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Abstract

In this thesis we present the results of our research on duality theory for non-
classical logics under the point of view of Abstract Algebraic Logic. Firstly, we
propose an abstract Spectral-like duality and an abstract Priestley-style duality for
every filter distributive finitary congruential logic with theorems. This proposal
aims to unify the various dualities for concrete logics that we find in the literature,
by showing the abstract template in which all of them fit. Secondly, the dual
correspondence of some logical properties is examined. This serves to reveal the
connection between our abstract dualities and the concrete dualities related to
concrete logics. We apply those results to get new dualities for suitable expansions
of a well-known logic: the implicative fragment of intuitionistic logic. Finally, we
develop a new technique that can be modularly applied to simplify some of the
obtained dualities.

Resumen

En esta tesis presentamos los resultados de nuestra investigacion acerca de la
teoria de la dualidad para logicas no clasicas desde el punto de vista de la Logica
Algebraica Abstracta. En primer lugar, proponemos una dualidad abstracta de
tipo espectral y otra dualidad abstracta de tipo Priestley para cada légica congru-
encial, filtro distributiva, finitaria y con teoremas. Esta propuesta pretende unificar
las distintas dualidades para légicas no clasicas que encontramos en la literatura,
mostrando el esquema abstracto en el que todas ellas encajan. En segundo lugar,
la correspondencia dual de algunas propiedades légicas es examinada. Esto sirve
para revelar la conexién que existe entre nuestras dualidades abstractas y las du-
alidades concretas relacionadas con légicas concretas. Aplicamos estos resultados
para obtener nuevas dualidades para expansiones apropiadas de una logica bien
conocida: el fragmento implicativo de la logica intuicionista. Finalmente, desarrol-
lamos una nueva técnica que puede ser aplicada de forma modular para simplificar
algunas de las dualidades obtenidas.
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Cuando el cocodrilo entré en mi dormitorio pensé que tampoco habia que exagerar. No
me refiero al cocodrilo sino a mi mismo. Ya que mi primer impulso fue alcanzar el
teléfono y marcar los tres nimeros de urgencias: policia, bomberos y ambulancia. Pero
justamente semejante reacciéon me parecié exagerada. Puesto que soy un europeo
educado en el espiritu cartesiano, siento repulsion por los extremismos, pienso de un
modo racional y no sucumbo a impulsos de ningin tipo sin haberlos analizado
previamente.

Asi que me cubrf la cabeza con el edredén y emprendi un trabajo mental.

Primero —determiné— la aparicion de un cocodrilo en mi dormitorio es un absurdo, y,
segiin el pensamiento l6gico, el absurdo sirve sélo para ser excluido del razonamiento
ulterior. O sea que no habia ningin cocodrilo. Tranquilizado con esta conclusién, asomé
la cara por debajo del edredén, gracias a lo cual logré ver cémo el cocodrilo cortaba de
un mordisco el cable del aparato telefénico, ya anteriormente devorado por él. Incluso en
el caso de que alargando la mano a través de sus fauces hasta el estémago consiguiera

marcar uno de los nimeros de urgencias, la comunicacién ya estaba cortada.

(Fragmento de “Un europeo”, en Mrozek, Stawomir: Juego de azar)
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Introduction and Summary of Contents

The main goal of this dissertation is to show that Abstract Algebraic Logic pro-
vides the appropriate theoretical framework for developing a uniform and abstract
duality theory for non-classical logics.

Algebraic Logic can be seen as the study of logics through the study of different
sorts of algebra related mathematical structures. The basic point is the study of
how algebra-based structures can be associated to a given logic, so they provide, in
a broad sense, algebraic semantics for the logic. The notion of algebraic semantics
is very natural under a mathematical point of view, as it is usually very close to
the syntactic presentation of the logics. However, other semantic approaches such
as Kripke-style semantics have traditionally led to more intuitive comprehension
of the nature of non-classical logics. These two semantic approaches are, in many
cases, two sides of the same coin. And this can be shown through the powerful
tools that category theory provides us with.

Duality Theory

Duality theory usually refers to the study of categorical dualities in math-
ematics. Category theory is commonly considered an appropriate mathematical
framework for the study of the relations between mathematical objects of different
nature. One of the basic points of this theory is that not only the objects are taken
into account, but also the morphisms that transform an object into another. For
example, for an arbitrary logic, we might define a category by considering as objects
the algebra related structures that are associated with the logic, and as morphisms
the homomorphisms between the underlying algebras (perhaps requiring some addi-
tional conditions). A (categorical) duality is a special relation between two different
categories. We should say, to be more precise, a dual equivalence of categories. This
is a precise formulation of two related correspondences: one between the objects of
the two categories, and the other between the morphisms between two objects of
one of the categories, and the morphisms between the corresponding objects of the
other category. The key point of a duality is that within these correspondences,
morphisms are reversed. And this is precisely what makes a dual equivalence of
categories such an interesting phenomenon under a mathematical point of view.

In relation to (mathematical) logic, the work by Stone on representation of
Boolean algebras [69] is usually taken as the pioneering work of a fruitful field
of study, that we refer to simply as Stone/Priestley duality. Stone studied how
Boolean algebras, that are the algebraic counterpart of classical logic, can be du-
ally described in terms of compact totally disconnected Hausdorff spaces, that are
called Stone spaces (a.k.a. Boolean spaces). This yields to a dual equivalence of
categories, one having algebras as objects, and the other having topological spaces
as objects. And it also results in an elegant proof of completeness of classical logic
with respect to truth table semantics. What makes Stone duality a powerful math-
ematical tool is precisely the fact that it is a dual equivalence of categories. This
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2 INTRODUCTION AND SUMMARY OF CONTENTS

implies, for instance, that dual of injectivity is surjectivity (and vice versa), or duals
of homomorphic images are closed sets.

Further generalizations of Stone’s approach yield to Spectral-like and Priestley-
style dualities for distributive lattices. Throughout these and other related dua-
lities, we can build bridges between algebraic and Kripke-style semantics of some
non-classical logics. For example, we can use extended Stone duality for Boolean
algebras with operators [58] to prove completeness of the local and the global
consequences of normal modal logics with respect to Kripke frames. Or we can
use Esakia duality for Heyting algebras [30] to prove completeness of intuitionistic
propositional logic with respect to intuitionistic Kripke frames.

One of the strengths of Stone/Priestley duality is precisely that it allows us
to use topological tools in the study of logic. Of particular interest is the theory
of extended Priestley duality. Within this theory, a modular account of a wide
range of dualities for suitable expansions of distributive lattices is carried out.
More precisely, Priestley duality for distributive lattices is used to get the basic
building blocks over which the dualities for the expansions are built. A suitable
expansion of a distributive lattice is dually represented by a suitable expansion of
the dual Priestley space of the underlying distributive lattice. This theory accounts
uniformly for a wide range of dualities for non-classical logics, such as the already
mentioned dualities for Boolean algebras with operators.

A closely related topic that also yields to bridges between algebraic and Kripke-
style semantics of non-classical logics, is the theory of canonical extensions. This
theory consists of the study of how a given algebraic structure (that is usually
lattice-based) can be embedded in a complete lattice. Specific properties, such as
compactness and denseness, are required for such embedding. By constructing the
canonical extensions of algebras related with non-classical logics, and then apply-
ing discrete dualities (i.e. dualities that do not involve topology) to the resulting
complete algebras, completeness of non-classical logics with respect to Kripke-style
semantics can also be proven. This is usually an alternative way of getting such
completeness results, but there are cases when it is the only known way, as in the
case of several substructural logics that were studied in [26].

In summary, duality theory in (mathematical) logic has been proven to be a
fruitful field of study from which, among other results, completeness with respect
to Kripke-style semantics of a wide range of non-classical logics has been proven.
We are interested in the topological dualities that are encountered along the way,
and more precisely, in the so called Spectral-like and Priestley-style dualities. We
aim to develop a common framework that reports all these dualities in a uniform
way.

Abstract Algebraic Logic

Abstract Algebraic Logic (AAL from now on) is a general theory of the alge-
braization of logic. Emphasis is put on the general process of associating logics and
algebra related mathematical structures, regardless of the language and the way in
which the logics are defined. Algebras, logical matrices and generalized matrices
have been used to develop a general and uniform procedure for canonically asso-
ciating the class of S-algebras AlgS, the class of reduced S-algebras Alg*S or the
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intrinsic variety of S, to any logic S. In [35] it is argued why AlgS should be taken
as the canonical algebraic counterpart of any arbitrary logic, and it is currently
considered so in AAL.

From this point of view, the study of which metalogical properties of the logics
correspond with which algebraic properties of the related algebras (or algebra-
based structures) is one of the main topics. These results are known as bridge
theorems. For example, it is well-known that for any algebraizable logic S, to have
a deduction theorem is related to the property that the members of AlgS have
uniformly equationally definable principal relative congruences.

Another topic of AAL is to classify logics according to their abstract properties
or to the algebraic properties of their algebraic counterparts. Mainly two hierarchies
have been studied in depth: the Frege hierarchy and the Leibniz hierarchy. The
Frege hierarchy is a classification scheme of logics under four classes defined in terms
of congruence properties of the algebraic counterparts of the logics. The Leibniz
hierarchy presently consists of twenty different classes of logics, that form a lattice
when ordered by inclusion, whose bottom element is the class of implicative logics.

The notion of closure operator is one of the key points of this field of study.
It is worth mentioning that within AAL, logics are studied as deductive systems,
this is, as systems concerning validity of inferences, instead of validity of formuli.
Formally, a logic is a substitution invariant closure relation on a formula algebra.
This approach is precisely what allows us to study in a uniform way logics that
have been defined according to different methods, such as Hilbert-style presenta-
tions, natural deduction, Gentzen calculus, tableaux, algebraic semantics, relational
semantics, game-theoretic semantics, etc. Moreover, this takes us to another in-
teresting topic in AAL, namely, the study of how to define logics from classes of
algebras (or algebra based structures).

In summary, although AAL is a relatively young field of study, its value for
a uniform account of the study of non-classical logics has been largely proven.
In particular, the canonical algebraic counterpart of any arbitrary logic has been
studied. Given this abstract and general study of the algebra-based structures that
are canonically associated with arbitrary logics, the following question arises: can
we regard all dualities for non-classical logics under this abstract point of view, and
search for an abstract and general duality theory that unifies all the results that
are scattered throughout the literature?

Duality Theory and Abstract Algebraic Logic

In the late eighties, W¢jcicki studied in his Theory of logical calculi [73] which
abstract properties of the logics allow us to define a referential semantics for them.
The concept of referential semantics aims to capture under a uniform point of
view different semantic approaches such as frame semantics, Kripke-style semantics,
relational semantics, etc. The basic underlying idea is that the truth values of the
formuli depend on reference points. Thus models are based on non-empty sets of
reference points, endowed with additional structure. Each propositional variable is
assigned to a subset of points, and this assignment is extended to any formuli using
the additional structure, that is always explicitly or implicitly algebra-based.
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Wojcicki identified selfextensional logics as those that admit referential seman-
tics. Selfextensional logics might be defined, in brief, as those logics for which the
relation between two formuli of having the same consequences is a congruence in the
formula algebra. This is one of the four classes of algebras of the Frege hierarchy,
the others being congruential logics, Fregean logics and fully Fregean logics.

Wojcicki studied under an abstract perspective how referential semantic models
for selfextensional logics correspond with the algebra based structures that AAL
associates with such logics. The correspondence studied by Wojcicki was recently
formulated by Jansana and Palmigiano as a proper categorical duality in [56].
More specifically, they proved that for any selfextensional logic S, there is a dual
equivalence between the category of reduced generalized S-models and generalized
morphisms between them, and the category of reduced S-referential algebras and
strict homomorphisms between them. They also studied the restriction of this dua-
lity to congruential (a.k.a. fully selfextensional or strongly selfextensional) logics.
These logics are particularly well-behaved selfextensional logics. They can be de-
scribed as those logics for which the property of selfextensionality transfers to every
algebras. We do not go into details here. What we aim to highlight is that these
studies already tackled the problem of developing a uniform account of the bridges
that can be built between algebraic and referential semantics for non-classical logics
under an abstract algebraic logic point of view.

In [56] it was remarked that their duality serves as a general template where a
wide range of Spectral-like and Priestley-style dualities related with concrete logics
can fit. But they do not inquire further into this topic, and their construction
is rather far from those concrete examples. Our aim is to provide a construction
as general as possible, but closer to the dualities for non-classical logics that are
already well-known.

To accomplish this, the study of various recent dualities for non-classical logics
that we find in the literature was a crucial step. It is worth noting that until the
mid-2000s, all categories of algebras (and homomorphisms) for which Spectral-like
or Priestley-style dualities had been studied were built upon lattice-based algebras,
in most cases distributive. In recent literature, however, we find studies that extend
the same ideas beyond the distributive lattice setting. There have been considered
categories whose objects are the algebraic counterparts of certain fragments of in-
tuitionistic logic, that do not have conjunction and disjunction at the same time or
that do not have any of these connectives [5,6,11,15,18,19].

It was precisely through the study of those dualities that we came up with
the appropriate notions of filters upon which the general theory can be formulated
in such a way that it subsumes all the related results in the literature. For the
Spectral-like duality, the notion of irreducible logical filter is the basic tool. These
are the meet-irreducible elements of the lattice of logical filters. For the Priestley-
style duality, the issue is more involved. Optimal logical filters turn out to be the
right tools, and these filters are defined through another notion of strong logical
ideal, that will be introduced when appropriate.

The approach that we adopted is the following: we examined sufficient condi-
tions for a logic in order to posses a Spectral-like or a Priestley-style duality for
the class of algebras AlgS, that is the one canonically associated to it according to
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AAL. Obviously, from the mentioned work by Wdjcicki [73] and by Jansana and
Palmigiano [56], it follows that we should focus on congruential logics. Moreover,
we encountered that we need to restrict ourselves to filter distributive logics. This
class of logics, first studied by Czelakowski [21], consists of the logics for which the
collection of logical filters of any algebra is a distributive lattice. Such property is
satisfied by any logic with a disjunction, or with the deduction-detachment theo-
rem, among others. Filter-distributivity comes as a natural assumption, given that
distributivity, as it was already mentioned, is the ground assumption for Spectral-
like and Priestley-style dualities. Further assumptions over the logics are finitarity
and having theorems. Finitarity is used to get necessary separation lemmas, and
having theorems is a technical requirement that we assume for convenience.

All these properties of logics have been extensively studied within AAL, and
they are satisfied by many logics such as classical logic (and its fragments), in-
tuitionistic logic (and its fragments), local consequences of modal logics,... Some
well-known logics such as relevance logic R and Lukasiewicz’s infinite-valued logic
are not congruential (according to their usual formulation). However, in [53-55]
several strategies have been studied according to which a logic § with certain prop-
erties can be endowed with a congruential logic companion S’ so that AlgS = AlgS’.
And these strategies apply, in particular, for those mentioned logics.

In the present dissertation we prove that there is a Spectral-like duality and
a Priestley-style duality associated with any logic satisfying such conditions. The
precise and detailed formulation of those dualities is one of the main contributions
of this dissertation. Most of the dualities for non-classical logics that we encounter
in the literature fit straightforwardly in our general pattern and, moreover, new
dualities might potentially be studied out of it.

Those dualities for the category of S-algebras and homomorphisms, for any
filter distributive finitary congruential logic S, are the base that supports all other
results in the dissertation. Notice that we follow the spirit of AAL, and we work with
a fixed but arbitrary language. Our abstract approach yields, as it also happened
in [73] and in [56], to dual categories that also possess an algebraic nature. This
drawback cannot be bypassed within this abstract program, since we need the
arbitrary language to somehow be encoded in the dual spaces. However, the obstacle
can be overcome for concrete logics. We usually refer to the dualities for which the
dual categories have no explicit algebraic natura, as elegant dualities. Through
the study of the dual properties that correspond with several properties of logics,
we come up with a modular account of how the nature of the dual spaces can be
substantially simplified whenever the logics are sufficiently well-behaved.

This analysis, however, is not satisfactory for some logics that are not so well-
behaved, that is to say, we address this problem under a more concrete point of
view. We focus on some expansions of the implicative fragment of intuitionistic
logic, for which our general theory does not supply elegant dualities. Our contri-
bution consists of the development of a new strategy for defining dualities for such
expansions in a modular way. For this part of the dissertation, we were inspired by
extended Priestley duality. In the same way as the duality for distributive lattice
is taken as the cornerstone from which dualities for distributive lattice expansions
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are defined, we take the dualities for Hilbert algebras (that are the algebraic coun-
terpart of the implicative fragment of intuitionistic logic) as the cornerstone from
which dualities for suitable expansions of the implicative fragment of intuitionistic
logic can be defined.

Summary of contents

We will now give a broad overview of the main contents of this dissertation. It
has three linear parts that should preferably be read consecutively, since the first
part introduces the preliminaries in which the other two are supported, and the
second part presents the general theory with which the results in the third part are
closely related.

Part 1. Preliminaries and Literature Survey. This part consists of three
independent chapters. As its title indicates, we introduce here the preliminaries
and basic notations, as well as a non-exhaustive account of the literature on duality
theory for structures related with non-classical logics.

In Chapter 1 we briefly discuss some of the mathematical background knowl-
edge which we assume that the reader is familiar with and we introduce the nota-
tional conventions that we use throughout the dissertation. Of particular interest is
§ 1.6, where we revise with more detail some concepts from AAL that often appear
later on.

The notion of closure operator plays a prominent role in AAL, and it is also
a leading notion in this dissertation. Therefore the entire Chapter 2 is devoted
to the study of filters, ideals and separation lemmas associated with closure ope-
rators. Some of these results were already known, and others are new. Moreover,
this serves as an excuse to introduce two algebraic structures with which we deal
throughout this dissertation, namely meet-distributive semilattices with top element
(distributive semilattices for short) and Hilbert algebras.

In Chapter 3 we present what is meant by Stone/Priestley dualities or, accord-
ing to the terminology that we introduce thereafter, by Spectral-like and Priestley-
style dualities. We survey the Spectral-like and Priestley-style dualities for distri-
butive semilattices and Hilbert algebras that we encounter in the literature. These
are dualities located out of the setting of distributive lattices, and from their analy-
sis we came up with the basic ideas for the abstract duality theory that is provided
later on.

Part 2. Duality Theory for Filter Distributive Congruential Logics.
This part is divided in two related chapters. We study in the first one the basic
tools that we need to develop the theory of the second one.

In Chapter 4 we argue about the interest of an abstract view of the duality
theory for non-classical logics. We review previous works in this respect, and we
bring in some notions such as referential algebra, irreducible and optimal S-filters
or S-semilattice that provide us with the toolkit we need for the next chapter.
This study encompasses some well-known results that were scattered throughout
the literature, and some new results as well.

The bulk of this part of the dissertation is contained in Chapter 5, where
the abstract Stone/Priestley dualities for a wide range of non-classical logics are
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systematically exposed. The analysis of the dual correspondence of the most im-
portant logical properties lead us to recover most of the dualities for non-classical
logics that we find in the literature.

Part 3. Applications to Expansions of the Implicative Fragment of
Intuitionistic Logic. Here we explore the applications of the work in Part 2 in a
concrete setting, namely, we focus on Stone/Priestley dualities for logics that are
expansions of the implicative fragment of intuitionistic logic. This part is again
divided in two related chapters.

In Chapter 6 we introduce several logics, all of which are expansions of the
implicative fragment of intuitionistic logic. We study their properties and how the
theory in Chapter 5 can be specialised for them. We show how the general theory
yields to new dualities for them, but in some cases, those dualities are not elegant.
We focus on the algebras associated with one of those troublesome logics, namely
the class of Hilbert algebras with Infimum, and we study their properties in §6.5.1.

Finally in Chapter 7 we develop new Stone/Priestley dualities for a subclass
of Hilbert algebras with Infimum. And these can be used, similarly to what is
done in extended Priestley duality, to provide Stone/Priestley dualities for some of
those troublesome logics. Therefore, the work in Part 3 can be seen as a refinement
of the results of the theory in Part 2 for the particular case of expansions of the
implicative fragment of intuitionistic logic.






Part 1

Preliminaries and Literature
Survey






CHAPTER 1

Background and Notational Conventions

In this chapter we introduce the mathematical background that supports the
main body of this dissertation. The purpose of this chapter is to fix the notation
we use throughout the dissertation, and to introduce some notational conventions
that should be kept in mind.

Notational issues concerning Set theory, Order and Lattice theory, Topology,
Universal Algebra, Category theory and Abstract Algebraic Logic are treated in
the following sections. Of special interest is the last section, where we introduce
the concept of logic we work with.

Logics are denoted by calligraphic complexes of letters, e.g. S, H,ZPC" ...
Algebraic structures, in particular algebras, are denoted by combinations of bold-
face letters, e.g. A, B, M, ..., and their universes (or carriers) by the correspon-
ding light-face letters, A, B, M, ... Classes of algebras are denoted by combinations
of blackboard bold letters, with maybe additional superscripts or subscripts, e.g.
H, DL, DH", and by ‘K-algebra’ we mean an algebra in the class K. Categories are
denoted by combinations of sans serif letters, with maybe additional superscripts
or subscripts, e.g. DL, Pr,Hpy,... Dual spaces of algebras are denoted by combi-
nations of letters beginning with a Fraktur capital letter, e.g. X, X1, Opa(A),...
The expression ‘iff” is used as an abbreviation of ‘if and only if’. The expression
‘... & ...7 is used as an abbreviation of ‘...and ...’. When introducing formal
definitions, we use ‘:=’. The symbol ‘=’ is used to express the fact that both sides
name the same object, whereas ‘~’ is used to build equations that may or may not
be true of particular elements.

1.1. Set theory

We assume that the reader is familiar with elementary set theoretical notions
such as membership, x € X, inclusion, Y C X, union, X UY, intersection, X NY
and difference, X \'Y. By w we denote the set of all natural numbers. For any
subset Y C X, we use Y, meaning the complement of Y with respect to X, as
an abbreviation of X \ Y. We write Y C* X to concisely say that Y C X is a
(possibly empty) finite subset of X. For X a set, P(X) denotes the powerset of X,
i.e. the collection of all subsets of X. For an equivalence relation R on a set X,
X/R denotes the quotient.

For f : X — Y a function between sets X and Y, by f~1[]: P(Y) — P(X)
we denote the inverse image function, that maps any set U C Y to

U ={z e X: f(x) eU}.
11
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Moreover, by f[] : P(X) — P(Y) we denote the function that maps any set
UCX to

flU:={f(zx) : 2 € U}.
For functions f : X — Y and g : Y — Z, regarding composition of functions,
we use the right composition notation, where the first function applied is the right
one, as it is standard practice, and we write g o f, or sometimes gf.

We also introduce a non standard notational convention, about which we warn
the reader whenever it is used: for f : X — P(Y") a function between a set X and
the powerset P(Y), by f : P(X) — P(Y) we denote the function that maps any
set U C X to

JU)=flUl={y €Y :YueUuye f(u)}
For R C X xY a binary relation between sets X and Y, we use interchangeably

(z,y) € R or zRy for denoting that the pair (x,y) belongs to the relation. By
R(): X — P(Y) we denote the function that maps any element x € X to

R(z) :={y €Y :(z,y) € R}.
By R7():P(Y) — P(X) we denote the function that maps any set U C Y to
RYU):={re X :y((z,y) €ER & ycU)}.

The former should not be confused with Og : P(Y) — P(X), that denotes the
function that maps any set U C Y to

Or(U) :={z e X :Vy(if (z,y) € R, then y € U)}.

For binary relations R C X xY and S C Y x Z, regarding composition of relations,
we use again the right composition notation, this time against to the standard
practice, and we write S o R, or sometimes SR.

1.2. Order and Lattice theory

Our main reference for Order theory is Davey and Priestley [24]. We assume
that the reader is familiar with elementary order theoretical notions, such as qua-
siorder (set endowed with a reflexive and transitive binary relation), partial order or
partially ordered set or poset (quasiorder where the relation is also anti-symmetric),
lattice and distributive lattice. As usual, for (P, <p) a poset and elements a,b € P,
we write a <p b when the pair (a, b) belongs to the relation <p. When no confusion
is possible, we identify (P, <p) with P. We denote by P? the dual of the poset P,
namely the poset (P, >p), where for all a,b € P, a >p b if and only if b <p a.

For (P,<p) a poset, for any a € P we define ., a := {b € P : a <p b}
and |<,a := {b € P : b <p a} and when the context is clear, we omit the
subscript using instead Ta and Ja. For U C P we define U := J{fa : a € U} and
LU :=U{la: a € U}. Moreover, we say that U C P is an up-set when tU = U,
or equivalently, when for any a € U, if a <p b for some b € P then b € U. Dually,
U C P is a down-set whenever U = U. For any a € P we call ta (resp. la)
the principal up-set (resp. principal down-set) generated by a. Similarly, for any
U C P, tU (resp. JU) is said to be the up-set (resp. down-set) generated by U.
By PT(P) (resp. P*+(P)) we denote the collection of all up-sets (resp. down-sets) of
(P,<p).
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For (P,<p) a poset, U C P is up-directed when for any a,b € U there exists
c € U such that a,b <p c¢. Dually, U C P is down-directed when for any a,b € U
there exists ¢ € U such that ¢ <p a,b.

Given two posets (P, <p) and (Q, <), a function f : P — @ is said to be
order-preserving when for all a,b € P, if a <p b, then f(a) <g f(b). On the other
hand, f is order-reversing when for all a,b € P, if a <p b, then f(b) <¢g f(a). We
say that f is an order embedding when for all a,b € P, a <p b iff f(a) <g f(b),
and it is an order isomorphism when it is a surjective order-embedding.

Given a poset (P, <p) and a subset U C P, we say that u is a mazimal element
of U (or a is maximal in U), when a € U and for all b € U, a £ b. We define
dually minimal elements on U. We denote by max(P) the collection of all maximal
elements of P. An element a € P such that b <p a for all b € P is called the top
element of P (notice that if it exists, it is unique), and it is usually denoted by 17,
or simply 1. Dually, an element a € P such that a <p b for all b € P is called the
bottom element of P, and it is usually denoted by 0, or simply 0.

Given a lattice L = (L, A, V), an element m € L is a meet-irreducible element
of L, when m # 1 (in case L has a top element 1) and m = a A b implies m = a or
m = b for any a,b € L. When m satisfies moreover the last condition generalized
to arbitrary meets, m is called completely meet-irreducible.

We denote by M(L) and M (L) the collections of meet-irreducible and com-
pletely meet-irreducible elements of L respectively. Join-irreducibles J(L) and
completely join-irreducible J°°(L) of L are defined dually.An element m € L is a
meet-prime element of L, when a Ab < m implies a < m or b < m for any a,b € L.
Join-prime elements of L are defined dually. Similarly we define completely join-
prime elements and completely meet-prime elements. Clearly, (completely) meet-
prime (resp. join-prime) elements are always (completely) meet-irreducible (resp.
join-irreducible), and both notions coincide for distributive lattices.

1.3. Topology

Our main reference for General Topology is Engelking [29]. We assume that
the reader is familiar with elementary topological notions, such as topology, topolo-
gical space, base, subbase, open, closed and compact sets, Kolmogorov or Tj spaces
(for every pair of distinct points of X, at least one of them has an open neighbor-
hood not containing the other) and Hausdorff spaces (distinct points have disjoint
neighborhoods).

For (X, 7) a topological space, we usually refer to it as X when it is clear what
the topology on X is under consideration. By O(X) (resp. C(X)) we denote the
collection of all open (resp. closed) sets of (X, 7). By C{(X) we denote the collection
of all clopen sets, i.e. all sets that are open and closed. By K(X) we denote the
collection of all compact sets and by KO(X) we denote the collection of all open
and compact sets, i.e. all open sets whose open covers have always finite sub-covers.
A topological space is called compactly-based provided it has a basis of open and
compact sets. When moreover we have that (X, <) is a partial order, by CU(X)
we denote the collection of all clopen sets of (X, 7) that are up-sets of (X, <), and
we refer to them as clopen up-sets of (X, 7).
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For (X, T) a topological space, the closure of a set U C X (the smallest closed
set containing U) is denoted by cl(U). A subset U C X is saturated if it is an
intersection of open sets. The saturation of a set U C X (the smallest saturated set
containing U) is denoted by sat(U). For x € X, we generally write cl(x) and sat(x)
in place of cl({z}) and sat({z}). An arbitrary non-empty subset ¥ C X is called
irreducible if Y C U UV for closed subsets U and V impliessY CU or Y CV. A
topological space is called sober provided for every irreducible closed set Y, there
exists a unique x € X such that cl(z) =Y. A subset Y C X is dense provided any
non-empty open subset U of X has non-empty finite intersection with Y.

We recall that for a topological space (X, 7), the specialization quasiorder of
(X, 7) is defined by

r<xy iff xzeclly),

and when the space is Ty, <x turns out to be a partial order, that we call the
specialization order of (X, 7).

If (X,7) is a topological space and Y C X is a set, we can define a topology
Ty on Y, that is known as the subspace topology, by

v ={UNX:U e},

and the space (Y, 7y) is called the subspace of (X, 7) generated by Y.

1.4. Universal Algebra

Our main reference for Universal Algebra is Burris and Sankappanavar [8]. We
assume that the reader is familiar with elementary universal algebraic notions.

A language (or logical language or algebraic language or similarity type) is a
set .Z of function symbols, each with a fixed arity n > 0. Given a language .£ and
a countably infinite set of propositional variables Var, the -Z-formulas are defined
by induction as usual:

— for each variable x € Var, = is an .Z-formula,
— for each connective f € ., with arity n € w, and Z-formulas 41, ..., 6,
f(01,...,0,) is an Z-formula.

We denote by F'm_¢ the collection of all Z-formulas. When we consider the function
symbols as the operation symbols of an algebraic similarity type, we have the
algebra of terms, that is the absolutely free algebra of type £ over a denumerable
set of generators Var. We call this algebra the algebra of formulas or the formula
algebra on the language .Z and we denote it by Fm g.

For A and B algebras of algebraic similarity type -Z, by Hom(A, B) we denote
the collection of all homomorphisms from A to B. Any endomorphism of Fm g,
i.e. any function e € Hom(Fm g, Fmg) is said to be a substitution. By Co(A)
we denote the collection of all congruences on A. The identity congruence on A is
denoted by Aa and the identity homomorphism from A to A is denoted by ida.
We may omit the subscripts when the context is clear.

Given an algebra A on a language % and a subset ¥’ C %, we call the algebra
(A {f : f € Z'}) the Z'-reduct of A.
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Given a class of algebras K of type .Z, we define the equational consequence
relative to K, denoted by Fg, as the relation between sets of equations and equations
given by: for any {6; :i € I} U{y; :i € I} U{d,7} C Fmg

{imvy:i€ltEgd=y iff (VA € K)(Vh € Hom(Fmgy, A))
it (Vi € I)A(8;) = h(:), then h(8) = h(7).

1.5. Category theory

Our main reference for Category theory is Mac Lane [61]. We assume that
the reader is familiar with elementary category-theoretic notions, such as category,
subcategory, object, morphism, composition of morphisms (denoted by o), identity
morphism (denoted by idx : X — X)), isomorphism and functor. For composition
of functors we use the right composition notation.

Given a category C, we construct its dual category C°P by taking objects of C
as its objects, and for each morphism f in C, we take f°P as a morphism in C°P,
that is defined as follows: if f: X — Y, then f°? : Y — X, i.e. it goes in the
other direction. Composition of morphisms f? : Y — X and ¢°? : Z — Y in
C°P is given by f°P o g°P := (gf)°?. And (idx)°? is the identity morphism for X in
Cop,

A functor F': C — D°P is a contravariant functor from C to D. A family of
morphisms in D

H = (hx CF(X) — G(X))Xec

one for each object in C is a natural transformation between functors F, G : C — D,
when for any morphism f: X — Y in C, the following diagram commutes:

F(X) 2 @(X)

F(f)l J{G(f)

F(Y) 5= G(Y)

If # is a natural transformation between functors F,G : C — D such that for
each X, hy is an isomorphism, then we call 2 a natural isomorphism, and we say
that F and G are naturally isomorphic.

We say that the categories C and D are equivalent if there exist functors
F:C— D and G: D — C such that GF is naturally isomorphic to the identity
functor on C and F'G is naturally isomorphic to the identity functor on D. If both
F and G are contravariant functors, then we say that C and D are dually equivalent.
Throughout this dissertation, we use the lax but commonly used term duality for
referring to dual equivalences of categories. And we often say a duality for a class
of objects (e.g. algebras) but we mean a duality for the appropriate category that
has such class as objects.

1.6. Abstract Algebraic Logic

Our work is located in the field of Abstract Algebraic Logic (AAL for short).
Our main reference for AAL is the survey by Font, Jansana and Pigozzi [36]. We
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introduce now the standard notion of logic in AAL. It arises, essentially, from
regarding logic as concerning validity of inferences, instead of validity of formulas.

A crucial notion in AAL is the notion of closure operator. For X a set, a
function C : P(X) — P(X) on the power set of X is a closure operator when it
satisfies the following conditions:

(C1) forallY C X, Y C C(Y),

(C2) forall VY’ C X, if Y CY’, then C(Y) C C(Y”),

(C3) forall Y C X, C(C(Y)) = C(Y).
Conditions (C1)-(C3) are known as being extensive, isotone and idempotent res-
pectively. A closure operator C is finitary or algebraic (cf. Definition 5.4 in [8]),
when:

(C4) forall Y C X, Vz € X, if © € C(Y), then there is a finite Y’ C* Y such
that z € C(Y”).

When C is a closure operator on X and X is the carrier of an algebra X, C is called
X-structural, when:

(C5) for all Y U{z} € X and all h € Hom(X, X), we have h(z) € C(h[Y])
whenever z € C(Y).

For any x € X and any Y C X, we use C(z) and C(Y, z) as a shorthand for C({z})
and C(Y U {x}) respectively. For any closure operator C on X we define the Frege
relation of C, Ag, as follows:

(x,y) € Ac iff C(x) = C(y).

This relation is always an equivalence relation, but when X is the carrier of an
algebra X, A is not necessarily a congruence on X.

Any closure operator C on X can be transformed in a relation ¢ on X as
follows: for all Y U {z} C X

Yica iff zeC(Y).

The properties that k¢ inherits from those of C as a closure operator, define what
is called a closure relation on X, i.e. a relation F¢ C P(X) x X such that:

(C1) if x € X, then X b¢ z,

(C2) if Y kg forallz € X and X ¢ 2z, then Y F¢ 2.

Clearly, any closure relation ¢ on X defines a closure operator Cr by setting
zeC(Y) iff YVicu.

When X is the carrier of an algebra X and Cy is a structural closure operator,
we say that ¢ is invariant under substitutions. Notice that Fg, the equational
consequence relative to a class of algebras K, is a closure relation on the set of
equations of type . and it is invariant under substitutions.

Following [36], given a logical language .Z, a logic (or deductive system) in the
language .Z is a pair S := (Fmg,Fs), where Fm is the formula algebra of ¥
and Fs C P(Fmy) X Fmg is a substitution-invariant closure relation on F'm g,
i.e. Fg is a relation such that:

(Cl) if y €T, then I' kg v,
(C2) if Abgyforally el and I'Fg §, then A 5 4,
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(C3) if T ks 4§, then e[l'] Fs e(d) for all substitutions e € Hom(Fm g, Fm_g)
(structurality).

Equivalently, we could say that a logic in the language £ is a pair (Fmg,Cs),
where Fm g is the formula algebra of ¥ and Cs : P(Fmy) — P(Fmy) is
a structural closure operator. Notice that Cs is a shorthand for Cy, the closure
operator associated with a given substitution invariant closure relation s on Fm_¢.

We say that a logic S is finitary when the closure operator Cg is finitary, i.e.
when for all T U {¢} C Fmg, if T ks ¢, then there is a finite I’y C* T' such that
FO FS ®.

Let S be a logic in the language .. We say that an algebra A has the same type
as S when the logical language . is also the algebraic language of A. Throughout
this dissertation, when we assume that S is a logic and we pick an arbitrary algebra
A if not otherwise stated, A is always assumed to be an algebra of the same type
as S.

The notion of logic we just defined is the standard notion of logic considered
in the framework of contemporary Abstract Algebraic Logic. At a first sight, it
might seem that only the so called ‘propositional’ or ‘sentential’ logics fall under
the scope of this definition. Logics such as ordinary first order logic, quantifier
logics or substructural logics seem to be left out. There have been, though, several
approaches that accommodate all these logics in the framework of AAL (see Section
1.2 in [36] and its references).

Let S be a logic in a language .Z and let A be an algebra of the same type as
S. We call a subset FF C A an S-filter of A when for any h € Hom(Fm_, A) and
any T'U {0} C Fmg such that T' ks ¢:

if h(y) € F for all v € T', then h(4) € F.

We denote by Fig(A) the collection of all S-filters of A, that is always a closure
system. The notion of S-filter is capital in AAL.

One of the basic topics of AAL is how to associate in a uniform way a class of
algebras (or a class of algebraic structures) with an arbitrary logic S. On the one
hand, through the study of the Leibniz congruence we encounter the class Alg*S.
Given an algebra A and a subset F' C A, the Leibniz congruence of F relative to
A, denoted by Q4 (F), is the greatest congruence on A compatible with F, that
is, that does not relate elements in I with elements not in F'. The class Alg*S is
defined as follows:

Alg*S = {A : (3F € Fis(A))Q*(F) = Aa}.

The class Alg*S is the class of algebras that the semantics of logical matrices
canonically associates with the logic S, but this is not the class that is considered in
contemporary AAL as the canonical algebraic counterpart of S. Rather, the class
AlgS is the canonical algebraic counterpart of an arbitrary logic S (as proposed
in [35]). This class can be defined in more than one way, one being through the
study of the Suszko congruence. Given an algebra A and an S-filter F' € Fig(A),
the Suszko congruence of I relative to S is the congruence:

Q8 (F) == |{Q*(G): F C G € Fis(A)}.
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The class AlgS is defined as follows:
AlgS := {A : (3F € Fig(A))QA&(F) = Aa}.

The elements of AlgS are called S-algebras. In Chapter 4 we provide an alternative
definition of this class of algebras, that will play a crucial role throughout this
dissertation.

Another class of algebras is associated with S, whose definition is a bit more
involved. Let us denote by Q(S) the Suszko congruence of the least S-filter of
Fm_y relative to Fm . Then the intrinsic variety of S is the variety generated
by the algebra Fm.y/Q(S), and it is denoted by Vs. Q(S) is usually called the
Tarski congruence of S, and

Fm’, == Fmy/Q(S)

is called the Lindenbaum-Tarski algebra of S. Moreover, as it is pointed out in
page 36 in [35], the Lindenbaum-Tarski algebra of any logic S is an S-algebra. The
relation between the three classes of algebras so far introduced goes as follows

Alg*S C AlgS C V.

In principle the three classes can be different, and there are examples of all the
possible combinations of equalities and inequalities.

Another topic of AAL is how to associate a logic with a class of algebraic
structures. Let us show this by two examples.

Let K be a pointed class of algebras, i.e. a class of algebras in a language
% with a constant term 1. The 1-assertional logic of K (or the logic preserving
truth for K) is the logic Sf := (Fm.g, &), such that for any § € Fm g and finite
' CY Fmg:

DHy 6 iff (VA € K)(Vh € Hom(Fmg, A)) if [I'] C {14}, then h(5) = 14
iff {y~1l:yeTl}kExdr1,
and for I' an arbitrary set of formulas we take:
[Hy 6 iff 30 C¥ )T H 6.
Let K be a class of ordered algebras. The logic of the order of K (or the logic

preserving degrees of truth for K) is the logic S]% = (Fmg, }—]%), such that for any
6 € Fm ¢ and finite I' C¥ Fm g:

T2 0 iff (VA € K)(Vh € Hom(Fmg, A))(Ya € A)
if (Vy €T)a <* h(y), then a <* h(9),
and for I an arbitrary set of formulas we take:
Do iff 30 CY D) 56
Notice that these logics are finitary by definition. In §2.3 and §2.4 we return
to the topic of how logics can be defined from classes of algebraic structures. This
will play an important role in Chapter 6. As a final illustration of how logics are

studied within the framework of AAL, we present below several abstract properties
that a logic may have. In what follows, let S be a logic:
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- S satisfies the property of conjunction (PC) for a given formula in two

variables that we write p A ¢, if for all formulas 6,7 € Fm ¢:
0Ny ks, dNvYFs 7, 0,vkFs o A.

- &S satisfies the property of weak disjunction (PWDI) for a given formula

in two variables that we write p V ¢, if for all formulas §,~, u € Fm_g:
dks Ve, dFs vV,
ifdFspu & vFs p, then § Vy kg p.

- S satisfies the property of disjunction (PDI) for a given formula in two

variables that we write p V ¢, if for all {0,v,u} UT C Fmg:
dFsdVr, dFs vV,
if0,okFspu & T'yyks i, then T, Vy g .

- S satisfies the (multiterm) deduction-detachment theorem (DDT) for a
given non-empty set of formulas in two variables p and ¢, that we denote
by A(p,q), if for all {§,7} UT C Fm.g:

obksy it Thkgs A(S,7).

- & satisfies the uniterm deduction-detachment theorem (uDDT) for a given

formula in two variables that we write p — ¢, if for all {§,7} UT C Fm_g:

F,(S}—S’y iff Fl‘sé—)’y.
- &S satisfies the property of inconsistent element (PIE) if there is a formula
L, called the inconsistent element, such that for every formula § € Fm ¢:

LFsé.

- S satisfies the property of being closed under introduction of a modality
(PIM), for a given formula in one variable that we write Op, if for all
{0} UT C Fmg:!

if I' ks 6, then OI' g 0.

Notice that all these properties can be also stated using the closure operator
Cs associated with Fs. And similarly, they can be stated for any closure operator
on any arbitrary algebra. Wéjcicki refers to these conditions on closure operators
as ‘Tarski-style’ conditions in [73]. For example, given a closure operator C on
an algebra A, we say that C has the deduction-detachment theorem for a given
formula in two variables « — y provided for any B U {a,b} C A,

be C(B,a) iff a—be C(B).

INotice that we denote the set {y : v € I'} by OT.






CHAPTER 2

Filters and Ideals Associated with Closure
Operators

In this chapter we examine different notions of filters and ideals that we can
define as associated with a closure operator. We analyze the relationship that exists
between these notions, and we study in detail two instances of the general theory.

More precisely, in §2.1 we analyze the notions of C-closed subset, irreducible
C-closed subset, C?closed subset, strong C?-closed subset and optimal C-closed
subset, from which we obtain two analogues of Birkhoff’s Prime Filter Lemma,
and interesting interrelationships between those notions under certain conditions
over a closure operator C. In §2.2 special attention is paid to the case when the
lattice of closed subsets of a given closure operator is distributive. The discussion
throughout these sections provides us with the tools required to develop the theory
of Chapter 5.

We present two illustrative examples: meet-semilattices with top element, that
are introduced in §2.3, and Hilbert algebras, that are introduced in §2.4. These
algebraic structures are not only explanatory examples, but they play a fundamental
role in the duality for Distributive Hilbert algebras with infimum of Chapter 7.

2.1. Filters, ideals and separation lemmas given by closure operators

From now on, let C be a closure operator on a set X (see definition in page
16). A subset Y C X is called a closed set of C, or a C-closed, when C(Y) =Y.
For any Y C X, we call C(Y) the closure of Y (under C).

A closure system on a set X is any collection of subsets that contains X and
is closed under non-empty intersections. Any closure system C on X yields an
associated closure operator Cg¢, that is defined as follows:

CcP(X)—)P(X)
Y ({Cec:yccy

Moreover, for any closure operator C on X, the collection of all C-closeds is a closure
system on X. Therefore, it is a complete lattice, in which the meet operation is
given by the intersection, and the join operation is given by the closure of the union
(cf. Theorem 5.2 in [8]).

All closure operators over finite sets are finitary. Moreover, finitary closure
operators correspond with inductive or algebraic closure systems, i.e. closure sys-
tems closed under unions of non-empty chains. We are interested in finitarity, since
many of the well-known logics are finitary, and so are all the logics we pay attention
to in this dissertation.

21
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Let F be a family of C-closeds. We say that F is a closure base for C provided
the family F is such that N-generates the collection of all C-closed, i.e. for any
C-closed Y, we have that Y =({F € F:Y C F}.

Within the lattice of C-closeds, its meet-irreducible elements, that we call irre-
ducible C-closeds, play an important role in the so called Spectral-like dualities.
These subsets are also called C-irreducibles in the literature

Let us take a look at closure operators defined on posets. Let (P, <) be a poset,
and let C be a closure operator on P. We are interested in the following property:

(E1) {ycx:C(Y)=Y}CPN(X),

in other words, in the case when all C-closeds are up-sets. In this case, we have the
following analogue of Birkhoff’s Prime Filter Lemma.

LEMMA 2.1.1. Let P be a poset and let C be a finitary closure operator on P
that satisfies (E1). For any C-closed Y C P and any non-empty up-directed down-
set Z C P, if YNZ =1, then there is an irreducible C-closed Y' C P such that
YCY andY' NZ =10.

ProoF. Consider the set
Y ={Y'CP:CY)=Y,YCY Y'NnZ=0}

This set is non-empty, since Y € ). Moreover, it is closed under unions of chains.
Let {Y; :i € w} C )Y be a chain of elements of Y, i.e. Y; C Y;;q for all i € w. By
finitarity Y := (J{V; : i € w} is C-closed, and moreover Y CY and Y N Z = .
Hence, by Zorn’s Lemma, there is Y/ a maximal element of )). We show that
Y is an irreducible C-closed. Clearly Y’ # P, since Z # (. Let Y1, Y5 be C-closeds
such that Y3 NY, = Y’, and suppose, towards a contradiction, that Y7,Ys # Y.
Then there are a; € Y1 \ Y’ and as € Y3\ Y’'. By maximality of Y, there are
b1 € C(Y'U{a1}) N Z and by € C(Y' U {az}) N Z. Since Z is up-directed, there is
b € Z such that by, by < b, and by (E1), b € C(Y'U{a1})NC(Y'U{az}). Therefore,
as Y U{a1} C Yy, Y U{az2} CYs and Y7,Y; are C-closeds, b € Y1 NY, =Y, and
sobeY' NZ#0, a contradiction. O

COROLLARY 2.1.2. Let P be a poset and let C be a finitary closure operator
on P that satisfies (E1). For any C-closed Y C P and any z ¢ Y, there is an
irreducible C-closed Y C P such thatY CY’' and z ¢ Y.

Notice that the previous corollary states that when C is a finitary closure
operator defined on a poset and it satisfies (E1), the collection of all irreducible
C-closeds is a closure base for C. This fact plays a key role in the Spectral-like
dualities.

Returning to the general situation, let us move to the study of dual counterparts
of closure operators. In [72] Wdjcicki introduces one dual counterpart of C' for any
infinite cardinal, and he develops the theory of such operators. We focus on the
one associated with Np, that has been also used in [48] for the formalization of
reasoning on rejected information, and in [41] for the study of canonical extensions
of congruential logics.
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DEFINITION 2.1.3. The (finitary) dual closure operator of a given closure op-
erator C on X, is the function C? : P(X) — P(X) defined as follows:

CUY)={ze X Y CY( () Cly) CCx))}.

yey”’
A subset Z C X is called a dual closed set of C, or a C?-closed, when C¥(Z) = Z.

Notice that C4() = {z € X : C(z) = X}. Moreover, it follows from the
definition that C? is finitary, and we also have that

acCb) iff beCa).

We introduce now, motivated by the work in [17], a special class of C?-closeds,
that plays an important role in the so called Priestley-style dualities.

DEFINITION 2.1.4. A C-closed Z C X is strong when for all Z’ C¥ Z and all
X' cv X,
if () C(z) € C(X'), then C(X') N Z # 0.
z€Z’

Notice that for all 2 € X, the C%closed set C%(z) is strong: let Y C* C9(x)
and X’ C¥ X be such that (N{C(y) : y € Y'} C C(X’). By assumption, for each
y € Y wehavey € C4(z),i.e. x € C(y). Therefore, z € N{C(y) : y € Y'} C C(X"),
and since x € C%(z), then clearly C(X') N C4(z) # (.

While the collection of Ccloseds is always a closure system, the collection
of strong C?closeds may fail to be so, but it is always closed under unions of
non-empty chains.

LEMMA 2.1.5. Let C be a closure operator on a set X. The collection of strong
Ce-closed subsets of X is closed under unions of chains.

PROOF. Let {Z; : i € w} be a chain of strong C?-closeds. Since C? is finitary
by definition, then Z := (J{Z; : i € w} is C%closed. Let X' C¥ X and Z' C¥ Z
be such that {C(z) : z € Z'} C C(X’). As Z’ is finite, there is n € w such that
Z' C Z,, and then by Z, being strong C%closed, we get C(X')N Z, # 0, and so
C(X')NZ # 0, as required. O

This fact motivates the introduction of the following notions. For a given
C-closed Y C X and a given Cl-closed Z C X, we say that Y is Z-mazximal
when Y is a maximal element of the collection {Y' C X : C(Y") =YY", Y'NZ = 0}.
Similarly, we say that Z is Y -maxzimal when it is a maximal element of the collection
{Z' € X :CYZ'")=2Z'Y NZ = }. Using these notions we introduce one more
concept, that leads us to another analogue of Birkhoff’s Prime Filter Lemma.

DEFINITION 2.1.6. A C-closed Y C X is an optimal C-closed when there is a
strong C%closed Z C X such that Y is Z-maximal and Z is Y-maximal.

LEMMA 2.1.7. Let C be a finitary closure operator on a set X. For any C-closed
Y C X and any strong C%-closed Z C X, if Y N Z = (), then there is an optimal
C-closed Y' C X such thatY CY' andY'NZ = .
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Proor. Consider the set
Y ={Y/CX:CY)=Y ,YCY. Y NZ=0}

This set is non-empty, since Y € ). Moreover, by finitarity it follows that ) is
closed under unions of chains. Hence, by Zorn’s Lemma, there is Y’ a maximal
element of ). We show that Y’ is an optimal C-closed. For that, let us consider
the set
Z2:={7'CX:CUZ")=Z strong ,Z C Z',Y' N Z ={}.

This set is again non-empty, since Z € Z. Moreover it is closed under unions of
chains, since so is the collection of strong C?closeds. Hence by Zorn’s Lemma,
there is Z’ a maximal element of Z. By assumption Z’ is Y’-maximal, so it is just
left to show that Y’ is Z’-maximal: on the contrary, there would be a C-closed Y
such that Y/ CY” and Y”"NZ' = (), and this implies Y CY” andso Y' CY" € ),
contrary to the assumption of Y’ being a maximal element of ). O

COROLLARY 2.1.8. Let C be a finitary closure operator on a set X. For any
C-closed Y C P and any z ¢ Y, there is an optimal C-closed Y' C P such that
YCY' and z ¢ Y'.

Proor. This follows from the previous lemma and the fact that if z ¢ Y, then
C4(z) NY = (): on the contrary, there would be b € Y N C4(z), so z € C(b) C Y,
contradicting the assumption. O

Notice that the previous corollary states that when C is a finitary closure
operator defined on a set, then the collection of all optimal C-closeds is a closure
base for C. This fact plays a key role in the Priestley-style dualities.

2.2. Distributivity of the lattice of C-closed subsets

Let us examine now the case when the lattice of C-closeds, for a given closure
operator C on a set X, is distributive. In this case we have the following relations
between optimal C-closeds and strong C?-closeds, that are useful in the Priestley-
style dualities.

LEMMA 2.2.1. Let C be a finitary closure operator on a set X such that the
lattice of C-closeds is distributive. For any C-closed Y C X, Y is optimal if and
only if Y¢ is strong C%-closed.

PROOF. Let Y C X be a C-closed. If Y is a strong C%closed, then clearly
Y is optimal, since Y is Y°maximal and Y is Y-maximal. For the converse,
suppose that Y is optimal, so there is a strong C?closed Z C X such that Y is
Z-maximal and Z is Y-maximal. We show that Y¢ is strong C%closed. If Y = X,
then Y¢ = Z = (), that by assumption is a strong C?%closed. Assume, without loss
of generality, that Y # X. We show that for any Y/ C¥ Y and any X’ C¥ X if
({C(y) : y € Y’} C C(X’), then C(X’) NY*° # (). This implies, for the case X' is
a singleton, that Y¢ is a C%closed, and hence, for the general case it also implies
that Y¢ is strong.

Let Y/ C¥ Y and any X’ C¥ X be such that {C(y) : y € Y’} C C(X').
If Y = (), then the assumption implies C(X’) = X and since Y is proper, we get
C(X"YNYe # (. Assume, without loss of generality, that Y’ # (). By Y being
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Z-maximal, Y N Z = () and for all y ¢ Y there is b, € C(Y,y) N Z # 0. Then by
finitarity, for each y € Y’ there is T, C¥ Y such that b, € C(T},,y) = C(T) L C(y),
where the symbol L denotes the join in the lattice of C-closeds. As Ty, is finite
for each y € Y’, and Y’ is also finite, so is T := [J{T,, : y € Y’} and clearly
C(T,) € C(T) for all y € Y’'. Therefore b, € C(T) LU C(y) for all y € Y. As
the lattice of C-closeds is distributive and Y’ is finite and non-empty, from the
hypothesis we get:

(C®y) :y eV} C(HCTMUC(y) :yeY'}=CT)U[ {Cly) :y €Y'}
COMuUCX)=C(TuX’).

By assumption {b, : y € Y’} C¥ Z, Z is strong C?-closed and T U X’ is
finite, so the previous equation implies, by definition of strong C9closed, that
C(TUX')N Z # (). Suppose, towards a contradiction, that C(X’) N Y ¢ = (). Then
C(X') CY,andsince T CY, we get C(TUX') C Y, and then we obtain Y NZ # (),
a contradiction. (]

There is another useful correspondence between the different notions so far
examined, for the case when we have a closure operator defined on a poset P. We
have a lemma similar to the previous one, where irreducible C-closeds play the
role that optimals did, and non-empty up-directed down-sets play the role that
Cd-closeds did.

LEMMA 2.2.2. Let P be a poset and let C' be a finitary closure operator on P
that satisfies (E1), such that the lattice of C-closeds is distributive and C(p) = Tp
for all p € P. For any C-closed Y C X, Y is irreducible if and only if Y€ is a
non-empty up-directed down-set.

PrROOF. Let first Y C P be an irreducible C-closed. By assumption, Y is an
up-set, so Y is a down-set. As Y is proper, then Y€ is non-empty. It is just left
to show that Y is up-directed: let a,b ¢ Y, so C(a),C(b) € Y. By assumption,
the lattice of C-closeds is distributive, so meet-irreducible and meet-prime elements
of this lattice coincide. Then by meet-primeness of ¥ we get C(a) N C(b) € Y.
Therefore, there is ¢ € C(a) N C(b) = Ta N 1b such that ¢ ¢ Y, so a,b < c € Y, as
required.

Let now Y C P be a C-closed such that Y€ is a non-empty up-directed down-
set. We show Y is a meet-prime element of the lattice of C-closeds: since Y°
is non-empty, then Y is proper; let Y7,Y5 be C-closeds such that Y NY; C Y,
and suppose, towards a contradiction, that Y7 ¢ Y and Y> ¢ Y. Then there are
p1 € Y1\Y and py € Y5\ Y such that p1,pa ¢ Y. Since Y€ is up-directed, there
is p ¢ Y such that p;,ps < p, so we get p € C(p1)NC(p2) CY1NY, CY, a
contradiction. O

Summarizing, we have studied separation lemmas for closure operators defined
on ordered sets, and we have focused on the case when the lattice of closed subsets
is distributive. In the remaining sections we consider two examples of that gene-
ral theory. We study first meet semilattices with top element, and after that we
consider Hilbert algebras.
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2.3. Meet-semilattices with top element

We introduce now meet-semilattices with top element as an example of what
has been treated in §2.1 and §2.2. Be aware that these algebraic structures are an
important tool both in Part 2 and in 3.

DEFINITION 2.3.1. An algebra M = (M, A, 1) of type (2,0) is a meet-semilattice
with top element when the binary operation A is idempotent, commutative, asso-
ciative, and a A1 =1 for all a € M.

A binary relation <jp is defined on M such that for any a,b € M:
a<mb iff anb=a.

This relation is indeed a partial order on M in which a A b is the meet of a and
b, for every a,b € M. We use < for <p; when no confusion is possible. Meet-
semilattices with top element and with an additional constant 0 that is the bottom
element of that order are called bounded meet-semilattices. We denote by S and BS
the varieties of meet-semilattices with top element and bounded meet-semilattices
respectively.

Dual structures of meet semilattices with top element are usually called join-
semilattices with bottom element, and they are defined just changing the order
upside-down. Classical books on order theory or lattice theory [24,49] usually
work with join-semilattices, but it is wise for us to work with meet-semilattices.
All results in the rest of the section could be stated though for join-semilattices,
changing the role of meets by joins and reversing the order. From now on, let
M = (M, A, 1) be a meet-semilattice with top element. We use ‘semilattice’ as an
abbreviation of ‘meet-semilattice with top element’, not only in the present chapter
but also throughout the whole dissertation.

An order ideal of M is a non-empty up-directed down-set of (M, <),i.e. I C M
is an order ideal of M if I # () and for all a,b € M:

—ifaeland b<a,thenbel,
— if a,b € I, then there is ¢ € I such that a,b < c.

We denote by Id(M) the collection of all order ideals of M. Notice that all principal
down-sets are order ideals.

A meet filter of M is a non-empty up-set of (M, <) closed under the meet
operation or equivalently, a non-empty down-directed up-set of (M, <), i.e. F C M
is a meet filter of M if F' # () and for all a,b € M:

—ifae Fand a<b,thenbe F,

—ifa,be F,thenaAbeF.
We denote by Fix (M) the collection of all meet filters of M. Notice that all principal
up-sets are meet filters. A meet filter F' is proper when F # M.

The collection Fix(M) is closed under arbitrary intersections. Therefore, we
may define the function [ ) : P(M) — P (M) that assigns to each subset B C M,
the least meet filter containing B. We call [B) the meet filter generated by B. Tt
is well known that for any B C M and any a € M:

ac[B) iff a=1or (In€w)(Ibo,...,bp € B)bgA---Nby < a
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FIGURE 1. Distributivity of meet semilattices.

The map given by [ ) is in fact a finitary closure operator on M and Fis (M) is the
collection of all closed subsets of [ ). We consider the bounded lattice

Fi\ (M) := (Fir(M),N,V, M, {1}),

where the meet operation is given by intersection and the join operation is given
by the meet filter generated by the union. Meet-irreducible elements of this lattice
are called A-irreducible meet filters or irreducible meet filters when no confusion
is possible. Recall that F' € Fin(M) is a meet-irreducible element of the lattice
Fir(M) when for all Fy, Fy € Fin(M), if F = Fy N Fy then F = F| or F = Fy.
We denote by Irrs(M) the collection of all irreducible meet filters of M. When
M is moreover a lattice, irreducible meet filters are precisely prime filters, this
is, meet filters F' such that a € F or b € F whenever a Vb € F. In this case
we denote the collection of irreducible/prime meet filters of M by Pr(M). The
following proposition characterizes irreducible meet filters, and its proof can be
found in Lemma 6 in [12].

PROPOSITION 2.3.2. Let M be a semilattice and let F € Fi (M) be proper.
The following are equivalent:
(1) F € Irrp(M).
(2) Foralla,b¢ F, there are c ¢ F and f € F such that a N f,bA f < c.

Notice that meet filters are up-sets, so Property (E1) holds for [}, and so
we have the following instance of Lemma 2.1.1, that is also proved in Theorem 8
in [12].

LEMMA 2.3.3. Let M be a semilattice, and let F' € Fin(M) and I € Id(M) be
such that F NI = 0. Then there is G € Irro (M) such that F C G and GNI = ().

COROLLARY 2.3.4. Let M be a semilattice, and let F' € Fir(M) be such that
a ¢ F. Then there is G € Irrx(M) such that F C G and a ¢ G.

DEFINITION 2.3.5. A semilattice is distributive (cf. Section IL.5 in [49]) when for
each a, by, by € M with by Abs < a, there exist ¢1,co € M such that by < c¢1,bs < o
and a = ¢1 A ¢o (see Figure 1).

We denote by DS and BDS the classes of distributive semilattices and bounded
distributive semilattices respectively.

It is well known that a semilattice M is distributive if and only if the lattice
of meet filters Fi,(M) is distributive (for a proof, see Lemma 1 in Section II.5
of [49]). Since we have that [a) = ta for all a € M, we obtain the following
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instance of Lemma 2.2.2, that is proven in Theorem 10 in [12], where it is also
shown that it characterizes semilattices that are distributive:

THEOREM 2.3.6. Let M be a semilattice. M 1is distributive if and only if for
all F € Fiy(M),
F eTrra(M) iff F©eldM).

Let us return to consider the closure operator [ ). We denote by { ] the dual
closure operator of [ ). By definition, for any B C M and any a € M:

a€(B] iff 3B C¥ Bsuchthat (] [b) C [a).
beB’

Dually closed subsets of [ ), i.e. { J-closed subsets, are Frink ideals, that were
introduced by Frink in [37]. This notion has also been considered recently in [17]
and [5], and it can be defined indeed for any poset: Frink ideals are those down-sets
closed under existing joins. Equivalently, we say that I C M is a Frink ideal (or
F-ideal) of M if for every I' C¥ T and b€ M, ({fta:a € I'} C1b implies b € I.

In [5] a slightly different definition of ‘Frink ideal’ is given. As the authors
deal with bounded distributive semilattices, they require Frink ideals to be non-
empty. In the bounded case, both notions coincide, unlike the non-bounded case.
We denote by Idg(M) the collection of all F-ideals of M. Notice that the empty
set may be an F-ideal, but this happens if and only if there is no bottom element
in M. Moreover, it is easy to see that all order ideals are F-ideals, therefore:

1d(M) C Idz(M).

Notice that for any B C¥ M, [B) = 1 A B, therefore strong dually closed subsets
of [ ) are the same as dually closed subsets of [ ), i.e. Frink ideals.
Applying Definition 2.1.6 to [ ), a meet filter F' € Fi (M) is said to be
A-optimal (or simply optimal), when there is an F-ideal I of M such that:
— Fis I-mazimal, i.e. F is a maximal element of {G € Fi,(M): GNI =0},
— Iis F-mazimal, i.e. I is a maximal element of {J € Idp(M) : F N J = 0}.
In [5] a slightly different notion of optimal (meet) filter for bounded distributive
semilattices is considered, requiring these filters to be proper. That notion coincides
with ours for the bounded case, but differs from it in the general case. Recall that
when the algebra has no bottom element, the empty set is an F-ideal, and so the
total M is an optimal filter, and optimal filters are not necessarily proper. We
denote by Op, (M) the collection of all optimal meet filters of M. As an instance
of Lemma 2.1.7, concerning optimal meet filters and Frink-ideals we have:

LEMMA 2.3.7. Let M be a semilattice and let F' € Fiy(M) and I € Idp(M) be
such that FN I = 0. Then there is G € Op,(M) such that F C G and GNI =1.

COROLLARY 2.3.8. Let M be a semilattice and let F € Fin(M) be such that
a & F. Then there is G € Op,(M) such that F C G and a ¢ G.

For distributive semilattices, we obtain the following instance of Lemma 2.2.1.

THEOREM 2.3.9. Let M be a distributive semilattice. For any F € Fiy(M),
F € Op,(M) if and only if F© € Idp(M).
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From the previous theorem, Theorem 2.3.6 and the fact that Id(M) C Id (M),
we obtain that for any distributive semilattice:

Irrp (M) C Op, (M) C Fip(M).

Let us introduce a definition that is used later on. We say that an F-ideal is
A-prime (or simply prime) if it is a proper F-ideal I € Idp(M) such that for all
non-empty Y C¥ M, AY € I implies y € I for some y € Y. Making use of this
notion, we obtain the following corollaries of theorems 2.3.6 and 2.3.9.

COROLLARY 2.3.10. Let M be a distributive semilattice and FF C M. F €
Op, (M) if and only if F€ is an A-prime F-ideal.

COROLLARY 2.3.11. Let M be a distributive semilattice and FF C M. F €
Irr A (M) if and only if F€ is an A-prime order ideal.

Let us conclude this section by considering classes of algebras with semilattice
reducts, that is, classes of algebras K on a given language .Z that contains a binary
function symbol A and a constant 1 such that the (A, 1)-reducts of the algebras in
K are semilattices. Notice that this implies that the algebras in K are ordered by
the order of the semilattice reduct. For such class of algebras we may provide an
alternative definition of the logic of the order of K, that recall that is denoted by
Sﬂg := (Fm, }—H@. For any non-empty finite set I' of formulas and any formula 6 we
define:

A
I'Hg o iff (VA € K)(Vh € Hom(Fm, A)( /\ k(7)) < h(5)

~yerl
iff HK(/\’W\(;)% /\’y.

yel’ yel’

For T" the empty set of formulas and any formula § we have we define:
Oz o iff Fxom~l1.
And for T an arbitrary set of formulas and any formula § we take:
THg o iff AUV C )TV H 6.

In this context, Sﬂg is also called the semilattice based logic of K.

2.4. Hilbert algebras

As another example of what has been treated in §2.1 and §2.2, we introduce
now Hilbert algebras. For the moment, we just present these structures under an
algebraic point of view. We refer the reader to § 6.2, where we explain in detail the
connexion between logic and Hilbert algebras.

DEFINITION 2.4.1. An algebra A = (A, —, 1) of type (2,0) is a Hilbert algebra
or H-algebra (also called positive implication algebra in [67]) if for all a, b, c € A:

(H1) a = (b—a)=1,

(H2) (a—= (b—¢) = ((a—=b) = (a—0¢) =1,

(H3) if (a—b=1=0b— a), then a =b.
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LEMMA 2.4.2. Let A be a Hilbert algebra and a,b,c € A. Then the following
equalities are satisfied:
(1) a—=a=1,
1—a=a,

(2)

(3)

4) a—=(b—c)=(a—b) = (a—c),

(5) a—= ((a—b) = b) =1,

(6) a = (a—b)=a—b,

(7) ((a—=b)—=b) =>b=a—b,

8) (a—=b)—=((b—a)—a)=0b—=a) — ((a—0b) —0D).

Let us denote by H the class of all Hilbert algebras. This class was extensively
studied by Diego in [25]. Tt is indeed a variety, for which an equational definition
is given as follows. A = (A, —, 1) is a Hilbert algebra if for all a,b,c € A:

(K) a > a=1,
(H2)) (a = (b—¢)) = ((a—=b) = (a — 0)),
(H4) 1 - a=a,

(H5) (a—=b) = ((b—a)—a)=((b—a)— ((a—Db) —b).

It is well known that Hilbert algebras are subalgebras of the (—, 1)-reducts of
Heyting algebras. It is also well known that Hilbert algebras are a subclass of the
class of Implicative algebras, that was studied by Rasiowa in [67]. An implicative
algebra is an algebra A = (A, —, 1) of type (2,0) such that for all a,b,c € A:

(K) a—a=1,

(H3) if (a—>b=1=b—a), then a =10,

(IA1) if(a—=b=1 & b—c=1),thena —c=1,

(IA2) a > 1=1.
Let us denote by IA the class of implicative algebras. Hilbert algebras are precisely
the implicative algebras that satisfy (H1) and (H2).

It is also well known that Hilbert algebras are a subclass of the class of BCK-
algebras, that was first introduced by Iséki in [52]. For our purposes, following
Idziak [51], we define a BCK-algebra as an algebra A = (A, —,1) of type (2,0)
such that for all a,b,c € A:

B) (a—=b) = ((b—=c)—=(a—c) =1,
(C)a—=((a—=b)—=b) =1,
(K) a—a=1,
(H3) if (a —>b=1=b— a), then a =10,
(TIA2) a > 1=1.
Let us denote by BCK the quasivariety of BCK-algebras. This presentation is
somewhat unusual. The most of literature concerning BCK-algebras employs the
dual notion. We opt for this presentation, as then it is easy to check that Hilbert
algebras are precisely the BCK-algebras A such that for all a,b € A:

(H) (a—=(a—b)=a—b.
A binary relation <p is defined on any Hilbert algebra A, such that for all
a,be A:
a<ab iff a—=>b=1.
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This relation is indeed a partial order on A, whose top element is 1. We use < for
<a when no confusion is possible. Besides order ideals of A, that are defined as in
page 26, and order filters of A, that are defined order dually, a well-known notion
of filter associated with Hilbert algebras is the following. An implicative filter (also
known as deductive system) of A is a subset P C A such that for all a,b € A:

-1eP,
— ifa,a — b€ P, then b€ P.

