations for heterogeneous chemical reactors, in particular, in reactors
that have an immobilized catalyst in a solid surface and that follows a first order kinetic
law. We study the mixing enhancement in these reactors via forced convection, by means of
a pair of corotating disks enclosed by a cylindrical cavity, and natural convection, by means
of a cubical cavity where convection is imposed by a difference of temperatures between the
top and bottom wall.

Forced convection flow may cause an efficiency increment facilitating the transport of
the reactant (product), towards (from) the catalytic surface. It is worth to spotlight some
works [10–13] that make use of this. Yu et al. [10] studied the effect of vortex breakdown on
the fluid environment for cell growth via an homogeneous reaction. They made a numerical
study of fluid flow and oxygen transfer in a cylindrical bioreactor whose rotating base wall is
used to generate the medium flow and mixing. Zeng et al. [11], simulated the fluid flow and
mass transfer in a rectangular microchannel bioreactor with a monolayer of cells adherent
to the bottom. The species of interest transfer from the inlet to the cell surface at the bot-
tom of the channel, with a uniform inlet flow velocity, by a convective-diffusive mechanism.
Al-Shannag et al. [12] proposed and analyzed an immobilized enzyme reactor, a cavity of
square cross section where mixing is provided by the sliding top lid. This bioreaction system,
led to low mechanical stresses compared to traditional stirred tank reactors. The highest
velocities and velocity gradients occur near the top wall which is free of enzymes while bio-
cells are attached at the bottom wall where shear is small. More recently, Al-Shannag [13]
showed a similar setup in a toroidally-shaped cavity of square cross section. The stability of
these kind of flows had been previously studied for cartesian and cylindrical geometry [14,15].

Rotation has also been used as a forced convection generator. Examples of this are the
rotating packed beds (RPB) which are very much used nowadays in several applications.
For example, Cheng et al. [16] studied experimentally separation processes for the capture
of carbon dioxide from a gas by chemical absorption with aqueous solutions containing
alkanolamines in a RPB. They found CO2 capture efficiency increased with increasing tem-
perature and was dependent on rotation speed, gas and liquid flow rates. Sung et al. [17],
studied a RPB equipped with blade packings and baffles with potential application to trans-
fer of volatile organic compounds, from gas to liquid. Using an isopropyl alcohol absorption
process, they determined their model enhanced the mass transfer coefficient value, which
was mainly attributed to the increase in slip angular velocity of the gas and improved liquid
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3

mixing, dispersion and distribution in the rotor by static baffles. Hsu et al. [18] discussed the
absorption performance of a rotating packed bed with blade packings in removing methanol
and 1-butanol from binary mixtures finding that the rotating packed bed would be an ex-
cellent absorber for the removal of alkanols from gas streams.

A very classical system to enable and enhance mass transfer is the one of a single rotating
disk. Peev et al. and Peshev et al. [19,20], studied theoretically and experimentally the dis-
solution in liquid film flow on a horizontal rotating disk by means of dissolving gypsum in two
aqueous solutions. Peshev et al. concluded that the speed of rotation is the most important
operative parameter intensifying the dissolution rate in film flow of shear thinning liquid on
a horizontal rotating disk. Tsibranska et al. [21] studied the oxygen desorption from two
water polymer solutions. Numerical and experimental data demonstrate a synergetic effect
of the increase of disk revolutions and decrease of liquid rheology index in intensifying the
mass transfer process. Torras, et al. [22], studied numerically and experimentally the flow
inside a flat membrane module with a smooth rotating disk. They suggested high permeate
fluxes for the device due to large average shear stresses on the membrane and the absence
of stagnant zones inside the module, which are desirable features to avoid membrane fouling
processes.

Application of a single rotating disk to chemical reactors is as well found. Hardacre et
al. [23], studied the selective heterogeneous catalytic reduction of phenyl acetylene to styrene
over palladium supported on calcium carbonate, in a vertical rotating disk reactor (not all
the disk is in contact with the liquid all the time). The reaction in the rotating disk reactor is
dominated by reaction in the entrained film on the disk compared with very limited reaction
in the bulk liquid. Belfiore [24], studied the dynamic shear in continuous flow rotating disk
catalytic reactors. In his parallel disk reactor setup, the reactants chemisorb on the surface
of the rotating plate (the other one remains immobile) and catalytic sites are replenished
from the bulk fluid toward the active surface. Chemical reaction is enhanced by viscous
shear at the interface between the bulk fluid and the rotating plate. The reaction/diffusion
boundary condition on the surface of the rotating plate accounts for stress sensitive reactant
consumption. Meeuwse et al. [25] proposed a setup that consists of a rotor-stator geometry
which consists in a single rotating disk with a catalytic coating spinning inside a fixed cavity
where the fluid flows. A fast chemical reaction (glucose oxidation) takes place in the catalytic
medium which is located on the inferior disk surface. They found an unexpected result, the
Sherwood number, scales as Sh ∝ Re2.02 (105 6 Re 6 7× 105) very different compared with
the 0.5 and 0.9 which are the established values for laminar and turbulent flow respectively.

Instead of using a single rotating disk, our proposal is to use a stack of corotating en-
closed disks as a mixing enhancer in a catalytic chemical reactor. To model it we use only
two corotating disks since no interaction is considered between adjacent spaces. Several
investigations on the flow between two corotatory disks has taken the scientific community
attention [26–40] since it is a simple model that allows to understand the fluid dynamics
basic features of the flow of air inside the computer hard disks. Figure 1.1 shows the most
common geometry used in order to define the problem. As shown, it is made up of two
disks of radius R2 attached to a hub of radius R1 that rotates at an angular velocity Ω. The
disks are separated by a distance H and are confined in a cylindrical cavity which is at rest.
The dimensionless parameters that rule the incompressible flow for this geometry are the
Reynolds number, Re = ΩR2

2/ν, where ν is the kinematic viscosity of the fluid; the aspect
ratio, S = H/R2 and the radii ratio, γ = R1/R2. Disks rotation produce a secondary flow
in the transversal plane where the fluid is moving toward the exterior along the Ekman’s
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4 CHAPTER 1. INTRODUCTION

Figure 1.1: Sketch of the pair of corotating disks problem.

boundary layer close to the surface of each disk. At low Re numbers, the flow is axisym-
metric, i.e., independent of the angular coordinate, and it is characterized by the presence
of a couple of vortices in the transversal plane, similar to the ones that can be observed in
the Taylor-Couette flow [26, 27, 29–31]. It is known that, for laminar flow the heat transfer
velocities for the corotatory disks system are scaled in a similar way to the classical problem
of one rotatory disk, Nu ∝ Re1/2Pr1/3 [31, 36].

Considering the boundary layer flow type characteristic of the problem of the pair of
corotatory disks, it is not surprising that several technological applications have been devel-
oped involving heat or mass transfer between the disk surface and the fluid not only of a pair
but of a set of more than two disks. Engin et al. [41] studied a multiple–disk Tesla type fan.
Sarkar et al. [42] proposed a rotating disk bioreactor which has several vertical corotating
disks. Drumm et al. [42–44] studied numerically and validated experimentally liquid-liquid
extraction in a rotating disk contactor type extraction column (several rotating disks act as
stirrers in the column).

As previously mentioned, our first proposal as an alternative to traditional systems to
enhance mixing and improve efficiency in a chemical reactor is the model of a pair of coro-
tating disks enclosed by a cylindrical cavity. Then, the extension to more than two disks is
made piling up several pairs of corotating disks. The catalyst will be on the surface of each
disk and hence the specific catalyst surface will be higher. When only one pair is considered
the catalyst will be on the interior surface of the disks. We aim to study numerically the flow
for the arrangement described, to investigate its mixing properties and assess if its behavior
is suitable to a chemical reactor application and if it improves the performance of the typical
models. Two configurations are analyzed, discontinuous (batch) and semicontinuous. For
the former type of operation, the cavity is filled with the reactant and then set to start
working, for the latter one an external flow gets into the reactor through the outer wall
while the reactor is operating. Several aspect ratios are analyzed and the behavior of the
system under the variation of the parameters Re, Sc and φ (dimensionless kinetic constant)
is analyzed for both configurations. We focus on the laminar regime for which the model
remains 2D. (This part of our research has been already submitted to publication under
the title “Enhancement of mixing in a catalytic chemical reactor consisting of a stack of
corotating disks in a cylindrical enclosure” [45]).
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As a second alternative to enhance mixing with application to a chemical reactor, we
postulate a novel fashion of mixing enhancement by means of natural convection flow for
which we expect shear rate decreases making this kind of reactor ideal for enzymatic type
of reactions. Thus, we analyze numerically an approach where mixing within the reactor
is promoted by fully static means, that is, no mechanical device nor forced convection flow
is used. The components of agitation are eliminated by simply heating the reactor volume
in order to generate a natural convection flow pattern. (This part of our research has been
already published in the Chemical Engineering Journal 200, p 506–520, 2012; under the
title “Mixing intensification by natural convection with application to a chemical reactor
design” [46]).

Rayleigh-Bènard convection, has been the object of study in the fluids physics field dur-
ing several decades [47, 48]. There are several works in the literature where the potential
of natural convection flow to increase mixing in confined flows is shown. However, none of
them considered the application in a chemical reactor. De la Cruz et al. [49], for example,
demonstrated that chaotic mixing in a bidimensional cavity can be achieved by imposing
alternating hot and cold wall temperatures in a periodic manner. Gelfgat et al. [50], studied
numerically two-fluid natural convection flow in an horizontal cylindrical annulus and its
effect on mass transfer through the liquid-liquid interface of two immiscible fluids. They
show that the mass transfer of a protein, for instance, through the interface can be signifi-
cantly enhanced by the convective flow generated by heating the inner or outer cylindrical
boundary. Ma et al. [51], modeled the flow in a cylindrical cavity heated from the side,
showing that the basic steady flow that develops in such a situation is a toroidal pattern.
On the other hand, Campbell et al. [52, 53], did consider a chemical reaction application.
They investigated an exothermic reaction occurring in a spherical vessel, where the strong
temperature gradients lead to the development of natural convection flows. In this way their
results suggested that in liquid phase the natural convection flow is quite likely to favour a
good mixing of reactant and product species.

Puigjaner et al. [54–57] has investigated very well stability in natural convection in a
cubical cavity with constant bottom and top walls temperatures, Th and Tc respectively
(Th > Tc), for Rayleigh numbers Ra 6 1.5× 105. They have shown multiple stable station-
ary solutions of the momentum and energy conservation equation, as well as a great number
of unstable solutions. In [54] analysis of the bifurcations and stability of steady convective
flow pattern of air (Pr = 0.71) was done in a cubical cavity as described above, with adia-
batically lateral walls. A Galerkin method with globally defined basis functions along with
a parameter continuation method were used to determine the bifurcations and stability of
the steady solutions. It was determined different stable steady flow patterns can coexist for
moderate values of Ra. In [55] the same kind of cavity filled with silicon oil (Pr = 130)
was studied. The variation of the Nusselt number as a function of Pr was also investigated
for three of the stable flow patterns. The bifurcation diagram was determined and fifteen
steady solutions were tracked. The stability analysis predicted that six flow patterns were
stable and that two, three, or even four of these patterns coexisted over certain ranges of
Ra. It was found that whereas the Nusselt changes within the region 0.71 6 Pr 6 10 it
tends to an asymptotic values with increasing Pr. Several Hopf bifurcations were identified
within the region Ra > 9 × 104. The symmetry properties of flow patterns were used to
analyze their spatial configuration. Some of the flow patterns evolve to rather complex spa-
tial configurations as the Rayleigh number increases. In general, all flow patterns tend to
develop secondary rolls as the Rayleigh number increases. Bifurcation diagrams were found
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6 CHAPTER 1. INTRODUCTION

to be strongly dependent on the Prandtl number and the evolution of flow patterns as the
Rayleigh number increases is also rather dependent on Pr. The variation of the Nusselt
number Nu with Pr reveals that heat transfer rates for any of the three stable solutions
that set in at bifurcations from the conductive state change significantly within the region
0.71 6 Pr 6 10 tending to an asymptotic value beyond. In [56] conducting sidewalls were
imposed instead of the adiabatically ones previously studied. Both Pr = 0.71 and 130 were
studied. For both cases bifurcation diagrams were more complex than those for adiabatic
sidewalls. Four and nine different convective solutions were stable over certain ranges of Ra
were identified at Pr = 0.71 and Pr = 130, respectively. The dependence of the bifurcation
diagrams and of the topology of the flow patterns on the Prandtl number were also stronger
in the case of conducting sidewalls. Most of the flow patterns investigated evolve to double
toroid–like topologies with increasing Rayleigh number. In [57], Simó et al. investigated the
mixing capacity in a cubical cavity with conducting sidewalls and Pr = 130, by means of
dynamical systems tools. Using Poincaré maps they clarified the global structure of the flows
studied. Regions with regular and chaotic motion were identified, showing chaotic region
increase rapidly as Ra is increased. The chaotic nature of the flows has been quantified by
the maximal Lyapunov exponent and the metric entropy. As a previous understanding of the
flow inside a cubical cavity is known, there is room then to formulate the natural convection
as the stimulus driving the mixing in catalytic and enzymatic reactors.

The natural convection setup that is selected in the present investigation is that of a
cubical cavity with a difference of temperatures between the top and bottom walls and with
adiabatic lateral sidewalls. There are three reasons for the choice of such a geometry. First,
in the absence of previous knowledge on the subject it is reasonable to choose a simple geom-
etry to start with. Second, a knowledge on the stability and dynamics of the flow patterns
that can be generated by natural convection is necessary to control the type of circulation
that mostly favors mixing. In this respect, we take advantage of the highly accurate numer-
ical and analytical tools previously developed by Puigjaner et al. [54,55]. Third, the current
problem is a very challenging one from the numerical point of view. Most of the previous
analytical and numerical studies of convection mass transfer into or from a solid interface
relied on two-dimensional calculations or on a simplified version of the real three-dimensional
flow geometry [12,24]. The key point is that for realistic flow conditions, the cavity is filled
with a liquid phase with properties similar to those of water, molecular diffusivity is much
smaller than kinematic viscosity. In these conditions, molecular diffusion is dominating the
total resistance to mass transfer within a very thin region in the vicinity of the catalytic
surfaces.

An accurate calculation of concentration profiles within the region enclosed by the ge-
ometries of the setups described would be prohibitively expensive if classical methods, such
as finite-elements or finite-differences, had to be used for the discretization of the differential
conservation equations in three dimensions for the cubical reactor case or in two dimensions
for the corotating disks reactor case. Nonetheless, the simplicity of the geometries selected
in the present work, cylindrical and cubical, allows the development of a spectral Galerkin
method which was implemented to solve the conservation equations.
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Chapter 2

Problem formulation

2.1 Forced convection problem

2.1.1 Fluid mechanics model

An incompressible laminar flow of a Newtonian fluid inside a cylindrical catalytical chemical
reactor is considered. The reactor, which is sketched in Fig.2.1, consists of two coaxial disks
attached to and corotating with a hub enclosed in a cylindrical cavity. A first order catalytic
chemical reaction takes place at the interior surface of each disk. The velocity and concentra-

Figure 2.1: Sketch of the corotating disk reactor in the discontinuous operation mode. Note that since
axisymmetry is assumed only the reactor projection into the radial–axial (R,Z) plane is shown. A first order
catalytic chemical reaction takes place on the inner surface of each disk.

tion fields are assumed to be axisymmetric, that is, velocity and concentration depend only
on the radial (R) and axial (Z) cylindrical coordinates. The 2D–flow assumption is justified
by the fact that within the range of Reynolds numbers investigated, (Re 6 105), the flow is
laminar. Notwithstanding, it is known that for each aspect ratio S there exists a bifurcation
value, Ret 6 105, at which a three-dimensional (3D) flow arises from the basic axisymmetric
flow [30, 32, 40]. The resulting 3D flow, however, is of the wavy type, that is, it can be un-
derstood as the circumferential oscillation with a given wavenumber of an averaged 2D flow
which would be very similar to the corresponding solution of the axisymmetric branch at
the same Reynolds number. Indeed, Herrero et al. [31] calculated the heat transfer between
two corotating disks set at different temperatures and found no significant difference in the

7
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8 CHAPTER 2. PROBLEM FORMULATION

respective Nusselt numbers computed for the 2D and the corresponding 3D flows at the same
Re values. Under the aforementioned assumptions, the mass and momentum dimensionless
conservation equations in a frame of reference rotating at the angular velocity Ω may be
written as,

Mass
1

S

∂W

∂Z
+
∂U

∂R
+
U

R
= 0 (2.1)

Radial momentum

∂U

∂τ
+
W

S

∂U

∂Z
+U

∂U

∂R
= −∂P

∂R
+

1

Re

{
∂

∂R

(
1

R

∂

∂R
[RU ]

)
+

1

S2

∂2U

∂Z2

}
+

(
2V +

V 2

R
+R

)
(2.2)

Circumferential momentum

∂V

∂τ
+
W

S

∂V

∂Z
+ U

∂V

∂R
= +

1

Re

{
∂

∂R

(
1

R

∂

∂R
[RV ]

)
+

1

S2

∂2V

∂Z2

}
−
(
2U +

UV

R

)
(2.3)

Axial momentum

∂W

∂τ
+
W

S

∂W

∂Z
+ U

∂W

∂R
= − 1

S

∂P

∂Z
+

1

Re

{
1

R

∂

∂R

(
R
∂W

∂R

)
+

1

S2

∂2W

∂Z2

}
(2.4)

where R and Z are the dimensionless radial and axial coordinates, respectively; U , V andW
are the dimensionless radial, circumferential and axial components of velocity, respectively;
τ is the dimensionless time and P is the dimensionless pressure.

The length scales used to obtain the dimensionless variables in Eqs. (2.1)–(2.4) are R2

and H respectively, so the nondimensional domain is:

Υ = [γ, 1]×
[
−1

2
,
1

2

]
(2.5)

where γ = R1/R2 is the radius ratio. The velocity components, modified pressure (p− ρgz)
and time were respectively scaled by the quantities,

U0 = ΩR2, P = ρΩ2R2
2 and tdiff = R2

2/D (2.6)

Thus, Eqs. (2.1)–(2.4) depend on two dimensionless parameters, namely, the Reynolds
number, Re, and the height to outer radius ratio, S, which are respectively defined as
Re = ΩR2

2/ν and S = H/R2. Ω is the angular velocity at which the disks rotate and ν
is the kinematic viscosity. Note that in the rotating frame of reference the circumferential
component of velocity, V , vanishes at the hub and disk surfaces. The rightmost term R in
Eq. (2.2) denotes the centrifugal force while the terms 2V and −2U within the rightmost
parenthesis in Eqs. (2.2) and (2.3) are the respective components of the Coriolis force. The
boundary conditions for equations (2.1)–(2.4) are

U = V =W = 0 at Z = ±1/2 and R = γ (2.7)

U =W = 0, V = −1 at R = 1. (2.8)

Instead of solving the mass and momentum conservation equations in terms of velocity
and pressure, we used the axisymmetric velocity potential, Ψ, also known as streamfunction,
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2.1. FORCED CONVECTION PROBLEM 9

U = −
(
1

R

)
∂Ψ

∂Z
(2.9)

W =

(
S

R

)
∂Ψ

∂R
(2.10)

It is clear that when Eqs. (2.9) and (2.10) are used, the continuity equation (2.1) is auto-
matically fulfilled. Besides, boundary conditions (2.7) and (2.8) may be written as

V =
∂Ψ

∂Z
=
∂Ψ

∂R
= 0 at Z = ±1

2
and R = γ (2.11)

V = −1 ,
∂Ψ

∂Z
=
∂Ψ

∂R
= 0 at R = 1 (2.12)

Note that since Ψ must be continuous along the boundary, Eqs. (2.11)–(2.12) can be replaced
by

V = Ψ =
∂Ψ

∂Z
= 0 at Z = ±1

2
(2.13)

V = Ψ =
∂Ψ

∂R
= 0 at R = γ (2.14)

V = −1 , Ψ =
∂Ψ

∂R
= 0 at R = 1 (2.15)

The mass and momentum conservation problem (2.1)–(2.8) is therefore determined by the
values of three dimensionless parameters, namely the Reynolds number, Re, the height to
outer radius ratio, S, and the radius ratio, γ. The latter quantity only appears explicitly in
the boundary condition (2.15) at the rotating hub surface.

