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ABSTRACT 

 

The interaction between a membrane protein and its surrounding phospholipids is 

thought to be crucial for the correct folding and function of the protein. This thesis is 

focused on the investigation of the interplay between Lactose permease (LacY), a 

paradigm for secondary transporters present in the inner membrane of Escherichia coli 

and model systems mimicking its natural lipid environment. Since the role of 

phospholipids in LacY’s activity is currently being refined, this work represents a 

contribution to the field by studying the interaction at two different levels: (i) the LacY 

interplay with the phospholipids present at the annular region in the vicinity of the 

protein was studied through FRET measurements between a single-tryptophan LacY 

mutant and diverse pyrene-marked phospholipids, and (ii) the LacY interaction with the 

more distanced bulk phospholipids was studied through supported proteo-lipid sheets 

that were analysed using topography, force-spectroscopy and force-volume Atomic 

Force Microscopy modes. First, after validating LacY preference for phospholipid fluid 

(Lα) phases in the studied two-component model systems, a different composition 

between bulk and annular regions was confirmed. Hence, bulk lipids, which were 

assimilated to the phospholipids in Lα phase, were mainly formed by PG, while PE was 

the main component of the annular region. This points to a direct annular phospholipid-

LacY selectivity because it discards a random phospholipid distribution near the 

protein. Second, the LacY selectivity for precise phospholipid species at the annular 

region was found to be related to: (i) a neutral charged phosholipid (PE or PC, with 

preference for the former), and (ii) phospholipids with large negative spontaneous 

curvature (C0) (DOPE > POPE). In addition, D68 was revealed as an important amino 

acid for the protein annular lipid selectivity. Third, the interaction between LacY and 

the bulk lipids was described as reciprocal. Accordingly, the presence of the protein 

largely modified the topography and the nanomechanics of the lipid system, especially 

for the Lα phase, whilst the nanomechanics of LacY itself were different depending on 

the surrounding lipid matrix: more force was needed to pull LacY form the 

DPPE:POPG (3:1, mol/mol) system than from the POPE:POPG (3:1, mol/mol) one. 

Therefore, the bilayer lipid composition seems to determine the forces governing the 
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LacY tight interaction with the membrane and can be thus decisive for the protein 

correct insertion and activity.  

 

 

 

RESUM 

 

La interacció entre una proteïna de membrana i els fosfolípids que l’envolten és 

considerada crucial pel bon plegament i la correcta funció de la proteïna. Aquesta tesi 

està centrada en la investigació de la interacció entre la Lactosa permeasa (LacY), un 

paradigma dels transportadors secundaris que es troba a la membrana interna 

d’Escherichia coli, i sistemes models que mimetitzen el seu entorn lipídic. Tenint en 

compte que el rol dels fosfolípids en l’activitat de LacY està sent actualment refinat, 

aquest treball representa una contribució al camp a través de l’estudi de la interacció a 

dos nivells diferents: (i) la interacció entre LacY i els fosfolípids presents a la regió 

anular propera a la proteïna ha estat estudiada a través de mesures de FRET entre un 

mutant de LacY amb un únic triptòfan i diversos fosfolípids marcats amb pirè i (ii) la 

interacció entre LacY amb els fosfolípids més llunyans o bulk fosfolípids s’ha investigat 

a través de làmines de lípid i proteïna sobre un suport, les quals s’han analitzat a partir 

de diferents modes de microscòpia de força atòmica (topografia, espectroscòpia de força 

i force-volume). En primer lloc, s’ha validat la  preferència de LacY pels fosfolípids en 

fases fluïdes (Lα) en els sistemes models de dos components estudiats. A més, s’ha 

confirmat una composició lipídica diferent entre la regió anular i el bulk. Així, els lípids 

bulk, considerats com a fosfolípids en fase Lα, tenen PG com a principal component, 

mentre que PE és el major component de la regió anular. Això sembla indicar una 

selectivitat directa entre LacY i els fosfolípids anulars, ja que descarta un posicionament 

aleatori dels fosfolípids a les proximitats de la proteïna. En segon lloc, s’ha descrit que 

la selectivitat de LacY per una espècie precisa de fosfolípid a la regió anular està 

relacionada amb (i) la càrrega neutra del fosfolípid (PE o PC, amb preferència pel 

primer) i (ii) fosfolípids amb curvatura espontània (C0) negativa (DOPE > POPE). A 

més, D68 s’ha assenyalat com un aminoàcid important per la selectivitat de la proteïna 

envers els lípids anulars. En tercer lloc, s’ha descrit una interacció recíproca entre LacY 
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i els lípids bulk. D’aquesta manera, la presencia de la proteïna modifica la topografia i la 

nanomecànica del sistema lipídic, especialment de la fase Lα, i, alhora, la nanomecànica 

de la pròpia LacY varia segons la matriu lipídica que l’envolta: cal més força per estirar 

LacY d’una matriu de DPPE:POPG (3:1, mol/mol) que d’una matriu de POPE:POPG 

(3:1, mol/mol). Així doncs, la composició lipídica de la bicapa sembla determinar les 

forces que governen l’estreta interacció de LacY amb la membrana i, per tant, aquesta 

composició és decisiva per la correcta inserció i activitat de la proteïna.  

 

 

 

 

RESUMEN 

 

La interacción entre una proteína de membrana y los fosfolípidos que la rodean es 

considerada crucial para el buen plegamiento y la correcta función de la proteína. Esta 

tesis está centrada en la investigación de la interacción entre la Lactosa permeasa 

(LacY), un paradigma de los transportadores secundarios que se encuentra en la 

membrana interna de Escherichia coli, y sistemas modelos que mimetizan su entorno 

lipídico. Teniendo en cuenta que el rol de los fosfolípidos en la actividad de LacY está 

siendo actualmente refinado, este trabajo representa una contribución en el campo a 

través del estudio de la interacción a dos niveles diferentes: (i) la interacción entre LacY 

y los fosfolípidos presentes en la región anular próxima a la proteína ha sido estudiada a 

través de medidas de FRET entre un mutante de LacY con un único triptófano y varios 

fosfolípidos marcados con pireno y (ii) la interacción entre LacY y los fosfolípidos más 

alejados o bulk fosfolípidos ha sido investigada a través de láminas de lípido y proteïna 

sobre un soporte, las cuales se han analizado a partir de diferentes modos de 

microscopía de fuerza atómica (topografía, espectroscopia de fuerzas y force-volume). 

En primer lugar, se ha validado la preferencia de LacY por los fosfolípidos en fases 

fluidas (Lα) en los sistemas modelos con dos componentes estudiados. Además, se ha 

confirmado una composición lipídica diferente entre la región anular y el bulk. Así, los 

lípidos bulk, considerados como fosfolípidos en fase Lα, presentan PG como 

componente principal, mientras que PE es el mayor componente de la región anular. 

Eso parece indicar una selectividad directa entre LacY y los fosfolípidos anulares, ya 
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que descarta un posicionamiento aleatorio de los fosfolípidos en las proximidades de la 

proteína. En segundo lugar, se ha descrito que la selectividad de LacY por una especie 

precisa de fosfolípido en la región anular está relacionada con (i) la carga neutra del 

fosfolípido (PE o PC, con preferencia por el primero) y (ii) fosfolípidos con una 

curvatura espontanea (C0) negativa (DOPE > POPE). Además, D68 ha sido señalado 

como un aminoácido importante para la selectividad de la proteína hacia los lípidos 

anulares. En tercer lugar, se ha descrito una interacción recíproca entre LacY y los 

lípidos bulk. De esta manera, la presencia de la proteína modifica la topografía y la 

nanomecánica del sistema lipídico, especialmente de la fase Lα, y, al mismo tiempo, la 

nanomecánica de la propia LacY cambia según la matriz lipídica que la rodea: se 

necesita más fuerza para estirar LacY de una matriz de DPPE:POPG (3:1, mol/mol) que 

de una matriz de POPE:POPG (3:1, mol/mol). Así pues, la composición lipídica de la 

bicapa parece determinar las fuerzas que gobiernan la estrecha interacción entre LacY y 

la membrana, y, por lo tanto, esta composición es decisiva para la correcta inserción y 

actividad de la proteína.         

 

 

 

 

RESUMÉ 
 

L’interaction entre une protéine membranaire et les phospholipides qui l’entourent est 

considérée cruciale pour le repliement et la fonction de la protéine. Cette thèse est 

centrée sur l’investigation de l’interaction entre la Lactose permease (LacY), un 

paradigme des transporteurs secondaires qui est placée dans la membrane interne 

d’Escherichia coli, et des systèmes modèles qui miment son entourage lipidique. En 

prenant compte que le rôle des phospholipides dans l’activité de LacY est en train de 

s’affiner, ce travail représente une contribution dans le domaine à travers  l’étude de 

cette interaction à deux niveaux différents: (i) l’interaction entre LacY et les 

phospholipides présents dans la région annulaire a été étudiée grâce à des mesures de 

FRET entre un mutant de LacY, avec un seul tryptophane, et différents phospholipides 

marqués à l’aide d’un pyrène, et (ii) l’étude de l’interaction entre LacY et des 

phospholipides plus éloignés (phospholipides bulk) a été effectué à travers l’analyse de 

lames de lipides et protéines sur un support, qui ont été analysées à l’aide de différents 
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modes de microscopie de force atomique (topographie, spectroscopie de force et force-

volume). D’abord, nous avons validé la préférence de LacY pour les phospholipides en 

phase fluide (Lα) dans les systèmes modèles à deux composants étudiés. En outre, nous 

avons confirmé une composition lipidique différente entre la région annulaire et le bulk. 

Ainsi, les lipides bulk, considérés comme des phospholipides en phase Lα, ont présenté 

PG comme élément principal, tandis que PE est le composant majeur dans la région 

annulaire. Cela semble indiquer une sélectivité directe entre LacY et les phospholipides 

annulaires, puisque ceci exclut un positionnement aléatoire des phospholipides dans les 

environs de la protéine. Deuxièmement, nous avons démontré que la sélectivité de LacY 

vers une espèce précise de phospholipide dans la région annulaire est liée à (i) la charge 

neutre des phospholipides (PE or PC, avec de la préférence pour PE) et (ii) également 

une préférence pour les phospholipides avec une courbure spontanée (C0) négative 

(DOPE > POPE). De plus, D68 s’est avéré être un aminoacide important dans la 

sélectivité de la protéine vers les lipides annulaires. Troisièmement, nous avons décrit 

l’interaction réciproque entre LacY et les lipides dis bulk. Ainsi, la présence de la 

protéine modifie la topographie et la nanomécanique du système lipidique, et, 

parallèlement, la nanomécanique de LacY varie selon la matrice lipidique qui l’entoure : 

nous avons besoin de plus de force pour étirer LacY d’une matrice de DPPE :POPG 

(3:1, mol/mol) que d’une matrice de POPE :POPG (3:1, mol/mol). Par conséquent, la 

composition lipidique de la bicouche semble déterminer les forces qui gouvernent 

l’étroite interaction entre LacY et la membrane et, de ce fait, cette composition est 

décisive pour l’insertion et l’activité correcte de la protéine.   
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Chapter 1. A physical insight 

into the cell membrane 

 

 

 

1.1 The cell membrane 

The cell membrane was originally defined as a structure that permits the 

compartmentalization of cells and organelles. Certainly, compartmentalization, i.e. 

separation from the environment, is essential for an organism to enclose an aqueous 

solution of cellular material as the first requirement to create a complete independent 

entity [1]. However, the cell membrane is more than that. It is in charge of the 

relationship between the cell or organelle with the exterior, since although a barrier is 

needed, controls to surmount it are crucial. This may primarily correspond to basic 

needs as the uptake of nutrients and disposal of waste. More complicated functions 

respond to the use of the barrier for energy-storage properties and to the creation of 

pathways to exchange information between a cell and its environment [2].  

The cell membrane as a biological structure is highly universal when considering that it 

is present in all cells, eukaryotic and prokaryotic, as well as all internal organelles. 

However, although there are similarities, each biological membrane is highly 

specialized and has its own particularities. Two main components form all cell 

membranes, lipids and proteins. About 10% of carbohydrates are also present in 

biomembranes, but they are not considered as key elements because they are always 

linked to lipids or proteins conferring them some singularities [3]. More than 550 

different types of lipids can be combined in a particular biological membrane [4]. The 
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reason for such diversity is currently not clear, but since lipids do not form polymers 

and do not have catalytic activity, it is thought that their diverse functions might likely 

result from the properties and structures of individual lipids [5,6]. Regarding proteins, a 

vast array of different proteins are directly embedded or interact in some way with the 

membrane and are involved in diverse and essential cellular processes.  

Lipids present amphipathic nature that provokes their self-assembling into structures 

that minimize the exposure of the apolar regions to water. In cells, the most common 

assembly is the lipid bilayer which has the necessary characteristics to act as a 

permeability barrier [7]. However, its structure and composition is far from being 

simple. First, due to the great diversity of different lipid species that can be found in the 

lipid matrix, but also due to their capacity of being organized in compositions other than 

bilayers. Second, because a large amount of proteins are interacting with the lipids and 

their inter-play can vary greatly the structural properties of the bilayer. Furthermore, the 

assembly of all membrane components is generally not determined by covalent bonds 

but by other weaker interactions [4] which result in higher mobility and variability of 

the system. This facilitates the participation of membrane lipids in dynamic interactions 

while permitting changes in membrane thickness, surface packing, lateral or rotational 

mobility; which are necessary in turn to allow the conformational remodelling needed 

for protein function. Finally, interactions of the membrane with the cytoskeleton play 

also an important role in cell membrane functionality [8,9]. And, overall, all these 

characteristics are finely tuned by the cell in order to response to a high number of 

external situation (e.g. the cell can regulate protein expression or membrane lipid levels 

to respond to changes in environmental situations) [10]. This entire picture illustrates 

how difficult the understanding of the cell membrane system is. Indeed, due to this great 

compositional complexity the structural and functional aspects of biological membranes 

are currently a matter of intense debate [4].  

Historically, the model that has been traditionally accepted to explain the membrane cell 

organization was the one proposed by Singer and Nicolson (S-N) in 1972 of the “fluid 

mosaic model” (Figure 1) [11], which agglutinated at that time all the findings in one 

single model. It proposed the idea of lipid membranes formed by a fluid bilayer with 

some proteins dispersed at a low concentration and matching the hydrophobic side 

chains. Also, the fluidity accounted for freely movement of proteins and lipids inside 

this “sea of lipids”. Conversely, the extended fluid mosaic model contemplates protein 
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crowded lipid membranes where structural and functional restraints appear (asymmetry 

of the bilayers laterally and in cross-section, great variations in bilayer thickness...) [12]. 

In fact, the principle governing nowadays is that of the patchiness of membranes where 

lipid-lipid and lipid-protein interaction organize the system in large functional 

complexes [12]. Moreover, the emerging evidence on supramolecular lipid-protein 

complexes forming different types of domains and thus non-random distribution of 

proteins in the membrane at different hierarchical levels modifies de S-N model too 

[13]. Accordingly, although the S-N model is still valid to some extent, a large number 

of recent reviews summarize the state of the art of biomembranes research and demand 

on the development of new models which take clearly into account the ensemble of 

these new findings [4,5,9,14–16]. 

 

 

Figure 1. Cartoon of a eukaryotic cell membrane based on the fluid-mosaic model proposed 

by Singer and Nicolson in 1972 (http://www.nature.com/scitable). 
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1.2 Phospholipids 

Lipids are the main component of the cell membrane. Different kinds of lipids are found 

in this structure, among them phospholipids, glycolipids, sphingolipids or sterols. Other 

minority phospholipids are also important in some specific cases, such as 

diphosphatidylglycerols, characteristics of the inner membrane of gram-negative 

bacteria; although they also play an important role in the mitochondrial inner membrane 

of eukaryotic cells [3]. However, phospholipids are the most common membrane lipids.  

Phospholipids are amphipathic molecules due to the presence in their molecular 

structure of two distinctive moieties: one hydrophilic and another hydrophobic (see 

structure in Figure 2). This special disposition is crucial in terms of molecular 

organization. Chemically, phospholipids are fatty acid esters of glycerol. On the one 

hand, they have a glycerol skeleton where one of its hydroxyls is bound to a polar 

phosphate-containing headgroup. This headgroup defines the hydrophilic part of the 

molecule and can present several structures. On the other hand, the two remaining 

hydroxyls from the glycerol structure are linked to fatty acids, which define the 

hydrophobic portion of the structure, named hydrocarbonated or acyl chain. The fatty 

acids can display different number of carbons in its hydrocarbonated chain as well as 

different number of unsaturations which confer singularities to the final molecule. 

Hence, a particular headgroup defines a phospholipid family, whilst different 

hydrocarbonated chains form diverse phospholipid structures within each family with 

well-defined characteristics [17]. For example, an increasing level of odd unsaturations 

in phospholipid acyl chains leads to higher area per lipid and conformationally less 

ordered chains [18]. Likewise, the global charge of a phospholipid is also an important 

characteristic to take into account. Phosphoryl group is ionisable and presents a negative 

charge at physiological pH. The global charge will then be determined by the chemical 

structure of the polar headgroup. In nature we find most commonly negative 

phospholipids or zwitterionic ones, this last presenting a total neutral charge coming 

from the compensation of the negative charge by the presence of a positive charge in the 

headgroup.  
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Figure 2. General structure of a phospholipid molecule based in a POPE structure. The 

polar head is formed by an ethanolamine group (continuous line circle) and a phosphate 

group (triangle). This headgroup is connected to a glycerol (discontinuous line circle) with 

two hydrophobic acyl chains (continuous line). 

 

To summarize, the amphiphilicity of phospholipids is defined by the two types of 

glycerol substituents: fatty acids and polar headgroups. Since the apolar moiety shows a 

very limited solubility in water, the molecule tends to spontaneously organize in 

different structures in order to avoid the contact to the hydrophilic environment. This 

organizing ¨force¨ is known as hydrophobic effect [7,19] and is the major 

thermodynamic driving effect for stabilizing hydrated lipids aggregates, although other 

minor stabilizing factors can be present (van der Waals forces or hydrogen bonding) [3]. 

The hydrophobic effect is entropically leaded and results from the unfavourable 

constraints appearing when water is packed around a non-polar hydrocarbon [3,20]. 

 

1.2.1 Lipid organization in water 

Lipids are polymorphic when mixed with water. The particular form that they may 

adopt is related to several conditions being the more important the phospholipid 

structure (volume ratio between polar and apolar parts), but also lipid concentration, 

temperature, pressure, ionic strength and pH [21]. Depending on all these factors, 

phospholipids can assimilate a variety of structures, called mesophases, which are more 

ordered than a liquid but less so than a solid. One convenient way to describe lipid 

phase behaviour is through temperature-composition (T-c) phase diagrams. Figure 3 

shows a phase diagram of a single lipid system in function of the temperature and water 

content. We can observe that upon temperature rising, the phospholipid system 

organizes in two types of mesophases: lamellar (bilayer-forming) and non-lamellar 

(non-bilayer forming) phases. Particularly, in excess of water phospholipids may 

coordinate in the following structures [3,22,23]: 
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I. Lamellar gel phase (Lβ): it appears at low temperatures in lipids that form 

lamellar structures. Activation energy is low and thus molecules are tightly packed. 

Acyl chains are quite ordered and phospholipids present limited freedom of movement.  

II. Lamellar liquid crystalline phase or fluid phase (Lα): it appears upon 

increasing temperature. Although displaying two-dimensional order, high fluidity and a 

considerable disorder in the acyl chain level is found. The lattice order is lost.  

III. Non-lamellar phases: further increase of the temperature leads to lipid 

organization in non-bilayer systems. They can form either hexagonal or cubic phases, 

depending on temperature and phospholipid morphology.  

 

 

Figure 3. Schematic temperature-water content phase diagram of a pure phospholipid 

system. The phase diagram represents the polymorphic phospholipid organization upon 

temperature rising and the increasing of water content in the system (Figure from Brown, 

2012 [22]). 

 

The temperature at which half of the phospholipids in a pure or a mixed system 

experiences the gel to fluid phase transition is identified as the melting temperature 

(Tm). Saturated acyl chain phospholipids which present a high degree of order and tight 
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packing are characterized by high Tm, whilst unsaturated lipids with a cis double bond 

kink present low Tm due to its organization in a more expanded and less ordered system. 

Headgroup composition influences also the Tm value through hydrogen bonding and 

size, which affects packing by steric hindrance [24].  

It is thought that phospholipids in cell membranes present almost exclusively lamellar 

fluid phases. Still, it is well-described that membrane topological remodelling (in the 

cases of fission and fusion for example) is related to the formation of localized non-

bilayer intermediates [19,25]. This non-bilayer intermediates would create connections 

between two or more bilayers (e.g. between a cell membrane and a vesicle) by creating 

stalks, which are hemifusion intermediates favoured by the presence of phospholipids 

with negative curvature [26]. In accordance to this idea, significant studies on the 

growth of microorganisms such as Acholeplasma laidlawii [27] and Escherichia coli (E. 

coli) [10] have revealed a balance between lamellar and non-lamellar lipids in the 

bacterial cell membrane which is crucial for its correct function. 

 

1.2.2 The bilayer structure 

The cell membrane bilayer structure corresponds to a fluid lamellar phase of ≃ 5 nm 

thick [4] which presents both short-range and long-range order, as well as anisotropy. 

The chemical and physical description of this complex structure is vast and extend, 

although some important generalities are summarized in Figure 4.  

I. Transverse lipid asymmetry: the lipid bilayer can present transverse bilayer 

asymmetry, which corresponds to a different distribution of phospholipids in each 

bilayer leaflet. To maintain this asymmetry, phospholipids can undergo the so-called 

flip-flop movement which translocates them from one leaflet to another. Since this 

movement is unfavourable, cells can accelerate it by a number of different enzymes, 

which create and support the structural asymmetry of membranes [28,29]. Membrane 

composition asymmetry is a requirement for the emergence of bilayer curvature. Indeed, 

bilayers are extremely bendable and this softness, combined with high structural 

stability is crucial for its biological functionality [30]. 
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Figure 4. Membrane features involved in the cell membrane formation and organization: 

transverse lipid asymmetry (A), with different phospholipid composition in each bilayer 

leaflet; lateral bilayer heterogeneity (B), exemplified by an AFM image of a supported lipid 

bilayer that displays two different lipid domains of different step height; membrane 

curvature (C); membrane lateral pressure (D); and hydrophobic match (E), i.e. adaptation 

of the phospholipid bilayer thickness to the size of a membrane protein hydrophobic 

domain. 

 

II. Lateral bilayer asymmetry: the presence of lateral heterogeneity in bilayer 

structures has recently received increasing attention. Since the early view of lipids 

homogeneously distributed in most membranes as a consequence of their high mobility, 

research has evolved with the discovery of superlattice distribution of lipids in fluid-

mixed bilayers (e.g. rafts, caveolae) [31,32]. Hence, in artificial [33–36] and natural 

membranes [37,38] there has been found a rich presence of non-ideal mixing systems of 

finite size and formed by two or more elements. These structures are called domains. A 

domain can be briefly described as a short-range ordered structure that differs in lipid 

and/or protein composition from the surrounding membrane [39]. However, many 

details of these structures such as their molecular characteristics, function and size 

distribution, remain to be clarified [40]. The distribution of phospholipids in domains is 

determined by factors related to lipid-lipid interaction, as well as lipid relationship with 

surrounding proteins or cytoskeleton [41]. Domains do not cover the whole membrane. 

Instead, they are small, transient and present a dynamic equilibrium with areas in which 
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lipids are distributed randomly [13]. In effect, one widely discussed topic is the absolute 

size of domains: from micro- to nanodomains have been found in membrane cells, and 

hypothesis for this large size diversity are still being discussed [42,43].  

An important physical magnitude related to the presence of lateral heterogeneity in 

membranes is the line tension (Γ). In this regard, the boundary between domains 

presents a special lipid packing which mainly results from differences in height between 

different domains. Consequently, the line tension is described as the energy per length 

boundary accounted for the deformation of molecules at the domain border in order to 

prevent the exposure of apolar regions to the aqueous media. Size and stability of a 

domain are closely related to this line tension parameter [44].  

III. Membrane curvature and lateral pressure: As mentioned, most membranes 

are not completely flat. Instead, the spontaneous curvature of a membrane depends 

directly on the structure of its lipid components (e.g. their shape, which results from the 

ratio between the head and the acyl chains volume). Hence, phospholipid structure is 

determinant for the correct local lipid packing, but also for the bending, since all the 

molecules collaborate to the total curvature of the membrane. In this regard, each 

phospholipid presents an intrinsic curvature (or C0) which corresponds to the shape of 

relaxed phospholipids with zero bending stress [45–47]. Furthermore, the forced 

situation of non-lamellar phospholipids placed in a lamellar cell bilayer may cause 

compression of the acyl tails and thus lead to membrane stress and curvature frustration. 

This stored stress, which can augment with temperature as it increases the repulsive 

pressure in the acyl chain region, is the responsible of the apparition in certain cases of 

the above-mentioned local non-bilayer structures [30].  

This bending elasticity can also be described in terms of inhomogeneous profile of 

lateral pressure across the lipid membrane [48]. The lateral pressure measures the 

profile distribution of local pressures inside a bilayer and depends on macroscopic and 

measurable quantities such as surface tension, surface Gibbs energy, C0 and 

phospholipid composition [18]. The pressure gradients present along a cell membrane 

play important roles in the conformational states of transmembrane proteins by 

modulating their activity or interactions [49,50]. 

IV. Hydrophobic match: the hydrophobic match occurs at the protein-lipid 

boundary and corresponds to the adaptation of the lipid curvature to the hydrophobic 
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transmembrane domains of membrane proteins in order to minimize the energetically 

unfavourable exposure of the hydrophobic amino acid chains to the aqueous 

environment. Lipids can physically adapt to match transmembrane domains of various 

lengths, which results in local variations in membrane thickness [51,52]. Hydrophobic 

match is further addressed in section 1.4.2.  

 

1.2.3 Artificial or model membranes  

Biological membranes have been widely studied in ex-vivo approximations by using 

different types of structures mimicking the cell lipid bilayer, which are named artificial 

or model membranes. As a result, physical and chemical properties of individual lipids 

and lipid mixtures have been extensively studied; though the correlation of these 

researches with the in vivo state is still under discussion [6].  

The applicability of model membranes as good models of cellular membranes is limited 

in several ways. One of the most important differences is that, while cellular membranes 

are out of the equilibrium, most of the experiments with model membranes are 

performed under equilibrium conditions [53]. Thus, model systems are not affected by 

cellular dynamic processes such as vesicle trafficking or lipid synthesis and hydrolysis 

[54]. In addition, absence of cytoskeleton results in considerably different molecular 

interactions. Lastly, the lack of three-dimensionality brings studies in model membranes 

to the analysis of processes only into the membrane plane [28]. Nevertheless, direct 

studies on cellular membranes are still complicated. For example, the study of domains 

in vivo is greatly challenging due to its small size and ephemeral nature within the 

complexity of the cell membrane. That is why the simplification of the system through 

the use of model membranes can largely facilitate this study [24]. Other advantages of 

model membranes are the fine-tuning of the lipid composition and the precise control of 

environmental conditions (such as ion concentrations) [55]. 

In summary, extrapolation of the results in lipid model systems to real membranes has 

to be carefully performed. It is a good preliminary approach in the understanding of 

organization, polymorphism and phase states of phospholipid sample mixtures, but, as 

mentioned, it does not consider complex membrane surface structure and completely 

biomimetic environment [56].  

10

Chapter 1



 

Model membranes can be classified in closed bilayers or liposomes and planar mono- or 

bilayers (Figure 5). 

 

 

Figure 5. Different model membrane systems: planar monolayers (A), liposomes (B), and 

supported lipid bilayers (C). 

 

I. Planar monolayers at the air-water interface: planar monolayers are formed by 

phospholipids adsorbed in the air-water interface in the form of a layer of only one 

molecule thick, where phospholipids are oriented with the polar heads in contact with 

the aqueous phase and with the hydrocarbon chains extended facing air. Besides, the 

monolayer can be supplemented with proteins or membrane-active molecules that may 

intercalate within the lipid structure. The advantage of this model is that monolayers can 

be easily studied and manipulated in a Langmuir through which allows the 

measurements of thermodynamic relationships between surface tension and surface 

molecular area (for further information see section 3.2.1) [3]. What is more, the in-plane 

and lateral structure of the monolayer film can be investigated by various methods, such 

as fluorescence microscopy or Brewster-angle microscopy. Scanning probe 

microscopies can also be used, provided the monolayer is transferred to a solid support 

[15]. 

II. Closed bilayers, liposomes: liposomes are freestanding vesicles consisting of 

phospholipid bilayers that enclose an aqueous compartment. Liposomes are bilayers 

closed onto themselves forming spherical structures, which minimize unfavourable 

contact between hydrophobic moieties of phospholipids and the aqueous solution. The 

vesicles are generally quite stable and impermeable to many substances [17]. The 

primary uses of liposomes are (i) as model membranes, and (ii) to encapsulate solutes as 

drug delivery systems [3]. Liposomes can be prepared in order to obtain structures 

containing multiple bilayers (multilamellar vesicles or MLVs) or single-walled 
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structures (unilamellar vesicles). Moreover, as membrane models liposomes present the 

advantage that they can be formed in different sizes, SUVs (small unilamellar vesicles, 

<100 nm in diameter), LUVs (large unilamellar vesicles, <1000 nm in diameter), and 

GUVs (giant unilamellar vesicles, >1000 nm in diameter). Consequently, liposomes 

allow to study the effect of membrane permeability and curvature, and the dispersion of 

vesicles can elucidate bulk properties (e.g. thermodynamic and structural properties) 

[3,15]. 

III. Planar bilayers onto solid supports, supported lipid bilayers (SLBs): SLBs 

are planar bilayers formed onto a solid support developed as a model system by 

McConnell et al. [57]. Like liposomes, this model membrane conserves the lateral and 

rotational mobility of individual phospholipids. This is possible due to the presence of a 

thin layer of water (in the order of 1-2 nm) between the distal layer of the membrane 

and the support [58–60], which acts as a lubricant and permits diffusion of lipids, 

although in a lower velocity rate as compared to cells. The clearer advantages in 

contrast to liposomes are related to its facility to be analysed with current, powerful 

surface analysing techniques: atomic force microscopy (AFM), total internal reflection 

fluorescence (TIRF) microscopy, or surface plasmon resonance (SPR) spectroscopy. 

These techniques allow a good visualization of the dynamics and the organization of 

lipids and proteins even on a single molecule level in real time [61]. Additionally, the 

presence of the support stabilizes the bilayer and allows its interaction with different 

scanning probes. For example, the precise puncture of a SLB with an AFM tip permits 

sensing interaction forces and thus gives light on the nanomechanical characteristics of 

the system [62].   

Drawbacks of this model membrane are, as stated above, that the lipids in SLBs 

move more than two times slower than in free-floating bilayers [63]. Also, the hydration 

layer is often not thick enough to accommodate large extramembraneous domains of 

transmembrane proteins, which may result in restricted motion or even denaturation. 

Some approaches have been developed to overcome these problems, although caution 

must be taken when applying them, since they largely complicate the system. One 

example could be the use of hydrated polymer cushions separating the SLBs and the 

support [58]. Furthermore, although it has been indicated that the solid support 

underlying the SLB plays in some way the role of cytoskeleton (Le Grimellec, personal 

communication), the only clear thing is that the presence of this support may induce an 
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asymmetric inter-leaflet lipid distribution in SLBs which, at the moment, is still not 

totally understood [64].  

SLBs can be prepared by layer by layer deposition as it is done when using 

Langmuir-Blodgett or Langmuir-Schaeffer deposition [65], by spin-coating [66] or by 

the fusion of lipid vesicles on solid supports [64,67]. This latter technique, first 

described by Brian and McConnell [68], is a very easy way to form bilayer systems onto 

planar or non-planar surfaces. SUVs adsorb to the surface, rupture and fuse to form a 

flat bilayer, more likely by the strain in the bilayer due to the small radius of curvature 

[24]. The main parameters governing this bilayer formation are related to the nature of 

the support (surface charge, chemical composition and roughness), the lipid vesicles 

(composition, charge and geometry of the lipids), buffer used (composition, pH and 

ionic strength), as well as temperature, concentration, and duration of deposition. 

Moreover, the presence of divalent cations such as calcium or magnesium strongly 

support vesicle rupture and are important in vesicles with a negative absolute charge 

because they can screen electrostatic repulsive interactions [64].  

 

 

1.3 Membrane proteins 

Apart from the already exposed importance of phospholipids building blocks in cell 

membranes, biological membranes are also highly crowded in proteins. All proteins 

assembled with the cell membrane are called membrane proteins and are structurally 

and functionally extremely diverse. They can achieve lipid-to-protein (LPR) ratios on 

weight basis ranging from ∼ 0.35 (inner mitochondrial membrane) to ∼ 1 (plasma 

membrane) to > 1 (secretory vesicles) [69], which represent between 20% and 80% 

(w/w) of the membrane. As a matter of fact membrane proteins are the biochemically 

active components of the bilayer and provide the diversity of enzymes, transporters, 

receptors, pores, etc., which distinguishes each particular membrane [3]. Besides, it is 

estimated that 20-30% [70,71] or even 50% [72] of all the predicted genes in a typical 

genome encode for membrane proteins. 
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1.3.1 Classification of membrane proteins  

Membrane proteins can be divided into three classes based on their mode of association 

with the lipid bilayer [1,17]:   

I. Integral membrane proteins or transmembrane proteins (TMPs): they are 

characterised by the presence of hydrophobic regions embedded in the hydrophobic 

core of the lipid bilayer which establish non-covalent permanent interactions with the 

fatty acid groups of the membrane phospholipids. Integral membrane proteins span 

completely through the membrane and, as a consequence, parts of the protein are 

exposed on both the outer and the inner surface of the bilayer. When more than one 

transmembrane segment (TM) is present, they are connected by cytoplasmic and 

exoplasmic loops. Despite most of the integral membrane proteins show TMs in α-helix 

organizations of hydrophobic residues, less commonly they can also display the 

polypeptide backbones arranged in an anti-parallel -sheet.  

II. Peripheral membrane proteins: this type of membrane proteins do not interact 

with the hydrophobic core of the phospholipid membrane and do not traverse 

completely the bilayer. Consequently, they are present only in one face of the 

membrane where they are usually associated either to polar headgroups of membrane 

lipids or to integral membrane proteins by charge-charge interactions, hydrogen 

bonding and other non-covalent interactions. 

III. Lipid-anchored membrane proteins: they are membrane proteins linked to a 

fatty acyl group, often myristate or palmitate, by a covalent bond. The fatty acid is in 

turn embedded in the bilayer, anchoring in this way the protein to the membrane. 

Membrane proteins are very relevant drug targets due to their involvement in many 

cellular activities, such as cell growth and division, solute and ion transport, energy 

production, or sensory stimuli transduction and information processing [73,74]. 

According to their functions, membrane proteins can also be divided in different 

subgroups (e.g. membrane receptors, enzymes, adhesion molecules). One of these 

subgroups is composed by the TMPs in charge of the transport across the membrane, 

which is formed by the following membrane protein types (Figure 6) [1,17]:  
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I. Ion channels and pores: they are specialized TMPs which provide a pathway 

through the membrane barrier to polar and charged small molecules and ions. They 

facilitate passive diffusion of ions down their concentration gradient by forming a 

protein-lined passageway across the membrane where multiple ions and molecules can 

move simultaneously.  

II. Passive Transporters: they are also specialized TMPs that permit the circulation 

of molecules and ions from the intramembranous space to the exterior. As the formers, 

they transport by moving the solute down its concentration gradient in a favourable 

membrane potential. The difference lies in their higher specificity due to their 

possibility to bind and transport one by one larger molecules such as proteins. Passive 

transporters can be uniporters (they carry only one ion/molecule at a time), symporters 

(they transport two ions/molecules in the same direction) or antiporters (they transport 

two ions/molecules in opposite directions).   

III. Active transporters: they resemble to passive transporters in the overall 

mechanism, kinetic properties and uniport/symport/antiport classification, but they 

require an energy source to transport. Primary active transporters are powered by a 

direct source of energy such as ATP or light. By contrast, secondary active 

transporters are driven by an ion concentration gradient (  ̃ ). 

 

 

Figure 6. Classification of the membrane transporters according to the direction of the 

transported molecules (A), and according to the energy requirement (B). 
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In order to move substrates across the membrane, transporters must cycle through 

several conformations. Since they are in thigh relationship with the surrounding 

phospholipids in order to maintain the diffusion barrier and the electrochemical 

equilibrium, the lipid-protein interaction might have effects on protein conformational 

plasticity and thus modulate transport [75,76]. Indeed, it has been demonstrated that 

protein function can be either regulated (e.g. transport can be disabled if a particular 

lipid species is not present) or modulated (transport activity can be shifted) by lipids 

[76]. Although the molecular basis of these effects has not been conclusively explained, 

a brief resume on this subject will be found in the following section.  

 

 

1.4 Lipid-protein interaction 

Considering the cell membrane as a matrix were lipids and proteins interact, it is clear 

that the study of this interaction is of high interest in order to better understand how the 

system operates. In fact, despite the extensive information gathered on the importance 

of the surrounding lipid composition for many membrane proteins [77–79], there are 

still controversies about the mechanisms by which membrane proteins and 

phospholipids affect their functions reciprocally. In this sense, there are currently two 

complementary points of views to address this subject: the biophysical and the chemical 

based visions. 

In the biophysical approach the membrane is considered as a continuum liquid-

crystalline material where its physical non-specific lipid properties affect the membrane 

proteins in a mean field manner [22]. This means that there exist lipid-associated 

parameters defining physical attributes of the biological membrane which are known to 

modulate membrane proteins. Hence, factors described in 1.2.2 such as lateral pressure 

[49,80], spontaneous curvature C0 and hydrophobic matching, membrane fluidity, 

surface charge distribution or membrane domains segregation can affect membrane 

protein structure and function [22,77,81]. All these effects are non-stoichiometric in 

nature, that is, they do not depend on specific lipid-to-protein ratio [76]. Remodelling of 

the bilayer due to lipid-protein interactions is a source of work for protein 
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conformational changes. Alternatively, a membrane protein can also alter the physical 

properties of its lipid surroundings [72]. 

The chemical approach considers that the important features governing cell membrane 

are the molecular-molecular interactions or site-specific interactions (lipid-lipid, 

protein-lipid) [72,77–79]. These interactions are very case specific and respond 

generally to hydrophobic effects, hydrogen bonding or charge interactions.  

Whilst the physical viewpoint is largely addressed by biophysicists [22,48,82], the 

chemical viewpoint is in vogue nowadays by the increasing of molecular simulations 

works [18,83,84].  

 

1.4.1 Lipids interacting with membrane proteins 

Regardless of the approach, lipid organisation can be, in general, affected by two types 

of proteins: soluble or membrane proteins. On the one hand, soluble proteins can 

recognize specifically different headgroups or associate due to bulk chemical properties 

(e.g. polar headgroup charge). They can have several functions, such as being in charge 

of the regulation of many cell signalling processes [79]. Additionally, they can modify 

cell membrane characteristics, e.g. adsorption of proteins can induce domain formation 

[85]. On the other hand, membrane proteins may experience and/or exert influence at 

three different lipid levels (Figure 7): 

I. Bulk lipids: constitute the ensemble of lipids far from the protein, which do not 

display direct molecular interaction with it. In consequence, their impact on the protein 

is relatively non-specific [77]. They can be considered as the executants of the effects 

related to the described biophysical approach [76].  

II. Annular lipids or boundary lipids: they encompass all lipids in closer contact to 

the protein, which organize forming an annular shell of lipids around it [86]. The 

interaction of these lipids with a membrane protein is higher as compared to bulk lipids. 

Indeed, it has been shown by spin-label SPR that this first shell of lipids is motionally 

restricted as compared to bulk lipids [87]. However, the exchange rate between annular 

lipids and the bulk phase is fast, indicating a lipid-protein binding affinity relatively 

weak [87]. This fast recovery of annular lipids can be explained because not only 
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specific species are important in the shell, but also some particular physical properties 

that can be achieved by more than one phospholipid species (although affinities might 

prove to be different between them) [77].  

Annular lipids seem to associate to proteins by van der Waals forces arising between 

acyl chains and grooves formed by specific arrangements of amino acid side-chains on 

the hydrophobic protein surface. However, interactions of polar headgroup moieties 

with amino acids at the protein-lipid interface cannot be excluded [79]. The binding 

stoichiometry of these lipids is related to the size and structure of the TMs of the 

protein. Proof of this is the fact that not only defined stoichiometries have been 

described, but also the selectivity of different membrane proteins for specific 

phospholipids has been found [88]. Moreover, annular lipids work as mediators between 

bulk lipids and protein, covering the roughness of the protein surface and, importantly, 

integrating and sealing it into the membrane barrier [78] in a cooperative way [16]. 

III. Integral protein or non-annular lipids: they present the greater specificity for 

proteins and integrate a very small number of lipid molecules that act like co-factors 

[77]. They are bound to TM α-helices either within a protein or at protein-protein 

interfaces in multi-subunit proteins and present high affinity to hydrophobic cavities and 

clefts [77].  

In some cases, non-annular lipid-binding sites have been found to be extremely well 

conserved (e.g. cytochrome c oxidase [89]). Such high degree of conservation suggests 

important structural, functional, or assembly roles of these bound lipids. The precise 

defined roles are still not completely understood, but there is evidence that their 

presence is important in the stabilization of interactions between subunits in multi-

subunit complexes. Additionally, non-annular lipids can mediate interactions between 

different protein complexes, allow for good rearrangement of TM α-helices during 

conformational changes and act as a sealant that allows proteins to integrate correctly in 

the membrane [79,89]. 
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Figure 7. Cartoon exemplifying the putative position of different types of phospholipids 

exerting influence on a membrane protein embedded in a lipid bilayer: lipids far away from 

the protein or bulk lipids, annular lipids organized forming a shell around a membrane 

protein, and non-annular lipids which are bound specifically with the membrane protein. 

 

The relation between a membrane protein and annular and non-annular lipids give rise 

to interactions that can be explained by the chemical approach, where molecular-

molecular interplay is the most relevant characteristic. This tight interaction is 

evidenced by the lipid presence in resolved high-resolution crystal structures of 

membrane proteins. This is the case especially for non-annular lipids which, due to their 

strong binding to the protein, remain immobilized (at least part of the lipid molecule) 

and are reproducibly co-purified alongside the protein. Interestingly, crystallographic 

data has revealed the appetence of non-annular lipids to adhere to TM domains in 

unusual positions, e.g., with the headgroup below the membrane plane and/or non-

perpendicular to the bilayer [78]. Some annular lipids have also been resolved in 

crystals, but they are always found in a highly disordered organisation, as it is the case 

of the bacteriorhodopsin trimer [90]. 

 

1.4.2 Lipid-protein interaction parameters 

Many biophysical and chemical parameters have been described to affect reciprocally 

membrane proteins and lipids (bulk, annular and non-annular). Some of the most 

important are reported to give some insights into the lipid-protein interaction subject.  
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Biophysical lipid-protein interaction parameters 

 General bulk phospholipid composition. Properties of the bulk lipids 

influence TM helix-helix interactions in several ways: they can modulate changes in 

helix tilt or orientation, changes on conformation or helix-helix interactions, and even 

changes in the assembly of larger protein oligomeric complexes [74]. This may be 

caused by subsequent modifications in the acyl chain order and fluidity of the lipid 

bilayer, in the nature of a lipid headgroup or in the lateral or transversal bilayer 

asymmetry which create local lipid domains with defined properties [91]. 

 Hydrophobic match. As previously described, a relevant property of a lipid 

bilayer is the thickness of its hydrophobic core, which corresponds to the separation 

between the glycerol backbone regions on the two bilayer leaflets [15]. When a 

membrane protein is embedded within a bilayer, it is assumed that the hydrophobic 

thickness of the bilayer adjusts to match well with the hydrophobic thickness of the 

protein, due to the high energetic cost of exposing apolar regions to water [51,75]. Any 

hydrophobic mismatch between the two thicknesses would be expected to lead to a 

distortion of the lipid bilayer, or the protein (e.g. by tilting the helix to reduce the 

protein effective length [74]), or both, or even to the exclusion of the membrane protein 

out of the system [77]. It can also provoke protein self-association or conformational 

change. Alternatively, the avoiding of hydrophobic mismatch may result in the 

possibility of sorting, selection, or enrichment of certain lipids near the protein [51,92]. 

Although hydrophobic matching might be a purely physical effect, specific interactions 

are possible and, in this case, may over-rule the matching effect.  

 Gel to liquid crystalline phase transition. The Lβ to Lα phase transition 

involves many changes in the physical properties of a lipid bilayer (e.g. fluidity, 

thickness) which might be expected to affect the activity of membrane proteins [77]. 

Indeed, some membrane proteins might prefer one or the other phase, leading to a 

partition of the proteins almost exclusively in one of the phases [93]. Due to the higher 

fluidity which permits less energetic conformational changes, most of the described 

cases indicate protein preference for Lα phase [74,94], although in some particular cases 

Lβ phase is also preferred [95].  

 Membrane viscosity. The resistance to motion (changes in shape of proteins 

when performing their functions) through a liquid (in this case, the lipid bilayer) can be 

expressed in terms of viscosity. In a lipid bilayer the resistance to motion is 
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predominantly processed from the lipid fatty acyl chains. The idea that changes in 

membrane viscosity may affect the protein function is related to the ancient hypothesis 

of the “homeoviscous adaptation” of the membrane [96]. In there, it was thought that an 

exact viscosity parameter of the lipid component in the membrane was held constant for 

optimal functioning of the membrane. In this sense, it postulated that organisms can 

alter their lipid composition in order to maintain constant this parameter. However, as 

further proposed by Lee [77], although organisms modify their membrane composition 

as an adaptation to temperature and so to changes on the viscosity of their membranes, it 

might not be true, as a general rule, to say that this maintains a constant viscosity in the 

membrane. 

 Protein stabilization of lamellar phases. The presence of TMPs tends to 

stabilize the lamellar phase in lipids that present tendency to organise in non-bilayer 

forming phases. This is because the hydrophobic span of the protein matches that of the 

lipid membrane in the lamellar phase. Protein forces phospholipids with non-bilayer 

tendencies to be in a bilayer state and thus leads to curvature frustration. As explained in 

section 1.2.2, this stored stress in the membrane is important since it can modulate 

protein activity via the heterogeneous transverse profile of lateral pressure across the 

membrane or via the formation of local non-bilayer structures [48,77]. In turn, the 

insertion of an integral protein can release this stored stress for example through the 

positioning of the acyl chains placed nearby the protein and filling spaces bellow the 

helix. For instance, the presence of Cytochrome c oxidase causes cardiolipin to organise 

in a bilayer structure under conditions (presence of Ca
2+

) where normally it would adopt 

an hexagonal phase [97]. 

Chemical lipid-protein interaction parameters 

 Chaperonin-like function in insertion and orientation of TM helices. Each 

TMP presents a particular topological organisation with certain number of TMs 

displaying a specific orientation with respect to the plane of the lipid bilayer. In general, 

the topological organization of a membrane protein is well established, especially in 

cases where the X-ray structure of the protein is available. On the contrary, the process 

of membrane protein topogenesis and the factors that influence it are less well defined. 

In this sense, primal amino acid sequence of a membrane protein encodes a set of 

topogenic signals, which are decoded by processes not completely understood. Hence, 

not only the primary structure is determinant for a good tertiary structuring. Correct 
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folding involves proper control and alignment in the interactions of individual TM 

helices, multiple TMs, and the ensemble with the surrounding phospholipids [91]. 

Indeed, there are studies pointing out the importance of specific phospholipids acting as 

lipid chaperones for some membrane proteins as it has been demonstrated for lactose 

permease (LacY) of E. coli [6].  

 Non-annular lipid highly specialized functions. The presence of non-annular 

lipids forming a complex with a membrane protein can be transduced in very diverse 

and specific functions. For example, they can be keys for the formation of helix-helix 

association (guide assembly) and orientation of TM helices, or they can be directly 

involved in the molecular mechanism of the protein, e.g., enzymatic activity or transport 

processes across the membrane [79].  

 Structure of the annular lipid headgroup region. It defines the region closer 

to a membrane protein and can affect the correct formation of secondary structures such 

as -helix and -sheet. This is explained because the polypeptide backbone has 

requirements for polar residues permitting hydrogen bonding. Hence, the region has 

been referred to as a catalyst for the formation of secondary structure by peptides 

[77,98]. Also, the lipid headgroup region can affect the activity of a membrane protein 

when changing the concentrations of charged molecules or ions close to the surface of 

the membrane [77]. 

Finally, a last case which involves both physical and chemical characteristics is the 

formation of lateral heterogenic domains through the segregation and clustering of 

lipids and proteins. From ex vivo studies it is clear that lipid-lipid interactions can lead 

to the formation of domains, but there are evidences confirming that the presence of 

proteins can also affect or trigger this process. For example, lipid raft domains which 

are found in mammalian cells are not considered anymore as structures originated solely 

from lipid-lipid interactions (cholesterol, saturated phosphatidylcholines, and 

sphingomyelin), since the protein-lipids interactions have been identified as equally 

important in the formation, maintenance, and dynamics of these domains [13]. Another 

example could be the recent findings where microdomains independents of cholesterol 

or lipid phases appeared when the membrane was in contact to syntaxin-1A membrane 

protein [99]. 