We denote by Fi_,(A) the collection of all implicative filters of A. Notice that
implicative filters are up-sets, and all principal up-sets are implicative filters.

The collection Fi_,(A) is closed under arbitrary intersections. Therefore, we
may define the function () : P(A) — P(A) that assigns to each subset B C A,
the least implicative filter containing B. We call (B) the implicative filter generated
by B. It is well known that for any B C A and any a € A:

a€(B) iff a=1or (Inecw)(Fby,...,b, €B)
bo—)(b1—>((bn—)a))):1

The map given by () is in fact a finitary closure operator and Fi_,(A) is the
collection of all closed subsets of (). We consider the bounded lattice

Fi,(A) = (Fi,(A),N,V, A, {1}> )

where the meet operation is given by intersection, and the join operation is given
by the implicative filter generated by the union. It is well known [25] that for
any Hilbert algebra A, the lattice of implicative filters Fi_, (A) is distributive.
Meet-irreducible elements of this lattice are called —-irreducible implicative filters
or simply irreducible implicative filters when no confusion is possible. Recall that
P € Fi,(A) is a meet-irreducible element of Fi_, (A) when for all P, P, € Fi_,(A),
if P= P NP, then P = P, or P = P,. As the lattice Fi_, (A) is distributive, meet-
irreducible elements and meet-prime elements of Fi_, (A) coincide, so we have that
P € Fi,(A) is an irreducible implicative filter of A when for all P;, P, € Fi_,(A),
if NP, C P, then P, C P or P, C P. We denote by Irr_, (A) the collection of all
irreducible implicative filters of A. The following theorem characterizes irreducible
implicative filters, and its proof can be found in Lemma 2.4 in [10].

PROPOSITION 2.4.3. Let A be a Hilbert algebra and let P C A. The following
are equivalent:
(1) Pelir,(A).
(2) For all a,b ¢ P thereis ¢ ¢ P such that a — ¢,b — c € P.
(3) For all a,b ¢ P there is ¢ ¢ P such that a,b < c.

COROLLARY 2.4.4. Let A be a Hilbert algebra. Then for all P € Fi(A),
P eTlir,(A) if and only if P¢ € Id(A).

Notice that the previous corollary is another instance of Lemma 2.2.2, that
holds because the lattice of implicative filters is distributive, and moreover for all
a € A, {a) = ta. Notice also that implicative filters are up-sets, so Property (E1)
also holds for (), and so we have the following instance of Lemma 2.1.1, that is
also proven in Theorem 2.6 in [10].
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LEMMA 2.4.5. Let A be a Hilbert algebra and let P € Fi_,(A) and I € Id(A)
be such that PNI = (. Then there is Q € Irr, (A) such that P C Q and QNI = (.

COROLLARY 2.4.6. Let A be a Hilbert algebra, and let P € Fi_,(A) be such
that a ¢ P. Then there is Q € Irr_,(A) such that P C Q and a ¢ Q.

Let us return to consider the closure operator ( ). Since for all a € A, (a) = *Ta,
dually closed subsets of () are the same as Frink ideals (see definition in page 28).
However, strong dually closed subsets of () provides us with a different notion of
ideal. We say that I € Idp(A) is a strong Frink ideal (or sF-ideal) of A if for all
I'C¥Tandall BC¥ A,

if (1) ta C (B), then (B) NI # 0.
acl’
Recall that we have that ) ¢ Idp(A) whenever A has a bottom element 0. From
the definition it also follows that () ¢ Ids;r(A) whenever A has a bottom element
0, since in this case A = ({ta :a € 0} C (0) but (0) N = 0.

In [17] a slightly different notion of ‘strong Frink ideal’ is introduced, since the
authors require them to be non-empty. Both notions coincide for bounded Hilbert
algebras, but not for the general case. We denote by Id;r(A) the collection of all
sF-ideals of A. We already know that Idsr(A) is not necessarily a closure system,
but it is always an inductive family. It is easy to check that:

Id(A) C Id.p(A) € Idp(A).

Applying Definition 2.1.6 to ( ), an implicative filter P € Fi_,(A) is said to be
—-optimal (or simply optimal), when there is an sF-ideal I of A such that:
— P is I-maximal, i.e. P is a maximal element of {G € Fi_,(A): GNI = 0},
— I is P-mazximal, i.e. I is a maximal element of {J € Idsr(A) : FNJ = 0}.
In [17] a slightly different notion of ‘optimal implicative filter’ for Hilbert alge-
bras is considered, requiring these filters to be proper. That notion coincides with
ours for bounded Hilbert algebras, but differs from it for the general case. Recall
that when the algebra has no bottom element, the empty set is an sF-ideal, and so
the total A is an optimal implicative filter. We denote by Op_, (A) the collection
of all optimal implicative filters of A. As an instance of Lemma 2.1.7, concerning
optimal implicative filters and strong Frink-ideals we have:

LEMMA 2.4.7. Let A be a Hilbert algebra and let P € Fi_,(A) and I € Id;p(A)
be such that PNI = 0. Then there is Q € Op_, (A) such that P C Q and QNI = ().

COROLLARY 2.4.8. Let A be a Hilbert algebra and let P € Fi_,(A) be such that
a & P. Then there is Q € Op_,(A) such that P C Q and a ¢ Q.

And since the lattice of implicative filters is distributive, the following instance
of Lemma 2.2.1 also holds:

THEOREM 2.4.9. Let A be a Hilbert algebra. For any P € Fi,(A), P €
Op_,(A) if and only if P° € Id,p(A).

From the previous theorem, Corollary 2.4.4, and the fact that Id(A) C Id;z(A),
we obtain that for any Hilbert algebra:

Irr_,(A) € Op_,(A) C Fi,(A).
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We say that an F-ideal is —-prime, if it is a proper F-ideal I € Idp(A) such
that for all non-empty Y C¥ A, (Y) NI # 0 implies Y NI # @. This notion is
also considered in [17] under the name of ‘prime’. We prefer to use ‘—-prime’ in
order to avoid confusion with the notion of ‘A-prime’, that is usually called ‘prime’.
Making use of this notion, we obtain the following corollaries of Corollary 2.4.4 and
Theorem 2.4.9.

COROLLARY 2.4.10. Let A be a Hilbert algebra and P C A. P € Op_,(A) if
and only if P¢ is a —-prime sF-ideal.

COROLLARY 2.4.11. Let A be an H"-algebra and P C A. P € Trr_,(A) if and
only if P¢ is a —-prime order ideal.

Let us conclude this section by considering Hilbert-based classes of algebras.
These are classes of algebras K on a given language £ that contains a binary
function symbol — and a constant 1 such that the (—, 1)-reducts of the algebras in
K are Hilbert algebras. Notice that this implies that the algebras in K are ordered
by the order given by —. For any of such class of algebras, similarly to the case of
semilattice based logics, we may define the Hilbert based logic of K (see Definition
4 in [54]), as the logic Sg' := (Fm,Fg’), defined for any non-empty finite set
I'={v,...,vn} of formulas and any formula :

It § iff (VA € K)(Vh € Hom(Fm, A))

h(v0) =& (h(m) =™ . (h(y) =™ h(3))...) =17
iff I=K70—>('yl—>...(7n—>6)...):z1.
For I' the empty set of formulas and any formula § we define:
And for T an arbitrary set of formulas and any formula § we define:

T 6 iff A CoD)I ¢ 6.






CHAPTER 3

Literature Survey

In this chapter we define what we refer to as Spectral-like and Priestley-style
dualities, and we review in detail some of the dualities in the literature that can be
seen as Spectral-like or Priestley-style dualities.

In § 3.1 we explain what we mean by Spectral-like and Priestley-style dualities.
There is a vast literature on this topic, but we focus our attention on two recent
results, that are used later on and whose study provided us with inspiration for our
work.

On the one hand, in § 3.2 we focus on dualities for distributive meet-semilattices
with top element. In §3.2.1 we briefly present a simplified version of the Spectral-
like duality for distributive meet-semilattices with top element that was studied
in [12] by Celani. In §3.2.2 we discuss the Priestley-style duality for distributive
meet-semilattices with top element that was only sketched in [5] by Bezhanishvili
and Jansana.

On the other hand, in § 3.3 we focus on dualities for Hilbert algebras. In §3.3.1
we briefly present the Spectral-like duality for Hilbert algebras that was introduced
in [19] by Celani and Montangie as a simplification of their work with Cabrer
in [15]. Finally, in § 3.3.2 we outline the Priestley-style duality for Hilbert algebras
that was studied in [18] by Celani and Jansana. Apart from some insignificant
details in the last one, these dualities turn out to be instances of the general theory
we develop in Chapter 5.

3.1. Spectral-like and Priestley-style dualities

The mathematical interest of studying Spectral-like and Priestley-style duali-
ties goes back to Stone’s duality for Boolean algebras [69], that properly speaking,
is a dual equivalence between the category of Boolean algebras with algebraic homo-
morphisms, and the category of Boolean spaces and continuous maps. This duality
has been generalized to distributive lattices in at least three ways (cf. [3] and its
references).

The approach initiated by Stone himself [69] leads to a representation of dis-
tributive lattices in terms of spaces (X, 7) that are sober, compactly-based and
in which the collection of compact open sets is closed under finite intersections.
Duals of algebraic homomorphisms are the so called Spectral functions, which are
the maps whose inverse sends compact opens to compact opens.

A different approach initiated by Priestley [65] leads to a representation of
distributive lattices in terms of ordered Hausdorff topological spaces that are named
Priestley spaces. These are ordered topological spaces (X, <,7) that are compact
and totally order-disconnected (whenever a < b, there exists a clopen up-set U such

35
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that @ € U and b ¢ U). Duals of algebraic homomorphisms are order-preserving
continuous maps.

Recently, a third duality for Distributive Lattices, based on Pairwise Stone
spaces has been studied in detail in [3]. Although we restrict our study to the first
two dualities, it would be very interesting to look into the last one as well.

What makes the Stone/Priestley duality a powerful mathematical tool is that
it allows us to use topology in the study of algebra (and vice versa). Many alge-
braic notions have their dual translation in terms of nice topological notions. It
is precisely the fact that it is a dual equivalence of categories, i.e. the morphisms
are reversed, which implies that dual of injectivity is surjectivity (and vice versa),
duals of subalgebras are order-quotients, duals of homomorphic images are closed
subsets and duals of disjoint unions are products (and vice versa).

All mentioned so far motivates the name of Spectral-like dualities for those
dualities for which the objects of one of the categories are structures of the form
(X,7,...), where (X, 7) is a compactly-based sober topological space, and the
suspension points indicate that we may have additional structure. Similarly, we
use the name of Priestley-style dualities for those dualities for which the objects of
one of the categories are structures of the form (X,7,<,...), where (X, 7,<) is a
compact totally order-disconnected ordered topological space, and the suspension
points indicate again that we may have additional structure.

3.2. Duality theory for distributive semilattices

In this section we revise the results of Celani in [12], and the results of Be-
zhanishvili and Jansana in [5]. Special attention should be paid to the notation
introduced, as it is used later on.

3.2.1. Spectral-like duality for distributive semilattices. A represen-
tation theorem for distributive semilattices can be obtained from Stone’s pioneering
work in [69], or more detailed in [49], where Grétzer considers distributive semila-
ttices as the appropriate setting to discuss topological representations of distributive
lattices. A duality for the category of distributive semilattices and algebraic homo-
morphisms (DS), was studied in [12], where dual objects of distributive semilattices
are topological spaces called DS-spaces. We recall that X = (X, 7) is a DS-space
(Definition 14 in [12]) when it is a compactly-based sober topological space, that
is, a topological space such that:!

(DS1) the collection KO(X) of compact open subsets forms a basis for the to-

pology 7,
(DS2) the space (X, 7) is sober.

In place of condition (DS2) we could also have:

(DS2') the space (X, 7) is Ty and if Z is a closed subset and L is a non-empty
down-directed subfamily of KXO(X) such that ZNU # @ for all U € L,
then ZN({U :U € L} # 0.

INotice that DS-spaces were originally defined in [12] as ordered topological spaces, where
the order considered turns out to be precisely the dual of the specialization quasiorder of the
space, that is in fact an order, since the space is Tp (this follows from sobriety). This simple fact
considerably simplifies the definition.
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For any DS-space X = (X, 7), we consider the family
FX):={U°:U e KO(X)},

which is closed under finite intersection by condition (DS1). In [12] (see also [49])
it is proven that X* := (F(%X), N, X) is a distributive semilattice, called the Spectral-
dual distributive semilattice of X.

For M = (M, A, 1) a given distributive semilattice, we shall consider the map
Ym 2 M — PT(Irry (M)) given by:

m(a) :={P €lrra(M) : a € P}.

In [12] it is proven that {¢m(a)¢ : a € M} is a basis for a topology Tt on Irra (M).
Moreover the structure Jrra (M) := (Irrp (M), T is shown to be a DS-space, called
the dual DS-space of M.

If X = (X,7) is a DS-space, then it is homeomorphic to (Irrs(%X*),7x+) by
means of the map £x : X — Irrp (X*), given by:

Ex(x) ={UeF(X):zeU}.

If M is a distributive semilattice, then it is isomorphic to (Jrr,(M))*, the Spectral-
dual distributive semilattice of Jrra(M), by means of the map ¥ng.

With respect to morphisms, duals of algebraic morphisms are not functions but
relations, called meet-relations. We recall that for DS-spaces X; and X5, a relation
R C X; x X5 is a meet-relation when:?

(DSR1) Or(U) € F(X%,) for all U € F(%X3),
(DSR2) R(x) is a closed subset of X5 for any = € X;.

For any meet-relation R C X; x X, the map Og : P(X3) — P(X;) is an
algebraic homomorphism between the distributive semilattices X3 and Xj. For
any homomorphism h : My — Ms between distributive semilattices, the relation
Rp, C Irrp (My) x Ity (M), given by:

(PaQ) EEh iff h_l[P] ng

is a meet-relation between the DS-spaces Jrrp(Ms) and Jrra(M;). If R C X7 x Xo
is a meet-relation, then (z1,z2) € R if and only if (21(z1),2(22)) € Rp,, for all
r1 € Xy and 2o € Xo. If h : M; — M> is a homomorphism, then we have
Pa(h(a)) = Oz, (¥1(a)) for all a € M.

In brief, what is proven in [11] is that the category of distributive semilattices
and homomorphisms DS is dually equivalent to the category SpDS, that has DS-
spaces as objects and meet-relations as morphisms.

3.2.2. Priestley-style duality for distributive semilattices. A different
approach was followed in [50] and [5]. We focus on the work in [5], where two cate-
gorical dualities for categories having distributive semilattices as objects are studied
and where the authors make an explicit connection between Priestley duality for

2Notice that this is a simplification of the original definition of meet-relation, that was more
involved and obscure.
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distributive lattices and the duality they provide for distributive semilattices, that
is a generalization of the former.?

Regarding objects, their strategy consists in what follows: first they study how
any distributive semilattice M can be embedded in a distributive lattice L(M),
that they call distributive envelope of M. This construction is also called in [5] the
free distributive lattice extension of M, due to a universal property that it has, and
that will be stated later on in this section. We refer the reader to the Appendix A
to go into details of this construction.

Once the authors have defined the distributive envelope of any distributive
semilattice M, they associate as the Priestley dual of M, the Priestley dual of
L(M), that can be described in terms of optimal meet filters of M. But then they
need to add additional structure to the dual spaces in order to recover the original
semilattice. Dual objects of distributive semilattices are called generalized Priestley
spaces. We recall that X = (X, 7, <, Xg) is a generalized Priestley space (Definition
9.1 in [5]) when:

(DS3) (X, T,<) is a Priestley space,

(DS4) Xp is a dense subset of X,

(DS5) Xp={ze X :{U e ClUs’ (X): x ¢ U} is non-empty and up-directed},

(DS6) for all z,y € X,z <y iff (VU € CaU$e (X)) if z € U, then y € U.
where CAUSE (X) := {U € CU(X) : max(U¢) C Xp}. Notice that the authors work
with distributive semilattices that are bounded, whose dual spaces are the ones that
they call generalized Priestley spaces. Only in Section 9 they briefly consider the
case when there is not necessarily a bottom element, in which case dual spaces
are called *-generalized Priestley spaces, and these are precisely the ones that we
introduce here under the simplified name of generalized Priestley spaces. It should
be noted that there is an inaccuracy in that outline: the duality they sketch for
the non-bounded case works only if we modify the definition of optimal meet filter
given in [5], and we use instead the one given in page 28.

For a given generalized Priestley space X = (X, 7, <, Xg), we call X g-admissible
clopen up-sets the elements in CAUEE (X). It turns out that this collection is closed
under intersection, and in [5] it is proven that X* := (CU%E (X),N, X) is a distri-
butive semilattice, called the Priestley-dual distributive semilattice of X.

For a given distributive semilattice M = (M, A, 1), we consider the function
Im: M — PT(Op,(M)) given by:

Im(a) = {P € Op,(M) : a € P}.

For the bounded case, in [5] it is proven that {¥nm(a) :a € M} U{IMm(b)°: b€ M}
is a subbasis for a Hausdorff topology 7 on Op,(M). Relying on the one-to-one
correspondence that exists between optimal meet filters of M and prime filters of its
distributive envelope L(M), the authors prove that the ordered topological space
(Op (M), 7, <) is order homeomorphic to the Priestley dual of L(M), and hence
it is a Priestley space as well. As stated before, if we use the definition of optimal
meet filter given by § 2.3, the same results hold for the general case, and moreover,

3In fact they define more categories, concerning the preservation of the bottom element by
the morphisms. As we work in the more general setting where no bottom element is required, we
do not treat these other categorical dualities.
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the structure Opa (M) := (Op, (M), 7m, C, Irra (M)) turns out to be a generalized
Priestley space, called the dual (generalized) Priestley space of M.

If X = (X,7,<,Xp) is a generalized Priestley space, then it is order homeo-
morphic to (Op,(X*®), 7xs, S, Irra (X°)) by means of the map {Ax : X — Op,(X°),
given by:

Ex(x) = {U e clU (X) : z € U}.

If M is a distributive semilattice, then it is isomorphic to (Ops(M))®, the Priestley-
dual distributive semilattice of Opa (M), by means of the map Jpg.

Regarding morphisms, two different notions are considered. One is the usual
notion of algebraic homomorphism, and the other is a stronger notion, called sup-
homomorphism. These are algebraic homomorphisms h : Ay — A, that preserve
all existing finite suprema (including the bottom, when it exists). This is equivalent
to saying that for all n € w and all a4,...,a,,b € M:

if (1) ta; C 1b, then (1) th(a;) C th(b).

i<n i<n

The importance of sup-homomorphism in the study of distributive semilattices is
due precisely to the universal property of the distributive envelope of a distributive
lattice: the distributive envelope of M is the unique (up to isomorphism) distribu-
tive lattice L such that there is a one-to-one sup-homomorphism h : M — L such
that for every distributive lattice L’ and every sup-homomorphism g : M — L/,
there exists a unique lattice homomorphism g : L — L’ such that g =goh. An
alternative characterization of the distributive envelope is the following (the proof
can be found in Theorem 3.9 of [5]).

THEOREM 3.2.1. Let M be a bounded distributive semilattice. The distributive
envelope L(M) of M is up to isomorphism the unique distributive lattice L for which
there is a one-to-one sup-homomorphism e : M — L such that e[L] is join-dense
i L.

The duals of algebraic homomorphisms are called generalized Priestley mor-
phisms while the duals of sup-homomorphisms are called functional generalized
Priestley morphisms. We recall that for generalized Priestley spaces X; and X5, a
relation R C X; x Xo is a generalized Priestley morphism (Definition 6.2 in [5])
when:

(DSR3) Ogr(U) € czu;gl (X1) for all U € cyuggl% (X2),
(DSR4) if (z,y) ¢ R, then there is U € CEU}}‘EQ (X2) such that y ¢ U and R(z) C
U.

We say that R is a functional generalized Priestley morphism (Definition 6.11 in [5])
when it is a generalized Priestley morphism that satisfies:

(DSF) for each z € X; there is 2’ € X5 such that R(z) = ta’.

For a given generalized Priestley morphism R C X; x X5, we get that the map
Og : P(X2) — P(X7) is an algebraic homomorphism between distributive semi-
lattices X3 and X3. Moreover, if R is functional, then Og is a sup-homomorphism.
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TABLE 1. Categories involved in the Priestley-style duality for dis-
tributive semilattices [5].

CATEGORY | OBJECTS MORPHISMS

DS Distributive semilattices Algebraic homomorphisms
DSsup Distributive semilattices Sup-homomorphisms

Pr]%/[S Generalized Priestley spaces | Generalized Priestley morphisms

(composition x)

PHELS Generalized Priestley spaces | Functional generalized Priestley
morphisms (composition )

For a given homomorphism between distributive semilattices h : M; — M, the
relation R, C Op,(Ms) x Op,(M;), given by:

(P,Q) e Ry, iff W'[P]CQ,

is a generalized Priestley morphism between generalized Priestley spaces Opa(IMz)
and Opa(M;j). Moreover, if h is a sup-homomorphism, then Ry is functional. If
R C X; x X5 is a generalized Priestley morphism, then (x,y) € R if and only
if (£(z),&(y)) € Ro,, for all z € Xy and all y € Xo. If h : My — M, is a
homomorphism, then ¥2(h(a)) = Og, (91(a)) for all a € M.

It should be noted that these Priestley-style dualities have a slight drawback:
unfortunately, usual composition of relations does not work as composition between
generalized Priestley morphisms. Instead we have that for any generalized Priestley
spaces X1, X2 and X3 and any generalized Priestley morphisms R C X; x X5 and
S C X5 x X3, the composition of R and S as morphisms between generalized
Priestley spaces is S % R,* where:

(x,2) € (SxR) iff VU € C@Z/{}ga (X3)(if z € (Og oUg)(U), then z € U).

Table 1 collects all the categories involved in this duality. Summarizing, in [5]
Bezhanishvili and Jansana work out a Priestley-style duality for bounded distri-
butive semilattices. Although it is only sketched in [5], their results can also be
applied to get a Priestley-style duality for distributive semilattices not necessarily
bounded. Then we get that DS is dually equivalent to F’r%S and DSg,p is dually
equivalent to Pr]});s.

3.3. Duality theory for Hilbert algebras

In this section we revise the results of Celani, Cabrer and Montangie in [15],
and we only sketch the results of Celani and Jansana in [18]. Special attention
should be paid again to the notation introduced, as it is used later on.

4Notice that in the original paper [5] there is a notational inconsistency that is worth being
aware of: up to page 107, where * is defined, the notation used for composition of relations is the
one usually used in category theory, namely the left composition, where the first applied relation
is the left one. From this point on, the notation used for both o and % is the usual one for
composition of relations, namely the right composition.
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3.3.1. Spectral-like duality for Hilbert algebras. In [15] and [19] Celani
et al. have studied Spectral-like dualities for two categories having Hilbert algebras
as objects. In both dualities, dual objects of Hilbert algebras are ordered topolo-
gical spaces called H-spaces. We recall that X = (X, 7,;) is an H-space (Definition
3.4 in [19]) when:®

(H6) & is a basis of open and compact subsets for the topological space (X, 7,;),
(H7) for every U,V € &, sat(U NV°) € &,
(H8) (X, 7,) is sober.

In place of condition (H8) we could also have:

(H8') the space (X, 7,) is Tp and whenever Z is a closed subset and U is a non-
empty down-directed subfamily of x such that ZNU # () for all U € U,
we have ZN({U : U e U} # 0.

For any H-space X = (X, 1), we consider the family
D(X%):={U°:U e &},
and we define on this set the operation = such that for all U,V € k,
U= V.= (sat(UNVe))“.

This operation is well defined by condition (H7), and in [15] it is proven that the
structure X* := (D(X),=, X) is a Hilbert algebra, called the Spectral-dual Hilbert
algebra of X.

For a given Hilbert algebra A = (A, —,1), we shall consider the function
YA : A — PT(Irr_, (A)), given by:

Ya(a):={Pelir,(A):a€ P}

In [15] it is proven that ka = {¥a(a)° : a € A} is a basis for a topology 7., on
Irr_,(A). Moreover the structure Jrr_,(A) := (Irr_,(A), 7., ) is shown to be an
H-space, called the dual H-space of A.

If X = (X,7.) is an H-space, then it is homeomorphic to (Irr_, (X*),7...) by
means of the map ex : X — Irr_, (X*), given by:

ex(z):={U e DX):zcU}.

If A is a Hilbert algebra, then it is isomorphic to (Jrr_,(A))*, the Spectral-dual
Hilbert algebra of Jrr_, (A), by means of the map 4.

With regard to morphisms, two different notions are considered. One is the
usual notion of algebraic homomorphism, and the other is a weaker notion, called
semi-homomorphism. These are functions h : Ay — As such that h(141) = 142
and for all a,b € Aj, it holds h(a —** b) <A2 h(a) —A2 h(b). The importance
of semi-homomorphisms in the study of Hilbert algebras is given by the following
theorem, that involves the important notion of implicative filter (see page 31 for
the definition), and whose proof can be found in Theorem 3.2 in [10].

5]HI—spaces were originally defined in [15] as ordered topological spaces with the designated
basis. In [19] it was remarked that the order was nothing but the dual of the specialization order
of the space. Therefore some conditions in the original definition of H-spaces are redundant, and
a more compact definition of such spaces is given in [19], where the original name is maintained
for the new spaces, while the former are renamed as ordered H-spaces.
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TABLE 2. Categories involved in the Spectral-like duality for
Hilbert algebras [15].

CATEGORY | OBJECTS MORPHISMS

Hs Hilbert algebras | Semi-homomorphisms

Hy Hilbert algebras | Algebraic homomorphisms
Sp]}'&[ H-spaces H-relations

Sp% H-spaces functional H-relations

THEOREM 3.3.1. Let A1 and Ay be two Hilbert algebras. A map h : A1 — Ao
is a semi-homomorphism if and only if h='[F] € Fi_, (A1) for every F € Fi_, (Azy).

Duals of semi-homomorphisms are called H-relations while duals of homomor-
phisms are called functional H-relations. We recall that for H-spaces (X1, 7, ) and
(X2, Th,), a relation R C X7 x Xy is an H-relation (definition 3.2 in [15]) when:

(HR1) Og(U) € k1, for all U € ko,
(HR2) R(x) is a closed subset of Xy, for all z € Xj.

We say that R is a functional H-relation (Definition 3.3 in [15]) when it is an
H-relation that satisfies:

(HF) if (x,y) € R, then there exists z € cl(x) such that R(z) = cl(y).

Notice that here the authors use the adjective ‘functional’ associated with being
the dual of an algebraic homomorphism whereas in the Priestley-style duality for
distributive semilattices, the adjective ‘functional’ is used associated with being the
dual of a sup-homomorphism.

For R C X; x X3 a given H-relation, the map Og : P(X3) x P(X1) is a semi-
homomorphism between Hilbert algebras X3 and X;7. Moreover, if R is functional,
then (g is a homomorphism. For h : A; — As a given semi-homomorphism
between Hilbert algebras, the relation Ry C Irr—, (Ag) x Irr—, (A1), defined by:

(P,Q) € Ry iff h7'[P]CQ,

is an H-relation between H-spaces Jrr_, (As) and Jrr_,(A1). Moreover, if h is a
homomorphism, then Ry, is functional. If R C X3 x X5 is a (functional) H-relation,
then (z1,22) € Rif and only if (e1(x1),e2(x2)) € Ry, for all 21 € X3 and 25 € Xs.
If h: Ay — A, is a (semi-)homomorphism, then ¢9(h(a)) = Og, (¢1(a)) for all
a € Ay

Table 2 collects all the categories involved in this duality. Summarizing, what
is proven in [15] is that Hg is dually equivalent to Spﬂja and Hy is dually equivalent
to Spﬁg.

3.3.2. Priestley-style duality for Hilbert algebras. In [18], Celani and
Jansana have studied Priestley-style dualities for four categories having Hilbert
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algebras as objects.® This spread of categories is because their work is based in the
mentioned Priestley-style dualities for DS and DSg,,,.

In relation to objects, their strategy consists in what follows: first they study
how any Hilbert algebra A can be embedded in a bounded distributive semila-
ttice M(A), so that they can associate as the Priestley dual of A, the Priestley
dual of M(A) (as it was defined in [5]). This construction is based on their work
in [17] where they study how any Hilbert algebra can be embedded in an implica-
tive semilattice (not necessarily bounded) that they call free implicative semilattice
extension of A (the name is due to the universal property that this construction
has). This issue concerning bounds (Hilbert algebras do not have necessarily a
bottom element, while bounded distributive semilattices certainly do) makes their
construction a bit involved. Their duality can be simplified if we forget about the
bottom, and we use instead the duality for distributive semilattices we already
presented. This follows, in fact, as a particular instance of the theory we present
in Chapter 5. We encourage the reader to address §6.2 for a full description of a
Priestley-style duality for Hilbert algebras. In what follows, we just briefly present,
for the sake of completeness, the definitions of dual objects and morphisms the
authors give in [18]. We recall that X = (X,7,<,B) is an augmented Priestley
space (Definition 5.4 in [18]) when:

(H9) (X, ) is a compact topological space,

(H10) (X, <) is a poset with top element ¢,

(H11) B is a non-empty collection of non-empty clopen up-sets of X,
(H12) for every z,y € X,z <y iff YU € B(if x € U, then y € U),
(H13) the set Xp U {t} is dense in X, where

Xp:={x€ X :{U € B:x ¢ U} is non-empty and up-directed},

(H14) for all U,V € B, (L{UNV*))¢ € B.
Notice that from compactness and condition (H12), it follows that (X, 7,<) is a
Priestley-space.

For a given augmented Priestley space X = (X, 7, <, B), consider the operation
=: B x B — B such that for all U,V € B,

U=V :=(UnNnV))-.
By condition (H14), this operation is well defined. In [17] it is proven that the al-
gebra X* := (B, =, X) is a Hilbert algebra, called the Priestley-dual Hilbert algebra
of X.
For a given Hilbert algebra A = (A, —, 1), define Op™, (A) := Op_, (A) U {A}.
Recall that only if A has no bottom element, the emptyset is an strong Frink

ideal, and so A is an optimal implicative filter, in which case Op™, (A) = Op_, (A).
Consider the map ¥ : A — PT(OpZ,(A)) given by:

VU4 (a) :={P € OpL(A):ac P}.
In [17] it is proven that {9} (a) : a € A} U {95 (b)° : b € A} is a subbasis for
a topology 74 on OpX,(A). Moreover it is defined the structure Op? (A) :=

6In fact, they consider more categories, concerning preservation of the bottom element, that
we do not consider here.
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(Opt, (A), 7%, C,9%[A]), that is shown to be an augmented Priestley space, called
the dual (augmented) Priestley space of A.

If X = (X,7,<,B) is an augmented Priestley space, then we obtain that the
structure (Op™, (x‘),T;., Q,ﬁ;, [B]) is an augmented Priestley space, and the or-
dered topological space (X, 7, <) is order homeomorphic to (OpZ, (X*), 75, C) by
means of the map £f : X — OpZ,(X*), given by:

() ={UeB:xeU}.

If A is a Hilbert algebra, then it is isomorphic to (Op¥, (A))®, the Priestley-dual
Hilbert algebra of OpZ, (A), by means of the map 9.

In relation to morphisms, the following property of maps is considered. A map
h : A — B between Hilbert algebras A and B has the sup-property if for every
A1y veypyboy ..., by € A:

if () tai € ({bo,- -, ba}), then (1) th(as) € ({hlbo),- .., h(bm)})-
i<n i<n

Besides semi-homomorphisms and homomorphisms, two more notions are consi-
dered, namely sup-semi-homomorphisms, that are semi-homomorphisms with the
sup-property, and sup-homomorphisms, that are homomorphisms with the sup-
property.

Duals of semi-homomorphisms are called augmented Priestley semi-morphisms.
We recall that for augmented Priestley spaces X; and X5, a relation R C X7 x X5
is an augmented Priestley semi-morphism (Definition 5.13 in [18]) when:

(HR3) if (z,y) ¢ R, then there is U € By such that y ¢ U and R(xz) C U,
(HR4) Op(U) € B, for all U € By.

We say that R is an augmented Priestley morphism if in addition satisfies:

(HF') for every x € X; and every y € Xp,, if (z,y) € R, then there exists
z € Xp, such that z € Tz and R(z) = 1y.

that for

We say that an augmented Priestley semi-morphism is functional if for every
x € X, the set R(z) has a least element. Notice that concerning the use of the
adjective ‘functional’, the authors follows the terminology used in [5].

For a given augmented Priestley semi-morphism R C X; X X5, the map
Ogr : P(X3) — P(X;) is a semi-homomorphism between Hilbert algebras X3
and X3}. Moreover, if R is an augmented Priestley morphism, then Og is a ho-
momorphism, and if R is functional, then g has the sup-property. For any semi-
homomorphism between Hilbert algebras h : A; — Ao, we obtain that the relation
Ry, C OpZ,(A2) x OpZ, (A1), given by

(P>Q) E‘Rh iff h_l[P] ng

is an augmented Priestley semi-morphism between augmented Priestley spaces
Opt (Ag) and Opt, (A;). Moreover, if h is an homomorphism, then Rj, is an
augmented Priestley morphism, and if A has the sup-property, then R} is func-
tional. If R C X; x X5 is an augmented Priestley semi-morphism, then (z,y) € R
if and only if (€1 (2),£7(y)) € Ro,,, forall z € X; and y € Xo. If h: Ay — Ay is
a semi-homomorphism, then 93 (h(a)) = Og, (97 (a)) for all a € A;.
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TABLE 3. Categories involved in the Priestley-style duality for
Hilbert algebras [18].

CATEGORY | OBJECTS MORPHISMS

Hs Hilbert algebras semi-homomorphisms

Hy Hilbert algebras algebraic homomorphisms

Hsups Hilbert algebras sup-semi-homomorphisms
Hsupr Hilbert algebras sup-homomorphisms

Pr]fIM Augmented Priestley spaces | Augmented  Priestley  semi-

morphisms (composition x)

Pr]jH\} Augmented Priestley spaces | Augmented Priestley morphisms
(composition x)

Pr]fIF Augmented Priestley spaces | Functional augmented Priestley
semi-morphisms (composition x)

Pri Augmented Priestley spaces | Functional augmented Priestley
morphisms (composition x)

As in the case of Priestley-style duality for distributive semilattices, usual com-
position of relations does not work as composition between augmented Priestley
semi-morphisms. Instead we have that for any augmented Priestley spaces X1,
X2 and X3 and any augmented Priestley semi-morphisms R C X; x X5 and
S C X5 x X3, the composition of R and S as morphisms between augmented
Priestley spaces is S x R, where:

(z,2) € (S« R) iff YU € Bs(ifx € OgoOg(U), then z € U).

Table 3 collects all the categories involved in these dualities. Summarizing,
what is proven in [18] is that Hg is dually equivalent to Pr,, Hy is dually equiv-
alent to Pr}H&[, Hsups is dually equivalent to PrISHIF and Hgypp is dually equivalent to
Pr%.
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CHAPTER 4

Duality Theory and Abstract Algebraic Logic:
Introduction and Motivation

In this chapter we introduce our work plan for Part 2, we give the motivation
and we make the first steps towards an abstract Stone/Priestley duality theory for
non-classical logics under the point of view of AAL.

In §4.1 we introduce the problem we aim to solve, and how we propose to reach
it. We tackle that problem in Chapter 5, but in the remaining part of the present
chapter we examine the tools we need to achieve that goal. First, we introduce
in §4.2 some concepts from Wgjcicki’s theory of logical calculi [73], that were
introduced to deal with a more general problem closely related to ours. In §4.3 we
focus on closure bases for C?, the closure operator associated with the collection of
S-filters of A. We present some results that can also be found in [56]. Then in §4.4
we introduce some new concepts, from another instance of what was presented in
Chapter 2, specialized in this case for the closure operator C4 defined on the poset
(A, <£). This completes the toolkit we need for the next chapter. Finally, relying
on the work in [41], the S-semilattice of A is introduced and studied in § 4.5, and
we take a look in §4.6 at canonical extensions for congruential logics.

4.1. Introduction and motivation

Regarding logic and theoretic computer science, Stone/Priestley duality has
been used for different purposes: Rasiowa and Sikorski [68] applied Baire category
theorem to the dual space of the Lindenbaum-Tarski algebra of the first-order logic
to provide a topological proof of Gédel’s completeness theorem for first-order logic.
Abramsky [1] used Stone duality for distributive lattices to connect specification
languages and denotational semantics, thus linking lambda calculus and domain
theory. More recently, Gehrke, Grigorieff and Pin [39,40] studied the connection
between regular languages and monoids as another case of Stone duality.

Apart from these less-known applications of duality theory in the study of logic,
what is always mentioned, and rightfully so, is the work by Jénsson and Tarski
[68,59] on representation of Boolean algebras with operators. As it is addressed
in [47], this algebraic work was overlooked by modal logicians at that time, but
it could immediately have been applied to give new algebraic semantics of modal
logics, and even more, to prove completeness of modal logic with respect to what
later became known as general Kripke frames.

Nevertheless, Jonsson and Tarski’s paper ushered a fruitful field of study: the
study of the relation between algebraic semantics and Kripke-style semantics of a

49
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logic via dual equivalences of categories. Although both Stone and Priestley ap-
proaches have been followed to generalize this pioneering work on representation
of Boolean algebras with operators [58], the latter, that deals with Hausdorff (i. e.
nicer) topological spaces, has been held to be advantageous [13,46], especially in
view of recent developments of the theory of canonical extensions (see [43] and
its references). The key point of this theory, called extended Priestley duality, is
that the additional n-ary operations either preserve joins (resp. meets) in each
coordinate, or send joins (resp. meets) in each coordinate to meets (resp. joins).
These n-ary operations are dually represented in terms of n + 1-ary relations satis-
fying certain conditions. Moreover, the theory of canonical extensions has enabled
the study of the relation between algebraic and relational semantics of some well-
behaved substructural logics [26, 70, 71|, via discrete dualities (i.e. dualities in
which no topology is involved). A modular study of the relational semantics that
follows from these studies was developed by Gehrke in [38], where such semantic
models were called generalized Kripke frames.

Until the mid-2000s, all categories of algebras (and homomorphisms) for which
Stone/Priestley dualities were studied had as objects lattice-based algebras (i.e.
algebras with a lattice reduct), in most cases distributive. Which means that all
logics for which the relation between its algebraic semantics and its Kripke-style se-
mantics had been studied via a topological duality, were logics having well-behaved
conjunction and disjunction connectives. In the recent literature, we find further
studies that work out dualities for logics that do not have both a conjunction and
a disjunction at the same time, or that do not have any of these connectives. In
other words, Spectral-like and Priestley-style dualities have been studied for cate-
gories whose objects correspond to certain ordered algebraic structures that are not
lattice-based. The approach initiated by Stone has been followed in [11,15,19],
whereas the approach initiated by Priestley has been followed in [5,6, 18], among
others.

Although these studies often have a logical motivation, their content is math-
ematical above all, and it happens that the connection with logic is not studied in
a sufficiently explicit manner. For example, it has become voz populi that Stone
duality for Modal algebras provides relational semantics for modal logics. But it
is rather unusual to specify which modal logic (as a closure relation) they refer to,
namely the local consequence of the referred modal logic. This connection can be
made explicit by using the notions from AAL of S-algebras and S-filters. As these
notions are defined for any arbitrary logic and any arbitrary algebra, a natural
question arises: which abstract properties should a logic have in order to possess a
Stone/Priestley duality for the class of algebras canonically associated with it? We
aim to identify the class of logics S such that the category of S-algebras and homo-
morphisms can be seen dually as a Spectral-like and/or a Priestley-style category.

This problem might be seen as a restriction of a more general question that was
tackled by Wdjcicki in [73]. He asked about the abstract properties that a logic
should have in order to posses a frame semantics. In the next section we review in
detail this work, given that the problem we tackle in this dissertation can be seen
as a restriction of that addressed in [73] by Wéjcicki.
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4.2. Referential semantics and selfextensional logics

Referential algebras were introduced by Wojcicki [73] as a tool for studying
the link between frame semantics and algebraic semantics of arbitrary logics. The
underlying idea of frame semantics is simple and straightforward: it consists in
assuming that truth values of the formulas depend on reference points. One of the
possible interpretations of those reference points is that of the possible worlds, in
which case frame semantics reduces to possible world semantics. Instead of dealing
with frames, Wéjcicki opts to deal with referential algebras. These structures are
linked with referential semantics in the same way as Kripke frames are linked with
Kripke semantics. Moreover in [73], it is shown that a logic has a frame semantics
if, and only if, it admits referential semantics. So the only difference is the point
of view: referential semantics is nothing but regarding frame semantics (or Kripke-
style semantics) under an algebraic point of view. And this seems to be the suitable
outlook if we aim to study the link between algebraic and frame semantics.

Given a logical language .Z, an . -referential algebra is a structure X = (X, B)
where:

(1) X is a non-empty set, and
(2) B is an .Z-algebra whose elements are subsets of X.

For any Z-referential algebra X = (X, B), we define the relation <y C X x X

as follows:

v =xy iff VUe€ B(ifxeU, thenyel).
This relation is a quasiorder on X, and whenever <y is a partial order, the
ZL-referential algebra X is said to be reduced. In this case, we denote <y by
<, or even by < when the context is clear.

Referential algebras are another example of structures that can be used to
define logics. For instance, for any Z-referential algebra X = (X,B) we might
define the relation -y C P(Fmg) X Fmg such that for all T U {0} C Fm:

Ty 6 iff Vh € Hom(Fmg,B), (] h(v) € h(5).
yel’
Given a logic § in the language .Z, and an .Z-referential algebra X', we say that
X is an S-referential algebra provided Fs CFy. Moreover, we say that S admits

a (complete local) referential semantics if there is a class of referential algebras X
such that Fs = N{Fx: X € X}.

REMARK 4.2.1. Tt is easy to see (check Remark 5.2 in [56]) that for each
algebraic reduct B of a reduced S-referential algebra, B € AlgS.

In [73] it is identified the abstract property of a logic that corresponds to
admitting a complete local referential semantics. Wojcicki defines selfextensional
logics as those logics S for which Acg, the Frege relation of Cg, is a congruence of
Fm, where recall that Ac, € F'm x F'm is given by: for all 7,d € Fm

(7,9) € Acs iff Cs(y) = Cs(9).

Alternatively, we can define selfextensional logics (see Definition 2.41 in [35])
as those logics for which the Frege relation of Cs and the Tarski congruence of &
coincide.
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Selfextensional logics are precisely those logics that admit complete and local
referential semantics. An updated approach to the topic is carried out by Jansana
and Palmigiano in [56], using modern notation and terminology that we follow.
The mentioned correspondence between selfextensional logics and logics that admit
referential semantics is formulated in [56] as a proper equivalence of categories.

These studies fit in the field of AAL, where selfextensional logics have been
studied in depth (cf. [34,53-55] and its references). Other classes of logics can
be defined using the Frege relation, and this yields to what is known as the Frege
hierarchy. This is a classification scheme of logics under four classes defined in
terms of congruence properties. Selfextensional logics are one of theses classes, the
others being Fregean, fully Fregean and congruential (a.k.a. fully selfextensional)
logics. The study of this classification, its structure and its relations with the
Leibniz hierarchy started in the late 90’s, and has continued to be intense in the
last twenty years.! Almost all known selfextensional logics are congruential, and
only in [2] it is presented an ad hoc example that shows that the inclusion of the
former in the latter is strict.

As it is formulated by Jansana and Palmigiano in [56], the correspondence be-
tween selfextensional logics and logics that admit referential semantics involves a
dual equivalence of categories: one being the class of referential algebras associated
with the referential semantics, and the other being the class of reduced g-models
that provides the algebraic semantics. Thus they provide a duality between alge-
braic and referential semantics, and hence we take it as an starting point of our
work. Recall that we aim to identify the class of logics S for which a Stone/Priestley
duality can be defined for AlgS. We are not interested in the algebraic semantics
given by the reduced g-models, rather in the algebraic semantics given by purely al-
gebraic structures. In [56] it is shown that when we deal with selfextensional logics
that are congruential, the correspondence can be formulated as a dual equivalence
of categories, one being the class of S-algebras (and homomorphisms), and the
other being what they call perfect S-referential algebras (and suitable morphisms).
What they present is a general framework in which our work is placed as well. In
particular, the representation theorem for congruential logics they deal with, is the
same that we study in the next section. We review in detail their work in §5.4,
where we compare their results with ours.

4.3. Closure Bases and congruential logics

We define now congruential logics and we present a representation theorem for
S-algebras, when S is congruential. From now on, fix a language .Z, let S be a
logic in the language .Z and let A be an algebra of the same type. If not otherwise

IThe Leibniz hierarchy is another classification scheme of logics that can be presented in
at least four ways: according to either syntactic characterizations of logics, or definability char-
acterizations, or lattice-theoretical characterizations in terms of the properties of the Leibniz
congruence, or model-theoretic characterizations of the classes of reduced S-models and reduced
S-algebras. This hierarchy has been enriched recently by the contributions of Raftery [66] and
Cintula and Noguera [20], and some well-known classes of the hierarchy are, for instance, the class
of implicative logics introduced by Rasiowa [67], or the class of protoalgebraic logics, that was
first defined by Blok and Pigozzi in [7] and independently by Czelakowski in [22], and that was
studied in depth by Czelakowski [23].
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stated, all logics and algebras considered in what follows are assumed to have the
type of Z.

Recall that we denote by Fig(A) the collection of S-filters of A, that is a closure
system. Let us denote by C4 the closure operator associated with Fig(A). Thus
for any subset B C A, C?(B) denotes the least S-filter of A that contains B.

This closure operator defines the specialization quasiorder g? on A associated
with Cé‘, such that for all a,b € A:

a <80 iff C2(b) C C2(a).

We denote by E? the equivalence relation associated with S?, i.e. Ef;‘ = §§ N 2?.
Notice that E? is precisely Acé, the Frege relation of C?. This relation provides
a definition of the canonical class of algebras associated with S alternative to that
presented in page 18.

DEFINITION 4.3.1. An algebra A is an S-algebra when for every congruence 6
of A,if 6 C E?, then 6 = AQ.

In particular, from the definition of Lindenbaum-Tarski algebra (see page 18),
and since the Frege relation of Cg and the Tarski congruence of S coincide for any
selfextensional logic we obtain that for any selfextensional logic S, the Lindenbaum-
Tarski algebra Fm* = Fm/Ac, = Fm/ =E™ is an S-algebra. The relation =2 is
also used to define the class of congruential logics.

DEFINITION 4.3.2. (Prop. 2.42 in [35]) A logic S is called congruential,® when
for every algebra A, Eg‘ is a congruence of A.

Notice that it follows from the definition that any congruential logic is self-
extensional. When the Frege relation of a closure operator C on an algebra A is
a congruence, we say that the structure (A, C) has the congruence property (Def.
2.39 in [35]). Therefore, a logic S is congruential, provided for any algebra A,
(A, C#%) has the congruence property. Many of the well-known logics, including
classical and intuitionistic propositional logics, are congruential. A sufficient condi-
tion for a selfextensional logic for being congruential is satisfying (uDDT) or (PC).
Next theorem, stated in Theorem 2.2 in [41] without a proof, gives an alternative
definition of congruentiality.

THEOREM 4.3.3. A logic S is congruential if and only if for every algebra A of
the same type:

A € AlgS iff (A,<%) is a poset.

PROOF. Let S be a congruential logic. Clearly <# being an order implies that
A € AlgS. For the converse, let A € AlgS. By assumption =4 is a congruence of
A, so by definition of S-algebra, E? = A, and therefore, §§ is an order.

Let now S be a logic such that for every algebra A, A € AlgS if and only if
(A, <£) is a poset. Let B be any algebra of the same type of S. We show that
=B = Ag. By propositions 2.10 and 2.21 in [35], B* := B/Qp(Fis(B)) € AlgS,

2We follow here the terminology used in [41]. Congruential logics were previously called
strongly selfextensional [35] and fully selfextensional [56].



54 CHAPTER 4. DUALITY THEORY AND AAL

where Qg (Fis(B)) is the Tarski congruence of (B, Fis(B)).*> We also get that
the projection map is a bilogical morphism from (B, Fis(B)) to (B*,Fis(B*)). by
assumption Eg’* = A+, i.e. (B*,Fig(B*)) has the congruence property. But since
this property is preserved by bilogical morphisms (Proposition 2.40 in [35]), we
conclude that (B, Fis(B)) has the congruence property, i.e. we get that =5 = Ap
is a congruence, as required. O

From the previous theorem we infer that for any congruential logic S,
AlgS = {A: =5 = A}

REMARK 4.3.4. Notice that when S is congruential, all S-filters are up-sets
with respect to gg*, and for all a € A, C?(a) = Tgéa. When the context is clear,
we drop the subscript of ng as well as the subscript of ¢§§.

From now on we focus on congruential logics and on closure bases for C?, as
they provide us with the representation theorems for S-algebras we are looking
for. Recall that F C Fig(A) is a closure base for C& provided any S-filter is an
intersection of elements in F.

For any closure base F for C4, we define the map ¢z : A — PT(F) such that
for any a € A:

pr(a)={P e F:a€ P}

For any a € A, pr(a) denotes the set {P € F : a ¢ P}. For any B C A, we

denote:

$r(B) = {er(b):be B}y ={Pe F: BC P}.
Notice that for any B, B’ C A, we have that x(B) N ¢x(B’) = ¢(B U B’). This
notation should not be confused with pz[B] := {px(b) : b € B}.

Let us denote by ¢x[A] the algebra whose carrier is ¢ z[A] and such that for
each n-ary connective f of the language .Z, and any elements aq,...,a, € A, an
operation f?¥[Al on @ x[A] is defined as follows:

[ (o (ar), . pr(an) == or(fA(ar, . an)).

These operations are well defined since the map ¢r is injective, and injectivity of
wr follows easily from S being congruential and F being a closure base for C?: let
a,b € A be such that a # b. Since S is congruential and A is an S-algebra, we have
Aa = =%, s0 from a # b we can assume, without loss of generality, that a f? b.
Then b ¢ C2(a), and therefore there is P € F such that C4(a) C P and b ¢ P.
We conclude that P € pr(a) \ ¢£(b), so pr(a) # ¢x(b), as required. Thus pr[A]
is well defined and moreover ¢ € Hom(A, ¢ r[A]).

THEOREM 4.3.5. Let S be a congruential logic, let A be an S-algebra and let F
be a closure base for C&. The map ¢F : A — PT(F) is an isomorphism between

3 The Tarski congruence has been introduced through the study of the semantics of gener-
alized matrices. It is defined for any pair consisting of an algebra and a closure system, as the
greatest congruence on the algebra compatible with all the subsets of the closure system. The
Tarski congruence can be defined also in terms of the Leibniz congruence, and it can be used to
give an alternative definition of AlgS, for any logic S. For a more precise definition see Definition
1.1 in [35].
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the algebras A and pz[A], and an order embedding between the posets (A, <&) and

PROOF. By definition ¢x is a homomorphism of A onto ¢ z[A]. Notice that
a <2 b implies pr(a) C ¢x(b), and from this and the previous argument about
injectivity, we get the required order embedding. O

Previous theorem is the representation theorem we were looking for. Moreover,
from it we obtain that the algebra ¢ #[A] is an S-algebra. Therefore, we may con-

]

sider the closure operator C%£” (4] associated with the closure system Fis(px[A]).

LEMMA 4.3.6. Let S be a congruential logic, let A be an S-algebra and let F
be a closure base for C&. Then {px[P]: P € F} is a closure base for Cgf[A],

PROOF. As @r is an isomorphism between S-algebras A and @x[A], in par-
ticular we have that Fig(or[A]) = {¢x[F] : F € Fis(A)}. Consider the family
F':={pr[P]: P € F}andlet G € Fis(pr[A]) and a € A be such that ¢r(a) ¢ G.
Since @z is an isomorphism, there is F' € Fig(A) such that ¢ z[F] = G, so we have
a ¢ F. Then by F being closure base, there is P € F such that FF C P and a ¢ P.
This implies G = ¢x[F] C pr[P] € F' and ¢r(a) ¢ ¢r[P), as required. O

COROLLARY 4.3.7. Let S be a congruential logic, let A be an S-algebra and
let F be a closure base for C?. For anya € A and any B C A:

aeCA(B) iff 3r(B)Cer(a) iff prla)e CE™(px[B)).

PROOF. Assume first that a € C2(B) and let P € $#(B), i.e. B C P. Then
we have C4(B) C C&(P) = P, and so a € P, i.e. P € pr(a). For the converse,
let a ¢ C2(B), then by F being a closure base for C#, there is P € F such that
a¢ Pand C&(B) C P,i.e. P€ 97x(B)\ ¢x(a).

We show now that a € C£(B) if and only if pr(a) € Cgf[A] (¢r[B]). Assume
first that pr(a) € Cgf[A](QD}-[BD. Notice that since C4(B) is an S-filter of A,
by ¢ being an isomorphism, the set px[C#&(B)] is an S-filter of px[A]. Then
from B C C2(B) we get CE" M (oz[B]) € CFMW(pr[CA(B)) = r[CA(B).
Therefore, from the assumption it follows ¢z (a) € ¢[C4(B)], and so a € C4(B).
Assume now that pr(a) ¢ CﬁF[A](cp;[B]). Then as CﬁF[A](ap;[B]) is an S-filter
of r[A], from lemma 4.3.6 we get that there is P € F such that ¢z(a) ¢ ¢r[P)]
and CgF[A] (px[B]) C px[P]. So from ¢x[B] C ¢x[P], we infer B C P, and then
C2(B) C C4(P) = P. And from a ¢ P, we conclude a ¢ C4(B). O

COROLLARY 4.3.8. Let S be a congruential logic, let A be an S-algebra and
let F be a closure base for C?. For any B,D C A:

DCCEB) if $r(B)Cer(D) if |Jpr(@):de D} C CE (o (B)).
Notice that from Corollary 4.3.7 it follows that for all B C A:

CgM(ox[B]) = pr[CA(B)).

The structure (F, o r[A]) is a referential algebra, that in Section 5.6.7 of [73]
is called the canonical referential algebra for Cé‘ determined by F.
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THEOREM 4.3.9. Let S be a congruential logic, let A be an S-algebra and let F
be a closure base for C&. Then (F,pr[Al) is a reduced S-referential algebra and
the associated order is given by the inclusion relation.

PRrROOF. By definition, (F, pr[A]) is a referential algebra. We show first that
(F,pr[A]) is reduced. Consider the quasiorder < C F x F of the referential
algebra, which is defined as follows:

P=<Q iff Vac A( if P € ypr(a), then Q € g@;(a)).

Note that using the definitions of the notions involved, it follows that this quasiorder
is the inclusion relation on F. Therefore it is a partial order and the referential
algebra is reduced.

Let us show that (F,pr[A]) is an S-referential algebra. Let I' U {§} C F'm be
such that I' ks d, and let h € Hom(Fm, ¢ #[A]). Since pr € Hom(A, ¢£[A]) is an
isomorphism, there is A’ € Hom(Fm, A) such that ¢ o b’ = h. We have to show
that ({h(y) : v € T} C h(9), so let P € F be such that P € (\{h(y) : v €T} =
(er(h'(v)) : v € T}. Then h'(y) € P for all v € I'. And since P € Fig(A) and
h' € Hom(Fm, A), from the assumption and the definition of S-filter we obtain
h'(6) € P,so P € or(h'(5)) = h(9), as required. O

Notice that the previous theorem, Remark 4.2.1 and Lemma 4.3.6 imply that
for any S congruential logic, there is a back and forth correspondence between
reduced S-referential algebras and structures of the form (A, F), where A is an S-
algebra and F is a closure base for C?. This correspondence between objects, first
addressed by Czelakowski in [23], was formulated as a full-fledged duality in [56],
for the case when the collection Fis(A) was taken as the closure base. But this is
not the closure base that properly generalizes the representation theorem on which
they are based the Stone/Priestley dualities that we find in the literature. Let us
consider the example of intuitionistic logic, for which the canonical class of algebras
associated with are Heyting algebras. Logical filters of Heyting algebras are lattice
filters. But the representation theorem on which is based Stone/Priestley duality
for Heyting algebras focuses on prime lattice filters and not on all lattice filters.
Therefore, for our purposes, we should not work with the whole collection of S-
filters, but rather we should identify the closure bases that provide us with a direct
generalization of the mentioned representation theorem in the literature. This is
what we do in the next section, where we define irreducible and optimal S-filters,
using what we studied in Chapter 2.

4.4. The closure operator Cfé: irreducible and optimal logical filters

From now on, let § be a congruential logic and let A be an S-algebra. Notice
that when S is a finitary logic, then C? is a finitary closure operator for any
S-algebra A. By convenience we assume that S has theorems. Recall that we say
that a logic S has theorems when there is at least one formula ¢ € F'm such that
) s . The collection of all formulas that are theorems is denoted by ThmS.
It is easy to see that when S has theorems, then the poset (A, S?) has a top
element, that we denote by 14, that is the image of any theorem of the logic by any
homomorphism from Fm to A. Moreover, when S has theorems, all S-filters of A
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are non-empty, since they contain the top element 14: for ' € Fig(A) an S-filter,
§ € ThmS a theorem, and h € Hom(Fm, A) a homomorphism, from @ kg § it
follows h(8) = 14 € F. Therefore C2(()) is non-empty.

The usual notions of order ideal and order filter might be defined for the poset
(A, <%). An order ideal (cf. definition in page 26) of A is a non-empty up-directed
down-set of (A, §§>. Dually, an order filter of A is a non-empty down-directed
up-set of (A, <2). We denote by Id(A) (resp. Fi(A)) the collection of all order
ideals (resp. order filters) of A. Notice that all principal down-sets (resp. up-sets)
are, in particular, order ideals (resp. order filters).

Concerning the closure operator C? defined on A, making use of what was
presented in §2.1, we get several notions of filter and ideal, as well as separation
lemmas and other important results.

Recall that by definition, the S-filters of A are the closed sets of C?. We say
that an S-filter is irreducible when it is an irreducible C?—closed, i.e. when it is a
meet-irreducible element of the lattice of S-filters Fis(A). We denote by Irrs(A)
the collection of all irreducible S-filters of A. Notice that Fis(A) satisfies condition
(E1) in page 22 on the poset (4, <#), i.e. all S-filters are up-sets with respect to
Sé‘. Therefore, the following instance of Lemma 2.1.1 holds for C?, when the logic
is finitary.

LEMMA 4.4.1. Let S be a finitary congruential logic, let A be an S-algebra and
let P € Fis(A) and I € Id(A) be such that PN 1T = 0. Then there is Q € Irrs(A)
such that P C Q and QNI = 1.

COROLLARY 4.4.2. Let S be a finitary congruential logic, let A be an S-algebra
and let P € Fig(A) and a € A be such that a ¢ P. Then there is Q € Irrg(A) such
that P C Q and a ¢ Q.

By the previous corollary, Irrs(A) is a closure base for C? provided S is a
finitary congruential logic. Remember that for all a € A, C4(a) = ta.

(Finitary) dually closed sets of C4 are called S-ideals by Gehrke, Jansana and
Palmigiano in [41]. For the sake of completeness, we refresh now the definition. A
subset I C A is an S-ideal of A provided for all I’ C¥ [ and alla € A

if () C&(b) € C&(a), thena € I.
bel’

We denote by Ids(A) the collection of all S-ideals of A. For any a € A, C#(a) = A
if and only if a is the bottom element of (A, <&). Moreover, () € Ids(A) if and
only if (4, <#) has no bottom element. This fact should be kept in mind, because
it will be repeatedly used later on.

Up to this point, our definitions of S-filter and S-ideal, as well as the notation
introduced, coincide with those of [41]. However, our approach differs in what
follows.

Strong dually closed sets of C? are called strong S-ideals (or sS-ideals). An
S-ideal I € Ids(A) is strong when for all I’ C¥ I and all B C¥ A:

if (1) C&(b) C C&(B), then C&(B) NI #9.
bel’
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We denote by Idss(A) the collection of all sS-ideals of A. This is a new notion
of ideal, that comes from a generalization of the notion of strong Frink ideals for
Hilbert algebras, first introduced by Celani and Jansana in [17].

LEMMA 4.4.3. For any congruential logic S and any S-algebra A:
Id(A) CTdss(A) C TIds(A).

PROOF. The second inclusion is immediate, so we just have to check the first
inclusion. Let us show first that any order ideal is an S-ideal. Let I € Id(A),
I' C¥ I and b € A be such that (\{C&(a) : a € I'} C C2(b). If I’ = 0, then
C? (b) = A, so b is the bottom element and then b € I because I is a non-empty
down-set. If I’ # (), then there is ¢ € I such that a <% ¢ for all @ € I, since I
is up-directed. Therefore ¢ € (N{C%(a) : a € I'} and consequently ¢ € C2(b), i.e.
b §§ c. Since I is a down-set, we get b € I. We conclude that any order ideal
is an S-ideal. Let us show now that I is strong. Let I’ C¥ I and B C¥ A be
such that (J{C&(a) : a € I'} C C&(B). If I' = (), then C4(B) = A and certainly
C2(B)N I # 0 since I is non-empty. If I’ # ), using that I is updirected, we get
c € I such that ¢ € N{C%(a) : a € I'} C CA(B). Therefore C&(B) N1 # 0. We
conclude that any order ideal is an sS-ideal. [

Optimal closed subsets of C# are called optimal S-filters. Hence an S-filter
P € Fis(A) is an optimal S-filter when there is an strong S-ideal I € Idss(A)
such that P is [-maximal and I is P-maximal, i.e. P is a maximal element of the
collection {P’ € Fig(A) : PN I =0} and I is a maximal element of the collection
{I' € Idgs(A) : PN I = (}}. We denote by Opg(A) the collection of optimal
S-filters of A.

REMARK 4.4.4. Notice that from the definition it follows that ) is an sS-ideal
if and only if A is an optimal S-filter.

This is a new notion of filter, that comes from a generalization of that of optimal
implicative filter for Hilbert algebras that was first introduced in [17]. The following
instance of Lemma 2.1.7 holds when the logic is finitary.

LEMMA 4.4.5. Let S be a finitary congruential logic, let A be an S-algebra and
let P € Fig(A) and I € Idss(A) be such that PN I = 0. Then there is @ € Opg(A)
such that P C Q and QNI = .

COROLLARY 4.4.6. Let S be a finitary congruential logic, let A be an S-algebra
and let P € Fig(A) and a € A be such that a ¢ P. Then there is Q € Opg(A)
such that P C Q and a ¢ Q.

By the previous corollary, Opg(A) is a closure base for C? provided S is a
finitary congruential logic. Up to this point, all the results in this section hold in
general for any finitary congruential logic with theorems, and they are just instances
of what was treated in Chapter 2. If we assume further properties of the logic, we
get more results. In particular, we are interested in the following class of logics:

DEFINITION 4.4.7. We say that a logic S is filter distributive when for all
algebras A (of the type of S), Fis(A) is a distributive lattice.
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The class of filter distributive logics, first considered by Czelakowski in [21] and
also studied in [22,63,73] and indirectly in [27,28,57] includes a lot of well-known
logics, for example, any axiomatic extension (expansion in the same language) of
the intuitionistic logic, or any logic satisfying either the (DDT) or (PDI) (more on
this topic in §5.5). When S is a filter distributive finitary congruential logic with
theorems, the following instances of lemma 2.2.2 and 2.2.1 hold.

THEOREM 4.4.8. Let S be a filter distributive finitary congruential logic with
theorems and let A be an S-algebra. For any P € Fig(A), P € Irrs(A) if and only
if P¢ e Id(A).

THEOREM 4.4.9. Let S be a filter distributive finitary congruential logic with
theorems and let A be an S-algebra. For any P € Fig(A), P € Opg(A) if and only
if P¢€Idss(A).

Precisely these theorems together with the relation between the different classes
of ideals, lead us to the following relation between the different classes of filters,
that holds under the assumptions of finitarity and filter distributivity.

LEMMA 4.4.10. For any filter distributive finitary congruential logic with theo-
rems S and any S-algebra A:

Irrs(A) C Opg(A) C Fis(A).
ProoOF. This follows from Lemma 4.4.3 and theorems 4.4.8 and 4.4.9. O

Lemmas 4.4.1 and 4.4.5 are crucial in Spectral-like and Priestley-style dualities
respectively, as it is shown in Chapter 5. Theorems 4.4.8 and 4.4.9 are crucial as
well, and might be refined making use of the following notion that generalizes the
concept of prime ideal of a lattice.

A subset X C A is a called S-prime when it is a proper subset (X # A) and
for all non-empty B C¥ A,

if C2(B)NX # 0, then BN X # 0.

In [17], within the setting of Hilbert algebras, the adjective associated with this
condition is prime, and it is usually addressed to ideals. In [41], prime is used in
relation to congruential logics in a slightly different way. As this can be messy, we
prefer to use S-prime. The following lemma points out that S-prime is somehow a
dual notion of that of S-filter, and it is used to prove two corollaries of theorems
4.4.8 and 4.4.9.

LEMMA 4.4.11. Let S be a finitary congruential logic, let A be an S-algebra
and let X C A. Then X € Fis(A) if and only if X¢ is S-prime.

PRrROOF. Let X € Fig(A). We show that X¢ is S-prime. As S has theorems,
X is non-empty, and so X¢ is proper. Let B C* A be non-empty and such that
C2(B)NnX¢ # 0. Suppose, towards a contradiction, that BN X¢ = (. Then
B C X, and therefore C2(B) C X, so C&(B) N X¢ = (), a contradiction.

For the converse, let X C A be such that X¢ is S-prime. If X¢ = (), then
X = A, that is trivially an S-filter. Suppose X¢ # (). We show that X is an
S-filter, by showing that C£(X) = X. Clearly X C C2(X), so in order to show
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the other inclusion, let @ € C&(X). By finitarity, there is X’ C% X such that
a € CA(X’). We can assume without loss of generality that X’ is non-empty.
Suppose, towards a contradiction that a ¢ X. Then from a € X¢ and the fact that
X¢ is an S-prime, we conclude X' N X¢ # 0, so X’ ¢ X, a contradiction. O

COROLLARY 4.4.12. Let S be a filter distributive finitary congruential logic with
theorems, let A be an S-algebra and let P C A. Then P € Opg(A) if and only if
P¢ €1dss(A) and P€ is an S-prime.

COROLLARY 4.4.13. Let S be a filter distributive finitary congruential logic with
theorems, let A be an S-algebra and let P C A. Then P € Irrg(A) if and only if
Pc € 1d(A) is and P is an S-prime.

Before concluding this section, we introduce one more concept that is used later
on. We consider finite families of elements that behave like a bottom element in
the following sense.

DEFINITION 4.4.14. Let S be a congruential logic and A and S-algebra. We
say that a non-empty finite set B C* A of incomparable elements with respect to
<2 is a bottom-family of A if C&(B) = A.

Notice that () € Idss(A) if and only if A has no bottom-family. This fact is
used repeatedly later on, especially in §4.5.

Summarizing, for any finitary congruential logic & (with theorems) we have
a version of Birkhoff’s Prime Filter Lemma for both irreducible and optimal S-
filters of A, and so Irrs(A) and Opg(A) are both closure bases for C#, for any
S-algebra A. Furthermore, when the logic is filter distributive, both collections are
complements of order ideals of (A, §§‘> and strong S-ideals of A respectively. We
use these facts to formulate the answer to the question we suggested in §4.1. We
carried out the first steps towards such answer. We have stated two representation
theorems of S-algebras that yield S-referential algebras with interesting properties.