2.1.2 Mass transfer model

Two different operation modes, a discontinuous reactor and a semicontinuous reactor, were
investigated. In the discontinuous reactor, sketched in Fig.2.1, the walls of the external
cylinder were assumed to be impermeable. In the semicontinuous reactor, we considered
that a steady flux entered the reactor through the external cylinder wall (see Fig.2.2). In
both cases the catalytic reaction is assumed to take place on the surfaces of the corotating
disks.

The dimensionless molar conservation equation of the solute species, can be written as

∂C

∂τ
=

[
1

R

∂C

∂R
+
∂2C

∂R2
+

1

S2

∂2C

∂Z2

]
−ReSc

[
U
∂C

∂R
+W

1

S

∂C

∂Z

]
(2.16)

where C is the molar concentration and Sc = ν/D is the Schmidt number, D being the binary
coefficient of molecular diffusion for the solute/solvent pair and ν the kinematic viscosity as
mentioned before. Boundary conditions for Eq. (2.16) can be defined as

∂C

∂Z
= ±φC at Z = ∓1

2
(2.17)
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10 CHAPTER 2. PROBLEM FORMULATION

Figure 2.2: Sketch of the corotating disk reactor in the semicontinuous operation mode. The only difference
with respect to the discontinuous reactor in Fig. 2.1 is in the molar flux of reactant, JR = JR(Z), which is
being continuously fed through the outer enclosure wall; see Eq. (2.19).

∂C

∂R
= 0 at R = γ (2.18)

∂C

∂R
= JR(Z) at R = 1 (2.19)

where φ is the Damköhler number which represents the ratio of the rate of chemical reaction
to the rate of molecular diffusion and it is defined as φ = kH/D, k being the constant of
the rate of chemical reaction. In Eq. (2.19) JR(Z) represents the flux entering the reactor
through the external cylinder wall. Therefore, JR = 0 when the discontinuous reactor is
considered. In the case of the semicontinuous reactor we assumed a molar flux with a
Gaussian profile that is constant in time. Thus, we used

JR(Z) = Be−(2Z)2/σ2

. (2.20)

2.2 Natural convection problem

We consider the incompressible flow of a Newtonian fluid in a cubical cavity with imper-
meable and adiabatic lateral walls. The Boussinesq approximation is used in the mass and
momentum conservation equations, i.e., it is assumed that the fluid density varies linearly
with temperature while the rest of physical properties and transport coefficients are constant
through the whole domain.

The geometry of the problem is sketched in Fig. (2.3). The top and bottom walls are
kept at uniform temperatures Tc and Th (Tc < Th), respectively. It is assumed that a first
order catalytic chemical reaction takes place at the bottom plate of the cavity. The initial
concentration of solute (reactant species) in the cavity is considered to be small enough not
to alter the velocity field, that is, it is assumed that fluid density does not depend on con-
centration. Moreover, any effect of the heat of reaction is neglected.
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2.2. NATURAL CONVECTION PROBLEM 11

Figure 2.3: Sketch of the geometry of the problem of the cubical catalytical reactor driven by natural
convection.

The dimensionless differential equations governing the conservation of mass, momentum
and energy can therefore be written as:

1

Pr

[
1

Le

∂V

∂τ
+Ra1/2 (V · ∇)V

]
−∇2V −Ra1/2θ ez +∇p = 0 (2.21)

1

Le

∂θ

∂τ
+Ra1/2 (V · ∇) θ −∇2θ −Ra1/2w = 0 (2.22)

∇ ·V = 0 (2.23)

with boundary conditions

V =
∂θ

∂X
= 0 at |X| = 1

2

V =
∂θ

∂Y
= 0 at |Y | = 1

2

V = θ = 0 at |Z| = 1

2

(2.24)

where X, Y and Z are the dimensionless cartesian coordinates, V = (u, v, w) is the dimen-
sionless velocity vector, ∇ is the nabla operator in dimensionless cartesian coordinates, τ is
the dimensionless time, θ is the dimensionless temperature, p is the dimensionless pressure
and ez = (0, 0, 1)T is the unit vector in the Z direction. The dimensionless parameters
governing the flow of the system are the Rayleigh number, Ra = β∆TgL3/(αν); Prandtl
number, Pr = ν/α and Lewis number, Le = Sc/Pr = α/D; where β is the coefficient of
thermal expansion, ∆T is the vertical temperature drop (Th − Tc), g is the acceleration of
the gravity, α is the thermal diffusivity, ν is the kinematic viscosity and D is the binary
coefficient of molecular diffusion for the solute/solvent pair.

Equations (2.21-2.24) were adimensionalized on basis of the following scales: the volume
of the cavity was scaled by the the length of its side, L, to obtain the nondimensional domain

Υ =

[
−1

2
,
1

2

]
×
[
−1

2
,
1

2

]
×
[
−1

2
,
1

2

]
, (2.25)
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12 CHAPTER 2. PROBLEM FORMULATION

the velocity, temperature, pressure and time were respectively scaled by the quantities,

U0 =

[
β∆TgαL

ν

]1/2
, ∆T = Th − Tc , P =

ρνU0

L
, and tdiff = L2/D. (2.26)

Notice the scale that defines the dimensionless time, τ , is a characteristic time for molecular
diffusion.

A value of Pr = 6, typical of water at ambient temperature, is assumed. The differen-
tial equation for the conservation of the solute species in terms of its molar concentration
C(τ,X, Y, Z) may be written as:

∂C

∂τ
+

(
Sc

Pr

)
Ra1/2 (V · ∇)C −∇2C = 0 (2.27)

with boundary conditions

∂C

∂X
= 0 at |X| = 1

2
∂C

∂Y
= 0 at |Y | = 1

2
∂C

∂Z
= 0 at Z =

1

2

(2.28)

φC = −
(
JZL

D

)
=
∂C

∂Z
at Z = −1

2
. (2.29)

where JZ is the vertical component of the solute molar diffusion flux and φ = kL/D is the
Damköhler number, k being the constant of the chemical reaction rate. Equation (2.29) de-
fines the first order catalytic chemical reaction at the bottom plate by equating the diffusive
flux on the surface to the rate of chemical reaction.

Note that the Damköhler number, φ, is the ratio of tdiff to the characteristic time scale
for the chemical reaction, L/k. A third relevant scale is the characteristic time for convective
transport, tconv = L/U0 = L2/(αRa1/2). The ratio of the convective time scale to molecular
diffusion time scale can be written as

tconv
tdiff

=
D

αRa1/2
=

(Pr/Sc)

Ra1/2
=

1

LeRa1/2
(2.30)

Equation (2.30) expresses the main idea that motivated the investigation of natural convec-
tion as a potential mixer. For values of the Rayleigh number of order Ra = 105 we have
tconv � tdiff , that is, natural convection is fast enough to provide adequate mixing levels
to the reactor, especially when the cavity is filled with a liquid phase (Le � 1). Note that
since the ratio of tconv to L/k is equal to φ/(LeRa1/2) the natural convection–driven reactor
would not be competitive in case of a very fast chemical reaction (very high values of the
Damköhler number φ).

It is worth pointing out that Eqs. (2.21-2.24) are independent of Eqs. (2.27-2.29) and
consequently they can be solved separately. The initial condition used to integrate in time
the system (2.27-2.29) is discussed in Subsection 3.3.1 below.
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2.2. NATURAL CONVECTION PROBLEM 13

The integration domain (2.25) and Eqs. (2.21-2.24) are respectively invariant and equiv-
ariant under the sixteen elements of the symmetry group D4h. This group is generated by
the reflection symmetries Sy,Sd+ and Sz whose actions are described by:

Sy :(X, Y, Z) → (X,−Y, Z)
(u, v, w, θ, C) → (u,−v, w, θ, C)

(2.31)

Sd+ :(X, Y, Z) → (Y,X,Z)

(u, v, w, θ, C) → (v, u, w, θ, C)
(2.32)

Sz :(X,Y, Z) → (X,Y,−Z)
(u, v, w, θ) → (u, v,−w,−θ)

(2.33)

and which matricial form is represented by:

Sy =

 1 0 0
0 −1 0
0 0 1

 (2.34)

Sd+ =

 0 1 0
1 0 0
0 0 1

 (2.35)

Sz =

 1 0 0
0 1 0
0 0 −1

 (2.36)

Note that any other symmetry can be defined by the subsequent application of the generator
symmetries Sy,Sd+ and Sz. For example, Sx = Sd+ · Sy · Sd+ . Because of the lack of sym-
metry in the Z direction, Eqs. (2.27- 2.29) are only equivariant under the eight elements of
the group D4 generated by Sy and Sd+. The symmetries of the problem are used to reduce
the computational effort and to understand the spatial configuration of flow and concentra-
tion patterns that are solutions of the governing equations.
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Chapter 3

Numerical method

The main goal of the present work is to find the velocity and concentration fields of the
established problems in order to evaluate different quantities that give us account of the
behavior of the system. To achieve so, it is required to solve the set of partial differential
equations (PDEs) that govern each system. Thus, basically it is necessary to discretize the
set of equations after which is obtained a set of ordinary differential equations (ODEs) which
can then be solved by any time–marching scheme. Several methods are used with this aim
such as finite difference method, finite element method or spectral methods. We have used
a Galerkin spectral method for the reasons that are discussed below.

Spectral methods are a class of spatial discretization for differential equations and it
presents various formulations: Galerkin, tau, and collocation [58, 59]. Approximations are
defined in terms of a truncated series expansion and it is considered that these methods
belong to the general class of weighted residual methods in which some quantity that should
be exactly zero, called the residual, is forced to be zero only in an approximate sense. The
key components for its formulation are the trial functions and the test functions. The trial
functions are linear combination of suitable basis functions and are used to provide the
approximate solution of the system. If it is considered the expansion of a one–dimensional
function u(x) in the truncated series

uN(x) =
N∑
i=0

ûiϕi(x), α 6 x 6 β (3.1)

the ϕi(x) are the trial functions, that in spectral methods are orthogonal, and the expan-
sion coefficients ûi are the ones that must be determined. When the expansion uN(x) is
substituted in the differential equation

Lu = f(x) (3.2)

where L is the differential operator, the result is the so called residual function

R(x; û0, û1, ..., ûN) = f − LuN . (3.3)

The test functions are used to assure that the differential equation, and might be some of
the boundary equations, are satisfied as much as possible in the truncated series expansion.
This is achieved minimizing, with respect to an appropriate norm, the residual produced
when the truncated expansion has been used instead of the exact solution [58]. The objective
will be to made it zero in the mean, according to
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16 CHAPTER 3. NUMERICAL METHOD

〈R,ψj〉ω =

∫ β

α

(
f − L

N∑
i=0

ûiϕi(x)

)
ψjωdz = 0, j = 0, ..., N (3.4)

where ψj are the test functions [58,59]. The spectral methods are distinguished by the partic-
ular choice of the trial functions. The most frequently used are trigonometrical polynomials,
Chebyshev polynomials and Legendre polynomials. The choice of the test functions defines
the method: Galerkin-type method uses the same test functions as the trial functions while
the collocation method uses a Dirac delta–function. [59,60]

One of the greatest advantages of the spectral methods, and the reason to use one of
those methods, is the high accuracy obtained. The error obtained decay faster than any
finite power of N due to the fact that the power in the error formula is always increasing
too. This desirable property is known as exponential convergence. When many decimal
places of accuracy are needed, these methods exceed by far the finite difference and finite
element methods. For example, to equal the accuracy of a spectral procedure of, for instance,
N = 10, one would need a tenth-order finite difference or finite element method with an error
of O(h10). Furthermore, even if not so high accuracy is needed, the high order of pseudospec-
tral methods makes it possible to obtain the desired error with about half as many degrees
of freedom, in each dimension, as needed for example by a fourth order method. To put it
in another way, spectral methods are memory-minimizing. Problems that may require high
resolution can often be solved satisfactorily by spectral methods when a three–dimensional
second order finite difference code would fail because the need for eight or ten times as many
grid points would exceed the core memory of the available computer [61].

Finite element methods are similar in their philosophy to the spectral methods. The main
difference is that finite element cut the interval or region studied into several subintervals
and choose the trial functions as local functions. On the other hand, spectral methods use
basis global functions in which the trial function is a polynomial or a trigonometric polyno-
mial. Advantages of the finite elements method are that the differential equations lead to
sparse matrices and that in multidimensional problems, the subintervals can take different
shapes such as triangles or tetrahedral to adjust them to irregular domains. Low precision
due to the low degree in polynomials is a disadvantage, though. Spectral methods lead to
algebraic equations with full matrices but in compensation the high basis functions degree
achieve a high precision. As spectral methods use fast iterative processes, the resolution of
the matrices could be much faster than in other kind of methods. However, they are more
useful for soft and regular geometries [61]. Some disadvantages of the spectral methods are:
i) That they are usually more difficult to program. ii) That they are more costly per degree
of freedom. iii) That irregular domains lead to losses of accuracy and efficiency.

Once the set of partial differential equations is converted into a set of ordinary differential
equations there is several time-marching schemes to solve them. Specifically, we have used
two methods, the first one, a 7-8th order Runge-Kutta-Fehlberg method (RK78 ) [62] with
adaptive time step, where the control of stepsize was done using the difference of the 7th
and 8th order approximations, and the new stepsize is calculated by means of

hnew = 0.9hold

[
δ

e

] 1
1+p

(3.5)

where δ is the prescribed tolerance of the truncation error, e, which is defined by the difference
between the solution obtained for each order used, i.e., 7th and 8th order, in this case, and p
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3.1. FORCED CONVECTION PROBLEM 17

is the order used, in this case 7th [62,63]. The second method we used was an implicit three-
level second order backward-differencing scheme (bdf2 ). In it, the derivative is approximated
by (

df

dt

)
n+1

≈ 3fn+1 − 4fn + fn−1

2∆t
(3.6)

which leads to

fn+1 =
4

3
fn −

1

3
fn−1 +

2

3
g(tn+1, fn+1)∆t. (3.7)

While the RK78 explicit method is much more precise it has the flaw that tends to im-
pose very small stepsize, which leads to very big times of calculations, on the other hand,
the implicit bdf2 method allows for the utilization of much bigger stepsize, furthermore this
method has the property that for any ∆t > 0 the error level is bounded in time, which is
called A-stability.

The velocity field of the natural convection problem, had been previously solved by
Puigjaner et al. for Pr = 0.71 and Pr = 130 in [54] and [55], respectively. Thus, this
solution was used in the case Pr = 6. Numerical codes to find the concentration fields for
both, natural and forced convection problems, were completely implemented from scratch by
the author of the present thesis. Codes were written in programming language Fortran2003
under Linux and were run in a processor 4×Intel(R)Xeon(R) CPU E5620 @2.40GHz.

3.1 Forced convection problem

3.1.1 Velocity field

We begin assuming that the solute concentration, C, is small and therefore fluid properties,
and more precisely, kinematic viscosity, ν, do not depend on C. Under this assumption, mass
and momentum conservation equations (2.1)–(2.4) and (2.7)–(2.8) are solved independently
of the solute (molar) conservation equations (2.16)–(2.19). In addition, only steady state
solutions are considered. As discussed above, the steady flow assumption is reasonable in
the range of low to moderate Reynolds numbers investigated, 103 6 Re 6 105, even though
the real flow would be three–dimensional, and thus unsteady, in the upper part of this Re
range. The assumption of a steady velocity field implies that the time derivative in the
left-hand-side of (2.2)–(2.4) vanishes.

The introduction of the streamfunction Ψ defined by (2.9)–(2.10) in the steady state
version of (2.1)–(2.4) reduces from four (U, V,W, P ) to three (Ψ, V, P ) the number of de-
pendent variables. The resulting system of partial differential equations was discretized by
means of a spectral tau–Galerkin method, also known as Galerkin method with boundary
bordering [61] where Chebyshev polynomials were used as basis functions:

Ψ(R,Z) =

NR,Ψ∑
i=4

NZ,Ψ∑
j=4

ψijfi(R
∗)fj(Z

∗) (3.8)

V (R,Z) =

NR,V∑
i=0

NZ,V∑
j=0

vijTi(R
∗)Tj(Z

∗) (3.9)
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18 CHAPTER 3. NUMERICAL METHOD

In expansions (3.8)–(3.9) Z∗ = 2Z, R∗ = 2[(R−γ)/(1−γ)−1/2], Ti denotes the Chebyshev
polynomials of the first kind of order i and fi are suitable linear combinations of Chebyshev
polynomials that satisfy fi(±1) = f ′

i(±1) = 0. Thus, boundary conditions (2.13)–(2.15) for
Ψ are automatically fulfilled with this choice of the basis functions. Note that no expansion
is needed for the pressure, P , because the pressure gradient terms in (2.2) and (2.4) vanish
when these equations, as an essential part of the Galerkin method, are projected into the
subspace of the basis functions used in the Ψ expansion (3.8). As a result of the Galerkin
projection, a system of nonlinear algebraic equations is obtained. This system of equations
was solved for the unknowns, the ψij and vij coefficients in the expansions (3.8) and (3.9),
by means of the Newton iterative method.

A special treatment is needed to deal with the discontinuity in the boundary conditions
for V at the external enclosure corners. That is, boundary conditions for V in (2.13) and
(2.15) do not match as 0 = V (1,±1/2) = −1 is obviously impossible. Hence, we replaced the
boundary condition V (R,±1/2) = 0 in (2.13) by the following exponential function along
the disk surfaces,

V (R,±1/2) = − exp

[
ln(Vres)

ε
(R− 1)

]
(3.10)

Equation (3.10) was inspired by the treatment of a similar velocity discontinuity at a bound-
ary in a previous work by Lopez and Shen [64], which was later applied [65] to the calculation
of the flow inside an annular container with a rotating bottom lid and inner cylinder. The
idea behind the particular form of Eq. (3.10) is that at a small dimensionless radial dis-
tance from the outer enclosure wall, ε� 1, V should already have attained a residual value
V = −Vres ≈ 0. In all of the calculations discussed below we used Vres = 10−3 and ε = 0.05.
It was checked that using values of ε down to ε = 0.01 yielded velocity fields that were ba-
sically indistinguishable from those obtained with the standard value ε = 0.05. In order to
implement the modified boundary condition (3.10) the radial span R ∈ [γ, 1] was extended
to R ∈ [γ, 1 + ε] in Eqs. (2.1)–(2.4) and (2.7)–(2.8) as well as in in the molar conservation
model (2.16)–(2.19) and in the definition of R∗ (see appendix A).

The use of the V boundary condition (3.10) is justified on physical grounds by the fact
that ε = 0 is unattainable in an experimental equipment. From a theoretical point of view,
it is known that in the limit case with ε→ 0 a very large number of functions (NR,V → ∞)
would be needed in expansion (3.9) to properly characterize the problem. When the current
Vres = 10−3 and ε = 0.05 values were used in Eq. (3.10) it was numerically found that the
required increase in the maximum polynomial degree reduced to NR,V > NR,Ψ + 20. When
values of NR,V not fulfilling this constraint were used the resulting V velocity fields turned
out to be somewhat wiggly in the vicinity of the disk surfaces, Z = ±1/2. Furthermore, in
all of the cases investigated we set identical values of the truncation parameters for the axial
direction in expansions (3.8) and (3.9), that is, NZ,Ψ = NZ,V .