The presence of phase separation triggered by biophysical forces seems to be largely 

driven by lipids and respond to general properties of the interaction partners (size, 
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rigidity, charge, etc.). It yields to domains highly dynamic which vary from ten to 

hundreds of nanometers in size [5]. On the contrary, stable or meso-stable assemblies 

can also be generated by specific, chemical high-affinity molecular interactions between 

lipids, protein and carbohydrates. In this case the obtained domains might be larger, 

longer-lived and include static scaffold-based assemblies [5].  

Phospholipids and membrane proteins have co-evolved simultaneously in nature, which 

is evidenced by the high interplay that they exhibit. In this sense, it is clear that many 

membrane proteins present high specificity for particular phospholipids or for specific 

phospholipid characteristics and, in consequence, one individual membrane protein 

seems prepared to be expressed in a precise type of lipid bilayer composition. However, 

many membrane protein structures have been conserved throughout all domains of life, 

whereas lipid membrane composition can show remarkable diversity from organism to 

organism [100]. This might indicate that although the specificity of protein-lipid 

interactions is well-demonstrated, membrane proteins evidence some degree of 

fundamental tolerance in remodelling in lipid composition. This tolerance has permitted 

the emergence of new species without having to extensively remodel the associated 

membranes proteins, but it has also favoured that a single cell changes its membrane 

lipid composition in response to changing environments [100]. However, as pointed out 

by Zhou and Cross [101], yet modifying lipid composition there are many biophysical 

properties of the membrane environment that remain largely unchanged (e.g. bilayer 

hydrophobicity and thickness) and can be maintained in different mixtures of lipids, 

trying to adapt them to the precise needs of each membrane protein. Moreover, different 

lateral and transversal compartmentalization of phospholipids in a bilayer can create 

discrete domains with alternative physical parameters, and thus a given bulk 

composition of a lipid membrane might not be significant of the overall existing 

different microenvironments. And eventually, the great diversity of different lipids in 

cell and its constant adjust of membrane composition makes it to seem unlikely that 

fundamental physiological processes should not be regulated by such a complex lipid 

repertoire. Indeed, all these points restore the controversy on this subject to the same 

unsolved questions again and again: to which extent lipids exert their role on protein 

membrane functioning? And why the cell bothers to synthesise so many lipids? 

[36,102,103]. 
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1.5 LacY and its surrounding environment 

Lactose permease (LacY), a protein present in the inner membrane of the gram-negative 

bacterium E. coli, is the TMP studied in this thesis. Consequently, the phospholipids of 

interest correspond to mixtures mimicking the composition of the inner membrane of 

this bacterium.  

 

1.5.1 The inner membrane of Escherichia coli 

Thanks to the combination of multi-headgroups and different hydrophobic tails, lipids 

display large chemical diversity in cells. Proof of this heterogeneity is the presence of 

distinct lipid composition on different cell types and cellular organelles. This high 

diversity may be to some extent a response to diet (diet-induced variation, which 

modifies more particularly the composition of fatty acid hydrocarbon chains [72]), 

although the overall pattern is precisely regulated by the cells and require well-

controlled metabolic systems [81,104].  

This thesis is directed to the study of the inner membrane of E. coli. This cell membrane 

presents a phospholipid composition of approximately 70% phosphatidylethanolamine 

(PE), 20% phosphatidylglycerol (PG), and 5% cardiolipin (CL) [102]. PE and PG are 

sorts of phospholipid headgroups and, therefore, indicate two phospholipid families. 

This means that in spite of a polar headgroup composition relatively constant in this 

membrane [102], the presence of different species with different hydrocarbonated acyl 

chains can be finely tuned by the cell in order to adapt to different environmental 

circumstances (e.g. rising the growth temperature decreases the quantity of unsaturated 

fatty acids) [10]. Regarding CL, it shows a structure of diphosphatidylglycerol. CL can 

form non-bilayer structures in presence of divalent cations and thus it has important 

functions on membrane stability and fusion [105]. Additionally, it interacts with a large 

number of membrane proteins. For instance, its presence is critical to functional 

activation of certain enzymes, e.g. those involved in oxidative phosphorylation [106].  

Nevertheless, the main strategy employed in this thesis has been to consider binary 

mixtures of PE and PG phospholipids generally at a molar ratio of 3:1 in order to mimic 

the naturally occurring composition. In some experiments PE has also been replaced by 
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phosphatidylcholine (PC), which is the main phospholipid present in eukaryote cell 

membranes [3]. 

 

1.5.2 Lactose permease 

LacY belongs to the major facilitator superfamily (MFS), the largest family of 

secondary transporters which include TMPs of several species, most of them catalysing 

active transport of a wide range of substrates by transducing the energy stored in a H
+
 

electrochemical gradient (  ̃ ) into a concentration gradient (   ) of substrate [107–

109]. 

The gene encoding LacY was the first gene of a transport TMP cloned into a 

recombinant plasmid and sequenced [108]. As a consequence, LacY has been largely 

studied and it has been considered as a paradigm for secondary transport proteins in 

order to explore the mechanism of energy transduction [108]. Indeed, this mechanism 

related to biological membranes is one of the most interesting, intriguing and still 

unsolved problems in biology. It has been postulated for a variety of different 

phenomena (e.g., secondary active transport, oxidative phosphorylation, rotation of the 

bacterial flagellar motor) that the used driving force to perform their functions comes 

from a bulk-phase, transmembrane electrochemical ion gradient [110]. However, 

questions about the molecular mechanisms explaining how this Gibbs energy stored in 

such gradients can be transduced into work or into chemical energy are still uncertain 

[108].  

Additionally, the mechanisms of many biological machines involved in energy 

transduction seem to be related, since different proteins have been included in 

structurally similar families. Hence, the study of a paradigm protein such as LacY might 

be important to understand other related proteins, which, importantly, can play 

important roles in human disease (e.g., cystic fibrosis, resistance to antibiotics and 

chemotherapeutic drugs, gastric ulcer, glucose/galactose malabsorption) and take part in 

the mechanism of action of a large number of drugs [108,111]. 
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LacY is one of the most extensively studied cytoplasmic membrane proteins. It is 

composed of 417 amino acid residues and is functional as a monomer [108]. LacY 

works catalyzing the coupled stoichiometric transport of a galactopyranoside and a H
+
 

(galactoside/H
+
 symport). The direction of transport is dependent upon the polarity of 

the sugar concentration gradient (downhill sugar/uphill H
+
) or the H

+
 electrochemical 

gradient (downhill H
+
/uphill sugar) [109]. Just as the majority of MFS proteins, the 

secondary structure of LacY consists of 12 TM -helices, crossing the membrane in a 

zigzag fashion, which are connected by 11 relatively hydrophilic, periplasmic and 

cytoplasmic loops, with both the amino and the carboxyl terminus on the cytoplasmic 

surface.  

LacY’s tertiary structure has been resolved from X-ray diffraction in the last decade 

after the achievement of diverse LacY crystals. First, the structure of the C154G 

conformationally restricted mutant was solved (3.5 Å resolution) [112] (Figure 8) and 

not long after the wild-type structure was also completed (4 Å resolution) [113]. 

Interestingly, both proteins were found to be in the same conformation and no striking 

structural differences could be appreciated between them. X-ray diffraction revealed 

that LacY shows a helical content of 86% (80% within the membrane) [108]. In 

addition, the 12 TM -helices are shaped irregularly and organized into two 

pseudosymmetrical six-helix bundles (N- and C-terminal) connected by a long loop 

between helices VI and VII. In a side view, the monomer displays a diameter of 6 nm 

and is heart-shaped with a large internal hydrophobic cavity open only to the 

cytoplasmic side, where the binding site has been observed in the approximate middle 

of the molecule. Due to this cavity facing the cytoplasm, this conformation is known as 

the inward facing conformational state of LacY [108]. Importantly, the finding that this 

conformational state is present in bacteria excludes the possibility of a non-native 

structure resulting from non-physiological crystallization conditions [114,115].   
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Figure 8. Side-view (A) and top-view (B) of the crystal structure of inward-facing C154G 

LacY. Based on PDB ID: 1PV6. 

 

The X-ray structure of LacY provided critical information regarding the overall folding 

of the protein and the sugar-binding site. What is more, residues already identified as 

important for correct function could be localized. In that field, the extensive work of 

professor Kaback [108,111,115] has been determinant. In his laboratory, each of the 417 

amino acyl side chains in LacY has been mutated [109], and functional analyses of the 

mutants revealed that fewer than 10 side chains are irreplaceable or very important in 

the symport mechanism (Figure 9): E126 (helix IV), R144 (helix V), and W151 (helix 

V) are directly involved in galactoside recognition and binding; Y236 (helix VII), E269 

(helix VIII), and H322 (helix X) are involved in both H
+
 translocation and affinity for 

sugar; and R302 (helix IX) and E325 (helix X) play important roles in H
+
 translocation 

[108,111,116]. As shown in the crystal structures of LacY [112,113,117], these residues 

are located at the apex of the central hydrophilic cavity and distributed so that the side 

chains important for sugar recognition are predominantly in the N-terminal helix 

bundle, and the side chains that form the H
+
-binding site are mainly in the C-terminal 

bundle [108].  
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Figure 9. Secondary structure model of LacY derived from the wild-type X-ray structure. 

The helices traversing the membrane are depicted as dark green rectangles. Light green 

rectangles indicate hydrophilic domains external to the membrane which connect the 

different TMs. Lines connecting TMs indicate connectivity between helices. Important 

residues for the protein are signalled: blue rectangles are residues at the kinks in the TMs, 

black rectangles are residues involved in substrate binding, red rectangles are residues 

involved in H
+
 translocation, and orange rectangles are residues forming salt-bridges. Glu-

269 (black rectangle bordered in red) is involved in both substrate binding and H
+
 

translocation. An inverted yellow triangle designs the hydrophilic cavity and sugar is 

depicted by two green circles, with N and C representing the moieties that interact with the 

N- and C- terminal halves of LacY, respectively (Figure from Guan et al., 2006 [108]).  

 

The mechanism of symport in LacY, although extensively studied, is still being refined 

[83,109,115,118]. However, there are several biochemical and biophysical data 

evidencing an alternating access mechanism [115,119], which swaps the molecule from 

the well-known inward-facing conformation to another less known outward-facing 

conformation. Accordingly, the catalytic cycle of the transporter does not involve 

significant movement of sugar- and H
+
-binding sites relative to the membrane. Rather, 

the protein essentially moves around the sugar, alternatively exposing both sites to 

either side of the membrane [108]. The structure of the outward-facing conformation of 

LacY, although studied by molecular simulations [120,121] is to date poorly 

understood, as well as the dynamics and structural changes that underlie the transitions 

between the inward-facing and outward-facing conformations [83]. A proposal on the 

mechanism of action can be seen in Figure 10.  
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Finally, evidences have been gathered on the tight influence that surrounding 

phospholipids exert on the functional activity of the protein [122].  

 

 

Figure 10. The eight steep LacY reaction cycle for lactose/H
+
 symport beginning with an 

outward-facing conformation: step 1 represents protonation of LacY, where H322 and 

E269 participate closely. Importantly, E269 constitutes a link between the H
+
-translocation 

site and the sugar-binding site. In step 2, E126 and R144 in the N-terminal domain are 

absolutely required for sugar binding to protonated LacY, which initiates the outward-to-

inward facing transition of LacY in step 3 and step 4. The transition includes several 

relocations such as the proton movement towards its final acceptor, E325. Substrate release 

in step 5 leads to structural rearrangements that cause the final deprotonation of LacY in 

step 6. After releasing a H
+
 to the cytoplasm, LacY assumes again an outward-facing 

conformation (steps 7 and 8) (Figure from Andersson et al., 2012 [83]).  

 

1.5.3 LacY-phospholipid interaction 

All MFS transporters seem to be tightly coupled to its bilayer environment [83,123–

125]. Indeed, the relation between LacY and the surrounding phospholipids has been 

extensively studied and lipids have been found to affect at various stages of the protein 

assemblage and activity. 

As early as the 70s it was already known that LacY requires a membrane in Lα phase for 

full transport activity [126,127]. In these pioneer experiments, the phospholipid 
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membrane was found to play a role in the frequency with which conformational 

fluctuations occurred in LacY and not in the energetics of the process, something that 

would agree with the current model of LacY alternating access [76]. Accordingly, LacY 

reconstitution in supported lipid bilayers has been found to take place preferentially in 

Lα phases as evidenced by AFM imaging [128].  

Studies analysing the effect of the surrounding membrane on LacY can be divided in 

three types: (i) studies inquiring about the annular region of the protein, (ii) studies 

looking for the residues involved in the protein-phospholipid interaction, and (iii) 

studies concerning phospholipid requirements for correct functioning and folding of 

LacY. In this last section special mention has to be done to Dowhan’s group [122], 

which has devoted plenty of efforts in understanding the role of phospholipids in vitro 

and in vivo in the special case of LacY. Their findings might presumably be 

extrapolated to a wide variety of other TM proteins.  

 

1.5.3.1 The annular region  

The presence of an annular region surrounding LacY was first described through the 

segregation of pyrene-labelled phospholipids in the vicinity of the protein [129]. In this 

study, the segregation was strongly influenced by the structure of hydrophobic chains, 

whereas headgroup interactions were less obvious. However, as it was discovered 

afterwards [130], these measurements were done in POPG proteoliposomes which is a 

non-biomimetic matrix where the protein is not correctly folded. Therefore, the 

capability of LacY to recruit lipids in its surroundings was confirmed, but further results 

were not representative.  

Later on, Picas et al. [131–133] working again with pyrene-labelled phospholipids 

analysed the FRET phenomenon appearing between labelled phospholipids and a 

single-tryptophan mutant of LacY. By these means, they reported the presence of POPG 

in the annular region of the protein when it was inserted in POPE:POPG (3:1, mol/mol) 

proteoliposomes, although POPE was found to be always the main species in this 

region. In addition, when comparing POPE:POPG at molar ratios of 3:1, 1:1 and 1:3, 

the first composition presented the best values of FRET efficiency for POPE and thus 

the optimal matching between phospholipids and LacY. Finally, LacY selectivity for PE 

seemed to be constrained also to the membrane fluidity. Hence, when LacY was 
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embedded in a PE:PG mixture with both phospholipids in Lα phase, LacY tended to be 

surrounded by PE; but when PE was in Lβ phase and PG was in Lα phase (the case of a 

DPPE:POPG mixture), LacY clearly preferred to recruit PG.  

 

1.5.3.2 The residues involved in LacY – phospholipid specific interaction 

In the 90’s a ion pair in LacY structure (K358 and D237) was identified as important for 

an efficient insertion of the protein into the membrane, but not for the activity 

[134,135]. Mutants lacking this charge pair were defective in a step between translation 

and insertion into the membrane, but they could be stable once inserted. Indeed, 

molecular dynamic (MD) simulations performed not long ago [83] showed that both 

residues may interact via a salt bridge that stay intact during protein conformational 

changes. Therefore, the charge pair is likely to play a role in LacY folding at a stage 

prior to the complete insertion into the membrane.  

In the same study [83], LacY was modelled in two different lipid matrices: POPE and 

DMPC. Surprisingly, after deprotonation of the protein, only LacY embedded in POPE 

lipids presented the required conformational changes to start the alternating cycle. In 

DMPC lipids deprotonated LacY was detached from lipid headgroups and was deficient 

in starting large-scale conformational changes. These results suggested that LacY needs 

to be tightly connected to surrounding phospholipids to display structural dynamics 

necessary for function, while a protein disconnected from lipid headgroups appears 

static and presumably unable to meet the dynamic demands of transport. Additionally, 

the main anchor points between the protein and POPE amines were identified, 

localizing the eight most prevalent hydrogen bond interactions (PE with D44, E139, 

D190, E255, T310, E314, N371, and E374). Interestingly, D68 residue was not 

identified among them.  

D68 position is described in further detail in section 4.1.2.3, but, briefly, it has been 

identified as the more relevant PE-interacting residue by Lensink et al. [136]. In this 

molecular modelling and dynamics study performed with LacY embedded in POPE, 

POPG and POPC matrices, instead of identifying direct H-bonds they were more 

interested in the detection of salt bridges between two LacY residues and a 

phospholipid. Four salt bridges were found with POPE, two with POPC and only one 

with POPG. The interaction D68-phospholipid-K69 was the most significant salt bridge 
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identified, and it appeared with the amine group in POPE (non-, mono-, and 

dimethylated) and also, although weaker, with the choline group in POPC. Conversely, 

the simulations of LacY in a POPG bilayer showed no affinity of the glycerol side chain 

to the acidic D68, and POPG was found to bind the phosphate groups of its 

neighbouring lipids. 

These overall results show that MD simulation techniques should be carefully 

considered since they depend strongly in the used methodology, as well as the depart 

constraints and structure. However, they provide very interesting information and 

evidence large differences in LacY systems only by changing the bilayer composition. 

In any event, extra studies are required concerning residues involved in the sensing of 

the phospholipid environment, especially to further elucidate if phospholipids play a 

global or a local (residue-specific) effect on LacY. 

 

1.5.3.3 Phospholipid requirements for correct functioning and folding of LacY 

Early studies [137] indicated an important role for lipid composition in LacY function. 

They showed the requirement of LacY for PE for maximal activity when inserted into 

membranes containing anionic lipids such as PG and CL, whereas mono- and 

dimethylation in PE reduced transport activity. They also proved that liposomes lacking 

PE and containing PG and CL, or only DOPC could support energy-independent 

downhill transport, but not uphill transport. And, additionally, PE could be replaced by 

bovine phosphatidylserine (PS) maintaining to some extent the activity, which 

suggested that hydrogen-bonding ability of the amine in the headgroup might be 

required for uphill transport. However, almost 30 years of research have shown that the 

situation is largely more complicated. 

The starting point for Dowhan and Bogdanov studies was the possibility that these in 

vitro results did not reflect in vivo requirements for LacY. Hence, apart from working 

with proteoliposomes, Dowhan et al. developed a large library of genetically modified 

E. coli strains. They performed mutations in the enzymes that define the phospholipid 

biosynthesis allowing thus the tuning of the cell lipid composition and even the 

insertion of foreign lipid species in E. coli [6,122].  
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Then, the PE requirement for uphill transport described by Chen et al. [137] in in vitro 

experiments could be reproduced in vivo and in vitro. Hence, it was observed that PE-

lacking lipid compositions (only containing CL and PG) did not support uphill 

transport. After declining the possibility that this was caused by an alteration of the 

membrane potential [138], a presence of a structural defect in the protein was 

discovered. Indeed, mapping the topology of LacY in PE-lacking membrane 

compositions revealed a topological misfolding (Figure 11) [139,140]. Interestingly, 

these structural defects were reversible by post-assembly exposure of LacY to PE [141] 

which leaded to the idea of PE acting as a possible lipid chaperone. In any event, it was 

the beginning of an extensive research focused in relating the lipid composition of E. 

coli, the possibility to carry on uphill transport and the topological characteristics of the 

protein.  

 

 

Figure 11. Topological organization of LacY as a function of the membrane lipid 

composition. LacY assembled in E. coli with wild-type phospholipid composition (A), and 

assembled in an E. coli mutant lacking PE in the membrane (B). Rectangles define TMs 

oriented with the cytoplasm above the figure. Loops connecting TMs are extramembrane 

periplasmic (P) or cytoplasmic (C) domains. NT and CT state for N-terminus and C-

terminus, respectively. The net charge of each extramembrane domain is indicated next to 

the domain name. Spots show approximate locations of negatively (blue) and positively 

(red) charged residues. Topology in B in relation to A presents helices I–VI inverted with 

respect to helices VIII–XII, which still exhibit native topology. Helix VII (red) is exposed 

to the periplasm, resulting in the misfolding of the periplasmically exposed domain P7 

(Modified from Dowhan et al., 2009 [6]).  
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As a summary, it was observed in vivo and in vitro that the uphill functionality of LacY 

could be re-established after the addition (or the in vivo synthesis) of the following lipid 

species: total E. coli phospholipids, commercial bilayer prone PE and the neutral 

glycolipid GlcDAG. On the contrary, PG and CL (natural or foreign) did not recover the 

uphill functionality. Monomethyl- and dimethyl-PE were progressively less effective 

and the neutral glycolipid GlcGlcDAG was completely ineffective [122].  

Interesting was the case of PC, which did not show uphill function in proteoliposomes 

of DOPC [130,137]. Unexpectedly, when PC replaced PE in E. coli cells, uphill 

transport occurred normally [142]. The reason that explained this difference seemed to 

be related to the lipid acyl chain composition: PC (and also PE) synthesized by E. coli 

are primarily saturated in the 1-position and unsaturated in the 2-position, whilst DOPC 

contains two unsaturated acyl chains. This hypothesis was confirmed by performing in 

vitro studies with chemically synthesized PCs containing at least one saturated fatty acid 

and observing how this composition indeed restored LacY uphill transport [140]. 

Further analyses showed that with the same fatty acid composition, a higher uphill 

transport activity was observed when using PE-based compared with PC-based 

phospholipids. In addition, uphill transport activities were observed in the following 

order: POPE > POPC > DOPE >>DOPC proteoliposomes, indicating that PE is also 

dependent on the fatty acid composition. This pointed for the first time to an 

independent influence of both lipid headgroup and fatty acid composition and, 

eventually, intrinsic curvature of the lipid species [140]. 

Before PC and GlcDAG had been revealed to suit LacY requirements, initial findings 

appeared to corroborate Chen’s interpretation and indicated the requirement for 

zwitterionic bilayer-forming phospholipids, with an ionisable amine for proper LacY 

folding and function. However, these new findings modify the interpretation and rather 

point to the requirement for a bilayer prone lipid environment with a net neutral charge 

which might be the most determinant characteristic. Clearly the highly negative surface 

charge contributed by PG and CL under physiological conditions does not support LacY 

complete function and requires some attenuation by net neutral lipids. The fact that the 

neutral GlcGlcDAG is not effective seems to be related to steric effects of its large 

headgroup that may prevent proper interaction with LacY [122,136].  
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To conclude, the lipid requirements for supporting native function of LacY are 

complicated and not fully resolved yet. Downhill transport is not lipid or topological 

dependent [122,142]. Conversely, uphill transport is highly dependent on LacY correct 

topology, although it can occur in proteins presenting local subtle defects in its 

structure, as it is the case of PE-lacking cells expressing PC [142] and GlcDAG [143]. 

Finally, the effect of lipids on LacY activity involves the role of both the hydrophilic 

headgroup and the hydrophobic fatty acid moiety of the phospholipid [140]. 

Furthermore, these new results claim for a revision of well-established concepts in 

different membrane proteins that show a requirement for PE in order to display uphill 

transport. In fact, most of the in vitro reconstitution studies employ either PC from 

soybeans, which is highly enriched in unsaturated fatty acids, or synthetic DOPC. 

Therefore, requirement of heteroacids as found for LacY should be tested in these 

transporters (e.g. PutP from E. coli, LmrP from Lactococcus lactis, leucine permease 

from Pseudomonas aeruginosa, branched chain amino acid transport by the transporter 

from Streptococcus cremoris, ABC transporter HorA from Lactococcus lactis) [140].  

On the other hand, and considering PE as the only native phospholipid supporting uphill 

activity and correct LacY folding, a huge amount of data has revealed PE as the first 

phospholipid found to present a chaperonin-like function [138,144]. Chaperones, which 

were thought to be exclusively proteins, are molecules that bind transiently to substrates 

to assist their proper folding. They interact non-covalently with non-native folding 

intermediates, but never with native or totally unfolded molecules. Accordingly: 

- PE is required during initial assembly of LacY to establish its proper conformation, 

but once the information imparted, PE is no longer needed to maintain LacY 

structure.  

- PE only interacts with folding intermediates of the protein, since LacY synthesised 

in PE-lacking cells can recover the topology when partially denaturalized in 

presence of SDS and PE, whilst simple exposure to PE does not modify the protein.  

- PE-lacking cells could insert LacY in the membrane, but it was found to be 

incorrectly folded. Therefore, the phospholipid is not required for a good insertion 

yield or initial folding of LacY, but it is essential in a post-insertion folding step to 

assure final correct topology.  
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All described evidences point to an effect of PE in LacY folding solely lipid-driven, 

spontaneous and governed by thermodynamic considerations [6,139]. Moreover, PE re-

naturalizing capacity over LacY derived from PE-lacking cells and reconstituted into 

proteoliposomes indicates a topogenic influence independent of protein folding history 

or other protein factors [130]. Thus, PE and probably other phospholipids can interact 

with proteins in a chaperonin-like way and act as determinants of final structural 

organization during late folding events outside the translocon [122]. This may indicate 

that final topological organization in a membrane protein is also dependent on the lipid 

composition of the host organism and not only on the protein sequence.   

One possible explanation for this chaperonin-like role in PE has derived from 

experiments analysing the incorrect structure of LacY in PE-lacking cells. In fact, the 

absence of PE seems to perturb delicate charge balances existing in the protein which 

allow helices to be in the hydrophobic core and loops to be correctly placed in the 

periplasm or in the cytoplasm. Indeed, as described by the “positive-inside rule” 

[122,145], a loop with an overall positive charge might be retained in the cytoplasm, 

whilst a negative predominance in a fragment translocates it to the periplasm. Therefore, 

a role for net-neutral lipids like PE (but also PC and GlcDAG) is to control this 

equilibrium of charges [6,146,147]. The whole idea has led to the charge balance 

hypothesis [6,148] that defends the co-evolution of membrane proteins and lipids in 

order to maintain a good balance in the net charge of the whole membrane surface. 

A final new interesting concept presented by Vitrac et al. [149] comes from recent 

experiments where interconversion between different topological conformers of LacY 

was observed in a PE dose-dependent manner. Hence, by increasing or decreasing PE 

levels in LacY in vivo [150] or in vitro [149] different degrees of LacY unfolding were 

found. This demonstrates that membrane protein topology is not static and can be 

changed simply by modifying membrane lipid composition in a manner independent of 

other cellular factors. Indeed, these findings conduct to the attractive possibility that 

membrane protein organization can be sensitive to changes in the lipid environment, 

which may occur locally in cell processes such as cell division, intracellular trafficking 

of proteins, membrane fission and fusion, metabolic changes, etc.  
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Chapter 2. Objectives 

 

 

 

Once introduced the state of the art in the field, the main objective of the thesis was 

directed to investigate the interplay between LacY and its surrounding phospholipid 

environment in model membranes. Specifically the detailed objectives were the 

following:  

a. Unveil the molecular properties governing the selectivity between LacY 

and the phospholipids present in the annular region.  

b. Determine the composition of this annular region. 

c. Determine the influence of the bulk phospholipids in LacY insertion.  

d. Investigate the influence of LacY insertion in the physicochemical 

properties of the bulk phospholipids. 

e. Investigate the impact of different phospholipid matrices in the proper 

insertion, packing and binding capabilities of LacY.  

f. Investigate the importance of the aspartic acid in position 68 of LacY in 

the interaction between LacY and the phospholipid PE. 
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Chapter 3. Characterization of 

the lipid system 

 

 

 

3.1 The lipid system of interest 

The approach to mimic the inner membrane of E. coli consists in the use of binary 

mixtures of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) at different 

molar ratios. The estimated biomimetic molar ratio is PE:PG 3:1 mol/mol [65,151,152], 

although some other compositions have been studied in order to analyse the influence 

that both family of phospholipids exert to the mixture. Hence, the studied mixtures in 

this research are the following: 

I. POPE:POPG, DOPE:POPG and DPPE:POPG all of them at 3:1 molar ratio: 

these mixtures were studied with the aim to characterize three lipid matrices with 

different degrees of PE acyl chain unsaturation for further analysis of LacY-

phospholipid interaction.  

II. POPE:POPG at 3:1, 1:1, and 1:3 molar ratios: these mixtures were studied 

with the aim to bring light to the influence of the PG presence in the most biomimetic 

system, POPE:POPG (3:1, mol/mol) [153].  

The lipid mixtures have been studied through three different model membrane systems: 

monolayers, liposomes, and SLBs; the three of them resumed in section 1.2.3. A brief 

description of all the used phospholipids is presented below. 
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3.1.1 PE 

PE (Figure 12) is characterised by being a headgroup which gives rise to zwitterionic 

phospholipids. It is small as compared to the acyl chain moiety, which results in a 

global phospholipid shape of a truncated cone. This structure confers to PE 

phospholipids two characteristics: (i) a negative C0 [154] and (ii) the possibility of 

undergoing bilayer to non-bilayer physical transitions at relatively high temperatures 

[22,102,155]. Additionally, because of the ionisable amine of this headgroup, all PE 

phospholipids have the ability to establish hydrogen bonds, both as donors and as 

acceptors. This is important, since it allows intermolecular binding and leads to the 

formation of large and stable PE networks [84,156,157]. 

PE phospholipids are present in both eukaryotic and prokaryotic membranes, where 

they participate in a large variety of tasks such as fusion, vesiculation and curvature of 

bilayers, as well as other biological processes like cell division [151].  

 

 

Figure 12.  Molecular structures of DOPE, POPE and DPPE. The common PE headgroup is 

evidenced on the right part of the structures. Acyl chains varying its degree of unsaturation 

can be observed on the left.   

 

 POPE: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (see structure in 

Figure 12) is a heteroacid phospholipid formed by a PE headgroup and two different 
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fatty acyl chains. One of them, palmitoyl, in position sn-1 relative to the glycerol, has 

16 carbon atoms and is completely saturated. Conversely, oleoyl, in position sn-2, is 

formed by an 18 carbon atoms chain and presents a cis unsaturation at the carbon 9. 

POPE is part of the most common PEs in the inner membrane of E. coli, since the 

most usual phospholipid configuration for all biomembranes corresponds to a 

saturated sn-1 chain and a mono- or polyunsaturated sn-2 chain [153].  

 DOPE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (see structure in Figure 12) 

is an homoacid phospholipid formed by a PE headgroup and two identical acyl 

chains. Both acyl chains are oleoyl structures with 18 carbon atoms and a cis 

unsaturation at the carbon 9. 

 DPPE: 1,2-palmitoyl-sn-glycero-3-phosphoethanolamine (see structure in Figure 12) 

is an homoacid phospholipid formed by a PE headgroup and two identical acyl 

chains. Both acyl chains are palmitoyl structures with 16 carbon atoms completely 

saturated.  

 

3.1.2 PG 

PG (Figure 13) is a lipid headgroup which gives rise to phospholipids with a negative 

net charge at pH > 5 [158]. It has a cylindrical molecular shape and so, a tendency to 

form flat bilayers even at high temperatures [158]. The hydroxyl group present in its 

structure allows PG phospholipids to be acceptors and donors of hydrogen bonds, just 

as POPE [84,159,160]. However, in this case the interlipid interactions are weakened by 

the electrostatic repulsion of negatively charged PGs [84]. Indeed, the charge presence 

makes PG very sensitive to the ionic strength of the aqueous solution, e.g. 

intermolecular bridging with divalent cations has to be considered [3]. 

PG phospholipids are typically present in higher plants and bacterial membranes. 

Whereas PE is the most abundant phospholipid in the inner membrane of E. coli, PG is 

the main species in Staphylococcus aureus. Eukaryotic membranes display low amounts 

of PG, for instance in mitochondria or in red blood cells [84]. It is thought that PGs, as 

well as other charged lipids, function both as membrane stabilizers and destabilizers for 

instance by decreasing protrusions in the membrane formed by PE molecules [151]. 
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Figure 13.  Molecular structure of POPG. PG headgroup is indicated on the right moiety of 

the molecule, whilst acyl chains are on the left. 

 

 POPG: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (see structure in Figure 

13) is a heteroacid phospholipid formed by a PG and the same acyl chains described 

for POPE.  

 

 

3.2 Techniques to characterize the system    

 

3.2.1 Langmuir isotherms 

As specified in section 1.2.3, a membrane model system to study the cell membrane ex 

vivo is the lipid monolayer, which can be physically analysed by performing isotherms.  

The obtaining and the study of lipid monolayers can be achieved by using a Langmuir 

trough (Figure 14), an instrument that allows the organization of amphiphilic molecules 

into lipid monolayers at the interphase of two phases (air-liquid or liquid-liquid). The 

Langmuir trough can accurately measure the surface area (A) and the surface pressure 

(π) and is used for analysing the behaviour of monolayers upon compressing or 

expanding its area and thus modifying the area per molecule. In addition, it permits the 

transfer of these monolayers into solid substrates by dipping/rising them through the 

monolayer.  
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Figure 14. Schema of a Langmuir trough. The apparatus is composed of a rectangular 

reservoir made of Teflon® where the subphase is contained; two compression barriers 

which confine the amphiphilic molecules in the desired area of interphase by sweeping 

them; a Wilhelmy plate, the surface pressure sensor, which measures changes in water 

surface tension caused by the presence of lipid molecules; and an electronic interface (not 

depicted) which has a feedback system to control both surface area and surface pressure 

getting advantage of the compression barriers motor and the surface pressure sensor. 

 

Once the confined monolayer is obtained, a π-area isotherm can be performed. It is 

operated at a constant temperature and consists of a slow lateral compression of the 

monolayer at a constant velocity while π and A are monitored. The isotherm can be 

considered as a fingerprint of a specific lipid or lipid mixture under certain experimental 

conditions and it is a way to obtain specific information on the packing and organization 

of lipid molecules [161]. 

Briefly, π is a measure used to analyse the reduction on surface tension (i.e. energy per 

area unit to generate more surface) of a liquid caused by the presence of some agents in 

its surface. It can be defined as [3] 

       

where γ and γ0 are the surface tension in presence and absence, respectively, of the 

surface agent. In this sense, π values provide means to analyse the lateral compactness 

of an amphiphilic molecule through the extent of reduction of surface tension. Indeed, 

the more molecules of surface active agent present, the higher is π. 

A π-area isotherm shows different regions depending on the compactness of the 

molecule (Figure 15), similarly to what happens in the aggregation of 3D matter [161]. 
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At large areas the monolayer is found in what is called the gaseous (G) phase: 

molecules are widely spaced, interact weakly and behave similar to gas molecules in 

two-dimensional space. Indeed, the recorded π is nearly zero which indicates that the 

molecules are not affecting the surface tension of the subphase. 

 

 

Figure 15. Hypothetic example of a surface pressure – area isotherm from the gas (G) to the 

liquid-expanded (LE) and the liquid-condensed (LC) phases up to the collapse of the 

monolayer. 

 

Upon lateral compression of the monolayer with the Langmuir trough barriers, 

molecules begin to interact. At a certain point, π starts to increase (and consequently the 

area per molecule starts to decrease) as a result of the restriction in the freedom of 

movement arisen when molecules or domains of molecules start to press one against 

another. This stage is called liquid-expanded (LE) phase, since the behaviour of 

molecules is comparable to that of a liquid in three dimensions and it is often 

assimilated to lipids in the Lα phase. Still compressing, π keeps on rising as molecules 

become more tightly packed. At some point, a bend in the isotherm can be observed 

indicating another change in state: from now on the monolayer behaves like a solid-like 

sheet and is organized in the so-called liquid condensed (LC) phase. Here molecules 

are ideally perfectly compacted and oriented, while occupying very small area per 

molecule. Hence, any increase in the confinement may lead to large increases in π.  

Further compression of the monolayer beyond the LC phase results in a fall in π values 

which indicates the collapse of the monolayer. It occurs under a specific nominal 
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pressure which the monolayer cannot stand. Therefore, the monolayer breaks up and 

material can be pushed down to the bulk liquid or up to the air forming phospholipid 

multilayers.  

Beyond the extraction of information related to the organization of phospholipids upon 

compression, an isotherm permits as well the obtaining of thermodynamic parameters of 

the system such as the isothermal compressibility modulus (Cs) or the Gibbs excess 

energy (G
E
) in mixed isotherms (more specified 3.3.1).  

 

3.2.2 Laurdan fluorescence 

 

Fluorescence basic principles 

Liposomes, another membrane model (section 1.2.3) can be analysed using fluorescence 

spectroscopy techniques. Fluorescence phenomenon is a particular type of 

luminescence, which encloses all emission of light produced by a physic system due to 

the transition from an excited state to a fundamental state and not resulting from heat 

dissipation or other relaxation mechanisms. In the case of fluorescence, it appears when 

a molecule is capable of being excited by a photon and then emitting another photon in 

a different wavelength (λ). Any molecule able to present fluorescence emission is called 

fluorophore. Fluorophores typically contain several combined aromatic groups, or 

planar or cyclic molecules with numerous π bounds, which present special energetic 

orbital dispositions that allow this re-emitting of light upon light excitation. Finally, 

fluorophores can be intrinsic (they are part of the studied system) or extrinsic (they are 

added to the sample) [162]. 

Hence, a fluorophore emitting fluorescence results from a three stage process (see the 

simple electronic-state diagram or Jablonski diagram depicted in Figure 16) [162]: 

I. Excitation: A photon of an energy hνex that matches a possible electronic 

transition within the studied molecule is supplied by an external source (e.g. 

incandescent lamp or laser) and absorbed by the fluorphore, which suffers a transition 

from a relaxed state (S0) to an electronic singlet state (S1). 
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II. Excited-state lifetime: an electron of the fluorophore has been promoted to a 

higher energy orbital in stage I (e.g. S0  S1) and remains excited for a finite time 

(typically 1-10 nanoseconds). During this time, the molecule can be subject to a 

multitude of possible interactions with its molecular environment. Additionally, it can 

deexcitate partially yielding a relaxed singlet excitated state. 

III. Fluorescence emission: from the excited state S1 molecules may return to the 

ground state (So) by emitting a photon of energy hνem. Due to energy dissipation during 

the excited-state lifetime, the energy of this photon is lower than the energy displayed 

by the excitation photon. The difference in energy or wavelength between both the 

exciting and the emitted photos is called the Stokes shift. It is fundamental to achieve 

good sensitivity in fluorescence detection because it allows emission photons to be 

detected against background excitation photons. 

Furthermore, not all the excited molecules return to the ground state, since they can 

undergo 'non-radiative relaxation' due to other processes such as collisional quenching, 

intersystem crossing or vibrational relaxation. The fluorescence quantum yield, i.e. the 

ratio of number of fluorescence emitted to the number of photons absorbed, is also a 

parameter characteristic of a fluorophore and it represents a measure of the relative 

extent to which fluorescence occurs. 
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Figure 16. Jablonski diagram showing the phenomenon of fluorescence and 

phosphorescence between the ground state (S0) and two singled excited states (S1 and S2) or 

a tripled excited states (T1) (www.expertsmind.com). 

 

Figure 16 presents this process in discrete electronic transitions as it would occur for 

single atoms, with the interplay of photons of specific energy (hνex and hνem). Instead, in 

polyatomic molecules in solution this is replaced by broad energy spectra: the 

fluorescence excitation spectrum and the fluorescence emission spectrum, respectively. 

From them, maximum excitation wavelength (λex) and maximum emission wavelength 

(λem) can be identified, which are characteristics of a fluorophore in a determined 

chemical environment. 

 

Laurdan fluorophore 

Laurdan (6-dodecanoyl-2-dimethylamino-naphthalene) (structure in Figure 17A) is the 

most commonly used molecule of all membrane probes developed by Weber and Farris 

[163]. It is a naphthalene derivative that presents the advantageous characteristic of 

being solvatochromic, i.e. being sensitive to the polarity and the molecular dynamics of 

dipoles in its environment [164,165]. This is possible thanks to the naphthalene moiety 

of the molecule that possesses a dipole moment due to a partial charge separation 

between the 2-dimethylamino and the 6-carbonyl residues [166]. This dipole moment 

can increase when the molecule is excited and may cause reorientation of the 
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surrounding solvent dipoles. The energy required for solvent reorientation decreases the 

probe’s excited state energy, which results in an emission of less energetic photons. 

Therefore, Laurdan’s emission spectrum may vary in a continuous red shift as the 

polarity of the environment increases. 

 

 

Figure 17. Laurdan probe molecular structure (A) and Laurdan emission spectrum (B). 

Continuous line shows a bluer emission occurring when Laurdan is embedded in 

phospholipids in Lβ phase and discontinuous line corresponds to a reddish emission when 

Laurdan is embedded in phospholipids in Lα phase. 

 

In addition, due to Laurdan amphiphilicity this fluorophore is capable to locate itself in 

a strategic position when inserted in lipid bilayers: it is localized at the hydrophilic-

hydrophobic interface of the bilayer [167], with its lauric acid moiety at the 

phospholipid acyl chain region and its naphthalene moiety at the level of the 

phospholipid glycerol backbone. This is a privileged situation, since in this context 

Laurdan can be very sensitive to the level of hydration of the headgroup phospholipid 

region. Hence, fluorescent spectrum shifts indicate differences in the number and/or 

mobility of water molecules present at the level of the phospholipid glycerol backbones 

[165] and, thus, are directly related to the physical state of the surrounding 

phospholipids (e.g. packing, lateral organization). This makes Laurdan a very sensitive 

fluorophore to membrane phase transitions and other alterations of membrane fluidity 

such as the coexistence of phases [168,169]. 
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In consequence, when incorporated into lipid bilayers, the λem of Laurdan depends on 

the phase state of the phospholipids, being bluer in solvent-non-relaxed states (λem 

around 440 nm when surrounded by phospholipids in Lβ phase) and redder in solvent-

relaxed states (λem around 490 nm when surrounded by phospholipids in Lα phase) 

(Figure 17B) [164,165]. Moreover, Laurdan exhibits a temperature-dependent redder 

shift of the emission maximum upon increasing temperature within the Lα phase, whilst 

in Lβ phase this temperature-dependent behaviour does not occur. This shift of the 

emission spectrum, which allows Tm calculation, is attributed to the dipolar relaxation 

process occurring only in more mobile phases where the phospholipids are less tightly 

packed and consequently there is more presence of water around the phospholipid 

headgroups [170].  

Thus, as it is described in 3.3.1, the use of Laurdan fluorescent probes permits to 

calculate the Tm of a phospholipid system and, at the same time, to detect at a specific 

temperature the presence of domains of different composition coexisting in the 

membrane.   

 

3.2.3 Differential scanning calorimetry 

Differential scanning calorimetry (DSC) represents another suitable technique to study 

the thermotropic behaviour of liposomes. DSC is a thermoanalytical technique that 

monitors and characterizes changes in physical state in polymorphic materials (such as 

lipids) as well as perturbations on pure materials by the interactions with other different 

substances. DSC analyses the difference in the amount of heat required to increase the 

temperature of a sample and an inert reference that are heated independently. For 

example, the heat for the Lβ-Lα phospholipids transition would be required in excess 

over the heat required to maintain the same temperature in the reference [3].  

The ability to determine transition temperatures and excess capacity heats makes DSC a 

valuable tool in constructing phase diagrams for mixtures of materials (e.g. a phase 

diagram for a binary system of two lipid components). The most commonly used phase 

diagrams of binary lipid mixtures are temperature (T)/composition (χ) diagrams, in 

which pressure is constant (most often atmospheric pressure). To construct this type of 

phase diagram (Figure 18), for each composition the temperatures at which melting 
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initiates (Tonset) and is finished (Toffset) are represented. Then, lines connecting these 

temperatures are drawn separating regions corresponding to different stable phases 

(before melting, after melting and coexistence of domains in both phases). The shapes 

of these lines depend on the thermodynamic characteristics of mixing and melting of the 

individual components [3].  

Ideally, for a given (χ, T) point inside a two-phase region, a tie-line can be drawn, which 

is a straight line connecting the point under consideration to the nearby phase 

boundaries. Then, from the values in abscissas of the intersection points with the phase 

boundaries the compositions of the phases in equilibrium can be obtained. Additionally, 

the lever rule can be applied to obtain the proportion of each phase in the mixture from 

the relative distances along the tie-line between the considered point and the 

intersections with each phase line [171] (see example in Figure 18). 

 

 

Figure 18. Representative procedure to calculate the proportion of Lα and Lβ at a desired 

molar fraction by applying the lever rule on a two-component phase diagram (Figure from 

results in 3.3.2).  

 

3.2.4 Atomic force microscopy 

SLB, the last of the employed artificial systems can be exhaustively studied by means of 

atomic force microscopy (AFM). AFM [172], a near-field microscopy technique 

initiated in the 80s, belongs to the family of the scanning probes microscopes (SPMs). 

SPMs, developed after the invention of scanning tunnelling microscopy in 1983 [173], 
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are characterized by being non-optical microscopes. Instead, they are based in the 

sensing of near-field physical interactions between two elements placed extremely 

close: the instrument probe and the surface of interest. In the case of AFM (Figure 19) 

the probe is a sharp tip attached to a sensitive cantilever and the sample or the probe are 

attached to a piezoelectric scanner which ensures three-dimensional positioning with 

high accuracy. When approaching the tip to the sample and prior to physical contact, the 

cantilever deflects at the appearance of short-range forces acting between both surfaces. 

These forces, which can be attractive or repulsive and depend on the nature of the 

interaction (e.g. chemical forces, van der Waals forces, electrostatic forces, capillary 

forces, friction forces) [174] permit, using a feedback system, to keep the probe at a 

constant force from the sample, while it scans its surface. In AFM the most used 

feedback system consists in focusing a laser beam on the back side of the cantilever and 

in detecting the reflected beam by means of a position sensor, which is usually a 

quartered photodiode. The position is sent to the electronic interface which, in turn, 

controls the tip-sample distance and informs the piezoelectric scanner to correct it or 

not. Therefore, the corresponding correcting movement of the piezoactuator is what 

generates the topographical image [175]. 

  

 

Figure 19. Schema representing the principal elements constituting an AFM instrument: the 

piezo scanner, the sample, the cantilever and the tip, the laser beam, the photodiode and the 

detector electronics (Modified from blog.brukerafmprobes.com). 
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The sample is scanned line per line in order to obtain a topographical record of its 

surface in what is called the AFM topographic mode. The most commons topographic 

modes used in AFM are (i) the constant-force mode, in which the sample height is 

adjusted to keep constant the deflection of the cantilever, and so is the force that the tip 

applies to the sample; and (ii) the intermittent contact or Tapping® mode, in which the 

tip oscillates near its resonance frequency over the surface and the feedback controls the 

amplitude and phase of this oscillation. This latter mode reduces the arising of lateral 

forces during imaging due to minor contact tip-sample (the tip touches the sample 

surface only at the maximal amplitude) and is thus advantageous for imaging “soft” 

materials such as biological samples. 

Beyond this firstly developed topographic mode, other working modes have been 

progressively introduced by taking advantage of the tip-sample interaction. For instance, 

a wide spread AFM mode intended to gain insight into the nanomechanical 

characteristics of samples at sub-nanonewton resolution [55,176] is the force-

spectroscopy (FS) mode. In this mode, the tip focuses in a precise point and ramps in 

“z” against the sample, while the cantilever deflection is recorded as a function of the 

vertical displacement of the scanner. Therefore, the tip first approaches, pushes the 

sample and then retracts. This results in a cantilever-deflection versus scanner-

displacement curves, which can be transformed into a force-distance (FD) curve using 

appropriate corrections.  

Hence, AFM is a very powerful technique for the characterization of samples at the 

nanometer scale. It allows the imaging of conducting and non-conducting samples 

(contrary to STM) in liquid under physiological conditions (sample preparation is much 

more easy than in electron microscopy techniques, for example), and it presents a good 

sub-nanometer resolution in the vertical (0.1 nm) and the lateral (1 nm) axis [55]. 

Furthermore, the AFM technique is in constant evolution from the initial topography 

performance to the current new modes where the tip is used as a nano-actuator to 

manipulate and modify the samples, or even to the improved high-speed AFM [177]. 

For instance, a few glimpses on future advances in AFM technology might be the idea 

of a lab-on-a-tip based on the development of modified AFM tips to further play with 

the tip-sample interaction [178]; the coupling of AFM with other powerful techniques 

such as the tip-enhanced Raman Spectroscopy (TERS) [179] or the development of tiny 

AFMs aimed to be used in situ to directly diagnose patients [180]. 
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Imaging SLBs  

AFM is a very powerful technique to characterize SLB model systems in terms of 

topography and nanomechanics. The topographic AFM mode permits the analysis of the 

bilayer organization at the nanometer scale and is especially interesting because it 

allows the investigation of the lateral domain formation in membranes. Indeed, AFM is 

among the most used techniques for the study of domains in the nanometer range, yet 

from artificial membranes [33,93,181,182] or from natural sources [37,38,183,184]. 

Moreover, AFM has the capability of following dynamic processes. For instance, the 

modifications of the membrane to the addition of active-membrane compounds can be 

monitored [169] as well as the changes in bilayer morphology induced by modifications 

in buffer [185] or in temperature [186–188]. Similarly, the analysis of the behaviour of 

Lβ and Lα lipid phases upon temperature rising can be used to construct phase diagrams 

of different lipid mixtures [189], as it is done in 3.3.2 for the binary lipid matrix 

POPE:POPG. 

Regarding nanomechanical analysis, FS mode is useful to elucidate intrinsic 

characteristics of a single lipid system or a lipid matrix [62]. FD curves performed on 

SLBs show common patterns (Figure 20). In the approach part of the curve, the 

cantilever is brought close to the sample surface where it exerts a wide range of forces. 

When van der Waals attraction forces exceed the gradient of the tip spring constant and 

repulsive forces, a sudden jump of the tip to the surface is sometimes observed, which is 

referred as jump-to-contact [190,191]. Now the tip-sample contact is reached and the 

piezo displacement continues pushing the sample and bending upwards the cantilever. 

This is graphically a continuous line with a slope that prolongs until the appearance of a 

discontinuity. It appears upon the failure of the bilayer and indicates the penetration of 

the tip into the membrane [192]. The force at which this second jump occurs is 

attributed to the maximum force the membrane can withstand before breaking and is 

known as the breakthrough force or yield threshold (Fy) [193,194]. After that, the tip 

starts pressing the substrate surface, which is reflected in the plot by a continuous line 

displaying a slope different from the one obtained in the process of bilayer pushing. 