Now we change slightly the point of view, and we focus on the poset (4, <2).
We already know that for any closure base F, the poset (A, §§> isomorphically
embeds in the poset (pr[A],C) (Theorem 4.3.5). Clearly it also embeds in the
Boolean algebra given by P(F) and in the distributive lattice given by PT(F).
We pursue, however, to embed such poset in a smaller distributive semilattice
with some nice properties. We do not intend this semilattice to run properly with
all additional operations of A, but to get a good correspondence between logical
filters and logical ideals of A and order filters and ideals of the semilattice. This
construction is important for the Priestley-style duality, as the dual space of A is
built from the dual Priestley space of such distributive semilattice.

4.5. The S-semilattice of A

We study now the semilattice of finitely generated S-filters of A. Some of the
results in this section are new, and others were first proven by Gehrke, Jansana
and Palmigiano in [41] (this will be remarked when appropriate).

This structure is called in [41] the S-semilattice of A, name that we adopt
here. Different approaches to this object can be followed. In [41], Gehrke et al.
choose to work with equivalence classes of generators of filters. In [17] Celani and
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Jansana follow a different approach, using the concept of separating family.* For
our purposes, we prefer to take the same approach as in [17], as then it is easier to
see how some of our results are generalizations of results there.

DEFINITION 4.5.1. A family 7 C Opg(A) of optimal S-filters of A is an optimal
S-base if for every S-filter F' € Fig(A) and every a ¢ F, there is P € F such that
FCPanda¢P.

Notice that for any S-algebra A, an optimal S-base is nothing but a closure
base for C? consisting in optimal S-filters of A. By Lemma 4.4.5, for any finitary
congruential logic Opg(A) is itself an optimal S-base, and by Lemma 4.4.1, Irrs(A)
is also an optimal S-base. From now on, let F be an optimal S-base.

From Theorem 4.3.5 and Lemma 4.3.6 we get that {¢x[P] : P € F} is an
optimal S-base for ¢ z[A]. Let us denote by Mrz(A) the closure of ¢r[A] under
non-empty finite intersections. Notice that F € Mz(A), since pz(14) = F.

DEFINITION 4.5.2. For any congruential logic & and any S-algebra A, the
algebra Mz (A) := (Mz(A),N, F) is called the S-semilattice of A.

From Corollary 4.3.8 it follows that for closure bases F and F’ for A, Mz(A)
and Mz (A) are isomorphic semilattices. By convenience, we dispense with the
subscript F of Mz(A), o7 and @x and we use instead M(A), ¢ and @.

By definition, M(A) is a meet semilattice with top element, and clearly, we
have that for any U € PT(F):

(E2) UeM(A) iff U= @(B) for some non-empty B C¥ A.

Hereinafter we will repeatedly use this property, so it is convenient to keep it in
mind. We should be careful when dealing with the bottom element, so let us state

the following technical lemma concerning the bottom element and bottom-families
of A:

LEMMA 4.5.3. Let S be a congruential logic, let A be an S-algebra and let F
be an optimal S-base:
(1) If A has a bottom element 0%, then M(A) has a bottom element OMA) =
©(02) =10. Soif ) ¢ Ids(A), then O ¢ Idr(M(A)).
(2) If A has a bottom-family B, then M(A) has a bottom element OM®A) =
P(B) =0. Soif 0 ¢ Idss(A), then 0 ¢ Idp(M(A)).
(3) A has a bottom-family if and only if O € M(A).

PrOOF. (1) If A has a bottom element 0, then () ¢ Ids(A). Therefore
A ¢ Opg(A) (Remark 4.4.4), so (0A) = () € M(A), which is clearly the bottom
element of M(A).

(2) If A has a bottom-family B, then @) ¢ Id,s(A). Therefore A ¢ Opg(A)
(by Remark 4.4.4 again), and there is no optimal S-filter containing B. So ¢(B) =
() € M(A), which is the bottom element of M(A).

(3) We show that if ) € M(A), then A has a bottom-family. Assume that
f € M(A), then by (E2), there is a non-empty B C¥ A such that ) = $(B). We

4Notice that they work with a particular S, namely the implicative fragment of intuitionistic
logic.
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can assume, without loss of generality, that B is a family of incomparable elements.
Moreover, C&(B) = A, since if there is a ¢ C4(B), then using that F is an optimal
S-base, there is P € F such that C4(B) C P and a ¢ P, so P € §(B) # 0.
Therefore B is a bottom-family of A. The converse follows from item (2). O

Let us consider first S-filters of A and meet filters of M(A). Recall that for
any U C M(A), we denote by [U) the meet filter of M(A) generated by U (see
definition in page 26). In particular, for any non-empty B C* A, [@(B)) denotes
the meet filter generated by @(B). As @(B) is an element of M(A), then [§(B)) is
the principal up-set Tyya) @(B).

LEMMA 4.5.4. Let S be a congruential logic, let A be an S-algebra and let F
be an optimal S-base. For any non-empty B, By, ..., B, C¥ A:

(csB)ccs®) i ([e(B)) < [B(B)).
i<n i<n
PROOF. Assume first that (J{C4(B;) : i < n} C C2(B) and let D C* A be
such that @(D) € ({[@(B:)) : i < n}, i.e. §(B;) C @(D) for all i < n. Then by
Corollary 4.3.8 for all i < n, D C C£(B;). Thus by hypothesis D C C4(B). and
by Corollary 4.3.8 again @¢(B) C (D), hence $(D) € [@(B)).
For the converse, we assume that ({[@(B;)) : ¢ < n} C [@(B)). So let
a € N{CA(B;) : i < n}. Then for each i < n, a € C2(B;), and so by Corollary
4.3.7 §(B;) C p(a). This implies that ¢(a) € N{[@(B;)) : i < n}, and so by
hypothesis p(a) € [@(B)), i.e. (B) C ¢(a). Then by Corollary 4.3.7 again we get
a € C&(B). O

From the previous lemma we already get the idea of what happens here. We
see that S-filters of A and meet filters of M(A) are closely related. This relation
becomes clearer when S is finitary, as it is shown in the following proposition, that
was first proven in Lemmas 4.5 and 4.8 in [41].

PROPOSITION 4.5.5. Let S be a finitary congruential logic, let A be an S-algebra
and let F be an optimal S-base:

(1) If F is an S-filter of A, then
(a) [@[F]) is a meet filter of M(A), and
(b) ¢~ [[[F])] = F.

(2) If F is a meet filter of M(A), then
(a) @~ 1[F] is an S-filter of A, and
(b) [FglA]) = F.

PRrROOF. (1) For F € Fis(A), by definition [p[F]) is a filter of M(A), and
clearly F' C ¢~ [[¢[F])]. Let us show the other inclusion. Let a € ¢! [[¢[F])],
i.e. p(a) € [p[F]). By definition of meet filter generated, there is B C¥ F such
that @(B) C ¢(a). Then by Corollary 4.3.7, a € C&(B) C F.

(2) Let now F € Fin(M(A)) and let a € C& (¢ ![F]). We show first that
a € ¢~ ![F]. By finitarity, there is B C% »~![F] such that a € C4(B). Then by
Corollary 4.3.7, p(B) C ¢(a). Moreover by F being a filter, since meet is given in
M(A) by intersection, from ¢[B] C F we get $(B) € F, and then as F' is a up-set,
¢(a) € F. Hence a € ¢~ 1[F], as required.
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Notice that [¢[p~t[F]]) = [F N¢[A]). Clearly [F N ¢[A]) C F. For the other
inclusion we use (E2), so let a non-empty B C* A be such that $(B) € F. Then
for all b € B, p(b) € FN|A], thus ({p(b) : b € B} = 5(B) € [F N pl[A]). O

Previous proposition shows that the maps [p[]) and ¢~! give us, for any
finitary congruential logic, an order isomorphism between S-filters of A and meet
filters of M(A):

(E3) (Fis(A), ©) = (Fix(M(A)), ©)

Let us move now to consider S-ideals of A and F-ideals of M(A). Recall that
for any U C M(A), we denote by (U] the Frink ideal of M(A) generated by U
(see definition in page 28). In particular, for any B C* A, (p(B)] denotes the
Frink ideal generated by @(B). As ¢(B) is an element of M(A), (p(B)] is the
principal down-set |nia) @(B). Recall also that an F-ideal I € Idp(M(A)) is
A-prime prov1ded ?(B) E I or p(B’) € I whenever p(B)N@(B’) € I. Notice that
for any B C¥ A, @(B) is itself a meet of elements of M(A), so if I is a A-prime
F-ideal such that ©(B) € I, then there is b € B such that ¢(b) € I.

Next proposition is new, and it shows that when S is finitary, there is also
a close relation between sS-ideals of A and F-ideals of M(A). By convenience,
throughout the next proof, we use JU instead of |y 4\, for any U C M(A).

PROPOSITION 4.5.6. Let S be a finitary congruential logic, let A be an S-algebra
and let F be an optimal S-base:

(1) For any I sS-ideal of A, (plI]] = Jamaypll]-

(2) If I is an sS-ideal of A, then
(a) (@[] is an F-ideal of M(A), and
() ol = 1.

(3) If I is an S-prime sS-ideal of A, then {p[I]] is a A-prime F-ideal of
M(A).

(4) If I is a A-prime F-ideal of M(A), then
(a) @~ 1[I] is an S-prime sS-ideal of A, and
(b) {ple' 1] = 1.

PrOOF. (1) Let I € Idss(A). If I = () then there is nothing to prove, so assume
I # . As F-ideals are down-sets, then clearly J¢[I] C {p[I]], so it is enough to show
that |p[I] is an F-ideal. By (E2), let By,..., B,,C C“ A be non-empty and such
that @(B;) € Jy[I] for all i < n, and assume that {[@(B;)) : i < n} C [B(B)).
We show that p(B) € Lp[l]. If n = 0, then [p(B)) = M(A), and so @(B) is the
bottom element of M(A), and since I is non-empty, then there is a € I and clearly
?(B) C ¢(a), so p(B) € lp[I]. If n # 0, then by assumption, for each ¢ < n there
is a; € I such that @(B;) C ¢(a;) and then clearly {[x(a:)) : i < n} C [@(B)).
Now using Lemma 4.5.4, {C%&(a;) : i < n} C C&(B), and since a; € I for each
i <n and [ is an sS-ideal, then C4(B) N1 # (. Then for ¢ € C4(B) NI, using
Corollary 4.3.7 (B) C ¢(c) € ¢[I], and then $(B) € Jp[I], as required.

(2) For I € Id,s(A), by definition {p[I]] is an F-ideal of M(A), and clearly
I C o' [{@[I]]]. Let us show the other inclusion. If I = ) then there is nothing
to prove, so assume I # 0. Let a € o= [{@[I]]], i.e. ¢(a) € (¢[I]]. By definition
of F-ideal generated, there is I’ C¥ I such that ({[¢(b)) : b € I'} C [p(a)). As
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I # 0, we can assume, without loss of generality, that I’ # (. Then by Lemma
4.5.4, N{C&(b) : b € I'} C CA(a). And since I is an S-ideal, we obtain a € I, as
required.

(3) Let I € Idss(A) be S-prime, and using (E2) let By, By C¥ A be non-empty
and such that $(B1) N @(Ba) € {¢[I]]. We use that p(B1) N P(B2) = ¢(B1 U By)
and {p[I]] = le[I]. Then from $(By U By) € lp[l], we obtain that there is ¢ € [
such that $(B; U Bz) C ¢(c). Then by Corollary 4.3.7, ¢ € C4(B; U By), so
C2(B; U By) NI # (). Moreover, since I is S-prime, we get (B U Bz) NI # 0,
so By NI #®or BoNI # (. This implies, by Corollary 4.3.7 again that either
@(By) € lo[I] or p(Bs2) € Lp[I]. Hence (p[I]] is A-prime.

(4) Let now I € Idp(M(A)) be A-prime. First we show that ¢~![I] is an
S-ideal. Let I’ C¥ ¢~ 1[I] and a € A be such that N{C&(b) : b € I'} C CA(a). If
I’ =, then a is the bottom element of A, so by Lemma 4.5.3, ¢(a) is the bottom
element of M(A), and any F-ideal of M(A) contains the bottom element, so p(a) € I
and then a € ¢~ ![I]. If I’ # (), then by Lemma 4.5.4, N{[¢(b)) : b € I'} C [p(a)),
and by I being an F-ideal, we get ¢(a) € I, so a € ¢~ 1[I].

Now we show that the S-ideal p~1[I] is strong. Let I’ C* ¢~ 1[I] and B C¥ A
be such that N{C&(b) : b € I'} C C2(B). Since CA(0) = C4(1) = {1}, we can
assume, without loss of generality, that B # (). We show that C2&(B) N~ 1[I] # 0.
If I’ = (), then there is B’ C B such that B’ is a bottom-family for A, so p(B’) is a
bottom element of M(A), and it belongs to all its F-ideals, in particular p(B’) € I.
Now since I is A-prime, there is b € B’ such that ¢(b) € I, so b € ¢ 1[I]. As
b € B, we conclude C&(B) N Y [I] # 0. If I’ # (), then by Lemma 4.5.4, we get
M{le®)) :beI'} C[@(B)). As I is an F-ideal and by assumption ¢(b) € I for all
b € I', we obtain §(B) € I. As before, primeness of I implies C4(B) N~ 1[I] # 0.

It remains to show that ¢~![I] is a S-prime. As I is proper, ¢(1) ¢ I, so
¢~1[I] is proper. Let B C* A be non-empty and such that C&(B) N ¢~1[I] # 0,
and let c € C&(B)N ¢ [I]. As c € C&(B), then by Corollary 4.3.7 $(B) C ¢(c).
Moreover, since ¢(c) € I, and I is a down-set, we get @(B) € I. Now, as [ is
A-prime, there is b € B such that ¢(b) € I, so BN ¢ [I] # 0, as required.

Finally, we show that (¢[p~1[I]]] = I. Clearly the inclusion from left to right
holds, so we just have to show the other inclusion. By (E2) let B C* A be non-
empty and such that $(B) € I. Then, as I is A-prime, there is b € B, such that
o(b) € I. So p(b) € plp~t[I]] and as $(B) C (b) and F-ideals are down-sets, then
3(B) € (ole [T .

Previous proposition shows that the maps (p[]] and ¢~! give us, for any
finitary congruential logic, an order isomorphism between S-prime sS-ideals of A
and A-prime F-ideals of M(A):

(E4) (S-prime Idss(A), C) = (prime Idp(M(A)), C)

A different correspondence between certain class of S-ideals of A and certain
class of F-ideals of M(A) was studied in [41]. The authors introduce the following
notion of ideal of M(A).

DEFINITION 4.5.7. An order ideal I of M(A) is an A-ideal if for every $(B) € I
there exists a € A such that (B) C p(a) € I.
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Notice that any A-prime order ideal of M(A) is an A-ideal. In Propositions
4.10 and 4.11 in [41] it is proven the following:

PROPOSITION 4.5.8. Let S be a finitary congruential logic, let A be an S-algebra
and let F be an optimal S-base:

(1) If I is a non-empty up-directed S-ideal of A, then {p[I]] is an A-ideal of
M(A).

(2) If I is an A-ideal of M(A), then ¢~ [I] is a non-empty up-directed S-ideal
of A.

Notice that up-directed S-ideals are strong: let I € Ids(A) be up-directed,
I' C¥ I and B C¥ A such that N{Cs(b) : b € I'} C Cs(B). By I up-directed,
there is ¢ € I such that b <2 ¢ for all b € I’. Therefore we obtain that C4(c) C
N{Cs(b) : b€ I'} C CH(B), and then c € C2(B) NI # 0, as required.

Let us denote by yqIldss(A) the collection of all non-empty up-directed (strong)
S-ideals of A. As a consequence of the previous proposition, the same maps that
gave us (E4), provide us with an order isomorphism (stated in Proposition 4.14
in [41]) between non-empty up-directed strong S-ideals of A and A-ideals of M(A):

(E5) (naldss(A), ) = ( A-ideal Id(M(A)), C)

In [41] the authors are mainly interested in a restriction of (E5), where on the
right-hand-side we have A-prime order ideals of M(A). Using our terminology,’
from Proposition 4.16 in [41] we get an order isomorphism between non-empty up-
directed S-prime sS-ideals of A and A-prime order ideals of M(A), given by the
same maps as in (E4):

(E6) (S-prime yqldss(A), C) = (prime Id(M(A)), C)

Notice that (E6) is also a restriction of (E4). Moreover, this approach makes
it clear that having order ideals on the right-hand-side corresponds with having
non-empty up-directed subsets on the left-hand-side. In §4.6 we analyze further
consequences of these facts.

Up to this point, all results in the present section are valid in general for any
finitary congruential logic (with theorems). If we assume besides, that S is filter
distributive, then we get further results. Notice that next corollaries and lemmas
use the assumption of filter-distributivity of the logic indirectly, when appealing to
Theorem 4.4.9.

COROLLARY 4.5.9. Let S be a filter distributive finitary congruential logic with
theorems, let A be an S-algebra and let F be an optimal S-base. Then M(A) is a
distributive semilattice.

PROOF. By assumption, the lattice Fig(A) of S-filters of A is distributive,
and by Proposition 4.5.5, this lattice is isomorphic to Fir(M(A)). Then we are
done, since a semilattice is distributive whenever the lattice of its meet filters is
distributive. O

5The authors name prime S-ideals what we call ‘non-empty up-directed S-prime sS-ideals’.
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LEMMA 4.5.10. Let S be a filter distributive finitary congruential logic with
theorems, let A be an S-algebra and let F be an optimal S-base. For any non-
empty B, By, ...,B, C¥ A:

(csB)ccs®) if @B)cam)
i<n i<n
PROOF. Assume ({C4(B;) : i < n} C C4(B) and let G € $(B). Then
we have B C @, and so C?(B) C G. Suppose, towards a contradiction, that
G ¢ U{@(B;) : i < n}. Then for each i < n there is b; € B; such that b, ¢ G.
Notice that ({C&(b;) : i < n} C N{CA(B;) : i < n}, thus from the assumption we
get N{C&(b;) :i <n} C CA(B). As G is an optimal S-fiter, by Theorem 4.4.9 we
know that G° is an sS-ideal, and then we obtain C4(B) N G* # 0, a contradiction.
For the converse, assume $(B) C |,.,, #(B;) and let a € N{C&(B;) : i < n}.
Then @(B;) C ¢(a) for all i < n. Using the assumption, we obtain G(B) C
U,<,, @(Bi) € ¢(a), and then by Corollary 4.3.7, we obtain a € C2(B). O

COROLLARY 4.5.11. Let S be a filter distributive finitary congruential logic
with theorems, let A be an S-algebra and let F be an optimal S-base. For any
a,ag,...,an € A:

ﬂ C3(a;) CC5(a) iff ¢(a) C U e(a;).
i<n i<n
COROLLARY 4.5.12. Let S be a filter distributive finitary congruential logic with
theorems, let A be an S-algebra and let F and F' be two optimal S-bases. For any
non-empty B, By, ..., B, C“ A:

pr(B) C | J@x(Bi) iff ¢7(B) < | @x(B).
i<n i<n
PRrROPOSITION 4.5.13. Let S be a filter distributive finitary congruential logic
with theorems, let A be an S-algebra and let F be an optimal S-base:

(1) If F is an irreducible S-filter of A, then [p[F]) is an irreducible meet
filter of M(A).

(2) If F is an optimal S-filter of A, then [¢[F]) is an optimal meet filter of
M(A).

(3) If F is an optimal meet filter of M(A), then ¢~1[F)] is an optimal S-filter
of A.

PRrOOF. (1) Let F' € Fig(A) be irreducible. We show that [[F]) is irredu-
cible. As we already know that [p[F]) is a meet filter of M(A), by Theorem 2.3.6
we just need to show that [¢[F]) is up-directed. We use (E2), so let By, By C¥ A
be non-empty and such that @(By), p(Bs2) ¢ [¢[F]). We show that there is B C* A
non-empty and such that @(B;), 9(B2) C @(B) ¢ [¢[F]). By assumption, there
are by € By, and by € Bs such that (b)), p(b2) ¢ [p[F]). Then by,bs ¢ F,
so C2(b1),C4(b2) € F. Now as F is irreducible, C2(b;) N C4(b2) € F. Let
¢ € (CA(b) N CA(B2)) \ F. Then p(by), ¢(bs) C 9(c), 50 F(B1), 3(Ba) C () and
moreover ¢(c) ¢ [¢[F]).

(2) Let F € Fis(A) be optimal. Then by Corollary 4.4.12 F is an S-prime sS-
ideal of A, and so by Proposition 4.5.6 {¢[F°]] is a A-prime F-ideal of M(A), and
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moreover by Corollary 2.3.10 {(¢[F€]] is an optimal meet filter of M(A). Therefore,
it is enough to show that [p[F]) = (p[F°]] .

First we show the inclusion from right to left. We use (E2), so let B C* A be
non-empty and such that @(B) € (p[F€]]°. Then for all b € B, ¢(b) ¢ (¢[F°]].
Thus by Proposition 4.5.6, we get that b & ¢ '[(p[F]]] = F¢, and therefore
©(b) € p[F] for all b € B. Thus ({x(b) : b € B} = §(B) € [¢[F]).

For the other inclusion, we use (E2) so let B C* A be non-empty and such that
P(B) € [¢[F]). Then either §(B) = @(1) or there is a non-empty B’ C* F such
that @(B’) C @(B). In the first case, as 1 € F # (), then clearly §(1) ¢ (p[F€]], and
we are done, so assume that there is non-empty B’ C¥ F such that @(B’) C @(B).
By Lemma 4.5.10, C#(B) C C&(B’) C F, so B C F. Therefore for all b € B,
b ¢ F¢ = o Y(p[F]], using Proposition 4.5.6 again. Hence @(b) ¢ (@[F€]]
for all b € B. Moreover, as by assumption {p[F°]|] is a A-prime F-ideal, then
B(B) ¢ (4L i.e. 3(B) € {¢[FII", as required.

(3) Let F € Op,(M(A)) be optimal. Then by Corollary 2.3.10, F° is a A-prime
F-ideal of M(A), and so by Proposition 4.5.6, ¢~![F¢] is an S-prime sS-ideal of
A, and moreover by Corollary 4.4.12, ¢~ 1[F€]¢ is an optimal S-filter of A. Notice
that (o= 1[F¢])¢ = ¢ ![F]. Therefore ¢ ~1[F] is an optimal S-filter of A. O

Previous proposition shows that for any filter distributive finitary congruential
logic with theorems, (E3) restricts to an order isomorphism between optimal S-
filters of A and optimal meet filters of M(A):

(E7) (Ops(A), C) = (Op,(M(A)), ©)

Summarizing, what we have seen throughout this chapter is that for any fil-
ter distributive finitary congruential logic with theorems S, optimal S-filters and
irreducible S-filters are two optimal S-bases. This gives us an S-algebra of subsets
©[A] isomorphic to A, that is a reduced S-referential algebra. And it allows us to
embed (A, <£) in a distributive semilattice M(A) with nice properties. We exploit
these two facts in the next chapter, where Spectral-like and Priestley-style dualities
for S-algebras are studied.

4.6. Canonical extensions and A;-completions for filter distributive
finitary congruential logics with theorems

In this section we just intend to take a look at canonical extensions and
Aq-completions for filter distributive finitary congruential logics with theorems.
We recall that Aq-completion is an order-theoretic tool which allows for modular
development of representation theory of classes of ordered algebras. When the class
of algebras under consideration is not lattice-based, there may be a wide range of
Ai-completions on hand, being canonical extensions one of such Aj-completions.
Gehrke, Jansana and Palmigiano define and study in detail in [42] A;-completions
for posets, that are defined as those completions for which, simultaneously, each
element is obtainable as a join of meets of elements of the original poset and as a
meet of joins of elements of the original poset. For any poset P, we denote by P°
the canonical extension of P, in the sense defined by Dunn, Gehrke and Palmigiano
in [26].
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Following a development parallel and complementary to the progress of duality
theory, canonical extensions have been applied to several classes of algebras that
are the algebraic counterpart of certain non-classical logics. It is a natural question
accordingly to explore whether a logic based notion of canonical extensions can be
built within the field of AAL. This is precisely the motivation of the work in [41],
whose main results we review in §4.6.1. Inasmuch as in Chapter 5 we introduce new
tools for the study of duality theory for non-classical logics within the perspective
of AAL, it is natural to ask whether such tools may be used to enhance the results
of [41].

The remaining subsections are organized as follows: first we refresh the def-
inition of canonical extension for finitary congruential logics with theorems and
satisfying (uDDT) proposed in [41], and we just outline how it could be extended
for any filter distributive finitary congruential logic with theorems. After that we
use the notions we introduced previously in this Chapter to study a different A;-
completion for filter distributive finitary congruential logics with theorems, and we
show that this Aj-completion has most of the nice properties that the canonical
extension proposed in [41] has.

4.6.1. S-canonical extensions. Let S be a finitary congruential logic with
theorems and let A be an S-algebra. Remember that we denote by M(A) the
S-semilattice of A (cf. definition in page 61), that in [41] is denoted by Lg(A).

The S-canonical extension of A (Definition 4.17 in [41]) is defined as the
(Fipn(M(A)),Id(M(A)))-completion of M(A), and it is denoted by AS. Notice
that if we look at M(A) as a poset, then A% is precisely what in [26] Dunn et al.
called the canonical extension of M(A), that we denote by M(A)?. Accordingly,
the S-canonical extension of A is a complete lattice in which M(A) embeds satis-
fying the usual properties of denseness and compactness. Moreover, it follows from
the embedding of (4, <£) into M(A), that (A, <£) lives into AS. But within this
abstract approach, the operations in A are not taken into account.

Once the S-canonical extension of A is defined in such a general way, the proof
strategy by Gehrke, Jansana and Palmigiano in [41] goes as follows: first they prove
(Theorem 4.20 in [41]) that when AS satisfies that for all B U {c¢} C AS:

((V, \)-distributive law) cV(AB) = )\ (cvb),

beB
then AS is (up to isomorphism) the (Fis(A), yaldss(A))-completion of A. After
that, they show (Theorem 5.6 in [41]) that when S satisfies (uDDT), AS satisfies
the (v, \)-distributive law. They conclude that whenever S satisfies (uDDT),

(Can) AS is the (Fig(A), waldss(A))-completion of A.

Finally, they apply these results to the logic H, the implicative fragment of in-
tuitionistic logic, whose algebraic semantics is given by Hilbert algebras (we study
this in detail in §6.2). They use the following fact (that was extensively studied
by Celani and Jansana in [17]): for any Hilbert algebra A = (A, —, 1), an implica-
tion —’ may be defined in M(A) such that (M(A), —', A, 1) is the free implicative
semilattice extension of A. Using this fact, the m-extension of — to A* may be
defined as the 7-extension of —’ to M(A)®. Let us denote such operation by —7.
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It follows that (A%, =7 A,V,0,1) is a complete Heyting algebra, and in particular
(AM =7 1) is a Hilbert algebra. This is, of course, a desirable property of a logic-
based notion of canonical extension, and it fails dramatically for the order-theoretic
notion of canonical extension, when applied to Hilbert algebras as poset expansions,
as Example B.16 in Appendix B shows.

Notice that the S-canonical extension of A is based on the definition of the
canonical extension of meet semilattices given in [26]. It would be certainly desir-
able, that the canonical extension of a meet semilattice is completely distributive
provided the semilattice is distributive.® If that would be true, then we could ex-
tend (Can) to any filter distributive finitary congruential logic with theorems. This
would follow since filter distributivity of the logic S implies, by Corollary 4.5.9,
that M(A) is a distributive semilattice. It would be very interesting to investigate
whether distributivity of semilattices lifts to complete distributivity of their canon-
ical extensions, but we do not go further into this topic, because it escapes the
purposes of this section.

4.6.2. sS-extensions. The main goal of [41] was, as stated in the introduc-
tion, to explore whether canonical extensions can be developed as a logical construct
within AAL rather that just as a purely order-theoretical construct. Nevertheless,
the notion of S-canonical extension that is introduced in [41] falls mid-way between
being logic-based and order-based, since, as we have already seen, it involves the
collection of non-empty up-directed S-ideals.

We pursue to study now, making use of the new notions introduced in this
chapter, a Aj-completion that may seem more logic-based. The proof strategy
that we follow is similar to that employed in [41]. From now on, let S be a finitary
congruential logic with theorems, and let A be an S-algebra.

We are interested in the (Fin(M(A)),Idp(M(A)))-completion of M(A), that
we call F-extension of M(A), and that we denote by M(A)¥. Recall that filter
distributivity of the logic S implies, by Corollary 4.5.9, that M(A) is a distributive
semilattice. Then by results in Appendix B, the F-extension of M(A) is an algebraic
lattice, and in particular, it is completely distributive.

Now we aim to prove that the F-extension M(A)¥ of M(A) is (up to isomor-
phism) the (Fis(A),Idss(A))-completion of A. Notice that we have:

(A, <2) 5 M(A) 5 M(A)T,

where ¢ is the embedding of (4, <#) into its S-semilattice, defined in §4.5, and
k is the embedding of M(A) into its F-extension, defined in Appendix B. Let us
define g as the composition of these two maps:

gi=(kop): A — M(A)F.

6From results by Gehrke and Priestley in [44] and Gehrke and Vosmaer in [45] it follows
that the canonical extension of any meet semilattice with top element M is the dcpo-completion
of (i.e. depo freely generated by) (Fin(M), D, <), where < is a binary relation between meet
filters of M and up-directed collections of meet filters of M, given by F' < U if and only if for
all I € IdM), if F"'NT = 0 for all F/ € U, then F NI = (. Moreover, if M is a distributive
semilattice, then Fin(M) is a distributive lattice. By properties of dcpo-completions we know
that the distributivity equation should lift through these completions, and hence the canonical
extension of any distributive semilattice is a distributive (complete) lattice.
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Similarly to what it was done in Section 4.4 in [41], the next lemma states some facts
concerning the map g, that we need in the following theorem. Notice that all infinite
meet and joins in the next proofs are referred to the complete lattice M(A)¥. And
recall that M (M(A)) is the collection of all completely meet-irreducible elements
of the semilattice M(A) (see definition in page 13).

LEMMA 4.6.1. Let S be a filter distributive finitary congruential logic with
theorems, let A be an S-algebra and let g and k be as defined above. Then

(1) For all F € Fis(A), Ag[F] = N\k[[[F1)]-

(2) For all I € ldss(A), V gll] =V El[lelI]].

(3) ForallI € Idp(M(A)), I is A-prime if and only if \/ k[I] € M>(M(A)F).

(4) For all c € M>®(M(A)Y), there is 1. A-prime F-ideal of M(A) such that
c =\ k[I].

PROOF. Item (1) was proven in Lemma 4.18 (1) in [42]. The proof of (3) is
similar to that of Proposition 4.19 (1) in [42], and (4) is a corollary of (3). It only
remains to prove (2): on the one hand, from ¢[I] C |p[I], we get k[p[I]] C k[Lp[I]],
and so \/ g[I] =V k[p[I]] <V k[{¢[I]]. On the other hand, for any X € |¢[I], there
is some ax € I such that X < ¢(ax), and so k(X) < k(¢(ax)). This implies that
V ElT]] = VIR(X) £ X € L[]} < V{k(p(a)) : a € I} = V/ g[I], as required. O

THEOREM 4.6.2. Let S be a filter distributive finitary congruential logic with
theorems, let A be an S-algebra. The F-completion M(A)F of M(A), is (up to
isomorphism) the (Fis(A),Idss(A))-completion of A.

PrROOF. We show that g gives us the required dense and compact embedding.
CLAIM 4.6.3. M(A)F is (Fig(A),Idss(A))-compact.

PROOF OF THE CLAIM. Let F' € Fig(A) and let I € Idss(A) be such that
NglF] < VglI]. By Lemma 4.6.1, Ak[[¢[F])] < VE[lp[l]]. By Proposition
4.5.6 Jp[I] is an F-ideal of M(A). By Proposition 4.5.5 [¢[F]) is a meet filter
of M(A). Then by (Fir(M(A)),Idr(M(A)))-compactness of M(A)¥ we get that
LoIIN[p[F]) # 0. Then by definition of down-set generated and since meet filters
are up-set, we conclude that there is a € I such that p(a) € [¢[F]). Then from
Proposition 4.5.5 again, a € ¢ [p[F])] = F, so F NI # (), as required. O

CLAIM 4.6.4. M(A)F is (Fig(A),Idss(A))-dense.

PROOF OF THE CLAIM. First we show that the collection of Fis(A)-filter el-
ements of M(A)¥ is join-dense in M(A)¥. Recall that these are the elements of
the form A g[F] for some F' € Fig(A). By (Fin(M(A)),Idr(M(A)))-denseness we
have that for each z € M(A)F there is X C Fis(M(A)) a collection of meet fil-
ters of M(A) such that z = \/{AK[F] : F € X}. Notice that for any F' € X,
by Lemma 4.6.1 and Proposition 4.5.5, ¢~![F] is an S-filter of A and Ak[F] =
NElple™ [F]]] = Agle™ ' [F]], so we are done.

Finally we show that the collection of Id,s(A)-ideal elements of M(A) is
meet-dense in M(A)¥. Recall that these are the elements of the form \/ g[I] for
some I € Id,s(A). Recall also that M(A)¥ is algebraic, so its completely meet
irreducible elements are completely meet prime, and they meet-generate M(A)F".
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Therefore, for all z € M(A)F, there is X C M (M(A)F) a collection of completely
meet irreducible elements of M(A)f such that 2 = /\ X. Then by Lemma 4.6.1,
z=N{VE[I]: I € Y} for some Y a collection of A-prime F-ideals of M(A). Notice
that for any I € Y, by Lemma 4.6.1 and Proposition 4.5.6, ¢~1[I] is an strong
S-ideal of A and \/ k[I] = \/ k[Lole ' [I]]] = V glp[I]], so we are done. O

Notice that we have shown that M(A)% is a (Fis(A),Idss(A))-compact and
(Fis(A),Idss(A))-dense extension of A, we conclude that M(A)F is, up to isomor-
phism, the (Fis(A),Idss(A))-completion of A. O

Previous theorem justifies the introduction of the following definition:

DEFINITION 4.6.5. The sS-extension of A is the (Fis(A), Idss(A))-completion
of A, and it is denoted by A*S.

We showed in Appendix B that the canonical extension and the F-extension
of a distributive meet semilattice may not be isomorphic. This implies that the
S-canonical extension and the sS-extension of an S-algebra may not be isomorphic
either. It would be very interesting to investigate under which conditions on &
might the S-canonical extension and the sS-extension of any S-algebra coincide,
but we leave this as future work. What we do know from ,qIdss(A) C Id;s(A) is
that the S-canonical extension of A is always embeddable in the sS-extension of
A. The main difference between both concepts is that the sS-extension is defined
for a wider class of logics, namely filter distributive finitary congruential logics with
theorems, that, as we know, include finitary congruential logics with theorems and
satisfying (uDDT).

We conclude this section by applying these results to the implicative fragment of
intuitionistic logic H. Recall that for any Hilbert algebra A and implication —’ may
be defined in M(A) such that (M(A), —', A, 1) is an implicative semilattice in which
A embeds. From results in Appendix B we know that (M (A)F, (=)™, A,V,0,1)
is a complete Heyting algebra, where (—')™ is the m-extension of —' to M(A)F.
Therefore, if we define the m-extension of — to A%™ as the m-extension of —' to
M(A)¥, and we denote it simply by —7, it follows that (A" —™ A V,0,1) is a
complete Heyting algebra, and in particular (A7, —7, 1) is a Hilbert algebra.

In summary, the notions that we have introduced throughout this section, such
as the notion of sS-ideal, can be used to define a logic-based Aj-completion of
S-algebras that has at least the same nice properties as the S-canonical extension
of S-algebras that was introduced in [41]. We do not go further into this topic, since
we are mainly interested in using such notions for developing an abstract duality
theory for S-algebras and homomorphisms between them. This is precisely what
we do in the next chapter.






CHAPTER 5

Duality Theory for Filter Distributive
Congruential Logics

In Chapter 4 we introduced the toolkit we need to develop Spectral-like and
a Priestley-style abstract dualities for any filter distributive finitary congruential
logic with theorems. In the present chapter we expose systematically in parallel
these two dualities for AlgS, with S a fixed but arbitrary filter distributive finitary
congruential logic with theorems.

In §5.1 we prove representation theorems for S-algebras and we introduce the
definitions of S-Spectral spaces and S-Priestley spaces. In §5.2 we consider mor-
phisms, and we introduce the definitions of S-Spectral morphism and S-Priestley
morphism. In §5.3 they are defined the functors and the natural transformations
involved in the dualities. In §5.4 we compare our work with that of Jansana and
Palmigiano in [56].

Notice that we do not fix any specific language, so our approach is necessarily
abstract in the sense that the dual categories will necessarily involve a similar notion
to that of S-algebra and homomorphism between S-algebras. This constraint can
be avoided in many cases, when a concrete language is under consideration. We
analyze in §5.5 different logical properties that a logic may have, and we study
how each of them corresponds with a dual property of the dual categories. Thanks
to this analysis, the connection with the results in the literature is evidenced, as
discussed in Chapter 6.

5.1. Duality for objects

In the present section, we use the results from Chapter 4 to present two cor-
respondences between S-algebras and certain classes of Spectral-like and Priestley-
style spaces that we introduce later on.

Recall that for any finitary congruential logic with theorems S, and for any
S-algebra A, the collection of irreducible S-filters of A and the collection of op-
timal S-filters of A are both optimal S-bases. Therefore, by our work in §4.3 we
know that the maps ¢r.sa) and ¢op,(a) have some interesting properties. For
convenience, let us denote the map ¢y 5(a) by ¥a and similarly let us denote the
map ¢Yop(a) by Ja, so we have:

Va1 A— Pl(Iirs(A)) Ja : A — PT(Opg(A))
ar— {P elirs(A):a € P} a+— {P € Opg(A):a € P}
Recall that for any B C A, by 15 (B) we denote the set (J{a (b) : b € B}, and sim-
ilarly for 9. When the context is clear, we drop the subscripts of ¥a, YA, 9a, VA

73



74 CHAPTER 5. DUALITY THEORY FOR FILTER DISTRIBUTIVE CONGRUENTIAL LOGICS

Let us collect in the following two theorems what we obtained in theorems 4.3.5
and 4.3.9 and Corollary 4.3.7.

THEOREM 5.1.1. Let S be a finitary congruential logic with theorems and let
A be an S-algebra. The map ¥a is an isomorphism between A and Ya[A]. The
structure (Irrs (A), Ya[Al]) is a reduced S-referential algebra whose associated order
is given by the inclusion relation. Moreover, for any {a} UB C A,

aeCR(B) iff U(B)Cv(a) iff v(a)e CoM(w[B]).

THEOREM 5.1.2. Let S be a finitary congruential logic with theorems and let
A be an S-algebra. The map V4 is an isomorphism between A and 9a[A]. The
structure (Opg(A), a[A]) is a reduced S-referential algebra whose associated order
is given by the inclusion relation. Moreover, for any {a} UB C A,

acCAB) iff I(B)CIa) iff 9a)ec CoMW[BI]).

Notice that these representation theorems hold for any finitary congruential
logic with theorems, not necessarily a filter distributive one. However, for getting
a full duality between objects, we should assume additionally filter-distributivity
of the logic. In the following subsections, we discuss first the Spectral-like dual
objects of S-algebras, and then the Priestley-style dual objects of S-algebras. In
both cases we prove the facts that motivate the definition of the dual objects before
introducing such definition. For the Priestley-style duality, some results from §4.5
about the S-semilattice of A are essential.

5.1.1. Spectral-like dual objects. We assume that S is a filter distributive
finitary congruential logic with theorems and A an S-algebra. We define on Irrg(A)
a topology 7., , having as basis the collection:

ka = {¢(a):a € A}.
Next proposition shows that this topology is well defined.

PROPOSITION 5.1.3. Let a,b € A, P € Irrs(A) and B C A non-empty. Then:
(1) Irrs(A) = U{¢(a)® : a € A}.
(2) If P € ¥(a)° Np(b)°, then there is an element ¢ € A such that P € 1(c)°
and 1(c)® € ¥(a)® N (b)°.
(3) If Y(a)¢ = J{w(b)c : b € B}, then there is a subset B' C¥ B such that
P(a)® =U{y(b):be B'}.

PrOOF. (1) By definition |J{¢(a)® : a € A} C Irrs(A). Moreover, for any
P € Trrs(A), since P is proper, there is an element ap € A such that ap ¢ P.
Thus P € ¢(ap)® C U{¢(a)°:a € A}.

(2) Let P € ¢(a)°Ne(b), i.e. a,b ¢ P. By Theorem 4.4.8, P¢ is a poset ideal
of (A,<%), so there is ¢ € A such that a,b <& ¢ ¢ P. Then we have P € 1(c)°
and moreover, since P is an up-set, a,b ¢ P’ for all P’ € Irrg(A) such that ¢ ¢ P’.
Hence P € 9(c)® C(a)° Np(b)°.

(3) Assume ¢(a)® = J{y(b)°: b € B}, i.e. Y(a) = $(B). Then from Theorem
5.1.1, C2(a) = C£(B), and in particular a € C#(B). Then by finitarity, there is
B’ C¥ B such that a € C2(B’). But then C4(a) C C4(B') C C4(B) = C4(a),
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and from Theorem 5.1.1 again, we get 1(a) = (B’), i.e. 1(a)® = U{(b)° : b €
B'}, as required. O

Item (3) of the previous proposition states that xa is a basis of open-compacts
for the topology 7.,. Moreover, the space (Irrs(A), 7., ) is To: if P # @Q we can
assume, without loss of generality, that there is @ € P\ @, and so P ¢ 9 (a)¢ and
Q € 9(a)°. Hence the space separates points. Therefore, the specialization order
of (Irrs(A), 7, ) is a partial order, whose dual is denoted by <p4(a), or simply by
< when no confusion is possible. Moreover, all open (resp. closed) subsets of the
space are down-sets (resp. up—sets) with respect to <hrs(A)-

PROPOSITION 5.1.4. For any Fy, F5 € Fig(A):
FICF iff $(F) Co(F).

PRrROOF. Clearly from F; C Fj it follows that '{/;(FQ) C @(Fl) For the converse,
suppose F} 5; F». Then there is a € Fy such that a ¢ F». By Corollary 4.4.2, there
is P € Irrs(A) such that F, C P and a ¢ P, and so Fy € P. Thus P € ¢(F5) and

P ¢ §(Fy), hence ¥(Fy) & $(Fy). O
PROPOSITION 5.1.5. For any Fy,...F, € Fis(A) and P € Trrs(A):

(WE:i<n}C P iff %(P)C|]oE).
i<n

PROOF. Assume first that ([{F, : i < n} C P and let Q € %(P), i.e.
P CQehirs(A). By assumption (|{F; : ¢ < n} C @, and since @ is an irre-
ducible S-filter and the logic is filter distributive, there is j < n such that F; C Q.
Now by the previous proposition @(Q) - J(Fj) C U{iZ(E) 21 <n}.

For the converse, suppose that (\{F; : i < n} ¢ P. Then there is an element
a € ({F; : i <n} such that a ¢ P. So for each i <n, F; ¢ P, and then we have

Ped(P)and P ¢ J{¢(F) : i <n}, hence P(P) € U{e(F;) : i < n}. 0

The following propositions serve us to complete the description of the topologi-
cal space (Irrs(A), 7x, ), as they characterize closed subsets and irreducible closed
subsets of the space (Irrs(A), T, )

PROPOSITION 5.1.6. U C Irrs(A) is a closed subset of (Irrs(A),T.,) if and
only if there is F' € Fig(A) such that U = (F). Moreover, for all P € Irrs(A),

c(P) = (P).

PROOF. By definition, for any B C A, the subset ¢)(B) = M{¢(a) : a € B}
is a closed subset of (Irrs(A), 7., ). For the converse, let U be a closed subset of
(Irrs(A), 70 p ), ie. U = N{(b) : b € B} = ¢(B) for some B C A. Since we know
that 1(B) = @Z(Cg‘(B))7 and C%(B) € Fig(A) we are done.

Let now P € Irrg(A). As 1(P) is closed and P € §(P), clearly cl(P) C 1(P).
For the converse, assume U be a closed subset such that P € U. We show that
$(P) C U. Since U is closed, there is F € Fig(A) such that U = ¢(F), and then
by assumption F' C P. Then by Proposition 5.1.4 @Z(P) - 1Z(F) = U. We conclude
that ) (P) C cl(P), and we are done. O
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PROPOSITION 5.1.7. Let U be a closed subset of (Irrs(A),T.,). Then U is
irreducible if and only if U = (P) for some P € Irrs(A).

PRrROOF. Let first U C Irrg(A) be an irreducible closed subset and, using Propo-
sition 5.1.6, let F € Fig(A) be the S-filter such that U = ¢(F). We show that F
is a meet prime element of the lattice of S-filters. Since irreducible closed subsets
are non-empty, then F' is proper. Let Fy, F» € Fig(A) be such that F; N Fy C F.
By Proposition 5.1.5 we get ¢(F) C (F;) U ¢ (Fy). Now from ¢ (F) being irredu-
cible closed subset, either {Z)\(F) C zZ(Fl) or J(F) - 1Z(F2), i.e. either F; C F or
F, C F. Hence, F is a meet prime element of the lattice of S-filters, and so by
filter distributivity of the logic, it is an irreducible S-filter.

Let now P € Irrs(A). We show that LZ(P) is an irreducible closed subset. Since
P € ¢(P), then ’(Z(P) is non-empty. Let V1, V5 be closed subsets of (Irrs(A), 7., )
such that @(P) C V1 U V. Using Proposition 5.1.6, let Fi, Fy € Fis(A) be the
S-filters of A such that V; = IZ(Fl) and V5 = TZ(FQ) Then we have ’(Z(P) -
@(Fl)UzZ(FQ). By Proposition 5.1.5 again, F1NF, C P, and since P is an irreducible
S-filter and the logic is filter distributive, then F; C P or F» C P. Thus we obtain
»(P) € $(F1) = Vi or $(P) C 9h(F,) = Va, as required. O

COROLLARY 5.1.8. The space (Irts(A), 74, ) is sober.

COROLLARY 5.1.9. The dual of the specialization order of (Irrs(A), Tx,) coin-
cides with the inclusion relation.

PrOOF. Let P,Q € Irrs(A). By Proposition 5.1.6 we have that P < @ if and
only if @ € cl(P) = ¢(P) if and only if P C Q. O

From Theorem 5.1.1 and Corollary 5.1.9 we obtain that the dual of the spe-
cialization order of (Irrs(A), 74, ) coincides with the order associated with the re-
ferential algebra (Irrs(A),¥[A]). Now we are ready to introduce the definition of
Spectral-like dual objects of S-algebras.

DEFINITION 5.1.10. A structure X = (X, B) is an S-Spectral space when:

(Spl) (X,B) is an S-referential algebra,

(Sp2) for all U U{V} C¥ B, if YU C V, then V € CB(U),

(Sp3) kx :={U°: U € B} is a basis of open compact subsets for a topology 7,
on X,

(Sp4) the space (X, 7,,) is sober.

We will see later on that the converse of (Sp2) follows from the other conditions.
Recall that the quasiorder < associated with the referential algebra (X, B) is given
by: @ <y if and only if for all U € B, if x € U then y € U. Moreover, the order <
associated with a sober topological space (X, 7) (the dual of the specialization order
of this space) is given by: = < y if and only if y € cl(z). From the definition we get
that for any S-Spectral space (X, B), the quasiorder associated with the referential
algebra and the order associated with the sober topological space (X, 7, ) coincide.
This implies, in particular, that the S-referential algebra (X,B) is reduced, and
then, by Remark 4.2.1, we know that B is an S-algebra. In this case, we denote the
(quasi)order simply by <x, and we drop the subscript when the context is clear.
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COROLLARY 5.1.11. For any filter distributive finitary congruential logic with
theorems S and any S-algebra A, the structure Jrrs(A) := (Irrs(A), Ya[A]) is an
S-Spectral space.

PrOOF. Conditions (Spl) and (Sp2) are stated in Theorem 5.1.1. Condition
(Sp3) follows from Proposition 5.1.3 and condition (Sp4) follows from Corollary
5.1.8. 0

Notice that for any S-Spectral space X = (X, B), since B is an S-algebra by
(Spl), then Jrrs(B) = (Irrs(B), ¥s[B]) is an S-Spectral space, for which the basis
Koms(B) = {U° : U € ¢¥B[B]} given by (Sp3) is precisely what we denote by xp.

From now on, we focus on the structures X = (X, B) that satisfy conditions
(Sp1)—(Sp3) in Definition 5.1.10. Let us call such structures S-pre-Spectral spaces.
For any S-pre-Spectral space we define the map ex : X — PT(B) as follows:

ex(z)={Ue€B:zeU}.
And for any Y C X, we define:
ex(Y) = Mex(w) :weY}={UeB:Y CU}
When the context is clear, we drop the subscript of ex and €x.

REMARK 5.1.12. By condition (Sp3), we obtain that for any S-pre-Spectral
space X, for all z € X, it holds {U € B:x € U} = {U € B : cl(z) C U}. Therefore
g(cl(z)) = e(x) for all x € X.

LEMMA 5.1.13. Let X = (X, B) be an S-pre-Spectral space. If the topological
space (X, Ty, ) is To, then € is one-to-one.

ProOF. If the space (X, 7,,) is Tp, then for any z,y € X such that x # y,
there is U € B such that z € U and y ¢ U°. So U € ¢(y) and U ¢ (x), and
therefore e(z) # €(y). Hence ¢ is one-to-one. O

LEMMA 5.1.14. Let X = (X, B) be an S-pre-Spectral space. Then for any closed
subset Y of (X, 7k, ), E(Y) € Fig(B), and moreover (E(Y) =Y.

PRrROOF. Let Y C X be a closed subset of (X, 7..), let ' U{d} € Fm be such
that I' s d and let A € Hom(Fm, B) be such that h(y) € €(Y) for all v € T
Then by (X,B) being an S-referential algebra, we have ({h(y) : v € T'} C h(9),
and by assumption Y C h(y) for all ¥ € T, so we get Y C h(J), i.e. h(d) € &(Y).
This shows that (Y) is an S-filter of B. Moreover, as Y is closed, by (Sp3) we get
AeY)=({UeB:YCU}=Y. O

REMARK 5.1.15. Notice that from Remark 5.1.12 and the previous lemma we
obtain that for any « € X, e(z) is an S-filter. This implies that the converse of
(Sp2) holds, i.e. for all Y U {V} C¥ B, if V € CB(U), then NU C V. Assume
V € CB(U) and let z € NU, so U C (). Since () is an S-filter, CB(U) C e(z),
and therefore by assumption V € ¢(z), i.e. z € V.

COROLLARY 5.1.16. Let X = (X, B) be an S-pre-Spectral space. Then the order
<B on B given by CB, coincides with the inclusion relation.
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PrROOF. Let U,V € B. By (Sp2) we get that U C V implies V € CB({U}), i.e.
U <B V. Let us show the converse. Suppose U <B V' i.e. V € CB({U}). We show
that U C V. Let z € U, then using Remark 5.1.12, U € e(x) = €(cl(z)), where
g(cl(z)) is an S-filter of B by Lemma 5.1.14, and so V € CB({U}) C &(cl(2)) = e(z),
hence z € V. O

LEMMA 5.1.17. Let X = (X,B) be an S-pre-Spectral space. Then for any
irreducible closed subset Y of (X, 7., ), EY) € Irrs(B). Hence ¢[X] C Irrs(B).

PROOF. Let Y C X be an irreducible closed subset of (X, 7.,). By Lemma
5.1.14, €(Y) is an S-filter of B, so we just have to show that (Y) is irreducible
as an S-filter. Since Y is non-empty, £(Y’) is proper. Let Fy, F» € Fig(B) be such
that Fy N F, C £(Y) and suppose, towards a contradiction, that Fy, F» € £(Y). Let
Ui € Fi\&Y) and Uy € F, \ &(Y). Then Y ¢ Uy, Us, and since Uy, Us are closed
subsets and Y is an irreducible closed subset, then Y ¢ Uy UUs. Let z € Y\ U, UUs,
so x € Uf NUs. By (Sp3) there is V' € B such that x € V¢ C Uf N Us. On the
one hand, we have z ¢ V, and therefore Y ¢ V, i.e. V ¢ £(Y). On the other hand,
from Uy, Us; C V, using Corollary 5.1.16 we get V € F; N Fy. Since by assumption
FiNFy, CEY), we obtain V € £(Y), a contradiction.

This shows that (Y") is an irreducible S-filter of B for any irreducible closed
subset Y of (X, 7., ). In particular, this holds for cl(x), for every z € X. Then by
Remark 5.1.12 we obtain £(z) = &(cl(x)) € Irrs(B). O

LEMMA 5.1.18. Let X = (X,B) be an S-pre-Spectral space. Then:
(1) For any F € Fig(B), NF =({V € B:V € F} is a closed subset of
(X, Try), and moreover E((F) = F.
(2) For any P € Irrs(B), (P is an irreducible closed subset of (X, 7. ).

PRrROOF. (1) Let F' € Fig(B). Clearly () F is closed. Consider the set ([ F) =
{U e B:NF CU}. It is immediate that F' C ([ F'), so we just have to show the
other inclusion. If F = {), then &(F) ={U € B: X C U}. From (Sp2) we know
that for any V € B, if V = X, then V € CB(0), and so V € G for all G € Fig(B).
Therefore, from F = () we conclude that & F) = 0. If F # 0, let U € E(N F),
i,e.F CU € B. Then U® C |J{V¢:V € F}, and by (Sp3) U° is compact, so
there is F/ C¥ F, such that U¢ C ({V°®:V € F'}, i.e. (| F' CU. Thus by (Sp2)
U € CB(F") C F, as required.

(2) Let P € Irrs(B). Notice that as P is proper, B # P = £([) P), and therefore
P # 0. Let C1,Cs be closed subsets of (X, 7, ) such that (P C C; UCs. By
Lemma 5.1.14 we have £(C1),£(Cs) € Fis(B), C; = N&(C1) and Cy = (&(Cy).
Suppose, towards a contradiction, that (VP ¢ C; and ()P € Cy. Then £(Cy) € P
and £(C2) € P. Now since P is an irreducible S-filter, we obtain that £(C; UC5) =
E(C1)NE(Cy) € P, and therefore (P ¢ Cy U Cs, a contradiction. O

From lemmas 5.1.14, 5.1.17 and 5.1.18 we get that for any S-pre-Spectral space
X = (X, B) there is an order isomorphism between closed subsets of (X, 7,,) and
S-filters of B given by the maps:

£:C(X) — Fis(B) () : Fis(B) — C(X)
Y+—{UeB:Y CU} Fr—(\F
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that restricts to an order isomorphism between irreducible closed subsets of (X, 7,,)
and irreducible S-filters of B.

COROLLARY 5.1.19. Let X = (X,B) be an S-pre-Spectral space and let F €
Fis(B) and U € B. Then U € F if and only if VF C U.

ProOOF. The inclusion from left to right is immediate, so let us show the other
inclusion. Assume that (JF C U for some U € B. Notice that this implies that
F # (): otherwise, we have U = X, and then by (Sp2), U belongs to all S-filters of
B, in particular, U € F = (), a contradiction. Then we have, using Lemma 5.1.18,
that &(U) C&((F) = F. And since U € £(U), we conclude U € F. O

THEOREM 5.1.20. Let X = (X, B) be an S-pre-Spectral space. Then the follow-
ing conditions are equivalent:

(1) (X, Try) is To, and for every closed subset Y of X and every non-empty
and down-directed @ C{U°:U € B}, if Y NV #£ D for all VC € Q, then
YN {Ve:vVee QF #0.

(2) (X, Try) is To and the map € : X — Irrg(B) is onto.

(3) (X, Tyy) is sober.

PRrROOF. Recall that any sober space is Tp.

(1) implies (2). Let P € Irrg(B). We show that there is z € X such that
g(x) = P. Since P is an irreducible S-filter, by Theorem 4.4.8 we have P¢ € Id(B),
and so Q' := {V°:V ¢ P} is down-directed. Moreover, since P is proper, Q' is
non-empty. If P = (J, then we get that for all U € B, U # X, because otherwise
by (Sp2) we obtain U € CB(P) = P = ). Then we have N\PNU¢ =X NU® # ()
for all U ¢ P. If P # (), then using Corollary 5.1.19, we obtain that for the closed
subset (P, PNV # () whenever V ¢ P. Then in any case, by (1) there is
zeNPNN{Ve:V ¢ P} #0, and clearly e(z) = P.

(2) implies (3). Let Y be an irreducible closed subset of (X, 7,.). We show
that there is € X such that Y = cl(z). By Lemma 5.1.17, £(Y') € Irrs(B). Then
by (2) there is a © € X such that e(z) = €(Y). By Lemma 5.1.13 ¢ is one-to-one, so
such x is unique. Moreover, as e(x) = £(cl(x)), and using Lemma 5.1.18 we obtain
cl(z) =Nelcl(z)) =NEY) =Y, as required.

(3) implies (1). Let Y C X be a closed subset of (X, 7,.,.) and @ C {U°: U € B}
be non-empty and down-directed, and such that Y N V¢ # () for all V¢ € Q. We
show that Y N({V°: Ve Q} # 0. AsY is closed, then £(Y) € Fis(A). As Q
is down-directed and non-empty, then [{V : V¢ € Q} is a poset ideal of (B, <B).
We claim that £(Y) N |{V : V¢ e Q} = (). Suppose, towards a contradiction, that
there is U € &(Y) N J{V : V¢ € Q}. Then there is V¢ € Q such that U C V and
UeeY) ThusY CU CV,s0 YNV =, contrary to the assumption.

Then we have £(Y), an S-filter of B, and [{V : V¢ € Q}, a poset ideal of
(B,<B), such that &(Y) N J{V : V¢ € Q} = . By the Lemma 4.4.1, there is
P € Irrs(B) such that &(Y) C P and [{V : V¢ € Q} N P = (). Then consider the
irreducible closed subset () P. By (3) there is € X such that (| P = cl(x). Since
g(Y) C P, then cl(z) = NP C NEY) =Y, so in particular x € Y. Suppose,
towards a contradiction, that = ¢ ({V°: V¢ € Q}. Then there is V¢ € Q such
that x ¢ V°. So (P = cl(x) C V, and then V¢ C | J{U® : U € P}. Since V¢ is
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compact, there is P’ C¥ P such that V¢ C |J{U®: U € P’}. Thus (P’ C V, and
by condition (Sp2), we get V € CB(P') C P. But then [{V:V¢e€ Q}NP #0, a
contradiction. We conclude that x € Y N[{V¢: Ve e Q} #0. O

COROLLARY 5.1.21. Let X = (X,B) be an S-Spectral space. Then € is a ho-
meomorphism between the topological spaces (X, Ty, ) and (Irrs(B), Ty )-

PrOOF. Notice that for all x € X and all U € B we have: x € U if and only if
U € e(z) if and only if e(z) € g (U). Therefore, we have:

x e yp(U)] iff e(x) cyp(U)° iff Ude(x) iff zecUC.

Thus e [yg(U)°] = U¢ for all U € B. Recall that kg = {¢g(U)° : U € B}
is a basis for the topology 7.5 on Irrg(B). Then we have that the inverse image
by e of any element of the basis kg belongs to kx = {U® : U € B}, that is a
basis for 7. Moreover, by Lemma 5.1.13 and Theorem 5.1.20, € is a one-to-one
map onto Irrg(B). We conclude that € is a homeomorphism between (X, 7, ) and
(Irrs(B), Trog )- O

COROLLARY 5.1.22. Let X = (X, B) be an S-Spectral space. Then the structure
(Irrs(B), ¥ [B]) is an S-Spectral space such that (X, 7.,) and (Irrs(B), 7.5) are
homeomorphic topological spaces by means of the map ex : X — Irrg(B) and
moreover B and ¥g[B] are isomorphic S-algebras by means of the map ¥ : B —

YB[B].

Previous corollary together with Corollary 5.1.11 summarize all preceding re-
sults, and should be kept in mind for §5.2 and §5.3, where the duality for mor-
phisms is studied, and the functors involved are defined. Before moving to that, let
us examine Priestley-dual objects of S-algebras.

5.1.2. Priestley-style dual objects. We assume that S is a filter distri-
butive finitary congruential logic with theorems and A is an S-algebra. Recall
that the map ¥ : A — PT(Opg(A)) assigns to each a € A, the collection
{P € Opg(A) : a € P}. We define on Opg(A) a topology 7a, having as sub-
basis the collection:

{V(a) :a € AYU{I(b)°:be A}.

REMARK 5.1.23. Notice that for any non-empty B C* A we have J(B) # {4}.
Suppose, towards a contradiction, that there is a non-empty B C“ A such that
@(B) = {A}. This implies that A is an optimal S-filter of A, and therefore, by
Theorem 4.4.9 and Remark 4.4.14, A has no bottom-family. Then C4(B) # A and
so there is a ¢ C2(B). Then by Corollary 4.4.6 there is P € Opg(A) such that
a ¢ P and C4(B) C P. In particular, B C P, so P € 5(3) ={A},but a ¢ P, a
contradiction.

Recall that M(A) denotes the S-semilattice of A. For the purposes of this
section, as Opg(A) is an optimal S-base, we assume that M(A) is the closure
under non-empty finite intersections of ¥[A]. Recall that by Property (E2), any
element of M(A) has the form 1/9\(B) for some non-empty B C¥ A. Moreover there
is an order isomorphism between optimal S-filters of A and optimal meet filters of
M(A). Recall also that Ids(A) is always a closure system, but this is not the case
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for Idss(A), so we do not have a closure operator that generates the least strong
S-ideal containing a given subset. Through the mentioned correspondence between
Opg(A) and Op,(M(A)), we can avoid the difficulties that this fact brings us by
moving our proof-strategies to the S-semilattice of A. This is precisely what we
do in the next proposition, where we show that the space (Opg(A),C,7a) is a
Priestley space.

PROPOSITION 5.1.24. The structure (Opg(A), C,7a) is a Priestley space.

PROOF. Priestley Separation Aziom. Let P, P’ € Opg(A) be such that P ¢ P’.
So there is a € P\ P’. Then P € ¥(a) and P’ ¢ ¥(a), and we are done.

Compactness. We use Alexandrov Subbasis Theorem, so let BU D C A be
such that Opg(A) C U{d(b) : b € B} UU{¥(d)¢ : d € D} and suppose, towards a
contradiction, that Opg(A) € {9(b) : b € B’} UU{9¥(d)° : d € D'} for any finite
B’ C¥ B and D' C¥ D. Without loss of generality, we can assume D # (), since
¥(1) = Opg(A). Let F be the filter of M(A) generated by ¢#[D], i.e. F := [9¥[D]) =
T{@(D’) : D' C¥ D}. Let I be the F-ideal of M(A) generated by ¥[B], i.e.

1= (9[B]] = {J(C) € M#(A) : 3B’ € B(([{19(b) : b€ B'} C1I(C))}.

We claim that F' NI = (). Suppose, towards a contradiction, that F' N T # (), so let
C C¥ A such that 3(0) € F'NI. On the one hand, since D # (, there is non-empty
D’ C¥ D such that J(D') C 9(C), and so 19(C) € 19(D’'). On the other hand,
there is B’ C* B such that ("{19(b) : b € B’} C T@(C). Hence we have {19(b) :
be B} C1I(D). If B =0, then 19(D') = Mz(A), so J(D') is the bottom
element of M(A), and so there is no optimal meet filter of M(A) containing 1’9\(D' ).
Using the isomorphism between optimal meet filters of M(A) and optimal S-filters
of A given by Proposition 4.5.13, we conclude that this implies that no optimal
S-filter of A includes D': if G € Opg(A) is such that D’ C G, then 9(D’) would be
an element of the optimal meet filter [9[G]) € Fin(M(A)). Therefore, we have that
U{9(d)¢ : d € D'} is a finite cover of the space, a contradiction. If B’ # (. Then by
Lemma 4.5.10, 9(D') € U{9(b) : b € B'}, so J{d(d) : d € D'} UU{9(b) : b € B’}
is a finite cover of the space, a contradiction.

We conclude that F NI = (). Then by Lemma 2.3.7 there is an optimal meet
filter P € Op,(M(A)) such that F C P and INP = (. Then by the isomor-
phism between optimal meet filters of M(A) and optimal S-filters of A given by
Proposition 4.5.13, 9~1[P] is an optimal S-filter of A. Then from F C P we get
D C 971P], and from INP = () we get b ¢ 9~ 1[P] for all b € B. Therefore
P ¢ | J{9(b) : b e BYUJ{I(d)° : d € D}, a contradiction. O

For the proof of the next proposition, we use that Irrs(A) is also an optimal S-
base. Recall that we denote by 1 the map that assigns to each a € A, the collection
{P elirs(A) :a € P}.

PROPOSITION 5.1.25. The collection Irrs(A) is dense in the space (Opg(A), 7a).

PrROOF. We show that each non-empty basic open contains an irreducible
S-filter. Let B, D C¥ A and suppose P € ({9(b) : b€ ByNn({I(d)*: d € D} # 0.
Without loss of generality, we can assume that B # (), since 9(1) = Opg(A). If
D =, then P € 9(B) # 0, and by Remark 5.1.23 we can assume that P # A, so
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there is a ¢ P. Then by Corollary 4.4.2 there is an irreducible S-filter Q) € Irrs(A)
such that « ¢ Q 2 P, so Q € N{¥() : b € B} NIirs(A), as required. If
D # (), then we have 5(3) ¢ U{¥(d) : d € D}, and so by Corollary 4.5.12 we
get ¢(B) ¢ U{¥(d) : d € D}. Thus there is Q € Irrs(A) such that B C @ and
d¢ Qforallde D,ie Qe ({I0b):be B}n({I(d)°:de D}nIrrs(A), as
required. ([l

REMARK 5.1.26. Notice that from Theorem 4.4.8 we get that for any optimal
S-filter P of A, P is irreducible if and only if {a € A : a ¢ P} is non-empty and up-
directed in (4, <#). Moreover, from Theorem 5.1.2, 9 is an isomorphism between
A and J[A]. Therefore {a € A : a ¢ P} is non-empty and up-directed in (A, <&) if
and only if {¢#(a) : a ¢ P} is also non-empty and up-directed in (¢[A], C). Hence,
for any P € Opg(A)

P echirs(A) iff {¥(a):a € P} is non-empty and up-directed in (¥[A4], C).

Finally we prove some facts concerning clopen up-sets of the Priestley-space
(Ops(A), C,7a). Recall that in Priestley duality for bounded distributive lattices,
the collection of clopen up-sets takes a prominent role. In Priestley duality for
distributive semilattices, such a role is taken by the collection of admissible clopen
up-sets (see definition in page 38). In what follows we see that in the present duality
admissible clopen up-sets play an important role as well.

PROPOSITION 5.1.27. Each non-empty open up-set of (Opg(A),C,7a) is a
non-empty union of non-empty finite intersections of elements of ¥[A].

PROOF. Let U be a non-empty open up-set of (Opg(A),C,7a) and let P € U.
It is enough to show that there are ag,...,a, € A, for some n € w, such that
P ed(ag)N---Nd(a,) CU. If U= Opg(A) we are done, since Opg(A) = J(14).
So suppose U # Opg(A). Then for each Q ¢ U, P ¢ @Q, so there is ag € P\ Q.
Notice that in case A is an S-optimal filter, then A ¢ U€, since U is an up-set.
Then we have ({¥(ag) : @ ¢ U} N U = 0, and by compactness of the space we
are done. (]

PROPOSITION 5.1.28. Fach non-empty clopen up-set of (Opg(A),C,7a) is a
non-empty finite union of non-empty finite intersections of elements of 9[A].