3.1.2 Concentration field

The solute conservation equation (2.16) was solved by means of a spectral tau–Galerkin
method, using the concentration expansion

C(τ, R, Z) =

NR∑
i=0

NZ∑
j=0

cij(τ)Ti(R
∗)Tj(Z

∗) (3.11)
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3.1. FORCED CONVECTION PROBLEM 19

where cij are the unknown time–dependent expansion coefficients of the truncated expansion
for the concentration. The application of the tau–Galerkin method reduces Eqs. (2.16)–
(2.19) into an ordinary differential equation that can be written as

B̂ċ = Q̂c+ Â (3.12)

The vector c and the matrices B̂, Q̂ and Â in Eq. (3.12) are defined in appendix A where
the tau–Galerkin method is detailed.

Equation (3.12) was advanced in time for both the discontinuous and semicontinuous
configurations using the bdf2 scheme [62]. The initial condition for the discontinuous mode
is that the reactant species is perfectly mixed, i.e., C(0, R, Z) = 1. However, we used a
slightly modified initial concentration distribution (explained in Subsection 3.3.1) in order
to fulfill boundary condition (2.17) at τ = 0. For the semicontinuous configuration the initial
concentration field was set to C(0, R, Z) = 0, which means that initially there is no reactant
inside the reactor volume. In the case of the semicontinuous reactor the steady state was
determined by solving the linear system

Q̂c = −Â (3.13)

that follows from Eq. (3.12). The systems of linear equations in (3.12) and (3.13) were
solved using the LAPACK numerical package [66,67].

In the semicontinuous case, the amplitude B of the Gaussian flux in (2.20), was chosen so

that the average concentration on the disks, Ĉ(τ,±1/2), was equal to 1, for the time τ = τS
at which the reactor reaches a stationary state, i.e., when the rate of solute fed is equal to
the rate of solute consumed. To find the value of B that fulfills the conditions stated above,
we make the following considerations: From Fick’s law we got

dC

dR
=
R2

D
Jr(z) = JR(Z) (3.14)

where z is the axial coordinate in m and

Jr(z) = Ae−(2z)2/(Hσ)2 (3.15)

is the flux getting into the reactor through the external wall in mol/(m2s). Hence, taking
into account (2.20) and (3.15) B can be expressed as

B =
R2

D
A. (3.16)

Now, to find the appropriate value of A, we perform the mass balance so that indeed the
solute fed equals the solute consumed,

2

(
2π

∫ R2

R1

Jz(r)rdr

)
= 2πR2

∫ H/2

−H/2

Jr(z)dz (3.17)

r is the radial coordinate in m and Jz(r) is the flux on the disks in mol/(m2s) which for a first
order chemical reaction is Jz = kC(t, r, z). The left hand side of the equality corresponds to
the amount of solute consumed (the 2 before the parenthesis indicates the two disk surfaces)
and the right hand side of the equality corresponds to the amount of solute fed through the
external wall. Using the dimensionless variables we got
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20 CHAPTER 3. NUMERICAL METHOD

2kR2
2

∫ 1+ε

γ

C(τ, R, Z)RdR = R2H

∫ 1/2

−1/2

Jr(Z)dZ (3.18)

where the integration is carried out until 1 + ε, taking into account the small gap between
the tip of the disk and the external wall of the cylinder, as explained above in Subsection
3.1.1 (Eq. (3.10)). To express the left hand side integral in a different way, let us define the
average concentration over the disk surface as

Ĉ(τ,±1/2) =
2π
∫ 1+ε

γ
C(τ, R,±1/2)RdR

π ((1 + ε)2 − γ2)
(3.19)

Thus, ∫ 1+ε

γ

C(τ, R,±1/2)RdR =
1 + 2ε+ ε2 − γ2

2
Ĉ(τ,±1/2) (3.20)

Inserting (3.20) in (3.18), taking into account (3.15) and that k can be expressed as k =
φD/H, we have

2φD

H
R2

2Ĉ(τ,±1/2)(1 + 2ε+ ε2 − γ2) = R2HA

∫ 1/2

−1/2

e−(2Z)2/σ2

dZ (3.21)

As we stated above, we want to impose the condition that Ĉ(τ,±1/2) = 1 in the stationary
state, when the solute fed equals the solute consumed, hence

2φD

H
R2

2(1 + 2ε+ ε2 − γ2) = R2HA

∫ 1/2

−1/2

e−(2Z)2/σ2

dZ (3.22)

Calling I the integral on the right hand side

I =

∫ 1/2

−1/2

e−(2Z)2/σ2

dZ (3.23)

the constant A will be equal to

A =
2φD(1 + 2ε+ ε2 − γ2)

IR2S2
(3.24)

and finally, applying (3.16) we have the following expression for the constant B of the
Gaussian profile of the flux entering the external wall,

B =
2φ(1 + 2ε+ ε2 − γ2)

IS2
. (3.25)

3.2 Natural convection problem

As previously mentioned, the velocity field of the natural convection problem, had been pre-
viously solved by Puigjaner et al. [54] for Pr = 0.71. Thus, the solution for our problem with
Pr = 6 was found using their algorithms. Both set of equations (2.21-2.24) and (2.27-2.29)
were discretized by means of a Galerkin spectral method. As discussed above, a spectral
method was chosen for the discretization of the governing equations due to its high efficiency
when applied to regular domains [61,68,69]. The complete, divergence-free set of basis func-
tions reported in [54] was used to characterize the steady solutions of Eqs.(2.21-2.24). This
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3.2. NATURAL CONVECTION PROBLEM 21

set of basis functions has the property that boundary conditions (2.24) are automatically
fulfilled. Once velocity and temperature are approximated by truncated expansions in terms
of the basis functions the governing partial differential equations are transformed into a sys-
tem of ordinary differential equations whose unknowns are the coefficients in the expansions.
These ODEs are then projected into the subspace generated by the basis functions and the
resulting system is solved, if a steady state solution is being sought, or advanced in time
otherwise. It is worth noting that pressure is eliminated from the equations in the process
of projection (see [54] for details). The Galerkin method was combined with a continuation
procedure to determine steady solutions branches for the target value of the Prandtl num-
ber, Pr = 6. The bifurcations and stability character of the different solution branches were
determined in the range of Rayleigh numbers with Rac 6 Ra 6 1.5× 105; here, Rac denotes
the critical Rayleigh number for the onset of convection, Rac = 3389 [54,70].

3.2.1 Concentration field

In order to solve Eqs. (2.27-2.29) the concentration of the solute species, C, was expanded
according to

C(τ,X, Y, Z) =
N∑
i=2

N∑
j=2

N∑
k=1

cijk(τ)hi(X)hj(Y )hk(Z) (3.26)

where cijk(τ) are the unknown time-dependent coefficients of the truncated expansion. The
basis functions chosen in Eq. (3.26) have the form,

h1(Z) = T2(Z
∗)− 4T1(Z

∗)

h2(Z) = T0(Z
∗)

hk(Z) = Tk(Z
∗)− k2

(k − 2)2
Tk−2(Z

∗), k ≥ 3

(3.27)

where Tk(Z
∗) are Chebyshev polynomials of the first kind and Z∗ = 2Z. The same basis

functions are defined for the X and Y expansions with the exception of h1(Z). Since the
basis functions (3.27) satisfy (h′k(±1/2) = 0 ∀ k > 1) the concentration boundary conditions
(2.28) are implicitly fulfilled. On the contrary, Eq. (2.29) has to be projected into the sub-
space defined by the functions of the type hi(X)hj(Y )h1(Z). Equations (2.21-2.24), which
do not depend on the concentration field, were solved for the velocity and temperature fields
under the assumption of small solute concentrations. Once the velocity field was obtained,
it was introduced in Eqs. (2.27-2.29) to calculate the time evolution of the concentration field.

For the sake of homogeneity between Eqs. (2.21-2.24) and (2.27-2.29), the calculated
velocity fields were projected into the space generated by Chebyshev polynomials. Thus,
u, v and w were expanded as,

u(X,Y, Z) =
M∑
p=0

M∑
q=0

M∑
r=0

upqrTp(X
∗)Tq(Y

∗)Tr(Z
∗)

v(X,Y, Z) =
M∑
p=0

M∑
q=0

M∑
r=0

vpqrTp(X
∗)Tq(Y ∗) Tr(Z∗)

w(Z, Y, Z) =
M∑
p=0

M∑
q=0

M∑
r=0

wpqrTp(X
∗)Tq(Y

∗)Tr(Z
∗)

(3.28)
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22 CHAPTER 3. NUMERICAL METHOD

where upqr, vpqr and wpqr are the velocity coefficients in the new basis and X∗ = 2X, Y ∗ = 2Y
like the variable Z∗ explained above. The value of the truncation parameterM in expansions
(3.28) was chosen large enough to guarantee that the mass conservation constraint was
accomplished to machine accuracy. When expansions (3.26) and (3.28) are introduced in
Eq. (2.27) and (2.29) and the result is projected into the subspace of basis functions an
ODE system arises:

Bċ = Qc (3.29)

In Eq. (3.29) B and Q are square matrices and c is a vector with the coefficients of the con-
centration expansion. Details of the structure of these matrices are given in the appendix
B. Arranging the indices of the unknown time–dependent coefficients according to their
parity [54], the matrices B and Q have a 8 × 8 block structure. Each of these blocks is a

ND ×ND square matrix where ND =
(
N−1
2

)3
and N is the number of polynomial functions

used in expansion (3.26). For solutions with some specific symmetries it is possible to reduce
the dimension of the problem since the number of non-zero blocks inB andQ reduces to 4×4.

3.2.2 Dynamical Analysis

The mixing capabilities of the natural convection flow are assessed by means of a methodology
that combines the Eulerian and Lagrangian representations of fluid motion. The methods
used in the present study were used by Simó et al. [71]. These authors used dynamical
systems tools to assess the mixing capabilities of several Rayleigh-Bénard convection flow
patterns in a cubical cavity with perfectly conducting sidewalls at Pr = 130. The basis of
the methodology is to find the trajectories of a large number (512) of passive particles that
are initially uniformly seeded through the whole volume of the cavity , integrating in time
the equations

ẋ1 = u1(x1, x2, x3), ẋ2 = u2(x1, x2, x3), ẋ3 = u3(x1, x2, x3) (3.30)

by means of a RK78 method. In all the current calculations the local error tolerance in
the RK78 procedure was set to 10−12 and the integration is performed until a time equal to
2 × 103. Particle trajectories allow the calculation of Poincaré maps and several quantities
that are considered good indicators of mixing, such as percentage of chaotic region or max-
imal Lyapunov’s exponents [72, 73].

A Poincaré map can be obtained by considering the intersections of several particle tra-
jectories with a certain lower–dimensional subspace, called the Poincaré section. Poincaré
maps are useful to distinguish well–mixed chaotic regions from unmixed regular regions in
the flow and to qualitatively identify changes in the shape of these regions as one or more
parameters vary.

Regular regions are characterized by the presence of nested invariant tori. These, rep-
resent an important obstacle to efficient mixing. Consequently, the knowledge of the shape
and size of regions with regular flow motion would be determinant in predicting the mixing
efficiency of the flow. We used the algorithm developed in [71] which is based on the tra-
jectories of several initial conditions to estimate the shape and size of these regular regions.
The key ideas of the algorithm are:

i) The cubical cavity is divided into n × n × n equally sized cubic cells (in this case
n = 200).
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3.3. ACCURACY ASSESSMENT 23

ii) For each initial condition x0 in a certain set CI , the trajectory described by a fluid
particle initially located at x0 is calculated by numerically integrating Eq. (3.30) (in
this case CI = {(−0.375 + i/4, 0.48,−0.375 + j/4), i, j = 0, ..., 6}).

iii) At each integration time step, the cubic cells that have been visited by one or more
fluid particle trajectories are stored.

iv) The number of cells Nr(t) that at time t have not yet been visited by any particle
trajectory is calculated for any t multiple of the selected ∆t (in this case ∆t = 200).

v) The procedure is stopped when the integration time exceeds a maximum integration
time tM (in this case tM = 5× 105).

It is worth to note that the symmetry properties of the studied flow patterns were used to
reduce the calculations. The chaotic zone is understood as the set of points in the cubical
domain which are outside invariant tori. Of course, there are small chaotic zones bounded
by tori, but they hardly contribute to the mixing.

A quantitative analysis of the mixing efficiency of a given flow pattern can be obtained
by computing the maximal Lyapunov exponent LM . A Lyapunov exponent is a magnitude
that indicates the rate of separation of infinitesimally close trajectories. Two trajectories
with initial separation δ0 diverge at a rate

|δt| ≈ eλt|δ0| (3.31)

where λ is the Lyapunov exponent. This can be different for different orientations of initial
separation vector. The largest one of the λs is called the maximal Lyapunov exponent LM .
A positive LM is commonly a signal of chaoticity in the system. Lyapunov exponents are
related to the mixing efficiency of the fluid flow system [71,74].

3.3 Accuracy assessment

3.3.1 One–dimensional limit

The species conservation equations (2.16) and (2.27) are considered in the diffusive limit
case, when Re and Ra are equal to zero, respectively. In this limit the mentioned equations
reduce to the following one-dimensional (1D) problem

∂C(τ, ξ)

∂τ
− ∂2C(τ, ξ)

∂ξ2
= 0 (3.32)

with boundary conditions

∂C(τ, ξ)

∂ξ
= φC(τ, ξ) at ξ = 0 (3.33)

∂C(τ, ξ)

∂ξ
= 0 at ξ = 1 (3.34)

which reflect the catalytic reaction and zero flux boundary conditions respectively. For the
natural convection problem, ξ = 1/2 − Z. Considering the forced convection problem, we
see there is a symmetry of the boundary conditions with respect to the plane Z = 0, the
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same catalytic reaction is occurring on each disk. Thus, we can divide the domain of the
problem in two subdomains, namely, [−1/2, 0] and [0, 1/2]. Notice that for each subdomain
the catalytic reaction is taking place in the inferior (superior) extreme and the zero flux
condition is happening at the superior (inferior) extreme. Hence, for the first subdomain,
ξ = 1 + 2Z, while for the second subdomain ξ = 1− 2Z.

It is known that Eqs. (3.32-3.34) with initial condition

C(0, ξ) = 1 (3.35)

have the following analytical solution [75],

Ca(τ, ξ) = 2
∞∑
i=1

1

µi

[
1 +

1

φ
+

(
µi

φ

)2
]−1

cos (µiξ)

sinµi

e−µ2
i τ (3.36)

where the eigenvalues µi are the roots of the equation

cosµ

sinµ
=
µ

φ
(3.37)

A very good numerical approximation of this analytical solution can be obtained by
using the first one–thousand terms in series (3.36) provided that the time τ is not too close
to zero. Figures 3.1 and 3.2 show the concentration profiles for the natural and forced
convection problems, respectively, for τ = 1× 10−3 and φ = 1.
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Figure 3.1: Concentration profile in the case φ = 1 and τ = 1× 10−3 for the 1D natural convection problem.

On the other hand, when a simplified version of the Galerkin method is applied to Eqs.
(3.32-3.33) the 1D problem is converted into an ODE system of the form:

B1Dċ1D = Q1Dc1D (3.38)
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Figure 3.2: Concentration profile in the case φ = 1 and τ = 1× 10−3 for the 1D forced convection problem.

The accuracy of the current implementation of the RK78 time–integrator was tested by
solving Eq. (3.38) both analytically and numerically. The analytical solution of the ODE
system (3.38) may be written as:

c1D(τ) =
[
e(B

−1
1DQ1D) τ

]
c1D(τ0) (3.39)

For any given value of the truncation parameter N , the analytical time evolution (3.39)
and the one given by the RK78 integrator are identical down to an accuracy level of order
10−9 in terms of relative error. The numerical solutions given by the RK78 integrator could
be made even more accurate by fine–tuning the algorithm for the automatic adjustment of
the time–step [62] but that would be at the expense of a larger computational time. In
order to assess the accuracy of the Galerkin spatial discretization, the numerical solutions of
(3.38) obtained with different values of N were compared with the analytical solution (3.36)
(truncated at i = 1000). The evolutions in time of the relative difference of the solute con-
centration at the bottom surface, E = |Ca(τ,−1/2)− C(τ,−1/2)|/Ca(τ,−1/2), are plotted
in Fig. 3.3 for φ = 100 and different values of N . Note that due to the boundary condition
(3.33) the quantity plotted in Fig. 3.3 is equivalent to the relative error in the calculated
molar fluxes entering the bottom catalytic surface, JZ(τ,−1/2). Figure 3.3 shows that the
maximum relative errors vary between approximately 1.5 × 10−2 for N = 11 and 10−5 for
N = 29. A value of N = 19 would be a good compromise between accuracy and efficiency
for solving the 1D diffusion-reaction problem.

The analytical solution (3.36-3.37) of the 1D problem (3.32-3.35) at a time τ0 very close to
zero would seem a suitable choice as an initial condition for the numerical integration of (3.12)
and (3.29), i.e., C(τ0, X, Y, Z) = Ca(τ0, Z) or C(τ0, R, Z) = Ca(τ0, Z) in the corresponding Z
domains. However, the initial 1D concentration profile at a very small τ0 is too similar to a
step function of Z and, thus, very difficult to project into a polynomial basis (an unreasonably
high value of N would be necessary). Therefore, an initial value of time not so close to zero,
namely τ0 = 0.001, was used instead. In physical terms, this choice might be interpreted as
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Figure 3.3: Discretization errors in the numerical integration of the 1D problem for different val-
ues of the truncation parameter N . The quantity plotted is the relative error E = |Ca(τ,−1/2) −
C(τ,−1/2)|/Ca(τ,−1/2), where C(τ,−1/2) is the value of the solute concentration at the bottom wall ob-
tained from the numerical integration of the system (3.38) and Ca(τ,−1/2) is the corresponding analytical
value given by Eq. (3.36).

a delayed start of the natural convection in the reactor (note that for example in the natural
convection problem, for Rayleigh numbers below Rac = 3389 there is no convection). As
it is shown below, the use of this delayed start procedure has no qualitative effect on the
results obtained.