Finally, during the retract part of the curve the cantilever is pulled away from the 

sample but needs additional force to come back to its starting position. This pull-off 

force between the tip and the bilayer is called adhesion force (Fadh) [65,195]. 
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Figure 20. Schematic representation of a typical force-distance curve on a lipid bilayer. 

First, tip approaches (blue line) to the surface (a), it touches the surface, it begins to press 

down the SLB (b) until the force is enough to punch the bilayer (breakthrough force) and 

the tip continues pressing the substrate surface (c). Afterwards, the tip begins to separate 

(red line) from the mica surface (d) until the tip is completely free from the sample 

(adhesion force) and the tip moves away from the sample (a) (Figure from results in 3.3.2). 

 

FD curves are directly dependent on the geometry and chemistry of tip and substrate, 

but also on the nature of the surrounding medium [196]. However, the obtained 

nanomechanical information has been proposed as a molecular fingerprint of the bilayer 

mechanical stability under certain experimental conditions [193,197]. 
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3.3 Experimental results 

 

3.3.1 Acyl chain differences in phosphatidylethanolamine determine 

domain formation and LacY distribution in biomimetic model 

membranes 

 

Suárez-Germà, C., Montero, M. T., Ignés-Mullol, J., Hernández-Borrell, J., 

Domènech, Ò. (2011). 

The Journal of Physical Chemistry B, 115(44), 12778-84. 

 

3.3.1.1 Summary 

PE and PG are the two main components of the inner membrane of E. coli. It is well-

known that the inner membrane contains phospholipids with a nearly constant polar 

headgroup composition. However, bacteria can regulate the degree of unsaturation of 

the acyl chains in order to adapt to different external stimuli [10]. It can result in 

changes in membrane ordering (e.g. in terms of phase separation) that can largely affect 

membrane protein distribution [94] and induce changes in lipid composition of the 

annular region [132,133,198]. Studies on model membranes of mixtures of PE and PG, 

mimicking the proportions found in E. coli, can provide essential information on the 

phospholipid organization in biological membranes and may help in the understanding 

of membrane proteins activity. In this investigation we studied how different PEs 

differing in acyl chain saturation influence the formation of laterally segregated 

domains. Three different phospholipid systems were studied: DOPE:POPG, 

POPE:POPG, and DPPE:POPG at a molar ratio of 3:1. Lipid mixtures were analysed at 

24 and 37 ºC through three different model membranes: monolayers, liposomes, and 

SLBs.  

The first artificial system, lipid monolayers, was analysed in a Langmuir trough by 

performing isotherms. Pure component isotherms showed that, as expected, for identical 

headgroup molecules the more unsaturated hydrocarbon chains, the higher area per 

molecule displayed the monolayer at both temperatures. In addition, when comparing 
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molecules with identical acyl chains but different headgroups (POPE and POPG) we 

observed that POPG displayed higher area per molecule at both temperatures, which 

could be attributed to a larger headgroup structure combined with the repulsion existing 

between POPG molecules due to its negative charge. Regarding two components 

monolayers, it is clear that the addition of POPG to the pure PE lipids leaded to 

remarkable changes in the features of all isotherms. At a π = 30 mN·m
-1

, a pressure 

considered to be representative for a biomembrane [80] all the mixed monolayers 

showed higher area per molecule than their corresponding pure monolayers, although 

the global tendency was maintained (the mixture with the most saturated PE presented 

the most compressed monolayer). Interestingly, only DPPE:POPG mixture at both 

temperatures presented two collapse pressures instead of one. Since these collapse 

pressures did not coincide with those from the pure compounds, the observations might 

be evidence of the lateral segregation of the system in two different lipid domains, both 

enriched in one of the components. Accordingly, DPPE:POPG presented positive excess 

Gibbs energy (G
E
) values indicating repulsive interactions between both compounds in 

this mixture, whilst POPE:POPG and DOPE:POPG showed negative values.  

Liposomes, the second artificial membrane system, were incubated with Laurdan probe 

in order to exploit Laurdan fluorescent properties. From this fluorescence analysis we 

extracted the following information: DOPE:POPG was in Lα phase from 3 to 65 ºC and 

the Tm of POPE:POPG and DPPE:POPG were established in 23.3 and 51.1 ºC, 

respectively. On the other hand, the mixture DPPE:POPG (3:1, mol/mol) was the only 

studied system showing coexistence of Lβ and Lα phases of different compositions from 

21.3 to 49.0 ºC. This finding is consistent with the information obtained from the 

compression isotherms that suggested phase separation. 

Finally, SLBs of the studied lipid mixtures were analysed by AFM at 24 and 37 ºC. 

Again, the only observed phase separated system was, at both temperatures, 

DPPE:POPG lipid mixture.  

In conclusion, data from three different techniques, Langmuir isotherms, Laurdan 

generalized polarization, and AFM evidenced that only the DPPE:POPG system 

exhibited coexistence between gel (Lβ) and fluid (Lα) phases of different composition at 

both 24 and 37 ºC . In the POPE:POPG system the Lβ/Lα coexistence appeared at 27 ºC. 

Therefore, in order to investigate the distribution of LacY among phospholipid phases, 
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we used AFM to explore the distribution of LacY in SLBs of the three phospholipid 

systems at 27 ºC, where DOPE:POPG displayed Lα phase and POPE:POPG and 

DPPE:POPG exhibited Lβ/Lα coexistence. The results demonstrated the preferential 

insertion of LacY in fluid phases. 

 

3.3.1.2 Highlights 

• DPPE:POPG (3:1, mol/mol) isotherm was the only analysed isotherm displaying two 

collapses. Since the collapse pressures did not coincide with the collapse pressures of 

pure DPPE and POPG isotherms, it evidenced the lateral segregation of the system in 

two different lipid domains, both enriched in one of the components. Accordingly, 

DPPE:POPG (3:1, mol/mol) presented positive excess Gibbs energy (GE) values 

indicating repulsive interactions between both compounds in this mixture, whilst 

POPE:POPG and DOPE:POPG showed negative values. 

• DOPE:POPG (3:1, mol/mol) liposomes were found in Lα from 3 to 65 ºC as analysed 

by Laurdan fluorescence. In addition, the Tm of POPE:POPG and DPPE:POPG 

liposomes (both at 3:1, mol/mol) were established in 23.3 and 51.1 ºC, respectively. 

• DPPE:POPG (3:1, mol/mol) was the only studied system showing coexistence of Lβ 

and Lα phases of different composition in liposomes from 21.3 to 49.0 ºC as 

described by Laurdan fluorescence, and in SLBs at 24 and 37 ºC as observed by 

AFM. 

• LacY presented preferential insertion into fluid phases as evidenced from its partition 

into low domains when inserted in POPE:POPG (3:1, mol/mol) and DPPE:POPG 

(3:1, mol/mol) at 27 ºC, temperature at which both phospholipid systems presented 

phase separation.  
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’ INTRODUCTION

Besides its high content in proteins, the inner lipid bilayer of
Escherichia coli is composed of three main phospholipids: phos-
phatidylethanolamine (PE, zwitterionic, 74% of the total molar
phospholipid content), phosphatidylglycerol (PG, bearing a
negative charge, 19%), and cardiolipin (CL, bearing two negative
charges, 3%).1 Phospholipids, however, are not regarded any-
more as a mere barrier but as components that exert strong in-
fluence over the activity and structure of membrane proteins.2�4

Hence the investigation on interactions between lipids and
specific proteins in biomembranes becomes of crucial interest
for understanding physiological and pathological situations re-
lated to protein membrane activity.5 As illustrated by the mechan-
osensitive channel proteins,6 it is plausible to assume that basic
physicochemical properties such as lateral compressibility, hy-
drophobic mismatch, or proton bridging capabilities of phos-
pholipids surrounding transmembrane proteins may influence7

or be part8 of the transport phenomena. On the other hand, bio-
membranes are, as a whole, very dynamic structures where different
assemblies occur, including lateral separation in domains9,10 or
selective segregation of particular species in the presence of
membrane proteins.11 Lateral heterogeneity is considered to play
amajor role in cell and developmental biology. It has been related

to signal transduction, cellular adhesion, protein folding and activa-
tion or membrane fusion.12,13 In signal transduction processes,
for instance, it is crucial to understand how protein receptors in
the surface of the cell adopt their tertiary structures. In this particular
field the earlier works of Khorana’s group on photoreceptors
become illustrative.14,15 In general, however, there are at the
present few doubts on the influence of membrane lipids on the
structure and organization of membrane proteins.16

In these regards, we have shown, on one hand, that on the
basis of FRET measurements in proteoliposomes of mixed
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and
PEs differing in the saturation degree of the acyl chains, lactose
permease (LacY) of E. coli, a paradigm for the secondary
transport,5,17 prefers PE instead of PG in the annular region.18,19

On the other hand, using the binary mixture of POPG with
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE),
atomic force microscopy (AFM) observations of supported lipid
bilayers (SLBs) evidenced that LacY inserts preferentially into
the fluid phase (Lα) instead of inserting into the gel phase (Lβ).

20
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ABSTRACT: Phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) are the two
main components of the inner membrane of Escherichia coli. It is well-known that inner
membrane contains phospholipids with a nearly constant polar headgroup composition.
However, bacteria can regulate the degree of unsaturation of the acyl chains in order to adapt
to different external stimuli. Studies on model membranes of mixtures of PE and PG,
mimicking the proportions found in E. coli, can provide essential information on the
phospholipid organization in biological membranes and may help in the understanding of
membrane proteins activity, such as lactose permease (LacY) of E. coli. In this work we have
studied how different phosphatidylethanolamines differing in acyl chain saturation influence
the formation of laterally segregated domains. Three different phospholipid systems were
studied: DOPE:POPG, POPE:POPG, and DPPE:POPG at molar ratios of 3:1. Lipid
mixtures were analyzed at 24 and 37 �C through three different model membranes:
monolayers, liposomes, and supported lipid bilayers (SLBs). Data from three different
techniques, Langmuir isotherms, Laurdan generalized polarization, and atomic force microscopy (AFM), evidenced that only the
DPPE:POPG system exhibited coexistence between gel (Lβ) and fluid (Lα) phases at both 24 and 37 �C . In the POPE:POPG
system the Lβ/Lα coexistence appears at 27 �C. Therefore, in order to investigate the distribution of LacY among phospholipid
phases, we have used AFM to explore the distribution of LacY in SLBs of the three phospholipid systems at 27 �C, where the DOPE:
POPG is in Lα phase and POPE:POPG and DPPE:POPG exhibit Lβ/Lα coexistence. The results demonstrate the preferential
insertion of LacY in fluid phase.
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However, naturally occurring phospholipids found under phy-
siological conditions feature mixed acyl chains, one saturated
(at the sn-1 position) and the other unsaturated (at the sn-2
position) linked to the glycerol backbone.While the PE/PG ratio
may remain nearly constant upon different situations, bacteria
can regulate the composition and the degree of unsaturation of
the acyl chains to adapt to different external stimuli.21 As a result,
phase separation may occur, which will affect lateral distribution
of transmembrane proteins22 and induce changes in lipid com-
position in the annular region.11,18,19 Therefore, it becomes re-
levant to investigate and compare whether binary mixtures of PG
and PE with different acyl composition form laterally segregated
domains in monolayers, liposomes, and SLBs.

In this work, we have investigated the mixing properties of the
binary mixtures of POPGwith either the heteroacid POPE or the
saturated homoacid 1,2-palmitoyl-sn-glycero-3-phosphoethano-
lamine (DPPE), or the unsaturated homoacid 1,2-oleoyl-sn-
glycero-3-phosphoethanolamine (DOPE). The characterization
of these systems in monolayers, liposomes, and SLBs may provide
means to understand the interaction and specific selectivity
between phospholipid species and membrane proteins. There-
after we have investigated the distribution of LacY in these systems.

’EXPERIMENTAL METHODS

1,2-Palmitoyl-sn-glycero-3-phosphoethanolamine (DPPE),
1,2-oleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1-pal-
mitoyl-2-oleoyl-sn-glycero-3-phosphoethanola-mine (POPE), and
1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]
(sodium salt) (POPG) were purchased from Avanti Polar Lipids
(Alabaster, AL). Laurdan (6-dodecanoyl-2-dimethyl-aminona-
phthalene) was purchased from Molecular Probes (Invitrogen,
Carlsbad, CA). All other common chemicals, ACS grade, were
purchased from Sigma (St. Louis, MO). Buffer used throughout
the experiments was 20 mM HEPES (pH 7.40) and 150 mM
NaCl prepared in ultrapure water (Milli-Q reverse osmosis
system, 18.2 MΩ cm resistivity). For SLB formation, the buffer
was supplemented with 10 mMCaCl2. Lactose permease (LacY)
was obtained from bacterial culture, extracted, and purified
according to procedures described elsewhere.18�20

Surface Pressure�Area Isotherms.Monolayers differing on
lipid composition were prepared in a 312 DMC Langmuir�
Blodgett trough manufactured by NIMA Technology Ltd.
(Coventry, England). The trough (total area, 137 cm2) was placed
on a vibration-isolated table (Newport, Irvine, CA) and enclosed
in an environmental chamber. The resolution of the surface pres-
sure measurement was (0.1 mN m�1. Temperature was main-
tained via an external circulating water bath ((0.2 �C). Before
each experiment, the trough was washed with ethanol and rinsed
thoroughly with purified water.
Experiments were performed as described in a previous paper.23

The corresponding aliquot of chloroform�methanol (2:1, v/v)
lipid solution was spread onto the subphase with a Hamiltonmicro-
syringe. A 15 min period was required for solvent to evaporate
before each experiment. The compression barrier speed was
5 cm2 min�1. Every surface pressure�area (π�A) isotherm was
repeated three times minimum, with the isotherms showing
satisfactory reproducibility.
Surface thermodynamic analysis of the mixed monolayers at

30 mN m�1 was done in order to analyze miscibility and inter-
actions between their components. The interaction between two
phospholipid components in a mixed monolayer, at a constant

surface pressure π and temperature, can be evaluated from the
calculation of the excess Gibbs energy (GE), which is given by

GE ¼
Z π

0
½A12 � χ1A1 � χ2A2� dπ ð1Þ

where A12 is the average area per molecule of the mixed monolayer
at a given pressure, A1 and A2 are the area per molecule of the
pure components at this pressure, and χ1 and χ2 are the mole
fractions of each component.
Stability of the mixed monolayers was verified by computing

the values of the Gibbs energy of mixing (ΔmixG),

ΔmixG ¼ ΔmixG
id þ GE ð2Þ

where the first term, the ideal Gibbs energy of mixing (ΔmixG
id),

is given by

ΔmixG
id ¼ RTðχ1 ln χ1 þ χ2 ln χ2Þ ð3Þ

where R is the universal gas constant and T is the temperature.
The inverse of the isothermal compressibility or elastic modulus

of area compressibility (Cs
�1) was calculated using

Cs
-1 ¼ ð� AÞ ∂π

∂A

� �
T, n

ð4Þ

The derivative of the experimental data was computed by
fitting a straight line to a window of area width of 0.2 nm2 molec�1

around any given surface pressure value, so that experimental
noise was filtered out.
Large Unilamellar Vesicle Formation. Liposomes of DOPE:

POPG (3:1, mol/mol), POPE:POPG (3:1, mol/mol), and DPPE:
POPG (3:1, mol/mol) were prepared according to methods
previously described.18,19 Chloroform�methanol (2:1, v/v) solu-
tions containing appropriate amounts of each phospholipid were
dried under a stream of oxygen-free N2 in a conical tube. The
resulting thin film was kept under high vacuum for approximately
3 h to remove organic solvent traces. Multilamellar liposomes
(MLVs) were formed by redispersing the films with the above-
mentioned buffer, applying successive cycles of freezing and
thawing below and above the phase transition of the phospho-
lipids, and vortexing for 2 min. Finally, large unilamellar vesicles
(LUVs) were obtained by extrusion of the MLVs through
100 nm pore polycarbonate filters (Mini-extruder, Avanti, and
Nucleopore filters).
FluorescenceMeasurements. Bilayer fluidity was monitored

using dipolar relaxation of Laurdan. Briefly, Laurdan is a polarity
sensitive probe that tends to locate at the glycerol backbone of
the bilayer with the lauric acid tail anchored in the phospholipid
acyl chain region.24 Upon excitation, the dipole moment of
Laurdan increases noticeably, and water molecules in the vicinity
of the probe reorient around this new dipole. When the mem-
brane is in a fluid phase, the reorientation rate is faster than the
emission process, and consequently, a red-shift is observed in the
emission spectrum of Laurdan. When the bilayer packing in-
creases, part of the water molecules is excluded from the bilayer
and the dipolar relaxation of the remaining water molecules is
slower, leading to a fluorescent spectrum that is significantly less
shifted to the red.25

We monitored the bilayer fluidity-dependent fluorescence
spectral shift of Laurdan due to dipolar relaxation phenomena.
Determinations were carried out using an SLM-Aminco 8100
spectrofluorimeter equipped with a jacketed cuvette holder. The
temperature ((0.2 �C) was controlled using a circulating bath



12780 dx.doi.org/10.1021/jp206369k |J. Phys. Chem. B 2011, 115, 12778–12784

The Journal of Physical Chemistry B ARTICLE

(Haake K20, Germany). The excitation and emission slits were 4
and 4 nm and 8 and 8 nm, respectively. The lipid concentration in
the liposome suspension was adjusted to 250 μM, and Laurdan
was added to give a lipid/probe ratio of 300. Generalized polariza-
tion (GPex) from emission spectra was calculated using

GPex ¼ I440 � I490
I440 þ I490

ð5Þ

where I440 and I490 are the fluorescence intensities at emission
wavelengths of 440 nm (gel phase, Lβ) and 490 nm (liquid
crystalline phase, Lα), respectively.
GPex values as a function of temperature were fitted to a

Boltzmann-like equation

GPex¼ GP2ex þ GP1ex �GP2ex

1 þ exp
Tm � T

m

� � ð6Þ

where GP1ex and GP
2
ex are the maximum andminimum values of

GPex, Tm is the gel to fluid phase transition temperature of the
studied composition, T is the temperature, and m is the slope of
the transition that gives information about the cooperativity of
the process.
Supported Lipid Bilayers and Atomic Force Microscopy.

The spread of the SLBs was obtained by using the vesicle fusion
technique as described elsewhere.26 Briefly, 80 μL of LUVs, in
20mMHepes pH 7.40, 150 mMNaCl, and 10 mMCaCl2 buffer,
were deposited onto freshly cleaved mica disks mounted on a
Teflon O-ring. Samples were incubated at 50 �C for 2 h in an
oven preventing the water evaporation from the sample using a
water reservoir, before being washed with 10 mM Hepes pH
7.40, 150 mM NaCl. Proteoliposomes (at a lipid to protein ratio
of 40) were prepared following the same protocol, but incubation
did not exceed 37 �C. The tip was immediately immersed into
the liquid cell. To perform all these experiments it was necessary
to drift equilibrate and thermally stabilize the cantilever for 30min in
the presence of buffer.
Liquid AFM imaging was performed using a Multimode Micro-

scope controlled by a Nanoscope V electronics (Digital Instru-
ments, Santa Barbara, CA), in tapping mode acquisition (TM-
AFM) at minimum vertical force, maximizing the amplitude set
point value and maintaining the vibration amplitude as low as
possible. V-shaped Si3N4 cantilevers (MLCT-AUNM, Veeco)
with a nominal spring constant of 0.10 N m�1 were used.
Variable temperature experiments were performed by incorpor-
ating a temperature controller stage (Digital Instruments, Santa
Barbara, CA) to the piezo-scanner. This device allows the main-
tenance of the sample holder at a fixed temperature (range, from
room temperature up to 62.5 �C; resolution, 0.1 �C; temperature
drift, <0.5 �C).

’RESULTS AND DISCUSSION

Lipid monolayers constitute a convenient model system to
investigate the interactions and physicochemical properties of
phospholipids forming biological membranes. Thus, lateral pres-
sure in biomembranes has been postulated as a mechanism for
modulation of transmembrane protein function.27,28 For this
reason we have used Langmuir monolayers to investigate inter-
molecular interactions between the major phospholipid compo-
nents, PE and PG, of the inner E. coli membrane.1 In particular
these experiments have been delineated to gather information on

the structural relevance of the saturation degree of the acyl
chains of PE.

The surface pressure�area (π�A) compression isotherms of
the pure phospholipids at 24 and 37 �C are shown in Figure 1
along with Cs

�1 values (insets). As expected, PE monolayers
show higher area per molecule the more unsaturated hydrocar-
bon chains they contain. These data emphasize the fact that acyl
chains play a predominant role in the overall packing of the
monolayer which is determined by the degree of unsaturation of
the acyl chains. Thus, the existence of a C�C double bond leads
to the formation of a kink, producing chain shortening. Besides, it
also generates higher intermolecular steric effects increasing the
distances between individual molecules. The effect is at the
maximum when both acyl chains are unsaturated. This can be
observed in Figure 1 where DOPE shows the largest monolayer
intermolecular distances. Conversely, DPPE, with both acyl chains
saturated, remains as the more compressed molecule. An inter-
mediate situation was found for POPE. These monolayer features
are consistent with results found in the literature.29�32 As dis-
cussed by Wydro and Witkowska,29 while a DPPE monolayer at
24 �C features a liquid expanded (LE) to solid (S) phase
transition at ∼37 mN m�1, DOPE is always in the LE phase.
These behaviors are consistent with the values of the compres-
sionmodulus shown in the inset of Figure 1. The POPE isotherm
shows, in turn, the characteristic LE�LC phase transition at
∼36mNm�1 whose nanostructure and characteristics have been
previously discussed.33 It is known that POPG is always in the

Figure 1. Surface pressure�area isotherms of pure DPPE (9), POPE
(2), POPG (O), and DOPE (b) at (a) 24 �C and (b) 37 �C. Insets
show the elastic moduli of area compressibility (Cs

�1) corresponding to
each isotherm.
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LE phase above 20 �C.34,35 Thus, at 37 �C POPE and DOPE
monolayers are in the LE phase while DPPE shows a LE�LC
phase transition at∼4.7 mN m�1. When comparing PE and PG
headgroups with the same hydrocarbon chain, PE shows at 24
and 37 �C higher areas per molecule at surface pressures below
40 mN m�1. This is attributable to the negative charge born by
the PG headgroups and to the size of each headgroup. Besides,
both PE amino and PG hydroxyl headgroups are able to form
intermolecular hydrogen bonds at physiological pH conditions.36

However, PG�PG interactions are weaker than those arising
between PE zwitterions. Indeed, it is known that PE headgroups
tightly interact, creating a hydrogen bond network which confers
rigidity to the monolayer.23

Lipid mixtures DPPE:POPG, POPE:POPG, and DOPE:
POPG (3:1, mol/mol) were also studied using Langmuir mono-
layers. For these mixed systems, π�A compression isotherms
are shown in Figure 2 along with the Cs

�1 values (insets). The
addition of POPG to the pure PE lipids led to remark-
able changes in the features of all isotherms. At a surface pressure

of 30 mN m�1, a pressure considered as representative for a
bilayer,28 all the mixed monolayers showed lower area per
molecule than their corresponding pure phospholipid compo-
nents. As expected, these monolayers showed again higher area
per molecule as the number of double bonds of PE increased. It
is also worth mentioning the special case of the DPPE:POPG
isotherm shown in Figure 2, where two transitions occur at both
studied temperatures. Well-defined collapse pressures and char-
acteristic plateaus were observed at 61 and 46mNm�1, at 24 �C,
and 58 and 43mNm�1, at 37 �C, respectively. This behavior can
be more precisely observed by analyzing the Cs

�1 values plotted
in the insets of Figure 2. Since the pressures at which these
features occur do not coincide with the collapse pressure of the
pure components, the existence of pure DPPE and POPG
domains can be excluded. Most likely these observations are
evidence of the lateral segregation in two different lipid domains,
both enriched in one of the components.

In Table 1 the values of Cs
�1, GE, and ΔmixG calculated at

30 mN m�1 are listed. The low negative deviations of these
values observed for POPE:POPG and DOPE:POPG indicate the
existence of attractive interactions and confirm the stability of
these systems. Conversely, positive and larger values of GE are
found at both temperatures in the DPPE:POPGmixture which is
strong evidence of repulsive interactions between both compo-
nents. This may result in partial miscibility of the components
and in their organization in phase separation. Concerning
miscibility studies, we have proved by AFM that there is a clear
influence between the phase separation in monolayers and the
domains observed in bilayers blistered by double deposition of
monolayers.37 Hence, it becomes relevant to investigate the
existence of phase separation in the bilayers formed with the
same phospholipids used in the monolayer study. To further
characterize the specific behavior of the mixed systems, lipo-
somes were used to investigate possible phase separation and also
to establish Tm by exploiting Laurdan fluorescence properties.
Thus, changes in fluorescence intensity of the probe as a function
of temperature and excitation wavelength (λex) in the range of
temperatures from 3 to 65 �C were studied. As it can be seen in
Figure 3, DOPE:POPG (3:1, mol/mol) lipid mixture was found
in Lα phase throughout the range of temperatures used in the
experiment. However the Tm of this system could not be
established due to technical limitations because both pure DOPE
and pure POPG have nominal Tm values below 0 �C.

On one hand, the Tm for the mixtures of POPE:POPG
(3:1, mol/mol) and DPPE:POPG (3:1, mol/mol) were estab-
lished at 23.3 and 51.1 �C. Below and above these temperatures
Lβ and Lα phases are observed, respectively. On the other hand
the mixture DPPE:POPG (3:1, mol/mol) was the only studied
system showing positive slopes between single Lβ and Lα phases.
Positive slopes indicate coexistence of Lβ and Lα phases. They
were observed ranging from 21.3 �C (data not shown) to
49.0 �C, indicating the coexistence of two phases in this range of
temperatures. This finding is consistent with the information

Figure 2. Surface pressure�area isotherms of DPPE:POPG (3:1, mol/
mol) (9), POPE:POPG (3:1, mol/mol) (2), and DOPE:POPG
(3:1, mol/mol) (b) at (a) 24 �C and (b) 37 �C. Insets show the elastic
moduli of area compressibility (Cs

�1) corresponding to each isotherm.

Table 1. Mathematical Analysis of the Surface Pressure�Area Isotherms from Figure 2

24 �C 37 �C

composition (3:1, mol/mol) Cs
�1 (mN m�1) GE (kJ mol�1) ΔmixG (kJ mol�1) Cs

�1 (mN m�1) GE (kJ mol�1) ΔmixG (kJ mol�1)

DPPE:POPG 91 1.35 �0.04 99 1.30 �0.14

POPE:POPG 82 �0.53 �1.92 81 �0.07 �1.52

DOPE:POPG 70 �0.85 �2.24 77 0.99 �0.45
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obtained from the compression isotherms that suggest phase
separation.

Figure 4 shows the AFM characterization at 24 and 37 �C of
SLBs of the different phospholipid systems On one hand, the
topographic images shown in Figure 4a,d, corresponding to SLBs
obtained by extension of DOPE:POPG (3:1, mol/mol) lipo-
somes, feature a homogeneous layer. According to the nominal
Tm of both phospholipids, these layers correspond to SLBs in Lα
phase. The layer thickness, however, could not be inferred from
line profile analysis because of complete coverage of the mica

substrate and absence of defects. Similar features are observed in
Figure 4b, where the SLBs of POPE:POPG at 24 and 37 �C
exhibited also a homogeneous layer. Taking the substrate as
reference, the thickness of the POPE:POPG bilayer (3:1, mol/
mol) could be established in 3.4 ( 0.3 nm (n = 50) and 3.0 (
0.3 nm (n = 50) at 24 and 37 �C, respectively. These values are
slightly lower than others previously obtained for the same
system,26 which could be attributed to the absence of calcium
in the present experiments. Additionally, in that work it has been
demonstrated byDSC that the POPE:POPG system undergoes a
Lβ to Lα transition at 21 �C, which coincides with the value found
from our GPex experiments (see above). It is noteworthy that
because of the presence of the mica substrate SLBs feature two
decoupled phase transitions. Thus, the value ofTm obtained from
DSC of liposomes is interpreted as the representative for the
melting of the proximal leaflet in SLBs. Indeed in SLBs this value
is shifted to higher temperatures.38 A detailed investigation of the
thermal response of POPE:POPG SLBs under different condi-
tions has been published by Seeger and co-workers.39 In good
comparison with the observations of these authors and in
agreement with our previously reported observations, two lat-
erally segregated domains for the POPE:POPG system at 27 �C
can be seen in Figure 5.37 On the other hand, laterally segregated
domains for the SLBs of DPPE:POPG (3:1, mol/mol) are ob-
served, that according to Laurdan experiments should be as-
signed to segregated Lβ and Lα phases. The characteristic thick-
nesses, takingmica as a reference for the line profile analysis, were
5.7 ( 0.3 nm and 7.6 ( 0.3 nm for the thinner and thicker lipid
domains at 24 �C, and 5.8( 0.3 nm and 7.2( 0.3 nm at 37 �C,
respectively. These values are higher than expected in compar-
ison with the heights obtained for POPE:POPG. Since the values
for pure DPPE bilayers found in literature are ∼5.4 nm,40 the
formation of multilayers should be somehow excluded. Most
likely the discrepancies would arise because of other factors as the

Figure 3. GPex as a function of λex for (a) DOPE:POPG (3:1, mol/
mol) (9 = 3.2 �C, b = 8.0 �C, 2= 18 �C, 1= 26.5 �C, triangle pointing
left = 38.9 �C), (b) POPE:POPG (3:1, mol/mol) (9 = 2.7 �C, b =
16.4 �C, 2= 24.3 �C, 1= 32.7 �C, ( = 41.0 �C), and (c) DPPE:POPG
(3:1, mol/mol) (9 = 10.7 �C,b = 23.8 �C,2= 43.0 �C,1= 56.0 �C, ( =
64.6 �C).

Figure 4. Topography AFM images of SPBs at 24 �C: (a) DOPE:
POPG (3:1, mol/mol), (b) POPE:POPG (3:1, mol/mol), and (c)
DPPE:POPG (3:1, mol/mol). At 37 �C: (d) DOPE:POPG (3:1, mol/
mol), (e) POPE:POPG (3:1, mol/mol), and (f) DPPE:POPG (3:1, mol/
mol). Black star indicates mica substrate. Scale bar = 1 μm.Z scale = 20 nm.
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force applied or a possible repulsion between the tip and the Lβ
phase in the DPPE:POPG system.26 At this point further dis-
cussion is not possible without knowing the exact composition of
the domains.

There is a general consensus on the matching between the
hydrophobic thickness of the phospholipid bilayer and the
transmembrane segments of the protein membranes. This theore-
tical concept41 has received experimental support for LacY42 or
melibiose permease (MelB) of E. coli.43 The seminal work based
on the use of pyrene-labeled lipids, which are able to form ex-
cimers, suggested the enrichment of phospholipids according to
this matching principle.41 However, posterior works based on
FRET between a single tryptophan mutant of LacY and pyrene-
labeled phospholipids have shown that LacY is able to perform a
molecular sorting by recruiting the most abundant lipid in binary
mixtures of PE and PG.18 Importantly, this matching principle is
sustained by our data since the thickness of the bilayers, as
measured by AFM (see profile analysis in Figure 4), matches well
with the estimated hydrophobic thickness of LacY.17

Otherwise, it becomes relevant to investigate how the phos-
pholipid composition studied here influences LacY distribution.
Indeed, the partitioning of LacY into Lα phases was suggested in
earlier works44 where high concentrations of protein (lipid to
protein ratio = 0.5) were used. Here, we have extended these
observations to samples prepared at high lipid to protein ratios
(less proportion of protein). Thus, when LacY is reconstituted in
proteoliposomes of the same composition as the SLBs and
observed with AFM at 27 �C, thicker structures protruding from
the phospholipid matrices can be distinguished (Figure 6). These
entities, most likely ascribable to LacY, protrude 0.8( 0.3, 1.4(
0.5, and 2.0( 0.7 nm from the SLBs of DOPE:POPG (3:1, mol/
mol), POPE:POPG (3:1, mol/mol), and DPPE:POPG (3:1,
mol/mol), respectively. Although the statistics is short (n = 30),
the fact that the protein protrudes more the less saturated the acyl
chain species is may be a consequence of different lateral pressure
exerted by each phospholipid.45 Remarkably, these experiments
demonstrate that, at lipid to protein ratios compatible with former

Figure 5. Topography AFM images of POPE:POPG (3:1, mol/mol) at
27 �C. Black star indicates mica substrate. Scale bar = 1 μm. Z scale =
20 nm.

Figure 6. Topography AFM image of extended proteoliposomes of
LacY (1.5 μM) at 27 �C: (a) DOPE:POPG (3:1, mol/mol), (b)
POPE:POPG (3:1, mol/mol), and (c) DPPE:POPG (3:1, mol/mol).
Black star indicates mica substrate. Arrows point to protrusions
attributed to the presence of LacY. Scale bar = 500 nm. Z scale =
20 nm.
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FRET experiments,18,19 LacY prefers the Lα phase. This coin-
cides with a general behavior for protein membranes22 and,
remarkably, with the K+ ion channel (KcsA).46 As can be seen in
Figure 6b,c this preference has been clearly demonstrated here in
the systems that form separated phases, that is POPE:POPG and
DPPE:POPG.

Indeed, by using FRET tools we have previously shown18,19

that PG is completely excluded from the annular region in the
POPE:POPG system, only partially excluded from the DOPE:
POPG matrix, and, conversely, segregated in PG enriched
domains in the DPPE:POPG mixture. Results presented in this
paper provide support for these interpretations.

’CONCLUSIONS

By studying the phase separated mixture of PE and PG, we
demonstrate that LacY partitions into fluid phases. Even in the
absence of phase diagrams for each binary mixture our results
suggest that the fluid phases are enriched in POPG. This is not,
however, in contradiction with the fact that LacY shows higher
selectivity for PE than PG,47 providing means for a protein-
promoted membrane domain,11 characterized by a lipid annulus
mainly formed by PE.
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3.3.2.1 Summary 

Understanding the physicochemical properties of phospholipid systems is of crucial 

relevance to understand the relationship between these molecules and membrane 

proteins embedded in the bilayer. In the model taken, LacY from the inner membrane of 

E. coli, the protein resides within the lipid Lα phase of the membrane [128]. Thus, for 

better understanding the interplay of LacY with its phospholipid environment, it is 

imperative to study the phase separation phenomena of a binary mixture that mimics the 

natural entourage of the protein. Hence, in order to elucidate the influence of the 

temperature on a given phospholipid mixture, which is directly related to the phase 

separation appearance, this study conceived the construction of phase diagrams of a 

binary mixture (POPE:POPG) in the presence of 10 mM of Ca
2+

. The presence of this 

cation plays a key role in the adsorption of negatively charged SLBs on mica, systems 

in plane where the protein has been reconstituted in previous works. In these systems 

cations can induce physicochemical modifications that require a detailed study. 

Specifically, liposomes with different mole fractions of POPG were analyzed by 

differential scanning calorimetry (DSC) and a binary phase diagram of the system was 

constructed. With the same objective and for comparison, we performed AFM imaging 

of SLBs with similar compositions at different temperatures, in order to create a binary 

pseudo-phase diagram specific to this planar membrane model. The construction of the 

above-mentioned phase diagrams enabled us to grasp better the thermodynamics of the 

thermal lipid transition from an Lβ POPE:POPG phase system to an Lα phase system.  

On the one hand, the phase diagram constructed from liposomes using DSC 

thermograms was constructed. The main conclusions arose from the observation that the 

non-ideal mixing behavior of the system was enhanced as the POPG proportion 

increased. On the other hand, AFM observations of SLBs with different POPE:POPG 
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compositions were conducted at several temperatures in order to construct the second 

phase diagram and compare it to the one obtained from DSC data. The direct correlation 

from both diagrams is not possible because the lipid system displays different 

curvatures in each technique and, additionally, the thermal behavior of SLBs is affected 

by the presence of the mica substrate. Accordingly, when considering equal 

compositions the Tm determined from AFM imaging were always higher than those 

obtained from DSC, and a wider range of temperatures encompassing each transition 

was detected. In addition, the van’t Hoff molar enthalpy (
vHH ) was higher for SLBs 

than the enthalpy determined in liposomes, which is explained by the energy spent to 

counterbalance the existing interaction with the substrate.  

The cooperativity unit (N) of the transformation was also calculated. It was found that 

increasing the proportion of negatively charged phospholipid in the system resulted in a 

decrease of N. This decreasing of N can be associated to smaller domains undergoing 

the phase transition at a time, which has been related to the presence of Ca
2+ 

interacting 

and clustering specifically with POPG within the fluid phase. 

Finally, further analysis of the lipid phases was performed using FS mode. Thus, the 

nanomechanics of the two lipid phases were determined at 27 ºC and at different POPG 

mole fractions. The obtained magnitudes were the breakthrough force (Fy) and the 

adhesion force (Fadh) of the different phases. For completeness, the continuum 

nucleation model was fitted to the Fy data in order to calculate  (related to the line 

tension of the molecules in the periphery of a hole) and S (the spreading pressure 

associated with the energy per unit area gained by the layer when filling a hole formed 

after a rupture).  values raised as the POPG content increased and were correlated to 

the domain size. Hence, higher  values may correspond to higher electrostatic 

repulsion between neighboring molecules and thus, lead to a decrease in the length of 

the boundary regions and a reduction in domain size. Regarding the parameter S, it 

showed negative values as described for POPG and POPE in other studies [193]. 

Results reflected a higher absolute value of S as POPG content increased, which 

emphasizes that, the more domains become enriched in POPG, the more difficult it is 

for the film to spread into the gap between the tip and the substrate. Additionally, 

differential results for Lα and Lβ were correlated with the specific composition of each 

phase, which can be inferred from the obtained AFM phase diagram.  
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Concerning Fadh forces, at low POPG content Fadh rose with the increasing of χPOPG and 

were higher for Lβ than for Lα. Conversely, at high POPG content the tendency was 

inversed and Lα presented elevated Fadh values. 

Interestingly, all the results seemed largely influenced by the amount of negatively 

charged lipids, something that agrees with DSC findings. Thus, compositions with 

higher content of POPG and, especially, Lα phases where POPG was more prominent, 

displayed properties pointing to the stiffening of the system upon the enrichment of 

POPG, most likely due to the clustering of POPG phospholipids by the Ca
2+

 ions which 

compacted and rigidified the bilayer. 

 

3.3.2.2 Highlights 

 A phase diagram of POPE:POPG SLBs was constructed from AFM observations. 

When compared to the liposomes phase diagram constructed from DSC data, the 

former was displaced at higher Tm, higher enthalpy values and presented wider 

temperature transitions. 

 At 27 ºC, SLBs differing in POPG molar ratio presented lipid phase nanomechanical 

characteristics directly related to the POPG content. This was observed from 

increasing Γ values and decreasing S values upon the enlargement of POPG in the 

system. Additionally, Fy and Fadh in Lβ and Lα displayed inverted trends in χPOPG = 

0.75 as compared to χPOPG < 0.75.   

 The evidenced effects related to the POPG increasing are likely explained by the 

stiffening of the system due to the presence of calcium: the cation interacts with the 

negative headgroup of the phospholipid creating a PG-PG network, which leads to a 

decreased area per molecule and a more compact bilayer.  
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1. Introduction 
In strictly physical terms, the plasma membrane can be seen as the 

boundary region that separates the discrete mass of the cytoplasm 

from its outer environment. This membrane, consisting mainly of a 

phospholipid bilayer and proteins interacting in various ways, is 

recognized as a heterogeneous structure that provides the basis not 

only for cell compartmentalization but also for specific metabolic 

processes to take place, among which are processes from signal or 

energy transduction to transport of drugs and metabolites, viral and 

bacterial infections, or tissue development and metastasis. In this 

respect, characterization of the physicochemical properties of the 

plasma membrane is crucial to understanding the molecular aspects 

behind these processes. Biological membranes contain a complex 

mixture of lipid species that, depending on their molecular structure 

and physicochemical conditions, such as pH, temperature (T) or 

ionic strength (I), may show phase separation and become laterally 

segregated into nano- or micro-domains.1 How the physical 

properties of phospholipid bilayers (e.g. phase segregation, lipid 

curvature, elasticity) are related to those found in natural 

biomembranes is, at the least, intriguing. Although the universality 

of the phospholipid bilayer can be postulated, to assume that 

behavior observed in model systems occurs in natural membranes 

remains a matter of debate in the field of membrane biophysics. 

Thus, as phospholipids belong to mesomorphic matter, they can have 
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several physical states, depending on the physicochemical 

conditions. In excess water, phospholipids form fully solvated lipid 

bilayers, which undergo the known phase transition from the solid-

like gel state (Lβ) to the fluid liquid-crystalline state (Lα) at a definite 

transition temperature (Tm) that is specific to each species and 

phospholipid mixture.2   

Integral membrane proteins have one or more segments that are 

embedded in the phospholipid bilayer, where they interact strongly 

and selectively3 with the surrounding lipids. Indeed, there is 

evidence indicating that the activity and folding of some integral 

proteins depend on the physicochemical properties of neighboring 

phospholipids.4 Furthermore, most of the integral membrane proteins 

reside almost exclusively within the Lα phase5 and, though this is 

sometimes controversial, there is evidence that some proteins are 

excluded from the Lβ phase.6 In a very illuminating paper from 

Facci’s group,7 such behavior was conclusively demonstrated 

through atomic force microscopy (AFM) observations, when the 

channel protein KcsA was reconstituted in supported lipid bilayers 

(SLBs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine 

(POPE) and palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-

glycerol) (POPG) and the temperature was reduced below the Tm of 

the phospholipid mixture. Then, KcsA monomers were observed to 

be excluded from the solid-like domain (defined there as Lo) and 

remained segregated in the fluid phase (defined there as Ld) and at 

the edge between fluid and gel phase boundaries (see Figure 4 in 

Seeger’s paper). Besides, all integral membrane proteins are 

surrounded by a layer of phospholipids, the so-called “annular 

region”, which provides the adequate lateral pressure8 and fluidity to 

seal the membrane during the structural changes in the protein 

during transport events. It should be noted that, as shown in the case 

of lactose permease (LacY) of Escherichia coli (E. coli), the 

recruitment of one of the phospholipid species by the protein is 

dependent on the POPE:POPG molar ratio, which is commonly 

accepted as the biomimetic binary lipid mixture for LacY.9 Although 

a POPE:POPG phase diagram constructed from differential scanning 

calorimetry (DSC) measurements of liposomes in absence of Ca2+ is 

available,10 it has become imperative to build a phase diagram for 

the same system that enables us to predict, at least approximately, 

the composition of each phase in SLBs in presence of calcium. AFM 

of SLBs provides topographic information on the lipid bilayers, with 

the advantage of working in a liquid environment.11 Furthermore, 

when working in force spectroscopy (FS) mode, AFM can throw 

light on the nanomechanical properties of the relevant lipid planar 

systems, mainly the breakthrough or yield threshold force (Fy) and 

the adhesion force (Fadh).
12-14 In fact, FS has been tested as a suitable 

technique to distinguish between SLBs of several pure and mixed 

phospholipid compositions through Fy values.15,16 The formation of 

SLBs of negatively charged systems like POPE:POPG requires the 

presence of divalent cations to screen the negative charge borne by 

mica,17,18 in order to provide stability to the system.19 The purpose of 

this research paper is two-fold: first, to gain more insight into the 

nanostructure and nanomechanics of SLBs of POPE:POPG in 

presence of Ca2+; and secondly, to build and compare binary phase 

diagrams for the POPE:POPG system obtained either from 

liposomes through DSC data or from SLBs through AFM 

observations. 

 

 

2. Results and Discussion 
 

2.1. Constructing diagrams from DSC data and AFM imaging 

The phase behavior of the POPE:POPG binary system was 

investigated by DSC. To build a phase diagram for the POPE:POPG 

system, the onset and completion temperatures (Tonset and Toffset, 

respectively) from the endotherms of a series of mixtures have to be 

determined. Figure 1 shows the response function of multilamellar 

vesicles in presence of 10 mM of Ca2+ of different POPE:POPG 

mixtures as a function of temperature. As observed from normalized 

endotherms, the Tm, the temperature at the maximum heat capacity, 

remains withheld nearly 24 ºC up to the equimolar of both 

phospholipids. Further increase in the molar ratio of POPG results in 

a significant decrease in the Tm. Remarkably, endotherms are slightly 

asymmetric, skewed to the low temperature side in all cases and 

becoming clearly asymmetric at POPG > 0.50. Indeed, this behavior 

indicates an enhanced non-ideal mixing behavior of the system as 

the POPG proportion increases. 
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Fig. 1 Normalized excess heat capacity profiles for large multilamellar liposomes of 

POPE:POPG mixtures at the indicated molar ratios. The total phospholipid 

concentration was 2.0 mg·mL-1 and the heating scan rate was 0.44 ºC·min-1.  

 

Mathematical adjustments performed on individual endotherms (see 

Supplementary Materials SI) allowed the determination of the 

thermodynamic parameters of the transition: Tm and the enthalpy 

involved in the process of transformation ( Htransf ), from the Lβ to 

the Lα phase (Table 1). 

 

Table 1. Thermodynamic parameters obtained from the thermograms and from fitting 

the AFM data to the van’t Hoff equation. 

 


POPG 

0.25 0.50 0.75 

Tm (ºC) 
DSC 23.50 ± 0.15 23.70 ± 0.13 19.30 ± 0.10 

AFM 27.80 ± 0.12 24.35 ± 0.15 25.85 ± 0.03 

transfH 

 (kJ·mol-1) 

DSC 17.7 ± 0.2 18.9 ± 0.2 24.7 ± 0.2 

AFM 1560 ± 150 1600 ± 300 980 ± 30 

N 
     
     

 87 85 40 

     

Figure 2A shows the binary phase diagram obtained from the 

endotherms constructed after connecting the corresponding Tonset 

(open circles) and Toffset (full circles). As observed, this pseudo-phase 

diagram is S-shaped, which indicates a substantial deviation from the 

ideal mixing behavior at all the molar fractions analyzed. The 

diagram is quite consistent with a previous phase diagram derived by 

Pozo-Navas et al.10 for the same system in absence of Ca2+. Actually, 

the shift of the Tm towards lower temperatures, most precisely for 

those liposome mixtures containing high POPG proportions, was 

reported earlier.21,22  

 

 

Fig. 2 A) Phase diagram for POPE:POPG mixtures obtained from the heat capacity 

curves shown in Figure 1. Empty circles correspond to the experimental Tonset and filled 

circles to the Toffset of the main phase transition. B) Phase diagram of POPE:POPG 

mixtures obtained from the AFM topography images. Empty circles correspond to the 

experimental T where the first L domain appeared and filled circles correspond to the 

experimental T where the last L domain vanished. Error bars correspond to standard 

deviations in at least three replicate experiments. 

 

An interesting feature of the diagram is the quite horizontal segment 

of the solidus line from POPG > 0.7, which is consistent with the 

occurrence of a miscibility gap within the Lβ phase. This behavior 

means that, for the present system and for POPG > 0.7, the formation 

of two gel lipid sub-domains with different compositions (Lβ1 and 

Lβ2) should be considered.23,24 However, to probe the existence of 

these two gel phases X-ray diffraction or other techniques different 
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of DSC should be applied. In any event, such investigation is out of 

the scopes of the present research. 

 

It has been shown that SLBs of POPE:POPG prepared either by the 

vesicle fusion technique25 or Langmuir-Blodgget double deposition26 

display expected Lα/Lβ phase coexistence at room temperature. In the 

present study, AFM observations of SLBs with different mole 

fractions of POPG have been conducted at several temperatures, to 

construct a phase diagram (Figure 2B) and compare it to the phase 

diagram obtained from DSC data (Figure 2A). Of course the 

comparison between both pseudo-phase diagrams should be taken 

with caution. First, because the influence of the substrate may play a 

major role in the lipid behavior. Mica is the more popularized 

substrate because it is smooth and hydrophilic, but it is worth to 

mention that other substrates, as fused silica, borosilicate glass or 

titanium oxide are common. In such cases the pseudo-phase diagram 

would present probably different trends. Besides it is not only the 

influence of the substrate but the ionic strength and type of 

cation27,28 or osmolarity29 that may affect the properties of the phase 

transition. In any case, the use of mica and a precise buffer is 

justified here by the need to correlate the obtained results with other 

studies of our group.5,30 Secondly, it should be noted that, although 

the temperature was controlled with great accuracy in our AFM 

experiments (see Supporting Information, SI1), the high sensitivity 

and accuracy attained with DSC cannot be technically achieved with 

the actual temperature-control system of the AFM, which anticipates 

the difficulty for finding a direct correspondence between the phase 

diagrams obtained from both techniques. 