PRrOOF. This follows from the previous proposition and the fact that in any
Priestley space clopen up-sets are compact. O

Note that the emptyset is a clopen up-set of (Opg(A),C,7a), and it can be
described as an (empty) finite union of non-empty finite intersections of elements of
Y[A]. When A has a bottom element, the emptyset is moreover a non-empty finite
union of non-empty finite intersections of elements of J[A], since optimal S-filters
are proper, we have () = 9(02). Recall that for any poset P, by max(P) we denote
the collection of maximal elements of P. And Irrs(A)-admissible clopen up-sets of
(Ops(A), C, 7a) are the clopen up-sets U C Opg(A) such that max(U°) C Irrs(A).

Yy =

PROPOSITION 5.1.29. For any clopen up-set U of (Opg(A),C,7a), if U = 1/9\(B)
for some non-empty B C* A, then max(U°¢) C Irrg(A).
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PrOOF. Let U be a clopen up-set such that 5(B) = U for some non-empty
B C¥ A. If U = Opg(A), then we are done, since max(U¢) = @ and this set
is trivially included in Irrg(A). Suppose U # Opg(A) and let P € max(U°) =
max(J(B)°). We show that P is an irreducible S-filter. By assumption B ¢ P, so
there is b € B\ P. Then by Lemma 4.4.1, there is Q € Irrs(A) such that b ¢ Q
and P C Q. This implies B ¢ @, so we have Q € 1§(B)C = U and P C . Since
P is a maximal element of U¢, we conclude P = @, i.e. P is an irreducible S-filter,
as required. [

The converse of the previous proposition also holds. Notice that we move again
to the S-semilattice of A to prove it.

PROPOSITION 5.1.30. For any clopen up-set U of (Opg(A), C,7a), whenever
max(U¢) C Irrs(A), then there is a non-empty B C¥ A such that U = 9(B).

PRrOOF. Let U be a clopen up-set such that max(U¢) C Irrs(A). Let us
consider first the case when U = (). Then since irreducible S-filters are proper, A is
not an optimal S-filter, otherwise we would have A € max(Opg(A)) = max(U®) C
Irrs(A). Then A has a bottom-family D C* A, and thus 5(D) =0 ="U, so we are
done.

Let now U be non-empty. Then by Proposition 5.1.28, there are non-empty
By, ...,B, C¥ A, for some n € w, such that

U=JW(®B):i<n}

On the one hand, consider the set F' := ﬂ{[[@(Bl)» 1 < n}, that is a meet filter of
the S-semilattice of A. On the other hand, consider the set J := <<{1/9\(BZ) 21 < n}],
that is a Frink ideal of the S-semilattice of A.

We claim that F'NJ # 0. Suppose not, then by Lemma 2.3.7, there is P €
Op,(M(A)) an optimal meet filter of the S-semilattice of A, such that F' C P and
PNJ = 0. Then by definition of J, 5(31) ¢ P for all i < n. Therefore for each
i < n, there is b; € B; such that 9(b;) & P, i.e. b; ¢ 971[P]. Then B; € 9~}[P]
for all 4 < n. Recall that by the isomorphism between optimal S-filters of A and
optimal meet filters of M(A) (Proposition 4.5.13), 9=[P] € Opg(A) is an optimal
S-filter of A. Thus we have 9=1[P] ¢ J{0(B;) : i < n} = U. Let Q € max(U®)
be such that 9=1[P] C Q. This implies that P = [J[9~1[P]]) C [J[Q]). By
assumption @ € Irrs(A), so by Proposition 4.5.13 again, [¢[Q]) is an irreducible
meet, filter of M(A). Then from FF C P we get F C [J[Q]). Since [J[Q]) is
irreducible, by definition of F we get 9(B;) € [9[Q]) for some i < n. By definition
of meet filter generated either 1’9\(B1) = Opg(A) or there is non-empty Q' C¥ @
such that 9(Q') C J(B;). If ¥(B;) = Opg(A), then B; = {12}, and clearly
B; C Q. If there is non-empty Q' C¥ @ such that 5(Q’) - 1’9\(31-), then by Lemma,
4.5.10, B; C C2(Q') € Q. So in either case we get B; C @, and this implies
Qe g(Bz) C U, a contradiction.

We conclude that £ N J # 0. Then by (E2), let a non-empty B C* A be such
that J(B) € FNJ. On the one hand, we have J(B) € [J(B;)) for all i < n,
S0 1’9\(BZ) C 1/9\(3) for all # < n. On the other hand, by definition of Frink ideal
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generated by a subset, ﬂ{[[@(B,)» :i<n}C [[5(B)>>, and so by Lemma 4.5.10 we
obtain ¥(B) C | J{¥(B;) : i <n}. We conclude that U = ¢¥(B) as required. O

Now we are ready to introduce the definition of Priestley-dual objects of S-
algebras.

DEFINITION 5.1.31. A structure X = (X, 7, B) is an S-Priestley space when:

(Prl) (X,B) is a reduced S-referential algebra, whose associated order is de-
noted by <,

(Pr2) foralY U{V} C* B,AUCV iff Ve CBU),

(Pr3) (X, ) is a compact space,

(Prd) B is a family of clopen up-sets for (X, 7, <) that contains X,

(Pr5) the set Xp :={x € X : {U € B : x ¢ U} is non-empty and up-directed}
is dense in (X, 7).

From now on let (X, 7,B) be an S-Priestley space. By conditions (Prl), (Pr3)
and (Pr4) we obtain that for any S-Priestley space (X, 7, B), the space (X, 7, <) is
a Priestley space, and by condition (Pr2) we obtain that for all U,V € B:

UcCV iff VeCBU).

Therefore, the order §g’ on B coincides with the inclusion relation on B. Moreover,
concerning the bottom element and bottom-families, we have the following lemma,
that is used later on:

LEMMA 5.1.32. Let (X, 7,B) be an S-Priestley space.

(1) B has a bottom element if and only if O € B.
(2) B has a bottom-family if and only if there is D C¥ B such that (\ D = 0.

PRrOOF. (1) Clearly if @ € B, then  is the bottom element of B. For the
converse, assume that U is the bottom element of B, and suppose, towards a
contradiction, that there is € U N Xp. Then by condition (Pr5), there is V € B
such that ¢ V, but since U is the bottom element, then U C V. This implies
x € V, a contradiction. Hence we obtain that U N Xg = (), and then from denseness
given by (Pr5), U = () as required.

For (2), by (Pr2) it follows the implication from right to left. For the converse,
assume that B has a bottom-family D C¥ B, and suppose, towards a contradiction,
that there is € (| D. Since D is finite, by denseness we can assume, without loss
of generality, that x € Xp. Then by condition (Pr5) there is V € B such that
x ¢ V. But by assumption there is U € D such that U C V, and from z € U it
follows & € V', a contradiction. [l

COROLLARY 5.1.33. For any filter distributive finitary congruential logic with
theorems S and any S-algebra A, the structure Ops(A) := (Opg(A), Ta,V[A]) is
an S-Priestley space.

Proor. Conditions (Prl) and (Pr2) are stated in Theorem 5.1.2. Condition
(Pr3) was shown in Proposition 5.1.24. Condition (Pr4) follows from the definition
of 7a, and from J(12) = Opg(A). Condition (Pr5) follows from Remark 5.1.26
and Proposition 5.1.25. g
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Let (X, 7, B) be an S-Priestley space. Note that since B is an algebra of subsets
of X, this provides us with an alternative characterization of the S-semilattice
of B: let B be the closure of B under non-empty finite intersections. Then
clearly B" := (B™, N, X) is isomorphic to M(B), the S-semilattice of B. Let
B™ be the closure of B™ under non-empty finite unions. It also follows that
B := (B"Y,N,U, X) is isomorphic to L(M(B)), the distributive envelope of M(B)
(see Appendix A for the definition). Hence we have that:

B" = M(B),
B™Y =~ L(M(B)).

For convenience we take such isomorphisms as the identity and we identify B"
with M(B) and B™" with L(M(B)). Now we examine some properties of S-Priestley
spaces, that lead us to an alternative definition of S-Priestley spaces, that provides
us with a better understanding of the structure of these spaces.

PROPOSITION 5.1.34. Let (X, 7,B) be an S-Priestley space. A subset U C X
is a non-empty open up-set of (X,7,<) if and only if it is a non-empty union of
non-empty finite intersections of elements of B.

PROOF. Let U be a non-empty open up-set of (X, 7,<). When U = X there is
nothing to prove, as X € B by (Pr4), so assume that U # X. As U is non-empty,
let # € U. Because U is an up-set, we have that for all y ¢ U, £ y. Then
by (Prl), since the S-referential algebra (X, B) is reduced, for all y ¢ U there is
V, € B such that x € Vf and y ¢ V. Then we have a closed set U® and open
sets {(V;7)¢ : y ¢ U} such that U¢ C U{(V,7)¢ : y ¢ U}. Now by compactness
of the space given by (Pr3), there are yg,...,y, ¢ U, for some n € w, such that
Ue C(Vy)u---U(Vy)e Hence Vi N---N V. CU. Notice that by construction,
zeVyin---NV7, therefore we get

UC U(Vy”;m-ﬂVny)QU.
xelU

Thus, as U is non-empty, U is a non-empty union of non-empty finite intersections
of elements of B, as required. O

PROPOSITION 5.1.35. Let (X, 7,B) be an S-Priestley space. A subset U C X s
a non-empty clopen up-set of (X,7,<) if and only if it is a non-empty finite union
of non-empty finite intersections of elements of B.

PRrROOF. It follows from the previous proposition and compactness of the space.
|

Notice also that the emptyset is a clopen up-set that can be trivially described
as an (empty) finite union of non-empty finite intersections of elements of B.

COROLLARY 5.1.36. Let (X, 7,B) be an S-Priestley space. Then the collection
BU{U®:U € B} is a subbasis for (X,T).

PRrOOF. This follows from the previous proposition and the fact that for any
Priestley space (X, 7, <), {U\V : U,V € C&U(X)} is a basis of the space. O
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The next proposition highlights that previous fact is strongly connected with
the property of the S-referential algebra (X, B) of being reduced.

PROPOSITION 5.1.37. For any S-referential algebra (X,B) augmented with a
topology T and an order < on X, if (X,7,<) is a Priestley space, X € B and
CUU(X) is the closure of B under finite unions of non-empty finite intersections of
elements of B, then (X, B) is reduced.

PRrROOF. Assume that (X,7,<) is a Priestley space, X € B and CU(X) is
the closure of B under finite unions of non-empty finite intersections. We show
that (X, B) is reduced, by showing that < is the quasiorder < associated with the
referential algebra.

Let first z,y € X be such that x < y. As elements of B are up-sets, it follows
that for all V € B, if x € V then y € V. Let now z,y € X be such that z £ y.
Then by totally order disconnectedness of the space, there is U a clopen up-set such
that € U and y ¢ U. Then there are non-empty U ..., U, C¥ B finite subsets,
for some n € w, such that z € Uy U--- U U, = U. So there is i < n such that
x € NU; and y ¢ (U;. And then there is V € U; C B such that x € V and y ¢ V.

We conclude that for all z,y € X, x <y if and only for all V € B, if z € V
then y € V. Hence < = <. Since < is a partial order, it follows that the referential
algebra (X, B) is reduced. O

From previous results we come up with the following corollary, that provides
an alternative definition of S-Priestley spaces.

COROLLARY 5.1.38. A structure X = (X, 7,B) is an S-Priestley space if and
only if the following conditions are satisfied:

(Prl’) (X,B) is an S-referential algebra, whose associated quasiorder is denoted
by <,

(Pr2) for alUU{V}C* B, NUCV iff VeCBU,

(Pr3’) (X, 7,<) is a Priestley space, and BU{U® : U € B} is a subbasis for it

(Prd’) X € B and C0U(X) = B"Y U {0},

(Pr5) the set Xp:={zx € X : {U € B :x ¢ U} is non-empty and up-directed}

is dense in (X, 7).

In the same way that we stablished that clopen up-sets of X are the elements
of B"V, we prove now that X p-admissible clopen up-sets are the elements of B".
Notice that in the following proofs we use the well-known correspondence between
the elements of a Priestley space and the prime meet filters of the lattice of its
clopen up-sets. Recall also that for convenience we identify M(B) and B".

PROPOSITION 5.1.39. Let (X, 7,B) be an S-Priestley space. Then for any non-
empty finite intersection U of elements of B, we have that max(U¢) C Xp.

PRrROOF. Let U € M(B) be a non-empty finite intersection of elements of B,
and let # € max(U®). We show that + € Xp. Let F, .= {V e M(B) : z € V}.
This set is a meet filter of M(B) and by hypothesis U ¢ F,. By Lemma 2.3.3,
there is Q € Irrn(M(B)) such that F, C @ and U ¢ Q. By Proposition A.8 in
Appendix A, Q' = [[Q))L(M(B)) is an optimal filter of L(M(B)). By Proposition
5.1.35, ' can also be seen as a prime filter of the lattice of clopen up-sets of



5.1. DUALITY FOR OBJECTS 87

X. Therefore, by Priestley duality for distributive lattices, there is y € X such
that Q" = {W € L(M(B)) : y € W}. Moreover, by Proposition A.8 again, Q =
Q' NM(B) = {W € M(B) : y € W}. Then since Q is irreducible, we obtain that
Q°={W € M(B) : y ¢ W} is up-directed.

We claim that {W € B : y ¢ W} is up-directed. Let W7, W, € B be such
that y ¢ Wy, Wa. As Q° is up-directed, there is W € M(B) such that y ¢ W and
W1, Wy C W. By definition of M(B), there are Uy,...,U, € B, for some n € w
such that W = Ug N ---NU,. It follows that there is i < n with y ¢ U; € B, and
clearly Wy, Ws C U, as required.

From the claim and since y ¢ U, we have that {W € B : y ¢ W} is non-
empty and up-directed, hence by (Pr5), y € Xp. Now we claim that x < y. On
the contrary, by (Prl) there is W € B such that x € W and y ¢ W. But then
W e F, CQ, and so y € W, a contradiction. Finally, by « being maximal in U¢,
we obtain x = y € Xp, as required. ([

Previous proposition establishes that non-empty finite intersections of elements
of B are X p-admissible clopen up-sets of X. The following proposition shows that
the converse also holds.

PROPOSITION 5.1.40. Let (X, 7,B) be an S-Priestley space. Fach X g-admissible
clopen up-set U of X is a non-empty finite intersection of elements of B.

PRrROOF. Let U € CU(X) be a clopen up-set of X such that max(U°) C Xp.
Let us consider first the case when U = (). Then by assumption max(X) C Xp,
which implies by condition (Pr5) that for each € max(X) there is U € B such
that = ¢ U. Since the elements of B are up-sets, this implies that for each € X
there is U € B such that x ¢ U. Therefore, there is 4 C B such that U = 0.
Now since the elements of B are clopens, | J{U® : U € U} is an open cover of the
space, and so by compactness given by (Pr5), there is a finite subcover Uy, ..., U,.
Hence, U = ) = Uy N --- N U, is a non-empty finite intersection of elements of B,
as required.

Let now U be non-empty. By Proposition 5.1.35 we know that there are
Voy..., Vi € M(B), for some n € w, such that U = VyU---UV,. Let us con-
sider the set G := [{{T\m)Vi : @ < n}, which is a meet filter of M(B). And let
I:={{Vo,...,Va}lyes) be the F-ideal of M(B) generated by {Vp,...,V,}.

We claim that G NI # (). Suppose, towards a contradiction, that G NI = (.
Then by Lemma 2.3.7, there is P € Op,(M(B)), such that G C P and PNI =
(). By Proposition A.8 in Appendix A, P’ := [[P>>L(M(B)) is an optimal filter of
L(M(B)). By Proposition 5.1.35, P’ can also be seen as a prime filter of the lattice
of clopen up-sets of X. Therefore, by Priestley duality for distributive lattices,
there is € X such that P’ = {W € L(M(B)) : « € W}. Moreover, by Proposition
A.8 again, PPNM(B) = {W € M(B) : x € W} = P. From P NI = () we obtain that
x ¢ V; foralli <n, and so z ¢ U. Now let y € max(U¢) be such that < y. Then
y ¢ V; for all i < n, and by hypothesis y € Xp, so the collection {W € B:y ¢ W}
is up-directed. So there is W € B such that y ¢ W and V; C W for all ¢ < n. This
implies, since W is an up-set, that = ¢ W. Moreover, from the definition of G we
get that W € G C P, so x € W, a contradiction.
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From the claim, we get W € G NI # . By definition of G, V; C W for each
i<mn,s0U =|J{V; : i < n} C W. By definition of F-ideal generated, we know
that N{1V; : i <n} C1tW. We only have to show that W N Xpg C |{V; : i < n},
because from this fact and denseness of the space, since U is open, it follows that
W C|{V;i:i <n} =U, and this completes the proof of U = W € M(B).

Suppose, towards a contradiction, that there is z € W N Xp such that z ¢ V;
for all i <mn. Then V; € {W € B : z ¢ W} for each ¢ < n. Notice that by (Prb)
we know that this collection is up-directed. Thus there is V’ € B such that z ¢ V'
and V; C V'’ for each i < n. Hence we get V' € ({1V; :i <n} CHtW,s0 W C V|
and then from z € W it follows z € V', a contradiction. O

Previous propositions shed light on our construction: they reveal the following
connection between S-Priestley spaces and generalized Priestley spaces.

THEOREM 5.1.41. Let (X, 7,B) be an S-Priestley space. Then (X, 7,<, Xg)
is a generalized Priestley space.

PRrROOF. We just need to check that conditions (DS5) and (DS6), given in page
38 are satisfied by the structure (X, 7, <, Xp). By propositions 5.1.40 and 5.1.39,
condition (DS6) reduces to the following condition: for all z,y € X

x <y iff VU€M(B)(ifx€U,theny€U).

And this follows straightforwardly from (X,B) being reduced (condition (Prl)).
For condition (DS5) we have to show that:

Xp={xeX:{UeM(B):x¢U} is non-empty and up-directed}.

Let first © € Xp, so by (Pr5), {V € B:xz ¢ V} is non-empty and up-directed. We
only have to show that {U € M(B) : « ¢ U} is up-directed, so let Uy, Us € M(B)
be such that = ¢ Uy, U,. By definition, U; and U, are intersections of non-empty
finite subsets of B, thus by assumption there are Vi, V5 € B such that U; C V; and
x ¢ V; for i € {1,2}. Now by hypothesis, there is W € B such that V;,V, C W
and x ¢ W, and as W € M(B) we are done.

For the converse, let © € X be such that {U € M(B) : z ¢ U} is non-empty and
up-directed. So by definition of M(B), there is V' € B such that U CV and x ¢ V.
Hence {V € B :x ¢ V} is non-empty. We only have to show that this collection is
also up-directed, so let V4, V5 € B be such that « ¢ V1, V5. By hypothesis, there is
U € M(B) such that V4,V2 C U and = ¢ U. And then by definition of M(B), there
is V € B such that U C V and = ¢ V, so we are done. O

We aim to prove that the correspondence between X g-admissible clopen up-sets
of X and elements of B" is in fact an isomorphism between distributive semila-
ttices. For proving this we need some results from Priestley duality for distributive
semilattices. Since in [5] it was studied a Priestley duality for bounded distributive
semilattices, and only outlined how their results can be generalized for the non-
bounded case, we present in Appendix A several results from [5] but generalized
for the case of distributive semilattices with top element. We encourage the reader
that is not familiar with such duality to read that appendix before continuing with
the reading.



5.1. DUALITY FOR OBJECTS 89

For any S-Priestley space X = (X, 7, B), we define the map ¢y : X — PT(B)
as follows:
éx(x):={UeB:xeU}
Notice that this definition is analogous to that of £ given in page 77. For any
Y C X, we use the following notation:

& (V)= {&xw) weY}={UeB:Y CU}
When the context is clear, we drop the subscript of £x and Ex

LEMMA 5.1.42. Let (X, 7,B) be an S-Priestley space. Then & is one-to-one.

PRrROOF. This follows easily from (Prl) and (Pr3): let 2,y € X be such that
x #y. We can assume, without loss of generality, that £ y. Then since < is the
order associated with the reduced referential algebra (X, B), by definition of this
order, there is U € B such that x € U and y ¢ U. Therefore {(x) # £(y). O

PROPOSITION 5.1.43. Let (X, 7,B) be an S-Priestley space. For any non-empty
U, v c¥ B:

AveclJu iff () CBU)<CEW).
veu

PROOF. Assume first that (\V C |JU and let U’ € N{CE(U) : U eU}. By
condition (Pr2) we get U C U’, and then by assumption (\V C U’. It follows
from condition (Pr2) again that U’ € CB(V).

Assume now that ({CB(U) : U e} C CB(V). We show that NV N Xp C
JU, and then the claim follows from denseness and from | JU being clopen. Let
x € (VN Xp and suppose, towards a contradiction, that x ¢ (JU. Then using
condition (Pr5), there is U’ € B such that U C U’ and « ¢ U’. Thus U’ €
N{CB(U) : U € U}, and so by assumption U’ € CB(V), that by (Pr2) implies
AV CU' Asz eV, we get x € U’, a contradiction. O

COROLLARY 5.1.44. Let (X, 7,B) be an S-Priestley space. For any non-empty
U, v c¥ B:

U=V iff IslU)="98V).

PRrROOF. From the previous proposition and Lemma 4.5.10 we get (U C V if
and only if CB(V) C CB() if and only if 513(1/{) C ¥g(V). Therefore, we get
NU C NV if and only if dgU) € N{¥s(V) : V € V} = du(V). And hence,
NU =V if and only if I (U) = Ip(V). O

PROPOSITION 5.1.45. Let (X,7,B) be an S-Priestley space. Then for any
z € X, &(x) € Opg(B).

ProOF. First we show that &(z) is an S-filter of B. Let I' U {6} C Fm be
such that I' s ¢ and let h € Hom(Fm, B) be such that h(y) € () for all v € T,
i.e. z € h(y) for all ¥ € T'. Then by condition (Prl) and definition of S-referential
algebra, we obtain ({h(y) : v € T'} C h(d), and therefore z € h(9) i.e. h(d) € £(x).

Notice that if {(z) = B, then by Lemma 5.1.32, B has no bottom-family:
otherwise there is V C* B such that (|V = 0, but by assumption = € (V. There-
fore, by definition of bottom-family, it follows that @) is an strong S-ideal of B, and
so &(x) = B is an optimal S-filter of B.
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Suppose now that £(x) # B. First we show that £(x)¢ is an S-ideal of B, where
E(xz)={U e B:2¢ U} Let V€ B and Uy,...,U, € {(x), for some n € w,
be such that N{CE(U;) : i < n} C CB(V). For n = 0 the hypothesis turns into
CB(V) = B. This implies that V is the bottom element of B. Thus, by Lemma
5.1.32, V = 0 and then clearly x ¢ V. For n # 0, by Proposition 5.1.43 we get
V CU{U; :i <n}, and then from = ¢ U; for all i < n we get x ¢ V. We conclude
that £(z)° € Ids(B).

Now we show that £(x)¢ is a strong S-ideal of B. Let V C¥ B and let
Uiy...,U, € &()°, for some n € w, be such that N{CE(U;) : i < n} C CB(V).
Recall that since S is assumed to have theorems, CB(0) = CB(1B) = CB(X) # 0.
Then if V = 0, by £(z)¢ being S-ideal, the assumption implies that £(x)¢ = B.
Therefore CB(V) N &(x)¢ # (), and we are done, so assume V # (). For n = 0 the
hypothesis turns into CB(V) = B. This implies that there is V' C V that is a
bottom-family for B. Thus (V' = (), and then there is V' € V such that z ¢ V, i.e.
V € &(x)°. For n # 0, by Proposition 5.1.43 we get (| V C |U{U; : i < n}, and then
from z ¢ U, for all i < n we get that thereis V € Vsuch that z ¢ V,i.e. V € £(x)°.
From either case we get that V N &(x)¢ # 0, and so CB(V) N &(z)¢ # 0. Thus, we
have shown that £(x)¢ is an strong S-ideal, and by Theorem 4.4.9 we conclude that
&(z) is an optimal S-filter. O

PROPOSITION 5.1.46. Let (X, 7,B) be an S-Priestley space. Then for any x €
XB, {(z) € Irrs(B).

PRrOOF. This follows from the previous proposition, Theorem 4.4.8 and condi-
tion (Prb), that states that for any x € Xp, £(x)¢ is non-empty and up-directed,
i.e. an order ideal of B. (I

Let us show now that the bijection between X g-admissible clopen up-sets of
X and the elements of B™ (i.e. the elements of M(B)) given by propositions 5.1.40
and 5.1.39 is an isomorphism of distributive semilattices. On the one hand, from
Theorem 5.1.41 and Priestley duality for distributive semilattices we know that
CaUs? (X) := (CU$: (X),N, X) is a distributive semilattice. On the other hand,
we have the S-semilattice of B, that is also distributive. Let us define the map
g : CIU (X) — M(B), such that for any non-empty U C* B:

g(U) = {¥s(U) : U U} = Isl).

THEOREM 5.1.47. Let (X,7,B) be an S-Priestley space. The map g is an
isomorphism between CAUS? (X) and M(B).

PRrROOF. Injectivity of g follows from Corollary 5.1.44 and surjectivity follows
immediately from the definition of the S-semilattice of B. Finally, meets are pre-
served, since g(NUNV) = IsUUV) = dsU)NIs(V) = g(NU)Ng(NV),
and g(X) = g({X}) = ¥B(X) = Opg(B), that recall that is the top element of
M(B). O

Summarizing, we have that for any (X, 7,B) S-Priestley space, (X, 7, <, Xg)
is a generalized Priestley space, whose dual distributive semilattice is isomorphic
to M(B). Table 4 collects all these results. Recall that when the algebra A has a
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TABLE 4. Priestley duality for S-algebras — Summary.

ALGEBRAS | DUAL SPACES

A (Ops(A), 7a, Ua[A])

M(A) (OpA(M(A)), Tr(a), S, Irra (M(A))) = (Opg(A), 7a, S, Iirs(A))
L(M(A)) | (OpA(L(M(A))), TLm(a)): €) = (Ops(A),7a, S)

bottom element, so do M(A) and L(M(A)). In this case, the optimal meet filters
of L(M(A)) are the prime filters defined as usual.

Let (X,7,B) be an S-Priestley space. By Priestley duality for distributive
semilattices we know that for any P € Op,(COUSE (X)) there is € X such that
P ={U ecis (X):x €U} Then we can translate this and obtain that for any
P € Op,(M(B)) there is € X such that P = {U € M(B) : z € U}. We use this
fact to prove that the map ¢ : X — PT(B) is onto Opg(B).

PROPOSITION 5.1.48. Let (X, 7,B) be an S-Priestley space. Then the map
¢: X — PY(B) is onto Opg(B).

PrOOF. Let P be an optimal S-filter of B. Then by Proposition 4.5.13,
[P)as) 1s an optimal meet filter of M(B). By Priestley duality for distributive
semilattices, there is ¢ € X such that [P)y;g) = {U € M(B) : € U}. Then by
Proposition 4.5.5, P = [P)y )N B ={U € B:x € U} = {(x). O

COROLLARY 5.1.49. Let (X, 7,B) be an S-Priestley space. Then & is an order
homeomorphism between ordered topological spaces (X, ,<) and (Opg(B),8,C).

PrOOF. Notice that for all x € X and all U € B we have: x € U if and only if
U € &(z) if and only if £(x) € Ig(U). Thus £~ 1[¥g(U)] = U and moreover:

€ T s(U)Y] iff &(x) €vp(U)° iff U¢é(x) iff xeUS

Therefore £~ [¥p(U)¢] = U°. From condition (Prl) it follows that & is order pre-
serving. As ¢ is one-to-one, onto (Proposition 5.1.48), and its inverse sends subbasic
opens of (Opg(B), 78) to subbasic opens of (X, 7), we conclude that £ is an homeo-
morphism, as required (notice that we use that inverse map preserve intersections,
so the previous condition implies that the inverse of ¢ sends basic opens to basic
opeuns). O

COROLLARY 5.1.50. Let X = (X, 7,B) be an S-Priestley space. Then the struc-
ture (Opg(B), 78, 9B[B]) is an S-Priestley space such that (X, T) and (Opg(B), 8)
are homeomorphic topological spaces by means of the map &x : X — Opg(B), that
moreover is an order isomorphism between (X, <) and (Opg(B),C). Furthermore
B and 9g[B] are isomorphic S-algebras by means of the map 9 : B — Y¥B[B].

Previous corollary together with Corollary 5.1.33 summarize all preceding re-
sults, and should be kept in mind for § 5.2 and § 5.3, where the duality for morphisms
is studied, and the functors involved are defined.
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5.2. Duality for morphisms

In the present section we use the results from Chapter 4 and from §5.1 to
present two dual correspondences between algebraic homomorphisms between S-
algebras and certain classes of relations between S-Spectral spaces and S-Priestley
spaces. The approach for the Spectral-like duality is similar to that by Celani et al.
in [15]. For the Priestley-style duality, we follow the same line as Bezhanishvili and
Jansana follow in [5]. Let us begin with a basic fact concerning algebraic homo-
morphisms and S-filters that is used later on. A proof can be found in Proposition
1.19 in [35].

LEMMA 5.2.1. Let § be a logic, let Ay and Ay be S-algebras and let h €
Hom(A1, As) be an algebraic homomorphism between them. Then for any S-filter
F of Ay, h™1[F] is an S-filter of A;.

From now on let S be a finitary congruential logic with theorems, let A; and
A, be S-algebras and let h € Hom(A;, As) be a homomorphism between them.
We define a binary relation R, C Opg(Az) x Opg(Ay) by:

(P,Q) € Ry, iff W '[P]CQ.

We denote the restriction of Ry, to Irrs(As) x Irrs(Ay) by Rj,. These are the
relations that we use to represent h. Recall that for the relation Rj, we may consider
the function Og, : P(Opg(A1)) — P(Opg(Az)) given by:

Or, (U) :={Q € Ops(Az) : Ru(Q) C U}
Similarly, for Rj,, the restriction of Ry to Irrs(As) x Irrs(A;), we may consider
the function O, : P(Irrs(A1)) — P(Irrs(Az)) given by:

Dﬁh(U) = {Q S IIYS(AQ) Eh(Q) - U}

Let us examine in detail the properties of the relations Rj, and Rj,. Notice that,
for convenience, we denote by ¥; and 1; the maps ¥, and 94, respectively.

PROPOSITION 5.2.2. Let S be a finitary congruential logic with theorems, let
A, and As be S-algebras and let h € Hom(A 1, As). For alla € Ay:
(1) Rﬁi(ﬁl(a)c) = Ua(h(a))*.
(2) Ry, (1(a)®) = 2(h(a))*.
PRrROOF. For (1), first we show that R, '(d;(a)) C ¥a(h(a))¢, so we take
P € Opg(Az) be such that P € R; ' (91(a)¢), i.e. h~1[P] C Q for some Q ¢ ¥ (a).
Then from a ¢ Q we get a ¢ h™'[P], i.e. h(a) ¢ P so P € ¥3(h(a))°. For the
converse, let P € J5(h(a)), i.e. a ¢ h™'[P]. As P is an S-filter of Ay, by Lemma
5.2.1 we know that h=![P] is an S-filter of A;. Then by Corollary 4.4.6 there is an
optimal S-filter Q of A; such that a ¢ Q@ O h™![P]. So we have Q € ¥1(a)® and
Q € Ry,(P), hence P € R, ' (91 (a)®).
(2) The proof is similar to that of item (1), using Corollary 4.4.2 instead of
Corollary 4.4.6. O

PROPOSITION 5.2.3. Let § be a finitary congruential logic with theorems, let
A, and As be S-algebras and let h € Hom(A 1, As). For alla € A;:

(1) Og,, (91(a)) = D2(h(a)).
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(2) Og, W1(a)) = ¢2(h(a)).

PRrROOF. (1) First we show that Og, (¢1(a)) C ¥2(h(a)), so let P € Og, (V1(a)),
i.e. Rp(P) C ¥1(a). Suppose, towards a contradiction, that P ¢ ¥2(h(a)). Then by
item (1) of Proposition 5.2.2 we get that P € R;, '(91(a)°), so there is Q € Ry (P)
such that @ ¢ ¥1(a), a contradiction. For the converse, let P € ¥5(h(a)), so
a € h='[P]. Then for any Q € Ry, (P), from h~1[P] C Q and the hypothesis we get
a € @, i.e. Q@ € Y1(a). This implies that Ry(P) C ¥1(a), i.e. P € Og, (¥1(a)), as
required.

(2) The proof is similar to that of item (1), using item (2) of Proposition 5.2.2
instead of item (1). O

Notice that in the statement of the next corollary, by ‘O, € Hom(¥[A1], ¥2[A2])’
we mean that the restriction of the function Op, to ¥1[A4;] is an homomorphism
from 91[A1] to ¥2[As]. Similarly for ‘Oz, € Hom(¢1[A1],2[Az])". We keep using
this abuse of notation, but we should retain in mind what it refers to.

COROLLARY 5.2.4. Let S be a finitary congruential logic with theorems, let A;
and Ay be S-algebras and let h € Hom(Aq, As). Then:

(1) DRh, S HOHI(Q91[A1],192[A2]),
(2) Og, € Hom(y1[A1], ¢2[A2]).

PROOF. (1) Let f be an n-ary connective of the language and let a; € A; for
any i < n. We have to show that Op, (71141191 (a1),...,91(as)) is equal to

fﬁZ[Aﬂ(DRh (191(0‘1))7 EER) DRh (ﬁl(an)))

Using the definition of 9¥1[A1] and ¥3[As], item (1) in Proposition 5.2.3, and the
fact that h is a homomorphism between A; and As, we get:
Or, (f712 (@1 (1), 01(an))) = Or, (01 (fA (a1, -+, an)))
= V2(h(f* (a1, ..., an)))
= V2(f22(h(ar), ..., h(an)))
= fﬂQ[AQ](%(h(al)) D2 (h(an)))
= A (OR, (91(a )) - Oy, (V1(an)))-

(2) The proof is similar to that of item (1), using the definition of ¢1[A;] and
12[As], and item (2) in Proposition 5.2.3 instead of item (1). O

Aiy. ..

Notice that Corollary 5.2.4 gives us two analogous representation theorems for
h, that hold for any finitary congruential logic, not necessarily a filter distributive
one. However, for getting a full duality between morphisms, we should assume
additionally filter-distributivity of the logic. In the following subsections, we discuss
first the Spectral-dual morphisms of homomorphisms between S-algebras, and then
the Priestley-dual morphisms. In both cases, we prove the facts that motivate the
definition of the dual morphisms before introducing such definition.
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5.2.1. Spectral-like dual morphisms. Assume that S is a filter distribu-
tive finitary congruential logic with theorems, A; and Ao are two S-algebras, and
h € Hom(A;, Ag) is a homomorphism between them.

PROPOSITION 5.2.5. For any P € Irrs(Asg), Ru(P) is a closed subset of the
space (Irrs (A1), Tia, )-

PROOF. Notice that for any P € Irrs(Az), we have that the subset Ry (P) =
{Q € Irrs(Aq) : h=[P] C Q} coincides with 1 (h~![P]), and since h is an algebraic
homomorphism, by Lemma 5.2.1 we get that h~![P] is an S-filter of A;. Then by
Proposition 5.1.6 we conclude that Ry, (P) is closed subset of (Irrg(Ay), Tra,)r U

We introduce now the definition of the morphisms between S-Spectral spaces,
that are the Spectral-dual morphisms of homomorphisms between S-algebras.

DEFINITION 5.2.6. Let X7 = (X1,B1) and X2 = (X3,Bs) be two S-Spectral
spaces. A relation R C X; x X5 is an S-Spectral morphism when:
(SpRl) Ogr € Hom(Bg,Bl),
(SpR2) R(z) is a closed subset of (X2, 7, ) for all z € X;.

Notice that for any S-Spectral morphism R C X; x X5 between S-Spectral
spaces X1 and Xo, we have that for all U € Bs:

RY U ) ={reX,:y¢U (x,y) € R} ={r € X;:R(z) LU} = (Or(U))".

COROLLARY 5.2.7. Let S be a filter distributive finitary congruential logic with
theorems, let A1 and Ay be S-algebras and let h € Hom(A1, As). Then Ry, is an
S-Spectral morphism between S-Spectral spaces Jrrs(As) and Jrrs(Ayq).

ProOF. (SpR1) follows from Corollary 5.2.4 and (SpR2) follows from Propo-
sition 5.2.5. 0

PROPOSITION 5.2.8. For any S-Spectral space X = (X, B), the order associated
with the S-referential algebra (X,B) is an S-Spectral morphism.

PROOF. Recall that we denote by < the order associated with the S-referential
algebra (X, B), that coincides with the dual of the specialization order of the space
(X, Tiy)- Therefore, for all z € X, o = cl(z), which is a closed subset of (X, 7., ),
hence condition (SpR2) is satisfied by <. Notice also that O<(Y) ={z € X : 1z C
Y}. As the elements of B are closed subsets of (X,7,,), they are up-sets with
respect to the order <, so for all U € B, O<(U) = U. Therefore O< is the identity
map from B to B, and so O< € Hom(B,B) and condition (SpR1) is also satisfied
by <. Hence the relation < C X x X is an S-Spectral morphism. [

5.2.2. Priestley-style dual morphisms. Assume that S is a filter distri-
butive finitary congruential logic with theorems, A; and A, are two S-algebras,
and h € Hom(A1, Ay) is a homomorphism between them.

PROPOSITION 5.2.9. For any P € Opg(Az) and Q € Opg(A;) such that
(P,Q) ¢ Ry, there is a € Ay such that Q ¢ ¥(a) and Ry, C ¥(a).

PrROOF. From (P,Q) ¢ Rj, we get h™'[P] ¢ Q, so there is a € A such that
a € h™1[P] and a ¢ Q. This implies that @ ¢ ¥(a) and for all Q" € Opg(A;) such
that (P,Q’) € Ry, a € Q. Therefore Ry(P) C ¥(a) and we are done. O
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We introduce now the definition of the morphisms between S-Priestley spaces,
that are the Priestley-dual morphisms of homomorphisms between S-algebras.

DEFINITION 5.2.10. Let X; = <X1,’7’1,B1> and Xy = <X2,’7'2,B2> be two S-
Priestley spaces. A relation R C Xy x X5 is an S-Priestley morphism when:
(PrR1) Or € Hom(B3, By),
(PrR2) if (z,y) ¢ R, then there is U € By such that y ¢ U and R(z) C U.

COROLLARY 5.2.11. Let S be a filter distributive finitary congruential logic with
theorems, let A1 and Ay be S-algebras and let h € Hom(A1, As). Then Ry is an
S-Priestley morphism between S-Priestley spaces Ops(Aa) and Ops(Ay).

Proor. (PrR1) follows from Corollary 5.2.4 and (PrR2) follows from Propo-
sition 5.2.9. g

Recall that in Theorem 5.1.41 we proved that for any S-Priestley space (X, 7, B),
the structure (X, 7, <, X ) is a generalized Priestley space. Analogously, in the next
theorem we show how S-Priestley morphisms and generalized Priestley morphisms
are related:

THEOREM 5.2.12. Let R C X7 X X5 be an S-Priestley morphism between S-
Priestley spaces X1 and Xo. Then R is a generalized Priestley morphism between
generalized Priestley spaces (X1,71,<1,Xp,) and (X2, 72, <o, Xp,).

PROOF. We just need to check that condition (DSR3) holds, as (DSR4) follows
directly from (PrR2) and Proposition 5.1.39. So let U € Cfug(i? (X2). By Propo-
sition 5.1.40 there are Uy, ...,U, € By such that U = UyN---NU,. Then we have
that Op(U) ={x € X : R(z) CUyN---NU,} =0r(U)N---NOg(U,). And then
by (PrR1) and Proposition 5.1.39, Or(U) € Céuf(il (X1), as required. O

PROPOSITION 5.2.13. For any S-Priestley space X = (X, 7,B), the order asso-
ciated with the S-referential algebra (X, B) is an S-Spectral morphism.

PrOOF. Recall that we denote the order associated with the S-referential alge-
bra (X,B) by <. As the referential algebra is reduced, for any xz,y € X such that
z % y, there is U € B such that € U and y ¢ U. Moreover, as B is a family of
clopen up-sets, for every z € Tz we get z € U. Therefore Tz C U, hence condition
(PrR2) is satisfied by <. Notice also that O<(Y) = {x € X : tz C Y}. As the
elements of B are up-sets with respect to <, for all U € B we have O<(U) = U.
Therefore O< is the identity map from B to B, and so O< € Hom(B, B) and condi-
tion (SpR1) is also satisfied by <. Hence the relation < C X x X is an S-Priestley
morphism. O

5.3. Categorical dualities

In the present section we conclude the presentation of the dualities, by showing
the functors and the natural transformations involved in them. From now on,
let S be a filter distributive finitary congruential logic with theorems. Clearly
S-algebras and homomorphisms between them form a category, that we denote by
AlgS. Before proving the two categorical dualities for AlgS, we need to show that
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S-Spectral spaces and S-Spectral morphisms form a category, and that S-Priestley
spaces and S-Priestley morphisms form a category as well.

THEOREM 5.3.1. Let X1 = <X1,B1>, X, = <X2,B2> and xg = <X3,B3> be
S-Spectral spaces and let R C X1 X Xo and S C X5 x X3 be S-Spectral morphisms.
Then:

(1) The S-Spectral morphism <5 C Xo x Xy satisfies:
<s0R=Rand So <y =075,
(2) So R C X1 x X3 is an S-Spectral morphism.

ProOF. (1) By (SpR2), R(z) is closed subset of (X2, 7y, ) for any z € Xi. As
closed subsets are up-sets with respect to <o (the dual of the specialization order),
it follows that <, 0 R = R.

Let us show that So <y = 5. Let <5 y and (y, z) € S, and suppose, towards
a contradiction, that 2 ¢ S(z). Then by {V¢:V € Bs} being a basis for (X3, 7,y )
(condition (Sp3)), there is V' € By such that z € V¢ and S(xz) N V¢ = ). Then we
have S(z) C V, so x € Og(V). Moreover, as Og(V) € By (by condition (SpR1)),
it follows that y € Og(V), and therefore S(y) C V. Then by assumption, from
(y,z) € S we get z € V, a contradiction. This proves that S o <5 C S. The other
inclusion is immediate.

(2) Tt is easy to see that Ogog = Or oOg. Therefore, since Og € Hom (B3, Bo)
and O € Hom(B3,B1), we conclude that Ogor € Hom(B3,B1), and then condi-
tion (SpR1) is satisfied by S o R.

We prove that condition (SpR2) is also satisfied by S o R. Let y € X3 and
x € X3 be such that y ¢ (S o R)(x). We show that there is V' € Bs such that
y € V¢ and V¢N(So R)(x) = 0. This implies, by kx, = {V¢:V € B3} being a
basis, that (S o R)(z) is a closed subset of (X3, 7, )-

Notice that for any z € R(x), y ¢ S(z). By condition (SpR2) on (X3, B3), S(z)
is closed. And then by (Sp3), there is V, € Bs such that y € V¢ and S(z) C V,, so
z € Og(V,). This implies that:

R(z) N[ {Os(V)°:y € VE € kg, } = 0.

Now as rx, is a basis for (X3, 7y,,), the set {V°:y € V¢ € rx,} is down-directed,
and then so is the set {Og(V)¢ : y € V¢ € kx,}. Then by Theorem 5.1.20, we
conclude that there is V¢ € kx, such that y € V¢ and R(z)NOg(V)c = 0, i.e.
R(x) € Og(V). This implies that x € Og o Og(V) = Ogor(V) so (So R)(x) CV,
as required. [

COROLLARY 5.3.2. S§-Spectral spaces and S-Spectral morphisms form a cate-
gory.

ProOF. For an S-Spectral space X, Proposition 5.2.8 shows that the order <x
defined on X is an S-Spectral morphism. Then by item (1) in Theorem 5.3.1, <x is
the identity morphism for X. By item (2) in Theorem 5.3.1, relational composition
works as composition between S-Spectral morphisms. (]

For the Priestley-style category, we obtain similar results, except that set-
theoretic relational composition does not work as composition in the new category,
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but we have to define a new composition between S-Priestley morphisms. For
S-Priestley spaces X1, X2 and X3 and S-Priestley morphisms R C X; x X5 and
S C Xo x X3, let (S*R) C X; x X3 be the relation given by:

(z,2) € (S« R) iff VU € Bs(ifx € Ogo0g(U), then z € U)
iff VU € Bs(if (SoR)(x) CU, then z € U).

Notice that from the definition of x it follows that Ug.r) = Ur o Us.

THEOREM 5.3.3. Let (X1,71,B1), (X2,7,Ba) and (X3,73,B3) be S-Priestley
spaces and let R C X1 X Xy and S C Xo x X3 be S-Priestley morphisms. Then:

(1) The S-Priestley morphism <o C Xo x Xo satisfies:
<s0R=Rand So<y; =275,
(2) (S*R)C X1 x X3 is an S-Priestley morphism.

PROOF. (1) First we show that <o 0o R = R. Let y € R(z) and y <5 2, and
suppose, towards a contradiction, that z ¢ R(z). By (PrR2) there is U € By such
that R(z) C U and z ¢ U. Then by assumption y € U, and since U is an up-set,
we get z € U, a contradiction. Hence we have <5 0 R C R. The other inclusion is
immediate.

Now we show that S o<y = S. Let x <3 y and z € S(y), and suppose,
towards a contradiction, that z ¢ S(z). By (PrR2) again, there is U € Bjs such
that S(z) C U and z ¢ U. Then we have x € Og(U) and by (PrR1) we get
Os(U) € Bs. In particular Og(U) is an up-set, thus y € Og(U). Then S(y) C U,
and therefore z € U, a contradiction. Hence we have S o <o = S. The other
inclusion is immediate.

(2) Conditions (PrR1) and (PrR2) follow easily from the definition of x. O

COROLLARY 5.3.4. S-Priestley spaces and S-Priestley morphisms form a cat-
egory.

PrOOF. For an S-Priestley space X, Proposition 5.2.13 shows that the order
<x defined on X is an S-Priestley morphism. We claim that for any S-Priestley
spaces (X1,71,B1) and (X3, 72, Ba), and S-Priestley morphism R C X7 x Xa, we
have <5 0 R = <4 x R. The inclusion from left to right follow by definition. From
the other inclusion, let (z, z) € (<2 * R) and suppose, towards a contradiction that
(x,z) ¢ <g0R. By item (1) in Theorem 5.3.3 we know that <, o R = R, and then
from the hypothesis and (Pr2), there is U € Bs such that R(z) C U and z ¢ U.
But since (<3 0 R)(x) = R(z), we conclude (z,z) ¢ (<2 x R), a contradiction.

Hence by item (1) in Theorem 5.3.3 we obtain that <y is the identity morphism
for X. By item (2) in Theorem 5.3.3, composition of S-Priestley morphisms is given
by * (associativity of * follows easily). O

For any filter distributive finitary congruential logic with theorems S, let SpS
be the category of S-Spectral spaces and S-Spectral morphisms, and let PrS be
the category of S-Priestley spaces and S-Priestley morphisms. We summarize in
Table 5 all the categories so far considered.
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TABLE 5. Categories involved in the dualities for S a filter distri-
butive finitary congruential logic with theorems.

CATEGORY | OBJECTS MORPHISMS

AlgS S-algebras algebraic homomorphisms

SpS S-Spectral spaces | S-Spectral morphisms

PrS S-Priestley spaces | S-Priestley morphisms (comp *)

Once we have defined the categories, we need to build the contravariant functors
and the natural isomorphisms involved in the dualities. Let us examine first the
Spectral-like duality, and then we move to the Priestley-style duality.

5.3.1. Spectral-like duality. Let us start with the functors for the Spectral-
like duality. On the one hand, we consider the functor Jrrg : AlgS — SpS such
that for any S-algebras A, A;, A; and any h € Hom(Aq, As):

Jrrs(A) = (Irrs(A), ¥aA]),
Jrrs(h) == Ry, C Iirg(Ag) x Irrs(Ay).

Recall that a topology 7., is defined on Irrs(A), taking Ka := {¥a(a)® : a € A}
as a basis, for A : A — PT(Irrs(A)) given by 1a(a) := {P € Irrg(A) : a € P}.
And by definition (P, Q) € Ry, if and only if h=1[P] C Q.

Clearly, for ida : A — A, the identity morphism for A in AlgS, we obtain
Riq, = C, and this is precisely the identity morphism for Jrrs(A) in SpS. More-
over, it follows from from definition that for S-algebras A;, As and A3 and homo-
morphisms f € Hom(A1, A,) and g € Hom(As, A3), Ryof = Ry o R,. Therefore,
by corollaries 5.1.11 and 5.2.7, the functor Jrrg is well defined.

On the other hand, we consider the functor ()* : SpS — AlgS such that for
any S-Spectral spaces X, X1, X5 and any S-Spectral morphism R C X; x Xa:

X" :=B,
R* = DR : BQ — Bl.

We recall that for all U € By, Or(U) :={z € X; : R(z) CU}. For <x C X x X,
the identity morphism for X in SpS, U<x = idm, that is precisely the identity
morphism for B in AlgS. Moreover, it follows by definition that for S-Spectral
spaces X1, X9 and X3, and S-Spectral morphisms R C X7 X Xg and S C X5 X
X3, Osor = Ogi o Og. Therefore, by Remark 4.2.1 and definition of S-Spectral
morphism, the functor ( )* is well defined.

In order to complete the duality, we need to define two natural isomorphisms,
one between the identity functor on AlgS and (Jrrs())*, and the other between
the identity functor on SpS and Jrrg(( )*). Consider first the family of morphisms
in AlgS:

Us = (wA A — ¢A[A])A6Alg8

THEOREM 5.3.5. Vs is a natural isomorphism between the identity functor on
AlgS and (Jrrs())*.
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PROOF. Let A1, Ay be S-algebras and let h € Hom(A;, Az). We prove that
Og, oc¢1 =20 h. For a € A; and P € Og, (¢1(a)), we have R,(P) C 91(a). It
follows that h(a) € P, so, P € 12(h(a)). For P’ € 12(h(a)), we have h(a) € P'. It
follows that Ry (P’) C v1(a), so P’ € O, (¥1(a)).

From this we have that Ug is a natural transformation, and since for any
S-algebra A, we have that 1 is an isomorphism from A to 1a[A], we conclude
that U is a natural isomorphism. (I

Clearly, what we have is that for any S-algebras A; and As and any homo-
morphism i € Hom(A1, Az), the following diagram commutes:

Ay =2 (A4

hl imm

A T> o [Az]

2

Before stating the other natural isomorphism, we need to do some work. Re-
call that for any S-Spectral space X = (X, B), we proved that the function ex :
X — Irrs(B) is a homeomorphism between topological spaces (X,7,,) and
(Irrs(B), kg ). This map encodes the natural isomorphism we are looking for,
but since morphisms in SpS are relations, we need to give a relation associated
with this map. We define the relation Ex C X x Irrg(B) given by:

PROPOSITION 5.3.6. Ex is an S-Spectral morphism.

PrOOF. We have to show that Og, € Hom(yg[B],B). Notice that for all
B (b) € ¥B[B], we have:

Op, (WB(0) = {z € X :Vy € X((z,ex(y)) € Ex = ex(y) € ¥B(b))}
={zreX:VyeX(ex(z) Cex(y) = beex(y))}
={reX:becex(x)} =0

Therefore O, = ¢g'. And since B and ¢g[B] are isomorphic S-algebras by means
of the map ¢, it follows that Og, € Hom(yg[B],B). This proves that condition
(SpR1) is satisfied by Ex. Moreover, this also proves that Ex is an isomorphism
in the category SpS.

Notice that for each x € X, we have Ex(z) = tex(z) = cl(ex(z)), which is a
principal up-set of (Irrs(B), C), and so a closed subset of (Irrs(B), 7y ). Therefore
condition (SpR2) is also satisfied by Ex. O

Consider the family of morphisms in SpS:
Ys = (Ex CX x IrrS(B))xeSpS

THEOREM 5.3.7. Xs is a natural transformation between the identity functor
on SpS and Jrrs(()*).
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PrOOF. Let X; = (X1,B1) and X3 = (X5,B3) be two S-Spectral spaces and
let R C X3 x X5 be an S-Spectral morphism. For convenience, we denote x, and
€x, by €1 and ¢4 respectively. First we show that:

(r,y) € R iff (e1(),e2(y)) € Ry,

Let first x € X; and y € X5 be such that (z,y) € R and let U € By. Notice
that we have:

UecOgp'ei(n)] iff Or(U)€ei(x) if xe€Og(U) iff R(z)CU.

Thus if U € Op'[e1(z)], then R(z) C U, and since (z,y) € R, we obtain y € U, i.e.
U € e2(y), and therefore (e (x e2(y)) € Rp,,. For the converse, let z € X; and
y € Xo be such that (e1(x),e2(y)) € Ro, and suppose, towards a contradiction,
that y ¢ R(z). Since R is an S Spectral morphism, R(x) is closed, so there is
V € By such that y € V¢ and V¢ N R(xz) = 0. Then R(z) CV, so xz € Ur(V), and
then Og(V) € e1(x). Thus by hypothesis V' € e2(y), so y € V, a contradiction.
The equivalence that we just proved implies that R roFx, = Ex,oR. Thus
Y5 is a natural equivalence. Moreover, as Ex is an isomorphism for each S-Spectral

space X, then X is a natural isomorphism in SpS. O

THEOREM 5.3.8. The categories AlgS and SpS are dually equivalent by means
of the contravariant functors Jrrs and ()* and the natural equivalences Vs and
3s.

5.3.2. Priestley-style duality. Let us move now to the other duality. We
begin by considering the functors involved on it. On the one hand, we consider the
functor Ops : AlgS — PrS such that for any S-algebras A, A; and A, and any
homomorphism h € Hom(A;, Asy):

DPS(A) = <OpS(A),TA,19[A]>,
Ops(h) := Rn € Opg(Az) x Opg(Ay).

Recall that the topology T4 is defined taking {¥a(a) :a € A} U{da(b)°: b€ A} as
a subbasis, for 94 : A — PT(Opg(A)) given by Ja(a) := {P € Opg(A) : a € P}.
By definition (P,Q) € Ry, if and only if = 1[P] C Q.

Clearly, for ida : A — A, the identity morphism for A in AlgS, we get
Rig, = C, and this is exactly the identity morphism for Ops(A) in PrS. Moreover,
it follows from definition that for S-algebras A, As and A3 and homomorphisms
f € Hom(A1,Az) and ¢ € Hom(Ag, A3), Ryof = Ry * Ry. Therefore, using
corollaries 5.1.33 and 5.2.11, we conclude that the functor Ops is well defined.

On the other hand, we consider the functor ( )* : PrS — AlgS such that for
any S-Priestley spaces X, X1, X2 and any S-Priestley morphism R C X; x Xs:

X* =B,

R*® = Ugr: B — Bj.
We recall that for all U € By, Or(U) := {z € X; : R(x) C U}. Clearly, for
<x € X x X, the identity morphism for X in PrS, U<, = idg, that is the identity

morphism for B in AlgS. Moreover, it follows by definition that for any S-Priestley
spaces X1, X5 and X3, and any S-Priestley morphisms R C X; x X5 and S C
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X5 x X3, we have Og,g = Ug o Og. Therefore, by Remark 4.2.1 and definition of
S-Priestley morphism, the functor ()* is also well defined.

In order to complete the duality, we need to define two natural isomorphisms,
the one between the identity functor on AlgS and (Ops( ))®, and the other between
the identity functor on PrS and Ops(()®). Consider first the family of morphisms
in AlgS:

Os: (VA : A — Ya[A])Acaigs

THEOREM 5.3.9. Og is a natural isomorphism between the identity functor on
AlgS and (Ops())®.

PROOF. Let A1, Ay € AlgS and let h € Hom(A1, As). It is enough to show
that Og, o1 =Yz 0h. For a € A; and P € Og, (Y¥1(a)), we have Ry, (P) C ¥1(a).
It follows that h(a) € P, so P € ¥3(h(a)). For P’ € ¥3(h(a)), we have h(a) € P'.
It follows that Ry, (P’) C ¥1(a), so P’ € Og, (¥1(a)).

From this we have that Og is a natural transformation, and since ¥; is an
isomorphism from A; to 9¥1[A4], we conclude that ©g is a natural isomorphism. O

In other words, we have that for any S-algebras A; and A, and any homomor-
phism h € Hom(A1, Ay), the following diagram commutes:

Before formulating the other natural isomorphism, we need again to do some
work. Recall that for any S-Priestley space X = (X, 7,B), we define the map
&x : X — Opg(B) that is a homeomorphism between topological spaces (X, T)
and (Opg(B), ). This map encodes the natural isomorphism we are looking for,
but since morphisms in PrS are relations, we need to give a relation associated with
this map. We define the relation Tx C X x Opg(B) given by:

ProproOSITION 5.3.10. T% is an S-Priestley morphism.
PROOF. We have to show that Or, € Hom(d¥g[B],B). Notice that for all
9B (b) € I[B], we have:

Or, (98(0) = {z € X : Vy € X((2,€x(y)) € Tx = &x(y) € ¥B(D))}
={reX: :VyeX(tx(r) Céxly) = beéx(y))}
={reX:bet(x)} =0

Therefore O, = ¥5". And since B and g [B] are isomorphic S-algebras by means
of the map 9p, it follows that Op, € Hom(dg[B],B). This proves that condition
(PrR1) is satisfied by Tx. Moreover, this also proves that T% is an isomorphism of
PrS.

We show now that condition (PrR2) is also satisfied by Tx. Notice that for
each z € X, we have Tx(x) = 7¢x(z). Let z € X and P € Opg(B) be such that
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(x,P) ¢ Tx. We have to show that there is U € B such that P ¢ Jg(U) and
Tx(z) C ¥g(U). By definition of Tk, we have that {x(x) € P, so there is U € B
such that U € x(z) and U ¢ P. Hence P ¢ 9g(U) and {x(x) € Yg(U). Now since
Tx(x) = 1€x(z), we obtain that Tx(x) C 9g(U), as required. O

Consider now the family of morphisms in PrS:

Es = (Tx € X x Ops(B)) xcprs

THEOREM 5.3.11. Egs is a natural transformation between the identity functor
on PrS and Ops(()*).

PRrROOF. Let X1 = (X1, 71, B1) and X3 = (X3, 72, B2) be two S-Priestley spaces
and let R C X; x X3 be an S-Priestley morphism. For convenience, we denote {x,
and £x, by & and & respectively. First we show that:

(QT,y) e R iff (fl(w)a€2(y>) € RDR'

Let z € X; and y € X5 be such that (x,y) € R, and let U € By. Notice that
we have:

UeOgp'(x)] iff Or(U)€&i(z) iff zeOpU) iff R(x)CU.

Thus if U € Oz'[&(2)], then R(z) C U, and since (z,y) € R, we obtain y € U, i.e.
U € &(y), and therefore (&1(x), &2(y)) € Ro,. For the converse, let € X1,y € X5
be such (& (z),&2(y)) € Ro, and suppose, towards a contradiction, that y ¢ R(z).
Since R is an S-Priestley morphism, by (PrR1), there is U € By such that y ¢ U
and R(z) C U. From previous equivalences we obtain U € O071[¢;(z)]. But then
from the hypothesis U € & (y), so y € U, a contradiction.

The equivalence that we just proved implies that Ro, 1%, = Tx,*R. Thus Zs
is a natural equivalence. Moreover, as Ty is an isomorphism for each S-Priestley
space X, then =5 is a natural isomorphism in PrS. d

THEOREM 5.3.12. The categories AlgS and PrS are dually equivalent by means
of the contravariant functors Ops and ()® and the natural equivalences Os and

=s.

5.4. Comparison with another duality for congruential logics

As it was already mentioned in §4.2, the back and forth correspondences
between objects that underly our dualities are two particular cases of a more ge-
neral correspondence, that can be formulated for any selfextensional logic. In [56]
Jansana and Palmigiano pointed out that this general correspondence serves as
a general template where a wide range of Stone/Priestley dualities related with
concrete logics can fit. The theory we developed in the present chapter consisted
precisely in making this assertion more precise, by showing how such dualities do
fit in such general correspondence. We emphasize that we are indebted with the
work in [56], because it served as an inspiration and as an starting point of our
theory.

In [56] a different case of such general correspondence is also studied, and it
is used to characterize the congruential logics among the selfextensional ones, as
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those logics S for which AlgS is dually equivalent to the category PRAs. From now
on, let § be a congruential logic.

We recall that an S-referential algebra X = (X, B) is perfect (see definition in
Section 5.1 in [56]) when:

(P1) (X, =) is a complete lattice, where = is the quasiorder associated with the
referential algebra,

(P2) for all U U{V} C B, if YU C V, then V € CB(U),

(P3) BC {fz:z € X},

(P4) {z: 1tz € B} is join-dense in X.

Notice that for any S-algebra A, Fig(A) is trivially a closure base for C?. So
results in § 4.3 can be applied for F = Fig(A). In particular, we have that the map
©Fis(a) is an isomorphism between algebras A and ¢pis(a)[A], and by Theorem
4.3.9, it follows that (Fis(A), ppig(a)[A]) is a reduced S-referential algebra. And
then it is easy to prove (see Lemma 5.5 in [56]) that (Fis(A),origa)[A]) is a
perfect S-referential algebra.

This is the definition of the dual space of S-algebras, for any S a congruential
logic. Notice that in this general case, no topology is considered. It is precisely
the assumption of finitarity, what enables us to topologize the dual space. This is
what it was done in Section 5.2 in [56], where the previous correspondence between
objects is specialized for the case when S is a finitary congruential logic. In this
case, we have that an S-referential algebra X = (X, B) is f-perfect when:!

(Pf1) (X, <) is an algebraic lattice, where < is the quasiorder associated with
the referential algebra,

(Pr2) for all HU{V} C¥ B, if U C V, then V € CB(U),

(Pr3’) BU{U*:U € B} is a subbasis for a topology 7 on X such that (X, 7, <)
is a Priestley space,

(Pf3) BC {tx € CU(X) : xz € K(X)},

(P4) {z: 1tz € B} is join-dense in X.

Recall that K(X) denotes the collection of compact subsets of X and Cl(X)
the collection of clopen subsets of X. Notice that there are some similarities be-
tween the previous definition and the definition of S-Priestley space (for a clearer
comparison, take into account the characterization of S-Priestley spaces given in
Corollary 5.1.38 in page 86), but the comparison does not go further. The approach
in [56] regarding morphisms differs substantially from ours. A morphism between
perfect S-referential algebras (X1,B1) and (X5, Bs) is a map h : X3 — X such
that h=' : By — B; is a homomorphism between S-algebras By and B;.

Recall that we remarked in Lemma 5.2.1 that it is a well-known fact that for
any logic S, and any homomorphism between S-algebras h € Hom(A1, As), the
set h™1[F] is an S-filter of A; for all F € Fis(Ay). Then it is easy to prove
(see Proposition 4.3 in [56]) that h~! is a morphism between S-referential algebras
(Fis(Az2), p2[Az]) and (Fis(A1), ¢1[A1]), in the sense defined above.

We have just reviewed the definition of the dual morphisms of homomorphisms
between S-algebras, for any (finitary) congruential logic S. Notice that there is a

IThis is defined in Theorem 5.11 in [56], although no name is given for such structures.
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fundamental difference between this approach and ours, as in [56] duals of homo-
morphisms are maps, whereas we need to consider relations, instead of maps. This
is because we do not have in general that the inverse image of an optimal (resp.
irreducible) S-filter by a homomorphism between S-algebras is an optimal (resp.
irreducible) S-filter. But the correspondence between morphisms is, in essence, the
same in both approaches.

Finally, for any congruential logic, PRAgs is the category of perfect S-referential
algebras and morphisms between them. Theorem 5.9 in [56] states that for any
congruential logic S, AlgS and PRAg are dually equivalent. This duality is clearly
less restrictive than ours, since it applies for any congruential logic, but it is not
connected so directly with the various Spectral-like and Priestley-style dualities that
we already mentioned, that indeed follow as particular cases of our general theory,
as we show in Chapter 6. Nevertheless, an indirect connection with Priestley duality
for bounded distributive lattices, Stone duality for bounded distributive lattices and
Stone duality for Boolean algebras with operators is pointed out in [56]. Similar
results follow for our dualities from our work in § 5.5, as it will be pointed out where
appropriate.

5.5. Dual correspondence of some logical properties

In this section we examine how the correspondences between objects presented
in §5.1 can be refined depending on the properties of the logic under consideration.
Recall that in §1.6 we already introduced several abstract properties of logics,
as they are studied within AAL. These properties are particularly interesting for
our purposes, because they may be connected with properties of the consequence
operator associated with the logical filters. In case a good connection exists, we
talk about transfer theorems. Let S be a logic and let ® be one of those properties,
relative to some term. We say that the property ® transfers to every algebra if for
every algebra A (of the same type as S) the closure operator Cé‘ has @ relative to
the same term.

Note that since we do not fix any concrete logical language, we obtain dualities
between categories that both have algebraic nature. This inelegance cannot be
avoided within such abstract program. Nevertheless, it might be dodged when
we fix a concrete logical language and a concrete logic. Some steps towards this
direction are carried out in the Chapter 7, using results from the present section.

In what follows we study, for a given filter distributive finitary congruential logic
with theorems S, which properties of the dual spaces correspond with which prop-
erties of the logic. Given the abstraction of our general approach, we are allowed
to carry out this study in a modular fashion, treating each property independently.
Afterwards we might combine these results, as it is indicated when appropriate.

The following subsections are organized as follows: we treat one by one the
logical properties that we introduced in §1.6. First we examine, for each property
® relative to some term t, the corresponding property of the closure operator C?.
After that we suggest a Spectral-dual and a Priestley-dual of ®. For some of those
properties we obtain moreover that these dual conditions imply the corresponding
property of the logic. Finally we obtain how the term ¢ is represented in each case
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in the referential algebra B. The results for the Spectral-like and for the Priestley-
style dualities are collected in separate tables at the end of the section. Throughout
this section we assume that S is a filter distributive finitary congruential logic with
theorems and A is an S-algebra.

5.5.1. Property of Conjunction. Let S be a logic that satisfies (PC) for
a term p A g. We say that (PC) transfers to every algebra, if for every algebra A
and every a,b € A:
Ca(a N b) = C2(a,b).
It is well known that for any logic, (PC) transfers to every algebra (see page 50
in [35]).

LEMMA 5.5.1. Let A be an S-algebra for a logic S that satisfies (PC), and let
F be an optimal S-base. Then for all a,b € A, pr(a) Npx(b) = ¢x(a A2 D).

PRrOOF. Notice that, since (PC) transfers to every algebra, for all a,b € A we
have C2(a A® b) = C&(a,b). Then we get that for any P € F:

a,bc P iff C&(a,b) C P iff CR(an®b)C P iff an®be P

Now notice that by definition ¢ 7(a) N ¢7(b) = {P € F : a,b € P} and ¢ x(arAb) =
{P e F:an®be P}, so we are done. O

Notice that by associativity of intersection, the previous lemma implies that for
any non-empty B C¥ A, N{¢r(b) : b € B} = or(A\™ B). Recall that we defined
the S-semilattice of A as the closure of px[A] under non-empty finite intersections.
Therefore, if S satisfies (PC), then A and M(A) are isomorphic.

Let us consider first the Spectral-like duality for S-algebras, when S satisfies
(PC). In the proof of the following proposition we use Lemma 5.5.1 when F is
Irrs(A).

PROPOSITION 5.5.2. Let A be an S-algebra for a logic S that satisfies (PC).
For allU C Trrs(A), if U is an open compact subset of (Irrs(A), 74, ), then there
is a € A such that U = ¢ (a)°.

PROOF. If U = (), then U = (1%)° = () and we are done. Since kpo =
{Y(a)® : a € A} is a basis for Irrg(A), for any U open set there is B C A such
that U = J{¢(b)¢ : b € B}. Thus for any non-empty open and compact U,
there are bg,...,b, € A, for some n € w, such that U = ¢(bp)¢ U --- U(h,)¢ =
(¥(bo)N- - -NY(by,))¢. Now we use Lemma 5.5.1, and we get U = (1(bgAA- - -ABb,,))¢,
as required. (I

COROLLARY 5.5.3. Let A be an S-algebra for a logic S that satisfies (PC).
Then the collection of all open compact sets of (Irrs(A), Ty n) s included in K.