3.3.2 Forced convection problem

Velocity field

As discussed above, the flow between a pair of corotating disks has been thoroughly inves-
tigated in the last decades. The accuracy of the current numerical results can be therefore
checked by comparing them with some well–established numerical results. In particular we
compared our results with those obtained by Herrero et al. [30] for Re = 13710, S = 0.091
and γ = 0.537. Figures 3.4a and 3.4b respectively show the current calculated contours of
Ψ and V that were obtained with NR,Ψ = NZ,Ψ = 21. These results agree very well with the
corresponding contours reported in [30] where a second-order finite-difference method with
grid sizes as large as 200 and 100 in the radial and axial directions, respectively, was used
instead. Notwithstanding, in order to guarantee the accuracy of the calculated velocity fields
a minimum of NR,Ψ = 41 and NZ,Ψ = 41 was used even for the smaller Reynolds numbers
considered (Re = 103). For S = 0.25 it was found that the number of basis functions in
expansions (3.8) and (3.9) had to be increased as Re increased up to NR,Ψ = 91 for Re = 105.
An increase in the aspect ratio S also forced an increase in the truncation parameter up to
NZ,Ψ = 101 for the maximum S value investigated, S = 1.
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Figure 3.4: Velocity field obtained in a calculation with Re = 13710, S = 0.197 and γ = 0.537 a) Flow
streamlines with Ψ levels ranging between −0.017076 and 0.017076 with an increment of 0.0034152. b)
Contours of V levels ranging between −0.300 and −0.040 with an increment of 0.026. The contour levels
match those plotted in [30] except for a factor of 2.81 between the respective Ψ levels due to a different
choice of the reference flow rate, ΩHR2

2(1− γ2)/2 instead of the current ΩHR2.
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28 CHAPTER 3. NUMERICAL METHOD

Concentration Field

The bdf2 scheme was used to advance in time the ODE system. A timestep equal to 10−4 was
used for the lowest φ values studied and 10−5 otherwise. A preliminary set of calculations
was performed for Sc = 1 using the same truncation parameters in expansion (3.11) that
were previously used in the velocity calculation, that is Nr = NR,Ψ and Nz = NZ,Ψ. We
subsequently increased Nr and Nz until the calculated concentration field became basically
independent of the truncation parameters. The values of Nr and Nz had to be increased
with increasing Schmidt number, Sc, as the length scale for molecular diffusion becomes
increasingly smaller. Figure 3.5 illustrates the convergence of the concentration field with
increasing values of the truncation parameters for the case of the discontinuous reactor with
Re = 8 × 104, Sc = 100 S = 0.25 and φ = 2000. This figure shows axial profiles of the
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Figure 3.5: Axial profiles of the radially averaged concentration field, Ĉ(τ, Z), at the time instant τ = τ90
when a reactant conversion of 90% is reached. Results from several calculations with Re = 8×104, Sc = 100,
S = 0.25, φ = 2000 and different values of the truncation parameter, N = NR = NZ in Eq. (3.11), are
included.

radially averaged concentration at the time instant at which a reactant conversion of 90%
was reached. The most significant differences between the profiles obtained with different
values of the truncation parameter, N = NR = NZ , are observed at the maxima located
at Z = ±0.156 and at the local minima at Z = ±0.371. In the latter point we can even
see that for the lowest resolution N = 75 the profile is wiggly. The appearance of wiggles
due to insufficient spatial resolution was frequently observed in preliminary low–resolution
calculations at Sc = 100 and 1000. As it can be seen in Fig. 3.5, in this particular case with
Sc = 100 a truncation value as high as N = 205 had to be used to achieve convergence of
the calculated solution. In general, a value of the truncation parameter N = max(NR, NZ)
equal or larger than N = 175 had to be used in calculations for the discontinuous reactor
with Sc = 100 and values as high as N = 251 had to be used in most of the calculations
with Sc = 1000 in which the time of calculation was around 9.7× 104 s of CPU time.
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3.3. ACCURACY ASSESSMENT 29

In the semicontinuous reactor, calculations were even more demanding due to the pres-
ence of much larger concentration gradients in the region near the outer enclosure wall.
Preliminary calculations were also carried out for all of the four values of the Schmidt num-
ber, Sc = 1, 10, 100 and 1000. However, it was found that part of the calculations with
Sc > 100 were not properly converged even with the highest N values that we could use
without exceeding the available computer memory (24 GBytes). This is the reason why only
results with Sc 6 10 are included in Section 4.2.3 below. For most of steady calculations
the computational workload was around 8.6× 102 s of CPU time.

3.3.3 Natural convection problem

It is important to notice that the results of the 1D limit do not apply only for Ra = 0 but
also for Ra < Rac, that means the no convection limit. The three-dimensional problem
(3.29) that arises whenever Ra > Rac is more challenging. The point is that as the LeRa1/2

factor in Eq. (2.27) increases the matrix Q in Eq. (3.29) becomes worse conditioned and
consequently a larger value of N has to be prescribed. This numerical tendency can be
understood as a consequence of the change in the physics of the problem as LeRa1/2 in-
creases: concentration gradients are restricted to an increasingly thinner layer in the vicinity
of the walls and thus they become increasingly steeper. The numerical results obtained
from (3.29) tend to converge with increasing values of the truncation parameter N in the
Galerkin expansion (3.26). The value of N used in a particular calculation was selected so

that the relative difference in the average concentration values, Ĉ(τ,−1/2), between a N–
and a N -2–solution at the time τ = 5× 10−2 is no greater than 0.1%. The selected N values
depend on the problem parameters (Ra, Le, φ) and varies between N = 21 and 37.

The ODE system (3.29) was advanced in time using a RK78 [62] with adaptive time-step.
In the most challenging conditions investigated (Le = 333.33 and Ra = 1.5×105) the average
time step used in the RK78 time integrator was about 10−6 and the truncation parameter in
expansions (3.26) was N = 37. Since the flow pattern investigated in the current study has
several symmetries the dimension of the problem with N = 37 was reduced to 4ND = 23328.
The worst case scenario resulted in a computational workload of 8.02× 106 s of CPU time.
In less demanding calculations (lower Le values) this maximum workload was reduced down
to a value of 3.72× 103 s (Le = 1).
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Chapter 4

Results and Discussion

4.1 Efficiency Assessment

The mass transfer efficiency, η, gives a measure of the mixing capability of the system. It is
defined as the ratio of the average rate of reaction at the catalytic surface to the maximum
value of the average rate of reaction, that is, the one value that would be only attained in
the ideal perfect mixing limit,

η(τ) =
actual average rate of reaction

ideal average rate of reaction
. (4.1)

Hence, if the mixing was perfect, the average concentration on the catalytic surface, Ĉ
would be the same as the volumetric average concentration C. Because the rate of reaction
is proportional to the concentration in first–order reactions,

η(τ) =
Ĉ(τ, Zcat.surf.)

C(τ)
(4.2)

where Zcat.surf corresponds to the value of Z where it is placed the catalytic surface. For
the cubical geometry Zcat.surf. = −1/2 and

Ĉ(τ,−1/2) =

∫ 1/2

−1/2

∫ 1/2

−1/2

C(τ,X, Y,−1/2) dX dY (4.3)

C(τ) =

∫ 1/2

−1/2

∫ 1/2

−1/2

∫ 1/2

−1/2

C(τ,X, Y, Z) dX dY dZ (4.4)

while for the cylindrical geometry Zcat.surf. = ±1/2 and

Ĉ(τ,±1/2) = 2π

∫ 1+ε

γ

C(τ, R,±1/2)RdR (4.5)

C(τ) = 2π

∫ 1/2

−1/2

∫ 1+ε

γ

C(τ, R, Z)RdRdZ (4.6)

Note that in the ideal limit Ĉ(τ, Zcat.surf.) = C(τ) making the efficiency η = 1.

The rate equation for convective mass transfer is defined as

Jz = K̂(τ)
[
C∞ − Ĉ(τ, Zcat.surf.)

]
(4.7)
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32 CHAPTER 4. RESULTS AND DISCUSSION

where Jz is the diffusive flux on the catalytic surface, K̂(τ) denotes the surface averaged
convective mass transfer coefficient and C∞ is the typical value of C in the bulk region, far
away from the catalytic region, hence

k Ĉ(τ,−1/2) = K̂(τ)
[
C∞ − Ĉ(τ,−1/2)

]
. (4.8)

The Sherwood number is a dimensionless mass transfer coefficient defined as

Sh(τ) =
K̂(τ)G

D
(4.9)

where G is a characteristic length, G = R2 for the cylindrical geometry and G = L for the
cubical one. Thus, relating (4.8) and (4.9) we got

Sh(τ) =
φ η(τ)

g[C∞/C(τ)− η(τ)]
≈ φ η(τ)

g[1− η(τ)]
(4.10)

where g = S for the cylindrical geometry and g = 1 for the cubical one and where we
have considered the concentration in the bulk region approximates to the volumetric average
concentration, C∞ ≈ C(τ). In problems where interficial mass transfer is combined with
chemical reaction an overall mass transfer coefficient is usually defined as,

1

Shov(τ)
=
g

φ
+

1

Sh(τ)
≈ g

φ η(τ)
. (4.11)

where g has the same meaning as explained above.

Equation (4.11) tells us that if the surface reaction is a slow one (small φ), the rate
of solute transfer from the bulk region into the disk surface by combined convection plus
molecular diffusion will be comparatively fast and values of η(τ) close to one will be attained.
In the opposite situation, a fast reaction yielding a large φ value, the overall mass transfer
process will be basically controlled by the rate of convection plus diffusion thus yielding very
low values of η(τ).

Obviously, the question is how to quantify the above qualitative trends, that is, how close
to one or zero will be η(τ) when φ takes a small or large value, respectively. One of the goals
of the present study is to find the relation between the reactor mass transfer efficiency and
the parameters of the problem, that is, what is the dependence of η (or Sh) on φ, Sc and Ra
or Re depending on the reactor studied. Therefore, much attention will be devoted below to
the relation between the reactor mass transfer efficiency, the reactor configuration and the
parameters of the problem. In particular, if the overall process of solute transfer into the
catalytic surface is controlled by molecular diffusion through a boundary layer region then
one would expect the Sherwood number to depend on a product of powers of S, Re and Sc
or Ra and Sc depending on which reactor we are talking about.

Another quantity that may give an indication of the efficiency is the conversion, defined
by

χ(τ) =
C(0)− C(τ)

C(0)
(4.12)

which gives account of how much solute has reacted in a determined time. If for a certain
conversion, for example, 90%, we wished to predict this time, namely, τ90, i.e., χ(τ90) = 0.9,
we could do it based on the following considerations. If the value of η for any time τ > τ∞
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4.1. EFFICIENCY ASSESSMENT 33

was somehow known and furthermore, was found to be constant, calling it η∞, it may be
shown that it is easy to obtain a good estimate of τ90. In order to do this, the molar balance
is performed through the whole reactor volume:

dC(τ)

dτ
= GφĈ(τ,±1/2) (4.13)

where G = 2/S2 for the cylindrical reactor and G = 1 for the cubical one. Then we introduce
the η(τ) definition (4.2) in the above equation to obtain:

dC(τ)

dτ
= Gφη(τ)C(τ) (4.14)

The ordinary differential equation (4.14) can be integrated using (τ∞, C(τ∞)) as initial
condition:

C(τ)

C(τ∞)
= e[−Gφη∞(τ−τ∞)] (4.15)

If we now assume that the transient is short, that is, τ∞ → 0 and C(τ∞) ≈ C(0), Eq. (4.15)
can be simplified into:

− C(τ)

C(0)
≈ −e(−Gφη∞τ) (4.16)

Thus the evolution in time of the reactor conversion, χ(τ), can be approximated by

χ(τ) =
C(0)− C(τ)

C(0)
≈ 1− e(−Gφη∞τ) (4.17)

Assuming that the values of η∞ are previously known, the values of τ90 can be therefore
estimated as:

τ̃90 = − log(0.1)

Gφη∞
(4.18)

Note that as long as the efficiency, η, has reached a constant value, we could find the time
in which any conversion, χ∗, is achieved, as

τ̃χ∗ = − log(1− χ∗)

Gφη∞
. (4.19)

We define also the following quantities that will be useful for analyzing the results ob-
tained. The normalized concentration, for a given position s, is defined as

Σ(τ, s) =
C(τ, s)

C(τ)
(4.20)

where s = (R,Z) for the cylindrical geometry and s = (X, Y, Z) for the cubical one. The nor-
malized radially (horizontally) averaged concentration for the cylindrical (cubical) geometry
is given by,

Λ(τ, Z) =
Ĉ(τ, Z)− Ĉ(τ,−1/2)

C(τ)− Ĉ(τ,−1/2)
, (4.21)

and the normalized radially (horizontally) averaged vertical solute flux for the cylindrical
(cubical) geometry is,
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34 CHAPTER 4. RESULTS AND DISCUSSION

Γ(τ, Z) =

∂Ĉ(τ, Z)

∂Z

φĈ(τ,−1/2)
(4.22)

4.2 Forced convection problem

In this part of the work four different values of the Schmidt number, namely Sc =1,10,100
and 1000, and several values of the Damköhler number within the range 1 6 φ 6 8000 were
considered. Note that values of Sc ≈ 1 would typically be found in a gas–phase reactor at
atmospheric pressure while the largest Sc = 1000 value is typical of a liquid phase reactor.
For each particular combination of Sc and φ calculations were performed at several values
of Re and S, as is explained in what follows. A unique value of the radius ratio, γ = 0.5,
was used in all of the present calculations.

4.2.1 Velocity Field

Velocity fields were calculated at four different values of the height to radius aspect ratio,
namely S = 0.125, 0.25, 0.50 and 1, and four different values of the Reynolds number, namely
Re × 10−3 = 1, 5, 10 and 20. In addition, for the particular S = 0.25 value calculations
were extended up to a Reynolds number of Re = 105. Figure 4.1 shows the flow streamlines
(isolines of the streamfunction Ψ) calculated at Re = 2×104 and two different aspect ratios,
S = 0.125 and 0.25. The velocity fields plotted in these two figures are symmetric with re-

a)

 0.5  0.6  0.7  0.8  0.9  1

R

-0.06
-0.03

 0
 0.03
 0.06

Z
 x

 S

-0.02
-0.01
 0
 0.01
 0.02

b)

 0.5  0.6  0.7  0.8  0.9  1

R

-0.1

-0.05

 0

 0.05

 0.1

Z
 x

 S

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

Figure 4.1: Flow streamlines for Re = 2× 104 and two different values of the height to radius aspect ratio,
S = 0.125 (a) and S = 0.25 (b).
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4.2. FORCED CONVECTION PROBLEM 35

spect to the horizontal midplane (Z = 0). Although this feature may seem quite natural, the
existence of solution branches with symmetry–breaking has also been reported [28, 30, 38].
The present numerical method allows the calculation of such symmetry-breaking solutions,
as both even and odd functions along the Z direction were used in expansions (3.8) and
(3.9). Notwithstanding, only symmetric solutions were detected in all of the cases investi-
gated. As a consequence, only Chebyshev polynomials of even degree were considered along
the Z direction in the concentration expansion (3.11). Therefore, Ĉ(τ) and η(τ) in (4.2) can
be indistinctly calculated either at Z = −1/2 or Z = 1/2.

Figure 4.1 shows the cross-stream, secondary motion that is typical of the flow between
a pair of corotating disks. In the vicinity of both disk surfaces fluid is moving outwards
along the boundary layer region known as Ekman layer. It should be kept in mind that,
as illustrated in Fig. 3.4b, the main motion occurs in the circumferential direction, that is,
it would be normal to the paper in Fig. 4.1. The secondary motion is basically driven by
the imbalance between the inwards directed radial pressure force and the outward directed
centrifugal force along the disk Ekman layers (see, for example, the theoretical analysis in
Ref. [76] and the references therein). Moreover, as shown in Fig. 3.4b, the radial region
around R = 1 is characterized by very high shear levels as the circumferential velocity, V ,
must drop to its minimum V = −1 value at the outer enclosure wall.

As can be seen in Figs. 3.4 and 4.1, when the aspect ratio S is low the cross-stream
vortices do not reach the vicinity of the rotating hub as there is an inner core region where
fluid is nearly in solid-body rotation with the disks and hub, that is, V ≈ 0, with cross-
stream motion much weaker than the one in the outer region. Let Rsep = Rsep(Re, S) be the
radial location where the separation between the Ekman layer region and the inner core is
observed at the disk surface. In the case with S = 0.125, which is the most unfavorable in
terms of effective catalyst surface, we have Rsep = 0.73 in Fig. 4.1a and therefore the Ekman
layer region (R > Rsep) extends over about 2/3 of the total disk surface. The Rsep location
decreases with increasing S down to the point that at S = 1 (results not shown here) there
is no inner core.

According to theory, the thickness of the Ekman layer, δE, should be proportional to√
νΩ and thus δE/H ∝ Re−1/2S−1. For each of the present calculations, an averaged value

of the Ekman layer thickness, δ̂E, was estimated as follows. We first averaged the radial
component of velocity, U(R,Z), within the radial region with Rsep 6 R 6 1 to obtain the

axial profiles Û(Z). Figure 4.2 shows the Û(Z) profiles obtained for two different aspect

ratios, S = 0.125 and 0.50. In almost all of the cases Û raises quickly from the zero value
at the disk surface up to a maximum value and then it drops down to a negative minimum
value at the Z = 0 midplane (where the strongest inwards cross-stream flow is observed in

Figs. 4.1). A straightforward estimate of δ̂E/H is therefore obtained by measuring the axial
distance between the maximum location and the disk surface. The profile for Re = 1000
in Fig. 4.2a is obviously anomalous. It appears that at the lowest Re value considered the
Ekman layers are not well developed yet.

A fit of the estimated δ̂E/H values in the form,

log

(
δ̂E
H

)
= a+ b log(S) + c log(Re) (4.23)

yielded a = 0.112 ± 0.160, b = −1.020 ± 0.0382, c = −0.517 ± 0.0176. Thus, we have

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF ENHANCED MIXING BY NATURAL AND FORCED CONVECTION WITH APPLICATION TO CHEMICAL REACTOR DESIGN 
Clara Tatiana González Hidalgo 
Dipòsit Legal: T.1422-2013 
 



36 CHAPTER 4. RESULTS AND DISCUSSION

a)

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.4 -0.2  0  0.2  0.4

U∧

Z

Re=1000
Re=5000

Re=10000
Re=20000

b)

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.4 -0.2  0  0.2  0.4

U∧

Z

Re=1000
Re=5000

Re=10000
Re=20000

Figure 4.2: Axial profiles of the radially averaged radial component of velocity, Û(Z), for four different values
of the Reynolds number in the range 103 6 Re 6 2 × 104 and two different values of the height to radius
aspect ratio, S = 0.125 (a) and S = 0.5 (b).
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4.2. FORCED CONVECTION PROBLEM 37

δ̂E/H = 1.19S−1.02Re−0.517, in good agreement with theory. The anomalous data point at
Re = 1000 and S = 0.125 was not included in the fit.

4.2.2 Discontinuous operation

In the discontinuous reactor model it is assumed that initially (τ = 0) the solute is perfectly
well-mixed through all of the volume with an arbitrary concentration level equal to one.
In fact, since the strict initial condition C(0, R, Z) = 1 would be incompatible with the
boundary condition at the disk surface, Eq. (2.17), the concentration field was initialized
using the same method as in Subsection 3.3.3. That is, a one-dimensional solution of (2.16)–
(2.19) in the limiting no convection case, Re = 0, at a very short integration time, τ0 = 0.001,
is extended radially to obtain the two-dimensional field C(0, R, Z). Since in the discontinuous
mode no reactant is fed during operation, i.e., JR = 0 in the boundary condition (2.19), the
reactant conversion χ(τ) will be continuously growing. In each particular run, the ODE
system (3.12) was advanced in time until a conversion level of χ = 0.90 was reached.

Influence of the height to radius aspect ratio

Let us imagine that a particular reactor setup with a unique pair of corotating disks and
certain values of the outer radius R2 and the height H does already exist. The volume
of such a reactor would be equal to π (R2

2 −R2
1)H. Let us further imagine that for some

practical reason we need to double the reactor volume. One obvious way of doing so would
be to simply double the height H. A second way would be to add a third disk on top of
the second, with the vertical distance between the second and third disks set to the same
H value. The second method would be obviously more expensive but has the advantage of
maintaining the same ratio of catalyst surface to reactor volume, that is, ag = 2/H. Which
of the two methods ought to be preferred in practice to increase the reactor volume? There
is no evident answer and we intend that the results and analytical tools presented in what
follows may be helpful whenever a choice between the two methods has to be made. In
particular, we will focus in the analysis of the reactor mass transfer efficiency and the time
needed to reach a given conversion level.