 

 

Fig. 3. AFM images of POPE:POPG phospholipid bilayers with POPG = 0.25 (A, D, G), POPG = 0.50 (B, E, H) and POPG = 0.75 (C, F, I) at 23, 27 and 29 ºC. White stars correspond 

to mica surface, black arrows in image C correspond to L domains and white dotted lines correspond to height profiles shown at the bottom of each composition. Z scale bar was 20 

nm except for images (C, F, I) that was 10 nm. 
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Figure 3 shows a selection of AFM topography images of SLBs 

obtained at three different compositions (POPG = 0.25, 0.50 and 

0.75) and three temperatures (23, 27 and 29 ºC). Although 37ºC 

would be desirable because it is considered physiological, at this 

temperature only one phase would be present. Indeed, E. coli has 

been proved to present populations normally living out of warm-

blooded animals31, and thus studies at room temperature might be 

also relevant and this provides means for the present study on the 

phase separation. At 23 ºC, SLBs of POPG = 0.25 (Figure 3A) and 

POPG = 0.50 (Figure 3B) show flat and homogenous surfaces with 

step height differences of 3.4 and 5.4 nm from the bare mica surface, 

respectively. At this temperature, both images show SLBs in Lβ 

phase. For the SLB with POPG = 0.75 (Figure 3C), the step height 

difference was established at 5.63 nm. In this case, although the 

surface of the SLBs is rather flat and homogenous, some small 

patches covering less than 3% of the surface can be observed (see 

black arrows in the image). Indeed, these patches indicate that, for 

this temperature and composition, the SLB is close to Tonset, so just 

starting the Lβ to L phase transition. At 23 ºC we confirmed the shift 

of the Tonset towards higher temperatures than those observed from 

DSC data. This behavior, previously reported for SLBs,32,33 is the 

result of the potential interaction of the proximal leaflet of the SLBs 

with the mica substrate. In the present study, such interaction is 

enhanced at higher POPG molar fractions, as a consequence of a 

bridging effect of Ca2+ between POPG and the negatively charged 

mica surface. Actually, the interaction of the proximal leaflet with 

mica substrate has been extensively debated.26,34,35 This interaction 

would in fact modulate not only the thermotropic behavior of SLBs, 

but also their topographical features and nanomechanical properties. 

 

At 27 ºC, all SLBs (Figure 3, images D, E and F) have two domains 

that show the Lα /Lβ phase coexistence. The step height difference 

for the lighter (higher) domains in these images compares well with 

the value reported at 23 ºC (Lβ phase). In turn, the darker (lower) 

domains are 0.6 to 1.4 nm lower than those observed at 23 ºC, 

which is the expected height difference between the Lβ and Lα 

phases. After the temperature was raised to 29 ºC (Figure 3, images 

H and I), SLBs showed a single domain with an average height that 

falls within the range expected for L phases. Although residual Lβ 

domains are still present in Figure 3G, the L phase is, however, the 

predominant phase. Heights and roughness values obtained for each 

image shown in Figure 3 are available in a Table given in the 

Supporting Information, SII4. 

 

After a careful analysis of the topographical images, the phase 

diagram was constructed from the Tonset (open squares) at which the 

Lα phase appears and the Toffset (closed squares), at which the Lβ 

phase vanishes. The pseudo-binary phase diagram is shown in Figure 

2B; Table 1 shows the values derived from this data. As can be seen, 

the Tm determined from AFM imaging were higher than those 

obtained from DSC. As stated above, this behavior was expected, 

since it is well known that SLB transition encompasses a higher and 

wider range of temperatures than transitions observed by performing 

DSC on liposomes with the same composition. This behavior, 

extensively discussed by several authors,14,33,36-38 has been attributed 

to different effects: i) the presence of the substrate in contact with 

the proximal leaflet of the bilayer; ii) the infinite radius of curvature 

of the SLBs, which decreases the lateral tension between 

phospholipids in the bilayer; and iii) the decoupling between the 

leaflets of the bilayers which results in a double transition. As 

concluded from detailed investigations on POPE-POPG system 

reported by Facci’s group,25 the last effect appears to depend on the 

experimental conditions followed during SLB preparation. In the 

present study, SLBs were obtained by liposome spreading and 

incubation of the sample above the Tm of the lipid mixture, under 

high ionic strength conditions. This is why we did not observe the 

intermediate phase postulated by Seeger et al.25 Indeed, in our 

experiments, only one transition demonstrating the coupling between 

the two leaflets of our SLBs was observed. However, it is intriguing 

that in the SLB with POPG = 0.5, the difference observed between 

the Tm obtained from DSC and from AFM studies is less than 1 ºC. 

This observation suggests that this composition is less affected by 

the supporting surface. It has been widely reported that negatively 

charged phospholipids adsorbed onto mica are limited to lateral 

diffusion because of the interaction between the negative polar head 

and the substrate.18 The liquidus line (closed squares in Figure 2B) 

obtained on SLBs does not significantly change on the POPG molar 

fraction decreasing and is, remarkably, quite similar to the Tm of 

pure POPE (POPG = 0).   

Despite it being technically more difficult than DSC, the AFM-based 

pseudo-phase diagram provides a fast, approximate evaluation of the 

composition of Lα and Lβ phases on SLBs and, thus, a way to 

estimate the composition of the domains observed in the images 
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shown in Figure 3. Therefore, by taking a connection line along 27 

ºC (the temperature selected for the nanomechanical studies) and 

applying the lever rule, we can determine the composition of each 

phase for the biomimetic composition of LacY (POPG = 0.25). Thus, 

we obtain that POPG is distributed as follows: POPG
α = 0.11 (molar 

fraction of POPG in the Lα phase) and POPG
β = 0.14 (molar fraction 

of POPG in Lβ phase). Consequently, POPE’s presence in Lα and Lβ 

phases corresponds to POPE
α = 0.03 and POPE

β = 0.72, respectively. 

Thus, the composition POPG = 0.25 shows an enrichment of POPG 

in Lα and an enrichment of POPE in Lβ phase. For the sake of clarity 

an illustration showing the application of the lever phase rule for 

predicting each composition is provided as Supporting Information, 

SII5.  

 

2.2. Thermodynamics of the POPE:POPG phase transition onto 

mica 

In a system where only two possible states (Lα and Lβ) are assumed, 

the phase transition of the SLBs onto a surface may be described by 

an equilibrium constant (K) that can be defined as 
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where  is the fraction of the Lα phase in the SLBs calculated by 

measuring its area after the AFM images.25,33,36 According to 

Mabrey and Sturtevant,39 K can be described as a function of T by 

the integrated form of the van’t Hoff equation 
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where R is the gas constant, Tm is the transition temperature and 

vHH  is the van’t Hoff molar enthalpy. Then, by inserting Equation 

(2) in (1) we obtain the following expression 
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which relates  at a given temperature with the 
vHH  involved in 

the transition occurring on the surface.  values were determined at 

10 different temperatures and Equation 3 was fitted to the data. For a 

better comparison, the results obtained from analyzing the thermal 

behavior of the SLBs are summarized in Table 1 along with the 

values obtained from DSC experiments. It is thought that, when the 

temperature of the system increases and the phospholipids undergo 

the phase transition, part of the energy is used to counterbalance the 

interactions with the substrate. Therefore, this would explain why 

the 
vHH are higher for SLBs than H for liposomes.17,40 For the 

SLBs at POPG = 0.25 and 0.5, the magnitudes of the 
vHH are quite 

similar ( 1600 kJ·mol-1), but for the SLB at POPG = 0.75 it 

decreases to 980 kJ·mol-1. Such a difference could be attributed to 

the high negative charge present in the latter composition (see the 

zeta potential values for each composition provided as Supporting 

Information, SII6), which increases the electrostatic repulsion 

between the bilayer and the substrate and results in a decrease of
 

vHH .  

The approximate number of lipids experiencing the transition, 

interpreted as the cooperativity unit,41 is given by N = 

HAFM/HDSC. The N values are 87 and 85 for the SLBs with POPG 

= 0.25 and 0.50, respectively, and 40 for the SLB at POPG = 0.75. 

This makes clear that, as the proportion of negatively charged 

phospholipid increases in the SLBs, the cooperativity unit of the 

transformation decreases. It is most likely related with the fact that 

Ca2+ induces phase separation because of its ability to bind 

stoichiometrically to negatively charged phospholipids (e.g. POPG). 

Thus it results in a reduction of their surface charge and area with 

consequent increase in the transition temperature and the promotion 

of a bilayer with a more gel-like nature than in absence of the 

bivalent cation.42,43 This behavior may explain the quantitative 

differences found when comparing with other N values obtained in 

the same system in absence of Ca2+.25 The decrease in N on the 

increase in the POPG molar fraction might also be related, at least at 

23 ºC, with the postulated existence of a miscibility gap in the Lβ 

phase whenPOPG > 0.7.10,23 It should be noted, however, that the 

AFM experiments performed on SLBs did not have enough 

resolution to provide visual evidence for the existence of these two 

different Lβ domains. 

 

2.3. Nanomechanics of SLBs 

FS has been extensively used to probe the nanomechanical 

properties of lipid layers.26,44,45 Since the pioneer works of 

Dufrêne,12,46 FS has become the tool for exploring the 

nanomechanical properties of pure phospholipid SLBs 15,47 and, 

more importantly, assessing the nanostructural organization of more 

complex lipid mixtures.35,48 Although the biological meaning behind 
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FS measurements is still controversial,49 the potential of this 

technique for revealing the nanomechanics of complex systems, 

from models to natural membranes50 and living cells51,52 is, however, 

widely accepted. The basic magnitudes extracted from traditional FS 

experiments (Figure 4) are: i) the breakthrough or yield threshold 

force (Fy), i.e. the force that the bilayer can withstand before being 

indented; and ii) the adhesion force (Fadh), i.e. the pull-off force 

between the tip and the bilayer.12,26  

 

 

Fig. 4. Schematic representation of the experimental procedure used to obtain threshold 

and adhesion forces. Right) Topographic images were first acquired to visualize the 

phospholipid domains and thereafter the AFM tip was centered in the domain chosen for 

analysis. Left) Typical force curve on a lipid domains. First, tip approaches (blue line) to 

the surface (a), it touches the surface, it begins to press down the SLB (b) until the force 

is enough to punch the bilayer (breakthrough force) and the tip continues pressing the 

mica surface (c). Afterwards, the tip begins to separate (red line) from the mica surface 

(d) until the tip is completely free from the sample (adhesion force) and the tip moves 

away from the sample (a). 

 

To clarify further the nature of phase separation in complex 

biomimetic systems, e.g. displaying phase separation in binary lipid 

mixtures, we performed FS measurements on SLBs of POPE:POPG 

at different POPG. In terms of biological relevance, we focused the 

analysis on the biomimetic composition, POPG = 0.25. FS 

measurements were performed at 27 ºC because we wanted to 

discriminate in FS terms between the Lβ and Lα phases.  

Distributions of Fy for each lipid domain at each studied composition 

are shown in Figure 5. For SLBs at POPG = 0.25, where the two 

phases can be spatially resolved (Figure 3D), the mean values of Fy 

obtained were quite similar for Lβ and Lα, 0.250 ± 0.005 nN (Table 

2). On the one hand, this value compares well with the one 

previously obtained for the Lα phase in the same lipid mixture.30 On 

the other hand, the value for the L phase is lower than that reported 

in the same study. To rationalize this discrepancy, two related factors 

should be taken into account: i) the higher acquisition temperature 

(27 ºC), which is some degrees above the temperature used in our 

earlier study;30  and ii) according to the phase diagram given, whilst 

at room temperature we are close to the solidus line, at 27 ºC we are 

in the coexistence region (Figure 2B).  

 

 

Fig. 5. Fy distribution for POPG = 0.25 (A, B), POPG = 0.50 (C, D) and POPG = 0.75 (E, 

F), at 27ºC in the L and L lipid domains. Fits to the continuum nucleation model (eq 4 

in SI1) are represented as solid lines. 

 

For the equimolar SLB composition, POPG = 0.50 (Figure 3E), the 

mean Fy values were 2.114 ± 0.016 nN and 1.046 ± 0.016 nN for the 

Lβ and Lα domain, respectively (Table 2). This means that we need 

2 times more energy to indent the Lβ than the Lα domain.  

 

Table 2. Mean Fy and Fadh values from data presented in Figures 5 and 6 fitted to a 

Gaussian distribution and calculated  and S parameters after fitting data in Figure 5 to 

the continuum nucleation model. Errors values are standard deviation from the 

mathematical statistics. 

  
POPG 

  0.25 0.50 0.75 

Fy (nN) 
Lβ 0.250 ± 0.005 2.114 ± 0.016 0.531 ± 0.013 

L 0.250 ± 0.006 1.046 ± 0.011 0.922 ± 0.009 

Fadh (nN) 
Lβ 0.450 ± 0.006 1.119 ± 0.010 0.54 ± 0.02 

L 0.175 ± 0.006 0.278 ± 0.002 1.115 ± 0.019 

 (nN) 
Lβ 21.8 ± 1.6 38 ± 2 31.0 ± 1.7 

L 19 ± 3 29.9 ± 1.1 28.0 ± 1.0 

S (mN·m-1) 

Lβ -9.53 ± 0.06 -6.61 ± 0.11 -17.8 ± 0.3 

L -6.3 ± 0.2 -9.87 ± 0.03 -7.00 ± 0.09 

     
For SLBs at POPG = 0.75 (Figure 3F), the mean Fy value for the Lβ 

phase was 0.531 ± 0.013 nN, whilst the Lα phase had almost twice 

this value (0.922 ± 0.009 nN). Actually, the observation is in 

apparent contradiction with a general assumption that higher Fy 

values are quite closely associated with Lβ phases, the results for 

POPG > 0.50 most probably reflect that, for SLBs containing high 
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amounts of negatively charged lipids, stiffness and electrostatic 

repulsion variations should be taken into account. Notice that, at this 

composition, the distribution (Figure 5E) does not fit with the model 

as well as the other which indicates a different behavior and 

physicochemical properties at high POPG proportions. Actually, the 

ratio of the two phases present can be found by using the lever rule. 

When it is applied in the phase diagram shown in Figure 2B, the 

amount of POPG estimated for the Lα phase of SLBs at POPG = 0.75 

rises to 0.74 (Supplementary Material, SII5), which indeed 

corresponds to almost the entire amount of the POPG present in the 

system. 

As predicted by the lever phase rule, the increase of POPG, in 

absolute terms, should be more prominent in the Lα than in the Lβ 

phase. This results in smaller domains of the gel-crystalline phase 

(Figure 3 D-F) and in eventual changes in line tension values.53 

Thus, Fy values would be strongly dependent not only on negative 

repulsion between POPG molecules, but also on the formation of 

“solid clusters” within the Lα phase in presence of calcium.2 As a 

result, the force needed to indent Lα domains highly enriched in 

POPG may be greater than the force required to overcome the 

potential barrier to make a hole in a zwitterionic phospholipid.54,55 

Inspection of the retraction part of force curves performed on SLBs 

with different POPG allows obtaining the corresponding adhesion 

forces (see left drawing in Figure 4). In a seminal work by Dufrêne 

et al.,12 it was shown that Fadh are directly related to the strength of 

the lateral forces between the molecules that provide means for the 

cohesive forces within the films. However, the actual force required 

to separate the tip from the lipid may be largely affected by the 

negative charge borne by POPG and the presence of the Ca2+ in the 

environment. Distributions of Fadh for each domain at different 

POPG mole fractions are shown in Figure 6. Additionally, mean Fadh 

values are summarized in Table 2. For POPG = 0.25, two different 

Fadh values, 0.450 ± 0.006 and 0.175 ± 0.006 nN, were obtained for 

the Lβ and Lα domains, respectively. Actually, whilst such behavior 

was observed for complex mixtures,56 the converse situation, higher 

Fadh for fluid than ordered phases was reported in neutral 

phospholipids.57 Besides, Fadh is strongly dependent on the nature 

and geometry of the tip, surface roughness and preparation 

procedures58 among other conditions.59 Therefore, Fadh may not be 

considered as an intensive property of the SLBs. Then, by taking 

into account the composition of the fluid phase it is conceivable that 

Lα might present lower adhesive forces than Lβ, which may be 

related with the clustering of POPG molecules in presence of 

calcium.2 

 

 

 

Fig. 6. Fadh distribution for POPG = 0.25 (A, B), POPG = 0.50 (C, D) and POPG = 0.75 (E, 

F), at 27 ºC in the L and L lipid domains. Fits to a Gaussian distribution are 

represented as solid lines. 

 

The Fadh for the SLB with POPG = 0.50 were 1.119 ± 0.020 and 

0.278 ± 0.002 nN for the Lβ and Lα phases, respectively. Note, 

however, that for this composition the mean Fadh is 4 times higher 

for the Lβ than for the Lα phase. Conversely, the Fadh were 

significantly lower for the Lβ phase (0.54 ± 0.02 nN) than for the Lα 

one (1.115 ± 0.019 nN) when POPG = 0.75 (Table 2), which is may 

be due to a non Gaussian distribution (Figure 6E). Strikingly, for this 

composition the Fy values for the Lα phase result from a strong 

repulsion with the tip30 although the Fadh values suggest a strong 

cohesion of the film. Although the Lα phase is enriched in POPG 

molecules and the repulsion between the neighbor phospholipids and 

the AFM tip may occur, there are enough POPE molecules to 

stabilize the interactions between neighboring lipids. 

 

2.4. Applying the continuum nucleation model  

The parameters that determine how the AFM tip can go through the 

SLB in a force-distance curve have been evaluated in both 

theoretical and experimental terms.54,60 A seminal work by Butt and 

coworkers54,55 introduced a theory to calculate the activation energy 

required to form a hole in a lipid film when an AFM tip indents a 

planar layer. Although this model reduces the system by considering 

the SLB as a liquid structure in a XY plane, it has been successfully 

tested on several substrates and conditions.53,55 Notably, this has also 

been applied to SLBs, in order to unambiguously assign physical 

parameters and provide the basis for discrimination between 
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phospholipid species (homo- and hetero-acids) with different 

headgroups and, even, different compositions.42 As discussed by 

Butt and coworkers,54 at constant velocity the continuum nucleation 

model fits the probabilities of distribution of force P(F) according to 
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where , as a first approximation, can be interpreted as the 

resonance frequency of the cantilever, kc is the spring constant of the 

cantilever, 0 is the velocity,  is a line tension associated with the 

unsaturated bonds of the molecules in the periphery of the hole, R is 

the tip radius, kB is the Boltzmann constant, T is the temperature and 

S is the spreading pressure associated with the energy per unit area 

gained by the layer when filling the hole formed after the rupture. 

Equation 4 can be integrated analytically and the yield probability 

dP/dF can be expressed as53 
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The robustness of the model has been unambiguously demonstrated 

for lipid bilayers of DOTAP55 and successfully extended to a wide 

variety of pure phospholipids and mixtures with cholesterol by 

Garcia-Manyes et al.15 To this end, the yield probability dP/dF was 

adjusted to the experimental data and the fitted parameters are listed 

in Table 2.  values obtained for SLBs at POPG = 0.25 and 0.75 were 

quite similar for both phospholipid domains, ranging from 20 to 30 

nN, respectively. It should be noted that the Lβ phase showed higher 

values of  for both compositions. Since both POPE and POPG are 

heteroacid phospholipids with the same acyl chain composition, line 

tension should arise from the different interaction between the 

headgroup moieties, mainly entropic and repulsion contributions,53 

and the different composition of lipids that integrate the periphery of 

the hole. To rationalize these values one should assume that for 

SLBs at POPG = 0.75, the phospholipids at the periphery of the hole 

would probably be more enriched in POPG than in POPE. This 

assumption is indirectly supported by previous Förster energy 

transfer experiments performed with proteoliposomes with different 

POPE:POPG compositions.9 This would result in an electrostatic 

repulsion between neighboring molecules, leading to a relative 

increase in  values. This observation corroborates the topographic 

features observed in Fig. 3F (POPG = 0.75), where a decrease in the 

domain size most probably reflects the increase in the length of the 

boundary region between the two phases. Then, for the SLB at POPG 

= 0.25, such electrostatic repulsion decreases and, thus, phospholipid 

molecules would be closer to each other, resulting in the decrease of 

 values. Consequently, the size of the domains will be the largest 

observed (Figure 3D). When the SLBs are equimolar in composition, 

POPG = 0.5, the values of  obtained for the high and low domains 

were 38 ± 2.0 nN and 29.9 ± 1.1 nN, respectively, which indicates 

that the gel phase should be more likely to withstand higher 

indentation forces. In addition, the Lα phase has a similar  value as 

in the case of POPG, with a molar fraction of 0.75. This observation 

is consistent with the expected enrichment of POPG within the fluid 

phase, as predicted by using the lever phase rule (POPG
α=0.46, 

POPG
β= 0.03, POPE

α = 0.11, POPE
β = 0.39, when POPG = 0.5. 

Conversely, POPE should be the main component of the Lβ phase in 

equimolar composition.  

As recently discussed,15 the parameter S is directly related to the 

nature of the headgroup, being negative for PE and PG. Thus, the 

estimated values in this study corroborated qualitatively those 

reported from previous observations, although in absolute terms they 

were higher for all compositions and domains (Table 2). The 

parameter S seems to obey subtle balances between the acyl chain 

and headgroup composition. Even if this assumption is theoretical 

and still not experimentally determined, this parameter is most likely 

to be related to the lateral surface pressure profile.8,61,62 Negative 

values of S indicate that the hole formed after AFM indentation 

during FS experiments is not easily refilled, which means that the 

SLB loses energy in some way during this process. However, no 

further defects were observed when performing FS experiments, 

which might indicate that the kinetics of the process is faster than the 

velocity of the force curve. The absolute largest and lowest 

estimated S values correspond to the Lβ phase in the SLBs with 
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POPG= 0.75 and to the Lα phase with POPG = 0.25 (Table 2). The 

whole set of S values emphasizes how, the more domains become 

enriched in POPG, the more difficult is for the film to spread into the 

gap between the tip and the substrate.   

 

2.5. Biological Relevance 

To dispose of phase diagrams for mixtures of lipids mimicking 

biological membranes is important in order to understand how phase 

properties may affect the membrane physiology and function. It 

could be interesting, for instance, to get a rationale for the 

development of membrane disruptive antibiotics, directed 

specifically to the prokaryotic membrane but with non action against 

the eukaryotic membrane. Whether the nanostructure of 

biomembranes is becoming more complex by the compilation of 

new evidences that transient and permanent lipid-protein 

associations are present, there is no doubt that the biomembranes are 

always in fluid phase in order to guarantee their functional properties 

However, some biological mechanisms seem to depend on the gel 

state. For instance it is well known that cells modify their membrane 

composition under stress to adapt to the environment.63,64 Hence, 

they respond to changes in temperature, resulting in the increase of 

low-transition temperature phospholipids. The reason for this is that 

highly unsaturated phospholipids have enthalpy values similar to 

those of saturated species. We are investigating thoroughly the 

possible influence of phospholipids on the activity of LacY of E. 

coli, for which the composition mimicking the inner membrane of 

the bacteria is provided by POPE and POPG at a 3 to 1 molar ratio. 

Importantly, for the adaptation of LacY to possible changes 

occurring in the environment, the knowledge of the POPE:POPG 

phase diagram becomes of relevance. Thus, by measuring the 

resonance energy transfer between a single tryptophan mutant of 

LacY (single-W151/C154G) and pyrene labeled phospholipids we 

have shown that the protein may recruit either POPE or POPG, 

depending on the molar phospholipid ratio used to reconstitute the 

protein.9 Although FRET experiments in solution3,9 were carried out 

using this non-transporting mutant, the findings correlate directly 

with other observations on the modifications experienced by natural 

bacterial membranes under stress conditions. Besides, by assuming 

the existence of an annular region of phospholipids around LacY, we 

also demonstrated that there is a specific selectivity of LacY for 

POPE. Similarly, there are studies of mechanosensitive proteins like 

KcsA65 that clearly demonstrate the requirement of specific 

headgroup for the protein activity. Furthermore, a recent study by 

Weingarth et al.66 provided strong evidence on non-annular lipid-

KcsA specific interactions.  

 

Since many structural resolution and nanomanipulation 

investigations of membrane proteins are obtained from AFM by 

using reconstitution procedures into SLBs,67 it becomes of crucial 

relevance to dispose of phase diagrams of the lipid mixtures in-

plane. This information would be the basis for understanding the 

distribution of the transmembrane proteins between the different 

lipid phases, lipid-protein association among other properties 

observed in membrane models and cell membranes.  

 

3. Materials and Methods 

 
DSC of multilamellar liposomes and AFM of SLBs were combined 

to study the thermotropic properties of the binary system, 

POPE:POPG. Sample preparation and experimental procedures have 

been published elsewhere20 and details are available in the 

Supporting Information, SI1. 

 

4. Conclusions 
 

The behaviour of POPE:POPG binary system in the presence of 

10 mM of Ca2+ has been investigated in this study through the 

construction of two phase diagrams: one coming from DSC 

analysis of liposomes and another constructed from SLBs 

imaging by temperature-controlled AFM. Specifically, 

obtaining a phase diagram for SLBs is of great relevance for 

understanding the phase separation phenomena when working 

with this mixture, widely used as the composition that mimics 

the inner membrane of E. coli. The study was completed with 

the FS nanomechanical analysis of SLBs varying the POPG at 

27 ºC. The obtained results evidenced a strong influence of the 

negatively charged PG in the system, which seems to confirm 

that Ca2+ interacts directly with the PG headgroup promoting a 

clustering effect. Hence, we showed that the presence of 

divalent ions in negatively charged bilayers can largely modify 

the physicochemical behaviour of the system, and therefore, it 

becomes important to take it into consideration regarding SLBs 

formation and also possible implications of biological relevance 

as the interaction with membrane proteins. 
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Supporting information I 

 

Materials and Methods 
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-

(1’-rac-glycerol) (POPG) specified as 99% pure were purchased from Avanti Polar Lipids (Alabaster, AL, USA). 

Chloroform and methanol, HPLC grade, and all other commons were purchased from Sigma (St. Louis, MO, USA).  

 

Liposome preparation. Liposomes of POPE:POPG with different molar fractions of POPG were prepared as 

described elsewhere.1 Briefly, chloroform-methanol (2:1, v:v) solutions containing the appropriate amounts of each 

lipid were placed in a conical tube and dried completely under a N2 stream. The resulting thin film was kept protected 

from the light and under high vacuum overnight to prevent any trace of organic solvents. Multilamellar vesicles 

(MLVs) were obtained after hydration of the film with a buffer containing 20 mM Hepes, 150 mM NaCl and 10 mM 

CaCl2, pH 7.40, applying cycles of freezing and thawing below and above the transition temperature of the 

phospholipids. Large unilamellar vesicles (LUVs) were obtained by extrusion (Mini-extruder, Avanti Polar Lipids, 

Alabaster, AL) of the MLVs through filters (Whatman Nederland B.V., Netherlands) with 100 nm of pore diameter. 

Liposome size and the polydispersity index were measured with a Zetasizer Nano S (Malvern Instruments Ltd., 

Worcestershire, UK). Electrophoretic mobility to assess the effective surface electrical charge of each lipid 

composition was determined on MLVs with a Zetasizer Nano ZS90 (Malvern Instruments, UK). Every configuration 

was determined in triplicate and three measurements per sample were performed. 

 

Differential scanning calorimetry (DSC). DSC experiments were carried out as described elsewhere.2 Briefly, 

MLVs used for DSC studies were prepared by redispersion in buffer of the thin film deposited after evaporation of 

appropriate volumes of stock solutions of POPE and POPG in chloroform. DSC analyses used a MicroCal MC-2 

calorimeter and the data obtained were analyzed by the original calorimeter software. Transition temperature (Tm) 

was taken as the temperature of maximum excess specific heat and was measured to the nearest 0.5 °C. The 

calorimetric accuracy for Tm and for enthalpy changes was  0.1 °C and      0.2 kcal·mol-1, respectively. Each 

sample was scanned in triplicate over the temperature range 5-80 °C at a scan rate of 0.44 °C·min-1.  

The phase diagram was constructed from excess heat capacity vs temperature curves obtained by DSC. Tonset and 

Toffset of the main phase transition were determined as those temperatures corresponding to the intersection between 

the tangent of the leading edge and the baseline of the thermograms. These temperatures were then corrected by the 

finite width of the transitions of the pure components weighted with their mole fractions. By connecting the different 

Tonset and Toffset, respectively, the solidus and liquidus curves were defined. 

 

Atomic Force Microscopy Imaging. Atomic Force Microscopy was carried out on a commercial Multimode 

AFM controlled by Nanoscope V electronics (Bruker AXS Corporation, Madison, WI). MSNL-10 sharpened silicon 

nitride cantilevers (Bruker AFM Probes, Camarillo, CA) were used with a mean cantilever spring constant of 30 

pN·nm-1.  

Temperature-controlled experiments were carried out with a Thermal Applications Controller (TAC) (Bruker AXS 

Corporation, Madison, WI). Temperature deviation between the sample and the TAC was calibrated and controlled 

with a Dual Type JKTE thermocouple thermometer (Cole Parmer, Vernon Hills, IL), ensuring the real temperature of 

the sample.  

Freshly cleaved mica discs (1 cm2) mounted on round Teflon discs were glued to steel discs. Liposome suspensions 

were incubated on mica discs for two hours over the transition temperature of the mixture used. To prevent sample 
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evaporation, the steel disc containing the mica and the sample was enclosed in a small Petri dish inside a bigger Petri 

dish with some water at the bottom used as a reservoir. The big Petri dish was then sealed with Teflon ribbon and 

placed inside an oven (Termaks AS, Bergen, Norway) with temperature control of ± 0.2 °C from the desired 

temperature. 

After incubation, non-adsorbed liposomes were removed by gently rinsing samples with buffer. Samples were then 

directly mounted on the AFM scanner and allowed to stabilize. When working above room temperature, an o-ring 

was then incorporated with the aim of enclosing and sealing the sample, in order to avoid further buffer evaporation 

during experiments. AFM was equipped with an “E” scanner (10 µm) and images were acquired in liquid and under 

intermittent contact mode at 0° scan angle with a scan rate of 1.5 Hz. The vertical force was maintained at the 

minimum value, maximizing the amplitude set point value while keeping the vibration amplitude as low as possible. 

All images were processed by a NanoScope Analysis Software (Bruker AXS Corporation, Santa Barbara, CA). 

 

Force Spectroscopy. Force spectroscopy measurements were performed at a constant velocity of 0.5 µm·s-1. 

MSNL cantilevers used in the experiments had a nominal spring constant of 30 pN·nm-1. Individual spring constants 

of the different cantilevers used were determined by the equipartition theorem.3 
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Figure SII1. Ramp temperature of POPE:POPG SLB with POPG =0.25 to construct the pseudo-binary phase 
diagram. AFM topographic images for POPE:POPG SLB with POPG = 0.25 from 17ºC to 45ºC. Bottom profile 

shows a representative height profile from the corresponding image.  
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Figure SII2. Ramp temperature of POPE:POPG SLB with POPG = 0.50 to construct the pseudo-binary phase 
diagram. AFM topographic images for POPE:POPG SLB with POPG = 0.50 from 20ºC to 30ºC. Bottom profile 

shows a representative height profile from the corresponding image.  
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Figure SII3. Ramp temperature of POPE:POPG SLB with POPG = 0.75 to construct the pseudo-binary phase 
diagram. AFM topographic images for POPE:POPG SLB with POPG = 0.75 from 17ºC to 31ºC. Bottom profile 

shows a representative height profile from the corresponding image.  
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   
POPG 

  Domain 0.25 0.50 0.75 

23 ºC 

h (nm) 
Lβ 3.4 ± 0.3 5.4 ± 0.2 5.63 ± 0.11 

L - - - 

Ra (nm) 
Lβ 0.2 0.11 0.11 

L - - - 

27 ºC 

h (nm) 
Lβ 3.06 ± 0.12 5.0 ± 0.2 5.60 ± 0.11 

L 2.7 ± 0.3 3.9 ± 0.4 5.0 ± 0.2 

Ra (nm) 
Lβ 0.20 0.11 0.08 

L 0.19 0.11 0.08 

29 ºC 

h (nm) 
Lβ - - - 

L 2.5 ± 0.3 4.5 ± 0.2 5.0 ± 0.2 

Ra (nm) 
Lβ - - - 

L 0.14 0.13 0.13 

 

Figure SII4. Summary of height and roughness values from the topographic images showed in Figure 3. The 

height values of all SLBs decrease with the increase of the temperature whilst SLBs with higher POPG mole fractions 

present higher height values, which could indicate the presence of electrostatic repulsion forces between the tip and 

the top of the SLB.  
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Figure SII5. Measuring the ratio of each lipid in each phase. A) Representative procedure to calculate the 

proportion of L and L at the desired molar fraction applying the lever rule B) For each POPG molar fraction the 

proportion of POPE and POPG in each phase (L or L) was calculated. From all the POPG studied it can be seen an 

enrichment of POPG in the L phase while in the L phase this enrichment is in POPE.  
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Figure SII6. Zeta potential measures corroborating the negative charge displayed by the SLBs. Zeta potential 

as a function of the POPG mole fraction at 23ºC. Liposomes in the buffer used (Hepes 20 mM, NaCl 150 mM, pH 

7.40, CaCl2 10 mM) presented negative zeta potential values. The graphic indicates an increasing of the negative 

charge borne by the lipids in the SLB as the POPG mole fraction increases too. 
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Chapter 4. Characterization of 

the LacY-phospholipid 

interaction 

 

 

 

4.1 The system of interest 

 

4.1.1 Lipid matrices 

The lipid matrices used in the study of LacY-phospholipid interactions are similar to 

those described in Chapter 3. The only difference is the use of phosphatidylcholine (PC) 

phospholipids in order to study the LacY differential headgroup selectivity. Hence, only 

PC species will be introduced in this section. 

 

4.1.1.1 PC  

PC (Figure 21) is a lipid headgroup which give rise to zwitterionic phospholipids. PC 

phospholipids present higher cross sectional area than PE ones (the choline methylated 

group is larger than the ammonium group), which results in a cylindrical molecular 

shape and a tendency to the lamellar packing. Due to the lack of hydrogen bond donors 

in its structure, PC headgroup cannot perform intermolecular hydrogen bonding. This 

restrains the intermolecular bonding to weak interactions with negatively charged 
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phosphate or to carbonyl groups of adjacent PC molecules by forming charge pairs 

[84,199]. 

PCs are the most abundant lipids in animal cell membranes, where they are commonly 

found in the exoplasmic or outer leaflet. However, they are absent in the membranes of 

most bacteria, including E. coli. 

 

 

Figure 21. Molecular structures of DOPC and POPC. The common PC headgroup is 

evidenced on the right part of the structures. Acyl chains varying its degree of unsaturation 

can be observed on the left.  

 

 POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (see structure in Figure 

21) is a heteroacid phospholipid formed by a PC headgroup and two different fatty 

acyl chains. One of them, palmitoyl, in position sn-1 relative to the glycerol, has 16 

carbon atoms and is completely saturated. Conversely, oleoyl, in position sn-2, is 

formed by an 18 carbon atoms chain and presents a cis unsaturation at the carbon 9.  

 DOPC: 1,2-dioleoyl-sn-glycero-3-phosphocholine (see structure in Figure 21) is a 

homoacid phospholipid formed by a PC headgroup and two identical acyl chains. 

Both acyl chains are oleoyl structures with 18 carbon atoms and a cis unsaturation at 

the carbon 9 as shown for POPC.  
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4.1.2 LacY 

The LacY mutant mainly used in this thesis was obtained after the transformation in E. 

coli cells of plasmid pCS19 encoding single-W151/C154G LacY kindly donated by Dr. 

H. Ronald Kaback from UCLA. Additionally, single-151W/C154G/D68C LacY mutant 

(see mutated sites in Figure 22) was obtained using the Quickchange Site-Directed 

Mutagenesis Kit (Stratagene, La Jolla, CA) in E. coli cells containing the 

aforementioned plasmid. The resultant plasmid pCS19 encoding single-

W151/C154G/D68C LacY construct was confirmed by DNA sequencing. The 

purification of both LacY mutants was achieved as described in sections from 4.3.1 to 

4.3.4.  

 

 

Figure 22. Location of D68 (helix II), W151 and C154G (both at helix V) in a X-ray 

structure of LacY C154G. Based on PDB ID: 1PV6. 

 

4.1.2.1 Single-W151 LacY mutant 

Tryptophan in position 151 (W151) (Figure 22) is one of the important but not 

irreplaceable amino acids in LacY [108]. It is located in helix V close to R144, in a 

hydrophilic environment [200]. Upon sugar binding, W151 becomes less exposed to 

aqueous solvent and a direct stacking interaction between the galactopyranosyl and the 

indole rings has been described from fluorescence experiments [200,201] and X-ray 
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data [112]. This hydrophobic interaction is likely to orient the sugar ring so that 

hydrogen bonds can be formed with side chains of the protein [108]. From all these 

evidences, W151 is thought to be important in substrate binding and specificity [200]. 

In addition, W151 forms a hydrogen bond with E269, a key residue that plays a dual 

role in substrate binding and proton coupling [108,201].   

Single-W151 LacY was obtained by replacing the other five tryptophans with tyrosine 

residues [200] in a mutant that also contained a C154G mutation (described in the 

following section). The mutant was first designed to take advantage of the fluorescent 

properties of W to further investigate the role of the position 151 [200,201]. However, 

due to the unique characteristics of this position regarding emplacement (approximately 

in the middle of the molecule) and function (it becomes inaccessible when substrate is 

present), single-W151 mutant has also been exploited to explore entire LacY 

characteristics [131–133,202].  

 

4.1.2.2 C154G LacY mutant 

LacY C154G mutant (see Figure 22), firstly described by Smirnova et al. [203] is a 

conformationally restricted mutant of the protein. Working with this mutant represents 

two main advantages as compared to the wild type: it shows good thermostability and 

exhibits little tendency to aggregate in detergent [203]. Particular benefit was taken 

from this enhanced protein stability when this mutant was used to obtain the first X-ray 

crystal of LacY [112]. However, C154G mutation in LacY provokes secondary changes 

in the protein functioning.  

In fact, C154G LacY mutant binds sugar as well as the wild-type but exhibits little or no 

transport activity [203]. In wild-type, sugar binding induces closing of the cytoplasmic 

cavity with opening of a hydrophilic clef on the periplasmic side, which is the key for 

the sugar transport across the membrane. Conversely, although the severely restricted 

C154G undergoes closing of the cytoplasmic cavity after ligand binding, the 

periplasmic cleft appears to be paralyzed in an open state [204]. The mechanism leading 

to this trapped conformation seems to be a tighter packing in helix V due to the presence 

of glycine which hinders the helix movement needed for the structural transition [120].  
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In any case, this mutant has been largely employed to study LacY 

[69,83,128,200,205,206] and, despite its lack of transport activity, it is normally 

assumed that its structure is indistinguishable from the global structure of the wild-type 

protein.   

 

4.1.2.3 D68C LacY mutant 

Aspartic acid in position 68 (D68) is a well conserved residue in the MFS family which 

is thought to be part of the motif GXXXD(R/K)XGR(R/K) in the first intracellular loop 

linking helices II and III [207,208]. This motif has been shown to play an important role 

in transport by mutational analysis [207–209]. In addition, in MFS proteins such as 

LmrP it has been postulated that D68 position can establish a hydrogen bond with a 

surrounding phospholipid DOPE (and single- and double-methylated DOPE, but not 

DOPC), which might be important for the protein for the proper sensing of the proton 

gradient. Thus, substrate binding and transport are lost in LmrP D68X mutants [210].  

In the specific case of LacY, X-ray data showed that although the motif is conserved, 

D68 is not placed in the II/III loop, but at the cytoplasmic end of helix II and within 

bonding distance of K131 at the end of helix IV (Figure 22) [211]. D68 role is anyway 

important in this emplacement, since different D68 and K131 mutants have been 

analyzed and all the tested replacements for D68 are inactive while K131 is more 

permissive [211]. However, second-site suppressor mutations can recover the protein 

activity indicating that this carboxyl side chain is not absolutely required for symport.  

D68X mutants bind substrate normally but present a loss of transport activity likely 

caused by the decreased probability of opening the hydrophilic pathway on the 

periplasmic side of LacY upon sugar binding [211]. In fact, it can be explained by the 

strength of the interaction between D68 and K131. This interaction, although weak, 

exhibits marked sensitivity to changes in the nature of the side chains. Therefore, it has 

been postulated that any mutation can strengthen this interaction and inhibit the 

dynamics of LacY [211].  

Furthermore, the possible interaction of this residue with surrounding PEs as it happens 

with LmrP has also been proposed. As mentioned, in the crystal structure D68 is 

directed toward the inside of the protein to interact with K131. However, performing 
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molecular dynamic (MD) simulations and after dynamic stabilization of a system 

containing LacY embedded in a phospholipid matrix, Lensink et al. [136] described the 

presence of an important salt bridge between D68, a phospholipid molecule, and K69. It 

appeared after the rotation of D68 side chain to bind the amine group of the POPE, or 

the choline group of POPC (although this interaction was weaker), but no binding was 

present in the case of POPG. From these studies, D68 was identified as the most 

relevant PE-interacting residue. Strikingly, Andersson et al. [83] also studied 

phospholipid-LacY interactions using MD simulations techniques and although eight 

residues were identified as the most lipid-interacting amino acids, none of them turned 

out to be D68. Hence, although the importance of this position regarding crucial 

conformational changes seems clear for LacY, the possible link between D68 with the 

phospholipid environment reminds a subject for further study.  

 

4.1.3 LacY-phospholipid systems 

In order to analyse protein-lipid interactions, two different LacY-phospholipid systems 

have been used (i) the formation of proteoliposomes to be analysed by fluorescence 

techniques, and (ii) the formation of SLBs to be analysed using AFM. 

 

4.1.3.1 Proteoliposomes 

Proteoliposomes are liposomes with one or more different membrane proteins inserted 

within the bilayer in a specific lipid-to-protein ratio (LPR). They have been obtained 

following methods largely studied and developed by Rigaud et al. [212,213] which 

involve removing the detergent from a micellar solution containing the purified protein 

and a suitable combination of lipids. Although other techniques for membrane protein 

reconstitution into liposomes are available (organic solvent-mediated-reconstitution, 

mechanical means including sonication or French-press...), detergent-mediated 

reconstitution is the most used strategy, since most membrane proteins need detergents 

to be extracted, purified and solubilised without losing their tertiary structure and 

activity [214]. 

Hence, the procedure to obtain proteoliposomes involves initial protein-detergent and 

lipid-detergent solutions which are combined to obtain a lipid-protein-detergent micellar 
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solution. Then, detergent is gradually eliminated. This removal results in the progressive 

formation of closed lipid bilayers in which the proteins eventually incorporate to finally 

form proteoliposomes [213].  

There also exist various methods for detergent removal, namely dialysis, gel 

chromatography, dilution and hydrophobic adsorption onto polystyrene beads. Here, the 

latter detergent depletion technique was chosen. It is based on the use of macroporous 

divinyl benzene cross-linked polystyrene non-polar beads (Bio-beads SM2
®

) with a 

high surface area for adsorbing organic materials from an aqueous solution, which is 

done through hydrophobic bonding. Bio-beads SM2
®

 are mainly used in a batch 

procedure, taking advantage of their preferential affinity for detergents over 

phospholipids and proteins [214]. Complete detergent removal and minimization of 

protein and phospholipid loses can be carefully controlled depending on the biobead-to-

detergent ratio and the time of contact of the biobeads with the micellar system [213]. 

Since the very first time LacY was reconstituted into proteoliposomes in a fully 

functional state [152], this technique has been extensively used in the literature, either at 

high LPRs as a strategy to obtain 2D crystallization and thus structural information of 

the protein [215,216] or at lower protein densities in order to perform other experiments 

related to functionality and lipid-protein interaction [131,140].  

 

4.1.3.2 SLBs with reconstituted membrane proteins 

Another strategy to study lipid-protein interactions is the AFM analysis of proteolipid 

sheets (PLSs), i.e. supported lipid SLBs with reconstituted membrane proteins. There 

exist numerous ways to prepare these systems being the more used the Langmuir-

Blodgett/Schaefer approach, the in situ incorporation of proteins in already preformed 

SLBs, and the vesicle fusion technique [93].  

The Langmuir-Blodgett/Schaefer approach, although technically challenging, has been 

successfully used to obtain 2D crystals of membrane proteins in what is known as the 

lipid-layer approach [217]. Regarding the in situ incorporation, it is a quite 

straightforward technique developed by Milhiet’s group [218], which is very suitable to 

obtain domains with high protein concentration. It is achieved from purified membrane 

proteins that are directly incorporated into SLBs previously destabilised by detergents.  
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Finally, the vesicle fusion technique is the selected approach in this thesis. It permits the 

extension of native mixtures of lipids and proteins coming from membrane extractions 

[219] as well as the extension of proteoliposomes obtained from purified membrane 

proteins and selected lipid compositions [34,216]. The main parameters controlling the 

process of extension of the proteoliposomes are the density of proteins (highly crowded 

vesicles leads to protein aggregation or to vesicles too small for AFM studies), the size 

of the vesicles, the lipid composition, the time and temperature of deposition and the 

nature of the support.  

 

 

4.2 Techniques to characterize the system 

 

4.2.1 FRET fluorescence 

Förster resonance energy transfer (FRET) is a photophysical process named after 

Theodor Förster, the scientific who revealed the theoretical basis for nonradioactive 

energy transfer [220]. Curiously, he was partly motivated by his familiarity with 

photosynthetic systems, which are one of the most fascinating examples of FRET in 

nature.  

FRET is radiationless and can occur in the excited state under some specific conditions 

(Figure 23). The process implies the transmission of an energy quantum from its site of 

absorption, an initially excited fluorophore that is called the donor (D), to the site of its 

utilization in a molecule called the acceptor (A). The D typically emits at shorter 

wavelengths than the A and the electronic emission spectrum overlaps with the 

excitation spectrum of the A, which can be a non-fluorescent molecule. The FRET 

process occurs without an intermediate photon from D to A. Instead, both molecules are 

coupled by long-range dipole-dipole interactions which are the responsible of the 

energy transfer. In addition, it occurs without conversion to thermal energy and without 

the D and A coming into a kinetic collision [162,221]. 
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Figure 23. Schema depicting the Förster resonance energy transfer (FRET) process through 

the energetic levels of two molecules, the donor (D) and the acceptor (A), which present the 

requirements to act as FRET pairs.  

 

Therefore, FRET is one of the numerous ways that an excited fluorophore can undergo 

to lose its excitation energy. It can be represented as follows 

         
   

  
→      

where kT is the rate of energy transfer [221]. The appearance of the energy transfer as 

well as its rate depends upon the extent of spectral overlap of the emission spectrum of 

the D with the excitation spectrum of the A, the quantum yield of the D, the relative 

orientation of the D and A transition dipoles, and the D-A distance. More important, 

distances where the energy transfer occurs are in the scale of biological 

macromolecules. Indeed, the distance at which FRET is 50% efficient, called the Förster 

distance, is typically in the range of 0.5-10 nm and comparable to the diameter of many 

proteins, the thickness of biological membranes and the distance between sites on 

multisubunit proteins. Additionally, the process takes place mostly independent of the 

intervening solvent and/or macromolecule [162,220]. 

The most readily accessible measure of FRET is the transfer efficiency, E, which can be 

obtained using the relative fluorescence intensity of the donor, in the absence (ID) and 

presence (IDA) of acceptor, 

    
   
  
    

∫    ( )  
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This equation is only applicable to D-A pairs which are separated by a fixed distance. 

However, a single fixed donor-acceptor distance is not found for mixtures of donors and 

acceptors in solution, nor for donors and acceptors dispersed randomly in membranes. 

More complex expressions are required in these cases [162,222].  

For all these characteristics, FRET has been widely used as a “spectroscopic ruler” for 

measurements in biological systems, taking advantage of its capability to detect 

distances between molecules which are either close one to another or moving relative to 

each other in the nanometric range. As a result, FRET applications extend from 

spectroscopic measurements [65,223] to imaging experiments in the fluorescence 

microscope [224,225] and single molecule experiments [226]. In membrane science 

FRET has revealed as a very interesting method to investigate membrane biophysics 

[227,228], but especially as an excellent tool for the study of protein-lipid interactions 

[222,229,230].  

 

4.2.1.1 Pyrene labelled phospholipids  

Pyrene is a polycyclic aromatic fluorophore (Figure 24). Its most characteristic features 

are a long excited state lifetime and a concentration-dependent formation of excimers. 

Excimers, which describe excited pyrene dimmers, are structures arisen from the 

particular photophysical behaviour of the molecule. Thus, a monomeric excited-state 

pyrene (monomer, M) can relax radiatively to ground state by emission of photons with 

a maximum wavelength at ≃ 375 nm, the exact peak energy and spectral fine structure 

depending on the solvent polarity. During excited lifetime, M can also collide with a 

ground-state pyrene and form a characteristic temporary complex named excimer (E). 

This complex relaxes back to two ground-state pyrenes by emitting a photon with a 

maximum wavelength centred at ≃ 470 nm. The presence of both species, related by the 

excimer-to-monomer (E/M) ratio mainly depends on the rate of collisions between 

different pyrene molecules [129,231]. 
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Figure 24. Pyrene structure. 

 

Interestingly, the pyrene molecule can also act as an acceptor in a FRET process. For 

instance, the pyrene excitation spectrum overlaps extensively with the tryptophan 

emission spectrum (Figure 25) [231]. In this case, pyrene-tryptophan pairs displays a 

Förster distance of 2.1 – 2.7 nm [222]. 

 

 

Figure 25. Overlap between the emission spectrum of the LacY mutant single-

W151/G154C (dashed line) and the excitation spectrum of proteoliposomes containing PG 

phospholipids labelled with pyrene at the acyl chain (solid line) (Figure from Picas et al., 

2010 [132]). 

 

All those capabilities make pyrene a very interesting molecule for the study of the 

properties of biomembranes and membrane models [129]. Such studies are normally 

carried out by employing fluorescent phospholipid analogues that mimic the natural 

membrane components. Hence, the use of pyrene-labelled phospholipids (Figure 26) 

offers several advantages [232], since they lead to a system less sterically perturbed 

thanks to a probe that is an integral part of a system component. In addition, the 

hydrophobic characteristics of pyrene facilitate the insertion of the labelled-
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phospholipid into the membrane. However, some perturbation of the system appears 

unavoidably and intrinsic to the use of fluorophores [233]. In pyrene-labelled 

phospholipids the fluorophore is usually attached to the distal end of the acyl chain 

(Figure 26A), thus replacing one of the lipid fatty acid chains. Alternatively, it can be 

also attached to the phospholipid headgroup (Figure 26B). However, the use of such 

derivatives is more delicate since the hydrophobic pyrene moiety in the headgroup 

might alter the physical properties of the labelled lipid molecule [231].   