From the previous corollary we get the idea that for any S-Spectral space
(X, B), the Spectral-dual of (PC) is the property of kx being the collection of open
compact subsets of the space. Let us check now that this condition is enough for
recovering the conjunction.

PROPOSITION 5.5.4. Let X = (X, B) be an S-Spectral space such that CO(X) =
kx. Then for allU,V € B, CB(U,V)=CBUNV).
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PROOF. First notice that the hypothesis implies that x5 is closed under finite
unions, i.e. B is closed under finite intersections. Now let U,V € B. On the
one hand, notice that CE(U,V) C U NV, since for any z € ((CB(U,V), as
U,V € CB(U,V), then z € U,V and so x € UNV. Then by Corollary 5.1.19 we
have UNV € CB(U, V), and thus CB(UNV) C CE(U, V). On the other hand, from
UNV C U,V weget U,V € CB(UNV), and therefore CB(U, V) CCE(UNV). O

THEOREM 5.5.5. Let S be a logic such that for any S-Spectral space X = (X, B)
it holds that KO(X) = kx. Then S satisfies (PC).

PROOF. Recall that the Lindenbaum-Tarski algebra Fm* = Fm/ =5™ is an
S-algebra, so (Irrs(Fm™), ¢ [Fm”*]) is an S-Spectral space. For any variable p €
F'm, we denote by D its equivalence class in Fm*, i.e. p:= p/ Egm. Let p,q € Var.
By assumption, there is p € F'm such that ¥(p) N ¥ (q) = ¥(p). Moreover, by
Proposition 5.5.4 we have that

os™™ (W@ v @) = C5 (wE) N v @)
Then by Corollary 4.3.7 we obtain CE™"(p,7) = CE™ (5). Recall that by Propo-
sition 2.21 in [35] the projection map is a bilogical morphism, and then we obtain
using Proposition 1.4 in [35] that Cs(p,q) = Cs(p). By structurality of the logic
S, we get that there is a formula p/(p,q) in at most the variables p and ¢ such

that Cs(p,q) = Cs(p'(p,q)). By structurality again we get that for any formulas
3, ;0 € Fm, Cs(0, ) = Cs(p' (9, ). Hence S satisfies (PC) forthe term p'. O

COROLLARY 5.5.6. Let S be a logic. Then S satisfies (PC) if and only if for
any S-Spectral space X = (X,B) it holds that KO(X) = kx.

Let us consider now the Priestley-style duality for S-algebras, when S satisfies
(PC). In the proof of the following proposition we use Lemma 5.5.1 when F is

OPS(A)-

PROPOSITION 5.5.7. Let A be an S-algebra for a logic S that satisfies (PC). For
all U C Opg(A), if U is an Irrs(A)-admissible clopen up-set of (Opg(A), Ta,C),
then there is a € A such that U = 9Y(a).

PrOOF. Let U C Opg(A) be a clopen up-set of (Opg(A),7a,C) such that
max(U¢) C Irrs(A). Then by Proposition 5.1.30, there is non-empty B C¥ A and
such that U = 9(B). Then by Lemma 5.5.1 U = 9(\”® B), as required. O

COROLLARY 5.5.8. Let A be an S-algebra for a logic S that satisfies (PC). Then
the collection of Irrs(A)-admissible clopen up-sets of (Opg(A),7a,C) is included
in Y[A].

From the previous corollary we get the idea that for any S-Priestley space
(X, 7,B), the Priestley-dual of (PC) is the property of B being the collection of
X p-admissible clopen up-sets. Let us check now that this conditions is enough for
recovering the conjunction.

PROPOSITION 5.5.9. Let (X, 7,B) be an S-Priestley space such that B is the
collection of Xp-admissible clopen up-sets Cﬂlx{%‘é (X). Then for all U,V € B,
CBu,v)=CBUunv).
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PROOF. First notice that the hypothesis implies that B is closed under finite
intersections. Now let U,V € B. Moreover, by (Pr2) we get (\{U,V} CUNV if
and only if UNV € CB(U,V). So we are done. O

THEOREM 5.5.10. Let S be a logic such that for any S-Priestley space (X, T,B),
ClUse (X) = B. Then S satisfies (PC).

PrOOF. The proof is similar to that of Theorem 5.5.5. g

COROLLARY 5.5.11. Let S be a logic. Then S satisfies (PC) if and only if for
any S-Priestley space (X, 7,B) it holds that Céugng (X)=8B.

5.5.2. Property of Disjunction. Let S be a logic that satisfies (PWDI) for
a term pV q. We say that (PWDI) transfers to every algebra, if for every algebra
A, and every a,b € A:

C2(aVvAb) = C&(a)NCE(D).
Let now S be a logic that satisfies (PDI) for a term p V q. We say that (PDI)
transfers to every algebra, if for every algebra A, and every {a,b} U X C A:
C2(X,aVAb) = C2(X,a) NCE(X,D).

LEMMA 5.5.12. If a logic S is filter distributive and satisfies (PWDI), then it
satisfies (PDI).

PROOF. Let S be a filter distributive logic that satisfies (PWDI) for p V ¢ and
let A be an algebra of the same type as S. We denote by U the join in Fis(A), that
is a distributive lattice by assumption. Then we have that for all {a,b} UX C A:

C§(X,a) NCE(X,b) = (CE(X)LCE(a)) N (CE(X)UCE(a))
= C2(X)U (C2(a)NC2(b)) = C2(X)UC2(aVADb)
= Ca(X,aVAb).
O

By the previous lemma, we conclude that for our purposes it is enough to
consider only the property (PDI). It is well known that (PDI) transfers to every
algebra (see Theorem 2.52 in [35]). Moreover (PDI) implies filter-distributivity of
the logic (see [21]).

LEMMA 5.5.13. Let A be an S-algebra for a logic S that satisfies (PDI), and
let F be an optimal S-base. Then for all a,b € A, pr(a) U pr(b) = pr(a VA b).

PROOF. Notice that since (PDI) transfers to every algebra, for all a,b € A we
have C%(a VA b) = C2(a) N C4(b). This implies, on the one hand, that a,b <£&
aVAb, therefore for any P € F,ifa € Porb € P, as P is an up-set, thus aVAb € P.
On the other hand, we also have that taN1b C 1(a VA b). Therefore, for any P € F
such that a ¢ P and b ¢ P, as P° is an strong S-ideal by Theorem 4.4.9, we get
aVA b ¢ P. Hence we conclude that pr(a) U pr(b) = px(a VA D). O

Notice that by associativity of union, the previous lemma implies that for any
non-empty B C¥ A, U{p7(b) : b € B} = or(\V* B).
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Let us consider first the Spectral-like duality for S-algebras, when S satisfies
(PDI). In the proof of the following corollary we use Lemma 5.5.13, when F is
Irrs(A).

COROLLARY 5.5.14. Let A be an S-algebra for a logic S that satisfies (PDI).
Then ka is closed under finite intersections.

PRrROOF. Since ka = {¥(a)® : a € A}, by Lemma 5.5.13 we get that for all
a,b € A, P(a)° NY(b)° = (Y(a) Uh(b))® = P(a VA b)° € ra. O
From the previous corollary we get the idea that for any S-Spectral space
(X, B), the Spectral-dual of (PDI) is the property of kx being closed under inter-

section. Let us check now that this condition is enough for recovering the disjunction
in the algebras of the dual.

PROPOSITION 5.5.15. Let X = (X,B) be an S-Spectral space such that kx
is closed under finite intersections. Then for all U,V € B, CB(U) N CE(V) =
CBUuv).

PRroOF. Notice that the hypothesis implies that B is closed under finite unions.
Then for any W € B we have:

WeCsU)NCE(V) if (UCW & VCW) iff UUVCW
if WecCBUwuv).
|

COROLLARY 5.5.16. Let X = (X,B) be an S-Spectral space such that kx is
closed under finite intersections. Then for all {U,V}UW C B, CBW,U) n
CBw,v)=CBw,UuV).

PRrOOF. This follows from filter distributivity of S and the previous proposi-
tion, as we have:
CEW,U)NCEW, V) = (C3W) L CE(U)) N (CEW)UCE(V))
(CSU)NCE(V)) =CEW)UCEUUYV)

O

Let us consider now the Priestley-style duality for S-algebras, when S satisfies
(PDI). In the proof of the following corollary we use Lemma 5.5.13, when F is

OPS(A)'

COROLLARY 5.5.17. Let A be an S-algebra for a logic S that satisfies (PDI).
Then ¥[A] is closed under finite unions.

From the previous corollary we get the idea that for any S-Priestley space
(X, 7,B), the Priestley-dual of (PDI) is the property of B being closed under union.
As for the Spectral-like duality, it follows straightforwardly that this condition is
enough in each case for recovering the disjunction in the algebras of the dual.

COROLLARY 5.5.18. Let (X, 7,B) be an S-Priestley space such that B is closed
under finite unions. Then for all U,V € B, CB(U)NCEB(V)=CBU UV).
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COROLLARY 5.5.19. Let (X, 7,B) be an S-Priestley space such that B is closed
under finite unions. Then for all {U,V}UW C B, CBW,U)n CEBW,V) =
CB(w,UuV).

To conclude, let us consider the case when S satisfies both (PC) and (PDI).
Then it is well known that all S-algebras have a distributive lattice reduct (see
Proposition 2.8 in [41]) and S-filters are the same as order filters. In this case, by
corollaries 5.5.8 and 5.5.17 and Proposition 5.1.28 we know the following: if A has
a bottom element, then ¥[A] is the collection of clopen up-sets of (Opg(A),7a, <).
Since in this case optimal S-filters coincide with prime filters, what we obtain is
precisely what Priestley duality for bounded distributive lattices gives us. Notice
that if no bottom element is assumed, we still need to deal with Irrs(A)-admissible
clopen up-sets for recovering the algebra from the space. This collection coincides
with all clopen up-sets when the algebra has a bottom element, but excludes the
emptyset when the algebra has no bottom element.

5.5.3. Deduction-Detachment Theorem. Let S be a logic that satisfies
(DDT) for a non-empty set of formulas in two variables A(p, q). We say that (DDT)
transfers to every algebra, if for every algebra A, and every {a,b} U X C A:

be Ca(X,a) iff A®(a,b) C CR(X).

Let now S be a logic that satisfies (uDDT) for a term p — ¢. We say that
(uDDT) transfers to every algebra, if for every algebra A, and every {a,b}UX C A:

be Ca(X,a) iff a—beCE(X).

It is well known that (DDT) transfers to every algebra (see Theorem 2.48
n [35]). Moreover (DDT) implies filter-distributivity of the logic (see [21]).

LEMMA 5.5.20. Let A be an S-algebra for a logic S that satisfies (uDDT) and let
F be an optimal S-base. Then for alla,b € A, (L(¢x(a)Npr (b)) = ox(a =4 b).

PROOF. Since (uDDT) transfers to every algebra, for any {a,b} UX C A we
have b € C#(X,a) if and only if a 4 b € C2(X). Let first P € px(a —* b), and
suppose, towards a contradiction, that P ¢ ({(¢x(a) N@x(b)))c. Then it follows
that P € [(px(a) N@x (b)), and so there is @ € F such that P C Q, Q € px(a)
and Q ¢ ¢r(b). By assumption, from P C Q we get a —* b € @, and then by
(uDDT) we obtain b € C4(Q,a). Since a € @, then b € C4(Q,a) = C4(Q) = Q,
a contradiction. We conclude that P € ({(px(a) N px(b)°))¢, as required.

Let now P € F be such that P ¢ pr(a =2 b), i.e. a =-* b ¢ P. By
(uDDT) we get that b ¢ C&(P,a). Then by definition of optimal S-base, there
is Q € F such that b ¢ Q and C&(P,a) C Q. So, we have a € Q, P C Q
and b ¢ Q, i.e. Q € pr(a) Nx(d), and so P € L(pxr(a) N@r(b)). Therefore
P ¢ (L(o2(a) N 97(5)))%), as required. O

Notice that when the logic S satisfies (DDT) for A(p, q), the following gener-
alization of the previous lemma also holds: for all a,b € A:

(Her(a) Npr(d)))° = 3r(A%(a,b)).
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Let us consider first the Spectral-like duality for S-algebras, when S satisfies
(uDDT). In the proof of the following corollary we use Lemma 5.5.20, when F is
Irrs(A).

COROLLARY 5.5.21. Let A be an S-algebra for a logic S that satisfies (uDDT).
Then for all Wi, Wy € ka, J(W{N W) € ka.

PROOF. Since ka = {¥(a)® : a € A}, by Lemma 5.5.20 we get that for all
a,b € A, L(¥(a)) Np(b)°) = L(t(a) N (b)) = d(a =™ b)° € ka. O

From the previous corollary we get the idea that for any S-Spectral space
(X,B), the Spectral-dual of (uDDT) is the property of kx being closed under
()N ()). Let us check now that this condition is enough for recovering the
implication in the algebras of the dual.

PROPOSITION 5.5.22. Let X = (X, B) be an S-Spectral space such that for any
Wi, Wy € Kx, it holds that (WY NW3) € kx. Then for oll {U,V}UW C B:

Ve CBW,U) iff (LUNV))®e CEW).

PROOF. Assume first that (L(U NV¢))¢ € CE(W). By Corollary 5.1.19, it
is enough to show that (YCEB(W,U) C V, so let z € (CE(W,U) and suppose,
towards a contradiction, that x ¢ V. Since U € CB(W,U), x € U. By hypothesis
HUNVe))e e CEBW,U), sox € (LUNVE))% ie.x ¢ L(UNVE). But fromz ¢ V
and z € U we get x e UNVE C [(UNVE), a contradiction.

Assume now that V' € CB(W, U). By Corollary 5.1.19, it is enough to show that
NCEW) C (L(UNV9))e. Let x € (| CB(W) and suppose, towards a contradiction,
that © ¢ (J(U NVe®))° Then there is y € U N V® such that x < y. Let e(y) =
{W € B :y € W}, that is an irreducible S-filter of B by Lemma 5.1.17, and let
W e W. Clearly W € CB(W), so by assumption = € W. As W is an up-set, then
y € W, and so W € ¢(y). Therefore W C ¢(y). Moreover, since y € U, we also have
U € e(y). And since £(y) is an S-filter, then CB(W,U) C £(y). Now by hypothesis
V e e(y), i.e. y € V, a contradiction. O

We can show that, under the assumption of S being protoalgebraic, we can also
find the conditions over the dual space that make the logic to have (DDT).? This
result is supported in the following theorem due to Czelakowski.

THEOREM 5.5.23 (Theorem 2.6.8 in [23]). Let S be a protoalgebraic logic. Then
S satisfies (DDT) if and only if for any S-algebra A, the lattice of S-filters Fis(A)

18 infinitely meet-distributive over its compact elements, i.e. for any B C¥ A and
any {G; :i € I} CFig(A):
C&B)U(Gi=((CE&(B)UG)).
iel il
THEOREM 5.5.24. Let S be a protoalgebraic logic such that for any S-Spectral
space X = (X, B), J(W{NWs) € kx for all Wy, W € kx. Then S satisfies (DDT).

2Recall that a logic S is protoalgebraic, following the definition of Block and Pigozzi [7], when
for any Cg-closed set of formulas I' C F'm and any formulas 6, 4 € F'm, if (6, u) € QF™(T), then
I6+Fs pand T',uks 6. Remind that QF™(T) is the Leibniz congruence of T relative to Fm.
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PrROOF. Let & be protoalgebraic and let A be an S-algebra. By Theorem
5.5.23, it is enough to show that Fig(A) is infinitely meet-distributive over its
compact elements. By Theorem 5.1.1, the representation theorem for S-algebras,
and Corollary 5.1.11, we know that for any S-algebra A there is an S-Spectral space
(X,B) such that A is isomorphic to B. Therefore, it is enough to show that for
any S-Spectral space (X, B), Fig(B) is infinitely meet-distributive over its compact
elements.

So let (X,B) be an S-Spectral space, let {G; : i € I} C Fig(B) and let
Ui,...,U, C¥ B. We show that

C8{Un,.... U U {Gitie I} = {CE{U1,...,U} UG)) si € I}

Notice that the inclusion from left to right is immediate by finitarity of the logic, so
we just have to show the other inclusion. Let V- € N{CB({U1,..., U, }UG;) :i € I}.
Then for each i € I we have that V € CB({Uy,...,U,}UG;). For any Wy, Ws € B,
let us denote (L(W1 NWS))¢ by Wi = Ws. Then for each ¢ € I, by assumption we
get Uy = (..U, =V)...) €G;. Thus Uy = (... (U, =V)...) e({G; :i e T}
Recall that N{G; : i € I} = CB(N{G; : i € I}) is an S-ilter of B. So by
assumption again we conclude

VeC8{Ur,... .U} U {Gi:ieT})=CE(CE{UL,.... U ) U[{Gi:ieT})

=CE({Ur,... .U U({Gi i€ T}
U

Let us consider now the Priestley-style duality for S-algebras, when S satisfies
(uDDT). In the proof of the following corollary we use Lemma 5.5.20, when F is

OPS(A)-

COROLLARY 5.5.25. Let A be an S-algebra for a logic S that satisfies (uDDT).
Then for all a,b € A, (1(9(a) NI(b)°))¢ = I(a —* b) € I[A].

From the previous corollary we get the idea that for any S-Priestley space
(X, 7,B), the Priestley-dual of (uDDT) is the property of B being closed under
()N ()9))e. Let us check now that this condition is enough for recovering the
implication.

PROPOSITION 5.5.26. Let (X, 7, B) be an S-Priestley space such that U,V € B,
LU NVe)e e B. Then for all {U,V} UW C B:

Ve CBW,U) iff (LUNV))®e CEBW).

PROOF. Assume first that (L(U NV¢))¢ € CB(W). Then as the logic S is
finitary, there is W C“ W a finite subset such that (J(U NV<))¢ € CB(W’). Thus
by (Pr2), \W' C (L(UNV*))c. We show that UNW' C V,solet z € UNOW
and suppose, towards a contradiction, that z ¢ V. On the one hand x € U.
Moreover z € W' C (L(UNV9)e. le.z ¢ L(UNVE). But fromz ¢ V and x € U
we get x € UNVe C [(UNV*®), a contradiction. We conclude that UnW' C V,
and thus by (Pr2), V € CBOW') C CB(w).

Assume now that V € CB(W,U). Then by finitarity again, there is W' C* W
a finite subset such that V € CB (W', U). We show that W’ C (L(UNV®))°. Let
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x € (W’ and suppose, towards a contradiction, that = ¢ (L(UNV<))¢. Then there
isy € UNVsuch that © < y. Let {(y) = {W € B:y € W}, that is an optimal
S-filter of B by Proposition 5.1.45, and let W € W’. By assumption z € W and
since W is an up-set, y € W, i.e. W € £(y). Therefore W C £(y) and moreover,
since y € U, U € £(y). Furthermore, as £(y) is an S-filker CBOW',U) C £(y),
so by hypothesis V' € £(y), i.e. y € V, a contradiction. Thus we conclude that
AW C (LU NV9))e, and then by (Pr2), (L(UNVe))e € CBOW') C CB(W), as
required. ([

THEOREM 5.5.27. Let S be a protoalgebraic logic such that for any S-Priestley
space (X, 7,B), L(UNV®) € B for allU,V € B. Then S satisfies (DDT).

PRrROOF. The proof is similar to that of Theorem 5.5.24 O

It would also be very interesting to study in detail the case when S satisfies
(DDT) for A(p, q), but this is not our aim here since it would take too long. The
case when A(p, q) is a finite subset of formulas seems to be simpler that the general
case, because then by Lemma 5.5.20 we obtain that for any S-algebra A, for any
optimal S-base F and for any a,b € A, (L(pr(a) Ner(b)°))° belongs to M(A), the
S-semilattice of A, that for the Priestley-style duality can be dually defined as the
collection of X g-admissible clopen up-sets. We leave this as future work.

5.5.4. Property of Inconsistent element. Let S be a logic that satisfies
(PIE) for L. We say that (PIE) transfers to every algebra, if for every algebra A
the element LA € A, called the inconsistent element, is such that for every a € A:

a€Ca(L™).

It is immediate that (PIE) transfers to every algebra. Moreover, if S satisfies
(PIE) for L, then for any S-algebra A, L# is the bottom element of A, and for
convenience, we denote it by 04.

LEMMA 5.5.28. Let A be an S-algebra for a logic S that satisfies (PIE) and let
F be an optimal S-base. Then for all a € A, or(04) C pr(a).

PROOF. Notice that, since (PIE) transfers to every algebra, we have that A
has a bottom element 0. Then we have that for any P € F:

Pcor(0®) iff 02cP iff ACP.

Recall that when A has a bottom element, then () ¢ Idss(A), so optimal S-filters
are proper. In particular, all elements of F are proper, and we get ¢ f(OA) =0, so
it follows trivially that ¢ (04) =0 C ¢#(a) for all a € A. O

Let us consider first the Spectral-like duality for S-algebras, when S satisfies
(PIE). In the proof of the next corollary we use Lemma 5.5.28 when F is Irrs(A).

COROLLARY 5.5.29. Let A be an S-algebra for a logic S that satisfies (PIE).
Then (Irrs(A), T4, ) is compact.

PROOF. Let 04 be the inconsistent element of A. By Lemma 5.5.28 ¢(04) = (),
and therefore X € ka = {¢(a)® : a € A}, that is a collection of open compact
elements. Hence, in particular X is compact. (I
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From the previous corollary we get the idea that for any S-Spectral space
(X,B), the Spectral-dual of (PIE) is the property of (X, 7., ) being compact. Let
us check now that this condition is enough for recovering the inconsistent element.

COROLLARY 5.5.30. Let X = (X,B) be an S-Spectral space such that (X, 7..)
is compact. Then there is W € B such that for allU € B, U € CB(W).

PROOF. By hypothesis we get that ) € B. Moreover, since § C U for all
U € B, by definition of CB we get U € CB()). Hence 0 is the required inconsistent
element. m

THEOREM 5.5.31. Let S be a logic such that for any S-Spectral space X = (X, B),
the space (X, T, ) is compact. Then S satisfies (PIE).

PROOF. Recall that the Lindenbaum-Tarski algebra Fm* = Fm/ =5™ is an
S-algebra, so the structure (Irrg(Fm”™), [Fm*]) is an S-Spectral space. For any
formula p € F'm, we denote by 7 its equivalence class in Fm™. By assumption and
Corollary 5.5.30 there is § € F'm such that for all 4 € Fm, (i) € C?Fm*](w(g)).
Then by Corollary 4.3.7 we obtain that for all u € Fm, @ € CE™(§). Using
again that the projection map is a bilogical morphism, we get that for all p € F'm,
w € Cs(0). Tt is immediate that S satisfies (PIE) for 6. O

COROLLARY 5.5.32. Let S be a logic. Then S satisfies (PIE) if and only if for
any S-Spectral space X = (X,B), the space (X, T, ) is compact.

Let us consider now the Priestley-style duality for S-algebras, when S satisfies
(PIE). In the proof of the next corollary we use Lemma 5.5.28 when F is Opg(A).

COROLLARY 5.5.33. Let A be an S-algebra for a logic S that satisfies (PIE)
and let 0 be the inconsistent element of A. Then 9(02) = () € I[A].

THEOREM 5.5.34. Let S be a logic such that for any S-Priestley space (X, T,B),
) € B. Then S satisfies (PIE).

PRrROOF. The proof is similar to that of Theorem 5.5.31. O

COROLLARY 5.5.35. Let S be a logic. Then S satisfies (PIE) if and only if for
any S-Priestley space (X, 7,B) it holds that () € B.

Observe that both in the Spectral-like and in the Priestley-style duality, when
the logic S satisfies (PIE), we have that () is the inconsistent element in B, so the
inconsistent element in the referential algebra B is represented by the emptyset in
both cases.

To conclude, consider now the Priestley-style duality when S satisfies both
(PC) and (PIE). Then we know that B = C4$* (X), so in this case Corollary
5.5.30 is equivalent to say that max(X) C Xp, or in other words, | Xp = X. In
fact this property corresponds, in general, with the property of the S-algebras of
having a bottom-family.

5.5.5. Property of being closed under introduction of a modality.
Let S be a logic that satisfies (PIM) for a term Up. We say that (PIM) transfers
to every algebra, if for every algebra A, and every X C A:

O4(C5 (X)) € C5(OAX).
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For convenience, let us denote [(1* as [J. It is well known that (PIM) transfers to
every algebra (see Proposition 2.56 in [35]). Notice that this implies that for any
algebra A and any B, B’ C A:

if CA(B) = CA(B'), then CA(T[B)) = CA(@TIB).
Suppose that f: A — A is a map such that for any B, B’ C¥ A finite subsets:

if CA(B) = CA(B'), then CA(f[B]) = CA(/[B').

Notice that this condition implies that f preserves the top element of A. More-
over, we may extend f in a unique way to the S-semilattice of A as follows. Let
f:M(A) — M(A) be such that

f(@(B)) := B([B))

By definition fis well defined, and moreover it is an homomorphism between distri-
butive semilattices. By either Spectral-like or Priestley-style duality for distributive
semilattices, we already know how to dualize it by a relation. Thus we could take
such relation as the dual of f. This is precisely what we do in detail in what follows,
for the case where the function f is precisely . It would be very interesting to in-
vestigate whether the same method could be generalized for any n-ary f satisfying
a similar property.

LEMMA 5.5.36. Let A be an S-algebra for a logic S that satisfies (PIM) and
let F be an optimal S-base. Then for all a € A, or(0(a)) = Oz (pr(a)), where

ED C F x F is given by:
(P,Q) € Ry iff O'[PICQ.

PrOOF. First we show that for any F € Flg( ), O71[F] € FiS(A). From
(PIM) we have that O(C4&(O1[F])) € C4(O(O~1[F])), but since O(OL[F]) C F,
then we get CA(O(O~[F])) C CA(F) = F. Thus O(C ?( LF))) C F, and so
CA(O~1[F]) € O '[F]. We conclude that the set O~![F] = C&(O7[F]) is an
S-filter of A.

Let us prove now the statement of the lemma. By definition we have that
vr(d(a)) = {P € F : O(a) € P}. Let first P € ¢r(0(a)). We show that
PeOg (pr(a)) ={P € F: Ro(P) C ¢r(a)}. Let Q € Ro(P), i.e. O7'[P] C Q.
By assumption O(a) € P, so a € O7![P] C Q. Hence Q € ¢x(a), as required. Let
now P € DED(QO]:(G)), i.e. Ro(P) C px(a), and suppose, towards a contradiction,
that O(a) ¢ P. Then a ¢ O7![P], that is an S-filter. Therefore by definition
of optimal S-base, there is Q € F such that a ¢ Q and O"'[P] € Q. Then
Q € Ro(P) \ ¢r(a), a contradiction. O

Let us consider first the Spectral-like duality for S-algebras, when S satisfies
(PIM). In the proof of the following corollaries we use Lemma 5.5.36, when F is
Irrs(A).

COROLLARY 5.5.37. Let A be an S-algebra for a logic S that satisfies (PIM).
For all P € Trrs(A), Ro(P) is a closed set of (Irts(A), Tep)-
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PROOF. Notice that by definition Rg(P) = {Q € Irrs(A) : O L[P ] Q} =
(0071[P]). Therefore, by Proposition 5.1.6, since (J~![P] is an S-filter, Rpo(P) is
closed. g

From the previous corollary we get the idea that for any S-Spectral space
(X, B), the Spectral-dual of (PIM) is the following pair or properties: kz is closed
under (O (()9))¢ and Rp( ) maps elements of the dual space to closed subsets.
Let us check now that this condition is enough for recovering the operation [J in
the algebras of the dual.

PROPOSITION 5.5.38. Let X = (X, B) be an S-Spectral space and let R C X x X
be a binary relation such that Og(U) € B for all U € B and R(z) is a closed set
of (X, Tyy) for all x € X. Then for all W C B:

Oz[CE(W)] € CZ(OxW)).

PROOF. Let U € CB(W). We show that Ox(U) € CB(OxW]). As S is
finitary, there is W C“ W a finite subset such that U € CB(W’). We claim
that N OgW'] C Ox(U). Let € (Og[W'], so by definition R(z) C W for all
W € W'. Since by hypothesis R(z) is closed, by Lemma 5.1.14 we obtain that
E(R(z)) = {U € B : R(z) C U} is an S-filter of B. Therefore, as W € £(R(z)) for
all W e W, from U € CB(W') we get U € £(R(z)), i.e. R(z) C U, and therefore

Now from the claim and (Sp2) we get Ox(U) € CEB(Oz[W']), and hence
Oz(U) € CB(Og[W)), as required. O

Let us consider now the Priestley-style duality for S-algebras, when S satisfies
(PIM). In the proof of the following corollary we use Lemma 5.5.36, when F is

OPS(A)-

COROLLARY 5.5.39. Let A be an S-algebra for a logic S that satisfies (PIM).
For all P,Q € Opg(A), if O7'[P] € Q, then there is a € A such that Q ¢ ¥(a) and
Ro(P) € 9(a).

PROOF. Let P,Q € Opg(A) be such that O71[P] € @, and let a € O7[P]\ Q.
Let Q' € Ro(P), i.e. O7'[P] C @Q'. Then clearly by hypothesis a € @', i.e.
Q' € ¥(a). Therefore Ro(P) C ¥(a) but Q ¢ ¥(a), as required. O

From the previous corollary we get the idea that for any S-Priestley space
(X, 7,B), the Priestley-dual of (PIM) is B being closed under Og . Let us see now
that this condition is enough to recover the operation [ in the algebras of the dual.

PROPOSITION 5.5.40. Let (X, 7,B) be an S-Priestley space and let R C X x X
be a binary relation such that Or(U) € B for allU € B. Then for all W C B:

Or[CE (V)] € C5(OrIV)).

PrOOF. Let U € CB(W). We show that Or(U) € CE(0Or[W)). As S is
finitary, there is W C¥ W a finite subset such tat U € CE(W’). Then by condition
(Pr2) NW' C U. We claim that Og[W’'] C Ogr(U). Let x € NOrW'], so
x e 0Or(W)={ye X :R(y) C W} for all W € W. Then R(xz) C (W', that by
hypothesis is included in U, so R(z) C U, i.e. z € Ogr(U).
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TABLE 6. Correspondence for the Spectral-like duality.

PROPERTY | DUAL CORRESPONDENCE REPRESENTATION IN B
(PC) KO(X) = kx B closed under N
(PDI) kx closed under N B closed under U
(uDDT) kx closed under [(( )N ()) B closed under (J(( )N ()9))
(PIE) (X, Try) is compact heB
(PIM) rx is closed under (Oz_(()¢))¢ | B closed under Uz

and Rp( ) maps elements of the

dual space to closed subsets

From the claim and (Pr2) we get Or(U) € CB(OrW']), and hence Or(U) €
CB(Og[W)), as required. O

Observe that both in the Spectral-like and in the Priestley-style duality, when
the logic S satisfies (PIM), we have that O in the referential algebra B is represented
by DRD-

It would be very interesting to make a deep study into the correspondence
theory between properties that [J may satisfy, and properties of its dual relation.
For example, it is easy to see that for any logic S satisfying (PIM), the property
that for any I' C F'm:

Ol -~ for all v € T

corresponds with the dual relation being reflexive. Similarly, the property that for
any I' C Fm:

O F OOy for all v € T
corresponds with the dual relation being transitive. These results generalize the
well-known results of correspondence theory for normal modal logics. We do not
go further into this topic, but we leave it as future work.

5.5.6. Summary of results. Tables 6 and 7 summarize what we have seen
throughout this section. Notice that as a preliminary conclusion we could say that
the Spectral-like duality allows us to carry out a smoother modular analysis than
the Priestley-style duality.



5.5. DUAL CORRESPONDENCE OF SOME LOGICAL PROPERTIES 117

TABLE 7. Correspondence for the Priestley-style duality.

PROPERTY | DUAL CORRESPONDENCE REPRESENTATION IN B
(PC) cuU (X) =B B closed under N

(PDI) B closed under U B closed under U

(uDDT) B closed under (J(( )N ()%))¢ B closed under (J(( )N ()9))
(PIE) peB peB

(PIM) B closed under Ogg, B closed under (g
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CHAPTER 6

Filter Distributive and Congruential Expansions of
the Implicative Fragment of Intuitionistic Logic

In this chapter we define several filter distributive finitary congruential logics
with theorems that are expansions of the implicative fragment of intuitionistic logic,
and we study how our results from Chapter 5 can be applied to obtain dualities for
such logics. In §6.1 we motivate our study of such logics, in relation with extended
Priestley duality for distributive lattices expansions. We explain why, instead of
keep dealing with an abstract framework, we restrict ourselves to a more concrete
setting. What we do, from an algebraic point of view, is looking at expansions of
Hilbert algebras. More precisely, we consider varieties of algebras with a Hilbert
algebra reduct.

In §6.2 we recall how H, the implicative fragment of intuitionistic logic, is
axiomatized, and we study Spectral-like and Priestley-style dualities for it as a
particular case of our theory in Chapter 5. So we recover, on the one hand, the
Spectral-like duality for Hilbert algebras that Celani et al. studied in [15] (see
§3.3.1). On the other hand, we obtain a Priestley-style duality for Hilbert algebras
that slightly simplifies the one presented by Celani and Jansana in [18] (see §3.3.2).

In §6.3 we consider a class of algebras expanded with a modal operator, that
yields a modal expansion of H for which dualities can be studied following our
general approach. In §6.4 we do the same for a class of algebras expanded with
a supremum, that yields an expansion of H with a disjunction, that fits in the
framework of our theory. In §6.5 we consider classes of algebras expanded with a
conjunction. One of them corresponds to the implicative-conjunctive fragment of
intuitionistic logic, and it is suitable for our general theory. The others are wider
classes of algebras for which the general theory is not completely satisfactory, so we
aim to develop new tools that yield nice dualities for such algebras. In §6.5.1 we
study in depth Distributive Hilbert algebras with infimum, and in the next chapter
we develop Spectral-like and Priestley-style dualities for these algebras.

Unfortunately, the class of Distributive Hilbert algebras with infimum is not
associated with any logic, but we consider in § 6.6 and § 6.7 other classes related with
it, that yield expansions of H for which the general theory is neither satisfactory,
but for which the results in Chapter 7 can be applied to get new dualities.

6.1. Introduction and motivation

Ezxtended Priestley duality provided inspiration for our work on applications
of what was studied in Chapter 5. From an algebraic point of view, the main
idea behind extended Priestley duality is the following: from Priestley duality for

121
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distributive lattices, Priestley-style dualities for expansions of distributive lattices
shall be developed just by expanding Priestley spaces. And this can be done in a
modular way when the expansions of the distributive lattices are nice enough. Let
us review this with more detail, and translate these ideas into logic.

Extended Priestley duality provides a uniform approach to Priestley-style dua-
lities for a wide range of distributive lattice-based algebras. It generalizes the work
by Jénsson and Tarski [58,59] on Boolean algebras with operators. A distributive
lattice expansion, is a structure A = (A, A,V, f : f € F), such that (A, A, V) is a
distributive lattice. We denote by DLE the class of distributive lattice expansions.
A bounded distributive lattice expansion is a structure A = (A, A, V, 1,0, f : f € F)
such that (A,A,V,1,0) is a bounded distributive lattice, in which 1 is the top
element and 0 is the bottom element.

Goldblatt [46] develops a general duality theory for bounded DLLE’s in which the
additional operations are normal operators or normal dual operators. We recall that
for L = (L, A, V,0,1) an arbitrary bounded lattice, an n-ary function f : L™ — L is
an operator (resp. dual operator) provided f preserves non-empty finite joins (resp.
meets) in each coordinate. Moreover, f is a normal operator (resp. normal dual
operator) provided f is an operator (resp. dual operator) that preserves arbitrary
finite joins (resp. meets) in each coordinate.

In [46], Priestley duality for distributive lattices is used to get the basic building
block over which the dual spaces are constructed. The additional normal (dual)
n-ary operators are dually represented by additional n+ 1-ary relations on the dual
Priestley space. This theory can be generalized to distributive lattice expansions in
which the additional operations are (dual) quasioperators, this is precisely what is
known as extended Priestley duality. We recall that for an arbitrary bounded lattice
L=(L,A,V,0,1), an n-ary function f : L™ — L is a (€)-quasioperator (resp. dual
(€ )-quasioperator) provided there is an n-tuple € = (e1,...,€,), where ¢; € {1,0}
for each i < m, such that f: L — L is an operator (resp. dual operator). Notice
that by L€ we denote L' X --- X L.

Translating these ideas into logic, from this theory we get Kripke-style seman-
tics for logics that are expansions of the conjunctive-disjunctive fragment of classical
logic. Extended Priestley duality and what can be called extended Spectral-like dua-
lity that can be worked out in a similar way, fit well into the framework developed in
Chapter 5. Let K be a variety of bounded distributive lattices with quasioperators
and dual quasioperators in the language .. The points of the dual Priestley space
of an algebra A € K, as well as the points of its Spectral dual space, are the prime
filters of the distributive lattice reduct of A. These are the irreducible Sﬂg—ﬁlters of
A, which in this case coincide with the optimal S]%—ﬁlters of A, where recall that
the finitary logic SHE is the semilattice based logic of K, that we defined in page 29
as follows: for I any a non-empty finite set of formulas and any formula 0:

A
T3 6 iff (VA € K)(vh € Hom(Fm, A)) ( A\ h(%)) < h(5).
~yel

For T" the empty set of formulas and any formula §:

Pz o iff Fxom~l.
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And for I any arbitrary set of formulas and any formula 4§:
T o iff 30 CY )Y 56

By definition S is finitary. Tt follows from Proposition 3.13 in [53] that it is
congruential, and also that AlgSH% = K (given that K is a variety). Moreover it
is an expansion of the logic S];DL, where BDL stands for the variety of bounded
distributive lattices. Furthermore, from Lemma 3.8 in [53] we get that for any
A € K, the Sﬂg—ﬁlters of A are the lattice filters. This implies that SH§ is filter
distributive, since the lattice of filters of any distributive lattice is a distributive
lattice. Thus, SE fits in the framework developed in Chapter 5. Moreover Sﬂg
satisfies (PC) and (PDI), so we shall simplify the definition of the dual spaces
according to what was investigated in §5.5.

We are interested in applying a similar strategy in a different setting, using
what we studied in Chapter 5. But instead of keeping a fully abstract approach, we
restrict ourselves to the following case: we investigate dualities for classes of algebras
that correspond to filter distributive finitary congruential logics with theorems that
expand the implicative fragment of intuitionistic logic H. We want to emphasize
the similarities between the two approaches: in what follows Alg{ will play the role
that BDL did in extended Priestley duality. One of the main contributions of this
approach is that it allows us to tackle dualities for varieties of distributive lattice
expansions that do not fall under the scope of extended Priestley duality.

6.2. The implicative fragment of intuitionistic logic

Let H be the implicative fragment of intuitionistic logic, i.e. the logic H :=
(Fm, ) in the language (—,1) of type (2,0), where I3 is the restriction of the
intuitionistic logic (as a closure relation) to the formulas in the language (—,1).
The logic H can be presented in a Hilbert-style calculus by the following axioms
and rules:

(A1) by B = (v = B),
(A2) by (y = (B —=6)) = (v = B) = (v = 9)),
(MP) Yy = ﬂ l_H B
The logic H is the least finitary logic that satisfies (uDDT) for p — ¢.! Clearly
‘H has theorems, as for any v € Fm, v — v € ThmH. It is well known that
the logic H is equal to the l-assertional logic S of H, where H is the variety of

Hilbert algebras (definition in page 18). And for any Hilbert algebra A, we have
Fiy(A) = FiL(A).

THEOREM 6.2.1. The logics H, S’ and SH% are equal.

PROOF. Assume first that I' k3 . Then either § is a theorem, in which case
for every A € H and every h € Hom(Fm, A) we have that h(5) = 14, or there
are Yo, - - -,vn € I’ such that 7g,...,7v, b d. In the last case, by (uDDT) we get
Fog 0o = (1 = (..(9n = 9)...)). Soif A € H and h € Hom(Fm, A), then
h(yo = (1 = (- (9 — 0)...))) = 1A, and therefore I' ' 6. And if a € A is

IThis follows from results in Porgbska and Wronski [64] and it is also remarked in Corollary
2.4.3 in [73].
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such that a <# h(y;) for every i < n, it easily follows that a <* h(§). We show
it by induction on n. If n = 0, then we have F3 v — 0 and a <? h(yp). This
implies h(vy9) —* h(§) = 14, and by definition of the order on a Hilbert algebra, we
obtain h(vyg) <* h(§), and so we are done. Suppose now that the hypothesis holds
for n and let vo,...,Yn,Yn+1 F# 6. Then by (uDDT) ~o,...,Yn F# Yn+1 — 6,
therefore, if a € A is such that a <* h(y;) for every i < n + 1, by the induction
hypothesis it follows that a < h(vy,41) —* h(). Hence, since a <* h(y,41) we
obtain a <A h(§). We conclude that T’ Fﬁ J.

For the converse, assume first that I' kg’ 6. Then either for every A € H and
every h € Hom(Fm, A) we have h(§) = 14, or there are o, . . ., ¥, € I' such that for
every A € H and every h € Hom(Fm, A), h(vo — (71 — (.. (9m — 6)...))) = 14,
This implies b3y 0 = (11 = (.. (9 = 0) ...)), and by (uDDT) we have T" - 6.

Finally, assume that T' Fﬁgﬂ 0. Then there is IV C¥ I such that I" l—ﬁ d.
Suppose, towards a contradiction, that I ¥4, §. Then there is a Hilbert algebra A
and h € Hom(Fm, A) such that h(y) = 14 for all v € T” and h(§) # 14. Then
14 <A p(y) for all v € I" but 14 £A h(J), contrary to the assumption. We
conclude I'V 4 §, and therefore I" 4 4. O

The previous theorem implies, by Proposition 7 in [54], that H is selfexten-
sional, and then by Theorem 4.46 in [35] it follows that # is congruential. Moreover,
since H satisfies (uDDT), then it is filter distributive.

Thereupon, we are in a framework in which the theory exhibited in Chap-
ter 5 can be straightforwardly applied. Let us briefly review how the definitions of
‘H-Spectral space and H-Priestley space might be simplified using what we studied
in §5.5. In what follows, let us denote by = the binary operation ({(( )N ()°))c.
First we prove two useful propositions.

PROPOSITION 6.2.2. Let (X, B) be a reduced referential algebra such that X € B,
B C PY(X) and B is closed under =. Then for any Uy, ...,U,,V € B,

(WUizi<n}CV iff Uy=(..(Un=V)...)=X.

PROOF. Assume first that ({U; : ¢ < n} C V and suppose, towards a contra-
diction, that there is € X such that « ¢ Uy = (... (U, = V)). Then by definition
of =, there is xg > = such that xy € Uy and 2o ¢ Uy = (... (U, = V)). Similarly,
we get that there is z1 > xg such that zy € Uy and 21 ¢ Uy = (... (U, = V)).
Iterating this process n times we obtain x < xg < ...x, such that z; € U; and
xn, ¢ V. By assumption U; is an up-set for all ¢ < n, so x, € ({U; : i < n}. But
then by assumption we have x € V', a contradiction.

Assume now that Uy = (... (U, = V)) = X and let x € (\{U; : ¢ < n}. Notice
that for each ¢ < n, if x € U; = Y for some Y C X, implies x ¢ U; NY°. Therefore,
by hypothesis we get © € Y. Thus, for any i < n, fromz e U; = (... (U, = V)...)
we obtain € Uy = (... (U, = V)...), and hence x € V, as required. O

PROPOSITION 6.2.3. Let (X, B) be a reduced referential algebra such that X € B,
B C PN(X) and B is closed under =. Then (X, (B,=, X)) is an H-referential al-
gebra.

PROOF. As the referential algebra is reduced, (X, <) is a poset. It is easy to
see that then (PT(X),=, X) is a Hilbert algebra. From the hypothesis we obtain
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that B := (B, =, X) is a Hilbert algebra, as it is a subalgebra of the Hilbert algebra
(PT(X),=,X). We show that for all T U {6} C Fm, T l3 ¢ implies that for all
h € Hom(Fm,B), N{k(y) : v € T} C h(4).

Assume that T’ -3 § and let h € Hom(Fm,B). Then by hypothesis we get
h(5) € CB(h[I]). Then as H-filters are implicative filters, by definition and fini-
tarity, there are ~v1,...,7, € I' such that h(v1) = (... (h(v) = h(0))...) = X.
Then by the previous proposition, this implies A(y1) N --- N h(y,) C h(d), and so
N{A(7) : v €T} C h(9). O

Now we focus on the Spectral-like duality for Hilbert algebras. For the sake
of completeness, we retype now the definition of H-space that we already stated in
§3.3.1. A structure X = (X, 7,) is an H-space when:

(H6) k is a basis of open compact subsets for the topological space (X, 7,),
(H7) for every U,V € &, sat(U NV°) € &,
(H8) (X, 7,) is sober.

THEOREM 6.2.4. For X = (X,B) an H-Spectral space, the structure X' =
(X, Ty ) s an H-space such that (X, (X')*) = X.

PRrROOF. Let X = (X,B) be an H-Spectral space. Recall that since H satisfies
(uDDT), from Corollary 5.5.21 it follows that B = (B,=,X) where U = V =
(sat(U NVe))e for all U,V € B. Therefore X’ satisfies condition (H7). From
condition (Sp3) of the definition of H-Spectral space it follows condition (H6) and
from condition (Sp3) it follows condition (HS).

Recall that for the H-space X', the algebra (X)* is defined as (D(X'), =, X),
where D(X) :={U°¢:U € kx} and U = V := (sat(UNV))® for all U,V € D(X').
So we have D(X’) = B and clearly B = (X)*. Hence (X, (X')*) = X. O

THEOREM 6.2.5. For X = (X, 7,.) an H-space, the structure X = (X, X*) is an
H-Spectral space such that (X, 7.) = X.

Proor. Let X = (X, 7,) an H-space. As sobriety implies Tp, from condition
(H8) it follows that X is a reduced referential algebra. Moreover, the order asso-
ciated with it coincides with the dual of the specialization order of the space, so
from condition (H6) it follows that all elements of D(X) are up-sets and clearly
X € D(X). Therefore, as condition (H7) implies that D(X) is closed under =, we
conclude, by Proposition 6.2.3, that X is an H-referential algebra, i.e. condition
(Sp1l) holds. Moreover, by Proposition 6.2.2 it follows condition (Sp2). And clearly
conditions (Sp3) and (Sp4) follow straightforwardly.

By definition k = {U® : U € D(X)} is a basis of open compacts for 7,
therefore this topology is equal to 7,; and thus (X, 7,..) = X. O

Regarding morphisms, recall the definition of H-relation that we already stated
in §3.3.1. Let X; and X5 be two H-spaces. A relation R C X7 X X5 is an H-relation
when:

(HR1) Or(U) € Ky for all U € ko,
(HR2) R(x) is a closed subset of X, for all z € Xj;.
Moreover, R is said to be functional when:
(HF) if (x,y) € R, then there exists z € cl(x) such that R(z) = cl(y)
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The following proposition will allow us to compare this notion with that of
‘H-Spectral morphism.

PROPOSITION 6.2.6. Let R C X1 x X5 be an H-Spectral morphism between
H-Spectral spaces X1 and Xo. Then for all x1 € X1 and all xo € Xo such that
(z1,22) € R, there is z € X such that x1 < z and R(z) = cl(x3).

PROOF. Let 1 € X; and z2 € X5 be such that zo € R(x1). Then by Spectral-
like duality for H, e(z9) € Ro,(e(z1)), i.e. Op'[e(x1)] C e(x2), where e(z;) is an
irreducible H-filter of B; and e(z2) is an irreducible H-filter of By. Since O is
order preserving, from e(z3)¢ being up-directed we get that Og[e(z2)¢] is also up-
directed, and so I := [Ogle(z2)] is an order ideal of By. Let F := (e(x)UOg[(y)]).

We claim that FF NI = (). Suppose, towards a contradiction, that there is
U € FN 1. Then, using the definition of implicative filter generated, we get that
there are V € e(z1), W € e(x2) and W’ ¢ e(x2) such that U C Or(W’) and
V= (0r(W)="U)=X. Then we get V = (Or(W) = Or(W’)) = X, and since
V € e(x1), that is an H-filter, then Or(W) = Or(W’') € e(z1). By hypothesis
we have that Og(W) = Or(W') = Or(W = W’), then from the assumption we
obtain W = W’ € Ox'(e(21)) C (22). And since W € e(x2), that is an H-filter,
we obtain W’ € e(z3), a contradiction.

From the claim, by Lemma 2.3.3 there is an irreducible #H-filter G such that
F C Gand ING = 0. But then by definition of F and I we get ¢(z1) € G and
Oz'[G] = e(x2). Now by Spectral-like duality for #, there is z € X; such that
e(z) = G. But then we obtain x; < z and R(z) = cl(x2), as required. O

THEOREM 6.2.7. For R C X7 x X5 an H-Spectral morphism between H-Spectral
spaces X1 = (X1,B1) and X2 = (X2,B3), R is a functional H-relation between
H-spaces (X1,Tsy,) and (Xa, Tyy,)-

Proor. This follows from Proposition 6.2.6. (]

THEOREM 6.2.8. For R C X1 X X2 a functional H-relation between H-spaces
X1 = (X4, 7,) and X5 = (Xa, 74, ), R is an H-Spectral morphism between H-Spectral
spaces (X1,X7) and (X2, X3).

PrOOF. This follows from the duality studied in [15]. O

Let us move now to the Priestley-style duality. Taking inspiration from the
Spectral-like case, we come up with the following definition.

DEFINITION 6.2.9. A structure X = (X, 7, <, B) is a H-Priestley space when:

(H9) (X, ) is a compact topological space,
(H10") (X, <) is a poset,
(H11") B is a collection of clopen up-sets of X that contains X,
(H12) for every z,y € X,z <y iff YU € B(if x € U, then y € U),
(H13') the set Xp:={x € X : {U € B:x ¢ U} is non-empty and up-directed }
is dense in X,
(H14) for al U,V € B, (L(UNV®))° € B

For a given H-Priestley space X = (X, 1, <, B) we define a binary operation =
on B such that for all U,V € B:

U=V:=UnVe))e
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By condition (H14) this operation is well-defined, and it is easy to check that
B* = (B,=, X) is a Hilbert algebra, that we call the Priestley-dual Hilbert algebra
of X.

THEOREM 6.2.10. For X = (X, 7,B) an H-Priestley space, the structure X' =
(X,7,<,B) is an H-Priestley space such that (X, 7,B®) = X.

ProOF. Let X = (X,7,B) be an H-Priestley space. Recall that since H
satisfies (uDDT), from Corollary 5.5.25 it follows that B = (B,=,X), where
U=V = UUnVe)e Therefore X' satisfies condition (H14). From condi-
tion (Pr3) in the definition of H-Priestley space, they follow conditions (H9) and
(H10"), from condition (Pr4) it follows condition (H11’), from condition (Pr5) it
follows condition (H13'), from condition (Prl) it follows condition (H12). From the
definition it follows easily that (X, 7, B®) = X. O

THEOREM 6.2.11. For X = (X,7,<,B) an H-Priestley space, the structure
X = (X, 7,B*) is an H-Priestley space.

PROOF. By condition (H12), the referential algebra (X,B®) is reduced. By
condition (H11’') B is a family of up-sets, so from condition (H14) and Proposition
6.2.3 we conclude that (X, B®) is a reduced H-referential algebra, so condition (Prl)
holds. Moreover, by Proposition 6.2.2 it follows condition (Pr2). And clearly the
rest of conditions also follow. O

This definition of the Priestley-dual space of a Hilbert algebra can be viewed as
a simplification of the one presented in § 3.3.2, i. e. the notion of H-Priestley space is
a simplification of the notion of augmented Priestley space, that was introduced by
Celani and Jansana in [18]. We will repeatedly use H-Priestley spaces in Chapter 7.
With regard to morphisms, again the Spectral-like case provided us with inspiration
for the following definition:

DEFINITION 6.2.12. For H-Priestley spaces X; and X5, a relation R C X; x Xo,
is an H-Priestley morphism when:
(HR3) if (z,y) ¢ R, then there is U € By such that y ¢ U and R(x) C U,
(HR4) Ogr(U) € By for all U € Bs.

Moreover, R is said to be functional when:

(HE') for every x € X; and every y € Xp,, if (z,y) € R, then there exists
z € Xp, such that z € Tz and R(z) = 1y.

Notice that the definition of H-Priestley morphism is similar to that of aug-
mented Priestley semi-morphisms introduced by Celani and Jansana in [18], and
functional H-Priestley morphisms are what they called there augmented Priestley
morphisms.

PROPOSITION 6.2.13. Let R C X1 X X3 be an H-Priestley morphism between
‘H-Priestley spaces X1 and Xo. Then for all x1 € X1 and all x2 € Xp, such that
(x1,22) € R, there is z € Xp, such that x1 < z and R(z) = Ty.

PrOOF. The proof is similar to that of Proposition 6.2.6. (]
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THEOREM 6.2.14. For R C X; x X5 a functional H-Priestley morphism be-
tween H-Priestley spaces X1 = (X1, 11, <1, B1) and X3 = (Xa, 72, <2, Ba2), R is an
H-Priestley morphism between H-Priestley spaces (X1,71,B}) and (X3, 72, B3).

PRroOF. This follows from the Priestley-style duality for H-algebras studied in
Chapter 5. O

THEOREM 6.2.15. For R C X; X Xy an H-Priestley morphism between H-
Priestley spaces (X1,71,B1) and (Xa,72,B3), R is a functional H-Priestley mor-
phism between H-Priestley spaces (X1,71, <1, B1) and (X2, 72, <2, B).

PRrROOF. This follows from Proposition 6.2.13. (I

This concludes the review of the Spectral-like duality and the Priestley-style
duality for H, in relation to our work in Chapter 5. In the following sections
we consider several filter distributive finitary congruential logics with theorems
that are expansions of H, and we pay attention to the Spectral-like and Priestley-
style dualities for these logics. We review, when appropriate, the dualities in the
literature. Moreover, we carry out analyses similar to what we have done in this
section, in order to get simplified definitions of the dual spaces of the corresponding
algebras.

6.3. Modal expansions
Let us focus on the language (—, 0, 1), of type (2,1,0).

DEFINITION 6.3.1. An algebra A = (A, —,0,1) of type (2,1,0) is a modal
Hilbert algebra or an HP-algebra if (A, —, 1) is a Hilbert algebra and for all a,b € A:
(H"1) O1 =1,
(HY2) O(a — b) — (Oa — Ob) = 1.

Let us denote by HY the variety of modal Hilbert algebras. It follows from
the study of selfextensional logics with implication in [54], that o0, the Hilbert
based logic of HP, is finitary and congruential. Moreover, it satisfies (uDDT) for
p — q, Alg ﬁ[’] = HY, and for any modal Hilbert algebra A, the collection of
implicative filters of A is the collection of S #-filters of A. Thus the logic Sgf is
filter distributive.

Consider the logic %5, that has all axioms and rules of # applied to the
formulas of the language (—, 0, 1), together with the following list of axioms:

(AO1) Fyo O™y for every substitution instance of a theorem of H and for every
new,

(AD2) Fyo OOy = B) — (Oy — Op)) for all formulas v, 5 and for every
n e w.

It is immediate that the logic H" satisfies (uDDT) with respect to the formula
p — @, because it is an axiomatic expansion of H. In order to show that the logics
HY and Sﬁ[’j are equal, we need the following lemmas:

LEMMA 6.3.2. For every formula v in the language (—,0,1), if Fy0 7, then
FHD D’y.
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PrOOF. Let T' := {y : k5,0 Ov}. We show that this set contains all axioms
and is closed under modus ponens. It is clear by (A2) that if § is an axiom, then
¢ is an axiom, and therefore § € T" for all axioms §. Suppose that §,0 — 5 € T,
so F5o 06 and Fyo O(6 — B). Then by (AO2) for n = 1 we have the axiom
Fyo 006 — B) — (06 — OpB). It follows by (MP) that 0 000 — 0O, and then
by hypothesis again ,,0 03, so 8 € I, as required. O

LEMMA 6.3.3. For every formula +,
Fyo v iff (VA € HO)(Vh € Hom(Fm, A))h(v) = 14,

PROOF. The direction from left to right follows easily, we only have to check
that every axiom takes value 1 in every valuation on an arbitrary modal Hilbert
algebra A, and that taking value 14 is preserved by modus ponens.

To prove the other direction, assume ¥,0 v. Let us consider the following
congruence # on the formula algebra Fm:

(8.0) €0 iff b0 B—6and byod— B

Notice that for every equation 8 = ¢ defining the variety HY, we have that 8 — 8
and § — /3 are theorems of H™. This implies that Fm/# € H”. Moreover, for any
B € Fm, § is a theorem of H5 if and only if (8,1) € 6 (we use 1 as a shorthand
for § — ¢ for any 6 € F'm). Let 7 : Fm — Fm/6 be the canonical natural map.
Then 7(8) = 1/6 if and only if 3 is a theorem of H5. So since by hypothesis ¥ao 7,
we get w(y) # 1/6. This proves the direction from right to left. O

THEOREM 6.3.4. The logics HP and Sy are equal.

PRroor. Assume first that I' ;0 6. Then we know that either ¢ is a theorem
of H", in which case for every A € H" and every h € Hom(Fm, A), h(5) = 14,
or there are 7p,...,v, € I' such that ~p,...,7, Fyo 6. By (uDDT) it follows
that Fo40 70 — (11 — (... (9 — 6)...)). Then for every A € H and every
h € Hom(Fm,A), h(yo = (1 = (... (yn = 6)...))) =14, and so T Fab O

For the converse, assume I' ko 6. Then either ¢ is a theorem of Sgf, in
which case for every A € HY and every h € Hom(Fm, A), h(5) = 1%, or there are
Y05+ -, Yn € I' such that yo,..., v, Fgo 6. In the last case, for every A € H" and
every h € Hom(Fm, A), h(yo) —=* h((m1) =2 (.. (h(yn) =2 h(0))...)) = 14,
Then by Lemma 6.3.3 and since h is an homomorphism, the previous fact implies
that 30 0 = (1 = (... (9n — 9)...)). And so, using (MP) again, we obtain
I'Fyo 0. O

As the axioms of H" are closed under the addiction of O by (AJ2), an easy
induction over the length of the proofs shows that HP satisfies (PIM), so our
theory in Chapter 5 can be applied to get dualities for it, and these dualities can
be refined using the correspondences studied in §5.5. Notice that for any modal
Hilbert algebra A = (A4, —, [0, 1), the operation O is a semi-homomorphism from
the Hilbert algebra reduct (A, —, 1) to itself. From the Spectral-like and Priestley-
style dualities presented in §6.2 we know how to dualize semi-homomorphisms.
Therefore, in regard to objects, we can build dualities for modal Hilbert algebras as
follows: for the Spectral-like duality, the Spectral-dual of a modal Hilbert algebra
is the Spectral-dual of its Hilbert algebra reduct, augmented with a binary relation
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that is an H-relation. For the Priestley-style duality, the Priestley-dual of a modal
Hilbert algebra is the Priestley-dual of its Hilbert algebra reduct, augmented with
a binary relation that is an H-Priestley relation.

In summary, Sﬁj is a filter distributive finitary congruential logic with theo-
rems, so our theory of Chapter 5 might be applied directly to it. But if we carry out
a more detailed analysis of the logic, we discover that, analogously as in extended
Priestley duality, we can build the dualities for HY from the ones for H, and so
we obtain dual spaces with no explicit algebraic structure. It should be further
investigated how to dispense with the algebraic structure of the dual morphisms,
but we leave this as future work.

6.4. Expansions with a disjunction
Let us consider now the language (—,V, 1) of type (2,2,0).

DEFINITION 6.4.1. An algebra A = (A, —,V,1) of type (2,2,0) is a Hilbert
algebra with supremum or an HY -algebra if (A, —, 1) is a Hilbert algebra, (4, V) is
a join-semilattice and — and V define the same order, i.e. for all a,b € A:

a—b=1 iff avb=b.

Let us denote by HY the class of Hilbert algebras with supremum. This class
of algebras was studied by Busneag and Ghita in [9] and more recently by Celani
and Montangie in [19] and. It is easy to check that HY-algebras are BCK-join-
semilattices (or BCKY -algebras).This class was studied by Idziak in [51], where he
proves that BCK" is indeed a variety. It follows that HY is also a variety, for which
an equational definition is given as follows. A = (4,—,V, 1) is a Hilbert algebra
with supremum if (A, —, 1) is a Hilbert algebra, (A, V) is a join-semilattice and for
all a,b € A:

(HV1) a = (a VD) =1,

(HY2) (a —b) — ((aVvb) —b) =1.
Then it is easy to check that the (—, Vv, 1)-reduct of any Heyting algebra is a Hilbert
algebra with supremum.

Let us consider the Hilbert based logic Sgl of HY. From the general theory
in [54] it follows that this logic is finitary and congruential. Moreover it satisfies
(uDDT) for p — ¢, AlgSy, = HY, and for any Hilbert algebra with supremum A,
the collection of implicative filters of A is the collection of Sgi -filters of A. Thus
the logic Spl is also filter distributive. We show now that it has the property of
disjunction.

LEMMA 6.4.2. For any 6,7 € Fm, 6 b’ 6 Vv and v gt d V.

PRrOOF. Notice that for every HVY-algebra A, and every a,b € A, it holds
a<avAb ie a—? (avArb) =14 This implies that for every A € HY and
every h € Hom(Fm, A), h(5) —* h(6 V) = 14, Hence we obtain & g% 0 V 7.
The proof of the other statement is similar. O

LEMMA 6.4.3. For any 6,7, € Fm, if § Fg% 1 and v Fgb p, then 6V~ Fg p.



6.4. EXPANSIONS WITH A DISJUNCTION 131

PRrOOF. Assume that § kg g and v Fgl p. Then by definition of St we
have that for every A € HY and every h € Hom(Fm, A), h(§) = h(u) = 12 and
h(y) =2 h(u) = 1A, This implies that h(5) <A h(u) and h(y) <A h(u). Therefore
h(6 V) = h(8) VA h(y) <A h(p), i.e. h(6 Vy) = h(p) = 1A, As this holds
for every HYalgebra A and every h € Hom(Fm, A), we obtain § V v bgl u, as
required. 0

COROLLARY 6.4.4. The logic Si’, satisfies (PWDI) and (PDI) forpV q.

PrOOF. From lemmas 6.4.2 and 6.4.3 it follows that Syl satisfies (PWDI),
and since the logic is filter distributive, by Lemma 5.5.12 this implies that the logic
satisfies (PDI). O

Let HY be the implicative-disjunctive fragment of intuitionistic logic, i.e. the
logic HY := (Fm,F3v) in the language (—,V, 1), where #v is the restriction of
intuitionistic logic to the formulas of the language (—,V,1). The logic HY can be
presented in a Hilbert-style calculus by the following axioms and rules (see Lemma
2.4.6 in [73]):

)
)
6) Fav v — (v VB),
)
)

(MP) 7,7 = BFyv B.
It follows from results by Porgbska and Wroriski in [64], that H" is the least finitary
logic in the language (—,V, 1) that satisfies (uDDT) for p — ¢ and satisfies (PDI)
for p Vv q.2

THEOREM 6.4.5. The logics HY and Sg’ ar equal.

PROOF. Since Sy’ is finitary and satisfies (uDDT) and (PDI), and H" is the
least finitary logic satisfying (uUDDT) and (PCI), it follows that kv CHg . For the
converse, let £ = (—,V, 1) the and let £’ = (—, A, V, 0, 1) be the language of intu-
itionistic logic. let TU{d} C Fm_g be such that I' ¥3v 6. Then as H" is a fragment
of the intuitionistic logic ZPC, we have that I" ¥zpe §. Hence there is a Heyting
algebra A = (A, —, A, V,0%,14) and a homomorphism h € Hom(Fm.g/, A) such
that h(y) = 12 for all ¥ € T and h(d) # 14, This implies that for any n € w and
any 70, -, € Ly h(yo = (1 = (- (. = 8)...))) # 14,

Recall that the (=, V, 1)-reduct of A, that we denote by A’ = (A, —,V,14) is
an H-algebra. Moreover, h is a homomorphism from Fm.g to A’. So by definition
of the Hilbert based logic we conclude that I' ¥\ 4§, as required. O

Given that the logic H" is a filter distributive finitary congruential logic with
theorems, and it satisfies (uDDT) and (PDI), our theory of §5.5 can be applied to
it, as we did in §6.2:

DEFINITION 6.4.6. A structure X = (X, 7,) is an HY-Spectral space when
(X, 7,) is an H-space and:

2This was also remarked by Wéjcicki in [73].
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(HV3) & is closed under finite intersections.

DEFINITION 6.4.7. A structure X = (X, 7, <, B) is an H" - Priestley space when
(X, 7,<,B) is an H-Priestley space and:
(HV4) B is closed under finite unions.

In [19] Celani and Montangie studied a Spectral-like duality for HY-algebras,
and the definition of dual spaces they came up with is precisely that of HY-Spectral
spaces. In regard to morphisms, we refer the reader to [19], where the duality
is studied in detail. For the Priestley-style duality, the definition of HY-Priestley
space is new, but it works analogously to the Spectral-like case.

In summary, Sl is a filter distributive finitary congruential logic with the-
orems, that is the implicative-disjunctive fragment of intuitionistic logic. It falls
under the scope of our theory in Chapter 5. Moreover Sgi satisfies (uDDT) and
(PDI). So we can use the correspondences studied in § 5.5 to put aside the algebraic
structure of the definition of the dual spaces. Although we did not go into details,
it is remarkable that in this case we can put aside also the algebraic structure in
the definition of dual morphisms.

6.5. Expansions with a conjunction

Let us consider the language (—,A,1) of type (2,2,0). In this section we
study mainly two logics defined in this language. One is the implicative-conjunctive
fragment of intuitionistic logic, that is a well-known logic for which Spectral-like and
Priestley-style have been already studied. We will show that these results follow
from our general theory. And the other is a weaker logic with some interesting
properties. We will study in detail the class of algebras associated with it, since in
Chapter 7 we develop new Spectral-like and Priestley-style dualities for a subclass
of such algebras.

Let H" be the implicative-conjunctive fragment of intuitionistic logic, i.e. the
logic H" := (Fm,t4+) in the language (—, A, 1), where Fyn is the restriction
of intuitionistic logic to the formulas of the language (—,A,1). The logic H" is
presented in a Hilbert-style calculus by the following axioms and rules:

(A1) byyn B = (v = B),

(A2) Fan (v = (B—=0)) = ((v = B) = (v = 0)),

(A3) Fun (YA B) = B,

(Ad) Fyn (YA B) =,

(A5) Fan (v = B) = (v = 0) = (v = (BAD))),

(MP) 7,7 = B byn B
From results by Porgbska and Wroniski in [64], it follows that H” is the least
finitary logic satisfying (PC) and (uDDT).® Moreover, as it satisfies (uDDT), then
it is a filter distributive logic. Clearly H” has theorems, as for any v € Fm,
v — v € ThmH". It is also well known that H” is the 1-assertional logic of IS, the
variety of implicative semilattices.

DEFINITION 6.5.1. An implicative semilattice or IS-algebra (also called Hertz
algebra or Browerian semilattice) is an algebra A = (A, —, A, 1) of type (2,2,0)

3This was also remarked in Lemma 2.4.5 in [73].
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such that (A, A, 1) is a meet-semilattice with top element 1, and — is the right
residuum of A, i.e. for all a,b,c € A:

aNc<ab iff ¢c<aa—b,
where the partial order <p is the one associated with the semilattice.