Four different values of the height to radius aspect ratio, namely S = 0.125, 0.25, 0.5 and
1.0, and four values of the Reynolds number, Re × 103 = 1, 5, 10 and 20 were considered.
Once the velocity fields were obtained for each of the 16 (Re, S) pairs, in each case four
values of Sc and four values of φ were considered thus giving a total of 256 calculations.
Note that since the Damköhler number, φ = kH/D, is defined on the basis of H, in order
to assess the effect of an increase in height alone, keeping the same values for k and D, the
value of φ must be changed along with the value of S. That is, if at S = 0.125 we set a given
φ value then at the corresponding calculation at S = 0.25 we set 2φ0, and so on.

Figure 4.3a shows the evolution in time of the reactor efficiency, η, for all of the four
values of S investigated when the rest of parameters are fixed to Re = 104, Sc = 1 and
φ0 = 1. As expected, since the specific catalyst surface, ag = 2/H, decreases with increasing
S the time τ90 needed to achieve the target conversion also increases. There is also a slight
drop in the efficiency levels with increasing S but, as will be seen below, such a behavior
cannot be generalized to other conditions. One interesting result, is that after a relatively
short transient η(τ) reaches a plateau–like, constant value. In all of the cases, η(τ) achieves
a maximum value during the transient and then experiences a considerable drop until it
reaches the final asymptotic value. Notice these characteristics are those described in Sub-
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Figure 4.3: Evolution in time of the reactor efficiency, η(τ), for two specific cases with a) Re = 1 × 104,
Sc = 1 and φ0 = 1, and b) Re = 2 × 104, Sc = 1000 and φ0 = 100. Note that in the latter plot (b) the
normalized time τ/τ̃90 is used in the abscissa.

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF ENHANCED MIXING BY NATURAL AND FORCED CONVECTION WITH APPLICATION TO CHEMICAL REACTOR DESIGN 
Clara Tatiana González Hidalgo 
Dipòsit Legal: T.1422-2013 
 



4.2. FORCED CONVECTION PROBLEM 39

section 4.1, so that τ90 value can be predicted using (4.18), where η∞ will be the asymptotic
value mentioned. Figure 4.4 shows a comparison between the τ̃90 estimates and the τ90 values
obtained in the calculations. In general, Eq. (4.18) produces a good estimate of τ90 with the

 0.001

 0.01

 0.1

 0.001  0.01  0.1

τ ∼  90

τ90

Figure 4.4: The values of τ90 predicted by Eq. (4.18), τ̃90, are plotted against the corresponding τ90 values
obtained in all of the calculations for the discontinuous reactor configuration.

largest departures observed for the smallest reaction times (small S and/or large φ values),
that is, in those cases where the ratio τ∞/τ90 is not small enough so that the approximation
(4.16) differs most from the exact solution of Eq. (4.15).

Obviously, in order to calculate a τ̃90 value we need to know first what is the asymptotic
efficiency of the reactor, η∞. The dependence of η∞ on the flow parameters will be discussed
in the following sections. Before that, let us further analyze some qualitative aspects. When
the surface reaction is slow, η∞ is close to one and then Eq. (4.18) consistently shows that
the overall mass transfer process is controlled by the rate of reaction as basically τ̃90 ∝ 1/φ.
On the opposite situation of a very fast reaction, large φ values, it is convenient to use an
alternative equation based on the Sherwood number. Let Sh∞ be the quantity obtained
from Eq. (4.10) for τ > τ∞ and let us combine equations (4.10) and (4.18):

τ̃90 = − S log(0.1)

Sh∞ (1− η∞)
(4.24)

The point is that if Sh∞ is roughly independent of φ then Eq. (4.24) reflects that when the
reaction is fast enough the overall mass transfer is controlled by the rate of combined con-
vection plus diffusion mass transfer. That is, we have the situation where η∞ will be close to
zero (low concentration levels at the disk surface) and therefore, for a given S, τ̃90 ∝ 1/Sh∞.
For example, in the present calculations with φ0 = 0.125φ/S = 1000 the calculated values of
η∞ are typically one order of magnitude smaller than the corresponding values for φ0 = 100.
Notwithstanding, in almost all of the cases the latter value is already small to the point
that τ90 decreases very slightly between φ0 = 100 and 1000, as predicted by (4.24). Another
obvious consequence, in view of Eq. (4.10), is that when φ is large we would expect, for
fixed values of S, Re and Sc, a η∞ ∝ 1/φ dependence.
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It is found that the normalized solute concentration Σ, defined in (4.20) becomes in-
dependent of time for τ > τ∞, that is, we can define Σ∞(R,Z) = Σ(τ, R, Z) : τ > τ∞.
Figures 4.5 and 4.6 show respectively the contours of Σ∞(R,Z) obtained for S = 0.125 and
S = 0.25 at Re = 2× 104 and three different values of the Schmidt number, namely Sc = 1,
10 and 1000. When the reaction is comparatively fast, φ0 = 100 (plots d), e) and f) in
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Figure 4.5: Contours of the normalized concentration, Σ∞, for S = 0.125 and Re = 2 × 104 in the discon-
tinuous reactor. The values of the Damköhler number are φ = 1 in plots a), b) and c) and φ = 100 in plots
d), e) and f). The values of the Schmidt number are Sc = 1 in plots a) and d), Sc = 10 in plots b) and e)
and Sc = 1000 in plots c) and f).

both figures), we see that the minimum levels of Σ∞ are close to zero. Since the smallest
concentration values are always found at the disk surface, Σ∞ → 0 means, on account of
(4.2), that the reactor efficiency will be small. On the contrary, the largest levels of Σ∞ are
always found in the bulk region. Note that the larger the maximum level of Σ∞, the larger
the contribution of convection plus diffusion to the overall mass transfer resistance. This is
why in all six cases with faster reaction (φ0 = 100) the maximum concentration values are
much higher. At Sc = 1 (plots a) and d) in Figs. 4.5 and 4.6) when characteristic times of
mass convection and molecular diffusion coincide, regions with largest concentration occur
within the inner core region, R < Rsep. This is due to the fact that convection in the inner
core is much weaker than in the region occupied by the pair of counter-rotating secondary
vortices. The concentration contours at Sc = 1000, plots c) and f), are however somewhat
intriguing at first sight. The maximum Σ∞ values are not found in the inner core anymore
but in the center of the secondary vortices. That is, it appears that solute remains trapped
within a sort of bubble as it cannot easily reach the Ekman layer region.

On the other hand, if the overall mass transfer process from the bulk region into the
disk surface is to be controlled by molecular diffusion in the vicinity of the disks, i.e., within
the Ekman layers, then one would expect a dependence of the form Sh ∝ Re1/2Sc1/3 [77]
for the Sherwood number defined in (4.10). Such a behavior is consistent with the notion,
discussed above, that the Ekman layer thickness, δE, is independent of S so that the strength
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Figure 4.6: Contours of the normalized concentration, Σ∞, for S = 0.25 and Re = 2×104 in the discontinuous
reactor. The values of the Damköhler number are φ = 2 in plots a), b) and c) and φ = 200 in plots d), e)
and f). The values of the Schmidt number are Sc = 1 in plots a) and d), Sc = 10 in plots b) and e) and
Sc = 1000 in plots c) and f).
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of the secondary motion in the Ekman layer should be proportional to ΩR2 (see Fig. 4.1).
Then, since we are considering constant values of the φ/S ratio it follows from (4.10) that
η∞ should be roughly independent of the aspect ratio S. Present results with Sc = 1 are in
fairly good agreement with the expected theoretical behavior, as illustrated in the case with
Re = 104 and Sc = 1 in Fig. 4.3a where the maximum variation of η∞ with S is within
6%. However, departures from the theoretical behavior become increasingly significant with
increasing values of φ and, especially, of Sc. Figure 4.3b shows time evolutions of η(t) for
all the four values of S when the rest of parameters take the value Re = 2× 104, Sc = 1000
and φ0 = 100. Note that in this plot the time in the abscissa is scaled in each case with
the τ̃90 value predicted by (4.18). Because of the high value of φ used in these calculations
the initial transients are not negligible, that is, τ∞/τ90 is significantly larger than zero. Note
that while the η∞ values for S = 0.125, 0.5 and 1 are around 0.18 the corresponding value
for S = 0.25 is anomalously smaller by about a 30%.

In view of the concentration contours in Figs. 4.5 and 4.6 one plausible explanation for
such an unexpected dependence of η∞ on S might be that the catalyst surface in the inner
core, R < Rsep, is not effective because of the weak cross-stream circulation. Then a higher
Rsep value would imply a higher contribution of the less effective inner core area into the
definite integral of the numerator of Eq. (4.2). Notwithstanding, Fig. 4.7 shows that the
relative size of the inner core only has a slight effect on the surface-averaged value η∞. This
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Figure 4.7: Radial profiles of the normalized concentration at the disk surface, Σ∞(R,±1/2), for all the
four aspect ratios investigated in the discontinuous reactor and the same conditions as in Fig. 4.3b), i.e.,
Re = 2× 104, Sc = 1000 and φ0 = 100.

plot shows the radial profiles of Σ∞(R,±1/2) for the case with Re = 2 × 104, Sc = 1000
and φ0 = 100 for each value of S (that is, the same conditions as in Fig. 4.3b). In all of
the profiles the maximum Σ∞ value is found near the enclosure wall, R ≈ 1.02, basically
at the location where the cross-stream vortices detach from the disk surface and the shear
stress attains its maximum levels. In the less efficient case with S = 0.25 we see that the
maximum value, Σ∞ ≈ 0.18, is considerably lower and this deficit is maintained in the region
with R > 0.75. Except for the case with the largest aspect ratio, S = 1, the Rsep location
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is marked by a local minimum in the radial profile of Σ∞. In all of the cases we see that
the concentration values at the disk surface are smaller but not negligible in the inner core
region, R 6 Rsep. In summary, Fig. 4.7 suggests that the lower η∞ value for the case with
S = 0.25 in Fig.4.3b is basically due to the relative inability of the flow field, compared
to the ones for the other aspect ratios, to transport reactant from the bulk region into the
vicinity of the disk surface.

The variations of η∞ with S are to be therefore attributed to the existence of bulk
regions with high concentration levels, as seen in Figs. 4.5 and 4.6. That is, large amount
of solute accumulates within the bulk region far from the disk surface. A higher Sc value
means a lower molecular diffusivity so that the solute is having more difficulty to reach the
catalytic surface. The mass transfer resistance concentrates not only in the vicinity of the
disk surface but there is also a significant contribution to the overall resistance associated
to the transport of solute from the bulk region into the Ekman layer. This phenomenon will
be further analyzed in the next sections. As there appears to be no systematic dependence
of η∞ on S, we will focus hereinafter on a single value of the height to radius aspect ratio.
In particular, the value S = 0.25 is selected because, as illustrated in Fig. 4.3b, is the one
typically showing higher relative levels of mass transfer resistance. Moreover, calculations for
S = 0.25 were extended to higher Reynolds numbers up to Re = 105 in order to characterize
better the Re dependence while ruling out the low-Re effects that were detected in some
calculations with the lowest Re = 1000 value.

Performance Analysis

For the chosen S = 0.25 aspect ratio additional calculations were performed for Reynolds
numbers between Re = 4 × 104 and Re = 1 × 105 every 104 units. Our purpose here is to
assess to what extent the transport of reactant into the catalyst surface is controlled by the
rate of mass transfer within the disk boundary layer and, if possible, to correlate the mass
transfer efficiency as a function of the flow parameters, Re, Sc and φ. At a qualitative level,
it is observed that all of the calculated η∞ values increase with increasing Re and Sc and
decrease with increasing φ. In terms of Sherwood number, however, it is not clear at first
sight whether or not there is some dependence of Sh∞ on φ. The idea is to use the radi-
ally averaged concentration profiles to quantify the thickness of the concentration boundary
layer, δC/H. Then a dependence of δC/H on the flow parameters would be looked for to
finally search for a dependence of η∞ on δC/H. Note that such a procedure is equivalent, on
account of (4.10), to directly obtain a fit of the type Sh∞ = Sh∞(Re, Sc, φ) but it has the
advantage that the hypothesis Sh∞ ∝ H/δC is also tested along the way.

In the present problem, it appears that such a methodology is only suitable when the
radially averaged concentration profiles are similar to the one in Figure 4.8a, corresponding
to Re = 104, Sc = 1 and φ = 2. The quantity plotted in this figure is in fact the normalized
radially averaged concentration, Λ, defined in (4.21), for τ = τ∞. Contrary to what was
previously found for the Ekman layer thickness in Fig.4.1, it is not straightforward how to
define δC from the axial concentration profiles. In Fig.4.8a we see that Λ is continuously
growing between the reference zero value at the disk surface and the maximum value attained
at Z = ±0.17. Note that the maximum Z–location is basically the axial location of the center
of the cross-stream vortices, as previously seen in the concentration contours of Figs. 4.5
and 4.6. We may base on the estimation not of δC/H itself but of a different quantity, ε/H,
which provided a good measure of δC/H. Figure 4.8a also includes the normalized radially
averaged vertical diffusion flux, Γ, defined in (4.22) for τ = τ∞. Note that Γ(τ∞,±1/2) = 1
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Figure 4.8: a) Axial profiles of the radially averaged normalized concentration, Λ(τ∞, Z), and the normalized
molar flux, Γ(τ∞, Z), respectively defined by Eqs. (4.21) and (4.22), for Re = 1 × 104, Sc = 1 and φ = 2.
b) Axial profiles of Λ(τ∞, Z) for Re = 6 × 104, φ = 2000 and all of the four values of the Schmidt number
investigated.
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because of boundary condition (2.13). The value of ε/H is taken as 0.5 + Zc, where Zc is
the axial location where the profiles of Γ and Λ cross each other. The calculated ε values for
Re > 104 were successfully fitted to ε/H = ARebφc only when Sc = 1 or 10. In both cases the
exponent b was very close to −1/2 and c was positive but close to zero. Notwithstanding,
at Sc = 100 and, especially, 1000 a strong correlation was detected between the b and c
exponents and the fits were not statistically meaningful. Moreover, there was no significant
fit for the Sh∞ ∝ R2/ε, even for Sc 6 10. The reasons for such a departure from the
expected theoretical behavior can be understood when inspecting Λ profiles such as those in
Fig. 4.8b, corresponding to Re = 6× 104 and φ = 2000. In particular, it is noteworthy that:

• For all four values of the Schmidt number, the concentration profile has a first local
maximum of about Λ(τ∞, Z) = 0.6− 0.7 not far from the disk surface (Z < −0.4).

• This local maximum is much lower than the global maxima observed in the bulk region,
around Z = ±0.17; the value of Λ at the global maxima significantly increases with
increasing Sc.

• The location of the first local maximum near the disk surface, Z ≈ −0.43, is roughly
independent of Sc, in disagreement with the δC/R2 ∝ Sc−1/3 expectation.

• After the first local maximum, the drop in Λ is small. Even though, this drop implies
that, on the average, there is no direct solute transport by molecular diffusion between
the bulk region and the disk Ekman layer regions.

• The value of Λ at the local minimum at Z = 0 decreases with increasing Sc. The Λ
drop between the global maxima and the local minimum raises from about ∆Λ = 0.6
units at Sc = 1 up to some ∆Λ = 1.7 units for Sc = 1000.

• This ∆Λ drop is in all cases equal or larger than the Λ drop between the first local
maximum and the Λ = 0 value at the disk surface.

In summary, we see that as molecular diffusion becomes slower a relatively larger amount
of solute accumulates in the bulk region. Since transport by molecular diffusion between the
bulk region and the disk Ekman layers does not seem to work solute is instead diffused into
the midplane region where fluid is returned inwards (see Fig. 4.1). Thus, as the Schmidt
number increases, the overall solute transfer rate is increasingly controlled by the rate of
molecular diffusion transfer between the bulk region and the midplane (Z = 0) region.

It is therefore not surprising than a fit of the form

logSh∞ = a+ b log(S) + c log(Re) + d log(Sc) + e log(φ) (4.25)

does not really work. As shown in Fig. 4.9a, this fit (a = 0.681±0.1012, b = −0.0792±0.0168,
c = 0.37295± 0.0100, d = 0.137± 0.00394 and e = −0.0346558± 0.00394) is not very good
with relative departures between calculated and fitted Sh∞ values as large as 35%. Moreover,
the comparison of present results with the theoretical dependence [77]

Sh = 0.62Re1/2Sc1/3 (4.26)

shown in Fig. 4.9b, reveals that mass transfer efficiency in the present discontinuous reactor
is much lower than it would be for the boundary layer flow over a free rotating disk. Note
that the d coefficient obtained in the fit (4.25) is anomalously below the theoretical 1/3
value. Thus, it is not surprising that the low efficiency of the current discontinuous setup
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Figure 4.9: Variation with Re of the predicted values of the Sherwood number, Sh∞, for all of the calculations
for the discontinuous reactor configuration. In a), Sh∞ is divided by SbScdφe, where b, d and e denote the
corresponding exponents obtained in the fit (4.25); the two solid lines denote the boundaries of the 95%
confidence interval for the fit. In b), Sh∞ is divided by Sc1/3 instead and the theoretical boundary–layer
prediction, Eq. (4.26), is plotted with a solid line. In both plots, circles, squares, triangles and diamonds
respectively denote the results obtained with Sc = 1, 10, 100 and 1000.
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gets increasingly evident in Fig. 4.9b as the Schmidt number increases. This fact confirms
the interpretation of Fig. 4.8b given above, i.e., the overall mass transfer is not boundary
layer–controlled as most of the resistance is probably due to the transfer of solute from the
bulk region into the disk Ekman layer.

4.2.3 Semicontinuous operation

In the rotating disk reactor investigated by Meeuwse et al. [25] these authors reported, for
Re ≈ 105, a value of the Sherwood number roughly in agreement with the theoretical value
given by Eq. (4.26). Why should our corotating disk setup be less efficient than Meeuwse
et al.’s? In our configuration there are two corotating disks while Meeuwse et al.’s appara-
tus consisted of one rotating and one stationary disk. It appears that, for a fixed reactor
volume, two corotating disks would induce a cross-stream flow at least as strong as the one
produced in the rotor-stator configuration. Probably, the difference in terms of mass transfer
efficiency is related to the fact that Meeuwse et al.’s reactor operated in continuous mode
as a stream of fresh reactant was fed through the gap between the rotating disk and the
external enclosure wall.

Although the inclusion of such a feed stream in the corotating disk setup is beyond the
scope of the present investigation it is possible to modify the current model to incorporate
a continuous reactant feed, as sketched in Fig. 2.2. In the semicontinuous reactor model a
constant molar flux of reactant is fed through the external enclosure wall, which we therefore
assume is made of some porous material. In particular, boundary condition (2.15) is used
with a molar flux profile having a Gaussian shape, JR(Z) = B exp (Z2/σ2) with σ2 = 0.1. It
is further assumed that the molar flux JR is small enough not to alter the velocity field.

Calculations for the semicontinuous reactor were performed for a single aspect ratio value
of S = 0.25, two values of the Schmidt number, Sc = 1 and 10, and all of the Re and φ values
that were previously considered for the discontinuous reactor model in Section 4.2.2 above.
The discrete forms of equations (2.16)–(2.19) were advanced in time starting from the initial
condition C(0, R, Z) = 0, that is, zero reactant concentration in the moment where the feed
is initiated. In all of the cases a steady field was reached after a relatively short transient τS,
as illustrated in Figure 4.10 for two particular instances. Note that in the abscissa of Fig.
4.10 time is scaled with the τ90 values previously obtained in the corresponding calculations
for the discontinuous reactor mode. That is, in semicontinuous operation the initial transient
is, in all of the cases investigated, τS ≈ τ90. This means that in practice the semicontinuous
reactor would operate most of the time within a pseudo-steady state. Note that eventually
the reactor must be stopped in order to withdraw the reaction products accumulated during
each operation cycle. In all of the cases the steady state reached at the end of the initial
transient coincided with the one that was directly calculated by setting the time derivative
term in (2.16) equal to zero.