 

 

Figure 26.  Structure of PE phospholipids labelled with a pyrene at the acyl chain (A) and at 

the headgroup (B). They correspond to the fluorophores employed in sections 4.3.1-4.3.3. 

 

When working with pyrene-labelled phospholipids, the obtained E/M ratio, related to 

the collision rate of pyrene moieties, might reflect the lateral mobility of the analogues, 

as well as the local concentration of the fluorophore in the membrane [129,231]. Hence, 

the probe is a suitable and sensitive tool for studying a variety of biophysical 

phenomena like lateral diffusion, phase behaviour and dynamics of lipids [231,234].  

Finally, the possibility of performing FRET between pyrene-labelled phospholipids and 

tryptophan remains very attractive. Being this amino acid the most important intrinsic 

fluorophore in proteins, the use of pyrene-labelled phospholipids may support the 

simultaneous study of (i) the bilayer fluidity and organization through the E/M ratio 

data (Figure 27A) and/or, (ii) the lipid-protein interactions when the protein of interest 

contains at least one tryptophan residue in its structure (Figure 27B).  
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Figure 27. Processes occurring when pyrene-labelled phospholipids are added to a 

phospholipid bilayer with reconstituted single-tryptophan proteins: formation of pyrene 

excimers occurring when two pyrene-labelled phospholipids are close one to another (A), 

and FRET energy transfer from the tryptophan (red) to pyrene-labelled phospholipids (blue) 

placed within Förster distance (B). 

 

4.2.2 Atomic force microscopy in lipid-protein systems 

AFM is the only microscopy technique that allows the analysis of membrane proteins at 

subnanometer resolution and under physiological conditions [235]. It enables the 

imaging of membrane proteins with a powerful performance, reaching even lateral 

resolutions of ≃0.5 nm and vertical resolutions of ≃0.1 nm [236]. Additionally, the 

characteristics of membrane proteins naturally immobilised in lipid membrane largely 

facilitate the use of this SPM technique. With the development of high resolution and 

high speed AFM, the technique has evolved until achievements such as the direct 

observation of membrane protein functioning [177,237] or even the track of protein 

diffusion in the lipid bilayer [238]. 
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In this thesis, conventional AFM has been used to study PLSs. It has been carried out 

using topography imaging and force spectroscopy (already explained in 3.2.4). Force-

volume and molecular unfolding or single-molecule force spectroscopy have also been 

employed.  

Force-volume (FV) imaging is an AFM mode that combines the force measurement 

with the topographic image. It is performed through the simultaneous measure of 

topography and interaction forces, which can be obtained by periodically indenting the 

AFM tip into the sample when scanning its surface features. Therefore, in the FV mode 

each (x, y) position is associated with a FD curve in z, creating thus a force density map 

that can be directly correlated to topography. 

This technique has been used to examine polymer properties [239] and produce 

elasticity maps of heterogeneous materials such as biominerals [240], polymer 

composites [239,241], and living cells [242]. In membrane science FV has been mainly 

focused on the study of large areas with coexistence of components [243,244]. In 

addition, by chemically modifying the AFM tip with a ligand (chemical force 

microscopy), FV imaging has been successfully employed to create complete maps of 

recognition sites in samples, e.g. in living cells surfaces [245,246], or purified proteins 

[247,248]. 

Finally, although this approach is slower than some recently developed techniques such 

as the Peakforce
®

 AFM, it remains interesting due to easier tuning of applied forces and 

more precise measurement of force curves. This ensures that in soft samples, the proper 

topography of undisturbed layers is measured with force curves corresponding to 

interactions between the tip and the intact bilayer [244]. However, the main drawback 

of the technique is that the slow acquisition time directly compromises the lateral 

resolution of the AFM image and the drift [55].  

Molecule unfolding with AFM is an advanced application of force spectroscopy which 

can be directed to many different biomolecules. In the case of protein unfolding this 

technique allows the study of the mechanical properties of the molecule. In fact, protein 

unfolding is a huge area in biophysics and biochemistry that studies the behaviour of a 

protein assembly under different stresses such as chemical, thermal or mechanical. 

Protein unfolding with AFM is performed through a mechanical process. Other 

techniques such as optical or magnetic tweezers also study the protein unfolding under 
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mechanical stress, although AFM is the one presenting higher accessibility, simplicity 

and best ease to work with membrane proteins [249]. Interestingly, AFM protein 

unfolding is, in principle, assumed to be a single-molecule experiment and so it implies 

the study of only one molecule at a time. After a significant number of events, a 

distribution of single observable events can be obtained, while distributions from 

average values are characteristics of bulk experiments [249]. 

When performing the protein unfolding, the initial distribution of the sample is 

unknown and therefore the “fishing” for samples is usually done randomly by 

systematic scanning of the substrate. Additionally, a protein can by picked up at random 

positions of its surface [73] which makes the process highly stochastic. A way to 

improve the reproducibility of the experiments is to perform what is called the specific 

unfolding, e.g. by functionalizing tips and/or modifying proteins to ensure a single 

interaction point between both components. 

The AFM molecule unfolding consists in a process similar to a FD curve where the 

AFM tip is pressed against the sample. The main difference is that, in this case one or 

more proteins may potentially adsorb to the tip upon withdrawing. Then, as the tip-

surface distance increases, the molecule starts to be stretched and it shows an opposing 

force which results in a nonlinear restoring force. This force increases until critical 

bonds are broken. Once this point is reached, the protein segment unfolds and is 

unravelled. This sudden increase in the length of the molecule normally drops the force 

to basal levels, which results in a typical force peak. If the tip continues withdrawing, 

subsequent protein segments may continue their unfolding thus creating the 

characteristic sawtooth peaks profile (see Figure 28). Hence, changes in cantilever 

deflection and force needed to unfold the protein are recorded and the curve of interest 

is obtained by plotting force versus tip-sample separation. The resulting FD curve 

reveals forces required to pull the molecule out of the lipid membrane [249]. 
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Figure 28. Typical spectrum obtained from an unfolding experiment of bacteriorhodopsin 

with the main peaks fitted using the worm-like chain model (A). Peaks correlated to the 

unfolding of secondary structure elements of the bacteriorhodopsin (B) (Modified from 

Marisco et al., 2006 [250]). 

 

In order to facilitate the analysis, the protein unfolding behaviour under mechanical 

stress is normally assimilated to the nonlinear force-extension relationship of a polymer 

being stretched. The behaviour of stretched polymers is well described by elasticity 

models of semiflexible polymers. The most widely used model is the interpolated 

approximation to the Worm-like chain (WLC), which has been successfully applied to 

model the elasticity of proteins, DNA, and RNA on stretching [249].  

The WLC model considers a polymer as a flexible chain of length Lc (contour length) 

and predicts the restoring force F. Another parameter, the persistence length (p), is 

related to the flexibility of the molecule (i.e. the distance through which the orientation 

of the polymer remains correlated). In the case of proteins p ≃ 0.4 nm, which is the 

average value of the length of a single amino acid [251]. The analytical expression of 

the interpolated approximation to the WLC model [252] can be expressed as follows  

 ( )  
   

 
[
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] 
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where F(x) is the force at a distance x, kB is the Boltzmann constant, and T is the 

temperature. Then, by applying this equation to each of the unfolding peaks it is 

possible to obtain the increase in contour length for each unfolding event, which would 

correspond to the increase in length of the unfolded protein segment. Finally, by 

dividing this number by the length contribution of each amino acid, the number of 

amino acids found in the unfolded region can be obtained.  

The particular case of membrane proteins unfolding involves the simultaneous study of 

intramolecular (between protein residues) and intermolecular (protein-lipid) 

interactions. For the unfolding, the forces to overcome are typically weak interactions, 

e.g. hydrogen bonding, hydrophobic forces, ionic and van der Wals interactions, which 

are in a whole collectively strong enough to hold the structure together. Therefore, the 

fine details of unfolding pathways require high force resolution like the one AFM can 

provide [253]. 

Furthermore, the mechanical unfolding pathways of membrane proteins are different 

than those found for water-soluble proteins. Whereas water-soluble proteins unfold 

cooperatively, when unfolding membrane proteins they present sequential unfolding 

steps, which indicates the presence of unfolding intermediates and constitute an 

unfolding pathway [254]. This phenomenon has been interpreted as a response to the 

separate contributions from intramolecular interactions that stabilize individual 

structural segments and from contributions from intermolecular interactions such as 

those represented by tertiary contacts (e.g protein-lipid interplay) [255]. Finally, one 

membrane protein can unfold with different characteristic pathways which are sensitive 

to environmental conditions [254]. 
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4.3 Experimental results 

 

4.3.1 Membrane protein−lipid selectivity: enhancing sensitivity for 

modeling FRET data 

 

Suárez-Germà, C., Loura, L. M. S., Prieto, M., Domènech, Ò., Montero, 

M. T., Rodríguez-Banqueri, A., Vázquez-Ibar, J. L., Hernández-Borrell, J. 

(2012).  

The Journal of Physical Chemistry B, 116(8), 2438-45.  

 

4.3.1.1 Summary 

FRET is a powerful method for the characterization of membrane proteins lipid 

selectivity. It can be used to quantify distances between a single D and a single A 

molecule; however, for FRET D and A scattered in the bilayer plane, multiple D-A pairs 

and distances are present. In addition, when studying protein/lipid selectivity, for a 

single tryptophan used as a D; several lipid acceptors may be located at the boundary 

region (annular lipids) of the protein. Therefore, in these experiments a theoretical 

analysis based on binomial distribution of multiple acceptors around the membrane 

proteins is required. In this study, we performed FRET measurements between an 

engineered single tryptophan situated in a hydrophilic cavity in the centre of LacY 

(single-W151/C154G LacY) used as D and pyrene acyl chain-labelled phospholipids 

(Pyr-PE, Pyr-PG, and Pyr- PC) used as acceptors reconstituted in POPE, POPG, POPC, 

and DOPC matrices at 25 and 37 °C. Previous studies were done with proteoliposomes 

reproducing a biomimetic system with PE:PG (3:1, mol/mol) and a χ = 0.0025 of probe 

[133]. However, this configuration created a severe dilution of the labelled phospholipid 

and therefore, although significant trends appeared, a rather weak energy transfer was 

detected. Hence, in order to increase the sensitivity of the method and to ascertain the 

lipid selectivity for LacY, the protein was reconstituted now in one-component host 

lipid matrices doped with 1.5% of probe. In addition, the influence of the headgroup and 

acyl chain composition was investigated. 
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Binding capabilities of LacY (and consequently correct folding) in the different lipid 

matrices were ascertained by taking advantage of W151 position which, after binding of 

a substrate, becomes inaccessible to a fluorescein-maleimide fluorophore. The obtained 

results indicated that, apart from POPE matrix, in all other lipid compositions LacY 

displayed a good substrate binding. However, taking into account LacY’s normal 

fluorescent spectra when embedded in a POPE matrix and other bibliographic results 

[130], a correct topology of LacY in the POPE matrix was assumed.  

By analysing the experimental FRET efficiency for Pyr-PE, Pyr-PG, and Pyr-PC in all 

host matrices at 25 and 37 °C, Pyr-PE was found to be the preferred lipid in the annular 

region of LacY irrespectively of the temperature and the composition. Next, Pyr-PG 

was preferred over Pyr-PC in the POPE and POPG matrices at 25 ºC and in the DOPC 

matrix at both temperatures. On the contrary Pyr-PE>Pyr-PC>Pyr-PG trend occurred in 

POPE and POPG matrices at 37 °C and in the POPC matrix at both temperatures. 

Interestingly, Pyr-PC showed higher FRET efficiency in POPC compared to DOPC, 

indicating a possible influence of the degree of unsaturation of the acyl chains. An 

opposite behaviour was observed for Pyr-PG, for which the efficiency in DOPC was 

higher in contrast with POPC matrix.  

From fitting the mentioned theoretical model to the experimental FRET efficiencies, 

two parameters were calculated: the probability (µ) of a site in the annular ring being 

occupied by a pyrene-labelled phospholipid and the relative association constant (Ks) 

between the labelled and unlabelled phospholipids. In all cases, both were the highest 

for Pyr-PE. Especially notable was the relative Pyr-PG enrichment found in the annular 

region when the matrix was DOPC (Ks > 1), since this labelled-phospholipid was 

excluded from POPC matrix (Ks ∼ 0). And, curiously, Pyr-PC was enriched in the 

annular region in a POPC matrix (Ks > 1) and excluded from it in a DOPC matrix (Ks ∼ 

0). 

Additional information on the annular lipid composition of each system was obtained by 

exciting W151 of single-W151/C154G LacY and monitoring the emission intensities 

for monomer and excimer of the pyrene spectra. The obtained excimer-to-monomer 

(E/M) ratios were always higher for Pyr-PE than for the other labelled phospholipids, at 

both temperatures and at all phospholipid matrices.  
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In conclusion, it has been observed by using single component systems that the 

selectivity of LacY for PE is much higher than that for either PC or PG. That is, with the 

limitations imposed by the model and the system itself, we confirm that Pyr-PE is able 

to get closer to or, alternatively, to stay longer near LacY. We report also that when the 

phospholipids in the annular region of LacY are zwitterionic heteroacids (PE, PC), the 

probability for anionic PG to be in close proximity is very low. The presented data also 

suggest that the nature of the hydrophobic moiety and the appropriate acyl chain 

combination in phospholipids may govern the optimal function of LacY. 

 

4.3.1.2 Highlights 

 Selectivity of LacY for different Pyr-PE, Pyr-PG, Pyr-PC was tested in four different 

pure lipid matrices (POPE, POPG, POPC and DOPC) at 25 and 37 °C. In all 

compositions and at all temperatures Pyr-PE was the phospholipid predominant in 

the annular region surrounding the protein. Thus, phospholipids with PE headgroup 

seem to preferentially constitute the annular region of LacY thanks to its ability to 

get closer or, alternatively, stay longer near the protein. 

 Results in POPG matrix (Pyr-PE>Pyr-PG>Pyr-PC at 25 °C and Pyr-PE>Pyr-

PC>Pyr-PG at 37 °C) have to be carefully considered since LacY might be 

incorrectly folded despite the preserved binding capabilities [130].  

 The presence of Pyr-PC in the annular region in POPC but not in DOPC matrices 

points to a possible influence of the degree of unsaturation of the phospholipid acyl 

chains in the protein selectivity.  
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Membrane Protein−Lipid Selectivity: Enhancing Sensitivity for
Modeling FRET Data
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ABSTRACT: Förster resonance energy transfer (FRET) is a powerful method for
the characterization of membrane proteins lipid selectivity. FRET can be used to
quantify distances between a single donor and a single acceptor molecule; however,
for FRET donors and acceptors scattered in the bilayer plane, multiple donor−
acceptor pairs and distances are present. In addition, when studying protein/lipid
selectivity, for a single tryptophan used as a donor; several lipid acceptors may be
located at the boundary region (annular lipids) of the protein. Therefore, in these
experiments, a theoretical analysis based on binomial distribution of multiple
acceptors around the membrane proteins is required. In this work, we performed
FRET measurements between single tryptophan lactose permease (W151/C154G
LacY) of Escherichia coli and pyrene-labeled phospholipids (Pyr-PE, Pyr-PG, and Pyr-
PC) reconstituted in palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, 1-
palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt), 1-palmito-
yl-2-oleoyl-sn-glycero-3-phospho-choline, and 1,2-dioleoyl-sn-glycero-3-phospho-
choline at 25 and 37 °C. To increase the sensitivity of the method and to ascertain the lipid selectivity for LacY, we
reconstituted the protein in the pure phospholipids doped with 1.5% of labeled phospholipids. From fitting the theoretical model
to the experimental FRET efficiencies, two parameters were calculated: the probability of a site in the annular ring being occupied
by a labeled pyrene phospholipid and the relative association constant between the labeled and unlabeled phospholipids. The
experimental FRET efficiencies have been interpreted taking into account the particular folding of the protein in each
phospholipid matrix. Additional information on the annular lipid composition for each system has been obtained by exciting
W151/C154G LacY and monitoring the emission intensities for monomer and excimer of the pyrene spectra. The results
obtained indicate a higher selectivity of LacY for PE over PG and PC and pointed to a definite role of the acyl chains in the
overall phospholipid−protein interaction.

■ INTRODUCTION
Cell envelopes play an important role in many physiological
and pathological processes: signal transduction; transport of
drugs and metabolites; energy generation; and development of
tissues, including tumor metastasis and viral and bacterial
infections, among many others. The cell membrane is presently
viewed as a heterogeneous object because of the lateral
distribution and segregation of its two fundamental compo-
nents: phospholipids and proteins. Transmembrane proteins
(TMPs) involved in specific transport molecules across the
phospholipid bilayer represent 5−10% and 3% of total proteins
encoded by bacterial and human genomes, respectively.
A large number of secondary transporters, in which the

source of energy for the process of transport depends on the
electrochemical potential gradient (Δμ̃i), of ions such as Na+ or
H+ contain 12 or 14 transmembrane segments (TMS) (α-
helix),1 crossing the membrane in a zigzag fashion. Many of
these proteins play an important role in conferring resistance to

drugs (anticancer and antibiotics) in both bacterial and
eukaryotic cells. One of the paradigmatic models of membrane
transporters is lactose permease (LacY) of Escherichia coli.2

LacY, the secondary structure of which is shown in Figure 1a, is
probably the best characterized of all proteins belonging to the
12-TMS group that also includes, among others, the efflux
pumps LmrP of Lactococcus lactis and NorA of Staphylococcus
aureus,3 which actively expel daunomycin and norfloxacin,
respectively. In the context of the chemiosmotic theory,4 LacY
utilizes the Gibbs energy stored in Δμ̃H+ to drive the uphill
translocation of galactosides. Although the coupling mechanism
is not completely solved, the basic pathway of sugar and H+

translocation through LacY and across the membrane is known
in high detail.2 TMPs are solvated by membrane lipids. There is
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evidence, mainly based on earlier electron spin resonance
experiments,5 supporting the existence of a layer of
phospholipids in intimate interaction with the TMPs that are
known as annular lipids. In physical terms, this is a boundary
region that provides an adequate thickness and lateral pressure
to embed the protein following what is referred to in the field as
the matching principle.6

In previous works,7,8 we have demonstrated that an adequate
method to investigate the composition of the annular region is
Förster resonance energy transfer (FRET).9 The strategy
consists of measuring the efficiency of the energy transfer
between a single tryptophan (Trp) mutant of LacY (W151/
C154G),10 used as a donor (D), and different pyrene-labeled
phospholipids as acceptors (A). The main conclusions drawn
were that both phosphoethanolamine (PE) and phosphoglycer-
ol (PG) can be part of the annular region, with PE being the
predominant phospholipid. On one hand, these results
reinforce the basic consensus on the PE requirement for
LacY correct folding and in vivo function.11 On the other hand,
to better mimic the inner bacterial membrane composition,
these previous efforts were carried out mostly in PE/PG 3:1
mixtures, a ratio identical to that found in the inner membrane
of E. coli.12

This creates a dilution problem. For example, in an
experiment in which the acceptor is labeled PE, even if the
annular region would consist solely of PE lipid, the enrichment
of labeled PE in this layer would be only of a factor 4/3. Adding

to the fact that unspecific FRET to acceptors outside the
annular layer is always present, this would imply a rather
modest increase in the expected FRET efficiency. Finally, the
simple fact that a pyrene acyl chain labeled lipid behaves
identically to an unlabeled lipid of the same class is
questionable, and this cannot be resolved in an experiment in
which the host lipid matrix is a two-component mixture. For
these reasons (to gain increased sensitivity and to assess the
extent of correct reporting by the acceptor probes of each
class), this protein system is readdressed in this paper, using
different one-component host lipid matrixes. In addition, the
influence of the headgroup and acyl chain composition is
investigated.
In this work, we have reconstituted single-W151/C154G

LacY in proteoliposomes formed with 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-
sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt)
(POPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-choline
(POPC) or 1,2-dioleoyl-sn-glycero-3-phospho-choline
(DOPC). The FRET strategy in the framework of this study
consisted in measuring the efficiency of the energy transfer (E)
between an engineered single tryptophan situated in a
hydrophilic cavity in the center of LacY and three different
pyrene-labeled phospholipids used as acceptors that are
analogues of PE, PG, and PCs.

Figure 1. Secondary structure model of lactose permease showing topological organization in the presence (a) and absence (b) of PE or PC.
Putative transmembrane helices, connected by extramembrane loops, cytoplasmic (C) and periplasmic (P), are shown in boxes. The approximate
positions of the W151 (donor) (helix V) and the position of pyrene labeled molecules (acceptor) in the annular region is also shown. Based on ref
19.
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■ EXPERIMENTAL METHODS

Materials. N-Dodecyl-β-D-maltoside (DDM) was purchased
from Anatrace (Maumee, OH, USA). POPE, POPG, POPC,
and DOPC were purchased from Avanti Polar Lipids
(Alabaster, AL, USA). 1-Hexadecanoyl-2-(1-pyrenedecanoyl)-
sn-glycero-3-phosphocholine (Pyr-PC), 1-hexadecanoyl-2-(1-
pyrenedecanoyl)-sn-glycero-3-phosphoglycerol ammonium salt
(Pyr-PG), 1-hexadecanoyl-2-(1-pyrenedecanoyl)-sn-glycero-3-
phosphoethanolamine ammonium salt (Pyr-PE), and fluores-
cein-5-maleimide were purchased from Invitrogen (Barcelona,
Spain). β-D-Galactopyranosyl-1-thio-β-D-galactopyranoside
(TDG), isopropyl-1-thio-β-D-galactopyranoside (IPTG), and
dithiothreitol (DTT) were obtained from Sigma Chemical Co.
(St. Louis, MO, USA), and Bio-Beads SM-2 were purchased
from Bio-Rad (Hercules, CA, USA). All other common
chemicals were ACS grade.
Bacterial Strains and Protein Purification. These

detailed procedures have been described in previous papers.7,8

Briefly, E. coli BL21(DE3) cells (Novagen, Madison, WI, USA)
transformed with plasmid pCS19 encoding single-W151/
C154G LacY provided by Dr. H. Ronald Kaback (UCLA,
USA), were grown in Luria−Bertani broth at 30 °C containing
ampicillin (100 μg/mL) and induced at the appropriate
moment with 0.5 mM IPTG. Cells were disrupted, and the
membrane fraction was harvested by ultracentrifugation.
Membranes were solubilized by adding DDM and purified by
Co(II) affinity chromatography (Talon Superflow, Palo Alto,
CA, USA). Protein eluted with 150 mM imidazole was
subjected to gel filtration chromatography using a Superdex
200 20/30 column (GE-Healthcare, UK) equilibrated with 20
mM Tris−HCl (pH 7.5), 0.008% DDM. The protein was
concentrated by using Vivaspin 20 concentrators (30 kDa
cutoff; Vivascience, Germany) and stored on ice. Protein
identification was performed by SDS/PGE electrophoresis, and
protein quantitation was carried out using a micro-BCA kit
(Pierce, Rockford, IL).
Vesicle Preparation and Protein Reconstitution. Lip-

osomes and proteoliposomes were prepared according to
methods published elsewhere7,8 Briefly, chloroform−methanol
(2:1, vol/vol) solutions containing appropriate amounts of both
labeled and unlabeled phospholipids were dried under a stream
of oxygen-free N2 in a conical tube. The total concentration of
phospholipids was calculated as a function of the desired lipid-
to-protein ratio and protein concentration (1.5 μM). The
amount of fluorescent probe was x = 0.015 for all the
experiments. The resulting thin film was kept under high
vacuum for ∼3 h to remove any traces of organic solvent.
Multilamellar liposomes were obtained following redispersion
of the film in 20 mM Hepes, 150 mM NaCl buffer, pH 7.40,
and applying successive cycles of freezing and thawing both
below and above the phase transition of the phospholipids and
sonication for 2 min in a bath sonicator. Afterward, large,
unilamellar liposomes supplemented with 0.2% of DDM were
incubated overnight at room temperature. Liposomes were
subsequently mixed with the solubilized protein and incubated
at 4 °C for 30 min with gentle agitation to obtain a lipid-to-
protein ratio (w/w) of 40. DDM was extracted by addition of
polystyrene beads (Bio-Beads SM-2, Bio-Rad).
Binding Properties of Single-W151/C154G LacY

Reconstituted in Vesicles. Substrate recognition by single-
W151/C154G LacY reconstituted in lipid vesicles was tested by
adapting a previously described protocol7,8 based on the

protection of the substrate against thiol modification of LacY.
Briefly, 50 μL of proteoliposomes containing 1.5 μM of single-
W151/C154G LacY13 were incubated at room temperature for
5 min with either TDG or 15 mM L-glucose. Next, the samples
were incubated with the fluorescent dye fluorescein-5-
maleimide for 10 min at room temperature. The reaction was
stopped by adding 5 mM of DTT. To evaluate the extent of
LacY labeling, proteoliposomes were solubilized with 1% SDS
and subjected to 12% PAGE gel electrophoresis. In-gel
fluorescence was evaluated using a G-BOX gel analysis
instrument (Syngene, Cambridge, UK) and compared with
the total amount of protein after staining the same gel with
Coomassie blue.

FRET Methodology. Steady state fluorescence measure-
ments were carried out with an SLM-Aminco 8100 (Urbana, IL,
USA) spectrofluorometer. The cuvette holder was thermo-
statted with a circulating bath (Haake, Germany), which was
used to control temperature within 0.1 °C. The fluorescence
experiments were performed at 25 and 37 °C. The excitation
and emission bandwidths were 4/4 and 8/8 nm, respectively.
Annular fluidity was determined as described elsewhere.14

Pyrene was excited at 338 nm, with fluorescence spectra
scanned from 350 to 500 nm. For energy transfer measure-
ments, Trp was excited at 295 nm, and the spectra were
recorded from 300 to 500 nm. To calculate the excimer-to-
monomer fluorescence ratio (E/M), we used signal intensities
at 375 nm (corresponding to the peak of monomer band) and
470 nm (maximum of pyrene excimer band). As described in
detail elsewhere,7,8 single-W151/C154G LacY, the donor, was
excited at 295 nm, and emission of the pyrene-labeled
phospholipids, the acceptor, was monitored at 338 nm.
FRET efficiencies (E) are calculated according to the

equation

∫
∫

= − = −
∞

∞E
I
I

i t t

i t t
1 1

( ) d

( ) d
DA

D

0 DA
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where ID and IDA are the tryptophan emission intensities in the
absence or presence of pyrene acceptors, respectively. The
reported values of experimental E are the averages of triplicate
measurements from five separate reconstitutions. In the case of
transmembrane proteins, we have to consider the existence of
two different populations of phospholipids, those forming the
first shell surrounding the protein, confined in the so-called
boundary region, and those of the bulk. Assuming these two
populations of A molecules, the fluorescence decay of D
molecules can be written as

= ρ ρi t i t t t( ) ( ) ( ) ( )a rDA D (2)

where iD and iDA are the donor fluorescence decays in absence
and presence of acceptor molecules, respectively. Since the
number of annular pyrene phospholipids around each protein
molecule is expected to follow a binomial population,15 the
annular contribution to the decay can be expressed as

∑ρ = μ − μ
=

− −( )t
m
n( ) e (1 )a

n

m
nk t n m n

0

t

(3)

where m is the number of phospholipid molecules in the first
layer surrounding the protein, taken as 46 for LacY;8 μ is
defined as the probability of each site in the annular ring being
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occupied by a labeled pyrene phospholipid; and kt is the rate
constant for D−A energy transfer,

=
τ

⎜ ⎟⎛
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⎞
⎠k

R
R

1
t

0
6

(4)

where, in turn, τ is the donor lifetime and R0 is the Forster
radius (3.0 nm for the Trp/pyrene).16 On the other hand, R,
the distance between the D and annular A molecules, can be
estimated according to

= +( )R w R2
e

2 1/2
(5)

where w (estimated as 1.2 nm) is the transverse distance
between D (the Trp residue, for which an interfacial location is
expected) and A (hydrophobic fluorophore, expected to reside
near the bilayer center), and Re (estimated as 3.0 nm) is the
exclusion distance along the bilayer plane between the protein
axis and the annular lipid molecules. For this system, the
resulting value R = 3.2 nm was considered.8

The probability, μ, can be written as

μ =
+

=K
n

n n
K Xs

pyr

pyr PL
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where the n's are the mole numbers of the labeled (npyr) and
nonlabeled (nPL) phospholipids, Xpyr is the label mole fraction,
and Ks is the relative association constant between the labeled
and unlabeled phospholipids. Thus, Ks = 1 denotes equal
probability of finding acceptors in the annular region and in the
bulk, whereas Ks = 0 means no acceptor in the annular region.
Alternatively
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By inserting eq 7 into eq 6, we obtain a more intuitive meaning
of Ks,

=X K Xpyr
ann

s pyr (8)

that is, Ks is the ratio between the acceptor mole fractions in the
annular region and in the overall system.

The FRET contribution of acceptors randomly distributed
outside the annular region is given by Davenport et al.17 as
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where b = (R0/l)
2τ−1/3, n2 is the acceptor density in each leaflet,

and l is the distance between the plane of the donors and the
plane of the acceptors.

■ RESULTS AND DISCUSSION
The topological organization of LacY is well established.18 As
can be seen in Figure 1, the protein in its natural topology
consists of 12 transmembrane α-helices, crossing the membrane
in a zigzag fashion, that are connected by 11 relatively
hydrophilic, periplasmic (P) and cytoplasmic (C) loops, with
both amino and carboxyl termini on the cytoplasmic surface. It
is important to note within the context of the following
discussion that in cells and proteoliposomes formed with PG or
cardiolipin, LacY adopts an inverted topology (Figure 1b),
whereas in the ones containing PE or PC, LacY adopts the
natural topology (Figure 1a).19 In this work, for FRET
modeling, LacY has been assimilated to a cylinder with a
diameter ∼6 nm in which the single tryptophan residue
(W151) lies in the center of the cylinder. Despite the
limitations of such approach, the model was tested successfully
in preceding works,8 where it was assumed that the single-
W151/C154G mutant of LacY is indistinguishable from the
global structure of the wild type protein.
With this assumption, we have reconstituted the protein in

matrixes including 1.5% of pyrene-labeled phospholipids. This
increase in the unlabeled/labeled phospholipid ratio was
intended to improve the sensitivity of the FRET measurements
to produce efficiencies of E ≈ 0.5, for which FRET sensitivity to
distance is maximal. Since LacY topological organization is
sensitive to the lipid environment,19 it is quite relevant to study
the structural organization of the protein when reconstituted in
the one-component host lipid matrices used in the present
work.
To ascertain the folding of LacY in the different matrices, we

used a fluorescence experiment that provides information about
the ability of LacY to recognize its specific substrate, TDG.8

Binding of TDG to LacY protects against the covalent
modification of the protein by the fluorescent dye fluo-
rescein−maleimide, whereas the nonsubstrate, L-glucose, does

Figure 2. Substrate recognition by single-W151/C154G LacY reconstituted in proteoliposomes. Fluorescein−maleimide labeling of purified single-
W151/C154G LacY reconstituted in vesicles composed of (a) POPE, (b) POPG, (c) POPC, and (d) DOPC. As indicated, the experiments were
performed in the presence of 15 mM of TDG, 15 mM L-glucose, or no substrate (control). The upper panels (black background) correspond to the
fluorescence intensity of fluorescein-labeled protein after being subjected to a 12% SDS−PAGE gel electrophoresis. The lower panels are the same
gels after protein staining with Coomassie blue.
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not show such protection. As can be seen in Figure 2, in
addition to the exception of POPE 98.5% lipid composition,
TDG binding to LacY reconstituted in all the studied lipid
systems partially blocks fluorescein−maleimide labeling. This
indicates that the reconstituted protein can selectively recognize
the substrate TDG over the nonsubstrate L-glucose.2

Incidentally, it may be noticed that POPG 98.5% composition
shows, in general, paler fluorescence, which may be attributed
to the repulsion encountered by the negatively charged
fluorescein when approaching the negative matrix, which may
somewhat hinder the probe−protein interaction.
Given the functional data shown previously, the absence of

TDG protection against fluorescein−maleimide labeling in
LacY reconstituted with POPE (Figure 2, upper panel a) is
somehow contradictory with the fact that PE is the most
abundant phospholipid species (70%) in the inner E. coli
membrane.12It is noteworthy that LacY reconstituted into
phospholipids extracted from E.coli cytoplasmic membranes
composed mainly of PE (up to 75%) is fully functional and
shows high levels of active transport.19 Similar to what it has
been reported in other works,20 fluorescence spectra of LacY

reconstituted in PE proteoliposomes was indistinguishable from
the proteoliposomes of other compositions. This suggests that
the position of the fluorophore, sited near the binding site,
remains unaltered and that the global structure is maintained.
Then we may assume that LacY adopts a correct topology
when reconstituted in 98.5% POPE proteoliposomes.
Regarding matrixes formed with anionic phospholipids, it is

well established that LacY cannot carry out uphill but downhill
substrate transport.21 This is due to a change in the topological
organization of domains C6 and P7 of LacY (Figure 1b).19

Nevertheless, the binding site remains unaltered in POPG,
since it supports downhill transports and, in our studies,
substrate recognition (Figure 2, upper panel b). Furthermore,
similar functional behavior (only downhill transport) is found
when LacY is reconstituted in proteoliposomes mostly
composed of the neutral zwitterionic phospholipid DOPC.19

However, it has been demonstrated that the protein conserves
its physiological topology (Figure 1a).
Figure 3 shows the experimental FRET efficiency for the

three Pyr-labeled phospholipids used as acceptors (Pyr-PE, Pyr-
PG, and Pyr-PC) in all host lipids at 25 and 37 °C. At first

Figure 3. FRET efficiency between W151 and Pyr-PE (black columns), Pyr-PG (white columns) and Pyr-PC (striped columns) in POPE and POPG
matrixes at 25 (a) and 37 °C (b) and in POPC and DOPC matrixes at 25 (c) and 37 °C (d). Proteoliposomes (1.5 μM LacY) were doped with 1.5%
of the corresponding phospholipids analog label. The error bars stand for σ/√n, σ being the standard deviation, and n, the number of measurements
performed.

Table 1. Experimental Efficiencies, Probabilities of Each Site in the Annular Ring Being Occupied by a Pyrene Labeled
Phopholipid and Relative Association Constant toward LacY

POPE matrix POPG matrix

labeled lipid (1.5%) experimental E μ Ks Ks/Ks(PE) experimental E μ Ks Ks/Ks(PE)

25 °C Pyr-PE 0.79 0.10 6.53 1.00 0.66 0.03 2.00 1.00
Pyr-PG 0.53 0.00 0.00 0.00 0.51 0.00 0.00 0.00
Pyr-PC 0.52 0.00 0.00 0.00 0.40 0.00 0.00 0.00

37 °C Pyr-PE 0.77 0.08 5.53 1.00 0.68 0.04 2.47 1.00
Pyr-PG 0.47 0.00 0.00 0.15 0.54 0.00 0.00 0.00
Pyr-PC 0.63 0.02 1.40 0.25 0.66 0.03 2.00 0.81
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sight, there is a larger preference for Pyr-PE, irrespective of the
temperature and the phospholipid matrix. Pyr-PE is preferred
over Pyr-PG, and the latter over Pyr-PC, in the POPE and
POPG matrixes at 25 °C (Figure 3a), and in the DOPC matrix
at both temperatures (Figures 3a, c). A change in preference,
Pyr-PC by Pyr-PG occurs in the POPE and POPG matrixes at
37 °C (Figure 3b) and in the POPC matrix at both
temperatures (Figure 3c, d). Interestingly Pyr-PC shows a
higher efficiency in POPC than in DOPC, indicating a possible
influence of the degree of unsaturation of the acyl chains. An
opposite behavior is observed for Pyr-PG, for which the
efficiency in DOPC is higher than in the POPC matrix.
In Table 1, the experimental FRET values are listed along

with the calculated μ and Ks values. As can be seen, the
probability of finding labeled phospholipids at the annular
regions (μ) is always the highest, irrespective of the matrix, for
Pyr-PE. This behavior reflects the values of the FRET efficiency
mentioned above. By inspecting the outcome for Ks values, we
notice that the largest values are obtained for Pyr-PE in all
matrixes and both temperatures. It is worth mentioning that
ideally, Ks = 1 for any probe that mimics the nonlabeled
phospholipids, and values between 1 and 3 have been
reported.9 Therefore, these high values of Ks obtained for
Pyr-PE may indicate either an annular region extremely
enriched in the label or that Pyr-PE does not mimic well the
unlabeled phospholipid. Although this may be a handicap, if
one compares across probes in the same host lipid, it becomes
clear that there is an effect of preference of Pyr- PE for PE over
PG and PC. Since the probes are all equal except for the
headgroup, and for comparing the different probes in the same
host lipid, Ks/Ks (PE) ratios are provided in Table 1.
In the POPE matrix, μ values indicate that Pyr-PG is

excluded at both temperatures and that Pyr-PC is excluded at
25 °C and shows a small enrichment at 37 °C. Since Ks = 0
means no acceptor in the annular region, it becomes clear that
at 25 °C, Pyr-PG and Pyr-PC are completely excluded.
Although Pyr-PG behaves in the same way at 37 °C, LacY
shows an increased preference for Pyr-PC at this temperature.
The overall results in the POPE matrix, in which LacY is folded
closely to the in vivo conditions (Figure 1a), point to the fact
that Pyr-PE should be in closer proximity than the other labels.
On the other hand, notice that μ and Ks for Pyr-PE in the
POPG matrix are compatible with a moderate enrichment of
the label in the annular region. Notice that Pyr-PG is depleted
from the annular region at both temperatures when the host
phospholipid is POPG. Similarly, we can observe that Pyr-PC is
also depleted when hosted by POPG at 25 °C and that a very
slight enrichment is observed at 37 °C.
All these observations may be likely related to the inverted

topology of domains C6 and P7 of LacY (see Figure 1b) when
reconstituted in POPG proteoliposomes.19 Our FRET

measurements in POPE and POPG matrixes confirm the
preference of LacY for PE and its probable predominance in the
annular ring.7,8 This may indirectly support a hypothetical
interaction between the PE headgroup and some specific
residue of the protein.23,24 Importantly, recent observations
have shown that uphill transport occurs in E. coli, in which PE
has been completely exchanged by PC.25 Since in PE and PC
matrixes LacY exhibits its natural topology (Figure 1a), this
intriguing observation points to a more complex molecular
interaction between the protein and the annular phospholipids.
Hence, FRET measurements in PC matrixes (Table 2) become
of interest given the fact that despite its natural topology in
these matrixes, LacY shows only downhill transport in DOPC
proteoliposomes.19 Pyr-PG is slightly enriched in the annular
region when the matrix is DOPC (Ks > 1) but is excluded from
it in a POPC matrix (Ks ∼ 0). However, the most interesting
result is possibly that, according to the Ks values, Pyr-PC is
enriched in the annular region in a POPC matrix (Ks > 1) and
excluded from it in a DOPC matrix (Ks ∼ 0).
Given that DOPC and POPC share the same headgroup and

have very similar hydrophobic lengths in the bilayer (2.48 nm
for DOPC vs 2.54 nm for POPC),26 this difference is probably
related to the different specific curvature of the two lipid
species. It has been reported that whereas proper topology of
LacY depends on a dilution of high negative surface charge
density (and hence, probably the decreased affinity of the
protein for PG), rather than on spontaneous curvature (C0),

27

the latter appears to be crucial regarding uphill transport of
lactose by LacY in vivo,28 with negative curvature lipids such as
PE being required. C0 (POPC) is essentially zero, and DOPC,
due to its additional unsaturated acyl chain, has a negative
specific curvature (C0(DOPC) = −0.11 nm−1).26 Although its
value is still far from the nonbilayer lipid DOPE (C0(DOPE) =
−0.35 nm−1),26 it may justify the preference of properly
reconstituted LacY for DOPC rather than POPC, and hence,
the differential behavior in DOPC and POPC matrixes
regarding selectivity for labeled probes.
In addition, DOPC is also much closer to PE on hydratation

properties. The fact that an opposite trend is observed for Pyr-
PG (Table 2) is suspicious and probably related to the above-
mentioned improper organization of LacY in PG. Interestingly,
according to theoretical calculations,29 although repulsive
contributions in the core of the membrane are similar (∼166
bar and ∼200 bar for POPC and DOPC, respectively), the
repulsive forces at the headgroups level are much higher for
POPC (∼675 bar) than for DOPC (∼266 bar). Therefore,
whatever the precise mechanism involved in the phospholipid−
protein interplay may be, there would be a subtle balance
among the forces evolved from physicochemical properties of
the molecules.

Table 2. Experimental Efficiencies, Probabilities of Each Site in the Annular Ring Being Occupied by a Pyrene Labeled
Phopholipid and Relative Association Constant toward LacY

POPC matrix DOPC matrix

labeled lipid (1.5%) experimental E μ Ks Ks/Ks(PE) experimental E μ Ks Ks/Ks(PE)

25 °C Pyr-PE 0.74 0.07 4.31 1.00 0.90 0.28 18.50 1.00
Pyr-PG 0.55 0.00 0.02 0.00 0.67 0.03 2.24 0.12
Pyr-PC 0.72 0.05 3.63 0.84 0.50 0.00 0.00 0.00

37 °C Pyr-PE 0.80 0.11 7.08 1.00 0.89 0.25 16.47 1.00
Pyr-PG 0.55 0.00 0.02 0.00 0.71 0.05 3.60 0.22
Pyr-PC 0.67 0.03 2.24 0.32 0.49 0.00 0.00 0.00
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The excited-state pyrene molecules display two characteristic
peaks in the fluorescence spectra, for the monomer and
excimer, respectively. The specific E/M ratio will result in the
collision rate of the pyrene molecules. Thus, additional
information can be obtained by exciting the single tryptophan
of W151/C154G LacY and monitoring the emission intensities
for M and E of the pyrene spectra because only the labeled
molecules surrounding the protein, annular lipids, will be
selectively excited. Consequently, the E/M ratio will provide
information on the annular lipid proportion for each system.
The E/M ratios reported by the pyrene probes in the

corresponding host phospholipids under study are shown in
Figure 4. As can be seen, theses ratios were always higher for
Pyr-PE than for the other labeled phospholipids, at both
temperatures and all phospholipid matrixes. Notice that slight
differences in the E/M ratios for Pyr-PG and Pyr-PC are
observed in the POPE and POPG matrices (Figure 4a, b) and
that Pyr-PG shows slightly higher E/M ratios than Pyr-PC in
the POPC and DOPC matrixes (Figure 4c, d). Although
caution should be taken with such conclusion, on the basis of
the assumption that labeled and unlabeled phospholipids
behave similarly, these overall results are in agreement with
the overall FRET observations and support the idea that LacY
is preferentially surrounded by PE rather than by the other
phospholipids and that acyl chains may play a definite role in
the transport processes.

■ CONCLUSIONS

In this work, we have observed by using single component
systems that the selectivity of LacY for PE is much higher than
that for either PC or PG. That is, with the limitations imposed
by the model and the system itself, we do confirm that Pyr-PE
is able to get closer to or, alternatively, spend more time next to

the LacY. We report also that when the phospholipids in the
annulus of the LacY are zwitterionic (PE) or neutral (PC)
heteroacids, the probability for anionic PG to be in close
proximity is very low. The presented data also suggest that the
nature of the hydrophobic moiety and the appropriate
heterological combination of phospholipids may govern the
optimal function of LacY.
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4.3.2 Phosphatidylethanolamine−lactose permease interaction: a 

comparative study based on FRET  

 

Suárez-Germà, C., Loura, L. M. S., Domènech, Ò., Montero, M. T., 

Vázquez-Ibar, J. L., Hernández-Borrell, J. (2012).  

The Journal of Physical Chemistry B, 116(48), 14023-8. 

 

4.3.2.1 Summary  

In the present study we investigated the selectivity of LacY for its surrounding 

phospholipids when reconstituted in binary mixtures of POPE, DPPE, or DOPE with 

POPG at a 3:1 molar ratio. FRET measurements were performed to investigate the 

selectivity between a single tryptophan mutant of LacY used as D, and two analogues of 

PE and PG labelled with pyrene in the acyl chains (Pyr-PE and Pyr-PG) used as 

acceptors. As a difference from previous works, the donor was W151 from single-

W151/C154G LacY, but with an additional mutation (D68C) in which an aspartic acid 

residue was replaced by a cysteine. It has been reported that the replacement of the 

aspartic acid in position 68 by cysteine inhibits active transport in LacY [211]. 

Moreover, this highly conserved residue in MFS has been proposed as the main 

mediator of the interaction between PE and the protein [136]. Thus, we aimed to 

elucidate the phospholipid composition of the annular region of this mutant, and to 

determine whether the mutation performed, induced changes in the protein−lipid 

affinity. Additionally, results were fitted to a model consisting in a theoretical analysis 

of FRET results based on a binomial distribution of multiple acceptors around a 

membrane protein. 

Proper binding capabilities of the mutant in the studied matrices were assessed in 

proteoliposomes by a method that takes advantage of W151 (see 4.3.1). Thus, in all 

lipid matrices the protein was considered to be correctly inserted and folded in the 

membrane. 

When performing FRET measurements, transfer efficiencies for Pyr-PE were always 

higher than for Pyr-PG. The values of the probability of each site in the annular ring 

being occupied by a label (μ) were similar at the studied temperatures (24 and 37 °C), 
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suggesting that the lipid environment was not significantly affected when modifying the 

temperature.  

By comparing the results with those obtained for single-W151/C154G LacY, it was 

observed that the mutation in the 68 residue indeed changed the selectivity of the 

protein for the phospholipids. As a matter of fact, normalized values of FRET efficiency 

were similar for both mutants in DOPE:POPG (3:1, mol/mol), and lower and higher 

normalized values were observed in POPE:POPG (3:1, mol/mol) and DPPE:POPG (3:1, 

mol/mol), respectively, for the systems where the 68 residue was mutated into cysteine. 

These results support the preference for PE in systems in the Lα phase as well as a 

higher relative affinity between POPE and single-W151/C154G than between POPE 

and single-W151/C154G/D68C. Unexpectedly, while the model could not be applicable 

for DPPE:POPG (3:1, mol/mol) system when the D was single-W151/C154G LacY, 

efficient energy transfer occurred when using the single-W151/C154G/D68C mutant. 

Hence, this last mutant was able to recruit Pyr-PE in its vicinity even in the presence of 

phase separation. Thus, while the lipid selectivity for wild-type D68 was DOPE ∼ 

POPE >> DPPE, the mutation to cysteine increased the protein selectivity for DOPE 

over POPE and DPPE (DOPE>POPE>DPPE). This observation reinforces the 

implication of the acyl chains in the LacY-lipid interaction besides the headgroup 

requirement. 

Finally, all the gathered evidences indicate that the introduction of the mutation in the 

68 site brings to a change of LacY affinity for POPE. This may lead to a modification in 

the composition of the phospholipids in close contact with the protein, which might be 

induced by changes in the conformational dynamics of LacY resulting in a recruitment 

of the phospholipid species most adaptable to the geometrical needs of the protein. 

 

4.3.2.2 Highlights 

 The annular region of single-W151/C154G/D68C LacY has been studied through 

FRET analysis between W151 and labelled phospholipids (Pyr-PE and Pyr-PG) in 

DOPE, POPE and DPPE, and POPG lipid matrices (PE:PG 3:1, mol/mol). 

 In all the studied lipid compositions, D68C mutant preferentially showed PE over PG 

in its annular region. This differ from calculations with W151/C154G LacY, in 

which the protein showed enrichment in PE in all the lipid matrices, except in the 
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phase separated system DPPE:POPG (3:1, mol/mol) with POPG as the predominant 

species in the annular region. Thus, this represents a change in the protein-lipid 

affinity and a modification in the composition of the annular region of the protein, 

most likely to better adapt to a possible new geometrical organization.  

 A higher relative affinity between POPE and single-W151/C154G than between 

POPE and single-W151/C154G/D68C has been reported. This suggests a possible 

role for D68 in the PE-LacY interaction.  

 D68C mutant affinity for PE presented and acyl chain selectivity as follows: 

DOPE>POPE>DPPE. This points to possible requirements of the protein for specific 

acyl chain configurations besides the headgroup requirement.  
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ABSTRACT: In this work we have investigated the selectivity of lactose
permease (LacY) of Escherichia coli (E. coli) for its surrounding
phospholipids when reconstituted in binary mixtures of 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1,2-Palmitoyl-sn-glyc-
ero-3-phosphoethanolamine (DPPE), or 1,2-dioleoyl-sn-glycero-3-phos-
phoethanolamine (DOPE) with 1-palmitoyl-2-oleoyl-sn-glycero-3-(phos-
pho-rac-(1-glycerol)) (POPG). Förster resonance energy transfer (FRET)
measurements have been performed to investigate the selectivity between a
single tryptophan mutant of LacY used as donor (D), and two analogues of
POPE and POPG labeled with pyrene in the acyl chains (Pyr-PE and Pyr-
PG) used as acceptors. As a difference from previous works, now the donor
has been single-W151/C154G/D68C LacY. It has been reported that the
replacement of the aspartic acid in position 68 by cysteine inhibits active
transport in LacY. The objectives of this work were to elucidate the
phospholipid composition of the annular region of this mutant and to determine whether the mutation performed, D68C,
induced changes in the protein−lipid selectivity. FRET efficiencies for Pyr-PE were always higher than for Pyr-PG. The values of
the probability of each site in the annular ring being occupied by a label (μ) were similar at the studied temperatures (24 °C and
37 °C), suggesting that the lipid environment is not significantly affected when increasing the temperature. By comparing the
results with those obtained for single-W151/C154G LacY, we observe that the mutation in the 68 residue indeed changes the
selectivity of the protein for the phospholipids. This might be probably due to a change in the conformational dynamics of LacY.