Let us denote by IS and BIS the classes of implicative semilattices and bounded
implicative semilattices respectively. Nemitz studied IS in [62] from an algebraic
point of view, and later Kohler studied it in [60] from a logical point of view. It
is well known that the (A,1)-reduct of an implicative semilattice is a distributive
semilattice, and the (—,1)-reduct is a Hilbert algebra, whose order associated co-
incides with <. Moreover, for any implicative semilattice A, Fi (A) = Fi, (A) =
Figyn(A).

It is also well known that implicative semilattices can also be obtained as the
subalgebras of the (—, A, 1)-reducts of Heyting algebras. Implicative semilattices
are indeed a variety, for which an equational definition is given as follows. A =
(A, —, A, 1) is an IS-algebra when for all a,b,c € A:

(K) a—=a=1,

(IS1) (@ = b) Ab =0,
(IS2) an(a—b)=aAb,
(I1S3) a = (bAc)=(a—c)A(a—b).

THEOREM 6.5.2. The logics H", Sig and Sﬂé are equal.

PROOF. The proof is similar to that of Theorem 6.2.1, and it is based on the
fact that H" satisfies (uDDT) for p — q. O

The previous theorem implies, by Proposition 7 in [54], that H" is selfexten-
sional, and then by Theorem 4.46 in [35] it follows that H” is congruential.

As the logic H" is a filter distributive finitary congruential logic with theorems,
and it satisfies (uDDT) and (PC), our theory of Chapter 5 can be again applied to
H”, as we did in §6.2, §6.3 and §6.4.

More specifically, for the Spectral-like duality, we get analogues of propositions
6.2.3 and 6.2.6 that allow us to dispense with the algebraic structure in the defini-
tions of dual spaces and dual morphisms. This leads us to recover the Spectral-like
duality for IS-algebras that have been studied in the literature, as particular cases
of our general theory.

In [11] Celani studied a Spectral-like duality for IS-algebras, where dual objects
are topological spaces called IS-spaces. We recall that X = (X, 7) is an IS-space
(Definition 4.1 in [11]) when (X, 7) is a DS-space (see definition in page 36) and:*

(IS84) for any U,V € KO(X), sat(U NV°) € KO(X).
Recall that for a DS-space X (see definition in page 36), we denote by F'(X) the set
{U¢:U € KO(X)}. Then for any IS-space X = (X, 7), the algebra X* := (F(X),=
,N, X) is an IS-algebra, where = is defined as U = V := (sat(U N V°)) for all
UV eFX).

4Notice that what we present here is a simplification of the original definition, that involves
the notion of IS-frame.
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With respect to morphisms, duals of algebraic morphisms between [S-algebras
are binary relations called in [11] IS-morphisms. We recall that for IS-spaces X;
and Xo, a relation R C X; x Xy is a [S-morphism (or functional meet-relation)
when:
(DSR1) Ogr(U) € F(X%;) for all U € F(X2),
(DSR2) R(x) is a closed subset of X5 for any = € X7,

(HF) for all 7 € X; and a2 € Xo such that (z1,22) € R, there is z € X7 such

that z € cl(x1) and R(z2) = cl(z2).

THEOREM 6.5.3. For X = (X,B) an H"-Spectral space, the structure X' =
(X, Twy) is an IS-space such that (X, (X')*) = X. Moreover, for R C X1 x X5
an H"-Spectral morphism between H-Spectral spaces X1 = (X1,B1) and X5 =
(X2,B2), R is an [S-morphism between IS-spaces (X1,Txy, ) and (Xo, Tyy,)-

THEOREM 6.5.4. For X = (X,7) an IS-space, the structure X = (X,X*) is
an H"-Spectral space such that (X, Tog) = X.  Moreover, for R C X3 x X»
an IS-morphism between IS-spaces X1 = (Xi1,71) and X2 = (Xo,7), R is an
H-Spectral morphism between H"-Spectral spaces (X1,X7) and (X2, X3).

On the other hand, for the Priestley-style duality, from analogues of proposi-
tions 6.2.3 and 6.2.13 we figure out how to dispense with the algebraic structure
in the definitions of dual spaces and dual morphisms. And this leads us to recover
as particular cases of our general theory, the Priestley-style duality for IS-algebras
that Bezhanishvili and Jansana studied in [6]. Dual objects were called there gen-
eralized Esakia spaces.” We recall that X = (X, 7,<, Xp) is a generalized Esakia
space when (X, 7, <, X) is a generalized Priestley space (see definition in page 38)
and:

(IS5) for all U,V € CKL{?(dB (X), (UNVe))c e ceugg; (X).
Strictly speaking, the definition of generalized Esakia spaces in [6] involves, instead
of condition (IS5), the following equivalent and nicer condition:

(Es) JU is clopen for every Esakia clopen U,
where U C X is an Esakia clopen if and only if U = J{(U; N V°) : i < n} for some
n € w, and Uy, V; € CAUSE (X) for all i < n.

For a given generalized Esakia space X = (X, 7,<, Xp) we define a binary
operation = on CAUSE (X) such that for all U,V € CaUsE (X):

U=V =UnVe))e

Then we get that X° := (CaU$ (X),=,N, X) is an IS-algebra, that we call the
Priestley-dual implicative semilattice of X.

In relation to morphisms, duals of homomorphisms between IS-algebras are
binary relations called generalized Esakia morphisms in [6]. We recall that for
generalized Esakia spaces X; and X,, a relation R C X; x X, is an generalized
Esakia morphism when:

5Actually, Bezhanishvili and Jansana work with bounded IS-algebras, and their duals are
what they call generalized Esakia spaces. Similarly to what we presented for the Priestley-style
duality for DS-algebras, their work can be extended to IS-algebras that do not have necessarily
bottom. For simplicity we use the same name, but it should be kept in mind that the context we
work in is broader than the one in [6].
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(DSR3) On(U) € CAUS, (X,) for all U € CAUSEL (X),
(DSR4) if (z,y) ¢ R, then there is U € CKU%BQ (X2) such that y ¢ U and R(z) C
U.
(HF") for every x € X; and every y € Xp,, if (x,y) € R, then there exists
z € Xp, such that z € Tz and R(z) = 1v.

THEOREM 6.5.5. For X = (X, 7,B) an H"-Priestley space, the structure X' =
(X,7,<,XpB) is a generalized Esakia space such that (X,7,(¥')*) = X. More-
over, for R C X1 x X3 an H"-Priestley morphism between H’-Priestley spaces
(X1,71,B1) and (Xa2,72,B3), R is a generalized Fsakia morphism between general-
ized Esakia spaces (X1,11,<1,Xp,) and (Xa,72, <2, XpB,).

THEOREM 6.5.6. For X = (X, 7,<,Xp) a generalized Esakia space, the struc-
ture (X, 7,X°*) is an H"-Priestley space such that (X,7,<,Xxe) = X. Moreover,
for R C X1 x Xo an generalized Esakia morphism between generalized FEsakia spaces
X1 = (X1,71,<1, Xp,) and X3 = (Xo, 72, <2, XB,), R is an H"-Priestley morphism
between H"-Priestley spaces (X1,71,%}) and (X, 12, X3).

Summarizing, from our general theory we recover the Spectral-like and Priestley-
style dualities for IS-algebras that we find in the literature. Let us change now the
subject and consider a different logic defined in the language (—, A, 1).

DEFINITION 6.5.7. An algebra A = (A, —, A, 1) of type (2,2,0) is a Hilbert
algebra with infimum or an H"-algebra if (A, —, 1) is a Hilbert algebra, (A, A, 1) is
a semilattice with top element 1, and — and A define the same order, i.e. for all
a,b e A:

a—b=1 iff anb=a.

EXAMPLE 6.5.8. In any semilattice (A, A, 1) it is possible to define a structure
of H"-algebra considering the implication — defined by the order:

vy — 1 ifx <y,
vy= y if otherwise.

Let us denote by H” the class of Hilbert algebras with infimum. In [32] Figallo
et al. prove that H” is a variety. It is not difficult to see that H”-algebras are in par-
ticular BCK-meet-semilattices or BKC"-algebras. Idziak studied BKC”"-algebras
in [51], and we note that from his work it also follows that H”" is a variety. In
fact, H"-algebras are precisely BKC"-algebras that satisfy condition (H) (see page
30). An equational definition of H”" is given as follows. A = (A,— A1) is an
H"-algebra when (A, —,1) is a Hilbert algebra, (A, A,1) is a semilattice with top
element 1, and for all a,b,c € A:

(HM) aA(a—b)=aAb,
(H"2) (a—= (bACc) = ((a—=b)A(a—c)=1.

In [32] Figallo et al. also prove that implicative semilattices are the H"-algebras
that satisfy the following equation:

(PA) a— (b— (aAb)) = 1.

The following example from [32] shows that the inclusion is strict.
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FicURE 2. Example of a Hilbert algebra with infimum that is not
an implicative semilattice.

EXAMPLE 6.5.9. Consider the lattice in Figure 2 as a semilattice (A, A, 1),
where A = {0,a,b,c,d, 1}, and let — be the implication defined on A by the or-
der (cf. Example 6.5.8). Then we have that A := (A, —,A,1) is an H -algebra,
that is not an implicative semilattice because (PA) fails: b — (¢ — (bA¢)) =
b= (c—a)=b—sa=a#1l

In [33] Figallo et al. provide an axiomatization of the 1-assertional logic of H”,
that we denote by Sga. The logic S := (Fm,F.) in the language (—, A, 1) of
type (2,2,0), is presented in a Hilbert-style calculus by the following axioms and
rules:

(Al
(A2
(A3

) Fin B—= (v = B),

) Fin (v = (B—=8)) = (v = B) = (v = 9)),
) Fin (YA B) = B,

(AAL) Hin (YA (v = B)) = (YA B),

(AA2) Hln (YA B) = (BA7),

(AA3) Fign (WAB)AD) = (YA A B),

(MP) v,y — B Hla B,

(AB) v = BFga v = (YA ).

Notice that Sf. is an expansion of H, but it is not an axiomatic expansion, as the
rule (AB) cannot be derived from any collection of axioms and the only rule of
(MP).

Clearly Sk is finitary and has theorems as for any v € F'm, v — v € ThmSf..
Moreover it satisfies (PC) for pAg. In [33] it is claimed erroneously that S}, satisfies
(uDDT) for p — gq. Notice that from (A1), (AA2), (MP) and (AB), by isotonicity
(condition (C2') in page 16) it follows v Fa B — (v A B). Then if Si. would have
the deduction theorem, it would follow Fi. v — (8 — (8 A 7)), and this implies,
in particular, that (PA) holds for any H"-algebra, a contradiction.

Let us show that S}, is not congruential. We use Definition 4.3.2 and we
show that there is an algebra A = (A, —, A, 1) of type (2,2,0) such that E?lA
is not a congruence of A. Take the algebra A defined in Example 6.5.9. Notim([:e
that C4 (b) = C4 (¢) = C& (a) = ta. Therefore a =% b =% c. However

HA HA HA HA HA

b— =% a—bsinceCe (b—c)=Ch (¢)=TabutC4 (a—b)=Ch (1) =
HA HA HA HA HA

{1}
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Logical filters of the logic S are also studied by Figallo et al. in [32]. For any
H"-algebra A = (A, —, A, 1), a subset H C A is an absorbent filter of A if for all
a,be A:

— H is an implicative filter of (4, —, 1),
—ifbe H,thena — (aAb) € H.

We denote by Ab(A) the collection of all absorbent filters of A. It is easy to prove
that all absorbent filters are meet filters of (4, A, 1): let a,b € H € Ab(A). Clearly
H is an up-set and moreover a — (a A b) € H. Since H is a implicative filter,
then a Ab € H. Notice that Ab(A) is closed under arbitrary intersections, so for
B C A we may consider the least absorbent filter containing B. But we do not
have on hand an alternative characterization of the absorbent filter generated by a
set. And we do not know whether the lattice of absorbent filters is distributive or
not. However, later on we prove a proposition (see page 143) that sheds light on
these filters.

The logic Sh. does not have the properties that are required for the application
of our theory in Chapter 5. However, a different logic that has such properties can
be defined from H"-algebras, namely Sgi, the Hilbert based logic of H".

By the general theory in [54], Sgh is finitary and congruential. Moreover it
satisfies (uDDT) for p — ¢, AlgSgh = H”", and for any Hilbert algebra with infimum
A, the collection of implicative filters of A is the collection of Sgh-filters of A. Thus
the logic Sgh is also filter distributive.

The logic Sgr does not satisfy (PC) for p A ¢ though. This follows easily
from Example 6.5.9. From it we get that Py v — (§ — (y A d)) =~ 1, and this
implies that ,d ¥g. v A d. Hence Sgi does not satisfy (PC) for p A ¢, and so
we cannot apply the correspondences studied in § 5.5 in order to dispense with the
algebraic structure in the dual spaces of H"-algebras. We obtain, from our theory
in Chapter 5, Spectral-like and Priestley-style dualities for Sgi, but they are not
elegant dualities.

We can consider even one more logic, the logic of the order S§A of H”", that
is also the semilattice based logic of H". By definition, this logic is a finitary and
congruential logic with theorems, it satisfies (PC), Alg&ﬁA = H” and for any H"-
algebra A, the order filters of A are the SH%A—ﬁlterS of A. By results reported below
(see Example 6.5.12) we know that the logic S}% is not filter distributive, so it does
not fall under the scope or our study.

Notice that, unlike the case of implicative semilattices, for H"-algebras we have
that S, S§A and S are three different logics, and moreover, the relation between
them goes as follows:

FHYA g_ FHS.]I/\ g_ F]II.HA

THEOREM 6.5.10. Let & = (—,A,1,...) be a language and let K be a quasi-
variety of £ -algebras such that (A, —, A, 1) is an H"-algebra for any A € K. Then
Sg = Sﬂg if and only if

(VA e K)(Va,b,cc Ay anb<®c iff b<ha— e,

where < is the order associated with the H"-algebra (A, —, A, 1).
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PROOF. Assume first that Sg' = SH%. Then by the general theory in [54]
and [53], § = S’ = 11% is congruential and satisfies (PC) and (uDDT). This
implies that Fig(A) = Fi,(A) = Fir(A) for all A € K. Let A € K and a,b,c € A.
We have ({a,b}) = [{a,b}) = 1(a Ab). Then

aAb<®c iff cet(and)=[{a,b}) = {a,b}) iff a—cecFi,(b)=1b
iff b<®a—ec

For the converse, let us assume that for all A € K and all a,b,c € A we have
that a Ab <® cif and only if b < a — ¢. Let v1,...,7,0 € Fm, let A € K
and let h € Hom(Fm, A). Notice that by definition of the order on A, we have
that h(v1) =® (h(y2) = (... (h(7n) =™ R(8))...)) # 1 if and only if h(y1) €4
h(y2) =2 (... (R(vn) —* R(5))...). By assumption, we can use the residuation
law n—1 times and we get h(y1) €2 h(y2) =2 (... (h(7n) = h(8))...) if and only
if h(y1) A- - Ah(vy,) £2 h(5). Hence, we conclude that Sg’ = SHE, as required. [

The problem that we originally addressed in the early stages of our research, was
to get elegant Spectral-like and Priestley-style dualities for Sgi, i. e. for the variety
of Hilbert algebras with infimum. But for the moment we have only been able to find
a solution for a subclass of H", namely the Hilbert algebras with infimum with the
additional property that the semilattice reduct is distributive. These algebras are
called distributive Hilbert algebras with infimum. We devote Chapter 7 to expound
Spectral-like and Priestley-style dualities for such algebras. Distributive Hilbert
algebras with infimum do not form a variety, not even a quasi-variety. So they are
not the algebraic counterpart of any logic that we could define form them. However,
it turns out that the dualities for Hilbert algebras with infimum can be restricted
to dualities for other classes that do relate with interesting logics. We address this
issue in §7.6. For the moment, let us introduce the subclass of H” for which we
develop the dualities in Chapter 7.

6.5.1. Distributive Hilbert algebras with infimum.

DEFINITION 6.5.11. A H -algebra A = (A, —, A, 1) is a distributive H -algebra
or a DH"-algebra when the underlying semilattice (A4, A, 1) is distributive.

Let us denote by DH" the class of distributive Hilbert algebras with infimum.
Notice that the algebra defined in Example 6.5.9 is in fact a DH”-algebra. There-
fore, that example shows that implicative semilattices are strictly included in DH".
Moreover, the following example shows that DH” is strictly included in HA.

EXAMPLE 6.5.12. Consider the lattice N5 in Figure 3 as a semilattice (A, A, 1),
where A = {0,a,b,¢,1}, and let — be the implication defined on A by the order
(cf. Example 6.5.8). Then we have that A := (A, —, A, 1) is an H"-algebra, that is
obviously not distributive.

The relations between the four classes of algebras in the language (—, A, 1) so
far considered are:
IS ¢ DH" ¢ H" ¢ BKC"
We focus now on filters and ideals of DH”-algebras. However, all the definitions
and several lemmas stated in what follows hold in general for H”-algebras, not
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FI1GURE 3. Example of a Hilbert algebra with infimum that is not
distributive — N5 with the order given by implication.

necessarily distributive. We state them in the more general form when possible,
and so we bring out which properties related with distributivity are essential to get
which results. From now on, let A = (A, —, A, 1) be an H"-algebra, where we have
the order < given by:

a<b iff a—=b=1 iff aNb=a.

We focus on the two underlying structures of any H”-algebra: the semilattice and
the Hilbert algebra.

Concerning the underlying semilattice (A4, A, 1), we may consider the collec-
tions of meet filters Fis(A) (definition in page 26), irreducible meet filters Irrp (A)
(definition in page 27), optimal meet filters Op,(A) (definition in page 28), order
ideals Id(A) (definition in page 26), and F-ideals Idp(A) (definition in page 28),
that we introduced in §2.3, and that yield the following lemmas and corollaries
that we retype here for the sake of completeness:

Lemma 2.3.3: Let A be an H"-algebra, and let F' € Fir(A) and I € Id(A)
be such that F NI = 0. Then there is G € Irrp(A) such that F C G and
GNnI=09.

Theorem 2.3.6: Let A be a DH"-algebra. Then for all F € Fi(A), F €
Irrp(A) if and only if F° € Id(A).

Lemma 2.3.7: Let A be an H"-algebra and let F' € Fip(A)and I € Idp(A)
be such that F' NI = (. Then there is G € Op,(A) such that F C G and
GNnI=0.

Theorem 2.3.9: Let A be a DH"-algebra. For any F' € Fi,(A), F ¢
Op,(A) if and only if F° € Idp(A).

Notice that the separation lemmas hold in general for any H”"-algebra, but the
correspondences between filters and ideals hold only for the distributive ones.
Concerning the underlying Hilbert algebra (A, —, 1), we may consider the col-
lections of implicative filters Fi_, (A) (definition in page 31), irreducible implicative
filters Irr_, (A) (definition in page 31), optimal implicative filters Op_, (A) (defi-
nition in page 32), order ideals Id(A) (definition in page 26), and strong F-ideals
Id;#(A) (definition in page 32), that we introduced in §2.4, and that yield the
following lemmas and corollaries that we retype here for the sake of completeness:

Lemma 2.4.5: Let A be an H"-algebra, and let F' € Fi_,(A) and I € Id(A)
be such that F'NI = (. Then there is G € Irr_,(A) such that F C G and
GnI=09.
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Corollary 2.4.4: Let A be a H"-algebra. Then for all F € Fi,(A), F €
Irr, (A) if and only if F© € Id(A).

Lemma 2.4.7: Let A be an H"-algebra and let F € Fi,(A) and I €
Idsp(A) be such that F NI = (. Then there is G € Op_,(A) such
that F C G and GNI = 0.

Theorem 2.4.9: Let A be an H"-algebra. For any F € Fi,(A), F €
Op_,(A) if and only if F¢ € Id,p(A).

Notice that distributivity is not needed in any of the previous lemmas and corol-
laries. Now we focus on the relations between all these notions. Recall that for any
H"-algebra, the order defined by the meet and the order defined by the implica-
tion coincide. This fact implies a strong link between the two operations, that is
reflected in the following propositions.

PROPOSITION 6.5.13. Let A be an H”-algebra. Then any meet filter of A is
an implicative filter of A.

PROOF. Let F' € Fir(A). Since F' is a non-empty up-set, clearly 1 € F. Let
a,a—>b€eF. ThenaAb=aA (a—0b) € F sosince a Ab<band F is an up-set,
we obtain b € F'. O

COROLLARY 6.5.14. Let A be an H"-algebra. Then for all B C A, (B) C [B).

LEMMA 6.5.15. Let A be an H"-algebra. Then a — (b — ¢) < (a Ab) — ¢ for
all a,b,c € A.

PROOF. Let a,b,c € A. From aAb < a we get a — (b — ¢) < (aAb) = (b— ¢).
From a Ab<bwegetb—c<(aAb) = ¢ andso (aAb) = (b—=c) < (aAb) —
((anb) = ¢) = (a Ab) = ¢, and we are done. O

PROPOSITION 6.5.16. Let A be an H"-algebra. Then
Irr, (A) NFis(A) CIrra(A).

PrOOF. Let F' € Irr,(A) NFir(A) and let Fy, Fy € Fir(A) be such that
FiNFy, = F. Since F, Fy, F are implicative filters, and F' is —-irreducible, we get
Iy = F of Fy, = F, therefore F is A-irreducible meet filter. O

PROPOSITION 6.5.17. Let A be an H"-algebra. Then
Op_,(A) NFisr(A) € Op,(A).

PrOOF. Let F' € Op_, (A) NFir(A). By Theorem 2.4.9 we know that F°
is sF-ideal, so it is in particular an F-ideal. Let us show that it is A-prime: let
B C¥ A be such that A B € P¢. We show that B N P # (. Suppose, towards
a contradiction, that B N P® = (). Then B C P, and since P is a meet filter by
assumption, we get A\ B € P, a contradiction.

Hence, we have shown that F¢ is a A-prime F-ideal. Thus by Corollary 2.3.10
we conclude that F' is an A-optimal meet filter. (Il

For the case when the underlying semilattice is distributive, we find stronger
links between these collections of filters.

PROPOSITION 6.5.18. Let A be an H"-algebra. Then the underlying semilattice
is distributive if and only if Irrp(A) C Irr, (A).
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PROOF. Assume first that A is distributive and let P € Irrp(A). On the one
hand we have that P € Fi_,(A). On the other hand, by Theorem 2.3.6, P¢ € Id(A).
Then by Corollary 2.4.4, we conclude that P € Irr_, (A).

Assume now that Irra(A) C Irr_,(A). Then by Corollary 2.4.4 we have that
for all P € Irrp(A), P¢ is an order ideal. By Theorem 10 in [12], this implies that
the underlying semilattice is distributive, so A is a DH"-algebra, as required. [

COROLLARY 6.5.19. Let A be a DH" -algebra. Then
Irr, (A) NFipr(A) = Trra(A).
PRrROOF. This follows from propositions 6.5.18 and 6.5.16. O

PROPOSITION 6.5.20. Let A be a DH"-algebra. Then any A-prime F-ideal is
an sF-ideal.

PROOF. Assume that A is distributive and let I € Idp(A) be A-prime. Let
I' C¥ I and let B C¥ A be such that ({ta : @ € I'} C (B). We show that
(BY NI # 0. Recall that for any C' C* A we have (C) C [C) =t AC. Thus from
the hypothesis we have (\{fa:a € I'} C [B) =1 A B. And by I being an F-ideal
of A, we get A B € I. Now we use that I is A-prime, so there is b € B such that
b € I. We conclude that (B) NI # (), as required. O

COROLLARY 6.5.21. Let A be a DH"-algebra. Then Op,(A) C Op_,(A).

Proor. This follows from Corollary 2.3.10, Proposition 6.5.20 and Theorem
2.4.9. O

The relation between A-irreducibles and —-irreducibles is shown in Proposition
6.5.18 to characterize DH"-algebras, but it remains as an open question whether
the inclusion in last corollary characterizes DH"-algebras or not.

COROLLARY 6.5.22. Let A be a DH" -algebra. Then
Op_,(A) NFir(A) = Op,(A).
ProoOF. This follows from Propositions 6.5.17 and Corollary 6.5.21. (]

For the non-distributive case, it may happen that the equalities in corollaries
6.5.19 and 6.5.22 fail, as the Example 6.5.23 shows.

EXAMPLE 6.5.23. Consider the H”"-algebra A given in Example 6.5.12 (N5
as a semilattice, with the implication defined by the order). On the one hand,
we have that Fis(A) is the collection of all principal up-sets and so Irra(A) =
{ta,1b,tc,11}. On the other hand, we have that Fi_,(A) is the collection of all
principal up-sets together with F, := {a, ¢, 1} and Fy;, := {a,b, ¢, 1}. The lattice of
implicative filters of A is represented in Figure 4.

Clearly Irr_, (A) = {10, Fyup, Fy, 1, Tc}. Hence as Ta € Irrp(A) \ Irr—, (A), we
have an example of a H"-algebra that is not distributive and for which it holds
Irrp(A) € Trr—, (A) NFix(A), and also Op,(A) € Op_, (A) NFir(A).

Notice that we should restrict ourselves to search dualities for distributive
H"-algebras, precisely because of the possible failure of the inclusions in corollaries
6.5.19 and 6.5.22 when the underlying semilattice is not distributive.
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FIGURE 4. Lattice of implicative filters of N5 with the implication
given by the order.

F1GURE 5. Example of a distributive Hilbert algebra with infimum.

Let us present one more example extracted from [5], that shows that for the
distributive case, some of the mentioned inclusions may be strict.

ExXAMPLE 6.5.24. Consider the semilattice in Figure 5 that is a distributive se-
milattice (A, A, 1), where A = {0,a,b,1}U{¢; : ¢ € w}, and let — be the implication
defined on A by the order (cf. Example 6.5.8). Then we have that A := (4, —, A, 1)
is a DH"-algebra.

Let us denote by Fyp the implicative filter 1({a,b}) = {a,b,1} U{¢; : i € w},
and by F, the meet filter {¢; : i € w} U {1}. It is easy to see that Fis(A) is the
collection of all principal up-sets together with F.. Moreover, Fi_,(A) is Fir(A)
together with Fi;. It is not difficult to check that Fjp, € Irr—, (A). But since Fyy, is
not closed under meet, F;, ¢ Fis(A). Hence, we have:

Irrp(A) C Irr, (A),

Op,(A) € Op_,(A),
Fin(A) C FiL(A).
Moreover, we have that F. € Op_, (A), since [{a,b} is an sF-ideal of A, but
F. ¢ Irr_,(A), since we have F. = taN?1b but F,. # ta,1h. Similarly, F, € Op,(A),
since it is closed under meet, but F. ¢ Irrx(A). Finally, notice that A is bounded,
so 0 ¢ Idsp(A). Therefore 10 = A ¢ Op_,(A), but clearly A € Fi_,(A). Similarly
A € Fir(A) but A ¢ Op,(A). Hence, we have:

Ir, (A) C Op_,(A) € FiL,(A),



6.6. EXPANSIONS WITH A CONJUNCTION AND A DISJUNCTION 143

Irrp(A) € Op,(A) G Fir(A).

Let us conclude this section with a proposition concerning absorbent filters that
will be useful later.

PROPOSITION 6.5.25. Let A = (A, —,A,1) be an H"-algebra. For any meet
filter F of (A, A, 1), F € Ab(A) if and only if (F UTa) is a meet filter of (A, A, 1)
for alla € A.

PROOF. Let F € Ab(A) and let a € A. If a € F there is nothing to prove,
so suppose a ¢ F. Recall that (F U ta) denotes the implicative filter of (4, —, 1)
generated by F U Ta.

We claim that (F'U tTa) is a meet filter. We show that b A ¢ € (F U tTa) for
any b,c € (F'U7Ta), so let b,c € (FU"%a). As F U%ta # (), we can assume that
there are by, ...,b,,co,...,Cm € F'U%a such that bg — (... (b, = b)...) =1 and
g = (... (¢m — ¢)...) =1. By Lemma 6.5.15, this implies (bg A--- Ab,) = b=1
and (co A+ -Acp)—c=1. Then we have by A---Aby AcgA---Aey < DAc.
Since bg,...,bn,C0,-..,¢m € FU7Ta and F and Ta are both closed under meets,
then we have d; € F and ds € Ta such that bgA---Ab, AcgN- - -Acy, = diAdy < DAc.
Moreover, by definition of absorbent filter, do — (d1Adz) € F C (FUta). And since
dy € Ta C (F U%a), by definition of implicative filter we obtain d; A ds € (F U ta).
Now since (F'Uta) is an up-set, we conclude b A ¢ € (F U ta).

For the converse, let F' € Fi (A) be such that for all a € A, (F U Ta) is a
meet filter. We show that F' is absorbent. Let b € F and a € A. We show that
a — (a Ab) € F. Notice first that (FUta) = (F U{a}). Then, as a € (F'UTa)
and b € F we get by hypothesis that a A b € (F Uta). Now we use the definition

of implicative filter generated, and we get that there are cg,...,c, € F, for some
n € w, such that co = (¢c; = (... (cn, = (@ = (a AD)))...)) = 1. But this implies
a — (a Ab) € F, as required. O

In brief, we have studied the properties of the different collections of filters and
ideals for DH"-algebras, and these results will be used in Chapter 7, where Spectral-
like and Priestley-style dualities for categories that have DH"-algebras as objects
are studied in detail. Before moving to this topic, let us review some other filter
distributive and congruential expansions of H for which the mentioned dualities
could also be applied, as it will be outlined in §7.6.

6.6. Expansions with a conjunction and a disjunction

Let us concentrate now on the language (—, A, V, 1) of type (2,2,2,0). A well-
known logic defined in this language is ZPC™, the positive (intuitionistic) logic, that
is, the negation-less fragment of intuitionistic logic. The logic ZPC" := (Fm, F7pc+)
in the language (—, A, V, 1) can be presented in a Hilbert-style calculus by the fol-
lowing axioms and rules:

(A1) Fzpe+ B— (v = B),
) Fzpe+r (v = (B—6) = (v = B) = (v = 9)),
A3) Fzpe+r (YA B) = B,
) Fzper (YA B) =7,
5) Fzpe+ (v = B) = (v = 6) = (v = (BAG))),
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(A6) Fzpe+ v = (Y V B),
(A7) Fzpe+r v = (BV ),
(A8) Fzpe+ (v = 6) = ((B—=6) = (v V B) =),
(MP) v,y = Btzpe+ B-
It is well known that ZPC™ is the l-assertional logic of the variety of relatively
pseudo-complemented lattices, that coincides with AlgZPC™".

DEFINITION 6.6.1. A relatively pseudo-complemented lattice or generalized Hey-
ting algebra (gHe-algebra for short) is an algebra A = (A, — A,V,1) of type
(2,2,2,0) such that (A, A,V, 1) is a lattice with top element 1 and — is the right
residuum of A, i.e. for all a,b,c € A:

aNc<b iff ¢c<a—b

Let us denote by gHe the class of relatively pseudo-complemented lattices and
by He the class of bounded relatively pseudo-complemented lattices, i.e. the class
of Heyting algebras. It is well known that the lattice reduct of any gHe-algebra is
distributive. Since implicative semilattices are a variety, it follows that gHe and
He are also varieties.

THEOREM 6.6.2. The logics TPC™", S,ie and S;H are equal.

e e

PRrROOF. The proof is similar to that of Theorem 6.2.1, using that ZPC™ satisfies
(uDDT). O

Again we obtain that ZPC™ is a filter distributive finitary congruential logic
with theorems, that satisfies (uDDT), (PC) and (PDI), so our theory from Chap-
ter 5 can be applied to it, and similarly as we did with the implicative-conjunctive
fragment of intuitionistic logic, the dualities obtained from the general theory can
be refined to dispense with the algebraic structures in the dual side. Notice that
relatively pseudo-complemented lattices are an example of distributive lattices ex-
panded with a binary quasioperator. And in fact extended Priestley-duality (or
what could be called extended Spectral-duality) can be applied to them, in order
to obtain the mentioned dualities.

In [13] Celani and Cabrer consider another class of algebras in this language,
that they call (bounded) distributive lattices with implication or DLI-algebras. These
are bounded distributive lattices expanded with a normal dual (9, 1)-quasioperator
—, 1.e. algebras A = (A, —,A,V,0,1) of type (2,2,2,0,0) such that (4, A,V,0,1)
is a bounded distributive lattice and for all a,b,c € A:

(IA2) (a—1) =1,
(DLIO) (0 — a) =1,
(DLI1) a = (bAc¢c)=(a—b) A (a—c¢),
(HE1) (aVvb) s c=(a—c)A(b—c).

Extended Priestley duality shall be applied to this class of algebras, and this is
precisely what Celani and Cabrer do, in order to study some of their subvarieties in
a modular way, getting relational semantics for the algebraic counterpart of certain
fuzzy logics, such as MTIL-algebras or MV-algebras. Moreover, Heyting algebras
are contained in DLI, as well as weakly Heyting algebras introduced by Celani and
Jansana in [16], where a study of Priestley-style duality for them yields relational
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semantics for strict implication fragments of some normal modal logics. We are
not interested in DLI and its subvarieties, since Priestley-style duality for them is
already known, but we show in what follows that the variety we are interested in
does not include and is not included in DLI.

Notice that DILI-algebras are lattices expanded with an implication that pre-
serves the order in the second coordinate and reverses the order in the first coordi-
nate. The class of algebras that we introduce now shares the same property.

Let us focus on a different logic defined in the language (—, A, V,1). We con-
sider the Hilbert based logic of the following class of algebras:

DEFINITION 6.6.3. An algebra A = (A, —, A, V, 1) of type (2,2,2,0) is a Hilbert
algebra with lattice structure or a H-algebra if:
(1) (A,—,1) is a Hilbert algebra,
(2) (A,A,V,1) is a lattice with top element 1,
(3) — and A define the same order, i.e. for all a,b € A:

a—b=1 if arnb=a.

Let us denote by H” the class of Hilbert algebras with lattice structure, and by
H{ the class of bounded Hilbert algebras with lattice structure, i.e. HE-algebras
with an additional constant, that is interpreted as the bottom element of the un-
derlying lattice.

EXAMPLE 6.6.4. The H"-algebra considered in Example 6.5.12 (see page 138),
that recall is the lattice N5 with the implication given by the order, can also be
seen as an H%-algebra.

Note that HPE-algebras are a subclass of BCK-lattices (or BCK™-algebras).
These algebras were studied by Idziak in [51], where he shows that they form a va-
riety. In fact, H-algebras are those BCK*-algebras that satisfy condition (H) (see
page 30), and an equational definition of H’ is given as follows. A = (A, =, A,V, 1)
is an H -algebra if for all a,b, c € A:

(1) (A,—,1) is a Hilbert algebra,
(2) (A, A,V,1) is a lattice with top element 1,
(HM) aA(a—b)=aAb,
(H"2) (a—= (bACc) = ((a—=b)A(a—c) =1,
(HE1) (aVvb) —c=(a—c)A(b—c).

The variety gHe of relatively pseudo-complemented lattices is strictly included
in the variety of H’-algebras. A relevant equation is again (PA) (see page 135).
Heyting algebras are precisely those bounded H”-algebras that satisfy (PA). More-
over, the inclusion is strict. The H"-algebra considered in Example 6.5.9 (see page
136) shall also be seen as an H¥-algebra, that is obviously not a Heyting algebra.
In [32] we find a different example:

EXAMPLE 6.6.5. Consider the lattice in Figure 6, that is distributive, and let
— be the implication defined on A by the table in Figure 7. Then we have that
A = (A,—,A,1,0) is a bounded H-algebra, but is not a Heyting algebra, since
a—0=>b%#f=max{z:aAz<0}.
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FI1GURE 6. Example of a distributive Hilbert algebra with lattice structure.

=10 a b ¢ d e f 1
of(1 1 1 1 1 1 1 1
a|b 1 b f 1 1 f 1
ble e 1 e 1 e 1 1
c|b d b 1 d 1 1 1
dl0 e b ¢ 1 e f 1
e|b d b f d 1 f 1
f10 a b e d e 1 1
110 a b ¢ d e f 1

FicUrRE 7. Example of a distributive Hilbert algebra with lattice
structure — definition of the implication.

As in the case of Hilbert algebras with infimum, the 1-assertional logic of H"
is not congruential. Therefore we focus on the Hilbert based logic of H”, that we
denote by Sp%.. By construction, this logic is finitary and congruential. Moreover it
satisfies (uDDT) for p — ¢, AlgSy} = HF”, and for any Hilbert algebra with lattice
structure A, the collection of implicative filters of A is the collection of Sy -filters
of A. Therefore the logic Sy is also filter distributive. Similarly to the case of
the Hilbert based logic of H", it turns out that the logic S5} does not satisfy (PC)
for p A q. Notice that the (—, A, 1)-reduct of any H%-algebra is an H"-algebra.
Therefore, the logic Si; is also an expansion of the logic Sih.

We could think on a different logic defined from H’, the semilattice based logic
of HE, that we denote by S§L. From the general theory (see [53] and [55]) it
follows that SH_%L is a finitary congruential logic with theorems that satisfies (PC).
Furthermore, AlgSﬁL = H’, and for every H -algebra A, the order filters of A are
the SEL—ﬁlters of A. Hence the logic S§L is not filter distributive, so it is out of
reach of our study.

Just like the case of H"-algebras, we have not been able to get elegant Spectral-
like and Priestley-style dualities for H, but for a subclass of H”. Nevertheless,
that subclass turns out to be an interesting variety, from both a logical and an
algebraic point of view.

DEFINITION 6.6.6. An H-algebra A = (A, —, A, V, 1) is a Hilbert algebra with
distributive lattice structure or an HP® -algebra when the underlying lattice (A, A, V)
is distributive.
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Let us denote by HPZ the class of Hilbert algebras with distributive lattice
structure, that by definition is a variety, because distributivity in this setting is an
equational condition, unlike in the semilattice setting, where it is not equational.
Bounded HPZ-algebras (or HE%-algebras following a similar notation) have been
studied by Figallo et al. in [31], under the name of distributive Hilbert algebras,
and also by Celani and Cabrer in [14], under the name of Hilbert implications over
bounded distributive lattices.

Notice that the algebra defined in Example 6.5.12 (see page 138) is an H-algebra
that is obviously not an H” -algebra. Hence, H”Z-algebras are strictly included in
H%. Moreover, the algebra considered in Example 6.5.9 is in fact a HP-algebra.
Therefore, that example shows that relatively pseudo-complemented lattices are
strictly included in HPZ. It also shows that bounded HP%-algebras are not in-
cluded in DLLI: (DLI1) fails since 1 = a — (bA¢) # (a — b) A (a = ¢) = a. This
implies, in particular, that HPZ-algebras is not a variety of distributive lattices
expanded with (dual) quasioperators.

PROPOSITION 6.6.7. Heyting algebras are precisely those algebras that are both
DLI-algebras and HE -algebras.

PRrOOF. We already know that Heyting algebras are DLI-algebras and bounded
Hilbert algebras with lattice structure. So we just need to show the other inclusion.
Let A = (A,A,V,—,1,0) be a DLI-algebra and an HY-algebra. We just need to
show that the residuation law holds.

Let first a,b,c € A be such that a A ¢ < b. By (DLI1) we have a — (a A ¢) =
(a = a) A(a = ¢) = a — c. Since (A,—,1) is a Hilbert algebra, — is order
preserving in the second coordinate, so we get a — (a A ¢) < a — b. Moreover,
by (H1) we have ¢ < a — ¢. And putting all these equations together, we obtain
c<a—b.

Let now a,b,c € A be such that ¢ < a — b. Then by definition of A, we have
that a Ac < a A (a — b). Now by (H*1) a A (a = b) = aAb, and since a Ab < b,
we conclude a A ¢ < b, as required. ([

We conclude with the following example, that witnesses that DLI-algebras are
not included in bounded BCKL—algebras. This implies, in particular, that DLI-
algebras are not included in bounded H”’-algebras.

EXAMPLE 6.6.8. Consider the lattice in Figure 8, that is distributive, and let
— be the implication defined on A by the table in Figure 9. It is easy to check that
A is a DLI-algebra. Notice that a A ((a — 0) — 0) = 0 # a, therefore (BKC"2)
fails and so A is not a BKC"-algebra, nor a DH"-algebra.

Summarizing, some of the relations between the classes of algebras in the lan-
guage (—, A, V, 1) so far considered are:

gHe C HPY C HY C BCK”
He ¢ HYL ¢ HY ¢ BCKY

All these varieties are distributive lattice expansions, but only relatively pseudo-
complemented lattices and Heyting algebras are distributive lattices expanded with
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FiGURE 8. Example of a weakly Heyting algebra.
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FiGURE 9. Example of a weakly Heyting algebra — definition of the implication.

(dual) quasioperators. Hence, the rest of varieties does not fall under the scope of
extended Priestley duality.

Since HP' is a variety, unlike the case of DH"-algebras, we shall consider its
1-assertional logic, its Hilbert based logic or its semilattice based logic. As it was
to be expected, the 1-assertional logic of HPZ does not have nice properties, but
the Hilbert based logic of HPZ does.

The Hilbert based logic of HPZ, that we denote by Spbr, is by construc-
tion a filter distributive finitary congruential logic with theorems. We have that
AlgSgh,, = HPE and for every HPL-algebra A, the implicative filters of A are
the Sgp.-filters of A. Moreover Sgp, satisfies (uDDT) for p — ¢q. However, by
Example 6.5.9 we get that ,d ¥h, 0, and therefore Sg},, does not satisfy (PC)
for p A g.

We could think on the semilattice based logic of HPL, that we denote by SED L.
The logic is finitary, congruential and has theorems by construction. Moreover
AlgS&DL = HPL and for every HPZ-algebra A, the order filters of A are the
S§D .-filter of A. Hence S§D ., is filter distributive, and moreover it satisfies (PC),
but it does not satisfy (uDDT). We do not go further into details, and we leave the
in-depth study of this logic as future work.

For none of the logics Sg. and S§D ;, we can dispense immediately with the
algebraic structure in the dual spaces of HPZ-algebras. However, we will see in § 7.6
that the dualities for Distributive Hilbert algebras with infimum that we present
in Chapter 7 can be easily restricted to get dualities for Sy}, , in which in the
definition of the dual spaces there is no explicit mention to any algebraic structure.
This is even more interesting, given that HP” is a variety of distributive lattice
expansions for which extended Priestley duality cannot be applied.
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6.7. More expansions

We can get things even more complicated and think of other varieties of Hilbert
based algebras whose Hilbert based logics are suitable for our analysis. We mention
just two of them, one is defined in the language (—, A, —=', 1) of type (2,2,2,0), and
the other is defined in the language (—, A, V,—’,1) of type (2,2,2,2,0).

It is well known that there are distributive lattices that are not relatively
pseudo-complemented. Therefore, there are distributive semilattices that cannot
be turned into implicative semilattices. Notice that for any distributive semilattice
(A, A, 1), at most one operation —' can be defined on A such that (A, =/, A, 1) turns
out to be an implicative semilattice. However, a priori there is no such restriction
over the number of operations — that can be defined on A such that (A, —, A, 1)
turns out to be an H"-algebra. Let us show this situation by an example.

EXAMPLE 6.7.1. Let (A, A, 1) be the distributive semilattice given by Figure 5
(see page 142). On the one hand, we already know that the implication — defined
on A by the order (see 6.5.8) is such that (A, —, A, 1) is a DH"-algebra but it is
not an implicative semilattice. Consider now a new implication —’ defined on A

as follows:
if x <y,

ifx="56and y=0,
ifx =aand y =0,
otherwise.

x—'y=

< o« =

It is easy to check that (A, —', A, 1) is an implicative semilattice. Moreover, it is
also a DH"-algebra, that is evidently different from (A, —, A, 1).

Previous remarks motivate the study of the following classes of algebras:

DEFINITION 6.7.2. An algebra A = (A, —, A, =/, 1) of type (2,2,2,0) is an
implicative Hilbert algebra with infimum or TH" -algebra if:
(1) (A,—,A,1) is an H"-algebra,
(2) (A,—',A,1) is an implicative semilattice.

DEFINITION 6.7.3. An algebra A = (A, —,A,V,—' 1) of { (2,2,2,2,0) is an
implicative Hilbert algebra with lattice structure or H]HIL—algebm if:
(1) (A, —,A,V,1) is an HE-algebra,
(2) (A,—',A,V,1) is a relatively pseudo-complemented lattice.

For any implicative semilattice (A, —, A, 1), it follows that (A4, —, A, —,1) is an
IH"-algebra, and similarly for any relatively pseudo-complemented lattice. Exam-
ple 6.7.1 shows that not all IH"-algebras have this form, i.e. it shows that there
are TH"-algebras (A, —, A, —', 1) for which — and —' are different.

It follows from the definition that TH"-algebras form a variety and IH"-algebras
form a variety as well. Like in previous cases, the Hilbert based logics of IH" and
ilsikg (taking — as the main connective) are filter distributive finitary congruential
logics with theorems. The key point is that the dualities for Distributive Hilbert
algebras with infimum that we present in Chapter 7 can also be restricted to get
dualities for these logics. We do not go further into this, as the reader shall already
figure out how these and other classes of algebras could be defined in the same way.
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Table 8 summarizes the classes of algebras so far considered. The filter distri-
butive and congruential expansions of H they are related with are also listed. All
classes of algebras, except for H and HY, have a (=, A, 1)-reduct that is a Hilbert
algebra with infimum. Except for DH", all the classes of algebras in Table 8 are
known to be varieties.

Notice that we only consider the classes of algebras that are not bounded, but
a similar table with the corresponding bounded algebras could be given.
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6.7. MORE EXPANSIONS
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TABLE 8. Algebras with a reduct that is a Hilbert Algebra and

their logics.






CHAPTER 7

Duality theory for Distributive Hilbert Algebras
with infimum

In this chapter we present Priestley-style and Spectral-like dualities for the
class of DH"-algebras, and we apply these results to tackle several problems.

Recall that in §6.5.1 we reviewed the toolkit we need to carry out this objective.
In what follows we use such toolkit, as well as the dualities for Hilbert algebras (cf.
§6.2) and for distributive semilattices (cf. §3.2) to develop the mentioned Spectral-
like and Priestley-style dualities for DH"-algebras.

We expose systematically both dualities in parallel. In §7.1 we prove represen-
tation theorems for DH" -algebras and we introduce the definitions of DH"-Spectral
spaces and DH"-Priestley spaces. In § 7.2 we consider morphisms, and we introduce
the definition of DH"-Spectral morphisms and DH"-Priestley morphisms. In §7.3
we define the functors and the natural transformations involved in the dualities.

In § 7.4 we study how the different notions of filters can be characterized within
the Spectral-like duality for DH”-algebras. We use those results in § 7.5, where we
compare both dualities, and we show the functors involved in the equivalence of
the Spectral-like and the Priestley-style dual categories.

Finally in §7.6 we explain how the same strategy followed for the dualities
for DH"-algebras can yield dualities for other classes of algebras that were already
introduced in §6.6 and §6.7. In particular, in §7.6.1 we show how the Spectral-like
and Priestley-style dualities for implicative semilattices that we find in the literature
can be obtained as a particular case of the dualities for DH"-algebras. Moreover, in
§7.6.3-§7.6.4 we outline how the dualities for DH"-algebras yield elegant Spectral-
like and Priestley-style dualities for some filter distributive finitary congruential
logics with theorems for which our theory in Chapter 5 does not lead us to elegant
dualities.

7.1. Dual objects

In this section we use what we know about duality theory for distributive
semilattices and Hilbert algebras (cf. § 3.2 and § 6.2) to develop two correspondences
between DH"-algebras and certain classes of Spectral-like and Priestley-style spaces
that we introduce later on.

From now on, let A = (A, —, A, 1) be a DH"-algebra. As we already mentioned,
throughout this chapter the reader should keep in mind that the implication is taken
as the main operation on the DH"-algebra, whereas the conjunction is taken as the
additional operation. Hence, the Spectral-like duality for DH”-algebras that we
study here is built upon the Spectral-like duality for Hilbert algebras of [15] that
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we reviewed in §3.3.1. And the Priestley-style duality for DH"-algebras is built
upon the Priestley-style duality for Hilbert algebras that we obtained in § 6.2, that
is a simplification of the one in [17]. More specifically, the posets (Irr_, (A), C) and
(Op_,(A), C) play a crucial role, as well as the maps:

Ya: A— PH(Ir_ (A)) Ia: A— P (Op_(A))
a— {Pelir,(A):a€ P} a— {P€Op_(A):ae€P}

that we already know that are isomorphisms between the Hilbert algebras (A4, —, 1),
and (Yal4],=,A) and (Ya[A],=, A) respectively (cf. theorems 5.1.1 and 5.1.2).
When the context is clear, we drop the subscripts of 14 and J4.

The next proposition gives us the representation theorem for A based on the
collection of irreducible implicative filters of A. Notice that we use 1 (resp. J) for
the up-set (resp. down-set) generated by a set in the poset (Irr_,(A), C).

PROPOSITION 7.1.1. For any DH"-algebra A.:

(1) t(¢(a) NIrrp(A)) = ¢(a).
(2) ¥(anb)=1(¥(a) N(b) NIrra(A)).

PrOOF. For (1), the inclusion from left to right is immediate, since 1 (a) is an
up-set. Let us show the inclusion from right to left. Let P € ¢(a), i.e. a € P for
P € TIrr,(A). Then by Corollary 2.4.4, P¢ is an order ideal. And since a ¢ P¢,
there are an order ideal P¢ and a meet filter Ta such that ta N P = (). By Lemma
2.3.3 there exists Q € Irra(A), such that ta C @ and P° N Q = 0. Therefore we
have a € Q C P for Q € Irrpn(A), i.e. Q € ¥(a) NIrrpa(A) and Q C P, hence P €
T(w(a) NIrrp(A)). For (2), notice that ¥ (a) NY(c) NIrra(A) = p(aAc) NIrra(A).
Now using item (1), it follows that 1(¢o(a A ¢) NIrra (A)) = ¥(a A c). O

Let us define a new binary operation M on [A4] as follows:
P(a) Mp(b) :=1(¥(a) N (b) NIrra(A)).
By the previous proposition we obtain that A is isomorphic to the algebra
P[A] = (P[A], =, M, Tir (A)).

An alternative representation theorem for A, based on the collection of optimal
implicative filters of A, is obtained from the following proposition. It should be
kept in mind that in this case we use 1 (resp. ) for the up-set (resp. down-set)
generated by a set in the poset (Op_, (A), C).

PROPOSITION 7.1.2. For any DH"-algebra A:

(1) 1(¥(a) N Op,x(A)) = V(a).
(2) daAb) =1(9(a) NI(b) N Op,(A)).

Proor. For (1), the inclusion from left to right is immediate, since ¥(a) is an
up-set. Let us show the inclusion from right to left: let P € ¥(a), i.e. a € P for
P € Op_,(A). Then by Theorem 2.4.9, P is an sF-ideal. And since a ¢ P, there
are an F-ideal P¢ and a meet filter Ta such that taNP°¢ = (). By Lemma 2.3.7 there
exists Q € Op,(A), with Ta C @ and P°NQ = ). Therefore we have a € Q C P for
Q € Op,(A),ie. Q € 9a)NOps(A) and @ C P, hence P € 1(9(a) N Op,(A)).
For (2), notice that #(a) N¥(c) N Op,r(A) = Fa A c)NOp,(A). Now using item
(1), it follows that T(9(a) NI (c) NOp,(A)) =1 aAc)NOpx(A)) =d(anc). O



7.1. DUAL OBIJECTS 155

As before, let us define a new binary operation M on ¥[A4] as follows:
¥(a) NI(b) := 1(I(a) NI(b) N Op,(A)).
In this case we get that A is isomorphic to the algebra
J[A] := (J[A4],=,N,0p_, (A)).

Once we got the representation theorems, we need to introduce topologies for
characterizing dual objects. At this point both dualities differ substantially, and
that is why we discuss them in different subsections.

7.1.1. Spectral-like dual objects. Recall that within the Spectral-like dua-
lity for Hilbert algebras reviewed in §3.3.1, we define on Irr_, (A) a topology 7., ,
having as basis the collection

ka = {Y(a):a € A},

and we obtain that the structure (Irr_,(A),7.,) is an H-space (see definition in
page 41). Furthermore, the dual of the specialization order of the space coincides
with the inclusion relation on Irr_,(A). And for all U C Irr(A), cl(U) = U
and sat(U) = JU, where 1 (resp. |) are the up-set (resp. down-set) generated with
respect to the dual of the specialization order.

Let us consider the subspace of (Irr_,(A), 7., ) generated by Irrs(A). As ka
is a basis for Irr_, (A), then we have that

Fa :={UNhra(A):U € ka}t ={¥(a)*NIrra(A) :a € A}

is a basis for the induced topology on Irrs(A), that we denote by 73, . Notice that
for each a € A,
P(a)*NIrrp(A) ={F € rrp(A) :a ¢ F}.

We should recall now the Spectral-like duality for distributive semilattices pre-
sented in §3.2.1. From that duality it follows that (Irrp(A), 7z, ) is a DS-space (see
definition in page 36), and so it is compactly-based and sober. In order to complete
the characterization of the Spectral-like dual spaces of DH"-algebras, we just need
the following proposition.

PROPOSITION 7.1.3. For any non-empty subset B C A and any ¢ € A, if
c(N{¥(b) : b € B} NTrra(A)) C 4(c), then there are n € w and by, ..., b, € B,
such that:

cl(y(bg) N+~ Nap(by) NIrra(A)) C 9(e)

- .

ProOOF. Assume that cl(({¢(b) : b € B} NIrrp(A)) C (c). We claim that
¢ € [B). Suppose, towards a contradiction, that ¢ ¢ [B). Then by Corollary
2.3.4 there is G € Irrp(A) such that [B) C G and ¢ ¢ G. So B C G and thus
G e ({¥() :be B}NIrra(A) C cl(N{%(b) : b€ B} NIrra(A)). And then from
the hypothesis it follows that G € ¥(c) and so ¢ € G, a contradiction

Now if ¢ = 1 then ¢(c¢) = Irr,(A) and there is nothing to prove. So assume
¢ # 1. Since ¢ € [B) and ¢ # 1, there are n € w and by, ...,b, € B such that
(bo N+ ANbp) = c=1,1ebgA---Aby, <c. Sotp(bg)N---Np(by) NIrra(A) =
W(bg A -+ Aby) NTIrra(A) C 9(c), and since ¥(c) is an up-set, we obtain that
cl(y(bg) N---Na(by) NIrra(A)) C 9(c), as required. O
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DEFINITION 7.1.4. A structure X = (X, )?, 7..) is a DH"-Spectral space when:
(DH"1) (X, 7y) is an H-space,
(DH"2) X C X generates a sober subspace of (X, 7)),
(DH"3) U° =cl(U°N X) for all U € &,
( )
( )

DHM) cl(U¢NVeNX)° €k, for any U,V € &,

DH"5) for any U,V € k and W C k non-empty, if cl(({{W¢: W e W}NnX) C U¢,
then (WS N---NWEN X) C U¢ for some Wy,...,W,, € W and some
necw.

Recall that for any H-space (X, 7,), sobriety implies that the space is Tj, so the
specialization quasiorder turns out to be an order whose dual is denoted by <x,
or simply by <. Moreover, by condition (DH"3) we get that for any DH"-Spectral
space (X, X, 7.), we have X = cl(X N X) = cl(X), and {Uﬂ)A( :U € K} is a basis
for the subspace of X generated by X , that we may denote simply by X

COROLLARY 7.1.5. Let A = (A, —, A, 1) be a DH"-algebra. Then
Jrr(A) == (Irr, (A), Irr A (A), T 0 )
is a DH"-Spectral space.

Proor. Condition (DH"1) follows from Spectral-like duality for Hilbert al-
gebras (see §3.3.1). Condition (DH"2) follows from Spectral-like duality for dis-
tributive semilattices (see §3.2.1) and the fact that Irrp(A) C Trr_, (A) given by
Proposition 6.5.16. Conditions (DH"3) and (DH"4) follow from Proposition 7.1.1,
and condition (DH"5) follows from Proposition 7.1.3. O

REMARK 7.1.6. Concerning a DH"-Spectral space <X,X,T,€>, we have to be
careful when using complements, since we are working with two topological spaces
at the same time, namely, the main space (X, 7,) and the subspace generated by
X. We establish now the following convention: complements are always referred to
the biggest set X.

PROPOSITION 7.1.7. Let (X, X,7,.) be a DH"-Spectral space. Then KO(X) =
{UNX:U €k}

PROOF. First we show that KO(X) is included in {UNX : U € k}. Let
W e ICO()? ), so by definition of subspace generated and using that & is a basis for
T, we get W =J{V N X :V €V} for some set V C k. Since W is compact, there
are Vo, ...,V, € V, for some n € w, such that W = (VpNnX)U--- U (V, N X) =
Ven---nvoen X. Notice that for each i < n, we have that Ve is closed, so
A(Vgn: - -mv,fm)?) C V£, We obtain that cl(VEN---NVeNX) C VEN---NVE, and
then Vi'N---N VenX C c(Vgn---n VenX)nX. Clearly the reverse inclusion also
holds, so VO n---NVenX = CI(VO N---NVieNX)NX and then (VFN---AVie)°NX =
(cl(ViEn- ﬂVCﬁX)) NX. Therefore W = c(Vgn- OVCﬂX) ﬂX By condition
(DHM), cl(VEN---NV,eEN X)¢ € k. Thus we obtain, W =V N X for some V € &,
as required.

Now we show the reverse inclusion. We just have to show that for any U € k,
the set U N X is compact in X. Let U € & and consider W := U N X. Sup-
pose that W ={J{V N X :V €V} for some non-empty V C r. We claim that
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N{ve:VevinX cue- Let z € ({V*: VGV}ﬂX i.e. xeXandx%Vfor
allV € V. Therefore z ¢ |J{VNX : V € V} = UNX, and since z € X, then z € U°.
As U¢ is an up-set, it follows from the claim that cI((){V°:V € V} N X) C U°".
And then by condition (DH"5), there are Vj, ..., V,, € V, for some n € w, such that
A(VEN---NVENX) CUC. SoU C (VEN---NVENX)E = (VENX)eU---U(VENX)E.
Therefore:

~

W=UnXC((VfnX)U---ulVnX))nX
= ((VENX)NX)U--—-u((VenX)nX)=VonX)u---U(V,nX)CW.

and thus W = (Vo N X)U---U (V, N X), so W is compact. O

COROLLARY 7.1.8. Let (X,X,T,Q be a DH"-Spectral space. Then the subspace
generated by X is a DS-space.

PROOF. Recall that {U N X:Uce K} is a basis for the subspace generated by
X. By definition X is sober, and it is T since the space (X, 7,) is Tp. Moreover,
by Proposition 7.1.7, the subspace X is compactly-based, so we are done. ([

Similarly as it is done when dealing with H-spaces, for any DH"-Spectral space
X = (X, X,7,), we define the family D(X) := {U¢ : U € x}, that is a collection of
closed elements of X, and we also define the binary operation = on it, such that
forall U,V € k:
U¢ = V.= (sat(UNVe))“.
The structure (D(X),=-, X) turns out to be a Hilbert algebra. Moreover, the map
ex : X — PT(D(X)) given by

ex(z) ={U e DX):2 €U}

is a map onto the collection of irreducible implicative filters of the Hilbert algebra
(D(X),=, X). Let M be the binary operation on D(X), such that for all U,V € &:

Ucnve :=cdUnvenX).

By condition (DH"4), we obtain that D(X) is closed under M. Let us show that
(D(%),N, X) is isomorphic to the dual distributive semilattice of the DS-space X.
Recall that for the DS-space X given by Corollary 7.1.8, the family F'(X) :=
{U¢:U e ICO( )} is closed under finite intersections and moreover the struc-
ture (F(X),N,X) is the dual distributive semilattice of X. Consider the map

f:D(X) — F(X), given by

fU):=UNX.
Clearly f is a surjective map, and by condition (DH"3), U = cl(U N X’) for all
U € D(X). Thus f is also injective. Moreover, from U,V € D(X) being up-sets, it

follows that f(U)Nf(V)=UNVNX =cd(UNVNX)NX = f(UNV). Hence f
is an isomorphism between (D(X),MN, X) and (F(X),N, X).

THEOREM 7.1.9. Let X = <X,)?,7‘R> be a DH"-Spectral space. Then X* :=
(D(%),=,M, X) is a DH"-algebra.
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PROOF. We just need to show that for all U,V € D(X) the following condition
holds:

U=V=X iff Unv="U.

Recall that by definition of =, we have that U = V = X if and only if U C V.
Assume that U C V. Then by (DH"3), UNV =c(UNVNX)=c(UNX)=U.
Assume now that U = U NV =cl(UNV N X), and let P € U. We show that
P € V. By assumption, thereis Q e UNV N X such that Q C P. In particular,
@ €V and since V is an up-set and @@ C P, we obtain P € V, as required. O

COROLLARY 7.1.10. LetX = <X,)?,T,€> be a DH" -Spectral space. Then 5%[)?] =
Irr o (7).

PROOF. For all z € X we have that flex(z)] = {UNX:2 €U, U® €k} =
{U:ze€U,U° € KO(X)}, therefore by Spectral-like duality for distributive semi-
lattices, flex[X]] is the collection of all irreducible meet filters of (F/(X),N, X}, and

-~

then, by the isomorphism given by f, we obtain that ex[X] = Irra(X*). d
THEOREM 7.1.11. Let X = <X,X,’7’,1> be a DH"-Spectral space. Then
Jrr(X") == (Trr (X7), It A (X7), Tio )

is a DH"-Spectral space such that (X, ) and (Irr—,(X*),T,s,.) are homeomorphic

topological spaces by means of the map ex : X — Irr,(X*) and moreover ex[X] =
Irrp (X7).

PROOF. By Spectral-like duality for Hilbert algebras we know that €% is a ho-
meomorphism between the topological spaces (X, 7,.) and (Irr_, (X*), 7. ). More-

~

over by Corollary 7.1.10, ex[X] = Irra (X*). O
THEOREM 7.1.12. Let A = (A, —, A, 1) be a DH"-algebra. Then
(3r1(A))" = (D(Irr(A)), =, v, (A))
is a DH" -algebra isomorphic to A by means of the map Ya : A — D(Jrr(A)).

PRrROOF. By Spectral-like duality for Hilbert algebras we know that ©a is an
isomorphism between Hilbert algebras (A, —,1) and (D(Jrr(A)),=,Irr, (A)). It
only remains to show that for all a,c € A, ¥a(a) MYa(c) = Ya(a Ac). This
follows from the definition of M and from Proposition 7.1.1, since 1a (a) M ¥a(c) =

cl(a(a) Na(c) NIrra(A)) = Yala Ac). O

The previous theorem, together with Corollary 7.1.5 and theorems 7.1.9 and
7.1.11 summarize all preceding results, and should be kept in mind for §7.2 and
§7.3, where the duality for morphisms is studied, and the functors between the
categories we will be interested in are defined. Before moving to that, let us examine
Priestley-dual objects of DH"-algebras

7.1.2. Priestley-style dual objects. Recall that within the Priestley-style
duality for Hilbert algebras that we developed in §6.2, we define on Op_,(A) a
topology 7a, having as subbasis the collection:

{9(a) :a € AYU{9(b)° : b e A},
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and we obtain that the structure (Op_, (A), 7a, C, 9[A]) is an H-Priestley space (see
definition in page 126). Furthermore, the dense subset given by condition (H13) is
precisely Irr_, (A).

Let us consider the subspace of (Op_,(A),7a) generated by Op,(A). By defi-

nition,
{9(a) NOpr(A) :a € A}U{I(D)°NOp(A) :be A}
is a subbasis for the induced topology on Op,(A), that we denote by 7a.

We should recall now the Priestley-style duality for distributive semilattices
presented in §3.2.2. From that it follows that (Op,(A),7a, C) is a Priestley space,
such that for any clopen up-set W of that space, W is Irrp (A)-admissible if and
only if W = 9(a) N Op,(A) for some a € A. Recall that Irrs(A)-admissible clopen
up-sets of (Op,(A),Ta,C) are subsets W C Op,(A) such that Op,(A) \ W C
HIrra(A) \ ).

Now we are ready to introduce the definition of Priestley-style dual objects of
DH"-algebras.

DEFINITION 7.1.13. A structure X = (X, 7, S,B,)?) is a DH" -Priestley space
when:

UeB.

Recall that for any H-Priestley space (X, 7, <, B) (see Definition 6.2.9 in page
126), the set Xp := {ox € X : {U € B : ¢ U} is non-empty and up-directed} is
the dense subset of (X, ) given by condition (H13), and it follows from Corollary
5.1.36 that BU{U*® : U € B} is a subbasis of the Priestley space (X, 7, <). Moreover,
by condition (DHA7) we get that for any DH"-Priestley space (X, 7, <, B X’) the
family {UNX : U € ByU{U°NX : U € B} is a subbasis for the subspace of X
generated by X. We may denote this subspace by (X 7), or simply by X. Let us
denote {UNX : U € B} by B.

COROLLARY 7.1.14. Let A = (A, —, A, 1) be a DH"-algebra. Then

Op(A) == (Op_,(A),7a, S, Va[A], OpA(A))
is a DH" -Priestley space.

ProoF. Condition (DH”6) follows from Priestley-style duality for H-algebras
(see §6.2). Conditions (DH"7) and (DH"10) follow from Priestley-duality for dis-
tributive semilattices (see §3.2.2) and the fact that Op,(A) C Op_,(A) given by
Corollary 6.5.21. Finally conditions (DH”8) and (DH"9) follow from Proposition
7.1.2. [

REMARK 7.1.15. Concerning a DH"-Priestley space X = (X7, S,B,)?), we
have to be careful again when using complements, since we are dealing with two
ordered topological spaces at the same time, namely the main space (X, <, 7), and
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the subspace of it generated by X , equipped with the inherited order. As before,
we establish now the following convention: complements are always referred to the
biggest set X.

PROPOSITION 7.1.16. Let (X, T, S,B,)?> be a DH"-Priestley space. Then the
set XpN X is dense in X.

PROOF. It is enough to show that for every non-empty basic open K of X ,
there is z € Xp N X such that z € K. Let K be a non-empty basic open of
X. By definition of subbasis, there are Uy, ...,U,, Vo,..., Vi, € B such that K =
UoN- - -NU,NVEN---NVENX. By assumption UpN- - -NU, NVEN- - -NVENX # 0 so
UoN- --NUNX & VoU---UV;,. Then we also have 1(UpN- - -NU,NX) € VoU- - -UV,,.
By (DH"9), U :=4(UyN---NU, N X) € B. Then we have U ¢ VyU---UV,,, and
since Xp is dense in (X, 7), and B is a family of clopen up-sets, there is x € Xp
such that x € U and « ¢ VhU---UV,,. Asx € Xp, the collection {W € B:x ¢ W}
is up-directed, so there is W € B such that V; C W, for all j < m, and = ¢ W.
By definition of U, there is '’ € Uy N---NU, N X such that 2/ < x. Since W is
an up-set, it follows ' ¢ W. Therefore, we have ' € Wen X. Thus by (DH"10),
thereis z € Wcﬂ)A(ﬂXB such that 2’ < z. As U; are up-sets for all 7 < n, it follows
z € UyN---NU,. Moreover, since V; C W for all j < m, it follows z ¢ V;, for all
7 < m. Hence we have z € Xp such that z€U00~~ﬂUnﬂVOCﬂ~-OVn‘ibﬁ)?, as
required. ([l

Recall that for a DH"-Priestley space (X, 7, <, B, )?), the X g-admissible clopen
up-sets of X are the clopen up-sets U € CAU(X) such that max(U¢) C Xp. Simi-
larly, the X5 N X -admissible clopen up-sets of X are the clopen up-sets V' € CoU ()A( )
such that X \ V C (X N Xp \ V).

PROPOSITION 7.1.17. Let (X,7,<,B,X) be a DH"- Priestley space and let
z€X. Then z € Xp if and only if the collection of Xp N X -admissible clopen
up-sets W ofX such that x ¢ W is non-empty and up-directed.

PRrROOF. Notice that from condition (DH"10), this proposition can be restated
as follows: for any z € X, z € Xp if and only if {Uﬂ)? :x ¢ U € B} is non-empty
and up-directed.