The qualitative behavior of the system during steady state, τ > τS, is similar to that
of the asymptotic operation for discontinuous reactor (τ > τ∞) in the sense that efficiency,
η, increases with increasing Re and Sc and decreases with increasing φ. Concentration
contours plots are shown in Fig. 4.11. Note that the quantity plotted in this figure is
CS(R,Z)ηS = C(τS, R, Z)η(τS), whose volumetric average is equal to one. Comparing with
the discontinuous reactor (Figs. 4.5 and 4.6), we see that for Sc = 1 there is less solute
accumulated in the inner core region. For Sc = 10, the concentration levels in the outer bulk
region are considerably lower in Fig. 4.11d than they were for the discontinuous reactor in

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF ENHANCED MIXING BY NATURAL AND FORCED CONVECTION WITH APPLICATION TO CHEMICAL REACTOR DESIGN 
Clara Tatiana González Hidalgo 
Dipòsit Legal: T.1422-2013 
 



48 CHAPTER 4. RESULTS AND DISCUSSION

a)

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  0.5  1  1.5  2  2.5  3

η(
τ)

τ/τ90

Sc=1
Sc=10

b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2

η(
τ)

τ/τ90

Sc=1
Sc=10

Figure 4.10: Evolution in time of the reactor efficiency, η(τ), for the cases of the semicontinuous reactor
with S = 0.25, Re = 7× 104. The value of the Damköhler number is φ = 2 in a) and φ = 2000 in b). Note
that in this figure the time in the abscissa is normalized as τ/τ90, where the τ90 values are those previously
calculated for the corresponding cases in the discontinuous reactor configuration.
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Figure 4.11: Concentration contours for the semicontinuous reactor calculations with S = 0.25 and Re =
2× 104. The values of the Schmidt number are Sc = 1 in plots (a) and (b) and Sc = 10 in (c) and (d). The
values of the Damköhler number are φ = 2 in plots (a) and (c) and φ = 200 in (b) and (d). The quantity
plotted in all four cases is the product CS(R,Z) ηS , whose volumetric average is equal to one.

Fig. 4.6e. Not surprisingly, the highest concentrations levels in Fig. 4.11 are observed near
the external enclosure wall where reactant is being continuously fed into the reactor. Figure
4.12 show the ΛS profiles i.e., Λ in the steady state, for the same cases previously shown for
the discontinuous reactor in Figure 4.8. In particular, comparing Figs. 4.8b and 4.12b we
see that:

• The first local maximum near the disk-surface takes now a larger value, ΛS > 0.9.

• The ΛS value in the global maxima in the bulk region is now just a little higher than
the first local maxima, ΛS 6 1.2; the global maxima value is roughly the same for
Sc = 1 and 10.

• The location of the first local maximum seems closer to the disk surface for Sc = 10
than it is for Sc = 1

• The magnitude of the ΛS drop after the first local maximum is maintained. Thus, direct
solute transport by molecular diffusion from the bulk region into the disk Ekman layer
remains problematic.

• The value of ΛS at the local minimum at Z = 0 is now much higher (ΛS ≈ 0.9) and
changes very little with Sc.

• The ∆ΛS drop between the global maxima and the Z = 0 local minimum is now less
than 0.3 units, much smaller than the drop between the first local maximum and the
disk surface.

On the overall we see that in the semicontinuous reactor much less solute is trapped within
the bulk region. This is not surprising since reactant is continuously being fed through the
external porous wall with the maximum inlet flow occurring at the Z = 0 midplane. Thus,
most of the reactant is being directly incorporated into the inwards stream between the two
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Figure 4.12: a) Axial profiles of the radially averaged normalized concentration and the normalized molar flux
for Re = 1× 104, Sc = 1 and φ = 2. The quantities ΛS , and ΓS are respectively defined in a similar manner
as are Λ and Γ in Eqs. (4.21) and (4.22) except for the fact that the steady–state concentration, CS(R,Z), is
used instead of the asymptotic concentration C(τ∞, R, Z). b) Axial profiles of ΛS for Re = 6×104, φ = 2000
and Sc = 1 and 10.
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counterrotating secondary vortices and it can afterward easily reach the vicinity of the disk
surface. It is therefore not surprising that the concentration drop within the disk Ekman
layers is now much larger thus implying a much larger rate of reactant consumption at the
catalytic surface. Although not completely, now the overall mass transport seems to be much
more boundary layer–controlled.

The calculated values of the Sherwood number (for Re > 5 × 103) were fitted to an
equation in the form:

logShS = a+ b log(Re) + c log(Sc) + d log(φ) (4.27)

where ShS = Sh(τS), i.e., Sherwood in the steady state, and the values a = 0.5112± 0.126,
b = 0.4157± 0.0117, c = 0.3602± 0.00978 and d = 0.05402± 0.00437 were obtained. Com-
pared to the fit (4.25) for the discontinuous reactor above, we see now a higher exponent in
both the Reynolds and, especially, the Schmidt number, namely b = 0.416 instead of 0.373
and c = 0.360 instead of 0.137. The fact that the c value in (4.27) is much closer to the
theoretical expectation (c = 1/3) confirms the notion that the overall mass transfer is now
much more boundary layer–controlled than it was in the discontinuous reactor.

Figure 4.13 confirms that the fit of the calculated ShS values is much better than it
was for the discontinuous reactor (Fig. 4.9). Moreover, we see in Fig. 4.13b that for the
semicontinuous reactor the values of ShS are approximately in the same order of magnitude
or, in most cases, surpass the theoretical values given by (4.26). In particular, for the largest
Reynolds number investigated, Re = 105, the ShS values for Sc = 10 plotted in Fig. 4.13 are
between 6 and 7 times higher than the corresponding values for the discontinuous reactor in
Fig.4.9. Thus, it seems clear that the new semicontinuous configuration really overcomes the
limitations that were detected in the discontinuous reactor as the mass transfer efficiency is
highly improved.

4.3 Natural convection problem

4.3.1 Natural convection flow

We intend to analyze the viability of a mini-reactor, filled with an aqueous phase (Pr = 6),
with a side length in the range 0.01 m≤ L ≤ 0.02 m, which would be easy to operate at a
temperature drop in the range 5 K ≤ ∆T ≤ 10 K. Note that the specific catalyst surface
would be in the range 50 m2/m3 ≤ L2/L3 ≤ 100 m2/m3. An overall one–liter reactor
volume could then be achieved by setting an array of about 30×30 mini–reactors embedded
between two horizontal flat plates. Note that for a given total reactor volume the catalyst
surface in 30× 30 mini–cubes would be (900)1/3 times larger than that provided by only one
big cube. Assuming properties of the liquid phase similar to those of water the time scale for
convection would range between τconv = 1.8 and 9.9 s. Values of the Rayleigh number about
Ra = 105 will be assumed. In practice, for given values of L and fluid properties the exact
value of Ra would be determined through the value taken by ∆T during the operation.

Bifurcation Diagram

Figure 4.14 shows the calculated bifurcation diagram within the region of Ra of interest and
a value of the Prandtl number equal to Pr = 6. The bifurcation diagram turns out to be a
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Figure 4.13: Variation with Re of the predicted values of the steady–state Sherwood number, ShS , for all
of the calculations of the discontinuous reactor configuration. In a), ShS is divided by Sccφd, where c and d
denote the corresponding exponents obtained in the fit (4.27); the two solid lines denote the boundaries of the
95% confidence interval for the fit. In b), ShS is divided by Sc1/3 instead and the theoretical boundary–layer
prediction, Eq. (4.26), is plotted with a solid line. In both plots, circles and squares respectively denote the
results obtained with Sc = 1 and 10.
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Figure 4.14: Bifurcation diagram for Pr = 6. Solid and dashed lines stand for stable and unstable solutions,
respectively. Convective flow patterns that set in at a primary bifurcation are labeled Bi and flow patterns
developed at bifurcation points of Bi are denoted by Bij [55]. For the sake of clarity the variable Nu −
0.009Ra1/2 was used instead of the Nusselt number Nu.

very useful tool to show the domains of existence, stability character, and bifurcations of the
multiple solutions that may coexist as a function of a parameter. The Nusselt number, plot-
ted in Fig. 4.14 as a function of Ra for the different solution branches, is the dimensionless
convective heat transport coefficient defined by:

Nu = 1−
∫ 1/2

−1/2

∫ 1/2

−1/2

∂θ

∂Z
(X,Y,−1/2)dXdY (4.28)

Note that for the sake of clarity the variable Nu− 0.009Ra1/2 is used instead of the Nusselt
number in Fig. 4.14. Stable (physically realizable) flow patterns are depicted with solid
lines, while unstable patterns are represented by dashed lines. Only steady-state solutions,
i.e., no time-dependent stable branches, have been found in the region with Ra ≤ 150, 000.
Five different solution branches are stable within certain intervals of the Rayleigh number
in the studied domain. At the onset of convection, Rac = 3, 389, the initially stable (x−
or y−aligned) single-roll pattern B1 and the initially unstable diagonally-aligned single roll
pattern B2 originate [54,70]. A third initially unstable flow pattern, denoted as B3, branches
from the basic conductive state at Ra = 5, 904.

Figure 4.14 shows that the B3 flow pattern has the widest stability domain (Ra > 9, 536)
and is the most effective flow pattern in transferring heat from the bottom to the top wall.
Consequently, it would be ideal to operate the mini-reactor with the B3 flow pattern set in.
However, the question is whether or not B3 will be the one flow pattern selected on startup.
To investigate this issue, several simulations have been carried out using a code for the
time-integration of Eqs. (2.21-2.24) that is described elsewhere [78]. Several tests have been
performed for values of the Rayleigh number Ra× 10−3 = 75, 100, 125, 150. In each test the
initially conductive state (V = θ = 0) is seeded with a random perturbation and the time-
integration is carried out until a given steady flow pattern is reached. The B3 flow pattern
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was always obtained at the three lowest values of Ra but at Ra = 150 × 103 the preferred
flow pattern was A3. Notwithstanding, the desired B3 pattern at Ra = 150 × 103 is easily
obtained by initially setting a value of Ra = 125× 103, which is increased to Ra = 150× 103

after a short time. The B3 pattern developed at Ra = 125× 103 is therefore preserved when
a further increase of 25× 103 units in Ra is applied. Thus, the current study focuses on the
steady flow pattern B3.

The vertical velocity profiles on the horizontal planes Z = 0 and Z = −0.25 for the B3

flow pattern at Ra = 105 are plotted in Fig 4.15. Figure 4.16 shows that the spatial con-
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Figure 4.15: Contours of the vertical component of velocity, w, for the B3 flow pattern at Ra = 105 and two
different horizontal planes a) Z = 0 and b) Z = −0.25

figuration of the B3 flow pattern at Pr = 6 consists of four connected half-rolls and is very
similar to the ones reported at Pr = 0.71 and Pr = 130 [54,55]. This spatial configuration is
invariant under the eight symmetry elements generated by Sd+ and −Sy = Sd+ ·Sy ·Sd+ ·Sz,
defined in (2.31)-(2.33). In particular the B3 flow pattern is symmetric with respect to the
two diagonal vertical planes x = y (Sd+) and x = −y (Sd+ · Sx), with respect to π rotations
around the x−, y− or z−axis (Sy · Sz, Sx · Sz, Sx · Sy) and with respect to ±π/2 improper
rotations around the z−axis ( Sd+ · Sy · Sz,Sy · Sd+ · Sz).

It is shown below that the concept of a concentration boundary layer, which is closely
related to a momentum boundary layer, plays a key role in the analysis of the present results.
Concerning the momentum boundary layer it can be seen in Figs. 4.15 and 4.16 that the
strongest fluid motion is located not far from the walls. In particular, there are strong upflows
along two diagonally-opposed vertical edges of the cavity and strong downflows along the
other two complementary edges. In addition, the fluid spreads laterally when such flows reach
the vicinity of the top/bottom wall. The idea of decomposing Rayleigh-Bénard convection
flows into two different regions, the boundary layers and a bulk region, is not only common
but dominant in the field, e.g., [80, 81]. The thickness of the momentum boundary layer,
denoted as δM , is assumed to be proportional to 1/

√
Re. Defining the Reynolds number on

the basis of U0 and using the leftmost identity in (2.26), Re can be written as a function of
the Ra and Pr:

δM
L

∝ 1

Re1/2
∝
(

ν

U0L

)1/2

=
Pr1/2

Ra1/4
(4.29)
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Figure 4.16: Three-dimensional picture of the flow pattern B3 at Ra = 105. The vortical flow structure is
portrayed using isosurfaces of λ2 = 0, where λ2 stands for the second largest eigenvalue of the sum of the
symmetric and antisymmetric parts of the velocity gradient tensor [79].

The dependence of δM with Ra−1/4 in (4.29) is consistent with the correlation of empirical
data proposed by Grossmann and Lohse [80, 81]. Moreover, for a laminar boundary layer
flow the ratio of the concentration boundary layer thickness, denoted as δC , to δM is expected
to vary as Sc−1/3 [82]. On these theoretical grounds, we should expect the behaviour:

δC
L

∝ Ra−1/4Pr1/2Sc−1/3 = Ra−1/4Pr1/2(LePr)−1/3 = Ra−1/4Pr1/6Le−1/3 (4.30)

Dynamical Analysis

Figure 4.17 shows Poincaré maps calculated at the four horizontal planes Z = 0, Z = −0.1,
Z = −0.25 and Z = −0.4 for the B3 flow pattern at Ra = 105. Each point in these plots de-
notes the crossing of the reference plane by one particle at some time. The overall patterns
in the Poincaré maps are useful to identify some relevant features and trends of the flow
pattern. The characteristic diagonal symmetries of the solutions are clearly evident in Fig.
4.17 where red and blue dots have been respectively used for the crossing in ascending and
descending directions, respectively. Note that the corresponding maps for a given Z could
be obtained from those at −Z by simply rotating the plot by π/2 and exchanging red and
blue colors. The existence of regions where the flow is not transversal to the section, i.e.,
no particle is crossing it because velocity is tangent to the plane, is also shown in Fig. 4.17.
In addition, these figures reveal the existence of sixteen regions with regular particle motion
which are surrounded by regions of chaotic particle motion. The elliptic points at the center
of each regular region correspond to time–periodic particle trajectories and are surrounded
by regular KAM–tori [83] which act as barriers to transport. The practical interpretation is
that particles located inside (outside) a regular region would never leave (enter) such region
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Figure 4.17: Poincaré maps for Ra = 105 at different heights of the cubical cavity (a) Z = 0 , (b) Z = −0.1,
(c) Z = −0.25 and (d) Z = −0.4. Red and blue dots respectively represent ascending and descending orbits.
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if convection was the only transport mechanism. Thus, Poincaré maps in Fig. 4.17 give us a
qualitative picture of mixing in conditions of very low molecular diffusivity, i.e., large values
of the Schmidt number.

Figure 4.18 shows the dependence on Ra of the volumetric percentage of chaotic region
and the maximal Lyapunov’s exponent. According to the notion that chaoticity favours mix-

 70

 71

 72

 73

 74

 75

 76

 77

 70  80  90  100  110  120  130  140  150
 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

%
 C

ha
ot

ic
 R

eg
io

n

L
M

10-3Ra

Figure 4.18: Variation with Ra of the maximal Lyapunov exponent, LM (solid line), and of the percentage
of chaotic region (dashed line). The values of LM have to be read on the right y-axis.

ing, the fact that the percentage of chaotic region is relatively high in all cases (70− 77%)
foretells good mixing properties for the B3 flow pattern. Figure 4.18 shows that the percent-
age of chaotic region undergoes a rapid increase between Ra = 9× 104 and Ra = 105. The
maximal Lyapunov’s exponent also presents a similar sudden increase but it takes place at
slightly larger Rayleigh numbers (105 ≤ Ra ≤ 1.1× 105).

As it is discussed below, dynamical analysis offers a relatively fast (and cheap) qualitative
characterization of the mixing capabilities of a given flow pattern but to obtain quantitative
descriptors we must turn to classical transport phenomena tools.

4.3.2 Concentration field

The ODE system (3.29) was numerically integrated for Pr = 6 and four different values of
the Rayleigh number, namely Ra×10−3 = 75, 100, 125 and 150. Four different values of the
Schmidt number which lead to four Lewis numbers (Le = Sc/Pr) were considered in each
case, namely Le = 1 (Sc = 6), Le = 10 (Sc = 60), Le = 100 (Sc = 600) and Le = 1000/3
(Sc = 2000). In addition, three different values of the Damköhler number, namely 1, 10
and 100 (representing cases of comparatively slow, average and fast reactions, respectively),
were used for each (Ra,Le) pair. Thus a total amount of 48 time-integrations of (3.29)
were performed. The reactant conversion χ, may be used as a first indicator of the reactor
efficiency. Figure (4.19) shows that χ(τ) depends strongly on both Le and φ. Let us define
τ90 as the time at which 90% of the initial amount of solute has reacted, that is τ90 satisfies
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χ(τ90) = 0.9. Figure 4.19 shows that, for a given value of Ra, the larger φ and Le are, the
smaller τ90 is. These trends agree with the evolutions with time of the efficiency factor η(τ),
plotted in Fig. 4.20 for Ra = 75× 103.
The increase of η(τ) as φ is decreased in Fig. 4.19 is due to the fact that an increase in the
reaction speed leads to a decrease of the overall mass transfer resistance (see Eq. (4.11)).
Figure 4.20 also shows that, for a given φ, the efficiency η(τ) grows when Le is increased,
that is, when molecular diffusion is slower, a behavior that might seem contradictory at
first sight. This behavior, along with the dependence of the present results on the Rayleigh
number, will be analyzed and discussed in the next subsection.

In all of the cases investigated, η(τ) reaches a plateau–like value after a short transient,
as shown in Fig. 4.20. Note that the time τ∞ needed to achieve a plateau–like value is always
less than 0.1 and much smaller than the corresponding τ90 value in Fig.4.19. Let η∞ denote
the asymptotic value of η at the plateau–like region, τ ≥ τ∞. This remarkable behavior of
η(τ) is consistent with the fact that the spatial distributions of the normalized concentration
Σ, defined in (4.20), become frozen, i.e., nearly independent of time, as soon as τ = τ∞
(η(τ) = η∞,∀τ ≥ τ∞), as illustrated in Fig 4.21. This figure shows isocontours of Σ at the
horizontal midplane Z = 0 for Ra = 1.5 × 105, Le = 10 and φ = 10 at two different times.
The isocontours of Σ at Z = 0 plotted in Fig 4.22 for Ra = 105, φ = 100 and τ = τ90 at the
four studied Lewis numbers, show that the distributions of Σ depend strongly on the Lewis
number. Figure 4.22 also shows that the lowest concentrations are achieved near the two
diagonally opposite edges with strong downflow whereas the largest concentration values are
found in the bulk region. The normalized concentration distribution plotted in Fig. 4.22 (a)
for Le = 1 (Sc = Pr) resembles the distribution of the vertical velocity component plotted
in Fig. 4.15 (a). As Le increases, the concentration gradients are confined to the vicinity of
the lateral walls and increasingly smaller scales are visible in the plots. The development of
small scales in the concentration distributions is the way in which chaoticity, evident in the
Poincaré maps, manifests itself in the continuous model at large values of Le. Actually, in
the cases with lower molecular diffusivity, Le = 100 and 333.33, the horizontal concentration
distribution does not resemble the velocity distribution but it looks rather familiar to the
Poincaré maps in Fig. 4.17 (a). In particular, regularity regions far from the walls in Fig.
4.17 are associated with regions of largest Σ levels in Fig. 4.22 (d).