■ INTRODUCTION

Cell envelopes play an important role in many physiological
and pathological processes: signal transduction, transport of
drugs and metabolites, energy generation, and development of
tissues, among many others. The cell membrane is presently
viewed as a heterogeneous object because of the lateral
distribution and segregation of its two fundamental compo-
nents: phospholipids and proteins. Transmembrane proteins
(TMs) involved in specific transport of molecules across the
phospholipid bilayer account for 5−10% and 3% of total
proteins encoded by bacterial and human genomes, respec-
tively. Among the secondary transporters, where the source of
energy for the process of transport depends on electrochemical
potential gradient of ions such as Na+ or H+, one of the most
studied groups is formed by the 12-TMS family characterized
by the presence of 12 transmembrane segments (α-helix).1,2

Many of these proteins are the therapeutic targets of several
drugs and play an important role in conferring drug resistance
(to anticancer drugs and antibiotics) in both bacteria and

eukaryotic cells. One of the paradigmatic models of the
transport protein is lactose permease (LacY) from Escherichia
coli,3 the best characterized of all proteins belonging to the 12-
TMS group that also includes the LmrP efflux pump in
Lactococcus lactis4 or NorA of Staphylococcus aureus,5 that
actively expel daunomycin and norfloxacin, respectively. LacY is
a lactose cotransporter (symporter) against gradient (uphill)
that is coupled with the proton electrochemical potential
gradient. The three-dimensional structure of the C154G
mutant of LacY6 and other LacY mutants7−9 obtained by X-
ray diffraction have definitively contributed on the under-
standing of the mechanism of lactose/H+ cotransport.3

Actually, LacY was the first symporter to be solubilized from
membrane, purified to homogeneity,10 and shown to catalyze
all the translocation reactions typical of the transport system in
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vivo.11 LacY is often reconstituted in native E. coli polar
phospholipid membrane extracts as well as in binary mixtures of
phosphatidylgycerol (PG) and phosphatidylethanolamine (PE)
that mimic the inner membrane of the bacteria. The presence
of PE is required not only for its function12 but also for its
correct folding in the membrane during biogenesis.13

Furthermore, the addition of specific phospholipids to the
detergent-purified protein has been recognized as the key for
obtaining suitable crystals for X-ray diffraction14 a fact that
emphasizes the strong interplay between LacY and phospho-
lipids.
It has been hypothesized4,15 that the aspartic acid 68 (D68),

a highly conserved residue in the major facilitator superfamily
(MFS), where LacY belongs, mediates the interaction between
PE and transporters of this superfamily. It has been
demonstrated that this residue is important for the protein to
be sensitive to the proton gradient but also that it plays a role in
facilitating conformational changes needed for substrate
translocation.16 In fact, although D68 position is very sensitive
to replacement, several second-site activity revertants have been
described,17 which suggests that D68 is not absolutely
irreplaceable for the transport mechanism. D68 mutants are
still able to bind substrate, but its translocation is locked. On
this basis, the proposed mechanism is that the D68 mutation
decreases the probability of opening of the hydrophilic pathway
on the periplasmic side of LacY upon sugar binding. This is
reinforced by the findings that not only the negative charge of
the aspartic acid but also the structure of the amino acid is
important in this position. In this regard, even the most
conservative replacement, D68E, inactivates LacY transport.18

This is because D68 interacts with K131 forming a weak H
bonding pair which enables LacY dynamics. On the contrary,
replacement of position 68 with glutamate results in a stronger
charge-pair interaction with lysine 131, thus preventing the
necessary chain reorganization for sugar-induced opening of the
periplasmic cavity. In this regard, Lensink et al.15 performed
LacY molecular dynamics (MD) simulation studies to
investigate specific protein−lipid interactions. These authors
found only one lipid-mediated salt bridge between conserved
residues in LacY, D68 being the crucial amino acid in this
interaction. This bond involves two residues, D68 and K69, and
a phospholipid, preferably PE over single and double
methylated PE. Interestingly, it has been shown that PC
interacts also, weaker than the unmethylated PE, and that PG is
never involved in the interaction. Importantly, these results are
the first to suggest a possible mechanism for the direct
interaction between PE and a member of the MFS transporters.
In previous works19−21 we have exploited Förster resonance

energy transfer (FRET) to study lipid selectivity between a
single tryptophan mutant of LacY (W151/C154G), used as
donor (D), and different phospholipids labeled with pyrene in
the acyl chains that are used as acceptors (A). In the present
work we have used W151/C154G and delineated a new mutant
W151/C154G/D68C, in which the aspartic acid residue has
been replaced by cysteine. The strategy consists of measuring
the FRET efficiency between the single tryptophan mutants
reconstituted in PE:PG 3:1, mol/mol matrixes, and two
different acyl-chain pyrene-labeled phospholipids used as
acceptors, Pyr-PG or Pyr-PE. The objectives of these
experiments are 2-fold: (i) to ascertain the composition of
the annular lipids that surround LacY; (ii) to investigate if the
D68C mutation will result in changes in such affinity.

2. MATERIALS AND METHODS

N-Dodecyl-β-D-maltoside (DDM) was purchased from Ana-
trace (Maumee, OH). 1,2-Palmitoyl-sn-glycero-3-phosphoetha-
nolamine (DPPE), 1,2-dioleoyl-sn-glycero-3-phosphoethanol-
amine (DOPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoe-
thanolamine (POPE), and 1-palmitoyl-2-oleoyl-sn-glycero-3-
(phospho-rac-(1-glycerol)) (sodium salt) (POPG) were
purchased from Avanti Polar Lipids (Alabaster, AL). 1-
Hexadecanoyl-2-(1-pyrenedecanoyl)-sn-glycero-3-phosphogly-
cerol ammonium salt (Pyr-PG) and 1-hexadecanoyl-2-(1-
pyrenedecanoyl)-sn-glycero-3-phosphoethanolamine ammo-
nium salt (Pyr-PE) were purchased from Invitrogen (Barcelona,
Spain). Isopropyl 1-thio-β-D-galactopyranoside (IPTG) was
obtained from Sigma Chemical Co. (St. Louis, MO), and Bio-
Beads SM-2 were purchased from Bio-Rad (Hercules, CA). All
other common chemicals were ACS grade.

2.1. Bacterial Strains and Protein Purification. Single-
151W/C154G/D68C LacY mutant was obtained using the
Quickchange Site-Directed Mutagenesis Kit (Stratagene) from
E. coli BL21(DE3) cells (Novagen, Madison, WI) containing
plasmid pCS19 encoding single-W151/C154G LacY donated
by Dr. H. Ronald Kaback (UCLA, Los Angeles CA). The
resultant plasmid pCS19 encoding single-W151/C154G/D68C
LacY construct was confirmed by DNA sequencing. The
purification of this mutant was achieved following procedures
detailed in previous papers.19−21 Briefly, E. coli was grown in
Luria−Bertani broth at 30 °C containing ampicillin (100 μg/
mL) and induced at the appropriate moment with 0.5 mM
isopropyl 1-thio-β-D-galactopyranoside. Cells were disrupted,
and the membrane fraction was harvested by ultracentrifuga-
tion. Membranes were solubilized by adding DDM and purified
by Co (II) affinity chromatography (Talon Superflow, Palo
Alto, CA). Protein eluted with 150 mM imidazole was
subjected to gel filtration chromatography using a Superdex
200 10/30 column (GE-Healthcare, UK) equilibrated with 20
mM Tris-HCl (pH 7.5), 0.008% DDM. The protein was
concentrated using Vivaspin 20 concentrators (30 kDa cutoff;
Vivascience, Germany) and stored on ice. Protein identification
was performed by SDS/PGE electrophoresis, and protein
quantitation was carried out using a micro-BCA kit (Pierce,
Rockford, IL).

2.2. Vesicle Preparation and Protein Reconstitution.
Liposomes and proteoliposomes were prepared according to
methods published elsewhere.19−21 Briefly, chloroform−meth-
anol (2:1, vol/vol) solutions containing appropriate amounts of
both labeled and unlabeled phospholipids were dried under a
stream of oxygen-free N2 in a conical tube. The total
concentration of phospholipids was calculated as a function
of the desired lipid-to-protein ratio (LPR) and protein
concentration (1.5 μM). The mole fraction of fluorescent
probe (relative to total lipid) was x = 0.0025 for all the
experiments. The resulting thin film was kept under high
vacuum for approximately 3 h to remove organic solvent traces.
Multilamellar liposomes (MLVs) were obtained following
redispersion of the film in 20 mM HEPES, 150 mM NaCl
buffer, pH 7.40, and applying successive cycles of freezing and
thawing below and above the phase transition of the
phospholipids, and sonication for 2 min in a bath sonicator.
Afterward, large unilamellar liposomes (LUVs) supplemented
with 0.2% of DDM were incubated overnight at room
temperature. Liposomes were subsequently mixed with the
solubilized protein and incubated at 4 °C for 30 min with
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gentle agitation, to obtain a lipid to protein ratio (w/w) of 40.
DDM was extracted by addition of polystyrene beads.
2.3. Binding Properties of Single-W151/C154G LacY

Reconstituted in Vesicles. Substrate recognition by single-
W151/C154G LacY reconstituted in lipid vesicles was tested by
adapting a protocol previously described,20,21 based on the
protection of the substrate against thiol modification of LacY.
Briefly, 50 μL of proteoliposomes containing 1.5 μM single-
W151/C154G/D68C LacY22 were incubated at room temper-
ature for 5 min with either 15 mM β-D-galactopyranosyl-1-thio-
β-D-galactopyranoside (TDG) or 15 mM L-glucose. Next, the
samples were incubated with the fluorescent dye fluorescein-5-
maleimide for 10 min at room temperature. The reaction was
stopped by adding 5 mM DTT. To evaluate the extent of LacY
labeling, proteoliposomes were solubilized with 1% SDS and
subjected to 12% PAGE gel electrophoresis. In-gel fluorescence
was evaluated using a G-BOX gel analysis instrument (Syngene,
Cambridge, UK) and compared to the total amount of protein
after staining the same gel with Coomassie blue.
2.4. FRET Modeling. Steady-state fluorescence measure-

ments were carried out with an SLM-Aminco 8100 (Urbana,
IL) spectrofluorometer. The cuvette holder was thermostatted
with a circulating bath (Haake, Germany), which was used to
control temperature within 0.1 °C. The fluorescence experi-
ments were performed at 24 °C and 37 °C. The excitation and
emission bandwidths were 4/4 and 8/8 nm, respectively. As
described in detail elsewhere,20,21 single tryptophan-LacY
mutants (either W151/C154G or W151/C154/D68C), the
donors (D), were excited at 295 nm and emission of the pyrene
was recovered at 375 nm.
FRET efficiencies (E) are calculated according to the

equation
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where ID and IDA are the tryptophan emission intensities in the
absence or presence of pyrene acceptors, respectively. The
reported values of experimental E are the averages of triplicate
measurements from five separate reconstitutions. The descrip-
tion of the model used to fit the data has been clarified in detail
elsewhere.21 Briefly, we assume the existence of two
populations of acceptors (A), one located at the annular shell
around the protein and another in the bulk outside it. Then we
can write the decay of the fluorescence of the donor D as

ρ ρ=i t i t t t( ) ( ) ( ) ( )DA D a r (2)

where iD and iDA are the donor fluorescence decays in the
absence and presence of acceptor molecules, respectively.
Because the number of annular pyrene phospholipids around
each protein molecule is expected to follow a binomial
population,23 the annular contribution to the decay can be
expressed as
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where m is the number of phospholipid molecules in the first
layer surrounding the protein and kt is the rate constant for D−
A energy transfer, given by
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where in turn τ is the donor lifetime and R0 is the Forster radius
(3.0 nm for the Trp/pyrene),24 and μ is defined as the
probability of each site in the annular ring being occupied by a
labeled pyrene phospholipid. This probability can be written
more intuitively as
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+
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n
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pyr PL
s pyr

(5)

Figure 1. Model of LacY C154G embedded in a POPE matrix. Tryptophan 151 and aspartic acid 68 are highlighted. This model has been
constructed using CHARMM-GUI Membrane Builder.
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where n are the mole numbers of the labeled (npyr) and the
nonlabeled (nPL) phospholipids, Xpyr is the label mole fraction,
and Ks is the relative association constant between the labeled
and unlabeled phospholipids. Thus, Ks = 1 denotes equal
probability of finding acceptors in the annular region than in
the bulk, whereas Ks = 0 means no acceptor in the annular
region. Finally, the rate of FRET to acceptors randomly located
outside the annular layer (ρr(t)) is given by
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where b = (R0/l)
2τ−1/3, n2 is the acceptor density in each leaflet,

and l is the distance between the plane of the donors and the
plane of acceptors.

■ RESULTS AND DISCUSSION

A model of LacY embedded in a bilayer constituted by POPE
matrix is shown in Figure 1. The position of W151 that acts as a
donor for the FRET experiments is highlighted along with the
position of D68, located in helix II facing to the cytoplasmic
side of the protein. To assess the folding state of the proteins in
the proteoliposomes, binding assays have been performed.
Figure 2 shows that for all matrix, β-D-galactopyranosyl 1-thio-
β-D-galactopyranoside (TDG) partially blocks fluorescein
labeling, indicating that the reconstituted protein can selectively
recognize the substrate (TDG over L-glucose) and, therefore, is
properly folded in those lipid environments.
A large amount of evidence supports the specific requirement

of PE for the proper folding, adequate topology, and activity of
LacY.13,25 Because it is well established that PE may create
extensive intermolecular hydrogen bonding, it becomes
tentative to hypothesize that a specific interaction between
the amine headgroup of PE and some specific amino acid
residues of the protein may exist.4,15 This may be a crucial event
that triggers the whole mechanism of active transport.
Nevertheless, not only the headgroup is important:26,27 in
recent works where the protein was reconstituted in single
phospholipid matrixes21 and in others based on measuring
transport of genetically modified bacteria,28 the importance of
the acyl chain moiety in the interaction between phospholipids
and membrane proteins has been pointed out.

The D68 residue, situated at the edge of the interface
between helix II and the intracellular loop II-III, is a highly
conserved residue in the MFS that has been proposed to
mediate the interaction between PE and the protein in the cases
of LacY15 and LmrP,4 another member of this superfamily. It
has been also suggested that this interaction is necessary for the
protein to be sensitive to the proton gradient.4 To further
investigate this system, our work’s aim is to study if this
particular mutation, D68C, would lead to a change of the
phospholipid composition intimately interacting with the
protein. Particularly, and giving that this mutation inhibits
LacY conformational changes after ligand binding,16 our
observations may provide new evidence on the relation
between lipid−protein selectivity and conformational mobility
of LacY in the membrane.
Figure 3 shows the experimental E values at 25 °C and 37 °C

obtained for W151/C154/D68C LacY with both Pyr acyl-
labeled phospholipids (Pyr-PE and Pyr-PG) in the three binary
phospholipids systems under study (DOPE:POPG, POPE:-
POPG, and DPPE:POPG, all at 3:1 molar ratio). Clearly, Pyr-
PE is preferred over Pyr-PG, at both temperatures and all
phospholipid matrixes. Consequently, the values of μ listed in
Table 1 are always the highest for Pyr-PE irrespective of the
matrix. These results coincide qualitatively with those observed
in POPE:POPG and DOPE:POPG systems, using the W151/
C154G mutant of LacY.20 To rationalize these, we should take
in consideration the thermotropic nature of the mixtures used.
Thus, while at 25 °C and 37 °C DOPE:POPG remains in the
Lα phase and DPPE:POPG exhibits coexistence between the Lα

and Lβ phases at both temperatures, POPE:POPG still exhibits
the Lβ phase at 25 °C and Lα phase 37 °C.29 Because LacY
inserts preferentially in fluid phases,29,30 the negligible
variations in the μ values when increasing the temperatures
indicate that the lipid environment around W151/C154G/
D68C mutant does not change.
For a better comparison Figure 4 shows the normalized

values of E between single-W and Pyr-PE (the phospholipid of
most interest for these studies) at 37 °C for both LacY versions.
As can be seen, the normalized values of E were similar for both
mutants in DOPE:POPG, and lower and higher normalized E
values were observed in POPE:POPG and DPPE:POPG,
respectively, for the systems where the 68 residue has been
mutated into cysteine. These results support the preference for

Figure 2. Substrate recognition by single-W151/C154G/D68C LacY reconstituted in DOPE:POPG 3:1 (mol:mol) (A), POPE:POPG 3:1
(mol:mol) (B), and DPPE:POPG 3:1 (mol:mol) (C) proteoliposomes. Fluorescein-maleimide labeling was performed in the presence of 15 mM
TDG, 15 mM L-glucose, or no substrate (control). The upper panels (black background) correspond to the fluorescence intensity of fluorescein-
labeled protein after being subjected to a 12% SDS−PAGE gel electrophoresis. Lower panels are the same gels after protein staining with Coomassie
Blue.
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PE in systems in the Lα phase as well as a higher relative affinity
between POPE and W151/C154G than between POPE and
W151/C154G/D68C. That is, the introduction of the mutation
in the 68 site results in a change of LacY affinity for POPE,
leading to a modification in the composition of the
phospholipids in close contact with the protein. Interestingly,

while the model could not be applicable for the DPPE:POPG
system when the donor was W151/C154G, efficient energy
transfer occurs when using the W151/C154/D68C mutant.
Clearly the D68C mutant studied here is able to recruit Pyr-PE
to its vicinity even in the presence of phase separation. This is
at variance with the W151/C154G. In that case, Pyr-PG
presented more efficient FRET values than Pyr-PE in
DPPE:POPG as a consequence of Lα and Lβ coexistence.
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These observations are in concordance with the earlier
finding that LacY promotes phospholipid microdomain
formation around the protein.31 The evidence of such a
laterally segregated domain was gathered from two types of
monomer to excimer ratio measurements: among pyrene-
labeled phospholipids and between pyrene-labeled LacY and
surrounding pyrene-labeled phospholipids. Although the
interpretation was based on the mismatch between the protein
and the phospholipids, our results show that the lipid selectivity
depends on a complex mechanism of phospholipids adaptation
to the protein surface,26,27 that should be related to the lateral
pressure profile of each species32 and/or intrinsic curvature of
the phospholipids.33 According to MD simulations,15 however,
the specific interaction between PE and aspartic acid 68 could
be anticipated. Hence, this mutation (D68C) may hinder the
PE-68 residue interaction and consequently modify the
protein−lipid affinity.
In conclusion, our results suggest that the mutation in the 68

position positively changes the selectivity of the protein for
phospholipids and may induce a change in the conformational
dynamics of LacY by recruitment of the phospholipid species
most adaptable to the geometrical needs of the protein. Thus,
while the lipid selectivity for D68 is DOPE ∼ POPE > DPPE,
the mutation increases the protein selectivity for DOPE over
POPE and DPPE. This observation demonstrates the
implication of the acyl chains in the interaction and points to
a possible requirement for the heteroacid phospholipids besides
the headgroup requirement. Furthermore, it is demonstrated
here that although POPE is still present in the boundary of
W151/C154G/D68C LacY, the mutation decreases the
preference of the protein for this phospholipid. This might
support the proposed mechanism that this amino acid is
involved in the interaction between the protein and POPE,4

possibly forming a lipid-mediated salt bridge,15 an event that
can be intimately related with the increase of the open

Figure 3. FRET efficiency between W151 of the mutant W151/
C154G/D68C LacY and Pyr-PE (black columns) and Pyr-PG (white
columns) in different lipid matrixes at 25 °C (a) and 37 °C (b).
Proteoliposomes (1.5 μM LacY) of DOPE:POPG 3:1 (mol:mol),
POPE:POPG 3:1 (mol:mol), and DPPE:POPG 3:1 (mol:mol) were
doped with x = 0.0025 of label. The error bars stand for σ/n1/2, σ being
the standard deviation and n the number of measurements performed.

Table 1. Experimental Efficiencies E and Probabilities μ for
Each Site in the Single-W/C154G/D68C LacY Annular Ring
Being Occupied by a Pyrene Phospholipid

composition (3:1, mol/mol) experimental E μ

25 °C
DOPE/POPG Pyr-PE 0.59 0.05

Pyr-PG 0.37 0.02
POPE/POPG Pyr-PE 0.48 0.03

Pyr-PG 0.40 0.02
DPPE/POPG Pyr-PE 0.42 0.02

Pyr-PG 0.32 0.01
37 °C

DOPE/POPG Pyr-PE 0.57 0.05
Pyr-PG 0.32 0.01

POPE/POPG Pyr-PE 0.48 0.03
Pyr-PG 0.44 0.03

DPPE/POPG Pyr-PE 0.42 0.02
Pyr-PG 0.34 0.01

Figure 4. Comparison of normalized FRET efficiency at 37 °C
between W151 of the mutant single-W/C154G/D68C LacY and Pyr-
PE (black columns) and W151 of the single-W/C154G LacY and Pyr-
PE (white columns).
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probability of the periplasmic side of LacY upon sugar
binding.16
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work has been supported by grant CTQ-2008-03922/BQU
from Ministerio de Ciencia e Innovacioń of Spain. C.S.G., O.D.,
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4.3.3 Phospholipid−lactose permease interaction as reported by a 

head-labeled pyrene phosphatidylethanolamine: a FRET study 

 

Suárez-Germà, C., Loura, L. M. S., Prieto, M., Domènech, Ò., Campanera, 

J. M., Montero, M. T., Hernández-Borrell, J. (2013).  

The Journal of Physical Chemistry B, 117,6741-8.  

 

4.3.3.1 Summary 

FRET measurements were performed in preceding works to study the selectivity 

between a single-tryptophan mutant of LacY (used as D) and phospholipid probes 

labelled with pyrene at the acyl chain moiety (used as A). In the present study, the 

reported results were obtained by using the same single-W151/C154G LacY mutant and 

binary lipid mixtures of PE differing in the acyl chain composition (DOPE, POPE, 

DPPE) and POPG (PE:PG 3:1, mol/mol) doped with a phospholipid probe labeled with 

pyrene at the headgroup. The selected lipid mixtures had already been proved suitable 

for the insertion of LacY (see 4.3.2). The head-labelled phospholipid, 1,2-dioleoyl-sn-

glycero-3-phosphoethanolamine-N-(1-pyrenesulfonyl) ammonium salt (HPyr-PE) was 

employed with the aim to study the independent contributions of the acyl chains in the 

LacY-PE interaction occurring at the annular region. Indeed, recent research has 

revealed that the effect of lipids on LacY activity involves both the hydrophilic 

headgroup domain (there is a need for species lacking a net-charge) and the 

hydrophobic acyl chain domain (POPC and POPE sustain full protein activity, DOPE 

sustains very low activity, and LacY in DOPC is inactive regarding uphill transport) 

[140]. In turn, PE headgroup was selected since a large amount of evidence points to 

this structure as the more adequate to accomplish the specific requirements for proper 

folding and correct function of the protein [122]. 

In order to discuss the obtained results, it was important to take into account the fact 

that the pyrene moiety, which is characterized by a planar structure and high 

hydrophobicity, may introduce changes in the physicochemical properties of the host 

bilayer. In particular, the presence of a large entity at the headgroup level, in addition to 

the lack of hydrogen bonding of the structure, may result in an increase in the surface 
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area of the bilayer. Thus, the capabilities of HPyr-PE as a good PE reporter were 

questioned.  

In the performed FRET experiments the lowest energy transfer values were obtained for 

DOPE:POPG (3:1, mol/mol) at both 25 and 37 °C and POPE:POPG (3:1, mol/mol) at 

37 °C. In addition, POPE:POPG (3:1, mol/mol) was the only mixture that presented a 

significant change when the temperature was varied. In agreement with these 

observations, the probability that a given site in the annular ring is occupied by a 

labelled pyrene phospholipid (μ) was the highest for DPPE:POPG (3:1, mol/mol) at 25 

°C and POPE:POPG (3:1, mol/mol) at 37 °C. The presence of HPyr-PE in the annular 

region in DOPE:POPG (3:1, mol/mol) was almost negligible at both temperatures. To 

explain these results it is important to consider LacY preference for Lα phases. Hence, in 

DPPE:POPG (3:1, mol/mol) a LacY selectivity for a PE over PG headgroup was 

observed (considering HPyr-PE partitioned in Lα domains due to its unsaturated acyl 

chains). In the case of POPE:POPG (3:1, mol/mol), high FRET efficiencies in the fully 

fluid system at 37 °C may indicate that LacY much prefers to be surrounded by PE 

lipids (including the probe) than POPG. On the contrary, at 25 °C and close to the Tm, 

the system might display Lα/Lβ coexistence and LacY may preferentially locate in PE-

impoverished fluid domains. That is why some annular sites could be occupied by 

POPG and the FRET efficiency was decreased. Finally, DOPE:POPG (3:1, mol/mol) 

system remained the most complicated to interpret. In this case, low FRET efficiencies 

and low µ values could be attributed to displacement of the acceptor by DOPE and/or 

POPG. However, previous works showed preference for DOPE in this same host 

mixture [65]. Therefore, it is much more likely that this displacement was caused by an 

enrichment of DOPE rather than POPG in this region. These results could be related to 

the different spontaneous curvatures (C0) of each PE species [−C0(HPyr-PE) < 

−C0(DOPE) < -C0(POPE)]. 

When comparing results at 37 °C with previous FRET experiments performed with PE 

labelled with pyrene in the acyl chain moiety (TPyr-PE), POPE:POPG (3:1, mol/mol) 

was the only composition presenting equal values of normalized energy transfer 

efficiency for both labelling forms. DOPE:POPG (3:1, mol/mol) and DPPE:POPG (3:1, 

mol/mol) presented opposite behaviours: whereas the former mixture presented low 

normalized energy transfer efficiency with HPyr-PE and high efficiency with TPyr-PE, 

the second mixture varied in the opposite way. These differences in behaviour of the 
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head-labelled and tail-labelled pyrene acceptor probes could be probably related to 

differences in their acyl chain compositions and packing requirements for the bulky 

pyrene moiety. 

In all the systems higher E/M ratios were measured for annular probes relative to probes 

in the bulk, indicating a segregation of the fluorophore in this region. Additionally, 

global E/M ratios were lower for HPyr-PE by comparison to E/M ratios obtained using 

Pyr-PE labelled in the acyl chain. However, both labelling forms showed parallel trends, 

reflecting pyrene probe enrichment in the annular region of LacY in the phase separated 

DPPE:POPG (3:1, mol/mol) mixture (probably due to probe partition in one of the 

domains) and depletion in the DOPE:POPG (3:1, mol/mol) mixture.  

The main conclusions raised from these results suggest that (i) for phase-separated 

systems, LacY would be located in fluid domains nominally enriched in POPG, and if a 

given proportion of PE is present in this phase, it will be mainly located around the 

protein; and (ii) in the absence of phase separation, LacY is preferentially surrounded by 

PE and, in particular, seems to be sensitive to the lipid C0, with a preference for more 

negative C0 values. 

 

4.3.3.2 Highlights 

 A PE probe labelled with pyrene at the headgroup (HPyr-PE) was used to investigate 

the independent contribution of the acyl chains in the LacY-PE interaction. This was 

done through FRET measurements between the fluorophores and the tryptophan of 

single-W151/C154G LacY mutant embedded in different biomimetic matrices: 

DOPE:POPG (3:1, mol/mol), POPE:POPG (3:1, mol/mol), and DPPE:POPG (3:1, 

mol/mol).   

  Specific structure of HPyr-PE as well as results difficult to interpret made arisen the 

question whether this probe is indeed a good PE reporter.  

 From the obtained results, it can be concluded that LacY would be located in fluid 

domains nominally enriched in POPG, and if a given proportion of PE is present in 

this phase, it will be mainly located around the protein. Hence, DOPE and POPE 

might be the main annular components in their respective systems, whilst DPPE 

would not collocate with the protein. Interestingly, in this last system, HPyr-PE, 
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bearing two unsaturated chains might be segregated in fluid phases and thus it would 

be selected preferentially by the protein over POPG.  

 In the absence of phase separation LacY is preferentially surrounded by PE 

(selectivity DOPE > POPE). This could be explained by a preference of the protein 

for more negative C0 values. However, caution must be taken regarding these 

interpretations, especially due to a possible less adequate physico-chemical 

behaviour of HPyr-PE as a PE lipid reporter.  
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Labeled Pyrene Phosphatidylethanolamine: A FRET Study
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ABSTRACT: Förster resonance energy transfer (FRET) measurements
were performed in preceding works to study the selectivity between a single-
tryptophan mutant of lactose permease (LacY) of Escherichia coli (used as
the donor) and phospholipid probes labeled with pyrene at the acyl chain
moiety (used as the acceptor). In the present work, we report the results
obtained by using the same LacY mutant (W151/C154G) and binary lipid
mixtures of phosphatidylethanolamine (PE) differing in the acyl chain
composition and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycer-
ol)] (POPG) (3:1 mol/mol) doped with a phospholipid probe labeled with
pyrene at the headgroup. The use of 1,2-dioleoyl-sn-glycero-3-phosphoe-
thanolamine-N-(1-pyrenesulfonyl) ammonium salt (HPyr-PE), which bears
two unsaturated acyl chains, enabled the investigation of the specific
interaction between LacY and HPyr-PE. The main conclusions raised from
our results suggest that (i) for phase-separated systems, LacY would be located in fluid domains nominally enriched in POPG,
and if a given proportion of PE is present in this phase, it will be mainly located around LacY; and (ii) in the absence of phase
separation, LacY is preferentially surrounded by PE and, in particular, seems to be sensitive to the lipid spontaneous curvature.

■ INTRODUCTION

Lactose permease (LacY) is a membrane protein found within
the inner membrane of Escherichia coli that belongs to the
major facilitator superfamily (MFS), a very large group of
membrane transporter proteins that are evolutionarily related.
LacY is probably the best characterized of the proteins
belonging to the 12 transmembrane segment (TMS) α-helix
group.1 The X-ray structure of the protein2,3 was first obtained
from the conformationally constrained C154G mutant.4 Later,
the wild-type permease X-ray structure was elucidated by
manipulating the phospholipid content during the crystalliza-
tion process.5 LacY cotransports galactopyranosides and H+

into the bacterial cytoplasm and is considered to be a paradigm
for secondary transporters in membranes. Indeed, the protein is
the substrate whereby transduction between the energy stored
in the electrochemical H+ gradient (Δμ̃H+) downhill and the
accumulation of galactopyranosides uphill occurs. Remarkably,
the phenomenological behavior of the transport is sustained not
only by the structure of the protein but also by an extensive
number of biophysical and biochemical experiments accumu-
lated over the years.6 Although some details are not totally
understood, there is a consensus on the basic mechanism of
lactose/H+ transport, in which only six side chains from the 417

amino acid residues of the protein are irreplaceable with respect
to active transport. In this mechanism, Glu-126 (helix IV) and
Arg-144 (helix V) have been identified as crucial parts of the
binding site for the substrate, and Glu-269 (helix VIII), Arg-302
(helix IX), His-322 (helix X), and Glu-325 (helix X) have been
shown to be irreplaceable with respect to H+ translocation. In
the postulated mechanism, the protonated state is characterized
by the H+ shared between Glu-269 and His-322. It is
noteworthy that the protein catalyzes exchange and counter-
flow without translocation of H+. It is widely believed that all of
the conformational changes undergone by the protein depend
on internal H+ transport throughout the protein that is brought
about by transfer between acidic residues. However, the two
non-chemiosmotic mechanisms rather suggest that binding of
the substrate is the trigger step for the whole mechanism.1

Recently, a theoretical study showed that LacY displays the
structural dynamics required for function only when it is
embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoetha-
nolamine (POPE) matrix.7 Indeed, it was largely believed that
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protonation of the amino group of phosphatidylethanolamine
(PE)8 is a basic requirement for the function and also for the
correct folding of LacY in the membrane during biogenesis.9

However, new studies10 revealed that the activity is sustained
not only by PE but also by phosphatidylcholine (PC).
Significantly, a recent work by Vitrac et al.11 proved that the
effect of lipids on LacY activity involves both the hydrophilic
headgroup domain and the hydrophobic fatty acid domain.
That work demonstrated the preference of LacY for head-
groups with a lack of net charge (independent of the presence
of an ionizable amine) and heteroacid acyl chains, a finding that
opened the question of the role of the hydrophobic moiety in
the permease activity. Actually, a few works, most of them
theoretical,12 had already focused in the importance of the acyl
chain composition of the phospholipids in providing adequate
adaptation to the protein surface during the conformational
changes undergone during the transport.
Pyrene-labeled phospholipids have been widely accepted as

good analogues of naturally occurring lipids.13,14 The photo-
physical properties of pyrene have been differently exploited in
the past to investigate structural features such as the proximity
of specific residues15 and the lipid dynamics in reconstituted
LacY proteoliposomes.16,17 In this regard, Förster resonance
energy transfer (FRET) has been successfully used in the
investigation of membrane lipid selectivity18 and particularly in
studies of the interactions of LacY with PEs and phosphogly-
cerol (PG). FRET methodologies have been exploited by our
group to prove (i) the selectivity of LacY for POPE in favor of
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG)19

and 1-palmitoyl-l-2-oleoyl-sn-glycero-3-phosphocholine
(POPC)20 and (ii) the preference of LacY for fluid phases of
the membrane.21 On this basis, in the present work we
performed FRET experiments to measure the efficiency (E) of
energy transfer between W151/C154G LacY and 3:1 mol/mol
PE/POPG mixtures with differing acyl chain composition of
the PE component [1,2-dioleoyl-sn-glycero-3-phosphoethanol-
amine (DOPE), POPE, and 1,2-dipalmitoyl-sn-glycero-3-
phosphoethanolamine (DPPE)] and containing a probe labeled
at the headgroup with pyrene, 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N-1-pyrenesulfonyl ammonium salt
(HPyr-PE). The selected lipid mixtures are suitable for the
insertion of LacY, as shown previously.21 This strategy is
different to others used previously, in which the pyrene
acceptors were attached to the acyl chain moiety.19−23 Hence,
the use of HPyr-PE enables the investigation of the specific
interaction between LacY and the probe, which bears two
unsaturated acyl chains, in competition with nonfluorescent PE
having varying acyl chain compositions, eventually avoiding
perturbation due to labeled acyl chains.

■ MATERIALS AND METHODS
Materials. N-Dodecyl-β-D-maltoside (DDM) was purchased

from Anatrace (Maumee, OH, USA). DPPE, DOPE, POPE, 1-
palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] so-
dium salt (POPG), and HPyr-PE were purchased from Avanti
Polar Lipids (Alabaster, AL, USA). 1-Hexadecanoyl-2-(1-
pyrenedecanoyl)-sn-glycero-3-phosphoethanolamine ammo-
nium salt (TPyr-PE) was purchased from Invitrogen (Life
Technologies Ltd., Paisley, UK). Isopropyl-1-thio-β-D-galacto-
pyranoside (IPTG) was obtained from Sigma Chemical (St.
Louis, MO, USA), and polystyrene Bio-Beads SM-2 were
purchased from Bio-Rad (Hercules, CA, USA). All other
common chemicals were ACS grade.

Bacterial Strains and Protein Purification. These
detailed procedures have been described in previous
papers.20,21 Briefly, E. coli BL21(DE3) cells (Novagen,
Madison, WI, USA) transformed with plasmid pCS19 encoding
the single-tryptophan mutant W151/C154G LacY provided by
Dr. H. Ronald Kaback (UCLA) were grown in Luria−Bertani
broth containing ampicillin (100 μg/mL) at 30 °C and induced
at the appropriate moment with 0.5 mM IPTG. The cells were
disrupted, and the membrane fraction was harvested by
ultracentrifugation. The membranes were solubilized by adding
DDM and purified by Co(II) affinity chromatography (Talon
Superflow, Palo Alto, CA, USA). Protein eluted with 150 mM
imidazole was subjected to gel-filtration chromatography using
a Superdex 200 10/300 column (GE-Healthcare, Buckingham-
shire, UK) equilibrated with 20 mM Tris-HCl (pH 7.6)
containing 0.008% DDM. The protein was concentrated using
Vivaspin 20 concentrators (30 kDa cutoff; Vivascience,
Göttingen, Germany) and stored on ice. Protein identification
was performed by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE), and protein quantitation was
carried out using a Micro BCA kit (Pierce, Rockford, IL).

Vesicle Preparation and Protein Reconstitution. Lip-
osomes and proteoliposomes were prepared according to
methods published elsewhere.20,21 Briefly, 2:1 (v/v) chloro-
form/methanol solutions containing appropriate amounts of
both labeled and unlabeled phospholipids were dried under a
stream of oxygen-free N2 in a conical tube. The total
concentration of phospholipids was calculated as a function
of the desired lipid/protein ratio (LPR) and protein
concentration (1.5 μM). The amount of fluorescent probe
was x = 0.0025 for all the experiments. The resulting thin film
was kept under high vacuum for ∼3 h to remove organic
solvent traces. Multilamellar liposomes (MLVs) were obtained
following redispersion of the film in 20 mM HEPES buffer (pH
7.40) containing 150 mM NaCl, application of successive cycles
of freezing and thawing below and above the phase transition of
the phospholipids, and sonication for 2 min in a bath sonicator.
Afterward, large unilamellar liposomes (LUVs) supplemented
with 0.2% DDM were incubated overnight at room temper-
ature. The liposomes were subsequently mixed with the
solubilized protein and incubated at 4 °C for 30 min with
gentle agitation to obtain an LPR (w/w) of 40. DDM was
extracted by addition of polystyrene beads. The obtained LUVs
presented a diameter of ∼350 nm according to dynamic light
scattering measurements.

Fluorescence Measurements. Steady-state fluorescence
measurements were carried out with an SLM-Aminco 8100
spectrofluorometer (Urbana, IL, USA). The cuvette holder was
thermostatted with a circulating bath (Haake, Germany), which
was used to control the temperature within 0.1 °C. The
fluorescence experiments were performed at 25 and 37 °C. The
excitation/emission bandwidths were 4/4 and 8/8 nm,
respectively. As described in detail elsewhere,20,21 for energy
transfer measurements, the W151/C154G LacY mutant, used
as the donor (D), was excited at 295 nm, and the pyrene
emission of HPyr-PE, used as the acceptor (A), was recovered
at 375 nm. Annular fluidity was determined using the annular
excimer fluorescence/monomer fluorescence (E/M) ratio, as
described elsewhere.24 Pyrene (HPyr-PE or TPyr-PE) was
excited at 295 nm, and the fluorescence spectra were scanned
from 350 to 500 nm. To calculate the E/M ratio, we used the
signal intensities at 375 nm (corresponding to the peak of the
monomer band) and 470 nm (the maximum of the pyrene
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excimer band). In the case of global fluidity, the bulk E/M ratio
was calculated likewise but with direct excitation of the pyrene
moiety in HPyr-PE or TPyr-PE at its own excitation peak (338
nm).
FRET Modeling. FRET efficiencies (E) were calculated

according to the equation

∫
∫

= − = −
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where ID and IDA are the integrated tryptophan emission
intensities in the absence or presence of the pyrene acceptors,
respectively, and iD(t) and iDA(t) are the corresponding
emission intensities at time t. The reported experimental E
values are averages of triplicate measurements.
The model used to fit the data has been described in detail

elsewhere.20 Briefly, we assume the existence of two
populations of acceptors, those located in the annular shell
around the protein (denoted by “a”) and those randomly
distributed in the bulk outside this shell (denoted by “r”). Then
we can write the fluorescence intensity of the donor in the
presence of acceptors at time t as

ρ ρ=i t i t t t( ) ( ) ( ) ( )DA D a r (2)

where ρa(t) and ρr(t) are the annular and random contributions
to the donor fluorescence decay, respectively. Since the number
of annular pyrene phospholipids around each protein molecule
is expected to follow a binomial population,18 the annular
contribution to the decay can be expressed as
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in which m is the total number of phospholipid molecules in
the first layer surrounding the protein, μ is the probability that a
given site in the annular ring is occupied by a labeled pyrene
phospholipid, and kt is the rate constant for D−A energy
transfer, given by
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where τ is the donor lifetime, R0 is the Förster radius (3.0 nm
for the tryptophan/pyrene),25 and R is the D−A distance.
Finally, the contribution to the decay due to FRET to acceptors
randomly located outside the annular layer is given by
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where b = (R0/l)
2τ−1/3, n2 is the acceptor density in each leaflet,

l is the distance between the plane of the donor and the plane
of the acceptor, and Re is the exclusion distance along the
bilayer plane between the protein axis and the annular lipid
molecules, which is obtained from the relation R = (w2 +
Re

2)1/2, where w = 1.2 nm is the estimated transverse distance
between the tryptophan and the bilayer center.21

In our previous works, this FRET model was applied to lipids
labeled with pyrene on the acyl chains. To adapt it to head-
labeled probes, we used molecular modeling tools to derive the
necessary geometrical parameters such as R, n2, and l. The
Membrane Builder of the CHARMM-GUI package (http://

www.charmm-gui.org/?doc=input/membrane)26 was used to
build two model bilayer systems (POPE and POPG) with the
protein (PDB entry 1PV6) inserted in it. The 1PV6/POPE
pure bilayer model represents the PE lipid of the experimental
mixture and therefore corresponds to the lipid modified with
pyrene, whereas the 1PV6/POPG model does the same for the
other lipid of the experimental mixture. The following
geometrical considerations were taken into account to obtain
the geometrical parameters: (i) 39 annular sites were
considered for the protein; (ii) two acceptor planes were
considered, at slightly different distances (l1 = 2.10 nm and l2 =
2.36 nm from the plane of the W151 donors); (iii) the average
distance R from W151 to the pyrene moiety of HPyr-PE in the
annular sites was taken as 3.8 nm; and (iv) lipid molecular areas
of 0.62 and 0.63 nm2 were used for POPE and POPG,
respectively. These structural parameters should be viewed
cautiously, as the system was not dynamically equilibrated (that
would involve molecular dynamics simulations, which are being
considered for future studies) and therefore constitutes only a
rough approximation of the atomic details of the system.
However, while this may affect the quantitative determination
of the μ parameter, it does not hamper a comparative
discussion of the experimental FRET energy transfers.

■ RESULTS
A model of C154G LacY embedded in a POPE matrix is
illustrated in Figure 1. The position of W151 that acts as a

donor for the FRET experiments is highlighted. The FRET
acceptors in this experiment are PE lipids labeled with pyrene
on the polar headgroup. On one hand, PE was selected since a
large amount of evidence points to this headgroup as more
adequate to accomplish the specific requirements for proper
folding9 and correct function of the protein.27,28 On the other
hand, polar-headgroup labeling was selected to respond to
recent results pointing to the importance of the acyl chain
moiety in the interplay between phospholipids and membrane
proteins;10,11,20 the aim of this configuration was to investigate
the independent contributions of the headgroup and the acyl
chains in the lipid−protein interaction.
The FRET methodology developed by Fernandes et al.18 and

reformulated by Suaŕez-Germa ̀ et al.20 was employed to

Figure 1. Model of C154G LacY embedded in a POPE matrix.
Tryptophan 151 is highlighted in orange. This model was constructed
using CHARMM-GUI Membrane Builder.
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measure the efficiency of energy transfer between the single-
tryptophan mutant W151/C154G LacY and the PE headgroup-
labeled analogue HPyr-PE in three different biomimetic binary
phospholipid mixtures: DOPE/POPG, POPE/POPG, and
DPPE/POPG, each at a 3:1 molar ratio. With such a strategy,
information on the selectivity of the protein for the different
acyl chains (DO, PO, and DP, respectively) was gathered.21

Figure 2 shows the experimental FRET efficiencies obtained
at 25 and 37 °C using HPyr-PE as the acceptor. As can be seen,

the lowest FRET values were obtained for DOPE/POPG at
both temperatures, while the highest values were found for
DPPE/POPG at both 25 and 37 °C and POPE/POPG at 37
°C. In addition, POPE/POPG was the only mixture that
presented a significant change when the temperature was
varied. In agreement with these observations, the probability
that a given site in the annular ring is occupied by a labeled
pyrene phospholipid (μ) was the highest for DPPE/POPG at
25 °C (0.22) and POPE/POPG at 37 °C (0.24) (Table 1). The
presence of HPyr-PE in the annular region in DOPE/POPG
was almost negligible (μ = 0.02 and 0.01 at 25 and 37 °C,
respectively; Table 1).

In previous works21 FRET experiments were carried out with
identical lipid matrices but with the acceptor fluorophores
placed on the acyl moiety of the phospholipid structure.
Therefore, it seems interesting now to compare these published
results with the ones obtained from FRET between W151 and
polar-headgroup-labeled phospholipids. With that purpose,
Figure 3 shows a comparison of normalized energy transfer

efficiencies obtained from the measurements of FRET between
W151 of LacY and pyrene in PE labeled on the polar
headgroup (HPyr-PE) or the acyl chain (TPyr-PE) at 37 °C.
Among the three studied lipid mixtures, POPE/POPG was the
only one presenting equal values of the normalized energy
transfer efficiency for both labeling forms. DOPE/POPG and
DPPE/POPG presented opposite behaviors: whereas the
former mixture presented low normalized energy transfer
efficiency with HPyr-PE and high efficiency with TPyr-PE, the
second mixture varied in the opposite way.
When the pyrene-labeled phospholipids are directly or

indirectly excited (at 338 or 295 nm, respectively), the pyrene
excimer/monomer (E/M) ratio can provide information on the
lateral diffusion and local effective pyrene concentration of the
labeled phospholipids in the bulk and the annular region,
respectively. The values of these ratios are shown in Figure 4
for 25 and 37 °C using both HPyr-PE and TPyr-PE as probes.

Figure 2. Efficiency of FRET between W151 in LacY and pyrene in
headgroup-labeled PE in different lipid matrices at 25 °C (black
columns) and 37 °C (gray columns). Proteoliposomes (1.5 μM LacY)
of 3:1 (mol/mol) DOPE/POPG, POPE/POPG, and DPPE/POPG
were doped with label (x = 0.0025). Error bars stand for σ/√n, where
σ is the standard deviation and n the number of measurements
performed.

Table 1. Experimental FRET Efficiencies (E) and Calculated
Probabilities for Occupancy of a Given Site in the LacY
Annular Ring by a Headgroup-Labeled Phospholipid (μ)

T (°C) mixturea E μ

25 DOPE/POPG 0.20 0.02
POPE/POPG 0.46 0.09
DPPE/POPG 0.67 0.22

37 DOPE/POPG 0.15 0.01
POPE/POPG 0.69 0.24
DPPE/POPG 0.65 0.20

aMixture composition: 3:1 (mol/mol) PE/POPG.

Figure 3. Comparison of normalized efficiencies for FRET between
W151 of single-W C154G LacY and PE labeled on the polar
headgroup (gray columns) or the acyl chain (black columns) at 37 °C.

Figure 4. E/M ratios for labeled lipids in (A) the annular region and
(B) the bulk at 37 °C for 3:1 (mol/mol) DOPE/POPG, POPE/
POPG, and DPPE/POPG lipid mixtures containing headgroup-labeled
(gray columns) or acyl-labeled (black columns) Pyr-PE. Error bars
stand for σ/√n, where σ is the standard deviation and n the number of
measurements performed.
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For all of the systems, higher E/M ratios were measured for
annular probes (relative to probes in the bulk), DPPE/POPG
(relative to DOPE/POPG and POPE/POPG), and TPyr-PE
(relative to HPyr-PE).

■ DISCUSSION
To rationalize the obtained FRET results shown in Figure 2, we
should take into consideration the thermotropic nature of the
mixtures used and the influence of the presence of pyrene at the
headgroup level on the protein−lipid interaction. On one hand,
at both 25 and 37 °C, the DOPE/POPG mixture is in the fluid
liquid-crystalline (Lα) phase, and DPPE/POPG displays
coexistence between the solidlike gel (Lβ) state and the Lα

phase. However, the situation is more complex for the POPE/
POPG system, because the main transition temperature of the
POPE/POPG mixture has been measured as 20.9 °C22 and
∼21.5 °C29 by differential scanning calorimetry (DSC) and 23
°C by fluorescence methods.30 The discrepancies among these
values are related to differences in methodology and buffers
used in these works and to the fact that POPE/POPG shows a
broad transition.22,29,31 Thus, whereas it is clear that POPE/
POPG bilayers exist as a single fluid phase at 37 °C, it is likely
that some POPE-rich Lβ domains might be still present at 25
°C. Within the context of the present work, it is important to
recall that LacY inserts preferentially into fluid phases of
laterally segregated phospholipid systems.21,30 On the other
hand, we have to take into account the fact that the pyrene
moiety, which is characterized by a planar structure and high
hydrophobicity, introduces changes in the physicochemical
properties of the host bilayer. In particular, the presence of a
large entity, the pyrene, at the headgroup level, in addition to
the lack of hydrogen bonding of this structure, may result in an
increase in the surface area of the bilayer.32

In Figure 2, it is apparent that the system for which the
FRET efficiency at both temperatures is the highest is DPPE/
POPG. When the preference of LacY for the Lα phase is taken
into account, this implies the seemingly unphysical result of a
preference of HPyr-PE for the Lα PG-rich phase rather than the
Lβ PE-rich phase. A possible reason for this observation is that
the unsaturated acyl chains of HPyr-PE are better accom-
modated in the fluid phase rather than in the Lβ gel, which
would supersede the headgroup-effect difference. On the other
hand, within the fluid-phase domains, LacY probably interacts
preferentially with the PE probe rather than POPG. Thus, the
increased FRET efficiency in the DPPE/POPG system stems
from colocalization of the probe and protein in the fluid phase
of this phase-separated system and indicates a preference of
LacY for (i) the fluid phase over the gel phase and (ii) the PE
headgroup over the PG headgroup.
We now address the POPE/POPG system. The fact that a

high FRET efficiency was obtained at 37 °C primarily indicates
that LacY much prefers to be surrounded by the PE lipid
(including the HPyr-PE probe) than by POPG, which is in
agreement with the results and μ values previously reported
when TPyr-PE was used as the probe.20,21 The difference in the
FRET efficiencies at 25 and 37 °C is probably related to the
thermotropic behavior of this mixture. Indeed, if the system is
in a gel/fluid mixture at room temperature, because of its
preference for fluid phases, LacY will show some preference for
the PE-impoverished fluid domains. Hence, some annular sites
may be occupied by POPG at 25 °C, decreasing the efficiency
of FRET to HPyr-PE relative to that in a single fluid phase at 37
°C.