Let z € XN X. Then as = € Xp, by condition (H13’) in Definition 6.2.9,
the collection {U € B : x ¢ U} is non-empty and up-directed. From this it clearly
follows the claim.

Let now z € X and assume that {UNX : 2 ¢ U € B} is non-empty and up-
directed. On the one hand, this clearly implies that {U € B : = ¢ U} is non-empty.
On the other hand, let Uy, Uz € B be such that = ¢ Uy, Us. Then x ¢ Ui N X and
x ¢ UsN X so by assumption, there is V' € B such that U1 N X U, N X cvVn X
and x ¢ V. And since V is an up-set, we have 1(U; N X),T(Ug N X) C V, and
by condition (DH”8), this implies that Uy, Uy C V, for x ¢ V. We conclude that
{U € B:x ¢ U} is up-directed, and therefore, by definition of H-Priestley space,
z € Xp. O
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PROPOSITION 7.1.18. Let (X, T, S,B,)AQ be a DH"-Priestley space. Then for
any x,y € X, x <y if and only if for every Xp N X -admissible clopen up-set W of
X, x e W impliesy € W.

ProOOF. This follows from condition (DH”10) and condition (H13’) in the def-
inition of H-Priestley space. O

COROLLARY 7.1.19. Let X = (X, T, §,B7)A(> be a DH"-Priestley space. Then
(X,7,<,Xp N X) is a generalized Priestley space.

PRrROOF. As Priestley separation axiom is inherited by subspaces, and ()/(\' ,T) s
compact by definition, ()?7 7,<) is a Priestley space, so condition (DS3) holds. By
Proposition 7.1.16, condition (DS4) holds. By Proposition 7.1.17, condition (DS5)
holds, and by Proposition 7.1.18, condition (DS6) also holds. O

Similarly as when dealing with H-Priestley spaces, for any DH"space ¥ =
(X,7,<,B, X), we define a binary operation = on B,such that for all U,V € B:

U=V :=l{UnV))-.
The structure (B,=, X) turns out to be a Hilbert algebra. Moreover, the map
£x : X — PT(B) given by
¢x(x)={UeB:xeU}
is a map onto the collection of optimal implicative filters of the Hilbert algebra
(B,=,X). Let M be the binary operation on B such that for all U,V € B:
Unv:=4UnvVnX).

By condition (DH"9) B is closed under M. Let us show that (B,MN, X) is iso-
morphlc to the dual distributive semilattice of the generalized Priestley space
X:=(X,7,<, XpnX).

Recall that for the generalized Priestley space x given by Corollary 7.1.19, the
collection of X N X-admissible clopen up-sets of X 1s closed under finite inter-
sections and moreover the structure <C€L{;im 2 (X),N, X) is the dual distributive

semilattice of X. By condition (DH"10) we know that this collection is precisely
B ={UNX :U € B}, therefore (B,N, X) is a distributive semilattice. Consider
the map g : B — B, given by:

gU):=UNX.

Clearly g is a surjective map, and by condition (DH"8), forallU € B, U = T(UQ)A().
Thus g is also injective. Moreover, from U,V € B being up-sets, it follows that
g()Ng(V)=UnVnX = T(UﬂVﬂX)ﬂX = g(UMV). Hence g is an isomorphism
between (B,M, X) and (B, N, X).

THEOREM 7.1.20. Let X = (X, T,S,B,)AQ be a DH"-Priestley space. Then
X* = (B,=,M,X) is a DH"-algebra.

PROOF. We just need to show that both = and M define the same order, i.e.
we have to show that for all U,V € B:

U=V=X if Unv="U.
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Notice that for all U € B, g~ [U N )?} =1MUnN )?) By definition we have that
U=V =X ifand only if U C V. First assume U C V. Then using (DH"8)
weget UNV =1(UNVN )A() =MNUN )A() = U. For the converse, assume that
uv=0nv :T(UﬂVﬂ)A() and let z € U. Then there is y € UNVNX such that
y < z. But then since V is an up-set, we get x € V, so U C V, as required. ]

COROLLARY 7.1.21. Let X = (X, )?, 7..) be a DH"-Spectral space. Then &x [)A(] =
Op,(X°).

PRrOOF. Notice that for all 2 € X we have g[¢x(z)] ={UNX:2 €U € B} =
{Ve B:ze V'}, therefore by Priestley-style duality for distributive semilattices,
gl¢éx[X]] is the collection of all optimal meet filters of (B,N, X), and then, by the
isomorphism given by g, we obtain that £x [)A(] = Op,(X°*). O

THEOREM 7.1.22. Let X = (X, T, g,B,)?} be a DH" -Priestley space. Then
Op(X*) := (Op_, (X*), 7x+, C,Ux+[B],Op,(X*))

is a DH"-Priestley space such that the structures (X, 7, <) and (Op_, (X*),Tx+,C)
are order-homeomorphic topological spaces by means of the map £x : X — Op_, (X°*)
and moreover {x[Xp] = Irr, (X°) and Ex[X] = Op,(X°).

PRrROOF. By Priestley-style duality for Hilbert algebras we know that £x is an
order-homeomorphism between (X, 7,<) and (Op_, (X°*),7xe,C), and {x[Xp] =
Irr_, (X*). Moreover, by Corollary 7.1.21, {x[X] = Op, (X°*). O

THEOREM 7.1.23. Let A = (A, —, A, 1) be a DH"-algebra. Then:
ﬂA[A} = <19A [A]7 =, 11, Op%(A»
is a DH" -algebra isomorphic to A by means of the map 9a : A — Va[A].

PROOF. By Priestley-style duality for Hilbert algebras, we know that ¢4 is an
isomorphism between Hilbert algebras (A, —, 1) and (Ja[A],=,0p_, (A)). So we
just need to show that for all b,c € A, 9a(b) M Ia(c) = Ia(bAc). This follows
from the definition and Proposition 7.1.2, since 94 (b) MY (c) = 1(¥a (b)) NIa(c)N
Opp(A)) =0a(bAc). O

The previous theorem together with theorems 7.1.11 and 7.1.20, and Corollary
7.1.14 summarize all preceding results, and should be kept in mind for the next
sections, where the duality for morphisms is studied, and the functors involved are
defined.

7.2. Dual morphisms

In the present section we study two dual correspondences concerning two di-
fferent notions of morphisms between DH"-algebras and certain classes of relations
between DH"-Spectral spaces and DH"-Priestley spaces respectively that we intro-
duce later on.

We follow an approach similar to that for Hilbert algebras by Celani et al. in [15]
and we focus on two different morphisms between DH"-algebras. One is the usual
notion of algebraic homomorphism (preserving the constant and the operations),
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and the other is a weaker notion, similar to that of semi-homomorphism between
Hilbert algebras:

Let Ay = (A1, —1,A1,11) and Ay = (Ay, —9, Az, 13) be two DH” -algebras.
A map h: Ay — Ay is a meet-semi-homomorphism (or A-semi-homomorphism)
when for all a,b € A;y:

— h(1y) = 1,

— h(a —1 b) < h(a) —2 h(b),

— h(a A1 b) = h(a) Ag k(D).
When h satisfies moreover h(a —; b) = h(a) —o h(b) for all a,b € A, then h is
called a meet-homomorphism or A-homomorphism, or simply homomorphism when
no confusion is possible.

Notice that A-semi-homomorphisms are semi-homomorphisms between the res-
pective Hilbert algebra reducts, and they are also homomorphisms between the
respective distributive semilattice reducts. From now on let A; = (A1, =1, A1, 11)
and Ay = (Ay, —9,A2,13) be two DH"-algebras and let h : Ay — A, be a
A-semi-homomorphism. As in the case of the study of Hilbert algebras, A-semi-
homomorphisms are relevant, because they are the maps whose inverse map sends
implicative filters to implicative filters. It also follows that the inverse map of a
A-semi-homomorphism sends meet filters to meet filters:

LEMMA 7.2.1. For any P € Fi,(Ay), h™'[P] € Fi,(A;). Moreover, if
P € Fip(As), then h='[P] € Fir(A,).

For any A-semi-homomorphism h : Ay — As, we define a binary relation
Rp, C Op_,(A3) x Op_,(Aq) by:
(P,Q) € Ry, iff h'[P]CQ.
We denote the restriction of Ry to Irr_,(Ag) x Irr s (A1) by Rj. These are the

relations that are used to represent h. Recall that for the relation R; we may
consider the function Og, : P(Op_, (A1)) — P(Op_, (Az)) given by:

Or, (U) :=={Q € Op_,(A2) : R,(Q) C U}.
And regarding the relation R}, we may consider a different map, the function
Ox :P(lir,(Ay)) — P(Irr—, (A2)), given by:

Og, (U) :=={Q € Irr,(Ay) : Ry(Q) C U}

Let us examine in detail the properties of the relations Rp and Rj,. Notice
that, for convenience, we denote by ¥; and v; the maps ¥, and 1¥a, respectively.
Similarly, we use k;, 7, and 7; instead of ka,, Tk, and Ta, respectively. The next
proposition gives us the two representation theorems for h:

n

PROPOSITION 7.2.2. For any N-semi-homomorphism h : A} — As:
(1) Og, (W1(a)) = 92(h(a)) for all a € A.
(2) Og, (¥1(a)) = ¢2(h(a)) for all a € A.
Proor. For (1), we have from the definition of O, that:
Or, (01(a)) = {P € Op_,(A2) : Rn(P) € V1(a)}
={P € Op_(As):VQ € Op_, (A1) (if A '[P] C Q, then a € Q)}.
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Notice that from Corollary 2.4.8 we obtain that for any P’ € Fi,(A4), a € P’
if and only if for all @ € Op_, (A1), a € Q whenever P’ C ). And by Lemma
7.2.1 we know that h=1[P] € Fi,(A;) for all P € Op_,(As), so what we have is
Ogr, (W1(a)) = {P € Op_,(Az) : a € h™'[P]} = {P € Op_(Asz) : h(a) € P} =
Ua(h(a)).

For (2) we proceed similarly, since we have from the definition of [, that:

Og, (Y1(a)) = {P € Irr_,(A2) : Rp(P) C ¢1(a)}
={P € Trr,(As) : VQ € Irr, (A1) (if A '[P] C Q, then a € Q)}.

And from Corollary 2.4.6 we obtain that for any P’ € Fi,(A;), a € P’ if and
only if for all @ € Trr, (A1), z € Q whenever P/ C . Then using again Lemma
7.2.1, as h™'[P] € Fi(A;) for all P € Irr,(Ay), what we get is O, (¢1(a)) =
{Pelr,(As):ae€h '[P} ={P €lrr,(As) : h(a) € P} = 12(h(a)). O

It follows from the previous proposition that the restriction of Og, to ¥1[A44] is
a A-semi-homomorphism between 91[A;] and ¥2[Ag]. Similarly the restriction of
Oz, to ¥1[A1] turns out to be a A-semi-homomorphism between 11 [A;] and 2[As].
Moreover, when h is a A-homomorphism, then so are the respective restrictions
of Og, and Ug, - Hence Proposition 7.2.2 gives us two analogous representation
theorems for h. In the following subsections, we discuss first the Spectral-like
duals of A-semi-homomorphisms and A-homomorphisms, and then the Priestley-
style duals. In both cases we prove the facts that motivate the definition of dual
morphisms before introducing such definition.

7.2.1. Spectral-like dual morphisms. Recall that within the Spectral-like
duality for Hilbert algebras reviewed in §3.3.1, it is proven that the relation Ry,
is an H-relation, whenever h is a semi-homomorphism between Hilbert algebras,
and it is functional provided h is a homomorphism of Hilbert algebras. We just
need the following proposition to complete the characterization of Spectral-duals
of morphisms between DH"-algebras:

PROPOSITION 7.2.3. Let P € Irrp(Ag). Then Rp(P) = 1(Ru(P) NIrra(Aq)).

PROOF. By definition Ry, (P) is an up-set, so we just have to show the inclusion
from left to right. Let Q € Rj(P), i.e. h"1[P] € Q. By Lemma 7.2.1 we know
that h=1[P] € Fir(A1). Moreover, as Q € Irr_,(A;), Q° is an order ideal. Then
from h=1[P] N Q° = 0 and Lemma 2.3.3 we get that there is Q' € Irrp(A4) such
that h~1[P] C Q" and Q' N Q° = 0. Then Q' is the required element such that
Q' € Rp(P)NTrrpa(A;) and Q' C Q. O

DEFINITION 7.2.4. Let X; = (Xl,)?l,ml) and Xy = (XQ,)?Q,TRQ be two
DH"-Spectral spaces. A relation R C X x X5 is an DH" -Spectral morphism when:
(DH"R1) R is an H-relation between H-spaces (X1, 7,,) and (X2, 7y:,),
(DH"R2) for every = € X1, R(z) = cl(R(z) N X5).
Moreover, R is said to be functional when it is moreover a functional H-relation,
i.e. when it satisfies the condition:

(HF) if (x,y) € R, then there exists z € cl(x) such that R(z) = cl(y).
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Recall that for any H-relation R C X; x Xo between H-spaces X; and X3, the
map g : P(X2) — P(X71) is a semi-homomorphism between the Hilbert algebras
(D(%32),=9, X5) and (D(%1),=-1, X1). Moreover, (g is a homomorphism provided
R is functional.

COROLLARY 7.2.5. Let Ay and Ay be two DH" -algebras and let h: A1 — Ao
be a A-semi-homomorphism between them. Then Ry, is a DH”-Spectral morphism
between DH" -Spectral spaces Jrr_, (Az) and Jrr_, (A1). Moreover, if h is a A-homo-
morphism, then Ry, is a functional.

ProoF. Condition (DH”"R1) follows from Spectral-like duality for Hilbert al-
gebras. Condition (DH"R2) follows from Proposition 7.2.3. Moreover, when h is a
A-homomorphism, and condition (HF) follows again from Spectral-like duality for
Hilbert algebras. (I

EXAMPLE 7.2.6. Let X = (X,)?,TQ be a DH"-Spectral space. Recall that we
denote by < the dual of the specialization order of the space (X, 7). By Spectral-
like duality for Hilbert algebras it follows that < is a functional H-relation between
the H-space (X, 7,) and itself. It is, in fact, the identity morphism for X. Notice
that we have for all z € X , Te =1tz N X ). Therefore < also satisfies condition
(DH"R2), and so it is a DH"-Spectral functional morphism.

THEOREM 7.2.7. Let X1 and X5 be two ID)HA—Spectml spaces and let R C X1 x Xq
be a DH" -Spectral morphism between them. Then Opg is a A-semi-homomorphism
between the DH" -algebras (D(X3),=>2,Ma, Xa) and (D(X1),=1,M, X1).

PRrROOF. We only need to show that [Jg preserves meets, i. e. that O (U Ma V') =
Or(U) M Or(V) forall U,V € D(X2). By definition, this is equivalent to show that
for all U,V € D(X5):

Or(A(UNV N X)) =c(@r(U)NOr(V) N Xy).

First we show the inclusion from left to right. Let 2 € Or(cl(UNV N X>)). By
condition (DH"3) we know that O (cl(UNV NX5)) = l(Or((UNVNX,))NXY).
Then there is y € X, such that y € Oz(cl(U NV N X5)) and y < 2. By definition
we have R(y) C c(UNV NX5). We show R(y) CUNV: let z € R(y), then there is
2 € UNV N X, such that 2’ < 2. Since U,V are up-sets, then we have z € UNV.
We conclude R(y) CUNV,ie.y € Or(U) and y € Or(V). Since, by assumption
y € X1, we have y € Or(U) NOg(V) N X;. Now using that y < z, we obtain
z € (Or(U) NOr(V) N X1), as required.

Let us show now the reverse inclusion. since Or(cl(U NV N X5)) is an up-
set, it is enough to show that Or(U) NOr(V) N X; € Or(cl(UNV N X3)). So
we take z € Op(U) NOr(V) N Xy, i.e. R(x) CUNV and z € X;. We show
R(z) Cc(UNVNX,). Let y € R(z). By condition (DH"R2) we know that
R(z) = cl(R(x) N X5). Then there is 4/ € R(z) N X, such that 3’ < y. Then
since R(z)|subseteqY NV, we have i € UNV, soy' € UNV N X,. Therefore
y € (UNV NX,). Hence R(z) C cl(UNV NXy),ie xeOp(c(UNVNXy),
as required. ([



166 CHAPTER 7. DUALITY FOR DH"-ALGEBRAS

COROLLARY 7.2.8. Let R C X7 x X5 be a ]D)H/\—Spectml functional morphism
between DH"-Spectral spaces X1 and Xo. Then Op is a homomorphism between
DH/\—algebms <D(:{2)7 =92, 2, X2> and <D(}ﬁ1), =1,11, X1>

Corollary 7.2.5 and Theorem 7.2.7 summarize the main results concerning A-
semi-homomorphisms and their duals. Corollaries 7.2.5 and 7.2.8 do the same
concerning A-homomorphisms. These results should be kept in mind for §7.3.1,
where the functors involved are defined. Before moving to that, let us examine
Priestley-duals of A-semi-homomorphisms and A-homomorphisms.

7.2.2. Priestley-style dual morphisms. In regard to morphisms between
DH"-Priestley spaces, we follow the same strategy as in the previous subsection.
Recall that when we developed Priestley-style duality for Hilbert algebras in §6.2,
we proved that the relation Ry is an H-Priestley morphism, whenever h is a semi-
homomorphism between Hilbert algebras. Moreover if h is a homomorphism be-
tween Hilbert algebras, then Ry, is functional. The following proposition is the only
result required to complete the characterization of Priestley-duals of morphisms
between DH"-algebras.

PROPOSITION 7.2.9. Let P € Op,(As). Then Ry(P) = 1(Rn(P) N Op,(Ay)).

PROOF. By definition, Ry, is an up-set, so we just have to show the inclusion
from left to right. Let Q € Ry(P), i.e. h1[P] C Q. By Lemma 7.2.1 we know
that h=![P] € Fir(A1). Moreover, as Q € Op_,(A;), Q° is an sF-ideal, and in
particular it is an F-ideal. Then from h~![P] N Q¢ = () and Lemma 2.3.7, we get
that there is Q' € Op, (A1) such that h=![P] C Q" and Q' N Q¢ = (). Then Q' is
the required element such that Q' € R, (P) N Op,(A;) and Q' C Q. O

DEFINITION 7.2.10. Let X1 = <.X'17 71, <1, Bl, )?1> and X = <X2, T, <o, BQ, )?2>
be two ]D)HA—Priestley spaces. A relation R C X; xXsisa DH" -Priestley morphism
when:

(DH"R3) R is an H-Priestley morphism between H-Priestley spaces (X1, 71, <y, B1)
and (X3, 72, <o, Ba),
(DH"RA4) for every z € X1, R(z) = M(R(z) N X2).
Moreover, R is said to be functional when it is moreover a functional H-Priestley
morphism, i.e. when it satisfies the condition:

(HF') for every z € X; and every y € Xp,, if (z,y) € R, then there exists
z € Xp, such that z € Tz and R(z) = 1y.

Recall that for any H-Priestley relation R C X; x X5 between H-Priestley spaces
X1 and X9, the map Oi : P(X3) — P(X1) is a semi-homomorphism between
Hilbert algebras (B, =2, X2) and (B, =1, X1). Moreover (g is a homomorphism
whenever R is functional.

COROLLARY 7.2.11. Let A1 and Ay be two DH" -algebras and let h : A1 — Ao
be a A-semi-homomorphism between them. Then Ry, is a DH”-Priestley mor-
phism between DH" -Priestley spaces Op(Az) and Op(A;). Moreover, if h is a
A-homomorphism, then Ry is a functional.
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ProoF. Condition (DH"R3) follows from Priestley-style duality for Hilbert
algebras. Condition (DH”R4) follows from Proposition 7.2.9. Moreover, when h is
a A-homomorphism, condition (IS5) follows again from Priestley-style duality for
Hilbert algebras. O

EXAMPLE 7.2.12. Similarly to the Spectral-like case, we have that the or-
der of any DH”"-Priestley space is a functional DH"-Priestley morphism. Let
X = (X, T,S,B,)?> be a DH”"-Priestley space. By Priestley-style duality for
Hilbert algebras it follows that < is an H-Priestley functional morphism between
the H-Priestley space (X, 7, <, B) and itself. Notice that for all z € X , we have
tz = 1(tz N X). Therefore < also satisfies condition (DH"R4), and thus < is a
DH"-Priestley functional morphism.

THEOREM 7.2.13. Let R C X; x Xy be a DH"-Priestley morphism between
DH" - Priestley spaces X1 and X5. Then O is a A-semi-homomorphism between
the DH" -algebras (Ba,=2,Ma, Xa) and (By,=1,M, X1).

PROOF. We just need to show that Or preserves meets, i. e. that Dr(U M2 V') =
Or(U) My Or(V) for all U,V € By. By definition, it is equivalent to show that for
all U,V € By:

Or(M(U NV N X3)) = NOrU)NOr(V) N Xy).

First we show the inclusion from left to right. Let z € Or(1(U NV N )?2)) By
condition (DH”8) we know that Or(1(UNV N X)) = N(Or(HUNVNX2))NXy).
Then there is y € X such that y e Op((UNVN )/(\'2)) and y < z. By definition
we have R(y) C $(U NV N X5). We show that R(y) C UNV: let z € R(y), then
there is 2/ e UNV N Xg such that z/ < z. Since U,V are up-sets, then we have
zeUNV. We conclude R(y) CUNV,i.e.y € Or(U) and y € Or(V). Moreover,
by assumption y € X;, then we have y € Or(U)NOr(V)N X,. Now using that
y < x, we obtain z € 1(0x(U) NOr(V) N X)), as required.

For the converse, since Op(NH(U NV N )?2)) is an up-set, it is enough to show
that Op(U)NOr(V)NX; € Op(HUNVNXy)). Let 2 € Op(U)NOR(V)NXy, ie.
R(z) CUNV andz € X;. Weshow R(z) C (U NV NX,). Lety € R(z). By con-
dition (DH"R4) we know that R(z) = 1(R(z) N X3). Then there is y € R(z) N X,
such that ¢y’ <y. Then since R(x) CUNV,wehavey e UNV,soy e UNV N X,.
Therefore y € $(U NV N X,). Hence R(z) C 1(U NV N Xy), i.e. we obtain
z € Op(1(U NV N X)), as required. O

COROLLARY 7.2.14. Let R C X1 x Xy be a DH" -Priestley functional morphism
between DH” -Priestley spaces X1 and Xo. Then Upr is a homomorphism between
DH" - Priestley-algebras (Ba, =2, M, Xo) and (By,=1,M1, X1).

Corollary 7.2.11 and Theorem 7.2.13 summarize the main results concerning
A-semi-homomorphisms and their duals. Corollaries 7.2.11 and 7.2.14 do the same
concerning A-homomorphisms. These results should be kept in mind for §7.3.2,
where the functors involved are defined.
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7.3. Categorical dualities

In the present section we conclude the presentation of the dualities, by showing
the functors and the natural transformations involved in them. Clearly we have
that DH"-algebras and A-semi-homomorphisms form a category and similarly for
DH"-algebras and A-homomorphisms. We denote these categories by DHG and
DHY%; respectively. We will prove in the present section that there are two cate-
gories with DH"-Spectral spaces as objects that are dually equivalent to DH@ and
DH?, respectively. In a like manner we prove that there are two categories with
DH"-Priestley spaces as objects that are dually equivalent to DHg and DH/I\{ respec-
tively. The first thing to do is to show that DH"-Spectral spaces and DH"-Spectral
morphisms are indeed a category, and that DH"-Priestley spaces and DH"-Priestley
morphisms form a category as well.

THEOREM 7.3.1. Let (Xl,)A(l,Tm), <X2,)?27TK2> and <X3,)?3,THB> be three
DH"-Spectral spaces and let R C X; x Xo and S C Xo x X5 be DH"-Spectral
morphisms. Then:

(1) The DH"-Spectral morphism <o C Xy x Xy satisfies:

<90R=Rand S o<y =15,

(2) SoRC X x X3 is a DH"-Spectral morphism,
(3) if R, S are functional, then S o R is functional.

PROOF. (1) This has been proven for H-relations, so it holds in particular for
DH"-Spectral morphisms.

For (2), by Spectral-like duality for Hilbert algebras we get that S o R is an
H-relation, so condition (DH"R1) is satisfied by S o R. We just have to show that
S o R satisfies condition (DH"R2), i.e. we have to show that for all z € X;:

(So R)(z) = cl(S o R(x) N X3).

Let # € X;. First we prove that (S o R)(z) is an up-set: let (z,2) € So R
and z <3 w for some w € X5. We show that w € S o R(x). By definition there is
y € X5 such that y € R(z) and z € S(y). By condition (DH"R2) for R, we have
R(x) = cl(R(z) N X5). Then, there is y' € R(x) N X5 such that 3’ <, y. Now since
So <s=5, we have z € S(y'). And since y’ € X, by condition (DH"R2) of S,
S(y') = cI(S(y') N X3). Then, there is 2’ € S(y') N X3 such that 2/ <5 z <3 w.
Therefore, we have w € S(y'), and since (z,y’) € R, then (z,w) € So R.

From (S o R)(z) being an up-set, it is immediate that cl((S o R)(z) N X3) C
(S o R)(x). For the other inclusion, let (z,z) € S o R. By a similar argument as
before, we conclude that there is z' € (S o R)(x) N X3 such that 2/ < z, therefore
zec((SoR)(z)N X3).

(3) follows from item (2) and Spectral-like duality for Hilbert algebras. O

COROLLARY 7.3.2. DH"-Spectral spaces and DH"-Spectral morphisms form a
category. DH"-Spectral spaces and DH" -Spectral functional morphisms form a cat-
egory as well.

PROOF. For a DH"-Spectral space X, Example 7.2.6 shows that the order <
on X is a DH"-Spectral morphism. Then by item (1) in Theorem 7.3.1, it is the
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identity morphism on X. By item (2) in Theorem 7.3.1, relational composition
works as composition between DH”"-Spectral morphisms. (Il

For the Priestley-style categories, we obtain similar results, except that re-
lational composition does not work as composition in the respective categories.
We have to define a new composition between DH”-Priestley morphisms. For
DHA—Priestley spaces X1,Xs and X3 and DHA—Priestley morphisms R C X7 x Xy
and S C Xo x X3, let (S*R) C X7 x X3 be the relation given by:

(z,2) € (S« R) iff VU € Bs(ifx € OgoOg(U), then z € U)
iff VU € Bs(if (SoR)(z) C U, then z € U).

THEOREM 7.3.3. Let X1 = <X1,T1, SlaBla)?l>; X, = <X2,T2, SQ,BQ,)?2> and
X3 = (X3, 73, <3, B3, X3) be three DH" -Priestley spaces and let R C X; x Xy and
S C X5 x X3 be two DH" - Priestley morphisms. Then:
(1) The DH"-Priestley morphism <y C Xy x Xy satisfies:
<930R=R andSo <y=S.

(2) (S*R) C X1 x X3 is a DH"-Priestley morphism,
(3) If R, S are functional, then (S R) C X1 x X3 is functional.

PROOF. (1) This holds for H-Priestley morphisms, so it holds in particular for
DH"-Priestley morphisms.

For (2), by Priestley-style duality for Hilbert algebras we get that (S * R) is an
H-Priestley morphism, so condition (DH"R3) is satisfied by (S x R). We just have
to show that (S * R) satisfies condition (DH"RA4), i.e. we have to show that for all
x € )?12 R

(S* R)(x) = 1((S* R)(x) N X3).

The inclusion from right to left is immediate, since (S x R)(z) is an up-set
by definition. We show the reverse inclusion, that we will see that follows from
Theorem 7.1.22, Proposition 7.2.9 and the definition of x. Notice that by definition
we have that for all z € X7,z € X3:

(z,2) € (S*R) iff (&(2),&3(2)) € Ropoms-

So let € X; and z € (S R)(z). On the one hand, we already know that
&1(z) € Op,(X7). On the other hand, by assumption &5(z) € Ro,.o.(&i(z)).
Since Op o Og is a DH"-Priestley semi-homomorphism, by Proposition 7.2.9, we
obtain that Ro,.0,(&1(x)) = M(Rogeds(§1(x)) N Op,(X3)). So we know that
there is @ € Ro,on.(&1(x)) N Op,(XS) such that @ C &3(z). By Theorem 7.1.22,
Op,(X3) = &[X3), so there is 2/ € X5 such that Q@ = &(2/). Then we have
&(7') C &3(%) and (&1(x),&3(2")) € Ronomg- So by the definition of x we obtain
2 € (S R)(z) N X3, and from & being an order homeomorphism, we get 2/ < z.
Therefore (S * R)(z) = 1((S * R)(z) N X3), as required.

(3) follows from item (2) and Priestley-style duality for Hilbert algebras. O

COROLLARY 7.3.4. DH"-Priestley spaces and DH" -Priestley morphisms form
a category. DH"-Priestley spaces and DH" - Priestley functional morphisms from a
category as well.



170 CHAPTER 7. DUALITY FOR DH"-ALGEBRAS

TABLE 9. Categories involved in the dualities for distributive
Hilbert algebras with infimum.

CATEGORY | OBJECTS MORPHISMS

DHg DH"-algebras A-semi-homomorphisms

DH% DH"-algebras (A)-homomorphisms

SpH])\)}HIA DH"-Spectral spaces | DH"-Spectral morphisms

Spﬂl)diHA DH"-Spectral spaces | DH"-Spectral functional morphisms

Pr]JDCI[HIA DH"-Priestley spaces | DH"-Priestley morphisms (comp *)

Pr]]l);IHIA DH"-Priestley spaces | DH"-Priestley functional morphisms (comp *)

PrOOF. For a DH"-Priestley space X, Example 7.2.12 shows that the order
< on X is a DH"-Priestley morphism. It is not difficult to check that for any
DH"-Priestley spaces ¥; and X5 and DH"-Priestley morphism R C X; x X», we
have <o o R = <gx R and Ro<; = R*<;. Then by item (1) in Theorem 7.3.3
we obtain that < is the identity morphism for X By item (2) in Theorem 7.3.3, the
operation % gives composition between DH"-Priestley morphisms (associativity of
* follows easily). O

Let Sp%ﬂA be the category of DH"-Spectral spaces and DH”"-Spectral mor-
phisms, and let SpH});]HIA be the category of DH"-Spectral spaces and DH"-Spectral
functional morphisms. Let Pr%ﬂA be the category of DH"-Priestley spaces and
DH"-Priestley morphisms, and let Pr]%HIA be the category of DH"-Priestley spaces
and DH"-Priestley functional morphisms. We summarize in Table 9 all the cate-
gories we have so far considered.

Once we have defined all the categories, we need to build the contravariant
functors and the natural isomorphisms involved in the dualities. Let us examine
first the Spectral-like duality, and then we move to the Priestley-style duality.

7.3.1. Spectral-like dualities. Let us start looking at the functors for the

Spectral-like dualities. We consider first the functor Jrr : DHg — SpﬂﬁHIA such that
for any DH"-algebras A, A1, Ay and any A-semi-homomorphism h : A} — Ay:

Jrr(A) == (Irr, (A), Irra (A), Twa )
Jrr(h) := Ry, C Irr, (Ag) x Irr, (Ay).

We recall that 7, is a topology on Irr_, (A) having as basis ko 1= {¢)a(a)¢ : a € A},
for a : A — PT(Irr_, (A)) given by ¥a(a) := {P € Irr,(A) : a € P}, and by
definition (P,Q) € Ry, if and only if h~1[P] C Q.

Clearly, for the identity morphism ida : A — A for A in DHg, it holds
that Ri;q, = C, and this is precisely the identity morphism for Jrr(A) in Sp%ﬂA.
Moreover, it follows by definition that for DH"-algebras A, Ay and Az and A-semi-
homomorphisms f : A7 — Ay and g : Ay — As, Ryoy = Ry o R,. Therefore, by
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Spectral-like duality for Hilbert algebras and corollaries 7.1.5 and 7.2.5, the functor
Jrr is well defined.

On the other hand, we consider the functor ( )* : Sp%iIA — DHY such that for
any DH"-Spectral spaces X, X1, X and any DH"-Spectral morphism R C X x X»:

X* = (D(X),=,N, X),
R*:=0Op : D(X5) — D(X)).

We recall that by definition D(X) := {U¢ : U € &}, and for all U € D(X,),
Or(U) :={z € Xy : R(x) CU}.

Obviously, for the identity morphism < C X x X for X in Sp[]D&H1 A, we get
O< = idg~, and this is precisely the identity morphism for X* in DH@. Further-
more, it follows by definition that for DH"-Spectral spaces X, X5, and X3, and
DH"-Spectral morphisms R C X; x Xy and S C X5 x X3, Ogop = Og o Os.
Therefore by Spectral-like duality for Hilbert algebras and theorems 7.1.9 and 7.2.7
the functor ()* is well defined.

In order to complete the dualities, we need to define two natural isomorphisms,
the one between the identity functor on DHg and (Jrr( ))*, and the other between
the identity functor on Sphy " and Jrr(( )*). Consider first the family of morphisms
in DH@:

U= (Ya:A— D(jrr(A)))AeDHg

THEOREM 7.3.5. V¥ is a natural isomorphism between the identity functor on
DHg and (Jrr())*.

PRrROOF. Let Ay, Ag be two ]DDH/\—algebras and let h : Ay — A5 be a A-semi-
homomorphism between them. By Spectral-like duality for Hilbert algebras we get
that Ug o041 = o0 h. From this we have that ¥ is a natural transformation,
and by Theorem 7.1.12 we get that for all A € DHY, 14 is an isomorphism, so we
conclude that ¥ is a natural isomorphism. [

Clearly, what we have is that for any DH"-algebras A; and A, and any A-semi-
homomorphism h : Ay — As, the following diagram commutes:

A~ DOrr(Ay))

hl lu

AQ ? D(jrr(Ag))

We need to do some preparatory work before enunciating the other natural
isomorphism. Recall that for any DH”"-Spectral space X = (X ,)? ,Tr), we define
the map ex : X — Irr_, (X*), that by Theorem 7.1.11 is a homeomorphism between
the topological spaces (X, 7,;) and (Irr_, (X*), 7,;,. ). This map encodes the natural
isomorphism we are looking for, but since morphisms in Sp%\)fIA are relations, we
need to give a relation associated with this map. We define the relation Ex C
X x Irr_, (X*) given by:

(x,P) € BEx iff ex(x) CP.

PROPOSITION 7.3.6. Ex is a DH"-Spectral functional morphism.
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PROOF. From the Spectral-like duality for Hilbert algebras, we know that Ex
is a functional H-relation, so we just have to check that condition (DH"R2) is
satisfied. Let z € X. It is immediate that cl(Ex(z) NIrra (X%)) € Ex(z), so we just
have to check the other inclusion. Let P € Ex(z), i.e. ex(x) € P. By Corollary
7.1.10 we know that ex(x) € Irra(X*) and clearly ex(x) € Ex(x). Therefore
P € cl(Ex(z) NIrrp(X*)), as required. O

Consider now the family of morphisms in Sp%ﬂA:

Y= (Bx C X x Irr,(X%))

xesphit
THEOREM 7.3.7. X is a natural isomorphism between the identity functor on
A

Sphy and Jrr(()*).

PROOF. Let X1, X, be two DH”-Spectral spaces and let R C X; x X, be a
DH"-Spectral morphism between them. By Spectral-like duality for Hilbert alge-
bras we get that (x,y) € R if and only if (ex,(x),ex,(y)) € Ro,, and from this
it follows that R r ©FEx, = Ex, o R. Thus ¥ is a natural equivalence. More-
over, by Theorem 7.1.11 we have that the map ex is an homeomorphism between

(X, 7%) and (Irr—, (X*), 7). ) such that ex[X] = Irrs (X*). It follows that Ex is an
isomorphism in Sp%ﬂA, and then ¥ is a natural isomorphism in Sp%}w. (]

COROLLARY 7.3.8. The categories Spﬂﬁ'}IA and DH@ are dually equivalent by
means of the contravariant functors Jrr and ()* and the natural equivalences W
and . Similarly, the categories Sp]?i]HIA and DHY, are dually equivalent by means
of the restrictions of the functors Jrr and ()* and the restrictions of the natural
equivalences ¥ and X.

7.3.2. Priestley-style dualities. Let us move now to the other dualities,
namely the ones involving DH"-Priestley spaces. We start considering the func-
tors: We define the functor Op : DHy — Pr]IDSIHIA such that for any DH"-algebras
A, A, Ay and any A-semi-homomorphism h: A; — As:

DP(A) = <Op—> (A)a A, S, wA[AL Op/\ (A)>7
Op(h) := R, € Op_,(Az2) x Op_,(Ay).

We recall that 74 is a topology on Op_,(A) that is defined from the subba-
sis {Ja(a):a€ A}U{Ia(b)¢: b€ A}, for 9o : A — PT(Op_(A)) given by
Ia(a) :={P €Op_(A):a€ P}, and (P,Q) € Ry, if and only if »=[P] C Q.

It should be clear that for the identity morphism ida : A — A for A in
DHg, we have Rjq, = C, that is the identity morphism for Op(A) in Pr%ﬂA.
Furthermore, it follows by definition that for DH"-algebras A, Ay and Az and
A-semi-homomorphisms f : 41 — Az and g : Ay — A3, Rgor = Ry o Ry.
Therefore, by Priestley-style duality for Hilbert algebras and corollaries 7.1.14 and
7.2.11, the functor Op is well defined.

Besides, we define the functor ( )* : PrﬂﬁHIA — DHY, that for any DH"-Priestley
spaces X, X1, X and any DH"-Priestley morphism R C X; x Xj:

X :=(S,=,nX),
R® = DR : BQ — Bl.



7.3. CATEGORICAL DUALITIES 173

We recall that for all U € By, Og(U) := {z € X1 : R(x) C U}. It is immediate that
for the identity morphism < C X x X for X in Pr%ﬂA7 we have O< = idxe, that is
the identity morphism for X* in DHG. Moreover, it follows by definition that for
DH"-Spectral spaces X1, X2, and X3, and DH"-Spectral morphisms R C X; x X,
and S C Xy x X3, Ugog = g o Og. Thus by Priestley-style duality for Hilbert
algebras and theorems 7.1.20 and 7.2.13 the functor ()® is well defined.

For completing the dualities, we need to define two natural isomorphisms, the
one between the identity functor on DHg and (Op( ))®, and the one between the
identity functor on Pr%{IA and Op(()*®). Consider first the family of morphisms in
DH@:

0:=(Ja:A— ﬁA[A])Aeng

THEOREM 7.3.9. © is a natural isomorphism between the identity functor on
DH% and (Op())*.

PROOF. Let Ai, Ay be two DH"-algebras and let h : A; — A be a A-semi-
homomorphism between them. By Priestley-style duality for Hilbert algebras we
get that g, o191 = Y9 o h. From this we have that © is a natural transformation,
and by Theorem 7.1.23 we get that for all A € DH@7 Ja is an isomorphism, so we
conclude that © is a natural isomorphism. O

What we obtain is that for any DH”"-algebras A; and A, and any A-semi-
homomorphism h : Ay — As, the following diagram commutes:

Y1
Ay —— 91[A4]

hl lum

Ay —— 1[4

Before presenting the other natural isomorphism, we need again to do some
work. Recall that for any DH"-Priestley space X = (X, 7,<, B X ) we define the
map &x : X — Op_,(X*), that by Theorem 7.1.22 is an order homeomorphism
between ordered topological spaces (X, 7,<) and (Op_,(X°*),7x+,C). As in the
Spectral-like case, this map encodes the natural isomorphism we are looking for,
but since morphisms in Pr%iIA are relations, we need to give a relation associated
with that map. We define the relation Tx C X x Op_, (X*) given by:

that turns out to be a DH"-Priestley functional morphism.
PROPOSITION 7.3.10. T is a DH" -Priestley functional morphism.

PrRoOOF. By Priestley-style duality for Hilbert algebras T% is an H-Priestley
functional morphism, so we just have to check that condition (DH”R4) is satisfied.
Let z € X. It is immediate that (T (z) N Op,(X*)) C Tx(x), so we just have to
check the other inclusion. Let P € Ty (z), i.e. £x(z) € P. As z € X, by Theorem
7.1.22 we know that &x(z) € Op,(X°®) and clearly x(z) € Tx(x). Therefore
P € M(Tx(z) N Op,(X°*)), as required. O
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Consider the family of morphisms in Pr?}w:

= (Tx € X x Op_,(X*))

[1]

XEPH}J}“A
THEOREM 7.3.11. Z is a natural isomorphism between the identity functor on
N

P and Op(()*).

PRrROOF. Let X1, X5 be two ID)]H[A—Priestley spaces and let R C X; X X5 be a
DH"-Priestley morphism between them. From Priestley-style duality for Hilbert
algebra we get that (z,y) € R if and only if (£x, (x),£x,(x)) € RO, and from this
it follows that R, » T, = T%, » R. Thus =Z is a natural equivalence. Moreover,
by Theorem 7.1.22 we have that the map &5 is an order homeomorphism between
(X,7,<) and (Op_, (X*), 7x+, C) such that £x[X] = Op,(X*). It follows that Tk is
an isomorphism in Prﬂﬁw, and then = is a natural isomorphism in Pr%{A. O

COROLLARY 7.3.12. The categories PrﬂfﬁIA and DHY are dually equivalent by
means of the contravariant functors Op and ()* and the natural equivalences ©
and E. Similarly, the categories Pr]})}HA and DH%; are dually equivalent by means
of the restrictions of the functors Op and ()® and the restrictions of the natural
equivalences © and Z.

7.4. Spectral-like duality: topological characterization of filters

In the present section we focus on the Spectral-like duality for DH"-algebras,
and we study the dual of notions such as implicative filter, irreducible implicative
filter, optimal implicative filter, meet filter, irreducible meet filter, optimal meet
filter and absorbent filter. We will use those results in the following section, where
we compare the Spectral-like and the Priestley-style dualities for DH"-algebras

From now on, let X = (X, )2, 7.) be a DH"-Spectral space, and consider the
following maps:

f:C(X) — FiL (X% g: Fi,(X*) — C(X)
C—{U°eD(X):CCU%} F—({U°:U° € F}

where recall that C(X) denotes the collection of closed subsets of (X,7,), and
X* =(D(X),=,MN,X). In [15] Celani et al. show that these maps are well defined,
and moreover in Proposition 5.1 it is proven the following.

PrOPOSITION 7.4.1. The maps f and g establish a dual order isomorphism
between (C(X), C) and (Fi_, (X*), C).

Let us denote by C'*(X) the collection of all irreducible closed subsets of X. By
sobriety, we know that there is a one-to-one correspondence between the elements of
X and the irreducible closed subsets of X, given by the map sending each element
to its topological closure:

c: X — M (X)
x +— cl(x)

Therefore, as irreducible closed subsets are precisely the irreducible elements of the
lattice of closed subsets, ordered by reverse inclusion, the next proposition follows
straightforwardly.
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PROPOSITION 7.4.2. There is a dual order isomorphism between (C™*(X),C)
and (Irr_, (X*), C) given by the maps f and g.

Let us introduce now a new concept, that captures the dual property of being
an optimal implicative filter.

DEFINITION 7.4.3. A closed subset C' € C(X) is optimal when for all V,U C¥ &,
fOAUCYVand CNU #0 for all U € U, then CNYV # 0.

We denote by COP(X) the collection of all optimal closed subsets of X.

LEMMA 7.4.4. Let X = (X, )?, 7..) be an DH"-Spectral space and let Uy, ..., U, €
Kk and Vi,..., Vi, € k for some n,m € w. Then:

VEN--NVECUSU---UUS iff AUSN---N1US C (VE, ..., VED.

PROOF. Assume first that tUF N --- NAUS C ({VF,...,V,S}), and suppose,
towards a contradiction that there is z € (VEN---NVE)\ (Ufn---UUS). By
k being a basis, there is W € & such that Ufn---UUS C W° and = ¢ W°.
But then by assumption W¢ € ({Vf,...,V.¢}), so in particular we have that
VE=(..(VE=W?...) = X. Notice that for any VU € &, if z € V¢ and
xeVe=U= ((VeNnU))e, then x € U°. Therefore, from x € VFN---NV,S and
xeVE=(...(VE = WF°)...) we obtain x € W€, a contradiction.

For the converse, assume that VN ---NVy C UfU---UUS, and suppose,
towards a contradiction that tUf N --- NUS € ({VF,...,VS}H). So we take
wee (tUsn---n1U5) \ ({VF, ..., V,g}). On the one hand, we have UfU- - -UUS C
We¢, so by assumption we get VN ---N VS C W On the other hand, we
have V¥ = (... (V¢ = W¢)...) # X. By convenience, for each j < m, let
Zj =V = (..(Vi, = We)...))° Then there is x ¢ V° = Z§ = (L(V° N Z2))°,
so there is z; € VN Zy such that < ;. Similarly we obtain that for each
3 < j < m, thereis x;_1 € Vy_; N Z; such that ;1 < x;. Therefore, we get
z <z < - < xyy, such that z; € VjC for each 2 < j < m—1 and z,, € W.
Now since closed subsets are up-sets, we have z,, € Vf for all j < m, hence
Tm € (VEN---NVE)\ W€, a contradiction. O

COROLLARY 7.4.5. Let U C K be non-empty. The F-ideal of X* generated by
{U¢:UelU} is{WeeDZX): (Inew)(I,...,. U, ey WECUFU---UUS}.
PROOF. Let U C k and let
Z ={W°eD(X):(3Inew)T,.... U, cU)WECU7U---UU;}.
Clearly Z is included in the Frink ideal generated by {U¢: U € U}. For the reverse

inclusion, let V¢ be in that Frink ideal, so there are n € w and Uy, ...,U, € U such
that TUf N ---NTUS C 1V By the previous lemma we get V¢ C Uf U --- U U,
and so V¢ € Z, as required. O

PROPOSITION 7.4.6. There is a dual order isomorphism between (COP(X),C)
and (Op_, (X*), C) given by the maps f and g.

PRrROOF. First we show that for C' an optimal closed subset of X, f(C) is an
—-optimal implicative filter of X*, by showing that D(X) \ f(C) is a strong Frink
ideal of X*. Let UY,...,US ¢ f(C) be such that tUf N --- NHUS C tW¢ for some
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W € k. Recall that tTW¢ = ({W*€}), so by Lemma 7.4.4 we get W¢ C Uy U --- U UE.
Suppose, towards a contradiction, that W¢ € f(C), i.e. CNW = . As by assump-
tion CNU; # 0 for all i < n and since C' is optimal closed, we get UyN---NU, € W,
a contradiction.

Let now Uf,...,US ¢ f(C) be such that tU{N---NTUS C ({Wy,...,WE}) for
some Wiy, ..., Wy, € k. From Lemma 7.4.4 we have WiN---NWg, CUfU---UUS.
Suppose, towards a contradiction, that ({W¢,...,WS1}) C f(C). Then we obtain
that for all ¢ < m, W¢ € f(C). Therefore C C W{nN---NWE, and since C' is
optimal closed, then Wi N---NWE € UfU---UUE, a contradiction. We conclude
that ({Wy¢,..., W5} € f(C), and so D(X) \ f(C) is a strong F-ideal, as required.

Now we show that for any —-optimal implicative filter P of X*, the subset
g(P) is an optimal closed subset of X. Let U,V C*  be such that g(P)NU # 0 for
all U e Y and (U C |JV. Then from Lemma 7.4.4 we get ({{TU°: U e U} C (V).
Notice that for all U € x, U¢ € P if and only if g(P) N U = 0. Therefore, by
assumption we have U¢ ¢ P for all U € U. Suppose, towards a contradiction,
that g(P) C |JV. Then V¢ e P for all V € V, and so (V) C P. Now since P is
an —-optimal implicative filter, we get ({1U° : U € U} ¢ (V), a contradiction.
We conclude, using Proposition 7.4.1 that f and g give us the required dual order
isomorphism. (Il

We introduce one more concept, that captures the dual property of being a
meet filter.

DEFINITION 7.4.7. A closed subset C € C(X) is a A-closed subset when C' =
HCNX).

We denote by Ca(X) the collection of all A-closed subsets of X. Similarly, we
denote by CI(X) the collection of all irreducible A-closed subsets, and by COP(X)
the collection of all optimal A-closed subsets.

PROPOSITION 7.4.8. There is a dual order isomorphism between (Ca(X),C)
and (Fip(X*), C) given by the maps f and g.

PRrROOF. First we show that for C' a A-closed subset of X, f(C) is a meet
filter of X*. Since f(C) is an implicative filter, it is an up-set, so we just have to
show that it is closed under the meet operation. Let Uf,US € f(C). Recall that
UsnuUs = (UsNUS N X) = U NUSN X). So it only remains to show that
C CHUSNUS N X). By assumption C C USNUS, so CNX CUSNUSN X, and
therefore, using that C is A-closed, we get C = 1(C' N X) C U NUSN X), as
required.

Now we show that for F' a meet filter of X*, g(F') is a A-closed subset of X.
Since closed subsets are up-sets, and we already know that g(F) is closed, we just
need to show that g(F) C 1(g(F)NX). Let 2 € g(F). Then cl(z) C g(F), and then
F C f(cl(x)). Since cl(z) is an irreducible closed subset, then by Proposition 7.4.2
flcl(z)) € Irr—, (X*), and so f(cl(z)) is an order ideal such that F N f(cl(z))c = 0.
Then by Lemma 2.3.3, there is G € Irra (X*) such that F C G and G N f(cl(z))° =
(. Now since Irrp (X*) C Irr—, (X*), from Proposition 7.4.2 again, we get that there is
a2’ € X such that f(cl(z’)) = G. Notice that f(cl(z')) ={U € D(X) : cl(z') CU} =
{U e D(X):2' € U} = ex(x). Then by Corollary 7.1.10 we have that Irr,(¥*) =
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ex[X], so we conclude that 2/ € X. Now from F C G = f(cl(z')) we get cl(z') C
g(F), so 2’ € g(F), and from G N f(cl(z))¢ = 0, we obtain f(cl(z’)) C f(cl(z)) and
so cl(z) Ccl(z’), i.e. 2’ < x. Hence x € 1(g(F) N X), as required. O

COROLLARY 7.4.9. There is a dual order isomorphism between (C¥*(X),C) and
(Trrp(X*), C) given by the maps f and g.

PRrROOF. This follows from propositions 7.4.2, 7.4.8 and the fact that Trrs (X*) =
Fin(X*) NIrr_, (X*) given in Corollary 6.5.19. O

COROLLARY 7.4.10. There is a dual order isomorphism between (CoP(X),C)
and (Op,(X*), C) given by the maps f and g.

ProOF. This follows from propositions 7.4.6, 7.4.8 and the fact that Op, (X*) =
Fin(X*) N Op_, (X*) given in Corollary 6.5.22. O

Finally we identify what is the dual property of being an absorbent filter (see
definition in page 137).

DEFINITION 7.4.11. A closed subset C' C C(X) is absorbent when for all U € &,
CNnU°=cl(CNU°NX).

We denote by CAP(X) the collection of all absorbent closed subsets of X.

PROPOSITION 7.4.12. There is a dual order isomorphism between (CAP(X), C)
and (Ab(X*), C) given by the maps [ and g.

PROOF. First we show that for C' an absorbent closed subset of X, f(C) is an
absorbent filter of X*. Using the definition, we show that for any U¢ € f(C') and
any V¢ € D(X), we have V¢ = (U°T1V*¢) € f(C). By definition of f, it is enough
to show that C' C V¢ = (U°MV*¢). By hypothesis C N V¢ C cl(CNVeN X) and
by assumption C' C U, Then we have C NV C cl(U°NVeN X) = UM Ve, Thus
CNven(Uenve)e =, and since C is closed, it is an up-set, and this implies
Cnsat(Ven(Uenve)e=0,i.e. C C (sat(VeNn(Uenve)e))e =ve= (U Ve,
as required.

Now we show that for F' an absorbent filter of X*, g(F) is an absorbent closed
subset of X, so let U € k. If U¢ € F, then g(F)NU® = ¢g(F), and since F is
a meet filter, by Proposition 7.4.8 we know that g(F') is A-closed, and therefore
g(F)NU< = g(F) = d(g(F) N X) = cl(g(F) NU°N X). Assume that U® ¢ F.
Then by Proposition 6.5.25, the implicative filter (F U 1U¢) is a meet filter. We
show that g(F)NU® C cl(g(F) N U N X), since the reverse inclusion is immediate.
Let x € g(F)NnU° Then for the irreducible closed subset cl(z) we have that
FuU*® C f(cl(x)) and by Proposition 7.4.2, f(cl(x)) is an irreducible implicative
filter of X*. So by 2.4.11 we have that D(X) \ f(cl(z))) is an order ideal of X*,
and clearly it is disjoint from the meet filter (F U 1U¢). Therefore, by Lemma
2.3.3 there is F’ € Irrp(X*) such that (FU1TU®) C F' and F' C f(cl(x)). Since
F' is irreducible meet filter, there is y € X such that f(cl(y)) = F'. On the
one hand, we have U°U F C F’, and this implies y € g(F) N U°N X. On the
other hand, we have f(cl(y)) = F' C f(cl(z)), and so y < z. We conclude that

A~

e g(F)NU°NX) = cl(g(F) NUN X), as required. O
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TABLE 10. Spectral-duals of filters of DH"-algebras.

FILTERS | SPECTRAL-DUAL CLOSED SUBSETS

Fi,(A) | closed subsets of the dual space C(X)

Irr,(A) | irreducible closed subsets of the dual space C'™(X)

Op_,(A) | optimal closed subsets of the dual space COP(X), i.e. C € C(X)
such that for all VU C¥ k, if U C YV and CNU # O for all
Uel,then CNYV #0D

Fin(A) | A-closed subsets of the dual space C(X), i.e. C € C(X) such that
C=1MCnX)

Irrp(A) | irreducible A-closed subsets of the dual space Ci™(X)

Op,(A) | optimal A-closed subsets of the dual space CiP(X)

Ab(A) absorbent closed subsets of the dual space CAP(X), i.e. C € C(X)
such that for all U € k, CNU¢=cl(CNU°N X)

Let us summarize the results in this section in Table 10, where A denotes an
arbitrary DH"-algebra.

7.5. Comparison between both dualities

In the present section we carry out a comparison between the Spectral-like
and the Priestley-style dualities for DH%. It is remarkable that, while Priestley
and Spectral dual objects of distributive lattices are built on the same base set,
namely the set of prime filters of the distributive lattice, this is not the case for
weaker settings such as distributive semilattices, Hilbert algebras or DH" -algebras.
In particular, DH"-Spectral spaces are built on the set of irreducible implicative
filters of the DH"-algebra, whereas DH"-Priestley spaces are built on the set of
optimal implicative filters of the DH"-algebra. This makes the comparison between
both dualities interesting.

The category DH@ is dually equivalent to the categories Sp%IA and Pr%w.
Therefore these two latter categories are equivalent. We proceed in what follows to
explicitly define the functors from one category to the other, that are obtained as
the concatenation of both dual constructions, passing through the algebraic one.
The definition of the functor from Pr]%iIA to Sp]]]?}HIA is relatively simple to obtain.
However the definition of the functor that goes the other way around is considerably
more involved. Similarly, as DH% is dually equivalent to the categories Sp]]l);HA
and PrH}HA, these two later categories are again equivalent. And we also explicitly
define the functors that witness such equivalence. The situation is analogous to the
case of distributive semilattices, for which the easy direction was pointed out by
Bezhanishvili and Jansana in [5].
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7.5.1. From the Priestley-style duality to the Spectral-like duality.
Let X = (X, T, §7B7)A(> be a DH"-Priestley space. Recall that the dual of X
is the algebra X* := (B,=-,M,X) and the Spectral dual of X* is Jrr(X*) :=
(Irr (X°), Tie o, Irr A (X°)). We aim to provide a more transparent construction of
this structure that is equivalent to X. We recall that the dense subset Xp is given
by {x € X : {U € B:x ¢ U} is non-empty and up-directed}. Let us consider the
collection

kg ={Xp\U:U € B}.

First we show that xp is a basis for a topological space on Xp. Let U,V € B
and z € (Xp\U)N(Xp\V). Then « € Xp and « ¢ U,V. By condition (H13'),
there exists W € B such that x ¢ W and U,V C W. Therefore © € Xp \ W C
(X \U)N(Xp\V), as required.

Thus we take kp as a basis for a topology 7., on Xp. We claim that the
structure

<XB,XBO)?,THB>

is a DH"-Spectral space

In page 161 we introduced the map £x : X — Op_ (X*) given by &x(x) :=
{U € B :z € U} that satisfies {x[Xp] = Irr_, (X*). Moreover, notice that for each
U € B,

Ex[Xp\U|={&(z) 2 € Xp\U} ={&x(2) 12 € XB,U ¢ &x(2)}
—{Pelrr_(X*):U ¢ P} = X*\ ¢z« (U),

where recall that the map ¢xs : B — PT(Irr_, (X*)), introduced in page 73, is
given by ¢xe(U) := {P € Irr,(X*) : U € P}.

From this fact it follows that £x is a continuous and open function between
(XB,Tup) and (Irr_,(X°), 74, ), and hence it is a homeomorphism. Moreover, by
Theorem 7.1.22 and Corollary 6.5.19 we obtain that &x[Xp N X] = Irra (X°).

COROLLARY 7.5.1. For any DH"-Priestley space ¥ = (X, T, S,BJAQ, £x is a
homeomorphism between (Xp,T.,) and (Irr— (X°), 7w, ) such that x[Xp N X] =
Irrp (X°).

COROLLARY 7.5.2. For any DH"-Priestley space X = (X, 7, <, B, )?>, the struc-
ture Xp = (Xp, Xp N X,7.,) is a DH"-Spectral space.

Now we move to consider morphisms. We claim that for any DH"-Spectral
morphism R C X7 x X5, the relation

Rﬁ(XBl XXBQ) gXBl ><XvB2

is a DH"-Spectral morphism. The following lemma concerning dual spaces of
Hilbert algebras is all we need to get our claim.

LEMMA 7.5.3. Let R C X; X X5 a (functional) H-Priestley morphism between
H-Priestley spaces X1 = (X1,71,<1,B1) and X2 = (Xo2,7,<a,B3). Then the
relation RN (Xp, x Xp,) is a (functional) H-relation between H-spaces (Xp,, Ty, )
and (Xp,, Tiy)-
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PROOF. As k; = {Xp,\U : U € B;}, from condition (HR3) it follows condition
(HR1). For any = € Xp,, R(x) N Xp, is closed in Xp,, since by (HR4), for
each y € Xp, such that y ¢ R(z), there is an open U € kg such that y € U
and R(z)NU = (. Hence condition (HR2) also holds, and so RN (Xp, X Xp,)
is an H-relation. Finally, from condition (HF') it immediately follows that it is
functional. O

ProprosIiTION 7.5.4. Let R C X7 X X2 a DHA—Priestley morphism between
DH"-Priestley spaces X1 and X3. Then RN (Xp, x Xp,) is a DH"-Spectral mor-
phism between DH"-Spectral spaces Xp, and Xp,.

Proo¥F. This follows from Lemma 7.5.3 and the fact that condition (DH"R4)
follows immediately from condition (DH"R2). O

We define the functor § : PrﬂﬁHIA — Sp%\pjHIA such that for any DH"-Priestley
spaces X, X, Xy and any DH"-Priestley morphism R C X; x Xo:

F(X)=Xp = (Xp, XN X5, 7e,),
S(R) =RnN ()(B1 X XBQ).

where notice that §(<x) = <x, = <gx), so the functor preserves the identity

morphism for Pr?fw. Let us check that it also preserves composition of morphisms
N
in Pr%\)ﬁfI .
LEMMA 7.5.5. Let X1,X2,X3 be H-Priestley spaces and R C X; x X5 and
S C Xy x X3 be H-Priestley morphisms. Then for any x € Xp, and any z € Xp,:

(x,2) € (S*R)N(Xp, x Xp,) iff (x,2) € SoR.

PrOOF. Recall that for any z; € X7 and z3 € X3, z3 € (S % R)(x1) if and
only if for all U € Bs, if So R(z1) C U, then 3 € U. So in particular S o R(z1) C
(S * R)(z1), and so one of the directions is straightforward. For the converse, let
x € Xp, and z € Xp, be such that z ¢ So R(z). Then as So R(x) N Xp, is closed
in Xp, by (HR2), there is a basic open that contains z and is disjoint from it. So
by definition of 73 and denseness of Xp, in X3, there is U € B3 such that SoR C U
and x ¢ U, hence z ¢ (S * R)(x). O

By the previous lemma we get that for any DH”-Priestley morphisms R C
X1 x Xg and S C X x X3, §(S * R) = §F(5) o F(R), so the functor preserves
composition of morphisms, and hence it is well defined.

7.5.2. From the Spectral-like duality to the Priestley-style duality.

Let X = (X, )/(:, 7..) be a DH"-Spectral space. Recall that the dual of X is the algebra
X*:=(D(X),=,M, X), and the Priestley dual of X* is Op(X*) := (Op_, (X*), 7%+, C
, 02+ [D(X)], Opa(X*)). As before, we aim to provide a more transparent construc-
tion of this structure equivalent to X. For getting a DH”-Priestley space out of it,
we need to add extra points. Notice that for each z € X, cl(z) € C"(X) and all
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irreducible closeds have this form. For each C' € COP(X) \ C™(X), we add a new
point x¢ to the collection X. Then we obtain the collections

X' =X U{zc:CeCO%(X)\C"™(X)},

X' = X U{zc: CeC?(X)\C(X)}.
For convenience, sometimes we refer to x by z). So it is clear that all the
clements of X’ and X’ have the form z¢ for some C' € COP(X). Notice that X’

can be defined for any H-space (X, 7.). Moreover, an order can be defined on X’
as follows. For each z¢, o € X't

ro <zco iff C'CC.

Notice that this order extends the dual of the specialization order of X. Let us
consider the map n: kK — P(X’) given by:

nU):={zc €X' :C CUY}.

For each U € k, we denote by n(U)¢ the set X’ \ n(U). Consider the topology 7’
on X’ having as subbasis the collection:

{nU):U eru{nU):U € k}.
We claim that the structure
(X', 7, < ), X)

is a DH"-Priestley space. We prove the claim by showing that there is an order
homeomorphism h between (X', 7/, <), and (Op_, (X*), 7%+, C), such that hn[]] =
Jx-[D(X)] and A[X'] = Op, (X7).

Recall that by definition, the dual of the DH”"-Spectral space X is the algebra
X* = (D(X),=,M, X), and the map dx- : D(X) — PT(Op_, (X*)) introduced in
page 73 is given by ¥x«(U) := {P € Op_,(X*) : U € P}.

And recall also the map f : C(X) — Fi, (X*), defined in page 174, that

assigns to each closed C, the set {U¢ € D(X) : C C U°}. We define a map
h: X" — Fi,(X*) such that:

h(ze) := f(C)={U°e€ D(X): C CU"}.
By Proposition 7.4.6 and the definition of X’ we know that h is well defined, and
that it is in fact an isomorphism, such that for each P € Op_,(X*), h™*(P) = zy(p),
where recall that g : Op_, (X*) — C(X) was defined in page 174. Moreover, from

the definition of the order in X', we get that h is order preserving. Notice that for
any P € Op_, (X*):

PehlpU)] iff ayp enU) iff g(P)CUC iff U°eP iff Pedx-(U°)

Therefore, h[n(U)] = Yx=(U°) for every U € k. From this fact it follows that h is
a continuos and open function between (X', 7'} and (Op_, (X*), 7x+), and hence it
is a homeomorphism. It also follows that hn[k]] = Ux~[D(X)]. Furthermore, by

~

Corollary 7.4.10 we conclude that h[X'] = Op, (X*).

COROLLARY 7.5.6. For any DH"-Spectral space X = <X,)?,T,§>, h is an or-
der homeomorphism between (X', 7', <) and (Op_, (X*), 7%+, C), such that h[X'] =
Op, (X7) and hin[s]] = 9% [D(X)].
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THEOREM 7.5.7. For any DH"-Spectral space X = (X,)?,T,/), the structure
X' = (X', 7, < k], X7)
is a DH" - Priestley space. Moreover, X is the dense subset X7/7['~”~]'

PROOF. The first statement follows from the previous corollary and Corollary
7.1.14. Let us prove that X is the dense subset X’ ] given by the definition of

ik
DH"-Priestley space. Recall that
X ={zc € X'+ {n(U) : U € k,2zc ¢ n(U)} is non-empty and up-directed}.

First we show that X C X;}M. This follows from k being a basis for 7. Let z € X.
Notice that {n(U) : U € s,z ¢ n(U)} = {n(U) : U € k,cl(z) € U°}. By & being a
basis, there is U € x such that € U. Then cl(z) € U¢ and this implies that the set
{nU) :U € k,x € n(U)} is non-empty. Let U,V € k be such that = ¢ n(U),n(V).
Then cl(z) C U Ve and so x € UNV. Since & is a basis for 7, there is W € &
such that € W C UNV. And this implies n(U),n(V) € n(W) and cl(z) € W°.
Hence {n(U) : U € k,z € n(U)} is up-directed.

In order to prove the reverse inclusion, let z¢ € X 7’7[&]. We show that C' is an
irreducible closed subset of X, as from this it follows that z¢c = zcy.) € X. Let
C1,C5 be two closed subsets of X. Assume C' C C7 U Cy and suppose, towards
a contradiction, that C ¢ C; and C ¢ Cs. Then we have z¢, £ z¢, and using
that Op(X*) is a DH"-Priestley space, by condition (H12) there is U; € & such that
ze, € n(Ur) and z¢ ¢ n(Uy). Similarly we have z¢, % x¢, and then there is Us € k
such that z¢, € n(Uz) and z¢ ¢ n(Uz). Thus by hypothesis, from z¢ € X], we
obtain that there is W € & such that n(U1),n(Usz) C n(W) and z¢ ¢ n(W). This
implies, on the one hand, that Cy,Cy C W€, and on the other hand, that C & W€,
a contradiction. O

The previous theorem gives us how the functor we are looking for acts on the
objects. Now we move to morphisms. In fact, we focus on dual morphisms of ho-
momorphisms between Hilbert algebras, as from defining an H-Priestley morphism
out of an H-relation, it follows straightforwardly the result we need. From now on,
let X1 = (X1, 7s,) and X3 = (X5, 74,) be two H-spaces and let R C X; x X3 be an
H-relation between them. We define the relation R C X x X} as follows:

(rc,,rc,) € R iff (YV € ko) if R[C1] C V€, then Cy C V€,

where recall that R[C1] = [J{R[z] : * € C1}. We claim that R is an H-Priestley
morphism between the H-Priestley spaces (X{, 71, <,n1[k1]) and (X}, 75, <, n2[k2]).
In order to show this, we prove first some useful lemmas:

LEMMA 7.5.8. Let R C X7 x X2 be an H-relation between H-spaces X1 =
(X1,7x,) and Xo = (X2, 7x,). Then for all z1 € X1 and x9 € X5:

(z1,22) € R iff (21,72) € R.
Moreover for all ¢, € X} and all x5 € R[C4], it holds that (x¢,,z2) € R.

ProoF. Recall that for each z € X, # = x(), so for the first statement, the
inclusion from left to right is immediate. For the converse, assume (x1,72) € R
and suppose, towards a contradiction, that (x1,z2) ¢ R. So we have zo ¢ R(z1),
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that is a closed subset by (HR2), and then there is U € ko such that a9 € U
and R(z1) C U°. From zy ¢ U°, we get cl(z) € U€, and then by assumption,
R(cl(z1)) € U°. From R(z1) C U¢, we get x1 € Or(U°), that is closed by (HR1),
and so cl(z1) C Or(U°). It follows that R[cl(z1)] € U¢ a contradiction. The
second statement follows easily. O

LEMMA 7.5.9. Let R C X; x X5 be a functional H-relation between H-spaces
X1 = (X1, 7,) and Xo = (X9, 7s,). Then for all xc, € X| and any U € ko:

R(ze,) Sm(U) iff R[Ci] CU"

PROOF. Assume first that R(z¢,) C 172(U) and let y € R[C;]. Then by Lemma
7.5.8 we have (z¢,,y) € R, and then by assumption y € 72(U). Thus by definition of
72, cl(y) C U¢, and hence y € U¢, as required. For the converse, assume R[Cy] C U®
and let zc, € R(wc,). Then by definition of R, Cy C U¢, i.e. x¢, € m2(U), as
required. ([l

LEMMA 7.5.10. For R C X; x X2 a (functional) H-relation between H-spaces
X1 = (X1,7,) and X3 = (Xo,7y,), the relation R is a (functional) H-Priestley
morphism between the H-Priestley spaces (X1, 71, <,n[k1]) and (X}, 75, <,m2lk2]).