The overall picture that we can extract from Fig. 4.22 is that two types of regions may also
be distinguished in regard to their mass transfer characteristics. Such a distinction becomes
especially relevant as Le increases, that is, as molecular diffusion becomes slower. On one
hand, there are near-wall regions where fluid motion is strong and therefore convection is
efficient in carrying solute down to the vicinity of the catalytic surface. For reasons that are
discussed below, we refer to such regions as boundary layer regions. On the other hand, there
is a bulk region comprising most of the space away from the cavity walls. At high Le values
the bulk region is characterized by the presence of regularity domains in the Lagrangian
analyses. Since mass transfer between regions of regular and chaotic advection is largely due
to molecular diffusion, it is not surprising that larger values of concentration are observed
in the bulk, regular regions.

4.3.3 Scaling Analysis

Since the level of efficiency of the current reaction system can be characterized by means of
the asymptotic quantity η∞ it would be desirable to correlate η∞ as a function of the problem
parameters, Ra, Sc and φ. However, we found that a direct fit of the form η∞ ∝ RaaLebφc
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Figure 4.19: Evolution in time of the reactant conversion, χ, for Ra = 75× 103 and different values of φ and
Le. (a) Conversion curves for all the (Le,φ) pairs. (b) Zoom with the curves for φ = 10 alone. (c) Zoom
with the curves for φ = 100 alone.
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Figure 4.20: Evolution in time of the reactor efficiency, η, for Ra = 75 × 103 and different values of φ and
Le. The values of φ are pointed out at the right side; from bottom to top, the first four curves stand for
φ = 100, the next four for φ = 10 and the last four for φ = 1. The value of the Lewis number in each case
is denoted by its line style: solid lines (Le = 1), dashed lines (Le = 10), dashed-dotted lines (Le = 100) and
dotted lines (Le = 333.33).
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Figure 4.21: Horizontal midplane (Z = 0) distributions of the normalized solute concentration Σ for the case
with Le = 10, Ra = 1.5 × 105 and φ = 10 and two different times, namely (a) τ − τ0 = 5 × 10−2 and (b)
τ = τ90, the time at which the reactant conversion has reached its target value χ(τ90) = 0.90.
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Figure 4.22: Horizontal midplane (Z = 0) distributions of the normalized solute concentration Σ at times
such that τ = τ90 for Ra = 1.0 × 105, φ = 100 and four different values of the Lewis number, namely a)
Le = 1, b) Le = 10 c) Le = 100 d) Le = 333.33.
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was useless. Our goal at that point was to figure out the reason why η∞ increases with
increasing Le. Let us understand the role of the natural convection flow as being responsi-
ble to carry solute, distributed throughout the cavity, into the bottom wall boundary layer.
Let us also assume that the notion of a concentration boundary layer makes sense for the
present problem. Then it follows that solute nearby the bottom wall would diffuse down to
the catalytic surface through a concentration boundary layer of an average thickness δC/L.
A side–effect of the above assumptions is that the characteristic time for diffusion in the
present problem would not be τdiff = L2/D but rather δ2C/D. Concerning the concentration
boundary layer, the following questions must be addressed: can we somehow identify it? If
so, how can we measure its thickness, δC/L? And, can δC/L be correlated to the problem
parameters, Ra, Sc and φ?

Figure 4.23 shows the variation with the vertical coordinate Z of the normalized hor-
izontally averaged concentration Λ, at a time that verifies τ ≥ τ∞ for three different sets
of values of the parameters Le, φ and Ra. Like the quantity Σ in (4.20), Λ(τ, Z) becomes
nearly independent of time as soon as τ ≥ τ∞. In all the cases investigated the quantity
Λ(τ, Z) drops from a roughly constant bulk value to zero within a narrow region of the Z
domain. This fact corroborates the hypothesis of the existence of a concentration boundary
layer region, near the bottom surface of the cavity, at which large vertical concentration gra-
dients are reached. Figure 4.23 (a) shows that the concentration boundary layer at Le = 1
is relatively thick. The small drop near the top wall in the concentration profiles plotted in
Fig. 4.23 may also be interpreted in terms of boundary layer transport. Since fluid motion
is strongest in the momentum boundary layer regions solute in the vicinity of the top wall is
transported downwards much more easily than is solute in the bulk region. In other words,
molecular diffusion of solute in the bulk region seems to be the limiting mechanism for mass
transfer but, fortunately, diffusion does not only occur towards the bottom surface but also
towards the top and lateral walls.

The qualitative tendency described by Eq. (4.30) predicts that the width of the concen-
tration boundary layer δC/L decreases whenever either Le or Ra are increased. Notwith-
standing, in order to obtain a quantitative relation between δC/L, Le and Ra we must find
out a method to estimate δC/L. One option is to define −1/2+δC/L as the vertical position
fulfilling the following identity for any τ such that τ ≥ τ∞:

Ĉ(τ, Z)

C(τ)
− η(τ) = 0.90

(
Ĉ(τ, Z∞)

C(τ)
− η(τ)

)
(4.31)

In (4.31) Z∞ is defined so that the horizontal plane Z = Z∞ verifies the following conditions:
the plane is far from the bottom surface (Z∞+1/2 � 0), the plane is outside the momentum

boundary layer (−1/2 + δM/L < Z∞ < 1/2 − δM/L) and the quantity Ĉ(τ, Z∞)/C(τ) has

reached a practically constant value, that is Ĉ(τ, Z)/C(τ) is nearly constant for any τ ≥ τ∞
and for any Z in an interval (Z∞ − d, Z∞ + d), with d > 0 being far from zero. Neverthe-
less, the concentration profiles plotted in Fig. 4.23 suggest that this method may produce
inaccurate values. In particular, the predicted δC/L in Fig.4.23 (a) might be too large and
the irregularity of the concentration profile in Fig.4.23 (c) introduces some arbitrariness in
the choice of Z∞.

We propose here a different method to characterize the variation of the concentration
boundary layer as a function of the problem parameters Ra, Le and φ. It is based on the use
of both the normalized concentration profile, Λ(τ, Z), and a normalized horizontally averaged
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Figure 4.23: Vertical profiles of the normalized horizontally averaged solute concentration, Λ, and molecular
diffusion flux, Γ for the cases with (a) Ra = 1.5 × 105, Le = 1 and φ = 1, (b) Ra = 7.5 × 104, Le = 100
and φ = 100 and (c) Ra = 7.5× 104, Le = 333.33 and φ = 1. On top of each plot the symbol δC points the
location for the average concentration boundary layer thickness as defined by Eq. (4.31) whereas ε points
to the location defined by Eq. (4.32).
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vertical diffusion flux defined in (4.22). Note that we can also safely assume Γ(τ, Z) =
Γ(τ∞, Z) for τ ≥ τ∞. The vertical profiles of Γ, also included in Fig. 4.23, decay rapidly
from its maximum value, Γ(τ,−1/2) = 1, as Z increases and are basically zero in the bulk
region. Looking at different profiles of Γ we observed that the point at which the rate of
decay of Γ, i.e., ∂zΓ, reaches its maximum was always very close to the point at which Γ
and Λ intersect. Since the intersection point was always quite close to the bottom plate we
propose the quantity ε that verifies

Γ(τ, ε/L) = Λ(τ, ε/L) ∀τ such that τ ≥ τ∞ (4.32)

as an indicator of the thickness of the concentration boundary layer. One reason for using
ε instead of δC in the current analysis is that the former of these two quantities correlates
better with the problem parameters (a second, more important reason for the choice of ε
is explained below). The values of ε/L were computed through Eq. (4.32) for 48 sets of
parameters and then fitted to an equation of the form:

ε̃

L
+

1

2
= ARaaLebφc (4.33)

The following values of the fitting parameters A, a, b and c were obtained

A = 2.95, a = −0.309, b = −0.329 and c = 7.76× 10−3 (4.34)

Figure 4.24 shows that the fitted values, denoted as (ε̃/L+1/2), obtained from substitution
of Ra, Le and φ into Eq. (4.33) with the values of A, a, b and c given in (4.34) are in all cases
in good agreement with the (ε/L+1/2) values computed through Eq. (4.32). Note that the
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Figure 4.24: Two different fittings for ε as a function of Ra, Le and φ according to Eq. (4.33). The abscissa
correspond to the ε values calculated with Eq. (4.32) for all of the 48 cases investigated. Hollow triangles
(M) denote the fit predictions for ε when the exponents a and b are fixed to −1/4 and −1/3, respectively;
in this case c = 2.36 × 10−2 and A = 2.23 with a residual sum of squares equal to 0.228. Filled circles (•)
represent the fit prediction for ε when none of the exponents are fixed; in this case a = −0.309, b = −0.329,
c = 7.76× 10−3 and A = 2.95 with a residual sum of squares equal to 4.94× 10−2.

fitting values obtained for the exponents a and b are similar to the theoretical exponents
−1/4 and −1/3 proposed for δC/L in Eq. (4.30). This similarity suggests that Eq. (4.32)
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4.3. NATURAL CONVECTION PROBLEM 65

provides a suitable method to characterize the width of the concentration boundary layer
in terms of (ε/L+1/2). Nonetheless, Fig. 4.24 also shows that the fit obtained when the
exponents a and b in (4.33) are fixed to their theoretical values, i.e. a = −1/4 and b = −1/3,
is worse than the optimal one. Note that the exponent of φ in (4.33) is very close to zero.
Although it has been found that the value of the exponent, c = 7.76× 10−3, is statistically
significant (the hypothesis c = 0 is rejected with a 99.8% confidence) its closeness to zero
indicates that the dependence of ε on φ should be accepted with caution.

We are finally in a position to analyze the dependence of the asymptotic reactor efficiency,
η∞, on ε/L. Let us first define the quantity

γ =
Ĉ(τ, ε/L)− C̃(τ,−1/2)

Ĉ(τ, ε/L)− Ĉ(τ,−1/2)
(4.35)

where C̃(τ,−1/2) is the extrapolated value of Ĉ at Z = −1/2 obtained from the first order
approximation

C̃(τ,−1/2) = Ĉ(τ, ε/L)−
(
ε

L
+

1

2

)
∂Ĉ

∂Z
(τ, ε/L) (4.36)

Combining (4.35) and (4.36) we obtain:

∂Ĉ

∂Z
(τ, ε/L) =

γ
(
Ĉ(τ, ε/L)− Ĉ(τ,−1/2)

)
ε/L+ 1/2

(4.37)

Introducing the definition of Γ, Eq. (4.22), into the left hand side of (4.37) and then com-
bining the result with Eqs. (4.32) and (4.21) yields:

γ
[
C(τ)− Ĉ(τ,−1/2)

]
= φĈ(τ,−1/2)(ε/L+ 1/2) (4.38)

Dividing both sides in equality (4.38) by C(τ) and using the definition (4.2) for η∞ the
following relation between η∞ and ε/L is obtained:

η∞ =
1

1 + γφ(ε/L+ 1/2)
(4.39)

All of the values of γ, calculated using Eqs. (4.35) and (4.36) for all of the sets of parameters
investigated, were close to 1.4. In particular the values of γ ranged within 1.40 ≤ γ ≤ 1.42
for Le > 1 and within 1.30 ≤ γ ≤ 1.33 for Le = 1. Hence, we propose the following general
expression to determine the dependence of η∞ on ε/L+ 1/2:

η∞ ≈ 1

1 + 1.4φ(ε/L+ 1/2)
(4.40)

Figure 4.25 shows that Eq. (4.40) provides good predictions for η∞. Note that Eq. (4.40)
makes clear that since ε/L decreases with increasing values of the Lewis and Rayleigh num-
bers the asymptotic reactor efficiency η∞ can only increase with Le and/or Ra for a given
value of φ.

Figure 4.26 shows that the values of τ90 obtained from the time integration of the govern-
ing equations are in good agreement with the predicted τ̃90 values estimated by (4.18). This
agreement indicates that the short transients observed in Fig. 4.20 have no significant effect
on the overall efficiency. Figure 4.26 also shows that good predictions for τ90 can be obtained
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Figure 4.25: Asymptotic reactor efficiency, η∞, as predicted by Eq. (4.40) as a function of ε + 1/2. Filled
circles (•) denote the values obtained when ε + 1/2 values obtained numerically, using Eqs. (4.21), (4.22)
and (4.32), are introduced into Eq. (4.40). Hollow triangles (M) denote the values given by Eq. (4.40) when
ε+ 1/2 is obtained from the fit (4.33-4.34) instead.
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Figure 4.26: Time needed to reach a 90% of solute conversion, χ(τ90) = 0.90, as predicted by Eq.(4.18).
The abscissa correspond to the τ̃90 values obtained directly from the numerical integrations of Eq. (3.29)
for all of the 48 cases investigated. Triangles (M) denote the values obtained when the values of η∞ used in
Eq. (4.18) are obtained directly from the numerical integrations of Eq. (3.29). Circles (◦) denote the values
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4.3. NATURAL CONVECTION PROBLEM 67

by first using Eqs. (4.33) and (4.40) to estimate η∞ and then introducing its predicted value
in Eq. (4.18).

On the other hand, note that Eq. (4.18) provides the interpretation for η∞ as being the
inverse of the ratio of the time needed to reach a target conversion to the corresponding
time that would be needed in the ideal limit of a perfect mixing (η = 1). The value of
η∞ is therefore a good indicator on the level of mixing intensification achieved by natural
convection if we compare it with the corresponding value that is obtained for the reaction-
diffusion 1D problem. If, for example, Ra = 75× 103 and Sc = 2000 we have η∞ = 0.981 for
φ = 1 but the 1D solution (3.36) yields η∞,1D = 0.742. That is, we have η∞/η∞,1D = 1.32
so that the contribution of natural convection to solute mixing is a modest one. If, on the
contrary, the chemical reaction is a relatively fast one (φ = 100) then we have (for the same
Ra, Sc values) η∞/η∞,1D = 0.341/0.0252 = 13.5, i.e., natural convection plays a key role in
mixing enhancement.
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Chapter 5

Conclusions

We proposed two new alternatives of catalytic reactor where mixing is promoted by a forced
and natural convection flow.

The forced convection driven reactor consisted of a stack of corotating disks in a cylindri-
cal cavity with catalyst implanted at the opposing surfaces of each particular pair of disks.
The idea was to take advantage of the secondary motion generated by the disk rotation,
which takes the form of a pair of counter–rotating vortices that bring fluid closer to the disk
surface where the presence of a boundary layer region should highly enhance mass transfer
into/from the disk surface. Two different operation modes were considered. First, a dis-
continuous mode with reactant being initially spread through the whole reactor volume. In
the second, semicontinuous mode, reactant is continuously being fed through the external
enclosure wall.

One interesting and not initially expected feature was that the relative concentration
distributions in the reactor and, as a consequence, the efficiency indicator η(τ) become
roughly independent of time after a short transient. We exploited this fact to show that the
time needed to reach a target conversion of the reactant is well predicted by the proposed
methodology.

In principle, one would expect that mass transfer efficiency, in terms of Sherwood number,
should not depend, for given values of the φ, Re, Sc and S problem parameters, on the
operation mode. However, present results show quite the opposite trend. The discontinuous
reactor was not very efficient, especially in conditions of slow molecular diffusion, i.e., high
Schmidt numbers. In particular, for Sc = 10 the semicontinuous reactor yielded values of Sh
several times higher than the corresponding ones for the discontinuous reactor. Indeed, the
calculated Sh values for the discontinuous reactor are below the corresponding values given
by the boundary layer analysis of the flow over a free–rotating disk. Although mass transfer
within the disk boundary layer is quite efficient, there is a high mass transfer resistance
associated to the transport of reactant from the bulk region into the vicinity of the disks.
If we invoke the heat/mass transfer analogy it is worth noting that the study by Herrero et
al. [30] showed that the corotating disk pair was also relatively inefficient in transferring heat
between a bottom hot disk and a cold top disk. In particular, the Nusselt numbers calculated
in [30] were about one half the theoretical boundary layer prediction. Let us consider, for
example, the case with S = 0.25, Re = 105 and Sc(Pr) = 10. The heat transfer correlation
proposed in [30] yields a Nusselt number based on R2, Nu = 179, whereas present results
for the discontinuous reactor range between Sh = 182 (φ = 2000) and 235 (φ = 2) and
the theoretical dependence (4.26) gives Sh = 422. In the semicontinuous operation mode,
however, we obtain (for the same S = 0.25, Re = 105 and Sc = 10) values of the Sherwood
number in the range 439 ≤ Sh ≤ 721, that is above the theoretical boundary–layer value,
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for all the φ values investigated. The big difference between the discontinuous and the
semicontinuous mode is that in the latter, reactant is fed near the external enclosure wall so
that it is easily incorporated into the secondary flow main stream. Thus, the key point for
efficient operation of the corotating reactor is in avoiding reactant to become trapped in the
bulk region.

Comparing our results of the semicontinuous reactor with Meeuwse et al.’s [25], we see
that these authors reported that for Re ≈ 105 the Sherwood number achieved is practically
the same obtained by the configuration of the free rotating disk. For the present semicon-
tinuous reactor at the same Re number, the value of Sh exceeds the one of the free rotating
disk for all the combinations of Sc and φ studied except for the one of Sc = 1 and φ = 2.
This suggests that for higher Sc it will be much more efficient and hence it will be much
more competitive than the Meeuwse et al.’s reactor. To select the best value obtained for
the convective mass transfer coefficient K̂ we multiply the highest Sh obtained by the diffu-
sive coefficient D and divide by the radius R2 (we take the same that Meeuwse et al. uses,
R2 = 0.066 m). For an aqueous phase, D ≈ 10−9 m2/s, the mass transfer coefficient is ap-

proximately K̂ ≈ 10−5 m/s. Meeuwse et al. reported similar values for low rotational speeds.

For a gaseous phase, D ≈ 10−5 m2/s, the mass transfer coefficient is around K̂ ≈ 0.11 m/s.
This surpasses Meeuwse et al.’s result of 7.9× 10−4 m/s for Ω = 157 rad/s, however is still
below Meeuwse et al.’s best result of 0.22 m/s. Nonetheless we must keep in mind that
Meeuwse et al. studied much higher Reynolds values (turbulent regime), furthermore the
parameters used may not be exactly the same. In any case, the semicontinuous reactor seems
like a propitious election rather than conventional models and should be explored more. We
think that the current model of the corotating disk reactor, despite some limiting assump-
tions, correctly captures the main physics of the system including the dependence of the
mass transfer efficiency on the problem parameters. This makes it a promising alternative,
so more realistic configurations can be studied and implemented experimentally.

The natural convection driven reactor was studied in a cubical cavity, taking advantage
of the previous knowledge of the flow within such a cavity. In terms of particle advection, the
selected flow patterns did not provide a completely chaotic system because of the presence of
regularity regions which may act as barriers to transport in conditions of very low molecular
diffusivity. Notwithstanding, it was found that the reactor efficiency is basically determined
by flow and mass transfer within the boundary layer regions.

As well as in the forced convection driven reactor, the relative concentration distributions
and the efficiency η(τ), became nearly independent of time after a short transient, which
accordingly led to predict the time to achieve a given conversion. We took advantage of this
to address for a new method to characterize the dependence of the concentration boundary
layer thickness on the parameters of the problem Ra, Le and φ. Furthermore, a relation that
gives a good forecast of η∞ for any values of Ra, Le and φ within the ranges investigated
was produced.