The DOPE/POPG system shows lower FRET efficiencies
and lower μ values than expected at both temperatures. In
principle, this behavior could be attributed to displacement of
the acceptor by DOPE and/or POPG. However, using TPyr-
PE, we previously showed that for a 3:1 DOPE/POPG host
lipid mixture identical to that studied here, the best agreement
was found when the experimental FRET data were obtained
using an annular region composition of ∼90 mol % PE
(compared with the value of 75% expected on the basis of the
matrix composition).21 Therefore, LacY shows a preference for
DOPE over POPG, and if the probe is displaced from the
annular sites, it is much more likely that this displacement will
be caused by an enrichment of DOPE rather than POPG in this
region. On the other hand, as mentioned above, the presence of
the bulky pyrene headgroup may result in larger lateral
molecular area occupancy at the boundary region and the
exclusion of HPyr-PE.13 In this regard, it becomes relevant to
estimate the local concentration of pyrene within this region.
Although merely indicative, this concentration can be estimated
by calculating the E/M ratio in the annular region. As can be
seen in Figure 4A, excimer formation was always the lowest in
the DOPE/POPG mixture, even though in all cases the E/M
ratios for HPyr-PE were lower than those obtained for TPyr-
PE. Remarkably, the obtained E/M ratios, although lower,
presented the same trend as the ones obtained for TPyr-PE.
Indeed, the DPPE/POPG mixture again showed the highest E/
M ratios, which may be explained by differential partitioning of
the probe that leads to higher local concentrations of pyrene.
These trends in the E/M ratios are thus parallel to those in the
FRET efficiency values, and both reflect pyrene probe
enrichment in the annular region of LacY in the DPPE/
POPG mixture and depletion in the DOPE/POPG mixture.
Figure 4B presents the results for pyrene lateral diffusion in the
bulk region for TPyr-PE and HPyr-PE. We observe two general
patterns: (i) reduced E/M ratios for HPyr-PE compared with
TPyr-PE, which is consistent with the annular results, and (ii)
substantially lower TPyr-PE and HPyr-PE E/M ratios than
obtained for the annular region (Figure 4A), indicating an
enrichment of the probe in the environment of the protein
region, also in agreement with the obtained FRET results
(which indicate that the probability of occupancy of annular
sites by probes is much higher than the bulk probe fraction).
The whole body of these data suggests that the local
concentration of HPyr-PE may be lower in the case of
DOPE/POPG in comparison with the other mixtures.
Consequently, a difference in the distribution of the label is
observed, which could also result in a lower density of the label
in the annular region.
Protein−lipid selectivity may arise as a consequence of

matching between the hydrophobic lengths of protein and
lipid,33 or it can be affected by the lateral pressure profile across
the membrane. The former effect would not be expected to be
overly relevant to our results, in that large changes in lipid
hydrophobic length would not be expected in our lipid systems,
as fluid 16:0 and cis-18:1 having similar lengths along the
bilayer normal.34 The latter has been addressed theoretically by
Cantor, whose basic lattice model takes into account the
contributions of chain energies (bending stiffness), interfacial
tension, and headgroup electrostatic interactions in the
calculation of the lateral pressure profile,35 which was in
subsequent papers related to protein conformation and
aggregation.36,37 More recently, Marsh demonstrated that the
effects of the lateral pressure profile on the conformation/
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insertion of proteins in membranes are equivalent to the elastic
response to the frustrated spontaneous curvature of the
component lipid monolayer leaflets.38,39 Since it has been
suggested that the lipid spontaneous curvature (C0)

40 appears
to be crucial in regard to uphill transport of lactose by LacY in
vivo,32 it becomes tempting to relate this parameter to our
FRET data. Although the spontaneous curvature is a global
property, it can be parametrized in terms of the geometric
parameters (volume, effective length, and cross-sectional area)
of the constituent lipid molecules. Thus, while DOPE is known
for its highly negative spontaneous curvature [C0(DOPE) =
−0.35 nm−1] resulting from its inverted conical shape, with a
small headgroup and disordered acyl chains,41 to our
knowledge, the spontaneous curvature of POPE has not been
determined. However, replacement of an oleoyl chain in DOPE
with a palmitoyl one in POPE should reduce the cross-sectional
area, resulting in an increase of the lateral pressure in the
hydrophobic region of the lipid;30 therefore, it would also be
expected that −C0(POPE) < −C0(DOPE), similar to what has
been observed with POPC (C0 = 0) and DOPC (C0 = −0.11
nm−1).41

Because HPyr-PE bears two oleoyl acyl chains, just as in
DOPE, it would be reasonable to assume that the probe reports
the behavior of this latter phospholipid. However, in terms of
specific curvature, pyrene labeling on the headgroup will most
probably have a severe effect. It has been shown that replacing
the headgroup ethanolamine H atoms with methyl groups
decreases the absolute value of C0 [C0(DOPE-Me) = −0.27
nm−1, C0(DOPE-Me2) = −0.19 nm−1),41 which is under-
standable since these replacements change the shape of DOPE
from an truncated cone to something closer to a cylinder. A
similar effect could be expected for pyrene labeling on the
headgroup, so we may hypothesize that −C0(HPyr-PE) <
−C0(DOPE). Thus, DOPE is clearly expected to be the PE
lipid component with the most negative spontaneous curvature,
compared with POPE and HPyr-PE. The higher FRET
efficiency shown by POPE/POPG in Figure 2 seemingly
indicates that HPyr-PE and POPE compete for the annular sites
of LacY, whereas the low efficiency and μ value for DOPE/
POPG at both temperatures reflect, in comparative terms, more
extensive occupation of the annular sites by DOPE, with
concomitant probe exclusion. Thus, our data seem to confirm
that spontaneous curvature is a major determinant of the
LacY−lipid interaction, with PE lipids bearing more negative C0
values being preferred relative to others with a more cylindrical
shape. This seems to be at odds with a recent study by Vitrac et
al.11 indicating that POPE provides LacY with significantly
higher uphill transport activity than DOPE. It is worth
mentioning here that our mutant (LacY/C154G/single-
W151) is different from the ones used by Vitrac et al. (C-less
LacY/H205C or C-less LacY/F250C); whereas the latter two
are fully functional, LacY (C154G) is severely restricted
conformationally and does not transport H+.42,43 However,
our results still suggest that in our systems and using this
acceptor probe, DOPE is preferably located in the vicinity of
LacY in comparison with POPE. A rationalization of these
somewhat contradictory results may involve one of the
following scenarios: (i) The design of our experiments presents
limitations, possibly stemming from less adequate physico-
chemical behavior of HPyr-PE as a PE lipid reporter. Regarding
this matter, it must also be mentioned that the attachment of a
fluorophore to the PE headgroup results in a negative charge
that is absent in the unlabeled PE lipid, and as demonstrated in

our previous works, LacY shows a preference for zwitterionic
PE over anionic PG lipids. (ii) Annular lipid composition is not
the only determinant (and perhaps not the main determinant)
of uphill transport activity. Additionally, the use of the C154G
mutant provides information about a specific condition of the
protein without taking into account its need for adaptability
when facing structural transitions.44 These latter possibilities
reinforce the fact that many aspects of LacY−lipid interactions
remain to be clarified.
We now turn our attention to Figure 3, which shows a

comparison of the FRET efficiencies at 37 °C for the HPyr-PE
and TPyr-PE probes. These differences in behavior of the head-
labeled and tail-labeled pyrene acceptor probes are probably
related to differences in their acyl chain compositions and
packing requirements for the bulky pyrene moiety. In
particular, concerning the phase-separated DPPE/POPG
system, the very high and very low efficiencies obtained for
HPyr-PE and TPyr-PE, respectively, could be attributed to
different partitioning of the fluorescent probes in the lipid
mixture. It could be expected that because both probes are
labeled PEs, they would mimic the PE mixture component and
prefer the DPPE-enriched Lβ phase. As proposed in a previous
work,23 this hypothesis appears to be valid for TPyr-PE,
possibly because this probe has no unsaturated chains and
contains an unsubstitued headgroup identical to that of DPPE
and therefore would presumably prefer the PE-rich Lβ phase
over the POPG fluid. This would decrease the colocalization of
the probe with the protein, explaining the low FRET
efficiencies obtained. On the other hand, because of its
unsaturated acyl chains, HPyr-PE would probably much prefer
the PG-rich Lα phase over the DPPE-rich gel. Since the main
transition temperature of DOPE (which HPyr-PE most
resembles) is around −9 °C,45 LacY and HPyrPE should
both be preferentially located inside the fluid domains, resulting
in higher FRET efficiencies.
Previous works by our group have shown the preference of

LacY for PE over other kinds of phospholipids such as PG and
PC.20,21 This study aimed to elucidate the factors governing the
eventual selectivity of LacY among different PE lipids. The two
main conclusions are the following: (i) For phase-separated
systems, LacY will be located in the fluid domains, and if a
given PE is present in this phase (e.g., as a consequence of acyl
chain unsaturation), it will colocate with LacY. (ii) In the
absence of phase separation, LacY is preferentially surrounded
by PE, and in particular, it seems to be sensitive to the lipid
spontaneous curvature C0, with a preference for more negative
C0 values. A more definite clarification of the differential
interaction with headgroup-labeled pyrene lipid HPyr-PE will
probably involve FRET experiments in pure POPE and DOPE,
similar to our recent study with TPyr-PE,20 though in this kind
of experiment the biomimetics of the matrix would inevitably
be lost. Additionally, the use of different pyrene-labeled PE
lipids as acceptor probes would create the necessity of
complementary studies to clarify these probes’ behavior,
using, for example, molecular dynamics simulations, as recently
employed by Loura and Prieto46 to study free pyrene in
bilayers.
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Montero, M. T.; Rodríguez-Banqueri, A.; Vaźquez-Ibar, J. L.;
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T.; Vaźquez-Ibar, J. L.; Hernańdez-Borrell, J. Phosphatidylethanol-
amine−Lactose Permease Interaction: A Comparative Study Based on
FRET. J. Phys. Chem. B 2012, 116, 14023−14028.
(24) Mason, R. P.; Jacob, R. F.; Walter, M. F.; Mason, P. E.; Avdulov,
N. A.; Chochina, S. V.; Igbavboa, U.; Wood, W. G. Distribution and
Fluidizing Action of Soluble and Aggregated Amyloid β-Peptide in Rat
Synaptic Plasma Membranes. J. Biol. Chem. 1999, 274, 18801−18807.
(25) Tahara, Y.; Murata, M.; Ohnishi, S.; Fujiyoshi, Y.; Kikuchi, M.;
Yamamoto, Y. Functional Signal Peptide Reduces Bilayer Thickness of
Phosphatidylcholine Liposomes. Biochemistry 1992, 31, 8747−8754.
(26) Jo, S.; Lim, J. B.; Klauda, J. B.; Im, W. CHARMM-GUI
Membrane Builder for Mixed Bilayers and Its Application to Yeast
Membranes. Biophys. J. 2009, 97, 50−58.
(27) Dowhan, W.; Bogdanov, M. Lipid-Dependent Membrane
Protein Topogenesis. Annu. Rev. Biochem. 2009, 78, 515−540.
(28) Vitrac, H.; Bogdanov, M.; Heacock, P.; Dowhan, W. Lipids and
Topological Rules of Membrane Protein Assembly: Balance between
Long and Short Range Lipid−Protein Interactions. J. Biol. Chem. 2011,
286, 15182−15194.
(29) Pozo Navas, B.; Lohner, K.; Deutsch, G.; Sevcsik, E.; Riske, K.
A.; Dimova, R.; Garidel, P.; Pabst, G. Composition Dependence of
Vesicle Morphology and Mixing Properties in a Bacterial Model
Membrane System. Biochim. Biophys. Acta 2005, 1716, 40−48.
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4.3.4 Effect of lactose permease presence on the structure and 

nanomechanics of two components supported lipid bilayers 
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4.3.4.1 Summary 

In this paper we presented a comparative AFM study of SLBs and PLSs of LacY 

reconstituted in proteoliposomes with a biomimetic lipid composition of the E. coli 

inner membrane. Lipid matrices of two components, PE:PG (3:1, mol/mol), were 

selected to mimic the inner membrane of the bacteria. The final goal of this work was to 

investigate how phospholipid species of different acyl chain composition, compactness 

and stiffness, affect the integration, distribution and nanomechanical properties of 

LacY; and, at the same time, how the protein affects the matrices when it is 

reconstituted in binary mixtures of POPE or DPPE with POPG.  

SLBs of POPE:POPG (3:1, mol/mol) and DPPE:POPG (3:1, mol/mol) lipid 

compositions displayed both lateral Lα/Lβ phase separation at the studied conditions and 

they were investigated through AFM in imaging and FS modes. Similar breakthrough 

forces (Fy) were found in POPE:POPG (3:1, mol/mol) for both Lα and Lβ phases, whilst 

higher adhesion forces (Fadh) were found for Lβ as compared to Lα. This was in 

accordance with results obtained in section 3.3.2. DPPE:POPG (3:1, mol/mol) presented 

higher Fy values in Lβ phase than in Lα phase, evidencing a stiffer Lβ phase. Regarding 

Fadh, lipid phases in DPPE:POPG (3:1, mol/mol) displayed the same trend than 

POPE:POPG (3:1, mol/mol) (Fadh(Lβ) > Fadh(Lα)). In general, Fadh and Fy values were 

higher for DPPE:POPG (3:1, mol/mol) mixture, which was related to the presence of 

the more saturated DPPE phospholipid.  

PLSs of the same lipid compositions but with the presence of LacY displayed two 

separate, laterally segregated domains: a lower one, flat and featureless, and a higher 

one, grainy and covered with protruding entities. Both domains were further 

characterised by FS and FV AFM modes. We detected that lower domains presented Fy 

values in the range of those obtained for Lβ phases in SLBs. Conversely, higher domains 
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displayed much lower Fy values than Lα phases from pure SLB systems. No major 

changes were found in Fadh trends and, in general, all Fy and Fadh values were lower than 

the ones presented for systems without protein. This last effect might be related to the 

presence of the protein in the system, but also to the remaining effect of the detergent 

used to prepare the samples. 

Taking the entire set of nanomechanical results together with the analysis of the step 

heights differences, we could correlate lower phases in PLSs with Lβ domains in the 

SLBs, and therefore with phases formed mostly by lipids. Then, high-stepped phases 

were correlated to a new fluid phase were protein and phospholipids colocalized. The 

fact that the protein-lipid Lα phase from PLSs could be punctured more easily than the 

Lα phase in the SLB reinforced the idea that we were actually observing a new fluid 

phase that included average bulk properties of protein and its closed solvated 

phospholipids. 

FV data was analyzed by dividing samples in different regions taking as a reference the 

distance to the domains containing the protein. Hence, it was detected that the further 

from the domain with protein, the higher the obtained Fadh value. It was related either to 

the presence of the protein which stabilised the lipid bilayer, or to the described trend 

behaviour for Fadh values, were Lβ domains presented higher Fadh values than Lα 

domains. This provides support for the coexistence of nearly protein-free Lβ phases and 

LacY-enriched Lα phases. 

Finally, the influence of the lipid environment on LacY organisation was studied by 

performing protein pulling experiments using the AFM tip. Although the experiments 

were unspecific, positive events were obtained. A possible influence of the lateral 

surface pressure on this behaviour was suggested by the higher force required to pull 

LacY from DPPE:POPG (3:1, mol/mol) than from POPE:POPG (3:1, mol/mol) matrix. 

This seemed to be related to higher forces governing protein-lipid interaction in the 

presence of DPPE.  
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4.3.3.2 Highlights 

• POPE:POPG (3:1, mol/mol) and DPPE:POPG (3:1, mol/mol) liposomes 

reconstituted with LacY were extended over mica and the resulting planar systems 

were analyzed using topographic, FS and FV AFM modes. Once the results 

compared with lipid systems without protein, a large influence of the protein on the 

lipid organization was confirmed. 

• The influence of the lipid system on the nanomechanics of the LacY insertion was 

studied by performing unspecific pulling of the protein when embedded in 

POPE:POPG (3:1, mol/mol) or DPPE:POPG (3:1, mol/mol) systems. Higher forces 

were required to extract LacY from DPPE:POPG (3:1, mol/mol) than from 

POPE:POPG (3:1, mol/mol) matrix, which pointed to an influence of the PE 

phospholipid structure in the whole bilayer-protein interaction. Additionally, it 

suggested a role for the phospholipid lateral pressure on the forces governing the 

incorporation of the protein in a given lipid matrix.  
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Abstract 

In this paper we present a comparative study of supported lipid bilayers (SLBs) and 

proteolipid sheets (PLSs) obtained from deposition of lactose permease (LacY) of 

Escherichia coli proteoliposomes in plane. Lipid matrices of two components, 

phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), at a 3:1, mol/mol ratio, 

were selected to mimic the inner membrane of the bacteria. The aim was to investigate 

how species of different compactness and stiffness affect the integration, distribution 

and nanomechanical properties of LacY in mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-

3-phosphoethanolamine (POPE) or 1,2-palmitoyl-sn-glycero-3-phosphoethanolamine 

(DPPE) with  1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG). 

Both compositions displayed phase separation and were investigated by atomic force 

microscopy (AFM) imaging and force-spectroscopy (FS) mode. PLSs displayed two 

separated, segregated domains with different features that were characterised by FS and 

force-volume mode. We correlated the nanomechanical characteristics of solid-like gel 

phase (Lβ) and fluid liquid-crystalline phase (Lα) with phases emerging in presence of 

LacY. We observed that for both compositions, the extended PLSs showed a Lβ 

apparently formed only by lipids, whilst the second domain was enriched in LacY. The 

influence of the lipid environment on LacY organisation was studied by performing 

protein unfolding experiments using the AFM tip. Although the pulling experiments 

were unspecific, positive events were obtained, indicating the influence of the lipid 

environment when pulling the protein. A possible influence of the lateral surface 

pressure on this behaviour is suggested by the higher force required to pull LacY from 

DPPE:POPG than from POPE:POPG matrices. This is related to higher forces 

governing protein-lipid interaction in presence of DPPE. 
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1. INTRODUCTION 

The cytoplasmic membrane is presently viewed as a heterogeneous system because of 

the lateral segregation of its fundamental building blocks: lipids and proteins [1]. 

Depending on the physicochemical properties of its components and the variety of 

interaction forces that may occur between them, this lateral heterogeneity may have 

different origins. Lateral segregation has been observed using a wide range of 

biophysical techniques applied to different model membranes [2,3] and cells [4]. Lipid 

domains have also been observed in prokaryotic cells [5,6], although the size of the 

nano- and micro-domains remains a matter of controversy [7,8].  

In bilayer model systems, at least two types of lateral phase separation phenomena have 

been described: those arising from lipid-lipid interactions and those induced by proteins. 

In this regard, it is a matter of debate whether lipid-lipid interactions govern 

compartmentalisation of the membrane or whether sustained lipid-protein interactions 

are responsible for the formation of lipid domains around membrane proteins. A 

particularly interesting example of lipid-protein aggregation in eukaryotic cells is given 

by “rafts” [9–11], which are conceived of as dynamic platforms where proteins interact 

and diffuse along the membrane plane. Another example of protein-phospholipid 

association is the lateral organisation in highly immobilised annular phospholipids 

around transmembrane proteins that has been observed using electron spin resonance 

(ESR) [12]. In fact, whether protein determines phospholipid segregation or vice versa 

is a subtle reflection of the lipid protein interplay [13]. 

The use of supported lipid bilayers (SLBs) (membranes supported on a solid substrate) 

offers several advantages for analysing the topography of samples with nanometre 

lateral resolution by means of atomic force microscopy (AFM). The insertion of 

membrane proteins in bilayers can be achieved by reconstitution of proteins in 

proteoliposomes, which are subsequently spread onto a solid surface (often mica). Thus, 

by selecting a desired lipid composition that mimics the natural membrane, the protein 

can interact with the bilayer in a similar way to that occurring in vivo. On the one hand, 

AFM is one of the most suitable techniques for observing laterally segregated lipid 

domains [14] and protein self-segregation [15]. On the other hand, local forces arising 

either from different lipid domains [16] or single proteins embedded in the bilayer [17] 

can be sensed by using the AFM tip in force spectroscopy (FS) mode. Hence, AFM 

topography images combined with FS may provide valuable information not only about 

protein lateral distribution but also about the influence of the lipid environment on the 

nanomechanics behind the insertion of membrane proteins in biomimetic systems. It is 

well-known that the presence of protein within the lipid system is responsible for 

considerable changes in the organisation and nanomechanics of the entire system 

[2,18,19]. In fact, the presence of proteins may promote new lipid-protein domains, as 

well as extend or modulate the coexistence of phase separation by modifying the 

transition temperature of the lipid mixtures [20]. 

The lactose permease (LacY) of Escherichia coli (E. coli), one of the best studied 

cytoplasmic membrane proteins, is often taken as a paradigm for secondary transport 

proteins that couple the energy stored in an electrochemical ion gradient to a 

concentration gradient (ß-galactoside/H
+
 symport). LacY belongs to what is termed the 

major facilitator superfamily, most of whose members are predicted to contain 12 

transmembrane segments. The secondary structure of LacY consists of 12 

transmembrane -helices, crossing the membrane in a zigzag fashion, which are 
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connected by 11 relatively hydrophilic, periplasmic and cytoplasmic loops, with both 

amino and carboxyl termini on the cytoplasmic surface [21] (Figure 1). A three-

dimensional (3D) model of a LacY mutant (C154G) [22] and a reaction mechanism 

derived from X-ray diffraction studies are available [23]. The physiological activity of 

LacY is influenced by the physicochemical properties of neighbouring phospholipids. 

LacY is commonly reconstituted in native E. coli polar phospholipid membrane extracts 

as well as in binary mixtures of phosphatidylglycerol (PG) and 

phosphatidylethanolamine (PE) that mimic the inner membrane of the bacteria [24]. 

Recent studies have revealed that the activity of LacY is sustained not only by PE but 

also by phosphatidylcholine (PC) [25]. This study suggests the involvement of both the 

hydrophilic head group domain and the hydrophobic fatty acid domain of the 

phospholipids in the activity of LacY.  

The objective of the present study was twofold: (i) to investigate how lipid organisation 

is affected by the incorporation of LacY into binary mixtures of 1-palmitoyl-2-oleoyl-

sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) and either the heteroacid 1-palmitoyl-

2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) or the saturated homoacid 1,2-

palmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and (ii) to investigate the 

changes induced in the protein when modifying the lipid environment. Since both the 

POPE:POPG and DPPE:POPG (3:1, mol/mol) phospholipid systems display lateral 

phase separation at the studied temperature [26], it was of interest to determine whether 

this property influences the integration of the protein. Hence, we first investigated the 

topography of these SLBs by AFM and determined the nanomechanical properties from 

the force curves [27]. These experiments were taken as a reference for the topography, 

FS and force-volume (FV) analyses performed on proteolipids sheets (PLSs) obtained 

from the extension of proteoliposomes onto the same solid substrate. Thereafter, we 

conducted unspecific unfolding experiments in order to investigate how LacY is 

affected by the surrounding phospholipid matrix. 

 

2. MATERIALS AND METHODS 

N-dodecyl-ß-D-maltoside (DDM) was purchased from Anatrace (Maumee, OH, USA). 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-

oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (POPG) were purchased 

from Avanti Polar Lipids (Alabaster, AL, USA). Isopropyl-1-thio-ß-D-

galactopyranoside (IPTG) was obtained from Sigma Chemical Co. (St. Louis, MO, 

USA) and polystyrene Bio-Beads
®
 SM-2 were purchased from Bio-Rad (Hercules, CA, 

USA). All other common chemicals were ACS grade. 

 

2.1 Bacterial strains and protein purification  

These procedures have been described in detail in previous papers [28,29]. Briefly, E. 

coli BL21(DE3) cells (Novagen, Madison, WI, USA) transformed with plasmid pCS19 

encoding the single- tryptophan mutant W151/C154G LacY provided by Dr. H. Ronald 

Kaback (UCLA, USA) were grown in Luria-Bertani broth containing ampicillin (100 

g/ml) at 30C and induced at the appropriate moment with 0.5 mM IPTG. The cells 

were disrupted, and the membrane fraction was harvested by ultracentrifugation. The 

membranes were solubilised by adding DDM and purified by Co (II) affinity 

chromatography (Talon Superflow, Palo Alto, CA, USA). Protein eluted with 150 mM 
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imidazole was subjected to gel-filtration chromatography using a Superdex 200 10/300 

column (GE-Healthcare, Buckinghamshire, UK) equilibrated with 20 mM Tris-HCl (pH 

7.6) containing 0.008% DDM. The protein was concentrated using Vivaspin 20 

concentrators (30 kDa cut off; Vivascience, Göttingen, Germany) and stored on ice. 

Protein identification was performed by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PGE) and protein quantitation was carried out using a Micro BCA 

kit (Pierce, Rockford, IL). 

 

2.2 Vesicle preparation and protein reconstitution 

Liposomes and proteoliposomes were prepared according to previously published 

methods [26,30]. Briefly, 2:1 (v/v) chloroform/methanol solutions containing 

appropriate amounts of phospholipids were dried under a stream of oxygen-free N2 in a 

conical tube. The total concentration of phospholipids was calculated as a function of 

the desired lipid-to-protein ratio (LPR) and protein concentration (3.16 μM). The 

resulting thin film was kept under high vacuum for ~ 3 h to remove organic solvent 

traces. Multilamellar liposomes (MLVs) were obtained following redispersion of the 

film in TRIS buffer (pH 7.60) containing 150 mM NaCl, application of successive 

cycles of freezing and thawing below and above the phase transition of the 

phospholipids and sonication for 2 min in a bath sonicator. Large unilamellar vesicles 

(LUVs) were obtained by extrusion (Mini-extruder, Avanti Polar Lipids, Alabaster, AL) 

of the MLV trough filters (Whatman Nederland B.V., Netherlands) using a pore size 

diameter of 100 nm. To obtain proteoliposomes, LUVs supplemented with 0.5% DDM 

were incubated overnight at room temperature. Solubilised protein was then added to 

the mixture, and it was incubated at 4ºC for 30 min to obtain a LPR (w/w) of 0.5. 

Proteoliposomes were obtained after the extraction of DDM using polystyrene beads.  

 

2.3 Supported lipid bilayers and atomic force microscopy 

SLBs were spread by vesicle fusion as described elsewhere [26]. Briefly, liposomes or 

proteoliposomes in TRIS buffer supplemented with 10 mM CaCl2 were deposited onto 

freshly cleaved mica disks. Samples were incubated at 37ºC for 2 h in an oven, using a 

water reservoir to prevent evaporation of the water from the sample. Before imaging, 

samples were washed with non-calcium-supplemented buffer. To perform the 

experiments, it was necessary to drift equilibrate and thermally stabilise the cantilever in 

the presence of buffer. Images were acquired at 22 ± 0.5ºC. 

Liquid AFM imaging was performed using a Multimode Microscope controlled by 

Nanoscope V electronics (Bruker, AXS Corporation, Madison, WI). Sample images 

were acquired in contact mode at scan frequencies of 4–7 Hz using an optimised 

feedback parameter and applying minimum vertical force. MSNL-10 V-shaped Si3N4 

cantilevers (Bruker AFM Probes, Camarillo, CA) with a nominal spring constant of 

0.03 N·m
-1

 were used. All images were processed using NanoScope Analysis Software 

(Bruker AXS Corporation, Santa Barbara, CA). 
 

 

2.4 Force Spectroscopy and force-volume measurements 

AFM in FS mode was used to obtain nanomechanical magnitudes and to perform 

protein non-specific unfolding. Individual spring constants of the different cantilevers 
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used were determined using the equipartition theorem. In practical terms the thermal 

tune calibration was estimated by using the Bruker software provided by the 

manufacturer. This method gives values which are within the 20% of the values 

obtained by other methods. Force–distance curves were measured using a constant 

velocity of 600 nm·s
-1

 between the AFM tip and the sample. When the pulling of the 

protein was aimed, the force curve was adjusted at low force (0.5-2 nN) pressing the 

cantilever down for ~1 s. The frequency of the pickups was low in order to avoid 

possible pick up of two or more proteins simultaneously. 

The worm-like chain (WLC) model [31,32], which describes the elastic behaviour of 

polymer chain elasticity, was used to fit unfolding events found in the force-distance 

curves, following the expression 
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where F(x) is the force at a distance x, kB is the Boltzmann constant, p is the persistence 

length (0.4 nm) [33], L is the contour length of the unfolded polypeptide chain and T is 

the temperature. Force peak events were observed in nearly 10% of all force curves 

(from a total of ~2000 in each experiment). In order to fit to WLC model only these 

force curves with well-defined sawtoothlike peaks were accepted. The criterion used to 

select the unfolding peaks was based in the value of the root mean square error 

(RMSE), which is a measure of the difference between the values predicted by the WLC 

model and the values actually observed. Only curves displaying RMSE values < 0.015 

nN were accepted.  

AFM in FV mode was used to combine the topographical image with FS information. 

To this end, FV images were recorded at a relative trigger threshold below the 

breaktrough force of the samples. FV imaging was performed using AFM tips with a 

nominal spring constant of 0.03 N/m. Images contained 32x32 pixels and were 

registered with an imaging scan-rate of 1 Hz.  

 

3. RESULTS AND DISCUSSION 

SLBs of POPE:POPG and DPPE:POPG (3:1, mol/mol) are systems that mimic the lipid 

composition of the inner membrane of E. coli. It is well-known that both systems 

display lateral phase separation at the temperature at which the experiments were 

conducted [26]. Although it is believed that lipids in natural biomembranes are in fluid 

liquid-crystalline (Lα) phase, it was considered of interest to investigate the affinity of 

the protein for the different Lα or solid-like gel (Lβ) phases. Therefore, we investigated 

the topographic and nanomechanical properties of the SLBs of the same composition as 

that used to reconstitute the protein. AFM topographic images of POPE:POPG (3:1, 

mol/mol) and DPPE:POPG (3:1 mol/mol) are shown in Figures 2A and 3A, 

respectively. The POPE:POPG system showed a fully extended flat bilayer that 

exhibited the expected coexistence of two lipid phases. We assumed that the higher one 

was the Lβ phase and the lower one, the Lα phase. The step height difference between 

phases was 0.9 ± 0.1 nm, which matches well with the expected values found elsewhere 

[34,35]. The absolute height of the Lα phase with respect to the mica could be calculated 

from some occasional defects found in samples, and was established as 3.8 ± 0.3 nm. 
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In the DPPE:POPG (3:1, mol/mol) mixture, AFM topographic image in Figure 3A, a 

flat featureless bilayer surface with coexistence of Lα and Lβ phases was observed. In 

this case, the height of the Lα domain was established as 5.0 ± 0.2 nm and the height of 

the Lβ domain as 5.7 ± 0.2 nm, both values in concordance with previous results [26].  

The nanomechanical study of the bilayers was conducted by analysing the FS curves. 

Essentially, two magnitudes were extracted by operating in this mode: (i) the 

breakthrough force or yield threshold force (Fy), i.e. the force that the bilayer can 

withstand before being indented, and (ii) the adhesion force (Fadh), i.e. the pull-off force 

between the tip and the bilayer [27,36]. Distribution of the Fy and Fadh values obtained 

for POPE:POPG is shown in Figures 2B and 2C, respectively. The most probable force 

values obtained from a Gaussian fitting of the data are shown in Table 1. Concerning Fy 

(Figure 2B), Lα and Lβ did not show major differences (0.509 ± 0.008 nN for Lα versus 

0.464 ± 0.006 nN for Lβ), which is reasonably consistent with previous studies [37] and 

may be attributed to the composition of the buffer used. However, it was not possible to 

perform a more precise comparison, since earlier experiments were performed at 

different temperatures and ionic strengths (in this former study, 10 mM of calcium was 

present), factors which determine the Fy values obtained [38,39]. It could still be 

hypothesised that the higher values obtained in the present study might be related to the 

lack of calcium in the medium, which would result in higher electrostatic repulsion 

between charged phospholipids and the tip, and thus higher forces would need to be 

overcome for the breakthrough event to occur [37]. For Fadh (Figure 2C), we found 

similar values for both lipid phases, although Lβ showed a slightly higher Fadh than Lα 

(0.292 ± 0.002 nN and 0.205 ± 0.004 nN, respectively). These values are in qualitative 

agreement with previous studies [40], whilst the quantitative differences were most 

probably due to variations in ionic strength and temperature. However, the observed 

trend was the same (Lβ Fadh > Lα Fadh). One possible interpretation for this behaviour 

would be to relate this to the enhanced stiffening induced by calcium; however, this was 

not the case in the present study, where the Ca
2+

 concentration was minimised by 

swabbing it away after SLB formation. Therefore, we conclude that adhesion force 

seems to be sensitive to the presence of Ca
2+

 in the aqueous layer between the SLB and 

the mica substrate [41,42].  

Figures 3B and 3C show the distribution of the Fy and Fadh values obtained for the 

DPPE:POPG system. The most probable force values obtained by a Gaussian fitting of 

the data are shown in Table 1. Concerning Fy, Lα and Lβ phases withstood forces of 1.78 

± 0.05 nN and 2.421 ± 0.009 nN, respectively. Note that we required 1.4 times more 

force to indent the Lβ than the Lα domain, which was to be expected, since Lβ, enriched 

in DPPE is the stiffer domain [16]. Also as expected, given the nominal composition, 

both values were significantly higher than those obtained for the POPE:POPG system. 

This could be anticipated because of the nature of DPPE, a saturated phospholipid that 

rigidifies and confers a higher packing to the system [26]. In this regard, DPPE not only 

hardens Lβ phase to a high degree, but also Lα, where it might be present to a lesser 

extent. We observed that whilst the Fadh for the Lα domain in DPPE:POPG was quite 

similar to the one obtained for Lα in POPE:POPG, the values obtained for the Lβ phase 

were higher. This confirms the trend already described for POPE:POPG in Figure 2C.  

LacY was reconstituted with phospholipids at a LPR ratio (w/w) of 0.5 and the resulting 

proteoliposomes were then deposited onto mica. Note that this approach yields 

supported lipid bilayers where LacY is embedded in a random configuration (either 

facing the substrate or facing the aqueous media). The LPR used was higher than the 
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one found in the majority of biological membranes and close to that used for 2D 

crystallisation [30], and was very suitable for conducting a structural analysis of LacY. 

The lower LPR values used in previous studies yield isolated and undefined single 

protein entities [26,35]. The PLSs obtained by the reconstitution of LacY in 

POPE:POPG and DPPE:POPG are shown in Figures 4A and 5A, respectively. In both 

cases, two laterally segregated domains were observed. As can be seen in Figure 4A, 

when LacY was reconstituted in POPE:POPG proteoliposomes there was a lower 

domain with a step height of 5.2 ± 0.2 nm and a higher domain with a step height of 5.6 

± 0.2 nm. Whilst the lower domain was featureless, the higher domain evidenced some 

protrusions that could be attributed to the self-segregated protein. This becomes clearer 

in the insert provided in Figure 4A. Roughness (Ra) values were of 0.06 nm for the 

lower domain and of 0.09 nm for the higher.  

Figure 5A shows a proteolipid sheet obtained from deposition of LacY reconstituted in 

DPPE:POPG proteoliposomes. A bilayer patch can be observed which, as above, also 

contained two different domains: a lower one which was flat and featureless, and a 

higher one, grainy and covered in protrusions most probably due to the self-segregation 

of LacY. The heights for the lower and higher domains were 4.2 ± 0.2 nm and 5.2 ± 0.2 

nm, respectively. Ra values were of 0.08 nm for the lower domain and of 0.15 nm for 

the higher. 

Conversely to what was observed with lower LPRs [26], it was not possible in this case 

either to confirm the existence of Lα and Lβ  lipid phases or to identify single isolated 

entities of the protein. This was not totally unexpected since we were using an 

extremely high LPR ratio, and thus forcing self-segregation of the protein. To explain 

these observations, it can be argued that when LacY is reconstituted in a binary 

phospholipid mixture that presents Lα and Lβ domains, the protein recruits those 

phospholipid species which best match its structural requirements and provide the most 

adequate physicochemical environment [43,44]. Transmembrane proteins are solvated 

by those phospholipids that reduce the mismatch of the lipid-protein boundary and, as 

evidenced by ESR, by a lipid annular ring in immediate contact with the protein [45]. 

According to FRET measurements in solution [29], PEs are preferred over POPGs. 

Hence, the upper domains observed in Figures 4A and 5A may consist of the 

assemblage of LacY, its close phospholipid annular ring and an extra phospholipid 

nano-domain. Therefore, it was considered of interest to conduct a comparative analysis 

of the domains observed in Figures 4A and 5A with those observed in Figures 2A and 

3A.  

To this end, a first approach to understanding the AFM topographic observations in 

systems with LacY was to compare the step height differences between the SLBs in 

Figures 2 and 3 and the lipid and proteolipid domains in Figures 4 and 5. Thus, when 

considering the POPE:POPG mixture with LacY (Figure 4A), we would expect to find a 

step height difference of 0.9 ± 0.1 nm between Lα and Lβ  (as shown in Figure 2A). 

Strikingly, the actual step height difference found between the two domains in Figure 

4A was 0.4 ± 0.4 nm. Therefore, it is conceivable that the highest domain corresponded 

to the Lα phase enriched with LacY protruding about 1.3 ± 0.5 nm into this lipid 

composition, which is in accordance with previous results [26]. Hence, the step height 

difference observed here may be the consequence of self-segregation of the protein 

within the Lα phase, and consequently, the lower domain might correspond to the L 

phase. The same comparison can be conducted for the DPPE:POPG mixture. In this 

case, Figure 3A without protein shows a domain height difference of 0.7 ± 0.4 nm. 
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Here, step height difference is 1.0 ± 0.4 nm and thus LacY protrusion can be established 

as 1.7 ± 0.8 nm, which is in accordance with previous studies using this same lipid 

mixture [26]. Hence, the lower domain can be assigned to the Lβ phase and the upper 

domain to a protein-enriched Lα domain.  

Other possibilities, such as (i) a protein-free lipid domain corresponding to Lα and a 

protein-enriched domain corresponding to Lα containing LacY, or (ii) a protein-free 

lipid domain corresponding to Lα or Lβ and a protein-enriched domain corresponding to 

Lβ containing LacY, were discarded because a comparative analysis of step height did 

not present reliable results. However, it was difficult to go any further with this analysis 

because the use of detergent in proteoliposome preparation can significantly change 

bilayer characteristics [15]. For example, it has been reported that for POPE:POPG (3:1, 

mol/mol) mixtures treated with detergent, height differences between Lα and Lβ phases 

are lower than the height observed before DDM incubation [35].  

Like most of the membrane proteins LacY is hydrophobic and also extremely flexible, 

and is solvated with lipid molecules. Specifically we have demonstrated that LacY 

shows selectivity for PE phospholipids [46,47]. For this reason, when reconstituted in 

binary systems containing PE and PG with PEs differing in the acyl chain composition, 

one with two saturated acyl chains and the other with the sn-1 chain unsaturated and sn-

2 saturated it becomes of interest to investigate: first, the distribution of LacY between 

domains observed in the SLBs; and secondly, how the pulling of the protein from the 

PLS is affected by each lipid matrix.  

Thus, to further characterise the systems, nanomechanical information was obtained by 

extracting force magnitudes from the FS curves applied to the domains with and without 

LacY. The distribution of Fy and Fadh values was plotted in the histograms shown in 

Figures 4B and 4C and Figures 5B and 5C for the POPE:POPG and the DPPE:POPG 

systems, respectively. For a better comparison, the more probable Fy and Fadh values 

corresponding to these compositions are listed in Table 2.   

In the case of PLSs obtained from the extension of LacY reconstituted in POPE:POPG, 

Fy values for domains with and without LacY were 0.124 ± 0.004 nN and 0.37 ± 0.01 

nN, respectively. This indicates that domains without protein were less easily punctured 

than domains containing LacY. Since Fy values in Figure 2B were similar for Lβ and Lα 

phases, the changes in Figure 4B indicate that the presence of LacY modified bilayer 

stiffness. Strikingly, domains without protein showed Fy values also lower than those 

obtained for the Lβ phase (see Table 1) which might be attributed to the presence of 

some traces of detergent used during the purification of the protein [15]. When 

analysing Fadh, no significant differences were found between domains with and without 

LacY (0.105 ± 0.003 nN versus 0.1193 ± 0.0014 nN, respectively) (Table 2), which 

matches reasonably well with the values obtained for protein-free SLBs (Table 1). In 

general, all Fy and Fadh values were lower than the ones presented in Figure 2B. This 

might be related to the presence of the protein in the system, but also to some extent to 

the remaining effect of the detergent used to prepare the samples.  

In the case of LacY reconstituted in DPPE:POPG, the Fy values followed a similar trend 

to the one observed when LacY was reconstituted in POPE:POPG. Thus, LacY-

enriched domains showed significantly lower Fy values than protein-free domains 

(0.222 ± 0.006 nN and 2.55 ± 0.02 nN, respectively). On the one hand, Fy values in 

domains without protein compared quite well with Fy values obtained for the Lβ 

domains (Figure 3B), which is consistent with the hypothesis that this domain may be 
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organised similarly to a Lβ phase. On the other hand, domains with LacY showed much 

lower values than the Lα domains in Figure 3B, following a similar trend to the one 

found for POPE:POPG protein-enriched domains. Regarding Fadh, both values were 

similar in presence and absence of LacY (0.212 ± 0.002 nN and 0.237 ± 0.007 nN, 

respectively), which may be more related to the detergent treatment than to the presence 

of protein. Again, all values were lower for DPPE:POPG extended proteoliposomes 

than for DPPE:POPG extended liposomes. 

Taking the entire set of Fy values together, we can state that for both lipid mixtures used 

in LacY reconstitution, the forces obtained in lipid regions without the protein were 

similar to the values obtained for the Lβ domains in the lipid SLBs obtained from 

liposome extension. These results strongly suggest that the shortest domains in Figures 

4A and 5A may in fact correspond to Lβ phases. Furthermore, height enhancement in 

domains with LacY may be due to the presence of the protein and the negative 

curvature tendency of PE [48], the main component of the annular boundary region 

[47]. In turn, this would lead to greater changes in nanomechanical magnitudes. Thus, 

Fy values in LacY-enriched domains differ from the same values in protein-free Lα 

domains. More difficult is a direct interpretation of the Fadh values, which were 

dramatically affected by other factors, such as area of contact and tip characteristics 

[49]. Interestingly, we observed that protein-lipid Lα phases from proteoliposomes could 

be punctured more easily than the Lα phase in the lipid alone. This reinforces the idea 

that we are actually observing a new fluid phase that includes average bulk properties of 

protein and its closed solvated phospholipids. 

To elucidate how the presence of proteins affects the lipid bilayer, we investigated the 

system using the FV [50] mode. Figures 6A and 6B show the FV topography images for 

the two lipid matrices studied, POPE:POPG and DPPE:POPG, respectively. In order to 

analyse the results, we classified the images into different regions depending on the 

proximity of each region to the protein-containing domains (see Figures 6C and 6D). 

FV was performed applying low force per pixel (the minimum necessary to avoid 

bilayer destruction whilst permitting topography recording). Fadh values were notably 

lower than those obtained from the FS mode due to the fact that Fadh is related to tip 

penetration [50]. The Fadh values obtained in Figure 6 increased with the distance from 

the protein-enriched domain, ranging from 115 ± 16 pN and 10.5 ± 0.8 pN for region 1, 

to 308 ± 15 pN and 24 ± 2 pN, for the region furthest from the protein, for POPE:POPG 

and DPPE:POPG, respectively. Indeed, the trend was clear for both lipid matrices: the 

further from the protein domain, the higher the acquired Fadh value. This can be related 

to two factors: (i) the presence of the protein, which creates a sort of network which 

stabilises the lipid bilayer, and (ii) the behaviour of the SLBs (Figures 2C and 3C), 

where Lβ domains presented higher Fadh values than Lα domains. This provides support 

for the coexistence of protein-free Lβ phases and LacY-enriched Lα phases. 

Having analysed the topographic and nanomechanical changes induced in SLBs when 

LacY was reconstituted in binary phospholipid systems, it then seemed reasonable to 

investigate the modifications induced in LacY when embedded in the POPE:POPG and 

DPPE:POPG matrices. To this end, we performed unspecific FS by approaching the 

AFM tip close to the PLS (Figures 4A and 5A). This means that the AFM tip was not 

chemically functionalised and therefore the protein could be pulled away from any point 

of its secondary structure. Note that we were not pursuing the complete unfolding of the 

protein in order to unveil its single molecular force spectroscopy spectrum [51] but 

rather to investigate the stochastic behaviour of the protein embedded in different 
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phospholipid environments. Specifically, we wanted to ascertain whether the pattern of 

unspecific pulling was modified depending on the lipid matrix.  

In these kinds of experiment, a large number of force curves is obtained, but positive 

retraction curves account for less than 10% [52]. The large number of unsuccessful 

events can probably be attributed to the high hydrophobicity of LacY, which is tightly 

packed in the lipid matrix. Noteworthy, as discussed elsewhere [53] a membrane protein 

may adapt to lipids or vice versa depending on each particular membrane protein. 

Figures 7A and 8A show a representative retracting force-distance curve obtained for 

LacY embedded in POPE:POPG (7A) and in DPPE:POPG (8A) lipid compositions. The 

retraction curves displayed characteristic sawtooth peak features, with a nonlinear 

increase in the force on separation that preceded an abrupt return to zero force. As can 

be seen whilst there is some periodicity between the peaks no overlapped sawtooth 

patterns appear, indicating that we are pulling a single protein entity. For each force-

distance curve, several sawtooth peaks were obtained. By fitting the WLC model to 

these peaks (Eq. 1), we determined the force required to unfold a pulled protein segment 

(unfolding force, Fu) and the approximate number of amino acids that the segment 

contained.   

Although fully extended LacY may present an unfolding curve of about 171.8 nm (427 

amino acids considering the His-Tag and 0.4 nm per amino acid residue [33]), the  

representative retracting force-curve in 7A is shorter, indicating that complete 

unfolding, as expected for a non-specific pulling and strong lipid-protein interactions, 

did not occur. Conversely, the representative retracting force-curve in Figure 8A is 

closer to a complete unfolding of the protein. Indeed, the total lengths of the unfolding 

curves were highly variable depending on the tip-protein contact point and whether the 

protein was completely unfolded or not. For this reason, entire unfolding curves could 

not be overlaid and averaged in this study.  

Figures 7B and 8B show the distribution of the Fu values obtained from pulling LacY 

embedded in POPE:POPG and DPPE:POPG matrices, respectively. As can be seen, the 

main Fu values were centred in different regions depending on the phospholipid binary 

system used in reconstitution. The presence of a single peak in both histograms may be 

indicative of a monomeric protein organisation [54]. The average unfolding rupture 

forces corresponding to LacY embedded in POPE:POPG and DPPE:POPG were 72.7 ± 

3.6 pN and 91.4 ± 4.3 pN, respectively. These values are in agreement with the 

unfolding from 2 to 6 α-helices (see Figure 1), since it is accepted that the force required 

to unfold a primarily α-helical segment should range between 15 and 25 pN [54,55]. 

These findings would appear to indicate that higher force is required to unfold LacY 

from the DPPE:POPG matrix than from the POPE:POPG matrix. These observations 

suggest that the forces governing the protein-lipid interaction when DPPE is the 

predominant lipid are slightly more important than when the main lipid is POPE and 

thus LacY might be more tightly inserted in this system. That can be related to two 

former observations: (i) PE has been described as a chaperone for LacY and, at the same 

time it is thought to be essential for LacY physiological activity [46,56–58]; and (ii) the 

acyl chain curvature plays a defined role in the adaptation to the surface of the protein 

[28]. Both observations are in agreement with the fact that flexible proteins like LacY 

adapt better to more rigid phospholipids as it is the case of DPPE [1,53]. Additionally, 

this coincides with recent finding of Bogdanov’s group that demonstrates the relevance 

of the acyl chains in the LacY activity [25]. Of course, it is tempting to relate this 

behaviour to the different lateral pressures [20] exerted by each phospholipid. As we 
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have previously shown from interfacial phospholipid monolayers, DPPE presents a 

larger compressibility modulus than POPE [26,59].  