PRrOOF. First we show that condition (HR3) holds, i.e. that Ox(n2(U)) =
m(Or(U°)°) for all U € ko. Let U € k. Recall that by (HR1), (Or(U))¢ € k;.
Notice that this follows from Lemma 7.5.9, as we have:

ze, € Ox(np(U)) iff Rlze,) Cn(U) iff R[Cy] CUC
iff C;C DR(UC) iff Trco, € 7’]1(<|:|R(UC))C).

Now we show that condition (HR4) also holds, i. e. that if (z¢,,zc,) ¢ R, then
there is U € kg such that zo, ¢ n2(U) and R(zc,) C n2(U). Let z¢, € X| and
rc, € X5 and assume (z¢,, c,) ¢ R. Then by definition of R, there is U € kg such
that R[C] C U® and Cy € U®. This implies z¢, ¢ n2(U) and R(z¢,) C n2(U), so
we are done. Finally, condition (HF’) follows similarly from condition (HF). O

COROLLARY 7.5.11. For R C X1 x X3 a (functional) DH" -Spectral morphism
between DH" -Spectral spaces X1 = (Xl,)Afl,T,ﬂ> and X9 = <X27X2,7—H2>, the rela-
tion R is a (functional) DH" - Priestley morphism between the DH" - Priestley spaces
X and X5,

PRrROOF. This follows from Lemma 7.5.10 and the fact that condition (DH"R4)
follows immediately from condition (DH"R2). O
We are finally ready to define the functor & : Sp%HIA — Pr%HIA such that for
any DH"-Spectral spaces X, X1, X5 and any DH"-Spectral morphism R C X x X»:
®(X) =X = (X', 7', <nlx], X'),
&(R) := R.
Clearly from (H12) it follows that &(<x) = <x = <g(x), so the functor pre-

serves the identity morphism in Sp%ﬂA. We prove that & preserves composition of
N
morphisms in Sp]}\)zﬂ'}I as well.
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LEMMA 7.5.12. Let X1, X5, X3 be H-spaces and R C X1 x X5 and S C X5 x X3
be H-relations. Then for any xc, € X and any U € ka,

(SoR)[C1] CU® iff (SoR)(xc,) Cma(U).

PROOF. Notice that by definition (S o R)[Cy] € U® if and only if R[C:] €
Op(U¢), and this holds if and only if there is z¢, € R(z¢,) such that S[Cs] € U*.
But this is equivalent to having z¢, € R(z¢,) and z¢, € S(z¢,) such that Cy & U®,
i.e. (SoR)(xc,) € n3(U), as required. O

By the previous lemma we get that for any DH”"-Spectral morphisms R C
X1 x Xo and S C Xs x X3, 6(So R) = &(S) x 6(R), since we have:

(zey,we,) ¢ (SoR) iff U € k3((SoR)[C1] CUC & Cy £ U)
iff U € r3((SoR)[zc,] Sm(U) & e, & n3(U))
iff (l’cl,xc2) ¢ (g*ﬁ)

Hence, the functor & preserves composition of morphisms, and hence it is well
defined.

7.5.3. Categorical equivalence. We finally introduce the natural isomor-
phisms involved in the equivalence of ‘&he categoriAes Pr%ﬂA and Spﬂﬁw. Let us
consider first the endofunctor & : Sph; — Sphy .

THEOREM 7.5.13. §& is the identity functor on Sp%ﬂA.

PRrROOF. This follows easily from Theorem 7.5.7, where we proved that X T’] (6] =
X. This implies that X'n XT’]M — X'NX = X and it also follows that Trinpe) = Tres

therefore F&(X) = (X, X'n X ) Toop) = X O

For each DH"-Spectral space X, let Rx € X x X be the order associated with

the space (X, 7). We know that Rx is the identity morphism for X, and so it is
AN A
an isomorphism in SpﬂggiI . Consider the family of morphisms in Sp]ﬁ\»/]lf']I :

P := (Rx C X x F&(X))

XESpHJB‘\f}[A

COROLLARY 7.5.14. ® is a natural isomorphism between the identity functor
N
on Sph and F6.

The previous corollary gives us one of the required natural isomorphisms. Let
us move to consider the endofunctor &3 : Pr%ﬂA — Pr]JDC}HA. We need to show that
for each X € Pr]]z?}ﬂA there is an isomorphism Sx between X and &F(X) such that
for each R C X x X5 € PrE" Sy, « R = 6F(R) * Sx, .

LEMMA 7.5.15. Let X be a DH"-Priestley space. For any x € X, we have that
Ttz N Xp € COP(XY). Moreover, for each C € COP(XY,), there is a unique x € X
such that tx N X = C.

ProOF. First we check that T2 N Xp is closed in X};. Let y € Xp be such
that y ¢ T2 N Xp. Recall that basic opens of Xp have the form Xp \ U for some
U € B. From z # y and (H12) we get that there is U € B such that € U and
y ¢ U. Hencey € Xp \U and (tz N Xp) N (Xp \U) =0, so we are done.
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We show now that t2NXp is an optimal closed subset. By (H13) we get that it
is non-empty. Let V,Uy,...,U, € B, be such that (Xp\Uy)N---N(Xp\U,) C
Xp\V, and for all i < n, (tz N Xg) N (Xg \U;) # 0. Suppose, towards a
contradiction, that (tz N Xp) N (Xp \ V) = 0. From the assumption, we get
that « ¢ U; for all i < n, since each U; is an up-set. Suppose that = ¢ V,
then as V is Xp-admissible, there is y € Xp such that x < y ¢ V. But then
we get y € (e N Xp) N (Xp\V), a contradiction. Therefore z € V. So we have
xeVNU§N---NUE, that is open. By density, there is z € XpN(VNUSN---NUS),
so z € V and z ¢ U; for all i < n. But then, since z ¢ Xp \ V by assumption there
is i < n such that z ¢ Xg \ U;, and so z € U;, a contradiction. We conclude that
1tz N Xp is an optimal closed subset of XJ.

Consider now a closed C € COP(X ), and suppose, towards a contradiction,
that {VeB:CCV}INn({U®:U € B,C € U} = 0. Then since the elements of
B are clopens, by compactness of X, there are Vy,...,V,,Uy,..., U, € B such
that C CV;, C € U;, foralli <n and j <m, and VoN---NV,NUSN---NUE, = 0.
Let V:=Vyn---NV,. Clearly C C V. We have V. C Uy U --- U U,,, and so
(X \Up)N---N(Xp\Un) € Xp\V. By assumption, C N (Xp \ U;) # 0, for all
j < m. Then by C being optimal closed C N (Xg \ V) # 0, a contradiction. We
conclude that there isz € ({V € B: C CV}n({U®:U € B,C ¢ U}. Clearly
teNXp=C. Let z,2’ e ({VeB:CCVIN{U°:U € B,CZU}. Sox and
x’ belong to the same elements of B. This implies by condition (H12) that they
are equal. Therefore the z € X such that Tz N Xg = C is unique. O

The previous lemma gives us the following bijection between elements of X and
elements of X%: each z € X corresponds with x4;nx, € X}, and all elements of
X} are of this form. The following lemma is then easy to prove.

LEMMA 7.5.16. Let X be a DH" -Priestley space. For allU € B, n(Xg\U) =U.

According to this lemma, the map 7 gives us a one-to-one correspondence
between the subbasis of X, {U : U € B} U{V*°:V € B}, and the subbasis of X},
{n(Xp\U):U € B}U{n(Xp\V)®:V € B}. Thus the spaces X and X} are
homeomorphic. Similarly, for any DH"-Priestley morphism R C X x X, it follows
that (y1,y2) € R if and only if (24y,nx4, , T1ysnxp,) € R. For each DH"-Priestley
space X, let Sx € X x X5 be the relation given by:

(Jﬁ,l‘TmeB) S SX if z < Y.

It is easy to check that Sx is a DH"-Priestley morphism, and it is in fact an
isomorphism in Prh; . Consider the family of morphisms in Pry; :

v .= (SX C X x @S(X))XEP%H{{A

THEOREM 7.5.17. VU is a natural isomorphism between the identity functor on
N
POE and &F.

COROLLARY 7.5.18. The categories Prlg\)fIA and Sp]?}HIA are equivalent by means
of the functors § and & and the natural equivalences ¥ and ®. Moreover §& is the
identity functor on Sphy .
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7.6. Extending the method to other classes of algebras

In this section we aim to highlight that what has been presented in §7.1-§ 7.3 is
not only a new topological duality for DH"-algebras, but moreover, it is a strategy
for getting new topological dualities for other classes of algebras (and logics). In
particular, we focus on the algebras introduced in Chapter 6, that correspond to
filter distributive and congruential expansions of H, the implicative fragment of
intuitionistic logic. This fact is in line with our motivation: in the same way as
extended Priestley duality provides a general method from which many dualities for
lattice-based algebras follow, we claim that from our duality for DH"-algebras we
shall abstract a general method from which other dualities for DH” -based algebras
follow as well.

First we abstract the mentioned strategy in a very informal way, and then we
focus on the classes of algebras exhibited in §6.7 and we indicate how the same
pattern can be followed to get topological dualities for these classes of algebras.

As for the general strategy, let us concentrate on the Spectral-like duality, but
keep in mind that what follows could also be stated for the Prlestley—style duality.
Let K and K be two classes of algebras in the languages £ and .Z for which
Spectral-like dualities are already known. Let us call the dual spaces of the algebras
in K and HA{, K-Spectral spaces and ]K—Spectral spaces respectively. For convenience,
assume that .% and .Z are disjoint. Finally, let K’ be a class of algebras in the
language £ U g\, such that:

— the Z-reducts of K’-algebras are K-algebras, so for any K’-algebra A, let
(XA, Tras---) beits dual K- Spectral space,

~ the Z-reducts of K'- algebras are K—algebras so for any K’-algebra A, let
(XA, Tin,---) beits dual K-Spectral space,

Under this general situation, if we have that X A C€ XA and the subspace of
(XA, Ten) generated by X4 is precisely (Xa,7z,), then we claim that a not so
complicated Spectral-like duality for K’ might be built from the dualities for K and
]K, in such a way that for any K’-algebra A, its dual K’-Spectral space shall be
defined as the dual K-Spectral space of its Z-reduct augmented with a subset that
satisfies certain conditions. It would be very interesting to study this thoroughly
and get, for any class K a full characterization of the classes of algebras the strategy
might be applied for, but this should be studied somewhere else. In what follows
we briefly treat the case when K is the variety of Hilbert algebras H.

7.6.1. Dualities for Implicative Semilattices. In the present section we
show that the topological dualities for implicative semilattices studied in [11] and [6]
can be easily obtained as an instance of the ones that we obtained in the present
chapter. Recall that we also obtained such dualities as a particular case of the theory
developed in Chapter 5 (see §6.5). We refer the reader to §6.5 for the definitions of
IS-space, IS-morphism, generalized Esakia space and generalized Esakia morphism.

Let us begin with the Spectral-like duality. We show that the collection of
IS-spaces can alternatively be presented as the collection of DH”"-Spectral spaces
X =(X, X ,Tr) that satisfy the following condition:

1s) X = X.
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PROPOSITION 7.6.1. Let X = <X,)?,T,§> be a DH"-Spectral space that satisfies
(1S). Then (X,7,.) is an IS-space.

PRrROOF. By condition (DH"1), (X, 7,.) it is a compactly based sober topological
space, by conditions (DH”2), (DH"4) and (IS), KO(X) = KO(X) =  is a basis for
the space, and then by condition (DH”"1), the basis is closed under the operation
sat(()N()°). O

PROPOSITION 7.6.2. Let (X,7) be an IS-space. Then X = (X, X, TRKO(X)) 15 @
DH" -Spectral space.

PROOF. By assumption (X, Txo(x)) is an H-space. Clearly X C X generates a
sober subspace. Moreover, we can easily prove that for all {U, V}UW C KO(X). As
U¢ is closed, it is immediate that cl(U°NX) = U¢, so condition (DH"3) is satisfied.
Also cl(UNVeNX)e =UUV € KO(X), so condition (DH"4) is satisfied. Finally,
if l(({We: W eW}NX)CU® as U is compact, there are Wy, ..., W, € W, for
some n € w, such that WN---NWE=cl(W§N---NnWNX) CU° So condition
(DH”5) is also satisfied. O

After a careful review of the definition of IS-morphisms, we realize that con-
ditions (DS1), (DS2) correspond with condition (DH"R1), that appears in the
definition of DH"-Spectral morphisms, with O(X) playing the role of . In fact,
(DH"R2) is redundant, under the assumption and condition (DH”R1). Clearly
condition (HF) is the same in both definitions. Therefore, from the correspondence
for objects it follows easily the correspondence for morphisms.

COROLLARY 7.6.3. The category of IS-spaces and functional meet-relations is
equivalent to the category of DH"-Spectral spaces satisfying (IS) and DH" -Spectral
functional morphisms.

Let us move now to the Priestley-style duality. We show that the collection
of generalized Esakia spaces can be presented as the collection of DH"-Priestley
spaces X = (X, 7, <, B, X) that satisfy condition (IS).

PROPOSITION 7.6.4. Let X = (X, T,S,B,)?> be a DH"-Priestley space that
satisfies (IS). Then (X, 7,<,Xp) is a generalized Esakia space.

Proor. By Corollary 7.1.19 we know that ()?,?, <, XN )?> is a generalized
Priestley space, but by assumption, this structure is the same as (X, 7, <, Xg).
Notice that the collection of all Xp-admissible clopen up-sets of X is precisely
B. Then condition (IS5), that implies that the down-set generated by any Esakia
clopen is clopen, follows easily from condition (DH"6). O

PROPOSITION 7.6.5. Let (X,7,<,Xp) be a generalized Esakia space. Then
X=(X,r, S,Cfll;’(‘i (X), X) is a DH"-Priestley space.

PROOF. By assumption (X, 7, < ,CEU}I{JIB (X)) is an generalized Priestley space
whose dense subset is Xg. Clearly X C X generates a compact subspace. More-
over, for all U,V € CELI;}‘; (X): as U is up-set, it follows N(UNX) = U, so condition
(DH"8) is satisfied. Since CU$E (X) is closed under finite intersections, we have
TUNVNX) e (X), so condition (DH"9) is also satisfied. Finally, for every
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W clopen up-set, we have, by definition of X g-admissible, that W € CEL[}’{; (X) if
and only if W¢ C [ (W¢ N Xpg). Therefore, condition (DH"10) is satisfied. |

If we examine in detail the definition of generalized Esakia morphism, we re-
alize that conditions (DS3) and (DS4) correspond with condition (DH"R3), and
condition (DH”R4) is redundant under the assumption and condition (DH"R3).
Therefore, from the correspondence for objects it follows again easily the corres-
pondence for morphisms.

COROLLARY 7.6.6. The category of generalized Esakia spaces and generalized
Esakia morphisms is equivalent to the category of DH” -Priestley spaces satisfying
(IS) and DH"-Priestley functional morphisms.

7.6.2. Dualities for Hilbert algebras with distributive lattice struc-
ture. Recall that HPl-algebras are given in the language (—,A,V,1) of type
(2,2,2,0). A HPL-algebras is an algebra A = (A, —, A, V, 1), such that (A, —, 1)
is a Hilbert algebra, (A, A, V) is a distributive lattice, and moreover the implica-
tion and the lattice define the same order. We pursue to get Spectral-like and
Priestley-style dualities for H”Z-algebras. From a careful analysis of the Spectral-
like duality for DH"-algebras, and bringing up the well-known Stone duality for
distributive lattices, we deduce the following definition of the Spectral-like dual
spaces of HPZ-algebras.

DEFINITION 7.6.7. A structure X = (X, X,7,.) is an HPL-Spectral space when
X is a DH"-Spectral space and:

(DHE1) c((UU V)N X)¢ € k, for any U,V € k.
Similarly, for the Priestley-style dual spaces of HPZ-algebras, we get the follow-

ing definition from the analysis of the Spectral-like duality for DH"-algebras and
the well-known Priestley duality for distributive lattices.

DEFINITION 7.6.8. A structure X = (X, 7, <, B, )AQ is an HPL-Priestley space
when X is a DH"-Priestley space and:
(DHE2) +((UU V)N X) € B, for any U,V € B.
Notice that for any HPL-Priestley space X = (X, 7, S,B,)AQ, by condition
(DH”8), we could rewrite condition (DH%2) as follows:
(HV4) UUV € B, for any U,V € B.
In the same way, for any HPZ-Spectral space X = (X, X, 7,.), by condition (DH"3),
we could rewrite condition (DHLl) as follows:
(HY3) UNV € &, for any U,V € k.
This yields a different formulation of the definitions of HPZ-Spectral and HPL-
Priestley spaces:

PROPOSITION 7.6.9. A structure X = (X,)A(,T,Q is an HPL-Spectral space
when X is a DH"-Spectral space and (X, 1) is a HY-Spectral space

PROPOSITION 7.6.10. A structure X = (X, T,§7B,X> is an HPL-Priestley
space when X is a DH"-Priestley space and (X, 7, <, B) is a HY-Priestley space.
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From our work in § 7.1 it is easy to prove the following equivalences between ob-
jects. Some work should be done to encompass morphisms and get a full categorical
duality, but we leave this as future work.

THEOREM 7.6.11. Let X = <X,5(:,T,{> be an HPL-Spectral space. Then X* :=
(D(X),=,M,U, X) is an HPL-algebra and Jrr(X*) := (Irr, (X*), Irrp (X), Tiy. ) 48
an HPL -Spectral space such that (X,7.) and (Irr_(X*), .. ) are homeomorphic

-~

topological spaces by means of the map ex and moreover ex[X] = Irrp (X*).

THEOREM 7.6.12. Let A = (A, —, A, V, 1) be an HPL-algebra. Then Jrr(A) :=
(Irr, (A), Trrp (A), 7o 0 ) is an HPL-Spectral space and (Jrr(A))* := (D(Jrr(A)), =
,M,U, It (A)) is an HPL-algebra isomorphic to A by means of the map 1A .

Note that this is another example of the modular nature of Stone/Priestley
duality theory for filter distributive finitary congruential logics with theorems. We
should mention that in [14], Celani and Cabrer follow a strategy alike the one
presented above. More precisely, they study a duality for ID)Hé—algebraS, but they
combine the Spectral-like duality for Hilbert algebras with the Priestley duality for
bounded distributive lattices. We could also combine the Priestley-style duality for
Hilbert algebras and the Spectral-like duality for distributive semilattices, in order
to get another duality for DH"-algebras.

7.6.3. Dualities for Implicative Hilbert algebras with infimum. Re-
call that in this case we deal with the language (—, A, —’,1) of type (2,2,2,0).
We aim to get Spectral-like and Priestley-style dualities for TH"-algebras. Recall
that A = (A, —,A,—/,1) is an TH"-algebra when (A, —,1) is a Hilbert algebra,
(A, —', A, 1) is an implicative semilattice, and moreover — and —' define the same
order on A. In order to get a Spectral-like duality for IH"-algebras, we focus on
the Spectral-like duality for DH"-algebras together with the Spectral-like duality
for implicative semilattices presented in §6.5, and we get the following definition.

DEFINITION 7.6.13. A structure X = (X )?, 7..) is an TH"-Spectral space when
X is a DH"-Spectral space and:
(IHM) (cl((sat ¢ (U NV)°N X))° € , for any U,V € .
Now for any TH"-Spectral space X, we can define an operation =’ on D(X)
such that for all U,V € k:
U =' V= cl((sat ¢ (UN V)N X).
On the other hand, we get the definition of Priestley-style dual spaces of TH"-

algebras from the Priestley-style duality for DH"-algebras and from the Priestley-
style duality for implicative semilattices presented in §6.5.

DEFINITION 7.6.14. A structure X = (X, 7, <, B,)AQ is an TH" - Priestley space
when X is a DH"-Priestley space and:

(IH2) N(L(UNVe)enX) e B, for any U,V € B.

And again, for any IH"-Priestley space X, we can define an operation =’ on B
such that for all U,V € B:

U='V:=1LUNV)NX).
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These definitions are a bit more elaborated than the previous ones. Notice that
condition (IH"1) involves the closure of a subset in (X, 7,;) and the saturation of a
subset in the subspace generated by X. In any case, the dualities work as usual,
although some work should be done again in order to accommodate morphisms.

THEOREM 7.6.15. Let X = (X, X ,Tx) be an TH"-Spectral space. Then X* :=
(D(%),=,N,=", X) is an ]IHA—algebm and Jrr(X*) = (Irr (X%), Irr A (X)), Togw )
is an TH"-Spectral space such that (X, 1.) and (Trr_, (X*), Tﬁx*> are homeomorphic
topological spaces by means of the map ex and moreover 53g[X] = Irrpa (X%).

THEOREM 7.6.16. Let A = (A, —, A, V, 1) be an TH"-algebra. Then Jrr(A) :=
(Irr, (A),Irrp (A), Ty ) is an TH"-Spectral space and (Jrr(A))* := (D(Jrr(A)), =
,M,="Trr, (A)) is an TH"-algebra isomorphic to A by means of the map Ya .

7.6.4. Dualities for Implicative Hilbert algebras with lattice struc-
ture. Finally, we briefly mention the case when we deal with the language (—
AV, =, 1) of type (2,2,2,2,0). Recall that A = (4, —,A,V,—/,1) is a TH"-
algebra when (A, —, 1) is a Hilbert algebra, (A, —=’,A,V, 1) is a relatively pseudo-
complemented lattice, and both — and —’ define the same order. The definition of
the Spectral dual objects of IH-algebras arises from the Spectral-like duality for
HPL-algebras and the Spectral-like duality for implicative semilattices.

DEFINITION 7.6.17. A structure X = (XJ?,T,Q is a IHY-Spectral space when
X is a HPZ-Spectral space and:

(IHM1) (cl((sat ¢ (U NVE))* N X))® € &, for any U,V € k.

As in previous subsection, for any IH”-Spectral space X, we can define an
operation =’ on D(X) such that for all U,V € &:

U =' V= cl((sat ¢ (UN V)N X).

Regarding Priestley-style dual spaces of IH"-algebras, from the Priestley-style dua-
lity for HPZ-algebras and the Priestley-style duality for implicative semilattices, we
get the following definition:

DEFINITION 7.6.18. A structure X = (X, 1, S,B,)A() is a THY-Priestley space
when X is a HPZ-Priestley space and:

(IH2) +((L (U NV)*NX) € B, for any U,V € B.

And for any TH”-Priestley space X, we can define an operation =’ on B such
that for all U,V € B:

U='V:=1LUNV))°NX).

Likewise, we get analogous of theorems 7.6.15 and 7.6.16. Summarizing, we
have shown how we can use the dualities for DH"-algebras to get new dualities
for other classes of algebras. And this is very interesting since those classes of
algebras are the algebraic counterpart of some interesting filter distributive finitary
congruential logics with theorems, all of which are expansions of the implicative
fragment of intuitionistic logic.



Summary and Conclusions

In this dissertation we aimed to show that Abstract Algebraic Logic provides
the appropriate theoretical framework for developing a uniform duality theory for
non-classical logics. We focused on the so called Stone/Priestley dualities, and we
studied them under an abstract point of view. It would be interesting to explore also
the third line that was mentioned in § 3.1, namely the so-called pairwise Stone-type
dualities.

We have captured a sufficient set of conditions for a logic S to get a Spectral-like
or a Priestley-style dual for AlgS. Such conditions are: being congruential, filter
distributive, finitary, and having theorems. Under these assumptions on S, we have
identified the collections of S-filters that can be used for developing the abstract
dualities: irreducible S-filters are used to build up the Spectral-like duality, and
optimal S-filters are the ones used for the Priestley-style duality. We have had a
quick look at how these notions can also be used for an abstract study of the theory
of canonical extensions for non-classical logics. Further questions on this topic, such
as how to encompass canonical extensions of substructural logics, or the possibility
of an abstract Sahlqvist theory, are left as future work.

We have obtained two abstract categorical dualities, in which most of the
Stone/Priestley dualities for non-classical logics that we encounter in the literature
fit. Due to the abstract character of our approach, we cannot avoid, in general,
to have an algebraic structure on the dual side. However, we have analyzed which
dual properties correspond with the best-known logical properties, such as having a
conjunction or a deduction theorem. This allows us to dispense with the algebraic
structure in the dual side, when the logic is sufficiently well behaved. Furthermore,
this analysis is both interesting for duality theory and for AAL. On the one hand,
it confirms the strength of duality theory, that can be developed in a modular way,
even outside of the distributive lattice setting. On the other hand, in the same
way than bridge theorems are studied in AAL between properties of the logic and
properties of its algebraic semantics, our results can be regarded as bridge theo-
rems between properties of the logic and properties of its Kripke-style semantics.
In this sense, we have carried out only the first steps, and we left as future work
to investigate the dual correspondence for more logical properties, such us (DDT),
n-ary modal operators, etc.

The entire second part of the dissertation was devoted to extract concrete re-
sults from our general theory. To do this, instead of keeping our abstract approach,
we focused on a single filter distributive finitary congruential logic with theorems,
namely the implicative fragment of intuitionistic logic, and we tackled the problem
of getting Spectral /Priestley dualities for extensions of such logic.

Aside from several new dualities that follow more or less straightforwardly from
the general case, we have studied new Spectral-like and Priestley-style dualities for
distributive Hilbert algebras with infimum. From those dualities, new Spectral-
like and Priestley-style dualities for a wide range of expansions of the implicative
fragment of intuitionistic logic follow. From our work, Kripke-style semantics for
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such logics could also follow. Such relational structures should be analyzed in more
detail, but we leave this as future work.

For distributive Hilbert algebras with infimum, the case that we have studied
in more detail, we also have compared both dualities in §7.5, and we have given
the Spectral-like characterization of the different classes of filters in § 7.4, but other
algebraic questions about this class of algebras remain open, such as the dual char-
acterization of subalgebras or of homomorphic images. It would be also interesting
to study in depth the other mentioned classes of algebras, as well as the outlined
dualities for them.

A more ambitious project would involve identigying not only sufficient but also
necessary conditions that make our dualities work. On the other hand, it would
be very interesting to explore the development of an abstract theory of Spectral-
like and Priestley-style dualities for nice expansions of H, the implicative fragment
of intuitionistic logic. Or even more ambitious, formulating an abstract theory of
Spectral-like and Priestley-style dualities for nice expansions of S, for S an arbitrary
filter distributive finitary congruential logic with theorems.



APPENDIX A

The distributive envelope of a distributive
meet-semilattice with top element

In this Appendix we present more detailed what was only outlined in Section 9
in [5], namely how the Priestley-style duality for bounded distributive semilattices
presented there can be modified accordingly to obtain a Priestley-style duality for
distributive semilattices with top element.

From now on, let M = (M, A, 1) be a distributive semilattice with top element.
The distributive envelope of M may be described, in brief, as the semilattice of
finitely generated F-ideals of M. As it is done in [5] and also in §4.5, we follow
an alternative approach, and construct the distributive envelope of M from a sep-
arating family for M. As an instance of Definition 4.5.1 we obtain the following
definition.

DEFINITION A.l. A family 7 C Op,(M) of optimal meet filters of M is a
separating family for M if for every meet filter F' € Fi (M) and every a ¢ F, there
is P € F such that F C P and a ¢ P.

By Lemma 2.3.7, Op, (M) is itself a separating family for M, and by Lemma
2.3.3, Irrp (M) is also a separating family for M. For any separating family F for
M, we define the map ox : M — PT(F) as follows:

or(a) ={P € F:a€ P}.

The following representation theorem for semilattices that goes back to Stone is
stated in [5].

THEOREM A.2. Let M be a distributive semilattice and F a separating family
for M. The map or is an isomorphism between M and oz[M] := (cz[M],N, F).

Let us denote by Lx(M) the closure of oz[M] under non-empty finite unions.
By definition Lz(M) is also closed under non-empty finite intersections, since
or(a)Nor() = or(a Ab) for all a,b € M, and moreover F € Lz(M) since
0'_7:(1) =F.

DEFINITION A.3. The algebra Lz(M) := (Lz(M),N,U, F) is called the distri-
butive envelope of M.

It follows that Lz(M) is a distributive lattice with top element. Moreover,
the next theorem provides an abstract characterization of L (M) by a universal
property. The proof is similar to that in Theorem 5.8 in [4]. Recall that sup-
homomorphisms are the algebraic homomorphisms that preserve existing suprema
(see definition in page 39).
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THEOREM A.4. Let M be a distributive semilattice and let F be a separating
family for M. The distributive envelope Lx(M) is, up to isomorphism, the unique
distributive lattice L for which there is a one-to-one sup-homomorphism h : M —
L such that for any distributive lattice L' and any one-to-one sup-homomorphism
h' : M — L' there is a unique one-to-one lattice homomorphism k : L — L’ with
koh="h.

By the previous theorem, we know that for separating families F and F’ for
M, Lx(M) and Lz (M) are isomorphic lattices. For convenience, we dispense with
the subscript F of Lx(M), Lz(M) and oz, and we use L(M), L(M) and o instead.
Clearly we have that for each U € PT(F):

(ES8) UeL(M) iff U= (] o(b) for some non-empty B € M.
beB
The following technical lemma concerns the case when the distributive envelope
is bounded.

LEMMA A.5. Let M be a distributive semilattice. Then:

(1) M has a bottom element if and only if § € L(M).
(2) 0 € Idp(M) if and only if O € Idp(L(M)).

PrOOF. (1) If M has a bottom element 0™, then ) ¢ Idp(M). Therefore
A ¢ Op,(M) and so o(0M) = () € L(M). For the converse, suppose ) € L(M).
Then by (E8) there is B C¥ M non-empty and such that [ J{o(b) : b € B} = 0. Let
¢ := /\ B. Then by assumption o(c) = @, and this implies that A ¢ Op, (M), so M
has a bottom element 0™ that clearly coincides with c.

(2) This follows from item (1) and definition of F-ideals of semilattices and
lattices. (]

Notice that the previous lemma involves F-ideals of the lattice L(M). These
ideals are defined as in page 28. For any distributive lattice with top element
L =(L,A,V,1), it follows by definition that:

— if L has a bottom element, then the Frink ideals and the order ideals of
L coincide, i.e. Idp(L) = Id(L), and
— if L has no bottom element, then Idp(L) = Id(L) U {0}.

It turns out that, when dealing with lattices with top but not necessarily bot-
tom, F-ideals are the right tools to work with instead of working with order ideals.
Similarly, we should work with optimal meet filters of the lattice L(M) instead
of working with prime meet filters. For any distributive lattice with top element
L={(L,A,V,1), it follows by definition that:

— if L is has a bottom element, then optimal and prime meet filters of L
coincide, i.e. Op, (L) = Pr(L), and
— if L has no bottom element, then Op, (L) = Pr(L) U {A}.

In the rest of the appendix we present several results about the distributive
envelope of a distributive meet-semilattice with top element and about Priestley
duality for these structures. There results generalize the ones stated in [5] for
bounded distributive meet-semilattices. The main difference is precisely that they
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involve Frink ideals and optimal meet filters of lattices, instead of order ideals and
prime meet filters.

LEMMA A.6. Let M be a distributive semilattice with top element. For any
non-empty B, By, ..., B, C* M:

N B)cB) it o(AB cJa(AB) iff ()Io(\B)) < lo(\B).

i<n i<n i<n

COROLLARY A.7 (Lemma 3.2 in [5]). Let M be a distributive semilattice with

top element. For any a,aq,...,a, C¥ M:
ﬂ ta; Cta iff o(a) C U o(a;) iff ﬂ to(a;) C to(a).
i<n i<n i<n

ProPOSITION A.8 (Lemma 3.10 in [5]). Let M be a distributive semilattice
with top element.
(1) If F is a meet filter of M, then
(a) [o[F]) is a meet filter of L(M), and
(b) o [[o[F])] = F.
(2) If F is a meet filter of L(M), then o =1[F] is a meet filter of M.
(3) If F is an optimal meet filter of M, then [o[F]) is optimal.
(4) If F is an optimal meet filter of L(M), then
(a) o~[F] is optimal, and
(b) [olo™ [F)]) = F.

The previous proposition shows that the maps [o[]) and o~! give us an order
isomorphism between optimal meet filters of M and optimal meet filters of L(M):!

(Op, (M), C) = (Op, (L(M)), €)

PROPOSITION A.9 (Lemma 3.12, Theorem 4.3 and Corollary 4.4 in [5]). Let
M be a distributive semilattice with top element. Then:
(1) If I is an F-ideal of M, then
(a) (o[I]] is an F-ideal of L(M), and
(b) o™ (oIl = 1.
(2) If I is a prime F-ideal of M, then {co[I]] is prime.
(3) If I is an F-ideal of L(M), then
(a) o~ t[I] is an F-ideal of M, and
(b) {olo~ [T = T.
(4) If I is a prime F-ideal of L(M), then o~ *[I] is prime.

The previous proposition shows that the maps (o[ ]] and o~! give us an order
isomorphism between F-ideals of M and F-ideals of L(M),? that restricts to an
isomorphism between prime F-ideals of M and prime F-ideals of L(M):

(Idp(M), €) = (Idp(L(M)), €)
(prime Idp(M), C) = (prime Idr(L(M)), C)

1Recall that the latter are precisely prime filters of L(M) when M is bounded.
2Recall that the latter are precisely order ideals of L(IM) when M is bounded.
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In conclusion, we have seen that the properties of the distributive envelope of
a bounded distributive meet-semilattice that were studied in [5] also hold for the
distributive envelope of a distributive meet-semilattice with top element. To carry
this out, however, the notion of optimal meet filter of bounded distributive meet-
semilattices that is used in [5] has to be modified according to what was exposed
in §2.3.



APPENDIX B

The F-extension of a distributive meet-semilattice
with top element

Our main reference for this Appendix is [42], where the theory of A;-completions
of posets is presented. We study in detail in what follows the properties of a parti-
cular A{-completion of distributive semilattices with top element. We assume that
the reader is familiar with the theory of canonical extensions.

Recall that for any poset P, a completion of P is an embedding of P in a
complete lattice, i.e. it is a pair (e, Q) such that Q is a complete lattice and
e : P — @ is an order embedding. For convenience, we usually take e as the
identity.

Let P be a poset, let Q be a completion of P and let F and Z be standard
collections of up-sets and down-sets respectively, i.e. collections of up-sets (resp.
down-sets) that contain the principal up-sets (resp. principal down-sets).

We call F-filter elements of Q and Z-ideal elements of Q the elements in the
following two sets, respectively:

F7(Q)={ceQ:c= /\F.F € F},
Q

Q) ={ceQ:c=\/1,Ic1}.
Q

A completion Q of P is (F,Z)-dense provided F7 (Q) is join-dense in Q and I7(Q)
is meet-dense in Q. A completion Q of P is (F,Z)-compact provided for all F € F
and all I € T:

NF<\/T it FNI#J.
Q Q

The property of (F,Z)-compactness implies weakly (F,Z)-compactness, that holds
whenever for all F' € F and all I € Z:
it \F<\/I, then (3X C¥ F)3FY ¥ I /\X < \/Y
Q Q

Moreover, if F and Z are algebraic closure systems, by PI‘OpOSlthn 5.14 in [42], if
Q is (F,Z)-compact and (F,Z)-dense, then Q is compact, i.e. for all X, Y C P

if A\X<\/Y,then (3X'C¥ X)3Y' ¥V /\X'<\/Y/
Q Q

An (F,T)-completion of P (Definition 5.9 in [42]) is a completlon of P that is
(F,T)-compact and (F,Z)-dense.

From now on, let M = (M, A, 1) be a distributive meet-semilattice with top
element. Recall that the canonical extension of M is defined in [26] by Dunn.

197
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et al. as the (Fip(M),Id(M))-completion of M and it is customarly denoted by
M?. We focus on a different Aj-completion of M, namely, the (Fi, (M), Idz(M))-
completion of M. For short, let us call it the F-extension of M. The main result
in this appendix is that the F-extension of M is (up to isomorphism) the canonical
extension of L(M). Recall that we denote by L(M) the distributive envelope of
M, and following [44], for any distributive lattice L we denote by L? its canonical
extension. Notice that we have:

M -2 L(M) = L(M)°,

where o is the embedding of M into its distributive envelope, defined in Appendix A,
and m is the canonical embedding of L(M) into its canonical extension L(M)°. Let
us define:

k:=(moo): M — L(M)°.
It is easy to prove the following lemmas, in which all infinite joins and meets are
referred to L(M)°.

LEMMA B.1. For all F € Fip(M), A k[F] = A m[to[F]].

PROOF. Since o[F] C to[F], then m[o[F]] C m[to[F]] and so A m[to[F]] <
Am[o[F]] = A\ k[F]. For the converse, let x € L(M) be such that x € T¢[F]. Then
there is a, € F' C M such that o(a,) < . Since m is order preserving, then k(a,) =
m(o(az)) < m(z). We conclude that A k[F] < A m[to[F]], as required. O

LEMMA B.2. For all I € Idp(M), \/ k[I] = \/ m[{c[I]]].

PRrROOF. Notice that since m preserves finite joins, we have that for all X C¥ I,
m((U{o(z) : ¢ € X}) = \V m[o[X]]. By definition of Frink ideal generated we have
that (o[I]] = {U{o(x) : z € X} : X C¥ I}. Then we get

Vmlel =\ m(Jlo@@) :xexh =\ \/ mo@) =\ k1.

XCwJ XCw«IzeX
O

LEMMA B.3. For any meet filter F of L(M), F € Pr(L(M)) if and only if
Aml[F] € T (L(M)*).

PRrROOF. Let F € Fir(L(M)) and assume that F € Pr(L(M)). We show that
A\ m[F] is completely join irreducible, i. e. that for all Y C L(M)?, if Am[F] < VY,
then there is y € Y such that A m[F] < y. By denseness, we can assume that all
elements in Y are closed. So let {Fs : s € S} C Fis(L(M)) and assume that
Am[F] <V, g Am[Fs]. Suppose, towards a contradiction, that for all s € S,
Am[F] « A m[F]. Then for each s € S there is x5 € F, such that x5 ¢ F. By F
prime filter, for all S’ C* S, \/ .o s ¢ F. And then by compactness \/, g7 & F,
so Am[F] £ \/,cgm(xs). But since for each s € S, we have that z, € Fj,
then A m[Fi] < m(z), and then by the hypothesis Am[F] < \/ g Am[Fs] <
Vesm(zs), a contradiction.

Let now F € Fi,(L(M)) and assume that A m[F] € J°°(L(M)?%). We show
that for all x1,x9 € L(M), if 21 Uxy € F then 21 € F or 25 € F. Recall that any
element © € L(M) is of the form z = J{o(a) : a € A} for some A C¥ M.
So, for z1,22 € L(M), 1 Uxzy = {o(c) : ¢ € C} for some C C¥ M. So
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let C C¥ M and assume that (J{o(c) : ¢ € C} € F. We show that there is
¢ € C such that o(c) € F. Using that m preserves finite joins, we get A m[F] <
m(U{o(c) : c € C}) = Y m[o|C]]. By hypothesis A m[F] is completely join irredu-
cible, so there is ¢ € C such that A m[F] < m(o(c)). Then by compactness we
obtain o(c) € F, as required. O

LEMMA B.4. For all ¢ € J®(L(M)%), there is F € Pr(L(M)) such that c =
Nm[F].

Proor. This follows as a corollary of Lemma B.3. ]

From previous lemmas and the relations between filters and ideals of M and
L(M) that were presented in Appendix A, we get the following theorem.

THEOREM B.5. The canonical extension L(M)° of L(M) is (up to isomor-
phism) the (Fin(M),Idz(M))-completion of M.

PRrROOF. We show that k gives us the required dense and compact embedding.
CrAam B.6. L(M)? is (Fin (M), Idg(M))-compact.

PROOF OF THE CLAIM. Let F' € Fi\(M) and I € Idp(M) and suppose that
N Kk[F] < VVk[I]. Then by lemmas B.1 and B.2, A m[to[F]] <\ m[{o[I]]]. And
then since to[F] € Fix(L(M)) and (o[I]] € Id(L(M)), by compactness we get that
there is « € To[F] N {o[I]] # 0. So there is a € F such that o(a) < z € (o[I]],
and so o(a) € (o[I]]. Then from results in Appendix A, a € o~ '[(c[I]]] = I, so
FNI#0, as required. O

CrLAM B.7. L(M)? is (Fiy(M),1dz(M))-dense.

PROOF OF THE CLAIM. First we show that T'9#(M)(T,(M)?%) is meet-dense in
L(M)’. By denseness we have that for each z € L(M)?® there is Y C Id(L(M))
such that z = A{Vm[I] : I € Y}. By Lemma B.2 and results in Appendix A,
\/ m[I] =\ klo~[I]], and by results in Appendix A, c~![I] € Idp(M), so we are
done.

Now we show that FFir(M)(L,(M)?) is join-dense in L(M)®. Recall that L(M)®
is an algebraic lattice, so every completely join irreducible element is completely
join prime. Therefore, for all z € L(M)?, z = \/Y for some Y C J>(L(M)?).
Then by Lemma B4, z = \/[{Am[F] : F € X} for some X C Pr(L(M)). By
Lemma B.1, Am[F] = A k[o~1[F]] for each F € X, and by results in Appendix A,
o~ [F] € Op,(M) C Fix(M), so we are done. O

We have shown that the canonical extension L(M)? of L(M) is a completion of
M that is (Fin(M),Idp(M))-compact and (Fis(M),Idx(M))-dense. We conclude
that L(M)? is, up to isomorphism, the (Fix (M), Idz(M))-completion of M. |

From now on we consider k as the identity map and we denote the F-extension of
M simply by M¥. Moreover, we denote the collection of all Fi, (M)-filter elements
of M¥ by C(MF") (or simply C), and we call its elements closed elements. Similarly
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o] o] o]
.Cl .Cl .Cl
TCQ TCQ TCZ

d

FiGUureE 10. Example of a distributive semilattice for which the
canonical extension and the F-extension are different.

O(MT) (or simply O) denotes the collection of all Id(M)-ideal elements of M*",
that are called open elements.®

The following example shows that the canonical extension and the F-extension
of a distributive semilattice may not be isomorphic. However, from the fact that
Id(M) C Idp(M) for any distributive semilattice M, it always holds that M?, the
canonical extension of M, is embeddable in MF".

ExaMPLE B.8. We consider again the distributive semilattice M that we in-
troduced in Example 6.5.24 (see Figure 10). On the one hand, all ideals of M
are principal ideals, and the only filter of M that is not a principal filter is F, =
{1}U{c; : i € w}. From the general theory we get that the canonical extension M?
of M is the lattice obtained by adding the point ¢ as shown in Figure 10. The dis-
tributive envelope L(M) of M was studied in detail in [5], and in this case it turns
out to be isomorphic to M%. Then the F-extension of M, that by Theorem B.5
is the canonical extension of L(M) is the complete distributive lattice obtained by
adding the point d as shown in Figure 10. Hence M?® and M¥ are not isomorphic.
Moreover, we sce that M? embeds into M¥.

Notice that for the F-extension, the usual arguments about duality (when ar-
guing for the underlying posets) are not valid, since complements of filters are not
necessarily F-ideals. What it is still true is that finite meets and joins are pre-
served, since for all I € Idp(M), I is closed under existing finite joins, and for all
F € Fin(M), F is closed under existing finite meets. Furthermore Fij(M) and
Idp(M) are algebraic closure systems, so compactness holds. Let us verify one
more technical issue, taking special care of the bounds.

LEMMA B.9. Let M1 and My be distributive semilattices. Then:

INotice that a similar notation is used in the rest of the dissertation for open and closed
subsets of a topological space. This should not lead to confusion, as it is only in the remaining
part of the appendix that open and closed elements of a completion appear.
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(1) Fin(M; x My) = Fip(M;) x Fin(Mo,).
(2) IdF(Ml X MQ) = IdF<M1) X IdF(Mg)

PRrROOF. Notice that M; x M5 has a bottom element if and only if both My
and My have a bottom element. As we assume that the semilattices have a top
element, meet filters are non-empty. It is well known that the equality for meet
filters holds. We just have to check the equality for F-ideals.

Let us first show that for any I1 € Idp(M;) and Iy € Idp(Ms), it holds that
I x Iy := {(a1,a2) : a1 € I1,a2 € Iz} € Idp(M; x My). Consider first the
case I1,I5 # (. Then let (a1,,as,) € I} x I, with ¢ < n for some n € w, and
suppose ({1(a1,,as2,) : i < n} C 1(b1,bs) for some (by,by) € My x Ms. We show
that b; € I; (the other case is analogous). Suppose, towards a contradiction, that
N{ta1, : i < n} € tby. Then there is z > ay, for all i < n such that z # by.
Therefore (z,1) € N{f(a1,,a2,) : ¢ < n} and (2,1) ¢ 1(b1,bs), contrary to the
assumption. Thus we obtain (({taq, : ¢ <n} C 1by, and since I; is an F-ideal, then
by € I;. Similarly we obtain by € I, and therefore (by,bs) € I x I, as required.
Assume now that I; = @ (the case I = ) follows analogously). By assumption
I; x I = (), and we know that M; has no bottom element. By the remark above,
this implies that M; x M5 has no bottom element, and so I; x I, = () is a Frink-ideal
of M; x Ma.

For the other inclusion, let I € Idp(M; x Msy). We show that I = I; x I for
some I; € Idg(M;) and I € Idp(Ms). Consider first the case I # (). Notice that
for this case I = my(I) x mo(I), where w1 (I) := {a € M; : 3b € M3((a,b) € I)}
and mo(I) := {b € My : 3a € Mi((a,b) € I)}, as if we take (a1,a2), (b1,b2) € I,
from (a1, az) N1(b1,b2) C 1(a1,b2) and I being a Frink ideal it follows (ay, bg) € 1.
Thus if we show that m1 (/) € Idp(M;) and mo(I) € Idp(Msz) we are done. Let
(@i, b;) € I, for some i < n be such that ({ta; : i < n} C e for some ¢ € M. We
show that ¢ € 71(I). Clearly, the assumption implies that ({1(a;, b;) : i < n} C
(e, A{b; : i < n}). Therefore, since I is an F-ideal, we get (¢, A{b; : i < n}) € I,
and so ¢ € my([), as required. We have shown that (/) is an F-ideal of M, and
the proof for mo(I) is analogous. Assume now that I = (). Then M; x My has
no bottom element, and then either My or My have no bottom element. Assume,
without loss of generality, that M; has no bottom element. Then () € Idr(M;).
Let I € Idp(Ms) be any F-ideal of My. Then clearly I = @) x I, for F-ideals )
and I of M; and Mj respectively, so we are done. ([l

Let us have a look at the extensions of order preserving and order reversing
maps to the canonical extension and the F-extension of a distributive semilattices
with top element.

For f : M; — M, an order preserving map between distributive meet semi-
lattices M; and My, we define the o and the 7w extension of f to the F-extension
of M; and My, such that for any u € M{":

f7(u) ::\/{/\{f@)ifESP,pEMl}ixSU,wGCl}a
)= A{\V{f®):p<ypeM}:u<yyecO}

It is easy to check that the following statements hold:
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LEMMA B.10. Forallz € Cy, y€ O, u e MlF
(1) f7(@) = A{f(p): 2 <p,p€ M}

(2) f? sends closed elements to closed elements.
(3) f° extends f.

(4) f° is order preserving on C;.

€

) f7(uw) =V{f7(x): 2 <w,z €Ci}.

Proor. (1) follows immediately from f being order preserving. For (2), we
show first that t{f(p) : ® <p € M;} € Fin(Ms3). Clearly this set is an up-set, so it
is just left to show that it is closed under meets. Let a,b € M{f(p) : < p € M},
so there are p1,ps € M, such that = < p1,p2, f(p1) < a and f(p2) < b. As
x = A\ F for some F € Fi\(M;) and (by compactness) p1,ps € F, so p1 Aps € F.
Then & < p; Aps. By f order preserving f(p1 A p2) < f(p1) A f(p2) and since
fp1) A f(p2) < anb, then aAb € t{f(p) : < p € M}, as required. So we
have f7(z) = N{f(p) :x <pe M1} = AMN{f(p) : « <p € M}, and we are done.
(3)-(5) follow easily. O

LEMMA B.11. For allz € Cy, y € Oy, u € MY :
(L) f7(w) =V{f(p) :p<y,p € Mi}.

(2) f™ sends open elements to open elements.
(3) f™ extends f.

(4) f™ is order preserving on O1.

(5

) fT(w) = N{f"(y) :u<y,y € O1}.

PRrROOF. (1) is immediate. For (2), let I € Idp(M;) be the F-ideal such that
VI =y. We show that \/ (f[I]] = V{f(p) : p < y,p € M;}. Notice that by
compactness, we get that \V/{f(p) : p < y,p € M1} = V f[I]. Therefore, since
fII] € (f[I]], we just have to show that \/ {f[I]] < V{f(p) :p <y,p € M1}. Let
z € {f[I]], so there are ag,...,a, € I such that {1f(a;) : i < n} C tz. This
implies, by definition of the distributive envelope, that z < V/{f(a;) : i < n} <
V flI]. Thus V {f[I]] < V{f(p) :p <y,p € M}, and we are done. (3)-(5) follow
easily. |

Notice that for order reversing maps we cannot argue by duality, due to the lack
of symmetry between meet filters an F-ideals of meet semilattices. For g : My — My
an order reversing map between distributive meet semilattice M; and My, we de-
fine the o and the 7 extension of g to the F-extension of M; and M, as follows:
for all u € M¥

)i=V{ N\ :p<yped}:uyyec0O}

:/\{\/{g(p):x§p7p€M1}:m§u,x€C1}.

It is easy to check that the following statements hold, that are analogues of the
ones in lemmas B.10 and B.11.

LEMMA B.12. For allx € Cy, y € Oy, u € M{ :
(1) 9°(y) = NMgp) : p < y,p € My}

(2) ¢° sends open elements to closed elements.
(3) ¢° extends f.
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(4) g9 is order reversing on O;.
() 97(uw) =V{f7(y) :u < y,z € O1}.

ProOOF. (1) is immediate. For (2), let I € Idp(M;j) be the F-ideal such that
VI = y. We show that A[g[I]) = A{g9(p) : p < y,p € M;}. Notice that by
compactness, we get that A{g(p) : p < y,p € My} = Ag[I]. Therefore, since
glI] C [g[I]), we just have to show that A [g[I]) < A{g(p) :p <y,p € My}: Let
z € [f[I]), so there are ag,...,a, € I such that g(ag) A--- A g(an) < z. Then
A glI] < z and we are done. (3)-(5) follow easily. O

LEMMA B.13. Forallz € C1, y€ O, u € MlF
(1) g™(x) = \V{g(p) : z <p,p € My}.

(2) g™ sends closed elements to open elements.
(3) g™ extends f.

(4) g™ is order reversing on Cy.

() ¢"(w) = Mf7(2) : 2 <w,x € Ci}.

PrOOF. (1) is immediate. For (2), we show first that {{g(p) : « < p € M;}
is an F-ideal of My. Clearly the set |{g(p) : © < p € My} is a down-set. Let
a,b € L{g(p) : x < p e M} and ¢ € My and suppose that ta N 1h C Tc. We have
to show that ¢ € {{g(p) : © < p € M;}. By assumption there are py,ps € M,
x < p1,p2 such that a < g(p1) and b < f(ps2). Since g is order reversing, then
9(p1),9(p2) < g(p1 Apz2). Then tg(p1) NTg(p2) € te, and then g(py A p2) € te.
Thus ¢ < g(p1 Ap2) € {g9(p) : © < p € M;}, as required. So we have g™ (x) =
V{gp) :x <pe M} =VI{glp):z <pe M}, and we are done. (3)-(5) follow
easily. O

Once we have studied how order preserving and order reversing maps between
distributive semilattices can be extended to the F-extensions, we want to apply
this to the study of implicative semilattices. It is well known that the canonical
extension of the semilattice reduct of an implicative semilattice N = (N, —, A, 1),
augmented with the m-extension of the implication, is a Heyting algebra [26].

Recall that from Lemma B.9 we obtain that the m extension of a binary function
f: M; x My — M3 that is order preserving in the second coordinate and order
reversing in the first coordinate is given by:

i) = A{V{fp0) 2 <pg<ypeM,qgeM}:z<uv<yzecl,yc 0}

We aim to show that the F-extension of the semilattice reduct of an implicative
semilattice N = (N, —, A, 1), augmented with the m-extension of the implication,
is also a Heyting algebra, and so it is in particular an implicative semilattice.

Let N = (N,—,A, 1) be an implicative semilattice. Recall that by definition
— is the right residuum of A, so for all a,b,c € N:

aNc<b iff ¢c<a—b
Let N° = <N5,/\N6,\/N5,0N5, 1N6> be the canonical extension of the semilattice
reduct of N, and let N¥ = (NF AN yN" gN" IN") he the F-extension of the

semilattice reduct of N. We already know that AN’ coincides with the o-extension
of A in N9 and VN’ coincides with the o-extension of V in N°.
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LEMMA B.14. For any implicative semilattice N, AN coincides with the o-
extension of A in NT.

PROOF. Let us denote the o-extension of A in N¥' by A?. First we show that
AN" and A® coincide for closed elements. Let p1,p2 € C,and let Fy, Fy € Fin(N) be
the filters such that py = A F and ps = A F>. On the one hand, by commutativity
of AN we have:

F F F
P1 /\N pQZ/\Fl /\N /\FQZ/\{CH /\N as . ay EFl,QQEFQ}.
On the other hand, since A is order preserving, we have:

D1 /\Upzz/\{fh Nag :p1 <ap € N,ps <as € N}

And since aAb = aAN" b for all a,b € N, using compactness we obtain p; AN” P2 =
p1 A% pa. Notice that py ANT p2 =AM a ANT as : a; € F1,as € Fp} and moreover
May AN ay tay € Fi,ap € Fy} € Fin(N), so pr AN py is also a closed element of
NF.

Now we show that for all z1, x5 € NF, 24 ANT x9 = x1 A% 3. On the one hand,
by (Fin(N),Idp(N))-denseness, we have:

1 ANT Lo = \/{p eC:p<(x AN x9)}.
On the other hand, since A is order preserving, by Lemma B.10 we have:
1 N7 g = \/{pl A7 pa i p1 < x1,p2 < w2, p1,p2 € Ch.
From above we conclude that x ANT r9 = x1 A% X2, as required. [l

THEOREM B.15. For any implicative semilattice N, the mw-extension of — in
N¥ is the right residuum of ANT

PROOF. Let u,v,w € N¥. By simplicity we will denote ANT = Ao by A. First
we show that v < u —™ w implies u A v < w.

Let us prove first the easy case: let s,t € C and y € O and suppose s At < y.
Recall that by s,t closed, then s At = AMpAq,p,qg € N,s < p,t <q} is also
closed, and so by (Fix(N),Idg(IN))-compactness, there are p,q € N with s < p,
t < gand pAg <y. By N being an implicative semilattice (by residuation) we
have ¢ <p — (pA¢q). Notice that s =" y=\{p' = ¢ :9',¢ € N,s <p',¢ <y}
Therefore, we have t < ¢ <p— (pAq) for s <pand pAq<y. Hence t < s ="y,
as required.

For the general case, suppose that u A v < w. We show that v < u —™ w.
Recall that u =™ w = A{s 2" y:s € C,s < u,w <y € O} and moreover by
(Fin(N),Idp(N))-denseness, v = {\/t € C : t <wv}. Let s,t € C and y € O be such
that s < wu, t < v and w < y. If we show that t < s —™ y, we are done. Using the
assumption we get that s A\t <uAv < w <y. Then by the easy case t < s =7 vy,
as required.

For the converse, assume that v < u —™ w. We show that u A v < w. By
(Fin(N),Idp(N))-denseness, w = A{y € O : w < y}, and moreover u A v =
V{sAt:stelCs <ut < v} Lety e O,s,t €C be such that s < wu,
t < wvand w < y. If we show that s At < y, we are done. By assumption
t<v<u—=>"w=A{s>"y:s€ls<uw<yec0}<s ="y Recal
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that by definition s =™ y = \/{p — r : p,r € N,s < p,r < y}. Let us define
the set X := {p —» r : p,r € N,s < p,r < y}. Using that \/ X =V (X], and
(Fin(N),Idp(IN))-compactness, we obtain that there are pg,...,pn,70,...,"n € N
such that s < p;,r; <y forall i <nand t < \/{p; =7 r; : i < n}.

Let p:= A{p; : i <n} € N. From p < p;, since — is order reversing in the first
coordinate and order preserving in the second one, we obtain p; — r; < p — r; for
all i <n,and sot < \/{p; = r;:i <n} <V{p—r;:i<n}. Now by residuation,
for all i < n we have pA(p = 1) <r; <y. Then \V{pA(p = 1) i <n} <
y. Using that N¥ is a distributive lattice, we get that \/{p A (p — ;) :i <n} =
pAV{p — r; i <n}. Therefore, since t < \/{p — r : i < n}and s < p =
Po A APy, we get s At <y, as required. ([

In conclusion, we have shown that for any distributive meet-semilattice with
top element M, the F-extension M of M is (up to isomorphism) the canonical
extension of the distributive envelope of M. Moreover, for any implicative semila-
ttice IN, the F-extension of N augmented with the 7 extension of the implication
is a Heyting algebra. This is an important result for defining a logic-based notion
of canonical extension of Hilbert algebras. It is worth noticing that the canonical
extension of a Hilbert algebra A = (A, —, 1), extended with the 7 extension of the
implication, may fail to be a Hilbert algebra. This is shown in following example.

ExaMpPLE B.16. Consider again the distributive semilattice M in Figure 10
(see page 200). Let — be the implication given by the order in M, and so let

M := (M,—,1) be the resulting Hilbert algebra. We know that the canonical
. ~7r - .- . . =0
extension of M is M?. By definition of the 7 extension of — in M, we have:
M6
c—="c= \/{p—>q:CSP,chypyqu}ZC#L

but then (M?%, =™, 1M5> is not a Hilbert algebra since condition (K) fails.
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List of Axioms, Rules, Equations, Properties and

(A1)
A2)
A3)
A4)
)
)
)

—_~ o~ o~

A5
(A6

—

(A8)
(A1)
(A2)
(AA1)
(AN2)
(AA3)
(AB)
(B)
(©
(Can)
(c1)
(cr)
(C2)
(C2')
(C3)
(C3")
(C9)

(C3)

(DHM1)
(DH"2)
(DH3)
(DH4)
(DH5)

(DH"6)
(DHAT)
(DH"8)
(DHM9)

(DHA10)

Acronyms

FB—=(0r—8)

Fly=(B—=0)—=((v—=8) —(y—9)

F(yAB)—B

F(YAB) =

Fly—=8) = ((y—=8) = (v—=(BAF))

Fy—=(0Vvp

Fy—=(BVy)

Fiy—=8) = ((B—=6) = ((vVvB) —19))

= O™~ for every substitution instance of a theorem of H and for every n € w
FO*"(O(y — B) = (Oy — 0P)) for all formulas v, 8 and for every n € w
F (A Gy = B) = (Y AB)

FyAB) = (BAY)

F((yAB)AS) = (v A6) AB)

Y= BEY = (YAB)

(a=b) = ((b—oc)—(a—c)=1

a—((a—=b)—=b)=1

AS is the (Fig(A), waldss(A))-completion of A

forall Y C X, Y C C(Y)

ifx e X, then X ko x

for all Y, Y’ C X, if Y C Y7, then C(Y) C C(Y")

if YFcoaforallz € X and X k¢ 2z, then Y F¢ 2

for all Y C X, C(C(Y)) = C(Y)

if ' ks 4, then e[I'] ks e(d) for all substitutions e € Hom(Fm e, Fm )

forall Y C X, Vz € X, if z € C(Y), then there is a finite Y/ C* Y such
that = € C(Y”)

for all Y U {z} C X and all h € Hom(X,X), we have h(z) € C(h[Y])
whenever z € C(Y)

(X, 7x) is an H-space

X C X generates a sober subspace of (X, 1)

Ue=c(UcnX), forall U € s

c(Uenve ﬂ)’f)c €k, for any U,V € k

for any U,V € s and W C & non-empty, if A(N{We: W e WinX) C U*,
then cl(W§N---NWgENX) C U for some Wo,...,Wn € W and some
new

(X, 7,<,B) is an H-Priestley space

X C X generates a compact subspace

U=1UnX), for any U € B

NUNVNX)eB, forany U,V € B

Wis XN X p-admissible clopen up-set of X if W =UnX for some
UeB
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123
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132
131
131
131
128
128
136
136
136
136
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16
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16
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156
156
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159
159
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LisT or AxioMms, RULES, EQUATIONS, PROPERTIES AND ACRONYMS

(DH/R1)
(DHR2)
(DH/R3)

(DH”R4)
(DHL1)
(DHL2)
(DLI0)
(DLI1)
(DS1)
(DS2)
(DS2)

R is an H-relation between H-spaces (X1, 7x,) and (X2, Tk,)
for every z € X1, R(z) = cl(R(z) N X2)

R is an H-Priestley morphism between H-Priestley spaces (X1, 71, <1, B1)
and (X2, T2, <2, B2)

for every = € X1, R(z) = 1(R(z) N X2)

A((UeuVe)yNnX)© €k, for any U,V € &

(U UV)NX)eB, for any U,V € B

0—a)=1

a— (bAc)=(a—=b)A(a—c)

the collection KO(X) of compact open subsets forms a basis for the topo-
logy T

the space (X, ) is sober

the space (X, 7) is Tp and if Z is a closed subset and L is a non-empty
down-directed subfamily of XO(X) such that ZNU # @ for all U € L, then
ZNMU:UeL}#0

(X, 7,<) is a Priestley space

Xp is a dense subset of X

Xp={zeX:{Uec C@M}‘(‘; (X):x ¢ U} is non-empty and up-directed}
forall z,y € X,z <y iff (VU eczuggg(X)) ifx €U, theny € U

for each z € X there is 2’ € X3 such that R(z) = 12’

Or(U) € F(X1) for all U € F(X2)

R(x) is a closed subset of Xo for any € X1

Or(U) € czug;jgl (X1) forall U € ceug(dB2 (X2)

if (z,y) ¢ R, then thereis U € Cfug(dBQ (X2) such that y ¢ U and R(z) C U
{YCx:C(Y)=Y}CPH(X)

UeM(A) iff U= @(B) for some non-empty B C¥ A

(Fis(A), C) = (Fin (M(A)), C)

(S-prime Id,s(A), ) 2 (prime Idp (M(A)), C)

(ualdss (A), C) = ( Acideal 1d(M(A)), )

(S-prime 4qId,s(A), C) & (prime 1d(M(A)), )

(Ops(A),C) = (Op,, (M(A)), ©)

UeLM) iff U=U,cpo(b) for some non-emptyB C* M

JU is clopen for every Esakia clopen U

(a—=(a—b)=a—b

a—(b—a)=1

(a—=b—¢c)—=>((a—=b)—>(a—>c)=1
(a—=(b—0¢)=((a—b) = (a—0c)
if(a—>b=1=b—a),thena=1»

l—-a=a

(a—=b)— ((b—a)—a)=(0b—a)— ((a—>b) —b)

K is a basis of open and compact subsets for the topological space (X, 7, )
for every U,V € k, sat(UNV*®) € k

(X, 7x) is sober
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166
188
188
144
144
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36

38
38
38
38
39
37
37
39
39
22
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64
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65
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134
30
29
29
30
29
30
30
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the space (X, 7x) is To and whenever Z is a closed subset and U/ is a non-
empty down-directed subfamily of k such that Z NU # () for all U € U, we
have ZN({U :U €U} #0

(X, 7) is a compact topological space

(X, <) is a poset with top element ¢

(X, <) is a poset

B is a non-empty collection of non-empty clopen up-sets of X
B is a collection of clopen up-sets of X that contains X

for every z,y € X,z <y iff YU € B(if x € U, then y € U)

the set Xp U {t} is dense in X, where Xp :=={z € X : {U € B:z ¢
U} is non-empty and up-directed}

the set Xp := {o € X : {U € B : = ¢ U} is non-empty and up-directed }
is dense in X

forall U,V € B, ((UNVe)¢ e B
if (z,y) € R, then there exists z € cl(z) such that R(z) = cl(y)

for every x € X1 and every y € Xp,, if (z,y) € R, then there exists
z € Xp, such that z € tz and R(z) =1y

Or(U) € k1, for all U € ko

R(x) is a closed subset of Xo, for all z € X3

if (z,y) ¢ R, then there is U € By such that y ¢ U and R(z) CU
Or(U) € By for all U € By

alN(a—b)=aNnbd

(a—=(bAC) = (a—=bA(a—c)=1

(avd) wc=(a—c)A(b—c)

01=1

O(a—b) —» (Oa—0b) =1

a— (aVvd)=1

(a—=b) = ((avd) =b)=1

K is closed under finite intersections

B is closed under finite unions

if(a—>b=1& b—c=1),thena—c=1
a—1=1

cl((sat (U NVe))N X)e €, forany U,V €k
MU NVe)enX)eB, forany U,V € B
X=X

(@a—=b)Ab=b

alN(a—b)=aNnbd
a—(bAc)=(a—c)A(a—Db)

for any U,V € KO(X), sat(UNV°) € KO(X)
for all U,V € CAUE (X), (LU NV))® € CUE (X)
a—a=1

vy —=BEB

(X, %) is a complete lattice, where < is the quasiorder associated with the
referential algebra

41

43
43
126
43
126
43
43

126

43
42
44

42

42

44

44
135
135
144
128
128
130
130
132
132

30

30
189
189
186
133
133
133
133
134

30
123
103
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BDS
BIS
DHA
DLI
DS
gHe

HA
H\/
HL
HDL

IA
="
THE
IS

forallld U{V} C B, if \U C V, then V € CBW)
BC {tz:ze€ X}

{z : Tz € B} is join-dense in X
a—(b—(and)=1

(X, B) is a reduced S-referential algebra, whose associated order is denoted
by <

(X, B) is an S-referential algebra, whose associated quasiorder is denoted
by <

foral ! U{V}C* B,NUCV iff VeCEBWU)

(X, 7) is a compact space

(X, 7,<) is a Priestley space, and BU{U® : U € B} is a subbasis for it
B is a family of clopen up-sets for (X, 7, <) that contains X

X € B and CaU(X) = BV U {0}

the set Xp:={z € X :{U € B:x ¢ U} is non-empty and up-directed} is
dense in (X, 7)

Ogr € Hom(B2,B1)

if (z,y) ¢ R, then there is U € Bg such that y ¢ U and R(z) C U
(X, B) is an S-referential algebra

forall H U{V} C¥ B, if N\U C V, then V € CE(U)

kx :={U°: U € B} is a basis of open compact subsets for a topology 7x »
on X

the space (X, Tk, ) is sober
Ogr € HOm(BQ,Bl)
R(z) is a closed subset of (X2, 7., ) forallz € X3

bounded distributive meet-semilattices

bounded implicative semilattices

distributive Hilbert algebras with infimum
(bounded) distributive lattices with implication
distributive meet-semilattices with top element
relatively pseudo-complemented lattices

Hilbert algebras

Hilbert algebras with infimum

Hilbert algebras with supremum

Hilbert algebras with lattice structure

Hilbert algebra with distributive lattice structure
modal Hilbert algebras

implicative algebras

implicative Hilbert algebra with infimum
implicative Hilbert algebra with lattice structure

implicative semilattices

103
103
103
135

84

86

84
84
86
84
86
84

95
95
76
76
76

76
94
94

27
132
138
144

27
144

29
135
130
145
146
128

30
149
149
132
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