Provided that the chemical reaction is not a fast one, the natural convection-mixed reactor
that is proposed in the present study should be competitive when compared to usual reactor
designs that incorporate moving mechanisms. For example, for a value of τconv ≈ 2 s with
L = 10−2 m the condition τconv � L/k (the characteristic time for convection much smaller
than the characteristic time for chemical reaction) is fulfilled whenever k � 5×10−3 m/s (or
φ� 330Sc for a value of the thermal diffusivity equal to α = 1.5×10−7 m2/s). Moreover, in
terms of mass transfer efficiency the proposed reactor system compares well with other sys-
tems where mass transfer is promoted by means of a forced convection flow. For Ra = 105,
a rough estimate of a Reynolds number in the current reactor is Re ≈ 0.5Ra1/2Pr−1 = 26.4
(see Eq. (4.29) and Fig. 4.15, where 0.5U0 is suggested as an estimate of the largest
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velocities found in the present problem). From Eqs. (4.10), (4.33) and (4.40) we have

Ŝh ≈ (1/1.4)[1/(ε/L+1/2)] = 0.242Ra0.309Le0.329φ−0.00776, which yields a value of the Sher-

wood number equal to Ŝh = 55.4 for Ra = 105, Le = 333.33 and φ = 100. This value of Ŝh is,
for example, higher than the value Ŝh = 40.1 that is obtained for laminar mass transfer on a
rotating disk surface at Re = 26.4 and Sc = 2000 (Ŝh = 0.620Re1/2Sc1/3 [82]) but lower than

the value Ŝh = 67.7 that would be obtained in a commercial hollow-fibre blood oxygenator
(Ŝh = 0.8Re0.59Sc0.33 [84]; these authors also reported the correlation Ŝh = 0.8Re0.47Sc0.33

for a hand made hollow-fibre module, which yields Ŝh = 46.9 for Re = 26.4 and Sc = 2000).

Given that the geometries of the two kind of reactors, forced and natural convection
driven, are different, and the range of parameters studied are different too, making a com-
parison between both of them or even with other kind of reactors, as we have seen, can be
done only in a qualitatively way. We can use however, the Sherwood number to compare the
semicontinuous forced convection and natural convection reactors. As previously detailed,
for the corotating disk reactor, Sh = Shfc, depends on the characteristic length R2, whereas
in the cubical reactor, Sh = Shnc, depends on the cavity side length, L. To establish a com-
parison between these two geometries, we may use instead, a common characteristic length
such as the reactor volume per unit catalyst area, which is L for the cubical reactor and
H/2 = S/(2R2) for the corotating disk reactor. Based on these lengths, we have Shnc = 10.55
for Ra = 1.5× 105, Sc = 6 and φ = 1. For the semicontinuous reactor (S = 0.125) we have,
for the case with Sc = 10 and Re = 105 (for an equivalent value of φ = 2), Shfc = 90.23.
From the relation Re ≈ 0.5Ra1/2Pr−1, previously mentioned, we see the corresponding Re
to the above Ra = 1.5 × 105 is Re ≈ 32. Since in both cases we deal with laminar bound-
ary layer flow, we might expect a dependence of the type Sh ∝ Re1/2Sc1/3, so that the
present Shnc = 10.55 value can be extrapolated, for Re = 105 and Sc = 10, to Shexnc ≈ 702,
that is, a value 8 times larger than the actual Shfc = 90.23 that is obtained in the coro-
tating disk reactor, which led us to think that the natural convection driven reactor may
have much better performance than the forced convection one for the same set of parameters.

Comparison with results of Al-Shannag et al. [12, 13], is also difficult since the systems
investigated are not completely the same. In [12] they studied a Michaelis-Menten kinetics,
i.e, J = φC/(1+βC). In the limit β → 0 the kinetics would be of first order like ours. Here-
after, we compared the efficiency they obtained for β 6 0.01 and φ = 1 with the efficiency we
obtained for our reactors. In the forced convection case we compare for the case Pe = 103,
which corresponds to Re = 1000 and Sc = 1. Al-Shannag et al. obtained η ≈ 0.84 and we
obtained η = 0.89 for the semicontinuous reactor configuration, which are very similar. In
the natural convection case the range of Peclet number are between 130 and 200, for the
range of Rayleigh studied and Sc = 6. For these range of Peclet numbers, Al-Shannag et
al. obtained an efficiency of η ≈ 0.55, while we obtained η = 0.9 in the worst of the cases.
In [13] a first order reaction was studied and the result of efficiency were pretty similar to
those of [12] for the conditions commented. Henceforth we see the high potential the natural
convection driven reactor has.

We present our model of reactors as a very good alternative to traditional ones, however
it must be taken into account what application is going to be given to them. Thus, we can
say for example, that the semicontinuous reactor we proposed is better than the cubical one
in the sense that it is efficient for fast reactions and different phases. Nevertheless, in the
case of slow reactions we could say the cubical reactor shows a better mixing since all the
transport is being driven by the boundary layer on the contrary to the co-rotating disks
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reactor in which a big resistance is still prone by the bulk region.

Future research, based on more intensive calculations and/or experiments, might consider
higher Rayleigh numbers (turbulent flow in the natural convection case) as well as higher
Reynolds numbers (3D–unsteady or even turbulent flow for the forced convection case) and
high concentrations of reactant/products. It would be very interesting to study a mixed con-
vection case. For example, the corotating disks reactor considering non–isothermal effects
and, especially, operation in continuous mode by feeding a stream through the gap between
the disks tip and the enclosure wall (similarly to the setup in the rotor–stator system re-
ported in [25]).

Despite our work is considered for basic type of reactions it results very promising to
consider these configurations in experimental work with different kind of reaction and sev-
eral reactor sizes. Therefore, the cubical reactor and the corotating disk reactor (especially
if operated in semicontinuous or continuous mode) that are proposed in the present work
may be a good alternative to more classical reactor designs.
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Appendix A

Discretization procedure of the forced
convection problem

The aim of this appendix is to give some details of the tau–Galerkin method used to discretize
the governing equations. We start with the mass transfer conservation equations (2.16)-
(2.19). Note that these equations can be written in a compact form as

∂C

∂τ
−∇2C +ReSc∇ · (CV) = 0 (A.1)

∂C

∂Z
(R,±1/2)± φC(R,±1/2) = 0 (A.2)

∂C

∂R
(γ, Z) = 0 (A.3)

∂C

∂R
(1, Z)− JR(Z) = 0 (A.4)

where

∇ =

(
∂

∂R
,
1

S

∂

∂Z

)
∇2 =

(
1

R

∂

∂R

(
R
∂

∂R

)
+

1

S2

∂2

∂Z2

)
V = (U,W )

Let us first recall that, as it was discussed in Section 4.2.1 only solutions with velocity
fields symmetric with respect the plane Z = 0 were obtained in the current work. As a
consequence, only even functions in Z are considered when the concentration is expanded in
terms of the basis function. Thus, the concentration expansion is written as

C(τ, R, Z) =

NR∑
i=0

NZ/2∑
j=0

ci2j(τ)Ti(R
∗)T2j(Z

∗) (A.5)

where R∗ = 2[(R − γ)/(1 + ε− γ)− 1/2], Z∗ = 2Z and Ti are the Chebyshev polynomials.
In addition, by substituting Eq. (3.8) in (2.9)-(2.10) and replacing the basis functions fi
by the corresponding linear combination of Chebyshev polynomials (see Section 3.1.1), the
velocity vector V takes the form

V(τ, R, Z) =

(
U(τ, R, Z)
W (τ, R, Z)

)
=

NR,Ψ∑
i=0

NZ,Ψ∑
j=0

ϕij(τ)

(
Ti(R

∗)T ′
j(Z

∗)
T ′
i (R

∗)Tj(Z
∗)

)
(A.6)
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74 APPENDIX A. DISCRETIZATION: CYLINDRICAL GEOMETRY

The tau–Galerkin method consists in projecting Eq. (A.1) into the subspace generated by
all the basis functions in the concentration expansion except for those TNR−1(R

∗), TN−R(R
∗),

TN−Z−2 or TN−Z(Z
∗). The basis function that are not used to project Eq. (A.1) are used to

project boundary conditions (A.2)-(A.4). Therefore, application of the tau–Galerkin method
converts equations (A.1)-(A.4) into the following equations:〈

∂C

∂Z
, TiT2j

〉
−
〈
∇2C, TiT2j

〉
+ReSc 〈∇ · (CV) , TiT2j〉 = 0

with i = 0, · · · , NR − 2 and j = 0, · · · , NZ/2− 2

(A.7)

〈
∂C

∂Z
(R, 1/2), TiT2j(1/2)

〉
+ 〈φC(R, 1/2), TiT2j(1/2)〉 = 0

with i = 0, · · · , NR − 2 and j = NZ/2

(A.8)

〈
∂C

∂Z
(R,−1/2), TiT2j(−1/2)

〉
− 〈φC(R,−1/2), TiT2j(−1/2)〉 = 0

with i = 0, · · · , NR − 2 and j = NZ/2− 1

(A.9)

〈
∂C

∂R
(γ, Z), Ti(γ)T2j

〉
= 0

with i = NR and j = 0, · · · , NZ/2

(A.10)

〈
∂C

∂R
(1 + ε, Z), Ti(1 + ε)T2j

〉
− 〈J(Z), Ti(1 + ε)T2j〉 = 0

with i = NR − 1 and j = 0, · · · , NZ/2

(A.11)

where 〈〉 represents the inner product. Note that due to the symmetries of the problem Eq.
(A.8) is equivalent to Eq. (A.9).

Integrals involved in the calculation of the inner products in Eq. (A.7)-(A.11) are of the
type: ∫ 1

−1

R∗TiTjω(R
∗)dR∗,

∫ 1

−1

TiTjω(Z
∗)dZ∗,

∫ 1

−1

T ′
iTjω(R

∗)dR∗,∫ 1

−1

R∗T ′′
i Tjω(R

∗)dR∗,

∫ 1

−1

T ′′
i Tjω(Z

∗)dZ∗,

∫ 1

−1

T ′
iTjTkdω(R

∗)R∗,∫ 1

−1

TiT
′
jTkω(Z

∗)dZ∗,

∫ 1

−1

TiT
′
jTkω(R

∗)dR∗,

∫ 1

−1

T ′
iTjTkω(Z

∗)dZ∗,

A

∫ 1

−1

e−
Z∗2
σ2 Tiω(Z

∗)dZ∗

(A.12)

where ω is the Chebyshev weight function, ω(x) = (1− x2)−1/2. Once the inner products in
Eq.(A.7)-(A.11) are calculated these equations can be written in the matricial form as:

(
B Bb

)( ċ
ċb

)
=
(
L Lb

)( c
cb

)
(A.13)

(
D Db

)( c
cb

)
= Jb (A.14)

Let us define DS = (NR − 1)(NZ/2 − 1) and DB = NZ + 2NR. Then, B and L are
square matrices of dimension DS, Bb and Lb are matrices of dimension (DS ×DB), D is
a matrix of dimension (DB × DS) and Db is a square matrix of dimension DB. The flux
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entering the reactor is represented by the vector Jb whose dimension is (DB). Note that in
the discontinuous mode Jb = 0. Whereas the coefficients ci2j in the concentration expansion
(3.11) with i = 0, · · · , NR − 2 and j = 0, · · · , NZ/2 − 2 are contained in the vector c of
dimension DS, the vector cb, whose dimension is DB, contains those coefficients with either
i = 0, · · · , NR − 2 and j = NZ/2− 1, NZ/2 or i = NR − 1, NR and j = 0, · · · , NZ/2.

Isolating cb from Eq. (A.14) and inserting the result into Eq. (A.13) leads to the ordinary
differential equation

B̂ċ = L̂c+ Â (A.15)

where

B̂ = B−BbDb
−1D (A.16)

L̂ = L− LbDb
−1D (A.17)

Â = LbDb
−1Jb (A.18)

Equation (A.15) is advanced in time by means of a second order implicit backward–
differencing scheme (BDF2). Note that once the value of c(t) is obtained, cb(t) can easily
be obtained from Eq. (A.14).

The steady state version of the momentum conservation equations (2.1)–(2.4) are also
discretized by means of a tau–Galerkin method. The discretization procedure reduces these
equations to a nonlinear system of algebraic equations that, adopting the summation con-
vention indices, can be written as

Ljidi +Qjindidn = 0 (A.19)

In Eq. A.19 the elements of the vector d = (d1, · · · , dK) are the unknowns, that is the
coefficients in expansion (3.8). The matrices with components Lji and Qjin contain respec-
tively the coefficients of the linear and nonlinear terms resulting from the projection of the
velocity governing equations into the space generated by the basis functions. It should be
noted that the projection of the pressure gradient onto the basis is analytically zero which
means that pressure gradient is not present in the discretized equations. This is so because
of two reasons: the formulation of the velocity in terms of a scalar potential function (see
Eqs. (2.9)–(2.10)) and the choice of basis functions in the expansion of the potential func-
tion in (3.8) that make boundary conditions (2.7) and (2.8) for U and W be automatically
fulfilled. The nonlinear discretized equations (A.19) was solved by means of an iterative
Newton method.
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Appendix B

Discretization procedure of the
natural convection problem

The aim of this appendix is to show the structure of the B and Q matrices in Eq. (3.29)
and how we arrived to such an equation. Let us recall the expansion of the concentration,

C(τ,X, Y, Z) =
N∑
i=2

N∑
j=2

N∑
k=1

cijkFijk(X, Y, Z) (B.1)

with Fijk(X, Y, Z) = hi(X)hj(Y )hk(Z) and the expansion of the velocity,

V =

 u
v
w

 =
M∑
p=0

M∑
q=0

M∑
r=0

 upqrGpqr(X, Y, Z)
vpqrGpqr(X, Y, Z)
wpqrGpqr(X,Y, Z)

 (B.2)

with Gpqr(X,Y, Z) = Tp(2X)Tq(2Y )Tr(2Z). For the sake of clarity the three subscripts are
collapsed into a single one and the basis functions in the subset {Fijk}ijk, i, j = 2, ..., N ,
k = 1, ..., N are sorted so that those with subscript k = 1 are in the last positions. Thus, we
have

C =

N1∑
l=1

ĉl(τ)F̂l(X, Y, Z) +

N1+N2∑
l=N1+1

ĉl(τ)F̂l(X,Y, Z) (B.3)

and

V =

M3∑
l=1

 ûlĜl(X, Y, Z)

v̂lĜl(X, Y, Z)

ŵlĜl(X, Y, Z)

 (B.4)

In (B.3) N1 = (N − 1)3, N2 = (N − 1)2, F̂l and ĉl with 1 6 l 6 N1 represent respectively

functions Fijk and coefficients cijk for values 2 6 i, j, k 6 N and F̂l and ĉl with N1 +1 6 l 6
N1+N2 represent respectively functions Fij1 and coefficients aij1 for values 2 6 i, j 6 N . In

(B.4) M3 = (M + 1)3 and ûl, v̂l, ŵl and Ĝl represent respectively upqr, vpqr, wpqr and Gpqr

for values 0 6 p, q, r 6M .

For the sake of simplicity the hats over the variables will be suppressed from now on. Let
be N3 = N1 +N2. Substitution of expressions (B.3) and (B.4) into Eq.(2.27) and boundary
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78 APPENDIX B. DISCRETIZATION: CUBICAL GEOMETRY

condition (2.29) yields

N3∑
l=1

ċlFl =−
N3∑
l=1

cl

[
Sc

Pr
Ra1/2

(
∂

∂X
Fl

M3∑
m=0

umGm +
∂

∂Y
Fl

M3∑
m=0

vmGm +
∂

∂Z
Fl

M3∑
m=0

wmGm

)

−
(

∂2

∂X2
Fl +

∂2

∂Y 2
Fl +

∂2

∂Z2
Fl+

)]
(B.5)

and
N3∑
l=1

cl

(
∂

∂Z
Fl(X,Y,−1/2)− φFl(X, Y,−1/2)

)
= 0 (B.6)

Once (B.5) is projected onto the space generated by the subset {Fl}l=1,...,N1 and boundary
condition (B.6) is projected onto the space generated by the subset {Fl}l=N1+1,...,N3 we obtain:

N3∑
l=1

ċl 〈Fl, Fn〉 =

−
N3∑
l=1

cl

[
Sc

Pr
Ra1/2

M3∑
m=0

(
um

〈
Gm

∂

∂X
Fl, Fn

〉
+ vm

〈
Gm

∂

∂Y
Fl, Fn

〉
+ wm

〈
Gm

∂

∂Z
Fl, Fn

〉)

−
(〈

∂2

∂X2
F̂l, F̂n

〉
+

〈
∂2

∂Y 2
Fl, Fn

〉
+

〈
∂2

∂Z2
Fl, Fn

〉)]
n = 1, ..., N1 (B.7)

and

N3∑
l=1

cl

(〈
∂

∂Z
Fl(X,Y,−1/2), Fn

〉
− φ 〈Fl(X,Y,−1/2), Fn〉

)
= 0 n = N1 + 1, ..., N3

(B.8)
In order to compute the inner products in Eqs. (B.7-B.8) we need to calculate integrals

of the type ∫ 0.5

−0.5

hl(Z)hn(Z)
1√

1− Z2
dZ (B.9)∫ 0.5

−0.5

Tm(2Z)h
′
l(Z)hn(Z)

1√
1− Z2

dZ (B.10)∫ 0.5

−0.5

Tm(2Z)hi(Z)hn(Z)
1√

1− Z2
dZ (B.11)∫ 0.5

−0.5

h′′l (Z)hn(Z)
1√

1− Z2
dZ (B.12)

The following recurrence formulae for the derivatives of the Chebyshev polynomials were
used to compute these integrals

T ′
k(ξ) = 2k

K′∑
n=0

(
1

ζk−1−2n

)
Tk−1−2n(ξ) (B.13)

T ′′
k (ξ) = 4k

K′′∑
n=0

(
(n+ 1)[k − (n+ 1)]

ζk−2(n+1)

)
Tk−2(n+1)(ξ) (B.14)
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where K ′ and K ′′ are the integer part of (k − 1)/2 and (k − 2)/2, respectively, ζk = 1 for
k > 0 and ζ0 = 2. Once the inner products are calculated, (B.7) and (B.8) can be written
in the matricial form

(B1,B2)

(
ċ1
ċ2

)
= (Q1,Q2)

(
c1
c2

)
(B.15)

and

(R1,R2)

(
c1
c2

)
= 0 (B.16)

where B1 and Q1 are square matrices of dimension N1 × N1, B2 and Q2 are rectangular
matrices of dimension N1 × N2, R1 is a rectangular matrix of dimension N2 × N1, R2 is a
square matrix of dimension N2 × N2, c1 is a vector of dimension N1 and c2 is a vector of
dimension N2. From Eq. (B.16) we have

c2 = −R2
−1R1c1

ċ2 = −R1
−1R1ċ1

(B.17)

which replaced in Eq.(B.15) gives,

(B1 −B2R2
−1R1)ċ1 = (Q1 −Q2R2

−1R1)c1 (B.18)

which can be rewritten as
Bċ1 = Qc1 (B.19)

where B and Q are N1×N1 square matrices. Once the ordinary differential equations (B.19)
are numerically solved c2 is obtained from Eq. (B.17).

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF ENHANCED MIXING BY NATURAL AND FORCED CONVECTION WITH APPLICATION TO CHEMICAL REACTOR DESIGN 
Clara Tatiana González Hidalgo 
Dipòsit Legal: T.1422-2013 
 



80

UNIVERSITAT ROVIRA I VIRGILI 
ANALYSIS OF ENHANCED MIXING BY NATURAL AND FORCED CONVECTION WITH APPLICATION TO CHEMICAL REACTOR DESIGN 
Clara Tatiana González Hidalgo 
Dipòsit Legal: T.1422-2013 
 



Bibliography
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