Further investigation into the pulling events yielded an estimation of the number of 

amino acids extracted in each unfolding event. The distributions corresponding to the 

POPE:POPG and DPPE:POPG matrices are shown in Figures 7C and 8C, respectively. 

As can be seen, the most probable values obtained by retrieving the tip from the protein-

enriched domains observed in the POPE:POPG and DPPE:POPG matrices were 76 ± 3 

and 77 ± 4 amino acids, respectively. This would correspond, on average, to a most 

probable unfolding in a row of 2.3 α-helices for both lipid mixtures (on average, LacY 

presents 33.2 amino acids per α-helix and contiguous loop, Figure 1). Interestingly, 

although DPPE:POPG presented the highest Fu value, it showed the same number of 

amino acids per pulling event as that obtained from retrieving the tip from 

POPE:POPG. This may indicate that the required force per amino acid in DPPE:POPG 

is higher than that required in the POPE:POPG composition, reinforcing the hypothesis 

that the lateral pressure [20] exerted by the phospholipids is a relevant parameter to take 

into account. This is important, because pulling experiment outputs of transmembrane 

protein may vary depending on the lipid matrix used for reconstitution. Lastly, the 

probability of total unfolding of LacY increased the more α-helices (and consequently 

amino acids) were pulled. Hence, the unfolding length histograms respond to a decrease 

in the # of events as length increases, which can be seen by the exponential decay fitting 

performed in Figures 7C and 8C. A similar behaviour was found for other systems [60].   

Taken together, the results presented in this paper demonstrate that the presence of a 

protein greatly modifies lateral phase segregation in lipid systems. Clearly, when LacY 

is incorporated into the lipid matrices, two phases are present, but different of the pure 

Lβ or Lα phases. However, a comparative height analysis and the nanomechanical 

analysis performed on each domain strongly suggest that the domain where the protein 

is not apparent corresponded to a Lβ lipid domain, whilst the domain enriched in LacY 

corresponded to a new domain where the characteristics of the pure Lα phase had been 

slightly modified. There is a preferential insertion of LacY for these like-fluid domains 

mainly composed of POPG. Note, however, that this is not in contradiction with the 

presence of POPE or DPPE (to a lesser extent) at the boundary or annular region of 

LacY. 

This finding is in agreement with previous studies based on FRET measurements.  

Furthermore, the unspecific unfolding approach employed here, which was not aimed at 

structural elucidation of the protein, showed a differential behaviour depending on the 

PE acyl chain composition. These results indicate the important influence of the lateral 

pressure achieved at core levels, as suggested by molecular dynamic simulations. 
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FIGURES AND TABLES 

 

 

 

 
Figure 1. Secondary structure model of lactose permease showing its topological organisation. 

Red numbers indicate starting and ending amino acid of each transmembrane -helix. Protein 

feature based from PDB 1PV6 entry mapped onto a UniProtKB sequence (www.uniprot.org) 

[21]. 

 

 

Figure 2. AFM topographic image and height profile analysis of POPE:POPG (3:1, mol/mol) 

SLB (Z scale = 10 nm) (A). Histograms present the distribution of forces of Lα phase (red) and 

Lβ phase (green) for Fy (B) and Fadh (C). Fittings to a Gaussian distribution are represented in 

solid lines.  
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Figure 3.  AFM topographic image and height profile analysis of DPPE:POPG (3:1, mol/mol) 

SLB (Z scale = 10 nm) (A). Histograms present the distribution of forces of Lα phase (red) and 

Lβ phase (green) for Fy (B) and Fadh (C). Fittings to a Gaussian distribution are represented in 

solid lines.  

 

 

Figure 4. AFM topographic image and height profile analysis of a SLB composed of 

POPE:POPG (3:1, mol/mol) with LacY at a LPR (w/w) of 0.5 (Z scale = 15 nm) (A). Insert in A 

presents a magnified image (470 x 280 nm, Z = 3 nm) where domains with LacY can be 

distinguished from domains without LacY. Histograms present the distribution of forces of 

domains with LacY (red) and domains without LacY (green) for Fy (B) and Fadh (C). Fittings to 

a Gaussian distribution are represented in solid lines. 
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Figure 5. AFM topographic image and height profile analysis of a SLB composed of 

DPPE:POPG (3:1, mol/mol) with LacY at a LPR of 0.5 (Z scale = 10 nm) (A). Insert in A 

presents a magnified image (173 x 104 nm, Z = 3 nm) where domains with LacY can be 

distinguished from domains without LacY. Histograms present the distribution of forces of 

domains with LacY (red) and domains without LacY (green) for Fy (B) and Fadh (C). Fittings to 

a Gaussian distribution are represented in solid lines.  

 

 

Figure 6. FV AFM topographic images of POPE:POPG (3:1, mol/mol) with LacY (z scale = 15 

nm) (A) and DPPE:POPG (3:1, mol/mol) with LacY (z scale = 10 nm) (B). Fadh values obtained 

from image A (C) and B (D). Regions are numbered indicating proximity to the protein starting 

from zone 1, closer to LacY. 

154



 

 

 Figure 7. Representative force-distance curve of single LacY unfolding from POPE:POPG 

(3:1, mol/mol) matrix (A). Distribution of Fu (B) and distribution of force-curve length (C) are 

shown for LacY in this lipid matrix. Continuous red line corresponds to an exponential fit to the 

decay. 

 

 

Figure 8. (A) Representative force-distance curve of single LacY unfolding from DPPE:POPG 

(3:1, mol/mol) matrix (A). Distribution of Fu (B) and distribution of force-curve length (C) are 

shown for LacY in this lipid matrix. Continuous red line corresponds to an exponential fit to the 

decay.   

 

Table 1. Mean Fy and Fadh values from data presented in Figures 2 and 3, fitted to a 

Gaussian distribution.  

  POPE:POPG  
(3:1, mol:mol) 

DPPE:POPG  
(3:1, mol:mol) 

F
y 

(nN) 
L

 0.509 ± 0.008 1.78 ± 0.05 

L

 0.464 ± 0.006 2.421 ± 0.009 

F
adh 

(nN) 
L

 0.205 ± 0.004 0.249 ± 0.002 

L

 0.292 ± 0.002 0.523 ± 0.004 
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Table 2. Mean Fy and Fadh values from data presented in Figures 4 and 5, fitted to a 

Gaussian distribution 

  POPE:POPG  
(3:1, mol:mol) 

DPPE:POPG  
(3:1, mol:mol) 

F
y 

(nN) 

With 

LacY 0.124 ± 0.004 0.222 ± 0.006 

Without 

LacY 0.370 ± 0.014 2.55 ± 0.02 

F
adh 

(nN) 

With 

LacY 0.105 ± 0.003 0.212 ± 0.002 

Without 

LacY 0.1193 ± 0.0014 0.237 ± 0.007 
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Chapter 5. Discussion 

 

 

 

In the present thesis, the working hypothesis to further develop was to assume, based 

on: (i) electron spin resonance spectroscopy measurements [87]; and (ii) transport 

experiments carried out with whole cells and proteoliposomes [122]; that there is a 

direct implication of the phospholipids in the physiological activity of LacY. These 

phospholipids should be located at the boundary or annular region neighbouring the 

protein. The main objective of this thesis was to deepen in the elucidation of the 

physicochemical properties of the lipids in the peripheral region of LacY together with 

the study of the molecular basis for possible specific protein-lipid interactions. The 

predominant presence of PE at the annular region of the protein has already been 

verified by our group [133], confirming cross observations on transport activity [122] 

and hypothesis of other researchers [136]. Moreover, a minor occupancy of PG has also 

been reported [131] in agreement with the selective recruitment of phospholipids by 

LacY in different experimental conditions [132]. However, new approaches were 

required to finer unveil the nature and the specific physicochemical properties involved 

in such interactions as well as its biological significance. Consequently, we extended the 

LacY-phospholipid interaction research to the influence of bulk lipids into the protein 

insertion (and vice-versa). Hence, we wanted to comprehend the effects induced in the 

organisation and nanomechanics of lipids when a TMP model such as LacY is inserted 

in a membrane with binary lipid composition and, at the same time, evaluate changes in 

the protein properties (structure and folding) when the surrounding lipids are modified. 

The overall information should give a quite complete insight into the LacY-

phospholipid interaction, specially focused in the physicochemical and nanomechanical 

aspects. Regarding possible studies of non-annular phospholipids [77], their presence 
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has not been clearly elucidated in LacY yet. Accordingly, in the different X-ray 

diffraction structures obtained no particular phospholipid was resolved tightly bound to 

the protein. This does not directly exclude the presence of such kind of phospholipids 

interacting with the protein, although the LacY ability to present functional activity in 

different phospholipid conditions may be an indicative of a possible lack of requirement 

for any non-annular species [140]. 

The study of LacY annular lipids was achieved by taking advantage of fluorescence 

techniques with proteoliposomes. More specifically, by exploiting FRET tools between 

the single tryptophan of the studied mutant (single-W151/C154G LacY) and pyrene-

labelled phospholipids added to the vesicles. On the other hand, the investigation of the 

interaction between bulk lipids and LacY, as well as its consequences in the 

organisation and nanomechanics of the system were studied using planar models: 

supported lipid bilayers (SLBs) or planar proteolipid sheets (PLSs). SLBs and PLSs 

were analysed using topographic and force-spectroscopy (FS) AFM modes.  

When working with artificial models the selection of the lipid species forming the lipid 

membrane is not trivial and represents always the starting point. This means that further 

studies involving the presence of the protein or the addition of other lipids always imply 

a greater complication of the system and, thus, it is crucial the previous characterisation 

of the phospholipid system used as the reference. Therefore, a deep investigation of the 

lipid systems without the protein is required.  

To carry out the experiments we selected lipid mixtures corresponding to simplified 

biomimetic approaches of the inner membrane of E. coli. Hence, we worked with binary 

mixtures of synthetic PE:PG phospholipids at a molar ratio of 3:1. PE is described as a 

pivotal phospholipid  regarding LacY folding and functioning [6,122] which leads to the 

presumption of a major role for this species in the system. For this reason we focused on 

the study of effects related to the PE phospholipid acyl chain composition while 

maintaining PG species constant. In addition, despite different acyl chain compositions 

were studied, we concentrated in heteroacid phospholipids because they are 

predominant configurations in natural membranes [153]. Thus, POPG was the PG 

compound used in all the matrices and POPE was the most examined PE, being the 

studied systems POPE:POPG (3:1, mol/mol), DOPE:POPG (3:1, mol/mol), and 

DPPE:POPG (3:1, mol/mol). Different molar ratios between PE and PG were also 
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analysed in matrices such as POPE:POPG (3:1, mol/mol), POPE:POPG (1:1, mol/mol) 

and POPE:POPG (1:3, mol/mol). Finally, although PCs do not show relevant biological 

significance in the case of the inner membrane of E. coli, a recent publication from 

Bogdanov et al. [142] showed that LacY displays full functional activity when the 

protein is assembled in mutated E. coli where PCs substitute PEs. By contrast, LacY 

inserted in proteoliposomes containing 70% of DOPC and 30% of PG/CL only displays 

downhill activity. On account of those results LacY was also reconstituted in PC 

matrices, which represents a test for the versatility of the protein in adapting to different 

lipid systems [140]. Moreover, the investigation of PCs with different acyl chains can 

be useful in order to understand the implications of the phospholipid structure in the 

LacY-phospholipid interaction.  

There are many works showing the preferential insertion of highly mobile proteins in 

the L phase of the lipid matrices [34,94]. Therefore, in a first study described in section 

3.3.1 the physicochemical behaviour of DOPE:POPG (3:1, mol/mol), POPE:POPG 

(3:1, mol/mol) and DPPE:POPG (3:1, mol/mol) lipid systems was addressed with the 

main objective to investigate the lipid lateral phase separation phenomena. Our results 

demonstrated that changing PE acyl chains largely modified the behaviour of the lipid 

systems. Laurdan and AFM measurements evidenced DOPE:POPG (3:1, mol/mol) 

system in fluid phase all over the studied temperatures (from 3 to 65 ºC). By contrast, 

DPPE:POPG (3:1, mol/mol) system showed a large range of temperatures with 

coexistence of Lα and Lβ domains with different composition, as shown by AFM at 24 

and 37 ºC and by Laurdan measurements which evidenced a coexistence of domains 

ranging from 21.3 to 49.0 ºC. This was further corroborated by the corresponding 

isotherms at 24 and 37 ºC displaying two different collapses and thus a laterally 

segregated system. In the case of POPE:POPG (3:1, mol/mol), Lα and Lβ domains only 

coexisted during the Tm (23.3 ºC, according to Laurdan measurements), as it was further 

confirmed in the study described in section 3.3.2. Assuming that our mixtures are 

mimicking but not fully representative of the whole composition of the E. coli inner 

membrane, which is considered to be in Lα phase, the biological meaning of the physical 

phase separation phenomena can be discussed. Therefore, although drastic changes in 

temperature are not expected on the regular life of the bacteria, since POPE:POPG (3:1, 

mol/mol) presents its phase transition close to room temperature this might actually 

have a biological meaning in some particular situations (e.g. E. coli living out of warm-
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blooded animals [256]). Besides, the appearance of phase transition in phospholipids 

can be triggered by other specific factors (e.g. the presence of divalent ions, that 

normally affects the Tm of a sample [185]) and thus become locally relevant in cells. 

Additionally, the presence of surrounding membrane proteins or structural cytoskeleton 

in vivo might also modify this behaviour [9]. In any event, DOPE:POPG (3:1, mol/mol) 

mixture, with a phase transition far from natural conditions (Tm < 3 ºC, according to 

Laurdan measurements in section 3.3.1) is the system where a possible phase separation 

would be less relevant in nature. 

To assess the importance of such phase separation in the insertion of LacY we 

reconstituted the protein in proteoliposomes of the very same mixtures (study in 3.3.1). 

The proteoliposomes were extended over mica and imaged at 27 ºC using AFM. This 

temperature was chosen because at these conditions POPE:POPG (3:1, mol/mol) and 

DPPE:POPG (3:1, mol/mol) displayed phase separation. The proteoliposomes were 

prepared at low LPR in order to avoid possible effects on the phospholipid organisation 

related to the presence of a high amount of protein. In addition, this configuration 

allowed a better investigation of the influence of the phase separation in the protein 

insertion and distribution. In agreement with former studies [128], LacY was mostly 

observed in Lα phases or sometimes at the boundary regions between both phases, but 

was excluded from Lβ phases in the studied phospholipid matrices. Interestingly, this 

may indicate that albeit differences in phospholipid acyl chains, length and curvature 

between these mixtures, all Lα phases were capable to better insert the protein as 

compared to Lβ phases, most likely due to a better hydrophobic matching and adaptation 

to seal the protein boundaries. However, this does not directly mean that the protein was 

correctly folded or that it could display full activity in these lipid compositions. Thus, 

the lack of LacY in Lβ phases indicates that the protein can adapt better to POPE:POPG 

(3:1, mol/mol) and DPPE:POPG (3:1, mol/mol) Lα phases than to Lβ phases from the 

same mixtures. This behaviour can be related to bulk characteristics of the Lα phase in 

terms of fluidity or, alternatively, to the specific lipid composition of these domains. 

Indeed, due to its lower melting transition temperature, POPG would presumably be the 

main component of both fluid phases, something that can contradict the preferential 

presence of PE at the annular region of the protein. Finally, in the special case of 

DOPE:POPG (3:1, mol/mol) where the whole system displayed Lα phase, it was 

interesting to observe the protein mostly self-segregated in an edge of the bilayer patch. 
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This could point to a high fluidity in the system which permitted the protein to easily 

diffuse and cluster across the 2D plane of the bilayer. 

The presence of LacY in Lα phases where presumably POPG is the predominant species 

seems to contradict the fact that LacY selects PE in POPE:POPG (3:1, mol/mol) 

systems as it has been assessed by FRET measurements [133], and other studies 

indicating the requirement for PE in PE-lacking engineered E. coli cells [122]. To 

further address this problem we constructed a binary phase diagram for the 

POPE:POPG system (study in 3.3.2). This was important in order to estimate the extent 

of POPG enrichment in the Lα phase at different temperatures and compositions. Note, 

however, that a DSC phase diagram from vesicles was already available for this mixture 

[158]. Unfortunately, such diagram could not be extrapolated to SLB samples, where 

the infinite curvature of the bilayer together with a high influence of the support creates 

large physicochemical differences between both model membranes. Hence, the 

objective was to acquire, despite the limitations of the AFM technique, an AFM pseudo-

phase diagram from SLBs to extrapolate information to other studies with the same 

model membrane system. With this purpose in mind we worked with SLBs in a buffer 

supplemented with Ca
2+

 because this ion is often used to assist the extension of negative 

liposomes on a support by the vesicle fusion technique [59], as it is the case of the 

samples prepared in our studies. Complementarily, a binary phase diagram based on 

DSC measurements of liposomes was also performed in presence of Ca
2+

 in order to 

compare it with the binary phase diagram obtained using AFM. As expected, the 

obtained DSC phase diagram was displaced to lower Tm and presented lower molar 

enthalpies ( DSCH ) than their associated van’t Hoff molar enthalpies ( vHH ) 

calculated from the AFM data. These results confirmed an effect of the mica support on 

the lipid transition as it has already been described in other works [186,188,189].  

In spite of being very useful to interpret SLBs studies of phospholipid mixtures, phase 

diagrams based in AFM temperature controlled experiments are not frequent in the 

literature [189,257]. Consequently, the construction of such diagram for the 

POPE:POPG binary mixture represents a step forward and creates a tool that can be 

useful to other researchers working with similar phospholipid systems. Additionally, 

working with SLBs presents the advantage of allowing the AFM topographical and 

nanomechanical analysis of the system at diverse points of the phase diagram. 
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Therefore, by performing force-distance (FD) curves we obtained the nanomechanical 

parameters most commonly used in biomembranes (breakthrough force or Fy and 

adhesion force or Fadh). For completeness, the continuum nucleation model was also 

fitted to the Fy data in order to calculate  (the line tension of the molecules in the 

periphery of a hole) and S (the spreading pressure associated with the energy per unit 

area gained by the layer when filling a hole formed after a rupture). All the obtained 

values were directly associated to the POPG content: (i) increasing Γ values and 

decreasing S values upon the enlargement of POPG in the system and, (ii) Fy and Fadh 

displaying inverted trends for Lβ and Lα in χPOPG = 0.75 as compared to χPOPG < 0.75. 

These effects related to the POPG increasing were explained by the stiffening of the 

system due to the presence of calcium: the cation has the ability to interact with the 

negative headgroup of the phospholipid and create a PG-PG network. This leads to a 

more rigid bilayer that responds differently to the nanomechanical stimulus.  

In the study described in section 4.3.4 we performed again FS analysis of POPE:POPG 

(3:1, mol/mol). However, in this case no calcium was present when performing the FD 

curves, since the ion had been swabbed out after the vesicle extension. Interestingly, 

when comparing both results we realised that similar trends appeared (especially for 

Fadh), which is difficult to justify if the system lacks of Ca
2+

. In fact, this can be 

explained by the presence of a buffer layer trapped between the mica and the bilayer 

during the SLB formation [58,60]. It should be stressed here that Ca
2+

 in this layer can 

only interact with negative POPG phospholipids placed in the proximal bilayer leaflet, 

but, surprisingly, this interaction seems to be sufficient to entail global nanomechanical 

effects in the bilayer.  

Focusing on the most biomimetic mixture, POPE:POPG (3:1, mol/mol), the obtained Tm 

from the AFM binary phase diagram was 27.80 ± 0.12 ºC and the phase transition 

encompassed a wide range of temperatures, displaying domain coexistence from 25.5 to 

30 ºC. Additionally, the diagram was used to estimate the phospholipid composition of 

the Lα phase at 27 ºC and it confirmed a large enrichment with POPG: it represents 

80.7% of this phase. Therefore, taking into account results in 3.3.1 where LacY was 

embedded preferentially in Lα phases, we can conclude that LacY is inserted in a phase 

where the main component is POPG. As confirmed in the POPE:POPG (3:1, mol/mol) 

isotherm at 24 ºC (study in 3.3.1) the system displays good miscibility and thus should 

present its compounds randomly distributed. Hence, an arbitrary distribution would 
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signify a high amount of POPG in the annular region of LacY. Instead, the protein 

prefers POPE in its vicinity as judged by FRET measurements [133]. Therefore, these 

observations reinforce the idea of a preferential LacY-phospholipid interaction, contrary 

to a random distribution of phospholipids. Still, POPG may play a role in the system, 

most likely affecting the bulk properties of the membrane. It could be related to 

contributions in fluidity, but also in negative charge. Actually, in Bogdanov et al. 

studies [140], LacY displaying proper transport is always embedded in matrices with up 

to ≃ 30% of PG and cardiolipin. In any case, the idea of a fluid POPG phase with 

segregated POPE surrounding LacY might be similar to a hypothesis postulated by 

London [258]. In this review lateral asymmetry in membrane domains is proposed to 

happen in diverse ways and at different levels. For instance, a possible way of domain 

formation is a protein embedded in a fluid phase, but with appetence for a more rigid 

nanodomain, which would organise only in the annular region close to the protein.  

Once the phospholipid systems were extensively analysed, in a second stage we aimed 

to address the study of the influence between the protein and the lipids. Therefore, as 

mentioned, we delineated a strategy to study the fluid phase and the insertion of LacY at 

different levels: the study of the annular lipids was addressed by FRET fluorescence in 

proteoliposomes under different conditions, and the bulk lipids were studied in phase 

separated planar PLSs.  

The first of the FRET studies (section 4.3.1) aiming the comprehension of the annular 

region of LacY was delineated with the idea of obtaining direct information about the 

protein-phospholipid affinity. Thus, LacY was embedded into single-component 

vesicles. This choice was directed to the elimination of possible factors coming from the 

biomimetic matrix in order to only focus the attention on the pure structural (chemical) 

selectivity between LacY and a particular phospholipid species. Moreover, this 

experimental approach avoided problems present when performing FRET studies in 

two-component lipid matrices: (i) due to a dilution problem, the probability of finding 

labelled phospholipids surrounding the protein is decreased and the obtained results are 

less representative; and (ii) although we normally consider the labelled phospholipid to 

behave as the unlabelled one and act as a reporter, in fact there are evidences strongly 

suggesting that we are working with ternary systems [259]. It is true that experiments 

mimicking the real membrane describe a more realistic situation where all phospholipid 

species might exert a function in the final organisation of the ensemble, but from a 
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physicochemical point of view these experiments are complex to analyse due to a 

system with many variables. So the single-component FRET experiments are crucial as 

a source of information about LacY capacity to select between a given phospholipid 

matrix or a precise labelled phospholipid.  

Hence, we performed FRET analyses with LacY reconstituted in single phospholipid 

matrices of POPE, POPG, DOPC and POPC where a χ =0.015 of pyrene acyl chain 

labelled-PE, -PG or -PC was present. A conceivable obstacle related to the use of non-

biomimetic configurations was the possibility of obtaining LacY reconstituted in a non-

native topology. It is for instance well-described in systems only containing PG and CL 

that LacY displays an inverted topology and is not capable to perform uphill activity 

[130]. However, since downhill activity is preserved, binding capabilities might be 

conserved. Unfortunately, the mutant employed in our studies, single-W151/C154G 

LacY cannot execute transport, which limits the possibilities to asses a good membrane 

insertion to the analysis of the protein substrate recognition. Therefore, although we 

observed in substrate recognition tests that LacY embedded in a POPG system 

conserved good binding affinity; other studies confirm that the protein is not correctly 

folded within this environment [130]. Conversely, when LacY was inserted in DOPC or 

POPC systems, it presented good binding affinity in our tests and other studies confirm 

the correct folding of the protein under these conditions [140]. More complicated was 

the case of POPE because we detected a compromised binding capacity most likely due 

to the non-lamellar propensity of PE. However, LacY has been reported to work at its 

best in high amounts of PE [6]. Although it is true that a 98.5% PE matrix as used here 

has not been tested before in in vitro experiments with LacY proteoliposomes, coherent 

fluorescent spectra were found, suggesting that the position of the fluorophore, sited 

near the binding site, remains unaltered and that the global structure is maintained. 

The obtained FRET results under this particular configuration were of great relevance to 

understand the preference of LacY for specific phospholipids. Hence, the PE-labelled 

molecule was the compound that presented higher energy transfer in all the studied 

mixtures. In addition, when applying the mathematic model developed in collaboration 

with Dr Loura and Dr Prieto, PE-labelled phospholipids displayed the higher probability 

(µ) of being found in the annular region and also the higher relative association constant 

between the labelled and the unlabelled phospholipids (Ks). This is indeed very 

significant since it assesses a clear preferential LacY-PE interaction and corroborates 
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previous findings [133]. Thus, this means that whatever is the main lipid surrounding 

LacY, the protein will always modify the physicochemical properties of the matrix 

where is embedded to bring closer a phospholipid with a PE headgroup (or, 

alternatively, PE phospholipids will minimize the energy for a good insertion of the 

protein in the membrane by segregating closer to the protein). Therefore, it seems to 

demonstrate that LacY prefers a zwitterionic phospholipid with an ionisable amine. In 

particular, it has been proved that these characteristics are not essential for the protein 

functioning since the zwitterionic POPC and the neutral glycolipid GlcDAG can also 

support full LacY activity [140,143]. Accordingly, in this study the labelled-PC in 

POPC mixtures presented a significant µ to be placed in the annular region of LacY in 

certain phospholipid matrices. However, our studies indicated that, whatever is the case, 

the protein prefers PEs over PCs.  

The comparison of the two studied PC containing systems is convenient in order to 

understand the different reported behaviour of the protein when embedded in POPC or 

DOPC matrices. Hence, whereas POPC supported the uphill transport activity of the 

protein [140], just as PC replacing PE in vivo in engineered E. coli [142]; DOPC could 

only support downhill transport [130]. Unexpectedly but in agreement with these 

results, in our studies a differential behaviour of labelled-PCs in both systems was 

described. Thus, labelled-PC was found with higher µ in the annular region of LacY in 

the case of POPC, whilst LacY in a DOPC matrix presented a probability close to zero 

of presenting a labelled-PC in its vicinity. The interpretation of the results can be done 

by considering the probe as a second phospholipid species competing with the 

unlabelled phospholipid for the same sites in an annular position. Then, low FRET 

efficiency of labelled-PC in a DOPC matrix indicates that the DOPC phospholipid was 

capable of displacing the probe out of the annular region of the protein and, therefore, 

that DOPC is the preferred phospholipid for the protein. On the contrary, POPC could 

not displace the probe, which points to the following LacY selectivity trend: 

DOPC>labelled-PC>POPC. This is somehow intriguing, because it seems to indicate 

that although the protein is not fully active in DOPC phospholipids and fully active in 

POPC, regarding the fluorescent probes used it presents a major affinity for DOPC than 

for POPC phospholipids. Assuming that (i) LacY protein embedded in a DOPC matrix 

cannot perform uphill transport, but is capable of substrate recognition and downhill 

transport, and (ii) the used s-W151/C154G LacY mutant is arrested in one specific 
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pseudo inward-conformation; one could think that LacY may be capable to adapt the 

composition of its annular region depending on the state of the protein. Therefore, it is 

reasonable to think that LacY may prefer to be surrounded by DOPC when it is in 

inward-facing conformation, but that the preference for this lipid can be modified 

during conformational transitions. This would be supported by the high exchange rate 

described for phospholipids in the annular lipid region [87].  

These results from section 4.3.1 are reinforced by those obtained from the study 

described in 4.3.3, where pyrene PE phospholipids marked in the headgroup (HPyr-PE) 

were used to analyse the influence of the acyl chain on the system. These experiments 

were delineated to further understand the influence of the acyl chain composition on the 

present system, and were performed in binary phospholipid biomimetic matrices 

(DOPE:POPG, POPE:POPG and DPPE:POPG; 3:1, mol/mol). The results were 

interpreted taking into account the favoured presence of PE surrounding the protein, as 

well as all the previous FRET results. Thus, we deduced a tendency indicating the 

preference for a phospholipid to be located at the annular region of the protein as 

follows: DOPE>HPyr-PE> POPE. Again DOPE was the preferred phospholipid for 

LacY. Additionally, these results pointed to a possible importance of the phospholipid 

spontaneous curvature (C0) for the LacY selectivity. In fact, the described trend matches 

an estimated C0 tendency from the more negative value to the less negative one (see 

manuscript in 4.3.3). Thus, the data seem to confirm that C0 is a major determinant of 

the LacY−lipid interaction, with PE lipids bearing more negative C0 values being 

preferred relative to others with a more cylindrical shape.  

Studies in 4.3.2 and 4.3.3 were performed using biomimetic phospholipid compositions. 

By contrast to the single-component strategy, although the two-component matrices 

cause dilution of the probe and difficulty in interpreting the results, the obtained data is 

relatively more significant. Therefore, the study with enhanced selectivity (4.3.1) gave 

us information on the precise LacY-phospholipid affinity, but it omitted the effect of 

another phospholipid in the mixture. This presence may effectively affect through 

various means, such as the presence of phase separation and the possible partition of the 

protein in fluid phases. Indeed, from Laurdan liposome studies in 3.3.1 we know that 

POPE:POPG (3:1, mol/mol) mixture shows a Tm close to room temperature (23.3 ºC) 

and DPPE:POPG (3:1, mol/mol) displays coexistence of domains with different 

composition ranging from 21.3 to 49.0 ºC. 
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Furthermore, the two described FRET studies (4.3.1, 4.3.3) were focused on revealing 

information concerning the phospholipids surrounding the protein. In a third FRET 

study (section 4.3.2) we wanted to centre on the protein structure and try to grasp 

structural reasons explaining the protein-lipid selectivity. Thus, we based our hypothesis 

in studies pointing to the amino acid in position 68, an aspartic acid, as the more 

important residue involved in the PE-protein interaction [136]. The interaction is 

described to be related to a salt bridge formed between D68, PE and K69. Therefore, it 

seemed interesting to design FRET experiments which could further investigate these 

findings. With this aim, the position 68 of our LacY mutant was mutated by placing a 

cysteine, amino acid which is not capable to perform the mentioned salt bridge. Then, 

FRET studies were performed between pyrene-labelled phospholipids marked in the 

acyl chain and the single tryptophan of the new mutant (single-W151/C154G/D68C 

LacY) embedded in three different biomimetic compositions: DOPE:POPG (3:1, 

mol/mol), POPE:POPG (3:1, mol/mol) and DPPE:POPG (3:1, mol/mol). This 

configuration was outlined with the purpose of comparing the obtained results with 

former ones coming from single-W151/C154G LacY [133]. 

A common feature in both studies was, interestingly, the presence of higher E/M ratio in 

annular phospholipids as compared to bulk species, which confirms the segregation of 

the pyrene-labelled phospholipids in the vicinity of the protein and thus, the formation 

of an annular region. On the contrary, the pattern of phospholipid affinities was 

modified when working with the new mutant, namely (i) higher relative affinity 

between POPE and single-W151/C154G than between POPE and single-

W151/C154G/D68C, and (ii) modified affinity trend in DPPE:POPG (3:1, mol/mol) 

system, where the main component of the annular region was PG in single-

W151/C154G, and PE in single-W151/C154G/D68C. In the remaining studied systems 

PE was found to be the main component of the annular region in single-

W151/C154G/D68C as it happened in single-W151/C154G.  

Notwithstanding, the D68C mutation did not lead to a new situation with PE completely 

depleted from the annular region, as it would have been the best case to assess a lack of 

interaction between PEs and the cysteine in position 68. However, the presence of PE 

near the protein is not directly indicative of the presence or absence of this link, nor 

gives information about the strength of a possible interaction. In any event, we observed 

a general diminution of the selectivity for PEs in this mutant and a change in the 
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phospholipid selectivity, being suggestive of modifications in the protein-lipid 

interaction. Therefore, we can confirm that this position exhibits a relationship with the 

surrounding lipid environment, but we cannot validate it as the most important position 

regarding PE-LacY interaction.  

In summary, all the presented FRET studies point to the presence of a separated 

phospholipid annular region surrounding LacY as evidenced by enhanced E/M ratios in 

this region as compared to the bulk lipids. This is in agreement with former fluorescent 

studies with LacY [129,131,133]. In addition, PE has been corroborated as the main 

component of the annular region of the protein, although PC could also play a role, at 

least in the inward-facing configuration. Moreover, evidences have been found 

suggesting a great importance of the acyl chain structure, as well as geometric 

characteristics of the phospholipids such as the C0. Indeed, FRET studies were of 

extreme importance before further analysing the systems through SLBs using AFM. 

AFM studies can display a great resolution at the nanoscale level and they present a 

privileged vision of the insertion of a membrane protein. However, it is complicated to 

use this technique to obtain information on the annular region of a protein. That is why 

FRET experiments, along with previous phase behaviour and phase composition studies 

on phospholipid systems were crucial in order to discuss further results on LacY 

insertion in planar bilayers.  

The next step was the AFM analysis of phase separated systems with the presence of 

single-W151/C154G LacY at high LPR (study in 4.3.4). Because the biomimetic 

composition of POPE:POPG (3:1, mol/mol) does not present phase separation at 37 °C, 

in these studies we worked at room temperature to observe how the presence of protein 

affects each of the different phases. Additionally, the presence of a phase separated 

system is necessary in order to obtain regions with packed protein, since a whole fluid 

phase could lead to the diffusion and dilution of the protein all around the lipid system. 

The chosen phase separated systems at room temperature were POPE:POPG (3:1, 

mol/mol) and DPPE:POPG (3:1, mol/mol). The protein was reconstituted to form 

proteoliposomes which were subsequently extended over mica. Then, the obtained 

planar systems were analysed through topography, force-spectroscopy (FS) and force-

volume (FV) AFM modes. In parallel, the same systems without protein were also 

studied as controls.   
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When studying the extended proteoliposomes using AFM, we observed for both 

phospholipid matrices the presence of two different domains: a flat, lower domain, and 

a higher one that presented a large number of protrusions. The domains step height was 

analysed and they turned out to correlate to a lower Lβ domain and a higher Lα domain 

with enhanced step height due to the presence of protein and a possible hydrophobic 

match between lipids and proteins. Furthermore, FS analysis allowed comparing 

nanomechanical parameters of lower and higher phases with parameters obtained for Lα 

and Lβ in SLB lipid systems. From these comparisons we observed that the lower 

domain presented quite similar nanomechanic characteristics to Lβ phase, just with few 

modifications probably due to different preparation processes (in the case of 

proteoliposomes the system was in contact with detergent and, although rinsed, we 

cannot exclude a possible remaining concentration in the membrane). Conversely, the 

higher domain seemed to correspond to a Lα with new characteristics, probably related 

to the creation of a new phase where average parameters of lipids and proteins were 

displayed.  

Additionally, thanks to the FV mode we could map adhesion forces (Fadh) from different 

zones in an AFM image, giving rise to a clear trend where Fadh values decreased the 

closer the analysed phospholipids were to the protein. This could be explained by a 

stabilisation effect related to the presence of the protein or alternatively, by differences 

in Fadh found for Lα and Lβ phases and previously identified in systems without protein. 

The results corroborated the hypothesis of a higher domain with the protein embedded 

in Lα phase and a lower protein-free domain displaying Lβ phase. 

It is interesting to recall here that from the AFM phase diagram we know that fluid 

phases in POPE:POPG are mainly composed of POPG. In the case of DPPE:POPG (3:1, 

mol/mol), due to the high Tm of the DPPE pure system, fluid phases might also be 

composed mainly of POPG. Since LacY is embedded in these regions we can confirm a 

bulk role of POPG phospholipid in the protein insertion. Moreover, since the 

nanomechanical properties of the system undergo changes due to protein insertion, we 

can also speculate a role for the protein in modifying indirectly these bulk phospholipid 

properties; although a possible role for the remaining detergent cannot be excluded. 

However, the effects between LacY and the phospholipids seem to be reciprocal. 
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Further confirmation of this reciprocity can be attained by performing unspecific pulling 

experiments of the protein with the AFM tip. Previous experiments of FS and FV on 

lipids had focused on the effects induced by the protein in the analysed phospholipid 

systems. Here, stochastic unspecific pulling of LacY embedded in the two studied lipid 

matrices focused on the protein to give light to the differential forces maintaining LacY 

inserted in a flat bilayer. Note that both studied lipid systems presented good binding 

capabilities [133], although this does not directly assess proper LacY folding and 

topology. Therefore, we do not know if the protein is folded with an identical topology 

in both systems. In any regard, divergences were found between the two models 

systems as evidenced by the differential pulling of LacY depending on the surrounding 

phospholipids. In effect, more force was needed when trying to unfold the protein in 

DPPE:POPG (3:1, mol/mol) system than in POPE:POPG (3:1, mol/mol) system. This 

might indicate different interaction forces between LacY and lipids, which could be 

assessed to different lipid bulk properties or to a different annular region lipid 

composition. Indeed, from FRET experiments 4.3.1-4.3.3 we know that PE is the main 

phospholipid in the annular region of POPE:POPG (3:1, mol/mol), whilst PG has been 

described as the main phospholipid in the DPPE:POPG (3:1, mol/mol) system [133]. 

This could point to differences derived from a different annular region composition.  

Taking into account that (i) POPE:POPG (3:1, mol/mol) is the more biomimetical 

matrix [153], and (ii) PE, which is needed for proper LacY function, is close to the 

protein in POPE:POPG (3:1, mol/mol) but not in DPPE:POPG (3:1, mol/mol), it seems 

interesting to discuss the described harder interaction existing between LacY and 

DPPE:POPG (3:1, mol/mol) matrix as compared to POPE:POPG (3:1, mol/mol). Thus, 

major stability is not always a sign for a better activity, as it has been described in LacY 

for mutations such as C154G [203] or D68E [211]. In those situations different 

interactions within amino acid side chains of the protein were stabilized, which, 

unexpectedly, inactivated the protein because the required reorganization of the 

structure to conduct conformational changes was impeded. Similarly, the stabilization of 

LacY in DPPE:POPG (3:1, mol/mol) system may not be indicative of a better protein 

functioning, especially regarding the lack of PE in the annular region of the protein. 

However, further activity studies are required.    

Regarding bulk characteristics, the different pattern in the LacY unspecific pulling 

depending on the phospholipid matrix suggests that the forces governing the protein-

176

Chapter 5



 

lipid interaction when DPPE is the predominant lipid are slightly more important than 

when the main lipid is POPE and thus LacY might be more tightly inserted in this 

system. This evidences an importance for PE phospholipid, which can be related to the 

fact that PE has been described as a chaperone for LacY and, at the same time, it is 

thought to be essential for LacY physiological activity [6,133,136,137]. Additionally, it 

corroborates that the acyl chain curvature of the phospholipid (C0) plays a defined role 

in the adaptation to the surface of the protein, as described in 4.3.1 and 4.3.3, which 

indirectly reinforces the relevance of the acyl chains in the LacY activity, as it has been 

postulated by Vitrac et al. [140].  

To conclude, regarding POPE:POPG (3:1, mol/mol), the more biomimetic system for 

LacY, we confirmed by AFM imaging of samples at low and high LPR that the protein 

inserts preferentially in the Lα phase (studies 3.3.1 and 4.3.4). Additionally, the 

construction of an AFM pseudo-phase diagram for the binary system allowed us to 

estimate the composition of this phase at a given temperature, and a major presence of 

POPG was found at the studied temperatures (study 3.3.2). Regardless of this POPG 

enrichment in Lα phase, the presence of PE as the preferential phospholipid in the 

annular region was corroborated by FRET studies which pointed to a selective PE-LacY 

interaction instead of a random phospholipid positioning (studies 4.3.1-4.3.3). 

Additionally, a role for the D68 position in the LacY sensing of the lipid environment 

was found (study 4.3.2). Finally, effects on the nanomechanics of the Lα phase upon the 

insertion of the protein were described. For instance, the PLS systems displayed lower 

Fy values than free-protein SLBs, which is indicative of new physicochemical values 

coming from the average of the lipid and protein bulk properties (study 4.3.4). 

Furthermore, the interactions of LacY with this POPE:POPG (3:1, mol/mol) Lα phase 

seemed to present a well-balanced, accurate magnitude to facilitate conformational 

changes, as it was evidenced from pulling experiments where the force needed to pull 

the protein in this lipid matrix was lower than the one needed to pull it from the less 

suitable DPPE:POPG (3:1, mol/mol) system (study 4.3.4). 
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Chapter 6. Conclusions 

 

 

 

This thesis can be framed within the fields of biophysics of biomembranes and physical 

chemistry, and embedded in the wide field of bionanotechnology. We have studied the 

existing relationship between a membrane protein, LacY, and its surrounding annular 

and bulk phospholipids. The partial conclusions of this work can be described as 

follows: 

 

Characterization of the lipid system 

 The physicochemical magnitudes of DOPE:POPG (3:1, mol/mol), POPE:POPG (3:1, 

mol/mol) and DPPE:POPG (3:1, mol/mol) have been studied by Langmuir 

isotherms, Laurdan fluorescence of liposomes and AFM imaging of SLBs. Specially, 

the phase separation phenomena related to the temperature of the system has been 

investigated, showing DOPE:POPG (3:1, mol/mol) in Lα phase from 3 to 65 ºC, 

POPE:POPG (3:1, mol/mol) only displaying phase separation around its Tm (23.3 ºC 

according to Laurdan experiments), and DPPE:POPG (3:1, mol/mol) showing 

coexistence of domains of different composition from 21.3 to 49 ºC in Laurdan 

experiments and at 24 and 37 ºC according to AFM analysis.  

 

 To further understand the POPE:POPG system two binary phase diagrams have been 

constructed in the presence of 10 mM of Ca
2+

, one obtained from DSC 

measurements of liposomes in solution and another from SLBs topographical 

analysis through temperature-controlled AFM. The AFM phase diagram enables the 

comprehension of the phase composition in other SLBs experiments performed at 

any χPOPG and T.  
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 The AFM nanomechanical analysis of POPE:POPG system varying the χPOPG content 

at 27 ºC and in presence of 10 mM of Ca
2+

 showed large variations in Fy, Fadh, Γ and 

S upon the increasing of the POPG content. This has been attributed to the interaction 

of the POPG headgroup with the divalent ion. Additionally, the presence of the 

cation in the remaining buffer layer between the bilayer and the substrate has been 

revealed to have important effects on a system with negatively charged 

phospholipids and where calcium has been removed after the extension.   

 

Characterization of the LacY-phospholipid interaction 

 The sensitivity for modelling FRET data obtained in membrane protein-lipid 

selectivity assays has been enhanced by using pure lipid matrices with χ = 0.015 of 

labelled-phospholipid. This configuration has been useful to unveil preferential 

LacY-phospholipid interactions.  

 

 The knowledge about the physicochemical magnitudes governing the selectivity 

between LacY and the phospholipids configuring the annular region has been 

expanded by using FRET experiments. Regarding headgroup preferences, it has been 

described that the protein favours zwitterionic phospholipids, with preference for PE 

over PC. However, in a phase separated system LacY tends to be in Lα phases and it 

can be surrounded by PG if PE or PC are not present in the phase. Regarding acyl 

chain preferences, it seems proved that the protein in inward-facing conformation 

prefers DOPE > POPE > DPPE. This preference trend can be related to the 

requirement of phospholipids displaying a negative C0 for the correct insertion and 

sealing of the protein in the bilayer.  

 

 The importance of the aspartic acid in position 68 of LacY sequence has been 

confirmed. From our studies, since phospholipid preferences were modified in D68 

mutants, this position seems to show a role in the interaction of the protein with the 

surrounding lipid matrix. However, the hypothesis pointing this amino acid as the 

most important for LacY-PE phospholipid has not been validated with our 

methodology.   
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 LacY reconstitutions in SLBs at low and high LPR analysed by topographic AFM 

mode showed that the protein inserts preferentially in Lα phases in POPE:POPG (3:1 

mol/mol) and DPPE:POPG (3:1 mol/mol) systems. Hence, the affinity of LacY for 

Lα phases has been confirmed. 

 

 Upon LacY insertion in a membrane, topographic changes were observed: the 

normally higher-stepped Lβ phase became the lower observed phase because of the 

Lα phase increase in step-height. This increase was related to the presence of the 

protein in this phase and a possible reorganization of the phospholipids due to the 

hydrophobic matching with the protein. In addition to topographic changes, the 

nanomechanical parameters were modified for the LacY-enriched Lα phase: it 

displayed lower Fy and Fadh values than the pure-lipid system used as a control. 

Those effects were attributed to bulk lipid-LacY interaction. 

 

  The reciprocal interaction between bulk lipids and LacY was evidenced by studying 

the differential unfolding of the protein depending on the lipid matrix where it was 

embedded: more force was required to unfold LacY from a DPPE:POPG (3:1, 

mol/mol) system than from a POPE:POPG (3:1, mol/mol) one. Thus, not only LacY 

modifies the characteristics of the matrices where it is embedded, but the lipid 

composition determines the forces governing the tight insertion of the protein into 

the lipid bilayer.  

 

 

GENERAL CONCLUSION 

In this thesis the relationship between LacY and its annular and bulk lipids in model 

systems has been unveiled. First, after validating LacY preference for phospholipid 

fluid (Lα) phases in the studied two-component model systems, a different composition 

between bulk and annular phospholipids was confirmed. Hence, bulk lipids, which were 

assimilated to the phospholipids in Lα phase, were mainly formed by PG, while PE was 

the main component of the annular region. This points to a direct phospholipid-LacY 

selectivity because it discards a random phospholipid distribution near the protein. 

Second, the LacY selectivity for precise phospholipid species at the annular region was 

found to be related to: (i) a neutral charged phospholipid (PE or PC, with preference for 

181

Conclusions



the former), and (ii) phospholipids displaying a large negative spontaneous curvature 

(C0) (DOPE > POPE). In addition, D68 was revealed as an important amino acid for the 

protein annular lipid selectivity. Third, the interaction between LacY and the bulk lipids 

was described as reciprocal. Accordingly, the presence of the protein largely modified 

the topography and the nanomechanics of the lipid system, especially for the Lα phase, 

whilst the nanomechanics of LacY itself were different depending on the surrounding 

lipid matrix: more force was needed to pull LacY form the DPPE:POPG (3:1, mol/mol) 

system than from the POPE:POPG (3:1, mol/mol) one. Therefore, the bilayer lipid 

composition seems to determine the forces governing the LacY tight interaction with 

the membrane and can be thus very important for the protein correct insertion and 

activity.  
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Appendix A 
Symbols and acronyms 

 

 

 

A FRET acceptor 

A Surface area 

ABC ATP-binding cassette 

AFM Atomic force microscopy 

Χ Mole fraction 

C0 Spontaneous intrinsic curvature 

CL Cardiolipin 

Cs Isothermal compressibility module 

D FRET donor 

     Van’t Hoff molar enthalpy 

  ̃  Electrochemical potential of i 

DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine 

    Substrate concentration gradient 

DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine 

DOPE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

DPPE 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine 

DSC Differential scanning calorimetry 

E Pyrene excimer 

E FRET efficiency 

E. coli Escherichia coli 

E/M Excimer to monomer ratio 

F Force 

Fadh Adhesion force 

FRET Förster resonance energy transfer 

FS Force spectroscopy 
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FD Force-distance 

FV Force volume 

Fy Breakthrough force 

G Gaseous 

Γ Line tension 

γ Surface tension  

γ 0 Surface tension in absence of a surface agent 

G
E
 Excess Gibbs energy 

GlcDAG Monoglucosyl diacylglycerol 

GlcGlcDAG Diglucosyl diacylglycerol 

GUV Giant unilamellar vesicle 

HPyr-PE Pyrene head-labelled PE phospholipid 

ID Fluorescence intensity of the donor  

IDA Fluorescence intensity of the donor in the presence of 

acceptor 
 

kB Boltzmann constant 

ks Relative association constant between labelled and 

unlabelled phospholipids 
 

λ Wavelength 

λem Emission wavelength 

λex Excitation wavelength 

Lα Lamellar liquid-crystalline phase or fluid phase 

LacY Lactose permease 

Lβ Lamellar gel phase 

Lc Contour length 

LC Liquid condensed 

LE Liquid expanded  

LPR Lipid-to-protein ratio 

LUV Large unilamellar vesicle 

M Pyrene monomer 

µ Probability of a site in the annular ring being occupied 

by a pyrene-labelled phospholipid 
 

MD Molecular dynamic 

MFS Major facilitator superfamily  

MLV Multilamellar vesicle 

p Persistence length 
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π Surface pressure 

PC Phosphatidylcholine 

PE Phosphatidylethanolamine 

PG Phosphatidylglycerol 

PLS Proteolipid sheet 

POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

POPE 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine 
 

POPG 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (sodium salt) 
 

PS Phosphatidylserine 

Pyr Pyrene 

Pyr-PC Pyrene acyl chain-labelled PC 

Pyr-PE Pyrene acyl chain-labelled PE 

Pyr-PG Pyrene acyl chain-labelled PG 

S Spreading pressure 

S0 Molecular ground state 

S1 Molecular singlet excited state 

SDS Sodium dodecyl sulfate 

SLB Supported lipid bilayer 

S-N Singer-Nicolson 

SPM Scanning probe microscopy 

SPR Surface plasmon resonance 

STM Scanning tunnelling microscopy 

SUV Small unilamellar vesicle 

T Temperature 

TERS Tip-enhanced Raman spectroscopy 

TIRFF Total internal reflection fluorescence 

Tm Transition or melting temperature 

TM Transmembrane segment 

TMP Transmembrane protein 

Toffset Temperature at which the melting of phospholipids  

finish 
 

Tonset Temperature at which the melting of phospholipids 

start 
 

WLC Worm-like chain model  
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